1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 [BPF_STRUCT_OPS] = "struct_ops", 120 [BPF_NETFILTER] = "netfilter", 121 }; 122 123 static const char * const link_type_name[] = { 124 [BPF_LINK_TYPE_UNSPEC] = "unspec", 125 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 126 [BPF_LINK_TYPE_TRACING] = "tracing", 127 [BPF_LINK_TYPE_CGROUP] = "cgroup", 128 [BPF_LINK_TYPE_ITER] = "iter", 129 [BPF_LINK_TYPE_NETNS] = "netns", 130 [BPF_LINK_TYPE_XDP] = "xdp", 131 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 132 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 133 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 134 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 135 }; 136 137 static const char * const map_type_name[] = { 138 [BPF_MAP_TYPE_UNSPEC] = "unspec", 139 [BPF_MAP_TYPE_HASH] = "hash", 140 [BPF_MAP_TYPE_ARRAY] = "array", 141 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 142 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 143 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 144 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 145 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 146 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 147 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 148 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 149 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 150 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 151 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 152 [BPF_MAP_TYPE_DEVMAP] = "devmap", 153 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 154 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 155 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 156 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 157 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 158 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 159 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 160 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 161 [BPF_MAP_TYPE_QUEUE] = "queue", 162 [BPF_MAP_TYPE_STACK] = "stack", 163 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 164 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 165 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 166 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 167 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 168 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 169 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 170 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 171 }; 172 173 static const char * const prog_type_name[] = { 174 [BPF_PROG_TYPE_UNSPEC] = "unspec", 175 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 176 [BPF_PROG_TYPE_KPROBE] = "kprobe", 177 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 178 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 179 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 180 [BPF_PROG_TYPE_XDP] = "xdp", 181 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 182 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 183 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 184 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 185 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 186 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 187 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 188 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 189 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 190 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 191 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 192 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 193 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 194 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 195 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 196 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 197 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 198 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 199 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 200 [BPF_PROG_TYPE_TRACING] = "tracing", 201 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 202 [BPF_PROG_TYPE_EXT] = "ext", 203 [BPF_PROG_TYPE_LSM] = "lsm", 204 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 205 [BPF_PROG_TYPE_SYSCALL] = "syscall", 206 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 207 }; 208 209 static int __base_pr(enum libbpf_print_level level, const char *format, 210 va_list args) 211 { 212 if (level == LIBBPF_DEBUG) 213 return 0; 214 215 return vfprintf(stderr, format, args); 216 } 217 218 static libbpf_print_fn_t __libbpf_pr = __base_pr; 219 220 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 221 { 222 libbpf_print_fn_t old_print_fn; 223 224 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 225 226 return old_print_fn; 227 } 228 229 __printf(2, 3) 230 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 231 { 232 va_list args; 233 int old_errno; 234 libbpf_print_fn_t print_fn; 235 236 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 237 if (!print_fn) 238 return; 239 240 old_errno = errno; 241 242 va_start(args, format); 243 __libbpf_pr(level, format, args); 244 va_end(args); 245 246 errno = old_errno; 247 } 248 249 static void pr_perm_msg(int err) 250 { 251 struct rlimit limit; 252 char buf[100]; 253 254 if (err != -EPERM || geteuid() != 0) 255 return; 256 257 err = getrlimit(RLIMIT_MEMLOCK, &limit); 258 if (err) 259 return; 260 261 if (limit.rlim_cur == RLIM_INFINITY) 262 return; 263 264 if (limit.rlim_cur < 1024) 265 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 266 else if (limit.rlim_cur < 1024*1024) 267 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 268 else 269 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 270 271 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 272 buf); 273 } 274 275 #define STRERR_BUFSIZE 128 276 277 /* Copied from tools/perf/util/util.h */ 278 #ifndef zfree 279 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 280 #endif 281 282 #ifndef zclose 283 # define zclose(fd) ({ \ 284 int ___err = 0; \ 285 if ((fd) >= 0) \ 286 ___err = close((fd)); \ 287 fd = -1; \ 288 ___err; }) 289 #endif 290 291 static inline __u64 ptr_to_u64(const void *ptr) 292 { 293 return (__u64) (unsigned long) ptr; 294 } 295 296 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 297 { 298 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 299 return 0; 300 } 301 302 __u32 libbpf_major_version(void) 303 { 304 return LIBBPF_MAJOR_VERSION; 305 } 306 307 __u32 libbpf_minor_version(void) 308 { 309 return LIBBPF_MINOR_VERSION; 310 } 311 312 const char *libbpf_version_string(void) 313 { 314 #define __S(X) #X 315 #define _S(X) __S(X) 316 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 317 #undef _S 318 #undef __S 319 } 320 321 enum reloc_type { 322 RELO_LD64, 323 RELO_CALL, 324 RELO_DATA, 325 RELO_EXTERN_LD64, 326 RELO_EXTERN_CALL, 327 RELO_SUBPROG_ADDR, 328 RELO_CORE, 329 }; 330 331 struct reloc_desc { 332 enum reloc_type type; 333 int insn_idx; 334 union { 335 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 336 struct { 337 int map_idx; 338 int sym_off; 339 int ext_idx; 340 }; 341 }; 342 }; 343 344 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 345 enum sec_def_flags { 346 SEC_NONE = 0, 347 /* expected_attach_type is optional, if kernel doesn't support that */ 348 SEC_EXP_ATTACH_OPT = 1, 349 /* legacy, only used by libbpf_get_type_names() and 350 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 351 * This used to be associated with cgroup (and few other) BPF programs 352 * that were attachable through BPF_PROG_ATTACH command. Pretty 353 * meaningless nowadays, though. 354 */ 355 SEC_ATTACHABLE = 2, 356 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 357 /* attachment target is specified through BTF ID in either kernel or 358 * other BPF program's BTF object 359 */ 360 SEC_ATTACH_BTF = 4, 361 /* BPF program type allows sleeping/blocking in kernel */ 362 SEC_SLEEPABLE = 8, 363 /* BPF program support non-linear XDP buffer */ 364 SEC_XDP_FRAGS = 16, 365 }; 366 367 struct bpf_sec_def { 368 char *sec; 369 enum bpf_prog_type prog_type; 370 enum bpf_attach_type expected_attach_type; 371 long cookie; 372 int handler_id; 373 374 libbpf_prog_setup_fn_t prog_setup_fn; 375 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 376 libbpf_prog_attach_fn_t prog_attach_fn; 377 }; 378 379 /* 380 * bpf_prog should be a better name but it has been used in 381 * linux/filter.h. 382 */ 383 struct bpf_program { 384 char *name; 385 char *sec_name; 386 size_t sec_idx; 387 const struct bpf_sec_def *sec_def; 388 /* this program's instruction offset (in number of instructions) 389 * within its containing ELF section 390 */ 391 size_t sec_insn_off; 392 /* number of original instructions in ELF section belonging to this 393 * program, not taking into account subprogram instructions possible 394 * appended later during relocation 395 */ 396 size_t sec_insn_cnt; 397 /* Offset (in number of instructions) of the start of instruction 398 * belonging to this BPF program within its containing main BPF 399 * program. For the entry-point (main) BPF program, this is always 400 * zero. For a sub-program, this gets reset before each of main BPF 401 * programs are processed and relocated and is used to determined 402 * whether sub-program was already appended to the main program, and 403 * if yes, at which instruction offset. 404 */ 405 size_t sub_insn_off; 406 407 /* instructions that belong to BPF program; insns[0] is located at 408 * sec_insn_off instruction within its ELF section in ELF file, so 409 * when mapping ELF file instruction index to the local instruction, 410 * one needs to subtract sec_insn_off; and vice versa. 411 */ 412 struct bpf_insn *insns; 413 /* actual number of instruction in this BPF program's image; for 414 * entry-point BPF programs this includes the size of main program 415 * itself plus all the used sub-programs, appended at the end 416 */ 417 size_t insns_cnt; 418 419 struct reloc_desc *reloc_desc; 420 int nr_reloc; 421 422 /* BPF verifier log settings */ 423 char *log_buf; 424 size_t log_size; 425 __u32 log_level; 426 427 struct bpf_object *obj; 428 429 int fd; 430 bool autoload; 431 bool autoattach; 432 bool mark_btf_static; 433 enum bpf_prog_type type; 434 enum bpf_attach_type expected_attach_type; 435 436 int prog_ifindex; 437 __u32 attach_btf_obj_fd; 438 __u32 attach_btf_id; 439 __u32 attach_prog_fd; 440 441 void *func_info; 442 __u32 func_info_rec_size; 443 __u32 func_info_cnt; 444 445 void *line_info; 446 __u32 line_info_rec_size; 447 __u32 line_info_cnt; 448 __u32 prog_flags; 449 }; 450 451 struct bpf_struct_ops { 452 const char *tname; 453 const struct btf_type *type; 454 struct bpf_program **progs; 455 __u32 *kern_func_off; 456 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 457 void *data; 458 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 459 * btf_vmlinux's format. 460 * struct bpf_struct_ops_tcp_congestion_ops { 461 * [... some other kernel fields ...] 462 * struct tcp_congestion_ops data; 463 * } 464 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 465 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 466 * from "data". 467 */ 468 void *kern_vdata; 469 __u32 type_id; 470 }; 471 472 #define DATA_SEC ".data" 473 #define BSS_SEC ".bss" 474 #define RODATA_SEC ".rodata" 475 #define KCONFIG_SEC ".kconfig" 476 #define KSYMS_SEC ".ksyms" 477 #define STRUCT_OPS_SEC ".struct_ops" 478 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 479 480 enum libbpf_map_type { 481 LIBBPF_MAP_UNSPEC, 482 LIBBPF_MAP_DATA, 483 LIBBPF_MAP_BSS, 484 LIBBPF_MAP_RODATA, 485 LIBBPF_MAP_KCONFIG, 486 }; 487 488 struct bpf_map_def { 489 unsigned int type; 490 unsigned int key_size; 491 unsigned int value_size; 492 unsigned int max_entries; 493 unsigned int map_flags; 494 }; 495 496 struct bpf_map { 497 struct bpf_object *obj; 498 char *name; 499 /* real_name is defined for special internal maps (.rodata*, 500 * .data*, .bss, .kconfig) and preserves their original ELF section 501 * name. This is important to be able to find corresponding BTF 502 * DATASEC information. 503 */ 504 char *real_name; 505 int fd; 506 int sec_idx; 507 size_t sec_offset; 508 int map_ifindex; 509 int inner_map_fd; 510 struct bpf_map_def def; 511 __u32 numa_node; 512 __u32 btf_var_idx; 513 __u32 btf_key_type_id; 514 __u32 btf_value_type_id; 515 __u32 btf_vmlinux_value_type_id; 516 enum libbpf_map_type libbpf_type; 517 void *mmaped; 518 struct bpf_struct_ops *st_ops; 519 struct bpf_map *inner_map; 520 void **init_slots; 521 int init_slots_sz; 522 char *pin_path; 523 bool pinned; 524 bool reused; 525 bool autocreate; 526 __u64 map_extra; 527 }; 528 529 enum extern_type { 530 EXT_UNKNOWN, 531 EXT_KCFG, 532 EXT_KSYM, 533 }; 534 535 enum kcfg_type { 536 KCFG_UNKNOWN, 537 KCFG_CHAR, 538 KCFG_BOOL, 539 KCFG_INT, 540 KCFG_TRISTATE, 541 KCFG_CHAR_ARR, 542 }; 543 544 struct extern_desc { 545 enum extern_type type; 546 int sym_idx; 547 int btf_id; 548 int sec_btf_id; 549 const char *name; 550 bool is_set; 551 bool is_weak; 552 union { 553 struct { 554 enum kcfg_type type; 555 int sz; 556 int align; 557 int data_off; 558 bool is_signed; 559 } kcfg; 560 struct { 561 unsigned long long addr; 562 563 /* target btf_id of the corresponding kernel var. */ 564 int kernel_btf_obj_fd; 565 int kernel_btf_id; 566 567 /* local btf_id of the ksym extern's type. */ 568 __u32 type_id; 569 /* BTF fd index to be patched in for insn->off, this is 570 * 0 for vmlinux BTF, index in obj->fd_array for module 571 * BTF 572 */ 573 __s16 btf_fd_idx; 574 } ksym; 575 }; 576 }; 577 578 struct module_btf { 579 struct btf *btf; 580 char *name; 581 __u32 id; 582 int fd; 583 int fd_array_idx; 584 }; 585 586 enum sec_type { 587 SEC_UNUSED = 0, 588 SEC_RELO, 589 SEC_BSS, 590 SEC_DATA, 591 SEC_RODATA, 592 }; 593 594 struct elf_sec_desc { 595 enum sec_type sec_type; 596 Elf64_Shdr *shdr; 597 Elf_Data *data; 598 }; 599 600 struct elf_state { 601 int fd; 602 const void *obj_buf; 603 size_t obj_buf_sz; 604 Elf *elf; 605 Elf64_Ehdr *ehdr; 606 Elf_Data *symbols; 607 Elf_Data *st_ops_data; 608 Elf_Data *st_ops_link_data; 609 size_t shstrndx; /* section index for section name strings */ 610 size_t strtabidx; 611 struct elf_sec_desc *secs; 612 size_t sec_cnt; 613 int btf_maps_shndx; 614 __u32 btf_maps_sec_btf_id; 615 int text_shndx; 616 int symbols_shndx; 617 int st_ops_shndx; 618 int st_ops_link_shndx; 619 }; 620 621 struct usdt_manager; 622 623 struct bpf_object { 624 char name[BPF_OBJ_NAME_LEN]; 625 char license[64]; 626 __u32 kern_version; 627 628 struct bpf_program *programs; 629 size_t nr_programs; 630 struct bpf_map *maps; 631 size_t nr_maps; 632 size_t maps_cap; 633 634 char *kconfig; 635 struct extern_desc *externs; 636 int nr_extern; 637 int kconfig_map_idx; 638 639 bool loaded; 640 bool has_subcalls; 641 bool has_rodata; 642 643 struct bpf_gen *gen_loader; 644 645 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 646 struct elf_state efile; 647 648 struct btf *btf; 649 struct btf_ext *btf_ext; 650 651 /* Parse and load BTF vmlinux if any of the programs in the object need 652 * it at load time. 653 */ 654 struct btf *btf_vmlinux; 655 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 656 * override for vmlinux BTF. 657 */ 658 char *btf_custom_path; 659 /* vmlinux BTF override for CO-RE relocations */ 660 struct btf *btf_vmlinux_override; 661 /* Lazily initialized kernel module BTFs */ 662 struct module_btf *btf_modules; 663 bool btf_modules_loaded; 664 size_t btf_module_cnt; 665 size_t btf_module_cap; 666 667 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 668 char *log_buf; 669 size_t log_size; 670 __u32 log_level; 671 672 int *fd_array; 673 size_t fd_array_cap; 674 size_t fd_array_cnt; 675 676 struct usdt_manager *usdt_man; 677 678 char path[]; 679 }; 680 681 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 682 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 683 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 684 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 685 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 686 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 687 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 688 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 689 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 690 691 void bpf_program__unload(struct bpf_program *prog) 692 { 693 if (!prog) 694 return; 695 696 zclose(prog->fd); 697 698 zfree(&prog->func_info); 699 zfree(&prog->line_info); 700 } 701 702 static void bpf_program__exit(struct bpf_program *prog) 703 { 704 if (!prog) 705 return; 706 707 bpf_program__unload(prog); 708 zfree(&prog->name); 709 zfree(&prog->sec_name); 710 zfree(&prog->insns); 711 zfree(&prog->reloc_desc); 712 713 prog->nr_reloc = 0; 714 prog->insns_cnt = 0; 715 prog->sec_idx = -1; 716 } 717 718 static bool insn_is_subprog_call(const struct bpf_insn *insn) 719 { 720 return BPF_CLASS(insn->code) == BPF_JMP && 721 BPF_OP(insn->code) == BPF_CALL && 722 BPF_SRC(insn->code) == BPF_K && 723 insn->src_reg == BPF_PSEUDO_CALL && 724 insn->dst_reg == 0 && 725 insn->off == 0; 726 } 727 728 static bool is_call_insn(const struct bpf_insn *insn) 729 { 730 return insn->code == (BPF_JMP | BPF_CALL); 731 } 732 733 static bool insn_is_pseudo_func(struct bpf_insn *insn) 734 { 735 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 736 } 737 738 static int 739 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 740 const char *name, size_t sec_idx, const char *sec_name, 741 size_t sec_off, void *insn_data, size_t insn_data_sz) 742 { 743 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 744 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 745 sec_name, name, sec_off, insn_data_sz); 746 return -EINVAL; 747 } 748 749 memset(prog, 0, sizeof(*prog)); 750 prog->obj = obj; 751 752 prog->sec_idx = sec_idx; 753 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 754 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 755 /* insns_cnt can later be increased by appending used subprograms */ 756 prog->insns_cnt = prog->sec_insn_cnt; 757 758 prog->type = BPF_PROG_TYPE_UNSPEC; 759 prog->fd = -1; 760 761 /* libbpf's convention for SEC("?abc...") is that it's just like 762 * SEC("abc...") but the corresponding bpf_program starts out with 763 * autoload set to false. 764 */ 765 if (sec_name[0] == '?') { 766 prog->autoload = false; 767 /* from now on forget there was ? in section name */ 768 sec_name++; 769 } else { 770 prog->autoload = true; 771 } 772 773 prog->autoattach = true; 774 775 /* inherit object's log_level */ 776 prog->log_level = obj->log_level; 777 778 prog->sec_name = strdup(sec_name); 779 if (!prog->sec_name) 780 goto errout; 781 782 prog->name = strdup(name); 783 if (!prog->name) 784 goto errout; 785 786 prog->insns = malloc(insn_data_sz); 787 if (!prog->insns) 788 goto errout; 789 memcpy(prog->insns, insn_data, insn_data_sz); 790 791 return 0; 792 errout: 793 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 794 bpf_program__exit(prog); 795 return -ENOMEM; 796 } 797 798 static int 799 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 800 const char *sec_name, int sec_idx) 801 { 802 Elf_Data *symbols = obj->efile.symbols; 803 struct bpf_program *prog, *progs; 804 void *data = sec_data->d_buf; 805 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 806 int nr_progs, err, i; 807 const char *name; 808 Elf64_Sym *sym; 809 810 progs = obj->programs; 811 nr_progs = obj->nr_programs; 812 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 813 814 for (i = 0; i < nr_syms; i++) { 815 sym = elf_sym_by_idx(obj, i); 816 817 if (sym->st_shndx != sec_idx) 818 continue; 819 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 820 continue; 821 822 prog_sz = sym->st_size; 823 sec_off = sym->st_value; 824 825 name = elf_sym_str(obj, sym->st_name); 826 if (!name) { 827 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 828 sec_name, sec_off); 829 return -LIBBPF_ERRNO__FORMAT; 830 } 831 832 if (sec_off + prog_sz > sec_sz) { 833 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 834 sec_name, sec_off); 835 return -LIBBPF_ERRNO__FORMAT; 836 } 837 838 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 839 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 840 return -ENOTSUP; 841 } 842 843 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 844 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 845 846 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 847 if (!progs) { 848 /* 849 * In this case the original obj->programs 850 * is still valid, so don't need special treat for 851 * bpf_close_object(). 852 */ 853 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 854 sec_name, name); 855 return -ENOMEM; 856 } 857 obj->programs = progs; 858 859 prog = &progs[nr_progs]; 860 861 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 862 sec_off, data + sec_off, prog_sz); 863 if (err) 864 return err; 865 866 /* if function is a global/weak symbol, but has restricted 867 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 868 * as static to enable more permissive BPF verification mode 869 * with more outside context available to BPF verifier 870 */ 871 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 872 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 873 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 874 prog->mark_btf_static = true; 875 876 nr_progs++; 877 obj->nr_programs = nr_progs; 878 } 879 880 return 0; 881 } 882 883 static const struct btf_member * 884 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 885 { 886 struct btf_member *m; 887 int i; 888 889 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 890 if (btf_member_bit_offset(t, i) == bit_offset) 891 return m; 892 } 893 894 return NULL; 895 } 896 897 static const struct btf_member * 898 find_member_by_name(const struct btf *btf, const struct btf_type *t, 899 const char *name) 900 { 901 struct btf_member *m; 902 int i; 903 904 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 905 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 906 return m; 907 } 908 909 return NULL; 910 } 911 912 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 913 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 914 const char *name, __u32 kind); 915 916 static int 917 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 918 const struct btf_type **type, __u32 *type_id, 919 const struct btf_type **vtype, __u32 *vtype_id, 920 const struct btf_member **data_member) 921 { 922 const struct btf_type *kern_type, *kern_vtype; 923 const struct btf_member *kern_data_member; 924 __s32 kern_vtype_id, kern_type_id; 925 __u32 i; 926 927 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 928 if (kern_type_id < 0) { 929 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 930 tname); 931 return kern_type_id; 932 } 933 kern_type = btf__type_by_id(btf, kern_type_id); 934 935 /* Find the corresponding "map_value" type that will be used 936 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 937 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 938 * btf_vmlinux. 939 */ 940 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 941 tname, BTF_KIND_STRUCT); 942 if (kern_vtype_id < 0) { 943 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 944 STRUCT_OPS_VALUE_PREFIX, tname); 945 return kern_vtype_id; 946 } 947 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 948 949 /* Find "struct tcp_congestion_ops" from 950 * struct bpf_struct_ops_tcp_congestion_ops { 951 * [ ... ] 952 * struct tcp_congestion_ops data; 953 * } 954 */ 955 kern_data_member = btf_members(kern_vtype); 956 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 957 if (kern_data_member->type == kern_type_id) 958 break; 959 } 960 if (i == btf_vlen(kern_vtype)) { 961 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 962 tname, STRUCT_OPS_VALUE_PREFIX, tname); 963 return -EINVAL; 964 } 965 966 *type = kern_type; 967 *type_id = kern_type_id; 968 *vtype = kern_vtype; 969 *vtype_id = kern_vtype_id; 970 *data_member = kern_data_member; 971 972 return 0; 973 } 974 975 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 976 { 977 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 978 } 979 980 /* Init the map's fields that depend on kern_btf */ 981 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 982 const struct btf *btf, 983 const struct btf *kern_btf) 984 { 985 const struct btf_member *member, *kern_member, *kern_data_member; 986 const struct btf_type *type, *kern_type, *kern_vtype; 987 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 988 struct bpf_struct_ops *st_ops; 989 void *data, *kern_data; 990 const char *tname; 991 int err; 992 993 st_ops = map->st_ops; 994 type = st_ops->type; 995 tname = st_ops->tname; 996 err = find_struct_ops_kern_types(kern_btf, tname, 997 &kern_type, &kern_type_id, 998 &kern_vtype, &kern_vtype_id, 999 &kern_data_member); 1000 if (err) 1001 return err; 1002 1003 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1004 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1005 1006 map->def.value_size = kern_vtype->size; 1007 map->btf_vmlinux_value_type_id = kern_vtype_id; 1008 1009 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1010 if (!st_ops->kern_vdata) 1011 return -ENOMEM; 1012 1013 data = st_ops->data; 1014 kern_data_off = kern_data_member->offset / 8; 1015 kern_data = st_ops->kern_vdata + kern_data_off; 1016 1017 member = btf_members(type); 1018 for (i = 0; i < btf_vlen(type); i++, member++) { 1019 const struct btf_type *mtype, *kern_mtype; 1020 __u32 mtype_id, kern_mtype_id; 1021 void *mdata, *kern_mdata; 1022 __s64 msize, kern_msize; 1023 __u32 moff, kern_moff; 1024 __u32 kern_member_idx; 1025 const char *mname; 1026 1027 mname = btf__name_by_offset(btf, member->name_off); 1028 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1029 if (!kern_member) { 1030 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1031 map->name, mname); 1032 return -ENOTSUP; 1033 } 1034 1035 kern_member_idx = kern_member - btf_members(kern_type); 1036 if (btf_member_bitfield_size(type, i) || 1037 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1038 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1039 map->name, mname); 1040 return -ENOTSUP; 1041 } 1042 1043 moff = member->offset / 8; 1044 kern_moff = kern_member->offset / 8; 1045 1046 mdata = data + moff; 1047 kern_mdata = kern_data + kern_moff; 1048 1049 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1050 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1051 &kern_mtype_id); 1052 if (BTF_INFO_KIND(mtype->info) != 1053 BTF_INFO_KIND(kern_mtype->info)) { 1054 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1055 map->name, mname, BTF_INFO_KIND(mtype->info), 1056 BTF_INFO_KIND(kern_mtype->info)); 1057 return -ENOTSUP; 1058 } 1059 1060 if (btf_is_ptr(mtype)) { 1061 struct bpf_program *prog; 1062 1063 prog = st_ops->progs[i]; 1064 if (!prog) 1065 continue; 1066 1067 kern_mtype = skip_mods_and_typedefs(kern_btf, 1068 kern_mtype->type, 1069 &kern_mtype_id); 1070 1071 /* mtype->type must be a func_proto which was 1072 * guaranteed in bpf_object__collect_st_ops_relos(), 1073 * so only check kern_mtype for func_proto here. 1074 */ 1075 if (!btf_is_func_proto(kern_mtype)) { 1076 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1077 map->name, mname); 1078 return -ENOTSUP; 1079 } 1080 1081 prog->attach_btf_id = kern_type_id; 1082 prog->expected_attach_type = kern_member_idx; 1083 1084 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1085 1086 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1087 map->name, mname, prog->name, moff, 1088 kern_moff); 1089 1090 continue; 1091 } 1092 1093 msize = btf__resolve_size(btf, mtype_id); 1094 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1095 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1096 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1097 map->name, mname, (ssize_t)msize, 1098 (ssize_t)kern_msize); 1099 return -ENOTSUP; 1100 } 1101 1102 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1103 map->name, mname, (unsigned int)msize, 1104 moff, kern_moff); 1105 memcpy(kern_mdata, mdata, msize); 1106 } 1107 1108 return 0; 1109 } 1110 1111 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1112 { 1113 struct bpf_map *map; 1114 size_t i; 1115 int err; 1116 1117 for (i = 0; i < obj->nr_maps; i++) { 1118 map = &obj->maps[i]; 1119 1120 if (!bpf_map__is_struct_ops(map)) 1121 continue; 1122 1123 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1124 obj->btf_vmlinux); 1125 if (err) 1126 return err; 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1133 int shndx, Elf_Data *data, __u32 map_flags) 1134 { 1135 const struct btf_type *type, *datasec; 1136 const struct btf_var_secinfo *vsi; 1137 struct bpf_struct_ops *st_ops; 1138 const char *tname, *var_name; 1139 __s32 type_id, datasec_id; 1140 const struct btf *btf; 1141 struct bpf_map *map; 1142 __u32 i; 1143 1144 if (shndx == -1) 1145 return 0; 1146 1147 btf = obj->btf; 1148 datasec_id = btf__find_by_name_kind(btf, sec_name, 1149 BTF_KIND_DATASEC); 1150 if (datasec_id < 0) { 1151 pr_warn("struct_ops init: DATASEC %s not found\n", 1152 sec_name); 1153 return -EINVAL; 1154 } 1155 1156 datasec = btf__type_by_id(btf, datasec_id); 1157 vsi = btf_var_secinfos(datasec); 1158 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1159 type = btf__type_by_id(obj->btf, vsi->type); 1160 var_name = btf__name_by_offset(obj->btf, type->name_off); 1161 1162 type_id = btf__resolve_type(obj->btf, vsi->type); 1163 if (type_id < 0) { 1164 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1165 vsi->type, sec_name); 1166 return -EINVAL; 1167 } 1168 1169 type = btf__type_by_id(obj->btf, type_id); 1170 tname = btf__name_by_offset(obj->btf, type->name_off); 1171 if (!tname[0]) { 1172 pr_warn("struct_ops init: anonymous type is not supported\n"); 1173 return -ENOTSUP; 1174 } 1175 if (!btf_is_struct(type)) { 1176 pr_warn("struct_ops init: %s is not a struct\n", tname); 1177 return -EINVAL; 1178 } 1179 1180 map = bpf_object__add_map(obj); 1181 if (IS_ERR(map)) 1182 return PTR_ERR(map); 1183 1184 map->sec_idx = shndx; 1185 map->sec_offset = vsi->offset; 1186 map->name = strdup(var_name); 1187 if (!map->name) 1188 return -ENOMEM; 1189 1190 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1191 map->def.key_size = sizeof(int); 1192 map->def.value_size = type->size; 1193 map->def.max_entries = 1; 1194 map->def.map_flags = map_flags; 1195 1196 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1197 if (!map->st_ops) 1198 return -ENOMEM; 1199 st_ops = map->st_ops; 1200 st_ops->data = malloc(type->size); 1201 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1202 st_ops->kern_func_off = malloc(btf_vlen(type) * 1203 sizeof(*st_ops->kern_func_off)); 1204 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1205 return -ENOMEM; 1206 1207 if (vsi->offset + type->size > data->d_size) { 1208 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1209 var_name, sec_name); 1210 return -EINVAL; 1211 } 1212 1213 memcpy(st_ops->data, 1214 data->d_buf + vsi->offset, 1215 type->size); 1216 st_ops->tname = tname; 1217 st_ops->type = type; 1218 st_ops->type_id = type_id; 1219 1220 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1221 tname, type_id, var_name, vsi->offset); 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1228 { 1229 int err; 1230 1231 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1232 obj->efile.st_ops_data, 0); 1233 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1234 obj->efile.st_ops_link_shndx, 1235 obj->efile.st_ops_link_data, 1236 BPF_F_LINK); 1237 return err; 1238 } 1239 1240 static struct bpf_object *bpf_object__new(const char *path, 1241 const void *obj_buf, 1242 size_t obj_buf_sz, 1243 const char *obj_name) 1244 { 1245 struct bpf_object *obj; 1246 char *end; 1247 1248 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1249 if (!obj) { 1250 pr_warn("alloc memory failed for %s\n", path); 1251 return ERR_PTR(-ENOMEM); 1252 } 1253 1254 strcpy(obj->path, path); 1255 if (obj_name) { 1256 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1257 } else { 1258 /* Using basename() GNU version which doesn't modify arg. */ 1259 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1260 end = strchr(obj->name, '.'); 1261 if (end) 1262 *end = 0; 1263 } 1264 1265 obj->efile.fd = -1; 1266 /* 1267 * Caller of this function should also call 1268 * bpf_object__elf_finish() after data collection to return 1269 * obj_buf to user. If not, we should duplicate the buffer to 1270 * avoid user freeing them before elf finish. 1271 */ 1272 obj->efile.obj_buf = obj_buf; 1273 obj->efile.obj_buf_sz = obj_buf_sz; 1274 obj->efile.btf_maps_shndx = -1; 1275 obj->efile.st_ops_shndx = -1; 1276 obj->efile.st_ops_link_shndx = -1; 1277 obj->kconfig_map_idx = -1; 1278 1279 obj->kern_version = get_kernel_version(); 1280 obj->loaded = false; 1281 1282 return obj; 1283 } 1284 1285 static void bpf_object__elf_finish(struct bpf_object *obj) 1286 { 1287 if (!obj->efile.elf) 1288 return; 1289 1290 elf_end(obj->efile.elf); 1291 obj->efile.elf = NULL; 1292 obj->efile.symbols = NULL; 1293 obj->efile.st_ops_data = NULL; 1294 obj->efile.st_ops_link_data = NULL; 1295 1296 zfree(&obj->efile.secs); 1297 obj->efile.sec_cnt = 0; 1298 zclose(obj->efile.fd); 1299 obj->efile.obj_buf = NULL; 1300 obj->efile.obj_buf_sz = 0; 1301 } 1302 1303 static int bpf_object__elf_init(struct bpf_object *obj) 1304 { 1305 Elf64_Ehdr *ehdr; 1306 int err = 0; 1307 Elf *elf; 1308 1309 if (obj->efile.elf) { 1310 pr_warn("elf: init internal error\n"); 1311 return -LIBBPF_ERRNO__LIBELF; 1312 } 1313 1314 if (obj->efile.obj_buf_sz > 0) { 1315 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1316 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1317 } else { 1318 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1319 if (obj->efile.fd < 0) { 1320 char errmsg[STRERR_BUFSIZE], *cp; 1321 1322 err = -errno; 1323 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1324 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1325 return err; 1326 } 1327 1328 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1329 } 1330 1331 if (!elf) { 1332 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1333 err = -LIBBPF_ERRNO__LIBELF; 1334 goto errout; 1335 } 1336 1337 obj->efile.elf = elf; 1338 1339 if (elf_kind(elf) != ELF_K_ELF) { 1340 err = -LIBBPF_ERRNO__FORMAT; 1341 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1342 goto errout; 1343 } 1344 1345 if (gelf_getclass(elf) != ELFCLASS64) { 1346 err = -LIBBPF_ERRNO__FORMAT; 1347 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1348 goto errout; 1349 } 1350 1351 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1352 if (!obj->efile.ehdr) { 1353 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1354 err = -LIBBPF_ERRNO__FORMAT; 1355 goto errout; 1356 } 1357 1358 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1359 pr_warn("elf: failed to get section names section index for %s: %s\n", 1360 obj->path, elf_errmsg(-1)); 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 goto errout; 1363 } 1364 1365 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1366 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1367 pr_warn("elf: failed to get section names strings from %s: %s\n", 1368 obj->path, elf_errmsg(-1)); 1369 err = -LIBBPF_ERRNO__FORMAT; 1370 goto errout; 1371 } 1372 1373 /* Old LLVM set e_machine to EM_NONE */ 1374 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1375 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1376 err = -LIBBPF_ERRNO__FORMAT; 1377 goto errout; 1378 } 1379 1380 return 0; 1381 errout: 1382 bpf_object__elf_finish(obj); 1383 return err; 1384 } 1385 1386 static int bpf_object__check_endianness(struct bpf_object *obj) 1387 { 1388 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1389 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1390 return 0; 1391 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1392 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1393 return 0; 1394 #else 1395 # error "Unrecognized __BYTE_ORDER__" 1396 #endif 1397 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1398 return -LIBBPF_ERRNO__ENDIAN; 1399 } 1400 1401 static int 1402 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1403 { 1404 if (!data) { 1405 pr_warn("invalid license section in %s\n", obj->path); 1406 return -LIBBPF_ERRNO__FORMAT; 1407 } 1408 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1409 * go over allowed ELF data section buffer 1410 */ 1411 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1412 pr_debug("license of %s is %s\n", obj->path, obj->license); 1413 return 0; 1414 } 1415 1416 static int 1417 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1418 { 1419 __u32 kver; 1420 1421 if (!data || size != sizeof(kver)) { 1422 pr_warn("invalid kver section in %s\n", obj->path); 1423 return -LIBBPF_ERRNO__FORMAT; 1424 } 1425 memcpy(&kver, data, sizeof(kver)); 1426 obj->kern_version = kver; 1427 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1428 return 0; 1429 } 1430 1431 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1432 { 1433 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1434 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1435 return true; 1436 return false; 1437 } 1438 1439 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1440 { 1441 Elf_Data *data; 1442 Elf_Scn *scn; 1443 1444 if (!name) 1445 return -EINVAL; 1446 1447 scn = elf_sec_by_name(obj, name); 1448 data = elf_sec_data(obj, scn); 1449 if (data) { 1450 *size = data->d_size; 1451 return 0; /* found it */ 1452 } 1453 1454 return -ENOENT; 1455 } 1456 1457 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1458 { 1459 Elf_Data *symbols = obj->efile.symbols; 1460 const char *sname; 1461 size_t si; 1462 1463 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1464 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1465 1466 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1467 continue; 1468 1469 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1470 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1471 continue; 1472 1473 sname = elf_sym_str(obj, sym->st_name); 1474 if (!sname) { 1475 pr_warn("failed to get sym name string for var %s\n", name); 1476 return ERR_PTR(-EIO); 1477 } 1478 if (strcmp(name, sname) == 0) 1479 return sym; 1480 } 1481 1482 return ERR_PTR(-ENOENT); 1483 } 1484 1485 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1486 { 1487 struct bpf_map *map; 1488 int err; 1489 1490 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1491 sizeof(*obj->maps), obj->nr_maps + 1); 1492 if (err) 1493 return ERR_PTR(err); 1494 1495 map = &obj->maps[obj->nr_maps++]; 1496 map->obj = obj; 1497 map->fd = -1; 1498 map->inner_map_fd = -1; 1499 map->autocreate = true; 1500 1501 return map; 1502 } 1503 1504 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1505 { 1506 const long page_sz = sysconf(_SC_PAGE_SIZE); 1507 size_t map_sz; 1508 1509 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1510 map_sz = roundup(map_sz, page_sz); 1511 return map_sz; 1512 } 1513 1514 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1515 { 1516 void *mmaped; 1517 1518 if (!map->mmaped) 1519 return -EINVAL; 1520 1521 if (old_sz == new_sz) 1522 return 0; 1523 1524 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1525 if (mmaped == MAP_FAILED) 1526 return -errno; 1527 1528 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1529 munmap(map->mmaped, old_sz); 1530 map->mmaped = mmaped; 1531 return 0; 1532 } 1533 1534 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1535 { 1536 char map_name[BPF_OBJ_NAME_LEN], *p; 1537 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1538 1539 /* This is one of the more confusing parts of libbpf for various 1540 * reasons, some of which are historical. The original idea for naming 1541 * internal names was to include as much of BPF object name prefix as 1542 * possible, so that it can be distinguished from similar internal 1543 * maps of a different BPF object. 1544 * As an example, let's say we have bpf_object named 'my_object_name' 1545 * and internal map corresponding to '.rodata' ELF section. The final 1546 * map name advertised to user and to the kernel will be 1547 * 'my_objec.rodata', taking first 8 characters of object name and 1548 * entire 7 characters of '.rodata'. 1549 * Somewhat confusingly, if internal map ELF section name is shorter 1550 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1551 * for the suffix, even though we only have 4 actual characters, and 1552 * resulting map will be called 'my_objec.bss', not even using all 15 1553 * characters allowed by the kernel. Oh well, at least the truncated 1554 * object name is somewhat consistent in this case. But if the map 1555 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1556 * (8 chars) and thus will be left with only first 7 characters of the 1557 * object name ('my_obje'). Happy guessing, user, that the final map 1558 * name will be "my_obje.kconfig". 1559 * Now, with libbpf starting to support arbitrarily named .rodata.* 1560 * and .data.* data sections, it's possible that ELF section name is 1561 * longer than allowed 15 chars, so we now need to be careful to take 1562 * only up to 15 first characters of ELF name, taking no BPF object 1563 * name characters at all. So '.rodata.abracadabra' will result in 1564 * '.rodata.abracad' kernel and user-visible name. 1565 * We need to keep this convoluted logic intact for .data, .bss and 1566 * .rodata maps, but for new custom .data.custom and .rodata.custom 1567 * maps we use their ELF names as is, not prepending bpf_object name 1568 * in front. We still need to truncate them to 15 characters for the 1569 * kernel. Full name can be recovered for such maps by using DATASEC 1570 * BTF type associated with such map's value type, though. 1571 */ 1572 if (sfx_len >= BPF_OBJ_NAME_LEN) 1573 sfx_len = BPF_OBJ_NAME_LEN - 1; 1574 1575 /* if there are two or more dots in map name, it's a custom dot map */ 1576 if (strchr(real_name + 1, '.') != NULL) 1577 pfx_len = 0; 1578 else 1579 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1580 1581 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1582 sfx_len, real_name); 1583 1584 /* sanitise map name to characters allowed by kernel */ 1585 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1586 if (!isalnum(*p) && *p != '_' && *p != '.') 1587 *p = '_'; 1588 1589 return strdup(map_name); 1590 } 1591 1592 static int 1593 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1594 1595 /* Internal BPF map is mmap()'able only if at least one of corresponding 1596 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1597 * variable and it's not marked as __hidden (which turns it into, effectively, 1598 * a STATIC variable). 1599 */ 1600 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1601 { 1602 const struct btf_type *t, *vt; 1603 struct btf_var_secinfo *vsi; 1604 int i, n; 1605 1606 if (!map->btf_value_type_id) 1607 return false; 1608 1609 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1610 if (!btf_is_datasec(t)) 1611 return false; 1612 1613 vsi = btf_var_secinfos(t); 1614 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1615 vt = btf__type_by_id(obj->btf, vsi->type); 1616 if (!btf_is_var(vt)) 1617 continue; 1618 1619 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1620 return true; 1621 } 1622 1623 return false; 1624 } 1625 1626 static int 1627 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1628 const char *real_name, int sec_idx, void *data, size_t data_sz) 1629 { 1630 struct bpf_map_def *def; 1631 struct bpf_map *map; 1632 size_t mmap_sz; 1633 int err; 1634 1635 map = bpf_object__add_map(obj); 1636 if (IS_ERR(map)) 1637 return PTR_ERR(map); 1638 1639 map->libbpf_type = type; 1640 map->sec_idx = sec_idx; 1641 map->sec_offset = 0; 1642 map->real_name = strdup(real_name); 1643 map->name = internal_map_name(obj, real_name); 1644 if (!map->real_name || !map->name) { 1645 zfree(&map->real_name); 1646 zfree(&map->name); 1647 return -ENOMEM; 1648 } 1649 1650 def = &map->def; 1651 def->type = BPF_MAP_TYPE_ARRAY; 1652 def->key_size = sizeof(int); 1653 def->value_size = data_sz; 1654 def->max_entries = 1; 1655 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1656 ? BPF_F_RDONLY_PROG : 0; 1657 1658 /* failures are fine because of maps like .rodata.str1.1 */ 1659 (void) map_fill_btf_type_info(obj, map); 1660 1661 if (map_is_mmapable(obj, map)) 1662 def->map_flags |= BPF_F_MMAPABLE; 1663 1664 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1665 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1666 1667 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1668 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1669 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1670 if (map->mmaped == MAP_FAILED) { 1671 err = -errno; 1672 map->mmaped = NULL; 1673 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1674 map->name, err); 1675 zfree(&map->real_name); 1676 zfree(&map->name); 1677 return err; 1678 } 1679 1680 if (data) 1681 memcpy(map->mmaped, data, data_sz); 1682 1683 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1684 return 0; 1685 } 1686 1687 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1688 { 1689 struct elf_sec_desc *sec_desc; 1690 const char *sec_name; 1691 int err = 0, sec_idx; 1692 1693 /* 1694 * Populate obj->maps with libbpf internal maps. 1695 */ 1696 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1697 sec_desc = &obj->efile.secs[sec_idx]; 1698 1699 /* Skip recognized sections with size 0. */ 1700 if (!sec_desc->data || sec_desc->data->d_size == 0) 1701 continue; 1702 1703 switch (sec_desc->sec_type) { 1704 case SEC_DATA: 1705 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1706 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1707 sec_name, sec_idx, 1708 sec_desc->data->d_buf, 1709 sec_desc->data->d_size); 1710 break; 1711 case SEC_RODATA: 1712 obj->has_rodata = true; 1713 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1714 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1715 sec_name, sec_idx, 1716 sec_desc->data->d_buf, 1717 sec_desc->data->d_size); 1718 break; 1719 case SEC_BSS: 1720 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1721 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1722 sec_name, sec_idx, 1723 NULL, 1724 sec_desc->data->d_size); 1725 break; 1726 default: 1727 /* skip */ 1728 break; 1729 } 1730 if (err) 1731 return err; 1732 } 1733 return 0; 1734 } 1735 1736 1737 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1738 const void *name) 1739 { 1740 int i; 1741 1742 for (i = 0; i < obj->nr_extern; i++) { 1743 if (strcmp(obj->externs[i].name, name) == 0) 1744 return &obj->externs[i]; 1745 } 1746 return NULL; 1747 } 1748 1749 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1750 char value) 1751 { 1752 switch (ext->kcfg.type) { 1753 case KCFG_BOOL: 1754 if (value == 'm') { 1755 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1756 ext->name, value); 1757 return -EINVAL; 1758 } 1759 *(bool *)ext_val = value == 'y' ? true : false; 1760 break; 1761 case KCFG_TRISTATE: 1762 if (value == 'y') 1763 *(enum libbpf_tristate *)ext_val = TRI_YES; 1764 else if (value == 'm') 1765 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1766 else /* value == 'n' */ 1767 *(enum libbpf_tristate *)ext_val = TRI_NO; 1768 break; 1769 case KCFG_CHAR: 1770 *(char *)ext_val = value; 1771 break; 1772 case KCFG_UNKNOWN: 1773 case KCFG_INT: 1774 case KCFG_CHAR_ARR: 1775 default: 1776 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1777 ext->name, value); 1778 return -EINVAL; 1779 } 1780 ext->is_set = true; 1781 return 0; 1782 } 1783 1784 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1785 const char *value) 1786 { 1787 size_t len; 1788 1789 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1790 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1791 ext->name, value); 1792 return -EINVAL; 1793 } 1794 1795 len = strlen(value); 1796 if (value[len - 1] != '"') { 1797 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1798 ext->name, value); 1799 return -EINVAL; 1800 } 1801 1802 /* strip quotes */ 1803 len -= 2; 1804 if (len >= ext->kcfg.sz) { 1805 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1806 ext->name, value, len, ext->kcfg.sz - 1); 1807 len = ext->kcfg.sz - 1; 1808 } 1809 memcpy(ext_val, value + 1, len); 1810 ext_val[len] = '\0'; 1811 ext->is_set = true; 1812 return 0; 1813 } 1814 1815 static int parse_u64(const char *value, __u64 *res) 1816 { 1817 char *value_end; 1818 int err; 1819 1820 errno = 0; 1821 *res = strtoull(value, &value_end, 0); 1822 if (errno) { 1823 err = -errno; 1824 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1825 return err; 1826 } 1827 if (*value_end) { 1828 pr_warn("failed to parse '%s' as integer completely\n", value); 1829 return -EINVAL; 1830 } 1831 return 0; 1832 } 1833 1834 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1835 { 1836 int bit_sz = ext->kcfg.sz * 8; 1837 1838 if (ext->kcfg.sz == 8) 1839 return true; 1840 1841 /* Validate that value stored in u64 fits in integer of `ext->sz` 1842 * bytes size without any loss of information. If the target integer 1843 * is signed, we rely on the following limits of integer type of 1844 * Y bits and subsequent transformation: 1845 * 1846 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1847 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1848 * 0 <= X + 2^(Y-1) < 2^Y 1849 * 1850 * For unsigned target integer, check that all the (64 - Y) bits are 1851 * zero. 1852 */ 1853 if (ext->kcfg.is_signed) 1854 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1855 else 1856 return (v >> bit_sz) == 0; 1857 } 1858 1859 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1860 __u64 value) 1861 { 1862 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1863 ext->kcfg.type != KCFG_BOOL) { 1864 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1865 ext->name, (unsigned long long)value); 1866 return -EINVAL; 1867 } 1868 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1869 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1870 ext->name, (unsigned long long)value); 1871 return -EINVAL; 1872 1873 } 1874 if (!is_kcfg_value_in_range(ext, value)) { 1875 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1876 ext->name, (unsigned long long)value, ext->kcfg.sz); 1877 return -ERANGE; 1878 } 1879 switch (ext->kcfg.sz) { 1880 case 1: 1881 *(__u8 *)ext_val = value; 1882 break; 1883 case 2: 1884 *(__u16 *)ext_val = value; 1885 break; 1886 case 4: 1887 *(__u32 *)ext_val = value; 1888 break; 1889 case 8: 1890 *(__u64 *)ext_val = value; 1891 break; 1892 default: 1893 return -EINVAL; 1894 } 1895 ext->is_set = true; 1896 return 0; 1897 } 1898 1899 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1900 char *buf, void *data) 1901 { 1902 struct extern_desc *ext; 1903 char *sep, *value; 1904 int len, err = 0; 1905 void *ext_val; 1906 __u64 num; 1907 1908 if (!str_has_pfx(buf, "CONFIG_")) 1909 return 0; 1910 1911 sep = strchr(buf, '='); 1912 if (!sep) { 1913 pr_warn("failed to parse '%s': no separator\n", buf); 1914 return -EINVAL; 1915 } 1916 1917 /* Trim ending '\n' */ 1918 len = strlen(buf); 1919 if (buf[len - 1] == '\n') 1920 buf[len - 1] = '\0'; 1921 /* Split on '=' and ensure that a value is present. */ 1922 *sep = '\0'; 1923 if (!sep[1]) { 1924 *sep = '='; 1925 pr_warn("failed to parse '%s': no value\n", buf); 1926 return -EINVAL; 1927 } 1928 1929 ext = find_extern_by_name(obj, buf); 1930 if (!ext || ext->is_set) 1931 return 0; 1932 1933 ext_val = data + ext->kcfg.data_off; 1934 value = sep + 1; 1935 1936 switch (*value) { 1937 case 'y': case 'n': case 'm': 1938 err = set_kcfg_value_tri(ext, ext_val, *value); 1939 break; 1940 case '"': 1941 err = set_kcfg_value_str(ext, ext_val, value); 1942 break; 1943 default: 1944 /* assume integer */ 1945 err = parse_u64(value, &num); 1946 if (err) { 1947 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1948 return err; 1949 } 1950 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1951 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1952 return -EINVAL; 1953 } 1954 err = set_kcfg_value_num(ext, ext_val, num); 1955 break; 1956 } 1957 if (err) 1958 return err; 1959 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1960 return 0; 1961 } 1962 1963 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1964 { 1965 char buf[PATH_MAX]; 1966 struct utsname uts; 1967 int len, err = 0; 1968 gzFile file; 1969 1970 uname(&uts); 1971 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1972 if (len < 0) 1973 return -EINVAL; 1974 else if (len >= PATH_MAX) 1975 return -ENAMETOOLONG; 1976 1977 /* gzopen also accepts uncompressed files. */ 1978 file = gzopen(buf, "r"); 1979 if (!file) 1980 file = gzopen("/proc/config.gz", "r"); 1981 1982 if (!file) { 1983 pr_warn("failed to open system Kconfig\n"); 1984 return -ENOENT; 1985 } 1986 1987 while (gzgets(file, buf, sizeof(buf))) { 1988 err = bpf_object__process_kconfig_line(obj, buf, data); 1989 if (err) { 1990 pr_warn("error parsing system Kconfig line '%s': %d\n", 1991 buf, err); 1992 goto out; 1993 } 1994 } 1995 1996 out: 1997 gzclose(file); 1998 return err; 1999 } 2000 2001 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2002 const char *config, void *data) 2003 { 2004 char buf[PATH_MAX]; 2005 int err = 0; 2006 FILE *file; 2007 2008 file = fmemopen((void *)config, strlen(config), "r"); 2009 if (!file) { 2010 err = -errno; 2011 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2012 return err; 2013 } 2014 2015 while (fgets(buf, sizeof(buf), file)) { 2016 err = bpf_object__process_kconfig_line(obj, buf, data); 2017 if (err) { 2018 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2019 buf, err); 2020 break; 2021 } 2022 } 2023 2024 fclose(file); 2025 return err; 2026 } 2027 2028 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2029 { 2030 struct extern_desc *last_ext = NULL, *ext; 2031 size_t map_sz; 2032 int i, err; 2033 2034 for (i = 0; i < obj->nr_extern; i++) { 2035 ext = &obj->externs[i]; 2036 if (ext->type == EXT_KCFG) 2037 last_ext = ext; 2038 } 2039 2040 if (!last_ext) 2041 return 0; 2042 2043 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2044 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2045 ".kconfig", obj->efile.symbols_shndx, 2046 NULL, map_sz); 2047 if (err) 2048 return err; 2049 2050 obj->kconfig_map_idx = obj->nr_maps - 1; 2051 2052 return 0; 2053 } 2054 2055 const struct btf_type * 2056 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2057 { 2058 const struct btf_type *t = btf__type_by_id(btf, id); 2059 2060 if (res_id) 2061 *res_id = id; 2062 2063 while (btf_is_mod(t) || btf_is_typedef(t)) { 2064 if (res_id) 2065 *res_id = t->type; 2066 t = btf__type_by_id(btf, t->type); 2067 } 2068 2069 return t; 2070 } 2071 2072 static const struct btf_type * 2073 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2074 { 2075 const struct btf_type *t; 2076 2077 t = skip_mods_and_typedefs(btf, id, NULL); 2078 if (!btf_is_ptr(t)) 2079 return NULL; 2080 2081 t = skip_mods_and_typedefs(btf, t->type, res_id); 2082 2083 return btf_is_func_proto(t) ? t : NULL; 2084 } 2085 2086 static const char *__btf_kind_str(__u16 kind) 2087 { 2088 switch (kind) { 2089 case BTF_KIND_UNKN: return "void"; 2090 case BTF_KIND_INT: return "int"; 2091 case BTF_KIND_PTR: return "ptr"; 2092 case BTF_KIND_ARRAY: return "array"; 2093 case BTF_KIND_STRUCT: return "struct"; 2094 case BTF_KIND_UNION: return "union"; 2095 case BTF_KIND_ENUM: return "enum"; 2096 case BTF_KIND_FWD: return "fwd"; 2097 case BTF_KIND_TYPEDEF: return "typedef"; 2098 case BTF_KIND_VOLATILE: return "volatile"; 2099 case BTF_KIND_CONST: return "const"; 2100 case BTF_KIND_RESTRICT: return "restrict"; 2101 case BTF_KIND_FUNC: return "func"; 2102 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2103 case BTF_KIND_VAR: return "var"; 2104 case BTF_KIND_DATASEC: return "datasec"; 2105 case BTF_KIND_FLOAT: return "float"; 2106 case BTF_KIND_DECL_TAG: return "decl_tag"; 2107 case BTF_KIND_TYPE_TAG: return "type_tag"; 2108 case BTF_KIND_ENUM64: return "enum64"; 2109 default: return "unknown"; 2110 } 2111 } 2112 2113 const char *btf_kind_str(const struct btf_type *t) 2114 { 2115 return __btf_kind_str(btf_kind(t)); 2116 } 2117 2118 /* 2119 * Fetch integer attribute of BTF map definition. Such attributes are 2120 * represented using a pointer to an array, in which dimensionality of array 2121 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2122 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2123 * type definition, while using only sizeof(void *) space in ELF data section. 2124 */ 2125 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2126 const struct btf_member *m, __u32 *res) 2127 { 2128 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2129 const char *name = btf__name_by_offset(btf, m->name_off); 2130 const struct btf_array *arr_info; 2131 const struct btf_type *arr_t; 2132 2133 if (!btf_is_ptr(t)) { 2134 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2135 map_name, name, btf_kind_str(t)); 2136 return false; 2137 } 2138 2139 arr_t = btf__type_by_id(btf, t->type); 2140 if (!arr_t) { 2141 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2142 map_name, name, t->type); 2143 return false; 2144 } 2145 if (!btf_is_array(arr_t)) { 2146 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2147 map_name, name, btf_kind_str(arr_t)); 2148 return false; 2149 } 2150 arr_info = btf_array(arr_t); 2151 *res = arr_info->nelems; 2152 return true; 2153 } 2154 2155 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2156 { 2157 int len; 2158 2159 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2160 if (len < 0) 2161 return -EINVAL; 2162 if (len >= buf_sz) 2163 return -ENAMETOOLONG; 2164 2165 return 0; 2166 } 2167 2168 static int build_map_pin_path(struct bpf_map *map, const char *path) 2169 { 2170 char buf[PATH_MAX]; 2171 int err; 2172 2173 if (!path) 2174 path = "/sys/fs/bpf"; 2175 2176 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2177 if (err) 2178 return err; 2179 2180 return bpf_map__set_pin_path(map, buf); 2181 } 2182 2183 /* should match definition in bpf_helpers.h */ 2184 enum libbpf_pin_type { 2185 LIBBPF_PIN_NONE, 2186 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2187 LIBBPF_PIN_BY_NAME, 2188 }; 2189 2190 int parse_btf_map_def(const char *map_name, struct btf *btf, 2191 const struct btf_type *def_t, bool strict, 2192 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2193 { 2194 const struct btf_type *t; 2195 const struct btf_member *m; 2196 bool is_inner = inner_def == NULL; 2197 int vlen, i; 2198 2199 vlen = btf_vlen(def_t); 2200 m = btf_members(def_t); 2201 for (i = 0; i < vlen; i++, m++) { 2202 const char *name = btf__name_by_offset(btf, m->name_off); 2203 2204 if (!name) { 2205 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2206 return -EINVAL; 2207 } 2208 if (strcmp(name, "type") == 0) { 2209 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2210 return -EINVAL; 2211 map_def->parts |= MAP_DEF_MAP_TYPE; 2212 } else if (strcmp(name, "max_entries") == 0) { 2213 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2214 return -EINVAL; 2215 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2216 } else if (strcmp(name, "map_flags") == 0) { 2217 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2218 return -EINVAL; 2219 map_def->parts |= MAP_DEF_MAP_FLAGS; 2220 } else if (strcmp(name, "numa_node") == 0) { 2221 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2222 return -EINVAL; 2223 map_def->parts |= MAP_DEF_NUMA_NODE; 2224 } else if (strcmp(name, "key_size") == 0) { 2225 __u32 sz; 2226 2227 if (!get_map_field_int(map_name, btf, m, &sz)) 2228 return -EINVAL; 2229 if (map_def->key_size && map_def->key_size != sz) { 2230 pr_warn("map '%s': conflicting key size %u != %u.\n", 2231 map_name, map_def->key_size, sz); 2232 return -EINVAL; 2233 } 2234 map_def->key_size = sz; 2235 map_def->parts |= MAP_DEF_KEY_SIZE; 2236 } else if (strcmp(name, "key") == 0) { 2237 __s64 sz; 2238 2239 t = btf__type_by_id(btf, m->type); 2240 if (!t) { 2241 pr_warn("map '%s': key type [%d] not found.\n", 2242 map_name, m->type); 2243 return -EINVAL; 2244 } 2245 if (!btf_is_ptr(t)) { 2246 pr_warn("map '%s': key spec is not PTR: %s.\n", 2247 map_name, btf_kind_str(t)); 2248 return -EINVAL; 2249 } 2250 sz = btf__resolve_size(btf, t->type); 2251 if (sz < 0) { 2252 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2253 map_name, t->type, (ssize_t)sz); 2254 return sz; 2255 } 2256 if (map_def->key_size && map_def->key_size != sz) { 2257 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2258 map_name, map_def->key_size, (ssize_t)sz); 2259 return -EINVAL; 2260 } 2261 map_def->key_size = sz; 2262 map_def->key_type_id = t->type; 2263 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2264 } else if (strcmp(name, "value_size") == 0) { 2265 __u32 sz; 2266 2267 if (!get_map_field_int(map_name, btf, m, &sz)) 2268 return -EINVAL; 2269 if (map_def->value_size && map_def->value_size != sz) { 2270 pr_warn("map '%s': conflicting value size %u != %u.\n", 2271 map_name, map_def->value_size, sz); 2272 return -EINVAL; 2273 } 2274 map_def->value_size = sz; 2275 map_def->parts |= MAP_DEF_VALUE_SIZE; 2276 } else if (strcmp(name, "value") == 0) { 2277 __s64 sz; 2278 2279 t = btf__type_by_id(btf, m->type); 2280 if (!t) { 2281 pr_warn("map '%s': value type [%d] not found.\n", 2282 map_name, m->type); 2283 return -EINVAL; 2284 } 2285 if (!btf_is_ptr(t)) { 2286 pr_warn("map '%s': value spec is not PTR: %s.\n", 2287 map_name, btf_kind_str(t)); 2288 return -EINVAL; 2289 } 2290 sz = btf__resolve_size(btf, t->type); 2291 if (sz < 0) { 2292 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2293 map_name, t->type, (ssize_t)sz); 2294 return sz; 2295 } 2296 if (map_def->value_size && map_def->value_size != sz) { 2297 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2298 map_name, map_def->value_size, (ssize_t)sz); 2299 return -EINVAL; 2300 } 2301 map_def->value_size = sz; 2302 map_def->value_type_id = t->type; 2303 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2304 } 2305 else if (strcmp(name, "values") == 0) { 2306 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2307 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2308 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2309 char inner_map_name[128]; 2310 int err; 2311 2312 if (is_inner) { 2313 pr_warn("map '%s': multi-level inner maps not supported.\n", 2314 map_name); 2315 return -ENOTSUP; 2316 } 2317 if (i != vlen - 1) { 2318 pr_warn("map '%s': '%s' member should be last.\n", 2319 map_name, name); 2320 return -EINVAL; 2321 } 2322 if (!is_map_in_map && !is_prog_array) { 2323 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2324 map_name); 2325 return -ENOTSUP; 2326 } 2327 if (map_def->value_size && map_def->value_size != 4) { 2328 pr_warn("map '%s': conflicting value size %u != 4.\n", 2329 map_name, map_def->value_size); 2330 return -EINVAL; 2331 } 2332 map_def->value_size = 4; 2333 t = btf__type_by_id(btf, m->type); 2334 if (!t) { 2335 pr_warn("map '%s': %s type [%d] not found.\n", 2336 map_name, desc, m->type); 2337 return -EINVAL; 2338 } 2339 if (!btf_is_array(t) || btf_array(t)->nelems) { 2340 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2341 map_name, desc); 2342 return -EINVAL; 2343 } 2344 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2345 if (!btf_is_ptr(t)) { 2346 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2347 map_name, desc, btf_kind_str(t)); 2348 return -EINVAL; 2349 } 2350 t = skip_mods_and_typedefs(btf, t->type, NULL); 2351 if (is_prog_array) { 2352 if (!btf_is_func_proto(t)) { 2353 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2354 map_name, btf_kind_str(t)); 2355 return -EINVAL; 2356 } 2357 continue; 2358 } 2359 if (!btf_is_struct(t)) { 2360 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2361 map_name, btf_kind_str(t)); 2362 return -EINVAL; 2363 } 2364 2365 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2366 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2367 if (err) 2368 return err; 2369 2370 map_def->parts |= MAP_DEF_INNER_MAP; 2371 } else if (strcmp(name, "pinning") == 0) { 2372 __u32 val; 2373 2374 if (is_inner) { 2375 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2376 return -EINVAL; 2377 } 2378 if (!get_map_field_int(map_name, btf, m, &val)) 2379 return -EINVAL; 2380 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2381 pr_warn("map '%s': invalid pinning value %u.\n", 2382 map_name, val); 2383 return -EINVAL; 2384 } 2385 map_def->pinning = val; 2386 map_def->parts |= MAP_DEF_PINNING; 2387 } else if (strcmp(name, "map_extra") == 0) { 2388 __u32 map_extra; 2389 2390 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2391 return -EINVAL; 2392 map_def->map_extra = map_extra; 2393 map_def->parts |= MAP_DEF_MAP_EXTRA; 2394 } else { 2395 if (strict) { 2396 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2397 return -ENOTSUP; 2398 } 2399 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2400 } 2401 } 2402 2403 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2404 pr_warn("map '%s': map type isn't specified.\n", map_name); 2405 return -EINVAL; 2406 } 2407 2408 return 0; 2409 } 2410 2411 static size_t adjust_ringbuf_sz(size_t sz) 2412 { 2413 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2414 __u32 mul; 2415 2416 /* if user forgot to set any size, make sure they see error */ 2417 if (sz == 0) 2418 return 0; 2419 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2420 * a power-of-2 multiple of kernel's page size. If user diligently 2421 * satisified these conditions, pass the size through. 2422 */ 2423 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2424 return sz; 2425 2426 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2427 * user-set size to satisfy both user size request and kernel 2428 * requirements and substitute correct max_entries for map creation. 2429 */ 2430 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2431 if (mul * page_sz > sz) 2432 return mul * page_sz; 2433 } 2434 2435 /* if it's impossible to satisfy the conditions (i.e., user size is 2436 * very close to UINT_MAX but is not a power-of-2 multiple of 2437 * page_size) then just return original size and let kernel reject it 2438 */ 2439 return sz; 2440 } 2441 2442 static bool map_is_ringbuf(const struct bpf_map *map) 2443 { 2444 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2445 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2446 } 2447 2448 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2449 { 2450 map->def.type = def->map_type; 2451 map->def.key_size = def->key_size; 2452 map->def.value_size = def->value_size; 2453 map->def.max_entries = def->max_entries; 2454 map->def.map_flags = def->map_flags; 2455 map->map_extra = def->map_extra; 2456 2457 map->numa_node = def->numa_node; 2458 map->btf_key_type_id = def->key_type_id; 2459 map->btf_value_type_id = def->value_type_id; 2460 2461 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2462 if (map_is_ringbuf(map)) 2463 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2464 2465 if (def->parts & MAP_DEF_MAP_TYPE) 2466 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2467 2468 if (def->parts & MAP_DEF_KEY_TYPE) 2469 pr_debug("map '%s': found key [%u], sz = %u.\n", 2470 map->name, def->key_type_id, def->key_size); 2471 else if (def->parts & MAP_DEF_KEY_SIZE) 2472 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2473 2474 if (def->parts & MAP_DEF_VALUE_TYPE) 2475 pr_debug("map '%s': found value [%u], sz = %u.\n", 2476 map->name, def->value_type_id, def->value_size); 2477 else if (def->parts & MAP_DEF_VALUE_SIZE) 2478 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2479 2480 if (def->parts & MAP_DEF_MAX_ENTRIES) 2481 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2482 if (def->parts & MAP_DEF_MAP_FLAGS) 2483 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2484 if (def->parts & MAP_DEF_MAP_EXTRA) 2485 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2486 (unsigned long long)def->map_extra); 2487 if (def->parts & MAP_DEF_PINNING) 2488 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2489 if (def->parts & MAP_DEF_NUMA_NODE) 2490 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2491 2492 if (def->parts & MAP_DEF_INNER_MAP) 2493 pr_debug("map '%s': found inner map definition.\n", map->name); 2494 } 2495 2496 static const char *btf_var_linkage_str(__u32 linkage) 2497 { 2498 switch (linkage) { 2499 case BTF_VAR_STATIC: return "static"; 2500 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2501 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2502 default: return "unknown"; 2503 } 2504 } 2505 2506 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2507 const struct btf_type *sec, 2508 int var_idx, int sec_idx, 2509 const Elf_Data *data, bool strict, 2510 const char *pin_root_path) 2511 { 2512 struct btf_map_def map_def = {}, inner_def = {}; 2513 const struct btf_type *var, *def; 2514 const struct btf_var_secinfo *vi; 2515 const struct btf_var *var_extra; 2516 const char *map_name; 2517 struct bpf_map *map; 2518 int err; 2519 2520 vi = btf_var_secinfos(sec) + var_idx; 2521 var = btf__type_by_id(obj->btf, vi->type); 2522 var_extra = btf_var(var); 2523 map_name = btf__name_by_offset(obj->btf, var->name_off); 2524 2525 if (map_name == NULL || map_name[0] == '\0') { 2526 pr_warn("map #%d: empty name.\n", var_idx); 2527 return -EINVAL; 2528 } 2529 if ((__u64)vi->offset + vi->size > data->d_size) { 2530 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2531 return -EINVAL; 2532 } 2533 if (!btf_is_var(var)) { 2534 pr_warn("map '%s': unexpected var kind %s.\n", 2535 map_name, btf_kind_str(var)); 2536 return -EINVAL; 2537 } 2538 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2539 pr_warn("map '%s': unsupported map linkage %s.\n", 2540 map_name, btf_var_linkage_str(var_extra->linkage)); 2541 return -EOPNOTSUPP; 2542 } 2543 2544 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2545 if (!btf_is_struct(def)) { 2546 pr_warn("map '%s': unexpected def kind %s.\n", 2547 map_name, btf_kind_str(var)); 2548 return -EINVAL; 2549 } 2550 if (def->size > vi->size) { 2551 pr_warn("map '%s': invalid def size.\n", map_name); 2552 return -EINVAL; 2553 } 2554 2555 map = bpf_object__add_map(obj); 2556 if (IS_ERR(map)) 2557 return PTR_ERR(map); 2558 map->name = strdup(map_name); 2559 if (!map->name) { 2560 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2561 return -ENOMEM; 2562 } 2563 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2564 map->def.type = BPF_MAP_TYPE_UNSPEC; 2565 map->sec_idx = sec_idx; 2566 map->sec_offset = vi->offset; 2567 map->btf_var_idx = var_idx; 2568 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2569 map_name, map->sec_idx, map->sec_offset); 2570 2571 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2572 if (err) 2573 return err; 2574 2575 fill_map_from_def(map, &map_def); 2576 2577 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2578 err = build_map_pin_path(map, pin_root_path); 2579 if (err) { 2580 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2581 return err; 2582 } 2583 } 2584 2585 if (map_def.parts & MAP_DEF_INNER_MAP) { 2586 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2587 if (!map->inner_map) 2588 return -ENOMEM; 2589 map->inner_map->fd = -1; 2590 map->inner_map->sec_idx = sec_idx; 2591 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2592 if (!map->inner_map->name) 2593 return -ENOMEM; 2594 sprintf(map->inner_map->name, "%s.inner", map_name); 2595 2596 fill_map_from_def(map->inner_map, &inner_def); 2597 } 2598 2599 err = map_fill_btf_type_info(obj, map); 2600 if (err) 2601 return err; 2602 2603 return 0; 2604 } 2605 2606 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2607 const char *pin_root_path) 2608 { 2609 const struct btf_type *sec = NULL; 2610 int nr_types, i, vlen, err; 2611 const struct btf_type *t; 2612 const char *name; 2613 Elf_Data *data; 2614 Elf_Scn *scn; 2615 2616 if (obj->efile.btf_maps_shndx < 0) 2617 return 0; 2618 2619 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2620 data = elf_sec_data(obj, scn); 2621 if (!scn || !data) { 2622 pr_warn("elf: failed to get %s map definitions for %s\n", 2623 MAPS_ELF_SEC, obj->path); 2624 return -EINVAL; 2625 } 2626 2627 nr_types = btf__type_cnt(obj->btf); 2628 for (i = 1; i < nr_types; i++) { 2629 t = btf__type_by_id(obj->btf, i); 2630 if (!btf_is_datasec(t)) 2631 continue; 2632 name = btf__name_by_offset(obj->btf, t->name_off); 2633 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2634 sec = t; 2635 obj->efile.btf_maps_sec_btf_id = i; 2636 break; 2637 } 2638 } 2639 2640 if (!sec) { 2641 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2642 return -ENOENT; 2643 } 2644 2645 vlen = btf_vlen(sec); 2646 for (i = 0; i < vlen; i++) { 2647 err = bpf_object__init_user_btf_map(obj, sec, i, 2648 obj->efile.btf_maps_shndx, 2649 data, strict, 2650 pin_root_path); 2651 if (err) 2652 return err; 2653 } 2654 2655 return 0; 2656 } 2657 2658 static int bpf_object__init_maps(struct bpf_object *obj, 2659 const struct bpf_object_open_opts *opts) 2660 { 2661 const char *pin_root_path; 2662 bool strict; 2663 int err = 0; 2664 2665 strict = !OPTS_GET(opts, relaxed_maps, false); 2666 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2667 2668 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2669 err = err ?: bpf_object__init_global_data_maps(obj); 2670 err = err ?: bpf_object__init_kconfig_map(obj); 2671 err = err ?: bpf_object_init_struct_ops(obj); 2672 2673 return err; 2674 } 2675 2676 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2677 { 2678 Elf64_Shdr *sh; 2679 2680 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2681 if (!sh) 2682 return false; 2683 2684 return sh->sh_flags & SHF_EXECINSTR; 2685 } 2686 2687 static bool btf_needs_sanitization(struct bpf_object *obj) 2688 { 2689 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2690 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2691 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2692 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2693 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2694 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2695 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2696 2697 return !has_func || !has_datasec || !has_func_global || !has_float || 2698 !has_decl_tag || !has_type_tag || !has_enum64; 2699 } 2700 2701 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2702 { 2703 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2704 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2705 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2706 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2707 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2708 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2709 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2710 int enum64_placeholder_id = 0; 2711 struct btf_type *t; 2712 int i, j, vlen; 2713 2714 for (i = 1; i < btf__type_cnt(btf); i++) { 2715 t = (struct btf_type *)btf__type_by_id(btf, i); 2716 2717 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2718 /* replace VAR/DECL_TAG with INT */ 2719 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2720 /* 2721 * using size = 1 is the safest choice, 4 will be too 2722 * big and cause kernel BTF validation failure if 2723 * original variable took less than 4 bytes 2724 */ 2725 t->size = 1; 2726 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2727 } else if (!has_datasec && btf_is_datasec(t)) { 2728 /* replace DATASEC with STRUCT */ 2729 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2730 struct btf_member *m = btf_members(t); 2731 struct btf_type *vt; 2732 char *name; 2733 2734 name = (char *)btf__name_by_offset(btf, t->name_off); 2735 while (*name) { 2736 if (*name == '.') 2737 *name = '_'; 2738 name++; 2739 } 2740 2741 vlen = btf_vlen(t); 2742 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2743 for (j = 0; j < vlen; j++, v++, m++) { 2744 /* order of field assignments is important */ 2745 m->offset = v->offset * 8; 2746 m->type = v->type; 2747 /* preserve variable name as member name */ 2748 vt = (void *)btf__type_by_id(btf, v->type); 2749 m->name_off = vt->name_off; 2750 } 2751 } else if (!has_func && btf_is_func_proto(t)) { 2752 /* replace FUNC_PROTO with ENUM */ 2753 vlen = btf_vlen(t); 2754 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2755 t->size = sizeof(__u32); /* kernel enforced */ 2756 } else if (!has_func && btf_is_func(t)) { 2757 /* replace FUNC with TYPEDEF */ 2758 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2759 } else if (!has_func_global && btf_is_func(t)) { 2760 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2761 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2762 } else if (!has_float && btf_is_float(t)) { 2763 /* replace FLOAT with an equally-sized empty STRUCT; 2764 * since C compilers do not accept e.g. "float" as a 2765 * valid struct name, make it anonymous 2766 */ 2767 t->name_off = 0; 2768 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2769 } else if (!has_type_tag && btf_is_type_tag(t)) { 2770 /* replace TYPE_TAG with a CONST */ 2771 t->name_off = 0; 2772 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2773 } else if (!has_enum64 && btf_is_enum(t)) { 2774 /* clear the kflag */ 2775 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2776 } else if (!has_enum64 && btf_is_enum64(t)) { 2777 /* replace ENUM64 with a union */ 2778 struct btf_member *m; 2779 2780 if (enum64_placeholder_id == 0) { 2781 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2782 if (enum64_placeholder_id < 0) 2783 return enum64_placeholder_id; 2784 2785 t = (struct btf_type *)btf__type_by_id(btf, i); 2786 } 2787 2788 m = btf_members(t); 2789 vlen = btf_vlen(t); 2790 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2791 for (j = 0; j < vlen; j++, m++) { 2792 m->type = enum64_placeholder_id; 2793 m->offset = 0; 2794 } 2795 } 2796 } 2797 2798 return 0; 2799 } 2800 2801 static bool libbpf_needs_btf(const struct bpf_object *obj) 2802 { 2803 return obj->efile.btf_maps_shndx >= 0 || 2804 obj->efile.st_ops_shndx >= 0 || 2805 obj->efile.st_ops_link_shndx >= 0 || 2806 obj->nr_extern > 0; 2807 } 2808 2809 static bool kernel_needs_btf(const struct bpf_object *obj) 2810 { 2811 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2812 } 2813 2814 static int bpf_object__init_btf(struct bpf_object *obj, 2815 Elf_Data *btf_data, 2816 Elf_Data *btf_ext_data) 2817 { 2818 int err = -ENOENT; 2819 2820 if (btf_data) { 2821 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2822 err = libbpf_get_error(obj->btf); 2823 if (err) { 2824 obj->btf = NULL; 2825 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2826 goto out; 2827 } 2828 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2829 btf__set_pointer_size(obj->btf, 8); 2830 } 2831 if (btf_ext_data) { 2832 struct btf_ext_info *ext_segs[3]; 2833 int seg_num, sec_num; 2834 2835 if (!obj->btf) { 2836 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2837 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2838 goto out; 2839 } 2840 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2841 err = libbpf_get_error(obj->btf_ext); 2842 if (err) { 2843 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2844 BTF_EXT_ELF_SEC, err); 2845 obj->btf_ext = NULL; 2846 goto out; 2847 } 2848 2849 /* setup .BTF.ext to ELF section mapping */ 2850 ext_segs[0] = &obj->btf_ext->func_info; 2851 ext_segs[1] = &obj->btf_ext->line_info; 2852 ext_segs[2] = &obj->btf_ext->core_relo_info; 2853 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2854 struct btf_ext_info *seg = ext_segs[seg_num]; 2855 const struct btf_ext_info_sec *sec; 2856 const char *sec_name; 2857 Elf_Scn *scn; 2858 2859 if (seg->sec_cnt == 0) 2860 continue; 2861 2862 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2863 if (!seg->sec_idxs) { 2864 err = -ENOMEM; 2865 goto out; 2866 } 2867 2868 sec_num = 0; 2869 for_each_btf_ext_sec(seg, sec) { 2870 /* preventively increment index to avoid doing 2871 * this before every continue below 2872 */ 2873 sec_num++; 2874 2875 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2876 if (str_is_empty(sec_name)) 2877 continue; 2878 scn = elf_sec_by_name(obj, sec_name); 2879 if (!scn) 2880 continue; 2881 2882 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2883 } 2884 } 2885 } 2886 out: 2887 if (err && libbpf_needs_btf(obj)) { 2888 pr_warn("BTF is required, but is missing or corrupted.\n"); 2889 return err; 2890 } 2891 return 0; 2892 } 2893 2894 static int compare_vsi_off(const void *_a, const void *_b) 2895 { 2896 const struct btf_var_secinfo *a = _a; 2897 const struct btf_var_secinfo *b = _b; 2898 2899 return a->offset - b->offset; 2900 } 2901 2902 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2903 struct btf_type *t) 2904 { 2905 __u32 size = 0, i, vars = btf_vlen(t); 2906 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2907 struct btf_var_secinfo *vsi; 2908 bool fixup_offsets = false; 2909 int err; 2910 2911 if (!sec_name) { 2912 pr_debug("No name found in string section for DATASEC kind.\n"); 2913 return -ENOENT; 2914 } 2915 2916 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2917 * variable offsets set at the previous step. Further, not every 2918 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2919 * all fixups altogether for such sections and go straight to sorting 2920 * VARs within their DATASEC. 2921 */ 2922 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2923 goto sort_vars; 2924 2925 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2926 * fix this up. But BPF static linker already fixes this up and fills 2927 * all the sizes and offsets during static linking. So this step has 2928 * to be optional. But the STV_HIDDEN handling is non-optional for any 2929 * non-extern DATASEC, so the variable fixup loop below handles both 2930 * functions at the same time, paying the cost of BTF VAR <-> ELF 2931 * symbol matching just once. 2932 */ 2933 if (t->size == 0) { 2934 err = find_elf_sec_sz(obj, sec_name, &size); 2935 if (err || !size) { 2936 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2937 sec_name, size, err); 2938 return -ENOENT; 2939 } 2940 2941 t->size = size; 2942 fixup_offsets = true; 2943 } 2944 2945 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2946 const struct btf_type *t_var; 2947 struct btf_var *var; 2948 const char *var_name; 2949 Elf64_Sym *sym; 2950 2951 t_var = btf__type_by_id(btf, vsi->type); 2952 if (!t_var || !btf_is_var(t_var)) { 2953 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2954 return -EINVAL; 2955 } 2956 2957 var = btf_var(t_var); 2958 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2959 continue; 2960 2961 var_name = btf__name_by_offset(btf, t_var->name_off); 2962 if (!var_name) { 2963 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2964 sec_name, i); 2965 return -ENOENT; 2966 } 2967 2968 sym = find_elf_var_sym(obj, var_name); 2969 if (IS_ERR(sym)) { 2970 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2971 sec_name, var_name); 2972 return -ENOENT; 2973 } 2974 2975 if (fixup_offsets) 2976 vsi->offset = sym->st_value; 2977 2978 /* if variable is a global/weak symbol, but has restricted 2979 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2980 * as static. This follows similar logic for functions (BPF 2981 * subprogs) and influences libbpf's further decisions about 2982 * whether to make global data BPF array maps as 2983 * BPF_F_MMAPABLE. 2984 */ 2985 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2986 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2987 var->linkage = BTF_VAR_STATIC; 2988 } 2989 2990 sort_vars: 2991 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2992 return 0; 2993 } 2994 2995 static int bpf_object_fixup_btf(struct bpf_object *obj) 2996 { 2997 int i, n, err = 0; 2998 2999 if (!obj->btf) 3000 return 0; 3001 3002 n = btf__type_cnt(obj->btf); 3003 for (i = 1; i < n; i++) { 3004 struct btf_type *t = btf_type_by_id(obj->btf, i); 3005 3006 /* Loader needs to fix up some of the things compiler 3007 * couldn't get its hands on while emitting BTF. This 3008 * is section size and global variable offset. We use 3009 * the info from the ELF itself for this purpose. 3010 */ 3011 if (btf_is_datasec(t)) { 3012 err = btf_fixup_datasec(obj, obj->btf, t); 3013 if (err) 3014 return err; 3015 } 3016 } 3017 3018 return 0; 3019 } 3020 3021 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3022 { 3023 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3024 prog->type == BPF_PROG_TYPE_LSM) 3025 return true; 3026 3027 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3028 * also need vmlinux BTF 3029 */ 3030 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3031 return true; 3032 3033 return false; 3034 } 3035 3036 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3037 { 3038 struct bpf_program *prog; 3039 int i; 3040 3041 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3042 * is not specified 3043 */ 3044 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3045 return true; 3046 3047 /* Support for typed ksyms needs kernel BTF */ 3048 for (i = 0; i < obj->nr_extern; i++) { 3049 const struct extern_desc *ext; 3050 3051 ext = &obj->externs[i]; 3052 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3053 return true; 3054 } 3055 3056 bpf_object__for_each_program(prog, obj) { 3057 if (!prog->autoload) 3058 continue; 3059 if (prog_needs_vmlinux_btf(prog)) 3060 return true; 3061 } 3062 3063 return false; 3064 } 3065 3066 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3067 { 3068 int err; 3069 3070 /* btf_vmlinux could be loaded earlier */ 3071 if (obj->btf_vmlinux || obj->gen_loader) 3072 return 0; 3073 3074 if (!force && !obj_needs_vmlinux_btf(obj)) 3075 return 0; 3076 3077 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3078 err = libbpf_get_error(obj->btf_vmlinux); 3079 if (err) { 3080 pr_warn("Error loading vmlinux BTF: %d\n", err); 3081 obj->btf_vmlinux = NULL; 3082 return err; 3083 } 3084 return 0; 3085 } 3086 3087 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3088 { 3089 struct btf *kern_btf = obj->btf; 3090 bool btf_mandatory, sanitize; 3091 int i, err = 0; 3092 3093 if (!obj->btf) 3094 return 0; 3095 3096 if (!kernel_supports(obj, FEAT_BTF)) { 3097 if (kernel_needs_btf(obj)) { 3098 err = -EOPNOTSUPP; 3099 goto report; 3100 } 3101 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3102 return 0; 3103 } 3104 3105 /* Even though some subprogs are global/weak, user might prefer more 3106 * permissive BPF verification process that BPF verifier performs for 3107 * static functions, taking into account more context from the caller 3108 * functions. In such case, they need to mark such subprogs with 3109 * __attribute__((visibility("hidden"))) and libbpf will adjust 3110 * corresponding FUNC BTF type to be marked as static and trigger more 3111 * involved BPF verification process. 3112 */ 3113 for (i = 0; i < obj->nr_programs; i++) { 3114 struct bpf_program *prog = &obj->programs[i]; 3115 struct btf_type *t; 3116 const char *name; 3117 int j, n; 3118 3119 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3120 continue; 3121 3122 n = btf__type_cnt(obj->btf); 3123 for (j = 1; j < n; j++) { 3124 t = btf_type_by_id(obj->btf, j); 3125 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3126 continue; 3127 3128 name = btf__str_by_offset(obj->btf, t->name_off); 3129 if (strcmp(name, prog->name) != 0) 3130 continue; 3131 3132 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3133 break; 3134 } 3135 } 3136 3137 sanitize = btf_needs_sanitization(obj); 3138 if (sanitize) { 3139 const void *raw_data; 3140 __u32 sz; 3141 3142 /* clone BTF to sanitize a copy and leave the original intact */ 3143 raw_data = btf__raw_data(obj->btf, &sz); 3144 kern_btf = btf__new(raw_data, sz); 3145 err = libbpf_get_error(kern_btf); 3146 if (err) 3147 return err; 3148 3149 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3150 btf__set_pointer_size(obj->btf, 8); 3151 err = bpf_object__sanitize_btf(obj, kern_btf); 3152 if (err) 3153 return err; 3154 } 3155 3156 if (obj->gen_loader) { 3157 __u32 raw_size = 0; 3158 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3159 3160 if (!raw_data) 3161 return -ENOMEM; 3162 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3163 /* Pretend to have valid FD to pass various fd >= 0 checks. 3164 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3165 */ 3166 btf__set_fd(kern_btf, 0); 3167 } else { 3168 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3169 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3170 obj->log_level ? 1 : 0); 3171 } 3172 if (sanitize) { 3173 if (!err) { 3174 /* move fd to libbpf's BTF */ 3175 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3176 btf__set_fd(kern_btf, -1); 3177 } 3178 btf__free(kern_btf); 3179 } 3180 report: 3181 if (err) { 3182 btf_mandatory = kernel_needs_btf(obj); 3183 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3184 btf_mandatory ? "BTF is mandatory, can't proceed." 3185 : "BTF is optional, ignoring."); 3186 if (!btf_mandatory) 3187 err = 0; 3188 } 3189 return err; 3190 } 3191 3192 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3193 { 3194 const char *name; 3195 3196 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3197 if (!name) { 3198 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3199 off, obj->path, elf_errmsg(-1)); 3200 return NULL; 3201 } 3202 3203 return name; 3204 } 3205 3206 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3207 { 3208 const char *name; 3209 3210 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3211 if (!name) { 3212 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3213 off, obj->path, elf_errmsg(-1)); 3214 return NULL; 3215 } 3216 3217 return name; 3218 } 3219 3220 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3221 { 3222 Elf_Scn *scn; 3223 3224 scn = elf_getscn(obj->efile.elf, idx); 3225 if (!scn) { 3226 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3227 idx, obj->path, elf_errmsg(-1)); 3228 return NULL; 3229 } 3230 return scn; 3231 } 3232 3233 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3234 { 3235 Elf_Scn *scn = NULL; 3236 Elf *elf = obj->efile.elf; 3237 const char *sec_name; 3238 3239 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3240 sec_name = elf_sec_name(obj, scn); 3241 if (!sec_name) 3242 return NULL; 3243 3244 if (strcmp(sec_name, name) != 0) 3245 continue; 3246 3247 return scn; 3248 } 3249 return NULL; 3250 } 3251 3252 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3253 { 3254 Elf64_Shdr *shdr; 3255 3256 if (!scn) 3257 return NULL; 3258 3259 shdr = elf64_getshdr(scn); 3260 if (!shdr) { 3261 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3262 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3263 return NULL; 3264 } 3265 3266 return shdr; 3267 } 3268 3269 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3270 { 3271 const char *name; 3272 Elf64_Shdr *sh; 3273 3274 if (!scn) 3275 return NULL; 3276 3277 sh = elf_sec_hdr(obj, scn); 3278 if (!sh) 3279 return NULL; 3280 3281 name = elf_sec_str(obj, sh->sh_name); 3282 if (!name) { 3283 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3284 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3285 return NULL; 3286 } 3287 3288 return name; 3289 } 3290 3291 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3292 { 3293 Elf_Data *data; 3294 3295 if (!scn) 3296 return NULL; 3297 3298 data = elf_getdata(scn, 0); 3299 if (!data) { 3300 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3301 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3302 obj->path, elf_errmsg(-1)); 3303 return NULL; 3304 } 3305 3306 return data; 3307 } 3308 3309 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3310 { 3311 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3312 return NULL; 3313 3314 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3315 } 3316 3317 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3318 { 3319 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3320 return NULL; 3321 3322 return (Elf64_Rel *)data->d_buf + idx; 3323 } 3324 3325 static bool is_sec_name_dwarf(const char *name) 3326 { 3327 /* approximation, but the actual list is too long */ 3328 return str_has_pfx(name, ".debug_"); 3329 } 3330 3331 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3332 { 3333 /* no special handling of .strtab */ 3334 if (hdr->sh_type == SHT_STRTAB) 3335 return true; 3336 3337 /* ignore .llvm_addrsig section as well */ 3338 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3339 return true; 3340 3341 /* no subprograms will lead to an empty .text section, ignore it */ 3342 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3343 strcmp(name, ".text") == 0) 3344 return true; 3345 3346 /* DWARF sections */ 3347 if (is_sec_name_dwarf(name)) 3348 return true; 3349 3350 if (str_has_pfx(name, ".rel")) { 3351 name += sizeof(".rel") - 1; 3352 /* DWARF section relocations */ 3353 if (is_sec_name_dwarf(name)) 3354 return true; 3355 3356 /* .BTF and .BTF.ext don't need relocations */ 3357 if (strcmp(name, BTF_ELF_SEC) == 0 || 3358 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3359 return true; 3360 } 3361 3362 return false; 3363 } 3364 3365 static int cmp_progs(const void *_a, const void *_b) 3366 { 3367 const struct bpf_program *a = _a; 3368 const struct bpf_program *b = _b; 3369 3370 if (a->sec_idx != b->sec_idx) 3371 return a->sec_idx < b->sec_idx ? -1 : 1; 3372 3373 /* sec_insn_off can't be the same within the section */ 3374 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3375 } 3376 3377 static int bpf_object__elf_collect(struct bpf_object *obj) 3378 { 3379 struct elf_sec_desc *sec_desc; 3380 Elf *elf = obj->efile.elf; 3381 Elf_Data *btf_ext_data = NULL; 3382 Elf_Data *btf_data = NULL; 3383 int idx = 0, err = 0; 3384 const char *name; 3385 Elf_Data *data; 3386 Elf_Scn *scn; 3387 Elf64_Shdr *sh; 3388 3389 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3390 * section. Since section count retrieved by elf_getshdrnum() does 3391 * include sec #0, it is already the necessary size of an array to keep 3392 * all the sections. 3393 */ 3394 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3395 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3396 obj->path, elf_errmsg(-1)); 3397 return -LIBBPF_ERRNO__FORMAT; 3398 } 3399 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3400 if (!obj->efile.secs) 3401 return -ENOMEM; 3402 3403 /* a bunch of ELF parsing functionality depends on processing symbols, 3404 * so do the first pass and find the symbol table 3405 */ 3406 scn = NULL; 3407 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3408 sh = elf_sec_hdr(obj, scn); 3409 if (!sh) 3410 return -LIBBPF_ERRNO__FORMAT; 3411 3412 if (sh->sh_type == SHT_SYMTAB) { 3413 if (obj->efile.symbols) { 3414 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3415 return -LIBBPF_ERRNO__FORMAT; 3416 } 3417 3418 data = elf_sec_data(obj, scn); 3419 if (!data) 3420 return -LIBBPF_ERRNO__FORMAT; 3421 3422 idx = elf_ndxscn(scn); 3423 3424 obj->efile.symbols = data; 3425 obj->efile.symbols_shndx = idx; 3426 obj->efile.strtabidx = sh->sh_link; 3427 } 3428 } 3429 3430 if (!obj->efile.symbols) { 3431 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3432 obj->path); 3433 return -ENOENT; 3434 } 3435 3436 scn = NULL; 3437 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3438 idx = elf_ndxscn(scn); 3439 sec_desc = &obj->efile.secs[idx]; 3440 3441 sh = elf_sec_hdr(obj, scn); 3442 if (!sh) 3443 return -LIBBPF_ERRNO__FORMAT; 3444 3445 name = elf_sec_str(obj, sh->sh_name); 3446 if (!name) 3447 return -LIBBPF_ERRNO__FORMAT; 3448 3449 if (ignore_elf_section(sh, name)) 3450 continue; 3451 3452 data = elf_sec_data(obj, scn); 3453 if (!data) 3454 return -LIBBPF_ERRNO__FORMAT; 3455 3456 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3457 idx, name, (unsigned long)data->d_size, 3458 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3459 (int)sh->sh_type); 3460 3461 if (strcmp(name, "license") == 0) { 3462 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3463 if (err) 3464 return err; 3465 } else if (strcmp(name, "version") == 0) { 3466 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3467 if (err) 3468 return err; 3469 } else if (strcmp(name, "maps") == 0) { 3470 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3471 return -ENOTSUP; 3472 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3473 obj->efile.btf_maps_shndx = idx; 3474 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3475 if (sh->sh_type != SHT_PROGBITS) 3476 return -LIBBPF_ERRNO__FORMAT; 3477 btf_data = data; 3478 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3479 if (sh->sh_type != SHT_PROGBITS) 3480 return -LIBBPF_ERRNO__FORMAT; 3481 btf_ext_data = data; 3482 } else if (sh->sh_type == SHT_SYMTAB) { 3483 /* already processed during the first pass above */ 3484 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3485 if (sh->sh_flags & SHF_EXECINSTR) { 3486 if (strcmp(name, ".text") == 0) 3487 obj->efile.text_shndx = idx; 3488 err = bpf_object__add_programs(obj, data, name, idx); 3489 if (err) 3490 return err; 3491 } else if (strcmp(name, DATA_SEC) == 0 || 3492 str_has_pfx(name, DATA_SEC ".")) { 3493 sec_desc->sec_type = SEC_DATA; 3494 sec_desc->shdr = sh; 3495 sec_desc->data = data; 3496 } else if (strcmp(name, RODATA_SEC) == 0 || 3497 str_has_pfx(name, RODATA_SEC ".")) { 3498 sec_desc->sec_type = SEC_RODATA; 3499 sec_desc->shdr = sh; 3500 sec_desc->data = data; 3501 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3502 obj->efile.st_ops_data = data; 3503 obj->efile.st_ops_shndx = idx; 3504 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3505 obj->efile.st_ops_link_data = data; 3506 obj->efile.st_ops_link_shndx = idx; 3507 } else { 3508 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3509 idx, name); 3510 } 3511 } else if (sh->sh_type == SHT_REL) { 3512 int targ_sec_idx = sh->sh_info; /* points to other section */ 3513 3514 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3515 targ_sec_idx >= obj->efile.sec_cnt) 3516 return -LIBBPF_ERRNO__FORMAT; 3517 3518 /* Only do relo for section with exec instructions */ 3519 if (!section_have_execinstr(obj, targ_sec_idx) && 3520 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3521 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3522 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3523 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3524 idx, name, targ_sec_idx, 3525 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3526 continue; 3527 } 3528 3529 sec_desc->sec_type = SEC_RELO; 3530 sec_desc->shdr = sh; 3531 sec_desc->data = data; 3532 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3533 str_has_pfx(name, BSS_SEC "."))) { 3534 sec_desc->sec_type = SEC_BSS; 3535 sec_desc->shdr = sh; 3536 sec_desc->data = data; 3537 } else { 3538 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3539 (size_t)sh->sh_size); 3540 } 3541 } 3542 3543 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3544 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3545 return -LIBBPF_ERRNO__FORMAT; 3546 } 3547 3548 /* sort BPF programs by section name and in-section instruction offset 3549 * for faster search 3550 */ 3551 if (obj->nr_programs) 3552 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3553 3554 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3555 } 3556 3557 static bool sym_is_extern(const Elf64_Sym *sym) 3558 { 3559 int bind = ELF64_ST_BIND(sym->st_info); 3560 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3561 return sym->st_shndx == SHN_UNDEF && 3562 (bind == STB_GLOBAL || bind == STB_WEAK) && 3563 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3564 } 3565 3566 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3567 { 3568 int bind = ELF64_ST_BIND(sym->st_info); 3569 int type = ELF64_ST_TYPE(sym->st_info); 3570 3571 /* in .text section */ 3572 if (sym->st_shndx != text_shndx) 3573 return false; 3574 3575 /* local function */ 3576 if (bind == STB_LOCAL && type == STT_SECTION) 3577 return true; 3578 3579 /* global function */ 3580 return bind == STB_GLOBAL && type == STT_FUNC; 3581 } 3582 3583 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3584 { 3585 const struct btf_type *t; 3586 const char *tname; 3587 int i, n; 3588 3589 if (!btf) 3590 return -ESRCH; 3591 3592 n = btf__type_cnt(btf); 3593 for (i = 1; i < n; i++) { 3594 t = btf__type_by_id(btf, i); 3595 3596 if (!btf_is_var(t) && !btf_is_func(t)) 3597 continue; 3598 3599 tname = btf__name_by_offset(btf, t->name_off); 3600 if (strcmp(tname, ext_name)) 3601 continue; 3602 3603 if (btf_is_var(t) && 3604 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3605 return -EINVAL; 3606 3607 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3608 return -EINVAL; 3609 3610 return i; 3611 } 3612 3613 return -ENOENT; 3614 } 3615 3616 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3617 const struct btf_var_secinfo *vs; 3618 const struct btf_type *t; 3619 int i, j, n; 3620 3621 if (!btf) 3622 return -ESRCH; 3623 3624 n = btf__type_cnt(btf); 3625 for (i = 1; i < n; i++) { 3626 t = btf__type_by_id(btf, i); 3627 3628 if (!btf_is_datasec(t)) 3629 continue; 3630 3631 vs = btf_var_secinfos(t); 3632 for (j = 0; j < btf_vlen(t); j++, vs++) { 3633 if (vs->type == ext_btf_id) 3634 return i; 3635 } 3636 } 3637 3638 return -ENOENT; 3639 } 3640 3641 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3642 bool *is_signed) 3643 { 3644 const struct btf_type *t; 3645 const char *name; 3646 3647 t = skip_mods_and_typedefs(btf, id, NULL); 3648 name = btf__name_by_offset(btf, t->name_off); 3649 3650 if (is_signed) 3651 *is_signed = false; 3652 switch (btf_kind(t)) { 3653 case BTF_KIND_INT: { 3654 int enc = btf_int_encoding(t); 3655 3656 if (enc & BTF_INT_BOOL) 3657 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3658 if (is_signed) 3659 *is_signed = enc & BTF_INT_SIGNED; 3660 if (t->size == 1) 3661 return KCFG_CHAR; 3662 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3663 return KCFG_UNKNOWN; 3664 return KCFG_INT; 3665 } 3666 case BTF_KIND_ENUM: 3667 if (t->size != 4) 3668 return KCFG_UNKNOWN; 3669 if (strcmp(name, "libbpf_tristate")) 3670 return KCFG_UNKNOWN; 3671 return KCFG_TRISTATE; 3672 case BTF_KIND_ENUM64: 3673 if (strcmp(name, "libbpf_tristate")) 3674 return KCFG_UNKNOWN; 3675 return KCFG_TRISTATE; 3676 case BTF_KIND_ARRAY: 3677 if (btf_array(t)->nelems == 0) 3678 return KCFG_UNKNOWN; 3679 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3680 return KCFG_UNKNOWN; 3681 return KCFG_CHAR_ARR; 3682 default: 3683 return KCFG_UNKNOWN; 3684 } 3685 } 3686 3687 static int cmp_externs(const void *_a, const void *_b) 3688 { 3689 const struct extern_desc *a = _a; 3690 const struct extern_desc *b = _b; 3691 3692 if (a->type != b->type) 3693 return a->type < b->type ? -1 : 1; 3694 3695 if (a->type == EXT_KCFG) { 3696 /* descending order by alignment requirements */ 3697 if (a->kcfg.align != b->kcfg.align) 3698 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3699 /* ascending order by size, within same alignment class */ 3700 if (a->kcfg.sz != b->kcfg.sz) 3701 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3702 } 3703 3704 /* resolve ties by name */ 3705 return strcmp(a->name, b->name); 3706 } 3707 3708 static int find_int_btf_id(const struct btf *btf) 3709 { 3710 const struct btf_type *t; 3711 int i, n; 3712 3713 n = btf__type_cnt(btf); 3714 for (i = 1; i < n; i++) { 3715 t = btf__type_by_id(btf, i); 3716 3717 if (btf_is_int(t) && btf_int_bits(t) == 32) 3718 return i; 3719 } 3720 3721 return 0; 3722 } 3723 3724 static int add_dummy_ksym_var(struct btf *btf) 3725 { 3726 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3727 const struct btf_var_secinfo *vs; 3728 const struct btf_type *sec; 3729 3730 if (!btf) 3731 return 0; 3732 3733 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3734 BTF_KIND_DATASEC); 3735 if (sec_btf_id < 0) 3736 return 0; 3737 3738 sec = btf__type_by_id(btf, sec_btf_id); 3739 vs = btf_var_secinfos(sec); 3740 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3741 const struct btf_type *vt; 3742 3743 vt = btf__type_by_id(btf, vs->type); 3744 if (btf_is_func(vt)) 3745 break; 3746 } 3747 3748 /* No func in ksyms sec. No need to add dummy var. */ 3749 if (i == btf_vlen(sec)) 3750 return 0; 3751 3752 int_btf_id = find_int_btf_id(btf); 3753 dummy_var_btf_id = btf__add_var(btf, 3754 "dummy_ksym", 3755 BTF_VAR_GLOBAL_ALLOCATED, 3756 int_btf_id); 3757 if (dummy_var_btf_id < 0) 3758 pr_warn("cannot create a dummy_ksym var\n"); 3759 3760 return dummy_var_btf_id; 3761 } 3762 3763 static int bpf_object__collect_externs(struct bpf_object *obj) 3764 { 3765 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3766 const struct btf_type *t; 3767 struct extern_desc *ext; 3768 int i, n, off, dummy_var_btf_id; 3769 const char *ext_name, *sec_name; 3770 Elf_Scn *scn; 3771 Elf64_Shdr *sh; 3772 3773 if (!obj->efile.symbols) 3774 return 0; 3775 3776 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3777 sh = elf_sec_hdr(obj, scn); 3778 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3779 return -LIBBPF_ERRNO__FORMAT; 3780 3781 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3782 if (dummy_var_btf_id < 0) 3783 return dummy_var_btf_id; 3784 3785 n = sh->sh_size / sh->sh_entsize; 3786 pr_debug("looking for externs among %d symbols...\n", n); 3787 3788 for (i = 0; i < n; i++) { 3789 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3790 3791 if (!sym) 3792 return -LIBBPF_ERRNO__FORMAT; 3793 if (!sym_is_extern(sym)) 3794 continue; 3795 ext_name = elf_sym_str(obj, sym->st_name); 3796 if (!ext_name || !ext_name[0]) 3797 continue; 3798 3799 ext = obj->externs; 3800 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3801 if (!ext) 3802 return -ENOMEM; 3803 obj->externs = ext; 3804 ext = &ext[obj->nr_extern]; 3805 memset(ext, 0, sizeof(*ext)); 3806 obj->nr_extern++; 3807 3808 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3809 if (ext->btf_id <= 0) { 3810 pr_warn("failed to find BTF for extern '%s': %d\n", 3811 ext_name, ext->btf_id); 3812 return ext->btf_id; 3813 } 3814 t = btf__type_by_id(obj->btf, ext->btf_id); 3815 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3816 ext->sym_idx = i; 3817 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3818 3819 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3820 if (ext->sec_btf_id <= 0) { 3821 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3822 ext_name, ext->btf_id, ext->sec_btf_id); 3823 return ext->sec_btf_id; 3824 } 3825 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3826 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3827 3828 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3829 if (btf_is_func(t)) { 3830 pr_warn("extern function %s is unsupported under %s section\n", 3831 ext->name, KCONFIG_SEC); 3832 return -ENOTSUP; 3833 } 3834 kcfg_sec = sec; 3835 ext->type = EXT_KCFG; 3836 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3837 if (ext->kcfg.sz <= 0) { 3838 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3839 ext_name, ext->kcfg.sz); 3840 return ext->kcfg.sz; 3841 } 3842 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3843 if (ext->kcfg.align <= 0) { 3844 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3845 ext_name, ext->kcfg.align); 3846 return -EINVAL; 3847 } 3848 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3849 &ext->kcfg.is_signed); 3850 if (ext->kcfg.type == KCFG_UNKNOWN) { 3851 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3852 return -ENOTSUP; 3853 } 3854 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3855 ksym_sec = sec; 3856 ext->type = EXT_KSYM; 3857 skip_mods_and_typedefs(obj->btf, t->type, 3858 &ext->ksym.type_id); 3859 } else { 3860 pr_warn("unrecognized extern section '%s'\n", sec_name); 3861 return -ENOTSUP; 3862 } 3863 } 3864 pr_debug("collected %d externs total\n", obj->nr_extern); 3865 3866 if (!obj->nr_extern) 3867 return 0; 3868 3869 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3870 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3871 3872 /* for .ksyms section, we need to turn all externs into allocated 3873 * variables in BTF to pass kernel verification; we do this by 3874 * pretending that each extern is a 8-byte variable 3875 */ 3876 if (ksym_sec) { 3877 /* find existing 4-byte integer type in BTF to use for fake 3878 * extern variables in DATASEC 3879 */ 3880 int int_btf_id = find_int_btf_id(obj->btf); 3881 /* For extern function, a dummy_var added earlier 3882 * will be used to replace the vs->type and 3883 * its name string will be used to refill 3884 * the missing param's name. 3885 */ 3886 const struct btf_type *dummy_var; 3887 3888 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3889 for (i = 0; i < obj->nr_extern; i++) { 3890 ext = &obj->externs[i]; 3891 if (ext->type != EXT_KSYM) 3892 continue; 3893 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3894 i, ext->sym_idx, ext->name); 3895 } 3896 3897 sec = ksym_sec; 3898 n = btf_vlen(sec); 3899 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3900 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3901 struct btf_type *vt; 3902 3903 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3904 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3905 ext = find_extern_by_name(obj, ext_name); 3906 if (!ext) { 3907 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3908 btf_kind_str(vt), ext_name); 3909 return -ESRCH; 3910 } 3911 if (btf_is_func(vt)) { 3912 const struct btf_type *func_proto; 3913 struct btf_param *param; 3914 int j; 3915 3916 func_proto = btf__type_by_id(obj->btf, 3917 vt->type); 3918 param = btf_params(func_proto); 3919 /* Reuse the dummy_var string if the 3920 * func proto does not have param name. 3921 */ 3922 for (j = 0; j < btf_vlen(func_proto); j++) 3923 if (param[j].type && !param[j].name_off) 3924 param[j].name_off = 3925 dummy_var->name_off; 3926 vs->type = dummy_var_btf_id; 3927 vt->info &= ~0xffff; 3928 vt->info |= BTF_FUNC_GLOBAL; 3929 } else { 3930 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3931 vt->type = int_btf_id; 3932 } 3933 vs->offset = off; 3934 vs->size = sizeof(int); 3935 } 3936 sec->size = off; 3937 } 3938 3939 if (kcfg_sec) { 3940 sec = kcfg_sec; 3941 /* for kcfg externs calculate their offsets within a .kconfig map */ 3942 off = 0; 3943 for (i = 0; i < obj->nr_extern; i++) { 3944 ext = &obj->externs[i]; 3945 if (ext->type != EXT_KCFG) 3946 continue; 3947 3948 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3949 off = ext->kcfg.data_off + ext->kcfg.sz; 3950 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3951 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3952 } 3953 sec->size = off; 3954 n = btf_vlen(sec); 3955 for (i = 0; i < n; i++) { 3956 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3957 3958 t = btf__type_by_id(obj->btf, vs->type); 3959 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3960 ext = find_extern_by_name(obj, ext_name); 3961 if (!ext) { 3962 pr_warn("failed to find extern definition for BTF var '%s'\n", 3963 ext_name); 3964 return -ESRCH; 3965 } 3966 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3967 vs->offset = ext->kcfg.data_off; 3968 } 3969 } 3970 return 0; 3971 } 3972 3973 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3974 { 3975 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3976 } 3977 3978 struct bpf_program * 3979 bpf_object__find_program_by_name(const struct bpf_object *obj, 3980 const char *name) 3981 { 3982 struct bpf_program *prog; 3983 3984 bpf_object__for_each_program(prog, obj) { 3985 if (prog_is_subprog(obj, prog)) 3986 continue; 3987 if (!strcmp(prog->name, name)) 3988 return prog; 3989 } 3990 return errno = ENOENT, NULL; 3991 } 3992 3993 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3994 int shndx) 3995 { 3996 switch (obj->efile.secs[shndx].sec_type) { 3997 case SEC_BSS: 3998 case SEC_DATA: 3999 case SEC_RODATA: 4000 return true; 4001 default: 4002 return false; 4003 } 4004 } 4005 4006 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4007 int shndx) 4008 { 4009 return shndx == obj->efile.btf_maps_shndx; 4010 } 4011 4012 static enum libbpf_map_type 4013 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4014 { 4015 if (shndx == obj->efile.symbols_shndx) 4016 return LIBBPF_MAP_KCONFIG; 4017 4018 switch (obj->efile.secs[shndx].sec_type) { 4019 case SEC_BSS: 4020 return LIBBPF_MAP_BSS; 4021 case SEC_DATA: 4022 return LIBBPF_MAP_DATA; 4023 case SEC_RODATA: 4024 return LIBBPF_MAP_RODATA; 4025 default: 4026 return LIBBPF_MAP_UNSPEC; 4027 } 4028 } 4029 4030 static int bpf_program__record_reloc(struct bpf_program *prog, 4031 struct reloc_desc *reloc_desc, 4032 __u32 insn_idx, const char *sym_name, 4033 const Elf64_Sym *sym, const Elf64_Rel *rel) 4034 { 4035 struct bpf_insn *insn = &prog->insns[insn_idx]; 4036 size_t map_idx, nr_maps = prog->obj->nr_maps; 4037 struct bpf_object *obj = prog->obj; 4038 __u32 shdr_idx = sym->st_shndx; 4039 enum libbpf_map_type type; 4040 const char *sym_sec_name; 4041 struct bpf_map *map; 4042 4043 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4044 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4045 prog->name, sym_name, insn_idx, insn->code); 4046 return -LIBBPF_ERRNO__RELOC; 4047 } 4048 4049 if (sym_is_extern(sym)) { 4050 int sym_idx = ELF64_R_SYM(rel->r_info); 4051 int i, n = obj->nr_extern; 4052 struct extern_desc *ext; 4053 4054 for (i = 0; i < n; i++) { 4055 ext = &obj->externs[i]; 4056 if (ext->sym_idx == sym_idx) 4057 break; 4058 } 4059 if (i >= n) { 4060 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4061 prog->name, sym_name, sym_idx); 4062 return -LIBBPF_ERRNO__RELOC; 4063 } 4064 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4065 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4066 if (insn->code == (BPF_JMP | BPF_CALL)) 4067 reloc_desc->type = RELO_EXTERN_CALL; 4068 else 4069 reloc_desc->type = RELO_EXTERN_LD64; 4070 reloc_desc->insn_idx = insn_idx; 4071 reloc_desc->ext_idx = i; 4072 return 0; 4073 } 4074 4075 /* sub-program call relocation */ 4076 if (is_call_insn(insn)) { 4077 if (insn->src_reg != BPF_PSEUDO_CALL) { 4078 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4079 return -LIBBPF_ERRNO__RELOC; 4080 } 4081 /* text_shndx can be 0, if no default "main" program exists */ 4082 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4083 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4084 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4085 prog->name, sym_name, sym_sec_name); 4086 return -LIBBPF_ERRNO__RELOC; 4087 } 4088 if (sym->st_value % BPF_INSN_SZ) { 4089 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4090 prog->name, sym_name, (size_t)sym->st_value); 4091 return -LIBBPF_ERRNO__RELOC; 4092 } 4093 reloc_desc->type = RELO_CALL; 4094 reloc_desc->insn_idx = insn_idx; 4095 reloc_desc->sym_off = sym->st_value; 4096 return 0; 4097 } 4098 4099 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4100 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4101 prog->name, sym_name, shdr_idx); 4102 return -LIBBPF_ERRNO__RELOC; 4103 } 4104 4105 /* loading subprog addresses */ 4106 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4107 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4108 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4109 */ 4110 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4111 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4112 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4113 return -LIBBPF_ERRNO__RELOC; 4114 } 4115 4116 reloc_desc->type = RELO_SUBPROG_ADDR; 4117 reloc_desc->insn_idx = insn_idx; 4118 reloc_desc->sym_off = sym->st_value; 4119 return 0; 4120 } 4121 4122 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4123 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4124 4125 /* generic map reference relocation */ 4126 if (type == LIBBPF_MAP_UNSPEC) { 4127 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4128 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4129 prog->name, sym_name, sym_sec_name); 4130 return -LIBBPF_ERRNO__RELOC; 4131 } 4132 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4133 map = &obj->maps[map_idx]; 4134 if (map->libbpf_type != type || 4135 map->sec_idx != sym->st_shndx || 4136 map->sec_offset != sym->st_value) 4137 continue; 4138 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4139 prog->name, map_idx, map->name, map->sec_idx, 4140 map->sec_offset, insn_idx); 4141 break; 4142 } 4143 if (map_idx >= nr_maps) { 4144 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4145 prog->name, sym_sec_name, (size_t)sym->st_value); 4146 return -LIBBPF_ERRNO__RELOC; 4147 } 4148 reloc_desc->type = RELO_LD64; 4149 reloc_desc->insn_idx = insn_idx; 4150 reloc_desc->map_idx = map_idx; 4151 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4152 return 0; 4153 } 4154 4155 /* global data map relocation */ 4156 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4157 pr_warn("prog '%s': bad data relo against section '%s'\n", 4158 prog->name, sym_sec_name); 4159 return -LIBBPF_ERRNO__RELOC; 4160 } 4161 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4162 map = &obj->maps[map_idx]; 4163 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4164 continue; 4165 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4166 prog->name, map_idx, map->name, map->sec_idx, 4167 map->sec_offset, insn_idx); 4168 break; 4169 } 4170 if (map_idx >= nr_maps) { 4171 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4172 prog->name, sym_sec_name); 4173 return -LIBBPF_ERRNO__RELOC; 4174 } 4175 4176 reloc_desc->type = RELO_DATA; 4177 reloc_desc->insn_idx = insn_idx; 4178 reloc_desc->map_idx = map_idx; 4179 reloc_desc->sym_off = sym->st_value; 4180 return 0; 4181 } 4182 4183 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4184 { 4185 return insn_idx >= prog->sec_insn_off && 4186 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4187 } 4188 4189 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4190 size_t sec_idx, size_t insn_idx) 4191 { 4192 int l = 0, r = obj->nr_programs - 1, m; 4193 struct bpf_program *prog; 4194 4195 if (!obj->nr_programs) 4196 return NULL; 4197 4198 while (l < r) { 4199 m = l + (r - l + 1) / 2; 4200 prog = &obj->programs[m]; 4201 4202 if (prog->sec_idx < sec_idx || 4203 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4204 l = m; 4205 else 4206 r = m - 1; 4207 } 4208 /* matching program could be at index l, but it still might be the 4209 * wrong one, so we need to double check conditions for the last time 4210 */ 4211 prog = &obj->programs[l]; 4212 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4213 return prog; 4214 return NULL; 4215 } 4216 4217 static int 4218 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4219 { 4220 const char *relo_sec_name, *sec_name; 4221 size_t sec_idx = shdr->sh_info, sym_idx; 4222 struct bpf_program *prog; 4223 struct reloc_desc *relos; 4224 int err, i, nrels; 4225 const char *sym_name; 4226 __u32 insn_idx; 4227 Elf_Scn *scn; 4228 Elf_Data *scn_data; 4229 Elf64_Sym *sym; 4230 Elf64_Rel *rel; 4231 4232 if (sec_idx >= obj->efile.sec_cnt) 4233 return -EINVAL; 4234 4235 scn = elf_sec_by_idx(obj, sec_idx); 4236 scn_data = elf_sec_data(obj, scn); 4237 4238 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4239 sec_name = elf_sec_name(obj, scn); 4240 if (!relo_sec_name || !sec_name) 4241 return -EINVAL; 4242 4243 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4244 relo_sec_name, sec_idx, sec_name); 4245 nrels = shdr->sh_size / shdr->sh_entsize; 4246 4247 for (i = 0; i < nrels; i++) { 4248 rel = elf_rel_by_idx(data, i); 4249 if (!rel) { 4250 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4251 return -LIBBPF_ERRNO__FORMAT; 4252 } 4253 4254 sym_idx = ELF64_R_SYM(rel->r_info); 4255 sym = elf_sym_by_idx(obj, sym_idx); 4256 if (!sym) { 4257 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4258 relo_sec_name, sym_idx, i); 4259 return -LIBBPF_ERRNO__FORMAT; 4260 } 4261 4262 if (sym->st_shndx >= obj->efile.sec_cnt) { 4263 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4264 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4265 return -LIBBPF_ERRNO__FORMAT; 4266 } 4267 4268 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4269 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4270 relo_sec_name, (size_t)rel->r_offset, i); 4271 return -LIBBPF_ERRNO__FORMAT; 4272 } 4273 4274 insn_idx = rel->r_offset / BPF_INSN_SZ; 4275 /* relocations against static functions are recorded as 4276 * relocations against the section that contains a function; 4277 * in such case, symbol will be STT_SECTION and sym.st_name 4278 * will point to empty string (0), so fetch section name 4279 * instead 4280 */ 4281 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4282 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4283 else 4284 sym_name = elf_sym_str(obj, sym->st_name); 4285 sym_name = sym_name ?: "<?"; 4286 4287 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4288 relo_sec_name, i, insn_idx, sym_name); 4289 4290 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4291 if (!prog) { 4292 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4293 relo_sec_name, i, sec_name, insn_idx); 4294 continue; 4295 } 4296 4297 relos = libbpf_reallocarray(prog->reloc_desc, 4298 prog->nr_reloc + 1, sizeof(*relos)); 4299 if (!relos) 4300 return -ENOMEM; 4301 prog->reloc_desc = relos; 4302 4303 /* adjust insn_idx to local BPF program frame of reference */ 4304 insn_idx -= prog->sec_insn_off; 4305 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4306 insn_idx, sym_name, sym, rel); 4307 if (err) 4308 return err; 4309 4310 prog->nr_reloc++; 4311 } 4312 return 0; 4313 } 4314 4315 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4316 { 4317 int id; 4318 4319 if (!obj->btf) 4320 return -ENOENT; 4321 4322 /* if it's BTF-defined map, we don't need to search for type IDs. 4323 * For struct_ops map, it does not need btf_key_type_id and 4324 * btf_value_type_id. 4325 */ 4326 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4327 return 0; 4328 4329 /* 4330 * LLVM annotates global data differently in BTF, that is, 4331 * only as '.data', '.bss' or '.rodata'. 4332 */ 4333 if (!bpf_map__is_internal(map)) 4334 return -ENOENT; 4335 4336 id = btf__find_by_name(obj->btf, map->real_name); 4337 if (id < 0) 4338 return id; 4339 4340 map->btf_key_type_id = 0; 4341 map->btf_value_type_id = id; 4342 return 0; 4343 } 4344 4345 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4346 { 4347 char file[PATH_MAX], buff[4096]; 4348 FILE *fp; 4349 __u32 val; 4350 int err; 4351 4352 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4353 memset(info, 0, sizeof(*info)); 4354 4355 fp = fopen(file, "re"); 4356 if (!fp) { 4357 err = -errno; 4358 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4359 err); 4360 return err; 4361 } 4362 4363 while (fgets(buff, sizeof(buff), fp)) { 4364 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4365 info->type = val; 4366 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4367 info->key_size = val; 4368 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4369 info->value_size = val; 4370 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4371 info->max_entries = val; 4372 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4373 info->map_flags = val; 4374 } 4375 4376 fclose(fp); 4377 4378 return 0; 4379 } 4380 4381 bool bpf_map__autocreate(const struct bpf_map *map) 4382 { 4383 return map->autocreate; 4384 } 4385 4386 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4387 { 4388 if (map->obj->loaded) 4389 return libbpf_err(-EBUSY); 4390 4391 map->autocreate = autocreate; 4392 return 0; 4393 } 4394 4395 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4396 { 4397 struct bpf_map_info info; 4398 __u32 len = sizeof(info), name_len; 4399 int new_fd, err; 4400 char *new_name; 4401 4402 memset(&info, 0, len); 4403 err = bpf_map_get_info_by_fd(fd, &info, &len); 4404 if (err && errno == EINVAL) 4405 err = bpf_get_map_info_from_fdinfo(fd, &info); 4406 if (err) 4407 return libbpf_err(err); 4408 4409 name_len = strlen(info.name); 4410 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4411 new_name = strdup(map->name); 4412 else 4413 new_name = strdup(info.name); 4414 4415 if (!new_name) 4416 return libbpf_err(-errno); 4417 4418 /* 4419 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4420 * This is similar to what we do in ensure_good_fd(), but without 4421 * closing original FD. 4422 */ 4423 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4424 if (new_fd < 0) { 4425 err = -errno; 4426 goto err_free_new_name; 4427 } 4428 4429 err = zclose(map->fd); 4430 if (err) { 4431 err = -errno; 4432 goto err_close_new_fd; 4433 } 4434 free(map->name); 4435 4436 map->fd = new_fd; 4437 map->name = new_name; 4438 map->def.type = info.type; 4439 map->def.key_size = info.key_size; 4440 map->def.value_size = info.value_size; 4441 map->def.max_entries = info.max_entries; 4442 map->def.map_flags = info.map_flags; 4443 map->btf_key_type_id = info.btf_key_type_id; 4444 map->btf_value_type_id = info.btf_value_type_id; 4445 map->reused = true; 4446 map->map_extra = info.map_extra; 4447 4448 return 0; 4449 4450 err_close_new_fd: 4451 close(new_fd); 4452 err_free_new_name: 4453 free(new_name); 4454 return libbpf_err(err); 4455 } 4456 4457 __u32 bpf_map__max_entries(const struct bpf_map *map) 4458 { 4459 return map->def.max_entries; 4460 } 4461 4462 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4463 { 4464 if (!bpf_map_type__is_map_in_map(map->def.type)) 4465 return errno = EINVAL, NULL; 4466 4467 return map->inner_map; 4468 } 4469 4470 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4471 { 4472 if (map->obj->loaded) 4473 return libbpf_err(-EBUSY); 4474 4475 map->def.max_entries = max_entries; 4476 4477 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4478 if (map_is_ringbuf(map)) 4479 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4480 4481 return 0; 4482 } 4483 4484 static int 4485 bpf_object__probe_loading(struct bpf_object *obj) 4486 { 4487 char *cp, errmsg[STRERR_BUFSIZE]; 4488 struct bpf_insn insns[] = { 4489 BPF_MOV64_IMM(BPF_REG_0, 0), 4490 BPF_EXIT_INSN(), 4491 }; 4492 int ret, insn_cnt = ARRAY_SIZE(insns); 4493 4494 if (obj->gen_loader) 4495 return 0; 4496 4497 ret = bump_rlimit_memlock(); 4498 if (ret) 4499 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4500 4501 /* make sure basic loading works */ 4502 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4503 if (ret < 0) 4504 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4505 if (ret < 0) { 4506 ret = errno; 4507 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4508 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4509 "program. Make sure your kernel supports BPF " 4510 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4511 "set to big enough value.\n", __func__, cp, ret); 4512 return -ret; 4513 } 4514 close(ret); 4515 4516 return 0; 4517 } 4518 4519 static int probe_fd(int fd) 4520 { 4521 if (fd >= 0) 4522 close(fd); 4523 return fd >= 0; 4524 } 4525 4526 static int probe_kern_prog_name(void) 4527 { 4528 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4529 struct bpf_insn insns[] = { 4530 BPF_MOV64_IMM(BPF_REG_0, 0), 4531 BPF_EXIT_INSN(), 4532 }; 4533 union bpf_attr attr; 4534 int ret; 4535 4536 memset(&attr, 0, attr_sz); 4537 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4538 attr.license = ptr_to_u64("GPL"); 4539 attr.insns = ptr_to_u64(insns); 4540 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4541 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4542 4543 /* make sure loading with name works */ 4544 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4545 return probe_fd(ret); 4546 } 4547 4548 static int probe_kern_global_data(void) 4549 { 4550 char *cp, errmsg[STRERR_BUFSIZE]; 4551 struct bpf_insn insns[] = { 4552 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4553 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4554 BPF_MOV64_IMM(BPF_REG_0, 0), 4555 BPF_EXIT_INSN(), 4556 }; 4557 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4558 4559 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4560 if (map < 0) { 4561 ret = -errno; 4562 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4563 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4564 __func__, cp, -ret); 4565 return ret; 4566 } 4567 4568 insns[0].imm = map; 4569 4570 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4571 close(map); 4572 return probe_fd(ret); 4573 } 4574 4575 static int probe_kern_btf(void) 4576 { 4577 static const char strs[] = "\0int"; 4578 __u32 types[] = { 4579 /* int */ 4580 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4581 }; 4582 4583 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4584 strs, sizeof(strs))); 4585 } 4586 4587 static int probe_kern_btf_func(void) 4588 { 4589 static const char strs[] = "\0int\0x\0a"; 4590 /* void x(int a) {} */ 4591 __u32 types[] = { 4592 /* int */ 4593 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4594 /* FUNC_PROTO */ /* [2] */ 4595 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4596 BTF_PARAM_ENC(7, 1), 4597 /* FUNC x */ /* [3] */ 4598 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4599 }; 4600 4601 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4602 strs, sizeof(strs))); 4603 } 4604 4605 static int probe_kern_btf_func_global(void) 4606 { 4607 static const char strs[] = "\0int\0x\0a"; 4608 /* static void x(int a) {} */ 4609 __u32 types[] = { 4610 /* int */ 4611 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4612 /* FUNC_PROTO */ /* [2] */ 4613 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4614 BTF_PARAM_ENC(7, 1), 4615 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4616 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4617 }; 4618 4619 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4620 strs, sizeof(strs))); 4621 } 4622 4623 static int probe_kern_btf_datasec(void) 4624 { 4625 static const char strs[] = "\0x\0.data"; 4626 /* static int a; */ 4627 __u32 types[] = { 4628 /* int */ 4629 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4630 /* VAR x */ /* [2] */ 4631 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4632 BTF_VAR_STATIC, 4633 /* DATASEC val */ /* [3] */ 4634 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4635 BTF_VAR_SECINFO_ENC(2, 0, 4), 4636 }; 4637 4638 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4639 strs, sizeof(strs))); 4640 } 4641 4642 static int probe_kern_btf_float(void) 4643 { 4644 static const char strs[] = "\0float"; 4645 __u32 types[] = { 4646 /* float */ 4647 BTF_TYPE_FLOAT_ENC(1, 4), 4648 }; 4649 4650 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4651 strs, sizeof(strs))); 4652 } 4653 4654 static int probe_kern_btf_decl_tag(void) 4655 { 4656 static const char strs[] = "\0tag"; 4657 __u32 types[] = { 4658 /* int */ 4659 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4660 /* VAR x */ /* [2] */ 4661 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4662 BTF_VAR_STATIC, 4663 /* attr */ 4664 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4665 }; 4666 4667 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4668 strs, sizeof(strs))); 4669 } 4670 4671 static int probe_kern_btf_type_tag(void) 4672 { 4673 static const char strs[] = "\0tag"; 4674 __u32 types[] = { 4675 /* int */ 4676 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4677 /* attr */ 4678 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4679 /* ptr */ 4680 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4681 }; 4682 4683 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4684 strs, sizeof(strs))); 4685 } 4686 4687 static int probe_kern_array_mmap(void) 4688 { 4689 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4690 int fd; 4691 4692 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4693 return probe_fd(fd); 4694 } 4695 4696 static int probe_kern_exp_attach_type(void) 4697 { 4698 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4699 struct bpf_insn insns[] = { 4700 BPF_MOV64_IMM(BPF_REG_0, 0), 4701 BPF_EXIT_INSN(), 4702 }; 4703 int fd, insn_cnt = ARRAY_SIZE(insns); 4704 4705 /* use any valid combination of program type and (optional) 4706 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4707 * to see if kernel supports expected_attach_type field for 4708 * BPF_PROG_LOAD command 4709 */ 4710 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4711 return probe_fd(fd); 4712 } 4713 4714 static int probe_kern_probe_read_kernel(void) 4715 { 4716 struct bpf_insn insns[] = { 4717 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4718 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4719 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4720 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4721 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4722 BPF_EXIT_INSN(), 4723 }; 4724 int fd, insn_cnt = ARRAY_SIZE(insns); 4725 4726 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4727 return probe_fd(fd); 4728 } 4729 4730 static int probe_prog_bind_map(void) 4731 { 4732 char *cp, errmsg[STRERR_BUFSIZE]; 4733 struct bpf_insn insns[] = { 4734 BPF_MOV64_IMM(BPF_REG_0, 0), 4735 BPF_EXIT_INSN(), 4736 }; 4737 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4738 4739 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4740 if (map < 0) { 4741 ret = -errno; 4742 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4743 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4744 __func__, cp, -ret); 4745 return ret; 4746 } 4747 4748 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4749 if (prog < 0) { 4750 close(map); 4751 return 0; 4752 } 4753 4754 ret = bpf_prog_bind_map(prog, map, NULL); 4755 4756 close(map); 4757 close(prog); 4758 4759 return ret >= 0; 4760 } 4761 4762 static int probe_module_btf(void) 4763 { 4764 static const char strs[] = "\0int"; 4765 __u32 types[] = { 4766 /* int */ 4767 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4768 }; 4769 struct bpf_btf_info info; 4770 __u32 len = sizeof(info); 4771 char name[16]; 4772 int fd, err; 4773 4774 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4775 if (fd < 0) 4776 return 0; /* BTF not supported at all */ 4777 4778 memset(&info, 0, sizeof(info)); 4779 info.name = ptr_to_u64(name); 4780 info.name_len = sizeof(name); 4781 4782 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4783 * kernel's module BTF support coincides with support for 4784 * name/name_len fields in struct bpf_btf_info. 4785 */ 4786 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4787 close(fd); 4788 return !err; 4789 } 4790 4791 static int probe_perf_link(void) 4792 { 4793 struct bpf_insn insns[] = { 4794 BPF_MOV64_IMM(BPF_REG_0, 0), 4795 BPF_EXIT_INSN(), 4796 }; 4797 int prog_fd, link_fd, err; 4798 4799 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4800 insns, ARRAY_SIZE(insns), NULL); 4801 if (prog_fd < 0) 4802 return -errno; 4803 4804 /* use invalid perf_event FD to get EBADF, if link is supported; 4805 * otherwise EINVAL should be returned 4806 */ 4807 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4808 err = -errno; /* close() can clobber errno */ 4809 4810 if (link_fd >= 0) 4811 close(link_fd); 4812 close(prog_fd); 4813 4814 return link_fd < 0 && err == -EBADF; 4815 } 4816 4817 static int probe_kern_bpf_cookie(void) 4818 { 4819 struct bpf_insn insns[] = { 4820 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4821 BPF_EXIT_INSN(), 4822 }; 4823 int ret, insn_cnt = ARRAY_SIZE(insns); 4824 4825 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4826 return probe_fd(ret); 4827 } 4828 4829 static int probe_kern_btf_enum64(void) 4830 { 4831 static const char strs[] = "\0enum64"; 4832 __u32 types[] = { 4833 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4834 }; 4835 4836 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4837 strs, sizeof(strs))); 4838 } 4839 4840 static int probe_kern_syscall_wrapper(void); 4841 4842 enum kern_feature_result { 4843 FEAT_UNKNOWN = 0, 4844 FEAT_SUPPORTED = 1, 4845 FEAT_MISSING = 2, 4846 }; 4847 4848 typedef int (*feature_probe_fn)(void); 4849 4850 static struct kern_feature_desc { 4851 const char *desc; 4852 feature_probe_fn probe; 4853 enum kern_feature_result res; 4854 } feature_probes[__FEAT_CNT] = { 4855 [FEAT_PROG_NAME] = { 4856 "BPF program name", probe_kern_prog_name, 4857 }, 4858 [FEAT_GLOBAL_DATA] = { 4859 "global variables", probe_kern_global_data, 4860 }, 4861 [FEAT_BTF] = { 4862 "minimal BTF", probe_kern_btf, 4863 }, 4864 [FEAT_BTF_FUNC] = { 4865 "BTF functions", probe_kern_btf_func, 4866 }, 4867 [FEAT_BTF_GLOBAL_FUNC] = { 4868 "BTF global function", probe_kern_btf_func_global, 4869 }, 4870 [FEAT_BTF_DATASEC] = { 4871 "BTF data section and variable", probe_kern_btf_datasec, 4872 }, 4873 [FEAT_ARRAY_MMAP] = { 4874 "ARRAY map mmap()", probe_kern_array_mmap, 4875 }, 4876 [FEAT_EXP_ATTACH_TYPE] = { 4877 "BPF_PROG_LOAD expected_attach_type attribute", 4878 probe_kern_exp_attach_type, 4879 }, 4880 [FEAT_PROBE_READ_KERN] = { 4881 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4882 }, 4883 [FEAT_PROG_BIND_MAP] = { 4884 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4885 }, 4886 [FEAT_MODULE_BTF] = { 4887 "module BTF support", probe_module_btf, 4888 }, 4889 [FEAT_BTF_FLOAT] = { 4890 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4891 }, 4892 [FEAT_PERF_LINK] = { 4893 "BPF perf link support", probe_perf_link, 4894 }, 4895 [FEAT_BTF_DECL_TAG] = { 4896 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4897 }, 4898 [FEAT_BTF_TYPE_TAG] = { 4899 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4900 }, 4901 [FEAT_MEMCG_ACCOUNT] = { 4902 "memcg-based memory accounting", probe_memcg_account, 4903 }, 4904 [FEAT_BPF_COOKIE] = { 4905 "BPF cookie support", probe_kern_bpf_cookie, 4906 }, 4907 [FEAT_BTF_ENUM64] = { 4908 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4909 }, 4910 [FEAT_SYSCALL_WRAPPER] = { 4911 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4912 }, 4913 }; 4914 4915 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4916 { 4917 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4918 int ret; 4919 4920 if (obj && obj->gen_loader) 4921 /* To generate loader program assume the latest kernel 4922 * to avoid doing extra prog_load, map_create syscalls. 4923 */ 4924 return true; 4925 4926 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4927 ret = feat->probe(); 4928 if (ret > 0) { 4929 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4930 } else if (ret == 0) { 4931 WRITE_ONCE(feat->res, FEAT_MISSING); 4932 } else { 4933 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4934 WRITE_ONCE(feat->res, FEAT_MISSING); 4935 } 4936 } 4937 4938 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4939 } 4940 4941 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4942 { 4943 struct bpf_map_info map_info; 4944 char msg[STRERR_BUFSIZE]; 4945 __u32 map_info_len = sizeof(map_info); 4946 int err; 4947 4948 memset(&map_info, 0, map_info_len); 4949 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4950 if (err && errno == EINVAL) 4951 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4952 if (err) { 4953 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4954 libbpf_strerror_r(errno, msg, sizeof(msg))); 4955 return false; 4956 } 4957 4958 return (map_info.type == map->def.type && 4959 map_info.key_size == map->def.key_size && 4960 map_info.value_size == map->def.value_size && 4961 map_info.max_entries == map->def.max_entries && 4962 map_info.map_flags == map->def.map_flags && 4963 map_info.map_extra == map->map_extra); 4964 } 4965 4966 static int 4967 bpf_object__reuse_map(struct bpf_map *map) 4968 { 4969 char *cp, errmsg[STRERR_BUFSIZE]; 4970 int err, pin_fd; 4971 4972 pin_fd = bpf_obj_get(map->pin_path); 4973 if (pin_fd < 0) { 4974 err = -errno; 4975 if (err == -ENOENT) { 4976 pr_debug("found no pinned map to reuse at '%s'\n", 4977 map->pin_path); 4978 return 0; 4979 } 4980 4981 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4982 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4983 map->pin_path, cp); 4984 return err; 4985 } 4986 4987 if (!map_is_reuse_compat(map, pin_fd)) { 4988 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4989 map->pin_path); 4990 close(pin_fd); 4991 return -EINVAL; 4992 } 4993 4994 err = bpf_map__reuse_fd(map, pin_fd); 4995 close(pin_fd); 4996 if (err) 4997 return err; 4998 4999 map->pinned = true; 5000 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5001 5002 return 0; 5003 } 5004 5005 static int 5006 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5007 { 5008 enum libbpf_map_type map_type = map->libbpf_type; 5009 char *cp, errmsg[STRERR_BUFSIZE]; 5010 int err, zero = 0; 5011 5012 if (obj->gen_loader) { 5013 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5014 map->mmaped, map->def.value_size); 5015 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5016 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5017 return 0; 5018 } 5019 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5020 if (err) { 5021 err = -errno; 5022 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5023 pr_warn("Error setting initial map(%s) contents: %s\n", 5024 map->name, cp); 5025 return err; 5026 } 5027 5028 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5029 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5030 err = bpf_map_freeze(map->fd); 5031 if (err) { 5032 err = -errno; 5033 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5034 pr_warn("Error freezing map(%s) as read-only: %s\n", 5035 map->name, cp); 5036 return err; 5037 } 5038 } 5039 return 0; 5040 } 5041 5042 static void bpf_map__destroy(struct bpf_map *map); 5043 5044 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5045 { 5046 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5047 struct bpf_map_def *def = &map->def; 5048 const char *map_name = NULL; 5049 int err = 0; 5050 5051 if (kernel_supports(obj, FEAT_PROG_NAME)) 5052 map_name = map->name; 5053 create_attr.map_ifindex = map->map_ifindex; 5054 create_attr.map_flags = def->map_flags; 5055 create_attr.numa_node = map->numa_node; 5056 create_attr.map_extra = map->map_extra; 5057 5058 if (bpf_map__is_struct_ops(map)) 5059 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5060 5061 if (obj->btf && btf__fd(obj->btf) >= 0) { 5062 create_attr.btf_fd = btf__fd(obj->btf); 5063 create_attr.btf_key_type_id = map->btf_key_type_id; 5064 create_attr.btf_value_type_id = map->btf_value_type_id; 5065 } 5066 5067 if (bpf_map_type__is_map_in_map(def->type)) { 5068 if (map->inner_map) { 5069 err = bpf_object__create_map(obj, map->inner_map, true); 5070 if (err) { 5071 pr_warn("map '%s': failed to create inner map: %d\n", 5072 map->name, err); 5073 return err; 5074 } 5075 map->inner_map_fd = bpf_map__fd(map->inner_map); 5076 } 5077 if (map->inner_map_fd >= 0) 5078 create_attr.inner_map_fd = map->inner_map_fd; 5079 } 5080 5081 switch (def->type) { 5082 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5083 case BPF_MAP_TYPE_CGROUP_ARRAY: 5084 case BPF_MAP_TYPE_STACK_TRACE: 5085 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5086 case BPF_MAP_TYPE_HASH_OF_MAPS: 5087 case BPF_MAP_TYPE_DEVMAP: 5088 case BPF_MAP_TYPE_DEVMAP_HASH: 5089 case BPF_MAP_TYPE_CPUMAP: 5090 case BPF_MAP_TYPE_XSKMAP: 5091 case BPF_MAP_TYPE_SOCKMAP: 5092 case BPF_MAP_TYPE_SOCKHASH: 5093 case BPF_MAP_TYPE_QUEUE: 5094 case BPF_MAP_TYPE_STACK: 5095 create_attr.btf_fd = 0; 5096 create_attr.btf_key_type_id = 0; 5097 create_attr.btf_value_type_id = 0; 5098 map->btf_key_type_id = 0; 5099 map->btf_value_type_id = 0; 5100 default: 5101 break; 5102 } 5103 5104 if (obj->gen_loader) { 5105 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5106 def->key_size, def->value_size, def->max_entries, 5107 &create_attr, is_inner ? -1 : map - obj->maps); 5108 /* Pretend to have valid FD to pass various fd >= 0 checks. 5109 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5110 */ 5111 map->fd = 0; 5112 } else { 5113 map->fd = bpf_map_create(def->type, map_name, 5114 def->key_size, def->value_size, 5115 def->max_entries, &create_attr); 5116 } 5117 if (map->fd < 0 && (create_attr.btf_key_type_id || 5118 create_attr.btf_value_type_id)) { 5119 char *cp, errmsg[STRERR_BUFSIZE]; 5120 5121 err = -errno; 5122 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5123 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5124 map->name, cp, err); 5125 create_attr.btf_fd = 0; 5126 create_attr.btf_key_type_id = 0; 5127 create_attr.btf_value_type_id = 0; 5128 map->btf_key_type_id = 0; 5129 map->btf_value_type_id = 0; 5130 map->fd = bpf_map_create(def->type, map_name, 5131 def->key_size, def->value_size, 5132 def->max_entries, &create_attr); 5133 } 5134 5135 err = map->fd < 0 ? -errno : 0; 5136 5137 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5138 if (obj->gen_loader) 5139 map->inner_map->fd = -1; 5140 bpf_map__destroy(map->inner_map); 5141 zfree(&map->inner_map); 5142 } 5143 5144 return err; 5145 } 5146 5147 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5148 { 5149 const struct bpf_map *targ_map; 5150 unsigned int i; 5151 int fd, err = 0; 5152 5153 for (i = 0; i < map->init_slots_sz; i++) { 5154 if (!map->init_slots[i]) 5155 continue; 5156 5157 targ_map = map->init_slots[i]; 5158 fd = bpf_map__fd(targ_map); 5159 5160 if (obj->gen_loader) { 5161 bpf_gen__populate_outer_map(obj->gen_loader, 5162 map - obj->maps, i, 5163 targ_map - obj->maps); 5164 } else { 5165 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5166 } 5167 if (err) { 5168 err = -errno; 5169 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5170 map->name, i, targ_map->name, fd, err); 5171 return err; 5172 } 5173 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5174 map->name, i, targ_map->name, fd); 5175 } 5176 5177 zfree(&map->init_slots); 5178 map->init_slots_sz = 0; 5179 5180 return 0; 5181 } 5182 5183 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5184 { 5185 const struct bpf_program *targ_prog; 5186 unsigned int i; 5187 int fd, err; 5188 5189 if (obj->gen_loader) 5190 return -ENOTSUP; 5191 5192 for (i = 0; i < map->init_slots_sz; i++) { 5193 if (!map->init_slots[i]) 5194 continue; 5195 5196 targ_prog = map->init_slots[i]; 5197 fd = bpf_program__fd(targ_prog); 5198 5199 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5200 if (err) { 5201 err = -errno; 5202 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5203 map->name, i, targ_prog->name, fd, err); 5204 return err; 5205 } 5206 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5207 map->name, i, targ_prog->name, fd); 5208 } 5209 5210 zfree(&map->init_slots); 5211 map->init_slots_sz = 0; 5212 5213 return 0; 5214 } 5215 5216 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5217 { 5218 struct bpf_map *map; 5219 int i, err; 5220 5221 for (i = 0; i < obj->nr_maps; i++) { 5222 map = &obj->maps[i]; 5223 5224 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5225 continue; 5226 5227 err = init_prog_array_slots(obj, map); 5228 if (err < 0) { 5229 zclose(map->fd); 5230 return err; 5231 } 5232 } 5233 return 0; 5234 } 5235 5236 static int map_set_def_max_entries(struct bpf_map *map) 5237 { 5238 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5239 int nr_cpus; 5240 5241 nr_cpus = libbpf_num_possible_cpus(); 5242 if (nr_cpus < 0) { 5243 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5244 map->name, nr_cpus); 5245 return nr_cpus; 5246 } 5247 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5248 map->def.max_entries = nr_cpus; 5249 } 5250 5251 return 0; 5252 } 5253 5254 static int 5255 bpf_object__create_maps(struct bpf_object *obj) 5256 { 5257 struct bpf_map *map; 5258 char *cp, errmsg[STRERR_BUFSIZE]; 5259 unsigned int i, j; 5260 int err; 5261 bool retried; 5262 5263 for (i = 0; i < obj->nr_maps; i++) { 5264 map = &obj->maps[i]; 5265 5266 /* To support old kernels, we skip creating global data maps 5267 * (.rodata, .data, .kconfig, etc); later on, during program 5268 * loading, if we detect that at least one of the to-be-loaded 5269 * programs is referencing any global data map, we'll error 5270 * out with program name and relocation index logged. 5271 * This approach allows to accommodate Clang emitting 5272 * unnecessary .rodata.str1.1 sections for string literals, 5273 * but also it allows to have CO-RE applications that use 5274 * global variables in some of BPF programs, but not others. 5275 * If those global variable-using programs are not loaded at 5276 * runtime due to bpf_program__set_autoload(prog, false), 5277 * bpf_object loading will succeed just fine even on old 5278 * kernels. 5279 */ 5280 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5281 map->autocreate = false; 5282 5283 if (!map->autocreate) { 5284 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5285 continue; 5286 } 5287 5288 err = map_set_def_max_entries(map); 5289 if (err) 5290 goto err_out; 5291 5292 retried = false; 5293 retry: 5294 if (map->pin_path) { 5295 err = bpf_object__reuse_map(map); 5296 if (err) { 5297 pr_warn("map '%s': error reusing pinned map\n", 5298 map->name); 5299 goto err_out; 5300 } 5301 if (retried && map->fd < 0) { 5302 pr_warn("map '%s': cannot find pinned map\n", 5303 map->name); 5304 err = -ENOENT; 5305 goto err_out; 5306 } 5307 } 5308 5309 if (map->fd >= 0) { 5310 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5311 map->name, map->fd); 5312 } else { 5313 err = bpf_object__create_map(obj, map, false); 5314 if (err) 5315 goto err_out; 5316 5317 pr_debug("map '%s': created successfully, fd=%d\n", 5318 map->name, map->fd); 5319 5320 if (bpf_map__is_internal(map)) { 5321 err = bpf_object__populate_internal_map(obj, map); 5322 if (err < 0) { 5323 zclose(map->fd); 5324 goto err_out; 5325 } 5326 } 5327 5328 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5329 err = init_map_in_map_slots(obj, map); 5330 if (err < 0) { 5331 zclose(map->fd); 5332 goto err_out; 5333 } 5334 } 5335 } 5336 5337 if (map->pin_path && !map->pinned) { 5338 err = bpf_map__pin(map, NULL); 5339 if (err) { 5340 zclose(map->fd); 5341 if (!retried && err == -EEXIST) { 5342 retried = true; 5343 goto retry; 5344 } 5345 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5346 map->name, map->pin_path, err); 5347 goto err_out; 5348 } 5349 } 5350 } 5351 5352 return 0; 5353 5354 err_out: 5355 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5356 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5357 pr_perm_msg(err); 5358 for (j = 0; j < i; j++) 5359 zclose(obj->maps[j].fd); 5360 return err; 5361 } 5362 5363 static bool bpf_core_is_flavor_sep(const char *s) 5364 { 5365 /* check X___Y name pattern, where X and Y are not underscores */ 5366 return s[0] != '_' && /* X */ 5367 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5368 s[4] != '_'; /* Y */ 5369 } 5370 5371 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5372 * before last triple underscore. Struct name part after last triple 5373 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5374 */ 5375 size_t bpf_core_essential_name_len(const char *name) 5376 { 5377 size_t n = strlen(name); 5378 int i; 5379 5380 for (i = n - 5; i >= 0; i--) { 5381 if (bpf_core_is_flavor_sep(name + i)) 5382 return i + 1; 5383 } 5384 return n; 5385 } 5386 5387 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5388 { 5389 if (!cands) 5390 return; 5391 5392 free(cands->cands); 5393 free(cands); 5394 } 5395 5396 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5397 size_t local_essent_len, 5398 const struct btf *targ_btf, 5399 const char *targ_btf_name, 5400 int targ_start_id, 5401 struct bpf_core_cand_list *cands) 5402 { 5403 struct bpf_core_cand *new_cands, *cand; 5404 const struct btf_type *t, *local_t; 5405 const char *targ_name, *local_name; 5406 size_t targ_essent_len; 5407 int n, i; 5408 5409 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5410 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5411 5412 n = btf__type_cnt(targ_btf); 5413 for (i = targ_start_id; i < n; i++) { 5414 t = btf__type_by_id(targ_btf, i); 5415 if (!btf_kind_core_compat(t, local_t)) 5416 continue; 5417 5418 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5419 if (str_is_empty(targ_name)) 5420 continue; 5421 5422 targ_essent_len = bpf_core_essential_name_len(targ_name); 5423 if (targ_essent_len != local_essent_len) 5424 continue; 5425 5426 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5427 continue; 5428 5429 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5430 local_cand->id, btf_kind_str(local_t), 5431 local_name, i, btf_kind_str(t), targ_name, 5432 targ_btf_name); 5433 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5434 sizeof(*cands->cands)); 5435 if (!new_cands) 5436 return -ENOMEM; 5437 5438 cand = &new_cands[cands->len]; 5439 cand->btf = targ_btf; 5440 cand->id = i; 5441 5442 cands->cands = new_cands; 5443 cands->len++; 5444 } 5445 return 0; 5446 } 5447 5448 static int load_module_btfs(struct bpf_object *obj) 5449 { 5450 struct bpf_btf_info info; 5451 struct module_btf *mod_btf; 5452 struct btf *btf; 5453 char name[64]; 5454 __u32 id = 0, len; 5455 int err, fd; 5456 5457 if (obj->btf_modules_loaded) 5458 return 0; 5459 5460 if (obj->gen_loader) 5461 return 0; 5462 5463 /* don't do this again, even if we find no module BTFs */ 5464 obj->btf_modules_loaded = true; 5465 5466 /* kernel too old to support module BTFs */ 5467 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5468 return 0; 5469 5470 while (true) { 5471 err = bpf_btf_get_next_id(id, &id); 5472 if (err && errno == ENOENT) 5473 return 0; 5474 if (err) { 5475 err = -errno; 5476 pr_warn("failed to iterate BTF objects: %d\n", err); 5477 return err; 5478 } 5479 5480 fd = bpf_btf_get_fd_by_id(id); 5481 if (fd < 0) { 5482 if (errno == ENOENT) 5483 continue; /* expected race: BTF was unloaded */ 5484 err = -errno; 5485 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5486 return err; 5487 } 5488 5489 len = sizeof(info); 5490 memset(&info, 0, sizeof(info)); 5491 info.name = ptr_to_u64(name); 5492 info.name_len = sizeof(name); 5493 5494 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5495 if (err) { 5496 err = -errno; 5497 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5498 goto err_out; 5499 } 5500 5501 /* ignore non-module BTFs */ 5502 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5503 close(fd); 5504 continue; 5505 } 5506 5507 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5508 err = libbpf_get_error(btf); 5509 if (err) { 5510 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5511 name, id, err); 5512 goto err_out; 5513 } 5514 5515 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5516 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5517 if (err) 5518 goto err_out; 5519 5520 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5521 5522 mod_btf->btf = btf; 5523 mod_btf->id = id; 5524 mod_btf->fd = fd; 5525 mod_btf->name = strdup(name); 5526 if (!mod_btf->name) { 5527 err = -ENOMEM; 5528 goto err_out; 5529 } 5530 continue; 5531 5532 err_out: 5533 close(fd); 5534 return err; 5535 } 5536 5537 return 0; 5538 } 5539 5540 static struct bpf_core_cand_list * 5541 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5542 { 5543 struct bpf_core_cand local_cand = {}; 5544 struct bpf_core_cand_list *cands; 5545 const struct btf *main_btf; 5546 const struct btf_type *local_t; 5547 const char *local_name; 5548 size_t local_essent_len; 5549 int err, i; 5550 5551 local_cand.btf = local_btf; 5552 local_cand.id = local_type_id; 5553 local_t = btf__type_by_id(local_btf, local_type_id); 5554 if (!local_t) 5555 return ERR_PTR(-EINVAL); 5556 5557 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5558 if (str_is_empty(local_name)) 5559 return ERR_PTR(-EINVAL); 5560 local_essent_len = bpf_core_essential_name_len(local_name); 5561 5562 cands = calloc(1, sizeof(*cands)); 5563 if (!cands) 5564 return ERR_PTR(-ENOMEM); 5565 5566 /* Attempt to find target candidates in vmlinux BTF first */ 5567 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5568 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5569 if (err) 5570 goto err_out; 5571 5572 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5573 if (cands->len) 5574 return cands; 5575 5576 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5577 if (obj->btf_vmlinux_override) 5578 return cands; 5579 5580 /* now look through module BTFs, trying to still find candidates */ 5581 err = load_module_btfs(obj); 5582 if (err) 5583 goto err_out; 5584 5585 for (i = 0; i < obj->btf_module_cnt; i++) { 5586 err = bpf_core_add_cands(&local_cand, local_essent_len, 5587 obj->btf_modules[i].btf, 5588 obj->btf_modules[i].name, 5589 btf__type_cnt(obj->btf_vmlinux), 5590 cands); 5591 if (err) 5592 goto err_out; 5593 } 5594 5595 return cands; 5596 err_out: 5597 bpf_core_free_cands(cands); 5598 return ERR_PTR(err); 5599 } 5600 5601 /* Check local and target types for compatibility. This check is used for 5602 * type-based CO-RE relocations and follow slightly different rules than 5603 * field-based relocations. This function assumes that root types were already 5604 * checked for name match. Beyond that initial root-level name check, names 5605 * are completely ignored. Compatibility rules are as follows: 5606 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5607 * kind should match for local and target types (i.e., STRUCT is not 5608 * compatible with UNION); 5609 * - for ENUMs, the size is ignored; 5610 * - for INT, size and signedness are ignored; 5611 * - for ARRAY, dimensionality is ignored, element types are checked for 5612 * compatibility recursively; 5613 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5614 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5615 * - FUNC_PROTOs are compatible if they have compatible signature: same 5616 * number of input args and compatible return and argument types. 5617 * These rules are not set in stone and probably will be adjusted as we get 5618 * more experience with using BPF CO-RE relocations. 5619 */ 5620 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5621 const struct btf *targ_btf, __u32 targ_id) 5622 { 5623 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5624 } 5625 5626 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5627 const struct btf *targ_btf, __u32 targ_id) 5628 { 5629 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5630 } 5631 5632 static size_t bpf_core_hash_fn(const long key, void *ctx) 5633 { 5634 return key; 5635 } 5636 5637 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5638 { 5639 return k1 == k2; 5640 } 5641 5642 static int record_relo_core(struct bpf_program *prog, 5643 const struct bpf_core_relo *core_relo, int insn_idx) 5644 { 5645 struct reloc_desc *relos, *relo; 5646 5647 relos = libbpf_reallocarray(prog->reloc_desc, 5648 prog->nr_reloc + 1, sizeof(*relos)); 5649 if (!relos) 5650 return -ENOMEM; 5651 relo = &relos[prog->nr_reloc]; 5652 relo->type = RELO_CORE; 5653 relo->insn_idx = insn_idx; 5654 relo->core_relo = core_relo; 5655 prog->reloc_desc = relos; 5656 prog->nr_reloc++; 5657 return 0; 5658 } 5659 5660 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5661 { 5662 struct reloc_desc *relo; 5663 int i; 5664 5665 for (i = 0; i < prog->nr_reloc; i++) { 5666 relo = &prog->reloc_desc[i]; 5667 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5668 continue; 5669 5670 return relo->core_relo; 5671 } 5672 5673 return NULL; 5674 } 5675 5676 static int bpf_core_resolve_relo(struct bpf_program *prog, 5677 const struct bpf_core_relo *relo, 5678 int relo_idx, 5679 const struct btf *local_btf, 5680 struct hashmap *cand_cache, 5681 struct bpf_core_relo_res *targ_res) 5682 { 5683 struct bpf_core_spec specs_scratch[3] = {}; 5684 struct bpf_core_cand_list *cands = NULL; 5685 const char *prog_name = prog->name; 5686 const struct btf_type *local_type; 5687 const char *local_name; 5688 __u32 local_id = relo->type_id; 5689 int err; 5690 5691 local_type = btf__type_by_id(local_btf, local_id); 5692 if (!local_type) 5693 return -EINVAL; 5694 5695 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5696 if (!local_name) 5697 return -EINVAL; 5698 5699 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5700 !hashmap__find(cand_cache, local_id, &cands)) { 5701 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5702 if (IS_ERR(cands)) { 5703 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5704 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5705 local_name, PTR_ERR(cands)); 5706 return PTR_ERR(cands); 5707 } 5708 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5709 if (err) { 5710 bpf_core_free_cands(cands); 5711 return err; 5712 } 5713 } 5714 5715 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5716 targ_res); 5717 } 5718 5719 static int 5720 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5721 { 5722 const struct btf_ext_info_sec *sec; 5723 struct bpf_core_relo_res targ_res; 5724 const struct bpf_core_relo *rec; 5725 const struct btf_ext_info *seg; 5726 struct hashmap_entry *entry; 5727 struct hashmap *cand_cache = NULL; 5728 struct bpf_program *prog; 5729 struct bpf_insn *insn; 5730 const char *sec_name; 5731 int i, err = 0, insn_idx, sec_idx, sec_num; 5732 5733 if (obj->btf_ext->core_relo_info.len == 0) 5734 return 0; 5735 5736 if (targ_btf_path) { 5737 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5738 err = libbpf_get_error(obj->btf_vmlinux_override); 5739 if (err) { 5740 pr_warn("failed to parse target BTF: %d\n", err); 5741 return err; 5742 } 5743 } 5744 5745 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5746 if (IS_ERR(cand_cache)) { 5747 err = PTR_ERR(cand_cache); 5748 goto out; 5749 } 5750 5751 seg = &obj->btf_ext->core_relo_info; 5752 sec_num = 0; 5753 for_each_btf_ext_sec(seg, sec) { 5754 sec_idx = seg->sec_idxs[sec_num]; 5755 sec_num++; 5756 5757 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5758 if (str_is_empty(sec_name)) { 5759 err = -EINVAL; 5760 goto out; 5761 } 5762 5763 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5764 5765 for_each_btf_ext_rec(seg, sec, i, rec) { 5766 if (rec->insn_off % BPF_INSN_SZ) 5767 return -EINVAL; 5768 insn_idx = rec->insn_off / BPF_INSN_SZ; 5769 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5770 if (!prog) { 5771 /* When __weak subprog is "overridden" by another instance 5772 * of the subprog from a different object file, linker still 5773 * appends all the .BTF.ext info that used to belong to that 5774 * eliminated subprogram. 5775 * This is similar to what x86-64 linker does for relocations. 5776 * So just ignore such relocations just like we ignore 5777 * subprog instructions when discovering subprograms. 5778 */ 5779 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5780 sec_name, i, insn_idx); 5781 continue; 5782 } 5783 /* no need to apply CO-RE relocation if the program is 5784 * not going to be loaded 5785 */ 5786 if (!prog->autoload) 5787 continue; 5788 5789 /* adjust insn_idx from section frame of reference to the local 5790 * program's frame of reference; (sub-)program code is not yet 5791 * relocated, so it's enough to just subtract in-section offset 5792 */ 5793 insn_idx = insn_idx - prog->sec_insn_off; 5794 if (insn_idx >= prog->insns_cnt) 5795 return -EINVAL; 5796 insn = &prog->insns[insn_idx]; 5797 5798 err = record_relo_core(prog, rec, insn_idx); 5799 if (err) { 5800 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5801 prog->name, i, err); 5802 goto out; 5803 } 5804 5805 if (prog->obj->gen_loader) 5806 continue; 5807 5808 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5809 if (err) { 5810 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5811 prog->name, i, err); 5812 goto out; 5813 } 5814 5815 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5816 if (err) { 5817 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5818 prog->name, i, insn_idx, err); 5819 goto out; 5820 } 5821 } 5822 } 5823 5824 out: 5825 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5826 btf__free(obj->btf_vmlinux_override); 5827 obj->btf_vmlinux_override = NULL; 5828 5829 if (!IS_ERR_OR_NULL(cand_cache)) { 5830 hashmap__for_each_entry(cand_cache, entry, i) { 5831 bpf_core_free_cands(entry->pvalue); 5832 } 5833 hashmap__free(cand_cache); 5834 } 5835 return err; 5836 } 5837 5838 /* base map load ldimm64 special constant, used also for log fixup logic */ 5839 #define POISON_LDIMM64_MAP_BASE 2001000000 5840 #define POISON_LDIMM64_MAP_PFX "200100" 5841 5842 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5843 int insn_idx, struct bpf_insn *insn, 5844 int map_idx, const struct bpf_map *map) 5845 { 5846 int i; 5847 5848 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5849 prog->name, relo_idx, insn_idx, map_idx, map->name); 5850 5851 /* we turn single ldimm64 into two identical invalid calls */ 5852 for (i = 0; i < 2; i++) { 5853 insn->code = BPF_JMP | BPF_CALL; 5854 insn->dst_reg = 0; 5855 insn->src_reg = 0; 5856 insn->off = 0; 5857 /* if this instruction is reachable (not a dead code), 5858 * verifier will complain with something like: 5859 * invalid func unknown#2001000123 5860 * where lower 123 is map index into obj->maps[] array 5861 */ 5862 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5863 5864 insn++; 5865 } 5866 } 5867 5868 /* unresolved kfunc call special constant, used also for log fixup logic */ 5869 #define POISON_CALL_KFUNC_BASE 2002000000 5870 #define POISON_CALL_KFUNC_PFX "2002" 5871 5872 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5873 int insn_idx, struct bpf_insn *insn, 5874 int ext_idx, const struct extern_desc *ext) 5875 { 5876 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5877 prog->name, relo_idx, insn_idx, ext->name); 5878 5879 /* we turn kfunc call into invalid helper call with identifiable constant */ 5880 insn->code = BPF_JMP | BPF_CALL; 5881 insn->dst_reg = 0; 5882 insn->src_reg = 0; 5883 insn->off = 0; 5884 /* if this instruction is reachable (not a dead code), 5885 * verifier will complain with something like: 5886 * invalid func unknown#2001000123 5887 * where lower 123 is extern index into obj->externs[] array 5888 */ 5889 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5890 } 5891 5892 /* Relocate data references within program code: 5893 * - map references; 5894 * - global variable references; 5895 * - extern references. 5896 */ 5897 static int 5898 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5899 { 5900 int i; 5901 5902 for (i = 0; i < prog->nr_reloc; i++) { 5903 struct reloc_desc *relo = &prog->reloc_desc[i]; 5904 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5905 const struct bpf_map *map; 5906 struct extern_desc *ext; 5907 5908 switch (relo->type) { 5909 case RELO_LD64: 5910 map = &obj->maps[relo->map_idx]; 5911 if (obj->gen_loader) { 5912 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5913 insn[0].imm = relo->map_idx; 5914 } else if (map->autocreate) { 5915 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5916 insn[0].imm = map->fd; 5917 } else { 5918 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5919 relo->map_idx, map); 5920 } 5921 break; 5922 case RELO_DATA: 5923 map = &obj->maps[relo->map_idx]; 5924 insn[1].imm = insn[0].imm + relo->sym_off; 5925 if (obj->gen_loader) { 5926 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5927 insn[0].imm = relo->map_idx; 5928 } else if (map->autocreate) { 5929 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5930 insn[0].imm = map->fd; 5931 } else { 5932 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5933 relo->map_idx, map); 5934 } 5935 break; 5936 case RELO_EXTERN_LD64: 5937 ext = &obj->externs[relo->ext_idx]; 5938 if (ext->type == EXT_KCFG) { 5939 if (obj->gen_loader) { 5940 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5941 insn[0].imm = obj->kconfig_map_idx; 5942 } else { 5943 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5944 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5945 } 5946 insn[1].imm = ext->kcfg.data_off; 5947 } else /* EXT_KSYM */ { 5948 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5949 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5950 insn[0].imm = ext->ksym.kernel_btf_id; 5951 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5952 } else { /* typeless ksyms or unresolved typed ksyms */ 5953 insn[0].imm = (__u32)ext->ksym.addr; 5954 insn[1].imm = ext->ksym.addr >> 32; 5955 } 5956 } 5957 break; 5958 case RELO_EXTERN_CALL: 5959 ext = &obj->externs[relo->ext_idx]; 5960 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5961 if (ext->is_set) { 5962 insn[0].imm = ext->ksym.kernel_btf_id; 5963 insn[0].off = ext->ksym.btf_fd_idx; 5964 } else { /* unresolved weak kfunc call */ 5965 poison_kfunc_call(prog, i, relo->insn_idx, insn, 5966 relo->ext_idx, ext); 5967 } 5968 break; 5969 case RELO_SUBPROG_ADDR: 5970 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5971 pr_warn("prog '%s': relo #%d: bad insn\n", 5972 prog->name, i); 5973 return -EINVAL; 5974 } 5975 /* handled already */ 5976 break; 5977 case RELO_CALL: 5978 /* handled already */ 5979 break; 5980 case RELO_CORE: 5981 /* will be handled by bpf_program_record_relos() */ 5982 break; 5983 default: 5984 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5985 prog->name, i, relo->type); 5986 return -EINVAL; 5987 } 5988 } 5989 5990 return 0; 5991 } 5992 5993 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5994 const struct bpf_program *prog, 5995 const struct btf_ext_info *ext_info, 5996 void **prog_info, __u32 *prog_rec_cnt, 5997 __u32 *prog_rec_sz) 5998 { 5999 void *copy_start = NULL, *copy_end = NULL; 6000 void *rec, *rec_end, *new_prog_info; 6001 const struct btf_ext_info_sec *sec; 6002 size_t old_sz, new_sz; 6003 int i, sec_num, sec_idx, off_adj; 6004 6005 sec_num = 0; 6006 for_each_btf_ext_sec(ext_info, sec) { 6007 sec_idx = ext_info->sec_idxs[sec_num]; 6008 sec_num++; 6009 if (prog->sec_idx != sec_idx) 6010 continue; 6011 6012 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6013 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6014 6015 if (insn_off < prog->sec_insn_off) 6016 continue; 6017 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6018 break; 6019 6020 if (!copy_start) 6021 copy_start = rec; 6022 copy_end = rec + ext_info->rec_size; 6023 } 6024 6025 if (!copy_start) 6026 return -ENOENT; 6027 6028 /* append func/line info of a given (sub-)program to the main 6029 * program func/line info 6030 */ 6031 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6032 new_sz = old_sz + (copy_end - copy_start); 6033 new_prog_info = realloc(*prog_info, new_sz); 6034 if (!new_prog_info) 6035 return -ENOMEM; 6036 *prog_info = new_prog_info; 6037 *prog_rec_cnt = new_sz / ext_info->rec_size; 6038 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6039 6040 /* Kernel instruction offsets are in units of 8-byte 6041 * instructions, while .BTF.ext instruction offsets generated 6042 * by Clang are in units of bytes. So convert Clang offsets 6043 * into kernel offsets and adjust offset according to program 6044 * relocated position. 6045 */ 6046 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6047 rec = new_prog_info + old_sz; 6048 rec_end = new_prog_info + new_sz; 6049 for (; rec < rec_end; rec += ext_info->rec_size) { 6050 __u32 *insn_off = rec; 6051 6052 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6053 } 6054 *prog_rec_sz = ext_info->rec_size; 6055 return 0; 6056 } 6057 6058 return -ENOENT; 6059 } 6060 6061 static int 6062 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6063 struct bpf_program *main_prog, 6064 const struct bpf_program *prog) 6065 { 6066 int err; 6067 6068 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6069 * supprot func/line info 6070 */ 6071 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6072 return 0; 6073 6074 /* only attempt func info relocation if main program's func_info 6075 * relocation was successful 6076 */ 6077 if (main_prog != prog && !main_prog->func_info) 6078 goto line_info; 6079 6080 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6081 &main_prog->func_info, 6082 &main_prog->func_info_cnt, 6083 &main_prog->func_info_rec_size); 6084 if (err) { 6085 if (err != -ENOENT) { 6086 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6087 prog->name, err); 6088 return err; 6089 } 6090 if (main_prog->func_info) { 6091 /* 6092 * Some info has already been found but has problem 6093 * in the last btf_ext reloc. Must have to error out. 6094 */ 6095 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6096 return err; 6097 } 6098 /* Have problem loading the very first info. Ignore the rest. */ 6099 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6100 prog->name); 6101 } 6102 6103 line_info: 6104 /* don't relocate line info if main program's relocation failed */ 6105 if (main_prog != prog && !main_prog->line_info) 6106 return 0; 6107 6108 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6109 &main_prog->line_info, 6110 &main_prog->line_info_cnt, 6111 &main_prog->line_info_rec_size); 6112 if (err) { 6113 if (err != -ENOENT) { 6114 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6115 prog->name, err); 6116 return err; 6117 } 6118 if (main_prog->line_info) { 6119 /* 6120 * Some info has already been found but has problem 6121 * in the last btf_ext reloc. Must have to error out. 6122 */ 6123 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6124 return err; 6125 } 6126 /* Have problem loading the very first info. Ignore the rest. */ 6127 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6128 prog->name); 6129 } 6130 return 0; 6131 } 6132 6133 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6134 { 6135 size_t insn_idx = *(const size_t *)key; 6136 const struct reloc_desc *relo = elem; 6137 6138 if (insn_idx == relo->insn_idx) 6139 return 0; 6140 return insn_idx < relo->insn_idx ? -1 : 1; 6141 } 6142 6143 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6144 { 6145 if (!prog->nr_reloc) 6146 return NULL; 6147 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6148 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6149 } 6150 6151 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6152 { 6153 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6154 struct reloc_desc *relos; 6155 int i; 6156 6157 if (main_prog == subprog) 6158 return 0; 6159 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6160 if (!relos) 6161 return -ENOMEM; 6162 if (subprog->nr_reloc) 6163 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6164 sizeof(*relos) * subprog->nr_reloc); 6165 6166 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6167 relos[i].insn_idx += subprog->sub_insn_off; 6168 /* After insn_idx adjustment the 'relos' array is still sorted 6169 * by insn_idx and doesn't break bsearch. 6170 */ 6171 main_prog->reloc_desc = relos; 6172 main_prog->nr_reloc = new_cnt; 6173 return 0; 6174 } 6175 6176 static int 6177 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6178 struct bpf_program *prog) 6179 { 6180 size_t sub_insn_idx, insn_idx, new_cnt; 6181 struct bpf_program *subprog; 6182 struct bpf_insn *insns, *insn; 6183 struct reloc_desc *relo; 6184 int err; 6185 6186 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6187 if (err) 6188 return err; 6189 6190 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6191 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6192 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6193 continue; 6194 6195 relo = find_prog_insn_relo(prog, insn_idx); 6196 if (relo && relo->type == RELO_EXTERN_CALL) 6197 /* kfunc relocations will be handled later 6198 * in bpf_object__relocate_data() 6199 */ 6200 continue; 6201 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6202 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6203 prog->name, insn_idx, relo->type); 6204 return -LIBBPF_ERRNO__RELOC; 6205 } 6206 if (relo) { 6207 /* sub-program instruction index is a combination of 6208 * an offset of a symbol pointed to by relocation and 6209 * call instruction's imm field; for global functions, 6210 * call always has imm = -1, but for static functions 6211 * relocation is against STT_SECTION and insn->imm 6212 * points to a start of a static function 6213 * 6214 * for subprog addr relocation, the relo->sym_off + insn->imm is 6215 * the byte offset in the corresponding section. 6216 */ 6217 if (relo->type == RELO_CALL) 6218 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6219 else 6220 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6221 } else if (insn_is_pseudo_func(insn)) { 6222 /* 6223 * RELO_SUBPROG_ADDR relo is always emitted even if both 6224 * functions are in the same section, so it shouldn't reach here. 6225 */ 6226 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6227 prog->name, insn_idx); 6228 return -LIBBPF_ERRNO__RELOC; 6229 } else { 6230 /* if subprogram call is to a static function within 6231 * the same ELF section, there won't be any relocation 6232 * emitted, but it also means there is no additional 6233 * offset necessary, insns->imm is relative to 6234 * instruction's original position within the section 6235 */ 6236 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6237 } 6238 6239 /* we enforce that sub-programs should be in .text section */ 6240 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6241 if (!subprog) { 6242 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6243 prog->name); 6244 return -LIBBPF_ERRNO__RELOC; 6245 } 6246 6247 /* if it's the first call instruction calling into this 6248 * subprogram (meaning this subprog hasn't been processed 6249 * yet) within the context of current main program: 6250 * - append it at the end of main program's instructions blog; 6251 * - process is recursively, while current program is put on hold; 6252 * - if that subprogram calls some other not yet processes 6253 * subprogram, same thing will happen recursively until 6254 * there are no more unprocesses subprograms left to append 6255 * and relocate. 6256 */ 6257 if (subprog->sub_insn_off == 0) { 6258 subprog->sub_insn_off = main_prog->insns_cnt; 6259 6260 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6261 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6262 if (!insns) { 6263 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6264 return -ENOMEM; 6265 } 6266 main_prog->insns = insns; 6267 main_prog->insns_cnt = new_cnt; 6268 6269 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6270 subprog->insns_cnt * sizeof(*insns)); 6271 6272 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6273 main_prog->name, subprog->insns_cnt, subprog->name); 6274 6275 /* The subprog insns are now appended. Append its relos too. */ 6276 err = append_subprog_relos(main_prog, subprog); 6277 if (err) 6278 return err; 6279 err = bpf_object__reloc_code(obj, main_prog, subprog); 6280 if (err) 6281 return err; 6282 } 6283 6284 /* main_prog->insns memory could have been re-allocated, so 6285 * calculate pointer again 6286 */ 6287 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6288 /* calculate correct instruction position within current main 6289 * prog; each main prog can have a different set of 6290 * subprograms appended (potentially in different order as 6291 * well), so position of any subprog can be different for 6292 * different main programs 6293 */ 6294 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6295 6296 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6297 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6298 } 6299 6300 return 0; 6301 } 6302 6303 /* 6304 * Relocate sub-program calls. 6305 * 6306 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6307 * main prog) is processed separately. For each subprog (non-entry functions, 6308 * that can be called from either entry progs or other subprogs) gets their 6309 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6310 * hasn't been yet appended and relocated within current main prog. Once its 6311 * relocated, sub_insn_off will point at the position within current main prog 6312 * where given subprog was appended. This will further be used to relocate all 6313 * the call instructions jumping into this subprog. 6314 * 6315 * We start with main program and process all call instructions. If the call 6316 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6317 * is zero), subprog instructions are appended at the end of main program's 6318 * instruction array. Then main program is "put on hold" while we recursively 6319 * process newly appended subprogram. If that subprogram calls into another 6320 * subprogram that hasn't been appended, new subprogram is appended again to 6321 * the *main* prog's instructions (subprog's instructions are always left 6322 * untouched, as they need to be in unmodified state for subsequent main progs 6323 * and subprog instructions are always sent only as part of a main prog) and 6324 * the process continues recursively. Once all the subprogs called from a main 6325 * prog or any of its subprogs are appended (and relocated), all their 6326 * positions within finalized instructions array are known, so it's easy to 6327 * rewrite call instructions with correct relative offsets, corresponding to 6328 * desired target subprog. 6329 * 6330 * Its important to realize that some subprogs might not be called from some 6331 * main prog and any of its called/used subprogs. Those will keep their 6332 * subprog->sub_insn_off as zero at all times and won't be appended to current 6333 * main prog and won't be relocated within the context of current main prog. 6334 * They might still be used from other main progs later. 6335 * 6336 * Visually this process can be shown as below. Suppose we have two main 6337 * programs mainA and mainB and BPF object contains three subprogs: subA, 6338 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6339 * subC both call subB: 6340 * 6341 * +--------+ +-------+ 6342 * | v v | 6343 * +--+---+ +--+-+-+ +---+--+ 6344 * | subA | | subB | | subC | 6345 * +--+---+ +------+ +---+--+ 6346 * ^ ^ 6347 * | | 6348 * +---+-------+ +------+----+ 6349 * | mainA | | mainB | 6350 * +-----------+ +-----------+ 6351 * 6352 * We'll start relocating mainA, will find subA, append it and start 6353 * processing sub A recursively: 6354 * 6355 * +-----------+------+ 6356 * | mainA | subA | 6357 * +-----------+------+ 6358 * 6359 * At this point we notice that subB is used from subA, so we append it and 6360 * relocate (there are no further subcalls from subB): 6361 * 6362 * +-----------+------+------+ 6363 * | mainA | subA | subB | 6364 * +-----------+------+------+ 6365 * 6366 * At this point, we relocate subA calls, then go one level up and finish with 6367 * relocatin mainA calls. mainA is done. 6368 * 6369 * For mainB process is similar but results in different order. We start with 6370 * mainB and skip subA and subB, as mainB never calls them (at least 6371 * directly), but we see subC is needed, so we append and start processing it: 6372 * 6373 * +-----------+------+ 6374 * | mainB | subC | 6375 * +-----------+------+ 6376 * Now we see subC needs subB, so we go back to it, append and relocate it: 6377 * 6378 * +-----------+------+------+ 6379 * | mainB | subC | subB | 6380 * +-----------+------+------+ 6381 * 6382 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6383 */ 6384 static int 6385 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6386 { 6387 struct bpf_program *subprog; 6388 int i, err; 6389 6390 /* mark all subprogs as not relocated (yet) within the context of 6391 * current main program 6392 */ 6393 for (i = 0; i < obj->nr_programs; i++) { 6394 subprog = &obj->programs[i]; 6395 if (!prog_is_subprog(obj, subprog)) 6396 continue; 6397 6398 subprog->sub_insn_off = 0; 6399 } 6400 6401 err = bpf_object__reloc_code(obj, prog, prog); 6402 if (err) 6403 return err; 6404 6405 return 0; 6406 } 6407 6408 static void 6409 bpf_object__free_relocs(struct bpf_object *obj) 6410 { 6411 struct bpf_program *prog; 6412 int i; 6413 6414 /* free up relocation descriptors */ 6415 for (i = 0; i < obj->nr_programs; i++) { 6416 prog = &obj->programs[i]; 6417 zfree(&prog->reloc_desc); 6418 prog->nr_reloc = 0; 6419 } 6420 } 6421 6422 static int cmp_relocs(const void *_a, const void *_b) 6423 { 6424 const struct reloc_desc *a = _a; 6425 const struct reloc_desc *b = _b; 6426 6427 if (a->insn_idx != b->insn_idx) 6428 return a->insn_idx < b->insn_idx ? -1 : 1; 6429 6430 /* no two relocations should have the same insn_idx, but ... */ 6431 if (a->type != b->type) 6432 return a->type < b->type ? -1 : 1; 6433 6434 return 0; 6435 } 6436 6437 static void bpf_object__sort_relos(struct bpf_object *obj) 6438 { 6439 int i; 6440 6441 for (i = 0; i < obj->nr_programs; i++) { 6442 struct bpf_program *p = &obj->programs[i]; 6443 6444 if (!p->nr_reloc) 6445 continue; 6446 6447 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6448 } 6449 } 6450 6451 static int 6452 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6453 { 6454 struct bpf_program *prog; 6455 size_t i, j; 6456 int err; 6457 6458 if (obj->btf_ext) { 6459 err = bpf_object__relocate_core(obj, targ_btf_path); 6460 if (err) { 6461 pr_warn("failed to perform CO-RE relocations: %d\n", 6462 err); 6463 return err; 6464 } 6465 bpf_object__sort_relos(obj); 6466 } 6467 6468 /* Before relocating calls pre-process relocations and mark 6469 * few ld_imm64 instructions that points to subprogs. 6470 * Otherwise bpf_object__reloc_code() later would have to consider 6471 * all ld_imm64 insns as relocation candidates. That would 6472 * reduce relocation speed, since amount of find_prog_insn_relo() 6473 * would increase and most of them will fail to find a relo. 6474 */ 6475 for (i = 0; i < obj->nr_programs; i++) { 6476 prog = &obj->programs[i]; 6477 for (j = 0; j < prog->nr_reloc; j++) { 6478 struct reloc_desc *relo = &prog->reloc_desc[j]; 6479 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6480 6481 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6482 if (relo->type == RELO_SUBPROG_ADDR) 6483 insn[0].src_reg = BPF_PSEUDO_FUNC; 6484 } 6485 } 6486 6487 /* relocate subprogram calls and append used subprograms to main 6488 * programs; each copy of subprogram code needs to be relocated 6489 * differently for each main program, because its code location might 6490 * have changed. 6491 * Append subprog relos to main programs to allow data relos to be 6492 * processed after text is completely relocated. 6493 */ 6494 for (i = 0; i < obj->nr_programs; i++) { 6495 prog = &obj->programs[i]; 6496 /* sub-program's sub-calls are relocated within the context of 6497 * its main program only 6498 */ 6499 if (prog_is_subprog(obj, prog)) 6500 continue; 6501 if (!prog->autoload) 6502 continue; 6503 6504 err = bpf_object__relocate_calls(obj, prog); 6505 if (err) { 6506 pr_warn("prog '%s': failed to relocate calls: %d\n", 6507 prog->name, err); 6508 return err; 6509 } 6510 } 6511 /* Process data relos for main programs */ 6512 for (i = 0; i < obj->nr_programs; i++) { 6513 prog = &obj->programs[i]; 6514 if (prog_is_subprog(obj, prog)) 6515 continue; 6516 if (!prog->autoload) 6517 continue; 6518 err = bpf_object__relocate_data(obj, prog); 6519 if (err) { 6520 pr_warn("prog '%s': failed to relocate data references: %d\n", 6521 prog->name, err); 6522 return err; 6523 } 6524 } 6525 6526 return 0; 6527 } 6528 6529 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6530 Elf64_Shdr *shdr, Elf_Data *data); 6531 6532 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6533 Elf64_Shdr *shdr, Elf_Data *data) 6534 { 6535 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6536 int i, j, nrels, new_sz; 6537 const struct btf_var_secinfo *vi = NULL; 6538 const struct btf_type *sec, *var, *def; 6539 struct bpf_map *map = NULL, *targ_map = NULL; 6540 struct bpf_program *targ_prog = NULL; 6541 bool is_prog_array, is_map_in_map; 6542 const struct btf_member *member; 6543 const char *name, *mname, *type; 6544 unsigned int moff; 6545 Elf64_Sym *sym; 6546 Elf64_Rel *rel; 6547 void *tmp; 6548 6549 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6550 return -EINVAL; 6551 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6552 if (!sec) 6553 return -EINVAL; 6554 6555 nrels = shdr->sh_size / shdr->sh_entsize; 6556 for (i = 0; i < nrels; i++) { 6557 rel = elf_rel_by_idx(data, i); 6558 if (!rel) { 6559 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6560 return -LIBBPF_ERRNO__FORMAT; 6561 } 6562 6563 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6564 if (!sym) { 6565 pr_warn(".maps relo #%d: symbol %zx not found\n", 6566 i, (size_t)ELF64_R_SYM(rel->r_info)); 6567 return -LIBBPF_ERRNO__FORMAT; 6568 } 6569 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6570 6571 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6572 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6573 (size_t)rel->r_offset, sym->st_name, name); 6574 6575 for (j = 0; j < obj->nr_maps; j++) { 6576 map = &obj->maps[j]; 6577 if (map->sec_idx != obj->efile.btf_maps_shndx) 6578 continue; 6579 6580 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6581 if (vi->offset <= rel->r_offset && 6582 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6583 break; 6584 } 6585 if (j == obj->nr_maps) { 6586 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6587 i, name, (size_t)rel->r_offset); 6588 return -EINVAL; 6589 } 6590 6591 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6592 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6593 type = is_map_in_map ? "map" : "prog"; 6594 if (is_map_in_map) { 6595 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6596 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6597 i, name); 6598 return -LIBBPF_ERRNO__RELOC; 6599 } 6600 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6601 map->def.key_size != sizeof(int)) { 6602 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6603 i, map->name, sizeof(int)); 6604 return -EINVAL; 6605 } 6606 targ_map = bpf_object__find_map_by_name(obj, name); 6607 if (!targ_map) { 6608 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6609 i, name); 6610 return -ESRCH; 6611 } 6612 } else if (is_prog_array) { 6613 targ_prog = bpf_object__find_program_by_name(obj, name); 6614 if (!targ_prog) { 6615 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6616 i, name); 6617 return -ESRCH; 6618 } 6619 if (targ_prog->sec_idx != sym->st_shndx || 6620 targ_prog->sec_insn_off * 8 != sym->st_value || 6621 prog_is_subprog(obj, targ_prog)) { 6622 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6623 i, name); 6624 return -LIBBPF_ERRNO__RELOC; 6625 } 6626 } else { 6627 return -EINVAL; 6628 } 6629 6630 var = btf__type_by_id(obj->btf, vi->type); 6631 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6632 if (btf_vlen(def) == 0) 6633 return -EINVAL; 6634 member = btf_members(def) + btf_vlen(def) - 1; 6635 mname = btf__name_by_offset(obj->btf, member->name_off); 6636 if (strcmp(mname, "values")) 6637 return -EINVAL; 6638 6639 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6640 if (rel->r_offset - vi->offset < moff) 6641 return -EINVAL; 6642 6643 moff = rel->r_offset - vi->offset - moff; 6644 /* here we use BPF pointer size, which is always 64 bit, as we 6645 * are parsing ELF that was built for BPF target 6646 */ 6647 if (moff % bpf_ptr_sz) 6648 return -EINVAL; 6649 moff /= bpf_ptr_sz; 6650 if (moff >= map->init_slots_sz) { 6651 new_sz = moff + 1; 6652 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6653 if (!tmp) 6654 return -ENOMEM; 6655 map->init_slots = tmp; 6656 memset(map->init_slots + map->init_slots_sz, 0, 6657 (new_sz - map->init_slots_sz) * host_ptr_sz); 6658 map->init_slots_sz = new_sz; 6659 } 6660 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6661 6662 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6663 i, map->name, moff, type, name); 6664 } 6665 6666 return 0; 6667 } 6668 6669 static int bpf_object__collect_relos(struct bpf_object *obj) 6670 { 6671 int i, err; 6672 6673 for (i = 0; i < obj->efile.sec_cnt; i++) { 6674 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6675 Elf64_Shdr *shdr; 6676 Elf_Data *data; 6677 int idx; 6678 6679 if (sec_desc->sec_type != SEC_RELO) 6680 continue; 6681 6682 shdr = sec_desc->shdr; 6683 data = sec_desc->data; 6684 idx = shdr->sh_info; 6685 6686 if (shdr->sh_type != SHT_REL) { 6687 pr_warn("internal error at %d\n", __LINE__); 6688 return -LIBBPF_ERRNO__INTERNAL; 6689 } 6690 6691 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6692 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6693 else if (idx == obj->efile.btf_maps_shndx) 6694 err = bpf_object__collect_map_relos(obj, shdr, data); 6695 else 6696 err = bpf_object__collect_prog_relos(obj, shdr, data); 6697 if (err) 6698 return err; 6699 } 6700 6701 bpf_object__sort_relos(obj); 6702 return 0; 6703 } 6704 6705 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6706 { 6707 if (BPF_CLASS(insn->code) == BPF_JMP && 6708 BPF_OP(insn->code) == BPF_CALL && 6709 BPF_SRC(insn->code) == BPF_K && 6710 insn->src_reg == 0 && 6711 insn->dst_reg == 0) { 6712 *func_id = insn->imm; 6713 return true; 6714 } 6715 return false; 6716 } 6717 6718 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6719 { 6720 struct bpf_insn *insn = prog->insns; 6721 enum bpf_func_id func_id; 6722 int i; 6723 6724 if (obj->gen_loader) 6725 return 0; 6726 6727 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6728 if (!insn_is_helper_call(insn, &func_id)) 6729 continue; 6730 6731 /* on kernels that don't yet support 6732 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6733 * to bpf_probe_read() which works well for old kernels 6734 */ 6735 switch (func_id) { 6736 case BPF_FUNC_probe_read_kernel: 6737 case BPF_FUNC_probe_read_user: 6738 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6739 insn->imm = BPF_FUNC_probe_read; 6740 break; 6741 case BPF_FUNC_probe_read_kernel_str: 6742 case BPF_FUNC_probe_read_user_str: 6743 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6744 insn->imm = BPF_FUNC_probe_read_str; 6745 break; 6746 default: 6747 break; 6748 } 6749 } 6750 return 0; 6751 } 6752 6753 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6754 int *btf_obj_fd, int *btf_type_id); 6755 6756 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6757 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6758 struct bpf_prog_load_opts *opts, long cookie) 6759 { 6760 enum sec_def_flags def = cookie; 6761 6762 /* old kernels might not support specifying expected_attach_type */ 6763 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6764 opts->expected_attach_type = 0; 6765 6766 if (def & SEC_SLEEPABLE) 6767 opts->prog_flags |= BPF_F_SLEEPABLE; 6768 6769 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6770 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6771 6772 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6773 int btf_obj_fd = 0, btf_type_id = 0, err; 6774 const char *attach_name; 6775 6776 attach_name = strchr(prog->sec_name, '/'); 6777 if (!attach_name) { 6778 /* if BPF program is annotated with just SEC("fentry") 6779 * (or similar) without declaratively specifying 6780 * target, then it is expected that target will be 6781 * specified with bpf_program__set_attach_target() at 6782 * runtime before BPF object load step. If not, then 6783 * there is nothing to load into the kernel as BPF 6784 * verifier won't be able to validate BPF program 6785 * correctness anyways. 6786 */ 6787 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6788 prog->name); 6789 return -EINVAL; 6790 } 6791 attach_name++; /* skip over / */ 6792 6793 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6794 if (err) 6795 return err; 6796 6797 /* cache resolved BTF FD and BTF type ID in the prog */ 6798 prog->attach_btf_obj_fd = btf_obj_fd; 6799 prog->attach_btf_id = btf_type_id; 6800 6801 /* but by now libbpf common logic is not utilizing 6802 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6803 * this callback is called after opts were populated by 6804 * libbpf, so this callback has to update opts explicitly here 6805 */ 6806 opts->attach_btf_obj_fd = btf_obj_fd; 6807 opts->attach_btf_id = btf_type_id; 6808 } 6809 return 0; 6810 } 6811 6812 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6813 6814 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6815 struct bpf_insn *insns, int insns_cnt, 6816 const char *license, __u32 kern_version, int *prog_fd) 6817 { 6818 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6819 const char *prog_name = NULL; 6820 char *cp, errmsg[STRERR_BUFSIZE]; 6821 size_t log_buf_size = 0; 6822 char *log_buf = NULL, *tmp; 6823 int btf_fd, ret, err; 6824 bool own_log_buf = true; 6825 __u32 log_level = prog->log_level; 6826 6827 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6828 /* 6829 * The program type must be set. Most likely we couldn't find a proper 6830 * section definition at load time, and thus we didn't infer the type. 6831 */ 6832 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6833 prog->name, prog->sec_name); 6834 return -EINVAL; 6835 } 6836 6837 if (!insns || !insns_cnt) 6838 return -EINVAL; 6839 6840 load_attr.expected_attach_type = prog->expected_attach_type; 6841 if (kernel_supports(obj, FEAT_PROG_NAME)) 6842 prog_name = prog->name; 6843 load_attr.attach_prog_fd = prog->attach_prog_fd; 6844 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6845 load_attr.attach_btf_id = prog->attach_btf_id; 6846 load_attr.kern_version = kern_version; 6847 load_attr.prog_ifindex = prog->prog_ifindex; 6848 6849 /* specify func_info/line_info only if kernel supports them */ 6850 btf_fd = bpf_object__btf_fd(obj); 6851 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6852 load_attr.prog_btf_fd = btf_fd; 6853 load_attr.func_info = prog->func_info; 6854 load_attr.func_info_rec_size = prog->func_info_rec_size; 6855 load_attr.func_info_cnt = prog->func_info_cnt; 6856 load_attr.line_info = prog->line_info; 6857 load_attr.line_info_rec_size = prog->line_info_rec_size; 6858 load_attr.line_info_cnt = prog->line_info_cnt; 6859 } 6860 load_attr.log_level = log_level; 6861 load_attr.prog_flags = prog->prog_flags; 6862 load_attr.fd_array = obj->fd_array; 6863 6864 /* adjust load_attr if sec_def provides custom preload callback */ 6865 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6866 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6867 if (err < 0) { 6868 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6869 prog->name, err); 6870 return err; 6871 } 6872 insns = prog->insns; 6873 insns_cnt = prog->insns_cnt; 6874 } 6875 6876 if (obj->gen_loader) { 6877 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6878 license, insns, insns_cnt, &load_attr, 6879 prog - obj->programs); 6880 *prog_fd = -1; 6881 return 0; 6882 } 6883 6884 retry_load: 6885 /* if log_level is zero, we don't request logs initially even if 6886 * custom log_buf is specified; if the program load fails, then we'll 6887 * bump log_level to 1 and use either custom log_buf or we'll allocate 6888 * our own and retry the load to get details on what failed 6889 */ 6890 if (log_level) { 6891 if (prog->log_buf) { 6892 log_buf = prog->log_buf; 6893 log_buf_size = prog->log_size; 6894 own_log_buf = false; 6895 } else if (obj->log_buf) { 6896 log_buf = obj->log_buf; 6897 log_buf_size = obj->log_size; 6898 own_log_buf = false; 6899 } else { 6900 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6901 tmp = realloc(log_buf, log_buf_size); 6902 if (!tmp) { 6903 ret = -ENOMEM; 6904 goto out; 6905 } 6906 log_buf = tmp; 6907 log_buf[0] = '\0'; 6908 own_log_buf = true; 6909 } 6910 } 6911 6912 load_attr.log_buf = log_buf; 6913 load_attr.log_size = log_buf_size; 6914 load_attr.log_level = log_level; 6915 6916 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6917 if (ret >= 0) { 6918 if (log_level && own_log_buf) { 6919 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6920 prog->name, log_buf); 6921 } 6922 6923 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6924 struct bpf_map *map; 6925 int i; 6926 6927 for (i = 0; i < obj->nr_maps; i++) { 6928 map = &prog->obj->maps[i]; 6929 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6930 continue; 6931 6932 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6933 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6934 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6935 prog->name, map->real_name, cp); 6936 /* Don't fail hard if can't bind rodata. */ 6937 } 6938 } 6939 } 6940 6941 *prog_fd = ret; 6942 ret = 0; 6943 goto out; 6944 } 6945 6946 if (log_level == 0) { 6947 log_level = 1; 6948 goto retry_load; 6949 } 6950 /* On ENOSPC, increase log buffer size and retry, unless custom 6951 * log_buf is specified. 6952 * Be careful to not overflow u32, though. Kernel's log buf size limit 6953 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6954 * multiply by 2 unless we are sure we'll fit within 32 bits. 6955 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6956 */ 6957 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6958 goto retry_load; 6959 6960 ret = -errno; 6961 6962 /* post-process verifier log to improve error descriptions */ 6963 fixup_verifier_log(prog, log_buf, log_buf_size); 6964 6965 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6966 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6967 pr_perm_msg(ret); 6968 6969 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6970 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6971 prog->name, log_buf); 6972 } 6973 6974 out: 6975 if (own_log_buf) 6976 free(log_buf); 6977 return ret; 6978 } 6979 6980 static char *find_prev_line(char *buf, char *cur) 6981 { 6982 char *p; 6983 6984 if (cur == buf) /* end of a log buf */ 6985 return NULL; 6986 6987 p = cur - 1; 6988 while (p - 1 >= buf && *(p - 1) != '\n') 6989 p--; 6990 6991 return p; 6992 } 6993 6994 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6995 char *orig, size_t orig_sz, const char *patch) 6996 { 6997 /* size of the remaining log content to the right from the to-be-replaced part */ 6998 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6999 size_t patch_sz = strlen(patch); 7000 7001 if (patch_sz != orig_sz) { 7002 /* If patch line(s) are longer than original piece of verifier log, 7003 * shift log contents by (patch_sz - orig_sz) bytes to the right 7004 * starting from after to-be-replaced part of the log. 7005 * 7006 * If patch line(s) are shorter than original piece of verifier log, 7007 * shift log contents by (orig_sz - patch_sz) bytes to the left 7008 * starting from after to-be-replaced part of the log 7009 * 7010 * We need to be careful about not overflowing available 7011 * buf_sz capacity. If that's the case, we'll truncate the end 7012 * of the original log, as necessary. 7013 */ 7014 if (patch_sz > orig_sz) { 7015 if (orig + patch_sz >= buf + buf_sz) { 7016 /* patch is big enough to cover remaining space completely */ 7017 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7018 rem_sz = 0; 7019 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7020 /* patch causes part of remaining log to be truncated */ 7021 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7022 } 7023 } 7024 /* shift remaining log to the right by calculated amount */ 7025 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7026 } 7027 7028 memcpy(orig, patch, patch_sz); 7029 } 7030 7031 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7032 char *buf, size_t buf_sz, size_t log_sz, 7033 char *line1, char *line2, char *line3) 7034 { 7035 /* Expected log for failed and not properly guarded CO-RE relocation: 7036 * line1 -> 123: (85) call unknown#195896080 7037 * line2 -> invalid func unknown#195896080 7038 * line3 -> <anything else or end of buffer> 7039 * 7040 * "123" is the index of the instruction that was poisoned. We extract 7041 * instruction index to find corresponding CO-RE relocation and 7042 * replace this part of the log with more relevant information about 7043 * failed CO-RE relocation. 7044 */ 7045 const struct bpf_core_relo *relo; 7046 struct bpf_core_spec spec; 7047 char patch[512], spec_buf[256]; 7048 int insn_idx, err, spec_len; 7049 7050 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7051 return; 7052 7053 relo = find_relo_core(prog, insn_idx); 7054 if (!relo) 7055 return; 7056 7057 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7058 if (err) 7059 return; 7060 7061 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7062 snprintf(patch, sizeof(patch), 7063 "%d: <invalid CO-RE relocation>\n" 7064 "failed to resolve CO-RE relocation %s%s\n", 7065 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7066 7067 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7068 } 7069 7070 static void fixup_log_missing_map_load(struct bpf_program *prog, 7071 char *buf, size_t buf_sz, size_t log_sz, 7072 char *line1, char *line2, char *line3) 7073 { 7074 /* Expected log for failed and not properly guarded map reference: 7075 * line1 -> 123: (85) call unknown#2001000345 7076 * line2 -> invalid func unknown#2001000345 7077 * line3 -> <anything else or end of buffer> 7078 * 7079 * "123" is the index of the instruction that was poisoned. 7080 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7081 */ 7082 struct bpf_object *obj = prog->obj; 7083 const struct bpf_map *map; 7084 int insn_idx, map_idx; 7085 char patch[128]; 7086 7087 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7088 return; 7089 7090 map_idx -= POISON_LDIMM64_MAP_BASE; 7091 if (map_idx < 0 || map_idx >= obj->nr_maps) 7092 return; 7093 map = &obj->maps[map_idx]; 7094 7095 snprintf(patch, sizeof(patch), 7096 "%d: <invalid BPF map reference>\n" 7097 "BPF map '%s' is referenced but wasn't created\n", 7098 insn_idx, map->name); 7099 7100 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7101 } 7102 7103 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7104 char *buf, size_t buf_sz, size_t log_sz, 7105 char *line1, char *line2, char *line3) 7106 { 7107 /* Expected log for failed and not properly guarded kfunc call: 7108 * line1 -> 123: (85) call unknown#2002000345 7109 * line2 -> invalid func unknown#2002000345 7110 * line3 -> <anything else or end of buffer> 7111 * 7112 * "123" is the index of the instruction that was poisoned. 7113 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7114 */ 7115 struct bpf_object *obj = prog->obj; 7116 const struct extern_desc *ext; 7117 int insn_idx, ext_idx; 7118 char patch[128]; 7119 7120 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7121 return; 7122 7123 ext_idx -= POISON_CALL_KFUNC_BASE; 7124 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7125 return; 7126 ext = &obj->externs[ext_idx]; 7127 7128 snprintf(patch, sizeof(patch), 7129 "%d: <invalid kfunc call>\n" 7130 "kfunc '%s' is referenced but wasn't resolved\n", 7131 insn_idx, ext->name); 7132 7133 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7134 } 7135 7136 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7137 { 7138 /* look for familiar error patterns in last N lines of the log */ 7139 const size_t max_last_line_cnt = 10; 7140 char *prev_line, *cur_line, *next_line; 7141 size_t log_sz; 7142 int i; 7143 7144 if (!buf) 7145 return; 7146 7147 log_sz = strlen(buf) + 1; 7148 next_line = buf + log_sz - 1; 7149 7150 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7151 cur_line = find_prev_line(buf, next_line); 7152 if (!cur_line) 7153 return; 7154 7155 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7156 prev_line = find_prev_line(buf, cur_line); 7157 if (!prev_line) 7158 continue; 7159 7160 /* failed CO-RE relocation case */ 7161 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7162 prev_line, cur_line, next_line); 7163 return; 7164 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7165 prev_line = find_prev_line(buf, cur_line); 7166 if (!prev_line) 7167 continue; 7168 7169 /* reference to uncreated BPF map */ 7170 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7171 prev_line, cur_line, next_line); 7172 return; 7173 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7174 prev_line = find_prev_line(buf, cur_line); 7175 if (!prev_line) 7176 continue; 7177 7178 /* reference to unresolved kfunc */ 7179 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7180 prev_line, cur_line, next_line); 7181 return; 7182 } 7183 } 7184 } 7185 7186 static int bpf_program_record_relos(struct bpf_program *prog) 7187 { 7188 struct bpf_object *obj = prog->obj; 7189 int i; 7190 7191 for (i = 0; i < prog->nr_reloc; i++) { 7192 struct reloc_desc *relo = &prog->reloc_desc[i]; 7193 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7194 int kind; 7195 7196 switch (relo->type) { 7197 case RELO_EXTERN_LD64: 7198 if (ext->type != EXT_KSYM) 7199 continue; 7200 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7201 BTF_KIND_VAR : BTF_KIND_FUNC; 7202 bpf_gen__record_extern(obj->gen_loader, ext->name, 7203 ext->is_weak, !ext->ksym.type_id, 7204 true, kind, relo->insn_idx); 7205 break; 7206 case RELO_EXTERN_CALL: 7207 bpf_gen__record_extern(obj->gen_loader, ext->name, 7208 ext->is_weak, false, false, BTF_KIND_FUNC, 7209 relo->insn_idx); 7210 break; 7211 case RELO_CORE: { 7212 struct bpf_core_relo cr = { 7213 .insn_off = relo->insn_idx * 8, 7214 .type_id = relo->core_relo->type_id, 7215 .access_str_off = relo->core_relo->access_str_off, 7216 .kind = relo->core_relo->kind, 7217 }; 7218 7219 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7220 break; 7221 } 7222 default: 7223 continue; 7224 } 7225 } 7226 return 0; 7227 } 7228 7229 static int 7230 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7231 { 7232 struct bpf_program *prog; 7233 size_t i; 7234 int err; 7235 7236 for (i = 0; i < obj->nr_programs; i++) { 7237 prog = &obj->programs[i]; 7238 err = bpf_object__sanitize_prog(obj, prog); 7239 if (err) 7240 return err; 7241 } 7242 7243 for (i = 0; i < obj->nr_programs; i++) { 7244 prog = &obj->programs[i]; 7245 if (prog_is_subprog(obj, prog)) 7246 continue; 7247 if (!prog->autoload) { 7248 pr_debug("prog '%s': skipped loading\n", prog->name); 7249 continue; 7250 } 7251 prog->log_level |= log_level; 7252 7253 if (obj->gen_loader) 7254 bpf_program_record_relos(prog); 7255 7256 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7257 obj->license, obj->kern_version, &prog->fd); 7258 if (err) { 7259 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7260 return err; 7261 } 7262 } 7263 7264 bpf_object__free_relocs(obj); 7265 return 0; 7266 } 7267 7268 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7269 7270 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7271 { 7272 struct bpf_program *prog; 7273 int err; 7274 7275 bpf_object__for_each_program(prog, obj) { 7276 prog->sec_def = find_sec_def(prog->sec_name); 7277 if (!prog->sec_def) { 7278 /* couldn't guess, but user might manually specify */ 7279 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7280 prog->name, prog->sec_name); 7281 continue; 7282 } 7283 7284 prog->type = prog->sec_def->prog_type; 7285 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7286 7287 /* sec_def can have custom callback which should be called 7288 * after bpf_program is initialized to adjust its properties 7289 */ 7290 if (prog->sec_def->prog_setup_fn) { 7291 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7292 if (err < 0) { 7293 pr_warn("prog '%s': failed to initialize: %d\n", 7294 prog->name, err); 7295 return err; 7296 } 7297 } 7298 } 7299 7300 return 0; 7301 } 7302 7303 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7304 const struct bpf_object_open_opts *opts) 7305 { 7306 const char *obj_name, *kconfig, *btf_tmp_path; 7307 struct bpf_object *obj; 7308 char tmp_name[64]; 7309 int err; 7310 char *log_buf; 7311 size_t log_size; 7312 __u32 log_level; 7313 7314 if (elf_version(EV_CURRENT) == EV_NONE) { 7315 pr_warn("failed to init libelf for %s\n", 7316 path ? : "(mem buf)"); 7317 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7318 } 7319 7320 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7321 return ERR_PTR(-EINVAL); 7322 7323 obj_name = OPTS_GET(opts, object_name, NULL); 7324 if (obj_buf) { 7325 if (!obj_name) { 7326 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7327 (unsigned long)obj_buf, 7328 (unsigned long)obj_buf_sz); 7329 obj_name = tmp_name; 7330 } 7331 path = obj_name; 7332 pr_debug("loading object '%s' from buffer\n", obj_name); 7333 } 7334 7335 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7336 log_size = OPTS_GET(opts, kernel_log_size, 0); 7337 log_level = OPTS_GET(opts, kernel_log_level, 0); 7338 if (log_size > UINT_MAX) 7339 return ERR_PTR(-EINVAL); 7340 if (log_size && !log_buf) 7341 return ERR_PTR(-EINVAL); 7342 7343 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7344 if (IS_ERR(obj)) 7345 return obj; 7346 7347 obj->log_buf = log_buf; 7348 obj->log_size = log_size; 7349 obj->log_level = log_level; 7350 7351 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7352 if (btf_tmp_path) { 7353 if (strlen(btf_tmp_path) >= PATH_MAX) { 7354 err = -ENAMETOOLONG; 7355 goto out; 7356 } 7357 obj->btf_custom_path = strdup(btf_tmp_path); 7358 if (!obj->btf_custom_path) { 7359 err = -ENOMEM; 7360 goto out; 7361 } 7362 } 7363 7364 kconfig = OPTS_GET(opts, kconfig, NULL); 7365 if (kconfig) { 7366 obj->kconfig = strdup(kconfig); 7367 if (!obj->kconfig) { 7368 err = -ENOMEM; 7369 goto out; 7370 } 7371 } 7372 7373 err = bpf_object__elf_init(obj); 7374 err = err ? : bpf_object__check_endianness(obj); 7375 err = err ? : bpf_object__elf_collect(obj); 7376 err = err ? : bpf_object__collect_externs(obj); 7377 err = err ? : bpf_object_fixup_btf(obj); 7378 err = err ? : bpf_object__init_maps(obj, opts); 7379 err = err ? : bpf_object_init_progs(obj, opts); 7380 err = err ? : bpf_object__collect_relos(obj); 7381 if (err) 7382 goto out; 7383 7384 bpf_object__elf_finish(obj); 7385 7386 return obj; 7387 out: 7388 bpf_object__close(obj); 7389 return ERR_PTR(err); 7390 } 7391 7392 struct bpf_object * 7393 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7394 { 7395 if (!path) 7396 return libbpf_err_ptr(-EINVAL); 7397 7398 pr_debug("loading %s\n", path); 7399 7400 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7401 } 7402 7403 struct bpf_object *bpf_object__open(const char *path) 7404 { 7405 return bpf_object__open_file(path, NULL); 7406 } 7407 7408 struct bpf_object * 7409 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7410 const struct bpf_object_open_opts *opts) 7411 { 7412 if (!obj_buf || obj_buf_sz == 0) 7413 return libbpf_err_ptr(-EINVAL); 7414 7415 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7416 } 7417 7418 static int bpf_object_unload(struct bpf_object *obj) 7419 { 7420 size_t i; 7421 7422 if (!obj) 7423 return libbpf_err(-EINVAL); 7424 7425 for (i = 0; i < obj->nr_maps; i++) { 7426 zclose(obj->maps[i].fd); 7427 if (obj->maps[i].st_ops) 7428 zfree(&obj->maps[i].st_ops->kern_vdata); 7429 } 7430 7431 for (i = 0; i < obj->nr_programs; i++) 7432 bpf_program__unload(&obj->programs[i]); 7433 7434 return 0; 7435 } 7436 7437 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7438 { 7439 struct bpf_map *m; 7440 7441 bpf_object__for_each_map(m, obj) { 7442 if (!bpf_map__is_internal(m)) 7443 continue; 7444 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7445 m->def.map_flags &= ~BPF_F_MMAPABLE; 7446 } 7447 7448 return 0; 7449 } 7450 7451 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7452 { 7453 char sym_type, sym_name[500]; 7454 unsigned long long sym_addr; 7455 int ret, err = 0; 7456 FILE *f; 7457 7458 f = fopen("/proc/kallsyms", "re"); 7459 if (!f) { 7460 err = -errno; 7461 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7462 return err; 7463 } 7464 7465 while (true) { 7466 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7467 &sym_addr, &sym_type, sym_name); 7468 if (ret == EOF && feof(f)) 7469 break; 7470 if (ret != 3) { 7471 pr_warn("failed to read kallsyms entry: %d\n", ret); 7472 err = -EINVAL; 7473 break; 7474 } 7475 7476 err = cb(sym_addr, sym_type, sym_name, ctx); 7477 if (err) 7478 break; 7479 } 7480 7481 fclose(f); 7482 return err; 7483 } 7484 7485 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7486 const char *sym_name, void *ctx) 7487 { 7488 struct bpf_object *obj = ctx; 7489 const struct btf_type *t; 7490 struct extern_desc *ext; 7491 7492 ext = find_extern_by_name(obj, sym_name); 7493 if (!ext || ext->type != EXT_KSYM) 7494 return 0; 7495 7496 t = btf__type_by_id(obj->btf, ext->btf_id); 7497 if (!btf_is_var(t)) 7498 return 0; 7499 7500 if (ext->is_set && ext->ksym.addr != sym_addr) { 7501 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7502 sym_name, ext->ksym.addr, sym_addr); 7503 return -EINVAL; 7504 } 7505 if (!ext->is_set) { 7506 ext->is_set = true; 7507 ext->ksym.addr = sym_addr; 7508 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7509 } 7510 return 0; 7511 } 7512 7513 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7514 { 7515 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7516 } 7517 7518 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7519 __u16 kind, struct btf **res_btf, 7520 struct module_btf **res_mod_btf) 7521 { 7522 struct module_btf *mod_btf; 7523 struct btf *btf; 7524 int i, id, err; 7525 7526 btf = obj->btf_vmlinux; 7527 mod_btf = NULL; 7528 id = btf__find_by_name_kind(btf, ksym_name, kind); 7529 7530 if (id == -ENOENT) { 7531 err = load_module_btfs(obj); 7532 if (err) 7533 return err; 7534 7535 for (i = 0; i < obj->btf_module_cnt; i++) { 7536 /* we assume module_btf's BTF FD is always >0 */ 7537 mod_btf = &obj->btf_modules[i]; 7538 btf = mod_btf->btf; 7539 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7540 if (id != -ENOENT) 7541 break; 7542 } 7543 } 7544 if (id <= 0) 7545 return -ESRCH; 7546 7547 *res_btf = btf; 7548 *res_mod_btf = mod_btf; 7549 return id; 7550 } 7551 7552 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7553 struct extern_desc *ext) 7554 { 7555 const struct btf_type *targ_var, *targ_type; 7556 __u32 targ_type_id, local_type_id; 7557 struct module_btf *mod_btf = NULL; 7558 const char *targ_var_name; 7559 struct btf *btf = NULL; 7560 int id, err; 7561 7562 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7563 if (id < 0) { 7564 if (id == -ESRCH && ext->is_weak) 7565 return 0; 7566 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7567 ext->name); 7568 return id; 7569 } 7570 7571 /* find local type_id */ 7572 local_type_id = ext->ksym.type_id; 7573 7574 /* find target type_id */ 7575 targ_var = btf__type_by_id(btf, id); 7576 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7577 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7578 7579 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7580 btf, targ_type_id); 7581 if (err <= 0) { 7582 const struct btf_type *local_type; 7583 const char *targ_name, *local_name; 7584 7585 local_type = btf__type_by_id(obj->btf, local_type_id); 7586 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7587 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7588 7589 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7590 ext->name, local_type_id, 7591 btf_kind_str(local_type), local_name, targ_type_id, 7592 btf_kind_str(targ_type), targ_name); 7593 return -EINVAL; 7594 } 7595 7596 ext->is_set = true; 7597 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7598 ext->ksym.kernel_btf_id = id; 7599 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7600 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7601 7602 return 0; 7603 } 7604 7605 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7606 struct extern_desc *ext) 7607 { 7608 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7609 struct module_btf *mod_btf = NULL; 7610 const struct btf_type *kern_func; 7611 struct btf *kern_btf = NULL; 7612 int ret; 7613 7614 local_func_proto_id = ext->ksym.type_id; 7615 7616 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7617 if (kfunc_id < 0) { 7618 if (kfunc_id == -ESRCH && ext->is_weak) 7619 return 0; 7620 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7621 ext->name); 7622 return kfunc_id; 7623 } 7624 7625 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7626 kfunc_proto_id = kern_func->type; 7627 7628 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7629 kern_btf, kfunc_proto_id); 7630 if (ret <= 0) { 7631 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7632 ext->name, local_func_proto_id, 7633 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7634 return -EINVAL; 7635 } 7636 7637 /* set index for module BTF fd in fd_array, if unset */ 7638 if (mod_btf && !mod_btf->fd_array_idx) { 7639 /* insn->off is s16 */ 7640 if (obj->fd_array_cnt == INT16_MAX) { 7641 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7642 ext->name, mod_btf->fd_array_idx); 7643 return -E2BIG; 7644 } 7645 /* Cannot use index 0 for module BTF fd */ 7646 if (!obj->fd_array_cnt) 7647 obj->fd_array_cnt = 1; 7648 7649 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7650 obj->fd_array_cnt + 1); 7651 if (ret) 7652 return ret; 7653 mod_btf->fd_array_idx = obj->fd_array_cnt; 7654 /* we assume module BTF FD is always >0 */ 7655 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7656 } 7657 7658 ext->is_set = true; 7659 ext->ksym.kernel_btf_id = kfunc_id; 7660 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7661 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7662 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7663 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7664 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7665 */ 7666 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7667 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7668 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7669 7670 return 0; 7671 } 7672 7673 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7674 { 7675 const struct btf_type *t; 7676 struct extern_desc *ext; 7677 int i, err; 7678 7679 for (i = 0; i < obj->nr_extern; i++) { 7680 ext = &obj->externs[i]; 7681 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7682 continue; 7683 7684 if (obj->gen_loader) { 7685 ext->is_set = true; 7686 ext->ksym.kernel_btf_obj_fd = 0; 7687 ext->ksym.kernel_btf_id = 0; 7688 continue; 7689 } 7690 t = btf__type_by_id(obj->btf, ext->btf_id); 7691 if (btf_is_var(t)) 7692 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7693 else 7694 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7695 if (err) 7696 return err; 7697 } 7698 return 0; 7699 } 7700 7701 static int bpf_object__resolve_externs(struct bpf_object *obj, 7702 const char *extra_kconfig) 7703 { 7704 bool need_config = false, need_kallsyms = false; 7705 bool need_vmlinux_btf = false; 7706 struct extern_desc *ext; 7707 void *kcfg_data = NULL; 7708 int err, i; 7709 7710 if (obj->nr_extern == 0) 7711 return 0; 7712 7713 if (obj->kconfig_map_idx >= 0) 7714 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7715 7716 for (i = 0; i < obj->nr_extern; i++) { 7717 ext = &obj->externs[i]; 7718 7719 if (ext->type == EXT_KSYM) { 7720 if (ext->ksym.type_id) 7721 need_vmlinux_btf = true; 7722 else 7723 need_kallsyms = true; 7724 continue; 7725 } else if (ext->type == EXT_KCFG) { 7726 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7727 __u64 value = 0; 7728 7729 /* Kconfig externs need actual /proc/config.gz */ 7730 if (str_has_pfx(ext->name, "CONFIG_")) { 7731 need_config = true; 7732 continue; 7733 } 7734 7735 /* Virtual kcfg externs are customly handled by libbpf */ 7736 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7737 value = get_kernel_version(); 7738 if (!value) { 7739 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7740 return -EINVAL; 7741 } 7742 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7743 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7744 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7745 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7746 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7747 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7748 * __kconfig externs, where LINUX_ ones are virtual and filled out 7749 * customly by libbpf (their values don't come from Kconfig). 7750 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7751 * __weak, it defaults to zero value, just like for CONFIG_xxx 7752 * externs. 7753 */ 7754 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7755 return -EINVAL; 7756 } 7757 7758 err = set_kcfg_value_num(ext, ext_ptr, value); 7759 if (err) 7760 return err; 7761 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7762 ext->name, (long long)value); 7763 } else { 7764 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7765 return -EINVAL; 7766 } 7767 } 7768 if (need_config && extra_kconfig) { 7769 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7770 if (err) 7771 return -EINVAL; 7772 need_config = false; 7773 for (i = 0; i < obj->nr_extern; i++) { 7774 ext = &obj->externs[i]; 7775 if (ext->type == EXT_KCFG && !ext->is_set) { 7776 need_config = true; 7777 break; 7778 } 7779 } 7780 } 7781 if (need_config) { 7782 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7783 if (err) 7784 return -EINVAL; 7785 } 7786 if (need_kallsyms) { 7787 err = bpf_object__read_kallsyms_file(obj); 7788 if (err) 7789 return -EINVAL; 7790 } 7791 if (need_vmlinux_btf) { 7792 err = bpf_object__resolve_ksyms_btf_id(obj); 7793 if (err) 7794 return -EINVAL; 7795 } 7796 for (i = 0; i < obj->nr_extern; i++) { 7797 ext = &obj->externs[i]; 7798 7799 if (!ext->is_set && !ext->is_weak) { 7800 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7801 return -ESRCH; 7802 } else if (!ext->is_set) { 7803 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7804 ext->name); 7805 } 7806 } 7807 7808 return 0; 7809 } 7810 7811 static void bpf_map_prepare_vdata(const struct bpf_map *map) 7812 { 7813 struct bpf_struct_ops *st_ops; 7814 __u32 i; 7815 7816 st_ops = map->st_ops; 7817 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7818 struct bpf_program *prog = st_ops->progs[i]; 7819 void *kern_data; 7820 int prog_fd; 7821 7822 if (!prog) 7823 continue; 7824 7825 prog_fd = bpf_program__fd(prog); 7826 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7827 *(unsigned long *)kern_data = prog_fd; 7828 } 7829 } 7830 7831 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 7832 { 7833 int i; 7834 7835 for (i = 0; i < obj->nr_maps; i++) 7836 if (bpf_map__is_struct_ops(&obj->maps[i])) 7837 bpf_map_prepare_vdata(&obj->maps[i]); 7838 7839 return 0; 7840 } 7841 7842 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7843 { 7844 int err, i; 7845 7846 if (!obj) 7847 return libbpf_err(-EINVAL); 7848 7849 if (obj->loaded) { 7850 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7851 return libbpf_err(-EINVAL); 7852 } 7853 7854 if (obj->gen_loader) 7855 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7856 7857 err = bpf_object__probe_loading(obj); 7858 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7859 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7860 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7861 err = err ? : bpf_object__sanitize_maps(obj); 7862 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7863 err = err ? : bpf_object__create_maps(obj); 7864 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7865 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7866 err = err ? : bpf_object_init_prog_arrays(obj); 7867 err = err ? : bpf_object_prepare_struct_ops(obj); 7868 7869 if (obj->gen_loader) { 7870 /* reset FDs */ 7871 if (obj->btf) 7872 btf__set_fd(obj->btf, -1); 7873 for (i = 0; i < obj->nr_maps; i++) 7874 obj->maps[i].fd = -1; 7875 if (!err) 7876 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7877 } 7878 7879 /* clean up fd_array */ 7880 zfree(&obj->fd_array); 7881 7882 /* clean up module BTFs */ 7883 for (i = 0; i < obj->btf_module_cnt; i++) { 7884 close(obj->btf_modules[i].fd); 7885 btf__free(obj->btf_modules[i].btf); 7886 free(obj->btf_modules[i].name); 7887 } 7888 free(obj->btf_modules); 7889 7890 /* clean up vmlinux BTF */ 7891 btf__free(obj->btf_vmlinux); 7892 obj->btf_vmlinux = NULL; 7893 7894 obj->loaded = true; /* doesn't matter if successfully or not */ 7895 7896 if (err) 7897 goto out; 7898 7899 return 0; 7900 out: 7901 /* unpin any maps that were auto-pinned during load */ 7902 for (i = 0; i < obj->nr_maps; i++) 7903 if (obj->maps[i].pinned && !obj->maps[i].reused) 7904 bpf_map__unpin(&obj->maps[i], NULL); 7905 7906 bpf_object_unload(obj); 7907 pr_warn("failed to load object '%s'\n", obj->path); 7908 return libbpf_err(err); 7909 } 7910 7911 int bpf_object__load(struct bpf_object *obj) 7912 { 7913 return bpf_object_load(obj, 0, NULL); 7914 } 7915 7916 static int make_parent_dir(const char *path) 7917 { 7918 char *cp, errmsg[STRERR_BUFSIZE]; 7919 char *dname, *dir; 7920 int err = 0; 7921 7922 dname = strdup(path); 7923 if (dname == NULL) 7924 return -ENOMEM; 7925 7926 dir = dirname(dname); 7927 if (mkdir(dir, 0700) && errno != EEXIST) 7928 err = -errno; 7929 7930 free(dname); 7931 if (err) { 7932 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7933 pr_warn("failed to mkdir %s: %s\n", path, cp); 7934 } 7935 return err; 7936 } 7937 7938 static int check_path(const char *path) 7939 { 7940 char *cp, errmsg[STRERR_BUFSIZE]; 7941 struct statfs st_fs; 7942 char *dname, *dir; 7943 int err = 0; 7944 7945 if (path == NULL) 7946 return -EINVAL; 7947 7948 dname = strdup(path); 7949 if (dname == NULL) 7950 return -ENOMEM; 7951 7952 dir = dirname(dname); 7953 if (statfs(dir, &st_fs)) { 7954 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7955 pr_warn("failed to statfs %s: %s\n", dir, cp); 7956 err = -errno; 7957 } 7958 free(dname); 7959 7960 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7961 pr_warn("specified path %s is not on BPF FS\n", path); 7962 err = -EINVAL; 7963 } 7964 7965 return err; 7966 } 7967 7968 int bpf_program__pin(struct bpf_program *prog, const char *path) 7969 { 7970 char *cp, errmsg[STRERR_BUFSIZE]; 7971 int err; 7972 7973 if (prog->fd < 0) { 7974 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7975 return libbpf_err(-EINVAL); 7976 } 7977 7978 err = make_parent_dir(path); 7979 if (err) 7980 return libbpf_err(err); 7981 7982 err = check_path(path); 7983 if (err) 7984 return libbpf_err(err); 7985 7986 if (bpf_obj_pin(prog->fd, path)) { 7987 err = -errno; 7988 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7989 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7990 return libbpf_err(err); 7991 } 7992 7993 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7994 return 0; 7995 } 7996 7997 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7998 { 7999 int err; 8000 8001 if (prog->fd < 0) { 8002 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8003 return libbpf_err(-EINVAL); 8004 } 8005 8006 err = check_path(path); 8007 if (err) 8008 return libbpf_err(err); 8009 8010 err = unlink(path); 8011 if (err) 8012 return libbpf_err(-errno); 8013 8014 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8015 return 0; 8016 } 8017 8018 int bpf_map__pin(struct bpf_map *map, const char *path) 8019 { 8020 char *cp, errmsg[STRERR_BUFSIZE]; 8021 int err; 8022 8023 if (map == NULL) { 8024 pr_warn("invalid map pointer\n"); 8025 return libbpf_err(-EINVAL); 8026 } 8027 8028 if (map->pin_path) { 8029 if (path && strcmp(path, map->pin_path)) { 8030 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8031 bpf_map__name(map), map->pin_path, path); 8032 return libbpf_err(-EINVAL); 8033 } else if (map->pinned) { 8034 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8035 bpf_map__name(map), map->pin_path); 8036 return 0; 8037 } 8038 } else { 8039 if (!path) { 8040 pr_warn("missing a path to pin map '%s' at\n", 8041 bpf_map__name(map)); 8042 return libbpf_err(-EINVAL); 8043 } else if (map->pinned) { 8044 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8045 return libbpf_err(-EEXIST); 8046 } 8047 8048 map->pin_path = strdup(path); 8049 if (!map->pin_path) { 8050 err = -errno; 8051 goto out_err; 8052 } 8053 } 8054 8055 err = make_parent_dir(map->pin_path); 8056 if (err) 8057 return libbpf_err(err); 8058 8059 err = check_path(map->pin_path); 8060 if (err) 8061 return libbpf_err(err); 8062 8063 if (bpf_obj_pin(map->fd, map->pin_path)) { 8064 err = -errno; 8065 goto out_err; 8066 } 8067 8068 map->pinned = true; 8069 pr_debug("pinned map '%s'\n", map->pin_path); 8070 8071 return 0; 8072 8073 out_err: 8074 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8075 pr_warn("failed to pin map: %s\n", cp); 8076 return libbpf_err(err); 8077 } 8078 8079 int bpf_map__unpin(struct bpf_map *map, const char *path) 8080 { 8081 int err; 8082 8083 if (map == NULL) { 8084 pr_warn("invalid map pointer\n"); 8085 return libbpf_err(-EINVAL); 8086 } 8087 8088 if (map->pin_path) { 8089 if (path && strcmp(path, map->pin_path)) { 8090 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8091 bpf_map__name(map), map->pin_path, path); 8092 return libbpf_err(-EINVAL); 8093 } 8094 path = map->pin_path; 8095 } else if (!path) { 8096 pr_warn("no path to unpin map '%s' from\n", 8097 bpf_map__name(map)); 8098 return libbpf_err(-EINVAL); 8099 } 8100 8101 err = check_path(path); 8102 if (err) 8103 return libbpf_err(err); 8104 8105 err = unlink(path); 8106 if (err != 0) 8107 return libbpf_err(-errno); 8108 8109 map->pinned = false; 8110 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8111 8112 return 0; 8113 } 8114 8115 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8116 { 8117 char *new = NULL; 8118 8119 if (path) { 8120 new = strdup(path); 8121 if (!new) 8122 return libbpf_err(-errno); 8123 } 8124 8125 free(map->pin_path); 8126 map->pin_path = new; 8127 return 0; 8128 } 8129 8130 __alias(bpf_map__pin_path) 8131 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8132 8133 const char *bpf_map__pin_path(const struct bpf_map *map) 8134 { 8135 return map->pin_path; 8136 } 8137 8138 bool bpf_map__is_pinned(const struct bpf_map *map) 8139 { 8140 return map->pinned; 8141 } 8142 8143 static void sanitize_pin_path(char *s) 8144 { 8145 /* bpffs disallows periods in path names */ 8146 while (*s) { 8147 if (*s == '.') 8148 *s = '_'; 8149 s++; 8150 } 8151 } 8152 8153 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8154 { 8155 struct bpf_map *map; 8156 int err; 8157 8158 if (!obj) 8159 return libbpf_err(-ENOENT); 8160 8161 if (!obj->loaded) { 8162 pr_warn("object not yet loaded; load it first\n"); 8163 return libbpf_err(-ENOENT); 8164 } 8165 8166 bpf_object__for_each_map(map, obj) { 8167 char *pin_path = NULL; 8168 char buf[PATH_MAX]; 8169 8170 if (!map->autocreate) 8171 continue; 8172 8173 if (path) { 8174 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8175 if (err) 8176 goto err_unpin_maps; 8177 sanitize_pin_path(buf); 8178 pin_path = buf; 8179 } else if (!map->pin_path) { 8180 continue; 8181 } 8182 8183 err = bpf_map__pin(map, pin_path); 8184 if (err) 8185 goto err_unpin_maps; 8186 } 8187 8188 return 0; 8189 8190 err_unpin_maps: 8191 while ((map = bpf_object__prev_map(obj, map))) { 8192 if (!map->pin_path) 8193 continue; 8194 8195 bpf_map__unpin(map, NULL); 8196 } 8197 8198 return libbpf_err(err); 8199 } 8200 8201 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8202 { 8203 struct bpf_map *map; 8204 int err; 8205 8206 if (!obj) 8207 return libbpf_err(-ENOENT); 8208 8209 bpf_object__for_each_map(map, obj) { 8210 char *pin_path = NULL; 8211 char buf[PATH_MAX]; 8212 8213 if (path) { 8214 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8215 if (err) 8216 return libbpf_err(err); 8217 sanitize_pin_path(buf); 8218 pin_path = buf; 8219 } else if (!map->pin_path) { 8220 continue; 8221 } 8222 8223 err = bpf_map__unpin(map, pin_path); 8224 if (err) 8225 return libbpf_err(err); 8226 } 8227 8228 return 0; 8229 } 8230 8231 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8232 { 8233 struct bpf_program *prog; 8234 char buf[PATH_MAX]; 8235 int err; 8236 8237 if (!obj) 8238 return libbpf_err(-ENOENT); 8239 8240 if (!obj->loaded) { 8241 pr_warn("object not yet loaded; load it first\n"); 8242 return libbpf_err(-ENOENT); 8243 } 8244 8245 bpf_object__for_each_program(prog, obj) { 8246 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8247 if (err) 8248 goto err_unpin_programs; 8249 8250 err = bpf_program__pin(prog, buf); 8251 if (err) 8252 goto err_unpin_programs; 8253 } 8254 8255 return 0; 8256 8257 err_unpin_programs: 8258 while ((prog = bpf_object__prev_program(obj, prog))) { 8259 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8260 continue; 8261 8262 bpf_program__unpin(prog, buf); 8263 } 8264 8265 return libbpf_err(err); 8266 } 8267 8268 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8269 { 8270 struct bpf_program *prog; 8271 int err; 8272 8273 if (!obj) 8274 return libbpf_err(-ENOENT); 8275 8276 bpf_object__for_each_program(prog, obj) { 8277 char buf[PATH_MAX]; 8278 8279 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8280 if (err) 8281 return libbpf_err(err); 8282 8283 err = bpf_program__unpin(prog, buf); 8284 if (err) 8285 return libbpf_err(err); 8286 } 8287 8288 return 0; 8289 } 8290 8291 int bpf_object__pin(struct bpf_object *obj, const char *path) 8292 { 8293 int err; 8294 8295 err = bpf_object__pin_maps(obj, path); 8296 if (err) 8297 return libbpf_err(err); 8298 8299 err = bpf_object__pin_programs(obj, path); 8300 if (err) { 8301 bpf_object__unpin_maps(obj, path); 8302 return libbpf_err(err); 8303 } 8304 8305 return 0; 8306 } 8307 8308 static void bpf_map__destroy(struct bpf_map *map) 8309 { 8310 if (map->inner_map) { 8311 bpf_map__destroy(map->inner_map); 8312 zfree(&map->inner_map); 8313 } 8314 8315 zfree(&map->init_slots); 8316 map->init_slots_sz = 0; 8317 8318 if (map->mmaped) { 8319 size_t mmap_sz; 8320 8321 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8322 munmap(map->mmaped, mmap_sz); 8323 map->mmaped = NULL; 8324 } 8325 8326 if (map->st_ops) { 8327 zfree(&map->st_ops->data); 8328 zfree(&map->st_ops->progs); 8329 zfree(&map->st_ops->kern_func_off); 8330 zfree(&map->st_ops); 8331 } 8332 8333 zfree(&map->name); 8334 zfree(&map->real_name); 8335 zfree(&map->pin_path); 8336 8337 if (map->fd >= 0) 8338 zclose(map->fd); 8339 } 8340 8341 void bpf_object__close(struct bpf_object *obj) 8342 { 8343 size_t i; 8344 8345 if (IS_ERR_OR_NULL(obj)) 8346 return; 8347 8348 usdt_manager_free(obj->usdt_man); 8349 obj->usdt_man = NULL; 8350 8351 bpf_gen__free(obj->gen_loader); 8352 bpf_object__elf_finish(obj); 8353 bpf_object_unload(obj); 8354 btf__free(obj->btf); 8355 btf_ext__free(obj->btf_ext); 8356 8357 for (i = 0; i < obj->nr_maps; i++) 8358 bpf_map__destroy(&obj->maps[i]); 8359 8360 zfree(&obj->btf_custom_path); 8361 zfree(&obj->kconfig); 8362 zfree(&obj->externs); 8363 obj->nr_extern = 0; 8364 8365 zfree(&obj->maps); 8366 obj->nr_maps = 0; 8367 8368 if (obj->programs && obj->nr_programs) { 8369 for (i = 0; i < obj->nr_programs; i++) 8370 bpf_program__exit(&obj->programs[i]); 8371 } 8372 zfree(&obj->programs); 8373 8374 free(obj); 8375 } 8376 8377 const char *bpf_object__name(const struct bpf_object *obj) 8378 { 8379 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8380 } 8381 8382 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8383 { 8384 return obj ? obj->kern_version : 0; 8385 } 8386 8387 struct btf *bpf_object__btf(const struct bpf_object *obj) 8388 { 8389 return obj ? obj->btf : NULL; 8390 } 8391 8392 int bpf_object__btf_fd(const struct bpf_object *obj) 8393 { 8394 return obj->btf ? btf__fd(obj->btf) : -1; 8395 } 8396 8397 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8398 { 8399 if (obj->loaded) 8400 return libbpf_err(-EINVAL); 8401 8402 obj->kern_version = kern_version; 8403 8404 return 0; 8405 } 8406 8407 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8408 { 8409 struct bpf_gen *gen; 8410 8411 if (!opts) 8412 return -EFAULT; 8413 if (!OPTS_VALID(opts, gen_loader_opts)) 8414 return -EINVAL; 8415 gen = calloc(sizeof(*gen), 1); 8416 if (!gen) 8417 return -ENOMEM; 8418 gen->opts = opts; 8419 obj->gen_loader = gen; 8420 return 0; 8421 } 8422 8423 static struct bpf_program * 8424 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8425 bool forward) 8426 { 8427 size_t nr_programs = obj->nr_programs; 8428 ssize_t idx; 8429 8430 if (!nr_programs) 8431 return NULL; 8432 8433 if (!p) 8434 /* Iter from the beginning */ 8435 return forward ? &obj->programs[0] : 8436 &obj->programs[nr_programs - 1]; 8437 8438 if (p->obj != obj) { 8439 pr_warn("error: program handler doesn't match object\n"); 8440 return errno = EINVAL, NULL; 8441 } 8442 8443 idx = (p - obj->programs) + (forward ? 1 : -1); 8444 if (idx >= obj->nr_programs || idx < 0) 8445 return NULL; 8446 return &obj->programs[idx]; 8447 } 8448 8449 struct bpf_program * 8450 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8451 { 8452 struct bpf_program *prog = prev; 8453 8454 do { 8455 prog = __bpf_program__iter(prog, obj, true); 8456 } while (prog && prog_is_subprog(obj, prog)); 8457 8458 return prog; 8459 } 8460 8461 struct bpf_program * 8462 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8463 { 8464 struct bpf_program *prog = next; 8465 8466 do { 8467 prog = __bpf_program__iter(prog, obj, false); 8468 } while (prog && prog_is_subprog(obj, prog)); 8469 8470 return prog; 8471 } 8472 8473 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8474 { 8475 prog->prog_ifindex = ifindex; 8476 } 8477 8478 const char *bpf_program__name(const struct bpf_program *prog) 8479 { 8480 return prog->name; 8481 } 8482 8483 const char *bpf_program__section_name(const struct bpf_program *prog) 8484 { 8485 return prog->sec_name; 8486 } 8487 8488 bool bpf_program__autoload(const struct bpf_program *prog) 8489 { 8490 return prog->autoload; 8491 } 8492 8493 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8494 { 8495 if (prog->obj->loaded) 8496 return libbpf_err(-EINVAL); 8497 8498 prog->autoload = autoload; 8499 return 0; 8500 } 8501 8502 bool bpf_program__autoattach(const struct bpf_program *prog) 8503 { 8504 return prog->autoattach; 8505 } 8506 8507 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8508 { 8509 prog->autoattach = autoattach; 8510 } 8511 8512 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8513 { 8514 return prog->insns; 8515 } 8516 8517 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8518 { 8519 return prog->insns_cnt; 8520 } 8521 8522 int bpf_program__set_insns(struct bpf_program *prog, 8523 struct bpf_insn *new_insns, size_t new_insn_cnt) 8524 { 8525 struct bpf_insn *insns; 8526 8527 if (prog->obj->loaded) 8528 return -EBUSY; 8529 8530 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8531 if (!insns) { 8532 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8533 return -ENOMEM; 8534 } 8535 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8536 8537 prog->insns = insns; 8538 prog->insns_cnt = new_insn_cnt; 8539 return 0; 8540 } 8541 8542 int bpf_program__fd(const struct bpf_program *prog) 8543 { 8544 if (!prog) 8545 return libbpf_err(-EINVAL); 8546 8547 if (prog->fd < 0) 8548 return libbpf_err(-ENOENT); 8549 8550 return prog->fd; 8551 } 8552 8553 __alias(bpf_program__type) 8554 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8555 8556 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8557 { 8558 return prog->type; 8559 } 8560 8561 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8562 { 8563 if (prog->obj->loaded) 8564 return libbpf_err(-EBUSY); 8565 8566 prog->type = type; 8567 prog->sec_def = NULL; 8568 return 0; 8569 } 8570 8571 __alias(bpf_program__expected_attach_type) 8572 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8573 8574 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8575 { 8576 return prog->expected_attach_type; 8577 } 8578 8579 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8580 enum bpf_attach_type type) 8581 { 8582 if (prog->obj->loaded) 8583 return libbpf_err(-EBUSY); 8584 8585 prog->expected_attach_type = type; 8586 return 0; 8587 } 8588 8589 __u32 bpf_program__flags(const struct bpf_program *prog) 8590 { 8591 return prog->prog_flags; 8592 } 8593 8594 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8595 { 8596 if (prog->obj->loaded) 8597 return libbpf_err(-EBUSY); 8598 8599 prog->prog_flags = flags; 8600 return 0; 8601 } 8602 8603 __u32 bpf_program__log_level(const struct bpf_program *prog) 8604 { 8605 return prog->log_level; 8606 } 8607 8608 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8609 { 8610 if (prog->obj->loaded) 8611 return libbpf_err(-EBUSY); 8612 8613 prog->log_level = log_level; 8614 return 0; 8615 } 8616 8617 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8618 { 8619 *log_size = prog->log_size; 8620 return prog->log_buf; 8621 } 8622 8623 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8624 { 8625 if (log_size && !log_buf) 8626 return -EINVAL; 8627 if (prog->log_size > UINT_MAX) 8628 return -EINVAL; 8629 if (prog->obj->loaded) 8630 return -EBUSY; 8631 8632 prog->log_buf = log_buf; 8633 prog->log_size = log_size; 8634 return 0; 8635 } 8636 8637 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8638 .sec = (char *)sec_pfx, \ 8639 .prog_type = BPF_PROG_TYPE_##ptype, \ 8640 .expected_attach_type = atype, \ 8641 .cookie = (long)(flags), \ 8642 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8643 __VA_ARGS__ \ 8644 } 8645 8646 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8647 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8648 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8649 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8650 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8651 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8652 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8653 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8654 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8655 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8656 8657 static const struct bpf_sec_def section_defs[] = { 8658 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8659 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8660 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8661 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8662 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8663 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8664 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8665 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8666 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8667 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8668 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8669 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8670 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8671 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8672 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8673 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8674 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8675 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8676 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8677 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8678 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8679 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8680 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8681 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8682 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8683 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8684 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8685 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8686 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8687 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8688 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8689 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8690 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8691 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8692 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8693 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8694 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8695 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8696 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8697 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8698 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8699 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8700 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8701 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8702 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8703 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8704 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8705 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8706 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8707 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8708 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8709 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8710 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8711 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8712 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8713 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8714 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8715 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8716 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8717 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8718 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8719 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8720 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8721 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8722 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8723 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8724 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8725 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8726 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8727 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8728 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8729 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8730 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8731 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8732 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8733 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8734 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8735 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8736 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8737 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8738 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8739 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8740 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 8741 }; 8742 8743 static size_t custom_sec_def_cnt; 8744 static struct bpf_sec_def *custom_sec_defs; 8745 static struct bpf_sec_def custom_fallback_def; 8746 static bool has_custom_fallback_def; 8747 8748 static int last_custom_sec_def_handler_id; 8749 8750 int libbpf_register_prog_handler(const char *sec, 8751 enum bpf_prog_type prog_type, 8752 enum bpf_attach_type exp_attach_type, 8753 const struct libbpf_prog_handler_opts *opts) 8754 { 8755 struct bpf_sec_def *sec_def; 8756 8757 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8758 return libbpf_err(-EINVAL); 8759 8760 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8761 return libbpf_err(-E2BIG); 8762 8763 if (sec) { 8764 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8765 sizeof(*sec_def)); 8766 if (!sec_def) 8767 return libbpf_err(-ENOMEM); 8768 8769 custom_sec_defs = sec_def; 8770 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8771 } else { 8772 if (has_custom_fallback_def) 8773 return libbpf_err(-EBUSY); 8774 8775 sec_def = &custom_fallback_def; 8776 } 8777 8778 sec_def->sec = sec ? strdup(sec) : NULL; 8779 if (sec && !sec_def->sec) 8780 return libbpf_err(-ENOMEM); 8781 8782 sec_def->prog_type = prog_type; 8783 sec_def->expected_attach_type = exp_attach_type; 8784 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8785 8786 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8787 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8788 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8789 8790 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8791 8792 if (sec) 8793 custom_sec_def_cnt++; 8794 else 8795 has_custom_fallback_def = true; 8796 8797 return sec_def->handler_id; 8798 } 8799 8800 int libbpf_unregister_prog_handler(int handler_id) 8801 { 8802 struct bpf_sec_def *sec_defs; 8803 int i; 8804 8805 if (handler_id <= 0) 8806 return libbpf_err(-EINVAL); 8807 8808 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8809 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8810 has_custom_fallback_def = false; 8811 return 0; 8812 } 8813 8814 for (i = 0; i < custom_sec_def_cnt; i++) { 8815 if (custom_sec_defs[i].handler_id == handler_id) 8816 break; 8817 } 8818 8819 if (i == custom_sec_def_cnt) 8820 return libbpf_err(-ENOENT); 8821 8822 free(custom_sec_defs[i].sec); 8823 for (i = i + 1; i < custom_sec_def_cnt; i++) 8824 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8825 custom_sec_def_cnt--; 8826 8827 /* try to shrink the array, but it's ok if we couldn't */ 8828 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8829 if (sec_defs) 8830 custom_sec_defs = sec_defs; 8831 8832 return 0; 8833 } 8834 8835 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8836 { 8837 size_t len = strlen(sec_def->sec); 8838 8839 /* "type/" always has to have proper SEC("type/extras") form */ 8840 if (sec_def->sec[len - 1] == '/') { 8841 if (str_has_pfx(sec_name, sec_def->sec)) 8842 return true; 8843 return false; 8844 } 8845 8846 /* "type+" means it can be either exact SEC("type") or 8847 * well-formed SEC("type/extras") with proper '/' separator 8848 */ 8849 if (sec_def->sec[len - 1] == '+') { 8850 len--; 8851 /* not even a prefix */ 8852 if (strncmp(sec_name, sec_def->sec, len) != 0) 8853 return false; 8854 /* exact match or has '/' separator */ 8855 if (sec_name[len] == '\0' || sec_name[len] == '/') 8856 return true; 8857 return false; 8858 } 8859 8860 return strcmp(sec_name, sec_def->sec) == 0; 8861 } 8862 8863 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8864 { 8865 const struct bpf_sec_def *sec_def; 8866 int i, n; 8867 8868 n = custom_sec_def_cnt; 8869 for (i = 0; i < n; i++) { 8870 sec_def = &custom_sec_defs[i]; 8871 if (sec_def_matches(sec_def, sec_name)) 8872 return sec_def; 8873 } 8874 8875 n = ARRAY_SIZE(section_defs); 8876 for (i = 0; i < n; i++) { 8877 sec_def = §ion_defs[i]; 8878 if (sec_def_matches(sec_def, sec_name)) 8879 return sec_def; 8880 } 8881 8882 if (has_custom_fallback_def) 8883 return &custom_fallback_def; 8884 8885 return NULL; 8886 } 8887 8888 #define MAX_TYPE_NAME_SIZE 32 8889 8890 static char *libbpf_get_type_names(bool attach_type) 8891 { 8892 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8893 char *buf; 8894 8895 buf = malloc(len); 8896 if (!buf) 8897 return NULL; 8898 8899 buf[0] = '\0'; 8900 /* Forge string buf with all available names */ 8901 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8902 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8903 8904 if (attach_type) { 8905 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8906 continue; 8907 8908 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8909 continue; 8910 } 8911 8912 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8913 free(buf); 8914 return NULL; 8915 } 8916 strcat(buf, " "); 8917 strcat(buf, section_defs[i].sec); 8918 } 8919 8920 return buf; 8921 } 8922 8923 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8924 enum bpf_attach_type *expected_attach_type) 8925 { 8926 const struct bpf_sec_def *sec_def; 8927 char *type_names; 8928 8929 if (!name) 8930 return libbpf_err(-EINVAL); 8931 8932 sec_def = find_sec_def(name); 8933 if (sec_def) { 8934 *prog_type = sec_def->prog_type; 8935 *expected_attach_type = sec_def->expected_attach_type; 8936 return 0; 8937 } 8938 8939 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8940 type_names = libbpf_get_type_names(false); 8941 if (type_names != NULL) { 8942 pr_debug("supported section(type) names are:%s\n", type_names); 8943 free(type_names); 8944 } 8945 8946 return libbpf_err(-ESRCH); 8947 } 8948 8949 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8950 { 8951 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8952 return NULL; 8953 8954 return attach_type_name[t]; 8955 } 8956 8957 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8958 { 8959 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8960 return NULL; 8961 8962 return link_type_name[t]; 8963 } 8964 8965 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8966 { 8967 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8968 return NULL; 8969 8970 return map_type_name[t]; 8971 } 8972 8973 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8974 { 8975 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8976 return NULL; 8977 8978 return prog_type_name[t]; 8979 } 8980 8981 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8982 int sec_idx, 8983 size_t offset) 8984 { 8985 struct bpf_map *map; 8986 size_t i; 8987 8988 for (i = 0; i < obj->nr_maps; i++) { 8989 map = &obj->maps[i]; 8990 if (!bpf_map__is_struct_ops(map)) 8991 continue; 8992 if (map->sec_idx == sec_idx && 8993 map->sec_offset <= offset && 8994 offset - map->sec_offset < map->def.value_size) 8995 return map; 8996 } 8997 8998 return NULL; 8999 } 9000 9001 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9002 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9003 Elf64_Shdr *shdr, Elf_Data *data) 9004 { 9005 const struct btf_member *member; 9006 struct bpf_struct_ops *st_ops; 9007 struct bpf_program *prog; 9008 unsigned int shdr_idx; 9009 const struct btf *btf; 9010 struct bpf_map *map; 9011 unsigned int moff, insn_idx; 9012 const char *name; 9013 __u32 member_idx; 9014 Elf64_Sym *sym; 9015 Elf64_Rel *rel; 9016 int i, nrels; 9017 9018 btf = obj->btf; 9019 nrels = shdr->sh_size / shdr->sh_entsize; 9020 for (i = 0; i < nrels; i++) { 9021 rel = elf_rel_by_idx(data, i); 9022 if (!rel) { 9023 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9024 return -LIBBPF_ERRNO__FORMAT; 9025 } 9026 9027 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9028 if (!sym) { 9029 pr_warn("struct_ops reloc: symbol %zx not found\n", 9030 (size_t)ELF64_R_SYM(rel->r_info)); 9031 return -LIBBPF_ERRNO__FORMAT; 9032 } 9033 9034 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9035 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9036 if (!map) { 9037 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9038 (size_t)rel->r_offset); 9039 return -EINVAL; 9040 } 9041 9042 moff = rel->r_offset - map->sec_offset; 9043 shdr_idx = sym->st_shndx; 9044 st_ops = map->st_ops; 9045 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9046 map->name, 9047 (long long)(rel->r_info >> 32), 9048 (long long)sym->st_value, 9049 shdr_idx, (size_t)rel->r_offset, 9050 map->sec_offset, sym->st_name, name); 9051 9052 if (shdr_idx >= SHN_LORESERVE) { 9053 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9054 map->name, (size_t)rel->r_offset, shdr_idx); 9055 return -LIBBPF_ERRNO__RELOC; 9056 } 9057 if (sym->st_value % BPF_INSN_SZ) { 9058 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9059 map->name, (unsigned long long)sym->st_value); 9060 return -LIBBPF_ERRNO__FORMAT; 9061 } 9062 insn_idx = sym->st_value / BPF_INSN_SZ; 9063 9064 member = find_member_by_offset(st_ops->type, moff * 8); 9065 if (!member) { 9066 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9067 map->name, moff); 9068 return -EINVAL; 9069 } 9070 member_idx = member - btf_members(st_ops->type); 9071 name = btf__name_by_offset(btf, member->name_off); 9072 9073 if (!resolve_func_ptr(btf, member->type, NULL)) { 9074 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9075 map->name, name); 9076 return -EINVAL; 9077 } 9078 9079 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9080 if (!prog) { 9081 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9082 map->name, shdr_idx, name); 9083 return -EINVAL; 9084 } 9085 9086 /* prevent the use of BPF prog with invalid type */ 9087 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9088 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9089 map->name, prog->name); 9090 return -EINVAL; 9091 } 9092 9093 /* if we haven't yet processed this BPF program, record proper 9094 * attach_btf_id and member_idx 9095 */ 9096 if (!prog->attach_btf_id) { 9097 prog->attach_btf_id = st_ops->type_id; 9098 prog->expected_attach_type = member_idx; 9099 } 9100 9101 /* struct_ops BPF prog can be re-used between multiple 9102 * .struct_ops & .struct_ops.link as long as it's the 9103 * same struct_ops struct definition and the same 9104 * function pointer field 9105 */ 9106 if (prog->attach_btf_id != st_ops->type_id || 9107 prog->expected_attach_type != member_idx) { 9108 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9109 map->name, prog->name, prog->sec_name, prog->type, 9110 prog->attach_btf_id, prog->expected_attach_type, name); 9111 return -EINVAL; 9112 } 9113 9114 st_ops->progs[member_idx] = prog; 9115 } 9116 9117 return 0; 9118 } 9119 9120 #define BTF_TRACE_PREFIX "btf_trace_" 9121 #define BTF_LSM_PREFIX "bpf_lsm_" 9122 #define BTF_ITER_PREFIX "bpf_iter_" 9123 #define BTF_MAX_NAME_SIZE 128 9124 9125 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9126 const char **prefix, int *kind) 9127 { 9128 switch (attach_type) { 9129 case BPF_TRACE_RAW_TP: 9130 *prefix = BTF_TRACE_PREFIX; 9131 *kind = BTF_KIND_TYPEDEF; 9132 break; 9133 case BPF_LSM_MAC: 9134 case BPF_LSM_CGROUP: 9135 *prefix = BTF_LSM_PREFIX; 9136 *kind = BTF_KIND_FUNC; 9137 break; 9138 case BPF_TRACE_ITER: 9139 *prefix = BTF_ITER_PREFIX; 9140 *kind = BTF_KIND_FUNC; 9141 break; 9142 default: 9143 *prefix = ""; 9144 *kind = BTF_KIND_FUNC; 9145 } 9146 } 9147 9148 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9149 const char *name, __u32 kind) 9150 { 9151 char btf_type_name[BTF_MAX_NAME_SIZE]; 9152 int ret; 9153 9154 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9155 "%s%s", prefix, name); 9156 /* snprintf returns the number of characters written excluding the 9157 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9158 * indicates truncation. 9159 */ 9160 if (ret < 0 || ret >= sizeof(btf_type_name)) 9161 return -ENAMETOOLONG; 9162 return btf__find_by_name_kind(btf, btf_type_name, kind); 9163 } 9164 9165 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9166 enum bpf_attach_type attach_type) 9167 { 9168 const char *prefix; 9169 int kind; 9170 9171 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9172 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9173 } 9174 9175 int libbpf_find_vmlinux_btf_id(const char *name, 9176 enum bpf_attach_type attach_type) 9177 { 9178 struct btf *btf; 9179 int err; 9180 9181 btf = btf__load_vmlinux_btf(); 9182 err = libbpf_get_error(btf); 9183 if (err) { 9184 pr_warn("vmlinux BTF is not found\n"); 9185 return libbpf_err(err); 9186 } 9187 9188 err = find_attach_btf_id(btf, name, attach_type); 9189 if (err <= 0) 9190 pr_warn("%s is not found in vmlinux BTF\n", name); 9191 9192 btf__free(btf); 9193 return libbpf_err(err); 9194 } 9195 9196 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9197 { 9198 struct bpf_prog_info info; 9199 __u32 info_len = sizeof(info); 9200 struct btf *btf; 9201 int err; 9202 9203 memset(&info, 0, info_len); 9204 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9205 if (err) { 9206 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9207 attach_prog_fd, err); 9208 return err; 9209 } 9210 9211 err = -EINVAL; 9212 if (!info.btf_id) { 9213 pr_warn("The target program doesn't have BTF\n"); 9214 goto out; 9215 } 9216 btf = btf__load_from_kernel_by_id(info.btf_id); 9217 err = libbpf_get_error(btf); 9218 if (err) { 9219 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9220 goto out; 9221 } 9222 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9223 btf__free(btf); 9224 if (err <= 0) { 9225 pr_warn("%s is not found in prog's BTF\n", name); 9226 goto out; 9227 } 9228 out: 9229 return err; 9230 } 9231 9232 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9233 enum bpf_attach_type attach_type, 9234 int *btf_obj_fd, int *btf_type_id) 9235 { 9236 int ret, i; 9237 9238 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9239 if (ret > 0) { 9240 *btf_obj_fd = 0; /* vmlinux BTF */ 9241 *btf_type_id = ret; 9242 return 0; 9243 } 9244 if (ret != -ENOENT) 9245 return ret; 9246 9247 ret = load_module_btfs(obj); 9248 if (ret) 9249 return ret; 9250 9251 for (i = 0; i < obj->btf_module_cnt; i++) { 9252 const struct module_btf *mod = &obj->btf_modules[i]; 9253 9254 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9255 if (ret > 0) { 9256 *btf_obj_fd = mod->fd; 9257 *btf_type_id = ret; 9258 return 0; 9259 } 9260 if (ret == -ENOENT) 9261 continue; 9262 9263 return ret; 9264 } 9265 9266 return -ESRCH; 9267 } 9268 9269 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9270 int *btf_obj_fd, int *btf_type_id) 9271 { 9272 enum bpf_attach_type attach_type = prog->expected_attach_type; 9273 __u32 attach_prog_fd = prog->attach_prog_fd; 9274 int err = 0; 9275 9276 /* BPF program's BTF ID */ 9277 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9278 if (!attach_prog_fd) { 9279 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9280 return -EINVAL; 9281 } 9282 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9283 if (err < 0) { 9284 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9285 prog->name, attach_prog_fd, attach_name, err); 9286 return err; 9287 } 9288 *btf_obj_fd = 0; 9289 *btf_type_id = err; 9290 return 0; 9291 } 9292 9293 /* kernel/module BTF ID */ 9294 if (prog->obj->gen_loader) { 9295 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9296 *btf_obj_fd = 0; 9297 *btf_type_id = 1; 9298 } else { 9299 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9300 } 9301 if (err) { 9302 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9303 prog->name, attach_name, err); 9304 return err; 9305 } 9306 return 0; 9307 } 9308 9309 int libbpf_attach_type_by_name(const char *name, 9310 enum bpf_attach_type *attach_type) 9311 { 9312 char *type_names; 9313 const struct bpf_sec_def *sec_def; 9314 9315 if (!name) 9316 return libbpf_err(-EINVAL); 9317 9318 sec_def = find_sec_def(name); 9319 if (!sec_def) { 9320 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9321 type_names = libbpf_get_type_names(true); 9322 if (type_names != NULL) { 9323 pr_debug("attachable section(type) names are:%s\n", type_names); 9324 free(type_names); 9325 } 9326 9327 return libbpf_err(-EINVAL); 9328 } 9329 9330 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9331 return libbpf_err(-EINVAL); 9332 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9333 return libbpf_err(-EINVAL); 9334 9335 *attach_type = sec_def->expected_attach_type; 9336 return 0; 9337 } 9338 9339 int bpf_map__fd(const struct bpf_map *map) 9340 { 9341 return map ? map->fd : libbpf_err(-EINVAL); 9342 } 9343 9344 static bool map_uses_real_name(const struct bpf_map *map) 9345 { 9346 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9347 * their user-visible name differs from kernel-visible name. Users see 9348 * such map's corresponding ELF section name as a map name. 9349 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9350 * maps to know which name has to be returned to the user. 9351 */ 9352 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9353 return true; 9354 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9355 return true; 9356 return false; 9357 } 9358 9359 const char *bpf_map__name(const struct bpf_map *map) 9360 { 9361 if (!map) 9362 return NULL; 9363 9364 if (map_uses_real_name(map)) 9365 return map->real_name; 9366 9367 return map->name; 9368 } 9369 9370 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9371 { 9372 return map->def.type; 9373 } 9374 9375 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9376 { 9377 if (map->fd >= 0) 9378 return libbpf_err(-EBUSY); 9379 map->def.type = type; 9380 return 0; 9381 } 9382 9383 __u32 bpf_map__map_flags(const struct bpf_map *map) 9384 { 9385 return map->def.map_flags; 9386 } 9387 9388 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9389 { 9390 if (map->fd >= 0) 9391 return libbpf_err(-EBUSY); 9392 map->def.map_flags = flags; 9393 return 0; 9394 } 9395 9396 __u64 bpf_map__map_extra(const struct bpf_map *map) 9397 { 9398 return map->map_extra; 9399 } 9400 9401 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9402 { 9403 if (map->fd >= 0) 9404 return libbpf_err(-EBUSY); 9405 map->map_extra = map_extra; 9406 return 0; 9407 } 9408 9409 __u32 bpf_map__numa_node(const struct bpf_map *map) 9410 { 9411 return map->numa_node; 9412 } 9413 9414 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9415 { 9416 if (map->fd >= 0) 9417 return libbpf_err(-EBUSY); 9418 map->numa_node = numa_node; 9419 return 0; 9420 } 9421 9422 __u32 bpf_map__key_size(const struct bpf_map *map) 9423 { 9424 return map->def.key_size; 9425 } 9426 9427 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9428 { 9429 if (map->fd >= 0) 9430 return libbpf_err(-EBUSY); 9431 map->def.key_size = size; 9432 return 0; 9433 } 9434 9435 __u32 bpf_map__value_size(const struct bpf_map *map) 9436 { 9437 return map->def.value_size; 9438 } 9439 9440 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9441 { 9442 struct btf *btf; 9443 struct btf_type *datasec_type, *var_type; 9444 struct btf_var_secinfo *var; 9445 const struct btf_type *array_type; 9446 const struct btf_array *array; 9447 int vlen, element_sz, new_array_id; 9448 __u32 nr_elements; 9449 9450 /* check btf existence */ 9451 btf = bpf_object__btf(map->obj); 9452 if (!btf) 9453 return -ENOENT; 9454 9455 /* verify map is datasec */ 9456 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9457 if (!btf_is_datasec(datasec_type)) { 9458 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9459 bpf_map__name(map)); 9460 return -EINVAL; 9461 } 9462 9463 /* verify datasec has at least one var */ 9464 vlen = btf_vlen(datasec_type); 9465 if (vlen == 0) { 9466 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9467 bpf_map__name(map)); 9468 return -EINVAL; 9469 } 9470 9471 /* verify last var in the datasec is an array */ 9472 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9473 var_type = btf_type_by_id(btf, var->type); 9474 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9475 if (!btf_is_array(array_type)) { 9476 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9477 bpf_map__name(map)); 9478 return -EINVAL; 9479 } 9480 9481 /* verify request size aligns with array */ 9482 array = btf_array(array_type); 9483 element_sz = btf__resolve_size(btf, array->type); 9484 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9485 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9486 bpf_map__name(map), element_sz, size); 9487 return -EINVAL; 9488 } 9489 9490 /* create a new array based on the existing array, but with new length */ 9491 nr_elements = (size - var->offset) / element_sz; 9492 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9493 if (new_array_id < 0) 9494 return new_array_id; 9495 9496 /* adding a new btf type invalidates existing pointers to btf objects, 9497 * so refresh pointers before proceeding 9498 */ 9499 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9500 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9501 var_type = btf_type_by_id(btf, var->type); 9502 9503 /* finally update btf info */ 9504 datasec_type->size = size; 9505 var->size = size - var->offset; 9506 var_type->type = new_array_id; 9507 9508 return 0; 9509 } 9510 9511 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9512 { 9513 if (map->fd >= 0) 9514 return libbpf_err(-EBUSY); 9515 9516 if (map->mmaped) { 9517 int err; 9518 size_t mmap_old_sz, mmap_new_sz; 9519 9520 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9521 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9522 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9523 if (err) { 9524 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9525 bpf_map__name(map), err); 9526 return err; 9527 } 9528 err = map_btf_datasec_resize(map, size); 9529 if (err && err != -ENOENT) { 9530 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9531 bpf_map__name(map), err); 9532 map->btf_value_type_id = 0; 9533 map->btf_key_type_id = 0; 9534 } 9535 } 9536 9537 map->def.value_size = size; 9538 return 0; 9539 } 9540 9541 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9542 { 9543 return map ? map->btf_key_type_id : 0; 9544 } 9545 9546 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9547 { 9548 return map ? map->btf_value_type_id : 0; 9549 } 9550 9551 int bpf_map__set_initial_value(struct bpf_map *map, 9552 const void *data, size_t size) 9553 { 9554 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9555 size != map->def.value_size || map->fd >= 0) 9556 return libbpf_err(-EINVAL); 9557 9558 memcpy(map->mmaped, data, size); 9559 return 0; 9560 } 9561 9562 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9563 { 9564 if (!map->mmaped) 9565 return NULL; 9566 *psize = map->def.value_size; 9567 return map->mmaped; 9568 } 9569 9570 bool bpf_map__is_internal(const struct bpf_map *map) 9571 { 9572 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9573 } 9574 9575 __u32 bpf_map__ifindex(const struct bpf_map *map) 9576 { 9577 return map->map_ifindex; 9578 } 9579 9580 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9581 { 9582 if (map->fd >= 0) 9583 return libbpf_err(-EBUSY); 9584 map->map_ifindex = ifindex; 9585 return 0; 9586 } 9587 9588 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9589 { 9590 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9591 pr_warn("error: unsupported map type\n"); 9592 return libbpf_err(-EINVAL); 9593 } 9594 if (map->inner_map_fd != -1) { 9595 pr_warn("error: inner_map_fd already specified\n"); 9596 return libbpf_err(-EINVAL); 9597 } 9598 if (map->inner_map) { 9599 bpf_map__destroy(map->inner_map); 9600 zfree(&map->inner_map); 9601 } 9602 map->inner_map_fd = fd; 9603 return 0; 9604 } 9605 9606 static struct bpf_map * 9607 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9608 { 9609 ssize_t idx; 9610 struct bpf_map *s, *e; 9611 9612 if (!obj || !obj->maps) 9613 return errno = EINVAL, NULL; 9614 9615 s = obj->maps; 9616 e = obj->maps + obj->nr_maps; 9617 9618 if ((m < s) || (m >= e)) { 9619 pr_warn("error in %s: map handler doesn't belong to object\n", 9620 __func__); 9621 return errno = EINVAL, NULL; 9622 } 9623 9624 idx = (m - obj->maps) + i; 9625 if (idx >= obj->nr_maps || idx < 0) 9626 return NULL; 9627 return &obj->maps[idx]; 9628 } 9629 9630 struct bpf_map * 9631 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9632 { 9633 if (prev == NULL) 9634 return obj->maps; 9635 9636 return __bpf_map__iter(prev, obj, 1); 9637 } 9638 9639 struct bpf_map * 9640 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9641 { 9642 if (next == NULL) { 9643 if (!obj->nr_maps) 9644 return NULL; 9645 return obj->maps + obj->nr_maps - 1; 9646 } 9647 9648 return __bpf_map__iter(next, obj, -1); 9649 } 9650 9651 struct bpf_map * 9652 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9653 { 9654 struct bpf_map *pos; 9655 9656 bpf_object__for_each_map(pos, obj) { 9657 /* if it's a special internal map name (which always starts 9658 * with dot) then check if that special name matches the 9659 * real map name (ELF section name) 9660 */ 9661 if (name[0] == '.') { 9662 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9663 return pos; 9664 continue; 9665 } 9666 /* otherwise map name has to be an exact match */ 9667 if (map_uses_real_name(pos)) { 9668 if (strcmp(pos->real_name, name) == 0) 9669 return pos; 9670 continue; 9671 } 9672 if (strcmp(pos->name, name) == 0) 9673 return pos; 9674 } 9675 return errno = ENOENT, NULL; 9676 } 9677 9678 int 9679 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9680 { 9681 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9682 } 9683 9684 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9685 size_t value_sz, bool check_value_sz) 9686 { 9687 if (map->fd <= 0) 9688 return -ENOENT; 9689 9690 if (map->def.key_size != key_sz) { 9691 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9692 map->name, key_sz, map->def.key_size); 9693 return -EINVAL; 9694 } 9695 9696 if (!check_value_sz) 9697 return 0; 9698 9699 switch (map->def.type) { 9700 case BPF_MAP_TYPE_PERCPU_ARRAY: 9701 case BPF_MAP_TYPE_PERCPU_HASH: 9702 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9703 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9704 int num_cpu = libbpf_num_possible_cpus(); 9705 size_t elem_sz = roundup(map->def.value_size, 8); 9706 9707 if (value_sz != num_cpu * elem_sz) { 9708 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9709 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9710 return -EINVAL; 9711 } 9712 break; 9713 } 9714 default: 9715 if (map->def.value_size != value_sz) { 9716 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9717 map->name, value_sz, map->def.value_size); 9718 return -EINVAL; 9719 } 9720 break; 9721 } 9722 return 0; 9723 } 9724 9725 int bpf_map__lookup_elem(const struct bpf_map *map, 9726 const void *key, size_t key_sz, 9727 void *value, size_t value_sz, __u64 flags) 9728 { 9729 int err; 9730 9731 err = validate_map_op(map, key_sz, value_sz, true); 9732 if (err) 9733 return libbpf_err(err); 9734 9735 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9736 } 9737 9738 int bpf_map__update_elem(const struct bpf_map *map, 9739 const void *key, size_t key_sz, 9740 const void *value, size_t value_sz, __u64 flags) 9741 { 9742 int err; 9743 9744 err = validate_map_op(map, key_sz, value_sz, true); 9745 if (err) 9746 return libbpf_err(err); 9747 9748 return bpf_map_update_elem(map->fd, key, value, flags); 9749 } 9750 9751 int bpf_map__delete_elem(const struct bpf_map *map, 9752 const void *key, size_t key_sz, __u64 flags) 9753 { 9754 int err; 9755 9756 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9757 if (err) 9758 return libbpf_err(err); 9759 9760 return bpf_map_delete_elem_flags(map->fd, key, flags); 9761 } 9762 9763 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9764 const void *key, size_t key_sz, 9765 void *value, size_t value_sz, __u64 flags) 9766 { 9767 int err; 9768 9769 err = validate_map_op(map, key_sz, value_sz, true); 9770 if (err) 9771 return libbpf_err(err); 9772 9773 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9774 } 9775 9776 int bpf_map__get_next_key(const struct bpf_map *map, 9777 const void *cur_key, void *next_key, size_t key_sz) 9778 { 9779 int err; 9780 9781 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9782 if (err) 9783 return libbpf_err(err); 9784 9785 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9786 } 9787 9788 long libbpf_get_error(const void *ptr) 9789 { 9790 if (!IS_ERR_OR_NULL(ptr)) 9791 return 0; 9792 9793 if (IS_ERR(ptr)) 9794 errno = -PTR_ERR(ptr); 9795 9796 /* If ptr == NULL, then errno should be already set by the failing 9797 * API, because libbpf never returns NULL on success and it now always 9798 * sets errno on error. So no extra errno handling for ptr == NULL 9799 * case. 9800 */ 9801 return -errno; 9802 } 9803 9804 /* Replace link's underlying BPF program with the new one */ 9805 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9806 { 9807 int ret; 9808 9809 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9810 return libbpf_err_errno(ret); 9811 } 9812 9813 /* Release "ownership" of underlying BPF resource (typically, BPF program 9814 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9815 * link, when destructed through bpf_link__destroy() call won't attempt to 9816 * detach/unregisted that BPF resource. This is useful in situations where, 9817 * say, attached BPF program has to outlive userspace program that attached it 9818 * in the system. Depending on type of BPF program, though, there might be 9819 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9820 * exit of userspace program doesn't trigger automatic detachment and clean up 9821 * inside the kernel. 9822 */ 9823 void bpf_link__disconnect(struct bpf_link *link) 9824 { 9825 link->disconnected = true; 9826 } 9827 9828 int bpf_link__destroy(struct bpf_link *link) 9829 { 9830 int err = 0; 9831 9832 if (IS_ERR_OR_NULL(link)) 9833 return 0; 9834 9835 if (!link->disconnected && link->detach) 9836 err = link->detach(link); 9837 if (link->pin_path) 9838 free(link->pin_path); 9839 if (link->dealloc) 9840 link->dealloc(link); 9841 else 9842 free(link); 9843 9844 return libbpf_err(err); 9845 } 9846 9847 int bpf_link__fd(const struct bpf_link *link) 9848 { 9849 return link->fd; 9850 } 9851 9852 const char *bpf_link__pin_path(const struct bpf_link *link) 9853 { 9854 return link->pin_path; 9855 } 9856 9857 static int bpf_link__detach_fd(struct bpf_link *link) 9858 { 9859 return libbpf_err_errno(close(link->fd)); 9860 } 9861 9862 struct bpf_link *bpf_link__open(const char *path) 9863 { 9864 struct bpf_link *link; 9865 int fd; 9866 9867 fd = bpf_obj_get(path); 9868 if (fd < 0) { 9869 fd = -errno; 9870 pr_warn("failed to open link at %s: %d\n", path, fd); 9871 return libbpf_err_ptr(fd); 9872 } 9873 9874 link = calloc(1, sizeof(*link)); 9875 if (!link) { 9876 close(fd); 9877 return libbpf_err_ptr(-ENOMEM); 9878 } 9879 link->detach = &bpf_link__detach_fd; 9880 link->fd = fd; 9881 9882 link->pin_path = strdup(path); 9883 if (!link->pin_path) { 9884 bpf_link__destroy(link); 9885 return libbpf_err_ptr(-ENOMEM); 9886 } 9887 9888 return link; 9889 } 9890 9891 int bpf_link__detach(struct bpf_link *link) 9892 { 9893 return bpf_link_detach(link->fd) ? -errno : 0; 9894 } 9895 9896 int bpf_link__pin(struct bpf_link *link, const char *path) 9897 { 9898 int err; 9899 9900 if (link->pin_path) 9901 return libbpf_err(-EBUSY); 9902 err = make_parent_dir(path); 9903 if (err) 9904 return libbpf_err(err); 9905 err = check_path(path); 9906 if (err) 9907 return libbpf_err(err); 9908 9909 link->pin_path = strdup(path); 9910 if (!link->pin_path) 9911 return libbpf_err(-ENOMEM); 9912 9913 if (bpf_obj_pin(link->fd, link->pin_path)) { 9914 err = -errno; 9915 zfree(&link->pin_path); 9916 return libbpf_err(err); 9917 } 9918 9919 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9920 return 0; 9921 } 9922 9923 int bpf_link__unpin(struct bpf_link *link) 9924 { 9925 int err; 9926 9927 if (!link->pin_path) 9928 return libbpf_err(-EINVAL); 9929 9930 err = unlink(link->pin_path); 9931 if (err != 0) 9932 return -errno; 9933 9934 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9935 zfree(&link->pin_path); 9936 return 0; 9937 } 9938 9939 struct bpf_link_perf { 9940 struct bpf_link link; 9941 int perf_event_fd; 9942 /* legacy kprobe support: keep track of probe identifier and type */ 9943 char *legacy_probe_name; 9944 bool legacy_is_kprobe; 9945 bool legacy_is_retprobe; 9946 }; 9947 9948 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9949 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9950 9951 static int bpf_link_perf_detach(struct bpf_link *link) 9952 { 9953 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9954 int err = 0; 9955 9956 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9957 err = -errno; 9958 9959 if (perf_link->perf_event_fd != link->fd) 9960 close(perf_link->perf_event_fd); 9961 close(link->fd); 9962 9963 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9964 if (perf_link->legacy_probe_name) { 9965 if (perf_link->legacy_is_kprobe) { 9966 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9967 perf_link->legacy_is_retprobe); 9968 } else { 9969 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9970 perf_link->legacy_is_retprobe); 9971 } 9972 } 9973 9974 return err; 9975 } 9976 9977 static void bpf_link_perf_dealloc(struct bpf_link *link) 9978 { 9979 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9980 9981 free(perf_link->legacy_probe_name); 9982 free(perf_link); 9983 } 9984 9985 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9986 const struct bpf_perf_event_opts *opts) 9987 { 9988 char errmsg[STRERR_BUFSIZE]; 9989 struct bpf_link_perf *link; 9990 int prog_fd, link_fd = -1, err; 9991 bool force_ioctl_attach; 9992 9993 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9994 return libbpf_err_ptr(-EINVAL); 9995 9996 if (pfd < 0) { 9997 pr_warn("prog '%s': invalid perf event FD %d\n", 9998 prog->name, pfd); 9999 return libbpf_err_ptr(-EINVAL); 10000 } 10001 prog_fd = bpf_program__fd(prog); 10002 if (prog_fd < 0) { 10003 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10004 prog->name); 10005 return libbpf_err_ptr(-EINVAL); 10006 } 10007 10008 link = calloc(1, sizeof(*link)); 10009 if (!link) 10010 return libbpf_err_ptr(-ENOMEM); 10011 link->link.detach = &bpf_link_perf_detach; 10012 link->link.dealloc = &bpf_link_perf_dealloc; 10013 link->perf_event_fd = pfd; 10014 10015 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10016 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10017 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10018 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10019 10020 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10021 if (link_fd < 0) { 10022 err = -errno; 10023 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10024 prog->name, pfd, 10025 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10026 goto err_out; 10027 } 10028 link->link.fd = link_fd; 10029 } else { 10030 if (OPTS_GET(opts, bpf_cookie, 0)) { 10031 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10032 err = -EOPNOTSUPP; 10033 goto err_out; 10034 } 10035 10036 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10037 err = -errno; 10038 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10039 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10040 if (err == -EPROTO) 10041 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10042 prog->name, pfd); 10043 goto err_out; 10044 } 10045 link->link.fd = pfd; 10046 } 10047 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10048 err = -errno; 10049 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10050 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10051 goto err_out; 10052 } 10053 10054 return &link->link; 10055 err_out: 10056 if (link_fd >= 0) 10057 close(link_fd); 10058 free(link); 10059 return libbpf_err_ptr(err); 10060 } 10061 10062 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10063 { 10064 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10065 } 10066 10067 /* 10068 * this function is expected to parse integer in the range of [0, 2^31-1] from 10069 * given file using scanf format string fmt. If actual parsed value is 10070 * negative, the result might be indistinguishable from error 10071 */ 10072 static int parse_uint_from_file(const char *file, const char *fmt) 10073 { 10074 char buf[STRERR_BUFSIZE]; 10075 int err, ret; 10076 FILE *f; 10077 10078 f = fopen(file, "re"); 10079 if (!f) { 10080 err = -errno; 10081 pr_debug("failed to open '%s': %s\n", file, 10082 libbpf_strerror_r(err, buf, sizeof(buf))); 10083 return err; 10084 } 10085 err = fscanf(f, fmt, &ret); 10086 if (err != 1) { 10087 err = err == EOF ? -EIO : -errno; 10088 pr_debug("failed to parse '%s': %s\n", file, 10089 libbpf_strerror_r(err, buf, sizeof(buf))); 10090 fclose(f); 10091 return err; 10092 } 10093 fclose(f); 10094 return ret; 10095 } 10096 10097 static int determine_kprobe_perf_type(void) 10098 { 10099 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10100 10101 return parse_uint_from_file(file, "%d\n"); 10102 } 10103 10104 static int determine_uprobe_perf_type(void) 10105 { 10106 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10107 10108 return parse_uint_from_file(file, "%d\n"); 10109 } 10110 10111 static int determine_kprobe_retprobe_bit(void) 10112 { 10113 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10114 10115 return parse_uint_from_file(file, "config:%d\n"); 10116 } 10117 10118 static int determine_uprobe_retprobe_bit(void) 10119 { 10120 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10121 10122 return parse_uint_from_file(file, "config:%d\n"); 10123 } 10124 10125 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10126 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10127 10128 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10129 uint64_t offset, int pid, size_t ref_ctr_off) 10130 { 10131 const size_t attr_sz = sizeof(struct perf_event_attr); 10132 struct perf_event_attr attr; 10133 char errmsg[STRERR_BUFSIZE]; 10134 int type, pfd; 10135 10136 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10137 return -EINVAL; 10138 10139 memset(&attr, 0, attr_sz); 10140 10141 type = uprobe ? determine_uprobe_perf_type() 10142 : determine_kprobe_perf_type(); 10143 if (type < 0) { 10144 pr_warn("failed to determine %s perf type: %s\n", 10145 uprobe ? "uprobe" : "kprobe", 10146 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10147 return type; 10148 } 10149 if (retprobe) { 10150 int bit = uprobe ? determine_uprobe_retprobe_bit() 10151 : determine_kprobe_retprobe_bit(); 10152 10153 if (bit < 0) { 10154 pr_warn("failed to determine %s retprobe bit: %s\n", 10155 uprobe ? "uprobe" : "kprobe", 10156 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10157 return bit; 10158 } 10159 attr.config |= 1 << bit; 10160 } 10161 attr.size = attr_sz; 10162 attr.type = type; 10163 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10164 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10165 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10166 10167 /* pid filter is meaningful only for uprobes */ 10168 pfd = syscall(__NR_perf_event_open, &attr, 10169 pid < 0 ? -1 : pid /* pid */, 10170 pid == -1 ? 0 : -1 /* cpu */, 10171 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10172 return pfd >= 0 ? pfd : -errno; 10173 } 10174 10175 static int append_to_file(const char *file, const char *fmt, ...) 10176 { 10177 int fd, n, err = 0; 10178 va_list ap; 10179 char buf[1024]; 10180 10181 va_start(ap, fmt); 10182 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10183 va_end(ap); 10184 10185 if (n < 0 || n >= sizeof(buf)) 10186 return -EINVAL; 10187 10188 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10189 if (fd < 0) 10190 return -errno; 10191 10192 if (write(fd, buf, n) < 0) 10193 err = -errno; 10194 10195 close(fd); 10196 return err; 10197 } 10198 10199 #define DEBUGFS "/sys/kernel/debug/tracing" 10200 #define TRACEFS "/sys/kernel/tracing" 10201 10202 static bool use_debugfs(void) 10203 { 10204 static int has_debugfs = -1; 10205 10206 if (has_debugfs < 0) 10207 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10208 10209 return has_debugfs == 1; 10210 } 10211 10212 static const char *tracefs_path(void) 10213 { 10214 return use_debugfs() ? DEBUGFS : TRACEFS; 10215 } 10216 10217 static const char *tracefs_kprobe_events(void) 10218 { 10219 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10220 } 10221 10222 static const char *tracefs_uprobe_events(void) 10223 { 10224 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10225 } 10226 10227 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10228 const char *kfunc_name, size_t offset) 10229 { 10230 static int index = 0; 10231 int i; 10232 10233 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10234 __sync_fetch_and_add(&index, 1)); 10235 10236 /* sanitize binary_path in the probe name */ 10237 for (i = 0; buf[i]; i++) { 10238 if (!isalnum(buf[i])) 10239 buf[i] = '_'; 10240 } 10241 } 10242 10243 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10244 const char *kfunc_name, size_t offset) 10245 { 10246 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10247 retprobe ? 'r' : 'p', 10248 retprobe ? "kretprobes" : "kprobes", 10249 probe_name, kfunc_name, offset); 10250 } 10251 10252 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10253 { 10254 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10255 retprobe ? "kretprobes" : "kprobes", probe_name); 10256 } 10257 10258 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10259 { 10260 char file[256]; 10261 10262 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10263 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10264 10265 return parse_uint_from_file(file, "%d\n"); 10266 } 10267 10268 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10269 const char *kfunc_name, size_t offset, int pid) 10270 { 10271 const size_t attr_sz = sizeof(struct perf_event_attr); 10272 struct perf_event_attr attr; 10273 char errmsg[STRERR_BUFSIZE]; 10274 int type, pfd, err; 10275 10276 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10277 if (err < 0) { 10278 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10279 kfunc_name, offset, 10280 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10281 return err; 10282 } 10283 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10284 if (type < 0) { 10285 err = type; 10286 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10287 kfunc_name, offset, 10288 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10289 goto err_clean_legacy; 10290 } 10291 10292 memset(&attr, 0, attr_sz); 10293 attr.size = attr_sz; 10294 attr.config = type; 10295 attr.type = PERF_TYPE_TRACEPOINT; 10296 10297 pfd = syscall(__NR_perf_event_open, &attr, 10298 pid < 0 ? -1 : pid, /* pid */ 10299 pid == -1 ? 0 : -1, /* cpu */ 10300 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10301 if (pfd < 0) { 10302 err = -errno; 10303 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10304 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10305 goto err_clean_legacy; 10306 } 10307 return pfd; 10308 10309 err_clean_legacy: 10310 /* Clear the newly added legacy kprobe_event */ 10311 remove_kprobe_event_legacy(probe_name, retprobe); 10312 return err; 10313 } 10314 10315 static const char *arch_specific_syscall_pfx(void) 10316 { 10317 #if defined(__x86_64__) 10318 return "x64"; 10319 #elif defined(__i386__) 10320 return "ia32"; 10321 #elif defined(__s390x__) 10322 return "s390x"; 10323 #elif defined(__s390__) 10324 return "s390"; 10325 #elif defined(__arm__) 10326 return "arm"; 10327 #elif defined(__aarch64__) 10328 return "arm64"; 10329 #elif defined(__mips__) 10330 return "mips"; 10331 #elif defined(__riscv) 10332 return "riscv"; 10333 #elif defined(__powerpc__) 10334 return "powerpc"; 10335 #elif defined(__powerpc64__) 10336 return "powerpc64"; 10337 #else 10338 return NULL; 10339 #endif 10340 } 10341 10342 static int probe_kern_syscall_wrapper(void) 10343 { 10344 char syscall_name[64]; 10345 const char *ksys_pfx; 10346 10347 ksys_pfx = arch_specific_syscall_pfx(); 10348 if (!ksys_pfx) 10349 return 0; 10350 10351 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10352 10353 if (determine_kprobe_perf_type() >= 0) { 10354 int pfd; 10355 10356 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10357 if (pfd >= 0) 10358 close(pfd); 10359 10360 return pfd >= 0 ? 1 : 0; 10361 } else { /* legacy mode */ 10362 char probe_name[128]; 10363 10364 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10365 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10366 return 0; 10367 10368 (void)remove_kprobe_event_legacy(probe_name, false); 10369 return 1; 10370 } 10371 } 10372 10373 struct bpf_link * 10374 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10375 const char *func_name, 10376 const struct bpf_kprobe_opts *opts) 10377 { 10378 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10379 enum probe_attach_mode attach_mode; 10380 char errmsg[STRERR_BUFSIZE]; 10381 char *legacy_probe = NULL; 10382 struct bpf_link *link; 10383 size_t offset; 10384 bool retprobe, legacy; 10385 int pfd, err; 10386 10387 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10388 return libbpf_err_ptr(-EINVAL); 10389 10390 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10391 retprobe = OPTS_GET(opts, retprobe, false); 10392 offset = OPTS_GET(opts, offset, 0); 10393 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10394 10395 legacy = determine_kprobe_perf_type() < 0; 10396 switch (attach_mode) { 10397 case PROBE_ATTACH_MODE_LEGACY: 10398 legacy = true; 10399 pe_opts.force_ioctl_attach = true; 10400 break; 10401 case PROBE_ATTACH_MODE_PERF: 10402 if (legacy) 10403 return libbpf_err_ptr(-ENOTSUP); 10404 pe_opts.force_ioctl_attach = true; 10405 break; 10406 case PROBE_ATTACH_MODE_LINK: 10407 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10408 return libbpf_err_ptr(-ENOTSUP); 10409 break; 10410 case PROBE_ATTACH_MODE_DEFAULT: 10411 break; 10412 default: 10413 return libbpf_err_ptr(-EINVAL); 10414 } 10415 10416 if (!legacy) { 10417 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10418 func_name, offset, 10419 -1 /* pid */, 0 /* ref_ctr_off */); 10420 } else { 10421 char probe_name[256]; 10422 10423 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10424 func_name, offset); 10425 10426 legacy_probe = strdup(probe_name); 10427 if (!legacy_probe) 10428 return libbpf_err_ptr(-ENOMEM); 10429 10430 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10431 offset, -1 /* pid */); 10432 } 10433 if (pfd < 0) { 10434 err = -errno; 10435 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10436 prog->name, retprobe ? "kretprobe" : "kprobe", 10437 func_name, offset, 10438 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10439 goto err_out; 10440 } 10441 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10442 err = libbpf_get_error(link); 10443 if (err) { 10444 close(pfd); 10445 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10446 prog->name, retprobe ? "kretprobe" : "kprobe", 10447 func_name, offset, 10448 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10449 goto err_clean_legacy; 10450 } 10451 if (legacy) { 10452 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10453 10454 perf_link->legacy_probe_name = legacy_probe; 10455 perf_link->legacy_is_kprobe = true; 10456 perf_link->legacy_is_retprobe = retprobe; 10457 } 10458 10459 return link; 10460 10461 err_clean_legacy: 10462 if (legacy) 10463 remove_kprobe_event_legacy(legacy_probe, retprobe); 10464 err_out: 10465 free(legacy_probe); 10466 return libbpf_err_ptr(err); 10467 } 10468 10469 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10470 bool retprobe, 10471 const char *func_name) 10472 { 10473 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10474 .retprobe = retprobe, 10475 ); 10476 10477 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10478 } 10479 10480 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10481 const char *syscall_name, 10482 const struct bpf_ksyscall_opts *opts) 10483 { 10484 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10485 char func_name[128]; 10486 10487 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10488 return libbpf_err_ptr(-EINVAL); 10489 10490 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10491 /* arch_specific_syscall_pfx() should never return NULL here 10492 * because it is guarded by kernel_supports(). However, since 10493 * compiler does not know that we have an explicit conditional 10494 * as well. 10495 */ 10496 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10497 arch_specific_syscall_pfx() ? : "", syscall_name); 10498 } else { 10499 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10500 } 10501 10502 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10503 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10504 10505 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10506 } 10507 10508 /* Adapted from perf/util/string.c */ 10509 static bool glob_match(const char *str, const char *pat) 10510 { 10511 while (*str && *pat && *pat != '*') { 10512 if (*pat == '?') { /* Matches any single character */ 10513 str++; 10514 pat++; 10515 continue; 10516 } 10517 if (*str != *pat) 10518 return false; 10519 str++; 10520 pat++; 10521 } 10522 /* Check wild card */ 10523 if (*pat == '*') { 10524 while (*pat == '*') 10525 pat++; 10526 if (!*pat) /* Tail wild card matches all */ 10527 return true; 10528 while (*str) 10529 if (glob_match(str++, pat)) 10530 return true; 10531 } 10532 return !*str && !*pat; 10533 } 10534 10535 struct kprobe_multi_resolve { 10536 const char *pattern; 10537 unsigned long *addrs; 10538 size_t cap; 10539 size_t cnt; 10540 }; 10541 10542 static int 10543 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10544 const char *sym_name, void *ctx) 10545 { 10546 struct kprobe_multi_resolve *res = ctx; 10547 int err; 10548 10549 if (!glob_match(sym_name, res->pattern)) 10550 return 0; 10551 10552 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10553 res->cnt + 1); 10554 if (err) 10555 return err; 10556 10557 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10558 return 0; 10559 } 10560 10561 struct bpf_link * 10562 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10563 const char *pattern, 10564 const struct bpf_kprobe_multi_opts *opts) 10565 { 10566 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10567 struct kprobe_multi_resolve res = { 10568 .pattern = pattern, 10569 }; 10570 struct bpf_link *link = NULL; 10571 char errmsg[STRERR_BUFSIZE]; 10572 const unsigned long *addrs; 10573 int err, link_fd, prog_fd; 10574 const __u64 *cookies; 10575 const char **syms; 10576 bool retprobe; 10577 size_t cnt; 10578 10579 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10580 return libbpf_err_ptr(-EINVAL); 10581 10582 syms = OPTS_GET(opts, syms, false); 10583 addrs = OPTS_GET(opts, addrs, false); 10584 cnt = OPTS_GET(opts, cnt, false); 10585 cookies = OPTS_GET(opts, cookies, false); 10586 10587 if (!pattern && !addrs && !syms) 10588 return libbpf_err_ptr(-EINVAL); 10589 if (pattern && (addrs || syms || cookies || cnt)) 10590 return libbpf_err_ptr(-EINVAL); 10591 if (!pattern && !cnt) 10592 return libbpf_err_ptr(-EINVAL); 10593 if (addrs && syms) 10594 return libbpf_err_ptr(-EINVAL); 10595 10596 if (pattern) { 10597 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10598 if (err) 10599 goto error; 10600 if (!res.cnt) { 10601 err = -ENOENT; 10602 goto error; 10603 } 10604 addrs = res.addrs; 10605 cnt = res.cnt; 10606 } 10607 10608 retprobe = OPTS_GET(opts, retprobe, false); 10609 10610 lopts.kprobe_multi.syms = syms; 10611 lopts.kprobe_multi.addrs = addrs; 10612 lopts.kprobe_multi.cookies = cookies; 10613 lopts.kprobe_multi.cnt = cnt; 10614 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10615 10616 link = calloc(1, sizeof(*link)); 10617 if (!link) { 10618 err = -ENOMEM; 10619 goto error; 10620 } 10621 link->detach = &bpf_link__detach_fd; 10622 10623 prog_fd = bpf_program__fd(prog); 10624 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10625 if (link_fd < 0) { 10626 err = -errno; 10627 pr_warn("prog '%s': failed to attach: %s\n", 10628 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10629 goto error; 10630 } 10631 link->fd = link_fd; 10632 free(res.addrs); 10633 return link; 10634 10635 error: 10636 free(link); 10637 free(res.addrs); 10638 return libbpf_err_ptr(err); 10639 } 10640 10641 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10642 { 10643 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10644 unsigned long offset = 0; 10645 const char *func_name; 10646 char *func; 10647 int n; 10648 10649 *link = NULL; 10650 10651 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10652 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10653 return 0; 10654 10655 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10656 if (opts.retprobe) 10657 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10658 else 10659 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10660 10661 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10662 if (n < 1) { 10663 pr_warn("kprobe name is invalid: %s\n", func_name); 10664 return -EINVAL; 10665 } 10666 if (opts.retprobe && offset != 0) { 10667 free(func); 10668 pr_warn("kretprobes do not support offset specification\n"); 10669 return -EINVAL; 10670 } 10671 10672 opts.offset = offset; 10673 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10674 free(func); 10675 return libbpf_get_error(*link); 10676 } 10677 10678 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10679 { 10680 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10681 const char *syscall_name; 10682 10683 *link = NULL; 10684 10685 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10686 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10687 return 0; 10688 10689 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10690 if (opts.retprobe) 10691 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10692 else 10693 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10694 10695 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10696 return *link ? 0 : -errno; 10697 } 10698 10699 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10700 { 10701 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10702 const char *spec; 10703 char *pattern; 10704 int n; 10705 10706 *link = NULL; 10707 10708 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10709 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10710 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10711 return 0; 10712 10713 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10714 if (opts.retprobe) 10715 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10716 else 10717 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10718 10719 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10720 if (n < 1) { 10721 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10722 return -EINVAL; 10723 } 10724 10725 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10726 free(pattern); 10727 return libbpf_get_error(*link); 10728 } 10729 10730 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10731 const char *binary_path, uint64_t offset) 10732 { 10733 int i; 10734 10735 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10736 10737 /* sanitize binary_path in the probe name */ 10738 for (i = 0; buf[i]; i++) { 10739 if (!isalnum(buf[i])) 10740 buf[i] = '_'; 10741 } 10742 } 10743 10744 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10745 const char *binary_path, size_t offset) 10746 { 10747 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10748 retprobe ? 'r' : 'p', 10749 retprobe ? "uretprobes" : "uprobes", 10750 probe_name, binary_path, offset); 10751 } 10752 10753 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10754 { 10755 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10756 retprobe ? "uretprobes" : "uprobes", probe_name); 10757 } 10758 10759 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10760 { 10761 char file[512]; 10762 10763 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10764 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10765 10766 return parse_uint_from_file(file, "%d\n"); 10767 } 10768 10769 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10770 const char *binary_path, size_t offset, int pid) 10771 { 10772 const size_t attr_sz = sizeof(struct perf_event_attr); 10773 struct perf_event_attr attr; 10774 int type, pfd, err; 10775 10776 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10777 if (err < 0) { 10778 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10779 binary_path, (size_t)offset, err); 10780 return err; 10781 } 10782 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10783 if (type < 0) { 10784 err = type; 10785 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10786 binary_path, offset, err); 10787 goto err_clean_legacy; 10788 } 10789 10790 memset(&attr, 0, attr_sz); 10791 attr.size = attr_sz; 10792 attr.config = type; 10793 attr.type = PERF_TYPE_TRACEPOINT; 10794 10795 pfd = syscall(__NR_perf_event_open, &attr, 10796 pid < 0 ? -1 : pid, /* pid */ 10797 pid == -1 ? 0 : -1, /* cpu */ 10798 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10799 if (pfd < 0) { 10800 err = -errno; 10801 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10802 goto err_clean_legacy; 10803 } 10804 return pfd; 10805 10806 err_clean_legacy: 10807 /* Clear the newly added legacy uprobe_event */ 10808 remove_uprobe_event_legacy(probe_name, retprobe); 10809 return err; 10810 } 10811 10812 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10813 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10814 { 10815 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10816 GElf_Shdr sh; 10817 10818 if (!gelf_getshdr(scn, &sh)) 10819 continue; 10820 if (sh.sh_type == sh_type) 10821 return scn; 10822 } 10823 return NULL; 10824 } 10825 10826 /* Find offset of function name in the provided ELF object. "binary_path" is 10827 * the path to the ELF binary represented by "elf", and only used for error 10828 * reporting matters. "name" matches symbol name or name@@LIB for library 10829 * functions. 10830 */ 10831 static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name) 10832 { 10833 int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10834 bool is_shared_lib, is_name_qualified; 10835 long ret = -ENOENT; 10836 size_t name_len; 10837 GElf_Ehdr ehdr; 10838 10839 if (!gelf_getehdr(elf, &ehdr)) { 10840 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10841 ret = -LIBBPF_ERRNO__FORMAT; 10842 goto out; 10843 } 10844 /* for shared lib case, we do not need to calculate relative offset */ 10845 is_shared_lib = ehdr.e_type == ET_DYN; 10846 10847 name_len = strlen(name); 10848 /* Does name specify "@@LIB"? */ 10849 is_name_qualified = strstr(name, "@@") != NULL; 10850 10851 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10852 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10853 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10854 * reported as a warning/error. 10855 */ 10856 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10857 size_t nr_syms, strtabidx, idx; 10858 Elf_Data *symbols = NULL; 10859 Elf_Scn *scn = NULL; 10860 int last_bind = -1; 10861 const char *sname; 10862 GElf_Shdr sh; 10863 10864 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10865 if (!scn) { 10866 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10867 binary_path); 10868 continue; 10869 } 10870 if (!gelf_getshdr(scn, &sh)) 10871 continue; 10872 strtabidx = sh.sh_link; 10873 symbols = elf_getdata(scn, 0); 10874 if (!symbols) { 10875 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10876 binary_path, elf_errmsg(-1)); 10877 ret = -LIBBPF_ERRNO__FORMAT; 10878 goto out; 10879 } 10880 nr_syms = symbols->d_size / sh.sh_entsize; 10881 10882 for (idx = 0; idx < nr_syms; idx++) { 10883 int curr_bind; 10884 GElf_Sym sym; 10885 Elf_Scn *sym_scn; 10886 GElf_Shdr sym_sh; 10887 10888 if (!gelf_getsym(symbols, idx, &sym)) 10889 continue; 10890 10891 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10892 continue; 10893 10894 sname = elf_strptr(elf, strtabidx, sym.st_name); 10895 if (!sname) 10896 continue; 10897 10898 curr_bind = GELF_ST_BIND(sym.st_info); 10899 10900 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10901 if (strncmp(sname, name, name_len) != 0) 10902 continue; 10903 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10904 * additional characters in sname should be of the form "@@LIB". 10905 */ 10906 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10907 continue; 10908 10909 if (ret >= 0) { 10910 /* handle multiple matches */ 10911 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10912 /* Only accept one non-weak bind. */ 10913 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10914 sname, name, binary_path); 10915 ret = -LIBBPF_ERRNO__FORMAT; 10916 goto out; 10917 } else if (curr_bind == STB_WEAK) { 10918 /* already have a non-weak bind, and 10919 * this is a weak bind, so ignore. 10920 */ 10921 continue; 10922 } 10923 } 10924 10925 /* Transform symbol's virtual address (absolute for 10926 * binaries and relative for shared libs) into file 10927 * offset, which is what kernel is expecting for 10928 * uprobe/uretprobe attachment. 10929 * See Documentation/trace/uprobetracer.rst for more 10930 * details. 10931 * This is done by looking up symbol's containing 10932 * section's header and using it's virtual address 10933 * (sh_addr) and corresponding file offset (sh_offset) 10934 * to transform sym.st_value (virtual address) into 10935 * desired final file offset. 10936 */ 10937 sym_scn = elf_getscn(elf, sym.st_shndx); 10938 if (!sym_scn) 10939 continue; 10940 if (!gelf_getshdr(sym_scn, &sym_sh)) 10941 continue; 10942 10943 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10944 last_bind = curr_bind; 10945 } 10946 if (ret > 0) 10947 break; 10948 } 10949 10950 if (ret > 0) { 10951 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10952 ret); 10953 } else { 10954 if (ret == 0) { 10955 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10956 is_shared_lib ? "should not be 0 in a shared library" : 10957 "try using shared library path instead"); 10958 ret = -ENOENT; 10959 } else { 10960 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10961 } 10962 } 10963 out: 10964 return ret; 10965 } 10966 10967 /* Find offset of function name in ELF object specified by path. "name" matches 10968 * symbol name or name@@LIB for library functions. 10969 */ 10970 static long elf_find_func_offset_from_file(const char *binary_path, const char *name) 10971 { 10972 char errmsg[STRERR_BUFSIZE]; 10973 long ret = -ENOENT; 10974 Elf *elf; 10975 int fd; 10976 10977 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10978 if (fd < 0) { 10979 ret = -errno; 10980 pr_warn("failed to open %s: %s\n", binary_path, 10981 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10982 return ret; 10983 } 10984 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10985 if (!elf) { 10986 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10987 close(fd); 10988 return -LIBBPF_ERRNO__FORMAT; 10989 } 10990 10991 ret = elf_find_func_offset(elf, binary_path, name); 10992 elf_end(elf); 10993 close(fd); 10994 return ret; 10995 } 10996 10997 /* Find offset of function name in archive specified by path. Currently 10998 * supported are .zip files that do not compress their contents, as used on 10999 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11000 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11001 * library functions. 11002 * 11003 * An overview of the APK format specifically provided here: 11004 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11005 */ 11006 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11007 const char *func_name) 11008 { 11009 struct zip_archive *archive; 11010 struct zip_entry entry; 11011 long ret; 11012 Elf *elf; 11013 11014 archive = zip_archive_open(archive_path); 11015 if (IS_ERR(archive)) { 11016 ret = PTR_ERR(archive); 11017 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11018 return ret; 11019 } 11020 11021 ret = zip_archive_find_entry(archive, file_name, &entry); 11022 if (ret) { 11023 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11024 archive_path, ret); 11025 goto out; 11026 } 11027 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11028 (unsigned long)entry.data_offset); 11029 11030 if (entry.compression) { 11031 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11032 archive_path); 11033 ret = -LIBBPF_ERRNO__FORMAT; 11034 goto out; 11035 } 11036 11037 elf = elf_memory((void *)entry.data, entry.data_length); 11038 if (!elf) { 11039 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11040 elf_errmsg(-1)); 11041 ret = -LIBBPF_ERRNO__LIBELF; 11042 goto out; 11043 } 11044 11045 ret = elf_find_func_offset(elf, file_name, func_name); 11046 if (ret > 0) { 11047 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11048 func_name, file_name, archive_path, entry.data_offset, ret, 11049 ret + entry.data_offset); 11050 ret += entry.data_offset; 11051 } 11052 elf_end(elf); 11053 11054 out: 11055 zip_archive_close(archive); 11056 return ret; 11057 } 11058 11059 static const char *arch_specific_lib_paths(void) 11060 { 11061 /* 11062 * Based on https://packages.debian.org/sid/libc6. 11063 * 11064 * Assume that the traced program is built for the same architecture 11065 * as libbpf, which should cover the vast majority of cases. 11066 */ 11067 #if defined(__x86_64__) 11068 return "/lib/x86_64-linux-gnu"; 11069 #elif defined(__i386__) 11070 return "/lib/i386-linux-gnu"; 11071 #elif defined(__s390x__) 11072 return "/lib/s390x-linux-gnu"; 11073 #elif defined(__s390__) 11074 return "/lib/s390-linux-gnu"; 11075 #elif defined(__arm__) && defined(__SOFTFP__) 11076 return "/lib/arm-linux-gnueabi"; 11077 #elif defined(__arm__) && !defined(__SOFTFP__) 11078 return "/lib/arm-linux-gnueabihf"; 11079 #elif defined(__aarch64__) 11080 return "/lib/aarch64-linux-gnu"; 11081 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11082 return "/lib/mips64el-linux-gnuabi64"; 11083 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11084 return "/lib/mipsel-linux-gnu"; 11085 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11086 return "/lib/powerpc64le-linux-gnu"; 11087 #elif defined(__sparc__) && defined(__arch64__) 11088 return "/lib/sparc64-linux-gnu"; 11089 #elif defined(__riscv) && __riscv_xlen == 64 11090 return "/lib/riscv64-linux-gnu"; 11091 #else 11092 return NULL; 11093 #endif 11094 } 11095 11096 /* Get full path to program/shared library. */ 11097 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11098 { 11099 const char *search_paths[3] = {}; 11100 int i, perm; 11101 11102 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11103 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11104 search_paths[1] = "/usr/lib64:/usr/lib"; 11105 search_paths[2] = arch_specific_lib_paths(); 11106 perm = R_OK; 11107 } else { 11108 search_paths[0] = getenv("PATH"); 11109 search_paths[1] = "/usr/bin:/usr/sbin"; 11110 perm = R_OK | X_OK; 11111 } 11112 11113 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11114 const char *s; 11115 11116 if (!search_paths[i]) 11117 continue; 11118 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11119 char *next_path; 11120 int seg_len; 11121 11122 if (s[0] == ':') 11123 s++; 11124 next_path = strchr(s, ':'); 11125 seg_len = next_path ? next_path - s : strlen(s); 11126 if (!seg_len) 11127 continue; 11128 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11129 /* ensure it has required permissions */ 11130 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11131 continue; 11132 pr_debug("resolved '%s' to '%s'\n", file, result); 11133 return 0; 11134 } 11135 } 11136 return -ENOENT; 11137 } 11138 11139 LIBBPF_API struct bpf_link * 11140 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11141 const char *binary_path, size_t func_offset, 11142 const struct bpf_uprobe_opts *opts) 11143 { 11144 const char *archive_path = NULL, *archive_sep = NULL; 11145 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11146 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11147 enum probe_attach_mode attach_mode; 11148 char full_path[PATH_MAX]; 11149 struct bpf_link *link; 11150 size_t ref_ctr_off; 11151 int pfd, err; 11152 bool retprobe, legacy; 11153 const char *func_name; 11154 11155 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11156 return libbpf_err_ptr(-EINVAL); 11157 11158 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11159 retprobe = OPTS_GET(opts, retprobe, false); 11160 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11161 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11162 11163 if (!binary_path) 11164 return libbpf_err_ptr(-EINVAL); 11165 11166 /* Check if "binary_path" refers to an archive. */ 11167 archive_sep = strstr(binary_path, "!/"); 11168 if (archive_sep) { 11169 full_path[0] = '\0'; 11170 libbpf_strlcpy(full_path, binary_path, 11171 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11172 archive_path = full_path; 11173 binary_path = archive_sep + 2; 11174 } else if (!strchr(binary_path, '/')) { 11175 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11176 if (err) { 11177 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11178 prog->name, binary_path, err); 11179 return libbpf_err_ptr(err); 11180 } 11181 binary_path = full_path; 11182 } 11183 func_name = OPTS_GET(opts, func_name, NULL); 11184 if (func_name) { 11185 long sym_off; 11186 11187 if (archive_path) { 11188 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11189 func_name); 11190 binary_path = archive_path; 11191 } else { 11192 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11193 } 11194 if (sym_off < 0) 11195 return libbpf_err_ptr(sym_off); 11196 func_offset += sym_off; 11197 } 11198 11199 legacy = determine_uprobe_perf_type() < 0; 11200 switch (attach_mode) { 11201 case PROBE_ATTACH_MODE_LEGACY: 11202 legacy = true; 11203 pe_opts.force_ioctl_attach = true; 11204 break; 11205 case PROBE_ATTACH_MODE_PERF: 11206 if (legacy) 11207 return libbpf_err_ptr(-ENOTSUP); 11208 pe_opts.force_ioctl_attach = true; 11209 break; 11210 case PROBE_ATTACH_MODE_LINK: 11211 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11212 return libbpf_err_ptr(-ENOTSUP); 11213 break; 11214 case PROBE_ATTACH_MODE_DEFAULT: 11215 break; 11216 default: 11217 return libbpf_err_ptr(-EINVAL); 11218 } 11219 11220 if (!legacy) { 11221 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11222 func_offset, pid, ref_ctr_off); 11223 } else { 11224 char probe_name[PATH_MAX + 64]; 11225 11226 if (ref_ctr_off) 11227 return libbpf_err_ptr(-EINVAL); 11228 11229 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11230 binary_path, func_offset); 11231 11232 legacy_probe = strdup(probe_name); 11233 if (!legacy_probe) 11234 return libbpf_err_ptr(-ENOMEM); 11235 11236 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11237 binary_path, func_offset, pid); 11238 } 11239 if (pfd < 0) { 11240 err = -errno; 11241 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11242 prog->name, retprobe ? "uretprobe" : "uprobe", 11243 binary_path, func_offset, 11244 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11245 goto err_out; 11246 } 11247 11248 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11249 err = libbpf_get_error(link); 11250 if (err) { 11251 close(pfd); 11252 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11253 prog->name, retprobe ? "uretprobe" : "uprobe", 11254 binary_path, func_offset, 11255 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11256 goto err_clean_legacy; 11257 } 11258 if (legacy) { 11259 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11260 11261 perf_link->legacy_probe_name = legacy_probe; 11262 perf_link->legacy_is_kprobe = false; 11263 perf_link->legacy_is_retprobe = retprobe; 11264 } 11265 return link; 11266 11267 err_clean_legacy: 11268 if (legacy) 11269 remove_uprobe_event_legacy(legacy_probe, retprobe); 11270 err_out: 11271 free(legacy_probe); 11272 return libbpf_err_ptr(err); 11273 } 11274 11275 /* Format of u[ret]probe section definition supporting auto-attach: 11276 * u[ret]probe/binary:function[+offset] 11277 * 11278 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11279 * full binary path via bpf_program__attach_uprobe_opts. 11280 * 11281 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11282 * specified (and auto-attach is not possible) or the above format is specified for 11283 * auto-attach. 11284 */ 11285 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11286 { 11287 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11288 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11289 int n, ret = -EINVAL; 11290 long offset = 0; 11291 11292 *link = NULL; 11293 11294 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11295 &probe_type, &binary_path, &func_name, &offset); 11296 switch (n) { 11297 case 1: 11298 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11299 ret = 0; 11300 break; 11301 case 2: 11302 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11303 prog->name, prog->sec_name); 11304 break; 11305 case 3: 11306 case 4: 11307 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11308 strcmp(probe_type, "uretprobe.s") == 0; 11309 if (opts.retprobe && offset != 0) { 11310 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11311 prog->name); 11312 break; 11313 } 11314 opts.func_name = func_name; 11315 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11316 ret = libbpf_get_error(*link); 11317 break; 11318 default: 11319 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11320 prog->sec_name); 11321 break; 11322 } 11323 free(probe_type); 11324 free(binary_path); 11325 free(func_name); 11326 11327 return ret; 11328 } 11329 11330 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11331 bool retprobe, pid_t pid, 11332 const char *binary_path, 11333 size_t func_offset) 11334 { 11335 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11336 11337 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11338 } 11339 11340 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11341 pid_t pid, const char *binary_path, 11342 const char *usdt_provider, const char *usdt_name, 11343 const struct bpf_usdt_opts *opts) 11344 { 11345 char resolved_path[512]; 11346 struct bpf_object *obj = prog->obj; 11347 struct bpf_link *link; 11348 __u64 usdt_cookie; 11349 int err; 11350 11351 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11352 return libbpf_err_ptr(-EINVAL); 11353 11354 if (bpf_program__fd(prog) < 0) { 11355 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11356 prog->name); 11357 return libbpf_err_ptr(-EINVAL); 11358 } 11359 11360 if (!binary_path) 11361 return libbpf_err_ptr(-EINVAL); 11362 11363 if (!strchr(binary_path, '/')) { 11364 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11365 if (err) { 11366 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11367 prog->name, binary_path, err); 11368 return libbpf_err_ptr(err); 11369 } 11370 binary_path = resolved_path; 11371 } 11372 11373 /* USDT manager is instantiated lazily on first USDT attach. It will 11374 * be destroyed together with BPF object in bpf_object__close(). 11375 */ 11376 if (IS_ERR(obj->usdt_man)) 11377 return libbpf_ptr(obj->usdt_man); 11378 if (!obj->usdt_man) { 11379 obj->usdt_man = usdt_manager_new(obj); 11380 if (IS_ERR(obj->usdt_man)) 11381 return libbpf_ptr(obj->usdt_man); 11382 } 11383 11384 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11385 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11386 usdt_provider, usdt_name, usdt_cookie); 11387 err = libbpf_get_error(link); 11388 if (err) 11389 return libbpf_err_ptr(err); 11390 return link; 11391 } 11392 11393 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11394 { 11395 char *path = NULL, *provider = NULL, *name = NULL; 11396 const char *sec_name; 11397 int n, err; 11398 11399 sec_name = bpf_program__section_name(prog); 11400 if (strcmp(sec_name, "usdt") == 0) { 11401 /* no auto-attach for just SEC("usdt") */ 11402 *link = NULL; 11403 return 0; 11404 } 11405 11406 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11407 if (n != 3) { 11408 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11409 sec_name); 11410 err = -EINVAL; 11411 } else { 11412 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11413 provider, name, NULL); 11414 err = libbpf_get_error(*link); 11415 } 11416 free(path); 11417 free(provider); 11418 free(name); 11419 return err; 11420 } 11421 11422 static int determine_tracepoint_id(const char *tp_category, 11423 const char *tp_name) 11424 { 11425 char file[PATH_MAX]; 11426 int ret; 11427 11428 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11429 tracefs_path(), tp_category, tp_name); 11430 if (ret < 0) 11431 return -errno; 11432 if (ret >= sizeof(file)) { 11433 pr_debug("tracepoint %s/%s path is too long\n", 11434 tp_category, tp_name); 11435 return -E2BIG; 11436 } 11437 return parse_uint_from_file(file, "%d\n"); 11438 } 11439 11440 static int perf_event_open_tracepoint(const char *tp_category, 11441 const char *tp_name) 11442 { 11443 const size_t attr_sz = sizeof(struct perf_event_attr); 11444 struct perf_event_attr attr; 11445 char errmsg[STRERR_BUFSIZE]; 11446 int tp_id, pfd, err; 11447 11448 tp_id = determine_tracepoint_id(tp_category, tp_name); 11449 if (tp_id < 0) { 11450 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11451 tp_category, tp_name, 11452 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11453 return tp_id; 11454 } 11455 11456 memset(&attr, 0, attr_sz); 11457 attr.type = PERF_TYPE_TRACEPOINT; 11458 attr.size = attr_sz; 11459 attr.config = tp_id; 11460 11461 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11462 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11463 if (pfd < 0) { 11464 err = -errno; 11465 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11466 tp_category, tp_name, 11467 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11468 return err; 11469 } 11470 return pfd; 11471 } 11472 11473 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11474 const char *tp_category, 11475 const char *tp_name, 11476 const struct bpf_tracepoint_opts *opts) 11477 { 11478 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11479 char errmsg[STRERR_BUFSIZE]; 11480 struct bpf_link *link; 11481 int pfd, err; 11482 11483 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11484 return libbpf_err_ptr(-EINVAL); 11485 11486 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11487 11488 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11489 if (pfd < 0) { 11490 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11491 prog->name, tp_category, tp_name, 11492 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11493 return libbpf_err_ptr(pfd); 11494 } 11495 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11496 err = libbpf_get_error(link); 11497 if (err) { 11498 close(pfd); 11499 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11500 prog->name, tp_category, tp_name, 11501 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11502 return libbpf_err_ptr(err); 11503 } 11504 return link; 11505 } 11506 11507 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11508 const char *tp_category, 11509 const char *tp_name) 11510 { 11511 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11512 } 11513 11514 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11515 { 11516 char *sec_name, *tp_cat, *tp_name; 11517 11518 *link = NULL; 11519 11520 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11521 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11522 return 0; 11523 11524 sec_name = strdup(prog->sec_name); 11525 if (!sec_name) 11526 return -ENOMEM; 11527 11528 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11529 if (str_has_pfx(prog->sec_name, "tp/")) 11530 tp_cat = sec_name + sizeof("tp/") - 1; 11531 else 11532 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11533 tp_name = strchr(tp_cat, '/'); 11534 if (!tp_name) { 11535 free(sec_name); 11536 return -EINVAL; 11537 } 11538 *tp_name = '\0'; 11539 tp_name++; 11540 11541 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11542 free(sec_name); 11543 return libbpf_get_error(*link); 11544 } 11545 11546 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11547 const char *tp_name) 11548 { 11549 char errmsg[STRERR_BUFSIZE]; 11550 struct bpf_link *link; 11551 int prog_fd, pfd; 11552 11553 prog_fd = bpf_program__fd(prog); 11554 if (prog_fd < 0) { 11555 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11556 return libbpf_err_ptr(-EINVAL); 11557 } 11558 11559 link = calloc(1, sizeof(*link)); 11560 if (!link) 11561 return libbpf_err_ptr(-ENOMEM); 11562 link->detach = &bpf_link__detach_fd; 11563 11564 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11565 if (pfd < 0) { 11566 pfd = -errno; 11567 free(link); 11568 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11569 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11570 return libbpf_err_ptr(pfd); 11571 } 11572 link->fd = pfd; 11573 return link; 11574 } 11575 11576 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11577 { 11578 static const char *const prefixes[] = { 11579 "raw_tp", 11580 "raw_tracepoint", 11581 "raw_tp.w", 11582 "raw_tracepoint.w", 11583 }; 11584 size_t i; 11585 const char *tp_name = NULL; 11586 11587 *link = NULL; 11588 11589 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11590 size_t pfx_len; 11591 11592 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11593 continue; 11594 11595 pfx_len = strlen(prefixes[i]); 11596 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11597 if (prog->sec_name[pfx_len] == '\0') 11598 return 0; 11599 11600 if (prog->sec_name[pfx_len] != '/') 11601 continue; 11602 11603 tp_name = prog->sec_name + pfx_len + 1; 11604 break; 11605 } 11606 11607 if (!tp_name) { 11608 pr_warn("prog '%s': invalid section name '%s'\n", 11609 prog->name, prog->sec_name); 11610 return -EINVAL; 11611 } 11612 11613 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11614 return libbpf_get_error(*link); 11615 } 11616 11617 /* Common logic for all BPF program types that attach to a btf_id */ 11618 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11619 const struct bpf_trace_opts *opts) 11620 { 11621 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11622 char errmsg[STRERR_BUFSIZE]; 11623 struct bpf_link *link; 11624 int prog_fd, pfd; 11625 11626 if (!OPTS_VALID(opts, bpf_trace_opts)) 11627 return libbpf_err_ptr(-EINVAL); 11628 11629 prog_fd = bpf_program__fd(prog); 11630 if (prog_fd < 0) { 11631 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11632 return libbpf_err_ptr(-EINVAL); 11633 } 11634 11635 link = calloc(1, sizeof(*link)); 11636 if (!link) 11637 return libbpf_err_ptr(-ENOMEM); 11638 link->detach = &bpf_link__detach_fd; 11639 11640 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11641 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11642 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11643 if (pfd < 0) { 11644 pfd = -errno; 11645 free(link); 11646 pr_warn("prog '%s': failed to attach: %s\n", 11647 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11648 return libbpf_err_ptr(pfd); 11649 } 11650 link->fd = pfd; 11651 return link; 11652 } 11653 11654 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11655 { 11656 return bpf_program__attach_btf_id(prog, NULL); 11657 } 11658 11659 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11660 const struct bpf_trace_opts *opts) 11661 { 11662 return bpf_program__attach_btf_id(prog, opts); 11663 } 11664 11665 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11666 { 11667 return bpf_program__attach_btf_id(prog, NULL); 11668 } 11669 11670 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11671 { 11672 *link = bpf_program__attach_trace(prog); 11673 return libbpf_get_error(*link); 11674 } 11675 11676 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11677 { 11678 *link = bpf_program__attach_lsm(prog); 11679 return libbpf_get_error(*link); 11680 } 11681 11682 static struct bpf_link * 11683 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11684 const char *target_name) 11685 { 11686 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11687 .target_btf_id = btf_id); 11688 enum bpf_attach_type attach_type; 11689 char errmsg[STRERR_BUFSIZE]; 11690 struct bpf_link *link; 11691 int prog_fd, link_fd; 11692 11693 prog_fd = bpf_program__fd(prog); 11694 if (prog_fd < 0) { 11695 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11696 return libbpf_err_ptr(-EINVAL); 11697 } 11698 11699 link = calloc(1, sizeof(*link)); 11700 if (!link) 11701 return libbpf_err_ptr(-ENOMEM); 11702 link->detach = &bpf_link__detach_fd; 11703 11704 attach_type = bpf_program__expected_attach_type(prog); 11705 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11706 if (link_fd < 0) { 11707 link_fd = -errno; 11708 free(link); 11709 pr_warn("prog '%s': failed to attach to %s: %s\n", 11710 prog->name, target_name, 11711 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11712 return libbpf_err_ptr(link_fd); 11713 } 11714 link->fd = link_fd; 11715 return link; 11716 } 11717 11718 struct bpf_link * 11719 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11720 { 11721 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11722 } 11723 11724 struct bpf_link * 11725 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11726 { 11727 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11728 } 11729 11730 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11731 { 11732 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11733 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11734 } 11735 11736 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11737 int target_fd, 11738 const char *attach_func_name) 11739 { 11740 int btf_id; 11741 11742 if (!!target_fd != !!attach_func_name) { 11743 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11744 prog->name); 11745 return libbpf_err_ptr(-EINVAL); 11746 } 11747 11748 if (prog->type != BPF_PROG_TYPE_EXT) { 11749 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11750 prog->name); 11751 return libbpf_err_ptr(-EINVAL); 11752 } 11753 11754 if (target_fd) { 11755 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11756 if (btf_id < 0) 11757 return libbpf_err_ptr(btf_id); 11758 11759 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11760 } else { 11761 /* no target, so use raw_tracepoint_open for compatibility 11762 * with old kernels 11763 */ 11764 return bpf_program__attach_trace(prog); 11765 } 11766 } 11767 11768 struct bpf_link * 11769 bpf_program__attach_iter(const struct bpf_program *prog, 11770 const struct bpf_iter_attach_opts *opts) 11771 { 11772 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11773 char errmsg[STRERR_BUFSIZE]; 11774 struct bpf_link *link; 11775 int prog_fd, link_fd; 11776 __u32 target_fd = 0; 11777 11778 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11779 return libbpf_err_ptr(-EINVAL); 11780 11781 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11782 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11783 11784 prog_fd = bpf_program__fd(prog); 11785 if (prog_fd < 0) { 11786 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11787 return libbpf_err_ptr(-EINVAL); 11788 } 11789 11790 link = calloc(1, sizeof(*link)); 11791 if (!link) 11792 return libbpf_err_ptr(-ENOMEM); 11793 link->detach = &bpf_link__detach_fd; 11794 11795 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11796 &link_create_opts); 11797 if (link_fd < 0) { 11798 link_fd = -errno; 11799 free(link); 11800 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11801 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11802 return libbpf_err_ptr(link_fd); 11803 } 11804 link->fd = link_fd; 11805 return link; 11806 } 11807 11808 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11809 { 11810 *link = bpf_program__attach_iter(prog, NULL); 11811 return libbpf_get_error(*link); 11812 } 11813 11814 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11815 { 11816 struct bpf_link *link = NULL; 11817 int err; 11818 11819 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11820 return libbpf_err_ptr(-EOPNOTSUPP); 11821 11822 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11823 if (err) 11824 return libbpf_err_ptr(err); 11825 11826 /* When calling bpf_program__attach() explicitly, auto-attach support 11827 * is expected to work, so NULL returned link is considered an error. 11828 * This is different for skeleton's attach, see comment in 11829 * bpf_object__attach_skeleton(). 11830 */ 11831 if (!link) 11832 return libbpf_err_ptr(-EOPNOTSUPP); 11833 11834 return link; 11835 } 11836 11837 struct bpf_link_struct_ops { 11838 struct bpf_link link; 11839 int map_fd; 11840 }; 11841 11842 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11843 { 11844 struct bpf_link_struct_ops *st_link; 11845 __u32 zero = 0; 11846 11847 st_link = container_of(link, struct bpf_link_struct_ops, link); 11848 11849 if (st_link->map_fd < 0) 11850 /* w/o a real link */ 11851 return bpf_map_delete_elem(link->fd, &zero); 11852 11853 return close(link->fd); 11854 } 11855 11856 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11857 { 11858 struct bpf_link_struct_ops *link; 11859 __u32 zero = 0; 11860 int err, fd; 11861 11862 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11863 return libbpf_err_ptr(-EINVAL); 11864 11865 link = calloc(1, sizeof(*link)); 11866 if (!link) 11867 return libbpf_err_ptr(-EINVAL); 11868 11869 /* kern_vdata should be prepared during the loading phase. */ 11870 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11871 /* It can be EBUSY if the map has been used to create or 11872 * update a link before. We don't allow updating the value of 11873 * a struct_ops once it is set. That ensures that the value 11874 * never changed. So, it is safe to skip EBUSY. 11875 */ 11876 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 11877 free(link); 11878 return libbpf_err_ptr(err); 11879 } 11880 11881 link->link.detach = bpf_link__detach_struct_ops; 11882 11883 if (!(map->def.map_flags & BPF_F_LINK)) { 11884 /* w/o a real link */ 11885 link->link.fd = map->fd; 11886 link->map_fd = -1; 11887 return &link->link; 11888 } 11889 11890 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 11891 if (fd < 0) { 11892 free(link); 11893 return libbpf_err_ptr(fd); 11894 } 11895 11896 link->link.fd = fd; 11897 link->map_fd = map->fd; 11898 11899 return &link->link; 11900 } 11901 11902 /* 11903 * Swap the back struct_ops of a link with a new struct_ops map. 11904 */ 11905 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 11906 { 11907 struct bpf_link_struct_ops *st_ops_link; 11908 __u32 zero = 0; 11909 int err; 11910 11911 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 11912 return -EINVAL; 11913 11914 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 11915 /* Ensure the type of a link is correct */ 11916 if (st_ops_link->map_fd < 0) 11917 return -EINVAL; 11918 11919 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11920 /* It can be EBUSY if the map has been used to create or 11921 * update a link before. We don't allow updating the value of 11922 * a struct_ops once it is set. That ensures that the value 11923 * never changed. So, it is safe to skip EBUSY. 11924 */ 11925 if (err && err != -EBUSY) 11926 return err; 11927 11928 err = bpf_link_update(link->fd, map->fd, NULL); 11929 if (err < 0) 11930 return err; 11931 11932 st_ops_link->map_fd = map->fd; 11933 11934 return 0; 11935 } 11936 11937 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11938 void *private_data); 11939 11940 static enum bpf_perf_event_ret 11941 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11942 void **copy_mem, size_t *copy_size, 11943 bpf_perf_event_print_t fn, void *private_data) 11944 { 11945 struct perf_event_mmap_page *header = mmap_mem; 11946 __u64 data_head = ring_buffer_read_head(header); 11947 __u64 data_tail = header->data_tail; 11948 void *base = ((__u8 *)header) + page_size; 11949 int ret = LIBBPF_PERF_EVENT_CONT; 11950 struct perf_event_header *ehdr; 11951 size_t ehdr_size; 11952 11953 while (data_head != data_tail) { 11954 ehdr = base + (data_tail & (mmap_size - 1)); 11955 ehdr_size = ehdr->size; 11956 11957 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11958 void *copy_start = ehdr; 11959 size_t len_first = base + mmap_size - copy_start; 11960 size_t len_secnd = ehdr_size - len_first; 11961 11962 if (*copy_size < ehdr_size) { 11963 free(*copy_mem); 11964 *copy_mem = malloc(ehdr_size); 11965 if (!*copy_mem) { 11966 *copy_size = 0; 11967 ret = LIBBPF_PERF_EVENT_ERROR; 11968 break; 11969 } 11970 *copy_size = ehdr_size; 11971 } 11972 11973 memcpy(*copy_mem, copy_start, len_first); 11974 memcpy(*copy_mem + len_first, base, len_secnd); 11975 ehdr = *copy_mem; 11976 } 11977 11978 ret = fn(ehdr, private_data); 11979 data_tail += ehdr_size; 11980 if (ret != LIBBPF_PERF_EVENT_CONT) 11981 break; 11982 } 11983 11984 ring_buffer_write_tail(header, data_tail); 11985 return libbpf_err(ret); 11986 } 11987 11988 struct perf_buffer; 11989 11990 struct perf_buffer_params { 11991 struct perf_event_attr *attr; 11992 /* if event_cb is specified, it takes precendence */ 11993 perf_buffer_event_fn event_cb; 11994 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11995 perf_buffer_sample_fn sample_cb; 11996 perf_buffer_lost_fn lost_cb; 11997 void *ctx; 11998 int cpu_cnt; 11999 int *cpus; 12000 int *map_keys; 12001 }; 12002 12003 struct perf_cpu_buf { 12004 struct perf_buffer *pb; 12005 void *base; /* mmap()'ed memory */ 12006 void *buf; /* for reconstructing segmented data */ 12007 size_t buf_size; 12008 int fd; 12009 int cpu; 12010 int map_key; 12011 }; 12012 12013 struct perf_buffer { 12014 perf_buffer_event_fn event_cb; 12015 perf_buffer_sample_fn sample_cb; 12016 perf_buffer_lost_fn lost_cb; 12017 void *ctx; /* passed into callbacks */ 12018 12019 size_t page_size; 12020 size_t mmap_size; 12021 struct perf_cpu_buf **cpu_bufs; 12022 struct epoll_event *events; 12023 int cpu_cnt; /* number of allocated CPU buffers */ 12024 int epoll_fd; /* perf event FD */ 12025 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12026 }; 12027 12028 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12029 struct perf_cpu_buf *cpu_buf) 12030 { 12031 if (!cpu_buf) 12032 return; 12033 if (cpu_buf->base && 12034 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12035 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12036 if (cpu_buf->fd >= 0) { 12037 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12038 close(cpu_buf->fd); 12039 } 12040 free(cpu_buf->buf); 12041 free(cpu_buf); 12042 } 12043 12044 void perf_buffer__free(struct perf_buffer *pb) 12045 { 12046 int i; 12047 12048 if (IS_ERR_OR_NULL(pb)) 12049 return; 12050 if (pb->cpu_bufs) { 12051 for (i = 0; i < pb->cpu_cnt; i++) { 12052 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12053 12054 if (!cpu_buf) 12055 continue; 12056 12057 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12058 perf_buffer__free_cpu_buf(pb, cpu_buf); 12059 } 12060 free(pb->cpu_bufs); 12061 } 12062 if (pb->epoll_fd >= 0) 12063 close(pb->epoll_fd); 12064 free(pb->events); 12065 free(pb); 12066 } 12067 12068 static struct perf_cpu_buf * 12069 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12070 int cpu, int map_key) 12071 { 12072 struct perf_cpu_buf *cpu_buf; 12073 char msg[STRERR_BUFSIZE]; 12074 int err; 12075 12076 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12077 if (!cpu_buf) 12078 return ERR_PTR(-ENOMEM); 12079 12080 cpu_buf->pb = pb; 12081 cpu_buf->cpu = cpu; 12082 cpu_buf->map_key = map_key; 12083 12084 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12085 -1, PERF_FLAG_FD_CLOEXEC); 12086 if (cpu_buf->fd < 0) { 12087 err = -errno; 12088 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12089 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12090 goto error; 12091 } 12092 12093 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12094 PROT_READ | PROT_WRITE, MAP_SHARED, 12095 cpu_buf->fd, 0); 12096 if (cpu_buf->base == MAP_FAILED) { 12097 cpu_buf->base = NULL; 12098 err = -errno; 12099 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12100 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12101 goto error; 12102 } 12103 12104 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12105 err = -errno; 12106 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12107 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12108 goto error; 12109 } 12110 12111 return cpu_buf; 12112 12113 error: 12114 perf_buffer__free_cpu_buf(pb, cpu_buf); 12115 return (struct perf_cpu_buf *)ERR_PTR(err); 12116 } 12117 12118 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12119 struct perf_buffer_params *p); 12120 12121 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12122 perf_buffer_sample_fn sample_cb, 12123 perf_buffer_lost_fn lost_cb, 12124 void *ctx, 12125 const struct perf_buffer_opts *opts) 12126 { 12127 const size_t attr_sz = sizeof(struct perf_event_attr); 12128 struct perf_buffer_params p = {}; 12129 struct perf_event_attr attr; 12130 __u32 sample_period; 12131 12132 if (!OPTS_VALID(opts, perf_buffer_opts)) 12133 return libbpf_err_ptr(-EINVAL); 12134 12135 sample_period = OPTS_GET(opts, sample_period, 1); 12136 if (!sample_period) 12137 sample_period = 1; 12138 12139 memset(&attr, 0, attr_sz); 12140 attr.size = attr_sz; 12141 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12142 attr.type = PERF_TYPE_SOFTWARE; 12143 attr.sample_type = PERF_SAMPLE_RAW; 12144 attr.sample_period = sample_period; 12145 attr.wakeup_events = sample_period; 12146 12147 p.attr = &attr; 12148 p.sample_cb = sample_cb; 12149 p.lost_cb = lost_cb; 12150 p.ctx = ctx; 12151 12152 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12153 } 12154 12155 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12156 struct perf_event_attr *attr, 12157 perf_buffer_event_fn event_cb, void *ctx, 12158 const struct perf_buffer_raw_opts *opts) 12159 { 12160 struct perf_buffer_params p = {}; 12161 12162 if (!attr) 12163 return libbpf_err_ptr(-EINVAL); 12164 12165 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12166 return libbpf_err_ptr(-EINVAL); 12167 12168 p.attr = attr; 12169 p.event_cb = event_cb; 12170 p.ctx = ctx; 12171 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12172 p.cpus = OPTS_GET(opts, cpus, NULL); 12173 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12174 12175 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12176 } 12177 12178 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12179 struct perf_buffer_params *p) 12180 { 12181 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12182 struct bpf_map_info map; 12183 char msg[STRERR_BUFSIZE]; 12184 struct perf_buffer *pb; 12185 bool *online = NULL; 12186 __u32 map_info_len; 12187 int err, i, j, n; 12188 12189 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12190 pr_warn("page count should be power of two, but is %zu\n", 12191 page_cnt); 12192 return ERR_PTR(-EINVAL); 12193 } 12194 12195 /* best-effort sanity checks */ 12196 memset(&map, 0, sizeof(map)); 12197 map_info_len = sizeof(map); 12198 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12199 if (err) { 12200 err = -errno; 12201 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12202 * -EBADFD, -EFAULT, or -E2BIG on real error 12203 */ 12204 if (err != -EINVAL) { 12205 pr_warn("failed to get map info for map FD %d: %s\n", 12206 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12207 return ERR_PTR(err); 12208 } 12209 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12210 map_fd); 12211 } else { 12212 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12213 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12214 map.name); 12215 return ERR_PTR(-EINVAL); 12216 } 12217 } 12218 12219 pb = calloc(1, sizeof(*pb)); 12220 if (!pb) 12221 return ERR_PTR(-ENOMEM); 12222 12223 pb->event_cb = p->event_cb; 12224 pb->sample_cb = p->sample_cb; 12225 pb->lost_cb = p->lost_cb; 12226 pb->ctx = p->ctx; 12227 12228 pb->page_size = getpagesize(); 12229 pb->mmap_size = pb->page_size * page_cnt; 12230 pb->map_fd = map_fd; 12231 12232 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12233 if (pb->epoll_fd < 0) { 12234 err = -errno; 12235 pr_warn("failed to create epoll instance: %s\n", 12236 libbpf_strerror_r(err, msg, sizeof(msg))); 12237 goto error; 12238 } 12239 12240 if (p->cpu_cnt > 0) { 12241 pb->cpu_cnt = p->cpu_cnt; 12242 } else { 12243 pb->cpu_cnt = libbpf_num_possible_cpus(); 12244 if (pb->cpu_cnt < 0) { 12245 err = pb->cpu_cnt; 12246 goto error; 12247 } 12248 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12249 pb->cpu_cnt = map.max_entries; 12250 } 12251 12252 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12253 if (!pb->events) { 12254 err = -ENOMEM; 12255 pr_warn("failed to allocate events: out of memory\n"); 12256 goto error; 12257 } 12258 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12259 if (!pb->cpu_bufs) { 12260 err = -ENOMEM; 12261 pr_warn("failed to allocate buffers: out of memory\n"); 12262 goto error; 12263 } 12264 12265 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12266 if (err) { 12267 pr_warn("failed to get online CPU mask: %d\n", err); 12268 goto error; 12269 } 12270 12271 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12272 struct perf_cpu_buf *cpu_buf; 12273 int cpu, map_key; 12274 12275 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12276 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12277 12278 /* in case user didn't explicitly requested particular CPUs to 12279 * be attached to, skip offline/not present CPUs 12280 */ 12281 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12282 continue; 12283 12284 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12285 if (IS_ERR(cpu_buf)) { 12286 err = PTR_ERR(cpu_buf); 12287 goto error; 12288 } 12289 12290 pb->cpu_bufs[j] = cpu_buf; 12291 12292 err = bpf_map_update_elem(pb->map_fd, &map_key, 12293 &cpu_buf->fd, 0); 12294 if (err) { 12295 err = -errno; 12296 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12297 cpu, map_key, cpu_buf->fd, 12298 libbpf_strerror_r(err, msg, sizeof(msg))); 12299 goto error; 12300 } 12301 12302 pb->events[j].events = EPOLLIN; 12303 pb->events[j].data.ptr = cpu_buf; 12304 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12305 &pb->events[j]) < 0) { 12306 err = -errno; 12307 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12308 cpu, cpu_buf->fd, 12309 libbpf_strerror_r(err, msg, sizeof(msg))); 12310 goto error; 12311 } 12312 j++; 12313 } 12314 pb->cpu_cnt = j; 12315 free(online); 12316 12317 return pb; 12318 12319 error: 12320 free(online); 12321 if (pb) 12322 perf_buffer__free(pb); 12323 return ERR_PTR(err); 12324 } 12325 12326 struct perf_sample_raw { 12327 struct perf_event_header header; 12328 uint32_t size; 12329 char data[]; 12330 }; 12331 12332 struct perf_sample_lost { 12333 struct perf_event_header header; 12334 uint64_t id; 12335 uint64_t lost; 12336 uint64_t sample_id; 12337 }; 12338 12339 static enum bpf_perf_event_ret 12340 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12341 { 12342 struct perf_cpu_buf *cpu_buf = ctx; 12343 struct perf_buffer *pb = cpu_buf->pb; 12344 void *data = e; 12345 12346 /* user wants full control over parsing perf event */ 12347 if (pb->event_cb) 12348 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12349 12350 switch (e->type) { 12351 case PERF_RECORD_SAMPLE: { 12352 struct perf_sample_raw *s = data; 12353 12354 if (pb->sample_cb) 12355 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12356 break; 12357 } 12358 case PERF_RECORD_LOST: { 12359 struct perf_sample_lost *s = data; 12360 12361 if (pb->lost_cb) 12362 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12363 break; 12364 } 12365 default: 12366 pr_warn("unknown perf sample type %d\n", e->type); 12367 return LIBBPF_PERF_EVENT_ERROR; 12368 } 12369 return LIBBPF_PERF_EVENT_CONT; 12370 } 12371 12372 static int perf_buffer__process_records(struct perf_buffer *pb, 12373 struct perf_cpu_buf *cpu_buf) 12374 { 12375 enum bpf_perf_event_ret ret; 12376 12377 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12378 pb->page_size, &cpu_buf->buf, 12379 &cpu_buf->buf_size, 12380 perf_buffer__process_record, cpu_buf); 12381 if (ret != LIBBPF_PERF_EVENT_CONT) 12382 return ret; 12383 return 0; 12384 } 12385 12386 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12387 { 12388 return pb->epoll_fd; 12389 } 12390 12391 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12392 { 12393 int i, cnt, err; 12394 12395 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12396 if (cnt < 0) 12397 return -errno; 12398 12399 for (i = 0; i < cnt; i++) { 12400 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12401 12402 err = perf_buffer__process_records(pb, cpu_buf); 12403 if (err) { 12404 pr_warn("error while processing records: %d\n", err); 12405 return libbpf_err(err); 12406 } 12407 } 12408 return cnt; 12409 } 12410 12411 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12412 * manager. 12413 */ 12414 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12415 { 12416 return pb->cpu_cnt; 12417 } 12418 12419 /* 12420 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12421 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12422 * select()/poll()/epoll() Linux syscalls. 12423 */ 12424 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12425 { 12426 struct perf_cpu_buf *cpu_buf; 12427 12428 if (buf_idx >= pb->cpu_cnt) 12429 return libbpf_err(-EINVAL); 12430 12431 cpu_buf = pb->cpu_bufs[buf_idx]; 12432 if (!cpu_buf) 12433 return libbpf_err(-ENOENT); 12434 12435 return cpu_buf->fd; 12436 } 12437 12438 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12439 { 12440 struct perf_cpu_buf *cpu_buf; 12441 12442 if (buf_idx >= pb->cpu_cnt) 12443 return libbpf_err(-EINVAL); 12444 12445 cpu_buf = pb->cpu_bufs[buf_idx]; 12446 if (!cpu_buf) 12447 return libbpf_err(-ENOENT); 12448 12449 *buf = cpu_buf->base; 12450 *buf_size = pb->mmap_size; 12451 return 0; 12452 } 12453 12454 /* 12455 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12456 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12457 * consume, do nothing and return success. 12458 * Returns: 12459 * - 0 on success; 12460 * - <0 on failure. 12461 */ 12462 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12463 { 12464 struct perf_cpu_buf *cpu_buf; 12465 12466 if (buf_idx >= pb->cpu_cnt) 12467 return libbpf_err(-EINVAL); 12468 12469 cpu_buf = pb->cpu_bufs[buf_idx]; 12470 if (!cpu_buf) 12471 return libbpf_err(-ENOENT); 12472 12473 return perf_buffer__process_records(pb, cpu_buf); 12474 } 12475 12476 int perf_buffer__consume(struct perf_buffer *pb) 12477 { 12478 int i, err; 12479 12480 for (i = 0; i < pb->cpu_cnt; i++) { 12481 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12482 12483 if (!cpu_buf) 12484 continue; 12485 12486 err = perf_buffer__process_records(pb, cpu_buf); 12487 if (err) { 12488 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12489 return libbpf_err(err); 12490 } 12491 } 12492 return 0; 12493 } 12494 12495 int bpf_program__set_attach_target(struct bpf_program *prog, 12496 int attach_prog_fd, 12497 const char *attach_func_name) 12498 { 12499 int btf_obj_fd = 0, btf_id = 0, err; 12500 12501 if (!prog || attach_prog_fd < 0) 12502 return libbpf_err(-EINVAL); 12503 12504 if (prog->obj->loaded) 12505 return libbpf_err(-EINVAL); 12506 12507 if (attach_prog_fd && !attach_func_name) { 12508 /* remember attach_prog_fd and let bpf_program__load() find 12509 * BTF ID during the program load 12510 */ 12511 prog->attach_prog_fd = attach_prog_fd; 12512 return 0; 12513 } 12514 12515 if (attach_prog_fd) { 12516 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12517 attach_prog_fd); 12518 if (btf_id < 0) 12519 return libbpf_err(btf_id); 12520 } else { 12521 if (!attach_func_name) 12522 return libbpf_err(-EINVAL); 12523 12524 /* load btf_vmlinux, if not yet */ 12525 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12526 if (err) 12527 return libbpf_err(err); 12528 err = find_kernel_btf_id(prog->obj, attach_func_name, 12529 prog->expected_attach_type, 12530 &btf_obj_fd, &btf_id); 12531 if (err) 12532 return libbpf_err(err); 12533 } 12534 12535 prog->attach_btf_id = btf_id; 12536 prog->attach_btf_obj_fd = btf_obj_fd; 12537 prog->attach_prog_fd = attach_prog_fd; 12538 return 0; 12539 } 12540 12541 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12542 { 12543 int err = 0, n, len, start, end = -1; 12544 bool *tmp; 12545 12546 *mask = NULL; 12547 *mask_sz = 0; 12548 12549 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12550 while (*s) { 12551 if (*s == ',' || *s == '\n') { 12552 s++; 12553 continue; 12554 } 12555 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12556 if (n <= 0 || n > 2) { 12557 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12558 err = -EINVAL; 12559 goto cleanup; 12560 } else if (n == 1) { 12561 end = start; 12562 } 12563 if (start < 0 || start > end) { 12564 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12565 start, end, s); 12566 err = -EINVAL; 12567 goto cleanup; 12568 } 12569 tmp = realloc(*mask, end + 1); 12570 if (!tmp) { 12571 err = -ENOMEM; 12572 goto cleanup; 12573 } 12574 *mask = tmp; 12575 memset(tmp + *mask_sz, 0, start - *mask_sz); 12576 memset(tmp + start, 1, end - start + 1); 12577 *mask_sz = end + 1; 12578 s += len; 12579 } 12580 if (!*mask_sz) { 12581 pr_warn("Empty CPU range\n"); 12582 return -EINVAL; 12583 } 12584 return 0; 12585 cleanup: 12586 free(*mask); 12587 *mask = NULL; 12588 return err; 12589 } 12590 12591 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12592 { 12593 int fd, err = 0, len; 12594 char buf[128]; 12595 12596 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12597 if (fd < 0) { 12598 err = -errno; 12599 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12600 return err; 12601 } 12602 len = read(fd, buf, sizeof(buf)); 12603 close(fd); 12604 if (len <= 0) { 12605 err = len ? -errno : -EINVAL; 12606 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12607 return err; 12608 } 12609 if (len >= sizeof(buf)) { 12610 pr_warn("CPU mask is too big in file %s\n", fcpu); 12611 return -E2BIG; 12612 } 12613 buf[len] = '\0'; 12614 12615 return parse_cpu_mask_str(buf, mask, mask_sz); 12616 } 12617 12618 int libbpf_num_possible_cpus(void) 12619 { 12620 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12621 static int cpus; 12622 int err, n, i, tmp_cpus; 12623 bool *mask; 12624 12625 tmp_cpus = READ_ONCE(cpus); 12626 if (tmp_cpus > 0) 12627 return tmp_cpus; 12628 12629 err = parse_cpu_mask_file(fcpu, &mask, &n); 12630 if (err) 12631 return libbpf_err(err); 12632 12633 tmp_cpus = 0; 12634 for (i = 0; i < n; i++) { 12635 if (mask[i]) 12636 tmp_cpus++; 12637 } 12638 free(mask); 12639 12640 WRITE_ONCE(cpus, tmp_cpus); 12641 return tmp_cpus; 12642 } 12643 12644 static int populate_skeleton_maps(const struct bpf_object *obj, 12645 struct bpf_map_skeleton *maps, 12646 size_t map_cnt) 12647 { 12648 int i; 12649 12650 for (i = 0; i < map_cnt; i++) { 12651 struct bpf_map **map = maps[i].map; 12652 const char *name = maps[i].name; 12653 void **mmaped = maps[i].mmaped; 12654 12655 *map = bpf_object__find_map_by_name(obj, name); 12656 if (!*map) { 12657 pr_warn("failed to find skeleton map '%s'\n", name); 12658 return -ESRCH; 12659 } 12660 12661 /* externs shouldn't be pre-setup from user code */ 12662 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12663 *mmaped = (*map)->mmaped; 12664 } 12665 return 0; 12666 } 12667 12668 static int populate_skeleton_progs(const struct bpf_object *obj, 12669 struct bpf_prog_skeleton *progs, 12670 size_t prog_cnt) 12671 { 12672 int i; 12673 12674 for (i = 0; i < prog_cnt; i++) { 12675 struct bpf_program **prog = progs[i].prog; 12676 const char *name = progs[i].name; 12677 12678 *prog = bpf_object__find_program_by_name(obj, name); 12679 if (!*prog) { 12680 pr_warn("failed to find skeleton program '%s'\n", name); 12681 return -ESRCH; 12682 } 12683 } 12684 return 0; 12685 } 12686 12687 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12688 const struct bpf_object_open_opts *opts) 12689 { 12690 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12691 .object_name = s->name, 12692 ); 12693 struct bpf_object *obj; 12694 int err; 12695 12696 /* Attempt to preserve opts->object_name, unless overriden by user 12697 * explicitly. Overwriting object name for skeletons is discouraged, 12698 * as it breaks global data maps, because they contain object name 12699 * prefix as their own map name prefix. When skeleton is generated, 12700 * bpftool is making an assumption that this name will stay the same. 12701 */ 12702 if (opts) { 12703 memcpy(&skel_opts, opts, sizeof(*opts)); 12704 if (!opts->object_name) 12705 skel_opts.object_name = s->name; 12706 } 12707 12708 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12709 err = libbpf_get_error(obj); 12710 if (err) { 12711 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12712 s->name, err); 12713 return libbpf_err(err); 12714 } 12715 12716 *s->obj = obj; 12717 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12718 if (err) { 12719 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12720 return libbpf_err(err); 12721 } 12722 12723 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12724 if (err) { 12725 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12726 return libbpf_err(err); 12727 } 12728 12729 return 0; 12730 } 12731 12732 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12733 { 12734 int err, len, var_idx, i; 12735 const char *var_name; 12736 const struct bpf_map *map; 12737 struct btf *btf; 12738 __u32 map_type_id; 12739 const struct btf_type *map_type, *var_type; 12740 const struct bpf_var_skeleton *var_skel; 12741 struct btf_var_secinfo *var; 12742 12743 if (!s->obj) 12744 return libbpf_err(-EINVAL); 12745 12746 btf = bpf_object__btf(s->obj); 12747 if (!btf) { 12748 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12749 bpf_object__name(s->obj)); 12750 return libbpf_err(-errno); 12751 } 12752 12753 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12754 if (err) { 12755 pr_warn("failed to populate subskeleton maps: %d\n", err); 12756 return libbpf_err(err); 12757 } 12758 12759 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12760 if (err) { 12761 pr_warn("failed to populate subskeleton maps: %d\n", err); 12762 return libbpf_err(err); 12763 } 12764 12765 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12766 var_skel = &s->vars[var_idx]; 12767 map = *var_skel->map; 12768 map_type_id = bpf_map__btf_value_type_id(map); 12769 map_type = btf__type_by_id(btf, map_type_id); 12770 12771 if (!btf_is_datasec(map_type)) { 12772 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12773 bpf_map__name(map), 12774 __btf_kind_str(btf_kind(map_type))); 12775 return libbpf_err(-EINVAL); 12776 } 12777 12778 len = btf_vlen(map_type); 12779 var = btf_var_secinfos(map_type); 12780 for (i = 0; i < len; i++, var++) { 12781 var_type = btf__type_by_id(btf, var->type); 12782 var_name = btf__name_by_offset(btf, var_type->name_off); 12783 if (strcmp(var_name, var_skel->name) == 0) { 12784 *var_skel->addr = map->mmaped + var->offset; 12785 break; 12786 } 12787 } 12788 } 12789 return 0; 12790 } 12791 12792 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12793 { 12794 if (!s) 12795 return; 12796 free(s->maps); 12797 free(s->progs); 12798 free(s->vars); 12799 free(s); 12800 } 12801 12802 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12803 { 12804 int i, err; 12805 12806 err = bpf_object__load(*s->obj); 12807 if (err) { 12808 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12809 return libbpf_err(err); 12810 } 12811 12812 for (i = 0; i < s->map_cnt; i++) { 12813 struct bpf_map *map = *s->maps[i].map; 12814 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 12815 int prot, map_fd = bpf_map__fd(map); 12816 void **mmaped = s->maps[i].mmaped; 12817 12818 if (!mmaped) 12819 continue; 12820 12821 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12822 *mmaped = NULL; 12823 continue; 12824 } 12825 12826 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12827 prot = PROT_READ; 12828 else 12829 prot = PROT_READ | PROT_WRITE; 12830 12831 /* Remap anonymous mmap()-ed "map initialization image" as 12832 * a BPF map-backed mmap()-ed memory, but preserving the same 12833 * memory address. This will cause kernel to change process' 12834 * page table to point to a different piece of kernel memory, 12835 * but from userspace point of view memory address (and its 12836 * contents, being identical at this point) will stay the 12837 * same. This mapping will be released by bpf_object__close() 12838 * as per normal clean up procedure, so we don't need to worry 12839 * about it from skeleton's clean up perspective. 12840 */ 12841 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 12842 if (*mmaped == MAP_FAILED) { 12843 err = -errno; 12844 *mmaped = NULL; 12845 pr_warn("failed to re-mmap() map '%s': %d\n", 12846 bpf_map__name(map), err); 12847 return libbpf_err(err); 12848 } 12849 } 12850 12851 return 0; 12852 } 12853 12854 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12855 { 12856 int i, err; 12857 12858 for (i = 0; i < s->prog_cnt; i++) { 12859 struct bpf_program *prog = *s->progs[i].prog; 12860 struct bpf_link **link = s->progs[i].link; 12861 12862 if (!prog->autoload || !prog->autoattach) 12863 continue; 12864 12865 /* auto-attaching not supported for this program */ 12866 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12867 continue; 12868 12869 /* if user already set the link manually, don't attempt auto-attach */ 12870 if (*link) 12871 continue; 12872 12873 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12874 if (err) { 12875 pr_warn("prog '%s': failed to auto-attach: %d\n", 12876 bpf_program__name(prog), err); 12877 return libbpf_err(err); 12878 } 12879 12880 /* It's possible that for some SEC() definitions auto-attach 12881 * is supported in some cases (e.g., if definition completely 12882 * specifies target information), but is not in other cases. 12883 * SEC("uprobe") is one such case. If user specified target 12884 * binary and function name, such BPF program can be 12885 * auto-attached. But if not, it shouldn't trigger skeleton's 12886 * attach to fail. It should just be skipped. 12887 * attach_fn signals such case with returning 0 (no error) and 12888 * setting link to NULL. 12889 */ 12890 } 12891 12892 return 0; 12893 } 12894 12895 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12896 { 12897 int i; 12898 12899 for (i = 0; i < s->prog_cnt; i++) { 12900 struct bpf_link **link = s->progs[i].link; 12901 12902 bpf_link__destroy(*link); 12903 *link = NULL; 12904 } 12905 } 12906 12907 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12908 { 12909 if (!s) 12910 return; 12911 12912 if (s->progs) 12913 bpf_object__detach_skeleton(s); 12914 if (s->obj) 12915 bpf_object__close(*s->obj); 12916 free(s->maps); 12917 free(s->progs); 12918 free(s); 12919 } 12920