xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision 377602fc)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/ring_buffer.h>
37 #include <sys/epoll.h>
38 #include <sys/ioctl.h>
39 #include <sys/mman.h>
40 #include <sys/stat.h>
41 #include <sys/types.h>
42 #include <sys/vfs.h>
43 #include <sys/utsname.h>
44 #include <sys/resource.h>
45 #include <libelf.h>
46 #include <gelf.h>
47 #include <zlib.h>
48 
49 #include "libbpf.h"
50 #include "bpf.h"
51 #include "btf.h"
52 #include "str_error.h"
53 #include "libbpf_internal.h"
54 #include "hashmap.h"
55 #include "bpf_gen_internal.h"
56 #include "zip.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static const char * const attach_type_name[] = {
75 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
76 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
77 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
78 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
79 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
80 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
81 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
82 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
83 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
84 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
85 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
86 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
87 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
88 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
89 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
90 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
91 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
92 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
93 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
94 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
95 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
96 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
97 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
98 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
99 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
100 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
101 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
102 	[BPF_LIRC_MODE2]		= "lirc_mode2",
103 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
104 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
105 	[BPF_TRACE_FENTRY]		= "trace_fentry",
106 	[BPF_TRACE_FEXIT]		= "trace_fexit",
107 	[BPF_MODIFY_RETURN]		= "modify_return",
108 	[BPF_LSM_MAC]			= "lsm_mac",
109 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
110 	[BPF_SK_LOOKUP]			= "sk_lookup",
111 	[BPF_TRACE_ITER]		= "trace_iter",
112 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
113 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
114 	[BPF_XDP]			= "xdp",
115 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
116 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
117 	[BPF_PERF_EVENT]		= "perf_event",
118 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
119 	[BPF_STRUCT_OPS]		= "struct_ops",
120 	[BPF_NETFILTER]			= "netfilter",
121 	[BPF_TCX_INGRESS]		= "tcx_ingress",
122 	[BPF_TCX_EGRESS]		= "tcx_egress",
123 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
124 };
125 
126 static const char * const link_type_name[] = {
127 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
128 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
129 	[BPF_LINK_TYPE_TRACING]			= "tracing",
130 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
131 	[BPF_LINK_TYPE_ITER]			= "iter",
132 	[BPF_LINK_TYPE_NETNS]			= "netns",
133 	[BPF_LINK_TYPE_XDP]			= "xdp",
134 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
135 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
136 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
137 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
138 	[BPF_LINK_TYPE_TCX]			= "tcx",
139 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
140 };
141 
142 static const char * const map_type_name[] = {
143 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
144 	[BPF_MAP_TYPE_HASH]			= "hash",
145 	[BPF_MAP_TYPE_ARRAY]			= "array",
146 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
147 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
148 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
149 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
150 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
151 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
152 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
153 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
154 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
155 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
156 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
157 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
158 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
159 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
160 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
161 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
162 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
163 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
164 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
165 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
166 	[BPF_MAP_TYPE_QUEUE]			= "queue",
167 	[BPF_MAP_TYPE_STACK]			= "stack",
168 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
169 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
170 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
171 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
172 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
173 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
174 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
175 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
176 };
177 
178 static const char * const prog_type_name[] = {
179 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
180 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
181 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
182 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
183 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
184 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
185 	[BPF_PROG_TYPE_XDP]			= "xdp",
186 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
187 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
188 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
189 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
190 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
191 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
192 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
193 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
194 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
195 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
196 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
197 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
198 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
199 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
200 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
201 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
202 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
203 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
204 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
205 	[BPF_PROG_TYPE_TRACING]			= "tracing",
206 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
207 	[BPF_PROG_TYPE_EXT]			= "ext",
208 	[BPF_PROG_TYPE_LSM]			= "lsm",
209 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
210 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
211 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
212 };
213 
214 static int __base_pr(enum libbpf_print_level level, const char *format,
215 		     va_list args)
216 {
217 	if (level == LIBBPF_DEBUG)
218 		return 0;
219 
220 	return vfprintf(stderr, format, args);
221 }
222 
223 static libbpf_print_fn_t __libbpf_pr = __base_pr;
224 
225 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
226 {
227 	libbpf_print_fn_t old_print_fn;
228 
229 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
230 
231 	return old_print_fn;
232 }
233 
234 __printf(2, 3)
235 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
236 {
237 	va_list args;
238 	int old_errno;
239 	libbpf_print_fn_t print_fn;
240 
241 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
242 	if (!print_fn)
243 		return;
244 
245 	old_errno = errno;
246 
247 	va_start(args, format);
248 	__libbpf_pr(level, format, args);
249 	va_end(args);
250 
251 	errno = old_errno;
252 }
253 
254 static void pr_perm_msg(int err)
255 {
256 	struct rlimit limit;
257 	char buf[100];
258 
259 	if (err != -EPERM || geteuid() != 0)
260 		return;
261 
262 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
263 	if (err)
264 		return;
265 
266 	if (limit.rlim_cur == RLIM_INFINITY)
267 		return;
268 
269 	if (limit.rlim_cur < 1024)
270 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
271 	else if (limit.rlim_cur < 1024*1024)
272 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
273 	else
274 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
275 
276 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
277 		buf);
278 }
279 
280 #define STRERR_BUFSIZE  128
281 
282 /* Copied from tools/perf/util/util.h */
283 #ifndef zfree
284 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
285 #endif
286 
287 #ifndef zclose
288 # define zclose(fd) ({			\
289 	int ___err = 0;			\
290 	if ((fd) >= 0)			\
291 		___err = close((fd));	\
292 	fd = -1;			\
293 	___err; })
294 #endif
295 
296 static inline __u64 ptr_to_u64(const void *ptr)
297 {
298 	return (__u64) (unsigned long) ptr;
299 }
300 
301 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
302 {
303 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
304 	return 0;
305 }
306 
307 __u32 libbpf_major_version(void)
308 {
309 	return LIBBPF_MAJOR_VERSION;
310 }
311 
312 __u32 libbpf_minor_version(void)
313 {
314 	return LIBBPF_MINOR_VERSION;
315 }
316 
317 const char *libbpf_version_string(void)
318 {
319 #define __S(X) #X
320 #define _S(X) __S(X)
321 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
322 #undef _S
323 #undef __S
324 }
325 
326 enum reloc_type {
327 	RELO_LD64,
328 	RELO_CALL,
329 	RELO_DATA,
330 	RELO_EXTERN_LD64,
331 	RELO_EXTERN_CALL,
332 	RELO_SUBPROG_ADDR,
333 	RELO_CORE,
334 };
335 
336 struct reloc_desc {
337 	enum reloc_type type;
338 	int insn_idx;
339 	union {
340 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
341 		struct {
342 			int map_idx;
343 			int sym_off;
344 			int ext_idx;
345 		};
346 	};
347 };
348 
349 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
350 enum sec_def_flags {
351 	SEC_NONE = 0,
352 	/* expected_attach_type is optional, if kernel doesn't support that */
353 	SEC_EXP_ATTACH_OPT = 1,
354 	/* legacy, only used by libbpf_get_type_names() and
355 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
356 	 * This used to be associated with cgroup (and few other) BPF programs
357 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
358 	 * meaningless nowadays, though.
359 	 */
360 	SEC_ATTACHABLE = 2,
361 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
362 	/* attachment target is specified through BTF ID in either kernel or
363 	 * other BPF program's BTF object
364 	 */
365 	SEC_ATTACH_BTF = 4,
366 	/* BPF program type allows sleeping/blocking in kernel */
367 	SEC_SLEEPABLE = 8,
368 	/* BPF program support non-linear XDP buffer */
369 	SEC_XDP_FRAGS = 16,
370 	/* Setup proper attach type for usdt probes. */
371 	SEC_USDT = 32,
372 };
373 
374 struct bpf_sec_def {
375 	char *sec;
376 	enum bpf_prog_type prog_type;
377 	enum bpf_attach_type expected_attach_type;
378 	long cookie;
379 	int handler_id;
380 
381 	libbpf_prog_setup_fn_t prog_setup_fn;
382 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
383 	libbpf_prog_attach_fn_t prog_attach_fn;
384 };
385 
386 /*
387  * bpf_prog should be a better name but it has been used in
388  * linux/filter.h.
389  */
390 struct bpf_program {
391 	char *name;
392 	char *sec_name;
393 	size_t sec_idx;
394 	const struct bpf_sec_def *sec_def;
395 	/* this program's instruction offset (in number of instructions)
396 	 * within its containing ELF section
397 	 */
398 	size_t sec_insn_off;
399 	/* number of original instructions in ELF section belonging to this
400 	 * program, not taking into account subprogram instructions possible
401 	 * appended later during relocation
402 	 */
403 	size_t sec_insn_cnt;
404 	/* Offset (in number of instructions) of the start of instruction
405 	 * belonging to this BPF program  within its containing main BPF
406 	 * program. For the entry-point (main) BPF program, this is always
407 	 * zero. For a sub-program, this gets reset before each of main BPF
408 	 * programs are processed and relocated and is used to determined
409 	 * whether sub-program was already appended to the main program, and
410 	 * if yes, at which instruction offset.
411 	 */
412 	size_t sub_insn_off;
413 
414 	/* instructions that belong to BPF program; insns[0] is located at
415 	 * sec_insn_off instruction within its ELF section in ELF file, so
416 	 * when mapping ELF file instruction index to the local instruction,
417 	 * one needs to subtract sec_insn_off; and vice versa.
418 	 */
419 	struct bpf_insn *insns;
420 	/* actual number of instruction in this BPF program's image; for
421 	 * entry-point BPF programs this includes the size of main program
422 	 * itself plus all the used sub-programs, appended at the end
423 	 */
424 	size_t insns_cnt;
425 
426 	struct reloc_desc *reloc_desc;
427 	int nr_reloc;
428 
429 	/* BPF verifier log settings */
430 	char *log_buf;
431 	size_t log_size;
432 	__u32 log_level;
433 
434 	struct bpf_object *obj;
435 
436 	int fd;
437 	bool autoload;
438 	bool autoattach;
439 	bool mark_btf_static;
440 	enum bpf_prog_type type;
441 	enum bpf_attach_type expected_attach_type;
442 
443 	int prog_ifindex;
444 	__u32 attach_btf_obj_fd;
445 	__u32 attach_btf_id;
446 	__u32 attach_prog_fd;
447 
448 	void *func_info;
449 	__u32 func_info_rec_size;
450 	__u32 func_info_cnt;
451 
452 	void *line_info;
453 	__u32 line_info_rec_size;
454 	__u32 line_info_cnt;
455 	__u32 prog_flags;
456 };
457 
458 struct bpf_struct_ops {
459 	const char *tname;
460 	const struct btf_type *type;
461 	struct bpf_program **progs;
462 	__u32 *kern_func_off;
463 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
464 	void *data;
465 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
466 	 *      btf_vmlinux's format.
467 	 * struct bpf_struct_ops_tcp_congestion_ops {
468 	 *	[... some other kernel fields ...]
469 	 *	struct tcp_congestion_ops data;
470 	 * }
471 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
472 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
473 	 * from "data".
474 	 */
475 	void *kern_vdata;
476 	__u32 type_id;
477 };
478 
479 #define DATA_SEC ".data"
480 #define BSS_SEC ".bss"
481 #define RODATA_SEC ".rodata"
482 #define KCONFIG_SEC ".kconfig"
483 #define KSYMS_SEC ".ksyms"
484 #define STRUCT_OPS_SEC ".struct_ops"
485 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
486 
487 enum libbpf_map_type {
488 	LIBBPF_MAP_UNSPEC,
489 	LIBBPF_MAP_DATA,
490 	LIBBPF_MAP_BSS,
491 	LIBBPF_MAP_RODATA,
492 	LIBBPF_MAP_KCONFIG,
493 };
494 
495 struct bpf_map_def {
496 	unsigned int type;
497 	unsigned int key_size;
498 	unsigned int value_size;
499 	unsigned int max_entries;
500 	unsigned int map_flags;
501 };
502 
503 struct bpf_map {
504 	struct bpf_object *obj;
505 	char *name;
506 	/* real_name is defined for special internal maps (.rodata*,
507 	 * .data*, .bss, .kconfig) and preserves their original ELF section
508 	 * name. This is important to be able to find corresponding BTF
509 	 * DATASEC information.
510 	 */
511 	char *real_name;
512 	int fd;
513 	int sec_idx;
514 	size_t sec_offset;
515 	int map_ifindex;
516 	int inner_map_fd;
517 	struct bpf_map_def def;
518 	__u32 numa_node;
519 	__u32 btf_var_idx;
520 	__u32 btf_key_type_id;
521 	__u32 btf_value_type_id;
522 	__u32 btf_vmlinux_value_type_id;
523 	enum libbpf_map_type libbpf_type;
524 	void *mmaped;
525 	struct bpf_struct_ops *st_ops;
526 	struct bpf_map *inner_map;
527 	void **init_slots;
528 	int init_slots_sz;
529 	char *pin_path;
530 	bool pinned;
531 	bool reused;
532 	bool autocreate;
533 	__u64 map_extra;
534 };
535 
536 enum extern_type {
537 	EXT_UNKNOWN,
538 	EXT_KCFG,
539 	EXT_KSYM,
540 };
541 
542 enum kcfg_type {
543 	KCFG_UNKNOWN,
544 	KCFG_CHAR,
545 	KCFG_BOOL,
546 	KCFG_INT,
547 	KCFG_TRISTATE,
548 	KCFG_CHAR_ARR,
549 };
550 
551 struct extern_desc {
552 	enum extern_type type;
553 	int sym_idx;
554 	int btf_id;
555 	int sec_btf_id;
556 	const char *name;
557 	char *essent_name;
558 	bool is_set;
559 	bool is_weak;
560 	union {
561 		struct {
562 			enum kcfg_type type;
563 			int sz;
564 			int align;
565 			int data_off;
566 			bool is_signed;
567 		} kcfg;
568 		struct {
569 			unsigned long long addr;
570 
571 			/* target btf_id of the corresponding kernel var. */
572 			int kernel_btf_obj_fd;
573 			int kernel_btf_id;
574 
575 			/* local btf_id of the ksym extern's type. */
576 			__u32 type_id;
577 			/* BTF fd index to be patched in for insn->off, this is
578 			 * 0 for vmlinux BTF, index in obj->fd_array for module
579 			 * BTF
580 			 */
581 			__s16 btf_fd_idx;
582 		} ksym;
583 	};
584 };
585 
586 struct module_btf {
587 	struct btf *btf;
588 	char *name;
589 	__u32 id;
590 	int fd;
591 	int fd_array_idx;
592 };
593 
594 enum sec_type {
595 	SEC_UNUSED = 0,
596 	SEC_RELO,
597 	SEC_BSS,
598 	SEC_DATA,
599 	SEC_RODATA,
600 };
601 
602 struct elf_sec_desc {
603 	enum sec_type sec_type;
604 	Elf64_Shdr *shdr;
605 	Elf_Data *data;
606 };
607 
608 struct elf_state {
609 	int fd;
610 	const void *obj_buf;
611 	size_t obj_buf_sz;
612 	Elf *elf;
613 	Elf64_Ehdr *ehdr;
614 	Elf_Data *symbols;
615 	Elf_Data *st_ops_data;
616 	Elf_Data *st_ops_link_data;
617 	size_t shstrndx; /* section index for section name strings */
618 	size_t strtabidx;
619 	struct elf_sec_desc *secs;
620 	size_t sec_cnt;
621 	int btf_maps_shndx;
622 	__u32 btf_maps_sec_btf_id;
623 	int text_shndx;
624 	int symbols_shndx;
625 	int st_ops_shndx;
626 	int st_ops_link_shndx;
627 };
628 
629 struct usdt_manager;
630 
631 struct bpf_object {
632 	char name[BPF_OBJ_NAME_LEN];
633 	char license[64];
634 	__u32 kern_version;
635 
636 	struct bpf_program *programs;
637 	size_t nr_programs;
638 	struct bpf_map *maps;
639 	size_t nr_maps;
640 	size_t maps_cap;
641 
642 	char *kconfig;
643 	struct extern_desc *externs;
644 	int nr_extern;
645 	int kconfig_map_idx;
646 
647 	bool loaded;
648 	bool has_subcalls;
649 	bool has_rodata;
650 
651 	struct bpf_gen *gen_loader;
652 
653 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
654 	struct elf_state efile;
655 
656 	struct btf *btf;
657 	struct btf_ext *btf_ext;
658 
659 	/* Parse and load BTF vmlinux if any of the programs in the object need
660 	 * it at load time.
661 	 */
662 	struct btf *btf_vmlinux;
663 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
664 	 * override for vmlinux BTF.
665 	 */
666 	char *btf_custom_path;
667 	/* vmlinux BTF override for CO-RE relocations */
668 	struct btf *btf_vmlinux_override;
669 	/* Lazily initialized kernel module BTFs */
670 	struct module_btf *btf_modules;
671 	bool btf_modules_loaded;
672 	size_t btf_module_cnt;
673 	size_t btf_module_cap;
674 
675 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
676 	char *log_buf;
677 	size_t log_size;
678 	__u32 log_level;
679 
680 	int *fd_array;
681 	size_t fd_array_cap;
682 	size_t fd_array_cnt;
683 
684 	struct usdt_manager *usdt_man;
685 
686 	char path[];
687 };
688 
689 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
690 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
691 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
692 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
693 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
694 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
695 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
696 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
697 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
698 
699 void bpf_program__unload(struct bpf_program *prog)
700 {
701 	if (!prog)
702 		return;
703 
704 	zclose(prog->fd);
705 
706 	zfree(&prog->func_info);
707 	zfree(&prog->line_info);
708 }
709 
710 static void bpf_program__exit(struct bpf_program *prog)
711 {
712 	if (!prog)
713 		return;
714 
715 	bpf_program__unload(prog);
716 	zfree(&prog->name);
717 	zfree(&prog->sec_name);
718 	zfree(&prog->insns);
719 	zfree(&prog->reloc_desc);
720 
721 	prog->nr_reloc = 0;
722 	prog->insns_cnt = 0;
723 	prog->sec_idx = -1;
724 }
725 
726 static bool insn_is_subprog_call(const struct bpf_insn *insn)
727 {
728 	return BPF_CLASS(insn->code) == BPF_JMP &&
729 	       BPF_OP(insn->code) == BPF_CALL &&
730 	       BPF_SRC(insn->code) == BPF_K &&
731 	       insn->src_reg == BPF_PSEUDO_CALL &&
732 	       insn->dst_reg == 0 &&
733 	       insn->off == 0;
734 }
735 
736 static bool is_call_insn(const struct bpf_insn *insn)
737 {
738 	return insn->code == (BPF_JMP | BPF_CALL);
739 }
740 
741 static bool insn_is_pseudo_func(struct bpf_insn *insn)
742 {
743 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
744 }
745 
746 static int
747 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
748 		      const char *name, size_t sec_idx, const char *sec_name,
749 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
750 {
751 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
752 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
753 			sec_name, name, sec_off, insn_data_sz);
754 		return -EINVAL;
755 	}
756 
757 	memset(prog, 0, sizeof(*prog));
758 	prog->obj = obj;
759 
760 	prog->sec_idx = sec_idx;
761 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
762 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
763 	/* insns_cnt can later be increased by appending used subprograms */
764 	prog->insns_cnt = prog->sec_insn_cnt;
765 
766 	prog->type = BPF_PROG_TYPE_UNSPEC;
767 	prog->fd = -1;
768 
769 	/* libbpf's convention for SEC("?abc...") is that it's just like
770 	 * SEC("abc...") but the corresponding bpf_program starts out with
771 	 * autoload set to false.
772 	 */
773 	if (sec_name[0] == '?') {
774 		prog->autoload = false;
775 		/* from now on forget there was ? in section name */
776 		sec_name++;
777 	} else {
778 		prog->autoload = true;
779 	}
780 
781 	prog->autoattach = true;
782 
783 	/* inherit object's log_level */
784 	prog->log_level = obj->log_level;
785 
786 	prog->sec_name = strdup(sec_name);
787 	if (!prog->sec_name)
788 		goto errout;
789 
790 	prog->name = strdup(name);
791 	if (!prog->name)
792 		goto errout;
793 
794 	prog->insns = malloc(insn_data_sz);
795 	if (!prog->insns)
796 		goto errout;
797 	memcpy(prog->insns, insn_data, insn_data_sz);
798 
799 	return 0;
800 errout:
801 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
802 	bpf_program__exit(prog);
803 	return -ENOMEM;
804 }
805 
806 static int
807 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
808 			 const char *sec_name, int sec_idx)
809 {
810 	Elf_Data *symbols = obj->efile.symbols;
811 	struct bpf_program *prog, *progs;
812 	void *data = sec_data->d_buf;
813 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
814 	int nr_progs, err, i;
815 	const char *name;
816 	Elf64_Sym *sym;
817 
818 	progs = obj->programs;
819 	nr_progs = obj->nr_programs;
820 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
821 
822 	for (i = 0; i < nr_syms; i++) {
823 		sym = elf_sym_by_idx(obj, i);
824 
825 		if (sym->st_shndx != sec_idx)
826 			continue;
827 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
828 			continue;
829 
830 		prog_sz = sym->st_size;
831 		sec_off = sym->st_value;
832 
833 		name = elf_sym_str(obj, sym->st_name);
834 		if (!name) {
835 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
836 				sec_name, sec_off);
837 			return -LIBBPF_ERRNO__FORMAT;
838 		}
839 
840 		if (sec_off + prog_sz > sec_sz) {
841 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
842 				sec_name, sec_off);
843 			return -LIBBPF_ERRNO__FORMAT;
844 		}
845 
846 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
847 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
848 			return -ENOTSUP;
849 		}
850 
851 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
852 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
853 
854 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
855 		if (!progs) {
856 			/*
857 			 * In this case the original obj->programs
858 			 * is still valid, so don't need special treat for
859 			 * bpf_close_object().
860 			 */
861 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
862 				sec_name, name);
863 			return -ENOMEM;
864 		}
865 		obj->programs = progs;
866 
867 		prog = &progs[nr_progs];
868 
869 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
870 					    sec_off, data + sec_off, prog_sz);
871 		if (err)
872 			return err;
873 
874 		/* if function is a global/weak symbol, but has restricted
875 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
876 		 * as static to enable more permissive BPF verification mode
877 		 * with more outside context available to BPF verifier
878 		 */
879 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
880 		    && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
881 			|| ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
882 			prog->mark_btf_static = true;
883 
884 		nr_progs++;
885 		obj->nr_programs = nr_progs;
886 	}
887 
888 	return 0;
889 }
890 
891 static const struct btf_member *
892 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
893 {
894 	struct btf_member *m;
895 	int i;
896 
897 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
898 		if (btf_member_bit_offset(t, i) == bit_offset)
899 			return m;
900 	}
901 
902 	return NULL;
903 }
904 
905 static const struct btf_member *
906 find_member_by_name(const struct btf *btf, const struct btf_type *t,
907 		    const char *name)
908 {
909 	struct btf_member *m;
910 	int i;
911 
912 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
913 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
914 			return m;
915 	}
916 
917 	return NULL;
918 }
919 
920 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
921 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
922 				   const char *name, __u32 kind);
923 
924 static int
925 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
926 			   const struct btf_type **type, __u32 *type_id,
927 			   const struct btf_type **vtype, __u32 *vtype_id,
928 			   const struct btf_member **data_member)
929 {
930 	const struct btf_type *kern_type, *kern_vtype;
931 	const struct btf_member *kern_data_member;
932 	__s32 kern_vtype_id, kern_type_id;
933 	__u32 i;
934 
935 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
936 	if (kern_type_id < 0) {
937 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
938 			tname);
939 		return kern_type_id;
940 	}
941 	kern_type = btf__type_by_id(btf, kern_type_id);
942 
943 	/* Find the corresponding "map_value" type that will be used
944 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
945 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
946 	 * btf_vmlinux.
947 	 */
948 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
949 						tname, BTF_KIND_STRUCT);
950 	if (kern_vtype_id < 0) {
951 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
952 			STRUCT_OPS_VALUE_PREFIX, tname);
953 		return kern_vtype_id;
954 	}
955 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
956 
957 	/* Find "struct tcp_congestion_ops" from
958 	 * struct bpf_struct_ops_tcp_congestion_ops {
959 	 *	[ ... ]
960 	 *	struct tcp_congestion_ops data;
961 	 * }
962 	 */
963 	kern_data_member = btf_members(kern_vtype);
964 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
965 		if (kern_data_member->type == kern_type_id)
966 			break;
967 	}
968 	if (i == btf_vlen(kern_vtype)) {
969 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
970 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
971 		return -EINVAL;
972 	}
973 
974 	*type = kern_type;
975 	*type_id = kern_type_id;
976 	*vtype = kern_vtype;
977 	*vtype_id = kern_vtype_id;
978 	*data_member = kern_data_member;
979 
980 	return 0;
981 }
982 
983 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
984 {
985 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
986 }
987 
988 /* Init the map's fields that depend on kern_btf */
989 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
990 					 const struct btf *btf,
991 					 const struct btf *kern_btf)
992 {
993 	const struct btf_member *member, *kern_member, *kern_data_member;
994 	const struct btf_type *type, *kern_type, *kern_vtype;
995 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
996 	struct bpf_struct_ops *st_ops;
997 	void *data, *kern_data;
998 	const char *tname;
999 	int err;
1000 
1001 	st_ops = map->st_ops;
1002 	type = st_ops->type;
1003 	tname = st_ops->tname;
1004 	err = find_struct_ops_kern_types(kern_btf, tname,
1005 					 &kern_type, &kern_type_id,
1006 					 &kern_vtype, &kern_vtype_id,
1007 					 &kern_data_member);
1008 	if (err)
1009 		return err;
1010 
1011 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1012 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1013 
1014 	map->def.value_size = kern_vtype->size;
1015 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1016 
1017 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1018 	if (!st_ops->kern_vdata)
1019 		return -ENOMEM;
1020 
1021 	data = st_ops->data;
1022 	kern_data_off = kern_data_member->offset / 8;
1023 	kern_data = st_ops->kern_vdata + kern_data_off;
1024 
1025 	member = btf_members(type);
1026 	for (i = 0; i < btf_vlen(type); i++, member++) {
1027 		const struct btf_type *mtype, *kern_mtype;
1028 		__u32 mtype_id, kern_mtype_id;
1029 		void *mdata, *kern_mdata;
1030 		__s64 msize, kern_msize;
1031 		__u32 moff, kern_moff;
1032 		__u32 kern_member_idx;
1033 		const char *mname;
1034 
1035 		mname = btf__name_by_offset(btf, member->name_off);
1036 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1037 		if (!kern_member) {
1038 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1039 				map->name, mname);
1040 			return -ENOTSUP;
1041 		}
1042 
1043 		kern_member_idx = kern_member - btf_members(kern_type);
1044 		if (btf_member_bitfield_size(type, i) ||
1045 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1046 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1047 				map->name, mname);
1048 			return -ENOTSUP;
1049 		}
1050 
1051 		moff = member->offset / 8;
1052 		kern_moff = kern_member->offset / 8;
1053 
1054 		mdata = data + moff;
1055 		kern_mdata = kern_data + kern_moff;
1056 
1057 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1058 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1059 						    &kern_mtype_id);
1060 		if (BTF_INFO_KIND(mtype->info) !=
1061 		    BTF_INFO_KIND(kern_mtype->info)) {
1062 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1063 				map->name, mname, BTF_INFO_KIND(mtype->info),
1064 				BTF_INFO_KIND(kern_mtype->info));
1065 			return -ENOTSUP;
1066 		}
1067 
1068 		if (btf_is_ptr(mtype)) {
1069 			struct bpf_program *prog;
1070 
1071 			prog = st_ops->progs[i];
1072 			if (!prog)
1073 				continue;
1074 
1075 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1076 							    kern_mtype->type,
1077 							    &kern_mtype_id);
1078 
1079 			/* mtype->type must be a func_proto which was
1080 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1081 			 * so only check kern_mtype for func_proto here.
1082 			 */
1083 			if (!btf_is_func_proto(kern_mtype)) {
1084 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1085 					map->name, mname);
1086 				return -ENOTSUP;
1087 			}
1088 
1089 			prog->attach_btf_id = kern_type_id;
1090 			prog->expected_attach_type = kern_member_idx;
1091 
1092 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1093 
1094 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1095 				 map->name, mname, prog->name, moff,
1096 				 kern_moff);
1097 
1098 			continue;
1099 		}
1100 
1101 		msize = btf__resolve_size(btf, mtype_id);
1102 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1103 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1104 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1105 				map->name, mname, (ssize_t)msize,
1106 				(ssize_t)kern_msize);
1107 			return -ENOTSUP;
1108 		}
1109 
1110 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1111 			 map->name, mname, (unsigned int)msize,
1112 			 moff, kern_moff);
1113 		memcpy(kern_mdata, mdata, msize);
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1120 {
1121 	struct bpf_map *map;
1122 	size_t i;
1123 	int err;
1124 
1125 	for (i = 0; i < obj->nr_maps; i++) {
1126 		map = &obj->maps[i];
1127 
1128 		if (!bpf_map__is_struct_ops(map))
1129 			continue;
1130 
1131 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
1132 						    obj->btf_vmlinux);
1133 		if (err)
1134 			return err;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1141 				int shndx, Elf_Data *data, __u32 map_flags)
1142 {
1143 	const struct btf_type *type, *datasec;
1144 	const struct btf_var_secinfo *vsi;
1145 	struct bpf_struct_ops *st_ops;
1146 	const char *tname, *var_name;
1147 	__s32 type_id, datasec_id;
1148 	const struct btf *btf;
1149 	struct bpf_map *map;
1150 	__u32 i;
1151 
1152 	if (shndx == -1)
1153 		return 0;
1154 
1155 	btf = obj->btf;
1156 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1157 					    BTF_KIND_DATASEC);
1158 	if (datasec_id < 0) {
1159 		pr_warn("struct_ops init: DATASEC %s not found\n",
1160 			sec_name);
1161 		return -EINVAL;
1162 	}
1163 
1164 	datasec = btf__type_by_id(btf, datasec_id);
1165 	vsi = btf_var_secinfos(datasec);
1166 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1167 		type = btf__type_by_id(obj->btf, vsi->type);
1168 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1169 
1170 		type_id = btf__resolve_type(obj->btf, vsi->type);
1171 		if (type_id < 0) {
1172 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1173 				vsi->type, sec_name);
1174 			return -EINVAL;
1175 		}
1176 
1177 		type = btf__type_by_id(obj->btf, type_id);
1178 		tname = btf__name_by_offset(obj->btf, type->name_off);
1179 		if (!tname[0]) {
1180 			pr_warn("struct_ops init: anonymous type is not supported\n");
1181 			return -ENOTSUP;
1182 		}
1183 		if (!btf_is_struct(type)) {
1184 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1185 			return -EINVAL;
1186 		}
1187 
1188 		map = bpf_object__add_map(obj);
1189 		if (IS_ERR(map))
1190 			return PTR_ERR(map);
1191 
1192 		map->sec_idx = shndx;
1193 		map->sec_offset = vsi->offset;
1194 		map->name = strdup(var_name);
1195 		if (!map->name)
1196 			return -ENOMEM;
1197 
1198 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1199 		map->def.key_size = sizeof(int);
1200 		map->def.value_size = type->size;
1201 		map->def.max_entries = 1;
1202 		map->def.map_flags = map_flags;
1203 
1204 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1205 		if (!map->st_ops)
1206 			return -ENOMEM;
1207 		st_ops = map->st_ops;
1208 		st_ops->data = malloc(type->size);
1209 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1210 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1211 					       sizeof(*st_ops->kern_func_off));
1212 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1213 			return -ENOMEM;
1214 
1215 		if (vsi->offset + type->size > data->d_size) {
1216 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1217 				var_name, sec_name);
1218 			return -EINVAL;
1219 		}
1220 
1221 		memcpy(st_ops->data,
1222 		       data->d_buf + vsi->offset,
1223 		       type->size);
1224 		st_ops->tname = tname;
1225 		st_ops->type = type;
1226 		st_ops->type_id = type_id;
1227 
1228 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1229 			 tname, type_id, var_name, vsi->offset);
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1236 {
1237 	int err;
1238 
1239 	err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1240 				   obj->efile.st_ops_data, 0);
1241 	err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1242 					  obj->efile.st_ops_link_shndx,
1243 					  obj->efile.st_ops_link_data,
1244 					  BPF_F_LINK);
1245 	return err;
1246 }
1247 
1248 static struct bpf_object *bpf_object__new(const char *path,
1249 					  const void *obj_buf,
1250 					  size_t obj_buf_sz,
1251 					  const char *obj_name)
1252 {
1253 	struct bpf_object *obj;
1254 	char *end;
1255 
1256 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1257 	if (!obj) {
1258 		pr_warn("alloc memory failed for %s\n", path);
1259 		return ERR_PTR(-ENOMEM);
1260 	}
1261 
1262 	strcpy(obj->path, path);
1263 	if (obj_name) {
1264 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1265 	} else {
1266 		/* Using basename() GNU version which doesn't modify arg. */
1267 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1268 		end = strchr(obj->name, '.');
1269 		if (end)
1270 			*end = 0;
1271 	}
1272 
1273 	obj->efile.fd = -1;
1274 	/*
1275 	 * Caller of this function should also call
1276 	 * bpf_object__elf_finish() after data collection to return
1277 	 * obj_buf to user. If not, we should duplicate the buffer to
1278 	 * avoid user freeing them before elf finish.
1279 	 */
1280 	obj->efile.obj_buf = obj_buf;
1281 	obj->efile.obj_buf_sz = obj_buf_sz;
1282 	obj->efile.btf_maps_shndx = -1;
1283 	obj->efile.st_ops_shndx = -1;
1284 	obj->efile.st_ops_link_shndx = -1;
1285 	obj->kconfig_map_idx = -1;
1286 
1287 	obj->kern_version = get_kernel_version();
1288 	obj->loaded = false;
1289 
1290 	return obj;
1291 }
1292 
1293 static void bpf_object__elf_finish(struct bpf_object *obj)
1294 {
1295 	if (!obj->efile.elf)
1296 		return;
1297 
1298 	elf_end(obj->efile.elf);
1299 	obj->efile.elf = NULL;
1300 	obj->efile.symbols = NULL;
1301 	obj->efile.st_ops_data = NULL;
1302 	obj->efile.st_ops_link_data = NULL;
1303 
1304 	zfree(&obj->efile.secs);
1305 	obj->efile.sec_cnt = 0;
1306 	zclose(obj->efile.fd);
1307 	obj->efile.obj_buf = NULL;
1308 	obj->efile.obj_buf_sz = 0;
1309 }
1310 
1311 static int bpf_object__elf_init(struct bpf_object *obj)
1312 {
1313 	Elf64_Ehdr *ehdr;
1314 	int err = 0;
1315 	Elf *elf;
1316 
1317 	if (obj->efile.elf) {
1318 		pr_warn("elf: init internal error\n");
1319 		return -LIBBPF_ERRNO__LIBELF;
1320 	}
1321 
1322 	if (obj->efile.obj_buf_sz > 0) {
1323 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1324 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1325 	} else {
1326 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1327 		if (obj->efile.fd < 0) {
1328 			char errmsg[STRERR_BUFSIZE], *cp;
1329 
1330 			err = -errno;
1331 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1332 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1333 			return err;
1334 		}
1335 
1336 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1337 	}
1338 
1339 	if (!elf) {
1340 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1341 		err = -LIBBPF_ERRNO__LIBELF;
1342 		goto errout;
1343 	}
1344 
1345 	obj->efile.elf = elf;
1346 
1347 	if (elf_kind(elf) != ELF_K_ELF) {
1348 		err = -LIBBPF_ERRNO__FORMAT;
1349 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1350 		goto errout;
1351 	}
1352 
1353 	if (gelf_getclass(elf) != ELFCLASS64) {
1354 		err = -LIBBPF_ERRNO__FORMAT;
1355 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1356 		goto errout;
1357 	}
1358 
1359 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1360 	if (!obj->efile.ehdr) {
1361 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1362 		err = -LIBBPF_ERRNO__FORMAT;
1363 		goto errout;
1364 	}
1365 
1366 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1367 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1368 			obj->path, elf_errmsg(-1));
1369 		err = -LIBBPF_ERRNO__FORMAT;
1370 		goto errout;
1371 	}
1372 
1373 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1374 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1375 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1376 			obj->path, elf_errmsg(-1));
1377 		err = -LIBBPF_ERRNO__FORMAT;
1378 		goto errout;
1379 	}
1380 
1381 	/* Old LLVM set e_machine to EM_NONE */
1382 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1383 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1384 		err = -LIBBPF_ERRNO__FORMAT;
1385 		goto errout;
1386 	}
1387 
1388 	return 0;
1389 errout:
1390 	bpf_object__elf_finish(obj);
1391 	return err;
1392 }
1393 
1394 static int bpf_object__check_endianness(struct bpf_object *obj)
1395 {
1396 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1397 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1398 		return 0;
1399 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1400 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1401 		return 0;
1402 #else
1403 # error "Unrecognized __BYTE_ORDER__"
1404 #endif
1405 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1406 	return -LIBBPF_ERRNO__ENDIAN;
1407 }
1408 
1409 static int
1410 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1411 {
1412 	if (!data) {
1413 		pr_warn("invalid license section in %s\n", obj->path);
1414 		return -LIBBPF_ERRNO__FORMAT;
1415 	}
1416 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1417 	 * go over allowed ELF data section buffer
1418 	 */
1419 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1420 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1421 	return 0;
1422 }
1423 
1424 static int
1425 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1426 {
1427 	__u32 kver;
1428 
1429 	if (!data || size != sizeof(kver)) {
1430 		pr_warn("invalid kver section in %s\n", obj->path);
1431 		return -LIBBPF_ERRNO__FORMAT;
1432 	}
1433 	memcpy(&kver, data, sizeof(kver));
1434 	obj->kern_version = kver;
1435 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1436 	return 0;
1437 }
1438 
1439 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1440 {
1441 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1442 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1443 		return true;
1444 	return false;
1445 }
1446 
1447 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1448 {
1449 	Elf_Data *data;
1450 	Elf_Scn *scn;
1451 
1452 	if (!name)
1453 		return -EINVAL;
1454 
1455 	scn = elf_sec_by_name(obj, name);
1456 	data = elf_sec_data(obj, scn);
1457 	if (data) {
1458 		*size = data->d_size;
1459 		return 0; /* found it */
1460 	}
1461 
1462 	return -ENOENT;
1463 }
1464 
1465 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1466 {
1467 	Elf_Data *symbols = obj->efile.symbols;
1468 	const char *sname;
1469 	size_t si;
1470 
1471 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1472 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1473 
1474 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1475 			continue;
1476 
1477 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1478 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1479 			continue;
1480 
1481 		sname = elf_sym_str(obj, sym->st_name);
1482 		if (!sname) {
1483 			pr_warn("failed to get sym name string for var %s\n", name);
1484 			return ERR_PTR(-EIO);
1485 		}
1486 		if (strcmp(name, sname) == 0)
1487 			return sym;
1488 	}
1489 
1490 	return ERR_PTR(-ENOENT);
1491 }
1492 
1493 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1494 {
1495 	struct bpf_map *map;
1496 	int err;
1497 
1498 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1499 				sizeof(*obj->maps), obj->nr_maps + 1);
1500 	if (err)
1501 		return ERR_PTR(err);
1502 
1503 	map = &obj->maps[obj->nr_maps++];
1504 	map->obj = obj;
1505 	map->fd = -1;
1506 	map->inner_map_fd = -1;
1507 	map->autocreate = true;
1508 
1509 	return map;
1510 }
1511 
1512 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1513 {
1514 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1515 	size_t map_sz;
1516 
1517 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1518 	map_sz = roundup(map_sz, page_sz);
1519 	return map_sz;
1520 }
1521 
1522 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1523 {
1524 	void *mmaped;
1525 
1526 	if (!map->mmaped)
1527 		return -EINVAL;
1528 
1529 	if (old_sz == new_sz)
1530 		return 0;
1531 
1532 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1533 	if (mmaped == MAP_FAILED)
1534 		return -errno;
1535 
1536 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1537 	munmap(map->mmaped, old_sz);
1538 	map->mmaped = mmaped;
1539 	return 0;
1540 }
1541 
1542 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1543 {
1544 	char map_name[BPF_OBJ_NAME_LEN], *p;
1545 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1546 
1547 	/* This is one of the more confusing parts of libbpf for various
1548 	 * reasons, some of which are historical. The original idea for naming
1549 	 * internal names was to include as much of BPF object name prefix as
1550 	 * possible, so that it can be distinguished from similar internal
1551 	 * maps of a different BPF object.
1552 	 * As an example, let's say we have bpf_object named 'my_object_name'
1553 	 * and internal map corresponding to '.rodata' ELF section. The final
1554 	 * map name advertised to user and to the kernel will be
1555 	 * 'my_objec.rodata', taking first 8 characters of object name and
1556 	 * entire 7 characters of '.rodata'.
1557 	 * Somewhat confusingly, if internal map ELF section name is shorter
1558 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1559 	 * for the suffix, even though we only have 4 actual characters, and
1560 	 * resulting map will be called 'my_objec.bss', not even using all 15
1561 	 * characters allowed by the kernel. Oh well, at least the truncated
1562 	 * object name is somewhat consistent in this case. But if the map
1563 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1564 	 * (8 chars) and thus will be left with only first 7 characters of the
1565 	 * object name ('my_obje'). Happy guessing, user, that the final map
1566 	 * name will be "my_obje.kconfig".
1567 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1568 	 * and .data.* data sections, it's possible that ELF section name is
1569 	 * longer than allowed 15 chars, so we now need to be careful to take
1570 	 * only up to 15 first characters of ELF name, taking no BPF object
1571 	 * name characters at all. So '.rodata.abracadabra' will result in
1572 	 * '.rodata.abracad' kernel and user-visible name.
1573 	 * We need to keep this convoluted logic intact for .data, .bss and
1574 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1575 	 * maps we use their ELF names as is, not prepending bpf_object name
1576 	 * in front. We still need to truncate them to 15 characters for the
1577 	 * kernel. Full name can be recovered for such maps by using DATASEC
1578 	 * BTF type associated with such map's value type, though.
1579 	 */
1580 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1581 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1582 
1583 	/* if there are two or more dots in map name, it's a custom dot map */
1584 	if (strchr(real_name + 1, '.') != NULL)
1585 		pfx_len = 0;
1586 	else
1587 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1588 
1589 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1590 		 sfx_len, real_name);
1591 
1592 	/* sanitise map name to characters allowed by kernel */
1593 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1594 		if (!isalnum(*p) && *p != '_' && *p != '.')
1595 			*p = '_';
1596 
1597 	return strdup(map_name);
1598 }
1599 
1600 static int
1601 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1602 
1603 /* Internal BPF map is mmap()'able only if at least one of corresponding
1604  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1605  * variable and it's not marked as __hidden (which turns it into, effectively,
1606  * a STATIC variable).
1607  */
1608 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1609 {
1610 	const struct btf_type *t, *vt;
1611 	struct btf_var_secinfo *vsi;
1612 	int i, n;
1613 
1614 	if (!map->btf_value_type_id)
1615 		return false;
1616 
1617 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1618 	if (!btf_is_datasec(t))
1619 		return false;
1620 
1621 	vsi = btf_var_secinfos(t);
1622 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1623 		vt = btf__type_by_id(obj->btf, vsi->type);
1624 		if (!btf_is_var(vt))
1625 			continue;
1626 
1627 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1628 			return true;
1629 	}
1630 
1631 	return false;
1632 }
1633 
1634 static int
1635 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1636 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1637 {
1638 	struct bpf_map_def *def;
1639 	struct bpf_map *map;
1640 	size_t mmap_sz;
1641 	int err;
1642 
1643 	map = bpf_object__add_map(obj);
1644 	if (IS_ERR(map))
1645 		return PTR_ERR(map);
1646 
1647 	map->libbpf_type = type;
1648 	map->sec_idx = sec_idx;
1649 	map->sec_offset = 0;
1650 	map->real_name = strdup(real_name);
1651 	map->name = internal_map_name(obj, real_name);
1652 	if (!map->real_name || !map->name) {
1653 		zfree(&map->real_name);
1654 		zfree(&map->name);
1655 		return -ENOMEM;
1656 	}
1657 
1658 	def = &map->def;
1659 	def->type = BPF_MAP_TYPE_ARRAY;
1660 	def->key_size = sizeof(int);
1661 	def->value_size = data_sz;
1662 	def->max_entries = 1;
1663 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1664 			 ? BPF_F_RDONLY_PROG : 0;
1665 
1666 	/* failures are fine because of maps like .rodata.str1.1 */
1667 	(void) map_fill_btf_type_info(obj, map);
1668 
1669 	if (map_is_mmapable(obj, map))
1670 		def->map_flags |= BPF_F_MMAPABLE;
1671 
1672 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1673 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1674 
1675 	mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
1676 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1677 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1678 	if (map->mmaped == MAP_FAILED) {
1679 		err = -errno;
1680 		map->mmaped = NULL;
1681 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1682 			map->name, err);
1683 		zfree(&map->real_name);
1684 		zfree(&map->name);
1685 		return err;
1686 	}
1687 
1688 	if (data)
1689 		memcpy(map->mmaped, data, data_sz);
1690 
1691 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1692 	return 0;
1693 }
1694 
1695 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1696 {
1697 	struct elf_sec_desc *sec_desc;
1698 	const char *sec_name;
1699 	int err = 0, sec_idx;
1700 
1701 	/*
1702 	 * Populate obj->maps with libbpf internal maps.
1703 	 */
1704 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1705 		sec_desc = &obj->efile.secs[sec_idx];
1706 
1707 		/* Skip recognized sections with size 0. */
1708 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1709 			continue;
1710 
1711 		switch (sec_desc->sec_type) {
1712 		case SEC_DATA:
1713 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1714 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1715 							    sec_name, sec_idx,
1716 							    sec_desc->data->d_buf,
1717 							    sec_desc->data->d_size);
1718 			break;
1719 		case SEC_RODATA:
1720 			obj->has_rodata = true;
1721 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1722 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1723 							    sec_name, sec_idx,
1724 							    sec_desc->data->d_buf,
1725 							    sec_desc->data->d_size);
1726 			break;
1727 		case SEC_BSS:
1728 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1729 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1730 							    sec_name, sec_idx,
1731 							    NULL,
1732 							    sec_desc->data->d_size);
1733 			break;
1734 		default:
1735 			/* skip */
1736 			break;
1737 		}
1738 		if (err)
1739 			return err;
1740 	}
1741 	return 0;
1742 }
1743 
1744 
1745 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1746 					       const void *name)
1747 {
1748 	int i;
1749 
1750 	for (i = 0; i < obj->nr_extern; i++) {
1751 		if (strcmp(obj->externs[i].name, name) == 0)
1752 			return &obj->externs[i];
1753 	}
1754 	return NULL;
1755 }
1756 
1757 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1758 			      char value)
1759 {
1760 	switch (ext->kcfg.type) {
1761 	case KCFG_BOOL:
1762 		if (value == 'm') {
1763 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1764 				ext->name, value);
1765 			return -EINVAL;
1766 		}
1767 		*(bool *)ext_val = value == 'y' ? true : false;
1768 		break;
1769 	case KCFG_TRISTATE:
1770 		if (value == 'y')
1771 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1772 		else if (value == 'm')
1773 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1774 		else /* value == 'n' */
1775 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1776 		break;
1777 	case KCFG_CHAR:
1778 		*(char *)ext_val = value;
1779 		break;
1780 	case KCFG_UNKNOWN:
1781 	case KCFG_INT:
1782 	case KCFG_CHAR_ARR:
1783 	default:
1784 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1785 			ext->name, value);
1786 		return -EINVAL;
1787 	}
1788 	ext->is_set = true;
1789 	return 0;
1790 }
1791 
1792 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1793 			      const char *value)
1794 {
1795 	size_t len;
1796 
1797 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1798 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1799 			ext->name, value);
1800 		return -EINVAL;
1801 	}
1802 
1803 	len = strlen(value);
1804 	if (value[len - 1] != '"') {
1805 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1806 			ext->name, value);
1807 		return -EINVAL;
1808 	}
1809 
1810 	/* strip quotes */
1811 	len -= 2;
1812 	if (len >= ext->kcfg.sz) {
1813 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1814 			ext->name, value, len, ext->kcfg.sz - 1);
1815 		len = ext->kcfg.sz - 1;
1816 	}
1817 	memcpy(ext_val, value + 1, len);
1818 	ext_val[len] = '\0';
1819 	ext->is_set = true;
1820 	return 0;
1821 }
1822 
1823 static int parse_u64(const char *value, __u64 *res)
1824 {
1825 	char *value_end;
1826 	int err;
1827 
1828 	errno = 0;
1829 	*res = strtoull(value, &value_end, 0);
1830 	if (errno) {
1831 		err = -errno;
1832 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1833 		return err;
1834 	}
1835 	if (*value_end) {
1836 		pr_warn("failed to parse '%s' as integer completely\n", value);
1837 		return -EINVAL;
1838 	}
1839 	return 0;
1840 }
1841 
1842 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1843 {
1844 	int bit_sz = ext->kcfg.sz * 8;
1845 
1846 	if (ext->kcfg.sz == 8)
1847 		return true;
1848 
1849 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1850 	 * bytes size without any loss of information. If the target integer
1851 	 * is signed, we rely on the following limits of integer type of
1852 	 * Y bits and subsequent transformation:
1853 	 *
1854 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1855 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1856 	 *            0 <= X + 2^(Y-1) <  2^Y
1857 	 *
1858 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1859 	 *  zero.
1860 	 */
1861 	if (ext->kcfg.is_signed)
1862 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1863 	else
1864 		return (v >> bit_sz) == 0;
1865 }
1866 
1867 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1868 			      __u64 value)
1869 {
1870 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1871 	    ext->kcfg.type != KCFG_BOOL) {
1872 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1873 			ext->name, (unsigned long long)value);
1874 		return -EINVAL;
1875 	}
1876 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1877 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1878 			ext->name, (unsigned long long)value);
1879 		return -EINVAL;
1880 
1881 	}
1882 	if (!is_kcfg_value_in_range(ext, value)) {
1883 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1884 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1885 		return -ERANGE;
1886 	}
1887 	switch (ext->kcfg.sz) {
1888 	case 1:
1889 		*(__u8 *)ext_val = value;
1890 		break;
1891 	case 2:
1892 		*(__u16 *)ext_val = value;
1893 		break;
1894 	case 4:
1895 		*(__u32 *)ext_val = value;
1896 		break;
1897 	case 8:
1898 		*(__u64 *)ext_val = value;
1899 		break;
1900 	default:
1901 		return -EINVAL;
1902 	}
1903 	ext->is_set = true;
1904 	return 0;
1905 }
1906 
1907 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1908 					    char *buf, void *data)
1909 {
1910 	struct extern_desc *ext;
1911 	char *sep, *value;
1912 	int len, err = 0;
1913 	void *ext_val;
1914 	__u64 num;
1915 
1916 	if (!str_has_pfx(buf, "CONFIG_"))
1917 		return 0;
1918 
1919 	sep = strchr(buf, '=');
1920 	if (!sep) {
1921 		pr_warn("failed to parse '%s': no separator\n", buf);
1922 		return -EINVAL;
1923 	}
1924 
1925 	/* Trim ending '\n' */
1926 	len = strlen(buf);
1927 	if (buf[len - 1] == '\n')
1928 		buf[len - 1] = '\0';
1929 	/* Split on '=' and ensure that a value is present. */
1930 	*sep = '\0';
1931 	if (!sep[1]) {
1932 		*sep = '=';
1933 		pr_warn("failed to parse '%s': no value\n", buf);
1934 		return -EINVAL;
1935 	}
1936 
1937 	ext = find_extern_by_name(obj, buf);
1938 	if (!ext || ext->is_set)
1939 		return 0;
1940 
1941 	ext_val = data + ext->kcfg.data_off;
1942 	value = sep + 1;
1943 
1944 	switch (*value) {
1945 	case 'y': case 'n': case 'm':
1946 		err = set_kcfg_value_tri(ext, ext_val, *value);
1947 		break;
1948 	case '"':
1949 		err = set_kcfg_value_str(ext, ext_val, value);
1950 		break;
1951 	default:
1952 		/* assume integer */
1953 		err = parse_u64(value, &num);
1954 		if (err) {
1955 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1956 			return err;
1957 		}
1958 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1959 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1960 			return -EINVAL;
1961 		}
1962 		err = set_kcfg_value_num(ext, ext_val, num);
1963 		break;
1964 	}
1965 	if (err)
1966 		return err;
1967 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1968 	return 0;
1969 }
1970 
1971 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1972 {
1973 	char buf[PATH_MAX];
1974 	struct utsname uts;
1975 	int len, err = 0;
1976 	gzFile file;
1977 
1978 	uname(&uts);
1979 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1980 	if (len < 0)
1981 		return -EINVAL;
1982 	else if (len >= PATH_MAX)
1983 		return -ENAMETOOLONG;
1984 
1985 	/* gzopen also accepts uncompressed files. */
1986 	file = gzopen(buf, "re");
1987 	if (!file)
1988 		file = gzopen("/proc/config.gz", "re");
1989 
1990 	if (!file) {
1991 		pr_warn("failed to open system Kconfig\n");
1992 		return -ENOENT;
1993 	}
1994 
1995 	while (gzgets(file, buf, sizeof(buf))) {
1996 		err = bpf_object__process_kconfig_line(obj, buf, data);
1997 		if (err) {
1998 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1999 				buf, err);
2000 			goto out;
2001 		}
2002 	}
2003 
2004 out:
2005 	gzclose(file);
2006 	return err;
2007 }
2008 
2009 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2010 					const char *config, void *data)
2011 {
2012 	char buf[PATH_MAX];
2013 	int err = 0;
2014 	FILE *file;
2015 
2016 	file = fmemopen((void *)config, strlen(config), "r");
2017 	if (!file) {
2018 		err = -errno;
2019 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2020 		return err;
2021 	}
2022 
2023 	while (fgets(buf, sizeof(buf), file)) {
2024 		err = bpf_object__process_kconfig_line(obj, buf, data);
2025 		if (err) {
2026 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2027 				buf, err);
2028 			break;
2029 		}
2030 	}
2031 
2032 	fclose(file);
2033 	return err;
2034 }
2035 
2036 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2037 {
2038 	struct extern_desc *last_ext = NULL, *ext;
2039 	size_t map_sz;
2040 	int i, err;
2041 
2042 	for (i = 0; i < obj->nr_extern; i++) {
2043 		ext = &obj->externs[i];
2044 		if (ext->type == EXT_KCFG)
2045 			last_ext = ext;
2046 	}
2047 
2048 	if (!last_ext)
2049 		return 0;
2050 
2051 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2052 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2053 					    ".kconfig", obj->efile.symbols_shndx,
2054 					    NULL, map_sz);
2055 	if (err)
2056 		return err;
2057 
2058 	obj->kconfig_map_idx = obj->nr_maps - 1;
2059 
2060 	return 0;
2061 }
2062 
2063 const struct btf_type *
2064 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2065 {
2066 	const struct btf_type *t = btf__type_by_id(btf, id);
2067 
2068 	if (res_id)
2069 		*res_id = id;
2070 
2071 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2072 		if (res_id)
2073 			*res_id = t->type;
2074 		t = btf__type_by_id(btf, t->type);
2075 	}
2076 
2077 	return t;
2078 }
2079 
2080 static const struct btf_type *
2081 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2082 {
2083 	const struct btf_type *t;
2084 
2085 	t = skip_mods_and_typedefs(btf, id, NULL);
2086 	if (!btf_is_ptr(t))
2087 		return NULL;
2088 
2089 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2090 
2091 	return btf_is_func_proto(t) ? t : NULL;
2092 }
2093 
2094 static const char *__btf_kind_str(__u16 kind)
2095 {
2096 	switch (kind) {
2097 	case BTF_KIND_UNKN: return "void";
2098 	case BTF_KIND_INT: return "int";
2099 	case BTF_KIND_PTR: return "ptr";
2100 	case BTF_KIND_ARRAY: return "array";
2101 	case BTF_KIND_STRUCT: return "struct";
2102 	case BTF_KIND_UNION: return "union";
2103 	case BTF_KIND_ENUM: return "enum";
2104 	case BTF_KIND_FWD: return "fwd";
2105 	case BTF_KIND_TYPEDEF: return "typedef";
2106 	case BTF_KIND_VOLATILE: return "volatile";
2107 	case BTF_KIND_CONST: return "const";
2108 	case BTF_KIND_RESTRICT: return "restrict";
2109 	case BTF_KIND_FUNC: return "func";
2110 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2111 	case BTF_KIND_VAR: return "var";
2112 	case BTF_KIND_DATASEC: return "datasec";
2113 	case BTF_KIND_FLOAT: return "float";
2114 	case BTF_KIND_DECL_TAG: return "decl_tag";
2115 	case BTF_KIND_TYPE_TAG: return "type_tag";
2116 	case BTF_KIND_ENUM64: return "enum64";
2117 	default: return "unknown";
2118 	}
2119 }
2120 
2121 const char *btf_kind_str(const struct btf_type *t)
2122 {
2123 	return __btf_kind_str(btf_kind(t));
2124 }
2125 
2126 /*
2127  * Fetch integer attribute of BTF map definition. Such attributes are
2128  * represented using a pointer to an array, in which dimensionality of array
2129  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2130  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2131  * type definition, while using only sizeof(void *) space in ELF data section.
2132  */
2133 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2134 			      const struct btf_member *m, __u32 *res)
2135 {
2136 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2137 	const char *name = btf__name_by_offset(btf, m->name_off);
2138 	const struct btf_array *arr_info;
2139 	const struct btf_type *arr_t;
2140 
2141 	if (!btf_is_ptr(t)) {
2142 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2143 			map_name, name, btf_kind_str(t));
2144 		return false;
2145 	}
2146 
2147 	arr_t = btf__type_by_id(btf, t->type);
2148 	if (!arr_t) {
2149 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2150 			map_name, name, t->type);
2151 		return false;
2152 	}
2153 	if (!btf_is_array(arr_t)) {
2154 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2155 			map_name, name, btf_kind_str(arr_t));
2156 		return false;
2157 	}
2158 	arr_info = btf_array(arr_t);
2159 	*res = arr_info->nelems;
2160 	return true;
2161 }
2162 
2163 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2164 {
2165 	int len;
2166 
2167 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2168 	if (len < 0)
2169 		return -EINVAL;
2170 	if (len >= buf_sz)
2171 		return -ENAMETOOLONG;
2172 
2173 	return 0;
2174 }
2175 
2176 static int build_map_pin_path(struct bpf_map *map, const char *path)
2177 {
2178 	char buf[PATH_MAX];
2179 	int err;
2180 
2181 	if (!path)
2182 		path = "/sys/fs/bpf";
2183 
2184 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2185 	if (err)
2186 		return err;
2187 
2188 	return bpf_map__set_pin_path(map, buf);
2189 }
2190 
2191 /* should match definition in bpf_helpers.h */
2192 enum libbpf_pin_type {
2193 	LIBBPF_PIN_NONE,
2194 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2195 	LIBBPF_PIN_BY_NAME,
2196 };
2197 
2198 int parse_btf_map_def(const char *map_name, struct btf *btf,
2199 		      const struct btf_type *def_t, bool strict,
2200 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2201 {
2202 	const struct btf_type *t;
2203 	const struct btf_member *m;
2204 	bool is_inner = inner_def == NULL;
2205 	int vlen, i;
2206 
2207 	vlen = btf_vlen(def_t);
2208 	m = btf_members(def_t);
2209 	for (i = 0; i < vlen; i++, m++) {
2210 		const char *name = btf__name_by_offset(btf, m->name_off);
2211 
2212 		if (!name) {
2213 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2214 			return -EINVAL;
2215 		}
2216 		if (strcmp(name, "type") == 0) {
2217 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2218 				return -EINVAL;
2219 			map_def->parts |= MAP_DEF_MAP_TYPE;
2220 		} else if (strcmp(name, "max_entries") == 0) {
2221 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2222 				return -EINVAL;
2223 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2224 		} else if (strcmp(name, "map_flags") == 0) {
2225 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2226 				return -EINVAL;
2227 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2228 		} else if (strcmp(name, "numa_node") == 0) {
2229 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2230 				return -EINVAL;
2231 			map_def->parts |= MAP_DEF_NUMA_NODE;
2232 		} else if (strcmp(name, "key_size") == 0) {
2233 			__u32 sz;
2234 
2235 			if (!get_map_field_int(map_name, btf, m, &sz))
2236 				return -EINVAL;
2237 			if (map_def->key_size && map_def->key_size != sz) {
2238 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2239 					map_name, map_def->key_size, sz);
2240 				return -EINVAL;
2241 			}
2242 			map_def->key_size = sz;
2243 			map_def->parts |= MAP_DEF_KEY_SIZE;
2244 		} else if (strcmp(name, "key") == 0) {
2245 			__s64 sz;
2246 
2247 			t = btf__type_by_id(btf, m->type);
2248 			if (!t) {
2249 				pr_warn("map '%s': key type [%d] not found.\n",
2250 					map_name, m->type);
2251 				return -EINVAL;
2252 			}
2253 			if (!btf_is_ptr(t)) {
2254 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2255 					map_name, btf_kind_str(t));
2256 				return -EINVAL;
2257 			}
2258 			sz = btf__resolve_size(btf, t->type);
2259 			if (sz < 0) {
2260 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2261 					map_name, t->type, (ssize_t)sz);
2262 				return sz;
2263 			}
2264 			if (map_def->key_size && map_def->key_size != sz) {
2265 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2266 					map_name, map_def->key_size, (ssize_t)sz);
2267 				return -EINVAL;
2268 			}
2269 			map_def->key_size = sz;
2270 			map_def->key_type_id = t->type;
2271 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2272 		} else if (strcmp(name, "value_size") == 0) {
2273 			__u32 sz;
2274 
2275 			if (!get_map_field_int(map_name, btf, m, &sz))
2276 				return -EINVAL;
2277 			if (map_def->value_size && map_def->value_size != sz) {
2278 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2279 					map_name, map_def->value_size, sz);
2280 				return -EINVAL;
2281 			}
2282 			map_def->value_size = sz;
2283 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2284 		} else if (strcmp(name, "value") == 0) {
2285 			__s64 sz;
2286 
2287 			t = btf__type_by_id(btf, m->type);
2288 			if (!t) {
2289 				pr_warn("map '%s': value type [%d] not found.\n",
2290 					map_name, m->type);
2291 				return -EINVAL;
2292 			}
2293 			if (!btf_is_ptr(t)) {
2294 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2295 					map_name, btf_kind_str(t));
2296 				return -EINVAL;
2297 			}
2298 			sz = btf__resolve_size(btf, t->type);
2299 			if (sz < 0) {
2300 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2301 					map_name, t->type, (ssize_t)sz);
2302 				return sz;
2303 			}
2304 			if (map_def->value_size && map_def->value_size != sz) {
2305 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2306 					map_name, map_def->value_size, (ssize_t)sz);
2307 				return -EINVAL;
2308 			}
2309 			map_def->value_size = sz;
2310 			map_def->value_type_id = t->type;
2311 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2312 		}
2313 		else if (strcmp(name, "values") == 0) {
2314 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2315 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2316 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2317 			char inner_map_name[128];
2318 			int err;
2319 
2320 			if (is_inner) {
2321 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2322 					map_name);
2323 				return -ENOTSUP;
2324 			}
2325 			if (i != vlen - 1) {
2326 				pr_warn("map '%s': '%s' member should be last.\n",
2327 					map_name, name);
2328 				return -EINVAL;
2329 			}
2330 			if (!is_map_in_map && !is_prog_array) {
2331 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2332 					map_name);
2333 				return -ENOTSUP;
2334 			}
2335 			if (map_def->value_size && map_def->value_size != 4) {
2336 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2337 					map_name, map_def->value_size);
2338 				return -EINVAL;
2339 			}
2340 			map_def->value_size = 4;
2341 			t = btf__type_by_id(btf, m->type);
2342 			if (!t) {
2343 				pr_warn("map '%s': %s type [%d] not found.\n",
2344 					map_name, desc, m->type);
2345 				return -EINVAL;
2346 			}
2347 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2348 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2349 					map_name, desc);
2350 				return -EINVAL;
2351 			}
2352 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2353 			if (!btf_is_ptr(t)) {
2354 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2355 					map_name, desc, btf_kind_str(t));
2356 				return -EINVAL;
2357 			}
2358 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2359 			if (is_prog_array) {
2360 				if (!btf_is_func_proto(t)) {
2361 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2362 						map_name, btf_kind_str(t));
2363 					return -EINVAL;
2364 				}
2365 				continue;
2366 			}
2367 			if (!btf_is_struct(t)) {
2368 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2369 					map_name, btf_kind_str(t));
2370 				return -EINVAL;
2371 			}
2372 
2373 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2374 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2375 			if (err)
2376 				return err;
2377 
2378 			map_def->parts |= MAP_DEF_INNER_MAP;
2379 		} else if (strcmp(name, "pinning") == 0) {
2380 			__u32 val;
2381 
2382 			if (is_inner) {
2383 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2384 				return -EINVAL;
2385 			}
2386 			if (!get_map_field_int(map_name, btf, m, &val))
2387 				return -EINVAL;
2388 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2389 				pr_warn("map '%s': invalid pinning value %u.\n",
2390 					map_name, val);
2391 				return -EINVAL;
2392 			}
2393 			map_def->pinning = val;
2394 			map_def->parts |= MAP_DEF_PINNING;
2395 		} else if (strcmp(name, "map_extra") == 0) {
2396 			__u32 map_extra;
2397 
2398 			if (!get_map_field_int(map_name, btf, m, &map_extra))
2399 				return -EINVAL;
2400 			map_def->map_extra = map_extra;
2401 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2402 		} else {
2403 			if (strict) {
2404 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2405 				return -ENOTSUP;
2406 			}
2407 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2408 		}
2409 	}
2410 
2411 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2412 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2413 		return -EINVAL;
2414 	}
2415 
2416 	return 0;
2417 }
2418 
2419 static size_t adjust_ringbuf_sz(size_t sz)
2420 {
2421 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2422 	__u32 mul;
2423 
2424 	/* if user forgot to set any size, make sure they see error */
2425 	if (sz == 0)
2426 		return 0;
2427 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2428 	 * a power-of-2 multiple of kernel's page size. If user diligently
2429 	 * satisified these conditions, pass the size through.
2430 	 */
2431 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2432 		return sz;
2433 
2434 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2435 	 * user-set size to satisfy both user size request and kernel
2436 	 * requirements and substitute correct max_entries for map creation.
2437 	 */
2438 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2439 		if (mul * page_sz > sz)
2440 			return mul * page_sz;
2441 	}
2442 
2443 	/* if it's impossible to satisfy the conditions (i.e., user size is
2444 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2445 	 * page_size) then just return original size and let kernel reject it
2446 	 */
2447 	return sz;
2448 }
2449 
2450 static bool map_is_ringbuf(const struct bpf_map *map)
2451 {
2452 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2453 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2454 }
2455 
2456 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2457 {
2458 	map->def.type = def->map_type;
2459 	map->def.key_size = def->key_size;
2460 	map->def.value_size = def->value_size;
2461 	map->def.max_entries = def->max_entries;
2462 	map->def.map_flags = def->map_flags;
2463 	map->map_extra = def->map_extra;
2464 
2465 	map->numa_node = def->numa_node;
2466 	map->btf_key_type_id = def->key_type_id;
2467 	map->btf_value_type_id = def->value_type_id;
2468 
2469 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2470 	if (map_is_ringbuf(map))
2471 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2472 
2473 	if (def->parts & MAP_DEF_MAP_TYPE)
2474 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2475 
2476 	if (def->parts & MAP_DEF_KEY_TYPE)
2477 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2478 			 map->name, def->key_type_id, def->key_size);
2479 	else if (def->parts & MAP_DEF_KEY_SIZE)
2480 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2481 
2482 	if (def->parts & MAP_DEF_VALUE_TYPE)
2483 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2484 			 map->name, def->value_type_id, def->value_size);
2485 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2486 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2487 
2488 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2489 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2490 	if (def->parts & MAP_DEF_MAP_FLAGS)
2491 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2492 	if (def->parts & MAP_DEF_MAP_EXTRA)
2493 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2494 			 (unsigned long long)def->map_extra);
2495 	if (def->parts & MAP_DEF_PINNING)
2496 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2497 	if (def->parts & MAP_DEF_NUMA_NODE)
2498 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2499 
2500 	if (def->parts & MAP_DEF_INNER_MAP)
2501 		pr_debug("map '%s': found inner map definition.\n", map->name);
2502 }
2503 
2504 static const char *btf_var_linkage_str(__u32 linkage)
2505 {
2506 	switch (linkage) {
2507 	case BTF_VAR_STATIC: return "static";
2508 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2509 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2510 	default: return "unknown";
2511 	}
2512 }
2513 
2514 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2515 					 const struct btf_type *sec,
2516 					 int var_idx, int sec_idx,
2517 					 const Elf_Data *data, bool strict,
2518 					 const char *pin_root_path)
2519 {
2520 	struct btf_map_def map_def = {}, inner_def = {};
2521 	const struct btf_type *var, *def;
2522 	const struct btf_var_secinfo *vi;
2523 	const struct btf_var *var_extra;
2524 	const char *map_name;
2525 	struct bpf_map *map;
2526 	int err;
2527 
2528 	vi = btf_var_secinfos(sec) + var_idx;
2529 	var = btf__type_by_id(obj->btf, vi->type);
2530 	var_extra = btf_var(var);
2531 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2532 
2533 	if (map_name == NULL || map_name[0] == '\0') {
2534 		pr_warn("map #%d: empty name.\n", var_idx);
2535 		return -EINVAL;
2536 	}
2537 	if ((__u64)vi->offset + vi->size > data->d_size) {
2538 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2539 		return -EINVAL;
2540 	}
2541 	if (!btf_is_var(var)) {
2542 		pr_warn("map '%s': unexpected var kind %s.\n",
2543 			map_name, btf_kind_str(var));
2544 		return -EINVAL;
2545 	}
2546 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2547 		pr_warn("map '%s': unsupported map linkage %s.\n",
2548 			map_name, btf_var_linkage_str(var_extra->linkage));
2549 		return -EOPNOTSUPP;
2550 	}
2551 
2552 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2553 	if (!btf_is_struct(def)) {
2554 		pr_warn("map '%s': unexpected def kind %s.\n",
2555 			map_name, btf_kind_str(var));
2556 		return -EINVAL;
2557 	}
2558 	if (def->size > vi->size) {
2559 		pr_warn("map '%s': invalid def size.\n", map_name);
2560 		return -EINVAL;
2561 	}
2562 
2563 	map = bpf_object__add_map(obj);
2564 	if (IS_ERR(map))
2565 		return PTR_ERR(map);
2566 	map->name = strdup(map_name);
2567 	if (!map->name) {
2568 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2569 		return -ENOMEM;
2570 	}
2571 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2572 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2573 	map->sec_idx = sec_idx;
2574 	map->sec_offset = vi->offset;
2575 	map->btf_var_idx = var_idx;
2576 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2577 		 map_name, map->sec_idx, map->sec_offset);
2578 
2579 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2580 	if (err)
2581 		return err;
2582 
2583 	fill_map_from_def(map, &map_def);
2584 
2585 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2586 		err = build_map_pin_path(map, pin_root_path);
2587 		if (err) {
2588 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2589 			return err;
2590 		}
2591 	}
2592 
2593 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2594 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2595 		if (!map->inner_map)
2596 			return -ENOMEM;
2597 		map->inner_map->fd = -1;
2598 		map->inner_map->sec_idx = sec_idx;
2599 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2600 		if (!map->inner_map->name)
2601 			return -ENOMEM;
2602 		sprintf(map->inner_map->name, "%s.inner", map_name);
2603 
2604 		fill_map_from_def(map->inner_map, &inner_def);
2605 	}
2606 
2607 	err = map_fill_btf_type_info(obj, map);
2608 	if (err)
2609 		return err;
2610 
2611 	return 0;
2612 }
2613 
2614 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2615 					  const char *pin_root_path)
2616 {
2617 	const struct btf_type *sec = NULL;
2618 	int nr_types, i, vlen, err;
2619 	const struct btf_type *t;
2620 	const char *name;
2621 	Elf_Data *data;
2622 	Elf_Scn *scn;
2623 
2624 	if (obj->efile.btf_maps_shndx < 0)
2625 		return 0;
2626 
2627 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2628 	data = elf_sec_data(obj, scn);
2629 	if (!scn || !data) {
2630 		pr_warn("elf: failed to get %s map definitions for %s\n",
2631 			MAPS_ELF_SEC, obj->path);
2632 		return -EINVAL;
2633 	}
2634 
2635 	nr_types = btf__type_cnt(obj->btf);
2636 	for (i = 1; i < nr_types; i++) {
2637 		t = btf__type_by_id(obj->btf, i);
2638 		if (!btf_is_datasec(t))
2639 			continue;
2640 		name = btf__name_by_offset(obj->btf, t->name_off);
2641 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2642 			sec = t;
2643 			obj->efile.btf_maps_sec_btf_id = i;
2644 			break;
2645 		}
2646 	}
2647 
2648 	if (!sec) {
2649 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2650 		return -ENOENT;
2651 	}
2652 
2653 	vlen = btf_vlen(sec);
2654 	for (i = 0; i < vlen; i++) {
2655 		err = bpf_object__init_user_btf_map(obj, sec, i,
2656 						    obj->efile.btf_maps_shndx,
2657 						    data, strict,
2658 						    pin_root_path);
2659 		if (err)
2660 			return err;
2661 	}
2662 
2663 	return 0;
2664 }
2665 
2666 static int bpf_object__init_maps(struct bpf_object *obj,
2667 				 const struct bpf_object_open_opts *opts)
2668 {
2669 	const char *pin_root_path;
2670 	bool strict;
2671 	int err = 0;
2672 
2673 	strict = !OPTS_GET(opts, relaxed_maps, false);
2674 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2675 
2676 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2677 	err = err ?: bpf_object__init_global_data_maps(obj);
2678 	err = err ?: bpf_object__init_kconfig_map(obj);
2679 	err = err ?: bpf_object_init_struct_ops(obj);
2680 
2681 	return err;
2682 }
2683 
2684 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2685 {
2686 	Elf64_Shdr *sh;
2687 
2688 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2689 	if (!sh)
2690 		return false;
2691 
2692 	return sh->sh_flags & SHF_EXECINSTR;
2693 }
2694 
2695 static bool btf_needs_sanitization(struct bpf_object *obj)
2696 {
2697 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2698 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2699 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2700 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2701 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2702 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2703 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2704 
2705 	return !has_func || !has_datasec || !has_func_global || !has_float ||
2706 	       !has_decl_tag || !has_type_tag || !has_enum64;
2707 }
2708 
2709 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2710 {
2711 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2712 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2713 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2714 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2715 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2716 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2717 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2718 	int enum64_placeholder_id = 0;
2719 	struct btf_type *t;
2720 	int i, j, vlen;
2721 
2722 	for (i = 1; i < btf__type_cnt(btf); i++) {
2723 		t = (struct btf_type *)btf__type_by_id(btf, i);
2724 
2725 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2726 			/* replace VAR/DECL_TAG with INT */
2727 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2728 			/*
2729 			 * using size = 1 is the safest choice, 4 will be too
2730 			 * big and cause kernel BTF validation failure if
2731 			 * original variable took less than 4 bytes
2732 			 */
2733 			t->size = 1;
2734 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2735 		} else if (!has_datasec && btf_is_datasec(t)) {
2736 			/* replace DATASEC with STRUCT */
2737 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2738 			struct btf_member *m = btf_members(t);
2739 			struct btf_type *vt;
2740 			char *name;
2741 
2742 			name = (char *)btf__name_by_offset(btf, t->name_off);
2743 			while (*name) {
2744 				if (*name == '.')
2745 					*name = '_';
2746 				name++;
2747 			}
2748 
2749 			vlen = btf_vlen(t);
2750 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2751 			for (j = 0; j < vlen; j++, v++, m++) {
2752 				/* order of field assignments is important */
2753 				m->offset = v->offset * 8;
2754 				m->type = v->type;
2755 				/* preserve variable name as member name */
2756 				vt = (void *)btf__type_by_id(btf, v->type);
2757 				m->name_off = vt->name_off;
2758 			}
2759 		} else if (!has_func && btf_is_func_proto(t)) {
2760 			/* replace FUNC_PROTO with ENUM */
2761 			vlen = btf_vlen(t);
2762 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2763 			t->size = sizeof(__u32); /* kernel enforced */
2764 		} else if (!has_func && btf_is_func(t)) {
2765 			/* replace FUNC with TYPEDEF */
2766 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2767 		} else if (!has_func_global && btf_is_func(t)) {
2768 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2769 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2770 		} else if (!has_float && btf_is_float(t)) {
2771 			/* replace FLOAT with an equally-sized empty STRUCT;
2772 			 * since C compilers do not accept e.g. "float" as a
2773 			 * valid struct name, make it anonymous
2774 			 */
2775 			t->name_off = 0;
2776 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2777 		} else if (!has_type_tag && btf_is_type_tag(t)) {
2778 			/* replace TYPE_TAG with a CONST */
2779 			t->name_off = 0;
2780 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2781 		} else if (!has_enum64 && btf_is_enum(t)) {
2782 			/* clear the kflag */
2783 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2784 		} else if (!has_enum64 && btf_is_enum64(t)) {
2785 			/* replace ENUM64 with a union */
2786 			struct btf_member *m;
2787 
2788 			if (enum64_placeholder_id == 0) {
2789 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2790 				if (enum64_placeholder_id < 0)
2791 					return enum64_placeholder_id;
2792 
2793 				t = (struct btf_type *)btf__type_by_id(btf, i);
2794 			}
2795 
2796 			m = btf_members(t);
2797 			vlen = btf_vlen(t);
2798 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2799 			for (j = 0; j < vlen; j++, m++) {
2800 				m->type = enum64_placeholder_id;
2801 				m->offset = 0;
2802 			}
2803 		}
2804 	}
2805 
2806 	return 0;
2807 }
2808 
2809 static bool libbpf_needs_btf(const struct bpf_object *obj)
2810 {
2811 	return obj->efile.btf_maps_shndx >= 0 ||
2812 	       obj->efile.st_ops_shndx >= 0 ||
2813 	       obj->efile.st_ops_link_shndx >= 0 ||
2814 	       obj->nr_extern > 0;
2815 }
2816 
2817 static bool kernel_needs_btf(const struct bpf_object *obj)
2818 {
2819 	return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2820 }
2821 
2822 static int bpf_object__init_btf(struct bpf_object *obj,
2823 				Elf_Data *btf_data,
2824 				Elf_Data *btf_ext_data)
2825 {
2826 	int err = -ENOENT;
2827 
2828 	if (btf_data) {
2829 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2830 		err = libbpf_get_error(obj->btf);
2831 		if (err) {
2832 			obj->btf = NULL;
2833 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2834 			goto out;
2835 		}
2836 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2837 		btf__set_pointer_size(obj->btf, 8);
2838 	}
2839 	if (btf_ext_data) {
2840 		struct btf_ext_info *ext_segs[3];
2841 		int seg_num, sec_num;
2842 
2843 		if (!obj->btf) {
2844 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2845 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2846 			goto out;
2847 		}
2848 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2849 		err = libbpf_get_error(obj->btf_ext);
2850 		if (err) {
2851 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2852 				BTF_EXT_ELF_SEC, err);
2853 			obj->btf_ext = NULL;
2854 			goto out;
2855 		}
2856 
2857 		/* setup .BTF.ext to ELF section mapping */
2858 		ext_segs[0] = &obj->btf_ext->func_info;
2859 		ext_segs[1] = &obj->btf_ext->line_info;
2860 		ext_segs[2] = &obj->btf_ext->core_relo_info;
2861 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2862 			struct btf_ext_info *seg = ext_segs[seg_num];
2863 			const struct btf_ext_info_sec *sec;
2864 			const char *sec_name;
2865 			Elf_Scn *scn;
2866 
2867 			if (seg->sec_cnt == 0)
2868 				continue;
2869 
2870 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2871 			if (!seg->sec_idxs) {
2872 				err = -ENOMEM;
2873 				goto out;
2874 			}
2875 
2876 			sec_num = 0;
2877 			for_each_btf_ext_sec(seg, sec) {
2878 				/* preventively increment index to avoid doing
2879 				 * this before every continue below
2880 				 */
2881 				sec_num++;
2882 
2883 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2884 				if (str_is_empty(sec_name))
2885 					continue;
2886 				scn = elf_sec_by_name(obj, sec_name);
2887 				if (!scn)
2888 					continue;
2889 
2890 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2891 			}
2892 		}
2893 	}
2894 out:
2895 	if (err && libbpf_needs_btf(obj)) {
2896 		pr_warn("BTF is required, but is missing or corrupted.\n");
2897 		return err;
2898 	}
2899 	return 0;
2900 }
2901 
2902 static int compare_vsi_off(const void *_a, const void *_b)
2903 {
2904 	const struct btf_var_secinfo *a = _a;
2905 	const struct btf_var_secinfo *b = _b;
2906 
2907 	return a->offset - b->offset;
2908 }
2909 
2910 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2911 			     struct btf_type *t)
2912 {
2913 	__u32 size = 0, i, vars = btf_vlen(t);
2914 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
2915 	struct btf_var_secinfo *vsi;
2916 	bool fixup_offsets = false;
2917 	int err;
2918 
2919 	if (!sec_name) {
2920 		pr_debug("No name found in string section for DATASEC kind.\n");
2921 		return -ENOENT;
2922 	}
2923 
2924 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2925 	 * variable offsets set at the previous step. Further, not every
2926 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2927 	 * all fixups altogether for such sections and go straight to sorting
2928 	 * VARs within their DATASEC.
2929 	 */
2930 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2931 		goto sort_vars;
2932 
2933 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2934 	 * fix this up. But BPF static linker already fixes this up and fills
2935 	 * all the sizes and offsets during static linking. So this step has
2936 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
2937 	 * non-extern DATASEC, so the variable fixup loop below handles both
2938 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
2939 	 * symbol matching just once.
2940 	 */
2941 	if (t->size == 0) {
2942 		err = find_elf_sec_sz(obj, sec_name, &size);
2943 		if (err || !size) {
2944 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2945 				 sec_name, size, err);
2946 			return -ENOENT;
2947 		}
2948 
2949 		t->size = size;
2950 		fixup_offsets = true;
2951 	}
2952 
2953 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2954 		const struct btf_type *t_var;
2955 		struct btf_var *var;
2956 		const char *var_name;
2957 		Elf64_Sym *sym;
2958 
2959 		t_var = btf__type_by_id(btf, vsi->type);
2960 		if (!t_var || !btf_is_var(t_var)) {
2961 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2962 			return -EINVAL;
2963 		}
2964 
2965 		var = btf_var(t_var);
2966 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2967 			continue;
2968 
2969 		var_name = btf__name_by_offset(btf, t_var->name_off);
2970 		if (!var_name) {
2971 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2972 				 sec_name, i);
2973 			return -ENOENT;
2974 		}
2975 
2976 		sym = find_elf_var_sym(obj, var_name);
2977 		if (IS_ERR(sym)) {
2978 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2979 				 sec_name, var_name);
2980 			return -ENOENT;
2981 		}
2982 
2983 		if (fixup_offsets)
2984 			vsi->offset = sym->st_value;
2985 
2986 		/* if variable is a global/weak symbol, but has restricted
2987 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2988 		 * as static. This follows similar logic for functions (BPF
2989 		 * subprogs) and influences libbpf's further decisions about
2990 		 * whether to make global data BPF array maps as
2991 		 * BPF_F_MMAPABLE.
2992 		 */
2993 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2994 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2995 			var->linkage = BTF_VAR_STATIC;
2996 	}
2997 
2998 sort_vars:
2999 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3000 	return 0;
3001 }
3002 
3003 static int bpf_object_fixup_btf(struct bpf_object *obj)
3004 {
3005 	int i, n, err = 0;
3006 
3007 	if (!obj->btf)
3008 		return 0;
3009 
3010 	n = btf__type_cnt(obj->btf);
3011 	for (i = 1; i < n; i++) {
3012 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3013 
3014 		/* Loader needs to fix up some of the things compiler
3015 		 * couldn't get its hands on while emitting BTF. This
3016 		 * is section size and global variable offset. We use
3017 		 * the info from the ELF itself for this purpose.
3018 		 */
3019 		if (btf_is_datasec(t)) {
3020 			err = btf_fixup_datasec(obj, obj->btf, t);
3021 			if (err)
3022 				return err;
3023 		}
3024 	}
3025 
3026 	return 0;
3027 }
3028 
3029 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3030 {
3031 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3032 	    prog->type == BPF_PROG_TYPE_LSM)
3033 		return true;
3034 
3035 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3036 	 * also need vmlinux BTF
3037 	 */
3038 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3039 		return true;
3040 
3041 	return false;
3042 }
3043 
3044 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3045 {
3046 	struct bpf_program *prog;
3047 	int i;
3048 
3049 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3050 	 * is not specified
3051 	 */
3052 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3053 		return true;
3054 
3055 	/* Support for typed ksyms needs kernel BTF */
3056 	for (i = 0; i < obj->nr_extern; i++) {
3057 		const struct extern_desc *ext;
3058 
3059 		ext = &obj->externs[i];
3060 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3061 			return true;
3062 	}
3063 
3064 	bpf_object__for_each_program(prog, obj) {
3065 		if (!prog->autoload)
3066 			continue;
3067 		if (prog_needs_vmlinux_btf(prog))
3068 			return true;
3069 	}
3070 
3071 	return false;
3072 }
3073 
3074 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3075 {
3076 	int err;
3077 
3078 	/* btf_vmlinux could be loaded earlier */
3079 	if (obj->btf_vmlinux || obj->gen_loader)
3080 		return 0;
3081 
3082 	if (!force && !obj_needs_vmlinux_btf(obj))
3083 		return 0;
3084 
3085 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3086 	err = libbpf_get_error(obj->btf_vmlinux);
3087 	if (err) {
3088 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3089 		obj->btf_vmlinux = NULL;
3090 		return err;
3091 	}
3092 	return 0;
3093 }
3094 
3095 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3096 {
3097 	struct btf *kern_btf = obj->btf;
3098 	bool btf_mandatory, sanitize;
3099 	int i, err = 0;
3100 
3101 	if (!obj->btf)
3102 		return 0;
3103 
3104 	if (!kernel_supports(obj, FEAT_BTF)) {
3105 		if (kernel_needs_btf(obj)) {
3106 			err = -EOPNOTSUPP;
3107 			goto report;
3108 		}
3109 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3110 		return 0;
3111 	}
3112 
3113 	/* Even though some subprogs are global/weak, user might prefer more
3114 	 * permissive BPF verification process that BPF verifier performs for
3115 	 * static functions, taking into account more context from the caller
3116 	 * functions. In such case, they need to mark such subprogs with
3117 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3118 	 * corresponding FUNC BTF type to be marked as static and trigger more
3119 	 * involved BPF verification process.
3120 	 */
3121 	for (i = 0; i < obj->nr_programs; i++) {
3122 		struct bpf_program *prog = &obj->programs[i];
3123 		struct btf_type *t;
3124 		const char *name;
3125 		int j, n;
3126 
3127 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3128 			continue;
3129 
3130 		n = btf__type_cnt(obj->btf);
3131 		for (j = 1; j < n; j++) {
3132 			t = btf_type_by_id(obj->btf, j);
3133 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3134 				continue;
3135 
3136 			name = btf__str_by_offset(obj->btf, t->name_off);
3137 			if (strcmp(name, prog->name) != 0)
3138 				continue;
3139 
3140 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3141 			break;
3142 		}
3143 	}
3144 
3145 	sanitize = btf_needs_sanitization(obj);
3146 	if (sanitize) {
3147 		const void *raw_data;
3148 		__u32 sz;
3149 
3150 		/* clone BTF to sanitize a copy and leave the original intact */
3151 		raw_data = btf__raw_data(obj->btf, &sz);
3152 		kern_btf = btf__new(raw_data, sz);
3153 		err = libbpf_get_error(kern_btf);
3154 		if (err)
3155 			return err;
3156 
3157 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3158 		btf__set_pointer_size(obj->btf, 8);
3159 		err = bpf_object__sanitize_btf(obj, kern_btf);
3160 		if (err)
3161 			return err;
3162 	}
3163 
3164 	if (obj->gen_loader) {
3165 		__u32 raw_size = 0;
3166 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3167 
3168 		if (!raw_data)
3169 			return -ENOMEM;
3170 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3171 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3172 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3173 		 */
3174 		btf__set_fd(kern_btf, 0);
3175 	} else {
3176 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3177 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3178 					   obj->log_level ? 1 : 0);
3179 	}
3180 	if (sanitize) {
3181 		if (!err) {
3182 			/* move fd to libbpf's BTF */
3183 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3184 			btf__set_fd(kern_btf, -1);
3185 		}
3186 		btf__free(kern_btf);
3187 	}
3188 report:
3189 	if (err) {
3190 		btf_mandatory = kernel_needs_btf(obj);
3191 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3192 			btf_mandatory ? "BTF is mandatory, can't proceed."
3193 				      : "BTF is optional, ignoring.");
3194 		if (!btf_mandatory)
3195 			err = 0;
3196 	}
3197 	return err;
3198 }
3199 
3200 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3201 {
3202 	const char *name;
3203 
3204 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3205 	if (!name) {
3206 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3207 			off, obj->path, elf_errmsg(-1));
3208 		return NULL;
3209 	}
3210 
3211 	return name;
3212 }
3213 
3214 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3215 {
3216 	const char *name;
3217 
3218 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3219 	if (!name) {
3220 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3221 			off, obj->path, elf_errmsg(-1));
3222 		return NULL;
3223 	}
3224 
3225 	return name;
3226 }
3227 
3228 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3229 {
3230 	Elf_Scn *scn;
3231 
3232 	scn = elf_getscn(obj->efile.elf, idx);
3233 	if (!scn) {
3234 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3235 			idx, obj->path, elf_errmsg(-1));
3236 		return NULL;
3237 	}
3238 	return scn;
3239 }
3240 
3241 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3242 {
3243 	Elf_Scn *scn = NULL;
3244 	Elf *elf = obj->efile.elf;
3245 	const char *sec_name;
3246 
3247 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3248 		sec_name = elf_sec_name(obj, scn);
3249 		if (!sec_name)
3250 			return NULL;
3251 
3252 		if (strcmp(sec_name, name) != 0)
3253 			continue;
3254 
3255 		return scn;
3256 	}
3257 	return NULL;
3258 }
3259 
3260 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3261 {
3262 	Elf64_Shdr *shdr;
3263 
3264 	if (!scn)
3265 		return NULL;
3266 
3267 	shdr = elf64_getshdr(scn);
3268 	if (!shdr) {
3269 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3270 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3271 		return NULL;
3272 	}
3273 
3274 	return shdr;
3275 }
3276 
3277 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3278 {
3279 	const char *name;
3280 	Elf64_Shdr *sh;
3281 
3282 	if (!scn)
3283 		return NULL;
3284 
3285 	sh = elf_sec_hdr(obj, scn);
3286 	if (!sh)
3287 		return NULL;
3288 
3289 	name = elf_sec_str(obj, sh->sh_name);
3290 	if (!name) {
3291 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3292 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3293 		return NULL;
3294 	}
3295 
3296 	return name;
3297 }
3298 
3299 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3300 {
3301 	Elf_Data *data;
3302 
3303 	if (!scn)
3304 		return NULL;
3305 
3306 	data = elf_getdata(scn, 0);
3307 	if (!data) {
3308 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3309 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3310 			obj->path, elf_errmsg(-1));
3311 		return NULL;
3312 	}
3313 
3314 	return data;
3315 }
3316 
3317 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3318 {
3319 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3320 		return NULL;
3321 
3322 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3323 }
3324 
3325 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3326 {
3327 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3328 		return NULL;
3329 
3330 	return (Elf64_Rel *)data->d_buf + idx;
3331 }
3332 
3333 static bool is_sec_name_dwarf(const char *name)
3334 {
3335 	/* approximation, but the actual list is too long */
3336 	return str_has_pfx(name, ".debug_");
3337 }
3338 
3339 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3340 {
3341 	/* no special handling of .strtab */
3342 	if (hdr->sh_type == SHT_STRTAB)
3343 		return true;
3344 
3345 	/* ignore .llvm_addrsig section as well */
3346 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3347 		return true;
3348 
3349 	/* no subprograms will lead to an empty .text section, ignore it */
3350 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3351 	    strcmp(name, ".text") == 0)
3352 		return true;
3353 
3354 	/* DWARF sections */
3355 	if (is_sec_name_dwarf(name))
3356 		return true;
3357 
3358 	if (str_has_pfx(name, ".rel")) {
3359 		name += sizeof(".rel") - 1;
3360 		/* DWARF section relocations */
3361 		if (is_sec_name_dwarf(name))
3362 			return true;
3363 
3364 		/* .BTF and .BTF.ext don't need relocations */
3365 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3366 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3367 			return true;
3368 	}
3369 
3370 	return false;
3371 }
3372 
3373 static int cmp_progs(const void *_a, const void *_b)
3374 {
3375 	const struct bpf_program *a = _a;
3376 	const struct bpf_program *b = _b;
3377 
3378 	if (a->sec_idx != b->sec_idx)
3379 		return a->sec_idx < b->sec_idx ? -1 : 1;
3380 
3381 	/* sec_insn_off can't be the same within the section */
3382 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3383 }
3384 
3385 static int bpf_object__elf_collect(struct bpf_object *obj)
3386 {
3387 	struct elf_sec_desc *sec_desc;
3388 	Elf *elf = obj->efile.elf;
3389 	Elf_Data *btf_ext_data = NULL;
3390 	Elf_Data *btf_data = NULL;
3391 	int idx = 0, err = 0;
3392 	const char *name;
3393 	Elf_Data *data;
3394 	Elf_Scn *scn;
3395 	Elf64_Shdr *sh;
3396 
3397 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3398 	 * section. Since section count retrieved by elf_getshdrnum() does
3399 	 * include sec #0, it is already the necessary size of an array to keep
3400 	 * all the sections.
3401 	 */
3402 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3403 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3404 			obj->path, elf_errmsg(-1));
3405 		return -LIBBPF_ERRNO__FORMAT;
3406 	}
3407 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3408 	if (!obj->efile.secs)
3409 		return -ENOMEM;
3410 
3411 	/* a bunch of ELF parsing functionality depends on processing symbols,
3412 	 * so do the first pass and find the symbol table
3413 	 */
3414 	scn = NULL;
3415 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3416 		sh = elf_sec_hdr(obj, scn);
3417 		if (!sh)
3418 			return -LIBBPF_ERRNO__FORMAT;
3419 
3420 		if (sh->sh_type == SHT_SYMTAB) {
3421 			if (obj->efile.symbols) {
3422 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3423 				return -LIBBPF_ERRNO__FORMAT;
3424 			}
3425 
3426 			data = elf_sec_data(obj, scn);
3427 			if (!data)
3428 				return -LIBBPF_ERRNO__FORMAT;
3429 
3430 			idx = elf_ndxscn(scn);
3431 
3432 			obj->efile.symbols = data;
3433 			obj->efile.symbols_shndx = idx;
3434 			obj->efile.strtabidx = sh->sh_link;
3435 		}
3436 	}
3437 
3438 	if (!obj->efile.symbols) {
3439 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3440 			obj->path);
3441 		return -ENOENT;
3442 	}
3443 
3444 	scn = NULL;
3445 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3446 		idx = elf_ndxscn(scn);
3447 		sec_desc = &obj->efile.secs[idx];
3448 
3449 		sh = elf_sec_hdr(obj, scn);
3450 		if (!sh)
3451 			return -LIBBPF_ERRNO__FORMAT;
3452 
3453 		name = elf_sec_str(obj, sh->sh_name);
3454 		if (!name)
3455 			return -LIBBPF_ERRNO__FORMAT;
3456 
3457 		if (ignore_elf_section(sh, name))
3458 			continue;
3459 
3460 		data = elf_sec_data(obj, scn);
3461 		if (!data)
3462 			return -LIBBPF_ERRNO__FORMAT;
3463 
3464 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3465 			 idx, name, (unsigned long)data->d_size,
3466 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3467 			 (int)sh->sh_type);
3468 
3469 		if (strcmp(name, "license") == 0) {
3470 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3471 			if (err)
3472 				return err;
3473 		} else if (strcmp(name, "version") == 0) {
3474 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3475 			if (err)
3476 				return err;
3477 		} else if (strcmp(name, "maps") == 0) {
3478 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3479 			return -ENOTSUP;
3480 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3481 			obj->efile.btf_maps_shndx = idx;
3482 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3483 			if (sh->sh_type != SHT_PROGBITS)
3484 				return -LIBBPF_ERRNO__FORMAT;
3485 			btf_data = data;
3486 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3487 			if (sh->sh_type != SHT_PROGBITS)
3488 				return -LIBBPF_ERRNO__FORMAT;
3489 			btf_ext_data = data;
3490 		} else if (sh->sh_type == SHT_SYMTAB) {
3491 			/* already processed during the first pass above */
3492 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3493 			if (sh->sh_flags & SHF_EXECINSTR) {
3494 				if (strcmp(name, ".text") == 0)
3495 					obj->efile.text_shndx = idx;
3496 				err = bpf_object__add_programs(obj, data, name, idx);
3497 				if (err)
3498 					return err;
3499 			} else if (strcmp(name, DATA_SEC) == 0 ||
3500 				   str_has_pfx(name, DATA_SEC ".")) {
3501 				sec_desc->sec_type = SEC_DATA;
3502 				sec_desc->shdr = sh;
3503 				sec_desc->data = data;
3504 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3505 				   str_has_pfx(name, RODATA_SEC ".")) {
3506 				sec_desc->sec_type = SEC_RODATA;
3507 				sec_desc->shdr = sh;
3508 				sec_desc->data = data;
3509 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3510 				obj->efile.st_ops_data = data;
3511 				obj->efile.st_ops_shndx = idx;
3512 			} else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3513 				obj->efile.st_ops_link_data = data;
3514 				obj->efile.st_ops_link_shndx = idx;
3515 			} else {
3516 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3517 					idx, name);
3518 			}
3519 		} else if (sh->sh_type == SHT_REL) {
3520 			int targ_sec_idx = sh->sh_info; /* points to other section */
3521 
3522 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3523 			    targ_sec_idx >= obj->efile.sec_cnt)
3524 				return -LIBBPF_ERRNO__FORMAT;
3525 
3526 			/* Only do relo for section with exec instructions */
3527 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3528 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3529 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3530 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3531 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3532 					idx, name, targ_sec_idx,
3533 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3534 				continue;
3535 			}
3536 
3537 			sec_desc->sec_type = SEC_RELO;
3538 			sec_desc->shdr = sh;
3539 			sec_desc->data = data;
3540 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3541 							 str_has_pfx(name, BSS_SEC "."))) {
3542 			sec_desc->sec_type = SEC_BSS;
3543 			sec_desc->shdr = sh;
3544 			sec_desc->data = data;
3545 		} else {
3546 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3547 				(size_t)sh->sh_size);
3548 		}
3549 	}
3550 
3551 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3552 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3553 		return -LIBBPF_ERRNO__FORMAT;
3554 	}
3555 
3556 	/* sort BPF programs by section name and in-section instruction offset
3557 	 * for faster search
3558 	 */
3559 	if (obj->nr_programs)
3560 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3561 
3562 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3563 }
3564 
3565 static bool sym_is_extern(const Elf64_Sym *sym)
3566 {
3567 	int bind = ELF64_ST_BIND(sym->st_info);
3568 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3569 	return sym->st_shndx == SHN_UNDEF &&
3570 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3571 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3572 }
3573 
3574 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3575 {
3576 	int bind = ELF64_ST_BIND(sym->st_info);
3577 	int type = ELF64_ST_TYPE(sym->st_info);
3578 
3579 	/* in .text section */
3580 	if (sym->st_shndx != text_shndx)
3581 		return false;
3582 
3583 	/* local function */
3584 	if (bind == STB_LOCAL && type == STT_SECTION)
3585 		return true;
3586 
3587 	/* global function */
3588 	return bind == STB_GLOBAL && type == STT_FUNC;
3589 }
3590 
3591 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3592 {
3593 	const struct btf_type *t;
3594 	const char *tname;
3595 	int i, n;
3596 
3597 	if (!btf)
3598 		return -ESRCH;
3599 
3600 	n = btf__type_cnt(btf);
3601 	for (i = 1; i < n; i++) {
3602 		t = btf__type_by_id(btf, i);
3603 
3604 		if (!btf_is_var(t) && !btf_is_func(t))
3605 			continue;
3606 
3607 		tname = btf__name_by_offset(btf, t->name_off);
3608 		if (strcmp(tname, ext_name))
3609 			continue;
3610 
3611 		if (btf_is_var(t) &&
3612 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3613 			return -EINVAL;
3614 
3615 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3616 			return -EINVAL;
3617 
3618 		return i;
3619 	}
3620 
3621 	return -ENOENT;
3622 }
3623 
3624 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3625 	const struct btf_var_secinfo *vs;
3626 	const struct btf_type *t;
3627 	int i, j, n;
3628 
3629 	if (!btf)
3630 		return -ESRCH;
3631 
3632 	n = btf__type_cnt(btf);
3633 	for (i = 1; i < n; i++) {
3634 		t = btf__type_by_id(btf, i);
3635 
3636 		if (!btf_is_datasec(t))
3637 			continue;
3638 
3639 		vs = btf_var_secinfos(t);
3640 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3641 			if (vs->type == ext_btf_id)
3642 				return i;
3643 		}
3644 	}
3645 
3646 	return -ENOENT;
3647 }
3648 
3649 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3650 				     bool *is_signed)
3651 {
3652 	const struct btf_type *t;
3653 	const char *name;
3654 
3655 	t = skip_mods_and_typedefs(btf, id, NULL);
3656 	name = btf__name_by_offset(btf, t->name_off);
3657 
3658 	if (is_signed)
3659 		*is_signed = false;
3660 	switch (btf_kind(t)) {
3661 	case BTF_KIND_INT: {
3662 		int enc = btf_int_encoding(t);
3663 
3664 		if (enc & BTF_INT_BOOL)
3665 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3666 		if (is_signed)
3667 			*is_signed = enc & BTF_INT_SIGNED;
3668 		if (t->size == 1)
3669 			return KCFG_CHAR;
3670 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3671 			return KCFG_UNKNOWN;
3672 		return KCFG_INT;
3673 	}
3674 	case BTF_KIND_ENUM:
3675 		if (t->size != 4)
3676 			return KCFG_UNKNOWN;
3677 		if (strcmp(name, "libbpf_tristate"))
3678 			return KCFG_UNKNOWN;
3679 		return KCFG_TRISTATE;
3680 	case BTF_KIND_ENUM64:
3681 		if (strcmp(name, "libbpf_tristate"))
3682 			return KCFG_UNKNOWN;
3683 		return KCFG_TRISTATE;
3684 	case BTF_KIND_ARRAY:
3685 		if (btf_array(t)->nelems == 0)
3686 			return KCFG_UNKNOWN;
3687 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3688 			return KCFG_UNKNOWN;
3689 		return KCFG_CHAR_ARR;
3690 	default:
3691 		return KCFG_UNKNOWN;
3692 	}
3693 }
3694 
3695 static int cmp_externs(const void *_a, const void *_b)
3696 {
3697 	const struct extern_desc *a = _a;
3698 	const struct extern_desc *b = _b;
3699 
3700 	if (a->type != b->type)
3701 		return a->type < b->type ? -1 : 1;
3702 
3703 	if (a->type == EXT_KCFG) {
3704 		/* descending order by alignment requirements */
3705 		if (a->kcfg.align != b->kcfg.align)
3706 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3707 		/* ascending order by size, within same alignment class */
3708 		if (a->kcfg.sz != b->kcfg.sz)
3709 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3710 	}
3711 
3712 	/* resolve ties by name */
3713 	return strcmp(a->name, b->name);
3714 }
3715 
3716 static int find_int_btf_id(const struct btf *btf)
3717 {
3718 	const struct btf_type *t;
3719 	int i, n;
3720 
3721 	n = btf__type_cnt(btf);
3722 	for (i = 1; i < n; i++) {
3723 		t = btf__type_by_id(btf, i);
3724 
3725 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3726 			return i;
3727 	}
3728 
3729 	return 0;
3730 }
3731 
3732 static int add_dummy_ksym_var(struct btf *btf)
3733 {
3734 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3735 	const struct btf_var_secinfo *vs;
3736 	const struct btf_type *sec;
3737 
3738 	if (!btf)
3739 		return 0;
3740 
3741 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3742 					    BTF_KIND_DATASEC);
3743 	if (sec_btf_id < 0)
3744 		return 0;
3745 
3746 	sec = btf__type_by_id(btf, sec_btf_id);
3747 	vs = btf_var_secinfos(sec);
3748 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3749 		const struct btf_type *vt;
3750 
3751 		vt = btf__type_by_id(btf, vs->type);
3752 		if (btf_is_func(vt))
3753 			break;
3754 	}
3755 
3756 	/* No func in ksyms sec.  No need to add dummy var. */
3757 	if (i == btf_vlen(sec))
3758 		return 0;
3759 
3760 	int_btf_id = find_int_btf_id(btf);
3761 	dummy_var_btf_id = btf__add_var(btf,
3762 					"dummy_ksym",
3763 					BTF_VAR_GLOBAL_ALLOCATED,
3764 					int_btf_id);
3765 	if (dummy_var_btf_id < 0)
3766 		pr_warn("cannot create a dummy_ksym var\n");
3767 
3768 	return dummy_var_btf_id;
3769 }
3770 
3771 static int bpf_object__collect_externs(struct bpf_object *obj)
3772 {
3773 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3774 	const struct btf_type *t;
3775 	struct extern_desc *ext;
3776 	int i, n, off, dummy_var_btf_id;
3777 	const char *ext_name, *sec_name;
3778 	size_t ext_essent_len;
3779 	Elf_Scn *scn;
3780 	Elf64_Shdr *sh;
3781 
3782 	if (!obj->efile.symbols)
3783 		return 0;
3784 
3785 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3786 	sh = elf_sec_hdr(obj, scn);
3787 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3788 		return -LIBBPF_ERRNO__FORMAT;
3789 
3790 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3791 	if (dummy_var_btf_id < 0)
3792 		return dummy_var_btf_id;
3793 
3794 	n = sh->sh_size / sh->sh_entsize;
3795 	pr_debug("looking for externs among %d symbols...\n", n);
3796 
3797 	for (i = 0; i < n; i++) {
3798 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3799 
3800 		if (!sym)
3801 			return -LIBBPF_ERRNO__FORMAT;
3802 		if (!sym_is_extern(sym))
3803 			continue;
3804 		ext_name = elf_sym_str(obj, sym->st_name);
3805 		if (!ext_name || !ext_name[0])
3806 			continue;
3807 
3808 		ext = obj->externs;
3809 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3810 		if (!ext)
3811 			return -ENOMEM;
3812 		obj->externs = ext;
3813 		ext = &ext[obj->nr_extern];
3814 		memset(ext, 0, sizeof(*ext));
3815 		obj->nr_extern++;
3816 
3817 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3818 		if (ext->btf_id <= 0) {
3819 			pr_warn("failed to find BTF for extern '%s': %d\n",
3820 				ext_name, ext->btf_id);
3821 			return ext->btf_id;
3822 		}
3823 		t = btf__type_by_id(obj->btf, ext->btf_id);
3824 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3825 		ext->sym_idx = i;
3826 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3827 
3828 		ext_essent_len = bpf_core_essential_name_len(ext->name);
3829 		ext->essent_name = NULL;
3830 		if (ext_essent_len != strlen(ext->name)) {
3831 			ext->essent_name = strndup(ext->name, ext_essent_len);
3832 			if (!ext->essent_name)
3833 				return -ENOMEM;
3834 		}
3835 
3836 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3837 		if (ext->sec_btf_id <= 0) {
3838 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3839 				ext_name, ext->btf_id, ext->sec_btf_id);
3840 			return ext->sec_btf_id;
3841 		}
3842 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3843 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3844 
3845 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3846 			if (btf_is_func(t)) {
3847 				pr_warn("extern function %s is unsupported under %s section\n",
3848 					ext->name, KCONFIG_SEC);
3849 				return -ENOTSUP;
3850 			}
3851 			kcfg_sec = sec;
3852 			ext->type = EXT_KCFG;
3853 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3854 			if (ext->kcfg.sz <= 0) {
3855 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3856 					ext_name, ext->kcfg.sz);
3857 				return ext->kcfg.sz;
3858 			}
3859 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3860 			if (ext->kcfg.align <= 0) {
3861 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3862 					ext_name, ext->kcfg.align);
3863 				return -EINVAL;
3864 			}
3865 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3866 							&ext->kcfg.is_signed);
3867 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3868 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3869 				return -ENOTSUP;
3870 			}
3871 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3872 			ksym_sec = sec;
3873 			ext->type = EXT_KSYM;
3874 			skip_mods_and_typedefs(obj->btf, t->type,
3875 					       &ext->ksym.type_id);
3876 		} else {
3877 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3878 			return -ENOTSUP;
3879 		}
3880 	}
3881 	pr_debug("collected %d externs total\n", obj->nr_extern);
3882 
3883 	if (!obj->nr_extern)
3884 		return 0;
3885 
3886 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3887 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3888 
3889 	/* for .ksyms section, we need to turn all externs into allocated
3890 	 * variables in BTF to pass kernel verification; we do this by
3891 	 * pretending that each extern is a 8-byte variable
3892 	 */
3893 	if (ksym_sec) {
3894 		/* find existing 4-byte integer type in BTF to use for fake
3895 		 * extern variables in DATASEC
3896 		 */
3897 		int int_btf_id = find_int_btf_id(obj->btf);
3898 		/* For extern function, a dummy_var added earlier
3899 		 * will be used to replace the vs->type and
3900 		 * its name string will be used to refill
3901 		 * the missing param's name.
3902 		 */
3903 		const struct btf_type *dummy_var;
3904 
3905 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3906 		for (i = 0; i < obj->nr_extern; i++) {
3907 			ext = &obj->externs[i];
3908 			if (ext->type != EXT_KSYM)
3909 				continue;
3910 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3911 				 i, ext->sym_idx, ext->name);
3912 		}
3913 
3914 		sec = ksym_sec;
3915 		n = btf_vlen(sec);
3916 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3917 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3918 			struct btf_type *vt;
3919 
3920 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3921 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3922 			ext = find_extern_by_name(obj, ext_name);
3923 			if (!ext) {
3924 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3925 					btf_kind_str(vt), ext_name);
3926 				return -ESRCH;
3927 			}
3928 			if (btf_is_func(vt)) {
3929 				const struct btf_type *func_proto;
3930 				struct btf_param *param;
3931 				int j;
3932 
3933 				func_proto = btf__type_by_id(obj->btf,
3934 							     vt->type);
3935 				param = btf_params(func_proto);
3936 				/* Reuse the dummy_var string if the
3937 				 * func proto does not have param name.
3938 				 */
3939 				for (j = 0; j < btf_vlen(func_proto); j++)
3940 					if (param[j].type && !param[j].name_off)
3941 						param[j].name_off =
3942 							dummy_var->name_off;
3943 				vs->type = dummy_var_btf_id;
3944 				vt->info &= ~0xffff;
3945 				vt->info |= BTF_FUNC_GLOBAL;
3946 			} else {
3947 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3948 				vt->type = int_btf_id;
3949 			}
3950 			vs->offset = off;
3951 			vs->size = sizeof(int);
3952 		}
3953 		sec->size = off;
3954 	}
3955 
3956 	if (kcfg_sec) {
3957 		sec = kcfg_sec;
3958 		/* for kcfg externs calculate their offsets within a .kconfig map */
3959 		off = 0;
3960 		for (i = 0; i < obj->nr_extern; i++) {
3961 			ext = &obj->externs[i];
3962 			if (ext->type != EXT_KCFG)
3963 				continue;
3964 
3965 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3966 			off = ext->kcfg.data_off + ext->kcfg.sz;
3967 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3968 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3969 		}
3970 		sec->size = off;
3971 		n = btf_vlen(sec);
3972 		for (i = 0; i < n; i++) {
3973 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3974 
3975 			t = btf__type_by_id(obj->btf, vs->type);
3976 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3977 			ext = find_extern_by_name(obj, ext_name);
3978 			if (!ext) {
3979 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3980 					ext_name);
3981 				return -ESRCH;
3982 			}
3983 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3984 			vs->offset = ext->kcfg.data_off;
3985 		}
3986 	}
3987 	return 0;
3988 }
3989 
3990 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3991 {
3992 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3993 }
3994 
3995 struct bpf_program *
3996 bpf_object__find_program_by_name(const struct bpf_object *obj,
3997 				 const char *name)
3998 {
3999 	struct bpf_program *prog;
4000 
4001 	bpf_object__for_each_program(prog, obj) {
4002 		if (prog_is_subprog(obj, prog))
4003 			continue;
4004 		if (!strcmp(prog->name, name))
4005 			return prog;
4006 	}
4007 	return errno = ENOENT, NULL;
4008 }
4009 
4010 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4011 				      int shndx)
4012 {
4013 	switch (obj->efile.secs[shndx].sec_type) {
4014 	case SEC_BSS:
4015 	case SEC_DATA:
4016 	case SEC_RODATA:
4017 		return true;
4018 	default:
4019 		return false;
4020 	}
4021 }
4022 
4023 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4024 				      int shndx)
4025 {
4026 	return shndx == obj->efile.btf_maps_shndx;
4027 }
4028 
4029 static enum libbpf_map_type
4030 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4031 {
4032 	if (shndx == obj->efile.symbols_shndx)
4033 		return LIBBPF_MAP_KCONFIG;
4034 
4035 	switch (obj->efile.secs[shndx].sec_type) {
4036 	case SEC_BSS:
4037 		return LIBBPF_MAP_BSS;
4038 	case SEC_DATA:
4039 		return LIBBPF_MAP_DATA;
4040 	case SEC_RODATA:
4041 		return LIBBPF_MAP_RODATA;
4042 	default:
4043 		return LIBBPF_MAP_UNSPEC;
4044 	}
4045 }
4046 
4047 static int bpf_program__record_reloc(struct bpf_program *prog,
4048 				     struct reloc_desc *reloc_desc,
4049 				     __u32 insn_idx, const char *sym_name,
4050 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4051 {
4052 	struct bpf_insn *insn = &prog->insns[insn_idx];
4053 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4054 	struct bpf_object *obj = prog->obj;
4055 	__u32 shdr_idx = sym->st_shndx;
4056 	enum libbpf_map_type type;
4057 	const char *sym_sec_name;
4058 	struct bpf_map *map;
4059 
4060 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4061 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4062 			prog->name, sym_name, insn_idx, insn->code);
4063 		return -LIBBPF_ERRNO__RELOC;
4064 	}
4065 
4066 	if (sym_is_extern(sym)) {
4067 		int sym_idx = ELF64_R_SYM(rel->r_info);
4068 		int i, n = obj->nr_extern;
4069 		struct extern_desc *ext;
4070 
4071 		for (i = 0; i < n; i++) {
4072 			ext = &obj->externs[i];
4073 			if (ext->sym_idx == sym_idx)
4074 				break;
4075 		}
4076 		if (i >= n) {
4077 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4078 				prog->name, sym_name, sym_idx);
4079 			return -LIBBPF_ERRNO__RELOC;
4080 		}
4081 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4082 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4083 		if (insn->code == (BPF_JMP | BPF_CALL))
4084 			reloc_desc->type = RELO_EXTERN_CALL;
4085 		else
4086 			reloc_desc->type = RELO_EXTERN_LD64;
4087 		reloc_desc->insn_idx = insn_idx;
4088 		reloc_desc->ext_idx = i;
4089 		return 0;
4090 	}
4091 
4092 	/* sub-program call relocation */
4093 	if (is_call_insn(insn)) {
4094 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4095 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4096 			return -LIBBPF_ERRNO__RELOC;
4097 		}
4098 		/* text_shndx can be 0, if no default "main" program exists */
4099 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4100 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4101 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4102 				prog->name, sym_name, sym_sec_name);
4103 			return -LIBBPF_ERRNO__RELOC;
4104 		}
4105 		if (sym->st_value % BPF_INSN_SZ) {
4106 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4107 				prog->name, sym_name, (size_t)sym->st_value);
4108 			return -LIBBPF_ERRNO__RELOC;
4109 		}
4110 		reloc_desc->type = RELO_CALL;
4111 		reloc_desc->insn_idx = insn_idx;
4112 		reloc_desc->sym_off = sym->st_value;
4113 		return 0;
4114 	}
4115 
4116 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4117 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4118 			prog->name, sym_name, shdr_idx);
4119 		return -LIBBPF_ERRNO__RELOC;
4120 	}
4121 
4122 	/* loading subprog addresses */
4123 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4124 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4125 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4126 		 */
4127 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4128 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4129 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4130 			return -LIBBPF_ERRNO__RELOC;
4131 		}
4132 
4133 		reloc_desc->type = RELO_SUBPROG_ADDR;
4134 		reloc_desc->insn_idx = insn_idx;
4135 		reloc_desc->sym_off = sym->st_value;
4136 		return 0;
4137 	}
4138 
4139 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4140 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4141 
4142 	/* generic map reference relocation */
4143 	if (type == LIBBPF_MAP_UNSPEC) {
4144 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4145 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4146 				prog->name, sym_name, sym_sec_name);
4147 			return -LIBBPF_ERRNO__RELOC;
4148 		}
4149 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4150 			map = &obj->maps[map_idx];
4151 			if (map->libbpf_type != type ||
4152 			    map->sec_idx != sym->st_shndx ||
4153 			    map->sec_offset != sym->st_value)
4154 				continue;
4155 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4156 				 prog->name, map_idx, map->name, map->sec_idx,
4157 				 map->sec_offset, insn_idx);
4158 			break;
4159 		}
4160 		if (map_idx >= nr_maps) {
4161 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4162 				prog->name, sym_sec_name, (size_t)sym->st_value);
4163 			return -LIBBPF_ERRNO__RELOC;
4164 		}
4165 		reloc_desc->type = RELO_LD64;
4166 		reloc_desc->insn_idx = insn_idx;
4167 		reloc_desc->map_idx = map_idx;
4168 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4169 		return 0;
4170 	}
4171 
4172 	/* global data map relocation */
4173 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4174 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4175 			prog->name, sym_sec_name);
4176 		return -LIBBPF_ERRNO__RELOC;
4177 	}
4178 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4179 		map = &obj->maps[map_idx];
4180 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4181 			continue;
4182 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4183 			 prog->name, map_idx, map->name, map->sec_idx,
4184 			 map->sec_offset, insn_idx);
4185 		break;
4186 	}
4187 	if (map_idx >= nr_maps) {
4188 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4189 			prog->name, sym_sec_name);
4190 		return -LIBBPF_ERRNO__RELOC;
4191 	}
4192 
4193 	reloc_desc->type = RELO_DATA;
4194 	reloc_desc->insn_idx = insn_idx;
4195 	reloc_desc->map_idx = map_idx;
4196 	reloc_desc->sym_off = sym->st_value;
4197 	return 0;
4198 }
4199 
4200 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4201 {
4202 	return insn_idx >= prog->sec_insn_off &&
4203 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4204 }
4205 
4206 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4207 						 size_t sec_idx, size_t insn_idx)
4208 {
4209 	int l = 0, r = obj->nr_programs - 1, m;
4210 	struct bpf_program *prog;
4211 
4212 	if (!obj->nr_programs)
4213 		return NULL;
4214 
4215 	while (l < r) {
4216 		m = l + (r - l + 1) / 2;
4217 		prog = &obj->programs[m];
4218 
4219 		if (prog->sec_idx < sec_idx ||
4220 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4221 			l = m;
4222 		else
4223 			r = m - 1;
4224 	}
4225 	/* matching program could be at index l, but it still might be the
4226 	 * wrong one, so we need to double check conditions for the last time
4227 	 */
4228 	prog = &obj->programs[l];
4229 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4230 		return prog;
4231 	return NULL;
4232 }
4233 
4234 static int
4235 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4236 {
4237 	const char *relo_sec_name, *sec_name;
4238 	size_t sec_idx = shdr->sh_info, sym_idx;
4239 	struct bpf_program *prog;
4240 	struct reloc_desc *relos;
4241 	int err, i, nrels;
4242 	const char *sym_name;
4243 	__u32 insn_idx;
4244 	Elf_Scn *scn;
4245 	Elf_Data *scn_data;
4246 	Elf64_Sym *sym;
4247 	Elf64_Rel *rel;
4248 
4249 	if (sec_idx >= obj->efile.sec_cnt)
4250 		return -EINVAL;
4251 
4252 	scn = elf_sec_by_idx(obj, sec_idx);
4253 	scn_data = elf_sec_data(obj, scn);
4254 	if (!scn_data)
4255 		return -LIBBPF_ERRNO__FORMAT;
4256 
4257 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4258 	sec_name = elf_sec_name(obj, scn);
4259 	if (!relo_sec_name || !sec_name)
4260 		return -EINVAL;
4261 
4262 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4263 		 relo_sec_name, sec_idx, sec_name);
4264 	nrels = shdr->sh_size / shdr->sh_entsize;
4265 
4266 	for (i = 0; i < nrels; i++) {
4267 		rel = elf_rel_by_idx(data, i);
4268 		if (!rel) {
4269 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4270 			return -LIBBPF_ERRNO__FORMAT;
4271 		}
4272 
4273 		sym_idx = ELF64_R_SYM(rel->r_info);
4274 		sym = elf_sym_by_idx(obj, sym_idx);
4275 		if (!sym) {
4276 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4277 				relo_sec_name, sym_idx, i);
4278 			return -LIBBPF_ERRNO__FORMAT;
4279 		}
4280 
4281 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4282 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4283 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4284 			return -LIBBPF_ERRNO__FORMAT;
4285 		}
4286 
4287 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4288 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4289 				relo_sec_name, (size_t)rel->r_offset, i);
4290 			return -LIBBPF_ERRNO__FORMAT;
4291 		}
4292 
4293 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4294 		/* relocations against static functions are recorded as
4295 		 * relocations against the section that contains a function;
4296 		 * in such case, symbol will be STT_SECTION and sym.st_name
4297 		 * will point to empty string (0), so fetch section name
4298 		 * instead
4299 		 */
4300 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4301 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4302 		else
4303 			sym_name = elf_sym_str(obj, sym->st_name);
4304 		sym_name = sym_name ?: "<?";
4305 
4306 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4307 			 relo_sec_name, i, insn_idx, sym_name);
4308 
4309 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4310 		if (!prog) {
4311 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4312 				relo_sec_name, i, sec_name, insn_idx);
4313 			continue;
4314 		}
4315 
4316 		relos = libbpf_reallocarray(prog->reloc_desc,
4317 					    prog->nr_reloc + 1, sizeof(*relos));
4318 		if (!relos)
4319 			return -ENOMEM;
4320 		prog->reloc_desc = relos;
4321 
4322 		/* adjust insn_idx to local BPF program frame of reference */
4323 		insn_idx -= prog->sec_insn_off;
4324 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4325 						insn_idx, sym_name, sym, rel);
4326 		if (err)
4327 			return err;
4328 
4329 		prog->nr_reloc++;
4330 	}
4331 	return 0;
4332 }
4333 
4334 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4335 {
4336 	int id;
4337 
4338 	if (!obj->btf)
4339 		return -ENOENT;
4340 
4341 	/* if it's BTF-defined map, we don't need to search for type IDs.
4342 	 * For struct_ops map, it does not need btf_key_type_id and
4343 	 * btf_value_type_id.
4344 	 */
4345 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4346 		return 0;
4347 
4348 	/*
4349 	 * LLVM annotates global data differently in BTF, that is,
4350 	 * only as '.data', '.bss' or '.rodata'.
4351 	 */
4352 	if (!bpf_map__is_internal(map))
4353 		return -ENOENT;
4354 
4355 	id = btf__find_by_name(obj->btf, map->real_name);
4356 	if (id < 0)
4357 		return id;
4358 
4359 	map->btf_key_type_id = 0;
4360 	map->btf_value_type_id = id;
4361 	return 0;
4362 }
4363 
4364 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4365 {
4366 	char file[PATH_MAX], buff[4096];
4367 	FILE *fp;
4368 	__u32 val;
4369 	int err;
4370 
4371 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4372 	memset(info, 0, sizeof(*info));
4373 
4374 	fp = fopen(file, "re");
4375 	if (!fp) {
4376 		err = -errno;
4377 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4378 			err);
4379 		return err;
4380 	}
4381 
4382 	while (fgets(buff, sizeof(buff), fp)) {
4383 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4384 			info->type = val;
4385 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4386 			info->key_size = val;
4387 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4388 			info->value_size = val;
4389 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4390 			info->max_entries = val;
4391 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4392 			info->map_flags = val;
4393 	}
4394 
4395 	fclose(fp);
4396 
4397 	return 0;
4398 }
4399 
4400 bool bpf_map__autocreate(const struct bpf_map *map)
4401 {
4402 	return map->autocreate;
4403 }
4404 
4405 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4406 {
4407 	if (map->obj->loaded)
4408 		return libbpf_err(-EBUSY);
4409 
4410 	map->autocreate = autocreate;
4411 	return 0;
4412 }
4413 
4414 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4415 {
4416 	struct bpf_map_info info;
4417 	__u32 len = sizeof(info), name_len;
4418 	int new_fd, err;
4419 	char *new_name;
4420 
4421 	memset(&info, 0, len);
4422 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4423 	if (err && errno == EINVAL)
4424 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4425 	if (err)
4426 		return libbpf_err(err);
4427 
4428 	name_len = strlen(info.name);
4429 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4430 		new_name = strdup(map->name);
4431 	else
4432 		new_name = strdup(info.name);
4433 
4434 	if (!new_name)
4435 		return libbpf_err(-errno);
4436 
4437 	/*
4438 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4439 	 * This is similar to what we do in ensure_good_fd(), but without
4440 	 * closing original FD.
4441 	 */
4442 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4443 	if (new_fd < 0) {
4444 		err = -errno;
4445 		goto err_free_new_name;
4446 	}
4447 
4448 	err = zclose(map->fd);
4449 	if (err) {
4450 		err = -errno;
4451 		goto err_close_new_fd;
4452 	}
4453 	free(map->name);
4454 
4455 	map->fd = new_fd;
4456 	map->name = new_name;
4457 	map->def.type = info.type;
4458 	map->def.key_size = info.key_size;
4459 	map->def.value_size = info.value_size;
4460 	map->def.max_entries = info.max_entries;
4461 	map->def.map_flags = info.map_flags;
4462 	map->btf_key_type_id = info.btf_key_type_id;
4463 	map->btf_value_type_id = info.btf_value_type_id;
4464 	map->reused = true;
4465 	map->map_extra = info.map_extra;
4466 
4467 	return 0;
4468 
4469 err_close_new_fd:
4470 	close(new_fd);
4471 err_free_new_name:
4472 	free(new_name);
4473 	return libbpf_err(err);
4474 }
4475 
4476 __u32 bpf_map__max_entries(const struct bpf_map *map)
4477 {
4478 	return map->def.max_entries;
4479 }
4480 
4481 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4482 {
4483 	if (!bpf_map_type__is_map_in_map(map->def.type))
4484 		return errno = EINVAL, NULL;
4485 
4486 	return map->inner_map;
4487 }
4488 
4489 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4490 {
4491 	if (map->obj->loaded)
4492 		return libbpf_err(-EBUSY);
4493 
4494 	map->def.max_entries = max_entries;
4495 
4496 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4497 	if (map_is_ringbuf(map))
4498 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4499 
4500 	return 0;
4501 }
4502 
4503 static int
4504 bpf_object__probe_loading(struct bpf_object *obj)
4505 {
4506 	char *cp, errmsg[STRERR_BUFSIZE];
4507 	struct bpf_insn insns[] = {
4508 		BPF_MOV64_IMM(BPF_REG_0, 0),
4509 		BPF_EXIT_INSN(),
4510 	};
4511 	int ret, insn_cnt = ARRAY_SIZE(insns);
4512 
4513 	if (obj->gen_loader)
4514 		return 0;
4515 
4516 	ret = bump_rlimit_memlock();
4517 	if (ret)
4518 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4519 
4520 	/* make sure basic loading works */
4521 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4522 	if (ret < 0)
4523 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4524 	if (ret < 0) {
4525 		ret = errno;
4526 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4527 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4528 			"program. Make sure your kernel supports BPF "
4529 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4530 			"set to big enough value.\n", __func__, cp, ret);
4531 		return -ret;
4532 	}
4533 	close(ret);
4534 
4535 	return 0;
4536 }
4537 
4538 static int probe_fd(int fd)
4539 {
4540 	if (fd >= 0)
4541 		close(fd);
4542 	return fd >= 0;
4543 }
4544 
4545 static int probe_kern_prog_name(void)
4546 {
4547 	const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4548 	struct bpf_insn insns[] = {
4549 		BPF_MOV64_IMM(BPF_REG_0, 0),
4550 		BPF_EXIT_INSN(),
4551 	};
4552 	union bpf_attr attr;
4553 	int ret;
4554 
4555 	memset(&attr, 0, attr_sz);
4556 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4557 	attr.license = ptr_to_u64("GPL");
4558 	attr.insns = ptr_to_u64(insns);
4559 	attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4560 	libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4561 
4562 	/* make sure loading with name works */
4563 	ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4564 	return probe_fd(ret);
4565 }
4566 
4567 static int probe_kern_global_data(void)
4568 {
4569 	char *cp, errmsg[STRERR_BUFSIZE];
4570 	struct bpf_insn insns[] = {
4571 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4572 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4573 		BPF_MOV64_IMM(BPF_REG_0, 0),
4574 		BPF_EXIT_INSN(),
4575 	};
4576 	int ret, map, insn_cnt = ARRAY_SIZE(insns);
4577 
4578 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4579 	if (map < 0) {
4580 		ret = -errno;
4581 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4582 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4583 			__func__, cp, -ret);
4584 		return ret;
4585 	}
4586 
4587 	insns[0].imm = map;
4588 
4589 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4590 	close(map);
4591 	return probe_fd(ret);
4592 }
4593 
4594 static int probe_kern_btf(void)
4595 {
4596 	static const char strs[] = "\0int";
4597 	__u32 types[] = {
4598 		/* int */
4599 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4600 	};
4601 
4602 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4603 					     strs, sizeof(strs)));
4604 }
4605 
4606 static int probe_kern_btf_func(void)
4607 {
4608 	static const char strs[] = "\0int\0x\0a";
4609 	/* void x(int a) {} */
4610 	__u32 types[] = {
4611 		/* int */
4612 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4613 		/* FUNC_PROTO */                                /* [2] */
4614 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4615 		BTF_PARAM_ENC(7, 1),
4616 		/* FUNC x */                                    /* [3] */
4617 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4618 	};
4619 
4620 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4621 					     strs, sizeof(strs)));
4622 }
4623 
4624 static int probe_kern_btf_func_global(void)
4625 {
4626 	static const char strs[] = "\0int\0x\0a";
4627 	/* static void x(int a) {} */
4628 	__u32 types[] = {
4629 		/* int */
4630 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4631 		/* FUNC_PROTO */                                /* [2] */
4632 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4633 		BTF_PARAM_ENC(7, 1),
4634 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4635 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4636 	};
4637 
4638 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4639 					     strs, sizeof(strs)));
4640 }
4641 
4642 static int probe_kern_btf_datasec(void)
4643 {
4644 	static const char strs[] = "\0x\0.data";
4645 	/* static int a; */
4646 	__u32 types[] = {
4647 		/* int */
4648 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4649 		/* VAR x */                                     /* [2] */
4650 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4651 		BTF_VAR_STATIC,
4652 		/* DATASEC val */                               /* [3] */
4653 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4654 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4655 	};
4656 
4657 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4658 					     strs, sizeof(strs)));
4659 }
4660 
4661 static int probe_kern_btf_float(void)
4662 {
4663 	static const char strs[] = "\0float";
4664 	__u32 types[] = {
4665 		/* float */
4666 		BTF_TYPE_FLOAT_ENC(1, 4),
4667 	};
4668 
4669 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4670 					     strs, sizeof(strs)));
4671 }
4672 
4673 static int probe_kern_btf_decl_tag(void)
4674 {
4675 	static const char strs[] = "\0tag";
4676 	__u32 types[] = {
4677 		/* int */
4678 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4679 		/* VAR x */                                     /* [2] */
4680 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4681 		BTF_VAR_STATIC,
4682 		/* attr */
4683 		BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4684 	};
4685 
4686 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4687 					     strs, sizeof(strs)));
4688 }
4689 
4690 static int probe_kern_btf_type_tag(void)
4691 {
4692 	static const char strs[] = "\0tag";
4693 	__u32 types[] = {
4694 		/* int */
4695 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),		/* [1] */
4696 		/* attr */
4697 		BTF_TYPE_TYPE_TAG_ENC(1, 1),				/* [2] */
4698 		/* ptr */
4699 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2),	/* [3] */
4700 	};
4701 
4702 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4703 					     strs, sizeof(strs)));
4704 }
4705 
4706 static int probe_kern_array_mmap(void)
4707 {
4708 	LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4709 	int fd;
4710 
4711 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4712 	return probe_fd(fd);
4713 }
4714 
4715 static int probe_kern_exp_attach_type(void)
4716 {
4717 	LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4718 	struct bpf_insn insns[] = {
4719 		BPF_MOV64_IMM(BPF_REG_0, 0),
4720 		BPF_EXIT_INSN(),
4721 	};
4722 	int fd, insn_cnt = ARRAY_SIZE(insns);
4723 
4724 	/* use any valid combination of program type and (optional)
4725 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4726 	 * to see if kernel supports expected_attach_type field for
4727 	 * BPF_PROG_LOAD command
4728 	 */
4729 	fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4730 	return probe_fd(fd);
4731 }
4732 
4733 static int probe_kern_probe_read_kernel(void)
4734 {
4735 	struct bpf_insn insns[] = {
4736 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4737 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4738 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4739 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4740 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4741 		BPF_EXIT_INSN(),
4742 	};
4743 	int fd, insn_cnt = ARRAY_SIZE(insns);
4744 
4745 	fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4746 	return probe_fd(fd);
4747 }
4748 
4749 static int probe_prog_bind_map(void)
4750 {
4751 	char *cp, errmsg[STRERR_BUFSIZE];
4752 	struct bpf_insn insns[] = {
4753 		BPF_MOV64_IMM(BPF_REG_0, 0),
4754 		BPF_EXIT_INSN(),
4755 	};
4756 	int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4757 
4758 	map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4759 	if (map < 0) {
4760 		ret = -errno;
4761 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4762 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4763 			__func__, cp, -ret);
4764 		return ret;
4765 	}
4766 
4767 	prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4768 	if (prog < 0) {
4769 		close(map);
4770 		return 0;
4771 	}
4772 
4773 	ret = bpf_prog_bind_map(prog, map, NULL);
4774 
4775 	close(map);
4776 	close(prog);
4777 
4778 	return ret >= 0;
4779 }
4780 
4781 static int probe_module_btf(void)
4782 {
4783 	static const char strs[] = "\0int";
4784 	__u32 types[] = {
4785 		/* int */
4786 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4787 	};
4788 	struct bpf_btf_info info;
4789 	__u32 len = sizeof(info);
4790 	char name[16];
4791 	int fd, err;
4792 
4793 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4794 	if (fd < 0)
4795 		return 0; /* BTF not supported at all */
4796 
4797 	memset(&info, 0, sizeof(info));
4798 	info.name = ptr_to_u64(name);
4799 	info.name_len = sizeof(name);
4800 
4801 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4802 	 * kernel's module BTF support coincides with support for
4803 	 * name/name_len fields in struct bpf_btf_info.
4804 	 */
4805 	err = bpf_btf_get_info_by_fd(fd, &info, &len);
4806 	close(fd);
4807 	return !err;
4808 }
4809 
4810 static int probe_perf_link(void)
4811 {
4812 	struct bpf_insn insns[] = {
4813 		BPF_MOV64_IMM(BPF_REG_0, 0),
4814 		BPF_EXIT_INSN(),
4815 	};
4816 	int prog_fd, link_fd, err;
4817 
4818 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4819 				insns, ARRAY_SIZE(insns), NULL);
4820 	if (prog_fd < 0)
4821 		return -errno;
4822 
4823 	/* use invalid perf_event FD to get EBADF, if link is supported;
4824 	 * otherwise EINVAL should be returned
4825 	 */
4826 	link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4827 	err = -errno; /* close() can clobber errno */
4828 
4829 	if (link_fd >= 0)
4830 		close(link_fd);
4831 	close(prog_fd);
4832 
4833 	return link_fd < 0 && err == -EBADF;
4834 }
4835 
4836 static int probe_uprobe_multi_link(void)
4837 {
4838 	LIBBPF_OPTS(bpf_prog_load_opts, load_opts,
4839 		.expected_attach_type = BPF_TRACE_UPROBE_MULTI,
4840 	);
4841 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
4842 	struct bpf_insn insns[] = {
4843 		BPF_MOV64_IMM(BPF_REG_0, 0),
4844 		BPF_EXIT_INSN(),
4845 	};
4846 	int prog_fd, link_fd, err;
4847 	unsigned long offset = 0;
4848 
4849 	prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL",
4850 				insns, ARRAY_SIZE(insns), &load_opts);
4851 	if (prog_fd < 0)
4852 		return -errno;
4853 
4854 	/* Creating uprobe in '/' binary should fail with -EBADF. */
4855 	link_opts.uprobe_multi.path = "/";
4856 	link_opts.uprobe_multi.offsets = &offset;
4857 	link_opts.uprobe_multi.cnt = 1;
4858 
4859 	link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts);
4860 	err = -errno; /* close() can clobber errno */
4861 
4862 	if (link_fd >= 0)
4863 		close(link_fd);
4864 	close(prog_fd);
4865 
4866 	return link_fd < 0 && err == -EBADF;
4867 }
4868 
4869 static int probe_kern_bpf_cookie(void)
4870 {
4871 	struct bpf_insn insns[] = {
4872 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4873 		BPF_EXIT_INSN(),
4874 	};
4875 	int ret, insn_cnt = ARRAY_SIZE(insns);
4876 
4877 	ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4878 	return probe_fd(ret);
4879 }
4880 
4881 static int probe_kern_btf_enum64(void)
4882 {
4883 	static const char strs[] = "\0enum64";
4884 	__u32 types[] = {
4885 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4886 	};
4887 
4888 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4889 					     strs, sizeof(strs)));
4890 }
4891 
4892 static int probe_kern_syscall_wrapper(void);
4893 
4894 enum kern_feature_result {
4895 	FEAT_UNKNOWN = 0,
4896 	FEAT_SUPPORTED = 1,
4897 	FEAT_MISSING = 2,
4898 };
4899 
4900 typedef int (*feature_probe_fn)(void);
4901 
4902 static struct kern_feature_desc {
4903 	const char *desc;
4904 	feature_probe_fn probe;
4905 	enum kern_feature_result res;
4906 } feature_probes[__FEAT_CNT] = {
4907 	[FEAT_PROG_NAME] = {
4908 		"BPF program name", probe_kern_prog_name,
4909 	},
4910 	[FEAT_GLOBAL_DATA] = {
4911 		"global variables", probe_kern_global_data,
4912 	},
4913 	[FEAT_BTF] = {
4914 		"minimal BTF", probe_kern_btf,
4915 	},
4916 	[FEAT_BTF_FUNC] = {
4917 		"BTF functions", probe_kern_btf_func,
4918 	},
4919 	[FEAT_BTF_GLOBAL_FUNC] = {
4920 		"BTF global function", probe_kern_btf_func_global,
4921 	},
4922 	[FEAT_BTF_DATASEC] = {
4923 		"BTF data section and variable", probe_kern_btf_datasec,
4924 	},
4925 	[FEAT_ARRAY_MMAP] = {
4926 		"ARRAY map mmap()", probe_kern_array_mmap,
4927 	},
4928 	[FEAT_EXP_ATTACH_TYPE] = {
4929 		"BPF_PROG_LOAD expected_attach_type attribute",
4930 		probe_kern_exp_attach_type,
4931 	},
4932 	[FEAT_PROBE_READ_KERN] = {
4933 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4934 	},
4935 	[FEAT_PROG_BIND_MAP] = {
4936 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4937 	},
4938 	[FEAT_MODULE_BTF] = {
4939 		"module BTF support", probe_module_btf,
4940 	},
4941 	[FEAT_BTF_FLOAT] = {
4942 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4943 	},
4944 	[FEAT_PERF_LINK] = {
4945 		"BPF perf link support", probe_perf_link,
4946 	},
4947 	[FEAT_BTF_DECL_TAG] = {
4948 		"BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4949 	},
4950 	[FEAT_BTF_TYPE_TAG] = {
4951 		"BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4952 	},
4953 	[FEAT_MEMCG_ACCOUNT] = {
4954 		"memcg-based memory accounting", probe_memcg_account,
4955 	},
4956 	[FEAT_BPF_COOKIE] = {
4957 		"BPF cookie support", probe_kern_bpf_cookie,
4958 	},
4959 	[FEAT_BTF_ENUM64] = {
4960 		"BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4961 	},
4962 	[FEAT_SYSCALL_WRAPPER] = {
4963 		"Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4964 	},
4965 	[FEAT_UPROBE_MULTI_LINK] = {
4966 		"BPF multi-uprobe link support", probe_uprobe_multi_link,
4967 	},
4968 };
4969 
4970 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4971 {
4972 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4973 	int ret;
4974 
4975 	if (obj && obj->gen_loader)
4976 		/* To generate loader program assume the latest kernel
4977 		 * to avoid doing extra prog_load, map_create syscalls.
4978 		 */
4979 		return true;
4980 
4981 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4982 		ret = feat->probe();
4983 		if (ret > 0) {
4984 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4985 		} else if (ret == 0) {
4986 			WRITE_ONCE(feat->res, FEAT_MISSING);
4987 		} else {
4988 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4989 			WRITE_ONCE(feat->res, FEAT_MISSING);
4990 		}
4991 	}
4992 
4993 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4994 }
4995 
4996 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4997 {
4998 	struct bpf_map_info map_info;
4999 	char msg[STRERR_BUFSIZE];
5000 	__u32 map_info_len = sizeof(map_info);
5001 	int err;
5002 
5003 	memset(&map_info, 0, map_info_len);
5004 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
5005 	if (err && errno == EINVAL)
5006 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
5007 	if (err) {
5008 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
5009 			libbpf_strerror_r(errno, msg, sizeof(msg)));
5010 		return false;
5011 	}
5012 
5013 	return (map_info.type == map->def.type &&
5014 		map_info.key_size == map->def.key_size &&
5015 		map_info.value_size == map->def.value_size &&
5016 		map_info.max_entries == map->def.max_entries &&
5017 		map_info.map_flags == map->def.map_flags &&
5018 		map_info.map_extra == map->map_extra);
5019 }
5020 
5021 static int
5022 bpf_object__reuse_map(struct bpf_map *map)
5023 {
5024 	char *cp, errmsg[STRERR_BUFSIZE];
5025 	int err, pin_fd;
5026 
5027 	pin_fd = bpf_obj_get(map->pin_path);
5028 	if (pin_fd < 0) {
5029 		err = -errno;
5030 		if (err == -ENOENT) {
5031 			pr_debug("found no pinned map to reuse at '%s'\n",
5032 				 map->pin_path);
5033 			return 0;
5034 		}
5035 
5036 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
5037 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
5038 			map->pin_path, cp);
5039 		return err;
5040 	}
5041 
5042 	if (!map_is_reuse_compat(map, pin_fd)) {
5043 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
5044 			map->pin_path);
5045 		close(pin_fd);
5046 		return -EINVAL;
5047 	}
5048 
5049 	err = bpf_map__reuse_fd(map, pin_fd);
5050 	close(pin_fd);
5051 	if (err)
5052 		return err;
5053 
5054 	map->pinned = true;
5055 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
5056 
5057 	return 0;
5058 }
5059 
5060 static int
5061 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5062 {
5063 	enum libbpf_map_type map_type = map->libbpf_type;
5064 	char *cp, errmsg[STRERR_BUFSIZE];
5065 	int err, zero = 0;
5066 
5067 	if (obj->gen_loader) {
5068 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5069 					 map->mmaped, map->def.value_size);
5070 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5071 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5072 		return 0;
5073 	}
5074 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5075 	if (err) {
5076 		err = -errno;
5077 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5078 		pr_warn("Error setting initial map(%s) contents: %s\n",
5079 			map->name, cp);
5080 		return err;
5081 	}
5082 
5083 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5084 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5085 		err = bpf_map_freeze(map->fd);
5086 		if (err) {
5087 			err = -errno;
5088 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5089 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5090 				map->name, cp);
5091 			return err;
5092 		}
5093 	}
5094 	return 0;
5095 }
5096 
5097 static void bpf_map__destroy(struct bpf_map *map);
5098 
5099 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5100 {
5101 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5102 	struct bpf_map_def *def = &map->def;
5103 	const char *map_name = NULL;
5104 	int err = 0;
5105 
5106 	if (kernel_supports(obj, FEAT_PROG_NAME))
5107 		map_name = map->name;
5108 	create_attr.map_ifindex = map->map_ifindex;
5109 	create_attr.map_flags = def->map_flags;
5110 	create_attr.numa_node = map->numa_node;
5111 	create_attr.map_extra = map->map_extra;
5112 
5113 	if (bpf_map__is_struct_ops(map))
5114 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5115 
5116 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5117 		create_attr.btf_fd = btf__fd(obj->btf);
5118 		create_attr.btf_key_type_id = map->btf_key_type_id;
5119 		create_attr.btf_value_type_id = map->btf_value_type_id;
5120 	}
5121 
5122 	if (bpf_map_type__is_map_in_map(def->type)) {
5123 		if (map->inner_map) {
5124 			err = bpf_object__create_map(obj, map->inner_map, true);
5125 			if (err) {
5126 				pr_warn("map '%s': failed to create inner map: %d\n",
5127 					map->name, err);
5128 				return err;
5129 			}
5130 			map->inner_map_fd = bpf_map__fd(map->inner_map);
5131 		}
5132 		if (map->inner_map_fd >= 0)
5133 			create_attr.inner_map_fd = map->inner_map_fd;
5134 	}
5135 
5136 	switch (def->type) {
5137 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5138 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5139 	case BPF_MAP_TYPE_STACK_TRACE:
5140 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5141 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5142 	case BPF_MAP_TYPE_DEVMAP:
5143 	case BPF_MAP_TYPE_DEVMAP_HASH:
5144 	case BPF_MAP_TYPE_CPUMAP:
5145 	case BPF_MAP_TYPE_XSKMAP:
5146 	case BPF_MAP_TYPE_SOCKMAP:
5147 	case BPF_MAP_TYPE_SOCKHASH:
5148 	case BPF_MAP_TYPE_QUEUE:
5149 	case BPF_MAP_TYPE_STACK:
5150 		create_attr.btf_fd = 0;
5151 		create_attr.btf_key_type_id = 0;
5152 		create_attr.btf_value_type_id = 0;
5153 		map->btf_key_type_id = 0;
5154 		map->btf_value_type_id = 0;
5155 	default:
5156 		break;
5157 	}
5158 
5159 	if (obj->gen_loader) {
5160 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5161 				    def->key_size, def->value_size, def->max_entries,
5162 				    &create_attr, is_inner ? -1 : map - obj->maps);
5163 		/* Pretend to have valid FD to pass various fd >= 0 checks.
5164 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5165 		 */
5166 		map->fd = 0;
5167 	} else {
5168 		map->fd = bpf_map_create(def->type, map_name,
5169 					 def->key_size, def->value_size,
5170 					 def->max_entries, &create_attr);
5171 	}
5172 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
5173 			    create_attr.btf_value_type_id)) {
5174 		char *cp, errmsg[STRERR_BUFSIZE];
5175 
5176 		err = -errno;
5177 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5178 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5179 			map->name, cp, err);
5180 		create_attr.btf_fd = 0;
5181 		create_attr.btf_key_type_id = 0;
5182 		create_attr.btf_value_type_id = 0;
5183 		map->btf_key_type_id = 0;
5184 		map->btf_value_type_id = 0;
5185 		map->fd = bpf_map_create(def->type, map_name,
5186 					 def->key_size, def->value_size,
5187 					 def->max_entries, &create_attr);
5188 	}
5189 
5190 	err = map->fd < 0 ? -errno : 0;
5191 
5192 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5193 		if (obj->gen_loader)
5194 			map->inner_map->fd = -1;
5195 		bpf_map__destroy(map->inner_map);
5196 		zfree(&map->inner_map);
5197 	}
5198 
5199 	return err;
5200 }
5201 
5202 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5203 {
5204 	const struct bpf_map *targ_map;
5205 	unsigned int i;
5206 	int fd, err = 0;
5207 
5208 	for (i = 0; i < map->init_slots_sz; i++) {
5209 		if (!map->init_slots[i])
5210 			continue;
5211 
5212 		targ_map = map->init_slots[i];
5213 		fd = bpf_map__fd(targ_map);
5214 
5215 		if (obj->gen_loader) {
5216 			bpf_gen__populate_outer_map(obj->gen_loader,
5217 						    map - obj->maps, i,
5218 						    targ_map - obj->maps);
5219 		} else {
5220 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5221 		}
5222 		if (err) {
5223 			err = -errno;
5224 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5225 				map->name, i, targ_map->name, fd, err);
5226 			return err;
5227 		}
5228 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5229 			 map->name, i, targ_map->name, fd);
5230 	}
5231 
5232 	zfree(&map->init_slots);
5233 	map->init_slots_sz = 0;
5234 
5235 	return 0;
5236 }
5237 
5238 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5239 {
5240 	const struct bpf_program *targ_prog;
5241 	unsigned int i;
5242 	int fd, err;
5243 
5244 	if (obj->gen_loader)
5245 		return -ENOTSUP;
5246 
5247 	for (i = 0; i < map->init_slots_sz; i++) {
5248 		if (!map->init_slots[i])
5249 			continue;
5250 
5251 		targ_prog = map->init_slots[i];
5252 		fd = bpf_program__fd(targ_prog);
5253 
5254 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5255 		if (err) {
5256 			err = -errno;
5257 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5258 				map->name, i, targ_prog->name, fd, err);
5259 			return err;
5260 		}
5261 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5262 			 map->name, i, targ_prog->name, fd);
5263 	}
5264 
5265 	zfree(&map->init_slots);
5266 	map->init_slots_sz = 0;
5267 
5268 	return 0;
5269 }
5270 
5271 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5272 {
5273 	struct bpf_map *map;
5274 	int i, err;
5275 
5276 	for (i = 0; i < obj->nr_maps; i++) {
5277 		map = &obj->maps[i];
5278 
5279 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5280 			continue;
5281 
5282 		err = init_prog_array_slots(obj, map);
5283 		if (err < 0) {
5284 			zclose(map->fd);
5285 			return err;
5286 		}
5287 	}
5288 	return 0;
5289 }
5290 
5291 static int map_set_def_max_entries(struct bpf_map *map)
5292 {
5293 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5294 		int nr_cpus;
5295 
5296 		nr_cpus = libbpf_num_possible_cpus();
5297 		if (nr_cpus < 0) {
5298 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5299 				map->name, nr_cpus);
5300 			return nr_cpus;
5301 		}
5302 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5303 		map->def.max_entries = nr_cpus;
5304 	}
5305 
5306 	return 0;
5307 }
5308 
5309 static int
5310 bpf_object__create_maps(struct bpf_object *obj)
5311 {
5312 	struct bpf_map *map;
5313 	char *cp, errmsg[STRERR_BUFSIZE];
5314 	unsigned int i, j;
5315 	int err;
5316 	bool retried;
5317 
5318 	for (i = 0; i < obj->nr_maps; i++) {
5319 		map = &obj->maps[i];
5320 
5321 		/* To support old kernels, we skip creating global data maps
5322 		 * (.rodata, .data, .kconfig, etc); later on, during program
5323 		 * loading, if we detect that at least one of the to-be-loaded
5324 		 * programs is referencing any global data map, we'll error
5325 		 * out with program name and relocation index logged.
5326 		 * This approach allows to accommodate Clang emitting
5327 		 * unnecessary .rodata.str1.1 sections for string literals,
5328 		 * but also it allows to have CO-RE applications that use
5329 		 * global variables in some of BPF programs, but not others.
5330 		 * If those global variable-using programs are not loaded at
5331 		 * runtime due to bpf_program__set_autoload(prog, false),
5332 		 * bpf_object loading will succeed just fine even on old
5333 		 * kernels.
5334 		 */
5335 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5336 			map->autocreate = false;
5337 
5338 		if (!map->autocreate) {
5339 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5340 			continue;
5341 		}
5342 
5343 		err = map_set_def_max_entries(map);
5344 		if (err)
5345 			goto err_out;
5346 
5347 		retried = false;
5348 retry:
5349 		if (map->pin_path) {
5350 			err = bpf_object__reuse_map(map);
5351 			if (err) {
5352 				pr_warn("map '%s': error reusing pinned map\n",
5353 					map->name);
5354 				goto err_out;
5355 			}
5356 			if (retried && map->fd < 0) {
5357 				pr_warn("map '%s': cannot find pinned map\n",
5358 					map->name);
5359 				err = -ENOENT;
5360 				goto err_out;
5361 			}
5362 		}
5363 
5364 		if (map->fd >= 0) {
5365 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5366 				 map->name, map->fd);
5367 		} else {
5368 			err = bpf_object__create_map(obj, map, false);
5369 			if (err)
5370 				goto err_out;
5371 
5372 			pr_debug("map '%s': created successfully, fd=%d\n",
5373 				 map->name, map->fd);
5374 
5375 			if (bpf_map__is_internal(map)) {
5376 				err = bpf_object__populate_internal_map(obj, map);
5377 				if (err < 0) {
5378 					zclose(map->fd);
5379 					goto err_out;
5380 				}
5381 			}
5382 
5383 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5384 				err = init_map_in_map_slots(obj, map);
5385 				if (err < 0) {
5386 					zclose(map->fd);
5387 					goto err_out;
5388 				}
5389 			}
5390 		}
5391 
5392 		if (map->pin_path && !map->pinned) {
5393 			err = bpf_map__pin(map, NULL);
5394 			if (err) {
5395 				zclose(map->fd);
5396 				if (!retried && err == -EEXIST) {
5397 					retried = true;
5398 					goto retry;
5399 				}
5400 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5401 					map->name, map->pin_path, err);
5402 				goto err_out;
5403 			}
5404 		}
5405 	}
5406 
5407 	return 0;
5408 
5409 err_out:
5410 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5411 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5412 	pr_perm_msg(err);
5413 	for (j = 0; j < i; j++)
5414 		zclose(obj->maps[j].fd);
5415 	return err;
5416 }
5417 
5418 static bool bpf_core_is_flavor_sep(const char *s)
5419 {
5420 	/* check X___Y name pattern, where X and Y are not underscores */
5421 	return s[0] != '_' &&				      /* X */
5422 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5423 	       s[4] != '_';				      /* Y */
5424 }
5425 
5426 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5427  * before last triple underscore. Struct name part after last triple
5428  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5429  */
5430 size_t bpf_core_essential_name_len(const char *name)
5431 {
5432 	size_t n = strlen(name);
5433 	int i;
5434 
5435 	for (i = n - 5; i >= 0; i--) {
5436 		if (bpf_core_is_flavor_sep(name + i))
5437 			return i + 1;
5438 	}
5439 	return n;
5440 }
5441 
5442 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5443 {
5444 	if (!cands)
5445 		return;
5446 
5447 	free(cands->cands);
5448 	free(cands);
5449 }
5450 
5451 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5452 		       size_t local_essent_len,
5453 		       const struct btf *targ_btf,
5454 		       const char *targ_btf_name,
5455 		       int targ_start_id,
5456 		       struct bpf_core_cand_list *cands)
5457 {
5458 	struct bpf_core_cand *new_cands, *cand;
5459 	const struct btf_type *t, *local_t;
5460 	const char *targ_name, *local_name;
5461 	size_t targ_essent_len;
5462 	int n, i;
5463 
5464 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5465 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5466 
5467 	n = btf__type_cnt(targ_btf);
5468 	for (i = targ_start_id; i < n; i++) {
5469 		t = btf__type_by_id(targ_btf, i);
5470 		if (!btf_kind_core_compat(t, local_t))
5471 			continue;
5472 
5473 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5474 		if (str_is_empty(targ_name))
5475 			continue;
5476 
5477 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5478 		if (targ_essent_len != local_essent_len)
5479 			continue;
5480 
5481 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5482 			continue;
5483 
5484 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5485 			 local_cand->id, btf_kind_str(local_t),
5486 			 local_name, i, btf_kind_str(t), targ_name,
5487 			 targ_btf_name);
5488 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5489 					      sizeof(*cands->cands));
5490 		if (!new_cands)
5491 			return -ENOMEM;
5492 
5493 		cand = &new_cands[cands->len];
5494 		cand->btf = targ_btf;
5495 		cand->id = i;
5496 
5497 		cands->cands = new_cands;
5498 		cands->len++;
5499 	}
5500 	return 0;
5501 }
5502 
5503 static int load_module_btfs(struct bpf_object *obj)
5504 {
5505 	struct bpf_btf_info info;
5506 	struct module_btf *mod_btf;
5507 	struct btf *btf;
5508 	char name[64];
5509 	__u32 id = 0, len;
5510 	int err, fd;
5511 
5512 	if (obj->btf_modules_loaded)
5513 		return 0;
5514 
5515 	if (obj->gen_loader)
5516 		return 0;
5517 
5518 	/* don't do this again, even if we find no module BTFs */
5519 	obj->btf_modules_loaded = true;
5520 
5521 	/* kernel too old to support module BTFs */
5522 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5523 		return 0;
5524 
5525 	while (true) {
5526 		err = bpf_btf_get_next_id(id, &id);
5527 		if (err && errno == ENOENT)
5528 			return 0;
5529 		if (err && errno == EPERM) {
5530 			pr_debug("skipping module BTFs loading, missing privileges\n");
5531 			return 0;
5532 		}
5533 		if (err) {
5534 			err = -errno;
5535 			pr_warn("failed to iterate BTF objects: %d\n", err);
5536 			return err;
5537 		}
5538 
5539 		fd = bpf_btf_get_fd_by_id(id);
5540 		if (fd < 0) {
5541 			if (errno == ENOENT)
5542 				continue; /* expected race: BTF was unloaded */
5543 			err = -errno;
5544 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5545 			return err;
5546 		}
5547 
5548 		len = sizeof(info);
5549 		memset(&info, 0, sizeof(info));
5550 		info.name = ptr_to_u64(name);
5551 		info.name_len = sizeof(name);
5552 
5553 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5554 		if (err) {
5555 			err = -errno;
5556 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5557 			goto err_out;
5558 		}
5559 
5560 		/* ignore non-module BTFs */
5561 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5562 			close(fd);
5563 			continue;
5564 		}
5565 
5566 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5567 		err = libbpf_get_error(btf);
5568 		if (err) {
5569 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5570 				name, id, err);
5571 			goto err_out;
5572 		}
5573 
5574 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5575 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5576 		if (err)
5577 			goto err_out;
5578 
5579 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5580 
5581 		mod_btf->btf = btf;
5582 		mod_btf->id = id;
5583 		mod_btf->fd = fd;
5584 		mod_btf->name = strdup(name);
5585 		if (!mod_btf->name) {
5586 			err = -ENOMEM;
5587 			goto err_out;
5588 		}
5589 		continue;
5590 
5591 err_out:
5592 		close(fd);
5593 		return err;
5594 	}
5595 
5596 	return 0;
5597 }
5598 
5599 static struct bpf_core_cand_list *
5600 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5601 {
5602 	struct bpf_core_cand local_cand = {};
5603 	struct bpf_core_cand_list *cands;
5604 	const struct btf *main_btf;
5605 	const struct btf_type *local_t;
5606 	const char *local_name;
5607 	size_t local_essent_len;
5608 	int err, i;
5609 
5610 	local_cand.btf = local_btf;
5611 	local_cand.id = local_type_id;
5612 	local_t = btf__type_by_id(local_btf, local_type_id);
5613 	if (!local_t)
5614 		return ERR_PTR(-EINVAL);
5615 
5616 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5617 	if (str_is_empty(local_name))
5618 		return ERR_PTR(-EINVAL);
5619 	local_essent_len = bpf_core_essential_name_len(local_name);
5620 
5621 	cands = calloc(1, sizeof(*cands));
5622 	if (!cands)
5623 		return ERR_PTR(-ENOMEM);
5624 
5625 	/* Attempt to find target candidates in vmlinux BTF first */
5626 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5627 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5628 	if (err)
5629 		goto err_out;
5630 
5631 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5632 	if (cands->len)
5633 		return cands;
5634 
5635 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5636 	if (obj->btf_vmlinux_override)
5637 		return cands;
5638 
5639 	/* now look through module BTFs, trying to still find candidates */
5640 	err = load_module_btfs(obj);
5641 	if (err)
5642 		goto err_out;
5643 
5644 	for (i = 0; i < obj->btf_module_cnt; i++) {
5645 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5646 					 obj->btf_modules[i].btf,
5647 					 obj->btf_modules[i].name,
5648 					 btf__type_cnt(obj->btf_vmlinux),
5649 					 cands);
5650 		if (err)
5651 			goto err_out;
5652 	}
5653 
5654 	return cands;
5655 err_out:
5656 	bpf_core_free_cands(cands);
5657 	return ERR_PTR(err);
5658 }
5659 
5660 /* Check local and target types for compatibility. This check is used for
5661  * type-based CO-RE relocations and follow slightly different rules than
5662  * field-based relocations. This function assumes that root types were already
5663  * checked for name match. Beyond that initial root-level name check, names
5664  * are completely ignored. Compatibility rules are as follows:
5665  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5666  *     kind should match for local and target types (i.e., STRUCT is not
5667  *     compatible with UNION);
5668  *   - for ENUMs, the size is ignored;
5669  *   - for INT, size and signedness are ignored;
5670  *   - for ARRAY, dimensionality is ignored, element types are checked for
5671  *     compatibility recursively;
5672  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5673  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5674  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5675  *     number of input args and compatible return and argument types.
5676  * These rules are not set in stone and probably will be adjusted as we get
5677  * more experience with using BPF CO-RE relocations.
5678  */
5679 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5680 			      const struct btf *targ_btf, __u32 targ_id)
5681 {
5682 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5683 }
5684 
5685 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5686 			 const struct btf *targ_btf, __u32 targ_id)
5687 {
5688 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5689 }
5690 
5691 static size_t bpf_core_hash_fn(const long key, void *ctx)
5692 {
5693 	return key;
5694 }
5695 
5696 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5697 {
5698 	return k1 == k2;
5699 }
5700 
5701 static int record_relo_core(struct bpf_program *prog,
5702 			    const struct bpf_core_relo *core_relo, int insn_idx)
5703 {
5704 	struct reloc_desc *relos, *relo;
5705 
5706 	relos = libbpf_reallocarray(prog->reloc_desc,
5707 				    prog->nr_reloc + 1, sizeof(*relos));
5708 	if (!relos)
5709 		return -ENOMEM;
5710 	relo = &relos[prog->nr_reloc];
5711 	relo->type = RELO_CORE;
5712 	relo->insn_idx = insn_idx;
5713 	relo->core_relo = core_relo;
5714 	prog->reloc_desc = relos;
5715 	prog->nr_reloc++;
5716 	return 0;
5717 }
5718 
5719 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5720 {
5721 	struct reloc_desc *relo;
5722 	int i;
5723 
5724 	for (i = 0; i < prog->nr_reloc; i++) {
5725 		relo = &prog->reloc_desc[i];
5726 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5727 			continue;
5728 
5729 		return relo->core_relo;
5730 	}
5731 
5732 	return NULL;
5733 }
5734 
5735 static int bpf_core_resolve_relo(struct bpf_program *prog,
5736 				 const struct bpf_core_relo *relo,
5737 				 int relo_idx,
5738 				 const struct btf *local_btf,
5739 				 struct hashmap *cand_cache,
5740 				 struct bpf_core_relo_res *targ_res)
5741 {
5742 	struct bpf_core_spec specs_scratch[3] = {};
5743 	struct bpf_core_cand_list *cands = NULL;
5744 	const char *prog_name = prog->name;
5745 	const struct btf_type *local_type;
5746 	const char *local_name;
5747 	__u32 local_id = relo->type_id;
5748 	int err;
5749 
5750 	local_type = btf__type_by_id(local_btf, local_id);
5751 	if (!local_type)
5752 		return -EINVAL;
5753 
5754 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5755 	if (!local_name)
5756 		return -EINVAL;
5757 
5758 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5759 	    !hashmap__find(cand_cache, local_id, &cands)) {
5760 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5761 		if (IS_ERR(cands)) {
5762 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5763 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5764 				local_name, PTR_ERR(cands));
5765 			return PTR_ERR(cands);
5766 		}
5767 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5768 		if (err) {
5769 			bpf_core_free_cands(cands);
5770 			return err;
5771 		}
5772 	}
5773 
5774 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5775 				       targ_res);
5776 }
5777 
5778 static int
5779 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5780 {
5781 	const struct btf_ext_info_sec *sec;
5782 	struct bpf_core_relo_res targ_res;
5783 	const struct bpf_core_relo *rec;
5784 	const struct btf_ext_info *seg;
5785 	struct hashmap_entry *entry;
5786 	struct hashmap *cand_cache = NULL;
5787 	struct bpf_program *prog;
5788 	struct bpf_insn *insn;
5789 	const char *sec_name;
5790 	int i, err = 0, insn_idx, sec_idx, sec_num;
5791 
5792 	if (obj->btf_ext->core_relo_info.len == 0)
5793 		return 0;
5794 
5795 	if (targ_btf_path) {
5796 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5797 		err = libbpf_get_error(obj->btf_vmlinux_override);
5798 		if (err) {
5799 			pr_warn("failed to parse target BTF: %d\n", err);
5800 			return err;
5801 		}
5802 	}
5803 
5804 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5805 	if (IS_ERR(cand_cache)) {
5806 		err = PTR_ERR(cand_cache);
5807 		goto out;
5808 	}
5809 
5810 	seg = &obj->btf_ext->core_relo_info;
5811 	sec_num = 0;
5812 	for_each_btf_ext_sec(seg, sec) {
5813 		sec_idx = seg->sec_idxs[sec_num];
5814 		sec_num++;
5815 
5816 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5817 		if (str_is_empty(sec_name)) {
5818 			err = -EINVAL;
5819 			goto out;
5820 		}
5821 
5822 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5823 
5824 		for_each_btf_ext_rec(seg, sec, i, rec) {
5825 			if (rec->insn_off % BPF_INSN_SZ)
5826 				return -EINVAL;
5827 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5828 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5829 			if (!prog) {
5830 				/* When __weak subprog is "overridden" by another instance
5831 				 * of the subprog from a different object file, linker still
5832 				 * appends all the .BTF.ext info that used to belong to that
5833 				 * eliminated subprogram.
5834 				 * This is similar to what x86-64 linker does for relocations.
5835 				 * So just ignore such relocations just like we ignore
5836 				 * subprog instructions when discovering subprograms.
5837 				 */
5838 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5839 					 sec_name, i, insn_idx);
5840 				continue;
5841 			}
5842 			/* no need to apply CO-RE relocation if the program is
5843 			 * not going to be loaded
5844 			 */
5845 			if (!prog->autoload)
5846 				continue;
5847 
5848 			/* adjust insn_idx from section frame of reference to the local
5849 			 * program's frame of reference; (sub-)program code is not yet
5850 			 * relocated, so it's enough to just subtract in-section offset
5851 			 */
5852 			insn_idx = insn_idx - prog->sec_insn_off;
5853 			if (insn_idx >= prog->insns_cnt)
5854 				return -EINVAL;
5855 			insn = &prog->insns[insn_idx];
5856 
5857 			err = record_relo_core(prog, rec, insn_idx);
5858 			if (err) {
5859 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5860 					prog->name, i, err);
5861 				goto out;
5862 			}
5863 
5864 			if (prog->obj->gen_loader)
5865 				continue;
5866 
5867 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5868 			if (err) {
5869 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5870 					prog->name, i, err);
5871 				goto out;
5872 			}
5873 
5874 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5875 			if (err) {
5876 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5877 					prog->name, i, insn_idx, err);
5878 				goto out;
5879 			}
5880 		}
5881 	}
5882 
5883 out:
5884 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5885 	btf__free(obj->btf_vmlinux_override);
5886 	obj->btf_vmlinux_override = NULL;
5887 
5888 	if (!IS_ERR_OR_NULL(cand_cache)) {
5889 		hashmap__for_each_entry(cand_cache, entry, i) {
5890 			bpf_core_free_cands(entry->pvalue);
5891 		}
5892 		hashmap__free(cand_cache);
5893 	}
5894 	return err;
5895 }
5896 
5897 /* base map load ldimm64 special constant, used also for log fixup logic */
5898 #define POISON_LDIMM64_MAP_BASE 2001000000
5899 #define POISON_LDIMM64_MAP_PFX "200100"
5900 
5901 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5902 			       int insn_idx, struct bpf_insn *insn,
5903 			       int map_idx, const struct bpf_map *map)
5904 {
5905 	int i;
5906 
5907 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5908 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5909 
5910 	/* we turn single ldimm64 into two identical invalid calls */
5911 	for (i = 0; i < 2; i++) {
5912 		insn->code = BPF_JMP | BPF_CALL;
5913 		insn->dst_reg = 0;
5914 		insn->src_reg = 0;
5915 		insn->off = 0;
5916 		/* if this instruction is reachable (not a dead code),
5917 		 * verifier will complain with something like:
5918 		 * invalid func unknown#2001000123
5919 		 * where lower 123 is map index into obj->maps[] array
5920 		 */
5921 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5922 
5923 		insn++;
5924 	}
5925 }
5926 
5927 /* unresolved kfunc call special constant, used also for log fixup logic */
5928 #define POISON_CALL_KFUNC_BASE 2002000000
5929 #define POISON_CALL_KFUNC_PFX "2002"
5930 
5931 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5932 			      int insn_idx, struct bpf_insn *insn,
5933 			      int ext_idx, const struct extern_desc *ext)
5934 {
5935 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5936 		 prog->name, relo_idx, insn_idx, ext->name);
5937 
5938 	/* we turn kfunc call into invalid helper call with identifiable constant */
5939 	insn->code = BPF_JMP | BPF_CALL;
5940 	insn->dst_reg = 0;
5941 	insn->src_reg = 0;
5942 	insn->off = 0;
5943 	/* if this instruction is reachable (not a dead code),
5944 	 * verifier will complain with something like:
5945 	 * invalid func unknown#2001000123
5946 	 * where lower 123 is extern index into obj->externs[] array
5947 	 */
5948 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5949 }
5950 
5951 /* Relocate data references within program code:
5952  *  - map references;
5953  *  - global variable references;
5954  *  - extern references.
5955  */
5956 static int
5957 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5958 {
5959 	int i;
5960 
5961 	for (i = 0; i < prog->nr_reloc; i++) {
5962 		struct reloc_desc *relo = &prog->reloc_desc[i];
5963 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5964 		const struct bpf_map *map;
5965 		struct extern_desc *ext;
5966 
5967 		switch (relo->type) {
5968 		case RELO_LD64:
5969 			map = &obj->maps[relo->map_idx];
5970 			if (obj->gen_loader) {
5971 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5972 				insn[0].imm = relo->map_idx;
5973 			} else if (map->autocreate) {
5974 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5975 				insn[0].imm = map->fd;
5976 			} else {
5977 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5978 						   relo->map_idx, map);
5979 			}
5980 			break;
5981 		case RELO_DATA:
5982 			map = &obj->maps[relo->map_idx];
5983 			insn[1].imm = insn[0].imm + relo->sym_off;
5984 			if (obj->gen_loader) {
5985 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5986 				insn[0].imm = relo->map_idx;
5987 			} else if (map->autocreate) {
5988 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5989 				insn[0].imm = map->fd;
5990 			} else {
5991 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5992 						   relo->map_idx, map);
5993 			}
5994 			break;
5995 		case RELO_EXTERN_LD64:
5996 			ext = &obj->externs[relo->ext_idx];
5997 			if (ext->type == EXT_KCFG) {
5998 				if (obj->gen_loader) {
5999 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
6000 					insn[0].imm = obj->kconfig_map_idx;
6001 				} else {
6002 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6003 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6004 				}
6005 				insn[1].imm = ext->kcfg.data_off;
6006 			} else /* EXT_KSYM */ {
6007 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
6008 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6009 					insn[0].imm = ext->ksym.kernel_btf_id;
6010 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6011 				} else { /* typeless ksyms or unresolved typed ksyms */
6012 					insn[0].imm = (__u32)ext->ksym.addr;
6013 					insn[1].imm = ext->ksym.addr >> 32;
6014 				}
6015 			}
6016 			break;
6017 		case RELO_EXTERN_CALL:
6018 			ext = &obj->externs[relo->ext_idx];
6019 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6020 			if (ext->is_set) {
6021 				insn[0].imm = ext->ksym.kernel_btf_id;
6022 				insn[0].off = ext->ksym.btf_fd_idx;
6023 			} else { /* unresolved weak kfunc call */
6024 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6025 						  relo->ext_idx, ext);
6026 			}
6027 			break;
6028 		case RELO_SUBPROG_ADDR:
6029 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6030 				pr_warn("prog '%s': relo #%d: bad insn\n",
6031 					prog->name, i);
6032 				return -EINVAL;
6033 			}
6034 			/* handled already */
6035 			break;
6036 		case RELO_CALL:
6037 			/* handled already */
6038 			break;
6039 		case RELO_CORE:
6040 			/* will be handled by bpf_program_record_relos() */
6041 			break;
6042 		default:
6043 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6044 				prog->name, i, relo->type);
6045 			return -EINVAL;
6046 		}
6047 	}
6048 
6049 	return 0;
6050 }
6051 
6052 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6053 				    const struct bpf_program *prog,
6054 				    const struct btf_ext_info *ext_info,
6055 				    void **prog_info, __u32 *prog_rec_cnt,
6056 				    __u32 *prog_rec_sz)
6057 {
6058 	void *copy_start = NULL, *copy_end = NULL;
6059 	void *rec, *rec_end, *new_prog_info;
6060 	const struct btf_ext_info_sec *sec;
6061 	size_t old_sz, new_sz;
6062 	int i, sec_num, sec_idx, off_adj;
6063 
6064 	sec_num = 0;
6065 	for_each_btf_ext_sec(ext_info, sec) {
6066 		sec_idx = ext_info->sec_idxs[sec_num];
6067 		sec_num++;
6068 		if (prog->sec_idx != sec_idx)
6069 			continue;
6070 
6071 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6072 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6073 
6074 			if (insn_off < prog->sec_insn_off)
6075 				continue;
6076 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6077 				break;
6078 
6079 			if (!copy_start)
6080 				copy_start = rec;
6081 			copy_end = rec + ext_info->rec_size;
6082 		}
6083 
6084 		if (!copy_start)
6085 			return -ENOENT;
6086 
6087 		/* append func/line info of a given (sub-)program to the main
6088 		 * program func/line info
6089 		 */
6090 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6091 		new_sz = old_sz + (copy_end - copy_start);
6092 		new_prog_info = realloc(*prog_info, new_sz);
6093 		if (!new_prog_info)
6094 			return -ENOMEM;
6095 		*prog_info = new_prog_info;
6096 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6097 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6098 
6099 		/* Kernel instruction offsets are in units of 8-byte
6100 		 * instructions, while .BTF.ext instruction offsets generated
6101 		 * by Clang are in units of bytes. So convert Clang offsets
6102 		 * into kernel offsets and adjust offset according to program
6103 		 * relocated position.
6104 		 */
6105 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6106 		rec = new_prog_info + old_sz;
6107 		rec_end = new_prog_info + new_sz;
6108 		for (; rec < rec_end; rec += ext_info->rec_size) {
6109 			__u32 *insn_off = rec;
6110 
6111 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6112 		}
6113 		*prog_rec_sz = ext_info->rec_size;
6114 		return 0;
6115 	}
6116 
6117 	return -ENOENT;
6118 }
6119 
6120 static int
6121 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6122 			      struct bpf_program *main_prog,
6123 			      const struct bpf_program *prog)
6124 {
6125 	int err;
6126 
6127 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6128 	 * supprot func/line info
6129 	 */
6130 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6131 		return 0;
6132 
6133 	/* only attempt func info relocation if main program's func_info
6134 	 * relocation was successful
6135 	 */
6136 	if (main_prog != prog && !main_prog->func_info)
6137 		goto line_info;
6138 
6139 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6140 				       &main_prog->func_info,
6141 				       &main_prog->func_info_cnt,
6142 				       &main_prog->func_info_rec_size);
6143 	if (err) {
6144 		if (err != -ENOENT) {
6145 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6146 				prog->name, err);
6147 			return err;
6148 		}
6149 		if (main_prog->func_info) {
6150 			/*
6151 			 * Some info has already been found but has problem
6152 			 * in the last btf_ext reloc. Must have to error out.
6153 			 */
6154 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6155 			return err;
6156 		}
6157 		/* Have problem loading the very first info. Ignore the rest. */
6158 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6159 			prog->name);
6160 	}
6161 
6162 line_info:
6163 	/* don't relocate line info if main program's relocation failed */
6164 	if (main_prog != prog && !main_prog->line_info)
6165 		return 0;
6166 
6167 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6168 				       &main_prog->line_info,
6169 				       &main_prog->line_info_cnt,
6170 				       &main_prog->line_info_rec_size);
6171 	if (err) {
6172 		if (err != -ENOENT) {
6173 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6174 				prog->name, err);
6175 			return err;
6176 		}
6177 		if (main_prog->line_info) {
6178 			/*
6179 			 * Some info has already been found but has problem
6180 			 * in the last btf_ext reloc. Must have to error out.
6181 			 */
6182 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6183 			return err;
6184 		}
6185 		/* Have problem loading the very first info. Ignore the rest. */
6186 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6187 			prog->name);
6188 	}
6189 	return 0;
6190 }
6191 
6192 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6193 {
6194 	size_t insn_idx = *(const size_t *)key;
6195 	const struct reloc_desc *relo = elem;
6196 
6197 	if (insn_idx == relo->insn_idx)
6198 		return 0;
6199 	return insn_idx < relo->insn_idx ? -1 : 1;
6200 }
6201 
6202 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6203 {
6204 	if (!prog->nr_reloc)
6205 		return NULL;
6206 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6207 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6208 }
6209 
6210 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6211 {
6212 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6213 	struct reloc_desc *relos;
6214 	int i;
6215 
6216 	if (main_prog == subprog)
6217 		return 0;
6218 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6219 	/* if new count is zero, reallocarray can return a valid NULL result;
6220 	 * in this case the previous pointer will be freed, so we *have to*
6221 	 * reassign old pointer to the new value (even if it's NULL)
6222 	 */
6223 	if (!relos && new_cnt)
6224 		return -ENOMEM;
6225 	if (subprog->nr_reloc)
6226 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6227 		       sizeof(*relos) * subprog->nr_reloc);
6228 
6229 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6230 		relos[i].insn_idx += subprog->sub_insn_off;
6231 	/* After insn_idx adjustment the 'relos' array is still sorted
6232 	 * by insn_idx and doesn't break bsearch.
6233 	 */
6234 	main_prog->reloc_desc = relos;
6235 	main_prog->nr_reloc = new_cnt;
6236 	return 0;
6237 }
6238 
6239 static int
6240 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6241 		       struct bpf_program *prog)
6242 {
6243 	size_t sub_insn_idx, insn_idx, new_cnt;
6244 	struct bpf_program *subprog;
6245 	struct bpf_insn *insns, *insn;
6246 	struct reloc_desc *relo;
6247 	int err;
6248 
6249 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6250 	if (err)
6251 		return err;
6252 
6253 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6254 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6255 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6256 			continue;
6257 
6258 		relo = find_prog_insn_relo(prog, insn_idx);
6259 		if (relo && relo->type == RELO_EXTERN_CALL)
6260 			/* kfunc relocations will be handled later
6261 			 * in bpf_object__relocate_data()
6262 			 */
6263 			continue;
6264 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6265 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6266 				prog->name, insn_idx, relo->type);
6267 			return -LIBBPF_ERRNO__RELOC;
6268 		}
6269 		if (relo) {
6270 			/* sub-program instruction index is a combination of
6271 			 * an offset of a symbol pointed to by relocation and
6272 			 * call instruction's imm field; for global functions,
6273 			 * call always has imm = -1, but for static functions
6274 			 * relocation is against STT_SECTION and insn->imm
6275 			 * points to a start of a static function
6276 			 *
6277 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6278 			 * the byte offset in the corresponding section.
6279 			 */
6280 			if (relo->type == RELO_CALL)
6281 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6282 			else
6283 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6284 		} else if (insn_is_pseudo_func(insn)) {
6285 			/*
6286 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6287 			 * functions are in the same section, so it shouldn't reach here.
6288 			 */
6289 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6290 				prog->name, insn_idx);
6291 			return -LIBBPF_ERRNO__RELOC;
6292 		} else {
6293 			/* if subprogram call is to a static function within
6294 			 * the same ELF section, there won't be any relocation
6295 			 * emitted, but it also means there is no additional
6296 			 * offset necessary, insns->imm is relative to
6297 			 * instruction's original position within the section
6298 			 */
6299 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6300 		}
6301 
6302 		/* we enforce that sub-programs should be in .text section */
6303 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6304 		if (!subprog) {
6305 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6306 				prog->name);
6307 			return -LIBBPF_ERRNO__RELOC;
6308 		}
6309 
6310 		/* if it's the first call instruction calling into this
6311 		 * subprogram (meaning this subprog hasn't been processed
6312 		 * yet) within the context of current main program:
6313 		 *   - append it at the end of main program's instructions blog;
6314 		 *   - process is recursively, while current program is put on hold;
6315 		 *   - if that subprogram calls some other not yet processes
6316 		 *   subprogram, same thing will happen recursively until
6317 		 *   there are no more unprocesses subprograms left to append
6318 		 *   and relocate.
6319 		 */
6320 		if (subprog->sub_insn_off == 0) {
6321 			subprog->sub_insn_off = main_prog->insns_cnt;
6322 
6323 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6324 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6325 			if (!insns) {
6326 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6327 				return -ENOMEM;
6328 			}
6329 			main_prog->insns = insns;
6330 			main_prog->insns_cnt = new_cnt;
6331 
6332 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6333 			       subprog->insns_cnt * sizeof(*insns));
6334 
6335 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6336 				 main_prog->name, subprog->insns_cnt, subprog->name);
6337 
6338 			/* The subprog insns are now appended. Append its relos too. */
6339 			err = append_subprog_relos(main_prog, subprog);
6340 			if (err)
6341 				return err;
6342 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6343 			if (err)
6344 				return err;
6345 		}
6346 
6347 		/* main_prog->insns memory could have been re-allocated, so
6348 		 * calculate pointer again
6349 		 */
6350 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6351 		/* calculate correct instruction position within current main
6352 		 * prog; each main prog can have a different set of
6353 		 * subprograms appended (potentially in different order as
6354 		 * well), so position of any subprog can be different for
6355 		 * different main programs
6356 		 */
6357 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6358 
6359 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6360 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6361 	}
6362 
6363 	return 0;
6364 }
6365 
6366 /*
6367  * Relocate sub-program calls.
6368  *
6369  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6370  * main prog) is processed separately. For each subprog (non-entry functions,
6371  * that can be called from either entry progs or other subprogs) gets their
6372  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6373  * hasn't been yet appended and relocated within current main prog. Once its
6374  * relocated, sub_insn_off will point at the position within current main prog
6375  * where given subprog was appended. This will further be used to relocate all
6376  * the call instructions jumping into this subprog.
6377  *
6378  * We start with main program and process all call instructions. If the call
6379  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6380  * is zero), subprog instructions are appended at the end of main program's
6381  * instruction array. Then main program is "put on hold" while we recursively
6382  * process newly appended subprogram. If that subprogram calls into another
6383  * subprogram that hasn't been appended, new subprogram is appended again to
6384  * the *main* prog's instructions (subprog's instructions are always left
6385  * untouched, as they need to be in unmodified state for subsequent main progs
6386  * and subprog instructions are always sent only as part of a main prog) and
6387  * the process continues recursively. Once all the subprogs called from a main
6388  * prog or any of its subprogs are appended (and relocated), all their
6389  * positions within finalized instructions array are known, so it's easy to
6390  * rewrite call instructions with correct relative offsets, corresponding to
6391  * desired target subprog.
6392  *
6393  * Its important to realize that some subprogs might not be called from some
6394  * main prog and any of its called/used subprogs. Those will keep their
6395  * subprog->sub_insn_off as zero at all times and won't be appended to current
6396  * main prog and won't be relocated within the context of current main prog.
6397  * They might still be used from other main progs later.
6398  *
6399  * Visually this process can be shown as below. Suppose we have two main
6400  * programs mainA and mainB and BPF object contains three subprogs: subA,
6401  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6402  * subC both call subB:
6403  *
6404  *        +--------+ +-------+
6405  *        |        v v       |
6406  *     +--+---+ +--+-+-+ +---+--+
6407  *     | subA | | subB | | subC |
6408  *     +--+---+ +------+ +---+--+
6409  *        ^                  ^
6410  *        |                  |
6411  *    +---+-------+   +------+----+
6412  *    |   mainA   |   |   mainB   |
6413  *    +-----------+   +-----------+
6414  *
6415  * We'll start relocating mainA, will find subA, append it and start
6416  * processing sub A recursively:
6417  *
6418  *    +-----------+------+
6419  *    |   mainA   | subA |
6420  *    +-----------+------+
6421  *
6422  * At this point we notice that subB is used from subA, so we append it and
6423  * relocate (there are no further subcalls from subB):
6424  *
6425  *    +-----------+------+------+
6426  *    |   mainA   | subA | subB |
6427  *    +-----------+------+------+
6428  *
6429  * At this point, we relocate subA calls, then go one level up and finish with
6430  * relocatin mainA calls. mainA is done.
6431  *
6432  * For mainB process is similar but results in different order. We start with
6433  * mainB and skip subA and subB, as mainB never calls them (at least
6434  * directly), but we see subC is needed, so we append and start processing it:
6435  *
6436  *    +-----------+------+
6437  *    |   mainB   | subC |
6438  *    +-----------+------+
6439  * Now we see subC needs subB, so we go back to it, append and relocate it:
6440  *
6441  *    +-----------+------+------+
6442  *    |   mainB   | subC | subB |
6443  *    +-----------+------+------+
6444  *
6445  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6446  */
6447 static int
6448 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6449 {
6450 	struct bpf_program *subprog;
6451 	int i, err;
6452 
6453 	/* mark all subprogs as not relocated (yet) within the context of
6454 	 * current main program
6455 	 */
6456 	for (i = 0; i < obj->nr_programs; i++) {
6457 		subprog = &obj->programs[i];
6458 		if (!prog_is_subprog(obj, subprog))
6459 			continue;
6460 
6461 		subprog->sub_insn_off = 0;
6462 	}
6463 
6464 	err = bpf_object__reloc_code(obj, prog, prog);
6465 	if (err)
6466 		return err;
6467 
6468 	return 0;
6469 }
6470 
6471 static void
6472 bpf_object__free_relocs(struct bpf_object *obj)
6473 {
6474 	struct bpf_program *prog;
6475 	int i;
6476 
6477 	/* free up relocation descriptors */
6478 	for (i = 0; i < obj->nr_programs; i++) {
6479 		prog = &obj->programs[i];
6480 		zfree(&prog->reloc_desc);
6481 		prog->nr_reloc = 0;
6482 	}
6483 }
6484 
6485 static int cmp_relocs(const void *_a, const void *_b)
6486 {
6487 	const struct reloc_desc *a = _a;
6488 	const struct reloc_desc *b = _b;
6489 
6490 	if (a->insn_idx != b->insn_idx)
6491 		return a->insn_idx < b->insn_idx ? -1 : 1;
6492 
6493 	/* no two relocations should have the same insn_idx, but ... */
6494 	if (a->type != b->type)
6495 		return a->type < b->type ? -1 : 1;
6496 
6497 	return 0;
6498 }
6499 
6500 static void bpf_object__sort_relos(struct bpf_object *obj)
6501 {
6502 	int i;
6503 
6504 	for (i = 0; i < obj->nr_programs; i++) {
6505 		struct bpf_program *p = &obj->programs[i];
6506 
6507 		if (!p->nr_reloc)
6508 			continue;
6509 
6510 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6511 	}
6512 }
6513 
6514 static int
6515 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6516 {
6517 	struct bpf_program *prog;
6518 	size_t i, j;
6519 	int err;
6520 
6521 	if (obj->btf_ext) {
6522 		err = bpf_object__relocate_core(obj, targ_btf_path);
6523 		if (err) {
6524 			pr_warn("failed to perform CO-RE relocations: %d\n",
6525 				err);
6526 			return err;
6527 		}
6528 		bpf_object__sort_relos(obj);
6529 	}
6530 
6531 	/* Before relocating calls pre-process relocations and mark
6532 	 * few ld_imm64 instructions that points to subprogs.
6533 	 * Otherwise bpf_object__reloc_code() later would have to consider
6534 	 * all ld_imm64 insns as relocation candidates. That would
6535 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6536 	 * would increase and most of them will fail to find a relo.
6537 	 */
6538 	for (i = 0; i < obj->nr_programs; i++) {
6539 		prog = &obj->programs[i];
6540 		for (j = 0; j < prog->nr_reloc; j++) {
6541 			struct reloc_desc *relo = &prog->reloc_desc[j];
6542 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6543 
6544 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6545 			if (relo->type == RELO_SUBPROG_ADDR)
6546 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6547 		}
6548 	}
6549 
6550 	/* relocate subprogram calls and append used subprograms to main
6551 	 * programs; each copy of subprogram code needs to be relocated
6552 	 * differently for each main program, because its code location might
6553 	 * have changed.
6554 	 * Append subprog relos to main programs to allow data relos to be
6555 	 * processed after text is completely relocated.
6556 	 */
6557 	for (i = 0; i < obj->nr_programs; i++) {
6558 		prog = &obj->programs[i];
6559 		/* sub-program's sub-calls are relocated within the context of
6560 		 * its main program only
6561 		 */
6562 		if (prog_is_subprog(obj, prog))
6563 			continue;
6564 		if (!prog->autoload)
6565 			continue;
6566 
6567 		err = bpf_object__relocate_calls(obj, prog);
6568 		if (err) {
6569 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6570 				prog->name, err);
6571 			return err;
6572 		}
6573 	}
6574 	/* Process data relos for main programs */
6575 	for (i = 0; i < obj->nr_programs; i++) {
6576 		prog = &obj->programs[i];
6577 		if (prog_is_subprog(obj, prog))
6578 			continue;
6579 		if (!prog->autoload)
6580 			continue;
6581 		err = bpf_object__relocate_data(obj, prog);
6582 		if (err) {
6583 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6584 				prog->name, err);
6585 			return err;
6586 		}
6587 	}
6588 
6589 	return 0;
6590 }
6591 
6592 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6593 					    Elf64_Shdr *shdr, Elf_Data *data);
6594 
6595 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6596 					 Elf64_Shdr *shdr, Elf_Data *data)
6597 {
6598 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6599 	int i, j, nrels, new_sz;
6600 	const struct btf_var_secinfo *vi = NULL;
6601 	const struct btf_type *sec, *var, *def;
6602 	struct bpf_map *map = NULL, *targ_map = NULL;
6603 	struct bpf_program *targ_prog = NULL;
6604 	bool is_prog_array, is_map_in_map;
6605 	const struct btf_member *member;
6606 	const char *name, *mname, *type;
6607 	unsigned int moff;
6608 	Elf64_Sym *sym;
6609 	Elf64_Rel *rel;
6610 	void *tmp;
6611 
6612 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6613 		return -EINVAL;
6614 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6615 	if (!sec)
6616 		return -EINVAL;
6617 
6618 	nrels = shdr->sh_size / shdr->sh_entsize;
6619 	for (i = 0; i < nrels; i++) {
6620 		rel = elf_rel_by_idx(data, i);
6621 		if (!rel) {
6622 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6623 			return -LIBBPF_ERRNO__FORMAT;
6624 		}
6625 
6626 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6627 		if (!sym) {
6628 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6629 				i, (size_t)ELF64_R_SYM(rel->r_info));
6630 			return -LIBBPF_ERRNO__FORMAT;
6631 		}
6632 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6633 
6634 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6635 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6636 			 (size_t)rel->r_offset, sym->st_name, name);
6637 
6638 		for (j = 0; j < obj->nr_maps; j++) {
6639 			map = &obj->maps[j];
6640 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6641 				continue;
6642 
6643 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6644 			if (vi->offset <= rel->r_offset &&
6645 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6646 				break;
6647 		}
6648 		if (j == obj->nr_maps) {
6649 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6650 				i, name, (size_t)rel->r_offset);
6651 			return -EINVAL;
6652 		}
6653 
6654 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6655 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6656 		type = is_map_in_map ? "map" : "prog";
6657 		if (is_map_in_map) {
6658 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6659 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6660 					i, name);
6661 				return -LIBBPF_ERRNO__RELOC;
6662 			}
6663 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6664 			    map->def.key_size != sizeof(int)) {
6665 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6666 					i, map->name, sizeof(int));
6667 				return -EINVAL;
6668 			}
6669 			targ_map = bpf_object__find_map_by_name(obj, name);
6670 			if (!targ_map) {
6671 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6672 					i, name);
6673 				return -ESRCH;
6674 			}
6675 		} else if (is_prog_array) {
6676 			targ_prog = bpf_object__find_program_by_name(obj, name);
6677 			if (!targ_prog) {
6678 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6679 					i, name);
6680 				return -ESRCH;
6681 			}
6682 			if (targ_prog->sec_idx != sym->st_shndx ||
6683 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
6684 			    prog_is_subprog(obj, targ_prog)) {
6685 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6686 					i, name);
6687 				return -LIBBPF_ERRNO__RELOC;
6688 			}
6689 		} else {
6690 			return -EINVAL;
6691 		}
6692 
6693 		var = btf__type_by_id(obj->btf, vi->type);
6694 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6695 		if (btf_vlen(def) == 0)
6696 			return -EINVAL;
6697 		member = btf_members(def) + btf_vlen(def) - 1;
6698 		mname = btf__name_by_offset(obj->btf, member->name_off);
6699 		if (strcmp(mname, "values"))
6700 			return -EINVAL;
6701 
6702 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6703 		if (rel->r_offset - vi->offset < moff)
6704 			return -EINVAL;
6705 
6706 		moff = rel->r_offset - vi->offset - moff;
6707 		/* here we use BPF pointer size, which is always 64 bit, as we
6708 		 * are parsing ELF that was built for BPF target
6709 		 */
6710 		if (moff % bpf_ptr_sz)
6711 			return -EINVAL;
6712 		moff /= bpf_ptr_sz;
6713 		if (moff >= map->init_slots_sz) {
6714 			new_sz = moff + 1;
6715 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6716 			if (!tmp)
6717 				return -ENOMEM;
6718 			map->init_slots = tmp;
6719 			memset(map->init_slots + map->init_slots_sz, 0,
6720 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6721 			map->init_slots_sz = new_sz;
6722 		}
6723 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6724 
6725 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6726 			 i, map->name, moff, type, name);
6727 	}
6728 
6729 	return 0;
6730 }
6731 
6732 static int bpf_object__collect_relos(struct bpf_object *obj)
6733 {
6734 	int i, err;
6735 
6736 	for (i = 0; i < obj->efile.sec_cnt; i++) {
6737 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6738 		Elf64_Shdr *shdr;
6739 		Elf_Data *data;
6740 		int idx;
6741 
6742 		if (sec_desc->sec_type != SEC_RELO)
6743 			continue;
6744 
6745 		shdr = sec_desc->shdr;
6746 		data = sec_desc->data;
6747 		idx = shdr->sh_info;
6748 
6749 		if (shdr->sh_type != SHT_REL) {
6750 			pr_warn("internal error at %d\n", __LINE__);
6751 			return -LIBBPF_ERRNO__INTERNAL;
6752 		}
6753 
6754 		if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6755 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6756 		else if (idx == obj->efile.btf_maps_shndx)
6757 			err = bpf_object__collect_map_relos(obj, shdr, data);
6758 		else
6759 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6760 		if (err)
6761 			return err;
6762 	}
6763 
6764 	bpf_object__sort_relos(obj);
6765 	return 0;
6766 }
6767 
6768 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6769 {
6770 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6771 	    BPF_OP(insn->code) == BPF_CALL &&
6772 	    BPF_SRC(insn->code) == BPF_K &&
6773 	    insn->src_reg == 0 &&
6774 	    insn->dst_reg == 0) {
6775 		    *func_id = insn->imm;
6776 		    return true;
6777 	}
6778 	return false;
6779 }
6780 
6781 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6782 {
6783 	struct bpf_insn *insn = prog->insns;
6784 	enum bpf_func_id func_id;
6785 	int i;
6786 
6787 	if (obj->gen_loader)
6788 		return 0;
6789 
6790 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6791 		if (!insn_is_helper_call(insn, &func_id))
6792 			continue;
6793 
6794 		/* on kernels that don't yet support
6795 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6796 		 * to bpf_probe_read() which works well for old kernels
6797 		 */
6798 		switch (func_id) {
6799 		case BPF_FUNC_probe_read_kernel:
6800 		case BPF_FUNC_probe_read_user:
6801 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6802 				insn->imm = BPF_FUNC_probe_read;
6803 			break;
6804 		case BPF_FUNC_probe_read_kernel_str:
6805 		case BPF_FUNC_probe_read_user_str:
6806 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6807 				insn->imm = BPF_FUNC_probe_read_str;
6808 			break;
6809 		default:
6810 			break;
6811 		}
6812 	}
6813 	return 0;
6814 }
6815 
6816 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6817 				     int *btf_obj_fd, int *btf_type_id);
6818 
6819 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6820 static int libbpf_prepare_prog_load(struct bpf_program *prog,
6821 				    struct bpf_prog_load_opts *opts, long cookie)
6822 {
6823 	enum sec_def_flags def = cookie;
6824 
6825 	/* old kernels might not support specifying expected_attach_type */
6826 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6827 		opts->expected_attach_type = 0;
6828 
6829 	if (def & SEC_SLEEPABLE)
6830 		opts->prog_flags |= BPF_F_SLEEPABLE;
6831 
6832 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6833 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6834 
6835 	/* special check for usdt to use uprobe_multi link */
6836 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
6837 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
6838 
6839 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6840 		int btf_obj_fd = 0, btf_type_id = 0, err;
6841 		const char *attach_name;
6842 
6843 		attach_name = strchr(prog->sec_name, '/');
6844 		if (!attach_name) {
6845 			/* if BPF program is annotated with just SEC("fentry")
6846 			 * (or similar) without declaratively specifying
6847 			 * target, then it is expected that target will be
6848 			 * specified with bpf_program__set_attach_target() at
6849 			 * runtime before BPF object load step. If not, then
6850 			 * there is nothing to load into the kernel as BPF
6851 			 * verifier won't be able to validate BPF program
6852 			 * correctness anyways.
6853 			 */
6854 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6855 				prog->name);
6856 			return -EINVAL;
6857 		}
6858 		attach_name++; /* skip over / */
6859 
6860 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6861 		if (err)
6862 			return err;
6863 
6864 		/* cache resolved BTF FD and BTF type ID in the prog */
6865 		prog->attach_btf_obj_fd = btf_obj_fd;
6866 		prog->attach_btf_id = btf_type_id;
6867 
6868 		/* but by now libbpf common logic is not utilizing
6869 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6870 		 * this callback is called after opts were populated by
6871 		 * libbpf, so this callback has to update opts explicitly here
6872 		 */
6873 		opts->attach_btf_obj_fd = btf_obj_fd;
6874 		opts->attach_btf_id = btf_type_id;
6875 	}
6876 	return 0;
6877 }
6878 
6879 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6880 
6881 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6882 				struct bpf_insn *insns, int insns_cnt,
6883 				const char *license, __u32 kern_version, int *prog_fd)
6884 {
6885 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6886 	const char *prog_name = NULL;
6887 	char *cp, errmsg[STRERR_BUFSIZE];
6888 	size_t log_buf_size = 0;
6889 	char *log_buf = NULL, *tmp;
6890 	int btf_fd, ret, err;
6891 	bool own_log_buf = true;
6892 	__u32 log_level = prog->log_level;
6893 
6894 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6895 		/*
6896 		 * The program type must be set.  Most likely we couldn't find a proper
6897 		 * section definition at load time, and thus we didn't infer the type.
6898 		 */
6899 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6900 			prog->name, prog->sec_name);
6901 		return -EINVAL;
6902 	}
6903 
6904 	if (!insns || !insns_cnt)
6905 		return -EINVAL;
6906 
6907 	if (kernel_supports(obj, FEAT_PROG_NAME))
6908 		prog_name = prog->name;
6909 	load_attr.attach_prog_fd = prog->attach_prog_fd;
6910 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6911 	load_attr.attach_btf_id = prog->attach_btf_id;
6912 	load_attr.kern_version = kern_version;
6913 	load_attr.prog_ifindex = prog->prog_ifindex;
6914 
6915 	/* specify func_info/line_info only if kernel supports them */
6916 	btf_fd = bpf_object__btf_fd(obj);
6917 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6918 		load_attr.prog_btf_fd = btf_fd;
6919 		load_attr.func_info = prog->func_info;
6920 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6921 		load_attr.func_info_cnt = prog->func_info_cnt;
6922 		load_attr.line_info = prog->line_info;
6923 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6924 		load_attr.line_info_cnt = prog->line_info_cnt;
6925 	}
6926 	load_attr.log_level = log_level;
6927 	load_attr.prog_flags = prog->prog_flags;
6928 	load_attr.fd_array = obj->fd_array;
6929 
6930 	/* adjust load_attr if sec_def provides custom preload callback */
6931 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6932 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6933 		if (err < 0) {
6934 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6935 				prog->name, err);
6936 			return err;
6937 		}
6938 		insns = prog->insns;
6939 		insns_cnt = prog->insns_cnt;
6940 	}
6941 
6942 	/* allow prog_prepare_load_fn to change expected_attach_type */
6943 	load_attr.expected_attach_type = prog->expected_attach_type;
6944 
6945 	if (obj->gen_loader) {
6946 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6947 				   license, insns, insns_cnt, &load_attr,
6948 				   prog - obj->programs);
6949 		*prog_fd = -1;
6950 		return 0;
6951 	}
6952 
6953 retry_load:
6954 	/* if log_level is zero, we don't request logs initially even if
6955 	 * custom log_buf is specified; if the program load fails, then we'll
6956 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
6957 	 * our own and retry the load to get details on what failed
6958 	 */
6959 	if (log_level) {
6960 		if (prog->log_buf) {
6961 			log_buf = prog->log_buf;
6962 			log_buf_size = prog->log_size;
6963 			own_log_buf = false;
6964 		} else if (obj->log_buf) {
6965 			log_buf = obj->log_buf;
6966 			log_buf_size = obj->log_size;
6967 			own_log_buf = false;
6968 		} else {
6969 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6970 			tmp = realloc(log_buf, log_buf_size);
6971 			if (!tmp) {
6972 				ret = -ENOMEM;
6973 				goto out;
6974 			}
6975 			log_buf = tmp;
6976 			log_buf[0] = '\0';
6977 			own_log_buf = true;
6978 		}
6979 	}
6980 
6981 	load_attr.log_buf = log_buf;
6982 	load_attr.log_size = log_buf_size;
6983 	load_attr.log_level = log_level;
6984 
6985 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6986 	if (ret >= 0) {
6987 		if (log_level && own_log_buf) {
6988 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6989 				 prog->name, log_buf);
6990 		}
6991 
6992 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6993 			struct bpf_map *map;
6994 			int i;
6995 
6996 			for (i = 0; i < obj->nr_maps; i++) {
6997 				map = &prog->obj->maps[i];
6998 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
6999 					continue;
7000 
7001 				if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
7002 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7003 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7004 						prog->name, map->real_name, cp);
7005 					/* Don't fail hard if can't bind rodata. */
7006 				}
7007 			}
7008 		}
7009 
7010 		*prog_fd = ret;
7011 		ret = 0;
7012 		goto out;
7013 	}
7014 
7015 	if (log_level == 0) {
7016 		log_level = 1;
7017 		goto retry_load;
7018 	}
7019 	/* On ENOSPC, increase log buffer size and retry, unless custom
7020 	 * log_buf is specified.
7021 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7022 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7023 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7024 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7025 	 */
7026 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7027 		goto retry_load;
7028 
7029 	ret = -errno;
7030 
7031 	/* post-process verifier log to improve error descriptions */
7032 	fixup_verifier_log(prog, log_buf, log_buf_size);
7033 
7034 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7035 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7036 	pr_perm_msg(ret);
7037 
7038 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7039 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7040 			prog->name, log_buf);
7041 	}
7042 
7043 out:
7044 	if (own_log_buf)
7045 		free(log_buf);
7046 	return ret;
7047 }
7048 
7049 static char *find_prev_line(char *buf, char *cur)
7050 {
7051 	char *p;
7052 
7053 	if (cur == buf) /* end of a log buf */
7054 		return NULL;
7055 
7056 	p = cur - 1;
7057 	while (p - 1 >= buf && *(p - 1) != '\n')
7058 		p--;
7059 
7060 	return p;
7061 }
7062 
7063 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7064 		      char *orig, size_t orig_sz, const char *patch)
7065 {
7066 	/* size of the remaining log content to the right from the to-be-replaced part */
7067 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7068 	size_t patch_sz = strlen(patch);
7069 
7070 	if (patch_sz != orig_sz) {
7071 		/* If patch line(s) are longer than original piece of verifier log,
7072 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7073 		 * starting from after to-be-replaced part of the log.
7074 		 *
7075 		 * If patch line(s) are shorter than original piece of verifier log,
7076 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7077 		 * starting from after to-be-replaced part of the log
7078 		 *
7079 		 * We need to be careful about not overflowing available
7080 		 * buf_sz capacity. If that's the case, we'll truncate the end
7081 		 * of the original log, as necessary.
7082 		 */
7083 		if (patch_sz > orig_sz) {
7084 			if (orig + patch_sz >= buf + buf_sz) {
7085 				/* patch is big enough to cover remaining space completely */
7086 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7087 				rem_sz = 0;
7088 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7089 				/* patch causes part of remaining log to be truncated */
7090 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7091 			}
7092 		}
7093 		/* shift remaining log to the right by calculated amount */
7094 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7095 	}
7096 
7097 	memcpy(orig, patch, patch_sz);
7098 }
7099 
7100 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7101 				       char *buf, size_t buf_sz, size_t log_sz,
7102 				       char *line1, char *line2, char *line3)
7103 {
7104 	/* Expected log for failed and not properly guarded CO-RE relocation:
7105 	 * line1 -> 123: (85) call unknown#195896080
7106 	 * line2 -> invalid func unknown#195896080
7107 	 * line3 -> <anything else or end of buffer>
7108 	 *
7109 	 * "123" is the index of the instruction that was poisoned. We extract
7110 	 * instruction index to find corresponding CO-RE relocation and
7111 	 * replace this part of the log with more relevant information about
7112 	 * failed CO-RE relocation.
7113 	 */
7114 	const struct bpf_core_relo *relo;
7115 	struct bpf_core_spec spec;
7116 	char patch[512], spec_buf[256];
7117 	int insn_idx, err, spec_len;
7118 
7119 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7120 		return;
7121 
7122 	relo = find_relo_core(prog, insn_idx);
7123 	if (!relo)
7124 		return;
7125 
7126 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7127 	if (err)
7128 		return;
7129 
7130 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7131 	snprintf(patch, sizeof(patch),
7132 		 "%d: <invalid CO-RE relocation>\n"
7133 		 "failed to resolve CO-RE relocation %s%s\n",
7134 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7135 
7136 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7137 }
7138 
7139 static void fixup_log_missing_map_load(struct bpf_program *prog,
7140 				       char *buf, size_t buf_sz, size_t log_sz,
7141 				       char *line1, char *line2, char *line3)
7142 {
7143 	/* Expected log for failed and not properly guarded map reference:
7144 	 * line1 -> 123: (85) call unknown#2001000345
7145 	 * line2 -> invalid func unknown#2001000345
7146 	 * line3 -> <anything else or end of buffer>
7147 	 *
7148 	 * "123" is the index of the instruction that was poisoned.
7149 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7150 	 */
7151 	struct bpf_object *obj = prog->obj;
7152 	const struct bpf_map *map;
7153 	int insn_idx, map_idx;
7154 	char patch[128];
7155 
7156 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7157 		return;
7158 
7159 	map_idx -= POISON_LDIMM64_MAP_BASE;
7160 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7161 		return;
7162 	map = &obj->maps[map_idx];
7163 
7164 	snprintf(patch, sizeof(patch),
7165 		 "%d: <invalid BPF map reference>\n"
7166 		 "BPF map '%s' is referenced but wasn't created\n",
7167 		 insn_idx, map->name);
7168 
7169 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7170 }
7171 
7172 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7173 					 char *buf, size_t buf_sz, size_t log_sz,
7174 					 char *line1, char *line2, char *line3)
7175 {
7176 	/* Expected log for failed and not properly guarded kfunc call:
7177 	 * line1 -> 123: (85) call unknown#2002000345
7178 	 * line2 -> invalid func unknown#2002000345
7179 	 * line3 -> <anything else or end of buffer>
7180 	 *
7181 	 * "123" is the index of the instruction that was poisoned.
7182 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7183 	 */
7184 	struct bpf_object *obj = prog->obj;
7185 	const struct extern_desc *ext;
7186 	int insn_idx, ext_idx;
7187 	char patch[128];
7188 
7189 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7190 		return;
7191 
7192 	ext_idx -= POISON_CALL_KFUNC_BASE;
7193 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7194 		return;
7195 	ext = &obj->externs[ext_idx];
7196 
7197 	snprintf(patch, sizeof(patch),
7198 		 "%d: <invalid kfunc call>\n"
7199 		 "kfunc '%s' is referenced but wasn't resolved\n",
7200 		 insn_idx, ext->name);
7201 
7202 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7203 }
7204 
7205 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7206 {
7207 	/* look for familiar error patterns in last N lines of the log */
7208 	const size_t max_last_line_cnt = 10;
7209 	char *prev_line, *cur_line, *next_line;
7210 	size_t log_sz;
7211 	int i;
7212 
7213 	if (!buf)
7214 		return;
7215 
7216 	log_sz = strlen(buf) + 1;
7217 	next_line = buf + log_sz - 1;
7218 
7219 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7220 		cur_line = find_prev_line(buf, next_line);
7221 		if (!cur_line)
7222 			return;
7223 
7224 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7225 			prev_line = find_prev_line(buf, cur_line);
7226 			if (!prev_line)
7227 				continue;
7228 
7229 			/* failed CO-RE relocation case */
7230 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7231 						   prev_line, cur_line, next_line);
7232 			return;
7233 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7234 			prev_line = find_prev_line(buf, cur_line);
7235 			if (!prev_line)
7236 				continue;
7237 
7238 			/* reference to uncreated BPF map */
7239 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7240 						   prev_line, cur_line, next_line);
7241 			return;
7242 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7243 			prev_line = find_prev_line(buf, cur_line);
7244 			if (!prev_line)
7245 				continue;
7246 
7247 			/* reference to unresolved kfunc */
7248 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7249 						     prev_line, cur_line, next_line);
7250 			return;
7251 		}
7252 	}
7253 }
7254 
7255 static int bpf_program_record_relos(struct bpf_program *prog)
7256 {
7257 	struct bpf_object *obj = prog->obj;
7258 	int i;
7259 
7260 	for (i = 0; i < prog->nr_reloc; i++) {
7261 		struct reloc_desc *relo = &prog->reloc_desc[i];
7262 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7263 		int kind;
7264 
7265 		switch (relo->type) {
7266 		case RELO_EXTERN_LD64:
7267 			if (ext->type != EXT_KSYM)
7268 				continue;
7269 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7270 				BTF_KIND_VAR : BTF_KIND_FUNC;
7271 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7272 					       ext->is_weak, !ext->ksym.type_id,
7273 					       true, kind, relo->insn_idx);
7274 			break;
7275 		case RELO_EXTERN_CALL:
7276 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7277 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7278 					       relo->insn_idx);
7279 			break;
7280 		case RELO_CORE: {
7281 			struct bpf_core_relo cr = {
7282 				.insn_off = relo->insn_idx * 8,
7283 				.type_id = relo->core_relo->type_id,
7284 				.access_str_off = relo->core_relo->access_str_off,
7285 				.kind = relo->core_relo->kind,
7286 			};
7287 
7288 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7289 			break;
7290 		}
7291 		default:
7292 			continue;
7293 		}
7294 	}
7295 	return 0;
7296 }
7297 
7298 static int
7299 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7300 {
7301 	struct bpf_program *prog;
7302 	size_t i;
7303 	int err;
7304 
7305 	for (i = 0; i < obj->nr_programs; i++) {
7306 		prog = &obj->programs[i];
7307 		err = bpf_object__sanitize_prog(obj, prog);
7308 		if (err)
7309 			return err;
7310 	}
7311 
7312 	for (i = 0; i < obj->nr_programs; i++) {
7313 		prog = &obj->programs[i];
7314 		if (prog_is_subprog(obj, prog))
7315 			continue;
7316 		if (!prog->autoload) {
7317 			pr_debug("prog '%s': skipped loading\n", prog->name);
7318 			continue;
7319 		}
7320 		prog->log_level |= log_level;
7321 
7322 		if (obj->gen_loader)
7323 			bpf_program_record_relos(prog);
7324 
7325 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7326 					   obj->license, obj->kern_version, &prog->fd);
7327 		if (err) {
7328 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7329 			return err;
7330 		}
7331 	}
7332 
7333 	bpf_object__free_relocs(obj);
7334 	return 0;
7335 }
7336 
7337 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7338 
7339 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7340 {
7341 	struct bpf_program *prog;
7342 	int err;
7343 
7344 	bpf_object__for_each_program(prog, obj) {
7345 		prog->sec_def = find_sec_def(prog->sec_name);
7346 		if (!prog->sec_def) {
7347 			/* couldn't guess, but user might manually specify */
7348 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7349 				prog->name, prog->sec_name);
7350 			continue;
7351 		}
7352 
7353 		prog->type = prog->sec_def->prog_type;
7354 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7355 
7356 		/* sec_def can have custom callback which should be called
7357 		 * after bpf_program is initialized to adjust its properties
7358 		 */
7359 		if (prog->sec_def->prog_setup_fn) {
7360 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7361 			if (err < 0) {
7362 				pr_warn("prog '%s': failed to initialize: %d\n",
7363 					prog->name, err);
7364 				return err;
7365 			}
7366 		}
7367 	}
7368 
7369 	return 0;
7370 }
7371 
7372 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7373 					  const struct bpf_object_open_opts *opts)
7374 {
7375 	const char *obj_name, *kconfig, *btf_tmp_path;
7376 	struct bpf_object *obj;
7377 	char tmp_name[64];
7378 	int err;
7379 	char *log_buf;
7380 	size_t log_size;
7381 	__u32 log_level;
7382 
7383 	if (elf_version(EV_CURRENT) == EV_NONE) {
7384 		pr_warn("failed to init libelf for %s\n",
7385 			path ? : "(mem buf)");
7386 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7387 	}
7388 
7389 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7390 		return ERR_PTR(-EINVAL);
7391 
7392 	obj_name = OPTS_GET(opts, object_name, NULL);
7393 	if (obj_buf) {
7394 		if (!obj_name) {
7395 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7396 				 (unsigned long)obj_buf,
7397 				 (unsigned long)obj_buf_sz);
7398 			obj_name = tmp_name;
7399 		}
7400 		path = obj_name;
7401 		pr_debug("loading object '%s' from buffer\n", obj_name);
7402 	}
7403 
7404 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7405 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7406 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7407 	if (log_size > UINT_MAX)
7408 		return ERR_PTR(-EINVAL);
7409 	if (log_size && !log_buf)
7410 		return ERR_PTR(-EINVAL);
7411 
7412 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7413 	if (IS_ERR(obj))
7414 		return obj;
7415 
7416 	obj->log_buf = log_buf;
7417 	obj->log_size = log_size;
7418 	obj->log_level = log_level;
7419 
7420 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7421 	if (btf_tmp_path) {
7422 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7423 			err = -ENAMETOOLONG;
7424 			goto out;
7425 		}
7426 		obj->btf_custom_path = strdup(btf_tmp_path);
7427 		if (!obj->btf_custom_path) {
7428 			err = -ENOMEM;
7429 			goto out;
7430 		}
7431 	}
7432 
7433 	kconfig = OPTS_GET(opts, kconfig, NULL);
7434 	if (kconfig) {
7435 		obj->kconfig = strdup(kconfig);
7436 		if (!obj->kconfig) {
7437 			err = -ENOMEM;
7438 			goto out;
7439 		}
7440 	}
7441 
7442 	err = bpf_object__elf_init(obj);
7443 	err = err ? : bpf_object__check_endianness(obj);
7444 	err = err ? : bpf_object__elf_collect(obj);
7445 	err = err ? : bpf_object__collect_externs(obj);
7446 	err = err ? : bpf_object_fixup_btf(obj);
7447 	err = err ? : bpf_object__init_maps(obj, opts);
7448 	err = err ? : bpf_object_init_progs(obj, opts);
7449 	err = err ? : bpf_object__collect_relos(obj);
7450 	if (err)
7451 		goto out;
7452 
7453 	bpf_object__elf_finish(obj);
7454 
7455 	return obj;
7456 out:
7457 	bpf_object__close(obj);
7458 	return ERR_PTR(err);
7459 }
7460 
7461 struct bpf_object *
7462 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7463 {
7464 	if (!path)
7465 		return libbpf_err_ptr(-EINVAL);
7466 
7467 	pr_debug("loading %s\n", path);
7468 
7469 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7470 }
7471 
7472 struct bpf_object *bpf_object__open(const char *path)
7473 {
7474 	return bpf_object__open_file(path, NULL);
7475 }
7476 
7477 struct bpf_object *
7478 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7479 		     const struct bpf_object_open_opts *opts)
7480 {
7481 	if (!obj_buf || obj_buf_sz == 0)
7482 		return libbpf_err_ptr(-EINVAL);
7483 
7484 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7485 }
7486 
7487 static int bpf_object_unload(struct bpf_object *obj)
7488 {
7489 	size_t i;
7490 
7491 	if (!obj)
7492 		return libbpf_err(-EINVAL);
7493 
7494 	for (i = 0; i < obj->nr_maps; i++) {
7495 		zclose(obj->maps[i].fd);
7496 		if (obj->maps[i].st_ops)
7497 			zfree(&obj->maps[i].st_ops->kern_vdata);
7498 	}
7499 
7500 	for (i = 0; i < obj->nr_programs; i++)
7501 		bpf_program__unload(&obj->programs[i]);
7502 
7503 	return 0;
7504 }
7505 
7506 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7507 {
7508 	struct bpf_map *m;
7509 
7510 	bpf_object__for_each_map(m, obj) {
7511 		if (!bpf_map__is_internal(m))
7512 			continue;
7513 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7514 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7515 	}
7516 
7517 	return 0;
7518 }
7519 
7520 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7521 {
7522 	char sym_type, sym_name[500];
7523 	unsigned long long sym_addr;
7524 	int ret, err = 0;
7525 	FILE *f;
7526 
7527 	f = fopen("/proc/kallsyms", "re");
7528 	if (!f) {
7529 		err = -errno;
7530 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7531 		return err;
7532 	}
7533 
7534 	while (true) {
7535 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7536 			     &sym_addr, &sym_type, sym_name);
7537 		if (ret == EOF && feof(f))
7538 			break;
7539 		if (ret != 3) {
7540 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7541 			err = -EINVAL;
7542 			break;
7543 		}
7544 
7545 		err = cb(sym_addr, sym_type, sym_name, ctx);
7546 		if (err)
7547 			break;
7548 	}
7549 
7550 	fclose(f);
7551 	return err;
7552 }
7553 
7554 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7555 		       const char *sym_name, void *ctx)
7556 {
7557 	struct bpf_object *obj = ctx;
7558 	const struct btf_type *t;
7559 	struct extern_desc *ext;
7560 
7561 	ext = find_extern_by_name(obj, sym_name);
7562 	if (!ext || ext->type != EXT_KSYM)
7563 		return 0;
7564 
7565 	t = btf__type_by_id(obj->btf, ext->btf_id);
7566 	if (!btf_is_var(t))
7567 		return 0;
7568 
7569 	if (ext->is_set && ext->ksym.addr != sym_addr) {
7570 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7571 			sym_name, ext->ksym.addr, sym_addr);
7572 		return -EINVAL;
7573 	}
7574 	if (!ext->is_set) {
7575 		ext->is_set = true;
7576 		ext->ksym.addr = sym_addr;
7577 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7578 	}
7579 	return 0;
7580 }
7581 
7582 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7583 {
7584 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
7585 }
7586 
7587 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7588 			    __u16 kind, struct btf **res_btf,
7589 			    struct module_btf **res_mod_btf)
7590 {
7591 	struct module_btf *mod_btf;
7592 	struct btf *btf;
7593 	int i, id, err;
7594 
7595 	btf = obj->btf_vmlinux;
7596 	mod_btf = NULL;
7597 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7598 
7599 	if (id == -ENOENT) {
7600 		err = load_module_btfs(obj);
7601 		if (err)
7602 			return err;
7603 
7604 		for (i = 0; i < obj->btf_module_cnt; i++) {
7605 			/* we assume module_btf's BTF FD is always >0 */
7606 			mod_btf = &obj->btf_modules[i];
7607 			btf = mod_btf->btf;
7608 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7609 			if (id != -ENOENT)
7610 				break;
7611 		}
7612 	}
7613 	if (id <= 0)
7614 		return -ESRCH;
7615 
7616 	*res_btf = btf;
7617 	*res_mod_btf = mod_btf;
7618 	return id;
7619 }
7620 
7621 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7622 					       struct extern_desc *ext)
7623 {
7624 	const struct btf_type *targ_var, *targ_type;
7625 	__u32 targ_type_id, local_type_id;
7626 	struct module_btf *mod_btf = NULL;
7627 	const char *targ_var_name;
7628 	struct btf *btf = NULL;
7629 	int id, err;
7630 
7631 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7632 	if (id < 0) {
7633 		if (id == -ESRCH && ext->is_weak)
7634 			return 0;
7635 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7636 			ext->name);
7637 		return id;
7638 	}
7639 
7640 	/* find local type_id */
7641 	local_type_id = ext->ksym.type_id;
7642 
7643 	/* find target type_id */
7644 	targ_var = btf__type_by_id(btf, id);
7645 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7646 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7647 
7648 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7649 					btf, targ_type_id);
7650 	if (err <= 0) {
7651 		const struct btf_type *local_type;
7652 		const char *targ_name, *local_name;
7653 
7654 		local_type = btf__type_by_id(obj->btf, local_type_id);
7655 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7656 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7657 
7658 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7659 			ext->name, local_type_id,
7660 			btf_kind_str(local_type), local_name, targ_type_id,
7661 			btf_kind_str(targ_type), targ_name);
7662 		return -EINVAL;
7663 	}
7664 
7665 	ext->is_set = true;
7666 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7667 	ext->ksym.kernel_btf_id = id;
7668 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7669 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7670 
7671 	return 0;
7672 }
7673 
7674 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7675 						struct extern_desc *ext)
7676 {
7677 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7678 	struct module_btf *mod_btf = NULL;
7679 	const struct btf_type *kern_func;
7680 	struct btf *kern_btf = NULL;
7681 	int ret;
7682 
7683 	local_func_proto_id = ext->ksym.type_id;
7684 
7685 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
7686 				    &mod_btf);
7687 	if (kfunc_id < 0) {
7688 		if (kfunc_id == -ESRCH && ext->is_weak)
7689 			return 0;
7690 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7691 			ext->name);
7692 		return kfunc_id;
7693 	}
7694 
7695 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7696 	kfunc_proto_id = kern_func->type;
7697 
7698 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7699 					kern_btf, kfunc_proto_id);
7700 	if (ret <= 0) {
7701 		if (ext->is_weak)
7702 			return 0;
7703 
7704 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7705 			ext->name, local_func_proto_id,
7706 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7707 		return -EINVAL;
7708 	}
7709 
7710 	/* set index for module BTF fd in fd_array, if unset */
7711 	if (mod_btf && !mod_btf->fd_array_idx) {
7712 		/* insn->off is s16 */
7713 		if (obj->fd_array_cnt == INT16_MAX) {
7714 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7715 				ext->name, mod_btf->fd_array_idx);
7716 			return -E2BIG;
7717 		}
7718 		/* Cannot use index 0 for module BTF fd */
7719 		if (!obj->fd_array_cnt)
7720 			obj->fd_array_cnt = 1;
7721 
7722 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7723 					obj->fd_array_cnt + 1);
7724 		if (ret)
7725 			return ret;
7726 		mod_btf->fd_array_idx = obj->fd_array_cnt;
7727 		/* we assume module BTF FD is always >0 */
7728 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7729 	}
7730 
7731 	ext->is_set = true;
7732 	ext->ksym.kernel_btf_id = kfunc_id;
7733 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7734 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7735 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7736 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7737 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7738 	 */
7739 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7740 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7741 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7742 
7743 	return 0;
7744 }
7745 
7746 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7747 {
7748 	const struct btf_type *t;
7749 	struct extern_desc *ext;
7750 	int i, err;
7751 
7752 	for (i = 0; i < obj->nr_extern; i++) {
7753 		ext = &obj->externs[i];
7754 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7755 			continue;
7756 
7757 		if (obj->gen_loader) {
7758 			ext->is_set = true;
7759 			ext->ksym.kernel_btf_obj_fd = 0;
7760 			ext->ksym.kernel_btf_id = 0;
7761 			continue;
7762 		}
7763 		t = btf__type_by_id(obj->btf, ext->btf_id);
7764 		if (btf_is_var(t))
7765 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7766 		else
7767 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7768 		if (err)
7769 			return err;
7770 	}
7771 	return 0;
7772 }
7773 
7774 static int bpf_object__resolve_externs(struct bpf_object *obj,
7775 				       const char *extra_kconfig)
7776 {
7777 	bool need_config = false, need_kallsyms = false;
7778 	bool need_vmlinux_btf = false;
7779 	struct extern_desc *ext;
7780 	void *kcfg_data = NULL;
7781 	int err, i;
7782 
7783 	if (obj->nr_extern == 0)
7784 		return 0;
7785 
7786 	if (obj->kconfig_map_idx >= 0)
7787 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7788 
7789 	for (i = 0; i < obj->nr_extern; i++) {
7790 		ext = &obj->externs[i];
7791 
7792 		if (ext->type == EXT_KSYM) {
7793 			if (ext->ksym.type_id)
7794 				need_vmlinux_btf = true;
7795 			else
7796 				need_kallsyms = true;
7797 			continue;
7798 		} else if (ext->type == EXT_KCFG) {
7799 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7800 			__u64 value = 0;
7801 
7802 			/* Kconfig externs need actual /proc/config.gz */
7803 			if (str_has_pfx(ext->name, "CONFIG_")) {
7804 				need_config = true;
7805 				continue;
7806 			}
7807 
7808 			/* Virtual kcfg externs are customly handled by libbpf */
7809 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7810 				value = get_kernel_version();
7811 				if (!value) {
7812 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7813 					return -EINVAL;
7814 				}
7815 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7816 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
7817 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7818 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7819 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7820 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7821 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
7822 				 * customly by libbpf (their values don't come from Kconfig).
7823 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7824 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
7825 				 * externs.
7826 				 */
7827 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7828 				return -EINVAL;
7829 			}
7830 
7831 			err = set_kcfg_value_num(ext, ext_ptr, value);
7832 			if (err)
7833 				return err;
7834 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7835 				 ext->name, (long long)value);
7836 		} else {
7837 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7838 			return -EINVAL;
7839 		}
7840 	}
7841 	if (need_config && extra_kconfig) {
7842 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7843 		if (err)
7844 			return -EINVAL;
7845 		need_config = false;
7846 		for (i = 0; i < obj->nr_extern; i++) {
7847 			ext = &obj->externs[i];
7848 			if (ext->type == EXT_KCFG && !ext->is_set) {
7849 				need_config = true;
7850 				break;
7851 			}
7852 		}
7853 	}
7854 	if (need_config) {
7855 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7856 		if (err)
7857 			return -EINVAL;
7858 	}
7859 	if (need_kallsyms) {
7860 		err = bpf_object__read_kallsyms_file(obj);
7861 		if (err)
7862 			return -EINVAL;
7863 	}
7864 	if (need_vmlinux_btf) {
7865 		err = bpf_object__resolve_ksyms_btf_id(obj);
7866 		if (err)
7867 			return -EINVAL;
7868 	}
7869 	for (i = 0; i < obj->nr_extern; i++) {
7870 		ext = &obj->externs[i];
7871 
7872 		if (!ext->is_set && !ext->is_weak) {
7873 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7874 			return -ESRCH;
7875 		} else if (!ext->is_set) {
7876 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7877 				 ext->name);
7878 		}
7879 	}
7880 
7881 	return 0;
7882 }
7883 
7884 static void bpf_map_prepare_vdata(const struct bpf_map *map)
7885 {
7886 	struct bpf_struct_ops *st_ops;
7887 	__u32 i;
7888 
7889 	st_ops = map->st_ops;
7890 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
7891 		struct bpf_program *prog = st_ops->progs[i];
7892 		void *kern_data;
7893 		int prog_fd;
7894 
7895 		if (!prog)
7896 			continue;
7897 
7898 		prog_fd = bpf_program__fd(prog);
7899 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7900 		*(unsigned long *)kern_data = prog_fd;
7901 	}
7902 }
7903 
7904 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7905 {
7906 	int i;
7907 
7908 	for (i = 0; i < obj->nr_maps; i++)
7909 		if (bpf_map__is_struct_ops(&obj->maps[i]))
7910 			bpf_map_prepare_vdata(&obj->maps[i]);
7911 
7912 	return 0;
7913 }
7914 
7915 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7916 {
7917 	int err, i;
7918 
7919 	if (!obj)
7920 		return libbpf_err(-EINVAL);
7921 
7922 	if (obj->loaded) {
7923 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7924 		return libbpf_err(-EINVAL);
7925 	}
7926 
7927 	if (obj->gen_loader)
7928 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7929 
7930 	err = bpf_object__probe_loading(obj);
7931 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7932 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7933 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7934 	err = err ? : bpf_object__sanitize_maps(obj);
7935 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7936 	err = err ? : bpf_object__create_maps(obj);
7937 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7938 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
7939 	err = err ? : bpf_object_init_prog_arrays(obj);
7940 	err = err ? : bpf_object_prepare_struct_ops(obj);
7941 
7942 	if (obj->gen_loader) {
7943 		/* reset FDs */
7944 		if (obj->btf)
7945 			btf__set_fd(obj->btf, -1);
7946 		for (i = 0; i < obj->nr_maps; i++)
7947 			obj->maps[i].fd = -1;
7948 		if (!err)
7949 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7950 	}
7951 
7952 	/* clean up fd_array */
7953 	zfree(&obj->fd_array);
7954 
7955 	/* clean up module BTFs */
7956 	for (i = 0; i < obj->btf_module_cnt; i++) {
7957 		close(obj->btf_modules[i].fd);
7958 		btf__free(obj->btf_modules[i].btf);
7959 		free(obj->btf_modules[i].name);
7960 	}
7961 	free(obj->btf_modules);
7962 
7963 	/* clean up vmlinux BTF */
7964 	btf__free(obj->btf_vmlinux);
7965 	obj->btf_vmlinux = NULL;
7966 
7967 	obj->loaded = true; /* doesn't matter if successfully or not */
7968 
7969 	if (err)
7970 		goto out;
7971 
7972 	return 0;
7973 out:
7974 	/* unpin any maps that were auto-pinned during load */
7975 	for (i = 0; i < obj->nr_maps; i++)
7976 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7977 			bpf_map__unpin(&obj->maps[i], NULL);
7978 
7979 	bpf_object_unload(obj);
7980 	pr_warn("failed to load object '%s'\n", obj->path);
7981 	return libbpf_err(err);
7982 }
7983 
7984 int bpf_object__load(struct bpf_object *obj)
7985 {
7986 	return bpf_object_load(obj, 0, NULL);
7987 }
7988 
7989 static int make_parent_dir(const char *path)
7990 {
7991 	char *cp, errmsg[STRERR_BUFSIZE];
7992 	char *dname, *dir;
7993 	int err = 0;
7994 
7995 	dname = strdup(path);
7996 	if (dname == NULL)
7997 		return -ENOMEM;
7998 
7999 	dir = dirname(dname);
8000 	if (mkdir(dir, 0700) && errno != EEXIST)
8001 		err = -errno;
8002 
8003 	free(dname);
8004 	if (err) {
8005 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8006 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8007 	}
8008 	return err;
8009 }
8010 
8011 static int check_path(const char *path)
8012 {
8013 	char *cp, errmsg[STRERR_BUFSIZE];
8014 	struct statfs st_fs;
8015 	char *dname, *dir;
8016 	int err = 0;
8017 
8018 	if (path == NULL)
8019 		return -EINVAL;
8020 
8021 	dname = strdup(path);
8022 	if (dname == NULL)
8023 		return -ENOMEM;
8024 
8025 	dir = dirname(dname);
8026 	if (statfs(dir, &st_fs)) {
8027 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8028 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8029 		err = -errno;
8030 	}
8031 	free(dname);
8032 
8033 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8034 		pr_warn("specified path %s is not on BPF FS\n", path);
8035 		err = -EINVAL;
8036 	}
8037 
8038 	return err;
8039 }
8040 
8041 int bpf_program__pin(struct bpf_program *prog, const char *path)
8042 {
8043 	char *cp, errmsg[STRERR_BUFSIZE];
8044 	int err;
8045 
8046 	if (prog->fd < 0) {
8047 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8048 		return libbpf_err(-EINVAL);
8049 	}
8050 
8051 	err = make_parent_dir(path);
8052 	if (err)
8053 		return libbpf_err(err);
8054 
8055 	err = check_path(path);
8056 	if (err)
8057 		return libbpf_err(err);
8058 
8059 	if (bpf_obj_pin(prog->fd, path)) {
8060 		err = -errno;
8061 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8062 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8063 		return libbpf_err(err);
8064 	}
8065 
8066 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8067 	return 0;
8068 }
8069 
8070 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8071 {
8072 	int err;
8073 
8074 	if (prog->fd < 0) {
8075 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8076 		return libbpf_err(-EINVAL);
8077 	}
8078 
8079 	err = check_path(path);
8080 	if (err)
8081 		return libbpf_err(err);
8082 
8083 	err = unlink(path);
8084 	if (err)
8085 		return libbpf_err(-errno);
8086 
8087 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8088 	return 0;
8089 }
8090 
8091 int bpf_map__pin(struct bpf_map *map, const char *path)
8092 {
8093 	char *cp, errmsg[STRERR_BUFSIZE];
8094 	int err;
8095 
8096 	if (map == NULL) {
8097 		pr_warn("invalid map pointer\n");
8098 		return libbpf_err(-EINVAL);
8099 	}
8100 
8101 	if (map->pin_path) {
8102 		if (path && strcmp(path, map->pin_path)) {
8103 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8104 				bpf_map__name(map), map->pin_path, path);
8105 			return libbpf_err(-EINVAL);
8106 		} else if (map->pinned) {
8107 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8108 				 bpf_map__name(map), map->pin_path);
8109 			return 0;
8110 		}
8111 	} else {
8112 		if (!path) {
8113 			pr_warn("missing a path to pin map '%s' at\n",
8114 				bpf_map__name(map));
8115 			return libbpf_err(-EINVAL);
8116 		} else if (map->pinned) {
8117 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8118 			return libbpf_err(-EEXIST);
8119 		}
8120 
8121 		map->pin_path = strdup(path);
8122 		if (!map->pin_path) {
8123 			err = -errno;
8124 			goto out_err;
8125 		}
8126 	}
8127 
8128 	err = make_parent_dir(map->pin_path);
8129 	if (err)
8130 		return libbpf_err(err);
8131 
8132 	err = check_path(map->pin_path);
8133 	if (err)
8134 		return libbpf_err(err);
8135 
8136 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8137 		err = -errno;
8138 		goto out_err;
8139 	}
8140 
8141 	map->pinned = true;
8142 	pr_debug("pinned map '%s'\n", map->pin_path);
8143 
8144 	return 0;
8145 
8146 out_err:
8147 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8148 	pr_warn("failed to pin map: %s\n", cp);
8149 	return libbpf_err(err);
8150 }
8151 
8152 int bpf_map__unpin(struct bpf_map *map, const char *path)
8153 {
8154 	int err;
8155 
8156 	if (map == NULL) {
8157 		pr_warn("invalid map pointer\n");
8158 		return libbpf_err(-EINVAL);
8159 	}
8160 
8161 	if (map->pin_path) {
8162 		if (path && strcmp(path, map->pin_path)) {
8163 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8164 				bpf_map__name(map), map->pin_path, path);
8165 			return libbpf_err(-EINVAL);
8166 		}
8167 		path = map->pin_path;
8168 	} else if (!path) {
8169 		pr_warn("no path to unpin map '%s' from\n",
8170 			bpf_map__name(map));
8171 		return libbpf_err(-EINVAL);
8172 	}
8173 
8174 	err = check_path(path);
8175 	if (err)
8176 		return libbpf_err(err);
8177 
8178 	err = unlink(path);
8179 	if (err != 0)
8180 		return libbpf_err(-errno);
8181 
8182 	map->pinned = false;
8183 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8184 
8185 	return 0;
8186 }
8187 
8188 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8189 {
8190 	char *new = NULL;
8191 
8192 	if (path) {
8193 		new = strdup(path);
8194 		if (!new)
8195 			return libbpf_err(-errno);
8196 	}
8197 
8198 	free(map->pin_path);
8199 	map->pin_path = new;
8200 	return 0;
8201 }
8202 
8203 __alias(bpf_map__pin_path)
8204 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8205 
8206 const char *bpf_map__pin_path(const struct bpf_map *map)
8207 {
8208 	return map->pin_path;
8209 }
8210 
8211 bool bpf_map__is_pinned(const struct bpf_map *map)
8212 {
8213 	return map->pinned;
8214 }
8215 
8216 static void sanitize_pin_path(char *s)
8217 {
8218 	/* bpffs disallows periods in path names */
8219 	while (*s) {
8220 		if (*s == '.')
8221 			*s = '_';
8222 		s++;
8223 	}
8224 }
8225 
8226 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8227 {
8228 	struct bpf_map *map;
8229 	int err;
8230 
8231 	if (!obj)
8232 		return libbpf_err(-ENOENT);
8233 
8234 	if (!obj->loaded) {
8235 		pr_warn("object not yet loaded; load it first\n");
8236 		return libbpf_err(-ENOENT);
8237 	}
8238 
8239 	bpf_object__for_each_map(map, obj) {
8240 		char *pin_path = NULL;
8241 		char buf[PATH_MAX];
8242 
8243 		if (!map->autocreate)
8244 			continue;
8245 
8246 		if (path) {
8247 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8248 			if (err)
8249 				goto err_unpin_maps;
8250 			sanitize_pin_path(buf);
8251 			pin_path = buf;
8252 		} else if (!map->pin_path) {
8253 			continue;
8254 		}
8255 
8256 		err = bpf_map__pin(map, pin_path);
8257 		if (err)
8258 			goto err_unpin_maps;
8259 	}
8260 
8261 	return 0;
8262 
8263 err_unpin_maps:
8264 	while ((map = bpf_object__prev_map(obj, map))) {
8265 		if (!map->pin_path)
8266 			continue;
8267 
8268 		bpf_map__unpin(map, NULL);
8269 	}
8270 
8271 	return libbpf_err(err);
8272 }
8273 
8274 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8275 {
8276 	struct bpf_map *map;
8277 	int err;
8278 
8279 	if (!obj)
8280 		return libbpf_err(-ENOENT);
8281 
8282 	bpf_object__for_each_map(map, obj) {
8283 		char *pin_path = NULL;
8284 		char buf[PATH_MAX];
8285 
8286 		if (path) {
8287 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8288 			if (err)
8289 				return libbpf_err(err);
8290 			sanitize_pin_path(buf);
8291 			pin_path = buf;
8292 		} else if (!map->pin_path) {
8293 			continue;
8294 		}
8295 
8296 		err = bpf_map__unpin(map, pin_path);
8297 		if (err)
8298 			return libbpf_err(err);
8299 	}
8300 
8301 	return 0;
8302 }
8303 
8304 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8305 {
8306 	struct bpf_program *prog;
8307 	char buf[PATH_MAX];
8308 	int err;
8309 
8310 	if (!obj)
8311 		return libbpf_err(-ENOENT);
8312 
8313 	if (!obj->loaded) {
8314 		pr_warn("object not yet loaded; load it first\n");
8315 		return libbpf_err(-ENOENT);
8316 	}
8317 
8318 	bpf_object__for_each_program(prog, obj) {
8319 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8320 		if (err)
8321 			goto err_unpin_programs;
8322 
8323 		err = bpf_program__pin(prog, buf);
8324 		if (err)
8325 			goto err_unpin_programs;
8326 	}
8327 
8328 	return 0;
8329 
8330 err_unpin_programs:
8331 	while ((prog = bpf_object__prev_program(obj, prog))) {
8332 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8333 			continue;
8334 
8335 		bpf_program__unpin(prog, buf);
8336 	}
8337 
8338 	return libbpf_err(err);
8339 }
8340 
8341 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8342 {
8343 	struct bpf_program *prog;
8344 	int err;
8345 
8346 	if (!obj)
8347 		return libbpf_err(-ENOENT);
8348 
8349 	bpf_object__for_each_program(prog, obj) {
8350 		char buf[PATH_MAX];
8351 
8352 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8353 		if (err)
8354 			return libbpf_err(err);
8355 
8356 		err = bpf_program__unpin(prog, buf);
8357 		if (err)
8358 			return libbpf_err(err);
8359 	}
8360 
8361 	return 0;
8362 }
8363 
8364 int bpf_object__pin(struct bpf_object *obj, const char *path)
8365 {
8366 	int err;
8367 
8368 	err = bpf_object__pin_maps(obj, path);
8369 	if (err)
8370 		return libbpf_err(err);
8371 
8372 	err = bpf_object__pin_programs(obj, path);
8373 	if (err) {
8374 		bpf_object__unpin_maps(obj, path);
8375 		return libbpf_err(err);
8376 	}
8377 
8378 	return 0;
8379 }
8380 
8381 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8382 {
8383 	int err;
8384 
8385 	err = bpf_object__unpin_programs(obj, path);
8386 	if (err)
8387 		return libbpf_err(err);
8388 
8389 	err = bpf_object__unpin_maps(obj, path);
8390 	if (err)
8391 		return libbpf_err(err);
8392 
8393 	return 0;
8394 }
8395 
8396 static void bpf_map__destroy(struct bpf_map *map)
8397 {
8398 	if (map->inner_map) {
8399 		bpf_map__destroy(map->inner_map);
8400 		zfree(&map->inner_map);
8401 	}
8402 
8403 	zfree(&map->init_slots);
8404 	map->init_slots_sz = 0;
8405 
8406 	if (map->mmaped) {
8407 		size_t mmap_sz;
8408 
8409 		mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
8410 		munmap(map->mmaped, mmap_sz);
8411 		map->mmaped = NULL;
8412 	}
8413 
8414 	if (map->st_ops) {
8415 		zfree(&map->st_ops->data);
8416 		zfree(&map->st_ops->progs);
8417 		zfree(&map->st_ops->kern_func_off);
8418 		zfree(&map->st_ops);
8419 	}
8420 
8421 	zfree(&map->name);
8422 	zfree(&map->real_name);
8423 	zfree(&map->pin_path);
8424 
8425 	if (map->fd >= 0)
8426 		zclose(map->fd);
8427 }
8428 
8429 void bpf_object__close(struct bpf_object *obj)
8430 {
8431 	size_t i;
8432 
8433 	if (IS_ERR_OR_NULL(obj))
8434 		return;
8435 
8436 	usdt_manager_free(obj->usdt_man);
8437 	obj->usdt_man = NULL;
8438 
8439 	bpf_gen__free(obj->gen_loader);
8440 	bpf_object__elf_finish(obj);
8441 	bpf_object_unload(obj);
8442 	btf__free(obj->btf);
8443 	btf__free(obj->btf_vmlinux);
8444 	btf_ext__free(obj->btf_ext);
8445 
8446 	for (i = 0; i < obj->nr_maps; i++)
8447 		bpf_map__destroy(&obj->maps[i]);
8448 
8449 	zfree(&obj->btf_custom_path);
8450 	zfree(&obj->kconfig);
8451 
8452 	for (i = 0; i < obj->nr_extern; i++)
8453 		zfree(&obj->externs[i].essent_name);
8454 
8455 	zfree(&obj->externs);
8456 	obj->nr_extern = 0;
8457 
8458 	zfree(&obj->maps);
8459 	obj->nr_maps = 0;
8460 
8461 	if (obj->programs && obj->nr_programs) {
8462 		for (i = 0; i < obj->nr_programs; i++)
8463 			bpf_program__exit(&obj->programs[i]);
8464 	}
8465 	zfree(&obj->programs);
8466 
8467 	free(obj);
8468 }
8469 
8470 const char *bpf_object__name(const struct bpf_object *obj)
8471 {
8472 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8473 }
8474 
8475 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8476 {
8477 	return obj ? obj->kern_version : 0;
8478 }
8479 
8480 struct btf *bpf_object__btf(const struct bpf_object *obj)
8481 {
8482 	return obj ? obj->btf : NULL;
8483 }
8484 
8485 int bpf_object__btf_fd(const struct bpf_object *obj)
8486 {
8487 	return obj->btf ? btf__fd(obj->btf) : -1;
8488 }
8489 
8490 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8491 {
8492 	if (obj->loaded)
8493 		return libbpf_err(-EINVAL);
8494 
8495 	obj->kern_version = kern_version;
8496 
8497 	return 0;
8498 }
8499 
8500 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8501 {
8502 	struct bpf_gen *gen;
8503 
8504 	if (!opts)
8505 		return -EFAULT;
8506 	if (!OPTS_VALID(opts, gen_loader_opts))
8507 		return -EINVAL;
8508 	gen = calloc(sizeof(*gen), 1);
8509 	if (!gen)
8510 		return -ENOMEM;
8511 	gen->opts = opts;
8512 	obj->gen_loader = gen;
8513 	return 0;
8514 }
8515 
8516 static struct bpf_program *
8517 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8518 		    bool forward)
8519 {
8520 	size_t nr_programs = obj->nr_programs;
8521 	ssize_t idx;
8522 
8523 	if (!nr_programs)
8524 		return NULL;
8525 
8526 	if (!p)
8527 		/* Iter from the beginning */
8528 		return forward ? &obj->programs[0] :
8529 			&obj->programs[nr_programs - 1];
8530 
8531 	if (p->obj != obj) {
8532 		pr_warn("error: program handler doesn't match object\n");
8533 		return errno = EINVAL, NULL;
8534 	}
8535 
8536 	idx = (p - obj->programs) + (forward ? 1 : -1);
8537 	if (idx >= obj->nr_programs || idx < 0)
8538 		return NULL;
8539 	return &obj->programs[idx];
8540 }
8541 
8542 struct bpf_program *
8543 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8544 {
8545 	struct bpf_program *prog = prev;
8546 
8547 	do {
8548 		prog = __bpf_program__iter(prog, obj, true);
8549 	} while (prog && prog_is_subprog(obj, prog));
8550 
8551 	return prog;
8552 }
8553 
8554 struct bpf_program *
8555 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8556 {
8557 	struct bpf_program *prog = next;
8558 
8559 	do {
8560 		prog = __bpf_program__iter(prog, obj, false);
8561 	} while (prog && prog_is_subprog(obj, prog));
8562 
8563 	return prog;
8564 }
8565 
8566 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8567 {
8568 	prog->prog_ifindex = ifindex;
8569 }
8570 
8571 const char *bpf_program__name(const struct bpf_program *prog)
8572 {
8573 	return prog->name;
8574 }
8575 
8576 const char *bpf_program__section_name(const struct bpf_program *prog)
8577 {
8578 	return prog->sec_name;
8579 }
8580 
8581 bool bpf_program__autoload(const struct bpf_program *prog)
8582 {
8583 	return prog->autoload;
8584 }
8585 
8586 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8587 {
8588 	if (prog->obj->loaded)
8589 		return libbpf_err(-EINVAL);
8590 
8591 	prog->autoload = autoload;
8592 	return 0;
8593 }
8594 
8595 bool bpf_program__autoattach(const struct bpf_program *prog)
8596 {
8597 	return prog->autoattach;
8598 }
8599 
8600 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8601 {
8602 	prog->autoattach = autoattach;
8603 }
8604 
8605 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8606 {
8607 	return prog->insns;
8608 }
8609 
8610 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8611 {
8612 	return prog->insns_cnt;
8613 }
8614 
8615 int bpf_program__set_insns(struct bpf_program *prog,
8616 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
8617 {
8618 	struct bpf_insn *insns;
8619 
8620 	if (prog->obj->loaded)
8621 		return -EBUSY;
8622 
8623 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8624 	/* NULL is a valid return from reallocarray if the new count is zero */
8625 	if (!insns && new_insn_cnt) {
8626 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8627 		return -ENOMEM;
8628 	}
8629 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8630 
8631 	prog->insns = insns;
8632 	prog->insns_cnt = new_insn_cnt;
8633 	return 0;
8634 }
8635 
8636 int bpf_program__fd(const struct bpf_program *prog)
8637 {
8638 	if (!prog)
8639 		return libbpf_err(-EINVAL);
8640 
8641 	if (prog->fd < 0)
8642 		return libbpf_err(-ENOENT);
8643 
8644 	return prog->fd;
8645 }
8646 
8647 __alias(bpf_program__type)
8648 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8649 
8650 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8651 {
8652 	return prog->type;
8653 }
8654 
8655 static size_t custom_sec_def_cnt;
8656 static struct bpf_sec_def *custom_sec_defs;
8657 static struct bpf_sec_def custom_fallback_def;
8658 static bool has_custom_fallback_def;
8659 static int last_custom_sec_def_handler_id;
8660 
8661 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8662 {
8663 	if (prog->obj->loaded)
8664 		return libbpf_err(-EBUSY);
8665 
8666 	/* if type is not changed, do nothing */
8667 	if (prog->type == type)
8668 		return 0;
8669 
8670 	prog->type = type;
8671 
8672 	/* If a program type was changed, we need to reset associated SEC()
8673 	 * handler, as it will be invalid now. The only exception is a generic
8674 	 * fallback handler, which by definition is program type-agnostic and
8675 	 * is a catch-all custom handler, optionally set by the application,
8676 	 * so should be able to handle any type of BPF program.
8677 	 */
8678 	if (prog->sec_def != &custom_fallback_def)
8679 		prog->sec_def = NULL;
8680 	return 0;
8681 }
8682 
8683 __alias(bpf_program__expected_attach_type)
8684 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8685 
8686 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8687 {
8688 	return prog->expected_attach_type;
8689 }
8690 
8691 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8692 					   enum bpf_attach_type type)
8693 {
8694 	if (prog->obj->loaded)
8695 		return libbpf_err(-EBUSY);
8696 
8697 	prog->expected_attach_type = type;
8698 	return 0;
8699 }
8700 
8701 __u32 bpf_program__flags(const struct bpf_program *prog)
8702 {
8703 	return prog->prog_flags;
8704 }
8705 
8706 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8707 {
8708 	if (prog->obj->loaded)
8709 		return libbpf_err(-EBUSY);
8710 
8711 	prog->prog_flags = flags;
8712 	return 0;
8713 }
8714 
8715 __u32 bpf_program__log_level(const struct bpf_program *prog)
8716 {
8717 	return prog->log_level;
8718 }
8719 
8720 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8721 {
8722 	if (prog->obj->loaded)
8723 		return libbpf_err(-EBUSY);
8724 
8725 	prog->log_level = log_level;
8726 	return 0;
8727 }
8728 
8729 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8730 {
8731 	*log_size = prog->log_size;
8732 	return prog->log_buf;
8733 }
8734 
8735 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8736 {
8737 	if (log_size && !log_buf)
8738 		return -EINVAL;
8739 	if (prog->log_size > UINT_MAX)
8740 		return -EINVAL;
8741 	if (prog->obj->loaded)
8742 		return -EBUSY;
8743 
8744 	prog->log_buf = log_buf;
8745 	prog->log_size = log_size;
8746 	return 0;
8747 }
8748 
8749 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
8750 	.sec = (char *)sec_pfx,						    \
8751 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8752 	.expected_attach_type = atype,					    \
8753 	.cookie = (long)(flags),					    \
8754 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
8755 	__VA_ARGS__							    \
8756 }
8757 
8758 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8759 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8760 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8761 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8762 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8763 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8764 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8765 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8766 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8767 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8768 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8769 
8770 static const struct bpf_sec_def section_defs[] = {
8771 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
8772 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8773 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8774 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
8775 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
8776 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
8777 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
8778 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
8779 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8780 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8781 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8782 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8783 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
8784 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8785 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
8786 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
8787 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
8788 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
8789 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
8790 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
8791 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
8792 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
8793 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
8794 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8795 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8796 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
8797 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
8798 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
8799 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8800 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8801 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8802 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8803 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8804 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8805 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8806 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8807 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8808 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8809 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8810 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
8811 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8812 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8813 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8814 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8815 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8816 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
8817 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8818 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8819 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8820 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8821 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
8822 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8823 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
8824 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
8825 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
8826 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
8827 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
8828 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8829 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8830 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8831 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
8832 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8833 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8834 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8835 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8836 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8837 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
8838 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8839 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8840 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8841 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8842 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8843 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8844 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8845 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8846 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8847 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8848 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8849 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8850 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8851 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8852 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8853 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8854 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8855 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8856 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8857 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8858 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8859 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
8860 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
8861 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8862 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
8863 };
8864 
8865 int libbpf_register_prog_handler(const char *sec,
8866 				 enum bpf_prog_type prog_type,
8867 				 enum bpf_attach_type exp_attach_type,
8868 				 const struct libbpf_prog_handler_opts *opts)
8869 {
8870 	struct bpf_sec_def *sec_def;
8871 
8872 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8873 		return libbpf_err(-EINVAL);
8874 
8875 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8876 		return libbpf_err(-E2BIG);
8877 
8878 	if (sec) {
8879 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8880 					      sizeof(*sec_def));
8881 		if (!sec_def)
8882 			return libbpf_err(-ENOMEM);
8883 
8884 		custom_sec_defs = sec_def;
8885 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
8886 	} else {
8887 		if (has_custom_fallback_def)
8888 			return libbpf_err(-EBUSY);
8889 
8890 		sec_def = &custom_fallback_def;
8891 	}
8892 
8893 	sec_def->sec = sec ? strdup(sec) : NULL;
8894 	if (sec && !sec_def->sec)
8895 		return libbpf_err(-ENOMEM);
8896 
8897 	sec_def->prog_type = prog_type;
8898 	sec_def->expected_attach_type = exp_attach_type;
8899 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
8900 
8901 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8902 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8903 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8904 
8905 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
8906 
8907 	if (sec)
8908 		custom_sec_def_cnt++;
8909 	else
8910 		has_custom_fallback_def = true;
8911 
8912 	return sec_def->handler_id;
8913 }
8914 
8915 int libbpf_unregister_prog_handler(int handler_id)
8916 {
8917 	struct bpf_sec_def *sec_defs;
8918 	int i;
8919 
8920 	if (handler_id <= 0)
8921 		return libbpf_err(-EINVAL);
8922 
8923 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8924 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8925 		has_custom_fallback_def = false;
8926 		return 0;
8927 	}
8928 
8929 	for (i = 0; i < custom_sec_def_cnt; i++) {
8930 		if (custom_sec_defs[i].handler_id == handler_id)
8931 			break;
8932 	}
8933 
8934 	if (i == custom_sec_def_cnt)
8935 		return libbpf_err(-ENOENT);
8936 
8937 	free(custom_sec_defs[i].sec);
8938 	for (i = i + 1; i < custom_sec_def_cnt; i++)
8939 		custom_sec_defs[i - 1] = custom_sec_defs[i];
8940 	custom_sec_def_cnt--;
8941 
8942 	/* try to shrink the array, but it's ok if we couldn't */
8943 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8944 	/* if new count is zero, reallocarray can return a valid NULL result;
8945 	 * in this case the previous pointer will be freed, so we *have to*
8946 	 * reassign old pointer to the new value (even if it's NULL)
8947 	 */
8948 	if (sec_defs || custom_sec_def_cnt == 0)
8949 		custom_sec_defs = sec_defs;
8950 
8951 	return 0;
8952 }
8953 
8954 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8955 {
8956 	size_t len = strlen(sec_def->sec);
8957 
8958 	/* "type/" always has to have proper SEC("type/extras") form */
8959 	if (sec_def->sec[len - 1] == '/') {
8960 		if (str_has_pfx(sec_name, sec_def->sec))
8961 			return true;
8962 		return false;
8963 	}
8964 
8965 	/* "type+" means it can be either exact SEC("type") or
8966 	 * well-formed SEC("type/extras") with proper '/' separator
8967 	 */
8968 	if (sec_def->sec[len - 1] == '+') {
8969 		len--;
8970 		/* not even a prefix */
8971 		if (strncmp(sec_name, sec_def->sec, len) != 0)
8972 			return false;
8973 		/* exact match or has '/' separator */
8974 		if (sec_name[len] == '\0' || sec_name[len] == '/')
8975 			return true;
8976 		return false;
8977 	}
8978 
8979 	return strcmp(sec_name, sec_def->sec) == 0;
8980 }
8981 
8982 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8983 {
8984 	const struct bpf_sec_def *sec_def;
8985 	int i, n;
8986 
8987 	n = custom_sec_def_cnt;
8988 	for (i = 0; i < n; i++) {
8989 		sec_def = &custom_sec_defs[i];
8990 		if (sec_def_matches(sec_def, sec_name))
8991 			return sec_def;
8992 	}
8993 
8994 	n = ARRAY_SIZE(section_defs);
8995 	for (i = 0; i < n; i++) {
8996 		sec_def = &section_defs[i];
8997 		if (sec_def_matches(sec_def, sec_name))
8998 			return sec_def;
8999 	}
9000 
9001 	if (has_custom_fallback_def)
9002 		return &custom_fallback_def;
9003 
9004 	return NULL;
9005 }
9006 
9007 #define MAX_TYPE_NAME_SIZE 32
9008 
9009 static char *libbpf_get_type_names(bool attach_type)
9010 {
9011 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9012 	char *buf;
9013 
9014 	buf = malloc(len);
9015 	if (!buf)
9016 		return NULL;
9017 
9018 	buf[0] = '\0';
9019 	/* Forge string buf with all available names */
9020 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9021 		const struct bpf_sec_def *sec_def = &section_defs[i];
9022 
9023 		if (attach_type) {
9024 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9025 				continue;
9026 
9027 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9028 				continue;
9029 		}
9030 
9031 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9032 			free(buf);
9033 			return NULL;
9034 		}
9035 		strcat(buf, " ");
9036 		strcat(buf, section_defs[i].sec);
9037 	}
9038 
9039 	return buf;
9040 }
9041 
9042 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9043 			     enum bpf_attach_type *expected_attach_type)
9044 {
9045 	const struct bpf_sec_def *sec_def;
9046 	char *type_names;
9047 
9048 	if (!name)
9049 		return libbpf_err(-EINVAL);
9050 
9051 	sec_def = find_sec_def(name);
9052 	if (sec_def) {
9053 		*prog_type = sec_def->prog_type;
9054 		*expected_attach_type = sec_def->expected_attach_type;
9055 		return 0;
9056 	}
9057 
9058 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9059 	type_names = libbpf_get_type_names(false);
9060 	if (type_names != NULL) {
9061 		pr_debug("supported section(type) names are:%s\n", type_names);
9062 		free(type_names);
9063 	}
9064 
9065 	return libbpf_err(-ESRCH);
9066 }
9067 
9068 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9069 {
9070 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9071 		return NULL;
9072 
9073 	return attach_type_name[t];
9074 }
9075 
9076 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9077 {
9078 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9079 		return NULL;
9080 
9081 	return link_type_name[t];
9082 }
9083 
9084 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9085 {
9086 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9087 		return NULL;
9088 
9089 	return map_type_name[t];
9090 }
9091 
9092 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9093 {
9094 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9095 		return NULL;
9096 
9097 	return prog_type_name[t];
9098 }
9099 
9100 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9101 						     int sec_idx,
9102 						     size_t offset)
9103 {
9104 	struct bpf_map *map;
9105 	size_t i;
9106 
9107 	for (i = 0; i < obj->nr_maps; i++) {
9108 		map = &obj->maps[i];
9109 		if (!bpf_map__is_struct_ops(map))
9110 			continue;
9111 		if (map->sec_idx == sec_idx &&
9112 		    map->sec_offset <= offset &&
9113 		    offset - map->sec_offset < map->def.value_size)
9114 			return map;
9115 	}
9116 
9117 	return NULL;
9118 }
9119 
9120 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9121 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9122 					    Elf64_Shdr *shdr, Elf_Data *data)
9123 {
9124 	const struct btf_member *member;
9125 	struct bpf_struct_ops *st_ops;
9126 	struct bpf_program *prog;
9127 	unsigned int shdr_idx;
9128 	const struct btf *btf;
9129 	struct bpf_map *map;
9130 	unsigned int moff, insn_idx;
9131 	const char *name;
9132 	__u32 member_idx;
9133 	Elf64_Sym *sym;
9134 	Elf64_Rel *rel;
9135 	int i, nrels;
9136 
9137 	btf = obj->btf;
9138 	nrels = shdr->sh_size / shdr->sh_entsize;
9139 	for (i = 0; i < nrels; i++) {
9140 		rel = elf_rel_by_idx(data, i);
9141 		if (!rel) {
9142 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9143 			return -LIBBPF_ERRNO__FORMAT;
9144 		}
9145 
9146 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9147 		if (!sym) {
9148 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9149 				(size_t)ELF64_R_SYM(rel->r_info));
9150 			return -LIBBPF_ERRNO__FORMAT;
9151 		}
9152 
9153 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9154 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9155 		if (!map) {
9156 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9157 				(size_t)rel->r_offset);
9158 			return -EINVAL;
9159 		}
9160 
9161 		moff = rel->r_offset - map->sec_offset;
9162 		shdr_idx = sym->st_shndx;
9163 		st_ops = map->st_ops;
9164 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9165 			 map->name,
9166 			 (long long)(rel->r_info >> 32),
9167 			 (long long)sym->st_value,
9168 			 shdr_idx, (size_t)rel->r_offset,
9169 			 map->sec_offset, sym->st_name, name);
9170 
9171 		if (shdr_idx >= SHN_LORESERVE) {
9172 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9173 				map->name, (size_t)rel->r_offset, shdr_idx);
9174 			return -LIBBPF_ERRNO__RELOC;
9175 		}
9176 		if (sym->st_value % BPF_INSN_SZ) {
9177 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9178 				map->name, (unsigned long long)sym->st_value);
9179 			return -LIBBPF_ERRNO__FORMAT;
9180 		}
9181 		insn_idx = sym->st_value / BPF_INSN_SZ;
9182 
9183 		member = find_member_by_offset(st_ops->type, moff * 8);
9184 		if (!member) {
9185 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9186 				map->name, moff);
9187 			return -EINVAL;
9188 		}
9189 		member_idx = member - btf_members(st_ops->type);
9190 		name = btf__name_by_offset(btf, member->name_off);
9191 
9192 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9193 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9194 				map->name, name);
9195 			return -EINVAL;
9196 		}
9197 
9198 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9199 		if (!prog) {
9200 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9201 				map->name, shdr_idx, name);
9202 			return -EINVAL;
9203 		}
9204 
9205 		/* prevent the use of BPF prog with invalid type */
9206 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9207 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9208 				map->name, prog->name);
9209 			return -EINVAL;
9210 		}
9211 
9212 		/* if we haven't yet processed this BPF program, record proper
9213 		 * attach_btf_id and member_idx
9214 		 */
9215 		if (!prog->attach_btf_id) {
9216 			prog->attach_btf_id = st_ops->type_id;
9217 			prog->expected_attach_type = member_idx;
9218 		}
9219 
9220 		/* struct_ops BPF prog can be re-used between multiple
9221 		 * .struct_ops & .struct_ops.link as long as it's the
9222 		 * same struct_ops struct definition and the same
9223 		 * function pointer field
9224 		 */
9225 		if (prog->attach_btf_id != st_ops->type_id ||
9226 		    prog->expected_attach_type != member_idx) {
9227 			pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9228 				map->name, prog->name, prog->sec_name, prog->type,
9229 				prog->attach_btf_id, prog->expected_attach_type, name);
9230 			return -EINVAL;
9231 		}
9232 
9233 		st_ops->progs[member_idx] = prog;
9234 	}
9235 
9236 	return 0;
9237 }
9238 
9239 #define BTF_TRACE_PREFIX "btf_trace_"
9240 #define BTF_LSM_PREFIX "bpf_lsm_"
9241 #define BTF_ITER_PREFIX "bpf_iter_"
9242 #define BTF_MAX_NAME_SIZE 128
9243 
9244 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9245 				const char **prefix, int *kind)
9246 {
9247 	switch (attach_type) {
9248 	case BPF_TRACE_RAW_TP:
9249 		*prefix = BTF_TRACE_PREFIX;
9250 		*kind = BTF_KIND_TYPEDEF;
9251 		break;
9252 	case BPF_LSM_MAC:
9253 	case BPF_LSM_CGROUP:
9254 		*prefix = BTF_LSM_PREFIX;
9255 		*kind = BTF_KIND_FUNC;
9256 		break;
9257 	case BPF_TRACE_ITER:
9258 		*prefix = BTF_ITER_PREFIX;
9259 		*kind = BTF_KIND_FUNC;
9260 		break;
9261 	default:
9262 		*prefix = "";
9263 		*kind = BTF_KIND_FUNC;
9264 	}
9265 }
9266 
9267 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9268 				   const char *name, __u32 kind)
9269 {
9270 	char btf_type_name[BTF_MAX_NAME_SIZE];
9271 	int ret;
9272 
9273 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9274 		       "%s%s", prefix, name);
9275 	/* snprintf returns the number of characters written excluding the
9276 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9277 	 * indicates truncation.
9278 	 */
9279 	if (ret < 0 || ret >= sizeof(btf_type_name))
9280 		return -ENAMETOOLONG;
9281 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9282 }
9283 
9284 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9285 				     enum bpf_attach_type attach_type)
9286 {
9287 	const char *prefix;
9288 	int kind;
9289 
9290 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9291 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9292 }
9293 
9294 int libbpf_find_vmlinux_btf_id(const char *name,
9295 			       enum bpf_attach_type attach_type)
9296 {
9297 	struct btf *btf;
9298 	int err;
9299 
9300 	btf = btf__load_vmlinux_btf();
9301 	err = libbpf_get_error(btf);
9302 	if (err) {
9303 		pr_warn("vmlinux BTF is not found\n");
9304 		return libbpf_err(err);
9305 	}
9306 
9307 	err = find_attach_btf_id(btf, name, attach_type);
9308 	if (err <= 0)
9309 		pr_warn("%s is not found in vmlinux BTF\n", name);
9310 
9311 	btf__free(btf);
9312 	return libbpf_err(err);
9313 }
9314 
9315 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9316 {
9317 	struct bpf_prog_info info;
9318 	__u32 info_len = sizeof(info);
9319 	struct btf *btf;
9320 	int err;
9321 
9322 	memset(&info, 0, info_len);
9323 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9324 	if (err) {
9325 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9326 			attach_prog_fd, err);
9327 		return err;
9328 	}
9329 
9330 	err = -EINVAL;
9331 	if (!info.btf_id) {
9332 		pr_warn("The target program doesn't have BTF\n");
9333 		goto out;
9334 	}
9335 	btf = btf__load_from_kernel_by_id(info.btf_id);
9336 	err = libbpf_get_error(btf);
9337 	if (err) {
9338 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9339 		goto out;
9340 	}
9341 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9342 	btf__free(btf);
9343 	if (err <= 0) {
9344 		pr_warn("%s is not found in prog's BTF\n", name);
9345 		goto out;
9346 	}
9347 out:
9348 	return err;
9349 }
9350 
9351 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9352 			      enum bpf_attach_type attach_type,
9353 			      int *btf_obj_fd, int *btf_type_id)
9354 {
9355 	int ret, i;
9356 
9357 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9358 	if (ret > 0) {
9359 		*btf_obj_fd = 0; /* vmlinux BTF */
9360 		*btf_type_id = ret;
9361 		return 0;
9362 	}
9363 	if (ret != -ENOENT)
9364 		return ret;
9365 
9366 	ret = load_module_btfs(obj);
9367 	if (ret)
9368 		return ret;
9369 
9370 	for (i = 0; i < obj->btf_module_cnt; i++) {
9371 		const struct module_btf *mod = &obj->btf_modules[i];
9372 
9373 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9374 		if (ret > 0) {
9375 			*btf_obj_fd = mod->fd;
9376 			*btf_type_id = ret;
9377 			return 0;
9378 		}
9379 		if (ret == -ENOENT)
9380 			continue;
9381 
9382 		return ret;
9383 	}
9384 
9385 	return -ESRCH;
9386 }
9387 
9388 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9389 				     int *btf_obj_fd, int *btf_type_id)
9390 {
9391 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9392 	__u32 attach_prog_fd = prog->attach_prog_fd;
9393 	int err = 0;
9394 
9395 	/* BPF program's BTF ID */
9396 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9397 		if (!attach_prog_fd) {
9398 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9399 			return -EINVAL;
9400 		}
9401 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9402 		if (err < 0) {
9403 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9404 				 prog->name, attach_prog_fd, attach_name, err);
9405 			return err;
9406 		}
9407 		*btf_obj_fd = 0;
9408 		*btf_type_id = err;
9409 		return 0;
9410 	}
9411 
9412 	/* kernel/module BTF ID */
9413 	if (prog->obj->gen_loader) {
9414 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9415 		*btf_obj_fd = 0;
9416 		*btf_type_id = 1;
9417 	} else {
9418 		err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9419 	}
9420 	if (err) {
9421 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9422 			prog->name, attach_name, err);
9423 		return err;
9424 	}
9425 	return 0;
9426 }
9427 
9428 int libbpf_attach_type_by_name(const char *name,
9429 			       enum bpf_attach_type *attach_type)
9430 {
9431 	char *type_names;
9432 	const struct bpf_sec_def *sec_def;
9433 
9434 	if (!name)
9435 		return libbpf_err(-EINVAL);
9436 
9437 	sec_def = find_sec_def(name);
9438 	if (!sec_def) {
9439 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9440 		type_names = libbpf_get_type_names(true);
9441 		if (type_names != NULL) {
9442 			pr_debug("attachable section(type) names are:%s\n", type_names);
9443 			free(type_names);
9444 		}
9445 
9446 		return libbpf_err(-EINVAL);
9447 	}
9448 
9449 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9450 		return libbpf_err(-EINVAL);
9451 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9452 		return libbpf_err(-EINVAL);
9453 
9454 	*attach_type = sec_def->expected_attach_type;
9455 	return 0;
9456 }
9457 
9458 int bpf_map__fd(const struct bpf_map *map)
9459 {
9460 	return map ? map->fd : libbpf_err(-EINVAL);
9461 }
9462 
9463 static bool map_uses_real_name(const struct bpf_map *map)
9464 {
9465 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9466 	 * their user-visible name differs from kernel-visible name. Users see
9467 	 * such map's corresponding ELF section name as a map name.
9468 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9469 	 * maps to know which name has to be returned to the user.
9470 	 */
9471 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9472 		return true;
9473 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9474 		return true;
9475 	return false;
9476 }
9477 
9478 const char *bpf_map__name(const struct bpf_map *map)
9479 {
9480 	if (!map)
9481 		return NULL;
9482 
9483 	if (map_uses_real_name(map))
9484 		return map->real_name;
9485 
9486 	return map->name;
9487 }
9488 
9489 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9490 {
9491 	return map->def.type;
9492 }
9493 
9494 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9495 {
9496 	if (map->fd >= 0)
9497 		return libbpf_err(-EBUSY);
9498 	map->def.type = type;
9499 	return 0;
9500 }
9501 
9502 __u32 bpf_map__map_flags(const struct bpf_map *map)
9503 {
9504 	return map->def.map_flags;
9505 }
9506 
9507 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9508 {
9509 	if (map->fd >= 0)
9510 		return libbpf_err(-EBUSY);
9511 	map->def.map_flags = flags;
9512 	return 0;
9513 }
9514 
9515 __u64 bpf_map__map_extra(const struct bpf_map *map)
9516 {
9517 	return map->map_extra;
9518 }
9519 
9520 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9521 {
9522 	if (map->fd >= 0)
9523 		return libbpf_err(-EBUSY);
9524 	map->map_extra = map_extra;
9525 	return 0;
9526 }
9527 
9528 __u32 bpf_map__numa_node(const struct bpf_map *map)
9529 {
9530 	return map->numa_node;
9531 }
9532 
9533 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9534 {
9535 	if (map->fd >= 0)
9536 		return libbpf_err(-EBUSY);
9537 	map->numa_node = numa_node;
9538 	return 0;
9539 }
9540 
9541 __u32 bpf_map__key_size(const struct bpf_map *map)
9542 {
9543 	return map->def.key_size;
9544 }
9545 
9546 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9547 {
9548 	if (map->fd >= 0)
9549 		return libbpf_err(-EBUSY);
9550 	map->def.key_size = size;
9551 	return 0;
9552 }
9553 
9554 __u32 bpf_map__value_size(const struct bpf_map *map)
9555 {
9556 	return map->def.value_size;
9557 }
9558 
9559 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
9560 {
9561 	struct btf *btf;
9562 	struct btf_type *datasec_type, *var_type;
9563 	struct btf_var_secinfo *var;
9564 	const struct btf_type *array_type;
9565 	const struct btf_array *array;
9566 	int vlen, element_sz, new_array_id;
9567 	__u32 nr_elements;
9568 
9569 	/* check btf existence */
9570 	btf = bpf_object__btf(map->obj);
9571 	if (!btf)
9572 		return -ENOENT;
9573 
9574 	/* verify map is datasec */
9575 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
9576 	if (!btf_is_datasec(datasec_type)) {
9577 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
9578 			bpf_map__name(map));
9579 		return -EINVAL;
9580 	}
9581 
9582 	/* verify datasec has at least one var */
9583 	vlen = btf_vlen(datasec_type);
9584 	if (vlen == 0) {
9585 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
9586 			bpf_map__name(map));
9587 		return -EINVAL;
9588 	}
9589 
9590 	/* verify last var in the datasec is an array */
9591 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9592 	var_type = btf_type_by_id(btf, var->type);
9593 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
9594 	if (!btf_is_array(array_type)) {
9595 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
9596 			bpf_map__name(map));
9597 		return -EINVAL;
9598 	}
9599 
9600 	/* verify request size aligns with array */
9601 	array = btf_array(array_type);
9602 	element_sz = btf__resolve_size(btf, array->type);
9603 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
9604 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
9605 			bpf_map__name(map), element_sz, size);
9606 		return -EINVAL;
9607 	}
9608 
9609 	/* create a new array based on the existing array, but with new length */
9610 	nr_elements = (size - var->offset) / element_sz;
9611 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
9612 	if (new_array_id < 0)
9613 		return new_array_id;
9614 
9615 	/* adding a new btf type invalidates existing pointers to btf objects,
9616 	 * so refresh pointers before proceeding
9617 	 */
9618 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
9619 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
9620 	var_type = btf_type_by_id(btf, var->type);
9621 
9622 	/* finally update btf info */
9623 	datasec_type->size = size;
9624 	var->size = size - var->offset;
9625 	var_type->type = new_array_id;
9626 
9627 	return 0;
9628 }
9629 
9630 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9631 {
9632 	if (map->fd >= 0)
9633 		return libbpf_err(-EBUSY);
9634 
9635 	if (map->mmaped) {
9636 		int err;
9637 		size_t mmap_old_sz, mmap_new_sz;
9638 
9639 		mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
9640 		mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries);
9641 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
9642 		if (err) {
9643 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
9644 				bpf_map__name(map), err);
9645 			return err;
9646 		}
9647 		err = map_btf_datasec_resize(map, size);
9648 		if (err && err != -ENOENT) {
9649 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
9650 				bpf_map__name(map), err);
9651 			map->btf_value_type_id = 0;
9652 			map->btf_key_type_id = 0;
9653 		}
9654 	}
9655 
9656 	map->def.value_size = size;
9657 	return 0;
9658 }
9659 
9660 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9661 {
9662 	return map ? map->btf_key_type_id : 0;
9663 }
9664 
9665 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9666 {
9667 	return map ? map->btf_value_type_id : 0;
9668 }
9669 
9670 int bpf_map__set_initial_value(struct bpf_map *map,
9671 			       const void *data, size_t size)
9672 {
9673 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9674 	    size != map->def.value_size || map->fd >= 0)
9675 		return libbpf_err(-EINVAL);
9676 
9677 	memcpy(map->mmaped, data, size);
9678 	return 0;
9679 }
9680 
9681 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9682 {
9683 	if (!map->mmaped)
9684 		return NULL;
9685 	*psize = map->def.value_size;
9686 	return map->mmaped;
9687 }
9688 
9689 bool bpf_map__is_internal(const struct bpf_map *map)
9690 {
9691 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9692 }
9693 
9694 __u32 bpf_map__ifindex(const struct bpf_map *map)
9695 {
9696 	return map->map_ifindex;
9697 }
9698 
9699 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9700 {
9701 	if (map->fd >= 0)
9702 		return libbpf_err(-EBUSY);
9703 	map->map_ifindex = ifindex;
9704 	return 0;
9705 }
9706 
9707 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9708 {
9709 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9710 		pr_warn("error: unsupported map type\n");
9711 		return libbpf_err(-EINVAL);
9712 	}
9713 	if (map->inner_map_fd != -1) {
9714 		pr_warn("error: inner_map_fd already specified\n");
9715 		return libbpf_err(-EINVAL);
9716 	}
9717 	if (map->inner_map) {
9718 		bpf_map__destroy(map->inner_map);
9719 		zfree(&map->inner_map);
9720 	}
9721 	map->inner_map_fd = fd;
9722 	return 0;
9723 }
9724 
9725 static struct bpf_map *
9726 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9727 {
9728 	ssize_t idx;
9729 	struct bpf_map *s, *e;
9730 
9731 	if (!obj || !obj->maps)
9732 		return errno = EINVAL, NULL;
9733 
9734 	s = obj->maps;
9735 	e = obj->maps + obj->nr_maps;
9736 
9737 	if ((m < s) || (m >= e)) {
9738 		pr_warn("error in %s: map handler doesn't belong to object\n",
9739 			 __func__);
9740 		return errno = EINVAL, NULL;
9741 	}
9742 
9743 	idx = (m - obj->maps) + i;
9744 	if (idx >= obj->nr_maps || idx < 0)
9745 		return NULL;
9746 	return &obj->maps[idx];
9747 }
9748 
9749 struct bpf_map *
9750 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9751 {
9752 	if (prev == NULL)
9753 		return obj->maps;
9754 
9755 	return __bpf_map__iter(prev, obj, 1);
9756 }
9757 
9758 struct bpf_map *
9759 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9760 {
9761 	if (next == NULL) {
9762 		if (!obj->nr_maps)
9763 			return NULL;
9764 		return obj->maps + obj->nr_maps - 1;
9765 	}
9766 
9767 	return __bpf_map__iter(next, obj, -1);
9768 }
9769 
9770 struct bpf_map *
9771 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9772 {
9773 	struct bpf_map *pos;
9774 
9775 	bpf_object__for_each_map(pos, obj) {
9776 		/* if it's a special internal map name (which always starts
9777 		 * with dot) then check if that special name matches the
9778 		 * real map name (ELF section name)
9779 		 */
9780 		if (name[0] == '.') {
9781 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
9782 				return pos;
9783 			continue;
9784 		}
9785 		/* otherwise map name has to be an exact match */
9786 		if (map_uses_real_name(pos)) {
9787 			if (strcmp(pos->real_name, name) == 0)
9788 				return pos;
9789 			continue;
9790 		}
9791 		if (strcmp(pos->name, name) == 0)
9792 			return pos;
9793 	}
9794 	return errno = ENOENT, NULL;
9795 }
9796 
9797 int
9798 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9799 {
9800 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9801 }
9802 
9803 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9804 			   size_t value_sz, bool check_value_sz)
9805 {
9806 	if (map->fd <= 0)
9807 		return -ENOENT;
9808 
9809 	if (map->def.key_size != key_sz) {
9810 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9811 			map->name, key_sz, map->def.key_size);
9812 		return -EINVAL;
9813 	}
9814 
9815 	if (!check_value_sz)
9816 		return 0;
9817 
9818 	switch (map->def.type) {
9819 	case BPF_MAP_TYPE_PERCPU_ARRAY:
9820 	case BPF_MAP_TYPE_PERCPU_HASH:
9821 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9822 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9823 		int num_cpu = libbpf_num_possible_cpus();
9824 		size_t elem_sz = roundup(map->def.value_size, 8);
9825 
9826 		if (value_sz != num_cpu * elem_sz) {
9827 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9828 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9829 			return -EINVAL;
9830 		}
9831 		break;
9832 	}
9833 	default:
9834 		if (map->def.value_size != value_sz) {
9835 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9836 				map->name, value_sz, map->def.value_size);
9837 			return -EINVAL;
9838 		}
9839 		break;
9840 	}
9841 	return 0;
9842 }
9843 
9844 int bpf_map__lookup_elem(const struct bpf_map *map,
9845 			 const void *key, size_t key_sz,
9846 			 void *value, size_t value_sz, __u64 flags)
9847 {
9848 	int err;
9849 
9850 	err = validate_map_op(map, key_sz, value_sz, true);
9851 	if (err)
9852 		return libbpf_err(err);
9853 
9854 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9855 }
9856 
9857 int bpf_map__update_elem(const struct bpf_map *map,
9858 			 const void *key, size_t key_sz,
9859 			 const void *value, size_t value_sz, __u64 flags)
9860 {
9861 	int err;
9862 
9863 	err = validate_map_op(map, key_sz, value_sz, true);
9864 	if (err)
9865 		return libbpf_err(err);
9866 
9867 	return bpf_map_update_elem(map->fd, key, value, flags);
9868 }
9869 
9870 int bpf_map__delete_elem(const struct bpf_map *map,
9871 			 const void *key, size_t key_sz, __u64 flags)
9872 {
9873 	int err;
9874 
9875 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9876 	if (err)
9877 		return libbpf_err(err);
9878 
9879 	return bpf_map_delete_elem_flags(map->fd, key, flags);
9880 }
9881 
9882 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9883 				    const void *key, size_t key_sz,
9884 				    void *value, size_t value_sz, __u64 flags)
9885 {
9886 	int err;
9887 
9888 	err = validate_map_op(map, key_sz, value_sz, true);
9889 	if (err)
9890 		return libbpf_err(err);
9891 
9892 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9893 }
9894 
9895 int bpf_map__get_next_key(const struct bpf_map *map,
9896 			  const void *cur_key, void *next_key, size_t key_sz)
9897 {
9898 	int err;
9899 
9900 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9901 	if (err)
9902 		return libbpf_err(err);
9903 
9904 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
9905 }
9906 
9907 long libbpf_get_error(const void *ptr)
9908 {
9909 	if (!IS_ERR_OR_NULL(ptr))
9910 		return 0;
9911 
9912 	if (IS_ERR(ptr))
9913 		errno = -PTR_ERR(ptr);
9914 
9915 	/* If ptr == NULL, then errno should be already set by the failing
9916 	 * API, because libbpf never returns NULL on success and it now always
9917 	 * sets errno on error. So no extra errno handling for ptr == NULL
9918 	 * case.
9919 	 */
9920 	return -errno;
9921 }
9922 
9923 /* Replace link's underlying BPF program with the new one */
9924 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9925 {
9926 	int ret;
9927 
9928 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9929 	return libbpf_err_errno(ret);
9930 }
9931 
9932 /* Release "ownership" of underlying BPF resource (typically, BPF program
9933  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9934  * link, when destructed through bpf_link__destroy() call won't attempt to
9935  * detach/unregisted that BPF resource. This is useful in situations where,
9936  * say, attached BPF program has to outlive userspace program that attached it
9937  * in the system. Depending on type of BPF program, though, there might be
9938  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9939  * exit of userspace program doesn't trigger automatic detachment and clean up
9940  * inside the kernel.
9941  */
9942 void bpf_link__disconnect(struct bpf_link *link)
9943 {
9944 	link->disconnected = true;
9945 }
9946 
9947 int bpf_link__destroy(struct bpf_link *link)
9948 {
9949 	int err = 0;
9950 
9951 	if (IS_ERR_OR_NULL(link))
9952 		return 0;
9953 
9954 	if (!link->disconnected && link->detach)
9955 		err = link->detach(link);
9956 	if (link->pin_path)
9957 		free(link->pin_path);
9958 	if (link->dealloc)
9959 		link->dealloc(link);
9960 	else
9961 		free(link);
9962 
9963 	return libbpf_err(err);
9964 }
9965 
9966 int bpf_link__fd(const struct bpf_link *link)
9967 {
9968 	return link->fd;
9969 }
9970 
9971 const char *bpf_link__pin_path(const struct bpf_link *link)
9972 {
9973 	return link->pin_path;
9974 }
9975 
9976 static int bpf_link__detach_fd(struct bpf_link *link)
9977 {
9978 	return libbpf_err_errno(close(link->fd));
9979 }
9980 
9981 struct bpf_link *bpf_link__open(const char *path)
9982 {
9983 	struct bpf_link *link;
9984 	int fd;
9985 
9986 	fd = bpf_obj_get(path);
9987 	if (fd < 0) {
9988 		fd = -errno;
9989 		pr_warn("failed to open link at %s: %d\n", path, fd);
9990 		return libbpf_err_ptr(fd);
9991 	}
9992 
9993 	link = calloc(1, sizeof(*link));
9994 	if (!link) {
9995 		close(fd);
9996 		return libbpf_err_ptr(-ENOMEM);
9997 	}
9998 	link->detach = &bpf_link__detach_fd;
9999 	link->fd = fd;
10000 
10001 	link->pin_path = strdup(path);
10002 	if (!link->pin_path) {
10003 		bpf_link__destroy(link);
10004 		return libbpf_err_ptr(-ENOMEM);
10005 	}
10006 
10007 	return link;
10008 }
10009 
10010 int bpf_link__detach(struct bpf_link *link)
10011 {
10012 	return bpf_link_detach(link->fd) ? -errno : 0;
10013 }
10014 
10015 int bpf_link__pin(struct bpf_link *link, const char *path)
10016 {
10017 	int err;
10018 
10019 	if (link->pin_path)
10020 		return libbpf_err(-EBUSY);
10021 	err = make_parent_dir(path);
10022 	if (err)
10023 		return libbpf_err(err);
10024 	err = check_path(path);
10025 	if (err)
10026 		return libbpf_err(err);
10027 
10028 	link->pin_path = strdup(path);
10029 	if (!link->pin_path)
10030 		return libbpf_err(-ENOMEM);
10031 
10032 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10033 		err = -errno;
10034 		zfree(&link->pin_path);
10035 		return libbpf_err(err);
10036 	}
10037 
10038 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10039 	return 0;
10040 }
10041 
10042 int bpf_link__unpin(struct bpf_link *link)
10043 {
10044 	int err;
10045 
10046 	if (!link->pin_path)
10047 		return libbpf_err(-EINVAL);
10048 
10049 	err = unlink(link->pin_path);
10050 	if (err != 0)
10051 		return -errno;
10052 
10053 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10054 	zfree(&link->pin_path);
10055 	return 0;
10056 }
10057 
10058 struct bpf_link_perf {
10059 	struct bpf_link link;
10060 	int perf_event_fd;
10061 	/* legacy kprobe support: keep track of probe identifier and type */
10062 	char *legacy_probe_name;
10063 	bool legacy_is_kprobe;
10064 	bool legacy_is_retprobe;
10065 };
10066 
10067 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10068 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10069 
10070 static int bpf_link_perf_detach(struct bpf_link *link)
10071 {
10072 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10073 	int err = 0;
10074 
10075 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10076 		err = -errno;
10077 
10078 	if (perf_link->perf_event_fd != link->fd)
10079 		close(perf_link->perf_event_fd);
10080 	close(link->fd);
10081 
10082 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10083 	if (perf_link->legacy_probe_name) {
10084 		if (perf_link->legacy_is_kprobe) {
10085 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10086 							 perf_link->legacy_is_retprobe);
10087 		} else {
10088 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10089 							 perf_link->legacy_is_retprobe);
10090 		}
10091 	}
10092 
10093 	return err;
10094 }
10095 
10096 static void bpf_link_perf_dealloc(struct bpf_link *link)
10097 {
10098 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10099 
10100 	free(perf_link->legacy_probe_name);
10101 	free(perf_link);
10102 }
10103 
10104 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10105 						     const struct bpf_perf_event_opts *opts)
10106 {
10107 	char errmsg[STRERR_BUFSIZE];
10108 	struct bpf_link_perf *link;
10109 	int prog_fd, link_fd = -1, err;
10110 	bool force_ioctl_attach;
10111 
10112 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10113 		return libbpf_err_ptr(-EINVAL);
10114 
10115 	if (pfd < 0) {
10116 		pr_warn("prog '%s': invalid perf event FD %d\n",
10117 			prog->name, pfd);
10118 		return libbpf_err_ptr(-EINVAL);
10119 	}
10120 	prog_fd = bpf_program__fd(prog);
10121 	if (prog_fd < 0) {
10122 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10123 			prog->name);
10124 		return libbpf_err_ptr(-EINVAL);
10125 	}
10126 
10127 	link = calloc(1, sizeof(*link));
10128 	if (!link)
10129 		return libbpf_err_ptr(-ENOMEM);
10130 	link->link.detach = &bpf_link_perf_detach;
10131 	link->link.dealloc = &bpf_link_perf_dealloc;
10132 	link->perf_event_fd = pfd;
10133 
10134 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10135 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10136 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10137 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10138 
10139 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10140 		if (link_fd < 0) {
10141 			err = -errno;
10142 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10143 				prog->name, pfd,
10144 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10145 			goto err_out;
10146 		}
10147 		link->link.fd = link_fd;
10148 	} else {
10149 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10150 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10151 			err = -EOPNOTSUPP;
10152 			goto err_out;
10153 		}
10154 
10155 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10156 			err = -errno;
10157 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10158 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10159 			if (err == -EPROTO)
10160 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10161 					prog->name, pfd);
10162 			goto err_out;
10163 		}
10164 		link->link.fd = pfd;
10165 	}
10166 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10167 		err = -errno;
10168 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10169 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10170 		goto err_out;
10171 	}
10172 
10173 	return &link->link;
10174 err_out:
10175 	if (link_fd >= 0)
10176 		close(link_fd);
10177 	free(link);
10178 	return libbpf_err_ptr(err);
10179 }
10180 
10181 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10182 {
10183 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10184 }
10185 
10186 /*
10187  * this function is expected to parse integer in the range of [0, 2^31-1] from
10188  * given file using scanf format string fmt. If actual parsed value is
10189  * negative, the result might be indistinguishable from error
10190  */
10191 static int parse_uint_from_file(const char *file, const char *fmt)
10192 {
10193 	char buf[STRERR_BUFSIZE];
10194 	int err, ret;
10195 	FILE *f;
10196 
10197 	f = fopen(file, "re");
10198 	if (!f) {
10199 		err = -errno;
10200 		pr_debug("failed to open '%s': %s\n", file,
10201 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10202 		return err;
10203 	}
10204 	err = fscanf(f, fmt, &ret);
10205 	if (err != 1) {
10206 		err = err == EOF ? -EIO : -errno;
10207 		pr_debug("failed to parse '%s': %s\n", file,
10208 			libbpf_strerror_r(err, buf, sizeof(buf)));
10209 		fclose(f);
10210 		return err;
10211 	}
10212 	fclose(f);
10213 	return ret;
10214 }
10215 
10216 static int determine_kprobe_perf_type(void)
10217 {
10218 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10219 
10220 	return parse_uint_from_file(file, "%d\n");
10221 }
10222 
10223 static int determine_uprobe_perf_type(void)
10224 {
10225 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10226 
10227 	return parse_uint_from_file(file, "%d\n");
10228 }
10229 
10230 static int determine_kprobe_retprobe_bit(void)
10231 {
10232 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10233 
10234 	return parse_uint_from_file(file, "config:%d\n");
10235 }
10236 
10237 static int determine_uprobe_retprobe_bit(void)
10238 {
10239 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10240 
10241 	return parse_uint_from_file(file, "config:%d\n");
10242 }
10243 
10244 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10245 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10246 
10247 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10248 				 uint64_t offset, int pid, size_t ref_ctr_off)
10249 {
10250 	const size_t attr_sz = sizeof(struct perf_event_attr);
10251 	struct perf_event_attr attr;
10252 	char errmsg[STRERR_BUFSIZE];
10253 	int type, pfd;
10254 
10255 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10256 		return -EINVAL;
10257 
10258 	memset(&attr, 0, attr_sz);
10259 
10260 	type = uprobe ? determine_uprobe_perf_type()
10261 		      : determine_kprobe_perf_type();
10262 	if (type < 0) {
10263 		pr_warn("failed to determine %s perf type: %s\n",
10264 			uprobe ? "uprobe" : "kprobe",
10265 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10266 		return type;
10267 	}
10268 	if (retprobe) {
10269 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10270 				 : determine_kprobe_retprobe_bit();
10271 
10272 		if (bit < 0) {
10273 			pr_warn("failed to determine %s retprobe bit: %s\n",
10274 				uprobe ? "uprobe" : "kprobe",
10275 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10276 			return bit;
10277 		}
10278 		attr.config |= 1 << bit;
10279 	}
10280 	attr.size = attr_sz;
10281 	attr.type = type;
10282 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10283 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10284 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10285 
10286 	/* pid filter is meaningful only for uprobes */
10287 	pfd = syscall(__NR_perf_event_open, &attr,
10288 		      pid < 0 ? -1 : pid /* pid */,
10289 		      pid == -1 ? 0 : -1 /* cpu */,
10290 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10291 	return pfd >= 0 ? pfd : -errno;
10292 }
10293 
10294 static int append_to_file(const char *file, const char *fmt, ...)
10295 {
10296 	int fd, n, err = 0;
10297 	va_list ap;
10298 	char buf[1024];
10299 
10300 	va_start(ap, fmt);
10301 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10302 	va_end(ap);
10303 
10304 	if (n < 0 || n >= sizeof(buf))
10305 		return -EINVAL;
10306 
10307 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10308 	if (fd < 0)
10309 		return -errno;
10310 
10311 	if (write(fd, buf, n) < 0)
10312 		err = -errno;
10313 
10314 	close(fd);
10315 	return err;
10316 }
10317 
10318 #define DEBUGFS "/sys/kernel/debug/tracing"
10319 #define TRACEFS "/sys/kernel/tracing"
10320 
10321 static bool use_debugfs(void)
10322 {
10323 	static int has_debugfs = -1;
10324 
10325 	if (has_debugfs < 0)
10326 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10327 
10328 	return has_debugfs == 1;
10329 }
10330 
10331 static const char *tracefs_path(void)
10332 {
10333 	return use_debugfs() ? DEBUGFS : TRACEFS;
10334 }
10335 
10336 static const char *tracefs_kprobe_events(void)
10337 {
10338 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10339 }
10340 
10341 static const char *tracefs_uprobe_events(void)
10342 {
10343 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10344 }
10345 
10346 static const char *tracefs_available_filter_functions(void)
10347 {
10348 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10349 			     : TRACEFS"/available_filter_functions";
10350 }
10351 
10352 static const char *tracefs_available_filter_functions_addrs(void)
10353 {
10354 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10355 			     : TRACEFS"/available_filter_functions_addrs";
10356 }
10357 
10358 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10359 					 const char *kfunc_name, size_t offset)
10360 {
10361 	static int index = 0;
10362 	int i;
10363 
10364 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10365 		 __sync_fetch_and_add(&index, 1));
10366 
10367 	/* sanitize binary_path in the probe name */
10368 	for (i = 0; buf[i]; i++) {
10369 		if (!isalnum(buf[i]))
10370 			buf[i] = '_';
10371 	}
10372 }
10373 
10374 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10375 				   const char *kfunc_name, size_t offset)
10376 {
10377 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10378 			      retprobe ? 'r' : 'p',
10379 			      retprobe ? "kretprobes" : "kprobes",
10380 			      probe_name, kfunc_name, offset);
10381 }
10382 
10383 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10384 {
10385 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10386 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10387 }
10388 
10389 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10390 {
10391 	char file[256];
10392 
10393 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10394 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10395 
10396 	return parse_uint_from_file(file, "%d\n");
10397 }
10398 
10399 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10400 					 const char *kfunc_name, size_t offset, int pid)
10401 {
10402 	const size_t attr_sz = sizeof(struct perf_event_attr);
10403 	struct perf_event_attr attr;
10404 	char errmsg[STRERR_BUFSIZE];
10405 	int type, pfd, err;
10406 
10407 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10408 	if (err < 0) {
10409 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10410 			kfunc_name, offset,
10411 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10412 		return err;
10413 	}
10414 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10415 	if (type < 0) {
10416 		err = type;
10417 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10418 			kfunc_name, offset,
10419 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10420 		goto err_clean_legacy;
10421 	}
10422 
10423 	memset(&attr, 0, attr_sz);
10424 	attr.size = attr_sz;
10425 	attr.config = type;
10426 	attr.type = PERF_TYPE_TRACEPOINT;
10427 
10428 	pfd = syscall(__NR_perf_event_open, &attr,
10429 		      pid < 0 ? -1 : pid, /* pid */
10430 		      pid == -1 ? 0 : -1, /* cpu */
10431 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10432 	if (pfd < 0) {
10433 		err = -errno;
10434 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10435 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10436 		goto err_clean_legacy;
10437 	}
10438 	return pfd;
10439 
10440 err_clean_legacy:
10441 	/* Clear the newly added legacy kprobe_event */
10442 	remove_kprobe_event_legacy(probe_name, retprobe);
10443 	return err;
10444 }
10445 
10446 static const char *arch_specific_syscall_pfx(void)
10447 {
10448 #if defined(__x86_64__)
10449 	return "x64";
10450 #elif defined(__i386__)
10451 	return "ia32";
10452 #elif defined(__s390x__)
10453 	return "s390x";
10454 #elif defined(__s390__)
10455 	return "s390";
10456 #elif defined(__arm__)
10457 	return "arm";
10458 #elif defined(__aarch64__)
10459 	return "arm64";
10460 #elif defined(__mips__)
10461 	return "mips";
10462 #elif defined(__riscv)
10463 	return "riscv";
10464 #elif defined(__powerpc__)
10465 	return "powerpc";
10466 #elif defined(__powerpc64__)
10467 	return "powerpc64";
10468 #else
10469 	return NULL;
10470 #endif
10471 }
10472 
10473 static int probe_kern_syscall_wrapper(void)
10474 {
10475 	char syscall_name[64];
10476 	const char *ksys_pfx;
10477 
10478 	ksys_pfx = arch_specific_syscall_pfx();
10479 	if (!ksys_pfx)
10480 		return 0;
10481 
10482 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10483 
10484 	if (determine_kprobe_perf_type() >= 0) {
10485 		int pfd;
10486 
10487 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10488 		if (pfd >= 0)
10489 			close(pfd);
10490 
10491 		return pfd >= 0 ? 1 : 0;
10492 	} else { /* legacy mode */
10493 		char probe_name[128];
10494 
10495 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10496 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10497 			return 0;
10498 
10499 		(void)remove_kprobe_event_legacy(probe_name, false);
10500 		return 1;
10501 	}
10502 }
10503 
10504 struct bpf_link *
10505 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10506 				const char *func_name,
10507 				const struct bpf_kprobe_opts *opts)
10508 {
10509 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10510 	enum probe_attach_mode attach_mode;
10511 	char errmsg[STRERR_BUFSIZE];
10512 	char *legacy_probe = NULL;
10513 	struct bpf_link *link;
10514 	size_t offset;
10515 	bool retprobe, legacy;
10516 	int pfd, err;
10517 
10518 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
10519 		return libbpf_err_ptr(-EINVAL);
10520 
10521 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10522 	retprobe = OPTS_GET(opts, retprobe, false);
10523 	offset = OPTS_GET(opts, offset, 0);
10524 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10525 
10526 	legacy = determine_kprobe_perf_type() < 0;
10527 	switch (attach_mode) {
10528 	case PROBE_ATTACH_MODE_LEGACY:
10529 		legacy = true;
10530 		pe_opts.force_ioctl_attach = true;
10531 		break;
10532 	case PROBE_ATTACH_MODE_PERF:
10533 		if (legacy)
10534 			return libbpf_err_ptr(-ENOTSUP);
10535 		pe_opts.force_ioctl_attach = true;
10536 		break;
10537 	case PROBE_ATTACH_MODE_LINK:
10538 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10539 			return libbpf_err_ptr(-ENOTSUP);
10540 		break;
10541 	case PROBE_ATTACH_MODE_DEFAULT:
10542 		break;
10543 	default:
10544 		return libbpf_err_ptr(-EINVAL);
10545 	}
10546 
10547 	if (!legacy) {
10548 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10549 					    func_name, offset,
10550 					    -1 /* pid */, 0 /* ref_ctr_off */);
10551 	} else {
10552 		char probe_name[256];
10553 
10554 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10555 					     func_name, offset);
10556 
10557 		legacy_probe = strdup(probe_name);
10558 		if (!legacy_probe)
10559 			return libbpf_err_ptr(-ENOMEM);
10560 
10561 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10562 						    offset, -1 /* pid */);
10563 	}
10564 	if (pfd < 0) {
10565 		err = -errno;
10566 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10567 			prog->name, retprobe ? "kretprobe" : "kprobe",
10568 			func_name, offset,
10569 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10570 		goto err_out;
10571 	}
10572 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10573 	err = libbpf_get_error(link);
10574 	if (err) {
10575 		close(pfd);
10576 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10577 			prog->name, retprobe ? "kretprobe" : "kprobe",
10578 			func_name, offset,
10579 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10580 		goto err_clean_legacy;
10581 	}
10582 	if (legacy) {
10583 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10584 
10585 		perf_link->legacy_probe_name = legacy_probe;
10586 		perf_link->legacy_is_kprobe = true;
10587 		perf_link->legacy_is_retprobe = retprobe;
10588 	}
10589 
10590 	return link;
10591 
10592 err_clean_legacy:
10593 	if (legacy)
10594 		remove_kprobe_event_legacy(legacy_probe, retprobe);
10595 err_out:
10596 	free(legacy_probe);
10597 	return libbpf_err_ptr(err);
10598 }
10599 
10600 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10601 					    bool retprobe,
10602 					    const char *func_name)
10603 {
10604 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10605 		.retprobe = retprobe,
10606 	);
10607 
10608 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10609 }
10610 
10611 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10612 					      const char *syscall_name,
10613 					      const struct bpf_ksyscall_opts *opts)
10614 {
10615 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10616 	char func_name[128];
10617 
10618 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10619 		return libbpf_err_ptr(-EINVAL);
10620 
10621 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10622 		/* arch_specific_syscall_pfx() should never return NULL here
10623 		 * because it is guarded by kernel_supports(). However, since
10624 		 * compiler does not know that we have an explicit conditional
10625 		 * as well.
10626 		 */
10627 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10628 			 arch_specific_syscall_pfx() ? : "", syscall_name);
10629 	} else {
10630 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10631 	}
10632 
10633 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10634 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10635 
10636 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10637 }
10638 
10639 /* Adapted from perf/util/string.c */
10640 bool glob_match(const char *str, const char *pat)
10641 {
10642 	while (*str && *pat && *pat != '*') {
10643 		if (*pat == '?') {      /* Matches any single character */
10644 			str++;
10645 			pat++;
10646 			continue;
10647 		}
10648 		if (*str != *pat)
10649 			return false;
10650 		str++;
10651 		pat++;
10652 	}
10653 	/* Check wild card */
10654 	if (*pat == '*') {
10655 		while (*pat == '*')
10656 			pat++;
10657 		if (!*pat) /* Tail wild card matches all */
10658 			return true;
10659 		while (*str)
10660 			if (glob_match(str++, pat))
10661 				return true;
10662 	}
10663 	return !*str && !*pat;
10664 }
10665 
10666 struct kprobe_multi_resolve {
10667 	const char *pattern;
10668 	unsigned long *addrs;
10669 	size_t cap;
10670 	size_t cnt;
10671 };
10672 
10673 struct avail_kallsyms_data {
10674 	char **syms;
10675 	size_t cnt;
10676 	struct kprobe_multi_resolve *res;
10677 };
10678 
10679 static int avail_func_cmp(const void *a, const void *b)
10680 {
10681 	return strcmp(*(const char **)a, *(const char **)b);
10682 }
10683 
10684 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
10685 			     const char *sym_name, void *ctx)
10686 {
10687 	struct avail_kallsyms_data *data = ctx;
10688 	struct kprobe_multi_resolve *res = data->res;
10689 	int err;
10690 
10691 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
10692 		return 0;
10693 
10694 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
10695 	if (err)
10696 		return err;
10697 
10698 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
10699 	return 0;
10700 }
10701 
10702 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
10703 {
10704 	const char *available_functions_file = tracefs_available_filter_functions();
10705 	struct avail_kallsyms_data data;
10706 	char sym_name[500];
10707 	FILE *f;
10708 	int err = 0, ret, i;
10709 	char **syms = NULL;
10710 	size_t cap = 0, cnt = 0;
10711 
10712 	f = fopen(available_functions_file, "re");
10713 	if (!f) {
10714 		err = -errno;
10715 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
10716 		return err;
10717 	}
10718 
10719 	while (true) {
10720 		char *name;
10721 
10722 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
10723 		if (ret == EOF && feof(f))
10724 			break;
10725 
10726 		if (ret != 1) {
10727 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
10728 			err = -EINVAL;
10729 			goto cleanup;
10730 		}
10731 
10732 		if (!glob_match(sym_name, res->pattern))
10733 			continue;
10734 
10735 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
10736 		if (err)
10737 			goto cleanup;
10738 
10739 		name = strdup(sym_name);
10740 		if (!name) {
10741 			err = -errno;
10742 			goto cleanup;
10743 		}
10744 
10745 		syms[cnt++] = name;
10746 	}
10747 
10748 	/* no entries found, bail out */
10749 	if (cnt == 0) {
10750 		err = -ENOENT;
10751 		goto cleanup;
10752 	}
10753 
10754 	/* sort available functions */
10755 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
10756 
10757 	data.syms = syms;
10758 	data.res = res;
10759 	data.cnt = cnt;
10760 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
10761 
10762 	if (res->cnt == 0)
10763 		err = -ENOENT;
10764 
10765 cleanup:
10766 	for (i = 0; i < cnt; i++)
10767 		free((char *)syms[i]);
10768 	free(syms);
10769 
10770 	fclose(f);
10771 	return err;
10772 }
10773 
10774 static bool has_available_filter_functions_addrs(void)
10775 {
10776 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
10777 }
10778 
10779 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
10780 {
10781 	const char *available_path = tracefs_available_filter_functions_addrs();
10782 	char sym_name[500];
10783 	FILE *f;
10784 	int ret, err = 0;
10785 	unsigned long long sym_addr;
10786 
10787 	f = fopen(available_path, "re");
10788 	if (!f) {
10789 		err = -errno;
10790 		pr_warn("failed to open %s: %d\n", available_path, err);
10791 		return err;
10792 	}
10793 
10794 	while (true) {
10795 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
10796 		if (ret == EOF && feof(f))
10797 			break;
10798 
10799 		if (ret != 2) {
10800 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
10801 				ret);
10802 			err = -EINVAL;
10803 			goto cleanup;
10804 		}
10805 
10806 		if (!glob_match(sym_name, res->pattern))
10807 			continue;
10808 
10809 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
10810 					sizeof(*res->addrs), res->cnt + 1);
10811 		if (err)
10812 			goto cleanup;
10813 
10814 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
10815 	}
10816 
10817 	if (res->cnt == 0)
10818 		err = -ENOENT;
10819 
10820 cleanup:
10821 	fclose(f);
10822 	return err;
10823 }
10824 
10825 struct bpf_link *
10826 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10827 				      const char *pattern,
10828 				      const struct bpf_kprobe_multi_opts *opts)
10829 {
10830 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
10831 	struct kprobe_multi_resolve res = {
10832 		.pattern = pattern,
10833 	};
10834 	struct bpf_link *link = NULL;
10835 	char errmsg[STRERR_BUFSIZE];
10836 	const unsigned long *addrs;
10837 	int err, link_fd, prog_fd;
10838 	const __u64 *cookies;
10839 	const char **syms;
10840 	bool retprobe;
10841 	size_t cnt;
10842 
10843 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10844 		return libbpf_err_ptr(-EINVAL);
10845 
10846 	syms    = OPTS_GET(opts, syms, false);
10847 	addrs   = OPTS_GET(opts, addrs, false);
10848 	cnt     = OPTS_GET(opts, cnt, false);
10849 	cookies = OPTS_GET(opts, cookies, false);
10850 
10851 	if (!pattern && !addrs && !syms)
10852 		return libbpf_err_ptr(-EINVAL);
10853 	if (pattern && (addrs || syms || cookies || cnt))
10854 		return libbpf_err_ptr(-EINVAL);
10855 	if (!pattern && !cnt)
10856 		return libbpf_err_ptr(-EINVAL);
10857 	if (addrs && syms)
10858 		return libbpf_err_ptr(-EINVAL);
10859 
10860 	if (pattern) {
10861 		if (has_available_filter_functions_addrs())
10862 			err = libbpf_available_kprobes_parse(&res);
10863 		else
10864 			err = libbpf_available_kallsyms_parse(&res);
10865 		if (err)
10866 			goto error;
10867 		addrs = res.addrs;
10868 		cnt = res.cnt;
10869 	}
10870 
10871 	retprobe = OPTS_GET(opts, retprobe, false);
10872 
10873 	lopts.kprobe_multi.syms = syms;
10874 	lopts.kprobe_multi.addrs = addrs;
10875 	lopts.kprobe_multi.cookies = cookies;
10876 	lopts.kprobe_multi.cnt = cnt;
10877 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10878 
10879 	link = calloc(1, sizeof(*link));
10880 	if (!link) {
10881 		err = -ENOMEM;
10882 		goto error;
10883 	}
10884 	link->detach = &bpf_link__detach_fd;
10885 
10886 	prog_fd = bpf_program__fd(prog);
10887 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10888 	if (link_fd < 0) {
10889 		err = -errno;
10890 		pr_warn("prog '%s': failed to attach: %s\n",
10891 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10892 		goto error;
10893 	}
10894 	link->fd = link_fd;
10895 	free(res.addrs);
10896 	return link;
10897 
10898 error:
10899 	free(link);
10900 	free(res.addrs);
10901 	return libbpf_err_ptr(err);
10902 }
10903 
10904 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10905 {
10906 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10907 	unsigned long offset = 0;
10908 	const char *func_name;
10909 	char *func;
10910 	int n;
10911 
10912 	*link = NULL;
10913 
10914 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10915 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10916 		return 0;
10917 
10918 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10919 	if (opts.retprobe)
10920 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10921 	else
10922 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
10923 
10924 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10925 	if (n < 1) {
10926 		pr_warn("kprobe name is invalid: %s\n", func_name);
10927 		return -EINVAL;
10928 	}
10929 	if (opts.retprobe && offset != 0) {
10930 		free(func);
10931 		pr_warn("kretprobes do not support offset specification\n");
10932 		return -EINVAL;
10933 	}
10934 
10935 	opts.offset = offset;
10936 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10937 	free(func);
10938 	return libbpf_get_error(*link);
10939 }
10940 
10941 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10942 {
10943 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10944 	const char *syscall_name;
10945 
10946 	*link = NULL;
10947 
10948 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10949 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10950 		return 0;
10951 
10952 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10953 	if (opts.retprobe)
10954 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10955 	else
10956 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10957 
10958 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10959 	return *link ? 0 : -errno;
10960 }
10961 
10962 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10963 {
10964 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10965 	const char *spec;
10966 	char *pattern;
10967 	int n;
10968 
10969 	*link = NULL;
10970 
10971 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10972 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10973 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
10974 		return 0;
10975 
10976 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10977 	if (opts.retprobe)
10978 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10979 	else
10980 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10981 
10982 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10983 	if (n < 1) {
10984 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10985 		return -EINVAL;
10986 	}
10987 
10988 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10989 	free(pattern);
10990 	return libbpf_get_error(*link);
10991 }
10992 
10993 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10994 {
10995 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
10996 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
10997 	int n, ret = -EINVAL;
10998 
10999 	*link = NULL;
11000 
11001 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%ms",
11002 		   &probe_type, &binary_path, &func_name);
11003 	switch (n) {
11004 	case 1:
11005 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11006 		ret = 0;
11007 		break;
11008 	case 3:
11009 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11010 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11011 		ret = libbpf_get_error(*link);
11012 		break;
11013 	default:
11014 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11015 			prog->sec_name);
11016 		break;
11017 	}
11018 	free(probe_type);
11019 	free(binary_path);
11020 	free(func_name);
11021 	return ret;
11022 }
11023 
11024 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11025 					 const char *binary_path, uint64_t offset)
11026 {
11027 	int i;
11028 
11029 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11030 
11031 	/* sanitize binary_path in the probe name */
11032 	for (i = 0; buf[i]; i++) {
11033 		if (!isalnum(buf[i]))
11034 			buf[i] = '_';
11035 	}
11036 }
11037 
11038 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11039 					  const char *binary_path, size_t offset)
11040 {
11041 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11042 			      retprobe ? 'r' : 'p',
11043 			      retprobe ? "uretprobes" : "uprobes",
11044 			      probe_name, binary_path, offset);
11045 }
11046 
11047 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11048 {
11049 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11050 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11051 }
11052 
11053 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11054 {
11055 	char file[512];
11056 
11057 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11058 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11059 
11060 	return parse_uint_from_file(file, "%d\n");
11061 }
11062 
11063 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11064 					 const char *binary_path, size_t offset, int pid)
11065 {
11066 	const size_t attr_sz = sizeof(struct perf_event_attr);
11067 	struct perf_event_attr attr;
11068 	int type, pfd, err;
11069 
11070 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11071 	if (err < 0) {
11072 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11073 			binary_path, (size_t)offset, err);
11074 		return err;
11075 	}
11076 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11077 	if (type < 0) {
11078 		err = type;
11079 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11080 			binary_path, offset, err);
11081 		goto err_clean_legacy;
11082 	}
11083 
11084 	memset(&attr, 0, attr_sz);
11085 	attr.size = attr_sz;
11086 	attr.config = type;
11087 	attr.type = PERF_TYPE_TRACEPOINT;
11088 
11089 	pfd = syscall(__NR_perf_event_open, &attr,
11090 		      pid < 0 ? -1 : pid, /* pid */
11091 		      pid == -1 ? 0 : -1, /* cpu */
11092 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11093 	if (pfd < 0) {
11094 		err = -errno;
11095 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11096 		goto err_clean_legacy;
11097 	}
11098 	return pfd;
11099 
11100 err_clean_legacy:
11101 	/* Clear the newly added legacy uprobe_event */
11102 	remove_uprobe_event_legacy(probe_name, retprobe);
11103 	return err;
11104 }
11105 
11106 /* Find offset of function name in archive specified by path. Currently
11107  * supported are .zip files that do not compress their contents, as used on
11108  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11109  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11110  * library functions.
11111  *
11112  * An overview of the APK format specifically provided here:
11113  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11114  */
11115 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11116 					      const char *func_name)
11117 {
11118 	struct zip_archive *archive;
11119 	struct zip_entry entry;
11120 	long ret;
11121 	Elf *elf;
11122 
11123 	archive = zip_archive_open(archive_path);
11124 	if (IS_ERR(archive)) {
11125 		ret = PTR_ERR(archive);
11126 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11127 		return ret;
11128 	}
11129 
11130 	ret = zip_archive_find_entry(archive, file_name, &entry);
11131 	if (ret) {
11132 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11133 			archive_path, ret);
11134 		goto out;
11135 	}
11136 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11137 		 (unsigned long)entry.data_offset);
11138 
11139 	if (entry.compression) {
11140 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11141 			archive_path);
11142 		ret = -LIBBPF_ERRNO__FORMAT;
11143 		goto out;
11144 	}
11145 
11146 	elf = elf_memory((void *)entry.data, entry.data_length);
11147 	if (!elf) {
11148 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11149 			elf_errmsg(-1));
11150 		ret = -LIBBPF_ERRNO__LIBELF;
11151 		goto out;
11152 	}
11153 
11154 	ret = elf_find_func_offset(elf, file_name, func_name);
11155 	if (ret > 0) {
11156 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11157 			 func_name, file_name, archive_path, entry.data_offset, ret,
11158 			 ret + entry.data_offset);
11159 		ret += entry.data_offset;
11160 	}
11161 	elf_end(elf);
11162 
11163 out:
11164 	zip_archive_close(archive);
11165 	return ret;
11166 }
11167 
11168 static const char *arch_specific_lib_paths(void)
11169 {
11170 	/*
11171 	 * Based on https://packages.debian.org/sid/libc6.
11172 	 *
11173 	 * Assume that the traced program is built for the same architecture
11174 	 * as libbpf, which should cover the vast majority of cases.
11175 	 */
11176 #if defined(__x86_64__)
11177 	return "/lib/x86_64-linux-gnu";
11178 #elif defined(__i386__)
11179 	return "/lib/i386-linux-gnu";
11180 #elif defined(__s390x__)
11181 	return "/lib/s390x-linux-gnu";
11182 #elif defined(__s390__)
11183 	return "/lib/s390-linux-gnu";
11184 #elif defined(__arm__) && defined(__SOFTFP__)
11185 	return "/lib/arm-linux-gnueabi";
11186 #elif defined(__arm__) && !defined(__SOFTFP__)
11187 	return "/lib/arm-linux-gnueabihf";
11188 #elif defined(__aarch64__)
11189 	return "/lib/aarch64-linux-gnu";
11190 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11191 	return "/lib/mips64el-linux-gnuabi64";
11192 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11193 	return "/lib/mipsel-linux-gnu";
11194 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11195 	return "/lib/powerpc64le-linux-gnu";
11196 #elif defined(__sparc__) && defined(__arch64__)
11197 	return "/lib/sparc64-linux-gnu";
11198 #elif defined(__riscv) && __riscv_xlen == 64
11199 	return "/lib/riscv64-linux-gnu";
11200 #else
11201 	return NULL;
11202 #endif
11203 }
11204 
11205 /* Get full path to program/shared library. */
11206 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11207 {
11208 	const char *search_paths[3] = {};
11209 	int i, perm;
11210 
11211 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11212 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11213 		search_paths[1] = "/usr/lib64:/usr/lib";
11214 		search_paths[2] = arch_specific_lib_paths();
11215 		perm = R_OK;
11216 	} else {
11217 		search_paths[0] = getenv("PATH");
11218 		search_paths[1] = "/usr/bin:/usr/sbin";
11219 		perm = R_OK | X_OK;
11220 	}
11221 
11222 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11223 		const char *s;
11224 
11225 		if (!search_paths[i])
11226 			continue;
11227 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11228 			char *next_path;
11229 			int seg_len;
11230 
11231 			if (s[0] == ':')
11232 				s++;
11233 			next_path = strchr(s, ':');
11234 			seg_len = next_path ? next_path - s : strlen(s);
11235 			if (!seg_len)
11236 				continue;
11237 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11238 			/* ensure it has required permissions */
11239 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11240 				continue;
11241 			pr_debug("resolved '%s' to '%s'\n", file, result);
11242 			return 0;
11243 		}
11244 	}
11245 	return -ENOENT;
11246 }
11247 
11248 struct bpf_link *
11249 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11250 				 pid_t pid,
11251 				 const char *path,
11252 				 const char *func_pattern,
11253 				 const struct bpf_uprobe_multi_opts *opts)
11254 {
11255 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11256 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11257 	unsigned long *resolved_offsets = NULL;
11258 	int err = 0, link_fd, prog_fd;
11259 	struct bpf_link *link = NULL;
11260 	char errmsg[STRERR_BUFSIZE];
11261 	char full_path[PATH_MAX];
11262 	const __u64 *cookies;
11263 	const char **syms;
11264 	size_t cnt;
11265 
11266 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11267 		return libbpf_err_ptr(-EINVAL);
11268 
11269 	syms = OPTS_GET(opts, syms, NULL);
11270 	offsets = OPTS_GET(opts, offsets, NULL);
11271 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11272 	cookies = OPTS_GET(opts, cookies, NULL);
11273 	cnt = OPTS_GET(opts, cnt, 0);
11274 
11275 	/*
11276 	 * User can specify 2 mutually exclusive set of inputs:
11277 	 *
11278 	 * 1) use only path/func_pattern/pid arguments
11279 	 *
11280 	 * 2) use path/pid with allowed combinations of:
11281 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11282 	 *
11283 	 *    - syms and offsets are mutually exclusive
11284 	 *    - ref_ctr_offsets and cookies are optional
11285 	 *
11286 	 * Any other usage results in error.
11287 	 */
11288 
11289 	if (!path)
11290 		return libbpf_err_ptr(-EINVAL);
11291 	if (!func_pattern && cnt == 0)
11292 		return libbpf_err_ptr(-EINVAL);
11293 
11294 	if (func_pattern) {
11295 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11296 			return libbpf_err_ptr(-EINVAL);
11297 	} else {
11298 		if (!!syms == !!offsets)
11299 			return libbpf_err_ptr(-EINVAL);
11300 	}
11301 
11302 	if (func_pattern) {
11303 		if (!strchr(path, '/')) {
11304 			err = resolve_full_path(path, full_path, sizeof(full_path));
11305 			if (err) {
11306 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11307 					prog->name, path, err);
11308 				return libbpf_err_ptr(err);
11309 			}
11310 			path = full_path;
11311 		}
11312 
11313 		err = elf_resolve_pattern_offsets(path, func_pattern,
11314 						  &resolved_offsets, &cnt);
11315 		if (err < 0)
11316 			return libbpf_err_ptr(err);
11317 		offsets = resolved_offsets;
11318 	} else if (syms) {
11319 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets);
11320 		if (err < 0)
11321 			return libbpf_err_ptr(err);
11322 		offsets = resolved_offsets;
11323 	}
11324 
11325 	lopts.uprobe_multi.path = path;
11326 	lopts.uprobe_multi.offsets = offsets;
11327 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11328 	lopts.uprobe_multi.cookies = cookies;
11329 	lopts.uprobe_multi.cnt = cnt;
11330 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11331 
11332 	if (pid == 0)
11333 		pid = getpid();
11334 	if (pid > 0)
11335 		lopts.uprobe_multi.pid = pid;
11336 
11337 	link = calloc(1, sizeof(*link));
11338 	if (!link) {
11339 		err = -ENOMEM;
11340 		goto error;
11341 	}
11342 	link->detach = &bpf_link__detach_fd;
11343 
11344 	prog_fd = bpf_program__fd(prog);
11345 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11346 	if (link_fd < 0) {
11347 		err = -errno;
11348 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11349 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11350 		goto error;
11351 	}
11352 	link->fd = link_fd;
11353 	free(resolved_offsets);
11354 	return link;
11355 
11356 error:
11357 	free(resolved_offsets);
11358 	free(link);
11359 	return libbpf_err_ptr(err);
11360 }
11361 
11362 LIBBPF_API struct bpf_link *
11363 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11364 				const char *binary_path, size_t func_offset,
11365 				const struct bpf_uprobe_opts *opts)
11366 {
11367 	const char *archive_path = NULL, *archive_sep = NULL;
11368 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11369 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11370 	enum probe_attach_mode attach_mode;
11371 	char full_path[PATH_MAX];
11372 	struct bpf_link *link;
11373 	size_t ref_ctr_off;
11374 	int pfd, err;
11375 	bool retprobe, legacy;
11376 	const char *func_name;
11377 
11378 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11379 		return libbpf_err_ptr(-EINVAL);
11380 
11381 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11382 	retprobe = OPTS_GET(opts, retprobe, false);
11383 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11384 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11385 
11386 	if (!binary_path)
11387 		return libbpf_err_ptr(-EINVAL);
11388 
11389 	/* Check if "binary_path" refers to an archive. */
11390 	archive_sep = strstr(binary_path, "!/");
11391 	if (archive_sep) {
11392 		full_path[0] = '\0';
11393 		libbpf_strlcpy(full_path, binary_path,
11394 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11395 		archive_path = full_path;
11396 		binary_path = archive_sep + 2;
11397 	} else if (!strchr(binary_path, '/')) {
11398 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11399 		if (err) {
11400 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11401 				prog->name, binary_path, err);
11402 			return libbpf_err_ptr(err);
11403 		}
11404 		binary_path = full_path;
11405 	}
11406 	func_name = OPTS_GET(opts, func_name, NULL);
11407 	if (func_name) {
11408 		long sym_off;
11409 
11410 		if (archive_path) {
11411 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11412 								    func_name);
11413 			binary_path = archive_path;
11414 		} else {
11415 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11416 		}
11417 		if (sym_off < 0)
11418 			return libbpf_err_ptr(sym_off);
11419 		func_offset += sym_off;
11420 	}
11421 
11422 	legacy = determine_uprobe_perf_type() < 0;
11423 	switch (attach_mode) {
11424 	case PROBE_ATTACH_MODE_LEGACY:
11425 		legacy = true;
11426 		pe_opts.force_ioctl_attach = true;
11427 		break;
11428 	case PROBE_ATTACH_MODE_PERF:
11429 		if (legacy)
11430 			return libbpf_err_ptr(-ENOTSUP);
11431 		pe_opts.force_ioctl_attach = true;
11432 		break;
11433 	case PROBE_ATTACH_MODE_LINK:
11434 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11435 			return libbpf_err_ptr(-ENOTSUP);
11436 		break;
11437 	case PROBE_ATTACH_MODE_DEFAULT:
11438 		break;
11439 	default:
11440 		return libbpf_err_ptr(-EINVAL);
11441 	}
11442 
11443 	if (!legacy) {
11444 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11445 					    func_offset, pid, ref_ctr_off);
11446 	} else {
11447 		char probe_name[PATH_MAX + 64];
11448 
11449 		if (ref_ctr_off)
11450 			return libbpf_err_ptr(-EINVAL);
11451 
11452 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11453 					     binary_path, func_offset);
11454 
11455 		legacy_probe = strdup(probe_name);
11456 		if (!legacy_probe)
11457 			return libbpf_err_ptr(-ENOMEM);
11458 
11459 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11460 						    binary_path, func_offset, pid);
11461 	}
11462 	if (pfd < 0) {
11463 		err = -errno;
11464 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11465 			prog->name, retprobe ? "uretprobe" : "uprobe",
11466 			binary_path, func_offset,
11467 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11468 		goto err_out;
11469 	}
11470 
11471 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11472 	err = libbpf_get_error(link);
11473 	if (err) {
11474 		close(pfd);
11475 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11476 			prog->name, retprobe ? "uretprobe" : "uprobe",
11477 			binary_path, func_offset,
11478 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11479 		goto err_clean_legacy;
11480 	}
11481 	if (legacy) {
11482 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11483 
11484 		perf_link->legacy_probe_name = legacy_probe;
11485 		perf_link->legacy_is_kprobe = false;
11486 		perf_link->legacy_is_retprobe = retprobe;
11487 	}
11488 	return link;
11489 
11490 err_clean_legacy:
11491 	if (legacy)
11492 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11493 err_out:
11494 	free(legacy_probe);
11495 	return libbpf_err_ptr(err);
11496 }
11497 
11498 /* Format of u[ret]probe section definition supporting auto-attach:
11499  * u[ret]probe/binary:function[+offset]
11500  *
11501  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11502  * full binary path via bpf_program__attach_uprobe_opts.
11503  *
11504  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11505  * specified (and auto-attach is not possible) or the above format is specified for
11506  * auto-attach.
11507  */
11508 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11509 {
11510 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11511 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11512 	int n, ret = -EINVAL;
11513 	long offset = 0;
11514 
11515 	*link = NULL;
11516 
11517 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11518 		   &probe_type, &binary_path, &func_name, &offset);
11519 	switch (n) {
11520 	case 1:
11521 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11522 		ret = 0;
11523 		break;
11524 	case 2:
11525 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11526 			prog->name, prog->sec_name);
11527 		break;
11528 	case 3:
11529 	case 4:
11530 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11531 				strcmp(probe_type, "uretprobe.s") == 0;
11532 		if (opts.retprobe && offset != 0) {
11533 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
11534 				prog->name);
11535 			break;
11536 		}
11537 		opts.func_name = func_name;
11538 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11539 		ret = libbpf_get_error(*link);
11540 		break;
11541 	default:
11542 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11543 			prog->sec_name);
11544 		break;
11545 	}
11546 	free(probe_type);
11547 	free(binary_path);
11548 	free(func_name);
11549 
11550 	return ret;
11551 }
11552 
11553 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11554 					    bool retprobe, pid_t pid,
11555 					    const char *binary_path,
11556 					    size_t func_offset)
11557 {
11558 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11559 
11560 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11561 }
11562 
11563 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11564 					  pid_t pid, const char *binary_path,
11565 					  const char *usdt_provider, const char *usdt_name,
11566 					  const struct bpf_usdt_opts *opts)
11567 {
11568 	char resolved_path[512];
11569 	struct bpf_object *obj = prog->obj;
11570 	struct bpf_link *link;
11571 	__u64 usdt_cookie;
11572 	int err;
11573 
11574 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11575 		return libbpf_err_ptr(-EINVAL);
11576 
11577 	if (bpf_program__fd(prog) < 0) {
11578 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11579 			prog->name);
11580 		return libbpf_err_ptr(-EINVAL);
11581 	}
11582 
11583 	if (!binary_path)
11584 		return libbpf_err_ptr(-EINVAL);
11585 
11586 	if (!strchr(binary_path, '/')) {
11587 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11588 		if (err) {
11589 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11590 				prog->name, binary_path, err);
11591 			return libbpf_err_ptr(err);
11592 		}
11593 		binary_path = resolved_path;
11594 	}
11595 
11596 	/* USDT manager is instantiated lazily on first USDT attach. It will
11597 	 * be destroyed together with BPF object in bpf_object__close().
11598 	 */
11599 	if (IS_ERR(obj->usdt_man))
11600 		return libbpf_ptr(obj->usdt_man);
11601 	if (!obj->usdt_man) {
11602 		obj->usdt_man = usdt_manager_new(obj);
11603 		if (IS_ERR(obj->usdt_man))
11604 			return libbpf_ptr(obj->usdt_man);
11605 	}
11606 
11607 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11608 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11609 					usdt_provider, usdt_name, usdt_cookie);
11610 	err = libbpf_get_error(link);
11611 	if (err)
11612 		return libbpf_err_ptr(err);
11613 	return link;
11614 }
11615 
11616 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11617 {
11618 	char *path = NULL, *provider = NULL, *name = NULL;
11619 	const char *sec_name;
11620 	int n, err;
11621 
11622 	sec_name = bpf_program__section_name(prog);
11623 	if (strcmp(sec_name, "usdt") == 0) {
11624 		/* no auto-attach for just SEC("usdt") */
11625 		*link = NULL;
11626 		return 0;
11627 	}
11628 
11629 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11630 	if (n != 3) {
11631 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11632 			sec_name);
11633 		err = -EINVAL;
11634 	} else {
11635 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11636 						 provider, name, NULL);
11637 		err = libbpf_get_error(*link);
11638 	}
11639 	free(path);
11640 	free(provider);
11641 	free(name);
11642 	return err;
11643 }
11644 
11645 static int determine_tracepoint_id(const char *tp_category,
11646 				   const char *tp_name)
11647 {
11648 	char file[PATH_MAX];
11649 	int ret;
11650 
11651 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11652 		       tracefs_path(), tp_category, tp_name);
11653 	if (ret < 0)
11654 		return -errno;
11655 	if (ret >= sizeof(file)) {
11656 		pr_debug("tracepoint %s/%s path is too long\n",
11657 			 tp_category, tp_name);
11658 		return -E2BIG;
11659 	}
11660 	return parse_uint_from_file(file, "%d\n");
11661 }
11662 
11663 static int perf_event_open_tracepoint(const char *tp_category,
11664 				      const char *tp_name)
11665 {
11666 	const size_t attr_sz = sizeof(struct perf_event_attr);
11667 	struct perf_event_attr attr;
11668 	char errmsg[STRERR_BUFSIZE];
11669 	int tp_id, pfd, err;
11670 
11671 	tp_id = determine_tracepoint_id(tp_category, tp_name);
11672 	if (tp_id < 0) {
11673 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11674 			tp_category, tp_name,
11675 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11676 		return tp_id;
11677 	}
11678 
11679 	memset(&attr, 0, attr_sz);
11680 	attr.type = PERF_TYPE_TRACEPOINT;
11681 	attr.size = attr_sz;
11682 	attr.config = tp_id;
11683 
11684 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11685 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11686 	if (pfd < 0) {
11687 		err = -errno;
11688 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11689 			tp_category, tp_name,
11690 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11691 		return err;
11692 	}
11693 	return pfd;
11694 }
11695 
11696 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11697 						     const char *tp_category,
11698 						     const char *tp_name,
11699 						     const struct bpf_tracepoint_opts *opts)
11700 {
11701 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11702 	char errmsg[STRERR_BUFSIZE];
11703 	struct bpf_link *link;
11704 	int pfd, err;
11705 
11706 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11707 		return libbpf_err_ptr(-EINVAL);
11708 
11709 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11710 
11711 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
11712 	if (pfd < 0) {
11713 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11714 			prog->name, tp_category, tp_name,
11715 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11716 		return libbpf_err_ptr(pfd);
11717 	}
11718 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11719 	err = libbpf_get_error(link);
11720 	if (err) {
11721 		close(pfd);
11722 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11723 			prog->name, tp_category, tp_name,
11724 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11725 		return libbpf_err_ptr(err);
11726 	}
11727 	return link;
11728 }
11729 
11730 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11731 						const char *tp_category,
11732 						const char *tp_name)
11733 {
11734 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11735 }
11736 
11737 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11738 {
11739 	char *sec_name, *tp_cat, *tp_name;
11740 
11741 	*link = NULL;
11742 
11743 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
11744 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11745 		return 0;
11746 
11747 	sec_name = strdup(prog->sec_name);
11748 	if (!sec_name)
11749 		return -ENOMEM;
11750 
11751 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11752 	if (str_has_pfx(prog->sec_name, "tp/"))
11753 		tp_cat = sec_name + sizeof("tp/") - 1;
11754 	else
11755 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
11756 	tp_name = strchr(tp_cat, '/');
11757 	if (!tp_name) {
11758 		free(sec_name);
11759 		return -EINVAL;
11760 	}
11761 	*tp_name = '\0';
11762 	tp_name++;
11763 
11764 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11765 	free(sec_name);
11766 	return libbpf_get_error(*link);
11767 }
11768 
11769 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11770 						    const char *tp_name)
11771 {
11772 	char errmsg[STRERR_BUFSIZE];
11773 	struct bpf_link *link;
11774 	int prog_fd, pfd;
11775 
11776 	prog_fd = bpf_program__fd(prog);
11777 	if (prog_fd < 0) {
11778 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11779 		return libbpf_err_ptr(-EINVAL);
11780 	}
11781 
11782 	link = calloc(1, sizeof(*link));
11783 	if (!link)
11784 		return libbpf_err_ptr(-ENOMEM);
11785 	link->detach = &bpf_link__detach_fd;
11786 
11787 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11788 	if (pfd < 0) {
11789 		pfd = -errno;
11790 		free(link);
11791 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11792 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11793 		return libbpf_err_ptr(pfd);
11794 	}
11795 	link->fd = pfd;
11796 	return link;
11797 }
11798 
11799 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11800 {
11801 	static const char *const prefixes[] = {
11802 		"raw_tp",
11803 		"raw_tracepoint",
11804 		"raw_tp.w",
11805 		"raw_tracepoint.w",
11806 	};
11807 	size_t i;
11808 	const char *tp_name = NULL;
11809 
11810 	*link = NULL;
11811 
11812 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11813 		size_t pfx_len;
11814 
11815 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
11816 			continue;
11817 
11818 		pfx_len = strlen(prefixes[i]);
11819 		/* no auto-attach case of, e.g., SEC("raw_tp") */
11820 		if (prog->sec_name[pfx_len] == '\0')
11821 			return 0;
11822 
11823 		if (prog->sec_name[pfx_len] != '/')
11824 			continue;
11825 
11826 		tp_name = prog->sec_name + pfx_len + 1;
11827 		break;
11828 	}
11829 
11830 	if (!tp_name) {
11831 		pr_warn("prog '%s': invalid section name '%s'\n",
11832 			prog->name, prog->sec_name);
11833 		return -EINVAL;
11834 	}
11835 
11836 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11837 	return libbpf_get_error(*link);
11838 }
11839 
11840 /* Common logic for all BPF program types that attach to a btf_id */
11841 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11842 						   const struct bpf_trace_opts *opts)
11843 {
11844 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11845 	char errmsg[STRERR_BUFSIZE];
11846 	struct bpf_link *link;
11847 	int prog_fd, pfd;
11848 
11849 	if (!OPTS_VALID(opts, bpf_trace_opts))
11850 		return libbpf_err_ptr(-EINVAL);
11851 
11852 	prog_fd = bpf_program__fd(prog);
11853 	if (prog_fd < 0) {
11854 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11855 		return libbpf_err_ptr(-EINVAL);
11856 	}
11857 
11858 	link = calloc(1, sizeof(*link));
11859 	if (!link)
11860 		return libbpf_err_ptr(-ENOMEM);
11861 	link->detach = &bpf_link__detach_fd;
11862 
11863 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11864 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11865 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11866 	if (pfd < 0) {
11867 		pfd = -errno;
11868 		free(link);
11869 		pr_warn("prog '%s': failed to attach: %s\n",
11870 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11871 		return libbpf_err_ptr(pfd);
11872 	}
11873 	link->fd = pfd;
11874 	return link;
11875 }
11876 
11877 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11878 {
11879 	return bpf_program__attach_btf_id(prog, NULL);
11880 }
11881 
11882 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11883 						const struct bpf_trace_opts *opts)
11884 {
11885 	return bpf_program__attach_btf_id(prog, opts);
11886 }
11887 
11888 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11889 {
11890 	return bpf_program__attach_btf_id(prog, NULL);
11891 }
11892 
11893 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11894 {
11895 	*link = bpf_program__attach_trace(prog);
11896 	return libbpf_get_error(*link);
11897 }
11898 
11899 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11900 {
11901 	*link = bpf_program__attach_lsm(prog);
11902 	return libbpf_get_error(*link);
11903 }
11904 
11905 static struct bpf_link *
11906 bpf_program_attach_fd(const struct bpf_program *prog,
11907 		      int target_fd, const char *target_name,
11908 		      const struct bpf_link_create_opts *opts)
11909 {
11910 	enum bpf_attach_type attach_type;
11911 	char errmsg[STRERR_BUFSIZE];
11912 	struct bpf_link *link;
11913 	int prog_fd, link_fd;
11914 
11915 	prog_fd = bpf_program__fd(prog);
11916 	if (prog_fd < 0) {
11917 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11918 		return libbpf_err_ptr(-EINVAL);
11919 	}
11920 
11921 	link = calloc(1, sizeof(*link));
11922 	if (!link)
11923 		return libbpf_err_ptr(-ENOMEM);
11924 	link->detach = &bpf_link__detach_fd;
11925 
11926 	attach_type = bpf_program__expected_attach_type(prog);
11927 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
11928 	if (link_fd < 0) {
11929 		link_fd = -errno;
11930 		free(link);
11931 		pr_warn("prog '%s': failed to attach to %s: %s\n",
11932 			prog->name, target_name,
11933 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11934 		return libbpf_err_ptr(link_fd);
11935 	}
11936 	link->fd = link_fd;
11937 	return link;
11938 }
11939 
11940 struct bpf_link *
11941 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11942 {
11943 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
11944 }
11945 
11946 struct bpf_link *
11947 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11948 {
11949 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
11950 }
11951 
11952 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11953 {
11954 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11955 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
11956 }
11957 
11958 struct bpf_link *
11959 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
11960 			const struct bpf_tcx_opts *opts)
11961 {
11962 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11963 	__u32 relative_id;
11964 	int relative_fd;
11965 
11966 	if (!OPTS_VALID(opts, bpf_tcx_opts))
11967 		return libbpf_err_ptr(-EINVAL);
11968 
11969 	relative_id = OPTS_GET(opts, relative_id, 0);
11970 	relative_fd = OPTS_GET(opts, relative_fd, 0);
11971 
11972 	/* validate we don't have unexpected combinations of non-zero fields */
11973 	if (!ifindex) {
11974 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
11975 			prog->name);
11976 		return libbpf_err_ptr(-EINVAL);
11977 	}
11978 	if (relative_fd && relative_id) {
11979 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
11980 			prog->name);
11981 		return libbpf_err_ptr(-EINVAL);
11982 	}
11983 
11984 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
11985 	link_create_opts.tcx.relative_fd = relative_fd;
11986 	link_create_opts.tcx.relative_id = relative_id;
11987 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
11988 
11989 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
11990 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
11991 }
11992 
11993 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11994 					      int target_fd,
11995 					      const char *attach_func_name)
11996 {
11997 	int btf_id;
11998 
11999 	if (!!target_fd != !!attach_func_name) {
12000 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12001 			prog->name);
12002 		return libbpf_err_ptr(-EINVAL);
12003 	}
12004 
12005 	if (prog->type != BPF_PROG_TYPE_EXT) {
12006 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12007 			prog->name);
12008 		return libbpf_err_ptr(-EINVAL);
12009 	}
12010 
12011 	if (target_fd) {
12012 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12013 
12014 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12015 		if (btf_id < 0)
12016 			return libbpf_err_ptr(btf_id);
12017 
12018 		target_opts.target_btf_id = btf_id;
12019 
12020 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12021 					     &target_opts);
12022 	} else {
12023 		/* no target, so use raw_tracepoint_open for compatibility
12024 		 * with old kernels
12025 		 */
12026 		return bpf_program__attach_trace(prog);
12027 	}
12028 }
12029 
12030 struct bpf_link *
12031 bpf_program__attach_iter(const struct bpf_program *prog,
12032 			 const struct bpf_iter_attach_opts *opts)
12033 {
12034 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12035 	char errmsg[STRERR_BUFSIZE];
12036 	struct bpf_link *link;
12037 	int prog_fd, link_fd;
12038 	__u32 target_fd = 0;
12039 
12040 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12041 		return libbpf_err_ptr(-EINVAL);
12042 
12043 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12044 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12045 
12046 	prog_fd = bpf_program__fd(prog);
12047 	if (prog_fd < 0) {
12048 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12049 		return libbpf_err_ptr(-EINVAL);
12050 	}
12051 
12052 	link = calloc(1, sizeof(*link));
12053 	if (!link)
12054 		return libbpf_err_ptr(-ENOMEM);
12055 	link->detach = &bpf_link__detach_fd;
12056 
12057 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12058 				  &link_create_opts);
12059 	if (link_fd < 0) {
12060 		link_fd = -errno;
12061 		free(link);
12062 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12063 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12064 		return libbpf_err_ptr(link_fd);
12065 	}
12066 	link->fd = link_fd;
12067 	return link;
12068 }
12069 
12070 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12071 {
12072 	*link = bpf_program__attach_iter(prog, NULL);
12073 	return libbpf_get_error(*link);
12074 }
12075 
12076 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12077 					       const struct bpf_netfilter_opts *opts)
12078 {
12079 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12080 	struct bpf_link *link;
12081 	int prog_fd, link_fd;
12082 
12083 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12084 		return libbpf_err_ptr(-EINVAL);
12085 
12086 	prog_fd = bpf_program__fd(prog);
12087 	if (prog_fd < 0) {
12088 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12089 		return libbpf_err_ptr(-EINVAL);
12090 	}
12091 
12092 	link = calloc(1, sizeof(*link));
12093 	if (!link)
12094 		return libbpf_err_ptr(-ENOMEM);
12095 
12096 	link->detach = &bpf_link__detach_fd;
12097 
12098 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12099 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12100 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12101 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12102 
12103 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12104 	if (link_fd < 0) {
12105 		char errmsg[STRERR_BUFSIZE];
12106 
12107 		link_fd = -errno;
12108 		free(link);
12109 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12110 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12111 		return libbpf_err_ptr(link_fd);
12112 	}
12113 	link->fd = link_fd;
12114 
12115 	return link;
12116 }
12117 
12118 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12119 {
12120 	struct bpf_link *link = NULL;
12121 	int err;
12122 
12123 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12124 		return libbpf_err_ptr(-EOPNOTSUPP);
12125 
12126 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12127 	if (err)
12128 		return libbpf_err_ptr(err);
12129 
12130 	/* When calling bpf_program__attach() explicitly, auto-attach support
12131 	 * is expected to work, so NULL returned link is considered an error.
12132 	 * This is different for skeleton's attach, see comment in
12133 	 * bpf_object__attach_skeleton().
12134 	 */
12135 	if (!link)
12136 		return libbpf_err_ptr(-EOPNOTSUPP);
12137 
12138 	return link;
12139 }
12140 
12141 struct bpf_link_struct_ops {
12142 	struct bpf_link link;
12143 	int map_fd;
12144 };
12145 
12146 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12147 {
12148 	struct bpf_link_struct_ops *st_link;
12149 	__u32 zero = 0;
12150 
12151 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12152 
12153 	if (st_link->map_fd < 0)
12154 		/* w/o a real link */
12155 		return bpf_map_delete_elem(link->fd, &zero);
12156 
12157 	return close(link->fd);
12158 }
12159 
12160 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12161 {
12162 	struct bpf_link_struct_ops *link;
12163 	__u32 zero = 0;
12164 	int err, fd;
12165 
12166 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12167 		return libbpf_err_ptr(-EINVAL);
12168 
12169 	link = calloc(1, sizeof(*link));
12170 	if (!link)
12171 		return libbpf_err_ptr(-EINVAL);
12172 
12173 	/* kern_vdata should be prepared during the loading phase. */
12174 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12175 	/* It can be EBUSY if the map has been used to create or
12176 	 * update a link before.  We don't allow updating the value of
12177 	 * a struct_ops once it is set.  That ensures that the value
12178 	 * never changed.  So, it is safe to skip EBUSY.
12179 	 */
12180 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12181 		free(link);
12182 		return libbpf_err_ptr(err);
12183 	}
12184 
12185 	link->link.detach = bpf_link__detach_struct_ops;
12186 
12187 	if (!(map->def.map_flags & BPF_F_LINK)) {
12188 		/* w/o a real link */
12189 		link->link.fd = map->fd;
12190 		link->map_fd = -1;
12191 		return &link->link;
12192 	}
12193 
12194 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12195 	if (fd < 0) {
12196 		free(link);
12197 		return libbpf_err_ptr(fd);
12198 	}
12199 
12200 	link->link.fd = fd;
12201 	link->map_fd = map->fd;
12202 
12203 	return &link->link;
12204 }
12205 
12206 /*
12207  * Swap the back struct_ops of a link with a new struct_ops map.
12208  */
12209 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12210 {
12211 	struct bpf_link_struct_ops *st_ops_link;
12212 	__u32 zero = 0;
12213 	int err;
12214 
12215 	if (!bpf_map__is_struct_ops(map) || map->fd < 0)
12216 		return -EINVAL;
12217 
12218 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12219 	/* Ensure the type of a link is correct */
12220 	if (st_ops_link->map_fd < 0)
12221 		return -EINVAL;
12222 
12223 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12224 	/* It can be EBUSY if the map has been used to create or
12225 	 * update a link before.  We don't allow updating the value of
12226 	 * a struct_ops once it is set.  That ensures that the value
12227 	 * never changed.  So, it is safe to skip EBUSY.
12228 	 */
12229 	if (err && err != -EBUSY)
12230 		return err;
12231 
12232 	err = bpf_link_update(link->fd, map->fd, NULL);
12233 	if (err < 0)
12234 		return err;
12235 
12236 	st_ops_link->map_fd = map->fd;
12237 
12238 	return 0;
12239 }
12240 
12241 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12242 							  void *private_data);
12243 
12244 static enum bpf_perf_event_ret
12245 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12246 		       void **copy_mem, size_t *copy_size,
12247 		       bpf_perf_event_print_t fn, void *private_data)
12248 {
12249 	struct perf_event_mmap_page *header = mmap_mem;
12250 	__u64 data_head = ring_buffer_read_head(header);
12251 	__u64 data_tail = header->data_tail;
12252 	void *base = ((__u8 *)header) + page_size;
12253 	int ret = LIBBPF_PERF_EVENT_CONT;
12254 	struct perf_event_header *ehdr;
12255 	size_t ehdr_size;
12256 
12257 	while (data_head != data_tail) {
12258 		ehdr = base + (data_tail & (mmap_size - 1));
12259 		ehdr_size = ehdr->size;
12260 
12261 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12262 			void *copy_start = ehdr;
12263 			size_t len_first = base + mmap_size - copy_start;
12264 			size_t len_secnd = ehdr_size - len_first;
12265 
12266 			if (*copy_size < ehdr_size) {
12267 				free(*copy_mem);
12268 				*copy_mem = malloc(ehdr_size);
12269 				if (!*copy_mem) {
12270 					*copy_size = 0;
12271 					ret = LIBBPF_PERF_EVENT_ERROR;
12272 					break;
12273 				}
12274 				*copy_size = ehdr_size;
12275 			}
12276 
12277 			memcpy(*copy_mem, copy_start, len_first);
12278 			memcpy(*copy_mem + len_first, base, len_secnd);
12279 			ehdr = *copy_mem;
12280 		}
12281 
12282 		ret = fn(ehdr, private_data);
12283 		data_tail += ehdr_size;
12284 		if (ret != LIBBPF_PERF_EVENT_CONT)
12285 			break;
12286 	}
12287 
12288 	ring_buffer_write_tail(header, data_tail);
12289 	return libbpf_err(ret);
12290 }
12291 
12292 struct perf_buffer;
12293 
12294 struct perf_buffer_params {
12295 	struct perf_event_attr *attr;
12296 	/* if event_cb is specified, it takes precendence */
12297 	perf_buffer_event_fn event_cb;
12298 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12299 	perf_buffer_sample_fn sample_cb;
12300 	perf_buffer_lost_fn lost_cb;
12301 	void *ctx;
12302 	int cpu_cnt;
12303 	int *cpus;
12304 	int *map_keys;
12305 };
12306 
12307 struct perf_cpu_buf {
12308 	struct perf_buffer *pb;
12309 	void *base; /* mmap()'ed memory */
12310 	void *buf; /* for reconstructing segmented data */
12311 	size_t buf_size;
12312 	int fd;
12313 	int cpu;
12314 	int map_key;
12315 };
12316 
12317 struct perf_buffer {
12318 	perf_buffer_event_fn event_cb;
12319 	perf_buffer_sample_fn sample_cb;
12320 	perf_buffer_lost_fn lost_cb;
12321 	void *ctx; /* passed into callbacks */
12322 
12323 	size_t page_size;
12324 	size_t mmap_size;
12325 	struct perf_cpu_buf **cpu_bufs;
12326 	struct epoll_event *events;
12327 	int cpu_cnt; /* number of allocated CPU buffers */
12328 	int epoll_fd; /* perf event FD */
12329 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12330 };
12331 
12332 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12333 				      struct perf_cpu_buf *cpu_buf)
12334 {
12335 	if (!cpu_buf)
12336 		return;
12337 	if (cpu_buf->base &&
12338 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12339 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12340 	if (cpu_buf->fd >= 0) {
12341 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12342 		close(cpu_buf->fd);
12343 	}
12344 	free(cpu_buf->buf);
12345 	free(cpu_buf);
12346 }
12347 
12348 void perf_buffer__free(struct perf_buffer *pb)
12349 {
12350 	int i;
12351 
12352 	if (IS_ERR_OR_NULL(pb))
12353 		return;
12354 	if (pb->cpu_bufs) {
12355 		for (i = 0; i < pb->cpu_cnt; i++) {
12356 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12357 
12358 			if (!cpu_buf)
12359 				continue;
12360 
12361 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12362 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12363 		}
12364 		free(pb->cpu_bufs);
12365 	}
12366 	if (pb->epoll_fd >= 0)
12367 		close(pb->epoll_fd);
12368 	free(pb->events);
12369 	free(pb);
12370 }
12371 
12372 static struct perf_cpu_buf *
12373 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12374 			  int cpu, int map_key)
12375 {
12376 	struct perf_cpu_buf *cpu_buf;
12377 	char msg[STRERR_BUFSIZE];
12378 	int err;
12379 
12380 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12381 	if (!cpu_buf)
12382 		return ERR_PTR(-ENOMEM);
12383 
12384 	cpu_buf->pb = pb;
12385 	cpu_buf->cpu = cpu;
12386 	cpu_buf->map_key = map_key;
12387 
12388 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12389 			      -1, PERF_FLAG_FD_CLOEXEC);
12390 	if (cpu_buf->fd < 0) {
12391 		err = -errno;
12392 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12393 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12394 		goto error;
12395 	}
12396 
12397 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12398 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12399 			     cpu_buf->fd, 0);
12400 	if (cpu_buf->base == MAP_FAILED) {
12401 		cpu_buf->base = NULL;
12402 		err = -errno;
12403 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12404 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12405 		goto error;
12406 	}
12407 
12408 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12409 		err = -errno;
12410 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12411 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12412 		goto error;
12413 	}
12414 
12415 	return cpu_buf;
12416 
12417 error:
12418 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12419 	return (struct perf_cpu_buf *)ERR_PTR(err);
12420 }
12421 
12422 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12423 					      struct perf_buffer_params *p);
12424 
12425 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12426 				     perf_buffer_sample_fn sample_cb,
12427 				     perf_buffer_lost_fn lost_cb,
12428 				     void *ctx,
12429 				     const struct perf_buffer_opts *opts)
12430 {
12431 	const size_t attr_sz = sizeof(struct perf_event_attr);
12432 	struct perf_buffer_params p = {};
12433 	struct perf_event_attr attr;
12434 	__u32 sample_period;
12435 
12436 	if (!OPTS_VALID(opts, perf_buffer_opts))
12437 		return libbpf_err_ptr(-EINVAL);
12438 
12439 	sample_period = OPTS_GET(opts, sample_period, 1);
12440 	if (!sample_period)
12441 		sample_period = 1;
12442 
12443 	memset(&attr, 0, attr_sz);
12444 	attr.size = attr_sz;
12445 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12446 	attr.type = PERF_TYPE_SOFTWARE;
12447 	attr.sample_type = PERF_SAMPLE_RAW;
12448 	attr.sample_period = sample_period;
12449 	attr.wakeup_events = sample_period;
12450 
12451 	p.attr = &attr;
12452 	p.sample_cb = sample_cb;
12453 	p.lost_cb = lost_cb;
12454 	p.ctx = ctx;
12455 
12456 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12457 }
12458 
12459 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12460 					 struct perf_event_attr *attr,
12461 					 perf_buffer_event_fn event_cb, void *ctx,
12462 					 const struct perf_buffer_raw_opts *opts)
12463 {
12464 	struct perf_buffer_params p = {};
12465 
12466 	if (!attr)
12467 		return libbpf_err_ptr(-EINVAL);
12468 
12469 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12470 		return libbpf_err_ptr(-EINVAL);
12471 
12472 	p.attr = attr;
12473 	p.event_cb = event_cb;
12474 	p.ctx = ctx;
12475 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12476 	p.cpus = OPTS_GET(opts, cpus, NULL);
12477 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
12478 
12479 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12480 }
12481 
12482 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12483 					      struct perf_buffer_params *p)
12484 {
12485 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
12486 	struct bpf_map_info map;
12487 	char msg[STRERR_BUFSIZE];
12488 	struct perf_buffer *pb;
12489 	bool *online = NULL;
12490 	__u32 map_info_len;
12491 	int err, i, j, n;
12492 
12493 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12494 		pr_warn("page count should be power of two, but is %zu\n",
12495 			page_cnt);
12496 		return ERR_PTR(-EINVAL);
12497 	}
12498 
12499 	/* best-effort sanity checks */
12500 	memset(&map, 0, sizeof(map));
12501 	map_info_len = sizeof(map);
12502 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12503 	if (err) {
12504 		err = -errno;
12505 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12506 		 * -EBADFD, -EFAULT, or -E2BIG on real error
12507 		 */
12508 		if (err != -EINVAL) {
12509 			pr_warn("failed to get map info for map FD %d: %s\n",
12510 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12511 			return ERR_PTR(err);
12512 		}
12513 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12514 			 map_fd);
12515 	} else {
12516 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12517 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12518 				map.name);
12519 			return ERR_PTR(-EINVAL);
12520 		}
12521 	}
12522 
12523 	pb = calloc(1, sizeof(*pb));
12524 	if (!pb)
12525 		return ERR_PTR(-ENOMEM);
12526 
12527 	pb->event_cb = p->event_cb;
12528 	pb->sample_cb = p->sample_cb;
12529 	pb->lost_cb = p->lost_cb;
12530 	pb->ctx = p->ctx;
12531 
12532 	pb->page_size = getpagesize();
12533 	pb->mmap_size = pb->page_size * page_cnt;
12534 	pb->map_fd = map_fd;
12535 
12536 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12537 	if (pb->epoll_fd < 0) {
12538 		err = -errno;
12539 		pr_warn("failed to create epoll instance: %s\n",
12540 			libbpf_strerror_r(err, msg, sizeof(msg)));
12541 		goto error;
12542 	}
12543 
12544 	if (p->cpu_cnt > 0) {
12545 		pb->cpu_cnt = p->cpu_cnt;
12546 	} else {
12547 		pb->cpu_cnt = libbpf_num_possible_cpus();
12548 		if (pb->cpu_cnt < 0) {
12549 			err = pb->cpu_cnt;
12550 			goto error;
12551 		}
12552 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
12553 			pb->cpu_cnt = map.max_entries;
12554 	}
12555 
12556 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12557 	if (!pb->events) {
12558 		err = -ENOMEM;
12559 		pr_warn("failed to allocate events: out of memory\n");
12560 		goto error;
12561 	}
12562 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12563 	if (!pb->cpu_bufs) {
12564 		err = -ENOMEM;
12565 		pr_warn("failed to allocate buffers: out of memory\n");
12566 		goto error;
12567 	}
12568 
12569 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12570 	if (err) {
12571 		pr_warn("failed to get online CPU mask: %d\n", err);
12572 		goto error;
12573 	}
12574 
12575 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12576 		struct perf_cpu_buf *cpu_buf;
12577 		int cpu, map_key;
12578 
12579 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12580 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12581 
12582 		/* in case user didn't explicitly requested particular CPUs to
12583 		 * be attached to, skip offline/not present CPUs
12584 		 */
12585 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12586 			continue;
12587 
12588 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12589 		if (IS_ERR(cpu_buf)) {
12590 			err = PTR_ERR(cpu_buf);
12591 			goto error;
12592 		}
12593 
12594 		pb->cpu_bufs[j] = cpu_buf;
12595 
12596 		err = bpf_map_update_elem(pb->map_fd, &map_key,
12597 					  &cpu_buf->fd, 0);
12598 		if (err) {
12599 			err = -errno;
12600 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12601 				cpu, map_key, cpu_buf->fd,
12602 				libbpf_strerror_r(err, msg, sizeof(msg)));
12603 			goto error;
12604 		}
12605 
12606 		pb->events[j].events = EPOLLIN;
12607 		pb->events[j].data.ptr = cpu_buf;
12608 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12609 			      &pb->events[j]) < 0) {
12610 			err = -errno;
12611 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12612 				cpu, cpu_buf->fd,
12613 				libbpf_strerror_r(err, msg, sizeof(msg)));
12614 			goto error;
12615 		}
12616 		j++;
12617 	}
12618 	pb->cpu_cnt = j;
12619 	free(online);
12620 
12621 	return pb;
12622 
12623 error:
12624 	free(online);
12625 	if (pb)
12626 		perf_buffer__free(pb);
12627 	return ERR_PTR(err);
12628 }
12629 
12630 struct perf_sample_raw {
12631 	struct perf_event_header header;
12632 	uint32_t size;
12633 	char data[];
12634 };
12635 
12636 struct perf_sample_lost {
12637 	struct perf_event_header header;
12638 	uint64_t id;
12639 	uint64_t lost;
12640 	uint64_t sample_id;
12641 };
12642 
12643 static enum bpf_perf_event_ret
12644 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12645 {
12646 	struct perf_cpu_buf *cpu_buf = ctx;
12647 	struct perf_buffer *pb = cpu_buf->pb;
12648 	void *data = e;
12649 
12650 	/* user wants full control over parsing perf event */
12651 	if (pb->event_cb)
12652 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12653 
12654 	switch (e->type) {
12655 	case PERF_RECORD_SAMPLE: {
12656 		struct perf_sample_raw *s = data;
12657 
12658 		if (pb->sample_cb)
12659 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12660 		break;
12661 	}
12662 	case PERF_RECORD_LOST: {
12663 		struct perf_sample_lost *s = data;
12664 
12665 		if (pb->lost_cb)
12666 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12667 		break;
12668 	}
12669 	default:
12670 		pr_warn("unknown perf sample type %d\n", e->type);
12671 		return LIBBPF_PERF_EVENT_ERROR;
12672 	}
12673 	return LIBBPF_PERF_EVENT_CONT;
12674 }
12675 
12676 static int perf_buffer__process_records(struct perf_buffer *pb,
12677 					struct perf_cpu_buf *cpu_buf)
12678 {
12679 	enum bpf_perf_event_ret ret;
12680 
12681 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12682 				     pb->page_size, &cpu_buf->buf,
12683 				     &cpu_buf->buf_size,
12684 				     perf_buffer__process_record, cpu_buf);
12685 	if (ret != LIBBPF_PERF_EVENT_CONT)
12686 		return ret;
12687 	return 0;
12688 }
12689 
12690 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12691 {
12692 	return pb->epoll_fd;
12693 }
12694 
12695 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12696 {
12697 	int i, cnt, err;
12698 
12699 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12700 	if (cnt < 0)
12701 		return -errno;
12702 
12703 	for (i = 0; i < cnt; i++) {
12704 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12705 
12706 		err = perf_buffer__process_records(pb, cpu_buf);
12707 		if (err) {
12708 			pr_warn("error while processing records: %d\n", err);
12709 			return libbpf_err(err);
12710 		}
12711 	}
12712 	return cnt;
12713 }
12714 
12715 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12716  * manager.
12717  */
12718 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12719 {
12720 	return pb->cpu_cnt;
12721 }
12722 
12723 /*
12724  * Return perf_event FD of a ring buffer in *buf_idx* slot of
12725  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12726  * select()/poll()/epoll() Linux syscalls.
12727  */
12728 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12729 {
12730 	struct perf_cpu_buf *cpu_buf;
12731 
12732 	if (buf_idx >= pb->cpu_cnt)
12733 		return libbpf_err(-EINVAL);
12734 
12735 	cpu_buf = pb->cpu_bufs[buf_idx];
12736 	if (!cpu_buf)
12737 		return libbpf_err(-ENOENT);
12738 
12739 	return cpu_buf->fd;
12740 }
12741 
12742 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12743 {
12744 	struct perf_cpu_buf *cpu_buf;
12745 
12746 	if (buf_idx >= pb->cpu_cnt)
12747 		return libbpf_err(-EINVAL);
12748 
12749 	cpu_buf = pb->cpu_bufs[buf_idx];
12750 	if (!cpu_buf)
12751 		return libbpf_err(-ENOENT);
12752 
12753 	*buf = cpu_buf->base;
12754 	*buf_size = pb->mmap_size;
12755 	return 0;
12756 }
12757 
12758 /*
12759  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12760  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12761  * consume, do nothing and return success.
12762  * Returns:
12763  *   - 0 on success;
12764  *   - <0 on failure.
12765  */
12766 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12767 {
12768 	struct perf_cpu_buf *cpu_buf;
12769 
12770 	if (buf_idx >= pb->cpu_cnt)
12771 		return libbpf_err(-EINVAL);
12772 
12773 	cpu_buf = pb->cpu_bufs[buf_idx];
12774 	if (!cpu_buf)
12775 		return libbpf_err(-ENOENT);
12776 
12777 	return perf_buffer__process_records(pb, cpu_buf);
12778 }
12779 
12780 int perf_buffer__consume(struct perf_buffer *pb)
12781 {
12782 	int i, err;
12783 
12784 	for (i = 0; i < pb->cpu_cnt; i++) {
12785 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12786 
12787 		if (!cpu_buf)
12788 			continue;
12789 
12790 		err = perf_buffer__process_records(pb, cpu_buf);
12791 		if (err) {
12792 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12793 			return libbpf_err(err);
12794 		}
12795 	}
12796 	return 0;
12797 }
12798 
12799 int bpf_program__set_attach_target(struct bpf_program *prog,
12800 				   int attach_prog_fd,
12801 				   const char *attach_func_name)
12802 {
12803 	int btf_obj_fd = 0, btf_id = 0, err;
12804 
12805 	if (!prog || attach_prog_fd < 0)
12806 		return libbpf_err(-EINVAL);
12807 
12808 	if (prog->obj->loaded)
12809 		return libbpf_err(-EINVAL);
12810 
12811 	if (attach_prog_fd && !attach_func_name) {
12812 		/* remember attach_prog_fd and let bpf_program__load() find
12813 		 * BTF ID during the program load
12814 		 */
12815 		prog->attach_prog_fd = attach_prog_fd;
12816 		return 0;
12817 	}
12818 
12819 	if (attach_prog_fd) {
12820 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
12821 						 attach_prog_fd);
12822 		if (btf_id < 0)
12823 			return libbpf_err(btf_id);
12824 	} else {
12825 		if (!attach_func_name)
12826 			return libbpf_err(-EINVAL);
12827 
12828 		/* load btf_vmlinux, if not yet */
12829 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
12830 		if (err)
12831 			return libbpf_err(err);
12832 		err = find_kernel_btf_id(prog->obj, attach_func_name,
12833 					 prog->expected_attach_type,
12834 					 &btf_obj_fd, &btf_id);
12835 		if (err)
12836 			return libbpf_err(err);
12837 	}
12838 
12839 	prog->attach_btf_id = btf_id;
12840 	prog->attach_btf_obj_fd = btf_obj_fd;
12841 	prog->attach_prog_fd = attach_prog_fd;
12842 	return 0;
12843 }
12844 
12845 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12846 {
12847 	int err = 0, n, len, start, end = -1;
12848 	bool *tmp;
12849 
12850 	*mask = NULL;
12851 	*mask_sz = 0;
12852 
12853 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12854 	while (*s) {
12855 		if (*s == ',' || *s == '\n') {
12856 			s++;
12857 			continue;
12858 		}
12859 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12860 		if (n <= 0 || n > 2) {
12861 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
12862 			err = -EINVAL;
12863 			goto cleanup;
12864 		} else if (n == 1) {
12865 			end = start;
12866 		}
12867 		if (start < 0 || start > end) {
12868 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
12869 				start, end, s);
12870 			err = -EINVAL;
12871 			goto cleanup;
12872 		}
12873 		tmp = realloc(*mask, end + 1);
12874 		if (!tmp) {
12875 			err = -ENOMEM;
12876 			goto cleanup;
12877 		}
12878 		*mask = tmp;
12879 		memset(tmp + *mask_sz, 0, start - *mask_sz);
12880 		memset(tmp + start, 1, end - start + 1);
12881 		*mask_sz = end + 1;
12882 		s += len;
12883 	}
12884 	if (!*mask_sz) {
12885 		pr_warn("Empty CPU range\n");
12886 		return -EINVAL;
12887 	}
12888 	return 0;
12889 cleanup:
12890 	free(*mask);
12891 	*mask = NULL;
12892 	return err;
12893 }
12894 
12895 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12896 {
12897 	int fd, err = 0, len;
12898 	char buf[128];
12899 
12900 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12901 	if (fd < 0) {
12902 		err = -errno;
12903 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12904 		return err;
12905 	}
12906 	len = read(fd, buf, sizeof(buf));
12907 	close(fd);
12908 	if (len <= 0) {
12909 		err = len ? -errno : -EINVAL;
12910 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12911 		return err;
12912 	}
12913 	if (len >= sizeof(buf)) {
12914 		pr_warn("CPU mask is too big in file %s\n", fcpu);
12915 		return -E2BIG;
12916 	}
12917 	buf[len] = '\0';
12918 
12919 	return parse_cpu_mask_str(buf, mask, mask_sz);
12920 }
12921 
12922 int libbpf_num_possible_cpus(void)
12923 {
12924 	static const char *fcpu = "/sys/devices/system/cpu/possible";
12925 	static int cpus;
12926 	int err, n, i, tmp_cpus;
12927 	bool *mask;
12928 
12929 	tmp_cpus = READ_ONCE(cpus);
12930 	if (tmp_cpus > 0)
12931 		return tmp_cpus;
12932 
12933 	err = parse_cpu_mask_file(fcpu, &mask, &n);
12934 	if (err)
12935 		return libbpf_err(err);
12936 
12937 	tmp_cpus = 0;
12938 	for (i = 0; i < n; i++) {
12939 		if (mask[i])
12940 			tmp_cpus++;
12941 	}
12942 	free(mask);
12943 
12944 	WRITE_ONCE(cpus, tmp_cpus);
12945 	return tmp_cpus;
12946 }
12947 
12948 static int populate_skeleton_maps(const struct bpf_object *obj,
12949 				  struct bpf_map_skeleton *maps,
12950 				  size_t map_cnt)
12951 {
12952 	int i;
12953 
12954 	for (i = 0; i < map_cnt; i++) {
12955 		struct bpf_map **map = maps[i].map;
12956 		const char *name = maps[i].name;
12957 		void **mmaped = maps[i].mmaped;
12958 
12959 		*map = bpf_object__find_map_by_name(obj, name);
12960 		if (!*map) {
12961 			pr_warn("failed to find skeleton map '%s'\n", name);
12962 			return -ESRCH;
12963 		}
12964 
12965 		/* externs shouldn't be pre-setup from user code */
12966 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12967 			*mmaped = (*map)->mmaped;
12968 	}
12969 	return 0;
12970 }
12971 
12972 static int populate_skeleton_progs(const struct bpf_object *obj,
12973 				   struct bpf_prog_skeleton *progs,
12974 				   size_t prog_cnt)
12975 {
12976 	int i;
12977 
12978 	for (i = 0; i < prog_cnt; i++) {
12979 		struct bpf_program **prog = progs[i].prog;
12980 		const char *name = progs[i].name;
12981 
12982 		*prog = bpf_object__find_program_by_name(obj, name);
12983 		if (!*prog) {
12984 			pr_warn("failed to find skeleton program '%s'\n", name);
12985 			return -ESRCH;
12986 		}
12987 	}
12988 	return 0;
12989 }
12990 
12991 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12992 			      const struct bpf_object_open_opts *opts)
12993 {
12994 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12995 		.object_name = s->name,
12996 	);
12997 	struct bpf_object *obj;
12998 	int err;
12999 
13000 	/* Attempt to preserve opts->object_name, unless overriden by user
13001 	 * explicitly. Overwriting object name for skeletons is discouraged,
13002 	 * as it breaks global data maps, because they contain object name
13003 	 * prefix as their own map name prefix. When skeleton is generated,
13004 	 * bpftool is making an assumption that this name will stay the same.
13005 	 */
13006 	if (opts) {
13007 		memcpy(&skel_opts, opts, sizeof(*opts));
13008 		if (!opts->object_name)
13009 			skel_opts.object_name = s->name;
13010 	}
13011 
13012 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13013 	err = libbpf_get_error(obj);
13014 	if (err) {
13015 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13016 			s->name, err);
13017 		return libbpf_err(err);
13018 	}
13019 
13020 	*s->obj = obj;
13021 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13022 	if (err) {
13023 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13024 		return libbpf_err(err);
13025 	}
13026 
13027 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13028 	if (err) {
13029 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13030 		return libbpf_err(err);
13031 	}
13032 
13033 	return 0;
13034 }
13035 
13036 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13037 {
13038 	int err, len, var_idx, i;
13039 	const char *var_name;
13040 	const struct bpf_map *map;
13041 	struct btf *btf;
13042 	__u32 map_type_id;
13043 	const struct btf_type *map_type, *var_type;
13044 	const struct bpf_var_skeleton *var_skel;
13045 	struct btf_var_secinfo *var;
13046 
13047 	if (!s->obj)
13048 		return libbpf_err(-EINVAL);
13049 
13050 	btf = bpf_object__btf(s->obj);
13051 	if (!btf) {
13052 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13053 			bpf_object__name(s->obj));
13054 		return libbpf_err(-errno);
13055 	}
13056 
13057 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13058 	if (err) {
13059 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13060 		return libbpf_err(err);
13061 	}
13062 
13063 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13064 	if (err) {
13065 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13066 		return libbpf_err(err);
13067 	}
13068 
13069 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13070 		var_skel = &s->vars[var_idx];
13071 		map = *var_skel->map;
13072 		map_type_id = bpf_map__btf_value_type_id(map);
13073 		map_type = btf__type_by_id(btf, map_type_id);
13074 
13075 		if (!btf_is_datasec(map_type)) {
13076 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13077 				bpf_map__name(map),
13078 				__btf_kind_str(btf_kind(map_type)));
13079 			return libbpf_err(-EINVAL);
13080 		}
13081 
13082 		len = btf_vlen(map_type);
13083 		var = btf_var_secinfos(map_type);
13084 		for (i = 0; i < len; i++, var++) {
13085 			var_type = btf__type_by_id(btf, var->type);
13086 			var_name = btf__name_by_offset(btf, var_type->name_off);
13087 			if (strcmp(var_name, var_skel->name) == 0) {
13088 				*var_skel->addr = map->mmaped + var->offset;
13089 				break;
13090 			}
13091 		}
13092 	}
13093 	return 0;
13094 }
13095 
13096 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13097 {
13098 	if (!s)
13099 		return;
13100 	free(s->maps);
13101 	free(s->progs);
13102 	free(s->vars);
13103 	free(s);
13104 }
13105 
13106 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13107 {
13108 	int i, err;
13109 
13110 	err = bpf_object__load(*s->obj);
13111 	if (err) {
13112 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13113 		return libbpf_err(err);
13114 	}
13115 
13116 	for (i = 0; i < s->map_cnt; i++) {
13117 		struct bpf_map *map = *s->maps[i].map;
13118 		size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries);
13119 		int prot, map_fd = bpf_map__fd(map);
13120 		void **mmaped = s->maps[i].mmaped;
13121 
13122 		if (!mmaped)
13123 			continue;
13124 
13125 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13126 			*mmaped = NULL;
13127 			continue;
13128 		}
13129 
13130 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13131 			prot = PROT_READ;
13132 		else
13133 			prot = PROT_READ | PROT_WRITE;
13134 
13135 		/* Remap anonymous mmap()-ed "map initialization image" as
13136 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13137 		 * memory address. This will cause kernel to change process'
13138 		 * page table to point to a different piece of kernel memory,
13139 		 * but from userspace point of view memory address (and its
13140 		 * contents, being identical at this point) will stay the
13141 		 * same. This mapping will be released by bpf_object__close()
13142 		 * as per normal clean up procedure, so we don't need to worry
13143 		 * about it from skeleton's clean up perspective.
13144 		 */
13145 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13146 		if (*mmaped == MAP_FAILED) {
13147 			err = -errno;
13148 			*mmaped = NULL;
13149 			pr_warn("failed to re-mmap() map '%s': %d\n",
13150 				 bpf_map__name(map), err);
13151 			return libbpf_err(err);
13152 		}
13153 	}
13154 
13155 	return 0;
13156 }
13157 
13158 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13159 {
13160 	int i, err;
13161 
13162 	for (i = 0; i < s->prog_cnt; i++) {
13163 		struct bpf_program *prog = *s->progs[i].prog;
13164 		struct bpf_link **link = s->progs[i].link;
13165 
13166 		if (!prog->autoload || !prog->autoattach)
13167 			continue;
13168 
13169 		/* auto-attaching not supported for this program */
13170 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13171 			continue;
13172 
13173 		/* if user already set the link manually, don't attempt auto-attach */
13174 		if (*link)
13175 			continue;
13176 
13177 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13178 		if (err) {
13179 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13180 				bpf_program__name(prog), err);
13181 			return libbpf_err(err);
13182 		}
13183 
13184 		/* It's possible that for some SEC() definitions auto-attach
13185 		 * is supported in some cases (e.g., if definition completely
13186 		 * specifies target information), but is not in other cases.
13187 		 * SEC("uprobe") is one such case. If user specified target
13188 		 * binary and function name, such BPF program can be
13189 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13190 		 * attach to fail. It should just be skipped.
13191 		 * attach_fn signals such case with returning 0 (no error) and
13192 		 * setting link to NULL.
13193 		 */
13194 	}
13195 
13196 	return 0;
13197 }
13198 
13199 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13200 {
13201 	int i;
13202 
13203 	for (i = 0; i < s->prog_cnt; i++) {
13204 		struct bpf_link **link = s->progs[i].link;
13205 
13206 		bpf_link__destroy(*link);
13207 		*link = NULL;
13208 	}
13209 }
13210 
13211 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13212 {
13213 	if (!s)
13214 		return;
13215 
13216 	if (s->progs)
13217 		bpf_object__detach_skeleton(s);
13218 	if (s->obj)
13219 		bpf_object__close(*s->obj);
13220 	free(s->maps);
13221 	free(s->progs);
13222 	free(s);
13223 }
13224