1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static const char * const attach_type_name[] = { 76 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 77 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 78 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 79 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 80 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 81 [BPF_CGROUP_DEVICE] = "cgroup_device", 82 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 83 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 84 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 85 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 90 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 91 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 92 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 93 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 94 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 95 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 96 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 97 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 98 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 99 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 100 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 101 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 102 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 103 [BPF_LIRC_MODE2] = "lirc_mode2", 104 [BPF_FLOW_DISSECTOR] = "flow_dissector", 105 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 106 [BPF_TRACE_FENTRY] = "trace_fentry", 107 [BPF_TRACE_FEXIT] = "trace_fexit", 108 [BPF_MODIFY_RETURN] = "modify_return", 109 [BPF_LSM_MAC] = "lsm_mac", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const link_type_name[] = { 122 [BPF_LINK_TYPE_UNSPEC] = "unspec", 123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 124 [BPF_LINK_TYPE_TRACING] = "tracing", 125 [BPF_LINK_TYPE_CGROUP] = "cgroup", 126 [BPF_LINK_TYPE_ITER] = "iter", 127 [BPF_LINK_TYPE_NETNS] = "netns", 128 [BPF_LINK_TYPE_XDP] = "xdp", 129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 132 }; 133 134 static const char * const map_type_name[] = { 135 [BPF_MAP_TYPE_UNSPEC] = "unspec", 136 [BPF_MAP_TYPE_HASH] = "hash", 137 [BPF_MAP_TYPE_ARRAY] = "array", 138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 149 [BPF_MAP_TYPE_DEVMAP] = "devmap", 150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 152 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 153 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 158 [BPF_MAP_TYPE_QUEUE] = "queue", 159 [BPF_MAP_TYPE_STACK] = "stack", 160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 166 }; 167 168 static const char * const prog_type_name[] = { 169 [BPF_PROG_TYPE_UNSPEC] = "unspec", 170 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 171 [BPF_PROG_TYPE_KPROBE] = "kprobe", 172 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 173 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 174 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 175 [BPF_PROG_TYPE_XDP] = "xdp", 176 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 177 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 178 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 179 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 180 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 181 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 182 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 183 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 184 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 185 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 186 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 187 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 188 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 189 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 190 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 191 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 192 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 193 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 194 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 195 [BPF_PROG_TYPE_TRACING] = "tracing", 196 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 197 [BPF_PROG_TYPE_EXT] = "ext", 198 [BPF_PROG_TYPE_LSM] = "lsm", 199 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 200 [BPF_PROG_TYPE_SYSCALL] = "syscall", 201 }; 202 203 static int __base_pr(enum libbpf_print_level level, const char *format, 204 va_list args) 205 { 206 if (level == LIBBPF_DEBUG) 207 return 0; 208 209 return vfprintf(stderr, format, args); 210 } 211 212 static libbpf_print_fn_t __libbpf_pr = __base_pr; 213 214 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 215 { 216 libbpf_print_fn_t old_print_fn = __libbpf_pr; 217 218 __libbpf_pr = fn; 219 return old_print_fn; 220 } 221 222 __printf(2, 3) 223 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 224 { 225 va_list args; 226 227 if (!__libbpf_pr) 228 return; 229 230 va_start(args, format); 231 __libbpf_pr(level, format, args); 232 va_end(args); 233 } 234 235 static void pr_perm_msg(int err) 236 { 237 struct rlimit limit; 238 char buf[100]; 239 240 if (err != -EPERM || geteuid() != 0) 241 return; 242 243 err = getrlimit(RLIMIT_MEMLOCK, &limit); 244 if (err) 245 return; 246 247 if (limit.rlim_cur == RLIM_INFINITY) 248 return; 249 250 if (limit.rlim_cur < 1024) 251 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 252 else if (limit.rlim_cur < 1024*1024) 253 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 254 else 255 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 256 257 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 258 buf); 259 } 260 261 #define STRERR_BUFSIZE 128 262 263 /* Copied from tools/perf/util/util.h */ 264 #ifndef zfree 265 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 266 #endif 267 268 #ifndef zclose 269 # define zclose(fd) ({ \ 270 int ___err = 0; \ 271 if ((fd) >= 0) \ 272 ___err = close((fd)); \ 273 fd = -1; \ 274 ___err; }) 275 #endif 276 277 static inline __u64 ptr_to_u64(const void *ptr) 278 { 279 return (__u64) (unsigned long) ptr; 280 } 281 282 /* this goes away in libbpf 1.0 */ 283 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 284 285 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 286 { 287 libbpf_mode = mode; 288 return 0; 289 } 290 291 __u32 libbpf_major_version(void) 292 { 293 return LIBBPF_MAJOR_VERSION; 294 } 295 296 __u32 libbpf_minor_version(void) 297 { 298 return LIBBPF_MINOR_VERSION; 299 } 300 301 const char *libbpf_version_string(void) 302 { 303 #define __S(X) #X 304 #define _S(X) __S(X) 305 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 306 #undef _S 307 #undef __S 308 } 309 310 enum reloc_type { 311 RELO_LD64, 312 RELO_CALL, 313 RELO_DATA, 314 RELO_EXTERN_VAR, 315 RELO_EXTERN_FUNC, 316 RELO_SUBPROG_ADDR, 317 RELO_CORE, 318 }; 319 320 struct reloc_desc { 321 enum reloc_type type; 322 int insn_idx; 323 union { 324 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 325 struct { 326 int map_idx; 327 int sym_off; 328 }; 329 }; 330 }; 331 332 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 333 enum sec_def_flags { 334 SEC_NONE = 0, 335 /* expected_attach_type is optional, if kernel doesn't support that */ 336 SEC_EXP_ATTACH_OPT = 1, 337 /* legacy, only used by libbpf_get_type_names() and 338 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 339 * This used to be associated with cgroup (and few other) BPF programs 340 * that were attachable through BPF_PROG_ATTACH command. Pretty 341 * meaningless nowadays, though. 342 */ 343 SEC_ATTACHABLE = 2, 344 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 345 /* attachment target is specified through BTF ID in either kernel or 346 * other BPF program's BTF object */ 347 SEC_ATTACH_BTF = 4, 348 /* BPF program type allows sleeping/blocking in kernel */ 349 SEC_SLEEPABLE = 8, 350 /* allow non-strict prefix matching */ 351 SEC_SLOPPY_PFX = 16, 352 /* BPF program support non-linear XDP buffer */ 353 SEC_XDP_FRAGS = 32, 354 /* deprecated sec definitions not supposed to be used */ 355 SEC_DEPRECATED = 64, 356 }; 357 358 struct bpf_sec_def { 359 char *sec; 360 enum bpf_prog_type prog_type; 361 enum bpf_attach_type expected_attach_type; 362 long cookie; 363 int handler_id; 364 365 libbpf_prog_setup_fn_t prog_setup_fn; 366 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 367 libbpf_prog_attach_fn_t prog_attach_fn; 368 }; 369 370 /* 371 * bpf_prog should be a better name but it has been used in 372 * linux/filter.h. 373 */ 374 struct bpf_program { 375 const struct bpf_sec_def *sec_def; 376 char *sec_name; 377 size_t sec_idx; 378 /* this program's instruction offset (in number of instructions) 379 * within its containing ELF section 380 */ 381 size_t sec_insn_off; 382 /* number of original instructions in ELF section belonging to this 383 * program, not taking into account subprogram instructions possible 384 * appended later during relocation 385 */ 386 size_t sec_insn_cnt; 387 /* Offset (in number of instructions) of the start of instruction 388 * belonging to this BPF program within its containing main BPF 389 * program. For the entry-point (main) BPF program, this is always 390 * zero. For a sub-program, this gets reset before each of main BPF 391 * programs are processed and relocated and is used to determined 392 * whether sub-program was already appended to the main program, and 393 * if yes, at which instruction offset. 394 */ 395 size_t sub_insn_off; 396 397 char *name; 398 /* name with / replaced by _; makes recursive pinning 399 * in bpf_object__pin_programs easier 400 */ 401 char *pin_name; 402 403 /* instructions that belong to BPF program; insns[0] is located at 404 * sec_insn_off instruction within its ELF section in ELF file, so 405 * when mapping ELF file instruction index to the local instruction, 406 * one needs to subtract sec_insn_off; and vice versa. 407 */ 408 struct bpf_insn *insns; 409 /* actual number of instruction in this BPF program's image; for 410 * entry-point BPF programs this includes the size of main program 411 * itself plus all the used sub-programs, appended at the end 412 */ 413 size_t insns_cnt; 414 415 struct reloc_desc *reloc_desc; 416 int nr_reloc; 417 418 /* BPF verifier log settings */ 419 char *log_buf; 420 size_t log_size; 421 __u32 log_level; 422 423 struct { 424 int nr; 425 int *fds; 426 } instances; 427 bpf_program_prep_t preprocessor; 428 429 struct bpf_object *obj; 430 void *priv; 431 bpf_program_clear_priv_t clear_priv; 432 433 bool autoload; 434 bool mark_btf_static; 435 enum bpf_prog_type type; 436 enum bpf_attach_type expected_attach_type; 437 int prog_ifindex; 438 __u32 attach_btf_obj_fd; 439 __u32 attach_btf_id; 440 __u32 attach_prog_fd; 441 void *func_info; 442 __u32 func_info_rec_size; 443 __u32 func_info_cnt; 444 445 void *line_info; 446 __u32 line_info_rec_size; 447 __u32 line_info_cnt; 448 __u32 prog_flags; 449 }; 450 451 struct bpf_struct_ops { 452 const char *tname; 453 const struct btf_type *type; 454 struct bpf_program **progs; 455 __u32 *kern_func_off; 456 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 457 void *data; 458 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 459 * btf_vmlinux's format. 460 * struct bpf_struct_ops_tcp_congestion_ops { 461 * [... some other kernel fields ...] 462 * struct tcp_congestion_ops data; 463 * } 464 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 465 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 466 * from "data". 467 */ 468 void *kern_vdata; 469 __u32 type_id; 470 }; 471 472 #define DATA_SEC ".data" 473 #define BSS_SEC ".bss" 474 #define RODATA_SEC ".rodata" 475 #define KCONFIG_SEC ".kconfig" 476 #define KSYMS_SEC ".ksyms" 477 #define STRUCT_OPS_SEC ".struct_ops" 478 479 enum libbpf_map_type { 480 LIBBPF_MAP_UNSPEC, 481 LIBBPF_MAP_DATA, 482 LIBBPF_MAP_BSS, 483 LIBBPF_MAP_RODATA, 484 LIBBPF_MAP_KCONFIG, 485 }; 486 487 struct bpf_map { 488 struct bpf_object *obj; 489 char *name; 490 /* real_name is defined for special internal maps (.rodata*, 491 * .data*, .bss, .kconfig) and preserves their original ELF section 492 * name. This is important to be be able to find corresponding BTF 493 * DATASEC information. 494 */ 495 char *real_name; 496 int fd; 497 int sec_idx; 498 size_t sec_offset; 499 int map_ifindex; 500 int inner_map_fd; 501 struct bpf_map_def def; 502 __u32 numa_node; 503 __u32 btf_var_idx; 504 __u32 btf_key_type_id; 505 __u32 btf_value_type_id; 506 __u32 btf_vmlinux_value_type_id; 507 void *priv; 508 bpf_map_clear_priv_t clear_priv; 509 enum libbpf_map_type libbpf_type; 510 void *mmaped; 511 struct bpf_struct_ops *st_ops; 512 struct bpf_map *inner_map; 513 void **init_slots; 514 int init_slots_sz; 515 char *pin_path; 516 bool pinned; 517 bool reused; 518 bool autocreate; 519 __u64 map_extra; 520 }; 521 522 enum extern_type { 523 EXT_UNKNOWN, 524 EXT_KCFG, 525 EXT_KSYM, 526 }; 527 528 enum kcfg_type { 529 KCFG_UNKNOWN, 530 KCFG_CHAR, 531 KCFG_BOOL, 532 KCFG_INT, 533 KCFG_TRISTATE, 534 KCFG_CHAR_ARR, 535 }; 536 537 struct extern_desc { 538 enum extern_type type; 539 int sym_idx; 540 int btf_id; 541 int sec_btf_id; 542 const char *name; 543 bool is_set; 544 bool is_weak; 545 union { 546 struct { 547 enum kcfg_type type; 548 int sz; 549 int align; 550 int data_off; 551 bool is_signed; 552 } kcfg; 553 struct { 554 unsigned long long addr; 555 556 /* target btf_id of the corresponding kernel var. */ 557 int kernel_btf_obj_fd; 558 int kernel_btf_id; 559 560 /* local btf_id of the ksym extern's type. */ 561 __u32 type_id; 562 /* BTF fd index to be patched in for insn->off, this is 563 * 0 for vmlinux BTF, index in obj->fd_array for module 564 * BTF 565 */ 566 __s16 btf_fd_idx; 567 } ksym; 568 }; 569 }; 570 571 static LIST_HEAD(bpf_objects_list); 572 573 struct module_btf { 574 struct btf *btf; 575 char *name; 576 __u32 id; 577 int fd; 578 int fd_array_idx; 579 }; 580 581 enum sec_type { 582 SEC_UNUSED = 0, 583 SEC_RELO, 584 SEC_BSS, 585 SEC_DATA, 586 SEC_RODATA, 587 }; 588 589 struct elf_sec_desc { 590 enum sec_type sec_type; 591 Elf64_Shdr *shdr; 592 Elf_Data *data; 593 }; 594 595 struct elf_state { 596 int fd; 597 const void *obj_buf; 598 size_t obj_buf_sz; 599 Elf *elf; 600 Elf64_Ehdr *ehdr; 601 Elf_Data *symbols; 602 Elf_Data *st_ops_data; 603 size_t shstrndx; /* section index for section name strings */ 604 size_t strtabidx; 605 struct elf_sec_desc *secs; 606 int sec_cnt; 607 int maps_shndx; 608 int btf_maps_shndx; 609 __u32 btf_maps_sec_btf_id; 610 int text_shndx; 611 int symbols_shndx; 612 int st_ops_shndx; 613 }; 614 615 struct usdt_manager; 616 617 struct bpf_object { 618 char name[BPF_OBJ_NAME_LEN]; 619 char license[64]; 620 __u32 kern_version; 621 622 struct bpf_program *programs; 623 size_t nr_programs; 624 struct bpf_map *maps; 625 size_t nr_maps; 626 size_t maps_cap; 627 628 char *kconfig; 629 struct extern_desc *externs; 630 int nr_extern; 631 int kconfig_map_idx; 632 633 bool loaded; 634 bool has_subcalls; 635 bool has_rodata; 636 637 struct bpf_gen *gen_loader; 638 639 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 640 struct elf_state efile; 641 /* 642 * All loaded bpf_object are linked in a list, which is 643 * hidden to caller. bpf_objects__<func> handlers deal with 644 * all objects. 645 */ 646 struct list_head list; 647 648 struct btf *btf; 649 struct btf_ext *btf_ext; 650 651 /* Parse and load BTF vmlinux if any of the programs in the object need 652 * it at load time. 653 */ 654 struct btf *btf_vmlinux; 655 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 656 * override for vmlinux BTF. 657 */ 658 char *btf_custom_path; 659 /* vmlinux BTF override for CO-RE relocations */ 660 struct btf *btf_vmlinux_override; 661 /* Lazily initialized kernel module BTFs */ 662 struct module_btf *btf_modules; 663 bool btf_modules_loaded; 664 size_t btf_module_cnt; 665 size_t btf_module_cap; 666 667 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 668 char *log_buf; 669 size_t log_size; 670 __u32 log_level; 671 672 void *priv; 673 bpf_object_clear_priv_t clear_priv; 674 675 int *fd_array; 676 size_t fd_array_cap; 677 size_t fd_array_cnt; 678 679 struct usdt_manager *usdt_man; 680 681 char path[]; 682 }; 683 684 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 685 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 686 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 687 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 688 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 689 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 690 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 691 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 692 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 693 694 void bpf_program__unload(struct bpf_program *prog) 695 { 696 int i; 697 698 if (!prog) 699 return; 700 701 /* 702 * If the object is opened but the program was never loaded, 703 * it is possible that prog->instances.nr == -1. 704 */ 705 if (prog->instances.nr > 0) { 706 for (i = 0; i < prog->instances.nr; i++) 707 zclose(prog->instances.fds[i]); 708 } else if (prog->instances.nr != -1) { 709 pr_warn("Internal error: instances.nr is %d\n", 710 prog->instances.nr); 711 } 712 713 prog->instances.nr = -1; 714 zfree(&prog->instances.fds); 715 716 zfree(&prog->func_info); 717 zfree(&prog->line_info); 718 } 719 720 static void bpf_program__exit(struct bpf_program *prog) 721 { 722 if (!prog) 723 return; 724 725 if (prog->clear_priv) 726 prog->clear_priv(prog, prog->priv); 727 728 prog->priv = NULL; 729 prog->clear_priv = NULL; 730 731 bpf_program__unload(prog); 732 zfree(&prog->name); 733 zfree(&prog->sec_name); 734 zfree(&prog->pin_name); 735 zfree(&prog->insns); 736 zfree(&prog->reloc_desc); 737 738 prog->nr_reloc = 0; 739 prog->insns_cnt = 0; 740 prog->sec_idx = -1; 741 } 742 743 static char *__bpf_program__pin_name(struct bpf_program *prog) 744 { 745 char *name, *p; 746 747 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 748 name = strdup(prog->name); 749 else 750 name = strdup(prog->sec_name); 751 752 if (!name) 753 return NULL; 754 755 p = name; 756 757 while ((p = strchr(p, '/'))) 758 *p = '_'; 759 760 return name; 761 } 762 763 static bool insn_is_subprog_call(const struct bpf_insn *insn) 764 { 765 return BPF_CLASS(insn->code) == BPF_JMP && 766 BPF_OP(insn->code) == BPF_CALL && 767 BPF_SRC(insn->code) == BPF_K && 768 insn->src_reg == BPF_PSEUDO_CALL && 769 insn->dst_reg == 0 && 770 insn->off == 0; 771 } 772 773 static bool is_call_insn(const struct bpf_insn *insn) 774 { 775 return insn->code == (BPF_JMP | BPF_CALL); 776 } 777 778 static bool insn_is_pseudo_func(struct bpf_insn *insn) 779 { 780 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 781 } 782 783 static int 784 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 785 const char *name, size_t sec_idx, const char *sec_name, 786 size_t sec_off, void *insn_data, size_t insn_data_sz) 787 { 788 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 789 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 790 sec_name, name, sec_off, insn_data_sz); 791 return -EINVAL; 792 } 793 794 memset(prog, 0, sizeof(*prog)); 795 prog->obj = obj; 796 797 prog->sec_idx = sec_idx; 798 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 799 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 800 /* insns_cnt can later be increased by appending used subprograms */ 801 prog->insns_cnt = prog->sec_insn_cnt; 802 803 prog->type = BPF_PROG_TYPE_UNSPEC; 804 805 /* libbpf's convention for SEC("?abc...") is that it's just like 806 * SEC("abc...") but the corresponding bpf_program starts out with 807 * autoload set to false. 808 */ 809 if (sec_name[0] == '?') { 810 prog->autoload = false; 811 /* from now on forget there was ? in section name */ 812 sec_name++; 813 } else { 814 prog->autoload = true; 815 } 816 817 prog->instances.fds = NULL; 818 prog->instances.nr = -1; 819 820 /* inherit object's log_level */ 821 prog->log_level = obj->log_level; 822 823 prog->sec_name = strdup(sec_name); 824 if (!prog->sec_name) 825 goto errout; 826 827 prog->name = strdup(name); 828 if (!prog->name) 829 goto errout; 830 831 prog->pin_name = __bpf_program__pin_name(prog); 832 if (!prog->pin_name) 833 goto errout; 834 835 prog->insns = malloc(insn_data_sz); 836 if (!prog->insns) 837 goto errout; 838 memcpy(prog->insns, insn_data, insn_data_sz); 839 840 return 0; 841 errout: 842 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 843 bpf_program__exit(prog); 844 return -ENOMEM; 845 } 846 847 static int 848 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 849 const char *sec_name, int sec_idx) 850 { 851 Elf_Data *symbols = obj->efile.symbols; 852 struct bpf_program *prog, *progs; 853 void *data = sec_data->d_buf; 854 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 855 int nr_progs, err, i; 856 const char *name; 857 Elf64_Sym *sym; 858 859 progs = obj->programs; 860 nr_progs = obj->nr_programs; 861 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 862 sec_off = 0; 863 864 for (i = 0; i < nr_syms; i++) { 865 sym = elf_sym_by_idx(obj, i); 866 867 if (sym->st_shndx != sec_idx) 868 continue; 869 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 870 continue; 871 872 prog_sz = sym->st_size; 873 sec_off = sym->st_value; 874 875 name = elf_sym_str(obj, sym->st_name); 876 if (!name) { 877 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 878 sec_name, sec_off); 879 return -LIBBPF_ERRNO__FORMAT; 880 } 881 882 if (sec_off + prog_sz > sec_sz) { 883 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 884 sec_name, sec_off); 885 return -LIBBPF_ERRNO__FORMAT; 886 } 887 888 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 889 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 890 return -ENOTSUP; 891 } 892 893 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 894 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 895 896 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 897 if (!progs) { 898 /* 899 * In this case the original obj->programs 900 * is still valid, so don't need special treat for 901 * bpf_close_object(). 902 */ 903 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 904 sec_name, name); 905 return -ENOMEM; 906 } 907 obj->programs = progs; 908 909 prog = &progs[nr_progs]; 910 911 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 912 sec_off, data + sec_off, prog_sz); 913 if (err) 914 return err; 915 916 /* if function is a global/weak symbol, but has restricted 917 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 918 * as static to enable more permissive BPF verification mode 919 * with more outside context available to BPF verifier 920 */ 921 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 922 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 923 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 924 prog->mark_btf_static = true; 925 926 nr_progs++; 927 obj->nr_programs = nr_progs; 928 } 929 930 return 0; 931 } 932 933 __u32 get_kernel_version(void) 934 { 935 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 936 * but Ubuntu provides /proc/version_signature file, as described at 937 * https://ubuntu.com/kernel, with an example contents below, which we 938 * can use to get a proper LINUX_VERSION_CODE. 939 * 940 * Ubuntu 5.4.0-12.15-generic 5.4.8 941 * 942 * In the above, 5.4.8 is what kernel is actually expecting, while 943 * uname() call will return 5.4.0 in info.release. 944 */ 945 const char *ubuntu_kver_file = "/proc/version_signature"; 946 __u32 major, minor, patch; 947 struct utsname info; 948 949 if (access(ubuntu_kver_file, R_OK) == 0) { 950 FILE *f; 951 952 f = fopen(ubuntu_kver_file, "r"); 953 if (f) { 954 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 955 fclose(f); 956 return KERNEL_VERSION(major, minor, patch); 957 } 958 fclose(f); 959 } 960 /* something went wrong, fall back to uname() approach */ 961 } 962 963 uname(&info); 964 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 965 return 0; 966 return KERNEL_VERSION(major, minor, patch); 967 } 968 969 static const struct btf_member * 970 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 971 { 972 struct btf_member *m; 973 int i; 974 975 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 976 if (btf_member_bit_offset(t, i) == bit_offset) 977 return m; 978 } 979 980 return NULL; 981 } 982 983 static const struct btf_member * 984 find_member_by_name(const struct btf *btf, const struct btf_type *t, 985 const char *name) 986 { 987 struct btf_member *m; 988 int i; 989 990 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 991 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 992 return m; 993 } 994 995 return NULL; 996 } 997 998 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 999 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 1000 const char *name, __u32 kind); 1001 1002 static int 1003 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 1004 const struct btf_type **type, __u32 *type_id, 1005 const struct btf_type **vtype, __u32 *vtype_id, 1006 const struct btf_member **data_member) 1007 { 1008 const struct btf_type *kern_type, *kern_vtype; 1009 const struct btf_member *kern_data_member; 1010 __s32 kern_vtype_id, kern_type_id; 1011 __u32 i; 1012 1013 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 1014 if (kern_type_id < 0) { 1015 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1016 tname); 1017 return kern_type_id; 1018 } 1019 kern_type = btf__type_by_id(btf, kern_type_id); 1020 1021 /* Find the corresponding "map_value" type that will be used 1022 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1023 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1024 * btf_vmlinux. 1025 */ 1026 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1027 tname, BTF_KIND_STRUCT); 1028 if (kern_vtype_id < 0) { 1029 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1030 STRUCT_OPS_VALUE_PREFIX, tname); 1031 return kern_vtype_id; 1032 } 1033 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1034 1035 /* Find "struct tcp_congestion_ops" from 1036 * struct bpf_struct_ops_tcp_congestion_ops { 1037 * [ ... ] 1038 * struct tcp_congestion_ops data; 1039 * } 1040 */ 1041 kern_data_member = btf_members(kern_vtype); 1042 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1043 if (kern_data_member->type == kern_type_id) 1044 break; 1045 } 1046 if (i == btf_vlen(kern_vtype)) { 1047 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1048 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1049 return -EINVAL; 1050 } 1051 1052 *type = kern_type; 1053 *type_id = kern_type_id; 1054 *vtype = kern_vtype; 1055 *vtype_id = kern_vtype_id; 1056 *data_member = kern_data_member; 1057 1058 return 0; 1059 } 1060 1061 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1062 { 1063 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1064 } 1065 1066 /* Init the map's fields that depend on kern_btf */ 1067 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1068 const struct btf *btf, 1069 const struct btf *kern_btf) 1070 { 1071 const struct btf_member *member, *kern_member, *kern_data_member; 1072 const struct btf_type *type, *kern_type, *kern_vtype; 1073 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1074 struct bpf_struct_ops *st_ops; 1075 void *data, *kern_data; 1076 const char *tname; 1077 int err; 1078 1079 st_ops = map->st_ops; 1080 type = st_ops->type; 1081 tname = st_ops->tname; 1082 err = find_struct_ops_kern_types(kern_btf, tname, 1083 &kern_type, &kern_type_id, 1084 &kern_vtype, &kern_vtype_id, 1085 &kern_data_member); 1086 if (err) 1087 return err; 1088 1089 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1090 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1091 1092 map->def.value_size = kern_vtype->size; 1093 map->btf_vmlinux_value_type_id = kern_vtype_id; 1094 1095 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1096 if (!st_ops->kern_vdata) 1097 return -ENOMEM; 1098 1099 data = st_ops->data; 1100 kern_data_off = kern_data_member->offset / 8; 1101 kern_data = st_ops->kern_vdata + kern_data_off; 1102 1103 member = btf_members(type); 1104 for (i = 0; i < btf_vlen(type); i++, member++) { 1105 const struct btf_type *mtype, *kern_mtype; 1106 __u32 mtype_id, kern_mtype_id; 1107 void *mdata, *kern_mdata; 1108 __s64 msize, kern_msize; 1109 __u32 moff, kern_moff; 1110 __u32 kern_member_idx; 1111 const char *mname; 1112 1113 mname = btf__name_by_offset(btf, member->name_off); 1114 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1115 if (!kern_member) { 1116 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1117 map->name, mname); 1118 return -ENOTSUP; 1119 } 1120 1121 kern_member_idx = kern_member - btf_members(kern_type); 1122 if (btf_member_bitfield_size(type, i) || 1123 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1124 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1125 map->name, mname); 1126 return -ENOTSUP; 1127 } 1128 1129 moff = member->offset / 8; 1130 kern_moff = kern_member->offset / 8; 1131 1132 mdata = data + moff; 1133 kern_mdata = kern_data + kern_moff; 1134 1135 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1136 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1137 &kern_mtype_id); 1138 if (BTF_INFO_KIND(mtype->info) != 1139 BTF_INFO_KIND(kern_mtype->info)) { 1140 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1141 map->name, mname, BTF_INFO_KIND(mtype->info), 1142 BTF_INFO_KIND(kern_mtype->info)); 1143 return -ENOTSUP; 1144 } 1145 1146 if (btf_is_ptr(mtype)) { 1147 struct bpf_program *prog; 1148 1149 prog = st_ops->progs[i]; 1150 if (!prog) 1151 continue; 1152 1153 kern_mtype = skip_mods_and_typedefs(kern_btf, 1154 kern_mtype->type, 1155 &kern_mtype_id); 1156 1157 /* mtype->type must be a func_proto which was 1158 * guaranteed in bpf_object__collect_st_ops_relos(), 1159 * so only check kern_mtype for func_proto here. 1160 */ 1161 if (!btf_is_func_proto(kern_mtype)) { 1162 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1163 map->name, mname); 1164 return -ENOTSUP; 1165 } 1166 1167 prog->attach_btf_id = kern_type_id; 1168 prog->expected_attach_type = kern_member_idx; 1169 1170 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1171 1172 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1173 map->name, mname, prog->name, moff, 1174 kern_moff); 1175 1176 continue; 1177 } 1178 1179 msize = btf__resolve_size(btf, mtype_id); 1180 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1181 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1182 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1183 map->name, mname, (ssize_t)msize, 1184 (ssize_t)kern_msize); 1185 return -ENOTSUP; 1186 } 1187 1188 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1189 map->name, mname, (unsigned int)msize, 1190 moff, kern_moff); 1191 memcpy(kern_mdata, mdata, msize); 1192 } 1193 1194 return 0; 1195 } 1196 1197 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1198 { 1199 struct bpf_map *map; 1200 size_t i; 1201 int err; 1202 1203 for (i = 0; i < obj->nr_maps; i++) { 1204 map = &obj->maps[i]; 1205 1206 if (!bpf_map__is_struct_ops(map)) 1207 continue; 1208 1209 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1210 obj->btf_vmlinux); 1211 if (err) 1212 return err; 1213 } 1214 1215 return 0; 1216 } 1217 1218 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1219 { 1220 const struct btf_type *type, *datasec; 1221 const struct btf_var_secinfo *vsi; 1222 struct bpf_struct_ops *st_ops; 1223 const char *tname, *var_name; 1224 __s32 type_id, datasec_id; 1225 const struct btf *btf; 1226 struct bpf_map *map; 1227 __u32 i; 1228 1229 if (obj->efile.st_ops_shndx == -1) 1230 return 0; 1231 1232 btf = obj->btf; 1233 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1234 BTF_KIND_DATASEC); 1235 if (datasec_id < 0) { 1236 pr_warn("struct_ops init: DATASEC %s not found\n", 1237 STRUCT_OPS_SEC); 1238 return -EINVAL; 1239 } 1240 1241 datasec = btf__type_by_id(btf, datasec_id); 1242 vsi = btf_var_secinfos(datasec); 1243 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1244 type = btf__type_by_id(obj->btf, vsi->type); 1245 var_name = btf__name_by_offset(obj->btf, type->name_off); 1246 1247 type_id = btf__resolve_type(obj->btf, vsi->type); 1248 if (type_id < 0) { 1249 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1250 vsi->type, STRUCT_OPS_SEC); 1251 return -EINVAL; 1252 } 1253 1254 type = btf__type_by_id(obj->btf, type_id); 1255 tname = btf__name_by_offset(obj->btf, type->name_off); 1256 if (!tname[0]) { 1257 pr_warn("struct_ops init: anonymous type is not supported\n"); 1258 return -ENOTSUP; 1259 } 1260 if (!btf_is_struct(type)) { 1261 pr_warn("struct_ops init: %s is not a struct\n", tname); 1262 return -EINVAL; 1263 } 1264 1265 map = bpf_object__add_map(obj); 1266 if (IS_ERR(map)) 1267 return PTR_ERR(map); 1268 1269 map->sec_idx = obj->efile.st_ops_shndx; 1270 map->sec_offset = vsi->offset; 1271 map->name = strdup(var_name); 1272 if (!map->name) 1273 return -ENOMEM; 1274 1275 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1276 map->def.key_size = sizeof(int); 1277 map->def.value_size = type->size; 1278 map->def.max_entries = 1; 1279 1280 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1281 if (!map->st_ops) 1282 return -ENOMEM; 1283 st_ops = map->st_ops; 1284 st_ops->data = malloc(type->size); 1285 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1286 st_ops->kern_func_off = malloc(btf_vlen(type) * 1287 sizeof(*st_ops->kern_func_off)); 1288 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1289 return -ENOMEM; 1290 1291 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1292 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1293 var_name, STRUCT_OPS_SEC); 1294 return -EINVAL; 1295 } 1296 1297 memcpy(st_ops->data, 1298 obj->efile.st_ops_data->d_buf + vsi->offset, 1299 type->size); 1300 st_ops->tname = tname; 1301 st_ops->type = type; 1302 st_ops->type_id = type_id; 1303 1304 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1305 tname, type_id, var_name, vsi->offset); 1306 } 1307 1308 return 0; 1309 } 1310 1311 static struct bpf_object *bpf_object__new(const char *path, 1312 const void *obj_buf, 1313 size_t obj_buf_sz, 1314 const char *obj_name) 1315 { 1316 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1317 struct bpf_object *obj; 1318 char *end; 1319 1320 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1321 if (!obj) { 1322 pr_warn("alloc memory failed for %s\n", path); 1323 return ERR_PTR(-ENOMEM); 1324 } 1325 1326 strcpy(obj->path, path); 1327 if (obj_name) { 1328 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1329 } else { 1330 /* Using basename() GNU version which doesn't modify arg. */ 1331 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1332 end = strchr(obj->name, '.'); 1333 if (end) 1334 *end = 0; 1335 } 1336 1337 obj->efile.fd = -1; 1338 /* 1339 * Caller of this function should also call 1340 * bpf_object__elf_finish() after data collection to return 1341 * obj_buf to user. If not, we should duplicate the buffer to 1342 * avoid user freeing them before elf finish. 1343 */ 1344 obj->efile.obj_buf = obj_buf; 1345 obj->efile.obj_buf_sz = obj_buf_sz; 1346 obj->efile.maps_shndx = -1; 1347 obj->efile.btf_maps_shndx = -1; 1348 obj->efile.st_ops_shndx = -1; 1349 obj->kconfig_map_idx = -1; 1350 1351 obj->kern_version = get_kernel_version(); 1352 obj->loaded = false; 1353 1354 INIT_LIST_HEAD(&obj->list); 1355 if (!strict) 1356 list_add(&obj->list, &bpf_objects_list); 1357 return obj; 1358 } 1359 1360 static void bpf_object__elf_finish(struct bpf_object *obj) 1361 { 1362 if (!obj->efile.elf) 1363 return; 1364 1365 elf_end(obj->efile.elf); 1366 obj->efile.elf = NULL; 1367 obj->efile.symbols = NULL; 1368 obj->efile.st_ops_data = NULL; 1369 1370 zfree(&obj->efile.secs); 1371 obj->efile.sec_cnt = 0; 1372 zclose(obj->efile.fd); 1373 obj->efile.obj_buf = NULL; 1374 obj->efile.obj_buf_sz = 0; 1375 } 1376 1377 static int bpf_object__elf_init(struct bpf_object *obj) 1378 { 1379 Elf64_Ehdr *ehdr; 1380 int err = 0; 1381 Elf *elf; 1382 1383 if (obj->efile.elf) { 1384 pr_warn("elf: init internal error\n"); 1385 return -LIBBPF_ERRNO__LIBELF; 1386 } 1387 1388 if (obj->efile.obj_buf_sz > 0) { 1389 /* 1390 * obj_buf should have been validated by 1391 * bpf_object__open_buffer(). 1392 */ 1393 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1394 } else { 1395 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1396 if (obj->efile.fd < 0) { 1397 char errmsg[STRERR_BUFSIZE], *cp; 1398 1399 err = -errno; 1400 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1401 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1402 return err; 1403 } 1404 1405 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1406 } 1407 1408 if (!elf) { 1409 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1410 err = -LIBBPF_ERRNO__LIBELF; 1411 goto errout; 1412 } 1413 1414 obj->efile.elf = elf; 1415 1416 if (elf_kind(elf) != ELF_K_ELF) { 1417 err = -LIBBPF_ERRNO__FORMAT; 1418 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1419 goto errout; 1420 } 1421 1422 if (gelf_getclass(elf) != ELFCLASS64) { 1423 err = -LIBBPF_ERRNO__FORMAT; 1424 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1425 goto errout; 1426 } 1427 1428 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1429 if (!obj->efile.ehdr) { 1430 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1431 err = -LIBBPF_ERRNO__FORMAT; 1432 goto errout; 1433 } 1434 1435 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1436 pr_warn("elf: failed to get section names section index for %s: %s\n", 1437 obj->path, elf_errmsg(-1)); 1438 err = -LIBBPF_ERRNO__FORMAT; 1439 goto errout; 1440 } 1441 1442 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1443 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1444 pr_warn("elf: failed to get section names strings from %s: %s\n", 1445 obj->path, elf_errmsg(-1)); 1446 err = -LIBBPF_ERRNO__FORMAT; 1447 goto errout; 1448 } 1449 1450 /* Old LLVM set e_machine to EM_NONE */ 1451 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1452 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1453 err = -LIBBPF_ERRNO__FORMAT; 1454 goto errout; 1455 } 1456 1457 return 0; 1458 errout: 1459 bpf_object__elf_finish(obj); 1460 return err; 1461 } 1462 1463 static int bpf_object__check_endianness(struct bpf_object *obj) 1464 { 1465 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1466 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1467 return 0; 1468 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1469 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1470 return 0; 1471 #else 1472 # error "Unrecognized __BYTE_ORDER__" 1473 #endif 1474 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1475 return -LIBBPF_ERRNO__ENDIAN; 1476 } 1477 1478 static int 1479 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1480 { 1481 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1482 * go over allowed ELF data section buffer 1483 */ 1484 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1485 pr_debug("license of %s is %s\n", obj->path, obj->license); 1486 return 0; 1487 } 1488 1489 static int 1490 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1491 { 1492 __u32 kver; 1493 1494 if (size != sizeof(kver)) { 1495 pr_warn("invalid kver section in %s\n", obj->path); 1496 return -LIBBPF_ERRNO__FORMAT; 1497 } 1498 memcpy(&kver, data, sizeof(kver)); 1499 obj->kern_version = kver; 1500 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1501 return 0; 1502 } 1503 1504 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1505 { 1506 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1507 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1508 return true; 1509 return false; 1510 } 1511 1512 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1513 { 1514 Elf_Data *data; 1515 Elf_Scn *scn; 1516 1517 if (!name) 1518 return -EINVAL; 1519 1520 scn = elf_sec_by_name(obj, name); 1521 data = elf_sec_data(obj, scn); 1522 if (data) { 1523 *size = data->d_size; 1524 return 0; /* found it */ 1525 } 1526 1527 return -ENOENT; 1528 } 1529 1530 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1531 { 1532 Elf_Data *symbols = obj->efile.symbols; 1533 const char *sname; 1534 size_t si; 1535 1536 if (!name || !off) 1537 return -EINVAL; 1538 1539 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1540 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1541 1542 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1543 continue; 1544 1545 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1546 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1547 continue; 1548 1549 sname = elf_sym_str(obj, sym->st_name); 1550 if (!sname) { 1551 pr_warn("failed to get sym name string for var %s\n", name); 1552 return -EIO; 1553 } 1554 if (strcmp(name, sname) == 0) { 1555 *off = sym->st_value; 1556 return 0; 1557 } 1558 } 1559 1560 return -ENOENT; 1561 } 1562 1563 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1564 { 1565 struct bpf_map *map; 1566 int err; 1567 1568 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1569 sizeof(*obj->maps), obj->nr_maps + 1); 1570 if (err) 1571 return ERR_PTR(err); 1572 1573 map = &obj->maps[obj->nr_maps++]; 1574 map->obj = obj; 1575 map->fd = -1; 1576 map->inner_map_fd = -1; 1577 map->autocreate = true; 1578 1579 return map; 1580 } 1581 1582 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1583 { 1584 long page_sz = sysconf(_SC_PAGE_SIZE); 1585 size_t map_sz; 1586 1587 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1588 map_sz = roundup(map_sz, page_sz); 1589 return map_sz; 1590 } 1591 1592 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1593 { 1594 char map_name[BPF_OBJ_NAME_LEN], *p; 1595 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1596 1597 /* This is one of the more confusing parts of libbpf for various 1598 * reasons, some of which are historical. The original idea for naming 1599 * internal names was to include as much of BPF object name prefix as 1600 * possible, so that it can be distinguished from similar internal 1601 * maps of a different BPF object. 1602 * As an example, let's say we have bpf_object named 'my_object_name' 1603 * and internal map corresponding to '.rodata' ELF section. The final 1604 * map name advertised to user and to the kernel will be 1605 * 'my_objec.rodata', taking first 8 characters of object name and 1606 * entire 7 characters of '.rodata'. 1607 * Somewhat confusingly, if internal map ELF section name is shorter 1608 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1609 * for the suffix, even though we only have 4 actual characters, and 1610 * resulting map will be called 'my_objec.bss', not even using all 15 1611 * characters allowed by the kernel. Oh well, at least the truncated 1612 * object name is somewhat consistent in this case. But if the map 1613 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1614 * (8 chars) and thus will be left with only first 7 characters of the 1615 * object name ('my_obje'). Happy guessing, user, that the final map 1616 * name will be "my_obje.kconfig". 1617 * Now, with libbpf starting to support arbitrarily named .rodata.* 1618 * and .data.* data sections, it's possible that ELF section name is 1619 * longer than allowed 15 chars, so we now need to be careful to take 1620 * only up to 15 first characters of ELF name, taking no BPF object 1621 * name characters at all. So '.rodata.abracadabra' will result in 1622 * '.rodata.abracad' kernel and user-visible name. 1623 * We need to keep this convoluted logic intact for .data, .bss and 1624 * .rodata maps, but for new custom .data.custom and .rodata.custom 1625 * maps we use their ELF names as is, not prepending bpf_object name 1626 * in front. We still need to truncate them to 15 characters for the 1627 * kernel. Full name can be recovered for such maps by using DATASEC 1628 * BTF type associated with such map's value type, though. 1629 */ 1630 if (sfx_len >= BPF_OBJ_NAME_LEN) 1631 sfx_len = BPF_OBJ_NAME_LEN - 1; 1632 1633 /* if there are two or more dots in map name, it's a custom dot map */ 1634 if (strchr(real_name + 1, '.') != NULL) 1635 pfx_len = 0; 1636 else 1637 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1638 1639 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1640 sfx_len, real_name); 1641 1642 /* sanitise map name to characters allowed by kernel */ 1643 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1644 if (!isalnum(*p) && *p != '_' && *p != '.') 1645 *p = '_'; 1646 1647 return strdup(map_name); 1648 } 1649 1650 static int 1651 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1652 1653 static int 1654 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1655 const char *real_name, int sec_idx, void *data, size_t data_sz) 1656 { 1657 struct bpf_map_def *def; 1658 struct bpf_map *map; 1659 int err; 1660 1661 map = bpf_object__add_map(obj); 1662 if (IS_ERR(map)) 1663 return PTR_ERR(map); 1664 1665 map->libbpf_type = type; 1666 map->sec_idx = sec_idx; 1667 map->sec_offset = 0; 1668 map->real_name = strdup(real_name); 1669 map->name = internal_map_name(obj, real_name); 1670 if (!map->real_name || !map->name) { 1671 zfree(&map->real_name); 1672 zfree(&map->name); 1673 return -ENOMEM; 1674 } 1675 1676 def = &map->def; 1677 def->type = BPF_MAP_TYPE_ARRAY; 1678 def->key_size = sizeof(int); 1679 def->value_size = data_sz; 1680 def->max_entries = 1; 1681 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1682 ? BPF_F_RDONLY_PROG : 0; 1683 def->map_flags |= BPF_F_MMAPABLE; 1684 1685 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1686 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1687 1688 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1689 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1690 if (map->mmaped == MAP_FAILED) { 1691 err = -errno; 1692 map->mmaped = NULL; 1693 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1694 map->name, err); 1695 zfree(&map->real_name); 1696 zfree(&map->name); 1697 return err; 1698 } 1699 1700 /* failures are fine because of maps like .rodata.str1.1 */ 1701 (void) bpf_map_find_btf_info(obj, map); 1702 1703 if (data) 1704 memcpy(map->mmaped, data, data_sz); 1705 1706 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1707 return 0; 1708 } 1709 1710 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1711 { 1712 struct elf_sec_desc *sec_desc; 1713 const char *sec_name; 1714 int err = 0, sec_idx; 1715 1716 /* 1717 * Populate obj->maps with libbpf internal maps. 1718 */ 1719 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1720 sec_desc = &obj->efile.secs[sec_idx]; 1721 1722 switch (sec_desc->sec_type) { 1723 case SEC_DATA: 1724 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1725 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1726 sec_name, sec_idx, 1727 sec_desc->data->d_buf, 1728 sec_desc->data->d_size); 1729 break; 1730 case SEC_RODATA: 1731 obj->has_rodata = true; 1732 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1733 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1734 sec_name, sec_idx, 1735 sec_desc->data->d_buf, 1736 sec_desc->data->d_size); 1737 break; 1738 case SEC_BSS: 1739 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1740 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1741 sec_name, sec_idx, 1742 NULL, 1743 sec_desc->data->d_size); 1744 break; 1745 default: 1746 /* skip */ 1747 break; 1748 } 1749 if (err) 1750 return err; 1751 } 1752 return 0; 1753 } 1754 1755 1756 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1757 const void *name) 1758 { 1759 int i; 1760 1761 for (i = 0; i < obj->nr_extern; i++) { 1762 if (strcmp(obj->externs[i].name, name) == 0) 1763 return &obj->externs[i]; 1764 } 1765 return NULL; 1766 } 1767 1768 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1769 char value) 1770 { 1771 switch (ext->kcfg.type) { 1772 case KCFG_BOOL: 1773 if (value == 'm') { 1774 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1775 ext->name, value); 1776 return -EINVAL; 1777 } 1778 *(bool *)ext_val = value == 'y' ? true : false; 1779 break; 1780 case KCFG_TRISTATE: 1781 if (value == 'y') 1782 *(enum libbpf_tristate *)ext_val = TRI_YES; 1783 else if (value == 'm') 1784 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1785 else /* value == 'n' */ 1786 *(enum libbpf_tristate *)ext_val = TRI_NO; 1787 break; 1788 case KCFG_CHAR: 1789 *(char *)ext_val = value; 1790 break; 1791 case KCFG_UNKNOWN: 1792 case KCFG_INT: 1793 case KCFG_CHAR_ARR: 1794 default: 1795 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1796 ext->name, value); 1797 return -EINVAL; 1798 } 1799 ext->is_set = true; 1800 return 0; 1801 } 1802 1803 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1804 const char *value) 1805 { 1806 size_t len; 1807 1808 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1809 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1810 return -EINVAL; 1811 } 1812 1813 len = strlen(value); 1814 if (value[len - 1] != '"') { 1815 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1816 ext->name, value); 1817 return -EINVAL; 1818 } 1819 1820 /* strip quotes */ 1821 len -= 2; 1822 if (len >= ext->kcfg.sz) { 1823 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1824 ext->name, value, len, ext->kcfg.sz - 1); 1825 len = ext->kcfg.sz - 1; 1826 } 1827 memcpy(ext_val, value + 1, len); 1828 ext_val[len] = '\0'; 1829 ext->is_set = true; 1830 return 0; 1831 } 1832 1833 static int parse_u64(const char *value, __u64 *res) 1834 { 1835 char *value_end; 1836 int err; 1837 1838 errno = 0; 1839 *res = strtoull(value, &value_end, 0); 1840 if (errno) { 1841 err = -errno; 1842 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1843 return err; 1844 } 1845 if (*value_end) { 1846 pr_warn("failed to parse '%s' as integer completely\n", value); 1847 return -EINVAL; 1848 } 1849 return 0; 1850 } 1851 1852 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1853 { 1854 int bit_sz = ext->kcfg.sz * 8; 1855 1856 if (ext->kcfg.sz == 8) 1857 return true; 1858 1859 /* Validate that value stored in u64 fits in integer of `ext->sz` 1860 * bytes size without any loss of information. If the target integer 1861 * is signed, we rely on the following limits of integer type of 1862 * Y bits and subsequent transformation: 1863 * 1864 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1865 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1866 * 0 <= X + 2^(Y-1) < 2^Y 1867 * 1868 * For unsigned target integer, check that all the (64 - Y) bits are 1869 * zero. 1870 */ 1871 if (ext->kcfg.is_signed) 1872 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1873 else 1874 return (v >> bit_sz) == 0; 1875 } 1876 1877 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1878 __u64 value) 1879 { 1880 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1881 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1882 ext->name, (unsigned long long)value); 1883 return -EINVAL; 1884 } 1885 if (!is_kcfg_value_in_range(ext, value)) { 1886 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1887 ext->name, (unsigned long long)value, ext->kcfg.sz); 1888 return -ERANGE; 1889 } 1890 switch (ext->kcfg.sz) { 1891 case 1: *(__u8 *)ext_val = value; break; 1892 case 2: *(__u16 *)ext_val = value; break; 1893 case 4: *(__u32 *)ext_val = value; break; 1894 case 8: *(__u64 *)ext_val = value; break; 1895 default: 1896 return -EINVAL; 1897 } 1898 ext->is_set = true; 1899 return 0; 1900 } 1901 1902 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1903 char *buf, void *data) 1904 { 1905 struct extern_desc *ext; 1906 char *sep, *value; 1907 int len, err = 0; 1908 void *ext_val; 1909 __u64 num; 1910 1911 if (!str_has_pfx(buf, "CONFIG_")) 1912 return 0; 1913 1914 sep = strchr(buf, '='); 1915 if (!sep) { 1916 pr_warn("failed to parse '%s': no separator\n", buf); 1917 return -EINVAL; 1918 } 1919 1920 /* Trim ending '\n' */ 1921 len = strlen(buf); 1922 if (buf[len - 1] == '\n') 1923 buf[len - 1] = '\0'; 1924 /* Split on '=' and ensure that a value is present. */ 1925 *sep = '\0'; 1926 if (!sep[1]) { 1927 *sep = '='; 1928 pr_warn("failed to parse '%s': no value\n", buf); 1929 return -EINVAL; 1930 } 1931 1932 ext = find_extern_by_name(obj, buf); 1933 if (!ext || ext->is_set) 1934 return 0; 1935 1936 ext_val = data + ext->kcfg.data_off; 1937 value = sep + 1; 1938 1939 switch (*value) { 1940 case 'y': case 'n': case 'm': 1941 err = set_kcfg_value_tri(ext, ext_val, *value); 1942 break; 1943 case '"': 1944 err = set_kcfg_value_str(ext, ext_val, value); 1945 break; 1946 default: 1947 /* assume integer */ 1948 err = parse_u64(value, &num); 1949 if (err) { 1950 pr_warn("extern (kcfg) %s=%s should be integer\n", 1951 ext->name, value); 1952 return err; 1953 } 1954 err = set_kcfg_value_num(ext, ext_val, num); 1955 break; 1956 } 1957 if (err) 1958 return err; 1959 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1960 return 0; 1961 } 1962 1963 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1964 { 1965 char buf[PATH_MAX]; 1966 struct utsname uts; 1967 int len, err = 0; 1968 gzFile file; 1969 1970 uname(&uts); 1971 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1972 if (len < 0) 1973 return -EINVAL; 1974 else if (len >= PATH_MAX) 1975 return -ENAMETOOLONG; 1976 1977 /* gzopen also accepts uncompressed files. */ 1978 file = gzopen(buf, "r"); 1979 if (!file) 1980 file = gzopen("/proc/config.gz", "r"); 1981 1982 if (!file) { 1983 pr_warn("failed to open system Kconfig\n"); 1984 return -ENOENT; 1985 } 1986 1987 while (gzgets(file, buf, sizeof(buf))) { 1988 err = bpf_object__process_kconfig_line(obj, buf, data); 1989 if (err) { 1990 pr_warn("error parsing system Kconfig line '%s': %d\n", 1991 buf, err); 1992 goto out; 1993 } 1994 } 1995 1996 out: 1997 gzclose(file); 1998 return err; 1999 } 2000 2001 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2002 const char *config, void *data) 2003 { 2004 char buf[PATH_MAX]; 2005 int err = 0; 2006 FILE *file; 2007 2008 file = fmemopen((void *)config, strlen(config), "r"); 2009 if (!file) { 2010 err = -errno; 2011 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2012 return err; 2013 } 2014 2015 while (fgets(buf, sizeof(buf), file)) { 2016 err = bpf_object__process_kconfig_line(obj, buf, data); 2017 if (err) { 2018 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2019 buf, err); 2020 break; 2021 } 2022 } 2023 2024 fclose(file); 2025 return err; 2026 } 2027 2028 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2029 { 2030 struct extern_desc *last_ext = NULL, *ext; 2031 size_t map_sz; 2032 int i, err; 2033 2034 for (i = 0; i < obj->nr_extern; i++) { 2035 ext = &obj->externs[i]; 2036 if (ext->type == EXT_KCFG) 2037 last_ext = ext; 2038 } 2039 2040 if (!last_ext) 2041 return 0; 2042 2043 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2044 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2045 ".kconfig", obj->efile.symbols_shndx, 2046 NULL, map_sz); 2047 if (err) 2048 return err; 2049 2050 obj->kconfig_map_idx = obj->nr_maps - 1; 2051 2052 return 0; 2053 } 2054 2055 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 2056 { 2057 Elf_Data *symbols = obj->efile.symbols; 2058 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 2059 Elf_Data *data = NULL; 2060 Elf_Scn *scn; 2061 2062 if (obj->efile.maps_shndx < 0) 2063 return 0; 2064 2065 if (libbpf_mode & LIBBPF_STRICT_MAP_DEFINITIONS) { 2066 pr_warn("legacy map definitions in SEC(\"maps\") are not supported\n"); 2067 return -EOPNOTSUPP; 2068 } 2069 2070 if (!symbols) 2071 return -EINVAL; 2072 2073 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 2074 data = elf_sec_data(obj, scn); 2075 if (!scn || !data) { 2076 pr_warn("elf: failed to get legacy map definitions for %s\n", 2077 obj->path); 2078 return -EINVAL; 2079 } 2080 2081 /* 2082 * Count number of maps. Each map has a name. 2083 * Array of maps is not supported: only the first element is 2084 * considered. 2085 * 2086 * TODO: Detect array of map and report error. 2087 */ 2088 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 2089 for (i = 0; i < nr_syms; i++) { 2090 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 2091 2092 if (sym->st_shndx != obj->efile.maps_shndx) 2093 continue; 2094 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 2095 continue; 2096 nr_maps++; 2097 } 2098 /* Assume equally sized map definitions */ 2099 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 2100 nr_maps, data->d_size, obj->path); 2101 2102 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 2103 pr_warn("elf: unable to determine legacy map definition size in %s\n", 2104 obj->path); 2105 return -EINVAL; 2106 } 2107 map_def_sz = data->d_size / nr_maps; 2108 2109 /* Fill obj->maps using data in "maps" section. */ 2110 for (i = 0; i < nr_syms; i++) { 2111 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 2112 const char *map_name; 2113 struct bpf_map_def *def; 2114 struct bpf_map *map; 2115 2116 if (sym->st_shndx != obj->efile.maps_shndx) 2117 continue; 2118 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 2119 continue; 2120 2121 map = bpf_object__add_map(obj); 2122 if (IS_ERR(map)) 2123 return PTR_ERR(map); 2124 2125 map_name = elf_sym_str(obj, sym->st_name); 2126 if (!map_name) { 2127 pr_warn("failed to get map #%d name sym string for obj %s\n", 2128 i, obj->path); 2129 return -LIBBPF_ERRNO__FORMAT; 2130 } 2131 2132 pr_warn("map '%s' (legacy): legacy map definitions are deprecated, use BTF-defined maps instead\n", map_name); 2133 2134 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 2135 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 2136 return -ENOTSUP; 2137 } 2138 2139 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2140 map->sec_idx = sym->st_shndx; 2141 map->sec_offset = sym->st_value; 2142 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 2143 map_name, map->sec_idx, map->sec_offset); 2144 if (sym->st_value + map_def_sz > data->d_size) { 2145 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 2146 obj->path, map_name); 2147 return -EINVAL; 2148 } 2149 2150 map->name = strdup(map_name); 2151 if (!map->name) { 2152 pr_warn("map '%s': failed to alloc map name\n", map_name); 2153 return -ENOMEM; 2154 } 2155 pr_debug("map %d is \"%s\"\n", i, map->name); 2156 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 2157 /* 2158 * If the definition of the map in the object file fits in 2159 * bpf_map_def, copy it. Any extra fields in our version 2160 * of bpf_map_def will default to zero as a result of the 2161 * calloc above. 2162 */ 2163 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2164 memcpy(&map->def, def, map_def_sz); 2165 } else { 2166 /* 2167 * Here the map structure being read is bigger than what 2168 * we expect, truncate if the excess bits are all zero. 2169 * If they are not zero, reject this map as 2170 * incompatible. 2171 */ 2172 char *b; 2173 2174 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2175 b < ((char *)def) + map_def_sz; b++) { 2176 if (*b != 0) { 2177 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2178 obj->path, map_name); 2179 if (strict) 2180 return -EINVAL; 2181 } 2182 } 2183 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2184 } 2185 2186 /* btf info may not exist but fill it in if it does exist */ 2187 (void) bpf_map_find_btf_info(obj, map); 2188 } 2189 return 0; 2190 } 2191 2192 const struct btf_type * 2193 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2194 { 2195 const struct btf_type *t = btf__type_by_id(btf, id); 2196 2197 if (res_id) 2198 *res_id = id; 2199 2200 while (btf_is_mod(t) || btf_is_typedef(t)) { 2201 if (res_id) 2202 *res_id = t->type; 2203 t = btf__type_by_id(btf, t->type); 2204 } 2205 2206 return t; 2207 } 2208 2209 static const struct btf_type * 2210 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2211 { 2212 const struct btf_type *t; 2213 2214 t = skip_mods_and_typedefs(btf, id, NULL); 2215 if (!btf_is_ptr(t)) 2216 return NULL; 2217 2218 t = skip_mods_and_typedefs(btf, t->type, res_id); 2219 2220 return btf_is_func_proto(t) ? t : NULL; 2221 } 2222 2223 static const char *__btf_kind_str(__u16 kind) 2224 { 2225 switch (kind) { 2226 case BTF_KIND_UNKN: return "void"; 2227 case BTF_KIND_INT: return "int"; 2228 case BTF_KIND_PTR: return "ptr"; 2229 case BTF_KIND_ARRAY: return "array"; 2230 case BTF_KIND_STRUCT: return "struct"; 2231 case BTF_KIND_UNION: return "union"; 2232 case BTF_KIND_ENUM: return "enum"; 2233 case BTF_KIND_FWD: return "fwd"; 2234 case BTF_KIND_TYPEDEF: return "typedef"; 2235 case BTF_KIND_VOLATILE: return "volatile"; 2236 case BTF_KIND_CONST: return "const"; 2237 case BTF_KIND_RESTRICT: return "restrict"; 2238 case BTF_KIND_FUNC: return "func"; 2239 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2240 case BTF_KIND_VAR: return "var"; 2241 case BTF_KIND_DATASEC: return "datasec"; 2242 case BTF_KIND_FLOAT: return "float"; 2243 case BTF_KIND_DECL_TAG: return "decl_tag"; 2244 case BTF_KIND_TYPE_TAG: return "type_tag"; 2245 case BTF_KIND_ENUM64: return "enum64"; 2246 default: return "unknown"; 2247 } 2248 } 2249 2250 const char *btf_kind_str(const struct btf_type *t) 2251 { 2252 return __btf_kind_str(btf_kind(t)); 2253 } 2254 2255 /* 2256 * Fetch integer attribute of BTF map definition. Such attributes are 2257 * represented using a pointer to an array, in which dimensionality of array 2258 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2259 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2260 * type definition, while using only sizeof(void *) space in ELF data section. 2261 */ 2262 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2263 const struct btf_member *m, __u32 *res) 2264 { 2265 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2266 const char *name = btf__name_by_offset(btf, m->name_off); 2267 const struct btf_array *arr_info; 2268 const struct btf_type *arr_t; 2269 2270 if (!btf_is_ptr(t)) { 2271 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2272 map_name, name, btf_kind_str(t)); 2273 return false; 2274 } 2275 2276 arr_t = btf__type_by_id(btf, t->type); 2277 if (!arr_t) { 2278 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2279 map_name, name, t->type); 2280 return false; 2281 } 2282 if (!btf_is_array(arr_t)) { 2283 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2284 map_name, name, btf_kind_str(arr_t)); 2285 return false; 2286 } 2287 arr_info = btf_array(arr_t); 2288 *res = arr_info->nelems; 2289 return true; 2290 } 2291 2292 static int build_map_pin_path(struct bpf_map *map, const char *path) 2293 { 2294 char buf[PATH_MAX]; 2295 int len; 2296 2297 if (!path) 2298 path = "/sys/fs/bpf"; 2299 2300 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2301 if (len < 0) 2302 return -EINVAL; 2303 else if (len >= PATH_MAX) 2304 return -ENAMETOOLONG; 2305 2306 return bpf_map__set_pin_path(map, buf); 2307 } 2308 2309 int parse_btf_map_def(const char *map_name, struct btf *btf, 2310 const struct btf_type *def_t, bool strict, 2311 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2312 { 2313 const struct btf_type *t; 2314 const struct btf_member *m; 2315 bool is_inner = inner_def == NULL; 2316 int vlen, i; 2317 2318 vlen = btf_vlen(def_t); 2319 m = btf_members(def_t); 2320 for (i = 0; i < vlen; i++, m++) { 2321 const char *name = btf__name_by_offset(btf, m->name_off); 2322 2323 if (!name) { 2324 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2325 return -EINVAL; 2326 } 2327 if (strcmp(name, "type") == 0) { 2328 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2329 return -EINVAL; 2330 map_def->parts |= MAP_DEF_MAP_TYPE; 2331 } else if (strcmp(name, "max_entries") == 0) { 2332 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2333 return -EINVAL; 2334 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2335 } else if (strcmp(name, "map_flags") == 0) { 2336 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2337 return -EINVAL; 2338 map_def->parts |= MAP_DEF_MAP_FLAGS; 2339 } else if (strcmp(name, "numa_node") == 0) { 2340 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2341 return -EINVAL; 2342 map_def->parts |= MAP_DEF_NUMA_NODE; 2343 } else if (strcmp(name, "key_size") == 0) { 2344 __u32 sz; 2345 2346 if (!get_map_field_int(map_name, btf, m, &sz)) 2347 return -EINVAL; 2348 if (map_def->key_size && map_def->key_size != sz) { 2349 pr_warn("map '%s': conflicting key size %u != %u.\n", 2350 map_name, map_def->key_size, sz); 2351 return -EINVAL; 2352 } 2353 map_def->key_size = sz; 2354 map_def->parts |= MAP_DEF_KEY_SIZE; 2355 } else if (strcmp(name, "key") == 0) { 2356 __s64 sz; 2357 2358 t = btf__type_by_id(btf, m->type); 2359 if (!t) { 2360 pr_warn("map '%s': key type [%d] not found.\n", 2361 map_name, m->type); 2362 return -EINVAL; 2363 } 2364 if (!btf_is_ptr(t)) { 2365 pr_warn("map '%s': key spec is not PTR: %s.\n", 2366 map_name, btf_kind_str(t)); 2367 return -EINVAL; 2368 } 2369 sz = btf__resolve_size(btf, t->type); 2370 if (sz < 0) { 2371 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2372 map_name, t->type, (ssize_t)sz); 2373 return sz; 2374 } 2375 if (map_def->key_size && map_def->key_size != sz) { 2376 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2377 map_name, map_def->key_size, (ssize_t)sz); 2378 return -EINVAL; 2379 } 2380 map_def->key_size = sz; 2381 map_def->key_type_id = t->type; 2382 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2383 } else if (strcmp(name, "value_size") == 0) { 2384 __u32 sz; 2385 2386 if (!get_map_field_int(map_name, btf, m, &sz)) 2387 return -EINVAL; 2388 if (map_def->value_size && map_def->value_size != sz) { 2389 pr_warn("map '%s': conflicting value size %u != %u.\n", 2390 map_name, map_def->value_size, sz); 2391 return -EINVAL; 2392 } 2393 map_def->value_size = sz; 2394 map_def->parts |= MAP_DEF_VALUE_SIZE; 2395 } else if (strcmp(name, "value") == 0) { 2396 __s64 sz; 2397 2398 t = btf__type_by_id(btf, m->type); 2399 if (!t) { 2400 pr_warn("map '%s': value type [%d] not found.\n", 2401 map_name, m->type); 2402 return -EINVAL; 2403 } 2404 if (!btf_is_ptr(t)) { 2405 pr_warn("map '%s': value spec is not PTR: %s.\n", 2406 map_name, btf_kind_str(t)); 2407 return -EINVAL; 2408 } 2409 sz = btf__resolve_size(btf, t->type); 2410 if (sz < 0) { 2411 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2412 map_name, t->type, (ssize_t)sz); 2413 return sz; 2414 } 2415 if (map_def->value_size && map_def->value_size != sz) { 2416 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2417 map_name, map_def->value_size, (ssize_t)sz); 2418 return -EINVAL; 2419 } 2420 map_def->value_size = sz; 2421 map_def->value_type_id = t->type; 2422 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2423 } 2424 else if (strcmp(name, "values") == 0) { 2425 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2426 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2427 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2428 char inner_map_name[128]; 2429 int err; 2430 2431 if (is_inner) { 2432 pr_warn("map '%s': multi-level inner maps not supported.\n", 2433 map_name); 2434 return -ENOTSUP; 2435 } 2436 if (i != vlen - 1) { 2437 pr_warn("map '%s': '%s' member should be last.\n", 2438 map_name, name); 2439 return -EINVAL; 2440 } 2441 if (!is_map_in_map && !is_prog_array) { 2442 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2443 map_name); 2444 return -ENOTSUP; 2445 } 2446 if (map_def->value_size && map_def->value_size != 4) { 2447 pr_warn("map '%s': conflicting value size %u != 4.\n", 2448 map_name, map_def->value_size); 2449 return -EINVAL; 2450 } 2451 map_def->value_size = 4; 2452 t = btf__type_by_id(btf, m->type); 2453 if (!t) { 2454 pr_warn("map '%s': %s type [%d] not found.\n", 2455 map_name, desc, m->type); 2456 return -EINVAL; 2457 } 2458 if (!btf_is_array(t) || btf_array(t)->nelems) { 2459 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2460 map_name, desc); 2461 return -EINVAL; 2462 } 2463 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2464 if (!btf_is_ptr(t)) { 2465 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2466 map_name, desc, btf_kind_str(t)); 2467 return -EINVAL; 2468 } 2469 t = skip_mods_and_typedefs(btf, t->type, NULL); 2470 if (is_prog_array) { 2471 if (!btf_is_func_proto(t)) { 2472 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2473 map_name, btf_kind_str(t)); 2474 return -EINVAL; 2475 } 2476 continue; 2477 } 2478 if (!btf_is_struct(t)) { 2479 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2480 map_name, btf_kind_str(t)); 2481 return -EINVAL; 2482 } 2483 2484 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2485 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2486 if (err) 2487 return err; 2488 2489 map_def->parts |= MAP_DEF_INNER_MAP; 2490 } else if (strcmp(name, "pinning") == 0) { 2491 __u32 val; 2492 2493 if (is_inner) { 2494 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2495 return -EINVAL; 2496 } 2497 if (!get_map_field_int(map_name, btf, m, &val)) 2498 return -EINVAL; 2499 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2500 pr_warn("map '%s': invalid pinning value %u.\n", 2501 map_name, val); 2502 return -EINVAL; 2503 } 2504 map_def->pinning = val; 2505 map_def->parts |= MAP_DEF_PINNING; 2506 } else if (strcmp(name, "map_extra") == 0) { 2507 __u32 map_extra; 2508 2509 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2510 return -EINVAL; 2511 map_def->map_extra = map_extra; 2512 map_def->parts |= MAP_DEF_MAP_EXTRA; 2513 } else { 2514 if (strict) { 2515 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2516 return -ENOTSUP; 2517 } 2518 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2519 } 2520 } 2521 2522 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2523 pr_warn("map '%s': map type isn't specified.\n", map_name); 2524 return -EINVAL; 2525 } 2526 2527 return 0; 2528 } 2529 2530 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2531 { 2532 map->def.type = def->map_type; 2533 map->def.key_size = def->key_size; 2534 map->def.value_size = def->value_size; 2535 map->def.max_entries = def->max_entries; 2536 map->def.map_flags = def->map_flags; 2537 map->map_extra = def->map_extra; 2538 2539 map->numa_node = def->numa_node; 2540 map->btf_key_type_id = def->key_type_id; 2541 map->btf_value_type_id = def->value_type_id; 2542 2543 if (def->parts & MAP_DEF_MAP_TYPE) 2544 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2545 2546 if (def->parts & MAP_DEF_KEY_TYPE) 2547 pr_debug("map '%s': found key [%u], sz = %u.\n", 2548 map->name, def->key_type_id, def->key_size); 2549 else if (def->parts & MAP_DEF_KEY_SIZE) 2550 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2551 2552 if (def->parts & MAP_DEF_VALUE_TYPE) 2553 pr_debug("map '%s': found value [%u], sz = %u.\n", 2554 map->name, def->value_type_id, def->value_size); 2555 else if (def->parts & MAP_DEF_VALUE_SIZE) 2556 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2557 2558 if (def->parts & MAP_DEF_MAX_ENTRIES) 2559 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2560 if (def->parts & MAP_DEF_MAP_FLAGS) 2561 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2562 if (def->parts & MAP_DEF_MAP_EXTRA) 2563 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2564 (unsigned long long)def->map_extra); 2565 if (def->parts & MAP_DEF_PINNING) 2566 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2567 if (def->parts & MAP_DEF_NUMA_NODE) 2568 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2569 2570 if (def->parts & MAP_DEF_INNER_MAP) 2571 pr_debug("map '%s': found inner map definition.\n", map->name); 2572 } 2573 2574 static const char *btf_var_linkage_str(__u32 linkage) 2575 { 2576 switch (linkage) { 2577 case BTF_VAR_STATIC: return "static"; 2578 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2579 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2580 default: return "unknown"; 2581 } 2582 } 2583 2584 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2585 const struct btf_type *sec, 2586 int var_idx, int sec_idx, 2587 const Elf_Data *data, bool strict, 2588 const char *pin_root_path) 2589 { 2590 struct btf_map_def map_def = {}, inner_def = {}; 2591 const struct btf_type *var, *def; 2592 const struct btf_var_secinfo *vi; 2593 const struct btf_var *var_extra; 2594 const char *map_name; 2595 struct bpf_map *map; 2596 int err; 2597 2598 vi = btf_var_secinfos(sec) + var_idx; 2599 var = btf__type_by_id(obj->btf, vi->type); 2600 var_extra = btf_var(var); 2601 map_name = btf__name_by_offset(obj->btf, var->name_off); 2602 2603 if (map_name == NULL || map_name[0] == '\0') { 2604 pr_warn("map #%d: empty name.\n", var_idx); 2605 return -EINVAL; 2606 } 2607 if ((__u64)vi->offset + vi->size > data->d_size) { 2608 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2609 return -EINVAL; 2610 } 2611 if (!btf_is_var(var)) { 2612 pr_warn("map '%s': unexpected var kind %s.\n", 2613 map_name, btf_kind_str(var)); 2614 return -EINVAL; 2615 } 2616 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2617 pr_warn("map '%s': unsupported map linkage %s.\n", 2618 map_name, btf_var_linkage_str(var_extra->linkage)); 2619 return -EOPNOTSUPP; 2620 } 2621 2622 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2623 if (!btf_is_struct(def)) { 2624 pr_warn("map '%s': unexpected def kind %s.\n", 2625 map_name, btf_kind_str(var)); 2626 return -EINVAL; 2627 } 2628 if (def->size > vi->size) { 2629 pr_warn("map '%s': invalid def size.\n", map_name); 2630 return -EINVAL; 2631 } 2632 2633 map = bpf_object__add_map(obj); 2634 if (IS_ERR(map)) 2635 return PTR_ERR(map); 2636 map->name = strdup(map_name); 2637 if (!map->name) { 2638 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2639 return -ENOMEM; 2640 } 2641 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2642 map->def.type = BPF_MAP_TYPE_UNSPEC; 2643 map->sec_idx = sec_idx; 2644 map->sec_offset = vi->offset; 2645 map->btf_var_idx = var_idx; 2646 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2647 map_name, map->sec_idx, map->sec_offset); 2648 2649 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2650 if (err) 2651 return err; 2652 2653 fill_map_from_def(map, &map_def); 2654 2655 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2656 err = build_map_pin_path(map, pin_root_path); 2657 if (err) { 2658 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2659 return err; 2660 } 2661 } 2662 2663 if (map_def.parts & MAP_DEF_INNER_MAP) { 2664 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2665 if (!map->inner_map) 2666 return -ENOMEM; 2667 map->inner_map->fd = -1; 2668 map->inner_map->sec_idx = sec_idx; 2669 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2670 if (!map->inner_map->name) 2671 return -ENOMEM; 2672 sprintf(map->inner_map->name, "%s.inner", map_name); 2673 2674 fill_map_from_def(map->inner_map, &inner_def); 2675 } 2676 2677 err = bpf_map_find_btf_info(obj, map); 2678 if (err) 2679 return err; 2680 2681 return 0; 2682 } 2683 2684 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2685 const char *pin_root_path) 2686 { 2687 const struct btf_type *sec = NULL; 2688 int nr_types, i, vlen, err; 2689 const struct btf_type *t; 2690 const char *name; 2691 Elf_Data *data; 2692 Elf_Scn *scn; 2693 2694 if (obj->efile.btf_maps_shndx < 0) 2695 return 0; 2696 2697 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2698 data = elf_sec_data(obj, scn); 2699 if (!scn || !data) { 2700 pr_warn("elf: failed to get %s map definitions for %s\n", 2701 MAPS_ELF_SEC, obj->path); 2702 return -EINVAL; 2703 } 2704 2705 nr_types = btf__type_cnt(obj->btf); 2706 for (i = 1; i < nr_types; i++) { 2707 t = btf__type_by_id(obj->btf, i); 2708 if (!btf_is_datasec(t)) 2709 continue; 2710 name = btf__name_by_offset(obj->btf, t->name_off); 2711 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2712 sec = t; 2713 obj->efile.btf_maps_sec_btf_id = i; 2714 break; 2715 } 2716 } 2717 2718 if (!sec) { 2719 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2720 return -ENOENT; 2721 } 2722 2723 vlen = btf_vlen(sec); 2724 for (i = 0; i < vlen; i++) { 2725 err = bpf_object__init_user_btf_map(obj, sec, i, 2726 obj->efile.btf_maps_shndx, 2727 data, strict, 2728 pin_root_path); 2729 if (err) 2730 return err; 2731 } 2732 2733 return 0; 2734 } 2735 2736 static int bpf_object__init_maps(struct bpf_object *obj, 2737 const struct bpf_object_open_opts *opts) 2738 { 2739 const char *pin_root_path; 2740 bool strict; 2741 int err; 2742 2743 strict = !OPTS_GET(opts, relaxed_maps, false); 2744 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2745 2746 err = bpf_object__init_user_maps(obj, strict); 2747 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2748 err = err ?: bpf_object__init_global_data_maps(obj); 2749 err = err ?: bpf_object__init_kconfig_map(obj); 2750 err = err ?: bpf_object__init_struct_ops_maps(obj); 2751 2752 return err; 2753 } 2754 2755 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2756 { 2757 Elf64_Shdr *sh; 2758 2759 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2760 if (!sh) 2761 return false; 2762 2763 return sh->sh_flags & SHF_EXECINSTR; 2764 } 2765 2766 static bool btf_needs_sanitization(struct bpf_object *obj) 2767 { 2768 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2769 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2770 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2771 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2772 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2773 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2774 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2775 2776 return !has_func || !has_datasec || !has_func_global || !has_float || 2777 !has_decl_tag || !has_type_tag || !has_enum64; 2778 } 2779 2780 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2781 { 2782 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2783 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2784 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2785 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2786 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2787 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2788 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2789 int enum64_placeholder_id = 0; 2790 struct btf_type *t; 2791 int i, j, vlen; 2792 2793 for (i = 1; i < btf__type_cnt(btf); i++) { 2794 t = (struct btf_type *)btf__type_by_id(btf, i); 2795 2796 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2797 /* replace VAR/DECL_TAG with INT */ 2798 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2799 /* 2800 * using size = 1 is the safest choice, 4 will be too 2801 * big and cause kernel BTF validation failure if 2802 * original variable took less than 4 bytes 2803 */ 2804 t->size = 1; 2805 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2806 } else if (!has_datasec && btf_is_datasec(t)) { 2807 /* replace DATASEC with STRUCT */ 2808 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2809 struct btf_member *m = btf_members(t); 2810 struct btf_type *vt; 2811 char *name; 2812 2813 name = (char *)btf__name_by_offset(btf, t->name_off); 2814 while (*name) { 2815 if (*name == '.') 2816 *name = '_'; 2817 name++; 2818 } 2819 2820 vlen = btf_vlen(t); 2821 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2822 for (j = 0; j < vlen; j++, v++, m++) { 2823 /* order of field assignments is important */ 2824 m->offset = v->offset * 8; 2825 m->type = v->type; 2826 /* preserve variable name as member name */ 2827 vt = (void *)btf__type_by_id(btf, v->type); 2828 m->name_off = vt->name_off; 2829 } 2830 } else if (!has_func && btf_is_func_proto(t)) { 2831 /* replace FUNC_PROTO with ENUM */ 2832 vlen = btf_vlen(t); 2833 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2834 t->size = sizeof(__u32); /* kernel enforced */ 2835 } else if (!has_func && btf_is_func(t)) { 2836 /* replace FUNC with TYPEDEF */ 2837 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2838 } else if (!has_func_global && btf_is_func(t)) { 2839 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2840 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2841 } else if (!has_float && btf_is_float(t)) { 2842 /* replace FLOAT with an equally-sized empty STRUCT; 2843 * since C compilers do not accept e.g. "float" as a 2844 * valid struct name, make it anonymous 2845 */ 2846 t->name_off = 0; 2847 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2848 } else if (!has_type_tag && btf_is_type_tag(t)) { 2849 /* replace TYPE_TAG with a CONST */ 2850 t->name_off = 0; 2851 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2852 } else if (!has_enum64 && btf_is_enum(t)) { 2853 /* clear the kflag */ 2854 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2855 } else if (!has_enum64 && btf_is_enum64(t)) { 2856 /* replace ENUM64 with a union */ 2857 struct btf_member *m; 2858 2859 if (enum64_placeholder_id == 0) { 2860 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2861 if (enum64_placeholder_id < 0) 2862 return enum64_placeholder_id; 2863 2864 t = (struct btf_type *)btf__type_by_id(btf, i); 2865 } 2866 2867 m = btf_members(t); 2868 vlen = btf_vlen(t); 2869 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2870 for (j = 0; j < vlen; j++, m++) { 2871 m->type = enum64_placeholder_id; 2872 m->offset = 0; 2873 } 2874 } 2875 } 2876 2877 return 0; 2878 } 2879 2880 static bool libbpf_needs_btf(const struct bpf_object *obj) 2881 { 2882 return obj->efile.btf_maps_shndx >= 0 || 2883 obj->efile.st_ops_shndx >= 0 || 2884 obj->nr_extern > 0; 2885 } 2886 2887 static bool kernel_needs_btf(const struct bpf_object *obj) 2888 { 2889 return obj->efile.st_ops_shndx >= 0; 2890 } 2891 2892 static int bpf_object__init_btf(struct bpf_object *obj, 2893 Elf_Data *btf_data, 2894 Elf_Data *btf_ext_data) 2895 { 2896 int err = -ENOENT; 2897 2898 if (btf_data) { 2899 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2900 err = libbpf_get_error(obj->btf); 2901 if (err) { 2902 obj->btf = NULL; 2903 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2904 goto out; 2905 } 2906 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2907 btf__set_pointer_size(obj->btf, 8); 2908 } 2909 if (btf_ext_data) { 2910 struct btf_ext_info *ext_segs[3]; 2911 int seg_num, sec_num; 2912 2913 if (!obj->btf) { 2914 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2915 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2916 goto out; 2917 } 2918 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2919 err = libbpf_get_error(obj->btf_ext); 2920 if (err) { 2921 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2922 BTF_EXT_ELF_SEC, err); 2923 obj->btf_ext = NULL; 2924 goto out; 2925 } 2926 2927 /* setup .BTF.ext to ELF section mapping */ 2928 ext_segs[0] = &obj->btf_ext->func_info; 2929 ext_segs[1] = &obj->btf_ext->line_info; 2930 ext_segs[2] = &obj->btf_ext->core_relo_info; 2931 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2932 struct btf_ext_info *seg = ext_segs[seg_num]; 2933 const struct btf_ext_info_sec *sec; 2934 const char *sec_name; 2935 Elf_Scn *scn; 2936 2937 if (seg->sec_cnt == 0) 2938 continue; 2939 2940 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2941 if (!seg->sec_idxs) { 2942 err = -ENOMEM; 2943 goto out; 2944 } 2945 2946 sec_num = 0; 2947 for_each_btf_ext_sec(seg, sec) { 2948 /* preventively increment index to avoid doing 2949 * this before every continue below 2950 */ 2951 sec_num++; 2952 2953 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2954 if (str_is_empty(sec_name)) 2955 continue; 2956 scn = elf_sec_by_name(obj, sec_name); 2957 if (!scn) 2958 continue; 2959 2960 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2961 } 2962 } 2963 } 2964 out: 2965 if (err && libbpf_needs_btf(obj)) { 2966 pr_warn("BTF is required, but is missing or corrupted.\n"); 2967 return err; 2968 } 2969 return 0; 2970 } 2971 2972 static int compare_vsi_off(const void *_a, const void *_b) 2973 { 2974 const struct btf_var_secinfo *a = _a; 2975 const struct btf_var_secinfo *b = _b; 2976 2977 return a->offset - b->offset; 2978 } 2979 2980 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2981 struct btf_type *t) 2982 { 2983 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2984 const char *name = btf__name_by_offset(btf, t->name_off); 2985 const struct btf_type *t_var; 2986 struct btf_var_secinfo *vsi; 2987 const struct btf_var *var; 2988 int ret; 2989 2990 if (!name) { 2991 pr_debug("No name found in string section for DATASEC kind.\n"); 2992 return -ENOENT; 2993 } 2994 2995 /* .extern datasec size and var offsets were set correctly during 2996 * extern collection step, so just skip straight to sorting variables 2997 */ 2998 if (t->size) 2999 goto sort_vars; 3000 3001 ret = find_elf_sec_sz(obj, name, &size); 3002 if (ret || !size) { 3003 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 3004 return -ENOENT; 3005 } 3006 3007 t->size = size; 3008 3009 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3010 t_var = btf__type_by_id(btf, vsi->type); 3011 if (!t_var || !btf_is_var(t_var)) { 3012 pr_debug("Non-VAR type seen in section %s\n", name); 3013 return -EINVAL; 3014 } 3015 3016 var = btf_var(t_var); 3017 if (var->linkage == BTF_VAR_STATIC) 3018 continue; 3019 3020 name = btf__name_by_offset(btf, t_var->name_off); 3021 if (!name) { 3022 pr_debug("No name found in string section for VAR kind\n"); 3023 return -ENOENT; 3024 } 3025 3026 ret = find_elf_var_offset(obj, name, &off); 3027 if (ret) { 3028 pr_debug("No offset found in symbol table for VAR %s\n", 3029 name); 3030 return -ENOENT; 3031 } 3032 3033 vsi->offset = off; 3034 } 3035 3036 sort_vars: 3037 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3038 return 0; 3039 } 3040 3041 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 3042 { 3043 int err = 0; 3044 __u32 i, n = btf__type_cnt(btf); 3045 3046 for (i = 1; i < n; i++) { 3047 struct btf_type *t = btf_type_by_id(btf, i); 3048 3049 /* Loader needs to fix up some of the things compiler 3050 * couldn't get its hands on while emitting BTF. This 3051 * is section size and global variable offset. We use 3052 * the info from the ELF itself for this purpose. 3053 */ 3054 if (btf_is_datasec(t)) { 3055 err = btf_fixup_datasec(obj, btf, t); 3056 if (err) 3057 break; 3058 } 3059 } 3060 3061 return libbpf_err(err); 3062 } 3063 3064 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 3065 { 3066 return btf_finalize_data(obj, btf); 3067 } 3068 3069 static int bpf_object__finalize_btf(struct bpf_object *obj) 3070 { 3071 int err; 3072 3073 if (!obj->btf) 3074 return 0; 3075 3076 err = btf_finalize_data(obj, obj->btf); 3077 if (err) { 3078 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 3079 return err; 3080 } 3081 3082 return 0; 3083 } 3084 3085 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3086 { 3087 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3088 prog->type == BPF_PROG_TYPE_LSM) 3089 return true; 3090 3091 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3092 * also need vmlinux BTF 3093 */ 3094 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3095 return true; 3096 3097 return false; 3098 } 3099 3100 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3101 { 3102 struct bpf_program *prog; 3103 int i; 3104 3105 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3106 * is not specified 3107 */ 3108 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3109 return true; 3110 3111 /* Support for typed ksyms needs kernel BTF */ 3112 for (i = 0; i < obj->nr_extern; i++) { 3113 const struct extern_desc *ext; 3114 3115 ext = &obj->externs[i]; 3116 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3117 return true; 3118 } 3119 3120 bpf_object__for_each_program(prog, obj) { 3121 if (!prog->autoload) 3122 continue; 3123 if (prog_needs_vmlinux_btf(prog)) 3124 return true; 3125 } 3126 3127 return false; 3128 } 3129 3130 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3131 { 3132 int err; 3133 3134 /* btf_vmlinux could be loaded earlier */ 3135 if (obj->btf_vmlinux || obj->gen_loader) 3136 return 0; 3137 3138 if (!force && !obj_needs_vmlinux_btf(obj)) 3139 return 0; 3140 3141 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3142 err = libbpf_get_error(obj->btf_vmlinux); 3143 if (err) { 3144 pr_warn("Error loading vmlinux BTF: %d\n", err); 3145 obj->btf_vmlinux = NULL; 3146 return err; 3147 } 3148 return 0; 3149 } 3150 3151 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3152 { 3153 struct btf *kern_btf = obj->btf; 3154 bool btf_mandatory, sanitize; 3155 int i, err = 0; 3156 3157 if (!obj->btf) 3158 return 0; 3159 3160 if (!kernel_supports(obj, FEAT_BTF)) { 3161 if (kernel_needs_btf(obj)) { 3162 err = -EOPNOTSUPP; 3163 goto report; 3164 } 3165 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3166 return 0; 3167 } 3168 3169 /* Even though some subprogs are global/weak, user might prefer more 3170 * permissive BPF verification process that BPF verifier performs for 3171 * static functions, taking into account more context from the caller 3172 * functions. In such case, they need to mark such subprogs with 3173 * __attribute__((visibility("hidden"))) and libbpf will adjust 3174 * corresponding FUNC BTF type to be marked as static and trigger more 3175 * involved BPF verification process. 3176 */ 3177 for (i = 0; i < obj->nr_programs; i++) { 3178 struct bpf_program *prog = &obj->programs[i]; 3179 struct btf_type *t; 3180 const char *name; 3181 int j, n; 3182 3183 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3184 continue; 3185 3186 n = btf__type_cnt(obj->btf); 3187 for (j = 1; j < n; j++) { 3188 t = btf_type_by_id(obj->btf, j); 3189 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3190 continue; 3191 3192 name = btf__str_by_offset(obj->btf, t->name_off); 3193 if (strcmp(name, prog->name) != 0) 3194 continue; 3195 3196 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3197 break; 3198 } 3199 } 3200 3201 sanitize = btf_needs_sanitization(obj); 3202 if (sanitize) { 3203 const void *raw_data; 3204 __u32 sz; 3205 3206 /* clone BTF to sanitize a copy and leave the original intact */ 3207 raw_data = btf__raw_data(obj->btf, &sz); 3208 kern_btf = btf__new(raw_data, sz); 3209 err = libbpf_get_error(kern_btf); 3210 if (err) 3211 return err; 3212 3213 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3214 btf__set_pointer_size(obj->btf, 8); 3215 err = bpf_object__sanitize_btf(obj, kern_btf); 3216 if (err) 3217 return err; 3218 } 3219 3220 if (obj->gen_loader) { 3221 __u32 raw_size = 0; 3222 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3223 3224 if (!raw_data) 3225 return -ENOMEM; 3226 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3227 /* Pretend to have valid FD to pass various fd >= 0 checks. 3228 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3229 */ 3230 btf__set_fd(kern_btf, 0); 3231 } else { 3232 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3233 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3234 obj->log_level ? 1 : 0); 3235 } 3236 if (sanitize) { 3237 if (!err) { 3238 /* move fd to libbpf's BTF */ 3239 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3240 btf__set_fd(kern_btf, -1); 3241 } 3242 btf__free(kern_btf); 3243 } 3244 report: 3245 if (err) { 3246 btf_mandatory = kernel_needs_btf(obj); 3247 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3248 btf_mandatory ? "BTF is mandatory, can't proceed." 3249 : "BTF is optional, ignoring."); 3250 if (!btf_mandatory) 3251 err = 0; 3252 } 3253 return err; 3254 } 3255 3256 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3257 { 3258 const char *name; 3259 3260 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3261 if (!name) { 3262 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3263 off, obj->path, elf_errmsg(-1)); 3264 return NULL; 3265 } 3266 3267 return name; 3268 } 3269 3270 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3271 { 3272 const char *name; 3273 3274 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3275 if (!name) { 3276 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3277 off, obj->path, elf_errmsg(-1)); 3278 return NULL; 3279 } 3280 3281 return name; 3282 } 3283 3284 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3285 { 3286 Elf_Scn *scn; 3287 3288 scn = elf_getscn(obj->efile.elf, idx); 3289 if (!scn) { 3290 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3291 idx, obj->path, elf_errmsg(-1)); 3292 return NULL; 3293 } 3294 return scn; 3295 } 3296 3297 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3298 { 3299 Elf_Scn *scn = NULL; 3300 Elf *elf = obj->efile.elf; 3301 const char *sec_name; 3302 3303 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3304 sec_name = elf_sec_name(obj, scn); 3305 if (!sec_name) 3306 return NULL; 3307 3308 if (strcmp(sec_name, name) != 0) 3309 continue; 3310 3311 return scn; 3312 } 3313 return NULL; 3314 } 3315 3316 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3317 { 3318 Elf64_Shdr *shdr; 3319 3320 if (!scn) 3321 return NULL; 3322 3323 shdr = elf64_getshdr(scn); 3324 if (!shdr) { 3325 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3326 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3327 return NULL; 3328 } 3329 3330 return shdr; 3331 } 3332 3333 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3334 { 3335 const char *name; 3336 Elf64_Shdr *sh; 3337 3338 if (!scn) 3339 return NULL; 3340 3341 sh = elf_sec_hdr(obj, scn); 3342 if (!sh) 3343 return NULL; 3344 3345 name = elf_sec_str(obj, sh->sh_name); 3346 if (!name) { 3347 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3348 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3349 return NULL; 3350 } 3351 3352 return name; 3353 } 3354 3355 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3356 { 3357 Elf_Data *data; 3358 3359 if (!scn) 3360 return NULL; 3361 3362 data = elf_getdata(scn, 0); 3363 if (!data) { 3364 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3365 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3366 obj->path, elf_errmsg(-1)); 3367 return NULL; 3368 } 3369 3370 return data; 3371 } 3372 3373 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3374 { 3375 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3376 return NULL; 3377 3378 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3379 } 3380 3381 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3382 { 3383 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3384 return NULL; 3385 3386 return (Elf64_Rel *)data->d_buf + idx; 3387 } 3388 3389 static bool is_sec_name_dwarf(const char *name) 3390 { 3391 /* approximation, but the actual list is too long */ 3392 return str_has_pfx(name, ".debug_"); 3393 } 3394 3395 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3396 { 3397 /* no special handling of .strtab */ 3398 if (hdr->sh_type == SHT_STRTAB) 3399 return true; 3400 3401 /* ignore .llvm_addrsig section as well */ 3402 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3403 return true; 3404 3405 /* no subprograms will lead to an empty .text section, ignore it */ 3406 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3407 strcmp(name, ".text") == 0) 3408 return true; 3409 3410 /* DWARF sections */ 3411 if (is_sec_name_dwarf(name)) 3412 return true; 3413 3414 if (str_has_pfx(name, ".rel")) { 3415 name += sizeof(".rel") - 1; 3416 /* DWARF section relocations */ 3417 if (is_sec_name_dwarf(name)) 3418 return true; 3419 3420 /* .BTF and .BTF.ext don't need relocations */ 3421 if (strcmp(name, BTF_ELF_SEC) == 0 || 3422 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3423 return true; 3424 } 3425 3426 return false; 3427 } 3428 3429 static int cmp_progs(const void *_a, const void *_b) 3430 { 3431 const struct bpf_program *a = _a; 3432 const struct bpf_program *b = _b; 3433 3434 if (a->sec_idx != b->sec_idx) 3435 return a->sec_idx < b->sec_idx ? -1 : 1; 3436 3437 /* sec_insn_off can't be the same within the section */ 3438 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3439 } 3440 3441 static int bpf_object__elf_collect(struct bpf_object *obj) 3442 { 3443 struct elf_sec_desc *sec_desc; 3444 Elf *elf = obj->efile.elf; 3445 Elf_Data *btf_ext_data = NULL; 3446 Elf_Data *btf_data = NULL; 3447 int idx = 0, err = 0; 3448 const char *name; 3449 Elf_Data *data; 3450 Elf_Scn *scn; 3451 Elf64_Shdr *sh; 3452 3453 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3454 * section. e_shnum does include sec #0, so e_shnum is the necessary 3455 * size of an array to keep all the sections. 3456 */ 3457 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3458 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3459 if (!obj->efile.secs) 3460 return -ENOMEM; 3461 3462 /* a bunch of ELF parsing functionality depends on processing symbols, 3463 * so do the first pass and find the symbol table 3464 */ 3465 scn = NULL; 3466 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3467 sh = elf_sec_hdr(obj, scn); 3468 if (!sh) 3469 return -LIBBPF_ERRNO__FORMAT; 3470 3471 if (sh->sh_type == SHT_SYMTAB) { 3472 if (obj->efile.symbols) { 3473 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3474 return -LIBBPF_ERRNO__FORMAT; 3475 } 3476 3477 data = elf_sec_data(obj, scn); 3478 if (!data) 3479 return -LIBBPF_ERRNO__FORMAT; 3480 3481 idx = elf_ndxscn(scn); 3482 3483 obj->efile.symbols = data; 3484 obj->efile.symbols_shndx = idx; 3485 obj->efile.strtabidx = sh->sh_link; 3486 } 3487 } 3488 3489 if (!obj->efile.symbols) { 3490 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3491 obj->path); 3492 return -ENOENT; 3493 } 3494 3495 scn = NULL; 3496 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3497 idx = elf_ndxscn(scn); 3498 sec_desc = &obj->efile.secs[idx]; 3499 3500 sh = elf_sec_hdr(obj, scn); 3501 if (!sh) 3502 return -LIBBPF_ERRNO__FORMAT; 3503 3504 name = elf_sec_str(obj, sh->sh_name); 3505 if (!name) 3506 return -LIBBPF_ERRNO__FORMAT; 3507 3508 if (ignore_elf_section(sh, name)) 3509 continue; 3510 3511 data = elf_sec_data(obj, scn); 3512 if (!data) 3513 return -LIBBPF_ERRNO__FORMAT; 3514 3515 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3516 idx, name, (unsigned long)data->d_size, 3517 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3518 (int)sh->sh_type); 3519 3520 if (strcmp(name, "license") == 0) { 3521 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3522 if (err) 3523 return err; 3524 } else if (strcmp(name, "version") == 0) { 3525 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3526 if (err) 3527 return err; 3528 } else if (strcmp(name, "maps") == 0) { 3529 obj->efile.maps_shndx = idx; 3530 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3531 obj->efile.btf_maps_shndx = idx; 3532 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3533 if (sh->sh_type != SHT_PROGBITS) 3534 return -LIBBPF_ERRNO__FORMAT; 3535 btf_data = data; 3536 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3537 if (sh->sh_type != SHT_PROGBITS) 3538 return -LIBBPF_ERRNO__FORMAT; 3539 btf_ext_data = data; 3540 } else if (sh->sh_type == SHT_SYMTAB) { 3541 /* already processed during the first pass above */ 3542 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3543 if (sh->sh_flags & SHF_EXECINSTR) { 3544 if (strcmp(name, ".text") == 0) 3545 obj->efile.text_shndx = idx; 3546 err = bpf_object__add_programs(obj, data, name, idx); 3547 if (err) 3548 return err; 3549 } else if (strcmp(name, DATA_SEC) == 0 || 3550 str_has_pfx(name, DATA_SEC ".")) { 3551 sec_desc->sec_type = SEC_DATA; 3552 sec_desc->shdr = sh; 3553 sec_desc->data = data; 3554 } else if (strcmp(name, RODATA_SEC) == 0 || 3555 str_has_pfx(name, RODATA_SEC ".")) { 3556 sec_desc->sec_type = SEC_RODATA; 3557 sec_desc->shdr = sh; 3558 sec_desc->data = data; 3559 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3560 obj->efile.st_ops_data = data; 3561 obj->efile.st_ops_shndx = idx; 3562 } else { 3563 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3564 idx, name); 3565 } 3566 } else if (sh->sh_type == SHT_REL) { 3567 int targ_sec_idx = sh->sh_info; /* points to other section */ 3568 3569 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3570 targ_sec_idx >= obj->efile.sec_cnt) 3571 return -LIBBPF_ERRNO__FORMAT; 3572 3573 /* Only do relo for section with exec instructions */ 3574 if (!section_have_execinstr(obj, targ_sec_idx) && 3575 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3576 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3577 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3578 idx, name, targ_sec_idx, 3579 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3580 continue; 3581 } 3582 3583 sec_desc->sec_type = SEC_RELO; 3584 sec_desc->shdr = sh; 3585 sec_desc->data = data; 3586 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3587 sec_desc->sec_type = SEC_BSS; 3588 sec_desc->shdr = sh; 3589 sec_desc->data = data; 3590 } else { 3591 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3592 (size_t)sh->sh_size); 3593 } 3594 } 3595 3596 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3597 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3598 return -LIBBPF_ERRNO__FORMAT; 3599 } 3600 3601 /* sort BPF programs by section name and in-section instruction offset 3602 * for faster search */ 3603 if (obj->nr_programs) 3604 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3605 3606 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3607 } 3608 3609 static bool sym_is_extern(const Elf64_Sym *sym) 3610 { 3611 int bind = ELF64_ST_BIND(sym->st_info); 3612 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3613 return sym->st_shndx == SHN_UNDEF && 3614 (bind == STB_GLOBAL || bind == STB_WEAK) && 3615 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3616 } 3617 3618 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3619 { 3620 int bind = ELF64_ST_BIND(sym->st_info); 3621 int type = ELF64_ST_TYPE(sym->st_info); 3622 3623 /* in .text section */ 3624 if (sym->st_shndx != text_shndx) 3625 return false; 3626 3627 /* local function */ 3628 if (bind == STB_LOCAL && type == STT_SECTION) 3629 return true; 3630 3631 /* global function */ 3632 return bind == STB_GLOBAL && type == STT_FUNC; 3633 } 3634 3635 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3636 { 3637 const struct btf_type *t; 3638 const char *tname; 3639 int i, n; 3640 3641 if (!btf) 3642 return -ESRCH; 3643 3644 n = btf__type_cnt(btf); 3645 for (i = 1; i < n; i++) { 3646 t = btf__type_by_id(btf, i); 3647 3648 if (!btf_is_var(t) && !btf_is_func(t)) 3649 continue; 3650 3651 tname = btf__name_by_offset(btf, t->name_off); 3652 if (strcmp(tname, ext_name)) 3653 continue; 3654 3655 if (btf_is_var(t) && 3656 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3657 return -EINVAL; 3658 3659 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3660 return -EINVAL; 3661 3662 return i; 3663 } 3664 3665 return -ENOENT; 3666 } 3667 3668 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3669 const struct btf_var_secinfo *vs; 3670 const struct btf_type *t; 3671 int i, j, n; 3672 3673 if (!btf) 3674 return -ESRCH; 3675 3676 n = btf__type_cnt(btf); 3677 for (i = 1; i < n; i++) { 3678 t = btf__type_by_id(btf, i); 3679 3680 if (!btf_is_datasec(t)) 3681 continue; 3682 3683 vs = btf_var_secinfos(t); 3684 for (j = 0; j < btf_vlen(t); j++, vs++) { 3685 if (vs->type == ext_btf_id) 3686 return i; 3687 } 3688 } 3689 3690 return -ENOENT; 3691 } 3692 3693 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3694 bool *is_signed) 3695 { 3696 const struct btf_type *t; 3697 const char *name; 3698 3699 t = skip_mods_and_typedefs(btf, id, NULL); 3700 name = btf__name_by_offset(btf, t->name_off); 3701 3702 if (is_signed) 3703 *is_signed = false; 3704 switch (btf_kind(t)) { 3705 case BTF_KIND_INT: { 3706 int enc = btf_int_encoding(t); 3707 3708 if (enc & BTF_INT_BOOL) 3709 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3710 if (is_signed) 3711 *is_signed = enc & BTF_INT_SIGNED; 3712 if (t->size == 1) 3713 return KCFG_CHAR; 3714 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3715 return KCFG_UNKNOWN; 3716 return KCFG_INT; 3717 } 3718 case BTF_KIND_ENUM: 3719 if (t->size != 4) 3720 return KCFG_UNKNOWN; 3721 if (strcmp(name, "libbpf_tristate")) 3722 return KCFG_UNKNOWN; 3723 return KCFG_TRISTATE; 3724 case BTF_KIND_ENUM64: 3725 if (strcmp(name, "libbpf_tristate")) 3726 return KCFG_UNKNOWN; 3727 return KCFG_TRISTATE; 3728 case BTF_KIND_ARRAY: 3729 if (btf_array(t)->nelems == 0) 3730 return KCFG_UNKNOWN; 3731 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3732 return KCFG_UNKNOWN; 3733 return KCFG_CHAR_ARR; 3734 default: 3735 return KCFG_UNKNOWN; 3736 } 3737 } 3738 3739 static int cmp_externs(const void *_a, const void *_b) 3740 { 3741 const struct extern_desc *a = _a; 3742 const struct extern_desc *b = _b; 3743 3744 if (a->type != b->type) 3745 return a->type < b->type ? -1 : 1; 3746 3747 if (a->type == EXT_KCFG) { 3748 /* descending order by alignment requirements */ 3749 if (a->kcfg.align != b->kcfg.align) 3750 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3751 /* ascending order by size, within same alignment class */ 3752 if (a->kcfg.sz != b->kcfg.sz) 3753 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3754 } 3755 3756 /* resolve ties by name */ 3757 return strcmp(a->name, b->name); 3758 } 3759 3760 static int find_int_btf_id(const struct btf *btf) 3761 { 3762 const struct btf_type *t; 3763 int i, n; 3764 3765 n = btf__type_cnt(btf); 3766 for (i = 1; i < n; i++) { 3767 t = btf__type_by_id(btf, i); 3768 3769 if (btf_is_int(t) && btf_int_bits(t) == 32) 3770 return i; 3771 } 3772 3773 return 0; 3774 } 3775 3776 static int add_dummy_ksym_var(struct btf *btf) 3777 { 3778 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3779 const struct btf_var_secinfo *vs; 3780 const struct btf_type *sec; 3781 3782 if (!btf) 3783 return 0; 3784 3785 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3786 BTF_KIND_DATASEC); 3787 if (sec_btf_id < 0) 3788 return 0; 3789 3790 sec = btf__type_by_id(btf, sec_btf_id); 3791 vs = btf_var_secinfos(sec); 3792 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3793 const struct btf_type *vt; 3794 3795 vt = btf__type_by_id(btf, vs->type); 3796 if (btf_is_func(vt)) 3797 break; 3798 } 3799 3800 /* No func in ksyms sec. No need to add dummy var. */ 3801 if (i == btf_vlen(sec)) 3802 return 0; 3803 3804 int_btf_id = find_int_btf_id(btf); 3805 dummy_var_btf_id = btf__add_var(btf, 3806 "dummy_ksym", 3807 BTF_VAR_GLOBAL_ALLOCATED, 3808 int_btf_id); 3809 if (dummy_var_btf_id < 0) 3810 pr_warn("cannot create a dummy_ksym var\n"); 3811 3812 return dummy_var_btf_id; 3813 } 3814 3815 static int bpf_object__collect_externs(struct bpf_object *obj) 3816 { 3817 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3818 const struct btf_type *t; 3819 struct extern_desc *ext; 3820 int i, n, off, dummy_var_btf_id; 3821 const char *ext_name, *sec_name; 3822 Elf_Scn *scn; 3823 Elf64_Shdr *sh; 3824 3825 if (!obj->efile.symbols) 3826 return 0; 3827 3828 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3829 sh = elf_sec_hdr(obj, scn); 3830 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3831 return -LIBBPF_ERRNO__FORMAT; 3832 3833 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3834 if (dummy_var_btf_id < 0) 3835 return dummy_var_btf_id; 3836 3837 n = sh->sh_size / sh->sh_entsize; 3838 pr_debug("looking for externs among %d symbols...\n", n); 3839 3840 for (i = 0; i < n; i++) { 3841 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3842 3843 if (!sym) 3844 return -LIBBPF_ERRNO__FORMAT; 3845 if (!sym_is_extern(sym)) 3846 continue; 3847 ext_name = elf_sym_str(obj, sym->st_name); 3848 if (!ext_name || !ext_name[0]) 3849 continue; 3850 3851 ext = obj->externs; 3852 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3853 if (!ext) 3854 return -ENOMEM; 3855 obj->externs = ext; 3856 ext = &ext[obj->nr_extern]; 3857 memset(ext, 0, sizeof(*ext)); 3858 obj->nr_extern++; 3859 3860 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3861 if (ext->btf_id <= 0) { 3862 pr_warn("failed to find BTF for extern '%s': %d\n", 3863 ext_name, ext->btf_id); 3864 return ext->btf_id; 3865 } 3866 t = btf__type_by_id(obj->btf, ext->btf_id); 3867 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3868 ext->sym_idx = i; 3869 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3870 3871 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3872 if (ext->sec_btf_id <= 0) { 3873 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3874 ext_name, ext->btf_id, ext->sec_btf_id); 3875 return ext->sec_btf_id; 3876 } 3877 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3878 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3879 3880 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3881 if (btf_is_func(t)) { 3882 pr_warn("extern function %s is unsupported under %s section\n", 3883 ext->name, KCONFIG_SEC); 3884 return -ENOTSUP; 3885 } 3886 kcfg_sec = sec; 3887 ext->type = EXT_KCFG; 3888 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3889 if (ext->kcfg.sz <= 0) { 3890 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3891 ext_name, ext->kcfg.sz); 3892 return ext->kcfg.sz; 3893 } 3894 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3895 if (ext->kcfg.align <= 0) { 3896 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3897 ext_name, ext->kcfg.align); 3898 return -EINVAL; 3899 } 3900 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3901 &ext->kcfg.is_signed); 3902 if (ext->kcfg.type == KCFG_UNKNOWN) { 3903 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3904 return -ENOTSUP; 3905 } 3906 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3907 ksym_sec = sec; 3908 ext->type = EXT_KSYM; 3909 skip_mods_and_typedefs(obj->btf, t->type, 3910 &ext->ksym.type_id); 3911 } else { 3912 pr_warn("unrecognized extern section '%s'\n", sec_name); 3913 return -ENOTSUP; 3914 } 3915 } 3916 pr_debug("collected %d externs total\n", obj->nr_extern); 3917 3918 if (!obj->nr_extern) 3919 return 0; 3920 3921 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3922 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3923 3924 /* for .ksyms section, we need to turn all externs into allocated 3925 * variables in BTF to pass kernel verification; we do this by 3926 * pretending that each extern is a 8-byte variable 3927 */ 3928 if (ksym_sec) { 3929 /* find existing 4-byte integer type in BTF to use for fake 3930 * extern variables in DATASEC 3931 */ 3932 int int_btf_id = find_int_btf_id(obj->btf); 3933 /* For extern function, a dummy_var added earlier 3934 * will be used to replace the vs->type and 3935 * its name string will be used to refill 3936 * the missing param's name. 3937 */ 3938 const struct btf_type *dummy_var; 3939 3940 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3941 for (i = 0; i < obj->nr_extern; i++) { 3942 ext = &obj->externs[i]; 3943 if (ext->type != EXT_KSYM) 3944 continue; 3945 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3946 i, ext->sym_idx, ext->name); 3947 } 3948 3949 sec = ksym_sec; 3950 n = btf_vlen(sec); 3951 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3952 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3953 struct btf_type *vt; 3954 3955 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3956 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3957 ext = find_extern_by_name(obj, ext_name); 3958 if (!ext) { 3959 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3960 btf_kind_str(vt), ext_name); 3961 return -ESRCH; 3962 } 3963 if (btf_is_func(vt)) { 3964 const struct btf_type *func_proto; 3965 struct btf_param *param; 3966 int j; 3967 3968 func_proto = btf__type_by_id(obj->btf, 3969 vt->type); 3970 param = btf_params(func_proto); 3971 /* Reuse the dummy_var string if the 3972 * func proto does not have param name. 3973 */ 3974 for (j = 0; j < btf_vlen(func_proto); j++) 3975 if (param[j].type && !param[j].name_off) 3976 param[j].name_off = 3977 dummy_var->name_off; 3978 vs->type = dummy_var_btf_id; 3979 vt->info &= ~0xffff; 3980 vt->info |= BTF_FUNC_GLOBAL; 3981 } else { 3982 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3983 vt->type = int_btf_id; 3984 } 3985 vs->offset = off; 3986 vs->size = sizeof(int); 3987 } 3988 sec->size = off; 3989 } 3990 3991 if (kcfg_sec) { 3992 sec = kcfg_sec; 3993 /* for kcfg externs calculate their offsets within a .kconfig map */ 3994 off = 0; 3995 for (i = 0; i < obj->nr_extern; i++) { 3996 ext = &obj->externs[i]; 3997 if (ext->type != EXT_KCFG) 3998 continue; 3999 4000 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4001 off = ext->kcfg.data_off + ext->kcfg.sz; 4002 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4003 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4004 } 4005 sec->size = off; 4006 n = btf_vlen(sec); 4007 for (i = 0; i < n; i++) { 4008 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4009 4010 t = btf__type_by_id(obj->btf, vs->type); 4011 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4012 ext = find_extern_by_name(obj, ext_name); 4013 if (!ext) { 4014 pr_warn("failed to find extern definition for BTF var '%s'\n", 4015 ext_name); 4016 return -ESRCH; 4017 } 4018 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4019 vs->offset = ext->kcfg.data_off; 4020 } 4021 } 4022 return 0; 4023 } 4024 4025 struct bpf_program * 4026 bpf_object__find_program_by_title(const struct bpf_object *obj, 4027 const char *title) 4028 { 4029 struct bpf_program *pos; 4030 4031 bpf_object__for_each_program(pos, obj) { 4032 if (pos->sec_name && !strcmp(pos->sec_name, title)) 4033 return pos; 4034 } 4035 return errno = ENOENT, NULL; 4036 } 4037 4038 static bool prog_is_subprog(const struct bpf_object *obj, 4039 const struct bpf_program *prog) 4040 { 4041 /* For legacy reasons, libbpf supports an entry-point BPF programs 4042 * without SEC() attribute, i.e., those in the .text section. But if 4043 * there are 2 or more such programs in the .text section, they all 4044 * must be subprograms called from entry-point BPF programs in 4045 * designated SEC()'tions, otherwise there is no way to distinguish 4046 * which of those programs should be loaded vs which are a subprogram. 4047 * Similarly, if there is a function/program in .text and at least one 4048 * other BPF program with custom SEC() attribute, then we just assume 4049 * .text programs are subprograms (even if they are not called from 4050 * other programs), because libbpf never explicitly supported mixing 4051 * SEC()-designated BPF programs and .text entry-point BPF programs. 4052 * 4053 * In libbpf 1.0 strict mode, we always consider .text 4054 * programs to be subprograms. 4055 */ 4056 4057 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 4058 return prog->sec_idx == obj->efile.text_shndx; 4059 4060 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4061 } 4062 4063 struct bpf_program * 4064 bpf_object__find_program_by_name(const struct bpf_object *obj, 4065 const char *name) 4066 { 4067 struct bpf_program *prog; 4068 4069 bpf_object__for_each_program(prog, obj) { 4070 if (prog_is_subprog(obj, prog)) 4071 continue; 4072 if (!strcmp(prog->name, name)) 4073 return prog; 4074 } 4075 return errno = ENOENT, NULL; 4076 } 4077 4078 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4079 int shndx) 4080 { 4081 switch (obj->efile.secs[shndx].sec_type) { 4082 case SEC_BSS: 4083 case SEC_DATA: 4084 case SEC_RODATA: 4085 return true; 4086 default: 4087 return false; 4088 } 4089 } 4090 4091 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4092 int shndx) 4093 { 4094 return shndx == obj->efile.maps_shndx || 4095 shndx == obj->efile.btf_maps_shndx; 4096 } 4097 4098 static enum libbpf_map_type 4099 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4100 { 4101 if (shndx == obj->efile.symbols_shndx) 4102 return LIBBPF_MAP_KCONFIG; 4103 4104 switch (obj->efile.secs[shndx].sec_type) { 4105 case SEC_BSS: 4106 return LIBBPF_MAP_BSS; 4107 case SEC_DATA: 4108 return LIBBPF_MAP_DATA; 4109 case SEC_RODATA: 4110 return LIBBPF_MAP_RODATA; 4111 default: 4112 return LIBBPF_MAP_UNSPEC; 4113 } 4114 } 4115 4116 static int bpf_program__record_reloc(struct bpf_program *prog, 4117 struct reloc_desc *reloc_desc, 4118 __u32 insn_idx, const char *sym_name, 4119 const Elf64_Sym *sym, const Elf64_Rel *rel) 4120 { 4121 struct bpf_insn *insn = &prog->insns[insn_idx]; 4122 size_t map_idx, nr_maps = prog->obj->nr_maps; 4123 struct bpf_object *obj = prog->obj; 4124 __u32 shdr_idx = sym->st_shndx; 4125 enum libbpf_map_type type; 4126 const char *sym_sec_name; 4127 struct bpf_map *map; 4128 4129 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4130 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4131 prog->name, sym_name, insn_idx, insn->code); 4132 return -LIBBPF_ERRNO__RELOC; 4133 } 4134 4135 if (sym_is_extern(sym)) { 4136 int sym_idx = ELF64_R_SYM(rel->r_info); 4137 int i, n = obj->nr_extern; 4138 struct extern_desc *ext; 4139 4140 for (i = 0; i < n; i++) { 4141 ext = &obj->externs[i]; 4142 if (ext->sym_idx == sym_idx) 4143 break; 4144 } 4145 if (i >= n) { 4146 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4147 prog->name, sym_name, sym_idx); 4148 return -LIBBPF_ERRNO__RELOC; 4149 } 4150 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4151 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4152 if (insn->code == (BPF_JMP | BPF_CALL)) 4153 reloc_desc->type = RELO_EXTERN_FUNC; 4154 else 4155 reloc_desc->type = RELO_EXTERN_VAR; 4156 reloc_desc->insn_idx = insn_idx; 4157 reloc_desc->sym_off = i; /* sym_off stores extern index */ 4158 return 0; 4159 } 4160 4161 /* sub-program call relocation */ 4162 if (is_call_insn(insn)) { 4163 if (insn->src_reg != BPF_PSEUDO_CALL) { 4164 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4165 return -LIBBPF_ERRNO__RELOC; 4166 } 4167 /* text_shndx can be 0, if no default "main" program exists */ 4168 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4169 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4170 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4171 prog->name, sym_name, sym_sec_name); 4172 return -LIBBPF_ERRNO__RELOC; 4173 } 4174 if (sym->st_value % BPF_INSN_SZ) { 4175 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4176 prog->name, sym_name, (size_t)sym->st_value); 4177 return -LIBBPF_ERRNO__RELOC; 4178 } 4179 reloc_desc->type = RELO_CALL; 4180 reloc_desc->insn_idx = insn_idx; 4181 reloc_desc->sym_off = sym->st_value; 4182 return 0; 4183 } 4184 4185 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4186 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4187 prog->name, sym_name, shdr_idx); 4188 return -LIBBPF_ERRNO__RELOC; 4189 } 4190 4191 /* loading subprog addresses */ 4192 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4193 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4194 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4195 */ 4196 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4197 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4198 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4199 return -LIBBPF_ERRNO__RELOC; 4200 } 4201 4202 reloc_desc->type = RELO_SUBPROG_ADDR; 4203 reloc_desc->insn_idx = insn_idx; 4204 reloc_desc->sym_off = sym->st_value; 4205 return 0; 4206 } 4207 4208 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4209 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4210 4211 /* generic map reference relocation */ 4212 if (type == LIBBPF_MAP_UNSPEC) { 4213 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4214 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4215 prog->name, sym_name, sym_sec_name); 4216 return -LIBBPF_ERRNO__RELOC; 4217 } 4218 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4219 map = &obj->maps[map_idx]; 4220 if (map->libbpf_type != type || 4221 map->sec_idx != sym->st_shndx || 4222 map->sec_offset != sym->st_value) 4223 continue; 4224 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4225 prog->name, map_idx, map->name, map->sec_idx, 4226 map->sec_offset, insn_idx); 4227 break; 4228 } 4229 if (map_idx >= nr_maps) { 4230 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4231 prog->name, sym_sec_name, (size_t)sym->st_value); 4232 return -LIBBPF_ERRNO__RELOC; 4233 } 4234 reloc_desc->type = RELO_LD64; 4235 reloc_desc->insn_idx = insn_idx; 4236 reloc_desc->map_idx = map_idx; 4237 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4238 return 0; 4239 } 4240 4241 /* global data map relocation */ 4242 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4243 pr_warn("prog '%s': bad data relo against section '%s'\n", 4244 prog->name, sym_sec_name); 4245 return -LIBBPF_ERRNO__RELOC; 4246 } 4247 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4248 map = &obj->maps[map_idx]; 4249 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4250 continue; 4251 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4252 prog->name, map_idx, map->name, map->sec_idx, 4253 map->sec_offset, insn_idx); 4254 break; 4255 } 4256 if (map_idx >= nr_maps) { 4257 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4258 prog->name, sym_sec_name); 4259 return -LIBBPF_ERRNO__RELOC; 4260 } 4261 4262 reloc_desc->type = RELO_DATA; 4263 reloc_desc->insn_idx = insn_idx; 4264 reloc_desc->map_idx = map_idx; 4265 reloc_desc->sym_off = sym->st_value; 4266 return 0; 4267 } 4268 4269 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4270 { 4271 return insn_idx >= prog->sec_insn_off && 4272 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4273 } 4274 4275 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4276 size_t sec_idx, size_t insn_idx) 4277 { 4278 int l = 0, r = obj->nr_programs - 1, m; 4279 struct bpf_program *prog; 4280 4281 while (l < r) { 4282 m = l + (r - l + 1) / 2; 4283 prog = &obj->programs[m]; 4284 4285 if (prog->sec_idx < sec_idx || 4286 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4287 l = m; 4288 else 4289 r = m - 1; 4290 } 4291 /* matching program could be at index l, but it still might be the 4292 * wrong one, so we need to double check conditions for the last time 4293 */ 4294 prog = &obj->programs[l]; 4295 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4296 return prog; 4297 return NULL; 4298 } 4299 4300 static int 4301 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4302 { 4303 const char *relo_sec_name, *sec_name; 4304 size_t sec_idx = shdr->sh_info, sym_idx; 4305 struct bpf_program *prog; 4306 struct reloc_desc *relos; 4307 int err, i, nrels; 4308 const char *sym_name; 4309 __u32 insn_idx; 4310 Elf_Scn *scn; 4311 Elf_Data *scn_data; 4312 Elf64_Sym *sym; 4313 Elf64_Rel *rel; 4314 4315 if (sec_idx >= obj->efile.sec_cnt) 4316 return -EINVAL; 4317 4318 scn = elf_sec_by_idx(obj, sec_idx); 4319 scn_data = elf_sec_data(obj, scn); 4320 4321 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4322 sec_name = elf_sec_name(obj, scn); 4323 if (!relo_sec_name || !sec_name) 4324 return -EINVAL; 4325 4326 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4327 relo_sec_name, sec_idx, sec_name); 4328 nrels = shdr->sh_size / shdr->sh_entsize; 4329 4330 for (i = 0; i < nrels; i++) { 4331 rel = elf_rel_by_idx(data, i); 4332 if (!rel) { 4333 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4334 return -LIBBPF_ERRNO__FORMAT; 4335 } 4336 4337 sym_idx = ELF64_R_SYM(rel->r_info); 4338 sym = elf_sym_by_idx(obj, sym_idx); 4339 if (!sym) { 4340 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4341 relo_sec_name, sym_idx, i); 4342 return -LIBBPF_ERRNO__FORMAT; 4343 } 4344 4345 if (sym->st_shndx >= obj->efile.sec_cnt) { 4346 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4347 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4348 return -LIBBPF_ERRNO__FORMAT; 4349 } 4350 4351 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4352 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4353 relo_sec_name, (size_t)rel->r_offset, i); 4354 return -LIBBPF_ERRNO__FORMAT; 4355 } 4356 4357 insn_idx = rel->r_offset / BPF_INSN_SZ; 4358 /* relocations against static functions are recorded as 4359 * relocations against the section that contains a function; 4360 * in such case, symbol will be STT_SECTION and sym.st_name 4361 * will point to empty string (0), so fetch section name 4362 * instead 4363 */ 4364 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4365 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4366 else 4367 sym_name = elf_sym_str(obj, sym->st_name); 4368 sym_name = sym_name ?: "<?"; 4369 4370 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4371 relo_sec_name, i, insn_idx, sym_name); 4372 4373 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4374 if (!prog) { 4375 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4376 relo_sec_name, i, sec_name, insn_idx); 4377 continue; 4378 } 4379 4380 relos = libbpf_reallocarray(prog->reloc_desc, 4381 prog->nr_reloc + 1, sizeof(*relos)); 4382 if (!relos) 4383 return -ENOMEM; 4384 prog->reloc_desc = relos; 4385 4386 /* adjust insn_idx to local BPF program frame of reference */ 4387 insn_idx -= prog->sec_insn_off; 4388 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4389 insn_idx, sym_name, sym, rel); 4390 if (err) 4391 return err; 4392 4393 prog->nr_reloc++; 4394 } 4395 return 0; 4396 } 4397 4398 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4399 { 4400 struct bpf_map_def *def = &map->def; 4401 __u32 key_type_id = 0, value_type_id = 0; 4402 int ret; 4403 4404 if (!obj->btf) 4405 return -ENOENT; 4406 4407 /* if it's BTF-defined map, we don't need to search for type IDs. 4408 * For struct_ops map, it does not need btf_key_type_id and 4409 * btf_value_type_id. 4410 */ 4411 if (map->sec_idx == obj->efile.btf_maps_shndx || 4412 bpf_map__is_struct_ops(map)) 4413 return 0; 4414 4415 if (!bpf_map__is_internal(map)) { 4416 pr_warn("Use of BPF_ANNOTATE_KV_PAIR is deprecated, use BTF-defined maps in .maps section instead\n"); 4417 #pragma GCC diagnostic push 4418 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 4419 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4420 def->value_size, &key_type_id, 4421 &value_type_id); 4422 #pragma GCC diagnostic pop 4423 } else { 4424 /* 4425 * LLVM annotates global data differently in BTF, that is, 4426 * only as '.data', '.bss' or '.rodata'. 4427 */ 4428 ret = btf__find_by_name(obj->btf, map->real_name); 4429 } 4430 if (ret < 0) 4431 return ret; 4432 4433 map->btf_key_type_id = key_type_id; 4434 map->btf_value_type_id = bpf_map__is_internal(map) ? 4435 ret : value_type_id; 4436 return 0; 4437 } 4438 4439 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4440 { 4441 char file[PATH_MAX], buff[4096]; 4442 FILE *fp; 4443 __u32 val; 4444 int err; 4445 4446 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4447 memset(info, 0, sizeof(*info)); 4448 4449 fp = fopen(file, "r"); 4450 if (!fp) { 4451 err = -errno; 4452 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4453 err); 4454 return err; 4455 } 4456 4457 while (fgets(buff, sizeof(buff), fp)) { 4458 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4459 info->type = val; 4460 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4461 info->key_size = val; 4462 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4463 info->value_size = val; 4464 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4465 info->max_entries = val; 4466 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4467 info->map_flags = val; 4468 } 4469 4470 fclose(fp); 4471 4472 return 0; 4473 } 4474 4475 bool bpf_map__autocreate(const struct bpf_map *map) 4476 { 4477 return map->autocreate; 4478 } 4479 4480 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4481 { 4482 if (map->obj->loaded) 4483 return libbpf_err(-EBUSY); 4484 4485 map->autocreate = autocreate; 4486 return 0; 4487 } 4488 4489 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4490 { 4491 struct bpf_map_info info = {}; 4492 __u32 len = sizeof(info); 4493 int new_fd, err; 4494 char *new_name; 4495 4496 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4497 if (err && errno == EINVAL) 4498 err = bpf_get_map_info_from_fdinfo(fd, &info); 4499 if (err) 4500 return libbpf_err(err); 4501 4502 new_name = strdup(info.name); 4503 if (!new_name) 4504 return libbpf_err(-errno); 4505 4506 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4507 if (new_fd < 0) { 4508 err = -errno; 4509 goto err_free_new_name; 4510 } 4511 4512 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4513 if (new_fd < 0) { 4514 err = -errno; 4515 goto err_close_new_fd; 4516 } 4517 4518 err = zclose(map->fd); 4519 if (err) { 4520 err = -errno; 4521 goto err_close_new_fd; 4522 } 4523 free(map->name); 4524 4525 map->fd = new_fd; 4526 map->name = new_name; 4527 map->def.type = info.type; 4528 map->def.key_size = info.key_size; 4529 map->def.value_size = info.value_size; 4530 map->def.max_entries = info.max_entries; 4531 map->def.map_flags = info.map_flags; 4532 map->btf_key_type_id = info.btf_key_type_id; 4533 map->btf_value_type_id = info.btf_value_type_id; 4534 map->reused = true; 4535 map->map_extra = info.map_extra; 4536 4537 return 0; 4538 4539 err_close_new_fd: 4540 close(new_fd); 4541 err_free_new_name: 4542 free(new_name); 4543 return libbpf_err(err); 4544 } 4545 4546 __u32 bpf_map__max_entries(const struct bpf_map *map) 4547 { 4548 return map->def.max_entries; 4549 } 4550 4551 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4552 { 4553 if (!bpf_map_type__is_map_in_map(map->def.type)) 4554 return errno = EINVAL, NULL; 4555 4556 return map->inner_map; 4557 } 4558 4559 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4560 { 4561 if (map->fd >= 0) 4562 return libbpf_err(-EBUSY); 4563 map->def.max_entries = max_entries; 4564 return 0; 4565 } 4566 4567 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4568 { 4569 if (!map || !max_entries) 4570 return libbpf_err(-EINVAL); 4571 4572 return bpf_map__set_max_entries(map, max_entries); 4573 } 4574 4575 static int 4576 bpf_object__probe_loading(struct bpf_object *obj) 4577 { 4578 char *cp, errmsg[STRERR_BUFSIZE]; 4579 struct bpf_insn insns[] = { 4580 BPF_MOV64_IMM(BPF_REG_0, 0), 4581 BPF_EXIT_INSN(), 4582 }; 4583 int ret, insn_cnt = ARRAY_SIZE(insns); 4584 4585 if (obj->gen_loader) 4586 return 0; 4587 4588 ret = bump_rlimit_memlock(); 4589 if (ret) 4590 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4591 4592 /* make sure basic loading works */ 4593 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4594 if (ret < 0) 4595 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4596 if (ret < 0) { 4597 ret = errno; 4598 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4599 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4600 "program. Make sure your kernel supports BPF " 4601 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4602 "set to big enough value.\n", __func__, cp, ret); 4603 return -ret; 4604 } 4605 close(ret); 4606 4607 return 0; 4608 } 4609 4610 static int probe_fd(int fd) 4611 { 4612 if (fd >= 0) 4613 close(fd); 4614 return fd >= 0; 4615 } 4616 4617 static int probe_kern_prog_name(void) 4618 { 4619 struct bpf_insn insns[] = { 4620 BPF_MOV64_IMM(BPF_REG_0, 0), 4621 BPF_EXIT_INSN(), 4622 }; 4623 int ret, insn_cnt = ARRAY_SIZE(insns); 4624 4625 /* make sure loading with name works */ 4626 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, "test", "GPL", insns, insn_cnt, NULL); 4627 return probe_fd(ret); 4628 } 4629 4630 static int probe_kern_global_data(void) 4631 { 4632 char *cp, errmsg[STRERR_BUFSIZE]; 4633 struct bpf_insn insns[] = { 4634 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4635 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4636 BPF_MOV64_IMM(BPF_REG_0, 0), 4637 BPF_EXIT_INSN(), 4638 }; 4639 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4640 4641 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4642 if (map < 0) { 4643 ret = -errno; 4644 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4645 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4646 __func__, cp, -ret); 4647 return ret; 4648 } 4649 4650 insns[0].imm = map; 4651 4652 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4653 close(map); 4654 return probe_fd(ret); 4655 } 4656 4657 static int probe_kern_btf(void) 4658 { 4659 static const char strs[] = "\0int"; 4660 __u32 types[] = { 4661 /* int */ 4662 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4663 }; 4664 4665 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4666 strs, sizeof(strs))); 4667 } 4668 4669 static int probe_kern_btf_func(void) 4670 { 4671 static const char strs[] = "\0int\0x\0a"; 4672 /* void x(int a) {} */ 4673 __u32 types[] = { 4674 /* int */ 4675 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4676 /* FUNC_PROTO */ /* [2] */ 4677 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4678 BTF_PARAM_ENC(7, 1), 4679 /* FUNC x */ /* [3] */ 4680 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4681 }; 4682 4683 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4684 strs, sizeof(strs))); 4685 } 4686 4687 static int probe_kern_btf_func_global(void) 4688 { 4689 static const char strs[] = "\0int\0x\0a"; 4690 /* static void x(int a) {} */ 4691 __u32 types[] = { 4692 /* int */ 4693 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4694 /* FUNC_PROTO */ /* [2] */ 4695 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4696 BTF_PARAM_ENC(7, 1), 4697 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4698 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4699 }; 4700 4701 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4702 strs, sizeof(strs))); 4703 } 4704 4705 static int probe_kern_btf_datasec(void) 4706 { 4707 static const char strs[] = "\0x\0.data"; 4708 /* static int a; */ 4709 __u32 types[] = { 4710 /* int */ 4711 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4712 /* VAR x */ /* [2] */ 4713 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4714 BTF_VAR_STATIC, 4715 /* DATASEC val */ /* [3] */ 4716 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4717 BTF_VAR_SECINFO_ENC(2, 0, 4), 4718 }; 4719 4720 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4721 strs, sizeof(strs))); 4722 } 4723 4724 static int probe_kern_btf_float(void) 4725 { 4726 static const char strs[] = "\0float"; 4727 __u32 types[] = { 4728 /* float */ 4729 BTF_TYPE_FLOAT_ENC(1, 4), 4730 }; 4731 4732 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4733 strs, sizeof(strs))); 4734 } 4735 4736 static int probe_kern_btf_decl_tag(void) 4737 { 4738 static const char strs[] = "\0tag"; 4739 __u32 types[] = { 4740 /* int */ 4741 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4742 /* VAR x */ /* [2] */ 4743 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4744 BTF_VAR_STATIC, 4745 /* attr */ 4746 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4747 }; 4748 4749 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4750 strs, sizeof(strs))); 4751 } 4752 4753 static int probe_kern_btf_type_tag(void) 4754 { 4755 static const char strs[] = "\0tag"; 4756 __u32 types[] = { 4757 /* int */ 4758 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4759 /* attr */ 4760 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4761 /* ptr */ 4762 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4763 }; 4764 4765 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4766 strs, sizeof(strs))); 4767 } 4768 4769 static int probe_kern_array_mmap(void) 4770 { 4771 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4772 int fd; 4773 4774 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), sizeof(int), 1, &opts); 4775 return probe_fd(fd); 4776 } 4777 4778 static int probe_kern_exp_attach_type(void) 4779 { 4780 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4781 struct bpf_insn insns[] = { 4782 BPF_MOV64_IMM(BPF_REG_0, 0), 4783 BPF_EXIT_INSN(), 4784 }; 4785 int fd, insn_cnt = ARRAY_SIZE(insns); 4786 4787 /* use any valid combination of program type and (optional) 4788 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4789 * to see if kernel supports expected_attach_type field for 4790 * BPF_PROG_LOAD command 4791 */ 4792 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4793 return probe_fd(fd); 4794 } 4795 4796 static int probe_kern_probe_read_kernel(void) 4797 { 4798 struct bpf_insn insns[] = { 4799 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4800 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4801 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4802 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4803 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4804 BPF_EXIT_INSN(), 4805 }; 4806 int fd, insn_cnt = ARRAY_SIZE(insns); 4807 4808 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4809 return probe_fd(fd); 4810 } 4811 4812 static int probe_prog_bind_map(void) 4813 { 4814 char *cp, errmsg[STRERR_BUFSIZE]; 4815 struct bpf_insn insns[] = { 4816 BPF_MOV64_IMM(BPF_REG_0, 0), 4817 BPF_EXIT_INSN(), 4818 }; 4819 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4820 4821 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 32, 1, NULL); 4822 if (map < 0) { 4823 ret = -errno; 4824 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4825 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4826 __func__, cp, -ret); 4827 return ret; 4828 } 4829 4830 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4831 if (prog < 0) { 4832 close(map); 4833 return 0; 4834 } 4835 4836 ret = bpf_prog_bind_map(prog, map, NULL); 4837 4838 close(map); 4839 close(prog); 4840 4841 return ret >= 0; 4842 } 4843 4844 static int probe_module_btf(void) 4845 { 4846 static const char strs[] = "\0int"; 4847 __u32 types[] = { 4848 /* int */ 4849 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4850 }; 4851 struct bpf_btf_info info; 4852 __u32 len = sizeof(info); 4853 char name[16]; 4854 int fd, err; 4855 4856 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4857 if (fd < 0) 4858 return 0; /* BTF not supported at all */ 4859 4860 memset(&info, 0, sizeof(info)); 4861 info.name = ptr_to_u64(name); 4862 info.name_len = sizeof(name); 4863 4864 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4865 * kernel's module BTF support coincides with support for 4866 * name/name_len fields in struct bpf_btf_info. 4867 */ 4868 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4869 close(fd); 4870 return !err; 4871 } 4872 4873 static int probe_perf_link(void) 4874 { 4875 struct bpf_insn insns[] = { 4876 BPF_MOV64_IMM(BPF_REG_0, 0), 4877 BPF_EXIT_INSN(), 4878 }; 4879 int prog_fd, link_fd, err; 4880 4881 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4882 insns, ARRAY_SIZE(insns), NULL); 4883 if (prog_fd < 0) 4884 return -errno; 4885 4886 /* use invalid perf_event FD to get EBADF, if link is supported; 4887 * otherwise EINVAL should be returned 4888 */ 4889 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4890 err = -errno; /* close() can clobber errno */ 4891 4892 if (link_fd >= 0) 4893 close(link_fd); 4894 close(prog_fd); 4895 4896 return link_fd < 0 && err == -EBADF; 4897 } 4898 4899 static int probe_kern_bpf_cookie(void) 4900 { 4901 struct bpf_insn insns[] = { 4902 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4903 BPF_EXIT_INSN(), 4904 }; 4905 int ret, insn_cnt = ARRAY_SIZE(insns); 4906 4907 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4908 return probe_fd(ret); 4909 } 4910 4911 static int probe_kern_btf_enum64(void) 4912 { 4913 static const char strs[] = "\0enum64"; 4914 __u32 types[] = { 4915 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4916 }; 4917 4918 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4919 strs, sizeof(strs))); 4920 } 4921 4922 enum kern_feature_result { 4923 FEAT_UNKNOWN = 0, 4924 FEAT_SUPPORTED = 1, 4925 FEAT_MISSING = 2, 4926 }; 4927 4928 typedef int (*feature_probe_fn)(void); 4929 4930 static struct kern_feature_desc { 4931 const char *desc; 4932 feature_probe_fn probe; 4933 enum kern_feature_result res; 4934 } feature_probes[__FEAT_CNT] = { 4935 [FEAT_PROG_NAME] = { 4936 "BPF program name", probe_kern_prog_name, 4937 }, 4938 [FEAT_GLOBAL_DATA] = { 4939 "global variables", probe_kern_global_data, 4940 }, 4941 [FEAT_BTF] = { 4942 "minimal BTF", probe_kern_btf, 4943 }, 4944 [FEAT_BTF_FUNC] = { 4945 "BTF functions", probe_kern_btf_func, 4946 }, 4947 [FEAT_BTF_GLOBAL_FUNC] = { 4948 "BTF global function", probe_kern_btf_func_global, 4949 }, 4950 [FEAT_BTF_DATASEC] = { 4951 "BTF data section and variable", probe_kern_btf_datasec, 4952 }, 4953 [FEAT_ARRAY_MMAP] = { 4954 "ARRAY map mmap()", probe_kern_array_mmap, 4955 }, 4956 [FEAT_EXP_ATTACH_TYPE] = { 4957 "BPF_PROG_LOAD expected_attach_type attribute", 4958 probe_kern_exp_attach_type, 4959 }, 4960 [FEAT_PROBE_READ_KERN] = { 4961 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4962 }, 4963 [FEAT_PROG_BIND_MAP] = { 4964 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4965 }, 4966 [FEAT_MODULE_BTF] = { 4967 "module BTF support", probe_module_btf, 4968 }, 4969 [FEAT_BTF_FLOAT] = { 4970 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4971 }, 4972 [FEAT_PERF_LINK] = { 4973 "BPF perf link support", probe_perf_link, 4974 }, 4975 [FEAT_BTF_DECL_TAG] = { 4976 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4977 }, 4978 [FEAT_BTF_TYPE_TAG] = { 4979 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4980 }, 4981 [FEAT_MEMCG_ACCOUNT] = { 4982 "memcg-based memory accounting", probe_memcg_account, 4983 }, 4984 [FEAT_BPF_COOKIE] = { 4985 "BPF cookie support", probe_kern_bpf_cookie, 4986 }, 4987 [FEAT_BTF_ENUM64] = { 4988 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4989 }, 4990 }; 4991 4992 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4993 { 4994 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4995 int ret; 4996 4997 if (obj && obj->gen_loader) 4998 /* To generate loader program assume the latest kernel 4999 * to avoid doing extra prog_load, map_create syscalls. 5000 */ 5001 return true; 5002 5003 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 5004 ret = feat->probe(); 5005 if (ret > 0) { 5006 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 5007 } else if (ret == 0) { 5008 WRITE_ONCE(feat->res, FEAT_MISSING); 5009 } else { 5010 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 5011 WRITE_ONCE(feat->res, FEAT_MISSING); 5012 } 5013 } 5014 5015 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 5016 } 5017 5018 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5019 { 5020 struct bpf_map_info map_info = {}; 5021 char msg[STRERR_BUFSIZE]; 5022 __u32 map_info_len; 5023 int err; 5024 5025 map_info_len = sizeof(map_info); 5026 5027 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 5028 if (err && errno == EINVAL) 5029 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5030 if (err) { 5031 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5032 libbpf_strerror_r(errno, msg, sizeof(msg))); 5033 return false; 5034 } 5035 5036 return (map_info.type == map->def.type && 5037 map_info.key_size == map->def.key_size && 5038 map_info.value_size == map->def.value_size && 5039 map_info.max_entries == map->def.max_entries && 5040 map_info.map_flags == map->def.map_flags && 5041 map_info.map_extra == map->map_extra); 5042 } 5043 5044 static int 5045 bpf_object__reuse_map(struct bpf_map *map) 5046 { 5047 char *cp, errmsg[STRERR_BUFSIZE]; 5048 int err, pin_fd; 5049 5050 pin_fd = bpf_obj_get(map->pin_path); 5051 if (pin_fd < 0) { 5052 err = -errno; 5053 if (err == -ENOENT) { 5054 pr_debug("found no pinned map to reuse at '%s'\n", 5055 map->pin_path); 5056 return 0; 5057 } 5058 5059 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5060 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5061 map->pin_path, cp); 5062 return err; 5063 } 5064 5065 if (!map_is_reuse_compat(map, pin_fd)) { 5066 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5067 map->pin_path); 5068 close(pin_fd); 5069 return -EINVAL; 5070 } 5071 5072 err = bpf_map__reuse_fd(map, pin_fd); 5073 close(pin_fd); 5074 if (err) { 5075 return err; 5076 } 5077 map->pinned = true; 5078 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5079 5080 return 0; 5081 } 5082 5083 static int 5084 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5085 { 5086 enum libbpf_map_type map_type = map->libbpf_type; 5087 char *cp, errmsg[STRERR_BUFSIZE]; 5088 int err, zero = 0; 5089 5090 if (obj->gen_loader) { 5091 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5092 map->mmaped, map->def.value_size); 5093 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5094 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5095 return 0; 5096 } 5097 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5098 if (err) { 5099 err = -errno; 5100 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5101 pr_warn("Error setting initial map(%s) contents: %s\n", 5102 map->name, cp); 5103 return err; 5104 } 5105 5106 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5107 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5108 err = bpf_map_freeze(map->fd); 5109 if (err) { 5110 err = -errno; 5111 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5112 pr_warn("Error freezing map(%s) as read-only: %s\n", 5113 map->name, cp); 5114 return err; 5115 } 5116 } 5117 return 0; 5118 } 5119 5120 static void bpf_map__destroy(struct bpf_map *map); 5121 5122 static size_t adjust_ringbuf_sz(size_t sz) 5123 { 5124 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 5125 __u32 mul; 5126 5127 /* if user forgot to set any size, make sure they see error */ 5128 if (sz == 0) 5129 return 0; 5130 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 5131 * a power-of-2 multiple of kernel's page size. If user diligently 5132 * satisified these conditions, pass the size through. 5133 */ 5134 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 5135 return sz; 5136 5137 /* Otherwise find closest (page_sz * power_of_2) product bigger than 5138 * user-set size to satisfy both user size request and kernel 5139 * requirements and substitute correct max_entries for map creation. 5140 */ 5141 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 5142 if (mul * page_sz > sz) 5143 return mul * page_sz; 5144 } 5145 5146 /* if it's impossible to satisfy the conditions (i.e., user size is 5147 * very close to UINT_MAX but is not a power-of-2 multiple of 5148 * page_size) then just return original size and let kernel reject it 5149 */ 5150 return sz; 5151 } 5152 5153 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5154 { 5155 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5156 struct bpf_map_def *def = &map->def; 5157 const char *map_name = NULL; 5158 int err = 0; 5159 5160 if (kernel_supports(obj, FEAT_PROG_NAME)) 5161 map_name = map->name; 5162 create_attr.map_ifindex = map->map_ifindex; 5163 create_attr.map_flags = def->map_flags; 5164 create_attr.numa_node = map->numa_node; 5165 create_attr.map_extra = map->map_extra; 5166 5167 if (bpf_map__is_struct_ops(map)) 5168 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5169 5170 if (obj->btf && btf__fd(obj->btf) >= 0) { 5171 create_attr.btf_fd = btf__fd(obj->btf); 5172 create_attr.btf_key_type_id = map->btf_key_type_id; 5173 create_attr.btf_value_type_id = map->btf_value_type_id; 5174 } 5175 5176 if (bpf_map_type__is_map_in_map(def->type)) { 5177 if (map->inner_map) { 5178 err = bpf_object__create_map(obj, map->inner_map, true); 5179 if (err) { 5180 pr_warn("map '%s': failed to create inner map: %d\n", 5181 map->name, err); 5182 return err; 5183 } 5184 map->inner_map_fd = bpf_map__fd(map->inner_map); 5185 } 5186 if (map->inner_map_fd >= 0) 5187 create_attr.inner_map_fd = map->inner_map_fd; 5188 } 5189 5190 switch (def->type) { 5191 case BPF_MAP_TYPE_RINGBUF: 5192 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 5193 /* fallthrough */ 5194 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5195 case BPF_MAP_TYPE_CGROUP_ARRAY: 5196 case BPF_MAP_TYPE_STACK_TRACE: 5197 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5198 case BPF_MAP_TYPE_HASH_OF_MAPS: 5199 case BPF_MAP_TYPE_DEVMAP: 5200 case BPF_MAP_TYPE_DEVMAP_HASH: 5201 case BPF_MAP_TYPE_CPUMAP: 5202 case BPF_MAP_TYPE_XSKMAP: 5203 case BPF_MAP_TYPE_SOCKMAP: 5204 case BPF_MAP_TYPE_SOCKHASH: 5205 case BPF_MAP_TYPE_QUEUE: 5206 case BPF_MAP_TYPE_STACK: 5207 create_attr.btf_fd = 0; 5208 create_attr.btf_key_type_id = 0; 5209 create_attr.btf_value_type_id = 0; 5210 map->btf_key_type_id = 0; 5211 map->btf_value_type_id = 0; 5212 default: 5213 break; 5214 } 5215 5216 if (obj->gen_loader) { 5217 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5218 def->key_size, def->value_size, def->max_entries, 5219 &create_attr, is_inner ? -1 : map - obj->maps); 5220 /* Pretend to have valid FD to pass various fd >= 0 checks. 5221 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5222 */ 5223 map->fd = 0; 5224 } else { 5225 map->fd = bpf_map_create(def->type, map_name, 5226 def->key_size, def->value_size, 5227 def->max_entries, &create_attr); 5228 } 5229 if (map->fd < 0 && (create_attr.btf_key_type_id || 5230 create_attr.btf_value_type_id)) { 5231 char *cp, errmsg[STRERR_BUFSIZE]; 5232 5233 err = -errno; 5234 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5235 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5236 map->name, cp, err); 5237 create_attr.btf_fd = 0; 5238 create_attr.btf_key_type_id = 0; 5239 create_attr.btf_value_type_id = 0; 5240 map->btf_key_type_id = 0; 5241 map->btf_value_type_id = 0; 5242 map->fd = bpf_map_create(def->type, map_name, 5243 def->key_size, def->value_size, 5244 def->max_entries, &create_attr); 5245 } 5246 5247 err = map->fd < 0 ? -errno : 0; 5248 5249 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5250 if (obj->gen_loader) 5251 map->inner_map->fd = -1; 5252 bpf_map__destroy(map->inner_map); 5253 zfree(&map->inner_map); 5254 } 5255 5256 return err; 5257 } 5258 5259 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5260 { 5261 const struct bpf_map *targ_map; 5262 unsigned int i; 5263 int fd, err = 0; 5264 5265 for (i = 0; i < map->init_slots_sz; i++) { 5266 if (!map->init_slots[i]) 5267 continue; 5268 5269 targ_map = map->init_slots[i]; 5270 fd = bpf_map__fd(targ_map); 5271 5272 if (obj->gen_loader) { 5273 bpf_gen__populate_outer_map(obj->gen_loader, 5274 map - obj->maps, i, 5275 targ_map - obj->maps); 5276 } else { 5277 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5278 } 5279 if (err) { 5280 err = -errno; 5281 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5282 map->name, i, targ_map->name, fd, err); 5283 return err; 5284 } 5285 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5286 map->name, i, targ_map->name, fd); 5287 } 5288 5289 zfree(&map->init_slots); 5290 map->init_slots_sz = 0; 5291 5292 return 0; 5293 } 5294 5295 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5296 { 5297 const struct bpf_program *targ_prog; 5298 unsigned int i; 5299 int fd, err; 5300 5301 if (obj->gen_loader) 5302 return -ENOTSUP; 5303 5304 for (i = 0; i < map->init_slots_sz; i++) { 5305 if (!map->init_slots[i]) 5306 continue; 5307 5308 targ_prog = map->init_slots[i]; 5309 fd = bpf_program__fd(targ_prog); 5310 5311 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5312 if (err) { 5313 err = -errno; 5314 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5315 map->name, i, targ_prog->name, fd, err); 5316 return err; 5317 } 5318 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5319 map->name, i, targ_prog->name, fd); 5320 } 5321 5322 zfree(&map->init_slots); 5323 map->init_slots_sz = 0; 5324 5325 return 0; 5326 } 5327 5328 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5329 { 5330 struct bpf_map *map; 5331 int i, err; 5332 5333 for (i = 0; i < obj->nr_maps; i++) { 5334 map = &obj->maps[i]; 5335 5336 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5337 continue; 5338 5339 err = init_prog_array_slots(obj, map); 5340 if (err < 0) { 5341 zclose(map->fd); 5342 return err; 5343 } 5344 } 5345 return 0; 5346 } 5347 5348 static int map_set_def_max_entries(struct bpf_map *map) 5349 { 5350 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5351 int nr_cpus; 5352 5353 nr_cpus = libbpf_num_possible_cpus(); 5354 if (nr_cpus < 0) { 5355 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5356 map->name, nr_cpus); 5357 return nr_cpus; 5358 } 5359 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5360 map->def.max_entries = nr_cpus; 5361 } 5362 5363 return 0; 5364 } 5365 5366 static int 5367 bpf_object__create_maps(struct bpf_object *obj) 5368 { 5369 struct bpf_map *map; 5370 char *cp, errmsg[STRERR_BUFSIZE]; 5371 unsigned int i, j; 5372 int err; 5373 bool retried; 5374 5375 for (i = 0; i < obj->nr_maps; i++) { 5376 map = &obj->maps[i]; 5377 5378 /* To support old kernels, we skip creating global data maps 5379 * (.rodata, .data, .kconfig, etc); later on, during program 5380 * loading, if we detect that at least one of the to-be-loaded 5381 * programs is referencing any global data map, we'll error 5382 * out with program name and relocation index logged. 5383 * This approach allows to accommodate Clang emitting 5384 * unnecessary .rodata.str1.1 sections for string literals, 5385 * but also it allows to have CO-RE applications that use 5386 * global variables in some of BPF programs, but not others. 5387 * If those global variable-using programs are not loaded at 5388 * runtime due to bpf_program__set_autoload(prog, false), 5389 * bpf_object loading will succeed just fine even on old 5390 * kernels. 5391 */ 5392 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5393 map->autocreate = false; 5394 5395 if (!map->autocreate) { 5396 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5397 continue; 5398 } 5399 5400 err = map_set_def_max_entries(map); 5401 if (err) 5402 goto err_out; 5403 5404 retried = false; 5405 retry: 5406 if (map->pin_path) { 5407 err = bpf_object__reuse_map(map); 5408 if (err) { 5409 pr_warn("map '%s': error reusing pinned map\n", 5410 map->name); 5411 goto err_out; 5412 } 5413 if (retried && map->fd < 0) { 5414 pr_warn("map '%s': cannot find pinned map\n", 5415 map->name); 5416 err = -ENOENT; 5417 goto err_out; 5418 } 5419 } 5420 5421 if (map->fd >= 0) { 5422 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5423 map->name, map->fd); 5424 } else { 5425 err = bpf_object__create_map(obj, map, false); 5426 if (err) 5427 goto err_out; 5428 5429 pr_debug("map '%s': created successfully, fd=%d\n", 5430 map->name, map->fd); 5431 5432 if (bpf_map__is_internal(map)) { 5433 err = bpf_object__populate_internal_map(obj, map); 5434 if (err < 0) { 5435 zclose(map->fd); 5436 goto err_out; 5437 } 5438 } 5439 5440 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5441 err = init_map_in_map_slots(obj, map); 5442 if (err < 0) { 5443 zclose(map->fd); 5444 goto err_out; 5445 } 5446 } 5447 } 5448 5449 if (map->pin_path && !map->pinned) { 5450 err = bpf_map__pin(map, NULL); 5451 if (err) { 5452 zclose(map->fd); 5453 if (!retried && err == -EEXIST) { 5454 retried = true; 5455 goto retry; 5456 } 5457 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5458 map->name, map->pin_path, err); 5459 goto err_out; 5460 } 5461 } 5462 } 5463 5464 return 0; 5465 5466 err_out: 5467 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5468 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5469 pr_perm_msg(err); 5470 for (j = 0; j < i; j++) 5471 zclose(obj->maps[j].fd); 5472 return err; 5473 } 5474 5475 static bool bpf_core_is_flavor_sep(const char *s) 5476 { 5477 /* check X___Y name pattern, where X and Y are not underscores */ 5478 return s[0] != '_' && /* X */ 5479 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5480 s[4] != '_'; /* Y */ 5481 } 5482 5483 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5484 * before last triple underscore. Struct name part after last triple 5485 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5486 */ 5487 size_t bpf_core_essential_name_len(const char *name) 5488 { 5489 size_t n = strlen(name); 5490 int i; 5491 5492 for (i = n - 5; i >= 0; i--) { 5493 if (bpf_core_is_flavor_sep(name + i)) 5494 return i + 1; 5495 } 5496 return n; 5497 } 5498 5499 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5500 { 5501 if (!cands) 5502 return; 5503 5504 free(cands->cands); 5505 free(cands); 5506 } 5507 5508 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5509 size_t local_essent_len, 5510 const struct btf *targ_btf, 5511 const char *targ_btf_name, 5512 int targ_start_id, 5513 struct bpf_core_cand_list *cands) 5514 { 5515 struct bpf_core_cand *new_cands, *cand; 5516 const struct btf_type *t, *local_t; 5517 const char *targ_name, *local_name; 5518 size_t targ_essent_len; 5519 int n, i; 5520 5521 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5522 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5523 5524 n = btf__type_cnt(targ_btf); 5525 for (i = targ_start_id; i < n; i++) { 5526 t = btf__type_by_id(targ_btf, i); 5527 if (!btf_kind_core_compat(t, local_t)) 5528 continue; 5529 5530 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5531 if (str_is_empty(targ_name)) 5532 continue; 5533 5534 targ_essent_len = bpf_core_essential_name_len(targ_name); 5535 if (targ_essent_len != local_essent_len) 5536 continue; 5537 5538 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5539 continue; 5540 5541 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5542 local_cand->id, btf_kind_str(local_t), 5543 local_name, i, btf_kind_str(t), targ_name, 5544 targ_btf_name); 5545 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5546 sizeof(*cands->cands)); 5547 if (!new_cands) 5548 return -ENOMEM; 5549 5550 cand = &new_cands[cands->len]; 5551 cand->btf = targ_btf; 5552 cand->id = i; 5553 5554 cands->cands = new_cands; 5555 cands->len++; 5556 } 5557 return 0; 5558 } 5559 5560 static int load_module_btfs(struct bpf_object *obj) 5561 { 5562 struct bpf_btf_info info; 5563 struct module_btf *mod_btf; 5564 struct btf *btf; 5565 char name[64]; 5566 __u32 id = 0, len; 5567 int err, fd; 5568 5569 if (obj->btf_modules_loaded) 5570 return 0; 5571 5572 if (obj->gen_loader) 5573 return 0; 5574 5575 /* don't do this again, even if we find no module BTFs */ 5576 obj->btf_modules_loaded = true; 5577 5578 /* kernel too old to support module BTFs */ 5579 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5580 return 0; 5581 5582 while (true) { 5583 err = bpf_btf_get_next_id(id, &id); 5584 if (err && errno == ENOENT) 5585 return 0; 5586 if (err) { 5587 err = -errno; 5588 pr_warn("failed to iterate BTF objects: %d\n", err); 5589 return err; 5590 } 5591 5592 fd = bpf_btf_get_fd_by_id(id); 5593 if (fd < 0) { 5594 if (errno == ENOENT) 5595 continue; /* expected race: BTF was unloaded */ 5596 err = -errno; 5597 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5598 return err; 5599 } 5600 5601 len = sizeof(info); 5602 memset(&info, 0, sizeof(info)); 5603 info.name = ptr_to_u64(name); 5604 info.name_len = sizeof(name); 5605 5606 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5607 if (err) { 5608 err = -errno; 5609 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5610 goto err_out; 5611 } 5612 5613 /* ignore non-module BTFs */ 5614 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5615 close(fd); 5616 continue; 5617 } 5618 5619 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5620 err = libbpf_get_error(btf); 5621 if (err) { 5622 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5623 name, id, err); 5624 goto err_out; 5625 } 5626 5627 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5628 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5629 if (err) 5630 goto err_out; 5631 5632 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5633 5634 mod_btf->btf = btf; 5635 mod_btf->id = id; 5636 mod_btf->fd = fd; 5637 mod_btf->name = strdup(name); 5638 if (!mod_btf->name) { 5639 err = -ENOMEM; 5640 goto err_out; 5641 } 5642 continue; 5643 5644 err_out: 5645 close(fd); 5646 return err; 5647 } 5648 5649 return 0; 5650 } 5651 5652 static struct bpf_core_cand_list * 5653 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5654 { 5655 struct bpf_core_cand local_cand = {}; 5656 struct bpf_core_cand_list *cands; 5657 const struct btf *main_btf; 5658 const struct btf_type *local_t; 5659 const char *local_name; 5660 size_t local_essent_len; 5661 int err, i; 5662 5663 local_cand.btf = local_btf; 5664 local_cand.id = local_type_id; 5665 local_t = btf__type_by_id(local_btf, local_type_id); 5666 if (!local_t) 5667 return ERR_PTR(-EINVAL); 5668 5669 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5670 if (str_is_empty(local_name)) 5671 return ERR_PTR(-EINVAL); 5672 local_essent_len = bpf_core_essential_name_len(local_name); 5673 5674 cands = calloc(1, sizeof(*cands)); 5675 if (!cands) 5676 return ERR_PTR(-ENOMEM); 5677 5678 /* Attempt to find target candidates in vmlinux BTF first */ 5679 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5680 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5681 if (err) 5682 goto err_out; 5683 5684 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5685 if (cands->len) 5686 return cands; 5687 5688 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5689 if (obj->btf_vmlinux_override) 5690 return cands; 5691 5692 /* now look through module BTFs, trying to still find candidates */ 5693 err = load_module_btfs(obj); 5694 if (err) 5695 goto err_out; 5696 5697 for (i = 0; i < obj->btf_module_cnt; i++) { 5698 err = bpf_core_add_cands(&local_cand, local_essent_len, 5699 obj->btf_modules[i].btf, 5700 obj->btf_modules[i].name, 5701 btf__type_cnt(obj->btf_vmlinux), 5702 cands); 5703 if (err) 5704 goto err_out; 5705 } 5706 5707 return cands; 5708 err_out: 5709 bpf_core_free_cands(cands); 5710 return ERR_PTR(err); 5711 } 5712 5713 /* Check local and target types for compatibility. This check is used for 5714 * type-based CO-RE relocations and follow slightly different rules than 5715 * field-based relocations. This function assumes that root types were already 5716 * checked for name match. Beyond that initial root-level name check, names 5717 * are completely ignored. Compatibility rules are as follows: 5718 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5719 * kind should match for local and target types (i.e., STRUCT is not 5720 * compatible with UNION); 5721 * - for ENUMs, the size is ignored; 5722 * - for INT, size and signedness are ignored; 5723 * - for ARRAY, dimensionality is ignored, element types are checked for 5724 * compatibility recursively; 5725 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5726 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5727 * - FUNC_PROTOs are compatible if they have compatible signature: same 5728 * number of input args and compatible return and argument types. 5729 * These rules are not set in stone and probably will be adjusted as we get 5730 * more experience with using BPF CO-RE relocations. 5731 */ 5732 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5733 const struct btf *targ_btf, __u32 targ_id) 5734 { 5735 const struct btf_type *local_type, *targ_type; 5736 int depth = 32; /* max recursion depth */ 5737 5738 /* caller made sure that names match (ignoring flavor suffix) */ 5739 local_type = btf__type_by_id(local_btf, local_id); 5740 targ_type = btf__type_by_id(targ_btf, targ_id); 5741 if (!btf_kind_core_compat(local_type, targ_type)) 5742 return 0; 5743 5744 recur: 5745 depth--; 5746 if (depth < 0) 5747 return -EINVAL; 5748 5749 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5750 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5751 if (!local_type || !targ_type) 5752 return -EINVAL; 5753 5754 if (!btf_kind_core_compat(local_type, targ_type)) 5755 return 0; 5756 5757 switch (btf_kind(local_type)) { 5758 case BTF_KIND_UNKN: 5759 case BTF_KIND_STRUCT: 5760 case BTF_KIND_UNION: 5761 case BTF_KIND_ENUM: 5762 case BTF_KIND_ENUM64: 5763 case BTF_KIND_FWD: 5764 return 1; 5765 case BTF_KIND_INT: 5766 /* just reject deprecated bitfield-like integers; all other 5767 * integers are by default compatible between each other 5768 */ 5769 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5770 case BTF_KIND_PTR: 5771 local_id = local_type->type; 5772 targ_id = targ_type->type; 5773 goto recur; 5774 case BTF_KIND_ARRAY: 5775 local_id = btf_array(local_type)->type; 5776 targ_id = btf_array(targ_type)->type; 5777 goto recur; 5778 case BTF_KIND_FUNC_PROTO: { 5779 struct btf_param *local_p = btf_params(local_type); 5780 struct btf_param *targ_p = btf_params(targ_type); 5781 __u16 local_vlen = btf_vlen(local_type); 5782 __u16 targ_vlen = btf_vlen(targ_type); 5783 int i, err; 5784 5785 if (local_vlen != targ_vlen) 5786 return 0; 5787 5788 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5789 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5790 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5791 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5792 if (err <= 0) 5793 return err; 5794 } 5795 5796 /* tail recurse for return type check */ 5797 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5798 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5799 goto recur; 5800 } 5801 default: 5802 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5803 btf_kind_str(local_type), local_id, targ_id); 5804 return 0; 5805 } 5806 } 5807 5808 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5809 { 5810 return (size_t)key; 5811 } 5812 5813 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5814 { 5815 return k1 == k2; 5816 } 5817 5818 static void *u32_as_hash_key(__u32 x) 5819 { 5820 return (void *)(uintptr_t)x; 5821 } 5822 5823 static int record_relo_core(struct bpf_program *prog, 5824 const struct bpf_core_relo *core_relo, int insn_idx) 5825 { 5826 struct reloc_desc *relos, *relo; 5827 5828 relos = libbpf_reallocarray(prog->reloc_desc, 5829 prog->nr_reloc + 1, sizeof(*relos)); 5830 if (!relos) 5831 return -ENOMEM; 5832 relo = &relos[prog->nr_reloc]; 5833 relo->type = RELO_CORE; 5834 relo->insn_idx = insn_idx; 5835 relo->core_relo = core_relo; 5836 prog->reloc_desc = relos; 5837 prog->nr_reloc++; 5838 return 0; 5839 } 5840 5841 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5842 { 5843 struct reloc_desc *relo; 5844 int i; 5845 5846 for (i = 0; i < prog->nr_reloc; i++) { 5847 relo = &prog->reloc_desc[i]; 5848 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5849 continue; 5850 5851 return relo->core_relo; 5852 } 5853 5854 return NULL; 5855 } 5856 5857 static int bpf_core_resolve_relo(struct bpf_program *prog, 5858 const struct bpf_core_relo *relo, 5859 int relo_idx, 5860 const struct btf *local_btf, 5861 struct hashmap *cand_cache, 5862 struct bpf_core_relo_res *targ_res) 5863 { 5864 struct bpf_core_spec specs_scratch[3] = {}; 5865 const void *type_key = u32_as_hash_key(relo->type_id); 5866 struct bpf_core_cand_list *cands = NULL; 5867 const char *prog_name = prog->name; 5868 const struct btf_type *local_type; 5869 const char *local_name; 5870 __u32 local_id = relo->type_id; 5871 int err; 5872 5873 local_type = btf__type_by_id(local_btf, local_id); 5874 if (!local_type) 5875 return -EINVAL; 5876 5877 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5878 if (!local_name) 5879 return -EINVAL; 5880 5881 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5882 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5883 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5884 if (IS_ERR(cands)) { 5885 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5886 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5887 local_name, PTR_ERR(cands)); 5888 return PTR_ERR(cands); 5889 } 5890 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5891 if (err) { 5892 bpf_core_free_cands(cands); 5893 return err; 5894 } 5895 } 5896 5897 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5898 targ_res); 5899 } 5900 5901 static int 5902 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5903 { 5904 const struct btf_ext_info_sec *sec; 5905 struct bpf_core_relo_res targ_res; 5906 const struct bpf_core_relo *rec; 5907 const struct btf_ext_info *seg; 5908 struct hashmap_entry *entry; 5909 struct hashmap *cand_cache = NULL; 5910 struct bpf_program *prog; 5911 struct bpf_insn *insn; 5912 const char *sec_name; 5913 int i, err = 0, insn_idx, sec_idx, sec_num; 5914 5915 if (obj->btf_ext->core_relo_info.len == 0) 5916 return 0; 5917 5918 if (targ_btf_path) { 5919 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5920 err = libbpf_get_error(obj->btf_vmlinux_override); 5921 if (err) { 5922 pr_warn("failed to parse target BTF: %d\n", err); 5923 return err; 5924 } 5925 } 5926 5927 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5928 if (IS_ERR(cand_cache)) { 5929 err = PTR_ERR(cand_cache); 5930 goto out; 5931 } 5932 5933 seg = &obj->btf_ext->core_relo_info; 5934 sec_num = 0; 5935 for_each_btf_ext_sec(seg, sec) { 5936 sec_idx = seg->sec_idxs[sec_num]; 5937 sec_num++; 5938 5939 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5940 if (str_is_empty(sec_name)) { 5941 err = -EINVAL; 5942 goto out; 5943 } 5944 5945 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5946 5947 for_each_btf_ext_rec(seg, sec, i, rec) { 5948 if (rec->insn_off % BPF_INSN_SZ) 5949 return -EINVAL; 5950 insn_idx = rec->insn_off / BPF_INSN_SZ; 5951 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5952 if (!prog) { 5953 /* When __weak subprog is "overridden" by another instance 5954 * of the subprog from a different object file, linker still 5955 * appends all the .BTF.ext info that used to belong to that 5956 * eliminated subprogram. 5957 * This is similar to what x86-64 linker does for relocations. 5958 * So just ignore such relocations just like we ignore 5959 * subprog instructions when discovering subprograms. 5960 */ 5961 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5962 sec_name, i, insn_idx); 5963 continue; 5964 } 5965 /* no need to apply CO-RE relocation if the program is 5966 * not going to be loaded 5967 */ 5968 if (!prog->autoload) 5969 continue; 5970 5971 /* adjust insn_idx from section frame of reference to the local 5972 * program's frame of reference; (sub-)program code is not yet 5973 * relocated, so it's enough to just subtract in-section offset 5974 */ 5975 insn_idx = insn_idx - prog->sec_insn_off; 5976 if (insn_idx >= prog->insns_cnt) 5977 return -EINVAL; 5978 insn = &prog->insns[insn_idx]; 5979 5980 err = record_relo_core(prog, rec, insn_idx); 5981 if (err) { 5982 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5983 prog->name, i, err); 5984 goto out; 5985 } 5986 5987 if (prog->obj->gen_loader) 5988 continue; 5989 5990 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5991 if (err) { 5992 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5993 prog->name, i, err); 5994 goto out; 5995 } 5996 5997 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5998 if (err) { 5999 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 6000 prog->name, i, insn_idx, err); 6001 goto out; 6002 } 6003 } 6004 } 6005 6006 out: 6007 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6008 btf__free(obj->btf_vmlinux_override); 6009 obj->btf_vmlinux_override = NULL; 6010 6011 if (!IS_ERR_OR_NULL(cand_cache)) { 6012 hashmap__for_each_entry(cand_cache, entry, i) { 6013 bpf_core_free_cands(entry->value); 6014 } 6015 hashmap__free(cand_cache); 6016 } 6017 return err; 6018 } 6019 6020 /* base map load ldimm64 special constant, used also for log fixup logic */ 6021 #define MAP_LDIMM64_POISON_BASE 2001000000 6022 #define MAP_LDIMM64_POISON_PFX "200100" 6023 6024 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6025 int insn_idx, struct bpf_insn *insn, 6026 int map_idx, const struct bpf_map *map) 6027 { 6028 int i; 6029 6030 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6031 prog->name, relo_idx, insn_idx, map_idx, map->name); 6032 6033 /* we turn single ldimm64 into two identical invalid calls */ 6034 for (i = 0; i < 2; i++) { 6035 insn->code = BPF_JMP | BPF_CALL; 6036 insn->dst_reg = 0; 6037 insn->src_reg = 0; 6038 insn->off = 0; 6039 /* if this instruction is reachable (not a dead code), 6040 * verifier will complain with something like: 6041 * invalid func unknown#2001000123 6042 * where lower 123 is map index into obj->maps[] array 6043 */ 6044 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 6045 6046 insn++; 6047 } 6048 } 6049 6050 /* Relocate data references within program code: 6051 * - map references; 6052 * - global variable references; 6053 * - extern references. 6054 */ 6055 static int 6056 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6057 { 6058 int i; 6059 6060 for (i = 0; i < prog->nr_reloc; i++) { 6061 struct reloc_desc *relo = &prog->reloc_desc[i]; 6062 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6063 const struct bpf_map *map; 6064 struct extern_desc *ext; 6065 6066 switch (relo->type) { 6067 case RELO_LD64: 6068 map = &obj->maps[relo->map_idx]; 6069 if (obj->gen_loader) { 6070 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6071 insn[0].imm = relo->map_idx; 6072 } else if (map->autocreate) { 6073 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6074 insn[0].imm = map->fd; 6075 } else { 6076 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6077 relo->map_idx, map); 6078 } 6079 break; 6080 case RELO_DATA: 6081 map = &obj->maps[relo->map_idx]; 6082 insn[1].imm = insn[0].imm + relo->sym_off; 6083 if (obj->gen_loader) { 6084 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6085 insn[0].imm = relo->map_idx; 6086 } else if (map->autocreate) { 6087 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6088 insn[0].imm = map->fd; 6089 } else { 6090 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6091 relo->map_idx, map); 6092 } 6093 break; 6094 case RELO_EXTERN_VAR: 6095 ext = &obj->externs[relo->sym_off]; 6096 if (ext->type == EXT_KCFG) { 6097 if (obj->gen_loader) { 6098 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6099 insn[0].imm = obj->kconfig_map_idx; 6100 } else { 6101 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6102 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6103 } 6104 insn[1].imm = ext->kcfg.data_off; 6105 } else /* EXT_KSYM */ { 6106 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6107 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6108 insn[0].imm = ext->ksym.kernel_btf_id; 6109 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6110 } else { /* typeless ksyms or unresolved typed ksyms */ 6111 insn[0].imm = (__u32)ext->ksym.addr; 6112 insn[1].imm = ext->ksym.addr >> 32; 6113 } 6114 } 6115 break; 6116 case RELO_EXTERN_FUNC: 6117 ext = &obj->externs[relo->sym_off]; 6118 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6119 if (ext->is_set) { 6120 insn[0].imm = ext->ksym.kernel_btf_id; 6121 insn[0].off = ext->ksym.btf_fd_idx; 6122 } else { /* unresolved weak kfunc */ 6123 insn[0].imm = 0; 6124 insn[0].off = 0; 6125 } 6126 break; 6127 case RELO_SUBPROG_ADDR: 6128 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6129 pr_warn("prog '%s': relo #%d: bad insn\n", 6130 prog->name, i); 6131 return -EINVAL; 6132 } 6133 /* handled already */ 6134 break; 6135 case RELO_CALL: 6136 /* handled already */ 6137 break; 6138 case RELO_CORE: 6139 /* will be handled by bpf_program_record_relos() */ 6140 break; 6141 default: 6142 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6143 prog->name, i, relo->type); 6144 return -EINVAL; 6145 } 6146 } 6147 6148 return 0; 6149 } 6150 6151 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6152 const struct bpf_program *prog, 6153 const struct btf_ext_info *ext_info, 6154 void **prog_info, __u32 *prog_rec_cnt, 6155 __u32 *prog_rec_sz) 6156 { 6157 void *copy_start = NULL, *copy_end = NULL; 6158 void *rec, *rec_end, *new_prog_info; 6159 const struct btf_ext_info_sec *sec; 6160 size_t old_sz, new_sz; 6161 int i, sec_num, sec_idx, off_adj; 6162 6163 sec_num = 0; 6164 for_each_btf_ext_sec(ext_info, sec) { 6165 sec_idx = ext_info->sec_idxs[sec_num]; 6166 sec_num++; 6167 if (prog->sec_idx != sec_idx) 6168 continue; 6169 6170 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6171 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6172 6173 if (insn_off < prog->sec_insn_off) 6174 continue; 6175 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6176 break; 6177 6178 if (!copy_start) 6179 copy_start = rec; 6180 copy_end = rec + ext_info->rec_size; 6181 } 6182 6183 if (!copy_start) 6184 return -ENOENT; 6185 6186 /* append func/line info of a given (sub-)program to the main 6187 * program func/line info 6188 */ 6189 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6190 new_sz = old_sz + (copy_end - copy_start); 6191 new_prog_info = realloc(*prog_info, new_sz); 6192 if (!new_prog_info) 6193 return -ENOMEM; 6194 *prog_info = new_prog_info; 6195 *prog_rec_cnt = new_sz / ext_info->rec_size; 6196 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6197 6198 /* Kernel instruction offsets are in units of 8-byte 6199 * instructions, while .BTF.ext instruction offsets generated 6200 * by Clang are in units of bytes. So convert Clang offsets 6201 * into kernel offsets and adjust offset according to program 6202 * relocated position. 6203 */ 6204 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6205 rec = new_prog_info + old_sz; 6206 rec_end = new_prog_info + new_sz; 6207 for (; rec < rec_end; rec += ext_info->rec_size) { 6208 __u32 *insn_off = rec; 6209 6210 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6211 } 6212 *prog_rec_sz = ext_info->rec_size; 6213 return 0; 6214 } 6215 6216 return -ENOENT; 6217 } 6218 6219 static int 6220 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6221 struct bpf_program *main_prog, 6222 const struct bpf_program *prog) 6223 { 6224 int err; 6225 6226 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6227 * supprot func/line info 6228 */ 6229 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6230 return 0; 6231 6232 /* only attempt func info relocation if main program's func_info 6233 * relocation was successful 6234 */ 6235 if (main_prog != prog && !main_prog->func_info) 6236 goto line_info; 6237 6238 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6239 &main_prog->func_info, 6240 &main_prog->func_info_cnt, 6241 &main_prog->func_info_rec_size); 6242 if (err) { 6243 if (err != -ENOENT) { 6244 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6245 prog->name, err); 6246 return err; 6247 } 6248 if (main_prog->func_info) { 6249 /* 6250 * Some info has already been found but has problem 6251 * in the last btf_ext reloc. Must have to error out. 6252 */ 6253 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6254 return err; 6255 } 6256 /* Have problem loading the very first info. Ignore the rest. */ 6257 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6258 prog->name); 6259 } 6260 6261 line_info: 6262 /* don't relocate line info if main program's relocation failed */ 6263 if (main_prog != prog && !main_prog->line_info) 6264 return 0; 6265 6266 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6267 &main_prog->line_info, 6268 &main_prog->line_info_cnt, 6269 &main_prog->line_info_rec_size); 6270 if (err) { 6271 if (err != -ENOENT) { 6272 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6273 prog->name, err); 6274 return err; 6275 } 6276 if (main_prog->line_info) { 6277 /* 6278 * Some info has already been found but has problem 6279 * in the last btf_ext reloc. Must have to error out. 6280 */ 6281 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6282 return err; 6283 } 6284 /* Have problem loading the very first info. Ignore the rest. */ 6285 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6286 prog->name); 6287 } 6288 return 0; 6289 } 6290 6291 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6292 { 6293 size_t insn_idx = *(const size_t *)key; 6294 const struct reloc_desc *relo = elem; 6295 6296 if (insn_idx == relo->insn_idx) 6297 return 0; 6298 return insn_idx < relo->insn_idx ? -1 : 1; 6299 } 6300 6301 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6302 { 6303 if (!prog->nr_reloc) 6304 return NULL; 6305 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6306 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6307 } 6308 6309 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6310 { 6311 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6312 struct reloc_desc *relos; 6313 int i; 6314 6315 if (main_prog == subprog) 6316 return 0; 6317 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6318 if (!relos) 6319 return -ENOMEM; 6320 if (subprog->nr_reloc) 6321 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6322 sizeof(*relos) * subprog->nr_reloc); 6323 6324 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6325 relos[i].insn_idx += subprog->sub_insn_off; 6326 /* After insn_idx adjustment the 'relos' array is still sorted 6327 * by insn_idx and doesn't break bsearch. 6328 */ 6329 main_prog->reloc_desc = relos; 6330 main_prog->nr_reloc = new_cnt; 6331 return 0; 6332 } 6333 6334 static int 6335 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6336 struct bpf_program *prog) 6337 { 6338 size_t sub_insn_idx, insn_idx, new_cnt; 6339 struct bpf_program *subprog; 6340 struct bpf_insn *insns, *insn; 6341 struct reloc_desc *relo; 6342 int err; 6343 6344 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6345 if (err) 6346 return err; 6347 6348 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6349 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6350 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6351 continue; 6352 6353 relo = find_prog_insn_relo(prog, insn_idx); 6354 if (relo && relo->type == RELO_EXTERN_FUNC) 6355 /* kfunc relocations will be handled later 6356 * in bpf_object__relocate_data() 6357 */ 6358 continue; 6359 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6360 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6361 prog->name, insn_idx, relo->type); 6362 return -LIBBPF_ERRNO__RELOC; 6363 } 6364 if (relo) { 6365 /* sub-program instruction index is a combination of 6366 * an offset of a symbol pointed to by relocation and 6367 * call instruction's imm field; for global functions, 6368 * call always has imm = -1, but for static functions 6369 * relocation is against STT_SECTION and insn->imm 6370 * points to a start of a static function 6371 * 6372 * for subprog addr relocation, the relo->sym_off + insn->imm is 6373 * the byte offset in the corresponding section. 6374 */ 6375 if (relo->type == RELO_CALL) 6376 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6377 else 6378 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6379 } else if (insn_is_pseudo_func(insn)) { 6380 /* 6381 * RELO_SUBPROG_ADDR relo is always emitted even if both 6382 * functions are in the same section, so it shouldn't reach here. 6383 */ 6384 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6385 prog->name, insn_idx); 6386 return -LIBBPF_ERRNO__RELOC; 6387 } else { 6388 /* if subprogram call is to a static function within 6389 * the same ELF section, there won't be any relocation 6390 * emitted, but it also means there is no additional 6391 * offset necessary, insns->imm is relative to 6392 * instruction's original position within the section 6393 */ 6394 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6395 } 6396 6397 /* we enforce that sub-programs should be in .text section */ 6398 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6399 if (!subprog) { 6400 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6401 prog->name); 6402 return -LIBBPF_ERRNO__RELOC; 6403 } 6404 6405 /* if it's the first call instruction calling into this 6406 * subprogram (meaning this subprog hasn't been processed 6407 * yet) within the context of current main program: 6408 * - append it at the end of main program's instructions blog; 6409 * - process is recursively, while current program is put on hold; 6410 * - if that subprogram calls some other not yet processes 6411 * subprogram, same thing will happen recursively until 6412 * there are no more unprocesses subprograms left to append 6413 * and relocate. 6414 */ 6415 if (subprog->sub_insn_off == 0) { 6416 subprog->sub_insn_off = main_prog->insns_cnt; 6417 6418 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6419 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6420 if (!insns) { 6421 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6422 return -ENOMEM; 6423 } 6424 main_prog->insns = insns; 6425 main_prog->insns_cnt = new_cnt; 6426 6427 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6428 subprog->insns_cnt * sizeof(*insns)); 6429 6430 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6431 main_prog->name, subprog->insns_cnt, subprog->name); 6432 6433 /* The subprog insns are now appended. Append its relos too. */ 6434 err = append_subprog_relos(main_prog, subprog); 6435 if (err) 6436 return err; 6437 err = bpf_object__reloc_code(obj, main_prog, subprog); 6438 if (err) 6439 return err; 6440 } 6441 6442 /* main_prog->insns memory could have been re-allocated, so 6443 * calculate pointer again 6444 */ 6445 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6446 /* calculate correct instruction position within current main 6447 * prog; each main prog can have a different set of 6448 * subprograms appended (potentially in different order as 6449 * well), so position of any subprog can be different for 6450 * different main programs */ 6451 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6452 6453 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6454 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6455 } 6456 6457 return 0; 6458 } 6459 6460 /* 6461 * Relocate sub-program calls. 6462 * 6463 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6464 * main prog) is processed separately. For each subprog (non-entry functions, 6465 * that can be called from either entry progs or other subprogs) gets their 6466 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6467 * hasn't been yet appended and relocated within current main prog. Once its 6468 * relocated, sub_insn_off will point at the position within current main prog 6469 * where given subprog was appended. This will further be used to relocate all 6470 * the call instructions jumping into this subprog. 6471 * 6472 * We start with main program and process all call instructions. If the call 6473 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6474 * is zero), subprog instructions are appended at the end of main program's 6475 * instruction array. Then main program is "put on hold" while we recursively 6476 * process newly appended subprogram. If that subprogram calls into another 6477 * subprogram that hasn't been appended, new subprogram is appended again to 6478 * the *main* prog's instructions (subprog's instructions are always left 6479 * untouched, as they need to be in unmodified state for subsequent main progs 6480 * and subprog instructions are always sent only as part of a main prog) and 6481 * the process continues recursively. Once all the subprogs called from a main 6482 * prog or any of its subprogs are appended (and relocated), all their 6483 * positions within finalized instructions array are known, so it's easy to 6484 * rewrite call instructions with correct relative offsets, corresponding to 6485 * desired target subprog. 6486 * 6487 * Its important to realize that some subprogs might not be called from some 6488 * main prog and any of its called/used subprogs. Those will keep their 6489 * subprog->sub_insn_off as zero at all times and won't be appended to current 6490 * main prog and won't be relocated within the context of current main prog. 6491 * They might still be used from other main progs later. 6492 * 6493 * Visually this process can be shown as below. Suppose we have two main 6494 * programs mainA and mainB and BPF object contains three subprogs: subA, 6495 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6496 * subC both call subB: 6497 * 6498 * +--------+ +-------+ 6499 * | v v | 6500 * +--+---+ +--+-+-+ +---+--+ 6501 * | subA | | subB | | subC | 6502 * +--+---+ +------+ +---+--+ 6503 * ^ ^ 6504 * | | 6505 * +---+-------+ +------+----+ 6506 * | mainA | | mainB | 6507 * +-----------+ +-----------+ 6508 * 6509 * We'll start relocating mainA, will find subA, append it and start 6510 * processing sub A recursively: 6511 * 6512 * +-----------+------+ 6513 * | mainA | subA | 6514 * +-----------+------+ 6515 * 6516 * At this point we notice that subB is used from subA, so we append it and 6517 * relocate (there are no further subcalls from subB): 6518 * 6519 * +-----------+------+------+ 6520 * | mainA | subA | subB | 6521 * +-----------+------+------+ 6522 * 6523 * At this point, we relocate subA calls, then go one level up and finish with 6524 * relocatin mainA calls. mainA is done. 6525 * 6526 * For mainB process is similar but results in different order. We start with 6527 * mainB and skip subA and subB, as mainB never calls them (at least 6528 * directly), but we see subC is needed, so we append and start processing it: 6529 * 6530 * +-----------+------+ 6531 * | mainB | subC | 6532 * +-----------+------+ 6533 * Now we see subC needs subB, so we go back to it, append and relocate it: 6534 * 6535 * +-----------+------+------+ 6536 * | mainB | subC | subB | 6537 * +-----------+------+------+ 6538 * 6539 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6540 */ 6541 static int 6542 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6543 { 6544 struct bpf_program *subprog; 6545 int i, err; 6546 6547 /* mark all subprogs as not relocated (yet) within the context of 6548 * current main program 6549 */ 6550 for (i = 0; i < obj->nr_programs; i++) { 6551 subprog = &obj->programs[i]; 6552 if (!prog_is_subprog(obj, subprog)) 6553 continue; 6554 6555 subprog->sub_insn_off = 0; 6556 } 6557 6558 err = bpf_object__reloc_code(obj, prog, prog); 6559 if (err) 6560 return err; 6561 6562 return 0; 6563 } 6564 6565 static void 6566 bpf_object__free_relocs(struct bpf_object *obj) 6567 { 6568 struct bpf_program *prog; 6569 int i; 6570 6571 /* free up relocation descriptors */ 6572 for (i = 0; i < obj->nr_programs; i++) { 6573 prog = &obj->programs[i]; 6574 zfree(&prog->reloc_desc); 6575 prog->nr_reloc = 0; 6576 } 6577 } 6578 6579 static int cmp_relocs(const void *_a, const void *_b) 6580 { 6581 const struct reloc_desc *a = _a; 6582 const struct reloc_desc *b = _b; 6583 6584 if (a->insn_idx != b->insn_idx) 6585 return a->insn_idx < b->insn_idx ? -1 : 1; 6586 6587 /* no two relocations should have the same insn_idx, but ... */ 6588 if (a->type != b->type) 6589 return a->type < b->type ? -1 : 1; 6590 6591 return 0; 6592 } 6593 6594 static void bpf_object__sort_relos(struct bpf_object *obj) 6595 { 6596 int i; 6597 6598 for (i = 0; i < obj->nr_programs; i++) { 6599 struct bpf_program *p = &obj->programs[i]; 6600 6601 if (!p->nr_reloc) 6602 continue; 6603 6604 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6605 } 6606 } 6607 6608 static int 6609 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6610 { 6611 struct bpf_program *prog; 6612 size_t i, j; 6613 int err; 6614 6615 if (obj->btf_ext) { 6616 err = bpf_object__relocate_core(obj, targ_btf_path); 6617 if (err) { 6618 pr_warn("failed to perform CO-RE relocations: %d\n", 6619 err); 6620 return err; 6621 } 6622 bpf_object__sort_relos(obj); 6623 } 6624 6625 /* Before relocating calls pre-process relocations and mark 6626 * few ld_imm64 instructions that points to subprogs. 6627 * Otherwise bpf_object__reloc_code() later would have to consider 6628 * all ld_imm64 insns as relocation candidates. That would 6629 * reduce relocation speed, since amount of find_prog_insn_relo() 6630 * would increase and most of them will fail to find a relo. 6631 */ 6632 for (i = 0; i < obj->nr_programs; i++) { 6633 prog = &obj->programs[i]; 6634 for (j = 0; j < prog->nr_reloc; j++) { 6635 struct reloc_desc *relo = &prog->reloc_desc[j]; 6636 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6637 6638 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6639 if (relo->type == RELO_SUBPROG_ADDR) 6640 insn[0].src_reg = BPF_PSEUDO_FUNC; 6641 } 6642 } 6643 6644 /* relocate subprogram calls and append used subprograms to main 6645 * programs; each copy of subprogram code needs to be relocated 6646 * differently for each main program, because its code location might 6647 * have changed. 6648 * Append subprog relos to main programs to allow data relos to be 6649 * processed after text is completely relocated. 6650 */ 6651 for (i = 0; i < obj->nr_programs; i++) { 6652 prog = &obj->programs[i]; 6653 /* sub-program's sub-calls are relocated within the context of 6654 * its main program only 6655 */ 6656 if (prog_is_subprog(obj, prog)) 6657 continue; 6658 if (!prog->autoload) 6659 continue; 6660 6661 err = bpf_object__relocate_calls(obj, prog); 6662 if (err) { 6663 pr_warn("prog '%s': failed to relocate calls: %d\n", 6664 prog->name, err); 6665 return err; 6666 } 6667 } 6668 /* Process data relos for main programs */ 6669 for (i = 0; i < obj->nr_programs; i++) { 6670 prog = &obj->programs[i]; 6671 if (prog_is_subprog(obj, prog)) 6672 continue; 6673 if (!prog->autoload) 6674 continue; 6675 err = bpf_object__relocate_data(obj, prog); 6676 if (err) { 6677 pr_warn("prog '%s': failed to relocate data references: %d\n", 6678 prog->name, err); 6679 return err; 6680 } 6681 } 6682 6683 return 0; 6684 } 6685 6686 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6687 Elf64_Shdr *shdr, Elf_Data *data); 6688 6689 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6690 Elf64_Shdr *shdr, Elf_Data *data) 6691 { 6692 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6693 int i, j, nrels, new_sz; 6694 const struct btf_var_secinfo *vi = NULL; 6695 const struct btf_type *sec, *var, *def; 6696 struct bpf_map *map = NULL, *targ_map = NULL; 6697 struct bpf_program *targ_prog = NULL; 6698 bool is_prog_array, is_map_in_map; 6699 const struct btf_member *member; 6700 const char *name, *mname, *type; 6701 unsigned int moff; 6702 Elf64_Sym *sym; 6703 Elf64_Rel *rel; 6704 void *tmp; 6705 6706 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6707 return -EINVAL; 6708 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6709 if (!sec) 6710 return -EINVAL; 6711 6712 nrels = shdr->sh_size / shdr->sh_entsize; 6713 for (i = 0; i < nrels; i++) { 6714 rel = elf_rel_by_idx(data, i); 6715 if (!rel) { 6716 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6717 return -LIBBPF_ERRNO__FORMAT; 6718 } 6719 6720 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6721 if (!sym) { 6722 pr_warn(".maps relo #%d: symbol %zx not found\n", 6723 i, (size_t)ELF64_R_SYM(rel->r_info)); 6724 return -LIBBPF_ERRNO__FORMAT; 6725 } 6726 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6727 6728 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6729 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6730 (size_t)rel->r_offset, sym->st_name, name); 6731 6732 for (j = 0; j < obj->nr_maps; j++) { 6733 map = &obj->maps[j]; 6734 if (map->sec_idx != obj->efile.btf_maps_shndx) 6735 continue; 6736 6737 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6738 if (vi->offset <= rel->r_offset && 6739 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6740 break; 6741 } 6742 if (j == obj->nr_maps) { 6743 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6744 i, name, (size_t)rel->r_offset); 6745 return -EINVAL; 6746 } 6747 6748 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6749 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6750 type = is_map_in_map ? "map" : "prog"; 6751 if (is_map_in_map) { 6752 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6753 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6754 i, name); 6755 return -LIBBPF_ERRNO__RELOC; 6756 } 6757 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6758 map->def.key_size != sizeof(int)) { 6759 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6760 i, map->name, sizeof(int)); 6761 return -EINVAL; 6762 } 6763 targ_map = bpf_object__find_map_by_name(obj, name); 6764 if (!targ_map) { 6765 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6766 i, name); 6767 return -ESRCH; 6768 } 6769 } else if (is_prog_array) { 6770 targ_prog = bpf_object__find_program_by_name(obj, name); 6771 if (!targ_prog) { 6772 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6773 i, name); 6774 return -ESRCH; 6775 } 6776 if (targ_prog->sec_idx != sym->st_shndx || 6777 targ_prog->sec_insn_off * 8 != sym->st_value || 6778 prog_is_subprog(obj, targ_prog)) { 6779 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6780 i, name); 6781 return -LIBBPF_ERRNO__RELOC; 6782 } 6783 } else { 6784 return -EINVAL; 6785 } 6786 6787 var = btf__type_by_id(obj->btf, vi->type); 6788 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6789 if (btf_vlen(def) == 0) 6790 return -EINVAL; 6791 member = btf_members(def) + btf_vlen(def) - 1; 6792 mname = btf__name_by_offset(obj->btf, member->name_off); 6793 if (strcmp(mname, "values")) 6794 return -EINVAL; 6795 6796 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6797 if (rel->r_offset - vi->offset < moff) 6798 return -EINVAL; 6799 6800 moff = rel->r_offset - vi->offset - moff; 6801 /* here we use BPF pointer size, which is always 64 bit, as we 6802 * are parsing ELF that was built for BPF target 6803 */ 6804 if (moff % bpf_ptr_sz) 6805 return -EINVAL; 6806 moff /= bpf_ptr_sz; 6807 if (moff >= map->init_slots_sz) { 6808 new_sz = moff + 1; 6809 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6810 if (!tmp) 6811 return -ENOMEM; 6812 map->init_slots = tmp; 6813 memset(map->init_slots + map->init_slots_sz, 0, 6814 (new_sz - map->init_slots_sz) * host_ptr_sz); 6815 map->init_slots_sz = new_sz; 6816 } 6817 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6818 6819 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6820 i, map->name, moff, type, name); 6821 } 6822 6823 return 0; 6824 } 6825 6826 static int bpf_object__collect_relos(struct bpf_object *obj) 6827 { 6828 int i, err; 6829 6830 for (i = 0; i < obj->efile.sec_cnt; i++) { 6831 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6832 Elf64_Shdr *shdr; 6833 Elf_Data *data; 6834 int idx; 6835 6836 if (sec_desc->sec_type != SEC_RELO) 6837 continue; 6838 6839 shdr = sec_desc->shdr; 6840 data = sec_desc->data; 6841 idx = shdr->sh_info; 6842 6843 if (shdr->sh_type != SHT_REL) { 6844 pr_warn("internal error at %d\n", __LINE__); 6845 return -LIBBPF_ERRNO__INTERNAL; 6846 } 6847 6848 if (idx == obj->efile.st_ops_shndx) 6849 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6850 else if (idx == obj->efile.btf_maps_shndx) 6851 err = bpf_object__collect_map_relos(obj, shdr, data); 6852 else 6853 err = bpf_object__collect_prog_relos(obj, shdr, data); 6854 if (err) 6855 return err; 6856 } 6857 6858 bpf_object__sort_relos(obj); 6859 return 0; 6860 } 6861 6862 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6863 { 6864 if (BPF_CLASS(insn->code) == BPF_JMP && 6865 BPF_OP(insn->code) == BPF_CALL && 6866 BPF_SRC(insn->code) == BPF_K && 6867 insn->src_reg == 0 && 6868 insn->dst_reg == 0) { 6869 *func_id = insn->imm; 6870 return true; 6871 } 6872 return false; 6873 } 6874 6875 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6876 { 6877 struct bpf_insn *insn = prog->insns; 6878 enum bpf_func_id func_id; 6879 int i; 6880 6881 if (obj->gen_loader) 6882 return 0; 6883 6884 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6885 if (!insn_is_helper_call(insn, &func_id)) 6886 continue; 6887 6888 /* on kernels that don't yet support 6889 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6890 * to bpf_probe_read() which works well for old kernels 6891 */ 6892 switch (func_id) { 6893 case BPF_FUNC_probe_read_kernel: 6894 case BPF_FUNC_probe_read_user: 6895 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6896 insn->imm = BPF_FUNC_probe_read; 6897 break; 6898 case BPF_FUNC_probe_read_kernel_str: 6899 case BPF_FUNC_probe_read_user_str: 6900 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6901 insn->imm = BPF_FUNC_probe_read_str; 6902 break; 6903 default: 6904 break; 6905 } 6906 } 6907 return 0; 6908 } 6909 6910 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6911 int *btf_obj_fd, int *btf_type_id); 6912 6913 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6914 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6915 struct bpf_prog_load_opts *opts, long cookie) 6916 { 6917 enum sec_def_flags def = cookie; 6918 6919 /* old kernels might not support specifying expected_attach_type */ 6920 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6921 opts->expected_attach_type = 0; 6922 6923 if (def & SEC_SLEEPABLE) 6924 opts->prog_flags |= BPF_F_SLEEPABLE; 6925 6926 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6927 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6928 6929 if (def & SEC_DEPRECATED) { 6930 pr_warn("SEC(\"%s\") is deprecated, please see https://github.com/libbpf/libbpf/wiki/Libbpf-1.0-migration-guide#bpf-program-sec-annotation-deprecations for details\n", 6931 prog->sec_name); 6932 } 6933 6934 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6935 int btf_obj_fd = 0, btf_type_id = 0, err; 6936 const char *attach_name; 6937 6938 attach_name = strchr(prog->sec_name, '/'); 6939 if (!attach_name) { 6940 /* if BPF program is annotated with just SEC("fentry") 6941 * (or similar) without declaratively specifying 6942 * target, then it is expected that target will be 6943 * specified with bpf_program__set_attach_target() at 6944 * runtime before BPF object load step. If not, then 6945 * there is nothing to load into the kernel as BPF 6946 * verifier won't be able to validate BPF program 6947 * correctness anyways. 6948 */ 6949 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6950 prog->name); 6951 return -EINVAL; 6952 } 6953 attach_name++; /* skip over / */ 6954 6955 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6956 if (err) 6957 return err; 6958 6959 /* cache resolved BTF FD and BTF type ID in the prog */ 6960 prog->attach_btf_obj_fd = btf_obj_fd; 6961 prog->attach_btf_id = btf_type_id; 6962 6963 /* but by now libbpf common logic is not utilizing 6964 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6965 * this callback is called after opts were populated by 6966 * libbpf, so this callback has to update opts explicitly here 6967 */ 6968 opts->attach_btf_obj_fd = btf_obj_fd; 6969 opts->attach_btf_id = btf_type_id; 6970 } 6971 return 0; 6972 } 6973 6974 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6975 6976 static int bpf_object_load_prog_instance(struct bpf_object *obj, struct bpf_program *prog, 6977 struct bpf_insn *insns, int insns_cnt, 6978 const char *license, __u32 kern_version, 6979 int *prog_fd) 6980 { 6981 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6982 const char *prog_name = NULL; 6983 char *cp, errmsg[STRERR_BUFSIZE]; 6984 size_t log_buf_size = 0; 6985 char *log_buf = NULL, *tmp; 6986 int btf_fd, ret, err; 6987 bool own_log_buf = true; 6988 __u32 log_level = prog->log_level; 6989 6990 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6991 /* 6992 * The program type must be set. Most likely we couldn't find a proper 6993 * section definition at load time, and thus we didn't infer the type. 6994 */ 6995 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6996 prog->name, prog->sec_name); 6997 return -EINVAL; 6998 } 6999 7000 if (!insns || !insns_cnt) 7001 return -EINVAL; 7002 7003 load_attr.expected_attach_type = prog->expected_attach_type; 7004 if (kernel_supports(obj, FEAT_PROG_NAME)) 7005 prog_name = prog->name; 7006 load_attr.attach_prog_fd = prog->attach_prog_fd; 7007 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7008 load_attr.attach_btf_id = prog->attach_btf_id; 7009 load_attr.kern_version = kern_version; 7010 load_attr.prog_ifindex = prog->prog_ifindex; 7011 7012 /* specify func_info/line_info only if kernel supports them */ 7013 btf_fd = bpf_object__btf_fd(obj); 7014 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7015 load_attr.prog_btf_fd = btf_fd; 7016 load_attr.func_info = prog->func_info; 7017 load_attr.func_info_rec_size = prog->func_info_rec_size; 7018 load_attr.func_info_cnt = prog->func_info_cnt; 7019 load_attr.line_info = prog->line_info; 7020 load_attr.line_info_rec_size = prog->line_info_rec_size; 7021 load_attr.line_info_cnt = prog->line_info_cnt; 7022 } 7023 load_attr.log_level = log_level; 7024 load_attr.prog_flags = prog->prog_flags; 7025 load_attr.fd_array = obj->fd_array; 7026 7027 /* adjust load_attr if sec_def provides custom preload callback */ 7028 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7029 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7030 if (err < 0) { 7031 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7032 prog->name, err); 7033 return err; 7034 } 7035 insns = prog->insns; 7036 insns_cnt = prog->insns_cnt; 7037 } 7038 7039 if (obj->gen_loader) { 7040 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7041 license, insns, insns_cnt, &load_attr, 7042 prog - obj->programs); 7043 *prog_fd = -1; 7044 return 0; 7045 } 7046 7047 retry_load: 7048 /* if log_level is zero, we don't request logs initially even if 7049 * custom log_buf is specified; if the program load fails, then we'll 7050 * bump log_level to 1 and use either custom log_buf or we'll allocate 7051 * our own and retry the load to get details on what failed 7052 */ 7053 if (log_level) { 7054 if (prog->log_buf) { 7055 log_buf = prog->log_buf; 7056 log_buf_size = prog->log_size; 7057 own_log_buf = false; 7058 } else if (obj->log_buf) { 7059 log_buf = obj->log_buf; 7060 log_buf_size = obj->log_size; 7061 own_log_buf = false; 7062 } else { 7063 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7064 tmp = realloc(log_buf, log_buf_size); 7065 if (!tmp) { 7066 ret = -ENOMEM; 7067 goto out; 7068 } 7069 log_buf = tmp; 7070 log_buf[0] = '\0'; 7071 own_log_buf = true; 7072 } 7073 } 7074 7075 load_attr.log_buf = log_buf; 7076 load_attr.log_size = log_buf_size; 7077 load_attr.log_level = log_level; 7078 7079 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7080 if (ret >= 0) { 7081 if (log_level && own_log_buf) { 7082 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7083 prog->name, log_buf); 7084 } 7085 7086 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7087 struct bpf_map *map; 7088 int i; 7089 7090 for (i = 0; i < obj->nr_maps; i++) { 7091 map = &prog->obj->maps[i]; 7092 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7093 continue; 7094 7095 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 7096 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7097 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7098 prog->name, map->real_name, cp); 7099 /* Don't fail hard if can't bind rodata. */ 7100 } 7101 } 7102 } 7103 7104 *prog_fd = ret; 7105 ret = 0; 7106 goto out; 7107 } 7108 7109 if (log_level == 0) { 7110 log_level = 1; 7111 goto retry_load; 7112 } 7113 /* On ENOSPC, increase log buffer size and retry, unless custom 7114 * log_buf is specified. 7115 * Be careful to not overflow u32, though. Kernel's log buf size limit 7116 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7117 * multiply by 2 unless we are sure we'll fit within 32 bits. 7118 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7119 */ 7120 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7121 goto retry_load; 7122 7123 ret = -errno; 7124 7125 /* post-process verifier log to improve error descriptions */ 7126 fixup_verifier_log(prog, log_buf, log_buf_size); 7127 7128 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7129 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7130 pr_perm_msg(ret); 7131 7132 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7133 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7134 prog->name, log_buf); 7135 } 7136 7137 out: 7138 if (own_log_buf) 7139 free(log_buf); 7140 return ret; 7141 } 7142 7143 static char *find_prev_line(char *buf, char *cur) 7144 { 7145 char *p; 7146 7147 if (cur == buf) /* end of a log buf */ 7148 return NULL; 7149 7150 p = cur - 1; 7151 while (p - 1 >= buf && *(p - 1) != '\n') 7152 p--; 7153 7154 return p; 7155 } 7156 7157 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7158 char *orig, size_t orig_sz, const char *patch) 7159 { 7160 /* size of the remaining log content to the right from the to-be-replaced part */ 7161 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7162 size_t patch_sz = strlen(patch); 7163 7164 if (patch_sz != orig_sz) { 7165 /* If patch line(s) are longer than original piece of verifier log, 7166 * shift log contents by (patch_sz - orig_sz) bytes to the right 7167 * starting from after to-be-replaced part of the log. 7168 * 7169 * If patch line(s) are shorter than original piece of verifier log, 7170 * shift log contents by (orig_sz - patch_sz) bytes to the left 7171 * starting from after to-be-replaced part of the log 7172 * 7173 * We need to be careful about not overflowing available 7174 * buf_sz capacity. If that's the case, we'll truncate the end 7175 * of the original log, as necessary. 7176 */ 7177 if (patch_sz > orig_sz) { 7178 if (orig + patch_sz >= buf + buf_sz) { 7179 /* patch is big enough to cover remaining space completely */ 7180 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7181 rem_sz = 0; 7182 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7183 /* patch causes part of remaining log to be truncated */ 7184 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7185 } 7186 } 7187 /* shift remaining log to the right by calculated amount */ 7188 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7189 } 7190 7191 memcpy(orig, patch, patch_sz); 7192 } 7193 7194 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7195 char *buf, size_t buf_sz, size_t log_sz, 7196 char *line1, char *line2, char *line3) 7197 { 7198 /* Expected log for failed and not properly guarded CO-RE relocation: 7199 * line1 -> 123: (85) call unknown#195896080 7200 * line2 -> invalid func unknown#195896080 7201 * line3 -> <anything else or end of buffer> 7202 * 7203 * "123" is the index of the instruction that was poisoned. We extract 7204 * instruction index to find corresponding CO-RE relocation and 7205 * replace this part of the log with more relevant information about 7206 * failed CO-RE relocation. 7207 */ 7208 const struct bpf_core_relo *relo; 7209 struct bpf_core_spec spec; 7210 char patch[512], spec_buf[256]; 7211 int insn_idx, err, spec_len; 7212 7213 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7214 return; 7215 7216 relo = find_relo_core(prog, insn_idx); 7217 if (!relo) 7218 return; 7219 7220 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7221 if (err) 7222 return; 7223 7224 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7225 snprintf(patch, sizeof(patch), 7226 "%d: <invalid CO-RE relocation>\n" 7227 "failed to resolve CO-RE relocation %s%s\n", 7228 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7229 7230 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7231 } 7232 7233 static void fixup_log_missing_map_load(struct bpf_program *prog, 7234 char *buf, size_t buf_sz, size_t log_sz, 7235 char *line1, char *line2, char *line3) 7236 { 7237 /* Expected log for failed and not properly guarded CO-RE relocation: 7238 * line1 -> 123: (85) call unknown#2001000345 7239 * line2 -> invalid func unknown#2001000345 7240 * line3 -> <anything else or end of buffer> 7241 * 7242 * "123" is the index of the instruction that was poisoned. 7243 * "345" in "2001000345" are map index in obj->maps to fetch map name. 7244 */ 7245 struct bpf_object *obj = prog->obj; 7246 const struct bpf_map *map; 7247 int insn_idx, map_idx; 7248 char patch[128]; 7249 7250 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7251 return; 7252 7253 map_idx -= MAP_LDIMM64_POISON_BASE; 7254 if (map_idx < 0 || map_idx >= obj->nr_maps) 7255 return; 7256 map = &obj->maps[map_idx]; 7257 7258 snprintf(patch, sizeof(patch), 7259 "%d: <invalid BPF map reference>\n" 7260 "BPF map '%s' is referenced but wasn't created\n", 7261 insn_idx, map->name); 7262 7263 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7264 } 7265 7266 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7267 { 7268 /* look for familiar error patterns in last N lines of the log */ 7269 const size_t max_last_line_cnt = 10; 7270 char *prev_line, *cur_line, *next_line; 7271 size_t log_sz; 7272 int i; 7273 7274 if (!buf) 7275 return; 7276 7277 log_sz = strlen(buf) + 1; 7278 next_line = buf + log_sz - 1; 7279 7280 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7281 cur_line = find_prev_line(buf, next_line); 7282 if (!cur_line) 7283 return; 7284 7285 /* failed CO-RE relocation case */ 7286 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7287 prev_line = find_prev_line(buf, cur_line); 7288 if (!prev_line) 7289 continue; 7290 7291 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7292 prev_line, cur_line, next_line); 7293 return; 7294 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7295 prev_line = find_prev_line(buf, cur_line); 7296 if (!prev_line) 7297 continue; 7298 7299 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7300 prev_line, cur_line, next_line); 7301 return; 7302 } 7303 } 7304 } 7305 7306 static int bpf_program_record_relos(struct bpf_program *prog) 7307 { 7308 struct bpf_object *obj = prog->obj; 7309 int i; 7310 7311 for (i = 0; i < prog->nr_reloc; i++) { 7312 struct reloc_desc *relo = &prog->reloc_desc[i]; 7313 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7314 7315 switch (relo->type) { 7316 case RELO_EXTERN_VAR: 7317 if (ext->type != EXT_KSYM) 7318 continue; 7319 bpf_gen__record_extern(obj->gen_loader, ext->name, 7320 ext->is_weak, !ext->ksym.type_id, 7321 BTF_KIND_VAR, relo->insn_idx); 7322 break; 7323 case RELO_EXTERN_FUNC: 7324 bpf_gen__record_extern(obj->gen_loader, ext->name, 7325 ext->is_weak, false, BTF_KIND_FUNC, 7326 relo->insn_idx); 7327 break; 7328 case RELO_CORE: { 7329 struct bpf_core_relo cr = { 7330 .insn_off = relo->insn_idx * 8, 7331 .type_id = relo->core_relo->type_id, 7332 .access_str_off = relo->core_relo->access_str_off, 7333 .kind = relo->core_relo->kind, 7334 }; 7335 7336 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7337 break; 7338 } 7339 default: 7340 continue; 7341 } 7342 } 7343 return 0; 7344 } 7345 7346 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7347 const char *license, __u32 kern_ver) 7348 { 7349 int err = 0, fd, i; 7350 7351 if (obj->loaded) { 7352 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7353 return libbpf_err(-EINVAL); 7354 } 7355 7356 if (prog->instances.nr < 0 || !prog->instances.fds) { 7357 if (prog->preprocessor) { 7358 pr_warn("Internal error: can't load program '%s'\n", 7359 prog->name); 7360 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 7361 } 7362 7363 prog->instances.fds = malloc(sizeof(int)); 7364 if (!prog->instances.fds) { 7365 pr_warn("Not enough memory for BPF fds\n"); 7366 return libbpf_err(-ENOMEM); 7367 } 7368 prog->instances.nr = 1; 7369 prog->instances.fds[0] = -1; 7370 } 7371 7372 if (!prog->preprocessor) { 7373 if (prog->instances.nr != 1) { 7374 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7375 prog->name, prog->instances.nr); 7376 } 7377 if (obj->gen_loader) 7378 bpf_program_record_relos(prog); 7379 err = bpf_object_load_prog_instance(obj, prog, 7380 prog->insns, prog->insns_cnt, 7381 license, kern_ver, &fd); 7382 if (!err) 7383 prog->instances.fds[0] = fd; 7384 goto out; 7385 } 7386 7387 for (i = 0; i < prog->instances.nr; i++) { 7388 struct bpf_prog_prep_result result; 7389 bpf_program_prep_t preprocessor = prog->preprocessor; 7390 7391 memset(&result, 0, sizeof(result)); 7392 err = preprocessor(prog, i, prog->insns, 7393 prog->insns_cnt, &result); 7394 if (err) { 7395 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7396 i, prog->name); 7397 goto out; 7398 } 7399 7400 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7401 pr_debug("Skip loading the %dth instance of program '%s'\n", 7402 i, prog->name); 7403 prog->instances.fds[i] = -1; 7404 if (result.pfd) 7405 *result.pfd = -1; 7406 continue; 7407 } 7408 7409 err = bpf_object_load_prog_instance(obj, prog, 7410 result.new_insn_ptr, result.new_insn_cnt, 7411 license, kern_ver, &fd); 7412 if (err) { 7413 pr_warn("Loading the %dth instance of program '%s' failed\n", 7414 i, prog->name); 7415 goto out; 7416 } 7417 7418 if (result.pfd) 7419 *result.pfd = fd; 7420 prog->instances.fds[i] = fd; 7421 } 7422 out: 7423 if (err) 7424 pr_warn("failed to load program '%s'\n", prog->name); 7425 return libbpf_err(err); 7426 } 7427 7428 int bpf_program__load(struct bpf_program *prog, const char *license, __u32 kern_ver) 7429 { 7430 return bpf_object_load_prog(prog->obj, prog, license, kern_ver); 7431 } 7432 7433 static int 7434 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7435 { 7436 struct bpf_program *prog; 7437 size_t i; 7438 int err; 7439 7440 for (i = 0; i < obj->nr_programs; i++) { 7441 prog = &obj->programs[i]; 7442 err = bpf_object__sanitize_prog(obj, prog); 7443 if (err) 7444 return err; 7445 } 7446 7447 for (i = 0; i < obj->nr_programs; i++) { 7448 prog = &obj->programs[i]; 7449 if (prog_is_subprog(obj, prog)) 7450 continue; 7451 if (!prog->autoload) { 7452 pr_debug("prog '%s': skipped loading\n", prog->name); 7453 continue; 7454 } 7455 prog->log_level |= log_level; 7456 err = bpf_object_load_prog(obj, prog, obj->license, obj->kern_version); 7457 if (err) 7458 return err; 7459 } 7460 7461 bpf_object__free_relocs(obj); 7462 return 0; 7463 } 7464 7465 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7466 7467 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7468 { 7469 struct bpf_program *prog; 7470 int err; 7471 7472 bpf_object__for_each_program(prog, obj) { 7473 prog->sec_def = find_sec_def(prog->sec_name); 7474 if (!prog->sec_def) { 7475 /* couldn't guess, but user might manually specify */ 7476 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7477 prog->name, prog->sec_name); 7478 continue; 7479 } 7480 7481 prog->type = prog->sec_def->prog_type; 7482 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7483 7484 #pragma GCC diagnostic push 7485 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 7486 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7487 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7488 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7489 #pragma GCC diagnostic pop 7490 7491 /* sec_def can have custom callback which should be called 7492 * after bpf_program is initialized to adjust its properties 7493 */ 7494 if (prog->sec_def->prog_setup_fn) { 7495 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7496 if (err < 0) { 7497 pr_warn("prog '%s': failed to initialize: %d\n", 7498 prog->name, err); 7499 return err; 7500 } 7501 } 7502 } 7503 7504 return 0; 7505 } 7506 7507 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7508 const struct bpf_object_open_opts *opts) 7509 { 7510 const char *obj_name, *kconfig, *btf_tmp_path; 7511 struct bpf_object *obj; 7512 char tmp_name[64]; 7513 int err; 7514 char *log_buf; 7515 size_t log_size; 7516 __u32 log_level; 7517 7518 if (elf_version(EV_CURRENT) == EV_NONE) { 7519 pr_warn("failed to init libelf for %s\n", 7520 path ? : "(mem buf)"); 7521 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7522 } 7523 7524 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7525 return ERR_PTR(-EINVAL); 7526 7527 obj_name = OPTS_GET(opts, object_name, NULL); 7528 if (obj_buf) { 7529 if (!obj_name) { 7530 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7531 (unsigned long)obj_buf, 7532 (unsigned long)obj_buf_sz); 7533 obj_name = tmp_name; 7534 } 7535 path = obj_name; 7536 pr_debug("loading object '%s' from buffer\n", obj_name); 7537 } 7538 7539 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7540 log_size = OPTS_GET(opts, kernel_log_size, 0); 7541 log_level = OPTS_GET(opts, kernel_log_level, 0); 7542 if (log_size > UINT_MAX) 7543 return ERR_PTR(-EINVAL); 7544 if (log_size && !log_buf) 7545 return ERR_PTR(-EINVAL); 7546 7547 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7548 if (IS_ERR(obj)) 7549 return obj; 7550 7551 obj->log_buf = log_buf; 7552 obj->log_size = log_size; 7553 obj->log_level = log_level; 7554 7555 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7556 if (btf_tmp_path) { 7557 if (strlen(btf_tmp_path) >= PATH_MAX) { 7558 err = -ENAMETOOLONG; 7559 goto out; 7560 } 7561 obj->btf_custom_path = strdup(btf_tmp_path); 7562 if (!obj->btf_custom_path) { 7563 err = -ENOMEM; 7564 goto out; 7565 } 7566 } 7567 7568 kconfig = OPTS_GET(opts, kconfig, NULL); 7569 if (kconfig) { 7570 obj->kconfig = strdup(kconfig); 7571 if (!obj->kconfig) { 7572 err = -ENOMEM; 7573 goto out; 7574 } 7575 } 7576 7577 err = bpf_object__elf_init(obj); 7578 err = err ? : bpf_object__check_endianness(obj); 7579 err = err ? : bpf_object__elf_collect(obj); 7580 err = err ? : bpf_object__collect_externs(obj); 7581 err = err ? : bpf_object__finalize_btf(obj); 7582 err = err ? : bpf_object__init_maps(obj, opts); 7583 err = err ? : bpf_object_init_progs(obj, opts); 7584 err = err ? : bpf_object__collect_relos(obj); 7585 if (err) 7586 goto out; 7587 7588 bpf_object__elf_finish(obj); 7589 7590 return obj; 7591 out: 7592 bpf_object__close(obj); 7593 return ERR_PTR(err); 7594 } 7595 7596 static struct bpf_object * 7597 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7598 { 7599 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7600 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7601 ); 7602 7603 /* param validation */ 7604 if (!attr->file) 7605 return NULL; 7606 7607 pr_debug("loading %s\n", attr->file); 7608 return bpf_object_open(attr->file, NULL, 0, &opts); 7609 } 7610 7611 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7612 { 7613 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 7614 } 7615 7616 struct bpf_object *bpf_object__open(const char *path) 7617 { 7618 struct bpf_object_open_attr attr = { 7619 .file = path, 7620 .prog_type = BPF_PROG_TYPE_UNSPEC, 7621 }; 7622 7623 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 7624 } 7625 7626 struct bpf_object * 7627 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7628 { 7629 if (!path) 7630 return libbpf_err_ptr(-EINVAL); 7631 7632 pr_debug("loading %s\n", path); 7633 7634 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7635 } 7636 7637 struct bpf_object * 7638 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7639 const struct bpf_object_open_opts *opts) 7640 { 7641 if (!obj_buf || obj_buf_sz == 0) 7642 return libbpf_err_ptr(-EINVAL); 7643 7644 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7645 } 7646 7647 struct bpf_object * 7648 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7649 const char *name) 7650 { 7651 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7652 .object_name = name, 7653 /* wrong default, but backwards-compatible */ 7654 .relaxed_maps = true, 7655 ); 7656 7657 /* returning NULL is wrong, but backwards-compatible */ 7658 if (!obj_buf || obj_buf_sz == 0) 7659 return errno = EINVAL, NULL; 7660 7661 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, &opts)); 7662 } 7663 7664 static int bpf_object_unload(struct bpf_object *obj) 7665 { 7666 size_t i; 7667 7668 if (!obj) 7669 return libbpf_err(-EINVAL); 7670 7671 for (i = 0; i < obj->nr_maps; i++) { 7672 zclose(obj->maps[i].fd); 7673 if (obj->maps[i].st_ops) 7674 zfree(&obj->maps[i].st_ops->kern_vdata); 7675 } 7676 7677 for (i = 0; i < obj->nr_programs; i++) 7678 bpf_program__unload(&obj->programs[i]); 7679 7680 return 0; 7681 } 7682 7683 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 7684 7685 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7686 { 7687 struct bpf_map *m; 7688 7689 bpf_object__for_each_map(m, obj) { 7690 if (!bpf_map__is_internal(m)) 7691 continue; 7692 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7693 m->def.map_flags ^= BPF_F_MMAPABLE; 7694 } 7695 7696 return 0; 7697 } 7698 7699 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7700 { 7701 char sym_type, sym_name[500]; 7702 unsigned long long sym_addr; 7703 int ret, err = 0; 7704 FILE *f; 7705 7706 f = fopen("/proc/kallsyms", "r"); 7707 if (!f) { 7708 err = -errno; 7709 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7710 return err; 7711 } 7712 7713 while (true) { 7714 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7715 &sym_addr, &sym_type, sym_name); 7716 if (ret == EOF && feof(f)) 7717 break; 7718 if (ret != 3) { 7719 pr_warn("failed to read kallsyms entry: %d\n", ret); 7720 err = -EINVAL; 7721 break; 7722 } 7723 7724 err = cb(sym_addr, sym_type, sym_name, ctx); 7725 if (err) 7726 break; 7727 } 7728 7729 fclose(f); 7730 return err; 7731 } 7732 7733 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7734 const char *sym_name, void *ctx) 7735 { 7736 struct bpf_object *obj = ctx; 7737 const struct btf_type *t; 7738 struct extern_desc *ext; 7739 7740 ext = find_extern_by_name(obj, sym_name); 7741 if (!ext || ext->type != EXT_KSYM) 7742 return 0; 7743 7744 t = btf__type_by_id(obj->btf, ext->btf_id); 7745 if (!btf_is_var(t)) 7746 return 0; 7747 7748 if (ext->is_set && ext->ksym.addr != sym_addr) { 7749 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7750 sym_name, ext->ksym.addr, sym_addr); 7751 return -EINVAL; 7752 } 7753 if (!ext->is_set) { 7754 ext->is_set = true; 7755 ext->ksym.addr = sym_addr; 7756 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7757 } 7758 return 0; 7759 } 7760 7761 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7762 { 7763 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7764 } 7765 7766 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7767 __u16 kind, struct btf **res_btf, 7768 struct module_btf **res_mod_btf) 7769 { 7770 struct module_btf *mod_btf; 7771 struct btf *btf; 7772 int i, id, err; 7773 7774 btf = obj->btf_vmlinux; 7775 mod_btf = NULL; 7776 id = btf__find_by_name_kind(btf, ksym_name, kind); 7777 7778 if (id == -ENOENT) { 7779 err = load_module_btfs(obj); 7780 if (err) 7781 return err; 7782 7783 for (i = 0; i < obj->btf_module_cnt; i++) { 7784 /* we assume module_btf's BTF FD is always >0 */ 7785 mod_btf = &obj->btf_modules[i]; 7786 btf = mod_btf->btf; 7787 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7788 if (id != -ENOENT) 7789 break; 7790 } 7791 } 7792 if (id <= 0) 7793 return -ESRCH; 7794 7795 *res_btf = btf; 7796 *res_mod_btf = mod_btf; 7797 return id; 7798 } 7799 7800 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7801 struct extern_desc *ext) 7802 { 7803 const struct btf_type *targ_var, *targ_type; 7804 __u32 targ_type_id, local_type_id; 7805 struct module_btf *mod_btf = NULL; 7806 const char *targ_var_name; 7807 struct btf *btf = NULL; 7808 int id, err; 7809 7810 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7811 if (id < 0) { 7812 if (id == -ESRCH && ext->is_weak) 7813 return 0; 7814 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7815 ext->name); 7816 return id; 7817 } 7818 7819 /* find local type_id */ 7820 local_type_id = ext->ksym.type_id; 7821 7822 /* find target type_id */ 7823 targ_var = btf__type_by_id(btf, id); 7824 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7825 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7826 7827 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7828 btf, targ_type_id); 7829 if (err <= 0) { 7830 const struct btf_type *local_type; 7831 const char *targ_name, *local_name; 7832 7833 local_type = btf__type_by_id(obj->btf, local_type_id); 7834 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7835 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7836 7837 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7838 ext->name, local_type_id, 7839 btf_kind_str(local_type), local_name, targ_type_id, 7840 btf_kind_str(targ_type), targ_name); 7841 return -EINVAL; 7842 } 7843 7844 ext->is_set = true; 7845 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7846 ext->ksym.kernel_btf_id = id; 7847 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7848 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7849 7850 return 0; 7851 } 7852 7853 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7854 struct extern_desc *ext) 7855 { 7856 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7857 struct module_btf *mod_btf = NULL; 7858 const struct btf_type *kern_func; 7859 struct btf *kern_btf = NULL; 7860 int ret; 7861 7862 local_func_proto_id = ext->ksym.type_id; 7863 7864 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7865 if (kfunc_id < 0) { 7866 if (kfunc_id == -ESRCH && ext->is_weak) 7867 return 0; 7868 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7869 ext->name); 7870 return kfunc_id; 7871 } 7872 7873 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7874 kfunc_proto_id = kern_func->type; 7875 7876 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7877 kern_btf, kfunc_proto_id); 7878 if (ret <= 0) { 7879 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7880 ext->name, local_func_proto_id, kfunc_proto_id); 7881 return -EINVAL; 7882 } 7883 7884 /* set index for module BTF fd in fd_array, if unset */ 7885 if (mod_btf && !mod_btf->fd_array_idx) { 7886 /* insn->off is s16 */ 7887 if (obj->fd_array_cnt == INT16_MAX) { 7888 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7889 ext->name, mod_btf->fd_array_idx); 7890 return -E2BIG; 7891 } 7892 /* Cannot use index 0 for module BTF fd */ 7893 if (!obj->fd_array_cnt) 7894 obj->fd_array_cnt = 1; 7895 7896 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7897 obj->fd_array_cnt + 1); 7898 if (ret) 7899 return ret; 7900 mod_btf->fd_array_idx = obj->fd_array_cnt; 7901 /* we assume module BTF FD is always >0 */ 7902 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7903 } 7904 7905 ext->is_set = true; 7906 ext->ksym.kernel_btf_id = kfunc_id; 7907 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7908 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7909 ext->name, kfunc_id); 7910 7911 return 0; 7912 } 7913 7914 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7915 { 7916 const struct btf_type *t; 7917 struct extern_desc *ext; 7918 int i, err; 7919 7920 for (i = 0; i < obj->nr_extern; i++) { 7921 ext = &obj->externs[i]; 7922 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7923 continue; 7924 7925 if (obj->gen_loader) { 7926 ext->is_set = true; 7927 ext->ksym.kernel_btf_obj_fd = 0; 7928 ext->ksym.kernel_btf_id = 0; 7929 continue; 7930 } 7931 t = btf__type_by_id(obj->btf, ext->btf_id); 7932 if (btf_is_var(t)) 7933 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7934 else 7935 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7936 if (err) 7937 return err; 7938 } 7939 return 0; 7940 } 7941 7942 static int bpf_object__resolve_externs(struct bpf_object *obj, 7943 const char *extra_kconfig) 7944 { 7945 bool need_config = false, need_kallsyms = false; 7946 bool need_vmlinux_btf = false; 7947 struct extern_desc *ext; 7948 void *kcfg_data = NULL; 7949 int err, i; 7950 7951 if (obj->nr_extern == 0) 7952 return 0; 7953 7954 if (obj->kconfig_map_idx >= 0) 7955 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7956 7957 for (i = 0; i < obj->nr_extern; i++) { 7958 ext = &obj->externs[i]; 7959 7960 if (ext->type == EXT_KCFG && 7961 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7962 void *ext_val = kcfg_data + ext->kcfg.data_off; 7963 __u32 kver = get_kernel_version(); 7964 7965 if (!kver) { 7966 pr_warn("failed to get kernel version\n"); 7967 return -EINVAL; 7968 } 7969 err = set_kcfg_value_num(ext, ext_val, kver); 7970 if (err) 7971 return err; 7972 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7973 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7974 need_config = true; 7975 } else if (ext->type == EXT_KSYM) { 7976 if (ext->ksym.type_id) 7977 need_vmlinux_btf = true; 7978 else 7979 need_kallsyms = true; 7980 } else { 7981 pr_warn("unrecognized extern '%s'\n", ext->name); 7982 return -EINVAL; 7983 } 7984 } 7985 if (need_config && extra_kconfig) { 7986 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7987 if (err) 7988 return -EINVAL; 7989 need_config = false; 7990 for (i = 0; i < obj->nr_extern; i++) { 7991 ext = &obj->externs[i]; 7992 if (ext->type == EXT_KCFG && !ext->is_set) { 7993 need_config = true; 7994 break; 7995 } 7996 } 7997 } 7998 if (need_config) { 7999 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8000 if (err) 8001 return -EINVAL; 8002 } 8003 if (need_kallsyms) { 8004 err = bpf_object__read_kallsyms_file(obj); 8005 if (err) 8006 return -EINVAL; 8007 } 8008 if (need_vmlinux_btf) { 8009 err = bpf_object__resolve_ksyms_btf_id(obj); 8010 if (err) 8011 return -EINVAL; 8012 } 8013 for (i = 0; i < obj->nr_extern; i++) { 8014 ext = &obj->externs[i]; 8015 8016 if (!ext->is_set && !ext->is_weak) { 8017 pr_warn("extern %s (strong) not resolved\n", ext->name); 8018 return -ESRCH; 8019 } else if (!ext->is_set) { 8020 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 8021 ext->name); 8022 } 8023 } 8024 8025 return 0; 8026 } 8027 8028 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8029 { 8030 int err, i; 8031 8032 if (!obj) 8033 return libbpf_err(-EINVAL); 8034 8035 if (obj->loaded) { 8036 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8037 return libbpf_err(-EINVAL); 8038 } 8039 8040 if (obj->gen_loader) 8041 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8042 8043 err = bpf_object__probe_loading(obj); 8044 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8045 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8046 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8047 err = err ? : bpf_object__sanitize_maps(obj); 8048 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8049 err = err ? : bpf_object__create_maps(obj); 8050 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8051 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8052 err = err ? : bpf_object_init_prog_arrays(obj); 8053 8054 if (obj->gen_loader) { 8055 /* reset FDs */ 8056 if (obj->btf) 8057 btf__set_fd(obj->btf, -1); 8058 for (i = 0; i < obj->nr_maps; i++) 8059 obj->maps[i].fd = -1; 8060 if (!err) 8061 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8062 } 8063 8064 /* clean up fd_array */ 8065 zfree(&obj->fd_array); 8066 8067 /* clean up module BTFs */ 8068 for (i = 0; i < obj->btf_module_cnt; i++) { 8069 close(obj->btf_modules[i].fd); 8070 btf__free(obj->btf_modules[i].btf); 8071 free(obj->btf_modules[i].name); 8072 } 8073 free(obj->btf_modules); 8074 8075 /* clean up vmlinux BTF */ 8076 btf__free(obj->btf_vmlinux); 8077 obj->btf_vmlinux = NULL; 8078 8079 obj->loaded = true; /* doesn't matter if successfully or not */ 8080 8081 if (err) 8082 goto out; 8083 8084 return 0; 8085 out: 8086 /* unpin any maps that were auto-pinned during load */ 8087 for (i = 0; i < obj->nr_maps; i++) 8088 if (obj->maps[i].pinned && !obj->maps[i].reused) 8089 bpf_map__unpin(&obj->maps[i], NULL); 8090 8091 bpf_object_unload(obj); 8092 pr_warn("failed to load object '%s'\n", obj->path); 8093 return libbpf_err(err); 8094 } 8095 8096 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 8097 { 8098 return bpf_object_load(attr->obj, attr->log_level, attr->target_btf_path); 8099 } 8100 8101 int bpf_object__load(struct bpf_object *obj) 8102 { 8103 return bpf_object_load(obj, 0, NULL); 8104 } 8105 8106 static int make_parent_dir(const char *path) 8107 { 8108 char *cp, errmsg[STRERR_BUFSIZE]; 8109 char *dname, *dir; 8110 int err = 0; 8111 8112 dname = strdup(path); 8113 if (dname == NULL) 8114 return -ENOMEM; 8115 8116 dir = dirname(dname); 8117 if (mkdir(dir, 0700) && errno != EEXIST) 8118 err = -errno; 8119 8120 free(dname); 8121 if (err) { 8122 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8123 pr_warn("failed to mkdir %s: %s\n", path, cp); 8124 } 8125 return err; 8126 } 8127 8128 static int check_path(const char *path) 8129 { 8130 char *cp, errmsg[STRERR_BUFSIZE]; 8131 struct statfs st_fs; 8132 char *dname, *dir; 8133 int err = 0; 8134 8135 if (path == NULL) 8136 return -EINVAL; 8137 8138 dname = strdup(path); 8139 if (dname == NULL) 8140 return -ENOMEM; 8141 8142 dir = dirname(dname); 8143 if (statfs(dir, &st_fs)) { 8144 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8145 pr_warn("failed to statfs %s: %s\n", dir, cp); 8146 err = -errno; 8147 } 8148 free(dname); 8149 8150 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8151 pr_warn("specified path %s is not on BPF FS\n", path); 8152 err = -EINVAL; 8153 } 8154 8155 return err; 8156 } 8157 8158 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 8159 { 8160 char *cp, errmsg[STRERR_BUFSIZE]; 8161 int err; 8162 8163 err = make_parent_dir(path); 8164 if (err) 8165 return libbpf_err(err); 8166 8167 err = check_path(path); 8168 if (err) 8169 return libbpf_err(err); 8170 8171 if (prog == NULL) { 8172 pr_warn("invalid program pointer\n"); 8173 return libbpf_err(-EINVAL); 8174 } 8175 8176 if (instance < 0 || instance >= prog->instances.nr) { 8177 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8178 instance, prog->name, prog->instances.nr); 8179 return libbpf_err(-EINVAL); 8180 } 8181 8182 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 8183 err = -errno; 8184 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8185 pr_warn("failed to pin program: %s\n", cp); 8186 return libbpf_err(err); 8187 } 8188 pr_debug("pinned program '%s'\n", path); 8189 8190 return 0; 8191 } 8192 8193 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 8194 { 8195 int err; 8196 8197 err = check_path(path); 8198 if (err) 8199 return libbpf_err(err); 8200 8201 if (prog == NULL) { 8202 pr_warn("invalid program pointer\n"); 8203 return libbpf_err(-EINVAL); 8204 } 8205 8206 if (instance < 0 || instance >= prog->instances.nr) { 8207 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 8208 instance, prog->name, prog->instances.nr); 8209 return libbpf_err(-EINVAL); 8210 } 8211 8212 err = unlink(path); 8213 if (err != 0) 8214 return libbpf_err(-errno); 8215 8216 pr_debug("unpinned program '%s'\n", path); 8217 8218 return 0; 8219 } 8220 8221 __attribute__((alias("bpf_program_pin_instance"))) 8222 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 8223 8224 __attribute__((alias("bpf_program_unpin_instance"))) 8225 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 8226 8227 int bpf_program__pin(struct bpf_program *prog, const char *path) 8228 { 8229 int i, err; 8230 8231 err = make_parent_dir(path); 8232 if (err) 8233 return libbpf_err(err); 8234 8235 err = check_path(path); 8236 if (err) 8237 return libbpf_err(err); 8238 8239 if (prog == NULL) { 8240 pr_warn("invalid program pointer\n"); 8241 return libbpf_err(-EINVAL); 8242 } 8243 8244 if (prog->instances.nr <= 0) { 8245 pr_warn("no instances of prog %s to pin\n", prog->name); 8246 return libbpf_err(-EINVAL); 8247 } 8248 8249 if (prog->instances.nr == 1) { 8250 /* don't create subdirs when pinning single instance */ 8251 return bpf_program_pin_instance(prog, path, 0); 8252 } 8253 8254 for (i = 0; i < prog->instances.nr; i++) { 8255 char buf[PATH_MAX]; 8256 int len; 8257 8258 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8259 if (len < 0) { 8260 err = -EINVAL; 8261 goto err_unpin; 8262 } else if (len >= PATH_MAX) { 8263 err = -ENAMETOOLONG; 8264 goto err_unpin; 8265 } 8266 8267 err = bpf_program_pin_instance(prog, buf, i); 8268 if (err) 8269 goto err_unpin; 8270 } 8271 8272 return 0; 8273 8274 err_unpin: 8275 for (i = i - 1; i >= 0; i--) { 8276 char buf[PATH_MAX]; 8277 int len; 8278 8279 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8280 if (len < 0) 8281 continue; 8282 else if (len >= PATH_MAX) 8283 continue; 8284 8285 bpf_program_unpin_instance(prog, buf, i); 8286 } 8287 8288 rmdir(path); 8289 8290 return libbpf_err(err); 8291 } 8292 8293 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8294 { 8295 int i, err; 8296 8297 err = check_path(path); 8298 if (err) 8299 return libbpf_err(err); 8300 8301 if (prog == NULL) { 8302 pr_warn("invalid program pointer\n"); 8303 return libbpf_err(-EINVAL); 8304 } 8305 8306 if (prog->instances.nr <= 0) { 8307 pr_warn("no instances of prog %s to pin\n", prog->name); 8308 return libbpf_err(-EINVAL); 8309 } 8310 8311 if (prog->instances.nr == 1) { 8312 /* don't create subdirs when pinning single instance */ 8313 return bpf_program_unpin_instance(prog, path, 0); 8314 } 8315 8316 for (i = 0; i < prog->instances.nr; i++) { 8317 char buf[PATH_MAX]; 8318 int len; 8319 8320 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8321 if (len < 0) 8322 return libbpf_err(-EINVAL); 8323 else if (len >= PATH_MAX) 8324 return libbpf_err(-ENAMETOOLONG); 8325 8326 err = bpf_program_unpin_instance(prog, buf, i); 8327 if (err) 8328 return err; 8329 } 8330 8331 err = rmdir(path); 8332 if (err) 8333 return libbpf_err(-errno); 8334 8335 return 0; 8336 } 8337 8338 int bpf_map__pin(struct bpf_map *map, const char *path) 8339 { 8340 char *cp, errmsg[STRERR_BUFSIZE]; 8341 int err; 8342 8343 if (map == NULL) { 8344 pr_warn("invalid map pointer\n"); 8345 return libbpf_err(-EINVAL); 8346 } 8347 8348 if (map->pin_path) { 8349 if (path && strcmp(path, map->pin_path)) { 8350 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8351 bpf_map__name(map), map->pin_path, path); 8352 return libbpf_err(-EINVAL); 8353 } else if (map->pinned) { 8354 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8355 bpf_map__name(map), map->pin_path); 8356 return 0; 8357 } 8358 } else { 8359 if (!path) { 8360 pr_warn("missing a path to pin map '%s' at\n", 8361 bpf_map__name(map)); 8362 return libbpf_err(-EINVAL); 8363 } else if (map->pinned) { 8364 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8365 return libbpf_err(-EEXIST); 8366 } 8367 8368 map->pin_path = strdup(path); 8369 if (!map->pin_path) { 8370 err = -errno; 8371 goto out_err; 8372 } 8373 } 8374 8375 err = make_parent_dir(map->pin_path); 8376 if (err) 8377 return libbpf_err(err); 8378 8379 err = check_path(map->pin_path); 8380 if (err) 8381 return libbpf_err(err); 8382 8383 if (bpf_obj_pin(map->fd, map->pin_path)) { 8384 err = -errno; 8385 goto out_err; 8386 } 8387 8388 map->pinned = true; 8389 pr_debug("pinned map '%s'\n", map->pin_path); 8390 8391 return 0; 8392 8393 out_err: 8394 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8395 pr_warn("failed to pin map: %s\n", cp); 8396 return libbpf_err(err); 8397 } 8398 8399 int bpf_map__unpin(struct bpf_map *map, const char *path) 8400 { 8401 int err; 8402 8403 if (map == NULL) { 8404 pr_warn("invalid map pointer\n"); 8405 return libbpf_err(-EINVAL); 8406 } 8407 8408 if (map->pin_path) { 8409 if (path && strcmp(path, map->pin_path)) { 8410 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8411 bpf_map__name(map), map->pin_path, path); 8412 return libbpf_err(-EINVAL); 8413 } 8414 path = map->pin_path; 8415 } else if (!path) { 8416 pr_warn("no path to unpin map '%s' from\n", 8417 bpf_map__name(map)); 8418 return libbpf_err(-EINVAL); 8419 } 8420 8421 err = check_path(path); 8422 if (err) 8423 return libbpf_err(err); 8424 8425 err = unlink(path); 8426 if (err != 0) 8427 return libbpf_err(-errno); 8428 8429 map->pinned = false; 8430 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8431 8432 return 0; 8433 } 8434 8435 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8436 { 8437 char *new = NULL; 8438 8439 if (path) { 8440 new = strdup(path); 8441 if (!new) 8442 return libbpf_err(-errno); 8443 } 8444 8445 free(map->pin_path); 8446 map->pin_path = new; 8447 return 0; 8448 } 8449 8450 __alias(bpf_map__pin_path) 8451 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8452 8453 const char *bpf_map__pin_path(const struct bpf_map *map) 8454 { 8455 return map->pin_path; 8456 } 8457 8458 bool bpf_map__is_pinned(const struct bpf_map *map) 8459 { 8460 return map->pinned; 8461 } 8462 8463 static void sanitize_pin_path(char *s) 8464 { 8465 /* bpffs disallows periods in path names */ 8466 while (*s) { 8467 if (*s == '.') 8468 *s = '_'; 8469 s++; 8470 } 8471 } 8472 8473 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8474 { 8475 struct bpf_map *map; 8476 int err; 8477 8478 if (!obj) 8479 return libbpf_err(-ENOENT); 8480 8481 if (!obj->loaded) { 8482 pr_warn("object not yet loaded; load it first\n"); 8483 return libbpf_err(-ENOENT); 8484 } 8485 8486 bpf_object__for_each_map(map, obj) { 8487 char *pin_path = NULL; 8488 char buf[PATH_MAX]; 8489 8490 if (!map->autocreate) 8491 continue; 8492 8493 if (path) { 8494 int len; 8495 8496 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8497 bpf_map__name(map)); 8498 if (len < 0) { 8499 err = -EINVAL; 8500 goto err_unpin_maps; 8501 } else if (len >= PATH_MAX) { 8502 err = -ENAMETOOLONG; 8503 goto err_unpin_maps; 8504 } 8505 sanitize_pin_path(buf); 8506 pin_path = buf; 8507 } else if (!map->pin_path) { 8508 continue; 8509 } 8510 8511 err = bpf_map__pin(map, pin_path); 8512 if (err) 8513 goto err_unpin_maps; 8514 } 8515 8516 return 0; 8517 8518 err_unpin_maps: 8519 while ((map = bpf_object__prev_map(obj, map))) { 8520 if (!map->pin_path) 8521 continue; 8522 8523 bpf_map__unpin(map, NULL); 8524 } 8525 8526 return libbpf_err(err); 8527 } 8528 8529 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8530 { 8531 struct bpf_map *map; 8532 int err; 8533 8534 if (!obj) 8535 return libbpf_err(-ENOENT); 8536 8537 bpf_object__for_each_map(map, obj) { 8538 char *pin_path = NULL; 8539 char buf[PATH_MAX]; 8540 8541 if (path) { 8542 int len; 8543 8544 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8545 bpf_map__name(map)); 8546 if (len < 0) 8547 return libbpf_err(-EINVAL); 8548 else if (len >= PATH_MAX) 8549 return libbpf_err(-ENAMETOOLONG); 8550 sanitize_pin_path(buf); 8551 pin_path = buf; 8552 } else if (!map->pin_path) { 8553 continue; 8554 } 8555 8556 err = bpf_map__unpin(map, pin_path); 8557 if (err) 8558 return libbpf_err(err); 8559 } 8560 8561 return 0; 8562 } 8563 8564 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8565 { 8566 struct bpf_program *prog; 8567 int err; 8568 8569 if (!obj) 8570 return libbpf_err(-ENOENT); 8571 8572 if (!obj->loaded) { 8573 pr_warn("object not yet loaded; load it first\n"); 8574 return libbpf_err(-ENOENT); 8575 } 8576 8577 bpf_object__for_each_program(prog, obj) { 8578 char buf[PATH_MAX]; 8579 int len; 8580 8581 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8582 prog->pin_name); 8583 if (len < 0) { 8584 err = -EINVAL; 8585 goto err_unpin_programs; 8586 } else if (len >= PATH_MAX) { 8587 err = -ENAMETOOLONG; 8588 goto err_unpin_programs; 8589 } 8590 8591 err = bpf_program__pin(prog, buf); 8592 if (err) 8593 goto err_unpin_programs; 8594 } 8595 8596 return 0; 8597 8598 err_unpin_programs: 8599 while ((prog = bpf_object__prev_program(obj, prog))) { 8600 char buf[PATH_MAX]; 8601 int len; 8602 8603 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8604 prog->pin_name); 8605 if (len < 0) 8606 continue; 8607 else if (len >= PATH_MAX) 8608 continue; 8609 8610 bpf_program__unpin(prog, buf); 8611 } 8612 8613 return libbpf_err(err); 8614 } 8615 8616 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8617 { 8618 struct bpf_program *prog; 8619 int err; 8620 8621 if (!obj) 8622 return libbpf_err(-ENOENT); 8623 8624 bpf_object__for_each_program(prog, obj) { 8625 char buf[PATH_MAX]; 8626 int len; 8627 8628 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8629 prog->pin_name); 8630 if (len < 0) 8631 return libbpf_err(-EINVAL); 8632 else if (len >= PATH_MAX) 8633 return libbpf_err(-ENAMETOOLONG); 8634 8635 err = bpf_program__unpin(prog, buf); 8636 if (err) 8637 return libbpf_err(err); 8638 } 8639 8640 return 0; 8641 } 8642 8643 int bpf_object__pin(struct bpf_object *obj, const char *path) 8644 { 8645 int err; 8646 8647 err = bpf_object__pin_maps(obj, path); 8648 if (err) 8649 return libbpf_err(err); 8650 8651 err = bpf_object__pin_programs(obj, path); 8652 if (err) { 8653 bpf_object__unpin_maps(obj, path); 8654 return libbpf_err(err); 8655 } 8656 8657 return 0; 8658 } 8659 8660 static void bpf_map__destroy(struct bpf_map *map) 8661 { 8662 if (map->clear_priv) 8663 map->clear_priv(map, map->priv); 8664 map->priv = NULL; 8665 map->clear_priv = NULL; 8666 8667 if (map->inner_map) { 8668 bpf_map__destroy(map->inner_map); 8669 zfree(&map->inner_map); 8670 } 8671 8672 zfree(&map->init_slots); 8673 map->init_slots_sz = 0; 8674 8675 if (map->mmaped) { 8676 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8677 map->mmaped = NULL; 8678 } 8679 8680 if (map->st_ops) { 8681 zfree(&map->st_ops->data); 8682 zfree(&map->st_ops->progs); 8683 zfree(&map->st_ops->kern_func_off); 8684 zfree(&map->st_ops); 8685 } 8686 8687 zfree(&map->name); 8688 zfree(&map->real_name); 8689 zfree(&map->pin_path); 8690 8691 if (map->fd >= 0) 8692 zclose(map->fd); 8693 } 8694 8695 void bpf_object__close(struct bpf_object *obj) 8696 { 8697 size_t i; 8698 8699 if (IS_ERR_OR_NULL(obj)) 8700 return; 8701 8702 if (obj->clear_priv) 8703 obj->clear_priv(obj, obj->priv); 8704 8705 usdt_manager_free(obj->usdt_man); 8706 obj->usdt_man = NULL; 8707 8708 bpf_gen__free(obj->gen_loader); 8709 bpf_object__elf_finish(obj); 8710 bpf_object_unload(obj); 8711 btf__free(obj->btf); 8712 btf_ext__free(obj->btf_ext); 8713 8714 for (i = 0; i < obj->nr_maps; i++) 8715 bpf_map__destroy(&obj->maps[i]); 8716 8717 zfree(&obj->btf_custom_path); 8718 zfree(&obj->kconfig); 8719 zfree(&obj->externs); 8720 obj->nr_extern = 0; 8721 8722 zfree(&obj->maps); 8723 obj->nr_maps = 0; 8724 8725 if (obj->programs && obj->nr_programs) { 8726 for (i = 0; i < obj->nr_programs; i++) 8727 bpf_program__exit(&obj->programs[i]); 8728 } 8729 zfree(&obj->programs); 8730 8731 list_del(&obj->list); 8732 free(obj); 8733 } 8734 8735 struct bpf_object * 8736 bpf_object__next(struct bpf_object *prev) 8737 { 8738 struct bpf_object *next; 8739 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 8740 8741 if (strict) 8742 return NULL; 8743 8744 if (!prev) 8745 next = list_first_entry(&bpf_objects_list, 8746 struct bpf_object, 8747 list); 8748 else 8749 next = list_next_entry(prev, list); 8750 8751 /* Empty list is noticed here so don't need checking on entry. */ 8752 if (&next->list == &bpf_objects_list) 8753 return NULL; 8754 8755 return next; 8756 } 8757 8758 const char *bpf_object__name(const struct bpf_object *obj) 8759 { 8760 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8761 } 8762 8763 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8764 { 8765 return obj ? obj->kern_version : 0; 8766 } 8767 8768 struct btf *bpf_object__btf(const struct bpf_object *obj) 8769 { 8770 return obj ? obj->btf : NULL; 8771 } 8772 8773 int bpf_object__btf_fd(const struct bpf_object *obj) 8774 { 8775 return obj->btf ? btf__fd(obj->btf) : -1; 8776 } 8777 8778 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8779 { 8780 if (obj->loaded) 8781 return libbpf_err(-EINVAL); 8782 8783 obj->kern_version = kern_version; 8784 8785 return 0; 8786 } 8787 8788 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8789 bpf_object_clear_priv_t clear_priv) 8790 { 8791 if (obj->priv && obj->clear_priv) 8792 obj->clear_priv(obj, obj->priv); 8793 8794 obj->priv = priv; 8795 obj->clear_priv = clear_priv; 8796 return 0; 8797 } 8798 8799 void *bpf_object__priv(const struct bpf_object *obj) 8800 { 8801 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8802 } 8803 8804 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8805 { 8806 struct bpf_gen *gen; 8807 8808 if (!opts) 8809 return -EFAULT; 8810 if (!OPTS_VALID(opts, gen_loader_opts)) 8811 return -EINVAL; 8812 gen = calloc(sizeof(*gen), 1); 8813 if (!gen) 8814 return -ENOMEM; 8815 gen->opts = opts; 8816 obj->gen_loader = gen; 8817 return 0; 8818 } 8819 8820 static struct bpf_program * 8821 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8822 bool forward) 8823 { 8824 size_t nr_programs = obj->nr_programs; 8825 ssize_t idx; 8826 8827 if (!nr_programs) 8828 return NULL; 8829 8830 if (!p) 8831 /* Iter from the beginning */ 8832 return forward ? &obj->programs[0] : 8833 &obj->programs[nr_programs - 1]; 8834 8835 if (p->obj != obj) { 8836 pr_warn("error: program handler doesn't match object\n"); 8837 return errno = EINVAL, NULL; 8838 } 8839 8840 idx = (p - obj->programs) + (forward ? 1 : -1); 8841 if (idx >= obj->nr_programs || idx < 0) 8842 return NULL; 8843 return &obj->programs[idx]; 8844 } 8845 8846 struct bpf_program * 8847 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8848 { 8849 return bpf_object__next_program(obj, prev); 8850 } 8851 8852 struct bpf_program * 8853 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8854 { 8855 struct bpf_program *prog = prev; 8856 8857 do { 8858 prog = __bpf_program__iter(prog, obj, true); 8859 } while (prog && prog_is_subprog(obj, prog)); 8860 8861 return prog; 8862 } 8863 8864 struct bpf_program * 8865 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8866 { 8867 return bpf_object__prev_program(obj, next); 8868 } 8869 8870 struct bpf_program * 8871 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8872 { 8873 struct bpf_program *prog = next; 8874 8875 do { 8876 prog = __bpf_program__iter(prog, obj, false); 8877 } while (prog && prog_is_subprog(obj, prog)); 8878 8879 return prog; 8880 } 8881 8882 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8883 bpf_program_clear_priv_t clear_priv) 8884 { 8885 if (prog->priv && prog->clear_priv) 8886 prog->clear_priv(prog, prog->priv); 8887 8888 prog->priv = priv; 8889 prog->clear_priv = clear_priv; 8890 return 0; 8891 } 8892 8893 void *bpf_program__priv(const struct bpf_program *prog) 8894 { 8895 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8896 } 8897 8898 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8899 { 8900 prog->prog_ifindex = ifindex; 8901 } 8902 8903 const char *bpf_program__name(const struct bpf_program *prog) 8904 { 8905 return prog->name; 8906 } 8907 8908 const char *bpf_program__section_name(const struct bpf_program *prog) 8909 { 8910 return prog->sec_name; 8911 } 8912 8913 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8914 { 8915 const char *title; 8916 8917 title = prog->sec_name; 8918 if (needs_copy) { 8919 title = strdup(title); 8920 if (!title) { 8921 pr_warn("failed to strdup program title\n"); 8922 return libbpf_err_ptr(-ENOMEM); 8923 } 8924 } 8925 8926 return title; 8927 } 8928 8929 bool bpf_program__autoload(const struct bpf_program *prog) 8930 { 8931 return prog->autoload; 8932 } 8933 8934 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8935 { 8936 if (prog->obj->loaded) 8937 return libbpf_err(-EINVAL); 8938 8939 prog->autoload = autoload; 8940 return 0; 8941 } 8942 8943 static int bpf_program_nth_fd(const struct bpf_program *prog, int n); 8944 8945 int bpf_program__fd(const struct bpf_program *prog) 8946 { 8947 return bpf_program_nth_fd(prog, 0); 8948 } 8949 8950 size_t bpf_program__size(const struct bpf_program *prog) 8951 { 8952 return prog->insns_cnt * BPF_INSN_SZ; 8953 } 8954 8955 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8956 { 8957 return prog->insns; 8958 } 8959 8960 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8961 { 8962 return prog->insns_cnt; 8963 } 8964 8965 int bpf_program__set_insns(struct bpf_program *prog, 8966 struct bpf_insn *new_insns, size_t new_insn_cnt) 8967 { 8968 struct bpf_insn *insns; 8969 8970 if (prog->obj->loaded) 8971 return -EBUSY; 8972 8973 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8974 if (!insns) { 8975 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8976 return -ENOMEM; 8977 } 8978 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8979 8980 prog->insns = insns; 8981 prog->insns_cnt = new_insn_cnt; 8982 return 0; 8983 } 8984 8985 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8986 bpf_program_prep_t prep) 8987 { 8988 int *instances_fds; 8989 8990 if (nr_instances <= 0 || !prep) 8991 return libbpf_err(-EINVAL); 8992 8993 if (prog->instances.nr > 0 || prog->instances.fds) { 8994 pr_warn("Can't set pre-processor after loading\n"); 8995 return libbpf_err(-EINVAL); 8996 } 8997 8998 instances_fds = malloc(sizeof(int) * nr_instances); 8999 if (!instances_fds) { 9000 pr_warn("alloc memory failed for fds\n"); 9001 return libbpf_err(-ENOMEM); 9002 } 9003 9004 /* fill all fd with -1 */ 9005 memset(instances_fds, -1, sizeof(int) * nr_instances); 9006 9007 prog->instances.nr = nr_instances; 9008 prog->instances.fds = instances_fds; 9009 prog->preprocessor = prep; 9010 return 0; 9011 } 9012 9013 __attribute__((alias("bpf_program_nth_fd"))) 9014 int bpf_program__nth_fd(const struct bpf_program *prog, int n); 9015 9016 static int bpf_program_nth_fd(const struct bpf_program *prog, int n) 9017 { 9018 int fd; 9019 9020 if (!prog) 9021 return libbpf_err(-EINVAL); 9022 9023 if (n >= prog->instances.nr || n < 0) { 9024 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 9025 n, prog->name, prog->instances.nr); 9026 return libbpf_err(-EINVAL); 9027 } 9028 9029 fd = prog->instances.fds[n]; 9030 if (fd < 0) { 9031 pr_warn("%dth instance of program '%s' is invalid\n", 9032 n, prog->name); 9033 return libbpf_err(-ENOENT); 9034 } 9035 9036 return fd; 9037 } 9038 9039 __alias(bpf_program__type) 9040 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9041 9042 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9043 { 9044 return prog->type; 9045 } 9046 9047 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9048 { 9049 if (prog->obj->loaded) 9050 return libbpf_err(-EBUSY); 9051 9052 prog->type = type; 9053 return 0; 9054 } 9055 9056 static bool bpf_program__is_type(const struct bpf_program *prog, 9057 enum bpf_prog_type type) 9058 { 9059 return prog ? (prog->type == type) : false; 9060 } 9061 9062 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 9063 int bpf_program__set_##NAME(struct bpf_program *prog) \ 9064 { \ 9065 if (!prog) \ 9066 return libbpf_err(-EINVAL); \ 9067 return bpf_program__set_type(prog, TYPE); \ 9068 } \ 9069 \ 9070 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 9071 { \ 9072 return bpf_program__is_type(prog, TYPE); \ 9073 } \ 9074 9075 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 9076 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 9077 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 9078 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 9079 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 9080 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 9081 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 9082 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 9083 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 9084 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 9085 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 9086 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 9087 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 9088 9089 __alias(bpf_program__expected_attach_type) 9090 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9091 9092 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9093 { 9094 return prog->expected_attach_type; 9095 } 9096 9097 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9098 enum bpf_attach_type type) 9099 { 9100 if (prog->obj->loaded) 9101 return libbpf_err(-EBUSY); 9102 9103 prog->expected_attach_type = type; 9104 return 0; 9105 } 9106 9107 __u32 bpf_program__flags(const struct bpf_program *prog) 9108 { 9109 return prog->prog_flags; 9110 } 9111 9112 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9113 { 9114 if (prog->obj->loaded) 9115 return libbpf_err(-EBUSY); 9116 9117 prog->prog_flags = flags; 9118 return 0; 9119 } 9120 9121 __u32 bpf_program__log_level(const struct bpf_program *prog) 9122 { 9123 return prog->log_level; 9124 } 9125 9126 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9127 { 9128 if (prog->obj->loaded) 9129 return libbpf_err(-EBUSY); 9130 9131 prog->log_level = log_level; 9132 return 0; 9133 } 9134 9135 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9136 { 9137 *log_size = prog->log_size; 9138 return prog->log_buf; 9139 } 9140 9141 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9142 { 9143 if (log_size && !log_buf) 9144 return -EINVAL; 9145 if (prog->log_size > UINT_MAX) 9146 return -EINVAL; 9147 if (prog->obj->loaded) 9148 return -EBUSY; 9149 9150 prog->log_buf = log_buf; 9151 prog->log_size = log_size; 9152 return 0; 9153 } 9154 9155 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9156 .sec = (char *)sec_pfx, \ 9157 .prog_type = BPF_PROG_TYPE_##ptype, \ 9158 .expected_attach_type = atype, \ 9159 .cookie = (long)(flags), \ 9160 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9161 __VA_ARGS__ \ 9162 } 9163 9164 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9165 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9166 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9167 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9168 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9169 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9170 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9171 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9172 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9173 9174 static const struct bpf_sec_def section_defs[] = { 9175 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 9176 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9177 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9178 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9179 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9180 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9181 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9182 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9183 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9184 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9185 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9186 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 9187 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 9188 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX | SEC_DEPRECATED), 9189 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9190 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9191 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9192 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9193 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9194 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9195 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9196 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9197 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9198 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9199 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9200 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9201 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9202 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9203 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9204 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9205 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9206 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9207 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9208 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9209 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9210 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9211 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 9212 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9213 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9214 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE | SEC_DEPRECATED), 9215 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9216 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9217 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9218 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 9219 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9220 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 9221 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 9222 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9223 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9224 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 9225 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9226 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9227 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9228 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9229 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9230 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9231 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9232 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9233 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9234 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 9235 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9236 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9237 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 9238 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9239 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9240 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9241 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9242 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9243 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9244 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9245 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9246 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9247 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9248 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9249 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9250 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9251 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9252 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9253 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9254 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 9255 }; 9256 9257 static size_t custom_sec_def_cnt; 9258 static struct bpf_sec_def *custom_sec_defs; 9259 static struct bpf_sec_def custom_fallback_def; 9260 static bool has_custom_fallback_def; 9261 9262 static int last_custom_sec_def_handler_id; 9263 9264 int libbpf_register_prog_handler(const char *sec, 9265 enum bpf_prog_type prog_type, 9266 enum bpf_attach_type exp_attach_type, 9267 const struct libbpf_prog_handler_opts *opts) 9268 { 9269 struct bpf_sec_def *sec_def; 9270 9271 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9272 return libbpf_err(-EINVAL); 9273 9274 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9275 return libbpf_err(-E2BIG); 9276 9277 if (sec) { 9278 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9279 sizeof(*sec_def)); 9280 if (!sec_def) 9281 return libbpf_err(-ENOMEM); 9282 9283 custom_sec_defs = sec_def; 9284 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9285 } else { 9286 if (has_custom_fallback_def) 9287 return libbpf_err(-EBUSY); 9288 9289 sec_def = &custom_fallback_def; 9290 } 9291 9292 sec_def->sec = sec ? strdup(sec) : NULL; 9293 if (sec && !sec_def->sec) 9294 return libbpf_err(-ENOMEM); 9295 9296 sec_def->prog_type = prog_type; 9297 sec_def->expected_attach_type = exp_attach_type; 9298 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9299 9300 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9301 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9302 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9303 9304 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9305 9306 if (sec) 9307 custom_sec_def_cnt++; 9308 else 9309 has_custom_fallback_def = true; 9310 9311 return sec_def->handler_id; 9312 } 9313 9314 int libbpf_unregister_prog_handler(int handler_id) 9315 { 9316 struct bpf_sec_def *sec_defs; 9317 int i; 9318 9319 if (handler_id <= 0) 9320 return libbpf_err(-EINVAL); 9321 9322 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9323 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9324 has_custom_fallback_def = false; 9325 return 0; 9326 } 9327 9328 for (i = 0; i < custom_sec_def_cnt; i++) { 9329 if (custom_sec_defs[i].handler_id == handler_id) 9330 break; 9331 } 9332 9333 if (i == custom_sec_def_cnt) 9334 return libbpf_err(-ENOENT); 9335 9336 free(custom_sec_defs[i].sec); 9337 for (i = i + 1; i < custom_sec_def_cnt; i++) 9338 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9339 custom_sec_def_cnt--; 9340 9341 /* try to shrink the array, but it's ok if we couldn't */ 9342 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9343 if (sec_defs) 9344 custom_sec_defs = sec_defs; 9345 9346 return 0; 9347 } 9348 9349 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name, 9350 bool allow_sloppy) 9351 { 9352 size_t len = strlen(sec_def->sec); 9353 9354 /* "type/" always has to have proper SEC("type/extras") form */ 9355 if (sec_def->sec[len - 1] == '/') { 9356 if (str_has_pfx(sec_name, sec_def->sec)) 9357 return true; 9358 return false; 9359 } 9360 9361 /* "type+" means it can be either exact SEC("type") or 9362 * well-formed SEC("type/extras") with proper '/' separator 9363 */ 9364 if (sec_def->sec[len - 1] == '+') { 9365 len--; 9366 /* not even a prefix */ 9367 if (strncmp(sec_name, sec_def->sec, len) != 0) 9368 return false; 9369 /* exact match or has '/' separator */ 9370 if (sec_name[len] == '\0' || sec_name[len] == '/') 9371 return true; 9372 return false; 9373 } 9374 9375 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 9376 * matches, unless strict section name mode 9377 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 9378 * match has to be exact. 9379 */ 9380 if (allow_sloppy && str_has_pfx(sec_name, sec_def->sec)) 9381 return true; 9382 9383 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 9384 * SEC("syscall")) are exact matches in both modes. 9385 */ 9386 return strcmp(sec_name, sec_def->sec) == 0; 9387 } 9388 9389 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9390 { 9391 const struct bpf_sec_def *sec_def; 9392 int i, n; 9393 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME, allow_sloppy; 9394 9395 n = custom_sec_def_cnt; 9396 for (i = 0; i < n; i++) { 9397 sec_def = &custom_sec_defs[i]; 9398 if (sec_def_matches(sec_def, sec_name, false)) 9399 return sec_def; 9400 } 9401 9402 n = ARRAY_SIZE(section_defs); 9403 for (i = 0; i < n; i++) { 9404 sec_def = §ion_defs[i]; 9405 allow_sloppy = (sec_def->cookie & SEC_SLOPPY_PFX) && !strict; 9406 if (sec_def_matches(sec_def, sec_name, allow_sloppy)) 9407 return sec_def; 9408 } 9409 9410 if (has_custom_fallback_def) 9411 return &custom_fallback_def; 9412 9413 return NULL; 9414 } 9415 9416 #define MAX_TYPE_NAME_SIZE 32 9417 9418 static char *libbpf_get_type_names(bool attach_type) 9419 { 9420 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9421 char *buf; 9422 9423 buf = malloc(len); 9424 if (!buf) 9425 return NULL; 9426 9427 buf[0] = '\0'; 9428 /* Forge string buf with all available names */ 9429 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9430 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9431 9432 if (attach_type) { 9433 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9434 continue; 9435 9436 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9437 continue; 9438 } 9439 9440 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9441 free(buf); 9442 return NULL; 9443 } 9444 strcat(buf, " "); 9445 strcat(buf, section_defs[i].sec); 9446 } 9447 9448 return buf; 9449 } 9450 9451 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9452 enum bpf_attach_type *expected_attach_type) 9453 { 9454 const struct bpf_sec_def *sec_def; 9455 char *type_names; 9456 9457 if (!name) 9458 return libbpf_err(-EINVAL); 9459 9460 sec_def = find_sec_def(name); 9461 if (sec_def) { 9462 *prog_type = sec_def->prog_type; 9463 *expected_attach_type = sec_def->expected_attach_type; 9464 return 0; 9465 } 9466 9467 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9468 type_names = libbpf_get_type_names(false); 9469 if (type_names != NULL) { 9470 pr_debug("supported section(type) names are:%s\n", type_names); 9471 free(type_names); 9472 } 9473 9474 return libbpf_err(-ESRCH); 9475 } 9476 9477 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9478 { 9479 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9480 return NULL; 9481 9482 return attach_type_name[t]; 9483 } 9484 9485 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9486 { 9487 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9488 return NULL; 9489 9490 return link_type_name[t]; 9491 } 9492 9493 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9494 { 9495 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9496 return NULL; 9497 9498 return map_type_name[t]; 9499 } 9500 9501 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9502 { 9503 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9504 return NULL; 9505 9506 return prog_type_name[t]; 9507 } 9508 9509 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9510 size_t offset) 9511 { 9512 struct bpf_map *map; 9513 size_t i; 9514 9515 for (i = 0; i < obj->nr_maps; i++) { 9516 map = &obj->maps[i]; 9517 if (!bpf_map__is_struct_ops(map)) 9518 continue; 9519 if (map->sec_offset <= offset && 9520 offset - map->sec_offset < map->def.value_size) 9521 return map; 9522 } 9523 9524 return NULL; 9525 } 9526 9527 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9528 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9529 Elf64_Shdr *shdr, Elf_Data *data) 9530 { 9531 const struct btf_member *member; 9532 struct bpf_struct_ops *st_ops; 9533 struct bpf_program *prog; 9534 unsigned int shdr_idx; 9535 const struct btf *btf; 9536 struct bpf_map *map; 9537 unsigned int moff, insn_idx; 9538 const char *name; 9539 __u32 member_idx; 9540 Elf64_Sym *sym; 9541 Elf64_Rel *rel; 9542 int i, nrels; 9543 9544 btf = obj->btf; 9545 nrels = shdr->sh_size / shdr->sh_entsize; 9546 for (i = 0; i < nrels; i++) { 9547 rel = elf_rel_by_idx(data, i); 9548 if (!rel) { 9549 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9550 return -LIBBPF_ERRNO__FORMAT; 9551 } 9552 9553 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9554 if (!sym) { 9555 pr_warn("struct_ops reloc: symbol %zx not found\n", 9556 (size_t)ELF64_R_SYM(rel->r_info)); 9557 return -LIBBPF_ERRNO__FORMAT; 9558 } 9559 9560 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9561 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 9562 if (!map) { 9563 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9564 (size_t)rel->r_offset); 9565 return -EINVAL; 9566 } 9567 9568 moff = rel->r_offset - map->sec_offset; 9569 shdr_idx = sym->st_shndx; 9570 st_ops = map->st_ops; 9571 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9572 map->name, 9573 (long long)(rel->r_info >> 32), 9574 (long long)sym->st_value, 9575 shdr_idx, (size_t)rel->r_offset, 9576 map->sec_offset, sym->st_name, name); 9577 9578 if (shdr_idx >= SHN_LORESERVE) { 9579 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9580 map->name, (size_t)rel->r_offset, shdr_idx); 9581 return -LIBBPF_ERRNO__RELOC; 9582 } 9583 if (sym->st_value % BPF_INSN_SZ) { 9584 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9585 map->name, (unsigned long long)sym->st_value); 9586 return -LIBBPF_ERRNO__FORMAT; 9587 } 9588 insn_idx = sym->st_value / BPF_INSN_SZ; 9589 9590 member = find_member_by_offset(st_ops->type, moff * 8); 9591 if (!member) { 9592 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9593 map->name, moff); 9594 return -EINVAL; 9595 } 9596 member_idx = member - btf_members(st_ops->type); 9597 name = btf__name_by_offset(btf, member->name_off); 9598 9599 if (!resolve_func_ptr(btf, member->type, NULL)) { 9600 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9601 map->name, name); 9602 return -EINVAL; 9603 } 9604 9605 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9606 if (!prog) { 9607 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9608 map->name, shdr_idx, name); 9609 return -EINVAL; 9610 } 9611 9612 /* prevent the use of BPF prog with invalid type */ 9613 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9614 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9615 map->name, prog->name); 9616 return -EINVAL; 9617 } 9618 9619 /* if we haven't yet processed this BPF program, record proper 9620 * attach_btf_id and member_idx 9621 */ 9622 if (!prog->attach_btf_id) { 9623 prog->attach_btf_id = st_ops->type_id; 9624 prog->expected_attach_type = member_idx; 9625 } 9626 9627 /* struct_ops BPF prog can be re-used between multiple 9628 * .struct_ops as long as it's the same struct_ops struct 9629 * definition and the same function pointer field 9630 */ 9631 if (prog->attach_btf_id != st_ops->type_id || 9632 prog->expected_attach_type != member_idx) { 9633 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9634 map->name, prog->name, prog->sec_name, prog->type, 9635 prog->attach_btf_id, prog->expected_attach_type, name); 9636 return -EINVAL; 9637 } 9638 9639 st_ops->progs[member_idx] = prog; 9640 } 9641 9642 return 0; 9643 } 9644 9645 #define BTF_TRACE_PREFIX "btf_trace_" 9646 #define BTF_LSM_PREFIX "bpf_lsm_" 9647 #define BTF_ITER_PREFIX "bpf_iter_" 9648 #define BTF_MAX_NAME_SIZE 128 9649 9650 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9651 const char **prefix, int *kind) 9652 { 9653 switch (attach_type) { 9654 case BPF_TRACE_RAW_TP: 9655 *prefix = BTF_TRACE_PREFIX; 9656 *kind = BTF_KIND_TYPEDEF; 9657 break; 9658 case BPF_LSM_MAC: 9659 *prefix = BTF_LSM_PREFIX; 9660 *kind = BTF_KIND_FUNC; 9661 break; 9662 case BPF_TRACE_ITER: 9663 *prefix = BTF_ITER_PREFIX; 9664 *kind = BTF_KIND_FUNC; 9665 break; 9666 default: 9667 *prefix = ""; 9668 *kind = BTF_KIND_FUNC; 9669 } 9670 } 9671 9672 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9673 const char *name, __u32 kind) 9674 { 9675 char btf_type_name[BTF_MAX_NAME_SIZE]; 9676 int ret; 9677 9678 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9679 "%s%s", prefix, name); 9680 /* snprintf returns the number of characters written excluding the 9681 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9682 * indicates truncation. 9683 */ 9684 if (ret < 0 || ret >= sizeof(btf_type_name)) 9685 return -ENAMETOOLONG; 9686 return btf__find_by_name_kind(btf, btf_type_name, kind); 9687 } 9688 9689 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9690 enum bpf_attach_type attach_type) 9691 { 9692 const char *prefix; 9693 int kind; 9694 9695 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9696 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9697 } 9698 9699 int libbpf_find_vmlinux_btf_id(const char *name, 9700 enum bpf_attach_type attach_type) 9701 { 9702 struct btf *btf; 9703 int err; 9704 9705 btf = btf__load_vmlinux_btf(); 9706 err = libbpf_get_error(btf); 9707 if (err) { 9708 pr_warn("vmlinux BTF is not found\n"); 9709 return libbpf_err(err); 9710 } 9711 9712 err = find_attach_btf_id(btf, name, attach_type); 9713 if (err <= 0) 9714 pr_warn("%s is not found in vmlinux BTF\n", name); 9715 9716 btf__free(btf); 9717 return libbpf_err(err); 9718 } 9719 9720 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9721 { 9722 struct bpf_prog_info info = {}; 9723 __u32 info_len = sizeof(info); 9724 struct btf *btf; 9725 int err; 9726 9727 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9728 if (err) { 9729 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9730 attach_prog_fd, err); 9731 return err; 9732 } 9733 9734 err = -EINVAL; 9735 if (!info.btf_id) { 9736 pr_warn("The target program doesn't have BTF\n"); 9737 goto out; 9738 } 9739 btf = btf__load_from_kernel_by_id(info.btf_id); 9740 err = libbpf_get_error(btf); 9741 if (err) { 9742 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9743 goto out; 9744 } 9745 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9746 btf__free(btf); 9747 if (err <= 0) { 9748 pr_warn("%s is not found in prog's BTF\n", name); 9749 goto out; 9750 } 9751 out: 9752 return err; 9753 } 9754 9755 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9756 enum bpf_attach_type attach_type, 9757 int *btf_obj_fd, int *btf_type_id) 9758 { 9759 int ret, i; 9760 9761 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9762 if (ret > 0) { 9763 *btf_obj_fd = 0; /* vmlinux BTF */ 9764 *btf_type_id = ret; 9765 return 0; 9766 } 9767 if (ret != -ENOENT) 9768 return ret; 9769 9770 ret = load_module_btfs(obj); 9771 if (ret) 9772 return ret; 9773 9774 for (i = 0; i < obj->btf_module_cnt; i++) { 9775 const struct module_btf *mod = &obj->btf_modules[i]; 9776 9777 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9778 if (ret > 0) { 9779 *btf_obj_fd = mod->fd; 9780 *btf_type_id = ret; 9781 return 0; 9782 } 9783 if (ret == -ENOENT) 9784 continue; 9785 9786 return ret; 9787 } 9788 9789 return -ESRCH; 9790 } 9791 9792 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9793 int *btf_obj_fd, int *btf_type_id) 9794 { 9795 enum bpf_attach_type attach_type = prog->expected_attach_type; 9796 __u32 attach_prog_fd = prog->attach_prog_fd; 9797 int err = 0; 9798 9799 /* BPF program's BTF ID */ 9800 if (attach_prog_fd) { 9801 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9802 if (err < 0) { 9803 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9804 attach_prog_fd, attach_name, err); 9805 return err; 9806 } 9807 *btf_obj_fd = 0; 9808 *btf_type_id = err; 9809 return 0; 9810 } 9811 9812 /* kernel/module BTF ID */ 9813 if (prog->obj->gen_loader) { 9814 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9815 *btf_obj_fd = 0; 9816 *btf_type_id = 1; 9817 } else { 9818 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9819 } 9820 if (err) { 9821 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9822 return err; 9823 } 9824 return 0; 9825 } 9826 9827 int libbpf_attach_type_by_name(const char *name, 9828 enum bpf_attach_type *attach_type) 9829 { 9830 char *type_names; 9831 const struct bpf_sec_def *sec_def; 9832 9833 if (!name) 9834 return libbpf_err(-EINVAL); 9835 9836 sec_def = find_sec_def(name); 9837 if (!sec_def) { 9838 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9839 type_names = libbpf_get_type_names(true); 9840 if (type_names != NULL) { 9841 pr_debug("attachable section(type) names are:%s\n", type_names); 9842 free(type_names); 9843 } 9844 9845 return libbpf_err(-EINVAL); 9846 } 9847 9848 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9849 return libbpf_err(-EINVAL); 9850 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9851 return libbpf_err(-EINVAL); 9852 9853 *attach_type = sec_def->expected_attach_type; 9854 return 0; 9855 } 9856 9857 int bpf_map__fd(const struct bpf_map *map) 9858 { 9859 return map ? map->fd : libbpf_err(-EINVAL); 9860 } 9861 9862 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9863 { 9864 return map ? &map->def : libbpf_err_ptr(-EINVAL); 9865 } 9866 9867 static bool map_uses_real_name(const struct bpf_map *map) 9868 { 9869 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9870 * their user-visible name differs from kernel-visible name. Users see 9871 * such map's corresponding ELF section name as a map name. 9872 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9873 * maps to know which name has to be returned to the user. 9874 */ 9875 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9876 return true; 9877 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9878 return true; 9879 return false; 9880 } 9881 9882 const char *bpf_map__name(const struct bpf_map *map) 9883 { 9884 if (!map) 9885 return NULL; 9886 9887 if (map_uses_real_name(map)) 9888 return map->real_name; 9889 9890 return map->name; 9891 } 9892 9893 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9894 { 9895 return map->def.type; 9896 } 9897 9898 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9899 { 9900 if (map->fd >= 0) 9901 return libbpf_err(-EBUSY); 9902 map->def.type = type; 9903 return 0; 9904 } 9905 9906 __u32 bpf_map__map_flags(const struct bpf_map *map) 9907 { 9908 return map->def.map_flags; 9909 } 9910 9911 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9912 { 9913 if (map->fd >= 0) 9914 return libbpf_err(-EBUSY); 9915 map->def.map_flags = flags; 9916 return 0; 9917 } 9918 9919 __u64 bpf_map__map_extra(const struct bpf_map *map) 9920 { 9921 return map->map_extra; 9922 } 9923 9924 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9925 { 9926 if (map->fd >= 0) 9927 return libbpf_err(-EBUSY); 9928 map->map_extra = map_extra; 9929 return 0; 9930 } 9931 9932 __u32 bpf_map__numa_node(const struct bpf_map *map) 9933 { 9934 return map->numa_node; 9935 } 9936 9937 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9938 { 9939 if (map->fd >= 0) 9940 return libbpf_err(-EBUSY); 9941 map->numa_node = numa_node; 9942 return 0; 9943 } 9944 9945 __u32 bpf_map__key_size(const struct bpf_map *map) 9946 { 9947 return map->def.key_size; 9948 } 9949 9950 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9951 { 9952 if (map->fd >= 0) 9953 return libbpf_err(-EBUSY); 9954 map->def.key_size = size; 9955 return 0; 9956 } 9957 9958 __u32 bpf_map__value_size(const struct bpf_map *map) 9959 { 9960 return map->def.value_size; 9961 } 9962 9963 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9964 { 9965 if (map->fd >= 0) 9966 return libbpf_err(-EBUSY); 9967 map->def.value_size = size; 9968 return 0; 9969 } 9970 9971 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9972 { 9973 return map ? map->btf_key_type_id : 0; 9974 } 9975 9976 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9977 { 9978 return map ? map->btf_value_type_id : 0; 9979 } 9980 9981 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9982 bpf_map_clear_priv_t clear_priv) 9983 { 9984 if (!map) 9985 return libbpf_err(-EINVAL); 9986 9987 if (map->priv) { 9988 if (map->clear_priv) 9989 map->clear_priv(map, map->priv); 9990 } 9991 9992 map->priv = priv; 9993 map->clear_priv = clear_priv; 9994 return 0; 9995 } 9996 9997 void *bpf_map__priv(const struct bpf_map *map) 9998 { 9999 return map ? map->priv : libbpf_err_ptr(-EINVAL); 10000 } 10001 10002 int bpf_map__set_initial_value(struct bpf_map *map, 10003 const void *data, size_t size) 10004 { 10005 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 10006 size != map->def.value_size || map->fd >= 0) 10007 return libbpf_err(-EINVAL); 10008 10009 memcpy(map->mmaped, data, size); 10010 return 0; 10011 } 10012 10013 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 10014 { 10015 if (!map->mmaped) 10016 return NULL; 10017 *psize = map->def.value_size; 10018 return map->mmaped; 10019 } 10020 10021 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 10022 { 10023 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 10024 } 10025 10026 bool bpf_map__is_internal(const struct bpf_map *map) 10027 { 10028 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10029 } 10030 10031 __u32 bpf_map__ifindex(const struct bpf_map *map) 10032 { 10033 return map->map_ifindex; 10034 } 10035 10036 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10037 { 10038 if (map->fd >= 0) 10039 return libbpf_err(-EBUSY); 10040 map->map_ifindex = ifindex; 10041 return 0; 10042 } 10043 10044 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10045 { 10046 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10047 pr_warn("error: unsupported map type\n"); 10048 return libbpf_err(-EINVAL); 10049 } 10050 if (map->inner_map_fd != -1) { 10051 pr_warn("error: inner_map_fd already specified\n"); 10052 return libbpf_err(-EINVAL); 10053 } 10054 if (map->inner_map) { 10055 bpf_map__destroy(map->inner_map); 10056 zfree(&map->inner_map); 10057 } 10058 map->inner_map_fd = fd; 10059 return 0; 10060 } 10061 10062 static struct bpf_map * 10063 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10064 { 10065 ssize_t idx; 10066 struct bpf_map *s, *e; 10067 10068 if (!obj || !obj->maps) 10069 return errno = EINVAL, NULL; 10070 10071 s = obj->maps; 10072 e = obj->maps + obj->nr_maps; 10073 10074 if ((m < s) || (m >= e)) { 10075 pr_warn("error in %s: map handler doesn't belong to object\n", 10076 __func__); 10077 return errno = EINVAL, NULL; 10078 } 10079 10080 idx = (m - obj->maps) + i; 10081 if (idx >= obj->nr_maps || idx < 0) 10082 return NULL; 10083 return &obj->maps[idx]; 10084 } 10085 10086 struct bpf_map * 10087 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 10088 { 10089 return bpf_object__next_map(obj, prev); 10090 } 10091 10092 struct bpf_map * 10093 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10094 { 10095 if (prev == NULL) 10096 return obj->maps; 10097 10098 return __bpf_map__iter(prev, obj, 1); 10099 } 10100 10101 struct bpf_map * 10102 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 10103 { 10104 return bpf_object__prev_map(obj, next); 10105 } 10106 10107 struct bpf_map * 10108 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10109 { 10110 if (next == NULL) { 10111 if (!obj->nr_maps) 10112 return NULL; 10113 return obj->maps + obj->nr_maps - 1; 10114 } 10115 10116 return __bpf_map__iter(next, obj, -1); 10117 } 10118 10119 struct bpf_map * 10120 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10121 { 10122 struct bpf_map *pos; 10123 10124 bpf_object__for_each_map(pos, obj) { 10125 /* if it's a special internal map name (which always starts 10126 * with dot) then check if that special name matches the 10127 * real map name (ELF section name) 10128 */ 10129 if (name[0] == '.') { 10130 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10131 return pos; 10132 continue; 10133 } 10134 /* otherwise map name has to be an exact match */ 10135 if (map_uses_real_name(pos)) { 10136 if (strcmp(pos->real_name, name) == 0) 10137 return pos; 10138 continue; 10139 } 10140 if (strcmp(pos->name, name) == 0) 10141 return pos; 10142 } 10143 return errno = ENOENT, NULL; 10144 } 10145 10146 int 10147 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10148 { 10149 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10150 } 10151 10152 struct bpf_map * 10153 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 10154 { 10155 return libbpf_err_ptr(-ENOTSUP); 10156 } 10157 10158 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10159 size_t value_sz, bool check_value_sz) 10160 { 10161 if (map->fd <= 0) 10162 return -ENOENT; 10163 10164 if (map->def.key_size != key_sz) { 10165 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10166 map->name, key_sz, map->def.key_size); 10167 return -EINVAL; 10168 } 10169 10170 if (!check_value_sz) 10171 return 0; 10172 10173 switch (map->def.type) { 10174 case BPF_MAP_TYPE_PERCPU_ARRAY: 10175 case BPF_MAP_TYPE_PERCPU_HASH: 10176 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10177 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10178 int num_cpu = libbpf_num_possible_cpus(); 10179 size_t elem_sz = roundup(map->def.value_size, 8); 10180 10181 if (value_sz != num_cpu * elem_sz) { 10182 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10183 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10184 return -EINVAL; 10185 } 10186 break; 10187 } 10188 default: 10189 if (map->def.value_size != value_sz) { 10190 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10191 map->name, value_sz, map->def.value_size); 10192 return -EINVAL; 10193 } 10194 break; 10195 } 10196 return 0; 10197 } 10198 10199 int bpf_map__lookup_elem(const struct bpf_map *map, 10200 const void *key, size_t key_sz, 10201 void *value, size_t value_sz, __u64 flags) 10202 { 10203 int err; 10204 10205 err = validate_map_op(map, key_sz, value_sz, true); 10206 if (err) 10207 return libbpf_err(err); 10208 10209 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10210 } 10211 10212 int bpf_map__update_elem(const struct bpf_map *map, 10213 const void *key, size_t key_sz, 10214 const void *value, size_t value_sz, __u64 flags) 10215 { 10216 int err; 10217 10218 err = validate_map_op(map, key_sz, value_sz, true); 10219 if (err) 10220 return libbpf_err(err); 10221 10222 return bpf_map_update_elem(map->fd, key, value, flags); 10223 } 10224 10225 int bpf_map__delete_elem(const struct bpf_map *map, 10226 const void *key, size_t key_sz, __u64 flags) 10227 { 10228 int err; 10229 10230 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10231 if (err) 10232 return libbpf_err(err); 10233 10234 return bpf_map_delete_elem_flags(map->fd, key, flags); 10235 } 10236 10237 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10238 const void *key, size_t key_sz, 10239 void *value, size_t value_sz, __u64 flags) 10240 { 10241 int err; 10242 10243 err = validate_map_op(map, key_sz, value_sz, true); 10244 if (err) 10245 return libbpf_err(err); 10246 10247 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10248 } 10249 10250 int bpf_map__get_next_key(const struct bpf_map *map, 10251 const void *cur_key, void *next_key, size_t key_sz) 10252 { 10253 int err; 10254 10255 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10256 if (err) 10257 return libbpf_err(err); 10258 10259 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10260 } 10261 10262 long libbpf_get_error(const void *ptr) 10263 { 10264 if (!IS_ERR_OR_NULL(ptr)) 10265 return 0; 10266 10267 if (IS_ERR(ptr)) 10268 errno = -PTR_ERR(ptr); 10269 10270 /* If ptr == NULL, then errno should be already set by the failing 10271 * API, because libbpf never returns NULL on success and it now always 10272 * sets errno on error. So no extra errno handling for ptr == NULL 10273 * case. 10274 */ 10275 return -errno; 10276 } 10277 10278 __attribute__((alias("bpf_prog_load_xattr2"))) 10279 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 10280 struct bpf_object **pobj, int *prog_fd); 10281 10282 static int bpf_prog_load_xattr2(const struct bpf_prog_load_attr *attr, 10283 struct bpf_object **pobj, int *prog_fd) 10284 { 10285 struct bpf_object_open_attr open_attr = {}; 10286 struct bpf_program *prog, *first_prog = NULL; 10287 struct bpf_object *obj; 10288 struct bpf_map *map; 10289 int err; 10290 10291 if (!attr) 10292 return libbpf_err(-EINVAL); 10293 if (!attr->file) 10294 return libbpf_err(-EINVAL); 10295 10296 open_attr.file = attr->file; 10297 open_attr.prog_type = attr->prog_type; 10298 10299 obj = __bpf_object__open_xattr(&open_attr, 0); 10300 err = libbpf_get_error(obj); 10301 if (err) 10302 return libbpf_err(-ENOENT); 10303 10304 bpf_object__for_each_program(prog, obj) { 10305 enum bpf_attach_type attach_type = attr->expected_attach_type; 10306 /* 10307 * to preserve backwards compatibility, bpf_prog_load treats 10308 * attr->prog_type, if specified, as an override to whatever 10309 * bpf_object__open guessed 10310 */ 10311 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 10312 prog->type = attr->prog_type; 10313 prog->expected_attach_type = attach_type; 10314 } 10315 if (bpf_program__type(prog) == BPF_PROG_TYPE_UNSPEC) { 10316 /* 10317 * we haven't guessed from section name and user 10318 * didn't provide a fallback type, too bad... 10319 */ 10320 bpf_object__close(obj); 10321 return libbpf_err(-EINVAL); 10322 } 10323 10324 prog->prog_ifindex = attr->ifindex; 10325 prog->log_level = attr->log_level; 10326 prog->prog_flags |= attr->prog_flags; 10327 if (!first_prog) 10328 first_prog = prog; 10329 } 10330 10331 bpf_object__for_each_map(map, obj) { 10332 if (map->def.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) 10333 map->map_ifindex = attr->ifindex; 10334 } 10335 10336 if (!first_prog) { 10337 pr_warn("object file doesn't contain bpf program\n"); 10338 bpf_object__close(obj); 10339 return libbpf_err(-ENOENT); 10340 } 10341 10342 err = bpf_object__load(obj); 10343 if (err) { 10344 bpf_object__close(obj); 10345 return libbpf_err(err); 10346 } 10347 10348 *pobj = obj; 10349 *prog_fd = bpf_program__fd(first_prog); 10350 return 0; 10351 } 10352 10353 COMPAT_VERSION(bpf_prog_load_deprecated, bpf_prog_load, LIBBPF_0.0.1) 10354 int bpf_prog_load_deprecated(const char *file, enum bpf_prog_type type, 10355 struct bpf_object **pobj, int *prog_fd) 10356 { 10357 struct bpf_prog_load_attr attr; 10358 10359 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 10360 attr.file = file; 10361 attr.prog_type = type; 10362 attr.expected_attach_type = 0; 10363 10364 return bpf_prog_load_xattr2(&attr, pobj, prog_fd); 10365 } 10366 10367 /* Replace link's underlying BPF program with the new one */ 10368 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10369 { 10370 int ret; 10371 10372 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 10373 return libbpf_err_errno(ret); 10374 } 10375 10376 /* Release "ownership" of underlying BPF resource (typically, BPF program 10377 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10378 * link, when destructed through bpf_link__destroy() call won't attempt to 10379 * detach/unregisted that BPF resource. This is useful in situations where, 10380 * say, attached BPF program has to outlive userspace program that attached it 10381 * in the system. Depending on type of BPF program, though, there might be 10382 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10383 * exit of userspace program doesn't trigger automatic detachment and clean up 10384 * inside the kernel. 10385 */ 10386 void bpf_link__disconnect(struct bpf_link *link) 10387 { 10388 link->disconnected = true; 10389 } 10390 10391 int bpf_link__destroy(struct bpf_link *link) 10392 { 10393 int err = 0; 10394 10395 if (IS_ERR_OR_NULL(link)) 10396 return 0; 10397 10398 if (!link->disconnected && link->detach) 10399 err = link->detach(link); 10400 if (link->pin_path) 10401 free(link->pin_path); 10402 if (link->dealloc) 10403 link->dealloc(link); 10404 else 10405 free(link); 10406 10407 return libbpf_err(err); 10408 } 10409 10410 int bpf_link__fd(const struct bpf_link *link) 10411 { 10412 return link->fd; 10413 } 10414 10415 const char *bpf_link__pin_path(const struct bpf_link *link) 10416 { 10417 return link->pin_path; 10418 } 10419 10420 static int bpf_link__detach_fd(struct bpf_link *link) 10421 { 10422 return libbpf_err_errno(close(link->fd)); 10423 } 10424 10425 struct bpf_link *bpf_link__open(const char *path) 10426 { 10427 struct bpf_link *link; 10428 int fd; 10429 10430 fd = bpf_obj_get(path); 10431 if (fd < 0) { 10432 fd = -errno; 10433 pr_warn("failed to open link at %s: %d\n", path, fd); 10434 return libbpf_err_ptr(fd); 10435 } 10436 10437 link = calloc(1, sizeof(*link)); 10438 if (!link) { 10439 close(fd); 10440 return libbpf_err_ptr(-ENOMEM); 10441 } 10442 link->detach = &bpf_link__detach_fd; 10443 link->fd = fd; 10444 10445 link->pin_path = strdup(path); 10446 if (!link->pin_path) { 10447 bpf_link__destroy(link); 10448 return libbpf_err_ptr(-ENOMEM); 10449 } 10450 10451 return link; 10452 } 10453 10454 int bpf_link__detach(struct bpf_link *link) 10455 { 10456 return bpf_link_detach(link->fd) ? -errno : 0; 10457 } 10458 10459 int bpf_link__pin(struct bpf_link *link, const char *path) 10460 { 10461 int err; 10462 10463 if (link->pin_path) 10464 return libbpf_err(-EBUSY); 10465 err = make_parent_dir(path); 10466 if (err) 10467 return libbpf_err(err); 10468 err = check_path(path); 10469 if (err) 10470 return libbpf_err(err); 10471 10472 link->pin_path = strdup(path); 10473 if (!link->pin_path) 10474 return libbpf_err(-ENOMEM); 10475 10476 if (bpf_obj_pin(link->fd, link->pin_path)) { 10477 err = -errno; 10478 zfree(&link->pin_path); 10479 return libbpf_err(err); 10480 } 10481 10482 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10483 return 0; 10484 } 10485 10486 int bpf_link__unpin(struct bpf_link *link) 10487 { 10488 int err; 10489 10490 if (!link->pin_path) 10491 return libbpf_err(-EINVAL); 10492 10493 err = unlink(link->pin_path); 10494 if (err != 0) 10495 return -errno; 10496 10497 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10498 zfree(&link->pin_path); 10499 return 0; 10500 } 10501 10502 struct bpf_link_perf { 10503 struct bpf_link link; 10504 int perf_event_fd; 10505 /* legacy kprobe support: keep track of probe identifier and type */ 10506 char *legacy_probe_name; 10507 bool legacy_is_kprobe; 10508 bool legacy_is_retprobe; 10509 }; 10510 10511 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10512 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10513 10514 static int bpf_link_perf_detach(struct bpf_link *link) 10515 { 10516 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10517 int err = 0; 10518 10519 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10520 err = -errno; 10521 10522 if (perf_link->perf_event_fd != link->fd) 10523 close(perf_link->perf_event_fd); 10524 close(link->fd); 10525 10526 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10527 if (perf_link->legacy_probe_name) { 10528 if (perf_link->legacy_is_kprobe) { 10529 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10530 perf_link->legacy_is_retprobe); 10531 } else { 10532 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10533 perf_link->legacy_is_retprobe); 10534 } 10535 } 10536 10537 return err; 10538 } 10539 10540 static void bpf_link_perf_dealloc(struct bpf_link *link) 10541 { 10542 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10543 10544 free(perf_link->legacy_probe_name); 10545 free(perf_link); 10546 } 10547 10548 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10549 const struct bpf_perf_event_opts *opts) 10550 { 10551 char errmsg[STRERR_BUFSIZE]; 10552 struct bpf_link_perf *link; 10553 int prog_fd, link_fd = -1, err; 10554 10555 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10556 return libbpf_err_ptr(-EINVAL); 10557 10558 if (pfd < 0) { 10559 pr_warn("prog '%s': invalid perf event FD %d\n", 10560 prog->name, pfd); 10561 return libbpf_err_ptr(-EINVAL); 10562 } 10563 prog_fd = bpf_program__fd(prog); 10564 if (prog_fd < 0) { 10565 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10566 prog->name); 10567 return libbpf_err_ptr(-EINVAL); 10568 } 10569 10570 link = calloc(1, sizeof(*link)); 10571 if (!link) 10572 return libbpf_err_ptr(-ENOMEM); 10573 link->link.detach = &bpf_link_perf_detach; 10574 link->link.dealloc = &bpf_link_perf_dealloc; 10575 link->perf_event_fd = pfd; 10576 10577 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 10578 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10579 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10580 10581 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10582 if (link_fd < 0) { 10583 err = -errno; 10584 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10585 prog->name, pfd, 10586 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10587 goto err_out; 10588 } 10589 link->link.fd = link_fd; 10590 } else { 10591 if (OPTS_GET(opts, bpf_cookie, 0)) { 10592 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10593 err = -EOPNOTSUPP; 10594 goto err_out; 10595 } 10596 10597 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10598 err = -errno; 10599 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10600 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10601 if (err == -EPROTO) 10602 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10603 prog->name, pfd); 10604 goto err_out; 10605 } 10606 link->link.fd = pfd; 10607 } 10608 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10609 err = -errno; 10610 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10611 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10612 goto err_out; 10613 } 10614 10615 return &link->link; 10616 err_out: 10617 if (link_fd >= 0) 10618 close(link_fd); 10619 free(link); 10620 return libbpf_err_ptr(err); 10621 } 10622 10623 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10624 { 10625 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10626 } 10627 10628 /* 10629 * this function is expected to parse integer in the range of [0, 2^31-1] from 10630 * given file using scanf format string fmt. If actual parsed value is 10631 * negative, the result might be indistinguishable from error 10632 */ 10633 static int parse_uint_from_file(const char *file, const char *fmt) 10634 { 10635 char buf[STRERR_BUFSIZE]; 10636 int err, ret; 10637 FILE *f; 10638 10639 f = fopen(file, "r"); 10640 if (!f) { 10641 err = -errno; 10642 pr_debug("failed to open '%s': %s\n", file, 10643 libbpf_strerror_r(err, buf, sizeof(buf))); 10644 return err; 10645 } 10646 err = fscanf(f, fmt, &ret); 10647 if (err != 1) { 10648 err = err == EOF ? -EIO : -errno; 10649 pr_debug("failed to parse '%s': %s\n", file, 10650 libbpf_strerror_r(err, buf, sizeof(buf))); 10651 fclose(f); 10652 return err; 10653 } 10654 fclose(f); 10655 return ret; 10656 } 10657 10658 static int determine_kprobe_perf_type(void) 10659 { 10660 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10661 10662 return parse_uint_from_file(file, "%d\n"); 10663 } 10664 10665 static int determine_uprobe_perf_type(void) 10666 { 10667 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10668 10669 return parse_uint_from_file(file, "%d\n"); 10670 } 10671 10672 static int determine_kprobe_retprobe_bit(void) 10673 { 10674 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10675 10676 return parse_uint_from_file(file, "config:%d\n"); 10677 } 10678 10679 static int determine_uprobe_retprobe_bit(void) 10680 { 10681 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10682 10683 return parse_uint_from_file(file, "config:%d\n"); 10684 } 10685 10686 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10687 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10688 10689 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10690 uint64_t offset, int pid, size_t ref_ctr_off) 10691 { 10692 struct perf_event_attr attr = {}; 10693 char errmsg[STRERR_BUFSIZE]; 10694 int type, pfd, err; 10695 10696 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10697 return -EINVAL; 10698 10699 type = uprobe ? determine_uprobe_perf_type() 10700 : determine_kprobe_perf_type(); 10701 if (type < 0) { 10702 pr_warn("failed to determine %s perf type: %s\n", 10703 uprobe ? "uprobe" : "kprobe", 10704 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10705 return type; 10706 } 10707 if (retprobe) { 10708 int bit = uprobe ? determine_uprobe_retprobe_bit() 10709 : determine_kprobe_retprobe_bit(); 10710 10711 if (bit < 0) { 10712 pr_warn("failed to determine %s retprobe bit: %s\n", 10713 uprobe ? "uprobe" : "kprobe", 10714 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10715 return bit; 10716 } 10717 attr.config |= 1 << bit; 10718 } 10719 attr.size = sizeof(attr); 10720 attr.type = type; 10721 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10722 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10723 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10724 10725 /* pid filter is meaningful only for uprobes */ 10726 pfd = syscall(__NR_perf_event_open, &attr, 10727 pid < 0 ? -1 : pid /* pid */, 10728 pid == -1 ? 0 : -1 /* cpu */, 10729 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10730 if (pfd < 0) { 10731 err = -errno; 10732 pr_warn("%s perf_event_open() failed: %s\n", 10733 uprobe ? "uprobe" : "kprobe", 10734 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10735 return err; 10736 } 10737 return pfd; 10738 } 10739 10740 static int append_to_file(const char *file, const char *fmt, ...) 10741 { 10742 int fd, n, err = 0; 10743 va_list ap; 10744 10745 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10746 if (fd < 0) 10747 return -errno; 10748 10749 va_start(ap, fmt); 10750 n = vdprintf(fd, fmt, ap); 10751 va_end(ap); 10752 10753 if (n < 0) 10754 err = -errno; 10755 10756 close(fd); 10757 return err; 10758 } 10759 10760 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10761 const char *kfunc_name, size_t offset) 10762 { 10763 static int index = 0; 10764 10765 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10766 __sync_fetch_and_add(&index, 1)); 10767 } 10768 10769 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10770 const char *kfunc_name, size_t offset) 10771 { 10772 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10773 10774 return append_to_file(file, "%c:%s/%s %s+0x%zx", 10775 retprobe ? 'r' : 'p', 10776 retprobe ? "kretprobes" : "kprobes", 10777 probe_name, kfunc_name, offset); 10778 } 10779 10780 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10781 { 10782 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 10783 10784 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 10785 } 10786 10787 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10788 { 10789 char file[256]; 10790 10791 snprintf(file, sizeof(file), 10792 "/sys/kernel/debug/tracing/events/%s/%s/id", 10793 retprobe ? "kretprobes" : "kprobes", probe_name); 10794 10795 return parse_uint_from_file(file, "%d\n"); 10796 } 10797 10798 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10799 const char *kfunc_name, size_t offset, int pid) 10800 { 10801 struct perf_event_attr attr = {}; 10802 char errmsg[STRERR_BUFSIZE]; 10803 int type, pfd, err; 10804 10805 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10806 if (err < 0) { 10807 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10808 kfunc_name, offset, 10809 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10810 return err; 10811 } 10812 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10813 if (type < 0) { 10814 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10815 kfunc_name, offset, 10816 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10817 return type; 10818 } 10819 attr.size = sizeof(attr); 10820 attr.config = type; 10821 attr.type = PERF_TYPE_TRACEPOINT; 10822 10823 pfd = syscall(__NR_perf_event_open, &attr, 10824 pid < 0 ? -1 : pid, /* pid */ 10825 pid == -1 ? 0 : -1, /* cpu */ 10826 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10827 if (pfd < 0) { 10828 err = -errno; 10829 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10830 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10831 return err; 10832 } 10833 return pfd; 10834 } 10835 10836 struct bpf_link * 10837 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10838 const char *func_name, 10839 const struct bpf_kprobe_opts *opts) 10840 { 10841 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10842 char errmsg[STRERR_BUFSIZE]; 10843 char *legacy_probe = NULL; 10844 struct bpf_link *link; 10845 size_t offset; 10846 bool retprobe, legacy; 10847 int pfd, err; 10848 10849 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10850 return libbpf_err_ptr(-EINVAL); 10851 10852 retprobe = OPTS_GET(opts, retprobe, false); 10853 offset = OPTS_GET(opts, offset, 0); 10854 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10855 10856 legacy = determine_kprobe_perf_type() < 0; 10857 if (!legacy) { 10858 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10859 func_name, offset, 10860 -1 /* pid */, 0 /* ref_ctr_off */); 10861 } else { 10862 char probe_name[256]; 10863 10864 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10865 func_name, offset); 10866 10867 legacy_probe = strdup(probe_name); 10868 if (!legacy_probe) 10869 return libbpf_err_ptr(-ENOMEM); 10870 10871 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10872 offset, -1 /* pid */); 10873 } 10874 if (pfd < 0) { 10875 err = -errno; 10876 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10877 prog->name, retprobe ? "kretprobe" : "kprobe", 10878 func_name, offset, 10879 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10880 goto err_out; 10881 } 10882 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10883 err = libbpf_get_error(link); 10884 if (err) { 10885 close(pfd); 10886 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10887 prog->name, retprobe ? "kretprobe" : "kprobe", 10888 func_name, offset, 10889 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10890 goto err_out; 10891 } 10892 if (legacy) { 10893 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10894 10895 perf_link->legacy_probe_name = legacy_probe; 10896 perf_link->legacy_is_kprobe = true; 10897 perf_link->legacy_is_retprobe = retprobe; 10898 } 10899 10900 return link; 10901 err_out: 10902 free(legacy_probe); 10903 return libbpf_err_ptr(err); 10904 } 10905 10906 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10907 bool retprobe, 10908 const char *func_name) 10909 { 10910 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10911 .retprobe = retprobe, 10912 ); 10913 10914 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10915 } 10916 10917 /* Adapted from perf/util/string.c */ 10918 static bool glob_match(const char *str, const char *pat) 10919 { 10920 while (*str && *pat && *pat != '*') { 10921 if (*pat == '?') { /* Matches any single character */ 10922 str++; 10923 pat++; 10924 continue; 10925 } 10926 if (*str != *pat) 10927 return false; 10928 str++; 10929 pat++; 10930 } 10931 /* Check wild card */ 10932 if (*pat == '*') { 10933 while (*pat == '*') 10934 pat++; 10935 if (!*pat) /* Tail wild card matches all */ 10936 return true; 10937 while (*str) 10938 if (glob_match(str++, pat)) 10939 return true; 10940 } 10941 return !*str && !*pat; 10942 } 10943 10944 struct kprobe_multi_resolve { 10945 const char *pattern; 10946 unsigned long *addrs; 10947 size_t cap; 10948 size_t cnt; 10949 }; 10950 10951 static int 10952 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10953 const char *sym_name, void *ctx) 10954 { 10955 struct kprobe_multi_resolve *res = ctx; 10956 int err; 10957 10958 if (!glob_match(sym_name, res->pattern)) 10959 return 0; 10960 10961 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10962 res->cnt + 1); 10963 if (err) 10964 return err; 10965 10966 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10967 return 0; 10968 } 10969 10970 struct bpf_link * 10971 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10972 const char *pattern, 10973 const struct bpf_kprobe_multi_opts *opts) 10974 { 10975 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10976 struct kprobe_multi_resolve res = { 10977 .pattern = pattern, 10978 }; 10979 struct bpf_link *link = NULL; 10980 char errmsg[STRERR_BUFSIZE]; 10981 const unsigned long *addrs; 10982 int err, link_fd, prog_fd; 10983 const __u64 *cookies; 10984 const char **syms; 10985 bool retprobe; 10986 size_t cnt; 10987 10988 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10989 return libbpf_err_ptr(-EINVAL); 10990 10991 syms = OPTS_GET(opts, syms, false); 10992 addrs = OPTS_GET(opts, addrs, false); 10993 cnt = OPTS_GET(opts, cnt, false); 10994 cookies = OPTS_GET(opts, cookies, false); 10995 10996 if (!pattern && !addrs && !syms) 10997 return libbpf_err_ptr(-EINVAL); 10998 if (pattern && (addrs || syms || cookies || cnt)) 10999 return libbpf_err_ptr(-EINVAL); 11000 if (!pattern && !cnt) 11001 return libbpf_err_ptr(-EINVAL); 11002 if (addrs && syms) 11003 return libbpf_err_ptr(-EINVAL); 11004 11005 if (pattern) { 11006 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 11007 if (err) 11008 goto error; 11009 if (!res.cnt) { 11010 err = -ENOENT; 11011 goto error; 11012 } 11013 addrs = res.addrs; 11014 cnt = res.cnt; 11015 } 11016 11017 retprobe = OPTS_GET(opts, retprobe, false); 11018 11019 lopts.kprobe_multi.syms = syms; 11020 lopts.kprobe_multi.addrs = addrs; 11021 lopts.kprobe_multi.cookies = cookies; 11022 lopts.kprobe_multi.cnt = cnt; 11023 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11024 11025 link = calloc(1, sizeof(*link)); 11026 if (!link) { 11027 err = -ENOMEM; 11028 goto error; 11029 } 11030 link->detach = &bpf_link__detach_fd; 11031 11032 prog_fd = bpf_program__fd(prog); 11033 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11034 if (link_fd < 0) { 11035 err = -errno; 11036 pr_warn("prog '%s': failed to attach: %s\n", 11037 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11038 goto error; 11039 } 11040 link->fd = link_fd; 11041 free(res.addrs); 11042 return link; 11043 11044 error: 11045 free(link); 11046 free(res.addrs); 11047 return libbpf_err_ptr(err); 11048 } 11049 11050 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11051 { 11052 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11053 unsigned long offset = 0; 11054 const char *func_name; 11055 char *func; 11056 int n; 11057 11058 *link = NULL; 11059 11060 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11061 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11062 return 0; 11063 11064 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11065 if (opts.retprobe) 11066 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11067 else 11068 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11069 11070 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11071 if (n < 1) { 11072 pr_warn("kprobe name is invalid: %s\n", func_name); 11073 return -EINVAL; 11074 } 11075 if (opts.retprobe && offset != 0) { 11076 free(func); 11077 pr_warn("kretprobes do not support offset specification\n"); 11078 return -EINVAL; 11079 } 11080 11081 opts.offset = offset; 11082 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11083 free(func); 11084 return libbpf_get_error(*link); 11085 } 11086 11087 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11088 { 11089 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11090 const char *spec; 11091 char *pattern; 11092 int n; 11093 11094 *link = NULL; 11095 11096 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11097 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11098 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11099 return 0; 11100 11101 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11102 if (opts.retprobe) 11103 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11104 else 11105 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11106 11107 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11108 if (n < 1) { 11109 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11110 return -EINVAL; 11111 } 11112 11113 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11114 free(pattern); 11115 return libbpf_get_error(*link); 11116 } 11117 11118 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11119 const char *binary_path, uint64_t offset) 11120 { 11121 int i; 11122 11123 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11124 11125 /* sanitize binary_path in the probe name */ 11126 for (i = 0; buf[i]; i++) { 11127 if (!isalnum(buf[i])) 11128 buf[i] = '_'; 11129 } 11130 } 11131 11132 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11133 const char *binary_path, size_t offset) 11134 { 11135 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 11136 11137 return append_to_file(file, "%c:%s/%s %s:0x%zx", 11138 retprobe ? 'r' : 'p', 11139 retprobe ? "uretprobes" : "uprobes", 11140 probe_name, binary_path, offset); 11141 } 11142 11143 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11144 { 11145 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 11146 11147 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 11148 } 11149 11150 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11151 { 11152 char file[512]; 11153 11154 snprintf(file, sizeof(file), 11155 "/sys/kernel/debug/tracing/events/%s/%s/id", 11156 retprobe ? "uretprobes" : "uprobes", probe_name); 11157 11158 return parse_uint_from_file(file, "%d\n"); 11159 } 11160 11161 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11162 const char *binary_path, size_t offset, int pid) 11163 { 11164 struct perf_event_attr attr; 11165 int type, pfd, err; 11166 11167 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11168 if (err < 0) { 11169 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11170 binary_path, (size_t)offset, err); 11171 return err; 11172 } 11173 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11174 if (type < 0) { 11175 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11176 binary_path, offset, err); 11177 return type; 11178 } 11179 11180 memset(&attr, 0, sizeof(attr)); 11181 attr.size = sizeof(attr); 11182 attr.config = type; 11183 attr.type = PERF_TYPE_TRACEPOINT; 11184 11185 pfd = syscall(__NR_perf_event_open, &attr, 11186 pid < 0 ? -1 : pid, /* pid */ 11187 pid == -1 ? 0 : -1, /* cpu */ 11188 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11189 if (pfd < 0) { 11190 err = -errno; 11191 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11192 return err; 11193 } 11194 return pfd; 11195 } 11196 11197 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 11198 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 11199 { 11200 while ((scn = elf_nextscn(elf, scn)) != NULL) { 11201 GElf_Shdr sh; 11202 11203 if (!gelf_getshdr(scn, &sh)) 11204 continue; 11205 if (sh.sh_type == sh_type) 11206 return scn; 11207 } 11208 return NULL; 11209 } 11210 11211 /* Find offset of function name in object specified by path. "name" matches 11212 * symbol name or name@@LIB for library functions. 11213 */ 11214 static long elf_find_func_offset(const char *binary_path, const char *name) 11215 { 11216 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 11217 bool is_shared_lib, is_name_qualified; 11218 char errmsg[STRERR_BUFSIZE]; 11219 long ret = -ENOENT; 11220 size_t name_len; 11221 GElf_Ehdr ehdr; 11222 Elf *elf; 11223 11224 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 11225 if (fd < 0) { 11226 ret = -errno; 11227 pr_warn("failed to open %s: %s\n", binary_path, 11228 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 11229 return ret; 11230 } 11231 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 11232 if (!elf) { 11233 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 11234 close(fd); 11235 return -LIBBPF_ERRNO__FORMAT; 11236 } 11237 if (!gelf_getehdr(elf, &ehdr)) { 11238 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 11239 ret = -LIBBPF_ERRNO__FORMAT; 11240 goto out; 11241 } 11242 /* for shared lib case, we do not need to calculate relative offset */ 11243 is_shared_lib = ehdr.e_type == ET_DYN; 11244 11245 name_len = strlen(name); 11246 /* Does name specify "@@LIB"? */ 11247 is_name_qualified = strstr(name, "@@") != NULL; 11248 11249 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 11250 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 11251 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 11252 * reported as a warning/error. 11253 */ 11254 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 11255 size_t nr_syms, strtabidx, idx; 11256 Elf_Data *symbols = NULL; 11257 Elf_Scn *scn = NULL; 11258 int last_bind = -1; 11259 const char *sname; 11260 GElf_Shdr sh; 11261 11262 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 11263 if (!scn) { 11264 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 11265 binary_path); 11266 continue; 11267 } 11268 if (!gelf_getshdr(scn, &sh)) 11269 continue; 11270 strtabidx = sh.sh_link; 11271 symbols = elf_getdata(scn, 0); 11272 if (!symbols) { 11273 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 11274 binary_path, elf_errmsg(-1)); 11275 ret = -LIBBPF_ERRNO__FORMAT; 11276 goto out; 11277 } 11278 nr_syms = symbols->d_size / sh.sh_entsize; 11279 11280 for (idx = 0; idx < nr_syms; idx++) { 11281 int curr_bind; 11282 GElf_Sym sym; 11283 Elf_Scn *sym_scn; 11284 GElf_Shdr sym_sh; 11285 11286 if (!gelf_getsym(symbols, idx, &sym)) 11287 continue; 11288 11289 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 11290 continue; 11291 11292 sname = elf_strptr(elf, strtabidx, sym.st_name); 11293 if (!sname) 11294 continue; 11295 11296 curr_bind = GELF_ST_BIND(sym.st_info); 11297 11298 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 11299 if (strncmp(sname, name, name_len) != 0) 11300 continue; 11301 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 11302 * additional characters in sname should be of the form "@@LIB". 11303 */ 11304 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 11305 continue; 11306 11307 if (ret >= 0) { 11308 /* handle multiple matches */ 11309 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 11310 /* Only accept one non-weak bind. */ 11311 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 11312 sname, name, binary_path); 11313 ret = -LIBBPF_ERRNO__FORMAT; 11314 goto out; 11315 } else if (curr_bind == STB_WEAK) { 11316 /* already have a non-weak bind, and 11317 * this is a weak bind, so ignore. 11318 */ 11319 continue; 11320 } 11321 } 11322 11323 /* Transform symbol's virtual address (absolute for 11324 * binaries and relative for shared libs) into file 11325 * offset, which is what kernel is expecting for 11326 * uprobe/uretprobe attachment. 11327 * See Documentation/trace/uprobetracer.rst for more 11328 * details. 11329 * This is done by looking up symbol's containing 11330 * section's header and using it's virtual address 11331 * (sh_addr) and corresponding file offset (sh_offset) 11332 * to transform sym.st_value (virtual address) into 11333 * desired final file offset. 11334 */ 11335 sym_scn = elf_getscn(elf, sym.st_shndx); 11336 if (!sym_scn) 11337 continue; 11338 if (!gelf_getshdr(sym_scn, &sym_sh)) 11339 continue; 11340 11341 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 11342 last_bind = curr_bind; 11343 } 11344 if (ret > 0) 11345 break; 11346 } 11347 11348 if (ret > 0) { 11349 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 11350 ret); 11351 } else { 11352 if (ret == 0) { 11353 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 11354 is_shared_lib ? "should not be 0 in a shared library" : 11355 "try using shared library path instead"); 11356 ret = -ENOENT; 11357 } else { 11358 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 11359 } 11360 } 11361 out: 11362 elf_end(elf); 11363 close(fd); 11364 return ret; 11365 } 11366 11367 static const char *arch_specific_lib_paths(void) 11368 { 11369 /* 11370 * Based on https://packages.debian.org/sid/libc6. 11371 * 11372 * Assume that the traced program is built for the same architecture 11373 * as libbpf, which should cover the vast majority of cases. 11374 */ 11375 #if defined(__x86_64__) 11376 return "/lib/x86_64-linux-gnu"; 11377 #elif defined(__i386__) 11378 return "/lib/i386-linux-gnu"; 11379 #elif defined(__s390x__) 11380 return "/lib/s390x-linux-gnu"; 11381 #elif defined(__s390__) 11382 return "/lib/s390-linux-gnu"; 11383 #elif defined(__arm__) && defined(__SOFTFP__) 11384 return "/lib/arm-linux-gnueabi"; 11385 #elif defined(__arm__) && !defined(__SOFTFP__) 11386 return "/lib/arm-linux-gnueabihf"; 11387 #elif defined(__aarch64__) 11388 return "/lib/aarch64-linux-gnu"; 11389 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11390 return "/lib/mips64el-linux-gnuabi64"; 11391 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11392 return "/lib/mipsel-linux-gnu"; 11393 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11394 return "/lib/powerpc64le-linux-gnu"; 11395 #elif defined(__sparc__) && defined(__arch64__) 11396 return "/lib/sparc64-linux-gnu"; 11397 #elif defined(__riscv) && __riscv_xlen == 64 11398 return "/lib/riscv64-linux-gnu"; 11399 #else 11400 return NULL; 11401 #endif 11402 } 11403 11404 /* Get full path to program/shared library. */ 11405 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11406 { 11407 const char *search_paths[3] = {}; 11408 int i; 11409 11410 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11411 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11412 search_paths[1] = "/usr/lib64:/usr/lib"; 11413 search_paths[2] = arch_specific_lib_paths(); 11414 } else { 11415 search_paths[0] = getenv("PATH"); 11416 search_paths[1] = "/usr/bin:/usr/sbin"; 11417 } 11418 11419 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11420 const char *s; 11421 11422 if (!search_paths[i]) 11423 continue; 11424 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11425 char *next_path; 11426 int seg_len; 11427 11428 if (s[0] == ':') 11429 s++; 11430 next_path = strchr(s, ':'); 11431 seg_len = next_path ? next_path - s : strlen(s); 11432 if (!seg_len) 11433 continue; 11434 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11435 /* ensure it is an executable file/link */ 11436 if (access(result, R_OK | X_OK) < 0) 11437 continue; 11438 pr_debug("resolved '%s' to '%s'\n", file, result); 11439 return 0; 11440 } 11441 } 11442 return -ENOENT; 11443 } 11444 11445 LIBBPF_API struct bpf_link * 11446 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11447 const char *binary_path, size_t func_offset, 11448 const struct bpf_uprobe_opts *opts) 11449 { 11450 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11451 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11452 char full_binary_path[PATH_MAX]; 11453 struct bpf_link *link; 11454 size_t ref_ctr_off; 11455 int pfd, err; 11456 bool retprobe, legacy; 11457 const char *func_name; 11458 11459 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11460 return libbpf_err_ptr(-EINVAL); 11461 11462 retprobe = OPTS_GET(opts, retprobe, false); 11463 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11464 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11465 11466 if (binary_path && !strchr(binary_path, '/')) { 11467 err = resolve_full_path(binary_path, full_binary_path, 11468 sizeof(full_binary_path)); 11469 if (err) { 11470 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11471 prog->name, binary_path, err); 11472 return libbpf_err_ptr(err); 11473 } 11474 binary_path = full_binary_path; 11475 } 11476 func_name = OPTS_GET(opts, func_name, NULL); 11477 if (func_name) { 11478 long sym_off; 11479 11480 if (!binary_path) { 11481 pr_warn("prog '%s': name-based attach requires binary_path\n", 11482 prog->name); 11483 return libbpf_err_ptr(-EINVAL); 11484 } 11485 sym_off = elf_find_func_offset(binary_path, func_name); 11486 if (sym_off < 0) 11487 return libbpf_err_ptr(sym_off); 11488 func_offset += sym_off; 11489 } 11490 11491 legacy = determine_uprobe_perf_type() < 0; 11492 if (!legacy) { 11493 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11494 func_offset, pid, ref_ctr_off); 11495 } else { 11496 char probe_name[PATH_MAX + 64]; 11497 11498 if (ref_ctr_off) 11499 return libbpf_err_ptr(-EINVAL); 11500 11501 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11502 binary_path, func_offset); 11503 11504 legacy_probe = strdup(probe_name); 11505 if (!legacy_probe) 11506 return libbpf_err_ptr(-ENOMEM); 11507 11508 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11509 binary_path, func_offset, pid); 11510 } 11511 if (pfd < 0) { 11512 err = -errno; 11513 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11514 prog->name, retprobe ? "uretprobe" : "uprobe", 11515 binary_path, func_offset, 11516 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11517 goto err_out; 11518 } 11519 11520 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11521 err = libbpf_get_error(link); 11522 if (err) { 11523 close(pfd); 11524 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11525 prog->name, retprobe ? "uretprobe" : "uprobe", 11526 binary_path, func_offset, 11527 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11528 goto err_out; 11529 } 11530 if (legacy) { 11531 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11532 11533 perf_link->legacy_probe_name = legacy_probe; 11534 perf_link->legacy_is_kprobe = false; 11535 perf_link->legacy_is_retprobe = retprobe; 11536 } 11537 return link; 11538 err_out: 11539 free(legacy_probe); 11540 return libbpf_err_ptr(err); 11541 11542 } 11543 11544 /* Format of u[ret]probe section definition supporting auto-attach: 11545 * u[ret]probe/binary:function[+offset] 11546 * 11547 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11548 * full binary path via bpf_program__attach_uprobe_opts. 11549 * 11550 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11551 * specified (and auto-attach is not possible) or the above format is specified for 11552 * auto-attach. 11553 */ 11554 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11555 { 11556 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11557 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11558 int n, ret = -EINVAL; 11559 long offset = 0; 11560 11561 *link = NULL; 11562 11563 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11564 &probe_type, &binary_path, &func_name, &offset); 11565 switch (n) { 11566 case 1: 11567 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11568 ret = 0; 11569 break; 11570 case 2: 11571 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11572 prog->name, prog->sec_name); 11573 break; 11574 case 3: 11575 case 4: 11576 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11577 strcmp(probe_type, "uretprobe.s") == 0; 11578 if (opts.retprobe && offset != 0) { 11579 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11580 prog->name); 11581 break; 11582 } 11583 opts.func_name = func_name; 11584 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11585 ret = libbpf_get_error(*link); 11586 break; 11587 default: 11588 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11589 prog->sec_name); 11590 break; 11591 } 11592 free(probe_type); 11593 free(binary_path); 11594 free(func_name); 11595 11596 return ret; 11597 } 11598 11599 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11600 bool retprobe, pid_t pid, 11601 const char *binary_path, 11602 size_t func_offset) 11603 { 11604 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11605 11606 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11607 } 11608 11609 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11610 pid_t pid, const char *binary_path, 11611 const char *usdt_provider, const char *usdt_name, 11612 const struct bpf_usdt_opts *opts) 11613 { 11614 char resolved_path[512]; 11615 struct bpf_object *obj = prog->obj; 11616 struct bpf_link *link; 11617 __u64 usdt_cookie; 11618 int err; 11619 11620 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11621 return libbpf_err_ptr(-EINVAL); 11622 11623 if (bpf_program__fd(prog) < 0) { 11624 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11625 prog->name); 11626 return libbpf_err_ptr(-EINVAL); 11627 } 11628 11629 if (!strchr(binary_path, '/')) { 11630 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11631 if (err) { 11632 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11633 prog->name, binary_path, err); 11634 return libbpf_err_ptr(err); 11635 } 11636 binary_path = resolved_path; 11637 } 11638 11639 /* USDT manager is instantiated lazily on first USDT attach. It will 11640 * be destroyed together with BPF object in bpf_object__close(). 11641 */ 11642 if (IS_ERR(obj->usdt_man)) 11643 return libbpf_ptr(obj->usdt_man); 11644 if (!obj->usdt_man) { 11645 obj->usdt_man = usdt_manager_new(obj); 11646 if (IS_ERR(obj->usdt_man)) 11647 return libbpf_ptr(obj->usdt_man); 11648 } 11649 11650 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11651 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11652 usdt_provider, usdt_name, usdt_cookie); 11653 err = libbpf_get_error(link); 11654 if (err) 11655 return libbpf_err_ptr(err); 11656 return link; 11657 } 11658 11659 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11660 { 11661 char *path = NULL, *provider = NULL, *name = NULL; 11662 const char *sec_name; 11663 int n, err; 11664 11665 sec_name = bpf_program__section_name(prog); 11666 if (strcmp(sec_name, "usdt") == 0) { 11667 /* no auto-attach for just SEC("usdt") */ 11668 *link = NULL; 11669 return 0; 11670 } 11671 11672 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11673 if (n != 3) { 11674 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11675 sec_name); 11676 err = -EINVAL; 11677 } else { 11678 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11679 provider, name, NULL); 11680 err = libbpf_get_error(*link); 11681 } 11682 free(path); 11683 free(provider); 11684 free(name); 11685 return err; 11686 } 11687 11688 static int determine_tracepoint_id(const char *tp_category, 11689 const char *tp_name) 11690 { 11691 char file[PATH_MAX]; 11692 int ret; 11693 11694 ret = snprintf(file, sizeof(file), 11695 "/sys/kernel/debug/tracing/events/%s/%s/id", 11696 tp_category, tp_name); 11697 if (ret < 0) 11698 return -errno; 11699 if (ret >= sizeof(file)) { 11700 pr_debug("tracepoint %s/%s path is too long\n", 11701 tp_category, tp_name); 11702 return -E2BIG; 11703 } 11704 return parse_uint_from_file(file, "%d\n"); 11705 } 11706 11707 static int perf_event_open_tracepoint(const char *tp_category, 11708 const char *tp_name) 11709 { 11710 struct perf_event_attr attr = {}; 11711 char errmsg[STRERR_BUFSIZE]; 11712 int tp_id, pfd, err; 11713 11714 tp_id = determine_tracepoint_id(tp_category, tp_name); 11715 if (tp_id < 0) { 11716 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11717 tp_category, tp_name, 11718 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11719 return tp_id; 11720 } 11721 11722 attr.type = PERF_TYPE_TRACEPOINT; 11723 attr.size = sizeof(attr); 11724 attr.config = tp_id; 11725 11726 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11727 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11728 if (pfd < 0) { 11729 err = -errno; 11730 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11731 tp_category, tp_name, 11732 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11733 return err; 11734 } 11735 return pfd; 11736 } 11737 11738 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11739 const char *tp_category, 11740 const char *tp_name, 11741 const struct bpf_tracepoint_opts *opts) 11742 { 11743 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11744 char errmsg[STRERR_BUFSIZE]; 11745 struct bpf_link *link; 11746 int pfd, err; 11747 11748 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11749 return libbpf_err_ptr(-EINVAL); 11750 11751 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11752 11753 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11754 if (pfd < 0) { 11755 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11756 prog->name, tp_category, tp_name, 11757 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11758 return libbpf_err_ptr(pfd); 11759 } 11760 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11761 err = libbpf_get_error(link); 11762 if (err) { 11763 close(pfd); 11764 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11765 prog->name, tp_category, tp_name, 11766 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11767 return libbpf_err_ptr(err); 11768 } 11769 return link; 11770 } 11771 11772 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11773 const char *tp_category, 11774 const char *tp_name) 11775 { 11776 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11777 } 11778 11779 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11780 { 11781 char *sec_name, *tp_cat, *tp_name; 11782 11783 *link = NULL; 11784 11785 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11786 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11787 return 0; 11788 11789 sec_name = strdup(prog->sec_name); 11790 if (!sec_name) 11791 return -ENOMEM; 11792 11793 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11794 if (str_has_pfx(prog->sec_name, "tp/")) 11795 tp_cat = sec_name + sizeof("tp/") - 1; 11796 else 11797 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11798 tp_name = strchr(tp_cat, '/'); 11799 if (!tp_name) { 11800 free(sec_name); 11801 return -EINVAL; 11802 } 11803 *tp_name = '\0'; 11804 tp_name++; 11805 11806 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11807 free(sec_name); 11808 return libbpf_get_error(*link); 11809 } 11810 11811 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11812 const char *tp_name) 11813 { 11814 char errmsg[STRERR_BUFSIZE]; 11815 struct bpf_link *link; 11816 int prog_fd, pfd; 11817 11818 prog_fd = bpf_program__fd(prog); 11819 if (prog_fd < 0) { 11820 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11821 return libbpf_err_ptr(-EINVAL); 11822 } 11823 11824 link = calloc(1, sizeof(*link)); 11825 if (!link) 11826 return libbpf_err_ptr(-ENOMEM); 11827 link->detach = &bpf_link__detach_fd; 11828 11829 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11830 if (pfd < 0) { 11831 pfd = -errno; 11832 free(link); 11833 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11834 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11835 return libbpf_err_ptr(pfd); 11836 } 11837 link->fd = pfd; 11838 return link; 11839 } 11840 11841 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11842 { 11843 static const char *const prefixes[] = { 11844 "raw_tp", 11845 "raw_tracepoint", 11846 "raw_tp.w", 11847 "raw_tracepoint.w", 11848 }; 11849 size_t i; 11850 const char *tp_name = NULL; 11851 11852 *link = NULL; 11853 11854 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11855 size_t pfx_len; 11856 11857 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11858 continue; 11859 11860 pfx_len = strlen(prefixes[i]); 11861 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11862 if (prog->sec_name[pfx_len] == '\0') 11863 return 0; 11864 11865 if (prog->sec_name[pfx_len] != '/') 11866 continue; 11867 11868 tp_name = prog->sec_name + pfx_len + 1; 11869 break; 11870 } 11871 11872 if (!tp_name) { 11873 pr_warn("prog '%s': invalid section name '%s'\n", 11874 prog->name, prog->sec_name); 11875 return -EINVAL; 11876 } 11877 11878 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11879 return libbpf_get_error(link); 11880 } 11881 11882 /* Common logic for all BPF program types that attach to a btf_id */ 11883 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11884 const struct bpf_trace_opts *opts) 11885 { 11886 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11887 char errmsg[STRERR_BUFSIZE]; 11888 struct bpf_link *link; 11889 int prog_fd, pfd; 11890 11891 if (!OPTS_VALID(opts, bpf_trace_opts)) 11892 return libbpf_err_ptr(-EINVAL); 11893 11894 prog_fd = bpf_program__fd(prog); 11895 if (prog_fd < 0) { 11896 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11897 return libbpf_err_ptr(-EINVAL); 11898 } 11899 11900 link = calloc(1, sizeof(*link)); 11901 if (!link) 11902 return libbpf_err_ptr(-ENOMEM); 11903 link->detach = &bpf_link__detach_fd; 11904 11905 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11906 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11907 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11908 if (pfd < 0) { 11909 pfd = -errno; 11910 free(link); 11911 pr_warn("prog '%s': failed to attach: %s\n", 11912 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11913 return libbpf_err_ptr(pfd); 11914 } 11915 link->fd = pfd; 11916 return link; 11917 } 11918 11919 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11920 { 11921 return bpf_program__attach_btf_id(prog, NULL); 11922 } 11923 11924 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11925 const struct bpf_trace_opts *opts) 11926 { 11927 return bpf_program__attach_btf_id(prog, opts); 11928 } 11929 11930 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11931 { 11932 return bpf_program__attach_btf_id(prog, NULL); 11933 } 11934 11935 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11936 { 11937 *link = bpf_program__attach_trace(prog); 11938 return libbpf_get_error(*link); 11939 } 11940 11941 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11942 { 11943 *link = bpf_program__attach_lsm(prog); 11944 return libbpf_get_error(*link); 11945 } 11946 11947 static struct bpf_link * 11948 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11949 const char *target_name) 11950 { 11951 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11952 .target_btf_id = btf_id); 11953 enum bpf_attach_type attach_type; 11954 char errmsg[STRERR_BUFSIZE]; 11955 struct bpf_link *link; 11956 int prog_fd, link_fd; 11957 11958 prog_fd = bpf_program__fd(prog); 11959 if (prog_fd < 0) { 11960 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11961 return libbpf_err_ptr(-EINVAL); 11962 } 11963 11964 link = calloc(1, sizeof(*link)); 11965 if (!link) 11966 return libbpf_err_ptr(-ENOMEM); 11967 link->detach = &bpf_link__detach_fd; 11968 11969 attach_type = bpf_program__expected_attach_type(prog); 11970 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11971 if (link_fd < 0) { 11972 link_fd = -errno; 11973 free(link); 11974 pr_warn("prog '%s': failed to attach to %s: %s\n", 11975 prog->name, target_name, 11976 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11977 return libbpf_err_ptr(link_fd); 11978 } 11979 link->fd = link_fd; 11980 return link; 11981 } 11982 11983 struct bpf_link * 11984 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11985 { 11986 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11987 } 11988 11989 struct bpf_link * 11990 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11991 { 11992 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11993 } 11994 11995 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11996 { 11997 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11998 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11999 } 12000 12001 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12002 int target_fd, 12003 const char *attach_func_name) 12004 { 12005 int btf_id; 12006 12007 if (!!target_fd != !!attach_func_name) { 12008 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12009 prog->name); 12010 return libbpf_err_ptr(-EINVAL); 12011 } 12012 12013 if (prog->type != BPF_PROG_TYPE_EXT) { 12014 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12015 prog->name); 12016 return libbpf_err_ptr(-EINVAL); 12017 } 12018 12019 if (target_fd) { 12020 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12021 if (btf_id < 0) 12022 return libbpf_err_ptr(btf_id); 12023 12024 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 12025 } else { 12026 /* no target, so use raw_tracepoint_open for compatibility 12027 * with old kernels 12028 */ 12029 return bpf_program__attach_trace(prog); 12030 } 12031 } 12032 12033 struct bpf_link * 12034 bpf_program__attach_iter(const struct bpf_program *prog, 12035 const struct bpf_iter_attach_opts *opts) 12036 { 12037 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12038 char errmsg[STRERR_BUFSIZE]; 12039 struct bpf_link *link; 12040 int prog_fd, link_fd; 12041 __u32 target_fd = 0; 12042 12043 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12044 return libbpf_err_ptr(-EINVAL); 12045 12046 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12047 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12048 12049 prog_fd = bpf_program__fd(prog); 12050 if (prog_fd < 0) { 12051 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12052 return libbpf_err_ptr(-EINVAL); 12053 } 12054 12055 link = calloc(1, sizeof(*link)); 12056 if (!link) 12057 return libbpf_err_ptr(-ENOMEM); 12058 link->detach = &bpf_link__detach_fd; 12059 12060 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12061 &link_create_opts); 12062 if (link_fd < 0) { 12063 link_fd = -errno; 12064 free(link); 12065 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12066 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12067 return libbpf_err_ptr(link_fd); 12068 } 12069 link->fd = link_fd; 12070 return link; 12071 } 12072 12073 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12074 { 12075 *link = bpf_program__attach_iter(prog, NULL); 12076 return libbpf_get_error(*link); 12077 } 12078 12079 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12080 { 12081 struct bpf_link *link = NULL; 12082 int err; 12083 12084 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12085 return libbpf_err_ptr(-EOPNOTSUPP); 12086 12087 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12088 if (err) 12089 return libbpf_err_ptr(err); 12090 12091 /* When calling bpf_program__attach() explicitly, auto-attach support 12092 * is expected to work, so NULL returned link is considered an error. 12093 * This is different for skeleton's attach, see comment in 12094 * bpf_object__attach_skeleton(). 12095 */ 12096 if (!link) 12097 return libbpf_err_ptr(-EOPNOTSUPP); 12098 12099 return link; 12100 } 12101 12102 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12103 { 12104 __u32 zero = 0; 12105 12106 if (bpf_map_delete_elem(link->fd, &zero)) 12107 return -errno; 12108 12109 return 0; 12110 } 12111 12112 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12113 { 12114 struct bpf_struct_ops *st_ops; 12115 struct bpf_link *link; 12116 __u32 i, zero = 0; 12117 int err; 12118 12119 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12120 return libbpf_err_ptr(-EINVAL); 12121 12122 link = calloc(1, sizeof(*link)); 12123 if (!link) 12124 return libbpf_err_ptr(-EINVAL); 12125 12126 st_ops = map->st_ops; 12127 for (i = 0; i < btf_vlen(st_ops->type); i++) { 12128 struct bpf_program *prog = st_ops->progs[i]; 12129 void *kern_data; 12130 int prog_fd; 12131 12132 if (!prog) 12133 continue; 12134 12135 prog_fd = bpf_program__fd(prog); 12136 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 12137 *(unsigned long *)kern_data = prog_fd; 12138 } 12139 12140 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 12141 if (err) { 12142 err = -errno; 12143 free(link); 12144 return libbpf_err_ptr(err); 12145 } 12146 12147 link->detach = bpf_link__detach_struct_ops; 12148 link->fd = map->fd; 12149 12150 return link; 12151 } 12152 12153 static enum bpf_perf_event_ret 12154 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12155 void **copy_mem, size_t *copy_size, 12156 bpf_perf_event_print_t fn, void *private_data) 12157 { 12158 struct perf_event_mmap_page *header = mmap_mem; 12159 __u64 data_head = ring_buffer_read_head(header); 12160 __u64 data_tail = header->data_tail; 12161 void *base = ((__u8 *)header) + page_size; 12162 int ret = LIBBPF_PERF_EVENT_CONT; 12163 struct perf_event_header *ehdr; 12164 size_t ehdr_size; 12165 12166 while (data_head != data_tail) { 12167 ehdr = base + (data_tail & (mmap_size - 1)); 12168 ehdr_size = ehdr->size; 12169 12170 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12171 void *copy_start = ehdr; 12172 size_t len_first = base + mmap_size - copy_start; 12173 size_t len_secnd = ehdr_size - len_first; 12174 12175 if (*copy_size < ehdr_size) { 12176 free(*copy_mem); 12177 *copy_mem = malloc(ehdr_size); 12178 if (!*copy_mem) { 12179 *copy_size = 0; 12180 ret = LIBBPF_PERF_EVENT_ERROR; 12181 break; 12182 } 12183 *copy_size = ehdr_size; 12184 } 12185 12186 memcpy(*copy_mem, copy_start, len_first); 12187 memcpy(*copy_mem + len_first, base, len_secnd); 12188 ehdr = *copy_mem; 12189 } 12190 12191 ret = fn(ehdr, private_data); 12192 data_tail += ehdr_size; 12193 if (ret != LIBBPF_PERF_EVENT_CONT) 12194 break; 12195 } 12196 12197 ring_buffer_write_tail(header, data_tail); 12198 return libbpf_err(ret); 12199 } 12200 12201 __attribute__((alias("perf_event_read_simple"))) 12202 enum bpf_perf_event_ret 12203 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12204 void **copy_mem, size_t *copy_size, 12205 bpf_perf_event_print_t fn, void *private_data); 12206 12207 struct perf_buffer; 12208 12209 struct perf_buffer_params { 12210 struct perf_event_attr *attr; 12211 /* if event_cb is specified, it takes precendence */ 12212 perf_buffer_event_fn event_cb; 12213 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12214 perf_buffer_sample_fn sample_cb; 12215 perf_buffer_lost_fn lost_cb; 12216 void *ctx; 12217 int cpu_cnt; 12218 int *cpus; 12219 int *map_keys; 12220 }; 12221 12222 struct perf_cpu_buf { 12223 struct perf_buffer *pb; 12224 void *base; /* mmap()'ed memory */ 12225 void *buf; /* for reconstructing segmented data */ 12226 size_t buf_size; 12227 int fd; 12228 int cpu; 12229 int map_key; 12230 }; 12231 12232 struct perf_buffer { 12233 perf_buffer_event_fn event_cb; 12234 perf_buffer_sample_fn sample_cb; 12235 perf_buffer_lost_fn lost_cb; 12236 void *ctx; /* passed into callbacks */ 12237 12238 size_t page_size; 12239 size_t mmap_size; 12240 struct perf_cpu_buf **cpu_bufs; 12241 struct epoll_event *events; 12242 int cpu_cnt; /* number of allocated CPU buffers */ 12243 int epoll_fd; /* perf event FD */ 12244 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12245 }; 12246 12247 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12248 struct perf_cpu_buf *cpu_buf) 12249 { 12250 if (!cpu_buf) 12251 return; 12252 if (cpu_buf->base && 12253 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12254 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12255 if (cpu_buf->fd >= 0) { 12256 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12257 close(cpu_buf->fd); 12258 } 12259 free(cpu_buf->buf); 12260 free(cpu_buf); 12261 } 12262 12263 void perf_buffer__free(struct perf_buffer *pb) 12264 { 12265 int i; 12266 12267 if (IS_ERR_OR_NULL(pb)) 12268 return; 12269 if (pb->cpu_bufs) { 12270 for (i = 0; i < pb->cpu_cnt; i++) { 12271 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12272 12273 if (!cpu_buf) 12274 continue; 12275 12276 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12277 perf_buffer__free_cpu_buf(pb, cpu_buf); 12278 } 12279 free(pb->cpu_bufs); 12280 } 12281 if (pb->epoll_fd >= 0) 12282 close(pb->epoll_fd); 12283 free(pb->events); 12284 free(pb); 12285 } 12286 12287 static struct perf_cpu_buf * 12288 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12289 int cpu, int map_key) 12290 { 12291 struct perf_cpu_buf *cpu_buf; 12292 char msg[STRERR_BUFSIZE]; 12293 int err; 12294 12295 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12296 if (!cpu_buf) 12297 return ERR_PTR(-ENOMEM); 12298 12299 cpu_buf->pb = pb; 12300 cpu_buf->cpu = cpu; 12301 cpu_buf->map_key = map_key; 12302 12303 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12304 -1, PERF_FLAG_FD_CLOEXEC); 12305 if (cpu_buf->fd < 0) { 12306 err = -errno; 12307 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12308 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12309 goto error; 12310 } 12311 12312 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12313 PROT_READ | PROT_WRITE, MAP_SHARED, 12314 cpu_buf->fd, 0); 12315 if (cpu_buf->base == MAP_FAILED) { 12316 cpu_buf->base = NULL; 12317 err = -errno; 12318 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12319 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12320 goto error; 12321 } 12322 12323 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12324 err = -errno; 12325 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12326 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12327 goto error; 12328 } 12329 12330 return cpu_buf; 12331 12332 error: 12333 perf_buffer__free_cpu_buf(pb, cpu_buf); 12334 return (struct perf_cpu_buf *)ERR_PTR(err); 12335 } 12336 12337 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12338 struct perf_buffer_params *p); 12339 12340 DEFAULT_VERSION(perf_buffer__new_v0_6_0, perf_buffer__new, LIBBPF_0.6.0) 12341 struct perf_buffer *perf_buffer__new_v0_6_0(int map_fd, size_t page_cnt, 12342 perf_buffer_sample_fn sample_cb, 12343 perf_buffer_lost_fn lost_cb, 12344 void *ctx, 12345 const struct perf_buffer_opts *opts) 12346 { 12347 struct perf_buffer_params p = {}; 12348 struct perf_event_attr attr = {}; 12349 12350 if (!OPTS_VALID(opts, perf_buffer_opts)) 12351 return libbpf_err_ptr(-EINVAL); 12352 12353 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12354 attr.type = PERF_TYPE_SOFTWARE; 12355 attr.sample_type = PERF_SAMPLE_RAW; 12356 attr.sample_period = 1; 12357 attr.wakeup_events = 1; 12358 12359 p.attr = &attr; 12360 p.sample_cb = sample_cb; 12361 p.lost_cb = lost_cb; 12362 p.ctx = ctx; 12363 12364 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12365 } 12366 12367 COMPAT_VERSION(perf_buffer__new_deprecated, perf_buffer__new, LIBBPF_0.0.4) 12368 struct perf_buffer *perf_buffer__new_deprecated(int map_fd, size_t page_cnt, 12369 const struct perf_buffer_opts *opts) 12370 { 12371 return perf_buffer__new_v0_6_0(map_fd, page_cnt, 12372 opts ? opts->sample_cb : NULL, 12373 opts ? opts->lost_cb : NULL, 12374 opts ? opts->ctx : NULL, 12375 NULL); 12376 } 12377 12378 DEFAULT_VERSION(perf_buffer__new_raw_v0_6_0, perf_buffer__new_raw, LIBBPF_0.6.0) 12379 struct perf_buffer *perf_buffer__new_raw_v0_6_0(int map_fd, size_t page_cnt, 12380 struct perf_event_attr *attr, 12381 perf_buffer_event_fn event_cb, void *ctx, 12382 const struct perf_buffer_raw_opts *opts) 12383 { 12384 struct perf_buffer_params p = {}; 12385 12386 if (!attr) 12387 return libbpf_err_ptr(-EINVAL); 12388 12389 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12390 return libbpf_err_ptr(-EINVAL); 12391 12392 p.attr = attr; 12393 p.event_cb = event_cb; 12394 p.ctx = ctx; 12395 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12396 p.cpus = OPTS_GET(opts, cpus, NULL); 12397 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12398 12399 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12400 } 12401 12402 COMPAT_VERSION(perf_buffer__new_raw_deprecated, perf_buffer__new_raw, LIBBPF_0.0.4) 12403 struct perf_buffer *perf_buffer__new_raw_deprecated(int map_fd, size_t page_cnt, 12404 const struct perf_buffer_raw_opts *opts) 12405 { 12406 LIBBPF_OPTS(perf_buffer_raw_opts, inner_opts, 12407 .cpu_cnt = opts->cpu_cnt, 12408 .cpus = opts->cpus, 12409 .map_keys = opts->map_keys, 12410 ); 12411 12412 return perf_buffer__new_raw_v0_6_0(map_fd, page_cnt, opts->attr, 12413 opts->event_cb, opts->ctx, &inner_opts); 12414 } 12415 12416 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12417 struct perf_buffer_params *p) 12418 { 12419 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12420 struct bpf_map_info map; 12421 char msg[STRERR_BUFSIZE]; 12422 struct perf_buffer *pb; 12423 bool *online = NULL; 12424 __u32 map_info_len; 12425 int err, i, j, n; 12426 12427 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12428 pr_warn("page count should be power of two, but is %zu\n", 12429 page_cnt); 12430 return ERR_PTR(-EINVAL); 12431 } 12432 12433 /* best-effort sanity checks */ 12434 memset(&map, 0, sizeof(map)); 12435 map_info_len = sizeof(map); 12436 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 12437 if (err) { 12438 err = -errno; 12439 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12440 * -EBADFD, -EFAULT, or -E2BIG on real error 12441 */ 12442 if (err != -EINVAL) { 12443 pr_warn("failed to get map info for map FD %d: %s\n", 12444 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12445 return ERR_PTR(err); 12446 } 12447 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12448 map_fd); 12449 } else { 12450 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12451 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12452 map.name); 12453 return ERR_PTR(-EINVAL); 12454 } 12455 } 12456 12457 pb = calloc(1, sizeof(*pb)); 12458 if (!pb) 12459 return ERR_PTR(-ENOMEM); 12460 12461 pb->event_cb = p->event_cb; 12462 pb->sample_cb = p->sample_cb; 12463 pb->lost_cb = p->lost_cb; 12464 pb->ctx = p->ctx; 12465 12466 pb->page_size = getpagesize(); 12467 pb->mmap_size = pb->page_size * page_cnt; 12468 pb->map_fd = map_fd; 12469 12470 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12471 if (pb->epoll_fd < 0) { 12472 err = -errno; 12473 pr_warn("failed to create epoll instance: %s\n", 12474 libbpf_strerror_r(err, msg, sizeof(msg))); 12475 goto error; 12476 } 12477 12478 if (p->cpu_cnt > 0) { 12479 pb->cpu_cnt = p->cpu_cnt; 12480 } else { 12481 pb->cpu_cnt = libbpf_num_possible_cpus(); 12482 if (pb->cpu_cnt < 0) { 12483 err = pb->cpu_cnt; 12484 goto error; 12485 } 12486 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12487 pb->cpu_cnt = map.max_entries; 12488 } 12489 12490 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12491 if (!pb->events) { 12492 err = -ENOMEM; 12493 pr_warn("failed to allocate events: out of memory\n"); 12494 goto error; 12495 } 12496 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12497 if (!pb->cpu_bufs) { 12498 err = -ENOMEM; 12499 pr_warn("failed to allocate buffers: out of memory\n"); 12500 goto error; 12501 } 12502 12503 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12504 if (err) { 12505 pr_warn("failed to get online CPU mask: %d\n", err); 12506 goto error; 12507 } 12508 12509 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12510 struct perf_cpu_buf *cpu_buf; 12511 int cpu, map_key; 12512 12513 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12514 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12515 12516 /* in case user didn't explicitly requested particular CPUs to 12517 * be attached to, skip offline/not present CPUs 12518 */ 12519 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12520 continue; 12521 12522 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12523 if (IS_ERR(cpu_buf)) { 12524 err = PTR_ERR(cpu_buf); 12525 goto error; 12526 } 12527 12528 pb->cpu_bufs[j] = cpu_buf; 12529 12530 err = bpf_map_update_elem(pb->map_fd, &map_key, 12531 &cpu_buf->fd, 0); 12532 if (err) { 12533 err = -errno; 12534 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12535 cpu, map_key, cpu_buf->fd, 12536 libbpf_strerror_r(err, msg, sizeof(msg))); 12537 goto error; 12538 } 12539 12540 pb->events[j].events = EPOLLIN; 12541 pb->events[j].data.ptr = cpu_buf; 12542 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12543 &pb->events[j]) < 0) { 12544 err = -errno; 12545 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12546 cpu, cpu_buf->fd, 12547 libbpf_strerror_r(err, msg, sizeof(msg))); 12548 goto error; 12549 } 12550 j++; 12551 } 12552 pb->cpu_cnt = j; 12553 free(online); 12554 12555 return pb; 12556 12557 error: 12558 free(online); 12559 if (pb) 12560 perf_buffer__free(pb); 12561 return ERR_PTR(err); 12562 } 12563 12564 struct perf_sample_raw { 12565 struct perf_event_header header; 12566 uint32_t size; 12567 char data[]; 12568 }; 12569 12570 struct perf_sample_lost { 12571 struct perf_event_header header; 12572 uint64_t id; 12573 uint64_t lost; 12574 uint64_t sample_id; 12575 }; 12576 12577 static enum bpf_perf_event_ret 12578 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12579 { 12580 struct perf_cpu_buf *cpu_buf = ctx; 12581 struct perf_buffer *pb = cpu_buf->pb; 12582 void *data = e; 12583 12584 /* user wants full control over parsing perf event */ 12585 if (pb->event_cb) 12586 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12587 12588 switch (e->type) { 12589 case PERF_RECORD_SAMPLE: { 12590 struct perf_sample_raw *s = data; 12591 12592 if (pb->sample_cb) 12593 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12594 break; 12595 } 12596 case PERF_RECORD_LOST: { 12597 struct perf_sample_lost *s = data; 12598 12599 if (pb->lost_cb) 12600 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12601 break; 12602 } 12603 default: 12604 pr_warn("unknown perf sample type %d\n", e->type); 12605 return LIBBPF_PERF_EVENT_ERROR; 12606 } 12607 return LIBBPF_PERF_EVENT_CONT; 12608 } 12609 12610 static int perf_buffer__process_records(struct perf_buffer *pb, 12611 struct perf_cpu_buf *cpu_buf) 12612 { 12613 enum bpf_perf_event_ret ret; 12614 12615 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12616 pb->page_size, &cpu_buf->buf, 12617 &cpu_buf->buf_size, 12618 perf_buffer__process_record, cpu_buf); 12619 if (ret != LIBBPF_PERF_EVENT_CONT) 12620 return ret; 12621 return 0; 12622 } 12623 12624 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12625 { 12626 return pb->epoll_fd; 12627 } 12628 12629 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12630 { 12631 int i, cnt, err; 12632 12633 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12634 if (cnt < 0) 12635 return -errno; 12636 12637 for (i = 0; i < cnt; i++) { 12638 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12639 12640 err = perf_buffer__process_records(pb, cpu_buf); 12641 if (err) { 12642 pr_warn("error while processing records: %d\n", err); 12643 return libbpf_err(err); 12644 } 12645 } 12646 return cnt; 12647 } 12648 12649 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12650 * manager. 12651 */ 12652 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12653 { 12654 return pb->cpu_cnt; 12655 } 12656 12657 /* 12658 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12659 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12660 * select()/poll()/epoll() Linux syscalls. 12661 */ 12662 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12663 { 12664 struct perf_cpu_buf *cpu_buf; 12665 12666 if (buf_idx >= pb->cpu_cnt) 12667 return libbpf_err(-EINVAL); 12668 12669 cpu_buf = pb->cpu_bufs[buf_idx]; 12670 if (!cpu_buf) 12671 return libbpf_err(-ENOENT); 12672 12673 return cpu_buf->fd; 12674 } 12675 12676 /* 12677 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12678 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12679 * consume, do nothing and return success. 12680 * Returns: 12681 * - 0 on success; 12682 * - <0 on failure. 12683 */ 12684 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12685 { 12686 struct perf_cpu_buf *cpu_buf; 12687 12688 if (buf_idx >= pb->cpu_cnt) 12689 return libbpf_err(-EINVAL); 12690 12691 cpu_buf = pb->cpu_bufs[buf_idx]; 12692 if (!cpu_buf) 12693 return libbpf_err(-ENOENT); 12694 12695 return perf_buffer__process_records(pb, cpu_buf); 12696 } 12697 12698 int perf_buffer__consume(struct perf_buffer *pb) 12699 { 12700 int i, err; 12701 12702 for (i = 0; i < pb->cpu_cnt; i++) { 12703 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12704 12705 if (!cpu_buf) 12706 continue; 12707 12708 err = perf_buffer__process_records(pb, cpu_buf); 12709 if (err) { 12710 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12711 return libbpf_err(err); 12712 } 12713 } 12714 return 0; 12715 } 12716 12717 struct bpf_prog_info_array_desc { 12718 int array_offset; /* e.g. offset of jited_prog_insns */ 12719 int count_offset; /* e.g. offset of jited_prog_len */ 12720 int size_offset; /* > 0: offset of rec size, 12721 * < 0: fix size of -size_offset 12722 */ 12723 }; 12724 12725 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 12726 [BPF_PROG_INFO_JITED_INSNS] = { 12727 offsetof(struct bpf_prog_info, jited_prog_insns), 12728 offsetof(struct bpf_prog_info, jited_prog_len), 12729 -1, 12730 }, 12731 [BPF_PROG_INFO_XLATED_INSNS] = { 12732 offsetof(struct bpf_prog_info, xlated_prog_insns), 12733 offsetof(struct bpf_prog_info, xlated_prog_len), 12734 -1, 12735 }, 12736 [BPF_PROG_INFO_MAP_IDS] = { 12737 offsetof(struct bpf_prog_info, map_ids), 12738 offsetof(struct bpf_prog_info, nr_map_ids), 12739 -(int)sizeof(__u32), 12740 }, 12741 [BPF_PROG_INFO_JITED_KSYMS] = { 12742 offsetof(struct bpf_prog_info, jited_ksyms), 12743 offsetof(struct bpf_prog_info, nr_jited_ksyms), 12744 -(int)sizeof(__u64), 12745 }, 12746 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 12747 offsetof(struct bpf_prog_info, jited_func_lens), 12748 offsetof(struct bpf_prog_info, nr_jited_func_lens), 12749 -(int)sizeof(__u32), 12750 }, 12751 [BPF_PROG_INFO_FUNC_INFO] = { 12752 offsetof(struct bpf_prog_info, func_info), 12753 offsetof(struct bpf_prog_info, nr_func_info), 12754 offsetof(struct bpf_prog_info, func_info_rec_size), 12755 }, 12756 [BPF_PROG_INFO_LINE_INFO] = { 12757 offsetof(struct bpf_prog_info, line_info), 12758 offsetof(struct bpf_prog_info, nr_line_info), 12759 offsetof(struct bpf_prog_info, line_info_rec_size), 12760 }, 12761 [BPF_PROG_INFO_JITED_LINE_INFO] = { 12762 offsetof(struct bpf_prog_info, jited_line_info), 12763 offsetof(struct bpf_prog_info, nr_jited_line_info), 12764 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 12765 }, 12766 [BPF_PROG_INFO_PROG_TAGS] = { 12767 offsetof(struct bpf_prog_info, prog_tags), 12768 offsetof(struct bpf_prog_info, nr_prog_tags), 12769 -(int)sizeof(__u8) * BPF_TAG_SIZE, 12770 }, 12771 12772 }; 12773 12774 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 12775 int offset) 12776 { 12777 __u32 *array = (__u32 *)info; 12778 12779 if (offset >= 0) 12780 return array[offset / sizeof(__u32)]; 12781 return -(int)offset; 12782 } 12783 12784 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 12785 int offset) 12786 { 12787 __u64 *array = (__u64 *)info; 12788 12789 if (offset >= 0) 12790 return array[offset / sizeof(__u64)]; 12791 return -(int)offset; 12792 } 12793 12794 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 12795 __u32 val) 12796 { 12797 __u32 *array = (__u32 *)info; 12798 12799 if (offset >= 0) 12800 array[offset / sizeof(__u32)] = val; 12801 } 12802 12803 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 12804 __u64 val) 12805 { 12806 __u64 *array = (__u64 *)info; 12807 12808 if (offset >= 0) 12809 array[offset / sizeof(__u64)] = val; 12810 } 12811 12812 struct bpf_prog_info_linear * 12813 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 12814 { 12815 struct bpf_prog_info_linear *info_linear; 12816 struct bpf_prog_info info = {}; 12817 __u32 info_len = sizeof(info); 12818 __u32 data_len = 0; 12819 int i, err; 12820 void *ptr; 12821 12822 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 12823 return libbpf_err_ptr(-EINVAL); 12824 12825 /* step 1: get array dimensions */ 12826 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 12827 if (err) { 12828 pr_debug("can't get prog info: %s", strerror(errno)); 12829 return libbpf_err_ptr(-EFAULT); 12830 } 12831 12832 /* step 2: calculate total size of all arrays */ 12833 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12834 bool include_array = (arrays & (1UL << i)) > 0; 12835 struct bpf_prog_info_array_desc *desc; 12836 __u32 count, size; 12837 12838 desc = bpf_prog_info_array_desc + i; 12839 12840 /* kernel is too old to support this field */ 12841 if (info_len < desc->array_offset + sizeof(__u32) || 12842 info_len < desc->count_offset + sizeof(__u32) || 12843 (desc->size_offset > 0 && info_len < desc->size_offset)) 12844 include_array = false; 12845 12846 if (!include_array) { 12847 arrays &= ~(1UL << i); /* clear the bit */ 12848 continue; 12849 } 12850 12851 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12852 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12853 12854 data_len += count * size; 12855 } 12856 12857 /* step 3: allocate continuous memory */ 12858 data_len = roundup(data_len, sizeof(__u64)); 12859 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 12860 if (!info_linear) 12861 return libbpf_err_ptr(-ENOMEM); 12862 12863 /* step 4: fill data to info_linear->info */ 12864 info_linear->arrays = arrays; 12865 memset(&info_linear->info, 0, sizeof(info)); 12866 ptr = info_linear->data; 12867 12868 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12869 struct bpf_prog_info_array_desc *desc; 12870 __u32 count, size; 12871 12872 if ((arrays & (1UL << i)) == 0) 12873 continue; 12874 12875 desc = bpf_prog_info_array_desc + i; 12876 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12877 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12878 bpf_prog_info_set_offset_u32(&info_linear->info, 12879 desc->count_offset, count); 12880 bpf_prog_info_set_offset_u32(&info_linear->info, 12881 desc->size_offset, size); 12882 bpf_prog_info_set_offset_u64(&info_linear->info, 12883 desc->array_offset, 12884 ptr_to_u64(ptr)); 12885 ptr += count * size; 12886 } 12887 12888 /* step 5: call syscall again to get required arrays */ 12889 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 12890 if (err) { 12891 pr_debug("can't get prog info: %s", strerror(errno)); 12892 free(info_linear); 12893 return libbpf_err_ptr(-EFAULT); 12894 } 12895 12896 /* step 6: verify the data */ 12897 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12898 struct bpf_prog_info_array_desc *desc; 12899 __u32 v1, v2; 12900 12901 if ((arrays & (1UL << i)) == 0) 12902 continue; 12903 12904 desc = bpf_prog_info_array_desc + i; 12905 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 12906 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12907 desc->count_offset); 12908 if (v1 != v2) 12909 pr_warn("%s: mismatch in element count\n", __func__); 12910 12911 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 12912 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 12913 desc->size_offset); 12914 if (v1 != v2) 12915 pr_warn("%s: mismatch in rec size\n", __func__); 12916 } 12917 12918 /* step 7: update info_len and data_len */ 12919 info_linear->info_len = sizeof(struct bpf_prog_info); 12920 info_linear->data_len = data_len; 12921 12922 return info_linear; 12923 } 12924 12925 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 12926 { 12927 int i; 12928 12929 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12930 struct bpf_prog_info_array_desc *desc; 12931 __u64 addr, offs; 12932 12933 if ((info_linear->arrays & (1UL << i)) == 0) 12934 continue; 12935 12936 desc = bpf_prog_info_array_desc + i; 12937 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 12938 desc->array_offset); 12939 offs = addr - ptr_to_u64(info_linear->data); 12940 bpf_prog_info_set_offset_u64(&info_linear->info, 12941 desc->array_offset, offs); 12942 } 12943 } 12944 12945 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 12946 { 12947 int i; 12948 12949 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 12950 struct bpf_prog_info_array_desc *desc; 12951 __u64 addr, offs; 12952 12953 if ((info_linear->arrays & (1UL << i)) == 0) 12954 continue; 12955 12956 desc = bpf_prog_info_array_desc + i; 12957 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 12958 desc->array_offset); 12959 addr = offs + ptr_to_u64(info_linear->data); 12960 bpf_prog_info_set_offset_u64(&info_linear->info, 12961 desc->array_offset, addr); 12962 } 12963 } 12964 12965 int bpf_program__set_attach_target(struct bpf_program *prog, 12966 int attach_prog_fd, 12967 const char *attach_func_name) 12968 { 12969 int btf_obj_fd = 0, btf_id = 0, err; 12970 12971 if (!prog || attach_prog_fd < 0) 12972 return libbpf_err(-EINVAL); 12973 12974 if (prog->obj->loaded) 12975 return libbpf_err(-EINVAL); 12976 12977 if (attach_prog_fd && !attach_func_name) { 12978 /* remember attach_prog_fd and let bpf_program__load() find 12979 * BTF ID during the program load 12980 */ 12981 prog->attach_prog_fd = attach_prog_fd; 12982 return 0; 12983 } 12984 12985 if (attach_prog_fd) { 12986 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12987 attach_prog_fd); 12988 if (btf_id < 0) 12989 return libbpf_err(btf_id); 12990 } else { 12991 if (!attach_func_name) 12992 return libbpf_err(-EINVAL); 12993 12994 /* load btf_vmlinux, if not yet */ 12995 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12996 if (err) 12997 return libbpf_err(err); 12998 err = find_kernel_btf_id(prog->obj, attach_func_name, 12999 prog->expected_attach_type, 13000 &btf_obj_fd, &btf_id); 13001 if (err) 13002 return libbpf_err(err); 13003 } 13004 13005 prog->attach_btf_id = btf_id; 13006 prog->attach_btf_obj_fd = btf_obj_fd; 13007 prog->attach_prog_fd = attach_prog_fd; 13008 return 0; 13009 } 13010 13011 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13012 { 13013 int err = 0, n, len, start, end = -1; 13014 bool *tmp; 13015 13016 *mask = NULL; 13017 *mask_sz = 0; 13018 13019 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13020 while (*s) { 13021 if (*s == ',' || *s == '\n') { 13022 s++; 13023 continue; 13024 } 13025 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13026 if (n <= 0 || n > 2) { 13027 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13028 err = -EINVAL; 13029 goto cleanup; 13030 } else if (n == 1) { 13031 end = start; 13032 } 13033 if (start < 0 || start > end) { 13034 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13035 start, end, s); 13036 err = -EINVAL; 13037 goto cleanup; 13038 } 13039 tmp = realloc(*mask, end + 1); 13040 if (!tmp) { 13041 err = -ENOMEM; 13042 goto cleanup; 13043 } 13044 *mask = tmp; 13045 memset(tmp + *mask_sz, 0, start - *mask_sz); 13046 memset(tmp + start, 1, end - start + 1); 13047 *mask_sz = end + 1; 13048 s += len; 13049 } 13050 if (!*mask_sz) { 13051 pr_warn("Empty CPU range\n"); 13052 return -EINVAL; 13053 } 13054 return 0; 13055 cleanup: 13056 free(*mask); 13057 *mask = NULL; 13058 return err; 13059 } 13060 13061 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13062 { 13063 int fd, err = 0, len; 13064 char buf[128]; 13065 13066 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13067 if (fd < 0) { 13068 err = -errno; 13069 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13070 return err; 13071 } 13072 len = read(fd, buf, sizeof(buf)); 13073 close(fd); 13074 if (len <= 0) { 13075 err = len ? -errno : -EINVAL; 13076 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13077 return err; 13078 } 13079 if (len >= sizeof(buf)) { 13080 pr_warn("CPU mask is too big in file %s\n", fcpu); 13081 return -E2BIG; 13082 } 13083 buf[len] = '\0'; 13084 13085 return parse_cpu_mask_str(buf, mask, mask_sz); 13086 } 13087 13088 int libbpf_num_possible_cpus(void) 13089 { 13090 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13091 static int cpus; 13092 int err, n, i, tmp_cpus; 13093 bool *mask; 13094 13095 tmp_cpus = READ_ONCE(cpus); 13096 if (tmp_cpus > 0) 13097 return tmp_cpus; 13098 13099 err = parse_cpu_mask_file(fcpu, &mask, &n); 13100 if (err) 13101 return libbpf_err(err); 13102 13103 tmp_cpus = 0; 13104 for (i = 0; i < n; i++) { 13105 if (mask[i]) 13106 tmp_cpus++; 13107 } 13108 free(mask); 13109 13110 WRITE_ONCE(cpus, tmp_cpus); 13111 return tmp_cpus; 13112 } 13113 13114 static int populate_skeleton_maps(const struct bpf_object *obj, 13115 struct bpf_map_skeleton *maps, 13116 size_t map_cnt) 13117 { 13118 int i; 13119 13120 for (i = 0; i < map_cnt; i++) { 13121 struct bpf_map **map = maps[i].map; 13122 const char *name = maps[i].name; 13123 void **mmaped = maps[i].mmaped; 13124 13125 *map = bpf_object__find_map_by_name(obj, name); 13126 if (!*map) { 13127 pr_warn("failed to find skeleton map '%s'\n", name); 13128 return -ESRCH; 13129 } 13130 13131 /* externs shouldn't be pre-setup from user code */ 13132 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13133 *mmaped = (*map)->mmaped; 13134 } 13135 return 0; 13136 } 13137 13138 static int populate_skeleton_progs(const struct bpf_object *obj, 13139 struct bpf_prog_skeleton *progs, 13140 size_t prog_cnt) 13141 { 13142 int i; 13143 13144 for (i = 0; i < prog_cnt; i++) { 13145 struct bpf_program **prog = progs[i].prog; 13146 const char *name = progs[i].name; 13147 13148 *prog = bpf_object__find_program_by_name(obj, name); 13149 if (!*prog) { 13150 pr_warn("failed to find skeleton program '%s'\n", name); 13151 return -ESRCH; 13152 } 13153 } 13154 return 0; 13155 } 13156 13157 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13158 const struct bpf_object_open_opts *opts) 13159 { 13160 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13161 .object_name = s->name, 13162 ); 13163 struct bpf_object *obj; 13164 int err; 13165 13166 /* Attempt to preserve opts->object_name, unless overriden by user 13167 * explicitly. Overwriting object name for skeletons is discouraged, 13168 * as it breaks global data maps, because they contain object name 13169 * prefix as their own map name prefix. When skeleton is generated, 13170 * bpftool is making an assumption that this name will stay the same. 13171 */ 13172 if (opts) { 13173 memcpy(&skel_opts, opts, sizeof(*opts)); 13174 if (!opts->object_name) 13175 skel_opts.object_name = s->name; 13176 } 13177 13178 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13179 err = libbpf_get_error(obj); 13180 if (err) { 13181 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13182 s->name, err); 13183 return libbpf_err(err); 13184 } 13185 13186 *s->obj = obj; 13187 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13188 if (err) { 13189 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13190 return libbpf_err(err); 13191 } 13192 13193 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13194 if (err) { 13195 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13196 return libbpf_err(err); 13197 } 13198 13199 return 0; 13200 } 13201 13202 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13203 { 13204 int err, len, var_idx, i; 13205 const char *var_name; 13206 const struct bpf_map *map; 13207 struct btf *btf; 13208 __u32 map_type_id; 13209 const struct btf_type *map_type, *var_type; 13210 const struct bpf_var_skeleton *var_skel; 13211 struct btf_var_secinfo *var; 13212 13213 if (!s->obj) 13214 return libbpf_err(-EINVAL); 13215 13216 btf = bpf_object__btf(s->obj); 13217 if (!btf) { 13218 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13219 bpf_object__name(s->obj)); 13220 return libbpf_err(-errno); 13221 } 13222 13223 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13224 if (err) { 13225 pr_warn("failed to populate subskeleton maps: %d\n", err); 13226 return libbpf_err(err); 13227 } 13228 13229 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13230 if (err) { 13231 pr_warn("failed to populate subskeleton maps: %d\n", err); 13232 return libbpf_err(err); 13233 } 13234 13235 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13236 var_skel = &s->vars[var_idx]; 13237 map = *var_skel->map; 13238 map_type_id = bpf_map__btf_value_type_id(map); 13239 map_type = btf__type_by_id(btf, map_type_id); 13240 13241 if (!btf_is_datasec(map_type)) { 13242 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13243 bpf_map__name(map), 13244 __btf_kind_str(btf_kind(map_type))); 13245 return libbpf_err(-EINVAL); 13246 } 13247 13248 len = btf_vlen(map_type); 13249 var = btf_var_secinfos(map_type); 13250 for (i = 0; i < len; i++, var++) { 13251 var_type = btf__type_by_id(btf, var->type); 13252 var_name = btf__name_by_offset(btf, var_type->name_off); 13253 if (strcmp(var_name, var_skel->name) == 0) { 13254 *var_skel->addr = map->mmaped + var->offset; 13255 break; 13256 } 13257 } 13258 } 13259 return 0; 13260 } 13261 13262 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13263 { 13264 if (!s) 13265 return; 13266 free(s->maps); 13267 free(s->progs); 13268 free(s->vars); 13269 free(s); 13270 } 13271 13272 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13273 { 13274 int i, err; 13275 13276 err = bpf_object__load(*s->obj); 13277 if (err) { 13278 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13279 return libbpf_err(err); 13280 } 13281 13282 for (i = 0; i < s->map_cnt; i++) { 13283 struct bpf_map *map = *s->maps[i].map; 13284 size_t mmap_sz = bpf_map_mmap_sz(map); 13285 int prot, map_fd = bpf_map__fd(map); 13286 void **mmaped = s->maps[i].mmaped; 13287 13288 if (!mmaped) 13289 continue; 13290 13291 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13292 *mmaped = NULL; 13293 continue; 13294 } 13295 13296 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13297 prot = PROT_READ; 13298 else 13299 prot = PROT_READ | PROT_WRITE; 13300 13301 /* Remap anonymous mmap()-ed "map initialization image" as 13302 * a BPF map-backed mmap()-ed memory, but preserving the same 13303 * memory address. This will cause kernel to change process' 13304 * page table to point to a different piece of kernel memory, 13305 * but from userspace point of view memory address (and its 13306 * contents, being identical at this point) will stay the 13307 * same. This mapping will be released by bpf_object__close() 13308 * as per normal clean up procedure, so we don't need to worry 13309 * about it from skeleton's clean up perspective. 13310 */ 13311 *mmaped = mmap(map->mmaped, mmap_sz, prot, 13312 MAP_SHARED | MAP_FIXED, map_fd, 0); 13313 if (*mmaped == MAP_FAILED) { 13314 err = -errno; 13315 *mmaped = NULL; 13316 pr_warn("failed to re-mmap() map '%s': %d\n", 13317 bpf_map__name(map), err); 13318 return libbpf_err(err); 13319 } 13320 } 13321 13322 return 0; 13323 } 13324 13325 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13326 { 13327 int i, err; 13328 13329 for (i = 0; i < s->prog_cnt; i++) { 13330 struct bpf_program *prog = *s->progs[i].prog; 13331 struct bpf_link **link = s->progs[i].link; 13332 13333 if (!prog->autoload) 13334 continue; 13335 13336 /* auto-attaching not supported for this program */ 13337 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13338 continue; 13339 13340 /* if user already set the link manually, don't attempt auto-attach */ 13341 if (*link) 13342 continue; 13343 13344 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13345 if (err) { 13346 pr_warn("prog '%s': failed to auto-attach: %d\n", 13347 bpf_program__name(prog), err); 13348 return libbpf_err(err); 13349 } 13350 13351 /* It's possible that for some SEC() definitions auto-attach 13352 * is supported in some cases (e.g., if definition completely 13353 * specifies target information), but is not in other cases. 13354 * SEC("uprobe") is one such case. If user specified target 13355 * binary and function name, such BPF program can be 13356 * auto-attached. But if not, it shouldn't trigger skeleton's 13357 * attach to fail. It should just be skipped. 13358 * attach_fn signals such case with returning 0 (no error) and 13359 * setting link to NULL. 13360 */ 13361 } 13362 13363 return 0; 13364 } 13365 13366 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13367 { 13368 int i; 13369 13370 for (i = 0; i < s->prog_cnt; i++) { 13371 struct bpf_link **link = s->progs[i].link; 13372 13373 bpf_link__destroy(*link); 13374 *link = NULL; 13375 } 13376 } 13377 13378 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13379 { 13380 if (!s) 13381 return; 13382 13383 if (s->progs) 13384 bpf_object__detach_skeleton(s); 13385 if (s->obj) 13386 bpf_object__close(*s->obj); 13387 free(s->maps); 13388 free(s->progs); 13389 free(s); 13390 } 13391