1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <asm/unistd.h> 28 #include <linux/err.h> 29 #include <linux/kernel.h> 30 #include <linux/bpf.h> 31 #include <linux/btf.h> 32 #include <linux/filter.h> 33 #include <linux/list.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <linux/version.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <tools/libc_compat.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 /* make sure libbpf doesn't use kernel-only integer typedefs */ 59 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64 60 61 #ifndef EM_BPF 62 #define EM_BPF 247 63 #endif 64 65 #ifndef BPF_FS_MAGIC 66 #define BPF_FS_MAGIC 0xcafe4a11 67 #endif 68 69 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 70 * compilation if user enables corresponding warning. Disable it explicitly. 71 */ 72 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 73 74 #define __printf(a, b) __attribute__((format(printf, a, b))) 75 76 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 77 static struct bpf_program *bpf_object__find_prog_by_idx(struct bpf_object *obj, 78 int idx); 79 static const struct btf_type * 80 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 81 82 static int __base_pr(enum libbpf_print_level level, const char *format, 83 va_list args) 84 { 85 if (level == LIBBPF_DEBUG) 86 return 0; 87 88 return vfprintf(stderr, format, args); 89 } 90 91 static libbpf_print_fn_t __libbpf_pr = __base_pr; 92 93 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 94 { 95 libbpf_print_fn_t old_print_fn = __libbpf_pr; 96 97 __libbpf_pr = fn; 98 return old_print_fn; 99 } 100 101 __printf(2, 3) 102 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 103 { 104 va_list args; 105 106 if (!__libbpf_pr) 107 return; 108 109 va_start(args, format); 110 __libbpf_pr(level, format, args); 111 va_end(args); 112 } 113 114 static void pr_perm_msg(int err) 115 { 116 struct rlimit limit; 117 char buf[100]; 118 119 if (err != -EPERM || geteuid() != 0) 120 return; 121 122 err = getrlimit(RLIMIT_MEMLOCK, &limit); 123 if (err) 124 return; 125 126 if (limit.rlim_cur == RLIM_INFINITY) 127 return; 128 129 if (limit.rlim_cur < 1024) 130 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 131 else if (limit.rlim_cur < 1024*1024) 132 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 133 else 134 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 135 136 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 137 buf); 138 } 139 140 #define STRERR_BUFSIZE 128 141 142 /* Copied from tools/perf/util/util.h */ 143 #ifndef zfree 144 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 145 #endif 146 147 #ifndef zclose 148 # define zclose(fd) ({ \ 149 int ___err = 0; \ 150 if ((fd) >= 0) \ 151 ___err = close((fd)); \ 152 fd = -1; \ 153 ___err; }) 154 #endif 155 156 #ifdef HAVE_LIBELF_MMAP_SUPPORT 157 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ_MMAP 158 #else 159 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ 160 #endif 161 162 static inline __u64 ptr_to_u64(const void *ptr) 163 { 164 return (__u64) (unsigned long) ptr; 165 } 166 167 struct bpf_capabilities { 168 /* v4.14: kernel support for program & map names. */ 169 __u32 name:1; 170 /* v5.2: kernel support for global data sections. */ 171 __u32 global_data:1; 172 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 173 __u32 btf_func:1; 174 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 175 __u32 btf_datasec:1; 176 /* BPF_F_MMAPABLE is supported for arrays */ 177 __u32 array_mmap:1; 178 /* BTF_FUNC_GLOBAL is supported */ 179 __u32 btf_func_global:1; 180 }; 181 182 enum reloc_type { 183 RELO_LD64, 184 RELO_CALL, 185 RELO_DATA, 186 RELO_EXTERN, 187 }; 188 189 struct reloc_desc { 190 enum reloc_type type; 191 int insn_idx; 192 int map_idx; 193 int sym_off; 194 }; 195 196 /* 197 * bpf_prog should be a better name but it has been used in 198 * linux/filter.h. 199 */ 200 struct bpf_program { 201 /* Index in elf obj file, for relocation use. */ 202 int idx; 203 char *name; 204 int prog_ifindex; 205 char *section_name; 206 /* section_name with / replaced by _; makes recursive pinning 207 * in bpf_object__pin_programs easier 208 */ 209 char *pin_name; 210 struct bpf_insn *insns; 211 size_t insns_cnt, main_prog_cnt; 212 enum bpf_prog_type type; 213 214 struct reloc_desc *reloc_desc; 215 int nr_reloc; 216 int log_level; 217 218 struct { 219 int nr; 220 int *fds; 221 } instances; 222 bpf_program_prep_t preprocessor; 223 224 struct bpf_object *obj; 225 void *priv; 226 bpf_program_clear_priv_t clear_priv; 227 228 enum bpf_attach_type expected_attach_type; 229 __u32 attach_btf_id; 230 __u32 attach_prog_fd; 231 void *func_info; 232 __u32 func_info_rec_size; 233 __u32 func_info_cnt; 234 235 struct bpf_capabilities *caps; 236 237 void *line_info; 238 __u32 line_info_rec_size; 239 __u32 line_info_cnt; 240 __u32 prog_flags; 241 }; 242 243 struct bpf_struct_ops { 244 const char *tname; 245 const struct btf_type *type; 246 struct bpf_program **progs; 247 __u32 *kern_func_off; 248 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 249 void *data; 250 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 251 * btf_vmlinux's format. 252 * struct bpf_struct_ops_tcp_congestion_ops { 253 * [... some other kernel fields ...] 254 * struct tcp_congestion_ops data; 255 * } 256 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 257 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 258 * from "data". 259 */ 260 void *kern_vdata; 261 __u32 type_id; 262 }; 263 264 #define DATA_SEC ".data" 265 #define BSS_SEC ".bss" 266 #define RODATA_SEC ".rodata" 267 #define KCONFIG_SEC ".kconfig" 268 #define STRUCT_OPS_SEC ".struct_ops" 269 270 enum libbpf_map_type { 271 LIBBPF_MAP_UNSPEC, 272 LIBBPF_MAP_DATA, 273 LIBBPF_MAP_BSS, 274 LIBBPF_MAP_RODATA, 275 LIBBPF_MAP_KCONFIG, 276 }; 277 278 static const char * const libbpf_type_to_btf_name[] = { 279 [LIBBPF_MAP_DATA] = DATA_SEC, 280 [LIBBPF_MAP_BSS] = BSS_SEC, 281 [LIBBPF_MAP_RODATA] = RODATA_SEC, 282 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 283 }; 284 285 struct bpf_map { 286 char *name; 287 int fd; 288 int sec_idx; 289 size_t sec_offset; 290 int map_ifindex; 291 int inner_map_fd; 292 struct bpf_map_def def; 293 __u32 btf_key_type_id; 294 __u32 btf_value_type_id; 295 __u32 btf_vmlinux_value_type_id; 296 void *priv; 297 bpf_map_clear_priv_t clear_priv; 298 enum libbpf_map_type libbpf_type; 299 void *mmaped; 300 struct bpf_struct_ops *st_ops; 301 char *pin_path; 302 bool pinned; 303 bool reused; 304 }; 305 306 enum extern_type { 307 EXT_UNKNOWN, 308 EXT_CHAR, 309 EXT_BOOL, 310 EXT_INT, 311 EXT_TRISTATE, 312 EXT_CHAR_ARR, 313 }; 314 315 struct extern_desc { 316 const char *name; 317 int sym_idx; 318 int btf_id; 319 enum extern_type type; 320 int sz; 321 int align; 322 int data_off; 323 bool is_signed; 324 bool is_weak; 325 bool is_set; 326 }; 327 328 static LIST_HEAD(bpf_objects_list); 329 330 struct bpf_object { 331 char name[BPF_OBJ_NAME_LEN]; 332 char license[64]; 333 __u32 kern_version; 334 335 struct bpf_program *programs; 336 size_t nr_programs; 337 struct bpf_map *maps; 338 size_t nr_maps; 339 size_t maps_cap; 340 341 char *kconfig; 342 struct extern_desc *externs; 343 int nr_extern; 344 int kconfig_map_idx; 345 346 bool loaded; 347 bool has_pseudo_calls; 348 349 /* 350 * Information when doing elf related work. Only valid if fd 351 * is valid. 352 */ 353 struct { 354 int fd; 355 const void *obj_buf; 356 size_t obj_buf_sz; 357 Elf *elf; 358 GElf_Ehdr ehdr; 359 Elf_Data *symbols; 360 Elf_Data *data; 361 Elf_Data *rodata; 362 Elf_Data *bss; 363 Elf_Data *st_ops_data; 364 size_t strtabidx; 365 struct { 366 GElf_Shdr shdr; 367 Elf_Data *data; 368 } *reloc_sects; 369 int nr_reloc_sects; 370 int maps_shndx; 371 int btf_maps_shndx; 372 int text_shndx; 373 int symbols_shndx; 374 int data_shndx; 375 int rodata_shndx; 376 int bss_shndx; 377 int st_ops_shndx; 378 } efile; 379 /* 380 * All loaded bpf_object is linked in a list, which is 381 * hidden to caller. bpf_objects__<func> handlers deal with 382 * all objects. 383 */ 384 struct list_head list; 385 386 struct btf *btf; 387 /* Parse and load BTF vmlinux if any of the programs in the object need 388 * it at load time. 389 */ 390 struct btf *btf_vmlinux; 391 struct btf_ext *btf_ext; 392 393 void *priv; 394 bpf_object_clear_priv_t clear_priv; 395 396 struct bpf_capabilities caps; 397 398 char path[]; 399 }; 400 #define obj_elf_valid(o) ((o)->efile.elf) 401 402 void bpf_program__unload(struct bpf_program *prog) 403 { 404 int i; 405 406 if (!prog) 407 return; 408 409 /* 410 * If the object is opened but the program was never loaded, 411 * it is possible that prog->instances.nr == -1. 412 */ 413 if (prog->instances.nr > 0) { 414 for (i = 0; i < prog->instances.nr; i++) 415 zclose(prog->instances.fds[i]); 416 } else if (prog->instances.nr != -1) { 417 pr_warn("Internal error: instances.nr is %d\n", 418 prog->instances.nr); 419 } 420 421 prog->instances.nr = -1; 422 zfree(&prog->instances.fds); 423 424 zfree(&prog->func_info); 425 zfree(&prog->line_info); 426 } 427 428 static void bpf_program__exit(struct bpf_program *prog) 429 { 430 if (!prog) 431 return; 432 433 if (prog->clear_priv) 434 prog->clear_priv(prog, prog->priv); 435 436 prog->priv = NULL; 437 prog->clear_priv = NULL; 438 439 bpf_program__unload(prog); 440 zfree(&prog->name); 441 zfree(&prog->section_name); 442 zfree(&prog->pin_name); 443 zfree(&prog->insns); 444 zfree(&prog->reloc_desc); 445 446 prog->nr_reloc = 0; 447 prog->insns_cnt = 0; 448 prog->idx = -1; 449 } 450 451 static char *__bpf_program__pin_name(struct bpf_program *prog) 452 { 453 char *name, *p; 454 455 name = p = strdup(prog->section_name); 456 while ((p = strchr(p, '/'))) 457 *p = '_'; 458 459 return name; 460 } 461 462 static int 463 bpf_program__init(void *data, size_t size, char *section_name, int idx, 464 struct bpf_program *prog) 465 { 466 const size_t bpf_insn_sz = sizeof(struct bpf_insn); 467 468 if (size == 0 || size % bpf_insn_sz) { 469 pr_warn("corrupted section '%s', size: %zu\n", 470 section_name, size); 471 return -EINVAL; 472 } 473 474 memset(prog, 0, sizeof(*prog)); 475 476 prog->section_name = strdup(section_name); 477 if (!prog->section_name) { 478 pr_warn("failed to alloc name for prog under section(%d) %s\n", 479 idx, section_name); 480 goto errout; 481 } 482 483 prog->pin_name = __bpf_program__pin_name(prog); 484 if (!prog->pin_name) { 485 pr_warn("failed to alloc pin name for prog under section(%d) %s\n", 486 idx, section_name); 487 goto errout; 488 } 489 490 prog->insns = malloc(size); 491 if (!prog->insns) { 492 pr_warn("failed to alloc insns for prog under section %s\n", 493 section_name); 494 goto errout; 495 } 496 prog->insns_cnt = size / bpf_insn_sz; 497 memcpy(prog->insns, data, size); 498 prog->idx = idx; 499 prog->instances.fds = NULL; 500 prog->instances.nr = -1; 501 prog->type = BPF_PROG_TYPE_UNSPEC; 502 503 return 0; 504 errout: 505 bpf_program__exit(prog); 506 return -ENOMEM; 507 } 508 509 static int 510 bpf_object__add_program(struct bpf_object *obj, void *data, size_t size, 511 char *section_name, int idx) 512 { 513 struct bpf_program prog, *progs; 514 int nr_progs, err; 515 516 err = bpf_program__init(data, size, section_name, idx, &prog); 517 if (err) 518 return err; 519 520 prog.caps = &obj->caps; 521 progs = obj->programs; 522 nr_progs = obj->nr_programs; 523 524 progs = reallocarray(progs, nr_progs + 1, sizeof(progs[0])); 525 if (!progs) { 526 /* 527 * In this case the original obj->programs 528 * is still valid, so don't need special treat for 529 * bpf_close_object(). 530 */ 531 pr_warn("failed to alloc a new program under section '%s'\n", 532 section_name); 533 bpf_program__exit(&prog); 534 return -ENOMEM; 535 } 536 537 pr_debug("found program %s\n", prog.section_name); 538 obj->programs = progs; 539 obj->nr_programs = nr_progs + 1; 540 prog.obj = obj; 541 progs[nr_progs] = prog; 542 return 0; 543 } 544 545 static int 546 bpf_object__init_prog_names(struct bpf_object *obj) 547 { 548 Elf_Data *symbols = obj->efile.symbols; 549 struct bpf_program *prog; 550 size_t pi, si; 551 552 for (pi = 0; pi < obj->nr_programs; pi++) { 553 const char *name = NULL; 554 555 prog = &obj->programs[pi]; 556 557 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym) && !name; 558 si++) { 559 GElf_Sym sym; 560 561 if (!gelf_getsym(symbols, si, &sym)) 562 continue; 563 if (sym.st_shndx != prog->idx) 564 continue; 565 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL) 566 continue; 567 568 name = elf_strptr(obj->efile.elf, 569 obj->efile.strtabidx, 570 sym.st_name); 571 if (!name) { 572 pr_warn("failed to get sym name string for prog %s\n", 573 prog->section_name); 574 return -LIBBPF_ERRNO__LIBELF; 575 } 576 } 577 578 if (!name && prog->idx == obj->efile.text_shndx) 579 name = ".text"; 580 581 if (!name) { 582 pr_warn("failed to find sym for prog %s\n", 583 prog->section_name); 584 return -EINVAL; 585 } 586 587 prog->name = strdup(name); 588 if (!prog->name) { 589 pr_warn("failed to allocate memory for prog sym %s\n", 590 name); 591 return -ENOMEM; 592 } 593 } 594 595 return 0; 596 } 597 598 static __u32 get_kernel_version(void) 599 { 600 __u32 major, minor, patch; 601 struct utsname info; 602 603 uname(&info); 604 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 605 return 0; 606 return KERNEL_VERSION(major, minor, patch); 607 } 608 609 static const struct btf_member * 610 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 611 { 612 struct btf_member *m; 613 int i; 614 615 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 616 if (btf_member_bit_offset(t, i) == bit_offset) 617 return m; 618 } 619 620 return NULL; 621 } 622 623 static const struct btf_member * 624 find_member_by_name(const struct btf *btf, const struct btf_type *t, 625 const char *name) 626 { 627 struct btf_member *m; 628 int i; 629 630 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 631 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 632 return m; 633 } 634 635 return NULL; 636 } 637 638 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 639 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 640 const char *name, __u32 kind); 641 642 static int 643 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 644 const struct btf_type **type, __u32 *type_id, 645 const struct btf_type **vtype, __u32 *vtype_id, 646 const struct btf_member **data_member) 647 { 648 const struct btf_type *kern_type, *kern_vtype; 649 const struct btf_member *kern_data_member; 650 __s32 kern_vtype_id, kern_type_id; 651 __u32 i; 652 653 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 654 if (kern_type_id < 0) { 655 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 656 tname); 657 return kern_type_id; 658 } 659 kern_type = btf__type_by_id(btf, kern_type_id); 660 661 /* Find the corresponding "map_value" type that will be used 662 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 663 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 664 * btf_vmlinux. 665 */ 666 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 667 tname, BTF_KIND_STRUCT); 668 if (kern_vtype_id < 0) { 669 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 670 STRUCT_OPS_VALUE_PREFIX, tname); 671 return kern_vtype_id; 672 } 673 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 674 675 /* Find "struct tcp_congestion_ops" from 676 * struct bpf_struct_ops_tcp_congestion_ops { 677 * [ ... ] 678 * struct tcp_congestion_ops data; 679 * } 680 */ 681 kern_data_member = btf_members(kern_vtype); 682 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 683 if (kern_data_member->type == kern_type_id) 684 break; 685 } 686 if (i == btf_vlen(kern_vtype)) { 687 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 688 tname, STRUCT_OPS_VALUE_PREFIX, tname); 689 return -EINVAL; 690 } 691 692 *type = kern_type; 693 *type_id = kern_type_id; 694 *vtype = kern_vtype; 695 *vtype_id = kern_vtype_id; 696 *data_member = kern_data_member; 697 698 return 0; 699 } 700 701 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 702 { 703 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 704 } 705 706 /* Init the map's fields that depend on kern_btf */ 707 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 708 const struct btf *btf, 709 const struct btf *kern_btf) 710 { 711 const struct btf_member *member, *kern_member, *kern_data_member; 712 const struct btf_type *type, *kern_type, *kern_vtype; 713 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 714 struct bpf_struct_ops *st_ops; 715 void *data, *kern_data; 716 const char *tname; 717 int err; 718 719 st_ops = map->st_ops; 720 type = st_ops->type; 721 tname = st_ops->tname; 722 err = find_struct_ops_kern_types(kern_btf, tname, 723 &kern_type, &kern_type_id, 724 &kern_vtype, &kern_vtype_id, 725 &kern_data_member); 726 if (err) 727 return err; 728 729 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 730 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 731 732 map->def.value_size = kern_vtype->size; 733 map->btf_vmlinux_value_type_id = kern_vtype_id; 734 735 st_ops->kern_vdata = calloc(1, kern_vtype->size); 736 if (!st_ops->kern_vdata) 737 return -ENOMEM; 738 739 data = st_ops->data; 740 kern_data_off = kern_data_member->offset / 8; 741 kern_data = st_ops->kern_vdata + kern_data_off; 742 743 member = btf_members(type); 744 for (i = 0; i < btf_vlen(type); i++, member++) { 745 const struct btf_type *mtype, *kern_mtype; 746 __u32 mtype_id, kern_mtype_id; 747 void *mdata, *kern_mdata; 748 __s64 msize, kern_msize; 749 __u32 moff, kern_moff; 750 __u32 kern_member_idx; 751 const char *mname; 752 753 mname = btf__name_by_offset(btf, member->name_off); 754 kern_member = find_member_by_name(kern_btf, kern_type, mname); 755 if (!kern_member) { 756 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 757 map->name, mname); 758 return -ENOTSUP; 759 } 760 761 kern_member_idx = kern_member - btf_members(kern_type); 762 if (btf_member_bitfield_size(type, i) || 763 btf_member_bitfield_size(kern_type, kern_member_idx)) { 764 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 765 map->name, mname); 766 return -ENOTSUP; 767 } 768 769 moff = member->offset / 8; 770 kern_moff = kern_member->offset / 8; 771 772 mdata = data + moff; 773 kern_mdata = kern_data + kern_moff; 774 775 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 776 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 777 &kern_mtype_id); 778 if (BTF_INFO_KIND(mtype->info) != 779 BTF_INFO_KIND(kern_mtype->info)) { 780 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 781 map->name, mname, BTF_INFO_KIND(mtype->info), 782 BTF_INFO_KIND(kern_mtype->info)); 783 return -ENOTSUP; 784 } 785 786 if (btf_is_ptr(mtype)) { 787 struct bpf_program *prog; 788 789 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 790 kern_mtype = skip_mods_and_typedefs(kern_btf, 791 kern_mtype->type, 792 &kern_mtype_id); 793 if (!btf_is_func_proto(mtype) || 794 !btf_is_func_proto(kern_mtype)) { 795 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 796 map->name, mname); 797 return -ENOTSUP; 798 } 799 800 prog = st_ops->progs[i]; 801 if (!prog) { 802 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 803 map->name, mname); 804 continue; 805 } 806 807 prog->attach_btf_id = kern_type_id; 808 prog->expected_attach_type = kern_member_idx; 809 810 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 811 812 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 813 map->name, mname, prog->name, moff, 814 kern_moff); 815 816 continue; 817 } 818 819 msize = btf__resolve_size(btf, mtype_id); 820 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 821 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 822 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 823 map->name, mname, (ssize_t)msize, 824 (ssize_t)kern_msize); 825 return -ENOTSUP; 826 } 827 828 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 829 map->name, mname, (unsigned int)msize, 830 moff, kern_moff); 831 memcpy(kern_mdata, mdata, msize); 832 } 833 834 return 0; 835 } 836 837 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 838 { 839 struct bpf_map *map; 840 size_t i; 841 int err; 842 843 for (i = 0; i < obj->nr_maps; i++) { 844 map = &obj->maps[i]; 845 846 if (!bpf_map__is_struct_ops(map)) 847 continue; 848 849 err = bpf_map__init_kern_struct_ops(map, obj->btf, 850 obj->btf_vmlinux); 851 if (err) 852 return err; 853 } 854 855 return 0; 856 } 857 858 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 859 { 860 const struct btf_type *type, *datasec; 861 const struct btf_var_secinfo *vsi; 862 struct bpf_struct_ops *st_ops; 863 const char *tname, *var_name; 864 __s32 type_id, datasec_id; 865 const struct btf *btf; 866 struct bpf_map *map; 867 __u32 i; 868 869 if (obj->efile.st_ops_shndx == -1) 870 return 0; 871 872 btf = obj->btf; 873 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 874 BTF_KIND_DATASEC); 875 if (datasec_id < 0) { 876 pr_warn("struct_ops init: DATASEC %s not found\n", 877 STRUCT_OPS_SEC); 878 return -EINVAL; 879 } 880 881 datasec = btf__type_by_id(btf, datasec_id); 882 vsi = btf_var_secinfos(datasec); 883 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 884 type = btf__type_by_id(obj->btf, vsi->type); 885 var_name = btf__name_by_offset(obj->btf, type->name_off); 886 887 type_id = btf__resolve_type(obj->btf, vsi->type); 888 if (type_id < 0) { 889 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 890 vsi->type, STRUCT_OPS_SEC); 891 return -EINVAL; 892 } 893 894 type = btf__type_by_id(obj->btf, type_id); 895 tname = btf__name_by_offset(obj->btf, type->name_off); 896 if (!tname[0]) { 897 pr_warn("struct_ops init: anonymous type is not supported\n"); 898 return -ENOTSUP; 899 } 900 if (!btf_is_struct(type)) { 901 pr_warn("struct_ops init: %s is not a struct\n", tname); 902 return -EINVAL; 903 } 904 905 map = bpf_object__add_map(obj); 906 if (IS_ERR(map)) 907 return PTR_ERR(map); 908 909 map->sec_idx = obj->efile.st_ops_shndx; 910 map->sec_offset = vsi->offset; 911 map->name = strdup(var_name); 912 if (!map->name) 913 return -ENOMEM; 914 915 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 916 map->def.key_size = sizeof(int); 917 map->def.value_size = type->size; 918 map->def.max_entries = 1; 919 920 map->st_ops = calloc(1, sizeof(*map->st_ops)); 921 if (!map->st_ops) 922 return -ENOMEM; 923 st_ops = map->st_ops; 924 st_ops->data = malloc(type->size); 925 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 926 st_ops->kern_func_off = malloc(btf_vlen(type) * 927 sizeof(*st_ops->kern_func_off)); 928 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 929 return -ENOMEM; 930 931 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 932 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 933 var_name, STRUCT_OPS_SEC); 934 return -EINVAL; 935 } 936 937 memcpy(st_ops->data, 938 obj->efile.st_ops_data->d_buf + vsi->offset, 939 type->size); 940 st_ops->tname = tname; 941 st_ops->type = type; 942 st_ops->type_id = type_id; 943 944 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 945 tname, type_id, var_name, vsi->offset); 946 } 947 948 return 0; 949 } 950 951 static struct bpf_object *bpf_object__new(const char *path, 952 const void *obj_buf, 953 size_t obj_buf_sz, 954 const char *obj_name) 955 { 956 struct bpf_object *obj; 957 char *end; 958 959 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 960 if (!obj) { 961 pr_warn("alloc memory failed for %s\n", path); 962 return ERR_PTR(-ENOMEM); 963 } 964 965 strcpy(obj->path, path); 966 if (obj_name) { 967 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 968 obj->name[sizeof(obj->name) - 1] = 0; 969 } else { 970 /* Using basename() GNU version which doesn't modify arg. */ 971 strncpy(obj->name, basename((void *)path), 972 sizeof(obj->name) - 1); 973 end = strchr(obj->name, '.'); 974 if (end) 975 *end = 0; 976 } 977 978 obj->efile.fd = -1; 979 /* 980 * Caller of this function should also call 981 * bpf_object__elf_finish() after data collection to return 982 * obj_buf to user. If not, we should duplicate the buffer to 983 * avoid user freeing them before elf finish. 984 */ 985 obj->efile.obj_buf = obj_buf; 986 obj->efile.obj_buf_sz = obj_buf_sz; 987 obj->efile.maps_shndx = -1; 988 obj->efile.btf_maps_shndx = -1; 989 obj->efile.data_shndx = -1; 990 obj->efile.rodata_shndx = -1; 991 obj->efile.bss_shndx = -1; 992 obj->efile.st_ops_shndx = -1; 993 obj->kconfig_map_idx = -1; 994 995 obj->kern_version = get_kernel_version(); 996 obj->loaded = false; 997 998 INIT_LIST_HEAD(&obj->list); 999 list_add(&obj->list, &bpf_objects_list); 1000 return obj; 1001 } 1002 1003 static void bpf_object__elf_finish(struct bpf_object *obj) 1004 { 1005 if (!obj_elf_valid(obj)) 1006 return; 1007 1008 if (obj->efile.elf) { 1009 elf_end(obj->efile.elf); 1010 obj->efile.elf = NULL; 1011 } 1012 obj->efile.symbols = NULL; 1013 obj->efile.data = NULL; 1014 obj->efile.rodata = NULL; 1015 obj->efile.bss = NULL; 1016 obj->efile.st_ops_data = NULL; 1017 1018 zfree(&obj->efile.reloc_sects); 1019 obj->efile.nr_reloc_sects = 0; 1020 zclose(obj->efile.fd); 1021 obj->efile.obj_buf = NULL; 1022 obj->efile.obj_buf_sz = 0; 1023 } 1024 1025 static int bpf_object__elf_init(struct bpf_object *obj) 1026 { 1027 int err = 0; 1028 GElf_Ehdr *ep; 1029 1030 if (obj_elf_valid(obj)) { 1031 pr_warn("elf init: internal error\n"); 1032 return -LIBBPF_ERRNO__LIBELF; 1033 } 1034 1035 if (obj->efile.obj_buf_sz > 0) { 1036 /* 1037 * obj_buf should have been validated by 1038 * bpf_object__open_buffer(). 1039 */ 1040 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1041 obj->efile.obj_buf_sz); 1042 } else { 1043 obj->efile.fd = open(obj->path, O_RDONLY); 1044 if (obj->efile.fd < 0) { 1045 char errmsg[STRERR_BUFSIZE], *cp; 1046 1047 err = -errno; 1048 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1049 pr_warn("failed to open %s: %s\n", obj->path, cp); 1050 return err; 1051 } 1052 1053 obj->efile.elf = elf_begin(obj->efile.fd, 1054 LIBBPF_ELF_C_READ_MMAP, NULL); 1055 } 1056 1057 if (!obj->efile.elf) { 1058 pr_warn("failed to open %s as ELF file\n", obj->path); 1059 err = -LIBBPF_ERRNO__LIBELF; 1060 goto errout; 1061 } 1062 1063 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1064 pr_warn("failed to get EHDR from %s\n", obj->path); 1065 err = -LIBBPF_ERRNO__FORMAT; 1066 goto errout; 1067 } 1068 ep = &obj->efile.ehdr; 1069 1070 /* Old LLVM set e_machine to EM_NONE */ 1071 if (ep->e_type != ET_REL || 1072 (ep->e_machine && ep->e_machine != EM_BPF)) { 1073 pr_warn("%s is not an eBPF object file\n", obj->path); 1074 err = -LIBBPF_ERRNO__FORMAT; 1075 goto errout; 1076 } 1077 1078 return 0; 1079 errout: 1080 bpf_object__elf_finish(obj); 1081 return err; 1082 } 1083 1084 static int bpf_object__check_endianness(struct bpf_object *obj) 1085 { 1086 #if __BYTE_ORDER == __LITTLE_ENDIAN 1087 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1088 return 0; 1089 #elif __BYTE_ORDER == __BIG_ENDIAN 1090 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1091 return 0; 1092 #else 1093 # error "Unrecognized __BYTE_ORDER__" 1094 #endif 1095 pr_warn("endianness mismatch.\n"); 1096 return -LIBBPF_ERRNO__ENDIAN; 1097 } 1098 1099 static int 1100 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1101 { 1102 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1103 pr_debug("license of %s is %s\n", obj->path, obj->license); 1104 return 0; 1105 } 1106 1107 static int 1108 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1109 { 1110 __u32 kver; 1111 1112 if (size != sizeof(kver)) { 1113 pr_warn("invalid kver section in %s\n", obj->path); 1114 return -LIBBPF_ERRNO__FORMAT; 1115 } 1116 memcpy(&kver, data, sizeof(kver)); 1117 obj->kern_version = kver; 1118 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1119 return 0; 1120 } 1121 1122 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1123 { 1124 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1125 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1126 return true; 1127 return false; 1128 } 1129 1130 static int bpf_object_search_section_size(const struct bpf_object *obj, 1131 const char *name, size_t *d_size) 1132 { 1133 const GElf_Ehdr *ep = &obj->efile.ehdr; 1134 Elf *elf = obj->efile.elf; 1135 Elf_Scn *scn = NULL; 1136 int idx = 0; 1137 1138 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1139 const char *sec_name; 1140 Elf_Data *data; 1141 GElf_Shdr sh; 1142 1143 idx++; 1144 if (gelf_getshdr(scn, &sh) != &sh) { 1145 pr_warn("failed to get section(%d) header from %s\n", 1146 idx, obj->path); 1147 return -EIO; 1148 } 1149 1150 sec_name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 1151 if (!sec_name) { 1152 pr_warn("failed to get section(%d) name from %s\n", 1153 idx, obj->path); 1154 return -EIO; 1155 } 1156 1157 if (strcmp(name, sec_name)) 1158 continue; 1159 1160 data = elf_getdata(scn, 0); 1161 if (!data) { 1162 pr_warn("failed to get section(%d) data from %s(%s)\n", 1163 idx, name, obj->path); 1164 return -EIO; 1165 } 1166 1167 *d_size = data->d_size; 1168 return 0; 1169 } 1170 1171 return -ENOENT; 1172 } 1173 1174 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1175 __u32 *size) 1176 { 1177 int ret = -ENOENT; 1178 size_t d_size; 1179 1180 *size = 0; 1181 if (!name) { 1182 return -EINVAL; 1183 } else if (!strcmp(name, DATA_SEC)) { 1184 if (obj->efile.data) 1185 *size = obj->efile.data->d_size; 1186 } else if (!strcmp(name, BSS_SEC)) { 1187 if (obj->efile.bss) 1188 *size = obj->efile.bss->d_size; 1189 } else if (!strcmp(name, RODATA_SEC)) { 1190 if (obj->efile.rodata) 1191 *size = obj->efile.rodata->d_size; 1192 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1193 if (obj->efile.st_ops_data) 1194 *size = obj->efile.st_ops_data->d_size; 1195 } else { 1196 ret = bpf_object_search_section_size(obj, name, &d_size); 1197 if (!ret) 1198 *size = d_size; 1199 } 1200 1201 return *size ? 0 : ret; 1202 } 1203 1204 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1205 __u32 *off) 1206 { 1207 Elf_Data *symbols = obj->efile.symbols; 1208 const char *sname; 1209 size_t si; 1210 1211 if (!name || !off) 1212 return -EINVAL; 1213 1214 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1215 GElf_Sym sym; 1216 1217 if (!gelf_getsym(symbols, si, &sym)) 1218 continue; 1219 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1220 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1221 continue; 1222 1223 sname = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 1224 sym.st_name); 1225 if (!sname) { 1226 pr_warn("failed to get sym name string for var %s\n", 1227 name); 1228 return -EIO; 1229 } 1230 if (strcmp(name, sname) == 0) { 1231 *off = sym.st_value; 1232 return 0; 1233 } 1234 } 1235 1236 return -ENOENT; 1237 } 1238 1239 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1240 { 1241 struct bpf_map *new_maps; 1242 size_t new_cap; 1243 int i; 1244 1245 if (obj->nr_maps < obj->maps_cap) 1246 return &obj->maps[obj->nr_maps++]; 1247 1248 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1249 new_maps = realloc(obj->maps, new_cap * sizeof(*obj->maps)); 1250 if (!new_maps) { 1251 pr_warn("alloc maps for object failed\n"); 1252 return ERR_PTR(-ENOMEM); 1253 } 1254 1255 obj->maps_cap = new_cap; 1256 obj->maps = new_maps; 1257 1258 /* zero out new maps */ 1259 memset(obj->maps + obj->nr_maps, 0, 1260 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1261 /* 1262 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1263 * when failure (zclose won't close negative fd)). 1264 */ 1265 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1266 obj->maps[i].fd = -1; 1267 obj->maps[i].inner_map_fd = -1; 1268 } 1269 1270 return &obj->maps[obj->nr_maps++]; 1271 } 1272 1273 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1274 { 1275 long page_sz = sysconf(_SC_PAGE_SIZE); 1276 size_t map_sz; 1277 1278 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1279 map_sz = roundup(map_sz, page_sz); 1280 return map_sz; 1281 } 1282 1283 static char *internal_map_name(struct bpf_object *obj, 1284 enum libbpf_map_type type) 1285 { 1286 char map_name[BPF_OBJ_NAME_LEN]; 1287 const char *sfx = libbpf_type_to_btf_name[type]; 1288 int sfx_len = max((size_t)7, strlen(sfx)); 1289 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1290 strlen(obj->name)); 1291 1292 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1293 sfx_len, libbpf_type_to_btf_name[type]); 1294 1295 return strdup(map_name); 1296 } 1297 1298 static int 1299 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1300 int sec_idx, void *data, size_t data_sz) 1301 { 1302 struct bpf_map_def *def; 1303 struct bpf_map *map; 1304 int err; 1305 1306 map = bpf_object__add_map(obj); 1307 if (IS_ERR(map)) 1308 return PTR_ERR(map); 1309 1310 map->libbpf_type = type; 1311 map->sec_idx = sec_idx; 1312 map->sec_offset = 0; 1313 map->name = internal_map_name(obj, type); 1314 if (!map->name) { 1315 pr_warn("failed to alloc map name\n"); 1316 return -ENOMEM; 1317 } 1318 1319 def = &map->def; 1320 def->type = BPF_MAP_TYPE_ARRAY; 1321 def->key_size = sizeof(int); 1322 def->value_size = data_sz; 1323 def->max_entries = 1; 1324 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1325 ? BPF_F_RDONLY_PROG : 0; 1326 def->map_flags |= BPF_F_MMAPABLE; 1327 1328 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1329 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1330 1331 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1332 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1333 if (map->mmaped == MAP_FAILED) { 1334 err = -errno; 1335 map->mmaped = NULL; 1336 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1337 map->name, err); 1338 zfree(&map->name); 1339 return err; 1340 } 1341 1342 if (data) 1343 memcpy(map->mmaped, data, data_sz); 1344 1345 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1346 return 0; 1347 } 1348 1349 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1350 { 1351 int err; 1352 1353 /* 1354 * Populate obj->maps with libbpf internal maps. 1355 */ 1356 if (obj->efile.data_shndx >= 0) { 1357 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1358 obj->efile.data_shndx, 1359 obj->efile.data->d_buf, 1360 obj->efile.data->d_size); 1361 if (err) 1362 return err; 1363 } 1364 if (obj->efile.rodata_shndx >= 0) { 1365 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1366 obj->efile.rodata_shndx, 1367 obj->efile.rodata->d_buf, 1368 obj->efile.rodata->d_size); 1369 if (err) 1370 return err; 1371 } 1372 if (obj->efile.bss_shndx >= 0) { 1373 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1374 obj->efile.bss_shndx, 1375 NULL, 1376 obj->efile.bss->d_size); 1377 if (err) 1378 return err; 1379 } 1380 return 0; 1381 } 1382 1383 1384 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1385 const void *name) 1386 { 1387 int i; 1388 1389 for (i = 0; i < obj->nr_extern; i++) { 1390 if (strcmp(obj->externs[i].name, name) == 0) 1391 return &obj->externs[i]; 1392 } 1393 return NULL; 1394 } 1395 1396 static int set_ext_value_tri(struct extern_desc *ext, void *ext_val, 1397 char value) 1398 { 1399 switch (ext->type) { 1400 case EXT_BOOL: 1401 if (value == 'm') { 1402 pr_warn("extern %s=%c should be tristate or char\n", 1403 ext->name, value); 1404 return -EINVAL; 1405 } 1406 *(bool *)ext_val = value == 'y' ? true : false; 1407 break; 1408 case EXT_TRISTATE: 1409 if (value == 'y') 1410 *(enum libbpf_tristate *)ext_val = TRI_YES; 1411 else if (value == 'm') 1412 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1413 else /* value == 'n' */ 1414 *(enum libbpf_tristate *)ext_val = TRI_NO; 1415 break; 1416 case EXT_CHAR: 1417 *(char *)ext_val = value; 1418 break; 1419 case EXT_UNKNOWN: 1420 case EXT_INT: 1421 case EXT_CHAR_ARR: 1422 default: 1423 pr_warn("extern %s=%c should be bool, tristate, or char\n", 1424 ext->name, value); 1425 return -EINVAL; 1426 } 1427 ext->is_set = true; 1428 return 0; 1429 } 1430 1431 static int set_ext_value_str(struct extern_desc *ext, char *ext_val, 1432 const char *value) 1433 { 1434 size_t len; 1435 1436 if (ext->type != EXT_CHAR_ARR) { 1437 pr_warn("extern %s=%s should char array\n", ext->name, value); 1438 return -EINVAL; 1439 } 1440 1441 len = strlen(value); 1442 if (value[len - 1] != '"') { 1443 pr_warn("extern '%s': invalid string config '%s'\n", 1444 ext->name, value); 1445 return -EINVAL; 1446 } 1447 1448 /* strip quotes */ 1449 len -= 2; 1450 if (len >= ext->sz) { 1451 pr_warn("extern '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1452 ext->name, value, len, ext->sz - 1); 1453 len = ext->sz - 1; 1454 } 1455 memcpy(ext_val, value + 1, len); 1456 ext_val[len] = '\0'; 1457 ext->is_set = true; 1458 return 0; 1459 } 1460 1461 static int parse_u64(const char *value, __u64 *res) 1462 { 1463 char *value_end; 1464 int err; 1465 1466 errno = 0; 1467 *res = strtoull(value, &value_end, 0); 1468 if (errno) { 1469 err = -errno; 1470 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1471 return err; 1472 } 1473 if (*value_end) { 1474 pr_warn("failed to parse '%s' as integer completely\n", value); 1475 return -EINVAL; 1476 } 1477 return 0; 1478 } 1479 1480 static bool is_ext_value_in_range(const struct extern_desc *ext, __u64 v) 1481 { 1482 int bit_sz = ext->sz * 8; 1483 1484 if (ext->sz == 8) 1485 return true; 1486 1487 /* Validate that value stored in u64 fits in integer of `ext->sz` 1488 * bytes size without any loss of information. If the target integer 1489 * is signed, we rely on the following limits of integer type of 1490 * Y bits and subsequent transformation: 1491 * 1492 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1493 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1494 * 0 <= X + 2^(Y-1) < 2^Y 1495 * 1496 * For unsigned target integer, check that all the (64 - Y) bits are 1497 * zero. 1498 */ 1499 if (ext->is_signed) 1500 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1501 else 1502 return (v >> bit_sz) == 0; 1503 } 1504 1505 static int set_ext_value_num(struct extern_desc *ext, void *ext_val, 1506 __u64 value) 1507 { 1508 if (ext->type != EXT_INT && ext->type != EXT_CHAR) { 1509 pr_warn("extern %s=%llu should be integer\n", 1510 ext->name, (unsigned long long)value); 1511 return -EINVAL; 1512 } 1513 if (!is_ext_value_in_range(ext, value)) { 1514 pr_warn("extern %s=%llu value doesn't fit in %d bytes\n", 1515 ext->name, (unsigned long long)value, ext->sz); 1516 return -ERANGE; 1517 } 1518 switch (ext->sz) { 1519 case 1: *(__u8 *)ext_val = value; break; 1520 case 2: *(__u16 *)ext_val = value; break; 1521 case 4: *(__u32 *)ext_val = value; break; 1522 case 8: *(__u64 *)ext_val = value; break; 1523 default: 1524 return -EINVAL; 1525 } 1526 ext->is_set = true; 1527 return 0; 1528 } 1529 1530 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1531 char *buf, void *data) 1532 { 1533 struct extern_desc *ext; 1534 char *sep, *value; 1535 int len, err = 0; 1536 void *ext_val; 1537 __u64 num; 1538 1539 if (strncmp(buf, "CONFIG_", 7)) 1540 return 0; 1541 1542 sep = strchr(buf, '='); 1543 if (!sep) { 1544 pr_warn("failed to parse '%s': no separator\n", buf); 1545 return -EINVAL; 1546 } 1547 1548 /* Trim ending '\n' */ 1549 len = strlen(buf); 1550 if (buf[len - 1] == '\n') 1551 buf[len - 1] = '\0'; 1552 /* Split on '=' and ensure that a value is present. */ 1553 *sep = '\0'; 1554 if (!sep[1]) { 1555 *sep = '='; 1556 pr_warn("failed to parse '%s': no value\n", buf); 1557 return -EINVAL; 1558 } 1559 1560 ext = find_extern_by_name(obj, buf); 1561 if (!ext || ext->is_set) 1562 return 0; 1563 1564 ext_val = data + ext->data_off; 1565 value = sep + 1; 1566 1567 switch (*value) { 1568 case 'y': case 'n': case 'm': 1569 err = set_ext_value_tri(ext, ext_val, *value); 1570 break; 1571 case '"': 1572 err = set_ext_value_str(ext, ext_val, value); 1573 break; 1574 default: 1575 /* assume integer */ 1576 err = parse_u64(value, &num); 1577 if (err) { 1578 pr_warn("extern %s=%s should be integer\n", 1579 ext->name, value); 1580 return err; 1581 } 1582 err = set_ext_value_num(ext, ext_val, num); 1583 break; 1584 } 1585 if (err) 1586 return err; 1587 pr_debug("extern %s=%s\n", ext->name, value); 1588 return 0; 1589 } 1590 1591 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1592 { 1593 char buf[PATH_MAX]; 1594 struct utsname uts; 1595 int len, err = 0; 1596 gzFile file; 1597 1598 uname(&uts); 1599 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1600 if (len < 0) 1601 return -EINVAL; 1602 else if (len >= PATH_MAX) 1603 return -ENAMETOOLONG; 1604 1605 /* gzopen also accepts uncompressed files. */ 1606 file = gzopen(buf, "r"); 1607 if (!file) 1608 file = gzopen("/proc/config.gz", "r"); 1609 1610 if (!file) { 1611 pr_warn("failed to open system Kconfig\n"); 1612 return -ENOENT; 1613 } 1614 1615 while (gzgets(file, buf, sizeof(buf))) { 1616 err = bpf_object__process_kconfig_line(obj, buf, data); 1617 if (err) { 1618 pr_warn("error parsing system Kconfig line '%s': %d\n", 1619 buf, err); 1620 goto out; 1621 } 1622 } 1623 1624 out: 1625 gzclose(file); 1626 return err; 1627 } 1628 1629 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1630 const char *config, void *data) 1631 { 1632 char buf[PATH_MAX]; 1633 int err = 0; 1634 FILE *file; 1635 1636 file = fmemopen((void *)config, strlen(config), "r"); 1637 if (!file) { 1638 err = -errno; 1639 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1640 return err; 1641 } 1642 1643 while (fgets(buf, sizeof(buf), file)) { 1644 err = bpf_object__process_kconfig_line(obj, buf, data); 1645 if (err) { 1646 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1647 buf, err); 1648 break; 1649 } 1650 } 1651 1652 fclose(file); 1653 return err; 1654 } 1655 1656 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1657 { 1658 struct extern_desc *last_ext; 1659 size_t map_sz; 1660 int err; 1661 1662 if (obj->nr_extern == 0) 1663 return 0; 1664 1665 last_ext = &obj->externs[obj->nr_extern - 1]; 1666 map_sz = last_ext->data_off + last_ext->sz; 1667 1668 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1669 obj->efile.symbols_shndx, 1670 NULL, map_sz); 1671 if (err) 1672 return err; 1673 1674 obj->kconfig_map_idx = obj->nr_maps - 1; 1675 1676 return 0; 1677 } 1678 1679 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1680 { 1681 Elf_Data *symbols = obj->efile.symbols; 1682 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1683 Elf_Data *data = NULL; 1684 Elf_Scn *scn; 1685 1686 if (obj->efile.maps_shndx < 0) 1687 return 0; 1688 1689 if (!symbols) 1690 return -EINVAL; 1691 1692 scn = elf_getscn(obj->efile.elf, obj->efile.maps_shndx); 1693 if (scn) 1694 data = elf_getdata(scn, NULL); 1695 if (!scn || !data) { 1696 pr_warn("failed to get Elf_Data from map section %d\n", 1697 obj->efile.maps_shndx); 1698 return -EINVAL; 1699 } 1700 1701 /* 1702 * Count number of maps. Each map has a name. 1703 * Array of maps is not supported: only the first element is 1704 * considered. 1705 * 1706 * TODO: Detect array of map and report error. 1707 */ 1708 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1709 for (i = 0; i < nr_syms; i++) { 1710 GElf_Sym sym; 1711 1712 if (!gelf_getsym(symbols, i, &sym)) 1713 continue; 1714 if (sym.st_shndx != obj->efile.maps_shndx) 1715 continue; 1716 nr_maps++; 1717 } 1718 /* Assume equally sized map definitions */ 1719 pr_debug("maps in %s: %d maps in %zd bytes\n", 1720 obj->path, nr_maps, data->d_size); 1721 1722 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1723 pr_warn("unable to determine map definition size section %s, %d maps in %zd bytes\n", 1724 obj->path, nr_maps, data->d_size); 1725 return -EINVAL; 1726 } 1727 map_def_sz = data->d_size / nr_maps; 1728 1729 /* Fill obj->maps using data in "maps" section. */ 1730 for (i = 0; i < nr_syms; i++) { 1731 GElf_Sym sym; 1732 const char *map_name; 1733 struct bpf_map_def *def; 1734 struct bpf_map *map; 1735 1736 if (!gelf_getsym(symbols, i, &sym)) 1737 continue; 1738 if (sym.st_shndx != obj->efile.maps_shndx) 1739 continue; 1740 1741 map = bpf_object__add_map(obj); 1742 if (IS_ERR(map)) 1743 return PTR_ERR(map); 1744 1745 map_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 1746 sym.st_name); 1747 if (!map_name) { 1748 pr_warn("failed to get map #%d name sym string for obj %s\n", 1749 i, obj->path); 1750 return -LIBBPF_ERRNO__FORMAT; 1751 } 1752 1753 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1754 map->sec_idx = sym.st_shndx; 1755 map->sec_offset = sym.st_value; 1756 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1757 map_name, map->sec_idx, map->sec_offset); 1758 if (sym.st_value + map_def_sz > data->d_size) { 1759 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1760 obj->path, map_name); 1761 return -EINVAL; 1762 } 1763 1764 map->name = strdup(map_name); 1765 if (!map->name) { 1766 pr_warn("failed to alloc map name\n"); 1767 return -ENOMEM; 1768 } 1769 pr_debug("map %d is \"%s\"\n", i, map->name); 1770 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1771 /* 1772 * If the definition of the map in the object file fits in 1773 * bpf_map_def, copy it. Any extra fields in our version 1774 * of bpf_map_def will default to zero as a result of the 1775 * calloc above. 1776 */ 1777 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1778 memcpy(&map->def, def, map_def_sz); 1779 } else { 1780 /* 1781 * Here the map structure being read is bigger than what 1782 * we expect, truncate if the excess bits are all zero. 1783 * If they are not zero, reject this map as 1784 * incompatible. 1785 */ 1786 char *b; 1787 1788 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1789 b < ((char *)def) + map_def_sz; b++) { 1790 if (*b != 0) { 1791 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1792 obj->path, map_name); 1793 if (strict) 1794 return -EINVAL; 1795 } 1796 } 1797 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1798 } 1799 } 1800 return 0; 1801 } 1802 1803 static const struct btf_type * 1804 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1805 { 1806 const struct btf_type *t = btf__type_by_id(btf, id); 1807 1808 if (res_id) 1809 *res_id = id; 1810 1811 while (btf_is_mod(t) || btf_is_typedef(t)) { 1812 if (res_id) 1813 *res_id = t->type; 1814 t = btf__type_by_id(btf, t->type); 1815 } 1816 1817 return t; 1818 } 1819 1820 static const struct btf_type * 1821 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1822 { 1823 const struct btf_type *t; 1824 1825 t = skip_mods_and_typedefs(btf, id, NULL); 1826 if (!btf_is_ptr(t)) 1827 return NULL; 1828 1829 t = skip_mods_and_typedefs(btf, t->type, res_id); 1830 1831 return btf_is_func_proto(t) ? t : NULL; 1832 } 1833 1834 /* 1835 * Fetch integer attribute of BTF map definition. Such attributes are 1836 * represented using a pointer to an array, in which dimensionality of array 1837 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1838 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1839 * type definition, while using only sizeof(void *) space in ELF data section. 1840 */ 1841 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1842 const struct btf_type *def, 1843 const struct btf_member *m, __u32 *res) 1844 { 1845 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1846 const char *name = btf__name_by_offset(btf, m->name_off); 1847 const struct btf_array *arr_info; 1848 const struct btf_type *arr_t; 1849 1850 if (!btf_is_ptr(t)) { 1851 pr_warn("map '%s': attr '%s': expected PTR, got %u.\n", 1852 map_name, name, btf_kind(t)); 1853 return false; 1854 } 1855 1856 arr_t = btf__type_by_id(btf, t->type); 1857 if (!arr_t) { 1858 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1859 map_name, name, t->type); 1860 return false; 1861 } 1862 if (!btf_is_array(arr_t)) { 1863 pr_warn("map '%s': attr '%s': expected ARRAY, got %u.\n", 1864 map_name, name, btf_kind(arr_t)); 1865 return false; 1866 } 1867 arr_info = btf_array(arr_t); 1868 *res = arr_info->nelems; 1869 return true; 1870 } 1871 1872 static int build_map_pin_path(struct bpf_map *map, const char *path) 1873 { 1874 char buf[PATH_MAX]; 1875 int err, len; 1876 1877 if (!path) 1878 path = "/sys/fs/bpf"; 1879 1880 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1881 if (len < 0) 1882 return -EINVAL; 1883 else if (len >= PATH_MAX) 1884 return -ENAMETOOLONG; 1885 1886 err = bpf_map__set_pin_path(map, buf); 1887 if (err) 1888 return err; 1889 1890 return 0; 1891 } 1892 1893 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 1894 const struct btf_type *sec, 1895 int var_idx, int sec_idx, 1896 const Elf_Data *data, bool strict, 1897 const char *pin_root_path) 1898 { 1899 const struct btf_type *var, *def, *t; 1900 const struct btf_var_secinfo *vi; 1901 const struct btf_var *var_extra; 1902 const struct btf_member *m; 1903 const char *map_name; 1904 struct bpf_map *map; 1905 int vlen, i; 1906 1907 vi = btf_var_secinfos(sec) + var_idx; 1908 var = btf__type_by_id(obj->btf, vi->type); 1909 var_extra = btf_var(var); 1910 map_name = btf__name_by_offset(obj->btf, var->name_off); 1911 vlen = btf_vlen(var); 1912 1913 if (map_name == NULL || map_name[0] == '\0') { 1914 pr_warn("map #%d: empty name.\n", var_idx); 1915 return -EINVAL; 1916 } 1917 if ((__u64)vi->offset + vi->size > data->d_size) { 1918 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 1919 return -EINVAL; 1920 } 1921 if (!btf_is_var(var)) { 1922 pr_warn("map '%s': unexpected var kind %u.\n", 1923 map_name, btf_kind(var)); 1924 return -EINVAL; 1925 } 1926 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 1927 var_extra->linkage != BTF_VAR_STATIC) { 1928 pr_warn("map '%s': unsupported var linkage %u.\n", 1929 map_name, var_extra->linkage); 1930 return -EOPNOTSUPP; 1931 } 1932 1933 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 1934 if (!btf_is_struct(def)) { 1935 pr_warn("map '%s': unexpected def kind %u.\n", 1936 map_name, btf_kind(var)); 1937 return -EINVAL; 1938 } 1939 if (def->size > vi->size) { 1940 pr_warn("map '%s': invalid def size.\n", map_name); 1941 return -EINVAL; 1942 } 1943 1944 map = bpf_object__add_map(obj); 1945 if (IS_ERR(map)) 1946 return PTR_ERR(map); 1947 map->name = strdup(map_name); 1948 if (!map->name) { 1949 pr_warn("map '%s': failed to alloc map name.\n", map_name); 1950 return -ENOMEM; 1951 } 1952 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1953 map->def.type = BPF_MAP_TYPE_UNSPEC; 1954 map->sec_idx = sec_idx; 1955 map->sec_offset = vi->offset; 1956 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 1957 map_name, map->sec_idx, map->sec_offset); 1958 1959 vlen = btf_vlen(def); 1960 m = btf_members(def); 1961 for (i = 0; i < vlen; i++, m++) { 1962 const char *name = btf__name_by_offset(obj->btf, m->name_off); 1963 1964 if (!name) { 1965 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 1966 return -EINVAL; 1967 } 1968 if (strcmp(name, "type") == 0) { 1969 if (!get_map_field_int(map_name, obj->btf, def, m, 1970 &map->def.type)) 1971 return -EINVAL; 1972 pr_debug("map '%s': found type = %u.\n", 1973 map_name, map->def.type); 1974 } else if (strcmp(name, "max_entries") == 0) { 1975 if (!get_map_field_int(map_name, obj->btf, def, m, 1976 &map->def.max_entries)) 1977 return -EINVAL; 1978 pr_debug("map '%s': found max_entries = %u.\n", 1979 map_name, map->def.max_entries); 1980 } else if (strcmp(name, "map_flags") == 0) { 1981 if (!get_map_field_int(map_name, obj->btf, def, m, 1982 &map->def.map_flags)) 1983 return -EINVAL; 1984 pr_debug("map '%s': found map_flags = %u.\n", 1985 map_name, map->def.map_flags); 1986 } else if (strcmp(name, "key_size") == 0) { 1987 __u32 sz; 1988 1989 if (!get_map_field_int(map_name, obj->btf, def, m, 1990 &sz)) 1991 return -EINVAL; 1992 pr_debug("map '%s': found key_size = %u.\n", 1993 map_name, sz); 1994 if (map->def.key_size && map->def.key_size != sz) { 1995 pr_warn("map '%s': conflicting key size %u != %u.\n", 1996 map_name, map->def.key_size, sz); 1997 return -EINVAL; 1998 } 1999 map->def.key_size = sz; 2000 } else if (strcmp(name, "key") == 0) { 2001 __s64 sz; 2002 2003 t = btf__type_by_id(obj->btf, m->type); 2004 if (!t) { 2005 pr_warn("map '%s': key type [%d] not found.\n", 2006 map_name, m->type); 2007 return -EINVAL; 2008 } 2009 if (!btf_is_ptr(t)) { 2010 pr_warn("map '%s': key spec is not PTR: %u.\n", 2011 map_name, btf_kind(t)); 2012 return -EINVAL; 2013 } 2014 sz = btf__resolve_size(obj->btf, t->type); 2015 if (sz < 0) { 2016 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2017 map_name, t->type, (ssize_t)sz); 2018 return sz; 2019 } 2020 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2021 map_name, t->type, (ssize_t)sz); 2022 if (map->def.key_size && map->def.key_size != sz) { 2023 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2024 map_name, map->def.key_size, (ssize_t)sz); 2025 return -EINVAL; 2026 } 2027 map->def.key_size = sz; 2028 map->btf_key_type_id = t->type; 2029 } else if (strcmp(name, "value_size") == 0) { 2030 __u32 sz; 2031 2032 if (!get_map_field_int(map_name, obj->btf, def, m, 2033 &sz)) 2034 return -EINVAL; 2035 pr_debug("map '%s': found value_size = %u.\n", 2036 map_name, sz); 2037 if (map->def.value_size && map->def.value_size != sz) { 2038 pr_warn("map '%s': conflicting value size %u != %u.\n", 2039 map_name, map->def.value_size, sz); 2040 return -EINVAL; 2041 } 2042 map->def.value_size = sz; 2043 } else if (strcmp(name, "value") == 0) { 2044 __s64 sz; 2045 2046 t = btf__type_by_id(obj->btf, m->type); 2047 if (!t) { 2048 pr_warn("map '%s': value type [%d] not found.\n", 2049 map_name, m->type); 2050 return -EINVAL; 2051 } 2052 if (!btf_is_ptr(t)) { 2053 pr_warn("map '%s': value spec is not PTR: %u.\n", 2054 map_name, btf_kind(t)); 2055 return -EINVAL; 2056 } 2057 sz = btf__resolve_size(obj->btf, t->type); 2058 if (sz < 0) { 2059 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2060 map_name, t->type, (ssize_t)sz); 2061 return sz; 2062 } 2063 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2064 map_name, t->type, (ssize_t)sz); 2065 if (map->def.value_size && map->def.value_size != sz) { 2066 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2067 map_name, map->def.value_size, (ssize_t)sz); 2068 return -EINVAL; 2069 } 2070 map->def.value_size = sz; 2071 map->btf_value_type_id = t->type; 2072 } else if (strcmp(name, "pinning") == 0) { 2073 __u32 val; 2074 int err; 2075 2076 if (!get_map_field_int(map_name, obj->btf, def, m, 2077 &val)) 2078 return -EINVAL; 2079 pr_debug("map '%s': found pinning = %u.\n", 2080 map_name, val); 2081 2082 if (val != LIBBPF_PIN_NONE && 2083 val != LIBBPF_PIN_BY_NAME) { 2084 pr_warn("map '%s': invalid pinning value %u.\n", 2085 map_name, val); 2086 return -EINVAL; 2087 } 2088 if (val == LIBBPF_PIN_BY_NAME) { 2089 err = build_map_pin_path(map, pin_root_path); 2090 if (err) { 2091 pr_warn("map '%s': couldn't build pin path.\n", 2092 map_name); 2093 return err; 2094 } 2095 } 2096 } else { 2097 if (strict) { 2098 pr_warn("map '%s': unknown field '%s'.\n", 2099 map_name, name); 2100 return -ENOTSUP; 2101 } 2102 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2103 map_name, name); 2104 } 2105 } 2106 2107 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2108 pr_warn("map '%s': map type isn't specified.\n", map_name); 2109 return -EINVAL; 2110 } 2111 2112 return 0; 2113 } 2114 2115 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2116 const char *pin_root_path) 2117 { 2118 const struct btf_type *sec = NULL; 2119 int nr_types, i, vlen, err; 2120 const struct btf_type *t; 2121 const char *name; 2122 Elf_Data *data; 2123 Elf_Scn *scn; 2124 2125 if (obj->efile.btf_maps_shndx < 0) 2126 return 0; 2127 2128 scn = elf_getscn(obj->efile.elf, obj->efile.btf_maps_shndx); 2129 if (scn) 2130 data = elf_getdata(scn, NULL); 2131 if (!scn || !data) { 2132 pr_warn("failed to get Elf_Data from map section %d (%s)\n", 2133 obj->efile.maps_shndx, MAPS_ELF_SEC); 2134 return -EINVAL; 2135 } 2136 2137 nr_types = btf__get_nr_types(obj->btf); 2138 for (i = 1; i <= nr_types; i++) { 2139 t = btf__type_by_id(obj->btf, i); 2140 if (!btf_is_datasec(t)) 2141 continue; 2142 name = btf__name_by_offset(obj->btf, t->name_off); 2143 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2144 sec = t; 2145 break; 2146 } 2147 } 2148 2149 if (!sec) { 2150 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2151 return -ENOENT; 2152 } 2153 2154 vlen = btf_vlen(sec); 2155 for (i = 0; i < vlen; i++) { 2156 err = bpf_object__init_user_btf_map(obj, sec, i, 2157 obj->efile.btf_maps_shndx, 2158 data, strict, 2159 pin_root_path); 2160 if (err) 2161 return err; 2162 } 2163 2164 return 0; 2165 } 2166 2167 static int bpf_object__init_maps(struct bpf_object *obj, 2168 const struct bpf_object_open_opts *opts) 2169 { 2170 const char *pin_root_path; 2171 bool strict; 2172 int err; 2173 2174 strict = !OPTS_GET(opts, relaxed_maps, false); 2175 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2176 2177 err = bpf_object__init_user_maps(obj, strict); 2178 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2179 err = err ?: bpf_object__init_global_data_maps(obj); 2180 err = err ?: bpf_object__init_kconfig_map(obj); 2181 err = err ?: bpf_object__init_struct_ops_maps(obj); 2182 if (err) 2183 return err; 2184 2185 return 0; 2186 } 2187 2188 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2189 { 2190 Elf_Scn *scn; 2191 GElf_Shdr sh; 2192 2193 scn = elf_getscn(obj->efile.elf, idx); 2194 if (!scn) 2195 return false; 2196 2197 if (gelf_getshdr(scn, &sh) != &sh) 2198 return false; 2199 2200 if (sh.sh_flags & SHF_EXECINSTR) 2201 return true; 2202 2203 return false; 2204 } 2205 2206 static void bpf_object__sanitize_btf(struct bpf_object *obj) 2207 { 2208 bool has_func_global = obj->caps.btf_func_global; 2209 bool has_datasec = obj->caps.btf_datasec; 2210 bool has_func = obj->caps.btf_func; 2211 struct btf *btf = obj->btf; 2212 struct btf_type *t; 2213 int i, j, vlen; 2214 2215 if (!obj->btf || (has_func && has_datasec && has_func_global)) 2216 return; 2217 2218 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2219 t = (struct btf_type *)btf__type_by_id(btf, i); 2220 2221 if (!has_datasec && btf_is_var(t)) { 2222 /* replace VAR with INT */ 2223 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2224 /* 2225 * using size = 1 is the safest choice, 4 will be too 2226 * big and cause kernel BTF validation failure if 2227 * original variable took less than 4 bytes 2228 */ 2229 t->size = 1; 2230 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2231 } else if (!has_datasec && btf_is_datasec(t)) { 2232 /* replace DATASEC with STRUCT */ 2233 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2234 struct btf_member *m = btf_members(t); 2235 struct btf_type *vt; 2236 char *name; 2237 2238 name = (char *)btf__name_by_offset(btf, t->name_off); 2239 while (*name) { 2240 if (*name == '.') 2241 *name = '_'; 2242 name++; 2243 } 2244 2245 vlen = btf_vlen(t); 2246 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2247 for (j = 0; j < vlen; j++, v++, m++) { 2248 /* order of field assignments is important */ 2249 m->offset = v->offset * 8; 2250 m->type = v->type; 2251 /* preserve variable name as member name */ 2252 vt = (void *)btf__type_by_id(btf, v->type); 2253 m->name_off = vt->name_off; 2254 } 2255 } else if (!has_func && btf_is_func_proto(t)) { 2256 /* replace FUNC_PROTO with ENUM */ 2257 vlen = btf_vlen(t); 2258 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2259 t->size = sizeof(__u32); /* kernel enforced */ 2260 } else if (!has_func && btf_is_func(t)) { 2261 /* replace FUNC with TYPEDEF */ 2262 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2263 } else if (!has_func_global && btf_is_func(t)) { 2264 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2265 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2266 } 2267 } 2268 } 2269 2270 static void bpf_object__sanitize_btf_ext(struct bpf_object *obj) 2271 { 2272 if (!obj->btf_ext) 2273 return; 2274 2275 if (!obj->caps.btf_func) { 2276 btf_ext__free(obj->btf_ext); 2277 obj->btf_ext = NULL; 2278 } 2279 } 2280 2281 static bool bpf_object__is_btf_mandatory(const struct bpf_object *obj) 2282 { 2283 return obj->efile.btf_maps_shndx >= 0 || 2284 obj->efile.st_ops_shndx >= 0 || 2285 obj->nr_extern > 0; 2286 } 2287 2288 static int bpf_object__init_btf(struct bpf_object *obj, 2289 Elf_Data *btf_data, 2290 Elf_Data *btf_ext_data) 2291 { 2292 int err = -ENOENT; 2293 2294 if (btf_data) { 2295 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2296 if (IS_ERR(obj->btf)) { 2297 err = PTR_ERR(obj->btf); 2298 obj->btf = NULL; 2299 pr_warn("Error loading ELF section %s: %d.\n", 2300 BTF_ELF_SEC, err); 2301 goto out; 2302 } 2303 err = 0; 2304 } 2305 if (btf_ext_data) { 2306 if (!obj->btf) { 2307 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2308 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2309 goto out; 2310 } 2311 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2312 btf_ext_data->d_size); 2313 if (IS_ERR(obj->btf_ext)) { 2314 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2315 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2316 obj->btf_ext = NULL; 2317 goto out; 2318 } 2319 } 2320 out: 2321 if (err && bpf_object__is_btf_mandatory(obj)) { 2322 pr_warn("BTF is required, but is missing or corrupted.\n"); 2323 return err; 2324 } 2325 return 0; 2326 } 2327 2328 static int bpf_object__finalize_btf(struct bpf_object *obj) 2329 { 2330 int err; 2331 2332 if (!obj->btf) 2333 return 0; 2334 2335 err = btf__finalize_data(obj, obj->btf); 2336 if (!err) 2337 return 0; 2338 2339 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2340 btf__free(obj->btf); 2341 obj->btf = NULL; 2342 btf_ext__free(obj->btf_ext); 2343 obj->btf_ext = NULL; 2344 2345 if (bpf_object__is_btf_mandatory(obj)) { 2346 pr_warn("BTF is required, but is missing or corrupted.\n"); 2347 return -ENOENT; 2348 } 2349 return 0; 2350 } 2351 2352 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2353 { 2354 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) 2355 return true; 2356 2357 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2358 * also need vmlinux BTF 2359 */ 2360 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2361 return true; 2362 2363 return false; 2364 } 2365 2366 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2367 { 2368 struct bpf_program *prog; 2369 int err; 2370 2371 bpf_object__for_each_program(prog, obj) { 2372 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2373 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2374 if (IS_ERR(obj->btf_vmlinux)) { 2375 err = PTR_ERR(obj->btf_vmlinux); 2376 pr_warn("Error loading vmlinux BTF: %d\n", err); 2377 obj->btf_vmlinux = NULL; 2378 return err; 2379 } 2380 return 0; 2381 } 2382 } 2383 2384 return 0; 2385 } 2386 2387 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2388 { 2389 int err = 0; 2390 2391 if (!obj->btf) 2392 return 0; 2393 2394 bpf_object__sanitize_btf(obj); 2395 bpf_object__sanitize_btf_ext(obj); 2396 2397 err = btf__load(obj->btf); 2398 if (err) { 2399 pr_warn("Error loading %s into kernel: %d.\n", 2400 BTF_ELF_SEC, err); 2401 btf__free(obj->btf); 2402 obj->btf = NULL; 2403 /* btf_ext can't exist without btf, so free it as well */ 2404 if (obj->btf_ext) { 2405 btf_ext__free(obj->btf_ext); 2406 obj->btf_ext = NULL; 2407 } 2408 2409 if (bpf_object__is_btf_mandatory(obj)) 2410 return err; 2411 } 2412 return 0; 2413 } 2414 2415 static int bpf_object__elf_collect(struct bpf_object *obj) 2416 { 2417 Elf *elf = obj->efile.elf; 2418 GElf_Ehdr *ep = &obj->efile.ehdr; 2419 Elf_Data *btf_ext_data = NULL; 2420 Elf_Data *btf_data = NULL; 2421 Elf_Scn *scn = NULL; 2422 int idx = 0, err = 0; 2423 2424 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 2425 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) { 2426 pr_warn("failed to get e_shstrndx from %s\n", obj->path); 2427 return -LIBBPF_ERRNO__FORMAT; 2428 } 2429 2430 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2431 char *name; 2432 GElf_Shdr sh; 2433 Elf_Data *data; 2434 2435 idx++; 2436 if (gelf_getshdr(scn, &sh) != &sh) { 2437 pr_warn("failed to get section(%d) header from %s\n", 2438 idx, obj->path); 2439 return -LIBBPF_ERRNO__FORMAT; 2440 } 2441 2442 name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 2443 if (!name) { 2444 pr_warn("failed to get section(%d) name from %s\n", 2445 idx, obj->path); 2446 return -LIBBPF_ERRNO__FORMAT; 2447 } 2448 2449 data = elf_getdata(scn, 0); 2450 if (!data) { 2451 pr_warn("failed to get section(%d) data from %s(%s)\n", 2452 idx, name, obj->path); 2453 return -LIBBPF_ERRNO__FORMAT; 2454 } 2455 pr_debug("section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2456 idx, name, (unsigned long)data->d_size, 2457 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2458 (int)sh.sh_type); 2459 2460 if (strcmp(name, "license") == 0) { 2461 err = bpf_object__init_license(obj, 2462 data->d_buf, 2463 data->d_size); 2464 if (err) 2465 return err; 2466 } else if (strcmp(name, "version") == 0) { 2467 err = bpf_object__init_kversion(obj, 2468 data->d_buf, 2469 data->d_size); 2470 if (err) 2471 return err; 2472 } else if (strcmp(name, "maps") == 0) { 2473 obj->efile.maps_shndx = idx; 2474 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2475 obj->efile.btf_maps_shndx = idx; 2476 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2477 btf_data = data; 2478 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2479 btf_ext_data = data; 2480 } else if (sh.sh_type == SHT_SYMTAB) { 2481 if (obj->efile.symbols) { 2482 pr_warn("bpf: multiple SYMTAB in %s\n", 2483 obj->path); 2484 return -LIBBPF_ERRNO__FORMAT; 2485 } 2486 obj->efile.symbols = data; 2487 obj->efile.symbols_shndx = idx; 2488 obj->efile.strtabidx = sh.sh_link; 2489 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2490 if (sh.sh_flags & SHF_EXECINSTR) { 2491 if (strcmp(name, ".text") == 0) 2492 obj->efile.text_shndx = idx; 2493 err = bpf_object__add_program(obj, data->d_buf, 2494 data->d_size, 2495 name, idx); 2496 if (err) { 2497 char errmsg[STRERR_BUFSIZE]; 2498 char *cp; 2499 2500 cp = libbpf_strerror_r(-err, errmsg, 2501 sizeof(errmsg)); 2502 pr_warn("failed to alloc program %s (%s): %s", 2503 name, obj->path, cp); 2504 return err; 2505 } 2506 } else if (strcmp(name, DATA_SEC) == 0) { 2507 obj->efile.data = data; 2508 obj->efile.data_shndx = idx; 2509 } else if (strcmp(name, RODATA_SEC) == 0) { 2510 obj->efile.rodata = data; 2511 obj->efile.rodata_shndx = idx; 2512 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2513 obj->efile.st_ops_data = data; 2514 obj->efile.st_ops_shndx = idx; 2515 } else { 2516 pr_debug("skip section(%d) %s\n", idx, name); 2517 } 2518 } else if (sh.sh_type == SHT_REL) { 2519 int nr_sects = obj->efile.nr_reloc_sects; 2520 void *sects = obj->efile.reloc_sects; 2521 int sec = sh.sh_info; /* points to other section */ 2522 2523 /* Only do relo for section with exec instructions */ 2524 if (!section_have_execinstr(obj, sec) && 2525 strcmp(name, ".rel" STRUCT_OPS_SEC)) { 2526 pr_debug("skip relo %s(%d) for section(%d)\n", 2527 name, idx, sec); 2528 continue; 2529 } 2530 2531 sects = reallocarray(sects, nr_sects + 1, 2532 sizeof(*obj->efile.reloc_sects)); 2533 if (!sects) { 2534 pr_warn("reloc_sects realloc failed\n"); 2535 return -ENOMEM; 2536 } 2537 2538 obj->efile.reloc_sects = sects; 2539 obj->efile.nr_reloc_sects++; 2540 2541 obj->efile.reloc_sects[nr_sects].shdr = sh; 2542 obj->efile.reloc_sects[nr_sects].data = data; 2543 } else if (sh.sh_type == SHT_NOBITS && 2544 strcmp(name, BSS_SEC) == 0) { 2545 obj->efile.bss = data; 2546 obj->efile.bss_shndx = idx; 2547 } else { 2548 pr_debug("skip section(%d) %s\n", idx, name); 2549 } 2550 } 2551 2552 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2553 pr_warn("Corrupted ELF file: index of strtab invalid\n"); 2554 return -LIBBPF_ERRNO__FORMAT; 2555 } 2556 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2557 } 2558 2559 static bool sym_is_extern(const GElf_Sym *sym) 2560 { 2561 int bind = GELF_ST_BIND(sym->st_info); 2562 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2563 return sym->st_shndx == SHN_UNDEF && 2564 (bind == STB_GLOBAL || bind == STB_WEAK) && 2565 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2566 } 2567 2568 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2569 { 2570 const struct btf_type *t; 2571 const char *var_name; 2572 int i, n; 2573 2574 if (!btf) 2575 return -ESRCH; 2576 2577 n = btf__get_nr_types(btf); 2578 for (i = 1; i <= n; i++) { 2579 t = btf__type_by_id(btf, i); 2580 2581 if (!btf_is_var(t)) 2582 continue; 2583 2584 var_name = btf__name_by_offset(btf, t->name_off); 2585 if (strcmp(var_name, ext_name)) 2586 continue; 2587 2588 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2589 return -EINVAL; 2590 2591 return i; 2592 } 2593 2594 return -ENOENT; 2595 } 2596 2597 static enum extern_type find_extern_type(const struct btf *btf, int id, 2598 bool *is_signed) 2599 { 2600 const struct btf_type *t; 2601 const char *name; 2602 2603 t = skip_mods_and_typedefs(btf, id, NULL); 2604 name = btf__name_by_offset(btf, t->name_off); 2605 2606 if (is_signed) 2607 *is_signed = false; 2608 switch (btf_kind(t)) { 2609 case BTF_KIND_INT: { 2610 int enc = btf_int_encoding(t); 2611 2612 if (enc & BTF_INT_BOOL) 2613 return t->size == 1 ? EXT_BOOL : EXT_UNKNOWN; 2614 if (is_signed) 2615 *is_signed = enc & BTF_INT_SIGNED; 2616 if (t->size == 1) 2617 return EXT_CHAR; 2618 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 2619 return EXT_UNKNOWN; 2620 return EXT_INT; 2621 } 2622 case BTF_KIND_ENUM: 2623 if (t->size != 4) 2624 return EXT_UNKNOWN; 2625 if (strcmp(name, "libbpf_tristate")) 2626 return EXT_UNKNOWN; 2627 return EXT_TRISTATE; 2628 case BTF_KIND_ARRAY: 2629 if (btf_array(t)->nelems == 0) 2630 return EXT_UNKNOWN; 2631 if (find_extern_type(btf, btf_array(t)->type, NULL) != EXT_CHAR) 2632 return EXT_UNKNOWN; 2633 return EXT_CHAR_ARR; 2634 default: 2635 return EXT_UNKNOWN; 2636 } 2637 } 2638 2639 static int cmp_externs(const void *_a, const void *_b) 2640 { 2641 const struct extern_desc *a = _a; 2642 const struct extern_desc *b = _b; 2643 2644 /* descending order by alignment requirements */ 2645 if (a->align != b->align) 2646 return a->align > b->align ? -1 : 1; 2647 /* ascending order by size, within same alignment class */ 2648 if (a->sz != b->sz) 2649 return a->sz < b->sz ? -1 : 1; 2650 /* resolve ties by name */ 2651 return strcmp(a->name, b->name); 2652 } 2653 2654 static int bpf_object__collect_externs(struct bpf_object *obj) 2655 { 2656 const struct btf_type *t; 2657 struct extern_desc *ext; 2658 int i, n, off, btf_id; 2659 struct btf_type *sec; 2660 const char *ext_name; 2661 Elf_Scn *scn; 2662 GElf_Shdr sh; 2663 2664 if (!obj->efile.symbols) 2665 return 0; 2666 2667 scn = elf_getscn(obj->efile.elf, obj->efile.symbols_shndx); 2668 if (!scn) 2669 return -LIBBPF_ERRNO__FORMAT; 2670 if (gelf_getshdr(scn, &sh) != &sh) 2671 return -LIBBPF_ERRNO__FORMAT; 2672 n = sh.sh_size / sh.sh_entsize; 2673 2674 pr_debug("looking for externs among %d symbols...\n", n); 2675 for (i = 0; i < n; i++) { 2676 GElf_Sym sym; 2677 2678 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 2679 return -LIBBPF_ERRNO__FORMAT; 2680 if (!sym_is_extern(&sym)) 2681 continue; 2682 ext_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 2683 sym.st_name); 2684 if (!ext_name || !ext_name[0]) 2685 continue; 2686 2687 ext = obj->externs; 2688 ext = reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 2689 if (!ext) 2690 return -ENOMEM; 2691 obj->externs = ext; 2692 ext = &ext[obj->nr_extern]; 2693 memset(ext, 0, sizeof(*ext)); 2694 obj->nr_extern++; 2695 2696 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 2697 if (ext->btf_id <= 0) { 2698 pr_warn("failed to find BTF for extern '%s': %d\n", 2699 ext_name, ext->btf_id); 2700 return ext->btf_id; 2701 } 2702 t = btf__type_by_id(obj->btf, ext->btf_id); 2703 ext->name = btf__name_by_offset(obj->btf, t->name_off); 2704 ext->sym_idx = i; 2705 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 2706 ext->sz = btf__resolve_size(obj->btf, t->type); 2707 if (ext->sz <= 0) { 2708 pr_warn("failed to resolve size of extern '%s': %d\n", 2709 ext_name, ext->sz); 2710 return ext->sz; 2711 } 2712 ext->align = btf__align_of(obj->btf, t->type); 2713 if (ext->align <= 0) { 2714 pr_warn("failed to determine alignment of extern '%s': %d\n", 2715 ext_name, ext->align); 2716 return -EINVAL; 2717 } 2718 ext->type = find_extern_type(obj->btf, t->type, 2719 &ext->is_signed); 2720 if (ext->type == EXT_UNKNOWN) { 2721 pr_warn("extern '%s' type is unsupported\n", ext_name); 2722 return -ENOTSUP; 2723 } 2724 } 2725 pr_debug("collected %d externs total\n", obj->nr_extern); 2726 2727 if (!obj->nr_extern) 2728 return 0; 2729 2730 /* sort externs by (alignment, size, name) and calculate their offsets 2731 * within a map */ 2732 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 2733 off = 0; 2734 for (i = 0; i < obj->nr_extern; i++) { 2735 ext = &obj->externs[i]; 2736 ext->data_off = roundup(off, ext->align); 2737 off = ext->data_off + ext->sz; 2738 pr_debug("extern #%d: symbol %d, off %u, name %s\n", 2739 i, ext->sym_idx, ext->data_off, ext->name); 2740 } 2741 2742 btf_id = btf__find_by_name(obj->btf, KCONFIG_SEC); 2743 if (btf_id <= 0) { 2744 pr_warn("no BTF info found for '%s' datasec\n", KCONFIG_SEC); 2745 return -ESRCH; 2746 } 2747 2748 sec = (struct btf_type *)btf__type_by_id(obj->btf, btf_id); 2749 sec->size = off; 2750 n = btf_vlen(sec); 2751 for (i = 0; i < n; i++) { 2752 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 2753 2754 t = btf__type_by_id(obj->btf, vs->type); 2755 ext_name = btf__name_by_offset(obj->btf, t->name_off); 2756 ext = find_extern_by_name(obj, ext_name); 2757 if (!ext) { 2758 pr_warn("failed to find extern definition for BTF var '%s'\n", 2759 ext_name); 2760 return -ESRCH; 2761 } 2762 vs->offset = ext->data_off; 2763 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 2764 } 2765 2766 return 0; 2767 } 2768 2769 static struct bpf_program * 2770 bpf_object__find_prog_by_idx(struct bpf_object *obj, int idx) 2771 { 2772 struct bpf_program *prog; 2773 size_t i; 2774 2775 for (i = 0; i < obj->nr_programs; i++) { 2776 prog = &obj->programs[i]; 2777 if (prog->idx == idx) 2778 return prog; 2779 } 2780 return NULL; 2781 } 2782 2783 struct bpf_program * 2784 bpf_object__find_program_by_title(const struct bpf_object *obj, 2785 const char *title) 2786 { 2787 struct bpf_program *pos; 2788 2789 bpf_object__for_each_program(pos, obj) { 2790 if (pos->section_name && !strcmp(pos->section_name, title)) 2791 return pos; 2792 } 2793 return NULL; 2794 } 2795 2796 struct bpf_program * 2797 bpf_object__find_program_by_name(const struct bpf_object *obj, 2798 const char *name) 2799 { 2800 struct bpf_program *prog; 2801 2802 bpf_object__for_each_program(prog, obj) { 2803 if (!strcmp(prog->name, name)) 2804 return prog; 2805 } 2806 return NULL; 2807 } 2808 2809 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 2810 int shndx) 2811 { 2812 return shndx == obj->efile.data_shndx || 2813 shndx == obj->efile.bss_shndx || 2814 shndx == obj->efile.rodata_shndx; 2815 } 2816 2817 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 2818 int shndx) 2819 { 2820 return shndx == obj->efile.maps_shndx || 2821 shndx == obj->efile.btf_maps_shndx; 2822 } 2823 2824 static enum libbpf_map_type 2825 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 2826 { 2827 if (shndx == obj->efile.data_shndx) 2828 return LIBBPF_MAP_DATA; 2829 else if (shndx == obj->efile.bss_shndx) 2830 return LIBBPF_MAP_BSS; 2831 else if (shndx == obj->efile.rodata_shndx) 2832 return LIBBPF_MAP_RODATA; 2833 else if (shndx == obj->efile.symbols_shndx) 2834 return LIBBPF_MAP_KCONFIG; 2835 else 2836 return LIBBPF_MAP_UNSPEC; 2837 } 2838 2839 static int bpf_program__record_reloc(struct bpf_program *prog, 2840 struct reloc_desc *reloc_desc, 2841 __u32 insn_idx, const char *name, 2842 const GElf_Sym *sym, const GElf_Rel *rel) 2843 { 2844 struct bpf_insn *insn = &prog->insns[insn_idx]; 2845 size_t map_idx, nr_maps = prog->obj->nr_maps; 2846 struct bpf_object *obj = prog->obj; 2847 __u32 shdr_idx = sym->st_shndx; 2848 enum libbpf_map_type type; 2849 struct bpf_map *map; 2850 2851 /* sub-program call relocation */ 2852 if (insn->code == (BPF_JMP | BPF_CALL)) { 2853 if (insn->src_reg != BPF_PSEUDO_CALL) { 2854 pr_warn("incorrect bpf_call opcode\n"); 2855 return -LIBBPF_ERRNO__RELOC; 2856 } 2857 /* text_shndx can be 0, if no default "main" program exists */ 2858 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 2859 pr_warn("bad call relo against section %u\n", shdr_idx); 2860 return -LIBBPF_ERRNO__RELOC; 2861 } 2862 if (sym->st_value % 8) { 2863 pr_warn("bad call relo offset: %zu\n", 2864 (size_t)sym->st_value); 2865 return -LIBBPF_ERRNO__RELOC; 2866 } 2867 reloc_desc->type = RELO_CALL; 2868 reloc_desc->insn_idx = insn_idx; 2869 reloc_desc->sym_off = sym->st_value; 2870 obj->has_pseudo_calls = true; 2871 return 0; 2872 } 2873 2874 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 2875 pr_warn("invalid relo for insns[%d].code 0x%x\n", 2876 insn_idx, insn->code); 2877 return -LIBBPF_ERRNO__RELOC; 2878 } 2879 2880 if (sym_is_extern(sym)) { 2881 int sym_idx = GELF_R_SYM(rel->r_info); 2882 int i, n = obj->nr_extern; 2883 struct extern_desc *ext; 2884 2885 for (i = 0; i < n; i++) { 2886 ext = &obj->externs[i]; 2887 if (ext->sym_idx == sym_idx) 2888 break; 2889 } 2890 if (i >= n) { 2891 pr_warn("extern relo failed to find extern for sym %d\n", 2892 sym_idx); 2893 return -LIBBPF_ERRNO__RELOC; 2894 } 2895 pr_debug("found extern #%d '%s' (sym %d, off %u) for insn %u\n", 2896 i, ext->name, ext->sym_idx, ext->data_off, insn_idx); 2897 reloc_desc->type = RELO_EXTERN; 2898 reloc_desc->insn_idx = insn_idx; 2899 reloc_desc->sym_off = ext->data_off; 2900 return 0; 2901 } 2902 2903 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 2904 pr_warn("invalid relo for \'%s\' in special section 0x%x; forgot to initialize global var?..\n", 2905 name, shdr_idx); 2906 return -LIBBPF_ERRNO__RELOC; 2907 } 2908 2909 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 2910 2911 /* generic map reference relocation */ 2912 if (type == LIBBPF_MAP_UNSPEC) { 2913 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 2914 pr_warn("bad map relo against section %u\n", 2915 shdr_idx); 2916 return -LIBBPF_ERRNO__RELOC; 2917 } 2918 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 2919 map = &obj->maps[map_idx]; 2920 if (map->libbpf_type != type || 2921 map->sec_idx != sym->st_shndx || 2922 map->sec_offset != sym->st_value) 2923 continue; 2924 pr_debug("found map %zd (%s, sec %d, off %zu) for insn %u\n", 2925 map_idx, map->name, map->sec_idx, 2926 map->sec_offset, insn_idx); 2927 break; 2928 } 2929 if (map_idx >= nr_maps) { 2930 pr_warn("map relo failed to find map for sec %u, off %zu\n", 2931 shdr_idx, (size_t)sym->st_value); 2932 return -LIBBPF_ERRNO__RELOC; 2933 } 2934 reloc_desc->type = RELO_LD64; 2935 reloc_desc->insn_idx = insn_idx; 2936 reloc_desc->map_idx = map_idx; 2937 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 2938 return 0; 2939 } 2940 2941 /* global data map relocation */ 2942 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 2943 pr_warn("bad data relo against section %u\n", shdr_idx); 2944 return -LIBBPF_ERRNO__RELOC; 2945 } 2946 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 2947 map = &obj->maps[map_idx]; 2948 if (map->libbpf_type != type) 2949 continue; 2950 pr_debug("found data map %zd (%s, sec %d, off %zu) for insn %u\n", 2951 map_idx, map->name, map->sec_idx, map->sec_offset, 2952 insn_idx); 2953 break; 2954 } 2955 if (map_idx >= nr_maps) { 2956 pr_warn("data relo failed to find map for sec %u\n", 2957 shdr_idx); 2958 return -LIBBPF_ERRNO__RELOC; 2959 } 2960 2961 reloc_desc->type = RELO_DATA; 2962 reloc_desc->insn_idx = insn_idx; 2963 reloc_desc->map_idx = map_idx; 2964 reloc_desc->sym_off = sym->st_value; 2965 return 0; 2966 } 2967 2968 static int 2969 bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr, 2970 Elf_Data *data, struct bpf_object *obj) 2971 { 2972 Elf_Data *symbols = obj->efile.symbols; 2973 int err, i, nrels; 2974 2975 pr_debug("collecting relocating info for: '%s'\n", prog->section_name); 2976 nrels = shdr->sh_size / shdr->sh_entsize; 2977 2978 prog->reloc_desc = malloc(sizeof(*prog->reloc_desc) * nrels); 2979 if (!prog->reloc_desc) { 2980 pr_warn("failed to alloc memory in relocation\n"); 2981 return -ENOMEM; 2982 } 2983 prog->nr_reloc = nrels; 2984 2985 for (i = 0; i < nrels; i++) { 2986 const char *name; 2987 __u32 insn_idx; 2988 GElf_Sym sym; 2989 GElf_Rel rel; 2990 2991 if (!gelf_getrel(data, i, &rel)) { 2992 pr_warn("relocation: failed to get %d reloc\n", i); 2993 return -LIBBPF_ERRNO__FORMAT; 2994 } 2995 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 2996 pr_warn("relocation: symbol %"PRIx64" not found\n", 2997 GELF_R_SYM(rel.r_info)); 2998 return -LIBBPF_ERRNO__FORMAT; 2999 } 3000 if (rel.r_offset % sizeof(struct bpf_insn)) 3001 return -LIBBPF_ERRNO__FORMAT; 3002 3003 insn_idx = rel.r_offset / sizeof(struct bpf_insn); 3004 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 3005 sym.st_name) ? : "<?>"; 3006 3007 pr_debug("relo for shdr %u, symb %zu, value %zu, type %d, bind %d, name %d (\'%s\'), insn %u\n", 3008 (__u32)sym.st_shndx, (size_t)GELF_R_SYM(rel.r_info), 3009 (size_t)sym.st_value, GELF_ST_TYPE(sym.st_info), 3010 GELF_ST_BIND(sym.st_info), sym.st_name, name, 3011 insn_idx); 3012 3013 err = bpf_program__record_reloc(prog, &prog->reloc_desc[i], 3014 insn_idx, name, &sym, &rel); 3015 if (err) 3016 return err; 3017 } 3018 return 0; 3019 } 3020 3021 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3022 { 3023 struct bpf_map_def *def = &map->def; 3024 __u32 key_type_id = 0, value_type_id = 0; 3025 int ret; 3026 3027 /* if it's BTF-defined map, we don't need to search for type IDs. 3028 * For struct_ops map, it does not need btf_key_type_id and 3029 * btf_value_type_id. 3030 */ 3031 if (map->sec_idx == obj->efile.btf_maps_shndx || 3032 bpf_map__is_struct_ops(map)) 3033 return 0; 3034 3035 if (!bpf_map__is_internal(map)) { 3036 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3037 def->value_size, &key_type_id, 3038 &value_type_id); 3039 } else { 3040 /* 3041 * LLVM annotates global data differently in BTF, that is, 3042 * only as '.data', '.bss' or '.rodata'. 3043 */ 3044 ret = btf__find_by_name(obj->btf, 3045 libbpf_type_to_btf_name[map->libbpf_type]); 3046 } 3047 if (ret < 0) 3048 return ret; 3049 3050 map->btf_key_type_id = key_type_id; 3051 map->btf_value_type_id = bpf_map__is_internal(map) ? 3052 ret : value_type_id; 3053 return 0; 3054 } 3055 3056 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3057 { 3058 struct bpf_map_info info = {}; 3059 __u32 len = sizeof(info); 3060 int new_fd, err; 3061 char *new_name; 3062 3063 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3064 if (err) 3065 return err; 3066 3067 new_name = strdup(info.name); 3068 if (!new_name) 3069 return -errno; 3070 3071 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3072 if (new_fd < 0) { 3073 err = -errno; 3074 goto err_free_new_name; 3075 } 3076 3077 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3078 if (new_fd < 0) { 3079 err = -errno; 3080 goto err_close_new_fd; 3081 } 3082 3083 err = zclose(map->fd); 3084 if (err) { 3085 err = -errno; 3086 goto err_close_new_fd; 3087 } 3088 free(map->name); 3089 3090 map->fd = new_fd; 3091 map->name = new_name; 3092 map->def.type = info.type; 3093 map->def.key_size = info.key_size; 3094 map->def.value_size = info.value_size; 3095 map->def.max_entries = info.max_entries; 3096 map->def.map_flags = info.map_flags; 3097 map->btf_key_type_id = info.btf_key_type_id; 3098 map->btf_value_type_id = info.btf_value_type_id; 3099 map->reused = true; 3100 3101 return 0; 3102 3103 err_close_new_fd: 3104 close(new_fd); 3105 err_free_new_name: 3106 free(new_name); 3107 return err; 3108 } 3109 3110 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3111 { 3112 if (!map || !max_entries) 3113 return -EINVAL; 3114 3115 /* If map already created, its attributes can't be changed. */ 3116 if (map->fd >= 0) 3117 return -EBUSY; 3118 3119 map->def.max_entries = max_entries; 3120 3121 return 0; 3122 } 3123 3124 static int 3125 bpf_object__probe_name(struct bpf_object *obj) 3126 { 3127 struct bpf_load_program_attr attr; 3128 char *cp, errmsg[STRERR_BUFSIZE]; 3129 struct bpf_insn insns[] = { 3130 BPF_MOV64_IMM(BPF_REG_0, 0), 3131 BPF_EXIT_INSN(), 3132 }; 3133 int ret; 3134 3135 /* make sure basic loading works */ 3136 3137 memset(&attr, 0, sizeof(attr)); 3138 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3139 attr.insns = insns; 3140 attr.insns_cnt = ARRAY_SIZE(insns); 3141 attr.license = "GPL"; 3142 3143 ret = bpf_load_program_xattr(&attr, NULL, 0); 3144 if (ret < 0) { 3145 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 3146 pr_warn("Error in %s():%s(%d). Couldn't load basic 'r0 = 0' BPF program.\n", 3147 __func__, cp, errno); 3148 return -errno; 3149 } 3150 close(ret); 3151 3152 /* now try the same program, but with the name */ 3153 3154 attr.name = "test"; 3155 ret = bpf_load_program_xattr(&attr, NULL, 0); 3156 if (ret >= 0) { 3157 obj->caps.name = 1; 3158 close(ret); 3159 } 3160 3161 return 0; 3162 } 3163 3164 static int 3165 bpf_object__probe_global_data(struct bpf_object *obj) 3166 { 3167 struct bpf_load_program_attr prg_attr; 3168 struct bpf_create_map_attr map_attr; 3169 char *cp, errmsg[STRERR_BUFSIZE]; 3170 struct bpf_insn insns[] = { 3171 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3172 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3173 BPF_MOV64_IMM(BPF_REG_0, 0), 3174 BPF_EXIT_INSN(), 3175 }; 3176 int ret, map; 3177 3178 memset(&map_attr, 0, sizeof(map_attr)); 3179 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3180 map_attr.key_size = sizeof(int); 3181 map_attr.value_size = 32; 3182 map_attr.max_entries = 1; 3183 3184 map = bpf_create_map_xattr(&map_attr); 3185 if (map < 0) { 3186 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 3187 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3188 __func__, cp, errno); 3189 return -errno; 3190 } 3191 3192 insns[0].imm = map; 3193 3194 memset(&prg_attr, 0, sizeof(prg_attr)); 3195 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3196 prg_attr.insns = insns; 3197 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3198 prg_attr.license = "GPL"; 3199 3200 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3201 if (ret >= 0) { 3202 obj->caps.global_data = 1; 3203 close(ret); 3204 } 3205 3206 close(map); 3207 return 0; 3208 } 3209 3210 static int bpf_object__probe_btf_func(struct bpf_object *obj) 3211 { 3212 static const char strs[] = "\0int\0x\0a"; 3213 /* void x(int a) {} */ 3214 __u32 types[] = { 3215 /* int */ 3216 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3217 /* FUNC_PROTO */ /* [2] */ 3218 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3219 BTF_PARAM_ENC(7, 1), 3220 /* FUNC x */ /* [3] */ 3221 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3222 }; 3223 int btf_fd; 3224 3225 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3226 strs, sizeof(strs)); 3227 if (btf_fd >= 0) { 3228 obj->caps.btf_func = 1; 3229 close(btf_fd); 3230 return 1; 3231 } 3232 3233 return 0; 3234 } 3235 3236 static int bpf_object__probe_btf_func_global(struct bpf_object *obj) 3237 { 3238 static const char strs[] = "\0int\0x\0a"; 3239 /* static void x(int a) {} */ 3240 __u32 types[] = { 3241 /* int */ 3242 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3243 /* FUNC_PROTO */ /* [2] */ 3244 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3245 BTF_PARAM_ENC(7, 1), 3246 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3247 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3248 }; 3249 int btf_fd; 3250 3251 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3252 strs, sizeof(strs)); 3253 if (btf_fd >= 0) { 3254 obj->caps.btf_func_global = 1; 3255 close(btf_fd); 3256 return 1; 3257 } 3258 3259 return 0; 3260 } 3261 3262 static int bpf_object__probe_btf_datasec(struct bpf_object *obj) 3263 { 3264 static const char strs[] = "\0x\0.data"; 3265 /* static int a; */ 3266 __u32 types[] = { 3267 /* int */ 3268 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3269 /* VAR x */ /* [2] */ 3270 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3271 BTF_VAR_STATIC, 3272 /* DATASEC val */ /* [3] */ 3273 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3274 BTF_VAR_SECINFO_ENC(2, 0, 4), 3275 }; 3276 int btf_fd; 3277 3278 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3279 strs, sizeof(strs)); 3280 if (btf_fd >= 0) { 3281 obj->caps.btf_datasec = 1; 3282 close(btf_fd); 3283 return 1; 3284 } 3285 3286 return 0; 3287 } 3288 3289 static int bpf_object__probe_array_mmap(struct bpf_object *obj) 3290 { 3291 struct bpf_create_map_attr attr = { 3292 .map_type = BPF_MAP_TYPE_ARRAY, 3293 .map_flags = BPF_F_MMAPABLE, 3294 .key_size = sizeof(int), 3295 .value_size = sizeof(int), 3296 .max_entries = 1, 3297 }; 3298 int fd; 3299 3300 fd = bpf_create_map_xattr(&attr); 3301 if (fd >= 0) { 3302 obj->caps.array_mmap = 1; 3303 close(fd); 3304 return 1; 3305 } 3306 3307 return 0; 3308 } 3309 3310 static int 3311 bpf_object__probe_caps(struct bpf_object *obj) 3312 { 3313 int (*probe_fn[])(struct bpf_object *obj) = { 3314 bpf_object__probe_name, 3315 bpf_object__probe_global_data, 3316 bpf_object__probe_btf_func, 3317 bpf_object__probe_btf_func_global, 3318 bpf_object__probe_btf_datasec, 3319 bpf_object__probe_array_mmap, 3320 }; 3321 int i, ret; 3322 3323 for (i = 0; i < ARRAY_SIZE(probe_fn); i++) { 3324 ret = probe_fn[i](obj); 3325 if (ret < 0) 3326 pr_debug("Probe #%d failed with %d.\n", i, ret); 3327 } 3328 3329 return 0; 3330 } 3331 3332 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 3333 { 3334 struct bpf_map_info map_info = {}; 3335 char msg[STRERR_BUFSIZE]; 3336 __u32 map_info_len; 3337 3338 map_info_len = sizeof(map_info); 3339 3340 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 3341 pr_warn("failed to get map info for map FD %d: %s\n", 3342 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 3343 return false; 3344 } 3345 3346 return (map_info.type == map->def.type && 3347 map_info.key_size == map->def.key_size && 3348 map_info.value_size == map->def.value_size && 3349 map_info.max_entries == map->def.max_entries && 3350 map_info.map_flags == map->def.map_flags); 3351 } 3352 3353 static int 3354 bpf_object__reuse_map(struct bpf_map *map) 3355 { 3356 char *cp, errmsg[STRERR_BUFSIZE]; 3357 int err, pin_fd; 3358 3359 pin_fd = bpf_obj_get(map->pin_path); 3360 if (pin_fd < 0) { 3361 err = -errno; 3362 if (err == -ENOENT) { 3363 pr_debug("found no pinned map to reuse at '%s'\n", 3364 map->pin_path); 3365 return 0; 3366 } 3367 3368 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 3369 pr_warn("couldn't retrieve pinned map '%s': %s\n", 3370 map->pin_path, cp); 3371 return err; 3372 } 3373 3374 if (!map_is_reuse_compat(map, pin_fd)) { 3375 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 3376 map->pin_path); 3377 close(pin_fd); 3378 return -EINVAL; 3379 } 3380 3381 err = bpf_map__reuse_fd(map, pin_fd); 3382 if (err) { 3383 close(pin_fd); 3384 return err; 3385 } 3386 map->pinned = true; 3387 pr_debug("reused pinned map at '%s'\n", map->pin_path); 3388 3389 return 0; 3390 } 3391 3392 static int 3393 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 3394 { 3395 enum libbpf_map_type map_type = map->libbpf_type; 3396 char *cp, errmsg[STRERR_BUFSIZE]; 3397 int err, zero = 0; 3398 3399 /* kernel already zero-initializes .bss map. */ 3400 if (map_type == LIBBPF_MAP_BSS) 3401 return 0; 3402 3403 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 3404 if (err) { 3405 err = -errno; 3406 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3407 pr_warn("Error setting initial map(%s) contents: %s\n", 3408 map->name, cp); 3409 return err; 3410 } 3411 3412 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 3413 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 3414 err = bpf_map_freeze(map->fd); 3415 if (err) { 3416 err = -errno; 3417 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3418 pr_warn("Error freezing map(%s) as read-only: %s\n", 3419 map->name, cp); 3420 return err; 3421 } 3422 } 3423 return 0; 3424 } 3425 3426 static int 3427 bpf_object__create_maps(struct bpf_object *obj) 3428 { 3429 struct bpf_create_map_attr create_attr = {}; 3430 int nr_cpus = 0; 3431 unsigned int i; 3432 int err; 3433 3434 for (i = 0; i < obj->nr_maps; i++) { 3435 struct bpf_map *map = &obj->maps[i]; 3436 struct bpf_map_def *def = &map->def; 3437 char *cp, errmsg[STRERR_BUFSIZE]; 3438 int *pfd = &map->fd; 3439 3440 if (map->pin_path) { 3441 err = bpf_object__reuse_map(map); 3442 if (err) { 3443 pr_warn("error reusing pinned map %s\n", 3444 map->name); 3445 return err; 3446 } 3447 } 3448 3449 if (map->fd >= 0) { 3450 pr_debug("skip map create (preset) %s: fd=%d\n", 3451 map->name, map->fd); 3452 continue; 3453 } 3454 3455 if (obj->caps.name) 3456 create_attr.name = map->name; 3457 create_attr.map_ifindex = map->map_ifindex; 3458 create_attr.map_type = def->type; 3459 create_attr.map_flags = def->map_flags; 3460 create_attr.key_size = def->key_size; 3461 create_attr.value_size = def->value_size; 3462 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && 3463 !def->max_entries) { 3464 if (!nr_cpus) 3465 nr_cpus = libbpf_num_possible_cpus(); 3466 if (nr_cpus < 0) { 3467 pr_warn("failed to determine number of system CPUs: %d\n", 3468 nr_cpus); 3469 err = nr_cpus; 3470 goto err_out; 3471 } 3472 pr_debug("map '%s': setting size to %d\n", 3473 map->name, nr_cpus); 3474 create_attr.max_entries = nr_cpus; 3475 } else { 3476 create_attr.max_entries = def->max_entries; 3477 } 3478 create_attr.btf_fd = 0; 3479 create_attr.btf_key_type_id = 0; 3480 create_attr.btf_value_type_id = 0; 3481 if (bpf_map_type__is_map_in_map(def->type) && 3482 map->inner_map_fd >= 0) 3483 create_attr.inner_map_fd = map->inner_map_fd; 3484 if (bpf_map__is_struct_ops(map)) 3485 create_attr.btf_vmlinux_value_type_id = 3486 map->btf_vmlinux_value_type_id; 3487 3488 if (obj->btf && !bpf_map_find_btf_info(obj, map)) { 3489 create_attr.btf_fd = btf__fd(obj->btf); 3490 create_attr.btf_key_type_id = map->btf_key_type_id; 3491 create_attr.btf_value_type_id = map->btf_value_type_id; 3492 } 3493 3494 *pfd = bpf_create_map_xattr(&create_attr); 3495 if (*pfd < 0 && (create_attr.btf_key_type_id || 3496 create_attr.btf_value_type_id)) { 3497 err = -errno; 3498 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3499 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 3500 map->name, cp, err); 3501 create_attr.btf_fd = 0; 3502 create_attr.btf_key_type_id = 0; 3503 create_attr.btf_value_type_id = 0; 3504 map->btf_key_type_id = 0; 3505 map->btf_value_type_id = 0; 3506 *pfd = bpf_create_map_xattr(&create_attr); 3507 } 3508 3509 if (*pfd < 0) { 3510 size_t j; 3511 3512 err = -errno; 3513 err_out: 3514 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3515 pr_warn("failed to create map (name: '%s'): %s(%d)\n", 3516 map->name, cp, err); 3517 pr_perm_msg(err); 3518 for (j = 0; j < i; j++) 3519 zclose(obj->maps[j].fd); 3520 return err; 3521 } 3522 3523 if (bpf_map__is_internal(map)) { 3524 err = bpf_object__populate_internal_map(obj, map); 3525 if (err < 0) { 3526 zclose(*pfd); 3527 goto err_out; 3528 } 3529 } 3530 3531 if (map->pin_path && !map->pinned) { 3532 err = bpf_map__pin(map, NULL); 3533 if (err) { 3534 pr_warn("failed to auto-pin map name '%s' at '%s'\n", 3535 map->name, map->pin_path); 3536 return err; 3537 } 3538 } 3539 3540 pr_debug("created map %s: fd=%d\n", map->name, *pfd); 3541 } 3542 3543 return 0; 3544 } 3545 3546 static int 3547 check_btf_ext_reloc_err(struct bpf_program *prog, int err, 3548 void *btf_prog_info, const char *info_name) 3549 { 3550 if (err != -ENOENT) { 3551 pr_warn("Error in loading %s for sec %s.\n", 3552 info_name, prog->section_name); 3553 return err; 3554 } 3555 3556 /* err == -ENOENT (i.e. prog->section_name not found in btf_ext) */ 3557 3558 if (btf_prog_info) { 3559 /* 3560 * Some info has already been found but has problem 3561 * in the last btf_ext reloc. Must have to error out. 3562 */ 3563 pr_warn("Error in relocating %s for sec %s.\n", 3564 info_name, prog->section_name); 3565 return err; 3566 } 3567 3568 /* Have problem loading the very first info. Ignore the rest. */ 3569 pr_warn("Cannot find %s for main program sec %s. Ignore all %s.\n", 3570 info_name, prog->section_name, info_name); 3571 return 0; 3572 } 3573 3574 static int 3575 bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj, 3576 const char *section_name, __u32 insn_offset) 3577 { 3578 int err; 3579 3580 if (!insn_offset || prog->func_info) { 3581 /* 3582 * !insn_offset => main program 3583 * 3584 * For sub prog, the main program's func_info has to 3585 * be loaded first (i.e. prog->func_info != NULL) 3586 */ 3587 err = btf_ext__reloc_func_info(obj->btf, obj->btf_ext, 3588 section_name, insn_offset, 3589 &prog->func_info, 3590 &prog->func_info_cnt); 3591 if (err) 3592 return check_btf_ext_reloc_err(prog, err, 3593 prog->func_info, 3594 "bpf_func_info"); 3595 3596 prog->func_info_rec_size = btf_ext__func_info_rec_size(obj->btf_ext); 3597 } 3598 3599 if (!insn_offset || prog->line_info) { 3600 err = btf_ext__reloc_line_info(obj->btf, obj->btf_ext, 3601 section_name, insn_offset, 3602 &prog->line_info, 3603 &prog->line_info_cnt); 3604 if (err) 3605 return check_btf_ext_reloc_err(prog, err, 3606 prog->line_info, 3607 "bpf_line_info"); 3608 3609 prog->line_info_rec_size = btf_ext__line_info_rec_size(obj->btf_ext); 3610 } 3611 3612 return 0; 3613 } 3614 3615 #define BPF_CORE_SPEC_MAX_LEN 64 3616 3617 /* represents BPF CO-RE field or array element accessor */ 3618 struct bpf_core_accessor { 3619 __u32 type_id; /* struct/union type or array element type */ 3620 __u32 idx; /* field index or array index */ 3621 const char *name; /* field name or NULL for array accessor */ 3622 }; 3623 3624 struct bpf_core_spec { 3625 const struct btf *btf; 3626 /* high-level spec: named fields and array indices only */ 3627 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 3628 /* high-level spec length */ 3629 int len; 3630 /* raw, low-level spec: 1-to-1 with accessor spec string */ 3631 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 3632 /* raw spec length */ 3633 int raw_len; 3634 /* field bit offset represented by spec */ 3635 __u32 bit_offset; 3636 }; 3637 3638 static bool str_is_empty(const char *s) 3639 { 3640 return !s || !s[0]; 3641 } 3642 3643 static bool is_flex_arr(const struct btf *btf, 3644 const struct bpf_core_accessor *acc, 3645 const struct btf_array *arr) 3646 { 3647 const struct btf_type *t; 3648 3649 /* not a flexible array, if not inside a struct or has non-zero size */ 3650 if (!acc->name || arr->nelems > 0) 3651 return false; 3652 3653 /* has to be the last member of enclosing struct */ 3654 t = btf__type_by_id(btf, acc->type_id); 3655 return acc->idx == btf_vlen(t) - 1; 3656 } 3657 3658 /* 3659 * Turn bpf_field_reloc into a low- and high-level spec representation, 3660 * validating correctness along the way, as well as calculating resulting 3661 * field bit offset, specified by accessor string. Low-level spec captures 3662 * every single level of nestedness, including traversing anonymous 3663 * struct/union members. High-level one only captures semantically meaningful 3664 * "turning points": named fields and array indicies. 3665 * E.g., for this case: 3666 * 3667 * struct sample { 3668 * int __unimportant; 3669 * struct { 3670 * int __1; 3671 * int __2; 3672 * int a[7]; 3673 * }; 3674 * }; 3675 * 3676 * struct sample *s = ...; 3677 * 3678 * int x = &s->a[3]; // access string = '0:1:2:3' 3679 * 3680 * Low-level spec has 1:1 mapping with each element of access string (it's 3681 * just a parsed access string representation): [0, 1, 2, 3]. 3682 * 3683 * High-level spec will capture only 3 points: 3684 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 3685 * - field 'a' access (corresponds to '2' in low-level spec); 3686 * - array element #3 access (corresponds to '3' in low-level spec). 3687 * 3688 */ 3689 static int bpf_core_spec_parse(const struct btf *btf, 3690 __u32 type_id, 3691 const char *spec_str, 3692 struct bpf_core_spec *spec) 3693 { 3694 int access_idx, parsed_len, i; 3695 struct bpf_core_accessor *acc; 3696 const struct btf_type *t; 3697 const char *name; 3698 __u32 id; 3699 __s64 sz; 3700 3701 if (str_is_empty(spec_str) || *spec_str == ':') 3702 return -EINVAL; 3703 3704 memset(spec, 0, sizeof(*spec)); 3705 spec->btf = btf; 3706 3707 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 3708 while (*spec_str) { 3709 if (*spec_str == ':') 3710 ++spec_str; 3711 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 3712 return -EINVAL; 3713 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 3714 return -E2BIG; 3715 spec_str += parsed_len; 3716 spec->raw_spec[spec->raw_len++] = access_idx; 3717 } 3718 3719 if (spec->raw_len == 0) 3720 return -EINVAL; 3721 3722 /* first spec value is always reloc type array index */ 3723 t = skip_mods_and_typedefs(btf, type_id, &id); 3724 if (!t) 3725 return -EINVAL; 3726 3727 access_idx = spec->raw_spec[0]; 3728 spec->spec[0].type_id = id; 3729 spec->spec[0].idx = access_idx; 3730 spec->len++; 3731 3732 sz = btf__resolve_size(btf, id); 3733 if (sz < 0) 3734 return sz; 3735 spec->bit_offset = access_idx * sz * 8; 3736 3737 for (i = 1; i < spec->raw_len; i++) { 3738 t = skip_mods_and_typedefs(btf, id, &id); 3739 if (!t) 3740 return -EINVAL; 3741 3742 access_idx = spec->raw_spec[i]; 3743 acc = &spec->spec[spec->len]; 3744 3745 if (btf_is_composite(t)) { 3746 const struct btf_member *m; 3747 __u32 bit_offset; 3748 3749 if (access_idx >= btf_vlen(t)) 3750 return -EINVAL; 3751 3752 bit_offset = btf_member_bit_offset(t, access_idx); 3753 spec->bit_offset += bit_offset; 3754 3755 m = btf_members(t) + access_idx; 3756 if (m->name_off) { 3757 name = btf__name_by_offset(btf, m->name_off); 3758 if (str_is_empty(name)) 3759 return -EINVAL; 3760 3761 acc->type_id = id; 3762 acc->idx = access_idx; 3763 acc->name = name; 3764 spec->len++; 3765 } 3766 3767 id = m->type; 3768 } else if (btf_is_array(t)) { 3769 const struct btf_array *a = btf_array(t); 3770 bool flex; 3771 3772 t = skip_mods_and_typedefs(btf, a->type, &id); 3773 if (!t) 3774 return -EINVAL; 3775 3776 flex = is_flex_arr(btf, acc - 1, a); 3777 if (!flex && access_idx >= a->nelems) 3778 return -EINVAL; 3779 3780 spec->spec[spec->len].type_id = id; 3781 spec->spec[spec->len].idx = access_idx; 3782 spec->len++; 3783 3784 sz = btf__resolve_size(btf, id); 3785 if (sz < 0) 3786 return sz; 3787 spec->bit_offset += access_idx * sz * 8; 3788 } else { 3789 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n", 3790 type_id, spec_str, i, id, btf_kind(t)); 3791 return -EINVAL; 3792 } 3793 } 3794 3795 return 0; 3796 } 3797 3798 static bool bpf_core_is_flavor_sep(const char *s) 3799 { 3800 /* check X___Y name pattern, where X and Y are not underscores */ 3801 return s[0] != '_' && /* X */ 3802 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 3803 s[4] != '_'; /* Y */ 3804 } 3805 3806 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 3807 * before last triple underscore. Struct name part after last triple 3808 * underscore is ignored by BPF CO-RE relocation during relocation matching. 3809 */ 3810 static size_t bpf_core_essential_name_len(const char *name) 3811 { 3812 size_t n = strlen(name); 3813 int i; 3814 3815 for (i = n - 5; i >= 0; i--) { 3816 if (bpf_core_is_flavor_sep(name + i)) 3817 return i + 1; 3818 } 3819 return n; 3820 } 3821 3822 /* dynamically sized list of type IDs */ 3823 struct ids_vec { 3824 __u32 *data; 3825 int len; 3826 }; 3827 3828 static void bpf_core_free_cands(struct ids_vec *cand_ids) 3829 { 3830 free(cand_ids->data); 3831 free(cand_ids); 3832 } 3833 3834 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 3835 __u32 local_type_id, 3836 const struct btf *targ_btf) 3837 { 3838 size_t local_essent_len, targ_essent_len; 3839 const char *local_name, *targ_name; 3840 const struct btf_type *t; 3841 struct ids_vec *cand_ids; 3842 __u32 *new_ids; 3843 int i, err, n; 3844 3845 t = btf__type_by_id(local_btf, local_type_id); 3846 if (!t) 3847 return ERR_PTR(-EINVAL); 3848 3849 local_name = btf__name_by_offset(local_btf, t->name_off); 3850 if (str_is_empty(local_name)) 3851 return ERR_PTR(-EINVAL); 3852 local_essent_len = bpf_core_essential_name_len(local_name); 3853 3854 cand_ids = calloc(1, sizeof(*cand_ids)); 3855 if (!cand_ids) 3856 return ERR_PTR(-ENOMEM); 3857 3858 n = btf__get_nr_types(targ_btf); 3859 for (i = 1; i <= n; i++) { 3860 t = btf__type_by_id(targ_btf, i); 3861 targ_name = btf__name_by_offset(targ_btf, t->name_off); 3862 if (str_is_empty(targ_name)) 3863 continue; 3864 3865 targ_essent_len = bpf_core_essential_name_len(targ_name); 3866 if (targ_essent_len != local_essent_len) 3867 continue; 3868 3869 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 3870 pr_debug("[%d] %s: found candidate [%d] %s\n", 3871 local_type_id, local_name, i, targ_name); 3872 new_ids = reallocarray(cand_ids->data, 3873 cand_ids->len + 1, 3874 sizeof(*cand_ids->data)); 3875 if (!new_ids) { 3876 err = -ENOMEM; 3877 goto err_out; 3878 } 3879 cand_ids->data = new_ids; 3880 cand_ids->data[cand_ids->len++] = i; 3881 } 3882 } 3883 return cand_ids; 3884 err_out: 3885 bpf_core_free_cands(cand_ids); 3886 return ERR_PTR(err); 3887 } 3888 3889 /* Check two types for compatibility, skipping const/volatile/restrict and 3890 * typedefs, to ensure we are relocating compatible entities: 3891 * - any two STRUCTs/UNIONs are compatible and can be mixed; 3892 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 3893 * - any two PTRs are always compatible; 3894 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 3895 * least one of enums should be anonymous; 3896 * - for ENUMs, check sizes, names are ignored; 3897 * - for INT, size and signedness are ignored; 3898 * - for ARRAY, dimensionality is ignored, element types are checked for 3899 * compatibility recursively; 3900 * - everything else shouldn't be ever a target of relocation. 3901 * These rules are not set in stone and probably will be adjusted as we get 3902 * more experience with using BPF CO-RE relocations. 3903 */ 3904 static int bpf_core_fields_are_compat(const struct btf *local_btf, 3905 __u32 local_id, 3906 const struct btf *targ_btf, 3907 __u32 targ_id) 3908 { 3909 const struct btf_type *local_type, *targ_type; 3910 3911 recur: 3912 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 3913 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 3914 if (!local_type || !targ_type) 3915 return -EINVAL; 3916 3917 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 3918 return 1; 3919 if (btf_kind(local_type) != btf_kind(targ_type)) 3920 return 0; 3921 3922 switch (btf_kind(local_type)) { 3923 case BTF_KIND_PTR: 3924 return 1; 3925 case BTF_KIND_FWD: 3926 case BTF_KIND_ENUM: { 3927 const char *local_name, *targ_name; 3928 size_t local_len, targ_len; 3929 3930 local_name = btf__name_by_offset(local_btf, 3931 local_type->name_off); 3932 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 3933 local_len = bpf_core_essential_name_len(local_name); 3934 targ_len = bpf_core_essential_name_len(targ_name); 3935 /* one of them is anonymous or both w/ same flavor-less names */ 3936 return local_len == 0 || targ_len == 0 || 3937 (local_len == targ_len && 3938 strncmp(local_name, targ_name, local_len) == 0); 3939 } 3940 case BTF_KIND_INT: 3941 /* just reject deprecated bitfield-like integers; all other 3942 * integers are by default compatible between each other 3943 */ 3944 return btf_int_offset(local_type) == 0 && 3945 btf_int_offset(targ_type) == 0; 3946 case BTF_KIND_ARRAY: 3947 local_id = btf_array(local_type)->type; 3948 targ_id = btf_array(targ_type)->type; 3949 goto recur; 3950 default: 3951 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 3952 btf_kind(local_type), local_id, targ_id); 3953 return 0; 3954 } 3955 } 3956 3957 /* 3958 * Given single high-level named field accessor in local type, find 3959 * corresponding high-level accessor for a target type. Along the way, 3960 * maintain low-level spec for target as well. Also keep updating target 3961 * bit offset. 3962 * 3963 * Searching is performed through recursive exhaustive enumeration of all 3964 * fields of a struct/union. If there are any anonymous (embedded) 3965 * structs/unions, they are recursively searched as well. If field with 3966 * desired name is found, check compatibility between local and target types, 3967 * before returning result. 3968 * 3969 * 1 is returned, if field is found. 3970 * 0 is returned if no compatible field is found. 3971 * <0 is returned on error. 3972 */ 3973 static int bpf_core_match_member(const struct btf *local_btf, 3974 const struct bpf_core_accessor *local_acc, 3975 const struct btf *targ_btf, 3976 __u32 targ_id, 3977 struct bpf_core_spec *spec, 3978 __u32 *next_targ_id) 3979 { 3980 const struct btf_type *local_type, *targ_type; 3981 const struct btf_member *local_member, *m; 3982 const char *local_name, *targ_name; 3983 __u32 local_id; 3984 int i, n, found; 3985 3986 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 3987 if (!targ_type) 3988 return -EINVAL; 3989 if (!btf_is_composite(targ_type)) 3990 return 0; 3991 3992 local_id = local_acc->type_id; 3993 local_type = btf__type_by_id(local_btf, local_id); 3994 local_member = btf_members(local_type) + local_acc->idx; 3995 local_name = btf__name_by_offset(local_btf, local_member->name_off); 3996 3997 n = btf_vlen(targ_type); 3998 m = btf_members(targ_type); 3999 for (i = 0; i < n; i++, m++) { 4000 __u32 bit_offset; 4001 4002 bit_offset = btf_member_bit_offset(targ_type, i); 4003 4004 /* too deep struct/union/array nesting */ 4005 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4006 return -E2BIG; 4007 4008 /* speculate this member will be the good one */ 4009 spec->bit_offset += bit_offset; 4010 spec->raw_spec[spec->raw_len++] = i; 4011 4012 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4013 if (str_is_empty(targ_name)) { 4014 /* embedded struct/union, we need to go deeper */ 4015 found = bpf_core_match_member(local_btf, local_acc, 4016 targ_btf, m->type, 4017 spec, next_targ_id); 4018 if (found) /* either found or error */ 4019 return found; 4020 } else if (strcmp(local_name, targ_name) == 0) { 4021 /* matching named field */ 4022 struct bpf_core_accessor *targ_acc; 4023 4024 targ_acc = &spec->spec[spec->len++]; 4025 targ_acc->type_id = targ_id; 4026 targ_acc->idx = i; 4027 targ_acc->name = targ_name; 4028 4029 *next_targ_id = m->type; 4030 found = bpf_core_fields_are_compat(local_btf, 4031 local_member->type, 4032 targ_btf, m->type); 4033 if (!found) 4034 spec->len--; /* pop accessor */ 4035 return found; 4036 } 4037 /* member turned out not to be what we looked for */ 4038 spec->bit_offset -= bit_offset; 4039 spec->raw_len--; 4040 } 4041 4042 return 0; 4043 } 4044 4045 /* 4046 * Try to match local spec to a target type and, if successful, produce full 4047 * target spec (high-level, low-level + bit offset). 4048 */ 4049 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 4050 const struct btf *targ_btf, __u32 targ_id, 4051 struct bpf_core_spec *targ_spec) 4052 { 4053 const struct btf_type *targ_type; 4054 const struct bpf_core_accessor *local_acc; 4055 struct bpf_core_accessor *targ_acc; 4056 int i, sz, matched; 4057 4058 memset(targ_spec, 0, sizeof(*targ_spec)); 4059 targ_spec->btf = targ_btf; 4060 4061 local_acc = &local_spec->spec[0]; 4062 targ_acc = &targ_spec->spec[0]; 4063 4064 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 4065 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 4066 &targ_id); 4067 if (!targ_type) 4068 return -EINVAL; 4069 4070 if (local_acc->name) { 4071 matched = bpf_core_match_member(local_spec->btf, 4072 local_acc, 4073 targ_btf, targ_id, 4074 targ_spec, &targ_id); 4075 if (matched <= 0) 4076 return matched; 4077 } else { 4078 /* for i=0, targ_id is already treated as array element 4079 * type (because it's the original struct), for others 4080 * we should find array element type first 4081 */ 4082 if (i > 0) { 4083 const struct btf_array *a; 4084 bool flex; 4085 4086 if (!btf_is_array(targ_type)) 4087 return 0; 4088 4089 a = btf_array(targ_type); 4090 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 4091 if (!flex && local_acc->idx >= a->nelems) 4092 return 0; 4093 if (!skip_mods_and_typedefs(targ_btf, a->type, 4094 &targ_id)) 4095 return -EINVAL; 4096 } 4097 4098 /* too deep struct/union/array nesting */ 4099 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4100 return -E2BIG; 4101 4102 targ_acc->type_id = targ_id; 4103 targ_acc->idx = local_acc->idx; 4104 targ_acc->name = NULL; 4105 targ_spec->len++; 4106 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 4107 targ_spec->raw_len++; 4108 4109 sz = btf__resolve_size(targ_btf, targ_id); 4110 if (sz < 0) 4111 return sz; 4112 targ_spec->bit_offset += local_acc->idx * sz * 8; 4113 } 4114 } 4115 4116 return 1; 4117 } 4118 4119 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 4120 const struct bpf_field_reloc *relo, 4121 const struct bpf_core_spec *spec, 4122 __u32 *val, bool *validate) 4123 { 4124 const struct bpf_core_accessor *acc = &spec->spec[spec->len - 1]; 4125 const struct btf_type *t = btf__type_by_id(spec->btf, acc->type_id); 4126 __u32 byte_off, byte_sz, bit_off, bit_sz; 4127 const struct btf_member *m; 4128 const struct btf_type *mt; 4129 bool bitfield; 4130 __s64 sz; 4131 4132 /* a[n] accessor needs special handling */ 4133 if (!acc->name) { 4134 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 4135 *val = spec->bit_offset / 8; 4136 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 4137 sz = btf__resolve_size(spec->btf, acc->type_id); 4138 if (sz < 0) 4139 return -EINVAL; 4140 *val = sz; 4141 } else { 4142 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 4143 bpf_program__title(prog, false), 4144 relo->kind, relo->insn_off / 8); 4145 return -EINVAL; 4146 } 4147 if (validate) 4148 *validate = true; 4149 return 0; 4150 } 4151 4152 m = btf_members(t) + acc->idx; 4153 mt = skip_mods_and_typedefs(spec->btf, m->type, NULL); 4154 bit_off = spec->bit_offset; 4155 bit_sz = btf_member_bitfield_size(t, acc->idx); 4156 4157 bitfield = bit_sz > 0; 4158 if (bitfield) { 4159 byte_sz = mt->size; 4160 byte_off = bit_off / 8 / byte_sz * byte_sz; 4161 /* figure out smallest int size necessary for bitfield load */ 4162 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 4163 if (byte_sz >= 8) { 4164 /* bitfield can't be read with 64-bit read */ 4165 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 4166 bpf_program__title(prog, false), 4167 relo->kind, relo->insn_off / 8); 4168 return -E2BIG; 4169 } 4170 byte_sz *= 2; 4171 byte_off = bit_off / 8 / byte_sz * byte_sz; 4172 } 4173 } else { 4174 sz = btf__resolve_size(spec->btf, m->type); 4175 if (sz < 0) 4176 return -EINVAL; 4177 byte_sz = sz; 4178 byte_off = spec->bit_offset / 8; 4179 bit_sz = byte_sz * 8; 4180 } 4181 4182 /* for bitfields, all the relocatable aspects are ambiguous and we 4183 * might disagree with compiler, so turn off validation of expected 4184 * value, except for signedness 4185 */ 4186 if (validate) 4187 *validate = !bitfield; 4188 4189 switch (relo->kind) { 4190 case BPF_FIELD_BYTE_OFFSET: 4191 *val = byte_off; 4192 break; 4193 case BPF_FIELD_BYTE_SIZE: 4194 *val = byte_sz; 4195 break; 4196 case BPF_FIELD_SIGNED: 4197 /* enums will be assumed unsigned */ 4198 *val = btf_is_enum(mt) || 4199 (btf_int_encoding(mt) & BTF_INT_SIGNED); 4200 if (validate) 4201 *validate = true; /* signedness is never ambiguous */ 4202 break; 4203 case BPF_FIELD_LSHIFT_U64: 4204 #if __BYTE_ORDER == __LITTLE_ENDIAN 4205 *val = 64 - (bit_off + bit_sz - byte_off * 8); 4206 #else 4207 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 4208 #endif 4209 break; 4210 case BPF_FIELD_RSHIFT_U64: 4211 *val = 64 - bit_sz; 4212 if (validate) 4213 *validate = true; /* right shift is never ambiguous */ 4214 break; 4215 case BPF_FIELD_EXISTS: 4216 default: 4217 pr_warn("prog '%s': unknown relo %d at insn #%d\n", 4218 bpf_program__title(prog, false), 4219 relo->kind, relo->insn_off / 8); 4220 return -EINVAL; 4221 } 4222 4223 return 0; 4224 } 4225 4226 /* 4227 * Patch relocatable BPF instruction. 4228 * 4229 * Patched value is determined by relocation kind and target specification. 4230 * For field existence relocation target spec will be NULL if field is not 4231 * found. 4232 * Expected insn->imm value is determined using relocation kind and local 4233 * spec, and is checked before patching instruction. If actual insn->imm value 4234 * is wrong, bail out with error. 4235 * 4236 * Currently three kinds of BPF instructions are supported: 4237 * 1. rX = <imm> (assignment with immediate operand); 4238 * 2. rX += <imm> (arithmetic operations with immediate operand); 4239 */ 4240 static int bpf_core_reloc_insn(struct bpf_program *prog, 4241 const struct bpf_field_reloc *relo, 4242 int relo_idx, 4243 const struct bpf_core_spec *local_spec, 4244 const struct bpf_core_spec *targ_spec) 4245 { 4246 __u32 orig_val, new_val; 4247 struct bpf_insn *insn; 4248 bool validate = true; 4249 int insn_idx, err; 4250 __u8 class; 4251 4252 if (relo->insn_off % sizeof(struct bpf_insn)) 4253 return -EINVAL; 4254 insn_idx = relo->insn_off / sizeof(struct bpf_insn); 4255 insn = &prog->insns[insn_idx]; 4256 class = BPF_CLASS(insn->code); 4257 4258 if (relo->kind == BPF_FIELD_EXISTS) { 4259 orig_val = 1; /* can't generate EXISTS relo w/o local field */ 4260 new_val = targ_spec ? 1 : 0; 4261 } else if (!targ_spec) { 4262 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 4263 bpf_program__title(prog, false), relo_idx, insn_idx); 4264 insn->code = BPF_JMP | BPF_CALL; 4265 insn->dst_reg = 0; 4266 insn->src_reg = 0; 4267 insn->off = 0; 4268 /* if this instruction is reachable (not a dead code), 4269 * verifier will complain with the following message: 4270 * invalid func unknown#195896080 4271 */ 4272 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 4273 return 0; 4274 } else { 4275 err = bpf_core_calc_field_relo(prog, relo, local_spec, 4276 &orig_val, &validate); 4277 if (err) 4278 return err; 4279 err = bpf_core_calc_field_relo(prog, relo, targ_spec, 4280 &new_val, NULL); 4281 if (err) 4282 return err; 4283 } 4284 4285 switch (class) { 4286 case BPF_ALU: 4287 case BPF_ALU64: 4288 if (BPF_SRC(insn->code) != BPF_K) 4289 return -EINVAL; 4290 if (validate && insn->imm != orig_val) { 4291 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 4292 bpf_program__title(prog, false), relo_idx, 4293 insn_idx, insn->imm, orig_val, new_val); 4294 return -EINVAL; 4295 } 4296 orig_val = insn->imm; 4297 insn->imm = new_val; 4298 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 4299 bpf_program__title(prog, false), relo_idx, insn_idx, 4300 orig_val, new_val); 4301 break; 4302 case BPF_LDX: 4303 case BPF_ST: 4304 case BPF_STX: 4305 if (validate && insn->off != orig_val) { 4306 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LD/LDX/ST/STX) value: got %u, exp %u -> %u\n", 4307 bpf_program__title(prog, false), relo_idx, 4308 insn_idx, insn->off, orig_val, new_val); 4309 return -EINVAL; 4310 } 4311 if (new_val > SHRT_MAX) { 4312 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 4313 bpf_program__title(prog, false), relo_idx, 4314 insn_idx, new_val); 4315 return -ERANGE; 4316 } 4317 orig_val = insn->off; 4318 insn->off = new_val; 4319 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 4320 bpf_program__title(prog, false), relo_idx, insn_idx, 4321 orig_val, new_val); 4322 break; 4323 default: 4324 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n", 4325 bpf_program__title(prog, false), relo_idx, 4326 insn_idx, insn->code, insn->src_reg, insn->dst_reg, 4327 insn->off, insn->imm); 4328 return -EINVAL; 4329 } 4330 4331 return 0; 4332 } 4333 4334 /* Output spec definition in the format: 4335 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 4336 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 4337 */ 4338 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 4339 { 4340 const struct btf_type *t; 4341 const char *s; 4342 __u32 type_id; 4343 int i; 4344 4345 type_id = spec->spec[0].type_id; 4346 t = btf__type_by_id(spec->btf, type_id); 4347 s = btf__name_by_offset(spec->btf, t->name_off); 4348 libbpf_print(level, "[%u] %s + ", type_id, s); 4349 4350 for (i = 0; i < spec->raw_len; i++) 4351 libbpf_print(level, "%d%s", spec->raw_spec[i], 4352 i == spec->raw_len - 1 ? " => " : ":"); 4353 4354 libbpf_print(level, "%u.%u @ &x", 4355 spec->bit_offset / 8, spec->bit_offset % 8); 4356 4357 for (i = 0; i < spec->len; i++) { 4358 if (spec->spec[i].name) 4359 libbpf_print(level, ".%s", spec->spec[i].name); 4360 else 4361 libbpf_print(level, "[%u]", spec->spec[i].idx); 4362 } 4363 4364 } 4365 4366 static size_t bpf_core_hash_fn(const void *key, void *ctx) 4367 { 4368 return (size_t)key; 4369 } 4370 4371 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 4372 { 4373 return k1 == k2; 4374 } 4375 4376 static void *u32_as_hash_key(__u32 x) 4377 { 4378 return (void *)(uintptr_t)x; 4379 } 4380 4381 /* 4382 * CO-RE relocate single instruction. 4383 * 4384 * The outline and important points of the algorithm: 4385 * 1. For given local type, find corresponding candidate target types. 4386 * Candidate type is a type with the same "essential" name, ignoring 4387 * everything after last triple underscore (___). E.g., `sample`, 4388 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 4389 * for each other. Names with triple underscore are referred to as 4390 * "flavors" and are useful, among other things, to allow to 4391 * specify/support incompatible variations of the same kernel struct, which 4392 * might differ between different kernel versions and/or build 4393 * configurations. 4394 * 4395 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 4396 * converter, when deduplicated BTF of a kernel still contains more than 4397 * one different types with the same name. In that case, ___2, ___3, etc 4398 * are appended starting from second name conflict. But start flavors are 4399 * also useful to be defined "locally", in BPF program, to extract same 4400 * data from incompatible changes between different kernel 4401 * versions/configurations. For instance, to handle field renames between 4402 * kernel versions, one can use two flavors of the struct name with the 4403 * same common name and use conditional relocations to extract that field, 4404 * depending on target kernel version. 4405 * 2. For each candidate type, try to match local specification to this 4406 * candidate target type. Matching involves finding corresponding 4407 * high-level spec accessors, meaning that all named fields should match, 4408 * as well as all array accesses should be within the actual bounds. Also, 4409 * types should be compatible (see bpf_core_fields_are_compat for details). 4410 * 3. It is supported and expected that there might be multiple flavors 4411 * matching the spec. As long as all the specs resolve to the same set of 4412 * offsets across all candidates, there is no error. If there is any 4413 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 4414 * imprefection of BTF deduplication, which can cause slight duplication of 4415 * the same BTF type, if some directly or indirectly referenced (by 4416 * pointer) type gets resolved to different actual types in different 4417 * object files. If such situation occurs, deduplicated BTF will end up 4418 * with two (or more) structurally identical types, which differ only in 4419 * types they refer to through pointer. This should be OK in most cases and 4420 * is not an error. 4421 * 4. Candidate types search is performed by linearly scanning through all 4422 * types in target BTF. It is anticipated that this is overall more 4423 * efficient memory-wise and not significantly worse (if not better) 4424 * CPU-wise compared to prebuilding a map from all local type names to 4425 * a list of candidate type names. It's also sped up by caching resolved 4426 * list of matching candidates per each local "root" type ID, that has at 4427 * least one bpf_field_reloc associated with it. This list is shared 4428 * between multiple relocations for the same type ID and is updated as some 4429 * of the candidates are pruned due to structural incompatibility. 4430 */ 4431 static int bpf_core_reloc_field(struct bpf_program *prog, 4432 const struct bpf_field_reloc *relo, 4433 int relo_idx, 4434 const struct btf *local_btf, 4435 const struct btf *targ_btf, 4436 struct hashmap *cand_cache) 4437 { 4438 const char *prog_name = bpf_program__title(prog, false); 4439 struct bpf_core_spec local_spec, cand_spec, targ_spec; 4440 const void *type_key = u32_as_hash_key(relo->type_id); 4441 const struct btf_type *local_type, *cand_type; 4442 const char *local_name, *cand_name; 4443 struct ids_vec *cand_ids; 4444 __u32 local_id, cand_id; 4445 const char *spec_str; 4446 int i, j, err; 4447 4448 local_id = relo->type_id; 4449 local_type = btf__type_by_id(local_btf, local_id); 4450 if (!local_type) 4451 return -EINVAL; 4452 4453 local_name = btf__name_by_offset(local_btf, local_type->name_off); 4454 if (str_is_empty(local_name)) 4455 return -EINVAL; 4456 4457 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 4458 if (str_is_empty(spec_str)) 4459 return -EINVAL; 4460 4461 err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec); 4462 if (err) { 4463 pr_warn("prog '%s': relo #%d: parsing [%d] %s + %s failed: %d\n", 4464 prog_name, relo_idx, local_id, local_name, spec_str, 4465 err); 4466 return -EINVAL; 4467 } 4468 4469 pr_debug("prog '%s': relo #%d: kind %d, spec is ", prog_name, relo_idx, 4470 relo->kind); 4471 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 4472 libbpf_print(LIBBPF_DEBUG, "\n"); 4473 4474 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 4475 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 4476 if (IS_ERR(cand_ids)) { 4477 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s: %ld", 4478 prog_name, relo_idx, local_id, local_name, 4479 PTR_ERR(cand_ids)); 4480 return PTR_ERR(cand_ids); 4481 } 4482 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 4483 if (err) { 4484 bpf_core_free_cands(cand_ids); 4485 return err; 4486 } 4487 } 4488 4489 for (i = 0, j = 0; i < cand_ids->len; i++) { 4490 cand_id = cand_ids->data[i]; 4491 cand_type = btf__type_by_id(targ_btf, cand_id); 4492 cand_name = btf__name_by_offset(targ_btf, cand_type->name_off); 4493 4494 err = bpf_core_spec_match(&local_spec, targ_btf, 4495 cand_id, &cand_spec); 4496 pr_debug("prog '%s': relo #%d: matching candidate #%d %s against spec ", 4497 prog_name, relo_idx, i, cand_name); 4498 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 4499 libbpf_print(LIBBPF_DEBUG, ": %d\n", err); 4500 if (err < 0) { 4501 pr_warn("prog '%s': relo #%d: matching error: %d\n", 4502 prog_name, relo_idx, err); 4503 return err; 4504 } 4505 if (err == 0) 4506 continue; 4507 4508 if (j == 0) { 4509 targ_spec = cand_spec; 4510 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 4511 /* if there are many candidates, they should all 4512 * resolve to the same bit offset 4513 */ 4514 pr_warn("prog '%s': relo #%d: offset ambiguity: %u != %u\n", 4515 prog_name, relo_idx, cand_spec.bit_offset, 4516 targ_spec.bit_offset); 4517 return -EINVAL; 4518 } 4519 4520 cand_ids->data[j++] = cand_spec.spec[0].type_id; 4521 } 4522 4523 /* 4524 * For BPF_FIELD_EXISTS relo or when used BPF program has field 4525 * existence checks or kernel version/config checks, it's expected 4526 * that we might not find any candidates. In this case, if field 4527 * wasn't found in any candidate, the list of candidates shouldn't 4528 * change at all, we'll just handle relocating appropriately, 4529 * depending on relo's kind. 4530 */ 4531 if (j > 0) 4532 cand_ids->len = j; 4533 4534 /* 4535 * If no candidates were found, it might be both a programmer error, 4536 * as well as expected case, depending whether instruction w/ 4537 * relocation is guarded in some way that makes it unreachable (dead 4538 * code) if relocation can't be resolved. This is handled in 4539 * bpf_core_reloc_insn() uniformly by replacing that instruction with 4540 * BPF helper call insn (using invalid helper ID). If that instruction 4541 * is indeed unreachable, then it will be ignored and eliminated by 4542 * verifier. If it was an error, then verifier will complain and point 4543 * to a specific instruction number in its log. 4544 */ 4545 if (j == 0) 4546 pr_debug("prog '%s': relo #%d: no matching targets found for [%d] %s + %s\n", 4547 prog_name, relo_idx, local_id, local_name, spec_str); 4548 4549 /* bpf_core_reloc_insn should know how to handle missing targ_spec */ 4550 err = bpf_core_reloc_insn(prog, relo, relo_idx, &local_spec, 4551 j ? &targ_spec : NULL); 4552 if (err) { 4553 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 4554 prog_name, relo_idx, relo->insn_off, err); 4555 return -EINVAL; 4556 } 4557 4558 return 0; 4559 } 4560 4561 static int 4562 bpf_core_reloc_fields(struct bpf_object *obj, const char *targ_btf_path) 4563 { 4564 const struct btf_ext_info_sec *sec; 4565 const struct bpf_field_reloc *rec; 4566 const struct btf_ext_info *seg; 4567 struct hashmap_entry *entry; 4568 struct hashmap *cand_cache = NULL; 4569 struct bpf_program *prog; 4570 struct btf *targ_btf; 4571 const char *sec_name; 4572 int i, err = 0; 4573 4574 if (targ_btf_path) 4575 targ_btf = btf__parse_elf(targ_btf_path, NULL); 4576 else 4577 targ_btf = libbpf_find_kernel_btf(); 4578 if (IS_ERR(targ_btf)) { 4579 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 4580 return PTR_ERR(targ_btf); 4581 } 4582 4583 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 4584 if (IS_ERR(cand_cache)) { 4585 err = PTR_ERR(cand_cache); 4586 goto out; 4587 } 4588 4589 seg = &obj->btf_ext->field_reloc_info; 4590 for_each_btf_ext_sec(seg, sec) { 4591 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 4592 if (str_is_empty(sec_name)) { 4593 err = -EINVAL; 4594 goto out; 4595 } 4596 prog = bpf_object__find_program_by_title(obj, sec_name); 4597 if (!prog) { 4598 pr_warn("failed to find program '%s' for CO-RE offset relocation\n", 4599 sec_name); 4600 err = -EINVAL; 4601 goto out; 4602 } 4603 4604 pr_debug("prog '%s': performing %d CO-RE offset relocs\n", 4605 sec_name, sec->num_info); 4606 4607 for_each_btf_ext_rec(seg, sec, i, rec) { 4608 err = bpf_core_reloc_field(prog, rec, i, obj->btf, 4609 targ_btf, cand_cache); 4610 if (err) { 4611 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 4612 sec_name, i, err); 4613 goto out; 4614 } 4615 } 4616 } 4617 4618 out: 4619 btf__free(targ_btf); 4620 if (!IS_ERR_OR_NULL(cand_cache)) { 4621 hashmap__for_each_entry(cand_cache, entry, i) { 4622 bpf_core_free_cands(entry->value); 4623 } 4624 hashmap__free(cand_cache); 4625 } 4626 return err; 4627 } 4628 4629 static int 4630 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 4631 { 4632 int err = 0; 4633 4634 if (obj->btf_ext->field_reloc_info.len) 4635 err = bpf_core_reloc_fields(obj, targ_btf_path); 4636 4637 return err; 4638 } 4639 4640 static int 4641 bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj, 4642 struct reloc_desc *relo) 4643 { 4644 struct bpf_insn *insn, *new_insn; 4645 struct bpf_program *text; 4646 size_t new_cnt; 4647 int err; 4648 4649 if (prog->idx != obj->efile.text_shndx && prog->main_prog_cnt == 0) { 4650 text = bpf_object__find_prog_by_idx(obj, obj->efile.text_shndx); 4651 if (!text) { 4652 pr_warn("no .text section found yet relo into text exist\n"); 4653 return -LIBBPF_ERRNO__RELOC; 4654 } 4655 new_cnt = prog->insns_cnt + text->insns_cnt; 4656 new_insn = reallocarray(prog->insns, new_cnt, sizeof(*insn)); 4657 if (!new_insn) { 4658 pr_warn("oom in prog realloc\n"); 4659 return -ENOMEM; 4660 } 4661 prog->insns = new_insn; 4662 4663 if (obj->btf_ext) { 4664 err = bpf_program_reloc_btf_ext(prog, obj, 4665 text->section_name, 4666 prog->insns_cnt); 4667 if (err) 4668 return err; 4669 } 4670 4671 memcpy(new_insn + prog->insns_cnt, text->insns, 4672 text->insns_cnt * sizeof(*insn)); 4673 prog->main_prog_cnt = prog->insns_cnt; 4674 prog->insns_cnt = new_cnt; 4675 pr_debug("added %zd insn from %s to prog %s\n", 4676 text->insns_cnt, text->section_name, 4677 prog->section_name); 4678 } 4679 4680 insn = &prog->insns[relo->insn_idx]; 4681 insn->imm += relo->sym_off / 8 + prog->main_prog_cnt - relo->insn_idx; 4682 return 0; 4683 } 4684 4685 static int 4686 bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj) 4687 { 4688 int i, err; 4689 4690 if (!prog) 4691 return 0; 4692 4693 if (obj->btf_ext) { 4694 err = bpf_program_reloc_btf_ext(prog, obj, 4695 prog->section_name, 0); 4696 if (err) 4697 return err; 4698 } 4699 4700 if (!prog->reloc_desc) 4701 return 0; 4702 4703 for (i = 0; i < prog->nr_reloc; i++) { 4704 struct reloc_desc *relo = &prog->reloc_desc[i]; 4705 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 4706 4707 if (relo->insn_idx + 1 >= (int)prog->insns_cnt) { 4708 pr_warn("relocation out of range: '%s'\n", 4709 prog->section_name); 4710 return -LIBBPF_ERRNO__RELOC; 4711 } 4712 4713 switch (relo->type) { 4714 case RELO_LD64: 4715 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 4716 insn[0].imm = obj->maps[relo->map_idx].fd; 4717 break; 4718 case RELO_DATA: 4719 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 4720 insn[1].imm = insn[0].imm + relo->sym_off; 4721 insn[0].imm = obj->maps[relo->map_idx].fd; 4722 break; 4723 case RELO_EXTERN: 4724 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 4725 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 4726 insn[1].imm = relo->sym_off; 4727 break; 4728 case RELO_CALL: 4729 err = bpf_program__reloc_text(prog, obj, relo); 4730 if (err) 4731 return err; 4732 break; 4733 default: 4734 pr_warn("relo #%d: bad relo type %d\n", i, relo->type); 4735 return -EINVAL; 4736 } 4737 } 4738 4739 zfree(&prog->reloc_desc); 4740 prog->nr_reloc = 0; 4741 return 0; 4742 } 4743 4744 static int 4745 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 4746 { 4747 struct bpf_program *prog; 4748 size_t i; 4749 int err; 4750 4751 if (obj->btf_ext) { 4752 err = bpf_object__relocate_core(obj, targ_btf_path); 4753 if (err) { 4754 pr_warn("failed to perform CO-RE relocations: %d\n", 4755 err); 4756 return err; 4757 } 4758 } 4759 /* ensure .text is relocated first, as it's going to be copied as-is 4760 * later for sub-program calls 4761 */ 4762 for (i = 0; i < obj->nr_programs; i++) { 4763 prog = &obj->programs[i]; 4764 if (prog->idx != obj->efile.text_shndx) 4765 continue; 4766 4767 err = bpf_program__relocate(prog, obj); 4768 if (err) { 4769 pr_warn("failed to relocate '%s'\n", prog->section_name); 4770 return err; 4771 } 4772 break; 4773 } 4774 /* now relocate everything but .text, which by now is relocated 4775 * properly, so we can copy raw sub-program instructions as is safely 4776 */ 4777 for (i = 0; i < obj->nr_programs; i++) { 4778 prog = &obj->programs[i]; 4779 if (prog->idx == obj->efile.text_shndx) 4780 continue; 4781 4782 err = bpf_program__relocate(prog, obj); 4783 if (err) { 4784 pr_warn("failed to relocate '%s'\n", prog->section_name); 4785 return err; 4786 } 4787 } 4788 return 0; 4789 } 4790 4791 static int bpf_object__collect_struct_ops_map_reloc(struct bpf_object *obj, 4792 GElf_Shdr *shdr, 4793 Elf_Data *data); 4794 4795 static int bpf_object__collect_reloc(struct bpf_object *obj) 4796 { 4797 int i, err; 4798 4799 if (!obj_elf_valid(obj)) { 4800 pr_warn("Internal error: elf object is closed\n"); 4801 return -LIBBPF_ERRNO__INTERNAL; 4802 } 4803 4804 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 4805 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 4806 Elf_Data *data = obj->efile.reloc_sects[i].data; 4807 int idx = shdr->sh_info; 4808 struct bpf_program *prog; 4809 4810 if (shdr->sh_type != SHT_REL) { 4811 pr_warn("internal error at %d\n", __LINE__); 4812 return -LIBBPF_ERRNO__INTERNAL; 4813 } 4814 4815 if (idx == obj->efile.st_ops_shndx) { 4816 err = bpf_object__collect_struct_ops_map_reloc(obj, 4817 shdr, 4818 data); 4819 if (err) 4820 return err; 4821 continue; 4822 } 4823 4824 prog = bpf_object__find_prog_by_idx(obj, idx); 4825 if (!prog) { 4826 pr_warn("relocation failed: no section(%d)\n", idx); 4827 return -LIBBPF_ERRNO__RELOC; 4828 } 4829 4830 err = bpf_program__collect_reloc(prog, shdr, data, obj); 4831 if (err) 4832 return err; 4833 } 4834 return 0; 4835 } 4836 4837 static int 4838 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 4839 char *license, __u32 kern_version, int *pfd) 4840 { 4841 struct bpf_load_program_attr load_attr; 4842 char *cp, errmsg[STRERR_BUFSIZE]; 4843 int log_buf_size = BPF_LOG_BUF_SIZE; 4844 char *log_buf; 4845 int btf_fd, ret; 4846 4847 if (!insns || !insns_cnt) 4848 return -EINVAL; 4849 4850 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 4851 load_attr.prog_type = prog->type; 4852 load_attr.expected_attach_type = prog->expected_attach_type; 4853 if (prog->caps->name) 4854 load_attr.name = prog->name; 4855 load_attr.insns = insns; 4856 load_attr.insns_cnt = insns_cnt; 4857 load_attr.license = license; 4858 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS) { 4859 load_attr.attach_btf_id = prog->attach_btf_id; 4860 } else if (prog->type == BPF_PROG_TYPE_TRACING || 4861 prog->type == BPF_PROG_TYPE_EXT) { 4862 load_attr.attach_prog_fd = prog->attach_prog_fd; 4863 load_attr.attach_btf_id = prog->attach_btf_id; 4864 } else { 4865 load_attr.kern_version = kern_version; 4866 load_attr.prog_ifindex = prog->prog_ifindex; 4867 } 4868 /* if .BTF.ext was loaded, kernel supports associated BTF for prog */ 4869 if (prog->obj->btf_ext) 4870 btf_fd = bpf_object__btf_fd(prog->obj); 4871 else 4872 btf_fd = -1; 4873 load_attr.prog_btf_fd = btf_fd >= 0 ? btf_fd : 0; 4874 load_attr.func_info = prog->func_info; 4875 load_attr.func_info_rec_size = prog->func_info_rec_size; 4876 load_attr.func_info_cnt = prog->func_info_cnt; 4877 load_attr.line_info = prog->line_info; 4878 load_attr.line_info_rec_size = prog->line_info_rec_size; 4879 load_attr.line_info_cnt = prog->line_info_cnt; 4880 load_attr.log_level = prog->log_level; 4881 load_attr.prog_flags = prog->prog_flags; 4882 4883 retry_load: 4884 log_buf = malloc(log_buf_size); 4885 if (!log_buf) 4886 pr_warn("Alloc log buffer for bpf loader error, continue without log\n"); 4887 4888 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 4889 4890 if (ret >= 0) { 4891 if (load_attr.log_level) 4892 pr_debug("verifier log:\n%s", log_buf); 4893 *pfd = ret; 4894 ret = 0; 4895 goto out; 4896 } 4897 4898 if (errno == ENOSPC) { 4899 log_buf_size <<= 1; 4900 free(log_buf); 4901 goto retry_load; 4902 } 4903 ret = -errno; 4904 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 4905 pr_warn("load bpf program failed: %s\n", cp); 4906 pr_perm_msg(ret); 4907 4908 if (log_buf && log_buf[0] != '\0') { 4909 ret = -LIBBPF_ERRNO__VERIFY; 4910 pr_warn("-- BEGIN DUMP LOG ---\n"); 4911 pr_warn("\n%s\n", log_buf); 4912 pr_warn("-- END LOG --\n"); 4913 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 4914 pr_warn("Program too large (%zu insns), at most %d insns\n", 4915 load_attr.insns_cnt, BPF_MAXINSNS); 4916 ret = -LIBBPF_ERRNO__PROG2BIG; 4917 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 4918 /* Wrong program type? */ 4919 int fd; 4920 4921 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 4922 load_attr.expected_attach_type = 0; 4923 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 4924 if (fd >= 0) { 4925 close(fd); 4926 ret = -LIBBPF_ERRNO__PROGTYPE; 4927 goto out; 4928 } 4929 } 4930 4931 out: 4932 free(log_buf); 4933 return ret; 4934 } 4935 4936 static int libbpf_find_attach_btf_id(struct bpf_program *prog); 4937 4938 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 4939 { 4940 int err = 0, fd, i, btf_id; 4941 4942 if (prog->type == BPF_PROG_TYPE_TRACING || 4943 prog->type == BPF_PROG_TYPE_EXT) { 4944 btf_id = libbpf_find_attach_btf_id(prog); 4945 if (btf_id <= 0) 4946 return btf_id; 4947 prog->attach_btf_id = btf_id; 4948 } 4949 4950 if (prog->instances.nr < 0 || !prog->instances.fds) { 4951 if (prog->preprocessor) { 4952 pr_warn("Internal error: can't load program '%s'\n", 4953 prog->section_name); 4954 return -LIBBPF_ERRNO__INTERNAL; 4955 } 4956 4957 prog->instances.fds = malloc(sizeof(int)); 4958 if (!prog->instances.fds) { 4959 pr_warn("Not enough memory for BPF fds\n"); 4960 return -ENOMEM; 4961 } 4962 prog->instances.nr = 1; 4963 prog->instances.fds[0] = -1; 4964 } 4965 4966 if (!prog->preprocessor) { 4967 if (prog->instances.nr != 1) { 4968 pr_warn("Program '%s' is inconsistent: nr(%d) != 1\n", 4969 prog->section_name, prog->instances.nr); 4970 } 4971 err = load_program(prog, prog->insns, prog->insns_cnt, 4972 license, kern_ver, &fd); 4973 if (!err) 4974 prog->instances.fds[0] = fd; 4975 goto out; 4976 } 4977 4978 for (i = 0; i < prog->instances.nr; i++) { 4979 struct bpf_prog_prep_result result; 4980 bpf_program_prep_t preprocessor = prog->preprocessor; 4981 4982 memset(&result, 0, sizeof(result)); 4983 err = preprocessor(prog, i, prog->insns, 4984 prog->insns_cnt, &result); 4985 if (err) { 4986 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 4987 i, prog->section_name); 4988 goto out; 4989 } 4990 4991 if (!result.new_insn_ptr || !result.new_insn_cnt) { 4992 pr_debug("Skip loading the %dth instance of program '%s'\n", 4993 i, prog->section_name); 4994 prog->instances.fds[i] = -1; 4995 if (result.pfd) 4996 *result.pfd = -1; 4997 continue; 4998 } 4999 5000 err = load_program(prog, result.new_insn_ptr, 5001 result.new_insn_cnt, license, kern_ver, &fd); 5002 if (err) { 5003 pr_warn("Loading the %dth instance of program '%s' failed\n", 5004 i, prog->section_name); 5005 goto out; 5006 } 5007 5008 if (result.pfd) 5009 *result.pfd = fd; 5010 prog->instances.fds[i] = fd; 5011 } 5012 out: 5013 if (err) 5014 pr_warn("failed to load program '%s'\n", prog->section_name); 5015 zfree(&prog->insns); 5016 prog->insns_cnt = 0; 5017 return err; 5018 } 5019 5020 static bool bpf_program__is_function_storage(const struct bpf_program *prog, 5021 const struct bpf_object *obj) 5022 { 5023 return prog->idx == obj->efile.text_shndx && obj->has_pseudo_calls; 5024 } 5025 5026 static int 5027 bpf_object__load_progs(struct bpf_object *obj, int log_level) 5028 { 5029 size_t i; 5030 int err; 5031 5032 for (i = 0; i < obj->nr_programs; i++) { 5033 if (bpf_program__is_function_storage(&obj->programs[i], obj)) 5034 continue; 5035 obj->programs[i].log_level |= log_level; 5036 err = bpf_program__load(&obj->programs[i], 5037 obj->license, 5038 obj->kern_version); 5039 if (err) 5040 return err; 5041 } 5042 return 0; 5043 } 5044 5045 static struct bpf_object * 5046 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 5047 const struct bpf_object_open_opts *opts) 5048 { 5049 const char *obj_name, *kconfig; 5050 struct bpf_program *prog; 5051 struct bpf_object *obj; 5052 char tmp_name[64]; 5053 int err; 5054 5055 if (elf_version(EV_CURRENT) == EV_NONE) { 5056 pr_warn("failed to init libelf for %s\n", 5057 path ? : "(mem buf)"); 5058 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 5059 } 5060 5061 if (!OPTS_VALID(opts, bpf_object_open_opts)) 5062 return ERR_PTR(-EINVAL); 5063 5064 obj_name = OPTS_GET(opts, object_name, NULL); 5065 if (obj_buf) { 5066 if (!obj_name) { 5067 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 5068 (unsigned long)obj_buf, 5069 (unsigned long)obj_buf_sz); 5070 obj_name = tmp_name; 5071 } 5072 path = obj_name; 5073 pr_debug("loading object '%s' from buffer\n", obj_name); 5074 } 5075 5076 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 5077 if (IS_ERR(obj)) 5078 return obj; 5079 5080 kconfig = OPTS_GET(opts, kconfig, NULL); 5081 if (kconfig) { 5082 obj->kconfig = strdup(kconfig); 5083 if (!obj->kconfig) 5084 return ERR_PTR(-ENOMEM); 5085 } 5086 5087 err = bpf_object__elf_init(obj); 5088 err = err ? : bpf_object__check_endianness(obj); 5089 err = err ? : bpf_object__elf_collect(obj); 5090 err = err ? : bpf_object__collect_externs(obj); 5091 err = err ? : bpf_object__finalize_btf(obj); 5092 err = err ? : bpf_object__init_maps(obj, opts); 5093 err = err ? : bpf_object__init_prog_names(obj); 5094 err = err ? : bpf_object__collect_reloc(obj); 5095 if (err) 5096 goto out; 5097 bpf_object__elf_finish(obj); 5098 5099 bpf_object__for_each_program(prog, obj) { 5100 enum bpf_prog_type prog_type; 5101 enum bpf_attach_type attach_type; 5102 5103 if (prog->type != BPF_PROG_TYPE_UNSPEC) 5104 continue; 5105 5106 err = libbpf_prog_type_by_name(prog->section_name, &prog_type, 5107 &attach_type); 5108 if (err == -ESRCH) 5109 /* couldn't guess, but user might manually specify */ 5110 continue; 5111 if (err) 5112 goto out; 5113 5114 bpf_program__set_type(prog, prog_type); 5115 bpf_program__set_expected_attach_type(prog, attach_type); 5116 if (prog_type == BPF_PROG_TYPE_TRACING || 5117 prog_type == BPF_PROG_TYPE_EXT) 5118 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 5119 } 5120 5121 return obj; 5122 out: 5123 bpf_object__close(obj); 5124 return ERR_PTR(err); 5125 } 5126 5127 static struct bpf_object * 5128 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 5129 { 5130 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 5131 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 5132 ); 5133 5134 /* param validation */ 5135 if (!attr->file) 5136 return NULL; 5137 5138 pr_debug("loading %s\n", attr->file); 5139 return __bpf_object__open(attr->file, NULL, 0, &opts); 5140 } 5141 5142 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 5143 { 5144 return __bpf_object__open_xattr(attr, 0); 5145 } 5146 5147 struct bpf_object *bpf_object__open(const char *path) 5148 { 5149 struct bpf_object_open_attr attr = { 5150 .file = path, 5151 .prog_type = BPF_PROG_TYPE_UNSPEC, 5152 }; 5153 5154 return bpf_object__open_xattr(&attr); 5155 } 5156 5157 struct bpf_object * 5158 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 5159 { 5160 if (!path) 5161 return ERR_PTR(-EINVAL); 5162 5163 pr_debug("loading %s\n", path); 5164 5165 return __bpf_object__open(path, NULL, 0, opts); 5166 } 5167 5168 struct bpf_object * 5169 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 5170 const struct bpf_object_open_opts *opts) 5171 { 5172 if (!obj_buf || obj_buf_sz == 0) 5173 return ERR_PTR(-EINVAL); 5174 5175 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 5176 } 5177 5178 struct bpf_object * 5179 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 5180 const char *name) 5181 { 5182 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 5183 .object_name = name, 5184 /* wrong default, but backwards-compatible */ 5185 .relaxed_maps = true, 5186 ); 5187 5188 /* returning NULL is wrong, but backwards-compatible */ 5189 if (!obj_buf || obj_buf_sz == 0) 5190 return NULL; 5191 5192 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 5193 } 5194 5195 int bpf_object__unload(struct bpf_object *obj) 5196 { 5197 size_t i; 5198 5199 if (!obj) 5200 return -EINVAL; 5201 5202 for (i = 0; i < obj->nr_maps; i++) { 5203 zclose(obj->maps[i].fd); 5204 if (obj->maps[i].st_ops) 5205 zfree(&obj->maps[i].st_ops->kern_vdata); 5206 } 5207 5208 for (i = 0; i < obj->nr_programs; i++) 5209 bpf_program__unload(&obj->programs[i]); 5210 5211 return 0; 5212 } 5213 5214 static int bpf_object__sanitize_maps(struct bpf_object *obj) 5215 { 5216 struct bpf_map *m; 5217 5218 bpf_object__for_each_map(m, obj) { 5219 if (!bpf_map__is_internal(m)) 5220 continue; 5221 if (!obj->caps.global_data) { 5222 pr_warn("kernel doesn't support global data\n"); 5223 return -ENOTSUP; 5224 } 5225 if (!obj->caps.array_mmap) 5226 m->def.map_flags ^= BPF_F_MMAPABLE; 5227 } 5228 5229 return 0; 5230 } 5231 5232 static int bpf_object__resolve_externs(struct bpf_object *obj, 5233 const char *extra_kconfig) 5234 { 5235 bool need_config = false; 5236 struct extern_desc *ext; 5237 int err, i; 5238 void *data; 5239 5240 if (obj->nr_extern == 0) 5241 return 0; 5242 5243 data = obj->maps[obj->kconfig_map_idx].mmaped; 5244 5245 for (i = 0; i < obj->nr_extern; i++) { 5246 ext = &obj->externs[i]; 5247 5248 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 5249 void *ext_val = data + ext->data_off; 5250 __u32 kver = get_kernel_version(); 5251 5252 if (!kver) { 5253 pr_warn("failed to get kernel version\n"); 5254 return -EINVAL; 5255 } 5256 err = set_ext_value_num(ext, ext_val, kver); 5257 if (err) 5258 return err; 5259 pr_debug("extern %s=0x%x\n", ext->name, kver); 5260 } else if (strncmp(ext->name, "CONFIG_", 7) == 0) { 5261 need_config = true; 5262 } else { 5263 pr_warn("unrecognized extern '%s'\n", ext->name); 5264 return -EINVAL; 5265 } 5266 } 5267 if (need_config && extra_kconfig) { 5268 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, data); 5269 if (err) 5270 return -EINVAL; 5271 need_config = false; 5272 for (i = 0; i < obj->nr_extern; i++) { 5273 ext = &obj->externs[i]; 5274 if (!ext->is_set) { 5275 need_config = true; 5276 break; 5277 } 5278 } 5279 } 5280 if (need_config) { 5281 err = bpf_object__read_kconfig_file(obj, data); 5282 if (err) 5283 return -EINVAL; 5284 } 5285 for (i = 0; i < obj->nr_extern; i++) { 5286 ext = &obj->externs[i]; 5287 5288 if (!ext->is_set && !ext->is_weak) { 5289 pr_warn("extern %s (strong) not resolved\n", ext->name); 5290 return -ESRCH; 5291 } else if (!ext->is_set) { 5292 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 5293 ext->name); 5294 } 5295 } 5296 5297 return 0; 5298 } 5299 5300 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 5301 { 5302 struct bpf_object *obj; 5303 int err, i; 5304 5305 if (!attr) 5306 return -EINVAL; 5307 obj = attr->obj; 5308 if (!obj) 5309 return -EINVAL; 5310 5311 if (obj->loaded) { 5312 pr_warn("object should not be loaded twice\n"); 5313 return -EINVAL; 5314 } 5315 5316 obj->loaded = true; 5317 5318 err = bpf_object__probe_caps(obj); 5319 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 5320 err = err ? : bpf_object__sanitize_and_load_btf(obj); 5321 err = err ? : bpf_object__sanitize_maps(obj); 5322 err = err ? : bpf_object__load_vmlinux_btf(obj); 5323 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 5324 err = err ? : bpf_object__create_maps(obj); 5325 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 5326 err = err ? : bpf_object__load_progs(obj, attr->log_level); 5327 5328 btf__free(obj->btf_vmlinux); 5329 obj->btf_vmlinux = NULL; 5330 5331 if (err) 5332 goto out; 5333 5334 return 0; 5335 out: 5336 /* unpin any maps that were auto-pinned during load */ 5337 for (i = 0; i < obj->nr_maps; i++) 5338 if (obj->maps[i].pinned && !obj->maps[i].reused) 5339 bpf_map__unpin(&obj->maps[i], NULL); 5340 5341 bpf_object__unload(obj); 5342 pr_warn("failed to load object '%s'\n", obj->path); 5343 return err; 5344 } 5345 5346 int bpf_object__load(struct bpf_object *obj) 5347 { 5348 struct bpf_object_load_attr attr = { 5349 .obj = obj, 5350 }; 5351 5352 return bpf_object__load_xattr(&attr); 5353 } 5354 5355 static int make_parent_dir(const char *path) 5356 { 5357 char *cp, errmsg[STRERR_BUFSIZE]; 5358 char *dname, *dir; 5359 int err = 0; 5360 5361 dname = strdup(path); 5362 if (dname == NULL) 5363 return -ENOMEM; 5364 5365 dir = dirname(dname); 5366 if (mkdir(dir, 0700) && errno != EEXIST) 5367 err = -errno; 5368 5369 free(dname); 5370 if (err) { 5371 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5372 pr_warn("failed to mkdir %s: %s\n", path, cp); 5373 } 5374 return err; 5375 } 5376 5377 static int check_path(const char *path) 5378 { 5379 char *cp, errmsg[STRERR_BUFSIZE]; 5380 struct statfs st_fs; 5381 char *dname, *dir; 5382 int err = 0; 5383 5384 if (path == NULL) 5385 return -EINVAL; 5386 5387 dname = strdup(path); 5388 if (dname == NULL) 5389 return -ENOMEM; 5390 5391 dir = dirname(dname); 5392 if (statfs(dir, &st_fs)) { 5393 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 5394 pr_warn("failed to statfs %s: %s\n", dir, cp); 5395 err = -errno; 5396 } 5397 free(dname); 5398 5399 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 5400 pr_warn("specified path %s is not on BPF FS\n", path); 5401 err = -EINVAL; 5402 } 5403 5404 return err; 5405 } 5406 5407 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 5408 int instance) 5409 { 5410 char *cp, errmsg[STRERR_BUFSIZE]; 5411 int err; 5412 5413 err = make_parent_dir(path); 5414 if (err) 5415 return err; 5416 5417 err = check_path(path); 5418 if (err) 5419 return err; 5420 5421 if (prog == NULL) { 5422 pr_warn("invalid program pointer\n"); 5423 return -EINVAL; 5424 } 5425 5426 if (instance < 0 || instance >= prog->instances.nr) { 5427 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 5428 instance, prog->section_name, prog->instances.nr); 5429 return -EINVAL; 5430 } 5431 5432 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 5433 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 5434 pr_warn("failed to pin program: %s\n", cp); 5435 return -errno; 5436 } 5437 pr_debug("pinned program '%s'\n", path); 5438 5439 return 0; 5440 } 5441 5442 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 5443 int instance) 5444 { 5445 int err; 5446 5447 err = check_path(path); 5448 if (err) 5449 return err; 5450 5451 if (prog == NULL) { 5452 pr_warn("invalid program pointer\n"); 5453 return -EINVAL; 5454 } 5455 5456 if (instance < 0 || instance >= prog->instances.nr) { 5457 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 5458 instance, prog->section_name, prog->instances.nr); 5459 return -EINVAL; 5460 } 5461 5462 err = unlink(path); 5463 if (err != 0) 5464 return -errno; 5465 pr_debug("unpinned program '%s'\n", path); 5466 5467 return 0; 5468 } 5469 5470 int bpf_program__pin(struct bpf_program *prog, const char *path) 5471 { 5472 int i, err; 5473 5474 err = make_parent_dir(path); 5475 if (err) 5476 return err; 5477 5478 err = check_path(path); 5479 if (err) 5480 return err; 5481 5482 if (prog == NULL) { 5483 pr_warn("invalid program pointer\n"); 5484 return -EINVAL; 5485 } 5486 5487 if (prog->instances.nr <= 0) { 5488 pr_warn("no instances of prog %s to pin\n", 5489 prog->section_name); 5490 return -EINVAL; 5491 } 5492 5493 if (prog->instances.nr == 1) { 5494 /* don't create subdirs when pinning single instance */ 5495 return bpf_program__pin_instance(prog, path, 0); 5496 } 5497 5498 for (i = 0; i < prog->instances.nr; i++) { 5499 char buf[PATH_MAX]; 5500 int len; 5501 5502 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5503 if (len < 0) { 5504 err = -EINVAL; 5505 goto err_unpin; 5506 } else if (len >= PATH_MAX) { 5507 err = -ENAMETOOLONG; 5508 goto err_unpin; 5509 } 5510 5511 err = bpf_program__pin_instance(prog, buf, i); 5512 if (err) 5513 goto err_unpin; 5514 } 5515 5516 return 0; 5517 5518 err_unpin: 5519 for (i = i - 1; i >= 0; i--) { 5520 char buf[PATH_MAX]; 5521 int len; 5522 5523 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5524 if (len < 0) 5525 continue; 5526 else if (len >= PATH_MAX) 5527 continue; 5528 5529 bpf_program__unpin_instance(prog, buf, i); 5530 } 5531 5532 rmdir(path); 5533 5534 return err; 5535 } 5536 5537 int bpf_program__unpin(struct bpf_program *prog, const char *path) 5538 { 5539 int i, err; 5540 5541 err = check_path(path); 5542 if (err) 5543 return err; 5544 5545 if (prog == NULL) { 5546 pr_warn("invalid program pointer\n"); 5547 return -EINVAL; 5548 } 5549 5550 if (prog->instances.nr <= 0) { 5551 pr_warn("no instances of prog %s to pin\n", 5552 prog->section_name); 5553 return -EINVAL; 5554 } 5555 5556 if (prog->instances.nr == 1) { 5557 /* don't create subdirs when pinning single instance */ 5558 return bpf_program__unpin_instance(prog, path, 0); 5559 } 5560 5561 for (i = 0; i < prog->instances.nr; i++) { 5562 char buf[PATH_MAX]; 5563 int len; 5564 5565 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5566 if (len < 0) 5567 return -EINVAL; 5568 else if (len >= PATH_MAX) 5569 return -ENAMETOOLONG; 5570 5571 err = bpf_program__unpin_instance(prog, buf, i); 5572 if (err) 5573 return err; 5574 } 5575 5576 err = rmdir(path); 5577 if (err) 5578 return -errno; 5579 5580 return 0; 5581 } 5582 5583 int bpf_map__pin(struct bpf_map *map, const char *path) 5584 { 5585 char *cp, errmsg[STRERR_BUFSIZE]; 5586 int err; 5587 5588 if (map == NULL) { 5589 pr_warn("invalid map pointer\n"); 5590 return -EINVAL; 5591 } 5592 5593 if (map->pin_path) { 5594 if (path && strcmp(path, map->pin_path)) { 5595 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 5596 bpf_map__name(map), map->pin_path, path); 5597 return -EINVAL; 5598 } else if (map->pinned) { 5599 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 5600 bpf_map__name(map), map->pin_path); 5601 return 0; 5602 } 5603 } else { 5604 if (!path) { 5605 pr_warn("missing a path to pin map '%s' at\n", 5606 bpf_map__name(map)); 5607 return -EINVAL; 5608 } else if (map->pinned) { 5609 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 5610 return -EEXIST; 5611 } 5612 5613 map->pin_path = strdup(path); 5614 if (!map->pin_path) { 5615 err = -errno; 5616 goto out_err; 5617 } 5618 } 5619 5620 err = make_parent_dir(map->pin_path); 5621 if (err) 5622 return err; 5623 5624 err = check_path(map->pin_path); 5625 if (err) 5626 return err; 5627 5628 if (bpf_obj_pin(map->fd, map->pin_path)) { 5629 err = -errno; 5630 goto out_err; 5631 } 5632 5633 map->pinned = true; 5634 pr_debug("pinned map '%s'\n", map->pin_path); 5635 5636 return 0; 5637 5638 out_err: 5639 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5640 pr_warn("failed to pin map: %s\n", cp); 5641 return err; 5642 } 5643 5644 int bpf_map__unpin(struct bpf_map *map, const char *path) 5645 { 5646 int err; 5647 5648 if (map == NULL) { 5649 pr_warn("invalid map pointer\n"); 5650 return -EINVAL; 5651 } 5652 5653 if (map->pin_path) { 5654 if (path && strcmp(path, map->pin_path)) { 5655 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 5656 bpf_map__name(map), map->pin_path, path); 5657 return -EINVAL; 5658 } 5659 path = map->pin_path; 5660 } else if (!path) { 5661 pr_warn("no path to unpin map '%s' from\n", 5662 bpf_map__name(map)); 5663 return -EINVAL; 5664 } 5665 5666 err = check_path(path); 5667 if (err) 5668 return err; 5669 5670 err = unlink(path); 5671 if (err != 0) 5672 return -errno; 5673 5674 map->pinned = false; 5675 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 5676 5677 return 0; 5678 } 5679 5680 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 5681 { 5682 char *new = NULL; 5683 5684 if (path) { 5685 new = strdup(path); 5686 if (!new) 5687 return -errno; 5688 } 5689 5690 free(map->pin_path); 5691 map->pin_path = new; 5692 return 0; 5693 } 5694 5695 const char *bpf_map__get_pin_path(const struct bpf_map *map) 5696 { 5697 return map->pin_path; 5698 } 5699 5700 bool bpf_map__is_pinned(const struct bpf_map *map) 5701 { 5702 return map->pinned; 5703 } 5704 5705 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 5706 { 5707 struct bpf_map *map; 5708 int err; 5709 5710 if (!obj) 5711 return -ENOENT; 5712 5713 if (!obj->loaded) { 5714 pr_warn("object not yet loaded; load it first\n"); 5715 return -ENOENT; 5716 } 5717 5718 bpf_object__for_each_map(map, obj) { 5719 char *pin_path = NULL; 5720 char buf[PATH_MAX]; 5721 5722 if (path) { 5723 int len; 5724 5725 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5726 bpf_map__name(map)); 5727 if (len < 0) { 5728 err = -EINVAL; 5729 goto err_unpin_maps; 5730 } else if (len >= PATH_MAX) { 5731 err = -ENAMETOOLONG; 5732 goto err_unpin_maps; 5733 } 5734 pin_path = buf; 5735 } else if (!map->pin_path) { 5736 continue; 5737 } 5738 5739 err = bpf_map__pin(map, pin_path); 5740 if (err) 5741 goto err_unpin_maps; 5742 } 5743 5744 return 0; 5745 5746 err_unpin_maps: 5747 while ((map = bpf_map__prev(map, obj))) { 5748 if (!map->pin_path) 5749 continue; 5750 5751 bpf_map__unpin(map, NULL); 5752 } 5753 5754 return err; 5755 } 5756 5757 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 5758 { 5759 struct bpf_map *map; 5760 int err; 5761 5762 if (!obj) 5763 return -ENOENT; 5764 5765 bpf_object__for_each_map(map, obj) { 5766 char *pin_path = NULL; 5767 char buf[PATH_MAX]; 5768 5769 if (path) { 5770 int len; 5771 5772 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5773 bpf_map__name(map)); 5774 if (len < 0) 5775 return -EINVAL; 5776 else if (len >= PATH_MAX) 5777 return -ENAMETOOLONG; 5778 pin_path = buf; 5779 } else if (!map->pin_path) { 5780 continue; 5781 } 5782 5783 err = bpf_map__unpin(map, pin_path); 5784 if (err) 5785 return err; 5786 } 5787 5788 return 0; 5789 } 5790 5791 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 5792 { 5793 struct bpf_program *prog; 5794 int err; 5795 5796 if (!obj) 5797 return -ENOENT; 5798 5799 if (!obj->loaded) { 5800 pr_warn("object not yet loaded; load it first\n"); 5801 return -ENOENT; 5802 } 5803 5804 bpf_object__for_each_program(prog, obj) { 5805 char buf[PATH_MAX]; 5806 int len; 5807 5808 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5809 prog->pin_name); 5810 if (len < 0) { 5811 err = -EINVAL; 5812 goto err_unpin_programs; 5813 } else if (len >= PATH_MAX) { 5814 err = -ENAMETOOLONG; 5815 goto err_unpin_programs; 5816 } 5817 5818 err = bpf_program__pin(prog, buf); 5819 if (err) 5820 goto err_unpin_programs; 5821 } 5822 5823 return 0; 5824 5825 err_unpin_programs: 5826 while ((prog = bpf_program__prev(prog, obj))) { 5827 char buf[PATH_MAX]; 5828 int len; 5829 5830 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5831 prog->pin_name); 5832 if (len < 0) 5833 continue; 5834 else if (len >= PATH_MAX) 5835 continue; 5836 5837 bpf_program__unpin(prog, buf); 5838 } 5839 5840 return err; 5841 } 5842 5843 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 5844 { 5845 struct bpf_program *prog; 5846 int err; 5847 5848 if (!obj) 5849 return -ENOENT; 5850 5851 bpf_object__for_each_program(prog, obj) { 5852 char buf[PATH_MAX]; 5853 int len; 5854 5855 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5856 prog->pin_name); 5857 if (len < 0) 5858 return -EINVAL; 5859 else if (len >= PATH_MAX) 5860 return -ENAMETOOLONG; 5861 5862 err = bpf_program__unpin(prog, buf); 5863 if (err) 5864 return err; 5865 } 5866 5867 return 0; 5868 } 5869 5870 int bpf_object__pin(struct bpf_object *obj, const char *path) 5871 { 5872 int err; 5873 5874 err = bpf_object__pin_maps(obj, path); 5875 if (err) 5876 return err; 5877 5878 err = bpf_object__pin_programs(obj, path); 5879 if (err) { 5880 bpf_object__unpin_maps(obj, path); 5881 return err; 5882 } 5883 5884 return 0; 5885 } 5886 5887 void bpf_object__close(struct bpf_object *obj) 5888 { 5889 size_t i; 5890 5891 if (!obj) 5892 return; 5893 5894 if (obj->clear_priv) 5895 obj->clear_priv(obj, obj->priv); 5896 5897 bpf_object__elf_finish(obj); 5898 bpf_object__unload(obj); 5899 btf__free(obj->btf); 5900 btf_ext__free(obj->btf_ext); 5901 5902 for (i = 0; i < obj->nr_maps; i++) { 5903 struct bpf_map *map = &obj->maps[i]; 5904 5905 if (map->clear_priv) 5906 map->clear_priv(map, map->priv); 5907 map->priv = NULL; 5908 map->clear_priv = NULL; 5909 5910 if (map->mmaped) { 5911 munmap(map->mmaped, bpf_map_mmap_sz(map)); 5912 map->mmaped = NULL; 5913 } 5914 5915 if (map->st_ops) { 5916 zfree(&map->st_ops->data); 5917 zfree(&map->st_ops->progs); 5918 zfree(&map->st_ops->kern_func_off); 5919 zfree(&map->st_ops); 5920 } 5921 5922 zfree(&map->name); 5923 zfree(&map->pin_path); 5924 } 5925 5926 zfree(&obj->kconfig); 5927 zfree(&obj->externs); 5928 obj->nr_extern = 0; 5929 5930 zfree(&obj->maps); 5931 obj->nr_maps = 0; 5932 5933 if (obj->programs && obj->nr_programs) { 5934 for (i = 0; i < obj->nr_programs; i++) 5935 bpf_program__exit(&obj->programs[i]); 5936 } 5937 zfree(&obj->programs); 5938 5939 list_del(&obj->list); 5940 free(obj); 5941 } 5942 5943 struct bpf_object * 5944 bpf_object__next(struct bpf_object *prev) 5945 { 5946 struct bpf_object *next; 5947 5948 if (!prev) 5949 next = list_first_entry(&bpf_objects_list, 5950 struct bpf_object, 5951 list); 5952 else 5953 next = list_next_entry(prev, list); 5954 5955 /* Empty list is noticed here so don't need checking on entry. */ 5956 if (&next->list == &bpf_objects_list) 5957 return NULL; 5958 5959 return next; 5960 } 5961 5962 const char *bpf_object__name(const struct bpf_object *obj) 5963 { 5964 return obj ? obj->name : ERR_PTR(-EINVAL); 5965 } 5966 5967 unsigned int bpf_object__kversion(const struct bpf_object *obj) 5968 { 5969 return obj ? obj->kern_version : 0; 5970 } 5971 5972 struct btf *bpf_object__btf(const struct bpf_object *obj) 5973 { 5974 return obj ? obj->btf : NULL; 5975 } 5976 5977 int bpf_object__btf_fd(const struct bpf_object *obj) 5978 { 5979 return obj->btf ? btf__fd(obj->btf) : -1; 5980 } 5981 5982 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 5983 bpf_object_clear_priv_t clear_priv) 5984 { 5985 if (obj->priv && obj->clear_priv) 5986 obj->clear_priv(obj, obj->priv); 5987 5988 obj->priv = priv; 5989 obj->clear_priv = clear_priv; 5990 return 0; 5991 } 5992 5993 void *bpf_object__priv(const struct bpf_object *obj) 5994 { 5995 return obj ? obj->priv : ERR_PTR(-EINVAL); 5996 } 5997 5998 static struct bpf_program * 5999 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 6000 bool forward) 6001 { 6002 size_t nr_programs = obj->nr_programs; 6003 ssize_t idx; 6004 6005 if (!nr_programs) 6006 return NULL; 6007 6008 if (!p) 6009 /* Iter from the beginning */ 6010 return forward ? &obj->programs[0] : 6011 &obj->programs[nr_programs - 1]; 6012 6013 if (p->obj != obj) { 6014 pr_warn("error: program handler doesn't match object\n"); 6015 return NULL; 6016 } 6017 6018 idx = (p - obj->programs) + (forward ? 1 : -1); 6019 if (idx >= obj->nr_programs || idx < 0) 6020 return NULL; 6021 return &obj->programs[idx]; 6022 } 6023 6024 struct bpf_program * 6025 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 6026 { 6027 struct bpf_program *prog = prev; 6028 6029 do { 6030 prog = __bpf_program__iter(prog, obj, true); 6031 } while (prog && bpf_program__is_function_storage(prog, obj)); 6032 6033 return prog; 6034 } 6035 6036 struct bpf_program * 6037 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 6038 { 6039 struct bpf_program *prog = next; 6040 6041 do { 6042 prog = __bpf_program__iter(prog, obj, false); 6043 } while (prog && bpf_program__is_function_storage(prog, obj)); 6044 6045 return prog; 6046 } 6047 6048 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 6049 bpf_program_clear_priv_t clear_priv) 6050 { 6051 if (prog->priv && prog->clear_priv) 6052 prog->clear_priv(prog, prog->priv); 6053 6054 prog->priv = priv; 6055 prog->clear_priv = clear_priv; 6056 return 0; 6057 } 6058 6059 void *bpf_program__priv(const struct bpf_program *prog) 6060 { 6061 return prog ? prog->priv : ERR_PTR(-EINVAL); 6062 } 6063 6064 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 6065 { 6066 prog->prog_ifindex = ifindex; 6067 } 6068 6069 const char *bpf_program__name(const struct bpf_program *prog) 6070 { 6071 return prog->name; 6072 } 6073 6074 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 6075 { 6076 const char *title; 6077 6078 title = prog->section_name; 6079 if (needs_copy) { 6080 title = strdup(title); 6081 if (!title) { 6082 pr_warn("failed to strdup program title\n"); 6083 return ERR_PTR(-ENOMEM); 6084 } 6085 } 6086 6087 return title; 6088 } 6089 6090 int bpf_program__fd(const struct bpf_program *prog) 6091 { 6092 return bpf_program__nth_fd(prog, 0); 6093 } 6094 6095 size_t bpf_program__size(const struct bpf_program *prog) 6096 { 6097 return prog->insns_cnt * sizeof(struct bpf_insn); 6098 } 6099 6100 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 6101 bpf_program_prep_t prep) 6102 { 6103 int *instances_fds; 6104 6105 if (nr_instances <= 0 || !prep) 6106 return -EINVAL; 6107 6108 if (prog->instances.nr > 0 || prog->instances.fds) { 6109 pr_warn("Can't set pre-processor after loading\n"); 6110 return -EINVAL; 6111 } 6112 6113 instances_fds = malloc(sizeof(int) * nr_instances); 6114 if (!instances_fds) { 6115 pr_warn("alloc memory failed for fds\n"); 6116 return -ENOMEM; 6117 } 6118 6119 /* fill all fd with -1 */ 6120 memset(instances_fds, -1, sizeof(int) * nr_instances); 6121 6122 prog->instances.nr = nr_instances; 6123 prog->instances.fds = instances_fds; 6124 prog->preprocessor = prep; 6125 return 0; 6126 } 6127 6128 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 6129 { 6130 int fd; 6131 6132 if (!prog) 6133 return -EINVAL; 6134 6135 if (n >= prog->instances.nr || n < 0) { 6136 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 6137 n, prog->section_name, prog->instances.nr); 6138 return -EINVAL; 6139 } 6140 6141 fd = prog->instances.fds[n]; 6142 if (fd < 0) { 6143 pr_warn("%dth instance of program '%s' is invalid\n", 6144 n, prog->section_name); 6145 return -ENOENT; 6146 } 6147 6148 return fd; 6149 } 6150 6151 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 6152 { 6153 return prog->type; 6154 } 6155 6156 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 6157 { 6158 prog->type = type; 6159 } 6160 6161 static bool bpf_program__is_type(const struct bpf_program *prog, 6162 enum bpf_prog_type type) 6163 { 6164 return prog ? (prog->type == type) : false; 6165 } 6166 6167 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 6168 int bpf_program__set_##NAME(struct bpf_program *prog) \ 6169 { \ 6170 if (!prog) \ 6171 return -EINVAL; \ 6172 bpf_program__set_type(prog, TYPE); \ 6173 return 0; \ 6174 } \ 6175 \ 6176 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 6177 { \ 6178 return bpf_program__is_type(prog, TYPE); \ 6179 } \ 6180 6181 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 6182 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 6183 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 6184 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 6185 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 6186 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 6187 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 6188 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 6189 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 6190 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 6191 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 6192 6193 enum bpf_attach_type 6194 bpf_program__get_expected_attach_type(struct bpf_program *prog) 6195 { 6196 return prog->expected_attach_type; 6197 } 6198 6199 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 6200 enum bpf_attach_type type) 6201 { 6202 prog->expected_attach_type = type; 6203 } 6204 6205 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, is_attachable, btf, atype) \ 6206 { string, sizeof(string) - 1, ptype, eatype, is_attachable, btf, atype } 6207 6208 /* Programs that can NOT be attached. */ 6209 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 6210 6211 /* Programs that can be attached. */ 6212 #define BPF_APROG_SEC(string, ptype, atype) \ 6213 BPF_PROG_SEC_IMPL(string, ptype, 0, 1, 0, atype) 6214 6215 /* Programs that must specify expected attach type at load time. */ 6216 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 6217 BPF_PROG_SEC_IMPL(string, ptype, eatype, 1, 0, eatype) 6218 6219 /* Programs that use BTF to identify attach point */ 6220 #define BPF_PROG_BTF(string, ptype, eatype) \ 6221 BPF_PROG_SEC_IMPL(string, ptype, eatype, 0, 1, 0) 6222 6223 /* Programs that can be attached but attach type can't be identified by section 6224 * name. Kept for backward compatibility. 6225 */ 6226 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 6227 6228 #define SEC_DEF(sec_pfx, ptype, ...) { \ 6229 .sec = sec_pfx, \ 6230 .len = sizeof(sec_pfx) - 1, \ 6231 .prog_type = BPF_PROG_TYPE_##ptype, \ 6232 __VA_ARGS__ \ 6233 } 6234 6235 struct bpf_sec_def; 6236 6237 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 6238 struct bpf_program *prog); 6239 6240 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 6241 struct bpf_program *prog); 6242 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 6243 struct bpf_program *prog); 6244 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 6245 struct bpf_program *prog); 6246 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 6247 struct bpf_program *prog); 6248 6249 struct bpf_sec_def { 6250 const char *sec; 6251 size_t len; 6252 enum bpf_prog_type prog_type; 6253 enum bpf_attach_type expected_attach_type; 6254 bool is_attachable; 6255 bool is_attach_btf; 6256 enum bpf_attach_type attach_type; 6257 attach_fn_t attach_fn; 6258 }; 6259 6260 static const struct bpf_sec_def section_defs[] = { 6261 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 6262 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 6263 SEC_DEF("kprobe/", KPROBE, 6264 .attach_fn = attach_kprobe), 6265 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 6266 SEC_DEF("kretprobe/", KPROBE, 6267 .attach_fn = attach_kprobe), 6268 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 6269 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 6270 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 6271 SEC_DEF("tracepoint/", TRACEPOINT, 6272 .attach_fn = attach_tp), 6273 SEC_DEF("tp/", TRACEPOINT, 6274 .attach_fn = attach_tp), 6275 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 6276 .attach_fn = attach_raw_tp), 6277 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 6278 .attach_fn = attach_raw_tp), 6279 SEC_DEF("tp_btf/", TRACING, 6280 .expected_attach_type = BPF_TRACE_RAW_TP, 6281 .is_attach_btf = true, 6282 .attach_fn = attach_trace), 6283 SEC_DEF("fentry/", TRACING, 6284 .expected_attach_type = BPF_TRACE_FENTRY, 6285 .is_attach_btf = true, 6286 .attach_fn = attach_trace), 6287 SEC_DEF("fexit/", TRACING, 6288 .expected_attach_type = BPF_TRACE_FEXIT, 6289 .is_attach_btf = true, 6290 .attach_fn = attach_trace), 6291 SEC_DEF("freplace/", EXT, 6292 .is_attach_btf = true, 6293 .attach_fn = attach_trace), 6294 BPF_PROG_SEC("xdp", BPF_PROG_TYPE_XDP), 6295 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 6296 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 6297 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 6298 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 6299 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 6300 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 6301 BPF_CGROUP_INET_INGRESS), 6302 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 6303 BPF_CGROUP_INET_EGRESS), 6304 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 6305 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 6306 BPF_CGROUP_INET_SOCK_CREATE), 6307 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 6308 BPF_CGROUP_INET4_POST_BIND), 6309 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 6310 BPF_CGROUP_INET6_POST_BIND), 6311 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 6312 BPF_CGROUP_DEVICE), 6313 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 6314 BPF_CGROUP_SOCK_OPS), 6315 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 6316 BPF_SK_SKB_STREAM_PARSER), 6317 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 6318 BPF_SK_SKB_STREAM_VERDICT), 6319 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 6320 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 6321 BPF_SK_MSG_VERDICT), 6322 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 6323 BPF_LIRC_MODE2), 6324 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 6325 BPF_FLOW_DISSECTOR), 6326 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6327 BPF_CGROUP_INET4_BIND), 6328 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6329 BPF_CGROUP_INET6_BIND), 6330 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6331 BPF_CGROUP_INET4_CONNECT), 6332 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6333 BPF_CGROUP_INET6_CONNECT), 6334 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6335 BPF_CGROUP_UDP4_SENDMSG), 6336 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6337 BPF_CGROUP_UDP6_SENDMSG), 6338 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6339 BPF_CGROUP_UDP4_RECVMSG), 6340 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6341 BPF_CGROUP_UDP6_RECVMSG), 6342 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 6343 BPF_CGROUP_SYSCTL), 6344 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 6345 BPF_CGROUP_GETSOCKOPT), 6346 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 6347 BPF_CGROUP_SETSOCKOPT), 6348 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 6349 }; 6350 6351 #undef BPF_PROG_SEC_IMPL 6352 #undef BPF_PROG_SEC 6353 #undef BPF_APROG_SEC 6354 #undef BPF_EAPROG_SEC 6355 #undef BPF_APROG_COMPAT 6356 #undef SEC_DEF 6357 6358 #define MAX_TYPE_NAME_SIZE 32 6359 6360 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 6361 { 6362 int i, n = ARRAY_SIZE(section_defs); 6363 6364 for (i = 0; i < n; i++) { 6365 if (strncmp(sec_name, 6366 section_defs[i].sec, section_defs[i].len)) 6367 continue; 6368 return §ion_defs[i]; 6369 } 6370 return NULL; 6371 } 6372 6373 static char *libbpf_get_type_names(bool attach_type) 6374 { 6375 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 6376 char *buf; 6377 6378 buf = malloc(len); 6379 if (!buf) 6380 return NULL; 6381 6382 buf[0] = '\0'; 6383 /* Forge string buf with all available names */ 6384 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6385 if (attach_type && !section_defs[i].is_attachable) 6386 continue; 6387 6388 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 6389 free(buf); 6390 return NULL; 6391 } 6392 strcat(buf, " "); 6393 strcat(buf, section_defs[i].sec); 6394 } 6395 6396 return buf; 6397 } 6398 6399 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 6400 enum bpf_attach_type *expected_attach_type) 6401 { 6402 const struct bpf_sec_def *sec_def; 6403 char *type_names; 6404 6405 if (!name) 6406 return -EINVAL; 6407 6408 sec_def = find_sec_def(name); 6409 if (sec_def) { 6410 *prog_type = sec_def->prog_type; 6411 *expected_attach_type = sec_def->expected_attach_type; 6412 return 0; 6413 } 6414 6415 pr_debug("failed to guess program type from ELF section '%s'\n", name); 6416 type_names = libbpf_get_type_names(false); 6417 if (type_names != NULL) { 6418 pr_debug("supported section(type) names are:%s\n", type_names); 6419 free(type_names); 6420 } 6421 6422 return -ESRCH; 6423 } 6424 6425 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 6426 size_t offset) 6427 { 6428 struct bpf_map *map; 6429 size_t i; 6430 6431 for (i = 0; i < obj->nr_maps; i++) { 6432 map = &obj->maps[i]; 6433 if (!bpf_map__is_struct_ops(map)) 6434 continue; 6435 if (map->sec_offset <= offset && 6436 offset - map->sec_offset < map->def.value_size) 6437 return map; 6438 } 6439 6440 return NULL; 6441 } 6442 6443 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 6444 static int bpf_object__collect_struct_ops_map_reloc(struct bpf_object *obj, 6445 GElf_Shdr *shdr, 6446 Elf_Data *data) 6447 { 6448 const struct btf_member *member; 6449 struct bpf_struct_ops *st_ops; 6450 struct bpf_program *prog; 6451 unsigned int shdr_idx; 6452 const struct btf *btf; 6453 struct bpf_map *map; 6454 Elf_Data *symbols; 6455 unsigned int moff; 6456 const char *name; 6457 __u32 member_idx; 6458 GElf_Sym sym; 6459 GElf_Rel rel; 6460 int i, nrels; 6461 6462 symbols = obj->efile.symbols; 6463 btf = obj->btf; 6464 nrels = shdr->sh_size / shdr->sh_entsize; 6465 for (i = 0; i < nrels; i++) { 6466 if (!gelf_getrel(data, i, &rel)) { 6467 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 6468 return -LIBBPF_ERRNO__FORMAT; 6469 } 6470 6471 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6472 pr_warn("struct_ops reloc: symbol %zx not found\n", 6473 (size_t)GELF_R_SYM(rel.r_info)); 6474 return -LIBBPF_ERRNO__FORMAT; 6475 } 6476 6477 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 6478 sym.st_name) ? : "<?>"; 6479 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 6480 if (!map) { 6481 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 6482 (size_t)rel.r_offset); 6483 return -EINVAL; 6484 } 6485 6486 moff = rel.r_offset - map->sec_offset; 6487 shdr_idx = sym.st_shndx; 6488 st_ops = map->st_ops; 6489 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 6490 map->name, 6491 (long long)(rel.r_info >> 32), 6492 (long long)sym.st_value, 6493 shdr_idx, (size_t)rel.r_offset, 6494 map->sec_offset, sym.st_name, name); 6495 6496 if (shdr_idx >= SHN_LORESERVE) { 6497 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 6498 map->name, (size_t)rel.r_offset, shdr_idx); 6499 return -LIBBPF_ERRNO__RELOC; 6500 } 6501 6502 member = find_member_by_offset(st_ops->type, moff * 8); 6503 if (!member) { 6504 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 6505 map->name, moff); 6506 return -EINVAL; 6507 } 6508 member_idx = member - btf_members(st_ops->type); 6509 name = btf__name_by_offset(btf, member->name_off); 6510 6511 if (!resolve_func_ptr(btf, member->type, NULL)) { 6512 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 6513 map->name, name); 6514 return -EINVAL; 6515 } 6516 6517 prog = bpf_object__find_prog_by_idx(obj, shdr_idx); 6518 if (!prog) { 6519 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 6520 map->name, shdr_idx, name); 6521 return -EINVAL; 6522 } 6523 6524 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6525 const struct bpf_sec_def *sec_def; 6526 6527 sec_def = find_sec_def(prog->section_name); 6528 if (sec_def && 6529 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 6530 /* for pr_warn */ 6531 prog->type = sec_def->prog_type; 6532 goto invalid_prog; 6533 } 6534 6535 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 6536 prog->attach_btf_id = st_ops->type_id; 6537 prog->expected_attach_type = member_idx; 6538 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 6539 prog->attach_btf_id != st_ops->type_id || 6540 prog->expected_attach_type != member_idx) { 6541 goto invalid_prog; 6542 } 6543 st_ops->progs[member_idx] = prog; 6544 } 6545 6546 return 0; 6547 6548 invalid_prog: 6549 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 6550 map->name, prog->name, prog->section_name, prog->type, 6551 prog->attach_btf_id, prog->expected_attach_type, name); 6552 return -EINVAL; 6553 } 6554 6555 #define BTF_TRACE_PREFIX "btf_trace_" 6556 #define BTF_MAX_NAME_SIZE 128 6557 6558 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 6559 const char *name, __u32 kind) 6560 { 6561 char btf_type_name[BTF_MAX_NAME_SIZE]; 6562 int ret; 6563 6564 ret = snprintf(btf_type_name, sizeof(btf_type_name), 6565 "%s%s", prefix, name); 6566 /* snprintf returns the number of characters written excluding the 6567 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 6568 * indicates truncation. 6569 */ 6570 if (ret < 0 || ret >= sizeof(btf_type_name)) 6571 return -ENAMETOOLONG; 6572 return btf__find_by_name_kind(btf, btf_type_name, kind); 6573 } 6574 6575 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name, 6576 enum bpf_attach_type attach_type) 6577 { 6578 int err; 6579 6580 if (attach_type == BPF_TRACE_RAW_TP) 6581 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 6582 BTF_KIND_TYPEDEF); 6583 else 6584 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 6585 6586 return err; 6587 } 6588 6589 int libbpf_find_vmlinux_btf_id(const char *name, 6590 enum bpf_attach_type attach_type) 6591 { 6592 struct btf *btf; 6593 6594 btf = libbpf_find_kernel_btf(); 6595 if (IS_ERR(btf)) { 6596 pr_warn("vmlinux BTF is not found\n"); 6597 return -EINVAL; 6598 } 6599 6600 return __find_vmlinux_btf_id(btf, name, attach_type); 6601 } 6602 6603 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 6604 { 6605 struct bpf_prog_info_linear *info_linear; 6606 struct bpf_prog_info *info; 6607 struct btf *btf = NULL; 6608 int err = -EINVAL; 6609 6610 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 6611 if (IS_ERR_OR_NULL(info_linear)) { 6612 pr_warn("failed get_prog_info_linear for FD %d\n", 6613 attach_prog_fd); 6614 return -EINVAL; 6615 } 6616 info = &info_linear->info; 6617 if (!info->btf_id) { 6618 pr_warn("The target program doesn't have BTF\n"); 6619 goto out; 6620 } 6621 if (btf__get_from_id(info->btf_id, &btf)) { 6622 pr_warn("Failed to get BTF of the program\n"); 6623 goto out; 6624 } 6625 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 6626 btf__free(btf); 6627 if (err <= 0) { 6628 pr_warn("%s is not found in prog's BTF\n", name); 6629 goto out; 6630 } 6631 out: 6632 free(info_linear); 6633 return err; 6634 } 6635 6636 static int libbpf_find_attach_btf_id(struct bpf_program *prog) 6637 { 6638 enum bpf_attach_type attach_type = prog->expected_attach_type; 6639 __u32 attach_prog_fd = prog->attach_prog_fd; 6640 const char *name = prog->section_name; 6641 int i, err; 6642 6643 if (!name) 6644 return -EINVAL; 6645 6646 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6647 if (!section_defs[i].is_attach_btf) 6648 continue; 6649 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 6650 continue; 6651 if (attach_prog_fd) 6652 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 6653 attach_prog_fd); 6654 else 6655 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 6656 name + section_defs[i].len, 6657 attach_type); 6658 if (err <= 0) 6659 pr_warn("%s is not found in vmlinux BTF\n", name); 6660 return err; 6661 } 6662 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 6663 return -ESRCH; 6664 } 6665 6666 int libbpf_attach_type_by_name(const char *name, 6667 enum bpf_attach_type *attach_type) 6668 { 6669 char *type_names; 6670 int i; 6671 6672 if (!name) 6673 return -EINVAL; 6674 6675 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6676 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 6677 continue; 6678 if (!section_defs[i].is_attachable) 6679 return -EINVAL; 6680 *attach_type = section_defs[i].attach_type; 6681 return 0; 6682 } 6683 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 6684 type_names = libbpf_get_type_names(true); 6685 if (type_names != NULL) { 6686 pr_debug("attachable section(type) names are:%s\n", type_names); 6687 free(type_names); 6688 } 6689 6690 return -EINVAL; 6691 } 6692 6693 int bpf_map__fd(const struct bpf_map *map) 6694 { 6695 return map ? map->fd : -EINVAL; 6696 } 6697 6698 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 6699 { 6700 return map ? &map->def : ERR_PTR(-EINVAL); 6701 } 6702 6703 const char *bpf_map__name(const struct bpf_map *map) 6704 { 6705 return map ? map->name : NULL; 6706 } 6707 6708 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 6709 { 6710 return map ? map->btf_key_type_id : 0; 6711 } 6712 6713 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 6714 { 6715 return map ? map->btf_value_type_id : 0; 6716 } 6717 6718 int bpf_map__set_priv(struct bpf_map *map, void *priv, 6719 bpf_map_clear_priv_t clear_priv) 6720 { 6721 if (!map) 6722 return -EINVAL; 6723 6724 if (map->priv) { 6725 if (map->clear_priv) 6726 map->clear_priv(map, map->priv); 6727 } 6728 6729 map->priv = priv; 6730 map->clear_priv = clear_priv; 6731 return 0; 6732 } 6733 6734 void *bpf_map__priv(const struct bpf_map *map) 6735 { 6736 return map ? map->priv : ERR_PTR(-EINVAL); 6737 } 6738 6739 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 6740 { 6741 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 6742 } 6743 6744 bool bpf_map__is_internal(const struct bpf_map *map) 6745 { 6746 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 6747 } 6748 6749 void bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 6750 { 6751 map->map_ifindex = ifindex; 6752 } 6753 6754 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 6755 { 6756 if (!bpf_map_type__is_map_in_map(map->def.type)) { 6757 pr_warn("error: unsupported map type\n"); 6758 return -EINVAL; 6759 } 6760 if (map->inner_map_fd != -1) { 6761 pr_warn("error: inner_map_fd already specified\n"); 6762 return -EINVAL; 6763 } 6764 map->inner_map_fd = fd; 6765 return 0; 6766 } 6767 6768 static struct bpf_map * 6769 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 6770 { 6771 ssize_t idx; 6772 struct bpf_map *s, *e; 6773 6774 if (!obj || !obj->maps) 6775 return NULL; 6776 6777 s = obj->maps; 6778 e = obj->maps + obj->nr_maps; 6779 6780 if ((m < s) || (m >= e)) { 6781 pr_warn("error in %s: map handler doesn't belong to object\n", 6782 __func__); 6783 return NULL; 6784 } 6785 6786 idx = (m - obj->maps) + i; 6787 if (idx >= obj->nr_maps || idx < 0) 6788 return NULL; 6789 return &obj->maps[idx]; 6790 } 6791 6792 struct bpf_map * 6793 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 6794 { 6795 if (prev == NULL) 6796 return obj->maps; 6797 6798 return __bpf_map__iter(prev, obj, 1); 6799 } 6800 6801 struct bpf_map * 6802 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 6803 { 6804 if (next == NULL) { 6805 if (!obj->nr_maps) 6806 return NULL; 6807 return obj->maps + obj->nr_maps - 1; 6808 } 6809 6810 return __bpf_map__iter(next, obj, -1); 6811 } 6812 6813 struct bpf_map * 6814 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 6815 { 6816 struct bpf_map *pos; 6817 6818 bpf_object__for_each_map(pos, obj) { 6819 if (pos->name && !strcmp(pos->name, name)) 6820 return pos; 6821 } 6822 return NULL; 6823 } 6824 6825 int 6826 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 6827 { 6828 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 6829 } 6830 6831 struct bpf_map * 6832 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 6833 { 6834 return ERR_PTR(-ENOTSUP); 6835 } 6836 6837 long libbpf_get_error(const void *ptr) 6838 { 6839 return PTR_ERR_OR_ZERO(ptr); 6840 } 6841 6842 int bpf_prog_load(const char *file, enum bpf_prog_type type, 6843 struct bpf_object **pobj, int *prog_fd) 6844 { 6845 struct bpf_prog_load_attr attr; 6846 6847 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 6848 attr.file = file; 6849 attr.prog_type = type; 6850 attr.expected_attach_type = 0; 6851 6852 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 6853 } 6854 6855 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 6856 struct bpf_object **pobj, int *prog_fd) 6857 { 6858 struct bpf_object_open_attr open_attr = {}; 6859 struct bpf_program *prog, *first_prog = NULL; 6860 struct bpf_object *obj; 6861 struct bpf_map *map; 6862 int err; 6863 6864 if (!attr) 6865 return -EINVAL; 6866 if (!attr->file) 6867 return -EINVAL; 6868 6869 open_attr.file = attr->file; 6870 open_attr.prog_type = attr->prog_type; 6871 6872 obj = bpf_object__open_xattr(&open_attr); 6873 if (IS_ERR_OR_NULL(obj)) 6874 return -ENOENT; 6875 6876 bpf_object__for_each_program(prog, obj) { 6877 enum bpf_attach_type attach_type = attr->expected_attach_type; 6878 /* 6879 * to preserve backwards compatibility, bpf_prog_load treats 6880 * attr->prog_type, if specified, as an override to whatever 6881 * bpf_object__open guessed 6882 */ 6883 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 6884 bpf_program__set_type(prog, attr->prog_type); 6885 bpf_program__set_expected_attach_type(prog, 6886 attach_type); 6887 } 6888 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 6889 /* 6890 * we haven't guessed from section name and user 6891 * didn't provide a fallback type, too bad... 6892 */ 6893 bpf_object__close(obj); 6894 return -EINVAL; 6895 } 6896 6897 prog->prog_ifindex = attr->ifindex; 6898 prog->log_level = attr->log_level; 6899 prog->prog_flags = attr->prog_flags; 6900 if (!first_prog) 6901 first_prog = prog; 6902 } 6903 6904 bpf_object__for_each_map(map, obj) { 6905 if (!bpf_map__is_offload_neutral(map)) 6906 map->map_ifindex = attr->ifindex; 6907 } 6908 6909 if (!first_prog) { 6910 pr_warn("object file doesn't contain bpf program\n"); 6911 bpf_object__close(obj); 6912 return -ENOENT; 6913 } 6914 6915 err = bpf_object__load(obj); 6916 if (err) { 6917 bpf_object__close(obj); 6918 return -EINVAL; 6919 } 6920 6921 *pobj = obj; 6922 *prog_fd = bpf_program__fd(first_prog); 6923 return 0; 6924 } 6925 6926 struct bpf_link { 6927 int (*detach)(struct bpf_link *link); 6928 int (*destroy)(struct bpf_link *link); 6929 bool disconnected; 6930 }; 6931 6932 /* Release "ownership" of underlying BPF resource (typically, BPF program 6933 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 6934 * link, when destructed through bpf_link__destroy() call won't attempt to 6935 * detach/unregisted that BPF resource. This is useful in situations where, 6936 * say, attached BPF program has to outlive userspace program that attached it 6937 * in the system. Depending on type of BPF program, though, there might be 6938 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 6939 * exit of userspace program doesn't trigger automatic detachment and clean up 6940 * inside the kernel. 6941 */ 6942 void bpf_link__disconnect(struct bpf_link *link) 6943 { 6944 link->disconnected = true; 6945 } 6946 6947 int bpf_link__destroy(struct bpf_link *link) 6948 { 6949 int err = 0; 6950 6951 if (!link) 6952 return 0; 6953 6954 if (!link->disconnected && link->detach) 6955 err = link->detach(link); 6956 if (link->destroy) 6957 link->destroy(link); 6958 free(link); 6959 6960 return err; 6961 } 6962 6963 struct bpf_link_fd { 6964 struct bpf_link link; /* has to be at the top of struct */ 6965 int fd; /* hook FD */ 6966 }; 6967 6968 static int bpf_link__detach_perf_event(struct bpf_link *link) 6969 { 6970 struct bpf_link_fd *l = (void *)link; 6971 int err; 6972 6973 err = ioctl(l->fd, PERF_EVENT_IOC_DISABLE, 0); 6974 if (err) 6975 err = -errno; 6976 6977 close(l->fd); 6978 return err; 6979 } 6980 6981 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 6982 int pfd) 6983 { 6984 char errmsg[STRERR_BUFSIZE]; 6985 struct bpf_link_fd *link; 6986 int prog_fd, err; 6987 6988 if (pfd < 0) { 6989 pr_warn("program '%s': invalid perf event FD %d\n", 6990 bpf_program__title(prog, false), pfd); 6991 return ERR_PTR(-EINVAL); 6992 } 6993 prog_fd = bpf_program__fd(prog); 6994 if (prog_fd < 0) { 6995 pr_warn("program '%s': can't attach BPF program w/o FD (did you load it?)\n", 6996 bpf_program__title(prog, false)); 6997 return ERR_PTR(-EINVAL); 6998 } 6999 7000 link = calloc(1, sizeof(*link)); 7001 if (!link) 7002 return ERR_PTR(-ENOMEM); 7003 link->link.detach = &bpf_link__detach_perf_event; 7004 link->fd = pfd; 7005 7006 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 7007 err = -errno; 7008 free(link); 7009 pr_warn("program '%s': failed to attach to pfd %d: %s\n", 7010 bpf_program__title(prog, false), pfd, 7011 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7012 return ERR_PTR(err); 7013 } 7014 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 7015 err = -errno; 7016 free(link); 7017 pr_warn("program '%s': failed to enable pfd %d: %s\n", 7018 bpf_program__title(prog, false), pfd, 7019 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7020 return ERR_PTR(err); 7021 } 7022 return (struct bpf_link *)link; 7023 } 7024 7025 /* 7026 * this function is expected to parse integer in the range of [0, 2^31-1] from 7027 * given file using scanf format string fmt. If actual parsed value is 7028 * negative, the result might be indistinguishable from error 7029 */ 7030 static int parse_uint_from_file(const char *file, const char *fmt) 7031 { 7032 char buf[STRERR_BUFSIZE]; 7033 int err, ret; 7034 FILE *f; 7035 7036 f = fopen(file, "r"); 7037 if (!f) { 7038 err = -errno; 7039 pr_debug("failed to open '%s': %s\n", file, 7040 libbpf_strerror_r(err, buf, sizeof(buf))); 7041 return err; 7042 } 7043 err = fscanf(f, fmt, &ret); 7044 if (err != 1) { 7045 err = err == EOF ? -EIO : -errno; 7046 pr_debug("failed to parse '%s': %s\n", file, 7047 libbpf_strerror_r(err, buf, sizeof(buf))); 7048 fclose(f); 7049 return err; 7050 } 7051 fclose(f); 7052 return ret; 7053 } 7054 7055 static int determine_kprobe_perf_type(void) 7056 { 7057 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 7058 7059 return parse_uint_from_file(file, "%d\n"); 7060 } 7061 7062 static int determine_uprobe_perf_type(void) 7063 { 7064 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 7065 7066 return parse_uint_from_file(file, "%d\n"); 7067 } 7068 7069 static int determine_kprobe_retprobe_bit(void) 7070 { 7071 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 7072 7073 return parse_uint_from_file(file, "config:%d\n"); 7074 } 7075 7076 static int determine_uprobe_retprobe_bit(void) 7077 { 7078 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 7079 7080 return parse_uint_from_file(file, "config:%d\n"); 7081 } 7082 7083 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 7084 uint64_t offset, int pid) 7085 { 7086 struct perf_event_attr attr = {}; 7087 char errmsg[STRERR_BUFSIZE]; 7088 int type, pfd, err; 7089 7090 type = uprobe ? determine_uprobe_perf_type() 7091 : determine_kprobe_perf_type(); 7092 if (type < 0) { 7093 pr_warn("failed to determine %s perf type: %s\n", 7094 uprobe ? "uprobe" : "kprobe", 7095 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 7096 return type; 7097 } 7098 if (retprobe) { 7099 int bit = uprobe ? determine_uprobe_retprobe_bit() 7100 : determine_kprobe_retprobe_bit(); 7101 7102 if (bit < 0) { 7103 pr_warn("failed to determine %s retprobe bit: %s\n", 7104 uprobe ? "uprobe" : "kprobe", 7105 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 7106 return bit; 7107 } 7108 attr.config |= 1 << bit; 7109 } 7110 attr.size = sizeof(attr); 7111 attr.type = type; 7112 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 7113 attr.config2 = offset; /* kprobe_addr or probe_offset */ 7114 7115 /* pid filter is meaningful only for uprobes */ 7116 pfd = syscall(__NR_perf_event_open, &attr, 7117 pid < 0 ? -1 : pid /* pid */, 7118 pid == -1 ? 0 : -1 /* cpu */, 7119 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 7120 if (pfd < 0) { 7121 err = -errno; 7122 pr_warn("%s perf_event_open() failed: %s\n", 7123 uprobe ? "uprobe" : "kprobe", 7124 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7125 return err; 7126 } 7127 return pfd; 7128 } 7129 7130 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 7131 bool retprobe, 7132 const char *func_name) 7133 { 7134 char errmsg[STRERR_BUFSIZE]; 7135 struct bpf_link *link; 7136 int pfd, err; 7137 7138 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 7139 0 /* offset */, -1 /* pid */); 7140 if (pfd < 0) { 7141 pr_warn("program '%s': failed to create %s '%s' perf event: %s\n", 7142 bpf_program__title(prog, false), 7143 retprobe ? "kretprobe" : "kprobe", func_name, 7144 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7145 return ERR_PTR(pfd); 7146 } 7147 link = bpf_program__attach_perf_event(prog, pfd); 7148 if (IS_ERR(link)) { 7149 close(pfd); 7150 err = PTR_ERR(link); 7151 pr_warn("program '%s': failed to attach to %s '%s': %s\n", 7152 bpf_program__title(prog, false), 7153 retprobe ? "kretprobe" : "kprobe", func_name, 7154 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7155 return link; 7156 } 7157 return link; 7158 } 7159 7160 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 7161 struct bpf_program *prog) 7162 { 7163 const char *func_name; 7164 bool retprobe; 7165 7166 func_name = bpf_program__title(prog, false) + sec->len; 7167 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 7168 7169 return bpf_program__attach_kprobe(prog, retprobe, func_name); 7170 } 7171 7172 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 7173 bool retprobe, pid_t pid, 7174 const char *binary_path, 7175 size_t func_offset) 7176 { 7177 char errmsg[STRERR_BUFSIZE]; 7178 struct bpf_link *link; 7179 int pfd, err; 7180 7181 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 7182 binary_path, func_offset, pid); 7183 if (pfd < 0) { 7184 pr_warn("program '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 7185 bpf_program__title(prog, false), 7186 retprobe ? "uretprobe" : "uprobe", 7187 binary_path, func_offset, 7188 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7189 return ERR_PTR(pfd); 7190 } 7191 link = bpf_program__attach_perf_event(prog, pfd); 7192 if (IS_ERR(link)) { 7193 close(pfd); 7194 err = PTR_ERR(link); 7195 pr_warn("program '%s': failed to attach to %s '%s:0x%zx': %s\n", 7196 bpf_program__title(prog, false), 7197 retprobe ? "uretprobe" : "uprobe", 7198 binary_path, func_offset, 7199 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7200 return link; 7201 } 7202 return link; 7203 } 7204 7205 static int determine_tracepoint_id(const char *tp_category, 7206 const char *tp_name) 7207 { 7208 char file[PATH_MAX]; 7209 int ret; 7210 7211 ret = snprintf(file, sizeof(file), 7212 "/sys/kernel/debug/tracing/events/%s/%s/id", 7213 tp_category, tp_name); 7214 if (ret < 0) 7215 return -errno; 7216 if (ret >= sizeof(file)) { 7217 pr_debug("tracepoint %s/%s path is too long\n", 7218 tp_category, tp_name); 7219 return -E2BIG; 7220 } 7221 return parse_uint_from_file(file, "%d\n"); 7222 } 7223 7224 static int perf_event_open_tracepoint(const char *tp_category, 7225 const char *tp_name) 7226 { 7227 struct perf_event_attr attr = {}; 7228 char errmsg[STRERR_BUFSIZE]; 7229 int tp_id, pfd, err; 7230 7231 tp_id = determine_tracepoint_id(tp_category, tp_name); 7232 if (tp_id < 0) { 7233 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 7234 tp_category, tp_name, 7235 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 7236 return tp_id; 7237 } 7238 7239 attr.type = PERF_TYPE_TRACEPOINT; 7240 attr.size = sizeof(attr); 7241 attr.config = tp_id; 7242 7243 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 7244 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 7245 if (pfd < 0) { 7246 err = -errno; 7247 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 7248 tp_category, tp_name, 7249 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7250 return err; 7251 } 7252 return pfd; 7253 } 7254 7255 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 7256 const char *tp_category, 7257 const char *tp_name) 7258 { 7259 char errmsg[STRERR_BUFSIZE]; 7260 struct bpf_link *link; 7261 int pfd, err; 7262 7263 pfd = perf_event_open_tracepoint(tp_category, tp_name); 7264 if (pfd < 0) { 7265 pr_warn("program '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 7266 bpf_program__title(prog, false), 7267 tp_category, tp_name, 7268 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7269 return ERR_PTR(pfd); 7270 } 7271 link = bpf_program__attach_perf_event(prog, pfd); 7272 if (IS_ERR(link)) { 7273 close(pfd); 7274 err = PTR_ERR(link); 7275 pr_warn("program '%s': failed to attach to tracepoint '%s/%s': %s\n", 7276 bpf_program__title(prog, false), 7277 tp_category, tp_name, 7278 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7279 return link; 7280 } 7281 return link; 7282 } 7283 7284 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 7285 struct bpf_program *prog) 7286 { 7287 char *sec_name, *tp_cat, *tp_name; 7288 struct bpf_link *link; 7289 7290 sec_name = strdup(bpf_program__title(prog, false)); 7291 if (!sec_name) 7292 return ERR_PTR(-ENOMEM); 7293 7294 /* extract "tp/<category>/<name>" */ 7295 tp_cat = sec_name + sec->len; 7296 tp_name = strchr(tp_cat, '/'); 7297 if (!tp_name) { 7298 link = ERR_PTR(-EINVAL); 7299 goto out; 7300 } 7301 *tp_name = '\0'; 7302 tp_name++; 7303 7304 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 7305 out: 7306 free(sec_name); 7307 return link; 7308 } 7309 7310 static int bpf_link__detach_fd(struct bpf_link *link) 7311 { 7312 struct bpf_link_fd *l = (void *)link; 7313 7314 return close(l->fd); 7315 } 7316 7317 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 7318 const char *tp_name) 7319 { 7320 char errmsg[STRERR_BUFSIZE]; 7321 struct bpf_link_fd *link; 7322 int prog_fd, pfd; 7323 7324 prog_fd = bpf_program__fd(prog); 7325 if (prog_fd < 0) { 7326 pr_warn("program '%s': can't attach before loaded\n", 7327 bpf_program__title(prog, false)); 7328 return ERR_PTR(-EINVAL); 7329 } 7330 7331 link = calloc(1, sizeof(*link)); 7332 if (!link) 7333 return ERR_PTR(-ENOMEM); 7334 link->link.detach = &bpf_link__detach_fd; 7335 7336 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 7337 if (pfd < 0) { 7338 pfd = -errno; 7339 free(link); 7340 pr_warn("program '%s': failed to attach to raw tracepoint '%s': %s\n", 7341 bpf_program__title(prog, false), tp_name, 7342 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7343 return ERR_PTR(pfd); 7344 } 7345 link->fd = pfd; 7346 return (struct bpf_link *)link; 7347 } 7348 7349 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 7350 struct bpf_program *prog) 7351 { 7352 const char *tp_name = bpf_program__title(prog, false) + sec->len; 7353 7354 return bpf_program__attach_raw_tracepoint(prog, tp_name); 7355 } 7356 7357 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 7358 { 7359 char errmsg[STRERR_BUFSIZE]; 7360 struct bpf_link_fd *link; 7361 int prog_fd, pfd; 7362 7363 prog_fd = bpf_program__fd(prog); 7364 if (prog_fd < 0) { 7365 pr_warn("program '%s': can't attach before loaded\n", 7366 bpf_program__title(prog, false)); 7367 return ERR_PTR(-EINVAL); 7368 } 7369 7370 link = calloc(1, sizeof(*link)); 7371 if (!link) 7372 return ERR_PTR(-ENOMEM); 7373 link->link.detach = &bpf_link__detach_fd; 7374 7375 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 7376 if (pfd < 0) { 7377 pfd = -errno; 7378 free(link); 7379 pr_warn("program '%s': failed to attach to trace: %s\n", 7380 bpf_program__title(prog, false), 7381 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7382 return ERR_PTR(pfd); 7383 } 7384 link->fd = pfd; 7385 return (struct bpf_link *)link; 7386 } 7387 7388 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 7389 struct bpf_program *prog) 7390 { 7391 return bpf_program__attach_trace(prog); 7392 } 7393 7394 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 7395 { 7396 const struct bpf_sec_def *sec_def; 7397 7398 sec_def = find_sec_def(bpf_program__title(prog, false)); 7399 if (!sec_def || !sec_def->attach_fn) 7400 return ERR_PTR(-ESRCH); 7401 7402 return sec_def->attach_fn(sec_def, prog); 7403 } 7404 7405 static int bpf_link__detach_struct_ops(struct bpf_link *link) 7406 { 7407 struct bpf_link_fd *l = (void *)link; 7408 __u32 zero = 0; 7409 7410 if (bpf_map_delete_elem(l->fd, &zero)) 7411 return -errno; 7412 7413 return 0; 7414 } 7415 7416 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 7417 { 7418 struct bpf_struct_ops *st_ops; 7419 struct bpf_link_fd *link; 7420 __u32 i, zero = 0; 7421 int err; 7422 7423 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 7424 return ERR_PTR(-EINVAL); 7425 7426 link = calloc(1, sizeof(*link)); 7427 if (!link) 7428 return ERR_PTR(-EINVAL); 7429 7430 st_ops = map->st_ops; 7431 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7432 struct bpf_program *prog = st_ops->progs[i]; 7433 void *kern_data; 7434 int prog_fd; 7435 7436 if (!prog) 7437 continue; 7438 7439 prog_fd = bpf_program__fd(prog); 7440 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7441 *(unsigned long *)kern_data = prog_fd; 7442 } 7443 7444 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 7445 if (err) { 7446 err = -errno; 7447 free(link); 7448 return ERR_PTR(err); 7449 } 7450 7451 link->link.detach = bpf_link__detach_struct_ops; 7452 link->fd = map->fd; 7453 7454 return (struct bpf_link *)link; 7455 } 7456 7457 enum bpf_perf_event_ret 7458 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 7459 void **copy_mem, size_t *copy_size, 7460 bpf_perf_event_print_t fn, void *private_data) 7461 { 7462 struct perf_event_mmap_page *header = mmap_mem; 7463 __u64 data_head = ring_buffer_read_head(header); 7464 __u64 data_tail = header->data_tail; 7465 void *base = ((__u8 *)header) + page_size; 7466 int ret = LIBBPF_PERF_EVENT_CONT; 7467 struct perf_event_header *ehdr; 7468 size_t ehdr_size; 7469 7470 while (data_head != data_tail) { 7471 ehdr = base + (data_tail & (mmap_size - 1)); 7472 ehdr_size = ehdr->size; 7473 7474 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 7475 void *copy_start = ehdr; 7476 size_t len_first = base + mmap_size - copy_start; 7477 size_t len_secnd = ehdr_size - len_first; 7478 7479 if (*copy_size < ehdr_size) { 7480 free(*copy_mem); 7481 *copy_mem = malloc(ehdr_size); 7482 if (!*copy_mem) { 7483 *copy_size = 0; 7484 ret = LIBBPF_PERF_EVENT_ERROR; 7485 break; 7486 } 7487 *copy_size = ehdr_size; 7488 } 7489 7490 memcpy(*copy_mem, copy_start, len_first); 7491 memcpy(*copy_mem + len_first, base, len_secnd); 7492 ehdr = *copy_mem; 7493 } 7494 7495 ret = fn(ehdr, private_data); 7496 data_tail += ehdr_size; 7497 if (ret != LIBBPF_PERF_EVENT_CONT) 7498 break; 7499 } 7500 7501 ring_buffer_write_tail(header, data_tail); 7502 return ret; 7503 } 7504 7505 struct perf_buffer; 7506 7507 struct perf_buffer_params { 7508 struct perf_event_attr *attr; 7509 /* if event_cb is specified, it takes precendence */ 7510 perf_buffer_event_fn event_cb; 7511 /* sample_cb and lost_cb are higher-level common-case callbacks */ 7512 perf_buffer_sample_fn sample_cb; 7513 perf_buffer_lost_fn lost_cb; 7514 void *ctx; 7515 int cpu_cnt; 7516 int *cpus; 7517 int *map_keys; 7518 }; 7519 7520 struct perf_cpu_buf { 7521 struct perf_buffer *pb; 7522 void *base; /* mmap()'ed memory */ 7523 void *buf; /* for reconstructing segmented data */ 7524 size_t buf_size; 7525 int fd; 7526 int cpu; 7527 int map_key; 7528 }; 7529 7530 struct perf_buffer { 7531 perf_buffer_event_fn event_cb; 7532 perf_buffer_sample_fn sample_cb; 7533 perf_buffer_lost_fn lost_cb; 7534 void *ctx; /* passed into callbacks */ 7535 7536 size_t page_size; 7537 size_t mmap_size; 7538 struct perf_cpu_buf **cpu_bufs; 7539 struct epoll_event *events; 7540 int cpu_cnt; /* number of allocated CPU buffers */ 7541 int epoll_fd; /* perf event FD */ 7542 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 7543 }; 7544 7545 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 7546 struct perf_cpu_buf *cpu_buf) 7547 { 7548 if (!cpu_buf) 7549 return; 7550 if (cpu_buf->base && 7551 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 7552 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 7553 if (cpu_buf->fd >= 0) { 7554 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 7555 close(cpu_buf->fd); 7556 } 7557 free(cpu_buf->buf); 7558 free(cpu_buf); 7559 } 7560 7561 void perf_buffer__free(struct perf_buffer *pb) 7562 { 7563 int i; 7564 7565 if (!pb) 7566 return; 7567 if (pb->cpu_bufs) { 7568 for (i = 0; i < pb->cpu_cnt && pb->cpu_bufs[i]; i++) { 7569 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 7570 7571 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 7572 perf_buffer__free_cpu_buf(pb, cpu_buf); 7573 } 7574 free(pb->cpu_bufs); 7575 } 7576 if (pb->epoll_fd >= 0) 7577 close(pb->epoll_fd); 7578 free(pb->events); 7579 free(pb); 7580 } 7581 7582 static struct perf_cpu_buf * 7583 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 7584 int cpu, int map_key) 7585 { 7586 struct perf_cpu_buf *cpu_buf; 7587 char msg[STRERR_BUFSIZE]; 7588 int err; 7589 7590 cpu_buf = calloc(1, sizeof(*cpu_buf)); 7591 if (!cpu_buf) 7592 return ERR_PTR(-ENOMEM); 7593 7594 cpu_buf->pb = pb; 7595 cpu_buf->cpu = cpu; 7596 cpu_buf->map_key = map_key; 7597 7598 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 7599 -1, PERF_FLAG_FD_CLOEXEC); 7600 if (cpu_buf->fd < 0) { 7601 err = -errno; 7602 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 7603 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 7604 goto error; 7605 } 7606 7607 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 7608 PROT_READ | PROT_WRITE, MAP_SHARED, 7609 cpu_buf->fd, 0); 7610 if (cpu_buf->base == MAP_FAILED) { 7611 cpu_buf->base = NULL; 7612 err = -errno; 7613 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 7614 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 7615 goto error; 7616 } 7617 7618 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 7619 err = -errno; 7620 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 7621 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 7622 goto error; 7623 } 7624 7625 return cpu_buf; 7626 7627 error: 7628 perf_buffer__free_cpu_buf(pb, cpu_buf); 7629 return (struct perf_cpu_buf *)ERR_PTR(err); 7630 } 7631 7632 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 7633 struct perf_buffer_params *p); 7634 7635 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 7636 const struct perf_buffer_opts *opts) 7637 { 7638 struct perf_buffer_params p = {}; 7639 struct perf_event_attr attr = { 0, }; 7640 7641 attr.config = PERF_COUNT_SW_BPF_OUTPUT, 7642 attr.type = PERF_TYPE_SOFTWARE; 7643 attr.sample_type = PERF_SAMPLE_RAW; 7644 attr.sample_period = 1; 7645 attr.wakeup_events = 1; 7646 7647 p.attr = &attr; 7648 p.sample_cb = opts ? opts->sample_cb : NULL; 7649 p.lost_cb = opts ? opts->lost_cb : NULL; 7650 p.ctx = opts ? opts->ctx : NULL; 7651 7652 return __perf_buffer__new(map_fd, page_cnt, &p); 7653 } 7654 7655 struct perf_buffer * 7656 perf_buffer__new_raw(int map_fd, size_t page_cnt, 7657 const struct perf_buffer_raw_opts *opts) 7658 { 7659 struct perf_buffer_params p = {}; 7660 7661 p.attr = opts->attr; 7662 p.event_cb = opts->event_cb; 7663 p.ctx = opts->ctx; 7664 p.cpu_cnt = opts->cpu_cnt; 7665 p.cpus = opts->cpus; 7666 p.map_keys = opts->map_keys; 7667 7668 return __perf_buffer__new(map_fd, page_cnt, &p); 7669 } 7670 7671 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 7672 struct perf_buffer_params *p) 7673 { 7674 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 7675 struct bpf_map_info map = {}; 7676 char msg[STRERR_BUFSIZE]; 7677 struct perf_buffer *pb; 7678 bool *online = NULL; 7679 __u32 map_info_len; 7680 int err, i, j, n; 7681 7682 if (page_cnt & (page_cnt - 1)) { 7683 pr_warn("page count should be power of two, but is %zu\n", 7684 page_cnt); 7685 return ERR_PTR(-EINVAL); 7686 } 7687 7688 map_info_len = sizeof(map); 7689 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 7690 if (err) { 7691 err = -errno; 7692 pr_warn("failed to get map info for map FD %d: %s\n", 7693 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 7694 return ERR_PTR(err); 7695 } 7696 7697 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 7698 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 7699 map.name); 7700 return ERR_PTR(-EINVAL); 7701 } 7702 7703 pb = calloc(1, sizeof(*pb)); 7704 if (!pb) 7705 return ERR_PTR(-ENOMEM); 7706 7707 pb->event_cb = p->event_cb; 7708 pb->sample_cb = p->sample_cb; 7709 pb->lost_cb = p->lost_cb; 7710 pb->ctx = p->ctx; 7711 7712 pb->page_size = getpagesize(); 7713 pb->mmap_size = pb->page_size * page_cnt; 7714 pb->map_fd = map_fd; 7715 7716 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 7717 if (pb->epoll_fd < 0) { 7718 err = -errno; 7719 pr_warn("failed to create epoll instance: %s\n", 7720 libbpf_strerror_r(err, msg, sizeof(msg))); 7721 goto error; 7722 } 7723 7724 if (p->cpu_cnt > 0) { 7725 pb->cpu_cnt = p->cpu_cnt; 7726 } else { 7727 pb->cpu_cnt = libbpf_num_possible_cpus(); 7728 if (pb->cpu_cnt < 0) { 7729 err = pb->cpu_cnt; 7730 goto error; 7731 } 7732 if (map.max_entries < pb->cpu_cnt) 7733 pb->cpu_cnt = map.max_entries; 7734 } 7735 7736 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 7737 if (!pb->events) { 7738 err = -ENOMEM; 7739 pr_warn("failed to allocate events: out of memory\n"); 7740 goto error; 7741 } 7742 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 7743 if (!pb->cpu_bufs) { 7744 err = -ENOMEM; 7745 pr_warn("failed to allocate buffers: out of memory\n"); 7746 goto error; 7747 } 7748 7749 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 7750 if (err) { 7751 pr_warn("failed to get online CPU mask: %d\n", err); 7752 goto error; 7753 } 7754 7755 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 7756 struct perf_cpu_buf *cpu_buf; 7757 int cpu, map_key; 7758 7759 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 7760 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 7761 7762 /* in case user didn't explicitly requested particular CPUs to 7763 * be attached to, skip offline/not present CPUs 7764 */ 7765 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 7766 continue; 7767 7768 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 7769 if (IS_ERR(cpu_buf)) { 7770 err = PTR_ERR(cpu_buf); 7771 goto error; 7772 } 7773 7774 pb->cpu_bufs[j] = cpu_buf; 7775 7776 err = bpf_map_update_elem(pb->map_fd, &map_key, 7777 &cpu_buf->fd, 0); 7778 if (err) { 7779 err = -errno; 7780 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 7781 cpu, map_key, cpu_buf->fd, 7782 libbpf_strerror_r(err, msg, sizeof(msg))); 7783 goto error; 7784 } 7785 7786 pb->events[j].events = EPOLLIN; 7787 pb->events[j].data.ptr = cpu_buf; 7788 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 7789 &pb->events[j]) < 0) { 7790 err = -errno; 7791 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 7792 cpu, cpu_buf->fd, 7793 libbpf_strerror_r(err, msg, sizeof(msg))); 7794 goto error; 7795 } 7796 j++; 7797 } 7798 pb->cpu_cnt = j; 7799 free(online); 7800 7801 return pb; 7802 7803 error: 7804 free(online); 7805 if (pb) 7806 perf_buffer__free(pb); 7807 return ERR_PTR(err); 7808 } 7809 7810 struct perf_sample_raw { 7811 struct perf_event_header header; 7812 uint32_t size; 7813 char data[0]; 7814 }; 7815 7816 struct perf_sample_lost { 7817 struct perf_event_header header; 7818 uint64_t id; 7819 uint64_t lost; 7820 uint64_t sample_id; 7821 }; 7822 7823 static enum bpf_perf_event_ret 7824 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 7825 { 7826 struct perf_cpu_buf *cpu_buf = ctx; 7827 struct perf_buffer *pb = cpu_buf->pb; 7828 void *data = e; 7829 7830 /* user wants full control over parsing perf event */ 7831 if (pb->event_cb) 7832 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 7833 7834 switch (e->type) { 7835 case PERF_RECORD_SAMPLE: { 7836 struct perf_sample_raw *s = data; 7837 7838 if (pb->sample_cb) 7839 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 7840 break; 7841 } 7842 case PERF_RECORD_LOST: { 7843 struct perf_sample_lost *s = data; 7844 7845 if (pb->lost_cb) 7846 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 7847 break; 7848 } 7849 default: 7850 pr_warn("unknown perf sample type %d\n", e->type); 7851 return LIBBPF_PERF_EVENT_ERROR; 7852 } 7853 return LIBBPF_PERF_EVENT_CONT; 7854 } 7855 7856 static int perf_buffer__process_records(struct perf_buffer *pb, 7857 struct perf_cpu_buf *cpu_buf) 7858 { 7859 enum bpf_perf_event_ret ret; 7860 7861 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 7862 pb->page_size, &cpu_buf->buf, 7863 &cpu_buf->buf_size, 7864 perf_buffer__process_record, cpu_buf); 7865 if (ret != LIBBPF_PERF_EVENT_CONT) 7866 return ret; 7867 return 0; 7868 } 7869 7870 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 7871 { 7872 int i, cnt, err; 7873 7874 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 7875 for (i = 0; i < cnt; i++) { 7876 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 7877 7878 err = perf_buffer__process_records(pb, cpu_buf); 7879 if (err) { 7880 pr_warn("error while processing records: %d\n", err); 7881 return err; 7882 } 7883 } 7884 return cnt < 0 ? -errno : cnt; 7885 } 7886 7887 struct bpf_prog_info_array_desc { 7888 int array_offset; /* e.g. offset of jited_prog_insns */ 7889 int count_offset; /* e.g. offset of jited_prog_len */ 7890 int size_offset; /* > 0: offset of rec size, 7891 * < 0: fix size of -size_offset 7892 */ 7893 }; 7894 7895 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 7896 [BPF_PROG_INFO_JITED_INSNS] = { 7897 offsetof(struct bpf_prog_info, jited_prog_insns), 7898 offsetof(struct bpf_prog_info, jited_prog_len), 7899 -1, 7900 }, 7901 [BPF_PROG_INFO_XLATED_INSNS] = { 7902 offsetof(struct bpf_prog_info, xlated_prog_insns), 7903 offsetof(struct bpf_prog_info, xlated_prog_len), 7904 -1, 7905 }, 7906 [BPF_PROG_INFO_MAP_IDS] = { 7907 offsetof(struct bpf_prog_info, map_ids), 7908 offsetof(struct bpf_prog_info, nr_map_ids), 7909 -(int)sizeof(__u32), 7910 }, 7911 [BPF_PROG_INFO_JITED_KSYMS] = { 7912 offsetof(struct bpf_prog_info, jited_ksyms), 7913 offsetof(struct bpf_prog_info, nr_jited_ksyms), 7914 -(int)sizeof(__u64), 7915 }, 7916 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 7917 offsetof(struct bpf_prog_info, jited_func_lens), 7918 offsetof(struct bpf_prog_info, nr_jited_func_lens), 7919 -(int)sizeof(__u32), 7920 }, 7921 [BPF_PROG_INFO_FUNC_INFO] = { 7922 offsetof(struct bpf_prog_info, func_info), 7923 offsetof(struct bpf_prog_info, nr_func_info), 7924 offsetof(struct bpf_prog_info, func_info_rec_size), 7925 }, 7926 [BPF_PROG_INFO_LINE_INFO] = { 7927 offsetof(struct bpf_prog_info, line_info), 7928 offsetof(struct bpf_prog_info, nr_line_info), 7929 offsetof(struct bpf_prog_info, line_info_rec_size), 7930 }, 7931 [BPF_PROG_INFO_JITED_LINE_INFO] = { 7932 offsetof(struct bpf_prog_info, jited_line_info), 7933 offsetof(struct bpf_prog_info, nr_jited_line_info), 7934 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 7935 }, 7936 [BPF_PROG_INFO_PROG_TAGS] = { 7937 offsetof(struct bpf_prog_info, prog_tags), 7938 offsetof(struct bpf_prog_info, nr_prog_tags), 7939 -(int)sizeof(__u8) * BPF_TAG_SIZE, 7940 }, 7941 7942 }; 7943 7944 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 7945 int offset) 7946 { 7947 __u32 *array = (__u32 *)info; 7948 7949 if (offset >= 0) 7950 return array[offset / sizeof(__u32)]; 7951 return -(int)offset; 7952 } 7953 7954 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 7955 int offset) 7956 { 7957 __u64 *array = (__u64 *)info; 7958 7959 if (offset >= 0) 7960 return array[offset / sizeof(__u64)]; 7961 return -(int)offset; 7962 } 7963 7964 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 7965 __u32 val) 7966 { 7967 __u32 *array = (__u32 *)info; 7968 7969 if (offset >= 0) 7970 array[offset / sizeof(__u32)] = val; 7971 } 7972 7973 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 7974 __u64 val) 7975 { 7976 __u64 *array = (__u64 *)info; 7977 7978 if (offset >= 0) 7979 array[offset / sizeof(__u64)] = val; 7980 } 7981 7982 struct bpf_prog_info_linear * 7983 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 7984 { 7985 struct bpf_prog_info_linear *info_linear; 7986 struct bpf_prog_info info = {}; 7987 __u32 info_len = sizeof(info); 7988 __u32 data_len = 0; 7989 int i, err; 7990 void *ptr; 7991 7992 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 7993 return ERR_PTR(-EINVAL); 7994 7995 /* step 1: get array dimensions */ 7996 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 7997 if (err) { 7998 pr_debug("can't get prog info: %s", strerror(errno)); 7999 return ERR_PTR(-EFAULT); 8000 } 8001 8002 /* step 2: calculate total size of all arrays */ 8003 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8004 bool include_array = (arrays & (1UL << i)) > 0; 8005 struct bpf_prog_info_array_desc *desc; 8006 __u32 count, size; 8007 8008 desc = bpf_prog_info_array_desc + i; 8009 8010 /* kernel is too old to support this field */ 8011 if (info_len < desc->array_offset + sizeof(__u32) || 8012 info_len < desc->count_offset + sizeof(__u32) || 8013 (desc->size_offset > 0 && info_len < desc->size_offset)) 8014 include_array = false; 8015 8016 if (!include_array) { 8017 arrays &= ~(1UL << i); /* clear the bit */ 8018 continue; 8019 } 8020 8021 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8022 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8023 8024 data_len += count * size; 8025 } 8026 8027 /* step 3: allocate continuous memory */ 8028 data_len = roundup(data_len, sizeof(__u64)); 8029 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 8030 if (!info_linear) 8031 return ERR_PTR(-ENOMEM); 8032 8033 /* step 4: fill data to info_linear->info */ 8034 info_linear->arrays = arrays; 8035 memset(&info_linear->info, 0, sizeof(info)); 8036 ptr = info_linear->data; 8037 8038 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8039 struct bpf_prog_info_array_desc *desc; 8040 __u32 count, size; 8041 8042 if ((arrays & (1UL << i)) == 0) 8043 continue; 8044 8045 desc = bpf_prog_info_array_desc + i; 8046 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8047 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8048 bpf_prog_info_set_offset_u32(&info_linear->info, 8049 desc->count_offset, count); 8050 bpf_prog_info_set_offset_u32(&info_linear->info, 8051 desc->size_offset, size); 8052 bpf_prog_info_set_offset_u64(&info_linear->info, 8053 desc->array_offset, 8054 ptr_to_u64(ptr)); 8055 ptr += count * size; 8056 } 8057 8058 /* step 5: call syscall again to get required arrays */ 8059 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 8060 if (err) { 8061 pr_debug("can't get prog info: %s", strerror(errno)); 8062 free(info_linear); 8063 return ERR_PTR(-EFAULT); 8064 } 8065 8066 /* step 6: verify the data */ 8067 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8068 struct bpf_prog_info_array_desc *desc; 8069 __u32 v1, v2; 8070 8071 if ((arrays & (1UL << i)) == 0) 8072 continue; 8073 8074 desc = bpf_prog_info_array_desc + i; 8075 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8076 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 8077 desc->count_offset); 8078 if (v1 != v2) 8079 pr_warn("%s: mismatch in element count\n", __func__); 8080 8081 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8082 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 8083 desc->size_offset); 8084 if (v1 != v2) 8085 pr_warn("%s: mismatch in rec size\n", __func__); 8086 } 8087 8088 /* step 7: update info_len and data_len */ 8089 info_linear->info_len = sizeof(struct bpf_prog_info); 8090 info_linear->data_len = data_len; 8091 8092 return info_linear; 8093 } 8094 8095 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 8096 { 8097 int i; 8098 8099 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8100 struct bpf_prog_info_array_desc *desc; 8101 __u64 addr, offs; 8102 8103 if ((info_linear->arrays & (1UL << i)) == 0) 8104 continue; 8105 8106 desc = bpf_prog_info_array_desc + i; 8107 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 8108 desc->array_offset); 8109 offs = addr - ptr_to_u64(info_linear->data); 8110 bpf_prog_info_set_offset_u64(&info_linear->info, 8111 desc->array_offset, offs); 8112 } 8113 } 8114 8115 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 8116 { 8117 int i; 8118 8119 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8120 struct bpf_prog_info_array_desc *desc; 8121 __u64 addr, offs; 8122 8123 if ((info_linear->arrays & (1UL << i)) == 0) 8124 continue; 8125 8126 desc = bpf_prog_info_array_desc + i; 8127 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 8128 desc->array_offset); 8129 addr = offs + ptr_to_u64(info_linear->data); 8130 bpf_prog_info_set_offset_u64(&info_linear->info, 8131 desc->array_offset, addr); 8132 } 8133 } 8134 8135 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 8136 { 8137 int err = 0, n, len, start, end = -1; 8138 bool *tmp; 8139 8140 *mask = NULL; 8141 *mask_sz = 0; 8142 8143 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 8144 while (*s) { 8145 if (*s == ',' || *s == '\n') { 8146 s++; 8147 continue; 8148 } 8149 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 8150 if (n <= 0 || n > 2) { 8151 pr_warn("Failed to get CPU range %s: %d\n", s, n); 8152 err = -EINVAL; 8153 goto cleanup; 8154 } else if (n == 1) { 8155 end = start; 8156 } 8157 if (start < 0 || start > end) { 8158 pr_warn("Invalid CPU range [%d,%d] in %s\n", 8159 start, end, s); 8160 err = -EINVAL; 8161 goto cleanup; 8162 } 8163 tmp = realloc(*mask, end + 1); 8164 if (!tmp) { 8165 err = -ENOMEM; 8166 goto cleanup; 8167 } 8168 *mask = tmp; 8169 memset(tmp + *mask_sz, 0, start - *mask_sz); 8170 memset(tmp + start, 1, end - start + 1); 8171 *mask_sz = end + 1; 8172 s += len; 8173 } 8174 if (!*mask_sz) { 8175 pr_warn("Empty CPU range\n"); 8176 return -EINVAL; 8177 } 8178 return 0; 8179 cleanup: 8180 free(*mask); 8181 *mask = NULL; 8182 return err; 8183 } 8184 8185 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 8186 { 8187 int fd, err = 0, len; 8188 char buf[128]; 8189 8190 fd = open(fcpu, O_RDONLY); 8191 if (fd < 0) { 8192 err = -errno; 8193 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 8194 return err; 8195 } 8196 len = read(fd, buf, sizeof(buf)); 8197 close(fd); 8198 if (len <= 0) { 8199 err = len ? -errno : -EINVAL; 8200 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 8201 return err; 8202 } 8203 if (len >= sizeof(buf)) { 8204 pr_warn("CPU mask is too big in file %s\n", fcpu); 8205 return -E2BIG; 8206 } 8207 buf[len] = '\0'; 8208 8209 return parse_cpu_mask_str(buf, mask, mask_sz); 8210 } 8211 8212 int libbpf_num_possible_cpus(void) 8213 { 8214 static const char *fcpu = "/sys/devices/system/cpu/possible"; 8215 static int cpus; 8216 int err, n, i, tmp_cpus; 8217 bool *mask; 8218 8219 tmp_cpus = READ_ONCE(cpus); 8220 if (tmp_cpus > 0) 8221 return tmp_cpus; 8222 8223 err = parse_cpu_mask_file(fcpu, &mask, &n); 8224 if (err) 8225 return err; 8226 8227 tmp_cpus = 0; 8228 for (i = 0; i < n; i++) { 8229 if (mask[i]) 8230 tmp_cpus++; 8231 } 8232 free(mask); 8233 8234 WRITE_ONCE(cpus, tmp_cpus); 8235 return tmp_cpus; 8236 } 8237 8238 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 8239 const struct bpf_object_open_opts *opts) 8240 { 8241 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 8242 .object_name = s->name, 8243 ); 8244 struct bpf_object *obj; 8245 int i; 8246 8247 /* Attempt to preserve opts->object_name, unless overriden by user 8248 * explicitly. Overwriting object name for skeletons is discouraged, 8249 * as it breaks global data maps, because they contain object name 8250 * prefix as their own map name prefix. When skeleton is generated, 8251 * bpftool is making an assumption that this name will stay the same. 8252 */ 8253 if (opts) { 8254 memcpy(&skel_opts, opts, sizeof(*opts)); 8255 if (!opts->object_name) 8256 skel_opts.object_name = s->name; 8257 } 8258 8259 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 8260 if (IS_ERR(obj)) { 8261 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 8262 s->name, PTR_ERR(obj)); 8263 return PTR_ERR(obj); 8264 } 8265 8266 *s->obj = obj; 8267 8268 for (i = 0; i < s->map_cnt; i++) { 8269 struct bpf_map **map = s->maps[i].map; 8270 const char *name = s->maps[i].name; 8271 void **mmaped = s->maps[i].mmaped; 8272 8273 *map = bpf_object__find_map_by_name(obj, name); 8274 if (!*map) { 8275 pr_warn("failed to find skeleton map '%s'\n", name); 8276 return -ESRCH; 8277 } 8278 8279 /* externs shouldn't be pre-setup from user code */ 8280 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 8281 *mmaped = (*map)->mmaped; 8282 } 8283 8284 for (i = 0; i < s->prog_cnt; i++) { 8285 struct bpf_program **prog = s->progs[i].prog; 8286 const char *name = s->progs[i].name; 8287 8288 *prog = bpf_object__find_program_by_name(obj, name); 8289 if (!*prog) { 8290 pr_warn("failed to find skeleton program '%s'\n", name); 8291 return -ESRCH; 8292 } 8293 } 8294 8295 return 0; 8296 } 8297 8298 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 8299 { 8300 int i, err; 8301 8302 err = bpf_object__load(*s->obj); 8303 if (err) { 8304 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 8305 return err; 8306 } 8307 8308 for (i = 0; i < s->map_cnt; i++) { 8309 struct bpf_map *map = *s->maps[i].map; 8310 size_t mmap_sz = bpf_map_mmap_sz(map); 8311 int prot, map_fd = bpf_map__fd(map); 8312 void **mmaped = s->maps[i].mmaped; 8313 8314 if (!mmaped) 8315 continue; 8316 8317 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 8318 *mmaped = NULL; 8319 continue; 8320 } 8321 8322 if (map->def.map_flags & BPF_F_RDONLY_PROG) 8323 prot = PROT_READ; 8324 else 8325 prot = PROT_READ | PROT_WRITE; 8326 8327 /* Remap anonymous mmap()-ed "map initialization image" as 8328 * a BPF map-backed mmap()-ed memory, but preserving the same 8329 * memory address. This will cause kernel to change process' 8330 * page table to point to a different piece of kernel memory, 8331 * but from userspace point of view memory address (and its 8332 * contents, being identical at this point) will stay the 8333 * same. This mapping will be released by bpf_object__close() 8334 * as per normal clean up procedure, so we don't need to worry 8335 * about it from skeleton's clean up perspective. 8336 */ 8337 *mmaped = mmap(map->mmaped, mmap_sz, prot, 8338 MAP_SHARED | MAP_FIXED, map_fd, 0); 8339 if (*mmaped == MAP_FAILED) { 8340 err = -errno; 8341 *mmaped = NULL; 8342 pr_warn("failed to re-mmap() map '%s': %d\n", 8343 bpf_map__name(map), err); 8344 return err; 8345 } 8346 } 8347 8348 return 0; 8349 } 8350 8351 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 8352 { 8353 int i; 8354 8355 for (i = 0; i < s->prog_cnt; i++) { 8356 struct bpf_program *prog = *s->progs[i].prog; 8357 struct bpf_link **link = s->progs[i].link; 8358 const struct bpf_sec_def *sec_def; 8359 const char *sec_name = bpf_program__title(prog, false); 8360 8361 sec_def = find_sec_def(sec_name); 8362 if (!sec_def || !sec_def->attach_fn) 8363 continue; 8364 8365 *link = sec_def->attach_fn(sec_def, prog); 8366 if (IS_ERR(*link)) { 8367 pr_warn("failed to auto-attach program '%s': %ld\n", 8368 bpf_program__name(prog), PTR_ERR(*link)); 8369 return PTR_ERR(*link); 8370 } 8371 } 8372 8373 return 0; 8374 } 8375 8376 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 8377 { 8378 int i; 8379 8380 for (i = 0; i < s->prog_cnt; i++) { 8381 struct bpf_link **link = s->progs[i].link; 8382 8383 if (!IS_ERR_OR_NULL(*link)) 8384 bpf_link__destroy(*link); 8385 *link = NULL; 8386 } 8387 } 8388 8389 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 8390 { 8391 if (s->progs) 8392 bpf_object__detach_skeleton(s); 8393 if (s->obj) 8394 bpf_object__close(*s->obj); 8395 free(s->maps); 8396 free(s->progs); 8397 free(s); 8398 } 8399