1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <tools/libc_compat.h> 48 #include <libelf.h> 49 #include <gelf.h> 50 #include <zlib.h> 51 52 #include "libbpf.h" 53 #include "bpf.h" 54 #include "btf.h" 55 #include "str_error.h" 56 #include "libbpf_internal.h" 57 #include "hashmap.h" 58 59 /* make sure libbpf doesn't use kernel-only integer typedefs */ 60 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64 61 62 #ifndef EM_BPF 63 #define EM_BPF 247 64 #endif 65 66 #ifndef BPF_FS_MAGIC 67 #define BPF_FS_MAGIC 0xcafe4a11 68 #endif 69 70 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 71 * compilation if user enables corresponding warning. Disable it explicitly. 72 */ 73 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 74 75 #define __printf(a, b) __attribute__((format(printf, a, b))) 76 77 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 78 static struct bpf_program *bpf_object__find_prog_by_idx(struct bpf_object *obj, 79 int idx); 80 static const struct btf_type * 81 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 82 83 static int __base_pr(enum libbpf_print_level level, const char *format, 84 va_list args) 85 { 86 if (level == LIBBPF_DEBUG) 87 return 0; 88 89 return vfprintf(stderr, format, args); 90 } 91 92 static libbpf_print_fn_t __libbpf_pr = __base_pr; 93 94 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 95 { 96 libbpf_print_fn_t old_print_fn = __libbpf_pr; 97 98 __libbpf_pr = fn; 99 return old_print_fn; 100 } 101 102 __printf(2, 3) 103 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 104 { 105 va_list args; 106 107 if (!__libbpf_pr) 108 return; 109 110 va_start(args, format); 111 __libbpf_pr(level, format, args); 112 va_end(args); 113 } 114 115 static void pr_perm_msg(int err) 116 { 117 struct rlimit limit; 118 char buf[100]; 119 120 if (err != -EPERM || geteuid() != 0) 121 return; 122 123 err = getrlimit(RLIMIT_MEMLOCK, &limit); 124 if (err) 125 return; 126 127 if (limit.rlim_cur == RLIM_INFINITY) 128 return; 129 130 if (limit.rlim_cur < 1024) 131 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 132 else if (limit.rlim_cur < 1024*1024) 133 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 134 else 135 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 136 137 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 138 buf); 139 } 140 141 #define STRERR_BUFSIZE 128 142 143 /* Copied from tools/perf/util/util.h */ 144 #ifndef zfree 145 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 146 #endif 147 148 #ifndef zclose 149 # define zclose(fd) ({ \ 150 int ___err = 0; \ 151 if ((fd) >= 0) \ 152 ___err = close((fd)); \ 153 fd = -1; \ 154 ___err; }) 155 #endif 156 157 #ifdef HAVE_LIBELF_MMAP_SUPPORT 158 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ_MMAP 159 #else 160 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ 161 #endif 162 163 static inline __u64 ptr_to_u64(const void *ptr) 164 { 165 return (__u64) (unsigned long) ptr; 166 } 167 168 struct bpf_capabilities { 169 /* v4.14: kernel support for program & map names. */ 170 __u32 name:1; 171 /* v5.2: kernel support for global data sections. */ 172 __u32 global_data:1; 173 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 174 __u32 btf_func:1; 175 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 176 __u32 btf_datasec:1; 177 /* BPF_F_MMAPABLE is supported for arrays */ 178 __u32 array_mmap:1; 179 /* BTF_FUNC_GLOBAL is supported */ 180 __u32 btf_func_global:1; 181 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 182 __u32 exp_attach_type:1; 183 }; 184 185 enum reloc_type { 186 RELO_LD64, 187 RELO_CALL, 188 RELO_DATA, 189 RELO_EXTERN, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 int map_idx; 196 int sym_off; 197 }; 198 199 struct bpf_sec_def; 200 201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 202 struct bpf_program *prog); 203 204 struct bpf_sec_def { 205 const char *sec; 206 size_t len; 207 enum bpf_prog_type prog_type; 208 enum bpf_attach_type expected_attach_type; 209 bool is_exp_attach_type_optional; 210 bool is_attachable; 211 bool is_attach_btf; 212 attach_fn_t attach_fn; 213 }; 214 215 /* 216 * bpf_prog should be a better name but it has been used in 217 * linux/filter.h. 218 */ 219 struct bpf_program { 220 /* Index in elf obj file, for relocation use. */ 221 int idx; 222 char *name; 223 int prog_ifindex; 224 char *section_name; 225 const struct bpf_sec_def *sec_def; 226 /* section_name with / replaced by _; makes recursive pinning 227 * in bpf_object__pin_programs easier 228 */ 229 char *pin_name; 230 struct bpf_insn *insns; 231 size_t insns_cnt, main_prog_cnt; 232 enum bpf_prog_type type; 233 bool load; 234 235 struct reloc_desc *reloc_desc; 236 int nr_reloc; 237 int log_level; 238 239 struct { 240 int nr; 241 int *fds; 242 } instances; 243 bpf_program_prep_t preprocessor; 244 245 struct bpf_object *obj; 246 void *priv; 247 bpf_program_clear_priv_t clear_priv; 248 249 enum bpf_attach_type expected_attach_type; 250 __u32 attach_btf_id; 251 __u32 attach_prog_fd; 252 void *func_info; 253 __u32 func_info_rec_size; 254 __u32 func_info_cnt; 255 256 struct bpf_capabilities *caps; 257 258 void *line_info; 259 __u32 line_info_rec_size; 260 __u32 line_info_cnt; 261 __u32 prog_flags; 262 }; 263 264 struct bpf_struct_ops { 265 const char *tname; 266 const struct btf_type *type; 267 struct bpf_program **progs; 268 __u32 *kern_func_off; 269 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 270 void *data; 271 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 272 * btf_vmlinux's format. 273 * struct bpf_struct_ops_tcp_congestion_ops { 274 * [... some other kernel fields ...] 275 * struct tcp_congestion_ops data; 276 * } 277 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 278 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 279 * from "data". 280 */ 281 void *kern_vdata; 282 __u32 type_id; 283 }; 284 285 #define DATA_SEC ".data" 286 #define BSS_SEC ".bss" 287 #define RODATA_SEC ".rodata" 288 #define KCONFIG_SEC ".kconfig" 289 #define KSYMS_SEC ".ksyms" 290 #define STRUCT_OPS_SEC ".struct_ops" 291 292 enum libbpf_map_type { 293 LIBBPF_MAP_UNSPEC, 294 LIBBPF_MAP_DATA, 295 LIBBPF_MAP_BSS, 296 LIBBPF_MAP_RODATA, 297 LIBBPF_MAP_KCONFIG, 298 }; 299 300 static const char * const libbpf_type_to_btf_name[] = { 301 [LIBBPF_MAP_DATA] = DATA_SEC, 302 [LIBBPF_MAP_BSS] = BSS_SEC, 303 [LIBBPF_MAP_RODATA] = RODATA_SEC, 304 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 305 }; 306 307 struct bpf_map { 308 char *name; 309 int fd; 310 int sec_idx; 311 size_t sec_offset; 312 int map_ifindex; 313 int inner_map_fd; 314 struct bpf_map_def def; 315 __u32 numa_node; 316 __u32 btf_var_idx; 317 __u32 btf_key_type_id; 318 __u32 btf_value_type_id; 319 __u32 btf_vmlinux_value_type_id; 320 void *priv; 321 bpf_map_clear_priv_t clear_priv; 322 enum libbpf_map_type libbpf_type; 323 void *mmaped; 324 struct bpf_struct_ops *st_ops; 325 struct bpf_map *inner_map; 326 void **init_slots; 327 int init_slots_sz; 328 char *pin_path; 329 bool pinned; 330 bool reused; 331 }; 332 333 enum extern_type { 334 EXT_UNKNOWN, 335 EXT_KCFG, 336 EXT_KSYM, 337 }; 338 339 enum kcfg_type { 340 KCFG_UNKNOWN, 341 KCFG_CHAR, 342 KCFG_BOOL, 343 KCFG_INT, 344 KCFG_TRISTATE, 345 KCFG_CHAR_ARR, 346 }; 347 348 struct extern_desc { 349 enum extern_type type; 350 int sym_idx; 351 int btf_id; 352 int sec_btf_id; 353 const char *name; 354 bool is_set; 355 bool is_weak; 356 union { 357 struct { 358 enum kcfg_type type; 359 int sz; 360 int align; 361 int data_off; 362 bool is_signed; 363 } kcfg; 364 struct { 365 unsigned long long addr; 366 } ksym; 367 }; 368 }; 369 370 static LIST_HEAD(bpf_objects_list); 371 372 struct bpf_object { 373 char name[BPF_OBJ_NAME_LEN]; 374 char license[64]; 375 __u32 kern_version; 376 377 struct bpf_program *programs; 378 size_t nr_programs; 379 struct bpf_map *maps; 380 size_t nr_maps; 381 size_t maps_cap; 382 383 char *kconfig; 384 struct extern_desc *externs; 385 int nr_extern; 386 int kconfig_map_idx; 387 388 bool loaded; 389 bool has_pseudo_calls; 390 391 /* 392 * Information when doing elf related work. Only valid if fd 393 * is valid. 394 */ 395 struct { 396 int fd; 397 const void *obj_buf; 398 size_t obj_buf_sz; 399 Elf *elf; 400 GElf_Ehdr ehdr; 401 Elf_Data *symbols; 402 Elf_Data *data; 403 Elf_Data *rodata; 404 Elf_Data *bss; 405 Elf_Data *st_ops_data; 406 size_t strtabidx; 407 struct { 408 GElf_Shdr shdr; 409 Elf_Data *data; 410 } *reloc_sects; 411 int nr_reloc_sects; 412 int maps_shndx; 413 int btf_maps_shndx; 414 __u32 btf_maps_sec_btf_id; 415 int text_shndx; 416 int symbols_shndx; 417 int data_shndx; 418 int rodata_shndx; 419 int bss_shndx; 420 int st_ops_shndx; 421 } efile; 422 /* 423 * All loaded bpf_object is linked in a list, which is 424 * hidden to caller. bpf_objects__<func> handlers deal with 425 * all objects. 426 */ 427 struct list_head list; 428 429 struct btf *btf; 430 /* Parse and load BTF vmlinux if any of the programs in the object need 431 * it at load time. 432 */ 433 struct btf *btf_vmlinux; 434 struct btf_ext *btf_ext; 435 436 void *priv; 437 bpf_object_clear_priv_t clear_priv; 438 439 struct bpf_capabilities caps; 440 441 char path[]; 442 }; 443 #define obj_elf_valid(o) ((o)->efile.elf) 444 445 void bpf_program__unload(struct bpf_program *prog) 446 { 447 int i; 448 449 if (!prog) 450 return; 451 452 /* 453 * If the object is opened but the program was never loaded, 454 * it is possible that prog->instances.nr == -1. 455 */ 456 if (prog->instances.nr > 0) { 457 for (i = 0; i < prog->instances.nr; i++) 458 zclose(prog->instances.fds[i]); 459 } else if (prog->instances.nr != -1) { 460 pr_warn("Internal error: instances.nr is %d\n", 461 prog->instances.nr); 462 } 463 464 prog->instances.nr = -1; 465 zfree(&prog->instances.fds); 466 467 zfree(&prog->func_info); 468 zfree(&prog->line_info); 469 } 470 471 static void bpf_program__exit(struct bpf_program *prog) 472 { 473 if (!prog) 474 return; 475 476 if (prog->clear_priv) 477 prog->clear_priv(prog, prog->priv); 478 479 prog->priv = NULL; 480 prog->clear_priv = NULL; 481 482 bpf_program__unload(prog); 483 zfree(&prog->name); 484 zfree(&prog->section_name); 485 zfree(&prog->pin_name); 486 zfree(&prog->insns); 487 zfree(&prog->reloc_desc); 488 489 prog->nr_reloc = 0; 490 prog->insns_cnt = 0; 491 prog->idx = -1; 492 } 493 494 static char *__bpf_program__pin_name(struct bpf_program *prog) 495 { 496 char *name, *p; 497 498 name = p = strdup(prog->section_name); 499 while ((p = strchr(p, '/'))) 500 *p = '_'; 501 502 return name; 503 } 504 505 static int 506 bpf_program__init(void *data, size_t size, char *section_name, int idx, 507 struct bpf_program *prog) 508 { 509 const size_t bpf_insn_sz = sizeof(struct bpf_insn); 510 511 if (size == 0 || size % bpf_insn_sz) { 512 pr_warn("corrupted section '%s', size: %zu\n", 513 section_name, size); 514 return -EINVAL; 515 } 516 517 memset(prog, 0, sizeof(*prog)); 518 519 prog->section_name = strdup(section_name); 520 if (!prog->section_name) { 521 pr_warn("failed to alloc name for prog under section(%d) %s\n", 522 idx, section_name); 523 goto errout; 524 } 525 526 prog->pin_name = __bpf_program__pin_name(prog); 527 if (!prog->pin_name) { 528 pr_warn("failed to alloc pin name for prog under section(%d) %s\n", 529 idx, section_name); 530 goto errout; 531 } 532 533 prog->insns = malloc(size); 534 if (!prog->insns) { 535 pr_warn("failed to alloc insns for prog under section %s\n", 536 section_name); 537 goto errout; 538 } 539 prog->insns_cnt = size / bpf_insn_sz; 540 memcpy(prog->insns, data, size); 541 prog->idx = idx; 542 prog->instances.fds = NULL; 543 prog->instances.nr = -1; 544 prog->type = BPF_PROG_TYPE_UNSPEC; 545 prog->load = true; 546 547 return 0; 548 errout: 549 bpf_program__exit(prog); 550 return -ENOMEM; 551 } 552 553 static int 554 bpf_object__add_program(struct bpf_object *obj, void *data, size_t size, 555 char *section_name, int idx) 556 { 557 struct bpf_program prog, *progs; 558 int nr_progs, err; 559 560 err = bpf_program__init(data, size, section_name, idx, &prog); 561 if (err) 562 return err; 563 564 prog.caps = &obj->caps; 565 progs = obj->programs; 566 nr_progs = obj->nr_programs; 567 568 progs = reallocarray(progs, nr_progs + 1, sizeof(progs[0])); 569 if (!progs) { 570 /* 571 * In this case the original obj->programs 572 * is still valid, so don't need special treat for 573 * bpf_close_object(). 574 */ 575 pr_warn("failed to alloc a new program under section '%s'\n", 576 section_name); 577 bpf_program__exit(&prog); 578 return -ENOMEM; 579 } 580 581 pr_debug("found program %s\n", prog.section_name); 582 obj->programs = progs; 583 obj->nr_programs = nr_progs + 1; 584 prog.obj = obj; 585 progs[nr_progs] = prog; 586 return 0; 587 } 588 589 static int 590 bpf_object__init_prog_names(struct bpf_object *obj) 591 { 592 Elf_Data *symbols = obj->efile.symbols; 593 struct bpf_program *prog; 594 size_t pi, si; 595 596 for (pi = 0; pi < obj->nr_programs; pi++) { 597 const char *name = NULL; 598 599 prog = &obj->programs[pi]; 600 601 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym) && !name; 602 si++) { 603 GElf_Sym sym; 604 605 if (!gelf_getsym(symbols, si, &sym)) 606 continue; 607 if (sym.st_shndx != prog->idx) 608 continue; 609 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL) 610 continue; 611 612 name = elf_strptr(obj->efile.elf, 613 obj->efile.strtabidx, 614 sym.st_name); 615 if (!name) { 616 pr_warn("failed to get sym name string for prog %s\n", 617 prog->section_name); 618 return -LIBBPF_ERRNO__LIBELF; 619 } 620 } 621 622 if (!name && prog->idx == obj->efile.text_shndx) 623 name = ".text"; 624 625 if (!name) { 626 pr_warn("failed to find sym for prog %s\n", 627 prog->section_name); 628 return -EINVAL; 629 } 630 631 prog->name = strdup(name); 632 if (!prog->name) { 633 pr_warn("failed to allocate memory for prog sym %s\n", 634 name); 635 return -ENOMEM; 636 } 637 } 638 639 return 0; 640 } 641 642 static __u32 get_kernel_version(void) 643 { 644 __u32 major, minor, patch; 645 struct utsname info; 646 647 uname(&info); 648 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 649 return 0; 650 return KERNEL_VERSION(major, minor, patch); 651 } 652 653 static const struct btf_member * 654 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 655 { 656 struct btf_member *m; 657 int i; 658 659 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 660 if (btf_member_bit_offset(t, i) == bit_offset) 661 return m; 662 } 663 664 return NULL; 665 } 666 667 static const struct btf_member * 668 find_member_by_name(const struct btf *btf, const struct btf_type *t, 669 const char *name) 670 { 671 struct btf_member *m; 672 int i; 673 674 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 675 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 676 return m; 677 } 678 679 return NULL; 680 } 681 682 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 683 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 684 const char *name, __u32 kind); 685 686 static int 687 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 688 const struct btf_type **type, __u32 *type_id, 689 const struct btf_type **vtype, __u32 *vtype_id, 690 const struct btf_member **data_member) 691 { 692 const struct btf_type *kern_type, *kern_vtype; 693 const struct btf_member *kern_data_member; 694 __s32 kern_vtype_id, kern_type_id; 695 __u32 i; 696 697 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 698 if (kern_type_id < 0) { 699 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 700 tname); 701 return kern_type_id; 702 } 703 kern_type = btf__type_by_id(btf, kern_type_id); 704 705 /* Find the corresponding "map_value" type that will be used 706 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 707 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 708 * btf_vmlinux. 709 */ 710 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 711 tname, BTF_KIND_STRUCT); 712 if (kern_vtype_id < 0) { 713 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 714 STRUCT_OPS_VALUE_PREFIX, tname); 715 return kern_vtype_id; 716 } 717 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 718 719 /* Find "struct tcp_congestion_ops" from 720 * struct bpf_struct_ops_tcp_congestion_ops { 721 * [ ... ] 722 * struct tcp_congestion_ops data; 723 * } 724 */ 725 kern_data_member = btf_members(kern_vtype); 726 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 727 if (kern_data_member->type == kern_type_id) 728 break; 729 } 730 if (i == btf_vlen(kern_vtype)) { 731 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 732 tname, STRUCT_OPS_VALUE_PREFIX, tname); 733 return -EINVAL; 734 } 735 736 *type = kern_type; 737 *type_id = kern_type_id; 738 *vtype = kern_vtype; 739 *vtype_id = kern_vtype_id; 740 *data_member = kern_data_member; 741 742 return 0; 743 } 744 745 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 746 { 747 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 748 } 749 750 /* Init the map's fields that depend on kern_btf */ 751 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 752 const struct btf *btf, 753 const struct btf *kern_btf) 754 { 755 const struct btf_member *member, *kern_member, *kern_data_member; 756 const struct btf_type *type, *kern_type, *kern_vtype; 757 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 758 struct bpf_struct_ops *st_ops; 759 void *data, *kern_data; 760 const char *tname; 761 int err; 762 763 st_ops = map->st_ops; 764 type = st_ops->type; 765 tname = st_ops->tname; 766 err = find_struct_ops_kern_types(kern_btf, tname, 767 &kern_type, &kern_type_id, 768 &kern_vtype, &kern_vtype_id, 769 &kern_data_member); 770 if (err) 771 return err; 772 773 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 774 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 775 776 map->def.value_size = kern_vtype->size; 777 map->btf_vmlinux_value_type_id = kern_vtype_id; 778 779 st_ops->kern_vdata = calloc(1, kern_vtype->size); 780 if (!st_ops->kern_vdata) 781 return -ENOMEM; 782 783 data = st_ops->data; 784 kern_data_off = kern_data_member->offset / 8; 785 kern_data = st_ops->kern_vdata + kern_data_off; 786 787 member = btf_members(type); 788 for (i = 0; i < btf_vlen(type); i++, member++) { 789 const struct btf_type *mtype, *kern_mtype; 790 __u32 mtype_id, kern_mtype_id; 791 void *mdata, *kern_mdata; 792 __s64 msize, kern_msize; 793 __u32 moff, kern_moff; 794 __u32 kern_member_idx; 795 const char *mname; 796 797 mname = btf__name_by_offset(btf, member->name_off); 798 kern_member = find_member_by_name(kern_btf, kern_type, mname); 799 if (!kern_member) { 800 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 801 map->name, mname); 802 return -ENOTSUP; 803 } 804 805 kern_member_idx = kern_member - btf_members(kern_type); 806 if (btf_member_bitfield_size(type, i) || 807 btf_member_bitfield_size(kern_type, kern_member_idx)) { 808 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 809 map->name, mname); 810 return -ENOTSUP; 811 } 812 813 moff = member->offset / 8; 814 kern_moff = kern_member->offset / 8; 815 816 mdata = data + moff; 817 kern_mdata = kern_data + kern_moff; 818 819 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 820 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 821 &kern_mtype_id); 822 if (BTF_INFO_KIND(mtype->info) != 823 BTF_INFO_KIND(kern_mtype->info)) { 824 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 825 map->name, mname, BTF_INFO_KIND(mtype->info), 826 BTF_INFO_KIND(kern_mtype->info)); 827 return -ENOTSUP; 828 } 829 830 if (btf_is_ptr(mtype)) { 831 struct bpf_program *prog; 832 833 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 834 kern_mtype = skip_mods_and_typedefs(kern_btf, 835 kern_mtype->type, 836 &kern_mtype_id); 837 if (!btf_is_func_proto(mtype) || 838 !btf_is_func_proto(kern_mtype)) { 839 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 840 map->name, mname); 841 return -ENOTSUP; 842 } 843 844 prog = st_ops->progs[i]; 845 if (!prog) { 846 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 847 map->name, mname); 848 continue; 849 } 850 851 prog->attach_btf_id = kern_type_id; 852 prog->expected_attach_type = kern_member_idx; 853 854 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 855 856 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 857 map->name, mname, prog->name, moff, 858 kern_moff); 859 860 continue; 861 } 862 863 msize = btf__resolve_size(btf, mtype_id); 864 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 865 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 866 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 867 map->name, mname, (ssize_t)msize, 868 (ssize_t)kern_msize); 869 return -ENOTSUP; 870 } 871 872 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 873 map->name, mname, (unsigned int)msize, 874 moff, kern_moff); 875 memcpy(kern_mdata, mdata, msize); 876 } 877 878 return 0; 879 } 880 881 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 882 { 883 struct bpf_map *map; 884 size_t i; 885 int err; 886 887 for (i = 0; i < obj->nr_maps; i++) { 888 map = &obj->maps[i]; 889 890 if (!bpf_map__is_struct_ops(map)) 891 continue; 892 893 err = bpf_map__init_kern_struct_ops(map, obj->btf, 894 obj->btf_vmlinux); 895 if (err) 896 return err; 897 } 898 899 return 0; 900 } 901 902 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 903 { 904 const struct btf_type *type, *datasec; 905 const struct btf_var_secinfo *vsi; 906 struct bpf_struct_ops *st_ops; 907 const char *tname, *var_name; 908 __s32 type_id, datasec_id; 909 const struct btf *btf; 910 struct bpf_map *map; 911 __u32 i; 912 913 if (obj->efile.st_ops_shndx == -1) 914 return 0; 915 916 btf = obj->btf; 917 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 918 BTF_KIND_DATASEC); 919 if (datasec_id < 0) { 920 pr_warn("struct_ops init: DATASEC %s not found\n", 921 STRUCT_OPS_SEC); 922 return -EINVAL; 923 } 924 925 datasec = btf__type_by_id(btf, datasec_id); 926 vsi = btf_var_secinfos(datasec); 927 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 928 type = btf__type_by_id(obj->btf, vsi->type); 929 var_name = btf__name_by_offset(obj->btf, type->name_off); 930 931 type_id = btf__resolve_type(obj->btf, vsi->type); 932 if (type_id < 0) { 933 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 934 vsi->type, STRUCT_OPS_SEC); 935 return -EINVAL; 936 } 937 938 type = btf__type_by_id(obj->btf, type_id); 939 tname = btf__name_by_offset(obj->btf, type->name_off); 940 if (!tname[0]) { 941 pr_warn("struct_ops init: anonymous type is not supported\n"); 942 return -ENOTSUP; 943 } 944 if (!btf_is_struct(type)) { 945 pr_warn("struct_ops init: %s is not a struct\n", tname); 946 return -EINVAL; 947 } 948 949 map = bpf_object__add_map(obj); 950 if (IS_ERR(map)) 951 return PTR_ERR(map); 952 953 map->sec_idx = obj->efile.st_ops_shndx; 954 map->sec_offset = vsi->offset; 955 map->name = strdup(var_name); 956 if (!map->name) 957 return -ENOMEM; 958 959 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 960 map->def.key_size = sizeof(int); 961 map->def.value_size = type->size; 962 map->def.max_entries = 1; 963 964 map->st_ops = calloc(1, sizeof(*map->st_ops)); 965 if (!map->st_ops) 966 return -ENOMEM; 967 st_ops = map->st_ops; 968 st_ops->data = malloc(type->size); 969 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 970 st_ops->kern_func_off = malloc(btf_vlen(type) * 971 sizeof(*st_ops->kern_func_off)); 972 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 973 return -ENOMEM; 974 975 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 976 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 977 var_name, STRUCT_OPS_SEC); 978 return -EINVAL; 979 } 980 981 memcpy(st_ops->data, 982 obj->efile.st_ops_data->d_buf + vsi->offset, 983 type->size); 984 st_ops->tname = tname; 985 st_ops->type = type; 986 st_ops->type_id = type_id; 987 988 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 989 tname, type_id, var_name, vsi->offset); 990 } 991 992 return 0; 993 } 994 995 static struct bpf_object *bpf_object__new(const char *path, 996 const void *obj_buf, 997 size_t obj_buf_sz, 998 const char *obj_name) 999 { 1000 struct bpf_object *obj; 1001 char *end; 1002 1003 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1004 if (!obj) { 1005 pr_warn("alloc memory failed for %s\n", path); 1006 return ERR_PTR(-ENOMEM); 1007 } 1008 1009 strcpy(obj->path, path); 1010 if (obj_name) { 1011 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1012 obj->name[sizeof(obj->name) - 1] = 0; 1013 } else { 1014 /* Using basename() GNU version which doesn't modify arg. */ 1015 strncpy(obj->name, basename((void *)path), 1016 sizeof(obj->name) - 1); 1017 end = strchr(obj->name, '.'); 1018 if (end) 1019 *end = 0; 1020 } 1021 1022 obj->efile.fd = -1; 1023 /* 1024 * Caller of this function should also call 1025 * bpf_object__elf_finish() after data collection to return 1026 * obj_buf to user. If not, we should duplicate the buffer to 1027 * avoid user freeing them before elf finish. 1028 */ 1029 obj->efile.obj_buf = obj_buf; 1030 obj->efile.obj_buf_sz = obj_buf_sz; 1031 obj->efile.maps_shndx = -1; 1032 obj->efile.btf_maps_shndx = -1; 1033 obj->efile.data_shndx = -1; 1034 obj->efile.rodata_shndx = -1; 1035 obj->efile.bss_shndx = -1; 1036 obj->efile.st_ops_shndx = -1; 1037 obj->kconfig_map_idx = -1; 1038 1039 obj->kern_version = get_kernel_version(); 1040 obj->loaded = false; 1041 1042 INIT_LIST_HEAD(&obj->list); 1043 list_add(&obj->list, &bpf_objects_list); 1044 return obj; 1045 } 1046 1047 static void bpf_object__elf_finish(struct bpf_object *obj) 1048 { 1049 if (!obj_elf_valid(obj)) 1050 return; 1051 1052 if (obj->efile.elf) { 1053 elf_end(obj->efile.elf); 1054 obj->efile.elf = NULL; 1055 } 1056 obj->efile.symbols = NULL; 1057 obj->efile.data = NULL; 1058 obj->efile.rodata = NULL; 1059 obj->efile.bss = NULL; 1060 obj->efile.st_ops_data = NULL; 1061 1062 zfree(&obj->efile.reloc_sects); 1063 obj->efile.nr_reloc_sects = 0; 1064 zclose(obj->efile.fd); 1065 obj->efile.obj_buf = NULL; 1066 obj->efile.obj_buf_sz = 0; 1067 } 1068 1069 static int bpf_object__elf_init(struct bpf_object *obj) 1070 { 1071 int err = 0; 1072 GElf_Ehdr *ep; 1073 1074 if (obj_elf_valid(obj)) { 1075 pr_warn("elf init: internal error\n"); 1076 return -LIBBPF_ERRNO__LIBELF; 1077 } 1078 1079 if (obj->efile.obj_buf_sz > 0) { 1080 /* 1081 * obj_buf should have been validated by 1082 * bpf_object__open_buffer(). 1083 */ 1084 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1085 obj->efile.obj_buf_sz); 1086 } else { 1087 obj->efile.fd = open(obj->path, O_RDONLY); 1088 if (obj->efile.fd < 0) { 1089 char errmsg[STRERR_BUFSIZE], *cp; 1090 1091 err = -errno; 1092 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1093 pr_warn("failed to open %s: %s\n", obj->path, cp); 1094 return err; 1095 } 1096 1097 obj->efile.elf = elf_begin(obj->efile.fd, 1098 LIBBPF_ELF_C_READ_MMAP, NULL); 1099 } 1100 1101 if (!obj->efile.elf) { 1102 pr_warn("failed to open %s as ELF file\n", obj->path); 1103 err = -LIBBPF_ERRNO__LIBELF; 1104 goto errout; 1105 } 1106 1107 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1108 pr_warn("failed to get EHDR from %s\n", obj->path); 1109 err = -LIBBPF_ERRNO__FORMAT; 1110 goto errout; 1111 } 1112 ep = &obj->efile.ehdr; 1113 1114 /* Old LLVM set e_machine to EM_NONE */ 1115 if (ep->e_type != ET_REL || 1116 (ep->e_machine && ep->e_machine != EM_BPF)) { 1117 pr_warn("%s is not an eBPF object file\n", obj->path); 1118 err = -LIBBPF_ERRNO__FORMAT; 1119 goto errout; 1120 } 1121 1122 return 0; 1123 errout: 1124 bpf_object__elf_finish(obj); 1125 return err; 1126 } 1127 1128 static int bpf_object__check_endianness(struct bpf_object *obj) 1129 { 1130 #if __BYTE_ORDER == __LITTLE_ENDIAN 1131 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1132 return 0; 1133 #elif __BYTE_ORDER == __BIG_ENDIAN 1134 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1135 return 0; 1136 #else 1137 # error "Unrecognized __BYTE_ORDER__" 1138 #endif 1139 pr_warn("endianness mismatch.\n"); 1140 return -LIBBPF_ERRNO__ENDIAN; 1141 } 1142 1143 static int 1144 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1145 { 1146 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1147 pr_debug("license of %s is %s\n", obj->path, obj->license); 1148 return 0; 1149 } 1150 1151 static int 1152 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1153 { 1154 __u32 kver; 1155 1156 if (size != sizeof(kver)) { 1157 pr_warn("invalid kver section in %s\n", obj->path); 1158 return -LIBBPF_ERRNO__FORMAT; 1159 } 1160 memcpy(&kver, data, sizeof(kver)); 1161 obj->kern_version = kver; 1162 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1163 return 0; 1164 } 1165 1166 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1167 { 1168 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1169 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1170 return true; 1171 return false; 1172 } 1173 1174 static int bpf_object_search_section_size(const struct bpf_object *obj, 1175 const char *name, size_t *d_size) 1176 { 1177 const GElf_Ehdr *ep = &obj->efile.ehdr; 1178 Elf *elf = obj->efile.elf; 1179 Elf_Scn *scn = NULL; 1180 int idx = 0; 1181 1182 while ((scn = elf_nextscn(elf, scn)) != NULL) { 1183 const char *sec_name; 1184 Elf_Data *data; 1185 GElf_Shdr sh; 1186 1187 idx++; 1188 if (gelf_getshdr(scn, &sh) != &sh) { 1189 pr_warn("failed to get section(%d) header from %s\n", 1190 idx, obj->path); 1191 return -EIO; 1192 } 1193 1194 sec_name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 1195 if (!sec_name) { 1196 pr_warn("failed to get section(%d) name from %s\n", 1197 idx, obj->path); 1198 return -EIO; 1199 } 1200 1201 if (strcmp(name, sec_name)) 1202 continue; 1203 1204 data = elf_getdata(scn, 0); 1205 if (!data) { 1206 pr_warn("failed to get section(%d) data from %s(%s)\n", 1207 idx, name, obj->path); 1208 return -EIO; 1209 } 1210 1211 *d_size = data->d_size; 1212 return 0; 1213 } 1214 1215 return -ENOENT; 1216 } 1217 1218 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1219 __u32 *size) 1220 { 1221 int ret = -ENOENT; 1222 size_t d_size; 1223 1224 *size = 0; 1225 if (!name) { 1226 return -EINVAL; 1227 } else if (!strcmp(name, DATA_SEC)) { 1228 if (obj->efile.data) 1229 *size = obj->efile.data->d_size; 1230 } else if (!strcmp(name, BSS_SEC)) { 1231 if (obj->efile.bss) 1232 *size = obj->efile.bss->d_size; 1233 } else if (!strcmp(name, RODATA_SEC)) { 1234 if (obj->efile.rodata) 1235 *size = obj->efile.rodata->d_size; 1236 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1237 if (obj->efile.st_ops_data) 1238 *size = obj->efile.st_ops_data->d_size; 1239 } else { 1240 ret = bpf_object_search_section_size(obj, name, &d_size); 1241 if (!ret) 1242 *size = d_size; 1243 } 1244 1245 return *size ? 0 : ret; 1246 } 1247 1248 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1249 __u32 *off) 1250 { 1251 Elf_Data *symbols = obj->efile.symbols; 1252 const char *sname; 1253 size_t si; 1254 1255 if (!name || !off) 1256 return -EINVAL; 1257 1258 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1259 GElf_Sym sym; 1260 1261 if (!gelf_getsym(symbols, si, &sym)) 1262 continue; 1263 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1264 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1265 continue; 1266 1267 sname = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 1268 sym.st_name); 1269 if (!sname) { 1270 pr_warn("failed to get sym name string for var %s\n", 1271 name); 1272 return -EIO; 1273 } 1274 if (strcmp(name, sname) == 0) { 1275 *off = sym.st_value; 1276 return 0; 1277 } 1278 } 1279 1280 return -ENOENT; 1281 } 1282 1283 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1284 { 1285 struct bpf_map *new_maps; 1286 size_t new_cap; 1287 int i; 1288 1289 if (obj->nr_maps < obj->maps_cap) 1290 return &obj->maps[obj->nr_maps++]; 1291 1292 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1293 new_maps = realloc(obj->maps, new_cap * sizeof(*obj->maps)); 1294 if (!new_maps) { 1295 pr_warn("alloc maps for object failed\n"); 1296 return ERR_PTR(-ENOMEM); 1297 } 1298 1299 obj->maps_cap = new_cap; 1300 obj->maps = new_maps; 1301 1302 /* zero out new maps */ 1303 memset(obj->maps + obj->nr_maps, 0, 1304 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1305 /* 1306 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1307 * when failure (zclose won't close negative fd)). 1308 */ 1309 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1310 obj->maps[i].fd = -1; 1311 obj->maps[i].inner_map_fd = -1; 1312 } 1313 1314 return &obj->maps[obj->nr_maps++]; 1315 } 1316 1317 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1318 { 1319 long page_sz = sysconf(_SC_PAGE_SIZE); 1320 size_t map_sz; 1321 1322 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1323 map_sz = roundup(map_sz, page_sz); 1324 return map_sz; 1325 } 1326 1327 static char *internal_map_name(struct bpf_object *obj, 1328 enum libbpf_map_type type) 1329 { 1330 char map_name[BPF_OBJ_NAME_LEN], *p; 1331 const char *sfx = libbpf_type_to_btf_name[type]; 1332 int sfx_len = max((size_t)7, strlen(sfx)); 1333 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1334 strlen(obj->name)); 1335 1336 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1337 sfx_len, libbpf_type_to_btf_name[type]); 1338 1339 /* sanitise map name to characters allowed by kernel */ 1340 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1341 if (!isalnum(*p) && *p != '_' && *p != '.') 1342 *p = '_'; 1343 1344 return strdup(map_name); 1345 } 1346 1347 static int 1348 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1349 int sec_idx, void *data, size_t data_sz) 1350 { 1351 struct bpf_map_def *def; 1352 struct bpf_map *map; 1353 int err; 1354 1355 map = bpf_object__add_map(obj); 1356 if (IS_ERR(map)) 1357 return PTR_ERR(map); 1358 1359 map->libbpf_type = type; 1360 map->sec_idx = sec_idx; 1361 map->sec_offset = 0; 1362 map->name = internal_map_name(obj, type); 1363 if (!map->name) { 1364 pr_warn("failed to alloc map name\n"); 1365 return -ENOMEM; 1366 } 1367 1368 def = &map->def; 1369 def->type = BPF_MAP_TYPE_ARRAY; 1370 def->key_size = sizeof(int); 1371 def->value_size = data_sz; 1372 def->max_entries = 1; 1373 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1374 ? BPF_F_RDONLY_PROG : 0; 1375 def->map_flags |= BPF_F_MMAPABLE; 1376 1377 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1378 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1379 1380 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1381 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1382 if (map->mmaped == MAP_FAILED) { 1383 err = -errno; 1384 map->mmaped = NULL; 1385 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1386 map->name, err); 1387 zfree(&map->name); 1388 return err; 1389 } 1390 1391 if (data) 1392 memcpy(map->mmaped, data, data_sz); 1393 1394 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1395 return 0; 1396 } 1397 1398 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1399 { 1400 int err; 1401 1402 /* 1403 * Populate obj->maps with libbpf internal maps. 1404 */ 1405 if (obj->efile.data_shndx >= 0) { 1406 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1407 obj->efile.data_shndx, 1408 obj->efile.data->d_buf, 1409 obj->efile.data->d_size); 1410 if (err) 1411 return err; 1412 } 1413 if (obj->efile.rodata_shndx >= 0) { 1414 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1415 obj->efile.rodata_shndx, 1416 obj->efile.rodata->d_buf, 1417 obj->efile.rodata->d_size); 1418 if (err) 1419 return err; 1420 } 1421 if (obj->efile.bss_shndx >= 0) { 1422 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1423 obj->efile.bss_shndx, 1424 NULL, 1425 obj->efile.bss->d_size); 1426 if (err) 1427 return err; 1428 } 1429 return 0; 1430 } 1431 1432 1433 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1434 const void *name) 1435 { 1436 int i; 1437 1438 for (i = 0; i < obj->nr_extern; i++) { 1439 if (strcmp(obj->externs[i].name, name) == 0) 1440 return &obj->externs[i]; 1441 } 1442 return NULL; 1443 } 1444 1445 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1446 char value) 1447 { 1448 switch (ext->kcfg.type) { 1449 case KCFG_BOOL: 1450 if (value == 'm') { 1451 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1452 ext->name, value); 1453 return -EINVAL; 1454 } 1455 *(bool *)ext_val = value == 'y' ? true : false; 1456 break; 1457 case KCFG_TRISTATE: 1458 if (value == 'y') 1459 *(enum libbpf_tristate *)ext_val = TRI_YES; 1460 else if (value == 'm') 1461 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1462 else /* value == 'n' */ 1463 *(enum libbpf_tristate *)ext_val = TRI_NO; 1464 break; 1465 case KCFG_CHAR: 1466 *(char *)ext_val = value; 1467 break; 1468 case KCFG_UNKNOWN: 1469 case KCFG_INT: 1470 case KCFG_CHAR_ARR: 1471 default: 1472 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1473 ext->name, value); 1474 return -EINVAL; 1475 } 1476 ext->is_set = true; 1477 return 0; 1478 } 1479 1480 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1481 const char *value) 1482 { 1483 size_t len; 1484 1485 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1486 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1487 return -EINVAL; 1488 } 1489 1490 len = strlen(value); 1491 if (value[len - 1] != '"') { 1492 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1493 ext->name, value); 1494 return -EINVAL; 1495 } 1496 1497 /* strip quotes */ 1498 len -= 2; 1499 if (len >= ext->kcfg.sz) { 1500 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1501 ext->name, value, len, ext->kcfg.sz - 1); 1502 len = ext->kcfg.sz - 1; 1503 } 1504 memcpy(ext_val, value + 1, len); 1505 ext_val[len] = '\0'; 1506 ext->is_set = true; 1507 return 0; 1508 } 1509 1510 static int parse_u64(const char *value, __u64 *res) 1511 { 1512 char *value_end; 1513 int err; 1514 1515 errno = 0; 1516 *res = strtoull(value, &value_end, 0); 1517 if (errno) { 1518 err = -errno; 1519 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1520 return err; 1521 } 1522 if (*value_end) { 1523 pr_warn("failed to parse '%s' as integer completely\n", value); 1524 return -EINVAL; 1525 } 1526 return 0; 1527 } 1528 1529 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1530 { 1531 int bit_sz = ext->kcfg.sz * 8; 1532 1533 if (ext->kcfg.sz == 8) 1534 return true; 1535 1536 /* Validate that value stored in u64 fits in integer of `ext->sz` 1537 * bytes size without any loss of information. If the target integer 1538 * is signed, we rely on the following limits of integer type of 1539 * Y bits and subsequent transformation: 1540 * 1541 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1542 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1543 * 0 <= X + 2^(Y-1) < 2^Y 1544 * 1545 * For unsigned target integer, check that all the (64 - Y) bits are 1546 * zero. 1547 */ 1548 if (ext->kcfg.is_signed) 1549 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1550 else 1551 return (v >> bit_sz) == 0; 1552 } 1553 1554 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1555 __u64 value) 1556 { 1557 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1558 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1559 ext->name, (unsigned long long)value); 1560 return -EINVAL; 1561 } 1562 if (!is_kcfg_value_in_range(ext, value)) { 1563 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1564 ext->name, (unsigned long long)value, ext->kcfg.sz); 1565 return -ERANGE; 1566 } 1567 switch (ext->kcfg.sz) { 1568 case 1: *(__u8 *)ext_val = value; break; 1569 case 2: *(__u16 *)ext_val = value; break; 1570 case 4: *(__u32 *)ext_val = value; break; 1571 case 8: *(__u64 *)ext_val = value; break; 1572 default: 1573 return -EINVAL; 1574 } 1575 ext->is_set = true; 1576 return 0; 1577 } 1578 1579 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1580 char *buf, void *data) 1581 { 1582 struct extern_desc *ext; 1583 char *sep, *value; 1584 int len, err = 0; 1585 void *ext_val; 1586 __u64 num; 1587 1588 if (strncmp(buf, "CONFIG_", 7)) 1589 return 0; 1590 1591 sep = strchr(buf, '='); 1592 if (!sep) { 1593 pr_warn("failed to parse '%s': no separator\n", buf); 1594 return -EINVAL; 1595 } 1596 1597 /* Trim ending '\n' */ 1598 len = strlen(buf); 1599 if (buf[len - 1] == '\n') 1600 buf[len - 1] = '\0'; 1601 /* Split on '=' and ensure that a value is present. */ 1602 *sep = '\0'; 1603 if (!sep[1]) { 1604 *sep = '='; 1605 pr_warn("failed to parse '%s': no value\n", buf); 1606 return -EINVAL; 1607 } 1608 1609 ext = find_extern_by_name(obj, buf); 1610 if (!ext || ext->is_set) 1611 return 0; 1612 1613 ext_val = data + ext->kcfg.data_off; 1614 value = sep + 1; 1615 1616 switch (*value) { 1617 case 'y': case 'n': case 'm': 1618 err = set_kcfg_value_tri(ext, ext_val, *value); 1619 break; 1620 case '"': 1621 err = set_kcfg_value_str(ext, ext_val, value); 1622 break; 1623 default: 1624 /* assume integer */ 1625 err = parse_u64(value, &num); 1626 if (err) { 1627 pr_warn("extern (kcfg) %s=%s should be integer\n", 1628 ext->name, value); 1629 return err; 1630 } 1631 err = set_kcfg_value_num(ext, ext_val, num); 1632 break; 1633 } 1634 if (err) 1635 return err; 1636 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1637 return 0; 1638 } 1639 1640 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1641 { 1642 char buf[PATH_MAX]; 1643 struct utsname uts; 1644 int len, err = 0; 1645 gzFile file; 1646 1647 uname(&uts); 1648 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1649 if (len < 0) 1650 return -EINVAL; 1651 else if (len >= PATH_MAX) 1652 return -ENAMETOOLONG; 1653 1654 /* gzopen also accepts uncompressed files. */ 1655 file = gzopen(buf, "r"); 1656 if (!file) 1657 file = gzopen("/proc/config.gz", "r"); 1658 1659 if (!file) { 1660 pr_warn("failed to open system Kconfig\n"); 1661 return -ENOENT; 1662 } 1663 1664 while (gzgets(file, buf, sizeof(buf))) { 1665 err = bpf_object__process_kconfig_line(obj, buf, data); 1666 if (err) { 1667 pr_warn("error parsing system Kconfig line '%s': %d\n", 1668 buf, err); 1669 goto out; 1670 } 1671 } 1672 1673 out: 1674 gzclose(file); 1675 return err; 1676 } 1677 1678 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1679 const char *config, void *data) 1680 { 1681 char buf[PATH_MAX]; 1682 int err = 0; 1683 FILE *file; 1684 1685 file = fmemopen((void *)config, strlen(config), "r"); 1686 if (!file) { 1687 err = -errno; 1688 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1689 return err; 1690 } 1691 1692 while (fgets(buf, sizeof(buf), file)) { 1693 err = bpf_object__process_kconfig_line(obj, buf, data); 1694 if (err) { 1695 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1696 buf, err); 1697 break; 1698 } 1699 } 1700 1701 fclose(file); 1702 return err; 1703 } 1704 1705 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1706 { 1707 struct extern_desc *last_ext = NULL, *ext; 1708 size_t map_sz; 1709 int i, err; 1710 1711 for (i = 0; i < obj->nr_extern; i++) { 1712 ext = &obj->externs[i]; 1713 if (ext->type == EXT_KCFG) 1714 last_ext = ext; 1715 } 1716 1717 if (!last_ext) 1718 return 0; 1719 1720 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1721 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1722 obj->efile.symbols_shndx, 1723 NULL, map_sz); 1724 if (err) 1725 return err; 1726 1727 obj->kconfig_map_idx = obj->nr_maps - 1; 1728 1729 return 0; 1730 } 1731 1732 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1733 { 1734 Elf_Data *symbols = obj->efile.symbols; 1735 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1736 Elf_Data *data = NULL; 1737 Elf_Scn *scn; 1738 1739 if (obj->efile.maps_shndx < 0) 1740 return 0; 1741 1742 if (!symbols) 1743 return -EINVAL; 1744 1745 scn = elf_getscn(obj->efile.elf, obj->efile.maps_shndx); 1746 if (scn) 1747 data = elf_getdata(scn, NULL); 1748 if (!scn || !data) { 1749 pr_warn("failed to get Elf_Data from map section %d\n", 1750 obj->efile.maps_shndx); 1751 return -EINVAL; 1752 } 1753 1754 /* 1755 * Count number of maps. Each map has a name. 1756 * Array of maps is not supported: only the first element is 1757 * considered. 1758 * 1759 * TODO: Detect array of map and report error. 1760 */ 1761 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1762 for (i = 0; i < nr_syms; i++) { 1763 GElf_Sym sym; 1764 1765 if (!gelf_getsym(symbols, i, &sym)) 1766 continue; 1767 if (sym.st_shndx != obj->efile.maps_shndx) 1768 continue; 1769 nr_maps++; 1770 } 1771 /* Assume equally sized map definitions */ 1772 pr_debug("maps in %s: %d maps in %zd bytes\n", 1773 obj->path, nr_maps, data->d_size); 1774 1775 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1776 pr_warn("unable to determine map definition size section %s, %d maps in %zd bytes\n", 1777 obj->path, nr_maps, data->d_size); 1778 return -EINVAL; 1779 } 1780 map_def_sz = data->d_size / nr_maps; 1781 1782 /* Fill obj->maps using data in "maps" section. */ 1783 for (i = 0; i < nr_syms; i++) { 1784 GElf_Sym sym; 1785 const char *map_name; 1786 struct bpf_map_def *def; 1787 struct bpf_map *map; 1788 1789 if (!gelf_getsym(symbols, i, &sym)) 1790 continue; 1791 if (sym.st_shndx != obj->efile.maps_shndx) 1792 continue; 1793 1794 map = bpf_object__add_map(obj); 1795 if (IS_ERR(map)) 1796 return PTR_ERR(map); 1797 1798 map_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 1799 sym.st_name); 1800 if (!map_name) { 1801 pr_warn("failed to get map #%d name sym string for obj %s\n", 1802 i, obj->path); 1803 return -LIBBPF_ERRNO__FORMAT; 1804 } 1805 1806 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1807 map->sec_idx = sym.st_shndx; 1808 map->sec_offset = sym.st_value; 1809 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1810 map_name, map->sec_idx, map->sec_offset); 1811 if (sym.st_value + map_def_sz > data->d_size) { 1812 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1813 obj->path, map_name); 1814 return -EINVAL; 1815 } 1816 1817 map->name = strdup(map_name); 1818 if (!map->name) { 1819 pr_warn("failed to alloc map name\n"); 1820 return -ENOMEM; 1821 } 1822 pr_debug("map %d is \"%s\"\n", i, map->name); 1823 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1824 /* 1825 * If the definition of the map in the object file fits in 1826 * bpf_map_def, copy it. Any extra fields in our version 1827 * of bpf_map_def will default to zero as a result of the 1828 * calloc above. 1829 */ 1830 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1831 memcpy(&map->def, def, map_def_sz); 1832 } else { 1833 /* 1834 * Here the map structure being read is bigger than what 1835 * we expect, truncate if the excess bits are all zero. 1836 * If they are not zero, reject this map as 1837 * incompatible. 1838 */ 1839 char *b; 1840 1841 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1842 b < ((char *)def) + map_def_sz; b++) { 1843 if (*b != 0) { 1844 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1845 obj->path, map_name); 1846 if (strict) 1847 return -EINVAL; 1848 } 1849 } 1850 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1851 } 1852 } 1853 return 0; 1854 } 1855 1856 static const struct btf_type * 1857 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1858 { 1859 const struct btf_type *t = btf__type_by_id(btf, id); 1860 1861 if (res_id) 1862 *res_id = id; 1863 1864 while (btf_is_mod(t) || btf_is_typedef(t)) { 1865 if (res_id) 1866 *res_id = t->type; 1867 t = btf__type_by_id(btf, t->type); 1868 } 1869 1870 return t; 1871 } 1872 1873 static const struct btf_type * 1874 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1875 { 1876 const struct btf_type *t; 1877 1878 t = skip_mods_and_typedefs(btf, id, NULL); 1879 if (!btf_is_ptr(t)) 1880 return NULL; 1881 1882 t = skip_mods_and_typedefs(btf, t->type, res_id); 1883 1884 return btf_is_func_proto(t) ? t : NULL; 1885 } 1886 1887 /* 1888 * Fetch integer attribute of BTF map definition. Such attributes are 1889 * represented using a pointer to an array, in which dimensionality of array 1890 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1891 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1892 * type definition, while using only sizeof(void *) space in ELF data section. 1893 */ 1894 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1895 const struct btf_member *m, __u32 *res) 1896 { 1897 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1898 const char *name = btf__name_by_offset(btf, m->name_off); 1899 const struct btf_array *arr_info; 1900 const struct btf_type *arr_t; 1901 1902 if (!btf_is_ptr(t)) { 1903 pr_warn("map '%s': attr '%s': expected PTR, got %u.\n", 1904 map_name, name, btf_kind(t)); 1905 return false; 1906 } 1907 1908 arr_t = btf__type_by_id(btf, t->type); 1909 if (!arr_t) { 1910 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1911 map_name, name, t->type); 1912 return false; 1913 } 1914 if (!btf_is_array(arr_t)) { 1915 pr_warn("map '%s': attr '%s': expected ARRAY, got %u.\n", 1916 map_name, name, btf_kind(arr_t)); 1917 return false; 1918 } 1919 arr_info = btf_array(arr_t); 1920 *res = arr_info->nelems; 1921 return true; 1922 } 1923 1924 static int build_map_pin_path(struct bpf_map *map, const char *path) 1925 { 1926 char buf[PATH_MAX]; 1927 int err, len; 1928 1929 if (!path) 1930 path = "/sys/fs/bpf"; 1931 1932 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1933 if (len < 0) 1934 return -EINVAL; 1935 else if (len >= PATH_MAX) 1936 return -ENAMETOOLONG; 1937 1938 err = bpf_map__set_pin_path(map, buf); 1939 if (err) 1940 return err; 1941 1942 return 0; 1943 } 1944 1945 1946 static int parse_btf_map_def(struct bpf_object *obj, 1947 struct bpf_map *map, 1948 const struct btf_type *def, 1949 bool strict, bool is_inner, 1950 const char *pin_root_path) 1951 { 1952 const struct btf_type *t; 1953 const struct btf_member *m; 1954 int vlen, i; 1955 1956 vlen = btf_vlen(def); 1957 m = btf_members(def); 1958 for (i = 0; i < vlen; i++, m++) { 1959 const char *name = btf__name_by_offset(obj->btf, m->name_off); 1960 1961 if (!name) { 1962 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 1963 return -EINVAL; 1964 } 1965 if (strcmp(name, "type") == 0) { 1966 if (!get_map_field_int(map->name, obj->btf, m, 1967 &map->def.type)) 1968 return -EINVAL; 1969 pr_debug("map '%s': found type = %u.\n", 1970 map->name, map->def.type); 1971 } else if (strcmp(name, "max_entries") == 0) { 1972 if (!get_map_field_int(map->name, obj->btf, m, 1973 &map->def.max_entries)) 1974 return -EINVAL; 1975 pr_debug("map '%s': found max_entries = %u.\n", 1976 map->name, map->def.max_entries); 1977 } else if (strcmp(name, "map_flags") == 0) { 1978 if (!get_map_field_int(map->name, obj->btf, m, 1979 &map->def.map_flags)) 1980 return -EINVAL; 1981 pr_debug("map '%s': found map_flags = %u.\n", 1982 map->name, map->def.map_flags); 1983 } else if (strcmp(name, "numa_node") == 0) { 1984 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 1985 return -EINVAL; 1986 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 1987 } else if (strcmp(name, "key_size") == 0) { 1988 __u32 sz; 1989 1990 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 1991 return -EINVAL; 1992 pr_debug("map '%s': found key_size = %u.\n", 1993 map->name, sz); 1994 if (map->def.key_size && map->def.key_size != sz) { 1995 pr_warn("map '%s': conflicting key size %u != %u.\n", 1996 map->name, map->def.key_size, sz); 1997 return -EINVAL; 1998 } 1999 map->def.key_size = sz; 2000 } else if (strcmp(name, "key") == 0) { 2001 __s64 sz; 2002 2003 t = btf__type_by_id(obj->btf, m->type); 2004 if (!t) { 2005 pr_warn("map '%s': key type [%d] not found.\n", 2006 map->name, m->type); 2007 return -EINVAL; 2008 } 2009 if (!btf_is_ptr(t)) { 2010 pr_warn("map '%s': key spec is not PTR: %u.\n", 2011 map->name, btf_kind(t)); 2012 return -EINVAL; 2013 } 2014 sz = btf__resolve_size(obj->btf, t->type); 2015 if (sz < 0) { 2016 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2017 map->name, t->type, (ssize_t)sz); 2018 return sz; 2019 } 2020 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2021 map->name, t->type, (ssize_t)sz); 2022 if (map->def.key_size && map->def.key_size != sz) { 2023 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2024 map->name, map->def.key_size, (ssize_t)sz); 2025 return -EINVAL; 2026 } 2027 map->def.key_size = sz; 2028 map->btf_key_type_id = t->type; 2029 } else if (strcmp(name, "value_size") == 0) { 2030 __u32 sz; 2031 2032 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2033 return -EINVAL; 2034 pr_debug("map '%s': found value_size = %u.\n", 2035 map->name, sz); 2036 if (map->def.value_size && map->def.value_size != sz) { 2037 pr_warn("map '%s': conflicting value size %u != %u.\n", 2038 map->name, map->def.value_size, sz); 2039 return -EINVAL; 2040 } 2041 map->def.value_size = sz; 2042 } else if (strcmp(name, "value") == 0) { 2043 __s64 sz; 2044 2045 t = btf__type_by_id(obj->btf, m->type); 2046 if (!t) { 2047 pr_warn("map '%s': value type [%d] not found.\n", 2048 map->name, m->type); 2049 return -EINVAL; 2050 } 2051 if (!btf_is_ptr(t)) { 2052 pr_warn("map '%s': value spec is not PTR: %u.\n", 2053 map->name, btf_kind(t)); 2054 return -EINVAL; 2055 } 2056 sz = btf__resolve_size(obj->btf, t->type); 2057 if (sz < 0) { 2058 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2059 map->name, t->type, (ssize_t)sz); 2060 return sz; 2061 } 2062 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2063 map->name, t->type, (ssize_t)sz); 2064 if (map->def.value_size && map->def.value_size != sz) { 2065 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2066 map->name, map->def.value_size, (ssize_t)sz); 2067 return -EINVAL; 2068 } 2069 map->def.value_size = sz; 2070 map->btf_value_type_id = t->type; 2071 } 2072 else if (strcmp(name, "values") == 0) { 2073 int err; 2074 2075 if (is_inner) { 2076 pr_warn("map '%s': multi-level inner maps not supported.\n", 2077 map->name); 2078 return -ENOTSUP; 2079 } 2080 if (i != vlen - 1) { 2081 pr_warn("map '%s': '%s' member should be last.\n", 2082 map->name, name); 2083 return -EINVAL; 2084 } 2085 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2086 pr_warn("map '%s': should be map-in-map.\n", 2087 map->name); 2088 return -ENOTSUP; 2089 } 2090 if (map->def.value_size && map->def.value_size != 4) { 2091 pr_warn("map '%s': conflicting value size %u != 4.\n", 2092 map->name, map->def.value_size); 2093 return -EINVAL; 2094 } 2095 map->def.value_size = 4; 2096 t = btf__type_by_id(obj->btf, m->type); 2097 if (!t) { 2098 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2099 map->name, m->type); 2100 return -EINVAL; 2101 } 2102 if (!btf_is_array(t) || btf_array(t)->nelems) { 2103 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2104 map->name); 2105 return -EINVAL; 2106 } 2107 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2108 NULL); 2109 if (!btf_is_ptr(t)) { 2110 pr_warn("map '%s': map-in-map inner def is of unexpected kind %u.\n", 2111 map->name, btf_kind(t)); 2112 return -EINVAL; 2113 } 2114 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2115 if (!btf_is_struct(t)) { 2116 pr_warn("map '%s': map-in-map inner def is of unexpected kind %u.\n", 2117 map->name, btf_kind(t)); 2118 return -EINVAL; 2119 } 2120 2121 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2122 if (!map->inner_map) 2123 return -ENOMEM; 2124 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2125 map->inner_map->name = malloc(strlen(map->name) + 2126 sizeof(".inner") + 1); 2127 if (!map->inner_map->name) 2128 return -ENOMEM; 2129 sprintf(map->inner_map->name, "%s.inner", map->name); 2130 2131 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2132 true /* is_inner */, NULL); 2133 if (err) 2134 return err; 2135 } else if (strcmp(name, "pinning") == 0) { 2136 __u32 val; 2137 int err; 2138 2139 if (is_inner) { 2140 pr_debug("map '%s': inner def can't be pinned.\n", 2141 map->name); 2142 return -EINVAL; 2143 } 2144 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2145 return -EINVAL; 2146 pr_debug("map '%s': found pinning = %u.\n", 2147 map->name, val); 2148 2149 if (val != LIBBPF_PIN_NONE && 2150 val != LIBBPF_PIN_BY_NAME) { 2151 pr_warn("map '%s': invalid pinning value %u.\n", 2152 map->name, val); 2153 return -EINVAL; 2154 } 2155 if (val == LIBBPF_PIN_BY_NAME) { 2156 err = build_map_pin_path(map, pin_root_path); 2157 if (err) { 2158 pr_warn("map '%s': couldn't build pin path.\n", 2159 map->name); 2160 return err; 2161 } 2162 } 2163 } else { 2164 if (strict) { 2165 pr_warn("map '%s': unknown field '%s'.\n", 2166 map->name, name); 2167 return -ENOTSUP; 2168 } 2169 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2170 map->name, name); 2171 } 2172 } 2173 2174 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2175 pr_warn("map '%s': map type isn't specified.\n", map->name); 2176 return -EINVAL; 2177 } 2178 2179 return 0; 2180 } 2181 2182 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2183 const struct btf_type *sec, 2184 int var_idx, int sec_idx, 2185 const Elf_Data *data, bool strict, 2186 const char *pin_root_path) 2187 { 2188 const struct btf_type *var, *def; 2189 const struct btf_var_secinfo *vi; 2190 const struct btf_var *var_extra; 2191 const char *map_name; 2192 struct bpf_map *map; 2193 2194 vi = btf_var_secinfos(sec) + var_idx; 2195 var = btf__type_by_id(obj->btf, vi->type); 2196 var_extra = btf_var(var); 2197 map_name = btf__name_by_offset(obj->btf, var->name_off); 2198 2199 if (map_name == NULL || map_name[0] == '\0') { 2200 pr_warn("map #%d: empty name.\n", var_idx); 2201 return -EINVAL; 2202 } 2203 if ((__u64)vi->offset + vi->size > data->d_size) { 2204 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2205 return -EINVAL; 2206 } 2207 if (!btf_is_var(var)) { 2208 pr_warn("map '%s': unexpected var kind %u.\n", 2209 map_name, btf_kind(var)); 2210 return -EINVAL; 2211 } 2212 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2213 var_extra->linkage != BTF_VAR_STATIC) { 2214 pr_warn("map '%s': unsupported var linkage %u.\n", 2215 map_name, var_extra->linkage); 2216 return -EOPNOTSUPP; 2217 } 2218 2219 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2220 if (!btf_is_struct(def)) { 2221 pr_warn("map '%s': unexpected def kind %u.\n", 2222 map_name, btf_kind(var)); 2223 return -EINVAL; 2224 } 2225 if (def->size > vi->size) { 2226 pr_warn("map '%s': invalid def size.\n", map_name); 2227 return -EINVAL; 2228 } 2229 2230 map = bpf_object__add_map(obj); 2231 if (IS_ERR(map)) 2232 return PTR_ERR(map); 2233 map->name = strdup(map_name); 2234 if (!map->name) { 2235 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2236 return -ENOMEM; 2237 } 2238 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2239 map->def.type = BPF_MAP_TYPE_UNSPEC; 2240 map->sec_idx = sec_idx; 2241 map->sec_offset = vi->offset; 2242 map->btf_var_idx = var_idx; 2243 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2244 map_name, map->sec_idx, map->sec_offset); 2245 2246 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2247 } 2248 2249 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2250 const char *pin_root_path) 2251 { 2252 const struct btf_type *sec = NULL; 2253 int nr_types, i, vlen, err; 2254 const struct btf_type *t; 2255 const char *name; 2256 Elf_Data *data; 2257 Elf_Scn *scn; 2258 2259 if (obj->efile.btf_maps_shndx < 0) 2260 return 0; 2261 2262 scn = elf_getscn(obj->efile.elf, obj->efile.btf_maps_shndx); 2263 if (scn) 2264 data = elf_getdata(scn, NULL); 2265 if (!scn || !data) { 2266 pr_warn("failed to get Elf_Data from map section %d (%s)\n", 2267 obj->efile.maps_shndx, MAPS_ELF_SEC); 2268 return -EINVAL; 2269 } 2270 2271 nr_types = btf__get_nr_types(obj->btf); 2272 for (i = 1; i <= nr_types; i++) { 2273 t = btf__type_by_id(obj->btf, i); 2274 if (!btf_is_datasec(t)) 2275 continue; 2276 name = btf__name_by_offset(obj->btf, t->name_off); 2277 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2278 sec = t; 2279 obj->efile.btf_maps_sec_btf_id = i; 2280 break; 2281 } 2282 } 2283 2284 if (!sec) { 2285 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2286 return -ENOENT; 2287 } 2288 2289 vlen = btf_vlen(sec); 2290 for (i = 0; i < vlen; i++) { 2291 err = bpf_object__init_user_btf_map(obj, sec, i, 2292 obj->efile.btf_maps_shndx, 2293 data, strict, 2294 pin_root_path); 2295 if (err) 2296 return err; 2297 } 2298 2299 return 0; 2300 } 2301 2302 static int bpf_object__init_maps(struct bpf_object *obj, 2303 const struct bpf_object_open_opts *opts) 2304 { 2305 const char *pin_root_path; 2306 bool strict; 2307 int err; 2308 2309 strict = !OPTS_GET(opts, relaxed_maps, false); 2310 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2311 2312 err = bpf_object__init_user_maps(obj, strict); 2313 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2314 err = err ?: bpf_object__init_global_data_maps(obj); 2315 err = err ?: bpf_object__init_kconfig_map(obj); 2316 err = err ?: bpf_object__init_struct_ops_maps(obj); 2317 if (err) 2318 return err; 2319 2320 return 0; 2321 } 2322 2323 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2324 { 2325 Elf_Scn *scn; 2326 GElf_Shdr sh; 2327 2328 scn = elf_getscn(obj->efile.elf, idx); 2329 if (!scn) 2330 return false; 2331 2332 if (gelf_getshdr(scn, &sh) != &sh) 2333 return false; 2334 2335 if (sh.sh_flags & SHF_EXECINSTR) 2336 return true; 2337 2338 return false; 2339 } 2340 2341 static bool btf_needs_sanitization(struct bpf_object *obj) 2342 { 2343 bool has_func_global = obj->caps.btf_func_global; 2344 bool has_datasec = obj->caps.btf_datasec; 2345 bool has_func = obj->caps.btf_func; 2346 2347 return !has_func || !has_datasec || !has_func_global; 2348 } 2349 2350 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2351 { 2352 bool has_func_global = obj->caps.btf_func_global; 2353 bool has_datasec = obj->caps.btf_datasec; 2354 bool has_func = obj->caps.btf_func; 2355 struct btf_type *t; 2356 int i, j, vlen; 2357 2358 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2359 t = (struct btf_type *)btf__type_by_id(btf, i); 2360 2361 if (!has_datasec && btf_is_var(t)) { 2362 /* replace VAR with INT */ 2363 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2364 /* 2365 * using size = 1 is the safest choice, 4 will be too 2366 * big and cause kernel BTF validation failure if 2367 * original variable took less than 4 bytes 2368 */ 2369 t->size = 1; 2370 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2371 } else if (!has_datasec && btf_is_datasec(t)) { 2372 /* replace DATASEC with STRUCT */ 2373 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2374 struct btf_member *m = btf_members(t); 2375 struct btf_type *vt; 2376 char *name; 2377 2378 name = (char *)btf__name_by_offset(btf, t->name_off); 2379 while (*name) { 2380 if (*name == '.') 2381 *name = '_'; 2382 name++; 2383 } 2384 2385 vlen = btf_vlen(t); 2386 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2387 for (j = 0; j < vlen; j++, v++, m++) { 2388 /* order of field assignments is important */ 2389 m->offset = v->offset * 8; 2390 m->type = v->type; 2391 /* preserve variable name as member name */ 2392 vt = (void *)btf__type_by_id(btf, v->type); 2393 m->name_off = vt->name_off; 2394 } 2395 } else if (!has_func && btf_is_func_proto(t)) { 2396 /* replace FUNC_PROTO with ENUM */ 2397 vlen = btf_vlen(t); 2398 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2399 t->size = sizeof(__u32); /* kernel enforced */ 2400 } else if (!has_func && btf_is_func(t)) { 2401 /* replace FUNC with TYPEDEF */ 2402 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2403 } else if (!has_func_global && btf_is_func(t)) { 2404 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2405 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2406 } 2407 } 2408 } 2409 2410 static bool libbpf_needs_btf(const struct bpf_object *obj) 2411 { 2412 return obj->efile.btf_maps_shndx >= 0 || 2413 obj->efile.st_ops_shndx >= 0 || 2414 obj->nr_extern > 0; 2415 } 2416 2417 static bool kernel_needs_btf(const struct bpf_object *obj) 2418 { 2419 return obj->efile.st_ops_shndx >= 0; 2420 } 2421 2422 static int bpf_object__init_btf(struct bpf_object *obj, 2423 Elf_Data *btf_data, 2424 Elf_Data *btf_ext_data) 2425 { 2426 int err = -ENOENT; 2427 2428 if (btf_data) { 2429 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2430 if (IS_ERR(obj->btf)) { 2431 err = PTR_ERR(obj->btf); 2432 obj->btf = NULL; 2433 pr_warn("Error loading ELF section %s: %d.\n", 2434 BTF_ELF_SEC, err); 2435 goto out; 2436 } 2437 err = 0; 2438 } 2439 if (btf_ext_data) { 2440 if (!obj->btf) { 2441 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2442 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2443 goto out; 2444 } 2445 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2446 btf_ext_data->d_size); 2447 if (IS_ERR(obj->btf_ext)) { 2448 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2449 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2450 obj->btf_ext = NULL; 2451 goto out; 2452 } 2453 } 2454 out: 2455 if (err && libbpf_needs_btf(obj)) { 2456 pr_warn("BTF is required, but is missing or corrupted.\n"); 2457 return err; 2458 } 2459 return 0; 2460 } 2461 2462 static int bpf_object__finalize_btf(struct bpf_object *obj) 2463 { 2464 int err; 2465 2466 if (!obj->btf) 2467 return 0; 2468 2469 err = btf__finalize_data(obj, obj->btf); 2470 if (err) { 2471 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2472 return err; 2473 } 2474 2475 return 0; 2476 } 2477 2478 static inline bool libbpf_prog_needs_vmlinux_btf(struct bpf_program *prog) 2479 { 2480 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2481 prog->type == BPF_PROG_TYPE_LSM) 2482 return true; 2483 2484 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2485 * also need vmlinux BTF 2486 */ 2487 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2488 return true; 2489 2490 return false; 2491 } 2492 2493 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj) 2494 { 2495 bool need_vmlinux_btf = false; 2496 struct bpf_program *prog; 2497 int err; 2498 2499 /* CO-RE relocations need kernel BTF */ 2500 if (obj->btf_ext && obj->btf_ext->field_reloc_info.len) 2501 need_vmlinux_btf = true; 2502 2503 bpf_object__for_each_program(prog, obj) { 2504 if (!prog->load) 2505 continue; 2506 if (libbpf_prog_needs_vmlinux_btf(prog)) { 2507 need_vmlinux_btf = true; 2508 break; 2509 } 2510 } 2511 2512 if (!need_vmlinux_btf) 2513 return 0; 2514 2515 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2516 if (IS_ERR(obj->btf_vmlinux)) { 2517 err = PTR_ERR(obj->btf_vmlinux); 2518 pr_warn("Error loading vmlinux BTF: %d\n", err); 2519 obj->btf_vmlinux = NULL; 2520 return err; 2521 } 2522 return 0; 2523 } 2524 2525 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2526 { 2527 struct btf *kern_btf = obj->btf; 2528 bool btf_mandatory, sanitize; 2529 int err = 0; 2530 2531 if (!obj->btf) 2532 return 0; 2533 2534 sanitize = btf_needs_sanitization(obj); 2535 if (sanitize) { 2536 const void *raw_data; 2537 __u32 sz; 2538 2539 /* clone BTF to sanitize a copy and leave the original intact */ 2540 raw_data = btf__get_raw_data(obj->btf, &sz); 2541 kern_btf = btf__new(raw_data, sz); 2542 if (IS_ERR(kern_btf)) 2543 return PTR_ERR(kern_btf); 2544 2545 bpf_object__sanitize_btf(obj, kern_btf); 2546 } 2547 2548 err = btf__load(kern_btf); 2549 if (sanitize) { 2550 if (!err) { 2551 /* move fd to libbpf's BTF */ 2552 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2553 btf__set_fd(kern_btf, -1); 2554 } 2555 btf__free(kern_btf); 2556 } 2557 if (err) { 2558 btf_mandatory = kernel_needs_btf(obj); 2559 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2560 btf_mandatory ? "BTF is mandatory, can't proceed." 2561 : "BTF is optional, ignoring."); 2562 if (!btf_mandatory) 2563 err = 0; 2564 } 2565 return err; 2566 } 2567 2568 static int bpf_object__elf_collect(struct bpf_object *obj) 2569 { 2570 Elf *elf = obj->efile.elf; 2571 GElf_Ehdr *ep = &obj->efile.ehdr; 2572 Elf_Data *btf_ext_data = NULL; 2573 Elf_Data *btf_data = NULL; 2574 Elf_Scn *scn = NULL; 2575 int idx = 0, err = 0; 2576 2577 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 2578 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) { 2579 pr_warn("failed to get e_shstrndx from %s\n", obj->path); 2580 return -LIBBPF_ERRNO__FORMAT; 2581 } 2582 2583 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2584 char *name; 2585 GElf_Shdr sh; 2586 Elf_Data *data; 2587 2588 idx++; 2589 if (gelf_getshdr(scn, &sh) != &sh) { 2590 pr_warn("failed to get section(%d) header from %s\n", 2591 idx, obj->path); 2592 return -LIBBPF_ERRNO__FORMAT; 2593 } 2594 2595 name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 2596 if (!name) { 2597 pr_warn("failed to get section(%d) name from %s\n", 2598 idx, obj->path); 2599 return -LIBBPF_ERRNO__FORMAT; 2600 } 2601 2602 data = elf_getdata(scn, 0); 2603 if (!data) { 2604 pr_warn("failed to get section(%d) data from %s(%s)\n", 2605 idx, name, obj->path); 2606 return -LIBBPF_ERRNO__FORMAT; 2607 } 2608 pr_debug("section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2609 idx, name, (unsigned long)data->d_size, 2610 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2611 (int)sh.sh_type); 2612 2613 if (strcmp(name, "license") == 0) { 2614 err = bpf_object__init_license(obj, 2615 data->d_buf, 2616 data->d_size); 2617 if (err) 2618 return err; 2619 } else if (strcmp(name, "version") == 0) { 2620 err = bpf_object__init_kversion(obj, 2621 data->d_buf, 2622 data->d_size); 2623 if (err) 2624 return err; 2625 } else if (strcmp(name, "maps") == 0) { 2626 obj->efile.maps_shndx = idx; 2627 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2628 obj->efile.btf_maps_shndx = idx; 2629 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2630 btf_data = data; 2631 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2632 btf_ext_data = data; 2633 } else if (sh.sh_type == SHT_SYMTAB) { 2634 if (obj->efile.symbols) { 2635 pr_warn("bpf: multiple SYMTAB in %s\n", 2636 obj->path); 2637 return -LIBBPF_ERRNO__FORMAT; 2638 } 2639 obj->efile.symbols = data; 2640 obj->efile.symbols_shndx = idx; 2641 obj->efile.strtabidx = sh.sh_link; 2642 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2643 if (sh.sh_flags & SHF_EXECINSTR) { 2644 if (strcmp(name, ".text") == 0) 2645 obj->efile.text_shndx = idx; 2646 err = bpf_object__add_program(obj, data->d_buf, 2647 data->d_size, 2648 name, idx); 2649 if (err) { 2650 char errmsg[STRERR_BUFSIZE]; 2651 char *cp; 2652 2653 cp = libbpf_strerror_r(-err, errmsg, 2654 sizeof(errmsg)); 2655 pr_warn("failed to alloc program %s (%s): %s", 2656 name, obj->path, cp); 2657 return err; 2658 } 2659 } else if (strcmp(name, DATA_SEC) == 0) { 2660 obj->efile.data = data; 2661 obj->efile.data_shndx = idx; 2662 } else if (strcmp(name, RODATA_SEC) == 0) { 2663 obj->efile.rodata = data; 2664 obj->efile.rodata_shndx = idx; 2665 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2666 obj->efile.st_ops_data = data; 2667 obj->efile.st_ops_shndx = idx; 2668 } else { 2669 pr_debug("skip section(%d) %s\n", idx, name); 2670 } 2671 } else if (sh.sh_type == SHT_REL) { 2672 int nr_sects = obj->efile.nr_reloc_sects; 2673 void *sects = obj->efile.reloc_sects; 2674 int sec = sh.sh_info; /* points to other section */ 2675 2676 /* Only do relo for section with exec instructions */ 2677 if (!section_have_execinstr(obj, sec) && 2678 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2679 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2680 pr_debug("skip relo %s(%d) for section(%d)\n", 2681 name, idx, sec); 2682 continue; 2683 } 2684 2685 sects = reallocarray(sects, nr_sects + 1, 2686 sizeof(*obj->efile.reloc_sects)); 2687 if (!sects) { 2688 pr_warn("reloc_sects realloc failed\n"); 2689 return -ENOMEM; 2690 } 2691 2692 obj->efile.reloc_sects = sects; 2693 obj->efile.nr_reloc_sects++; 2694 2695 obj->efile.reloc_sects[nr_sects].shdr = sh; 2696 obj->efile.reloc_sects[nr_sects].data = data; 2697 } else if (sh.sh_type == SHT_NOBITS && 2698 strcmp(name, BSS_SEC) == 0) { 2699 obj->efile.bss = data; 2700 obj->efile.bss_shndx = idx; 2701 } else { 2702 pr_debug("skip section(%d) %s\n", idx, name); 2703 } 2704 } 2705 2706 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2707 pr_warn("Corrupted ELF file: index of strtab invalid\n"); 2708 return -LIBBPF_ERRNO__FORMAT; 2709 } 2710 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2711 } 2712 2713 static bool sym_is_extern(const GElf_Sym *sym) 2714 { 2715 int bind = GELF_ST_BIND(sym->st_info); 2716 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2717 return sym->st_shndx == SHN_UNDEF && 2718 (bind == STB_GLOBAL || bind == STB_WEAK) && 2719 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2720 } 2721 2722 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2723 { 2724 const struct btf_type *t; 2725 const char *var_name; 2726 int i, n; 2727 2728 if (!btf) 2729 return -ESRCH; 2730 2731 n = btf__get_nr_types(btf); 2732 for (i = 1; i <= n; i++) { 2733 t = btf__type_by_id(btf, i); 2734 2735 if (!btf_is_var(t)) 2736 continue; 2737 2738 var_name = btf__name_by_offset(btf, t->name_off); 2739 if (strcmp(var_name, ext_name)) 2740 continue; 2741 2742 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2743 return -EINVAL; 2744 2745 return i; 2746 } 2747 2748 return -ENOENT; 2749 } 2750 2751 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 2752 const struct btf_var_secinfo *vs; 2753 const struct btf_type *t; 2754 int i, j, n; 2755 2756 if (!btf) 2757 return -ESRCH; 2758 2759 n = btf__get_nr_types(btf); 2760 for (i = 1; i <= n; i++) { 2761 t = btf__type_by_id(btf, i); 2762 2763 if (!btf_is_datasec(t)) 2764 continue; 2765 2766 vs = btf_var_secinfos(t); 2767 for (j = 0; j < btf_vlen(t); j++, vs++) { 2768 if (vs->type == ext_btf_id) 2769 return i; 2770 } 2771 } 2772 2773 return -ENOENT; 2774 } 2775 2776 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 2777 bool *is_signed) 2778 { 2779 const struct btf_type *t; 2780 const char *name; 2781 2782 t = skip_mods_and_typedefs(btf, id, NULL); 2783 name = btf__name_by_offset(btf, t->name_off); 2784 2785 if (is_signed) 2786 *is_signed = false; 2787 switch (btf_kind(t)) { 2788 case BTF_KIND_INT: { 2789 int enc = btf_int_encoding(t); 2790 2791 if (enc & BTF_INT_BOOL) 2792 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 2793 if (is_signed) 2794 *is_signed = enc & BTF_INT_SIGNED; 2795 if (t->size == 1) 2796 return KCFG_CHAR; 2797 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 2798 return KCFG_UNKNOWN; 2799 return KCFG_INT; 2800 } 2801 case BTF_KIND_ENUM: 2802 if (t->size != 4) 2803 return KCFG_UNKNOWN; 2804 if (strcmp(name, "libbpf_tristate")) 2805 return KCFG_UNKNOWN; 2806 return KCFG_TRISTATE; 2807 case BTF_KIND_ARRAY: 2808 if (btf_array(t)->nelems == 0) 2809 return KCFG_UNKNOWN; 2810 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 2811 return KCFG_UNKNOWN; 2812 return KCFG_CHAR_ARR; 2813 default: 2814 return KCFG_UNKNOWN; 2815 } 2816 } 2817 2818 static int cmp_externs(const void *_a, const void *_b) 2819 { 2820 const struct extern_desc *a = _a; 2821 const struct extern_desc *b = _b; 2822 2823 if (a->type != b->type) 2824 return a->type < b->type ? -1 : 1; 2825 2826 if (a->type == EXT_KCFG) { 2827 /* descending order by alignment requirements */ 2828 if (a->kcfg.align != b->kcfg.align) 2829 return a->kcfg.align > b->kcfg.align ? -1 : 1; 2830 /* ascending order by size, within same alignment class */ 2831 if (a->kcfg.sz != b->kcfg.sz) 2832 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 2833 } 2834 2835 /* resolve ties by name */ 2836 return strcmp(a->name, b->name); 2837 } 2838 2839 static int find_int_btf_id(const struct btf *btf) 2840 { 2841 const struct btf_type *t; 2842 int i, n; 2843 2844 n = btf__get_nr_types(btf); 2845 for (i = 1; i <= n; i++) { 2846 t = btf__type_by_id(btf, i); 2847 2848 if (btf_is_int(t) && btf_int_bits(t) == 32) 2849 return i; 2850 } 2851 2852 return 0; 2853 } 2854 2855 static int bpf_object__collect_externs(struct bpf_object *obj) 2856 { 2857 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 2858 const struct btf_type *t; 2859 struct extern_desc *ext; 2860 int i, n, off; 2861 const char *ext_name, *sec_name; 2862 Elf_Scn *scn; 2863 GElf_Shdr sh; 2864 2865 if (!obj->efile.symbols) 2866 return 0; 2867 2868 scn = elf_getscn(obj->efile.elf, obj->efile.symbols_shndx); 2869 if (!scn) 2870 return -LIBBPF_ERRNO__FORMAT; 2871 if (gelf_getshdr(scn, &sh) != &sh) 2872 return -LIBBPF_ERRNO__FORMAT; 2873 n = sh.sh_size / sh.sh_entsize; 2874 2875 pr_debug("looking for externs among %d symbols...\n", n); 2876 for (i = 0; i < n; i++) { 2877 GElf_Sym sym; 2878 2879 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 2880 return -LIBBPF_ERRNO__FORMAT; 2881 if (!sym_is_extern(&sym)) 2882 continue; 2883 ext_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 2884 sym.st_name); 2885 if (!ext_name || !ext_name[0]) 2886 continue; 2887 2888 ext = obj->externs; 2889 ext = reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 2890 if (!ext) 2891 return -ENOMEM; 2892 obj->externs = ext; 2893 ext = &ext[obj->nr_extern]; 2894 memset(ext, 0, sizeof(*ext)); 2895 obj->nr_extern++; 2896 2897 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 2898 if (ext->btf_id <= 0) { 2899 pr_warn("failed to find BTF for extern '%s': %d\n", 2900 ext_name, ext->btf_id); 2901 return ext->btf_id; 2902 } 2903 t = btf__type_by_id(obj->btf, ext->btf_id); 2904 ext->name = btf__name_by_offset(obj->btf, t->name_off); 2905 ext->sym_idx = i; 2906 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 2907 2908 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 2909 if (ext->sec_btf_id <= 0) { 2910 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 2911 ext_name, ext->btf_id, ext->sec_btf_id); 2912 return ext->sec_btf_id; 2913 } 2914 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 2915 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 2916 2917 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 2918 kcfg_sec = sec; 2919 ext->type = EXT_KCFG; 2920 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 2921 if (ext->kcfg.sz <= 0) { 2922 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 2923 ext_name, ext->kcfg.sz); 2924 return ext->kcfg.sz; 2925 } 2926 ext->kcfg.align = btf__align_of(obj->btf, t->type); 2927 if (ext->kcfg.align <= 0) { 2928 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 2929 ext_name, ext->kcfg.align); 2930 return -EINVAL; 2931 } 2932 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 2933 &ext->kcfg.is_signed); 2934 if (ext->kcfg.type == KCFG_UNKNOWN) { 2935 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 2936 return -ENOTSUP; 2937 } 2938 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 2939 const struct btf_type *vt; 2940 2941 ksym_sec = sec; 2942 ext->type = EXT_KSYM; 2943 2944 vt = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2945 if (!btf_is_void(vt)) { 2946 pr_warn("extern (ksym) '%s' is not typeless (void)\n", ext_name); 2947 return -ENOTSUP; 2948 } 2949 } else { 2950 pr_warn("unrecognized extern section '%s'\n", sec_name); 2951 return -ENOTSUP; 2952 } 2953 } 2954 pr_debug("collected %d externs total\n", obj->nr_extern); 2955 2956 if (!obj->nr_extern) 2957 return 0; 2958 2959 /* sort externs by type, for kcfg ones also by (align, size, name) */ 2960 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 2961 2962 /* for .ksyms section, we need to turn all externs into allocated 2963 * variables in BTF to pass kernel verification; we do this by 2964 * pretending that each extern is a 8-byte variable 2965 */ 2966 if (ksym_sec) { 2967 /* find existing 4-byte integer type in BTF to use for fake 2968 * extern variables in DATASEC 2969 */ 2970 int int_btf_id = find_int_btf_id(obj->btf); 2971 2972 for (i = 0; i < obj->nr_extern; i++) { 2973 ext = &obj->externs[i]; 2974 if (ext->type != EXT_KSYM) 2975 continue; 2976 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 2977 i, ext->sym_idx, ext->name); 2978 } 2979 2980 sec = ksym_sec; 2981 n = btf_vlen(sec); 2982 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 2983 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 2984 struct btf_type *vt; 2985 2986 vt = (void *)btf__type_by_id(obj->btf, vs->type); 2987 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 2988 ext = find_extern_by_name(obj, ext_name); 2989 if (!ext) { 2990 pr_warn("failed to find extern definition for BTF var '%s'\n", 2991 ext_name); 2992 return -ESRCH; 2993 } 2994 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 2995 vt->type = int_btf_id; 2996 vs->offset = off; 2997 vs->size = sizeof(int); 2998 } 2999 sec->size = off; 3000 } 3001 3002 if (kcfg_sec) { 3003 sec = kcfg_sec; 3004 /* for kcfg externs calculate their offsets within a .kconfig map */ 3005 off = 0; 3006 for (i = 0; i < obj->nr_extern; i++) { 3007 ext = &obj->externs[i]; 3008 if (ext->type != EXT_KCFG) 3009 continue; 3010 3011 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3012 off = ext->kcfg.data_off + ext->kcfg.sz; 3013 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3014 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3015 } 3016 sec->size = off; 3017 n = btf_vlen(sec); 3018 for (i = 0; i < n; i++) { 3019 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3020 3021 t = btf__type_by_id(obj->btf, vs->type); 3022 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3023 ext = find_extern_by_name(obj, ext_name); 3024 if (!ext) { 3025 pr_warn("failed to find extern definition for BTF var '%s'\n", 3026 ext_name); 3027 return -ESRCH; 3028 } 3029 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3030 vs->offset = ext->kcfg.data_off; 3031 } 3032 } 3033 return 0; 3034 } 3035 3036 static struct bpf_program * 3037 bpf_object__find_prog_by_idx(struct bpf_object *obj, int idx) 3038 { 3039 struct bpf_program *prog; 3040 size_t i; 3041 3042 for (i = 0; i < obj->nr_programs; i++) { 3043 prog = &obj->programs[i]; 3044 if (prog->idx == idx) 3045 return prog; 3046 } 3047 return NULL; 3048 } 3049 3050 struct bpf_program * 3051 bpf_object__find_program_by_title(const struct bpf_object *obj, 3052 const char *title) 3053 { 3054 struct bpf_program *pos; 3055 3056 bpf_object__for_each_program(pos, obj) { 3057 if (pos->section_name && !strcmp(pos->section_name, title)) 3058 return pos; 3059 } 3060 return NULL; 3061 } 3062 3063 struct bpf_program * 3064 bpf_object__find_program_by_name(const struct bpf_object *obj, 3065 const char *name) 3066 { 3067 struct bpf_program *prog; 3068 3069 bpf_object__for_each_program(prog, obj) { 3070 if (!strcmp(prog->name, name)) 3071 return prog; 3072 } 3073 return NULL; 3074 } 3075 3076 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3077 int shndx) 3078 { 3079 return shndx == obj->efile.data_shndx || 3080 shndx == obj->efile.bss_shndx || 3081 shndx == obj->efile.rodata_shndx; 3082 } 3083 3084 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3085 int shndx) 3086 { 3087 return shndx == obj->efile.maps_shndx || 3088 shndx == obj->efile.btf_maps_shndx; 3089 } 3090 3091 static enum libbpf_map_type 3092 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3093 { 3094 if (shndx == obj->efile.data_shndx) 3095 return LIBBPF_MAP_DATA; 3096 else if (shndx == obj->efile.bss_shndx) 3097 return LIBBPF_MAP_BSS; 3098 else if (shndx == obj->efile.rodata_shndx) 3099 return LIBBPF_MAP_RODATA; 3100 else if (shndx == obj->efile.symbols_shndx) 3101 return LIBBPF_MAP_KCONFIG; 3102 else 3103 return LIBBPF_MAP_UNSPEC; 3104 } 3105 3106 static int bpf_program__record_reloc(struct bpf_program *prog, 3107 struct reloc_desc *reloc_desc, 3108 __u32 insn_idx, const char *name, 3109 const GElf_Sym *sym, const GElf_Rel *rel) 3110 { 3111 struct bpf_insn *insn = &prog->insns[insn_idx]; 3112 size_t map_idx, nr_maps = prog->obj->nr_maps; 3113 struct bpf_object *obj = prog->obj; 3114 __u32 shdr_idx = sym->st_shndx; 3115 enum libbpf_map_type type; 3116 struct bpf_map *map; 3117 3118 /* sub-program call relocation */ 3119 if (insn->code == (BPF_JMP | BPF_CALL)) { 3120 if (insn->src_reg != BPF_PSEUDO_CALL) { 3121 pr_warn("incorrect bpf_call opcode\n"); 3122 return -LIBBPF_ERRNO__RELOC; 3123 } 3124 /* text_shndx can be 0, if no default "main" program exists */ 3125 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3126 pr_warn("bad call relo against section %u\n", shdr_idx); 3127 return -LIBBPF_ERRNO__RELOC; 3128 } 3129 if (sym->st_value % 8) { 3130 pr_warn("bad call relo offset: %zu\n", 3131 (size_t)sym->st_value); 3132 return -LIBBPF_ERRNO__RELOC; 3133 } 3134 reloc_desc->type = RELO_CALL; 3135 reloc_desc->insn_idx = insn_idx; 3136 reloc_desc->sym_off = sym->st_value; 3137 obj->has_pseudo_calls = true; 3138 return 0; 3139 } 3140 3141 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 3142 pr_warn("invalid relo for insns[%d].code 0x%x\n", 3143 insn_idx, insn->code); 3144 return -LIBBPF_ERRNO__RELOC; 3145 } 3146 3147 if (sym_is_extern(sym)) { 3148 int sym_idx = GELF_R_SYM(rel->r_info); 3149 int i, n = obj->nr_extern; 3150 struct extern_desc *ext; 3151 3152 for (i = 0; i < n; i++) { 3153 ext = &obj->externs[i]; 3154 if (ext->sym_idx == sym_idx) 3155 break; 3156 } 3157 if (i >= n) { 3158 pr_warn("extern relo failed to find extern for sym %d\n", 3159 sym_idx); 3160 return -LIBBPF_ERRNO__RELOC; 3161 } 3162 pr_debug("found extern #%d '%s' (sym %d) for insn %u\n", 3163 i, ext->name, ext->sym_idx, insn_idx); 3164 reloc_desc->type = RELO_EXTERN; 3165 reloc_desc->insn_idx = insn_idx; 3166 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3167 return 0; 3168 } 3169 3170 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3171 pr_warn("invalid relo for \'%s\' in special section 0x%x; forgot to initialize global var?..\n", 3172 name, shdr_idx); 3173 return -LIBBPF_ERRNO__RELOC; 3174 } 3175 3176 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3177 3178 /* generic map reference relocation */ 3179 if (type == LIBBPF_MAP_UNSPEC) { 3180 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3181 pr_warn("bad map relo against section %u\n", 3182 shdr_idx); 3183 return -LIBBPF_ERRNO__RELOC; 3184 } 3185 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3186 map = &obj->maps[map_idx]; 3187 if (map->libbpf_type != type || 3188 map->sec_idx != sym->st_shndx || 3189 map->sec_offset != sym->st_value) 3190 continue; 3191 pr_debug("found map %zd (%s, sec %d, off %zu) for insn %u\n", 3192 map_idx, map->name, map->sec_idx, 3193 map->sec_offset, insn_idx); 3194 break; 3195 } 3196 if (map_idx >= nr_maps) { 3197 pr_warn("map relo failed to find map for sec %u, off %zu\n", 3198 shdr_idx, (size_t)sym->st_value); 3199 return -LIBBPF_ERRNO__RELOC; 3200 } 3201 reloc_desc->type = RELO_LD64; 3202 reloc_desc->insn_idx = insn_idx; 3203 reloc_desc->map_idx = map_idx; 3204 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3205 return 0; 3206 } 3207 3208 /* global data map relocation */ 3209 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3210 pr_warn("bad data relo against section %u\n", shdr_idx); 3211 return -LIBBPF_ERRNO__RELOC; 3212 } 3213 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3214 map = &obj->maps[map_idx]; 3215 if (map->libbpf_type != type) 3216 continue; 3217 pr_debug("found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3218 map_idx, map->name, map->sec_idx, map->sec_offset, 3219 insn_idx); 3220 break; 3221 } 3222 if (map_idx >= nr_maps) { 3223 pr_warn("data relo failed to find map for sec %u\n", 3224 shdr_idx); 3225 return -LIBBPF_ERRNO__RELOC; 3226 } 3227 3228 reloc_desc->type = RELO_DATA; 3229 reloc_desc->insn_idx = insn_idx; 3230 reloc_desc->map_idx = map_idx; 3231 reloc_desc->sym_off = sym->st_value; 3232 return 0; 3233 } 3234 3235 static int 3236 bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr, 3237 Elf_Data *data, struct bpf_object *obj) 3238 { 3239 Elf_Data *symbols = obj->efile.symbols; 3240 int err, i, nrels; 3241 3242 pr_debug("collecting relocating info for: '%s'\n", prog->section_name); 3243 nrels = shdr->sh_size / shdr->sh_entsize; 3244 3245 prog->reloc_desc = malloc(sizeof(*prog->reloc_desc) * nrels); 3246 if (!prog->reloc_desc) { 3247 pr_warn("failed to alloc memory in relocation\n"); 3248 return -ENOMEM; 3249 } 3250 prog->nr_reloc = nrels; 3251 3252 for (i = 0; i < nrels; i++) { 3253 const char *name; 3254 __u32 insn_idx; 3255 GElf_Sym sym; 3256 GElf_Rel rel; 3257 3258 if (!gelf_getrel(data, i, &rel)) { 3259 pr_warn("relocation: failed to get %d reloc\n", i); 3260 return -LIBBPF_ERRNO__FORMAT; 3261 } 3262 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3263 pr_warn("relocation: symbol %"PRIx64" not found\n", 3264 GELF_R_SYM(rel.r_info)); 3265 return -LIBBPF_ERRNO__FORMAT; 3266 } 3267 if (rel.r_offset % sizeof(struct bpf_insn)) 3268 return -LIBBPF_ERRNO__FORMAT; 3269 3270 insn_idx = rel.r_offset / sizeof(struct bpf_insn); 3271 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 3272 sym.st_name) ? : "<?>"; 3273 3274 pr_debug("relo for shdr %u, symb %zu, value %zu, type %d, bind %d, name %d (\'%s\'), insn %u\n", 3275 (__u32)sym.st_shndx, (size_t)GELF_R_SYM(rel.r_info), 3276 (size_t)sym.st_value, GELF_ST_TYPE(sym.st_info), 3277 GELF_ST_BIND(sym.st_info), sym.st_name, name, 3278 insn_idx); 3279 3280 err = bpf_program__record_reloc(prog, &prog->reloc_desc[i], 3281 insn_idx, name, &sym, &rel); 3282 if (err) 3283 return err; 3284 } 3285 return 0; 3286 } 3287 3288 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3289 { 3290 struct bpf_map_def *def = &map->def; 3291 __u32 key_type_id = 0, value_type_id = 0; 3292 int ret; 3293 3294 /* if it's BTF-defined map, we don't need to search for type IDs. 3295 * For struct_ops map, it does not need btf_key_type_id and 3296 * btf_value_type_id. 3297 */ 3298 if (map->sec_idx == obj->efile.btf_maps_shndx || 3299 bpf_map__is_struct_ops(map)) 3300 return 0; 3301 3302 if (!bpf_map__is_internal(map)) { 3303 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3304 def->value_size, &key_type_id, 3305 &value_type_id); 3306 } else { 3307 /* 3308 * LLVM annotates global data differently in BTF, that is, 3309 * only as '.data', '.bss' or '.rodata'. 3310 */ 3311 ret = btf__find_by_name(obj->btf, 3312 libbpf_type_to_btf_name[map->libbpf_type]); 3313 } 3314 if (ret < 0) 3315 return ret; 3316 3317 map->btf_key_type_id = key_type_id; 3318 map->btf_value_type_id = bpf_map__is_internal(map) ? 3319 ret : value_type_id; 3320 return 0; 3321 } 3322 3323 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3324 { 3325 struct bpf_map_info info = {}; 3326 __u32 len = sizeof(info); 3327 int new_fd, err; 3328 char *new_name; 3329 3330 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3331 if (err) 3332 return err; 3333 3334 new_name = strdup(info.name); 3335 if (!new_name) 3336 return -errno; 3337 3338 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3339 if (new_fd < 0) { 3340 err = -errno; 3341 goto err_free_new_name; 3342 } 3343 3344 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3345 if (new_fd < 0) { 3346 err = -errno; 3347 goto err_close_new_fd; 3348 } 3349 3350 err = zclose(map->fd); 3351 if (err) { 3352 err = -errno; 3353 goto err_close_new_fd; 3354 } 3355 free(map->name); 3356 3357 map->fd = new_fd; 3358 map->name = new_name; 3359 map->def.type = info.type; 3360 map->def.key_size = info.key_size; 3361 map->def.value_size = info.value_size; 3362 map->def.max_entries = info.max_entries; 3363 map->def.map_flags = info.map_flags; 3364 map->btf_key_type_id = info.btf_key_type_id; 3365 map->btf_value_type_id = info.btf_value_type_id; 3366 map->reused = true; 3367 3368 return 0; 3369 3370 err_close_new_fd: 3371 close(new_fd); 3372 err_free_new_name: 3373 free(new_name); 3374 return err; 3375 } 3376 3377 __u32 bpf_map__max_entries(const struct bpf_map *map) 3378 { 3379 return map->def.max_entries; 3380 } 3381 3382 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3383 { 3384 if (map->fd >= 0) 3385 return -EBUSY; 3386 map->def.max_entries = max_entries; 3387 return 0; 3388 } 3389 3390 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3391 { 3392 if (!map || !max_entries) 3393 return -EINVAL; 3394 3395 return bpf_map__set_max_entries(map, max_entries); 3396 } 3397 3398 static int 3399 bpf_object__probe_loading(struct bpf_object *obj) 3400 { 3401 struct bpf_load_program_attr attr; 3402 char *cp, errmsg[STRERR_BUFSIZE]; 3403 struct bpf_insn insns[] = { 3404 BPF_MOV64_IMM(BPF_REG_0, 0), 3405 BPF_EXIT_INSN(), 3406 }; 3407 int ret; 3408 3409 /* make sure basic loading works */ 3410 3411 memset(&attr, 0, sizeof(attr)); 3412 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3413 attr.insns = insns; 3414 attr.insns_cnt = ARRAY_SIZE(insns); 3415 attr.license = "GPL"; 3416 3417 ret = bpf_load_program_xattr(&attr, NULL, 0); 3418 if (ret < 0) { 3419 ret = errno; 3420 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3421 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3422 "program. Make sure your kernel supports BPF " 3423 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3424 "set to big enough value.\n", __func__, cp, ret); 3425 return -ret; 3426 } 3427 close(ret); 3428 3429 return 0; 3430 } 3431 3432 static int 3433 bpf_object__probe_name(struct bpf_object *obj) 3434 { 3435 struct bpf_load_program_attr attr; 3436 struct bpf_insn insns[] = { 3437 BPF_MOV64_IMM(BPF_REG_0, 0), 3438 BPF_EXIT_INSN(), 3439 }; 3440 int ret; 3441 3442 /* make sure loading with name works */ 3443 3444 memset(&attr, 0, sizeof(attr)); 3445 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3446 attr.insns = insns; 3447 attr.insns_cnt = ARRAY_SIZE(insns); 3448 attr.license = "GPL"; 3449 attr.name = "test"; 3450 ret = bpf_load_program_xattr(&attr, NULL, 0); 3451 if (ret >= 0) { 3452 obj->caps.name = 1; 3453 close(ret); 3454 } 3455 3456 return 0; 3457 } 3458 3459 static int 3460 bpf_object__probe_global_data(struct bpf_object *obj) 3461 { 3462 struct bpf_load_program_attr prg_attr; 3463 struct bpf_create_map_attr map_attr; 3464 char *cp, errmsg[STRERR_BUFSIZE]; 3465 struct bpf_insn insns[] = { 3466 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3467 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3468 BPF_MOV64_IMM(BPF_REG_0, 0), 3469 BPF_EXIT_INSN(), 3470 }; 3471 int ret, map; 3472 3473 memset(&map_attr, 0, sizeof(map_attr)); 3474 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3475 map_attr.key_size = sizeof(int); 3476 map_attr.value_size = 32; 3477 map_attr.max_entries = 1; 3478 3479 map = bpf_create_map_xattr(&map_attr); 3480 if (map < 0) { 3481 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 3482 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3483 __func__, cp, errno); 3484 return -errno; 3485 } 3486 3487 insns[0].imm = map; 3488 3489 memset(&prg_attr, 0, sizeof(prg_attr)); 3490 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3491 prg_attr.insns = insns; 3492 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3493 prg_attr.license = "GPL"; 3494 3495 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3496 if (ret >= 0) { 3497 obj->caps.global_data = 1; 3498 close(ret); 3499 } 3500 3501 close(map); 3502 return 0; 3503 } 3504 3505 static int bpf_object__probe_btf_func(struct bpf_object *obj) 3506 { 3507 static const char strs[] = "\0int\0x\0a"; 3508 /* void x(int a) {} */ 3509 __u32 types[] = { 3510 /* int */ 3511 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3512 /* FUNC_PROTO */ /* [2] */ 3513 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3514 BTF_PARAM_ENC(7, 1), 3515 /* FUNC x */ /* [3] */ 3516 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3517 }; 3518 int btf_fd; 3519 3520 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3521 strs, sizeof(strs)); 3522 if (btf_fd >= 0) { 3523 obj->caps.btf_func = 1; 3524 close(btf_fd); 3525 return 1; 3526 } 3527 3528 return 0; 3529 } 3530 3531 static int bpf_object__probe_btf_func_global(struct bpf_object *obj) 3532 { 3533 static const char strs[] = "\0int\0x\0a"; 3534 /* static void x(int a) {} */ 3535 __u32 types[] = { 3536 /* int */ 3537 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3538 /* FUNC_PROTO */ /* [2] */ 3539 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3540 BTF_PARAM_ENC(7, 1), 3541 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3542 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3543 }; 3544 int btf_fd; 3545 3546 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3547 strs, sizeof(strs)); 3548 if (btf_fd >= 0) { 3549 obj->caps.btf_func_global = 1; 3550 close(btf_fd); 3551 return 1; 3552 } 3553 3554 return 0; 3555 } 3556 3557 static int bpf_object__probe_btf_datasec(struct bpf_object *obj) 3558 { 3559 static const char strs[] = "\0x\0.data"; 3560 /* static int a; */ 3561 __u32 types[] = { 3562 /* int */ 3563 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3564 /* VAR x */ /* [2] */ 3565 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3566 BTF_VAR_STATIC, 3567 /* DATASEC val */ /* [3] */ 3568 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3569 BTF_VAR_SECINFO_ENC(2, 0, 4), 3570 }; 3571 int btf_fd; 3572 3573 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 3574 strs, sizeof(strs)); 3575 if (btf_fd >= 0) { 3576 obj->caps.btf_datasec = 1; 3577 close(btf_fd); 3578 return 1; 3579 } 3580 3581 return 0; 3582 } 3583 3584 static int bpf_object__probe_array_mmap(struct bpf_object *obj) 3585 { 3586 struct bpf_create_map_attr attr = { 3587 .map_type = BPF_MAP_TYPE_ARRAY, 3588 .map_flags = BPF_F_MMAPABLE, 3589 .key_size = sizeof(int), 3590 .value_size = sizeof(int), 3591 .max_entries = 1, 3592 }; 3593 int fd; 3594 3595 fd = bpf_create_map_xattr(&attr); 3596 if (fd >= 0) { 3597 obj->caps.array_mmap = 1; 3598 close(fd); 3599 return 1; 3600 } 3601 3602 return 0; 3603 } 3604 3605 static int 3606 bpf_object__probe_exp_attach_type(struct bpf_object *obj) 3607 { 3608 struct bpf_load_program_attr attr; 3609 struct bpf_insn insns[] = { 3610 BPF_MOV64_IMM(BPF_REG_0, 0), 3611 BPF_EXIT_INSN(), 3612 }; 3613 int fd; 3614 3615 memset(&attr, 0, sizeof(attr)); 3616 /* use any valid combination of program type and (optional) 3617 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3618 * to see if kernel supports expected_attach_type field for 3619 * BPF_PROG_LOAD command 3620 */ 3621 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3622 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3623 attr.insns = insns; 3624 attr.insns_cnt = ARRAY_SIZE(insns); 3625 attr.license = "GPL"; 3626 3627 fd = bpf_load_program_xattr(&attr, NULL, 0); 3628 if (fd >= 0) { 3629 obj->caps.exp_attach_type = 1; 3630 close(fd); 3631 return 1; 3632 } 3633 return 0; 3634 } 3635 3636 static int 3637 bpf_object__probe_caps(struct bpf_object *obj) 3638 { 3639 int (*probe_fn[])(struct bpf_object *obj) = { 3640 bpf_object__probe_name, 3641 bpf_object__probe_global_data, 3642 bpf_object__probe_btf_func, 3643 bpf_object__probe_btf_func_global, 3644 bpf_object__probe_btf_datasec, 3645 bpf_object__probe_array_mmap, 3646 bpf_object__probe_exp_attach_type, 3647 }; 3648 int i, ret; 3649 3650 for (i = 0; i < ARRAY_SIZE(probe_fn); i++) { 3651 ret = probe_fn[i](obj); 3652 if (ret < 0) 3653 pr_debug("Probe #%d failed with %d.\n", i, ret); 3654 } 3655 3656 return 0; 3657 } 3658 3659 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 3660 { 3661 struct bpf_map_info map_info = {}; 3662 char msg[STRERR_BUFSIZE]; 3663 __u32 map_info_len; 3664 3665 map_info_len = sizeof(map_info); 3666 3667 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 3668 pr_warn("failed to get map info for map FD %d: %s\n", 3669 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 3670 return false; 3671 } 3672 3673 return (map_info.type == map->def.type && 3674 map_info.key_size == map->def.key_size && 3675 map_info.value_size == map->def.value_size && 3676 map_info.max_entries == map->def.max_entries && 3677 map_info.map_flags == map->def.map_flags); 3678 } 3679 3680 static int 3681 bpf_object__reuse_map(struct bpf_map *map) 3682 { 3683 char *cp, errmsg[STRERR_BUFSIZE]; 3684 int err, pin_fd; 3685 3686 pin_fd = bpf_obj_get(map->pin_path); 3687 if (pin_fd < 0) { 3688 err = -errno; 3689 if (err == -ENOENT) { 3690 pr_debug("found no pinned map to reuse at '%s'\n", 3691 map->pin_path); 3692 return 0; 3693 } 3694 3695 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 3696 pr_warn("couldn't retrieve pinned map '%s': %s\n", 3697 map->pin_path, cp); 3698 return err; 3699 } 3700 3701 if (!map_is_reuse_compat(map, pin_fd)) { 3702 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 3703 map->pin_path); 3704 close(pin_fd); 3705 return -EINVAL; 3706 } 3707 3708 err = bpf_map__reuse_fd(map, pin_fd); 3709 if (err) { 3710 close(pin_fd); 3711 return err; 3712 } 3713 map->pinned = true; 3714 pr_debug("reused pinned map at '%s'\n", map->pin_path); 3715 3716 return 0; 3717 } 3718 3719 static int 3720 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 3721 { 3722 enum libbpf_map_type map_type = map->libbpf_type; 3723 char *cp, errmsg[STRERR_BUFSIZE]; 3724 int err, zero = 0; 3725 3726 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 3727 if (err) { 3728 err = -errno; 3729 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3730 pr_warn("Error setting initial map(%s) contents: %s\n", 3731 map->name, cp); 3732 return err; 3733 } 3734 3735 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 3736 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 3737 err = bpf_map_freeze(map->fd); 3738 if (err) { 3739 err = -errno; 3740 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3741 pr_warn("Error freezing map(%s) as read-only: %s\n", 3742 map->name, cp); 3743 return err; 3744 } 3745 } 3746 return 0; 3747 } 3748 3749 static void bpf_map__destroy(struct bpf_map *map); 3750 3751 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 3752 { 3753 struct bpf_create_map_attr create_attr; 3754 struct bpf_map_def *def = &map->def; 3755 3756 memset(&create_attr, 0, sizeof(create_attr)); 3757 3758 if (obj->caps.name) 3759 create_attr.name = map->name; 3760 create_attr.map_ifindex = map->map_ifindex; 3761 create_attr.map_type = def->type; 3762 create_attr.map_flags = def->map_flags; 3763 create_attr.key_size = def->key_size; 3764 create_attr.value_size = def->value_size; 3765 create_attr.numa_node = map->numa_node; 3766 3767 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 3768 int nr_cpus; 3769 3770 nr_cpus = libbpf_num_possible_cpus(); 3771 if (nr_cpus < 0) { 3772 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 3773 map->name, nr_cpus); 3774 return nr_cpus; 3775 } 3776 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 3777 create_attr.max_entries = nr_cpus; 3778 } else { 3779 create_attr.max_entries = def->max_entries; 3780 } 3781 3782 if (bpf_map__is_struct_ops(map)) 3783 create_attr.btf_vmlinux_value_type_id = 3784 map->btf_vmlinux_value_type_id; 3785 3786 create_attr.btf_fd = 0; 3787 create_attr.btf_key_type_id = 0; 3788 create_attr.btf_value_type_id = 0; 3789 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 3790 create_attr.btf_fd = btf__fd(obj->btf); 3791 create_attr.btf_key_type_id = map->btf_key_type_id; 3792 create_attr.btf_value_type_id = map->btf_value_type_id; 3793 } 3794 3795 if (bpf_map_type__is_map_in_map(def->type)) { 3796 if (map->inner_map) { 3797 int err; 3798 3799 err = bpf_object__create_map(obj, map->inner_map); 3800 if (err) { 3801 pr_warn("map '%s': failed to create inner map: %d\n", 3802 map->name, err); 3803 return err; 3804 } 3805 map->inner_map_fd = bpf_map__fd(map->inner_map); 3806 } 3807 if (map->inner_map_fd >= 0) 3808 create_attr.inner_map_fd = map->inner_map_fd; 3809 } 3810 3811 map->fd = bpf_create_map_xattr(&create_attr); 3812 if (map->fd < 0 && (create_attr.btf_key_type_id || 3813 create_attr.btf_value_type_id)) { 3814 char *cp, errmsg[STRERR_BUFSIZE]; 3815 int err = -errno; 3816 3817 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3818 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 3819 map->name, cp, err); 3820 create_attr.btf_fd = 0; 3821 create_attr.btf_key_type_id = 0; 3822 create_attr.btf_value_type_id = 0; 3823 map->btf_key_type_id = 0; 3824 map->btf_value_type_id = 0; 3825 map->fd = bpf_create_map_xattr(&create_attr); 3826 } 3827 3828 if (map->fd < 0) 3829 return -errno; 3830 3831 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 3832 bpf_map__destroy(map->inner_map); 3833 zfree(&map->inner_map); 3834 } 3835 3836 return 0; 3837 } 3838 3839 static int 3840 bpf_object__create_maps(struct bpf_object *obj) 3841 { 3842 struct bpf_map *map; 3843 char *cp, errmsg[STRERR_BUFSIZE]; 3844 unsigned int i, j; 3845 int err; 3846 3847 for (i = 0; i < obj->nr_maps; i++) { 3848 map = &obj->maps[i]; 3849 3850 if (map->pin_path) { 3851 err = bpf_object__reuse_map(map); 3852 if (err) { 3853 pr_warn("map '%s': error reusing pinned map\n", 3854 map->name); 3855 goto err_out; 3856 } 3857 } 3858 3859 if (map->fd >= 0) { 3860 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 3861 map->name, map->fd); 3862 continue; 3863 } 3864 3865 err = bpf_object__create_map(obj, map); 3866 if (err) 3867 goto err_out; 3868 3869 pr_debug("map '%s': created successfully, fd=%d\n", map->name, 3870 map->fd); 3871 3872 if (bpf_map__is_internal(map)) { 3873 err = bpf_object__populate_internal_map(obj, map); 3874 if (err < 0) { 3875 zclose(map->fd); 3876 goto err_out; 3877 } 3878 } 3879 3880 if (map->init_slots_sz) { 3881 for (j = 0; j < map->init_slots_sz; j++) { 3882 const struct bpf_map *targ_map; 3883 int fd; 3884 3885 if (!map->init_slots[j]) 3886 continue; 3887 3888 targ_map = map->init_slots[j]; 3889 fd = bpf_map__fd(targ_map); 3890 err = bpf_map_update_elem(map->fd, &j, &fd, 0); 3891 if (err) { 3892 err = -errno; 3893 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 3894 map->name, j, targ_map->name, 3895 fd, err); 3896 goto err_out; 3897 } 3898 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 3899 map->name, j, targ_map->name, fd); 3900 } 3901 zfree(&map->init_slots); 3902 map->init_slots_sz = 0; 3903 } 3904 3905 if (map->pin_path && !map->pinned) { 3906 err = bpf_map__pin(map, NULL); 3907 if (err) { 3908 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 3909 map->name, map->pin_path, err); 3910 zclose(map->fd); 3911 goto err_out; 3912 } 3913 } 3914 } 3915 3916 return 0; 3917 3918 err_out: 3919 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3920 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 3921 pr_perm_msg(err); 3922 for (j = 0; j < i; j++) 3923 zclose(obj->maps[j].fd); 3924 return err; 3925 } 3926 3927 static int 3928 check_btf_ext_reloc_err(struct bpf_program *prog, int err, 3929 void *btf_prog_info, const char *info_name) 3930 { 3931 if (err != -ENOENT) { 3932 pr_warn("Error in loading %s for sec %s.\n", 3933 info_name, prog->section_name); 3934 return err; 3935 } 3936 3937 /* err == -ENOENT (i.e. prog->section_name not found in btf_ext) */ 3938 3939 if (btf_prog_info) { 3940 /* 3941 * Some info has already been found but has problem 3942 * in the last btf_ext reloc. Must have to error out. 3943 */ 3944 pr_warn("Error in relocating %s for sec %s.\n", 3945 info_name, prog->section_name); 3946 return err; 3947 } 3948 3949 /* Have problem loading the very first info. Ignore the rest. */ 3950 pr_warn("Cannot find %s for main program sec %s. Ignore all %s.\n", 3951 info_name, prog->section_name, info_name); 3952 return 0; 3953 } 3954 3955 static int 3956 bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj, 3957 const char *section_name, __u32 insn_offset) 3958 { 3959 int err; 3960 3961 if (!insn_offset || prog->func_info) { 3962 /* 3963 * !insn_offset => main program 3964 * 3965 * For sub prog, the main program's func_info has to 3966 * be loaded first (i.e. prog->func_info != NULL) 3967 */ 3968 err = btf_ext__reloc_func_info(obj->btf, obj->btf_ext, 3969 section_name, insn_offset, 3970 &prog->func_info, 3971 &prog->func_info_cnt); 3972 if (err) 3973 return check_btf_ext_reloc_err(prog, err, 3974 prog->func_info, 3975 "bpf_func_info"); 3976 3977 prog->func_info_rec_size = btf_ext__func_info_rec_size(obj->btf_ext); 3978 } 3979 3980 if (!insn_offset || prog->line_info) { 3981 err = btf_ext__reloc_line_info(obj->btf, obj->btf_ext, 3982 section_name, insn_offset, 3983 &prog->line_info, 3984 &prog->line_info_cnt); 3985 if (err) 3986 return check_btf_ext_reloc_err(prog, err, 3987 prog->line_info, 3988 "bpf_line_info"); 3989 3990 prog->line_info_rec_size = btf_ext__line_info_rec_size(obj->btf_ext); 3991 } 3992 3993 return 0; 3994 } 3995 3996 #define BPF_CORE_SPEC_MAX_LEN 64 3997 3998 /* represents BPF CO-RE field or array element accessor */ 3999 struct bpf_core_accessor { 4000 __u32 type_id; /* struct/union type or array element type */ 4001 __u32 idx; /* field index or array index */ 4002 const char *name; /* field name or NULL for array accessor */ 4003 }; 4004 4005 struct bpf_core_spec { 4006 const struct btf *btf; 4007 /* high-level spec: named fields and array indices only */ 4008 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4009 /* high-level spec length */ 4010 int len; 4011 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4012 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4013 /* raw spec length */ 4014 int raw_len; 4015 /* field bit offset represented by spec */ 4016 __u32 bit_offset; 4017 }; 4018 4019 static bool str_is_empty(const char *s) 4020 { 4021 return !s || !s[0]; 4022 } 4023 4024 static bool is_flex_arr(const struct btf *btf, 4025 const struct bpf_core_accessor *acc, 4026 const struct btf_array *arr) 4027 { 4028 const struct btf_type *t; 4029 4030 /* not a flexible array, if not inside a struct or has non-zero size */ 4031 if (!acc->name || arr->nelems > 0) 4032 return false; 4033 4034 /* has to be the last member of enclosing struct */ 4035 t = btf__type_by_id(btf, acc->type_id); 4036 return acc->idx == btf_vlen(t) - 1; 4037 } 4038 4039 /* 4040 * Turn bpf_field_reloc into a low- and high-level spec representation, 4041 * validating correctness along the way, as well as calculating resulting 4042 * field bit offset, specified by accessor string. Low-level spec captures 4043 * every single level of nestedness, including traversing anonymous 4044 * struct/union members. High-level one only captures semantically meaningful 4045 * "turning points": named fields and array indicies. 4046 * E.g., for this case: 4047 * 4048 * struct sample { 4049 * int __unimportant; 4050 * struct { 4051 * int __1; 4052 * int __2; 4053 * int a[7]; 4054 * }; 4055 * }; 4056 * 4057 * struct sample *s = ...; 4058 * 4059 * int x = &s->a[3]; // access string = '0:1:2:3' 4060 * 4061 * Low-level spec has 1:1 mapping with each element of access string (it's 4062 * just a parsed access string representation): [0, 1, 2, 3]. 4063 * 4064 * High-level spec will capture only 3 points: 4065 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4066 * - field 'a' access (corresponds to '2' in low-level spec); 4067 * - array element #3 access (corresponds to '3' in low-level spec). 4068 * 4069 */ 4070 static int bpf_core_spec_parse(const struct btf *btf, 4071 __u32 type_id, 4072 const char *spec_str, 4073 struct bpf_core_spec *spec) 4074 { 4075 int access_idx, parsed_len, i; 4076 struct bpf_core_accessor *acc; 4077 const struct btf_type *t; 4078 const char *name; 4079 __u32 id; 4080 __s64 sz; 4081 4082 if (str_is_empty(spec_str) || *spec_str == ':') 4083 return -EINVAL; 4084 4085 memset(spec, 0, sizeof(*spec)); 4086 spec->btf = btf; 4087 4088 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4089 while (*spec_str) { 4090 if (*spec_str == ':') 4091 ++spec_str; 4092 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4093 return -EINVAL; 4094 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4095 return -E2BIG; 4096 spec_str += parsed_len; 4097 spec->raw_spec[spec->raw_len++] = access_idx; 4098 } 4099 4100 if (spec->raw_len == 0) 4101 return -EINVAL; 4102 4103 /* first spec value is always reloc type array index */ 4104 t = skip_mods_and_typedefs(btf, type_id, &id); 4105 if (!t) 4106 return -EINVAL; 4107 4108 access_idx = spec->raw_spec[0]; 4109 spec->spec[0].type_id = id; 4110 spec->spec[0].idx = access_idx; 4111 spec->len++; 4112 4113 sz = btf__resolve_size(btf, id); 4114 if (sz < 0) 4115 return sz; 4116 spec->bit_offset = access_idx * sz * 8; 4117 4118 for (i = 1; i < spec->raw_len; i++) { 4119 t = skip_mods_and_typedefs(btf, id, &id); 4120 if (!t) 4121 return -EINVAL; 4122 4123 access_idx = spec->raw_spec[i]; 4124 acc = &spec->spec[spec->len]; 4125 4126 if (btf_is_composite(t)) { 4127 const struct btf_member *m; 4128 __u32 bit_offset; 4129 4130 if (access_idx >= btf_vlen(t)) 4131 return -EINVAL; 4132 4133 bit_offset = btf_member_bit_offset(t, access_idx); 4134 spec->bit_offset += bit_offset; 4135 4136 m = btf_members(t) + access_idx; 4137 if (m->name_off) { 4138 name = btf__name_by_offset(btf, m->name_off); 4139 if (str_is_empty(name)) 4140 return -EINVAL; 4141 4142 acc->type_id = id; 4143 acc->idx = access_idx; 4144 acc->name = name; 4145 spec->len++; 4146 } 4147 4148 id = m->type; 4149 } else if (btf_is_array(t)) { 4150 const struct btf_array *a = btf_array(t); 4151 bool flex; 4152 4153 t = skip_mods_and_typedefs(btf, a->type, &id); 4154 if (!t) 4155 return -EINVAL; 4156 4157 flex = is_flex_arr(btf, acc - 1, a); 4158 if (!flex && access_idx >= a->nelems) 4159 return -EINVAL; 4160 4161 spec->spec[spec->len].type_id = id; 4162 spec->spec[spec->len].idx = access_idx; 4163 spec->len++; 4164 4165 sz = btf__resolve_size(btf, id); 4166 if (sz < 0) 4167 return sz; 4168 spec->bit_offset += access_idx * sz * 8; 4169 } else { 4170 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n", 4171 type_id, spec_str, i, id, btf_kind(t)); 4172 return -EINVAL; 4173 } 4174 } 4175 4176 return 0; 4177 } 4178 4179 static bool bpf_core_is_flavor_sep(const char *s) 4180 { 4181 /* check X___Y name pattern, where X and Y are not underscores */ 4182 return s[0] != '_' && /* X */ 4183 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4184 s[4] != '_'; /* Y */ 4185 } 4186 4187 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4188 * before last triple underscore. Struct name part after last triple 4189 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4190 */ 4191 static size_t bpf_core_essential_name_len(const char *name) 4192 { 4193 size_t n = strlen(name); 4194 int i; 4195 4196 for (i = n - 5; i >= 0; i--) { 4197 if (bpf_core_is_flavor_sep(name + i)) 4198 return i + 1; 4199 } 4200 return n; 4201 } 4202 4203 /* dynamically sized list of type IDs */ 4204 struct ids_vec { 4205 __u32 *data; 4206 int len; 4207 }; 4208 4209 static void bpf_core_free_cands(struct ids_vec *cand_ids) 4210 { 4211 free(cand_ids->data); 4212 free(cand_ids); 4213 } 4214 4215 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 4216 __u32 local_type_id, 4217 const struct btf *targ_btf) 4218 { 4219 size_t local_essent_len, targ_essent_len; 4220 const char *local_name, *targ_name; 4221 const struct btf_type *t; 4222 struct ids_vec *cand_ids; 4223 __u32 *new_ids; 4224 int i, err, n; 4225 4226 t = btf__type_by_id(local_btf, local_type_id); 4227 if (!t) 4228 return ERR_PTR(-EINVAL); 4229 4230 local_name = btf__name_by_offset(local_btf, t->name_off); 4231 if (str_is_empty(local_name)) 4232 return ERR_PTR(-EINVAL); 4233 local_essent_len = bpf_core_essential_name_len(local_name); 4234 4235 cand_ids = calloc(1, sizeof(*cand_ids)); 4236 if (!cand_ids) 4237 return ERR_PTR(-ENOMEM); 4238 4239 n = btf__get_nr_types(targ_btf); 4240 for (i = 1; i <= n; i++) { 4241 t = btf__type_by_id(targ_btf, i); 4242 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4243 if (str_is_empty(targ_name)) 4244 continue; 4245 4246 t = skip_mods_and_typedefs(targ_btf, i, NULL); 4247 if (!btf_is_composite(t) && !btf_is_array(t)) 4248 continue; 4249 4250 targ_essent_len = bpf_core_essential_name_len(targ_name); 4251 if (targ_essent_len != local_essent_len) 4252 continue; 4253 4254 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 4255 pr_debug("[%d] %s: found candidate [%d] %s\n", 4256 local_type_id, local_name, i, targ_name); 4257 new_ids = reallocarray(cand_ids->data, 4258 cand_ids->len + 1, 4259 sizeof(*cand_ids->data)); 4260 if (!new_ids) { 4261 err = -ENOMEM; 4262 goto err_out; 4263 } 4264 cand_ids->data = new_ids; 4265 cand_ids->data[cand_ids->len++] = i; 4266 } 4267 } 4268 return cand_ids; 4269 err_out: 4270 bpf_core_free_cands(cand_ids); 4271 return ERR_PTR(err); 4272 } 4273 4274 /* Check two types for compatibility, skipping const/volatile/restrict and 4275 * typedefs, to ensure we are relocating compatible entities: 4276 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4277 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4278 * - any two PTRs are always compatible; 4279 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4280 * least one of enums should be anonymous; 4281 * - for ENUMs, check sizes, names are ignored; 4282 * - for INT, size and signedness are ignored; 4283 * - for ARRAY, dimensionality is ignored, element types are checked for 4284 * compatibility recursively; 4285 * - everything else shouldn't be ever a target of relocation. 4286 * These rules are not set in stone and probably will be adjusted as we get 4287 * more experience with using BPF CO-RE relocations. 4288 */ 4289 static int bpf_core_fields_are_compat(const struct btf *local_btf, 4290 __u32 local_id, 4291 const struct btf *targ_btf, 4292 __u32 targ_id) 4293 { 4294 const struct btf_type *local_type, *targ_type; 4295 4296 recur: 4297 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4298 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4299 if (!local_type || !targ_type) 4300 return -EINVAL; 4301 4302 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4303 return 1; 4304 if (btf_kind(local_type) != btf_kind(targ_type)) 4305 return 0; 4306 4307 switch (btf_kind(local_type)) { 4308 case BTF_KIND_PTR: 4309 return 1; 4310 case BTF_KIND_FWD: 4311 case BTF_KIND_ENUM: { 4312 const char *local_name, *targ_name; 4313 size_t local_len, targ_len; 4314 4315 local_name = btf__name_by_offset(local_btf, 4316 local_type->name_off); 4317 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4318 local_len = bpf_core_essential_name_len(local_name); 4319 targ_len = bpf_core_essential_name_len(targ_name); 4320 /* one of them is anonymous or both w/ same flavor-less names */ 4321 return local_len == 0 || targ_len == 0 || 4322 (local_len == targ_len && 4323 strncmp(local_name, targ_name, local_len) == 0); 4324 } 4325 case BTF_KIND_INT: 4326 /* just reject deprecated bitfield-like integers; all other 4327 * integers are by default compatible between each other 4328 */ 4329 return btf_int_offset(local_type) == 0 && 4330 btf_int_offset(targ_type) == 0; 4331 case BTF_KIND_ARRAY: 4332 local_id = btf_array(local_type)->type; 4333 targ_id = btf_array(targ_type)->type; 4334 goto recur; 4335 default: 4336 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 4337 btf_kind(local_type), local_id, targ_id); 4338 return 0; 4339 } 4340 } 4341 4342 /* 4343 * Given single high-level named field accessor in local type, find 4344 * corresponding high-level accessor for a target type. Along the way, 4345 * maintain low-level spec for target as well. Also keep updating target 4346 * bit offset. 4347 * 4348 * Searching is performed through recursive exhaustive enumeration of all 4349 * fields of a struct/union. If there are any anonymous (embedded) 4350 * structs/unions, they are recursively searched as well. If field with 4351 * desired name is found, check compatibility between local and target types, 4352 * before returning result. 4353 * 4354 * 1 is returned, if field is found. 4355 * 0 is returned if no compatible field is found. 4356 * <0 is returned on error. 4357 */ 4358 static int bpf_core_match_member(const struct btf *local_btf, 4359 const struct bpf_core_accessor *local_acc, 4360 const struct btf *targ_btf, 4361 __u32 targ_id, 4362 struct bpf_core_spec *spec, 4363 __u32 *next_targ_id) 4364 { 4365 const struct btf_type *local_type, *targ_type; 4366 const struct btf_member *local_member, *m; 4367 const char *local_name, *targ_name; 4368 __u32 local_id; 4369 int i, n, found; 4370 4371 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4372 if (!targ_type) 4373 return -EINVAL; 4374 if (!btf_is_composite(targ_type)) 4375 return 0; 4376 4377 local_id = local_acc->type_id; 4378 local_type = btf__type_by_id(local_btf, local_id); 4379 local_member = btf_members(local_type) + local_acc->idx; 4380 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4381 4382 n = btf_vlen(targ_type); 4383 m = btf_members(targ_type); 4384 for (i = 0; i < n; i++, m++) { 4385 __u32 bit_offset; 4386 4387 bit_offset = btf_member_bit_offset(targ_type, i); 4388 4389 /* too deep struct/union/array nesting */ 4390 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4391 return -E2BIG; 4392 4393 /* speculate this member will be the good one */ 4394 spec->bit_offset += bit_offset; 4395 spec->raw_spec[spec->raw_len++] = i; 4396 4397 targ_name = btf__name_by_offset(targ_btf, m->name_off); 4398 if (str_is_empty(targ_name)) { 4399 /* embedded struct/union, we need to go deeper */ 4400 found = bpf_core_match_member(local_btf, local_acc, 4401 targ_btf, m->type, 4402 spec, next_targ_id); 4403 if (found) /* either found or error */ 4404 return found; 4405 } else if (strcmp(local_name, targ_name) == 0) { 4406 /* matching named field */ 4407 struct bpf_core_accessor *targ_acc; 4408 4409 targ_acc = &spec->spec[spec->len++]; 4410 targ_acc->type_id = targ_id; 4411 targ_acc->idx = i; 4412 targ_acc->name = targ_name; 4413 4414 *next_targ_id = m->type; 4415 found = bpf_core_fields_are_compat(local_btf, 4416 local_member->type, 4417 targ_btf, m->type); 4418 if (!found) 4419 spec->len--; /* pop accessor */ 4420 return found; 4421 } 4422 /* member turned out not to be what we looked for */ 4423 spec->bit_offset -= bit_offset; 4424 spec->raw_len--; 4425 } 4426 4427 return 0; 4428 } 4429 4430 /* 4431 * Try to match local spec to a target type and, if successful, produce full 4432 * target spec (high-level, low-level + bit offset). 4433 */ 4434 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 4435 const struct btf *targ_btf, __u32 targ_id, 4436 struct bpf_core_spec *targ_spec) 4437 { 4438 const struct btf_type *targ_type; 4439 const struct bpf_core_accessor *local_acc; 4440 struct bpf_core_accessor *targ_acc; 4441 int i, sz, matched; 4442 4443 memset(targ_spec, 0, sizeof(*targ_spec)); 4444 targ_spec->btf = targ_btf; 4445 4446 local_acc = &local_spec->spec[0]; 4447 targ_acc = &targ_spec->spec[0]; 4448 4449 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 4450 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 4451 &targ_id); 4452 if (!targ_type) 4453 return -EINVAL; 4454 4455 if (local_acc->name) { 4456 matched = bpf_core_match_member(local_spec->btf, 4457 local_acc, 4458 targ_btf, targ_id, 4459 targ_spec, &targ_id); 4460 if (matched <= 0) 4461 return matched; 4462 } else { 4463 /* for i=0, targ_id is already treated as array element 4464 * type (because it's the original struct), for others 4465 * we should find array element type first 4466 */ 4467 if (i > 0) { 4468 const struct btf_array *a; 4469 bool flex; 4470 4471 if (!btf_is_array(targ_type)) 4472 return 0; 4473 4474 a = btf_array(targ_type); 4475 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 4476 if (!flex && local_acc->idx >= a->nelems) 4477 return 0; 4478 if (!skip_mods_and_typedefs(targ_btf, a->type, 4479 &targ_id)) 4480 return -EINVAL; 4481 } 4482 4483 /* too deep struct/union/array nesting */ 4484 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4485 return -E2BIG; 4486 4487 targ_acc->type_id = targ_id; 4488 targ_acc->idx = local_acc->idx; 4489 targ_acc->name = NULL; 4490 targ_spec->len++; 4491 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 4492 targ_spec->raw_len++; 4493 4494 sz = btf__resolve_size(targ_btf, targ_id); 4495 if (sz < 0) 4496 return sz; 4497 targ_spec->bit_offset += local_acc->idx * sz * 8; 4498 } 4499 } 4500 4501 return 1; 4502 } 4503 4504 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 4505 const struct bpf_field_reloc *relo, 4506 const struct bpf_core_spec *spec, 4507 __u32 *val, bool *validate) 4508 { 4509 const struct bpf_core_accessor *acc = &spec->spec[spec->len - 1]; 4510 const struct btf_type *t = btf__type_by_id(spec->btf, acc->type_id); 4511 __u32 byte_off, byte_sz, bit_off, bit_sz; 4512 const struct btf_member *m; 4513 const struct btf_type *mt; 4514 bool bitfield; 4515 __s64 sz; 4516 4517 /* a[n] accessor needs special handling */ 4518 if (!acc->name) { 4519 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 4520 *val = spec->bit_offset / 8; 4521 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 4522 sz = btf__resolve_size(spec->btf, acc->type_id); 4523 if (sz < 0) 4524 return -EINVAL; 4525 *val = sz; 4526 } else { 4527 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 4528 bpf_program__title(prog, false), 4529 relo->kind, relo->insn_off / 8); 4530 return -EINVAL; 4531 } 4532 if (validate) 4533 *validate = true; 4534 return 0; 4535 } 4536 4537 m = btf_members(t) + acc->idx; 4538 mt = skip_mods_and_typedefs(spec->btf, m->type, NULL); 4539 bit_off = spec->bit_offset; 4540 bit_sz = btf_member_bitfield_size(t, acc->idx); 4541 4542 bitfield = bit_sz > 0; 4543 if (bitfield) { 4544 byte_sz = mt->size; 4545 byte_off = bit_off / 8 / byte_sz * byte_sz; 4546 /* figure out smallest int size necessary for bitfield load */ 4547 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 4548 if (byte_sz >= 8) { 4549 /* bitfield can't be read with 64-bit read */ 4550 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 4551 bpf_program__title(prog, false), 4552 relo->kind, relo->insn_off / 8); 4553 return -E2BIG; 4554 } 4555 byte_sz *= 2; 4556 byte_off = bit_off / 8 / byte_sz * byte_sz; 4557 } 4558 } else { 4559 sz = btf__resolve_size(spec->btf, m->type); 4560 if (sz < 0) 4561 return -EINVAL; 4562 byte_sz = sz; 4563 byte_off = spec->bit_offset / 8; 4564 bit_sz = byte_sz * 8; 4565 } 4566 4567 /* for bitfields, all the relocatable aspects are ambiguous and we 4568 * might disagree with compiler, so turn off validation of expected 4569 * value, except for signedness 4570 */ 4571 if (validate) 4572 *validate = !bitfield; 4573 4574 switch (relo->kind) { 4575 case BPF_FIELD_BYTE_OFFSET: 4576 *val = byte_off; 4577 break; 4578 case BPF_FIELD_BYTE_SIZE: 4579 *val = byte_sz; 4580 break; 4581 case BPF_FIELD_SIGNED: 4582 /* enums will be assumed unsigned */ 4583 *val = btf_is_enum(mt) || 4584 (btf_int_encoding(mt) & BTF_INT_SIGNED); 4585 if (validate) 4586 *validate = true; /* signedness is never ambiguous */ 4587 break; 4588 case BPF_FIELD_LSHIFT_U64: 4589 #if __BYTE_ORDER == __LITTLE_ENDIAN 4590 *val = 64 - (bit_off + bit_sz - byte_off * 8); 4591 #else 4592 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 4593 #endif 4594 break; 4595 case BPF_FIELD_RSHIFT_U64: 4596 *val = 64 - bit_sz; 4597 if (validate) 4598 *validate = true; /* right shift is never ambiguous */ 4599 break; 4600 case BPF_FIELD_EXISTS: 4601 default: 4602 pr_warn("prog '%s': unknown relo %d at insn #%d\n", 4603 bpf_program__title(prog, false), 4604 relo->kind, relo->insn_off / 8); 4605 return -EINVAL; 4606 } 4607 4608 return 0; 4609 } 4610 4611 /* 4612 * Patch relocatable BPF instruction. 4613 * 4614 * Patched value is determined by relocation kind and target specification. 4615 * For field existence relocation target spec will be NULL if field is not 4616 * found. 4617 * Expected insn->imm value is determined using relocation kind and local 4618 * spec, and is checked before patching instruction. If actual insn->imm value 4619 * is wrong, bail out with error. 4620 * 4621 * Currently three kinds of BPF instructions are supported: 4622 * 1. rX = <imm> (assignment with immediate operand); 4623 * 2. rX += <imm> (arithmetic operations with immediate operand); 4624 */ 4625 static int bpf_core_reloc_insn(struct bpf_program *prog, 4626 const struct bpf_field_reloc *relo, 4627 int relo_idx, 4628 const struct bpf_core_spec *local_spec, 4629 const struct bpf_core_spec *targ_spec) 4630 { 4631 __u32 orig_val, new_val; 4632 struct bpf_insn *insn; 4633 bool validate = true; 4634 int insn_idx, err; 4635 __u8 class; 4636 4637 if (relo->insn_off % sizeof(struct bpf_insn)) 4638 return -EINVAL; 4639 insn_idx = relo->insn_off / sizeof(struct bpf_insn); 4640 insn = &prog->insns[insn_idx]; 4641 class = BPF_CLASS(insn->code); 4642 4643 if (relo->kind == BPF_FIELD_EXISTS) { 4644 orig_val = 1; /* can't generate EXISTS relo w/o local field */ 4645 new_val = targ_spec ? 1 : 0; 4646 } else if (!targ_spec) { 4647 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 4648 bpf_program__title(prog, false), relo_idx, insn_idx); 4649 insn->code = BPF_JMP | BPF_CALL; 4650 insn->dst_reg = 0; 4651 insn->src_reg = 0; 4652 insn->off = 0; 4653 /* if this instruction is reachable (not a dead code), 4654 * verifier will complain with the following message: 4655 * invalid func unknown#195896080 4656 */ 4657 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 4658 return 0; 4659 } else { 4660 err = bpf_core_calc_field_relo(prog, relo, local_spec, 4661 &orig_val, &validate); 4662 if (err) 4663 return err; 4664 err = bpf_core_calc_field_relo(prog, relo, targ_spec, 4665 &new_val, NULL); 4666 if (err) 4667 return err; 4668 } 4669 4670 switch (class) { 4671 case BPF_ALU: 4672 case BPF_ALU64: 4673 if (BPF_SRC(insn->code) != BPF_K) 4674 return -EINVAL; 4675 if (validate && insn->imm != orig_val) { 4676 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 4677 bpf_program__title(prog, false), relo_idx, 4678 insn_idx, insn->imm, orig_val, new_val); 4679 return -EINVAL; 4680 } 4681 orig_val = insn->imm; 4682 insn->imm = new_val; 4683 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 4684 bpf_program__title(prog, false), relo_idx, insn_idx, 4685 orig_val, new_val); 4686 break; 4687 case BPF_LDX: 4688 case BPF_ST: 4689 case BPF_STX: 4690 if (validate && insn->off != orig_val) { 4691 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LD/LDX/ST/STX) value: got %u, exp %u -> %u\n", 4692 bpf_program__title(prog, false), relo_idx, 4693 insn_idx, insn->off, orig_val, new_val); 4694 return -EINVAL; 4695 } 4696 if (new_val > SHRT_MAX) { 4697 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 4698 bpf_program__title(prog, false), relo_idx, 4699 insn_idx, new_val); 4700 return -ERANGE; 4701 } 4702 orig_val = insn->off; 4703 insn->off = new_val; 4704 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 4705 bpf_program__title(prog, false), relo_idx, insn_idx, 4706 orig_val, new_val); 4707 break; 4708 default: 4709 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n", 4710 bpf_program__title(prog, false), relo_idx, 4711 insn_idx, insn->code, insn->src_reg, insn->dst_reg, 4712 insn->off, insn->imm); 4713 return -EINVAL; 4714 } 4715 4716 return 0; 4717 } 4718 4719 /* Output spec definition in the format: 4720 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 4721 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 4722 */ 4723 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 4724 { 4725 const struct btf_type *t; 4726 const char *s; 4727 __u32 type_id; 4728 int i; 4729 4730 type_id = spec->spec[0].type_id; 4731 t = btf__type_by_id(spec->btf, type_id); 4732 s = btf__name_by_offset(spec->btf, t->name_off); 4733 libbpf_print(level, "[%u] %s + ", type_id, s); 4734 4735 for (i = 0; i < spec->raw_len; i++) 4736 libbpf_print(level, "%d%s", spec->raw_spec[i], 4737 i == spec->raw_len - 1 ? " => " : ":"); 4738 4739 libbpf_print(level, "%u.%u @ &x", 4740 spec->bit_offset / 8, spec->bit_offset % 8); 4741 4742 for (i = 0; i < spec->len; i++) { 4743 if (spec->spec[i].name) 4744 libbpf_print(level, ".%s", spec->spec[i].name); 4745 else 4746 libbpf_print(level, "[%u]", spec->spec[i].idx); 4747 } 4748 4749 } 4750 4751 static size_t bpf_core_hash_fn(const void *key, void *ctx) 4752 { 4753 return (size_t)key; 4754 } 4755 4756 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 4757 { 4758 return k1 == k2; 4759 } 4760 4761 static void *u32_as_hash_key(__u32 x) 4762 { 4763 return (void *)(uintptr_t)x; 4764 } 4765 4766 /* 4767 * CO-RE relocate single instruction. 4768 * 4769 * The outline and important points of the algorithm: 4770 * 1. For given local type, find corresponding candidate target types. 4771 * Candidate type is a type with the same "essential" name, ignoring 4772 * everything after last triple underscore (___). E.g., `sample`, 4773 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 4774 * for each other. Names with triple underscore are referred to as 4775 * "flavors" and are useful, among other things, to allow to 4776 * specify/support incompatible variations of the same kernel struct, which 4777 * might differ between different kernel versions and/or build 4778 * configurations. 4779 * 4780 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 4781 * converter, when deduplicated BTF of a kernel still contains more than 4782 * one different types with the same name. In that case, ___2, ___3, etc 4783 * are appended starting from second name conflict. But start flavors are 4784 * also useful to be defined "locally", in BPF program, to extract same 4785 * data from incompatible changes between different kernel 4786 * versions/configurations. For instance, to handle field renames between 4787 * kernel versions, one can use two flavors of the struct name with the 4788 * same common name and use conditional relocations to extract that field, 4789 * depending on target kernel version. 4790 * 2. For each candidate type, try to match local specification to this 4791 * candidate target type. Matching involves finding corresponding 4792 * high-level spec accessors, meaning that all named fields should match, 4793 * as well as all array accesses should be within the actual bounds. Also, 4794 * types should be compatible (see bpf_core_fields_are_compat for details). 4795 * 3. It is supported and expected that there might be multiple flavors 4796 * matching the spec. As long as all the specs resolve to the same set of 4797 * offsets across all candidates, there is no error. If there is any 4798 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 4799 * imprefection of BTF deduplication, which can cause slight duplication of 4800 * the same BTF type, if some directly or indirectly referenced (by 4801 * pointer) type gets resolved to different actual types in different 4802 * object files. If such situation occurs, deduplicated BTF will end up 4803 * with two (or more) structurally identical types, which differ only in 4804 * types they refer to through pointer. This should be OK in most cases and 4805 * is not an error. 4806 * 4. Candidate types search is performed by linearly scanning through all 4807 * types in target BTF. It is anticipated that this is overall more 4808 * efficient memory-wise and not significantly worse (if not better) 4809 * CPU-wise compared to prebuilding a map from all local type names to 4810 * a list of candidate type names. It's also sped up by caching resolved 4811 * list of matching candidates per each local "root" type ID, that has at 4812 * least one bpf_field_reloc associated with it. This list is shared 4813 * between multiple relocations for the same type ID and is updated as some 4814 * of the candidates are pruned due to structural incompatibility. 4815 */ 4816 static int bpf_core_reloc_field(struct bpf_program *prog, 4817 const struct bpf_field_reloc *relo, 4818 int relo_idx, 4819 const struct btf *local_btf, 4820 const struct btf *targ_btf, 4821 struct hashmap *cand_cache) 4822 { 4823 const char *prog_name = bpf_program__title(prog, false); 4824 struct bpf_core_spec local_spec, cand_spec, targ_spec; 4825 const void *type_key = u32_as_hash_key(relo->type_id); 4826 const struct btf_type *local_type, *cand_type; 4827 const char *local_name, *cand_name; 4828 struct ids_vec *cand_ids; 4829 __u32 local_id, cand_id; 4830 const char *spec_str; 4831 int i, j, err; 4832 4833 local_id = relo->type_id; 4834 local_type = btf__type_by_id(local_btf, local_id); 4835 if (!local_type) 4836 return -EINVAL; 4837 4838 local_name = btf__name_by_offset(local_btf, local_type->name_off); 4839 if (str_is_empty(local_name)) 4840 return -EINVAL; 4841 4842 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 4843 if (str_is_empty(spec_str)) 4844 return -EINVAL; 4845 4846 err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec); 4847 if (err) { 4848 pr_warn("prog '%s': relo #%d: parsing [%d] %s + %s failed: %d\n", 4849 prog_name, relo_idx, local_id, local_name, spec_str, 4850 err); 4851 return -EINVAL; 4852 } 4853 4854 pr_debug("prog '%s': relo #%d: kind %d, spec is ", prog_name, relo_idx, 4855 relo->kind); 4856 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 4857 libbpf_print(LIBBPF_DEBUG, "\n"); 4858 4859 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 4860 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 4861 if (IS_ERR(cand_ids)) { 4862 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s: %ld", 4863 prog_name, relo_idx, local_id, local_name, 4864 PTR_ERR(cand_ids)); 4865 return PTR_ERR(cand_ids); 4866 } 4867 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 4868 if (err) { 4869 bpf_core_free_cands(cand_ids); 4870 return err; 4871 } 4872 } 4873 4874 for (i = 0, j = 0; i < cand_ids->len; i++) { 4875 cand_id = cand_ids->data[i]; 4876 cand_type = btf__type_by_id(targ_btf, cand_id); 4877 cand_name = btf__name_by_offset(targ_btf, cand_type->name_off); 4878 4879 err = bpf_core_spec_match(&local_spec, targ_btf, 4880 cand_id, &cand_spec); 4881 pr_debug("prog '%s': relo #%d: matching candidate #%d %s against spec ", 4882 prog_name, relo_idx, i, cand_name); 4883 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 4884 libbpf_print(LIBBPF_DEBUG, ": %d\n", err); 4885 if (err < 0) { 4886 pr_warn("prog '%s': relo #%d: matching error: %d\n", 4887 prog_name, relo_idx, err); 4888 return err; 4889 } 4890 if (err == 0) 4891 continue; 4892 4893 if (j == 0) { 4894 targ_spec = cand_spec; 4895 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 4896 /* if there are many candidates, they should all 4897 * resolve to the same bit offset 4898 */ 4899 pr_warn("prog '%s': relo #%d: offset ambiguity: %u != %u\n", 4900 prog_name, relo_idx, cand_spec.bit_offset, 4901 targ_spec.bit_offset); 4902 return -EINVAL; 4903 } 4904 4905 cand_ids->data[j++] = cand_spec.spec[0].type_id; 4906 } 4907 4908 /* 4909 * For BPF_FIELD_EXISTS relo or when used BPF program has field 4910 * existence checks or kernel version/config checks, it's expected 4911 * that we might not find any candidates. In this case, if field 4912 * wasn't found in any candidate, the list of candidates shouldn't 4913 * change at all, we'll just handle relocating appropriately, 4914 * depending on relo's kind. 4915 */ 4916 if (j > 0) 4917 cand_ids->len = j; 4918 4919 /* 4920 * If no candidates were found, it might be both a programmer error, 4921 * as well as expected case, depending whether instruction w/ 4922 * relocation is guarded in some way that makes it unreachable (dead 4923 * code) if relocation can't be resolved. This is handled in 4924 * bpf_core_reloc_insn() uniformly by replacing that instruction with 4925 * BPF helper call insn (using invalid helper ID). If that instruction 4926 * is indeed unreachable, then it will be ignored and eliminated by 4927 * verifier. If it was an error, then verifier will complain and point 4928 * to a specific instruction number in its log. 4929 */ 4930 if (j == 0) 4931 pr_debug("prog '%s': relo #%d: no matching targets found for [%d] %s + %s\n", 4932 prog_name, relo_idx, local_id, local_name, spec_str); 4933 4934 /* bpf_core_reloc_insn should know how to handle missing targ_spec */ 4935 err = bpf_core_reloc_insn(prog, relo, relo_idx, &local_spec, 4936 j ? &targ_spec : NULL); 4937 if (err) { 4938 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 4939 prog_name, relo_idx, relo->insn_off, err); 4940 return -EINVAL; 4941 } 4942 4943 return 0; 4944 } 4945 4946 static int 4947 bpf_core_reloc_fields(struct bpf_object *obj, const char *targ_btf_path) 4948 { 4949 const struct btf_ext_info_sec *sec; 4950 const struct bpf_field_reloc *rec; 4951 const struct btf_ext_info *seg; 4952 struct hashmap_entry *entry; 4953 struct hashmap *cand_cache = NULL; 4954 struct bpf_program *prog; 4955 struct btf *targ_btf; 4956 const char *sec_name; 4957 int i, err = 0; 4958 4959 if (targ_btf_path) 4960 targ_btf = btf__parse_elf(targ_btf_path, NULL); 4961 else 4962 targ_btf = obj->btf_vmlinux; 4963 if (IS_ERR_OR_NULL(targ_btf)) { 4964 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 4965 return PTR_ERR(targ_btf); 4966 } 4967 4968 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 4969 if (IS_ERR(cand_cache)) { 4970 err = PTR_ERR(cand_cache); 4971 goto out; 4972 } 4973 4974 seg = &obj->btf_ext->field_reloc_info; 4975 for_each_btf_ext_sec(seg, sec) { 4976 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 4977 if (str_is_empty(sec_name)) { 4978 err = -EINVAL; 4979 goto out; 4980 } 4981 prog = NULL; 4982 for (i = 0; i < obj->nr_programs; i++) { 4983 if (!strcmp(obj->programs[i].section_name, sec_name)) { 4984 prog = &obj->programs[i]; 4985 break; 4986 } 4987 } 4988 if (!prog) { 4989 pr_warn("failed to find program '%s' for CO-RE offset relocation\n", 4990 sec_name); 4991 err = -EINVAL; 4992 goto out; 4993 } 4994 4995 pr_debug("prog '%s': performing %d CO-RE offset relocs\n", 4996 sec_name, sec->num_info); 4997 4998 for_each_btf_ext_rec(seg, sec, i, rec) { 4999 err = bpf_core_reloc_field(prog, rec, i, obj->btf, 5000 targ_btf, cand_cache); 5001 if (err) { 5002 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5003 sec_name, i, err); 5004 goto out; 5005 } 5006 } 5007 } 5008 5009 out: 5010 /* obj->btf_vmlinux is freed at the end of object load phase */ 5011 if (targ_btf != obj->btf_vmlinux) 5012 btf__free(targ_btf); 5013 if (!IS_ERR_OR_NULL(cand_cache)) { 5014 hashmap__for_each_entry(cand_cache, entry, i) { 5015 bpf_core_free_cands(entry->value); 5016 } 5017 hashmap__free(cand_cache); 5018 } 5019 return err; 5020 } 5021 5022 static int 5023 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5024 { 5025 int err = 0; 5026 5027 if (obj->btf_ext->field_reloc_info.len) 5028 err = bpf_core_reloc_fields(obj, targ_btf_path); 5029 5030 return err; 5031 } 5032 5033 static int 5034 bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj, 5035 struct reloc_desc *relo) 5036 { 5037 struct bpf_insn *insn, *new_insn; 5038 struct bpf_program *text; 5039 size_t new_cnt; 5040 int err; 5041 5042 if (prog->idx != obj->efile.text_shndx && prog->main_prog_cnt == 0) { 5043 text = bpf_object__find_prog_by_idx(obj, obj->efile.text_shndx); 5044 if (!text) { 5045 pr_warn("no .text section found yet relo into text exist\n"); 5046 return -LIBBPF_ERRNO__RELOC; 5047 } 5048 new_cnt = prog->insns_cnt + text->insns_cnt; 5049 new_insn = reallocarray(prog->insns, new_cnt, sizeof(*insn)); 5050 if (!new_insn) { 5051 pr_warn("oom in prog realloc\n"); 5052 return -ENOMEM; 5053 } 5054 prog->insns = new_insn; 5055 5056 if (obj->btf_ext) { 5057 err = bpf_program_reloc_btf_ext(prog, obj, 5058 text->section_name, 5059 prog->insns_cnt); 5060 if (err) 5061 return err; 5062 } 5063 5064 memcpy(new_insn + prog->insns_cnt, text->insns, 5065 text->insns_cnt * sizeof(*insn)); 5066 prog->main_prog_cnt = prog->insns_cnt; 5067 prog->insns_cnt = new_cnt; 5068 pr_debug("added %zd insn from %s to prog %s\n", 5069 text->insns_cnt, text->section_name, 5070 prog->section_name); 5071 } 5072 5073 insn = &prog->insns[relo->insn_idx]; 5074 insn->imm += relo->sym_off / 8 + prog->main_prog_cnt - relo->insn_idx; 5075 return 0; 5076 } 5077 5078 static int 5079 bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj) 5080 { 5081 int i, err; 5082 5083 if (!prog) 5084 return 0; 5085 5086 if (obj->btf_ext) { 5087 err = bpf_program_reloc_btf_ext(prog, obj, 5088 prog->section_name, 0); 5089 if (err) 5090 return err; 5091 } 5092 5093 if (!prog->reloc_desc) 5094 return 0; 5095 5096 for (i = 0; i < prog->nr_reloc; i++) { 5097 struct reloc_desc *relo = &prog->reloc_desc[i]; 5098 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5099 struct extern_desc *ext; 5100 5101 if (relo->insn_idx + 1 >= (int)prog->insns_cnt) { 5102 pr_warn("relocation out of range: '%s'\n", 5103 prog->section_name); 5104 return -LIBBPF_ERRNO__RELOC; 5105 } 5106 5107 switch (relo->type) { 5108 case RELO_LD64: 5109 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5110 insn[0].imm = obj->maps[relo->map_idx].fd; 5111 break; 5112 case RELO_DATA: 5113 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5114 insn[1].imm = insn[0].imm + relo->sym_off; 5115 insn[0].imm = obj->maps[relo->map_idx].fd; 5116 break; 5117 case RELO_EXTERN: 5118 ext = &obj->externs[relo->sym_off]; 5119 if (ext->type == EXT_KCFG) { 5120 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5121 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5122 insn[1].imm = ext->kcfg.data_off; 5123 } else /* EXT_KSYM */ { 5124 insn[0].imm = (__u32)ext->ksym.addr; 5125 insn[1].imm = ext->ksym.addr >> 32; 5126 } 5127 break; 5128 case RELO_CALL: 5129 err = bpf_program__reloc_text(prog, obj, relo); 5130 if (err) 5131 return err; 5132 break; 5133 default: 5134 pr_warn("relo #%d: bad relo type %d\n", i, relo->type); 5135 return -EINVAL; 5136 } 5137 } 5138 5139 zfree(&prog->reloc_desc); 5140 prog->nr_reloc = 0; 5141 return 0; 5142 } 5143 5144 static int 5145 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 5146 { 5147 struct bpf_program *prog; 5148 size_t i; 5149 int err; 5150 5151 if (obj->btf_ext) { 5152 err = bpf_object__relocate_core(obj, targ_btf_path); 5153 if (err) { 5154 pr_warn("failed to perform CO-RE relocations: %d\n", 5155 err); 5156 return err; 5157 } 5158 } 5159 /* ensure .text is relocated first, as it's going to be copied as-is 5160 * later for sub-program calls 5161 */ 5162 for (i = 0; i < obj->nr_programs; i++) { 5163 prog = &obj->programs[i]; 5164 if (prog->idx != obj->efile.text_shndx) 5165 continue; 5166 5167 err = bpf_program__relocate(prog, obj); 5168 if (err) { 5169 pr_warn("failed to relocate '%s'\n", prog->section_name); 5170 return err; 5171 } 5172 break; 5173 } 5174 /* now relocate everything but .text, which by now is relocated 5175 * properly, so we can copy raw sub-program instructions as is safely 5176 */ 5177 for (i = 0; i < obj->nr_programs; i++) { 5178 prog = &obj->programs[i]; 5179 if (prog->idx == obj->efile.text_shndx) 5180 continue; 5181 5182 err = bpf_program__relocate(prog, obj); 5183 if (err) { 5184 pr_warn("failed to relocate '%s'\n", prog->section_name); 5185 return err; 5186 } 5187 } 5188 return 0; 5189 } 5190 5191 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 5192 GElf_Shdr *shdr, Elf_Data *data); 5193 5194 static int bpf_object__collect_map_relos(struct bpf_object *obj, 5195 GElf_Shdr *shdr, Elf_Data *data) 5196 { 5197 int i, j, nrels, new_sz, ptr_sz = sizeof(void *); 5198 const struct btf_var_secinfo *vi = NULL; 5199 const struct btf_type *sec, *var, *def; 5200 const struct btf_member *member; 5201 struct bpf_map *map, *targ_map; 5202 const char *name, *mname; 5203 Elf_Data *symbols; 5204 unsigned int moff; 5205 GElf_Sym sym; 5206 GElf_Rel rel; 5207 void *tmp; 5208 5209 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 5210 return -EINVAL; 5211 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 5212 if (!sec) 5213 return -EINVAL; 5214 5215 symbols = obj->efile.symbols; 5216 nrels = shdr->sh_size / shdr->sh_entsize; 5217 for (i = 0; i < nrels; i++) { 5218 if (!gelf_getrel(data, i, &rel)) { 5219 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 5220 return -LIBBPF_ERRNO__FORMAT; 5221 } 5222 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 5223 pr_warn(".maps relo #%d: symbol %zx not found\n", 5224 i, (size_t)GELF_R_SYM(rel.r_info)); 5225 return -LIBBPF_ERRNO__FORMAT; 5226 } 5227 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 5228 sym.st_name) ? : "<?>"; 5229 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 5230 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 5231 i, name); 5232 return -LIBBPF_ERRNO__RELOC; 5233 } 5234 5235 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 5236 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 5237 (size_t)rel.r_offset, sym.st_name, name); 5238 5239 for (j = 0; j < obj->nr_maps; j++) { 5240 map = &obj->maps[j]; 5241 if (map->sec_idx != obj->efile.btf_maps_shndx) 5242 continue; 5243 5244 vi = btf_var_secinfos(sec) + map->btf_var_idx; 5245 if (vi->offset <= rel.r_offset && 5246 rel.r_offset + sizeof(void *) <= vi->offset + vi->size) 5247 break; 5248 } 5249 if (j == obj->nr_maps) { 5250 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 5251 i, name, (size_t)rel.r_offset); 5252 return -EINVAL; 5253 } 5254 5255 if (!bpf_map_type__is_map_in_map(map->def.type)) 5256 return -EINVAL; 5257 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 5258 map->def.key_size != sizeof(int)) { 5259 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 5260 i, map->name, sizeof(int)); 5261 return -EINVAL; 5262 } 5263 5264 targ_map = bpf_object__find_map_by_name(obj, name); 5265 if (!targ_map) 5266 return -ESRCH; 5267 5268 var = btf__type_by_id(obj->btf, vi->type); 5269 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 5270 if (btf_vlen(def) == 0) 5271 return -EINVAL; 5272 member = btf_members(def) + btf_vlen(def) - 1; 5273 mname = btf__name_by_offset(obj->btf, member->name_off); 5274 if (strcmp(mname, "values")) 5275 return -EINVAL; 5276 5277 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 5278 if (rel.r_offset - vi->offset < moff) 5279 return -EINVAL; 5280 5281 moff = rel.r_offset - vi->offset - moff; 5282 if (moff % ptr_sz) 5283 return -EINVAL; 5284 moff /= ptr_sz; 5285 if (moff >= map->init_slots_sz) { 5286 new_sz = moff + 1; 5287 tmp = realloc(map->init_slots, new_sz * ptr_sz); 5288 if (!tmp) 5289 return -ENOMEM; 5290 map->init_slots = tmp; 5291 memset(map->init_slots + map->init_slots_sz, 0, 5292 (new_sz - map->init_slots_sz) * ptr_sz); 5293 map->init_slots_sz = new_sz; 5294 } 5295 map->init_slots[moff] = targ_map; 5296 5297 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 5298 i, map->name, moff, name); 5299 } 5300 5301 return 0; 5302 } 5303 5304 static int bpf_object__collect_reloc(struct bpf_object *obj) 5305 { 5306 int i, err; 5307 5308 if (!obj_elf_valid(obj)) { 5309 pr_warn("Internal error: elf object is closed\n"); 5310 return -LIBBPF_ERRNO__INTERNAL; 5311 } 5312 5313 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 5314 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 5315 Elf_Data *data = obj->efile.reloc_sects[i].data; 5316 int idx = shdr->sh_info; 5317 struct bpf_program *prog; 5318 5319 if (shdr->sh_type != SHT_REL) { 5320 pr_warn("internal error at %d\n", __LINE__); 5321 return -LIBBPF_ERRNO__INTERNAL; 5322 } 5323 5324 if (idx == obj->efile.st_ops_shndx) { 5325 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 5326 } else if (idx == obj->efile.btf_maps_shndx) { 5327 err = bpf_object__collect_map_relos(obj, shdr, data); 5328 } else { 5329 prog = bpf_object__find_prog_by_idx(obj, idx); 5330 if (!prog) { 5331 pr_warn("relocation failed: no prog in section(%d)\n", idx); 5332 return -LIBBPF_ERRNO__RELOC; 5333 } 5334 err = bpf_program__collect_reloc(prog, shdr, data, obj); 5335 } 5336 if (err) 5337 return err; 5338 } 5339 return 0; 5340 } 5341 5342 static int 5343 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 5344 char *license, __u32 kern_version, int *pfd) 5345 { 5346 struct bpf_load_program_attr load_attr; 5347 char *cp, errmsg[STRERR_BUFSIZE]; 5348 size_t log_buf_size = 0; 5349 char *log_buf = NULL; 5350 int btf_fd, ret; 5351 5352 if (!insns || !insns_cnt) 5353 return -EINVAL; 5354 5355 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 5356 load_attr.prog_type = prog->type; 5357 /* old kernels might not support specifying expected_attach_type */ 5358 if (!prog->caps->exp_attach_type && prog->sec_def && 5359 prog->sec_def->is_exp_attach_type_optional) 5360 load_attr.expected_attach_type = 0; 5361 else 5362 load_attr.expected_attach_type = prog->expected_attach_type; 5363 if (prog->caps->name) 5364 load_attr.name = prog->name; 5365 load_attr.insns = insns; 5366 load_attr.insns_cnt = insns_cnt; 5367 load_attr.license = license; 5368 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 5369 prog->type == BPF_PROG_TYPE_LSM) { 5370 load_attr.attach_btf_id = prog->attach_btf_id; 5371 } else if (prog->type == BPF_PROG_TYPE_TRACING || 5372 prog->type == BPF_PROG_TYPE_EXT) { 5373 load_attr.attach_prog_fd = prog->attach_prog_fd; 5374 load_attr.attach_btf_id = prog->attach_btf_id; 5375 } else { 5376 load_attr.kern_version = kern_version; 5377 load_attr.prog_ifindex = prog->prog_ifindex; 5378 } 5379 /* specify func_info/line_info only if kernel supports them */ 5380 btf_fd = bpf_object__btf_fd(prog->obj); 5381 if (btf_fd >= 0 && prog->obj->caps.btf_func) { 5382 load_attr.prog_btf_fd = btf_fd; 5383 load_attr.func_info = prog->func_info; 5384 load_attr.func_info_rec_size = prog->func_info_rec_size; 5385 load_attr.func_info_cnt = prog->func_info_cnt; 5386 load_attr.line_info = prog->line_info; 5387 load_attr.line_info_rec_size = prog->line_info_rec_size; 5388 load_attr.line_info_cnt = prog->line_info_cnt; 5389 } 5390 load_attr.log_level = prog->log_level; 5391 load_attr.prog_flags = prog->prog_flags; 5392 5393 retry_load: 5394 if (log_buf_size) { 5395 log_buf = malloc(log_buf_size); 5396 if (!log_buf) 5397 return -ENOMEM; 5398 5399 *log_buf = 0; 5400 } 5401 5402 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 5403 5404 if (ret >= 0) { 5405 if (log_buf && load_attr.log_level) 5406 pr_debug("verifier log:\n%s", log_buf); 5407 *pfd = ret; 5408 ret = 0; 5409 goto out; 5410 } 5411 5412 if (!log_buf || errno == ENOSPC) { 5413 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 5414 log_buf_size << 1); 5415 5416 free(log_buf); 5417 goto retry_load; 5418 } 5419 ret = -errno; 5420 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 5421 pr_warn("load bpf program failed: %s\n", cp); 5422 pr_perm_msg(ret); 5423 5424 if (log_buf && log_buf[0] != '\0') { 5425 ret = -LIBBPF_ERRNO__VERIFY; 5426 pr_warn("-- BEGIN DUMP LOG ---\n"); 5427 pr_warn("\n%s\n", log_buf); 5428 pr_warn("-- END LOG --\n"); 5429 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 5430 pr_warn("Program too large (%zu insns), at most %d insns\n", 5431 load_attr.insns_cnt, BPF_MAXINSNS); 5432 ret = -LIBBPF_ERRNO__PROG2BIG; 5433 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 5434 /* Wrong program type? */ 5435 int fd; 5436 5437 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 5438 load_attr.expected_attach_type = 0; 5439 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 5440 if (fd >= 0) { 5441 close(fd); 5442 ret = -LIBBPF_ERRNO__PROGTYPE; 5443 goto out; 5444 } 5445 } 5446 5447 out: 5448 free(log_buf); 5449 return ret; 5450 } 5451 5452 static int libbpf_find_attach_btf_id(struct bpf_program *prog); 5453 5454 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 5455 { 5456 int err = 0, fd, i, btf_id; 5457 5458 if (prog->obj->loaded) { 5459 pr_warn("prog '%s'('%s'): can't load after object was loaded\n", 5460 prog->name, prog->section_name); 5461 return -EINVAL; 5462 } 5463 5464 if ((prog->type == BPF_PROG_TYPE_TRACING || 5465 prog->type == BPF_PROG_TYPE_LSM || 5466 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 5467 btf_id = libbpf_find_attach_btf_id(prog); 5468 if (btf_id <= 0) 5469 return btf_id; 5470 prog->attach_btf_id = btf_id; 5471 } 5472 5473 if (prog->instances.nr < 0 || !prog->instances.fds) { 5474 if (prog->preprocessor) { 5475 pr_warn("Internal error: can't load program '%s'\n", 5476 prog->section_name); 5477 return -LIBBPF_ERRNO__INTERNAL; 5478 } 5479 5480 prog->instances.fds = malloc(sizeof(int)); 5481 if (!prog->instances.fds) { 5482 pr_warn("Not enough memory for BPF fds\n"); 5483 return -ENOMEM; 5484 } 5485 prog->instances.nr = 1; 5486 prog->instances.fds[0] = -1; 5487 } 5488 5489 if (!prog->preprocessor) { 5490 if (prog->instances.nr != 1) { 5491 pr_warn("Program '%s' is inconsistent: nr(%d) != 1\n", 5492 prog->section_name, prog->instances.nr); 5493 } 5494 err = load_program(prog, prog->insns, prog->insns_cnt, 5495 license, kern_ver, &fd); 5496 if (!err) 5497 prog->instances.fds[0] = fd; 5498 goto out; 5499 } 5500 5501 for (i = 0; i < prog->instances.nr; i++) { 5502 struct bpf_prog_prep_result result; 5503 bpf_program_prep_t preprocessor = prog->preprocessor; 5504 5505 memset(&result, 0, sizeof(result)); 5506 err = preprocessor(prog, i, prog->insns, 5507 prog->insns_cnt, &result); 5508 if (err) { 5509 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 5510 i, prog->section_name); 5511 goto out; 5512 } 5513 5514 if (!result.new_insn_ptr || !result.new_insn_cnt) { 5515 pr_debug("Skip loading the %dth instance of program '%s'\n", 5516 i, prog->section_name); 5517 prog->instances.fds[i] = -1; 5518 if (result.pfd) 5519 *result.pfd = -1; 5520 continue; 5521 } 5522 5523 err = load_program(prog, result.new_insn_ptr, 5524 result.new_insn_cnt, license, kern_ver, &fd); 5525 if (err) { 5526 pr_warn("Loading the %dth instance of program '%s' failed\n", 5527 i, prog->section_name); 5528 goto out; 5529 } 5530 5531 if (result.pfd) 5532 *result.pfd = fd; 5533 prog->instances.fds[i] = fd; 5534 } 5535 out: 5536 if (err) 5537 pr_warn("failed to load program '%s'\n", prog->section_name); 5538 zfree(&prog->insns); 5539 prog->insns_cnt = 0; 5540 return err; 5541 } 5542 5543 static bool bpf_program__is_function_storage(const struct bpf_program *prog, 5544 const struct bpf_object *obj) 5545 { 5546 return prog->idx == obj->efile.text_shndx && obj->has_pseudo_calls; 5547 } 5548 5549 static int 5550 bpf_object__load_progs(struct bpf_object *obj, int log_level) 5551 { 5552 struct bpf_program *prog; 5553 size_t i; 5554 int err; 5555 5556 for (i = 0; i < obj->nr_programs; i++) { 5557 prog = &obj->programs[i]; 5558 if (bpf_program__is_function_storage(prog, obj)) 5559 continue; 5560 if (!prog->load) { 5561 pr_debug("prog '%s'('%s'): skipped loading\n", 5562 prog->name, prog->section_name); 5563 continue; 5564 } 5565 prog->log_level |= log_level; 5566 err = bpf_program__load(prog, obj->license, obj->kern_version); 5567 if (err) 5568 return err; 5569 } 5570 return 0; 5571 } 5572 5573 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 5574 5575 static struct bpf_object * 5576 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 5577 const struct bpf_object_open_opts *opts) 5578 { 5579 const char *obj_name, *kconfig; 5580 struct bpf_program *prog; 5581 struct bpf_object *obj; 5582 char tmp_name[64]; 5583 int err; 5584 5585 if (elf_version(EV_CURRENT) == EV_NONE) { 5586 pr_warn("failed to init libelf for %s\n", 5587 path ? : "(mem buf)"); 5588 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 5589 } 5590 5591 if (!OPTS_VALID(opts, bpf_object_open_opts)) 5592 return ERR_PTR(-EINVAL); 5593 5594 obj_name = OPTS_GET(opts, object_name, NULL); 5595 if (obj_buf) { 5596 if (!obj_name) { 5597 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 5598 (unsigned long)obj_buf, 5599 (unsigned long)obj_buf_sz); 5600 obj_name = tmp_name; 5601 } 5602 path = obj_name; 5603 pr_debug("loading object '%s' from buffer\n", obj_name); 5604 } 5605 5606 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 5607 if (IS_ERR(obj)) 5608 return obj; 5609 5610 kconfig = OPTS_GET(opts, kconfig, NULL); 5611 if (kconfig) { 5612 obj->kconfig = strdup(kconfig); 5613 if (!obj->kconfig) 5614 return ERR_PTR(-ENOMEM); 5615 } 5616 5617 err = bpf_object__elf_init(obj); 5618 err = err ? : bpf_object__check_endianness(obj); 5619 err = err ? : bpf_object__elf_collect(obj); 5620 err = err ? : bpf_object__collect_externs(obj); 5621 err = err ? : bpf_object__finalize_btf(obj); 5622 err = err ? : bpf_object__init_maps(obj, opts); 5623 err = err ? : bpf_object__init_prog_names(obj); 5624 err = err ? : bpf_object__collect_reloc(obj); 5625 if (err) 5626 goto out; 5627 bpf_object__elf_finish(obj); 5628 5629 bpf_object__for_each_program(prog, obj) { 5630 prog->sec_def = find_sec_def(prog->section_name); 5631 if (!prog->sec_def) 5632 /* couldn't guess, but user might manually specify */ 5633 continue; 5634 5635 bpf_program__set_type(prog, prog->sec_def->prog_type); 5636 bpf_program__set_expected_attach_type(prog, 5637 prog->sec_def->expected_attach_type); 5638 5639 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 5640 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 5641 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 5642 } 5643 5644 return obj; 5645 out: 5646 bpf_object__close(obj); 5647 return ERR_PTR(err); 5648 } 5649 5650 static struct bpf_object * 5651 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 5652 { 5653 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 5654 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 5655 ); 5656 5657 /* param validation */ 5658 if (!attr->file) 5659 return NULL; 5660 5661 pr_debug("loading %s\n", attr->file); 5662 return __bpf_object__open(attr->file, NULL, 0, &opts); 5663 } 5664 5665 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 5666 { 5667 return __bpf_object__open_xattr(attr, 0); 5668 } 5669 5670 struct bpf_object *bpf_object__open(const char *path) 5671 { 5672 struct bpf_object_open_attr attr = { 5673 .file = path, 5674 .prog_type = BPF_PROG_TYPE_UNSPEC, 5675 }; 5676 5677 return bpf_object__open_xattr(&attr); 5678 } 5679 5680 struct bpf_object * 5681 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 5682 { 5683 if (!path) 5684 return ERR_PTR(-EINVAL); 5685 5686 pr_debug("loading %s\n", path); 5687 5688 return __bpf_object__open(path, NULL, 0, opts); 5689 } 5690 5691 struct bpf_object * 5692 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 5693 const struct bpf_object_open_opts *opts) 5694 { 5695 if (!obj_buf || obj_buf_sz == 0) 5696 return ERR_PTR(-EINVAL); 5697 5698 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 5699 } 5700 5701 struct bpf_object * 5702 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 5703 const char *name) 5704 { 5705 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 5706 .object_name = name, 5707 /* wrong default, but backwards-compatible */ 5708 .relaxed_maps = true, 5709 ); 5710 5711 /* returning NULL is wrong, but backwards-compatible */ 5712 if (!obj_buf || obj_buf_sz == 0) 5713 return NULL; 5714 5715 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 5716 } 5717 5718 int bpf_object__unload(struct bpf_object *obj) 5719 { 5720 size_t i; 5721 5722 if (!obj) 5723 return -EINVAL; 5724 5725 for (i = 0; i < obj->nr_maps; i++) { 5726 zclose(obj->maps[i].fd); 5727 if (obj->maps[i].st_ops) 5728 zfree(&obj->maps[i].st_ops->kern_vdata); 5729 } 5730 5731 for (i = 0; i < obj->nr_programs; i++) 5732 bpf_program__unload(&obj->programs[i]); 5733 5734 return 0; 5735 } 5736 5737 static int bpf_object__sanitize_maps(struct bpf_object *obj) 5738 { 5739 struct bpf_map *m; 5740 5741 bpf_object__for_each_map(m, obj) { 5742 if (!bpf_map__is_internal(m)) 5743 continue; 5744 if (!obj->caps.global_data) { 5745 pr_warn("kernel doesn't support global data\n"); 5746 return -ENOTSUP; 5747 } 5748 if (!obj->caps.array_mmap) 5749 m->def.map_flags ^= BPF_F_MMAPABLE; 5750 } 5751 5752 return 0; 5753 } 5754 5755 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 5756 { 5757 char sym_type, sym_name[500]; 5758 unsigned long long sym_addr; 5759 struct extern_desc *ext; 5760 int ret, err = 0; 5761 FILE *f; 5762 5763 f = fopen("/proc/kallsyms", "r"); 5764 if (!f) { 5765 err = -errno; 5766 pr_warn("failed to open /proc/kallsyms: %d\n", err); 5767 return err; 5768 } 5769 5770 while (true) { 5771 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 5772 &sym_addr, &sym_type, sym_name); 5773 if (ret == EOF && feof(f)) 5774 break; 5775 if (ret != 3) { 5776 pr_warn("failed to read kallsyms entry: %d\n", ret); 5777 err = -EINVAL; 5778 goto out; 5779 } 5780 5781 ext = find_extern_by_name(obj, sym_name); 5782 if (!ext || ext->type != EXT_KSYM) 5783 continue; 5784 5785 if (ext->is_set && ext->ksym.addr != sym_addr) { 5786 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 5787 sym_name, ext->ksym.addr, sym_addr); 5788 err = -EINVAL; 5789 goto out; 5790 } 5791 if (!ext->is_set) { 5792 ext->is_set = true; 5793 ext->ksym.addr = sym_addr; 5794 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 5795 } 5796 } 5797 5798 out: 5799 fclose(f); 5800 return err; 5801 } 5802 5803 static int bpf_object__resolve_externs(struct bpf_object *obj, 5804 const char *extra_kconfig) 5805 { 5806 bool need_config = false, need_kallsyms = false; 5807 struct extern_desc *ext; 5808 void *kcfg_data = NULL; 5809 int err, i; 5810 5811 if (obj->nr_extern == 0) 5812 return 0; 5813 5814 if (obj->kconfig_map_idx >= 0) 5815 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 5816 5817 for (i = 0; i < obj->nr_extern; i++) { 5818 ext = &obj->externs[i]; 5819 5820 if (ext->type == EXT_KCFG && 5821 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 5822 void *ext_val = kcfg_data + ext->kcfg.data_off; 5823 __u32 kver = get_kernel_version(); 5824 5825 if (!kver) { 5826 pr_warn("failed to get kernel version\n"); 5827 return -EINVAL; 5828 } 5829 err = set_kcfg_value_num(ext, ext_val, kver); 5830 if (err) 5831 return err; 5832 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 5833 } else if (ext->type == EXT_KCFG && 5834 strncmp(ext->name, "CONFIG_", 7) == 0) { 5835 need_config = true; 5836 } else if (ext->type == EXT_KSYM) { 5837 need_kallsyms = true; 5838 } else { 5839 pr_warn("unrecognized extern '%s'\n", ext->name); 5840 return -EINVAL; 5841 } 5842 } 5843 if (need_config && extra_kconfig) { 5844 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 5845 if (err) 5846 return -EINVAL; 5847 need_config = false; 5848 for (i = 0; i < obj->nr_extern; i++) { 5849 ext = &obj->externs[i]; 5850 if (ext->type == EXT_KCFG && !ext->is_set) { 5851 need_config = true; 5852 break; 5853 } 5854 } 5855 } 5856 if (need_config) { 5857 err = bpf_object__read_kconfig_file(obj, kcfg_data); 5858 if (err) 5859 return -EINVAL; 5860 } 5861 if (need_kallsyms) { 5862 err = bpf_object__read_kallsyms_file(obj); 5863 if (err) 5864 return -EINVAL; 5865 } 5866 for (i = 0; i < obj->nr_extern; i++) { 5867 ext = &obj->externs[i]; 5868 5869 if (!ext->is_set && !ext->is_weak) { 5870 pr_warn("extern %s (strong) not resolved\n", ext->name); 5871 return -ESRCH; 5872 } else if (!ext->is_set) { 5873 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 5874 ext->name); 5875 } 5876 } 5877 5878 return 0; 5879 } 5880 5881 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 5882 { 5883 struct bpf_object *obj; 5884 int err, i; 5885 5886 if (!attr) 5887 return -EINVAL; 5888 obj = attr->obj; 5889 if (!obj) 5890 return -EINVAL; 5891 5892 if (obj->loaded) { 5893 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 5894 return -EINVAL; 5895 } 5896 5897 err = bpf_object__probe_loading(obj); 5898 err = err ? : bpf_object__probe_caps(obj); 5899 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 5900 err = err ? : bpf_object__sanitize_and_load_btf(obj); 5901 err = err ? : bpf_object__sanitize_maps(obj); 5902 err = err ? : bpf_object__load_vmlinux_btf(obj); 5903 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 5904 err = err ? : bpf_object__create_maps(obj); 5905 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 5906 err = err ? : bpf_object__load_progs(obj, attr->log_level); 5907 5908 btf__free(obj->btf_vmlinux); 5909 obj->btf_vmlinux = NULL; 5910 5911 obj->loaded = true; /* doesn't matter if successfully or not */ 5912 5913 if (err) 5914 goto out; 5915 5916 return 0; 5917 out: 5918 /* unpin any maps that were auto-pinned during load */ 5919 for (i = 0; i < obj->nr_maps; i++) 5920 if (obj->maps[i].pinned && !obj->maps[i].reused) 5921 bpf_map__unpin(&obj->maps[i], NULL); 5922 5923 bpf_object__unload(obj); 5924 pr_warn("failed to load object '%s'\n", obj->path); 5925 return err; 5926 } 5927 5928 int bpf_object__load(struct bpf_object *obj) 5929 { 5930 struct bpf_object_load_attr attr = { 5931 .obj = obj, 5932 }; 5933 5934 return bpf_object__load_xattr(&attr); 5935 } 5936 5937 static int make_parent_dir(const char *path) 5938 { 5939 char *cp, errmsg[STRERR_BUFSIZE]; 5940 char *dname, *dir; 5941 int err = 0; 5942 5943 dname = strdup(path); 5944 if (dname == NULL) 5945 return -ENOMEM; 5946 5947 dir = dirname(dname); 5948 if (mkdir(dir, 0700) && errno != EEXIST) 5949 err = -errno; 5950 5951 free(dname); 5952 if (err) { 5953 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5954 pr_warn("failed to mkdir %s: %s\n", path, cp); 5955 } 5956 return err; 5957 } 5958 5959 static int check_path(const char *path) 5960 { 5961 char *cp, errmsg[STRERR_BUFSIZE]; 5962 struct statfs st_fs; 5963 char *dname, *dir; 5964 int err = 0; 5965 5966 if (path == NULL) 5967 return -EINVAL; 5968 5969 dname = strdup(path); 5970 if (dname == NULL) 5971 return -ENOMEM; 5972 5973 dir = dirname(dname); 5974 if (statfs(dir, &st_fs)) { 5975 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 5976 pr_warn("failed to statfs %s: %s\n", dir, cp); 5977 err = -errno; 5978 } 5979 free(dname); 5980 5981 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 5982 pr_warn("specified path %s is not on BPF FS\n", path); 5983 err = -EINVAL; 5984 } 5985 5986 return err; 5987 } 5988 5989 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 5990 int instance) 5991 { 5992 char *cp, errmsg[STRERR_BUFSIZE]; 5993 int err; 5994 5995 err = make_parent_dir(path); 5996 if (err) 5997 return err; 5998 5999 err = check_path(path); 6000 if (err) 6001 return err; 6002 6003 if (prog == NULL) { 6004 pr_warn("invalid program pointer\n"); 6005 return -EINVAL; 6006 } 6007 6008 if (instance < 0 || instance >= prog->instances.nr) { 6009 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 6010 instance, prog->section_name, prog->instances.nr); 6011 return -EINVAL; 6012 } 6013 6014 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 6015 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6016 pr_warn("failed to pin program: %s\n", cp); 6017 return -errno; 6018 } 6019 pr_debug("pinned program '%s'\n", path); 6020 6021 return 0; 6022 } 6023 6024 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 6025 int instance) 6026 { 6027 int err; 6028 6029 err = check_path(path); 6030 if (err) 6031 return err; 6032 6033 if (prog == NULL) { 6034 pr_warn("invalid program pointer\n"); 6035 return -EINVAL; 6036 } 6037 6038 if (instance < 0 || instance >= prog->instances.nr) { 6039 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 6040 instance, prog->section_name, prog->instances.nr); 6041 return -EINVAL; 6042 } 6043 6044 err = unlink(path); 6045 if (err != 0) 6046 return -errno; 6047 pr_debug("unpinned program '%s'\n", path); 6048 6049 return 0; 6050 } 6051 6052 int bpf_program__pin(struct bpf_program *prog, const char *path) 6053 { 6054 int i, err; 6055 6056 err = make_parent_dir(path); 6057 if (err) 6058 return err; 6059 6060 err = check_path(path); 6061 if (err) 6062 return err; 6063 6064 if (prog == NULL) { 6065 pr_warn("invalid program pointer\n"); 6066 return -EINVAL; 6067 } 6068 6069 if (prog->instances.nr <= 0) { 6070 pr_warn("no instances of prog %s to pin\n", 6071 prog->section_name); 6072 return -EINVAL; 6073 } 6074 6075 if (prog->instances.nr == 1) { 6076 /* don't create subdirs when pinning single instance */ 6077 return bpf_program__pin_instance(prog, path, 0); 6078 } 6079 6080 for (i = 0; i < prog->instances.nr; i++) { 6081 char buf[PATH_MAX]; 6082 int len; 6083 6084 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 6085 if (len < 0) { 6086 err = -EINVAL; 6087 goto err_unpin; 6088 } else if (len >= PATH_MAX) { 6089 err = -ENAMETOOLONG; 6090 goto err_unpin; 6091 } 6092 6093 err = bpf_program__pin_instance(prog, buf, i); 6094 if (err) 6095 goto err_unpin; 6096 } 6097 6098 return 0; 6099 6100 err_unpin: 6101 for (i = i - 1; i >= 0; i--) { 6102 char buf[PATH_MAX]; 6103 int len; 6104 6105 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 6106 if (len < 0) 6107 continue; 6108 else if (len >= PATH_MAX) 6109 continue; 6110 6111 bpf_program__unpin_instance(prog, buf, i); 6112 } 6113 6114 rmdir(path); 6115 6116 return err; 6117 } 6118 6119 int bpf_program__unpin(struct bpf_program *prog, const char *path) 6120 { 6121 int i, err; 6122 6123 err = check_path(path); 6124 if (err) 6125 return err; 6126 6127 if (prog == NULL) { 6128 pr_warn("invalid program pointer\n"); 6129 return -EINVAL; 6130 } 6131 6132 if (prog->instances.nr <= 0) { 6133 pr_warn("no instances of prog %s to pin\n", 6134 prog->section_name); 6135 return -EINVAL; 6136 } 6137 6138 if (prog->instances.nr == 1) { 6139 /* don't create subdirs when pinning single instance */ 6140 return bpf_program__unpin_instance(prog, path, 0); 6141 } 6142 6143 for (i = 0; i < prog->instances.nr; i++) { 6144 char buf[PATH_MAX]; 6145 int len; 6146 6147 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 6148 if (len < 0) 6149 return -EINVAL; 6150 else if (len >= PATH_MAX) 6151 return -ENAMETOOLONG; 6152 6153 err = bpf_program__unpin_instance(prog, buf, i); 6154 if (err) 6155 return err; 6156 } 6157 6158 err = rmdir(path); 6159 if (err) 6160 return -errno; 6161 6162 return 0; 6163 } 6164 6165 int bpf_map__pin(struct bpf_map *map, const char *path) 6166 { 6167 char *cp, errmsg[STRERR_BUFSIZE]; 6168 int err; 6169 6170 if (map == NULL) { 6171 pr_warn("invalid map pointer\n"); 6172 return -EINVAL; 6173 } 6174 6175 if (map->pin_path) { 6176 if (path && strcmp(path, map->pin_path)) { 6177 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 6178 bpf_map__name(map), map->pin_path, path); 6179 return -EINVAL; 6180 } else if (map->pinned) { 6181 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 6182 bpf_map__name(map), map->pin_path); 6183 return 0; 6184 } 6185 } else { 6186 if (!path) { 6187 pr_warn("missing a path to pin map '%s' at\n", 6188 bpf_map__name(map)); 6189 return -EINVAL; 6190 } else if (map->pinned) { 6191 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 6192 return -EEXIST; 6193 } 6194 6195 map->pin_path = strdup(path); 6196 if (!map->pin_path) { 6197 err = -errno; 6198 goto out_err; 6199 } 6200 } 6201 6202 err = make_parent_dir(map->pin_path); 6203 if (err) 6204 return err; 6205 6206 err = check_path(map->pin_path); 6207 if (err) 6208 return err; 6209 6210 if (bpf_obj_pin(map->fd, map->pin_path)) { 6211 err = -errno; 6212 goto out_err; 6213 } 6214 6215 map->pinned = true; 6216 pr_debug("pinned map '%s'\n", map->pin_path); 6217 6218 return 0; 6219 6220 out_err: 6221 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 6222 pr_warn("failed to pin map: %s\n", cp); 6223 return err; 6224 } 6225 6226 int bpf_map__unpin(struct bpf_map *map, const char *path) 6227 { 6228 int err; 6229 6230 if (map == NULL) { 6231 pr_warn("invalid map pointer\n"); 6232 return -EINVAL; 6233 } 6234 6235 if (map->pin_path) { 6236 if (path && strcmp(path, map->pin_path)) { 6237 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 6238 bpf_map__name(map), map->pin_path, path); 6239 return -EINVAL; 6240 } 6241 path = map->pin_path; 6242 } else if (!path) { 6243 pr_warn("no path to unpin map '%s' from\n", 6244 bpf_map__name(map)); 6245 return -EINVAL; 6246 } 6247 6248 err = check_path(path); 6249 if (err) 6250 return err; 6251 6252 err = unlink(path); 6253 if (err != 0) 6254 return -errno; 6255 6256 map->pinned = false; 6257 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 6258 6259 return 0; 6260 } 6261 6262 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 6263 { 6264 char *new = NULL; 6265 6266 if (path) { 6267 new = strdup(path); 6268 if (!new) 6269 return -errno; 6270 } 6271 6272 free(map->pin_path); 6273 map->pin_path = new; 6274 return 0; 6275 } 6276 6277 const char *bpf_map__get_pin_path(const struct bpf_map *map) 6278 { 6279 return map->pin_path; 6280 } 6281 6282 bool bpf_map__is_pinned(const struct bpf_map *map) 6283 { 6284 return map->pinned; 6285 } 6286 6287 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 6288 { 6289 struct bpf_map *map; 6290 int err; 6291 6292 if (!obj) 6293 return -ENOENT; 6294 6295 if (!obj->loaded) { 6296 pr_warn("object not yet loaded; load it first\n"); 6297 return -ENOENT; 6298 } 6299 6300 bpf_object__for_each_map(map, obj) { 6301 char *pin_path = NULL; 6302 char buf[PATH_MAX]; 6303 6304 if (path) { 6305 int len; 6306 6307 len = snprintf(buf, PATH_MAX, "%s/%s", path, 6308 bpf_map__name(map)); 6309 if (len < 0) { 6310 err = -EINVAL; 6311 goto err_unpin_maps; 6312 } else if (len >= PATH_MAX) { 6313 err = -ENAMETOOLONG; 6314 goto err_unpin_maps; 6315 } 6316 pin_path = buf; 6317 } else if (!map->pin_path) { 6318 continue; 6319 } 6320 6321 err = bpf_map__pin(map, pin_path); 6322 if (err) 6323 goto err_unpin_maps; 6324 } 6325 6326 return 0; 6327 6328 err_unpin_maps: 6329 while ((map = bpf_map__prev(map, obj))) { 6330 if (!map->pin_path) 6331 continue; 6332 6333 bpf_map__unpin(map, NULL); 6334 } 6335 6336 return err; 6337 } 6338 6339 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 6340 { 6341 struct bpf_map *map; 6342 int err; 6343 6344 if (!obj) 6345 return -ENOENT; 6346 6347 bpf_object__for_each_map(map, obj) { 6348 char *pin_path = NULL; 6349 char buf[PATH_MAX]; 6350 6351 if (path) { 6352 int len; 6353 6354 len = snprintf(buf, PATH_MAX, "%s/%s", path, 6355 bpf_map__name(map)); 6356 if (len < 0) 6357 return -EINVAL; 6358 else if (len >= PATH_MAX) 6359 return -ENAMETOOLONG; 6360 pin_path = buf; 6361 } else if (!map->pin_path) { 6362 continue; 6363 } 6364 6365 err = bpf_map__unpin(map, pin_path); 6366 if (err) 6367 return err; 6368 } 6369 6370 return 0; 6371 } 6372 6373 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 6374 { 6375 struct bpf_program *prog; 6376 int err; 6377 6378 if (!obj) 6379 return -ENOENT; 6380 6381 if (!obj->loaded) { 6382 pr_warn("object not yet loaded; load it first\n"); 6383 return -ENOENT; 6384 } 6385 6386 bpf_object__for_each_program(prog, obj) { 6387 char buf[PATH_MAX]; 6388 int len; 6389 6390 len = snprintf(buf, PATH_MAX, "%s/%s", path, 6391 prog->pin_name); 6392 if (len < 0) { 6393 err = -EINVAL; 6394 goto err_unpin_programs; 6395 } else if (len >= PATH_MAX) { 6396 err = -ENAMETOOLONG; 6397 goto err_unpin_programs; 6398 } 6399 6400 err = bpf_program__pin(prog, buf); 6401 if (err) 6402 goto err_unpin_programs; 6403 } 6404 6405 return 0; 6406 6407 err_unpin_programs: 6408 while ((prog = bpf_program__prev(prog, obj))) { 6409 char buf[PATH_MAX]; 6410 int len; 6411 6412 len = snprintf(buf, PATH_MAX, "%s/%s", path, 6413 prog->pin_name); 6414 if (len < 0) 6415 continue; 6416 else if (len >= PATH_MAX) 6417 continue; 6418 6419 bpf_program__unpin(prog, buf); 6420 } 6421 6422 return err; 6423 } 6424 6425 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 6426 { 6427 struct bpf_program *prog; 6428 int err; 6429 6430 if (!obj) 6431 return -ENOENT; 6432 6433 bpf_object__for_each_program(prog, obj) { 6434 char buf[PATH_MAX]; 6435 int len; 6436 6437 len = snprintf(buf, PATH_MAX, "%s/%s", path, 6438 prog->pin_name); 6439 if (len < 0) 6440 return -EINVAL; 6441 else if (len >= PATH_MAX) 6442 return -ENAMETOOLONG; 6443 6444 err = bpf_program__unpin(prog, buf); 6445 if (err) 6446 return err; 6447 } 6448 6449 return 0; 6450 } 6451 6452 int bpf_object__pin(struct bpf_object *obj, const char *path) 6453 { 6454 int err; 6455 6456 err = bpf_object__pin_maps(obj, path); 6457 if (err) 6458 return err; 6459 6460 err = bpf_object__pin_programs(obj, path); 6461 if (err) { 6462 bpf_object__unpin_maps(obj, path); 6463 return err; 6464 } 6465 6466 return 0; 6467 } 6468 6469 static void bpf_map__destroy(struct bpf_map *map) 6470 { 6471 if (map->clear_priv) 6472 map->clear_priv(map, map->priv); 6473 map->priv = NULL; 6474 map->clear_priv = NULL; 6475 6476 if (map->inner_map) { 6477 bpf_map__destroy(map->inner_map); 6478 zfree(&map->inner_map); 6479 } 6480 6481 zfree(&map->init_slots); 6482 map->init_slots_sz = 0; 6483 6484 if (map->mmaped) { 6485 munmap(map->mmaped, bpf_map_mmap_sz(map)); 6486 map->mmaped = NULL; 6487 } 6488 6489 if (map->st_ops) { 6490 zfree(&map->st_ops->data); 6491 zfree(&map->st_ops->progs); 6492 zfree(&map->st_ops->kern_func_off); 6493 zfree(&map->st_ops); 6494 } 6495 6496 zfree(&map->name); 6497 zfree(&map->pin_path); 6498 6499 if (map->fd >= 0) 6500 zclose(map->fd); 6501 } 6502 6503 void bpf_object__close(struct bpf_object *obj) 6504 { 6505 size_t i; 6506 6507 if (IS_ERR_OR_NULL(obj)) 6508 return; 6509 6510 if (obj->clear_priv) 6511 obj->clear_priv(obj, obj->priv); 6512 6513 bpf_object__elf_finish(obj); 6514 bpf_object__unload(obj); 6515 btf__free(obj->btf); 6516 btf_ext__free(obj->btf_ext); 6517 6518 for (i = 0; i < obj->nr_maps; i++) 6519 bpf_map__destroy(&obj->maps[i]); 6520 6521 zfree(&obj->kconfig); 6522 zfree(&obj->externs); 6523 obj->nr_extern = 0; 6524 6525 zfree(&obj->maps); 6526 obj->nr_maps = 0; 6527 6528 if (obj->programs && obj->nr_programs) { 6529 for (i = 0; i < obj->nr_programs; i++) 6530 bpf_program__exit(&obj->programs[i]); 6531 } 6532 zfree(&obj->programs); 6533 6534 list_del(&obj->list); 6535 free(obj); 6536 } 6537 6538 struct bpf_object * 6539 bpf_object__next(struct bpf_object *prev) 6540 { 6541 struct bpf_object *next; 6542 6543 if (!prev) 6544 next = list_first_entry(&bpf_objects_list, 6545 struct bpf_object, 6546 list); 6547 else 6548 next = list_next_entry(prev, list); 6549 6550 /* Empty list is noticed here so don't need checking on entry. */ 6551 if (&next->list == &bpf_objects_list) 6552 return NULL; 6553 6554 return next; 6555 } 6556 6557 const char *bpf_object__name(const struct bpf_object *obj) 6558 { 6559 return obj ? obj->name : ERR_PTR(-EINVAL); 6560 } 6561 6562 unsigned int bpf_object__kversion(const struct bpf_object *obj) 6563 { 6564 return obj ? obj->kern_version : 0; 6565 } 6566 6567 struct btf *bpf_object__btf(const struct bpf_object *obj) 6568 { 6569 return obj ? obj->btf : NULL; 6570 } 6571 6572 int bpf_object__btf_fd(const struct bpf_object *obj) 6573 { 6574 return obj->btf ? btf__fd(obj->btf) : -1; 6575 } 6576 6577 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 6578 bpf_object_clear_priv_t clear_priv) 6579 { 6580 if (obj->priv && obj->clear_priv) 6581 obj->clear_priv(obj, obj->priv); 6582 6583 obj->priv = priv; 6584 obj->clear_priv = clear_priv; 6585 return 0; 6586 } 6587 6588 void *bpf_object__priv(const struct bpf_object *obj) 6589 { 6590 return obj ? obj->priv : ERR_PTR(-EINVAL); 6591 } 6592 6593 static struct bpf_program * 6594 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 6595 bool forward) 6596 { 6597 size_t nr_programs = obj->nr_programs; 6598 ssize_t idx; 6599 6600 if (!nr_programs) 6601 return NULL; 6602 6603 if (!p) 6604 /* Iter from the beginning */ 6605 return forward ? &obj->programs[0] : 6606 &obj->programs[nr_programs - 1]; 6607 6608 if (p->obj != obj) { 6609 pr_warn("error: program handler doesn't match object\n"); 6610 return NULL; 6611 } 6612 6613 idx = (p - obj->programs) + (forward ? 1 : -1); 6614 if (idx >= obj->nr_programs || idx < 0) 6615 return NULL; 6616 return &obj->programs[idx]; 6617 } 6618 6619 struct bpf_program * 6620 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 6621 { 6622 struct bpf_program *prog = prev; 6623 6624 do { 6625 prog = __bpf_program__iter(prog, obj, true); 6626 } while (prog && bpf_program__is_function_storage(prog, obj)); 6627 6628 return prog; 6629 } 6630 6631 struct bpf_program * 6632 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 6633 { 6634 struct bpf_program *prog = next; 6635 6636 do { 6637 prog = __bpf_program__iter(prog, obj, false); 6638 } while (prog && bpf_program__is_function_storage(prog, obj)); 6639 6640 return prog; 6641 } 6642 6643 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 6644 bpf_program_clear_priv_t clear_priv) 6645 { 6646 if (prog->priv && prog->clear_priv) 6647 prog->clear_priv(prog, prog->priv); 6648 6649 prog->priv = priv; 6650 prog->clear_priv = clear_priv; 6651 return 0; 6652 } 6653 6654 void *bpf_program__priv(const struct bpf_program *prog) 6655 { 6656 return prog ? prog->priv : ERR_PTR(-EINVAL); 6657 } 6658 6659 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 6660 { 6661 prog->prog_ifindex = ifindex; 6662 } 6663 6664 const char *bpf_program__name(const struct bpf_program *prog) 6665 { 6666 return prog->name; 6667 } 6668 6669 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 6670 { 6671 const char *title; 6672 6673 title = prog->section_name; 6674 if (needs_copy) { 6675 title = strdup(title); 6676 if (!title) { 6677 pr_warn("failed to strdup program title\n"); 6678 return ERR_PTR(-ENOMEM); 6679 } 6680 } 6681 6682 return title; 6683 } 6684 6685 bool bpf_program__autoload(const struct bpf_program *prog) 6686 { 6687 return prog->load; 6688 } 6689 6690 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 6691 { 6692 if (prog->obj->loaded) 6693 return -EINVAL; 6694 6695 prog->load = autoload; 6696 return 0; 6697 } 6698 6699 int bpf_program__fd(const struct bpf_program *prog) 6700 { 6701 return bpf_program__nth_fd(prog, 0); 6702 } 6703 6704 size_t bpf_program__size(const struct bpf_program *prog) 6705 { 6706 return prog->insns_cnt * sizeof(struct bpf_insn); 6707 } 6708 6709 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 6710 bpf_program_prep_t prep) 6711 { 6712 int *instances_fds; 6713 6714 if (nr_instances <= 0 || !prep) 6715 return -EINVAL; 6716 6717 if (prog->instances.nr > 0 || prog->instances.fds) { 6718 pr_warn("Can't set pre-processor after loading\n"); 6719 return -EINVAL; 6720 } 6721 6722 instances_fds = malloc(sizeof(int) * nr_instances); 6723 if (!instances_fds) { 6724 pr_warn("alloc memory failed for fds\n"); 6725 return -ENOMEM; 6726 } 6727 6728 /* fill all fd with -1 */ 6729 memset(instances_fds, -1, sizeof(int) * nr_instances); 6730 6731 prog->instances.nr = nr_instances; 6732 prog->instances.fds = instances_fds; 6733 prog->preprocessor = prep; 6734 return 0; 6735 } 6736 6737 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 6738 { 6739 int fd; 6740 6741 if (!prog) 6742 return -EINVAL; 6743 6744 if (n >= prog->instances.nr || n < 0) { 6745 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 6746 n, prog->section_name, prog->instances.nr); 6747 return -EINVAL; 6748 } 6749 6750 fd = prog->instances.fds[n]; 6751 if (fd < 0) { 6752 pr_warn("%dth instance of program '%s' is invalid\n", 6753 n, prog->section_name); 6754 return -ENOENT; 6755 } 6756 6757 return fd; 6758 } 6759 6760 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 6761 { 6762 return prog->type; 6763 } 6764 6765 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 6766 { 6767 prog->type = type; 6768 } 6769 6770 static bool bpf_program__is_type(const struct bpf_program *prog, 6771 enum bpf_prog_type type) 6772 { 6773 return prog ? (prog->type == type) : false; 6774 } 6775 6776 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 6777 int bpf_program__set_##NAME(struct bpf_program *prog) \ 6778 { \ 6779 if (!prog) \ 6780 return -EINVAL; \ 6781 bpf_program__set_type(prog, TYPE); \ 6782 return 0; \ 6783 } \ 6784 \ 6785 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 6786 { \ 6787 return bpf_program__is_type(prog, TYPE); \ 6788 } \ 6789 6790 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 6791 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 6792 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 6793 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 6794 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 6795 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 6796 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 6797 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 6798 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 6799 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 6800 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 6801 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 6802 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 6803 6804 enum bpf_attach_type 6805 bpf_program__get_expected_attach_type(struct bpf_program *prog) 6806 { 6807 return prog->expected_attach_type; 6808 } 6809 6810 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 6811 enum bpf_attach_type type) 6812 { 6813 prog->expected_attach_type = type; 6814 } 6815 6816 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 6817 attachable, attach_btf) \ 6818 { \ 6819 .sec = string, \ 6820 .len = sizeof(string) - 1, \ 6821 .prog_type = ptype, \ 6822 .expected_attach_type = eatype, \ 6823 .is_exp_attach_type_optional = eatype_optional, \ 6824 .is_attachable = attachable, \ 6825 .is_attach_btf = attach_btf, \ 6826 } 6827 6828 /* Programs that can NOT be attached. */ 6829 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 6830 6831 /* Programs that can be attached. */ 6832 #define BPF_APROG_SEC(string, ptype, atype) \ 6833 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 6834 6835 /* Programs that must specify expected attach type at load time. */ 6836 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 6837 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 6838 6839 /* Programs that use BTF to identify attach point */ 6840 #define BPF_PROG_BTF(string, ptype, eatype) \ 6841 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 6842 6843 /* Programs that can be attached but attach type can't be identified by section 6844 * name. Kept for backward compatibility. 6845 */ 6846 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 6847 6848 #define SEC_DEF(sec_pfx, ptype, ...) { \ 6849 .sec = sec_pfx, \ 6850 .len = sizeof(sec_pfx) - 1, \ 6851 .prog_type = BPF_PROG_TYPE_##ptype, \ 6852 __VA_ARGS__ \ 6853 } 6854 6855 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 6856 struct bpf_program *prog); 6857 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 6858 struct bpf_program *prog); 6859 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 6860 struct bpf_program *prog); 6861 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 6862 struct bpf_program *prog); 6863 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 6864 struct bpf_program *prog); 6865 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 6866 struct bpf_program *prog); 6867 6868 static const struct bpf_sec_def section_defs[] = { 6869 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 6870 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 6871 SEC_DEF("kprobe/", KPROBE, 6872 .attach_fn = attach_kprobe), 6873 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 6874 SEC_DEF("kretprobe/", KPROBE, 6875 .attach_fn = attach_kprobe), 6876 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 6877 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 6878 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 6879 SEC_DEF("tracepoint/", TRACEPOINT, 6880 .attach_fn = attach_tp), 6881 SEC_DEF("tp/", TRACEPOINT, 6882 .attach_fn = attach_tp), 6883 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 6884 .attach_fn = attach_raw_tp), 6885 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 6886 .attach_fn = attach_raw_tp), 6887 SEC_DEF("tp_btf/", TRACING, 6888 .expected_attach_type = BPF_TRACE_RAW_TP, 6889 .is_attach_btf = true, 6890 .attach_fn = attach_trace), 6891 SEC_DEF("fentry/", TRACING, 6892 .expected_attach_type = BPF_TRACE_FENTRY, 6893 .is_attach_btf = true, 6894 .attach_fn = attach_trace), 6895 SEC_DEF("fmod_ret/", TRACING, 6896 .expected_attach_type = BPF_MODIFY_RETURN, 6897 .is_attach_btf = true, 6898 .attach_fn = attach_trace), 6899 SEC_DEF("fexit/", TRACING, 6900 .expected_attach_type = BPF_TRACE_FEXIT, 6901 .is_attach_btf = true, 6902 .attach_fn = attach_trace), 6903 SEC_DEF("freplace/", EXT, 6904 .is_attach_btf = true, 6905 .attach_fn = attach_trace), 6906 SEC_DEF("lsm/", LSM, 6907 .is_attach_btf = true, 6908 .expected_attach_type = BPF_LSM_MAC, 6909 .attach_fn = attach_lsm), 6910 SEC_DEF("iter/", TRACING, 6911 .expected_attach_type = BPF_TRACE_ITER, 6912 .is_attach_btf = true, 6913 .attach_fn = attach_iter), 6914 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 6915 BPF_XDP_DEVMAP), 6916 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 6917 BPF_XDP_CPUMAP), 6918 BPF_EAPROG_SEC("xdp", BPF_PROG_TYPE_XDP, 6919 BPF_XDP), 6920 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 6921 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 6922 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 6923 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 6924 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 6925 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 6926 BPF_CGROUP_INET_INGRESS), 6927 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 6928 BPF_CGROUP_INET_EGRESS), 6929 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 6930 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 6931 BPF_CGROUP_INET_SOCK_CREATE), 6932 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 6933 BPF_CGROUP_INET_SOCK_RELEASE), 6934 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 6935 BPF_CGROUP_INET_SOCK_CREATE), 6936 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 6937 BPF_CGROUP_INET4_POST_BIND), 6938 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 6939 BPF_CGROUP_INET6_POST_BIND), 6940 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 6941 BPF_CGROUP_DEVICE), 6942 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 6943 BPF_CGROUP_SOCK_OPS), 6944 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 6945 BPF_SK_SKB_STREAM_PARSER), 6946 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 6947 BPF_SK_SKB_STREAM_VERDICT), 6948 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 6949 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 6950 BPF_SK_MSG_VERDICT), 6951 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 6952 BPF_LIRC_MODE2), 6953 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 6954 BPF_FLOW_DISSECTOR), 6955 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6956 BPF_CGROUP_INET4_BIND), 6957 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6958 BPF_CGROUP_INET6_BIND), 6959 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6960 BPF_CGROUP_INET4_CONNECT), 6961 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6962 BPF_CGROUP_INET6_CONNECT), 6963 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6964 BPF_CGROUP_UDP4_SENDMSG), 6965 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6966 BPF_CGROUP_UDP6_SENDMSG), 6967 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6968 BPF_CGROUP_UDP4_RECVMSG), 6969 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6970 BPF_CGROUP_UDP6_RECVMSG), 6971 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6972 BPF_CGROUP_INET4_GETPEERNAME), 6973 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6974 BPF_CGROUP_INET6_GETPEERNAME), 6975 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6976 BPF_CGROUP_INET4_GETSOCKNAME), 6977 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 6978 BPF_CGROUP_INET6_GETSOCKNAME), 6979 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 6980 BPF_CGROUP_SYSCTL), 6981 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 6982 BPF_CGROUP_GETSOCKOPT), 6983 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 6984 BPF_CGROUP_SETSOCKOPT), 6985 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 6986 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 6987 BPF_SK_LOOKUP), 6988 }; 6989 6990 #undef BPF_PROG_SEC_IMPL 6991 #undef BPF_PROG_SEC 6992 #undef BPF_APROG_SEC 6993 #undef BPF_EAPROG_SEC 6994 #undef BPF_APROG_COMPAT 6995 #undef SEC_DEF 6996 6997 #define MAX_TYPE_NAME_SIZE 32 6998 6999 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 7000 { 7001 int i, n = ARRAY_SIZE(section_defs); 7002 7003 for (i = 0; i < n; i++) { 7004 if (strncmp(sec_name, 7005 section_defs[i].sec, section_defs[i].len)) 7006 continue; 7007 return §ion_defs[i]; 7008 } 7009 return NULL; 7010 } 7011 7012 static char *libbpf_get_type_names(bool attach_type) 7013 { 7014 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 7015 char *buf; 7016 7017 buf = malloc(len); 7018 if (!buf) 7019 return NULL; 7020 7021 buf[0] = '\0'; 7022 /* Forge string buf with all available names */ 7023 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 7024 if (attach_type && !section_defs[i].is_attachable) 7025 continue; 7026 7027 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 7028 free(buf); 7029 return NULL; 7030 } 7031 strcat(buf, " "); 7032 strcat(buf, section_defs[i].sec); 7033 } 7034 7035 return buf; 7036 } 7037 7038 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 7039 enum bpf_attach_type *expected_attach_type) 7040 { 7041 const struct bpf_sec_def *sec_def; 7042 char *type_names; 7043 7044 if (!name) 7045 return -EINVAL; 7046 7047 sec_def = find_sec_def(name); 7048 if (sec_def) { 7049 *prog_type = sec_def->prog_type; 7050 *expected_attach_type = sec_def->expected_attach_type; 7051 return 0; 7052 } 7053 7054 pr_debug("failed to guess program type from ELF section '%s'\n", name); 7055 type_names = libbpf_get_type_names(false); 7056 if (type_names != NULL) { 7057 pr_debug("supported section(type) names are:%s\n", type_names); 7058 free(type_names); 7059 } 7060 7061 return -ESRCH; 7062 } 7063 7064 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 7065 size_t offset) 7066 { 7067 struct bpf_map *map; 7068 size_t i; 7069 7070 for (i = 0; i < obj->nr_maps; i++) { 7071 map = &obj->maps[i]; 7072 if (!bpf_map__is_struct_ops(map)) 7073 continue; 7074 if (map->sec_offset <= offset && 7075 offset - map->sec_offset < map->def.value_size) 7076 return map; 7077 } 7078 7079 return NULL; 7080 } 7081 7082 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 7083 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7084 GElf_Shdr *shdr, Elf_Data *data) 7085 { 7086 const struct btf_member *member; 7087 struct bpf_struct_ops *st_ops; 7088 struct bpf_program *prog; 7089 unsigned int shdr_idx; 7090 const struct btf *btf; 7091 struct bpf_map *map; 7092 Elf_Data *symbols; 7093 unsigned int moff; 7094 const char *name; 7095 __u32 member_idx; 7096 GElf_Sym sym; 7097 GElf_Rel rel; 7098 int i, nrels; 7099 7100 symbols = obj->efile.symbols; 7101 btf = obj->btf; 7102 nrels = shdr->sh_size / shdr->sh_entsize; 7103 for (i = 0; i < nrels; i++) { 7104 if (!gelf_getrel(data, i, &rel)) { 7105 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 7106 return -LIBBPF_ERRNO__FORMAT; 7107 } 7108 7109 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 7110 pr_warn("struct_ops reloc: symbol %zx not found\n", 7111 (size_t)GELF_R_SYM(rel.r_info)); 7112 return -LIBBPF_ERRNO__FORMAT; 7113 } 7114 7115 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 7116 sym.st_name) ? : "<?>"; 7117 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 7118 if (!map) { 7119 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 7120 (size_t)rel.r_offset); 7121 return -EINVAL; 7122 } 7123 7124 moff = rel.r_offset - map->sec_offset; 7125 shdr_idx = sym.st_shndx; 7126 st_ops = map->st_ops; 7127 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 7128 map->name, 7129 (long long)(rel.r_info >> 32), 7130 (long long)sym.st_value, 7131 shdr_idx, (size_t)rel.r_offset, 7132 map->sec_offset, sym.st_name, name); 7133 7134 if (shdr_idx >= SHN_LORESERVE) { 7135 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 7136 map->name, (size_t)rel.r_offset, shdr_idx); 7137 return -LIBBPF_ERRNO__RELOC; 7138 } 7139 7140 member = find_member_by_offset(st_ops->type, moff * 8); 7141 if (!member) { 7142 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 7143 map->name, moff); 7144 return -EINVAL; 7145 } 7146 member_idx = member - btf_members(st_ops->type); 7147 name = btf__name_by_offset(btf, member->name_off); 7148 7149 if (!resolve_func_ptr(btf, member->type, NULL)) { 7150 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 7151 map->name, name); 7152 return -EINVAL; 7153 } 7154 7155 prog = bpf_object__find_prog_by_idx(obj, shdr_idx); 7156 if (!prog) { 7157 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 7158 map->name, shdr_idx, name); 7159 return -EINVAL; 7160 } 7161 7162 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7163 const struct bpf_sec_def *sec_def; 7164 7165 sec_def = find_sec_def(prog->section_name); 7166 if (sec_def && 7167 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 7168 /* for pr_warn */ 7169 prog->type = sec_def->prog_type; 7170 goto invalid_prog; 7171 } 7172 7173 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 7174 prog->attach_btf_id = st_ops->type_id; 7175 prog->expected_attach_type = member_idx; 7176 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 7177 prog->attach_btf_id != st_ops->type_id || 7178 prog->expected_attach_type != member_idx) { 7179 goto invalid_prog; 7180 } 7181 st_ops->progs[member_idx] = prog; 7182 } 7183 7184 return 0; 7185 7186 invalid_prog: 7187 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 7188 map->name, prog->name, prog->section_name, prog->type, 7189 prog->attach_btf_id, prog->expected_attach_type, name); 7190 return -EINVAL; 7191 } 7192 7193 #define BTF_TRACE_PREFIX "btf_trace_" 7194 #define BTF_LSM_PREFIX "bpf_lsm_" 7195 #define BTF_ITER_PREFIX "bpf_iter_" 7196 #define BTF_MAX_NAME_SIZE 128 7197 7198 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 7199 const char *name, __u32 kind) 7200 { 7201 char btf_type_name[BTF_MAX_NAME_SIZE]; 7202 int ret; 7203 7204 ret = snprintf(btf_type_name, sizeof(btf_type_name), 7205 "%s%s", prefix, name); 7206 /* snprintf returns the number of characters written excluding the 7207 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 7208 * indicates truncation. 7209 */ 7210 if (ret < 0 || ret >= sizeof(btf_type_name)) 7211 return -ENAMETOOLONG; 7212 return btf__find_by_name_kind(btf, btf_type_name, kind); 7213 } 7214 7215 static inline int __find_vmlinux_btf_id(struct btf *btf, const char *name, 7216 enum bpf_attach_type attach_type) 7217 { 7218 int err; 7219 7220 if (attach_type == BPF_TRACE_RAW_TP) 7221 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 7222 BTF_KIND_TYPEDEF); 7223 else if (attach_type == BPF_LSM_MAC) 7224 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 7225 BTF_KIND_FUNC); 7226 else if (attach_type == BPF_TRACE_ITER) 7227 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 7228 BTF_KIND_FUNC); 7229 else 7230 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 7231 7232 if (err <= 0) 7233 pr_warn("%s is not found in vmlinux BTF\n", name); 7234 7235 return err; 7236 } 7237 7238 int libbpf_find_vmlinux_btf_id(const char *name, 7239 enum bpf_attach_type attach_type) 7240 { 7241 struct btf *btf; 7242 int err; 7243 7244 btf = libbpf_find_kernel_btf(); 7245 if (IS_ERR(btf)) { 7246 pr_warn("vmlinux BTF is not found\n"); 7247 return -EINVAL; 7248 } 7249 7250 err = __find_vmlinux_btf_id(btf, name, attach_type); 7251 btf__free(btf); 7252 return err; 7253 } 7254 7255 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 7256 { 7257 struct bpf_prog_info_linear *info_linear; 7258 struct bpf_prog_info *info; 7259 struct btf *btf = NULL; 7260 int err = -EINVAL; 7261 7262 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 7263 if (IS_ERR_OR_NULL(info_linear)) { 7264 pr_warn("failed get_prog_info_linear for FD %d\n", 7265 attach_prog_fd); 7266 return -EINVAL; 7267 } 7268 info = &info_linear->info; 7269 if (!info->btf_id) { 7270 pr_warn("The target program doesn't have BTF\n"); 7271 goto out; 7272 } 7273 if (btf__get_from_id(info->btf_id, &btf)) { 7274 pr_warn("Failed to get BTF of the program\n"); 7275 goto out; 7276 } 7277 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 7278 btf__free(btf); 7279 if (err <= 0) { 7280 pr_warn("%s is not found in prog's BTF\n", name); 7281 goto out; 7282 } 7283 out: 7284 free(info_linear); 7285 return err; 7286 } 7287 7288 static int libbpf_find_attach_btf_id(struct bpf_program *prog) 7289 { 7290 enum bpf_attach_type attach_type = prog->expected_attach_type; 7291 __u32 attach_prog_fd = prog->attach_prog_fd; 7292 const char *name = prog->section_name; 7293 int i, err; 7294 7295 if (!name) 7296 return -EINVAL; 7297 7298 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 7299 if (!section_defs[i].is_attach_btf) 7300 continue; 7301 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 7302 continue; 7303 if (attach_prog_fd) 7304 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 7305 attach_prog_fd); 7306 else 7307 err = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 7308 name + section_defs[i].len, 7309 attach_type); 7310 return err; 7311 } 7312 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 7313 return -ESRCH; 7314 } 7315 7316 int libbpf_attach_type_by_name(const char *name, 7317 enum bpf_attach_type *attach_type) 7318 { 7319 char *type_names; 7320 int i; 7321 7322 if (!name) 7323 return -EINVAL; 7324 7325 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 7326 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 7327 continue; 7328 if (!section_defs[i].is_attachable) 7329 return -EINVAL; 7330 *attach_type = section_defs[i].expected_attach_type; 7331 return 0; 7332 } 7333 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 7334 type_names = libbpf_get_type_names(true); 7335 if (type_names != NULL) { 7336 pr_debug("attachable section(type) names are:%s\n", type_names); 7337 free(type_names); 7338 } 7339 7340 return -EINVAL; 7341 } 7342 7343 int bpf_map__fd(const struct bpf_map *map) 7344 { 7345 return map ? map->fd : -EINVAL; 7346 } 7347 7348 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 7349 { 7350 return map ? &map->def : ERR_PTR(-EINVAL); 7351 } 7352 7353 const char *bpf_map__name(const struct bpf_map *map) 7354 { 7355 return map ? map->name : NULL; 7356 } 7357 7358 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 7359 { 7360 return map->def.type; 7361 } 7362 7363 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 7364 { 7365 if (map->fd >= 0) 7366 return -EBUSY; 7367 map->def.type = type; 7368 return 0; 7369 } 7370 7371 __u32 bpf_map__map_flags(const struct bpf_map *map) 7372 { 7373 return map->def.map_flags; 7374 } 7375 7376 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 7377 { 7378 if (map->fd >= 0) 7379 return -EBUSY; 7380 map->def.map_flags = flags; 7381 return 0; 7382 } 7383 7384 __u32 bpf_map__numa_node(const struct bpf_map *map) 7385 { 7386 return map->numa_node; 7387 } 7388 7389 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 7390 { 7391 if (map->fd >= 0) 7392 return -EBUSY; 7393 map->numa_node = numa_node; 7394 return 0; 7395 } 7396 7397 __u32 bpf_map__key_size(const struct bpf_map *map) 7398 { 7399 return map->def.key_size; 7400 } 7401 7402 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 7403 { 7404 if (map->fd >= 0) 7405 return -EBUSY; 7406 map->def.key_size = size; 7407 return 0; 7408 } 7409 7410 __u32 bpf_map__value_size(const struct bpf_map *map) 7411 { 7412 return map->def.value_size; 7413 } 7414 7415 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 7416 { 7417 if (map->fd >= 0) 7418 return -EBUSY; 7419 map->def.value_size = size; 7420 return 0; 7421 } 7422 7423 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 7424 { 7425 return map ? map->btf_key_type_id : 0; 7426 } 7427 7428 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 7429 { 7430 return map ? map->btf_value_type_id : 0; 7431 } 7432 7433 int bpf_map__set_priv(struct bpf_map *map, void *priv, 7434 bpf_map_clear_priv_t clear_priv) 7435 { 7436 if (!map) 7437 return -EINVAL; 7438 7439 if (map->priv) { 7440 if (map->clear_priv) 7441 map->clear_priv(map, map->priv); 7442 } 7443 7444 map->priv = priv; 7445 map->clear_priv = clear_priv; 7446 return 0; 7447 } 7448 7449 void *bpf_map__priv(const struct bpf_map *map) 7450 { 7451 return map ? map->priv : ERR_PTR(-EINVAL); 7452 } 7453 7454 int bpf_map__set_initial_value(struct bpf_map *map, 7455 const void *data, size_t size) 7456 { 7457 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 7458 size != map->def.value_size || map->fd >= 0) 7459 return -EINVAL; 7460 7461 memcpy(map->mmaped, data, size); 7462 return 0; 7463 } 7464 7465 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 7466 { 7467 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 7468 } 7469 7470 bool bpf_map__is_internal(const struct bpf_map *map) 7471 { 7472 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 7473 } 7474 7475 __u32 bpf_map__ifindex(const struct bpf_map *map) 7476 { 7477 return map->map_ifindex; 7478 } 7479 7480 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 7481 { 7482 if (map->fd >= 0) 7483 return -EBUSY; 7484 map->map_ifindex = ifindex; 7485 return 0; 7486 } 7487 7488 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 7489 { 7490 if (!bpf_map_type__is_map_in_map(map->def.type)) { 7491 pr_warn("error: unsupported map type\n"); 7492 return -EINVAL; 7493 } 7494 if (map->inner_map_fd != -1) { 7495 pr_warn("error: inner_map_fd already specified\n"); 7496 return -EINVAL; 7497 } 7498 map->inner_map_fd = fd; 7499 return 0; 7500 } 7501 7502 static struct bpf_map * 7503 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 7504 { 7505 ssize_t idx; 7506 struct bpf_map *s, *e; 7507 7508 if (!obj || !obj->maps) 7509 return NULL; 7510 7511 s = obj->maps; 7512 e = obj->maps + obj->nr_maps; 7513 7514 if ((m < s) || (m >= e)) { 7515 pr_warn("error in %s: map handler doesn't belong to object\n", 7516 __func__); 7517 return NULL; 7518 } 7519 7520 idx = (m - obj->maps) + i; 7521 if (idx >= obj->nr_maps || idx < 0) 7522 return NULL; 7523 return &obj->maps[idx]; 7524 } 7525 7526 struct bpf_map * 7527 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 7528 { 7529 if (prev == NULL) 7530 return obj->maps; 7531 7532 return __bpf_map__iter(prev, obj, 1); 7533 } 7534 7535 struct bpf_map * 7536 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 7537 { 7538 if (next == NULL) { 7539 if (!obj->nr_maps) 7540 return NULL; 7541 return obj->maps + obj->nr_maps - 1; 7542 } 7543 7544 return __bpf_map__iter(next, obj, -1); 7545 } 7546 7547 struct bpf_map * 7548 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 7549 { 7550 struct bpf_map *pos; 7551 7552 bpf_object__for_each_map(pos, obj) { 7553 if (pos->name && !strcmp(pos->name, name)) 7554 return pos; 7555 } 7556 return NULL; 7557 } 7558 7559 int 7560 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 7561 { 7562 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 7563 } 7564 7565 struct bpf_map * 7566 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 7567 { 7568 return ERR_PTR(-ENOTSUP); 7569 } 7570 7571 long libbpf_get_error(const void *ptr) 7572 { 7573 return PTR_ERR_OR_ZERO(ptr); 7574 } 7575 7576 int bpf_prog_load(const char *file, enum bpf_prog_type type, 7577 struct bpf_object **pobj, int *prog_fd) 7578 { 7579 struct bpf_prog_load_attr attr; 7580 7581 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 7582 attr.file = file; 7583 attr.prog_type = type; 7584 attr.expected_attach_type = 0; 7585 7586 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 7587 } 7588 7589 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 7590 struct bpf_object **pobj, int *prog_fd) 7591 { 7592 struct bpf_object_open_attr open_attr = {}; 7593 struct bpf_program *prog, *first_prog = NULL; 7594 struct bpf_object *obj; 7595 struct bpf_map *map; 7596 int err; 7597 7598 if (!attr) 7599 return -EINVAL; 7600 if (!attr->file) 7601 return -EINVAL; 7602 7603 open_attr.file = attr->file; 7604 open_attr.prog_type = attr->prog_type; 7605 7606 obj = bpf_object__open_xattr(&open_attr); 7607 if (IS_ERR_OR_NULL(obj)) 7608 return -ENOENT; 7609 7610 bpf_object__for_each_program(prog, obj) { 7611 enum bpf_attach_type attach_type = attr->expected_attach_type; 7612 /* 7613 * to preserve backwards compatibility, bpf_prog_load treats 7614 * attr->prog_type, if specified, as an override to whatever 7615 * bpf_object__open guessed 7616 */ 7617 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 7618 bpf_program__set_type(prog, attr->prog_type); 7619 bpf_program__set_expected_attach_type(prog, 7620 attach_type); 7621 } 7622 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 7623 /* 7624 * we haven't guessed from section name and user 7625 * didn't provide a fallback type, too bad... 7626 */ 7627 bpf_object__close(obj); 7628 return -EINVAL; 7629 } 7630 7631 prog->prog_ifindex = attr->ifindex; 7632 prog->log_level = attr->log_level; 7633 prog->prog_flags = attr->prog_flags; 7634 if (!first_prog) 7635 first_prog = prog; 7636 } 7637 7638 bpf_object__for_each_map(map, obj) { 7639 if (!bpf_map__is_offload_neutral(map)) 7640 map->map_ifindex = attr->ifindex; 7641 } 7642 7643 if (!first_prog) { 7644 pr_warn("object file doesn't contain bpf program\n"); 7645 bpf_object__close(obj); 7646 return -ENOENT; 7647 } 7648 7649 err = bpf_object__load(obj); 7650 if (err) { 7651 bpf_object__close(obj); 7652 return err; 7653 } 7654 7655 *pobj = obj; 7656 *prog_fd = bpf_program__fd(first_prog); 7657 return 0; 7658 } 7659 7660 struct bpf_link { 7661 int (*detach)(struct bpf_link *link); 7662 int (*destroy)(struct bpf_link *link); 7663 char *pin_path; /* NULL, if not pinned */ 7664 int fd; /* hook FD, -1 if not applicable */ 7665 bool disconnected; 7666 }; 7667 7668 /* Replace link's underlying BPF program with the new one */ 7669 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 7670 { 7671 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 7672 } 7673 7674 /* Release "ownership" of underlying BPF resource (typically, BPF program 7675 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 7676 * link, when destructed through bpf_link__destroy() call won't attempt to 7677 * detach/unregisted that BPF resource. This is useful in situations where, 7678 * say, attached BPF program has to outlive userspace program that attached it 7679 * in the system. Depending on type of BPF program, though, there might be 7680 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 7681 * exit of userspace program doesn't trigger automatic detachment and clean up 7682 * inside the kernel. 7683 */ 7684 void bpf_link__disconnect(struct bpf_link *link) 7685 { 7686 link->disconnected = true; 7687 } 7688 7689 int bpf_link__destroy(struct bpf_link *link) 7690 { 7691 int err = 0; 7692 7693 if (IS_ERR_OR_NULL(link)) 7694 return 0; 7695 7696 if (!link->disconnected && link->detach) 7697 err = link->detach(link); 7698 if (link->destroy) 7699 link->destroy(link); 7700 if (link->pin_path) 7701 free(link->pin_path); 7702 free(link); 7703 7704 return err; 7705 } 7706 7707 int bpf_link__fd(const struct bpf_link *link) 7708 { 7709 return link->fd; 7710 } 7711 7712 const char *bpf_link__pin_path(const struct bpf_link *link) 7713 { 7714 return link->pin_path; 7715 } 7716 7717 static int bpf_link__detach_fd(struct bpf_link *link) 7718 { 7719 return close(link->fd); 7720 } 7721 7722 struct bpf_link *bpf_link__open(const char *path) 7723 { 7724 struct bpf_link *link; 7725 int fd; 7726 7727 fd = bpf_obj_get(path); 7728 if (fd < 0) { 7729 fd = -errno; 7730 pr_warn("failed to open link at %s: %d\n", path, fd); 7731 return ERR_PTR(fd); 7732 } 7733 7734 link = calloc(1, sizeof(*link)); 7735 if (!link) { 7736 close(fd); 7737 return ERR_PTR(-ENOMEM); 7738 } 7739 link->detach = &bpf_link__detach_fd; 7740 link->fd = fd; 7741 7742 link->pin_path = strdup(path); 7743 if (!link->pin_path) { 7744 bpf_link__destroy(link); 7745 return ERR_PTR(-ENOMEM); 7746 } 7747 7748 return link; 7749 } 7750 7751 int bpf_link__detach(struct bpf_link *link) 7752 { 7753 return bpf_link_detach(link->fd) ? -errno : 0; 7754 } 7755 7756 int bpf_link__pin(struct bpf_link *link, const char *path) 7757 { 7758 int err; 7759 7760 if (link->pin_path) 7761 return -EBUSY; 7762 err = make_parent_dir(path); 7763 if (err) 7764 return err; 7765 err = check_path(path); 7766 if (err) 7767 return err; 7768 7769 link->pin_path = strdup(path); 7770 if (!link->pin_path) 7771 return -ENOMEM; 7772 7773 if (bpf_obj_pin(link->fd, link->pin_path)) { 7774 err = -errno; 7775 zfree(&link->pin_path); 7776 return err; 7777 } 7778 7779 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 7780 return 0; 7781 } 7782 7783 int bpf_link__unpin(struct bpf_link *link) 7784 { 7785 int err; 7786 7787 if (!link->pin_path) 7788 return -EINVAL; 7789 7790 err = unlink(link->pin_path); 7791 if (err != 0) 7792 return -errno; 7793 7794 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 7795 zfree(&link->pin_path); 7796 return 0; 7797 } 7798 7799 static int bpf_link__detach_perf_event(struct bpf_link *link) 7800 { 7801 int err; 7802 7803 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 7804 if (err) 7805 err = -errno; 7806 7807 close(link->fd); 7808 return err; 7809 } 7810 7811 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 7812 int pfd) 7813 { 7814 char errmsg[STRERR_BUFSIZE]; 7815 struct bpf_link *link; 7816 int prog_fd, err; 7817 7818 if (pfd < 0) { 7819 pr_warn("program '%s': invalid perf event FD %d\n", 7820 bpf_program__title(prog, false), pfd); 7821 return ERR_PTR(-EINVAL); 7822 } 7823 prog_fd = bpf_program__fd(prog); 7824 if (prog_fd < 0) { 7825 pr_warn("program '%s': can't attach BPF program w/o FD (did you load it?)\n", 7826 bpf_program__title(prog, false)); 7827 return ERR_PTR(-EINVAL); 7828 } 7829 7830 link = calloc(1, sizeof(*link)); 7831 if (!link) 7832 return ERR_PTR(-ENOMEM); 7833 link->detach = &bpf_link__detach_perf_event; 7834 link->fd = pfd; 7835 7836 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 7837 err = -errno; 7838 free(link); 7839 pr_warn("program '%s': failed to attach to pfd %d: %s\n", 7840 bpf_program__title(prog, false), pfd, 7841 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7842 if (err == -EPROTO) 7843 pr_warn("program '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 7844 bpf_program__title(prog, false), pfd); 7845 return ERR_PTR(err); 7846 } 7847 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 7848 err = -errno; 7849 free(link); 7850 pr_warn("program '%s': failed to enable pfd %d: %s\n", 7851 bpf_program__title(prog, false), pfd, 7852 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7853 return ERR_PTR(err); 7854 } 7855 return link; 7856 } 7857 7858 /* 7859 * this function is expected to parse integer in the range of [0, 2^31-1] from 7860 * given file using scanf format string fmt. If actual parsed value is 7861 * negative, the result might be indistinguishable from error 7862 */ 7863 static int parse_uint_from_file(const char *file, const char *fmt) 7864 { 7865 char buf[STRERR_BUFSIZE]; 7866 int err, ret; 7867 FILE *f; 7868 7869 f = fopen(file, "r"); 7870 if (!f) { 7871 err = -errno; 7872 pr_debug("failed to open '%s': %s\n", file, 7873 libbpf_strerror_r(err, buf, sizeof(buf))); 7874 return err; 7875 } 7876 err = fscanf(f, fmt, &ret); 7877 if (err != 1) { 7878 err = err == EOF ? -EIO : -errno; 7879 pr_debug("failed to parse '%s': %s\n", file, 7880 libbpf_strerror_r(err, buf, sizeof(buf))); 7881 fclose(f); 7882 return err; 7883 } 7884 fclose(f); 7885 return ret; 7886 } 7887 7888 static int determine_kprobe_perf_type(void) 7889 { 7890 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 7891 7892 return parse_uint_from_file(file, "%d\n"); 7893 } 7894 7895 static int determine_uprobe_perf_type(void) 7896 { 7897 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 7898 7899 return parse_uint_from_file(file, "%d\n"); 7900 } 7901 7902 static int determine_kprobe_retprobe_bit(void) 7903 { 7904 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 7905 7906 return parse_uint_from_file(file, "config:%d\n"); 7907 } 7908 7909 static int determine_uprobe_retprobe_bit(void) 7910 { 7911 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 7912 7913 return parse_uint_from_file(file, "config:%d\n"); 7914 } 7915 7916 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 7917 uint64_t offset, int pid) 7918 { 7919 struct perf_event_attr attr = {}; 7920 char errmsg[STRERR_BUFSIZE]; 7921 int type, pfd, err; 7922 7923 type = uprobe ? determine_uprobe_perf_type() 7924 : determine_kprobe_perf_type(); 7925 if (type < 0) { 7926 pr_warn("failed to determine %s perf type: %s\n", 7927 uprobe ? "uprobe" : "kprobe", 7928 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 7929 return type; 7930 } 7931 if (retprobe) { 7932 int bit = uprobe ? determine_uprobe_retprobe_bit() 7933 : determine_kprobe_retprobe_bit(); 7934 7935 if (bit < 0) { 7936 pr_warn("failed to determine %s retprobe bit: %s\n", 7937 uprobe ? "uprobe" : "kprobe", 7938 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 7939 return bit; 7940 } 7941 attr.config |= 1 << bit; 7942 } 7943 attr.size = sizeof(attr); 7944 attr.type = type; 7945 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 7946 attr.config2 = offset; /* kprobe_addr or probe_offset */ 7947 7948 /* pid filter is meaningful only for uprobes */ 7949 pfd = syscall(__NR_perf_event_open, &attr, 7950 pid < 0 ? -1 : pid /* pid */, 7951 pid == -1 ? 0 : -1 /* cpu */, 7952 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 7953 if (pfd < 0) { 7954 err = -errno; 7955 pr_warn("%s perf_event_open() failed: %s\n", 7956 uprobe ? "uprobe" : "kprobe", 7957 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7958 return err; 7959 } 7960 return pfd; 7961 } 7962 7963 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 7964 bool retprobe, 7965 const char *func_name) 7966 { 7967 char errmsg[STRERR_BUFSIZE]; 7968 struct bpf_link *link; 7969 int pfd, err; 7970 7971 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 7972 0 /* offset */, -1 /* pid */); 7973 if (pfd < 0) { 7974 pr_warn("program '%s': failed to create %s '%s' perf event: %s\n", 7975 bpf_program__title(prog, false), 7976 retprobe ? "kretprobe" : "kprobe", func_name, 7977 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 7978 return ERR_PTR(pfd); 7979 } 7980 link = bpf_program__attach_perf_event(prog, pfd); 7981 if (IS_ERR(link)) { 7982 close(pfd); 7983 err = PTR_ERR(link); 7984 pr_warn("program '%s': failed to attach to %s '%s': %s\n", 7985 bpf_program__title(prog, false), 7986 retprobe ? "kretprobe" : "kprobe", func_name, 7987 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 7988 return link; 7989 } 7990 return link; 7991 } 7992 7993 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 7994 struct bpf_program *prog) 7995 { 7996 const char *func_name; 7997 bool retprobe; 7998 7999 func_name = bpf_program__title(prog, false) + sec->len; 8000 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 8001 8002 return bpf_program__attach_kprobe(prog, retprobe, func_name); 8003 } 8004 8005 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 8006 bool retprobe, pid_t pid, 8007 const char *binary_path, 8008 size_t func_offset) 8009 { 8010 char errmsg[STRERR_BUFSIZE]; 8011 struct bpf_link *link; 8012 int pfd, err; 8013 8014 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 8015 binary_path, func_offset, pid); 8016 if (pfd < 0) { 8017 pr_warn("program '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 8018 bpf_program__title(prog, false), 8019 retprobe ? "uretprobe" : "uprobe", 8020 binary_path, func_offset, 8021 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 8022 return ERR_PTR(pfd); 8023 } 8024 link = bpf_program__attach_perf_event(prog, pfd); 8025 if (IS_ERR(link)) { 8026 close(pfd); 8027 err = PTR_ERR(link); 8028 pr_warn("program '%s': failed to attach to %s '%s:0x%zx': %s\n", 8029 bpf_program__title(prog, false), 8030 retprobe ? "uretprobe" : "uprobe", 8031 binary_path, func_offset, 8032 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 8033 return link; 8034 } 8035 return link; 8036 } 8037 8038 static int determine_tracepoint_id(const char *tp_category, 8039 const char *tp_name) 8040 { 8041 char file[PATH_MAX]; 8042 int ret; 8043 8044 ret = snprintf(file, sizeof(file), 8045 "/sys/kernel/debug/tracing/events/%s/%s/id", 8046 tp_category, tp_name); 8047 if (ret < 0) 8048 return -errno; 8049 if (ret >= sizeof(file)) { 8050 pr_debug("tracepoint %s/%s path is too long\n", 8051 tp_category, tp_name); 8052 return -E2BIG; 8053 } 8054 return parse_uint_from_file(file, "%d\n"); 8055 } 8056 8057 static int perf_event_open_tracepoint(const char *tp_category, 8058 const char *tp_name) 8059 { 8060 struct perf_event_attr attr = {}; 8061 char errmsg[STRERR_BUFSIZE]; 8062 int tp_id, pfd, err; 8063 8064 tp_id = determine_tracepoint_id(tp_category, tp_name); 8065 if (tp_id < 0) { 8066 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 8067 tp_category, tp_name, 8068 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 8069 return tp_id; 8070 } 8071 8072 attr.type = PERF_TYPE_TRACEPOINT; 8073 attr.size = sizeof(attr); 8074 attr.config = tp_id; 8075 8076 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 8077 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 8078 if (pfd < 0) { 8079 err = -errno; 8080 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 8081 tp_category, tp_name, 8082 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 8083 return err; 8084 } 8085 return pfd; 8086 } 8087 8088 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 8089 const char *tp_category, 8090 const char *tp_name) 8091 { 8092 char errmsg[STRERR_BUFSIZE]; 8093 struct bpf_link *link; 8094 int pfd, err; 8095 8096 pfd = perf_event_open_tracepoint(tp_category, tp_name); 8097 if (pfd < 0) { 8098 pr_warn("program '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 8099 bpf_program__title(prog, false), 8100 tp_category, tp_name, 8101 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 8102 return ERR_PTR(pfd); 8103 } 8104 link = bpf_program__attach_perf_event(prog, pfd); 8105 if (IS_ERR(link)) { 8106 close(pfd); 8107 err = PTR_ERR(link); 8108 pr_warn("program '%s': failed to attach to tracepoint '%s/%s': %s\n", 8109 bpf_program__title(prog, false), 8110 tp_category, tp_name, 8111 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 8112 return link; 8113 } 8114 return link; 8115 } 8116 8117 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8118 struct bpf_program *prog) 8119 { 8120 char *sec_name, *tp_cat, *tp_name; 8121 struct bpf_link *link; 8122 8123 sec_name = strdup(bpf_program__title(prog, false)); 8124 if (!sec_name) 8125 return ERR_PTR(-ENOMEM); 8126 8127 /* extract "tp/<category>/<name>" */ 8128 tp_cat = sec_name + sec->len; 8129 tp_name = strchr(tp_cat, '/'); 8130 if (!tp_name) { 8131 link = ERR_PTR(-EINVAL); 8132 goto out; 8133 } 8134 *tp_name = '\0'; 8135 tp_name++; 8136 8137 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 8138 out: 8139 free(sec_name); 8140 return link; 8141 } 8142 8143 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 8144 const char *tp_name) 8145 { 8146 char errmsg[STRERR_BUFSIZE]; 8147 struct bpf_link *link; 8148 int prog_fd, pfd; 8149 8150 prog_fd = bpf_program__fd(prog); 8151 if (prog_fd < 0) { 8152 pr_warn("program '%s': can't attach before loaded\n", 8153 bpf_program__title(prog, false)); 8154 return ERR_PTR(-EINVAL); 8155 } 8156 8157 link = calloc(1, sizeof(*link)); 8158 if (!link) 8159 return ERR_PTR(-ENOMEM); 8160 link->detach = &bpf_link__detach_fd; 8161 8162 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 8163 if (pfd < 0) { 8164 pfd = -errno; 8165 free(link); 8166 pr_warn("program '%s': failed to attach to raw tracepoint '%s': %s\n", 8167 bpf_program__title(prog, false), tp_name, 8168 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 8169 return ERR_PTR(pfd); 8170 } 8171 link->fd = pfd; 8172 return link; 8173 } 8174 8175 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8176 struct bpf_program *prog) 8177 { 8178 const char *tp_name = bpf_program__title(prog, false) + sec->len; 8179 8180 return bpf_program__attach_raw_tracepoint(prog, tp_name); 8181 } 8182 8183 /* Common logic for all BPF program types that attach to a btf_id */ 8184 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 8185 { 8186 char errmsg[STRERR_BUFSIZE]; 8187 struct bpf_link *link; 8188 int prog_fd, pfd; 8189 8190 prog_fd = bpf_program__fd(prog); 8191 if (prog_fd < 0) { 8192 pr_warn("program '%s': can't attach before loaded\n", 8193 bpf_program__title(prog, false)); 8194 return ERR_PTR(-EINVAL); 8195 } 8196 8197 link = calloc(1, sizeof(*link)); 8198 if (!link) 8199 return ERR_PTR(-ENOMEM); 8200 link->detach = &bpf_link__detach_fd; 8201 8202 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 8203 if (pfd < 0) { 8204 pfd = -errno; 8205 free(link); 8206 pr_warn("program '%s': failed to attach: %s\n", 8207 bpf_program__title(prog, false), 8208 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 8209 return ERR_PTR(pfd); 8210 } 8211 link->fd = pfd; 8212 return (struct bpf_link *)link; 8213 } 8214 8215 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 8216 { 8217 return bpf_program__attach_btf_id(prog); 8218 } 8219 8220 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 8221 { 8222 return bpf_program__attach_btf_id(prog); 8223 } 8224 8225 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8226 struct bpf_program *prog) 8227 { 8228 return bpf_program__attach_trace(prog); 8229 } 8230 8231 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8232 struct bpf_program *prog) 8233 { 8234 return bpf_program__attach_lsm(prog); 8235 } 8236 8237 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8238 struct bpf_program *prog) 8239 { 8240 return bpf_program__attach_iter(prog, NULL); 8241 } 8242 8243 static struct bpf_link * 8244 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, 8245 const char *target_name) 8246 { 8247 enum bpf_attach_type attach_type; 8248 char errmsg[STRERR_BUFSIZE]; 8249 struct bpf_link *link; 8250 int prog_fd, link_fd; 8251 8252 prog_fd = bpf_program__fd(prog); 8253 if (prog_fd < 0) { 8254 pr_warn("program '%s': can't attach before loaded\n", 8255 bpf_program__title(prog, false)); 8256 return ERR_PTR(-EINVAL); 8257 } 8258 8259 link = calloc(1, sizeof(*link)); 8260 if (!link) 8261 return ERR_PTR(-ENOMEM); 8262 link->detach = &bpf_link__detach_fd; 8263 8264 attach_type = bpf_program__get_expected_attach_type(prog); 8265 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, NULL); 8266 if (link_fd < 0) { 8267 link_fd = -errno; 8268 free(link); 8269 pr_warn("program '%s': failed to attach to %s: %s\n", 8270 bpf_program__title(prog, false), target_name, 8271 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 8272 return ERR_PTR(link_fd); 8273 } 8274 link->fd = link_fd; 8275 return link; 8276 } 8277 8278 struct bpf_link * 8279 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 8280 { 8281 return bpf_program__attach_fd(prog, cgroup_fd, "cgroup"); 8282 } 8283 8284 struct bpf_link * 8285 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 8286 { 8287 return bpf_program__attach_fd(prog, netns_fd, "netns"); 8288 } 8289 8290 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 8291 { 8292 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 8293 return bpf_program__attach_fd(prog, ifindex, "xdp"); 8294 } 8295 8296 struct bpf_link * 8297 bpf_program__attach_iter(struct bpf_program *prog, 8298 const struct bpf_iter_attach_opts *opts) 8299 { 8300 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 8301 char errmsg[STRERR_BUFSIZE]; 8302 struct bpf_link *link; 8303 int prog_fd, link_fd; 8304 __u32 target_fd = 0; 8305 8306 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 8307 return ERR_PTR(-EINVAL); 8308 8309 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 8310 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 8311 8312 prog_fd = bpf_program__fd(prog); 8313 if (prog_fd < 0) { 8314 pr_warn("program '%s': can't attach before loaded\n", 8315 bpf_program__title(prog, false)); 8316 return ERR_PTR(-EINVAL); 8317 } 8318 8319 link = calloc(1, sizeof(*link)); 8320 if (!link) 8321 return ERR_PTR(-ENOMEM); 8322 link->detach = &bpf_link__detach_fd; 8323 8324 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 8325 &link_create_opts); 8326 if (link_fd < 0) { 8327 link_fd = -errno; 8328 free(link); 8329 pr_warn("program '%s': failed to attach to iterator: %s\n", 8330 bpf_program__title(prog, false), 8331 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 8332 return ERR_PTR(link_fd); 8333 } 8334 link->fd = link_fd; 8335 return link; 8336 } 8337 8338 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 8339 { 8340 const struct bpf_sec_def *sec_def; 8341 8342 sec_def = find_sec_def(bpf_program__title(prog, false)); 8343 if (!sec_def || !sec_def->attach_fn) 8344 return ERR_PTR(-ESRCH); 8345 8346 return sec_def->attach_fn(sec_def, prog); 8347 } 8348 8349 static int bpf_link__detach_struct_ops(struct bpf_link *link) 8350 { 8351 __u32 zero = 0; 8352 8353 if (bpf_map_delete_elem(link->fd, &zero)) 8354 return -errno; 8355 8356 return 0; 8357 } 8358 8359 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 8360 { 8361 struct bpf_struct_ops *st_ops; 8362 struct bpf_link *link; 8363 __u32 i, zero = 0; 8364 int err; 8365 8366 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 8367 return ERR_PTR(-EINVAL); 8368 8369 link = calloc(1, sizeof(*link)); 8370 if (!link) 8371 return ERR_PTR(-EINVAL); 8372 8373 st_ops = map->st_ops; 8374 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8375 struct bpf_program *prog = st_ops->progs[i]; 8376 void *kern_data; 8377 int prog_fd; 8378 8379 if (!prog) 8380 continue; 8381 8382 prog_fd = bpf_program__fd(prog); 8383 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8384 *(unsigned long *)kern_data = prog_fd; 8385 } 8386 8387 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 8388 if (err) { 8389 err = -errno; 8390 free(link); 8391 return ERR_PTR(err); 8392 } 8393 8394 link->detach = bpf_link__detach_struct_ops; 8395 link->fd = map->fd; 8396 8397 return link; 8398 } 8399 8400 enum bpf_perf_event_ret 8401 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 8402 void **copy_mem, size_t *copy_size, 8403 bpf_perf_event_print_t fn, void *private_data) 8404 { 8405 struct perf_event_mmap_page *header = mmap_mem; 8406 __u64 data_head = ring_buffer_read_head(header); 8407 __u64 data_tail = header->data_tail; 8408 void *base = ((__u8 *)header) + page_size; 8409 int ret = LIBBPF_PERF_EVENT_CONT; 8410 struct perf_event_header *ehdr; 8411 size_t ehdr_size; 8412 8413 while (data_head != data_tail) { 8414 ehdr = base + (data_tail & (mmap_size - 1)); 8415 ehdr_size = ehdr->size; 8416 8417 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 8418 void *copy_start = ehdr; 8419 size_t len_first = base + mmap_size - copy_start; 8420 size_t len_secnd = ehdr_size - len_first; 8421 8422 if (*copy_size < ehdr_size) { 8423 free(*copy_mem); 8424 *copy_mem = malloc(ehdr_size); 8425 if (!*copy_mem) { 8426 *copy_size = 0; 8427 ret = LIBBPF_PERF_EVENT_ERROR; 8428 break; 8429 } 8430 *copy_size = ehdr_size; 8431 } 8432 8433 memcpy(*copy_mem, copy_start, len_first); 8434 memcpy(*copy_mem + len_first, base, len_secnd); 8435 ehdr = *copy_mem; 8436 } 8437 8438 ret = fn(ehdr, private_data); 8439 data_tail += ehdr_size; 8440 if (ret != LIBBPF_PERF_EVENT_CONT) 8441 break; 8442 } 8443 8444 ring_buffer_write_tail(header, data_tail); 8445 return ret; 8446 } 8447 8448 struct perf_buffer; 8449 8450 struct perf_buffer_params { 8451 struct perf_event_attr *attr; 8452 /* if event_cb is specified, it takes precendence */ 8453 perf_buffer_event_fn event_cb; 8454 /* sample_cb and lost_cb are higher-level common-case callbacks */ 8455 perf_buffer_sample_fn sample_cb; 8456 perf_buffer_lost_fn lost_cb; 8457 void *ctx; 8458 int cpu_cnt; 8459 int *cpus; 8460 int *map_keys; 8461 }; 8462 8463 struct perf_cpu_buf { 8464 struct perf_buffer *pb; 8465 void *base; /* mmap()'ed memory */ 8466 void *buf; /* for reconstructing segmented data */ 8467 size_t buf_size; 8468 int fd; 8469 int cpu; 8470 int map_key; 8471 }; 8472 8473 struct perf_buffer { 8474 perf_buffer_event_fn event_cb; 8475 perf_buffer_sample_fn sample_cb; 8476 perf_buffer_lost_fn lost_cb; 8477 void *ctx; /* passed into callbacks */ 8478 8479 size_t page_size; 8480 size_t mmap_size; 8481 struct perf_cpu_buf **cpu_bufs; 8482 struct epoll_event *events; 8483 int cpu_cnt; /* number of allocated CPU buffers */ 8484 int epoll_fd; /* perf event FD */ 8485 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 8486 }; 8487 8488 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 8489 struct perf_cpu_buf *cpu_buf) 8490 { 8491 if (!cpu_buf) 8492 return; 8493 if (cpu_buf->base && 8494 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 8495 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 8496 if (cpu_buf->fd >= 0) { 8497 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 8498 close(cpu_buf->fd); 8499 } 8500 free(cpu_buf->buf); 8501 free(cpu_buf); 8502 } 8503 8504 void perf_buffer__free(struct perf_buffer *pb) 8505 { 8506 int i; 8507 8508 if (IS_ERR_OR_NULL(pb)) 8509 return; 8510 if (pb->cpu_bufs) { 8511 for (i = 0; i < pb->cpu_cnt; i++) { 8512 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 8513 8514 if (!cpu_buf) 8515 continue; 8516 8517 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 8518 perf_buffer__free_cpu_buf(pb, cpu_buf); 8519 } 8520 free(pb->cpu_bufs); 8521 } 8522 if (pb->epoll_fd >= 0) 8523 close(pb->epoll_fd); 8524 free(pb->events); 8525 free(pb); 8526 } 8527 8528 static struct perf_cpu_buf * 8529 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 8530 int cpu, int map_key) 8531 { 8532 struct perf_cpu_buf *cpu_buf; 8533 char msg[STRERR_BUFSIZE]; 8534 int err; 8535 8536 cpu_buf = calloc(1, sizeof(*cpu_buf)); 8537 if (!cpu_buf) 8538 return ERR_PTR(-ENOMEM); 8539 8540 cpu_buf->pb = pb; 8541 cpu_buf->cpu = cpu; 8542 cpu_buf->map_key = map_key; 8543 8544 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 8545 -1, PERF_FLAG_FD_CLOEXEC); 8546 if (cpu_buf->fd < 0) { 8547 err = -errno; 8548 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 8549 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 8550 goto error; 8551 } 8552 8553 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 8554 PROT_READ | PROT_WRITE, MAP_SHARED, 8555 cpu_buf->fd, 0); 8556 if (cpu_buf->base == MAP_FAILED) { 8557 cpu_buf->base = NULL; 8558 err = -errno; 8559 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 8560 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 8561 goto error; 8562 } 8563 8564 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 8565 err = -errno; 8566 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 8567 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 8568 goto error; 8569 } 8570 8571 return cpu_buf; 8572 8573 error: 8574 perf_buffer__free_cpu_buf(pb, cpu_buf); 8575 return (struct perf_cpu_buf *)ERR_PTR(err); 8576 } 8577 8578 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 8579 struct perf_buffer_params *p); 8580 8581 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 8582 const struct perf_buffer_opts *opts) 8583 { 8584 struct perf_buffer_params p = {}; 8585 struct perf_event_attr attr = { 0, }; 8586 8587 attr.config = PERF_COUNT_SW_BPF_OUTPUT, 8588 attr.type = PERF_TYPE_SOFTWARE; 8589 attr.sample_type = PERF_SAMPLE_RAW; 8590 attr.sample_period = 1; 8591 attr.wakeup_events = 1; 8592 8593 p.attr = &attr; 8594 p.sample_cb = opts ? opts->sample_cb : NULL; 8595 p.lost_cb = opts ? opts->lost_cb : NULL; 8596 p.ctx = opts ? opts->ctx : NULL; 8597 8598 return __perf_buffer__new(map_fd, page_cnt, &p); 8599 } 8600 8601 struct perf_buffer * 8602 perf_buffer__new_raw(int map_fd, size_t page_cnt, 8603 const struct perf_buffer_raw_opts *opts) 8604 { 8605 struct perf_buffer_params p = {}; 8606 8607 p.attr = opts->attr; 8608 p.event_cb = opts->event_cb; 8609 p.ctx = opts->ctx; 8610 p.cpu_cnt = opts->cpu_cnt; 8611 p.cpus = opts->cpus; 8612 p.map_keys = opts->map_keys; 8613 8614 return __perf_buffer__new(map_fd, page_cnt, &p); 8615 } 8616 8617 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 8618 struct perf_buffer_params *p) 8619 { 8620 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 8621 struct bpf_map_info map; 8622 char msg[STRERR_BUFSIZE]; 8623 struct perf_buffer *pb; 8624 bool *online = NULL; 8625 __u32 map_info_len; 8626 int err, i, j, n; 8627 8628 if (page_cnt & (page_cnt - 1)) { 8629 pr_warn("page count should be power of two, but is %zu\n", 8630 page_cnt); 8631 return ERR_PTR(-EINVAL); 8632 } 8633 8634 /* best-effort sanity checks */ 8635 memset(&map, 0, sizeof(map)); 8636 map_info_len = sizeof(map); 8637 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 8638 if (err) { 8639 err = -errno; 8640 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 8641 * -EBADFD, -EFAULT, or -E2BIG on real error 8642 */ 8643 if (err != -EINVAL) { 8644 pr_warn("failed to get map info for map FD %d: %s\n", 8645 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 8646 return ERR_PTR(err); 8647 } 8648 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 8649 map_fd); 8650 } else { 8651 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 8652 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 8653 map.name); 8654 return ERR_PTR(-EINVAL); 8655 } 8656 } 8657 8658 pb = calloc(1, sizeof(*pb)); 8659 if (!pb) 8660 return ERR_PTR(-ENOMEM); 8661 8662 pb->event_cb = p->event_cb; 8663 pb->sample_cb = p->sample_cb; 8664 pb->lost_cb = p->lost_cb; 8665 pb->ctx = p->ctx; 8666 8667 pb->page_size = getpagesize(); 8668 pb->mmap_size = pb->page_size * page_cnt; 8669 pb->map_fd = map_fd; 8670 8671 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 8672 if (pb->epoll_fd < 0) { 8673 err = -errno; 8674 pr_warn("failed to create epoll instance: %s\n", 8675 libbpf_strerror_r(err, msg, sizeof(msg))); 8676 goto error; 8677 } 8678 8679 if (p->cpu_cnt > 0) { 8680 pb->cpu_cnt = p->cpu_cnt; 8681 } else { 8682 pb->cpu_cnt = libbpf_num_possible_cpus(); 8683 if (pb->cpu_cnt < 0) { 8684 err = pb->cpu_cnt; 8685 goto error; 8686 } 8687 if (map.max_entries && map.max_entries < pb->cpu_cnt) 8688 pb->cpu_cnt = map.max_entries; 8689 } 8690 8691 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 8692 if (!pb->events) { 8693 err = -ENOMEM; 8694 pr_warn("failed to allocate events: out of memory\n"); 8695 goto error; 8696 } 8697 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 8698 if (!pb->cpu_bufs) { 8699 err = -ENOMEM; 8700 pr_warn("failed to allocate buffers: out of memory\n"); 8701 goto error; 8702 } 8703 8704 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 8705 if (err) { 8706 pr_warn("failed to get online CPU mask: %d\n", err); 8707 goto error; 8708 } 8709 8710 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 8711 struct perf_cpu_buf *cpu_buf; 8712 int cpu, map_key; 8713 8714 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 8715 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 8716 8717 /* in case user didn't explicitly requested particular CPUs to 8718 * be attached to, skip offline/not present CPUs 8719 */ 8720 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 8721 continue; 8722 8723 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 8724 if (IS_ERR(cpu_buf)) { 8725 err = PTR_ERR(cpu_buf); 8726 goto error; 8727 } 8728 8729 pb->cpu_bufs[j] = cpu_buf; 8730 8731 err = bpf_map_update_elem(pb->map_fd, &map_key, 8732 &cpu_buf->fd, 0); 8733 if (err) { 8734 err = -errno; 8735 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 8736 cpu, map_key, cpu_buf->fd, 8737 libbpf_strerror_r(err, msg, sizeof(msg))); 8738 goto error; 8739 } 8740 8741 pb->events[j].events = EPOLLIN; 8742 pb->events[j].data.ptr = cpu_buf; 8743 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 8744 &pb->events[j]) < 0) { 8745 err = -errno; 8746 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 8747 cpu, cpu_buf->fd, 8748 libbpf_strerror_r(err, msg, sizeof(msg))); 8749 goto error; 8750 } 8751 j++; 8752 } 8753 pb->cpu_cnt = j; 8754 free(online); 8755 8756 return pb; 8757 8758 error: 8759 free(online); 8760 if (pb) 8761 perf_buffer__free(pb); 8762 return ERR_PTR(err); 8763 } 8764 8765 struct perf_sample_raw { 8766 struct perf_event_header header; 8767 uint32_t size; 8768 char data[]; 8769 }; 8770 8771 struct perf_sample_lost { 8772 struct perf_event_header header; 8773 uint64_t id; 8774 uint64_t lost; 8775 uint64_t sample_id; 8776 }; 8777 8778 static enum bpf_perf_event_ret 8779 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 8780 { 8781 struct perf_cpu_buf *cpu_buf = ctx; 8782 struct perf_buffer *pb = cpu_buf->pb; 8783 void *data = e; 8784 8785 /* user wants full control over parsing perf event */ 8786 if (pb->event_cb) 8787 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 8788 8789 switch (e->type) { 8790 case PERF_RECORD_SAMPLE: { 8791 struct perf_sample_raw *s = data; 8792 8793 if (pb->sample_cb) 8794 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 8795 break; 8796 } 8797 case PERF_RECORD_LOST: { 8798 struct perf_sample_lost *s = data; 8799 8800 if (pb->lost_cb) 8801 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 8802 break; 8803 } 8804 default: 8805 pr_warn("unknown perf sample type %d\n", e->type); 8806 return LIBBPF_PERF_EVENT_ERROR; 8807 } 8808 return LIBBPF_PERF_EVENT_CONT; 8809 } 8810 8811 static int perf_buffer__process_records(struct perf_buffer *pb, 8812 struct perf_cpu_buf *cpu_buf) 8813 { 8814 enum bpf_perf_event_ret ret; 8815 8816 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 8817 pb->page_size, &cpu_buf->buf, 8818 &cpu_buf->buf_size, 8819 perf_buffer__process_record, cpu_buf); 8820 if (ret != LIBBPF_PERF_EVENT_CONT) 8821 return ret; 8822 return 0; 8823 } 8824 8825 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 8826 { 8827 int i, cnt, err; 8828 8829 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 8830 for (i = 0; i < cnt; i++) { 8831 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 8832 8833 err = perf_buffer__process_records(pb, cpu_buf); 8834 if (err) { 8835 pr_warn("error while processing records: %d\n", err); 8836 return err; 8837 } 8838 } 8839 return cnt < 0 ? -errno : cnt; 8840 } 8841 8842 int perf_buffer__consume(struct perf_buffer *pb) 8843 { 8844 int i, err; 8845 8846 for (i = 0; i < pb->cpu_cnt; i++) { 8847 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 8848 8849 if (!cpu_buf) 8850 continue; 8851 8852 err = perf_buffer__process_records(pb, cpu_buf); 8853 if (err) { 8854 pr_warn("error while processing records: %d\n", err); 8855 return err; 8856 } 8857 } 8858 return 0; 8859 } 8860 8861 struct bpf_prog_info_array_desc { 8862 int array_offset; /* e.g. offset of jited_prog_insns */ 8863 int count_offset; /* e.g. offset of jited_prog_len */ 8864 int size_offset; /* > 0: offset of rec size, 8865 * < 0: fix size of -size_offset 8866 */ 8867 }; 8868 8869 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 8870 [BPF_PROG_INFO_JITED_INSNS] = { 8871 offsetof(struct bpf_prog_info, jited_prog_insns), 8872 offsetof(struct bpf_prog_info, jited_prog_len), 8873 -1, 8874 }, 8875 [BPF_PROG_INFO_XLATED_INSNS] = { 8876 offsetof(struct bpf_prog_info, xlated_prog_insns), 8877 offsetof(struct bpf_prog_info, xlated_prog_len), 8878 -1, 8879 }, 8880 [BPF_PROG_INFO_MAP_IDS] = { 8881 offsetof(struct bpf_prog_info, map_ids), 8882 offsetof(struct bpf_prog_info, nr_map_ids), 8883 -(int)sizeof(__u32), 8884 }, 8885 [BPF_PROG_INFO_JITED_KSYMS] = { 8886 offsetof(struct bpf_prog_info, jited_ksyms), 8887 offsetof(struct bpf_prog_info, nr_jited_ksyms), 8888 -(int)sizeof(__u64), 8889 }, 8890 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 8891 offsetof(struct bpf_prog_info, jited_func_lens), 8892 offsetof(struct bpf_prog_info, nr_jited_func_lens), 8893 -(int)sizeof(__u32), 8894 }, 8895 [BPF_PROG_INFO_FUNC_INFO] = { 8896 offsetof(struct bpf_prog_info, func_info), 8897 offsetof(struct bpf_prog_info, nr_func_info), 8898 offsetof(struct bpf_prog_info, func_info_rec_size), 8899 }, 8900 [BPF_PROG_INFO_LINE_INFO] = { 8901 offsetof(struct bpf_prog_info, line_info), 8902 offsetof(struct bpf_prog_info, nr_line_info), 8903 offsetof(struct bpf_prog_info, line_info_rec_size), 8904 }, 8905 [BPF_PROG_INFO_JITED_LINE_INFO] = { 8906 offsetof(struct bpf_prog_info, jited_line_info), 8907 offsetof(struct bpf_prog_info, nr_jited_line_info), 8908 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 8909 }, 8910 [BPF_PROG_INFO_PROG_TAGS] = { 8911 offsetof(struct bpf_prog_info, prog_tags), 8912 offsetof(struct bpf_prog_info, nr_prog_tags), 8913 -(int)sizeof(__u8) * BPF_TAG_SIZE, 8914 }, 8915 8916 }; 8917 8918 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 8919 int offset) 8920 { 8921 __u32 *array = (__u32 *)info; 8922 8923 if (offset >= 0) 8924 return array[offset / sizeof(__u32)]; 8925 return -(int)offset; 8926 } 8927 8928 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 8929 int offset) 8930 { 8931 __u64 *array = (__u64 *)info; 8932 8933 if (offset >= 0) 8934 return array[offset / sizeof(__u64)]; 8935 return -(int)offset; 8936 } 8937 8938 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 8939 __u32 val) 8940 { 8941 __u32 *array = (__u32 *)info; 8942 8943 if (offset >= 0) 8944 array[offset / sizeof(__u32)] = val; 8945 } 8946 8947 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 8948 __u64 val) 8949 { 8950 __u64 *array = (__u64 *)info; 8951 8952 if (offset >= 0) 8953 array[offset / sizeof(__u64)] = val; 8954 } 8955 8956 struct bpf_prog_info_linear * 8957 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 8958 { 8959 struct bpf_prog_info_linear *info_linear; 8960 struct bpf_prog_info info = {}; 8961 __u32 info_len = sizeof(info); 8962 __u32 data_len = 0; 8963 int i, err; 8964 void *ptr; 8965 8966 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 8967 return ERR_PTR(-EINVAL); 8968 8969 /* step 1: get array dimensions */ 8970 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 8971 if (err) { 8972 pr_debug("can't get prog info: %s", strerror(errno)); 8973 return ERR_PTR(-EFAULT); 8974 } 8975 8976 /* step 2: calculate total size of all arrays */ 8977 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 8978 bool include_array = (arrays & (1UL << i)) > 0; 8979 struct bpf_prog_info_array_desc *desc; 8980 __u32 count, size; 8981 8982 desc = bpf_prog_info_array_desc + i; 8983 8984 /* kernel is too old to support this field */ 8985 if (info_len < desc->array_offset + sizeof(__u32) || 8986 info_len < desc->count_offset + sizeof(__u32) || 8987 (desc->size_offset > 0 && info_len < desc->size_offset)) 8988 include_array = false; 8989 8990 if (!include_array) { 8991 arrays &= ~(1UL << i); /* clear the bit */ 8992 continue; 8993 } 8994 8995 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 8996 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 8997 8998 data_len += count * size; 8999 } 9000 9001 /* step 3: allocate continuous memory */ 9002 data_len = roundup(data_len, sizeof(__u64)); 9003 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 9004 if (!info_linear) 9005 return ERR_PTR(-ENOMEM); 9006 9007 /* step 4: fill data to info_linear->info */ 9008 info_linear->arrays = arrays; 9009 memset(&info_linear->info, 0, sizeof(info)); 9010 ptr = info_linear->data; 9011 9012 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 9013 struct bpf_prog_info_array_desc *desc; 9014 __u32 count, size; 9015 9016 if ((arrays & (1UL << i)) == 0) 9017 continue; 9018 9019 desc = bpf_prog_info_array_desc + i; 9020 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 9021 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 9022 bpf_prog_info_set_offset_u32(&info_linear->info, 9023 desc->count_offset, count); 9024 bpf_prog_info_set_offset_u32(&info_linear->info, 9025 desc->size_offset, size); 9026 bpf_prog_info_set_offset_u64(&info_linear->info, 9027 desc->array_offset, 9028 ptr_to_u64(ptr)); 9029 ptr += count * size; 9030 } 9031 9032 /* step 5: call syscall again to get required arrays */ 9033 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 9034 if (err) { 9035 pr_debug("can't get prog info: %s", strerror(errno)); 9036 free(info_linear); 9037 return ERR_PTR(-EFAULT); 9038 } 9039 9040 /* step 6: verify the data */ 9041 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 9042 struct bpf_prog_info_array_desc *desc; 9043 __u32 v1, v2; 9044 9045 if ((arrays & (1UL << i)) == 0) 9046 continue; 9047 9048 desc = bpf_prog_info_array_desc + i; 9049 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 9050 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 9051 desc->count_offset); 9052 if (v1 != v2) 9053 pr_warn("%s: mismatch in element count\n", __func__); 9054 9055 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 9056 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 9057 desc->size_offset); 9058 if (v1 != v2) 9059 pr_warn("%s: mismatch in rec size\n", __func__); 9060 } 9061 9062 /* step 7: update info_len and data_len */ 9063 info_linear->info_len = sizeof(struct bpf_prog_info); 9064 info_linear->data_len = data_len; 9065 9066 return info_linear; 9067 } 9068 9069 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 9070 { 9071 int i; 9072 9073 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 9074 struct bpf_prog_info_array_desc *desc; 9075 __u64 addr, offs; 9076 9077 if ((info_linear->arrays & (1UL << i)) == 0) 9078 continue; 9079 9080 desc = bpf_prog_info_array_desc + i; 9081 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 9082 desc->array_offset); 9083 offs = addr - ptr_to_u64(info_linear->data); 9084 bpf_prog_info_set_offset_u64(&info_linear->info, 9085 desc->array_offset, offs); 9086 } 9087 } 9088 9089 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 9090 { 9091 int i; 9092 9093 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 9094 struct bpf_prog_info_array_desc *desc; 9095 __u64 addr, offs; 9096 9097 if ((info_linear->arrays & (1UL << i)) == 0) 9098 continue; 9099 9100 desc = bpf_prog_info_array_desc + i; 9101 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 9102 desc->array_offset); 9103 addr = offs + ptr_to_u64(info_linear->data); 9104 bpf_prog_info_set_offset_u64(&info_linear->info, 9105 desc->array_offset, addr); 9106 } 9107 } 9108 9109 int bpf_program__set_attach_target(struct bpf_program *prog, 9110 int attach_prog_fd, 9111 const char *attach_func_name) 9112 { 9113 int btf_id; 9114 9115 if (!prog || attach_prog_fd < 0 || !attach_func_name) 9116 return -EINVAL; 9117 9118 if (attach_prog_fd) 9119 btf_id = libbpf_find_prog_btf_id(attach_func_name, 9120 attach_prog_fd); 9121 else 9122 btf_id = __find_vmlinux_btf_id(prog->obj->btf_vmlinux, 9123 attach_func_name, 9124 prog->expected_attach_type); 9125 9126 if (btf_id < 0) 9127 return btf_id; 9128 9129 prog->attach_btf_id = btf_id; 9130 prog->attach_prog_fd = attach_prog_fd; 9131 return 0; 9132 } 9133 9134 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 9135 { 9136 int err = 0, n, len, start, end = -1; 9137 bool *tmp; 9138 9139 *mask = NULL; 9140 *mask_sz = 0; 9141 9142 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 9143 while (*s) { 9144 if (*s == ',' || *s == '\n') { 9145 s++; 9146 continue; 9147 } 9148 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 9149 if (n <= 0 || n > 2) { 9150 pr_warn("Failed to get CPU range %s: %d\n", s, n); 9151 err = -EINVAL; 9152 goto cleanup; 9153 } else if (n == 1) { 9154 end = start; 9155 } 9156 if (start < 0 || start > end) { 9157 pr_warn("Invalid CPU range [%d,%d] in %s\n", 9158 start, end, s); 9159 err = -EINVAL; 9160 goto cleanup; 9161 } 9162 tmp = realloc(*mask, end + 1); 9163 if (!tmp) { 9164 err = -ENOMEM; 9165 goto cleanup; 9166 } 9167 *mask = tmp; 9168 memset(tmp + *mask_sz, 0, start - *mask_sz); 9169 memset(tmp + start, 1, end - start + 1); 9170 *mask_sz = end + 1; 9171 s += len; 9172 } 9173 if (!*mask_sz) { 9174 pr_warn("Empty CPU range\n"); 9175 return -EINVAL; 9176 } 9177 return 0; 9178 cleanup: 9179 free(*mask); 9180 *mask = NULL; 9181 return err; 9182 } 9183 9184 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 9185 { 9186 int fd, err = 0, len; 9187 char buf[128]; 9188 9189 fd = open(fcpu, O_RDONLY); 9190 if (fd < 0) { 9191 err = -errno; 9192 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 9193 return err; 9194 } 9195 len = read(fd, buf, sizeof(buf)); 9196 close(fd); 9197 if (len <= 0) { 9198 err = len ? -errno : -EINVAL; 9199 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 9200 return err; 9201 } 9202 if (len >= sizeof(buf)) { 9203 pr_warn("CPU mask is too big in file %s\n", fcpu); 9204 return -E2BIG; 9205 } 9206 buf[len] = '\0'; 9207 9208 return parse_cpu_mask_str(buf, mask, mask_sz); 9209 } 9210 9211 int libbpf_num_possible_cpus(void) 9212 { 9213 static const char *fcpu = "/sys/devices/system/cpu/possible"; 9214 static int cpus; 9215 int err, n, i, tmp_cpus; 9216 bool *mask; 9217 9218 tmp_cpus = READ_ONCE(cpus); 9219 if (tmp_cpus > 0) 9220 return tmp_cpus; 9221 9222 err = parse_cpu_mask_file(fcpu, &mask, &n); 9223 if (err) 9224 return err; 9225 9226 tmp_cpus = 0; 9227 for (i = 0; i < n; i++) { 9228 if (mask[i]) 9229 tmp_cpus++; 9230 } 9231 free(mask); 9232 9233 WRITE_ONCE(cpus, tmp_cpus); 9234 return tmp_cpus; 9235 } 9236 9237 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 9238 const struct bpf_object_open_opts *opts) 9239 { 9240 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 9241 .object_name = s->name, 9242 ); 9243 struct bpf_object *obj; 9244 int i; 9245 9246 /* Attempt to preserve opts->object_name, unless overriden by user 9247 * explicitly. Overwriting object name for skeletons is discouraged, 9248 * as it breaks global data maps, because they contain object name 9249 * prefix as their own map name prefix. When skeleton is generated, 9250 * bpftool is making an assumption that this name will stay the same. 9251 */ 9252 if (opts) { 9253 memcpy(&skel_opts, opts, sizeof(*opts)); 9254 if (!opts->object_name) 9255 skel_opts.object_name = s->name; 9256 } 9257 9258 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 9259 if (IS_ERR(obj)) { 9260 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 9261 s->name, PTR_ERR(obj)); 9262 return PTR_ERR(obj); 9263 } 9264 9265 *s->obj = obj; 9266 9267 for (i = 0; i < s->map_cnt; i++) { 9268 struct bpf_map **map = s->maps[i].map; 9269 const char *name = s->maps[i].name; 9270 void **mmaped = s->maps[i].mmaped; 9271 9272 *map = bpf_object__find_map_by_name(obj, name); 9273 if (!*map) { 9274 pr_warn("failed to find skeleton map '%s'\n", name); 9275 return -ESRCH; 9276 } 9277 9278 /* externs shouldn't be pre-setup from user code */ 9279 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 9280 *mmaped = (*map)->mmaped; 9281 } 9282 9283 for (i = 0; i < s->prog_cnt; i++) { 9284 struct bpf_program **prog = s->progs[i].prog; 9285 const char *name = s->progs[i].name; 9286 9287 *prog = bpf_object__find_program_by_name(obj, name); 9288 if (!*prog) { 9289 pr_warn("failed to find skeleton program '%s'\n", name); 9290 return -ESRCH; 9291 } 9292 } 9293 9294 return 0; 9295 } 9296 9297 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 9298 { 9299 int i, err; 9300 9301 err = bpf_object__load(*s->obj); 9302 if (err) { 9303 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 9304 return err; 9305 } 9306 9307 for (i = 0; i < s->map_cnt; i++) { 9308 struct bpf_map *map = *s->maps[i].map; 9309 size_t mmap_sz = bpf_map_mmap_sz(map); 9310 int prot, map_fd = bpf_map__fd(map); 9311 void **mmaped = s->maps[i].mmaped; 9312 9313 if (!mmaped) 9314 continue; 9315 9316 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 9317 *mmaped = NULL; 9318 continue; 9319 } 9320 9321 if (map->def.map_flags & BPF_F_RDONLY_PROG) 9322 prot = PROT_READ; 9323 else 9324 prot = PROT_READ | PROT_WRITE; 9325 9326 /* Remap anonymous mmap()-ed "map initialization image" as 9327 * a BPF map-backed mmap()-ed memory, but preserving the same 9328 * memory address. This will cause kernel to change process' 9329 * page table to point to a different piece of kernel memory, 9330 * but from userspace point of view memory address (and its 9331 * contents, being identical at this point) will stay the 9332 * same. This mapping will be released by bpf_object__close() 9333 * as per normal clean up procedure, so we don't need to worry 9334 * about it from skeleton's clean up perspective. 9335 */ 9336 *mmaped = mmap(map->mmaped, mmap_sz, prot, 9337 MAP_SHARED | MAP_FIXED, map_fd, 0); 9338 if (*mmaped == MAP_FAILED) { 9339 err = -errno; 9340 *mmaped = NULL; 9341 pr_warn("failed to re-mmap() map '%s': %d\n", 9342 bpf_map__name(map), err); 9343 return err; 9344 } 9345 } 9346 9347 return 0; 9348 } 9349 9350 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 9351 { 9352 int i; 9353 9354 for (i = 0; i < s->prog_cnt; i++) { 9355 struct bpf_program *prog = *s->progs[i].prog; 9356 struct bpf_link **link = s->progs[i].link; 9357 const struct bpf_sec_def *sec_def; 9358 const char *sec_name = bpf_program__title(prog, false); 9359 9360 if (!prog->load) 9361 continue; 9362 9363 sec_def = find_sec_def(sec_name); 9364 if (!sec_def || !sec_def->attach_fn) 9365 continue; 9366 9367 *link = sec_def->attach_fn(sec_def, prog); 9368 if (IS_ERR(*link)) { 9369 pr_warn("failed to auto-attach program '%s': %ld\n", 9370 bpf_program__name(prog), PTR_ERR(*link)); 9371 return PTR_ERR(*link); 9372 } 9373 } 9374 9375 return 0; 9376 } 9377 9378 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 9379 { 9380 int i; 9381 9382 for (i = 0; i < s->prog_cnt; i++) { 9383 struct bpf_link **link = s->progs[i].link; 9384 9385 bpf_link__destroy(*link); 9386 *link = NULL; 9387 } 9388 } 9389 9390 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 9391 { 9392 if (s->progs) 9393 bpf_object__detach_skeleton(s); 9394 if (s->obj) 9395 bpf_object__close(*s->obj); 9396 free(s->maps); 9397 free(s->progs); 9398 free(s); 9399 } 9400