xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision 25660156)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 
58 #ifndef EM_BPF
59 #define EM_BPF 247
60 #endif
61 
62 #ifndef BPF_FS_MAGIC
63 #define BPF_FS_MAGIC		0xcafe4a11
64 #endif
65 
66 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
67 
68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
69  * compilation if user enables corresponding warning. Disable it explicitly.
70  */
71 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
72 
73 #define __printf(a, b)	__attribute__((format(printf, a, b)))
74 
75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
76 static const struct btf_type *
77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id);
78 
79 static int __base_pr(enum libbpf_print_level level, const char *format,
80 		     va_list args)
81 {
82 	if (level == LIBBPF_DEBUG)
83 		return 0;
84 
85 	return vfprintf(stderr, format, args);
86 }
87 
88 static libbpf_print_fn_t __libbpf_pr = __base_pr;
89 
90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
91 {
92 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
93 
94 	__libbpf_pr = fn;
95 	return old_print_fn;
96 }
97 
98 __printf(2, 3)
99 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
100 {
101 	va_list args;
102 
103 	if (!__libbpf_pr)
104 		return;
105 
106 	va_start(args, format);
107 	__libbpf_pr(level, format, args);
108 	va_end(args);
109 }
110 
111 static void pr_perm_msg(int err)
112 {
113 	struct rlimit limit;
114 	char buf[100];
115 
116 	if (err != -EPERM || geteuid() != 0)
117 		return;
118 
119 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
120 	if (err)
121 		return;
122 
123 	if (limit.rlim_cur == RLIM_INFINITY)
124 		return;
125 
126 	if (limit.rlim_cur < 1024)
127 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
128 	else if (limit.rlim_cur < 1024*1024)
129 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
130 	else
131 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
132 
133 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
134 		buf);
135 }
136 
137 #define STRERR_BUFSIZE  128
138 
139 /* Copied from tools/perf/util/util.h */
140 #ifndef zfree
141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
142 #endif
143 
144 #ifndef zclose
145 # define zclose(fd) ({			\
146 	int ___err = 0;			\
147 	if ((fd) >= 0)			\
148 		___err = close((fd));	\
149 	fd = -1;			\
150 	___err; })
151 #endif
152 
153 static inline __u64 ptr_to_u64(const void *ptr)
154 {
155 	return (__u64) (unsigned long) ptr;
156 }
157 
158 enum kern_feature_id {
159 	/* v4.14: kernel support for program & map names. */
160 	FEAT_PROG_NAME,
161 	/* v5.2: kernel support for global data sections. */
162 	FEAT_GLOBAL_DATA,
163 	/* BTF support */
164 	FEAT_BTF,
165 	/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
166 	FEAT_BTF_FUNC,
167 	/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
168 	FEAT_BTF_DATASEC,
169 	/* BTF_FUNC_GLOBAL is supported */
170 	FEAT_BTF_GLOBAL_FUNC,
171 	/* BPF_F_MMAPABLE is supported for arrays */
172 	FEAT_ARRAY_MMAP,
173 	/* kernel support for expected_attach_type in BPF_PROG_LOAD */
174 	FEAT_EXP_ATTACH_TYPE,
175 	/* bpf_probe_read_{kernel,user}[_str] helpers */
176 	FEAT_PROBE_READ_KERN,
177 	/* BPF_PROG_BIND_MAP is supported */
178 	FEAT_PROG_BIND_MAP,
179 	/* Kernel support for module BTFs */
180 	FEAT_MODULE_BTF,
181 	/* BTF_KIND_FLOAT support */
182 	FEAT_BTF_FLOAT,
183 	__FEAT_CNT,
184 };
185 
186 static bool kernel_supports(enum kern_feature_id feat_id);
187 
188 enum reloc_type {
189 	RELO_LD64,
190 	RELO_CALL,
191 	RELO_DATA,
192 	RELO_EXTERN,
193 	RELO_SUBPROG_ADDR,
194 };
195 
196 struct reloc_desc {
197 	enum reloc_type type;
198 	int insn_idx;
199 	int map_idx;
200 	int sym_off;
201 	bool processed;
202 };
203 
204 struct bpf_sec_def;
205 
206 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
207 					struct bpf_program *prog);
208 
209 struct bpf_sec_def {
210 	const char *sec;
211 	size_t len;
212 	enum bpf_prog_type prog_type;
213 	enum bpf_attach_type expected_attach_type;
214 	bool is_exp_attach_type_optional;
215 	bool is_attachable;
216 	bool is_attach_btf;
217 	bool is_sleepable;
218 	attach_fn_t attach_fn;
219 };
220 
221 /*
222  * bpf_prog should be a better name but it has been used in
223  * linux/filter.h.
224  */
225 struct bpf_program {
226 	const struct bpf_sec_def *sec_def;
227 	char *sec_name;
228 	size_t sec_idx;
229 	/* this program's instruction offset (in number of instructions)
230 	 * within its containing ELF section
231 	 */
232 	size_t sec_insn_off;
233 	/* number of original instructions in ELF section belonging to this
234 	 * program, not taking into account subprogram instructions possible
235 	 * appended later during relocation
236 	 */
237 	size_t sec_insn_cnt;
238 	/* Offset (in number of instructions) of the start of instruction
239 	 * belonging to this BPF program  within its containing main BPF
240 	 * program. For the entry-point (main) BPF program, this is always
241 	 * zero. For a sub-program, this gets reset before each of main BPF
242 	 * programs are processed and relocated and is used to determined
243 	 * whether sub-program was already appended to the main program, and
244 	 * if yes, at which instruction offset.
245 	 */
246 	size_t sub_insn_off;
247 
248 	char *name;
249 	/* sec_name with / replaced by _; makes recursive pinning
250 	 * in bpf_object__pin_programs easier
251 	 */
252 	char *pin_name;
253 
254 	/* instructions that belong to BPF program; insns[0] is located at
255 	 * sec_insn_off instruction within its ELF section in ELF file, so
256 	 * when mapping ELF file instruction index to the local instruction,
257 	 * one needs to subtract sec_insn_off; and vice versa.
258 	 */
259 	struct bpf_insn *insns;
260 	/* actual number of instruction in this BPF program's image; for
261 	 * entry-point BPF programs this includes the size of main program
262 	 * itself plus all the used sub-programs, appended at the end
263 	 */
264 	size_t insns_cnt;
265 
266 	struct reloc_desc *reloc_desc;
267 	int nr_reloc;
268 	int log_level;
269 
270 	struct {
271 		int nr;
272 		int *fds;
273 	} instances;
274 	bpf_program_prep_t preprocessor;
275 
276 	struct bpf_object *obj;
277 	void *priv;
278 	bpf_program_clear_priv_t clear_priv;
279 
280 	bool load;
281 	enum bpf_prog_type type;
282 	enum bpf_attach_type expected_attach_type;
283 	int prog_ifindex;
284 	__u32 attach_btf_obj_fd;
285 	__u32 attach_btf_id;
286 	__u32 attach_prog_fd;
287 	void *func_info;
288 	__u32 func_info_rec_size;
289 	__u32 func_info_cnt;
290 
291 	void *line_info;
292 	__u32 line_info_rec_size;
293 	__u32 line_info_cnt;
294 	__u32 prog_flags;
295 };
296 
297 struct bpf_struct_ops {
298 	const char *tname;
299 	const struct btf_type *type;
300 	struct bpf_program **progs;
301 	__u32 *kern_func_off;
302 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
303 	void *data;
304 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
305 	 *      btf_vmlinux's format.
306 	 * struct bpf_struct_ops_tcp_congestion_ops {
307 	 *	[... some other kernel fields ...]
308 	 *	struct tcp_congestion_ops data;
309 	 * }
310 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
311 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
312 	 * from "data".
313 	 */
314 	void *kern_vdata;
315 	__u32 type_id;
316 };
317 
318 #define DATA_SEC ".data"
319 #define BSS_SEC ".bss"
320 #define RODATA_SEC ".rodata"
321 #define KCONFIG_SEC ".kconfig"
322 #define KSYMS_SEC ".ksyms"
323 #define STRUCT_OPS_SEC ".struct_ops"
324 
325 enum libbpf_map_type {
326 	LIBBPF_MAP_UNSPEC,
327 	LIBBPF_MAP_DATA,
328 	LIBBPF_MAP_BSS,
329 	LIBBPF_MAP_RODATA,
330 	LIBBPF_MAP_KCONFIG,
331 };
332 
333 static const char * const libbpf_type_to_btf_name[] = {
334 	[LIBBPF_MAP_DATA]	= DATA_SEC,
335 	[LIBBPF_MAP_BSS]	= BSS_SEC,
336 	[LIBBPF_MAP_RODATA]	= RODATA_SEC,
337 	[LIBBPF_MAP_KCONFIG]	= KCONFIG_SEC,
338 };
339 
340 struct bpf_map {
341 	char *name;
342 	int fd;
343 	int sec_idx;
344 	size_t sec_offset;
345 	int map_ifindex;
346 	int inner_map_fd;
347 	struct bpf_map_def def;
348 	__u32 numa_node;
349 	__u32 btf_var_idx;
350 	__u32 btf_key_type_id;
351 	__u32 btf_value_type_id;
352 	__u32 btf_vmlinux_value_type_id;
353 	void *priv;
354 	bpf_map_clear_priv_t clear_priv;
355 	enum libbpf_map_type libbpf_type;
356 	void *mmaped;
357 	struct bpf_struct_ops *st_ops;
358 	struct bpf_map *inner_map;
359 	void **init_slots;
360 	int init_slots_sz;
361 	char *pin_path;
362 	bool pinned;
363 	bool reused;
364 };
365 
366 enum extern_type {
367 	EXT_UNKNOWN,
368 	EXT_KCFG,
369 	EXT_KSYM,
370 };
371 
372 enum kcfg_type {
373 	KCFG_UNKNOWN,
374 	KCFG_CHAR,
375 	KCFG_BOOL,
376 	KCFG_INT,
377 	KCFG_TRISTATE,
378 	KCFG_CHAR_ARR,
379 };
380 
381 struct extern_desc {
382 	enum extern_type type;
383 	int sym_idx;
384 	int btf_id;
385 	int sec_btf_id;
386 	const char *name;
387 	bool is_set;
388 	bool is_weak;
389 	union {
390 		struct {
391 			enum kcfg_type type;
392 			int sz;
393 			int align;
394 			int data_off;
395 			bool is_signed;
396 		} kcfg;
397 		struct {
398 			unsigned long long addr;
399 
400 			/* target btf_id of the corresponding kernel var. */
401 			int kernel_btf_obj_fd;
402 			int kernel_btf_id;
403 
404 			/* local btf_id of the ksym extern's type. */
405 			__u32 type_id;
406 		} ksym;
407 	};
408 };
409 
410 static LIST_HEAD(bpf_objects_list);
411 
412 struct module_btf {
413 	struct btf *btf;
414 	char *name;
415 	__u32 id;
416 	int fd;
417 };
418 
419 struct bpf_object {
420 	char name[BPF_OBJ_NAME_LEN];
421 	char license[64];
422 	__u32 kern_version;
423 
424 	struct bpf_program *programs;
425 	size_t nr_programs;
426 	struct bpf_map *maps;
427 	size_t nr_maps;
428 	size_t maps_cap;
429 
430 	char *kconfig;
431 	struct extern_desc *externs;
432 	int nr_extern;
433 	int kconfig_map_idx;
434 	int rodata_map_idx;
435 
436 	bool loaded;
437 	bool has_subcalls;
438 
439 	/*
440 	 * Information when doing elf related work. Only valid if fd
441 	 * is valid.
442 	 */
443 	struct {
444 		int fd;
445 		const void *obj_buf;
446 		size_t obj_buf_sz;
447 		Elf *elf;
448 		GElf_Ehdr ehdr;
449 		Elf_Data *symbols;
450 		Elf_Data *data;
451 		Elf_Data *rodata;
452 		Elf_Data *bss;
453 		Elf_Data *st_ops_data;
454 		size_t shstrndx; /* section index for section name strings */
455 		size_t strtabidx;
456 		struct {
457 			GElf_Shdr shdr;
458 			Elf_Data *data;
459 		} *reloc_sects;
460 		int nr_reloc_sects;
461 		int maps_shndx;
462 		int btf_maps_shndx;
463 		__u32 btf_maps_sec_btf_id;
464 		int text_shndx;
465 		int symbols_shndx;
466 		int data_shndx;
467 		int rodata_shndx;
468 		int bss_shndx;
469 		int st_ops_shndx;
470 	} efile;
471 	/*
472 	 * All loaded bpf_object is linked in a list, which is
473 	 * hidden to caller. bpf_objects__<func> handlers deal with
474 	 * all objects.
475 	 */
476 	struct list_head list;
477 
478 	struct btf *btf;
479 	struct btf_ext *btf_ext;
480 
481 	/* Parse and load BTF vmlinux if any of the programs in the object need
482 	 * it at load time.
483 	 */
484 	struct btf *btf_vmlinux;
485 	/* vmlinux BTF override for CO-RE relocations */
486 	struct btf *btf_vmlinux_override;
487 	/* Lazily initialized kernel module BTFs */
488 	struct module_btf *btf_modules;
489 	bool btf_modules_loaded;
490 	size_t btf_module_cnt;
491 	size_t btf_module_cap;
492 
493 	void *priv;
494 	bpf_object_clear_priv_t clear_priv;
495 
496 	char path[];
497 };
498 #define obj_elf_valid(o)	((o)->efile.elf)
499 
500 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
501 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
502 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
503 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
504 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
505 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
506 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
507 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
508 			      size_t off, __u32 sym_type, GElf_Sym *sym);
509 
510 void bpf_program__unload(struct bpf_program *prog)
511 {
512 	int i;
513 
514 	if (!prog)
515 		return;
516 
517 	/*
518 	 * If the object is opened but the program was never loaded,
519 	 * it is possible that prog->instances.nr == -1.
520 	 */
521 	if (prog->instances.nr > 0) {
522 		for (i = 0; i < prog->instances.nr; i++)
523 			zclose(prog->instances.fds[i]);
524 	} else if (prog->instances.nr != -1) {
525 		pr_warn("Internal error: instances.nr is %d\n",
526 			prog->instances.nr);
527 	}
528 
529 	prog->instances.nr = -1;
530 	zfree(&prog->instances.fds);
531 
532 	zfree(&prog->func_info);
533 	zfree(&prog->line_info);
534 }
535 
536 static void bpf_program__exit(struct bpf_program *prog)
537 {
538 	if (!prog)
539 		return;
540 
541 	if (prog->clear_priv)
542 		prog->clear_priv(prog, prog->priv);
543 
544 	prog->priv = NULL;
545 	prog->clear_priv = NULL;
546 
547 	bpf_program__unload(prog);
548 	zfree(&prog->name);
549 	zfree(&prog->sec_name);
550 	zfree(&prog->pin_name);
551 	zfree(&prog->insns);
552 	zfree(&prog->reloc_desc);
553 
554 	prog->nr_reloc = 0;
555 	prog->insns_cnt = 0;
556 	prog->sec_idx = -1;
557 }
558 
559 static char *__bpf_program__pin_name(struct bpf_program *prog)
560 {
561 	char *name, *p;
562 
563 	name = p = strdup(prog->sec_name);
564 	while ((p = strchr(p, '/')))
565 		*p = '_';
566 
567 	return name;
568 }
569 
570 static bool insn_is_subprog_call(const struct bpf_insn *insn)
571 {
572 	return BPF_CLASS(insn->code) == BPF_JMP &&
573 	       BPF_OP(insn->code) == BPF_CALL &&
574 	       BPF_SRC(insn->code) == BPF_K &&
575 	       insn->src_reg == BPF_PSEUDO_CALL &&
576 	       insn->dst_reg == 0 &&
577 	       insn->off == 0;
578 }
579 
580 static bool is_ldimm64(struct bpf_insn *insn)
581 {
582 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
583 }
584 
585 static bool insn_is_pseudo_func(struct bpf_insn *insn)
586 {
587 	return is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
588 }
589 
590 static int
591 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
592 		      const char *name, size_t sec_idx, const char *sec_name,
593 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
594 {
595 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
596 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
597 			sec_name, name, sec_off, insn_data_sz);
598 		return -EINVAL;
599 	}
600 
601 	memset(prog, 0, sizeof(*prog));
602 	prog->obj = obj;
603 
604 	prog->sec_idx = sec_idx;
605 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
606 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
607 	/* insns_cnt can later be increased by appending used subprograms */
608 	prog->insns_cnt = prog->sec_insn_cnt;
609 
610 	prog->type = BPF_PROG_TYPE_UNSPEC;
611 	prog->load = true;
612 
613 	prog->instances.fds = NULL;
614 	prog->instances.nr = -1;
615 
616 	prog->sec_name = strdup(sec_name);
617 	if (!prog->sec_name)
618 		goto errout;
619 
620 	prog->name = strdup(name);
621 	if (!prog->name)
622 		goto errout;
623 
624 	prog->pin_name = __bpf_program__pin_name(prog);
625 	if (!prog->pin_name)
626 		goto errout;
627 
628 	prog->insns = malloc(insn_data_sz);
629 	if (!prog->insns)
630 		goto errout;
631 	memcpy(prog->insns, insn_data, insn_data_sz);
632 
633 	return 0;
634 errout:
635 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
636 	bpf_program__exit(prog);
637 	return -ENOMEM;
638 }
639 
640 static int
641 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
642 			 const char *sec_name, int sec_idx)
643 {
644 	struct bpf_program *prog, *progs;
645 	void *data = sec_data->d_buf;
646 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz;
647 	int nr_progs, err;
648 	const char *name;
649 	GElf_Sym sym;
650 
651 	progs = obj->programs;
652 	nr_progs = obj->nr_programs;
653 	sec_off = 0;
654 
655 	while (sec_off < sec_sz) {
656 		if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) {
657 			pr_warn("sec '%s': failed to find program symbol at offset %zu\n",
658 				sec_name, sec_off);
659 			return -LIBBPF_ERRNO__FORMAT;
660 		}
661 
662 		prog_sz = sym.st_size;
663 
664 		name = elf_sym_str(obj, sym.st_name);
665 		if (!name) {
666 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
667 				sec_name, sec_off);
668 			return -LIBBPF_ERRNO__FORMAT;
669 		}
670 
671 		if (sec_off + prog_sz > sec_sz) {
672 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
673 				sec_name, sec_off);
674 			return -LIBBPF_ERRNO__FORMAT;
675 		}
676 
677 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
678 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
679 
680 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
681 		if (!progs) {
682 			/*
683 			 * In this case the original obj->programs
684 			 * is still valid, so don't need special treat for
685 			 * bpf_close_object().
686 			 */
687 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
688 				sec_name, name);
689 			return -ENOMEM;
690 		}
691 		obj->programs = progs;
692 
693 		prog = &progs[nr_progs];
694 
695 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
696 					    sec_off, data + sec_off, prog_sz);
697 		if (err)
698 			return err;
699 
700 		nr_progs++;
701 		obj->nr_programs = nr_progs;
702 
703 		sec_off += prog_sz;
704 	}
705 
706 	return 0;
707 }
708 
709 static __u32 get_kernel_version(void)
710 {
711 	__u32 major, minor, patch;
712 	struct utsname info;
713 
714 	uname(&info);
715 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
716 		return 0;
717 	return KERNEL_VERSION(major, minor, patch);
718 }
719 
720 static const struct btf_member *
721 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
722 {
723 	struct btf_member *m;
724 	int i;
725 
726 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
727 		if (btf_member_bit_offset(t, i) == bit_offset)
728 			return m;
729 	}
730 
731 	return NULL;
732 }
733 
734 static const struct btf_member *
735 find_member_by_name(const struct btf *btf, const struct btf_type *t,
736 		    const char *name)
737 {
738 	struct btf_member *m;
739 	int i;
740 
741 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
742 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
743 			return m;
744 	}
745 
746 	return NULL;
747 }
748 
749 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
750 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
751 				   const char *name, __u32 kind);
752 
753 static int
754 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
755 			   const struct btf_type **type, __u32 *type_id,
756 			   const struct btf_type **vtype, __u32 *vtype_id,
757 			   const struct btf_member **data_member)
758 {
759 	const struct btf_type *kern_type, *kern_vtype;
760 	const struct btf_member *kern_data_member;
761 	__s32 kern_vtype_id, kern_type_id;
762 	__u32 i;
763 
764 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
765 	if (kern_type_id < 0) {
766 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
767 			tname);
768 		return kern_type_id;
769 	}
770 	kern_type = btf__type_by_id(btf, kern_type_id);
771 
772 	/* Find the corresponding "map_value" type that will be used
773 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
774 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
775 	 * btf_vmlinux.
776 	 */
777 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
778 						tname, BTF_KIND_STRUCT);
779 	if (kern_vtype_id < 0) {
780 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
781 			STRUCT_OPS_VALUE_PREFIX, tname);
782 		return kern_vtype_id;
783 	}
784 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
785 
786 	/* Find "struct tcp_congestion_ops" from
787 	 * struct bpf_struct_ops_tcp_congestion_ops {
788 	 *	[ ... ]
789 	 *	struct tcp_congestion_ops data;
790 	 * }
791 	 */
792 	kern_data_member = btf_members(kern_vtype);
793 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
794 		if (kern_data_member->type == kern_type_id)
795 			break;
796 	}
797 	if (i == btf_vlen(kern_vtype)) {
798 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
799 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
800 		return -EINVAL;
801 	}
802 
803 	*type = kern_type;
804 	*type_id = kern_type_id;
805 	*vtype = kern_vtype;
806 	*vtype_id = kern_vtype_id;
807 	*data_member = kern_data_member;
808 
809 	return 0;
810 }
811 
812 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
813 {
814 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
815 }
816 
817 /* Init the map's fields that depend on kern_btf */
818 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
819 					 const struct btf *btf,
820 					 const struct btf *kern_btf)
821 {
822 	const struct btf_member *member, *kern_member, *kern_data_member;
823 	const struct btf_type *type, *kern_type, *kern_vtype;
824 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
825 	struct bpf_struct_ops *st_ops;
826 	void *data, *kern_data;
827 	const char *tname;
828 	int err;
829 
830 	st_ops = map->st_ops;
831 	type = st_ops->type;
832 	tname = st_ops->tname;
833 	err = find_struct_ops_kern_types(kern_btf, tname,
834 					 &kern_type, &kern_type_id,
835 					 &kern_vtype, &kern_vtype_id,
836 					 &kern_data_member);
837 	if (err)
838 		return err;
839 
840 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
841 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
842 
843 	map->def.value_size = kern_vtype->size;
844 	map->btf_vmlinux_value_type_id = kern_vtype_id;
845 
846 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
847 	if (!st_ops->kern_vdata)
848 		return -ENOMEM;
849 
850 	data = st_ops->data;
851 	kern_data_off = kern_data_member->offset / 8;
852 	kern_data = st_ops->kern_vdata + kern_data_off;
853 
854 	member = btf_members(type);
855 	for (i = 0; i < btf_vlen(type); i++, member++) {
856 		const struct btf_type *mtype, *kern_mtype;
857 		__u32 mtype_id, kern_mtype_id;
858 		void *mdata, *kern_mdata;
859 		__s64 msize, kern_msize;
860 		__u32 moff, kern_moff;
861 		__u32 kern_member_idx;
862 		const char *mname;
863 
864 		mname = btf__name_by_offset(btf, member->name_off);
865 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
866 		if (!kern_member) {
867 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
868 				map->name, mname);
869 			return -ENOTSUP;
870 		}
871 
872 		kern_member_idx = kern_member - btf_members(kern_type);
873 		if (btf_member_bitfield_size(type, i) ||
874 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
875 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
876 				map->name, mname);
877 			return -ENOTSUP;
878 		}
879 
880 		moff = member->offset / 8;
881 		kern_moff = kern_member->offset / 8;
882 
883 		mdata = data + moff;
884 		kern_mdata = kern_data + kern_moff;
885 
886 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
887 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
888 						    &kern_mtype_id);
889 		if (BTF_INFO_KIND(mtype->info) !=
890 		    BTF_INFO_KIND(kern_mtype->info)) {
891 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
892 				map->name, mname, BTF_INFO_KIND(mtype->info),
893 				BTF_INFO_KIND(kern_mtype->info));
894 			return -ENOTSUP;
895 		}
896 
897 		if (btf_is_ptr(mtype)) {
898 			struct bpf_program *prog;
899 
900 			prog = st_ops->progs[i];
901 			if (!prog)
902 				continue;
903 
904 			kern_mtype = skip_mods_and_typedefs(kern_btf,
905 							    kern_mtype->type,
906 							    &kern_mtype_id);
907 
908 			/* mtype->type must be a func_proto which was
909 			 * guaranteed in bpf_object__collect_st_ops_relos(),
910 			 * so only check kern_mtype for func_proto here.
911 			 */
912 			if (!btf_is_func_proto(kern_mtype)) {
913 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
914 					map->name, mname);
915 				return -ENOTSUP;
916 			}
917 
918 			prog->attach_btf_id = kern_type_id;
919 			prog->expected_attach_type = kern_member_idx;
920 
921 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
922 
923 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
924 				 map->name, mname, prog->name, moff,
925 				 kern_moff);
926 
927 			continue;
928 		}
929 
930 		msize = btf__resolve_size(btf, mtype_id);
931 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
932 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
933 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
934 				map->name, mname, (ssize_t)msize,
935 				(ssize_t)kern_msize);
936 			return -ENOTSUP;
937 		}
938 
939 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
940 			 map->name, mname, (unsigned int)msize,
941 			 moff, kern_moff);
942 		memcpy(kern_mdata, mdata, msize);
943 	}
944 
945 	return 0;
946 }
947 
948 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
949 {
950 	struct bpf_map *map;
951 	size_t i;
952 	int err;
953 
954 	for (i = 0; i < obj->nr_maps; i++) {
955 		map = &obj->maps[i];
956 
957 		if (!bpf_map__is_struct_ops(map))
958 			continue;
959 
960 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
961 						    obj->btf_vmlinux);
962 		if (err)
963 			return err;
964 	}
965 
966 	return 0;
967 }
968 
969 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
970 {
971 	const struct btf_type *type, *datasec;
972 	const struct btf_var_secinfo *vsi;
973 	struct bpf_struct_ops *st_ops;
974 	const char *tname, *var_name;
975 	__s32 type_id, datasec_id;
976 	const struct btf *btf;
977 	struct bpf_map *map;
978 	__u32 i;
979 
980 	if (obj->efile.st_ops_shndx == -1)
981 		return 0;
982 
983 	btf = obj->btf;
984 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
985 					    BTF_KIND_DATASEC);
986 	if (datasec_id < 0) {
987 		pr_warn("struct_ops init: DATASEC %s not found\n",
988 			STRUCT_OPS_SEC);
989 		return -EINVAL;
990 	}
991 
992 	datasec = btf__type_by_id(btf, datasec_id);
993 	vsi = btf_var_secinfos(datasec);
994 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
995 		type = btf__type_by_id(obj->btf, vsi->type);
996 		var_name = btf__name_by_offset(obj->btf, type->name_off);
997 
998 		type_id = btf__resolve_type(obj->btf, vsi->type);
999 		if (type_id < 0) {
1000 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1001 				vsi->type, STRUCT_OPS_SEC);
1002 			return -EINVAL;
1003 		}
1004 
1005 		type = btf__type_by_id(obj->btf, type_id);
1006 		tname = btf__name_by_offset(obj->btf, type->name_off);
1007 		if (!tname[0]) {
1008 			pr_warn("struct_ops init: anonymous type is not supported\n");
1009 			return -ENOTSUP;
1010 		}
1011 		if (!btf_is_struct(type)) {
1012 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1013 			return -EINVAL;
1014 		}
1015 
1016 		map = bpf_object__add_map(obj);
1017 		if (IS_ERR(map))
1018 			return PTR_ERR(map);
1019 
1020 		map->sec_idx = obj->efile.st_ops_shndx;
1021 		map->sec_offset = vsi->offset;
1022 		map->name = strdup(var_name);
1023 		if (!map->name)
1024 			return -ENOMEM;
1025 
1026 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1027 		map->def.key_size = sizeof(int);
1028 		map->def.value_size = type->size;
1029 		map->def.max_entries = 1;
1030 
1031 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1032 		if (!map->st_ops)
1033 			return -ENOMEM;
1034 		st_ops = map->st_ops;
1035 		st_ops->data = malloc(type->size);
1036 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1037 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1038 					       sizeof(*st_ops->kern_func_off));
1039 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1040 			return -ENOMEM;
1041 
1042 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1043 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1044 				var_name, STRUCT_OPS_SEC);
1045 			return -EINVAL;
1046 		}
1047 
1048 		memcpy(st_ops->data,
1049 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1050 		       type->size);
1051 		st_ops->tname = tname;
1052 		st_ops->type = type;
1053 		st_ops->type_id = type_id;
1054 
1055 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1056 			 tname, type_id, var_name, vsi->offset);
1057 	}
1058 
1059 	return 0;
1060 }
1061 
1062 static struct bpf_object *bpf_object__new(const char *path,
1063 					  const void *obj_buf,
1064 					  size_t obj_buf_sz,
1065 					  const char *obj_name)
1066 {
1067 	struct bpf_object *obj;
1068 	char *end;
1069 
1070 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1071 	if (!obj) {
1072 		pr_warn("alloc memory failed for %s\n", path);
1073 		return ERR_PTR(-ENOMEM);
1074 	}
1075 
1076 	strcpy(obj->path, path);
1077 	if (obj_name) {
1078 		strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1079 		obj->name[sizeof(obj->name) - 1] = 0;
1080 	} else {
1081 		/* Using basename() GNU version which doesn't modify arg. */
1082 		strncpy(obj->name, basename((void *)path),
1083 			sizeof(obj->name) - 1);
1084 		end = strchr(obj->name, '.');
1085 		if (end)
1086 			*end = 0;
1087 	}
1088 
1089 	obj->efile.fd = -1;
1090 	/*
1091 	 * Caller of this function should also call
1092 	 * bpf_object__elf_finish() after data collection to return
1093 	 * obj_buf to user. If not, we should duplicate the buffer to
1094 	 * avoid user freeing them before elf finish.
1095 	 */
1096 	obj->efile.obj_buf = obj_buf;
1097 	obj->efile.obj_buf_sz = obj_buf_sz;
1098 	obj->efile.maps_shndx = -1;
1099 	obj->efile.btf_maps_shndx = -1;
1100 	obj->efile.data_shndx = -1;
1101 	obj->efile.rodata_shndx = -1;
1102 	obj->efile.bss_shndx = -1;
1103 	obj->efile.st_ops_shndx = -1;
1104 	obj->kconfig_map_idx = -1;
1105 	obj->rodata_map_idx = -1;
1106 
1107 	obj->kern_version = get_kernel_version();
1108 	obj->loaded = false;
1109 
1110 	INIT_LIST_HEAD(&obj->list);
1111 	list_add(&obj->list, &bpf_objects_list);
1112 	return obj;
1113 }
1114 
1115 static void bpf_object__elf_finish(struct bpf_object *obj)
1116 {
1117 	if (!obj_elf_valid(obj))
1118 		return;
1119 
1120 	if (obj->efile.elf) {
1121 		elf_end(obj->efile.elf);
1122 		obj->efile.elf = NULL;
1123 	}
1124 	obj->efile.symbols = NULL;
1125 	obj->efile.data = NULL;
1126 	obj->efile.rodata = NULL;
1127 	obj->efile.bss = NULL;
1128 	obj->efile.st_ops_data = NULL;
1129 
1130 	zfree(&obj->efile.reloc_sects);
1131 	obj->efile.nr_reloc_sects = 0;
1132 	zclose(obj->efile.fd);
1133 	obj->efile.obj_buf = NULL;
1134 	obj->efile.obj_buf_sz = 0;
1135 }
1136 
1137 /* if libelf is old and doesn't support mmap(), fall back to read() */
1138 #ifndef ELF_C_READ_MMAP
1139 #define ELF_C_READ_MMAP ELF_C_READ
1140 #endif
1141 
1142 static int bpf_object__elf_init(struct bpf_object *obj)
1143 {
1144 	int err = 0;
1145 	GElf_Ehdr *ep;
1146 
1147 	if (obj_elf_valid(obj)) {
1148 		pr_warn("elf: init internal error\n");
1149 		return -LIBBPF_ERRNO__LIBELF;
1150 	}
1151 
1152 	if (obj->efile.obj_buf_sz > 0) {
1153 		/*
1154 		 * obj_buf should have been validated by
1155 		 * bpf_object__open_buffer().
1156 		 */
1157 		obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1158 					    obj->efile.obj_buf_sz);
1159 	} else {
1160 		obj->efile.fd = open(obj->path, O_RDONLY);
1161 		if (obj->efile.fd < 0) {
1162 			char errmsg[STRERR_BUFSIZE], *cp;
1163 
1164 			err = -errno;
1165 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1166 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1167 			return err;
1168 		}
1169 
1170 		obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1171 	}
1172 
1173 	if (!obj->efile.elf) {
1174 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1175 		err = -LIBBPF_ERRNO__LIBELF;
1176 		goto errout;
1177 	}
1178 
1179 	if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1180 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1181 		err = -LIBBPF_ERRNO__FORMAT;
1182 		goto errout;
1183 	}
1184 	ep = &obj->efile.ehdr;
1185 
1186 	if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1187 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1188 			obj->path, elf_errmsg(-1));
1189 		err = -LIBBPF_ERRNO__FORMAT;
1190 		goto errout;
1191 	}
1192 
1193 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1194 	if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1195 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1196 			obj->path, elf_errmsg(-1));
1197 		return -LIBBPF_ERRNO__FORMAT;
1198 	}
1199 
1200 	/* Old LLVM set e_machine to EM_NONE */
1201 	if (ep->e_type != ET_REL ||
1202 	    (ep->e_machine && ep->e_machine != EM_BPF)) {
1203 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1204 		err = -LIBBPF_ERRNO__FORMAT;
1205 		goto errout;
1206 	}
1207 
1208 	return 0;
1209 errout:
1210 	bpf_object__elf_finish(obj);
1211 	return err;
1212 }
1213 
1214 static int bpf_object__check_endianness(struct bpf_object *obj)
1215 {
1216 #if __BYTE_ORDER == __LITTLE_ENDIAN
1217 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1218 		return 0;
1219 #elif __BYTE_ORDER == __BIG_ENDIAN
1220 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1221 		return 0;
1222 #else
1223 # error "Unrecognized __BYTE_ORDER__"
1224 #endif
1225 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1226 	return -LIBBPF_ERRNO__ENDIAN;
1227 }
1228 
1229 static int
1230 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1231 {
1232 	memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1233 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1234 	return 0;
1235 }
1236 
1237 static int
1238 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1239 {
1240 	__u32 kver;
1241 
1242 	if (size != sizeof(kver)) {
1243 		pr_warn("invalid kver section in %s\n", obj->path);
1244 		return -LIBBPF_ERRNO__FORMAT;
1245 	}
1246 	memcpy(&kver, data, sizeof(kver));
1247 	obj->kern_version = kver;
1248 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1249 	return 0;
1250 }
1251 
1252 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1253 {
1254 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1255 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1256 		return true;
1257 	return false;
1258 }
1259 
1260 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1261 			     __u32 *size)
1262 {
1263 	int ret = -ENOENT;
1264 
1265 	*size = 0;
1266 	if (!name) {
1267 		return -EINVAL;
1268 	} else if (!strcmp(name, DATA_SEC)) {
1269 		if (obj->efile.data)
1270 			*size = obj->efile.data->d_size;
1271 	} else if (!strcmp(name, BSS_SEC)) {
1272 		if (obj->efile.bss)
1273 			*size = obj->efile.bss->d_size;
1274 	} else if (!strcmp(name, RODATA_SEC)) {
1275 		if (obj->efile.rodata)
1276 			*size = obj->efile.rodata->d_size;
1277 	} else if (!strcmp(name, STRUCT_OPS_SEC)) {
1278 		if (obj->efile.st_ops_data)
1279 			*size = obj->efile.st_ops_data->d_size;
1280 	} else {
1281 		Elf_Scn *scn = elf_sec_by_name(obj, name);
1282 		Elf_Data *data = elf_sec_data(obj, scn);
1283 
1284 		if (data) {
1285 			ret = 0; /* found it */
1286 			*size = data->d_size;
1287 		}
1288 	}
1289 
1290 	return *size ? 0 : ret;
1291 }
1292 
1293 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1294 				__u32 *off)
1295 {
1296 	Elf_Data *symbols = obj->efile.symbols;
1297 	const char *sname;
1298 	size_t si;
1299 
1300 	if (!name || !off)
1301 		return -EINVAL;
1302 
1303 	for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1304 		GElf_Sym sym;
1305 
1306 		if (!gelf_getsym(symbols, si, &sym))
1307 			continue;
1308 		if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1309 		    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1310 			continue;
1311 
1312 		sname = elf_sym_str(obj, sym.st_name);
1313 		if (!sname) {
1314 			pr_warn("failed to get sym name string for var %s\n",
1315 				name);
1316 			return -EIO;
1317 		}
1318 		if (strcmp(name, sname) == 0) {
1319 			*off = sym.st_value;
1320 			return 0;
1321 		}
1322 	}
1323 
1324 	return -ENOENT;
1325 }
1326 
1327 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1328 {
1329 	struct bpf_map *new_maps;
1330 	size_t new_cap;
1331 	int i;
1332 
1333 	if (obj->nr_maps < obj->maps_cap)
1334 		return &obj->maps[obj->nr_maps++];
1335 
1336 	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1337 	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1338 	if (!new_maps) {
1339 		pr_warn("alloc maps for object failed\n");
1340 		return ERR_PTR(-ENOMEM);
1341 	}
1342 
1343 	obj->maps_cap = new_cap;
1344 	obj->maps = new_maps;
1345 
1346 	/* zero out new maps */
1347 	memset(obj->maps + obj->nr_maps, 0,
1348 	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1349 	/*
1350 	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1351 	 * when failure (zclose won't close negative fd)).
1352 	 */
1353 	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1354 		obj->maps[i].fd = -1;
1355 		obj->maps[i].inner_map_fd = -1;
1356 	}
1357 
1358 	return &obj->maps[obj->nr_maps++];
1359 }
1360 
1361 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1362 {
1363 	long page_sz = sysconf(_SC_PAGE_SIZE);
1364 	size_t map_sz;
1365 
1366 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1367 	map_sz = roundup(map_sz, page_sz);
1368 	return map_sz;
1369 }
1370 
1371 static char *internal_map_name(struct bpf_object *obj,
1372 			       enum libbpf_map_type type)
1373 {
1374 	char map_name[BPF_OBJ_NAME_LEN], *p;
1375 	const char *sfx = libbpf_type_to_btf_name[type];
1376 	int sfx_len = max((size_t)7, strlen(sfx));
1377 	int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1378 			  strlen(obj->name));
1379 
1380 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1381 		 sfx_len, libbpf_type_to_btf_name[type]);
1382 
1383 	/* sanitise map name to characters allowed by kernel */
1384 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1385 		if (!isalnum(*p) && *p != '_' && *p != '.')
1386 			*p = '_';
1387 
1388 	return strdup(map_name);
1389 }
1390 
1391 static int
1392 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1393 			      int sec_idx, void *data, size_t data_sz)
1394 {
1395 	struct bpf_map_def *def;
1396 	struct bpf_map *map;
1397 	int err;
1398 
1399 	map = bpf_object__add_map(obj);
1400 	if (IS_ERR(map))
1401 		return PTR_ERR(map);
1402 
1403 	map->libbpf_type = type;
1404 	map->sec_idx = sec_idx;
1405 	map->sec_offset = 0;
1406 	map->name = internal_map_name(obj, type);
1407 	if (!map->name) {
1408 		pr_warn("failed to alloc map name\n");
1409 		return -ENOMEM;
1410 	}
1411 
1412 	def = &map->def;
1413 	def->type = BPF_MAP_TYPE_ARRAY;
1414 	def->key_size = sizeof(int);
1415 	def->value_size = data_sz;
1416 	def->max_entries = 1;
1417 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1418 			 ? BPF_F_RDONLY_PROG : 0;
1419 	def->map_flags |= BPF_F_MMAPABLE;
1420 
1421 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1422 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1423 
1424 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1425 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1426 	if (map->mmaped == MAP_FAILED) {
1427 		err = -errno;
1428 		map->mmaped = NULL;
1429 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1430 			map->name, err);
1431 		zfree(&map->name);
1432 		return err;
1433 	}
1434 
1435 	if (data)
1436 		memcpy(map->mmaped, data, data_sz);
1437 
1438 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1439 	return 0;
1440 }
1441 
1442 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1443 {
1444 	int err;
1445 
1446 	/*
1447 	 * Populate obj->maps with libbpf internal maps.
1448 	 */
1449 	if (obj->efile.data_shndx >= 0) {
1450 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1451 						    obj->efile.data_shndx,
1452 						    obj->efile.data->d_buf,
1453 						    obj->efile.data->d_size);
1454 		if (err)
1455 			return err;
1456 	}
1457 	if (obj->efile.rodata_shndx >= 0) {
1458 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1459 						    obj->efile.rodata_shndx,
1460 						    obj->efile.rodata->d_buf,
1461 						    obj->efile.rodata->d_size);
1462 		if (err)
1463 			return err;
1464 
1465 		obj->rodata_map_idx = obj->nr_maps - 1;
1466 	}
1467 	if (obj->efile.bss_shndx >= 0) {
1468 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1469 						    obj->efile.bss_shndx,
1470 						    NULL,
1471 						    obj->efile.bss->d_size);
1472 		if (err)
1473 			return err;
1474 	}
1475 	return 0;
1476 }
1477 
1478 
1479 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1480 					       const void *name)
1481 {
1482 	int i;
1483 
1484 	for (i = 0; i < obj->nr_extern; i++) {
1485 		if (strcmp(obj->externs[i].name, name) == 0)
1486 			return &obj->externs[i];
1487 	}
1488 	return NULL;
1489 }
1490 
1491 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1492 			      char value)
1493 {
1494 	switch (ext->kcfg.type) {
1495 	case KCFG_BOOL:
1496 		if (value == 'm') {
1497 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1498 				ext->name, value);
1499 			return -EINVAL;
1500 		}
1501 		*(bool *)ext_val = value == 'y' ? true : false;
1502 		break;
1503 	case KCFG_TRISTATE:
1504 		if (value == 'y')
1505 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1506 		else if (value == 'm')
1507 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1508 		else /* value == 'n' */
1509 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1510 		break;
1511 	case KCFG_CHAR:
1512 		*(char *)ext_val = value;
1513 		break;
1514 	case KCFG_UNKNOWN:
1515 	case KCFG_INT:
1516 	case KCFG_CHAR_ARR:
1517 	default:
1518 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1519 			ext->name, value);
1520 		return -EINVAL;
1521 	}
1522 	ext->is_set = true;
1523 	return 0;
1524 }
1525 
1526 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1527 			      const char *value)
1528 {
1529 	size_t len;
1530 
1531 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1532 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1533 		return -EINVAL;
1534 	}
1535 
1536 	len = strlen(value);
1537 	if (value[len - 1] != '"') {
1538 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1539 			ext->name, value);
1540 		return -EINVAL;
1541 	}
1542 
1543 	/* strip quotes */
1544 	len -= 2;
1545 	if (len >= ext->kcfg.sz) {
1546 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1547 			ext->name, value, len, ext->kcfg.sz - 1);
1548 		len = ext->kcfg.sz - 1;
1549 	}
1550 	memcpy(ext_val, value + 1, len);
1551 	ext_val[len] = '\0';
1552 	ext->is_set = true;
1553 	return 0;
1554 }
1555 
1556 static int parse_u64(const char *value, __u64 *res)
1557 {
1558 	char *value_end;
1559 	int err;
1560 
1561 	errno = 0;
1562 	*res = strtoull(value, &value_end, 0);
1563 	if (errno) {
1564 		err = -errno;
1565 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1566 		return err;
1567 	}
1568 	if (*value_end) {
1569 		pr_warn("failed to parse '%s' as integer completely\n", value);
1570 		return -EINVAL;
1571 	}
1572 	return 0;
1573 }
1574 
1575 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1576 {
1577 	int bit_sz = ext->kcfg.sz * 8;
1578 
1579 	if (ext->kcfg.sz == 8)
1580 		return true;
1581 
1582 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1583 	 * bytes size without any loss of information. If the target integer
1584 	 * is signed, we rely on the following limits of integer type of
1585 	 * Y bits and subsequent transformation:
1586 	 *
1587 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1588 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1589 	 *            0 <= X + 2^(Y-1) <  2^Y
1590 	 *
1591 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1592 	 *  zero.
1593 	 */
1594 	if (ext->kcfg.is_signed)
1595 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1596 	else
1597 		return (v >> bit_sz) == 0;
1598 }
1599 
1600 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1601 			      __u64 value)
1602 {
1603 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1604 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1605 			ext->name, (unsigned long long)value);
1606 		return -EINVAL;
1607 	}
1608 	if (!is_kcfg_value_in_range(ext, value)) {
1609 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1610 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1611 		return -ERANGE;
1612 	}
1613 	switch (ext->kcfg.sz) {
1614 		case 1: *(__u8 *)ext_val = value; break;
1615 		case 2: *(__u16 *)ext_val = value; break;
1616 		case 4: *(__u32 *)ext_val = value; break;
1617 		case 8: *(__u64 *)ext_val = value; break;
1618 		default:
1619 			return -EINVAL;
1620 	}
1621 	ext->is_set = true;
1622 	return 0;
1623 }
1624 
1625 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1626 					    char *buf, void *data)
1627 {
1628 	struct extern_desc *ext;
1629 	char *sep, *value;
1630 	int len, err = 0;
1631 	void *ext_val;
1632 	__u64 num;
1633 
1634 	if (strncmp(buf, "CONFIG_", 7))
1635 		return 0;
1636 
1637 	sep = strchr(buf, '=');
1638 	if (!sep) {
1639 		pr_warn("failed to parse '%s': no separator\n", buf);
1640 		return -EINVAL;
1641 	}
1642 
1643 	/* Trim ending '\n' */
1644 	len = strlen(buf);
1645 	if (buf[len - 1] == '\n')
1646 		buf[len - 1] = '\0';
1647 	/* Split on '=' and ensure that a value is present. */
1648 	*sep = '\0';
1649 	if (!sep[1]) {
1650 		*sep = '=';
1651 		pr_warn("failed to parse '%s': no value\n", buf);
1652 		return -EINVAL;
1653 	}
1654 
1655 	ext = find_extern_by_name(obj, buf);
1656 	if (!ext || ext->is_set)
1657 		return 0;
1658 
1659 	ext_val = data + ext->kcfg.data_off;
1660 	value = sep + 1;
1661 
1662 	switch (*value) {
1663 	case 'y': case 'n': case 'm':
1664 		err = set_kcfg_value_tri(ext, ext_val, *value);
1665 		break;
1666 	case '"':
1667 		err = set_kcfg_value_str(ext, ext_val, value);
1668 		break;
1669 	default:
1670 		/* assume integer */
1671 		err = parse_u64(value, &num);
1672 		if (err) {
1673 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1674 				ext->name, value);
1675 			return err;
1676 		}
1677 		err = set_kcfg_value_num(ext, ext_val, num);
1678 		break;
1679 	}
1680 	if (err)
1681 		return err;
1682 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1683 	return 0;
1684 }
1685 
1686 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1687 {
1688 	char buf[PATH_MAX];
1689 	struct utsname uts;
1690 	int len, err = 0;
1691 	gzFile file;
1692 
1693 	uname(&uts);
1694 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1695 	if (len < 0)
1696 		return -EINVAL;
1697 	else if (len >= PATH_MAX)
1698 		return -ENAMETOOLONG;
1699 
1700 	/* gzopen also accepts uncompressed files. */
1701 	file = gzopen(buf, "r");
1702 	if (!file)
1703 		file = gzopen("/proc/config.gz", "r");
1704 
1705 	if (!file) {
1706 		pr_warn("failed to open system Kconfig\n");
1707 		return -ENOENT;
1708 	}
1709 
1710 	while (gzgets(file, buf, sizeof(buf))) {
1711 		err = bpf_object__process_kconfig_line(obj, buf, data);
1712 		if (err) {
1713 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1714 				buf, err);
1715 			goto out;
1716 		}
1717 	}
1718 
1719 out:
1720 	gzclose(file);
1721 	return err;
1722 }
1723 
1724 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1725 					const char *config, void *data)
1726 {
1727 	char buf[PATH_MAX];
1728 	int err = 0;
1729 	FILE *file;
1730 
1731 	file = fmemopen((void *)config, strlen(config), "r");
1732 	if (!file) {
1733 		err = -errno;
1734 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1735 		return err;
1736 	}
1737 
1738 	while (fgets(buf, sizeof(buf), file)) {
1739 		err = bpf_object__process_kconfig_line(obj, buf, data);
1740 		if (err) {
1741 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1742 				buf, err);
1743 			break;
1744 		}
1745 	}
1746 
1747 	fclose(file);
1748 	return err;
1749 }
1750 
1751 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1752 {
1753 	struct extern_desc *last_ext = NULL, *ext;
1754 	size_t map_sz;
1755 	int i, err;
1756 
1757 	for (i = 0; i < obj->nr_extern; i++) {
1758 		ext = &obj->externs[i];
1759 		if (ext->type == EXT_KCFG)
1760 			last_ext = ext;
1761 	}
1762 
1763 	if (!last_ext)
1764 		return 0;
1765 
1766 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1767 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1768 					    obj->efile.symbols_shndx,
1769 					    NULL, map_sz);
1770 	if (err)
1771 		return err;
1772 
1773 	obj->kconfig_map_idx = obj->nr_maps - 1;
1774 
1775 	return 0;
1776 }
1777 
1778 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1779 {
1780 	Elf_Data *symbols = obj->efile.symbols;
1781 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1782 	Elf_Data *data = NULL;
1783 	Elf_Scn *scn;
1784 
1785 	if (obj->efile.maps_shndx < 0)
1786 		return 0;
1787 
1788 	if (!symbols)
1789 		return -EINVAL;
1790 
1791 
1792 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1793 	data = elf_sec_data(obj, scn);
1794 	if (!scn || !data) {
1795 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1796 			obj->path);
1797 		return -EINVAL;
1798 	}
1799 
1800 	/*
1801 	 * Count number of maps. Each map has a name.
1802 	 * Array of maps is not supported: only the first element is
1803 	 * considered.
1804 	 *
1805 	 * TODO: Detect array of map and report error.
1806 	 */
1807 	nr_syms = symbols->d_size / sizeof(GElf_Sym);
1808 	for (i = 0; i < nr_syms; i++) {
1809 		GElf_Sym sym;
1810 
1811 		if (!gelf_getsym(symbols, i, &sym))
1812 			continue;
1813 		if (sym.st_shndx != obj->efile.maps_shndx)
1814 			continue;
1815 		nr_maps++;
1816 	}
1817 	/* Assume equally sized map definitions */
1818 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1819 		 nr_maps, data->d_size, obj->path);
1820 
1821 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1822 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1823 			obj->path);
1824 		return -EINVAL;
1825 	}
1826 	map_def_sz = data->d_size / nr_maps;
1827 
1828 	/* Fill obj->maps using data in "maps" section.  */
1829 	for (i = 0; i < nr_syms; i++) {
1830 		GElf_Sym sym;
1831 		const char *map_name;
1832 		struct bpf_map_def *def;
1833 		struct bpf_map *map;
1834 
1835 		if (!gelf_getsym(symbols, i, &sym))
1836 			continue;
1837 		if (sym.st_shndx != obj->efile.maps_shndx)
1838 			continue;
1839 
1840 		map = bpf_object__add_map(obj);
1841 		if (IS_ERR(map))
1842 			return PTR_ERR(map);
1843 
1844 		map_name = elf_sym_str(obj, sym.st_name);
1845 		if (!map_name) {
1846 			pr_warn("failed to get map #%d name sym string for obj %s\n",
1847 				i, obj->path);
1848 			return -LIBBPF_ERRNO__FORMAT;
1849 		}
1850 
1851 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
1852 		map->sec_idx = sym.st_shndx;
1853 		map->sec_offset = sym.st_value;
1854 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1855 			 map_name, map->sec_idx, map->sec_offset);
1856 		if (sym.st_value + map_def_sz > data->d_size) {
1857 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1858 				obj->path, map_name);
1859 			return -EINVAL;
1860 		}
1861 
1862 		map->name = strdup(map_name);
1863 		if (!map->name) {
1864 			pr_warn("failed to alloc map name\n");
1865 			return -ENOMEM;
1866 		}
1867 		pr_debug("map %d is \"%s\"\n", i, map->name);
1868 		def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1869 		/*
1870 		 * If the definition of the map in the object file fits in
1871 		 * bpf_map_def, copy it.  Any extra fields in our version
1872 		 * of bpf_map_def will default to zero as a result of the
1873 		 * calloc above.
1874 		 */
1875 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
1876 			memcpy(&map->def, def, map_def_sz);
1877 		} else {
1878 			/*
1879 			 * Here the map structure being read is bigger than what
1880 			 * we expect, truncate if the excess bits are all zero.
1881 			 * If they are not zero, reject this map as
1882 			 * incompatible.
1883 			 */
1884 			char *b;
1885 
1886 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
1887 			     b < ((char *)def) + map_def_sz; b++) {
1888 				if (*b != 0) {
1889 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1890 						obj->path, map_name);
1891 					if (strict)
1892 						return -EINVAL;
1893 				}
1894 			}
1895 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
1896 		}
1897 	}
1898 	return 0;
1899 }
1900 
1901 static const struct btf_type *
1902 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1903 {
1904 	const struct btf_type *t = btf__type_by_id(btf, id);
1905 
1906 	if (res_id)
1907 		*res_id = id;
1908 
1909 	while (btf_is_mod(t) || btf_is_typedef(t)) {
1910 		if (res_id)
1911 			*res_id = t->type;
1912 		t = btf__type_by_id(btf, t->type);
1913 	}
1914 
1915 	return t;
1916 }
1917 
1918 static const struct btf_type *
1919 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1920 {
1921 	const struct btf_type *t;
1922 
1923 	t = skip_mods_and_typedefs(btf, id, NULL);
1924 	if (!btf_is_ptr(t))
1925 		return NULL;
1926 
1927 	t = skip_mods_and_typedefs(btf, t->type, res_id);
1928 
1929 	return btf_is_func_proto(t) ? t : NULL;
1930 }
1931 
1932 static const char *btf_kind_str(const struct btf_type *t)
1933 {
1934 	switch (btf_kind(t)) {
1935 	case BTF_KIND_UNKN: return "void";
1936 	case BTF_KIND_INT: return "int";
1937 	case BTF_KIND_PTR: return "ptr";
1938 	case BTF_KIND_ARRAY: return "array";
1939 	case BTF_KIND_STRUCT: return "struct";
1940 	case BTF_KIND_UNION: return "union";
1941 	case BTF_KIND_ENUM: return "enum";
1942 	case BTF_KIND_FWD: return "fwd";
1943 	case BTF_KIND_TYPEDEF: return "typedef";
1944 	case BTF_KIND_VOLATILE: return "volatile";
1945 	case BTF_KIND_CONST: return "const";
1946 	case BTF_KIND_RESTRICT: return "restrict";
1947 	case BTF_KIND_FUNC: return "func";
1948 	case BTF_KIND_FUNC_PROTO: return "func_proto";
1949 	case BTF_KIND_VAR: return "var";
1950 	case BTF_KIND_DATASEC: return "datasec";
1951 	case BTF_KIND_FLOAT: return "float";
1952 	default: return "unknown";
1953 	}
1954 }
1955 
1956 /*
1957  * Fetch integer attribute of BTF map definition. Such attributes are
1958  * represented using a pointer to an array, in which dimensionality of array
1959  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1960  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1961  * type definition, while using only sizeof(void *) space in ELF data section.
1962  */
1963 static bool get_map_field_int(const char *map_name, const struct btf *btf,
1964 			      const struct btf_member *m, __u32 *res)
1965 {
1966 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1967 	const char *name = btf__name_by_offset(btf, m->name_off);
1968 	const struct btf_array *arr_info;
1969 	const struct btf_type *arr_t;
1970 
1971 	if (!btf_is_ptr(t)) {
1972 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1973 			map_name, name, btf_kind_str(t));
1974 		return false;
1975 	}
1976 
1977 	arr_t = btf__type_by_id(btf, t->type);
1978 	if (!arr_t) {
1979 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1980 			map_name, name, t->type);
1981 		return false;
1982 	}
1983 	if (!btf_is_array(arr_t)) {
1984 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1985 			map_name, name, btf_kind_str(arr_t));
1986 		return false;
1987 	}
1988 	arr_info = btf_array(arr_t);
1989 	*res = arr_info->nelems;
1990 	return true;
1991 }
1992 
1993 static int build_map_pin_path(struct bpf_map *map, const char *path)
1994 {
1995 	char buf[PATH_MAX];
1996 	int len;
1997 
1998 	if (!path)
1999 		path = "/sys/fs/bpf";
2000 
2001 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2002 	if (len < 0)
2003 		return -EINVAL;
2004 	else if (len >= PATH_MAX)
2005 		return -ENAMETOOLONG;
2006 
2007 	return bpf_map__set_pin_path(map, buf);
2008 }
2009 
2010 
2011 static int parse_btf_map_def(struct bpf_object *obj,
2012 			     struct bpf_map *map,
2013 			     const struct btf_type *def,
2014 			     bool strict, bool is_inner,
2015 			     const char *pin_root_path)
2016 {
2017 	const struct btf_type *t;
2018 	const struct btf_member *m;
2019 	int vlen, i;
2020 
2021 	vlen = btf_vlen(def);
2022 	m = btf_members(def);
2023 	for (i = 0; i < vlen; i++, m++) {
2024 		const char *name = btf__name_by_offset(obj->btf, m->name_off);
2025 
2026 		if (!name) {
2027 			pr_warn("map '%s': invalid field #%d.\n", map->name, i);
2028 			return -EINVAL;
2029 		}
2030 		if (strcmp(name, "type") == 0) {
2031 			if (!get_map_field_int(map->name, obj->btf, m,
2032 					       &map->def.type))
2033 				return -EINVAL;
2034 			pr_debug("map '%s': found type = %u.\n",
2035 				 map->name, map->def.type);
2036 		} else if (strcmp(name, "max_entries") == 0) {
2037 			if (!get_map_field_int(map->name, obj->btf, m,
2038 					       &map->def.max_entries))
2039 				return -EINVAL;
2040 			pr_debug("map '%s': found max_entries = %u.\n",
2041 				 map->name, map->def.max_entries);
2042 		} else if (strcmp(name, "map_flags") == 0) {
2043 			if (!get_map_field_int(map->name, obj->btf, m,
2044 					       &map->def.map_flags))
2045 				return -EINVAL;
2046 			pr_debug("map '%s': found map_flags = %u.\n",
2047 				 map->name, map->def.map_flags);
2048 		} else if (strcmp(name, "numa_node") == 0) {
2049 			if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node))
2050 				return -EINVAL;
2051 			pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node);
2052 		} else if (strcmp(name, "key_size") == 0) {
2053 			__u32 sz;
2054 
2055 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2056 				return -EINVAL;
2057 			pr_debug("map '%s': found key_size = %u.\n",
2058 				 map->name, sz);
2059 			if (map->def.key_size && map->def.key_size != sz) {
2060 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2061 					map->name, map->def.key_size, sz);
2062 				return -EINVAL;
2063 			}
2064 			map->def.key_size = sz;
2065 		} else if (strcmp(name, "key") == 0) {
2066 			__s64 sz;
2067 
2068 			t = btf__type_by_id(obj->btf, m->type);
2069 			if (!t) {
2070 				pr_warn("map '%s': key type [%d] not found.\n",
2071 					map->name, m->type);
2072 				return -EINVAL;
2073 			}
2074 			if (!btf_is_ptr(t)) {
2075 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2076 					map->name, btf_kind_str(t));
2077 				return -EINVAL;
2078 			}
2079 			sz = btf__resolve_size(obj->btf, t->type);
2080 			if (sz < 0) {
2081 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2082 					map->name, t->type, (ssize_t)sz);
2083 				return sz;
2084 			}
2085 			pr_debug("map '%s': found key [%u], sz = %zd.\n",
2086 				 map->name, t->type, (ssize_t)sz);
2087 			if (map->def.key_size && map->def.key_size != sz) {
2088 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2089 					map->name, map->def.key_size, (ssize_t)sz);
2090 				return -EINVAL;
2091 			}
2092 			map->def.key_size = sz;
2093 			map->btf_key_type_id = t->type;
2094 		} else if (strcmp(name, "value_size") == 0) {
2095 			__u32 sz;
2096 
2097 			if (!get_map_field_int(map->name, obj->btf, m, &sz))
2098 				return -EINVAL;
2099 			pr_debug("map '%s': found value_size = %u.\n",
2100 				 map->name, sz);
2101 			if (map->def.value_size && map->def.value_size != sz) {
2102 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2103 					map->name, map->def.value_size, sz);
2104 				return -EINVAL;
2105 			}
2106 			map->def.value_size = sz;
2107 		} else if (strcmp(name, "value") == 0) {
2108 			__s64 sz;
2109 
2110 			t = btf__type_by_id(obj->btf, m->type);
2111 			if (!t) {
2112 				pr_warn("map '%s': value type [%d] not found.\n",
2113 					map->name, m->type);
2114 				return -EINVAL;
2115 			}
2116 			if (!btf_is_ptr(t)) {
2117 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2118 					map->name, btf_kind_str(t));
2119 				return -EINVAL;
2120 			}
2121 			sz = btf__resolve_size(obj->btf, t->type);
2122 			if (sz < 0) {
2123 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2124 					map->name, t->type, (ssize_t)sz);
2125 				return sz;
2126 			}
2127 			pr_debug("map '%s': found value [%u], sz = %zd.\n",
2128 				 map->name, t->type, (ssize_t)sz);
2129 			if (map->def.value_size && map->def.value_size != sz) {
2130 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2131 					map->name, map->def.value_size, (ssize_t)sz);
2132 				return -EINVAL;
2133 			}
2134 			map->def.value_size = sz;
2135 			map->btf_value_type_id = t->type;
2136 		}
2137 		else if (strcmp(name, "values") == 0) {
2138 			int err;
2139 
2140 			if (is_inner) {
2141 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2142 					map->name);
2143 				return -ENOTSUP;
2144 			}
2145 			if (i != vlen - 1) {
2146 				pr_warn("map '%s': '%s' member should be last.\n",
2147 					map->name, name);
2148 				return -EINVAL;
2149 			}
2150 			if (!bpf_map_type__is_map_in_map(map->def.type)) {
2151 				pr_warn("map '%s': should be map-in-map.\n",
2152 					map->name);
2153 				return -ENOTSUP;
2154 			}
2155 			if (map->def.value_size && map->def.value_size != 4) {
2156 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2157 					map->name, map->def.value_size);
2158 				return -EINVAL;
2159 			}
2160 			map->def.value_size = 4;
2161 			t = btf__type_by_id(obj->btf, m->type);
2162 			if (!t) {
2163 				pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2164 					map->name, m->type);
2165 				return -EINVAL;
2166 			}
2167 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2168 				pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2169 					map->name);
2170 				return -EINVAL;
2171 			}
2172 			t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type,
2173 						   NULL);
2174 			if (!btf_is_ptr(t)) {
2175 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2176 					map->name, btf_kind_str(t));
2177 				return -EINVAL;
2178 			}
2179 			t = skip_mods_and_typedefs(obj->btf, t->type, NULL);
2180 			if (!btf_is_struct(t)) {
2181 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2182 					map->name, btf_kind_str(t));
2183 				return -EINVAL;
2184 			}
2185 
2186 			map->inner_map = calloc(1, sizeof(*map->inner_map));
2187 			if (!map->inner_map)
2188 				return -ENOMEM;
2189 			map->inner_map->sec_idx = obj->efile.btf_maps_shndx;
2190 			map->inner_map->name = malloc(strlen(map->name) +
2191 						      sizeof(".inner") + 1);
2192 			if (!map->inner_map->name)
2193 				return -ENOMEM;
2194 			sprintf(map->inner_map->name, "%s.inner", map->name);
2195 
2196 			err = parse_btf_map_def(obj, map->inner_map, t, strict,
2197 						true /* is_inner */, NULL);
2198 			if (err)
2199 				return err;
2200 		} else if (strcmp(name, "pinning") == 0) {
2201 			__u32 val;
2202 			int err;
2203 
2204 			if (is_inner) {
2205 				pr_debug("map '%s': inner def can't be pinned.\n",
2206 					 map->name);
2207 				return -EINVAL;
2208 			}
2209 			if (!get_map_field_int(map->name, obj->btf, m, &val))
2210 				return -EINVAL;
2211 			pr_debug("map '%s': found pinning = %u.\n",
2212 				 map->name, val);
2213 
2214 			if (val != LIBBPF_PIN_NONE &&
2215 			    val != LIBBPF_PIN_BY_NAME) {
2216 				pr_warn("map '%s': invalid pinning value %u.\n",
2217 					map->name, val);
2218 				return -EINVAL;
2219 			}
2220 			if (val == LIBBPF_PIN_BY_NAME) {
2221 				err = build_map_pin_path(map, pin_root_path);
2222 				if (err) {
2223 					pr_warn("map '%s': couldn't build pin path.\n",
2224 						map->name);
2225 					return err;
2226 				}
2227 			}
2228 		} else {
2229 			if (strict) {
2230 				pr_warn("map '%s': unknown field '%s'.\n",
2231 					map->name, name);
2232 				return -ENOTSUP;
2233 			}
2234 			pr_debug("map '%s': ignoring unknown field '%s'.\n",
2235 				 map->name, name);
2236 		}
2237 	}
2238 
2239 	if (map->def.type == BPF_MAP_TYPE_UNSPEC) {
2240 		pr_warn("map '%s': map type isn't specified.\n", map->name);
2241 		return -EINVAL;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2248 					 const struct btf_type *sec,
2249 					 int var_idx, int sec_idx,
2250 					 const Elf_Data *data, bool strict,
2251 					 const char *pin_root_path)
2252 {
2253 	const struct btf_type *var, *def;
2254 	const struct btf_var_secinfo *vi;
2255 	const struct btf_var *var_extra;
2256 	const char *map_name;
2257 	struct bpf_map *map;
2258 
2259 	vi = btf_var_secinfos(sec) + var_idx;
2260 	var = btf__type_by_id(obj->btf, vi->type);
2261 	var_extra = btf_var(var);
2262 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2263 
2264 	if (map_name == NULL || map_name[0] == '\0') {
2265 		pr_warn("map #%d: empty name.\n", var_idx);
2266 		return -EINVAL;
2267 	}
2268 	if ((__u64)vi->offset + vi->size > data->d_size) {
2269 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2270 		return -EINVAL;
2271 	}
2272 	if (!btf_is_var(var)) {
2273 		pr_warn("map '%s': unexpected var kind %s.\n",
2274 			map_name, btf_kind_str(var));
2275 		return -EINVAL;
2276 	}
2277 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2278 	    var_extra->linkage != BTF_VAR_STATIC) {
2279 		pr_warn("map '%s': unsupported var linkage %u.\n",
2280 			map_name, var_extra->linkage);
2281 		return -EOPNOTSUPP;
2282 	}
2283 
2284 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2285 	if (!btf_is_struct(def)) {
2286 		pr_warn("map '%s': unexpected def kind %s.\n",
2287 			map_name, btf_kind_str(var));
2288 		return -EINVAL;
2289 	}
2290 	if (def->size > vi->size) {
2291 		pr_warn("map '%s': invalid def size.\n", map_name);
2292 		return -EINVAL;
2293 	}
2294 
2295 	map = bpf_object__add_map(obj);
2296 	if (IS_ERR(map))
2297 		return PTR_ERR(map);
2298 	map->name = strdup(map_name);
2299 	if (!map->name) {
2300 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2301 		return -ENOMEM;
2302 	}
2303 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2304 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2305 	map->sec_idx = sec_idx;
2306 	map->sec_offset = vi->offset;
2307 	map->btf_var_idx = var_idx;
2308 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2309 		 map_name, map->sec_idx, map->sec_offset);
2310 
2311 	return parse_btf_map_def(obj, map, def, strict, false, pin_root_path);
2312 }
2313 
2314 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2315 					  const char *pin_root_path)
2316 {
2317 	const struct btf_type *sec = NULL;
2318 	int nr_types, i, vlen, err;
2319 	const struct btf_type *t;
2320 	const char *name;
2321 	Elf_Data *data;
2322 	Elf_Scn *scn;
2323 
2324 	if (obj->efile.btf_maps_shndx < 0)
2325 		return 0;
2326 
2327 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2328 	data = elf_sec_data(obj, scn);
2329 	if (!scn || !data) {
2330 		pr_warn("elf: failed to get %s map definitions for %s\n",
2331 			MAPS_ELF_SEC, obj->path);
2332 		return -EINVAL;
2333 	}
2334 
2335 	nr_types = btf__get_nr_types(obj->btf);
2336 	for (i = 1; i <= nr_types; i++) {
2337 		t = btf__type_by_id(obj->btf, i);
2338 		if (!btf_is_datasec(t))
2339 			continue;
2340 		name = btf__name_by_offset(obj->btf, t->name_off);
2341 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2342 			sec = t;
2343 			obj->efile.btf_maps_sec_btf_id = i;
2344 			break;
2345 		}
2346 	}
2347 
2348 	if (!sec) {
2349 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2350 		return -ENOENT;
2351 	}
2352 
2353 	vlen = btf_vlen(sec);
2354 	for (i = 0; i < vlen; i++) {
2355 		err = bpf_object__init_user_btf_map(obj, sec, i,
2356 						    obj->efile.btf_maps_shndx,
2357 						    data, strict,
2358 						    pin_root_path);
2359 		if (err)
2360 			return err;
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 static int bpf_object__init_maps(struct bpf_object *obj,
2367 				 const struct bpf_object_open_opts *opts)
2368 {
2369 	const char *pin_root_path;
2370 	bool strict;
2371 	int err;
2372 
2373 	strict = !OPTS_GET(opts, relaxed_maps, false);
2374 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2375 
2376 	err = bpf_object__init_user_maps(obj, strict);
2377 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2378 	err = err ?: bpf_object__init_global_data_maps(obj);
2379 	err = err ?: bpf_object__init_kconfig_map(obj);
2380 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2381 	if (err)
2382 		return err;
2383 
2384 	return 0;
2385 }
2386 
2387 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2388 {
2389 	GElf_Shdr sh;
2390 
2391 	if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2392 		return false;
2393 
2394 	return sh.sh_flags & SHF_EXECINSTR;
2395 }
2396 
2397 static bool btf_needs_sanitization(struct bpf_object *obj)
2398 {
2399 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2400 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2401 	bool has_float = kernel_supports(FEAT_BTF_FLOAT);
2402 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2403 
2404 	return !has_func || !has_datasec || !has_func_global || !has_float;
2405 }
2406 
2407 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2408 {
2409 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2410 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2411 	bool has_float = kernel_supports(FEAT_BTF_FLOAT);
2412 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2413 	struct btf_type *t;
2414 	int i, j, vlen;
2415 
2416 	for (i = 1; i <= btf__get_nr_types(btf); i++) {
2417 		t = (struct btf_type *)btf__type_by_id(btf, i);
2418 
2419 		if (!has_datasec && btf_is_var(t)) {
2420 			/* replace VAR with INT */
2421 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2422 			/*
2423 			 * using size = 1 is the safest choice, 4 will be too
2424 			 * big and cause kernel BTF validation failure if
2425 			 * original variable took less than 4 bytes
2426 			 */
2427 			t->size = 1;
2428 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2429 		} else if (!has_datasec && btf_is_datasec(t)) {
2430 			/* replace DATASEC with STRUCT */
2431 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2432 			struct btf_member *m = btf_members(t);
2433 			struct btf_type *vt;
2434 			char *name;
2435 
2436 			name = (char *)btf__name_by_offset(btf, t->name_off);
2437 			while (*name) {
2438 				if (*name == '.')
2439 					*name = '_';
2440 				name++;
2441 			}
2442 
2443 			vlen = btf_vlen(t);
2444 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2445 			for (j = 0; j < vlen; j++, v++, m++) {
2446 				/* order of field assignments is important */
2447 				m->offset = v->offset * 8;
2448 				m->type = v->type;
2449 				/* preserve variable name as member name */
2450 				vt = (void *)btf__type_by_id(btf, v->type);
2451 				m->name_off = vt->name_off;
2452 			}
2453 		} else if (!has_func && btf_is_func_proto(t)) {
2454 			/* replace FUNC_PROTO with ENUM */
2455 			vlen = btf_vlen(t);
2456 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2457 			t->size = sizeof(__u32); /* kernel enforced */
2458 		} else if (!has_func && btf_is_func(t)) {
2459 			/* replace FUNC with TYPEDEF */
2460 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2461 		} else if (!has_func_global && btf_is_func(t)) {
2462 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2463 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2464 		} else if (!has_float && btf_is_float(t)) {
2465 			/* replace FLOAT with an equally-sized empty STRUCT;
2466 			 * since C compilers do not accept e.g. "float" as a
2467 			 * valid struct name, make it anonymous
2468 			 */
2469 			t->name_off = 0;
2470 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2471 		}
2472 	}
2473 }
2474 
2475 static bool libbpf_needs_btf(const struct bpf_object *obj)
2476 {
2477 	return obj->efile.btf_maps_shndx >= 0 ||
2478 	       obj->efile.st_ops_shndx >= 0 ||
2479 	       obj->nr_extern > 0;
2480 }
2481 
2482 static bool kernel_needs_btf(const struct bpf_object *obj)
2483 {
2484 	return obj->efile.st_ops_shndx >= 0;
2485 }
2486 
2487 static int bpf_object__init_btf(struct bpf_object *obj,
2488 				Elf_Data *btf_data,
2489 				Elf_Data *btf_ext_data)
2490 {
2491 	int err = -ENOENT;
2492 
2493 	if (btf_data) {
2494 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2495 		if (IS_ERR(obj->btf)) {
2496 			err = PTR_ERR(obj->btf);
2497 			obj->btf = NULL;
2498 			pr_warn("Error loading ELF section %s: %d.\n",
2499 				BTF_ELF_SEC, err);
2500 			goto out;
2501 		}
2502 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2503 		btf__set_pointer_size(obj->btf, 8);
2504 		err = 0;
2505 	}
2506 	if (btf_ext_data) {
2507 		if (!obj->btf) {
2508 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2509 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2510 			goto out;
2511 		}
2512 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2513 					    btf_ext_data->d_size);
2514 		if (IS_ERR(obj->btf_ext)) {
2515 			pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2516 				BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2517 			obj->btf_ext = NULL;
2518 			goto out;
2519 		}
2520 	}
2521 out:
2522 	if (err && libbpf_needs_btf(obj)) {
2523 		pr_warn("BTF is required, but is missing or corrupted.\n");
2524 		return err;
2525 	}
2526 	return 0;
2527 }
2528 
2529 static int bpf_object__finalize_btf(struct bpf_object *obj)
2530 {
2531 	int err;
2532 
2533 	if (!obj->btf)
2534 		return 0;
2535 
2536 	err = btf__finalize_data(obj, obj->btf);
2537 	if (err) {
2538 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2539 		return err;
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2546 {
2547 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2548 	    prog->type == BPF_PROG_TYPE_LSM)
2549 		return true;
2550 
2551 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2552 	 * also need vmlinux BTF
2553 	 */
2554 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2555 		return true;
2556 
2557 	return false;
2558 }
2559 
2560 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2561 {
2562 	struct bpf_program *prog;
2563 	int i;
2564 
2565 	/* CO-RE relocations need kernel BTF */
2566 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2567 		return true;
2568 
2569 	/* Support for typed ksyms needs kernel BTF */
2570 	for (i = 0; i < obj->nr_extern; i++) {
2571 		const struct extern_desc *ext;
2572 
2573 		ext = &obj->externs[i];
2574 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2575 			return true;
2576 	}
2577 
2578 	bpf_object__for_each_program(prog, obj) {
2579 		if (!prog->load)
2580 			continue;
2581 		if (prog_needs_vmlinux_btf(prog))
2582 			return true;
2583 	}
2584 
2585 	return false;
2586 }
2587 
2588 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2589 {
2590 	int err;
2591 
2592 	/* btf_vmlinux could be loaded earlier */
2593 	if (obj->btf_vmlinux)
2594 		return 0;
2595 
2596 	if (!force && !obj_needs_vmlinux_btf(obj))
2597 		return 0;
2598 
2599 	obj->btf_vmlinux = libbpf_find_kernel_btf();
2600 	if (IS_ERR(obj->btf_vmlinux)) {
2601 		err = PTR_ERR(obj->btf_vmlinux);
2602 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2603 		obj->btf_vmlinux = NULL;
2604 		return err;
2605 	}
2606 	return 0;
2607 }
2608 
2609 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2610 {
2611 	struct btf *kern_btf = obj->btf;
2612 	bool btf_mandatory, sanitize;
2613 	int err = 0;
2614 
2615 	if (!obj->btf)
2616 		return 0;
2617 
2618 	if (!kernel_supports(FEAT_BTF)) {
2619 		if (kernel_needs_btf(obj)) {
2620 			err = -EOPNOTSUPP;
2621 			goto report;
2622 		}
2623 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2624 		return 0;
2625 	}
2626 
2627 	sanitize = btf_needs_sanitization(obj);
2628 	if (sanitize) {
2629 		const void *raw_data;
2630 		__u32 sz;
2631 
2632 		/* clone BTF to sanitize a copy and leave the original intact */
2633 		raw_data = btf__get_raw_data(obj->btf, &sz);
2634 		kern_btf = btf__new(raw_data, sz);
2635 		if (IS_ERR(kern_btf))
2636 			return PTR_ERR(kern_btf);
2637 
2638 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2639 		btf__set_pointer_size(obj->btf, 8);
2640 		bpf_object__sanitize_btf(obj, kern_btf);
2641 	}
2642 
2643 	err = btf__load(kern_btf);
2644 	if (sanitize) {
2645 		if (!err) {
2646 			/* move fd to libbpf's BTF */
2647 			btf__set_fd(obj->btf, btf__fd(kern_btf));
2648 			btf__set_fd(kern_btf, -1);
2649 		}
2650 		btf__free(kern_btf);
2651 	}
2652 report:
2653 	if (err) {
2654 		btf_mandatory = kernel_needs_btf(obj);
2655 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2656 			btf_mandatory ? "BTF is mandatory, can't proceed."
2657 				      : "BTF is optional, ignoring.");
2658 		if (!btf_mandatory)
2659 			err = 0;
2660 	}
2661 	return err;
2662 }
2663 
2664 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2665 {
2666 	const char *name;
2667 
2668 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2669 	if (!name) {
2670 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2671 			off, obj->path, elf_errmsg(-1));
2672 		return NULL;
2673 	}
2674 
2675 	return name;
2676 }
2677 
2678 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2679 {
2680 	const char *name;
2681 
2682 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2683 	if (!name) {
2684 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2685 			off, obj->path, elf_errmsg(-1));
2686 		return NULL;
2687 	}
2688 
2689 	return name;
2690 }
2691 
2692 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2693 {
2694 	Elf_Scn *scn;
2695 
2696 	scn = elf_getscn(obj->efile.elf, idx);
2697 	if (!scn) {
2698 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2699 			idx, obj->path, elf_errmsg(-1));
2700 		return NULL;
2701 	}
2702 	return scn;
2703 }
2704 
2705 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2706 {
2707 	Elf_Scn *scn = NULL;
2708 	Elf *elf = obj->efile.elf;
2709 	const char *sec_name;
2710 
2711 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2712 		sec_name = elf_sec_name(obj, scn);
2713 		if (!sec_name)
2714 			return NULL;
2715 
2716 		if (strcmp(sec_name, name) != 0)
2717 			continue;
2718 
2719 		return scn;
2720 	}
2721 	return NULL;
2722 }
2723 
2724 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2725 {
2726 	if (!scn)
2727 		return -EINVAL;
2728 
2729 	if (gelf_getshdr(scn, hdr) != hdr) {
2730 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2731 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2732 		return -EINVAL;
2733 	}
2734 
2735 	return 0;
2736 }
2737 
2738 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2739 {
2740 	const char *name;
2741 	GElf_Shdr sh;
2742 
2743 	if (!scn)
2744 		return NULL;
2745 
2746 	if (elf_sec_hdr(obj, scn, &sh))
2747 		return NULL;
2748 
2749 	name = elf_sec_str(obj, sh.sh_name);
2750 	if (!name) {
2751 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2752 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2753 		return NULL;
2754 	}
2755 
2756 	return name;
2757 }
2758 
2759 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2760 {
2761 	Elf_Data *data;
2762 
2763 	if (!scn)
2764 		return NULL;
2765 
2766 	data = elf_getdata(scn, 0);
2767 	if (!data) {
2768 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2769 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2770 			obj->path, elf_errmsg(-1));
2771 		return NULL;
2772 	}
2773 
2774 	return data;
2775 }
2776 
2777 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx,
2778 			      size_t off, __u32 sym_type, GElf_Sym *sym)
2779 {
2780 	Elf_Data *symbols = obj->efile.symbols;
2781 	size_t n = symbols->d_size / sizeof(GElf_Sym);
2782 	int i;
2783 
2784 	for (i = 0; i < n; i++) {
2785 		if (!gelf_getsym(symbols, i, sym))
2786 			continue;
2787 		if (sym->st_shndx != sec_idx || sym->st_value != off)
2788 			continue;
2789 		if (GELF_ST_TYPE(sym->st_info) != sym_type)
2790 			continue;
2791 		return 0;
2792 	}
2793 
2794 	return -ENOENT;
2795 }
2796 
2797 static bool is_sec_name_dwarf(const char *name)
2798 {
2799 	/* approximation, but the actual list is too long */
2800 	return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2801 }
2802 
2803 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2804 {
2805 	/* no special handling of .strtab */
2806 	if (hdr->sh_type == SHT_STRTAB)
2807 		return true;
2808 
2809 	/* ignore .llvm_addrsig section as well */
2810 	if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */)
2811 		return true;
2812 
2813 	/* no subprograms will lead to an empty .text section, ignore it */
2814 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2815 	    strcmp(name, ".text") == 0)
2816 		return true;
2817 
2818 	/* DWARF sections */
2819 	if (is_sec_name_dwarf(name))
2820 		return true;
2821 
2822 	if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2823 		name += sizeof(".rel") - 1;
2824 		/* DWARF section relocations */
2825 		if (is_sec_name_dwarf(name))
2826 			return true;
2827 
2828 		/* .BTF and .BTF.ext don't need relocations */
2829 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
2830 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2831 			return true;
2832 	}
2833 
2834 	return false;
2835 }
2836 
2837 static int cmp_progs(const void *_a, const void *_b)
2838 {
2839 	const struct bpf_program *a = _a;
2840 	const struct bpf_program *b = _b;
2841 
2842 	if (a->sec_idx != b->sec_idx)
2843 		return a->sec_idx < b->sec_idx ? -1 : 1;
2844 
2845 	/* sec_insn_off can't be the same within the section */
2846 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2847 }
2848 
2849 static int bpf_object__elf_collect(struct bpf_object *obj)
2850 {
2851 	Elf *elf = obj->efile.elf;
2852 	Elf_Data *btf_ext_data = NULL;
2853 	Elf_Data *btf_data = NULL;
2854 	int idx = 0, err = 0;
2855 	const char *name;
2856 	Elf_Data *data;
2857 	Elf_Scn *scn;
2858 	GElf_Shdr sh;
2859 
2860 	/* a bunch of ELF parsing functionality depends on processing symbols,
2861 	 * so do the first pass and find the symbol table
2862 	 */
2863 	scn = NULL;
2864 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2865 		if (elf_sec_hdr(obj, scn, &sh))
2866 			return -LIBBPF_ERRNO__FORMAT;
2867 
2868 		if (sh.sh_type == SHT_SYMTAB) {
2869 			if (obj->efile.symbols) {
2870 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2871 				return -LIBBPF_ERRNO__FORMAT;
2872 			}
2873 
2874 			data = elf_sec_data(obj, scn);
2875 			if (!data)
2876 				return -LIBBPF_ERRNO__FORMAT;
2877 
2878 			obj->efile.symbols = data;
2879 			obj->efile.symbols_shndx = elf_ndxscn(scn);
2880 			obj->efile.strtabidx = sh.sh_link;
2881 		}
2882 	}
2883 
2884 	scn = NULL;
2885 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2886 		idx++;
2887 
2888 		if (elf_sec_hdr(obj, scn, &sh))
2889 			return -LIBBPF_ERRNO__FORMAT;
2890 
2891 		name = elf_sec_str(obj, sh.sh_name);
2892 		if (!name)
2893 			return -LIBBPF_ERRNO__FORMAT;
2894 
2895 		if (ignore_elf_section(&sh, name))
2896 			continue;
2897 
2898 		data = elf_sec_data(obj, scn);
2899 		if (!data)
2900 			return -LIBBPF_ERRNO__FORMAT;
2901 
2902 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2903 			 idx, name, (unsigned long)data->d_size,
2904 			 (int)sh.sh_link, (unsigned long)sh.sh_flags,
2905 			 (int)sh.sh_type);
2906 
2907 		if (strcmp(name, "license") == 0) {
2908 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2909 			if (err)
2910 				return err;
2911 		} else if (strcmp(name, "version") == 0) {
2912 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2913 			if (err)
2914 				return err;
2915 		} else if (strcmp(name, "maps") == 0) {
2916 			obj->efile.maps_shndx = idx;
2917 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2918 			obj->efile.btf_maps_shndx = idx;
2919 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
2920 			btf_data = data;
2921 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2922 			btf_ext_data = data;
2923 		} else if (sh.sh_type == SHT_SYMTAB) {
2924 			/* already processed during the first pass above */
2925 		} else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2926 			if (sh.sh_flags & SHF_EXECINSTR) {
2927 				if (strcmp(name, ".text") == 0)
2928 					obj->efile.text_shndx = idx;
2929 				err = bpf_object__add_programs(obj, data, name, idx);
2930 				if (err)
2931 					return err;
2932 			} else if (strcmp(name, DATA_SEC) == 0) {
2933 				obj->efile.data = data;
2934 				obj->efile.data_shndx = idx;
2935 			} else if (strcmp(name, RODATA_SEC) == 0) {
2936 				obj->efile.rodata = data;
2937 				obj->efile.rodata_shndx = idx;
2938 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2939 				obj->efile.st_ops_data = data;
2940 				obj->efile.st_ops_shndx = idx;
2941 			} else {
2942 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
2943 					idx, name);
2944 			}
2945 		} else if (sh.sh_type == SHT_REL) {
2946 			int nr_sects = obj->efile.nr_reloc_sects;
2947 			void *sects = obj->efile.reloc_sects;
2948 			int sec = sh.sh_info; /* points to other section */
2949 
2950 			/* Only do relo for section with exec instructions */
2951 			if (!section_have_execinstr(obj, sec) &&
2952 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
2953 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
2954 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
2955 					idx, name, sec,
2956 					elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
2957 				continue;
2958 			}
2959 
2960 			sects = libbpf_reallocarray(sects, nr_sects + 1,
2961 						    sizeof(*obj->efile.reloc_sects));
2962 			if (!sects)
2963 				return -ENOMEM;
2964 
2965 			obj->efile.reloc_sects = sects;
2966 			obj->efile.nr_reloc_sects++;
2967 
2968 			obj->efile.reloc_sects[nr_sects].shdr = sh;
2969 			obj->efile.reloc_sects[nr_sects].data = data;
2970 		} else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
2971 			obj->efile.bss = data;
2972 			obj->efile.bss_shndx = idx;
2973 		} else {
2974 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
2975 				(size_t)sh.sh_size);
2976 		}
2977 	}
2978 
2979 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
2980 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
2981 		return -LIBBPF_ERRNO__FORMAT;
2982 	}
2983 
2984 	/* sort BPF programs by section name and in-section instruction offset
2985 	 * for faster search */
2986 	qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
2987 
2988 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
2989 }
2990 
2991 static bool sym_is_extern(const GElf_Sym *sym)
2992 {
2993 	int bind = GELF_ST_BIND(sym->st_info);
2994 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
2995 	return sym->st_shndx == SHN_UNDEF &&
2996 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
2997 	       GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
2998 }
2999 
3000 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx)
3001 {
3002 	int bind = GELF_ST_BIND(sym->st_info);
3003 	int type = GELF_ST_TYPE(sym->st_info);
3004 
3005 	/* in .text section */
3006 	if (sym->st_shndx != text_shndx)
3007 		return false;
3008 
3009 	/* local function */
3010 	if (bind == STB_LOCAL && type == STT_SECTION)
3011 		return true;
3012 
3013 	/* global function */
3014 	return bind == STB_GLOBAL && type == STT_FUNC;
3015 }
3016 
3017 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3018 {
3019 	const struct btf_type *t;
3020 	const char *var_name;
3021 	int i, n;
3022 
3023 	if (!btf)
3024 		return -ESRCH;
3025 
3026 	n = btf__get_nr_types(btf);
3027 	for (i = 1; i <= n; i++) {
3028 		t = btf__type_by_id(btf, i);
3029 
3030 		if (!btf_is_var(t))
3031 			continue;
3032 
3033 		var_name = btf__name_by_offset(btf, t->name_off);
3034 		if (strcmp(var_name, ext_name))
3035 			continue;
3036 
3037 		if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3038 			return -EINVAL;
3039 
3040 		return i;
3041 	}
3042 
3043 	return -ENOENT;
3044 }
3045 
3046 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3047 	const struct btf_var_secinfo *vs;
3048 	const struct btf_type *t;
3049 	int i, j, n;
3050 
3051 	if (!btf)
3052 		return -ESRCH;
3053 
3054 	n = btf__get_nr_types(btf);
3055 	for (i = 1; i <= n; i++) {
3056 		t = btf__type_by_id(btf, i);
3057 
3058 		if (!btf_is_datasec(t))
3059 			continue;
3060 
3061 		vs = btf_var_secinfos(t);
3062 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3063 			if (vs->type == ext_btf_id)
3064 				return i;
3065 		}
3066 	}
3067 
3068 	return -ENOENT;
3069 }
3070 
3071 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3072 				     bool *is_signed)
3073 {
3074 	const struct btf_type *t;
3075 	const char *name;
3076 
3077 	t = skip_mods_and_typedefs(btf, id, NULL);
3078 	name = btf__name_by_offset(btf, t->name_off);
3079 
3080 	if (is_signed)
3081 		*is_signed = false;
3082 	switch (btf_kind(t)) {
3083 	case BTF_KIND_INT: {
3084 		int enc = btf_int_encoding(t);
3085 
3086 		if (enc & BTF_INT_BOOL)
3087 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3088 		if (is_signed)
3089 			*is_signed = enc & BTF_INT_SIGNED;
3090 		if (t->size == 1)
3091 			return KCFG_CHAR;
3092 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3093 			return KCFG_UNKNOWN;
3094 		return KCFG_INT;
3095 	}
3096 	case BTF_KIND_ENUM:
3097 		if (t->size != 4)
3098 			return KCFG_UNKNOWN;
3099 		if (strcmp(name, "libbpf_tristate"))
3100 			return KCFG_UNKNOWN;
3101 		return KCFG_TRISTATE;
3102 	case BTF_KIND_ARRAY:
3103 		if (btf_array(t)->nelems == 0)
3104 			return KCFG_UNKNOWN;
3105 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3106 			return KCFG_UNKNOWN;
3107 		return KCFG_CHAR_ARR;
3108 	default:
3109 		return KCFG_UNKNOWN;
3110 	}
3111 }
3112 
3113 static int cmp_externs(const void *_a, const void *_b)
3114 {
3115 	const struct extern_desc *a = _a;
3116 	const struct extern_desc *b = _b;
3117 
3118 	if (a->type != b->type)
3119 		return a->type < b->type ? -1 : 1;
3120 
3121 	if (a->type == EXT_KCFG) {
3122 		/* descending order by alignment requirements */
3123 		if (a->kcfg.align != b->kcfg.align)
3124 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3125 		/* ascending order by size, within same alignment class */
3126 		if (a->kcfg.sz != b->kcfg.sz)
3127 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3128 	}
3129 
3130 	/* resolve ties by name */
3131 	return strcmp(a->name, b->name);
3132 }
3133 
3134 static int find_int_btf_id(const struct btf *btf)
3135 {
3136 	const struct btf_type *t;
3137 	int i, n;
3138 
3139 	n = btf__get_nr_types(btf);
3140 	for (i = 1; i <= n; i++) {
3141 		t = btf__type_by_id(btf, i);
3142 
3143 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3144 			return i;
3145 	}
3146 
3147 	return 0;
3148 }
3149 
3150 static int bpf_object__collect_externs(struct bpf_object *obj)
3151 {
3152 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3153 	const struct btf_type *t;
3154 	struct extern_desc *ext;
3155 	int i, n, off;
3156 	const char *ext_name, *sec_name;
3157 	Elf_Scn *scn;
3158 	GElf_Shdr sh;
3159 
3160 	if (!obj->efile.symbols)
3161 		return 0;
3162 
3163 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3164 	if (elf_sec_hdr(obj, scn, &sh))
3165 		return -LIBBPF_ERRNO__FORMAT;
3166 
3167 	n = sh.sh_size / sh.sh_entsize;
3168 	pr_debug("looking for externs among %d symbols...\n", n);
3169 
3170 	for (i = 0; i < n; i++) {
3171 		GElf_Sym sym;
3172 
3173 		if (!gelf_getsym(obj->efile.symbols, i, &sym))
3174 			return -LIBBPF_ERRNO__FORMAT;
3175 		if (!sym_is_extern(&sym))
3176 			continue;
3177 		ext_name = elf_sym_str(obj, sym.st_name);
3178 		if (!ext_name || !ext_name[0])
3179 			continue;
3180 
3181 		ext = obj->externs;
3182 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3183 		if (!ext)
3184 			return -ENOMEM;
3185 		obj->externs = ext;
3186 		ext = &ext[obj->nr_extern];
3187 		memset(ext, 0, sizeof(*ext));
3188 		obj->nr_extern++;
3189 
3190 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3191 		if (ext->btf_id <= 0) {
3192 			pr_warn("failed to find BTF for extern '%s': %d\n",
3193 				ext_name, ext->btf_id);
3194 			return ext->btf_id;
3195 		}
3196 		t = btf__type_by_id(obj->btf, ext->btf_id);
3197 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3198 		ext->sym_idx = i;
3199 		ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3200 
3201 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3202 		if (ext->sec_btf_id <= 0) {
3203 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3204 				ext_name, ext->btf_id, ext->sec_btf_id);
3205 			return ext->sec_btf_id;
3206 		}
3207 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3208 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3209 
3210 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3211 			kcfg_sec = sec;
3212 			ext->type = EXT_KCFG;
3213 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3214 			if (ext->kcfg.sz <= 0) {
3215 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3216 					ext_name, ext->kcfg.sz);
3217 				return ext->kcfg.sz;
3218 			}
3219 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3220 			if (ext->kcfg.align <= 0) {
3221 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3222 					ext_name, ext->kcfg.align);
3223 				return -EINVAL;
3224 			}
3225 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3226 						        &ext->kcfg.is_signed);
3227 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3228 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3229 				return -ENOTSUP;
3230 			}
3231 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3232 			ksym_sec = sec;
3233 			ext->type = EXT_KSYM;
3234 			skip_mods_and_typedefs(obj->btf, t->type,
3235 					       &ext->ksym.type_id);
3236 		} else {
3237 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3238 			return -ENOTSUP;
3239 		}
3240 	}
3241 	pr_debug("collected %d externs total\n", obj->nr_extern);
3242 
3243 	if (!obj->nr_extern)
3244 		return 0;
3245 
3246 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3247 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3248 
3249 	/* for .ksyms section, we need to turn all externs into allocated
3250 	 * variables in BTF to pass kernel verification; we do this by
3251 	 * pretending that each extern is a 8-byte variable
3252 	 */
3253 	if (ksym_sec) {
3254 		/* find existing 4-byte integer type in BTF to use for fake
3255 		 * extern variables in DATASEC
3256 		 */
3257 		int int_btf_id = find_int_btf_id(obj->btf);
3258 
3259 		for (i = 0; i < obj->nr_extern; i++) {
3260 			ext = &obj->externs[i];
3261 			if (ext->type != EXT_KSYM)
3262 				continue;
3263 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3264 				 i, ext->sym_idx, ext->name);
3265 		}
3266 
3267 		sec = ksym_sec;
3268 		n = btf_vlen(sec);
3269 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3270 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3271 			struct btf_type *vt;
3272 
3273 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3274 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3275 			ext = find_extern_by_name(obj, ext_name);
3276 			if (!ext) {
3277 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3278 					ext_name);
3279 				return -ESRCH;
3280 			}
3281 			btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3282 			vt->type = int_btf_id;
3283 			vs->offset = off;
3284 			vs->size = sizeof(int);
3285 		}
3286 		sec->size = off;
3287 	}
3288 
3289 	if (kcfg_sec) {
3290 		sec = kcfg_sec;
3291 		/* for kcfg externs calculate their offsets within a .kconfig map */
3292 		off = 0;
3293 		for (i = 0; i < obj->nr_extern; i++) {
3294 			ext = &obj->externs[i];
3295 			if (ext->type != EXT_KCFG)
3296 				continue;
3297 
3298 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3299 			off = ext->kcfg.data_off + ext->kcfg.sz;
3300 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3301 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3302 		}
3303 		sec->size = off;
3304 		n = btf_vlen(sec);
3305 		for (i = 0; i < n; i++) {
3306 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3307 
3308 			t = btf__type_by_id(obj->btf, vs->type);
3309 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3310 			ext = find_extern_by_name(obj, ext_name);
3311 			if (!ext) {
3312 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3313 					ext_name);
3314 				return -ESRCH;
3315 			}
3316 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3317 			vs->offset = ext->kcfg.data_off;
3318 		}
3319 	}
3320 	return 0;
3321 }
3322 
3323 struct bpf_program *
3324 bpf_object__find_program_by_title(const struct bpf_object *obj,
3325 				  const char *title)
3326 {
3327 	struct bpf_program *pos;
3328 
3329 	bpf_object__for_each_program(pos, obj) {
3330 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3331 			return pos;
3332 	}
3333 	return NULL;
3334 }
3335 
3336 static bool prog_is_subprog(const struct bpf_object *obj,
3337 			    const struct bpf_program *prog)
3338 {
3339 	/* For legacy reasons, libbpf supports an entry-point BPF programs
3340 	 * without SEC() attribute, i.e., those in the .text section. But if
3341 	 * there are 2 or more such programs in the .text section, they all
3342 	 * must be subprograms called from entry-point BPF programs in
3343 	 * designated SEC()'tions, otherwise there is no way to distinguish
3344 	 * which of those programs should be loaded vs which are a subprogram.
3345 	 * Similarly, if there is a function/program in .text and at least one
3346 	 * other BPF program with custom SEC() attribute, then we just assume
3347 	 * .text programs are subprograms (even if they are not called from
3348 	 * other programs), because libbpf never explicitly supported mixing
3349 	 * SEC()-designated BPF programs and .text entry-point BPF programs.
3350 	 */
3351 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3352 }
3353 
3354 struct bpf_program *
3355 bpf_object__find_program_by_name(const struct bpf_object *obj,
3356 				 const char *name)
3357 {
3358 	struct bpf_program *prog;
3359 
3360 	bpf_object__for_each_program(prog, obj) {
3361 		if (prog_is_subprog(obj, prog))
3362 			continue;
3363 		if (!strcmp(prog->name, name))
3364 			return prog;
3365 	}
3366 	return NULL;
3367 }
3368 
3369 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3370 				      int shndx)
3371 {
3372 	return shndx == obj->efile.data_shndx ||
3373 	       shndx == obj->efile.bss_shndx ||
3374 	       shndx == obj->efile.rodata_shndx;
3375 }
3376 
3377 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3378 				      int shndx)
3379 {
3380 	return shndx == obj->efile.maps_shndx ||
3381 	       shndx == obj->efile.btf_maps_shndx;
3382 }
3383 
3384 static enum libbpf_map_type
3385 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3386 {
3387 	if (shndx == obj->efile.data_shndx)
3388 		return LIBBPF_MAP_DATA;
3389 	else if (shndx == obj->efile.bss_shndx)
3390 		return LIBBPF_MAP_BSS;
3391 	else if (shndx == obj->efile.rodata_shndx)
3392 		return LIBBPF_MAP_RODATA;
3393 	else if (shndx == obj->efile.symbols_shndx)
3394 		return LIBBPF_MAP_KCONFIG;
3395 	else
3396 		return LIBBPF_MAP_UNSPEC;
3397 }
3398 
3399 static int bpf_program__record_reloc(struct bpf_program *prog,
3400 				     struct reloc_desc *reloc_desc,
3401 				     __u32 insn_idx, const char *sym_name,
3402 				     const GElf_Sym *sym, const GElf_Rel *rel)
3403 {
3404 	struct bpf_insn *insn = &prog->insns[insn_idx];
3405 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3406 	struct bpf_object *obj = prog->obj;
3407 	__u32 shdr_idx = sym->st_shndx;
3408 	enum libbpf_map_type type;
3409 	const char *sym_sec_name;
3410 	struct bpf_map *map;
3411 
3412 	reloc_desc->processed = false;
3413 
3414 	/* sub-program call relocation */
3415 	if (insn->code == (BPF_JMP | BPF_CALL)) {
3416 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3417 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3418 			return -LIBBPF_ERRNO__RELOC;
3419 		}
3420 		/* text_shndx can be 0, if no default "main" program exists */
3421 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3422 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3423 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3424 				prog->name, sym_name, sym_sec_name);
3425 			return -LIBBPF_ERRNO__RELOC;
3426 		}
3427 		if (sym->st_value % BPF_INSN_SZ) {
3428 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3429 				prog->name, sym_name, (size_t)sym->st_value);
3430 			return -LIBBPF_ERRNO__RELOC;
3431 		}
3432 		reloc_desc->type = RELO_CALL;
3433 		reloc_desc->insn_idx = insn_idx;
3434 		reloc_desc->sym_off = sym->st_value;
3435 		return 0;
3436 	}
3437 
3438 	if (!is_ldimm64(insn)) {
3439 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3440 			prog->name, sym_name, insn_idx, insn->code);
3441 		return -LIBBPF_ERRNO__RELOC;
3442 	}
3443 
3444 	if (sym_is_extern(sym)) {
3445 		int sym_idx = GELF_R_SYM(rel->r_info);
3446 		int i, n = obj->nr_extern;
3447 		struct extern_desc *ext;
3448 
3449 		for (i = 0; i < n; i++) {
3450 			ext = &obj->externs[i];
3451 			if (ext->sym_idx == sym_idx)
3452 				break;
3453 		}
3454 		if (i >= n) {
3455 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3456 				prog->name, sym_name, sym_idx);
3457 			return -LIBBPF_ERRNO__RELOC;
3458 		}
3459 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3460 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3461 		reloc_desc->type = RELO_EXTERN;
3462 		reloc_desc->insn_idx = insn_idx;
3463 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3464 		return 0;
3465 	}
3466 
3467 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3468 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3469 			prog->name, sym_name, shdr_idx);
3470 		return -LIBBPF_ERRNO__RELOC;
3471 	}
3472 
3473 	/* loading subprog addresses */
3474 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3475 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
3476 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3477 		 */
3478 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3479 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3480 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3481 			return -LIBBPF_ERRNO__RELOC;
3482 		}
3483 
3484 		reloc_desc->type = RELO_SUBPROG_ADDR;
3485 		reloc_desc->insn_idx = insn_idx;
3486 		reloc_desc->sym_off = sym->st_value;
3487 		return 0;
3488 	}
3489 
3490 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3491 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3492 
3493 	/* generic map reference relocation */
3494 	if (type == LIBBPF_MAP_UNSPEC) {
3495 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3496 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3497 				prog->name, sym_name, sym_sec_name);
3498 			return -LIBBPF_ERRNO__RELOC;
3499 		}
3500 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3501 			map = &obj->maps[map_idx];
3502 			if (map->libbpf_type != type ||
3503 			    map->sec_idx != sym->st_shndx ||
3504 			    map->sec_offset != sym->st_value)
3505 				continue;
3506 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3507 				 prog->name, map_idx, map->name, map->sec_idx,
3508 				 map->sec_offset, insn_idx);
3509 			break;
3510 		}
3511 		if (map_idx >= nr_maps) {
3512 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3513 				prog->name, sym_sec_name, (size_t)sym->st_value);
3514 			return -LIBBPF_ERRNO__RELOC;
3515 		}
3516 		reloc_desc->type = RELO_LD64;
3517 		reloc_desc->insn_idx = insn_idx;
3518 		reloc_desc->map_idx = map_idx;
3519 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3520 		return 0;
3521 	}
3522 
3523 	/* global data map relocation */
3524 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3525 		pr_warn("prog '%s': bad data relo against section '%s'\n",
3526 			prog->name, sym_sec_name);
3527 		return -LIBBPF_ERRNO__RELOC;
3528 	}
3529 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3530 		map = &obj->maps[map_idx];
3531 		if (map->libbpf_type != type)
3532 			continue;
3533 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3534 			 prog->name, map_idx, map->name, map->sec_idx,
3535 			 map->sec_offset, insn_idx);
3536 		break;
3537 	}
3538 	if (map_idx >= nr_maps) {
3539 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3540 			prog->name, sym_sec_name);
3541 		return -LIBBPF_ERRNO__RELOC;
3542 	}
3543 
3544 	reloc_desc->type = RELO_DATA;
3545 	reloc_desc->insn_idx = insn_idx;
3546 	reloc_desc->map_idx = map_idx;
3547 	reloc_desc->sym_off = sym->st_value;
3548 	return 0;
3549 }
3550 
3551 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3552 {
3553 	return insn_idx >= prog->sec_insn_off &&
3554 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3555 }
3556 
3557 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3558 						 size_t sec_idx, size_t insn_idx)
3559 {
3560 	int l = 0, r = obj->nr_programs - 1, m;
3561 	struct bpf_program *prog;
3562 
3563 	while (l < r) {
3564 		m = l + (r - l + 1) / 2;
3565 		prog = &obj->programs[m];
3566 
3567 		if (prog->sec_idx < sec_idx ||
3568 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3569 			l = m;
3570 		else
3571 			r = m - 1;
3572 	}
3573 	/* matching program could be at index l, but it still might be the
3574 	 * wrong one, so we need to double check conditions for the last time
3575 	 */
3576 	prog = &obj->programs[l];
3577 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3578 		return prog;
3579 	return NULL;
3580 }
3581 
3582 static int
3583 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3584 {
3585 	Elf_Data *symbols = obj->efile.symbols;
3586 	const char *relo_sec_name, *sec_name;
3587 	size_t sec_idx = shdr->sh_info;
3588 	struct bpf_program *prog;
3589 	struct reloc_desc *relos;
3590 	int err, i, nrels;
3591 	const char *sym_name;
3592 	__u32 insn_idx;
3593 	GElf_Sym sym;
3594 	GElf_Rel rel;
3595 
3596 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3597 	sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
3598 	if (!relo_sec_name || !sec_name)
3599 		return -EINVAL;
3600 
3601 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3602 		 relo_sec_name, sec_idx, sec_name);
3603 	nrels = shdr->sh_size / shdr->sh_entsize;
3604 
3605 	for (i = 0; i < nrels; i++) {
3606 		if (!gelf_getrel(data, i, &rel)) {
3607 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3608 			return -LIBBPF_ERRNO__FORMAT;
3609 		}
3610 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3611 			pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3612 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3613 			return -LIBBPF_ERRNO__FORMAT;
3614 		}
3615 		if (rel.r_offset % BPF_INSN_SZ) {
3616 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3617 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3618 			return -LIBBPF_ERRNO__FORMAT;
3619 		}
3620 
3621 		insn_idx = rel.r_offset / BPF_INSN_SZ;
3622 		/* relocations against static functions are recorded as
3623 		 * relocations against the section that contains a function;
3624 		 * in such case, symbol will be STT_SECTION and sym.st_name
3625 		 * will point to empty string (0), so fetch section name
3626 		 * instead
3627 		 */
3628 		if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3629 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3630 		else
3631 			sym_name = elf_sym_str(obj, sym.st_name);
3632 		sym_name = sym_name ?: "<?";
3633 
3634 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3635 			 relo_sec_name, i, insn_idx, sym_name);
3636 
3637 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3638 		if (!prog) {
3639 			pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n",
3640 				relo_sec_name, i, sec_name, insn_idx);
3641 			return -LIBBPF_ERRNO__RELOC;
3642 		}
3643 
3644 		relos = libbpf_reallocarray(prog->reloc_desc,
3645 					    prog->nr_reloc + 1, sizeof(*relos));
3646 		if (!relos)
3647 			return -ENOMEM;
3648 		prog->reloc_desc = relos;
3649 
3650 		/* adjust insn_idx to local BPF program frame of reference */
3651 		insn_idx -= prog->sec_insn_off;
3652 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3653 						insn_idx, sym_name, &sym, &rel);
3654 		if (err)
3655 			return err;
3656 
3657 		prog->nr_reloc++;
3658 	}
3659 	return 0;
3660 }
3661 
3662 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3663 {
3664 	struct bpf_map_def *def = &map->def;
3665 	__u32 key_type_id = 0, value_type_id = 0;
3666 	int ret;
3667 
3668 	/* if it's BTF-defined map, we don't need to search for type IDs.
3669 	 * For struct_ops map, it does not need btf_key_type_id and
3670 	 * btf_value_type_id.
3671 	 */
3672 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
3673 	    bpf_map__is_struct_ops(map))
3674 		return 0;
3675 
3676 	if (!bpf_map__is_internal(map)) {
3677 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3678 					   def->value_size, &key_type_id,
3679 					   &value_type_id);
3680 	} else {
3681 		/*
3682 		 * LLVM annotates global data differently in BTF, that is,
3683 		 * only as '.data', '.bss' or '.rodata'.
3684 		 */
3685 		ret = btf__find_by_name(obj->btf,
3686 				libbpf_type_to_btf_name[map->libbpf_type]);
3687 	}
3688 	if (ret < 0)
3689 		return ret;
3690 
3691 	map->btf_key_type_id = key_type_id;
3692 	map->btf_value_type_id = bpf_map__is_internal(map) ?
3693 				 ret : value_type_id;
3694 	return 0;
3695 }
3696 
3697 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3698 {
3699 	struct bpf_map_info info = {};
3700 	__u32 len = sizeof(info);
3701 	int new_fd, err;
3702 	char *new_name;
3703 
3704 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
3705 	if (err)
3706 		return err;
3707 
3708 	new_name = strdup(info.name);
3709 	if (!new_name)
3710 		return -errno;
3711 
3712 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
3713 	if (new_fd < 0) {
3714 		err = -errno;
3715 		goto err_free_new_name;
3716 	}
3717 
3718 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
3719 	if (new_fd < 0) {
3720 		err = -errno;
3721 		goto err_close_new_fd;
3722 	}
3723 
3724 	err = zclose(map->fd);
3725 	if (err) {
3726 		err = -errno;
3727 		goto err_close_new_fd;
3728 	}
3729 	free(map->name);
3730 
3731 	map->fd = new_fd;
3732 	map->name = new_name;
3733 	map->def.type = info.type;
3734 	map->def.key_size = info.key_size;
3735 	map->def.value_size = info.value_size;
3736 	map->def.max_entries = info.max_entries;
3737 	map->def.map_flags = info.map_flags;
3738 	map->btf_key_type_id = info.btf_key_type_id;
3739 	map->btf_value_type_id = info.btf_value_type_id;
3740 	map->reused = true;
3741 
3742 	return 0;
3743 
3744 err_close_new_fd:
3745 	close(new_fd);
3746 err_free_new_name:
3747 	free(new_name);
3748 	return err;
3749 }
3750 
3751 __u32 bpf_map__max_entries(const struct bpf_map *map)
3752 {
3753 	return map->def.max_entries;
3754 }
3755 
3756 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3757 {
3758 	if (map->fd >= 0)
3759 		return -EBUSY;
3760 	map->def.max_entries = max_entries;
3761 	return 0;
3762 }
3763 
3764 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3765 {
3766 	if (!map || !max_entries)
3767 		return -EINVAL;
3768 
3769 	return bpf_map__set_max_entries(map, max_entries);
3770 }
3771 
3772 static int
3773 bpf_object__probe_loading(struct bpf_object *obj)
3774 {
3775 	struct bpf_load_program_attr attr;
3776 	char *cp, errmsg[STRERR_BUFSIZE];
3777 	struct bpf_insn insns[] = {
3778 		BPF_MOV64_IMM(BPF_REG_0, 0),
3779 		BPF_EXIT_INSN(),
3780 	};
3781 	int ret;
3782 
3783 	/* make sure basic loading works */
3784 
3785 	memset(&attr, 0, sizeof(attr));
3786 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3787 	attr.insns = insns;
3788 	attr.insns_cnt = ARRAY_SIZE(insns);
3789 	attr.license = "GPL";
3790 
3791 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3792 	if (ret < 0) {
3793 		ret = errno;
3794 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3795 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3796 			"program. Make sure your kernel supports BPF "
3797 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3798 			"set to big enough value.\n", __func__, cp, ret);
3799 		return -ret;
3800 	}
3801 	close(ret);
3802 
3803 	return 0;
3804 }
3805 
3806 static int probe_fd(int fd)
3807 {
3808 	if (fd >= 0)
3809 		close(fd);
3810 	return fd >= 0;
3811 }
3812 
3813 static int probe_kern_prog_name(void)
3814 {
3815 	struct bpf_load_program_attr attr;
3816 	struct bpf_insn insns[] = {
3817 		BPF_MOV64_IMM(BPF_REG_0, 0),
3818 		BPF_EXIT_INSN(),
3819 	};
3820 	int ret;
3821 
3822 	/* make sure loading with name works */
3823 
3824 	memset(&attr, 0, sizeof(attr));
3825 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3826 	attr.insns = insns;
3827 	attr.insns_cnt = ARRAY_SIZE(insns);
3828 	attr.license = "GPL";
3829 	attr.name = "test";
3830 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3831 	return probe_fd(ret);
3832 }
3833 
3834 static int probe_kern_global_data(void)
3835 {
3836 	struct bpf_load_program_attr prg_attr;
3837 	struct bpf_create_map_attr map_attr;
3838 	char *cp, errmsg[STRERR_BUFSIZE];
3839 	struct bpf_insn insns[] = {
3840 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3841 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3842 		BPF_MOV64_IMM(BPF_REG_0, 0),
3843 		BPF_EXIT_INSN(),
3844 	};
3845 	int ret, map;
3846 
3847 	memset(&map_attr, 0, sizeof(map_attr));
3848 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
3849 	map_attr.key_size = sizeof(int);
3850 	map_attr.value_size = 32;
3851 	map_attr.max_entries = 1;
3852 
3853 	map = bpf_create_map_xattr(&map_attr);
3854 	if (map < 0) {
3855 		ret = -errno;
3856 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3857 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
3858 			__func__, cp, -ret);
3859 		return ret;
3860 	}
3861 
3862 	insns[0].imm = map;
3863 
3864 	memset(&prg_attr, 0, sizeof(prg_attr));
3865 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3866 	prg_attr.insns = insns;
3867 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
3868 	prg_attr.license = "GPL";
3869 
3870 	ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
3871 	close(map);
3872 	return probe_fd(ret);
3873 }
3874 
3875 static int probe_kern_btf(void)
3876 {
3877 	static const char strs[] = "\0int";
3878 	__u32 types[] = {
3879 		/* int */
3880 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
3881 	};
3882 
3883 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3884 					     strs, sizeof(strs)));
3885 }
3886 
3887 static int probe_kern_btf_func(void)
3888 {
3889 	static const char strs[] = "\0int\0x\0a";
3890 	/* void x(int a) {} */
3891 	__u32 types[] = {
3892 		/* int */
3893 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3894 		/* FUNC_PROTO */                                /* [2] */
3895 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3896 		BTF_PARAM_ENC(7, 1),
3897 		/* FUNC x */                                    /* [3] */
3898 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
3899 	};
3900 
3901 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3902 					     strs, sizeof(strs)));
3903 }
3904 
3905 static int probe_kern_btf_func_global(void)
3906 {
3907 	static const char strs[] = "\0int\0x\0a";
3908 	/* static void x(int a) {} */
3909 	__u32 types[] = {
3910 		/* int */
3911 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3912 		/* FUNC_PROTO */                                /* [2] */
3913 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
3914 		BTF_PARAM_ENC(7, 1),
3915 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
3916 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
3917 	};
3918 
3919 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3920 					     strs, sizeof(strs)));
3921 }
3922 
3923 static int probe_kern_btf_datasec(void)
3924 {
3925 	static const char strs[] = "\0x\0.data";
3926 	/* static int a; */
3927 	__u32 types[] = {
3928 		/* int */
3929 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
3930 		/* VAR x */                                     /* [2] */
3931 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
3932 		BTF_VAR_STATIC,
3933 		/* DATASEC val */                               /* [3] */
3934 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
3935 		BTF_VAR_SECINFO_ENC(2, 0, 4),
3936 	};
3937 
3938 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3939 					     strs, sizeof(strs)));
3940 }
3941 
3942 static int probe_kern_btf_float(void)
3943 {
3944 	static const char strs[] = "\0float";
3945 	__u32 types[] = {
3946 		/* float */
3947 		BTF_TYPE_FLOAT_ENC(1, 4),
3948 	};
3949 
3950 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
3951 					     strs, sizeof(strs)));
3952 }
3953 
3954 static int probe_kern_array_mmap(void)
3955 {
3956 	struct bpf_create_map_attr attr = {
3957 		.map_type = BPF_MAP_TYPE_ARRAY,
3958 		.map_flags = BPF_F_MMAPABLE,
3959 		.key_size = sizeof(int),
3960 		.value_size = sizeof(int),
3961 		.max_entries = 1,
3962 	};
3963 
3964 	return probe_fd(bpf_create_map_xattr(&attr));
3965 }
3966 
3967 static int probe_kern_exp_attach_type(void)
3968 {
3969 	struct bpf_load_program_attr attr;
3970 	struct bpf_insn insns[] = {
3971 		BPF_MOV64_IMM(BPF_REG_0, 0),
3972 		BPF_EXIT_INSN(),
3973 	};
3974 
3975 	memset(&attr, 0, sizeof(attr));
3976 	/* use any valid combination of program type and (optional)
3977 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
3978 	 * to see if kernel supports expected_attach_type field for
3979 	 * BPF_PROG_LOAD command
3980 	 */
3981 	attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
3982 	attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
3983 	attr.insns = insns;
3984 	attr.insns_cnt = ARRAY_SIZE(insns);
3985 	attr.license = "GPL";
3986 
3987 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
3988 }
3989 
3990 static int probe_kern_probe_read_kernel(void)
3991 {
3992 	struct bpf_load_program_attr attr;
3993 	struct bpf_insn insns[] = {
3994 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
3995 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
3996 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
3997 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
3998 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
3999 		BPF_EXIT_INSN(),
4000 	};
4001 
4002 	memset(&attr, 0, sizeof(attr));
4003 	attr.prog_type = BPF_PROG_TYPE_KPROBE;
4004 	attr.insns = insns;
4005 	attr.insns_cnt = ARRAY_SIZE(insns);
4006 	attr.license = "GPL";
4007 
4008 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
4009 }
4010 
4011 static int probe_prog_bind_map(void)
4012 {
4013 	struct bpf_load_program_attr prg_attr;
4014 	struct bpf_create_map_attr map_attr;
4015 	char *cp, errmsg[STRERR_BUFSIZE];
4016 	struct bpf_insn insns[] = {
4017 		BPF_MOV64_IMM(BPF_REG_0, 0),
4018 		BPF_EXIT_INSN(),
4019 	};
4020 	int ret, map, prog;
4021 
4022 	memset(&map_attr, 0, sizeof(map_attr));
4023 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
4024 	map_attr.key_size = sizeof(int);
4025 	map_attr.value_size = 32;
4026 	map_attr.max_entries = 1;
4027 
4028 	map = bpf_create_map_xattr(&map_attr);
4029 	if (map < 0) {
4030 		ret = -errno;
4031 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4032 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4033 			__func__, cp, -ret);
4034 		return ret;
4035 	}
4036 
4037 	memset(&prg_attr, 0, sizeof(prg_attr));
4038 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4039 	prg_attr.insns = insns;
4040 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
4041 	prg_attr.license = "GPL";
4042 
4043 	prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
4044 	if (prog < 0) {
4045 		close(map);
4046 		return 0;
4047 	}
4048 
4049 	ret = bpf_prog_bind_map(prog, map, NULL);
4050 
4051 	close(map);
4052 	close(prog);
4053 
4054 	return ret >= 0;
4055 }
4056 
4057 static int probe_module_btf(void)
4058 {
4059 	static const char strs[] = "\0int";
4060 	__u32 types[] = {
4061 		/* int */
4062 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4063 	};
4064 	struct bpf_btf_info info;
4065 	__u32 len = sizeof(info);
4066 	char name[16];
4067 	int fd, err;
4068 
4069 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4070 	if (fd < 0)
4071 		return 0; /* BTF not supported at all */
4072 
4073 	memset(&info, 0, sizeof(info));
4074 	info.name = ptr_to_u64(name);
4075 	info.name_len = sizeof(name);
4076 
4077 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4078 	 * kernel's module BTF support coincides with support for
4079 	 * name/name_len fields in struct bpf_btf_info.
4080 	 */
4081 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4082 	close(fd);
4083 	return !err;
4084 }
4085 
4086 enum kern_feature_result {
4087 	FEAT_UNKNOWN = 0,
4088 	FEAT_SUPPORTED = 1,
4089 	FEAT_MISSING = 2,
4090 };
4091 
4092 typedef int (*feature_probe_fn)(void);
4093 
4094 static struct kern_feature_desc {
4095 	const char *desc;
4096 	feature_probe_fn probe;
4097 	enum kern_feature_result res;
4098 } feature_probes[__FEAT_CNT] = {
4099 	[FEAT_PROG_NAME] = {
4100 		"BPF program name", probe_kern_prog_name,
4101 	},
4102 	[FEAT_GLOBAL_DATA] = {
4103 		"global variables", probe_kern_global_data,
4104 	},
4105 	[FEAT_BTF] = {
4106 		"minimal BTF", probe_kern_btf,
4107 	},
4108 	[FEAT_BTF_FUNC] = {
4109 		"BTF functions", probe_kern_btf_func,
4110 	},
4111 	[FEAT_BTF_GLOBAL_FUNC] = {
4112 		"BTF global function", probe_kern_btf_func_global,
4113 	},
4114 	[FEAT_BTF_DATASEC] = {
4115 		"BTF data section and variable", probe_kern_btf_datasec,
4116 	},
4117 	[FEAT_ARRAY_MMAP] = {
4118 		"ARRAY map mmap()", probe_kern_array_mmap,
4119 	},
4120 	[FEAT_EXP_ATTACH_TYPE] = {
4121 		"BPF_PROG_LOAD expected_attach_type attribute",
4122 		probe_kern_exp_attach_type,
4123 	},
4124 	[FEAT_PROBE_READ_KERN] = {
4125 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4126 	},
4127 	[FEAT_PROG_BIND_MAP] = {
4128 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4129 	},
4130 	[FEAT_MODULE_BTF] = {
4131 		"module BTF support", probe_module_btf,
4132 	},
4133 	[FEAT_BTF_FLOAT] = {
4134 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4135 	},
4136 };
4137 
4138 static bool kernel_supports(enum kern_feature_id feat_id)
4139 {
4140 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4141 	int ret;
4142 
4143 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4144 		ret = feat->probe();
4145 		if (ret > 0) {
4146 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4147 		} else if (ret == 0) {
4148 			WRITE_ONCE(feat->res, FEAT_MISSING);
4149 		} else {
4150 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4151 			WRITE_ONCE(feat->res, FEAT_MISSING);
4152 		}
4153 	}
4154 
4155 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4156 }
4157 
4158 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4159 {
4160 	struct bpf_map_info map_info = {};
4161 	char msg[STRERR_BUFSIZE];
4162 	__u32 map_info_len;
4163 
4164 	map_info_len = sizeof(map_info);
4165 
4166 	if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) {
4167 		pr_warn("failed to get map info for map FD %d: %s\n",
4168 			map_fd, libbpf_strerror_r(errno, msg, sizeof(msg)));
4169 		return false;
4170 	}
4171 
4172 	return (map_info.type == map->def.type &&
4173 		map_info.key_size == map->def.key_size &&
4174 		map_info.value_size == map->def.value_size &&
4175 		map_info.max_entries == map->def.max_entries &&
4176 		map_info.map_flags == map->def.map_flags);
4177 }
4178 
4179 static int
4180 bpf_object__reuse_map(struct bpf_map *map)
4181 {
4182 	char *cp, errmsg[STRERR_BUFSIZE];
4183 	int err, pin_fd;
4184 
4185 	pin_fd = bpf_obj_get(map->pin_path);
4186 	if (pin_fd < 0) {
4187 		err = -errno;
4188 		if (err == -ENOENT) {
4189 			pr_debug("found no pinned map to reuse at '%s'\n",
4190 				 map->pin_path);
4191 			return 0;
4192 		}
4193 
4194 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4195 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4196 			map->pin_path, cp);
4197 		return err;
4198 	}
4199 
4200 	if (!map_is_reuse_compat(map, pin_fd)) {
4201 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4202 			map->pin_path);
4203 		close(pin_fd);
4204 		return -EINVAL;
4205 	}
4206 
4207 	err = bpf_map__reuse_fd(map, pin_fd);
4208 	if (err) {
4209 		close(pin_fd);
4210 		return err;
4211 	}
4212 	map->pinned = true;
4213 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4214 
4215 	return 0;
4216 }
4217 
4218 static int
4219 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4220 {
4221 	enum libbpf_map_type map_type = map->libbpf_type;
4222 	char *cp, errmsg[STRERR_BUFSIZE];
4223 	int err, zero = 0;
4224 
4225 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4226 	if (err) {
4227 		err = -errno;
4228 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4229 		pr_warn("Error setting initial map(%s) contents: %s\n",
4230 			map->name, cp);
4231 		return err;
4232 	}
4233 
4234 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4235 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4236 		err = bpf_map_freeze(map->fd);
4237 		if (err) {
4238 			err = -errno;
4239 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4240 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4241 				map->name, cp);
4242 			return err;
4243 		}
4244 	}
4245 	return 0;
4246 }
4247 
4248 static void bpf_map__destroy(struct bpf_map *map);
4249 
4250 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4251 {
4252 	struct bpf_create_map_attr create_attr;
4253 	struct bpf_map_def *def = &map->def;
4254 
4255 	memset(&create_attr, 0, sizeof(create_attr));
4256 
4257 	if (kernel_supports(FEAT_PROG_NAME))
4258 		create_attr.name = map->name;
4259 	create_attr.map_ifindex = map->map_ifindex;
4260 	create_attr.map_type = def->type;
4261 	create_attr.map_flags = def->map_flags;
4262 	create_attr.key_size = def->key_size;
4263 	create_attr.value_size = def->value_size;
4264 	create_attr.numa_node = map->numa_node;
4265 
4266 	if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4267 		int nr_cpus;
4268 
4269 		nr_cpus = libbpf_num_possible_cpus();
4270 		if (nr_cpus < 0) {
4271 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4272 				map->name, nr_cpus);
4273 			return nr_cpus;
4274 		}
4275 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4276 		create_attr.max_entries = nr_cpus;
4277 	} else {
4278 		create_attr.max_entries = def->max_entries;
4279 	}
4280 
4281 	if (bpf_map__is_struct_ops(map))
4282 		create_attr.btf_vmlinux_value_type_id =
4283 			map->btf_vmlinux_value_type_id;
4284 
4285 	create_attr.btf_fd = 0;
4286 	create_attr.btf_key_type_id = 0;
4287 	create_attr.btf_value_type_id = 0;
4288 	if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4289 		create_attr.btf_fd = btf__fd(obj->btf);
4290 		create_attr.btf_key_type_id = map->btf_key_type_id;
4291 		create_attr.btf_value_type_id = map->btf_value_type_id;
4292 	}
4293 
4294 	if (bpf_map_type__is_map_in_map(def->type)) {
4295 		if (map->inner_map) {
4296 			int err;
4297 
4298 			err = bpf_object__create_map(obj, map->inner_map);
4299 			if (err) {
4300 				pr_warn("map '%s': failed to create inner map: %d\n",
4301 					map->name, err);
4302 				return err;
4303 			}
4304 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4305 		}
4306 		if (map->inner_map_fd >= 0)
4307 			create_attr.inner_map_fd = map->inner_map_fd;
4308 	}
4309 
4310 	map->fd = bpf_create_map_xattr(&create_attr);
4311 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4312 			    create_attr.btf_value_type_id)) {
4313 		char *cp, errmsg[STRERR_BUFSIZE];
4314 		int err = -errno;
4315 
4316 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4317 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4318 			map->name, cp, err);
4319 		create_attr.btf_fd = 0;
4320 		create_attr.btf_key_type_id = 0;
4321 		create_attr.btf_value_type_id = 0;
4322 		map->btf_key_type_id = 0;
4323 		map->btf_value_type_id = 0;
4324 		map->fd = bpf_create_map_xattr(&create_attr);
4325 	}
4326 
4327 	if (map->fd < 0)
4328 		return -errno;
4329 
4330 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4331 		bpf_map__destroy(map->inner_map);
4332 		zfree(&map->inner_map);
4333 	}
4334 
4335 	return 0;
4336 }
4337 
4338 static int init_map_slots(struct bpf_map *map)
4339 {
4340 	const struct bpf_map *targ_map;
4341 	unsigned int i;
4342 	int fd, err;
4343 
4344 	for (i = 0; i < map->init_slots_sz; i++) {
4345 		if (!map->init_slots[i])
4346 			continue;
4347 
4348 		targ_map = map->init_slots[i];
4349 		fd = bpf_map__fd(targ_map);
4350 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4351 		if (err) {
4352 			err = -errno;
4353 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4354 				map->name, i, targ_map->name,
4355 				fd, err);
4356 			return err;
4357 		}
4358 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4359 			 map->name, i, targ_map->name, fd);
4360 	}
4361 
4362 	zfree(&map->init_slots);
4363 	map->init_slots_sz = 0;
4364 
4365 	return 0;
4366 }
4367 
4368 static int
4369 bpf_object__create_maps(struct bpf_object *obj)
4370 {
4371 	struct bpf_map *map;
4372 	char *cp, errmsg[STRERR_BUFSIZE];
4373 	unsigned int i, j;
4374 	int err;
4375 
4376 	for (i = 0; i < obj->nr_maps; i++) {
4377 		map = &obj->maps[i];
4378 
4379 		if (map->pin_path) {
4380 			err = bpf_object__reuse_map(map);
4381 			if (err) {
4382 				pr_warn("map '%s': error reusing pinned map\n",
4383 					map->name);
4384 				goto err_out;
4385 			}
4386 		}
4387 
4388 		if (map->fd >= 0) {
4389 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4390 				 map->name, map->fd);
4391 		} else {
4392 			err = bpf_object__create_map(obj, map);
4393 			if (err)
4394 				goto err_out;
4395 
4396 			pr_debug("map '%s': created successfully, fd=%d\n",
4397 				 map->name, map->fd);
4398 
4399 			if (bpf_map__is_internal(map)) {
4400 				err = bpf_object__populate_internal_map(obj, map);
4401 				if (err < 0) {
4402 					zclose(map->fd);
4403 					goto err_out;
4404 				}
4405 			}
4406 
4407 			if (map->init_slots_sz) {
4408 				err = init_map_slots(map);
4409 				if (err < 0) {
4410 					zclose(map->fd);
4411 					goto err_out;
4412 				}
4413 			}
4414 		}
4415 
4416 		if (map->pin_path && !map->pinned) {
4417 			err = bpf_map__pin(map, NULL);
4418 			if (err) {
4419 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4420 					map->name, map->pin_path, err);
4421 				zclose(map->fd);
4422 				goto err_out;
4423 			}
4424 		}
4425 	}
4426 
4427 	return 0;
4428 
4429 err_out:
4430 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4431 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4432 	pr_perm_msg(err);
4433 	for (j = 0; j < i; j++)
4434 		zclose(obj->maps[j].fd);
4435 	return err;
4436 }
4437 
4438 #define BPF_CORE_SPEC_MAX_LEN 64
4439 
4440 /* represents BPF CO-RE field or array element accessor */
4441 struct bpf_core_accessor {
4442 	__u32 type_id;		/* struct/union type or array element type */
4443 	__u32 idx;		/* field index or array index */
4444 	const char *name;	/* field name or NULL for array accessor */
4445 };
4446 
4447 struct bpf_core_spec {
4448 	const struct btf *btf;
4449 	/* high-level spec: named fields and array indices only */
4450 	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4451 	/* original unresolved (no skip_mods_or_typedefs) root type ID */
4452 	__u32 root_type_id;
4453 	/* CO-RE relocation kind */
4454 	enum bpf_core_relo_kind relo_kind;
4455 	/* high-level spec length */
4456 	int len;
4457 	/* raw, low-level spec: 1-to-1 with accessor spec string */
4458 	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4459 	/* raw spec length */
4460 	int raw_len;
4461 	/* field bit offset represented by spec */
4462 	__u32 bit_offset;
4463 };
4464 
4465 static bool str_is_empty(const char *s)
4466 {
4467 	return !s || !s[0];
4468 }
4469 
4470 static bool is_flex_arr(const struct btf *btf,
4471 			const struct bpf_core_accessor *acc,
4472 			const struct btf_array *arr)
4473 {
4474 	const struct btf_type *t;
4475 
4476 	/* not a flexible array, if not inside a struct or has non-zero size */
4477 	if (!acc->name || arr->nelems > 0)
4478 		return false;
4479 
4480 	/* has to be the last member of enclosing struct */
4481 	t = btf__type_by_id(btf, acc->type_id);
4482 	return acc->idx == btf_vlen(t) - 1;
4483 }
4484 
4485 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4486 {
4487 	switch (kind) {
4488 	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4489 	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4490 	case BPF_FIELD_EXISTS: return "field_exists";
4491 	case BPF_FIELD_SIGNED: return "signed";
4492 	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4493 	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4494 	case BPF_TYPE_ID_LOCAL: return "local_type_id";
4495 	case BPF_TYPE_ID_TARGET: return "target_type_id";
4496 	case BPF_TYPE_EXISTS: return "type_exists";
4497 	case BPF_TYPE_SIZE: return "type_size";
4498 	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4499 	case BPF_ENUMVAL_VALUE: return "enumval_value";
4500 	default: return "unknown";
4501 	}
4502 }
4503 
4504 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4505 {
4506 	switch (kind) {
4507 	case BPF_FIELD_BYTE_OFFSET:
4508 	case BPF_FIELD_BYTE_SIZE:
4509 	case BPF_FIELD_EXISTS:
4510 	case BPF_FIELD_SIGNED:
4511 	case BPF_FIELD_LSHIFT_U64:
4512 	case BPF_FIELD_RSHIFT_U64:
4513 		return true;
4514 	default:
4515 		return false;
4516 	}
4517 }
4518 
4519 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4520 {
4521 	switch (kind) {
4522 	case BPF_TYPE_ID_LOCAL:
4523 	case BPF_TYPE_ID_TARGET:
4524 	case BPF_TYPE_EXISTS:
4525 	case BPF_TYPE_SIZE:
4526 		return true;
4527 	default:
4528 		return false;
4529 	}
4530 }
4531 
4532 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4533 {
4534 	switch (kind) {
4535 	case BPF_ENUMVAL_EXISTS:
4536 	case BPF_ENUMVAL_VALUE:
4537 		return true;
4538 	default:
4539 		return false;
4540 	}
4541 }
4542 
4543 /*
4544  * Turn bpf_core_relo into a low- and high-level spec representation,
4545  * validating correctness along the way, as well as calculating resulting
4546  * field bit offset, specified by accessor string. Low-level spec captures
4547  * every single level of nestedness, including traversing anonymous
4548  * struct/union members. High-level one only captures semantically meaningful
4549  * "turning points": named fields and array indicies.
4550  * E.g., for this case:
4551  *
4552  *   struct sample {
4553  *       int __unimportant;
4554  *       struct {
4555  *           int __1;
4556  *           int __2;
4557  *           int a[7];
4558  *       };
4559  *   };
4560  *
4561  *   struct sample *s = ...;
4562  *
4563  *   int x = &s->a[3]; // access string = '0:1:2:3'
4564  *
4565  * Low-level spec has 1:1 mapping with each element of access string (it's
4566  * just a parsed access string representation): [0, 1, 2, 3].
4567  *
4568  * High-level spec will capture only 3 points:
4569  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4570  *   - field 'a' access (corresponds to '2' in low-level spec);
4571  *   - array element #3 access (corresponds to '3' in low-level spec).
4572  *
4573  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4574  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4575  * spec and raw_spec are kept empty.
4576  *
4577  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4578  * string to specify enumerator's value index that need to be relocated.
4579  */
4580 static int bpf_core_parse_spec(const struct btf *btf,
4581 			       __u32 type_id,
4582 			       const char *spec_str,
4583 			       enum bpf_core_relo_kind relo_kind,
4584 			       struct bpf_core_spec *spec)
4585 {
4586 	int access_idx, parsed_len, i;
4587 	struct bpf_core_accessor *acc;
4588 	const struct btf_type *t;
4589 	const char *name;
4590 	__u32 id;
4591 	__s64 sz;
4592 
4593 	if (str_is_empty(spec_str) || *spec_str == ':')
4594 		return -EINVAL;
4595 
4596 	memset(spec, 0, sizeof(*spec));
4597 	spec->btf = btf;
4598 	spec->root_type_id = type_id;
4599 	spec->relo_kind = relo_kind;
4600 
4601 	/* type-based relocations don't have a field access string */
4602 	if (core_relo_is_type_based(relo_kind)) {
4603 		if (strcmp(spec_str, "0"))
4604 			return -EINVAL;
4605 		return 0;
4606 	}
4607 
4608 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4609 	while (*spec_str) {
4610 		if (*spec_str == ':')
4611 			++spec_str;
4612 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4613 			return -EINVAL;
4614 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4615 			return -E2BIG;
4616 		spec_str += parsed_len;
4617 		spec->raw_spec[spec->raw_len++] = access_idx;
4618 	}
4619 
4620 	if (spec->raw_len == 0)
4621 		return -EINVAL;
4622 
4623 	t = skip_mods_and_typedefs(btf, type_id, &id);
4624 	if (!t)
4625 		return -EINVAL;
4626 
4627 	access_idx = spec->raw_spec[0];
4628 	acc = &spec->spec[0];
4629 	acc->type_id = id;
4630 	acc->idx = access_idx;
4631 	spec->len++;
4632 
4633 	if (core_relo_is_enumval_based(relo_kind)) {
4634 		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4635 			return -EINVAL;
4636 
4637 		/* record enumerator name in a first accessor */
4638 		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4639 		return 0;
4640 	}
4641 
4642 	if (!core_relo_is_field_based(relo_kind))
4643 		return -EINVAL;
4644 
4645 	sz = btf__resolve_size(btf, id);
4646 	if (sz < 0)
4647 		return sz;
4648 	spec->bit_offset = access_idx * sz * 8;
4649 
4650 	for (i = 1; i < spec->raw_len; i++) {
4651 		t = skip_mods_and_typedefs(btf, id, &id);
4652 		if (!t)
4653 			return -EINVAL;
4654 
4655 		access_idx = spec->raw_spec[i];
4656 		acc = &spec->spec[spec->len];
4657 
4658 		if (btf_is_composite(t)) {
4659 			const struct btf_member *m;
4660 			__u32 bit_offset;
4661 
4662 			if (access_idx >= btf_vlen(t))
4663 				return -EINVAL;
4664 
4665 			bit_offset = btf_member_bit_offset(t, access_idx);
4666 			spec->bit_offset += bit_offset;
4667 
4668 			m = btf_members(t) + access_idx;
4669 			if (m->name_off) {
4670 				name = btf__name_by_offset(btf, m->name_off);
4671 				if (str_is_empty(name))
4672 					return -EINVAL;
4673 
4674 				acc->type_id = id;
4675 				acc->idx = access_idx;
4676 				acc->name = name;
4677 				spec->len++;
4678 			}
4679 
4680 			id = m->type;
4681 		} else if (btf_is_array(t)) {
4682 			const struct btf_array *a = btf_array(t);
4683 			bool flex;
4684 
4685 			t = skip_mods_and_typedefs(btf, a->type, &id);
4686 			if (!t)
4687 				return -EINVAL;
4688 
4689 			flex = is_flex_arr(btf, acc - 1, a);
4690 			if (!flex && access_idx >= a->nelems)
4691 				return -EINVAL;
4692 
4693 			spec->spec[spec->len].type_id = id;
4694 			spec->spec[spec->len].idx = access_idx;
4695 			spec->len++;
4696 
4697 			sz = btf__resolve_size(btf, id);
4698 			if (sz < 0)
4699 				return sz;
4700 			spec->bit_offset += access_idx * sz * 8;
4701 		} else {
4702 			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4703 				type_id, spec_str, i, id, btf_kind_str(t));
4704 			return -EINVAL;
4705 		}
4706 	}
4707 
4708 	return 0;
4709 }
4710 
4711 static bool bpf_core_is_flavor_sep(const char *s)
4712 {
4713 	/* check X___Y name pattern, where X and Y are not underscores */
4714 	return s[0] != '_' &&				      /* X */
4715 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4716 	       s[4] != '_';				      /* Y */
4717 }
4718 
4719 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4720  * before last triple underscore. Struct name part after last triple
4721  * underscore is ignored by BPF CO-RE relocation during relocation matching.
4722  */
4723 static size_t bpf_core_essential_name_len(const char *name)
4724 {
4725 	size_t n = strlen(name);
4726 	int i;
4727 
4728 	for (i = n - 5; i >= 0; i--) {
4729 		if (bpf_core_is_flavor_sep(name + i))
4730 			return i + 1;
4731 	}
4732 	return n;
4733 }
4734 
4735 struct core_cand
4736 {
4737 	const struct btf *btf;
4738 	const struct btf_type *t;
4739 	const char *name;
4740 	__u32 id;
4741 };
4742 
4743 /* dynamically sized list of type IDs and its associated struct btf */
4744 struct core_cand_list {
4745 	struct core_cand *cands;
4746 	int len;
4747 };
4748 
4749 static void bpf_core_free_cands(struct core_cand_list *cands)
4750 {
4751 	free(cands->cands);
4752 	free(cands);
4753 }
4754 
4755 static int bpf_core_add_cands(struct core_cand *local_cand,
4756 			      size_t local_essent_len,
4757 			      const struct btf *targ_btf,
4758 			      const char *targ_btf_name,
4759 			      int targ_start_id,
4760 			      struct core_cand_list *cands)
4761 {
4762 	struct core_cand *new_cands, *cand;
4763 	const struct btf_type *t;
4764 	const char *targ_name;
4765 	size_t targ_essent_len;
4766 	int n, i;
4767 
4768 	n = btf__get_nr_types(targ_btf);
4769 	for (i = targ_start_id; i <= n; i++) {
4770 		t = btf__type_by_id(targ_btf, i);
4771 		if (btf_kind(t) != btf_kind(local_cand->t))
4772 			continue;
4773 
4774 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
4775 		if (str_is_empty(targ_name))
4776 			continue;
4777 
4778 		targ_essent_len = bpf_core_essential_name_len(targ_name);
4779 		if (targ_essent_len != local_essent_len)
4780 			continue;
4781 
4782 		if (strncmp(local_cand->name, targ_name, local_essent_len) != 0)
4783 			continue;
4784 
4785 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
4786 			 local_cand->id, btf_kind_str(local_cand->t),
4787 			 local_cand->name, i, btf_kind_str(t), targ_name,
4788 			 targ_btf_name);
4789 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
4790 					      sizeof(*cands->cands));
4791 		if (!new_cands)
4792 			return -ENOMEM;
4793 
4794 		cand = &new_cands[cands->len];
4795 		cand->btf = targ_btf;
4796 		cand->t = t;
4797 		cand->name = targ_name;
4798 		cand->id = i;
4799 
4800 		cands->cands = new_cands;
4801 		cands->len++;
4802 	}
4803 	return 0;
4804 }
4805 
4806 static int load_module_btfs(struct bpf_object *obj)
4807 {
4808 	struct bpf_btf_info info;
4809 	struct module_btf *mod_btf;
4810 	struct btf *btf;
4811 	char name[64];
4812 	__u32 id = 0, len;
4813 	int err, fd;
4814 
4815 	if (obj->btf_modules_loaded)
4816 		return 0;
4817 
4818 	/* don't do this again, even if we find no module BTFs */
4819 	obj->btf_modules_loaded = true;
4820 
4821 	/* kernel too old to support module BTFs */
4822 	if (!kernel_supports(FEAT_MODULE_BTF))
4823 		return 0;
4824 
4825 	while (true) {
4826 		err = bpf_btf_get_next_id(id, &id);
4827 		if (err && errno == ENOENT)
4828 			return 0;
4829 		if (err) {
4830 			err = -errno;
4831 			pr_warn("failed to iterate BTF objects: %d\n", err);
4832 			return err;
4833 		}
4834 
4835 		fd = bpf_btf_get_fd_by_id(id);
4836 		if (fd < 0) {
4837 			if (errno == ENOENT)
4838 				continue; /* expected race: BTF was unloaded */
4839 			err = -errno;
4840 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
4841 			return err;
4842 		}
4843 
4844 		len = sizeof(info);
4845 		memset(&info, 0, sizeof(info));
4846 		info.name = ptr_to_u64(name);
4847 		info.name_len = sizeof(name);
4848 
4849 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
4850 		if (err) {
4851 			err = -errno;
4852 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
4853 			goto err_out;
4854 		}
4855 
4856 		/* ignore non-module BTFs */
4857 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
4858 			close(fd);
4859 			continue;
4860 		}
4861 
4862 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
4863 		if (IS_ERR(btf)) {
4864 			pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n",
4865 				name, id, PTR_ERR(btf));
4866 			err = PTR_ERR(btf);
4867 			goto err_out;
4868 		}
4869 
4870 		err = btf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
4871 				     sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
4872 		if (err)
4873 			goto err_out;
4874 
4875 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
4876 
4877 		mod_btf->btf = btf;
4878 		mod_btf->id = id;
4879 		mod_btf->fd = fd;
4880 		mod_btf->name = strdup(name);
4881 		if (!mod_btf->name) {
4882 			err = -ENOMEM;
4883 			goto err_out;
4884 		}
4885 		continue;
4886 
4887 err_out:
4888 		close(fd);
4889 		return err;
4890 	}
4891 
4892 	return 0;
4893 }
4894 
4895 static struct core_cand_list *
4896 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
4897 {
4898 	struct core_cand local_cand = {};
4899 	struct core_cand_list *cands;
4900 	const struct btf *main_btf;
4901 	size_t local_essent_len;
4902 	int err, i;
4903 
4904 	local_cand.btf = local_btf;
4905 	local_cand.t = btf__type_by_id(local_btf, local_type_id);
4906 	if (!local_cand.t)
4907 		return ERR_PTR(-EINVAL);
4908 
4909 	local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off);
4910 	if (str_is_empty(local_cand.name))
4911 		return ERR_PTR(-EINVAL);
4912 	local_essent_len = bpf_core_essential_name_len(local_cand.name);
4913 
4914 	cands = calloc(1, sizeof(*cands));
4915 	if (!cands)
4916 		return ERR_PTR(-ENOMEM);
4917 
4918 	/* Attempt to find target candidates in vmlinux BTF first */
4919 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
4920 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
4921 	if (err)
4922 		goto err_out;
4923 
4924 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
4925 	if (cands->len)
4926 		return cands;
4927 
4928 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
4929 	if (obj->btf_vmlinux_override)
4930 		return cands;
4931 
4932 	/* now look through module BTFs, trying to still find candidates */
4933 	err = load_module_btfs(obj);
4934 	if (err)
4935 		goto err_out;
4936 
4937 	for (i = 0; i < obj->btf_module_cnt; i++) {
4938 		err = bpf_core_add_cands(&local_cand, local_essent_len,
4939 					 obj->btf_modules[i].btf,
4940 					 obj->btf_modules[i].name,
4941 					 btf__get_nr_types(obj->btf_vmlinux) + 1,
4942 					 cands);
4943 		if (err)
4944 			goto err_out;
4945 	}
4946 
4947 	return cands;
4948 err_out:
4949 	bpf_core_free_cands(cands);
4950 	return ERR_PTR(err);
4951 }
4952 
4953 /* Check two types for compatibility for the purpose of field access
4954  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
4955  * are relocating semantically compatible entities:
4956  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
4957  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
4958  *   - any two PTRs are always compatible;
4959  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
4960  *     least one of enums should be anonymous;
4961  *   - for ENUMs, check sizes, names are ignored;
4962  *   - for INT, size and signedness are ignored;
4963  *   - for ARRAY, dimensionality is ignored, element types are checked for
4964  *     compatibility recursively;
4965  *   - everything else shouldn't be ever a target of relocation.
4966  * These rules are not set in stone and probably will be adjusted as we get
4967  * more experience with using BPF CO-RE relocations.
4968  */
4969 static int bpf_core_fields_are_compat(const struct btf *local_btf,
4970 				      __u32 local_id,
4971 				      const struct btf *targ_btf,
4972 				      __u32 targ_id)
4973 {
4974 	const struct btf_type *local_type, *targ_type;
4975 
4976 recur:
4977 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
4978 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
4979 	if (!local_type || !targ_type)
4980 		return -EINVAL;
4981 
4982 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
4983 		return 1;
4984 	if (btf_kind(local_type) != btf_kind(targ_type))
4985 		return 0;
4986 
4987 	switch (btf_kind(local_type)) {
4988 	case BTF_KIND_PTR:
4989 		return 1;
4990 	case BTF_KIND_FWD:
4991 	case BTF_KIND_ENUM: {
4992 		const char *local_name, *targ_name;
4993 		size_t local_len, targ_len;
4994 
4995 		local_name = btf__name_by_offset(local_btf,
4996 						 local_type->name_off);
4997 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
4998 		local_len = bpf_core_essential_name_len(local_name);
4999 		targ_len = bpf_core_essential_name_len(targ_name);
5000 		/* one of them is anonymous or both w/ same flavor-less names */
5001 		return local_len == 0 || targ_len == 0 ||
5002 		       (local_len == targ_len &&
5003 			strncmp(local_name, targ_name, local_len) == 0);
5004 	}
5005 	case BTF_KIND_INT:
5006 		/* just reject deprecated bitfield-like integers; all other
5007 		 * integers are by default compatible between each other
5008 		 */
5009 		return btf_int_offset(local_type) == 0 &&
5010 		       btf_int_offset(targ_type) == 0;
5011 	case BTF_KIND_ARRAY:
5012 		local_id = btf_array(local_type)->type;
5013 		targ_id = btf_array(targ_type)->type;
5014 		goto recur;
5015 	default:
5016 		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
5017 			btf_kind(local_type), local_id, targ_id);
5018 		return 0;
5019 	}
5020 }
5021 
5022 /*
5023  * Given single high-level named field accessor in local type, find
5024  * corresponding high-level accessor for a target type. Along the way,
5025  * maintain low-level spec for target as well. Also keep updating target
5026  * bit offset.
5027  *
5028  * Searching is performed through recursive exhaustive enumeration of all
5029  * fields of a struct/union. If there are any anonymous (embedded)
5030  * structs/unions, they are recursively searched as well. If field with
5031  * desired name is found, check compatibility between local and target types,
5032  * before returning result.
5033  *
5034  * 1 is returned, if field is found.
5035  * 0 is returned if no compatible field is found.
5036  * <0 is returned on error.
5037  */
5038 static int bpf_core_match_member(const struct btf *local_btf,
5039 				 const struct bpf_core_accessor *local_acc,
5040 				 const struct btf *targ_btf,
5041 				 __u32 targ_id,
5042 				 struct bpf_core_spec *spec,
5043 				 __u32 *next_targ_id)
5044 {
5045 	const struct btf_type *local_type, *targ_type;
5046 	const struct btf_member *local_member, *m;
5047 	const char *local_name, *targ_name;
5048 	__u32 local_id;
5049 	int i, n, found;
5050 
5051 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5052 	if (!targ_type)
5053 		return -EINVAL;
5054 	if (!btf_is_composite(targ_type))
5055 		return 0;
5056 
5057 	local_id = local_acc->type_id;
5058 	local_type = btf__type_by_id(local_btf, local_id);
5059 	local_member = btf_members(local_type) + local_acc->idx;
5060 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
5061 
5062 	n = btf_vlen(targ_type);
5063 	m = btf_members(targ_type);
5064 	for (i = 0; i < n; i++, m++) {
5065 		__u32 bit_offset;
5066 
5067 		bit_offset = btf_member_bit_offset(targ_type, i);
5068 
5069 		/* too deep struct/union/array nesting */
5070 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5071 			return -E2BIG;
5072 
5073 		/* speculate this member will be the good one */
5074 		spec->bit_offset += bit_offset;
5075 		spec->raw_spec[spec->raw_len++] = i;
5076 
5077 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
5078 		if (str_is_empty(targ_name)) {
5079 			/* embedded struct/union, we need to go deeper */
5080 			found = bpf_core_match_member(local_btf, local_acc,
5081 						      targ_btf, m->type,
5082 						      spec, next_targ_id);
5083 			if (found) /* either found or error */
5084 				return found;
5085 		} else if (strcmp(local_name, targ_name) == 0) {
5086 			/* matching named field */
5087 			struct bpf_core_accessor *targ_acc;
5088 
5089 			targ_acc = &spec->spec[spec->len++];
5090 			targ_acc->type_id = targ_id;
5091 			targ_acc->idx = i;
5092 			targ_acc->name = targ_name;
5093 
5094 			*next_targ_id = m->type;
5095 			found = bpf_core_fields_are_compat(local_btf,
5096 							   local_member->type,
5097 							   targ_btf, m->type);
5098 			if (!found)
5099 				spec->len--; /* pop accessor */
5100 			return found;
5101 		}
5102 		/* member turned out not to be what we looked for */
5103 		spec->bit_offset -= bit_offset;
5104 		spec->raw_len--;
5105 	}
5106 
5107 	return 0;
5108 }
5109 
5110 /* Check local and target types for compatibility. This check is used for
5111  * type-based CO-RE relocations and follow slightly different rules than
5112  * field-based relocations. This function assumes that root types were already
5113  * checked for name match. Beyond that initial root-level name check, names
5114  * are completely ignored. Compatibility rules are as follows:
5115  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5116  *     kind should match for local and target types (i.e., STRUCT is not
5117  *     compatible with UNION);
5118  *   - for ENUMs, the size is ignored;
5119  *   - for INT, size and signedness are ignored;
5120  *   - for ARRAY, dimensionality is ignored, element types are checked for
5121  *     compatibility recursively;
5122  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5123  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5124  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5125  *     number of input args and compatible return and argument types.
5126  * These rules are not set in stone and probably will be adjusted as we get
5127  * more experience with using BPF CO-RE relocations.
5128  */
5129 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5130 				     const struct btf *targ_btf, __u32 targ_id)
5131 {
5132 	const struct btf_type *local_type, *targ_type;
5133 	int depth = 32; /* max recursion depth */
5134 
5135 	/* caller made sure that names match (ignoring flavor suffix) */
5136 	local_type = btf__type_by_id(local_btf, local_id);
5137 	targ_type = btf__type_by_id(targ_btf, targ_id);
5138 	if (btf_kind(local_type) != btf_kind(targ_type))
5139 		return 0;
5140 
5141 recur:
5142 	depth--;
5143 	if (depth < 0)
5144 		return -EINVAL;
5145 
5146 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5147 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5148 	if (!local_type || !targ_type)
5149 		return -EINVAL;
5150 
5151 	if (btf_kind(local_type) != btf_kind(targ_type))
5152 		return 0;
5153 
5154 	switch (btf_kind(local_type)) {
5155 	case BTF_KIND_UNKN:
5156 	case BTF_KIND_STRUCT:
5157 	case BTF_KIND_UNION:
5158 	case BTF_KIND_ENUM:
5159 	case BTF_KIND_FWD:
5160 		return 1;
5161 	case BTF_KIND_INT:
5162 		/* just reject deprecated bitfield-like integers; all other
5163 		 * integers are by default compatible between each other
5164 		 */
5165 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5166 	case BTF_KIND_PTR:
5167 		local_id = local_type->type;
5168 		targ_id = targ_type->type;
5169 		goto recur;
5170 	case BTF_KIND_ARRAY:
5171 		local_id = btf_array(local_type)->type;
5172 		targ_id = btf_array(targ_type)->type;
5173 		goto recur;
5174 	case BTF_KIND_FUNC_PROTO: {
5175 		struct btf_param *local_p = btf_params(local_type);
5176 		struct btf_param *targ_p = btf_params(targ_type);
5177 		__u16 local_vlen = btf_vlen(local_type);
5178 		__u16 targ_vlen = btf_vlen(targ_type);
5179 		int i, err;
5180 
5181 		if (local_vlen != targ_vlen)
5182 			return 0;
5183 
5184 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5185 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5186 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5187 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5188 			if (err <= 0)
5189 				return err;
5190 		}
5191 
5192 		/* tail recurse for return type check */
5193 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5194 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5195 		goto recur;
5196 	}
5197 	default:
5198 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5199 			btf_kind_str(local_type), local_id, targ_id);
5200 		return 0;
5201 	}
5202 }
5203 
5204 /*
5205  * Try to match local spec to a target type and, if successful, produce full
5206  * target spec (high-level, low-level + bit offset).
5207  */
5208 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
5209 			       const struct btf *targ_btf, __u32 targ_id,
5210 			       struct bpf_core_spec *targ_spec)
5211 {
5212 	const struct btf_type *targ_type;
5213 	const struct bpf_core_accessor *local_acc;
5214 	struct bpf_core_accessor *targ_acc;
5215 	int i, sz, matched;
5216 
5217 	memset(targ_spec, 0, sizeof(*targ_spec));
5218 	targ_spec->btf = targ_btf;
5219 	targ_spec->root_type_id = targ_id;
5220 	targ_spec->relo_kind = local_spec->relo_kind;
5221 
5222 	if (core_relo_is_type_based(local_spec->relo_kind)) {
5223 		return bpf_core_types_are_compat(local_spec->btf,
5224 						 local_spec->root_type_id,
5225 						 targ_btf, targ_id);
5226 	}
5227 
5228 	local_acc = &local_spec->spec[0];
5229 	targ_acc = &targ_spec->spec[0];
5230 
5231 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5232 		size_t local_essent_len, targ_essent_len;
5233 		const struct btf_enum *e;
5234 		const char *targ_name;
5235 
5236 		/* has to resolve to an enum */
5237 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5238 		if (!btf_is_enum(targ_type))
5239 			return 0;
5240 
5241 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
5242 
5243 		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5244 			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5245 			targ_essent_len = bpf_core_essential_name_len(targ_name);
5246 			if (targ_essent_len != local_essent_len)
5247 				continue;
5248 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5249 				targ_acc->type_id = targ_id;
5250 				targ_acc->idx = i;
5251 				targ_acc->name = targ_name;
5252 				targ_spec->len++;
5253 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5254 				targ_spec->raw_len++;
5255 				return 1;
5256 			}
5257 		}
5258 		return 0;
5259 	}
5260 
5261 	if (!core_relo_is_field_based(local_spec->relo_kind))
5262 		return -EINVAL;
5263 
5264 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5265 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5266 						   &targ_id);
5267 		if (!targ_type)
5268 			return -EINVAL;
5269 
5270 		if (local_acc->name) {
5271 			matched = bpf_core_match_member(local_spec->btf,
5272 							local_acc,
5273 							targ_btf, targ_id,
5274 							targ_spec, &targ_id);
5275 			if (matched <= 0)
5276 				return matched;
5277 		} else {
5278 			/* for i=0, targ_id is already treated as array element
5279 			 * type (because it's the original struct), for others
5280 			 * we should find array element type first
5281 			 */
5282 			if (i > 0) {
5283 				const struct btf_array *a;
5284 				bool flex;
5285 
5286 				if (!btf_is_array(targ_type))
5287 					return 0;
5288 
5289 				a = btf_array(targ_type);
5290 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5291 				if (!flex && local_acc->idx >= a->nelems)
5292 					return 0;
5293 				if (!skip_mods_and_typedefs(targ_btf, a->type,
5294 							    &targ_id))
5295 					return -EINVAL;
5296 			}
5297 
5298 			/* too deep struct/union/array nesting */
5299 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5300 				return -E2BIG;
5301 
5302 			targ_acc->type_id = targ_id;
5303 			targ_acc->idx = local_acc->idx;
5304 			targ_acc->name = NULL;
5305 			targ_spec->len++;
5306 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5307 			targ_spec->raw_len++;
5308 
5309 			sz = btf__resolve_size(targ_btf, targ_id);
5310 			if (sz < 0)
5311 				return sz;
5312 			targ_spec->bit_offset += local_acc->idx * sz * 8;
5313 		}
5314 	}
5315 
5316 	return 1;
5317 }
5318 
5319 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5320 				    const struct bpf_core_relo *relo,
5321 				    const struct bpf_core_spec *spec,
5322 				    __u32 *val, __u32 *field_sz, __u32 *type_id,
5323 				    bool *validate)
5324 {
5325 	const struct bpf_core_accessor *acc;
5326 	const struct btf_type *t;
5327 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5328 	const struct btf_member *m;
5329 	const struct btf_type *mt;
5330 	bool bitfield;
5331 	__s64 sz;
5332 
5333 	*field_sz = 0;
5334 
5335 	if (relo->kind == BPF_FIELD_EXISTS) {
5336 		*val = spec ? 1 : 0;
5337 		return 0;
5338 	}
5339 
5340 	if (!spec)
5341 		return -EUCLEAN; /* request instruction poisoning */
5342 
5343 	acc = &spec->spec[spec->len - 1];
5344 	t = btf__type_by_id(spec->btf, acc->type_id);
5345 
5346 	/* a[n] accessor needs special handling */
5347 	if (!acc->name) {
5348 		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5349 			*val = spec->bit_offset / 8;
5350 			/* remember field size for load/store mem size */
5351 			sz = btf__resolve_size(spec->btf, acc->type_id);
5352 			if (sz < 0)
5353 				return -EINVAL;
5354 			*field_sz = sz;
5355 			*type_id = acc->type_id;
5356 		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5357 			sz = btf__resolve_size(spec->btf, acc->type_id);
5358 			if (sz < 0)
5359 				return -EINVAL;
5360 			*val = sz;
5361 		} else {
5362 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5363 				prog->name, relo->kind, relo->insn_off / 8);
5364 			return -EINVAL;
5365 		}
5366 		if (validate)
5367 			*validate = true;
5368 		return 0;
5369 	}
5370 
5371 	m = btf_members(t) + acc->idx;
5372 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5373 	bit_off = spec->bit_offset;
5374 	bit_sz = btf_member_bitfield_size(t, acc->idx);
5375 
5376 	bitfield = bit_sz > 0;
5377 	if (bitfield) {
5378 		byte_sz = mt->size;
5379 		byte_off = bit_off / 8 / byte_sz * byte_sz;
5380 		/* figure out smallest int size necessary for bitfield load */
5381 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5382 			if (byte_sz >= 8) {
5383 				/* bitfield can't be read with 64-bit read */
5384 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5385 					prog->name, relo->kind, relo->insn_off / 8);
5386 				return -E2BIG;
5387 			}
5388 			byte_sz *= 2;
5389 			byte_off = bit_off / 8 / byte_sz * byte_sz;
5390 		}
5391 	} else {
5392 		sz = btf__resolve_size(spec->btf, field_type_id);
5393 		if (sz < 0)
5394 			return -EINVAL;
5395 		byte_sz = sz;
5396 		byte_off = spec->bit_offset / 8;
5397 		bit_sz = byte_sz * 8;
5398 	}
5399 
5400 	/* for bitfields, all the relocatable aspects are ambiguous and we
5401 	 * might disagree with compiler, so turn off validation of expected
5402 	 * value, except for signedness
5403 	 */
5404 	if (validate)
5405 		*validate = !bitfield;
5406 
5407 	switch (relo->kind) {
5408 	case BPF_FIELD_BYTE_OFFSET:
5409 		*val = byte_off;
5410 		if (!bitfield) {
5411 			*field_sz = byte_sz;
5412 			*type_id = field_type_id;
5413 		}
5414 		break;
5415 	case BPF_FIELD_BYTE_SIZE:
5416 		*val = byte_sz;
5417 		break;
5418 	case BPF_FIELD_SIGNED:
5419 		/* enums will be assumed unsigned */
5420 		*val = btf_is_enum(mt) ||
5421 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5422 		if (validate)
5423 			*validate = true; /* signedness is never ambiguous */
5424 		break;
5425 	case BPF_FIELD_LSHIFT_U64:
5426 #if __BYTE_ORDER == __LITTLE_ENDIAN
5427 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
5428 #else
5429 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5430 #endif
5431 		break;
5432 	case BPF_FIELD_RSHIFT_U64:
5433 		*val = 64 - bit_sz;
5434 		if (validate)
5435 			*validate = true; /* right shift is never ambiguous */
5436 		break;
5437 	case BPF_FIELD_EXISTS:
5438 	default:
5439 		return -EOPNOTSUPP;
5440 	}
5441 
5442 	return 0;
5443 }
5444 
5445 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5446 				   const struct bpf_core_spec *spec,
5447 				   __u32 *val)
5448 {
5449 	__s64 sz;
5450 
5451 	/* type-based relos return zero when target type is not found */
5452 	if (!spec) {
5453 		*val = 0;
5454 		return 0;
5455 	}
5456 
5457 	switch (relo->kind) {
5458 	case BPF_TYPE_ID_TARGET:
5459 		*val = spec->root_type_id;
5460 		break;
5461 	case BPF_TYPE_EXISTS:
5462 		*val = 1;
5463 		break;
5464 	case BPF_TYPE_SIZE:
5465 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
5466 		if (sz < 0)
5467 			return -EINVAL;
5468 		*val = sz;
5469 		break;
5470 	case BPF_TYPE_ID_LOCAL:
5471 	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5472 	default:
5473 		return -EOPNOTSUPP;
5474 	}
5475 
5476 	return 0;
5477 }
5478 
5479 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5480 				      const struct bpf_core_spec *spec,
5481 				      __u32 *val)
5482 {
5483 	const struct btf_type *t;
5484 	const struct btf_enum *e;
5485 
5486 	switch (relo->kind) {
5487 	case BPF_ENUMVAL_EXISTS:
5488 		*val = spec ? 1 : 0;
5489 		break;
5490 	case BPF_ENUMVAL_VALUE:
5491 		if (!spec)
5492 			return -EUCLEAN; /* request instruction poisoning */
5493 		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5494 		e = btf_enum(t) + spec->spec[0].idx;
5495 		*val = e->val;
5496 		break;
5497 	default:
5498 		return -EOPNOTSUPP;
5499 	}
5500 
5501 	return 0;
5502 }
5503 
5504 struct bpf_core_relo_res
5505 {
5506 	/* expected value in the instruction, unless validate == false */
5507 	__u32 orig_val;
5508 	/* new value that needs to be patched up to */
5509 	__u32 new_val;
5510 	/* relocation unsuccessful, poison instruction, but don't fail load */
5511 	bool poison;
5512 	/* some relocations can't be validated against orig_val */
5513 	bool validate;
5514 	/* for field byte offset relocations or the forms:
5515 	 *     *(T *)(rX + <off>) = rY
5516 	 *     rX = *(T *)(rY + <off>),
5517 	 * we remember original and resolved field size to adjust direct
5518 	 * memory loads of pointers and integers; this is necessary for 32-bit
5519 	 * host kernel architectures, but also allows to automatically
5520 	 * relocate fields that were resized from, e.g., u32 to u64, etc.
5521 	 */
5522 	bool fail_memsz_adjust;
5523 	__u32 orig_sz;
5524 	__u32 orig_type_id;
5525 	__u32 new_sz;
5526 	__u32 new_type_id;
5527 };
5528 
5529 /* Calculate original and target relocation values, given local and target
5530  * specs and relocation kind. These values are calculated for each candidate.
5531  * If there are multiple candidates, resulting values should all be consistent
5532  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5533  * If instruction has to be poisoned, *poison will be set to true.
5534  */
5535 static int bpf_core_calc_relo(const struct bpf_program *prog,
5536 			      const struct bpf_core_relo *relo,
5537 			      int relo_idx,
5538 			      const struct bpf_core_spec *local_spec,
5539 			      const struct bpf_core_spec *targ_spec,
5540 			      struct bpf_core_relo_res *res)
5541 {
5542 	int err = -EOPNOTSUPP;
5543 
5544 	res->orig_val = 0;
5545 	res->new_val = 0;
5546 	res->poison = false;
5547 	res->validate = true;
5548 	res->fail_memsz_adjust = false;
5549 	res->orig_sz = res->new_sz = 0;
5550 	res->orig_type_id = res->new_type_id = 0;
5551 
5552 	if (core_relo_is_field_based(relo->kind)) {
5553 		err = bpf_core_calc_field_relo(prog, relo, local_spec,
5554 					       &res->orig_val, &res->orig_sz,
5555 					       &res->orig_type_id, &res->validate);
5556 		err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5557 						      &res->new_val, &res->new_sz,
5558 						      &res->new_type_id, NULL);
5559 		if (err)
5560 			goto done;
5561 		/* Validate if it's safe to adjust load/store memory size.
5562 		 * Adjustments are performed only if original and new memory
5563 		 * sizes differ.
5564 		 */
5565 		res->fail_memsz_adjust = false;
5566 		if (res->orig_sz != res->new_sz) {
5567 			const struct btf_type *orig_t, *new_t;
5568 
5569 			orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5570 			new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5571 
5572 			/* There are two use cases in which it's safe to
5573 			 * adjust load/store's mem size:
5574 			 *   - reading a 32-bit kernel pointer, while on BPF
5575 			 *   size pointers are always 64-bit; in this case
5576 			 *   it's safe to "downsize" instruction size due to
5577 			 *   pointer being treated as unsigned integer with
5578 			 *   zero-extended upper 32-bits;
5579 			 *   - reading unsigned integers, again due to
5580 			 *   zero-extension is preserving the value correctly.
5581 			 *
5582 			 * In all other cases it's incorrect to attempt to
5583 			 * load/store field because read value will be
5584 			 * incorrect, so we poison relocated instruction.
5585 			 */
5586 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5587 				goto done;
5588 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5589 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5590 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
5591 				goto done;
5592 
5593 			/* mark as invalid mem size adjustment, but this will
5594 			 * only be checked for LDX/STX/ST insns
5595 			 */
5596 			res->fail_memsz_adjust = true;
5597 		}
5598 	} else if (core_relo_is_type_based(relo->kind)) {
5599 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5600 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5601 	} else if (core_relo_is_enumval_based(relo->kind)) {
5602 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5603 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5604 	}
5605 
5606 done:
5607 	if (err == -EUCLEAN) {
5608 		/* EUCLEAN is used to signal instruction poisoning request */
5609 		res->poison = true;
5610 		err = 0;
5611 	} else if (err == -EOPNOTSUPP) {
5612 		/* EOPNOTSUPP means unknown/unsupported relocation */
5613 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5614 			prog->name, relo_idx, core_relo_kind_str(relo->kind),
5615 			relo->kind, relo->insn_off / 8);
5616 	}
5617 
5618 	return err;
5619 }
5620 
5621 /*
5622  * Turn instruction for which CO_RE relocation failed into invalid one with
5623  * distinct signature.
5624  */
5625 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5626 				 int insn_idx, struct bpf_insn *insn)
5627 {
5628 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5629 		 prog->name, relo_idx, insn_idx);
5630 	insn->code = BPF_JMP | BPF_CALL;
5631 	insn->dst_reg = 0;
5632 	insn->src_reg = 0;
5633 	insn->off = 0;
5634 	/* if this instruction is reachable (not a dead code),
5635 	 * verifier will complain with the following message:
5636 	 * invalid func unknown#195896080
5637 	 */
5638 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5639 }
5640 
5641 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5642 {
5643 	switch (BPF_SIZE(insn->code)) {
5644 	case BPF_DW: return 8;
5645 	case BPF_W: return 4;
5646 	case BPF_H: return 2;
5647 	case BPF_B: return 1;
5648 	default: return -1;
5649 	}
5650 }
5651 
5652 static int insn_bytes_to_bpf_size(__u32 sz)
5653 {
5654 	switch (sz) {
5655 	case 8: return BPF_DW;
5656 	case 4: return BPF_W;
5657 	case 2: return BPF_H;
5658 	case 1: return BPF_B;
5659 	default: return -1;
5660 	}
5661 }
5662 
5663 /*
5664  * Patch relocatable BPF instruction.
5665  *
5666  * Patched value is determined by relocation kind and target specification.
5667  * For existence relocations target spec will be NULL if field/type is not found.
5668  * Expected insn->imm value is determined using relocation kind and local
5669  * spec, and is checked before patching instruction. If actual insn->imm value
5670  * is wrong, bail out with error.
5671  *
5672  * Currently supported classes of BPF instruction are:
5673  * 1. rX = <imm> (assignment with immediate operand);
5674  * 2. rX += <imm> (arithmetic operations with immediate operand);
5675  * 3. rX = <imm64> (load with 64-bit immediate value);
5676  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5677  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5678  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5679  */
5680 static int bpf_core_patch_insn(struct bpf_program *prog,
5681 			       const struct bpf_core_relo *relo,
5682 			       int relo_idx,
5683 			       const struct bpf_core_relo_res *res)
5684 {
5685 	__u32 orig_val, new_val;
5686 	struct bpf_insn *insn;
5687 	int insn_idx;
5688 	__u8 class;
5689 
5690 	if (relo->insn_off % BPF_INSN_SZ)
5691 		return -EINVAL;
5692 	insn_idx = relo->insn_off / BPF_INSN_SZ;
5693 	/* adjust insn_idx from section frame of reference to the local
5694 	 * program's frame of reference; (sub-)program code is not yet
5695 	 * relocated, so it's enough to just subtract in-section offset
5696 	 */
5697 	insn_idx = insn_idx - prog->sec_insn_off;
5698 	insn = &prog->insns[insn_idx];
5699 	class = BPF_CLASS(insn->code);
5700 
5701 	if (res->poison) {
5702 poison:
5703 		/* poison second part of ldimm64 to avoid confusing error from
5704 		 * verifier about "unknown opcode 00"
5705 		 */
5706 		if (is_ldimm64(insn))
5707 			bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5708 		bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5709 		return 0;
5710 	}
5711 
5712 	orig_val = res->orig_val;
5713 	new_val = res->new_val;
5714 
5715 	switch (class) {
5716 	case BPF_ALU:
5717 	case BPF_ALU64:
5718 		if (BPF_SRC(insn->code) != BPF_K)
5719 			return -EINVAL;
5720 		if (res->validate && insn->imm != orig_val) {
5721 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5722 				prog->name, relo_idx,
5723 				insn_idx, insn->imm, orig_val, new_val);
5724 			return -EINVAL;
5725 		}
5726 		orig_val = insn->imm;
5727 		insn->imm = new_val;
5728 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5729 			 prog->name, relo_idx, insn_idx,
5730 			 orig_val, new_val);
5731 		break;
5732 	case BPF_LDX:
5733 	case BPF_ST:
5734 	case BPF_STX:
5735 		if (res->validate && insn->off != orig_val) {
5736 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5737 				prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5738 			return -EINVAL;
5739 		}
5740 		if (new_val > SHRT_MAX) {
5741 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5742 				prog->name, relo_idx, insn_idx, new_val);
5743 			return -ERANGE;
5744 		}
5745 		if (res->fail_memsz_adjust) {
5746 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5747 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5748 				prog->name, relo_idx, insn_idx);
5749 			goto poison;
5750 		}
5751 
5752 		orig_val = insn->off;
5753 		insn->off = new_val;
5754 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5755 			 prog->name, relo_idx, insn_idx, orig_val, new_val);
5756 
5757 		if (res->new_sz != res->orig_sz) {
5758 			int insn_bytes_sz, insn_bpf_sz;
5759 
5760 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5761 			if (insn_bytes_sz != res->orig_sz) {
5762 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5763 					prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5764 				return -EINVAL;
5765 			}
5766 
5767 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5768 			if (insn_bpf_sz < 0) {
5769 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5770 					prog->name, relo_idx, insn_idx, res->new_sz);
5771 				return -EINVAL;
5772 			}
5773 
5774 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5775 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5776 				 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5777 		}
5778 		break;
5779 	case BPF_LD: {
5780 		__u64 imm;
5781 
5782 		if (!is_ldimm64(insn) ||
5783 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
5784 		    insn_idx + 1 >= prog->insns_cnt ||
5785 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
5786 		    insn[1].src_reg != 0 || insn[1].off != 0) {
5787 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5788 				prog->name, relo_idx, insn_idx);
5789 			return -EINVAL;
5790 		}
5791 
5792 		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5793 		if (res->validate && imm != orig_val) {
5794 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5795 				prog->name, relo_idx,
5796 				insn_idx, (unsigned long long)imm,
5797 				orig_val, new_val);
5798 			return -EINVAL;
5799 		}
5800 
5801 		insn[0].imm = new_val;
5802 		insn[1].imm = 0; /* currently only 32-bit values are supported */
5803 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5804 			 prog->name, relo_idx, insn_idx,
5805 			 (unsigned long long)imm, new_val);
5806 		break;
5807 	}
5808 	default:
5809 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5810 			prog->name, relo_idx, insn_idx, insn->code,
5811 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5812 		return -EINVAL;
5813 	}
5814 
5815 	return 0;
5816 }
5817 
5818 /* Output spec definition in the format:
5819  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5820  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5821  */
5822 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5823 {
5824 	const struct btf_type *t;
5825 	const struct btf_enum *e;
5826 	const char *s;
5827 	__u32 type_id;
5828 	int i;
5829 
5830 	type_id = spec->root_type_id;
5831 	t = btf__type_by_id(spec->btf, type_id);
5832 	s = btf__name_by_offset(spec->btf, t->name_off);
5833 
5834 	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5835 
5836 	if (core_relo_is_type_based(spec->relo_kind))
5837 		return;
5838 
5839 	if (core_relo_is_enumval_based(spec->relo_kind)) {
5840 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5841 		e = btf_enum(t) + spec->raw_spec[0];
5842 		s = btf__name_by_offset(spec->btf, e->name_off);
5843 
5844 		libbpf_print(level, "::%s = %u", s, e->val);
5845 		return;
5846 	}
5847 
5848 	if (core_relo_is_field_based(spec->relo_kind)) {
5849 		for (i = 0; i < spec->len; i++) {
5850 			if (spec->spec[i].name)
5851 				libbpf_print(level, ".%s", spec->spec[i].name);
5852 			else if (i > 0 || spec->spec[i].idx > 0)
5853 				libbpf_print(level, "[%u]", spec->spec[i].idx);
5854 		}
5855 
5856 		libbpf_print(level, " (");
5857 		for (i = 0; i < spec->raw_len; i++)
5858 			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
5859 
5860 		if (spec->bit_offset % 8)
5861 			libbpf_print(level, " @ offset %u.%u)",
5862 				     spec->bit_offset / 8, spec->bit_offset % 8);
5863 		else
5864 			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
5865 		return;
5866 	}
5867 }
5868 
5869 static size_t bpf_core_hash_fn(const void *key, void *ctx)
5870 {
5871 	return (size_t)key;
5872 }
5873 
5874 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
5875 {
5876 	return k1 == k2;
5877 }
5878 
5879 static void *u32_as_hash_key(__u32 x)
5880 {
5881 	return (void *)(uintptr_t)x;
5882 }
5883 
5884 /*
5885  * CO-RE relocate single instruction.
5886  *
5887  * The outline and important points of the algorithm:
5888  * 1. For given local type, find corresponding candidate target types.
5889  *    Candidate type is a type with the same "essential" name, ignoring
5890  *    everything after last triple underscore (___). E.g., `sample`,
5891  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
5892  *    for each other. Names with triple underscore are referred to as
5893  *    "flavors" and are useful, among other things, to allow to
5894  *    specify/support incompatible variations of the same kernel struct, which
5895  *    might differ between different kernel versions and/or build
5896  *    configurations.
5897  *
5898  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
5899  *    converter, when deduplicated BTF of a kernel still contains more than
5900  *    one different types with the same name. In that case, ___2, ___3, etc
5901  *    are appended starting from second name conflict. But start flavors are
5902  *    also useful to be defined "locally", in BPF program, to extract same
5903  *    data from incompatible changes between different kernel
5904  *    versions/configurations. For instance, to handle field renames between
5905  *    kernel versions, one can use two flavors of the struct name with the
5906  *    same common name and use conditional relocations to extract that field,
5907  *    depending on target kernel version.
5908  * 2. For each candidate type, try to match local specification to this
5909  *    candidate target type. Matching involves finding corresponding
5910  *    high-level spec accessors, meaning that all named fields should match,
5911  *    as well as all array accesses should be within the actual bounds. Also,
5912  *    types should be compatible (see bpf_core_fields_are_compat for details).
5913  * 3. It is supported and expected that there might be multiple flavors
5914  *    matching the spec. As long as all the specs resolve to the same set of
5915  *    offsets across all candidates, there is no error. If there is any
5916  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
5917  *    imprefection of BTF deduplication, which can cause slight duplication of
5918  *    the same BTF type, if some directly or indirectly referenced (by
5919  *    pointer) type gets resolved to different actual types in different
5920  *    object files. If such situation occurs, deduplicated BTF will end up
5921  *    with two (or more) structurally identical types, which differ only in
5922  *    types they refer to through pointer. This should be OK in most cases and
5923  *    is not an error.
5924  * 4. Candidate types search is performed by linearly scanning through all
5925  *    types in target BTF. It is anticipated that this is overall more
5926  *    efficient memory-wise and not significantly worse (if not better)
5927  *    CPU-wise compared to prebuilding a map from all local type names to
5928  *    a list of candidate type names. It's also sped up by caching resolved
5929  *    list of matching candidates per each local "root" type ID, that has at
5930  *    least one bpf_core_relo associated with it. This list is shared
5931  *    between multiple relocations for the same type ID and is updated as some
5932  *    of the candidates are pruned due to structural incompatibility.
5933  */
5934 static int bpf_core_apply_relo(struct bpf_program *prog,
5935 			       const struct bpf_core_relo *relo,
5936 			       int relo_idx,
5937 			       const struct btf *local_btf,
5938 			       struct hashmap *cand_cache)
5939 {
5940 	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
5941 	const void *type_key = u32_as_hash_key(relo->type_id);
5942 	struct bpf_core_relo_res cand_res, targ_res;
5943 	const struct btf_type *local_type;
5944 	const char *local_name;
5945 	struct core_cand_list *cands = NULL;
5946 	__u32 local_id;
5947 	const char *spec_str;
5948 	int i, j, err;
5949 
5950 	local_id = relo->type_id;
5951 	local_type = btf__type_by_id(local_btf, local_id);
5952 	if (!local_type)
5953 		return -EINVAL;
5954 
5955 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5956 	if (!local_name)
5957 		return -EINVAL;
5958 
5959 	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
5960 	if (str_is_empty(spec_str))
5961 		return -EINVAL;
5962 
5963 	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
5964 	if (err) {
5965 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
5966 			prog->name, relo_idx, local_id, btf_kind_str(local_type),
5967 			str_is_empty(local_name) ? "<anon>" : local_name,
5968 			spec_str, err);
5969 		return -EINVAL;
5970 	}
5971 
5972 	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
5973 		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5974 	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
5975 	libbpf_print(LIBBPF_DEBUG, "\n");
5976 
5977 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
5978 	if (relo->kind == BPF_TYPE_ID_LOCAL) {
5979 		targ_res.validate = true;
5980 		targ_res.poison = false;
5981 		targ_res.orig_val = local_spec.root_type_id;
5982 		targ_res.new_val = local_spec.root_type_id;
5983 		goto patch_insn;
5984 	}
5985 
5986 	/* libbpf doesn't support candidate search for anonymous types */
5987 	if (str_is_empty(spec_str)) {
5988 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
5989 			prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
5990 		return -EOPNOTSUPP;
5991 	}
5992 
5993 	if (!hashmap__find(cand_cache, type_key, (void **)&cands)) {
5994 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5995 		if (IS_ERR(cands)) {
5996 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5997 				prog->name, relo_idx, local_id, btf_kind_str(local_type),
5998 				local_name, PTR_ERR(cands));
5999 			return PTR_ERR(cands);
6000 		}
6001 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
6002 		if (err) {
6003 			bpf_core_free_cands(cands);
6004 			return err;
6005 		}
6006 	}
6007 
6008 	for (i = 0, j = 0; i < cands->len; i++) {
6009 		err = bpf_core_spec_match(&local_spec, cands->cands[i].btf,
6010 					  cands->cands[i].id, &cand_spec);
6011 		if (err < 0) {
6012 			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
6013 				prog->name, relo_idx, i);
6014 			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
6015 			libbpf_print(LIBBPF_WARN, ": %d\n", err);
6016 			return err;
6017 		}
6018 
6019 		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
6020 			 relo_idx, err == 0 ? "non-matching" : "matching", i);
6021 		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
6022 		libbpf_print(LIBBPF_DEBUG, "\n");
6023 
6024 		if (err == 0)
6025 			continue;
6026 
6027 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
6028 		if (err)
6029 			return err;
6030 
6031 		if (j == 0) {
6032 			targ_res = cand_res;
6033 			targ_spec = cand_spec;
6034 		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
6035 			/* if there are many field relo candidates, they
6036 			 * should all resolve to the same bit offset
6037 			 */
6038 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
6039 				prog->name, relo_idx, cand_spec.bit_offset,
6040 				targ_spec.bit_offset);
6041 			return -EINVAL;
6042 		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
6043 			/* all candidates should result in the same relocation
6044 			 * decision and value, otherwise it's dangerous to
6045 			 * proceed due to ambiguity
6046 			 */
6047 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
6048 				prog->name, relo_idx,
6049 				cand_res.poison ? "failure" : "success", cand_res.new_val,
6050 				targ_res.poison ? "failure" : "success", targ_res.new_val);
6051 			return -EINVAL;
6052 		}
6053 
6054 		cands->cands[j++] = cands->cands[i];
6055 	}
6056 
6057 	/*
6058 	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
6059 	 * existence checks or kernel version/config checks, it's expected
6060 	 * that we might not find any candidates. In this case, if field
6061 	 * wasn't found in any candidate, the list of candidates shouldn't
6062 	 * change at all, we'll just handle relocating appropriately,
6063 	 * depending on relo's kind.
6064 	 */
6065 	if (j > 0)
6066 		cands->len = j;
6067 
6068 	/*
6069 	 * If no candidates were found, it might be both a programmer error,
6070 	 * as well as expected case, depending whether instruction w/
6071 	 * relocation is guarded in some way that makes it unreachable (dead
6072 	 * code) if relocation can't be resolved. This is handled in
6073 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
6074 	 * BPF helper call insn (using invalid helper ID). If that instruction
6075 	 * is indeed unreachable, then it will be ignored and eliminated by
6076 	 * verifier. If it was an error, then verifier will complain and point
6077 	 * to a specific instruction number in its log.
6078 	 */
6079 	if (j == 0) {
6080 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
6081 			 prog->name, relo_idx);
6082 
6083 		/* calculate single target relo result explicitly */
6084 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
6085 		if (err)
6086 			return err;
6087 	}
6088 
6089 patch_insn:
6090 	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
6091 	err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
6092 	if (err) {
6093 		pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n",
6094 			prog->name, relo_idx, relo->insn_off, err);
6095 		return -EINVAL;
6096 	}
6097 
6098 	return 0;
6099 }
6100 
6101 static int
6102 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
6103 {
6104 	const struct btf_ext_info_sec *sec;
6105 	const struct bpf_core_relo *rec;
6106 	const struct btf_ext_info *seg;
6107 	struct hashmap_entry *entry;
6108 	struct hashmap *cand_cache = NULL;
6109 	struct bpf_program *prog;
6110 	const char *sec_name;
6111 	int i, err = 0, insn_idx, sec_idx;
6112 
6113 	if (obj->btf_ext->core_relo_info.len == 0)
6114 		return 0;
6115 
6116 	if (targ_btf_path) {
6117 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
6118 		if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) {
6119 			err = PTR_ERR(obj->btf_vmlinux_override);
6120 			pr_warn("failed to parse target BTF: %d\n", err);
6121 			return err;
6122 		}
6123 	}
6124 
6125 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6126 	if (IS_ERR(cand_cache)) {
6127 		err = PTR_ERR(cand_cache);
6128 		goto out;
6129 	}
6130 
6131 	seg = &obj->btf_ext->core_relo_info;
6132 	for_each_btf_ext_sec(seg, sec) {
6133 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6134 		if (str_is_empty(sec_name)) {
6135 			err = -EINVAL;
6136 			goto out;
6137 		}
6138 		/* bpf_object's ELF is gone by now so it's not easy to find
6139 		 * section index by section name, but we can find *any*
6140 		 * bpf_program within desired section name and use it's
6141 		 * prog->sec_idx to do a proper search by section index and
6142 		 * instruction offset
6143 		 */
6144 		prog = NULL;
6145 		for (i = 0; i < obj->nr_programs; i++) {
6146 			prog = &obj->programs[i];
6147 			if (strcmp(prog->sec_name, sec_name) == 0)
6148 				break;
6149 		}
6150 		if (!prog) {
6151 			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
6152 			return -ENOENT;
6153 		}
6154 		sec_idx = prog->sec_idx;
6155 
6156 		pr_debug("sec '%s': found %d CO-RE relocations\n",
6157 			 sec_name, sec->num_info);
6158 
6159 		for_each_btf_ext_rec(seg, sec, i, rec) {
6160 			insn_idx = rec->insn_off / BPF_INSN_SZ;
6161 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6162 			if (!prog) {
6163 				pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
6164 					sec_name, insn_idx, i);
6165 				err = -EINVAL;
6166 				goto out;
6167 			}
6168 			/* no need to apply CO-RE relocation if the program is
6169 			 * not going to be loaded
6170 			 */
6171 			if (!prog->load)
6172 				continue;
6173 
6174 			err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache);
6175 			if (err) {
6176 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
6177 					prog->name, i, err);
6178 				goto out;
6179 			}
6180 		}
6181 	}
6182 
6183 out:
6184 	/* obj->btf_vmlinux and module BTFs are freed after object load */
6185 	btf__free(obj->btf_vmlinux_override);
6186 	obj->btf_vmlinux_override = NULL;
6187 
6188 	if (!IS_ERR_OR_NULL(cand_cache)) {
6189 		hashmap__for_each_entry(cand_cache, entry, i) {
6190 			bpf_core_free_cands(entry->value);
6191 		}
6192 		hashmap__free(cand_cache);
6193 	}
6194 	return err;
6195 }
6196 
6197 /* Relocate data references within program code:
6198  *  - map references;
6199  *  - global variable references;
6200  *  - extern references.
6201  */
6202 static int
6203 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6204 {
6205 	int i;
6206 
6207 	for (i = 0; i < prog->nr_reloc; i++) {
6208 		struct reloc_desc *relo = &prog->reloc_desc[i];
6209 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6210 		struct extern_desc *ext;
6211 
6212 		switch (relo->type) {
6213 		case RELO_LD64:
6214 			insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6215 			insn[0].imm = obj->maps[relo->map_idx].fd;
6216 			relo->processed = true;
6217 			break;
6218 		case RELO_DATA:
6219 			insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6220 			insn[1].imm = insn[0].imm + relo->sym_off;
6221 			insn[0].imm = obj->maps[relo->map_idx].fd;
6222 			relo->processed = true;
6223 			break;
6224 		case RELO_EXTERN:
6225 			ext = &obj->externs[relo->sym_off];
6226 			if (ext->type == EXT_KCFG) {
6227 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6228 				insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6229 				insn[1].imm = ext->kcfg.data_off;
6230 			} else /* EXT_KSYM */ {
6231 				if (ext->ksym.type_id) { /* typed ksyms */
6232 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6233 					insn[0].imm = ext->ksym.kernel_btf_id;
6234 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6235 				} else { /* typeless ksyms */
6236 					insn[0].imm = (__u32)ext->ksym.addr;
6237 					insn[1].imm = ext->ksym.addr >> 32;
6238 				}
6239 			}
6240 			relo->processed = true;
6241 			break;
6242 		case RELO_SUBPROG_ADDR:
6243 			insn[0].src_reg = BPF_PSEUDO_FUNC;
6244 			/* will be handled as a follow up pass */
6245 			break;
6246 		case RELO_CALL:
6247 			/* will be handled as a follow up pass */
6248 			break;
6249 		default:
6250 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6251 				prog->name, i, relo->type);
6252 			return -EINVAL;
6253 		}
6254 	}
6255 
6256 	return 0;
6257 }
6258 
6259 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6260 				    const struct bpf_program *prog,
6261 				    const struct btf_ext_info *ext_info,
6262 				    void **prog_info, __u32 *prog_rec_cnt,
6263 				    __u32 *prog_rec_sz)
6264 {
6265 	void *copy_start = NULL, *copy_end = NULL;
6266 	void *rec, *rec_end, *new_prog_info;
6267 	const struct btf_ext_info_sec *sec;
6268 	size_t old_sz, new_sz;
6269 	const char *sec_name;
6270 	int i, off_adj;
6271 
6272 	for_each_btf_ext_sec(ext_info, sec) {
6273 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6274 		if (!sec_name)
6275 			return -EINVAL;
6276 		if (strcmp(sec_name, prog->sec_name) != 0)
6277 			continue;
6278 
6279 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6280 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6281 
6282 			if (insn_off < prog->sec_insn_off)
6283 				continue;
6284 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6285 				break;
6286 
6287 			if (!copy_start)
6288 				copy_start = rec;
6289 			copy_end = rec + ext_info->rec_size;
6290 		}
6291 
6292 		if (!copy_start)
6293 			return -ENOENT;
6294 
6295 		/* append func/line info of a given (sub-)program to the main
6296 		 * program func/line info
6297 		 */
6298 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6299 		new_sz = old_sz + (copy_end - copy_start);
6300 		new_prog_info = realloc(*prog_info, new_sz);
6301 		if (!new_prog_info)
6302 			return -ENOMEM;
6303 		*prog_info = new_prog_info;
6304 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6305 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6306 
6307 		/* Kernel instruction offsets are in units of 8-byte
6308 		 * instructions, while .BTF.ext instruction offsets generated
6309 		 * by Clang are in units of bytes. So convert Clang offsets
6310 		 * into kernel offsets and adjust offset according to program
6311 		 * relocated position.
6312 		 */
6313 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6314 		rec = new_prog_info + old_sz;
6315 		rec_end = new_prog_info + new_sz;
6316 		for (; rec < rec_end; rec += ext_info->rec_size) {
6317 			__u32 *insn_off = rec;
6318 
6319 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6320 		}
6321 		*prog_rec_sz = ext_info->rec_size;
6322 		return 0;
6323 	}
6324 
6325 	return -ENOENT;
6326 }
6327 
6328 static int
6329 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6330 			      struct bpf_program *main_prog,
6331 			      const struct bpf_program *prog)
6332 {
6333 	int err;
6334 
6335 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6336 	 * supprot func/line info
6337 	 */
6338 	if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6339 		return 0;
6340 
6341 	/* only attempt func info relocation if main program's func_info
6342 	 * relocation was successful
6343 	 */
6344 	if (main_prog != prog && !main_prog->func_info)
6345 		goto line_info;
6346 
6347 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6348 				       &main_prog->func_info,
6349 				       &main_prog->func_info_cnt,
6350 				       &main_prog->func_info_rec_size);
6351 	if (err) {
6352 		if (err != -ENOENT) {
6353 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6354 				prog->name, err);
6355 			return err;
6356 		}
6357 		if (main_prog->func_info) {
6358 			/*
6359 			 * Some info has already been found but has problem
6360 			 * in the last btf_ext reloc. Must have to error out.
6361 			 */
6362 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6363 			return err;
6364 		}
6365 		/* Have problem loading the very first info. Ignore the rest. */
6366 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6367 			prog->name);
6368 	}
6369 
6370 line_info:
6371 	/* don't relocate line info if main program's relocation failed */
6372 	if (main_prog != prog && !main_prog->line_info)
6373 		return 0;
6374 
6375 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6376 				       &main_prog->line_info,
6377 				       &main_prog->line_info_cnt,
6378 				       &main_prog->line_info_rec_size);
6379 	if (err) {
6380 		if (err != -ENOENT) {
6381 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6382 				prog->name, err);
6383 			return err;
6384 		}
6385 		if (main_prog->line_info) {
6386 			/*
6387 			 * Some info has already been found but has problem
6388 			 * in the last btf_ext reloc. Must have to error out.
6389 			 */
6390 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6391 			return err;
6392 		}
6393 		/* Have problem loading the very first info. Ignore the rest. */
6394 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6395 			prog->name);
6396 	}
6397 	return 0;
6398 }
6399 
6400 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6401 {
6402 	size_t insn_idx = *(const size_t *)key;
6403 	const struct reloc_desc *relo = elem;
6404 
6405 	if (insn_idx == relo->insn_idx)
6406 		return 0;
6407 	return insn_idx < relo->insn_idx ? -1 : 1;
6408 }
6409 
6410 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6411 {
6412 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6413 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6414 }
6415 
6416 static int
6417 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6418 		       struct bpf_program *prog)
6419 {
6420 	size_t sub_insn_idx, insn_idx, new_cnt;
6421 	struct bpf_program *subprog;
6422 	struct bpf_insn *insns, *insn;
6423 	struct reloc_desc *relo;
6424 	int err;
6425 
6426 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6427 	if (err)
6428 		return err;
6429 
6430 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6431 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6432 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6433 			continue;
6434 
6435 		relo = find_prog_insn_relo(prog, insn_idx);
6436 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6437 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6438 				prog->name, insn_idx, relo->type);
6439 			return -LIBBPF_ERRNO__RELOC;
6440 		}
6441 		if (relo) {
6442 			/* sub-program instruction index is a combination of
6443 			 * an offset of a symbol pointed to by relocation and
6444 			 * call instruction's imm field; for global functions,
6445 			 * call always has imm = -1, but for static functions
6446 			 * relocation is against STT_SECTION and insn->imm
6447 			 * points to a start of a static function
6448 			 *
6449 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6450 			 * the byte offset in the corresponding section.
6451 			 */
6452 			if (relo->type == RELO_CALL)
6453 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6454 			else
6455 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6456 		} else if (insn_is_pseudo_func(insn)) {
6457 			/*
6458 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6459 			 * functions are in the same section, so it shouldn't reach here.
6460 			 */
6461 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6462 				prog->name, insn_idx);
6463 			return -LIBBPF_ERRNO__RELOC;
6464 		} else {
6465 			/* if subprogram call is to a static function within
6466 			 * the same ELF section, there won't be any relocation
6467 			 * emitted, but it also means there is no additional
6468 			 * offset necessary, insns->imm is relative to
6469 			 * instruction's original position within the section
6470 			 */
6471 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6472 		}
6473 
6474 		/* we enforce that sub-programs should be in .text section */
6475 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6476 		if (!subprog) {
6477 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6478 				prog->name);
6479 			return -LIBBPF_ERRNO__RELOC;
6480 		}
6481 
6482 		/* if it's the first call instruction calling into this
6483 		 * subprogram (meaning this subprog hasn't been processed
6484 		 * yet) within the context of current main program:
6485 		 *   - append it at the end of main program's instructions blog;
6486 		 *   - process is recursively, while current program is put on hold;
6487 		 *   - if that subprogram calls some other not yet processes
6488 		 *   subprogram, same thing will happen recursively until
6489 		 *   there are no more unprocesses subprograms left to append
6490 		 *   and relocate.
6491 		 */
6492 		if (subprog->sub_insn_off == 0) {
6493 			subprog->sub_insn_off = main_prog->insns_cnt;
6494 
6495 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6496 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6497 			if (!insns) {
6498 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6499 				return -ENOMEM;
6500 			}
6501 			main_prog->insns = insns;
6502 			main_prog->insns_cnt = new_cnt;
6503 
6504 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6505 			       subprog->insns_cnt * sizeof(*insns));
6506 
6507 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6508 				 main_prog->name, subprog->insns_cnt, subprog->name);
6509 
6510 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6511 			if (err)
6512 				return err;
6513 		}
6514 
6515 		/* main_prog->insns memory could have been re-allocated, so
6516 		 * calculate pointer again
6517 		 */
6518 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6519 		/* calculate correct instruction position within current main
6520 		 * prog; each main prog can have a different set of
6521 		 * subprograms appended (potentially in different order as
6522 		 * well), so position of any subprog can be different for
6523 		 * different main programs */
6524 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6525 
6526 		if (relo)
6527 			relo->processed = true;
6528 
6529 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6530 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6531 	}
6532 
6533 	return 0;
6534 }
6535 
6536 /*
6537  * Relocate sub-program calls.
6538  *
6539  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6540  * main prog) is processed separately. For each subprog (non-entry functions,
6541  * that can be called from either entry progs or other subprogs) gets their
6542  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6543  * hasn't been yet appended and relocated within current main prog. Once its
6544  * relocated, sub_insn_off will point at the position within current main prog
6545  * where given subprog was appended. This will further be used to relocate all
6546  * the call instructions jumping into this subprog.
6547  *
6548  * We start with main program and process all call instructions. If the call
6549  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6550  * is zero), subprog instructions are appended at the end of main program's
6551  * instruction array. Then main program is "put on hold" while we recursively
6552  * process newly appended subprogram. If that subprogram calls into another
6553  * subprogram that hasn't been appended, new subprogram is appended again to
6554  * the *main* prog's instructions (subprog's instructions are always left
6555  * untouched, as they need to be in unmodified state for subsequent main progs
6556  * and subprog instructions are always sent only as part of a main prog) and
6557  * the process continues recursively. Once all the subprogs called from a main
6558  * prog or any of its subprogs are appended (and relocated), all their
6559  * positions within finalized instructions array are known, so it's easy to
6560  * rewrite call instructions with correct relative offsets, corresponding to
6561  * desired target subprog.
6562  *
6563  * Its important to realize that some subprogs might not be called from some
6564  * main prog and any of its called/used subprogs. Those will keep their
6565  * subprog->sub_insn_off as zero at all times and won't be appended to current
6566  * main prog and won't be relocated within the context of current main prog.
6567  * They might still be used from other main progs later.
6568  *
6569  * Visually this process can be shown as below. Suppose we have two main
6570  * programs mainA and mainB and BPF object contains three subprogs: subA,
6571  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6572  * subC both call subB:
6573  *
6574  *        +--------+ +-------+
6575  *        |        v v       |
6576  *     +--+---+ +--+-+-+ +---+--+
6577  *     | subA | | subB | | subC |
6578  *     +--+---+ +------+ +---+--+
6579  *        ^                  ^
6580  *        |                  |
6581  *    +---+-------+   +------+----+
6582  *    |   mainA   |   |   mainB   |
6583  *    +-----------+   +-----------+
6584  *
6585  * We'll start relocating mainA, will find subA, append it and start
6586  * processing sub A recursively:
6587  *
6588  *    +-----------+------+
6589  *    |   mainA   | subA |
6590  *    +-----------+------+
6591  *
6592  * At this point we notice that subB is used from subA, so we append it and
6593  * relocate (there are no further subcalls from subB):
6594  *
6595  *    +-----------+------+------+
6596  *    |   mainA   | subA | subB |
6597  *    +-----------+------+------+
6598  *
6599  * At this point, we relocate subA calls, then go one level up and finish with
6600  * relocatin mainA calls. mainA is done.
6601  *
6602  * For mainB process is similar but results in different order. We start with
6603  * mainB and skip subA and subB, as mainB never calls them (at least
6604  * directly), but we see subC is needed, so we append and start processing it:
6605  *
6606  *    +-----------+------+
6607  *    |   mainB   | subC |
6608  *    +-----------+------+
6609  * Now we see subC needs subB, so we go back to it, append and relocate it:
6610  *
6611  *    +-----------+------+------+
6612  *    |   mainB   | subC | subB |
6613  *    +-----------+------+------+
6614  *
6615  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6616  */
6617 static int
6618 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6619 {
6620 	struct bpf_program *subprog;
6621 	int i, j, err;
6622 
6623 	/* mark all subprogs as not relocated (yet) within the context of
6624 	 * current main program
6625 	 */
6626 	for (i = 0; i < obj->nr_programs; i++) {
6627 		subprog = &obj->programs[i];
6628 		if (!prog_is_subprog(obj, subprog))
6629 			continue;
6630 
6631 		subprog->sub_insn_off = 0;
6632 		for (j = 0; j < subprog->nr_reloc; j++)
6633 			if (subprog->reloc_desc[j].type == RELO_CALL)
6634 				subprog->reloc_desc[j].processed = false;
6635 	}
6636 
6637 	err = bpf_object__reloc_code(obj, prog, prog);
6638 	if (err)
6639 		return err;
6640 
6641 
6642 	return 0;
6643 }
6644 
6645 static int
6646 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6647 {
6648 	struct bpf_program *prog;
6649 	size_t i;
6650 	int err;
6651 
6652 	if (obj->btf_ext) {
6653 		err = bpf_object__relocate_core(obj, targ_btf_path);
6654 		if (err) {
6655 			pr_warn("failed to perform CO-RE relocations: %d\n",
6656 				err);
6657 			return err;
6658 		}
6659 	}
6660 	/* relocate data references first for all programs and sub-programs,
6661 	 * as they don't change relative to code locations, so subsequent
6662 	 * subprogram processing won't need to re-calculate any of them
6663 	 */
6664 	for (i = 0; i < obj->nr_programs; i++) {
6665 		prog = &obj->programs[i];
6666 		err = bpf_object__relocate_data(obj, prog);
6667 		if (err) {
6668 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6669 				prog->name, err);
6670 			return err;
6671 		}
6672 	}
6673 	/* now relocate subprogram calls and append used subprograms to main
6674 	 * programs; each copy of subprogram code needs to be relocated
6675 	 * differently for each main program, because its code location might
6676 	 * have changed
6677 	 */
6678 	for (i = 0; i < obj->nr_programs; i++) {
6679 		prog = &obj->programs[i];
6680 		/* sub-program's sub-calls are relocated within the context of
6681 		 * its main program only
6682 		 */
6683 		if (prog_is_subprog(obj, prog))
6684 			continue;
6685 
6686 		err = bpf_object__relocate_calls(obj, prog);
6687 		if (err) {
6688 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6689 				prog->name, err);
6690 			return err;
6691 		}
6692 	}
6693 	/* free up relocation descriptors */
6694 	for (i = 0; i < obj->nr_programs; i++) {
6695 		prog = &obj->programs[i];
6696 		zfree(&prog->reloc_desc);
6697 		prog->nr_reloc = 0;
6698 	}
6699 	return 0;
6700 }
6701 
6702 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6703 					    GElf_Shdr *shdr, Elf_Data *data);
6704 
6705 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6706 					 GElf_Shdr *shdr, Elf_Data *data)
6707 {
6708 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6709 	int i, j, nrels, new_sz;
6710 	const struct btf_var_secinfo *vi = NULL;
6711 	const struct btf_type *sec, *var, *def;
6712 	struct bpf_map *map = NULL, *targ_map;
6713 	const struct btf_member *member;
6714 	const char *name, *mname;
6715 	Elf_Data *symbols;
6716 	unsigned int moff;
6717 	GElf_Sym sym;
6718 	GElf_Rel rel;
6719 	void *tmp;
6720 
6721 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6722 		return -EINVAL;
6723 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6724 	if (!sec)
6725 		return -EINVAL;
6726 
6727 	symbols = obj->efile.symbols;
6728 	nrels = shdr->sh_size / shdr->sh_entsize;
6729 	for (i = 0; i < nrels; i++) {
6730 		if (!gelf_getrel(data, i, &rel)) {
6731 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6732 			return -LIBBPF_ERRNO__FORMAT;
6733 		}
6734 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6735 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6736 				i, (size_t)GELF_R_SYM(rel.r_info));
6737 			return -LIBBPF_ERRNO__FORMAT;
6738 		}
6739 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6740 		if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6741 			pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6742 				i, name);
6743 			return -LIBBPF_ERRNO__RELOC;
6744 		}
6745 
6746 		pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6747 			 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6748 			 (size_t)rel.r_offset, sym.st_name, name);
6749 
6750 		for (j = 0; j < obj->nr_maps; j++) {
6751 			map = &obj->maps[j];
6752 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6753 				continue;
6754 
6755 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6756 			if (vi->offset <= rel.r_offset &&
6757 			    rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6758 				break;
6759 		}
6760 		if (j == obj->nr_maps) {
6761 			pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6762 				i, name, (size_t)rel.r_offset);
6763 			return -EINVAL;
6764 		}
6765 
6766 		if (!bpf_map_type__is_map_in_map(map->def.type))
6767 			return -EINVAL;
6768 		if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6769 		    map->def.key_size != sizeof(int)) {
6770 			pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6771 				i, map->name, sizeof(int));
6772 			return -EINVAL;
6773 		}
6774 
6775 		targ_map = bpf_object__find_map_by_name(obj, name);
6776 		if (!targ_map)
6777 			return -ESRCH;
6778 
6779 		var = btf__type_by_id(obj->btf, vi->type);
6780 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6781 		if (btf_vlen(def) == 0)
6782 			return -EINVAL;
6783 		member = btf_members(def) + btf_vlen(def) - 1;
6784 		mname = btf__name_by_offset(obj->btf, member->name_off);
6785 		if (strcmp(mname, "values"))
6786 			return -EINVAL;
6787 
6788 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6789 		if (rel.r_offset - vi->offset < moff)
6790 			return -EINVAL;
6791 
6792 		moff = rel.r_offset - vi->offset - moff;
6793 		/* here we use BPF pointer size, which is always 64 bit, as we
6794 		 * are parsing ELF that was built for BPF target
6795 		 */
6796 		if (moff % bpf_ptr_sz)
6797 			return -EINVAL;
6798 		moff /= bpf_ptr_sz;
6799 		if (moff >= map->init_slots_sz) {
6800 			new_sz = moff + 1;
6801 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6802 			if (!tmp)
6803 				return -ENOMEM;
6804 			map->init_slots = tmp;
6805 			memset(map->init_slots + map->init_slots_sz, 0,
6806 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6807 			map->init_slots_sz = new_sz;
6808 		}
6809 		map->init_slots[moff] = targ_map;
6810 
6811 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6812 			 i, map->name, moff, name);
6813 	}
6814 
6815 	return 0;
6816 }
6817 
6818 static int cmp_relocs(const void *_a, const void *_b)
6819 {
6820 	const struct reloc_desc *a = _a;
6821 	const struct reloc_desc *b = _b;
6822 
6823 	if (a->insn_idx != b->insn_idx)
6824 		return a->insn_idx < b->insn_idx ? -1 : 1;
6825 
6826 	/* no two relocations should have the same insn_idx, but ... */
6827 	if (a->type != b->type)
6828 		return a->type < b->type ? -1 : 1;
6829 
6830 	return 0;
6831 }
6832 
6833 static int bpf_object__collect_relos(struct bpf_object *obj)
6834 {
6835 	int i, err;
6836 
6837 	for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6838 		GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6839 		Elf_Data *data = obj->efile.reloc_sects[i].data;
6840 		int idx = shdr->sh_info;
6841 
6842 		if (shdr->sh_type != SHT_REL) {
6843 			pr_warn("internal error at %d\n", __LINE__);
6844 			return -LIBBPF_ERRNO__INTERNAL;
6845 		}
6846 
6847 		if (idx == obj->efile.st_ops_shndx)
6848 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6849 		else if (idx == obj->efile.btf_maps_shndx)
6850 			err = bpf_object__collect_map_relos(obj, shdr, data);
6851 		else
6852 			err = bpf_object__collect_prog_relos(obj, shdr, data);
6853 		if (err)
6854 			return err;
6855 	}
6856 
6857 	for (i = 0; i < obj->nr_programs; i++) {
6858 		struct bpf_program *p = &obj->programs[i];
6859 
6860 		if (!p->nr_reloc)
6861 			continue;
6862 
6863 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6864 	}
6865 	return 0;
6866 }
6867 
6868 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6869 {
6870 	if (BPF_CLASS(insn->code) == BPF_JMP &&
6871 	    BPF_OP(insn->code) == BPF_CALL &&
6872 	    BPF_SRC(insn->code) == BPF_K &&
6873 	    insn->src_reg == 0 &&
6874 	    insn->dst_reg == 0) {
6875 		    *func_id = insn->imm;
6876 		    return true;
6877 	}
6878 	return false;
6879 }
6880 
6881 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog)
6882 {
6883 	struct bpf_insn *insn = prog->insns;
6884 	enum bpf_func_id func_id;
6885 	int i;
6886 
6887 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
6888 		if (!insn_is_helper_call(insn, &func_id))
6889 			continue;
6890 
6891 		/* on kernels that don't yet support
6892 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6893 		 * to bpf_probe_read() which works well for old kernels
6894 		 */
6895 		switch (func_id) {
6896 		case BPF_FUNC_probe_read_kernel:
6897 		case BPF_FUNC_probe_read_user:
6898 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6899 				insn->imm = BPF_FUNC_probe_read;
6900 			break;
6901 		case BPF_FUNC_probe_read_kernel_str:
6902 		case BPF_FUNC_probe_read_user_str:
6903 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
6904 				insn->imm = BPF_FUNC_probe_read_str;
6905 			break;
6906 		default:
6907 			break;
6908 		}
6909 	}
6910 	return 0;
6911 }
6912 
6913 static int
6914 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
6915 	     char *license, __u32 kern_version, int *pfd)
6916 {
6917 	struct bpf_prog_load_params load_attr = {};
6918 	char *cp, errmsg[STRERR_BUFSIZE];
6919 	size_t log_buf_size = 0;
6920 	char *log_buf = NULL;
6921 	int btf_fd, ret;
6922 
6923 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6924 		/*
6925 		 * The program type must be set.  Most likely we couldn't find a proper
6926 		 * section definition at load time, and thus we didn't infer the type.
6927 		 */
6928 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6929 			prog->name, prog->sec_name);
6930 		return -EINVAL;
6931 	}
6932 
6933 	if (!insns || !insns_cnt)
6934 		return -EINVAL;
6935 
6936 	load_attr.prog_type = prog->type;
6937 	/* old kernels might not support specifying expected_attach_type */
6938 	if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
6939 	    prog->sec_def->is_exp_attach_type_optional)
6940 		load_attr.expected_attach_type = 0;
6941 	else
6942 		load_attr.expected_attach_type = prog->expected_attach_type;
6943 	if (kernel_supports(FEAT_PROG_NAME))
6944 		load_attr.name = prog->name;
6945 	load_attr.insns = insns;
6946 	load_attr.insn_cnt = insns_cnt;
6947 	load_attr.license = license;
6948 	load_attr.attach_btf_id = prog->attach_btf_id;
6949 	if (prog->attach_prog_fd)
6950 		load_attr.attach_prog_fd = prog->attach_prog_fd;
6951 	else
6952 		load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6953 	load_attr.attach_btf_id = prog->attach_btf_id;
6954 	load_attr.kern_version = kern_version;
6955 	load_attr.prog_ifindex = prog->prog_ifindex;
6956 
6957 	/* specify func_info/line_info only if kernel supports them */
6958 	btf_fd = bpf_object__btf_fd(prog->obj);
6959 	if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
6960 		load_attr.prog_btf_fd = btf_fd;
6961 		load_attr.func_info = prog->func_info;
6962 		load_attr.func_info_rec_size = prog->func_info_rec_size;
6963 		load_attr.func_info_cnt = prog->func_info_cnt;
6964 		load_attr.line_info = prog->line_info;
6965 		load_attr.line_info_rec_size = prog->line_info_rec_size;
6966 		load_attr.line_info_cnt = prog->line_info_cnt;
6967 	}
6968 	load_attr.log_level = prog->log_level;
6969 	load_attr.prog_flags = prog->prog_flags;
6970 
6971 retry_load:
6972 	if (log_buf_size) {
6973 		log_buf = malloc(log_buf_size);
6974 		if (!log_buf)
6975 			return -ENOMEM;
6976 
6977 		*log_buf = 0;
6978 	}
6979 
6980 	load_attr.log_buf = log_buf;
6981 	load_attr.log_buf_sz = log_buf_size;
6982 	ret = libbpf__bpf_prog_load(&load_attr);
6983 
6984 	if (ret >= 0) {
6985 		if (log_buf && load_attr.log_level)
6986 			pr_debug("verifier log:\n%s", log_buf);
6987 
6988 		if (prog->obj->rodata_map_idx >= 0 &&
6989 		    kernel_supports(FEAT_PROG_BIND_MAP)) {
6990 			struct bpf_map *rodata_map =
6991 				&prog->obj->maps[prog->obj->rodata_map_idx];
6992 
6993 			if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
6994 				cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6995 				pr_warn("prog '%s': failed to bind .rodata map: %s\n",
6996 					prog->name, cp);
6997 				/* Don't fail hard if can't bind rodata. */
6998 			}
6999 		}
7000 
7001 		*pfd = ret;
7002 		ret = 0;
7003 		goto out;
7004 	}
7005 
7006 	if (!log_buf || errno == ENOSPC) {
7007 		log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
7008 				   log_buf_size << 1);
7009 
7010 		free(log_buf);
7011 		goto retry_load;
7012 	}
7013 	ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
7014 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7015 	pr_warn("load bpf program failed: %s\n", cp);
7016 	pr_perm_msg(ret);
7017 
7018 	if (log_buf && log_buf[0] != '\0') {
7019 		ret = -LIBBPF_ERRNO__VERIFY;
7020 		pr_warn("-- BEGIN DUMP LOG ---\n");
7021 		pr_warn("\n%s\n", log_buf);
7022 		pr_warn("-- END LOG --\n");
7023 	} else if (load_attr.insn_cnt >= BPF_MAXINSNS) {
7024 		pr_warn("Program too large (%zu insns), at most %d insns\n",
7025 			load_attr.insn_cnt, BPF_MAXINSNS);
7026 		ret = -LIBBPF_ERRNO__PROG2BIG;
7027 	} else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
7028 		/* Wrong program type? */
7029 		int fd;
7030 
7031 		load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
7032 		load_attr.expected_attach_type = 0;
7033 		load_attr.log_buf = NULL;
7034 		load_attr.log_buf_sz = 0;
7035 		fd = libbpf__bpf_prog_load(&load_attr);
7036 		if (fd >= 0) {
7037 			close(fd);
7038 			ret = -LIBBPF_ERRNO__PROGTYPE;
7039 			goto out;
7040 		}
7041 	}
7042 
7043 out:
7044 	free(log_buf);
7045 	return ret;
7046 }
7047 
7048 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id);
7049 
7050 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
7051 {
7052 	int err = 0, fd, i;
7053 
7054 	if (prog->obj->loaded) {
7055 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
7056 		return -EINVAL;
7057 	}
7058 
7059 	if ((prog->type == BPF_PROG_TYPE_TRACING ||
7060 	     prog->type == BPF_PROG_TYPE_LSM ||
7061 	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
7062 		int btf_obj_fd = 0, btf_type_id = 0;
7063 
7064 		err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id);
7065 		if (err)
7066 			return err;
7067 
7068 		prog->attach_btf_obj_fd = btf_obj_fd;
7069 		prog->attach_btf_id = btf_type_id;
7070 	}
7071 
7072 	if (prog->instances.nr < 0 || !prog->instances.fds) {
7073 		if (prog->preprocessor) {
7074 			pr_warn("Internal error: can't load program '%s'\n",
7075 				prog->name);
7076 			return -LIBBPF_ERRNO__INTERNAL;
7077 		}
7078 
7079 		prog->instances.fds = malloc(sizeof(int));
7080 		if (!prog->instances.fds) {
7081 			pr_warn("Not enough memory for BPF fds\n");
7082 			return -ENOMEM;
7083 		}
7084 		prog->instances.nr = 1;
7085 		prog->instances.fds[0] = -1;
7086 	}
7087 
7088 	if (!prog->preprocessor) {
7089 		if (prog->instances.nr != 1) {
7090 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
7091 				prog->name, prog->instances.nr);
7092 		}
7093 		err = load_program(prog, prog->insns, prog->insns_cnt,
7094 				   license, kern_ver, &fd);
7095 		if (!err)
7096 			prog->instances.fds[0] = fd;
7097 		goto out;
7098 	}
7099 
7100 	for (i = 0; i < prog->instances.nr; i++) {
7101 		struct bpf_prog_prep_result result;
7102 		bpf_program_prep_t preprocessor = prog->preprocessor;
7103 
7104 		memset(&result, 0, sizeof(result));
7105 		err = preprocessor(prog, i, prog->insns,
7106 				   prog->insns_cnt, &result);
7107 		if (err) {
7108 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
7109 				i, prog->name);
7110 			goto out;
7111 		}
7112 
7113 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
7114 			pr_debug("Skip loading the %dth instance of program '%s'\n",
7115 				 i, prog->name);
7116 			prog->instances.fds[i] = -1;
7117 			if (result.pfd)
7118 				*result.pfd = -1;
7119 			continue;
7120 		}
7121 
7122 		err = load_program(prog, result.new_insn_ptr,
7123 				   result.new_insn_cnt, license, kern_ver, &fd);
7124 		if (err) {
7125 			pr_warn("Loading the %dth instance of program '%s' failed\n",
7126 				i, prog->name);
7127 			goto out;
7128 		}
7129 
7130 		if (result.pfd)
7131 			*result.pfd = fd;
7132 		prog->instances.fds[i] = fd;
7133 	}
7134 out:
7135 	if (err)
7136 		pr_warn("failed to load program '%s'\n", prog->name);
7137 	zfree(&prog->insns);
7138 	prog->insns_cnt = 0;
7139 	return err;
7140 }
7141 
7142 static int
7143 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7144 {
7145 	struct bpf_program *prog;
7146 	size_t i;
7147 	int err;
7148 
7149 	for (i = 0; i < obj->nr_programs; i++) {
7150 		prog = &obj->programs[i];
7151 		err = bpf_object__sanitize_prog(obj, prog);
7152 		if (err)
7153 			return err;
7154 	}
7155 
7156 	for (i = 0; i < obj->nr_programs; i++) {
7157 		prog = &obj->programs[i];
7158 		if (prog_is_subprog(obj, prog))
7159 			continue;
7160 		if (!prog->load) {
7161 			pr_debug("prog '%s': skipped loading\n", prog->name);
7162 			continue;
7163 		}
7164 		prog->log_level |= log_level;
7165 		err = bpf_program__load(prog, obj->license, obj->kern_version);
7166 		if (err)
7167 			return err;
7168 	}
7169 	return 0;
7170 }
7171 
7172 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7173 
7174 static struct bpf_object *
7175 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7176 		   const struct bpf_object_open_opts *opts)
7177 {
7178 	const char *obj_name, *kconfig;
7179 	struct bpf_program *prog;
7180 	struct bpf_object *obj;
7181 	char tmp_name[64];
7182 	int err;
7183 
7184 	if (elf_version(EV_CURRENT) == EV_NONE) {
7185 		pr_warn("failed to init libelf for %s\n",
7186 			path ? : "(mem buf)");
7187 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7188 	}
7189 
7190 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7191 		return ERR_PTR(-EINVAL);
7192 
7193 	obj_name = OPTS_GET(opts, object_name, NULL);
7194 	if (obj_buf) {
7195 		if (!obj_name) {
7196 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7197 				 (unsigned long)obj_buf,
7198 				 (unsigned long)obj_buf_sz);
7199 			obj_name = tmp_name;
7200 		}
7201 		path = obj_name;
7202 		pr_debug("loading object '%s' from buffer\n", obj_name);
7203 	}
7204 
7205 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7206 	if (IS_ERR(obj))
7207 		return obj;
7208 
7209 	kconfig = OPTS_GET(opts, kconfig, NULL);
7210 	if (kconfig) {
7211 		obj->kconfig = strdup(kconfig);
7212 		if (!obj->kconfig)
7213 			return ERR_PTR(-ENOMEM);
7214 	}
7215 
7216 	err = bpf_object__elf_init(obj);
7217 	err = err ? : bpf_object__check_endianness(obj);
7218 	err = err ? : bpf_object__elf_collect(obj);
7219 	err = err ? : bpf_object__collect_externs(obj);
7220 	err = err ? : bpf_object__finalize_btf(obj);
7221 	err = err ? : bpf_object__init_maps(obj, opts);
7222 	err = err ? : bpf_object__collect_relos(obj);
7223 	if (err)
7224 		goto out;
7225 	bpf_object__elf_finish(obj);
7226 
7227 	bpf_object__for_each_program(prog, obj) {
7228 		prog->sec_def = find_sec_def(prog->sec_name);
7229 		if (!prog->sec_def) {
7230 			/* couldn't guess, but user might manually specify */
7231 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7232 				prog->name, prog->sec_name);
7233 			continue;
7234 		}
7235 
7236 		if (prog->sec_def->is_sleepable)
7237 			prog->prog_flags |= BPF_F_SLEEPABLE;
7238 		bpf_program__set_type(prog, prog->sec_def->prog_type);
7239 		bpf_program__set_expected_attach_type(prog,
7240 				prog->sec_def->expected_attach_type);
7241 
7242 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7243 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7244 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7245 	}
7246 
7247 	return obj;
7248 out:
7249 	bpf_object__close(obj);
7250 	return ERR_PTR(err);
7251 }
7252 
7253 static struct bpf_object *
7254 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7255 {
7256 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7257 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
7258 	);
7259 
7260 	/* param validation */
7261 	if (!attr->file)
7262 		return NULL;
7263 
7264 	pr_debug("loading %s\n", attr->file);
7265 	return __bpf_object__open(attr->file, NULL, 0, &opts);
7266 }
7267 
7268 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7269 {
7270 	return __bpf_object__open_xattr(attr, 0);
7271 }
7272 
7273 struct bpf_object *bpf_object__open(const char *path)
7274 {
7275 	struct bpf_object_open_attr attr = {
7276 		.file		= path,
7277 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
7278 	};
7279 
7280 	return bpf_object__open_xattr(&attr);
7281 }
7282 
7283 struct bpf_object *
7284 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7285 {
7286 	if (!path)
7287 		return ERR_PTR(-EINVAL);
7288 
7289 	pr_debug("loading %s\n", path);
7290 
7291 	return __bpf_object__open(path, NULL, 0, opts);
7292 }
7293 
7294 struct bpf_object *
7295 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7296 		     const struct bpf_object_open_opts *opts)
7297 {
7298 	if (!obj_buf || obj_buf_sz == 0)
7299 		return ERR_PTR(-EINVAL);
7300 
7301 	return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
7302 }
7303 
7304 struct bpf_object *
7305 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7306 			const char *name)
7307 {
7308 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7309 		.object_name = name,
7310 		/* wrong default, but backwards-compatible */
7311 		.relaxed_maps = true,
7312 	);
7313 
7314 	/* returning NULL is wrong, but backwards-compatible */
7315 	if (!obj_buf || obj_buf_sz == 0)
7316 		return NULL;
7317 
7318 	return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7319 }
7320 
7321 int bpf_object__unload(struct bpf_object *obj)
7322 {
7323 	size_t i;
7324 
7325 	if (!obj)
7326 		return -EINVAL;
7327 
7328 	for (i = 0; i < obj->nr_maps; i++) {
7329 		zclose(obj->maps[i].fd);
7330 		if (obj->maps[i].st_ops)
7331 			zfree(&obj->maps[i].st_ops->kern_vdata);
7332 	}
7333 
7334 	for (i = 0; i < obj->nr_programs; i++)
7335 		bpf_program__unload(&obj->programs[i]);
7336 
7337 	return 0;
7338 }
7339 
7340 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7341 {
7342 	struct bpf_map *m;
7343 
7344 	bpf_object__for_each_map(m, obj) {
7345 		if (!bpf_map__is_internal(m))
7346 			continue;
7347 		if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7348 			pr_warn("kernel doesn't support global data\n");
7349 			return -ENOTSUP;
7350 		}
7351 		if (!kernel_supports(FEAT_ARRAY_MMAP))
7352 			m->def.map_flags ^= BPF_F_MMAPABLE;
7353 	}
7354 
7355 	return 0;
7356 }
7357 
7358 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7359 {
7360 	char sym_type, sym_name[500];
7361 	unsigned long long sym_addr;
7362 	struct extern_desc *ext;
7363 	int ret, err = 0;
7364 	FILE *f;
7365 
7366 	f = fopen("/proc/kallsyms", "r");
7367 	if (!f) {
7368 		err = -errno;
7369 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7370 		return err;
7371 	}
7372 
7373 	while (true) {
7374 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7375 			     &sym_addr, &sym_type, sym_name);
7376 		if (ret == EOF && feof(f))
7377 			break;
7378 		if (ret != 3) {
7379 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7380 			err = -EINVAL;
7381 			goto out;
7382 		}
7383 
7384 		ext = find_extern_by_name(obj, sym_name);
7385 		if (!ext || ext->type != EXT_KSYM)
7386 			continue;
7387 
7388 		if (ext->is_set && ext->ksym.addr != sym_addr) {
7389 			pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7390 				sym_name, ext->ksym.addr, sym_addr);
7391 			err = -EINVAL;
7392 			goto out;
7393 		}
7394 		if (!ext->is_set) {
7395 			ext->is_set = true;
7396 			ext->ksym.addr = sym_addr;
7397 			pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7398 		}
7399 	}
7400 
7401 out:
7402 	fclose(f);
7403 	return err;
7404 }
7405 
7406 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7407 {
7408 	struct extern_desc *ext;
7409 	struct btf *btf;
7410 	int i, j, id, btf_fd, err;
7411 
7412 	for (i = 0; i < obj->nr_extern; i++) {
7413 		const struct btf_type *targ_var, *targ_type;
7414 		__u32 targ_type_id, local_type_id;
7415 		const char *targ_var_name;
7416 		int ret;
7417 
7418 		ext = &obj->externs[i];
7419 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7420 			continue;
7421 
7422 		btf = obj->btf_vmlinux;
7423 		btf_fd = 0;
7424 		id = btf__find_by_name_kind(btf, ext->name, BTF_KIND_VAR);
7425 		if (id == -ENOENT) {
7426 			err = load_module_btfs(obj);
7427 			if (err)
7428 				return err;
7429 
7430 			for (j = 0; j < obj->btf_module_cnt; j++) {
7431 				btf = obj->btf_modules[j].btf;
7432 				/* we assume module BTF FD is always >0 */
7433 				btf_fd = obj->btf_modules[j].fd;
7434 				id = btf__find_by_name_kind(btf, ext->name, BTF_KIND_VAR);
7435 				if (id != -ENOENT)
7436 					break;
7437 			}
7438 		}
7439 		if (id <= 0) {
7440 			pr_warn("extern (ksym) '%s': failed to find BTF ID in kernel BTF(s).\n",
7441 				ext->name);
7442 			return -ESRCH;
7443 		}
7444 
7445 		/* find local type_id */
7446 		local_type_id = ext->ksym.type_id;
7447 
7448 		/* find target type_id */
7449 		targ_var = btf__type_by_id(btf, id);
7450 		targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7451 		targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7452 
7453 		ret = bpf_core_types_are_compat(obj->btf, local_type_id,
7454 						btf, targ_type_id);
7455 		if (ret <= 0) {
7456 			const struct btf_type *local_type;
7457 			const char *targ_name, *local_name;
7458 
7459 			local_type = btf__type_by_id(obj->btf, local_type_id);
7460 			local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7461 			targ_name = btf__name_by_offset(btf, targ_type->name_off);
7462 
7463 			pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7464 				ext->name, local_type_id,
7465 				btf_kind_str(local_type), local_name, targ_type_id,
7466 				btf_kind_str(targ_type), targ_name);
7467 			return -EINVAL;
7468 		}
7469 
7470 		ext->is_set = true;
7471 		ext->ksym.kernel_btf_obj_fd = btf_fd;
7472 		ext->ksym.kernel_btf_id = id;
7473 		pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n",
7474 			 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7475 	}
7476 	return 0;
7477 }
7478 
7479 static int bpf_object__resolve_externs(struct bpf_object *obj,
7480 				       const char *extra_kconfig)
7481 {
7482 	bool need_config = false, need_kallsyms = false;
7483 	bool need_vmlinux_btf = false;
7484 	struct extern_desc *ext;
7485 	void *kcfg_data = NULL;
7486 	int err, i;
7487 
7488 	if (obj->nr_extern == 0)
7489 		return 0;
7490 
7491 	if (obj->kconfig_map_idx >= 0)
7492 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7493 
7494 	for (i = 0; i < obj->nr_extern; i++) {
7495 		ext = &obj->externs[i];
7496 
7497 		if (ext->type == EXT_KCFG &&
7498 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7499 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7500 			__u32 kver = get_kernel_version();
7501 
7502 			if (!kver) {
7503 				pr_warn("failed to get kernel version\n");
7504 				return -EINVAL;
7505 			}
7506 			err = set_kcfg_value_num(ext, ext_val, kver);
7507 			if (err)
7508 				return err;
7509 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7510 		} else if (ext->type == EXT_KCFG &&
7511 			   strncmp(ext->name, "CONFIG_", 7) == 0) {
7512 			need_config = true;
7513 		} else if (ext->type == EXT_KSYM) {
7514 			if (ext->ksym.type_id)
7515 				need_vmlinux_btf = true;
7516 			else
7517 				need_kallsyms = true;
7518 		} else {
7519 			pr_warn("unrecognized extern '%s'\n", ext->name);
7520 			return -EINVAL;
7521 		}
7522 	}
7523 	if (need_config && extra_kconfig) {
7524 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7525 		if (err)
7526 			return -EINVAL;
7527 		need_config = false;
7528 		for (i = 0; i < obj->nr_extern; i++) {
7529 			ext = &obj->externs[i];
7530 			if (ext->type == EXT_KCFG && !ext->is_set) {
7531 				need_config = true;
7532 				break;
7533 			}
7534 		}
7535 	}
7536 	if (need_config) {
7537 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7538 		if (err)
7539 			return -EINVAL;
7540 	}
7541 	if (need_kallsyms) {
7542 		err = bpf_object__read_kallsyms_file(obj);
7543 		if (err)
7544 			return -EINVAL;
7545 	}
7546 	if (need_vmlinux_btf) {
7547 		err = bpf_object__resolve_ksyms_btf_id(obj);
7548 		if (err)
7549 			return -EINVAL;
7550 	}
7551 	for (i = 0; i < obj->nr_extern; i++) {
7552 		ext = &obj->externs[i];
7553 
7554 		if (!ext->is_set && !ext->is_weak) {
7555 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7556 			return -ESRCH;
7557 		} else if (!ext->is_set) {
7558 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7559 				 ext->name);
7560 		}
7561 	}
7562 
7563 	return 0;
7564 }
7565 
7566 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7567 {
7568 	struct bpf_object *obj;
7569 	int err, i;
7570 
7571 	if (!attr)
7572 		return -EINVAL;
7573 	obj = attr->obj;
7574 	if (!obj)
7575 		return -EINVAL;
7576 
7577 	if (obj->loaded) {
7578 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7579 		return -EINVAL;
7580 	}
7581 
7582 	err = bpf_object__probe_loading(obj);
7583 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7584 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7585 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7586 	err = err ? : bpf_object__sanitize_maps(obj);
7587 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7588 	err = err ? : bpf_object__create_maps(obj);
7589 	err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7590 	err = err ? : bpf_object__load_progs(obj, attr->log_level);
7591 
7592 	/* clean up module BTFs */
7593 	for (i = 0; i < obj->btf_module_cnt; i++) {
7594 		close(obj->btf_modules[i].fd);
7595 		btf__free(obj->btf_modules[i].btf);
7596 		free(obj->btf_modules[i].name);
7597 	}
7598 	free(obj->btf_modules);
7599 
7600 	/* clean up vmlinux BTF */
7601 	btf__free(obj->btf_vmlinux);
7602 	obj->btf_vmlinux = NULL;
7603 
7604 	obj->loaded = true; /* doesn't matter if successfully or not */
7605 
7606 	if (err)
7607 		goto out;
7608 
7609 	return 0;
7610 out:
7611 	/* unpin any maps that were auto-pinned during load */
7612 	for (i = 0; i < obj->nr_maps; i++)
7613 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7614 			bpf_map__unpin(&obj->maps[i], NULL);
7615 
7616 	bpf_object__unload(obj);
7617 	pr_warn("failed to load object '%s'\n", obj->path);
7618 	return err;
7619 }
7620 
7621 int bpf_object__load(struct bpf_object *obj)
7622 {
7623 	struct bpf_object_load_attr attr = {
7624 		.obj = obj,
7625 	};
7626 
7627 	return bpf_object__load_xattr(&attr);
7628 }
7629 
7630 static int make_parent_dir(const char *path)
7631 {
7632 	char *cp, errmsg[STRERR_BUFSIZE];
7633 	char *dname, *dir;
7634 	int err = 0;
7635 
7636 	dname = strdup(path);
7637 	if (dname == NULL)
7638 		return -ENOMEM;
7639 
7640 	dir = dirname(dname);
7641 	if (mkdir(dir, 0700) && errno != EEXIST)
7642 		err = -errno;
7643 
7644 	free(dname);
7645 	if (err) {
7646 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7647 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7648 	}
7649 	return err;
7650 }
7651 
7652 static int check_path(const char *path)
7653 {
7654 	char *cp, errmsg[STRERR_BUFSIZE];
7655 	struct statfs st_fs;
7656 	char *dname, *dir;
7657 	int err = 0;
7658 
7659 	if (path == NULL)
7660 		return -EINVAL;
7661 
7662 	dname = strdup(path);
7663 	if (dname == NULL)
7664 		return -ENOMEM;
7665 
7666 	dir = dirname(dname);
7667 	if (statfs(dir, &st_fs)) {
7668 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7669 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7670 		err = -errno;
7671 	}
7672 	free(dname);
7673 
7674 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7675 		pr_warn("specified path %s is not on BPF FS\n", path);
7676 		err = -EINVAL;
7677 	}
7678 
7679 	return err;
7680 }
7681 
7682 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7683 			      int instance)
7684 {
7685 	char *cp, errmsg[STRERR_BUFSIZE];
7686 	int err;
7687 
7688 	err = make_parent_dir(path);
7689 	if (err)
7690 		return err;
7691 
7692 	err = check_path(path);
7693 	if (err)
7694 		return err;
7695 
7696 	if (prog == NULL) {
7697 		pr_warn("invalid program pointer\n");
7698 		return -EINVAL;
7699 	}
7700 
7701 	if (instance < 0 || instance >= prog->instances.nr) {
7702 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7703 			instance, prog->name, prog->instances.nr);
7704 		return -EINVAL;
7705 	}
7706 
7707 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7708 		err = -errno;
7709 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7710 		pr_warn("failed to pin program: %s\n", cp);
7711 		return err;
7712 	}
7713 	pr_debug("pinned program '%s'\n", path);
7714 
7715 	return 0;
7716 }
7717 
7718 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7719 				int instance)
7720 {
7721 	int err;
7722 
7723 	err = check_path(path);
7724 	if (err)
7725 		return err;
7726 
7727 	if (prog == NULL) {
7728 		pr_warn("invalid program pointer\n");
7729 		return -EINVAL;
7730 	}
7731 
7732 	if (instance < 0 || instance >= prog->instances.nr) {
7733 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7734 			instance, prog->name, prog->instances.nr);
7735 		return -EINVAL;
7736 	}
7737 
7738 	err = unlink(path);
7739 	if (err != 0)
7740 		return -errno;
7741 	pr_debug("unpinned program '%s'\n", path);
7742 
7743 	return 0;
7744 }
7745 
7746 int bpf_program__pin(struct bpf_program *prog, const char *path)
7747 {
7748 	int i, err;
7749 
7750 	err = make_parent_dir(path);
7751 	if (err)
7752 		return err;
7753 
7754 	err = check_path(path);
7755 	if (err)
7756 		return err;
7757 
7758 	if (prog == NULL) {
7759 		pr_warn("invalid program pointer\n");
7760 		return -EINVAL;
7761 	}
7762 
7763 	if (prog->instances.nr <= 0) {
7764 		pr_warn("no instances of prog %s to pin\n", prog->name);
7765 		return -EINVAL;
7766 	}
7767 
7768 	if (prog->instances.nr == 1) {
7769 		/* don't create subdirs when pinning single instance */
7770 		return bpf_program__pin_instance(prog, path, 0);
7771 	}
7772 
7773 	for (i = 0; i < prog->instances.nr; i++) {
7774 		char buf[PATH_MAX];
7775 		int len;
7776 
7777 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7778 		if (len < 0) {
7779 			err = -EINVAL;
7780 			goto err_unpin;
7781 		} else if (len >= PATH_MAX) {
7782 			err = -ENAMETOOLONG;
7783 			goto err_unpin;
7784 		}
7785 
7786 		err = bpf_program__pin_instance(prog, buf, i);
7787 		if (err)
7788 			goto err_unpin;
7789 	}
7790 
7791 	return 0;
7792 
7793 err_unpin:
7794 	for (i = i - 1; i >= 0; i--) {
7795 		char buf[PATH_MAX];
7796 		int len;
7797 
7798 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7799 		if (len < 0)
7800 			continue;
7801 		else if (len >= PATH_MAX)
7802 			continue;
7803 
7804 		bpf_program__unpin_instance(prog, buf, i);
7805 	}
7806 
7807 	rmdir(path);
7808 
7809 	return err;
7810 }
7811 
7812 int bpf_program__unpin(struct bpf_program *prog, const char *path)
7813 {
7814 	int i, err;
7815 
7816 	err = check_path(path);
7817 	if (err)
7818 		return err;
7819 
7820 	if (prog == NULL) {
7821 		pr_warn("invalid program pointer\n");
7822 		return -EINVAL;
7823 	}
7824 
7825 	if (prog->instances.nr <= 0) {
7826 		pr_warn("no instances of prog %s to pin\n", prog->name);
7827 		return -EINVAL;
7828 	}
7829 
7830 	if (prog->instances.nr == 1) {
7831 		/* don't create subdirs when pinning single instance */
7832 		return bpf_program__unpin_instance(prog, path, 0);
7833 	}
7834 
7835 	for (i = 0; i < prog->instances.nr; i++) {
7836 		char buf[PATH_MAX];
7837 		int len;
7838 
7839 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
7840 		if (len < 0)
7841 			return -EINVAL;
7842 		else if (len >= PATH_MAX)
7843 			return -ENAMETOOLONG;
7844 
7845 		err = bpf_program__unpin_instance(prog, buf, i);
7846 		if (err)
7847 			return err;
7848 	}
7849 
7850 	err = rmdir(path);
7851 	if (err)
7852 		return -errno;
7853 
7854 	return 0;
7855 }
7856 
7857 int bpf_map__pin(struct bpf_map *map, const char *path)
7858 {
7859 	char *cp, errmsg[STRERR_BUFSIZE];
7860 	int err;
7861 
7862 	if (map == NULL) {
7863 		pr_warn("invalid map pointer\n");
7864 		return -EINVAL;
7865 	}
7866 
7867 	if (map->pin_path) {
7868 		if (path && strcmp(path, map->pin_path)) {
7869 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7870 				bpf_map__name(map), map->pin_path, path);
7871 			return -EINVAL;
7872 		} else if (map->pinned) {
7873 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
7874 				 bpf_map__name(map), map->pin_path);
7875 			return 0;
7876 		}
7877 	} else {
7878 		if (!path) {
7879 			pr_warn("missing a path to pin map '%s' at\n",
7880 				bpf_map__name(map));
7881 			return -EINVAL;
7882 		} else if (map->pinned) {
7883 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
7884 			return -EEXIST;
7885 		}
7886 
7887 		map->pin_path = strdup(path);
7888 		if (!map->pin_path) {
7889 			err = -errno;
7890 			goto out_err;
7891 		}
7892 	}
7893 
7894 	err = make_parent_dir(map->pin_path);
7895 	if (err)
7896 		return err;
7897 
7898 	err = check_path(map->pin_path);
7899 	if (err)
7900 		return err;
7901 
7902 	if (bpf_obj_pin(map->fd, map->pin_path)) {
7903 		err = -errno;
7904 		goto out_err;
7905 	}
7906 
7907 	map->pinned = true;
7908 	pr_debug("pinned map '%s'\n", map->pin_path);
7909 
7910 	return 0;
7911 
7912 out_err:
7913 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7914 	pr_warn("failed to pin map: %s\n", cp);
7915 	return err;
7916 }
7917 
7918 int bpf_map__unpin(struct bpf_map *map, const char *path)
7919 {
7920 	int err;
7921 
7922 	if (map == NULL) {
7923 		pr_warn("invalid map pointer\n");
7924 		return -EINVAL;
7925 	}
7926 
7927 	if (map->pin_path) {
7928 		if (path && strcmp(path, map->pin_path)) {
7929 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
7930 				bpf_map__name(map), map->pin_path, path);
7931 			return -EINVAL;
7932 		}
7933 		path = map->pin_path;
7934 	} else if (!path) {
7935 		pr_warn("no path to unpin map '%s' from\n",
7936 			bpf_map__name(map));
7937 		return -EINVAL;
7938 	}
7939 
7940 	err = check_path(path);
7941 	if (err)
7942 		return err;
7943 
7944 	err = unlink(path);
7945 	if (err != 0)
7946 		return -errno;
7947 
7948 	map->pinned = false;
7949 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
7950 
7951 	return 0;
7952 }
7953 
7954 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
7955 {
7956 	char *new = NULL;
7957 
7958 	if (path) {
7959 		new = strdup(path);
7960 		if (!new)
7961 			return -errno;
7962 	}
7963 
7964 	free(map->pin_path);
7965 	map->pin_path = new;
7966 	return 0;
7967 }
7968 
7969 const char *bpf_map__get_pin_path(const struct bpf_map *map)
7970 {
7971 	return map->pin_path;
7972 }
7973 
7974 bool bpf_map__is_pinned(const struct bpf_map *map)
7975 {
7976 	return map->pinned;
7977 }
7978 
7979 static void sanitize_pin_path(char *s)
7980 {
7981 	/* bpffs disallows periods in path names */
7982 	while (*s) {
7983 		if (*s == '.')
7984 			*s = '_';
7985 		s++;
7986 	}
7987 }
7988 
7989 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
7990 {
7991 	struct bpf_map *map;
7992 	int err;
7993 
7994 	if (!obj)
7995 		return -ENOENT;
7996 
7997 	if (!obj->loaded) {
7998 		pr_warn("object not yet loaded; load it first\n");
7999 		return -ENOENT;
8000 	}
8001 
8002 	bpf_object__for_each_map(map, obj) {
8003 		char *pin_path = NULL;
8004 		char buf[PATH_MAX];
8005 
8006 		if (path) {
8007 			int len;
8008 
8009 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
8010 				       bpf_map__name(map));
8011 			if (len < 0) {
8012 				err = -EINVAL;
8013 				goto err_unpin_maps;
8014 			} else if (len >= PATH_MAX) {
8015 				err = -ENAMETOOLONG;
8016 				goto err_unpin_maps;
8017 			}
8018 			sanitize_pin_path(buf);
8019 			pin_path = buf;
8020 		} else if (!map->pin_path) {
8021 			continue;
8022 		}
8023 
8024 		err = bpf_map__pin(map, pin_path);
8025 		if (err)
8026 			goto err_unpin_maps;
8027 	}
8028 
8029 	return 0;
8030 
8031 err_unpin_maps:
8032 	while ((map = bpf_map__prev(map, obj))) {
8033 		if (!map->pin_path)
8034 			continue;
8035 
8036 		bpf_map__unpin(map, NULL);
8037 	}
8038 
8039 	return err;
8040 }
8041 
8042 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8043 {
8044 	struct bpf_map *map;
8045 	int err;
8046 
8047 	if (!obj)
8048 		return -ENOENT;
8049 
8050 	bpf_object__for_each_map(map, obj) {
8051 		char *pin_path = NULL;
8052 		char buf[PATH_MAX];
8053 
8054 		if (path) {
8055 			int len;
8056 
8057 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
8058 				       bpf_map__name(map));
8059 			if (len < 0)
8060 				return -EINVAL;
8061 			else if (len >= PATH_MAX)
8062 				return -ENAMETOOLONG;
8063 			sanitize_pin_path(buf);
8064 			pin_path = buf;
8065 		} else if (!map->pin_path) {
8066 			continue;
8067 		}
8068 
8069 		err = bpf_map__unpin(map, pin_path);
8070 		if (err)
8071 			return err;
8072 	}
8073 
8074 	return 0;
8075 }
8076 
8077 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8078 {
8079 	struct bpf_program *prog;
8080 	int err;
8081 
8082 	if (!obj)
8083 		return -ENOENT;
8084 
8085 	if (!obj->loaded) {
8086 		pr_warn("object not yet loaded; load it first\n");
8087 		return -ENOENT;
8088 	}
8089 
8090 	bpf_object__for_each_program(prog, obj) {
8091 		char buf[PATH_MAX];
8092 		int len;
8093 
8094 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8095 			       prog->pin_name);
8096 		if (len < 0) {
8097 			err = -EINVAL;
8098 			goto err_unpin_programs;
8099 		} else if (len >= PATH_MAX) {
8100 			err = -ENAMETOOLONG;
8101 			goto err_unpin_programs;
8102 		}
8103 
8104 		err = bpf_program__pin(prog, buf);
8105 		if (err)
8106 			goto err_unpin_programs;
8107 	}
8108 
8109 	return 0;
8110 
8111 err_unpin_programs:
8112 	while ((prog = bpf_program__prev(prog, obj))) {
8113 		char buf[PATH_MAX];
8114 		int len;
8115 
8116 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8117 			       prog->pin_name);
8118 		if (len < 0)
8119 			continue;
8120 		else if (len >= PATH_MAX)
8121 			continue;
8122 
8123 		bpf_program__unpin(prog, buf);
8124 	}
8125 
8126 	return err;
8127 }
8128 
8129 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8130 {
8131 	struct bpf_program *prog;
8132 	int err;
8133 
8134 	if (!obj)
8135 		return -ENOENT;
8136 
8137 	bpf_object__for_each_program(prog, obj) {
8138 		char buf[PATH_MAX];
8139 		int len;
8140 
8141 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8142 			       prog->pin_name);
8143 		if (len < 0)
8144 			return -EINVAL;
8145 		else if (len >= PATH_MAX)
8146 			return -ENAMETOOLONG;
8147 
8148 		err = bpf_program__unpin(prog, buf);
8149 		if (err)
8150 			return err;
8151 	}
8152 
8153 	return 0;
8154 }
8155 
8156 int bpf_object__pin(struct bpf_object *obj, const char *path)
8157 {
8158 	int err;
8159 
8160 	err = bpf_object__pin_maps(obj, path);
8161 	if (err)
8162 		return err;
8163 
8164 	err = bpf_object__pin_programs(obj, path);
8165 	if (err) {
8166 		bpf_object__unpin_maps(obj, path);
8167 		return err;
8168 	}
8169 
8170 	return 0;
8171 }
8172 
8173 static void bpf_map__destroy(struct bpf_map *map)
8174 {
8175 	if (map->clear_priv)
8176 		map->clear_priv(map, map->priv);
8177 	map->priv = NULL;
8178 	map->clear_priv = NULL;
8179 
8180 	if (map->inner_map) {
8181 		bpf_map__destroy(map->inner_map);
8182 		zfree(&map->inner_map);
8183 	}
8184 
8185 	zfree(&map->init_slots);
8186 	map->init_slots_sz = 0;
8187 
8188 	if (map->mmaped) {
8189 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8190 		map->mmaped = NULL;
8191 	}
8192 
8193 	if (map->st_ops) {
8194 		zfree(&map->st_ops->data);
8195 		zfree(&map->st_ops->progs);
8196 		zfree(&map->st_ops->kern_func_off);
8197 		zfree(&map->st_ops);
8198 	}
8199 
8200 	zfree(&map->name);
8201 	zfree(&map->pin_path);
8202 
8203 	if (map->fd >= 0)
8204 		zclose(map->fd);
8205 }
8206 
8207 void bpf_object__close(struct bpf_object *obj)
8208 {
8209 	size_t i;
8210 
8211 	if (IS_ERR_OR_NULL(obj))
8212 		return;
8213 
8214 	if (obj->clear_priv)
8215 		obj->clear_priv(obj, obj->priv);
8216 
8217 	bpf_object__elf_finish(obj);
8218 	bpf_object__unload(obj);
8219 	btf__free(obj->btf);
8220 	btf_ext__free(obj->btf_ext);
8221 
8222 	for (i = 0; i < obj->nr_maps; i++)
8223 		bpf_map__destroy(&obj->maps[i]);
8224 
8225 	zfree(&obj->kconfig);
8226 	zfree(&obj->externs);
8227 	obj->nr_extern = 0;
8228 
8229 	zfree(&obj->maps);
8230 	obj->nr_maps = 0;
8231 
8232 	if (obj->programs && obj->nr_programs) {
8233 		for (i = 0; i < obj->nr_programs; i++)
8234 			bpf_program__exit(&obj->programs[i]);
8235 	}
8236 	zfree(&obj->programs);
8237 
8238 	list_del(&obj->list);
8239 	free(obj);
8240 }
8241 
8242 struct bpf_object *
8243 bpf_object__next(struct bpf_object *prev)
8244 {
8245 	struct bpf_object *next;
8246 
8247 	if (!prev)
8248 		next = list_first_entry(&bpf_objects_list,
8249 					struct bpf_object,
8250 					list);
8251 	else
8252 		next = list_next_entry(prev, list);
8253 
8254 	/* Empty list is noticed here so don't need checking on entry. */
8255 	if (&next->list == &bpf_objects_list)
8256 		return NULL;
8257 
8258 	return next;
8259 }
8260 
8261 const char *bpf_object__name(const struct bpf_object *obj)
8262 {
8263 	return obj ? obj->name : ERR_PTR(-EINVAL);
8264 }
8265 
8266 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8267 {
8268 	return obj ? obj->kern_version : 0;
8269 }
8270 
8271 struct btf *bpf_object__btf(const struct bpf_object *obj)
8272 {
8273 	return obj ? obj->btf : NULL;
8274 }
8275 
8276 int bpf_object__btf_fd(const struct bpf_object *obj)
8277 {
8278 	return obj->btf ? btf__fd(obj->btf) : -1;
8279 }
8280 
8281 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8282 			 bpf_object_clear_priv_t clear_priv)
8283 {
8284 	if (obj->priv && obj->clear_priv)
8285 		obj->clear_priv(obj, obj->priv);
8286 
8287 	obj->priv = priv;
8288 	obj->clear_priv = clear_priv;
8289 	return 0;
8290 }
8291 
8292 void *bpf_object__priv(const struct bpf_object *obj)
8293 {
8294 	return obj ? obj->priv : ERR_PTR(-EINVAL);
8295 }
8296 
8297 static struct bpf_program *
8298 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8299 		    bool forward)
8300 {
8301 	size_t nr_programs = obj->nr_programs;
8302 	ssize_t idx;
8303 
8304 	if (!nr_programs)
8305 		return NULL;
8306 
8307 	if (!p)
8308 		/* Iter from the beginning */
8309 		return forward ? &obj->programs[0] :
8310 			&obj->programs[nr_programs - 1];
8311 
8312 	if (p->obj != obj) {
8313 		pr_warn("error: program handler doesn't match object\n");
8314 		return NULL;
8315 	}
8316 
8317 	idx = (p - obj->programs) + (forward ? 1 : -1);
8318 	if (idx >= obj->nr_programs || idx < 0)
8319 		return NULL;
8320 	return &obj->programs[idx];
8321 }
8322 
8323 struct bpf_program *
8324 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8325 {
8326 	struct bpf_program *prog = prev;
8327 
8328 	do {
8329 		prog = __bpf_program__iter(prog, obj, true);
8330 	} while (prog && prog_is_subprog(obj, prog));
8331 
8332 	return prog;
8333 }
8334 
8335 struct bpf_program *
8336 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8337 {
8338 	struct bpf_program *prog = next;
8339 
8340 	do {
8341 		prog = __bpf_program__iter(prog, obj, false);
8342 	} while (prog && prog_is_subprog(obj, prog));
8343 
8344 	return prog;
8345 }
8346 
8347 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8348 			  bpf_program_clear_priv_t clear_priv)
8349 {
8350 	if (prog->priv && prog->clear_priv)
8351 		prog->clear_priv(prog, prog->priv);
8352 
8353 	prog->priv = priv;
8354 	prog->clear_priv = clear_priv;
8355 	return 0;
8356 }
8357 
8358 void *bpf_program__priv(const struct bpf_program *prog)
8359 {
8360 	return prog ? prog->priv : ERR_PTR(-EINVAL);
8361 }
8362 
8363 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8364 {
8365 	prog->prog_ifindex = ifindex;
8366 }
8367 
8368 const char *bpf_program__name(const struct bpf_program *prog)
8369 {
8370 	return prog->name;
8371 }
8372 
8373 const char *bpf_program__section_name(const struct bpf_program *prog)
8374 {
8375 	return prog->sec_name;
8376 }
8377 
8378 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8379 {
8380 	const char *title;
8381 
8382 	title = prog->sec_name;
8383 	if (needs_copy) {
8384 		title = strdup(title);
8385 		if (!title) {
8386 			pr_warn("failed to strdup program title\n");
8387 			return ERR_PTR(-ENOMEM);
8388 		}
8389 	}
8390 
8391 	return title;
8392 }
8393 
8394 bool bpf_program__autoload(const struct bpf_program *prog)
8395 {
8396 	return prog->load;
8397 }
8398 
8399 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8400 {
8401 	if (prog->obj->loaded)
8402 		return -EINVAL;
8403 
8404 	prog->load = autoload;
8405 	return 0;
8406 }
8407 
8408 int bpf_program__fd(const struct bpf_program *prog)
8409 {
8410 	return bpf_program__nth_fd(prog, 0);
8411 }
8412 
8413 size_t bpf_program__size(const struct bpf_program *prog)
8414 {
8415 	return prog->insns_cnt * BPF_INSN_SZ;
8416 }
8417 
8418 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8419 			  bpf_program_prep_t prep)
8420 {
8421 	int *instances_fds;
8422 
8423 	if (nr_instances <= 0 || !prep)
8424 		return -EINVAL;
8425 
8426 	if (prog->instances.nr > 0 || prog->instances.fds) {
8427 		pr_warn("Can't set pre-processor after loading\n");
8428 		return -EINVAL;
8429 	}
8430 
8431 	instances_fds = malloc(sizeof(int) * nr_instances);
8432 	if (!instances_fds) {
8433 		pr_warn("alloc memory failed for fds\n");
8434 		return -ENOMEM;
8435 	}
8436 
8437 	/* fill all fd with -1 */
8438 	memset(instances_fds, -1, sizeof(int) * nr_instances);
8439 
8440 	prog->instances.nr = nr_instances;
8441 	prog->instances.fds = instances_fds;
8442 	prog->preprocessor = prep;
8443 	return 0;
8444 }
8445 
8446 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8447 {
8448 	int fd;
8449 
8450 	if (!prog)
8451 		return -EINVAL;
8452 
8453 	if (n >= prog->instances.nr || n < 0) {
8454 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8455 			n, prog->name, prog->instances.nr);
8456 		return -EINVAL;
8457 	}
8458 
8459 	fd = prog->instances.fds[n];
8460 	if (fd < 0) {
8461 		pr_warn("%dth instance of program '%s' is invalid\n",
8462 			n, prog->name);
8463 		return -ENOENT;
8464 	}
8465 
8466 	return fd;
8467 }
8468 
8469 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog)
8470 {
8471 	return prog->type;
8472 }
8473 
8474 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8475 {
8476 	prog->type = type;
8477 }
8478 
8479 static bool bpf_program__is_type(const struct bpf_program *prog,
8480 				 enum bpf_prog_type type)
8481 {
8482 	return prog ? (prog->type == type) : false;
8483 }
8484 
8485 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8486 int bpf_program__set_##NAME(struct bpf_program *prog)		\
8487 {								\
8488 	if (!prog)						\
8489 		return -EINVAL;					\
8490 	bpf_program__set_type(prog, TYPE);			\
8491 	return 0;						\
8492 }								\
8493 								\
8494 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
8495 {								\
8496 	return bpf_program__is_type(prog, TYPE);		\
8497 }								\
8498 
8499 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8500 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8501 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8502 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8503 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8504 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8505 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8506 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8507 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8508 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8509 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8510 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8511 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8512 
8513 enum bpf_attach_type
8514 bpf_program__get_expected_attach_type(struct bpf_program *prog)
8515 {
8516 	return prog->expected_attach_type;
8517 }
8518 
8519 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8520 					   enum bpf_attach_type type)
8521 {
8522 	prog->expected_attach_type = type;
8523 }
8524 
8525 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,	    \
8526 			  attachable, attach_btf)			    \
8527 	{								    \
8528 		.sec = string,						    \
8529 		.len = sizeof(string) - 1,				    \
8530 		.prog_type = ptype,					    \
8531 		.expected_attach_type = eatype,				    \
8532 		.is_exp_attach_type_optional = eatype_optional,		    \
8533 		.is_attachable = attachable,				    \
8534 		.is_attach_btf = attach_btf,				    \
8535 	}
8536 
8537 /* Programs that can NOT be attached. */
8538 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8539 
8540 /* Programs that can be attached. */
8541 #define BPF_APROG_SEC(string, ptype, atype) \
8542 	BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8543 
8544 /* Programs that must specify expected attach type at load time. */
8545 #define BPF_EAPROG_SEC(string, ptype, eatype) \
8546 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8547 
8548 /* Programs that use BTF to identify attach point */
8549 #define BPF_PROG_BTF(string, ptype, eatype) \
8550 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8551 
8552 /* Programs that can be attached but attach type can't be identified by section
8553  * name. Kept for backward compatibility.
8554  */
8555 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8556 
8557 #define SEC_DEF(sec_pfx, ptype, ...) {					    \
8558 	.sec = sec_pfx,							    \
8559 	.len = sizeof(sec_pfx) - 1,					    \
8560 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8561 	__VA_ARGS__							    \
8562 }
8563 
8564 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8565 				      struct bpf_program *prog);
8566 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8567 				  struct bpf_program *prog);
8568 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8569 				      struct bpf_program *prog);
8570 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8571 				     struct bpf_program *prog);
8572 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8573 				   struct bpf_program *prog);
8574 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8575 				    struct bpf_program *prog);
8576 
8577 static const struct bpf_sec_def section_defs[] = {
8578 	BPF_PROG_SEC("socket",			BPF_PROG_TYPE_SOCKET_FILTER),
8579 	BPF_PROG_SEC("sk_reuseport",		BPF_PROG_TYPE_SK_REUSEPORT),
8580 	SEC_DEF("kprobe/", KPROBE,
8581 		.attach_fn = attach_kprobe),
8582 	BPF_PROG_SEC("uprobe/",			BPF_PROG_TYPE_KPROBE),
8583 	SEC_DEF("kretprobe/", KPROBE,
8584 		.attach_fn = attach_kprobe),
8585 	BPF_PROG_SEC("uretprobe/",		BPF_PROG_TYPE_KPROBE),
8586 	BPF_PROG_SEC("classifier",		BPF_PROG_TYPE_SCHED_CLS),
8587 	BPF_PROG_SEC("action",			BPF_PROG_TYPE_SCHED_ACT),
8588 	SEC_DEF("tracepoint/", TRACEPOINT,
8589 		.attach_fn = attach_tp),
8590 	SEC_DEF("tp/", TRACEPOINT,
8591 		.attach_fn = attach_tp),
8592 	SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8593 		.attach_fn = attach_raw_tp),
8594 	SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8595 		.attach_fn = attach_raw_tp),
8596 	SEC_DEF("tp_btf/", TRACING,
8597 		.expected_attach_type = BPF_TRACE_RAW_TP,
8598 		.is_attach_btf = true,
8599 		.attach_fn = attach_trace),
8600 	SEC_DEF("fentry/", TRACING,
8601 		.expected_attach_type = BPF_TRACE_FENTRY,
8602 		.is_attach_btf = true,
8603 		.attach_fn = attach_trace),
8604 	SEC_DEF("fmod_ret/", TRACING,
8605 		.expected_attach_type = BPF_MODIFY_RETURN,
8606 		.is_attach_btf = true,
8607 		.attach_fn = attach_trace),
8608 	SEC_DEF("fexit/", TRACING,
8609 		.expected_attach_type = BPF_TRACE_FEXIT,
8610 		.is_attach_btf = true,
8611 		.attach_fn = attach_trace),
8612 	SEC_DEF("fentry.s/", TRACING,
8613 		.expected_attach_type = BPF_TRACE_FENTRY,
8614 		.is_attach_btf = true,
8615 		.is_sleepable = true,
8616 		.attach_fn = attach_trace),
8617 	SEC_DEF("fmod_ret.s/", TRACING,
8618 		.expected_attach_type = BPF_MODIFY_RETURN,
8619 		.is_attach_btf = true,
8620 		.is_sleepable = true,
8621 		.attach_fn = attach_trace),
8622 	SEC_DEF("fexit.s/", TRACING,
8623 		.expected_attach_type = BPF_TRACE_FEXIT,
8624 		.is_attach_btf = true,
8625 		.is_sleepable = true,
8626 		.attach_fn = attach_trace),
8627 	SEC_DEF("freplace/", EXT,
8628 		.is_attach_btf = true,
8629 		.attach_fn = attach_trace),
8630 	SEC_DEF("lsm/", LSM,
8631 		.is_attach_btf = true,
8632 		.expected_attach_type = BPF_LSM_MAC,
8633 		.attach_fn = attach_lsm),
8634 	SEC_DEF("lsm.s/", LSM,
8635 		.is_attach_btf = true,
8636 		.is_sleepable = true,
8637 		.expected_attach_type = BPF_LSM_MAC,
8638 		.attach_fn = attach_lsm),
8639 	SEC_DEF("iter/", TRACING,
8640 		.expected_attach_type = BPF_TRACE_ITER,
8641 		.is_attach_btf = true,
8642 		.attach_fn = attach_iter),
8643 	BPF_EAPROG_SEC("xdp_devmap/",		BPF_PROG_TYPE_XDP,
8644 						BPF_XDP_DEVMAP),
8645 	BPF_EAPROG_SEC("xdp_cpumap/",		BPF_PROG_TYPE_XDP,
8646 						BPF_XDP_CPUMAP),
8647 	BPF_APROG_SEC("xdp",			BPF_PROG_TYPE_XDP,
8648 						BPF_XDP),
8649 	BPF_PROG_SEC("perf_event",		BPF_PROG_TYPE_PERF_EVENT),
8650 	BPF_PROG_SEC("lwt_in",			BPF_PROG_TYPE_LWT_IN),
8651 	BPF_PROG_SEC("lwt_out",			BPF_PROG_TYPE_LWT_OUT),
8652 	BPF_PROG_SEC("lwt_xmit",		BPF_PROG_TYPE_LWT_XMIT),
8653 	BPF_PROG_SEC("lwt_seg6local",		BPF_PROG_TYPE_LWT_SEG6LOCAL),
8654 	BPF_APROG_SEC("cgroup_skb/ingress",	BPF_PROG_TYPE_CGROUP_SKB,
8655 						BPF_CGROUP_INET_INGRESS),
8656 	BPF_APROG_SEC("cgroup_skb/egress",	BPF_PROG_TYPE_CGROUP_SKB,
8657 						BPF_CGROUP_INET_EGRESS),
8658 	BPF_APROG_COMPAT("cgroup/skb",		BPF_PROG_TYPE_CGROUP_SKB),
8659 	BPF_EAPROG_SEC("cgroup/sock_create",	BPF_PROG_TYPE_CGROUP_SOCK,
8660 						BPF_CGROUP_INET_SOCK_CREATE),
8661 	BPF_EAPROG_SEC("cgroup/sock_release",	BPF_PROG_TYPE_CGROUP_SOCK,
8662 						BPF_CGROUP_INET_SOCK_RELEASE),
8663 	BPF_APROG_SEC("cgroup/sock",		BPF_PROG_TYPE_CGROUP_SOCK,
8664 						BPF_CGROUP_INET_SOCK_CREATE),
8665 	BPF_EAPROG_SEC("cgroup/post_bind4",	BPF_PROG_TYPE_CGROUP_SOCK,
8666 						BPF_CGROUP_INET4_POST_BIND),
8667 	BPF_EAPROG_SEC("cgroup/post_bind6",	BPF_PROG_TYPE_CGROUP_SOCK,
8668 						BPF_CGROUP_INET6_POST_BIND),
8669 	BPF_APROG_SEC("cgroup/dev",		BPF_PROG_TYPE_CGROUP_DEVICE,
8670 						BPF_CGROUP_DEVICE),
8671 	BPF_APROG_SEC("sockops",		BPF_PROG_TYPE_SOCK_OPS,
8672 						BPF_CGROUP_SOCK_OPS),
8673 	BPF_APROG_SEC("sk_skb/stream_parser",	BPF_PROG_TYPE_SK_SKB,
8674 						BPF_SK_SKB_STREAM_PARSER),
8675 	BPF_APROG_SEC("sk_skb/stream_verdict",	BPF_PROG_TYPE_SK_SKB,
8676 						BPF_SK_SKB_STREAM_VERDICT),
8677 	BPF_APROG_COMPAT("sk_skb",		BPF_PROG_TYPE_SK_SKB),
8678 	BPF_APROG_SEC("sk_msg",			BPF_PROG_TYPE_SK_MSG,
8679 						BPF_SK_MSG_VERDICT),
8680 	BPF_APROG_SEC("lirc_mode2",		BPF_PROG_TYPE_LIRC_MODE2,
8681 						BPF_LIRC_MODE2),
8682 	BPF_APROG_SEC("flow_dissector",		BPF_PROG_TYPE_FLOW_DISSECTOR,
8683 						BPF_FLOW_DISSECTOR),
8684 	BPF_EAPROG_SEC("cgroup/bind4",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8685 						BPF_CGROUP_INET4_BIND),
8686 	BPF_EAPROG_SEC("cgroup/bind6",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8687 						BPF_CGROUP_INET6_BIND),
8688 	BPF_EAPROG_SEC("cgroup/connect4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8689 						BPF_CGROUP_INET4_CONNECT),
8690 	BPF_EAPROG_SEC("cgroup/connect6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8691 						BPF_CGROUP_INET6_CONNECT),
8692 	BPF_EAPROG_SEC("cgroup/sendmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8693 						BPF_CGROUP_UDP4_SENDMSG),
8694 	BPF_EAPROG_SEC("cgroup/sendmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8695 						BPF_CGROUP_UDP6_SENDMSG),
8696 	BPF_EAPROG_SEC("cgroup/recvmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8697 						BPF_CGROUP_UDP4_RECVMSG),
8698 	BPF_EAPROG_SEC("cgroup/recvmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8699 						BPF_CGROUP_UDP6_RECVMSG),
8700 	BPF_EAPROG_SEC("cgroup/getpeername4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8701 						BPF_CGROUP_INET4_GETPEERNAME),
8702 	BPF_EAPROG_SEC("cgroup/getpeername6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8703 						BPF_CGROUP_INET6_GETPEERNAME),
8704 	BPF_EAPROG_SEC("cgroup/getsockname4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8705 						BPF_CGROUP_INET4_GETSOCKNAME),
8706 	BPF_EAPROG_SEC("cgroup/getsockname6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8707 						BPF_CGROUP_INET6_GETSOCKNAME),
8708 	BPF_EAPROG_SEC("cgroup/sysctl",		BPF_PROG_TYPE_CGROUP_SYSCTL,
8709 						BPF_CGROUP_SYSCTL),
8710 	BPF_EAPROG_SEC("cgroup/getsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8711 						BPF_CGROUP_GETSOCKOPT),
8712 	BPF_EAPROG_SEC("cgroup/setsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8713 						BPF_CGROUP_SETSOCKOPT),
8714 	BPF_PROG_SEC("struct_ops",		BPF_PROG_TYPE_STRUCT_OPS),
8715 	BPF_EAPROG_SEC("sk_lookup/",		BPF_PROG_TYPE_SK_LOOKUP,
8716 						BPF_SK_LOOKUP),
8717 };
8718 
8719 #undef BPF_PROG_SEC_IMPL
8720 #undef BPF_PROG_SEC
8721 #undef BPF_APROG_SEC
8722 #undef BPF_EAPROG_SEC
8723 #undef BPF_APROG_COMPAT
8724 #undef SEC_DEF
8725 
8726 #define MAX_TYPE_NAME_SIZE 32
8727 
8728 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8729 {
8730 	int i, n = ARRAY_SIZE(section_defs);
8731 
8732 	for (i = 0; i < n; i++) {
8733 		if (strncmp(sec_name,
8734 			    section_defs[i].sec, section_defs[i].len))
8735 			continue;
8736 		return &section_defs[i];
8737 	}
8738 	return NULL;
8739 }
8740 
8741 static char *libbpf_get_type_names(bool attach_type)
8742 {
8743 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8744 	char *buf;
8745 
8746 	buf = malloc(len);
8747 	if (!buf)
8748 		return NULL;
8749 
8750 	buf[0] = '\0';
8751 	/* Forge string buf with all available names */
8752 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8753 		if (attach_type && !section_defs[i].is_attachable)
8754 			continue;
8755 
8756 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8757 			free(buf);
8758 			return NULL;
8759 		}
8760 		strcat(buf, " ");
8761 		strcat(buf, section_defs[i].sec);
8762 	}
8763 
8764 	return buf;
8765 }
8766 
8767 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8768 			     enum bpf_attach_type *expected_attach_type)
8769 {
8770 	const struct bpf_sec_def *sec_def;
8771 	char *type_names;
8772 
8773 	if (!name)
8774 		return -EINVAL;
8775 
8776 	sec_def = find_sec_def(name);
8777 	if (sec_def) {
8778 		*prog_type = sec_def->prog_type;
8779 		*expected_attach_type = sec_def->expected_attach_type;
8780 		return 0;
8781 	}
8782 
8783 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
8784 	type_names = libbpf_get_type_names(false);
8785 	if (type_names != NULL) {
8786 		pr_debug("supported section(type) names are:%s\n", type_names);
8787 		free(type_names);
8788 	}
8789 
8790 	return -ESRCH;
8791 }
8792 
8793 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8794 						     size_t offset)
8795 {
8796 	struct bpf_map *map;
8797 	size_t i;
8798 
8799 	for (i = 0; i < obj->nr_maps; i++) {
8800 		map = &obj->maps[i];
8801 		if (!bpf_map__is_struct_ops(map))
8802 			continue;
8803 		if (map->sec_offset <= offset &&
8804 		    offset - map->sec_offset < map->def.value_size)
8805 			return map;
8806 	}
8807 
8808 	return NULL;
8809 }
8810 
8811 /* Collect the reloc from ELF and populate the st_ops->progs[] */
8812 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8813 					    GElf_Shdr *shdr, Elf_Data *data)
8814 {
8815 	const struct btf_member *member;
8816 	struct bpf_struct_ops *st_ops;
8817 	struct bpf_program *prog;
8818 	unsigned int shdr_idx;
8819 	const struct btf *btf;
8820 	struct bpf_map *map;
8821 	Elf_Data *symbols;
8822 	unsigned int moff, insn_idx;
8823 	const char *name;
8824 	__u32 member_idx;
8825 	GElf_Sym sym;
8826 	GElf_Rel rel;
8827 	int i, nrels;
8828 
8829 	symbols = obj->efile.symbols;
8830 	btf = obj->btf;
8831 	nrels = shdr->sh_size / shdr->sh_entsize;
8832 	for (i = 0; i < nrels; i++) {
8833 		if (!gelf_getrel(data, i, &rel)) {
8834 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8835 			return -LIBBPF_ERRNO__FORMAT;
8836 		}
8837 
8838 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
8839 			pr_warn("struct_ops reloc: symbol %zx not found\n",
8840 				(size_t)GELF_R_SYM(rel.r_info));
8841 			return -LIBBPF_ERRNO__FORMAT;
8842 		}
8843 
8844 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
8845 		map = find_struct_ops_map_by_offset(obj, rel.r_offset);
8846 		if (!map) {
8847 			pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
8848 				(size_t)rel.r_offset);
8849 			return -EINVAL;
8850 		}
8851 
8852 		moff = rel.r_offset - map->sec_offset;
8853 		shdr_idx = sym.st_shndx;
8854 		st_ops = map->st_ops;
8855 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
8856 			 map->name,
8857 			 (long long)(rel.r_info >> 32),
8858 			 (long long)sym.st_value,
8859 			 shdr_idx, (size_t)rel.r_offset,
8860 			 map->sec_offset, sym.st_name, name);
8861 
8862 		if (shdr_idx >= SHN_LORESERVE) {
8863 			pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
8864 				map->name, (size_t)rel.r_offset, shdr_idx);
8865 			return -LIBBPF_ERRNO__RELOC;
8866 		}
8867 		if (sym.st_value % BPF_INSN_SZ) {
8868 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
8869 				map->name, (unsigned long long)sym.st_value);
8870 			return -LIBBPF_ERRNO__FORMAT;
8871 		}
8872 		insn_idx = sym.st_value / BPF_INSN_SZ;
8873 
8874 		member = find_member_by_offset(st_ops->type, moff * 8);
8875 		if (!member) {
8876 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
8877 				map->name, moff);
8878 			return -EINVAL;
8879 		}
8880 		member_idx = member - btf_members(st_ops->type);
8881 		name = btf__name_by_offset(btf, member->name_off);
8882 
8883 		if (!resolve_func_ptr(btf, member->type, NULL)) {
8884 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
8885 				map->name, name);
8886 			return -EINVAL;
8887 		}
8888 
8889 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
8890 		if (!prog) {
8891 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
8892 				map->name, shdr_idx, name);
8893 			return -EINVAL;
8894 		}
8895 
8896 		if (prog->type == BPF_PROG_TYPE_UNSPEC) {
8897 			const struct bpf_sec_def *sec_def;
8898 
8899 			sec_def = find_sec_def(prog->sec_name);
8900 			if (sec_def &&
8901 			    sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
8902 				/* for pr_warn */
8903 				prog->type = sec_def->prog_type;
8904 				goto invalid_prog;
8905 			}
8906 
8907 			prog->type = BPF_PROG_TYPE_STRUCT_OPS;
8908 			prog->attach_btf_id = st_ops->type_id;
8909 			prog->expected_attach_type = member_idx;
8910 		} else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
8911 			   prog->attach_btf_id != st_ops->type_id ||
8912 			   prog->expected_attach_type != member_idx) {
8913 			goto invalid_prog;
8914 		}
8915 		st_ops->progs[member_idx] = prog;
8916 	}
8917 
8918 	return 0;
8919 
8920 invalid_prog:
8921 	pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
8922 		map->name, prog->name, prog->sec_name, prog->type,
8923 		prog->attach_btf_id, prog->expected_attach_type, name);
8924 	return -EINVAL;
8925 }
8926 
8927 #define BTF_TRACE_PREFIX "btf_trace_"
8928 #define BTF_LSM_PREFIX "bpf_lsm_"
8929 #define BTF_ITER_PREFIX "bpf_iter_"
8930 #define BTF_MAX_NAME_SIZE 128
8931 
8932 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
8933 				   const char *name, __u32 kind)
8934 {
8935 	char btf_type_name[BTF_MAX_NAME_SIZE];
8936 	int ret;
8937 
8938 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
8939 		       "%s%s", prefix, name);
8940 	/* snprintf returns the number of characters written excluding the
8941 	 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
8942 	 * indicates truncation.
8943 	 */
8944 	if (ret < 0 || ret >= sizeof(btf_type_name))
8945 		return -ENAMETOOLONG;
8946 	return btf__find_by_name_kind(btf, btf_type_name, kind);
8947 }
8948 
8949 static inline int find_attach_btf_id(struct btf *btf, const char *name,
8950 				     enum bpf_attach_type attach_type)
8951 {
8952 	int err;
8953 
8954 	if (attach_type == BPF_TRACE_RAW_TP)
8955 		err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
8956 					      BTF_KIND_TYPEDEF);
8957 	else if (attach_type == BPF_LSM_MAC)
8958 		err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
8959 					      BTF_KIND_FUNC);
8960 	else if (attach_type == BPF_TRACE_ITER)
8961 		err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
8962 					      BTF_KIND_FUNC);
8963 	else
8964 		err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
8965 
8966 	return err;
8967 }
8968 
8969 int libbpf_find_vmlinux_btf_id(const char *name,
8970 			       enum bpf_attach_type attach_type)
8971 {
8972 	struct btf *btf;
8973 	int err;
8974 
8975 	btf = libbpf_find_kernel_btf();
8976 	if (IS_ERR(btf)) {
8977 		pr_warn("vmlinux BTF is not found\n");
8978 		return -EINVAL;
8979 	}
8980 
8981 	err = find_attach_btf_id(btf, name, attach_type);
8982 	if (err <= 0)
8983 		pr_warn("%s is not found in vmlinux BTF\n", name);
8984 
8985 	btf__free(btf);
8986 	return err;
8987 }
8988 
8989 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
8990 {
8991 	struct bpf_prog_info_linear *info_linear;
8992 	struct bpf_prog_info *info;
8993 	struct btf *btf = NULL;
8994 	int err = -EINVAL;
8995 
8996 	info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
8997 	if (IS_ERR_OR_NULL(info_linear)) {
8998 		pr_warn("failed get_prog_info_linear for FD %d\n",
8999 			attach_prog_fd);
9000 		return -EINVAL;
9001 	}
9002 	info = &info_linear->info;
9003 	if (!info->btf_id) {
9004 		pr_warn("The target program doesn't have BTF\n");
9005 		goto out;
9006 	}
9007 	if (btf__get_from_id(info->btf_id, &btf)) {
9008 		pr_warn("Failed to get BTF of the program\n");
9009 		goto out;
9010 	}
9011 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9012 	btf__free(btf);
9013 	if (err <= 0) {
9014 		pr_warn("%s is not found in prog's BTF\n", name);
9015 		goto out;
9016 	}
9017 out:
9018 	free(info_linear);
9019 	return err;
9020 }
9021 
9022 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9023 			      enum bpf_attach_type attach_type,
9024 			      int *btf_obj_fd, int *btf_type_id)
9025 {
9026 	int ret, i;
9027 
9028 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9029 	if (ret > 0) {
9030 		*btf_obj_fd = 0; /* vmlinux BTF */
9031 		*btf_type_id = ret;
9032 		return 0;
9033 	}
9034 	if (ret != -ENOENT)
9035 		return ret;
9036 
9037 	ret = load_module_btfs(obj);
9038 	if (ret)
9039 		return ret;
9040 
9041 	for (i = 0; i < obj->btf_module_cnt; i++) {
9042 		const struct module_btf *mod = &obj->btf_modules[i];
9043 
9044 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9045 		if (ret > 0) {
9046 			*btf_obj_fd = mod->fd;
9047 			*btf_type_id = ret;
9048 			return 0;
9049 		}
9050 		if (ret == -ENOENT)
9051 			continue;
9052 
9053 		return ret;
9054 	}
9055 
9056 	return -ESRCH;
9057 }
9058 
9059 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id)
9060 {
9061 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9062 	__u32 attach_prog_fd = prog->attach_prog_fd;
9063 	const char *name = prog->sec_name, *attach_name;
9064 	const struct bpf_sec_def *sec = NULL;
9065 	int i, err;
9066 
9067 	if (!name)
9068 		return -EINVAL;
9069 
9070 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9071 		if (!section_defs[i].is_attach_btf)
9072 			continue;
9073 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9074 			continue;
9075 
9076 		sec = &section_defs[i];
9077 		break;
9078 	}
9079 
9080 	if (!sec) {
9081 		pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name);
9082 		return -ESRCH;
9083 	}
9084 	attach_name = name + sec->len;
9085 
9086 	/* BPF program's BTF ID */
9087 	if (attach_prog_fd) {
9088 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9089 		if (err < 0) {
9090 			pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9091 				 attach_prog_fd, attach_name, err);
9092 			return err;
9093 		}
9094 		*btf_obj_fd = 0;
9095 		*btf_type_id = err;
9096 		return 0;
9097 	}
9098 
9099 	/* kernel/module BTF ID */
9100 	err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9101 	if (err) {
9102 		pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9103 		return err;
9104 	}
9105 	return 0;
9106 }
9107 
9108 int libbpf_attach_type_by_name(const char *name,
9109 			       enum bpf_attach_type *attach_type)
9110 {
9111 	char *type_names;
9112 	int i;
9113 
9114 	if (!name)
9115 		return -EINVAL;
9116 
9117 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9118 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9119 			continue;
9120 		if (!section_defs[i].is_attachable)
9121 			return -EINVAL;
9122 		*attach_type = section_defs[i].expected_attach_type;
9123 		return 0;
9124 	}
9125 	pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9126 	type_names = libbpf_get_type_names(true);
9127 	if (type_names != NULL) {
9128 		pr_debug("attachable section(type) names are:%s\n", type_names);
9129 		free(type_names);
9130 	}
9131 
9132 	return -EINVAL;
9133 }
9134 
9135 int bpf_map__fd(const struct bpf_map *map)
9136 {
9137 	return map ? map->fd : -EINVAL;
9138 }
9139 
9140 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9141 {
9142 	return map ? &map->def : ERR_PTR(-EINVAL);
9143 }
9144 
9145 const char *bpf_map__name(const struct bpf_map *map)
9146 {
9147 	return map ? map->name : NULL;
9148 }
9149 
9150 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9151 {
9152 	return map->def.type;
9153 }
9154 
9155 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9156 {
9157 	if (map->fd >= 0)
9158 		return -EBUSY;
9159 	map->def.type = type;
9160 	return 0;
9161 }
9162 
9163 __u32 bpf_map__map_flags(const struct bpf_map *map)
9164 {
9165 	return map->def.map_flags;
9166 }
9167 
9168 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9169 {
9170 	if (map->fd >= 0)
9171 		return -EBUSY;
9172 	map->def.map_flags = flags;
9173 	return 0;
9174 }
9175 
9176 __u32 bpf_map__numa_node(const struct bpf_map *map)
9177 {
9178 	return map->numa_node;
9179 }
9180 
9181 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9182 {
9183 	if (map->fd >= 0)
9184 		return -EBUSY;
9185 	map->numa_node = numa_node;
9186 	return 0;
9187 }
9188 
9189 __u32 bpf_map__key_size(const struct bpf_map *map)
9190 {
9191 	return map->def.key_size;
9192 }
9193 
9194 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9195 {
9196 	if (map->fd >= 0)
9197 		return -EBUSY;
9198 	map->def.key_size = size;
9199 	return 0;
9200 }
9201 
9202 __u32 bpf_map__value_size(const struct bpf_map *map)
9203 {
9204 	return map->def.value_size;
9205 }
9206 
9207 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9208 {
9209 	if (map->fd >= 0)
9210 		return -EBUSY;
9211 	map->def.value_size = size;
9212 	return 0;
9213 }
9214 
9215 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9216 {
9217 	return map ? map->btf_key_type_id : 0;
9218 }
9219 
9220 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9221 {
9222 	return map ? map->btf_value_type_id : 0;
9223 }
9224 
9225 int bpf_map__set_priv(struct bpf_map *map, void *priv,
9226 		     bpf_map_clear_priv_t clear_priv)
9227 {
9228 	if (!map)
9229 		return -EINVAL;
9230 
9231 	if (map->priv) {
9232 		if (map->clear_priv)
9233 			map->clear_priv(map, map->priv);
9234 	}
9235 
9236 	map->priv = priv;
9237 	map->clear_priv = clear_priv;
9238 	return 0;
9239 }
9240 
9241 void *bpf_map__priv(const struct bpf_map *map)
9242 {
9243 	return map ? map->priv : ERR_PTR(-EINVAL);
9244 }
9245 
9246 int bpf_map__set_initial_value(struct bpf_map *map,
9247 			       const void *data, size_t size)
9248 {
9249 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9250 	    size != map->def.value_size || map->fd >= 0)
9251 		return -EINVAL;
9252 
9253 	memcpy(map->mmaped, data, size);
9254 	return 0;
9255 }
9256 
9257 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9258 {
9259 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9260 }
9261 
9262 bool bpf_map__is_internal(const struct bpf_map *map)
9263 {
9264 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9265 }
9266 
9267 __u32 bpf_map__ifindex(const struct bpf_map *map)
9268 {
9269 	return map->map_ifindex;
9270 }
9271 
9272 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9273 {
9274 	if (map->fd >= 0)
9275 		return -EBUSY;
9276 	map->map_ifindex = ifindex;
9277 	return 0;
9278 }
9279 
9280 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9281 {
9282 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9283 		pr_warn("error: unsupported map type\n");
9284 		return -EINVAL;
9285 	}
9286 	if (map->inner_map_fd != -1) {
9287 		pr_warn("error: inner_map_fd already specified\n");
9288 		return -EINVAL;
9289 	}
9290 	map->inner_map_fd = fd;
9291 	return 0;
9292 }
9293 
9294 static struct bpf_map *
9295 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9296 {
9297 	ssize_t idx;
9298 	struct bpf_map *s, *e;
9299 
9300 	if (!obj || !obj->maps)
9301 		return NULL;
9302 
9303 	s = obj->maps;
9304 	e = obj->maps + obj->nr_maps;
9305 
9306 	if ((m < s) || (m >= e)) {
9307 		pr_warn("error in %s: map handler doesn't belong to object\n",
9308 			 __func__);
9309 		return NULL;
9310 	}
9311 
9312 	idx = (m - obj->maps) + i;
9313 	if (idx >= obj->nr_maps || idx < 0)
9314 		return NULL;
9315 	return &obj->maps[idx];
9316 }
9317 
9318 struct bpf_map *
9319 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9320 {
9321 	if (prev == NULL)
9322 		return obj->maps;
9323 
9324 	return __bpf_map__iter(prev, obj, 1);
9325 }
9326 
9327 struct bpf_map *
9328 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9329 {
9330 	if (next == NULL) {
9331 		if (!obj->nr_maps)
9332 			return NULL;
9333 		return obj->maps + obj->nr_maps - 1;
9334 	}
9335 
9336 	return __bpf_map__iter(next, obj, -1);
9337 }
9338 
9339 struct bpf_map *
9340 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9341 {
9342 	struct bpf_map *pos;
9343 
9344 	bpf_object__for_each_map(pos, obj) {
9345 		if (pos->name && !strcmp(pos->name, name))
9346 			return pos;
9347 	}
9348 	return NULL;
9349 }
9350 
9351 int
9352 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9353 {
9354 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9355 }
9356 
9357 struct bpf_map *
9358 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9359 {
9360 	return ERR_PTR(-ENOTSUP);
9361 }
9362 
9363 long libbpf_get_error(const void *ptr)
9364 {
9365 	return PTR_ERR_OR_ZERO(ptr);
9366 }
9367 
9368 int bpf_prog_load(const char *file, enum bpf_prog_type type,
9369 		  struct bpf_object **pobj, int *prog_fd)
9370 {
9371 	struct bpf_prog_load_attr attr;
9372 
9373 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9374 	attr.file = file;
9375 	attr.prog_type = type;
9376 	attr.expected_attach_type = 0;
9377 
9378 	return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9379 }
9380 
9381 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9382 			struct bpf_object **pobj, int *prog_fd)
9383 {
9384 	struct bpf_object_open_attr open_attr = {};
9385 	struct bpf_program *prog, *first_prog = NULL;
9386 	struct bpf_object *obj;
9387 	struct bpf_map *map;
9388 	int err;
9389 
9390 	if (!attr)
9391 		return -EINVAL;
9392 	if (!attr->file)
9393 		return -EINVAL;
9394 
9395 	open_attr.file = attr->file;
9396 	open_attr.prog_type = attr->prog_type;
9397 
9398 	obj = bpf_object__open_xattr(&open_attr);
9399 	if (IS_ERR_OR_NULL(obj))
9400 		return -ENOENT;
9401 
9402 	bpf_object__for_each_program(prog, obj) {
9403 		enum bpf_attach_type attach_type = attr->expected_attach_type;
9404 		/*
9405 		 * to preserve backwards compatibility, bpf_prog_load treats
9406 		 * attr->prog_type, if specified, as an override to whatever
9407 		 * bpf_object__open guessed
9408 		 */
9409 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9410 			bpf_program__set_type(prog, attr->prog_type);
9411 			bpf_program__set_expected_attach_type(prog,
9412 							      attach_type);
9413 		}
9414 		if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9415 			/*
9416 			 * we haven't guessed from section name and user
9417 			 * didn't provide a fallback type, too bad...
9418 			 */
9419 			bpf_object__close(obj);
9420 			return -EINVAL;
9421 		}
9422 
9423 		prog->prog_ifindex = attr->ifindex;
9424 		prog->log_level = attr->log_level;
9425 		prog->prog_flags |= attr->prog_flags;
9426 		if (!first_prog)
9427 			first_prog = prog;
9428 	}
9429 
9430 	bpf_object__for_each_map(map, obj) {
9431 		if (!bpf_map__is_offload_neutral(map))
9432 			map->map_ifindex = attr->ifindex;
9433 	}
9434 
9435 	if (!first_prog) {
9436 		pr_warn("object file doesn't contain bpf program\n");
9437 		bpf_object__close(obj);
9438 		return -ENOENT;
9439 	}
9440 
9441 	err = bpf_object__load(obj);
9442 	if (err) {
9443 		bpf_object__close(obj);
9444 		return err;
9445 	}
9446 
9447 	*pobj = obj;
9448 	*prog_fd = bpf_program__fd(first_prog);
9449 	return 0;
9450 }
9451 
9452 struct bpf_link {
9453 	int (*detach)(struct bpf_link *link);
9454 	int (*destroy)(struct bpf_link *link);
9455 	char *pin_path;		/* NULL, if not pinned */
9456 	int fd;			/* hook FD, -1 if not applicable */
9457 	bool disconnected;
9458 };
9459 
9460 /* Replace link's underlying BPF program with the new one */
9461 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9462 {
9463 	return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9464 }
9465 
9466 /* Release "ownership" of underlying BPF resource (typically, BPF program
9467  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9468  * link, when destructed through bpf_link__destroy() call won't attempt to
9469  * detach/unregisted that BPF resource. This is useful in situations where,
9470  * say, attached BPF program has to outlive userspace program that attached it
9471  * in the system. Depending on type of BPF program, though, there might be
9472  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9473  * exit of userspace program doesn't trigger automatic detachment and clean up
9474  * inside the kernel.
9475  */
9476 void bpf_link__disconnect(struct bpf_link *link)
9477 {
9478 	link->disconnected = true;
9479 }
9480 
9481 int bpf_link__destroy(struct bpf_link *link)
9482 {
9483 	int err = 0;
9484 
9485 	if (IS_ERR_OR_NULL(link))
9486 		return 0;
9487 
9488 	if (!link->disconnected && link->detach)
9489 		err = link->detach(link);
9490 	if (link->destroy)
9491 		link->destroy(link);
9492 	if (link->pin_path)
9493 		free(link->pin_path);
9494 	free(link);
9495 
9496 	return err;
9497 }
9498 
9499 int bpf_link__fd(const struct bpf_link *link)
9500 {
9501 	return link->fd;
9502 }
9503 
9504 const char *bpf_link__pin_path(const struct bpf_link *link)
9505 {
9506 	return link->pin_path;
9507 }
9508 
9509 static int bpf_link__detach_fd(struct bpf_link *link)
9510 {
9511 	return close(link->fd);
9512 }
9513 
9514 struct bpf_link *bpf_link__open(const char *path)
9515 {
9516 	struct bpf_link *link;
9517 	int fd;
9518 
9519 	fd = bpf_obj_get(path);
9520 	if (fd < 0) {
9521 		fd = -errno;
9522 		pr_warn("failed to open link at %s: %d\n", path, fd);
9523 		return ERR_PTR(fd);
9524 	}
9525 
9526 	link = calloc(1, sizeof(*link));
9527 	if (!link) {
9528 		close(fd);
9529 		return ERR_PTR(-ENOMEM);
9530 	}
9531 	link->detach = &bpf_link__detach_fd;
9532 	link->fd = fd;
9533 
9534 	link->pin_path = strdup(path);
9535 	if (!link->pin_path) {
9536 		bpf_link__destroy(link);
9537 		return ERR_PTR(-ENOMEM);
9538 	}
9539 
9540 	return link;
9541 }
9542 
9543 int bpf_link__detach(struct bpf_link *link)
9544 {
9545 	return bpf_link_detach(link->fd) ? -errno : 0;
9546 }
9547 
9548 int bpf_link__pin(struct bpf_link *link, const char *path)
9549 {
9550 	int err;
9551 
9552 	if (link->pin_path)
9553 		return -EBUSY;
9554 	err = make_parent_dir(path);
9555 	if (err)
9556 		return err;
9557 	err = check_path(path);
9558 	if (err)
9559 		return err;
9560 
9561 	link->pin_path = strdup(path);
9562 	if (!link->pin_path)
9563 		return -ENOMEM;
9564 
9565 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9566 		err = -errno;
9567 		zfree(&link->pin_path);
9568 		return err;
9569 	}
9570 
9571 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9572 	return 0;
9573 }
9574 
9575 int bpf_link__unpin(struct bpf_link *link)
9576 {
9577 	int err;
9578 
9579 	if (!link->pin_path)
9580 		return -EINVAL;
9581 
9582 	err = unlink(link->pin_path);
9583 	if (err != 0)
9584 		return -errno;
9585 
9586 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9587 	zfree(&link->pin_path);
9588 	return 0;
9589 }
9590 
9591 static int bpf_link__detach_perf_event(struct bpf_link *link)
9592 {
9593 	int err;
9594 
9595 	err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9596 	if (err)
9597 		err = -errno;
9598 
9599 	close(link->fd);
9600 	return err;
9601 }
9602 
9603 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9604 						int pfd)
9605 {
9606 	char errmsg[STRERR_BUFSIZE];
9607 	struct bpf_link *link;
9608 	int prog_fd, err;
9609 
9610 	if (pfd < 0) {
9611 		pr_warn("prog '%s': invalid perf event FD %d\n",
9612 			prog->name, pfd);
9613 		return ERR_PTR(-EINVAL);
9614 	}
9615 	prog_fd = bpf_program__fd(prog);
9616 	if (prog_fd < 0) {
9617 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9618 			prog->name);
9619 		return ERR_PTR(-EINVAL);
9620 	}
9621 
9622 	link = calloc(1, sizeof(*link));
9623 	if (!link)
9624 		return ERR_PTR(-ENOMEM);
9625 	link->detach = &bpf_link__detach_perf_event;
9626 	link->fd = pfd;
9627 
9628 	if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9629 		err = -errno;
9630 		free(link);
9631 		pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9632 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9633 		if (err == -EPROTO)
9634 			pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9635 				prog->name, pfd);
9636 		return ERR_PTR(err);
9637 	}
9638 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9639 		err = -errno;
9640 		free(link);
9641 		pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9642 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9643 		return ERR_PTR(err);
9644 	}
9645 	return link;
9646 }
9647 
9648 /*
9649  * this function is expected to parse integer in the range of [0, 2^31-1] from
9650  * given file using scanf format string fmt. If actual parsed value is
9651  * negative, the result might be indistinguishable from error
9652  */
9653 static int parse_uint_from_file(const char *file, const char *fmt)
9654 {
9655 	char buf[STRERR_BUFSIZE];
9656 	int err, ret;
9657 	FILE *f;
9658 
9659 	f = fopen(file, "r");
9660 	if (!f) {
9661 		err = -errno;
9662 		pr_debug("failed to open '%s': %s\n", file,
9663 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9664 		return err;
9665 	}
9666 	err = fscanf(f, fmt, &ret);
9667 	if (err != 1) {
9668 		err = err == EOF ? -EIO : -errno;
9669 		pr_debug("failed to parse '%s': %s\n", file,
9670 			libbpf_strerror_r(err, buf, sizeof(buf)));
9671 		fclose(f);
9672 		return err;
9673 	}
9674 	fclose(f);
9675 	return ret;
9676 }
9677 
9678 static int determine_kprobe_perf_type(void)
9679 {
9680 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9681 
9682 	return parse_uint_from_file(file, "%d\n");
9683 }
9684 
9685 static int determine_uprobe_perf_type(void)
9686 {
9687 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9688 
9689 	return parse_uint_from_file(file, "%d\n");
9690 }
9691 
9692 static int determine_kprobe_retprobe_bit(void)
9693 {
9694 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9695 
9696 	return parse_uint_from_file(file, "config:%d\n");
9697 }
9698 
9699 static int determine_uprobe_retprobe_bit(void)
9700 {
9701 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9702 
9703 	return parse_uint_from_file(file, "config:%d\n");
9704 }
9705 
9706 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9707 				 uint64_t offset, int pid)
9708 {
9709 	struct perf_event_attr attr = {};
9710 	char errmsg[STRERR_BUFSIZE];
9711 	int type, pfd, err;
9712 
9713 	type = uprobe ? determine_uprobe_perf_type()
9714 		      : determine_kprobe_perf_type();
9715 	if (type < 0) {
9716 		pr_warn("failed to determine %s perf type: %s\n",
9717 			uprobe ? "uprobe" : "kprobe",
9718 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9719 		return type;
9720 	}
9721 	if (retprobe) {
9722 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9723 				 : determine_kprobe_retprobe_bit();
9724 
9725 		if (bit < 0) {
9726 			pr_warn("failed to determine %s retprobe bit: %s\n",
9727 				uprobe ? "uprobe" : "kprobe",
9728 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9729 			return bit;
9730 		}
9731 		attr.config |= 1 << bit;
9732 	}
9733 	attr.size = sizeof(attr);
9734 	attr.type = type;
9735 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9736 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9737 
9738 	/* pid filter is meaningful only for uprobes */
9739 	pfd = syscall(__NR_perf_event_open, &attr,
9740 		      pid < 0 ? -1 : pid /* pid */,
9741 		      pid == -1 ? 0 : -1 /* cpu */,
9742 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9743 	if (pfd < 0) {
9744 		err = -errno;
9745 		pr_warn("%s perf_event_open() failed: %s\n",
9746 			uprobe ? "uprobe" : "kprobe",
9747 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9748 		return err;
9749 	}
9750 	return pfd;
9751 }
9752 
9753 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9754 					    bool retprobe,
9755 					    const char *func_name)
9756 {
9757 	char errmsg[STRERR_BUFSIZE];
9758 	struct bpf_link *link;
9759 	int pfd, err;
9760 
9761 	pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
9762 				    0 /* offset */, -1 /* pid */);
9763 	if (pfd < 0) {
9764 		pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
9765 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9766 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9767 		return ERR_PTR(pfd);
9768 	}
9769 	link = bpf_program__attach_perf_event(prog, pfd);
9770 	if (IS_ERR(link)) {
9771 		close(pfd);
9772 		err = PTR_ERR(link);
9773 		pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
9774 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
9775 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9776 		return link;
9777 	}
9778 	return link;
9779 }
9780 
9781 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
9782 				      struct bpf_program *prog)
9783 {
9784 	const char *func_name;
9785 	bool retprobe;
9786 
9787 	func_name = prog->sec_name + sec->len;
9788 	retprobe = strcmp(sec->sec, "kretprobe/") == 0;
9789 
9790 	return bpf_program__attach_kprobe(prog, retprobe, func_name);
9791 }
9792 
9793 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
9794 					    bool retprobe, pid_t pid,
9795 					    const char *binary_path,
9796 					    size_t func_offset)
9797 {
9798 	char errmsg[STRERR_BUFSIZE];
9799 	struct bpf_link *link;
9800 	int pfd, err;
9801 
9802 	pfd = perf_event_open_probe(true /* uprobe */, retprobe,
9803 				    binary_path, func_offset, pid);
9804 	if (pfd < 0) {
9805 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
9806 			prog->name, retprobe ? "uretprobe" : "uprobe",
9807 			binary_path, func_offset,
9808 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9809 		return ERR_PTR(pfd);
9810 	}
9811 	link = bpf_program__attach_perf_event(prog, pfd);
9812 	if (IS_ERR(link)) {
9813 		close(pfd);
9814 		err = PTR_ERR(link);
9815 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
9816 			prog->name, retprobe ? "uretprobe" : "uprobe",
9817 			binary_path, func_offset,
9818 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9819 		return link;
9820 	}
9821 	return link;
9822 }
9823 
9824 static int determine_tracepoint_id(const char *tp_category,
9825 				   const char *tp_name)
9826 {
9827 	char file[PATH_MAX];
9828 	int ret;
9829 
9830 	ret = snprintf(file, sizeof(file),
9831 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
9832 		       tp_category, tp_name);
9833 	if (ret < 0)
9834 		return -errno;
9835 	if (ret >= sizeof(file)) {
9836 		pr_debug("tracepoint %s/%s path is too long\n",
9837 			 tp_category, tp_name);
9838 		return -E2BIG;
9839 	}
9840 	return parse_uint_from_file(file, "%d\n");
9841 }
9842 
9843 static int perf_event_open_tracepoint(const char *tp_category,
9844 				      const char *tp_name)
9845 {
9846 	struct perf_event_attr attr = {};
9847 	char errmsg[STRERR_BUFSIZE];
9848 	int tp_id, pfd, err;
9849 
9850 	tp_id = determine_tracepoint_id(tp_category, tp_name);
9851 	if (tp_id < 0) {
9852 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
9853 			tp_category, tp_name,
9854 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
9855 		return tp_id;
9856 	}
9857 
9858 	attr.type = PERF_TYPE_TRACEPOINT;
9859 	attr.size = sizeof(attr);
9860 	attr.config = tp_id;
9861 
9862 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
9863 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9864 	if (pfd < 0) {
9865 		err = -errno;
9866 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
9867 			tp_category, tp_name,
9868 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9869 		return err;
9870 	}
9871 	return pfd;
9872 }
9873 
9874 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
9875 						const char *tp_category,
9876 						const char *tp_name)
9877 {
9878 	char errmsg[STRERR_BUFSIZE];
9879 	struct bpf_link *link;
9880 	int pfd, err;
9881 
9882 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
9883 	if (pfd < 0) {
9884 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
9885 			prog->name, tp_category, tp_name,
9886 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9887 		return ERR_PTR(pfd);
9888 	}
9889 	link = bpf_program__attach_perf_event(prog, pfd);
9890 	if (IS_ERR(link)) {
9891 		close(pfd);
9892 		err = PTR_ERR(link);
9893 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
9894 			prog->name, tp_category, tp_name,
9895 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9896 		return link;
9897 	}
9898 	return link;
9899 }
9900 
9901 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
9902 				  struct bpf_program *prog)
9903 {
9904 	char *sec_name, *tp_cat, *tp_name;
9905 	struct bpf_link *link;
9906 
9907 	sec_name = strdup(prog->sec_name);
9908 	if (!sec_name)
9909 		return ERR_PTR(-ENOMEM);
9910 
9911 	/* extract "tp/<category>/<name>" */
9912 	tp_cat = sec_name + sec->len;
9913 	tp_name = strchr(tp_cat, '/');
9914 	if (!tp_name) {
9915 		link = ERR_PTR(-EINVAL);
9916 		goto out;
9917 	}
9918 	*tp_name = '\0';
9919 	tp_name++;
9920 
9921 	link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
9922 out:
9923 	free(sec_name);
9924 	return link;
9925 }
9926 
9927 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
9928 						    const char *tp_name)
9929 {
9930 	char errmsg[STRERR_BUFSIZE];
9931 	struct bpf_link *link;
9932 	int prog_fd, pfd;
9933 
9934 	prog_fd = bpf_program__fd(prog);
9935 	if (prog_fd < 0) {
9936 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9937 		return ERR_PTR(-EINVAL);
9938 	}
9939 
9940 	link = calloc(1, sizeof(*link));
9941 	if (!link)
9942 		return ERR_PTR(-ENOMEM);
9943 	link->detach = &bpf_link__detach_fd;
9944 
9945 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
9946 	if (pfd < 0) {
9947 		pfd = -errno;
9948 		free(link);
9949 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
9950 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9951 		return ERR_PTR(pfd);
9952 	}
9953 	link->fd = pfd;
9954 	return link;
9955 }
9956 
9957 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
9958 				      struct bpf_program *prog)
9959 {
9960 	const char *tp_name = prog->sec_name + sec->len;
9961 
9962 	return bpf_program__attach_raw_tracepoint(prog, tp_name);
9963 }
9964 
9965 /* Common logic for all BPF program types that attach to a btf_id */
9966 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
9967 {
9968 	char errmsg[STRERR_BUFSIZE];
9969 	struct bpf_link *link;
9970 	int prog_fd, pfd;
9971 
9972 	prog_fd = bpf_program__fd(prog);
9973 	if (prog_fd < 0) {
9974 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
9975 		return ERR_PTR(-EINVAL);
9976 	}
9977 
9978 	link = calloc(1, sizeof(*link));
9979 	if (!link)
9980 		return ERR_PTR(-ENOMEM);
9981 	link->detach = &bpf_link__detach_fd;
9982 
9983 	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
9984 	if (pfd < 0) {
9985 		pfd = -errno;
9986 		free(link);
9987 		pr_warn("prog '%s': failed to attach: %s\n",
9988 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
9989 		return ERR_PTR(pfd);
9990 	}
9991 	link->fd = pfd;
9992 	return (struct bpf_link *)link;
9993 }
9994 
9995 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
9996 {
9997 	return bpf_program__attach_btf_id(prog);
9998 }
9999 
10000 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
10001 {
10002 	return bpf_program__attach_btf_id(prog);
10003 }
10004 
10005 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
10006 				     struct bpf_program *prog)
10007 {
10008 	return bpf_program__attach_trace(prog);
10009 }
10010 
10011 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
10012 				   struct bpf_program *prog)
10013 {
10014 	return bpf_program__attach_lsm(prog);
10015 }
10016 
10017 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
10018 				    struct bpf_program *prog)
10019 {
10020 	return bpf_program__attach_iter(prog, NULL);
10021 }
10022 
10023 static struct bpf_link *
10024 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
10025 		       const char *target_name)
10026 {
10027 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
10028 			    .target_btf_id = btf_id);
10029 	enum bpf_attach_type attach_type;
10030 	char errmsg[STRERR_BUFSIZE];
10031 	struct bpf_link *link;
10032 	int prog_fd, link_fd;
10033 
10034 	prog_fd = bpf_program__fd(prog);
10035 	if (prog_fd < 0) {
10036 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10037 		return ERR_PTR(-EINVAL);
10038 	}
10039 
10040 	link = calloc(1, sizeof(*link));
10041 	if (!link)
10042 		return ERR_PTR(-ENOMEM);
10043 	link->detach = &bpf_link__detach_fd;
10044 
10045 	attach_type = bpf_program__get_expected_attach_type(prog);
10046 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
10047 	if (link_fd < 0) {
10048 		link_fd = -errno;
10049 		free(link);
10050 		pr_warn("prog '%s': failed to attach to %s: %s\n",
10051 			prog->name, target_name,
10052 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10053 		return ERR_PTR(link_fd);
10054 	}
10055 	link->fd = link_fd;
10056 	return link;
10057 }
10058 
10059 struct bpf_link *
10060 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
10061 {
10062 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
10063 }
10064 
10065 struct bpf_link *
10066 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
10067 {
10068 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
10069 }
10070 
10071 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
10072 {
10073 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
10074 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
10075 }
10076 
10077 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
10078 					      int target_fd,
10079 					      const char *attach_func_name)
10080 {
10081 	int btf_id;
10082 
10083 	if (!!target_fd != !!attach_func_name) {
10084 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
10085 			prog->name);
10086 		return ERR_PTR(-EINVAL);
10087 	}
10088 
10089 	if (prog->type != BPF_PROG_TYPE_EXT) {
10090 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
10091 			prog->name);
10092 		return ERR_PTR(-EINVAL);
10093 	}
10094 
10095 	if (target_fd) {
10096 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
10097 		if (btf_id < 0)
10098 			return ERR_PTR(btf_id);
10099 
10100 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10101 	} else {
10102 		/* no target, so use raw_tracepoint_open for compatibility
10103 		 * with old kernels
10104 		 */
10105 		return bpf_program__attach_trace(prog);
10106 	}
10107 }
10108 
10109 struct bpf_link *
10110 bpf_program__attach_iter(struct bpf_program *prog,
10111 			 const struct bpf_iter_attach_opts *opts)
10112 {
10113 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10114 	char errmsg[STRERR_BUFSIZE];
10115 	struct bpf_link *link;
10116 	int prog_fd, link_fd;
10117 	__u32 target_fd = 0;
10118 
10119 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10120 		return ERR_PTR(-EINVAL);
10121 
10122 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10123 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10124 
10125 	prog_fd = bpf_program__fd(prog);
10126 	if (prog_fd < 0) {
10127 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10128 		return ERR_PTR(-EINVAL);
10129 	}
10130 
10131 	link = calloc(1, sizeof(*link));
10132 	if (!link)
10133 		return ERR_PTR(-ENOMEM);
10134 	link->detach = &bpf_link__detach_fd;
10135 
10136 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10137 				  &link_create_opts);
10138 	if (link_fd < 0) {
10139 		link_fd = -errno;
10140 		free(link);
10141 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
10142 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10143 		return ERR_PTR(link_fd);
10144 	}
10145 	link->fd = link_fd;
10146 	return link;
10147 }
10148 
10149 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
10150 {
10151 	const struct bpf_sec_def *sec_def;
10152 
10153 	sec_def = find_sec_def(prog->sec_name);
10154 	if (!sec_def || !sec_def->attach_fn)
10155 		return ERR_PTR(-ESRCH);
10156 
10157 	return sec_def->attach_fn(sec_def, prog);
10158 }
10159 
10160 static int bpf_link__detach_struct_ops(struct bpf_link *link)
10161 {
10162 	__u32 zero = 0;
10163 
10164 	if (bpf_map_delete_elem(link->fd, &zero))
10165 		return -errno;
10166 
10167 	return 0;
10168 }
10169 
10170 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
10171 {
10172 	struct bpf_struct_ops *st_ops;
10173 	struct bpf_link *link;
10174 	__u32 i, zero = 0;
10175 	int err;
10176 
10177 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
10178 		return ERR_PTR(-EINVAL);
10179 
10180 	link = calloc(1, sizeof(*link));
10181 	if (!link)
10182 		return ERR_PTR(-EINVAL);
10183 
10184 	st_ops = map->st_ops;
10185 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
10186 		struct bpf_program *prog = st_ops->progs[i];
10187 		void *kern_data;
10188 		int prog_fd;
10189 
10190 		if (!prog)
10191 			continue;
10192 
10193 		prog_fd = bpf_program__fd(prog);
10194 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
10195 		*(unsigned long *)kern_data = prog_fd;
10196 	}
10197 
10198 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
10199 	if (err) {
10200 		err = -errno;
10201 		free(link);
10202 		return ERR_PTR(err);
10203 	}
10204 
10205 	link->detach = bpf_link__detach_struct_ops;
10206 	link->fd = map->fd;
10207 
10208 	return link;
10209 }
10210 
10211 enum bpf_perf_event_ret
10212 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
10213 			   void **copy_mem, size_t *copy_size,
10214 			   bpf_perf_event_print_t fn, void *private_data)
10215 {
10216 	struct perf_event_mmap_page *header = mmap_mem;
10217 	__u64 data_head = ring_buffer_read_head(header);
10218 	__u64 data_tail = header->data_tail;
10219 	void *base = ((__u8 *)header) + page_size;
10220 	int ret = LIBBPF_PERF_EVENT_CONT;
10221 	struct perf_event_header *ehdr;
10222 	size_t ehdr_size;
10223 
10224 	while (data_head != data_tail) {
10225 		ehdr = base + (data_tail & (mmap_size - 1));
10226 		ehdr_size = ehdr->size;
10227 
10228 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
10229 			void *copy_start = ehdr;
10230 			size_t len_first = base + mmap_size - copy_start;
10231 			size_t len_secnd = ehdr_size - len_first;
10232 
10233 			if (*copy_size < ehdr_size) {
10234 				free(*copy_mem);
10235 				*copy_mem = malloc(ehdr_size);
10236 				if (!*copy_mem) {
10237 					*copy_size = 0;
10238 					ret = LIBBPF_PERF_EVENT_ERROR;
10239 					break;
10240 				}
10241 				*copy_size = ehdr_size;
10242 			}
10243 
10244 			memcpy(*copy_mem, copy_start, len_first);
10245 			memcpy(*copy_mem + len_first, base, len_secnd);
10246 			ehdr = *copy_mem;
10247 		}
10248 
10249 		ret = fn(ehdr, private_data);
10250 		data_tail += ehdr_size;
10251 		if (ret != LIBBPF_PERF_EVENT_CONT)
10252 			break;
10253 	}
10254 
10255 	ring_buffer_write_tail(header, data_tail);
10256 	return ret;
10257 }
10258 
10259 struct perf_buffer;
10260 
10261 struct perf_buffer_params {
10262 	struct perf_event_attr *attr;
10263 	/* if event_cb is specified, it takes precendence */
10264 	perf_buffer_event_fn event_cb;
10265 	/* sample_cb and lost_cb are higher-level common-case callbacks */
10266 	perf_buffer_sample_fn sample_cb;
10267 	perf_buffer_lost_fn lost_cb;
10268 	void *ctx;
10269 	int cpu_cnt;
10270 	int *cpus;
10271 	int *map_keys;
10272 };
10273 
10274 struct perf_cpu_buf {
10275 	struct perf_buffer *pb;
10276 	void *base; /* mmap()'ed memory */
10277 	void *buf; /* for reconstructing segmented data */
10278 	size_t buf_size;
10279 	int fd;
10280 	int cpu;
10281 	int map_key;
10282 };
10283 
10284 struct perf_buffer {
10285 	perf_buffer_event_fn event_cb;
10286 	perf_buffer_sample_fn sample_cb;
10287 	perf_buffer_lost_fn lost_cb;
10288 	void *ctx; /* passed into callbacks */
10289 
10290 	size_t page_size;
10291 	size_t mmap_size;
10292 	struct perf_cpu_buf **cpu_bufs;
10293 	struct epoll_event *events;
10294 	int cpu_cnt; /* number of allocated CPU buffers */
10295 	int epoll_fd; /* perf event FD */
10296 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
10297 };
10298 
10299 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
10300 				      struct perf_cpu_buf *cpu_buf)
10301 {
10302 	if (!cpu_buf)
10303 		return;
10304 	if (cpu_buf->base &&
10305 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
10306 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
10307 	if (cpu_buf->fd >= 0) {
10308 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
10309 		close(cpu_buf->fd);
10310 	}
10311 	free(cpu_buf->buf);
10312 	free(cpu_buf);
10313 }
10314 
10315 void perf_buffer__free(struct perf_buffer *pb)
10316 {
10317 	int i;
10318 
10319 	if (IS_ERR_OR_NULL(pb))
10320 		return;
10321 	if (pb->cpu_bufs) {
10322 		for (i = 0; i < pb->cpu_cnt; i++) {
10323 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10324 
10325 			if (!cpu_buf)
10326 				continue;
10327 
10328 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10329 			perf_buffer__free_cpu_buf(pb, cpu_buf);
10330 		}
10331 		free(pb->cpu_bufs);
10332 	}
10333 	if (pb->epoll_fd >= 0)
10334 		close(pb->epoll_fd);
10335 	free(pb->events);
10336 	free(pb);
10337 }
10338 
10339 static struct perf_cpu_buf *
10340 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10341 			  int cpu, int map_key)
10342 {
10343 	struct perf_cpu_buf *cpu_buf;
10344 	char msg[STRERR_BUFSIZE];
10345 	int err;
10346 
10347 	cpu_buf = calloc(1, sizeof(*cpu_buf));
10348 	if (!cpu_buf)
10349 		return ERR_PTR(-ENOMEM);
10350 
10351 	cpu_buf->pb = pb;
10352 	cpu_buf->cpu = cpu;
10353 	cpu_buf->map_key = map_key;
10354 
10355 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10356 			      -1, PERF_FLAG_FD_CLOEXEC);
10357 	if (cpu_buf->fd < 0) {
10358 		err = -errno;
10359 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10360 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10361 		goto error;
10362 	}
10363 
10364 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10365 			     PROT_READ | PROT_WRITE, MAP_SHARED,
10366 			     cpu_buf->fd, 0);
10367 	if (cpu_buf->base == MAP_FAILED) {
10368 		cpu_buf->base = NULL;
10369 		err = -errno;
10370 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10371 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10372 		goto error;
10373 	}
10374 
10375 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10376 		err = -errno;
10377 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10378 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10379 		goto error;
10380 	}
10381 
10382 	return cpu_buf;
10383 
10384 error:
10385 	perf_buffer__free_cpu_buf(pb, cpu_buf);
10386 	return (struct perf_cpu_buf *)ERR_PTR(err);
10387 }
10388 
10389 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10390 					      struct perf_buffer_params *p);
10391 
10392 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10393 				     const struct perf_buffer_opts *opts)
10394 {
10395 	struct perf_buffer_params p = {};
10396 	struct perf_event_attr attr = { 0, };
10397 
10398 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10399 	attr.type = PERF_TYPE_SOFTWARE;
10400 	attr.sample_type = PERF_SAMPLE_RAW;
10401 	attr.sample_period = 1;
10402 	attr.wakeup_events = 1;
10403 
10404 	p.attr = &attr;
10405 	p.sample_cb = opts ? opts->sample_cb : NULL;
10406 	p.lost_cb = opts ? opts->lost_cb : NULL;
10407 	p.ctx = opts ? opts->ctx : NULL;
10408 
10409 	return __perf_buffer__new(map_fd, page_cnt, &p);
10410 }
10411 
10412 struct perf_buffer *
10413 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10414 		     const struct perf_buffer_raw_opts *opts)
10415 {
10416 	struct perf_buffer_params p = {};
10417 
10418 	p.attr = opts->attr;
10419 	p.event_cb = opts->event_cb;
10420 	p.ctx = opts->ctx;
10421 	p.cpu_cnt = opts->cpu_cnt;
10422 	p.cpus = opts->cpus;
10423 	p.map_keys = opts->map_keys;
10424 
10425 	return __perf_buffer__new(map_fd, page_cnt, &p);
10426 }
10427 
10428 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10429 					      struct perf_buffer_params *p)
10430 {
10431 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
10432 	struct bpf_map_info map;
10433 	char msg[STRERR_BUFSIZE];
10434 	struct perf_buffer *pb;
10435 	bool *online = NULL;
10436 	__u32 map_info_len;
10437 	int err, i, j, n;
10438 
10439 	if (page_cnt & (page_cnt - 1)) {
10440 		pr_warn("page count should be power of two, but is %zu\n",
10441 			page_cnt);
10442 		return ERR_PTR(-EINVAL);
10443 	}
10444 
10445 	/* best-effort sanity checks */
10446 	memset(&map, 0, sizeof(map));
10447 	map_info_len = sizeof(map);
10448 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10449 	if (err) {
10450 		err = -errno;
10451 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10452 		 * -EBADFD, -EFAULT, or -E2BIG on real error
10453 		 */
10454 		if (err != -EINVAL) {
10455 			pr_warn("failed to get map info for map FD %d: %s\n",
10456 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10457 			return ERR_PTR(err);
10458 		}
10459 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10460 			 map_fd);
10461 	} else {
10462 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10463 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10464 				map.name);
10465 			return ERR_PTR(-EINVAL);
10466 		}
10467 	}
10468 
10469 	pb = calloc(1, sizeof(*pb));
10470 	if (!pb)
10471 		return ERR_PTR(-ENOMEM);
10472 
10473 	pb->event_cb = p->event_cb;
10474 	pb->sample_cb = p->sample_cb;
10475 	pb->lost_cb = p->lost_cb;
10476 	pb->ctx = p->ctx;
10477 
10478 	pb->page_size = getpagesize();
10479 	pb->mmap_size = pb->page_size * page_cnt;
10480 	pb->map_fd = map_fd;
10481 
10482 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10483 	if (pb->epoll_fd < 0) {
10484 		err = -errno;
10485 		pr_warn("failed to create epoll instance: %s\n",
10486 			libbpf_strerror_r(err, msg, sizeof(msg)));
10487 		goto error;
10488 	}
10489 
10490 	if (p->cpu_cnt > 0) {
10491 		pb->cpu_cnt = p->cpu_cnt;
10492 	} else {
10493 		pb->cpu_cnt = libbpf_num_possible_cpus();
10494 		if (pb->cpu_cnt < 0) {
10495 			err = pb->cpu_cnt;
10496 			goto error;
10497 		}
10498 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
10499 			pb->cpu_cnt = map.max_entries;
10500 	}
10501 
10502 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10503 	if (!pb->events) {
10504 		err = -ENOMEM;
10505 		pr_warn("failed to allocate events: out of memory\n");
10506 		goto error;
10507 	}
10508 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10509 	if (!pb->cpu_bufs) {
10510 		err = -ENOMEM;
10511 		pr_warn("failed to allocate buffers: out of memory\n");
10512 		goto error;
10513 	}
10514 
10515 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10516 	if (err) {
10517 		pr_warn("failed to get online CPU mask: %d\n", err);
10518 		goto error;
10519 	}
10520 
10521 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10522 		struct perf_cpu_buf *cpu_buf;
10523 		int cpu, map_key;
10524 
10525 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10526 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10527 
10528 		/* in case user didn't explicitly requested particular CPUs to
10529 		 * be attached to, skip offline/not present CPUs
10530 		 */
10531 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10532 			continue;
10533 
10534 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10535 		if (IS_ERR(cpu_buf)) {
10536 			err = PTR_ERR(cpu_buf);
10537 			goto error;
10538 		}
10539 
10540 		pb->cpu_bufs[j] = cpu_buf;
10541 
10542 		err = bpf_map_update_elem(pb->map_fd, &map_key,
10543 					  &cpu_buf->fd, 0);
10544 		if (err) {
10545 			err = -errno;
10546 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10547 				cpu, map_key, cpu_buf->fd,
10548 				libbpf_strerror_r(err, msg, sizeof(msg)));
10549 			goto error;
10550 		}
10551 
10552 		pb->events[j].events = EPOLLIN;
10553 		pb->events[j].data.ptr = cpu_buf;
10554 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10555 			      &pb->events[j]) < 0) {
10556 			err = -errno;
10557 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10558 				cpu, cpu_buf->fd,
10559 				libbpf_strerror_r(err, msg, sizeof(msg)));
10560 			goto error;
10561 		}
10562 		j++;
10563 	}
10564 	pb->cpu_cnt = j;
10565 	free(online);
10566 
10567 	return pb;
10568 
10569 error:
10570 	free(online);
10571 	if (pb)
10572 		perf_buffer__free(pb);
10573 	return ERR_PTR(err);
10574 }
10575 
10576 struct perf_sample_raw {
10577 	struct perf_event_header header;
10578 	uint32_t size;
10579 	char data[];
10580 };
10581 
10582 struct perf_sample_lost {
10583 	struct perf_event_header header;
10584 	uint64_t id;
10585 	uint64_t lost;
10586 	uint64_t sample_id;
10587 };
10588 
10589 static enum bpf_perf_event_ret
10590 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10591 {
10592 	struct perf_cpu_buf *cpu_buf = ctx;
10593 	struct perf_buffer *pb = cpu_buf->pb;
10594 	void *data = e;
10595 
10596 	/* user wants full control over parsing perf event */
10597 	if (pb->event_cb)
10598 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10599 
10600 	switch (e->type) {
10601 	case PERF_RECORD_SAMPLE: {
10602 		struct perf_sample_raw *s = data;
10603 
10604 		if (pb->sample_cb)
10605 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10606 		break;
10607 	}
10608 	case PERF_RECORD_LOST: {
10609 		struct perf_sample_lost *s = data;
10610 
10611 		if (pb->lost_cb)
10612 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10613 		break;
10614 	}
10615 	default:
10616 		pr_warn("unknown perf sample type %d\n", e->type);
10617 		return LIBBPF_PERF_EVENT_ERROR;
10618 	}
10619 	return LIBBPF_PERF_EVENT_CONT;
10620 }
10621 
10622 static int perf_buffer__process_records(struct perf_buffer *pb,
10623 					struct perf_cpu_buf *cpu_buf)
10624 {
10625 	enum bpf_perf_event_ret ret;
10626 
10627 	ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10628 					 pb->page_size, &cpu_buf->buf,
10629 					 &cpu_buf->buf_size,
10630 					 perf_buffer__process_record, cpu_buf);
10631 	if (ret != LIBBPF_PERF_EVENT_CONT)
10632 		return ret;
10633 	return 0;
10634 }
10635 
10636 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10637 {
10638 	return pb->epoll_fd;
10639 }
10640 
10641 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10642 {
10643 	int i, cnt, err;
10644 
10645 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10646 	for (i = 0; i < cnt; i++) {
10647 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10648 
10649 		err = perf_buffer__process_records(pb, cpu_buf);
10650 		if (err) {
10651 			pr_warn("error while processing records: %d\n", err);
10652 			return err;
10653 		}
10654 	}
10655 	return cnt < 0 ? -errno : cnt;
10656 }
10657 
10658 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10659  * manager.
10660  */
10661 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10662 {
10663 	return pb->cpu_cnt;
10664 }
10665 
10666 /*
10667  * Return perf_event FD of a ring buffer in *buf_idx* slot of
10668  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10669  * select()/poll()/epoll() Linux syscalls.
10670  */
10671 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10672 {
10673 	struct perf_cpu_buf *cpu_buf;
10674 
10675 	if (buf_idx >= pb->cpu_cnt)
10676 		return -EINVAL;
10677 
10678 	cpu_buf = pb->cpu_bufs[buf_idx];
10679 	if (!cpu_buf)
10680 		return -ENOENT;
10681 
10682 	return cpu_buf->fd;
10683 }
10684 
10685 /*
10686  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10687  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10688  * consume, do nothing and return success.
10689  * Returns:
10690  *   - 0 on success;
10691  *   - <0 on failure.
10692  */
10693 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10694 {
10695 	struct perf_cpu_buf *cpu_buf;
10696 
10697 	if (buf_idx >= pb->cpu_cnt)
10698 		return -EINVAL;
10699 
10700 	cpu_buf = pb->cpu_bufs[buf_idx];
10701 	if (!cpu_buf)
10702 		return -ENOENT;
10703 
10704 	return perf_buffer__process_records(pb, cpu_buf);
10705 }
10706 
10707 int perf_buffer__consume(struct perf_buffer *pb)
10708 {
10709 	int i, err;
10710 
10711 	for (i = 0; i < pb->cpu_cnt; i++) {
10712 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10713 
10714 		if (!cpu_buf)
10715 			continue;
10716 
10717 		err = perf_buffer__process_records(pb, cpu_buf);
10718 		if (err) {
10719 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10720 			return err;
10721 		}
10722 	}
10723 	return 0;
10724 }
10725 
10726 struct bpf_prog_info_array_desc {
10727 	int	array_offset;	/* e.g. offset of jited_prog_insns */
10728 	int	count_offset;	/* e.g. offset of jited_prog_len */
10729 	int	size_offset;	/* > 0: offset of rec size,
10730 				 * < 0: fix size of -size_offset
10731 				 */
10732 };
10733 
10734 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10735 	[BPF_PROG_INFO_JITED_INSNS] = {
10736 		offsetof(struct bpf_prog_info, jited_prog_insns),
10737 		offsetof(struct bpf_prog_info, jited_prog_len),
10738 		-1,
10739 	},
10740 	[BPF_PROG_INFO_XLATED_INSNS] = {
10741 		offsetof(struct bpf_prog_info, xlated_prog_insns),
10742 		offsetof(struct bpf_prog_info, xlated_prog_len),
10743 		-1,
10744 	},
10745 	[BPF_PROG_INFO_MAP_IDS] = {
10746 		offsetof(struct bpf_prog_info, map_ids),
10747 		offsetof(struct bpf_prog_info, nr_map_ids),
10748 		-(int)sizeof(__u32),
10749 	},
10750 	[BPF_PROG_INFO_JITED_KSYMS] = {
10751 		offsetof(struct bpf_prog_info, jited_ksyms),
10752 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
10753 		-(int)sizeof(__u64),
10754 	},
10755 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
10756 		offsetof(struct bpf_prog_info, jited_func_lens),
10757 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
10758 		-(int)sizeof(__u32),
10759 	},
10760 	[BPF_PROG_INFO_FUNC_INFO] = {
10761 		offsetof(struct bpf_prog_info, func_info),
10762 		offsetof(struct bpf_prog_info, nr_func_info),
10763 		offsetof(struct bpf_prog_info, func_info_rec_size),
10764 	},
10765 	[BPF_PROG_INFO_LINE_INFO] = {
10766 		offsetof(struct bpf_prog_info, line_info),
10767 		offsetof(struct bpf_prog_info, nr_line_info),
10768 		offsetof(struct bpf_prog_info, line_info_rec_size),
10769 	},
10770 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
10771 		offsetof(struct bpf_prog_info, jited_line_info),
10772 		offsetof(struct bpf_prog_info, nr_jited_line_info),
10773 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
10774 	},
10775 	[BPF_PROG_INFO_PROG_TAGS] = {
10776 		offsetof(struct bpf_prog_info, prog_tags),
10777 		offsetof(struct bpf_prog_info, nr_prog_tags),
10778 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
10779 	},
10780 
10781 };
10782 
10783 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
10784 					   int offset)
10785 {
10786 	__u32 *array = (__u32 *)info;
10787 
10788 	if (offset >= 0)
10789 		return array[offset / sizeof(__u32)];
10790 	return -(int)offset;
10791 }
10792 
10793 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
10794 					   int offset)
10795 {
10796 	__u64 *array = (__u64 *)info;
10797 
10798 	if (offset >= 0)
10799 		return array[offset / sizeof(__u64)];
10800 	return -(int)offset;
10801 }
10802 
10803 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
10804 					 __u32 val)
10805 {
10806 	__u32 *array = (__u32 *)info;
10807 
10808 	if (offset >= 0)
10809 		array[offset / sizeof(__u32)] = val;
10810 }
10811 
10812 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
10813 					 __u64 val)
10814 {
10815 	__u64 *array = (__u64 *)info;
10816 
10817 	if (offset >= 0)
10818 		array[offset / sizeof(__u64)] = val;
10819 }
10820 
10821 struct bpf_prog_info_linear *
10822 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
10823 {
10824 	struct bpf_prog_info_linear *info_linear;
10825 	struct bpf_prog_info info = {};
10826 	__u32 info_len = sizeof(info);
10827 	__u32 data_len = 0;
10828 	int i, err;
10829 	void *ptr;
10830 
10831 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
10832 		return ERR_PTR(-EINVAL);
10833 
10834 	/* step 1: get array dimensions */
10835 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
10836 	if (err) {
10837 		pr_debug("can't get prog info: %s", strerror(errno));
10838 		return ERR_PTR(-EFAULT);
10839 	}
10840 
10841 	/* step 2: calculate total size of all arrays */
10842 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10843 		bool include_array = (arrays & (1UL << i)) > 0;
10844 		struct bpf_prog_info_array_desc *desc;
10845 		__u32 count, size;
10846 
10847 		desc = bpf_prog_info_array_desc + i;
10848 
10849 		/* kernel is too old to support this field */
10850 		if (info_len < desc->array_offset + sizeof(__u32) ||
10851 		    info_len < desc->count_offset + sizeof(__u32) ||
10852 		    (desc->size_offset > 0 && info_len < desc->size_offset))
10853 			include_array = false;
10854 
10855 		if (!include_array) {
10856 			arrays &= ~(1UL << i);	/* clear the bit */
10857 			continue;
10858 		}
10859 
10860 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10861 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10862 
10863 		data_len += count * size;
10864 	}
10865 
10866 	/* step 3: allocate continuous memory */
10867 	data_len = roundup(data_len, sizeof(__u64));
10868 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
10869 	if (!info_linear)
10870 		return ERR_PTR(-ENOMEM);
10871 
10872 	/* step 4: fill data to info_linear->info */
10873 	info_linear->arrays = arrays;
10874 	memset(&info_linear->info, 0, sizeof(info));
10875 	ptr = info_linear->data;
10876 
10877 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10878 		struct bpf_prog_info_array_desc *desc;
10879 		__u32 count, size;
10880 
10881 		if ((arrays & (1UL << i)) == 0)
10882 			continue;
10883 
10884 		desc  = bpf_prog_info_array_desc + i;
10885 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10886 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10887 		bpf_prog_info_set_offset_u32(&info_linear->info,
10888 					     desc->count_offset, count);
10889 		bpf_prog_info_set_offset_u32(&info_linear->info,
10890 					     desc->size_offset, size);
10891 		bpf_prog_info_set_offset_u64(&info_linear->info,
10892 					     desc->array_offset,
10893 					     ptr_to_u64(ptr));
10894 		ptr += count * size;
10895 	}
10896 
10897 	/* step 5: call syscall again to get required arrays */
10898 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
10899 	if (err) {
10900 		pr_debug("can't get prog info: %s", strerror(errno));
10901 		free(info_linear);
10902 		return ERR_PTR(-EFAULT);
10903 	}
10904 
10905 	/* step 6: verify the data */
10906 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10907 		struct bpf_prog_info_array_desc *desc;
10908 		__u32 v1, v2;
10909 
10910 		if ((arrays & (1UL << i)) == 0)
10911 			continue;
10912 
10913 		desc = bpf_prog_info_array_desc + i;
10914 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
10915 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10916 						   desc->count_offset);
10917 		if (v1 != v2)
10918 			pr_warn("%s: mismatch in element count\n", __func__);
10919 
10920 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
10921 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
10922 						   desc->size_offset);
10923 		if (v1 != v2)
10924 			pr_warn("%s: mismatch in rec size\n", __func__);
10925 	}
10926 
10927 	/* step 7: update info_len and data_len */
10928 	info_linear->info_len = sizeof(struct bpf_prog_info);
10929 	info_linear->data_len = data_len;
10930 
10931 	return info_linear;
10932 }
10933 
10934 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
10935 {
10936 	int i;
10937 
10938 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10939 		struct bpf_prog_info_array_desc *desc;
10940 		__u64 addr, offs;
10941 
10942 		if ((info_linear->arrays & (1UL << i)) == 0)
10943 			continue;
10944 
10945 		desc = bpf_prog_info_array_desc + i;
10946 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
10947 						     desc->array_offset);
10948 		offs = addr - ptr_to_u64(info_linear->data);
10949 		bpf_prog_info_set_offset_u64(&info_linear->info,
10950 					     desc->array_offset, offs);
10951 	}
10952 }
10953 
10954 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
10955 {
10956 	int i;
10957 
10958 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
10959 		struct bpf_prog_info_array_desc *desc;
10960 		__u64 addr, offs;
10961 
10962 		if ((info_linear->arrays & (1UL << i)) == 0)
10963 			continue;
10964 
10965 		desc = bpf_prog_info_array_desc + i;
10966 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
10967 						     desc->array_offset);
10968 		addr = offs + ptr_to_u64(info_linear->data);
10969 		bpf_prog_info_set_offset_u64(&info_linear->info,
10970 					     desc->array_offset, addr);
10971 	}
10972 }
10973 
10974 int bpf_program__set_attach_target(struct bpf_program *prog,
10975 				   int attach_prog_fd,
10976 				   const char *attach_func_name)
10977 {
10978 	int btf_obj_fd = 0, btf_id = 0, err;
10979 
10980 	if (!prog || attach_prog_fd < 0 || !attach_func_name)
10981 		return -EINVAL;
10982 
10983 	if (prog->obj->loaded)
10984 		return -EINVAL;
10985 
10986 	if (attach_prog_fd) {
10987 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
10988 						 attach_prog_fd);
10989 		if (btf_id < 0)
10990 			return btf_id;
10991 	} else {
10992 		/* load btf_vmlinux, if not yet */
10993 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
10994 		if (err)
10995 			return err;
10996 		err = find_kernel_btf_id(prog->obj, attach_func_name,
10997 					 prog->expected_attach_type,
10998 					 &btf_obj_fd, &btf_id);
10999 		if (err)
11000 			return err;
11001 	}
11002 
11003 	prog->attach_btf_id = btf_id;
11004 	prog->attach_btf_obj_fd = btf_obj_fd;
11005 	prog->attach_prog_fd = attach_prog_fd;
11006 	return 0;
11007 }
11008 
11009 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
11010 {
11011 	int err = 0, n, len, start, end = -1;
11012 	bool *tmp;
11013 
11014 	*mask = NULL;
11015 	*mask_sz = 0;
11016 
11017 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
11018 	while (*s) {
11019 		if (*s == ',' || *s == '\n') {
11020 			s++;
11021 			continue;
11022 		}
11023 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
11024 		if (n <= 0 || n > 2) {
11025 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
11026 			err = -EINVAL;
11027 			goto cleanup;
11028 		} else if (n == 1) {
11029 			end = start;
11030 		}
11031 		if (start < 0 || start > end) {
11032 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
11033 				start, end, s);
11034 			err = -EINVAL;
11035 			goto cleanup;
11036 		}
11037 		tmp = realloc(*mask, end + 1);
11038 		if (!tmp) {
11039 			err = -ENOMEM;
11040 			goto cleanup;
11041 		}
11042 		*mask = tmp;
11043 		memset(tmp + *mask_sz, 0, start - *mask_sz);
11044 		memset(tmp + start, 1, end - start + 1);
11045 		*mask_sz = end + 1;
11046 		s += len;
11047 	}
11048 	if (!*mask_sz) {
11049 		pr_warn("Empty CPU range\n");
11050 		return -EINVAL;
11051 	}
11052 	return 0;
11053 cleanup:
11054 	free(*mask);
11055 	*mask = NULL;
11056 	return err;
11057 }
11058 
11059 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
11060 {
11061 	int fd, err = 0, len;
11062 	char buf[128];
11063 
11064 	fd = open(fcpu, O_RDONLY);
11065 	if (fd < 0) {
11066 		err = -errno;
11067 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
11068 		return err;
11069 	}
11070 	len = read(fd, buf, sizeof(buf));
11071 	close(fd);
11072 	if (len <= 0) {
11073 		err = len ? -errno : -EINVAL;
11074 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
11075 		return err;
11076 	}
11077 	if (len >= sizeof(buf)) {
11078 		pr_warn("CPU mask is too big in file %s\n", fcpu);
11079 		return -E2BIG;
11080 	}
11081 	buf[len] = '\0';
11082 
11083 	return parse_cpu_mask_str(buf, mask, mask_sz);
11084 }
11085 
11086 int libbpf_num_possible_cpus(void)
11087 {
11088 	static const char *fcpu = "/sys/devices/system/cpu/possible";
11089 	static int cpus;
11090 	int err, n, i, tmp_cpus;
11091 	bool *mask;
11092 
11093 	tmp_cpus = READ_ONCE(cpus);
11094 	if (tmp_cpus > 0)
11095 		return tmp_cpus;
11096 
11097 	err = parse_cpu_mask_file(fcpu, &mask, &n);
11098 	if (err)
11099 		return err;
11100 
11101 	tmp_cpus = 0;
11102 	for (i = 0; i < n; i++) {
11103 		if (mask[i])
11104 			tmp_cpus++;
11105 	}
11106 	free(mask);
11107 
11108 	WRITE_ONCE(cpus, tmp_cpus);
11109 	return tmp_cpus;
11110 }
11111 
11112 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
11113 			      const struct bpf_object_open_opts *opts)
11114 {
11115 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
11116 		.object_name = s->name,
11117 	);
11118 	struct bpf_object *obj;
11119 	int i;
11120 
11121 	/* Attempt to preserve opts->object_name, unless overriden by user
11122 	 * explicitly. Overwriting object name for skeletons is discouraged,
11123 	 * as it breaks global data maps, because they contain object name
11124 	 * prefix as their own map name prefix. When skeleton is generated,
11125 	 * bpftool is making an assumption that this name will stay the same.
11126 	 */
11127 	if (opts) {
11128 		memcpy(&skel_opts, opts, sizeof(*opts));
11129 		if (!opts->object_name)
11130 			skel_opts.object_name = s->name;
11131 	}
11132 
11133 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
11134 	if (IS_ERR(obj)) {
11135 		pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
11136 			s->name, PTR_ERR(obj));
11137 		return PTR_ERR(obj);
11138 	}
11139 
11140 	*s->obj = obj;
11141 
11142 	for (i = 0; i < s->map_cnt; i++) {
11143 		struct bpf_map **map = s->maps[i].map;
11144 		const char *name = s->maps[i].name;
11145 		void **mmaped = s->maps[i].mmaped;
11146 
11147 		*map = bpf_object__find_map_by_name(obj, name);
11148 		if (!*map) {
11149 			pr_warn("failed to find skeleton map '%s'\n", name);
11150 			return -ESRCH;
11151 		}
11152 
11153 		/* externs shouldn't be pre-setup from user code */
11154 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
11155 			*mmaped = (*map)->mmaped;
11156 	}
11157 
11158 	for (i = 0; i < s->prog_cnt; i++) {
11159 		struct bpf_program **prog = s->progs[i].prog;
11160 		const char *name = s->progs[i].name;
11161 
11162 		*prog = bpf_object__find_program_by_name(obj, name);
11163 		if (!*prog) {
11164 			pr_warn("failed to find skeleton program '%s'\n", name);
11165 			return -ESRCH;
11166 		}
11167 	}
11168 
11169 	return 0;
11170 }
11171 
11172 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
11173 {
11174 	int i, err;
11175 
11176 	err = bpf_object__load(*s->obj);
11177 	if (err) {
11178 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
11179 		return err;
11180 	}
11181 
11182 	for (i = 0; i < s->map_cnt; i++) {
11183 		struct bpf_map *map = *s->maps[i].map;
11184 		size_t mmap_sz = bpf_map_mmap_sz(map);
11185 		int prot, map_fd = bpf_map__fd(map);
11186 		void **mmaped = s->maps[i].mmaped;
11187 
11188 		if (!mmaped)
11189 			continue;
11190 
11191 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
11192 			*mmaped = NULL;
11193 			continue;
11194 		}
11195 
11196 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
11197 			prot = PROT_READ;
11198 		else
11199 			prot = PROT_READ | PROT_WRITE;
11200 
11201 		/* Remap anonymous mmap()-ed "map initialization image" as
11202 		 * a BPF map-backed mmap()-ed memory, but preserving the same
11203 		 * memory address. This will cause kernel to change process'
11204 		 * page table to point to a different piece of kernel memory,
11205 		 * but from userspace point of view memory address (and its
11206 		 * contents, being identical at this point) will stay the
11207 		 * same. This mapping will be released by bpf_object__close()
11208 		 * as per normal clean up procedure, so we don't need to worry
11209 		 * about it from skeleton's clean up perspective.
11210 		 */
11211 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
11212 				MAP_SHARED | MAP_FIXED, map_fd, 0);
11213 		if (*mmaped == MAP_FAILED) {
11214 			err = -errno;
11215 			*mmaped = NULL;
11216 			pr_warn("failed to re-mmap() map '%s': %d\n",
11217 				 bpf_map__name(map), err);
11218 			return err;
11219 		}
11220 	}
11221 
11222 	return 0;
11223 }
11224 
11225 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
11226 {
11227 	int i;
11228 
11229 	for (i = 0; i < s->prog_cnt; i++) {
11230 		struct bpf_program *prog = *s->progs[i].prog;
11231 		struct bpf_link **link = s->progs[i].link;
11232 		const struct bpf_sec_def *sec_def;
11233 
11234 		if (!prog->load)
11235 			continue;
11236 
11237 		sec_def = find_sec_def(prog->sec_name);
11238 		if (!sec_def || !sec_def->attach_fn)
11239 			continue;
11240 
11241 		*link = sec_def->attach_fn(sec_def, prog);
11242 		if (IS_ERR(*link)) {
11243 			pr_warn("failed to auto-attach program '%s': %ld\n",
11244 				bpf_program__name(prog), PTR_ERR(*link));
11245 			return PTR_ERR(*link);
11246 		}
11247 	}
11248 
11249 	return 0;
11250 }
11251 
11252 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
11253 {
11254 	int i;
11255 
11256 	for (i = 0; i < s->prog_cnt; i++) {
11257 		struct bpf_link **link = s->progs[i].link;
11258 
11259 		bpf_link__destroy(*link);
11260 		*link = NULL;
11261 	}
11262 }
11263 
11264 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
11265 {
11266 	if (s->progs)
11267 		bpf_object__detach_skeleton(s);
11268 	if (s->obj)
11269 		bpf_object__close(*s->obj);
11270 	free(s->maps);
11271 	free(s->progs);
11272 	free(s);
11273 }
11274