1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 libbpf_mode = mode; 160 return 0; 161 } 162 163 __u32 libbpf_major_version(void) 164 { 165 return LIBBPF_MAJOR_VERSION; 166 } 167 168 __u32 libbpf_minor_version(void) 169 { 170 return LIBBPF_MINOR_VERSION; 171 } 172 173 const char *libbpf_version_string(void) 174 { 175 #define __S(X) #X 176 #define _S(X) __S(X) 177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 178 #undef _S 179 #undef __S 180 } 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN_VAR, 187 RELO_EXTERN_FUNC, 188 RELO_SUBPROG_ADDR, 189 RELO_CORE, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 union { 196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 197 struct { 198 int map_idx; 199 int sym_off; 200 }; 201 }; 202 }; 203 204 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 205 enum sec_def_flags { 206 SEC_NONE = 0, 207 /* expected_attach_type is optional, if kernel doesn't support that */ 208 SEC_EXP_ATTACH_OPT = 1, 209 /* legacy, only used by libbpf_get_type_names() and 210 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 211 * This used to be associated with cgroup (and few other) BPF programs 212 * that were attachable through BPF_PROG_ATTACH command. Pretty 213 * meaningless nowadays, though. 214 */ 215 SEC_ATTACHABLE = 2, 216 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 217 /* attachment target is specified through BTF ID in either kernel or 218 * other BPF program's BTF object */ 219 SEC_ATTACH_BTF = 4, 220 /* BPF program type allows sleeping/blocking in kernel */ 221 SEC_SLEEPABLE = 8, 222 /* allow non-strict prefix matching */ 223 SEC_SLOPPY_PFX = 16, 224 /* BPF program support non-linear XDP buffer */ 225 SEC_XDP_FRAGS = 32, 226 /* deprecated sec definitions not supposed to be used */ 227 SEC_DEPRECATED = 64, 228 }; 229 230 struct bpf_sec_def { 231 char *sec; 232 enum bpf_prog_type prog_type; 233 enum bpf_attach_type expected_attach_type; 234 long cookie; 235 int handler_id; 236 237 libbpf_prog_setup_fn_t prog_setup_fn; 238 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 239 libbpf_prog_attach_fn_t prog_attach_fn; 240 }; 241 242 /* 243 * bpf_prog should be a better name but it has been used in 244 * linux/filter.h. 245 */ 246 struct bpf_program { 247 const struct bpf_sec_def *sec_def; 248 char *sec_name; 249 size_t sec_idx; 250 /* this program's instruction offset (in number of instructions) 251 * within its containing ELF section 252 */ 253 size_t sec_insn_off; 254 /* number of original instructions in ELF section belonging to this 255 * program, not taking into account subprogram instructions possible 256 * appended later during relocation 257 */ 258 size_t sec_insn_cnt; 259 /* Offset (in number of instructions) of the start of instruction 260 * belonging to this BPF program within its containing main BPF 261 * program. For the entry-point (main) BPF program, this is always 262 * zero. For a sub-program, this gets reset before each of main BPF 263 * programs are processed and relocated and is used to determined 264 * whether sub-program was already appended to the main program, and 265 * if yes, at which instruction offset. 266 */ 267 size_t sub_insn_off; 268 269 char *name; 270 /* name with / replaced by _; makes recursive pinning 271 * in bpf_object__pin_programs easier 272 */ 273 char *pin_name; 274 275 /* instructions that belong to BPF program; insns[0] is located at 276 * sec_insn_off instruction within its ELF section in ELF file, so 277 * when mapping ELF file instruction index to the local instruction, 278 * one needs to subtract sec_insn_off; and vice versa. 279 */ 280 struct bpf_insn *insns; 281 /* actual number of instruction in this BPF program's image; for 282 * entry-point BPF programs this includes the size of main program 283 * itself plus all the used sub-programs, appended at the end 284 */ 285 size_t insns_cnt; 286 287 struct reloc_desc *reloc_desc; 288 int nr_reloc; 289 290 /* BPF verifier log settings */ 291 char *log_buf; 292 size_t log_size; 293 __u32 log_level; 294 295 struct { 296 int nr; 297 int *fds; 298 } instances; 299 bpf_program_prep_t preprocessor; 300 301 struct bpf_object *obj; 302 void *priv; 303 bpf_program_clear_priv_t clear_priv; 304 305 bool load; 306 bool mark_btf_static; 307 enum bpf_prog_type type; 308 enum bpf_attach_type expected_attach_type; 309 int prog_ifindex; 310 __u32 attach_btf_obj_fd; 311 __u32 attach_btf_id; 312 __u32 attach_prog_fd; 313 void *func_info; 314 __u32 func_info_rec_size; 315 __u32 func_info_cnt; 316 317 void *line_info; 318 __u32 line_info_rec_size; 319 __u32 line_info_cnt; 320 __u32 prog_flags; 321 }; 322 323 struct bpf_struct_ops { 324 const char *tname; 325 const struct btf_type *type; 326 struct bpf_program **progs; 327 __u32 *kern_func_off; 328 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 329 void *data; 330 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 331 * btf_vmlinux's format. 332 * struct bpf_struct_ops_tcp_congestion_ops { 333 * [... some other kernel fields ...] 334 * struct tcp_congestion_ops data; 335 * } 336 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 337 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 338 * from "data". 339 */ 340 void *kern_vdata; 341 __u32 type_id; 342 }; 343 344 #define DATA_SEC ".data" 345 #define BSS_SEC ".bss" 346 #define RODATA_SEC ".rodata" 347 #define KCONFIG_SEC ".kconfig" 348 #define KSYMS_SEC ".ksyms" 349 #define STRUCT_OPS_SEC ".struct_ops" 350 351 enum libbpf_map_type { 352 LIBBPF_MAP_UNSPEC, 353 LIBBPF_MAP_DATA, 354 LIBBPF_MAP_BSS, 355 LIBBPF_MAP_RODATA, 356 LIBBPF_MAP_KCONFIG, 357 }; 358 359 struct bpf_map { 360 char *name; 361 /* real_name is defined for special internal maps (.rodata*, 362 * .data*, .bss, .kconfig) and preserves their original ELF section 363 * name. This is important to be be able to find corresponding BTF 364 * DATASEC information. 365 */ 366 char *real_name; 367 int fd; 368 int sec_idx; 369 size_t sec_offset; 370 int map_ifindex; 371 int inner_map_fd; 372 struct bpf_map_def def; 373 __u32 numa_node; 374 __u32 btf_var_idx; 375 __u32 btf_key_type_id; 376 __u32 btf_value_type_id; 377 __u32 btf_vmlinux_value_type_id; 378 void *priv; 379 bpf_map_clear_priv_t clear_priv; 380 enum libbpf_map_type libbpf_type; 381 void *mmaped; 382 struct bpf_struct_ops *st_ops; 383 struct bpf_map *inner_map; 384 void **init_slots; 385 int init_slots_sz; 386 char *pin_path; 387 bool pinned; 388 bool reused; 389 bool skipped; 390 __u64 map_extra; 391 }; 392 393 enum extern_type { 394 EXT_UNKNOWN, 395 EXT_KCFG, 396 EXT_KSYM, 397 }; 398 399 enum kcfg_type { 400 KCFG_UNKNOWN, 401 KCFG_CHAR, 402 KCFG_BOOL, 403 KCFG_INT, 404 KCFG_TRISTATE, 405 KCFG_CHAR_ARR, 406 }; 407 408 struct extern_desc { 409 enum extern_type type; 410 int sym_idx; 411 int btf_id; 412 int sec_btf_id; 413 const char *name; 414 bool is_set; 415 bool is_weak; 416 union { 417 struct { 418 enum kcfg_type type; 419 int sz; 420 int align; 421 int data_off; 422 bool is_signed; 423 } kcfg; 424 struct { 425 unsigned long long addr; 426 427 /* target btf_id of the corresponding kernel var. */ 428 int kernel_btf_obj_fd; 429 int kernel_btf_id; 430 431 /* local btf_id of the ksym extern's type. */ 432 __u32 type_id; 433 /* BTF fd index to be patched in for insn->off, this is 434 * 0 for vmlinux BTF, index in obj->fd_array for module 435 * BTF 436 */ 437 __s16 btf_fd_idx; 438 } ksym; 439 }; 440 }; 441 442 static LIST_HEAD(bpf_objects_list); 443 444 struct module_btf { 445 struct btf *btf; 446 char *name; 447 __u32 id; 448 int fd; 449 int fd_array_idx; 450 }; 451 452 enum sec_type { 453 SEC_UNUSED = 0, 454 SEC_RELO, 455 SEC_BSS, 456 SEC_DATA, 457 SEC_RODATA, 458 }; 459 460 struct elf_sec_desc { 461 enum sec_type sec_type; 462 Elf64_Shdr *shdr; 463 Elf_Data *data; 464 }; 465 466 struct elf_state { 467 int fd; 468 const void *obj_buf; 469 size_t obj_buf_sz; 470 Elf *elf; 471 Elf64_Ehdr *ehdr; 472 Elf_Data *symbols; 473 Elf_Data *st_ops_data; 474 size_t shstrndx; /* section index for section name strings */ 475 size_t strtabidx; 476 struct elf_sec_desc *secs; 477 int sec_cnt; 478 int maps_shndx; 479 int btf_maps_shndx; 480 __u32 btf_maps_sec_btf_id; 481 int text_shndx; 482 int symbols_shndx; 483 int st_ops_shndx; 484 }; 485 486 struct bpf_object { 487 char name[BPF_OBJ_NAME_LEN]; 488 char license[64]; 489 __u32 kern_version; 490 491 struct bpf_program *programs; 492 size_t nr_programs; 493 struct bpf_map *maps; 494 size_t nr_maps; 495 size_t maps_cap; 496 497 char *kconfig; 498 struct extern_desc *externs; 499 int nr_extern; 500 int kconfig_map_idx; 501 502 bool loaded; 503 bool has_subcalls; 504 bool has_rodata; 505 506 struct bpf_gen *gen_loader; 507 508 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 509 struct elf_state efile; 510 /* 511 * All loaded bpf_object are linked in a list, which is 512 * hidden to caller. bpf_objects__<func> handlers deal with 513 * all objects. 514 */ 515 struct list_head list; 516 517 struct btf *btf; 518 struct btf_ext *btf_ext; 519 520 /* Parse and load BTF vmlinux if any of the programs in the object need 521 * it at load time. 522 */ 523 struct btf *btf_vmlinux; 524 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 525 * override for vmlinux BTF. 526 */ 527 char *btf_custom_path; 528 /* vmlinux BTF override for CO-RE relocations */ 529 struct btf *btf_vmlinux_override; 530 /* Lazily initialized kernel module BTFs */ 531 struct module_btf *btf_modules; 532 bool btf_modules_loaded; 533 size_t btf_module_cnt; 534 size_t btf_module_cap; 535 536 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 537 char *log_buf; 538 size_t log_size; 539 __u32 log_level; 540 541 void *priv; 542 bpf_object_clear_priv_t clear_priv; 543 544 int *fd_array; 545 size_t fd_array_cap; 546 size_t fd_array_cnt; 547 548 char path[]; 549 }; 550 551 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 552 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 553 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 554 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 555 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 556 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 557 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 558 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 559 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 560 561 void bpf_program__unload(struct bpf_program *prog) 562 { 563 int i; 564 565 if (!prog) 566 return; 567 568 /* 569 * If the object is opened but the program was never loaded, 570 * it is possible that prog->instances.nr == -1. 571 */ 572 if (prog->instances.nr > 0) { 573 for (i = 0; i < prog->instances.nr; i++) 574 zclose(prog->instances.fds[i]); 575 } else if (prog->instances.nr != -1) { 576 pr_warn("Internal error: instances.nr is %d\n", 577 prog->instances.nr); 578 } 579 580 prog->instances.nr = -1; 581 zfree(&prog->instances.fds); 582 583 zfree(&prog->func_info); 584 zfree(&prog->line_info); 585 } 586 587 static void bpf_program__exit(struct bpf_program *prog) 588 { 589 if (!prog) 590 return; 591 592 if (prog->clear_priv) 593 prog->clear_priv(prog, prog->priv); 594 595 prog->priv = NULL; 596 prog->clear_priv = NULL; 597 598 bpf_program__unload(prog); 599 zfree(&prog->name); 600 zfree(&prog->sec_name); 601 zfree(&prog->pin_name); 602 zfree(&prog->insns); 603 zfree(&prog->reloc_desc); 604 605 prog->nr_reloc = 0; 606 prog->insns_cnt = 0; 607 prog->sec_idx = -1; 608 } 609 610 static char *__bpf_program__pin_name(struct bpf_program *prog) 611 { 612 char *name, *p; 613 614 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 615 name = strdup(prog->name); 616 else 617 name = strdup(prog->sec_name); 618 619 if (!name) 620 return NULL; 621 622 p = name; 623 624 while ((p = strchr(p, '/'))) 625 *p = '_'; 626 627 return name; 628 } 629 630 static bool insn_is_subprog_call(const struct bpf_insn *insn) 631 { 632 return BPF_CLASS(insn->code) == BPF_JMP && 633 BPF_OP(insn->code) == BPF_CALL && 634 BPF_SRC(insn->code) == BPF_K && 635 insn->src_reg == BPF_PSEUDO_CALL && 636 insn->dst_reg == 0 && 637 insn->off == 0; 638 } 639 640 static bool is_call_insn(const struct bpf_insn *insn) 641 { 642 return insn->code == (BPF_JMP | BPF_CALL); 643 } 644 645 static bool insn_is_pseudo_func(struct bpf_insn *insn) 646 { 647 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 648 } 649 650 static int 651 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 652 const char *name, size_t sec_idx, const char *sec_name, 653 size_t sec_off, void *insn_data, size_t insn_data_sz) 654 { 655 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 656 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 657 sec_name, name, sec_off, insn_data_sz); 658 return -EINVAL; 659 } 660 661 memset(prog, 0, sizeof(*prog)); 662 prog->obj = obj; 663 664 prog->sec_idx = sec_idx; 665 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 666 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 667 /* insns_cnt can later be increased by appending used subprograms */ 668 prog->insns_cnt = prog->sec_insn_cnt; 669 670 prog->type = BPF_PROG_TYPE_UNSPEC; 671 prog->load = true; 672 673 prog->instances.fds = NULL; 674 prog->instances.nr = -1; 675 676 /* inherit object's log_level */ 677 prog->log_level = obj->log_level; 678 679 prog->sec_name = strdup(sec_name); 680 if (!prog->sec_name) 681 goto errout; 682 683 prog->name = strdup(name); 684 if (!prog->name) 685 goto errout; 686 687 prog->pin_name = __bpf_program__pin_name(prog); 688 if (!prog->pin_name) 689 goto errout; 690 691 prog->insns = malloc(insn_data_sz); 692 if (!prog->insns) 693 goto errout; 694 memcpy(prog->insns, insn_data, insn_data_sz); 695 696 return 0; 697 errout: 698 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 699 bpf_program__exit(prog); 700 return -ENOMEM; 701 } 702 703 static int 704 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 705 const char *sec_name, int sec_idx) 706 { 707 Elf_Data *symbols = obj->efile.symbols; 708 struct bpf_program *prog, *progs; 709 void *data = sec_data->d_buf; 710 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 711 int nr_progs, err, i; 712 const char *name; 713 Elf64_Sym *sym; 714 715 progs = obj->programs; 716 nr_progs = obj->nr_programs; 717 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 718 sec_off = 0; 719 720 for (i = 0; i < nr_syms; i++) { 721 sym = elf_sym_by_idx(obj, i); 722 723 if (sym->st_shndx != sec_idx) 724 continue; 725 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 726 continue; 727 728 prog_sz = sym->st_size; 729 sec_off = sym->st_value; 730 731 name = elf_sym_str(obj, sym->st_name); 732 if (!name) { 733 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 734 sec_name, sec_off); 735 return -LIBBPF_ERRNO__FORMAT; 736 } 737 738 if (sec_off + prog_sz > sec_sz) { 739 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 740 sec_name, sec_off); 741 return -LIBBPF_ERRNO__FORMAT; 742 } 743 744 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 745 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 746 return -ENOTSUP; 747 } 748 749 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 750 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 751 752 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 753 if (!progs) { 754 /* 755 * In this case the original obj->programs 756 * is still valid, so don't need special treat for 757 * bpf_close_object(). 758 */ 759 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 760 sec_name, name); 761 return -ENOMEM; 762 } 763 obj->programs = progs; 764 765 prog = &progs[nr_progs]; 766 767 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 768 sec_off, data + sec_off, prog_sz); 769 if (err) 770 return err; 771 772 /* if function is a global/weak symbol, but has restricted 773 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 774 * as static to enable more permissive BPF verification mode 775 * with more outside context available to BPF verifier 776 */ 777 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 778 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 779 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 780 prog->mark_btf_static = true; 781 782 nr_progs++; 783 obj->nr_programs = nr_progs; 784 } 785 786 return 0; 787 } 788 789 __u32 get_kernel_version(void) 790 { 791 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 792 * but Ubuntu provides /proc/version_signature file, as described at 793 * https://ubuntu.com/kernel, with an example contents below, which we 794 * can use to get a proper LINUX_VERSION_CODE. 795 * 796 * Ubuntu 5.4.0-12.15-generic 5.4.8 797 * 798 * In the above, 5.4.8 is what kernel is actually expecting, while 799 * uname() call will return 5.4.0 in info.release. 800 */ 801 const char *ubuntu_kver_file = "/proc/version_signature"; 802 __u32 major, minor, patch; 803 struct utsname info; 804 805 if (access(ubuntu_kver_file, R_OK) == 0) { 806 FILE *f; 807 808 f = fopen(ubuntu_kver_file, "r"); 809 if (f) { 810 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 811 fclose(f); 812 return KERNEL_VERSION(major, minor, patch); 813 } 814 fclose(f); 815 } 816 /* something went wrong, fall back to uname() approach */ 817 } 818 819 uname(&info); 820 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 821 return 0; 822 return KERNEL_VERSION(major, minor, patch); 823 } 824 825 static const struct btf_member * 826 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 827 { 828 struct btf_member *m; 829 int i; 830 831 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 832 if (btf_member_bit_offset(t, i) == bit_offset) 833 return m; 834 } 835 836 return NULL; 837 } 838 839 static const struct btf_member * 840 find_member_by_name(const struct btf *btf, const struct btf_type *t, 841 const char *name) 842 { 843 struct btf_member *m; 844 int i; 845 846 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 847 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 848 return m; 849 } 850 851 return NULL; 852 } 853 854 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 855 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 856 const char *name, __u32 kind); 857 858 static int 859 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 860 const struct btf_type **type, __u32 *type_id, 861 const struct btf_type **vtype, __u32 *vtype_id, 862 const struct btf_member **data_member) 863 { 864 const struct btf_type *kern_type, *kern_vtype; 865 const struct btf_member *kern_data_member; 866 __s32 kern_vtype_id, kern_type_id; 867 __u32 i; 868 869 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 870 if (kern_type_id < 0) { 871 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 872 tname); 873 return kern_type_id; 874 } 875 kern_type = btf__type_by_id(btf, kern_type_id); 876 877 /* Find the corresponding "map_value" type that will be used 878 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 879 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 880 * btf_vmlinux. 881 */ 882 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 883 tname, BTF_KIND_STRUCT); 884 if (kern_vtype_id < 0) { 885 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 886 STRUCT_OPS_VALUE_PREFIX, tname); 887 return kern_vtype_id; 888 } 889 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 890 891 /* Find "struct tcp_congestion_ops" from 892 * struct bpf_struct_ops_tcp_congestion_ops { 893 * [ ... ] 894 * struct tcp_congestion_ops data; 895 * } 896 */ 897 kern_data_member = btf_members(kern_vtype); 898 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 899 if (kern_data_member->type == kern_type_id) 900 break; 901 } 902 if (i == btf_vlen(kern_vtype)) { 903 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 904 tname, STRUCT_OPS_VALUE_PREFIX, tname); 905 return -EINVAL; 906 } 907 908 *type = kern_type; 909 *type_id = kern_type_id; 910 *vtype = kern_vtype; 911 *vtype_id = kern_vtype_id; 912 *data_member = kern_data_member; 913 914 return 0; 915 } 916 917 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 918 { 919 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 920 } 921 922 /* Init the map's fields that depend on kern_btf */ 923 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 924 const struct btf *btf, 925 const struct btf *kern_btf) 926 { 927 const struct btf_member *member, *kern_member, *kern_data_member; 928 const struct btf_type *type, *kern_type, *kern_vtype; 929 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 930 struct bpf_struct_ops *st_ops; 931 void *data, *kern_data; 932 const char *tname; 933 int err; 934 935 st_ops = map->st_ops; 936 type = st_ops->type; 937 tname = st_ops->tname; 938 err = find_struct_ops_kern_types(kern_btf, tname, 939 &kern_type, &kern_type_id, 940 &kern_vtype, &kern_vtype_id, 941 &kern_data_member); 942 if (err) 943 return err; 944 945 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 946 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 947 948 map->def.value_size = kern_vtype->size; 949 map->btf_vmlinux_value_type_id = kern_vtype_id; 950 951 st_ops->kern_vdata = calloc(1, kern_vtype->size); 952 if (!st_ops->kern_vdata) 953 return -ENOMEM; 954 955 data = st_ops->data; 956 kern_data_off = kern_data_member->offset / 8; 957 kern_data = st_ops->kern_vdata + kern_data_off; 958 959 member = btf_members(type); 960 for (i = 0; i < btf_vlen(type); i++, member++) { 961 const struct btf_type *mtype, *kern_mtype; 962 __u32 mtype_id, kern_mtype_id; 963 void *mdata, *kern_mdata; 964 __s64 msize, kern_msize; 965 __u32 moff, kern_moff; 966 __u32 kern_member_idx; 967 const char *mname; 968 969 mname = btf__name_by_offset(btf, member->name_off); 970 kern_member = find_member_by_name(kern_btf, kern_type, mname); 971 if (!kern_member) { 972 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 973 map->name, mname); 974 return -ENOTSUP; 975 } 976 977 kern_member_idx = kern_member - btf_members(kern_type); 978 if (btf_member_bitfield_size(type, i) || 979 btf_member_bitfield_size(kern_type, kern_member_idx)) { 980 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 981 map->name, mname); 982 return -ENOTSUP; 983 } 984 985 moff = member->offset / 8; 986 kern_moff = kern_member->offset / 8; 987 988 mdata = data + moff; 989 kern_mdata = kern_data + kern_moff; 990 991 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 992 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 993 &kern_mtype_id); 994 if (BTF_INFO_KIND(mtype->info) != 995 BTF_INFO_KIND(kern_mtype->info)) { 996 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 997 map->name, mname, BTF_INFO_KIND(mtype->info), 998 BTF_INFO_KIND(kern_mtype->info)); 999 return -ENOTSUP; 1000 } 1001 1002 if (btf_is_ptr(mtype)) { 1003 struct bpf_program *prog; 1004 1005 prog = st_ops->progs[i]; 1006 if (!prog) 1007 continue; 1008 1009 kern_mtype = skip_mods_and_typedefs(kern_btf, 1010 kern_mtype->type, 1011 &kern_mtype_id); 1012 1013 /* mtype->type must be a func_proto which was 1014 * guaranteed in bpf_object__collect_st_ops_relos(), 1015 * so only check kern_mtype for func_proto here. 1016 */ 1017 if (!btf_is_func_proto(kern_mtype)) { 1018 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1019 map->name, mname); 1020 return -ENOTSUP; 1021 } 1022 1023 prog->attach_btf_id = kern_type_id; 1024 prog->expected_attach_type = kern_member_idx; 1025 1026 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1027 1028 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1029 map->name, mname, prog->name, moff, 1030 kern_moff); 1031 1032 continue; 1033 } 1034 1035 msize = btf__resolve_size(btf, mtype_id); 1036 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1037 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1038 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1039 map->name, mname, (ssize_t)msize, 1040 (ssize_t)kern_msize); 1041 return -ENOTSUP; 1042 } 1043 1044 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1045 map->name, mname, (unsigned int)msize, 1046 moff, kern_moff); 1047 memcpy(kern_mdata, mdata, msize); 1048 } 1049 1050 return 0; 1051 } 1052 1053 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1054 { 1055 struct bpf_map *map; 1056 size_t i; 1057 int err; 1058 1059 for (i = 0; i < obj->nr_maps; i++) { 1060 map = &obj->maps[i]; 1061 1062 if (!bpf_map__is_struct_ops(map)) 1063 continue; 1064 1065 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1066 obj->btf_vmlinux); 1067 if (err) 1068 return err; 1069 } 1070 1071 return 0; 1072 } 1073 1074 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1075 { 1076 const struct btf_type *type, *datasec; 1077 const struct btf_var_secinfo *vsi; 1078 struct bpf_struct_ops *st_ops; 1079 const char *tname, *var_name; 1080 __s32 type_id, datasec_id; 1081 const struct btf *btf; 1082 struct bpf_map *map; 1083 __u32 i; 1084 1085 if (obj->efile.st_ops_shndx == -1) 1086 return 0; 1087 1088 btf = obj->btf; 1089 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1090 BTF_KIND_DATASEC); 1091 if (datasec_id < 0) { 1092 pr_warn("struct_ops init: DATASEC %s not found\n", 1093 STRUCT_OPS_SEC); 1094 return -EINVAL; 1095 } 1096 1097 datasec = btf__type_by_id(btf, datasec_id); 1098 vsi = btf_var_secinfos(datasec); 1099 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1100 type = btf__type_by_id(obj->btf, vsi->type); 1101 var_name = btf__name_by_offset(obj->btf, type->name_off); 1102 1103 type_id = btf__resolve_type(obj->btf, vsi->type); 1104 if (type_id < 0) { 1105 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1106 vsi->type, STRUCT_OPS_SEC); 1107 return -EINVAL; 1108 } 1109 1110 type = btf__type_by_id(obj->btf, type_id); 1111 tname = btf__name_by_offset(obj->btf, type->name_off); 1112 if (!tname[0]) { 1113 pr_warn("struct_ops init: anonymous type is not supported\n"); 1114 return -ENOTSUP; 1115 } 1116 if (!btf_is_struct(type)) { 1117 pr_warn("struct_ops init: %s is not a struct\n", tname); 1118 return -EINVAL; 1119 } 1120 1121 map = bpf_object__add_map(obj); 1122 if (IS_ERR(map)) 1123 return PTR_ERR(map); 1124 1125 map->sec_idx = obj->efile.st_ops_shndx; 1126 map->sec_offset = vsi->offset; 1127 map->name = strdup(var_name); 1128 if (!map->name) 1129 return -ENOMEM; 1130 1131 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1132 map->def.key_size = sizeof(int); 1133 map->def.value_size = type->size; 1134 map->def.max_entries = 1; 1135 1136 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1137 if (!map->st_ops) 1138 return -ENOMEM; 1139 st_ops = map->st_ops; 1140 st_ops->data = malloc(type->size); 1141 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1142 st_ops->kern_func_off = malloc(btf_vlen(type) * 1143 sizeof(*st_ops->kern_func_off)); 1144 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1145 return -ENOMEM; 1146 1147 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1148 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1149 var_name, STRUCT_OPS_SEC); 1150 return -EINVAL; 1151 } 1152 1153 memcpy(st_ops->data, 1154 obj->efile.st_ops_data->d_buf + vsi->offset, 1155 type->size); 1156 st_ops->tname = tname; 1157 st_ops->type = type; 1158 st_ops->type_id = type_id; 1159 1160 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1161 tname, type_id, var_name, vsi->offset); 1162 } 1163 1164 return 0; 1165 } 1166 1167 static struct bpf_object *bpf_object__new(const char *path, 1168 const void *obj_buf, 1169 size_t obj_buf_sz, 1170 const char *obj_name) 1171 { 1172 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1173 struct bpf_object *obj; 1174 char *end; 1175 1176 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1177 if (!obj) { 1178 pr_warn("alloc memory failed for %s\n", path); 1179 return ERR_PTR(-ENOMEM); 1180 } 1181 1182 strcpy(obj->path, path); 1183 if (obj_name) { 1184 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1185 } else { 1186 /* Using basename() GNU version which doesn't modify arg. */ 1187 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1188 end = strchr(obj->name, '.'); 1189 if (end) 1190 *end = 0; 1191 } 1192 1193 obj->efile.fd = -1; 1194 /* 1195 * Caller of this function should also call 1196 * bpf_object__elf_finish() after data collection to return 1197 * obj_buf to user. If not, we should duplicate the buffer to 1198 * avoid user freeing them before elf finish. 1199 */ 1200 obj->efile.obj_buf = obj_buf; 1201 obj->efile.obj_buf_sz = obj_buf_sz; 1202 obj->efile.maps_shndx = -1; 1203 obj->efile.btf_maps_shndx = -1; 1204 obj->efile.st_ops_shndx = -1; 1205 obj->kconfig_map_idx = -1; 1206 1207 obj->kern_version = get_kernel_version(); 1208 obj->loaded = false; 1209 1210 INIT_LIST_HEAD(&obj->list); 1211 if (!strict) 1212 list_add(&obj->list, &bpf_objects_list); 1213 return obj; 1214 } 1215 1216 static void bpf_object__elf_finish(struct bpf_object *obj) 1217 { 1218 if (!obj->efile.elf) 1219 return; 1220 1221 if (obj->efile.elf) { 1222 elf_end(obj->efile.elf); 1223 obj->efile.elf = NULL; 1224 } 1225 obj->efile.symbols = NULL; 1226 obj->efile.st_ops_data = NULL; 1227 1228 zfree(&obj->efile.secs); 1229 obj->efile.sec_cnt = 0; 1230 zclose(obj->efile.fd); 1231 obj->efile.obj_buf = NULL; 1232 obj->efile.obj_buf_sz = 0; 1233 } 1234 1235 static int bpf_object__elf_init(struct bpf_object *obj) 1236 { 1237 Elf64_Ehdr *ehdr; 1238 int err = 0; 1239 Elf *elf; 1240 1241 if (obj->efile.elf) { 1242 pr_warn("elf: init internal error\n"); 1243 return -LIBBPF_ERRNO__LIBELF; 1244 } 1245 1246 if (obj->efile.obj_buf_sz > 0) { 1247 /* 1248 * obj_buf should have been validated by 1249 * bpf_object__open_buffer(). 1250 */ 1251 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1252 } else { 1253 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1254 if (obj->efile.fd < 0) { 1255 char errmsg[STRERR_BUFSIZE], *cp; 1256 1257 err = -errno; 1258 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1259 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1260 return err; 1261 } 1262 1263 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1264 } 1265 1266 if (!elf) { 1267 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1268 err = -LIBBPF_ERRNO__LIBELF; 1269 goto errout; 1270 } 1271 1272 obj->efile.elf = elf; 1273 1274 if (elf_kind(elf) != ELF_K_ELF) { 1275 err = -LIBBPF_ERRNO__FORMAT; 1276 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1277 goto errout; 1278 } 1279 1280 if (gelf_getclass(elf) != ELFCLASS64) { 1281 err = -LIBBPF_ERRNO__FORMAT; 1282 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1283 goto errout; 1284 } 1285 1286 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1287 if (!obj->efile.ehdr) { 1288 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1289 err = -LIBBPF_ERRNO__FORMAT; 1290 goto errout; 1291 } 1292 1293 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1294 pr_warn("elf: failed to get section names section index for %s: %s\n", 1295 obj->path, elf_errmsg(-1)); 1296 err = -LIBBPF_ERRNO__FORMAT; 1297 goto errout; 1298 } 1299 1300 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1301 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1302 pr_warn("elf: failed to get section names strings from %s: %s\n", 1303 obj->path, elf_errmsg(-1)); 1304 err = -LIBBPF_ERRNO__FORMAT; 1305 goto errout; 1306 } 1307 1308 /* Old LLVM set e_machine to EM_NONE */ 1309 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1310 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1311 err = -LIBBPF_ERRNO__FORMAT; 1312 goto errout; 1313 } 1314 1315 return 0; 1316 errout: 1317 bpf_object__elf_finish(obj); 1318 return err; 1319 } 1320 1321 static int bpf_object__check_endianness(struct bpf_object *obj) 1322 { 1323 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1324 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1325 return 0; 1326 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1327 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1328 return 0; 1329 #else 1330 # error "Unrecognized __BYTE_ORDER__" 1331 #endif 1332 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1333 return -LIBBPF_ERRNO__ENDIAN; 1334 } 1335 1336 static int 1337 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1338 { 1339 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1340 * go over allowed ELF data section buffer 1341 */ 1342 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1343 pr_debug("license of %s is %s\n", obj->path, obj->license); 1344 return 0; 1345 } 1346 1347 static int 1348 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1349 { 1350 __u32 kver; 1351 1352 if (size != sizeof(kver)) { 1353 pr_warn("invalid kver section in %s\n", obj->path); 1354 return -LIBBPF_ERRNO__FORMAT; 1355 } 1356 memcpy(&kver, data, sizeof(kver)); 1357 obj->kern_version = kver; 1358 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1359 return 0; 1360 } 1361 1362 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1363 { 1364 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1365 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1366 return true; 1367 return false; 1368 } 1369 1370 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1371 { 1372 Elf_Data *data; 1373 Elf_Scn *scn; 1374 1375 if (!name) 1376 return -EINVAL; 1377 1378 scn = elf_sec_by_name(obj, name); 1379 data = elf_sec_data(obj, scn); 1380 if (data) { 1381 *size = data->d_size; 1382 return 0; /* found it */ 1383 } 1384 1385 return -ENOENT; 1386 } 1387 1388 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1389 { 1390 Elf_Data *symbols = obj->efile.symbols; 1391 const char *sname; 1392 size_t si; 1393 1394 if (!name || !off) 1395 return -EINVAL; 1396 1397 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1398 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1399 1400 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL || 1401 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1402 continue; 1403 1404 sname = elf_sym_str(obj, sym->st_name); 1405 if (!sname) { 1406 pr_warn("failed to get sym name string for var %s\n", name); 1407 return -EIO; 1408 } 1409 if (strcmp(name, sname) == 0) { 1410 *off = sym->st_value; 1411 return 0; 1412 } 1413 } 1414 1415 return -ENOENT; 1416 } 1417 1418 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1419 { 1420 struct bpf_map *new_maps; 1421 size_t new_cap; 1422 int i; 1423 1424 if (obj->nr_maps < obj->maps_cap) 1425 return &obj->maps[obj->nr_maps++]; 1426 1427 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1428 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1429 if (!new_maps) { 1430 pr_warn("alloc maps for object failed\n"); 1431 return ERR_PTR(-ENOMEM); 1432 } 1433 1434 obj->maps_cap = new_cap; 1435 obj->maps = new_maps; 1436 1437 /* zero out new maps */ 1438 memset(obj->maps + obj->nr_maps, 0, 1439 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1440 /* 1441 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1442 * when failure (zclose won't close negative fd)). 1443 */ 1444 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1445 obj->maps[i].fd = -1; 1446 obj->maps[i].inner_map_fd = -1; 1447 } 1448 1449 return &obj->maps[obj->nr_maps++]; 1450 } 1451 1452 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1453 { 1454 long page_sz = sysconf(_SC_PAGE_SIZE); 1455 size_t map_sz; 1456 1457 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1458 map_sz = roundup(map_sz, page_sz); 1459 return map_sz; 1460 } 1461 1462 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1463 { 1464 char map_name[BPF_OBJ_NAME_LEN], *p; 1465 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1466 1467 /* This is one of the more confusing parts of libbpf for various 1468 * reasons, some of which are historical. The original idea for naming 1469 * internal names was to include as much of BPF object name prefix as 1470 * possible, so that it can be distinguished from similar internal 1471 * maps of a different BPF object. 1472 * As an example, let's say we have bpf_object named 'my_object_name' 1473 * and internal map corresponding to '.rodata' ELF section. The final 1474 * map name advertised to user and to the kernel will be 1475 * 'my_objec.rodata', taking first 8 characters of object name and 1476 * entire 7 characters of '.rodata'. 1477 * Somewhat confusingly, if internal map ELF section name is shorter 1478 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1479 * for the suffix, even though we only have 4 actual characters, and 1480 * resulting map will be called 'my_objec.bss', not even using all 15 1481 * characters allowed by the kernel. Oh well, at least the truncated 1482 * object name is somewhat consistent in this case. But if the map 1483 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1484 * (8 chars) and thus will be left with only first 7 characters of the 1485 * object name ('my_obje'). Happy guessing, user, that the final map 1486 * name will be "my_obje.kconfig". 1487 * Now, with libbpf starting to support arbitrarily named .rodata.* 1488 * and .data.* data sections, it's possible that ELF section name is 1489 * longer than allowed 15 chars, so we now need to be careful to take 1490 * only up to 15 first characters of ELF name, taking no BPF object 1491 * name characters at all. So '.rodata.abracadabra' will result in 1492 * '.rodata.abracad' kernel and user-visible name. 1493 * We need to keep this convoluted logic intact for .data, .bss and 1494 * .rodata maps, but for new custom .data.custom and .rodata.custom 1495 * maps we use their ELF names as is, not prepending bpf_object name 1496 * in front. We still need to truncate them to 15 characters for the 1497 * kernel. Full name can be recovered for such maps by using DATASEC 1498 * BTF type associated with such map's value type, though. 1499 */ 1500 if (sfx_len >= BPF_OBJ_NAME_LEN) 1501 sfx_len = BPF_OBJ_NAME_LEN - 1; 1502 1503 /* if there are two or more dots in map name, it's a custom dot map */ 1504 if (strchr(real_name + 1, '.') != NULL) 1505 pfx_len = 0; 1506 else 1507 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1508 1509 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1510 sfx_len, real_name); 1511 1512 /* sanitise map name to characters allowed by kernel */ 1513 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1514 if (!isalnum(*p) && *p != '_' && *p != '.') 1515 *p = '_'; 1516 1517 return strdup(map_name); 1518 } 1519 1520 static int 1521 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1522 1523 static int 1524 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1525 const char *real_name, int sec_idx, void *data, size_t data_sz) 1526 { 1527 struct bpf_map_def *def; 1528 struct bpf_map *map; 1529 int err; 1530 1531 map = bpf_object__add_map(obj); 1532 if (IS_ERR(map)) 1533 return PTR_ERR(map); 1534 1535 map->libbpf_type = type; 1536 map->sec_idx = sec_idx; 1537 map->sec_offset = 0; 1538 map->real_name = strdup(real_name); 1539 map->name = internal_map_name(obj, real_name); 1540 if (!map->real_name || !map->name) { 1541 zfree(&map->real_name); 1542 zfree(&map->name); 1543 return -ENOMEM; 1544 } 1545 1546 def = &map->def; 1547 def->type = BPF_MAP_TYPE_ARRAY; 1548 def->key_size = sizeof(int); 1549 def->value_size = data_sz; 1550 def->max_entries = 1; 1551 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1552 ? BPF_F_RDONLY_PROG : 0; 1553 def->map_flags |= BPF_F_MMAPABLE; 1554 1555 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1556 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1557 1558 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1559 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1560 if (map->mmaped == MAP_FAILED) { 1561 err = -errno; 1562 map->mmaped = NULL; 1563 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1564 map->name, err); 1565 zfree(&map->real_name); 1566 zfree(&map->name); 1567 return err; 1568 } 1569 1570 /* failures are fine because of maps like .rodata.str1.1 */ 1571 (void) bpf_map_find_btf_info(obj, map); 1572 1573 if (data) 1574 memcpy(map->mmaped, data, data_sz); 1575 1576 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1577 return 0; 1578 } 1579 1580 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1581 { 1582 struct elf_sec_desc *sec_desc; 1583 const char *sec_name; 1584 int err = 0, sec_idx; 1585 1586 /* 1587 * Populate obj->maps with libbpf internal maps. 1588 */ 1589 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1590 sec_desc = &obj->efile.secs[sec_idx]; 1591 1592 switch (sec_desc->sec_type) { 1593 case SEC_DATA: 1594 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1595 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1596 sec_name, sec_idx, 1597 sec_desc->data->d_buf, 1598 sec_desc->data->d_size); 1599 break; 1600 case SEC_RODATA: 1601 obj->has_rodata = true; 1602 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1603 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1604 sec_name, sec_idx, 1605 sec_desc->data->d_buf, 1606 sec_desc->data->d_size); 1607 break; 1608 case SEC_BSS: 1609 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1610 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1611 sec_name, sec_idx, 1612 NULL, 1613 sec_desc->data->d_size); 1614 break; 1615 default: 1616 /* skip */ 1617 break; 1618 } 1619 if (err) 1620 return err; 1621 } 1622 return 0; 1623 } 1624 1625 1626 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1627 const void *name) 1628 { 1629 int i; 1630 1631 for (i = 0; i < obj->nr_extern; i++) { 1632 if (strcmp(obj->externs[i].name, name) == 0) 1633 return &obj->externs[i]; 1634 } 1635 return NULL; 1636 } 1637 1638 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1639 char value) 1640 { 1641 switch (ext->kcfg.type) { 1642 case KCFG_BOOL: 1643 if (value == 'm') { 1644 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1645 ext->name, value); 1646 return -EINVAL; 1647 } 1648 *(bool *)ext_val = value == 'y' ? true : false; 1649 break; 1650 case KCFG_TRISTATE: 1651 if (value == 'y') 1652 *(enum libbpf_tristate *)ext_val = TRI_YES; 1653 else if (value == 'm') 1654 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1655 else /* value == 'n' */ 1656 *(enum libbpf_tristate *)ext_val = TRI_NO; 1657 break; 1658 case KCFG_CHAR: 1659 *(char *)ext_val = value; 1660 break; 1661 case KCFG_UNKNOWN: 1662 case KCFG_INT: 1663 case KCFG_CHAR_ARR: 1664 default: 1665 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1666 ext->name, value); 1667 return -EINVAL; 1668 } 1669 ext->is_set = true; 1670 return 0; 1671 } 1672 1673 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1674 const char *value) 1675 { 1676 size_t len; 1677 1678 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1679 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1680 return -EINVAL; 1681 } 1682 1683 len = strlen(value); 1684 if (value[len - 1] != '"') { 1685 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1686 ext->name, value); 1687 return -EINVAL; 1688 } 1689 1690 /* strip quotes */ 1691 len -= 2; 1692 if (len >= ext->kcfg.sz) { 1693 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1694 ext->name, value, len, ext->kcfg.sz - 1); 1695 len = ext->kcfg.sz - 1; 1696 } 1697 memcpy(ext_val, value + 1, len); 1698 ext_val[len] = '\0'; 1699 ext->is_set = true; 1700 return 0; 1701 } 1702 1703 static int parse_u64(const char *value, __u64 *res) 1704 { 1705 char *value_end; 1706 int err; 1707 1708 errno = 0; 1709 *res = strtoull(value, &value_end, 0); 1710 if (errno) { 1711 err = -errno; 1712 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1713 return err; 1714 } 1715 if (*value_end) { 1716 pr_warn("failed to parse '%s' as integer completely\n", value); 1717 return -EINVAL; 1718 } 1719 return 0; 1720 } 1721 1722 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1723 { 1724 int bit_sz = ext->kcfg.sz * 8; 1725 1726 if (ext->kcfg.sz == 8) 1727 return true; 1728 1729 /* Validate that value stored in u64 fits in integer of `ext->sz` 1730 * bytes size without any loss of information. If the target integer 1731 * is signed, we rely on the following limits of integer type of 1732 * Y bits and subsequent transformation: 1733 * 1734 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1735 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1736 * 0 <= X + 2^(Y-1) < 2^Y 1737 * 1738 * For unsigned target integer, check that all the (64 - Y) bits are 1739 * zero. 1740 */ 1741 if (ext->kcfg.is_signed) 1742 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1743 else 1744 return (v >> bit_sz) == 0; 1745 } 1746 1747 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1748 __u64 value) 1749 { 1750 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1751 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1752 ext->name, (unsigned long long)value); 1753 return -EINVAL; 1754 } 1755 if (!is_kcfg_value_in_range(ext, value)) { 1756 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1757 ext->name, (unsigned long long)value, ext->kcfg.sz); 1758 return -ERANGE; 1759 } 1760 switch (ext->kcfg.sz) { 1761 case 1: *(__u8 *)ext_val = value; break; 1762 case 2: *(__u16 *)ext_val = value; break; 1763 case 4: *(__u32 *)ext_val = value; break; 1764 case 8: *(__u64 *)ext_val = value; break; 1765 default: 1766 return -EINVAL; 1767 } 1768 ext->is_set = true; 1769 return 0; 1770 } 1771 1772 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1773 char *buf, void *data) 1774 { 1775 struct extern_desc *ext; 1776 char *sep, *value; 1777 int len, err = 0; 1778 void *ext_val; 1779 __u64 num; 1780 1781 if (!str_has_pfx(buf, "CONFIG_")) 1782 return 0; 1783 1784 sep = strchr(buf, '='); 1785 if (!sep) { 1786 pr_warn("failed to parse '%s': no separator\n", buf); 1787 return -EINVAL; 1788 } 1789 1790 /* Trim ending '\n' */ 1791 len = strlen(buf); 1792 if (buf[len - 1] == '\n') 1793 buf[len - 1] = '\0'; 1794 /* Split on '=' and ensure that a value is present. */ 1795 *sep = '\0'; 1796 if (!sep[1]) { 1797 *sep = '='; 1798 pr_warn("failed to parse '%s': no value\n", buf); 1799 return -EINVAL; 1800 } 1801 1802 ext = find_extern_by_name(obj, buf); 1803 if (!ext || ext->is_set) 1804 return 0; 1805 1806 ext_val = data + ext->kcfg.data_off; 1807 value = sep + 1; 1808 1809 switch (*value) { 1810 case 'y': case 'n': case 'm': 1811 err = set_kcfg_value_tri(ext, ext_val, *value); 1812 break; 1813 case '"': 1814 err = set_kcfg_value_str(ext, ext_val, value); 1815 break; 1816 default: 1817 /* assume integer */ 1818 err = parse_u64(value, &num); 1819 if (err) { 1820 pr_warn("extern (kcfg) %s=%s should be integer\n", 1821 ext->name, value); 1822 return err; 1823 } 1824 err = set_kcfg_value_num(ext, ext_val, num); 1825 break; 1826 } 1827 if (err) 1828 return err; 1829 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1830 return 0; 1831 } 1832 1833 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1834 { 1835 char buf[PATH_MAX]; 1836 struct utsname uts; 1837 int len, err = 0; 1838 gzFile file; 1839 1840 uname(&uts); 1841 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1842 if (len < 0) 1843 return -EINVAL; 1844 else if (len >= PATH_MAX) 1845 return -ENAMETOOLONG; 1846 1847 /* gzopen also accepts uncompressed files. */ 1848 file = gzopen(buf, "r"); 1849 if (!file) 1850 file = gzopen("/proc/config.gz", "r"); 1851 1852 if (!file) { 1853 pr_warn("failed to open system Kconfig\n"); 1854 return -ENOENT; 1855 } 1856 1857 while (gzgets(file, buf, sizeof(buf))) { 1858 err = bpf_object__process_kconfig_line(obj, buf, data); 1859 if (err) { 1860 pr_warn("error parsing system Kconfig line '%s': %d\n", 1861 buf, err); 1862 goto out; 1863 } 1864 } 1865 1866 out: 1867 gzclose(file); 1868 return err; 1869 } 1870 1871 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1872 const char *config, void *data) 1873 { 1874 char buf[PATH_MAX]; 1875 int err = 0; 1876 FILE *file; 1877 1878 file = fmemopen((void *)config, strlen(config), "r"); 1879 if (!file) { 1880 err = -errno; 1881 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1882 return err; 1883 } 1884 1885 while (fgets(buf, sizeof(buf), file)) { 1886 err = bpf_object__process_kconfig_line(obj, buf, data); 1887 if (err) { 1888 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1889 buf, err); 1890 break; 1891 } 1892 } 1893 1894 fclose(file); 1895 return err; 1896 } 1897 1898 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1899 { 1900 struct extern_desc *last_ext = NULL, *ext; 1901 size_t map_sz; 1902 int i, err; 1903 1904 for (i = 0; i < obj->nr_extern; i++) { 1905 ext = &obj->externs[i]; 1906 if (ext->type == EXT_KCFG) 1907 last_ext = ext; 1908 } 1909 1910 if (!last_ext) 1911 return 0; 1912 1913 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1914 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1915 ".kconfig", obj->efile.symbols_shndx, 1916 NULL, map_sz); 1917 if (err) 1918 return err; 1919 1920 obj->kconfig_map_idx = obj->nr_maps - 1; 1921 1922 return 0; 1923 } 1924 1925 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1926 { 1927 Elf_Data *symbols = obj->efile.symbols; 1928 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1929 Elf_Data *data = NULL; 1930 Elf_Scn *scn; 1931 1932 if (obj->efile.maps_shndx < 0) 1933 return 0; 1934 1935 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 1936 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 1937 return -EOPNOTSUPP; 1938 } 1939 1940 if (!symbols) 1941 return -EINVAL; 1942 1943 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1944 data = elf_sec_data(obj, scn); 1945 if (!scn || !data) { 1946 pr_warn("elf: failed to get legacy map definitions for %s\n", 1947 obj->path); 1948 return -EINVAL; 1949 } 1950 1951 /* 1952 * Count number of maps. Each map has a name. 1953 * Array of maps is not supported: only the first element is 1954 * considered. 1955 * 1956 * TODO: Detect array of map and report error. 1957 */ 1958 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1959 for (i = 0; i < nr_syms; i++) { 1960 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1961 1962 if (sym->st_shndx != obj->efile.maps_shndx) 1963 continue; 1964 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1965 continue; 1966 nr_maps++; 1967 } 1968 /* Assume equally sized map definitions */ 1969 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1970 nr_maps, data->d_size, obj->path); 1971 1972 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1973 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1974 obj->path); 1975 return -EINVAL; 1976 } 1977 map_def_sz = data->d_size / nr_maps; 1978 1979 /* Fill obj->maps using data in "maps" section. */ 1980 for (i = 0; i < nr_syms; i++) { 1981 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1982 const char *map_name; 1983 struct bpf_map_def *def; 1984 struct bpf_map *map; 1985 1986 if (sym->st_shndx != obj->efile.maps_shndx) 1987 continue; 1988 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1989 continue; 1990 1991 map = bpf_object__add_map(obj); 1992 if (IS_ERR(map)) 1993 return PTR_ERR(map); 1994 1995 map_name = elf_sym_str(obj, sym->st_name); 1996 if (!map_name) { 1997 pr_warn("failed to get map #%d name sym string for obj %s\n", 1998 i, obj->path); 1999 return -LIBBPF_ERRNO__FORMAT; 2000 } 2001 2002 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2003 2004 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2005 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2006 return -ENOTSUP; 2007 } 2008 2009 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2010 map->sec_idx = sym->st_shndx; 2011 map->sec_offset = sym->st_value; 2012 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2013 map_name, map->sec_idx, map->sec_offset); 2014 if (sym->st_value + map_def_sz > data->d_size) { 2015 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2016 obj->path, map_name); 2017 return -EINVAL; 2018 } 2019 2020 map->name = strdup(map_name); 2021 if (!map->name) { 2022 pr_warn("map '%s': failed to alloc map name\n", map_name); 2023 return -ENOMEM; 2024 } 2025 pr_debug("map %d is \"%s\"\n", i, map->name); 2026 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2027 /* 2028 * If the definition of the map in the object file fits in 2029 * bpf_map_def, copy it. Any extra fields in our version 2030 * of bpf_map_def will default to zero as a result of the 2031 * calloc above. 2032 */ 2033 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2034 memcpy(&map->def, def, map_def_sz); 2035 } else { 2036 /* 2037 * Here the map structure being read is bigger than what 2038 * we expect, truncate if the excess bits are all zero. 2039 * If they are not zero, reject this map as 2040 * incompatible. 2041 */ 2042 char *b; 2043 2044 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2045 b < ((char *)def) + map_def_sz; b++) { 2046 if (*b != 0) { 2047 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2048 obj->path, map_name); 2049 if (strict) 2050 return -EINVAL; 2051 } 2052 } 2053 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2054 } 2055 2056 /* btf info may not exist but fill it in if it does exist */ 2057 (void) bpf_map_find_btf_info(obj, map); 2058 } 2059 return 0; 2060 } 2061 2062 const struct btf_type * 2063 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2064 { 2065 const struct btf_type *t = btf__type_by_id(btf, id); 2066 2067 if (res_id) 2068 *res_id = id; 2069 2070 while (btf_is_mod(t) || btf_is_typedef(t)) { 2071 if (res_id) 2072 *res_id = t->type; 2073 t = btf__type_by_id(btf, t->type); 2074 } 2075 2076 return t; 2077 } 2078 2079 static const struct btf_type * 2080 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2081 { 2082 const struct btf_type *t; 2083 2084 t = skip_mods_and_typedefs(btf, id, NULL); 2085 if (!btf_is_ptr(t)) 2086 return NULL; 2087 2088 t = skip_mods_and_typedefs(btf, t->type, res_id); 2089 2090 return btf_is_func_proto(t) ? t : NULL; 2091 } 2092 2093 static const char *__btf_kind_str(__u16 kind) 2094 { 2095 switch (kind) { 2096 case BTF_KIND_UNKN: return "void"; 2097 case BTF_KIND_INT: return "int"; 2098 case BTF_KIND_PTR: return "ptr"; 2099 case BTF_KIND_ARRAY: return "array"; 2100 case BTF_KIND_STRUCT: return "struct"; 2101 case BTF_KIND_UNION: return "union"; 2102 case BTF_KIND_ENUM: return "enum"; 2103 case BTF_KIND_FWD: return "fwd"; 2104 case BTF_KIND_TYPEDEF: return "typedef"; 2105 case BTF_KIND_VOLATILE: return "volatile"; 2106 case BTF_KIND_CONST: return "const"; 2107 case BTF_KIND_RESTRICT: return "restrict"; 2108 case BTF_KIND_FUNC: return "func"; 2109 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2110 case BTF_KIND_VAR: return "var"; 2111 case BTF_KIND_DATASEC: return "datasec"; 2112 case BTF_KIND_FLOAT: return "float"; 2113 case BTF_KIND_DECL_TAG: return "decl_tag"; 2114 case BTF_KIND_TYPE_TAG: return "type_tag"; 2115 default: return "unknown"; 2116 } 2117 } 2118 2119 const char *btf_kind_str(const struct btf_type *t) 2120 { 2121 return __btf_kind_str(btf_kind(t)); 2122 } 2123 2124 /* 2125 * Fetch integer attribute of BTF map definition. Such attributes are 2126 * represented using a pointer to an array, in which dimensionality of array 2127 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2128 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2129 * type definition, while using only sizeof(void *) space in ELF data section. 2130 */ 2131 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2132 const struct btf_member *m, __u32 *res) 2133 { 2134 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2135 const char *name = btf__name_by_offset(btf, m->name_off); 2136 const struct btf_array *arr_info; 2137 const struct btf_type *arr_t; 2138 2139 if (!btf_is_ptr(t)) { 2140 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2141 map_name, name, btf_kind_str(t)); 2142 return false; 2143 } 2144 2145 arr_t = btf__type_by_id(btf, t->type); 2146 if (!arr_t) { 2147 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2148 map_name, name, t->type); 2149 return false; 2150 } 2151 if (!btf_is_array(arr_t)) { 2152 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2153 map_name, name, btf_kind_str(arr_t)); 2154 return false; 2155 } 2156 arr_info = btf_array(arr_t); 2157 *res = arr_info->nelems; 2158 return true; 2159 } 2160 2161 static int build_map_pin_path(struct bpf_map *map, const char *path) 2162 { 2163 char buf[PATH_MAX]; 2164 int len; 2165 2166 if (!path) 2167 path = "/sys/fs/bpf"; 2168 2169 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2170 if (len < 0) 2171 return -EINVAL; 2172 else if (len >= PATH_MAX) 2173 return -ENAMETOOLONG; 2174 2175 return bpf_map__set_pin_path(map, buf); 2176 } 2177 2178 int parse_btf_map_def(const char *map_name, struct btf *btf, 2179 const struct btf_type *def_t, bool strict, 2180 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2181 { 2182 const struct btf_type *t; 2183 const struct btf_member *m; 2184 bool is_inner = inner_def == NULL; 2185 int vlen, i; 2186 2187 vlen = btf_vlen(def_t); 2188 m = btf_members(def_t); 2189 for (i = 0; i < vlen; i++, m++) { 2190 const char *name = btf__name_by_offset(btf, m->name_off); 2191 2192 if (!name) { 2193 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2194 return -EINVAL; 2195 } 2196 if (strcmp(name, "type") == 0) { 2197 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2198 return -EINVAL; 2199 map_def->parts |= MAP_DEF_MAP_TYPE; 2200 } else if (strcmp(name, "max_entries") == 0) { 2201 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2202 return -EINVAL; 2203 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2204 } else if (strcmp(name, "map_flags") == 0) { 2205 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2206 return -EINVAL; 2207 map_def->parts |= MAP_DEF_MAP_FLAGS; 2208 } else if (strcmp(name, "numa_node") == 0) { 2209 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2210 return -EINVAL; 2211 map_def->parts |= MAP_DEF_NUMA_NODE; 2212 } else if (strcmp(name, "key_size") == 0) { 2213 __u32 sz; 2214 2215 if (!get_map_field_int(map_name, btf, m, &sz)) 2216 return -EINVAL; 2217 if (map_def->key_size && map_def->key_size != sz) { 2218 pr_warn("map '%s': conflicting key size %u != %u.\n", 2219 map_name, map_def->key_size, sz); 2220 return -EINVAL; 2221 } 2222 map_def->key_size = sz; 2223 map_def->parts |= MAP_DEF_KEY_SIZE; 2224 } else if (strcmp(name, "key") == 0) { 2225 __s64 sz; 2226 2227 t = btf__type_by_id(btf, m->type); 2228 if (!t) { 2229 pr_warn("map '%s': key type [%d] not found.\n", 2230 map_name, m->type); 2231 return -EINVAL; 2232 } 2233 if (!btf_is_ptr(t)) { 2234 pr_warn("map '%s': key spec is not PTR: %s.\n", 2235 map_name, btf_kind_str(t)); 2236 return -EINVAL; 2237 } 2238 sz = btf__resolve_size(btf, t->type); 2239 if (sz < 0) { 2240 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2241 map_name, t->type, (ssize_t)sz); 2242 return sz; 2243 } 2244 if (map_def->key_size && map_def->key_size != sz) { 2245 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2246 map_name, map_def->key_size, (ssize_t)sz); 2247 return -EINVAL; 2248 } 2249 map_def->key_size = sz; 2250 map_def->key_type_id = t->type; 2251 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2252 } else if (strcmp(name, "value_size") == 0) { 2253 __u32 sz; 2254 2255 if (!get_map_field_int(map_name, btf, m, &sz)) 2256 return -EINVAL; 2257 if (map_def->value_size && map_def->value_size != sz) { 2258 pr_warn("map '%s': conflicting value size %u != %u.\n", 2259 map_name, map_def->value_size, sz); 2260 return -EINVAL; 2261 } 2262 map_def->value_size = sz; 2263 map_def->parts |= MAP_DEF_VALUE_SIZE; 2264 } else if (strcmp(name, "value") == 0) { 2265 __s64 sz; 2266 2267 t = btf__type_by_id(btf, m->type); 2268 if (!t) { 2269 pr_warn("map '%s': value type [%d] not found.\n", 2270 map_name, m->type); 2271 return -EINVAL; 2272 } 2273 if (!btf_is_ptr(t)) { 2274 pr_warn("map '%s': value spec is not PTR: %s.\n", 2275 map_name, btf_kind_str(t)); 2276 return -EINVAL; 2277 } 2278 sz = btf__resolve_size(btf, t->type); 2279 if (sz < 0) { 2280 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2281 map_name, t->type, (ssize_t)sz); 2282 return sz; 2283 } 2284 if (map_def->value_size && map_def->value_size != sz) { 2285 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2286 map_name, map_def->value_size, (ssize_t)sz); 2287 return -EINVAL; 2288 } 2289 map_def->value_size = sz; 2290 map_def->value_type_id = t->type; 2291 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2292 } 2293 else if (strcmp(name, "values") == 0) { 2294 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2295 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2296 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2297 char inner_map_name[128]; 2298 int err; 2299 2300 if (is_inner) { 2301 pr_warn("map '%s': multi-level inner maps not supported.\n", 2302 map_name); 2303 return -ENOTSUP; 2304 } 2305 if (i != vlen - 1) { 2306 pr_warn("map '%s': '%s' member should be last.\n", 2307 map_name, name); 2308 return -EINVAL; 2309 } 2310 if (!is_map_in_map && !is_prog_array) { 2311 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2312 map_name); 2313 return -ENOTSUP; 2314 } 2315 if (map_def->value_size && map_def->value_size != 4) { 2316 pr_warn("map '%s': conflicting value size %u != 4.\n", 2317 map_name, map_def->value_size); 2318 return -EINVAL; 2319 } 2320 map_def->value_size = 4; 2321 t = btf__type_by_id(btf, m->type); 2322 if (!t) { 2323 pr_warn("map '%s': %s type [%d] not found.\n", 2324 map_name, desc, m->type); 2325 return -EINVAL; 2326 } 2327 if (!btf_is_array(t) || btf_array(t)->nelems) { 2328 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2329 map_name, desc); 2330 return -EINVAL; 2331 } 2332 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2333 if (!btf_is_ptr(t)) { 2334 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2335 map_name, desc, btf_kind_str(t)); 2336 return -EINVAL; 2337 } 2338 t = skip_mods_and_typedefs(btf, t->type, NULL); 2339 if (is_prog_array) { 2340 if (!btf_is_func_proto(t)) { 2341 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2342 map_name, btf_kind_str(t)); 2343 return -EINVAL; 2344 } 2345 continue; 2346 } 2347 if (!btf_is_struct(t)) { 2348 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2349 map_name, btf_kind_str(t)); 2350 return -EINVAL; 2351 } 2352 2353 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2354 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2355 if (err) 2356 return err; 2357 2358 map_def->parts |= MAP_DEF_INNER_MAP; 2359 } else if (strcmp(name, "pinning") == 0) { 2360 __u32 val; 2361 2362 if (is_inner) { 2363 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2364 return -EINVAL; 2365 } 2366 if (!get_map_field_int(map_name, btf, m, &val)) 2367 return -EINVAL; 2368 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2369 pr_warn("map '%s': invalid pinning value %u.\n", 2370 map_name, val); 2371 return -EINVAL; 2372 } 2373 map_def->pinning = val; 2374 map_def->parts |= MAP_DEF_PINNING; 2375 } else if (strcmp(name, "map_extra") == 0) { 2376 __u32 map_extra; 2377 2378 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2379 return -EINVAL; 2380 map_def->map_extra = map_extra; 2381 map_def->parts |= MAP_DEF_MAP_EXTRA; 2382 } else { 2383 if (strict) { 2384 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2385 return -ENOTSUP; 2386 } 2387 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2388 } 2389 } 2390 2391 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2392 pr_warn("map '%s': map type isn't specified.\n", map_name); 2393 return -EINVAL; 2394 } 2395 2396 return 0; 2397 } 2398 2399 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2400 { 2401 map->def.type = def->map_type; 2402 map->def.key_size = def->key_size; 2403 map->def.value_size = def->value_size; 2404 map->def.max_entries = def->max_entries; 2405 map->def.map_flags = def->map_flags; 2406 map->map_extra = def->map_extra; 2407 2408 map->numa_node = def->numa_node; 2409 map->btf_key_type_id = def->key_type_id; 2410 map->btf_value_type_id = def->value_type_id; 2411 2412 if (def->parts & MAP_DEF_MAP_TYPE) 2413 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2414 2415 if (def->parts & MAP_DEF_KEY_TYPE) 2416 pr_debug("map '%s': found key [%u], sz = %u.\n", 2417 map->name, def->key_type_id, def->key_size); 2418 else if (def->parts & MAP_DEF_KEY_SIZE) 2419 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2420 2421 if (def->parts & MAP_DEF_VALUE_TYPE) 2422 pr_debug("map '%s': found value [%u], sz = %u.\n", 2423 map->name, def->value_type_id, def->value_size); 2424 else if (def->parts & MAP_DEF_VALUE_SIZE) 2425 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2426 2427 if (def->parts & MAP_DEF_MAX_ENTRIES) 2428 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2429 if (def->parts & MAP_DEF_MAP_FLAGS) 2430 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2431 if (def->parts & MAP_DEF_MAP_EXTRA) 2432 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2433 (unsigned long long)def->map_extra); 2434 if (def->parts & MAP_DEF_PINNING) 2435 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2436 if (def->parts & MAP_DEF_NUMA_NODE) 2437 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2438 2439 if (def->parts & MAP_DEF_INNER_MAP) 2440 pr_debug("map '%s': found inner map definition.\n", map->name); 2441 } 2442 2443 static const char *btf_var_linkage_str(__u32 linkage) 2444 { 2445 switch (linkage) { 2446 case BTF_VAR_STATIC: return "static"; 2447 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2448 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2449 default: return "unknown"; 2450 } 2451 } 2452 2453 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2454 const struct btf_type *sec, 2455 int var_idx, int sec_idx, 2456 const Elf_Data *data, bool strict, 2457 const char *pin_root_path) 2458 { 2459 struct btf_map_def map_def = {}, inner_def = {}; 2460 const struct btf_type *var, *def; 2461 const struct btf_var_secinfo *vi; 2462 const struct btf_var *var_extra; 2463 const char *map_name; 2464 struct bpf_map *map; 2465 int err; 2466 2467 vi = btf_var_secinfos(sec) + var_idx; 2468 var = btf__type_by_id(obj->btf, vi->type); 2469 var_extra = btf_var(var); 2470 map_name = btf__name_by_offset(obj->btf, var->name_off); 2471 2472 if (map_name == NULL || map_name[0] == '\0') { 2473 pr_warn("map #%d: empty name.\n", var_idx); 2474 return -EINVAL; 2475 } 2476 if ((__u64)vi->offset + vi->size > data->d_size) { 2477 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2478 return -EINVAL; 2479 } 2480 if (!btf_is_var(var)) { 2481 pr_warn("map '%s': unexpected var kind %s.\n", 2482 map_name, btf_kind_str(var)); 2483 return -EINVAL; 2484 } 2485 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2486 pr_warn("map '%s': unsupported map linkage %s.\n", 2487 map_name, btf_var_linkage_str(var_extra->linkage)); 2488 return -EOPNOTSUPP; 2489 } 2490 2491 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2492 if (!btf_is_struct(def)) { 2493 pr_warn("map '%s': unexpected def kind %s.\n", 2494 map_name, btf_kind_str(var)); 2495 return -EINVAL; 2496 } 2497 if (def->size > vi->size) { 2498 pr_warn("map '%s': invalid def size.\n", map_name); 2499 return -EINVAL; 2500 } 2501 2502 map = bpf_object__add_map(obj); 2503 if (IS_ERR(map)) 2504 return PTR_ERR(map); 2505 map->name = strdup(map_name); 2506 if (!map->name) { 2507 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2508 return -ENOMEM; 2509 } 2510 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2511 map->def.type = BPF_MAP_TYPE_UNSPEC; 2512 map->sec_idx = sec_idx; 2513 map->sec_offset = vi->offset; 2514 map->btf_var_idx = var_idx; 2515 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2516 map_name, map->sec_idx, map->sec_offset); 2517 2518 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2519 if (err) 2520 return err; 2521 2522 fill_map_from_def(map, &map_def); 2523 2524 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2525 err = build_map_pin_path(map, pin_root_path); 2526 if (err) { 2527 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2528 return err; 2529 } 2530 } 2531 2532 if (map_def.parts & MAP_DEF_INNER_MAP) { 2533 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2534 if (!map->inner_map) 2535 return -ENOMEM; 2536 map->inner_map->fd = -1; 2537 map->inner_map->sec_idx = sec_idx; 2538 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2539 if (!map->inner_map->name) 2540 return -ENOMEM; 2541 sprintf(map->inner_map->name, "%s.inner", map_name); 2542 2543 fill_map_from_def(map->inner_map, &inner_def); 2544 } 2545 2546 err = bpf_map_find_btf_info(obj, map); 2547 if (err) 2548 return err; 2549 2550 return 0; 2551 } 2552 2553 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2554 const char *pin_root_path) 2555 { 2556 const struct btf_type *sec = NULL; 2557 int nr_types, i, vlen, err; 2558 const struct btf_type *t; 2559 const char *name; 2560 Elf_Data *data; 2561 Elf_Scn *scn; 2562 2563 if (obj->efile.btf_maps_shndx < 0) 2564 return 0; 2565 2566 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2567 data = elf_sec_data(obj, scn); 2568 if (!scn || !data) { 2569 pr_warn("elf: failed to get %s map definitions for %s\n", 2570 MAPS_ELF_SEC, obj->path); 2571 return -EINVAL; 2572 } 2573 2574 nr_types = btf__type_cnt(obj->btf); 2575 for (i = 1; i < nr_types; i++) { 2576 t = btf__type_by_id(obj->btf, i); 2577 if (!btf_is_datasec(t)) 2578 continue; 2579 name = btf__name_by_offset(obj->btf, t->name_off); 2580 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2581 sec = t; 2582 obj->efile.btf_maps_sec_btf_id = i; 2583 break; 2584 } 2585 } 2586 2587 if (!sec) { 2588 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2589 return -ENOENT; 2590 } 2591 2592 vlen = btf_vlen(sec); 2593 for (i = 0; i < vlen; i++) { 2594 err = bpf_object__init_user_btf_map(obj, sec, i, 2595 obj->efile.btf_maps_shndx, 2596 data, strict, 2597 pin_root_path); 2598 if (err) 2599 return err; 2600 } 2601 2602 return 0; 2603 } 2604 2605 static int bpf_object__init_maps(struct bpf_object *obj, 2606 const struct bpf_object_open_opts *opts) 2607 { 2608 const char *pin_root_path; 2609 bool strict; 2610 int err; 2611 2612 strict = !OPTS_GET(opts, relaxed_maps, false); 2613 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2614 2615 err = bpf_object__init_user_maps(obj, strict); 2616 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2617 err = err ?: bpf_object__init_global_data_maps(obj); 2618 err = err ?: bpf_object__init_kconfig_map(obj); 2619 err = err ?: bpf_object__init_struct_ops_maps(obj); 2620 2621 return err; 2622 } 2623 2624 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2625 { 2626 Elf64_Shdr *sh; 2627 2628 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2629 if (!sh) 2630 return false; 2631 2632 return sh->sh_flags & SHF_EXECINSTR; 2633 } 2634 2635 static bool btf_needs_sanitization(struct bpf_object *obj) 2636 { 2637 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2638 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2639 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2640 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2641 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2642 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2643 2644 return !has_func || !has_datasec || !has_func_global || !has_float || 2645 !has_decl_tag || !has_type_tag; 2646 } 2647 2648 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2649 { 2650 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2651 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2652 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2653 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2654 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2655 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2656 struct btf_type *t; 2657 int i, j, vlen; 2658 2659 for (i = 1; i < btf__type_cnt(btf); i++) { 2660 t = (struct btf_type *)btf__type_by_id(btf, i); 2661 2662 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2663 /* replace VAR/DECL_TAG with INT */ 2664 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2665 /* 2666 * using size = 1 is the safest choice, 4 will be too 2667 * big and cause kernel BTF validation failure if 2668 * original variable took less than 4 bytes 2669 */ 2670 t->size = 1; 2671 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2672 } else if (!has_datasec && btf_is_datasec(t)) { 2673 /* replace DATASEC with STRUCT */ 2674 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2675 struct btf_member *m = btf_members(t); 2676 struct btf_type *vt; 2677 char *name; 2678 2679 name = (char *)btf__name_by_offset(btf, t->name_off); 2680 while (*name) { 2681 if (*name == '.') 2682 *name = '_'; 2683 name++; 2684 } 2685 2686 vlen = btf_vlen(t); 2687 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2688 for (j = 0; j < vlen; j++, v++, m++) { 2689 /* order of field assignments is important */ 2690 m->offset = v->offset * 8; 2691 m->type = v->type; 2692 /* preserve variable name as member name */ 2693 vt = (void *)btf__type_by_id(btf, v->type); 2694 m->name_off = vt->name_off; 2695 } 2696 } else if (!has_func && btf_is_func_proto(t)) { 2697 /* replace FUNC_PROTO with ENUM */ 2698 vlen = btf_vlen(t); 2699 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2700 t->size = sizeof(__u32); /* kernel enforced */ 2701 } else if (!has_func && btf_is_func(t)) { 2702 /* replace FUNC with TYPEDEF */ 2703 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2704 } else if (!has_func_global && btf_is_func(t)) { 2705 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2706 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2707 } else if (!has_float && btf_is_float(t)) { 2708 /* replace FLOAT with an equally-sized empty STRUCT; 2709 * since C compilers do not accept e.g. "float" as a 2710 * valid struct name, make it anonymous 2711 */ 2712 t->name_off = 0; 2713 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2714 } else if (!has_type_tag && btf_is_type_tag(t)) { 2715 /* replace TYPE_TAG with a CONST */ 2716 t->name_off = 0; 2717 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2718 } 2719 } 2720 } 2721 2722 static bool libbpf_needs_btf(const struct bpf_object *obj) 2723 { 2724 return obj->efile.btf_maps_shndx >= 0 || 2725 obj->efile.st_ops_shndx >= 0 || 2726 obj->nr_extern > 0; 2727 } 2728 2729 static bool kernel_needs_btf(const struct bpf_object *obj) 2730 { 2731 return obj->efile.st_ops_shndx >= 0; 2732 } 2733 2734 static int bpf_object__init_btf(struct bpf_object *obj, 2735 Elf_Data *btf_data, 2736 Elf_Data *btf_ext_data) 2737 { 2738 int err = -ENOENT; 2739 2740 if (btf_data) { 2741 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2742 err = libbpf_get_error(obj->btf); 2743 if (err) { 2744 obj->btf = NULL; 2745 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2746 goto out; 2747 } 2748 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2749 btf__set_pointer_size(obj->btf, 8); 2750 } 2751 if (btf_ext_data) { 2752 if (!obj->btf) { 2753 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2754 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2755 goto out; 2756 } 2757 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2758 err = libbpf_get_error(obj->btf_ext); 2759 if (err) { 2760 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2761 BTF_EXT_ELF_SEC, err); 2762 obj->btf_ext = NULL; 2763 goto out; 2764 } 2765 } 2766 out: 2767 if (err && libbpf_needs_btf(obj)) { 2768 pr_warn("BTF is required, but is missing or corrupted.\n"); 2769 return err; 2770 } 2771 return 0; 2772 } 2773 2774 static int compare_vsi_off(const void *_a, const void *_b) 2775 { 2776 const struct btf_var_secinfo *a = _a; 2777 const struct btf_var_secinfo *b = _b; 2778 2779 return a->offset - b->offset; 2780 } 2781 2782 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2783 struct btf_type *t) 2784 { 2785 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2786 const char *name = btf__name_by_offset(btf, t->name_off); 2787 const struct btf_type *t_var; 2788 struct btf_var_secinfo *vsi; 2789 const struct btf_var *var; 2790 int ret; 2791 2792 if (!name) { 2793 pr_debug("No name found in string section for DATASEC kind.\n"); 2794 return -ENOENT; 2795 } 2796 2797 /* .extern datasec size and var offsets were set correctly during 2798 * extern collection step, so just skip straight to sorting variables 2799 */ 2800 if (t->size) 2801 goto sort_vars; 2802 2803 ret = find_elf_sec_sz(obj, name, &size); 2804 if (ret || !size) { 2805 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2806 return -ENOENT; 2807 } 2808 2809 t->size = size; 2810 2811 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2812 t_var = btf__type_by_id(btf, vsi->type); 2813 if (!t_var || !btf_is_var(t_var)) { 2814 pr_debug("Non-VAR type seen in section %s\n", name); 2815 return -EINVAL; 2816 } 2817 2818 var = btf_var(t_var); 2819 if (var->linkage == BTF_VAR_STATIC) 2820 continue; 2821 2822 name = btf__name_by_offset(btf, t_var->name_off); 2823 if (!name) { 2824 pr_debug("No name found in string section for VAR kind\n"); 2825 return -ENOENT; 2826 } 2827 2828 ret = find_elf_var_offset(obj, name, &off); 2829 if (ret) { 2830 pr_debug("No offset found in symbol table for VAR %s\n", 2831 name); 2832 return -ENOENT; 2833 } 2834 2835 vsi->offset = off; 2836 } 2837 2838 sort_vars: 2839 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2840 return 0; 2841 } 2842 2843 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2844 { 2845 int err = 0; 2846 __u32 i, n = btf__type_cnt(btf); 2847 2848 for (i = 1; i < n; i++) { 2849 struct btf_type *t = btf_type_by_id(btf, i); 2850 2851 /* Loader needs to fix up some of the things compiler 2852 * couldn't get its hands on while emitting BTF. This 2853 * is section size and global variable offset. We use 2854 * the info from the ELF itself for this purpose. 2855 */ 2856 if (btf_is_datasec(t)) { 2857 err = btf_fixup_datasec(obj, btf, t); 2858 if (err) 2859 break; 2860 } 2861 } 2862 2863 return libbpf_err(err); 2864 } 2865 2866 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2867 { 2868 return btf_finalize_data(obj, btf); 2869 } 2870 2871 static int bpf_object__finalize_btf(struct bpf_object *obj) 2872 { 2873 int err; 2874 2875 if (!obj->btf) 2876 return 0; 2877 2878 err = btf_finalize_data(obj, obj->btf); 2879 if (err) { 2880 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2881 return err; 2882 } 2883 2884 return 0; 2885 } 2886 2887 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2888 { 2889 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2890 prog->type == BPF_PROG_TYPE_LSM) 2891 return true; 2892 2893 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2894 * also need vmlinux BTF 2895 */ 2896 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2897 return true; 2898 2899 return false; 2900 } 2901 2902 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2903 { 2904 struct bpf_program *prog; 2905 int i; 2906 2907 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2908 * is not specified 2909 */ 2910 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2911 return true; 2912 2913 /* Support for typed ksyms needs kernel BTF */ 2914 for (i = 0; i < obj->nr_extern; i++) { 2915 const struct extern_desc *ext; 2916 2917 ext = &obj->externs[i]; 2918 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2919 return true; 2920 } 2921 2922 bpf_object__for_each_program(prog, obj) { 2923 if (!prog->load) 2924 continue; 2925 if (prog_needs_vmlinux_btf(prog)) 2926 return true; 2927 } 2928 2929 return false; 2930 } 2931 2932 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2933 { 2934 int err; 2935 2936 /* btf_vmlinux could be loaded earlier */ 2937 if (obj->btf_vmlinux || obj->gen_loader) 2938 return 0; 2939 2940 if (!force && !obj_needs_vmlinux_btf(obj)) 2941 return 0; 2942 2943 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2944 err = libbpf_get_error(obj->btf_vmlinux); 2945 if (err) { 2946 pr_warn("Error loading vmlinux BTF: %d\n", err); 2947 obj->btf_vmlinux = NULL; 2948 return err; 2949 } 2950 return 0; 2951 } 2952 2953 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2954 { 2955 struct btf *kern_btf = obj->btf; 2956 bool btf_mandatory, sanitize; 2957 int i, err = 0; 2958 2959 if (!obj->btf) 2960 return 0; 2961 2962 if (!kernel_supports(obj, FEAT_BTF)) { 2963 if (kernel_needs_btf(obj)) { 2964 err = -EOPNOTSUPP; 2965 goto report; 2966 } 2967 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2968 return 0; 2969 } 2970 2971 /* Even though some subprogs are global/weak, user might prefer more 2972 * permissive BPF verification process that BPF verifier performs for 2973 * static functions, taking into account more context from the caller 2974 * functions. In such case, they need to mark such subprogs with 2975 * __attribute__((visibility("hidden"))) and libbpf will adjust 2976 * corresponding FUNC BTF type to be marked as static and trigger more 2977 * involved BPF verification process. 2978 */ 2979 for (i = 0; i < obj->nr_programs; i++) { 2980 struct bpf_program *prog = &obj->programs[i]; 2981 struct btf_type *t; 2982 const char *name; 2983 int j, n; 2984 2985 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2986 continue; 2987 2988 n = btf__type_cnt(obj->btf); 2989 for (j = 1; j < n; j++) { 2990 t = btf_type_by_id(obj->btf, j); 2991 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2992 continue; 2993 2994 name = btf__str_by_offset(obj->btf, t->name_off); 2995 if (strcmp(name, prog->name) != 0) 2996 continue; 2997 2998 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2999 break; 3000 } 3001 } 3002 3003 sanitize = btf_needs_sanitization(obj); 3004 if (sanitize) { 3005 const void *raw_data; 3006 __u32 sz; 3007 3008 /* clone BTF to sanitize a copy and leave the original intact */ 3009 raw_data = btf__raw_data(obj->btf, &sz); 3010 kern_btf = btf__new(raw_data, sz); 3011 err = libbpf_get_error(kern_btf); 3012 if (err) 3013 return err; 3014 3015 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3016 btf__set_pointer_size(obj->btf, 8); 3017 bpf_object__sanitize_btf(obj, kern_btf); 3018 } 3019 3020 if (obj->gen_loader) { 3021 __u32 raw_size = 0; 3022 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3023 3024 if (!raw_data) 3025 return -ENOMEM; 3026 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3027 /* Pretend to have valid FD to pass various fd >= 0 checks. 3028 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3029 */ 3030 btf__set_fd(kern_btf, 0); 3031 } else { 3032 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3033 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3034 obj->log_level ? 1 : 0); 3035 } 3036 if (sanitize) { 3037 if (!err) { 3038 /* move fd to libbpf's BTF */ 3039 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3040 btf__set_fd(kern_btf, -1); 3041 } 3042 btf__free(kern_btf); 3043 } 3044 report: 3045 if (err) { 3046 btf_mandatory = kernel_needs_btf(obj); 3047 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3048 btf_mandatory ? "BTF is mandatory, can't proceed." 3049 : "BTF is optional, ignoring."); 3050 if (!btf_mandatory) 3051 err = 0; 3052 } 3053 return err; 3054 } 3055 3056 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3057 { 3058 const char *name; 3059 3060 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3061 if (!name) { 3062 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3063 off, obj->path, elf_errmsg(-1)); 3064 return NULL; 3065 } 3066 3067 return name; 3068 } 3069 3070 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3071 { 3072 const char *name; 3073 3074 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3075 if (!name) { 3076 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3077 off, obj->path, elf_errmsg(-1)); 3078 return NULL; 3079 } 3080 3081 return name; 3082 } 3083 3084 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3085 { 3086 Elf_Scn *scn; 3087 3088 scn = elf_getscn(obj->efile.elf, idx); 3089 if (!scn) { 3090 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3091 idx, obj->path, elf_errmsg(-1)); 3092 return NULL; 3093 } 3094 return scn; 3095 } 3096 3097 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3098 { 3099 Elf_Scn *scn = NULL; 3100 Elf *elf = obj->efile.elf; 3101 const char *sec_name; 3102 3103 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3104 sec_name = elf_sec_name(obj, scn); 3105 if (!sec_name) 3106 return NULL; 3107 3108 if (strcmp(sec_name, name) != 0) 3109 continue; 3110 3111 return scn; 3112 } 3113 return NULL; 3114 } 3115 3116 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3117 { 3118 Elf64_Shdr *shdr; 3119 3120 if (!scn) 3121 return NULL; 3122 3123 shdr = elf64_getshdr(scn); 3124 if (!shdr) { 3125 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3126 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3127 return NULL; 3128 } 3129 3130 return shdr; 3131 } 3132 3133 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3134 { 3135 const char *name; 3136 Elf64_Shdr *sh; 3137 3138 if (!scn) 3139 return NULL; 3140 3141 sh = elf_sec_hdr(obj, scn); 3142 if (!sh) 3143 return NULL; 3144 3145 name = elf_sec_str(obj, sh->sh_name); 3146 if (!name) { 3147 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3148 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3149 return NULL; 3150 } 3151 3152 return name; 3153 } 3154 3155 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3156 { 3157 Elf_Data *data; 3158 3159 if (!scn) 3160 return NULL; 3161 3162 data = elf_getdata(scn, 0); 3163 if (!data) { 3164 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3165 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3166 obj->path, elf_errmsg(-1)); 3167 return NULL; 3168 } 3169 3170 return data; 3171 } 3172 3173 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3174 { 3175 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3176 return NULL; 3177 3178 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3179 } 3180 3181 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3182 { 3183 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3184 return NULL; 3185 3186 return (Elf64_Rel *)data->d_buf + idx; 3187 } 3188 3189 static bool is_sec_name_dwarf(const char *name) 3190 { 3191 /* approximation, but the actual list is too long */ 3192 return str_has_pfx(name, ".debug_"); 3193 } 3194 3195 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3196 { 3197 /* no special handling of .strtab */ 3198 if (hdr->sh_type == SHT_STRTAB) 3199 return true; 3200 3201 /* ignore .llvm_addrsig section as well */ 3202 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3203 return true; 3204 3205 /* no subprograms will lead to an empty .text section, ignore it */ 3206 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3207 strcmp(name, ".text") == 0) 3208 return true; 3209 3210 /* DWARF sections */ 3211 if (is_sec_name_dwarf(name)) 3212 return true; 3213 3214 if (str_has_pfx(name, ".rel")) { 3215 name += sizeof(".rel") - 1; 3216 /* DWARF section relocations */ 3217 if (is_sec_name_dwarf(name)) 3218 return true; 3219 3220 /* .BTF and .BTF.ext don't need relocations */ 3221 if (strcmp(name, BTF_ELF_SEC) == 0 || 3222 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3223 return true; 3224 } 3225 3226 return false; 3227 } 3228 3229 static int cmp_progs(const void *_a, const void *_b) 3230 { 3231 const struct bpf_program *a = _a; 3232 const struct bpf_program *b = _b; 3233 3234 if (a->sec_idx != b->sec_idx) 3235 return a->sec_idx < b->sec_idx ? -1 : 1; 3236 3237 /* sec_insn_off can't be the same within the section */ 3238 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3239 } 3240 3241 static int bpf_object__elf_collect(struct bpf_object *obj) 3242 { 3243 struct elf_sec_desc *sec_desc; 3244 Elf *elf = obj->efile.elf; 3245 Elf_Data *btf_ext_data = NULL; 3246 Elf_Data *btf_data = NULL; 3247 int idx = 0, err = 0; 3248 const char *name; 3249 Elf_Data *data; 3250 Elf_Scn *scn; 3251 Elf64_Shdr *sh; 3252 3253 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3254 * section. e_shnum does include sec #0, so e_shnum is the necessary 3255 * size of an array to keep all the sections. 3256 */ 3257 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3258 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3259 if (!obj->efile.secs) 3260 return -ENOMEM; 3261 3262 /* a bunch of ELF parsing functionality depends on processing symbols, 3263 * so do the first pass and find the symbol table 3264 */ 3265 scn = NULL; 3266 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3267 sh = elf_sec_hdr(obj, scn); 3268 if (!sh) 3269 return -LIBBPF_ERRNO__FORMAT; 3270 3271 if (sh->sh_type == SHT_SYMTAB) { 3272 if (obj->efile.symbols) { 3273 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3274 return -LIBBPF_ERRNO__FORMAT; 3275 } 3276 3277 data = elf_sec_data(obj, scn); 3278 if (!data) 3279 return -LIBBPF_ERRNO__FORMAT; 3280 3281 idx = elf_ndxscn(scn); 3282 3283 obj->efile.symbols = data; 3284 obj->efile.symbols_shndx = idx; 3285 obj->efile.strtabidx = sh->sh_link; 3286 } 3287 } 3288 3289 if (!obj->efile.symbols) { 3290 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3291 obj->path); 3292 return -ENOENT; 3293 } 3294 3295 scn = NULL; 3296 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3297 idx = elf_ndxscn(scn); 3298 sec_desc = &obj->efile.secs[idx]; 3299 3300 sh = elf_sec_hdr(obj, scn); 3301 if (!sh) 3302 return -LIBBPF_ERRNO__FORMAT; 3303 3304 name = elf_sec_str(obj, sh->sh_name); 3305 if (!name) 3306 return -LIBBPF_ERRNO__FORMAT; 3307 3308 if (ignore_elf_section(sh, name)) 3309 continue; 3310 3311 data = elf_sec_data(obj, scn); 3312 if (!data) 3313 return -LIBBPF_ERRNO__FORMAT; 3314 3315 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3316 idx, name, (unsigned long)data->d_size, 3317 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3318 (int)sh->sh_type); 3319 3320 if (strcmp(name, "license") == 0) { 3321 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3322 if (err) 3323 return err; 3324 } else if (strcmp(name, "version") == 0) { 3325 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3326 if (err) 3327 return err; 3328 } else if (strcmp(name, "maps") == 0) { 3329 obj->efile.maps_shndx = idx; 3330 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3331 obj->efile.btf_maps_shndx = idx; 3332 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3333 if (sh->sh_type != SHT_PROGBITS) 3334 return -LIBBPF_ERRNO__FORMAT; 3335 btf_data = data; 3336 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3337 if (sh->sh_type != SHT_PROGBITS) 3338 return -LIBBPF_ERRNO__FORMAT; 3339 btf_ext_data = data; 3340 } else if (sh->sh_type == SHT_SYMTAB) { 3341 /* already processed during the first pass above */ 3342 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3343 if (sh->sh_flags & SHF_EXECINSTR) { 3344 if (strcmp(name, ".text") == 0) 3345 obj->efile.text_shndx = idx; 3346 err = bpf_object__add_programs(obj, data, name, idx); 3347 if (err) 3348 return err; 3349 } else if (strcmp(name, DATA_SEC) == 0 || 3350 str_has_pfx(name, DATA_SEC ".")) { 3351 sec_desc->sec_type = SEC_DATA; 3352 sec_desc->shdr = sh; 3353 sec_desc->data = data; 3354 } else if (strcmp(name, RODATA_SEC) == 0 || 3355 str_has_pfx(name, RODATA_SEC ".")) { 3356 sec_desc->sec_type = SEC_RODATA; 3357 sec_desc->shdr = sh; 3358 sec_desc->data = data; 3359 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3360 obj->efile.st_ops_data = data; 3361 obj->efile.st_ops_shndx = idx; 3362 } else { 3363 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3364 idx, name); 3365 } 3366 } else if (sh->sh_type == SHT_REL) { 3367 int targ_sec_idx = sh->sh_info; /* points to other section */ 3368 3369 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3370 targ_sec_idx >= obj->efile.sec_cnt) 3371 return -LIBBPF_ERRNO__FORMAT; 3372 3373 /* Only do relo for section with exec instructions */ 3374 if (!section_have_execinstr(obj, targ_sec_idx) && 3375 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3376 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3377 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3378 idx, name, targ_sec_idx, 3379 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3380 continue; 3381 } 3382 3383 sec_desc->sec_type = SEC_RELO; 3384 sec_desc->shdr = sh; 3385 sec_desc->data = data; 3386 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3387 sec_desc->sec_type = SEC_BSS; 3388 sec_desc->shdr = sh; 3389 sec_desc->data = data; 3390 } else { 3391 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3392 (size_t)sh->sh_size); 3393 } 3394 } 3395 3396 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3397 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3398 return -LIBBPF_ERRNO__FORMAT; 3399 } 3400 3401 /* sort BPF programs by section name and in-section instruction offset 3402 * for faster search */ 3403 if (obj->nr_programs) 3404 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3405 3406 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3407 } 3408 3409 static bool sym_is_extern(const Elf64_Sym *sym) 3410 { 3411 int bind = ELF64_ST_BIND(sym->st_info); 3412 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3413 return sym->st_shndx == SHN_UNDEF && 3414 (bind == STB_GLOBAL || bind == STB_WEAK) && 3415 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3416 } 3417 3418 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3419 { 3420 int bind = ELF64_ST_BIND(sym->st_info); 3421 int type = ELF64_ST_TYPE(sym->st_info); 3422 3423 /* in .text section */ 3424 if (sym->st_shndx != text_shndx) 3425 return false; 3426 3427 /* local function */ 3428 if (bind == STB_LOCAL && type == STT_SECTION) 3429 return true; 3430 3431 /* global function */ 3432 return bind == STB_GLOBAL && type == STT_FUNC; 3433 } 3434 3435 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3436 { 3437 const struct btf_type *t; 3438 const char *tname; 3439 int i, n; 3440 3441 if (!btf) 3442 return -ESRCH; 3443 3444 n = btf__type_cnt(btf); 3445 for (i = 1; i < n; i++) { 3446 t = btf__type_by_id(btf, i); 3447 3448 if (!btf_is_var(t) && !btf_is_func(t)) 3449 continue; 3450 3451 tname = btf__name_by_offset(btf, t->name_off); 3452 if (strcmp(tname, ext_name)) 3453 continue; 3454 3455 if (btf_is_var(t) && 3456 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3457 return -EINVAL; 3458 3459 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3460 return -EINVAL; 3461 3462 return i; 3463 } 3464 3465 return -ENOENT; 3466 } 3467 3468 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3469 const struct btf_var_secinfo *vs; 3470 const struct btf_type *t; 3471 int i, j, n; 3472 3473 if (!btf) 3474 return -ESRCH; 3475 3476 n = btf__type_cnt(btf); 3477 for (i = 1; i < n; i++) { 3478 t = btf__type_by_id(btf, i); 3479 3480 if (!btf_is_datasec(t)) 3481 continue; 3482 3483 vs = btf_var_secinfos(t); 3484 for (j = 0; j < btf_vlen(t); j++, vs++) { 3485 if (vs->type == ext_btf_id) 3486 return i; 3487 } 3488 } 3489 3490 return -ENOENT; 3491 } 3492 3493 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3494 bool *is_signed) 3495 { 3496 const struct btf_type *t; 3497 const char *name; 3498 3499 t = skip_mods_and_typedefs(btf, id, NULL); 3500 name = btf__name_by_offset(btf, t->name_off); 3501 3502 if (is_signed) 3503 *is_signed = false; 3504 switch (btf_kind(t)) { 3505 case BTF_KIND_INT: { 3506 int enc = btf_int_encoding(t); 3507 3508 if (enc & BTF_INT_BOOL) 3509 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3510 if (is_signed) 3511 *is_signed = enc & BTF_INT_SIGNED; 3512 if (t->size == 1) 3513 return KCFG_CHAR; 3514 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3515 return KCFG_UNKNOWN; 3516 return KCFG_INT; 3517 } 3518 case BTF_KIND_ENUM: 3519 if (t->size != 4) 3520 return KCFG_UNKNOWN; 3521 if (strcmp(name, "libbpf_tristate")) 3522 return KCFG_UNKNOWN; 3523 return KCFG_TRISTATE; 3524 case BTF_KIND_ARRAY: 3525 if (btf_array(t)->nelems == 0) 3526 return KCFG_UNKNOWN; 3527 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3528 return KCFG_UNKNOWN; 3529 return KCFG_CHAR_ARR; 3530 default: 3531 return KCFG_UNKNOWN; 3532 } 3533 } 3534 3535 static int cmp_externs(const void *_a, const void *_b) 3536 { 3537 const struct extern_desc *a = _a; 3538 const struct extern_desc *b = _b; 3539 3540 if (a->type != b->type) 3541 return a->type < b->type ? -1 : 1; 3542 3543 if (a->type == EXT_KCFG) { 3544 /* descending order by alignment requirements */ 3545 if (a->kcfg.align != b->kcfg.align) 3546 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3547 /* ascending order by size, within same alignment class */ 3548 if (a->kcfg.sz != b->kcfg.sz) 3549 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3550 } 3551 3552 /* resolve ties by name */ 3553 return strcmp(a->name, b->name); 3554 } 3555 3556 static int find_int_btf_id(const struct btf *btf) 3557 { 3558 const struct btf_type *t; 3559 int i, n; 3560 3561 n = btf__type_cnt(btf); 3562 for (i = 1; i < n; i++) { 3563 t = btf__type_by_id(btf, i); 3564 3565 if (btf_is_int(t) && btf_int_bits(t) == 32) 3566 return i; 3567 } 3568 3569 return 0; 3570 } 3571 3572 static int add_dummy_ksym_var(struct btf *btf) 3573 { 3574 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3575 const struct btf_var_secinfo *vs; 3576 const struct btf_type *sec; 3577 3578 if (!btf) 3579 return 0; 3580 3581 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3582 BTF_KIND_DATASEC); 3583 if (sec_btf_id < 0) 3584 return 0; 3585 3586 sec = btf__type_by_id(btf, sec_btf_id); 3587 vs = btf_var_secinfos(sec); 3588 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3589 const struct btf_type *vt; 3590 3591 vt = btf__type_by_id(btf, vs->type); 3592 if (btf_is_func(vt)) 3593 break; 3594 } 3595 3596 /* No func in ksyms sec. No need to add dummy var. */ 3597 if (i == btf_vlen(sec)) 3598 return 0; 3599 3600 int_btf_id = find_int_btf_id(btf); 3601 dummy_var_btf_id = btf__add_var(btf, 3602 "dummy_ksym", 3603 BTF_VAR_GLOBAL_ALLOCATED, 3604 int_btf_id); 3605 if (dummy_var_btf_id < 0) 3606 pr_warn("cannot create a dummy_ksym var\n"); 3607 3608 return dummy_var_btf_id; 3609 } 3610 3611 static int bpf_object__collect_externs(struct bpf_object *obj) 3612 { 3613 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3614 const struct btf_type *t; 3615 struct extern_desc *ext; 3616 int i, n, off, dummy_var_btf_id; 3617 const char *ext_name, *sec_name; 3618 Elf_Scn *scn; 3619 Elf64_Shdr *sh; 3620 3621 if (!obj->efile.symbols) 3622 return 0; 3623 3624 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3625 sh = elf_sec_hdr(obj, scn); 3626 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3627 return -LIBBPF_ERRNO__FORMAT; 3628 3629 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3630 if (dummy_var_btf_id < 0) 3631 return dummy_var_btf_id; 3632 3633 n = sh->sh_size / sh->sh_entsize; 3634 pr_debug("looking for externs among %d symbols...\n", n); 3635 3636 for (i = 0; i < n; i++) { 3637 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3638 3639 if (!sym) 3640 return -LIBBPF_ERRNO__FORMAT; 3641 if (!sym_is_extern(sym)) 3642 continue; 3643 ext_name = elf_sym_str(obj, sym->st_name); 3644 if (!ext_name || !ext_name[0]) 3645 continue; 3646 3647 ext = obj->externs; 3648 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3649 if (!ext) 3650 return -ENOMEM; 3651 obj->externs = ext; 3652 ext = &ext[obj->nr_extern]; 3653 memset(ext, 0, sizeof(*ext)); 3654 obj->nr_extern++; 3655 3656 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3657 if (ext->btf_id <= 0) { 3658 pr_warn("failed to find BTF for extern '%s': %d\n", 3659 ext_name, ext->btf_id); 3660 return ext->btf_id; 3661 } 3662 t = btf__type_by_id(obj->btf, ext->btf_id); 3663 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3664 ext->sym_idx = i; 3665 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3666 3667 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3668 if (ext->sec_btf_id <= 0) { 3669 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3670 ext_name, ext->btf_id, ext->sec_btf_id); 3671 return ext->sec_btf_id; 3672 } 3673 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3674 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3675 3676 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3677 if (btf_is_func(t)) { 3678 pr_warn("extern function %s is unsupported under %s section\n", 3679 ext->name, KCONFIG_SEC); 3680 return -ENOTSUP; 3681 } 3682 kcfg_sec = sec; 3683 ext->type = EXT_KCFG; 3684 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3685 if (ext->kcfg.sz <= 0) { 3686 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3687 ext_name, ext->kcfg.sz); 3688 return ext->kcfg.sz; 3689 } 3690 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3691 if (ext->kcfg.align <= 0) { 3692 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3693 ext_name, ext->kcfg.align); 3694 return -EINVAL; 3695 } 3696 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3697 &ext->kcfg.is_signed); 3698 if (ext->kcfg.type == KCFG_UNKNOWN) { 3699 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3700 return -ENOTSUP; 3701 } 3702 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3703 ksym_sec = sec; 3704 ext->type = EXT_KSYM; 3705 skip_mods_and_typedefs(obj->btf, t->type, 3706 &ext->ksym.type_id); 3707 } else { 3708 pr_warn("unrecognized extern section '%s'\n", sec_name); 3709 return -ENOTSUP; 3710 } 3711 } 3712 pr_debug("collected %d externs total\n", obj->nr_extern); 3713 3714 if (!obj->nr_extern) 3715 return 0; 3716 3717 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3718 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3719 3720 /* for .ksyms section, we need to turn all externs into allocated 3721 * variables in BTF to pass kernel verification; we do this by 3722 * pretending that each extern is a 8-byte variable 3723 */ 3724 if (ksym_sec) { 3725 /* find existing 4-byte integer type in BTF to use for fake 3726 * extern variables in DATASEC 3727 */ 3728 int int_btf_id = find_int_btf_id(obj->btf); 3729 /* For extern function, a dummy_var added earlier 3730 * will be used to replace the vs->type and 3731 * its name string will be used to refill 3732 * the missing param's name. 3733 */ 3734 const struct btf_type *dummy_var; 3735 3736 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3737 for (i = 0; i < obj->nr_extern; i++) { 3738 ext = &obj->externs[i]; 3739 if (ext->type != EXT_KSYM) 3740 continue; 3741 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3742 i, ext->sym_idx, ext->name); 3743 } 3744 3745 sec = ksym_sec; 3746 n = btf_vlen(sec); 3747 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3748 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3749 struct btf_type *vt; 3750 3751 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3752 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3753 ext = find_extern_by_name(obj, ext_name); 3754 if (!ext) { 3755 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3756 btf_kind_str(vt), ext_name); 3757 return -ESRCH; 3758 } 3759 if (btf_is_func(vt)) { 3760 const struct btf_type *func_proto; 3761 struct btf_param *param; 3762 int j; 3763 3764 func_proto = btf__type_by_id(obj->btf, 3765 vt->type); 3766 param = btf_params(func_proto); 3767 /* Reuse the dummy_var string if the 3768 * func proto does not have param name. 3769 */ 3770 for (j = 0; j < btf_vlen(func_proto); j++) 3771 if (param[j].type && !param[j].name_off) 3772 param[j].name_off = 3773 dummy_var->name_off; 3774 vs->type = dummy_var_btf_id; 3775 vt->info &= ~0xffff; 3776 vt->info |= BTF_FUNC_GLOBAL; 3777 } else { 3778 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3779 vt->type = int_btf_id; 3780 } 3781 vs->offset = off; 3782 vs->size = sizeof(int); 3783 } 3784 sec->size = off; 3785 } 3786 3787 if (kcfg_sec) { 3788 sec = kcfg_sec; 3789 /* for kcfg externs calculate their offsets within a .kconfig map */ 3790 off = 0; 3791 for (i = 0; i < obj->nr_extern; i++) { 3792 ext = &obj->externs[i]; 3793 if (ext->type != EXT_KCFG) 3794 continue; 3795 3796 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3797 off = ext->kcfg.data_off + ext->kcfg.sz; 3798 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3799 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3800 } 3801 sec->size = off; 3802 n = btf_vlen(sec); 3803 for (i = 0; i < n; i++) { 3804 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3805 3806 t = btf__type_by_id(obj->btf, vs->type); 3807 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3808 ext = find_extern_by_name(obj, ext_name); 3809 if (!ext) { 3810 pr_warn("failed to find extern definition for BTF var '%s'\n", 3811 ext_name); 3812 return -ESRCH; 3813 } 3814 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3815 vs->offset = ext->kcfg.data_off; 3816 } 3817 } 3818 return 0; 3819 } 3820 3821 struct bpf_program * 3822 bpf_object__find_program_by_title(const struct bpf_object *obj, 3823 const char *title) 3824 { 3825 struct bpf_program *pos; 3826 3827 bpf_object__for_each_program(pos, obj) { 3828 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3829 return pos; 3830 } 3831 return errno = ENOENT, NULL; 3832 } 3833 3834 static bool prog_is_subprog(const struct bpf_object *obj, 3835 const struct bpf_program *prog) 3836 { 3837 /* For legacy reasons, libbpf supports an entry-point BPF programs 3838 * without SEC() attribute, i.e., those in the .text section. But if 3839 * there are 2 or more such programs in the .text section, they all 3840 * must be subprograms called from entry-point BPF programs in 3841 * designated SEC()'tions, otherwise there is no way to distinguish 3842 * which of those programs should be loaded vs which are a subprogram. 3843 * Similarly, if there is a function/program in .text and at least one 3844 * other BPF program with custom SEC() attribute, then we just assume 3845 * .text programs are subprograms (even if they are not called from 3846 * other programs), because libbpf never explicitly supported mixing 3847 * SEC()-designated BPF programs and .text entry-point BPF programs. 3848 * 3849 * In libbpf 1.0 strict mode, we always consider .text 3850 * programs to be subprograms. 3851 */ 3852 3853 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 3854 return prog->sec_idx == obj->efile.text_shndx; 3855 3856 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3857 } 3858 3859 struct bpf_program * 3860 bpf_object__find_program_by_name(const struct bpf_object *obj, 3861 const char *name) 3862 { 3863 struct bpf_program *prog; 3864 3865 bpf_object__for_each_program(prog, obj) { 3866 if (prog_is_subprog(obj, prog)) 3867 continue; 3868 if (!strcmp(prog->name, name)) 3869 return prog; 3870 } 3871 return errno = ENOENT, NULL; 3872 } 3873 3874 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3875 int shndx) 3876 { 3877 switch (obj->efile.secs[shndx].sec_type) { 3878 case SEC_BSS: 3879 case SEC_DATA: 3880 case SEC_RODATA: 3881 return true; 3882 default: 3883 return false; 3884 } 3885 } 3886 3887 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3888 int shndx) 3889 { 3890 return shndx == obj->efile.maps_shndx || 3891 shndx == obj->efile.btf_maps_shndx; 3892 } 3893 3894 static enum libbpf_map_type 3895 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3896 { 3897 if (shndx == obj->efile.symbols_shndx) 3898 return LIBBPF_MAP_KCONFIG; 3899 3900 switch (obj->efile.secs[shndx].sec_type) { 3901 case SEC_BSS: 3902 return LIBBPF_MAP_BSS; 3903 case SEC_DATA: 3904 return LIBBPF_MAP_DATA; 3905 case SEC_RODATA: 3906 return LIBBPF_MAP_RODATA; 3907 default: 3908 return LIBBPF_MAP_UNSPEC; 3909 } 3910 } 3911 3912 static int bpf_program__record_reloc(struct bpf_program *prog, 3913 struct reloc_desc *reloc_desc, 3914 __u32 insn_idx, const char *sym_name, 3915 const Elf64_Sym *sym, const Elf64_Rel *rel) 3916 { 3917 struct bpf_insn *insn = &prog->insns[insn_idx]; 3918 size_t map_idx, nr_maps = prog->obj->nr_maps; 3919 struct bpf_object *obj = prog->obj; 3920 __u32 shdr_idx = sym->st_shndx; 3921 enum libbpf_map_type type; 3922 const char *sym_sec_name; 3923 struct bpf_map *map; 3924 3925 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3926 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3927 prog->name, sym_name, insn_idx, insn->code); 3928 return -LIBBPF_ERRNO__RELOC; 3929 } 3930 3931 if (sym_is_extern(sym)) { 3932 int sym_idx = ELF64_R_SYM(rel->r_info); 3933 int i, n = obj->nr_extern; 3934 struct extern_desc *ext; 3935 3936 for (i = 0; i < n; i++) { 3937 ext = &obj->externs[i]; 3938 if (ext->sym_idx == sym_idx) 3939 break; 3940 } 3941 if (i >= n) { 3942 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3943 prog->name, sym_name, sym_idx); 3944 return -LIBBPF_ERRNO__RELOC; 3945 } 3946 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3947 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3948 if (insn->code == (BPF_JMP | BPF_CALL)) 3949 reloc_desc->type = RELO_EXTERN_FUNC; 3950 else 3951 reloc_desc->type = RELO_EXTERN_VAR; 3952 reloc_desc->insn_idx = insn_idx; 3953 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3954 return 0; 3955 } 3956 3957 /* sub-program call relocation */ 3958 if (is_call_insn(insn)) { 3959 if (insn->src_reg != BPF_PSEUDO_CALL) { 3960 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3961 return -LIBBPF_ERRNO__RELOC; 3962 } 3963 /* text_shndx can be 0, if no default "main" program exists */ 3964 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3965 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3966 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3967 prog->name, sym_name, sym_sec_name); 3968 return -LIBBPF_ERRNO__RELOC; 3969 } 3970 if (sym->st_value % BPF_INSN_SZ) { 3971 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3972 prog->name, sym_name, (size_t)sym->st_value); 3973 return -LIBBPF_ERRNO__RELOC; 3974 } 3975 reloc_desc->type = RELO_CALL; 3976 reloc_desc->insn_idx = insn_idx; 3977 reloc_desc->sym_off = sym->st_value; 3978 return 0; 3979 } 3980 3981 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3982 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3983 prog->name, sym_name, shdr_idx); 3984 return -LIBBPF_ERRNO__RELOC; 3985 } 3986 3987 /* loading subprog addresses */ 3988 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3989 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3990 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3991 */ 3992 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3993 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3994 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3995 return -LIBBPF_ERRNO__RELOC; 3996 } 3997 3998 reloc_desc->type = RELO_SUBPROG_ADDR; 3999 reloc_desc->insn_idx = insn_idx; 4000 reloc_desc->sym_off = sym->st_value; 4001 return 0; 4002 } 4003 4004 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4005 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4006 4007 /* generic map reference relocation */ 4008 if (type == LIBBPF_MAP_UNSPEC) { 4009 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4010 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4011 prog->name, sym_name, sym_sec_name); 4012 return -LIBBPF_ERRNO__RELOC; 4013 } 4014 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4015 map = &obj->maps[map_idx]; 4016 if (map->libbpf_type != type || 4017 map->sec_idx != sym->st_shndx || 4018 map->sec_offset != sym->st_value) 4019 continue; 4020 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4021 prog->name, map_idx, map->name, map->sec_idx, 4022 map->sec_offset, insn_idx); 4023 break; 4024 } 4025 if (map_idx >= nr_maps) { 4026 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4027 prog->name, sym_sec_name, (size_t)sym->st_value); 4028 return -LIBBPF_ERRNO__RELOC; 4029 } 4030 reloc_desc->type = RELO_LD64; 4031 reloc_desc->insn_idx = insn_idx; 4032 reloc_desc->map_idx = map_idx; 4033 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4034 return 0; 4035 } 4036 4037 /* global data map relocation */ 4038 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4039 pr_warn("prog '%s': bad data relo against section '%s'\n", 4040 prog->name, sym_sec_name); 4041 return -LIBBPF_ERRNO__RELOC; 4042 } 4043 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4044 map = &obj->maps[map_idx]; 4045 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4046 continue; 4047 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4048 prog->name, map_idx, map->name, map->sec_idx, 4049 map->sec_offset, insn_idx); 4050 break; 4051 } 4052 if (map_idx >= nr_maps) { 4053 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4054 prog->name, sym_sec_name); 4055 return -LIBBPF_ERRNO__RELOC; 4056 } 4057 4058 reloc_desc->type = RELO_DATA; 4059 reloc_desc->insn_idx = insn_idx; 4060 reloc_desc->map_idx = map_idx; 4061 reloc_desc->sym_off = sym->st_value; 4062 return 0; 4063 } 4064 4065 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4066 { 4067 return insn_idx >= prog->sec_insn_off && 4068 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4069 } 4070 4071 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4072 size_t sec_idx, size_t insn_idx) 4073 { 4074 int l = 0, r = obj->nr_programs - 1, m; 4075 struct bpf_program *prog; 4076 4077 while (l < r) { 4078 m = l + (r - l + 1) / 2; 4079 prog = &obj->programs[m]; 4080 4081 if (prog->sec_idx < sec_idx || 4082 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4083 l = m; 4084 else 4085 r = m - 1; 4086 } 4087 /* matching program could be at index l, but it still might be the 4088 * wrong one, so we need to double check conditions for the last time 4089 */ 4090 prog = &obj->programs[l]; 4091 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4092 return prog; 4093 return NULL; 4094 } 4095 4096 static int 4097 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4098 { 4099 const char *relo_sec_name, *sec_name; 4100 size_t sec_idx = shdr->sh_info, sym_idx; 4101 struct bpf_program *prog; 4102 struct reloc_desc *relos; 4103 int err, i, nrels; 4104 const char *sym_name; 4105 __u32 insn_idx; 4106 Elf_Scn *scn; 4107 Elf_Data *scn_data; 4108 Elf64_Sym *sym; 4109 Elf64_Rel *rel; 4110 4111 if (sec_idx >= obj->efile.sec_cnt) 4112 return -EINVAL; 4113 4114 scn = elf_sec_by_idx(obj, sec_idx); 4115 scn_data = elf_sec_data(obj, scn); 4116 4117 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4118 sec_name = elf_sec_name(obj, scn); 4119 if (!relo_sec_name || !sec_name) 4120 return -EINVAL; 4121 4122 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4123 relo_sec_name, sec_idx, sec_name); 4124 nrels = shdr->sh_size / shdr->sh_entsize; 4125 4126 for (i = 0; i < nrels; i++) { 4127 rel = elf_rel_by_idx(data, i); 4128 if (!rel) { 4129 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4130 return -LIBBPF_ERRNO__FORMAT; 4131 } 4132 4133 sym_idx = ELF64_R_SYM(rel->r_info); 4134 sym = elf_sym_by_idx(obj, sym_idx); 4135 if (!sym) { 4136 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4137 relo_sec_name, sym_idx, i); 4138 return -LIBBPF_ERRNO__FORMAT; 4139 } 4140 4141 if (sym->st_shndx >= obj->efile.sec_cnt) { 4142 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4143 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4144 return -LIBBPF_ERRNO__FORMAT; 4145 } 4146 4147 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4148 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4149 relo_sec_name, (size_t)rel->r_offset, i); 4150 return -LIBBPF_ERRNO__FORMAT; 4151 } 4152 4153 insn_idx = rel->r_offset / BPF_INSN_SZ; 4154 /* relocations against static functions are recorded as 4155 * relocations against the section that contains a function; 4156 * in such case, symbol will be STT_SECTION and sym.st_name 4157 * will point to empty string (0), so fetch section name 4158 * instead 4159 */ 4160 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4161 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4162 else 4163 sym_name = elf_sym_str(obj, sym->st_name); 4164 sym_name = sym_name ?: "<?"; 4165 4166 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4167 relo_sec_name, i, insn_idx, sym_name); 4168 4169 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4170 if (!prog) { 4171 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4172 relo_sec_name, i, sec_name, insn_idx); 4173 continue; 4174 } 4175 4176 relos = libbpf_reallocarray(prog->reloc_desc, 4177 prog->nr_reloc + 1, sizeof(*relos)); 4178 if (!relos) 4179 return -ENOMEM; 4180 prog->reloc_desc = relos; 4181 4182 /* adjust insn_idx to local BPF program frame of reference */ 4183 insn_idx -= prog->sec_insn_off; 4184 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4185 insn_idx, sym_name, sym, rel); 4186 if (err) 4187 return err; 4188 4189 prog->nr_reloc++; 4190 } 4191 return 0; 4192 } 4193 4194 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4195 { 4196 struct bpf_map_def *def = &map->def; 4197 __u32 key_type_id = 0, value_type_id = 0; 4198 int ret; 4199 4200 if (!obj->btf) 4201 return -ENOENT; 4202 4203 /* if it's BTF-defined map, we don't need to search for type IDs. 4204 * For struct_ops map, it does not need btf_key_type_id and 4205 * btf_value_type_id. 4206 */ 4207 if (map->sec_idx == obj->efile.btf_maps_shndx || 4208 bpf_map__is_struct_ops(map)) 4209 return 0; 4210 4211 if (!bpf_map__is_internal(map)) { 4212 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4213 #pragma GCC diagnostic push 4214 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4215 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4216 def->value_size, &key_type_id, 4217 &value_type_id); 4218 #pragma GCC diagnostic pop 4219 } else { 4220 /* 4221 * LLVM annotates global data differently in BTF, that is, 4222 * only as '.data', '.bss' or '.rodata'. 4223 */ 4224 ret = btf__find_by_name(obj->btf, map->real_name); 4225 } 4226 if (ret < 0) 4227 return ret; 4228 4229 map->btf_key_type_id = key_type_id; 4230 map->btf_value_type_id = bpf_map__is_internal(map) ? 4231 ret : value_type_id; 4232 return 0; 4233 } 4234 4235 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4236 { 4237 char file[PATH_MAX], buff[4096]; 4238 FILE *fp; 4239 __u32 val; 4240 int err; 4241 4242 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4243 memset(info, 0, sizeof(*info)); 4244 4245 fp = fopen(file, "r"); 4246 if (!fp) { 4247 err = -errno; 4248 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4249 err); 4250 return err; 4251 } 4252 4253 while (fgets(buff, sizeof(buff), fp)) { 4254 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4255 info->type = val; 4256 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4257 info->key_size = val; 4258 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4259 info->value_size = val; 4260 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4261 info->max_entries = val; 4262 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4263 info->map_flags = val; 4264 } 4265 4266 fclose(fp); 4267 4268 return 0; 4269 } 4270 4271 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4272 { 4273 struct bpf_map_info info = {}; 4274 __u32 len = sizeof(info); 4275 int new_fd, err; 4276 char *new_name; 4277 4278 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4279 if (err && errno == EINVAL) 4280 err = bpf_get_map_info_from_fdinfo(fd, &info); 4281 if (err) 4282 return libbpf_err(err); 4283 4284 new_name = strdup(info.name); 4285 if (!new_name) 4286 return libbpf_err(-errno); 4287 4288 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4289 if (new_fd < 0) { 4290 err = -errno; 4291 goto err_free_new_name; 4292 } 4293 4294 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4295 if (new_fd < 0) { 4296 err = -errno; 4297 goto err_close_new_fd; 4298 } 4299 4300 err = zclose(map->fd); 4301 if (err) { 4302 err = -errno; 4303 goto err_close_new_fd; 4304 } 4305 free(map->name); 4306 4307 map->fd = new_fd; 4308 map->name = new_name; 4309 map->def.type = info.type; 4310 map->def.key_size = info.key_size; 4311 map->def.value_size = info.value_size; 4312 map->def.max_entries = info.max_entries; 4313 map->def.map_flags = info.map_flags; 4314 map->btf_key_type_id = info.btf_key_type_id; 4315 map->btf_value_type_id = info.btf_value_type_id; 4316 map->reused = true; 4317 map->map_extra = info.map_extra; 4318 4319 return 0; 4320 4321 err_close_new_fd: 4322 close(new_fd); 4323 err_free_new_name: 4324 free(new_name); 4325 return libbpf_err(err); 4326 } 4327 4328 __u32 bpf_map__max_entries(const struct bpf_map *map) 4329 { 4330 return map->def.max_entries; 4331 } 4332 4333 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4334 { 4335 if (!bpf_map_type__is_map_in_map(map->def.type)) 4336 return errno = EINVAL, NULL; 4337 4338 return map->inner_map; 4339 } 4340 4341 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4342 { 4343 if (map->fd >= 0) 4344 return libbpf_err(-EBUSY); 4345 map->def.max_entries = max_entries; 4346 return 0; 4347 } 4348 4349 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4350 { 4351 if (!map || !max_entries) 4352 return libbpf_err(-EINVAL); 4353 4354 return bpf_map__set_max_entries(map, max_entries); 4355 } 4356 4357 static int 4358 bpf_object__probe_loading(struct bpf_object *obj) 4359 { 4360 char *cp, errmsg[STRERR_BUFSIZE]; 4361 struct bpf_insn insns[] = { 4362 BPF_MOV64_IMM(BPF_REG_0, 0), 4363 BPF_EXIT_INSN(), 4364 }; 4365 int ret, insn_cnt = ARRAY_SIZE(insns); 4366 4367 if (obj->gen_loader) 4368 return 0; 4369 4370 ret = bump_rlimit_memlock(); 4371 if (ret) 4372 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4373 4374 /* make sure basic loading works */ 4375 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4376 if (ret < 0) 4377 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4378 if (ret < 0) { 4379 ret = errno; 4380 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4381 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4382 "program. Make sure your kernel supports BPF " 4383 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4384 "set to big enough value.\n", __func__, cp, ret); 4385 return -ret; 4386 } 4387 close(ret); 4388 4389 return 0; 4390 } 4391 4392 static int probe_fd(int fd) 4393 { 4394 if (fd >= 0) 4395 close(fd); 4396 return fd >= 0; 4397 } 4398 4399 static int probe_kern_prog_name(void) 4400 { 4401 struct bpf_insn insns[] = { 4402 BPF_MOV64_IMM(BPF_REG_0, 0), 4403 BPF_EXIT_INSN(), 4404 }; 4405 int ret, insn_cnt = ARRAY_SIZE(insns); 4406 4407 /* make sure loading with name works */ 4408 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4409 return probe_fd(ret); 4410 } 4411 4412 static int probe_kern_global_data(void) 4413 { 4414 char *cp, errmsg[STRERR_BUFSIZE]; 4415 struct bpf_insn insns[] = { 4416 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4417 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4418 BPF_MOV64_IMM(BPF_REG_0, 0), 4419 BPF_EXIT_INSN(), 4420 }; 4421 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4422 4423 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4424 if (map < 0) { 4425 ret = -errno; 4426 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4427 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4428 __func__, cp, -ret); 4429 return ret; 4430 } 4431 4432 insns[0].imm = map; 4433 4434 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4435 close(map); 4436 return probe_fd(ret); 4437 } 4438 4439 static int probe_kern_btf(void) 4440 { 4441 static const char strs[] = "\0int"; 4442 __u32 types[] = { 4443 /* int */ 4444 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4445 }; 4446 4447 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4448 strs, sizeof(strs))); 4449 } 4450 4451 static int probe_kern_btf_func(void) 4452 { 4453 static const char strs[] = "\0int\0x\0a"; 4454 /* void x(int a) {} */ 4455 __u32 types[] = { 4456 /* int */ 4457 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4458 /* FUNC_PROTO */ /* [2] */ 4459 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4460 BTF_PARAM_ENC(7, 1), 4461 /* FUNC x */ /* [3] */ 4462 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4463 }; 4464 4465 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4466 strs, sizeof(strs))); 4467 } 4468 4469 static int probe_kern_btf_func_global(void) 4470 { 4471 static const char strs[] = "\0int\0x\0a"; 4472 /* static void x(int a) {} */ 4473 __u32 types[] = { 4474 /* int */ 4475 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4476 /* FUNC_PROTO */ /* [2] */ 4477 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4478 BTF_PARAM_ENC(7, 1), 4479 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4480 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4481 }; 4482 4483 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4484 strs, sizeof(strs))); 4485 } 4486 4487 static int probe_kern_btf_datasec(void) 4488 { 4489 static const char strs[] = "\0x\0.data"; 4490 /* static int a; */ 4491 __u32 types[] = { 4492 /* int */ 4493 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4494 /* VAR x */ /* [2] */ 4495 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4496 BTF_VAR_STATIC, 4497 /* DATASEC val */ /* [3] */ 4498 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4499 BTF_VAR_SECINFO_ENC(2, 0, 4), 4500 }; 4501 4502 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4503 strs, sizeof(strs))); 4504 } 4505 4506 static int probe_kern_btf_float(void) 4507 { 4508 static const char strs[] = "\0float"; 4509 __u32 types[] = { 4510 /* float */ 4511 BTF_TYPE_FLOAT_ENC(1, 4), 4512 }; 4513 4514 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4515 strs, sizeof(strs))); 4516 } 4517 4518 static int probe_kern_btf_decl_tag(void) 4519 { 4520 static const char strs[] = "\0tag"; 4521 __u32 types[] = { 4522 /* int */ 4523 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4524 /* VAR x */ /* [2] */ 4525 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4526 BTF_VAR_STATIC, 4527 /* attr */ 4528 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4529 }; 4530 4531 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4532 strs, sizeof(strs))); 4533 } 4534 4535 static int probe_kern_btf_type_tag(void) 4536 { 4537 static const char strs[] = "\0tag"; 4538 __u32 types[] = { 4539 /* int */ 4540 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4541 /* attr */ 4542 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4543 /* ptr */ 4544 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4545 }; 4546 4547 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4548 strs, sizeof(strs))); 4549 } 4550 4551 static int probe_kern_array_mmap(void) 4552 { 4553 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4554 int fd; 4555 4556 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4557 return probe_fd(fd); 4558 } 4559 4560 static int probe_kern_exp_attach_type(void) 4561 { 4562 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4563 struct bpf_insn insns[] = { 4564 BPF_MOV64_IMM(BPF_REG_0, 0), 4565 BPF_EXIT_INSN(), 4566 }; 4567 int fd, insn_cnt = ARRAY_SIZE(insns); 4568 4569 /* use any valid combination of program type and (optional) 4570 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4571 * to see if kernel supports expected_attach_type field for 4572 * BPF_PROG_LOAD command 4573 */ 4574 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4575 return probe_fd(fd); 4576 } 4577 4578 static int probe_kern_probe_read_kernel(void) 4579 { 4580 struct bpf_insn insns[] = { 4581 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4582 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4583 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4584 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4585 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4586 BPF_EXIT_INSN(), 4587 }; 4588 int fd, insn_cnt = ARRAY_SIZE(insns); 4589 4590 fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4591 return probe_fd(fd); 4592 } 4593 4594 static int probe_prog_bind_map(void) 4595 { 4596 char *cp, errmsg[STRERR_BUFSIZE]; 4597 struct bpf_insn insns[] = { 4598 BPF_MOV64_IMM(BPF_REG_0, 0), 4599 BPF_EXIT_INSN(), 4600 }; 4601 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4602 4603 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4604 if (map < 0) { 4605 ret = -errno; 4606 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4607 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4608 __func__, cp, -ret); 4609 return ret; 4610 } 4611 4612 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4613 if (prog < 0) { 4614 close(map); 4615 return 0; 4616 } 4617 4618 ret = bpf_prog_bind_map(prog, map, NULL); 4619 4620 close(map); 4621 close(prog); 4622 4623 return ret >= 0; 4624 } 4625 4626 static int probe_module_btf(void) 4627 { 4628 static const char strs[] = "\0int"; 4629 __u32 types[] = { 4630 /* int */ 4631 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4632 }; 4633 struct bpf_btf_info info; 4634 __u32 len = sizeof(info); 4635 char name[16]; 4636 int fd, err; 4637 4638 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4639 if (fd < 0) 4640 return 0; /* BTF not supported at all */ 4641 4642 memset(&info, 0, sizeof(info)); 4643 info.name = ptr_to_u64(name); 4644 info.name_len = sizeof(name); 4645 4646 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4647 * kernel's module BTF support coincides with support for 4648 * name/name_len fields in struct bpf_btf_info. 4649 */ 4650 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4651 close(fd); 4652 return !err; 4653 } 4654 4655 static int probe_perf_link(void) 4656 { 4657 struct bpf_insn insns[] = { 4658 BPF_MOV64_IMM(BPF_REG_0, 0), 4659 BPF_EXIT_INSN(), 4660 }; 4661 int prog_fd, link_fd, err; 4662 4663 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4664 insns, ARRAY_SIZE(insns), NULL); 4665 if (prog_fd < 0) 4666 return -errno; 4667 4668 /* use invalid perf_event FD to get EBADF, if link is supported; 4669 * otherwise EINVAL should be returned 4670 */ 4671 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4672 err = -errno; /* close() can clobber errno */ 4673 4674 if (link_fd >= 0) 4675 close(link_fd); 4676 close(prog_fd); 4677 4678 return link_fd < 0 && err == -EBADF; 4679 } 4680 4681 enum kern_feature_result { 4682 FEAT_UNKNOWN = 0, 4683 FEAT_SUPPORTED = 1, 4684 FEAT_MISSING = 2, 4685 }; 4686 4687 typedef int (*feature_probe_fn)(void); 4688 4689 static struct kern_feature_desc { 4690 const char *desc; 4691 feature_probe_fn probe; 4692 enum kern_feature_result res; 4693 } feature_probes[__FEAT_CNT] = { 4694 [FEAT_PROG_NAME] = { 4695 "BPF program name", probe_kern_prog_name, 4696 }, 4697 [FEAT_GLOBAL_DATA] = { 4698 "global variables", probe_kern_global_data, 4699 }, 4700 [FEAT_BTF] = { 4701 "minimal BTF", probe_kern_btf, 4702 }, 4703 [FEAT_BTF_FUNC] = { 4704 "BTF functions", probe_kern_btf_func, 4705 }, 4706 [FEAT_BTF_GLOBAL_FUNC] = { 4707 "BTF global function", probe_kern_btf_func_global, 4708 }, 4709 [FEAT_BTF_DATASEC] = { 4710 "BTF data section and variable", probe_kern_btf_datasec, 4711 }, 4712 [FEAT_ARRAY_MMAP] = { 4713 "ARRAY map mmap()", probe_kern_array_mmap, 4714 }, 4715 [FEAT_EXP_ATTACH_TYPE] = { 4716 "BPF_PROG_LOAD expected_attach_type attribute", 4717 probe_kern_exp_attach_type, 4718 }, 4719 [FEAT_PROBE_READ_KERN] = { 4720 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4721 }, 4722 [FEAT_PROG_BIND_MAP] = { 4723 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4724 }, 4725 [FEAT_MODULE_BTF] = { 4726 "module BTF support", probe_module_btf, 4727 }, 4728 [FEAT_BTF_FLOAT] = { 4729 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4730 }, 4731 [FEAT_PERF_LINK] = { 4732 "BPF perf link support", probe_perf_link, 4733 }, 4734 [FEAT_BTF_DECL_TAG] = { 4735 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4736 }, 4737 [FEAT_BTF_TYPE_TAG] = { 4738 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4739 }, 4740 [FEAT_MEMCG_ACCOUNT] = { 4741 "memcg-based memory accounting", probe_memcg_account, 4742 }, 4743 }; 4744 4745 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4746 { 4747 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4748 int ret; 4749 4750 if (obj && obj->gen_loader) 4751 /* To generate loader program assume the latest kernel 4752 * to avoid doing extra prog_load, map_create syscalls. 4753 */ 4754 return true; 4755 4756 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4757 ret = feat->probe(); 4758 if (ret > 0) { 4759 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4760 } else if (ret == 0) { 4761 WRITE_ONCE(feat->res, FEAT_MISSING); 4762 } else { 4763 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4764 WRITE_ONCE(feat->res, FEAT_MISSING); 4765 } 4766 } 4767 4768 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4769 } 4770 4771 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4772 { 4773 struct bpf_map_info map_info = {}; 4774 char msg[STRERR_BUFSIZE]; 4775 __u32 map_info_len; 4776 int err; 4777 4778 map_info_len = sizeof(map_info); 4779 4780 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4781 if (err && errno == EINVAL) 4782 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4783 if (err) { 4784 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4785 libbpf_strerror_r(errno, msg, sizeof(msg))); 4786 return false; 4787 } 4788 4789 return (map_info.type == map->def.type && 4790 map_info.key_size == map->def.key_size && 4791 map_info.value_size == map->def.value_size && 4792 map_info.max_entries == map->def.max_entries && 4793 map_info.map_flags == map->def.map_flags && 4794 map_info.map_extra == map->map_extra); 4795 } 4796 4797 static int 4798 bpf_object__reuse_map(struct bpf_map *map) 4799 { 4800 char *cp, errmsg[STRERR_BUFSIZE]; 4801 int err, pin_fd; 4802 4803 pin_fd = bpf_obj_get(map->pin_path); 4804 if (pin_fd < 0) { 4805 err = -errno; 4806 if (err == -ENOENT) { 4807 pr_debug("found no pinned map to reuse at '%s'\n", 4808 map->pin_path); 4809 return 0; 4810 } 4811 4812 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4813 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4814 map->pin_path, cp); 4815 return err; 4816 } 4817 4818 if (!map_is_reuse_compat(map, pin_fd)) { 4819 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4820 map->pin_path); 4821 close(pin_fd); 4822 return -EINVAL; 4823 } 4824 4825 err = bpf_map__reuse_fd(map, pin_fd); 4826 close(pin_fd); 4827 if (err) { 4828 return err; 4829 } 4830 map->pinned = true; 4831 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4832 4833 return 0; 4834 } 4835 4836 static int 4837 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4838 { 4839 enum libbpf_map_type map_type = map->libbpf_type; 4840 char *cp, errmsg[STRERR_BUFSIZE]; 4841 int err, zero = 0; 4842 4843 if (obj->gen_loader) { 4844 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4845 map->mmaped, map->def.value_size); 4846 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4847 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4848 return 0; 4849 } 4850 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4851 if (err) { 4852 err = -errno; 4853 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4854 pr_warn("Error setting initial map(%s) contents: %s\n", 4855 map->name, cp); 4856 return err; 4857 } 4858 4859 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4860 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4861 err = bpf_map_freeze(map->fd); 4862 if (err) { 4863 err = -errno; 4864 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4865 pr_warn("Error freezing map(%s) as read-only: %s\n", 4866 map->name, cp); 4867 return err; 4868 } 4869 } 4870 return 0; 4871 } 4872 4873 static void bpf_map__destroy(struct bpf_map *map); 4874 4875 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4876 { 4877 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4878 struct bpf_map_def *def = &map->def; 4879 const char *map_name = NULL; 4880 int err = 0; 4881 4882 if (kernel_supports(obj, FEAT_PROG_NAME)) 4883 map_name = map->name; 4884 create_attr.map_ifindex = map->map_ifindex; 4885 create_attr.map_flags = def->map_flags; 4886 create_attr.numa_node = map->numa_node; 4887 create_attr.map_extra = map->map_extra; 4888 4889 if (bpf_map__is_struct_ops(map)) 4890 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4891 4892 if (obj->btf && btf__fd(obj->btf) >= 0) { 4893 create_attr.btf_fd = btf__fd(obj->btf); 4894 create_attr.btf_key_type_id = map->btf_key_type_id; 4895 create_attr.btf_value_type_id = map->btf_value_type_id; 4896 } 4897 4898 if (bpf_map_type__is_map_in_map(def->type)) { 4899 if (map->inner_map) { 4900 err = bpf_object__create_map(obj, map->inner_map, true); 4901 if (err) { 4902 pr_warn("map '%s': failed to create inner map: %d\n", 4903 map->name, err); 4904 return err; 4905 } 4906 map->inner_map_fd = bpf_map__fd(map->inner_map); 4907 } 4908 if (map->inner_map_fd >= 0) 4909 create_attr.inner_map_fd = map->inner_map_fd; 4910 } 4911 4912 switch (def->type) { 4913 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4914 case BPF_MAP_TYPE_CGROUP_ARRAY: 4915 case BPF_MAP_TYPE_STACK_TRACE: 4916 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4917 case BPF_MAP_TYPE_HASH_OF_MAPS: 4918 case BPF_MAP_TYPE_DEVMAP: 4919 case BPF_MAP_TYPE_DEVMAP_HASH: 4920 case BPF_MAP_TYPE_CPUMAP: 4921 case BPF_MAP_TYPE_XSKMAP: 4922 case BPF_MAP_TYPE_SOCKMAP: 4923 case BPF_MAP_TYPE_SOCKHASH: 4924 case BPF_MAP_TYPE_QUEUE: 4925 case BPF_MAP_TYPE_STACK: 4926 case BPF_MAP_TYPE_RINGBUF: 4927 create_attr.btf_fd = 0; 4928 create_attr.btf_key_type_id = 0; 4929 create_attr.btf_value_type_id = 0; 4930 map->btf_key_type_id = 0; 4931 map->btf_value_type_id = 0; 4932 default: 4933 break; 4934 } 4935 4936 if (obj->gen_loader) { 4937 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 4938 def->key_size, def->value_size, def->max_entries, 4939 &create_attr, is_inner ? -1 : map - obj->maps); 4940 /* Pretend to have valid FD to pass various fd >= 0 checks. 4941 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4942 */ 4943 map->fd = 0; 4944 } else { 4945 map->fd = bpf_map_create(def->type, map_name, 4946 def->key_size, def->value_size, 4947 def->max_entries, &create_attr); 4948 } 4949 if (map->fd < 0 && (create_attr.btf_key_type_id || 4950 create_attr.btf_value_type_id)) { 4951 char *cp, errmsg[STRERR_BUFSIZE]; 4952 4953 err = -errno; 4954 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4955 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4956 map->name, cp, err); 4957 create_attr.btf_fd = 0; 4958 create_attr.btf_key_type_id = 0; 4959 create_attr.btf_value_type_id = 0; 4960 map->btf_key_type_id = 0; 4961 map->btf_value_type_id = 0; 4962 map->fd = bpf_map_create(def->type, map_name, 4963 def->key_size, def->value_size, 4964 def->max_entries, &create_attr); 4965 } 4966 4967 err = map->fd < 0 ? -errno : 0; 4968 4969 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4970 if (obj->gen_loader) 4971 map->inner_map->fd = -1; 4972 bpf_map__destroy(map->inner_map); 4973 zfree(&map->inner_map); 4974 } 4975 4976 return err; 4977 } 4978 4979 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 4980 { 4981 const struct bpf_map *targ_map; 4982 unsigned int i; 4983 int fd, err = 0; 4984 4985 for (i = 0; i < map->init_slots_sz; i++) { 4986 if (!map->init_slots[i]) 4987 continue; 4988 4989 targ_map = map->init_slots[i]; 4990 fd = bpf_map__fd(targ_map); 4991 4992 if (obj->gen_loader) { 4993 bpf_gen__populate_outer_map(obj->gen_loader, 4994 map - obj->maps, i, 4995 targ_map - obj->maps); 4996 } else { 4997 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4998 } 4999 if (err) { 5000 err = -errno; 5001 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5002 map->name, i, targ_map->name, fd, err); 5003 return err; 5004 } 5005 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5006 map->name, i, targ_map->name, fd); 5007 } 5008 5009 zfree(&map->init_slots); 5010 map->init_slots_sz = 0; 5011 5012 return 0; 5013 } 5014 5015 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5016 { 5017 const struct bpf_program *targ_prog; 5018 unsigned int i; 5019 int fd, err; 5020 5021 if (obj->gen_loader) 5022 return -ENOTSUP; 5023 5024 for (i = 0; i < map->init_slots_sz; i++) { 5025 if (!map->init_slots[i]) 5026 continue; 5027 5028 targ_prog = map->init_slots[i]; 5029 fd = bpf_program__fd(targ_prog); 5030 5031 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5032 if (err) { 5033 err = -errno; 5034 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5035 map->name, i, targ_prog->name, fd, err); 5036 return err; 5037 } 5038 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5039 map->name, i, targ_prog->name, fd); 5040 } 5041 5042 zfree(&map->init_slots); 5043 map->init_slots_sz = 0; 5044 5045 return 0; 5046 } 5047 5048 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5049 { 5050 struct bpf_map *map; 5051 int i, err; 5052 5053 for (i = 0; i < obj->nr_maps; i++) { 5054 map = &obj->maps[i]; 5055 5056 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5057 continue; 5058 5059 err = init_prog_array_slots(obj, map); 5060 if (err < 0) { 5061 zclose(map->fd); 5062 return err; 5063 } 5064 } 5065 return 0; 5066 } 5067 5068 static int map_set_def_max_entries(struct bpf_map *map) 5069 { 5070 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5071 int nr_cpus; 5072 5073 nr_cpus = libbpf_num_possible_cpus(); 5074 if (nr_cpus < 0) { 5075 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5076 map->name, nr_cpus); 5077 return nr_cpus; 5078 } 5079 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5080 map->def.max_entries = nr_cpus; 5081 } 5082 5083 return 0; 5084 } 5085 5086 static int 5087 bpf_object__create_maps(struct bpf_object *obj) 5088 { 5089 struct bpf_map *map; 5090 char *cp, errmsg[STRERR_BUFSIZE]; 5091 unsigned int i, j; 5092 int err; 5093 bool retried; 5094 5095 for (i = 0; i < obj->nr_maps; i++) { 5096 map = &obj->maps[i]; 5097 5098 /* To support old kernels, we skip creating global data maps 5099 * (.rodata, .data, .kconfig, etc); later on, during program 5100 * loading, if we detect that at least one of the to-be-loaded 5101 * programs is referencing any global data map, we'll error 5102 * out with program name and relocation index logged. 5103 * This approach allows to accommodate Clang emitting 5104 * unnecessary .rodata.str1.1 sections for string literals, 5105 * but also it allows to have CO-RE applications that use 5106 * global variables in some of BPF programs, but not others. 5107 * If those global variable-using programs are not loaded at 5108 * runtime due to bpf_program__set_autoload(prog, false), 5109 * bpf_object loading will succeed just fine even on old 5110 * kernels. 5111 */ 5112 if (bpf_map__is_internal(map) && 5113 !kernel_supports(obj, FEAT_GLOBAL_DATA)) { 5114 map->skipped = true; 5115 continue; 5116 } 5117 5118 err = map_set_def_max_entries(map); 5119 if (err) 5120 goto err_out; 5121 5122 retried = false; 5123 retry: 5124 if (map->pin_path) { 5125 err = bpf_object__reuse_map(map); 5126 if (err) { 5127 pr_warn("map '%s': error reusing pinned map\n", 5128 map->name); 5129 goto err_out; 5130 } 5131 if (retried && map->fd < 0) { 5132 pr_warn("map '%s': cannot find pinned map\n", 5133 map->name); 5134 err = -ENOENT; 5135 goto err_out; 5136 } 5137 } 5138 5139 if (map->fd >= 0) { 5140 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5141 map->name, map->fd); 5142 } else { 5143 err = bpf_object__create_map(obj, map, false); 5144 if (err) 5145 goto err_out; 5146 5147 pr_debug("map '%s': created successfully, fd=%d\n", 5148 map->name, map->fd); 5149 5150 if (bpf_map__is_internal(map)) { 5151 err = bpf_object__populate_internal_map(obj, map); 5152 if (err < 0) { 5153 zclose(map->fd); 5154 goto err_out; 5155 } 5156 } 5157 5158 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5159 err = init_map_in_map_slots(obj, map); 5160 if (err < 0) { 5161 zclose(map->fd); 5162 goto err_out; 5163 } 5164 } 5165 } 5166 5167 if (map->pin_path && !map->pinned) { 5168 err = bpf_map__pin(map, NULL); 5169 if (err) { 5170 zclose(map->fd); 5171 if (!retried && err == -EEXIST) { 5172 retried = true; 5173 goto retry; 5174 } 5175 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5176 map->name, map->pin_path, err); 5177 goto err_out; 5178 } 5179 } 5180 } 5181 5182 return 0; 5183 5184 err_out: 5185 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5186 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5187 pr_perm_msg(err); 5188 for (j = 0; j < i; j++) 5189 zclose(obj->maps[j].fd); 5190 return err; 5191 } 5192 5193 static bool bpf_core_is_flavor_sep(const char *s) 5194 { 5195 /* check X___Y name pattern, where X and Y are not underscores */ 5196 return s[0] != '_' && /* X */ 5197 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5198 s[4] != '_'; /* Y */ 5199 } 5200 5201 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5202 * before last triple underscore. Struct name part after last triple 5203 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5204 */ 5205 size_t bpf_core_essential_name_len(const char *name) 5206 { 5207 size_t n = strlen(name); 5208 int i; 5209 5210 for (i = n - 5; i >= 0; i--) { 5211 if (bpf_core_is_flavor_sep(name + i)) 5212 return i + 1; 5213 } 5214 return n; 5215 } 5216 5217 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5218 { 5219 if (!cands) 5220 return; 5221 5222 free(cands->cands); 5223 free(cands); 5224 } 5225 5226 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5227 size_t local_essent_len, 5228 const struct btf *targ_btf, 5229 const char *targ_btf_name, 5230 int targ_start_id, 5231 struct bpf_core_cand_list *cands) 5232 { 5233 struct bpf_core_cand *new_cands, *cand; 5234 const struct btf_type *t, *local_t; 5235 const char *targ_name, *local_name; 5236 size_t targ_essent_len; 5237 int n, i; 5238 5239 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5240 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5241 5242 n = btf__type_cnt(targ_btf); 5243 for (i = targ_start_id; i < n; i++) { 5244 t = btf__type_by_id(targ_btf, i); 5245 if (btf_kind(t) != btf_kind(local_t)) 5246 continue; 5247 5248 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5249 if (str_is_empty(targ_name)) 5250 continue; 5251 5252 targ_essent_len = bpf_core_essential_name_len(targ_name); 5253 if (targ_essent_len != local_essent_len) 5254 continue; 5255 5256 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5257 continue; 5258 5259 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5260 local_cand->id, btf_kind_str(local_t), 5261 local_name, i, btf_kind_str(t), targ_name, 5262 targ_btf_name); 5263 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5264 sizeof(*cands->cands)); 5265 if (!new_cands) 5266 return -ENOMEM; 5267 5268 cand = &new_cands[cands->len]; 5269 cand->btf = targ_btf; 5270 cand->id = i; 5271 5272 cands->cands = new_cands; 5273 cands->len++; 5274 } 5275 return 0; 5276 } 5277 5278 static int load_module_btfs(struct bpf_object *obj) 5279 { 5280 struct bpf_btf_info info; 5281 struct module_btf *mod_btf; 5282 struct btf *btf; 5283 char name[64]; 5284 __u32 id = 0, len; 5285 int err, fd; 5286 5287 if (obj->btf_modules_loaded) 5288 return 0; 5289 5290 if (obj->gen_loader) 5291 return 0; 5292 5293 /* don't do this again, even if we find no module BTFs */ 5294 obj->btf_modules_loaded = true; 5295 5296 /* kernel too old to support module BTFs */ 5297 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5298 return 0; 5299 5300 while (true) { 5301 err = bpf_btf_get_next_id(id, &id); 5302 if (err && errno == ENOENT) 5303 return 0; 5304 if (err) { 5305 err = -errno; 5306 pr_warn("failed to iterate BTF objects: %d\n", err); 5307 return err; 5308 } 5309 5310 fd = bpf_btf_get_fd_by_id(id); 5311 if (fd < 0) { 5312 if (errno == ENOENT) 5313 continue; /* expected race: BTF was unloaded */ 5314 err = -errno; 5315 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5316 return err; 5317 } 5318 5319 len = sizeof(info); 5320 memset(&info, 0, sizeof(info)); 5321 info.name = ptr_to_u64(name); 5322 info.name_len = sizeof(name); 5323 5324 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5325 if (err) { 5326 err = -errno; 5327 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5328 goto err_out; 5329 } 5330 5331 /* ignore non-module BTFs */ 5332 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5333 close(fd); 5334 continue; 5335 } 5336 5337 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5338 err = libbpf_get_error(btf); 5339 if (err) { 5340 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5341 name, id, err); 5342 goto err_out; 5343 } 5344 5345 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5346 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5347 if (err) 5348 goto err_out; 5349 5350 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5351 5352 mod_btf->btf = btf; 5353 mod_btf->id = id; 5354 mod_btf->fd = fd; 5355 mod_btf->name = strdup(name); 5356 if (!mod_btf->name) { 5357 err = -ENOMEM; 5358 goto err_out; 5359 } 5360 continue; 5361 5362 err_out: 5363 close(fd); 5364 return err; 5365 } 5366 5367 return 0; 5368 } 5369 5370 static struct bpf_core_cand_list * 5371 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5372 { 5373 struct bpf_core_cand local_cand = {}; 5374 struct bpf_core_cand_list *cands; 5375 const struct btf *main_btf; 5376 const struct btf_type *local_t; 5377 const char *local_name; 5378 size_t local_essent_len; 5379 int err, i; 5380 5381 local_cand.btf = local_btf; 5382 local_cand.id = local_type_id; 5383 local_t = btf__type_by_id(local_btf, local_type_id); 5384 if (!local_t) 5385 return ERR_PTR(-EINVAL); 5386 5387 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5388 if (str_is_empty(local_name)) 5389 return ERR_PTR(-EINVAL); 5390 local_essent_len = bpf_core_essential_name_len(local_name); 5391 5392 cands = calloc(1, sizeof(*cands)); 5393 if (!cands) 5394 return ERR_PTR(-ENOMEM); 5395 5396 /* Attempt to find target candidates in vmlinux BTF first */ 5397 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5398 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5399 if (err) 5400 goto err_out; 5401 5402 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5403 if (cands->len) 5404 return cands; 5405 5406 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5407 if (obj->btf_vmlinux_override) 5408 return cands; 5409 5410 /* now look through module BTFs, trying to still find candidates */ 5411 err = load_module_btfs(obj); 5412 if (err) 5413 goto err_out; 5414 5415 for (i = 0; i < obj->btf_module_cnt; i++) { 5416 err = bpf_core_add_cands(&local_cand, local_essent_len, 5417 obj->btf_modules[i].btf, 5418 obj->btf_modules[i].name, 5419 btf__type_cnt(obj->btf_vmlinux), 5420 cands); 5421 if (err) 5422 goto err_out; 5423 } 5424 5425 return cands; 5426 err_out: 5427 bpf_core_free_cands(cands); 5428 return ERR_PTR(err); 5429 } 5430 5431 /* Check local and target types for compatibility. This check is used for 5432 * type-based CO-RE relocations and follow slightly different rules than 5433 * field-based relocations. This function assumes that root types were already 5434 * checked for name match. Beyond that initial root-level name check, names 5435 * are completely ignored. Compatibility rules are as follows: 5436 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5437 * kind should match for local and target types (i.e., STRUCT is not 5438 * compatible with UNION); 5439 * - for ENUMs, the size is ignored; 5440 * - for INT, size and signedness are ignored; 5441 * - for ARRAY, dimensionality is ignored, element types are checked for 5442 * compatibility recursively; 5443 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5444 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5445 * - FUNC_PROTOs are compatible if they have compatible signature: same 5446 * number of input args and compatible return and argument types. 5447 * These rules are not set in stone and probably will be adjusted as we get 5448 * more experience with using BPF CO-RE relocations. 5449 */ 5450 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5451 const struct btf *targ_btf, __u32 targ_id) 5452 { 5453 const struct btf_type *local_type, *targ_type; 5454 int depth = 32; /* max recursion depth */ 5455 5456 /* caller made sure that names match (ignoring flavor suffix) */ 5457 local_type = btf__type_by_id(local_btf, local_id); 5458 targ_type = btf__type_by_id(targ_btf, targ_id); 5459 if (btf_kind(local_type) != btf_kind(targ_type)) 5460 return 0; 5461 5462 recur: 5463 depth--; 5464 if (depth < 0) 5465 return -EINVAL; 5466 5467 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5468 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5469 if (!local_type || !targ_type) 5470 return -EINVAL; 5471 5472 if (btf_kind(local_type) != btf_kind(targ_type)) 5473 return 0; 5474 5475 switch (btf_kind(local_type)) { 5476 case BTF_KIND_UNKN: 5477 case BTF_KIND_STRUCT: 5478 case BTF_KIND_UNION: 5479 case BTF_KIND_ENUM: 5480 case BTF_KIND_FWD: 5481 return 1; 5482 case BTF_KIND_INT: 5483 /* just reject deprecated bitfield-like integers; all other 5484 * integers are by default compatible between each other 5485 */ 5486 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5487 case BTF_KIND_PTR: 5488 local_id = local_type->type; 5489 targ_id = targ_type->type; 5490 goto recur; 5491 case BTF_KIND_ARRAY: 5492 local_id = btf_array(local_type)->type; 5493 targ_id = btf_array(targ_type)->type; 5494 goto recur; 5495 case BTF_KIND_FUNC_PROTO: { 5496 struct btf_param *local_p = btf_params(local_type); 5497 struct btf_param *targ_p = btf_params(targ_type); 5498 __u16 local_vlen = btf_vlen(local_type); 5499 __u16 targ_vlen = btf_vlen(targ_type); 5500 int i, err; 5501 5502 if (local_vlen != targ_vlen) 5503 return 0; 5504 5505 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5506 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5507 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5508 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5509 if (err <= 0) 5510 return err; 5511 } 5512 5513 /* tail recurse for return type check */ 5514 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5515 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5516 goto recur; 5517 } 5518 default: 5519 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5520 btf_kind_str(local_type), local_id, targ_id); 5521 return 0; 5522 } 5523 } 5524 5525 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5526 { 5527 return (size_t)key; 5528 } 5529 5530 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5531 { 5532 return k1 == k2; 5533 } 5534 5535 static void *u32_as_hash_key(__u32 x) 5536 { 5537 return (void *)(uintptr_t)x; 5538 } 5539 5540 static int record_relo_core(struct bpf_program *prog, 5541 const struct bpf_core_relo *core_relo, int insn_idx) 5542 { 5543 struct reloc_desc *relos, *relo; 5544 5545 relos = libbpf_reallocarray(prog->reloc_desc, 5546 prog->nr_reloc + 1, sizeof(*relos)); 5547 if (!relos) 5548 return -ENOMEM; 5549 relo = &relos[prog->nr_reloc]; 5550 relo->type = RELO_CORE; 5551 relo->insn_idx = insn_idx; 5552 relo->core_relo = core_relo; 5553 prog->reloc_desc = relos; 5554 prog->nr_reloc++; 5555 return 0; 5556 } 5557 5558 static int bpf_core_resolve_relo(struct bpf_program *prog, 5559 const struct bpf_core_relo *relo, 5560 int relo_idx, 5561 const struct btf *local_btf, 5562 struct hashmap *cand_cache, 5563 struct bpf_core_relo_res *targ_res) 5564 { 5565 struct bpf_core_spec specs_scratch[3] = {}; 5566 const void *type_key = u32_as_hash_key(relo->type_id); 5567 struct bpf_core_cand_list *cands = NULL; 5568 const char *prog_name = prog->name; 5569 const struct btf_type *local_type; 5570 const char *local_name; 5571 __u32 local_id = relo->type_id; 5572 int err; 5573 5574 local_type = btf__type_by_id(local_btf, local_id); 5575 if (!local_type) 5576 return -EINVAL; 5577 5578 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5579 if (!local_name) 5580 return -EINVAL; 5581 5582 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5583 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5584 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5585 if (IS_ERR(cands)) { 5586 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5587 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5588 local_name, PTR_ERR(cands)); 5589 return PTR_ERR(cands); 5590 } 5591 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5592 if (err) { 5593 bpf_core_free_cands(cands); 5594 return err; 5595 } 5596 } 5597 5598 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5599 targ_res); 5600 } 5601 5602 static int 5603 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5604 { 5605 const struct btf_ext_info_sec *sec; 5606 struct bpf_core_relo_res targ_res; 5607 const struct bpf_core_relo *rec; 5608 const struct btf_ext_info *seg; 5609 struct hashmap_entry *entry; 5610 struct hashmap *cand_cache = NULL; 5611 struct bpf_program *prog; 5612 struct bpf_insn *insn; 5613 const char *sec_name; 5614 int i, err = 0, insn_idx, sec_idx; 5615 5616 if (obj->btf_ext->core_relo_info.len == 0) 5617 return 0; 5618 5619 if (targ_btf_path) { 5620 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5621 err = libbpf_get_error(obj->btf_vmlinux_override); 5622 if (err) { 5623 pr_warn("failed to parse target BTF: %d\n", err); 5624 return err; 5625 } 5626 } 5627 5628 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5629 if (IS_ERR(cand_cache)) { 5630 err = PTR_ERR(cand_cache); 5631 goto out; 5632 } 5633 5634 seg = &obj->btf_ext->core_relo_info; 5635 for_each_btf_ext_sec(seg, sec) { 5636 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5637 if (str_is_empty(sec_name)) { 5638 err = -EINVAL; 5639 goto out; 5640 } 5641 /* bpf_object's ELF is gone by now so it's not easy to find 5642 * section index by section name, but we can find *any* 5643 * bpf_program within desired section name and use it's 5644 * prog->sec_idx to do a proper search by section index and 5645 * instruction offset 5646 */ 5647 prog = NULL; 5648 for (i = 0; i < obj->nr_programs; i++) { 5649 prog = &obj->programs[i]; 5650 if (strcmp(prog->sec_name, sec_name) == 0) 5651 break; 5652 } 5653 if (!prog) { 5654 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5655 return -ENOENT; 5656 } 5657 sec_idx = prog->sec_idx; 5658 5659 pr_debug("sec '%s': found %d CO-RE relocations\n", 5660 sec_name, sec->num_info); 5661 5662 for_each_btf_ext_rec(seg, sec, i, rec) { 5663 if (rec->insn_off % BPF_INSN_SZ) 5664 return -EINVAL; 5665 insn_idx = rec->insn_off / BPF_INSN_SZ; 5666 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5667 if (!prog) { 5668 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5669 sec_name, insn_idx, i); 5670 err = -EINVAL; 5671 goto out; 5672 } 5673 /* no need to apply CO-RE relocation if the program is 5674 * not going to be loaded 5675 */ 5676 if (!prog->load) 5677 continue; 5678 5679 /* adjust insn_idx from section frame of reference to the local 5680 * program's frame of reference; (sub-)program code is not yet 5681 * relocated, so it's enough to just subtract in-section offset 5682 */ 5683 insn_idx = insn_idx - prog->sec_insn_off; 5684 if (insn_idx >= prog->insns_cnt) 5685 return -EINVAL; 5686 insn = &prog->insns[insn_idx]; 5687 5688 if (prog->obj->gen_loader) { 5689 err = record_relo_core(prog, rec, insn_idx); 5690 if (err) { 5691 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5692 prog->name, i, err); 5693 goto out; 5694 } 5695 continue; 5696 } 5697 5698 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5699 if (err) { 5700 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5701 prog->name, i, err); 5702 goto out; 5703 } 5704 5705 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5706 if (err) { 5707 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5708 prog->name, i, insn_idx, err); 5709 goto out; 5710 } 5711 } 5712 } 5713 5714 out: 5715 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5716 btf__free(obj->btf_vmlinux_override); 5717 obj->btf_vmlinux_override = NULL; 5718 5719 if (!IS_ERR_OR_NULL(cand_cache)) { 5720 hashmap__for_each_entry(cand_cache, entry, i) { 5721 bpf_core_free_cands(entry->value); 5722 } 5723 hashmap__free(cand_cache); 5724 } 5725 return err; 5726 } 5727 5728 /* Relocate data references within program code: 5729 * - map references; 5730 * - global variable references; 5731 * - extern references. 5732 */ 5733 static int 5734 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5735 { 5736 int i; 5737 5738 for (i = 0; i < prog->nr_reloc; i++) { 5739 struct reloc_desc *relo = &prog->reloc_desc[i]; 5740 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5741 struct extern_desc *ext; 5742 5743 switch (relo->type) { 5744 case RELO_LD64: 5745 if (obj->gen_loader) { 5746 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5747 insn[0].imm = relo->map_idx; 5748 } else { 5749 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5750 insn[0].imm = obj->maps[relo->map_idx].fd; 5751 } 5752 break; 5753 case RELO_DATA: 5754 insn[1].imm = insn[0].imm + relo->sym_off; 5755 if (obj->gen_loader) { 5756 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5757 insn[0].imm = relo->map_idx; 5758 } else { 5759 const struct bpf_map *map = &obj->maps[relo->map_idx]; 5760 5761 if (map->skipped) { 5762 pr_warn("prog '%s': relo #%d: kernel doesn't support global data\n", 5763 prog->name, i); 5764 return -ENOTSUP; 5765 } 5766 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5767 insn[0].imm = obj->maps[relo->map_idx].fd; 5768 } 5769 break; 5770 case RELO_EXTERN_VAR: 5771 ext = &obj->externs[relo->sym_off]; 5772 if (ext->type == EXT_KCFG) { 5773 if (obj->gen_loader) { 5774 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5775 insn[0].imm = obj->kconfig_map_idx; 5776 } else { 5777 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5778 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5779 } 5780 insn[1].imm = ext->kcfg.data_off; 5781 } else /* EXT_KSYM */ { 5782 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5783 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5784 insn[0].imm = ext->ksym.kernel_btf_id; 5785 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5786 } else { /* typeless ksyms or unresolved typed ksyms */ 5787 insn[0].imm = (__u32)ext->ksym.addr; 5788 insn[1].imm = ext->ksym.addr >> 32; 5789 } 5790 } 5791 break; 5792 case RELO_EXTERN_FUNC: 5793 ext = &obj->externs[relo->sym_off]; 5794 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5795 if (ext->is_set) { 5796 insn[0].imm = ext->ksym.kernel_btf_id; 5797 insn[0].off = ext->ksym.btf_fd_idx; 5798 } else { /* unresolved weak kfunc */ 5799 insn[0].imm = 0; 5800 insn[0].off = 0; 5801 } 5802 break; 5803 case RELO_SUBPROG_ADDR: 5804 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5805 pr_warn("prog '%s': relo #%d: bad insn\n", 5806 prog->name, i); 5807 return -EINVAL; 5808 } 5809 /* handled already */ 5810 break; 5811 case RELO_CALL: 5812 /* handled already */ 5813 break; 5814 case RELO_CORE: 5815 /* will be handled by bpf_program_record_relos() */ 5816 break; 5817 default: 5818 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5819 prog->name, i, relo->type); 5820 return -EINVAL; 5821 } 5822 } 5823 5824 return 0; 5825 } 5826 5827 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5828 const struct bpf_program *prog, 5829 const struct btf_ext_info *ext_info, 5830 void **prog_info, __u32 *prog_rec_cnt, 5831 __u32 *prog_rec_sz) 5832 { 5833 void *copy_start = NULL, *copy_end = NULL; 5834 void *rec, *rec_end, *new_prog_info; 5835 const struct btf_ext_info_sec *sec; 5836 size_t old_sz, new_sz; 5837 const char *sec_name; 5838 int i, off_adj; 5839 5840 for_each_btf_ext_sec(ext_info, sec) { 5841 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5842 if (!sec_name) 5843 return -EINVAL; 5844 if (strcmp(sec_name, prog->sec_name) != 0) 5845 continue; 5846 5847 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5848 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5849 5850 if (insn_off < prog->sec_insn_off) 5851 continue; 5852 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5853 break; 5854 5855 if (!copy_start) 5856 copy_start = rec; 5857 copy_end = rec + ext_info->rec_size; 5858 } 5859 5860 if (!copy_start) 5861 return -ENOENT; 5862 5863 /* append func/line info of a given (sub-)program to the main 5864 * program func/line info 5865 */ 5866 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5867 new_sz = old_sz + (copy_end - copy_start); 5868 new_prog_info = realloc(*prog_info, new_sz); 5869 if (!new_prog_info) 5870 return -ENOMEM; 5871 *prog_info = new_prog_info; 5872 *prog_rec_cnt = new_sz / ext_info->rec_size; 5873 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5874 5875 /* Kernel instruction offsets are in units of 8-byte 5876 * instructions, while .BTF.ext instruction offsets generated 5877 * by Clang are in units of bytes. So convert Clang offsets 5878 * into kernel offsets and adjust offset according to program 5879 * relocated position. 5880 */ 5881 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5882 rec = new_prog_info + old_sz; 5883 rec_end = new_prog_info + new_sz; 5884 for (; rec < rec_end; rec += ext_info->rec_size) { 5885 __u32 *insn_off = rec; 5886 5887 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5888 } 5889 *prog_rec_sz = ext_info->rec_size; 5890 return 0; 5891 } 5892 5893 return -ENOENT; 5894 } 5895 5896 static int 5897 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5898 struct bpf_program *main_prog, 5899 const struct bpf_program *prog) 5900 { 5901 int err; 5902 5903 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5904 * supprot func/line info 5905 */ 5906 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5907 return 0; 5908 5909 /* only attempt func info relocation if main program's func_info 5910 * relocation was successful 5911 */ 5912 if (main_prog != prog && !main_prog->func_info) 5913 goto line_info; 5914 5915 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5916 &main_prog->func_info, 5917 &main_prog->func_info_cnt, 5918 &main_prog->func_info_rec_size); 5919 if (err) { 5920 if (err != -ENOENT) { 5921 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5922 prog->name, err); 5923 return err; 5924 } 5925 if (main_prog->func_info) { 5926 /* 5927 * Some info has already been found but has problem 5928 * in the last btf_ext reloc. Must have to error out. 5929 */ 5930 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5931 return err; 5932 } 5933 /* Have problem loading the very first info. Ignore the rest. */ 5934 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5935 prog->name); 5936 } 5937 5938 line_info: 5939 /* don't relocate line info if main program's relocation failed */ 5940 if (main_prog != prog && !main_prog->line_info) 5941 return 0; 5942 5943 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5944 &main_prog->line_info, 5945 &main_prog->line_info_cnt, 5946 &main_prog->line_info_rec_size); 5947 if (err) { 5948 if (err != -ENOENT) { 5949 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5950 prog->name, err); 5951 return err; 5952 } 5953 if (main_prog->line_info) { 5954 /* 5955 * Some info has already been found but has problem 5956 * in the last btf_ext reloc. Must have to error out. 5957 */ 5958 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5959 return err; 5960 } 5961 /* Have problem loading the very first info. Ignore the rest. */ 5962 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5963 prog->name); 5964 } 5965 return 0; 5966 } 5967 5968 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5969 { 5970 size_t insn_idx = *(const size_t *)key; 5971 const struct reloc_desc *relo = elem; 5972 5973 if (insn_idx == relo->insn_idx) 5974 return 0; 5975 return insn_idx < relo->insn_idx ? -1 : 1; 5976 } 5977 5978 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5979 { 5980 if (!prog->nr_reloc) 5981 return NULL; 5982 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5983 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5984 } 5985 5986 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5987 { 5988 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5989 struct reloc_desc *relos; 5990 int i; 5991 5992 if (main_prog == subprog) 5993 return 0; 5994 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5995 if (!relos) 5996 return -ENOMEM; 5997 if (subprog->nr_reloc) 5998 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5999 sizeof(*relos) * subprog->nr_reloc); 6000 6001 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6002 relos[i].insn_idx += subprog->sub_insn_off; 6003 /* After insn_idx adjustment the 'relos' array is still sorted 6004 * by insn_idx and doesn't break bsearch. 6005 */ 6006 main_prog->reloc_desc = relos; 6007 main_prog->nr_reloc = new_cnt; 6008 return 0; 6009 } 6010 6011 static int 6012 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6013 struct bpf_program *prog) 6014 { 6015 size_t sub_insn_idx, insn_idx, new_cnt; 6016 struct bpf_program *subprog; 6017 struct bpf_insn *insns, *insn; 6018 struct reloc_desc *relo; 6019 int err; 6020 6021 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6022 if (err) 6023 return err; 6024 6025 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6026 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6027 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6028 continue; 6029 6030 relo = find_prog_insn_relo(prog, insn_idx); 6031 if (relo && relo->type == RELO_EXTERN_FUNC) 6032 /* kfunc relocations will be handled later 6033 * in bpf_object__relocate_data() 6034 */ 6035 continue; 6036 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6037 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6038 prog->name, insn_idx, relo->type); 6039 return -LIBBPF_ERRNO__RELOC; 6040 } 6041 if (relo) { 6042 /* sub-program instruction index is a combination of 6043 * an offset of a symbol pointed to by relocation and 6044 * call instruction's imm field; for global functions, 6045 * call always has imm = -1, but for static functions 6046 * relocation is against STT_SECTION and insn->imm 6047 * points to a start of a static function 6048 * 6049 * for subprog addr relocation, the relo->sym_off + insn->imm is 6050 * the byte offset in the corresponding section. 6051 */ 6052 if (relo->type == RELO_CALL) 6053 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6054 else 6055 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6056 } else if (insn_is_pseudo_func(insn)) { 6057 /* 6058 * RELO_SUBPROG_ADDR relo is always emitted even if both 6059 * functions are in the same section, so it shouldn't reach here. 6060 */ 6061 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6062 prog->name, insn_idx); 6063 return -LIBBPF_ERRNO__RELOC; 6064 } else { 6065 /* if subprogram call is to a static function within 6066 * the same ELF section, there won't be any relocation 6067 * emitted, but it also means there is no additional 6068 * offset necessary, insns->imm is relative to 6069 * instruction's original position within the section 6070 */ 6071 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6072 } 6073 6074 /* we enforce that sub-programs should be in .text section */ 6075 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6076 if (!subprog) { 6077 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6078 prog->name); 6079 return -LIBBPF_ERRNO__RELOC; 6080 } 6081 6082 /* if it's the first call instruction calling into this 6083 * subprogram (meaning this subprog hasn't been processed 6084 * yet) within the context of current main program: 6085 * - append it at the end of main program's instructions blog; 6086 * - process is recursively, while current program is put on hold; 6087 * - if that subprogram calls some other not yet processes 6088 * subprogram, same thing will happen recursively until 6089 * there are no more unprocesses subprograms left to append 6090 * and relocate. 6091 */ 6092 if (subprog->sub_insn_off == 0) { 6093 subprog->sub_insn_off = main_prog->insns_cnt; 6094 6095 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6096 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6097 if (!insns) { 6098 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6099 return -ENOMEM; 6100 } 6101 main_prog->insns = insns; 6102 main_prog->insns_cnt = new_cnt; 6103 6104 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6105 subprog->insns_cnt * sizeof(*insns)); 6106 6107 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6108 main_prog->name, subprog->insns_cnt, subprog->name); 6109 6110 /* The subprog insns are now appended. Append its relos too. */ 6111 err = append_subprog_relos(main_prog, subprog); 6112 if (err) 6113 return err; 6114 err = bpf_object__reloc_code(obj, main_prog, subprog); 6115 if (err) 6116 return err; 6117 } 6118 6119 /* main_prog->insns memory could have been re-allocated, so 6120 * calculate pointer again 6121 */ 6122 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6123 /* calculate correct instruction position within current main 6124 * prog; each main prog can have a different set of 6125 * subprograms appended (potentially in different order as 6126 * well), so position of any subprog can be different for 6127 * different main programs */ 6128 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6129 6130 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6131 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6132 } 6133 6134 return 0; 6135 } 6136 6137 /* 6138 * Relocate sub-program calls. 6139 * 6140 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6141 * main prog) is processed separately. For each subprog (non-entry functions, 6142 * that can be called from either entry progs or other subprogs) gets their 6143 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6144 * hasn't been yet appended and relocated within current main prog. Once its 6145 * relocated, sub_insn_off will point at the position within current main prog 6146 * where given subprog was appended. This will further be used to relocate all 6147 * the call instructions jumping into this subprog. 6148 * 6149 * We start with main program and process all call instructions. If the call 6150 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6151 * is zero), subprog instructions are appended at the end of main program's 6152 * instruction array. Then main program is "put on hold" while we recursively 6153 * process newly appended subprogram. If that subprogram calls into another 6154 * subprogram that hasn't been appended, new subprogram is appended again to 6155 * the *main* prog's instructions (subprog's instructions are always left 6156 * untouched, as they need to be in unmodified state for subsequent main progs 6157 * and subprog instructions are always sent only as part of a main prog) and 6158 * the process continues recursively. Once all the subprogs called from a main 6159 * prog or any of its subprogs are appended (and relocated), all their 6160 * positions within finalized instructions array are known, so it's easy to 6161 * rewrite call instructions with correct relative offsets, corresponding to 6162 * desired target subprog. 6163 * 6164 * Its important to realize that some subprogs might not be called from some 6165 * main prog and any of its called/used subprogs. Those will keep their 6166 * subprog->sub_insn_off as zero at all times and won't be appended to current 6167 * main prog and won't be relocated within the context of current main prog. 6168 * They might still be used from other main progs later. 6169 * 6170 * Visually this process can be shown as below. Suppose we have two main 6171 * programs mainA and mainB and BPF object contains three subprogs: subA, 6172 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6173 * subC both call subB: 6174 * 6175 * +--------+ +-------+ 6176 * | v v | 6177 * +--+---+ +--+-+-+ +---+--+ 6178 * | subA | | subB | | subC | 6179 * +--+---+ +------+ +---+--+ 6180 * ^ ^ 6181 * | | 6182 * +---+-------+ +------+----+ 6183 * | mainA | | mainB | 6184 * +-----------+ +-----------+ 6185 * 6186 * We'll start relocating mainA, will find subA, append it and start 6187 * processing sub A recursively: 6188 * 6189 * +-----------+------+ 6190 * | mainA | subA | 6191 * +-----------+------+ 6192 * 6193 * At this point we notice that subB is used from subA, so we append it and 6194 * relocate (there are no further subcalls from subB): 6195 * 6196 * +-----------+------+------+ 6197 * | mainA | subA | subB | 6198 * +-----------+------+------+ 6199 * 6200 * At this point, we relocate subA calls, then go one level up and finish with 6201 * relocatin mainA calls. mainA is done. 6202 * 6203 * For mainB process is similar but results in different order. We start with 6204 * mainB and skip subA and subB, as mainB never calls them (at least 6205 * directly), but we see subC is needed, so we append and start processing it: 6206 * 6207 * +-----------+------+ 6208 * | mainB | subC | 6209 * +-----------+------+ 6210 * Now we see subC needs subB, so we go back to it, append and relocate it: 6211 * 6212 * +-----------+------+------+ 6213 * | mainB | subC | subB | 6214 * +-----------+------+------+ 6215 * 6216 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6217 */ 6218 static int 6219 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6220 { 6221 struct bpf_program *subprog; 6222 int i, err; 6223 6224 /* mark all subprogs as not relocated (yet) within the context of 6225 * current main program 6226 */ 6227 for (i = 0; i < obj->nr_programs; i++) { 6228 subprog = &obj->programs[i]; 6229 if (!prog_is_subprog(obj, subprog)) 6230 continue; 6231 6232 subprog->sub_insn_off = 0; 6233 } 6234 6235 err = bpf_object__reloc_code(obj, prog, prog); 6236 if (err) 6237 return err; 6238 6239 6240 return 0; 6241 } 6242 6243 static void 6244 bpf_object__free_relocs(struct bpf_object *obj) 6245 { 6246 struct bpf_program *prog; 6247 int i; 6248 6249 /* free up relocation descriptors */ 6250 for (i = 0; i < obj->nr_programs; i++) { 6251 prog = &obj->programs[i]; 6252 zfree(&prog->reloc_desc); 6253 prog->nr_reloc = 0; 6254 } 6255 } 6256 6257 static int cmp_relocs(const void *_a, const void *_b) 6258 { 6259 const struct reloc_desc *a = _a; 6260 const struct reloc_desc *b = _b; 6261 6262 if (a->insn_idx != b->insn_idx) 6263 return a->insn_idx < b->insn_idx ? -1 : 1; 6264 6265 /* no two relocations should have the same insn_idx, but ... */ 6266 if (a->type != b->type) 6267 return a->type < b->type ? -1 : 1; 6268 6269 return 0; 6270 } 6271 6272 static void bpf_object__sort_relos(struct bpf_object *obj) 6273 { 6274 int i; 6275 6276 for (i = 0; i < obj->nr_programs; i++) { 6277 struct bpf_program *p = &obj->programs[i]; 6278 6279 if (!p->nr_reloc) 6280 continue; 6281 6282 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6283 } 6284 } 6285 6286 static int 6287 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6288 { 6289 struct bpf_program *prog; 6290 size_t i, j; 6291 int err; 6292 6293 if (obj->btf_ext) { 6294 err = bpf_object__relocate_core(obj, targ_btf_path); 6295 if (err) { 6296 pr_warn("failed to perform CO-RE relocations: %d\n", 6297 err); 6298 return err; 6299 } 6300 if (obj->gen_loader) 6301 bpf_object__sort_relos(obj); 6302 } 6303 6304 /* Before relocating calls pre-process relocations and mark 6305 * few ld_imm64 instructions that points to subprogs. 6306 * Otherwise bpf_object__reloc_code() later would have to consider 6307 * all ld_imm64 insns as relocation candidates. That would 6308 * reduce relocation speed, since amount of find_prog_insn_relo() 6309 * would increase and most of them will fail to find a relo. 6310 */ 6311 for (i = 0; i < obj->nr_programs; i++) { 6312 prog = &obj->programs[i]; 6313 for (j = 0; j < prog->nr_reloc; j++) { 6314 struct reloc_desc *relo = &prog->reloc_desc[j]; 6315 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6316 6317 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6318 if (relo->type == RELO_SUBPROG_ADDR) 6319 insn[0].src_reg = BPF_PSEUDO_FUNC; 6320 } 6321 } 6322 6323 /* relocate subprogram calls and append used subprograms to main 6324 * programs; each copy of subprogram code needs to be relocated 6325 * differently for each main program, because its code location might 6326 * have changed. 6327 * Append subprog relos to main programs to allow data relos to be 6328 * processed after text is completely relocated. 6329 */ 6330 for (i = 0; i < obj->nr_programs; i++) { 6331 prog = &obj->programs[i]; 6332 /* sub-program's sub-calls are relocated within the context of 6333 * its main program only 6334 */ 6335 if (prog_is_subprog(obj, prog)) 6336 continue; 6337 if (!prog->load) 6338 continue; 6339 6340 err = bpf_object__relocate_calls(obj, prog); 6341 if (err) { 6342 pr_warn("prog '%s': failed to relocate calls: %d\n", 6343 prog->name, err); 6344 return err; 6345 } 6346 } 6347 /* Process data relos for main programs */ 6348 for (i = 0; i < obj->nr_programs; i++) { 6349 prog = &obj->programs[i]; 6350 if (prog_is_subprog(obj, prog)) 6351 continue; 6352 if (!prog->load) 6353 continue; 6354 err = bpf_object__relocate_data(obj, prog); 6355 if (err) { 6356 pr_warn("prog '%s': failed to relocate data references: %d\n", 6357 prog->name, err); 6358 return err; 6359 } 6360 } 6361 if (!obj->gen_loader) 6362 bpf_object__free_relocs(obj); 6363 return 0; 6364 } 6365 6366 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6367 Elf64_Shdr *shdr, Elf_Data *data); 6368 6369 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6370 Elf64_Shdr *shdr, Elf_Data *data) 6371 { 6372 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6373 int i, j, nrels, new_sz; 6374 const struct btf_var_secinfo *vi = NULL; 6375 const struct btf_type *sec, *var, *def; 6376 struct bpf_map *map = NULL, *targ_map = NULL; 6377 struct bpf_program *targ_prog = NULL; 6378 bool is_prog_array, is_map_in_map; 6379 const struct btf_member *member; 6380 const char *name, *mname, *type; 6381 unsigned int moff; 6382 Elf64_Sym *sym; 6383 Elf64_Rel *rel; 6384 void *tmp; 6385 6386 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6387 return -EINVAL; 6388 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6389 if (!sec) 6390 return -EINVAL; 6391 6392 nrels = shdr->sh_size / shdr->sh_entsize; 6393 for (i = 0; i < nrels; i++) { 6394 rel = elf_rel_by_idx(data, i); 6395 if (!rel) { 6396 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6397 return -LIBBPF_ERRNO__FORMAT; 6398 } 6399 6400 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6401 if (!sym) { 6402 pr_warn(".maps relo #%d: symbol %zx not found\n", 6403 i, (size_t)ELF64_R_SYM(rel->r_info)); 6404 return -LIBBPF_ERRNO__FORMAT; 6405 } 6406 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6407 6408 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6409 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6410 (size_t)rel->r_offset, sym->st_name, name); 6411 6412 for (j = 0; j < obj->nr_maps; j++) { 6413 map = &obj->maps[j]; 6414 if (map->sec_idx != obj->efile.btf_maps_shndx) 6415 continue; 6416 6417 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6418 if (vi->offset <= rel->r_offset && 6419 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6420 break; 6421 } 6422 if (j == obj->nr_maps) { 6423 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6424 i, name, (size_t)rel->r_offset); 6425 return -EINVAL; 6426 } 6427 6428 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6429 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6430 type = is_map_in_map ? "map" : "prog"; 6431 if (is_map_in_map) { 6432 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6433 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6434 i, name); 6435 return -LIBBPF_ERRNO__RELOC; 6436 } 6437 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6438 map->def.key_size != sizeof(int)) { 6439 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6440 i, map->name, sizeof(int)); 6441 return -EINVAL; 6442 } 6443 targ_map = bpf_object__find_map_by_name(obj, name); 6444 if (!targ_map) { 6445 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6446 i, name); 6447 return -ESRCH; 6448 } 6449 } else if (is_prog_array) { 6450 targ_prog = bpf_object__find_program_by_name(obj, name); 6451 if (!targ_prog) { 6452 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6453 i, name); 6454 return -ESRCH; 6455 } 6456 if (targ_prog->sec_idx != sym->st_shndx || 6457 targ_prog->sec_insn_off * 8 != sym->st_value || 6458 prog_is_subprog(obj, targ_prog)) { 6459 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6460 i, name); 6461 return -LIBBPF_ERRNO__RELOC; 6462 } 6463 } else { 6464 return -EINVAL; 6465 } 6466 6467 var = btf__type_by_id(obj->btf, vi->type); 6468 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6469 if (btf_vlen(def) == 0) 6470 return -EINVAL; 6471 member = btf_members(def) + btf_vlen(def) - 1; 6472 mname = btf__name_by_offset(obj->btf, member->name_off); 6473 if (strcmp(mname, "values")) 6474 return -EINVAL; 6475 6476 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6477 if (rel->r_offset - vi->offset < moff) 6478 return -EINVAL; 6479 6480 moff = rel->r_offset - vi->offset - moff; 6481 /* here we use BPF pointer size, which is always 64 bit, as we 6482 * are parsing ELF that was built for BPF target 6483 */ 6484 if (moff % bpf_ptr_sz) 6485 return -EINVAL; 6486 moff /= bpf_ptr_sz; 6487 if (moff >= map->init_slots_sz) { 6488 new_sz = moff + 1; 6489 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6490 if (!tmp) 6491 return -ENOMEM; 6492 map->init_slots = tmp; 6493 memset(map->init_slots + map->init_slots_sz, 0, 6494 (new_sz - map->init_slots_sz) * host_ptr_sz); 6495 map->init_slots_sz = new_sz; 6496 } 6497 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6498 6499 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6500 i, map->name, moff, type, name); 6501 } 6502 6503 return 0; 6504 } 6505 6506 static int bpf_object__collect_relos(struct bpf_object *obj) 6507 { 6508 int i, err; 6509 6510 for (i = 0; i < obj->efile.sec_cnt; i++) { 6511 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6512 Elf64_Shdr *shdr; 6513 Elf_Data *data; 6514 int idx; 6515 6516 if (sec_desc->sec_type != SEC_RELO) 6517 continue; 6518 6519 shdr = sec_desc->shdr; 6520 data = sec_desc->data; 6521 idx = shdr->sh_info; 6522 6523 if (shdr->sh_type != SHT_REL) { 6524 pr_warn("internal error at %d\n", __LINE__); 6525 return -LIBBPF_ERRNO__INTERNAL; 6526 } 6527 6528 if (idx == obj->efile.st_ops_shndx) 6529 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6530 else if (idx == obj->efile.btf_maps_shndx) 6531 err = bpf_object__collect_map_relos(obj, shdr, data); 6532 else 6533 err = bpf_object__collect_prog_relos(obj, shdr, data); 6534 if (err) 6535 return err; 6536 } 6537 6538 bpf_object__sort_relos(obj); 6539 return 0; 6540 } 6541 6542 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6543 { 6544 if (BPF_CLASS(insn->code) == BPF_JMP && 6545 BPF_OP(insn->code) == BPF_CALL && 6546 BPF_SRC(insn->code) == BPF_K && 6547 insn->src_reg == 0 && 6548 insn->dst_reg == 0) { 6549 *func_id = insn->imm; 6550 return true; 6551 } 6552 return false; 6553 } 6554 6555 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6556 { 6557 struct bpf_insn *insn = prog->insns; 6558 enum bpf_func_id func_id; 6559 int i; 6560 6561 if (obj->gen_loader) 6562 return 0; 6563 6564 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6565 if (!insn_is_helper_call(insn, &func_id)) 6566 continue; 6567 6568 /* on kernels that don't yet support 6569 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6570 * to bpf_probe_read() which works well for old kernels 6571 */ 6572 switch (func_id) { 6573 case BPF_FUNC_probe_read_kernel: 6574 case BPF_FUNC_probe_read_user: 6575 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6576 insn->imm = BPF_FUNC_probe_read; 6577 break; 6578 case BPF_FUNC_probe_read_kernel_str: 6579 case BPF_FUNC_probe_read_user_str: 6580 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6581 insn->imm = BPF_FUNC_probe_read_str; 6582 break; 6583 default: 6584 break; 6585 } 6586 } 6587 return 0; 6588 } 6589 6590 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6591 int *btf_obj_fd, int *btf_type_id); 6592 6593 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6594 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6595 struct bpf_prog_load_opts *opts, long cookie) 6596 { 6597 enum sec_def_flags def = cookie; 6598 6599 /* old kernels might not support specifying expected_attach_type */ 6600 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6601 opts->expected_attach_type = 0; 6602 6603 if (def & SEC_SLEEPABLE) 6604 opts->prog_flags |= BPF_F_SLEEPABLE; 6605 6606 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6607 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6608 6609 if (def & SEC_DEPRECATED) 6610 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6611 prog->sec_name); 6612 6613 if ((prog->type == BPF_PROG_TYPE_TRACING || 6614 prog->type == BPF_PROG_TYPE_LSM || 6615 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6616 int btf_obj_fd = 0, btf_type_id = 0, err; 6617 const char *attach_name; 6618 6619 attach_name = strchr(prog->sec_name, '/') + 1; 6620 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6621 if (err) 6622 return err; 6623 6624 /* cache resolved BTF FD and BTF type ID in the prog */ 6625 prog->attach_btf_obj_fd = btf_obj_fd; 6626 prog->attach_btf_id = btf_type_id; 6627 6628 /* but by now libbpf common logic is not utilizing 6629 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6630 * this callback is called after opts were populated by 6631 * libbpf, so this callback has to update opts explicitly here 6632 */ 6633 opts->attach_btf_obj_fd = btf_obj_fd; 6634 opts->attach_btf_id = btf_type_id; 6635 } 6636 return 0; 6637 } 6638 6639 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6640 struct bpf_insn *insns, int insns_cnt, 6641 const char *license, __u32 kern_version, 6642 int *prog_fd) 6643 { 6644 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6645 const char *prog_name = NULL; 6646 char *cp, errmsg[STRERR_BUFSIZE]; 6647 size_t log_buf_size = 0; 6648 char *log_buf = NULL, *tmp; 6649 int btf_fd, ret, err; 6650 bool own_log_buf = true; 6651 __u32 log_level = prog->log_level; 6652 6653 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6654 /* 6655 * The program type must be set. Most likely we couldn't find a proper 6656 * section definition at load time, and thus we didn't infer the type. 6657 */ 6658 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6659 prog->name, prog->sec_name); 6660 return -EINVAL; 6661 } 6662 6663 if (!insns || !insns_cnt) 6664 return -EINVAL; 6665 6666 load_attr.expected_attach_type = prog->expected_attach_type; 6667 if (kernel_supports(obj, FEAT_PROG_NAME)) 6668 prog_name = prog->name; 6669 load_attr.attach_prog_fd = prog->attach_prog_fd; 6670 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6671 load_attr.attach_btf_id = prog->attach_btf_id; 6672 load_attr.kern_version = kern_version; 6673 load_attr.prog_ifindex = prog->prog_ifindex; 6674 6675 /* specify func_info/line_info only if kernel supports them */ 6676 btf_fd = bpf_object__btf_fd(obj); 6677 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6678 load_attr.prog_btf_fd = btf_fd; 6679 load_attr.func_info = prog->func_info; 6680 load_attr.func_info_rec_size = prog->func_info_rec_size; 6681 load_attr.func_info_cnt = prog->func_info_cnt; 6682 load_attr.line_info = prog->line_info; 6683 load_attr.line_info_rec_size = prog->line_info_rec_size; 6684 load_attr.line_info_cnt = prog->line_info_cnt; 6685 } 6686 load_attr.log_level = log_level; 6687 load_attr.prog_flags = prog->prog_flags; 6688 load_attr.fd_array = obj->fd_array; 6689 6690 /* adjust load_attr if sec_def provides custom preload callback */ 6691 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6692 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6693 if (err < 0) { 6694 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6695 prog->name, err); 6696 return err; 6697 } 6698 } 6699 6700 if (obj->gen_loader) { 6701 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6702 license, insns, insns_cnt, &load_attr, 6703 prog - obj->programs); 6704 *prog_fd = -1; 6705 return 0; 6706 } 6707 6708 retry_load: 6709 /* if log_level is zero, we don't request logs initiallly even if 6710 * custom log_buf is specified; if the program load fails, then we'll 6711 * bump log_level to 1 and use either custom log_buf or we'll allocate 6712 * our own and retry the load to get details on what failed 6713 */ 6714 if (log_level) { 6715 if (prog->log_buf) { 6716 log_buf = prog->log_buf; 6717 log_buf_size = prog->log_size; 6718 own_log_buf = false; 6719 } else if (obj->log_buf) { 6720 log_buf = obj->log_buf; 6721 log_buf_size = obj->log_size; 6722 own_log_buf = false; 6723 } else { 6724 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6725 tmp = realloc(log_buf, log_buf_size); 6726 if (!tmp) { 6727 ret = -ENOMEM; 6728 goto out; 6729 } 6730 log_buf = tmp; 6731 log_buf[0] = '\0'; 6732 own_log_buf = true; 6733 } 6734 } 6735 6736 load_attr.log_buf = log_buf; 6737 load_attr.log_size = log_buf_size; 6738 load_attr.log_level = log_level; 6739 6740 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6741 if (ret >= 0) { 6742 if (log_level && own_log_buf) { 6743 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6744 prog->name, log_buf); 6745 } 6746 6747 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6748 struct bpf_map *map; 6749 int i; 6750 6751 for (i = 0; i < obj->nr_maps; i++) { 6752 map = &prog->obj->maps[i]; 6753 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6754 continue; 6755 6756 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6757 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6758 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6759 prog->name, map->real_name, cp); 6760 /* Don't fail hard if can't bind rodata. */ 6761 } 6762 } 6763 } 6764 6765 *prog_fd = ret; 6766 ret = 0; 6767 goto out; 6768 } 6769 6770 if (log_level == 0) { 6771 log_level = 1; 6772 goto retry_load; 6773 } 6774 /* On ENOSPC, increase log buffer size and retry, unless custom 6775 * log_buf is specified. 6776 * Be careful to not overflow u32, though. Kernel's log buf size limit 6777 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6778 * multiply by 2 unless we are sure we'll fit within 32 bits. 6779 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6780 */ 6781 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6782 goto retry_load; 6783 6784 ret = -errno; 6785 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6786 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6787 pr_perm_msg(ret); 6788 6789 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6790 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6791 prog->name, log_buf); 6792 } 6793 if (insns_cnt >= BPF_MAXINSNS) { 6794 pr_warn("prog '%s': program too large (%d insns), at most %d insns\n", 6795 prog->name, insns_cnt, BPF_MAXINSNS); 6796 } 6797 6798 out: 6799 if (own_log_buf) 6800 free(log_buf); 6801 return ret; 6802 } 6803 6804 static int bpf_program_record_relos(struct bpf_program *prog) 6805 { 6806 struct bpf_object *obj = prog->obj; 6807 int i; 6808 6809 for (i = 0; i < prog->nr_reloc; i++) { 6810 struct reloc_desc *relo = &prog->reloc_desc[i]; 6811 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6812 6813 switch (relo->type) { 6814 case RELO_EXTERN_VAR: 6815 if (ext->type != EXT_KSYM) 6816 continue; 6817 bpf_gen__record_extern(obj->gen_loader, ext->name, 6818 ext->is_weak, !ext->ksym.type_id, 6819 BTF_KIND_VAR, relo->insn_idx); 6820 break; 6821 case RELO_EXTERN_FUNC: 6822 bpf_gen__record_extern(obj->gen_loader, ext->name, 6823 ext->is_weak, false, BTF_KIND_FUNC, 6824 relo->insn_idx); 6825 break; 6826 case RELO_CORE: { 6827 struct bpf_core_relo cr = { 6828 .insn_off = relo->insn_idx * 8, 6829 .type_id = relo->core_relo->type_id, 6830 .access_str_off = relo->core_relo->access_str_off, 6831 .kind = relo->core_relo->kind, 6832 }; 6833 6834 bpf_gen__record_relo_core(obj->gen_loader, &cr); 6835 break; 6836 } 6837 default: 6838 continue; 6839 } 6840 } 6841 return 0; 6842 } 6843 6844 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6845 const char *license, __u32 kern_ver) 6846 { 6847 int err = 0, fd, i; 6848 6849 if (obj->loaded) { 6850 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6851 return libbpf_err(-EINVAL); 6852 } 6853 6854 if (prog->instances.nr < 0 || !prog->instances.fds) { 6855 if (prog->preprocessor) { 6856 pr_warn("Internal error: can't load program '%s'\n", 6857 prog->name); 6858 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6859 } 6860 6861 prog->instances.fds = malloc(sizeof(int)); 6862 if (!prog->instances.fds) { 6863 pr_warn("Not enough memory for BPF fds\n"); 6864 return libbpf_err(-ENOMEM); 6865 } 6866 prog->instances.nr = 1; 6867 prog->instances.fds[0] = -1; 6868 } 6869 6870 if (!prog->preprocessor) { 6871 if (prog->instances.nr != 1) { 6872 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6873 prog->name, prog->instances.nr); 6874 } 6875 if (obj->gen_loader) 6876 bpf_program_record_relos(prog); 6877 err = bpf_object_load_prog_instance(obj, prog, 6878 prog->insns, prog->insns_cnt, 6879 license, kern_ver, &fd); 6880 if (!err) 6881 prog->instances.fds[0] = fd; 6882 goto out; 6883 } 6884 6885 for (i = 0; i < prog->instances.nr; i++) { 6886 struct bpf_prog_prep_result result; 6887 bpf_program_prep_t preprocessor = prog->preprocessor; 6888 6889 memset(&result, 0, sizeof(result)); 6890 err = preprocessor(prog, i, prog->insns, 6891 prog->insns_cnt, &result); 6892 if (err) { 6893 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6894 i, prog->name); 6895 goto out; 6896 } 6897 6898 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6899 pr_debug("Skip loading the %dth instance of program '%s'\n", 6900 i, prog->name); 6901 prog->instances.fds[i] = -1; 6902 if (result.pfd) 6903 *result.pfd = -1; 6904 continue; 6905 } 6906 6907 err = bpf_object_load_prog_instance(obj, prog, 6908 result.new_insn_ptr, result.new_insn_cnt, 6909 license, kern_ver, &fd); 6910 if (err) { 6911 pr_warn("Loading the %dth instance of program '%s' failed\n", 6912 i, prog->name); 6913 goto out; 6914 } 6915 6916 if (result.pfd) 6917 *result.pfd = fd; 6918 prog->instances.fds[i] = fd; 6919 } 6920 out: 6921 if (err) 6922 pr_warn("failed to load program '%s'\n", prog->name); 6923 return libbpf_err(err); 6924 } 6925 6926 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 6927 { 6928 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 6929 } 6930 6931 static int 6932 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6933 { 6934 struct bpf_program *prog; 6935 size_t i; 6936 int err; 6937 6938 for (i = 0; i < obj->nr_programs; i++) { 6939 prog = &obj->programs[i]; 6940 err = bpf_object__sanitize_prog(obj, prog); 6941 if (err) 6942 return err; 6943 } 6944 6945 for (i = 0; i < obj->nr_programs; i++) { 6946 prog = &obj->programs[i]; 6947 if (prog_is_subprog(obj, prog)) 6948 continue; 6949 if (!prog->load) { 6950 pr_debug("prog '%s': skipped loading\n", prog->name); 6951 continue; 6952 } 6953 prog->log_level |= log_level; 6954 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 6955 if (err) 6956 return err; 6957 } 6958 if (obj->gen_loader) 6959 bpf_object__free_relocs(obj); 6960 return 0; 6961 } 6962 6963 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6964 6965 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6966 { 6967 struct bpf_program *prog; 6968 int err; 6969 6970 bpf_object__for_each_program(prog, obj) { 6971 prog->sec_def = find_sec_def(prog->sec_name); 6972 if (!prog->sec_def) { 6973 /* couldn't guess, but user might manually specify */ 6974 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6975 prog->name, prog->sec_name); 6976 continue; 6977 } 6978 6979 bpf_program__set_type(prog, prog->sec_def->prog_type); 6980 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6981 6982 #pragma GCC diagnostic push 6983 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6984 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6985 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6986 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6987 #pragma GCC diagnostic pop 6988 6989 /* sec_def can have custom callback which should be called 6990 * after bpf_program is initialized to adjust its properties 6991 */ 6992 if (prog->sec_def->prog_setup_fn) { 6993 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 6994 if (err < 0) { 6995 pr_warn("prog '%s': failed to initialize: %d\n", 6996 prog->name, err); 6997 return err; 6998 } 6999 } 7000 } 7001 7002 return 0; 7003 } 7004 7005 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7006 const struct bpf_object_open_opts *opts) 7007 { 7008 const char *obj_name, *kconfig, *btf_tmp_path; 7009 struct bpf_object *obj; 7010 char tmp_name[64]; 7011 int err; 7012 char *log_buf; 7013 size_t log_size; 7014 __u32 log_level; 7015 7016 if (elf_version(EV_CURRENT) == EV_NONE) { 7017 pr_warn("failed to init libelf for %s\n", 7018 path ? : "(mem buf)"); 7019 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7020 } 7021 7022 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7023 return ERR_PTR(-EINVAL); 7024 7025 obj_name = OPTS_GET(opts, object_name, NULL); 7026 if (obj_buf) { 7027 if (!obj_name) { 7028 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7029 (unsigned long)obj_buf, 7030 (unsigned long)obj_buf_sz); 7031 obj_name = tmp_name; 7032 } 7033 path = obj_name; 7034 pr_debug("loading object '%s' from buffer\n", obj_name); 7035 } 7036 7037 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7038 log_size = OPTS_GET(opts, kernel_log_size, 0); 7039 log_level = OPTS_GET(opts, kernel_log_level, 0); 7040 if (log_size > UINT_MAX) 7041 return ERR_PTR(-EINVAL); 7042 if (log_size && !log_buf) 7043 return ERR_PTR(-EINVAL); 7044 7045 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7046 if (IS_ERR(obj)) 7047 return obj; 7048 7049 obj->log_buf = log_buf; 7050 obj->log_size = log_size; 7051 obj->log_level = log_level; 7052 7053 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7054 if (btf_tmp_path) { 7055 if (strlen(btf_tmp_path) >= PATH_MAX) { 7056 err = -ENAMETOOLONG; 7057 goto out; 7058 } 7059 obj->btf_custom_path = strdup(btf_tmp_path); 7060 if (!obj->btf_custom_path) { 7061 err = -ENOMEM; 7062 goto out; 7063 } 7064 } 7065 7066 kconfig = OPTS_GET(opts, kconfig, NULL); 7067 if (kconfig) { 7068 obj->kconfig = strdup(kconfig); 7069 if (!obj->kconfig) { 7070 err = -ENOMEM; 7071 goto out; 7072 } 7073 } 7074 7075 err = bpf_object__elf_init(obj); 7076 err = err ? : bpf_object__check_endianness(obj); 7077 err = err ? : bpf_object__elf_collect(obj); 7078 err = err ? : bpf_object__collect_externs(obj); 7079 err = err ? : bpf_object__finalize_btf(obj); 7080 err = err ? : bpf_object__init_maps(obj, opts); 7081 err = err ? : bpf_object_init_progs(obj, opts); 7082 err = err ? : bpf_object__collect_relos(obj); 7083 if (err) 7084 goto out; 7085 7086 bpf_object__elf_finish(obj); 7087 7088 return obj; 7089 out: 7090 bpf_object__close(obj); 7091 return ERR_PTR(err); 7092 } 7093 7094 static struct bpf_object * 7095 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7096 { 7097 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7098 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7099 ); 7100 7101 /* param validation */ 7102 if (!attr->file) 7103 return NULL; 7104 7105 pr_debug("loading %s\n", attr->file); 7106 return bpf_object_open(attr->file, NULL, 0, &opts); 7107 } 7108 7109 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7110 { 7111 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7112 } 7113 7114 struct bpf_object *bpf_object__open(const char *path) 7115 { 7116 struct bpf_object_open_attr attr = { 7117 .file = path, 7118 .prog_type = BPF_PROG_TYPE_UNSPEC, 7119 }; 7120 7121 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7122 } 7123 7124 struct bpf_object * 7125 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7126 { 7127 if (!path) 7128 return libbpf_err_ptr(-EINVAL); 7129 7130 pr_debug("loading %s\n", path); 7131 7132 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7133 } 7134 7135 struct bpf_object * 7136 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7137 const struct bpf_object_open_opts *opts) 7138 { 7139 if (!obj_buf || obj_buf_sz == 0) 7140 return libbpf_err_ptr(-EINVAL); 7141 7142 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7143 } 7144 7145 struct bpf_object * 7146 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7147 const char *name) 7148 { 7149 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7150 .object_name = name, 7151 /* wrong default, but backwards-compatible */ 7152 .relaxed_maps = true, 7153 ); 7154 7155 /* returning NULL is wrong, but backwards-compatible */ 7156 if (!obj_buf || obj_buf_sz == 0) 7157 return errno = EINVAL, NULL; 7158 7159 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7160 } 7161 7162 static int bpf_object_unload(struct bpf_object *obj) 7163 { 7164 size_t i; 7165 7166 if (!obj) 7167 return libbpf_err(-EINVAL); 7168 7169 for (i = 0; i < obj->nr_maps; i++) { 7170 zclose(obj->maps[i].fd); 7171 if (obj->maps[i].st_ops) 7172 zfree(&obj->maps[i].st_ops->kern_vdata); 7173 } 7174 7175 for (i = 0; i < obj->nr_programs; i++) 7176 bpf_program__unload(&obj->programs[i]); 7177 7178 return 0; 7179 } 7180 7181 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7182 7183 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7184 { 7185 struct bpf_map *m; 7186 7187 bpf_object__for_each_map(m, obj) { 7188 if (!bpf_map__is_internal(m)) 7189 continue; 7190 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7191 m->def.map_flags ^= BPF_F_MMAPABLE; 7192 } 7193 7194 return 0; 7195 } 7196 7197 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7198 { 7199 char sym_type, sym_name[500]; 7200 unsigned long long sym_addr; 7201 int ret, err = 0; 7202 FILE *f; 7203 7204 f = fopen("/proc/kallsyms", "r"); 7205 if (!f) { 7206 err = -errno; 7207 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7208 return err; 7209 } 7210 7211 while (true) { 7212 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7213 &sym_addr, &sym_type, sym_name); 7214 if (ret == EOF && feof(f)) 7215 break; 7216 if (ret != 3) { 7217 pr_warn("failed to read kallsyms entry: %d\n", ret); 7218 err = -EINVAL; 7219 break; 7220 } 7221 7222 err = cb(sym_addr, sym_type, sym_name, ctx); 7223 if (err) 7224 break; 7225 } 7226 7227 fclose(f); 7228 return err; 7229 } 7230 7231 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7232 const char *sym_name, void *ctx) 7233 { 7234 struct bpf_object *obj = ctx; 7235 const struct btf_type *t; 7236 struct extern_desc *ext; 7237 7238 ext = find_extern_by_name(obj, sym_name); 7239 if (!ext || ext->type != EXT_KSYM) 7240 return 0; 7241 7242 t = btf__type_by_id(obj->btf, ext->btf_id); 7243 if (!btf_is_var(t)) 7244 return 0; 7245 7246 if (ext->is_set && ext->ksym.addr != sym_addr) { 7247 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7248 sym_name, ext->ksym.addr, sym_addr); 7249 return -EINVAL; 7250 } 7251 if (!ext->is_set) { 7252 ext->is_set = true; 7253 ext->ksym.addr = sym_addr; 7254 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7255 } 7256 return 0; 7257 } 7258 7259 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7260 { 7261 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7262 } 7263 7264 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7265 __u16 kind, struct btf **res_btf, 7266 struct module_btf **res_mod_btf) 7267 { 7268 struct module_btf *mod_btf; 7269 struct btf *btf; 7270 int i, id, err; 7271 7272 btf = obj->btf_vmlinux; 7273 mod_btf = NULL; 7274 id = btf__find_by_name_kind(btf, ksym_name, kind); 7275 7276 if (id == -ENOENT) { 7277 err = load_module_btfs(obj); 7278 if (err) 7279 return err; 7280 7281 for (i = 0; i < obj->btf_module_cnt; i++) { 7282 /* we assume module_btf's BTF FD is always >0 */ 7283 mod_btf = &obj->btf_modules[i]; 7284 btf = mod_btf->btf; 7285 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7286 if (id != -ENOENT) 7287 break; 7288 } 7289 } 7290 if (id <= 0) 7291 return -ESRCH; 7292 7293 *res_btf = btf; 7294 *res_mod_btf = mod_btf; 7295 return id; 7296 } 7297 7298 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7299 struct extern_desc *ext) 7300 { 7301 const struct btf_type *targ_var, *targ_type; 7302 __u32 targ_type_id, local_type_id; 7303 struct module_btf *mod_btf = NULL; 7304 const char *targ_var_name; 7305 struct btf *btf = NULL; 7306 int id, err; 7307 7308 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7309 if (id < 0) { 7310 if (id == -ESRCH && ext->is_weak) 7311 return 0; 7312 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7313 ext->name); 7314 return id; 7315 } 7316 7317 /* find local type_id */ 7318 local_type_id = ext->ksym.type_id; 7319 7320 /* find target type_id */ 7321 targ_var = btf__type_by_id(btf, id); 7322 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7323 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7324 7325 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7326 btf, targ_type_id); 7327 if (err <= 0) { 7328 const struct btf_type *local_type; 7329 const char *targ_name, *local_name; 7330 7331 local_type = btf__type_by_id(obj->btf, local_type_id); 7332 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7333 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7334 7335 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7336 ext->name, local_type_id, 7337 btf_kind_str(local_type), local_name, targ_type_id, 7338 btf_kind_str(targ_type), targ_name); 7339 return -EINVAL; 7340 } 7341 7342 ext->is_set = true; 7343 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7344 ext->ksym.kernel_btf_id = id; 7345 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7346 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7347 7348 return 0; 7349 } 7350 7351 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7352 struct extern_desc *ext) 7353 { 7354 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7355 struct module_btf *mod_btf = NULL; 7356 const struct btf_type *kern_func; 7357 struct btf *kern_btf = NULL; 7358 int ret; 7359 7360 local_func_proto_id = ext->ksym.type_id; 7361 7362 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7363 if (kfunc_id < 0) { 7364 if (kfunc_id == -ESRCH && ext->is_weak) 7365 return 0; 7366 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7367 ext->name); 7368 return kfunc_id; 7369 } 7370 7371 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7372 kfunc_proto_id = kern_func->type; 7373 7374 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7375 kern_btf, kfunc_proto_id); 7376 if (ret <= 0) { 7377 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7378 ext->name, local_func_proto_id, kfunc_proto_id); 7379 return -EINVAL; 7380 } 7381 7382 /* set index for module BTF fd in fd_array, if unset */ 7383 if (mod_btf && !mod_btf->fd_array_idx) { 7384 /* insn->off is s16 */ 7385 if (obj->fd_array_cnt == INT16_MAX) { 7386 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7387 ext->name, mod_btf->fd_array_idx); 7388 return -E2BIG; 7389 } 7390 /* Cannot use index 0 for module BTF fd */ 7391 if (!obj->fd_array_cnt) 7392 obj->fd_array_cnt = 1; 7393 7394 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7395 obj->fd_array_cnt + 1); 7396 if (ret) 7397 return ret; 7398 mod_btf->fd_array_idx = obj->fd_array_cnt; 7399 /* we assume module BTF FD is always >0 */ 7400 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7401 } 7402 7403 ext->is_set = true; 7404 ext->ksym.kernel_btf_id = kfunc_id; 7405 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7406 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7407 ext->name, kfunc_id); 7408 7409 return 0; 7410 } 7411 7412 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7413 { 7414 const struct btf_type *t; 7415 struct extern_desc *ext; 7416 int i, err; 7417 7418 for (i = 0; i < obj->nr_extern; i++) { 7419 ext = &obj->externs[i]; 7420 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7421 continue; 7422 7423 if (obj->gen_loader) { 7424 ext->is_set = true; 7425 ext->ksym.kernel_btf_obj_fd = 0; 7426 ext->ksym.kernel_btf_id = 0; 7427 continue; 7428 } 7429 t = btf__type_by_id(obj->btf, ext->btf_id); 7430 if (btf_is_var(t)) 7431 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7432 else 7433 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7434 if (err) 7435 return err; 7436 } 7437 return 0; 7438 } 7439 7440 static int bpf_object__resolve_externs(struct bpf_object *obj, 7441 const char *extra_kconfig) 7442 { 7443 bool need_config = false, need_kallsyms = false; 7444 bool need_vmlinux_btf = false; 7445 struct extern_desc *ext; 7446 void *kcfg_data = NULL; 7447 int err, i; 7448 7449 if (obj->nr_extern == 0) 7450 return 0; 7451 7452 if (obj->kconfig_map_idx >= 0) 7453 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7454 7455 for (i = 0; i < obj->nr_extern; i++) { 7456 ext = &obj->externs[i]; 7457 7458 if (ext->type == EXT_KCFG && 7459 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7460 void *ext_val = kcfg_data + ext->kcfg.data_off; 7461 __u32 kver = get_kernel_version(); 7462 7463 if (!kver) { 7464 pr_warn("failed to get kernel version\n"); 7465 return -EINVAL; 7466 } 7467 err = set_kcfg_value_num(ext, ext_val, kver); 7468 if (err) 7469 return err; 7470 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7471 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7472 need_config = true; 7473 } else if (ext->type == EXT_KSYM) { 7474 if (ext->ksym.type_id) 7475 need_vmlinux_btf = true; 7476 else 7477 need_kallsyms = true; 7478 } else { 7479 pr_warn("unrecognized extern '%s'\n", ext->name); 7480 return -EINVAL; 7481 } 7482 } 7483 if (need_config && extra_kconfig) { 7484 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7485 if (err) 7486 return -EINVAL; 7487 need_config = false; 7488 for (i = 0; i < obj->nr_extern; i++) { 7489 ext = &obj->externs[i]; 7490 if (ext->type == EXT_KCFG && !ext->is_set) { 7491 need_config = true; 7492 break; 7493 } 7494 } 7495 } 7496 if (need_config) { 7497 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7498 if (err) 7499 return -EINVAL; 7500 } 7501 if (need_kallsyms) { 7502 err = bpf_object__read_kallsyms_file(obj); 7503 if (err) 7504 return -EINVAL; 7505 } 7506 if (need_vmlinux_btf) { 7507 err = bpf_object__resolve_ksyms_btf_id(obj); 7508 if (err) 7509 return -EINVAL; 7510 } 7511 for (i = 0; i < obj->nr_extern; i++) { 7512 ext = &obj->externs[i]; 7513 7514 if (!ext->is_set && !ext->is_weak) { 7515 pr_warn("extern %s (strong) not resolved\n", ext->name); 7516 return -ESRCH; 7517 } else if (!ext->is_set) { 7518 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7519 ext->name); 7520 } 7521 } 7522 7523 return 0; 7524 } 7525 7526 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7527 { 7528 int err, i; 7529 7530 if (!obj) 7531 return libbpf_err(-EINVAL); 7532 7533 if (obj->loaded) { 7534 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7535 return libbpf_err(-EINVAL); 7536 } 7537 7538 if (obj->gen_loader) 7539 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7540 7541 err = bpf_object__probe_loading(obj); 7542 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7543 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7544 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7545 err = err ? : bpf_object__sanitize_maps(obj); 7546 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7547 err = err ? : bpf_object__create_maps(obj); 7548 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7549 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7550 err = err ? : bpf_object_init_prog_arrays(obj); 7551 7552 if (obj->gen_loader) { 7553 /* reset FDs */ 7554 if (obj->btf) 7555 btf__set_fd(obj->btf, -1); 7556 for (i = 0; i < obj->nr_maps; i++) 7557 obj->maps[i].fd = -1; 7558 if (!err) 7559 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7560 } 7561 7562 /* clean up fd_array */ 7563 zfree(&obj->fd_array); 7564 7565 /* clean up module BTFs */ 7566 for (i = 0; i < obj->btf_module_cnt; i++) { 7567 close(obj->btf_modules[i].fd); 7568 btf__free(obj->btf_modules[i].btf); 7569 free(obj->btf_modules[i].name); 7570 } 7571 free(obj->btf_modules); 7572 7573 /* clean up vmlinux BTF */ 7574 btf__free(obj->btf_vmlinux); 7575 obj->btf_vmlinux = NULL; 7576 7577 obj->loaded = true; /* doesn't matter if successfully or not */ 7578 7579 if (err) 7580 goto out; 7581 7582 return 0; 7583 out: 7584 /* unpin any maps that were auto-pinned during load */ 7585 for (i = 0; i < obj->nr_maps; i++) 7586 if (obj->maps[i].pinned && !obj->maps[i].reused) 7587 bpf_map__unpin(&obj->maps[i], NULL); 7588 7589 bpf_object_unload(obj); 7590 pr_warn("failed to load object '%s'\n", obj->path); 7591 return libbpf_err(err); 7592 } 7593 7594 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7595 { 7596 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7597 } 7598 7599 int bpf_object__load(struct bpf_object *obj) 7600 { 7601 return bpf_object_load(obj, 0, NULL); 7602 } 7603 7604 static int make_parent_dir(const char *path) 7605 { 7606 char *cp, errmsg[STRERR_BUFSIZE]; 7607 char *dname, *dir; 7608 int err = 0; 7609 7610 dname = strdup(path); 7611 if (dname == NULL) 7612 return -ENOMEM; 7613 7614 dir = dirname(dname); 7615 if (mkdir(dir, 0700) && errno != EEXIST) 7616 err = -errno; 7617 7618 free(dname); 7619 if (err) { 7620 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7621 pr_warn("failed to mkdir %s: %s\n", path, cp); 7622 } 7623 return err; 7624 } 7625 7626 static int check_path(const char *path) 7627 { 7628 char *cp, errmsg[STRERR_BUFSIZE]; 7629 struct statfs st_fs; 7630 char *dname, *dir; 7631 int err = 0; 7632 7633 if (path == NULL) 7634 return -EINVAL; 7635 7636 dname = strdup(path); 7637 if (dname == NULL) 7638 return -ENOMEM; 7639 7640 dir = dirname(dname); 7641 if (statfs(dir, &st_fs)) { 7642 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7643 pr_warn("failed to statfs %s: %s\n", dir, cp); 7644 err = -errno; 7645 } 7646 free(dname); 7647 7648 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7649 pr_warn("specified path %s is not on BPF FS\n", path); 7650 err = -EINVAL; 7651 } 7652 7653 return err; 7654 } 7655 7656 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7657 { 7658 char *cp, errmsg[STRERR_BUFSIZE]; 7659 int err; 7660 7661 err = make_parent_dir(path); 7662 if (err) 7663 return libbpf_err(err); 7664 7665 err = check_path(path); 7666 if (err) 7667 return libbpf_err(err); 7668 7669 if (prog == NULL) { 7670 pr_warn("invalid program pointer\n"); 7671 return libbpf_err(-EINVAL); 7672 } 7673 7674 if (instance < 0 || instance >= prog->instances.nr) { 7675 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7676 instance, prog->name, prog->instances.nr); 7677 return libbpf_err(-EINVAL); 7678 } 7679 7680 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7681 err = -errno; 7682 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7683 pr_warn("failed to pin program: %s\n", cp); 7684 return libbpf_err(err); 7685 } 7686 pr_debug("pinned program '%s'\n", path); 7687 7688 return 0; 7689 } 7690 7691 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7692 { 7693 int err; 7694 7695 err = check_path(path); 7696 if (err) 7697 return libbpf_err(err); 7698 7699 if (prog == NULL) { 7700 pr_warn("invalid program pointer\n"); 7701 return libbpf_err(-EINVAL); 7702 } 7703 7704 if (instance < 0 || instance >= prog->instances.nr) { 7705 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7706 instance, prog->name, prog->instances.nr); 7707 return libbpf_err(-EINVAL); 7708 } 7709 7710 err = unlink(path); 7711 if (err != 0) 7712 return libbpf_err(-errno); 7713 7714 pr_debug("unpinned program '%s'\n", path); 7715 7716 return 0; 7717 } 7718 7719 __attribute__((alias("bpf_program_pin_instance"))) 7720 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7721 7722 __attribute__((alias("bpf_program_unpin_instance"))) 7723 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7724 7725 int bpf_program__pin(struct bpf_program *prog, const char *path) 7726 { 7727 int i, err; 7728 7729 err = make_parent_dir(path); 7730 if (err) 7731 return libbpf_err(err); 7732 7733 err = check_path(path); 7734 if (err) 7735 return libbpf_err(err); 7736 7737 if (prog == NULL) { 7738 pr_warn("invalid program pointer\n"); 7739 return libbpf_err(-EINVAL); 7740 } 7741 7742 if (prog->instances.nr <= 0) { 7743 pr_warn("no instances of prog %s to pin\n", prog->name); 7744 return libbpf_err(-EINVAL); 7745 } 7746 7747 if (prog->instances.nr == 1) { 7748 /* don't create subdirs when pinning single instance */ 7749 return bpf_program_pin_instance(prog, path, 0); 7750 } 7751 7752 for (i = 0; i < prog->instances.nr; i++) { 7753 char buf[PATH_MAX]; 7754 int len; 7755 7756 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7757 if (len < 0) { 7758 err = -EINVAL; 7759 goto err_unpin; 7760 } else if (len >= PATH_MAX) { 7761 err = -ENAMETOOLONG; 7762 goto err_unpin; 7763 } 7764 7765 err = bpf_program_pin_instance(prog, buf, i); 7766 if (err) 7767 goto err_unpin; 7768 } 7769 7770 return 0; 7771 7772 err_unpin: 7773 for (i = i - 1; i >= 0; i--) { 7774 char buf[PATH_MAX]; 7775 int len; 7776 7777 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7778 if (len < 0) 7779 continue; 7780 else if (len >= PATH_MAX) 7781 continue; 7782 7783 bpf_program_unpin_instance(prog, buf, i); 7784 } 7785 7786 rmdir(path); 7787 7788 return libbpf_err(err); 7789 } 7790 7791 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7792 { 7793 int i, err; 7794 7795 err = check_path(path); 7796 if (err) 7797 return libbpf_err(err); 7798 7799 if (prog == NULL) { 7800 pr_warn("invalid program pointer\n"); 7801 return libbpf_err(-EINVAL); 7802 } 7803 7804 if (prog->instances.nr <= 0) { 7805 pr_warn("no instances of prog %s to pin\n", prog->name); 7806 return libbpf_err(-EINVAL); 7807 } 7808 7809 if (prog->instances.nr == 1) { 7810 /* don't create subdirs when pinning single instance */ 7811 return bpf_program_unpin_instance(prog, path, 0); 7812 } 7813 7814 for (i = 0; i < prog->instances.nr; i++) { 7815 char buf[PATH_MAX]; 7816 int len; 7817 7818 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7819 if (len < 0) 7820 return libbpf_err(-EINVAL); 7821 else if (len >= PATH_MAX) 7822 return libbpf_err(-ENAMETOOLONG); 7823 7824 err = bpf_program_unpin_instance(prog, buf, i); 7825 if (err) 7826 return err; 7827 } 7828 7829 err = rmdir(path); 7830 if (err) 7831 return libbpf_err(-errno); 7832 7833 return 0; 7834 } 7835 7836 int bpf_map__pin(struct bpf_map *map, const char *path) 7837 { 7838 char *cp, errmsg[STRERR_BUFSIZE]; 7839 int err; 7840 7841 if (map == NULL) { 7842 pr_warn("invalid map pointer\n"); 7843 return libbpf_err(-EINVAL); 7844 } 7845 7846 if (map->pin_path) { 7847 if (path && strcmp(path, map->pin_path)) { 7848 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7849 bpf_map__name(map), map->pin_path, path); 7850 return libbpf_err(-EINVAL); 7851 } else if (map->pinned) { 7852 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7853 bpf_map__name(map), map->pin_path); 7854 return 0; 7855 } 7856 } else { 7857 if (!path) { 7858 pr_warn("missing a path to pin map '%s' at\n", 7859 bpf_map__name(map)); 7860 return libbpf_err(-EINVAL); 7861 } else if (map->pinned) { 7862 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7863 return libbpf_err(-EEXIST); 7864 } 7865 7866 map->pin_path = strdup(path); 7867 if (!map->pin_path) { 7868 err = -errno; 7869 goto out_err; 7870 } 7871 } 7872 7873 err = make_parent_dir(map->pin_path); 7874 if (err) 7875 return libbpf_err(err); 7876 7877 err = check_path(map->pin_path); 7878 if (err) 7879 return libbpf_err(err); 7880 7881 if (bpf_obj_pin(map->fd, map->pin_path)) { 7882 err = -errno; 7883 goto out_err; 7884 } 7885 7886 map->pinned = true; 7887 pr_debug("pinned map '%s'\n", map->pin_path); 7888 7889 return 0; 7890 7891 out_err: 7892 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7893 pr_warn("failed to pin map: %s\n", cp); 7894 return libbpf_err(err); 7895 } 7896 7897 int bpf_map__unpin(struct bpf_map *map, const char *path) 7898 { 7899 int err; 7900 7901 if (map == NULL) { 7902 pr_warn("invalid map pointer\n"); 7903 return libbpf_err(-EINVAL); 7904 } 7905 7906 if (map->pin_path) { 7907 if (path && strcmp(path, map->pin_path)) { 7908 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7909 bpf_map__name(map), map->pin_path, path); 7910 return libbpf_err(-EINVAL); 7911 } 7912 path = map->pin_path; 7913 } else if (!path) { 7914 pr_warn("no path to unpin map '%s' from\n", 7915 bpf_map__name(map)); 7916 return libbpf_err(-EINVAL); 7917 } 7918 7919 err = check_path(path); 7920 if (err) 7921 return libbpf_err(err); 7922 7923 err = unlink(path); 7924 if (err != 0) 7925 return libbpf_err(-errno); 7926 7927 map->pinned = false; 7928 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7929 7930 return 0; 7931 } 7932 7933 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7934 { 7935 char *new = NULL; 7936 7937 if (path) { 7938 new = strdup(path); 7939 if (!new) 7940 return libbpf_err(-errno); 7941 } 7942 7943 free(map->pin_path); 7944 map->pin_path = new; 7945 return 0; 7946 } 7947 7948 __alias(bpf_map__pin_path) 7949 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7950 7951 const char *bpf_map__pin_path(const struct bpf_map *map) 7952 { 7953 return map->pin_path; 7954 } 7955 7956 bool bpf_map__is_pinned(const struct bpf_map *map) 7957 { 7958 return map->pinned; 7959 } 7960 7961 static void sanitize_pin_path(char *s) 7962 { 7963 /* bpffs disallows periods in path names */ 7964 while (*s) { 7965 if (*s == '.') 7966 *s = '_'; 7967 s++; 7968 } 7969 } 7970 7971 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7972 { 7973 struct bpf_map *map; 7974 int err; 7975 7976 if (!obj) 7977 return libbpf_err(-ENOENT); 7978 7979 if (!obj->loaded) { 7980 pr_warn("object not yet loaded; load it first\n"); 7981 return libbpf_err(-ENOENT); 7982 } 7983 7984 bpf_object__for_each_map(map, obj) { 7985 char *pin_path = NULL; 7986 char buf[PATH_MAX]; 7987 7988 if (map->skipped) 7989 continue; 7990 7991 if (path) { 7992 int len; 7993 7994 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7995 bpf_map__name(map)); 7996 if (len < 0) { 7997 err = -EINVAL; 7998 goto err_unpin_maps; 7999 } else if (len >= PATH_MAX) { 8000 err = -ENAMETOOLONG; 8001 goto err_unpin_maps; 8002 } 8003 sanitize_pin_path(buf); 8004 pin_path = buf; 8005 } else if (!map->pin_path) { 8006 continue; 8007 } 8008 8009 err = bpf_map__pin(map, pin_path); 8010 if (err) 8011 goto err_unpin_maps; 8012 } 8013 8014 return 0; 8015 8016 err_unpin_maps: 8017 while ((map = bpf_object__prev_map(obj, map))) { 8018 if (!map->pin_path) 8019 continue; 8020 8021 bpf_map__unpin(map, NULL); 8022 } 8023 8024 return libbpf_err(err); 8025 } 8026 8027 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8028 { 8029 struct bpf_map *map; 8030 int err; 8031 8032 if (!obj) 8033 return libbpf_err(-ENOENT); 8034 8035 bpf_object__for_each_map(map, obj) { 8036 char *pin_path = NULL; 8037 char buf[PATH_MAX]; 8038 8039 if (path) { 8040 int len; 8041 8042 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8043 bpf_map__name(map)); 8044 if (len < 0) 8045 return libbpf_err(-EINVAL); 8046 else if (len >= PATH_MAX) 8047 return libbpf_err(-ENAMETOOLONG); 8048 sanitize_pin_path(buf); 8049 pin_path = buf; 8050 } else if (!map->pin_path) { 8051 continue; 8052 } 8053 8054 err = bpf_map__unpin(map, pin_path); 8055 if (err) 8056 return libbpf_err(err); 8057 } 8058 8059 return 0; 8060 } 8061 8062 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8063 { 8064 struct bpf_program *prog; 8065 int err; 8066 8067 if (!obj) 8068 return libbpf_err(-ENOENT); 8069 8070 if (!obj->loaded) { 8071 pr_warn("object not yet loaded; load it first\n"); 8072 return libbpf_err(-ENOENT); 8073 } 8074 8075 bpf_object__for_each_program(prog, obj) { 8076 char buf[PATH_MAX]; 8077 int len; 8078 8079 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8080 prog->pin_name); 8081 if (len < 0) { 8082 err = -EINVAL; 8083 goto err_unpin_programs; 8084 } else if (len >= PATH_MAX) { 8085 err = -ENAMETOOLONG; 8086 goto err_unpin_programs; 8087 } 8088 8089 err = bpf_program__pin(prog, buf); 8090 if (err) 8091 goto err_unpin_programs; 8092 } 8093 8094 return 0; 8095 8096 err_unpin_programs: 8097 while ((prog = bpf_object__prev_program(obj, prog))) { 8098 char buf[PATH_MAX]; 8099 int len; 8100 8101 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8102 prog->pin_name); 8103 if (len < 0) 8104 continue; 8105 else if (len >= PATH_MAX) 8106 continue; 8107 8108 bpf_program__unpin(prog, buf); 8109 } 8110 8111 return libbpf_err(err); 8112 } 8113 8114 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8115 { 8116 struct bpf_program *prog; 8117 int err; 8118 8119 if (!obj) 8120 return libbpf_err(-ENOENT); 8121 8122 bpf_object__for_each_program(prog, obj) { 8123 char buf[PATH_MAX]; 8124 int len; 8125 8126 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8127 prog->pin_name); 8128 if (len < 0) 8129 return libbpf_err(-EINVAL); 8130 else if (len >= PATH_MAX) 8131 return libbpf_err(-ENAMETOOLONG); 8132 8133 err = bpf_program__unpin(prog, buf); 8134 if (err) 8135 return libbpf_err(err); 8136 } 8137 8138 return 0; 8139 } 8140 8141 int bpf_object__pin(struct bpf_object *obj, const char *path) 8142 { 8143 int err; 8144 8145 err = bpf_object__pin_maps(obj, path); 8146 if (err) 8147 return libbpf_err(err); 8148 8149 err = bpf_object__pin_programs(obj, path); 8150 if (err) { 8151 bpf_object__unpin_maps(obj, path); 8152 return libbpf_err(err); 8153 } 8154 8155 return 0; 8156 } 8157 8158 static void bpf_map__destroy(struct bpf_map *map) 8159 { 8160 if (map->clear_priv) 8161 map->clear_priv(map, map->priv); 8162 map->priv = NULL; 8163 map->clear_priv = NULL; 8164 8165 if (map->inner_map) { 8166 bpf_map__destroy(map->inner_map); 8167 zfree(&map->inner_map); 8168 } 8169 8170 zfree(&map->init_slots); 8171 map->init_slots_sz = 0; 8172 8173 if (map->mmaped) { 8174 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8175 map->mmaped = NULL; 8176 } 8177 8178 if (map->st_ops) { 8179 zfree(&map->st_ops->data); 8180 zfree(&map->st_ops->progs); 8181 zfree(&map->st_ops->kern_func_off); 8182 zfree(&map->st_ops); 8183 } 8184 8185 zfree(&map->name); 8186 zfree(&map->real_name); 8187 zfree(&map->pin_path); 8188 8189 if (map->fd >= 0) 8190 zclose(map->fd); 8191 } 8192 8193 void bpf_object__close(struct bpf_object *obj) 8194 { 8195 size_t i; 8196 8197 if (IS_ERR_OR_NULL(obj)) 8198 return; 8199 8200 if (obj->clear_priv) 8201 obj->clear_priv(obj, obj->priv); 8202 8203 bpf_gen__free(obj->gen_loader); 8204 bpf_object__elf_finish(obj); 8205 bpf_object_unload(obj); 8206 btf__free(obj->btf); 8207 btf_ext__free(obj->btf_ext); 8208 8209 for (i = 0; i < obj->nr_maps; i++) 8210 bpf_map__destroy(&obj->maps[i]); 8211 8212 zfree(&obj->btf_custom_path); 8213 zfree(&obj->kconfig); 8214 zfree(&obj->externs); 8215 obj->nr_extern = 0; 8216 8217 zfree(&obj->maps); 8218 obj->nr_maps = 0; 8219 8220 if (obj->programs && obj->nr_programs) { 8221 for (i = 0; i < obj->nr_programs; i++) 8222 bpf_program__exit(&obj->programs[i]); 8223 } 8224 zfree(&obj->programs); 8225 8226 list_del(&obj->list); 8227 free(obj); 8228 } 8229 8230 struct bpf_object * 8231 bpf_object__next(struct bpf_object *prev) 8232 { 8233 struct bpf_object *next; 8234 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8235 8236 if (strict) 8237 return NULL; 8238 8239 if (!prev) 8240 next = list_first_entry(&bpf_objects_list, 8241 struct bpf_object, 8242 list); 8243 else 8244 next = list_next_entry(prev, list); 8245 8246 /* Empty list is noticed here so don't need checking on entry. */ 8247 if (&next->list == &bpf_objects_list) 8248 return NULL; 8249 8250 return next; 8251 } 8252 8253 const char *bpf_object__name(const struct bpf_object *obj) 8254 { 8255 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8256 } 8257 8258 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8259 { 8260 return obj ? obj->kern_version : 0; 8261 } 8262 8263 struct btf *bpf_object__btf(const struct bpf_object *obj) 8264 { 8265 return obj ? obj->btf : NULL; 8266 } 8267 8268 int bpf_object__btf_fd(const struct bpf_object *obj) 8269 { 8270 return obj->btf ? btf__fd(obj->btf) : -1; 8271 } 8272 8273 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8274 { 8275 if (obj->loaded) 8276 return libbpf_err(-EINVAL); 8277 8278 obj->kern_version = kern_version; 8279 8280 return 0; 8281 } 8282 8283 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8284 bpf_object_clear_priv_t clear_priv) 8285 { 8286 if (obj->priv && obj->clear_priv) 8287 obj->clear_priv(obj, obj->priv); 8288 8289 obj->priv = priv; 8290 obj->clear_priv = clear_priv; 8291 return 0; 8292 } 8293 8294 void *bpf_object__priv(const struct bpf_object *obj) 8295 { 8296 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8297 } 8298 8299 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8300 { 8301 struct bpf_gen *gen; 8302 8303 if (!opts) 8304 return -EFAULT; 8305 if (!OPTS_VALID(opts, gen_loader_opts)) 8306 return -EINVAL; 8307 gen = calloc(sizeof(*gen), 1); 8308 if (!gen) 8309 return -ENOMEM; 8310 gen->opts = opts; 8311 obj->gen_loader = gen; 8312 return 0; 8313 } 8314 8315 static struct bpf_program * 8316 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8317 bool forward) 8318 { 8319 size_t nr_programs = obj->nr_programs; 8320 ssize_t idx; 8321 8322 if (!nr_programs) 8323 return NULL; 8324 8325 if (!p) 8326 /* Iter from the beginning */ 8327 return forward ? &obj->programs[0] : 8328 &obj->programs[nr_programs - 1]; 8329 8330 if (p->obj != obj) { 8331 pr_warn("error: program handler doesn't match object\n"); 8332 return errno = EINVAL, NULL; 8333 } 8334 8335 idx = (p - obj->programs) + (forward ? 1 : -1); 8336 if (idx >= obj->nr_programs || idx < 0) 8337 return NULL; 8338 return &obj->programs[idx]; 8339 } 8340 8341 struct bpf_program * 8342 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8343 { 8344 return bpf_object__next_program(obj, prev); 8345 } 8346 8347 struct bpf_program * 8348 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8349 { 8350 struct bpf_program *prog = prev; 8351 8352 do { 8353 prog = __bpf_program__iter(prog, obj, true); 8354 } while (prog && prog_is_subprog(obj, prog)); 8355 8356 return prog; 8357 } 8358 8359 struct bpf_program * 8360 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8361 { 8362 return bpf_object__prev_program(obj, next); 8363 } 8364 8365 struct bpf_program * 8366 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8367 { 8368 struct bpf_program *prog = next; 8369 8370 do { 8371 prog = __bpf_program__iter(prog, obj, false); 8372 } while (prog && prog_is_subprog(obj, prog)); 8373 8374 return prog; 8375 } 8376 8377 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8378 bpf_program_clear_priv_t clear_priv) 8379 { 8380 if (prog->priv && prog->clear_priv) 8381 prog->clear_priv(prog, prog->priv); 8382 8383 prog->priv = priv; 8384 prog->clear_priv = clear_priv; 8385 return 0; 8386 } 8387 8388 void *bpf_program__priv(const struct bpf_program *prog) 8389 { 8390 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8391 } 8392 8393 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8394 { 8395 prog->prog_ifindex = ifindex; 8396 } 8397 8398 const char *bpf_program__name(const struct bpf_program *prog) 8399 { 8400 return prog->name; 8401 } 8402 8403 const char *bpf_program__section_name(const struct bpf_program *prog) 8404 { 8405 return prog->sec_name; 8406 } 8407 8408 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8409 { 8410 const char *title; 8411 8412 title = prog->sec_name; 8413 if (needs_copy) { 8414 title = strdup(title); 8415 if (!title) { 8416 pr_warn("failed to strdup program title\n"); 8417 return libbpf_err_ptr(-ENOMEM); 8418 } 8419 } 8420 8421 return title; 8422 } 8423 8424 bool bpf_program__autoload(const struct bpf_program *prog) 8425 { 8426 return prog->load; 8427 } 8428 8429 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8430 { 8431 if (prog->obj->loaded) 8432 return libbpf_err(-EINVAL); 8433 8434 prog->load = autoload; 8435 return 0; 8436 } 8437 8438 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8439 8440 int bpf_program__fd(const struct bpf_program *prog) 8441 { 8442 return bpf_program_nth_fd(prog, 0); 8443 } 8444 8445 size_t bpf_program__size(const struct bpf_program *prog) 8446 { 8447 return prog->insns_cnt * BPF_INSN_SZ; 8448 } 8449 8450 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8451 { 8452 return prog->insns; 8453 } 8454 8455 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8456 { 8457 return prog->insns_cnt; 8458 } 8459 8460 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8461 bpf_program_prep_t prep) 8462 { 8463 int *instances_fds; 8464 8465 if (nr_instances <= 0 || !prep) 8466 return libbpf_err(-EINVAL); 8467 8468 if (prog->instances.nr > 0 || prog->instances.fds) { 8469 pr_warn("Can't set pre-processor after loading\n"); 8470 return libbpf_err(-EINVAL); 8471 } 8472 8473 instances_fds = malloc(sizeof(int) * nr_instances); 8474 if (!instances_fds) { 8475 pr_warn("alloc memory failed for fds\n"); 8476 return libbpf_err(-ENOMEM); 8477 } 8478 8479 /* fill all fd with -1 */ 8480 memset(instances_fds, -1, sizeof(int) * nr_instances); 8481 8482 prog->instances.nr = nr_instances; 8483 prog->instances.fds = instances_fds; 8484 prog->preprocessor = prep; 8485 return 0; 8486 } 8487 8488 __attribute__((alias("bpf_program_nth_fd"))) 8489 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8490 8491 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8492 { 8493 int fd; 8494 8495 if (!prog) 8496 return libbpf_err(-EINVAL); 8497 8498 if (n >= prog->instances.nr || n < 0) { 8499 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8500 n, prog->name, prog->instances.nr); 8501 return libbpf_err(-EINVAL); 8502 } 8503 8504 fd = prog->instances.fds[n]; 8505 if (fd < 0) { 8506 pr_warn("%dth instance of program '%s' is invalid\n", 8507 n, prog->name); 8508 return libbpf_err(-ENOENT); 8509 } 8510 8511 return fd; 8512 } 8513 8514 __alias(bpf_program__type) 8515 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8516 8517 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8518 { 8519 return prog->type; 8520 } 8521 8522 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8523 { 8524 prog->type = type; 8525 } 8526 8527 static bool bpf_program__is_type(const struct bpf_program *prog, 8528 enum bpf_prog_type type) 8529 { 8530 return prog ? (prog->type == type) : false; 8531 } 8532 8533 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8534 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8535 { \ 8536 if (!prog) \ 8537 return libbpf_err(-EINVAL); \ 8538 bpf_program__set_type(prog, TYPE); \ 8539 return 0; \ 8540 } \ 8541 \ 8542 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8543 { \ 8544 return bpf_program__is_type(prog, TYPE); \ 8545 } \ 8546 8547 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8548 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8549 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8550 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8551 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8552 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8553 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8554 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8555 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8556 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8557 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8558 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8559 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8560 8561 __alias(bpf_program__expected_attach_type) 8562 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8563 8564 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8565 { 8566 return prog->expected_attach_type; 8567 } 8568 8569 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8570 enum bpf_attach_type type) 8571 { 8572 prog->expected_attach_type = type; 8573 } 8574 8575 __u32 bpf_program__flags(const struct bpf_program *prog) 8576 { 8577 return prog->prog_flags; 8578 } 8579 8580 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8581 { 8582 if (prog->obj->loaded) 8583 return libbpf_err(-EBUSY); 8584 8585 prog->prog_flags = flags; 8586 return 0; 8587 } 8588 8589 __u32 bpf_program__log_level(const struct bpf_program *prog) 8590 { 8591 return prog->log_level; 8592 } 8593 8594 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8595 { 8596 if (prog->obj->loaded) 8597 return libbpf_err(-EBUSY); 8598 8599 prog->log_level = log_level; 8600 return 0; 8601 } 8602 8603 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8604 { 8605 *log_size = prog->log_size; 8606 return prog->log_buf; 8607 } 8608 8609 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8610 { 8611 if (log_size && !log_buf) 8612 return -EINVAL; 8613 if (prog->log_size > UINT_MAX) 8614 return -EINVAL; 8615 if (prog->obj->loaded) 8616 return -EBUSY; 8617 8618 prog->log_buf = log_buf; 8619 prog->log_size = log_size; 8620 return 0; 8621 } 8622 8623 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8624 .sec = (char *)sec_pfx, \ 8625 .prog_type = BPF_PROG_TYPE_##ptype, \ 8626 .expected_attach_type = atype, \ 8627 .cookie = (long)(flags), \ 8628 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8629 __VA_ARGS__ \ 8630 } 8631 8632 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8633 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8634 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8635 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8636 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8637 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8638 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8639 8640 static const struct bpf_sec_def section_defs[] = { 8641 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8642 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8643 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8644 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8645 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8646 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8647 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8648 SEC_DEF("kprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8649 SEC_DEF("kretprobe.multi/", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8650 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8651 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 8652 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8653 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8654 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8655 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8656 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8657 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8658 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8659 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8660 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8661 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8662 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8663 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8664 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8665 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8666 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8667 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8668 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8669 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8670 SEC_DEF("iter.s/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8671 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8672 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8673 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8674 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8675 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8676 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8677 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 8678 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8679 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8680 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8681 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8682 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8683 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8684 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8685 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8686 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8687 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8688 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8689 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8690 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8691 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8692 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8693 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8694 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8695 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8696 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8697 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8698 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8699 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8700 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8701 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8702 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8703 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8704 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8705 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8706 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8707 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8708 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8709 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8710 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8711 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8712 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8713 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8714 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8715 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8716 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8717 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8718 }; 8719 8720 static size_t custom_sec_def_cnt; 8721 static struct bpf_sec_def *custom_sec_defs; 8722 static struct bpf_sec_def custom_fallback_def; 8723 static bool has_custom_fallback_def; 8724 8725 static int last_custom_sec_def_handler_id; 8726 8727 int libbpf_register_prog_handler(const char *sec, 8728 enum bpf_prog_type prog_type, 8729 enum bpf_attach_type exp_attach_type, 8730 const struct libbpf_prog_handler_opts *opts) 8731 { 8732 struct bpf_sec_def *sec_def; 8733 8734 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8735 return libbpf_err(-EINVAL); 8736 8737 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8738 return libbpf_err(-E2BIG); 8739 8740 if (sec) { 8741 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8742 sizeof(*sec_def)); 8743 if (!sec_def) 8744 return libbpf_err(-ENOMEM); 8745 8746 custom_sec_defs = sec_def; 8747 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8748 } else { 8749 if (has_custom_fallback_def) 8750 return libbpf_err(-EBUSY); 8751 8752 sec_def = &custom_fallback_def; 8753 } 8754 8755 sec_def->sec = sec ? strdup(sec) : NULL; 8756 if (sec && !sec_def->sec) 8757 return libbpf_err(-ENOMEM); 8758 8759 sec_def->prog_type = prog_type; 8760 sec_def->expected_attach_type = exp_attach_type; 8761 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8762 8763 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8764 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8765 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8766 8767 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8768 8769 if (sec) 8770 custom_sec_def_cnt++; 8771 else 8772 has_custom_fallback_def = true; 8773 8774 return sec_def->handler_id; 8775 } 8776 8777 int libbpf_unregister_prog_handler(int handler_id) 8778 { 8779 struct bpf_sec_def *sec_defs; 8780 int i; 8781 8782 if (handler_id <= 0) 8783 return libbpf_err(-EINVAL); 8784 8785 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8786 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8787 has_custom_fallback_def = false; 8788 return 0; 8789 } 8790 8791 for (i = 0; i < custom_sec_def_cnt; i++) { 8792 if (custom_sec_defs[i].handler_id == handler_id) 8793 break; 8794 } 8795 8796 if (i == custom_sec_def_cnt) 8797 return libbpf_err(-ENOENT); 8798 8799 free(custom_sec_defs[i].sec); 8800 for (i = i + 1; i < custom_sec_def_cnt; i++) 8801 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8802 custom_sec_def_cnt--; 8803 8804 /* try to shrink the array, but it's ok if we couldn't */ 8805 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8806 if (sec_defs) 8807 custom_sec_defs = sec_defs; 8808 8809 return 0; 8810 } 8811 8812 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name, 8813 bool allow_sloppy) 8814 { 8815 size_t len = strlen(sec_def->sec); 8816 8817 /* "type/" always has to have proper SEC("type/extras") form */ 8818 if (sec_def->sec[len - 1] == '/') { 8819 if (str_has_pfx(sec_name, sec_def->sec)) 8820 return true; 8821 return false; 8822 } 8823 8824 /* "type+" means it can be either exact SEC("type") or 8825 * well-formed SEC("type/extras") with proper '/' separator 8826 */ 8827 if (sec_def->sec[len - 1] == '+') { 8828 len--; 8829 /* not even a prefix */ 8830 if (strncmp(sec_name, sec_def->sec, len) != 0) 8831 return false; 8832 /* exact match or has '/' separator */ 8833 if (sec_name[len] == '\0' || sec_name[len] == '/') 8834 return true; 8835 return false; 8836 } 8837 8838 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8839 * matches, unless strict section name mode 8840 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8841 * match has to be exact. 8842 */ 8843 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec)) 8844 return true; 8845 8846 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8847 * SEC("syscall")) are exact matches in both modes. 8848 */ 8849 return strcmp(sec_name, sec_def->sec) == 0; 8850 } 8851 8852 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8853 { 8854 const struct bpf_sec_def *sec_def; 8855 int i, n; 8856 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy; 8857 8858 n = custom_sec_def_cnt; 8859 for (i = 0; i < n; i++) { 8860 sec_def = &custom_sec_defs[i]; 8861 if (sec_def_matches(sec_def, sec_name, false)) 8862 return sec_def; 8863 } 8864 8865 n = ARRAY_SIZE(section_defs); 8866 for (i = 0; i < n; i++) { 8867 sec_def = §ion_defs[i]; 8868 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict; 8869 if (sec_def_matches(sec_def, sec_name, allow_sloppy)) 8870 return sec_def; 8871 } 8872 8873 if (has_custom_fallback_def) 8874 return &custom_fallback_def; 8875 8876 return NULL; 8877 } 8878 8879 #define MAX_TYPE_NAME_SIZE 32 8880 8881 static char *libbpf_get_type_names(bool attach_type) 8882 { 8883 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8884 char *buf; 8885 8886 buf = malloc(len); 8887 if (!buf) 8888 return NULL; 8889 8890 buf[0] = '\0'; 8891 /* Forge string buf with all available names */ 8892 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8893 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8894 8895 if (attach_type) { 8896 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8897 continue; 8898 8899 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8900 continue; 8901 } 8902 8903 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8904 free(buf); 8905 return NULL; 8906 } 8907 strcat(buf, " "); 8908 strcat(buf, section_defs[i].sec); 8909 } 8910 8911 return buf; 8912 } 8913 8914 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8915 enum bpf_attach_type *expected_attach_type) 8916 { 8917 const struct bpf_sec_def *sec_def; 8918 char *type_names; 8919 8920 if (!name) 8921 return libbpf_err(-EINVAL); 8922 8923 sec_def = find_sec_def(name); 8924 if (sec_def) { 8925 *prog_type = sec_def->prog_type; 8926 *expected_attach_type = sec_def->expected_attach_type; 8927 return 0; 8928 } 8929 8930 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8931 type_names = libbpf_get_type_names(false); 8932 if (type_names != NULL) { 8933 pr_debug("supported section(type) names are:%s\n", type_names); 8934 free(type_names); 8935 } 8936 8937 return libbpf_err(-ESRCH); 8938 } 8939 8940 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8941 size_t offset) 8942 { 8943 struct bpf_map *map; 8944 size_t i; 8945 8946 for (i = 0; i < obj->nr_maps; i++) { 8947 map = &obj->maps[i]; 8948 if (!bpf_map__is_struct_ops(map)) 8949 continue; 8950 if (map->sec_offset <= offset && 8951 offset - map->sec_offset < map->def.value_size) 8952 return map; 8953 } 8954 8955 return NULL; 8956 } 8957 8958 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8959 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8960 Elf64_Shdr *shdr, Elf_Data *data) 8961 { 8962 const struct btf_member *member; 8963 struct bpf_struct_ops *st_ops; 8964 struct bpf_program *prog; 8965 unsigned int shdr_idx; 8966 const struct btf *btf; 8967 struct bpf_map *map; 8968 unsigned int moff, insn_idx; 8969 const char *name; 8970 __u32 member_idx; 8971 Elf64_Sym *sym; 8972 Elf64_Rel *rel; 8973 int i, nrels; 8974 8975 btf = obj->btf; 8976 nrels = shdr->sh_size / shdr->sh_entsize; 8977 for (i = 0; i < nrels; i++) { 8978 rel = elf_rel_by_idx(data, i); 8979 if (!rel) { 8980 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8981 return -LIBBPF_ERRNO__FORMAT; 8982 } 8983 8984 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8985 if (!sym) { 8986 pr_warn("struct_ops reloc: symbol %zx not found\n", 8987 (size_t)ELF64_R_SYM(rel->r_info)); 8988 return -LIBBPF_ERRNO__FORMAT; 8989 } 8990 8991 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8992 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8993 if (!map) { 8994 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8995 (size_t)rel->r_offset); 8996 return -EINVAL; 8997 } 8998 8999 moff = rel->r_offset - map->sec_offset; 9000 shdr_idx = sym->st_shndx; 9001 st_ops = map->st_ops; 9002 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9003 map->name, 9004 (long long)(rel->r_info >> 32), 9005 (long long)sym->st_value, 9006 shdr_idx, (size_t)rel->r_offset, 9007 map->sec_offset, sym->st_name, name); 9008 9009 if (shdr_idx >= SHN_LORESERVE) { 9010 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9011 map->name, (size_t)rel->r_offset, shdr_idx); 9012 return -LIBBPF_ERRNO__RELOC; 9013 } 9014 if (sym->st_value % BPF_INSN_SZ) { 9015 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9016 map->name, (unsigned long long)sym->st_value); 9017 return -LIBBPF_ERRNO__FORMAT; 9018 } 9019 insn_idx = sym->st_value / BPF_INSN_SZ; 9020 9021 member = find_member_by_offset(st_ops->type, moff * 8); 9022 if (!member) { 9023 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9024 map->name, moff); 9025 return -EINVAL; 9026 } 9027 member_idx = member - btf_members(st_ops->type); 9028 name = btf__name_by_offset(btf, member->name_off); 9029 9030 if (!resolve_func_ptr(btf, member->type, NULL)) { 9031 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9032 map->name, name); 9033 return -EINVAL; 9034 } 9035 9036 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9037 if (!prog) { 9038 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9039 map->name, shdr_idx, name); 9040 return -EINVAL; 9041 } 9042 9043 /* prevent the use of BPF prog with invalid type */ 9044 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9045 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9046 map->name, prog->name); 9047 return -EINVAL; 9048 } 9049 9050 /* if we haven't yet processed this BPF program, record proper 9051 * attach_btf_id and member_idx 9052 */ 9053 if (!prog->attach_btf_id) { 9054 prog->attach_btf_id = st_ops->type_id; 9055 prog->expected_attach_type = member_idx; 9056 } 9057 9058 /* struct_ops BPF prog can be re-used between multiple 9059 * .struct_ops as long as it's the same struct_ops struct 9060 * definition and the same function pointer field 9061 */ 9062 if (prog->attach_btf_id != st_ops->type_id || 9063 prog->expected_attach_type != member_idx) { 9064 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9065 map->name, prog->name, prog->sec_name, prog->type, 9066 prog->attach_btf_id, prog->expected_attach_type, name); 9067 return -EINVAL; 9068 } 9069 9070 st_ops->progs[member_idx] = prog; 9071 } 9072 9073 return 0; 9074 } 9075 9076 #define BTF_TRACE_PREFIX "btf_trace_" 9077 #define BTF_LSM_PREFIX "bpf_lsm_" 9078 #define BTF_ITER_PREFIX "bpf_iter_" 9079 #define BTF_MAX_NAME_SIZE 128 9080 9081 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9082 const char **prefix, int *kind) 9083 { 9084 switch (attach_type) { 9085 case BPF_TRACE_RAW_TP: 9086 *prefix = BTF_TRACE_PREFIX; 9087 *kind = BTF_KIND_TYPEDEF; 9088 break; 9089 case BPF_LSM_MAC: 9090 *prefix = BTF_LSM_PREFIX; 9091 *kind = BTF_KIND_FUNC; 9092 break; 9093 case BPF_TRACE_ITER: 9094 *prefix = BTF_ITER_PREFIX; 9095 *kind = BTF_KIND_FUNC; 9096 break; 9097 default: 9098 *prefix = ""; 9099 *kind = BTF_KIND_FUNC; 9100 } 9101 } 9102 9103 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9104 const char *name, __u32 kind) 9105 { 9106 char btf_type_name[BTF_MAX_NAME_SIZE]; 9107 int ret; 9108 9109 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9110 "%s%s", prefix, name); 9111 /* snprintf returns the number of characters written excluding the 9112 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9113 * indicates truncation. 9114 */ 9115 if (ret < 0 || ret >= sizeof(btf_type_name)) 9116 return -ENAMETOOLONG; 9117 return btf__find_by_name_kind(btf, btf_type_name, kind); 9118 } 9119 9120 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9121 enum bpf_attach_type attach_type) 9122 { 9123 const char *prefix; 9124 int kind; 9125 9126 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9127 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9128 } 9129 9130 int libbpf_find_vmlinux_btf_id(const char *name, 9131 enum bpf_attach_type attach_type) 9132 { 9133 struct btf *btf; 9134 int err; 9135 9136 btf = btf__load_vmlinux_btf(); 9137 err = libbpf_get_error(btf); 9138 if (err) { 9139 pr_warn("vmlinux BTF is not found\n"); 9140 return libbpf_err(err); 9141 } 9142 9143 err = find_attach_btf_id(btf, name, attach_type); 9144 if (err <= 0) 9145 pr_warn("%s is not found in vmlinux BTF\n", name); 9146 9147 btf__free(btf); 9148 return libbpf_err(err); 9149 } 9150 9151 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9152 { 9153 struct bpf_prog_info info = {}; 9154 __u32 info_len = sizeof(info); 9155 struct btf *btf; 9156 int err; 9157 9158 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9159 if (err) { 9160 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9161 attach_prog_fd, err); 9162 return err; 9163 } 9164 9165 err = -EINVAL; 9166 if (!info.btf_id) { 9167 pr_warn("The target program doesn't have BTF\n"); 9168 goto out; 9169 } 9170 btf = btf__load_from_kernel_by_id(info.btf_id); 9171 err = libbpf_get_error(btf); 9172 if (err) { 9173 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9174 goto out; 9175 } 9176 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9177 btf__free(btf); 9178 if (err <= 0) { 9179 pr_warn("%s is not found in prog's BTF\n", name); 9180 goto out; 9181 } 9182 out: 9183 return err; 9184 } 9185 9186 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9187 enum bpf_attach_type attach_type, 9188 int *btf_obj_fd, int *btf_type_id) 9189 { 9190 int ret, i; 9191 9192 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9193 if (ret > 0) { 9194 *btf_obj_fd = 0; /* vmlinux BTF */ 9195 *btf_type_id = ret; 9196 return 0; 9197 } 9198 if (ret != -ENOENT) 9199 return ret; 9200 9201 ret = load_module_btfs(obj); 9202 if (ret) 9203 return ret; 9204 9205 for (i = 0; i < obj->btf_module_cnt; i++) { 9206 const struct module_btf *mod = &obj->btf_modules[i]; 9207 9208 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9209 if (ret > 0) { 9210 *btf_obj_fd = mod->fd; 9211 *btf_type_id = ret; 9212 return 0; 9213 } 9214 if (ret == -ENOENT) 9215 continue; 9216 9217 return ret; 9218 } 9219 9220 return -ESRCH; 9221 } 9222 9223 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9224 int *btf_obj_fd, int *btf_type_id) 9225 { 9226 enum bpf_attach_type attach_type = prog->expected_attach_type; 9227 __u32 attach_prog_fd = prog->attach_prog_fd; 9228 int err = 0; 9229 9230 /* BPF program's BTF ID */ 9231 if (attach_prog_fd) { 9232 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9233 if (err < 0) { 9234 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9235 attach_prog_fd, attach_name, err); 9236 return err; 9237 } 9238 *btf_obj_fd = 0; 9239 *btf_type_id = err; 9240 return 0; 9241 } 9242 9243 /* kernel/module BTF ID */ 9244 if (prog->obj->gen_loader) { 9245 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9246 *btf_obj_fd = 0; 9247 *btf_type_id = 1; 9248 } else { 9249 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9250 } 9251 if (err) { 9252 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9253 return err; 9254 } 9255 return 0; 9256 } 9257 9258 int libbpf_attach_type_by_name(const char *name, 9259 enum bpf_attach_type *attach_type) 9260 { 9261 char *type_names; 9262 const struct bpf_sec_def *sec_def; 9263 9264 if (!name) 9265 return libbpf_err(-EINVAL); 9266 9267 sec_def = find_sec_def(name); 9268 if (!sec_def) { 9269 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9270 type_names = libbpf_get_type_names(true); 9271 if (type_names != NULL) { 9272 pr_debug("attachable section(type) names are:%s\n", type_names); 9273 free(type_names); 9274 } 9275 9276 return libbpf_err(-EINVAL); 9277 } 9278 9279 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9280 return libbpf_err(-EINVAL); 9281 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9282 return libbpf_err(-EINVAL); 9283 9284 *attach_type = sec_def->expected_attach_type; 9285 return 0; 9286 } 9287 9288 int bpf_map__fd(const struct bpf_map *map) 9289 { 9290 return map ? map->fd : libbpf_err(-EINVAL); 9291 } 9292 9293 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9294 { 9295 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9296 } 9297 9298 static bool map_uses_real_name(const struct bpf_map *map) 9299 { 9300 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9301 * their user-visible name differs from kernel-visible name. Users see 9302 * such map's corresponding ELF section name as a map name. 9303 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9304 * maps to know which name has to be returned to the user. 9305 */ 9306 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9307 return true; 9308 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9309 return true; 9310 return false; 9311 } 9312 9313 const char *bpf_map__name(const struct bpf_map *map) 9314 { 9315 if (!map) 9316 return NULL; 9317 9318 if (map_uses_real_name(map)) 9319 return map->real_name; 9320 9321 return map->name; 9322 } 9323 9324 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9325 { 9326 return map->def.type; 9327 } 9328 9329 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9330 { 9331 if (map->fd >= 0) 9332 return libbpf_err(-EBUSY); 9333 map->def.type = type; 9334 return 0; 9335 } 9336 9337 __u32 bpf_map__map_flags(const struct bpf_map *map) 9338 { 9339 return map->def.map_flags; 9340 } 9341 9342 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9343 { 9344 if (map->fd >= 0) 9345 return libbpf_err(-EBUSY); 9346 map->def.map_flags = flags; 9347 return 0; 9348 } 9349 9350 __u64 bpf_map__map_extra(const struct bpf_map *map) 9351 { 9352 return map->map_extra; 9353 } 9354 9355 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9356 { 9357 if (map->fd >= 0) 9358 return libbpf_err(-EBUSY); 9359 map->map_extra = map_extra; 9360 return 0; 9361 } 9362 9363 __u32 bpf_map__numa_node(const struct bpf_map *map) 9364 { 9365 return map->numa_node; 9366 } 9367 9368 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9369 { 9370 if (map->fd >= 0) 9371 return libbpf_err(-EBUSY); 9372 map->numa_node = numa_node; 9373 return 0; 9374 } 9375 9376 __u32 bpf_map__key_size(const struct bpf_map *map) 9377 { 9378 return map->def.key_size; 9379 } 9380 9381 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9382 { 9383 if (map->fd >= 0) 9384 return libbpf_err(-EBUSY); 9385 map->def.key_size = size; 9386 return 0; 9387 } 9388 9389 __u32 bpf_map__value_size(const struct bpf_map *map) 9390 { 9391 return map->def.value_size; 9392 } 9393 9394 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9395 { 9396 if (map->fd >= 0) 9397 return libbpf_err(-EBUSY); 9398 map->def.value_size = size; 9399 return 0; 9400 } 9401 9402 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9403 { 9404 return map ? map->btf_key_type_id : 0; 9405 } 9406 9407 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9408 { 9409 return map ? map->btf_value_type_id : 0; 9410 } 9411 9412 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9413 bpf_map_clear_priv_t clear_priv) 9414 { 9415 if (!map) 9416 return libbpf_err(-EINVAL); 9417 9418 if (map->priv) { 9419 if (map->clear_priv) 9420 map->clear_priv(map, map->priv); 9421 } 9422 9423 map->priv = priv; 9424 map->clear_priv = clear_priv; 9425 return 0; 9426 } 9427 9428 void *bpf_map__priv(const struct bpf_map *map) 9429 { 9430 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9431 } 9432 9433 int bpf_map__set_initial_value(struct bpf_map *map, 9434 const void *data, size_t size) 9435 { 9436 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9437 size != map->def.value_size || map->fd >= 0) 9438 return libbpf_err(-EINVAL); 9439 9440 memcpy(map->mmaped, data, size); 9441 return 0; 9442 } 9443 9444 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9445 { 9446 if (!map->mmaped) 9447 return NULL; 9448 *psize = map->def.value_size; 9449 return map->mmaped; 9450 } 9451 9452 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9453 { 9454 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9455 } 9456 9457 bool bpf_map__is_internal(const struct bpf_map *map) 9458 { 9459 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9460 } 9461 9462 __u32 bpf_map__ifindex(const struct bpf_map *map) 9463 { 9464 return map->map_ifindex; 9465 } 9466 9467 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9468 { 9469 if (map->fd >= 0) 9470 return libbpf_err(-EBUSY); 9471 map->map_ifindex = ifindex; 9472 return 0; 9473 } 9474 9475 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9476 { 9477 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9478 pr_warn("error: unsupported map type\n"); 9479 return libbpf_err(-EINVAL); 9480 } 9481 if (map->inner_map_fd != -1) { 9482 pr_warn("error: inner_map_fd already specified\n"); 9483 return libbpf_err(-EINVAL); 9484 } 9485 if (map->inner_map) { 9486 bpf_map__destroy(map->inner_map); 9487 zfree(&map->inner_map); 9488 } 9489 map->inner_map_fd = fd; 9490 return 0; 9491 } 9492 9493 static struct bpf_map * 9494 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9495 { 9496 ssize_t idx; 9497 struct bpf_map *s, *e; 9498 9499 if (!obj || !obj->maps) 9500 return errno = EINVAL, NULL; 9501 9502 s = obj->maps; 9503 e = obj->maps + obj->nr_maps; 9504 9505 if ((m < s) || (m >= e)) { 9506 pr_warn("error in %s: map handler doesn't belong to object\n", 9507 __func__); 9508 return errno = EINVAL, NULL; 9509 } 9510 9511 idx = (m - obj->maps) + i; 9512 if (idx >= obj->nr_maps || idx < 0) 9513 return NULL; 9514 return &obj->maps[idx]; 9515 } 9516 9517 struct bpf_map * 9518 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9519 { 9520 return bpf_object__next_map(obj, prev); 9521 } 9522 9523 struct bpf_map * 9524 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9525 { 9526 if (prev == NULL) 9527 return obj->maps; 9528 9529 return __bpf_map__iter(prev, obj, 1); 9530 } 9531 9532 struct bpf_map * 9533 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9534 { 9535 return bpf_object__prev_map(obj, next); 9536 } 9537 9538 struct bpf_map * 9539 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9540 { 9541 if (next == NULL) { 9542 if (!obj->nr_maps) 9543 return NULL; 9544 return obj->maps + obj->nr_maps - 1; 9545 } 9546 9547 return __bpf_map__iter(next, obj, -1); 9548 } 9549 9550 struct bpf_map * 9551 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9552 { 9553 struct bpf_map *pos; 9554 9555 bpf_object__for_each_map(pos, obj) { 9556 /* if it's a special internal map name (which always starts 9557 * with dot) then check if that special name matches the 9558 * real map name (ELF section name) 9559 */ 9560 if (name[0] == '.') { 9561 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9562 return pos; 9563 continue; 9564 } 9565 /* otherwise map name has to be an exact match */ 9566 if (map_uses_real_name(pos)) { 9567 if (strcmp(pos->real_name, name) == 0) 9568 return pos; 9569 continue; 9570 } 9571 if (strcmp(pos->name, name) == 0) 9572 return pos; 9573 } 9574 return errno = ENOENT, NULL; 9575 } 9576 9577 int 9578 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9579 { 9580 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9581 } 9582 9583 struct bpf_map * 9584 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9585 { 9586 return libbpf_err_ptr(-ENOTSUP); 9587 } 9588 9589 long libbpf_get_error(const void *ptr) 9590 { 9591 if (!IS_ERR_OR_NULL(ptr)) 9592 return 0; 9593 9594 if (IS_ERR(ptr)) 9595 errno = -PTR_ERR(ptr); 9596 9597 /* If ptr == NULL, then errno should be already set by the failing 9598 * API, because libbpf never returns NULL on success and it now always 9599 * sets errno on error. So no extra errno handling for ptr == NULL 9600 * case. 9601 */ 9602 return -errno; 9603 } 9604 9605 __attribute__((alias("bpf_prog_load_xattr2"))) 9606 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9607 struct bpf_object **pobj, int *prog_fd); 9608 9609 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 9610 struct bpf_object **pobj, int *prog_fd) 9611 { 9612 struct bpf_object_open_attr open_attr = {}; 9613 struct bpf_program *prog, *first_prog = NULL; 9614 struct bpf_object *obj; 9615 struct bpf_map *map; 9616 int err; 9617 9618 if (!attr) 9619 return libbpf_err(-EINVAL); 9620 if (!attr->file) 9621 return libbpf_err(-EINVAL); 9622 9623 open_attr.file = attr->file; 9624 open_attr.prog_type = attr->prog_type; 9625 9626 obj = __bpf_object__open_xattr(&open_attr, 0); 9627 err = libbpf_get_error(obj); 9628 if (err) 9629 return libbpf_err(-ENOENT); 9630 9631 bpf_object__for_each_program(prog, obj) { 9632 enum bpf_attach_type attach_type = attr->expected_attach_type; 9633 /* 9634 * to preserve backwards compatibility, bpf_prog_load treats 9635 * attr->prog_type, if specified, as an override to whatever 9636 * bpf_object__open guessed 9637 */ 9638 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9639 bpf_program__set_type(prog, attr->prog_type); 9640 bpf_program__set_expected_attach_type(prog, 9641 attach_type); 9642 } 9643 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 9644 /* 9645 * we haven't guessed from section name and user 9646 * didn't provide a fallback type, too bad... 9647 */ 9648 bpf_object__close(obj); 9649 return libbpf_err(-EINVAL); 9650 } 9651 9652 prog->prog_ifindex = attr->ifindex; 9653 prog->log_level = attr->log_level; 9654 prog->prog_flags |= attr->prog_flags; 9655 if (!first_prog) 9656 first_prog = prog; 9657 } 9658 9659 bpf_object__for_each_map(map, obj) { 9660 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 9661 map->map_ifindex = attr->ifindex; 9662 } 9663 9664 if (!first_prog) { 9665 pr_warn("object file doesn't contain bpf program\n"); 9666 bpf_object__close(obj); 9667 return libbpf_err(-ENOENT); 9668 } 9669 9670 err = bpf_object__load(obj); 9671 if (err) { 9672 bpf_object__close(obj); 9673 return libbpf_err(err); 9674 } 9675 9676 *pobj = obj; 9677 *prog_fd = bpf_program__fd(first_prog); 9678 return 0; 9679 } 9680 9681 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 9682 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 9683 struct bpf_object **pobj, int *prog_fd) 9684 { 9685 struct bpf_prog_load_attr attr; 9686 9687 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9688 attr.file = file; 9689 attr.prog_type = type; 9690 attr.expected_attach_type = 0; 9691 9692 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 9693 } 9694 9695 struct bpf_link { 9696 int (*detach)(struct bpf_link *link); 9697 void (*dealloc)(struct bpf_link *link); 9698 char *pin_path; /* NULL, if not pinned */ 9699 int fd; /* hook FD, -1 if not applicable */ 9700 bool disconnected; 9701 }; 9702 9703 /* Replace link's underlying BPF program with the new one */ 9704 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9705 { 9706 int ret; 9707 9708 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9709 return libbpf_err_errno(ret); 9710 } 9711 9712 /* Release "ownership" of underlying BPF resource (typically, BPF program 9713 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9714 * link, when destructed through bpf_link__destroy() call won't attempt to 9715 * detach/unregisted that BPF resource. This is useful in situations where, 9716 * say, attached BPF program has to outlive userspace program that attached it 9717 * in the system. Depending on type of BPF program, though, there might be 9718 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9719 * exit of userspace program doesn't trigger automatic detachment and clean up 9720 * inside the kernel. 9721 */ 9722 void bpf_link__disconnect(struct bpf_link *link) 9723 { 9724 link->disconnected = true; 9725 } 9726 9727 int bpf_link__destroy(struct bpf_link *link) 9728 { 9729 int err = 0; 9730 9731 if (IS_ERR_OR_NULL(link)) 9732 return 0; 9733 9734 if (!link->disconnected && link->detach) 9735 err = link->detach(link); 9736 if (link->pin_path) 9737 free(link->pin_path); 9738 if (link->dealloc) 9739 link->dealloc(link); 9740 else 9741 free(link); 9742 9743 return libbpf_err(err); 9744 } 9745 9746 int bpf_link__fd(const struct bpf_link *link) 9747 { 9748 return link->fd; 9749 } 9750 9751 const char *bpf_link__pin_path(const struct bpf_link *link) 9752 { 9753 return link->pin_path; 9754 } 9755 9756 static int bpf_link__detach_fd(struct bpf_link *link) 9757 { 9758 return libbpf_err_errno(close(link->fd)); 9759 } 9760 9761 struct bpf_link *bpf_link__open(const char *path) 9762 { 9763 struct bpf_link *link; 9764 int fd; 9765 9766 fd = bpf_obj_get(path); 9767 if (fd < 0) { 9768 fd = -errno; 9769 pr_warn("failed to open link at %s: %d\n", path, fd); 9770 return libbpf_err_ptr(fd); 9771 } 9772 9773 link = calloc(1, sizeof(*link)); 9774 if (!link) { 9775 close(fd); 9776 return libbpf_err_ptr(-ENOMEM); 9777 } 9778 link->detach = &bpf_link__detach_fd; 9779 link->fd = fd; 9780 9781 link->pin_path = strdup(path); 9782 if (!link->pin_path) { 9783 bpf_link__destroy(link); 9784 return libbpf_err_ptr(-ENOMEM); 9785 } 9786 9787 return link; 9788 } 9789 9790 int bpf_link__detach(struct bpf_link *link) 9791 { 9792 return bpf_link_detach(link->fd) ? -errno : 0; 9793 } 9794 9795 int bpf_link__pin(struct bpf_link *link, const char *path) 9796 { 9797 int err; 9798 9799 if (link->pin_path) 9800 return libbpf_err(-EBUSY); 9801 err = make_parent_dir(path); 9802 if (err) 9803 return libbpf_err(err); 9804 err = check_path(path); 9805 if (err) 9806 return libbpf_err(err); 9807 9808 link->pin_path = strdup(path); 9809 if (!link->pin_path) 9810 return libbpf_err(-ENOMEM); 9811 9812 if (bpf_obj_pin(link->fd, link->pin_path)) { 9813 err = -errno; 9814 zfree(&link->pin_path); 9815 return libbpf_err(err); 9816 } 9817 9818 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9819 return 0; 9820 } 9821 9822 int bpf_link__unpin(struct bpf_link *link) 9823 { 9824 int err; 9825 9826 if (!link->pin_path) 9827 return libbpf_err(-EINVAL); 9828 9829 err = unlink(link->pin_path); 9830 if (err != 0) 9831 return -errno; 9832 9833 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9834 zfree(&link->pin_path); 9835 return 0; 9836 } 9837 9838 struct bpf_link_perf { 9839 struct bpf_link link; 9840 int perf_event_fd; 9841 /* legacy kprobe support: keep track of probe identifier and type */ 9842 char *legacy_probe_name; 9843 bool legacy_is_kprobe; 9844 bool legacy_is_retprobe; 9845 }; 9846 9847 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9848 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9849 9850 static int bpf_link_perf_detach(struct bpf_link *link) 9851 { 9852 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9853 int err = 0; 9854 9855 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9856 err = -errno; 9857 9858 if (perf_link->perf_event_fd != link->fd) 9859 close(perf_link->perf_event_fd); 9860 close(link->fd); 9861 9862 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9863 if (perf_link->legacy_probe_name) { 9864 if (perf_link->legacy_is_kprobe) { 9865 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9866 perf_link->legacy_is_retprobe); 9867 } else { 9868 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9869 perf_link->legacy_is_retprobe); 9870 } 9871 } 9872 9873 return err; 9874 } 9875 9876 static void bpf_link_perf_dealloc(struct bpf_link *link) 9877 { 9878 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9879 9880 free(perf_link->legacy_probe_name); 9881 free(perf_link); 9882 } 9883 9884 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9885 const struct bpf_perf_event_opts *opts) 9886 { 9887 char errmsg[STRERR_BUFSIZE]; 9888 struct bpf_link_perf *link; 9889 int prog_fd, link_fd = -1, err; 9890 9891 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9892 return libbpf_err_ptr(-EINVAL); 9893 9894 if (pfd < 0) { 9895 pr_warn("prog '%s': invalid perf event FD %d\n", 9896 prog->name, pfd); 9897 return libbpf_err_ptr(-EINVAL); 9898 } 9899 prog_fd = bpf_program__fd(prog); 9900 if (prog_fd < 0) { 9901 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9902 prog->name); 9903 return libbpf_err_ptr(-EINVAL); 9904 } 9905 9906 link = calloc(1, sizeof(*link)); 9907 if (!link) 9908 return libbpf_err_ptr(-ENOMEM); 9909 link->link.detach = &bpf_link_perf_detach; 9910 link->link.dealloc = &bpf_link_perf_dealloc; 9911 link->perf_event_fd = pfd; 9912 9913 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9914 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9915 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9916 9917 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9918 if (link_fd < 0) { 9919 err = -errno; 9920 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9921 prog->name, pfd, 9922 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9923 goto err_out; 9924 } 9925 link->link.fd = link_fd; 9926 } else { 9927 if (OPTS_GET(opts, bpf_cookie, 0)) { 9928 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9929 err = -EOPNOTSUPP; 9930 goto err_out; 9931 } 9932 9933 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9934 err = -errno; 9935 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9936 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9937 if (err == -EPROTO) 9938 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9939 prog->name, pfd); 9940 goto err_out; 9941 } 9942 link->link.fd = pfd; 9943 } 9944 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9945 err = -errno; 9946 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9947 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9948 goto err_out; 9949 } 9950 9951 return &link->link; 9952 err_out: 9953 if (link_fd >= 0) 9954 close(link_fd); 9955 free(link); 9956 return libbpf_err_ptr(err); 9957 } 9958 9959 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9960 { 9961 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9962 } 9963 9964 /* 9965 * this function is expected to parse integer in the range of [0, 2^31-1] from 9966 * given file using scanf format string fmt. If actual parsed value is 9967 * negative, the result might be indistinguishable from error 9968 */ 9969 static int parse_uint_from_file(const char *file, const char *fmt) 9970 { 9971 char buf[STRERR_BUFSIZE]; 9972 int err, ret; 9973 FILE *f; 9974 9975 f = fopen(file, "r"); 9976 if (!f) { 9977 err = -errno; 9978 pr_debug("failed to open '%s': %s\n", file, 9979 libbpf_strerror_r(err, buf, sizeof(buf))); 9980 return err; 9981 } 9982 err = fscanf(f, fmt, &ret); 9983 if (err != 1) { 9984 err = err == EOF ? -EIO : -errno; 9985 pr_debug("failed to parse '%s': %s\n", file, 9986 libbpf_strerror_r(err, buf, sizeof(buf))); 9987 fclose(f); 9988 return err; 9989 } 9990 fclose(f); 9991 return ret; 9992 } 9993 9994 static int determine_kprobe_perf_type(void) 9995 { 9996 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9997 9998 return parse_uint_from_file(file, "%d\n"); 9999 } 10000 10001 static int determine_uprobe_perf_type(void) 10002 { 10003 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10004 10005 return parse_uint_from_file(file, "%d\n"); 10006 } 10007 10008 static int determine_kprobe_retprobe_bit(void) 10009 { 10010 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10011 10012 return parse_uint_from_file(file, "config:%d\n"); 10013 } 10014 10015 static int determine_uprobe_retprobe_bit(void) 10016 { 10017 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10018 10019 return parse_uint_from_file(file, "config:%d\n"); 10020 } 10021 10022 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10023 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10024 10025 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10026 uint64_t offset, int pid, size_t ref_ctr_off) 10027 { 10028 struct perf_event_attr attr = {}; 10029 char errmsg[STRERR_BUFSIZE]; 10030 int type, pfd, err; 10031 10032 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10033 return -EINVAL; 10034 10035 type = uprobe ? determine_uprobe_perf_type() 10036 : determine_kprobe_perf_type(); 10037 if (type < 0) { 10038 pr_warn("failed to determine %s perf type: %s\n", 10039 uprobe ? "uprobe" : "kprobe", 10040 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10041 return type; 10042 } 10043 if (retprobe) { 10044 int bit = uprobe ? determine_uprobe_retprobe_bit() 10045 : determine_kprobe_retprobe_bit(); 10046 10047 if (bit < 0) { 10048 pr_warn("failed to determine %s retprobe bit: %s\n", 10049 uprobe ? "uprobe" : "kprobe", 10050 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10051 return bit; 10052 } 10053 attr.config |= 1 << bit; 10054 } 10055 attr.size = sizeof(attr); 10056 attr.type = type; 10057 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10058 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10059 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10060 10061 /* pid filter is meaningful only for uprobes */ 10062 pfd = syscall(__NR_perf_event_open, &attr, 10063 pid < 0 ? -1 : pid /* pid */, 10064 pid == -1 ? 0 : -1 /* cpu */, 10065 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10066 if (pfd < 0) { 10067 err = -errno; 10068 pr_warn("%s perf_event_open() failed: %s\n", 10069 uprobe ? "uprobe" : "kprobe", 10070 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10071 return err; 10072 } 10073 return pfd; 10074 } 10075 10076 static int append_to_file(const char *file, const char *fmt, ...) 10077 { 10078 int fd, n, err = 0; 10079 va_list ap; 10080 10081 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10082 if (fd < 0) 10083 return -errno; 10084 10085 va_start(ap, fmt); 10086 n = vdprintf(fd, fmt, ap); 10087 va_end(ap); 10088 10089 if (n < 0) 10090 err = -errno; 10091 10092 close(fd); 10093 return err; 10094 } 10095 10096 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10097 const char *kfunc_name, size_t offset) 10098 { 10099 static int index = 0; 10100 10101 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10102 __sync_fetch_and_add(&index, 1)); 10103 } 10104 10105 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10106 const char *kfunc_name, size_t offset) 10107 { 10108 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10109 10110 return append_to_file(file, "%c:%s/%s %s+0x%zx", 10111 retprobe ? 'r' : 'p', 10112 retprobe ? "kretprobes" : "kprobes", 10113 probe_name, kfunc_name, offset); 10114 } 10115 10116 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10117 { 10118 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10119 10120 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 10121 } 10122 10123 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10124 { 10125 char file[256]; 10126 10127 snprintf(file, sizeof(file), 10128 "/sys/kernel/debug/tracing/events/%s/%s/id", 10129 retprobe ? "kretprobes" : "kprobes", probe_name); 10130 10131 return parse_uint_from_file(file, "%d\n"); 10132 } 10133 10134 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10135 const char *kfunc_name, size_t offset, int pid) 10136 { 10137 struct perf_event_attr attr = {}; 10138 char errmsg[STRERR_BUFSIZE]; 10139 int type, pfd, err; 10140 10141 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10142 if (err < 0) { 10143 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10144 kfunc_name, offset, 10145 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10146 return err; 10147 } 10148 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10149 if (type < 0) { 10150 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10151 kfunc_name, offset, 10152 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10153 return type; 10154 } 10155 attr.size = sizeof(attr); 10156 attr.config = type; 10157 attr.type = PERF_TYPE_TRACEPOINT; 10158 10159 pfd = syscall(__NR_perf_event_open, &attr, 10160 pid < 0 ? -1 : pid, /* pid */ 10161 pid == -1 ? 0 : -1, /* cpu */ 10162 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10163 if (pfd < 0) { 10164 err = -errno; 10165 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10166 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10167 return err; 10168 } 10169 return pfd; 10170 } 10171 10172 struct bpf_link * 10173 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10174 const char *func_name, 10175 const struct bpf_kprobe_opts *opts) 10176 { 10177 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10178 char errmsg[STRERR_BUFSIZE]; 10179 char *legacy_probe = NULL; 10180 struct bpf_link *link; 10181 size_t offset; 10182 bool retprobe, legacy; 10183 int pfd, err; 10184 10185 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10186 return libbpf_err_ptr(-EINVAL); 10187 10188 retprobe = OPTS_GET(opts, retprobe, false); 10189 offset = OPTS_GET(opts, offset, 0); 10190 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10191 10192 legacy = determine_kprobe_perf_type() < 0; 10193 if (!legacy) { 10194 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10195 func_name, offset, 10196 -1 /* pid */, 0 /* ref_ctr_off */); 10197 } else { 10198 char probe_name[256]; 10199 10200 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10201 func_name, offset); 10202 10203 legacy_probe = strdup(probe_name); 10204 if (!legacy_probe) 10205 return libbpf_err_ptr(-ENOMEM); 10206 10207 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10208 offset, -1 /* pid */); 10209 } 10210 if (pfd < 0) { 10211 err = -errno; 10212 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10213 prog->name, retprobe ? "kretprobe" : "kprobe", 10214 func_name, offset, 10215 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10216 goto err_out; 10217 } 10218 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10219 err = libbpf_get_error(link); 10220 if (err) { 10221 close(pfd); 10222 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10223 prog->name, retprobe ? "kretprobe" : "kprobe", 10224 func_name, offset, 10225 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10226 goto err_out; 10227 } 10228 if (legacy) { 10229 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10230 10231 perf_link->legacy_probe_name = legacy_probe; 10232 perf_link->legacy_is_kprobe = true; 10233 perf_link->legacy_is_retprobe = retprobe; 10234 } 10235 10236 return link; 10237 err_out: 10238 free(legacy_probe); 10239 return libbpf_err_ptr(err); 10240 } 10241 10242 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10243 bool retprobe, 10244 const char *func_name) 10245 { 10246 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10247 .retprobe = retprobe, 10248 ); 10249 10250 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10251 } 10252 10253 /* Adapted from perf/util/string.c */ 10254 static bool glob_match(const char *str, const char *pat) 10255 { 10256 while (*str && *pat && *pat != '*') { 10257 if (*pat == '?') { /* Matches any single character */ 10258 str++; 10259 pat++; 10260 continue; 10261 } 10262 if (*str != *pat) 10263 return false; 10264 str++; 10265 pat++; 10266 } 10267 /* Check wild card */ 10268 if (*pat == '*') { 10269 while (*pat == '*') 10270 pat++; 10271 if (!*pat) /* Tail wild card matches all */ 10272 return true; 10273 while (*str) 10274 if (glob_match(str++, pat)) 10275 return true; 10276 } 10277 return !*str && !*pat; 10278 } 10279 10280 struct kprobe_multi_resolve { 10281 const char *pattern; 10282 unsigned long *addrs; 10283 size_t cap; 10284 size_t cnt; 10285 }; 10286 10287 static int 10288 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10289 const char *sym_name, void *ctx) 10290 { 10291 struct kprobe_multi_resolve *res = ctx; 10292 int err; 10293 10294 if (!glob_match(sym_name, res->pattern)) 10295 return 0; 10296 10297 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10298 res->cnt + 1); 10299 if (err) 10300 return err; 10301 10302 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10303 return 0; 10304 } 10305 10306 struct bpf_link * 10307 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10308 const char *pattern, 10309 const struct bpf_kprobe_multi_opts *opts) 10310 { 10311 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10312 struct kprobe_multi_resolve res = { 10313 .pattern = pattern, 10314 }; 10315 struct bpf_link *link = NULL; 10316 char errmsg[STRERR_BUFSIZE]; 10317 const unsigned long *addrs; 10318 int err, link_fd, prog_fd; 10319 const __u64 *cookies; 10320 const char **syms; 10321 bool retprobe; 10322 size_t cnt; 10323 10324 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10325 return libbpf_err_ptr(-EINVAL); 10326 10327 syms = OPTS_GET(opts, syms, false); 10328 addrs = OPTS_GET(opts, addrs, false); 10329 cnt = OPTS_GET(opts, cnt, false); 10330 cookies = OPTS_GET(opts, cookies, false); 10331 10332 if (!pattern && !addrs && !syms) 10333 return libbpf_err_ptr(-EINVAL); 10334 if (pattern && (addrs || syms || cookies || cnt)) 10335 return libbpf_err_ptr(-EINVAL); 10336 if (!pattern && !cnt) 10337 return libbpf_err_ptr(-EINVAL); 10338 if (addrs && syms) 10339 return libbpf_err_ptr(-EINVAL); 10340 10341 if (pattern) { 10342 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10343 if (err) 10344 goto error; 10345 if (!res.cnt) { 10346 err = -ENOENT; 10347 goto error; 10348 } 10349 addrs = res.addrs; 10350 cnt = res.cnt; 10351 } 10352 10353 retprobe = OPTS_GET(opts, retprobe, false); 10354 10355 lopts.kprobe_multi.syms = syms; 10356 lopts.kprobe_multi.addrs = addrs; 10357 lopts.kprobe_multi.cookies = cookies; 10358 lopts.kprobe_multi.cnt = cnt; 10359 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10360 10361 link = calloc(1, sizeof(*link)); 10362 if (!link) { 10363 err = -ENOMEM; 10364 goto error; 10365 } 10366 link->detach = &bpf_link__detach_fd; 10367 10368 prog_fd = bpf_program__fd(prog); 10369 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10370 if (link_fd < 0) { 10371 err = -errno; 10372 pr_warn("prog '%s': failed to attach: %s\n", 10373 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10374 goto error; 10375 } 10376 link->fd = link_fd; 10377 free(res.addrs); 10378 return link; 10379 10380 error: 10381 free(link); 10382 free(res.addrs); 10383 return libbpf_err_ptr(err); 10384 } 10385 10386 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10387 { 10388 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10389 unsigned long offset = 0; 10390 const char *func_name; 10391 char *func; 10392 int n; 10393 10394 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10395 if (opts.retprobe) 10396 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10397 else 10398 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10399 10400 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10401 if (n < 1) { 10402 pr_warn("kprobe name is invalid: %s\n", func_name); 10403 return -EINVAL; 10404 } 10405 if (opts.retprobe && offset != 0) { 10406 free(func); 10407 pr_warn("kretprobes do not support offset specification\n"); 10408 return -EINVAL; 10409 } 10410 10411 opts.offset = offset; 10412 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10413 free(func); 10414 return libbpf_get_error(*link); 10415 } 10416 10417 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10418 { 10419 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10420 const char *spec; 10421 char *pattern; 10422 int n; 10423 10424 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10425 if (opts.retprobe) 10426 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10427 else 10428 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10429 10430 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10431 if (n < 1) { 10432 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10433 return -EINVAL; 10434 } 10435 10436 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10437 free(pattern); 10438 return libbpf_get_error(*link); 10439 } 10440 10441 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10442 const char *binary_path, uint64_t offset) 10443 { 10444 int i; 10445 10446 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10447 10448 /* sanitize binary_path in the probe name */ 10449 for (i = 0; buf[i]; i++) { 10450 if (!isalnum(buf[i])) 10451 buf[i] = '_'; 10452 } 10453 } 10454 10455 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10456 const char *binary_path, size_t offset) 10457 { 10458 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10459 10460 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10461 retprobe ? 'r' : 'p', 10462 retprobe ? "uretprobes" : "uprobes", 10463 probe_name, binary_path, offset); 10464 } 10465 10466 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10467 { 10468 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10469 10470 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10471 } 10472 10473 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10474 { 10475 char file[512]; 10476 10477 snprintf(file, sizeof(file), 10478 "/sys/kernel/debug/tracing/events/%s/%s/id", 10479 retprobe ? "uretprobes" : "uprobes", probe_name); 10480 10481 return parse_uint_from_file(file, "%d\n"); 10482 } 10483 10484 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10485 const char *binary_path, size_t offset, int pid) 10486 { 10487 struct perf_event_attr attr; 10488 int type, pfd, err; 10489 10490 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10491 if (err < 0) { 10492 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10493 binary_path, (size_t)offset, err); 10494 return err; 10495 } 10496 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10497 if (type < 0) { 10498 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10499 binary_path, offset, err); 10500 return type; 10501 } 10502 10503 memset(&attr, 0, sizeof(attr)); 10504 attr.size = sizeof(attr); 10505 attr.config = type; 10506 attr.type = PERF_TYPE_TRACEPOINT; 10507 10508 pfd = syscall(__NR_perf_event_open, &attr, 10509 pid < 0 ? -1 : pid, /* pid */ 10510 pid == -1 ? 0 : -1, /* cpu */ 10511 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10512 if (pfd < 0) { 10513 err = -errno; 10514 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10515 return err; 10516 } 10517 return pfd; 10518 } 10519 10520 LIBBPF_API struct bpf_link * 10521 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10522 const char *binary_path, size_t func_offset, 10523 const struct bpf_uprobe_opts *opts) 10524 { 10525 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10526 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10527 struct bpf_link *link; 10528 size_t ref_ctr_off; 10529 int pfd, err; 10530 bool retprobe, legacy; 10531 10532 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10533 return libbpf_err_ptr(-EINVAL); 10534 10535 retprobe = OPTS_GET(opts, retprobe, false); 10536 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10537 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10538 10539 legacy = determine_uprobe_perf_type() < 0; 10540 if (!legacy) { 10541 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10542 func_offset, pid, ref_ctr_off); 10543 } else { 10544 char probe_name[512]; 10545 10546 if (ref_ctr_off) 10547 return libbpf_err_ptr(-EINVAL); 10548 10549 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10550 binary_path, func_offset); 10551 10552 legacy_probe = strdup(probe_name); 10553 if (!legacy_probe) 10554 return libbpf_err_ptr(-ENOMEM); 10555 10556 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10557 binary_path, func_offset, pid); 10558 } 10559 if (pfd < 0) { 10560 err = -errno; 10561 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10562 prog->name, retprobe ? "uretprobe" : "uprobe", 10563 binary_path, func_offset, 10564 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10565 goto err_out; 10566 } 10567 10568 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10569 err = libbpf_get_error(link); 10570 if (err) { 10571 close(pfd); 10572 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10573 prog->name, retprobe ? "uretprobe" : "uprobe", 10574 binary_path, func_offset, 10575 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10576 goto err_out; 10577 } 10578 if (legacy) { 10579 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10580 10581 perf_link->legacy_probe_name = legacy_probe; 10582 perf_link->legacy_is_kprobe = false; 10583 perf_link->legacy_is_retprobe = retprobe; 10584 } 10585 return link; 10586 err_out: 10587 free(legacy_probe); 10588 return libbpf_err_ptr(err); 10589 10590 } 10591 10592 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10593 bool retprobe, pid_t pid, 10594 const char *binary_path, 10595 size_t func_offset) 10596 { 10597 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10598 10599 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10600 } 10601 10602 static int determine_tracepoint_id(const char *tp_category, 10603 const char *tp_name) 10604 { 10605 char file[PATH_MAX]; 10606 int ret; 10607 10608 ret = snprintf(file, sizeof(file), 10609 "/sys/kernel/debug/tracing/events/%s/%s/id", 10610 tp_category, tp_name); 10611 if (ret < 0) 10612 return -errno; 10613 if (ret >= sizeof(file)) { 10614 pr_debug("tracepoint %s/%s path is too long\n", 10615 tp_category, tp_name); 10616 return -E2BIG; 10617 } 10618 return parse_uint_from_file(file, "%d\n"); 10619 } 10620 10621 static int perf_event_open_tracepoint(const char *tp_category, 10622 const char *tp_name) 10623 { 10624 struct perf_event_attr attr = {}; 10625 char errmsg[STRERR_BUFSIZE]; 10626 int tp_id, pfd, err; 10627 10628 tp_id = determine_tracepoint_id(tp_category, tp_name); 10629 if (tp_id < 0) { 10630 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10631 tp_category, tp_name, 10632 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10633 return tp_id; 10634 } 10635 10636 attr.type = PERF_TYPE_TRACEPOINT; 10637 attr.size = sizeof(attr); 10638 attr.config = tp_id; 10639 10640 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10641 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10642 if (pfd < 0) { 10643 err = -errno; 10644 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10645 tp_category, tp_name, 10646 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10647 return err; 10648 } 10649 return pfd; 10650 } 10651 10652 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10653 const char *tp_category, 10654 const char *tp_name, 10655 const struct bpf_tracepoint_opts *opts) 10656 { 10657 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10658 char errmsg[STRERR_BUFSIZE]; 10659 struct bpf_link *link; 10660 int pfd, err; 10661 10662 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10663 return libbpf_err_ptr(-EINVAL); 10664 10665 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10666 10667 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10668 if (pfd < 0) { 10669 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10670 prog->name, tp_category, tp_name, 10671 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10672 return libbpf_err_ptr(pfd); 10673 } 10674 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10675 err = libbpf_get_error(link); 10676 if (err) { 10677 close(pfd); 10678 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10679 prog->name, tp_category, tp_name, 10680 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10681 return libbpf_err_ptr(err); 10682 } 10683 return link; 10684 } 10685 10686 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10687 const char *tp_category, 10688 const char *tp_name) 10689 { 10690 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10691 } 10692 10693 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10694 { 10695 char *sec_name, *tp_cat, *tp_name; 10696 10697 sec_name = strdup(prog->sec_name); 10698 if (!sec_name) 10699 return -ENOMEM; 10700 10701 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10702 if (str_has_pfx(prog->sec_name, "tp/")) 10703 tp_cat = sec_name + sizeof("tp/") - 1; 10704 else 10705 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10706 tp_name = strchr(tp_cat, '/'); 10707 if (!tp_name) { 10708 free(sec_name); 10709 return -EINVAL; 10710 } 10711 *tp_name = '\0'; 10712 tp_name++; 10713 10714 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10715 free(sec_name); 10716 return libbpf_get_error(*link); 10717 } 10718 10719 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10720 const char *tp_name) 10721 { 10722 char errmsg[STRERR_BUFSIZE]; 10723 struct bpf_link *link; 10724 int prog_fd, pfd; 10725 10726 prog_fd = bpf_program__fd(prog); 10727 if (prog_fd < 0) { 10728 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10729 return libbpf_err_ptr(-EINVAL); 10730 } 10731 10732 link = calloc(1, sizeof(*link)); 10733 if (!link) 10734 return libbpf_err_ptr(-ENOMEM); 10735 link->detach = &bpf_link__detach_fd; 10736 10737 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10738 if (pfd < 0) { 10739 pfd = -errno; 10740 free(link); 10741 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10742 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10743 return libbpf_err_ptr(pfd); 10744 } 10745 link->fd = pfd; 10746 return link; 10747 } 10748 10749 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10750 { 10751 static const char *const prefixes[] = { 10752 "raw_tp/", 10753 "raw_tracepoint/", 10754 "raw_tp.w/", 10755 "raw_tracepoint.w/", 10756 }; 10757 size_t i; 10758 const char *tp_name = NULL; 10759 10760 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10761 if (str_has_pfx(prog->sec_name, prefixes[i])) { 10762 tp_name = prog->sec_name + strlen(prefixes[i]); 10763 break; 10764 } 10765 } 10766 if (!tp_name) { 10767 pr_warn("prog '%s': invalid section name '%s'\n", 10768 prog->name, prog->sec_name); 10769 return -EINVAL; 10770 } 10771 10772 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 10773 return libbpf_get_error(link); 10774 } 10775 10776 /* Common logic for all BPF program types that attach to a btf_id */ 10777 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 10778 { 10779 char errmsg[STRERR_BUFSIZE]; 10780 struct bpf_link *link; 10781 int prog_fd, pfd; 10782 10783 prog_fd = bpf_program__fd(prog); 10784 if (prog_fd < 0) { 10785 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10786 return libbpf_err_ptr(-EINVAL); 10787 } 10788 10789 link = calloc(1, sizeof(*link)); 10790 if (!link) 10791 return libbpf_err_ptr(-ENOMEM); 10792 link->detach = &bpf_link__detach_fd; 10793 10794 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10795 if (pfd < 0) { 10796 pfd = -errno; 10797 free(link); 10798 pr_warn("prog '%s': failed to attach: %s\n", 10799 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10800 return libbpf_err_ptr(pfd); 10801 } 10802 link->fd = pfd; 10803 return (struct bpf_link *)link; 10804 } 10805 10806 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 10807 { 10808 return bpf_program__attach_btf_id(prog); 10809 } 10810 10811 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 10812 { 10813 return bpf_program__attach_btf_id(prog); 10814 } 10815 10816 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10817 { 10818 *link = bpf_program__attach_trace(prog); 10819 return libbpf_get_error(*link); 10820 } 10821 10822 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10823 { 10824 *link = bpf_program__attach_lsm(prog); 10825 return libbpf_get_error(*link); 10826 } 10827 10828 static struct bpf_link * 10829 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 10830 const char *target_name) 10831 { 10832 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10833 .target_btf_id = btf_id); 10834 enum bpf_attach_type attach_type; 10835 char errmsg[STRERR_BUFSIZE]; 10836 struct bpf_link *link; 10837 int prog_fd, link_fd; 10838 10839 prog_fd = bpf_program__fd(prog); 10840 if (prog_fd < 0) { 10841 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10842 return libbpf_err_ptr(-EINVAL); 10843 } 10844 10845 link = calloc(1, sizeof(*link)); 10846 if (!link) 10847 return libbpf_err_ptr(-ENOMEM); 10848 link->detach = &bpf_link__detach_fd; 10849 10850 attach_type = bpf_program__expected_attach_type(prog); 10851 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10852 if (link_fd < 0) { 10853 link_fd = -errno; 10854 free(link); 10855 pr_warn("prog '%s': failed to attach to %s: %s\n", 10856 prog->name, target_name, 10857 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10858 return libbpf_err_ptr(link_fd); 10859 } 10860 link->fd = link_fd; 10861 return link; 10862 } 10863 10864 struct bpf_link * 10865 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 10866 { 10867 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10868 } 10869 10870 struct bpf_link * 10871 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 10872 { 10873 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10874 } 10875 10876 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 10877 { 10878 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10879 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10880 } 10881 10882 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 10883 int target_fd, 10884 const char *attach_func_name) 10885 { 10886 int btf_id; 10887 10888 if (!!target_fd != !!attach_func_name) { 10889 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10890 prog->name); 10891 return libbpf_err_ptr(-EINVAL); 10892 } 10893 10894 if (prog->type != BPF_PROG_TYPE_EXT) { 10895 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10896 prog->name); 10897 return libbpf_err_ptr(-EINVAL); 10898 } 10899 10900 if (target_fd) { 10901 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10902 if (btf_id < 0) 10903 return libbpf_err_ptr(btf_id); 10904 10905 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10906 } else { 10907 /* no target, so use raw_tracepoint_open for compatibility 10908 * with old kernels 10909 */ 10910 return bpf_program__attach_trace(prog); 10911 } 10912 } 10913 10914 struct bpf_link * 10915 bpf_program__attach_iter(const struct bpf_program *prog, 10916 const struct bpf_iter_attach_opts *opts) 10917 { 10918 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10919 char errmsg[STRERR_BUFSIZE]; 10920 struct bpf_link *link; 10921 int prog_fd, link_fd; 10922 __u32 target_fd = 0; 10923 10924 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10925 return libbpf_err_ptr(-EINVAL); 10926 10927 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10928 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10929 10930 prog_fd = bpf_program__fd(prog); 10931 if (prog_fd < 0) { 10932 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10933 return libbpf_err_ptr(-EINVAL); 10934 } 10935 10936 link = calloc(1, sizeof(*link)); 10937 if (!link) 10938 return libbpf_err_ptr(-ENOMEM); 10939 link->detach = &bpf_link__detach_fd; 10940 10941 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10942 &link_create_opts); 10943 if (link_fd < 0) { 10944 link_fd = -errno; 10945 free(link); 10946 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10947 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10948 return libbpf_err_ptr(link_fd); 10949 } 10950 link->fd = link_fd; 10951 return link; 10952 } 10953 10954 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10955 { 10956 *link = bpf_program__attach_iter(prog, NULL); 10957 return libbpf_get_error(*link); 10958 } 10959 10960 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 10961 { 10962 struct bpf_link *link = NULL; 10963 int err; 10964 10965 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 10966 return libbpf_err_ptr(-EOPNOTSUPP); 10967 10968 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 10969 if (err) 10970 return libbpf_err_ptr(err); 10971 10972 /* When calling bpf_program__attach() explicitly, auto-attach support 10973 * is expected to work, so NULL returned link is considered an error. 10974 * This is different for skeleton's attach, see comment in 10975 * bpf_object__attach_skeleton(). 10976 */ 10977 if (!link) 10978 return libbpf_err_ptr(-EOPNOTSUPP); 10979 10980 return link; 10981 } 10982 10983 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10984 { 10985 __u32 zero = 0; 10986 10987 if (bpf_map_delete_elem(link->fd, &zero)) 10988 return -errno; 10989 10990 return 0; 10991 } 10992 10993 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10994 { 10995 struct bpf_struct_ops *st_ops; 10996 struct bpf_link *link; 10997 __u32 i, zero = 0; 10998 int err; 10999 11000 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11001 return libbpf_err_ptr(-EINVAL); 11002 11003 link = calloc(1, sizeof(*link)); 11004 if (!link) 11005 return libbpf_err_ptr(-EINVAL); 11006 11007 st_ops = map->st_ops; 11008 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11009 struct bpf_program *prog = st_ops->progs[i]; 11010 void *kern_data; 11011 int prog_fd; 11012 11013 if (!prog) 11014 continue; 11015 11016 prog_fd = bpf_program__fd(prog); 11017 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11018 *(unsigned long *)kern_data = prog_fd; 11019 } 11020 11021 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11022 if (err) { 11023 err = -errno; 11024 free(link); 11025 return libbpf_err_ptr(err); 11026 } 11027 11028 link->detach = bpf_link__detach_struct_ops; 11029 link->fd = map->fd; 11030 11031 return link; 11032 } 11033 11034 static enum bpf_perf_event_ret 11035 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11036 void **copy_mem, size_t *copy_size, 11037 bpf_perf_event_print_t fn, void *private_data) 11038 { 11039 struct perf_event_mmap_page *header = mmap_mem; 11040 __u64 data_head = ring_buffer_read_head(header); 11041 __u64 data_tail = header->data_tail; 11042 void *base = ((__u8 *)header) + page_size; 11043 int ret = LIBBPF_PERF_EVENT_CONT; 11044 struct perf_event_header *ehdr; 11045 size_t ehdr_size; 11046 11047 while (data_head != data_tail) { 11048 ehdr = base + (data_tail & (mmap_size - 1)); 11049 ehdr_size = ehdr->size; 11050 11051 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11052 void *copy_start = ehdr; 11053 size_t len_first = base + mmap_size - copy_start; 11054 size_t len_secnd = ehdr_size - len_first; 11055 11056 if (*copy_size < ehdr_size) { 11057 free(*copy_mem); 11058 *copy_mem = malloc(ehdr_size); 11059 if (!*copy_mem) { 11060 *copy_size = 0; 11061 ret = LIBBPF_PERF_EVENT_ERROR; 11062 break; 11063 } 11064 *copy_size = ehdr_size; 11065 } 11066 11067 memcpy(*copy_mem, copy_start, len_first); 11068 memcpy(*copy_mem + len_first, base, len_secnd); 11069 ehdr = *copy_mem; 11070 } 11071 11072 ret = fn(ehdr, private_data); 11073 data_tail += ehdr_size; 11074 if (ret != LIBBPF_PERF_EVENT_CONT) 11075 break; 11076 } 11077 11078 ring_buffer_write_tail(header, data_tail); 11079 return libbpf_err(ret); 11080 } 11081 11082 __attribute__((alias("perf_event_read_simple"))) 11083 enum bpf_perf_event_ret 11084 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11085 void **copy_mem, size_t *copy_size, 11086 bpf_perf_event_print_t fn, void *private_data); 11087 11088 struct perf_buffer; 11089 11090 struct perf_buffer_params { 11091 struct perf_event_attr *attr; 11092 /* if event_cb is specified, it takes precendence */ 11093 perf_buffer_event_fn event_cb; 11094 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11095 perf_buffer_sample_fn sample_cb; 11096 perf_buffer_lost_fn lost_cb; 11097 void *ctx; 11098 int cpu_cnt; 11099 int *cpus; 11100 int *map_keys; 11101 }; 11102 11103 struct perf_cpu_buf { 11104 struct perf_buffer *pb; 11105 void *base; /* mmap()'ed memory */ 11106 void *buf; /* for reconstructing segmented data */ 11107 size_t buf_size; 11108 int fd; 11109 int cpu; 11110 int map_key; 11111 }; 11112 11113 struct perf_buffer { 11114 perf_buffer_event_fn event_cb; 11115 perf_buffer_sample_fn sample_cb; 11116 perf_buffer_lost_fn lost_cb; 11117 void *ctx; /* passed into callbacks */ 11118 11119 size_t page_size; 11120 size_t mmap_size; 11121 struct perf_cpu_buf **cpu_bufs; 11122 struct epoll_event *events; 11123 int cpu_cnt; /* number of allocated CPU buffers */ 11124 int epoll_fd; /* perf event FD */ 11125 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11126 }; 11127 11128 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11129 struct perf_cpu_buf *cpu_buf) 11130 { 11131 if (!cpu_buf) 11132 return; 11133 if (cpu_buf->base && 11134 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11135 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11136 if (cpu_buf->fd >= 0) { 11137 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11138 close(cpu_buf->fd); 11139 } 11140 free(cpu_buf->buf); 11141 free(cpu_buf); 11142 } 11143 11144 void perf_buffer__free(struct perf_buffer *pb) 11145 { 11146 int i; 11147 11148 if (IS_ERR_OR_NULL(pb)) 11149 return; 11150 if (pb->cpu_bufs) { 11151 for (i = 0; i < pb->cpu_cnt; i++) { 11152 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11153 11154 if (!cpu_buf) 11155 continue; 11156 11157 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11158 perf_buffer__free_cpu_buf(pb, cpu_buf); 11159 } 11160 free(pb->cpu_bufs); 11161 } 11162 if (pb->epoll_fd >= 0) 11163 close(pb->epoll_fd); 11164 free(pb->events); 11165 free(pb); 11166 } 11167 11168 static struct perf_cpu_buf * 11169 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11170 int cpu, int map_key) 11171 { 11172 struct perf_cpu_buf *cpu_buf; 11173 char msg[STRERR_BUFSIZE]; 11174 int err; 11175 11176 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11177 if (!cpu_buf) 11178 return ERR_PTR(-ENOMEM); 11179 11180 cpu_buf->pb = pb; 11181 cpu_buf->cpu = cpu; 11182 cpu_buf->map_key = map_key; 11183 11184 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11185 -1, PERF_FLAG_FD_CLOEXEC); 11186 if (cpu_buf->fd < 0) { 11187 err = -errno; 11188 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11189 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11190 goto error; 11191 } 11192 11193 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11194 PROT_READ | PROT_WRITE, MAP_SHARED, 11195 cpu_buf->fd, 0); 11196 if (cpu_buf->base == MAP_FAILED) { 11197 cpu_buf->base = NULL; 11198 err = -errno; 11199 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11200 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11201 goto error; 11202 } 11203 11204 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11205 err = -errno; 11206 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11207 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11208 goto error; 11209 } 11210 11211 return cpu_buf; 11212 11213 error: 11214 perf_buffer__free_cpu_buf(pb, cpu_buf); 11215 return (struct perf_cpu_buf *)ERR_PTR(err); 11216 } 11217 11218 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11219 struct perf_buffer_params *p); 11220 11221 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 11222 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 11223 perf_buffer_sample_fn sample_cb, 11224 perf_buffer_lost_fn lost_cb, 11225 void *ctx, 11226 const struct perf_buffer_opts *opts) 11227 { 11228 struct perf_buffer_params p = {}; 11229 struct perf_event_attr attr = {}; 11230 11231 if (!OPTS_VALID(opts, perf_buffer_opts)) 11232 return libbpf_err_ptr(-EINVAL); 11233 11234 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11235 attr.type = PERF_TYPE_SOFTWARE; 11236 attr.sample_type = PERF_SAMPLE_RAW; 11237 attr.sample_period = 1; 11238 attr.wakeup_events = 1; 11239 11240 p.attr = &attr; 11241 p.sample_cb = sample_cb; 11242 p.lost_cb = lost_cb; 11243 p.ctx = ctx; 11244 11245 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11246 } 11247 11248 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 11249 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 11250 const struct perf_buffer_opts *opts) 11251 { 11252 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 11253 opts ? opts->sample_cb : NULL, 11254 opts ? opts->lost_cb : NULL, 11255 opts ? opts->ctx : NULL, 11256 NULL); 11257 } 11258 11259 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 11260 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 11261 struct perf_event_attr *attr, 11262 perf_buffer_event_fn event_cb, void *ctx, 11263 const struct perf_buffer_raw_opts *opts) 11264 { 11265 struct perf_buffer_params p = {}; 11266 11267 if (!attr) 11268 return libbpf_err_ptr(-EINVAL); 11269 11270 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11271 return libbpf_err_ptr(-EINVAL); 11272 11273 p.attr = attr; 11274 p.event_cb = event_cb; 11275 p.ctx = ctx; 11276 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11277 p.cpus = OPTS_GET(opts, cpus, NULL); 11278 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11279 11280 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11281 } 11282 11283 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 11284 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 11285 const struct perf_buffer_raw_opts *opts) 11286 { 11287 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 11288 .cpu_cnt = opts->cpu_cnt, 11289 .cpus = opts->cpus, 11290 .map_keys = opts->map_keys, 11291 ); 11292 11293 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 11294 opts->event_cb, opts->ctx, &inner_opts); 11295 } 11296 11297 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11298 struct perf_buffer_params *p) 11299 { 11300 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11301 struct bpf_map_info map; 11302 char msg[STRERR_BUFSIZE]; 11303 struct perf_buffer *pb; 11304 bool *online = NULL; 11305 __u32 map_info_len; 11306 int err, i, j, n; 11307 11308 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11309 pr_warn("page count should be power of two, but is %zu\n", 11310 page_cnt); 11311 return ERR_PTR(-EINVAL); 11312 } 11313 11314 /* best-effort sanity checks */ 11315 memset(&map, 0, sizeof(map)); 11316 map_info_len = sizeof(map); 11317 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11318 if (err) { 11319 err = -errno; 11320 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11321 * -EBADFD, -EFAULT, or -E2BIG on real error 11322 */ 11323 if (err != -EINVAL) { 11324 pr_warn("failed to get map info for map FD %d: %s\n", 11325 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11326 return ERR_PTR(err); 11327 } 11328 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11329 map_fd); 11330 } else { 11331 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11332 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11333 map.name); 11334 return ERR_PTR(-EINVAL); 11335 } 11336 } 11337 11338 pb = calloc(1, sizeof(*pb)); 11339 if (!pb) 11340 return ERR_PTR(-ENOMEM); 11341 11342 pb->event_cb = p->event_cb; 11343 pb->sample_cb = p->sample_cb; 11344 pb->lost_cb = p->lost_cb; 11345 pb->ctx = p->ctx; 11346 11347 pb->page_size = getpagesize(); 11348 pb->mmap_size = pb->page_size * page_cnt; 11349 pb->map_fd = map_fd; 11350 11351 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11352 if (pb->epoll_fd < 0) { 11353 err = -errno; 11354 pr_warn("failed to create epoll instance: %s\n", 11355 libbpf_strerror_r(err, msg, sizeof(msg))); 11356 goto error; 11357 } 11358 11359 if (p->cpu_cnt > 0) { 11360 pb->cpu_cnt = p->cpu_cnt; 11361 } else { 11362 pb->cpu_cnt = libbpf_num_possible_cpus(); 11363 if (pb->cpu_cnt < 0) { 11364 err = pb->cpu_cnt; 11365 goto error; 11366 } 11367 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11368 pb->cpu_cnt = map.max_entries; 11369 } 11370 11371 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11372 if (!pb->events) { 11373 err = -ENOMEM; 11374 pr_warn("failed to allocate events: out of memory\n"); 11375 goto error; 11376 } 11377 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11378 if (!pb->cpu_bufs) { 11379 err = -ENOMEM; 11380 pr_warn("failed to allocate buffers: out of memory\n"); 11381 goto error; 11382 } 11383 11384 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11385 if (err) { 11386 pr_warn("failed to get online CPU mask: %d\n", err); 11387 goto error; 11388 } 11389 11390 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11391 struct perf_cpu_buf *cpu_buf; 11392 int cpu, map_key; 11393 11394 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11395 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11396 11397 /* in case user didn't explicitly requested particular CPUs to 11398 * be attached to, skip offline/not present CPUs 11399 */ 11400 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11401 continue; 11402 11403 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11404 if (IS_ERR(cpu_buf)) { 11405 err = PTR_ERR(cpu_buf); 11406 goto error; 11407 } 11408 11409 pb->cpu_bufs[j] = cpu_buf; 11410 11411 err = bpf_map_update_elem(pb->map_fd, &map_key, 11412 &cpu_buf->fd, 0); 11413 if (err) { 11414 err = -errno; 11415 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11416 cpu, map_key, cpu_buf->fd, 11417 libbpf_strerror_r(err, msg, sizeof(msg))); 11418 goto error; 11419 } 11420 11421 pb->events[j].events = EPOLLIN; 11422 pb->events[j].data.ptr = cpu_buf; 11423 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11424 &pb->events[j]) < 0) { 11425 err = -errno; 11426 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11427 cpu, cpu_buf->fd, 11428 libbpf_strerror_r(err, msg, sizeof(msg))); 11429 goto error; 11430 } 11431 j++; 11432 } 11433 pb->cpu_cnt = j; 11434 free(online); 11435 11436 return pb; 11437 11438 error: 11439 free(online); 11440 if (pb) 11441 perf_buffer__free(pb); 11442 return ERR_PTR(err); 11443 } 11444 11445 struct perf_sample_raw { 11446 struct perf_event_header header; 11447 uint32_t size; 11448 char data[]; 11449 }; 11450 11451 struct perf_sample_lost { 11452 struct perf_event_header header; 11453 uint64_t id; 11454 uint64_t lost; 11455 uint64_t sample_id; 11456 }; 11457 11458 static enum bpf_perf_event_ret 11459 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11460 { 11461 struct perf_cpu_buf *cpu_buf = ctx; 11462 struct perf_buffer *pb = cpu_buf->pb; 11463 void *data = e; 11464 11465 /* user wants full control over parsing perf event */ 11466 if (pb->event_cb) 11467 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11468 11469 switch (e->type) { 11470 case PERF_RECORD_SAMPLE: { 11471 struct perf_sample_raw *s = data; 11472 11473 if (pb->sample_cb) 11474 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11475 break; 11476 } 11477 case PERF_RECORD_LOST: { 11478 struct perf_sample_lost *s = data; 11479 11480 if (pb->lost_cb) 11481 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11482 break; 11483 } 11484 default: 11485 pr_warn("unknown perf sample type %d\n", e->type); 11486 return LIBBPF_PERF_EVENT_ERROR; 11487 } 11488 return LIBBPF_PERF_EVENT_CONT; 11489 } 11490 11491 static int perf_buffer__process_records(struct perf_buffer *pb, 11492 struct perf_cpu_buf *cpu_buf) 11493 { 11494 enum bpf_perf_event_ret ret; 11495 11496 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11497 pb->page_size, &cpu_buf->buf, 11498 &cpu_buf->buf_size, 11499 perf_buffer__process_record, cpu_buf); 11500 if (ret != LIBBPF_PERF_EVENT_CONT) 11501 return ret; 11502 return 0; 11503 } 11504 11505 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11506 { 11507 return pb->epoll_fd; 11508 } 11509 11510 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11511 { 11512 int i, cnt, err; 11513 11514 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11515 if (cnt < 0) 11516 return -errno; 11517 11518 for (i = 0; i < cnt; i++) { 11519 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11520 11521 err = perf_buffer__process_records(pb, cpu_buf); 11522 if (err) { 11523 pr_warn("error while processing records: %d\n", err); 11524 return libbpf_err(err); 11525 } 11526 } 11527 return cnt; 11528 } 11529 11530 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11531 * manager. 11532 */ 11533 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11534 { 11535 return pb->cpu_cnt; 11536 } 11537 11538 /* 11539 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11540 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11541 * select()/poll()/epoll() Linux syscalls. 11542 */ 11543 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11544 { 11545 struct perf_cpu_buf *cpu_buf; 11546 11547 if (buf_idx >= pb->cpu_cnt) 11548 return libbpf_err(-EINVAL); 11549 11550 cpu_buf = pb->cpu_bufs[buf_idx]; 11551 if (!cpu_buf) 11552 return libbpf_err(-ENOENT); 11553 11554 return cpu_buf->fd; 11555 } 11556 11557 /* 11558 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11559 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11560 * consume, do nothing and return success. 11561 * Returns: 11562 * - 0 on success; 11563 * - <0 on failure. 11564 */ 11565 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11566 { 11567 struct perf_cpu_buf *cpu_buf; 11568 11569 if (buf_idx >= pb->cpu_cnt) 11570 return libbpf_err(-EINVAL); 11571 11572 cpu_buf = pb->cpu_bufs[buf_idx]; 11573 if (!cpu_buf) 11574 return libbpf_err(-ENOENT); 11575 11576 return perf_buffer__process_records(pb, cpu_buf); 11577 } 11578 11579 int perf_buffer__consume(struct perf_buffer *pb) 11580 { 11581 int i, err; 11582 11583 for (i = 0; i < pb->cpu_cnt; i++) { 11584 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11585 11586 if (!cpu_buf) 11587 continue; 11588 11589 err = perf_buffer__process_records(pb, cpu_buf); 11590 if (err) { 11591 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11592 return libbpf_err(err); 11593 } 11594 } 11595 return 0; 11596 } 11597 11598 struct bpf_prog_info_array_desc { 11599 int array_offset; /* e.g. offset of jited_prog_insns */ 11600 int count_offset; /* e.g. offset of jited_prog_len */ 11601 int size_offset; /* > 0: offset of rec size, 11602 * < 0: fix size of -size_offset 11603 */ 11604 }; 11605 11606 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 11607 [BPF_PROG_INFO_JITED_INSNS] = { 11608 offsetof(struct bpf_prog_info, jited_prog_insns), 11609 offsetof(struct bpf_prog_info, jited_prog_len), 11610 -1, 11611 }, 11612 [BPF_PROG_INFO_XLATED_INSNS] = { 11613 offsetof(struct bpf_prog_info, xlated_prog_insns), 11614 offsetof(struct bpf_prog_info, xlated_prog_len), 11615 -1, 11616 }, 11617 [BPF_PROG_INFO_MAP_IDS] = { 11618 offsetof(struct bpf_prog_info, map_ids), 11619 offsetof(struct bpf_prog_info, nr_map_ids), 11620 -(int)sizeof(__u32), 11621 }, 11622 [BPF_PROG_INFO_JITED_KSYMS] = { 11623 offsetof(struct bpf_prog_info, jited_ksyms), 11624 offsetof(struct bpf_prog_info, nr_jited_ksyms), 11625 -(int)sizeof(__u64), 11626 }, 11627 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11628 offsetof(struct bpf_prog_info, jited_func_lens), 11629 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11630 -(int)sizeof(__u32), 11631 }, 11632 [BPF_PROG_INFO_FUNC_INFO] = { 11633 offsetof(struct bpf_prog_info, func_info), 11634 offsetof(struct bpf_prog_info, nr_func_info), 11635 offsetof(struct bpf_prog_info, func_info_rec_size), 11636 }, 11637 [BPF_PROG_INFO_LINE_INFO] = { 11638 offsetof(struct bpf_prog_info, line_info), 11639 offsetof(struct bpf_prog_info, nr_line_info), 11640 offsetof(struct bpf_prog_info, line_info_rec_size), 11641 }, 11642 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11643 offsetof(struct bpf_prog_info, jited_line_info), 11644 offsetof(struct bpf_prog_info, nr_jited_line_info), 11645 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11646 }, 11647 [BPF_PROG_INFO_PROG_TAGS] = { 11648 offsetof(struct bpf_prog_info, prog_tags), 11649 offsetof(struct bpf_prog_info, nr_prog_tags), 11650 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11651 }, 11652 11653 }; 11654 11655 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11656 int offset) 11657 { 11658 __u32 *array = (__u32 *)info; 11659 11660 if (offset >= 0) 11661 return array[offset / sizeof(__u32)]; 11662 return -(int)offset; 11663 } 11664 11665 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11666 int offset) 11667 { 11668 __u64 *array = (__u64 *)info; 11669 11670 if (offset >= 0) 11671 return array[offset / sizeof(__u64)]; 11672 return -(int)offset; 11673 } 11674 11675 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11676 __u32 val) 11677 { 11678 __u32 *array = (__u32 *)info; 11679 11680 if (offset >= 0) 11681 array[offset / sizeof(__u32)] = val; 11682 } 11683 11684 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11685 __u64 val) 11686 { 11687 __u64 *array = (__u64 *)info; 11688 11689 if (offset >= 0) 11690 array[offset / sizeof(__u64)] = val; 11691 } 11692 11693 struct bpf_prog_info_linear * 11694 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11695 { 11696 struct bpf_prog_info_linear *info_linear; 11697 struct bpf_prog_info info = {}; 11698 __u32 info_len = sizeof(info); 11699 __u32 data_len = 0; 11700 int i, err; 11701 void *ptr; 11702 11703 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11704 return libbpf_err_ptr(-EINVAL); 11705 11706 /* step 1: get array dimensions */ 11707 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11708 if (err) { 11709 pr_debug("can't get prog info: %s", strerror(errno)); 11710 return libbpf_err_ptr(-EFAULT); 11711 } 11712 11713 /* step 2: calculate total size of all arrays */ 11714 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11715 bool include_array = (arrays & (1UL << i)) > 0; 11716 struct bpf_prog_info_array_desc *desc; 11717 __u32 count, size; 11718 11719 desc = bpf_prog_info_array_desc + i; 11720 11721 /* kernel is too old to support this field */ 11722 if (info_len < desc->array_offset + sizeof(__u32) || 11723 info_len < desc->count_offset + sizeof(__u32) || 11724 (desc->size_offset > 0 && info_len < desc->size_offset)) 11725 include_array = false; 11726 11727 if (!include_array) { 11728 arrays &= ~(1UL << i); /* clear the bit */ 11729 continue; 11730 } 11731 11732 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11733 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11734 11735 data_len += count * size; 11736 } 11737 11738 /* step 3: allocate continuous memory */ 11739 data_len = roundup(data_len, sizeof(__u64)); 11740 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11741 if (!info_linear) 11742 return libbpf_err_ptr(-ENOMEM); 11743 11744 /* step 4: fill data to info_linear->info */ 11745 info_linear->arrays = arrays; 11746 memset(&info_linear->info, 0, sizeof(info)); 11747 ptr = info_linear->data; 11748 11749 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11750 struct bpf_prog_info_array_desc *desc; 11751 __u32 count, size; 11752 11753 if ((arrays & (1UL << i)) == 0) 11754 continue; 11755 11756 desc = bpf_prog_info_array_desc + i; 11757 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11758 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11759 bpf_prog_info_set_offset_u32(&info_linear->info, 11760 desc->count_offset, count); 11761 bpf_prog_info_set_offset_u32(&info_linear->info, 11762 desc->size_offset, size); 11763 bpf_prog_info_set_offset_u64(&info_linear->info, 11764 desc->array_offset, 11765 ptr_to_u64(ptr)); 11766 ptr += count * size; 11767 } 11768 11769 /* step 5: call syscall again to get required arrays */ 11770 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11771 if (err) { 11772 pr_debug("can't get prog info: %s", strerror(errno)); 11773 free(info_linear); 11774 return libbpf_err_ptr(-EFAULT); 11775 } 11776 11777 /* step 6: verify the data */ 11778 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11779 struct bpf_prog_info_array_desc *desc; 11780 __u32 v1, v2; 11781 11782 if ((arrays & (1UL << i)) == 0) 11783 continue; 11784 11785 desc = bpf_prog_info_array_desc + i; 11786 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11787 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11788 desc->count_offset); 11789 if (v1 != v2) 11790 pr_warn("%s: mismatch in element count\n", __func__); 11791 11792 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11793 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11794 desc->size_offset); 11795 if (v1 != v2) 11796 pr_warn("%s: mismatch in rec size\n", __func__); 11797 } 11798 11799 /* step 7: update info_len and data_len */ 11800 info_linear->info_len = sizeof(struct bpf_prog_info); 11801 info_linear->data_len = data_len; 11802 11803 return info_linear; 11804 } 11805 11806 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11807 { 11808 int i; 11809 11810 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11811 struct bpf_prog_info_array_desc *desc; 11812 __u64 addr, offs; 11813 11814 if ((info_linear->arrays & (1UL << i)) == 0) 11815 continue; 11816 11817 desc = bpf_prog_info_array_desc + i; 11818 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11819 desc->array_offset); 11820 offs = addr - ptr_to_u64(info_linear->data); 11821 bpf_prog_info_set_offset_u64(&info_linear->info, 11822 desc->array_offset, offs); 11823 } 11824 } 11825 11826 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11827 { 11828 int i; 11829 11830 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11831 struct bpf_prog_info_array_desc *desc; 11832 __u64 addr, offs; 11833 11834 if ((info_linear->arrays & (1UL << i)) == 0) 11835 continue; 11836 11837 desc = bpf_prog_info_array_desc + i; 11838 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11839 desc->array_offset); 11840 addr = offs + ptr_to_u64(info_linear->data); 11841 bpf_prog_info_set_offset_u64(&info_linear->info, 11842 desc->array_offset, addr); 11843 } 11844 } 11845 11846 int bpf_program__set_attach_target(struct bpf_program *prog, 11847 int attach_prog_fd, 11848 const char *attach_func_name) 11849 { 11850 int btf_obj_fd = 0, btf_id = 0, err; 11851 11852 if (!prog || attach_prog_fd < 0) 11853 return libbpf_err(-EINVAL); 11854 11855 if (prog->obj->loaded) 11856 return libbpf_err(-EINVAL); 11857 11858 if (attach_prog_fd && !attach_func_name) { 11859 /* remember attach_prog_fd and let bpf_program__load() find 11860 * BTF ID during the program load 11861 */ 11862 prog->attach_prog_fd = attach_prog_fd; 11863 return 0; 11864 } 11865 11866 if (attach_prog_fd) { 11867 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11868 attach_prog_fd); 11869 if (btf_id < 0) 11870 return libbpf_err(btf_id); 11871 } else { 11872 if (!attach_func_name) 11873 return libbpf_err(-EINVAL); 11874 11875 /* load btf_vmlinux, if not yet */ 11876 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11877 if (err) 11878 return libbpf_err(err); 11879 err = find_kernel_btf_id(prog->obj, attach_func_name, 11880 prog->expected_attach_type, 11881 &btf_obj_fd, &btf_id); 11882 if (err) 11883 return libbpf_err(err); 11884 } 11885 11886 prog->attach_btf_id = btf_id; 11887 prog->attach_btf_obj_fd = btf_obj_fd; 11888 prog->attach_prog_fd = attach_prog_fd; 11889 return 0; 11890 } 11891 11892 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11893 { 11894 int err = 0, n, len, start, end = -1; 11895 bool *tmp; 11896 11897 *mask = NULL; 11898 *mask_sz = 0; 11899 11900 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11901 while (*s) { 11902 if (*s == ',' || *s == '\n') { 11903 s++; 11904 continue; 11905 } 11906 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11907 if (n <= 0 || n > 2) { 11908 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11909 err = -EINVAL; 11910 goto cleanup; 11911 } else if (n == 1) { 11912 end = start; 11913 } 11914 if (start < 0 || start > end) { 11915 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11916 start, end, s); 11917 err = -EINVAL; 11918 goto cleanup; 11919 } 11920 tmp = realloc(*mask, end + 1); 11921 if (!tmp) { 11922 err = -ENOMEM; 11923 goto cleanup; 11924 } 11925 *mask = tmp; 11926 memset(tmp + *mask_sz, 0, start - *mask_sz); 11927 memset(tmp + start, 1, end - start + 1); 11928 *mask_sz = end + 1; 11929 s += len; 11930 } 11931 if (!*mask_sz) { 11932 pr_warn("Empty CPU range\n"); 11933 return -EINVAL; 11934 } 11935 return 0; 11936 cleanup: 11937 free(*mask); 11938 *mask = NULL; 11939 return err; 11940 } 11941 11942 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11943 { 11944 int fd, err = 0, len; 11945 char buf[128]; 11946 11947 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11948 if (fd < 0) { 11949 err = -errno; 11950 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11951 return err; 11952 } 11953 len = read(fd, buf, sizeof(buf)); 11954 close(fd); 11955 if (len <= 0) { 11956 err = len ? -errno : -EINVAL; 11957 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11958 return err; 11959 } 11960 if (len >= sizeof(buf)) { 11961 pr_warn("CPU mask is too big in file %s\n", fcpu); 11962 return -E2BIG; 11963 } 11964 buf[len] = '\0'; 11965 11966 return parse_cpu_mask_str(buf, mask, mask_sz); 11967 } 11968 11969 int libbpf_num_possible_cpus(void) 11970 { 11971 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11972 static int cpus; 11973 int err, n, i, tmp_cpus; 11974 bool *mask; 11975 11976 tmp_cpus = READ_ONCE(cpus); 11977 if (tmp_cpus > 0) 11978 return tmp_cpus; 11979 11980 err = parse_cpu_mask_file(fcpu, &mask, &n); 11981 if (err) 11982 return libbpf_err(err); 11983 11984 tmp_cpus = 0; 11985 for (i = 0; i < n; i++) { 11986 if (mask[i]) 11987 tmp_cpus++; 11988 } 11989 free(mask); 11990 11991 WRITE_ONCE(cpus, tmp_cpus); 11992 return tmp_cpus; 11993 } 11994 11995 static int populate_skeleton_maps(const struct bpf_object *obj, 11996 struct bpf_map_skeleton *maps, 11997 size_t map_cnt) 11998 { 11999 int i; 12000 12001 for (i = 0; i < map_cnt; i++) { 12002 struct bpf_map **map = maps[i].map; 12003 const char *name = maps[i].name; 12004 void **mmaped = maps[i].mmaped; 12005 12006 *map = bpf_object__find_map_by_name(obj, name); 12007 if (!*map) { 12008 pr_warn("failed to find skeleton map '%s'\n", name); 12009 return -ESRCH; 12010 } 12011 12012 /* externs shouldn't be pre-setup from user code */ 12013 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12014 *mmaped = (*map)->mmaped; 12015 } 12016 return 0; 12017 } 12018 12019 static int populate_skeleton_progs(const struct bpf_object *obj, 12020 struct bpf_prog_skeleton *progs, 12021 size_t prog_cnt) 12022 { 12023 int i; 12024 12025 for (i = 0; i < prog_cnt; i++) { 12026 struct bpf_program **prog = progs[i].prog; 12027 const char *name = progs[i].name; 12028 12029 *prog = bpf_object__find_program_by_name(obj, name); 12030 if (!*prog) { 12031 pr_warn("failed to find skeleton program '%s'\n", name); 12032 return -ESRCH; 12033 } 12034 } 12035 return 0; 12036 } 12037 12038 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12039 const struct bpf_object_open_opts *opts) 12040 { 12041 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12042 .object_name = s->name, 12043 ); 12044 struct bpf_object *obj; 12045 int err; 12046 12047 /* Attempt to preserve opts->object_name, unless overriden by user 12048 * explicitly. Overwriting object name for skeletons is discouraged, 12049 * as it breaks global data maps, because they contain object name 12050 * prefix as their own map name prefix. When skeleton is generated, 12051 * bpftool is making an assumption that this name will stay the same. 12052 */ 12053 if (opts) { 12054 memcpy(&skel_opts, opts, sizeof(*opts)); 12055 if (!opts->object_name) 12056 skel_opts.object_name = s->name; 12057 } 12058 12059 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12060 err = libbpf_get_error(obj); 12061 if (err) { 12062 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12063 s->name, err); 12064 return libbpf_err(err); 12065 } 12066 12067 *s->obj = obj; 12068 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12069 if (err) { 12070 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12071 return libbpf_err(err); 12072 } 12073 12074 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12075 if (err) { 12076 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12077 return libbpf_err(err); 12078 } 12079 12080 return 0; 12081 } 12082 12083 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12084 { 12085 int err, len, var_idx, i; 12086 const char *var_name; 12087 const struct bpf_map *map; 12088 struct btf *btf; 12089 __u32 map_type_id; 12090 const struct btf_type *map_type, *var_type; 12091 const struct bpf_var_skeleton *var_skel; 12092 struct btf_var_secinfo *var; 12093 12094 if (!s->obj) 12095 return libbpf_err(-EINVAL); 12096 12097 btf = bpf_object__btf(s->obj); 12098 if (!btf) { 12099 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12100 bpf_object__name(s->obj)); 12101 return libbpf_err(-errno); 12102 } 12103 12104 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12105 if (err) { 12106 pr_warn("failed to populate subskeleton maps: %d\n", err); 12107 return libbpf_err(err); 12108 } 12109 12110 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12111 if (err) { 12112 pr_warn("failed to populate subskeleton maps: %d\n", err); 12113 return libbpf_err(err); 12114 } 12115 12116 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12117 var_skel = &s->vars[var_idx]; 12118 map = *var_skel->map; 12119 map_type_id = bpf_map__btf_value_type_id(map); 12120 map_type = btf__type_by_id(btf, map_type_id); 12121 12122 if (!btf_is_datasec(map_type)) { 12123 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12124 bpf_map__name(map), 12125 __btf_kind_str(btf_kind(map_type))); 12126 return libbpf_err(-EINVAL); 12127 } 12128 12129 len = btf_vlen(map_type); 12130 var = btf_var_secinfos(map_type); 12131 for (i = 0; i < len; i++, var++) { 12132 var_type = btf__type_by_id(btf, var->type); 12133 var_name = btf__name_by_offset(btf, var_type->name_off); 12134 if (strcmp(var_name, var_skel->name) == 0) { 12135 *var_skel->addr = map->mmaped + var->offset; 12136 break; 12137 } 12138 } 12139 } 12140 return 0; 12141 } 12142 12143 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12144 { 12145 if (!s) 12146 return; 12147 free(s->maps); 12148 free(s->progs); 12149 free(s->vars); 12150 free(s); 12151 } 12152 12153 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12154 { 12155 int i, err; 12156 12157 err = bpf_object__load(*s->obj); 12158 if (err) { 12159 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12160 return libbpf_err(err); 12161 } 12162 12163 for (i = 0; i < s->map_cnt; i++) { 12164 struct bpf_map *map = *s->maps[i].map; 12165 size_t mmap_sz = bpf_map_mmap_sz(map); 12166 int prot, map_fd = bpf_map__fd(map); 12167 void **mmaped = s->maps[i].mmaped; 12168 12169 if (!mmaped) 12170 continue; 12171 12172 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12173 *mmaped = NULL; 12174 continue; 12175 } 12176 12177 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12178 prot = PROT_READ; 12179 else 12180 prot = PROT_READ | PROT_WRITE; 12181 12182 /* Remap anonymous mmap()-ed "map initialization image" as 12183 * a BPF map-backed mmap()-ed memory, but preserving the same 12184 * memory address. This will cause kernel to change process' 12185 * page table to point to a different piece of kernel memory, 12186 * but from userspace point of view memory address (and its 12187 * contents, being identical at this point) will stay the 12188 * same. This mapping will be released by bpf_object__close() 12189 * as per normal clean up procedure, so we don't need to worry 12190 * about it from skeleton's clean up perspective. 12191 */ 12192 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12193 MAP_SHARED | MAP_FIXED, map_fd, 0); 12194 if (*mmaped == MAP_FAILED) { 12195 err = -errno; 12196 *mmaped = NULL; 12197 pr_warn("failed to re-mmap() map '%s': %d\n", 12198 bpf_map__name(map), err); 12199 return libbpf_err(err); 12200 } 12201 } 12202 12203 return 0; 12204 } 12205 12206 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12207 { 12208 int i, err; 12209 12210 for (i = 0; i < s->prog_cnt; i++) { 12211 struct bpf_program *prog = *s->progs[i].prog; 12212 struct bpf_link **link = s->progs[i].link; 12213 12214 if (!prog->load) 12215 continue; 12216 12217 /* auto-attaching not supported for this program */ 12218 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12219 continue; 12220 12221 /* if user already set the link manually, don't attempt auto-attach */ 12222 if (*link) 12223 continue; 12224 12225 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12226 if (err) { 12227 pr_warn("prog '%s': failed to auto-attach: %d\n", 12228 bpf_program__name(prog), err); 12229 return libbpf_err(err); 12230 } 12231 12232 /* It's possible that for some SEC() definitions auto-attach 12233 * is supported in some cases (e.g., if definition completely 12234 * specifies target information), but is not in other cases. 12235 * SEC("uprobe") is one such case. If user specified target 12236 * binary and function name, such BPF program can be 12237 * auto-attached. But if not, it shouldn't trigger skeleton's 12238 * attach to fail. It should just be skipped. 12239 * attach_fn signals such case with returning 0 (no error) and 12240 * setting link to NULL. 12241 */ 12242 } 12243 12244 return 0; 12245 } 12246 12247 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12248 { 12249 int i; 12250 12251 for (i = 0; i < s->prog_cnt; i++) { 12252 struct bpf_link **link = s->progs[i].link; 12253 12254 bpf_link__destroy(*link); 12255 *link = NULL; 12256 } 12257 } 12258 12259 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12260 { 12261 if (!s) 12262 return; 12263 12264 if (s->progs) 12265 bpf_object__detach_skeleton(s); 12266 if (s->obj) 12267 bpf_object__close(*s->obj); 12268 free(s->maps); 12269 free(s->progs); 12270 free(s); 12271 } 12272