1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 libbpf_mode = mode; 160 return 0; 161 } 162 163 __u32 libbpf_major_version(void) 164 { 165 return LIBBPF_MAJOR_VERSION; 166 } 167 168 __u32 libbpf_minor_version(void) 169 { 170 return LIBBPF_MINOR_VERSION; 171 } 172 173 const char *libbpf_version_string(void) 174 { 175 #define __S(X) #X 176 #define _S(X) __S(X) 177 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 178 #undef _S 179 #undef __S 180 } 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN_VAR, 187 RELO_EXTERN_FUNC, 188 RELO_SUBPROG_ADDR, 189 RELO_CORE, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 union { 196 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 197 struct { 198 int map_idx; 199 int sym_off; 200 }; 201 }; 202 }; 203 204 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 205 enum sec_def_flags { 206 SEC_NONE = 0, 207 /* expected_attach_type is optional, if kernel doesn't support that */ 208 SEC_EXP_ATTACH_OPT = 1, 209 /* legacy, only used by libbpf_get_type_names() and 210 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 211 * This used to be associated with cgroup (and few other) BPF programs 212 * that were attachable through BPF_PROG_ATTACH command. Pretty 213 * meaningless nowadays, though. 214 */ 215 SEC_ATTACHABLE = 2, 216 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 217 /* attachment target is specified through BTF ID in either kernel or 218 * other BPF program's BTF object */ 219 SEC_ATTACH_BTF = 4, 220 /* BPF program type allows sleeping/blocking in kernel */ 221 SEC_SLEEPABLE = 8, 222 /* allow non-strict prefix matching */ 223 SEC_SLOPPY_PFX = 16, 224 /* BPF program support non-linear XDP buffer */ 225 SEC_XDP_FRAGS = 32, 226 /* deprecated sec definitions not supposed to be used */ 227 SEC_DEPRECATED = 64, 228 }; 229 230 struct bpf_sec_def { 231 char *sec; 232 enum bpf_prog_type prog_type; 233 enum bpf_attach_type expected_attach_type; 234 long cookie; 235 int handler_id; 236 237 libbpf_prog_setup_fn_t prog_setup_fn; 238 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 239 libbpf_prog_attach_fn_t prog_attach_fn; 240 }; 241 242 /* 243 * bpf_prog should be a better name but it has been used in 244 * linux/filter.h. 245 */ 246 struct bpf_program { 247 const struct bpf_sec_def *sec_def; 248 char *sec_name; 249 size_t sec_idx; 250 /* this program's instruction offset (in number of instructions) 251 * within its containing ELF section 252 */ 253 size_t sec_insn_off; 254 /* number of original instructions in ELF section belonging to this 255 * program, not taking into account subprogram instructions possible 256 * appended later during relocation 257 */ 258 size_t sec_insn_cnt; 259 /* Offset (in number of instructions) of the start of instruction 260 * belonging to this BPF program within its containing main BPF 261 * program. For the entry-point (main) BPF program, this is always 262 * zero. For a sub-program, this gets reset before each of main BPF 263 * programs are processed and relocated and is used to determined 264 * whether sub-program was already appended to the main program, and 265 * if yes, at which instruction offset. 266 */ 267 size_t sub_insn_off; 268 269 char *name; 270 /* name with / replaced by _; makes recursive pinning 271 * in bpf_object__pin_programs easier 272 */ 273 char *pin_name; 274 275 /* instructions that belong to BPF program; insns[0] is located at 276 * sec_insn_off instruction within its ELF section in ELF file, so 277 * when mapping ELF file instruction index to the local instruction, 278 * one needs to subtract sec_insn_off; and vice versa. 279 */ 280 struct bpf_insn *insns; 281 /* actual number of instruction in this BPF program's image; for 282 * entry-point BPF programs this includes the size of main program 283 * itself plus all the used sub-programs, appended at the end 284 */ 285 size_t insns_cnt; 286 287 struct reloc_desc *reloc_desc; 288 int nr_reloc; 289 290 /* BPF verifier log settings */ 291 char *log_buf; 292 size_t log_size; 293 __u32 log_level; 294 295 struct { 296 int nr; 297 int *fds; 298 } instances; 299 bpf_program_prep_t preprocessor; 300 301 struct bpf_object *obj; 302 void *priv; 303 bpf_program_clear_priv_t clear_priv; 304 305 bool autoload; 306 bool mark_btf_static; 307 enum bpf_prog_type type; 308 enum bpf_attach_type expected_attach_type; 309 int prog_ifindex; 310 __u32 attach_btf_obj_fd; 311 __u32 attach_btf_id; 312 __u32 attach_prog_fd; 313 void *func_info; 314 __u32 func_info_rec_size; 315 __u32 func_info_cnt; 316 317 void *line_info; 318 __u32 line_info_rec_size; 319 __u32 line_info_cnt; 320 __u32 prog_flags; 321 }; 322 323 struct bpf_struct_ops { 324 const char *tname; 325 const struct btf_type *type; 326 struct bpf_program **progs; 327 __u32 *kern_func_off; 328 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 329 void *data; 330 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 331 * btf_vmlinux's format. 332 * struct bpf_struct_ops_tcp_congestion_ops { 333 * [... some other kernel fields ...] 334 * struct tcp_congestion_ops data; 335 * } 336 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 337 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 338 * from "data". 339 */ 340 void *kern_vdata; 341 __u32 type_id; 342 }; 343 344 #define DATA_SEC ".data" 345 #define BSS_SEC ".bss" 346 #define RODATA_SEC ".rodata" 347 #define KCONFIG_SEC ".kconfig" 348 #define KSYMS_SEC ".ksyms" 349 #define STRUCT_OPS_SEC ".struct_ops" 350 351 enum libbpf_map_type { 352 LIBBPF_MAP_UNSPEC, 353 LIBBPF_MAP_DATA, 354 LIBBPF_MAP_BSS, 355 LIBBPF_MAP_RODATA, 356 LIBBPF_MAP_KCONFIG, 357 }; 358 359 struct bpf_map { 360 struct bpf_object *obj; 361 char *name; 362 /* real_name is defined for special internal maps (.rodata*, 363 * .data*, .bss, .kconfig) and preserves their original ELF section 364 * name. This is important to be be able to find corresponding BTF 365 * DATASEC information. 366 */ 367 char *real_name; 368 int fd; 369 int sec_idx; 370 size_t sec_offset; 371 int map_ifindex; 372 int inner_map_fd; 373 struct bpf_map_def def; 374 __u32 numa_node; 375 __u32 btf_var_idx; 376 __u32 btf_key_type_id; 377 __u32 btf_value_type_id; 378 __u32 btf_vmlinux_value_type_id; 379 void *priv; 380 bpf_map_clear_priv_t clear_priv; 381 enum libbpf_map_type libbpf_type; 382 void *mmaped; 383 struct bpf_struct_ops *st_ops; 384 struct bpf_map *inner_map; 385 void **init_slots; 386 int init_slots_sz; 387 char *pin_path; 388 bool pinned; 389 bool reused; 390 bool autocreate; 391 __u64 map_extra; 392 }; 393 394 enum extern_type { 395 EXT_UNKNOWN, 396 EXT_KCFG, 397 EXT_KSYM, 398 }; 399 400 enum kcfg_type { 401 KCFG_UNKNOWN, 402 KCFG_CHAR, 403 KCFG_BOOL, 404 KCFG_INT, 405 KCFG_TRISTATE, 406 KCFG_CHAR_ARR, 407 }; 408 409 struct extern_desc { 410 enum extern_type type; 411 int sym_idx; 412 int btf_id; 413 int sec_btf_id; 414 const char *name; 415 bool is_set; 416 bool is_weak; 417 union { 418 struct { 419 enum kcfg_type type; 420 int sz; 421 int align; 422 int data_off; 423 bool is_signed; 424 } kcfg; 425 struct { 426 unsigned long long addr; 427 428 /* target btf_id of the corresponding kernel var. */ 429 int kernel_btf_obj_fd; 430 int kernel_btf_id; 431 432 /* local btf_id of the ksym extern's type. */ 433 __u32 type_id; 434 /* BTF fd index to be patched in for insn->off, this is 435 * 0 for vmlinux BTF, index in obj->fd_array for module 436 * BTF 437 */ 438 __s16 btf_fd_idx; 439 } ksym; 440 }; 441 }; 442 443 static LIST_HEAD(bpf_objects_list); 444 445 struct module_btf { 446 struct btf *btf; 447 char *name; 448 __u32 id; 449 int fd; 450 int fd_array_idx; 451 }; 452 453 enum sec_type { 454 SEC_UNUSED = 0, 455 SEC_RELO, 456 SEC_BSS, 457 SEC_DATA, 458 SEC_RODATA, 459 }; 460 461 struct elf_sec_desc { 462 enum sec_type sec_type; 463 Elf64_Shdr *shdr; 464 Elf_Data *data; 465 }; 466 467 struct elf_state { 468 int fd; 469 const void *obj_buf; 470 size_t obj_buf_sz; 471 Elf *elf; 472 Elf64_Ehdr *ehdr; 473 Elf_Data *symbols; 474 Elf_Data *st_ops_data; 475 size_t shstrndx; /* section index for section name strings */ 476 size_t strtabidx; 477 struct elf_sec_desc *secs; 478 int sec_cnt; 479 int maps_shndx; 480 int btf_maps_shndx; 481 __u32 btf_maps_sec_btf_id; 482 int text_shndx; 483 int symbols_shndx; 484 int st_ops_shndx; 485 }; 486 487 struct usdt_manager; 488 489 struct bpf_object { 490 char name[BPF_OBJ_NAME_LEN]; 491 char license[64]; 492 __u32 kern_version; 493 494 struct bpf_program *programs; 495 size_t nr_programs; 496 struct bpf_map *maps; 497 size_t nr_maps; 498 size_t maps_cap; 499 500 char *kconfig; 501 struct extern_desc *externs; 502 int nr_extern; 503 int kconfig_map_idx; 504 505 bool loaded; 506 bool has_subcalls; 507 bool has_rodata; 508 509 struct bpf_gen *gen_loader; 510 511 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 512 struct elf_state efile; 513 /* 514 * All loaded bpf_object are linked in a list, which is 515 * hidden to caller. bpf_objects__<func> handlers deal with 516 * all objects. 517 */ 518 struct list_head list; 519 520 struct btf *btf; 521 struct btf_ext *btf_ext; 522 523 /* Parse and load BTF vmlinux if any of the programs in the object need 524 * it at load time. 525 */ 526 struct btf *btf_vmlinux; 527 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 528 * override for vmlinux BTF. 529 */ 530 char *btf_custom_path; 531 /* vmlinux BTF override for CO-RE relocations */ 532 struct btf *btf_vmlinux_override; 533 /* Lazily initialized kernel module BTFs */ 534 struct module_btf *btf_modules; 535 bool btf_modules_loaded; 536 size_t btf_module_cnt; 537 size_t btf_module_cap; 538 539 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 540 char *log_buf; 541 size_t log_size; 542 __u32 log_level; 543 544 void *priv; 545 bpf_object_clear_priv_t clear_priv; 546 547 int *fd_array; 548 size_t fd_array_cap; 549 size_t fd_array_cnt; 550 551 struct usdt_manager *usdt_man; 552 553 char path[]; 554 }; 555 556 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 557 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 558 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 559 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 560 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 561 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 562 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 563 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 564 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 565 566 void bpf_program__unload(struct bpf_program *prog) 567 { 568 int i; 569 570 if (!prog) 571 return; 572 573 /* 574 * If the object is opened but the program was never loaded, 575 * it is possible that prog->instances.nr == -1. 576 */ 577 if (prog->instances.nr > 0) { 578 for (i = 0; i < prog->instances.nr; i++) 579 zclose(prog->instances.fds[i]); 580 } else if (prog->instances.nr != -1) { 581 pr_warn("Internal error: instances.nr is %d\n", 582 prog->instances.nr); 583 } 584 585 prog->instances.nr = -1; 586 zfree(&prog->instances.fds); 587 588 zfree(&prog->func_info); 589 zfree(&prog->line_info); 590 } 591 592 static void bpf_program__exit(struct bpf_program *prog) 593 { 594 if (!prog) 595 return; 596 597 if (prog->clear_priv) 598 prog->clear_priv(prog, prog->priv); 599 600 prog->priv = NULL; 601 prog->clear_priv = NULL; 602 603 bpf_program__unload(prog); 604 zfree(&prog->name); 605 zfree(&prog->sec_name); 606 zfree(&prog->pin_name); 607 zfree(&prog->insns); 608 zfree(&prog->reloc_desc); 609 610 prog->nr_reloc = 0; 611 prog->insns_cnt = 0; 612 prog->sec_idx = -1; 613 } 614 615 static char *__bpf_program__pin_name(struct bpf_program *prog) 616 { 617 char *name, *p; 618 619 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 620 name = strdup(prog->name); 621 else 622 name = strdup(prog->sec_name); 623 624 if (!name) 625 return NULL; 626 627 p = name; 628 629 while ((p = strchr(p, '/'))) 630 *p = '_'; 631 632 return name; 633 } 634 635 static bool insn_is_subprog_call(const struct bpf_insn *insn) 636 { 637 return BPF_CLASS(insn->code) == BPF_JMP && 638 BPF_OP(insn->code) == BPF_CALL && 639 BPF_SRC(insn->code) == BPF_K && 640 insn->src_reg == BPF_PSEUDO_CALL && 641 insn->dst_reg == 0 && 642 insn->off == 0; 643 } 644 645 static bool is_call_insn(const struct bpf_insn *insn) 646 { 647 return insn->code == (BPF_JMP | BPF_CALL); 648 } 649 650 static bool insn_is_pseudo_func(struct bpf_insn *insn) 651 { 652 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 653 } 654 655 static int 656 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 657 const char *name, size_t sec_idx, const char *sec_name, 658 size_t sec_off, void *insn_data, size_t insn_data_sz) 659 { 660 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 661 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 662 sec_name, name, sec_off, insn_data_sz); 663 return -EINVAL; 664 } 665 666 memset(prog, 0, sizeof(*prog)); 667 prog->obj = obj; 668 669 prog->sec_idx = sec_idx; 670 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 671 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 672 /* insns_cnt can later be increased by appending used subprograms */ 673 prog->insns_cnt = prog->sec_insn_cnt; 674 675 prog->type = BPF_PROG_TYPE_UNSPEC; 676 677 /* libbpf's convention for SEC("?abc...") is that it's just like 678 * SEC("abc...") but the corresponding bpf_program starts out with 679 * autoload set to false. 680 */ 681 if (sec_name[0] == '?') { 682 prog->autoload = false; 683 /* from now on forget there was ? in section name */ 684 sec_name++; 685 } else { 686 prog->autoload = true; 687 } 688 689 prog->instances.fds = NULL; 690 prog->instances.nr = -1; 691 692 /* inherit object's log_level */ 693 prog->log_level = obj->log_level; 694 695 prog->sec_name = strdup(sec_name); 696 if (!prog->sec_name) 697 goto errout; 698 699 prog->name = strdup(name); 700 if (!prog->name) 701 goto errout; 702 703 prog->pin_name = __bpf_program__pin_name(prog); 704 if (!prog->pin_name) 705 goto errout; 706 707 prog->insns = malloc(insn_data_sz); 708 if (!prog->insns) 709 goto errout; 710 memcpy(prog->insns, insn_data, insn_data_sz); 711 712 return 0; 713 errout: 714 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 715 bpf_program__exit(prog); 716 return -ENOMEM; 717 } 718 719 static int 720 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 721 const char *sec_name, int sec_idx) 722 { 723 Elf_Data *symbols = obj->efile.symbols; 724 struct bpf_program *prog, *progs; 725 void *data = sec_data->d_buf; 726 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 727 int nr_progs, err, i; 728 const char *name; 729 Elf64_Sym *sym; 730 731 progs = obj->programs; 732 nr_progs = obj->nr_programs; 733 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 734 sec_off = 0; 735 736 for (i = 0; i < nr_syms; i++) { 737 sym = elf_sym_by_idx(obj, i); 738 739 if (sym->st_shndx != sec_idx) 740 continue; 741 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 742 continue; 743 744 prog_sz = sym->st_size; 745 sec_off = sym->st_value; 746 747 name = elf_sym_str(obj, sym->st_name); 748 if (!name) { 749 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 750 sec_name, sec_off); 751 return -LIBBPF_ERRNO__FORMAT; 752 } 753 754 if (sec_off + prog_sz > sec_sz) { 755 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 756 sec_name, sec_off); 757 return -LIBBPF_ERRNO__FORMAT; 758 } 759 760 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 761 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 762 return -ENOTSUP; 763 } 764 765 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 766 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 767 768 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 769 if (!progs) { 770 /* 771 * In this case the original obj->programs 772 * is still valid, so don't need special treat for 773 * bpf_close_object(). 774 */ 775 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 776 sec_name, name); 777 return -ENOMEM; 778 } 779 obj->programs = progs; 780 781 prog = &progs[nr_progs]; 782 783 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 784 sec_off, data + sec_off, prog_sz); 785 if (err) 786 return err; 787 788 /* if function is a global/weak symbol, but has restricted 789 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 790 * as static to enable more permissive BPF verification mode 791 * with more outside context available to BPF verifier 792 */ 793 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 794 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 795 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 796 prog->mark_btf_static = true; 797 798 nr_progs++; 799 obj->nr_programs = nr_progs; 800 } 801 802 return 0; 803 } 804 805 __u32 get_kernel_version(void) 806 { 807 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 808 * but Ubuntu provides /proc/version_signature file, as described at 809 * https://ubuntu.com/kernel, with an example contents below, which we 810 * can use to get a proper LINUX_VERSION_CODE. 811 * 812 * Ubuntu 5.4.0-12.15-generic 5.4.8 813 * 814 * In the above, 5.4.8 is what kernel is actually expecting, while 815 * uname() call will return 5.4.0 in info.release. 816 */ 817 const char *ubuntu_kver_file = "/proc/version_signature"; 818 __u32 major, minor, patch; 819 struct utsname info; 820 821 if (access(ubuntu_kver_file, R_OK) == 0) { 822 FILE *f; 823 824 f = fopen(ubuntu_kver_file, "r"); 825 if (f) { 826 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 827 fclose(f); 828 return KERNEL_VERSION(major, minor, patch); 829 } 830 fclose(f); 831 } 832 /* something went wrong, fall back to uname() approach */ 833 } 834 835 uname(&info); 836 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 837 return 0; 838 return KERNEL_VERSION(major, minor, patch); 839 } 840 841 static const struct btf_member * 842 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 843 { 844 struct btf_member *m; 845 int i; 846 847 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 848 if (btf_member_bit_offset(t, i) == bit_offset) 849 return m; 850 } 851 852 return NULL; 853 } 854 855 static const struct btf_member * 856 find_member_by_name(const struct btf *btf, const struct btf_type *t, 857 const char *name) 858 { 859 struct btf_member *m; 860 int i; 861 862 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 863 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 864 return m; 865 } 866 867 return NULL; 868 } 869 870 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 871 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 872 const char *name, __u32 kind); 873 874 static int 875 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 876 const struct btf_type **type, __u32 *type_id, 877 const struct btf_type **vtype, __u32 *vtype_id, 878 const struct btf_member **data_member) 879 { 880 const struct btf_type *kern_type, *kern_vtype; 881 const struct btf_member *kern_data_member; 882 __s32 kern_vtype_id, kern_type_id; 883 __u32 i; 884 885 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 886 if (kern_type_id < 0) { 887 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 888 tname); 889 return kern_type_id; 890 } 891 kern_type = btf__type_by_id(btf, kern_type_id); 892 893 /* Find the corresponding "map_value" type that will be used 894 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 895 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 896 * btf_vmlinux. 897 */ 898 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 899 tname, BTF_KIND_STRUCT); 900 if (kern_vtype_id < 0) { 901 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 902 STRUCT_OPS_VALUE_PREFIX, tname); 903 return kern_vtype_id; 904 } 905 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 906 907 /* Find "struct tcp_congestion_ops" from 908 * struct bpf_struct_ops_tcp_congestion_ops { 909 * [ ... ] 910 * struct tcp_congestion_ops data; 911 * } 912 */ 913 kern_data_member = btf_members(kern_vtype); 914 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 915 if (kern_data_member->type == kern_type_id) 916 break; 917 } 918 if (i == btf_vlen(kern_vtype)) { 919 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 920 tname, STRUCT_OPS_VALUE_PREFIX, tname); 921 return -EINVAL; 922 } 923 924 *type = kern_type; 925 *type_id = kern_type_id; 926 *vtype = kern_vtype; 927 *vtype_id = kern_vtype_id; 928 *data_member = kern_data_member; 929 930 return 0; 931 } 932 933 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 934 { 935 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 936 } 937 938 /* Init the map's fields that depend on kern_btf */ 939 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 940 const struct btf *btf, 941 const struct btf *kern_btf) 942 { 943 const struct btf_member *member, *kern_member, *kern_data_member; 944 const struct btf_type *type, *kern_type, *kern_vtype; 945 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 946 struct bpf_struct_ops *st_ops; 947 void *data, *kern_data; 948 const char *tname; 949 int err; 950 951 st_ops = map->st_ops; 952 type = st_ops->type; 953 tname = st_ops->tname; 954 err = find_struct_ops_kern_types(kern_btf, tname, 955 &kern_type, &kern_type_id, 956 &kern_vtype, &kern_vtype_id, 957 &kern_data_member); 958 if (err) 959 return err; 960 961 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 962 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 963 964 map->def.value_size = kern_vtype->size; 965 map->btf_vmlinux_value_type_id = kern_vtype_id; 966 967 st_ops->kern_vdata = calloc(1, kern_vtype->size); 968 if (!st_ops->kern_vdata) 969 return -ENOMEM; 970 971 data = st_ops->data; 972 kern_data_off = kern_data_member->offset / 8; 973 kern_data = st_ops->kern_vdata + kern_data_off; 974 975 member = btf_members(type); 976 for (i = 0; i < btf_vlen(type); i++, member++) { 977 const struct btf_type *mtype, *kern_mtype; 978 __u32 mtype_id, kern_mtype_id; 979 void *mdata, *kern_mdata; 980 __s64 msize, kern_msize; 981 __u32 moff, kern_moff; 982 __u32 kern_member_idx; 983 const char *mname; 984 985 mname = btf__name_by_offset(btf, member->name_off); 986 kern_member = find_member_by_name(kern_btf, kern_type, mname); 987 if (!kern_member) { 988 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 989 map->name, mname); 990 return -ENOTSUP; 991 } 992 993 kern_member_idx = kern_member - btf_members(kern_type); 994 if (btf_member_bitfield_size(type, i) || 995 btf_member_bitfield_size(kern_type, kern_member_idx)) { 996 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 997 map->name, mname); 998 return -ENOTSUP; 999 } 1000 1001 moff = member->offset / 8; 1002 kern_moff = kern_member->offset / 8; 1003 1004 mdata = data + moff; 1005 kern_mdata = kern_data + kern_moff; 1006 1007 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1008 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1009 &kern_mtype_id); 1010 if (BTF_INFO_KIND(mtype->info) != 1011 BTF_INFO_KIND(kern_mtype->info)) { 1012 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1013 map->name, mname, BTF_INFO_KIND(mtype->info), 1014 BTF_INFO_KIND(kern_mtype->info)); 1015 return -ENOTSUP; 1016 } 1017 1018 if (btf_is_ptr(mtype)) { 1019 struct bpf_program *prog; 1020 1021 prog = st_ops->progs[i]; 1022 if (!prog) 1023 continue; 1024 1025 kern_mtype = skip_mods_and_typedefs(kern_btf, 1026 kern_mtype->type, 1027 &kern_mtype_id); 1028 1029 /* mtype->type must be a func_proto which was 1030 * guaranteed in bpf_object__collect_st_ops_relos(), 1031 * so only check kern_mtype for func_proto here. 1032 */ 1033 if (!btf_is_func_proto(kern_mtype)) { 1034 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1035 map->name, mname); 1036 return -ENOTSUP; 1037 } 1038 1039 prog->attach_btf_id = kern_type_id; 1040 prog->expected_attach_type = kern_member_idx; 1041 1042 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1043 1044 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1045 map->name, mname, prog->name, moff, 1046 kern_moff); 1047 1048 continue; 1049 } 1050 1051 msize = btf__resolve_size(btf, mtype_id); 1052 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1053 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1054 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1055 map->name, mname, (ssize_t)msize, 1056 (ssize_t)kern_msize); 1057 return -ENOTSUP; 1058 } 1059 1060 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1061 map->name, mname, (unsigned int)msize, 1062 moff, kern_moff); 1063 memcpy(kern_mdata, mdata, msize); 1064 } 1065 1066 return 0; 1067 } 1068 1069 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1070 { 1071 struct bpf_map *map; 1072 size_t i; 1073 int err; 1074 1075 for (i = 0; i < obj->nr_maps; i++) { 1076 map = &obj->maps[i]; 1077 1078 if (!bpf_map__is_struct_ops(map)) 1079 continue; 1080 1081 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1082 obj->btf_vmlinux); 1083 if (err) 1084 return err; 1085 } 1086 1087 return 0; 1088 } 1089 1090 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1091 { 1092 const struct btf_type *type, *datasec; 1093 const struct btf_var_secinfo *vsi; 1094 struct bpf_struct_ops *st_ops; 1095 const char *tname, *var_name; 1096 __s32 type_id, datasec_id; 1097 const struct btf *btf; 1098 struct bpf_map *map; 1099 __u32 i; 1100 1101 if (obj->efile.st_ops_shndx == -1) 1102 return 0; 1103 1104 btf = obj->btf; 1105 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1106 BTF_KIND_DATASEC); 1107 if (datasec_id < 0) { 1108 pr_warn("struct_ops init: DATASEC %s not found\n", 1109 STRUCT_OPS_SEC); 1110 return -EINVAL; 1111 } 1112 1113 datasec = btf__type_by_id(btf, datasec_id); 1114 vsi = btf_var_secinfos(datasec); 1115 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1116 type = btf__type_by_id(obj->btf, vsi->type); 1117 var_name = btf__name_by_offset(obj->btf, type->name_off); 1118 1119 type_id = btf__resolve_type(obj->btf, vsi->type); 1120 if (type_id < 0) { 1121 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1122 vsi->type, STRUCT_OPS_SEC); 1123 return -EINVAL; 1124 } 1125 1126 type = btf__type_by_id(obj->btf, type_id); 1127 tname = btf__name_by_offset(obj->btf, type->name_off); 1128 if (!tname[0]) { 1129 pr_warn("struct_ops init: anonymous type is not supported\n"); 1130 return -ENOTSUP; 1131 } 1132 if (!btf_is_struct(type)) { 1133 pr_warn("struct_ops init: %s is not a struct\n", tname); 1134 return -EINVAL; 1135 } 1136 1137 map = bpf_object__add_map(obj); 1138 if (IS_ERR(map)) 1139 return PTR_ERR(map); 1140 1141 map->sec_idx = obj->efile.st_ops_shndx; 1142 map->sec_offset = vsi->offset; 1143 map->name = strdup(var_name); 1144 if (!map->name) 1145 return -ENOMEM; 1146 1147 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1148 map->def.key_size = sizeof(int); 1149 map->def.value_size = type->size; 1150 map->def.max_entries = 1; 1151 1152 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1153 if (!map->st_ops) 1154 return -ENOMEM; 1155 st_ops = map->st_ops; 1156 st_ops->data = malloc(type->size); 1157 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1158 st_ops->kern_func_off = malloc(btf_vlen(type) * 1159 sizeof(*st_ops->kern_func_off)); 1160 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1161 return -ENOMEM; 1162 1163 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1164 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1165 var_name, STRUCT_OPS_SEC); 1166 return -EINVAL; 1167 } 1168 1169 memcpy(st_ops->data, 1170 obj->efile.st_ops_data->d_buf + vsi->offset, 1171 type->size); 1172 st_ops->tname = tname; 1173 st_ops->type = type; 1174 st_ops->type_id = type_id; 1175 1176 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1177 tname, type_id, var_name, vsi->offset); 1178 } 1179 1180 return 0; 1181 } 1182 1183 static struct bpf_object *bpf_object__new(const char *path, 1184 const void *obj_buf, 1185 size_t obj_buf_sz, 1186 const char *obj_name) 1187 { 1188 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1189 struct bpf_object *obj; 1190 char *end; 1191 1192 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1193 if (!obj) { 1194 pr_warn("alloc memory failed for %s\n", path); 1195 return ERR_PTR(-ENOMEM); 1196 } 1197 1198 strcpy(obj->path, path); 1199 if (obj_name) { 1200 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1201 } else { 1202 /* Using basename() GNU version which doesn't modify arg. */ 1203 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1204 end = strchr(obj->name, '.'); 1205 if (end) 1206 *end = 0; 1207 } 1208 1209 obj->efile.fd = -1; 1210 /* 1211 * Caller of this function should also call 1212 * bpf_object__elf_finish() after data collection to return 1213 * obj_buf to user. If not, we should duplicate the buffer to 1214 * avoid user freeing them before elf finish. 1215 */ 1216 obj->efile.obj_buf = obj_buf; 1217 obj->efile.obj_buf_sz = obj_buf_sz; 1218 obj->efile.maps_shndx = -1; 1219 obj->efile.btf_maps_shndx = -1; 1220 obj->efile.st_ops_shndx = -1; 1221 obj->kconfig_map_idx = -1; 1222 1223 obj->kern_version = get_kernel_version(); 1224 obj->loaded = false; 1225 1226 INIT_LIST_HEAD(&obj->list); 1227 if (!strict) 1228 list_add(&obj->list, &bpf_objects_list); 1229 return obj; 1230 } 1231 1232 static void bpf_object__elf_finish(struct bpf_object *obj) 1233 { 1234 if (!obj->efile.elf) 1235 return; 1236 1237 elf_end(obj->efile.elf); 1238 obj->efile.elf = NULL; 1239 obj->efile.symbols = NULL; 1240 obj->efile.st_ops_data = NULL; 1241 1242 zfree(&obj->efile.secs); 1243 obj->efile.sec_cnt = 0; 1244 zclose(obj->efile.fd); 1245 obj->efile.obj_buf = NULL; 1246 obj->efile.obj_buf_sz = 0; 1247 } 1248 1249 static int bpf_object__elf_init(struct bpf_object *obj) 1250 { 1251 Elf64_Ehdr *ehdr; 1252 int err = 0; 1253 Elf *elf; 1254 1255 if (obj->efile.elf) { 1256 pr_warn("elf: init internal error\n"); 1257 return -LIBBPF_ERRNO__LIBELF; 1258 } 1259 1260 if (obj->efile.obj_buf_sz > 0) { 1261 /* 1262 * obj_buf should have been validated by 1263 * bpf_object__open_buffer(). 1264 */ 1265 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1266 } else { 1267 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1268 if (obj->efile.fd < 0) { 1269 char errmsg[STRERR_BUFSIZE], *cp; 1270 1271 err = -errno; 1272 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1273 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1274 return err; 1275 } 1276 1277 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1278 } 1279 1280 if (!elf) { 1281 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1282 err = -LIBBPF_ERRNO__LIBELF; 1283 goto errout; 1284 } 1285 1286 obj->efile.elf = elf; 1287 1288 if (elf_kind(elf) != ELF_K_ELF) { 1289 err = -LIBBPF_ERRNO__FORMAT; 1290 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1291 goto errout; 1292 } 1293 1294 if (gelf_getclass(elf) != ELFCLASS64) { 1295 err = -LIBBPF_ERRNO__FORMAT; 1296 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1297 goto errout; 1298 } 1299 1300 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1301 if (!obj->efile.ehdr) { 1302 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1303 err = -LIBBPF_ERRNO__FORMAT; 1304 goto errout; 1305 } 1306 1307 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1308 pr_warn("elf: failed to get section names section index for %s: %s\n", 1309 obj->path, elf_errmsg(-1)); 1310 err = -LIBBPF_ERRNO__FORMAT; 1311 goto errout; 1312 } 1313 1314 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1315 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1316 pr_warn("elf: failed to get section names strings from %s: %s\n", 1317 obj->path, elf_errmsg(-1)); 1318 err = -LIBBPF_ERRNO__FORMAT; 1319 goto errout; 1320 } 1321 1322 /* Old LLVM set e_machine to EM_NONE */ 1323 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1324 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1325 err = -LIBBPF_ERRNO__FORMAT; 1326 goto errout; 1327 } 1328 1329 return 0; 1330 errout: 1331 bpf_object__elf_finish(obj); 1332 return err; 1333 } 1334 1335 static int bpf_object__check_endianness(struct bpf_object *obj) 1336 { 1337 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1338 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1339 return 0; 1340 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1341 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1342 return 0; 1343 #else 1344 # error "Unrecognized __BYTE_ORDER__" 1345 #endif 1346 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1347 return -LIBBPF_ERRNO__ENDIAN; 1348 } 1349 1350 static int 1351 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1352 { 1353 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1354 * go over allowed ELF data section buffer 1355 */ 1356 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1357 pr_debug("license of %s is %s\n", obj->path, obj->license); 1358 return 0; 1359 } 1360 1361 static int 1362 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1363 { 1364 __u32 kver; 1365 1366 if (size != sizeof(kver)) { 1367 pr_warn("invalid kver section in %s\n", obj->path); 1368 return -LIBBPF_ERRNO__FORMAT; 1369 } 1370 memcpy(&kver, data, sizeof(kver)); 1371 obj->kern_version = kver; 1372 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1373 return 0; 1374 } 1375 1376 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1377 { 1378 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1379 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1380 return true; 1381 return false; 1382 } 1383 1384 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1385 { 1386 Elf_Data *data; 1387 Elf_Scn *scn; 1388 1389 if (!name) 1390 return -EINVAL; 1391 1392 scn = elf_sec_by_name(obj, name); 1393 data = elf_sec_data(obj, scn); 1394 if (data) { 1395 *size = data->d_size; 1396 return 0; /* found it */ 1397 } 1398 1399 return -ENOENT; 1400 } 1401 1402 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1403 { 1404 Elf_Data *symbols = obj->efile.symbols; 1405 const char *sname; 1406 size_t si; 1407 1408 if (!name || !off) 1409 return -EINVAL; 1410 1411 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1412 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1413 1414 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1415 continue; 1416 1417 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1418 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1419 continue; 1420 1421 sname = elf_sym_str(obj, sym->st_name); 1422 if (!sname) { 1423 pr_warn("failed to get sym name string for var %s\n", name); 1424 return -EIO; 1425 } 1426 if (strcmp(name, sname) == 0) { 1427 *off = sym->st_value; 1428 return 0; 1429 } 1430 } 1431 1432 return -ENOENT; 1433 } 1434 1435 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1436 { 1437 struct bpf_map *map; 1438 int err; 1439 1440 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1441 sizeof(*obj->maps), obj->nr_maps + 1); 1442 if (err) 1443 return ERR_PTR(err); 1444 1445 map = &obj->maps[obj->nr_maps++]; 1446 map->obj = obj; 1447 map->fd = -1; 1448 map->inner_map_fd = -1; 1449 map->autocreate = true; 1450 1451 return map; 1452 } 1453 1454 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1455 { 1456 long page_sz = sysconf(_SC_PAGE_SIZE); 1457 size_t map_sz; 1458 1459 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1460 map_sz = roundup(map_sz, page_sz); 1461 return map_sz; 1462 } 1463 1464 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1465 { 1466 char map_name[BPF_OBJ_NAME_LEN], *p; 1467 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1468 1469 /* This is one of the more confusing parts of libbpf for various 1470 * reasons, some of which are historical. The original idea for naming 1471 * internal names was to include as much of BPF object name prefix as 1472 * possible, so that it can be distinguished from similar internal 1473 * maps of a different BPF object. 1474 * As an example, let's say we have bpf_object named 'my_object_name' 1475 * and internal map corresponding to '.rodata' ELF section. The final 1476 * map name advertised to user and to the kernel will be 1477 * 'my_objec.rodata', taking first 8 characters of object name and 1478 * entire 7 characters of '.rodata'. 1479 * Somewhat confusingly, if internal map ELF section name is shorter 1480 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1481 * for the suffix, even though we only have 4 actual characters, and 1482 * resulting map will be called 'my_objec.bss', not even using all 15 1483 * characters allowed by the kernel. Oh well, at least the truncated 1484 * object name is somewhat consistent in this case. But if the map 1485 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1486 * (8 chars) and thus will be left with only first 7 characters of the 1487 * object name ('my_obje'). Happy guessing, user, that the final map 1488 * name will be "my_obje.kconfig". 1489 * Now, with libbpf starting to support arbitrarily named .rodata.* 1490 * and .data.* data sections, it's possible that ELF section name is 1491 * longer than allowed 15 chars, so we now need to be careful to take 1492 * only up to 15 first characters of ELF name, taking no BPF object 1493 * name characters at all. So '.rodata.abracadabra' will result in 1494 * '.rodata.abracad' kernel and user-visible name. 1495 * We need to keep this convoluted logic intact for .data, .bss and 1496 * .rodata maps, but for new custom .data.custom and .rodata.custom 1497 * maps we use their ELF names as is, not prepending bpf_object name 1498 * in front. We still need to truncate them to 15 characters for the 1499 * kernel. Full name can be recovered for such maps by using DATASEC 1500 * BTF type associated with such map's value type, though. 1501 */ 1502 if (sfx_len >= BPF_OBJ_NAME_LEN) 1503 sfx_len = BPF_OBJ_NAME_LEN - 1; 1504 1505 /* if there are two or more dots in map name, it's a custom dot map */ 1506 if (strchr(real_name + 1, '.') != NULL) 1507 pfx_len = 0; 1508 else 1509 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1510 1511 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1512 sfx_len, real_name); 1513 1514 /* sanitise map name to characters allowed by kernel */ 1515 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1516 if (!isalnum(*p) && *p != '_' && *p != '.') 1517 *p = '_'; 1518 1519 return strdup(map_name); 1520 } 1521 1522 static int 1523 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1524 1525 static int 1526 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1527 const char *real_name, int sec_idx, void *data, size_t data_sz) 1528 { 1529 struct bpf_map_def *def; 1530 struct bpf_map *map; 1531 int err; 1532 1533 map = bpf_object__add_map(obj); 1534 if (IS_ERR(map)) 1535 return PTR_ERR(map); 1536 1537 map->libbpf_type = type; 1538 map->sec_idx = sec_idx; 1539 map->sec_offset = 0; 1540 map->real_name = strdup(real_name); 1541 map->name = internal_map_name(obj, real_name); 1542 if (!map->real_name || !map->name) { 1543 zfree(&map->real_name); 1544 zfree(&map->name); 1545 return -ENOMEM; 1546 } 1547 1548 def = &map->def; 1549 def->type = BPF_MAP_TYPE_ARRAY; 1550 def->key_size = sizeof(int); 1551 def->value_size = data_sz; 1552 def->max_entries = 1; 1553 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1554 ? BPF_F_RDONLY_PROG : 0; 1555 def->map_flags |= BPF_F_MMAPABLE; 1556 1557 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1558 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1559 1560 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1561 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1562 if (map->mmaped == MAP_FAILED) { 1563 err = -errno; 1564 map->mmaped = NULL; 1565 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1566 map->name, err); 1567 zfree(&map->real_name); 1568 zfree(&map->name); 1569 return err; 1570 } 1571 1572 /* failures are fine because of maps like .rodata.str1.1 */ 1573 (void) bpf_map_find_btf_info(obj, map); 1574 1575 if (data) 1576 memcpy(map->mmaped, data, data_sz); 1577 1578 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1579 return 0; 1580 } 1581 1582 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1583 { 1584 struct elf_sec_desc *sec_desc; 1585 const char *sec_name; 1586 int err = 0, sec_idx; 1587 1588 /* 1589 * Populate obj->maps with libbpf internal maps. 1590 */ 1591 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1592 sec_desc = &obj->efile.secs[sec_idx]; 1593 1594 switch (sec_desc->sec_type) { 1595 case SEC_DATA: 1596 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1597 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1598 sec_name, sec_idx, 1599 sec_desc->data->d_buf, 1600 sec_desc->data->d_size); 1601 break; 1602 case SEC_RODATA: 1603 obj->has_rodata = true; 1604 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1605 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1606 sec_name, sec_idx, 1607 sec_desc->data->d_buf, 1608 sec_desc->data->d_size); 1609 break; 1610 case SEC_BSS: 1611 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1612 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1613 sec_name, sec_idx, 1614 NULL, 1615 sec_desc->data->d_size); 1616 break; 1617 default: 1618 /* skip */ 1619 break; 1620 } 1621 if (err) 1622 return err; 1623 } 1624 return 0; 1625 } 1626 1627 1628 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1629 const void *name) 1630 { 1631 int i; 1632 1633 for (i = 0; i < obj->nr_extern; i++) { 1634 if (strcmp(obj->externs[i].name, name) == 0) 1635 return &obj->externs[i]; 1636 } 1637 return NULL; 1638 } 1639 1640 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1641 char value) 1642 { 1643 switch (ext->kcfg.type) { 1644 case KCFG_BOOL: 1645 if (value == 'm') { 1646 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1647 ext->name, value); 1648 return -EINVAL; 1649 } 1650 *(bool *)ext_val = value == 'y' ? true : false; 1651 break; 1652 case KCFG_TRISTATE: 1653 if (value == 'y') 1654 *(enum libbpf_tristate *)ext_val = TRI_YES; 1655 else if (value == 'm') 1656 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1657 else /* value == 'n' */ 1658 *(enum libbpf_tristate *)ext_val = TRI_NO; 1659 break; 1660 case KCFG_CHAR: 1661 *(char *)ext_val = value; 1662 break; 1663 case KCFG_UNKNOWN: 1664 case KCFG_INT: 1665 case KCFG_CHAR_ARR: 1666 default: 1667 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1668 ext->name, value); 1669 return -EINVAL; 1670 } 1671 ext->is_set = true; 1672 return 0; 1673 } 1674 1675 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1676 const char *value) 1677 { 1678 size_t len; 1679 1680 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1681 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1682 return -EINVAL; 1683 } 1684 1685 len = strlen(value); 1686 if (value[len - 1] != '"') { 1687 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1688 ext->name, value); 1689 return -EINVAL; 1690 } 1691 1692 /* strip quotes */ 1693 len -= 2; 1694 if (len >= ext->kcfg.sz) { 1695 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1696 ext->name, value, len, ext->kcfg.sz - 1); 1697 len = ext->kcfg.sz - 1; 1698 } 1699 memcpy(ext_val, value + 1, len); 1700 ext_val[len] = '\0'; 1701 ext->is_set = true; 1702 return 0; 1703 } 1704 1705 static int parse_u64(const char *value, __u64 *res) 1706 { 1707 char *value_end; 1708 int err; 1709 1710 errno = 0; 1711 *res = strtoull(value, &value_end, 0); 1712 if (errno) { 1713 err = -errno; 1714 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1715 return err; 1716 } 1717 if (*value_end) { 1718 pr_warn("failed to parse '%s' as integer completely\n", value); 1719 return -EINVAL; 1720 } 1721 return 0; 1722 } 1723 1724 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1725 { 1726 int bit_sz = ext->kcfg.sz * 8; 1727 1728 if (ext->kcfg.sz == 8) 1729 return true; 1730 1731 /* Validate that value stored in u64 fits in integer of `ext->sz` 1732 * bytes size without any loss of information. If the target integer 1733 * is signed, we rely on the following limits of integer type of 1734 * Y bits and subsequent transformation: 1735 * 1736 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1737 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1738 * 0 <= X + 2^(Y-1) < 2^Y 1739 * 1740 * For unsigned target integer, check that all the (64 - Y) bits are 1741 * zero. 1742 */ 1743 if (ext->kcfg.is_signed) 1744 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1745 else 1746 return (v >> bit_sz) == 0; 1747 } 1748 1749 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1750 __u64 value) 1751 { 1752 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1753 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1754 ext->name, (unsigned long long)value); 1755 return -EINVAL; 1756 } 1757 if (!is_kcfg_value_in_range(ext, value)) { 1758 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1759 ext->name, (unsigned long long)value, ext->kcfg.sz); 1760 return -ERANGE; 1761 } 1762 switch (ext->kcfg.sz) { 1763 case 1: *(__u8 *)ext_val = value; break; 1764 case 2: *(__u16 *)ext_val = value; break; 1765 case 4: *(__u32 *)ext_val = value; break; 1766 case 8: *(__u64 *)ext_val = value; break; 1767 default: 1768 return -EINVAL; 1769 } 1770 ext->is_set = true; 1771 return 0; 1772 } 1773 1774 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1775 char *buf, void *data) 1776 { 1777 struct extern_desc *ext; 1778 char *sep, *value; 1779 int len, err = 0; 1780 void *ext_val; 1781 __u64 num; 1782 1783 if (!str_has_pfx(buf, "CONFIG_")) 1784 return 0; 1785 1786 sep = strchr(buf, '='); 1787 if (!sep) { 1788 pr_warn("failed to parse '%s': no separator\n", buf); 1789 return -EINVAL; 1790 } 1791 1792 /* Trim ending '\n' */ 1793 len = strlen(buf); 1794 if (buf[len - 1] == '\n') 1795 buf[len - 1] = '\0'; 1796 /* Split on '=' and ensure that a value is present. */ 1797 *sep = '\0'; 1798 if (!sep[1]) { 1799 *sep = '='; 1800 pr_warn("failed to parse '%s': no value\n", buf); 1801 return -EINVAL; 1802 } 1803 1804 ext = find_extern_by_name(obj, buf); 1805 if (!ext || ext->is_set) 1806 return 0; 1807 1808 ext_val = data + ext->kcfg.data_off; 1809 value = sep + 1; 1810 1811 switch (*value) { 1812 case 'y': case 'n': case 'm': 1813 err = set_kcfg_value_tri(ext, ext_val, *value); 1814 break; 1815 case '"': 1816 err = set_kcfg_value_str(ext, ext_val, value); 1817 break; 1818 default: 1819 /* assume integer */ 1820 err = parse_u64(value, &num); 1821 if (err) { 1822 pr_warn("extern (kcfg) %s=%s should be integer\n", 1823 ext->name, value); 1824 return err; 1825 } 1826 err = set_kcfg_value_num(ext, ext_val, num); 1827 break; 1828 } 1829 if (err) 1830 return err; 1831 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1832 return 0; 1833 } 1834 1835 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1836 { 1837 char buf[PATH_MAX]; 1838 struct utsname uts; 1839 int len, err = 0; 1840 gzFile file; 1841 1842 uname(&uts); 1843 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1844 if (len < 0) 1845 return -EINVAL; 1846 else if (len >= PATH_MAX) 1847 return -ENAMETOOLONG; 1848 1849 /* gzopen also accepts uncompressed files. */ 1850 file = gzopen(buf, "r"); 1851 if (!file) 1852 file = gzopen("/proc/config.gz", "r"); 1853 1854 if (!file) { 1855 pr_warn("failed to open system Kconfig\n"); 1856 return -ENOENT; 1857 } 1858 1859 while (gzgets(file, buf, sizeof(buf))) { 1860 err = bpf_object__process_kconfig_line(obj, buf, data); 1861 if (err) { 1862 pr_warn("error parsing system Kconfig line '%s': %d\n", 1863 buf, err); 1864 goto out; 1865 } 1866 } 1867 1868 out: 1869 gzclose(file); 1870 return err; 1871 } 1872 1873 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1874 const char *config, void *data) 1875 { 1876 char buf[PATH_MAX]; 1877 int err = 0; 1878 FILE *file; 1879 1880 file = fmemopen((void *)config, strlen(config), "r"); 1881 if (!file) { 1882 err = -errno; 1883 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1884 return err; 1885 } 1886 1887 while (fgets(buf, sizeof(buf), file)) { 1888 err = bpf_object__process_kconfig_line(obj, buf, data); 1889 if (err) { 1890 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1891 buf, err); 1892 break; 1893 } 1894 } 1895 1896 fclose(file); 1897 return err; 1898 } 1899 1900 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1901 { 1902 struct extern_desc *last_ext = NULL, *ext; 1903 size_t map_sz; 1904 int i, err; 1905 1906 for (i = 0; i < obj->nr_extern; i++) { 1907 ext = &obj->externs[i]; 1908 if (ext->type == EXT_KCFG) 1909 last_ext = ext; 1910 } 1911 1912 if (!last_ext) 1913 return 0; 1914 1915 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1916 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1917 ".kconfig", obj->efile.symbols_shndx, 1918 NULL, map_sz); 1919 if (err) 1920 return err; 1921 1922 obj->kconfig_map_idx = obj->nr_maps - 1; 1923 1924 return 0; 1925 } 1926 1927 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1928 { 1929 Elf_Data *symbols = obj->efile.symbols; 1930 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1931 Elf_Data *data = NULL; 1932 Elf_Scn *scn; 1933 1934 if (obj->efile.maps_shndx < 0) 1935 return 0; 1936 1937 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 1938 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 1939 return -EOPNOTSUPP; 1940 } 1941 1942 if (!symbols) 1943 return -EINVAL; 1944 1945 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1946 data = elf_sec_data(obj, scn); 1947 if (!scn || !data) { 1948 pr_warn("elf: failed to get legacy map definitions for %s\n", 1949 obj->path); 1950 return -EINVAL; 1951 } 1952 1953 /* 1954 * Count number of maps. Each map has a name. 1955 * Array of maps is not supported: only the first element is 1956 * considered. 1957 * 1958 * TODO: Detect array of map and report error. 1959 */ 1960 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1961 for (i = 0; i < nr_syms; i++) { 1962 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1963 1964 if (sym->st_shndx != obj->efile.maps_shndx) 1965 continue; 1966 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1967 continue; 1968 nr_maps++; 1969 } 1970 /* Assume equally sized map definitions */ 1971 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1972 nr_maps, data->d_size, obj->path); 1973 1974 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1975 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1976 obj->path); 1977 return -EINVAL; 1978 } 1979 map_def_sz = data->d_size / nr_maps; 1980 1981 /* Fill obj->maps using data in "maps" section. */ 1982 for (i = 0; i < nr_syms; i++) { 1983 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1984 const char *map_name; 1985 struct bpf_map_def *def; 1986 struct bpf_map *map; 1987 1988 if (sym->st_shndx != obj->efile.maps_shndx) 1989 continue; 1990 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1991 continue; 1992 1993 map = bpf_object__add_map(obj); 1994 if (IS_ERR(map)) 1995 return PTR_ERR(map); 1996 1997 map_name = elf_sym_str(obj, sym->st_name); 1998 if (!map_name) { 1999 pr_warn("failed to get map #%d name sym string for obj %s\n", 2000 i, obj->path); 2001 return -LIBBPF_ERRNO__FORMAT; 2002 } 2003 2004 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2005 2006 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2007 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2008 return -ENOTSUP; 2009 } 2010 2011 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2012 map->sec_idx = sym->st_shndx; 2013 map->sec_offset = sym->st_value; 2014 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2015 map_name, map->sec_idx, map->sec_offset); 2016 if (sym->st_value + map_def_sz > data->d_size) { 2017 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2018 obj->path, map_name); 2019 return -EINVAL; 2020 } 2021 2022 map->name = strdup(map_name); 2023 if (!map->name) { 2024 pr_warn("map '%s': failed to alloc map name\n", map_name); 2025 return -ENOMEM; 2026 } 2027 pr_debug("map %d is \"%s\"\n", i, map->name); 2028 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2029 /* 2030 * If the definition of the map in the object file fits in 2031 * bpf_map_def, copy it. Any extra fields in our version 2032 * of bpf_map_def will default to zero as a result of the 2033 * calloc above. 2034 */ 2035 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2036 memcpy(&map->def, def, map_def_sz); 2037 } else { 2038 /* 2039 * Here the map structure being read is bigger than what 2040 * we expect, truncate if the excess bits are all zero. 2041 * If they are not zero, reject this map as 2042 * incompatible. 2043 */ 2044 char *b; 2045 2046 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2047 b < ((char *)def) + map_def_sz; b++) { 2048 if (*b != 0) { 2049 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2050 obj->path, map_name); 2051 if (strict) 2052 return -EINVAL; 2053 } 2054 } 2055 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2056 } 2057 2058 /* btf info may not exist but fill it in if it does exist */ 2059 (void) bpf_map_find_btf_info(obj, map); 2060 } 2061 return 0; 2062 } 2063 2064 const struct btf_type * 2065 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2066 { 2067 const struct btf_type *t = btf__type_by_id(btf, id); 2068 2069 if (res_id) 2070 *res_id = id; 2071 2072 while (btf_is_mod(t) || btf_is_typedef(t)) { 2073 if (res_id) 2074 *res_id = t->type; 2075 t = btf__type_by_id(btf, t->type); 2076 } 2077 2078 return t; 2079 } 2080 2081 static const struct btf_type * 2082 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2083 { 2084 const struct btf_type *t; 2085 2086 t = skip_mods_and_typedefs(btf, id, NULL); 2087 if (!btf_is_ptr(t)) 2088 return NULL; 2089 2090 t = skip_mods_and_typedefs(btf, t->type, res_id); 2091 2092 return btf_is_func_proto(t) ? t : NULL; 2093 } 2094 2095 static const char *__btf_kind_str(__u16 kind) 2096 { 2097 switch (kind) { 2098 case BTF_KIND_UNKN: return "void"; 2099 case BTF_KIND_INT: return "int"; 2100 case BTF_KIND_PTR: return "ptr"; 2101 case BTF_KIND_ARRAY: return "array"; 2102 case BTF_KIND_STRUCT: return "struct"; 2103 case BTF_KIND_UNION: return "union"; 2104 case BTF_KIND_ENUM: return "enum"; 2105 case BTF_KIND_FWD: return "fwd"; 2106 case BTF_KIND_TYPEDEF: return "typedef"; 2107 case BTF_KIND_VOLATILE: return "volatile"; 2108 case BTF_KIND_CONST: return "const"; 2109 case BTF_KIND_RESTRICT: return "restrict"; 2110 case BTF_KIND_FUNC: return "func"; 2111 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2112 case BTF_KIND_VAR: return "var"; 2113 case BTF_KIND_DATASEC: return "datasec"; 2114 case BTF_KIND_FLOAT: return "float"; 2115 case BTF_KIND_DECL_TAG: return "decl_tag"; 2116 case BTF_KIND_TYPE_TAG: return "type_tag"; 2117 default: return "unknown"; 2118 } 2119 } 2120 2121 const char *btf_kind_str(const struct btf_type *t) 2122 { 2123 return __btf_kind_str(btf_kind(t)); 2124 } 2125 2126 /* 2127 * Fetch integer attribute of BTF map definition. Such attributes are 2128 * represented using a pointer to an array, in which dimensionality of array 2129 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2130 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2131 * type definition, while using only sizeof(void *) space in ELF data section. 2132 */ 2133 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2134 const struct btf_member *m, __u32 *res) 2135 { 2136 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2137 const char *name = btf__name_by_offset(btf, m->name_off); 2138 const struct btf_array *arr_info; 2139 const struct btf_type *arr_t; 2140 2141 if (!btf_is_ptr(t)) { 2142 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2143 map_name, name, btf_kind_str(t)); 2144 return false; 2145 } 2146 2147 arr_t = btf__type_by_id(btf, t->type); 2148 if (!arr_t) { 2149 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2150 map_name, name, t->type); 2151 return false; 2152 } 2153 if (!btf_is_array(arr_t)) { 2154 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2155 map_name, name, btf_kind_str(arr_t)); 2156 return false; 2157 } 2158 arr_info = btf_array(arr_t); 2159 *res = arr_info->nelems; 2160 return true; 2161 } 2162 2163 static int build_map_pin_path(struct bpf_map *map, const char *path) 2164 { 2165 char buf[PATH_MAX]; 2166 int len; 2167 2168 if (!path) 2169 path = "/sys/fs/bpf"; 2170 2171 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2172 if (len < 0) 2173 return -EINVAL; 2174 else if (len >= PATH_MAX) 2175 return -ENAMETOOLONG; 2176 2177 return bpf_map__set_pin_path(map, buf); 2178 } 2179 2180 int parse_btf_map_def(const char *map_name, struct btf *btf, 2181 const struct btf_type *def_t, bool strict, 2182 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2183 { 2184 const struct btf_type *t; 2185 const struct btf_member *m; 2186 bool is_inner = inner_def == NULL; 2187 int vlen, i; 2188 2189 vlen = btf_vlen(def_t); 2190 m = btf_members(def_t); 2191 for (i = 0; i < vlen; i++, m++) { 2192 const char *name = btf__name_by_offset(btf, m->name_off); 2193 2194 if (!name) { 2195 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2196 return -EINVAL; 2197 } 2198 if (strcmp(name, "type") == 0) { 2199 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2200 return -EINVAL; 2201 map_def->parts |= MAP_DEF_MAP_TYPE; 2202 } else if (strcmp(name, "max_entries") == 0) { 2203 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2204 return -EINVAL; 2205 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2206 } else if (strcmp(name, "map_flags") == 0) { 2207 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2208 return -EINVAL; 2209 map_def->parts |= MAP_DEF_MAP_FLAGS; 2210 } else if (strcmp(name, "numa_node") == 0) { 2211 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2212 return -EINVAL; 2213 map_def->parts |= MAP_DEF_NUMA_NODE; 2214 } else if (strcmp(name, "key_size") == 0) { 2215 __u32 sz; 2216 2217 if (!get_map_field_int(map_name, btf, m, &sz)) 2218 return -EINVAL; 2219 if (map_def->key_size && map_def->key_size != sz) { 2220 pr_warn("map '%s': conflicting key size %u != %u.\n", 2221 map_name, map_def->key_size, sz); 2222 return -EINVAL; 2223 } 2224 map_def->key_size = sz; 2225 map_def->parts |= MAP_DEF_KEY_SIZE; 2226 } else if (strcmp(name, "key") == 0) { 2227 __s64 sz; 2228 2229 t = btf__type_by_id(btf, m->type); 2230 if (!t) { 2231 pr_warn("map '%s': key type [%d] not found.\n", 2232 map_name, m->type); 2233 return -EINVAL; 2234 } 2235 if (!btf_is_ptr(t)) { 2236 pr_warn("map '%s': key spec is not PTR: %s.\n", 2237 map_name, btf_kind_str(t)); 2238 return -EINVAL; 2239 } 2240 sz = btf__resolve_size(btf, t->type); 2241 if (sz < 0) { 2242 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2243 map_name, t->type, (ssize_t)sz); 2244 return sz; 2245 } 2246 if (map_def->key_size && map_def->key_size != sz) { 2247 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2248 map_name, map_def->key_size, (ssize_t)sz); 2249 return -EINVAL; 2250 } 2251 map_def->key_size = sz; 2252 map_def->key_type_id = t->type; 2253 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2254 } else if (strcmp(name, "value_size") == 0) { 2255 __u32 sz; 2256 2257 if (!get_map_field_int(map_name, btf, m, &sz)) 2258 return -EINVAL; 2259 if (map_def->value_size && map_def->value_size != sz) { 2260 pr_warn("map '%s': conflicting value size %u != %u.\n", 2261 map_name, map_def->value_size, sz); 2262 return -EINVAL; 2263 } 2264 map_def->value_size = sz; 2265 map_def->parts |= MAP_DEF_VALUE_SIZE; 2266 } else if (strcmp(name, "value") == 0) { 2267 __s64 sz; 2268 2269 t = btf__type_by_id(btf, m->type); 2270 if (!t) { 2271 pr_warn("map '%s': value type [%d] not found.\n", 2272 map_name, m->type); 2273 return -EINVAL; 2274 } 2275 if (!btf_is_ptr(t)) { 2276 pr_warn("map '%s': value spec is not PTR: %s.\n", 2277 map_name, btf_kind_str(t)); 2278 return -EINVAL; 2279 } 2280 sz = btf__resolve_size(btf, t->type); 2281 if (sz < 0) { 2282 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2283 map_name, t->type, (ssize_t)sz); 2284 return sz; 2285 } 2286 if (map_def->value_size && map_def->value_size != sz) { 2287 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2288 map_name, map_def->value_size, (ssize_t)sz); 2289 return -EINVAL; 2290 } 2291 map_def->value_size = sz; 2292 map_def->value_type_id = t->type; 2293 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2294 } 2295 else if (strcmp(name, "values") == 0) { 2296 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2297 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2298 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2299 char inner_map_name[128]; 2300 int err; 2301 2302 if (is_inner) { 2303 pr_warn("map '%s': multi-level inner maps not supported.\n", 2304 map_name); 2305 return -ENOTSUP; 2306 } 2307 if (i != vlen - 1) { 2308 pr_warn("map '%s': '%s' member should be last.\n", 2309 map_name, name); 2310 return -EINVAL; 2311 } 2312 if (!is_map_in_map && !is_prog_array) { 2313 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2314 map_name); 2315 return -ENOTSUP; 2316 } 2317 if (map_def->value_size && map_def->value_size != 4) { 2318 pr_warn("map '%s': conflicting value size %u != 4.\n", 2319 map_name, map_def->value_size); 2320 return -EINVAL; 2321 } 2322 map_def->value_size = 4; 2323 t = btf__type_by_id(btf, m->type); 2324 if (!t) { 2325 pr_warn("map '%s': %s type [%d] not found.\n", 2326 map_name, desc, m->type); 2327 return -EINVAL; 2328 } 2329 if (!btf_is_array(t) || btf_array(t)->nelems) { 2330 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2331 map_name, desc); 2332 return -EINVAL; 2333 } 2334 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2335 if (!btf_is_ptr(t)) { 2336 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2337 map_name, desc, btf_kind_str(t)); 2338 return -EINVAL; 2339 } 2340 t = skip_mods_and_typedefs(btf, t->type, NULL); 2341 if (is_prog_array) { 2342 if (!btf_is_func_proto(t)) { 2343 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2344 map_name, btf_kind_str(t)); 2345 return -EINVAL; 2346 } 2347 continue; 2348 } 2349 if (!btf_is_struct(t)) { 2350 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2351 map_name, btf_kind_str(t)); 2352 return -EINVAL; 2353 } 2354 2355 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2356 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2357 if (err) 2358 return err; 2359 2360 map_def->parts |= MAP_DEF_INNER_MAP; 2361 } else if (strcmp(name, "pinning") == 0) { 2362 __u32 val; 2363 2364 if (is_inner) { 2365 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2366 return -EINVAL; 2367 } 2368 if (!get_map_field_int(map_name, btf, m, &val)) 2369 return -EINVAL; 2370 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2371 pr_warn("map '%s': invalid pinning value %u.\n", 2372 map_name, val); 2373 return -EINVAL; 2374 } 2375 map_def->pinning = val; 2376 map_def->parts |= MAP_DEF_PINNING; 2377 } else if (strcmp(name, "map_extra") == 0) { 2378 __u32 map_extra; 2379 2380 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2381 return -EINVAL; 2382 map_def->map_extra = map_extra; 2383 map_def->parts |= MAP_DEF_MAP_EXTRA; 2384 } else { 2385 if (strict) { 2386 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2387 return -ENOTSUP; 2388 } 2389 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2390 } 2391 } 2392 2393 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2394 pr_warn("map '%s': map type isn't specified.\n", map_name); 2395 return -EINVAL; 2396 } 2397 2398 return 0; 2399 } 2400 2401 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2402 { 2403 map->def.type = def->map_type; 2404 map->def.key_size = def->key_size; 2405 map->def.value_size = def->value_size; 2406 map->def.max_entries = def->max_entries; 2407 map->def.map_flags = def->map_flags; 2408 map->map_extra = def->map_extra; 2409 2410 map->numa_node = def->numa_node; 2411 map->btf_key_type_id = def->key_type_id; 2412 map->btf_value_type_id = def->value_type_id; 2413 2414 if (def->parts & MAP_DEF_MAP_TYPE) 2415 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2416 2417 if (def->parts & MAP_DEF_KEY_TYPE) 2418 pr_debug("map '%s': found key [%u], sz = %u.\n", 2419 map->name, def->key_type_id, def->key_size); 2420 else if (def->parts & MAP_DEF_KEY_SIZE) 2421 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2422 2423 if (def->parts & MAP_DEF_VALUE_TYPE) 2424 pr_debug("map '%s': found value [%u], sz = %u.\n", 2425 map->name, def->value_type_id, def->value_size); 2426 else if (def->parts & MAP_DEF_VALUE_SIZE) 2427 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2428 2429 if (def->parts & MAP_DEF_MAX_ENTRIES) 2430 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2431 if (def->parts & MAP_DEF_MAP_FLAGS) 2432 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2433 if (def->parts & MAP_DEF_MAP_EXTRA) 2434 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2435 (unsigned long long)def->map_extra); 2436 if (def->parts & MAP_DEF_PINNING) 2437 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2438 if (def->parts & MAP_DEF_NUMA_NODE) 2439 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2440 2441 if (def->parts & MAP_DEF_INNER_MAP) 2442 pr_debug("map '%s': found inner map definition.\n", map->name); 2443 } 2444 2445 static const char *btf_var_linkage_str(__u32 linkage) 2446 { 2447 switch (linkage) { 2448 case BTF_VAR_STATIC: return "static"; 2449 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2450 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2451 default: return "unknown"; 2452 } 2453 } 2454 2455 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2456 const struct btf_type *sec, 2457 int var_idx, int sec_idx, 2458 const Elf_Data *data, bool strict, 2459 const char *pin_root_path) 2460 { 2461 struct btf_map_def map_def = {}, inner_def = {}; 2462 const struct btf_type *var, *def; 2463 const struct btf_var_secinfo *vi; 2464 const struct btf_var *var_extra; 2465 const char *map_name; 2466 struct bpf_map *map; 2467 int err; 2468 2469 vi = btf_var_secinfos(sec) + var_idx; 2470 var = btf__type_by_id(obj->btf, vi->type); 2471 var_extra = btf_var(var); 2472 map_name = btf__name_by_offset(obj->btf, var->name_off); 2473 2474 if (map_name == NULL || map_name[0] == '\0') { 2475 pr_warn("map #%d: empty name.\n", var_idx); 2476 return -EINVAL; 2477 } 2478 if ((__u64)vi->offset + vi->size > data->d_size) { 2479 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2480 return -EINVAL; 2481 } 2482 if (!btf_is_var(var)) { 2483 pr_warn("map '%s': unexpected var kind %s.\n", 2484 map_name, btf_kind_str(var)); 2485 return -EINVAL; 2486 } 2487 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2488 pr_warn("map '%s': unsupported map linkage %s.\n", 2489 map_name, btf_var_linkage_str(var_extra->linkage)); 2490 return -EOPNOTSUPP; 2491 } 2492 2493 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2494 if (!btf_is_struct(def)) { 2495 pr_warn("map '%s': unexpected def kind %s.\n", 2496 map_name, btf_kind_str(var)); 2497 return -EINVAL; 2498 } 2499 if (def->size > vi->size) { 2500 pr_warn("map '%s': invalid def size.\n", map_name); 2501 return -EINVAL; 2502 } 2503 2504 map = bpf_object__add_map(obj); 2505 if (IS_ERR(map)) 2506 return PTR_ERR(map); 2507 map->name = strdup(map_name); 2508 if (!map->name) { 2509 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2510 return -ENOMEM; 2511 } 2512 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2513 map->def.type = BPF_MAP_TYPE_UNSPEC; 2514 map->sec_idx = sec_idx; 2515 map->sec_offset = vi->offset; 2516 map->btf_var_idx = var_idx; 2517 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2518 map_name, map->sec_idx, map->sec_offset); 2519 2520 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2521 if (err) 2522 return err; 2523 2524 fill_map_from_def(map, &map_def); 2525 2526 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2527 err = build_map_pin_path(map, pin_root_path); 2528 if (err) { 2529 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2530 return err; 2531 } 2532 } 2533 2534 if (map_def.parts & MAP_DEF_INNER_MAP) { 2535 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2536 if (!map->inner_map) 2537 return -ENOMEM; 2538 map->inner_map->fd = -1; 2539 map->inner_map->sec_idx = sec_idx; 2540 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2541 if (!map->inner_map->name) 2542 return -ENOMEM; 2543 sprintf(map->inner_map->name, "%s.inner", map_name); 2544 2545 fill_map_from_def(map->inner_map, &inner_def); 2546 } 2547 2548 err = bpf_map_find_btf_info(obj, map); 2549 if (err) 2550 return err; 2551 2552 return 0; 2553 } 2554 2555 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2556 const char *pin_root_path) 2557 { 2558 const struct btf_type *sec = NULL; 2559 int nr_types, i, vlen, err; 2560 const struct btf_type *t; 2561 const char *name; 2562 Elf_Data *data; 2563 Elf_Scn *scn; 2564 2565 if (obj->efile.btf_maps_shndx < 0) 2566 return 0; 2567 2568 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2569 data = elf_sec_data(obj, scn); 2570 if (!scn || !data) { 2571 pr_warn("elf: failed to get %s map definitions for %s\n", 2572 MAPS_ELF_SEC, obj->path); 2573 return -EINVAL; 2574 } 2575 2576 nr_types = btf__type_cnt(obj->btf); 2577 for (i = 1; i < nr_types; i++) { 2578 t = btf__type_by_id(obj->btf, i); 2579 if (!btf_is_datasec(t)) 2580 continue; 2581 name = btf__name_by_offset(obj->btf, t->name_off); 2582 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2583 sec = t; 2584 obj->efile.btf_maps_sec_btf_id = i; 2585 break; 2586 } 2587 } 2588 2589 if (!sec) { 2590 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2591 return -ENOENT; 2592 } 2593 2594 vlen = btf_vlen(sec); 2595 for (i = 0; i < vlen; i++) { 2596 err = bpf_object__init_user_btf_map(obj, sec, i, 2597 obj->efile.btf_maps_shndx, 2598 data, strict, 2599 pin_root_path); 2600 if (err) 2601 return err; 2602 } 2603 2604 return 0; 2605 } 2606 2607 static int bpf_object__init_maps(struct bpf_object *obj, 2608 const struct bpf_object_open_opts *opts) 2609 { 2610 const char *pin_root_path; 2611 bool strict; 2612 int err; 2613 2614 strict = !OPTS_GET(opts, relaxed_maps, false); 2615 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2616 2617 err = bpf_object__init_user_maps(obj, strict); 2618 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2619 err = err ?: bpf_object__init_global_data_maps(obj); 2620 err = err ?: bpf_object__init_kconfig_map(obj); 2621 err = err ?: bpf_object__init_struct_ops_maps(obj); 2622 2623 return err; 2624 } 2625 2626 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2627 { 2628 Elf64_Shdr *sh; 2629 2630 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2631 if (!sh) 2632 return false; 2633 2634 return sh->sh_flags & SHF_EXECINSTR; 2635 } 2636 2637 static bool btf_needs_sanitization(struct bpf_object *obj) 2638 { 2639 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2640 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2641 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2642 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2643 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2644 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2645 2646 return !has_func || !has_datasec || !has_func_global || !has_float || 2647 !has_decl_tag || !has_type_tag; 2648 } 2649 2650 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2651 { 2652 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2653 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2654 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2655 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2656 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2657 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2658 struct btf_type *t; 2659 int i, j, vlen; 2660 2661 for (i = 1; i < btf__type_cnt(btf); i++) { 2662 t = (struct btf_type *)btf__type_by_id(btf, i); 2663 2664 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2665 /* replace VAR/DECL_TAG with INT */ 2666 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2667 /* 2668 * using size = 1 is the safest choice, 4 will be too 2669 * big and cause kernel BTF validation failure if 2670 * original variable took less than 4 bytes 2671 */ 2672 t->size = 1; 2673 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2674 } else if (!has_datasec && btf_is_datasec(t)) { 2675 /* replace DATASEC with STRUCT */ 2676 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2677 struct btf_member *m = btf_members(t); 2678 struct btf_type *vt; 2679 char *name; 2680 2681 name = (char *)btf__name_by_offset(btf, t->name_off); 2682 while (*name) { 2683 if (*name == '.') 2684 *name = '_'; 2685 name++; 2686 } 2687 2688 vlen = btf_vlen(t); 2689 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2690 for (j = 0; j < vlen; j++, v++, m++) { 2691 /* order of field assignments is important */ 2692 m->offset = v->offset * 8; 2693 m->type = v->type; 2694 /* preserve variable name as member name */ 2695 vt = (void *)btf__type_by_id(btf, v->type); 2696 m->name_off = vt->name_off; 2697 } 2698 } else if (!has_func && btf_is_func_proto(t)) { 2699 /* replace FUNC_PROTO with ENUM */ 2700 vlen = btf_vlen(t); 2701 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2702 t->size = sizeof(__u32); /* kernel enforced */ 2703 } else if (!has_func && btf_is_func(t)) { 2704 /* replace FUNC with TYPEDEF */ 2705 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2706 } else if (!has_func_global && btf_is_func(t)) { 2707 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2708 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2709 } else if (!has_float && btf_is_float(t)) { 2710 /* replace FLOAT with an equally-sized empty STRUCT; 2711 * since C compilers do not accept e.g. "float" as a 2712 * valid struct name, make it anonymous 2713 */ 2714 t->name_off = 0; 2715 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2716 } else if (!has_type_tag && btf_is_type_tag(t)) { 2717 /* replace TYPE_TAG with a CONST */ 2718 t->name_off = 0; 2719 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2720 } 2721 } 2722 } 2723 2724 static bool libbpf_needs_btf(const struct bpf_object *obj) 2725 { 2726 return obj->efile.btf_maps_shndx >= 0 || 2727 obj->efile.st_ops_shndx >= 0 || 2728 obj->nr_extern > 0; 2729 } 2730 2731 static bool kernel_needs_btf(const struct bpf_object *obj) 2732 { 2733 return obj->efile.st_ops_shndx >= 0; 2734 } 2735 2736 static int bpf_object__init_btf(struct bpf_object *obj, 2737 Elf_Data *btf_data, 2738 Elf_Data *btf_ext_data) 2739 { 2740 int err = -ENOENT; 2741 2742 if (btf_data) { 2743 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2744 err = libbpf_get_error(obj->btf); 2745 if (err) { 2746 obj->btf = NULL; 2747 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2748 goto out; 2749 } 2750 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2751 btf__set_pointer_size(obj->btf, 8); 2752 } 2753 if (btf_ext_data) { 2754 struct btf_ext_info *ext_segs[3]; 2755 int seg_num, sec_num; 2756 2757 if (!obj->btf) { 2758 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2759 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2760 goto out; 2761 } 2762 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2763 err = libbpf_get_error(obj->btf_ext); 2764 if (err) { 2765 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2766 BTF_EXT_ELF_SEC, err); 2767 obj->btf_ext = NULL; 2768 goto out; 2769 } 2770 2771 /* setup .BTF.ext to ELF section mapping */ 2772 ext_segs[0] = &obj->btf_ext->func_info; 2773 ext_segs[1] = &obj->btf_ext->line_info; 2774 ext_segs[2] = &obj->btf_ext->core_relo_info; 2775 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2776 struct btf_ext_info *seg = ext_segs[seg_num]; 2777 const struct btf_ext_info_sec *sec; 2778 const char *sec_name; 2779 Elf_Scn *scn; 2780 2781 if (seg->sec_cnt == 0) 2782 continue; 2783 2784 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2785 if (!seg->sec_idxs) { 2786 err = -ENOMEM; 2787 goto out; 2788 } 2789 2790 sec_num = 0; 2791 for_each_btf_ext_sec(seg, sec) { 2792 /* preventively increment index to avoid doing 2793 * this before every continue below 2794 */ 2795 sec_num++; 2796 2797 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2798 if (str_is_empty(sec_name)) 2799 continue; 2800 scn = elf_sec_by_name(obj, sec_name); 2801 if (!scn) 2802 continue; 2803 2804 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2805 } 2806 } 2807 } 2808 out: 2809 if (err && libbpf_needs_btf(obj)) { 2810 pr_warn("BTF is required, but is missing or corrupted.\n"); 2811 return err; 2812 } 2813 return 0; 2814 } 2815 2816 static int compare_vsi_off(const void *_a, const void *_b) 2817 { 2818 const struct btf_var_secinfo *a = _a; 2819 const struct btf_var_secinfo *b = _b; 2820 2821 return a->offset - b->offset; 2822 } 2823 2824 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2825 struct btf_type *t) 2826 { 2827 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2828 const char *name = btf__name_by_offset(btf, t->name_off); 2829 const struct btf_type *t_var; 2830 struct btf_var_secinfo *vsi; 2831 const struct btf_var *var; 2832 int ret; 2833 2834 if (!name) { 2835 pr_debug("No name found in string section for DATASEC kind.\n"); 2836 return -ENOENT; 2837 } 2838 2839 /* .extern datasec size and var offsets were set correctly during 2840 * extern collection step, so just skip straight to sorting variables 2841 */ 2842 if (t->size) 2843 goto sort_vars; 2844 2845 ret = find_elf_sec_sz(obj, name, &size); 2846 if (ret || !size) { 2847 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2848 return -ENOENT; 2849 } 2850 2851 t->size = size; 2852 2853 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2854 t_var = btf__type_by_id(btf, vsi->type); 2855 if (!t_var || !btf_is_var(t_var)) { 2856 pr_debug("Non-VAR type seen in section %s\n", name); 2857 return -EINVAL; 2858 } 2859 2860 var = btf_var(t_var); 2861 if (var->linkage == BTF_VAR_STATIC) 2862 continue; 2863 2864 name = btf__name_by_offset(btf, t_var->name_off); 2865 if (!name) { 2866 pr_debug("No name found in string section for VAR kind\n"); 2867 return -ENOENT; 2868 } 2869 2870 ret = find_elf_var_offset(obj, name, &off); 2871 if (ret) { 2872 pr_debug("No offset found in symbol table for VAR %s\n", 2873 name); 2874 return -ENOENT; 2875 } 2876 2877 vsi->offset = off; 2878 } 2879 2880 sort_vars: 2881 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2882 return 0; 2883 } 2884 2885 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2886 { 2887 int err = 0; 2888 __u32 i, n = btf__type_cnt(btf); 2889 2890 for (i = 1; i < n; i++) { 2891 struct btf_type *t = btf_type_by_id(btf, i); 2892 2893 /* Loader needs to fix up some of the things compiler 2894 * couldn't get its hands on while emitting BTF. This 2895 * is section size and global variable offset. We use 2896 * the info from the ELF itself for this purpose. 2897 */ 2898 if (btf_is_datasec(t)) { 2899 err = btf_fixup_datasec(obj, btf, t); 2900 if (err) 2901 break; 2902 } 2903 } 2904 2905 return libbpf_err(err); 2906 } 2907 2908 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2909 { 2910 return btf_finalize_data(obj, btf); 2911 } 2912 2913 static int bpf_object__finalize_btf(struct bpf_object *obj) 2914 { 2915 int err; 2916 2917 if (!obj->btf) 2918 return 0; 2919 2920 err = btf_finalize_data(obj, obj->btf); 2921 if (err) { 2922 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2923 return err; 2924 } 2925 2926 return 0; 2927 } 2928 2929 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2930 { 2931 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2932 prog->type == BPF_PROG_TYPE_LSM) 2933 return true; 2934 2935 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2936 * also need vmlinux BTF 2937 */ 2938 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2939 return true; 2940 2941 return false; 2942 } 2943 2944 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2945 { 2946 struct bpf_program *prog; 2947 int i; 2948 2949 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2950 * is not specified 2951 */ 2952 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2953 return true; 2954 2955 /* Support for typed ksyms needs kernel BTF */ 2956 for (i = 0; i < obj->nr_extern; i++) { 2957 const struct extern_desc *ext; 2958 2959 ext = &obj->externs[i]; 2960 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2961 return true; 2962 } 2963 2964 bpf_object__for_each_program(prog, obj) { 2965 if (!prog->autoload) 2966 continue; 2967 if (prog_needs_vmlinux_btf(prog)) 2968 return true; 2969 } 2970 2971 return false; 2972 } 2973 2974 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2975 { 2976 int err; 2977 2978 /* btf_vmlinux could be loaded earlier */ 2979 if (obj->btf_vmlinux || obj->gen_loader) 2980 return 0; 2981 2982 if (!force && !obj_needs_vmlinux_btf(obj)) 2983 return 0; 2984 2985 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2986 err = libbpf_get_error(obj->btf_vmlinux); 2987 if (err) { 2988 pr_warn("Error loading vmlinux BTF: %d\n", err); 2989 obj->btf_vmlinux = NULL; 2990 return err; 2991 } 2992 return 0; 2993 } 2994 2995 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2996 { 2997 struct btf *kern_btf = obj->btf; 2998 bool btf_mandatory, sanitize; 2999 int i, err = 0; 3000 3001 if (!obj->btf) 3002 return 0; 3003 3004 if (!kernel_supports(obj, FEAT_BTF)) { 3005 if (kernel_needs_btf(obj)) { 3006 err = -EOPNOTSUPP; 3007 goto report; 3008 } 3009 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3010 return 0; 3011 } 3012 3013 /* Even though some subprogs are global/weak, user might prefer more 3014 * permissive BPF verification process that BPF verifier performs for 3015 * static functions, taking into account more context from the caller 3016 * functions. In such case, they need to mark such subprogs with 3017 * __attribute__((visibility("hidden"))) and libbpf will adjust 3018 * corresponding FUNC BTF type to be marked as static and trigger more 3019 * involved BPF verification process. 3020 */ 3021 for (i = 0; i < obj->nr_programs; i++) { 3022 struct bpf_program *prog = &obj->programs[i]; 3023 struct btf_type *t; 3024 const char *name; 3025 int j, n; 3026 3027 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3028 continue; 3029 3030 n = btf__type_cnt(obj->btf); 3031 for (j = 1; j < n; j++) { 3032 t = btf_type_by_id(obj->btf, j); 3033 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3034 continue; 3035 3036 name = btf__str_by_offset(obj->btf, t->name_off); 3037 if (strcmp(name, prog->name) != 0) 3038 continue; 3039 3040 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3041 break; 3042 } 3043 } 3044 3045 sanitize = btf_needs_sanitization(obj); 3046 if (sanitize) { 3047 const void *raw_data; 3048 __u32 sz; 3049 3050 /* clone BTF to sanitize a copy and leave the original intact */ 3051 raw_data = btf__raw_data(obj->btf, &sz); 3052 kern_btf = btf__new(raw_data, sz); 3053 err = libbpf_get_error(kern_btf); 3054 if (err) 3055 return err; 3056 3057 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3058 btf__set_pointer_size(obj->btf, 8); 3059 bpf_object__sanitize_btf(obj, kern_btf); 3060 } 3061 3062 if (obj->gen_loader) { 3063 __u32 raw_size = 0; 3064 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3065 3066 if (!raw_data) 3067 return -ENOMEM; 3068 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3069 /* Pretend to have valid FD to pass various fd >= 0 checks. 3070 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3071 */ 3072 btf__set_fd(kern_btf, 0); 3073 } else { 3074 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3075 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3076 obj->log_level ? 1 : 0); 3077 } 3078 if (sanitize) { 3079 if (!err) { 3080 /* move fd to libbpf's BTF */ 3081 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3082 btf__set_fd(kern_btf, -1); 3083 } 3084 btf__free(kern_btf); 3085 } 3086 report: 3087 if (err) { 3088 btf_mandatory = kernel_needs_btf(obj); 3089 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3090 btf_mandatory ? "BTF is mandatory, can't proceed." 3091 : "BTF is optional, ignoring."); 3092 if (!btf_mandatory) 3093 err = 0; 3094 } 3095 return err; 3096 } 3097 3098 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3099 { 3100 const char *name; 3101 3102 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3103 if (!name) { 3104 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3105 off, obj->path, elf_errmsg(-1)); 3106 return NULL; 3107 } 3108 3109 return name; 3110 } 3111 3112 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3113 { 3114 const char *name; 3115 3116 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3117 if (!name) { 3118 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3119 off, obj->path, elf_errmsg(-1)); 3120 return NULL; 3121 } 3122 3123 return name; 3124 } 3125 3126 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3127 { 3128 Elf_Scn *scn; 3129 3130 scn = elf_getscn(obj->efile.elf, idx); 3131 if (!scn) { 3132 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3133 idx, obj->path, elf_errmsg(-1)); 3134 return NULL; 3135 } 3136 return scn; 3137 } 3138 3139 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3140 { 3141 Elf_Scn *scn = NULL; 3142 Elf *elf = obj->efile.elf; 3143 const char *sec_name; 3144 3145 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3146 sec_name = elf_sec_name(obj, scn); 3147 if (!sec_name) 3148 return NULL; 3149 3150 if (strcmp(sec_name, name) != 0) 3151 continue; 3152 3153 return scn; 3154 } 3155 return NULL; 3156 } 3157 3158 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3159 { 3160 Elf64_Shdr *shdr; 3161 3162 if (!scn) 3163 return NULL; 3164 3165 shdr = elf64_getshdr(scn); 3166 if (!shdr) { 3167 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3168 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3169 return NULL; 3170 } 3171 3172 return shdr; 3173 } 3174 3175 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3176 { 3177 const char *name; 3178 Elf64_Shdr *sh; 3179 3180 if (!scn) 3181 return NULL; 3182 3183 sh = elf_sec_hdr(obj, scn); 3184 if (!sh) 3185 return NULL; 3186 3187 name = elf_sec_str(obj, sh->sh_name); 3188 if (!name) { 3189 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3190 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3191 return NULL; 3192 } 3193 3194 return name; 3195 } 3196 3197 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3198 { 3199 Elf_Data *data; 3200 3201 if (!scn) 3202 return NULL; 3203 3204 data = elf_getdata(scn, 0); 3205 if (!data) { 3206 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3207 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3208 obj->path, elf_errmsg(-1)); 3209 return NULL; 3210 } 3211 3212 return data; 3213 } 3214 3215 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3216 { 3217 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3218 return NULL; 3219 3220 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3221 } 3222 3223 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3224 { 3225 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3226 return NULL; 3227 3228 return (Elf64_Rel *)data->d_buf + idx; 3229 } 3230 3231 static bool is_sec_name_dwarf(const char *name) 3232 { 3233 /* approximation, but the actual list is too long */ 3234 return str_has_pfx(name, ".debug_"); 3235 } 3236 3237 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3238 { 3239 /* no special handling of .strtab */ 3240 if (hdr->sh_type == SHT_STRTAB) 3241 return true; 3242 3243 /* ignore .llvm_addrsig section as well */ 3244 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3245 return true; 3246 3247 /* no subprograms will lead to an empty .text section, ignore it */ 3248 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3249 strcmp(name, ".text") == 0) 3250 return true; 3251 3252 /* DWARF sections */ 3253 if (is_sec_name_dwarf(name)) 3254 return true; 3255 3256 if (str_has_pfx(name, ".rel")) { 3257 name += sizeof(".rel") - 1; 3258 /* DWARF section relocations */ 3259 if (is_sec_name_dwarf(name)) 3260 return true; 3261 3262 /* .BTF and .BTF.ext don't need relocations */ 3263 if (strcmp(name, BTF_ELF_SEC) == 0 || 3264 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3265 return true; 3266 } 3267 3268 return false; 3269 } 3270 3271 static int cmp_progs(const void *_a, const void *_b) 3272 { 3273 const struct bpf_program *a = _a; 3274 const struct bpf_program *b = _b; 3275 3276 if (a->sec_idx != b->sec_idx) 3277 return a->sec_idx < b->sec_idx ? -1 : 1; 3278 3279 /* sec_insn_off can't be the same within the section */ 3280 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3281 } 3282 3283 static int bpf_object__elf_collect(struct bpf_object *obj) 3284 { 3285 struct elf_sec_desc *sec_desc; 3286 Elf *elf = obj->efile.elf; 3287 Elf_Data *btf_ext_data = NULL; 3288 Elf_Data *btf_data = NULL; 3289 int idx = 0, err = 0; 3290 const char *name; 3291 Elf_Data *data; 3292 Elf_Scn *scn; 3293 Elf64_Shdr *sh; 3294 3295 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3296 * section. e_shnum does include sec #0, so e_shnum is the necessary 3297 * size of an array to keep all the sections. 3298 */ 3299 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3300 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3301 if (!obj->efile.secs) 3302 return -ENOMEM; 3303 3304 /* a bunch of ELF parsing functionality depends on processing symbols, 3305 * so do the first pass and find the symbol table 3306 */ 3307 scn = NULL; 3308 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3309 sh = elf_sec_hdr(obj, scn); 3310 if (!sh) 3311 return -LIBBPF_ERRNO__FORMAT; 3312 3313 if (sh->sh_type == SHT_SYMTAB) { 3314 if (obj->efile.symbols) { 3315 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3316 return -LIBBPF_ERRNO__FORMAT; 3317 } 3318 3319 data = elf_sec_data(obj, scn); 3320 if (!data) 3321 return -LIBBPF_ERRNO__FORMAT; 3322 3323 idx = elf_ndxscn(scn); 3324 3325 obj->efile.symbols = data; 3326 obj->efile.symbols_shndx = idx; 3327 obj->efile.strtabidx = sh->sh_link; 3328 } 3329 } 3330 3331 if (!obj->efile.symbols) { 3332 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3333 obj->path); 3334 return -ENOENT; 3335 } 3336 3337 scn = NULL; 3338 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3339 idx = elf_ndxscn(scn); 3340 sec_desc = &obj->efile.secs[idx]; 3341 3342 sh = elf_sec_hdr(obj, scn); 3343 if (!sh) 3344 return -LIBBPF_ERRNO__FORMAT; 3345 3346 name = elf_sec_str(obj, sh->sh_name); 3347 if (!name) 3348 return -LIBBPF_ERRNO__FORMAT; 3349 3350 if (ignore_elf_section(sh, name)) 3351 continue; 3352 3353 data = elf_sec_data(obj, scn); 3354 if (!data) 3355 return -LIBBPF_ERRNO__FORMAT; 3356 3357 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3358 idx, name, (unsigned long)data->d_size, 3359 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3360 (int)sh->sh_type); 3361 3362 if (strcmp(name, "license") == 0) { 3363 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3364 if (err) 3365 return err; 3366 } else if (strcmp(name, "version") == 0) { 3367 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3368 if (err) 3369 return err; 3370 } else if (strcmp(name, "maps") == 0) { 3371 obj->efile.maps_shndx = idx; 3372 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3373 obj->efile.btf_maps_shndx = idx; 3374 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3375 if (sh->sh_type != SHT_PROGBITS) 3376 return -LIBBPF_ERRNO__FORMAT; 3377 btf_data = data; 3378 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3379 if (sh->sh_type != SHT_PROGBITS) 3380 return -LIBBPF_ERRNO__FORMAT; 3381 btf_ext_data = data; 3382 } else if (sh->sh_type == SHT_SYMTAB) { 3383 /* already processed during the first pass above */ 3384 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3385 if (sh->sh_flags & SHF_EXECINSTR) { 3386 if (strcmp(name, ".text") == 0) 3387 obj->efile.text_shndx = idx; 3388 err = bpf_object__add_programs(obj, data, name, idx); 3389 if (err) 3390 return err; 3391 } else if (strcmp(name, DATA_SEC) == 0 || 3392 str_has_pfx(name, DATA_SEC ".")) { 3393 sec_desc->sec_type = SEC_DATA; 3394 sec_desc->shdr = sh; 3395 sec_desc->data = data; 3396 } else if (strcmp(name, RODATA_SEC) == 0 || 3397 str_has_pfx(name, RODATA_SEC ".")) { 3398 sec_desc->sec_type = SEC_RODATA; 3399 sec_desc->shdr = sh; 3400 sec_desc->data = data; 3401 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3402 obj->efile.st_ops_data = data; 3403 obj->efile.st_ops_shndx = idx; 3404 } else { 3405 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3406 idx, name); 3407 } 3408 } else if (sh->sh_type == SHT_REL) { 3409 int targ_sec_idx = sh->sh_info; /* points to other section */ 3410 3411 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3412 targ_sec_idx >= obj->efile.sec_cnt) 3413 return -LIBBPF_ERRNO__FORMAT; 3414 3415 /* Only do relo for section with exec instructions */ 3416 if (!section_have_execinstr(obj, targ_sec_idx) && 3417 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3418 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3419 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3420 idx, name, targ_sec_idx, 3421 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3422 continue; 3423 } 3424 3425 sec_desc->sec_type = SEC_RELO; 3426 sec_desc->shdr = sh; 3427 sec_desc->data = data; 3428 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3429 sec_desc->sec_type = SEC_BSS; 3430 sec_desc->shdr = sh; 3431 sec_desc->data = data; 3432 } else { 3433 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3434 (size_t)sh->sh_size); 3435 } 3436 } 3437 3438 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3439 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3440 return -LIBBPF_ERRNO__FORMAT; 3441 } 3442 3443 /* sort BPF programs by section name and in-section instruction offset 3444 * for faster search */ 3445 if (obj->nr_programs) 3446 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3447 3448 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3449 } 3450 3451 static bool sym_is_extern(const Elf64_Sym *sym) 3452 { 3453 int bind = ELF64_ST_BIND(sym->st_info); 3454 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3455 return sym->st_shndx == SHN_UNDEF && 3456 (bind == STB_GLOBAL || bind == STB_WEAK) && 3457 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3458 } 3459 3460 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3461 { 3462 int bind = ELF64_ST_BIND(sym->st_info); 3463 int type = ELF64_ST_TYPE(sym->st_info); 3464 3465 /* in .text section */ 3466 if (sym->st_shndx != text_shndx) 3467 return false; 3468 3469 /* local function */ 3470 if (bind == STB_LOCAL && type == STT_SECTION) 3471 return true; 3472 3473 /* global function */ 3474 return bind == STB_GLOBAL && type == STT_FUNC; 3475 } 3476 3477 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3478 { 3479 const struct btf_type *t; 3480 const char *tname; 3481 int i, n; 3482 3483 if (!btf) 3484 return -ESRCH; 3485 3486 n = btf__type_cnt(btf); 3487 for (i = 1; i < n; i++) { 3488 t = btf__type_by_id(btf, i); 3489 3490 if (!btf_is_var(t) && !btf_is_func(t)) 3491 continue; 3492 3493 tname = btf__name_by_offset(btf, t->name_off); 3494 if (strcmp(tname, ext_name)) 3495 continue; 3496 3497 if (btf_is_var(t) && 3498 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3499 return -EINVAL; 3500 3501 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3502 return -EINVAL; 3503 3504 return i; 3505 } 3506 3507 return -ENOENT; 3508 } 3509 3510 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3511 const struct btf_var_secinfo *vs; 3512 const struct btf_type *t; 3513 int i, j, n; 3514 3515 if (!btf) 3516 return -ESRCH; 3517 3518 n = btf__type_cnt(btf); 3519 for (i = 1; i < n; i++) { 3520 t = btf__type_by_id(btf, i); 3521 3522 if (!btf_is_datasec(t)) 3523 continue; 3524 3525 vs = btf_var_secinfos(t); 3526 for (j = 0; j < btf_vlen(t); j++, vs++) { 3527 if (vs->type == ext_btf_id) 3528 return i; 3529 } 3530 } 3531 3532 return -ENOENT; 3533 } 3534 3535 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3536 bool *is_signed) 3537 { 3538 const struct btf_type *t; 3539 const char *name; 3540 3541 t = skip_mods_and_typedefs(btf, id, NULL); 3542 name = btf__name_by_offset(btf, t->name_off); 3543 3544 if (is_signed) 3545 *is_signed = false; 3546 switch (btf_kind(t)) { 3547 case BTF_KIND_INT: { 3548 int enc = btf_int_encoding(t); 3549 3550 if (enc & BTF_INT_BOOL) 3551 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3552 if (is_signed) 3553 *is_signed = enc & BTF_INT_SIGNED; 3554 if (t->size == 1) 3555 return KCFG_CHAR; 3556 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3557 return KCFG_UNKNOWN; 3558 return KCFG_INT; 3559 } 3560 case BTF_KIND_ENUM: 3561 if (t->size != 4) 3562 return KCFG_UNKNOWN; 3563 if (strcmp(name, "libbpf_tristate")) 3564 return KCFG_UNKNOWN; 3565 return KCFG_TRISTATE; 3566 case BTF_KIND_ARRAY: 3567 if (btf_array(t)->nelems == 0) 3568 return KCFG_UNKNOWN; 3569 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3570 return KCFG_UNKNOWN; 3571 return KCFG_CHAR_ARR; 3572 default: 3573 return KCFG_UNKNOWN; 3574 } 3575 } 3576 3577 static int cmp_externs(const void *_a, const void *_b) 3578 { 3579 const struct extern_desc *a = _a; 3580 const struct extern_desc *b = _b; 3581 3582 if (a->type != b->type) 3583 return a->type < b->type ? -1 : 1; 3584 3585 if (a->type == EXT_KCFG) { 3586 /* descending order by alignment requirements */ 3587 if (a->kcfg.align != b->kcfg.align) 3588 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3589 /* ascending order by size, within same alignment class */ 3590 if (a->kcfg.sz != b->kcfg.sz) 3591 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3592 } 3593 3594 /* resolve ties by name */ 3595 return strcmp(a->name, b->name); 3596 } 3597 3598 static int find_int_btf_id(const struct btf *btf) 3599 { 3600 const struct btf_type *t; 3601 int i, n; 3602 3603 n = btf__type_cnt(btf); 3604 for (i = 1; i < n; i++) { 3605 t = btf__type_by_id(btf, i); 3606 3607 if (btf_is_int(t) && btf_int_bits(t) == 32) 3608 return i; 3609 } 3610 3611 return 0; 3612 } 3613 3614 static int add_dummy_ksym_var(struct btf *btf) 3615 { 3616 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3617 const struct btf_var_secinfo *vs; 3618 const struct btf_type *sec; 3619 3620 if (!btf) 3621 return 0; 3622 3623 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3624 BTF_KIND_DATASEC); 3625 if (sec_btf_id < 0) 3626 return 0; 3627 3628 sec = btf__type_by_id(btf, sec_btf_id); 3629 vs = btf_var_secinfos(sec); 3630 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3631 const struct btf_type *vt; 3632 3633 vt = btf__type_by_id(btf, vs->type); 3634 if (btf_is_func(vt)) 3635 break; 3636 } 3637 3638 /* No func in ksyms sec. No need to add dummy var. */ 3639 if (i == btf_vlen(sec)) 3640 return 0; 3641 3642 int_btf_id = find_int_btf_id(btf); 3643 dummy_var_btf_id = btf__add_var(btf, 3644 "dummy_ksym", 3645 BTF_VAR_GLOBAL_ALLOCATED, 3646 int_btf_id); 3647 if (dummy_var_btf_id < 0) 3648 pr_warn("cannot create a dummy_ksym var\n"); 3649 3650 return dummy_var_btf_id; 3651 } 3652 3653 static int bpf_object__collect_externs(struct bpf_object *obj) 3654 { 3655 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3656 const struct btf_type *t; 3657 struct extern_desc *ext; 3658 int i, n, off, dummy_var_btf_id; 3659 const char *ext_name, *sec_name; 3660 Elf_Scn *scn; 3661 Elf64_Shdr *sh; 3662 3663 if (!obj->efile.symbols) 3664 return 0; 3665 3666 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3667 sh = elf_sec_hdr(obj, scn); 3668 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3669 return -LIBBPF_ERRNO__FORMAT; 3670 3671 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3672 if (dummy_var_btf_id < 0) 3673 return dummy_var_btf_id; 3674 3675 n = sh->sh_size / sh->sh_entsize; 3676 pr_debug("looking for externs among %d symbols...\n", n); 3677 3678 for (i = 0; i < n; i++) { 3679 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3680 3681 if (!sym) 3682 return -LIBBPF_ERRNO__FORMAT; 3683 if (!sym_is_extern(sym)) 3684 continue; 3685 ext_name = elf_sym_str(obj, sym->st_name); 3686 if (!ext_name || !ext_name[0]) 3687 continue; 3688 3689 ext = obj->externs; 3690 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3691 if (!ext) 3692 return -ENOMEM; 3693 obj->externs = ext; 3694 ext = &ext[obj->nr_extern]; 3695 memset(ext, 0, sizeof(*ext)); 3696 obj->nr_extern++; 3697 3698 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3699 if (ext->btf_id <= 0) { 3700 pr_warn("failed to find BTF for extern '%s': %d\n", 3701 ext_name, ext->btf_id); 3702 return ext->btf_id; 3703 } 3704 t = btf__type_by_id(obj->btf, ext->btf_id); 3705 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3706 ext->sym_idx = i; 3707 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3708 3709 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3710 if (ext->sec_btf_id <= 0) { 3711 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3712 ext_name, ext->btf_id, ext->sec_btf_id); 3713 return ext->sec_btf_id; 3714 } 3715 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3716 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3717 3718 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3719 if (btf_is_func(t)) { 3720 pr_warn("extern function %s is unsupported under %s section\n", 3721 ext->name, KCONFIG_SEC); 3722 return -ENOTSUP; 3723 } 3724 kcfg_sec = sec; 3725 ext->type = EXT_KCFG; 3726 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3727 if (ext->kcfg.sz <= 0) { 3728 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3729 ext_name, ext->kcfg.sz); 3730 return ext->kcfg.sz; 3731 } 3732 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3733 if (ext->kcfg.align <= 0) { 3734 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3735 ext_name, ext->kcfg.align); 3736 return -EINVAL; 3737 } 3738 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3739 &ext->kcfg.is_signed); 3740 if (ext->kcfg.type == KCFG_UNKNOWN) { 3741 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3742 return -ENOTSUP; 3743 } 3744 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3745 ksym_sec = sec; 3746 ext->type = EXT_KSYM; 3747 skip_mods_and_typedefs(obj->btf, t->type, 3748 &ext->ksym.type_id); 3749 } else { 3750 pr_warn("unrecognized extern section '%s'\n", sec_name); 3751 return -ENOTSUP; 3752 } 3753 } 3754 pr_debug("collected %d externs total\n", obj->nr_extern); 3755 3756 if (!obj->nr_extern) 3757 return 0; 3758 3759 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3760 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3761 3762 /* for .ksyms section, we need to turn all externs into allocated 3763 * variables in BTF to pass kernel verification; we do this by 3764 * pretending that each extern is a 8-byte variable 3765 */ 3766 if (ksym_sec) { 3767 /* find existing 4-byte integer type in BTF to use for fake 3768 * extern variables in DATASEC 3769 */ 3770 int int_btf_id = find_int_btf_id(obj->btf); 3771 /* For extern function, a dummy_var added earlier 3772 * will be used to replace the vs->type and 3773 * its name string will be used to refill 3774 * the missing param's name. 3775 */ 3776 const struct btf_type *dummy_var; 3777 3778 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3779 for (i = 0; i < obj->nr_extern; i++) { 3780 ext = &obj->externs[i]; 3781 if (ext->type != EXT_KSYM) 3782 continue; 3783 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3784 i, ext->sym_idx, ext->name); 3785 } 3786 3787 sec = ksym_sec; 3788 n = btf_vlen(sec); 3789 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3790 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3791 struct btf_type *vt; 3792 3793 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3794 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3795 ext = find_extern_by_name(obj, ext_name); 3796 if (!ext) { 3797 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3798 btf_kind_str(vt), ext_name); 3799 return -ESRCH; 3800 } 3801 if (btf_is_func(vt)) { 3802 const struct btf_type *func_proto; 3803 struct btf_param *param; 3804 int j; 3805 3806 func_proto = btf__type_by_id(obj->btf, 3807 vt->type); 3808 param = btf_params(func_proto); 3809 /* Reuse the dummy_var string if the 3810 * func proto does not have param name. 3811 */ 3812 for (j = 0; j < btf_vlen(func_proto); j++) 3813 if (param[j].type && !param[j].name_off) 3814 param[j].name_off = 3815 dummy_var->name_off; 3816 vs->type = dummy_var_btf_id; 3817 vt->info &= ~0xffff; 3818 vt->info |= BTF_FUNC_GLOBAL; 3819 } else { 3820 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3821 vt->type = int_btf_id; 3822 } 3823 vs->offset = off; 3824 vs->size = sizeof(int); 3825 } 3826 sec->size = off; 3827 } 3828 3829 if (kcfg_sec) { 3830 sec = kcfg_sec; 3831 /* for kcfg externs calculate their offsets within a .kconfig map */ 3832 off = 0; 3833 for (i = 0; i < obj->nr_extern; i++) { 3834 ext = &obj->externs[i]; 3835 if (ext->type != EXT_KCFG) 3836 continue; 3837 3838 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3839 off = ext->kcfg.data_off + ext->kcfg.sz; 3840 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3841 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3842 } 3843 sec->size = off; 3844 n = btf_vlen(sec); 3845 for (i = 0; i < n; i++) { 3846 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3847 3848 t = btf__type_by_id(obj->btf, vs->type); 3849 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3850 ext = find_extern_by_name(obj, ext_name); 3851 if (!ext) { 3852 pr_warn("failed to find extern definition for BTF var '%s'\n", 3853 ext_name); 3854 return -ESRCH; 3855 } 3856 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3857 vs->offset = ext->kcfg.data_off; 3858 } 3859 } 3860 return 0; 3861 } 3862 3863 struct bpf_program * 3864 bpf_object__find_program_by_title(const struct bpf_object *obj, 3865 const char *title) 3866 { 3867 struct bpf_program *pos; 3868 3869 bpf_object__for_each_program(pos, obj) { 3870 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3871 return pos; 3872 } 3873 return errno = ENOENT, NULL; 3874 } 3875 3876 static bool prog_is_subprog(const struct bpf_object *obj, 3877 const struct bpf_program *prog) 3878 { 3879 /* For legacy reasons, libbpf supports an entry-point BPF programs 3880 * without SEC() attribute, i.e., those in the .text section. But if 3881 * there are 2 or more such programs in the .text section, they all 3882 * must be subprograms called from entry-point BPF programs in 3883 * designated SEC()'tions, otherwise there is no way to distinguish 3884 * which of those programs should be loaded vs which are a subprogram. 3885 * Similarly, if there is a function/program in .text and at least one 3886 * other BPF program with custom SEC() attribute, then we just assume 3887 * .text programs are subprograms (even if they are not called from 3888 * other programs), because libbpf never explicitly supported mixing 3889 * SEC()-designated BPF programs and .text entry-point BPF programs. 3890 * 3891 * In libbpf 1.0 strict mode, we always consider .text 3892 * programs to be subprograms. 3893 */ 3894 3895 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 3896 return prog->sec_idx == obj->efile.text_shndx; 3897 3898 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3899 } 3900 3901 struct bpf_program * 3902 bpf_object__find_program_by_name(const struct bpf_object *obj, 3903 const char *name) 3904 { 3905 struct bpf_program *prog; 3906 3907 bpf_object__for_each_program(prog, obj) { 3908 if (prog_is_subprog(obj, prog)) 3909 continue; 3910 if (!strcmp(prog->name, name)) 3911 return prog; 3912 } 3913 return errno = ENOENT, NULL; 3914 } 3915 3916 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3917 int shndx) 3918 { 3919 switch (obj->efile.secs[shndx].sec_type) { 3920 case SEC_BSS: 3921 case SEC_DATA: 3922 case SEC_RODATA: 3923 return true; 3924 default: 3925 return false; 3926 } 3927 } 3928 3929 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3930 int shndx) 3931 { 3932 return shndx == obj->efile.maps_shndx || 3933 shndx == obj->efile.btf_maps_shndx; 3934 } 3935 3936 static enum libbpf_map_type 3937 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3938 { 3939 if (shndx == obj->efile.symbols_shndx) 3940 return LIBBPF_MAP_KCONFIG; 3941 3942 switch (obj->efile.secs[shndx].sec_type) { 3943 case SEC_BSS: 3944 return LIBBPF_MAP_BSS; 3945 case SEC_DATA: 3946 return LIBBPF_MAP_DATA; 3947 case SEC_RODATA: 3948 return LIBBPF_MAP_RODATA; 3949 default: 3950 return LIBBPF_MAP_UNSPEC; 3951 } 3952 } 3953 3954 static int bpf_program__record_reloc(struct bpf_program *prog, 3955 struct reloc_desc *reloc_desc, 3956 __u32 insn_idx, const char *sym_name, 3957 const Elf64_Sym *sym, const Elf64_Rel *rel) 3958 { 3959 struct bpf_insn *insn = &prog->insns[insn_idx]; 3960 size_t map_idx, nr_maps = prog->obj->nr_maps; 3961 struct bpf_object *obj = prog->obj; 3962 __u32 shdr_idx = sym->st_shndx; 3963 enum libbpf_map_type type; 3964 const char *sym_sec_name; 3965 struct bpf_map *map; 3966 3967 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3968 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3969 prog->name, sym_name, insn_idx, insn->code); 3970 return -LIBBPF_ERRNO__RELOC; 3971 } 3972 3973 if (sym_is_extern(sym)) { 3974 int sym_idx = ELF64_R_SYM(rel->r_info); 3975 int i, n = obj->nr_extern; 3976 struct extern_desc *ext; 3977 3978 for (i = 0; i < n; i++) { 3979 ext = &obj->externs[i]; 3980 if (ext->sym_idx == sym_idx) 3981 break; 3982 } 3983 if (i >= n) { 3984 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3985 prog->name, sym_name, sym_idx); 3986 return -LIBBPF_ERRNO__RELOC; 3987 } 3988 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3989 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3990 if (insn->code == (BPF_JMP | BPF_CALL)) 3991 reloc_desc->type = RELO_EXTERN_FUNC; 3992 else 3993 reloc_desc->type = RELO_EXTERN_VAR; 3994 reloc_desc->insn_idx = insn_idx; 3995 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3996 return 0; 3997 } 3998 3999 /* sub-program call relocation */ 4000 if (is_call_insn(insn)) { 4001 if (insn->src_reg != BPF_PSEUDO_CALL) { 4002 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4003 return -LIBBPF_ERRNO__RELOC; 4004 } 4005 /* text_shndx can be 0, if no default "main" program exists */ 4006 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4007 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4008 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4009 prog->name, sym_name, sym_sec_name); 4010 return -LIBBPF_ERRNO__RELOC; 4011 } 4012 if (sym->st_value % BPF_INSN_SZ) { 4013 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4014 prog->name, sym_name, (size_t)sym->st_value); 4015 return -LIBBPF_ERRNO__RELOC; 4016 } 4017 reloc_desc->type = RELO_CALL; 4018 reloc_desc->insn_idx = insn_idx; 4019 reloc_desc->sym_off = sym->st_value; 4020 return 0; 4021 } 4022 4023 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4024 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4025 prog->name, sym_name, shdr_idx); 4026 return -LIBBPF_ERRNO__RELOC; 4027 } 4028 4029 /* loading subprog addresses */ 4030 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4031 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4032 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4033 */ 4034 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4035 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4036 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4037 return -LIBBPF_ERRNO__RELOC; 4038 } 4039 4040 reloc_desc->type = RELO_SUBPROG_ADDR; 4041 reloc_desc->insn_idx = insn_idx; 4042 reloc_desc->sym_off = sym->st_value; 4043 return 0; 4044 } 4045 4046 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4047 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4048 4049 /* generic map reference relocation */ 4050 if (type == LIBBPF_MAP_UNSPEC) { 4051 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4052 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4053 prog->name, sym_name, sym_sec_name); 4054 return -LIBBPF_ERRNO__RELOC; 4055 } 4056 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4057 map = &obj->maps[map_idx]; 4058 if (map->libbpf_type != type || 4059 map->sec_idx != sym->st_shndx || 4060 map->sec_offset != sym->st_value) 4061 continue; 4062 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4063 prog->name, map_idx, map->name, map->sec_idx, 4064 map->sec_offset, insn_idx); 4065 break; 4066 } 4067 if (map_idx >= nr_maps) { 4068 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4069 prog->name, sym_sec_name, (size_t)sym->st_value); 4070 return -LIBBPF_ERRNO__RELOC; 4071 } 4072 reloc_desc->type = RELO_LD64; 4073 reloc_desc->insn_idx = insn_idx; 4074 reloc_desc->map_idx = map_idx; 4075 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4076 return 0; 4077 } 4078 4079 /* global data map relocation */ 4080 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4081 pr_warn("prog '%s': bad data relo against section '%s'\n", 4082 prog->name, sym_sec_name); 4083 return -LIBBPF_ERRNO__RELOC; 4084 } 4085 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4086 map = &obj->maps[map_idx]; 4087 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4088 continue; 4089 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4090 prog->name, map_idx, map->name, map->sec_idx, 4091 map->sec_offset, insn_idx); 4092 break; 4093 } 4094 if (map_idx >= nr_maps) { 4095 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4096 prog->name, sym_sec_name); 4097 return -LIBBPF_ERRNO__RELOC; 4098 } 4099 4100 reloc_desc->type = RELO_DATA; 4101 reloc_desc->insn_idx = insn_idx; 4102 reloc_desc->map_idx = map_idx; 4103 reloc_desc->sym_off = sym->st_value; 4104 return 0; 4105 } 4106 4107 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4108 { 4109 return insn_idx >= prog->sec_insn_off && 4110 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4111 } 4112 4113 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4114 size_t sec_idx, size_t insn_idx) 4115 { 4116 int l = 0, r = obj->nr_programs - 1, m; 4117 struct bpf_program *prog; 4118 4119 while (l < r) { 4120 m = l + (r - l + 1) / 2; 4121 prog = &obj->programs[m]; 4122 4123 if (prog->sec_idx < sec_idx || 4124 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4125 l = m; 4126 else 4127 r = m - 1; 4128 } 4129 /* matching program could be at index l, but it still might be the 4130 * wrong one, so we need to double check conditions for the last time 4131 */ 4132 prog = &obj->programs[l]; 4133 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4134 return prog; 4135 return NULL; 4136 } 4137 4138 static int 4139 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4140 { 4141 const char *relo_sec_name, *sec_name; 4142 size_t sec_idx = shdr->sh_info, sym_idx; 4143 struct bpf_program *prog; 4144 struct reloc_desc *relos; 4145 int err, i, nrels; 4146 const char *sym_name; 4147 __u32 insn_idx; 4148 Elf_Scn *scn; 4149 Elf_Data *scn_data; 4150 Elf64_Sym *sym; 4151 Elf64_Rel *rel; 4152 4153 if (sec_idx >= obj->efile.sec_cnt) 4154 return -EINVAL; 4155 4156 scn = elf_sec_by_idx(obj, sec_idx); 4157 scn_data = elf_sec_data(obj, scn); 4158 4159 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4160 sec_name = elf_sec_name(obj, scn); 4161 if (!relo_sec_name || !sec_name) 4162 return -EINVAL; 4163 4164 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4165 relo_sec_name, sec_idx, sec_name); 4166 nrels = shdr->sh_size / shdr->sh_entsize; 4167 4168 for (i = 0; i < nrels; i++) { 4169 rel = elf_rel_by_idx(data, i); 4170 if (!rel) { 4171 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4172 return -LIBBPF_ERRNO__FORMAT; 4173 } 4174 4175 sym_idx = ELF64_R_SYM(rel->r_info); 4176 sym = elf_sym_by_idx(obj, sym_idx); 4177 if (!sym) { 4178 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4179 relo_sec_name, sym_idx, i); 4180 return -LIBBPF_ERRNO__FORMAT; 4181 } 4182 4183 if (sym->st_shndx >= obj->efile.sec_cnt) { 4184 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4185 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4186 return -LIBBPF_ERRNO__FORMAT; 4187 } 4188 4189 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4190 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4191 relo_sec_name, (size_t)rel->r_offset, i); 4192 return -LIBBPF_ERRNO__FORMAT; 4193 } 4194 4195 insn_idx = rel->r_offset / BPF_INSN_SZ; 4196 /* relocations against static functions are recorded as 4197 * relocations against the section that contains a function; 4198 * in such case, symbol will be STT_SECTION and sym.st_name 4199 * will point to empty string (0), so fetch section name 4200 * instead 4201 */ 4202 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4203 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4204 else 4205 sym_name = elf_sym_str(obj, sym->st_name); 4206 sym_name = sym_name ?: "<?"; 4207 4208 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4209 relo_sec_name, i, insn_idx, sym_name); 4210 4211 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4212 if (!prog) { 4213 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4214 relo_sec_name, i, sec_name, insn_idx); 4215 continue; 4216 } 4217 4218 relos = libbpf_reallocarray(prog->reloc_desc, 4219 prog->nr_reloc + 1, sizeof(*relos)); 4220 if (!relos) 4221 return -ENOMEM; 4222 prog->reloc_desc = relos; 4223 4224 /* adjust insn_idx to local BPF program frame of reference */ 4225 insn_idx -= prog->sec_insn_off; 4226 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4227 insn_idx, sym_name, sym, rel); 4228 if (err) 4229 return err; 4230 4231 prog->nr_reloc++; 4232 } 4233 return 0; 4234 } 4235 4236 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4237 { 4238 struct bpf_map_def *def = &map->def; 4239 __u32 key_type_id = 0, value_type_id = 0; 4240 int ret; 4241 4242 if (!obj->btf) 4243 return -ENOENT; 4244 4245 /* if it's BTF-defined map, we don't need to search for type IDs. 4246 * For struct_ops map, it does not need btf_key_type_id and 4247 * btf_value_type_id. 4248 */ 4249 if (map->sec_idx == obj->efile.btf_maps_shndx || 4250 bpf_map__is_struct_ops(map)) 4251 return 0; 4252 4253 if (!bpf_map__is_internal(map)) { 4254 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4255 #pragma GCC diagnostic push 4256 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4257 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4258 def->value_size, &key_type_id, 4259 &value_type_id); 4260 #pragma GCC diagnostic pop 4261 } else { 4262 /* 4263 * LLVM annotates global data differently in BTF, that is, 4264 * only as '.data', '.bss' or '.rodata'. 4265 */ 4266 ret = btf__find_by_name(obj->btf, map->real_name); 4267 } 4268 if (ret < 0) 4269 return ret; 4270 4271 map->btf_key_type_id = key_type_id; 4272 map->btf_value_type_id = bpf_map__is_internal(map) ? 4273 ret : value_type_id; 4274 return 0; 4275 } 4276 4277 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4278 { 4279 char file[PATH_MAX], buff[4096]; 4280 FILE *fp; 4281 __u32 val; 4282 int err; 4283 4284 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4285 memset(info, 0, sizeof(*info)); 4286 4287 fp = fopen(file, "r"); 4288 if (!fp) { 4289 err = -errno; 4290 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4291 err); 4292 return err; 4293 } 4294 4295 while (fgets(buff, sizeof(buff), fp)) { 4296 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4297 info->type = val; 4298 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4299 info->key_size = val; 4300 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4301 info->value_size = val; 4302 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4303 info->max_entries = val; 4304 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4305 info->map_flags = val; 4306 } 4307 4308 fclose(fp); 4309 4310 return 0; 4311 } 4312 4313 bool bpf_map__autocreate(const struct bpf_map *map) 4314 { 4315 return map->autocreate; 4316 } 4317 4318 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4319 { 4320 if (map->obj->loaded) 4321 return libbpf_err(-EBUSY); 4322 4323 map->autocreate = autocreate; 4324 return 0; 4325 } 4326 4327 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4328 { 4329 struct bpf_map_info info = {}; 4330 __u32 len = sizeof(info); 4331 int new_fd, err; 4332 char *new_name; 4333 4334 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4335 if (err && errno == EINVAL) 4336 err = bpf_get_map_info_from_fdinfo(fd, &info); 4337 if (err) 4338 return libbpf_err(err); 4339 4340 new_name = strdup(info.name); 4341 if (!new_name) 4342 return libbpf_err(-errno); 4343 4344 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4345 if (new_fd < 0) { 4346 err = -errno; 4347 goto err_free_new_name; 4348 } 4349 4350 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4351 if (new_fd < 0) { 4352 err = -errno; 4353 goto err_close_new_fd; 4354 } 4355 4356 err = zclose(map->fd); 4357 if (err) { 4358 err = -errno; 4359 goto err_close_new_fd; 4360 } 4361 free(map->name); 4362 4363 map->fd = new_fd; 4364 map->name = new_name; 4365 map->def.type = info.type; 4366 map->def.key_size = info.key_size; 4367 map->def.value_size = info.value_size; 4368 map->def.max_entries = info.max_entries; 4369 map->def.map_flags = info.map_flags; 4370 map->btf_key_type_id = info.btf_key_type_id; 4371 map->btf_value_type_id = info.btf_value_type_id; 4372 map->reused = true; 4373 map->map_extra = info.map_extra; 4374 4375 return 0; 4376 4377 err_close_new_fd: 4378 close(new_fd); 4379 err_free_new_name: 4380 free(new_name); 4381 return libbpf_err(err); 4382 } 4383 4384 __u32 bpf_map__max_entries(const struct bpf_map *map) 4385 { 4386 return map->def.max_entries; 4387 } 4388 4389 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4390 { 4391 if (!bpf_map_type__is_map_in_map(map->def.type)) 4392 return errno = EINVAL, NULL; 4393 4394 return map->inner_map; 4395 } 4396 4397 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4398 { 4399 if (map->fd >= 0) 4400 return libbpf_err(-EBUSY); 4401 map->def.max_entries = max_entries; 4402 return 0; 4403 } 4404 4405 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4406 { 4407 if (!map || !max_entries) 4408 return libbpf_err(-EINVAL); 4409 4410 return bpf_map__set_max_entries(map, max_entries); 4411 } 4412 4413 static int 4414 bpf_object__probe_loading(struct bpf_object *obj) 4415 { 4416 char *cp, errmsg[STRERR_BUFSIZE]; 4417 struct bpf_insn insns[] = { 4418 BPF_MOV64_IMM(BPF_REG_0, 0), 4419 BPF_EXIT_INSN(), 4420 }; 4421 int ret, insn_cnt = ARRAY_SIZE(insns); 4422 4423 if (obj->gen_loader) 4424 return 0; 4425 4426 ret = bump_rlimit_memlock(); 4427 if (ret) 4428 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4429 4430 /* make sure basic loading works */ 4431 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4432 if (ret < 0) 4433 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4434 if (ret < 0) { 4435 ret = errno; 4436 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4437 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4438 "program. Make sure your kernel supports BPF " 4439 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4440 "set to big enough value.\n", __func__, cp, ret); 4441 return -ret; 4442 } 4443 close(ret); 4444 4445 return 0; 4446 } 4447 4448 static int probe_fd(int fd) 4449 { 4450 if (fd >= 0) 4451 close(fd); 4452 return fd >= 0; 4453 } 4454 4455 static int probe_kern_prog_name(void) 4456 { 4457 struct bpf_insn insns[] = { 4458 BPF_MOV64_IMM(BPF_REG_0, 0), 4459 BPF_EXIT_INSN(), 4460 }; 4461 int ret, insn_cnt = ARRAY_SIZE(insns); 4462 4463 /* make sure loading with name works */ 4464 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4465 return probe_fd(ret); 4466 } 4467 4468 static int probe_kern_global_data(void) 4469 { 4470 char *cp, errmsg[STRERR_BUFSIZE]; 4471 struct bpf_insn insns[] = { 4472 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4473 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4474 BPF_MOV64_IMM(BPF_REG_0, 0), 4475 BPF_EXIT_INSN(), 4476 }; 4477 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4478 4479 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4480 if (map < 0) { 4481 ret = -errno; 4482 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4483 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4484 __func__, cp, -ret); 4485 return ret; 4486 } 4487 4488 insns[0].imm = map; 4489 4490 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4491 close(map); 4492 return probe_fd(ret); 4493 } 4494 4495 static int probe_kern_btf(void) 4496 { 4497 static const char strs[] = "\0int"; 4498 __u32 types[] = { 4499 /* int */ 4500 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4501 }; 4502 4503 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4504 strs, sizeof(strs))); 4505 } 4506 4507 static int probe_kern_btf_func(void) 4508 { 4509 static const char strs[] = "\0int\0x\0a"; 4510 /* void x(int a) {} */ 4511 __u32 types[] = { 4512 /* int */ 4513 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4514 /* FUNC_PROTO */ /* [2] */ 4515 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4516 BTF_PARAM_ENC(7, 1), 4517 /* FUNC x */ /* [3] */ 4518 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4519 }; 4520 4521 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4522 strs, sizeof(strs))); 4523 } 4524 4525 static int probe_kern_btf_func_global(void) 4526 { 4527 static const char strs[] = "\0int\0x\0a"; 4528 /* static void x(int a) {} */ 4529 __u32 types[] = { 4530 /* int */ 4531 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4532 /* FUNC_PROTO */ /* [2] */ 4533 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4534 BTF_PARAM_ENC(7, 1), 4535 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4536 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4537 }; 4538 4539 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4540 strs, sizeof(strs))); 4541 } 4542 4543 static int probe_kern_btf_datasec(void) 4544 { 4545 static const char strs[] = "\0x\0.data"; 4546 /* static int a; */ 4547 __u32 types[] = { 4548 /* int */ 4549 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4550 /* VAR x */ /* [2] */ 4551 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4552 BTF_VAR_STATIC, 4553 /* DATASEC val */ /* [3] */ 4554 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4555 BTF_VAR_SECINFO_ENC(2, 0, 4), 4556 }; 4557 4558 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4559 strs, sizeof(strs))); 4560 } 4561 4562 static int probe_kern_btf_float(void) 4563 { 4564 static const char strs[] = "\0float"; 4565 __u32 types[] = { 4566 /* float */ 4567 BTF_TYPE_FLOAT_ENC(1, 4), 4568 }; 4569 4570 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4571 strs, sizeof(strs))); 4572 } 4573 4574 static int probe_kern_btf_decl_tag(void) 4575 { 4576 static const char strs[] = "\0tag"; 4577 __u32 types[] = { 4578 /* int */ 4579 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4580 /* VAR x */ /* [2] */ 4581 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4582 BTF_VAR_STATIC, 4583 /* attr */ 4584 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4585 }; 4586 4587 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4588 strs, sizeof(strs))); 4589 } 4590 4591 static int probe_kern_btf_type_tag(void) 4592 { 4593 static const char strs[] = "\0tag"; 4594 __u32 types[] = { 4595 /* int */ 4596 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4597 /* attr */ 4598 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4599 /* ptr */ 4600 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4601 }; 4602 4603 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4604 strs, sizeof(strs))); 4605 } 4606 4607 static int probe_kern_array_mmap(void) 4608 { 4609 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4610 int fd; 4611 4612 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4613 return probe_fd(fd); 4614 } 4615 4616 static int probe_kern_exp_attach_type(void) 4617 { 4618 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4619 struct bpf_insn insns[] = { 4620 BPF_MOV64_IMM(BPF_REG_0, 0), 4621 BPF_EXIT_INSN(), 4622 }; 4623 int fd, insn_cnt = ARRAY_SIZE(insns); 4624 4625 /* use any valid combination of program type and (optional) 4626 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4627 * to see if kernel supports expected_attach_type field for 4628 * BPF_PROG_LOAD command 4629 */ 4630 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4631 return probe_fd(fd); 4632 } 4633 4634 static int probe_kern_probe_read_kernel(void) 4635 { 4636 struct bpf_insn insns[] = { 4637 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4638 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4639 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4640 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4641 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4642 BPF_EXIT_INSN(), 4643 }; 4644 int fd, insn_cnt = ARRAY_SIZE(insns); 4645 4646 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4647 return probe_fd(fd); 4648 } 4649 4650 static int probe_prog_bind_map(void) 4651 { 4652 char *cp, errmsg[STRERR_BUFSIZE]; 4653 struct bpf_insn insns[] = { 4654 BPF_MOV64_IMM(BPF_REG_0, 0), 4655 BPF_EXIT_INSN(), 4656 }; 4657 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4658 4659 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4660 if (map < 0) { 4661 ret = -errno; 4662 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4663 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4664 __func__, cp, -ret); 4665 return ret; 4666 } 4667 4668 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4669 if (prog < 0) { 4670 close(map); 4671 return 0; 4672 } 4673 4674 ret = bpf_prog_bind_map(prog, map, NULL); 4675 4676 close(map); 4677 close(prog); 4678 4679 return ret >= 0; 4680 } 4681 4682 static int probe_module_btf(void) 4683 { 4684 static const char strs[] = "\0int"; 4685 __u32 types[] = { 4686 /* int */ 4687 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4688 }; 4689 struct bpf_btf_info info; 4690 __u32 len = sizeof(info); 4691 char name[16]; 4692 int fd, err; 4693 4694 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4695 if (fd < 0) 4696 return 0; /* BTF not supported at all */ 4697 4698 memset(&info, 0, sizeof(info)); 4699 info.name = ptr_to_u64(name); 4700 info.name_len = sizeof(name); 4701 4702 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4703 * kernel's module BTF support coincides with support for 4704 * name/name_len fields in struct bpf_btf_info. 4705 */ 4706 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4707 close(fd); 4708 return !err; 4709 } 4710 4711 static int probe_perf_link(void) 4712 { 4713 struct bpf_insn insns[] = { 4714 BPF_MOV64_IMM(BPF_REG_0, 0), 4715 BPF_EXIT_INSN(), 4716 }; 4717 int prog_fd, link_fd, err; 4718 4719 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4720 insns, ARRAY_SIZE(insns), NULL); 4721 if (prog_fd < 0) 4722 return -errno; 4723 4724 /* use invalid perf_event FD to get EBADF, if link is supported; 4725 * otherwise EINVAL should be returned 4726 */ 4727 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4728 err = -errno; /* close() can clobber errno */ 4729 4730 if (link_fd >= 0) 4731 close(link_fd); 4732 close(prog_fd); 4733 4734 return link_fd < 0 && err == -EBADF; 4735 } 4736 4737 static int probe_kern_bpf_cookie(void) 4738 { 4739 struct bpf_insn insns[] = { 4740 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4741 BPF_EXIT_INSN(), 4742 }; 4743 int ret, insn_cnt = ARRAY_SIZE(insns); 4744 4745 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4746 return probe_fd(ret); 4747 } 4748 4749 enum kern_feature_result { 4750 FEAT_UNKNOWN = 0, 4751 FEAT_SUPPORTED = 1, 4752 FEAT_MISSING = 2, 4753 }; 4754 4755 typedef int (*feature_probe_fn)(void); 4756 4757 static struct kern_feature_desc { 4758 const char *desc; 4759 feature_probe_fn probe; 4760 enum kern_feature_result res; 4761 } feature_probes[__FEAT_CNT] = { 4762 [FEAT_PROG_NAME] = { 4763 "BPF program name", probe_kern_prog_name, 4764 }, 4765 [FEAT_GLOBAL_DATA] = { 4766 "global variables", probe_kern_global_data, 4767 }, 4768 [FEAT_BTF] = { 4769 "minimal BTF", probe_kern_btf, 4770 }, 4771 [FEAT_BTF_FUNC] = { 4772 "BTF functions", probe_kern_btf_func, 4773 }, 4774 [FEAT_BTF_GLOBAL_FUNC] = { 4775 "BTF global function", probe_kern_btf_func_global, 4776 }, 4777 [FEAT_BTF_DATASEC] = { 4778 "BTF data section and variable", probe_kern_btf_datasec, 4779 }, 4780 [FEAT_ARRAY_MMAP] = { 4781 "ARRAY map mmap()", probe_kern_array_mmap, 4782 }, 4783 [FEAT_EXP_ATTACH_TYPE] = { 4784 "BPF_PROG_LOAD expected_attach_type attribute", 4785 probe_kern_exp_attach_type, 4786 }, 4787 [FEAT_PROBE_READ_KERN] = { 4788 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4789 }, 4790 [FEAT_PROG_BIND_MAP] = { 4791 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4792 }, 4793 [FEAT_MODULE_BTF] = { 4794 "module BTF support", probe_module_btf, 4795 }, 4796 [FEAT_BTF_FLOAT] = { 4797 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4798 }, 4799 [FEAT_PERF_LINK] = { 4800 "BPF perf link support", probe_perf_link, 4801 }, 4802 [FEAT_BTF_DECL_TAG] = { 4803 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4804 }, 4805 [FEAT_BTF_TYPE_TAG] = { 4806 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4807 }, 4808 [FEAT_MEMCG_ACCOUNT] = { 4809 "memcg-based memory accounting", probe_memcg_account, 4810 }, 4811 [FEAT_BPF_COOKIE] = { 4812 "BPF cookie support", probe_kern_bpf_cookie, 4813 }, 4814 }; 4815 4816 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4817 { 4818 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4819 int ret; 4820 4821 if (obj && obj->gen_loader) 4822 /* To generate loader program assume the latest kernel 4823 * to avoid doing extra prog_load, map_create syscalls. 4824 */ 4825 return true; 4826 4827 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4828 ret = feat->probe(); 4829 if (ret > 0) { 4830 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4831 } else if (ret == 0) { 4832 WRITE_ONCE(feat->res, FEAT_MISSING); 4833 } else { 4834 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4835 WRITE_ONCE(feat->res, FEAT_MISSING); 4836 } 4837 } 4838 4839 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4840 } 4841 4842 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4843 { 4844 struct bpf_map_info map_info = {}; 4845 char msg[STRERR_BUFSIZE]; 4846 __u32 map_info_len; 4847 int err; 4848 4849 map_info_len = sizeof(map_info); 4850 4851 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4852 if (err && errno == EINVAL) 4853 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4854 if (err) { 4855 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4856 libbpf_strerror_r(errno, msg, sizeof(msg))); 4857 return false; 4858 } 4859 4860 return (map_info.type == map->def.type && 4861 map_info.key_size == map->def.key_size && 4862 map_info.value_size == map->def.value_size && 4863 map_info.max_entries == map->def.max_entries && 4864 map_info.map_flags == map->def.map_flags && 4865 map_info.map_extra == map->map_extra); 4866 } 4867 4868 static int 4869 bpf_object__reuse_map(struct bpf_map *map) 4870 { 4871 char *cp, errmsg[STRERR_BUFSIZE]; 4872 int err, pin_fd; 4873 4874 pin_fd = bpf_obj_get(map->pin_path); 4875 if (pin_fd < 0) { 4876 err = -errno; 4877 if (err == -ENOENT) { 4878 pr_debug("found no pinned map to reuse at '%s'\n", 4879 map->pin_path); 4880 return 0; 4881 } 4882 4883 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4884 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4885 map->pin_path, cp); 4886 return err; 4887 } 4888 4889 if (!map_is_reuse_compat(map, pin_fd)) { 4890 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4891 map->pin_path); 4892 close(pin_fd); 4893 return -EINVAL; 4894 } 4895 4896 err = bpf_map__reuse_fd(map, pin_fd); 4897 close(pin_fd); 4898 if (err) { 4899 return err; 4900 } 4901 map->pinned = true; 4902 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4903 4904 return 0; 4905 } 4906 4907 static int 4908 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4909 { 4910 enum libbpf_map_type map_type = map->libbpf_type; 4911 char *cp, errmsg[STRERR_BUFSIZE]; 4912 int err, zero = 0; 4913 4914 if (obj->gen_loader) { 4915 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4916 map->mmaped, map->def.value_size); 4917 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4918 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4919 return 0; 4920 } 4921 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4922 if (err) { 4923 err = -errno; 4924 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4925 pr_warn("Error setting initial map(%s) contents: %s\n", 4926 map->name, cp); 4927 return err; 4928 } 4929 4930 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4931 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4932 err = bpf_map_freeze(map->fd); 4933 if (err) { 4934 err = -errno; 4935 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4936 pr_warn("Error freezing map(%s) as read-only: %s\n", 4937 map->name, cp); 4938 return err; 4939 } 4940 } 4941 return 0; 4942 } 4943 4944 static void bpf_map__destroy(struct bpf_map *map); 4945 4946 static bool is_pow_of_2(size_t x) 4947 { 4948 return x && (x & (x - 1)); 4949 } 4950 4951 static size_t adjust_ringbuf_sz(size_t sz) 4952 { 4953 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 4954 __u32 mul; 4955 4956 /* if user forgot to set any size, make sure they see error */ 4957 if (sz == 0) 4958 return 0; 4959 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 4960 * a power-of-2 multiple of kernel's page size. If user diligently 4961 * satisified these conditions, pass the size through. 4962 */ 4963 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 4964 return sz; 4965 4966 /* Otherwise find closest (page_sz * power_of_2) product bigger than 4967 * user-set size to satisfy both user size request and kernel 4968 * requirements and substitute correct max_entries for map creation. 4969 */ 4970 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 4971 if (mul * page_sz > sz) 4972 return mul * page_sz; 4973 } 4974 4975 /* if it's impossible to satisfy the conditions (i.e., user size is 4976 * very close to UINT_MAX but is not a power-of-2 multiple of 4977 * page_size) then just return original size and let kernel reject it 4978 */ 4979 return sz; 4980 } 4981 4982 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4983 { 4984 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4985 struct bpf_map_def *def = &map->def; 4986 const char *map_name = NULL; 4987 int err = 0; 4988 4989 if (kernel_supports(obj, FEAT_PROG_NAME)) 4990 map_name = map->name; 4991 create_attr.map_ifindex = map->map_ifindex; 4992 create_attr.map_flags = def->map_flags; 4993 create_attr.numa_node = map->numa_node; 4994 create_attr.map_extra = map->map_extra; 4995 4996 if (bpf_map__is_struct_ops(map)) 4997 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4998 4999 if (obj->btf && btf__fd(obj->btf) >= 0) { 5000 create_attr.btf_fd = btf__fd(obj->btf); 5001 create_attr.btf_key_type_id = map->btf_key_type_id; 5002 create_attr.btf_value_type_id = map->btf_value_type_id; 5003 } 5004 5005 if (bpf_map_type__is_map_in_map(def->type)) { 5006 if (map->inner_map) { 5007 err = bpf_object__create_map(obj, map->inner_map, true); 5008 if (err) { 5009 pr_warn("map '%s': failed to create inner map: %d\n", 5010 map->name, err); 5011 return err; 5012 } 5013 map->inner_map_fd = bpf_map__fd(map->inner_map); 5014 } 5015 if (map->inner_map_fd >= 0) 5016 create_attr.inner_map_fd = map->inner_map_fd; 5017 } 5018 5019 switch (def->type) { 5020 case BPF_MAP_TYPE_RINGBUF: 5021 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 5022 /* fallthrough */ 5023 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5024 case BPF_MAP_TYPE_CGROUP_ARRAY: 5025 case BPF_MAP_TYPE_STACK_TRACE: 5026 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5027 case BPF_MAP_TYPE_HASH_OF_MAPS: 5028 case BPF_MAP_TYPE_DEVMAP: 5029 case BPF_MAP_TYPE_DEVMAP_HASH: 5030 case BPF_MAP_TYPE_CPUMAP: 5031 case BPF_MAP_TYPE_XSKMAP: 5032 case BPF_MAP_TYPE_SOCKMAP: 5033 case BPF_MAP_TYPE_SOCKHASH: 5034 case BPF_MAP_TYPE_QUEUE: 5035 case BPF_MAP_TYPE_STACK: 5036 create_attr.btf_fd = 0; 5037 create_attr.btf_key_type_id = 0; 5038 create_attr.btf_value_type_id = 0; 5039 map->btf_key_type_id = 0; 5040 map->btf_value_type_id = 0; 5041 default: 5042 break; 5043 } 5044 5045 if (obj->gen_loader) { 5046 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5047 def->key_size, def->value_size, def->max_entries, 5048 &create_attr, is_inner ? -1 : map - obj->maps); 5049 /* Pretend to have valid FD to pass various fd >= 0 checks. 5050 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5051 */ 5052 map->fd = 0; 5053 } else { 5054 map->fd = bpf_map_create(def->type, map_name, 5055 def->key_size, def->value_size, 5056 def->max_entries, &create_attr); 5057 } 5058 if (map->fd < 0 && (create_attr.btf_key_type_id || 5059 create_attr.btf_value_type_id)) { 5060 char *cp, errmsg[STRERR_BUFSIZE]; 5061 5062 err = -errno; 5063 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5064 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5065 map->name, cp, err); 5066 create_attr.btf_fd = 0; 5067 create_attr.btf_key_type_id = 0; 5068 create_attr.btf_value_type_id = 0; 5069 map->btf_key_type_id = 0; 5070 map->btf_value_type_id = 0; 5071 map->fd = bpf_map_create(def->type, map_name, 5072 def->key_size, def->value_size, 5073 def->max_entries, &create_attr); 5074 } 5075 5076 err = map->fd < 0 ? -errno : 0; 5077 5078 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5079 if (obj->gen_loader) 5080 map->inner_map->fd = -1; 5081 bpf_map__destroy(map->inner_map); 5082 zfree(&map->inner_map); 5083 } 5084 5085 return err; 5086 } 5087 5088 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5089 { 5090 const struct bpf_map *targ_map; 5091 unsigned int i; 5092 int fd, err = 0; 5093 5094 for (i = 0; i < map->init_slots_sz; i++) { 5095 if (!map->init_slots[i]) 5096 continue; 5097 5098 targ_map = map->init_slots[i]; 5099 fd = bpf_map__fd(targ_map); 5100 5101 if (obj->gen_loader) { 5102 bpf_gen__populate_outer_map(obj->gen_loader, 5103 map - obj->maps, i, 5104 targ_map - obj->maps); 5105 } else { 5106 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5107 } 5108 if (err) { 5109 err = -errno; 5110 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5111 map->name, i, targ_map->name, fd, err); 5112 return err; 5113 } 5114 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5115 map->name, i, targ_map->name, fd); 5116 } 5117 5118 zfree(&map->init_slots); 5119 map->init_slots_sz = 0; 5120 5121 return 0; 5122 } 5123 5124 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5125 { 5126 const struct bpf_program *targ_prog; 5127 unsigned int i; 5128 int fd, err; 5129 5130 if (obj->gen_loader) 5131 return -ENOTSUP; 5132 5133 for (i = 0; i < map->init_slots_sz; i++) { 5134 if (!map->init_slots[i]) 5135 continue; 5136 5137 targ_prog = map->init_slots[i]; 5138 fd = bpf_program__fd(targ_prog); 5139 5140 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5141 if (err) { 5142 err = -errno; 5143 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5144 map->name, i, targ_prog->name, fd, err); 5145 return err; 5146 } 5147 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5148 map->name, i, targ_prog->name, fd); 5149 } 5150 5151 zfree(&map->init_slots); 5152 map->init_slots_sz = 0; 5153 5154 return 0; 5155 } 5156 5157 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5158 { 5159 struct bpf_map *map; 5160 int i, err; 5161 5162 for (i = 0; i < obj->nr_maps; i++) { 5163 map = &obj->maps[i]; 5164 5165 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5166 continue; 5167 5168 err = init_prog_array_slots(obj, map); 5169 if (err < 0) { 5170 zclose(map->fd); 5171 return err; 5172 } 5173 } 5174 return 0; 5175 } 5176 5177 static int map_set_def_max_entries(struct bpf_map *map) 5178 { 5179 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5180 int nr_cpus; 5181 5182 nr_cpus = libbpf_num_possible_cpus(); 5183 if (nr_cpus < 0) { 5184 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5185 map->name, nr_cpus); 5186 return nr_cpus; 5187 } 5188 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5189 map->def.max_entries = nr_cpus; 5190 } 5191 5192 return 0; 5193 } 5194 5195 static int 5196 bpf_object__create_maps(struct bpf_object *obj) 5197 { 5198 struct bpf_map *map; 5199 char *cp, errmsg[STRERR_BUFSIZE]; 5200 unsigned int i, j; 5201 int err; 5202 bool retried; 5203 5204 for (i = 0; i < obj->nr_maps; i++) { 5205 map = &obj->maps[i]; 5206 5207 /* To support old kernels, we skip creating global data maps 5208 * (.rodata, .data, .kconfig, etc); later on, during program 5209 * loading, if we detect that at least one of the to-be-loaded 5210 * programs is referencing any global data map, we'll error 5211 * out with program name and relocation index logged. 5212 * This approach allows to accommodate Clang emitting 5213 * unnecessary .rodata.str1.1 sections for string literals, 5214 * but also it allows to have CO-RE applications that use 5215 * global variables in some of BPF programs, but not others. 5216 * If those global variable-using programs are not loaded at 5217 * runtime due to bpf_program__set_autoload(prog, false), 5218 * bpf_object loading will succeed just fine even on old 5219 * kernels. 5220 */ 5221 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5222 map->autocreate = false; 5223 5224 if (!map->autocreate) { 5225 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5226 continue; 5227 } 5228 5229 err = map_set_def_max_entries(map); 5230 if (err) 5231 goto err_out; 5232 5233 retried = false; 5234 retry: 5235 if (map->pin_path) { 5236 err = bpf_object__reuse_map(map); 5237 if (err) { 5238 pr_warn("map '%s': error reusing pinned map\n", 5239 map->name); 5240 goto err_out; 5241 } 5242 if (retried && map->fd < 0) { 5243 pr_warn("map '%s': cannot find pinned map\n", 5244 map->name); 5245 err = -ENOENT; 5246 goto err_out; 5247 } 5248 } 5249 5250 if (map->fd >= 0) { 5251 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5252 map->name, map->fd); 5253 } else { 5254 err = bpf_object__create_map(obj, map, false); 5255 if (err) 5256 goto err_out; 5257 5258 pr_debug("map '%s': created successfully, fd=%d\n", 5259 map->name, map->fd); 5260 5261 if (bpf_map__is_internal(map)) { 5262 err = bpf_object__populate_internal_map(obj, map); 5263 if (err < 0) { 5264 zclose(map->fd); 5265 goto err_out; 5266 } 5267 } 5268 5269 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5270 err = init_map_in_map_slots(obj, map); 5271 if (err < 0) { 5272 zclose(map->fd); 5273 goto err_out; 5274 } 5275 } 5276 } 5277 5278 if (map->pin_path && !map->pinned) { 5279 err = bpf_map__pin(map, NULL); 5280 if (err) { 5281 zclose(map->fd); 5282 if (!retried && err == -EEXIST) { 5283 retried = true; 5284 goto retry; 5285 } 5286 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5287 map->name, map->pin_path, err); 5288 goto err_out; 5289 } 5290 } 5291 } 5292 5293 return 0; 5294 5295 err_out: 5296 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5297 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5298 pr_perm_msg(err); 5299 for (j = 0; j < i; j++) 5300 zclose(obj->maps[j].fd); 5301 return err; 5302 } 5303 5304 static bool bpf_core_is_flavor_sep(const char *s) 5305 { 5306 /* check X___Y name pattern, where X and Y are not underscores */ 5307 return s[0] != '_' && /* X */ 5308 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5309 s[4] != '_'; /* Y */ 5310 } 5311 5312 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5313 * before last triple underscore. Struct name part after last triple 5314 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5315 */ 5316 size_t bpf_core_essential_name_len(const char *name) 5317 { 5318 size_t n = strlen(name); 5319 int i; 5320 5321 for (i = n - 5; i >= 0; i--) { 5322 if (bpf_core_is_flavor_sep(name + i)) 5323 return i + 1; 5324 } 5325 return n; 5326 } 5327 5328 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5329 { 5330 if (!cands) 5331 return; 5332 5333 free(cands->cands); 5334 free(cands); 5335 } 5336 5337 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5338 size_t local_essent_len, 5339 const struct btf *targ_btf, 5340 const char *targ_btf_name, 5341 int targ_start_id, 5342 struct bpf_core_cand_list *cands) 5343 { 5344 struct bpf_core_cand *new_cands, *cand; 5345 const struct btf_type *t, *local_t; 5346 const char *targ_name, *local_name; 5347 size_t targ_essent_len; 5348 int n, i; 5349 5350 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5351 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5352 5353 n = btf__type_cnt(targ_btf); 5354 for (i = targ_start_id; i < n; i++) { 5355 t = btf__type_by_id(targ_btf, i); 5356 if (btf_kind(t) != btf_kind(local_t)) 5357 continue; 5358 5359 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5360 if (str_is_empty(targ_name)) 5361 continue; 5362 5363 targ_essent_len = bpf_core_essential_name_len(targ_name); 5364 if (targ_essent_len != local_essent_len) 5365 continue; 5366 5367 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5368 continue; 5369 5370 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5371 local_cand->id, btf_kind_str(local_t), 5372 local_name, i, btf_kind_str(t), targ_name, 5373 targ_btf_name); 5374 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5375 sizeof(*cands->cands)); 5376 if (!new_cands) 5377 return -ENOMEM; 5378 5379 cand = &new_cands[cands->len]; 5380 cand->btf = targ_btf; 5381 cand->id = i; 5382 5383 cands->cands = new_cands; 5384 cands->len++; 5385 } 5386 return 0; 5387 } 5388 5389 static int load_module_btfs(struct bpf_object *obj) 5390 { 5391 struct bpf_btf_info info; 5392 struct module_btf *mod_btf; 5393 struct btf *btf; 5394 char name[64]; 5395 __u32 id = 0, len; 5396 int err, fd; 5397 5398 if (obj->btf_modules_loaded) 5399 return 0; 5400 5401 if (obj->gen_loader) 5402 return 0; 5403 5404 /* don't do this again, even if we find no module BTFs */ 5405 obj->btf_modules_loaded = true; 5406 5407 /* kernel too old to support module BTFs */ 5408 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5409 return 0; 5410 5411 while (true) { 5412 err = bpf_btf_get_next_id(id, &id); 5413 if (err && errno == ENOENT) 5414 return 0; 5415 if (err) { 5416 err = -errno; 5417 pr_warn("failed to iterate BTF objects: %d\n", err); 5418 return err; 5419 } 5420 5421 fd = bpf_btf_get_fd_by_id(id); 5422 if (fd < 0) { 5423 if (errno == ENOENT) 5424 continue; /* expected race: BTF was unloaded */ 5425 err = -errno; 5426 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5427 return err; 5428 } 5429 5430 len = sizeof(info); 5431 memset(&info, 0, sizeof(info)); 5432 info.name = ptr_to_u64(name); 5433 info.name_len = sizeof(name); 5434 5435 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5436 if (err) { 5437 err = -errno; 5438 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5439 goto err_out; 5440 } 5441 5442 /* ignore non-module BTFs */ 5443 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5444 close(fd); 5445 continue; 5446 } 5447 5448 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5449 err = libbpf_get_error(btf); 5450 if (err) { 5451 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5452 name, id, err); 5453 goto err_out; 5454 } 5455 5456 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5457 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5458 if (err) 5459 goto err_out; 5460 5461 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5462 5463 mod_btf->btf = btf; 5464 mod_btf->id = id; 5465 mod_btf->fd = fd; 5466 mod_btf->name = strdup(name); 5467 if (!mod_btf->name) { 5468 err = -ENOMEM; 5469 goto err_out; 5470 } 5471 continue; 5472 5473 err_out: 5474 close(fd); 5475 return err; 5476 } 5477 5478 return 0; 5479 } 5480 5481 static struct bpf_core_cand_list * 5482 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5483 { 5484 struct bpf_core_cand local_cand = {}; 5485 struct bpf_core_cand_list *cands; 5486 const struct btf *main_btf; 5487 const struct btf_type *local_t; 5488 const char *local_name; 5489 size_t local_essent_len; 5490 int err, i; 5491 5492 local_cand.btf = local_btf; 5493 local_cand.id = local_type_id; 5494 local_t = btf__type_by_id(local_btf, local_type_id); 5495 if (!local_t) 5496 return ERR_PTR(-EINVAL); 5497 5498 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5499 if (str_is_empty(local_name)) 5500 return ERR_PTR(-EINVAL); 5501 local_essent_len = bpf_core_essential_name_len(local_name); 5502 5503 cands = calloc(1, sizeof(*cands)); 5504 if (!cands) 5505 return ERR_PTR(-ENOMEM); 5506 5507 /* Attempt to find target candidates in vmlinux BTF first */ 5508 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5509 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5510 if (err) 5511 goto err_out; 5512 5513 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5514 if (cands->len) 5515 return cands; 5516 5517 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5518 if (obj->btf_vmlinux_override) 5519 return cands; 5520 5521 /* now look through module BTFs, trying to still find candidates */ 5522 err = load_module_btfs(obj); 5523 if (err) 5524 goto err_out; 5525 5526 for (i = 0; i < obj->btf_module_cnt; i++) { 5527 err = bpf_core_add_cands(&local_cand, local_essent_len, 5528 obj->btf_modules[i].btf, 5529 obj->btf_modules[i].name, 5530 btf__type_cnt(obj->btf_vmlinux), 5531 cands); 5532 if (err) 5533 goto err_out; 5534 } 5535 5536 return cands; 5537 err_out: 5538 bpf_core_free_cands(cands); 5539 return ERR_PTR(err); 5540 } 5541 5542 /* Check local and target types for compatibility. This check is used for 5543 * type-based CO-RE relocations and follow slightly different rules than 5544 * field-based relocations. This function assumes that root types were already 5545 * checked for name match. Beyond that initial root-level name check, names 5546 * are completely ignored. Compatibility rules are as follows: 5547 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5548 * kind should match for local and target types (i.e., STRUCT is not 5549 * compatible with UNION); 5550 * - for ENUMs, the size is ignored; 5551 * - for INT, size and signedness are ignored; 5552 * - for ARRAY, dimensionality is ignored, element types are checked for 5553 * compatibility recursively; 5554 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5555 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5556 * - FUNC_PROTOs are compatible if they have compatible signature: same 5557 * number of input args and compatible return and argument types. 5558 * These rules are not set in stone and probably will be adjusted as we get 5559 * more experience with using BPF CO-RE relocations. 5560 */ 5561 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5562 const struct btf *targ_btf, __u32 targ_id) 5563 { 5564 const struct btf_type *local_type, *targ_type; 5565 int depth = 32; /* max recursion depth */ 5566 5567 /* caller made sure that names match (ignoring flavor suffix) */ 5568 local_type = btf__type_by_id(local_btf, local_id); 5569 targ_type = btf__type_by_id(targ_btf, targ_id); 5570 if (btf_kind(local_type) != btf_kind(targ_type)) 5571 return 0; 5572 5573 recur: 5574 depth--; 5575 if (depth < 0) 5576 return -EINVAL; 5577 5578 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5579 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5580 if (!local_type || !targ_type) 5581 return -EINVAL; 5582 5583 if (btf_kind(local_type) != btf_kind(targ_type)) 5584 return 0; 5585 5586 switch (btf_kind(local_type)) { 5587 case BTF_KIND_UNKN: 5588 case BTF_KIND_STRUCT: 5589 case BTF_KIND_UNION: 5590 case BTF_KIND_ENUM: 5591 case BTF_KIND_FWD: 5592 return 1; 5593 case BTF_KIND_INT: 5594 /* just reject deprecated bitfield-like integers; all other 5595 * integers are by default compatible between each other 5596 */ 5597 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5598 case BTF_KIND_PTR: 5599 local_id = local_type->type; 5600 targ_id = targ_type->type; 5601 goto recur; 5602 case BTF_KIND_ARRAY: 5603 local_id = btf_array(local_type)->type; 5604 targ_id = btf_array(targ_type)->type; 5605 goto recur; 5606 case BTF_KIND_FUNC_PROTO: { 5607 struct btf_param *local_p = btf_params(local_type); 5608 struct btf_param *targ_p = btf_params(targ_type); 5609 __u16 local_vlen = btf_vlen(local_type); 5610 __u16 targ_vlen = btf_vlen(targ_type); 5611 int i, err; 5612 5613 if (local_vlen != targ_vlen) 5614 return 0; 5615 5616 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5617 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5618 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5619 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5620 if (err <= 0) 5621 return err; 5622 } 5623 5624 /* tail recurse for return type check */ 5625 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5626 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5627 goto recur; 5628 } 5629 default: 5630 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5631 btf_kind_str(local_type), local_id, targ_id); 5632 return 0; 5633 } 5634 } 5635 5636 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5637 { 5638 return (size_t)key; 5639 } 5640 5641 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5642 { 5643 return k1 == k2; 5644 } 5645 5646 static void *u32_as_hash_key(__u32 x) 5647 { 5648 return (void *)(uintptr_t)x; 5649 } 5650 5651 static int record_relo_core(struct bpf_program *prog, 5652 const struct bpf_core_relo *core_relo, int insn_idx) 5653 { 5654 struct reloc_desc *relos, *relo; 5655 5656 relos = libbpf_reallocarray(prog->reloc_desc, 5657 prog->nr_reloc + 1, sizeof(*relos)); 5658 if (!relos) 5659 return -ENOMEM; 5660 relo = &relos[prog->nr_reloc]; 5661 relo->type = RELO_CORE; 5662 relo->insn_idx = insn_idx; 5663 relo->core_relo = core_relo; 5664 prog->reloc_desc = relos; 5665 prog->nr_reloc++; 5666 return 0; 5667 } 5668 5669 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5670 { 5671 struct reloc_desc *relo; 5672 int i; 5673 5674 for (i = 0; i < prog->nr_reloc; i++) { 5675 relo = &prog->reloc_desc[i]; 5676 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5677 continue; 5678 5679 return relo->core_relo; 5680 } 5681 5682 return NULL; 5683 } 5684 5685 static int bpf_core_resolve_relo(struct bpf_program *prog, 5686 const struct bpf_core_relo *relo, 5687 int relo_idx, 5688 const struct btf *local_btf, 5689 struct hashmap *cand_cache, 5690 struct bpf_core_relo_res *targ_res) 5691 { 5692 struct bpf_core_spec specs_scratch[3] = {}; 5693 const void *type_key = u32_as_hash_key(relo->type_id); 5694 struct bpf_core_cand_list *cands = NULL; 5695 const char *prog_name = prog->name; 5696 const struct btf_type *local_type; 5697 const char *local_name; 5698 __u32 local_id = relo->type_id; 5699 int err; 5700 5701 local_type = btf__type_by_id(local_btf, local_id); 5702 if (!local_type) 5703 return -EINVAL; 5704 5705 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5706 if (!local_name) 5707 return -EINVAL; 5708 5709 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5710 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5711 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5712 if (IS_ERR(cands)) { 5713 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5714 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5715 local_name, PTR_ERR(cands)); 5716 return PTR_ERR(cands); 5717 } 5718 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5719 if (err) { 5720 bpf_core_free_cands(cands); 5721 return err; 5722 } 5723 } 5724 5725 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5726 targ_res); 5727 } 5728 5729 static int 5730 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5731 { 5732 const struct btf_ext_info_sec *sec; 5733 struct bpf_core_relo_res targ_res; 5734 const struct bpf_core_relo *rec; 5735 const struct btf_ext_info *seg; 5736 struct hashmap_entry *entry; 5737 struct hashmap *cand_cache = NULL; 5738 struct bpf_program *prog; 5739 struct bpf_insn *insn; 5740 const char *sec_name; 5741 int i, err = 0, insn_idx, sec_idx, sec_num; 5742 5743 if (obj->btf_ext->core_relo_info.len == 0) 5744 return 0; 5745 5746 if (targ_btf_path) { 5747 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5748 err = libbpf_get_error(obj->btf_vmlinux_override); 5749 if (err) { 5750 pr_warn("failed to parse target BTF: %d\n", err); 5751 return err; 5752 } 5753 } 5754 5755 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5756 if (IS_ERR(cand_cache)) { 5757 err = PTR_ERR(cand_cache); 5758 goto out; 5759 } 5760 5761 seg = &obj->btf_ext->core_relo_info; 5762 sec_num = 0; 5763 for_each_btf_ext_sec(seg, sec) { 5764 sec_idx = seg->sec_idxs[sec_num]; 5765 sec_num++; 5766 5767 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5768 if (str_is_empty(sec_name)) { 5769 err = -EINVAL; 5770 goto out; 5771 } 5772 5773 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5774 5775 for_each_btf_ext_rec(seg, sec, i, rec) { 5776 if (rec->insn_off % BPF_INSN_SZ) 5777 return -EINVAL; 5778 insn_idx = rec->insn_off / BPF_INSN_SZ; 5779 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5780 if (!prog) { 5781 /* When __weak subprog is "overridden" by another instance 5782 * of the subprog from a different object file, linker still 5783 * appends all the .BTF.ext info that used to belong to that 5784 * eliminated subprogram. 5785 * This is similar to what x86-64 linker does for relocations. 5786 * So just ignore such relocations just like we ignore 5787 * subprog instructions when discovering subprograms. 5788 */ 5789 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5790 sec_name, i, insn_idx); 5791 continue; 5792 } 5793 /* no need to apply CO-RE relocation if the program is 5794 * not going to be loaded 5795 */ 5796 if (!prog->autoload) 5797 continue; 5798 5799 /* adjust insn_idx from section frame of reference to the local 5800 * program's frame of reference; (sub-)program code is not yet 5801 * relocated, so it's enough to just subtract in-section offset 5802 */ 5803 insn_idx = insn_idx - prog->sec_insn_off; 5804 if (insn_idx >= prog->insns_cnt) 5805 return -EINVAL; 5806 insn = &prog->insns[insn_idx]; 5807 5808 err = record_relo_core(prog, rec, insn_idx); 5809 if (err) { 5810 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5811 prog->name, i, err); 5812 goto out; 5813 } 5814 5815 if (prog->obj->gen_loader) 5816 continue; 5817 5818 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5819 if (err) { 5820 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5821 prog->name, i, err); 5822 goto out; 5823 } 5824 5825 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5826 if (err) { 5827 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5828 prog->name, i, insn_idx, err); 5829 goto out; 5830 } 5831 } 5832 } 5833 5834 out: 5835 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5836 btf__free(obj->btf_vmlinux_override); 5837 obj->btf_vmlinux_override = NULL; 5838 5839 if (!IS_ERR_OR_NULL(cand_cache)) { 5840 hashmap__for_each_entry(cand_cache, entry, i) { 5841 bpf_core_free_cands(entry->value); 5842 } 5843 hashmap__free(cand_cache); 5844 } 5845 return err; 5846 } 5847 5848 /* base map load ldimm64 special constant, used also for log fixup logic */ 5849 #define MAP_LDIMM64_POISON_BASE 2001000000 5850 #define MAP_LDIMM64_POISON_PFX "200100" 5851 5852 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5853 int insn_idx, struct bpf_insn *insn, 5854 int map_idx, const struct bpf_map *map) 5855 { 5856 int i; 5857 5858 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5859 prog->name, relo_idx, insn_idx, map_idx, map->name); 5860 5861 /* we turn single ldimm64 into two identical invalid calls */ 5862 for (i = 0; i < 2; i++) { 5863 insn->code = BPF_JMP | BPF_CALL; 5864 insn->dst_reg = 0; 5865 insn->src_reg = 0; 5866 insn->off = 0; 5867 /* if this instruction is reachable (not a dead code), 5868 * verifier will complain with something like: 5869 * invalid func unknown#2001000123 5870 * where lower 123 is map index into obj->maps[] array 5871 */ 5872 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5873 5874 insn++; 5875 } 5876 } 5877 5878 /* Relocate data references within program code: 5879 * - map references; 5880 * - global variable references; 5881 * - extern references. 5882 */ 5883 static int 5884 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5885 { 5886 int i; 5887 5888 for (i = 0; i < prog->nr_reloc; i++) { 5889 struct reloc_desc *relo = &prog->reloc_desc[i]; 5890 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5891 const struct bpf_map *map; 5892 struct extern_desc *ext; 5893 5894 switch (relo->type) { 5895 case RELO_LD64: 5896 map = &obj->maps[relo->map_idx]; 5897 if (obj->gen_loader) { 5898 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5899 insn[0].imm = relo->map_idx; 5900 } else if (map->autocreate) { 5901 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5902 insn[0].imm = map->fd; 5903 } else { 5904 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5905 relo->map_idx, map); 5906 } 5907 break; 5908 case RELO_DATA: 5909 map = &obj->maps[relo->map_idx]; 5910 insn[1].imm = insn[0].imm + relo->sym_off; 5911 if (obj->gen_loader) { 5912 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5913 insn[0].imm = relo->map_idx; 5914 } else if (map->autocreate) { 5915 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5916 insn[0].imm = map->fd; 5917 } else { 5918 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5919 relo->map_idx, map); 5920 } 5921 break; 5922 case RELO_EXTERN_VAR: 5923 ext = &obj->externs[relo->sym_off]; 5924 if (ext->type == EXT_KCFG) { 5925 if (obj->gen_loader) { 5926 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5927 insn[0].imm = obj->kconfig_map_idx; 5928 } else { 5929 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5930 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5931 } 5932 insn[1].imm = ext->kcfg.data_off; 5933 } else /* EXT_KSYM */ { 5934 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5935 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5936 insn[0].imm = ext->ksym.kernel_btf_id; 5937 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5938 } else { /* typeless ksyms or unresolved typed ksyms */ 5939 insn[0].imm = (__u32)ext->ksym.addr; 5940 insn[1].imm = ext->ksym.addr >> 32; 5941 } 5942 } 5943 break; 5944 case RELO_EXTERN_FUNC: 5945 ext = &obj->externs[relo->sym_off]; 5946 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5947 if (ext->is_set) { 5948 insn[0].imm = ext->ksym.kernel_btf_id; 5949 insn[0].off = ext->ksym.btf_fd_idx; 5950 } else { /* unresolved weak kfunc */ 5951 insn[0].imm = 0; 5952 insn[0].off = 0; 5953 } 5954 break; 5955 case RELO_SUBPROG_ADDR: 5956 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5957 pr_warn("prog '%s': relo #%d: bad insn\n", 5958 prog->name, i); 5959 return -EINVAL; 5960 } 5961 /* handled already */ 5962 break; 5963 case RELO_CALL: 5964 /* handled already */ 5965 break; 5966 case RELO_CORE: 5967 /* will be handled by bpf_program_record_relos() */ 5968 break; 5969 default: 5970 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5971 prog->name, i, relo->type); 5972 return -EINVAL; 5973 } 5974 } 5975 5976 return 0; 5977 } 5978 5979 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5980 const struct bpf_program *prog, 5981 const struct btf_ext_info *ext_info, 5982 void **prog_info, __u32 *prog_rec_cnt, 5983 __u32 *prog_rec_sz) 5984 { 5985 void *copy_start = NULL, *copy_end = NULL; 5986 void *rec, *rec_end, *new_prog_info; 5987 const struct btf_ext_info_sec *sec; 5988 size_t old_sz, new_sz; 5989 int i, sec_num, sec_idx, off_adj; 5990 5991 sec_num = 0; 5992 for_each_btf_ext_sec(ext_info, sec) { 5993 sec_idx = ext_info->sec_idxs[sec_num]; 5994 sec_num++; 5995 if (prog->sec_idx != sec_idx) 5996 continue; 5997 5998 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5999 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6000 6001 if (insn_off < prog->sec_insn_off) 6002 continue; 6003 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6004 break; 6005 6006 if (!copy_start) 6007 copy_start = rec; 6008 copy_end = rec + ext_info->rec_size; 6009 } 6010 6011 if (!copy_start) 6012 return -ENOENT; 6013 6014 /* append func/line info of a given (sub-)program to the main 6015 * program func/line info 6016 */ 6017 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6018 new_sz = old_sz + (copy_end - copy_start); 6019 new_prog_info = realloc(*prog_info, new_sz); 6020 if (!new_prog_info) 6021 return -ENOMEM; 6022 *prog_info = new_prog_info; 6023 *prog_rec_cnt = new_sz / ext_info->rec_size; 6024 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6025 6026 /* Kernel instruction offsets are in units of 8-byte 6027 * instructions, while .BTF.ext instruction offsets generated 6028 * by Clang are in units of bytes. So convert Clang offsets 6029 * into kernel offsets and adjust offset according to program 6030 * relocated position. 6031 */ 6032 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6033 rec = new_prog_info + old_sz; 6034 rec_end = new_prog_info + new_sz; 6035 for (; rec < rec_end; rec += ext_info->rec_size) { 6036 __u32 *insn_off = rec; 6037 6038 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6039 } 6040 *prog_rec_sz = ext_info->rec_size; 6041 return 0; 6042 } 6043 6044 return -ENOENT; 6045 } 6046 6047 static int 6048 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6049 struct bpf_program *main_prog, 6050 const struct bpf_program *prog) 6051 { 6052 int err; 6053 6054 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6055 * supprot func/line info 6056 */ 6057 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6058 return 0; 6059 6060 /* only attempt func info relocation if main program's func_info 6061 * relocation was successful 6062 */ 6063 if (main_prog != prog && !main_prog->func_info) 6064 goto line_info; 6065 6066 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6067 &main_prog->func_info, 6068 &main_prog->func_info_cnt, 6069 &main_prog->func_info_rec_size); 6070 if (err) { 6071 if (err != -ENOENT) { 6072 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6073 prog->name, err); 6074 return err; 6075 } 6076 if (main_prog->func_info) { 6077 /* 6078 * Some info has already been found but has problem 6079 * in the last btf_ext reloc. Must have to error out. 6080 */ 6081 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6082 return err; 6083 } 6084 /* Have problem loading the very first info. Ignore the rest. */ 6085 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6086 prog->name); 6087 } 6088 6089 line_info: 6090 /* don't relocate line info if main program's relocation failed */ 6091 if (main_prog != prog && !main_prog->line_info) 6092 return 0; 6093 6094 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6095 &main_prog->line_info, 6096 &main_prog->line_info_cnt, 6097 &main_prog->line_info_rec_size); 6098 if (err) { 6099 if (err != -ENOENT) { 6100 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6101 prog->name, err); 6102 return err; 6103 } 6104 if (main_prog->line_info) { 6105 /* 6106 * Some info has already been found but has problem 6107 * in the last btf_ext reloc. Must have to error out. 6108 */ 6109 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6110 return err; 6111 } 6112 /* Have problem loading the very first info. Ignore the rest. */ 6113 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6114 prog->name); 6115 } 6116 return 0; 6117 } 6118 6119 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6120 { 6121 size_t insn_idx = *(const size_t *)key; 6122 const struct reloc_desc *relo = elem; 6123 6124 if (insn_idx == relo->insn_idx) 6125 return 0; 6126 return insn_idx < relo->insn_idx ? -1 : 1; 6127 } 6128 6129 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6130 { 6131 if (!prog->nr_reloc) 6132 return NULL; 6133 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6134 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6135 } 6136 6137 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6138 { 6139 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6140 struct reloc_desc *relos; 6141 int i; 6142 6143 if (main_prog == subprog) 6144 return 0; 6145 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6146 if (!relos) 6147 return -ENOMEM; 6148 if (subprog->nr_reloc) 6149 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6150 sizeof(*relos) * subprog->nr_reloc); 6151 6152 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6153 relos[i].insn_idx += subprog->sub_insn_off; 6154 /* After insn_idx adjustment the 'relos' array is still sorted 6155 * by insn_idx and doesn't break bsearch. 6156 */ 6157 main_prog->reloc_desc = relos; 6158 main_prog->nr_reloc = new_cnt; 6159 return 0; 6160 } 6161 6162 static int 6163 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6164 struct bpf_program *prog) 6165 { 6166 size_t sub_insn_idx, insn_idx, new_cnt; 6167 struct bpf_program *subprog; 6168 struct bpf_insn *insns, *insn; 6169 struct reloc_desc *relo; 6170 int err; 6171 6172 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6173 if (err) 6174 return err; 6175 6176 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6177 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6178 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6179 continue; 6180 6181 relo = find_prog_insn_relo(prog, insn_idx); 6182 if (relo && relo->type == RELO_EXTERN_FUNC) 6183 /* kfunc relocations will be handled later 6184 * in bpf_object__relocate_data() 6185 */ 6186 continue; 6187 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6188 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6189 prog->name, insn_idx, relo->type); 6190 return -LIBBPF_ERRNO__RELOC; 6191 } 6192 if (relo) { 6193 /* sub-program instruction index is a combination of 6194 * an offset of a symbol pointed to by relocation and 6195 * call instruction's imm field; for global functions, 6196 * call always has imm = -1, but for static functions 6197 * relocation is against STT_SECTION and insn->imm 6198 * points to a start of a static function 6199 * 6200 * for subprog addr relocation, the relo->sym_off + insn->imm is 6201 * the byte offset in the corresponding section. 6202 */ 6203 if (relo->type == RELO_CALL) 6204 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6205 else 6206 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6207 } else if (insn_is_pseudo_func(insn)) { 6208 /* 6209 * RELO_SUBPROG_ADDR relo is always emitted even if both 6210 * functions are in the same section, so it shouldn't reach here. 6211 */ 6212 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6213 prog->name, insn_idx); 6214 return -LIBBPF_ERRNO__RELOC; 6215 } else { 6216 /* if subprogram call is to a static function within 6217 * the same ELF section, there won't be any relocation 6218 * emitted, but it also means there is no additional 6219 * offset necessary, insns->imm is relative to 6220 * instruction's original position within the section 6221 */ 6222 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6223 } 6224 6225 /* we enforce that sub-programs should be in .text section */ 6226 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6227 if (!subprog) { 6228 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6229 prog->name); 6230 return -LIBBPF_ERRNO__RELOC; 6231 } 6232 6233 /* if it's the first call instruction calling into this 6234 * subprogram (meaning this subprog hasn't been processed 6235 * yet) within the context of current main program: 6236 * - append it at the end of main program's instructions blog; 6237 * - process is recursively, while current program is put on hold; 6238 * - if that subprogram calls some other not yet processes 6239 * subprogram, same thing will happen recursively until 6240 * there are no more unprocesses subprograms left to append 6241 * and relocate. 6242 */ 6243 if (subprog->sub_insn_off == 0) { 6244 subprog->sub_insn_off = main_prog->insns_cnt; 6245 6246 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6247 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6248 if (!insns) { 6249 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6250 return -ENOMEM; 6251 } 6252 main_prog->insns = insns; 6253 main_prog->insns_cnt = new_cnt; 6254 6255 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6256 subprog->insns_cnt * sizeof(*insns)); 6257 6258 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6259 main_prog->name, subprog->insns_cnt, subprog->name); 6260 6261 /* The subprog insns are now appended. Append its relos too. */ 6262 err = append_subprog_relos(main_prog, subprog); 6263 if (err) 6264 return err; 6265 err = bpf_object__reloc_code(obj, main_prog, subprog); 6266 if (err) 6267 return err; 6268 } 6269 6270 /* main_prog->insns memory could have been re-allocated, so 6271 * calculate pointer again 6272 */ 6273 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6274 /* calculate correct instruction position within current main 6275 * prog; each main prog can have a different set of 6276 * subprograms appended (potentially in different order as 6277 * well), so position of any subprog can be different for 6278 * different main programs */ 6279 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6280 6281 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6282 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6283 } 6284 6285 return 0; 6286 } 6287 6288 /* 6289 * Relocate sub-program calls. 6290 * 6291 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6292 * main prog) is processed separately. For each subprog (non-entry functions, 6293 * that can be called from either entry progs or other subprogs) gets their 6294 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6295 * hasn't been yet appended and relocated within current main prog. Once its 6296 * relocated, sub_insn_off will point at the position within current main prog 6297 * where given subprog was appended. This will further be used to relocate all 6298 * the call instructions jumping into this subprog. 6299 * 6300 * We start with main program and process all call instructions. If the call 6301 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6302 * is zero), subprog instructions are appended at the end of main program's 6303 * instruction array. Then main program is "put on hold" while we recursively 6304 * process newly appended subprogram. If that subprogram calls into another 6305 * subprogram that hasn't been appended, new subprogram is appended again to 6306 * the *main* prog's instructions (subprog's instructions are always left 6307 * untouched, as they need to be in unmodified state for subsequent main progs 6308 * and subprog instructions are always sent only as part of a main prog) and 6309 * the process continues recursively. Once all the subprogs called from a main 6310 * prog or any of its subprogs are appended (and relocated), all their 6311 * positions within finalized instructions array are known, so it's easy to 6312 * rewrite call instructions with correct relative offsets, corresponding to 6313 * desired target subprog. 6314 * 6315 * Its important to realize that some subprogs might not be called from some 6316 * main prog and any of its called/used subprogs. Those will keep their 6317 * subprog->sub_insn_off as zero at all times and won't be appended to current 6318 * main prog and won't be relocated within the context of current main prog. 6319 * They might still be used from other main progs later. 6320 * 6321 * Visually this process can be shown as below. Suppose we have two main 6322 * programs mainA and mainB and BPF object contains three subprogs: subA, 6323 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6324 * subC both call subB: 6325 * 6326 * +--------+ +-------+ 6327 * | v v | 6328 * +--+---+ +--+-+-+ +---+--+ 6329 * | subA | | subB | | subC | 6330 * +--+---+ +------+ +---+--+ 6331 * ^ ^ 6332 * | | 6333 * +---+-------+ +------+----+ 6334 * | mainA | | mainB | 6335 * +-----------+ +-----------+ 6336 * 6337 * We'll start relocating mainA, will find subA, append it and start 6338 * processing sub A recursively: 6339 * 6340 * +-----------+------+ 6341 * | mainA | subA | 6342 * +-----------+------+ 6343 * 6344 * At this point we notice that subB is used from subA, so we append it and 6345 * relocate (there are no further subcalls from subB): 6346 * 6347 * +-----------+------+------+ 6348 * | mainA | subA | subB | 6349 * +-----------+------+------+ 6350 * 6351 * At this point, we relocate subA calls, then go one level up and finish with 6352 * relocatin mainA calls. mainA is done. 6353 * 6354 * For mainB process is similar but results in different order. We start with 6355 * mainB and skip subA and subB, as mainB never calls them (at least 6356 * directly), but we see subC is needed, so we append and start processing it: 6357 * 6358 * +-----------+------+ 6359 * | mainB | subC | 6360 * +-----------+------+ 6361 * Now we see subC needs subB, so we go back to it, append and relocate it: 6362 * 6363 * +-----------+------+------+ 6364 * | mainB | subC | subB | 6365 * +-----------+------+------+ 6366 * 6367 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6368 */ 6369 static int 6370 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6371 { 6372 struct bpf_program *subprog; 6373 int i, err; 6374 6375 /* mark all subprogs as not relocated (yet) within the context of 6376 * current main program 6377 */ 6378 for (i = 0; i < obj->nr_programs; i++) { 6379 subprog = &obj->programs[i]; 6380 if (!prog_is_subprog(obj, subprog)) 6381 continue; 6382 6383 subprog->sub_insn_off = 0; 6384 } 6385 6386 err = bpf_object__reloc_code(obj, prog, prog); 6387 if (err) 6388 return err; 6389 6390 return 0; 6391 } 6392 6393 static void 6394 bpf_object__free_relocs(struct bpf_object *obj) 6395 { 6396 struct bpf_program *prog; 6397 int i; 6398 6399 /* free up relocation descriptors */ 6400 for (i = 0; i < obj->nr_programs; i++) { 6401 prog = &obj->programs[i]; 6402 zfree(&prog->reloc_desc); 6403 prog->nr_reloc = 0; 6404 } 6405 } 6406 6407 static int cmp_relocs(const void *_a, const void *_b) 6408 { 6409 const struct reloc_desc *a = _a; 6410 const struct reloc_desc *b = _b; 6411 6412 if (a->insn_idx != b->insn_idx) 6413 return a->insn_idx < b->insn_idx ? -1 : 1; 6414 6415 /* no two relocations should have the same insn_idx, but ... */ 6416 if (a->type != b->type) 6417 return a->type < b->type ? -1 : 1; 6418 6419 return 0; 6420 } 6421 6422 static void bpf_object__sort_relos(struct bpf_object *obj) 6423 { 6424 int i; 6425 6426 for (i = 0; i < obj->nr_programs; i++) { 6427 struct bpf_program *p = &obj->programs[i]; 6428 6429 if (!p->nr_reloc) 6430 continue; 6431 6432 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6433 } 6434 } 6435 6436 static int 6437 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6438 { 6439 struct bpf_program *prog; 6440 size_t i, j; 6441 int err; 6442 6443 if (obj->btf_ext) { 6444 err = bpf_object__relocate_core(obj, targ_btf_path); 6445 if (err) { 6446 pr_warn("failed to perform CO-RE relocations: %d\n", 6447 err); 6448 return err; 6449 } 6450 bpf_object__sort_relos(obj); 6451 } 6452 6453 /* Before relocating calls pre-process relocations and mark 6454 * few ld_imm64 instructions that points to subprogs. 6455 * Otherwise bpf_object__reloc_code() later would have to consider 6456 * all ld_imm64 insns as relocation candidates. That would 6457 * reduce relocation speed, since amount of find_prog_insn_relo() 6458 * would increase and most of them will fail to find a relo. 6459 */ 6460 for (i = 0; i < obj->nr_programs; i++) { 6461 prog = &obj->programs[i]; 6462 for (j = 0; j < prog->nr_reloc; j++) { 6463 struct reloc_desc *relo = &prog->reloc_desc[j]; 6464 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6465 6466 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6467 if (relo->type == RELO_SUBPROG_ADDR) 6468 insn[0].src_reg = BPF_PSEUDO_FUNC; 6469 } 6470 } 6471 6472 /* relocate subprogram calls and append used subprograms to main 6473 * programs; each copy of subprogram code needs to be relocated 6474 * differently for each main program, because its code location might 6475 * have changed. 6476 * Append subprog relos to main programs to allow data relos to be 6477 * processed after text is completely relocated. 6478 */ 6479 for (i = 0; i < obj->nr_programs; i++) { 6480 prog = &obj->programs[i]; 6481 /* sub-program's sub-calls are relocated within the context of 6482 * its main program only 6483 */ 6484 if (prog_is_subprog(obj, prog)) 6485 continue; 6486 if (!prog->autoload) 6487 continue; 6488 6489 err = bpf_object__relocate_calls(obj, prog); 6490 if (err) { 6491 pr_warn("prog '%s': failed to relocate calls: %d\n", 6492 prog->name, err); 6493 return err; 6494 } 6495 } 6496 /* Process data relos for main programs */ 6497 for (i = 0; i < obj->nr_programs; i++) { 6498 prog = &obj->programs[i]; 6499 if (prog_is_subprog(obj, prog)) 6500 continue; 6501 if (!prog->autoload) 6502 continue; 6503 err = bpf_object__relocate_data(obj, prog); 6504 if (err) { 6505 pr_warn("prog '%s': failed to relocate data references: %d\n", 6506 prog->name, err); 6507 return err; 6508 } 6509 } 6510 6511 return 0; 6512 } 6513 6514 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6515 Elf64_Shdr *shdr, Elf_Data *data); 6516 6517 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6518 Elf64_Shdr *shdr, Elf_Data *data) 6519 { 6520 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6521 int i, j, nrels, new_sz; 6522 const struct btf_var_secinfo *vi = NULL; 6523 const struct btf_type *sec, *var, *def; 6524 struct bpf_map *map = NULL, *targ_map = NULL; 6525 struct bpf_program *targ_prog = NULL; 6526 bool is_prog_array, is_map_in_map; 6527 const struct btf_member *member; 6528 const char *name, *mname, *type; 6529 unsigned int moff; 6530 Elf64_Sym *sym; 6531 Elf64_Rel *rel; 6532 void *tmp; 6533 6534 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6535 return -EINVAL; 6536 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6537 if (!sec) 6538 return -EINVAL; 6539 6540 nrels = shdr->sh_size / shdr->sh_entsize; 6541 for (i = 0; i < nrels; i++) { 6542 rel = elf_rel_by_idx(data, i); 6543 if (!rel) { 6544 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6545 return -LIBBPF_ERRNO__FORMAT; 6546 } 6547 6548 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6549 if (!sym) { 6550 pr_warn(".maps relo #%d: symbol %zx not found\n", 6551 i, (size_t)ELF64_R_SYM(rel->r_info)); 6552 return -LIBBPF_ERRNO__FORMAT; 6553 } 6554 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6555 6556 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6557 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6558 (size_t)rel->r_offset, sym->st_name, name); 6559 6560 for (j = 0; j < obj->nr_maps; j++) { 6561 map = &obj->maps[j]; 6562 if (map->sec_idx != obj->efile.btf_maps_shndx) 6563 continue; 6564 6565 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6566 if (vi->offset <= rel->r_offset && 6567 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6568 break; 6569 } 6570 if (j == obj->nr_maps) { 6571 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6572 i, name, (size_t)rel->r_offset); 6573 return -EINVAL; 6574 } 6575 6576 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6577 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6578 type = is_map_in_map ? "map" : "prog"; 6579 if (is_map_in_map) { 6580 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6581 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6582 i, name); 6583 return -LIBBPF_ERRNO__RELOC; 6584 } 6585 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6586 map->def.key_size != sizeof(int)) { 6587 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6588 i, map->name, sizeof(int)); 6589 return -EINVAL; 6590 } 6591 targ_map = bpf_object__find_map_by_name(obj, name); 6592 if (!targ_map) { 6593 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6594 i, name); 6595 return -ESRCH; 6596 } 6597 } else if (is_prog_array) { 6598 targ_prog = bpf_object__find_program_by_name(obj, name); 6599 if (!targ_prog) { 6600 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6601 i, name); 6602 return -ESRCH; 6603 } 6604 if (targ_prog->sec_idx != sym->st_shndx || 6605 targ_prog->sec_insn_off * 8 != sym->st_value || 6606 prog_is_subprog(obj, targ_prog)) { 6607 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6608 i, name); 6609 return -LIBBPF_ERRNO__RELOC; 6610 } 6611 } else { 6612 return -EINVAL; 6613 } 6614 6615 var = btf__type_by_id(obj->btf, vi->type); 6616 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6617 if (btf_vlen(def) == 0) 6618 return -EINVAL; 6619 member = btf_members(def) + btf_vlen(def) - 1; 6620 mname = btf__name_by_offset(obj->btf, member->name_off); 6621 if (strcmp(mname, "values")) 6622 return -EINVAL; 6623 6624 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6625 if (rel->r_offset - vi->offset < moff) 6626 return -EINVAL; 6627 6628 moff = rel->r_offset - vi->offset - moff; 6629 /* here we use BPF pointer size, which is always 64 bit, as we 6630 * are parsing ELF that was built for BPF target 6631 */ 6632 if (moff % bpf_ptr_sz) 6633 return -EINVAL; 6634 moff /= bpf_ptr_sz; 6635 if (moff >= map->init_slots_sz) { 6636 new_sz = moff + 1; 6637 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6638 if (!tmp) 6639 return -ENOMEM; 6640 map->init_slots = tmp; 6641 memset(map->init_slots + map->init_slots_sz, 0, 6642 (new_sz - map->init_slots_sz) * host_ptr_sz); 6643 map->init_slots_sz = new_sz; 6644 } 6645 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6646 6647 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6648 i, map->name, moff, type, name); 6649 } 6650 6651 return 0; 6652 } 6653 6654 static int bpf_object__collect_relos(struct bpf_object *obj) 6655 { 6656 int i, err; 6657 6658 for (i = 0; i < obj->efile.sec_cnt; i++) { 6659 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6660 Elf64_Shdr *shdr; 6661 Elf_Data *data; 6662 int idx; 6663 6664 if (sec_desc->sec_type != SEC_RELO) 6665 continue; 6666 6667 shdr = sec_desc->shdr; 6668 data = sec_desc->data; 6669 idx = shdr->sh_info; 6670 6671 if (shdr->sh_type != SHT_REL) { 6672 pr_warn("internal error at %d\n", __LINE__); 6673 return -LIBBPF_ERRNO__INTERNAL; 6674 } 6675 6676 if (idx == obj->efile.st_ops_shndx) 6677 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6678 else if (idx == obj->efile.btf_maps_shndx) 6679 err = bpf_object__collect_map_relos(obj, shdr, data); 6680 else 6681 err = bpf_object__collect_prog_relos(obj, shdr, data); 6682 if (err) 6683 return err; 6684 } 6685 6686 bpf_object__sort_relos(obj); 6687 return 0; 6688 } 6689 6690 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6691 { 6692 if (BPF_CLASS(insn->code) == BPF_JMP && 6693 BPF_OP(insn->code) == BPF_CALL && 6694 BPF_SRC(insn->code) == BPF_K && 6695 insn->src_reg == 0 && 6696 insn->dst_reg == 0) { 6697 *func_id = insn->imm; 6698 return true; 6699 } 6700 return false; 6701 } 6702 6703 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6704 { 6705 struct bpf_insn *insn = prog->insns; 6706 enum bpf_func_id func_id; 6707 int i; 6708 6709 if (obj->gen_loader) 6710 return 0; 6711 6712 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6713 if (!insn_is_helper_call(insn, &func_id)) 6714 continue; 6715 6716 /* on kernels that don't yet support 6717 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6718 * to bpf_probe_read() which works well for old kernels 6719 */ 6720 switch (func_id) { 6721 case BPF_FUNC_probe_read_kernel: 6722 case BPF_FUNC_probe_read_user: 6723 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6724 insn->imm = BPF_FUNC_probe_read; 6725 break; 6726 case BPF_FUNC_probe_read_kernel_str: 6727 case BPF_FUNC_probe_read_user_str: 6728 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6729 insn->imm = BPF_FUNC_probe_read_str; 6730 break; 6731 default: 6732 break; 6733 } 6734 } 6735 return 0; 6736 } 6737 6738 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6739 int *btf_obj_fd, int *btf_type_id); 6740 6741 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6742 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6743 struct bpf_prog_load_opts *opts, long cookie) 6744 { 6745 enum sec_def_flags def = cookie; 6746 6747 /* old kernels might not support specifying expected_attach_type */ 6748 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6749 opts->expected_attach_type = 0; 6750 6751 if (def & SEC_SLEEPABLE) 6752 opts->prog_flags |= BPF_F_SLEEPABLE; 6753 6754 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6755 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6756 6757 if (def & SEC_DEPRECATED) { 6758 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6759 prog->sec_name); 6760 } 6761 6762 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6763 int btf_obj_fd = 0, btf_type_id = 0, err; 6764 const char *attach_name; 6765 6766 attach_name = strchr(prog->sec_name, '/'); 6767 if (!attach_name) { 6768 /* if BPF program is annotated with just SEC("fentry") 6769 * (or similar) without declaratively specifying 6770 * target, then it is expected that target will be 6771 * specified with bpf_program__set_attach_target() at 6772 * runtime before BPF object load step. If not, then 6773 * there is nothing to load into the kernel as BPF 6774 * verifier won't be able to validate BPF program 6775 * correctness anyways. 6776 */ 6777 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6778 prog->name); 6779 return -EINVAL; 6780 } 6781 attach_name++; /* skip over / */ 6782 6783 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6784 if (err) 6785 return err; 6786 6787 /* cache resolved BTF FD and BTF type ID in the prog */ 6788 prog->attach_btf_obj_fd = btf_obj_fd; 6789 prog->attach_btf_id = btf_type_id; 6790 6791 /* but by now libbpf common logic is not utilizing 6792 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6793 * this callback is called after opts were populated by 6794 * libbpf, so this callback has to update opts explicitly here 6795 */ 6796 opts->attach_btf_obj_fd = btf_obj_fd; 6797 opts->attach_btf_id = btf_type_id; 6798 } 6799 return 0; 6800 } 6801 6802 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6803 6804 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6805 struct bpf_insn *insns, int insns_cnt, 6806 const char *license, __u32 kern_version, 6807 int *prog_fd) 6808 { 6809 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6810 const char *prog_name = NULL; 6811 char *cp, errmsg[STRERR_BUFSIZE]; 6812 size_t log_buf_size = 0; 6813 char *log_buf = NULL, *tmp; 6814 int btf_fd, ret, err; 6815 bool own_log_buf = true; 6816 __u32 log_level = prog->log_level; 6817 6818 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6819 /* 6820 * The program type must be set. Most likely we couldn't find a proper 6821 * section definition at load time, and thus we didn't infer the type. 6822 */ 6823 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6824 prog->name, prog->sec_name); 6825 return -EINVAL; 6826 } 6827 6828 if (!insns || !insns_cnt) 6829 return -EINVAL; 6830 6831 load_attr.expected_attach_type = prog->expected_attach_type; 6832 if (kernel_supports(obj, FEAT_PROG_NAME)) 6833 prog_name = prog->name; 6834 load_attr.attach_prog_fd = prog->attach_prog_fd; 6835 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6836 load_attr.attach_btf_id = prog->attach_btf_id; 6837 load_attr.kern_version = kern_version; 6838 load_attr.prog_ifindex = prog->prog_ifindex; 6839 6840 /* specify func_info/line_info only if kernel supports them */ 6841 btf_fd = bpf_object__btf_fd(obj); 6842 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6843 load_attr.prog_btf_fd = btf_fd; 6844 load_attr.func_info = prog->func_info; 6845 load_attr.func_info_rec_size = prog->func_info_rec_size; 6846 load_attr.func_info_cnt = prog->func_info_cnt; 6847 load_attr.line_info = prog->line_info; 6848 load_attr.line_info_rec_size = prog->line_info_rec_size; 6849 load_attr.line_info_cnt = prog->line_info_cnt; 6850 } 6851 load_attr.log_level = log_level; 6852 load_attr.prog_flags = prog->prog_flags; 6853 load_attr.fd_array = obj->fd_array; 6854 6855 /* adjust load_attr if sec_def provides custom preload callback */ 6856 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6857 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6858 if (err < 0) { 6859 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6860 prog->name, err); 6861 return err; 6862 } 6863 insns = prog->insns; 6864 insns_cnt = prog->insns_cnt; 6865 } 6866 6867 if (obj->gen_loader) { 6868 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6869 license, insns, insns_cnt, &load_attr, 6870 prog - obj->programs); 6871 *prog_fd = -1; 6872 return 0; 6873 } 6874 6875 retry_load: 6876 /* if log_level is zero, we don't request logs initially even if 6877 * custom log_buf is specified; if the program load fails, then we'll 6878 * bump log_level to 1 and use either custom log_buf or we'll allocate 6879 * our own and retry the load to get details on what failed 6880 */ 6881 if (log_level) { 6882 if (prog->log_buf) { 6883 log_buf = prog->log_buf; 6884 log_buf_size = prog->log_size; 6885 own_log_buf = false; 6886 } else if (obj->log_buf) { 6887 log_buf = obj->log_buf; 6888 log_buf_size = obj->log_size; 6889 own_log_buf = false; 6890 } else { 6891 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6892 tmp = realloc(log_buf, log_buf_size); 6893 if (!tmp) { 6894 ret = -ENOMEM; 6895 goto out; 6896 } 6897 log_buf = tmp; 6898 log_buf[0] = '\0'; 6899 own_log_buf = true; 6900 } 6901 } 6902 6903 load_attr.log_buf = log_buf; 6904 load_attr.log_size = log_buf_size; 6905 load_attr.log_level = log_level; 6906 6907 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6908 if (ret >= 0) { 6909 if (log_level && own_log_buf) { 6910 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6911 prog->name, log_buf); 6912 } 6913 6914 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6915 struct bpf_map *map; 6916 int i; 6917 6918 for (i = 0; i < obj->nr_maps; i++) { 6919 map = &prog->obj->maps[i]; 6920 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6921 continue; 6922 6923 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6924 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6925 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6926 prog->name, map->real_name, cp); 6927 /* Don't fail hard if can't bind rodata. */ 6928 } 6929 } 6930 } 6931 6932 *prog_fd = ret; 6933 ret = 0; 6934 goto out; 6935 } 6936 6937 if (log_level == 0) { 6938 log_level = 1; 6939 goto retry_load; 6940 } 6941 /* On ENOSPC, increase log buffer size and retry, unless custom 6942 * log_buf is specified. 6943 * Be careful to not overflow u32, though. Kernel's log buf size limit 6944 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6945 * multiply by 2 unless we are sure we'll fit within 32 bits. 6946 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6947 */ 6948 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6949 goto retry_load; 6950 6951 ret = -errno; 6952 6953 /* post-process verifier log to improve error descriptions */ 6954 fixup_verifier_log(prog, log_buf, log_buf_size); 6955 6956 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6957 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6958 pr_perm_msg(ret); 6959 6960 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6961 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6962 prog->name, log_buf); 6963 } 6964 6965 out: 6966 if (own_log_buf) 6967 free(log_buf); 6968 return ret; 6969 } 6970 6971 static char *find_prev_line(char *buf, char *cur) 6972 { 6973 char *p; 6974 6975 if (cur == buf) /* end of a log buf */ 6976 return NULL; 6977 6978 p = cur - 1; 6979 while (p - 1 >= buf && *(p - 1) != '\n') 6980 p--; 6981 6982 return p; 6983 } 6984 6985 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6986 char *orig, size_t orig_sz, const char *patch) 6987 { 6988 /* size of the remaining log content to the right from the to-be-replaced part */ 6989 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6990 size_t patch_sz = strlen(patch); 6991 6992 if (patch_sz != orig_sz) { 6993 /* If patch line(s) are longer than original piece of verifier log, 6994 * shift log contents by (patch_sz - orig_sz) bytes to the right 6995 * starting from after to-be-replaced part of the log. 6996 * 6997 * If patch line(s) are shorter than original piece of verifier log, 6998 * shift log contents by (orig_sz - patch_sz) bytes to the left 6999 * starting from after to-be-replaced part of the log 7000 * 7001 * We need to be careful about not overflowing available 7002 * buf_sz capacity. If that's the case, we'll truncate the end 7003 * of the original log, as necessary. 7004 */ 7005 if (patch_sz > orig_sz) { 7006 if (orig + patch_sz >= buf + buf_sz) { 7007 /* patch is big enough to cover remaining space completely */ 7008 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7009 rem_sz = 0; 7010 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7011 /* patch causes part of remaining log to be truncated */ 7012 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7013 } 7014 } 7015 /* shift remaining log to the right by calculated amount */ 7016 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7017 } 7018 7019 memcpy(orig, patch, patch_sz); 7020 } 7021 7022 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7023 char *buf, size_t buf_sz, size_t log_sz, 7024 char *line1, char *line2, char *line3) 7025 { 7026 /* Expected log for failed and not properly guarded CO-RE relocation: 7027 * line1 -> 123: (85) call unknown#195896080 7028 * line2 -> invalid func unknown#195896080 7029 * line3 -> <anything else or end of buffer> 7030 * 7031 * "123" is the index of the instruction that was poisoned. We extract 7032 * instruction index to find corresponding CO-RE relocation and 7033 * replace this part of the log with more relevant information about 7034 * failed CO-RE relocation. 7035 */ 7036 const struct bpf_core_relo *relo; 7037 struct bpf_core_spec spec; 7038 char patch[512], spec_buf[256]; 7039 int insn_idx, err, spec_len; 7040 7041 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7042 return; 7043 7044 relo = find_relo_core(prog, insn_idx); 7045 if (!relo) 7046 return; 7047 7048 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7049 if (err) 7050 return; 7051 7052 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7053 snprintf(patch, sizeof(patch), 7054 "%d: <invalid CO-RE relocation>\n" 7055 "failed to resolve CO-RE relocation %s%s\n", 7056 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7057 7058 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7059 } 7060 7061 static void fixup_log_missing_map_load(struct bpf_program *prog, 7062 char *buf, size_t buf_sz, size_t log_sz, 7063 char *line1, char *line2, char *line3) 7064 { 7065 /* Expected log for failed and not properly guarded CO-RE relocation: 7066 * line1 -> 123: (85) call unknown#2001000345 7067 * line2 -> invalid func unknown#2001000345 7068 * line3 -> <anything else or end of buffer> 7069 * 7070 * "123" is the index of the instruction that was poisoned. 7071 * "345" in "2001000345" are map index in obj->maps to fetch map name. 7072 */ 7073 struct bpf_object *obj = prog->obj; 7074 const struct bpf_map *map; 7075 int insn_idx, map_idx; 7076 char patch[128]; 7077 7078 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7079 return; 7080 7081 map_idx -= MAP_LDIMM64_POISON_BASE; 7082 if (map_idx < 0 || map_idx >= obj->nr_maps) 7083 return; 7084 map = &obj->maps[map_idx]; 7085 7086 snprintf(patch, sizeof(patch), 7087 "%d: <invalid BPF map reference>\n" 7088 "BPF map '%s' is referenced but wasn't created\n", 7089 insn_idx, map->name); 7090 7091 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7092 } 7093 7094 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7095 { 7096 /* look for familiar error patterns in last N lines of the log */ 7097 const size_t max_last_line_cnt = 10; 7098 char *prev_line, *cur_line, *next_line; 7099 size_t log_sz; 7100 int i; 7101 7102 if (!buf) 7103 return; 7104 7105 log_sz = strlen(buf) + 1; 7106 next_line = buf + log_sz - 1; 7107 7108 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7109 cur_line = find_prev_line(buf, next_line); 7110 if (!cur_line) 7111 return; 7112 7113 /* failed CO-RE relocation case */ 7114 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7115 prev_line = find_prev_line(buf, cur_line); 7116 if (!prev_line) 7117 continue; 7118 7119 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7120 prev_line, cur_line, next_line); 7121 return; 7122 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7123 prev_line = find_prev_line(buf, cur_line); 7124 if (!prev_line) 7125 continue; 7126 7127 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7128 prev_line, cur_line, next_line); 7129 return; 7130 } 7131 } 7132 } 7133 7134 static int bpf_program_record_relos(struct bpf_program *prog) 7135 { 7136 struct bpf_object *obj = prog->obj; 7137 int i; 7138 7139 for (i = 0; i < prog->nr_reloc; i++) { 7140 struct reloc_desc *relo = &prog->reloc_desc[i]; 7141 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7142 7143 switch (relo->type) { 7144 case RELO_EXTERN_VAR: 7145 if (ext->type != EXT_KSYM) 7146 continue; 7147 bpf_gen__record_extern(obj->gen_loader, ext->name, 7148 ext->is_weak, !ext->ksym.type_id, 7149 BTF_KIND_VAR, relo->insn_idx); 7150 break; 7151 case RELO_EXTERN_FUNC: 7152 bpf_gen__record_extern(obj->gen_loader, ext->name, 7153 ext->is_weak, false, BTF_KIND_FUNC, 7154 relo->insn_idx); 7155 break; 7156 case RELO_CORE: { 7157 struct bpf_core_relo cr = { 7158 .insn_off = relo->insn_idx * 8, 7159 .type_id = relo->core_relo->type_id, 7160 .access_str_off = relo->core_relo->access_str_off, 7161 .kind = relo->core_relo->kind, 7162 }; 7163 7164 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7165 break; 7166 } 7167 default: 7168 continue; 7169 } 7170 } 7171 return 0; 7172 } 7173 7174 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7175 const char *license, __u32 kern_ver) 7176 { 7177 int err = 0, fd, i; 7178 7179 if (obj->loaded) { 7180 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7181 return libbpf_err(-EINVAL); 7182 } 7183 7184 if (prog->instances.nr < 0 || !prog->instances.fds) { 7185 if (prog->preprocessor) { 7186 pr_warn("Internal error: can't load program '%s'\n", 7187 prog->name); 7188 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 7189 } 7190 7191 prog->instances.fds = malloc(sizeof(int)); 7192 if (!prog->instances.fds) { 7193 pr_warn("Not enough memory for BPF fds\n"); 7194 return libbpf_err(-ENOMEM); 7195 } 7196 prog->instances.nr = 1; 7197 prog->instances.fds[0] = -1; 7198 } 7199 7200 if (!prog->preprocessor) { 7201 if (prog->instances.nr != 1) { 7202 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7203 prog->name, prog->instances.nr); 7204 } 7205 if (obj->gen_loader) 7206 bpf_program_record_relos(prog); 7207 err = bpf_object_load_prog_instance(obj, prog, 7208 prog->insns, prog->insns_cnt, 7209 license, kern_ver, &fd); 7210 if (!err) 7211 prog->instances.fds[0] = fd; 7212 goto out; 7213 } 7214 7215 for (i = 0; i < prog->instances.nr; i++) { 7216 struct bpf_prog_prep_result result; 7217 bpf_program_prep_t preprocessor = prog->preprocessor; 7218 7219 memset(&result, 0, sizeof(result)); 7220 err = preprocessor(prog, i, prog->insns, 7221 prog->insns_cnt, &result); 7222 if (err) { 7223 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7224 i, prog->name); 7225 goto out; 7226 } 7227 7228 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7229 pr_debug("Skip loading the %dth instance of program '%s'\n", 7230 i, prog->name); 7231 prog->instances.fds[i] = -1; 7232 if (result.pfd) 7233 *result.pfd = -1; 7234 continue; 7235 } 7236 7237 err = bpf_object_load_prog_instance(obj, prog, 7238 result.new_insn_ptr, result.new_insn_cnt, 7239 license, kern_ver, &fd); 7240 if (err) { 7241 pr_warn("Loading the %dth instance of program '%s' failed\n", 7242 i, prog->name); 7243 goto out; 7244 } 7245 7246 if (result.pfd) 7247 *result.pfd = fd; 7248 prog->instances.fds[i] = fd; 7249 } 7250 out: 7251 if (err) 7252 pr_warn("failed to load program '%s'\n", prog->name); 7253 return libbpf_err(err); 7254 } 7255 7256 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 7257 { 7258 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 7259 } 7260 7261 static int 7262 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7263 { 7264 struct bpf_program *prog; 7265 size_t i; 7266 int err; 7267 7268 for (i = 0; i < obj->nr_programs; i++) { 7269 prog = &obj->programs[i]; 7270 err = bpf_object__sanitize_prog(obj, prog); 7271 if (err) 7272 return err; 7273 } 7274 7275 for (i = 0; i < obj->nr_programs; i++) { 7276 prog = &obj->programs[i]; 7277 if (prog_is_subprog(obj, prog)) 7278 continue; 7279 if (!prog->autoload) { 7280 pr_debug("prog '%s': skipped loading\n", prog->name); 7281 continue; 7282 } 7283 prog->log_level |= log_level; 7284 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 7285 if (err) 7286 return err; 7287 } 7288 7289 bpf_object__free_relocs(obj); 7290 return 0; 7291 } 7292 7293 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7294 7295 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7296 { 7297 struct bpf_program *prog; 7298 int err; 7299 7300 bpf_object__for_each_program(prog, obj) { 7301 prog->sec_def = find_sec_def(prog->sec_name); 7302 if (!prog->sec_def) { 7303 /* couldn't guess, but user might manually specify */ 7304 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7305 prog->name, prog->sec_name); 7306 continue; 7307 } 7308 7309 prog->type = prog->sec_def->prog_type; 7310 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7311 7312 #pragma GCC diagnostic push 7313 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 7314 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7315 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7316 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7317 #pragma GCC diagnostic pop 7318 7319 /* sec_def can have custom callback which should be called 7320 * after bpf_program is initialized to adjust its properties 7321 */ 7322 if (prog->sec_def->prog_setup_fn) { 7323 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7324 if (err < 0) { 7325 pr_warn("prog '%s': failed to initialize: %d\n", 7326 prog->name, err); 7327 return err; 7328 } 7329 } 7330 } 7331 7332 return 0; 7333 } 7334 7335 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7336 const struct bpf_object_open_opts *opts) 7337 { 7338 const char *obj_name, *kconfig, *btf_tmp_path; 7339 struct bpf_object *obj; 7340 char tmp_name[64]; 7341 int err; 7342 char *log_buf; 7343 size_t log_size; 7344 __u32 log_level; 7345 7346 if (elf_version(EV_CURRENT) == EV_NONE) { 7347 pr_warn("failed to init libelf for %s\n", 7348 path ? : "(mem buf)"); 7349 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7350 } 7351 7352 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7353 return ERR_PTR(-EINVAL); 7354 7355 obj_name = OPTS_GET(opts, object_name, NULL); 7356 if (obj_buf) { 7357 if (!obj_name) { 7358 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7359 (unsigned long)obj_buf, 7360 (unsigned long)obj_buf_sz); 7361 obj_name = tmp_name; 7362 } 7363 path = obj_name; 7364 pr_debug("loading object '%s' from buffer\n", obj_name); 7365 } 7366 7367 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7368 log_size = OPTS_GET(opts, kernel_log_size, 0); 7369 log_level = OPTS_GET(opts, kernel_log_level, 0); 7370 if (log_size > UINT_MAX) 7371 return ERR_PTR(-EINVAL); 7372 if (log_size && !log_buf) 7373 return ERR_PTR(-EINVAL); 7374 7375 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7376 if (IS_ERR(obj)) 7377 return obj; 7378 7379 obj->log_buf = log_buf; 7380 obj->log_size = log_size; 7381 obj->log_level = log_level; 7382 7383 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7384 if (btf_tmp_path) { 7385 if (strlen(btf_tmp_path) >= PATH_MAX) { 7386 err = -ENAMETOOLONG; 7387 goto out; 7388 } 7389 obj->btf_custom_path = strdup(btf_tmp_path); 7390 if (!obj->btf_custom_path) { 7391 err = -ENOMEM; 7392 goto out; 7393 } 7394 } 7395 7396 kconfig = OPTS_GET(opts, kconfig, NULL); 7397 if (kconfig) { 7398 obj->kconfig = strdup(kconfig); 7399 if (!obj->kconfig) { 7400 err = -ENOMEM; 7401 goto out; 7402 } 7403 } 7404 7405 err = bpf_object__elf_init(obj); 7406 err = err ? : bpf_object__check_endianness(obj); 7407 err = err ? : bpf_object__elf_collect(obj); 7408 err = err ? : bpf_object__collect_externs(obj); 7409 err = err ? : bpf_object__finalize_btf(obj); 7410 err = err ? : bpf_object__init_maps(obj, opts); 7411 err = err ? : bpf_object_init_progs(obj, opts); 7412 err = err ? : bpf_object__collect_relos(obj); 7413 if (err) 7414 goto out; 7415 7416 bpf_object__elf_finish(obj); 7417 7418 return obj; 7419 out: 7420 bpf_object__close(obj); 7421 return ERR_PTR(err); 7422 } 7423 7424 static struct bpf_object * 7425 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7426 { 7427 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7428 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7429 ); 7430 7431 /* param validation */ 7432 if (!attr->file) 7433 return NULL; 7434 7435 pr_debug("loading %s\n", attr->file); 7436 return bpf_object_open(attr->file, NULL, 0, &opts); 7437 } 7438 7439 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7440 { 7441 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7442 } 7443 7444 struct bpf_object *bpf_object__open(const char *path) 7445 { 7446 struct bpf_object_open_attr attr = { 7447 .file = path, 7448 .prog_type = BPF_PROG_TYPE_UNSPEC, 7449 }; 7450 7451 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7452 } 7453 7454 struct bpf_object * 7455 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7456 { 7457 if (!path) 7458 return libbpf_err_ptr(-EINVAL); 7459 7460 pr_debug("loading %s\n", path); 7461 7462 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7463 } 7464 7465 struct bpf_object * 7466 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7467 const struct bpf_object_open_opts *opts) 7468 { 7469 if (!obj_buf || obj_buf_sz == 0) 7470 return libbpf_err_ptr(-EINVAL); 7471 7472 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7473 } 7474 7475 struct bpf_object * 7476 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7477 const char *name) 7478 { 7479 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7480 .object_name = name, 7481 /* wrong default, but backwards-compatible */ 7482 .relaxed_maps = true, 7483 ); 7484 7485 /* returning NULL is wrong, but backwards-compatible */ 7486 if (!obj_buf || obj_buf_sz == 0) 7487 return errno = EINVAL, NULL; 7488 7489 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7490 } 7491 7492 static int bpf_object_unload(struct bpf_object *obj) 7493 { 7494 size_t i; 7495 7496 if (!obj) 7497 return libbpf_err(-EINVAL); 7498 7499 for (i = 0; i < obj->nr_maps; i++) { 7500 zclose(obj->maps[i].fd); 7501 if (obj->maps[i].st_ops) 7502 zfree(&obj->maps[i].st_ops->kern_vdata); 7503 } 7504 7505 for (i = 0; i < obj->nr_programs; i++) 7506 bpf_program__unload(&obj->programs[i]); 7507 7508 return 0; 7509 } 7510 7511 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7512 7513 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7514 { 7515 struct bpf_map *m; 7516 7517 bpf_object__for_each_map(m, obj) { 7518 if (!bpf_map__is_internal(m)) 7519 continue; 7520 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7521 m->def.map_flags ^= BPF_F_MMAPABLE; 7522 } 7523 7524 return 0; 7525 } 7526 7527 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7528 { 7529 char sym_type, sym_name[500]; 7530 unsigned long long sym_addr; 7531 int ret, err = 0; 7532 FILE *f; 7533 7534 f = fopen("/proc/kallsyms", "r"); 7535 if (!f) { 7536 err = -errno; 7537 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7538 return err; 7539 } 7540 7541 while (true) { 7542 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7543 &sym_addr, &sym_type, sym_name); 7544 if (ret == EOF && feof(f)) 7545 break; 7546 if (ret != 3) { 7547 pr_warn("failed to read kallsyms entry: %d\n", ret); 7548 err = -EINVAL; 7549 break; 7550 } 7551 7552 err = cb(sym_addr, sym_type, sym_name, ctx); 7553 if (err) 7554 break; 7555 } 7556 7557 fclose(f); 7558 return err; 7559 } 7560 7561 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7562 const char *sym_name, void *ctx) 7563 { 7564 struct bpf_object *obj = ctx; 7565 const struct btf_type *t; 7566 struct extern_desc *ext; 7567 7568 ext = find_extern_by_name(obj, sym_name); 7569 if (!ext || ext->type != EXT_KSYM) 7570 return 0; 7571 7572 t = btf__type_by_id(obj->btf, ext->btf_id); 7573 if (!btf_is_var(t)) 7574 return 0; 7575 7576 if (ext->is_set && ext->ksym.addr != sym_addr) { 7577 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7578 sym_name, ext->ksym.addr, sym_addr); 7579 return -EINVAL; 7580 } 7581 if (!ext->is_set) { 7582 ext->is_set = true; 7583 ext->ksym.addr = sym_addr; 7584 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7585 } 7586 return 0; 7587 } 7588 7589 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7590 { 7591 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7592 } 7593 7594 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7595 __u16 kind, struct btf **res_btf, 7596 struct module_btf **res_mod_btf) 7597 { 7598 struct module_btf *mod_btf; 7599 struct btf *btf; 7600 int i, id, err; 7601 7602 btf = obj->btf_vmlinux; 7603 mod_btf = NULL; 7604 id = btf__find_by_name_kind(btf, ksym_name, kind); 7605 7606 if (id == -ENOENT) { 7607 err = load_module_btfs(obj); 7608 if (err) 7609 return err; 7610 7611 for (i = 0; i < obj->btf_module_cnt; i++) { 7612 /* we assume module_btf's BTF FD is always >0 */ 7613 mod_btf = &obj->btf_modules[i]; 7614 btf = mod_btf->btf; 7615 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7616 if (id != -ENOENT) 7617 break; 7618 } 7619 } 7620 if (id <= 0) 7621 return -ESRCH; 7622 7623 *res_btf = btf; 7624 *res_mod_btf = mod_btf; 7625 return id; 7626 } 7627 7628 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7629 struct extern_desc *ext) 7630 { 7631 const struct btf_type *targ_var, *targ_type; 7632 __u32 targ_type_id, local_type_id; 7633 struct module_btf *mod_btf = NULL; 7634 const char *targ_var_name; 7635 struct btf *btf = NULL; 7636 int id, err; 7637 7638 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7639 if (id < 0) { 7640 if (id == -ESRCH && ext->is_weak) 7641 return 0; 7642 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7643 ext->name); 7644 return id; 7645 } 7646 7647 /* find local type_id */ 7648 local_type_id = ext->ksym.type_id; 7649 7650 /* find target type_id */ 7651 targ_var = btf__type_by_id(btf, id); 7652 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7653 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7654 7655 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7656 btf, targ_type_id); 7657 if (err <= 0) { 7658 const struct btf_type *local_type; 7659 const char *targ_name, *local_name; 7660 7661 local_type = btf__type_by_id(obj->btf, local_type_id); 7662 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7663 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7664 7665 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7666 ext->name, local_type_id, 7667 btf_kind_str(local_type), local_name, targ_type_id, 7668 btf_kind_str(targ_type), targ_name); 7669 return -EINVAL; 7670 } 7671 7672 ext->is_set = true; 7673 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7674 ext->ksym.kernel_btf_id = id; 7675 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7676 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7677 7678 return 0; 7679 } 7680 7681 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7682 struct extern_desc *ext) 7683 { 7684 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7685 struct module_btf *mod_btf = NULL; 7686 const struct btf_type *kern_func; 7687 struct btf *kern_btf = NULL; 7688 int ret; 7689 7690 local_func_proto_id = ext->ksym.type_id; 7691 7692 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7693 if (kfunc_id < 0) { 7694 if (kfunc_id == -ESRCH && ext->is_weak) 7695 return 0; 7696 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7697 ext->name); 7698 return kfunc_id; 7699 } 7700 7701 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7702 kfunc_proto_id = kern_func->type; 7703 7704 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7705 kern_btf, kfunc_proto_id); 7706 if (ret <= 0) { 7707 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7708 ext->name, local_func_proto_id, kfunc_proto_id); 7709 return -EINVAL; 7710 } 7711 7712 /* set index for module BTF fd in fd_array, if unset */ 7713 if (mod_btf && !mod_btf->fd_array_idx) { 7714 /* insn->off is s16 */ 7715 if (obj->fd_array_cnt == INT16_MAX) { 7716 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7717 ext->name, mod_btf->fd_array_idx); 7718 return -E2BIG; 7719 } 7720 /* Cannot use index 0 for module BTF fd */ 7721 if (!obj->fd_array_cnt) 7722 obj->fd_array_cnt = 1; 7723 7724 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7725 obj->fd_array_cnt + 1); 7726 if (ret) 7727 return ret; 7728 mod_btf->fd_array_idx = obj->fd_array_cnt; 7729 /* we assume module BTF FD is always >0 */ 7730 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7731 } 7732 7733 ext->is_set = true; 7734 ext->ksym.kernel_btf_id = kfunc_id; 7735 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7736 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7737 ext->name, kfunc_id); 7738 7739 return 0; 7740 } 7741 7742 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7743 { 7744 const struct btf_type *t; 7745 struct extern_desc *ext; 7746 int i, err; 7747 7748 for (i = 0; i < obj->nr_extern; i++) { 7749 ext = &obj->externs[i]; 7750 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7751 continue; 7752 7753 if (obj->gen_loader) { 7754 ext->is_set = true; 7755 ext->ksym.kernel_btf_obj_fd = 0; 7756 ext->ksym.kernel_btf_id = 0; 7757 continue; 7758 } 7759 t = btf__type_by_id(obj->btf, ext->btf_id); 7760 if (btf_is_var(t)) 7761 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7762 else 7763 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7764 if (err) 7765 return err; 7766 } 7767 return 0; 7768 } 7769 7770 static int bpf_object__resolve_externs(struct bpf_object *obj, 7771 const char *extra_kconfig) 7772 { 7773 bool need_config = false, need_kallsyms = false; 7774 bool need_vmlinux_btf = false; 7775 struct extern_desc *ext; 7776 void *kcfg_data = NULL; 7777 int err, i; 7778 7779 if (obj->nr_extern == 0) 7780 return 0; 7781 7782 if (obj->kconfig_map_idx >= 0) 7783 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7784 7785 for (i = 0; i < obj->nr_extern; i++) { 7786 ext = &obj->externs[i]; 7787 7788 if (ext->type == EXT_KCFG && 7789 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7790 void *ext_val = kcfg_data + ext->kcfg.data_off; 7791 __u32 kver = get_kernel_version(); 7792 7793 if (!kver) { 7794 pr_warn("failed to get kernel version\n"); 7795 return -EINVAL; 7796 } 7797 err = set_kcfg_value_num(ext, ext_val, kver); 7798 if (err) 7799 return err; 7800 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7801 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7802 need_config = true; 7803 } else if (ext->type == EXT_KSYM) { 7804 if (ext->ksym.type_id) 7805 need_vmlinux_btf = true; 7806 else 7807 need_kallsyms = true; 7808 } else { 7809 pr_warn("unrecognized extern '%s'\n", ext->name); 7810 return -EINVAL; 7811 } 7812 } 7813 if (need_config && extra_kconfig) { 7814 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7815 if (err) 7816 return -EINVAL; 7817 need_config = false; 7818 for (i = 0; i < obj->nr_extern; i++) { 7819 ext = &obj->externs[i]; 7820 if (ext->type == EXT_KCFG && !ext->is_set) { 7821 need_config = true; 7822 break; 7823 } 7824 } 7825 } 7826 if (need_config) { 7827 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7828 if (err) 7829 return -EINVAL; 7830 } 7831 if (need_kallsyms) { 7832 err = bpf_object__read_kallsyms_file(obj); 7833 if (err) 7834 return -EINVAL; 7835 } 7836 if (need_vmlinux_btf) { 7837 err = bpf_object__resolve_ksyms_btf_id(obj); 7838 if (err) 7839 return -EINVAL; 7840 } 7841 for (i = 0; i < obj->nr_extern; i++) { 7842 ext = &obj->externs[i]; 7843 7844 if (!ext->is_set && !ext->is_weak) { 7845 pr_warn("extern %s (strong) not resolved\n", ext->name); 7846 return -ESRCH; 7847 } else if (!ext->is_set) { 7848 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7849 ext->name); 7850 } 7851 } 7852 7853 return 0; 7854 } 7855 7856 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7857 { 7858 int err, i; 7859 7860 if (!obj) 7861 return libbpf_err(-EINVAL); 7862 7863 if (obj->loaded) { 7864 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7865 return libbpf_err(-EINVAL); 7866 } 7867 7868 if (obj->gen_loader) 7869 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7870 7871 err = bpf_object__probe_loading(obj); 7872 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7873 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7874 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7875 err = err ? : bpf_object__sanitize_maps(obj); 7876 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7877 err = err ? : bpf_object__create_maps(obj); 7878 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7879 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7880 err = err ? : bpf_object_init_prog_arrays(obj); 7881 7882 if (obj->gen_loader) { 7883 /* reset FDs */ 7884 if (obj->btf) 7885 btf__set_fd(obj->btf, -1); 7886 for (i = 0; i < obj->nr_maps; i++) 7887 obj->maps[i].fd = -1; 7888 if (!err) 7889 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7890 } 7891 7892 /* clean up fd_array */ 7893 zfree(&obj->fd_array); 7894 7895 /* clean up module BTFs */ 7896 for (i = 0; i < obj->btf_module_cnt; i++) { 7897 close(obj->btf_modules[i].fd); 7898 btf__free(obj->btf_modules[i].btf); 7899 free(obj->btf_modules[i].name); 7900 } 7901 free(obj->btf_modules); 7902 7903 /* clean up vmlinux BTF */ 7904 btf__free(obj->btf_vmlinux); 7905 obj->btf_vmlinux = NULL; 7906 7907 obj->loaded = true; /* doesn't matter if successfully or not */ 7908 7909 if (err) 7910 goto out; 7911 7912 return 0; 7913 out: 7914 /* unpin any maps that were auto-pinned during load */ 7915 for (i = 0; i < obj->nr_maps; i++) 7916 if (obj->maps[i].pinned && !obj->maps[i].reused) 7917 bpf_map__unpin(&obj->maps[i], NULL); 7918 7919 bpf_object_unload(obj); 7920 pr_warn("failed to load object '%s'\n", obj->path); 7921 return libbpf_err(err); 7922 } 7923 7924 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7925 { 7926 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 7927 } 7928 7929 int bpf_object__load(struct bpf_object *obj) 7930 { 7931 return bpf_object_load(obj, 0, NULL); 7932 } 7933 7934 static int make_parent_dir(const char *path) 7935 { 7936 char *cp, errmsg[STRERR_BUFSIZE]; 7937 char *dname, *dir; 7938 int err = 0; 7939 7940 dname = strdup(path); 7941 if (dname == NULL) 7942 return -ENOMEM; 7943 7944 dir = dirname(dname); 7945 if (mkdir(dir, 0700) && errno != EEXIST) 7946 err = -errno; 7947 7948 free(dname); 7949 if (err) { 7950 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7951 pr_warn("failed to mkdir %s: %s\n", path, cp); 7952 } 7953 return err; 7954 } 7955 7956 static int check_path(const char *path) 7957 { 7958 char *cp, errmsg[STRERR_BUFSIZE]; 7959 struct statfs st_fs; 7960 char *dname, *dir; 7961 int err = 0; 7962 7963 if (path == NULL) 7964 return -EINVAL; 7965 7966 dname = strdup(path); 7967 if (dname == NULL) 7968 return -ENOMEM; 7969 7970 dir = dirname(dname); 7971 if (statfs(dir, &st_fs)) { 7972 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7973 pr_warn("failed to statfs %s: %s\n", dir, cp); 7974 err = -errno; 7975 } 7976 free(dname); 7977 7978 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7979 pr_warn("specified path %s is not on BPF FS\n", path); 7980 err = -EINVAL; 7981 } 7982 7983 return err; 7984 } 7985 7986 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7987 { 7988 char *cp, errmsg[STRERR_BUFSIZE]; 7989 int err; 7990 7991 err = make_parent_dir(path); 7992 if (err) 7993 return libbpf_err(err); 7994 7995 err = check_path(path); 7996 if (err) 7997 return libbpf_err(err); 7998 7999 if (prog == NULL) { 8000 pr_warn("invalid program pointer\n"); 8001 return libbpf_err(-EINVAL); 8002 } 8003 8004 if (instance < 0 || instance >= prog->instances.nr) { 8005 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8006 instance, prog->name, prog->instances.nr); 8007 return libbpf_err(-EINVAL); 8008 } 8009 8010 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 8011 err = -errno; 8012 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8013 pr_warn("failed to pin program: %s\n", cp); 8014 return libbpf_err(err); 8015 } 8016 pr_debug("pinned program '%s'\n", path); 8017 8018 return 0; 8019 } 8020 8021 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 8022 { 8023 int err; 8024 8025 err = check_path(path); 8026 if (err) 8027 return libbpf_err(err); 8028 8029 if (prog == NULL) { 8030 pr_warn("invalid program pointer\n"); 8031 return libbpf_err(-EINVAL); 8032 } 8033 8034 if (instance < 0 || instance >= prog->instances.nr) { 8035 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8036 instance, prog->name, prog->instances.nr); 8037 return libbpf_err(-EINVAL); 8038 } 8039 8040 err = unlink(path); 8041 if (err != 0) 8042 return libbpf_err(-errno); 8043 8044 pr_debug("unpinned program '%s'\n", path); 8045 8046 return 0; 8047 } 8048 8049 __attribute__((alias("bpf_program_pin_instance"))) 8050 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 8051 8052 __attribute__((alias("bpf_program_unpin_instance"))) 8053 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 8054 8055 int bpf_program__pin(struct bpf_program *prog, const char *path) 8056 { 8057 int i, err; 8058 8059 err = make_parent_dir(path); 8060 if (err) 8061 return libbpf_err(err); 8062 8063 err = check_path(path); 8064 if (err) 8065 return libbpf_err(err); 8066 8067 if (prog == NULL) { 8068 pr_warn("invalid program pointer\n"); 8069 return libbpf_err(-EINVAL); 8070 } 8071 8072 if (prog->instances.nr <= 0) { 8073 pr_warn("no instances of prog %s to pin\n", prog->name); 8074 return libbpf_err(-EINVAL); 8075 } 8076 8077 if (prog->instances.nr == 1) { 8078 /* don't create subdirs when pinning single instance */ 8079 return bpf_program_pin_instance(prog, path, 0); 8080 } 8081 8082 for (i = 0; i < prog->instances.nr; i++) { 8083 char buf[PATH_MAX]; 8084 int len; 8085 8086 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8087 if (len < 0) { 8088 err = -EINVAL; 8089 goto err_unpin; 8090 } else if (len >= PATH_MAX) { 8091 err = -ENAMETOOLONG; 8092 goto err_unpin; 8093 } 8094 8095 err = bpf_program_pin_instance(prog, buf, i); 8096 if (err) 8097 goto err_unpin; 8098 } 8099 8100 return 0; 8101 8102 err_unpin: 8103 for (i = i - 1; i >= 0; i--) { 8104 char buf[PATH_MAX]; 8105 int len; 8106 8107 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8108 if (len < 0) 8109 continue; 8110 else if (len >= PATH_MAX) 8111 continue; 8112 8113 bpf_program_unpin_instance(prog, buf, i); 8114 } 8115 8116 rmdir(path); 8117 8118 return libbpf_err(err); 8119 } 8120 8121 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8122 { 8123 int i, err; 8124 8125 err = check_path(path); 8126 if (err) 8127 return libbpf_err(err); 8128 8129 if (prog == NULL) { 8130 pr_warn("invalid program pointer\n"); 8131 return libbpf_err(-EINVAL); 8132 } 8133 8134 if (prog->instances.nr <= 0) { 8135 pr_warn("no instances of prog %s to pin\n", prog->name); 8136 return libbpf_err(-EINVAL); 8137 } 8138 8139 if (prog->instances.nr == 1) { 8140 /* don't create subdirs when pinning single instance */ 8141 return bpf_program_unpin_instance(prog, path, 0); 8142 } 8143 8144 for (i = 0; i < prog->instances.nr; i++) { 8145 char buf[PATH_MAX]; 8146 int len; 8147 8148 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8149 if (len < 0) 8150 return libbpf_err(-EINVAL); 8151 else if (len >= PATH_MAX) 8152 return libbpf_err(-ENAMETOOLONG); 8153 8154 err = bpf_program_unpin_instance(prog, buf, i); 8155 if (err) 8156 return err; 8157 } 8158 8159 err = rmdir(path); 8160 if (err) 8161 return libbpf_err(-errno); 8162 8163 return 0; 8164 } 8165 8166 int bpf_map__pin(struct bpf_map *map, const char *path) 8167 { 8168 char *cp, errmsg[STRERR_BUFSIZE]; 8169 int err; 8170 8171 if (map == NULL) { 8172 pr_warn("invalid map pointer\n"); 8173 return libbpf_err(-EINVAL); 8174 } 8175 8176 if (map->pin_path) { 8177 if (path && strcmp(path, map->pin_path)) { 8178 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8179 bpf_map__name(map), map->pin_path, path); 8180 return libbpf_err(-EINVAL); 8181 } else if (map->pinned) { 8182 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8183 bpf_map__name(map), map->pin_path); 8184 return 0; 8185 } 8186 } else { 8187 if (!path) { 8188 pr_warn("missing a path to pin map '%s' at\n", 8189 bpf_map__name(map)); 8190 return libbpf_err(-EINVAL); 8191 } else if (map->pinned) { 8192 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8193 return libbpf_err(-EEXIST); 8194 } 8195 8196 map->pin_path = strdup(path); 8197 if (!map->pin_path) { 8198 err = -errno; 8199 goto out_err; 8200 } 8201 } 8202 8203 err = make_parent_dir(map->pin_path); 8204 if (err) 8205 return libbpf_err(err); 8206 8207 err = check_path(map->pin_path); 8208 if (err) 8209 return libbpf_err(err); 8210 8211 if (bpf_obj_pin(map->fd, map->pin_path)) { 8212 err = -errno; 8213 goto out_err; 8214 } 8215 8216 map->pinned = true; 8217 pr_debug("pinned map '%s'\n", map->pin_path); 8218 8219 return 0; 8220 8221 out_err: 8222 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8223 pr_warn("failed to pin map: %s\n", cp); 8224 return libbpf_err(err); 8225 } 8226 8227 int bpf_map__unpin(struct bpf_map *map, const char *path) 8228 { 8229 int err; 8230 8231 if (map == NULL) { 8232 pr_warn("invalid map pointer\n"); 8233 return libbpf_err(-EINVAL); 8234 } 8235 8236 if (map->pin_path) { 8237 if (path && strcmp(path, map->pin_path)) { 8238 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8239 bpf_map__name(map), map->pin_path, path); 8240 return libbpf_err(-EINVAL); 8241 } 8242 path = map->pin_path; 8243 } else if (!path) { 8244 pr_warn("no path to unpin map '%s' from\n", 8245 bpf_map__name(map)); 8246 return libbpf_err(-EINVAL); 8247 } 8248 8249 err = check_path(path); 8250 if (err) 8251 return libbpf_err(err); 8252 8253 err = unlink(path); 8254 if (err != 0) 8255 return libbpf_err(-errno); 8256 8257 map->pinned = false; 8258 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8259 8260 return 0; 8261 } 8262 8263 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8264 { 8265 char *new = NULL; 8266 8267 if (path) { 8268 new = strdup(path); 8269 if (!new) 8270 return libbpf_err(-errno); 8271 } 8272 8273 free(map->pin_path); 8274 map->pin_path = new; 8275 return 0; 8276 } 8277 8278 __alias(bpf_map__pin_path) 8279 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8280 8281 const char *bpf_map__pin_path(const struct bpf_map *map) 8282 { 8283 return map->pin_path; 8284 } 8285 8286 bool bpf_map__is_pinned(const struct bpf_map *map) 8287 { 8288 return map->pinned; 8289 } 8290 8291 static void sanitize_pin_path(char *s) 8292 { 8293 /* bpffs disallows periods in path names */ 8294 while (*s) { 8295 if (*s == '.') 8296 *s = '_'; 8297 s++; 8298 } 8299 } 8300 8301 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8302 { 8303 struct bpf_map *map; 8304 int err; 8305 8306 if (!obj) 8307 return libbpf_err(-ENOENT); 8308 8309 if (!obj->loaded) { 8310 pr_warn("object not yet loaded; load it first\n"); 8311 return libbpf_err(-ENOENT); 8312 } 8313 8314 bpf_object__for_each_map(map, obj) { 8315 char *pin_path = NULL; 8316 char buf[PATH_MAX]; 8317 8318 if (!map->autocreate) 8319 continue; 8320 8321 if (path) { 8322 int len; 8323 8324 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8325 bpf_map__name(map)); 8326 if (len < 0) { 8327 err = -EINVAL; 8328 goto err_unpin_maps; 8329 } else if (len >= PATH_MAX) { 8330 err = -ENAMETOOLONG; 8331 goto err_unpin_maps; 8332 } 8333 sanitize_pin_path(buf); 8334 pin_path = buf; 8335 } else if (!map->pin_path) { 8336 continue; 8337 } 8338 8339 err = bpf_map__pin(map, pin_path); 8340 if (err) 8341 goto err_unpin_maps; 8342 } 8343 8344 return 0; 8345 8346 err_unpin_maps: 8347 while ((map = bpf_object__prev_map(obj, map))) { 8348 if (!map->pin_path) 8349 continue; 8350 8351 bpf_map__unpin(map, NULL); 8352 } 8353 8354 return libbpf_err(err); 8355 } 8356 8357 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8358 { 8359 struct bpf_map *map; 8360 int err; 8361 8362 if (!obj) 8363 return libbpf_err(-ENOENT); 8364 8365 bpf_object__for_each_map(map, obj) { 8366 char *pin_path = NULL; 8367 char buf[PATH_MAX]; 8368 8369 if (path) { 8370 int len; 8371 8372 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8373 bpf_map__name(map)); 8374 if (len < 0) 8375 return libbpf_err(-EINVAL); 8376 else if (len >= PATH_MAX) 8377 return libbpf_err(-ENAMETOOLONG); 8378 sanitize_pin_path(buf); 8379 pin_path = buf; 8380 } else if (!map->pin_path) { 8381 continue; 8382 } 8383 8384 err = bpf_map__unpin(map, pin_path); 8385 if (err) 8386 return libbpf_err(err); 8387 } 8388 8389 return 0; 8390 } 8391 8392 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8393 { 8394 struct bpf_program *prog; 8395 int err; 8396 8397 if (!obj) 8398 return libbpf_err(-ENOENT); 8399 8400 if (!obj->loaded) { 8401 pr_warn("object not yet loaded; load it first\n"); 8402 return libbpf_err(-ENOENT); 8403 } 8404 8405 bpf_object__for_each_program(prog, obj) { 8406 char buf[PATH_MAX]; 8407 int len; 8408 8409 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8410 prog->pin_name); 8411 if (len < 0) { 8412 err = -EINVAL; 8413 goto err_unpin_programs; 8414 } else if (len >= PATH_MAX) { 8415 err = -ENAMETOOLONG; 8416 goto err_unpin_programs; 8417 } 8418 8419 err = bpf_program__pin(prog, buf); 8420 if (err) 8421 goto err_unpin_programs; 8422 } 8423 8424 return 0; 8425 8426 err_unpin_programs: 8427 while ((prog = bpf_object__prev_program(obj, prog))) { 8428 char buf[PATH_MAX]; 8429 int len; 8430 8431 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8432 prog->pin_name); 8433 if (len < 0) 8434 continue; 8435 else if (len >= PATH_MAX) 8436 continue; 8437 8438 bpf_program__unpin(prog, buf); 8439 } 8440 8441 return libbpf_err(err); 8442 } 8443 8444 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8445 { 8446 struct bpf_program *prog; 8447 int err; 8448 8449 if (!obj) 8450 return libbpf_err(-ENOENT); 8451 8452 bpf_object__for_each_program(prog, obj) { 8453 char buf[PATH_MAX]; 8454 int len; 8455 8456 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8457 prog->pin_name); 8458 if (len < 0) 8459 return libbpf_err(-EINVAL); 8460 else if (len >= PATH_MAX) 8461 return libbpf_err(-ENAMETOOLONG); 8462 8463 err = bpf_program__unpin(prog, buf); 8464 if (err) 8465 return libbpf_err(err); 8466 } 8467 8468 return 0; 8469 } 8470 8471 int bpf_object__pin(struct bpf_object *obj, const char *path) 8472 { 8473 int err; 8474 8475 err = bpf_object__pin_maps(obj, path); 8476 if (err) 8477 return libbpf_err(err); 8478 8479 err = bpf_object__pin_programs(obj, path); 8480 if (err) { 8481 bpf_object__unpin_maps(obj, path); 8482 return libbpf_err(err); 8483 } 8484 8485 return 0; 8486 } 8487 8488 static void bpf_map__destroy(struct bpf_map *map) 8489 { 8490 if (map->clear_priv) 8491 map->clear_priv(map, map->priv); 8492 map->priv = NULL; 8493 map->clear_priv = NULL; 8494 8495 if (map->inner_map) { 8496 bpf_map__destroy(map->inner_map); 8497 zfree(&map->inner_map); 8498 } 8499 8500 zfree(&map->init_slots); 8501 map->init_slots_sz = 0; 8502 8503 if (map->mmaped) { 8504 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8505 map->mmaped = NULL; 8506 } 8507 8508 if (map->st_ops) { 8509 zfree(&map->st_ops->data); 8510 zfree(&map->st_ops->progs); 8511 zfree(&map->st_ops->kern_func_off); 8512 zfree(&map->st_ops); 8513 } 8514 8515 zfree(&map->name); 8516 zfree(&map->real_name); 8517 zfree(&map->pin_path); 8518 8519 if (map->fd >= 0) 8520 zclose(map->fd); 8521 } 8522 8523 void bpf_object__close(struct bpf_object *obj) 8524 { 8525 size_t i; 8526 8527 if (IS_ERR_OR_NULL(obj)) 8528 return; 8529 8530 if (obj->clear_priv) 8531 obj->clear_priv(obj, obj->priv); 8532 8533 usdt_manager_free(obj->usdt_man); 8534 obj->usdt_man = NULL; 8535 8536 bpf_gen__free(obj->gen_loader); 8537 bpf_object__elf_finish(obj); 8538 bpf_object_unload(obj); 8539 btf__free(obj->btf); 8540 btf_ext__free(obj->btf_ext); 8541 8542 for (i = 0; i < obj->nr_maps; i++) 8543 bpf_map__destroy(&obj->maps[i]); 8544 8545 zfree(&obj->btf_custom_path); 8546 zfree(&obj->kconfig); 8547 zfree(&obj->externs); 8548 obj->nr_extern = 0; 8549 8550 zfree(&obj->maps); 8551 obj->nr_maps = 0; 8552 8553 if (obj->programs && obj->nr_programs) { 8554 for (i = 0; i < obj->nr_programs; i++) 8555 bpf_program__exit(&obj->programs[i]); 8556 } 8557 zfree(&obj->programs); 8558 8559 list_del(&obj->list); 8560 free(obj); 8561 } 8562 8563 struct bpf_object * 8564 bpf_object__next(struct bpf_object *prev) 8565 { 8566 struct bpf_object *next; 8567 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8568 8569 if (strict) 8570 return NULL; 8571 8572 if (!prev) 8573 next = list_first_entry(&bpf_objects_list, 8574 struct bpf_object, 8575 list); 8576 else 8577 next = list_next_entry(prev, list); 8578 8579 /* Empty list is noticed here so don't need checking on entry. */ 8580 if (&next->list == &bpf_objects_list) 8581 return NULL; 8582 8583 return next; 8584 } 8585 8586 const char *bpf_object__name(const struct bpf_object *obj) 8587 { 8588 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8589 } 8590 8591 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8592 { 8593 return obj ? obj->kern_version : 0; 8594 } 8595 8596 struct btf *bpf_object__btf(const struct bpf_object *obj) 8597 { 8598 return obj ? obj->btf : NULL; 8599 } 8600 8601 int bpf_object__btf_fd(const struct bpf_object *obj) 8602 { 8603 return obj->btf ? btf__fd(obj->btf) : -1; 8604 } 8605 8606 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8607 { 8608 if (obj->loaded) 8609 return libbpf_err(-EINVAL); 8610 8611 obj->kern_version = kern_version; 8612 8613 return 0; 8614 } 8615 8616 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8617 bpf_object_clear_priv_t clear_priv) 8618 { 8619 if (obj->priv && obj->clear_priv) 8620 obj->clear_priv(obj, obj->priv); 8621 8622 obj->priv = priv; 8623 obj->clear_priv = clear_priv; 8624 return 0; 8625 } 8626 8627 void *bpf_object__priv(const struct bpf_object *obj) 8628 { 8629 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8630 } 8631 8632 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8633 { 8634 struct bpf_gen *gen; 8635 8636 if (!opts) 8637 return -EFAULT; 8638 if (!OPTS_VALID(opts, gen_loader_opts)) 8639 return -EINVAL; 8640 gen = calloc(sizeof(*gen), 1); 8641 if (!gen) 8642 return -ENOMEM; 8643 gen->opts = opts; 8644 obj->gen_loader = gen; 8645 return 0; 8646 } 8647 8648 static struct bpf_program * 8649 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8650 bool forward) 8651 { 8652 size_t nr_programs = obj->nr_programs; 8653 ssize_t idx; 8654 8655 if (!nr_programs) 8656 return NULL; 8657 8658 if (!p) 8659 /* Iter from the beginning */ 8660 return forward ? &obj->programs[0] : 8661 &obj->programs[nr_programs - 1]; 8662 8663 if (p->obj != obj) { 8664 pr_warn("error: program handler doesn't match object\n"); 8665 return errno = EINVAL, NULL; 8666 } 8667 8668 idx = (p - obj->programs) + (forward ? 1 : -1); 8669 if (idx >= obj->nr_programs || idx < 0) 8670 return NULL; 8671 return &obj->programs[idx]; 8672 } 8673 8674 struct bpf_program * 8675 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8676 { 8677 return bpf_object__next_program(obj, prev); 8678 } 8679 8680 struct bpf_program * 8681 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8682 { 8683 struct bpf_program *prog = prev; 8684 8685 do { 8686 prog = __bpf_program__iter(prog, obj, true); 8687 } while (prog && prog_is_subprog(obj, prog)); 8688 8689 return prog; 8690 } 8691 8692 struct bpf_program * 8693 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8694 { 8695 return bpf_object__prev_program(obj, next); 8696 } 8697 8698 struct bpf_program * 8699 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8700 { 8701 struct bpf_program *prog = next; 8702 8703 do { 8704 prog = __bpf_program__iter(prog, obj, false); 8705 } while (prog && prog_is_subprog(obj, prog)); 8706 8707 return prog; 8708 } 8709 8710 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8711 bpf_program_clear_priv_t clear_priv) 8712 { 8713 if (prog->priv && prog->clear_priv) 8714 prog->clear_priv(prog, prog->priv); 8715 8716 prog->priv = priv; 8717 prog->clear_priv = clear_priv; 8718 return 0; 8719 } 8720 8721 void *bpf_program__priv(const struct bpf_program *prog) 8722 { 8723 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8724 } 8725 8726 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8727 { 8728 prog->prog_ifindex = ifindex; 8729 } 8730 8731 const char *bpf_program__name(const struct bpf_program *prog) 8732 { 8733 return prog->name; 8734 } 8735 8736 const char *bpf_program__section_name(const struct bpf_program *prog) 8737 { 8738 return prog->sec_name; 8739 } 8740 8741 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8742 { 8743 const char *title; 8744 8745 title = prog->sec_name; 8746 if (needs_copy) { 8747 title = strdup(title); 8748 if (!title) { 8749 pr_warn("failed to strdup program title\n"); 8750 return libbpf_err_ptr(-ENOMEM); 8751 } 8752 } 8753 8754 return title; 8755 } 8756 8757 bool bpf_program__autoload(const struct bpf_program *prog) 8758 { 8759 return prog->autoload; 8760 } 8761 8762 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8763 { 8764 if (prog->obj->loaded) 8765 return libbpf_err(-EINVAL); 8766 8767 prog->autoload = autoload; 8768 return 0; 8769 } 8770 8771 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8772 8773 int bpf_program__fd(const struct bpf_program *prog) 8774 { 8775 return bpf_program_nth_fd(prog, 0); 8776 } 8777 8778 size_t bpf_program__size(const struct bpf_program *prog) 8779 { 8780 return prog->insns_cnt * BPF_INSN_SZ; 8781 } 8782 8783 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8784 { 8785 return prog->insns; 8786 } 8787 8788 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8789 { 8790 return prog->insns_cnt; 8791 } 8792 8793 int bpf_program__set_insns(struct bpf_program *prog, 8794 struct bpf_insn *new_insns, size_t new_insn_cnt) 8795 { 8796 struct bpf_insn *insns; 8797 8798 if (prog->obj->loaded) 8799 return -EBUSY; 8800 8801 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8802 if (!insns) { 8803 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8804 return -ENOMEM; 8805 } 8806 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8807 8808 prog->insns = insns; 8809 prog->insns_cnt = new_insn_cnt; 8810 return 0; 8811 } 8812 8813 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8814 bpf_program_prep_t prep) 8815 { 8816 int *instances_fds; 8817 8818 if (nr_instances <= 0 || !prep) 8819 return libbpf_err(-EINVAL); 8820 8821 if (prog->instances.nr > 0 || prog->instances.fds) { 8822 pr_warn("Can't set pre-processor after loading\n"); 8823 return libbpf_err(-EINVAL); 8824 } 8825 8826 instances_fds = malloc(sizeof(int) * nr_instances); 8827 if (!instances_fds) { 8828 pr_warn("alloc memory failed for fds\n"); 8829 return libbpf_err(-ENOMEM); 8830 } 8831 8832 /* fill all fd with -1 */ 8833 memset(instances_fds, -1, sizeof(int) * nr_instances); 8834 8835 prog->instances.nr = nr_instances; 8836 prog->instances.fds = instances_fds; 8837 prog->preprocessor = prep; 8838 return 0; 8839 } 8840 8841 __attribute__((alias("bpf_program_nth_fd"))) 8842 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 8843 8844 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 8845 { 8846 int fd; 8847 8848 if (!prog) 8849 return libbpf_err(-EINVAL); 8850 8851 if (n >= prog->instances.nr || n < 0) { 8852 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8853 n, prog->name, prog->instances.nr); 8854 return libbpf_err(-EINVAL); 8855 } 8856 8857 fd = prog->instances.fds[n]; 8858 if (fd < 0) { 8859 pr_warn("%dth instance of program '%s' is invalid\n", 8860 n, prog->name); 8861 return libbpf_err(-ENOENT); 8862 } 8863 8864 return fd; 8865 } 8866 8867 __alias(bpf_program__type) 8868 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8869 8870 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8871 { 8872 return prog->type; 8873 } 8874 8875 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8876 { 8877 if (prog->obj->loaded) 8878 return libbpf_err(-EBUSY); 8879 8880 prog->type = type; 8881 return 0; 8882 } 8883 8884 static bool bpf_program__is_type(const struct bpf_program *prog, 8885 enum bpf_prog_type type) 8886 { 8887 return prog ? (prog->type == type) : false; 8888 } 8889 8890 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8891 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8892 { \ 8893 if (!prog) \ 8894 return libbpf_err(-EINVAL); \ 8895 return bpf_program__set_type(prog, TYPE); \ 8896 } \ 8897 \ 8898 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8899 { \ 8900 return bpf_program__is_type(prog, TYPE); \ 8901 } \ 8902 8903 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8904 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8905 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8906 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8907 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8908 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8909 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8910 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8911 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8912 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8913 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8914 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8915 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8916 8917 __alias(bpf_program__expected_attach_type) 8918 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8919 8920 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8921 { 8922 return prog->expected_attach_type; 8923 } 8924 8925 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8926 enum bpf_attach_type type) 8927 { 8928 if (prog->obj->loaded) 8929 return libbpf_err(-EBUSY); 8930 8931 prog->expected_attach_type = type; 8932 return 0; 8933 } 8934 8935 __u32 bpf_program__flags(const struct bpf_program *prog) 8936 { 8937 return prog->prog_flags; 8938 } 8939 8940 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8941 { 8942 if (prog->obj->loaded) 8943 return libbpf_err(-EBUSY); 8944 8945 prog->prog_flags = flags; 8946 return 0; 8947 } 8948 8949 __u32 bpf_program__log_level(const struct bpf_program *prog) 8950 { 8951 return prog->log_level; 8952 } 8953 8954 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8955 { 8956 if (prog->obj->loaded) 8957 return libbpf_err(-EBUSY); 8958 8959 prog->log_level = log_level; 8960 return 0; 8961 } 8962 8963 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8964 { 8965 *log_size = prog->log_size; 8966 return prog->log_buf; 8967 } 8968 8969 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8970 { 8971 if (log_size && !log_buf) 8972 return -EINVAL; 8973 if (prog->log_size > UINT_MAX) 8974 return -EINVAL; 8975 if (prog->obj->loaded) 8976 return -EBUSY; 8977 8978 prog->log_buf = log_buf; 8979 prog->log_size = log_size; 8980 return 0; 8981 } 8982 8983 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8984 .sec = (char *)sec_pfx, \ 8985 .prog_type = BPF_PROG_TYPE_##ptype, \ 8986 .expected_attach_type = atype, \ 8987 .cookie = (long)(flags), \ 8988 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8989 __VA_ARGS__ \ 8990 } 8991 8992 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8993 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8994 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8995 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8996 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8997 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8998 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8999 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9000 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9001 9002 static const struct bpf_sec_def section_defs[] = { 9003 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 9004 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9005 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9006 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9007 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9008 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9009 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9010 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9011 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9012 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 9013 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 9014 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 9015 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9016 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9017 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9018 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9019 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9020 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9021 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9022 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9023 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9024 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9025 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9026 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9027 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9028 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9029 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9030 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9031 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9032 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9033 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9034 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9035 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9036 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9037 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 9038 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9039 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9040 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 9041 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9042 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9043 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9044 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 9045 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9046 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9047 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 9048 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9049 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9050 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 9051 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9052 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9053 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9054 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9055 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9056 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9057 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9058 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9059 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9060 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 9061 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9062 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9063 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9064 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9065 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9066 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9067 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9068 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9069 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9070 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9071 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9072 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9073 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9074 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9075 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9076 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9077 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9078 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9079 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9080 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9081 }; 9082 9083 static size_t custom_sec_def_cnt; 9084 static struct bpf_sec_def *custom_sec_defs; 9085 static struct bpf_sec_def custom_fallback_def; 9086 static bool has_custom_fallback_def; 9087 9088 static int last_custom_sec_def_handler_id; 9089 9090 int libbpf_register_prog_handler(const char *sec, 9091 enum bpf_prog_type prog_type, 9092 enum bpf_attach_type exp_attach_type, 9093 const struct libbpf_prog_handler_opts *opts) 9094 { 9095 struct bpf_sec_def *sec_def; 9096 9097 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9098 return libbpf_err(-EINVAL); 9099 9100 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9101 return libbpf_err(-E2BIG); 9102 9103 if (sec) { 9104 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9105 sizeof(*sec_def)); 9106 if (!sec_def) 9107 return libbpf_err(-ENOMEM); 9108 9109 custom_sec_defs = sec_def; 9110 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9111 } else { 9112 if (has_custom_fallback_def) 9113 return libbpf_err(-EBUSY); 9114 9115 sec_def = &custom_fallback_def; 9116 } 9117 9118 sec_def->sec = sec ? strdup(sec) : NULL; 9119 if (sec && !sec_def->sec) 9120 return libbpf_err(-ENOMEM); 9121 9122 sec_def->prog_type = prog_type; 9123 sec_def->expected_attach_type = exp_attach_type; 9124 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9125 9126 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9127 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9128 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9129 9130 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9131 9132 if (sec) 9133 custom_sec_def_cnt++; 9134 else 9135 has_custom_fallback_def = true; 9136 9137 return sec_def->handler_id; 9138 } 9139 9140 int libbpf_unregister_prog_handler(int handler_id) 9141 { 9142 struct bpf_sec_def *sec_defs; 9143 int i; 9144 9145 if (handler_id <= 0) 9146 return libbpf_err(-EINVAL); 9147 9148 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9149 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9150 has_custom_fallback_def = false; 9151 return 0; 9152 } 9153 9154 for (i = 0; i < custom_sec_def_cnt; i++) { 9155 if (custom_sec_defs[i].handler_id == handler_id) 9156 break; 9157 } 9158 9159 if (i == custom_sec_def_cnt) 9160 return libbpf_err(-ENOENT); 9161 9162 free(custom_sec_defs[i].sec); 9163 for (i = i + 1; i < custom_sec_def_cnt; i++) 9164 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9165 custom_sec_def_cnt--; 9166 9167 /* try to shrink the array, but it's ok if we couldn't */ 9168 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9169 if (sec_defs) 9170 custom_sec_defs = sec_defs; 9171 9172 return 0; 9173 } 9174 9175 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name, 9176 bool allow_sloppy) 9177 { 9178 size_t len = strlen(sec_def->sec); 9179 9180 /* "type/" always has to have proper SEC("type/extras") form */ 9181 if (sec_def->sec[len - 1] == '/') { 9182 if (str_has_pfx(sec_name, sec_def->sec)) 9183 return true; 9184 return false; 9185 } 9186 9187 /* "type+" means it can be either exact SEC("type") or 9188 * well-formed SEC("type/extras") with proper '/' separator 9189 */ 9190 if (sec_def->sec[len - 1] == '+') { 9191 len--; 9192 /* not even a prefix */ 9193 if (strncmp(sec_name, sec_def->sec, len) != 0) 9194 return false; 9195 /* exact match or has '/' separator */ 9196 if (sec_name[len] == '\0' || sec_name[len] == '/') 9197 return true; 9198 return false; 9199 } 9200 9201 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 9202 * matches, unless strict section name mode 9203 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 9204 * match has to be exact. 9205 */ 9206 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec)) 9207 return true; 9208 9209 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 9210 * SEC("syscall")) are exact matches in both modes. 9211 */ 9212 return strcmp(sec_name, sec_def->sec) == 0; 9213 } 9214 9215 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9216 { 9217 const struct bpf_sec_def *sec_def; 9218 int i, n; 9219 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy; 9220 9221 n = custom_sec_def_cnt; 9222 for (i = 0; i < n; i++) { 9223 sec_def = &custom_sec_defs[i]; 9224 if (sec_def_matches(sec_def, sec_name, false)) 9225 return sec_def; 9226 } 9227 9228 n = ARRAY_SIZE(section_defs); 9229 for (i = 0; i < n; i++) { 9230 sec_def = §ion_defs[i]; 9231 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict; 9232 if (sec_def_matches(sec_def, sec_name, allow_sloppy)) 9233 return sec_def; 9234 } 9235 9236 if (has_custom_fallback_def) 9237 return &custom_fallback_def; 9238 9239 return NULL; 9240 } 9241 9242 #define MAX_TYPE_NAME_SIZE 32 9243 9244 static char *libbpf_get_type_names(bool attach_type) 9245 { 9246 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9247 char *buf; 9248 9249 buf = malloc(len); 9250 if (!buf) 9251 return NULL; 9252 9253 buf[0] = '\0'; 9254 /* Forge string buf with all available names */ 9255 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9256 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9257 9258 if (attach_type) { 9259 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9260 continue; 9261 9262 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9263 continue; 9264 } 9265 9266 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9267 free(buf); 9268 return NULL; 9269 } 9270 strcat(buf, " "); 9271 strcat(buf, section_defs[i].sec); 9272 } 9273 9274 return buf; 9275 } 9276 9277 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9278 enum bpf_attach_type *expected_attach_type) 9279 { 9280 const struct bpf_sec_def *sec_def; 9281 char *type_names; 9282 9283 if (!name) 9284 return libbpf_err(-EINVAL); 9285 9286 sec_def = find_sec_def(name); 9287 if (sec_def) { 9288 *prog_type = sec_def->prog_type; 9289 *expected_attach_type = sec_def->expected_attach_type; 9290 return 0; 9291 } 9292 9293 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9294 type_names = libbpf_get_type_names(false); 9295 if (type_names != NULL) { 9296 pr_debug("supported section(type) names are:%s\n", type_names); 9297 free(type_names); 9298 } 9299 9300 return libbpf_err(-ESRCH); 9301 } 9302 9303 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9304 size_t offset) 9305 { 9306 struct bpf_map *map; 9307 size_t i; 9308 9309 for (i = 0; i < obj->nr_maps; i++) { 9310 map = &obj->maps[i]; 9311 if (!bpf_map__is_struct_ops(map)) 9312 continue; 9313 if (map->sec_offset <= offset && 9314 offset - map->sec_offset < map->def.value_size) 9315 return map; 9316 } 9317 9318 return NULL; 9319 } 9320 9321 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9322 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9323 Elf64_Shdr *shdr, Elf_Data *data) 9324 { 9325 const struct btf_member *member; 9326 struct bpf_struct_ops *st_ops; 9327 struct bpf_program *prog; 9328 unsigned int shdr_idx; 9329 const struct btf *btf; 9330 struct bpf_map *map; 9331 unsigned int moff, insn_idx; 9332 const char *name; 9333 __u32 member_idx; 9334 Elf64_Sym *sym; 9335 Elf64_Rel *rel; 9336 int i, nrels; 9337 9338 btf = obj->btf; 9339 nrels = shdr->sh_size / shdr->sh_entsize; 9340 for (i = 0; i < nrels; i++) { 9341 rel = elf_rel_by_idx(data, i); 9342 if (!rel) { 9343 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9344 return -LIBBPF_ERRNO__FORMAT; 9345 } 9346 9347 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9348 if (!sym) { 9349 pr_warn("struct_ops reloc: symbol %zx not found\n", 9350 (size_t)ELF64_R_SYM(rel->r_info)); 9351 return -LIBBPF_ERRNO__FORMAT; 9352 } 9353 9354 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9355 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 9356 if (!map) { 9357 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9358 (size_t)rel->r_offset); 9359 return -EINVAL; 9360 } 9361 9362 moff = rel->r_offset - map->sec_offset; 9363 shdr_idx = sym->st_shndx; 9364 st_ops = map->st_ops; 9365 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9366 map->name, 9367 (long long)(rel->r_info >> 32), 9368 (long long)sym->st_value, 9369 shdr_idx, (size_t)rel->r_offset, 9370 map->sec_offset, sym->st_name, name); 9371 9372 if (shdr_idx >= SHN_LORESERVE) { 9373 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9374 map->name, (size_t)rel->r_offset, shdr_idx); 9375 return -LIBBPF_ERRNO__RELOC; 9376 } 9377 if (sym->st_value % BPF_INSN_SZ) { 9378 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9379 map->name, (unsigned long long)sym->st_value); 9380 return -LIBBPF_ERRNO__FORMAT; 9381 } 9382 insn_idx = sym->st_value / BPF_INSN_SZ; 9383 9384 member = find_member_by_offset(st_ops->type, moff * 8); 9385 if (!member) { 9386 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9387 map->name, moff); 9388 return -EINVAL; 9389 } 9390 member_idx = member - btf_members(st_ops->type); 9391 name = btf__name_by_offset(btf, member->name_off); 9392 9393 if (!resolve_func_ptr(btf, member->type, NULL)) { 9394 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9395 map->name, name); 9396 return -EINVAL; 9397 } 9398 9399 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9400 if (!prog) { 9401 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9402 map->name, shdr_idx, name); 9403 return -EINVAL; 9404 } 9405 9406 /* prevent the use of BPF prog with invalid type */ 9407 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9408 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9409 map->name, prog->name); 9410 return -EINVAL; 9411 } 9412 9413 /* if we haven't yet processed this BPF program, record proper 9414 * attach_btf_id and member_idx 9415 */ 9416 if (!prog->attach_btf_id) { 9417 prog->attach_btf_id = st_ops->type_id; 9418 prog->expected_attach_type = member_idx; 9419 } 9420 9421 /* struct_ops BPF prog can be re-used between multiple 9422 * .struct_ops as long as it's the same struct_ops struct 9423 * definition and the same function pointer field 9424 */ 9425 if (prog->attach_btf_id != st_ops->type_id || 9426 prog->expected_attach_type != member_idx) { 9427 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9428 map->name, prog->name, prog->sec_name, prog->type, 9429 prog->attach_btf_id, prog->expected_attach_type, name); 9430 return -EINVAL; 9431 } 9432 9433 st_ops->progs[member_idx] = prog; 9434 } 9435 9436 return 0; 9437 } 9438 9439 #define BTF_TRACE_PREFIX "btf_trace_" 9440 #define BTF_LSM_PREFIX "bpf_lsm_" 9441 #define BTF_ITER_PREFIX "bpf_iter_" 9442 #define BTF_MAX_NAME_SIZE 128 9443 9444 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9445 const char **prefix, int *kind) 9446 { 9447 switch (attach_type) { 9448 case BPF_TRACE_RAW_TP: 9449 *prefix = BTF_TRACE_PREFIX; 9450 *kind = BTF_KIND_TYPEDEF; 9451 break; 9452 case BPF_LSM_MAC: 9453 *prefix = BTF_LSM_PREFIX; 9454 *kind = BTF_KIND_FUNC; 9455 break; 9456 case BPF_TRACE_ITER: 9457 *prefix = BTF_ITER_PREFIX; 9458 *kind = BTF_KIND_FUNC; 9459 break; 9460 default: 9461 *prefix = ""; 9462 *kind = BTF_KIND_FUNC; 9463 } 9464 } 9465 9466 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9467 const char *name, __u32 kind) 9468 { 9469 char btf_type_name[BTF_MAX_NAME_SIZE]; 9470 int ret; 9471 9472 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9473 "%s%s", prefix, name); 9474 /* snprintf returns the number of characters written excluding the 9475 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9476 * indicates truncation. 9477 */ 9478 if (ret < 0 || ret >= sizeof(btf_type_name)) 9479 return -ENAMETOOLONG; 9480 return btf__find_by_name_kind(btf, btf_type_name, kind); 9481 } 9482 9483 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9484 enum bpf_attach_type attach_type) 9485 { 9486 const char *prefix; 9487 int kind; 9488 9489 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9490 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9491 } 9492 9493 int libbpf_find_vmlinux_btf_id(const char *name, 9494 enum bpf_attach_type attach_type) 9495 { 9496 struct btf *btf; 9497 int err; 9498 9499 btf = btf__load_vmlinux_btf(); 9500 err = libbpf_get_error(btf); 9501 if (err) { 9502 pr_warn("vmlinux BTF is not found\n"); 9503 return libbpf_err(err); 9504 } 9505 9506 err = find_attach_btf_id(btf, name, attach_type); 9507 if (err <= 0) 9508 pr_warn("%s is not found in vmlinux BTF\n", name); 9509 9510 btf__free(btf); 9511 return libbpf_err(err); 9512 } 9513 9514 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9515 { 9516 struct bpf_prog_info info = {}; 9517 __u32 info_len = sizeof(info); 9518 struct btf *btf; 9519 int err; 9520 9521 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9522 if (err) { 9523 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9524 attach_prog_fd, err); 9525 return err; 9526 } 9527 9528 err = -EINVAL; 9529 if (!info.btf_id) { 9530 pr_warn("The target program doesn't have BTF\n"); 9531 goto out; 9532 } 9533 btf = btf__load_from_kernel_by_id(info.btf_id); 9534 err = libbpf_get_error(btf); 9535 if (err) { 9536 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9537 goto out; 9538 } 9539 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9540 btf__free(btf); 9541 if (err <= 0) { 9542 pr_warn("%s is not found in prog's BTF\n", name); 9543 goto out; 9544 } 9545 out: 9546 return err; 9547 } 9548 9549 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9550 enum bpf_attach_type attach_type, 9551 int *btf_obj_fd, int *btf_type_id) 9552 { 9553 int ret, i; 9554 9555 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9556 if (ret > 0) { 9557 *btf_obj_fd = 0; /* vmlinux BTF */ 9558 *btf_type_id = ret; 9559 return 0; 9560 } 9561 if (ret != -ENOENT) 9562 return ret; 9563 9564 ret = load_module_btfs(obj); 9565 if (ret) 9566 return ret; 9567 9568 for (i = 0; i < obj->btf_module_cnt; i++) { 9569 const struct module_btf *mod = &obj->btf_modules[i]; 9570 9571 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9572 if (ret > 0) { 9573 *btf_obj_fd = mod->fd; 9574 *btf_type_id = ret; 9575 return 0; 9576 } 9577 if (ret == -ENOENT) 9578 continue; 9579 9580 return ret; 9581 } 9582 9583 return -ESRCH; 9584 } 9585 9586 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9587 int *btf_obj_fd, int *btf_type_id) 9588 { 9589 enum bpf_attach_type attach_type = prog->expected_attach_type; 9590 __u32 attach_prog_fd = prog->attach_prog_fd; 9591 int err = 0; 9592 9593 /* BPF program's BTF ID */ 9594 if (attach_prog_fd) { 9595 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9596 if (err < 0) { 9597 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9598 attach_prog_fd, attach_name, err); 9599 return err; 9600 } 9601 *btf_obj_fd = 0; 9602 *btf_type_id = err; 9603 return 0; 9604 } 9605 9606 /* kernel/module BTF ID */ 9607 if (prog->obj->gen_loader) { 9608 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9609 *btf_obj_fd = 0; 9610 *btf_type_id = 1; 9611 } else { 9612 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9613 } 9614 if (err) { 9615 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9616 return err; 9617 } 9618 return 0; 9619 } 9620 9621 int libbpf_attach_type_by_name(const char *name, 9622 enum bpf_attach_type *attach_type) 9623 { 9624 char *type_names; 9625 const struct bpf_sec_def *sec_def; 9626 9627 if (!name) 9628 return libbpf_err(-EINVAL); 9629 9630 sec_def = find_sec_def(name); 9631 if (!sec_def) { 9632 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9633 type_names = libbpf_get_type_names(true); 9634 if (type_names != NULL) { 9635 pr_debug("attachable section(type) names are:%s\n", type_names); 9636 free(type_names); 9637 } 9638 9639 return libbpf_err(-EINVAL); 9640 } 9641 9642 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9643 return libbpf_err(-EINVAL); 9644 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9645 return libbpf_err(-EINVAL); 9646 9647 *attach_type = sec_def->expected_attach_type; 9648 return 0; 9649 } 9650 9651 int bpf_map__fd(const struct bpf_map *map) 9652 { 9653 return map ? map->fd : libbpf_err(-EINVAL); 9654 } 9655 9656 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9657 { 9658 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9659 } 9660 9661 static bool map_uses_real_name(const struct bpf_map *map) 9662 { 9663 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9664 * their user-visible name differs from kernel-visible name. Users see 9665 * such map's corresponding ELF section name as a map name. 9666 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9667 * maps to know which name has to be returned to the user. 9668 */ 9669 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9670 return true; 9671 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9672 return true; 9673 return false; 9674 } 9675 9676 const char *bpf_map__name(const struct bpf_map *map) 9677 { 9678 if (!map) 9679 return NULL; 9680 9681 if (map_uses_real_name(map)) 9682 return map->real_name; 9683 9684 return map->name; 9685 } 9686 9687 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9688 { 9689 return map->def.type; 9690 } 9691 9692 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9693 { 9694 if (map->fd >= 0) 9695 return libbpf_err(-EBUSY); 9696 map->def.type = type; 9697 return 0; 9698 } 9699 9700 __u32 bpf_map__map_flags(const struct bpf_map *map) 9701 { 9702 return map->def.map_flags; 9703 } 9704 9705 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9706 { 9707 if (map->fd >= 0) 9708 return libbpf_err(-EBUSY); 9709 map->def.map_flags = flags; 9710 return 0; 9711 } 9712 9713 __u64 bpf_map__map_extra(const struct bpf_map *map) 9714 { 9715 return map->map_extra; 9716 } 9717 9718 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9719 { 9720 if (map->fd >= 0) 9721 return libbpf_err(-EBUSY); 9722 map->map_extra = map_extra; 9723 return 0; 9724 } 9725 9726 __u32 bpf_map__numa_node(const struct bpf_map *map) 9727 { 9728 return map->numa_node; 9729 } 9730 9731 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9732 { 9733 if (map->fd >= 0) 9734 return libbpf_err(-EBUSY); 9735 map->numa_node = numa_node; 9736 return 0; 9737 } 9738 9739 __u32 bpf_map__key_size(const struct bpf_map *map) 9740 { 9741 return map->def.key_size; 9742 } 9743 9744 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9745 { 9746 if (map->fd >= 0) 9747 return libbpf_err(-EBUSY); 9748 map->def.key_size = size; 9749 return 0; 9750 } 9751 9752 __u32 bpf_map__value_size(const struct bpf_map *map) 9753 { 9754 return map->def.value_size; 9755 } 9756 9757 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9758 { 9759 if (map->fd >= 0) 9760 return libbpf_err(-EBUSY); 9761 map->def.value_size = size; 9762 return 0; 9763 } 9764 9765 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9766 { 9767 return map ? map->btf_key_type_id : 0; 9768 } 9769 9770 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9771 { 9772 return map ? map->btf_value_type_id : 0; 9773 } 9774 9775 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9776 bpf_map_clear_priv_t clear_priv) 9777 { 9778 if (!map) 9779 return libbpf_err(-EINVAL); 9780 9781 if (map->priv) { 9782 if (map->clear_priv) 9783 map->clear_priv(map, map->priv); 9784 } 9785 9786 map->priv = priv; 9787 map->clear_priv = clear_priv; 9788 return 0; 9789 } 9790 9791 void *bpf_map__priv(const struct bpf_map *map) 9792 { 9793 return map ? map->priv : libbpf_err_ptr(-EINVAL); 9794 } 9795 9796 int bpf_map__set_initial_value(struct bpf_map *map, 9797 const void *data, size_t size) 9798 { 9799 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9800 size != map->def.value_size || map->fd >= 0) 9801 return libbpf_err(-EINVAL); 9802 9803 memcpy(map->mmaped, data, size); 9804 return 0; 9805 } 9806 9807 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9808 { 9809 if (!map->mmaped) 9810 return NULL; 9811 *psize = map->def.value_size; 9812 return map->mmaped; 9813 } 9814 9815 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9816 { 9817 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9818 } 9819 9820 bool bpf_map__is_internal(const struct bpf_map *map) 9821 { 9822 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9823 } 9824 9825 __u32 bpf_map__ifindex(const struct bpf_map *map) 9826 { 9827 return map->map_ifindex; 9828 } 9829 9830 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9831 { 9832 if (map->fd >= 0) 9833 return libbpf_err(-EBUSY); 9834 map->map_ifindex = ifindex; 9835 return 0; 9836 } 9837 9838 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9839 { 9840 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9841 pr_warn("error: unsupported map type\n"); 9842 return libbpf_err(-EINVAL); 9843 } 9844 if (map->inner_map_fd != -1) { 9845 pr_warn("error: inner_map_fd already specified\n"); 9846 return libbpf_err(-EINVAL); 9847 } 9848 if (map->inner_map) { 9849 bpf_map__destroy(map->inner_map); 9850 zfree(&map->inner_map); 9851 } 9852 map->inner_map_fd = fd; 9853 return 0; 9854 } 9855 9856 static struct bpf_map * 9857 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9858 { 9859 ssize_t idx; 9860 struct bpf_map *s, *e; 9861 9862 if (!obj || !obj->maps) 9863 return errno = EINVAL, NULL; 9864 9865 s = obj->maps; 9866 e = obj->maps + obj->nr_maps; 9867 9868 if ((m < s) || (m >= e)) { 9869 pr_warn("error in %s: map handler doesn't belong to object\n", 9870 __func__); 9871 return errno = EINVAL, NULL; 9872 } 9873 9874 idx = (m - obj->maps) + i; 9875 if (idx >= obj->nr_maps || idx < 0) 9876 return NULL; 9877 return &obj->maps[idx]; 9878 } 9879 9880 struct bpf_map * 9881 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9882 { 9883 return bpf_object__next_map(obj, prev); 9884 } 9885 9886 struct bpf_map * 9887 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9888 { 9889 if (prev == NULL) 9890 return obj->maps; 9891 9892 return __bpf_map__iter(prev, obj, 1); 9893 } 9894 9895 struct bpf_map * 9896 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9897 { 9898 return bpf_object__prev_map(obj, next); 9899 } 9900 9901 struct bpf_map * 9902 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9903 { 9904 if (next == NULL) { 9905 if (!obj->nr_maps) 9906 return NULL; 9907 return obj->maps + obj->nr_maps - 1; 9908 } 9909 9910 return __bpf_map__iter(next, obj, -1); 9911 } 9912 9913 struct bpf_map * 9914 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9915 { 9916 struct bpf_map *pos; 9917 9918 bpf_object__for_each_map(pos, obj) { 9919 /* if it's a special internal map name (which always starts 9920 * with dot) then check if that special name matches the 9921 * real map name (ELF section name) 9922 */ 9923 if (name[0] == '.') { 9924 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9925 return pos; 9926 continue; 9927 } 9928 /* otherwise map name has to be an exact match */ 9929 if (map_uses_real_name(pos)) { 9930 if (strcmp(pos->real_name, name) == 0) 9931 return pos; 9932 continue; 9933 } 9934 if (strcmp(pos->name, name) == 0) 9935 return pos; 9936 } 9937 return errno = ENOENT, NULL; 9938 } 9939 9940 int 9941 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9942 { 9943 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9944 } 9945 9946 struct bpf_map * 9947 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9948 { 9949 return libbpf_err_ptr(-ENOTSUP); 9950 } 9951 9952 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9953 size_t value_sz, bool check_value_sz) 9954 { 9955 if (map->fd <= 0) 9956 return -ENOENT; 9957 9958 if (map->def.key_size != key_sz) { 9959 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9960 map->name, key_sz, map->def.key_size); 9961 return -EINVAL; 9962 } 9963 9964 if (!check_value_sz) 9965 return 0; 9966 9967 switch (map->def.type) { 9968 case BPF_MAP_TYPE_PERCPU_ARRAY: 9969 case BPF_MAP_TYPE_PERCPU_HASH: 9970 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9971 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9972 int num_cpu = libbpf_num_possible_cpus(); 9973 size_t elem_sz = roundup(map->def.value_size, 8); 9974 9975 if (value_sz != num_cpu * elem_sz) { 9976 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9977 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9978 return -EINVAL; 9979 } 9980 break; 9981 } 9982 default: 9983 if (map->def.value_size != value_sz) { 9984 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9985 map->name, value_sz, map->def.value_size); 9986 return -EINVAL; 9987 } 9988 break; 9989 } 9990 return 0; 9991 } 9992 9993 int bpf_map__lookup_elem(const struct bpf_map *map, 9994 const void *key, size_t key_sz, 9995 void *value, size_t value_sz, __u64 flags) 9996 { 9997 int err; 9998 9999 err = validate_map_op(map, key_sz, value_sz, true); 10000 if (err) 10001 return libbpf_err(err); 10002 10003 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10004 } 10005 10006 int bpf_map__update_elem(const struct bpf_map *map, 10007 const void *key, size_t key_sz, 10008 const void *value, size_t value_sz, __u64 flags) 10009 { 10010 int err; 10011 10012 err = validate_map_op(map, key_sz, value_sz, true); 10013 if (err) 10014 return libbpf_err(err); 10015 10016 return bpf_map_update_elem(map->fd, key, value, flags); 10017 } 10018 10019 int bpf_map__delete_elem(const struct bpf_map *map, 10020 const void *key, size_t key_sz, __u64 flags) 10021 { 10022 int err; 10023 10024 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10025 if (err) 10026 return libbpf_err(err); 10027 10028 return bpf_map_delete_elem_flags(map->fd, key, flags); 10029 } 10030 10031 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10032 const void *key, size_t key_sz, 10033 void *value, size_t value_sz, __u64 flags) 10034 { 10035 int err; 10036 10037 err = validate_map_op(map, key_sz, value_sz, true); 10038 if (err) 10039 return libbpf_err(err); 10040 10041 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10042 } 10043 10044 int bpf_map__get_next_key(const struct bpf_map *map, 10045 const void *cur_key, void *next_key, size_t key_sz) 10046 { 10047 int err; 10048 10049 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10050 if (err) 10051 return libbpf_err(err); 10052 10053 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10054 } 10055 10056 long libbpf_get_error(const void *ptr) 10057 { 10058 if (!IS_ERR_OR_NULL(ptr)) 10059 return 0; 10060 10061 if (IS_ERR(ptr)) 10062 errno = -PTR_ERR(ptr); 10063 10064 /* If ptr == NULL, then errno should be already set by the failing 10065 * API, because libbpf never returns NULL on success and it now always 10066 * sets errno on error. So no extra errno handling for ptr == NULL 10067 * case. 10068 */ 10069 return -errno; 10070 } 10071 10072 __attribute__((alias("bpf_prog_load_xattr2"))) 10073 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 10074 struct bpf_object **pobj, int *prog_fd); 10075 10076 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 10077 struct bpf_object **pobj, int *prog_fd) 10078 { 10079 struct bpf_object_open_attr open_attr = {}; 10080 struct bpf_program *prog, *first_prog = NULL; 10081 struct bpf_object *obj; 10082 struct bpf_map *map; 10083 int err; 10084 10085 if (!attr) 10086 return libbpf_err(-EINVAL); 10087 if (!attr->file) 10088 return libbpf_err(-EINVAL); 10089 10090 open_attr.file = attr->file; 10091 open_attr.prog_type = attr->prog_type; 10092 10093 obj = __bpf_object__open_xattr(&open_attr, 0); 10094 err = libbpf_get_error(obj); 10095 if (err) 10096 return libbpf_err(-ENOENT); 10097 10098 bpf_object__for_each_program(prog, obj) { 10099 enum bpf_attach_type attach_type = attr->expected_attach_type; 10100 /* 10101 * to preserve backwards compatibility, bpf_prog_load treats 10102 * attr->prog_type, if specified, as an override to whatever 10103 * bpf_object__open guessed 10104 */ 10105 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 10106 prog->type = attr->prog_type; 10107 prog->expected_attach_type = attach_type; 10108 } 10109 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 10110 /* 10111 * we haven't guessed from section name and user 10112 * didn't provide a fallback type, too bad... 10113 */ 10114 bpf_object__close(obj); 10115 return libbpf_err(-EINVAL); 10116 } 10117 10118 prog->prog_ifindex = attr->ifindex; 10119 prog->log_level = attr->log_level; 10120 prog->prog_flags |= attr->prog_flags; 10121 if (!first_prog) 10122 first_prog = prog; 10123 } 10124 10125 bpf_object__for_each_map(map, obj) { 10126 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 10127 map->map_ifindex = attr->ifindex; 10128 } 10129 10130 if (!first_prog) { 10131 pr_warn("object file doesn't contain bpf program\n"); 10132 bpf_object__close(obj); 10133 return libbpf_err(-ENOENT); 10134 } 10135 10136 err = bpf_object__load(obj); 10137 if (err) { 10138 bpf_object__close(obj); 10139 return libbpf_err(err); 10140 } 10141 10142 *pobj = obj; 10143 *prog_fd = bpf_program__fd(first_prog); 10144 return 0; 10145 } 10146 10147 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 10148 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 10149 struct bpf_object **pobj, int *prog_fd) 10150 { 10151 struct bpf_prog_load_attr attr; 10152 10153 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 10154 attr.file = file; 10155 attr.prog_type = type; 10156 attr.expected_attach_type = 0; 10157 10158 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 10159 } 10160 10161 /* Replace link's underlying BPF program with the new one */ 10162 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10163 { 10164 int ret; 10165 10166 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10167 return libbpf_err_errno(ret); 10168 } 10169 10170 /* Release "ownership" of underlying BPF resource (typically, BPF program 10171 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10172 * link, when destructed through bpf_link__destroy() call won't attempt to 10173 * detach/unregisted that BPF resource. This is useful in situations where, 10174 * say, attached BPF program has to outlive userspace program that attached it 10175 * in the system. Depending on type of BPF program, though, there might be 10176 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10177 * exit of userspace program doesn't trigger automatic detachment and clean up 10178 * inside the kernel. 10179 */ 10180 void bpf_link__disconnect(struct bpf_link *link) 10181 { 10182 link->disconnected = true; 10183 } 10184 10185 int bpf_link__destroy(struct bpf_link *link) 10186 { 10187 int err = 0; 10188 10189 if (IS_ERR_OR_NULL(link)) 10190 return 0; 10191 10192 if (!link->disconnected && link->detach) 10193 err = link->detach(link); 10194 if (link->pin_path) 10195 free(link->pin_path); 10196 if (link->dealloc) 10197 link->dealloc(link); 10198 else 10199 free(link); 10200 10201 return libbpf_err(err); 10202 } 10203 10204 int bpf_link__fd(const struct bpf_link *link) 10205 { 10206 return link->fd; 10207 } 10208 10209 const char *bpf_link__pin_path(const struct bpf_link *link) 10210 { 10211 return link->pin_path; 10212 } 10213 10214 static int bpf_link__detach_fd(struct bpf_link *link) 10215 { 10216 return libbpf_err_errno(close(link->fd)); 10217 } 10218 10219 struct bpf_link *bpf_link__open(const char *path) 10220 { 10221 struct bpf_link *link; 10222 int fd; 10223 10224 fd = bpf_obj_get(path); 10225 if (fd < 0) { 10226 fd = -errno; 10227 pr_warn("failed to open link at %s: %d\n", path, fd); 10228 return libbpf_err_ptr(fd); 10229 } 10230 10231 link = calloc(1, sizeof(*link)); 10232 if (!link) { 10233 close(fd); 10234 return libbpf_err_ptr(-ENOMEM); 10235 } 10236 link->detach = &bpf_link__detach_fd; 10237 link->fd = fd; 10238 10239 link->pin_path = strdup(path); 10240 if (!link->pin_path) { 10241 bpf_link__destroy(link); 10242 return libbpf_err_ptr(-ENOMEM); 10243 } 10244 10245 return link; 10246 } 10247 10248 int bpf_link__detach(struct bpf_link *link) 10249 { 10250 return bpf_link_detach(link->fd) ? -errno : 0; 10251 } 10252 10253 int bpf_link__pin(struct bpf_link *link, const char *path) 10254 { 10255 int err; 10256 10257 if (link->pin_path) 10258 return libbpf_err(-EBUSY); 10259 err = make_parent_dir(path); 10260 if (err) 10261 return libbpf_err(err); 10262 err = check_path(path); 10263 if (err) 10264 return libbpf_err(err); 10265 10266 link->pin_path = strdup(path); 10267 if (!link->pin_path) 10268 return libbpf_err(-ENOMEM); 10269 10270 if (bpf_obj_pin(link->fd, link->pin_path)) { 10271 err = -errno; 10272 zfree(&link->pin_path); 10273 return libbpf_err(err); 10274 } 10275 10276 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10277 return 0; 10278 } 10279 10280 int bpf_link__unpin(struct bpf_link *link) 10281 { 10282 int err; 10283 10284 if (!link->pin_path) 10285 return libbpf_err(-EINVAL); 10286 10287 err = unlink(link->pin_path); 10288 if (err != 0) 10289 return -errno; 10290 10291 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10292 zfree(&link->pin_path); 10293 return 0; 10294 } 10295 10296 struct bpf_link_perf { 10297 struct bpf_link link; 10298 int perf_event_fd; 10299 /* legacy kprobe support: keep track of probe identifier and type */ 10300 char *legacy_probe_name; 10301 bool legacy_is_kprobe; 10302 bool legacy_is_retprobe; 10303 }; 10304 10305 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10306 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10307 10308 static int bpf_link_perf_detach(struct bpf_link *link) 10309 { 10310 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10311 int err = 0; 10312 10313 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10314 err = -errno; 10315 10316 if (perf_link->perf_event_fd != link->fd) 10317 close(perf_link->perf_event_fd); 10318 close(link->fd); 10319 10320 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10321 if (perf_link->legacy_probe_name) { 10322 if (perf_link->legacy_is_kprobe) { 10323 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10324 perf_link->legacy_is_retprobe); 10325 } else { 10326 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10327 perf_link->legacy_is_retprobe); 10328 } 10329 } 10330 10331 return err; 10332 } 10333 10334 static void bpf_link_perf_dealloc(struct bpf_link *link) 10335 { 10336 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10337 10338 free(perf_link->legacy_probe_name); 10339 free(perf_link); 10340 } 10341 10342 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10343 const struct bpf_perf_event_opts *opts) 10344 { 10345 char errmsg[STRERR_BUFSIZE]; 10346 struct bpf_link_perf *link; 10347 int prog_fd, link_fd = -1, err; 10348 10349 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10350 return libbpf_err_ptr(-EINVAL); 10351 10352 if (pfd < 0) { 10353 pr_warn("prog '%s': invalid perf event FD %d\n", 10354 prog->name, pfd); 10355 return libbpf_err_ptr(-EINVAL); 10356 } 10357 prog_fd = bpf_program__fd(prog); 10358 if (prog_fd < 0) { 10359 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10360 prog->name); 10361 return libbpf_err_ptr(-EINVAL); 10362 } 10363 10364 link = calloc(1, sizeof(*link)); 10365 if (!link) 10366 return libbpf_err_ptr(-ENOMEM); 10367 link->link.detach = &bpf_link_perf_detach; 10368 link->link.dealloc = &bpf_link_perf_dealloc; 10369 link->perf_event_fd = pfd; 10370 10371 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 10372 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10373 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10374 10375 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10376 if (link_fd < 0) { 10377 err = -errno; 10378 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10379 prog->name, pfd, 10380 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10381 goto err_out; 10382 } 10383 link->link.fd = link_fd; 10384 } else { 10385 if (OPTS_GET(opts, bpf_cookie, 0)) { 10386 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10387 err = -EOPNOTSUPP; 10388 goto err_out; 10389 } 10390 10391 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10392 err = -errno; 10393 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10394 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10395 if (err == -EPROTO) 10396 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10397 prog->name, pfd); 10398 goto err_out; 10399 } 10400 link->link.fd = pfd; 10401 } 10402 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10403 err = -errno; 10404 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10405 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10406 goto err_out; 10407 } 10408 10409 return &link->link; 10410 err_out: 10411 if (link_fd >= 0) 10412 close(link_fd); 10413 free(link); 10414 return libbpf_err_ptr(err); 10415 } 10416 10417 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10418 { 10419 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10420 } 10421 10422 /* 10423 * this function is expected to parse integer in the range of [0, 2^31-1] from 10424 * given file using scanf format string fmt. If actual parsed value is 10425 * negative, the result might be indistinguishable from error 10426 */ 10427 static int parse_uint_from_file(const char *file, const char *fmt) 10428 { 10429 char buf[STRERR_BUFSIZE]; 10430 int err, ret; 10431 FILE *f; 10432 10433 f = fopen(file, "r"); 10434 if (!f) { 10435 err = -errno; 10436 pr_debug("failed to open '%s': %s\n", file, 10437 libbpf_strerror_r(err, buf, sizeof(buf))); 10438 return err; 10439 } 10440 err = fscanf(f, fmt, &ret); 10441 if (err != 1) { 10442 err = err == EOF ? -EIO : -errno; 10443 pr_debug("failed to parse '%s': %s\n", file, 10444 libbpf_strerror_r(err, buf, sizeof(buf))); 10445 fclose(f); 10446 return err; 10447 } 10448 fclose(f); 10449 return ret; 10450 } 10451 10452 static int determine_kprobe_perf_type(void) 10453 { 10454 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10455 10456 return parse_uint_from_file(file, "%d\n"); 10457 } 10458 10459 static int determine_uprobe_perf_type(void) 10460 { 10461 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10462 10463 return parse_uint_from_file(file, "%d\n"); 10464 } 10465 10466 static int determine_kprobe_retprobe_bit(void) 10467 { 10468 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10469 10470 return parse_uint_from_file(file, "config:%d\n"); 10471 } 10472 10473 static int determine_uprobe_retprobe_bit(void) 10474 { 10475 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10476 10477 return parse_uint_from_file(file, "config:%d\n"); 10478 } 10479 10480 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10481 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10482 10483 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10484 uint64_t offset, int pid, size_t ref_ctr_off) 10485 { 10486 struct perf_event_attr attr = {}; 10487 char errmsg[STRERR_BUFSIZE]; 10488 int type, pfd, err; 10489 10490 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10491 return -EINVAL; 10492 10493 type = uprobe ? determine_uprobe_perf_type() 10494 : determine_kprobe_perf_type(); 10495 if (type < 0) { 10496 pr_warn("failed to determine %s perf type: %s\n", 10497 uprobe ? "uprobe" : "kprobe", 10498 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10499 return type; 10500 } 10501 if (retprobe) { 10502 int bit = uprobe ? determine_uprobe_retprobe_bit() 10503 : determine_kprobe_retprobe_bit(); 10504 10505 if (bit < 0) { 10506 pr_warn("failed to determine %s retprobe bit: %s\n", 10507 uprobe ? "uprobe" : "kprobe", 10508 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10509 return bit; 10510 } 10511 attr.config |= 1 << bit; 10512 } 10513 attr.size = sizeof(attr); 10514 attr.type = type; 10515 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10516 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10517 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10518 10519 /* pid filter is meaningful only for uprobes */ 10520 pfd = syscall(__NR_perf_event_open, &attr, 10521 pid < 0 ? -1 : pid /* pid */, 10522 pid == -1 ? 0 : -1 /* cpu */, 10523 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10524 if (pfd < 0) { 10525 err = -errno; 10526 pr_warn("%s perf_event_open() failed: %s\n", 10527 uprobe ? "uprobe" : "kprobe", 10528 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10529 return err; 10530 } 10531 return pfd; 10532 } 10533 10534 static int append_to_file(const char *file, const char *fmt, ...) 10535 { 10536 int fd, n, err = 0; 10537 va_list ap; 10538 10539 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10540 if (fd < 0) 10541 return -errno; 10542 10543 va_start(ap, fmt); 10544 n = vdprintf(fd, fmt, ap); 10545 va_end(ap); 10546 10547 if (n < 0) 10548 err = -errno; 10549 10550 close(fd); 10551 return err; 10552 } 10553 10554 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10555 const char *kfunc_name, size_t offset) 10556 { 10557 static int index = 0; 10558 10559 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10560 __sync_fetch_and_add(&index, 1)); 10561 } 10562 10563 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10564 const char *kfunc_name, size_t offset) 10565 { 10566 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10567 10568 return append_to_file(file, "%c:%s/%s %s+0x%zx", 10569 retprobe ? 'r' : 'p', 10570 retprobe ? "kretprobes" : "kprobes", 10571 probe_name, kfunc_name, offset); 10572 } 10573 10574 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10575 { 10576 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10577 10578 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 10579 } 10580 10581 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10582 { 10583 char file[256]; 10584 10585 snprintf(file, sizeof(file), 10586 "/sys/kernel/debug/tracing/events/%s/%s/id", 10587 retprobe ? "kretprobes" : "kprobes", probe_name); 10588 10589 return parse_uint_from_file(file, "%d\n"); 10590 } 10591 10592 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10593 const char *kfunc_name, size_t offset, int pid) 10594 { 10595 struct perf_event_attr attr = {}; 10596 char errmsg[STRERR_BUFSIZE]; 10597 int type, pfd, err; 10598 10599 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10600 if (err < 0) { 10601 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10602 kfunc_name, offset, 10603 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10604 return err; 10605 } 10606 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10607 if (type < 0) { 10608 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10609 kfunc_name, offset, 10610 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10611 return type; 10612 } 10613 attr.size = sizeof(attr); 10614 attr.config = type; 10615 attr.type = PERF_TYPE_TRACEPOINT; 10616 10617 pfd = syscall(__NR_perf_event_open, &attr, 10618 pid < 0 ? -1 : pid, /* pid */ 10619 pid == -1 ? 0 : -1, /* cpu */ 10620 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10621 if (pfd < 0) { 10622 err = -errno; 10623 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10624 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10625 return err; 10626 } 10627 return pfd; 10628 } 10629 10630 struct bpf_link * 10631 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10632 const char *func_name, 10633 const struct bpf_kprobe_opts *opts) 10634 { 10635 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10636 char errmsg[STRERR_BUFSIZE]; 10637 char *legacy_probe = NULL; 10638 struct bpf_link *link; 10639 size_t offset; 10640 bool retprobe, legacy; 10641 int pfd, err; 10642 10643 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10644 return libbpf_err_ptr(-EINVAL); 10645 10646 retprobe = OPTS_GET(opts, retprobe, false); 10647 offset = OPTS_GET(opts, offset, 0); 10648 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10649 10650 legacy = determine_kprobe_perf_type() < 0; 10651 if (!legacy) { 10652 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10653 func_name, offset, 10654 -1 /* pid */, 0 /* ref_ctr_off */); 10655 } else { 10656 char probe_name[256]; 10657 10658 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10659 func_name, offset); 10660 10661 legacy_probe = strdup(probe_name); 10662 if (!legacy_probe) 10663 return libbpf_err_ptr(-ENOMEM); 10664 10665 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10666 offset, -1 /* pid */); 10667 } 10668 if (pfd < 0) { 10669 err = -errno; 10670 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10671 prog->name, retprobe ? "kretprobe" : "kprobe", 10672 func_name, offset, 10673 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10674 goto err_out; 10675 } 10676 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10677 err = libbpf_get_error(link); 10678 if (err) { 10679 close(pfd); 10680 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10681 prog->name, retprobe ? "kretprobe" : "kprobe", 10682 func_name, offset, 10683 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10684 goto err_out; 10685 } 10686 if (legacy) { 10687 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10688 10689 perf_link->legacy_probe_name = legacy_probe; 10690 perf_link->legacy_is_kprobe = true; 10691 perf_link->legacy_is_retprobe = retprobe; 10692 } 10693 10694 return link; 10695 err_out: 10696 free(legacy_probe); 10697 return libbpf_err_ptr(err); 10698 } 10699 10700 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10701 bool retprobe, 10702 const char *func_name) 10703 { 10704 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10705 .retprobe = retprobe, 10706 ); 10707 10708 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10709 } 10710 10711 /* Adapted from perf/util/string.c */ 10712 static bool glob_match(const char *str, const char *pat) 10713 { 10714 while (*str && *pat && *pat != '*') { 10715 if (*pat == '?') { /* Matches any single character */ 10716 str++; 10717 pat++; 10718 continue; 10719 } 10720 if (*str != *pat) 10721 return false; 10722 str++; 10723 pat++; 10724 } 10725 /* Check wild card */ 10726 if (*pat == '*') { 10727 while (*pat == '*') 10728 pat++; 10729 if (!*pat) /* Tail wild card matches all */ 10730 return true; 10731 while (*str) 10732 if (glob_match(str++, pat)) 10733 return true; 10734 } 10735 return !*str && !*pat; 10736 } 10737 10738 struct kprobe_multi_resolve { 10739 const char *pattern; 10740 unsigned long *addrs; 10741 size_t cap; 10742 size_t cnt; 10743 }; 10744 10745 static int 10746 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10747 const char *sym_name, void *ctx) 10748 { 10749 struct kprobe_multi_resolve *res = ctx; 10750 int err; 10751 10752 if (!glob_match(sym_name, res->pattern)) 10753 return 0; 10754 10755 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10756 res->cnt + 1); 10757 if (err) 10758 return err; 10759 10760 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10761 return 0; 10762 } 10763 10764 struct bpf_link * 10765 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10766 const char *pattern, 10767 const struct bpf_kprobe_multi_opts *opts) 10768 { 10769 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10770 struct kprobe_multi_resolve res = { 10771 .pattern = pattern, 10772 }; 10773 struct bpf_link *link = NULL; 10774 char errmsg[STRERR_BUFSIZE]; 10775 const unsigned long *addrs; 10776 int err, link_fd, prog_fd; 10777 const __u64 *cookies; 10778 const char **syms; 10779 bool retprobe; 10780 size_t cnt; 10781 10782 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10783 return libbpf_err_ptr(-EINVAL); 10784 10785 syms = OPTS_GET(opts, syms, false); 10786 addrs = OPTS_GET(opts, addrs, false); 10787 cnt = OPTS_GET(opts, cnt, false); 10788 cookies = OPTS_GET(opts, cookies, false); 10789 10790 if (!pattern && !addrs && !syms) 10791 return libbpf_err_ptr(-EINVAL); 10792 if (pattern && (addrs || syms || cookies || cnt)) 10793 return libbpf_err_ptr(-EINVAL); 10794 if (!pattern && !cnt) 10795 return libbpf_err_ptr(-EINVAL); 10796 if (addrs && syms) 10797 return libbpf_err_ptr(-EINVAL); 10798 10799 if (pattern) { 10800 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10801 if (err) 10802 goto error; 10803 if (!res.cnt) { 10804 err = -ENOENT; 10805 goto error; 10806 } 10807 addrs = res.addrs; 10808 cnt = res.cnt; 10809 } 10810 10811 retprobe = OPTS_GET(opts, retprobe, false); 10812 10813 lopts.kprobe_multi.syms = syms; 10814 lopts.kprobe_multi.addrs = addrs; 10815 lopts.kprobe_multi.cookies = cookies; 10816 lopts.kprobe_multi.cnt = cnt; 10817 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10818 10819 link = calloc(1, sizeof(*link)); 10820 if (!link) { 10821 err = -ENOMEM; 10822 goto error; 10823 } 10824 link->detach = &bpf_link__detach_fd; 10825 10826 prog_fd = bpf_program__fd(prog); 10827 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10828 if (link_fd < 0) { 10829 err = -errno; 10830 pr_warn("prog '%s': failed to attach: %s\n", 10831 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10832 goto error; 10833 } 10834 link->fd = link_fd; 10835 free(res.addrs); 10836 return link; 10837 10838 error: 10839 free(link); 10840 free(res.addrs); 10841 return libbpf_err_ptr(err); 10842 } 10843 10844 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10845 { 10846 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10847 unsigned long offset = 0; 10848 const char *func_name; 10849 char *func; 10850 int n; 10851 10852 *link = NULL; 10853 10854 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10855 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10856 return 0; 10857 10858 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10859 if (opts.retprobe) 10860 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10861 else 10862 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10863 10864 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10865 if (n < 1) { 10866 pr_warn("kprobe name is invalid: %s\n", func_name); 10867 return -EINVAL; 10868 } 10869 if (opts.retprobe && offset != 0) { 10870 free(func); 10871 pr_warn("kretprobes do not support offset specification\n"); 10872 return -EINVAL; 10873 } 10874 10875 opts.offset = offset; 10876 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10877 free(func); 10878 return libbpf_get_error(*link); 10879 } 10880 10881 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10882 { 10883 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10884 const char *spec; 10885 char *pattern; 10886 int n; 10887 10888 *link = NULL; 10889 10890 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10891 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10892 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10893 return 0; 10894 10895 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10896 if (opts.retprobe) 10897 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10898 else 10899 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10900 10901 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10902 if (n < 1) { 10903 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10904 return -EINVAL; 10905 } 10906 10907 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10908 free(pattern); 10909 return libbpf_get_error(*link); 10910 } 10911 10912 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10913 const char *binary_path, uint64_t offset) 10914 { 10915 int i; 10916 10917 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10918 10919 /* sanitize binary_path in the probe name */ 10920 for (i = 0; buf[i]; i++) { 10921 if (!isalnum(buf[i])) 10922 buf[i] = '_'; 10923 } 10924 } 10925 10926 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10927 const char *binary_path, size_t offset) 10928 { 10929 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10930 10931 return append_to_file(file, "%c:%s/%s %s:0x%zx", 10932 retprobe ? 'r' : 'p', 10933 retprobe ? "uretprobes" : "uprobes", 10934 probe_name, binary_path, offset); 10935 } 10936 10937 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10938 { 10939 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 10940 10941 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 10942 } 10943 10944 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10945 { 10946 char file[512]; 10947 10948 snprintf(file, sizeof(file), 10949 "/sys/kernel/debug/tracing/events/%s/%s/id", 10950 retprobe ? "uretprobes" : "uprobes", probe_name); 10951 10952 return parse_uint_from_file(file, "%d\n"); 10953 } 10954 10955 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10956 const char *binary_path, size_t offset, int pid) 10957 { 10958 struct perf_event_attr attr; 10959 int type, pfd, err; 10960 10961 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10962 if (err < 0) { 10963 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10964 binary_path, (size_t)offset, err); 10965 return err; 10966 } 10967 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10968 if (type < 0) { 10969 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10970 binary_path, offset, err); 10971 return type; 10972 } 10973 10974 memset(&attr, 0, sizeof(attr)); 10975 attr.size = sizeof(attr); 10976 attr.config = type; 10977 attr.type = PERF_TYPE_TRACEPOINT; 10978 10979 pfd = syscall(__NR_perf_event_open, &attr, 10980 pid < 0 ? -1 : pid, /* pid */ 10981 pid == -1 ? 0 : -1, /* cpu */ 10982 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10983 if (pfd < 0) { 10984 err = -errno; 10985 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10986 return err; 10987 } 10988 return pfd; 10989 } 10990 10991 /* uprobes deal in relative offsets; subtract the base address associated with 10992 * the mapped binary. See Documentation/trace/uprobetracer.rst for more 10993 * details. 10994 */ 10995 static long elf_find_relative_offset(const char *filename, Elf *elf, long addr) 10996 { 10997 size_t n; 10998 int i; 10999 11000 if (elf_getphdrnum(elf, &n)) { 11001 pr_warn("elf: failed to find program headers for '%s': %s\n", filename, 11002 elf_errmsg(-1)); 11003 return -ENOENT; 11004 } 11005 11006 for (i = 0; i < n; i++) { 11007 int seg_start, seg_end, seg_offset; 11008 GElf_Phdr phdr; 11009 11010 if (!gelf_getphdr(elf, i, &phdr)) { 11011 pr_warn("elf: failed to get program header %d from '%s': %s\n", i, filename, 11012 elf_errmsg(-1)); 11013 return -ENOENT; 11014 } 11015 if (phdr.p_type != PT_LOAD || !(phdr.p_flags & PF_X)) 11016 continue; 11017 11018 seg_start = phdr.p_vaddr; 11019 seg_end = seg_start + phdr.p_memsz; 11020 seg_offset = phdr.p_offset; 11021 if (addr >= seg_start && addr < seg_end) 11022 return addr - seg_start + seg_offset; 11023 } 11024 pr_warn("elf: failed to find prog header containing 0x%lx in '%s'\n", addr, filename); 11025 return -ENOENT; 11026 } 11027 11028 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 11029 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 11030 { 11031 while ((scn = elf_nextscn(elf, scn)) != NULL) { 11032 GElf_Shdr sh; 11033 11034 if (!gelf_getshdr(scn, &sh)) 11035 continue; 11036 if (sh.sh_type == sh_type) 11037 return scn; 11038 } 11039 return NULL; 11040 } 11041 11042 /* Find offset of function name in object specified by path. "name" matches 11043 * symbol name or name@@LIB for library functions. 11044 */ 11045 static long elf_find_func_offset(const char *binary_path, const char *name) 11046 { 11047 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 11048 bool is_shared_lib, is_name_qualified; 11049 char errmsg[STRERR_BUFSIZE]; 11050 long ret = -ENOENT; 11051 size_t name_len; 11052 GElf_Ehdr ehdr; 11053 Elf *elf; 11054 11055 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 11056 if (fd < 0) { 11057 ret = -errno; 11058 pr_warn("failed to open %s: %s\n", binary_path, 11059 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 11060 return ret; 11061 } 11062 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 11063 if (!elf) { 11064 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 11065 close(fd); 11066 return -LIBBPF_ERRNO__FORMAT; 11067 } 11068 if (!gelf_getehdr(elf, &ehdr)) { 11069 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 11070 ret = -LIBBPF_ERRNO__FORMAT; 11071 goto out; 11072 } 11073 /* for shared lib case, we do not need to calculate relative offset */ 11074 is_shared_lib = ehdr.e_type == ET_DYN; 11075 11076 name_len = strlen(name); 11077 /* Does name specify "@@LIB"? */ 11078 is_name_qualified = strstr(name, "@@") != NULL; 11079 11080 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 11081 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 11082 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 11083 * reported as a warning/error. 11084 */ 11085 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 11086 size_t nr_syms, strtabidx, idx; 11087 Elf_Data *symbols = NULL; 11088 Elf_Scn *scn = NULL; 11089 int last_bind = -1; 11090 const char *sname; 11091 GElf_Shdr sh; 11092 11093 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 11094 if (!scn) { 11095 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 11096 binary_path); 11097 continue; 11098 } 11099 if (!gelf_getshdr(scn, &sh)) 11100 continue; 11101 strtabidx = sh.sh_link; 11102 symbols = elf_getdata(scn, 0); 11103 if (!symbols) { 11104 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 11105 binary_path, elf_errmsg(-1)); 11106 ret = -LIBBPF_ERRNO__FORMAT; 11107 goto out; 11108 } 11109 nr_syms = symbols->d_size / sh.sh_entsize; 11110 11111 for (idx = 0; idx < nr_syms; idx++) { 11112 int curr_bind; 11113 GElf_Sym sym; 11114 11115 if (!gelf_getsym(symbols, idx, &sym)) 11116 continue; 11117 11118 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 11119 continue; 11120 11121 sname = elf_strptr(elf, strtabidx, sym.st_name); 11122 if (!sname) 11123 continue; 11124 11125 curr_bind = GELF_ST_BIND(sym.st_info); 11126 11127 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 11128 if (strncmp(sname, name, name_len) != 0) 11129 continue; 11130 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 11131 * additional characters in sname should be of the form "@@LIB". 11132 */ 11133 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 11134 continue; 11135 11136 if (ret >= 0) { 11137 /* handle multiple matches */ 11138 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 11139 /* Only accept one non-weak bind. */ 11140 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 11141 sname, name, binary_path); 11142 ret = -LIBBPF_ERRNO__FORMAT; 11143 goto out; 11144 } else if (curr_bind == STB_WEAK) { 11145 /* already have a non-weak bind, and 11146 * this is a weak bind, so ignore. 11147 */ 11148 continue; 11149 } 11150 } 11151 ret = sym.st_value; 11152 last_bind = curr_bind; 11153 } 11154 /* For binaries that are not shared libraries, we need relative offset */ 11155 if (ret > 0 && !is_shared_lib) 11156 ret = elf_find_relative_offset(binary_path, elf, ret); 11157 if (ret > 0) 11158 break; 11159 } 11160 11161 if (ret > 0) { 11162 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 11163 ret); 11164 } else { 11165 if (ret == 0) { 11166 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 11167 is_shared_lib ? "should not be 0 in a shared library" : 11168 "try using shared library path instead"); 11169 ret = -ENOENT; 11170 } else { 11171 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 11172 } 11173 } 11174 out: 11175 elf_end(elf); 11176 close(fd); 11177 return ret; 11178 } 11179 11180 static const char *arch_specific_lib_paths(void) 11181 { 11182 /* 11183 * Based on https://packages.debian.org/sid/libc6. 11184 * 11185 * Assume that the traced program is built for the same architecture 11186 * as libbpf, which should cover the vast majority of cases. 11187 */ 11188 #if defined(__x86_64__) 11189 return "/lib/x86_64-linux-gnu"; 11190 #elif defined(__i386__) 11191 return "/lib/i386-linux-gnu"; 11192 #elif defined(__s390x__) 11193 return "/lib/s390x-linux-gnu"; 11194 #elif defined(__s390__) 11195 return "/lib/s390-linux-gnu"; 11196 #elif defined(__arm__) && defined(__SOFTFP__) 11197 return "/lib/arm-linux-gnueabi"; 11198 #elif defined(__arm__) && !defined(__SOFTFP__) 11199 return "/lib/arm-linux-gnueabihf"; 11200 #elif defined(__aarch64__) 11201 return "/lib/aarch64-linux-gnu"; 11202 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11203 return "/lib/mips64el-linux-gnuabi64"; 11204 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11205 return "/lib/mipsel-linux-gnu"; 11206 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11207 return "/lib/powerpc64le-linux-gnu"; 11208 #elif defined(__sparc__) && defined(__arch64__) 11209 return "/lib/sparc64-linux-gnu"; 11210 #elif defined(__riscv) && __riscv_xlen == 64 11211 return "/lib/riscv64-linux-gnu"; 11212 #else 11213 return NULL; 11214 #endif 11215 } 11216 11217 /* Get full path to program/shared library. */ 11218 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11219 { 11220 const char *search_paths[3] = {}; 11221 int i; 11222 11223 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11224 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11225 search_paths[1] = "/usr/lib64:/usr/lib"; 11226 search_paths[2] = arch_specific_lib_paths(); 11227 } else { 11228 search_paths[0] = getenv("PATH"); 11229 search_paths[1] = "/usr/bin:/usr/sbin"; 11230 } 11231 11232 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11233 const char *s; 11234 11235 if (!search_paths[i]) 11236 continue; 11237 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11238 char *next_path; 11239 int seg_len; 11240 11241 if (s[0] == ':') 11242 s++; 11243 next_path = strchr(s, ':'); 11244 seg_len = next_path ? next_path - s : strlen(s); 11245 if (!seg_len) 11246 continue; 11247 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11248 /* ensure it is an executable file/link */ 11249 if (access(result, R_OK | X_OK) < 0) 11250 continue; 11251 pr_debug("resolved '%s' to '%s'\n", file, result); 11252 return 0; 11253 } 11254 } 11255 return -ENOENT; 11256 } 11257 11258 LIBBPF_API struct bpf_link * 11259 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11260 const char *binary_path, size_t func_offset, 11261 const struct bpf_uprobe_opts *opts) 11262 { 11263 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11264 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11265 char full_binary_path[PATH_MAX]; 11266 struct bpf_link *link; 11267 size_t ref_ctr_off; 11268 int pfd, err; 11269 bool retprobe, legacy; 11270 const char *func_name; 11271 11272 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11273 return libbpf_err_ptr(-EINVAL); 11274 11275 retprobe = OPTS_GET(opts, retprobe, false); 11276 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11277 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11278 11279 if (binary_path && !strchr(binary_path, '/')) { 11280 err = resolve_full_path(binary_path, full_binary_path, 11281 sizeof(full_binary_path)); 11282 if (err) { 11283 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11284 prog->name, binary_path, err); 11285 return libbpf_err_ptr(err); 11286 } 11287 binary_path = full_binary_path; 11288 } 11289 func_name = OPTS_GET(opts, func_name, NULL); 11290 if (func_name) { 11291 long sym_off; 11292 11293 if (!binary_path) { 11294 pr_warn("prog '%s': name-based attach requires binary_path\n", 11295 prog->name); 11296 return libbpf_err_ptr(-EINVAL); 11297 } 11298 sym_off = elf_find_func_offset(binary_path, func_name); 11299 if (sym_off < 0) 11300 return libbpf_err_ptr(sym_off); 11301 func_offset += sym_off; 11302 } 11303 11304 legacy = determine_uprobe_perf_type() < 0; 11305 if (!legacy) { 11306 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11307 func_offset, pid, ref_ctr_off); 11308 } else { 11309 char probe_name[PATH_MAX + 64]; 11310 11311 if (ref_ctr_off) 11312 return libbpf_err_ptr(-EINVAL); 11313 11314 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11315 binary_path, func_offset); 11316 11317 legacy_probe = strdup(probe_name); 11318 if (!legacy_probe) 11319 return libbpf_err_ptr(-ENOMEM); 11320 11321 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11322 binary_path, func_offset, pid); 11323 } 11324 if (pfd < 0) { 11325 err = -errno; 11326 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11327 prog->name, retprobe ? "uretprobe" : "uprobe", 11328 binary_path, func_offset, 11329 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11330 goto err_out; 11331 } 11332 11333 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11334 err = libbpf_get_error(link); 11335 if (err) { 11336 close(pfd); 11337 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11338 prog->name, retprobe ? "uretprobe" : "uprobe", 11339 binary_path, func_offset, 11340 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11341 goto err_out; 11342 } 11343 if (legacy) { 11344 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11345 11346 perf_link->legacy_probe_name = legacy_probe; 11347 perf_link->legacy_is_kprobe = false; 11348 perf_link->legacy_is_retprobe = retprobe; 11349 } 11350 return link; 11351 err_out: 11352 free(legacy_probe); 11353 return libbpf_err_ptr(err); 11354 11355 } 11356 11357 /* Format of u[ret]probe section definition supporting auto-attach: 11358 * u[ret]probe/binary:function[+offset] 11359 * 11360 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11361 * full binary path via bpf_program__attach_uprobe_opts. 11362 * 11363 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11364 * specified (and auto-attach is not possible) or the above format is specified for 11365 * auto-attach. 11366 */ 11367 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11368 { 11369 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11370 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11371 int n, ret = -EINVAL; 11372 long offset = 0; 11373 11374 *link = NULL; 11375 11376 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11377 &probe_type, &binary_path, &func_name, &offset); 11378 switch (n) { 11379 case 1: 11380 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11381 ret = 0; 11382 break; 11383 case 2: 11384 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11385 prog->name, prog->sec_name); 11386 break; 11387 case 3: 11388 case 4: 11389 opts.retprobe = strcmp(probe_type, "uretprobe") == 0; 11390 if (opts.retprobe && offset != 0) { 11391 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11392 prog->name); 11393 break; 11394 } 11395 opts.func_name = func_name; 11396 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11397 ret = libbpf_get_error(*link); 11398 break; 11399 default: 11400 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11401 prog->sec_name); 11402 break; 11403 } 11404 free(probe_type); 11405 free(binary_path); 11406 free(func_name); 11407 11408 return ret; 11409 } 11410 11411 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11412 bool retprobe, pid_t pid, 11413 const char *binary_path, 11414 size_t func_offset) 11415 { 11416 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11417 11418 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11419 } 11420 11421 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11422 pid_t pid, const char *binary_path, 11423 const char *usdt_provider, const char *usdt_name, 11424 const struct bpf_usdt_opts *opts) 11425 { 11426 char resolved_path[512]; 11427 struct bpf_object *obj = prog->obj; 11428 struct bpf_link *link; 11429 __u64 usdt_cookie; 11430 int err; 11431 11432 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11433 return libbpf_err_ptr(-EINVAL); 11434 11435 if (bpf_program__fd(prog) < 0) { 11436 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11437 prog->name); 11438 return libbpf_err_ptr(-EINVAL); 11439 } 11440 11441 if (!strchr(binary_path, '/')) { 11442 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11443 if (err) { 11444 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11445 prog->name, binary_path, err); 11446 return libbpf_err_ptr(err); 11447 } 11448 binary_path = resolved_path; 11449 } 11450 11451 /* USDT manager is instantiated lazily on first USDT attach. It will 11452 * be destroyed together with BPF object in bpf_object__close(). 11453 */ 11454 if (IS_ERR(obj->usdt_man)) 11455 return libbpf_ptr(obj->usdt_man); 11456 if (!obj->usdt_man) { 11457 obj->usdt_man = usdt_manager_new(obj); 11458 if (IS_ERR(obj->usdt_man)) 11459 return libbpf_ptr(obj->usdt_man); 11460 } 11461 11462 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11463 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11464 usdt_provider, usdt_name, usdt_cookie); 11465 err = libbpf_get_error(link); 11466 if (err) 11467 return libbpf_err_ptr(err); 11468 return link; 11469 } 11470 11471 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11472 { 11473 char *path = NULL, *provider = NULL, *name = NULL; 11474 const char *sec_name; 11475 int n, err; 11476 11477 sec_name = bpf_program__section_name(prog); 11478 if (strcmp(sec_name, "usdt") == 0) { 11479 /* no auto-attach for just SEC("usdt") */ 11480 *link = NULL; 11481 return 0; 11482 } 11483 11484 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11485 if (n != 3) { 11486 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11487 sec_name); 11488 err = -EINVAL; 11489 } else { 11490 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11491 provider, name, NULL); 11492 err = libbpf_get_error(*link); 11493 } 11494 free(path); 11495 free(provider); 11496 free(name); 11497 return err; 11498 } 11499 11500 static int determine_tracepoint_id(const char *tp_category, 11501 const char *tp_name) 11502 { 11503 char file[PATH_MAX]; 11504 int ret; 11505 11506 ret = snprintf(file, sizeof(file), 11507 "/sys/kernel/debug/tracing/events/%s/%s/id", 11508 tp_category, tp_name); 11509 if (ret < 0) 11510 return -errno; 11511 if (ret >= sizeof(file)) { 11512 pr_debug("tracepoint %s/%s path is too long\n", 11513 tp_category, tp_name); 11514 return -E2BIG; 11515 } 11516 return parse_uint_from_file(file, "%d\n"); 11517 } 11518 11519 static int perf_event_open_tracepoint(const char *tp_category, 11520 const char *tp_name) 11521 { 11522 struct perf_event_attr attr = {}; 11523 char errmsg[STRERR_BUFSIZE]; 11524 int tp_id, pfd, err; 11525 11526 tp_id = determine_tracepoint_id(tp_category, tp_name); 11527 if (tp_id < 0) { 11528 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11529 tp_category, tp_name, 11530 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11531 return tp_id; 11532 } 11533 11534 attr.type = PERF_TYPE_TRACEPOINT; 11535 attr.size = sizeof(attr); 11536 attr.config = tp_id; 11537 11538 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11539 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11540 if (pfd < 0) { 11541 err = -errno; 11542 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11543 tp_category, tp_name, 11544 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11545 return err; 11546 } 11547 return pfd; 11548 } 11549 11550 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11551 const char *tp_category, 11552 const char *tp_name, 11553 const struct bpf_tracepoint_opts *opts) 11554 { 11555 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11556 char errmsg[STRERR_BUFSIZE]; 11557 struct bpf_link *link; 11558 int pfd, err; 11559 11560 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11561 return libbpf_err_ptr(-EINVAL); 11562 11563 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11564 11565 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11566 if (pfd < 0) { 11567 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11568 prog->name, tp_category, tp_name, 11569 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11570 return libbpf_err_ptr(pfd); 11571 } 11572 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11573 err = libbpf_get_error(link); 11574 if (err) { 11575 close(pfd); 11576 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11577 prog->name, tp_category, tp_name, 11578 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11579 return libbpf_err_ptr(err); 11580 } 11581 return link; 11582 } 11583 11584 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11585 const char *tp_category, 11586 const char *tp_name) 11587 { 11588 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11589 } 11590 11591 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11592 { 11593 char *sec_name, *tp_cat, *tp_name; 11594 11595 *link = NULL; 11596 11597 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11598 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11599 return 0; 11600 11601 sec_name = strdup(prog->sec_name); 11602 if (!sec_name) 11603 return -ENOMEM; 11604 11605 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11606 if (str_has_pfx(prog->sec_name, "tp/")) 11607 tp_cat = sec_name + sizeof("tp/") - 1; 11608 else 11609 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11610 tp_name = strchr(tp_cat, '/'); 11611 if (!tp_name) { 11612 free(sec_name); 11613 return -EINVAL; 11614 } 11615 *tp_name = '\0'; 11616 tp_name++; 11617 11618 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11619 free(sec_name); 11620 return libbpf_get_error(*link); 11621 } 11622 11623 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11624 const char *tp_name) 11625 { 11626 char errmsg[STRERR_BUFSIZE]; 11627 struct bpf_link *link; 11628 int prog_fd, pfd; 11629 11630 prog_fd = bpf_program__fd(prog); 11631 if (prog_fd < 0) { 11632 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11633 return libbpf_err_ptr(-EINVAL); 11634 } 11635 11636 link = calloc(1, sizeof(*link)); 11637 if (!link) 11638 return libbpf_err_ptr(-ENOMEM); 11639 link->detach = &bpf_link__detach_fd; 11640 11641 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11642 if (pfd < 0) { 11643 pfd = -errno; 11644 free(link); 11645 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11646 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11647 return libbpf_err_ptr(pfd); 11648 } 11649 link->fd = pfd; 11650 return link; 11651 } 11652 11653 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11654 { 11655 static const char *const prefixes[] = { 11656 "raw_tp", 11657 "raw_tracepoint", 11658 "raw_tp.w", 11659 "raw_tracepoint.w", 11660 }; 11661 size_t i; 11662 const char *tp_name = NULL; 11663 11664 *link = NULL; 11665 11666 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11667 size_t pfx_len; 11668 11669 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11670 continue; 11671 11672 pfx_len = strlen(prefixes[i]); 11673 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11674 if (prog->sec_name[pfx_len] == '\0') 11675 return 0; 11676 11677 if (prog->sec_name[pfx_len] != '/') 11678 continue; 11679 11680 tp_name = prog->sec_name + pfx_len + 1; 11681 break; 11682 } 11683 11684 if (!tp_name) { 11685 pr_warn("prog '%s': invalid section name '%s'\n", 11686 prog->name, prog->sec_name); 11687 return -EINVAL; 11688 } 11689 11690 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11691 return libbpf_get_error(link); 11692 } 11693 11694 /* Common logic for all BPF program types that attach to a btf_id */ 11695 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11696 const struct bpf_trace_opts *opts) 11697 { 11698 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11699 char errmsg[STRERR_BUFSIZE]; 11700 struct bpf_link *link; 11701 int prog_fd, pfd; 11702 11703 if (!OPTS_VALID(opts, bpf_trace_opts)) 11704 return libbpf_err_ptr(-EINVAL); 11705 11706 prog_fd = bpf_program__fd(prog); 11707 if (prog_fd < 0) { 11708 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11709 return libbpf_err_ptr(-EINVAL); 11710 } 11711 11712 link = calloc(1, sizeof(*link)); 11713 if (!link) 11714 return libbpf_err_ptr(-ENOMEM); 11715 link->detach = &bpf_link__detach_fd; 11716 11717 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11718 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11719 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11720 if (pfd < 0) { 11721 pfd = -errno; 11722 free(link); 11723 pr_warn("prog '%s': failed to attach: %s\n", 11724 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11725 return libbpf_err_ptr(pfd); 11726 } 11727 link->fd = pfd; 11728 return link; 11729 } 11730 11731 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11732 { 11733 return bpf_program__attach_btf_id(prog, NULL); 11734 } 11735 11736 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11737 const struct bpf_trace_opts *opts) 11738 { 11739 return bpf_program__attach_btf_id(prog, opts); 11740 } 11741 11742 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11743 { 11744 return bpf_program__attach_btf_id(prog, NULL); 11745 } 11746 11747 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11748 { 11749 *link = bpf_program__attach_trace(prog); 11750 return libbpf_get_error(*link); 11751 } 11752 11753 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11754 { 11755 *link = bpf_program__attach_lsm(prog); 11756 return libbpf_get_error(*link); 11757 } 11758 11759 static struct bpf_link * 11760 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11761 const char *target_name) 11762 { 11763 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11764 .target_btf_id = btf_id); 11765 enum bpf_attach_type attach_type; 11766 char errmsg[STRERR_BUFSIZE]; 11767 struct bpf_link *link; 11768 int prog_fd, link_fd; 11769 11770 prog_fd = bpf_program__fd(prog); 11771 if (prog_fd < 0) { 11772 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11773 return libbpf_err_ptr(-EINVAL); 11774 } 11775 11776 link = calloc(1, sizeof(*link)); 11777 if (!link) 11778 return libbpf_err_ptr(-ENOMEM); 11779 link->detach = &bpf_link__detach_fd; 11780 11781 attach_type = bpf_program__expected_attach_type(prog); 11782 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11783 if (link_fd < 0) { 11784 link_fd = -errno; 11785 free(link); 11786 pr_warn("prog '%s': failed to attach to %s: %s\n", 11787 prog->name, target_name, 11788 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11789 return libbpf_err_ptr(link_fd); 11790 } 11791 link->fd = link_fd; 11792 return link; 11793 } 11794 11795 struct bpf_link * 11796 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11797 { 11798 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11799 } 11800 11801 struct bpf_link * 11802 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11803 { 11804 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11805 } 11806 11807 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11808 { 11809 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11810 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11811 } 11812 11813 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11814 int target_fd, 11815 const char *attach_func_name) 11816 { 11817 int btf_id; 11818 11819 if (!!target_fd != !!attach_func_name) { 11820 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11821 prog->name); 11822 return libbpf_err_ptr(-EINVAL); 11823 } 11824 11825 if (prog->type != BPF_PROG_TYPE_EXT) { 11826 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11827 prog->name); 11828 return libbpf_err_ptr(-EINVAL); 11829 } 11830 11831 if (target_fd) { 11832 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11833 if (btf_id < 0) 11834 return libbpf_err_ptr(btf_id); 11835 11836 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11837 } else { 11838 /* no target, so use raw_tracepoint_open for compatibility 11839 * with old kernels 11840 */ 11841 return bpf_program__attach_trace(prog); 11842 } 11843 } 11844 11845 struct bpf_link * 11846 bpf_program__attach_iter(const struct bpf_program *prog, 11847 const struct bpf_iter_attach_opts *opts) 11848 { 11849 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11850 char errmsg[STRERR_BUFSIZE]; 11851 struct bpf_link *link; 11852 int prog_fd, link_fd; 11853 __u32 target_fd = 0; 11854 11855 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11856 return libbpf_err_ptr(-EINVAL); 11857 11858 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11859 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11860 11861 prog_fd = bpf_program__fd(prog); 11862 if (prog_fd < 0) { 11863 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11864 return libbpf_err_ptr(-EINVAL); 11865 } 11866 11867 link = calloc(1, sizeof(*link)); 11868 if (!link) 11869 return libbpf_err_ptr(-ENOMEM); 11870 link->detach = &bpf_link__detach_fd; 11871 11872 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11873 &link_create_opts); 11874 if (link_fd < 0) { 11875 link_fd = -errno; 11876 free(link); 11877 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11878 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11879 return libbpf_err_ptr(link_fd); 11880 } 11881 link->fd = link_fd; 11882 return link; 11883 } 11884 11885 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11886 { 11887 *link = bpf_program__attach_iter(prog, NULL); 11888 return libbpf_get_error(*link); 11889 } 11890 11891 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11892 { 11893 struct bpf_link *link = NULL; 11894 int err; 11895 11896 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11897 return libbpf_err_ptr(-EOPNOTSUPP); 11898 11899 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11900 if (err) 11901 return libbpf_err_ptr(err); 11902 11903 /* When calling bpf_program__attach() explicitly, auto-attach support 11904 * is expected to work, so NULL returned link is considered an error. 11905 * This is different for skeleton's attach, see comment in 11906 * bpf_object__attach_skeleton(). 11907 */ 11908 if (!link) 11909 return libbpf_err_ptr(-EOPNOTSUPP); 11910 11911 return link; 11912 } 11913 11914 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11915 { 11916 __u32 zero = 0; 11917 11918 if (bpf_map_delete_elem(link->fd, &zero)) 11919 return -errno; 11920 11921 return 0; 11922 } 11923 11924 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11925 { 11926 struct bpf_struct_ops *st_ops; 11927 struct bpf_link *link; 11928 __u32 i, zero = 0; 11929 int err; 11930 11931 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11932 return libbpf_err_ptr(-EINVAL); 11933 11934 link = calloc(1, sizeof(*link)); 11935 if (!link) 11936 return libbpf_err_ptr(-EINVAL); 11937 11938 st_ops = map->st_ops; 11939 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11940 struct bpf_program *prog = st_ops->progs[i]; 11941 void *kern_data; 11942 int prog_fd; 11943 11944 if (!prog) 11945 continue; 11946 11947 prog_fd = bpf_program__fd(prog); 11948 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11949 *(unsigned long *)kern_data = prog_fd; 11950 } 11951 11952 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11953 if (err) { 11954 err = -errno; 11955 free(link); 11956 return libbpf_err_ptr(err); 11957 } 11958 11959 link->detach = bpf_link__detach_struct_ops; 11960 link->fd = map->fd; 11961 11962 return link; 11963 } 11964 11965 static enum bpf_perf_event_ret 11966 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11967 void **copy_mem, size_t *copy_size, 11968 bpf_perf_event_print_t fn, void *private_data) 11969 { 11970 struct perf_event_mmap_page *header = mmap_mem; 11971 __u64 data_head = ring_buffer_read_head(header); 11972 __u64 data_tail = header->data_tail; 11973 void *base = ((__u8 *)header) + page_size; 11974 int ret = LIBBPF_PERF_EVENT_CONT; 11975 struct perf_event_header *ehdr; 11976 size_t ehdr_size; 11977 11978 while (data_head != data_tail) { 11979 ehdr = base + (data_tail & (mmap_size - 1)); 11980 ehdr_size = ehdr->size; 11981 11982 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11983 void *copy_start = ehdr; 11984 size_t len_first = base + mmap_size - copy_start; 11985 size_t len_secnd = ehdr_size - len_first; 11986 11987 if (*copy_size < ehdr_size) { 11988 free(*copy_mem); 11989 *copy_mem = malloc(ehdr_size); 11990 if (!*copy_mem) { 11991 *copy_size = 0; 11992 ret = LIBBPF_PERF_EVENT_ERROR; 11993 break; 11994 } 11995 *copy_size = ehdr_size; 11996 } 11997 11998 memcpy(*copy_mem, copy_start, len_first); 11999 memcpy(*copy_mem + len_first, base, len_secnd); 12000 ehdr = *copy_mem; 12001 } 12002 12003 ret = fn(ehdr, private_data); 12004 data_tail += ehdr_size; 12005 if (ret != LIBBPF_PERF_EVENT_CONT) 12006 break; 12007 } 12008 12009 ring_buffer_write_tail(header, data_tail); 12010 return libbpf_err(ret); 12011 } 12012 12013 __attribute__((alias("perf_event_read_simple"))) 12014 enum bpf_perf_event_ret 12015 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12016 void **copy_mem, size_t *copy_size, 12017 bpf_perf_event_print_t fn, void *private_data); 12018 12019 struct perf_buffer; 12020 12021 struct perf_buffer_params { 12022 struct perf_event_attr *attr; 12023 /* if event_cb is specified, it takes precendence */ 12024 perf_buffer_event_fn event_cb; 12025 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12026 perf_buffer_sample_fn sample_cb; 12027 perf_buffer_lost_fn lost_cb; 12028 void *ctx; 12029 int cpu_cnt; 12030 int *cpus; 12031 int *map_keys; 12032 }; 12033 12034 struct perf_cpu_buf { 12035 struct perf_buffer *pb; 12036 void *base; /* mmap()'ed memory */ 12037 void *buf; /* for reconstructing segmented data */ 12038 size_t buf_size; 12039 int fd; 12040 int cpu; 12041 int map_key; 12042 }; 12043 12044 struct perf_buffer { 12045 perf_buffer_event_fn event_cb; 12046 perf_buffer_sample_fn sample_cb; 12047 perf_buffer_lost_fn lost_cb; 12048 void *ctx; /* passed into callbacks */ 12049 12050 size_t page_size; 12051 size_t mmap_size; 12052 struct perf_cpu_buf **cpu_bufs; 12053 struct epoll_event *events; 12054 int cpu_cnt; /* number of allocated CPU buffers */ 12055 int epoll_fd; /* perf event FD */ 12056 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12057 }; 12058 12059 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12060 struct perf_cpu_buf *cpu_buf) 12061 { 12062 if (!cpu_buf) 12063 return; 12064 if (cpu_buf->base && 12065 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12066 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12067 if (cpu_buf->fd >= 0) { 12068 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12069 close(cpu_buf->fd); 12070 } 12071 free(cpu_buf->buf); 12072 free(cpu_buf); 12073 } 12074 12075 void perf_buffer__free(struct perf_buffer *pb) 12076 { 12077 int i; 12078 12079 if (IS_ERR_OR_NULL(pb)) 12080 return; 12081 if (pb->cpu_bufs) { 12082 for (i = 0; i < pb->cpu_cnt; i++) { 12083 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12084 12085 if (!cpu_buf) 12086 continue; 12087 12088 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12089 perf_buffer__free_cpu_buf(pb, cpu_buf); 12090 } 12091 free(pb->cpu_bufs); 12092 } 12093 if (pb->epoll_fd >= 0) 12094 close(pb->epoll_fd); 12095 free(pb->events); 12096 free(pb); 12097 } 12098 12099 static struct perf_cpu_buf * 12100 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12101 int cpu, int map_key) 12102 { 12103 struct perf_cpu_buf *cpu_buf; 12104 char msg[STRERR_BUFSIZE]; 12105 int err; 12106 12107 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12108 if (!cpu_buf) 12109 return ERR_PTR(-ENOMEM); 12110 12111 cpu_buf->pb = pb; 12112 cpu_buf->cpu = cpu; 12113 cpu_buf->map_key = map_key; 12114 12115 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12116 -1, PERF_FLAG_FD_CLOEXEC); 12117 if (cpu_buf->fd < 0) { 12118 err = -errno; 12119 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12120 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12121 goto error; 12122 } 12123 12124 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12125 PROT_READ | PROT_WRITE, MAP_SHARED, 12126 cpu_buf->fd, 0); 12127 if (cpu_buf->base == MAP_FAILED) { 12128 cpu_buf->base = NULL; 12129 err = -errno; 12130 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12131 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12132 goto error; 12133 } 12134 12135 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12136 err = -errno; 12137 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12138 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12139 goto error; 12140 } 12141 12142 return cpu_buf; 12143 12144 error: 12145 perf_buffer__free_cpu_buf(pb, cpu_buf); 12146 return (struct perf_cpu_buf *)ERR_PTR(err); 12147 } 12148 12149 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12150 struct perf_buffer_params *p); 12151 12152 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 12153 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 12154 perf_buffer_sample_fn sample_cb, 12155 perf_buffer_lost_fn lost_cb, 12156 void *ctx, 12157 const struct perf_buffer_opts *opts) 12158 { 12159 struct perf_buffer_params p = {}; 12160 struct perf_event_attr attr = {}; 12161 12162 if (!OPTS_VALID(opts, perf_buffer_opts)) 12163 return libbpf_err_ptr(-EINVAL); 12164 12165 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12166 attr.type = PERF_TYPE_SOFTWARE; 12167 attr.sample_type = PERF_SAMPLE_RAW; 12168 attr.sample_period = 1; 12169 attr.wakeup_events = 1; 12170 12171 p.attr = &attr; 12172 p.sample_cb = sample_cb; 12173 p.lost_cb = lost_cb; 12174 p.ctx = ctx; 12175 12176 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12177 } 12178 12179 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 12180 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 12181 const struct perf_buffer_opts *opts) 12182 { 12183 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 12184 opts ? opts->sample_cb : NULL, 12185 opts ? opts->lost_cb : NULL, 12186 opts ? opts->ctx : NULL, 12187 NULL); 12188 } 12189 12190 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 12191 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 12192 struct perf_event_attr *attr, 12193 perf_buffer_event_fn event_cb, void *ctx, 12194 const struct perf_buffer_raw_opts *opts) 12195 { 12196 struct perf_buffer_params p = {}; 12197 12198 if (!attr) 12199 return libbpf_err_ptr(-EINVAL); 12200 12201 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12202 return libbpf_err_ptr(-EINVAL); 12203 12204 p.attr = attr; 12205 p.event_cb = event_cb; 12206 p.ctx = ctx; 12207 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12208 p.cpus = OPTS_GET(opts, cpus, NULL); 12209 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12210 12211 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12212 } 12213 12214 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 12215 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 12216 const struct perf_buffer_raw_opts *opts) 12217 { 12218 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 12219 .cpu_cnt = opts->cpu_cnt, 12220 .cpus = opts->cpus, 12221 .map_keys = opts->map_keys, 12222 ); 12223 12224 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 12225 opts->event_cb, opts->ctx, &inner_opts); 12226 } 12227 12228 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12229 struct perf_buffer_params *p) 12230 { 12231 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12232 struct bpf_map_info map; 12233 char msg[STRERR_BUFSIZE]; 12234 struct perf_buffer *pb; 12235 bool *online = NULL; 12236 __u32 map_info_len; 12237 int err, i, j, n; 12238 12239 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12240 pr_warn("page count should be power of two, but is %zu\n", 12241 page_cnt); 12242 return ERR_PTR(-EINVAL); 12243 } 12244 12245 /* best-effort sanity checks */ 12246 memset(&map, 0, sizeof(map)); 12247 map_info_len = sizeof(map); 12248 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 12249 if (err) { 12250 err = -errno; 12251 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12252 * -EBADFD, -EFAULT, or -E2BIG on real error 12253 */ 12254 if (err != -EINVAL) { 12255 pr_warn("failed to get map info for map FD %d: %s\n", 12256 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12257 return ERR_PTR(err); 12258 } 12259 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12260 map_fd); 12261 } else { 12262 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12263 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12264 map.name); 12265 return ERR_PTR(-EINVAL); 12266 } 12267 } 12268 12269 pb = calloc(1, sizeof(*pb)); 12270 if (!pb) 12271 return ERR_PTR(-ENOMEM); 12272 12273 pb->event_cb = p->event_cb; 12274 pb->sample_cb = p->sample_cb; 12275 pb->lost_cb = p->lost_cb; 12276 pb->ctx = p->ctx; 12277 12278 pb->page_size = getpagesize(); 12279 pb->mmap_size = pb->page_size * page_cnt; 12280 pb->map_fd = map_fd; 12281 12282 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12283 if (pb->epoll_fd < 0) { 12284 err = -errno; 12285 pr_warn("failed to create epoll instance: %s\n", 12286 libbpf_strerror_r(err, msg, sizeof(msg))); 12287 goto error; 12288 } 12289 12290 if (p->cpu_cnt > 0) { 12291 pb->cpu_cnt = p->cpu_cnt; 12292 } else { 12293 pb->cpu_cnt = libbpf_num_possible_cpus(); 12294 if (pb->cpu_cnt < 0) { 12295 err = pb->cpu_cnt; 12296 goto error; 12297 } 12298 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12299 pb->cpu_cnt = map.max_entries; 12300 } 12301 12302 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12303 if (!pb->events) { 12304 err = -ENOMEM; 12305 pr_warn("failed to allocate events: out of memory\n"); 12306 goto error; 12307 } 12308 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12309 if (!pb->cpu_bufs) { 12310 err = -ENOMEM; 12311 pr_warn("failed to allocate buffers: out of memory\n"); 12312 goto error; 12313 } 12314 12315 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12316 if (err) { 12317 pr_warn("failed to get online CPU mask: %d\n", err); 12318 goto error; 12319 } 12320 12321 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12322 struct perf_cpu_buf *cpu_buf; 12323 int cpu, map_key; 12324 12325 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12326 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12327 12328 /* in case user didn't explicitly requested particular CPUs to 12329 * be attached to, skip offline/not present CPUs 12330 */ 12331 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12332 continue; 12333 12334 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12335 if (IS_ERR(cpu_buf)) { 12336 err = PTR_ERR(cpu_buf); 12337 goto error; 12338 } 12339 12340 pb->cpu_bufs[j] = cpu_buf; 12341 12342 err = bpf_map_update_elem(pb->map_fd, &map_key, 12343 &cpu_buf->fd, 0); 12344 if (err) { 12345 err = -errno; 12346 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12347 cpu, map_key, cpu_buf->fd, 12348 libbpf_strerror_r(err, msg, sizeof(msg))); 12349 goto error; 12350 } 12351 12352 pb->events[j].events = EPOLLIN; 12353 pb->events[j].data.ptr = cpu_buf; 12354 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12355 &pb->events[j]) < 0) { 12356 err = -errno; 12357 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12358 cpu, cpu_buf->fd, 12359 libbpf_strerror_r(err, msg, sizeof(msg))); 12360 goto error; 12361 } 12362 j++; 12363 } 12364 pb->cpu_cnt = j; 12365 free(online); 12366 12367 return pb; 12368 12369 error: 12370 free(online); 12371 if (pb) 12372 perf_buffer__free(pb); 12373 return ERR_PTR(err); 12374 } 12375 12376 struct perf_sample_raw { 12377 struct perf_event_header header; 12378 uint32_t size; 12379 char data[]; 12380 }; 12381 12382 struct perf_sample_lost { 12383 struct perf_event_header header; 12384 uint64_t id; 12385 uint64_t lost; 12386 uint64_t sample_id; 12387 }; 12388 12389 static enum bpf_perf_event_ret 12390 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12391 { 12392 struct perf_cpu_buf *cpu_buf = ctx; 12393 struct perf_buffer *pb = cpu_buf->pb; 12394 void *data = e; 12395 12396 /* user wants full control over parsing perf event */ 12397 if (pb->event_cb) 12398 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12399 12400 switch (e->type) { 12401 case PERF_RECORD_SAMPLE: { 12402 struct perf_sample_raw *s = data; 12403 12404 if (pb->sample_cb) 12405 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12406 break; 12407 } 12408 case PERF_RECORD_LOST: { 12409 struct perf_sample_lost *s = data; 12410 12411 if (pb->lost_cb) 12412 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12413 break; 12414 } 12415 default: 12416 pr_warn("unknown perf sample type %d\n", e->type); 12417 return LIBBPF_PERF_EVENT_ERROR; 12418 } 12419 return LIBBPF_PERF_EVENT_CONT; 12420 } 12421 12422 static int perf_buffer__process_records(struct perf_buffer *pb, 12423 struct perf_cpu_buf *cpu_buf) 12424 { 12425 enum bpf_perf_event_ret ret; 12426 12427 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12428 pb->page_size, &cpu_buf->buf, 12429 &cpu_buf->buf_size, 12430 perf_buffer__process_record, cpu_buf); 12431 if (ret != LIBBPF_PERF_EVENT_CONT) 12432 return ret; 12433 return 0; 12434 } 12435 12436 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12437 { 12438 return pb->epoll_fd; 12439 } 12440 12441 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12442 { 12443 int i, cnt, err; 12444 12445 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12446 if (cnt < 0) 12447 return -errno; 12448 12449 for (i = 0; i < cnt; i++) { 12450 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12451 12452 err = perf_buffer__process_records(pb, cpu_buf); 12453 if (err) { 12454 pr_warn("error while processing records: %d\n", err); 12455 return libbpf_err(err); 12456 } 12457 } 12458 return cnt; 12459 } 12460 12461 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12462 * manager. 12463 */ 12464 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12465 { 12466 return pb->cpu_cnt; 12467 } 12468 12469 /* 12470 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12471 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12472 * select()/poll()/epoll() Linux syscalls. 12473 */ 12474 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12475 { 12476 struct perf_cpu_buf *cpu_buf; 12477 12478 if (buf_idx >= pb->cpu_cnt) 12479 return libbpf_err(-EINVAL); 12480 12481 cpu_buf = pb->cpu_bufs[buf_idx]; 12482 if (!cpu_buf) 12483 return libbpf_err(-ENOENT); 12484 12485 return cpu_buf->fd; 12486 } 12487 12488 /* 12489 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12490 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12491 * consume, do nothing and return success. 12492 * Returns: 12493 * - 0 on success; 12494 * - <0 on failure. 12495 */ 12496 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12497 { 12498 struct perf_cpu_buf *cpu_buf; 12499 12500 if (buf_idx >= pb->cpu_cnt) 12501 return libbpf_err(-EINVAL); 12502 12503 cpu_buf = pb->cpu_bufs[buf_idx]; 12504 if (!cpu_buf) 12505 return libbpf_err(-ENOENT); 12506 12507 return perf_buffer__process_records(pb, cpu_buf); 12508 } 12509 12510 int perf_buffer__consume(struct perf_buffer *pb) 12511 { 12512 int i, err; 12513 12514 for (i = 0; i < pb->cpu_cnt; i++) { 12515 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12516 12517 if (!cpu_buf) 12518 continue; 12519 12520 err = perf_buffer__process_records(pb, cpu_buf); 12521 if (err) { 12522 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12523 return libbpf_err(err); 12524 } 12525 } 12526 return 0; 12527 } 12528 12529 struct bpf_prog_info_array_desc { 12530 int array_offset; /* e.g. offset of jited_prog_insns */ 12531 int count_offset; /* e.g. offset of jited_prog_len */ 12532 int size_offset; /* > 0: offset of rec size, 12533 * < 0: fix size of -size_offset 12534 */ 12535 }; 12536 12537 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 12538 [BPF_PROG_INFO_JITED_INSNS] = { 12539 offsetof(struct bpf_prog_info, jited_prog_insns), 12540 offsetof(struct bpf_prog_info, jited_prog_len), 12541 -1, 12542 }, 12543 [BPF_PROG_INFO_XLATED_INSNS] = { 12544 offsetof(struct bpf_prog_info, xlated_prog_insns), 12545 offsetof(struct bpf_prog_info, xlated_prog_len), 12546 -1, 12547 }, 12548 [BPF_PROG_INFO_MAP_IDS] = { 12549 offsetof(struct bpf_prog_info, map_ids), 12550 offsetof(struct bpf_prog_info, nr_map_ids), 12551 -(int)sizeof(__u32), 12552 }, 12553 [BPF_PROG_INFO_JITED_KSYMS] = { 12554 offsetof(struct bpf_prog_info, jited_ksyms), 12555 offsetof(struct bpf_prog_info, nr_jited_ksyms), 12556 -(int)sizeof(__u64), 12557 }, 12558 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 12559 offsetof(struct bpf_prog_info, jited_func_lens), 12560 offsetof(struct bpf_prog_info, nr_jited_func_lens), 12561 -(int)sizeof(__u32), 12562 }, 12563 [BPF_PROG_INFO_FUNC_INFO] = { 12564 offsetof(struct bpf_prog_info, func_info), 12565 offsetof(struct bpf_prog_info, nr_func_info), 12566 offsetof(struct bpf_prog_info, func_info_rec_size), 12567 }, 12568 [BPF_PROG_INFO_LINE_INFO] = { 12569 offsetof(struct bpf_prog_info, line_info), 12570 offsetof(struct bpf_prog_info, nr_line_info), 12571 offsetof(struct bpf_prog_info, line_info_rec_size), 12572 }, 12573 [BPF_PROG_INFO_JITED_LINE_INFO] = { 12574 offsetof(struct bpf_prog_info, jited_line_info), 12575 offsetof(struct bpf_prog_info, nr_jited_line_info), 12576 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 12577 }, 12578 [BPF_PROG_INFO_PROG_TAGS] = { 12579 offsetof(struct bpf_prog_info, prog_tags), 12580 offsetof(struct bpf_prog_info, nr_prog_tags), 12581 -(int)sizeof(__u8) * BPF_TAG_SIZE, 12582 }, 12583 12584 }; 12585 12586 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 12587 int offset) 12588 { 12589 __u32 *array = (__u32 *)info; 12590 12591 if (offset >= 0) 12592 return array[offset / sizeof(__u32)]; 12593 return -(int)offset; 12594 } 12595 12596 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 12597 int offset) 12598 { 12599 __u64 *array = (__u64 *)info; 12600 12601 if (offset >= 0) 12602 return array[offset / sizeof(__u64)]; 12603 return -(int)offset; 12604 } 12605 12606 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 12607 __u32 val) 12608 { 12609 __u32 *array = (__u32 *)info; 12610 12611 if (offset >= 0) 12612 array[offset / sizeof(__u32)] = val; 12613 } 12614 12615 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 12616 __u64 val) 12617 { 12618 __u64 *array = (__u64 *)info; 12619 12620 if (offset >= 0) 12621 array[offset / sizeof(__u64)] = val; 12622 } 12623 12624 struct bpf_prog_info_linear * 12625 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 12626 { 12627 struct bpf_prog_info_linear *info_linear; 12628 struct bpf_prog_info info = {}; 12629 __u32 info_len = sizeof(info); 12630 __u32 data_len = 0; 12631 int i, err; 12632 void *ptr; 12633 12634 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 12635 return libbpf_err_ptr(-EINVAL); 12636 12637 /* step 1: get array dimensions */ 12638 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 12639 if (err) { 12640 pr_debug("can't get prog info: %s", strerror(errno)); 12641 return libbpf_err_ptr(-EFAULT); 12642 } 12643 12644 /* step 2: calculate total size of all arrays */ 12645 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12646 bool include_array = (arrays & (1UL << i)) > 0; 12647 struct bpf_prog_info_array_desc *desc; 12648 __u32 count, size; 12649 12650 desc = bpf_prog_info_array_desc + i; 12651 12652 /* kernel is too old to support this field */ 12653 if (info_len < desc->array_offset + sizeof(__u32) || 12654 info_len < desc->count_offset + sizeof(__u32) || 12655 (desc->size_offset > 0 && info_len < desc->size_offset)) 12656 include_array = false; 12657 12658 if (!include_array) { 12659 arrays &= ~(1UL << i); /* clear the bit */ 12660 continue; 12661 } 12662 12663 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12664 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12665 12666 data_len += count * size; 12667 } 12668 12669 /* step 3: allocate continuous memory */ 12670 data_len = roundup(data_len, sizeof(__u64)); 12671 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 12672 if (!info_linear) 12673 return libbpf_err_ptr(-ENOMEM); 12674 12675 /* step 4: fill data to info_linear->info */ 12676 info_linear->arrays = arrays; 12677 memset(&info_linear->info, 0, sizeof(info)); 12678 ptr = info_linear->data; 12679 12680 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12681 struct bpf_prog_info_array_desc *desc; 12682 __u32 count, size; 12683 12684 if ((arrays & (1UL << i)) == 0) 12685 continue; 12686 12687 desc = bpf_prog_info_array_desc + i; 12688 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12689 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12690 bpf_prog_info_set_offset_u32(&info_linear->info, 12691 desc->count_offset, count); 12692 bpf_prog_info_set_offset_u32(&info_linear->info, 12693 desc->size_offset, size); 12694 bpf_prog_info_set_offset_u64(&info_linear->info, 12695 desc->array_offset, 12696 ptr_to_u64(ptr)); 12697 ptr += count * size; 12698 } 12699 12700 /* step 5: call syscall again to get required arrays */ 12701 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 12702 if (err) { 12703 pr_debug("can't get prog info: %s", strerror(errno)); 12704 free(info_linear); 12705 return libbpf_err_ptr(-EFAULT); 12706 } 12707 12708 /* step 6: verify the data */ 12709 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12710 struct bpf_prog_info_array_desc *desc; 12711 __u32 v1, v2; 12712 12713 if ((arrays & (1UL << i)) == 0) 12714 continue; 12715 12716 desc = bpf_prog_info_array_desc + i; 12717 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12718 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12719 desc->count_offset); 12720 if (v1 != v2) 12721 pr_warn("%s: mismatch in element count\n", __func__); 12722 12723 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12724 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12725 desc->size_offset); 12726 if (v1 != v2) 12727 pr_warn("%s: mismatch in rec size\n", __func__); 12728 } 12729 12730 /* step 7: update info_len and data_len */ 12731 info_linear->info_len = sizeof(struct bpf_prog_info); 12732 info_linear->data_len = data_len; 12733 12734 return info_linear; 12735 } 12736 12737 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 12738 { 12739 int i; 12740 12741 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12742 struct bpf_prog_info_array_desc *desc; 12743 __u64 addr, offs; 12744 12745 if ((info_linear->arrays & (1UL << i)) == 0) 12746 continue; 12747 12748 desc = bpf_prog_info_array_desc + i; 12749 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 12750 desc->array_offset); 12751 offs = addr - ptr_to_u64(info_linear->data); 12752 bpf_prog_info_set_offset_u64(&info_linear->info, 12753 desc->array_offset, offs); 12754 } 12755 } 12756 12757 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 12758 { 12759 int i; 12760 12761 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12762 struct bpf_prog_info_array_desc *desc; 12763 __u64 addr, offs; 12764 12765 if ((info_linear->arrays & (1UL << i)) == 0) 12766 continue; 12767 12768 desc = bpf_prog_info_array_desc + i; 12769 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 12770 desc->array_offset); 12771 addr = offs + ptr_to_u64(info_linear->data); 12772 bpf_prog_info_set_offset_u64(&info_linear->info, 12773 desc->array_offset, addr); 12774 } 12775 } 12776 12777 int bpf_program__set_attach_target(struct bpf_program *prog, 12778 int attach_prog_fd, 12779 const char *attach_func_name) 12780 { 12781 int btf_obj_fd = 0, btf_id = 0, err; 12782 12783 if (!prog || attach_prog_fd < 0) 12784 return libbpf_err(-EINVAL); 12785 12786 if (prog->obj->loaded) 12787 return libbpf_err(-EINVAL); 12788 12789 if (attach_prog_fd && !attach_func_name) { 12790 /* remember attach_prog_fd and let bpf_program__load() find 12791 * BTF ID during the program load 12792 */ 12793 prog->attach_prog_fd = attach_prog_fd; 12794 return 0; 12795 } 12796 12797 if (attach_prog_fd) { 12798 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12799 attach_prog_fd); 12800 if (btf_id < 0) 12801 return libbpf_err(btf_id); 12802 } else { 12803 if (!attach_func_name) 12804 return libbpf_err(-EINVAL); 12805 12806 /* load btf_vmlinux, if not yet */ 12807 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12808 if (err) 12809 return libbpf_err(err); 12810 err = find_kernel_btf_id(prog->obj, attach_func_name, 12811 prog->expected_attach_type, 12812 &btf_obj_fd, &btf_id); 12813 if (err) 12814 return libbpf_err(err); 12815 } 12816 12817 prog->attach_btf_id = btf_id; 12818 prog->attach_btf_obj_fd = btf_obj_fd; 12819 prog->attach_prog_fd = attach_prog_fd; 12820 return 0; 12821 } 12822 12823 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12824 { 12825 int err = 0, n, len, start, end = -1; 12826 bool *tmp; 12827 12828 *mask = NULL; 12829 *mask_sz = 0; 12830 12831 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12832 while (*s) { 12833 if (*s == ',' || *s == '\n') { 12834 s++; 12835 continue; 12836 } 12837 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12838 if (n <= 0 || n > 2) { 12839 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12840 err = -EINVAL; 12841 goto cleanup; 12842 } else if (n == 1) { 12843 end = start; 12844 } 12845 if (start < 0 || start > end) { 12846 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12847 start, end, s); 12848 err = -EINVAL; 12849 goto cleanup; 12850 } 12851 tmp = realloc(*mask, end + 1); 12852 if (!tmp) { 12853 err = -ENOMEM; 12854 goto cleanup; 12855 } 12856 *mask = tmp; 12857 memset(tmp + *mask_sz, 0, start - *mask_sz); 12858 memset(tmp + start, 1, end - start + 1); 12859 *mask_sz = end + 1; 12860 s += len; 12861 } 12862 if (!*mask_sz) { 12863 pr_warn("Empty CPU range\n"); 12864 return -EINVAL; 12865 } 12866 return 0; 12867 cleanup: 12868 free(*mask); 12869 *mask = NULL; 12870 return err; 12871 } 12872 12873 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12874 { 12875 int fd, err = 0, len; 12876 char buf[128]; 12877 12878 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12879 if (fd < 0) { 12880 err = -errno; 12881 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12882 return err; 12883 } 12884 len = read(fd, buf, sizeof(buf)); 12885 close(fd); 12886 if (len <= 0) { 12887 err = len ? -errno : -EINVAL; 12888 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12889 return err; 12890 } 12891 if (len >= sizeof(buf)) { 12892 pr_warn("CPU mask is too big in file %s\n", fcpu); 12893 return -E2BIG; 12894 } 12895 buf[len] = '\0'; 12896 12897 return parse_cpu_mask_str(buf, mask, mask_sz); 12898 } 12899 12900 int libbpf_num_possible_cpus(void) 12901 { 12902 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12903 static int cpus; 12904 int err, n, i, tmp_cpus; 12905 bool *mask; 12906 12907 tmp_cpus = READ_ONCE(cpus); 12908 if (tmp_cpus > 0) 12909 return tmp_cpus; 12910 12911 err = parse_cpu_mask_file(fcpu, &mask, &n); 12912 if (err) 12913 return libbpf_err(err); 12914 12915 tmp_cpus = 0; 12916 for (i = 0; i < n; i++) { 12917 if (mask[i]) 12918 tmp_cpus++; 12919 } 12920 free(mask); 12921 12922 WRITE_ONCE(cpus, tmp_cpus); 12923 return tmp_cpus; 12924 } 12925 12926 static int populate_skeleton_maps(const struct bpf_object *obj, 12927 struct bpf_map_skeleton *maps, 12928 size_t map_cnt) 12929 { 12930 int i; 12931 12932 for (i = 0; i < map_cnt; i++) { 12933 struct bpf_map **map = maps[i].map; 12934 const char *name = maps[i].name; 12935 void **mmaped = maps[i].mmaped; 12936 12937 *map = bpf_object__find_map_by_name(obj, name); 12938 if (!*map) { 12939 pr_warn("failed to find skeleton map '%s'\n", name); 12940 return -ESRCH; 12941 } 12942 12943 /* externs shouldn't be pre-setup from user code */ 12944 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12945 *mmaped = (*map)->mmaped; 12946 } 12947 return 0; 12948 } 12949 12950 static int populate_skeleton_progs(const struct bpf_object *obj, 12951 struct bpf_prog_skeleton *progs, 12952 size_t prog_cnt) 12953 { 12954 int i; 12955 12956 for (i = 0; i < prog_cnt; i++) { 12957 struct bpf_program **prog = progs[i].prog; 12958 const char *name = progs[i].name; 12959 12960 *prog = bpf_object__find_program_by_name(obj, name); 12961 if (!*prog) { 12962 pr_warn("failed to find skeleton program '%s'\n", name); 12963 return -ESRCH; 12964 } 12965 } 12966 return 0; 12967 } 12968 12969 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12970 const struct bpf_object_open_opts *opts) 12971 { 12972 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12973 .object_name = s->name, 12974 ); 12975 struct bpf_object *obj; 12976 int err; 12977 12978 /* Attempt to preserve opts->object_name, unless overriden by user 12979 * explicitly. Overwriting object name for skeletons is discouraged, 12980 * as it breaks global data maps, because they contain object name 12981 * prefix as their own map name prefix. When skeleton is generated, 12982 * bpftool is making an assumption that this name will stay the same. 12983 */ 12984 if (opts) { 12985 memcpy(&skel_opts, opts, sizeof(*opts)); 12986 if (!opts->object_name) 12987 skel_opts.object_name = s->name; 12988 } 12989 12990 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12991 err = libbpf_get_error(obj); 12992 if (err) { 12993 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12994 s->name, err); 12995 return libbpf_err(err); 12996 } 12997 12998 *s->obj = obj; 12999 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13000 if (err) { 13001 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13002 return libbpf_err(err); 13003 } 13004 13005 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13006 if (err) { 13007 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13008 return libbpf_err(err); 13009 } 13010 13011 return 0; 13012 } 13013 13014 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13015 { 13016 int err, len, var_idx, i; 13017 const char *var_name; 13018 const struct bpf_map *map; 13019 struct btf *btf; 13020 __u32 map_type_id; 13021 const struct btf_type *map_type, *var_type; 13022 const struct bpf_var_skeleton *var_skel; 13023 struct btf_var_secinfo *var; 13024 13025 if (!s->obj) 13026 return libbpf_err(-EINVAL); 13027 13028 btf = bpf_object__btf(s->obj); 13029 if (!btf) { 13030 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13031 bpf_object__name(s->obj)); 13032 return libbpf_err(-errno); 13033 } 13034 13035 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13036 if (err) { 13037 pr_warn("failed to populate subskeleton maps: %d\n", err); 13038 return libbpf_err(err); 13039 } 13040 13041 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13042 if (err) { 13043 pr_warn("failed to populate subskeleton maps: %d\n", err); 13044 return libbpf_err(err); 13045 } 13046 13047 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13048 var_skel = &s->vars[var_idx]; 13049 map = *var_skel->map; 13050 map_type_id = bpf_map__btf_value_type_id(map); 13051 map_type = btf__type_by_id(btf, map_type_id); 13052 13053 if (!btf_is_datasec(map_type)) { 13054 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13055 bpf_map__name(map), 13056 __btf_kind_str(btf_kind(map_type))); 13057 return libbpf_err(-EINVAL); 13058 } 13059 13060 len = btf_vlen(map_type); 13061 var = btf_var_secinfos(map_type); 13062 for (i = 0; i < len; i++, var++) { 13063 var_type = btf__type_by_id(btf, var->type); 13064 var_name = btf__name_by_offset(btf, var_type->name_off); 13065 if (strcmp(var_name, var_skel->name) == 0) { 13066 *var_skel->addr = map->mmaped + var->offset; 13067 break; 13068 } 13069 } 13070 } 13071 return 0; 13072 } 13073 13074 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13075 { 13076 if (!s) 13077 return; 13078 free(s->maps); 13079 free(s->progs); 13080 free(s->vars); 13081 free(s); 13082 } 13083 13084 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13085 { 13086 int i, err; 13087 13088 err = bpf_object__load(*s->obj); 13089 if (err) { 13090 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13091 return libbpf_err(err); 13092 } 13093 13094 for (i = 0; i < s->map_cnt; i++) { 13095 struct bpf_map *map = *s->maps[i].map; 13096 size_t mmap_sz = bpf_map_mmap_sz(map); 13097 int prot, map_fd = bpf_map__fd(map); 13098 void **mmaped = s->maps[i].mmaped; 13099 13100 if (!mmaped) 13101 continue; 13102 13103 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13104 *mmaped = NULL; 13105 continue; 13106 } 13107 13108 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13109 prot = PROT_READ; 13110 else 13111 prot = PROT_READ | PROT_WRITE; 13112 13113 /* Remap anonymous mmap()-ed "map initialization image" as 13114 * a BPF map-backed mmap()-ed memory, but preserving the same 13115 * memory address. This will cause kernel to change process' 13116 * page table to point to a different piece of kernel memory, 13117 * but from userspace point of view memory address (and its 13118 * contents, being identical at this point) will stay the 13119 * same. This mapping will be released by bpf_object__close() 13120 * as per normal clean up procedure, so we don't need to worry 13121 * about it from skeleton's clean up perspective. 13122 */ 13123 *mmaped = mmap(map->mmaped, mmap_sz, prot, 13124 MAP_SHARED | MAP_FIXED, map_fd, 0); 13125 if (*mmaped == MAP_FAILED) { 13126 err = -errno; 13127 *mmaped = NULL; 13128 pr_warn("failed to re-mmap() map '%s': %d\n", 13129 bpf_map__name(map), err); 13130 return libbpf_err(err); 13131 } 13132 } 13133 13134 return 0; 13135 } 13136 13137 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13138 { 13139 int i, err; 13140 13141 for (i = 0; i < s->prog_cnt; i++) { 13142 struct bpf_program *prog = *s->progs[i].prog; 13143 struct bpf_link **link = s->progs[i].link; 13144 13145 if (!prog->autoload) 13146 continue; 13147 13148 /* auto-attaching not supported for this program */ 13149 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13150 continue; 13151 13152 /* if user already set the link manually, don't attempt auto-attach */ 13153 if (*link) 13154 continue; 13155 13156 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13157 if (err) { 13158 pr_warn("prog '%s': failed to auto-attach: %d\n", 13159 bpf_program__name(prog), err); 13160 return libbpf_err(err); 13161 } 13162 13163 /* It's possible that for some SEC() definitions auto-attach 13164 * is supported in some cases (e.g., if definition completely 13165 * specifies target information), but is not in other cases. 13166 * SEC("uprobe") is one such case. If user specified target 13167 * binary and function name, such BPF program can be 13168 * auto-attached. But if not, it shouldn't trigger skeleton's 13169 * attach to fail. It should just be skipped. 13170 * attach_fn signals such case with returning 0 (no error) and 13171 * setting link to NULL. 13172 */ 13173 } 13174 13175 return 0; 13176 } 13177 13178 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13179 { 13180 int i; 13181 13182 for (i = 0; i < s->prog_cnt; i++) { 13183 struct bpf_link **link = s->progs[i].link; 13184 13185 bpf_link__destroy(*link); 13186 *link = NULL; 13187 } 13188 } 13189 13190 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13191 { 13192 if (!s) 13193 return; 13194 13195 if (s->progs) 13196 bpf_object__detach_skeleton(s); 13197 if (s->obj) 13198 bpf_object__close(*s->obj); 13199 free(s->maps); 13200 free(s->progs); 13201 free(s); 13202 } 13203