1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef EM_BPF 59 #define EM_BPF 247 60 #endif 61 62 #ifndef BPF_FS_MAGIC 63 #define BPF_FS_MAGIC 0xcafe4a11 64 #endif 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static const struct btf_type * 77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 78 79 static int __base_pr(enum libbpf_print_level level, const char *format, 80 va_list args) 81 { 82 if (level == LIBBPF_DEBUG) 83 return 0; 84 85 return vfprintf(stderr, format, args); 86 } 87 88 static libbpf_print_fn_t __libbpf_pr = __base_pr; 89 90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 91 { 92 libbpf_print_fn_t old_print_fn = __libbpf_pr; 93 94 __libbpf_pr = fn; 95 return old_print_fn; 96 } 97 98 __printf(2, 3) 99 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 100 { 101 va_list args; 102 103 if (!__libbpf_pr) 104 return; 105 106 va_start(args, format); 107 __libbpf_pr(level, format, args); 108 va_end(args); 109 } 110 111 static void pr_perm_msg(int err) 112 { 113 struct rlimit limit; 114 char buf[100]; 115 116 if (err != -EPERM || geteuid() != 0) 117 return; 118 119 err = getrlimit(RLIMIT_MEMLOCK, &limit); 120 if (err) 121 return; 122 123 if (limit.rlim_cur == RLIM_INFINITY) 124 return; 125 126 if (limit.rlim_cur < 1024) 127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 128 else if (limit.rlim_cur < 1024*1024) 129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 130 else 131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 132 133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 134 buf); 135 } 136 137 #define STRERR_BUFSIZE 128 138 139 /* Copied from tools/perf/util/util.h */ 140 #ifndef zfree 141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 142 #endif 143 144 #ifndef zclose 145 # define zclose(fd) ({ \ 146 int ___err = 0; \ 147 if ((fd) >= 0) \ 148 ___err = close((fd)); \ 149 fd = -1; \ 150 ___err; }) 151 #endif 152 153 static inline __u64 ptr_to_u64(const void *ptr) 154 { 155 return (__u64) (unsigned long) ptr; 156 } 157 158 enum kern_feature_id { 159 /* v4.14: kernel support for program & map names. */ 160 FEAT_PROG_NAME, 161 /* v5.2: kernel support for global data sections. */ 162 FEAT_GLOBAL_DATA, 163 /* BTF support */ 164 FEAT_BTF, 165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 166 FEAT_BTF_FUNC, 167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 168 FEAT_BTF_DATASEC, 169 /* BTF_FUNC_GLOBAL is supported */ 170 FEAT_BTF_GLOBAL_FUNC, 171 /* BPF_F_MMAPABLE is supported for arrays */ 172 FEAT_ARRAY_MMAP, 173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 174 FEAT_EXP_ATTACH_TYPE, 175 /* bpf_probe_read_{kernel,user}[_str] helpers */ 176 FEAT_PROBE_READ_KERN, 177 /* BPF_PROG_BIND_MAP is supported */ 178 FEAT_PROG_BIND_MAP, 179 /* Kernel support for module BTFs */ 180 FEAT_MODULE_BTF, 181 /* BTF_KIND_FLOAT support */ 182 FEAT_BTF_FLOAT, 183 __FEAT_CNT, 184 }; 185 186 static bool kernel_supports(enum kern_feature_id feat_id); 187 188 enum reloc_type { 189 RELO_LD64, 190 RELO_CALL, 191 RELO_DATA, 192 RELO_EXTERN, 193 RELO_SUBPROG_ADDR, 194 }; 195 196 struct reloc_desc { 197 enum reloc_type type; 198 int insn_idx; 199 int map_idx; 200 int sym_off; 201 bool processed; 202 }; 203 204 struct bpf_sec_def; 205 206 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 207 struct bpf_program *prog); 208 209 struct bpf_sec_def { 210 const char *sec; 211 size_t len; 212 enum bpf_prog_type prog_type; 213 enum bpf_attach_type expected_attach_type; 214 bool is_exp_attach_type_optional; 215 bool is_attachable; 216 bool is_attach_btf; 217 bool is_sleepable; 218 attach_fn_t attach_fn; 219 }; 220 221 /* 222 * bpf_prog should be a better name but it has been used in 223 * linux/filter.h. 224 */ 225 struct bpf_program { 226 const struct bpf_sec_def *sec_def; 227 char *sec_name; 228 size_t sec_idx; 229 /* this program's instruction offset (in number of instructions) 230 * within its containing ELF section 231 */ 232 size_t sec_insn_off; 233 /* number of original instructions in ELF section belonging to this 234 * program, not taking into account subprogram instructions possible 235 * appended later during relocation 236 */ 237 size_t sec_insn_cnt; 238 /* Offset (in number of instructions) of the start of instruction 239 * belonging to this BPF program within its containing main BPF 240 * program. For the entry-point (main) BPF program, this is always 241 * zero. For a sub-program, this gets reset before each of main BPF 242 * programs are processed and relocated and is used to determined 243 * whether sub-program was already appended to the main program, and 244 * if yes, at which instruction offset. 245 */ 246 size_t sub_insn_off; 247 248 char *name; 249 /* sec_name with / replaced by _; makes recursive pinning 250 * in bpf_object__pin_programs easier 251 */ 252 char *pin_name; 253 254 /* instructions that belong to BPF program; insns[0] is located at 255 * sec_insn_off instruction within its ELF section in ELF file, so 256 * when mapping ELF file instruction index to the local instruction, 257 * one needs to subtract sec_insn_off; and vice versa. 258 */ 259 struct bpf_insn *insns; 260 /* actual number of instruction in this BPF program's image; for 261 * entry-point BPF programs this includes the size of main program 262 * itself plus all the used sub-programs, appended at the end 263 */ 264 size_t insns_cnt; 265 266 struct reloc_desc *reloc_desc; 267 int nr_reloc; 268 int log_level; 269 270 struct { 271 int nr; 272 int *fds; 273 } instances; 274 bpf_program_prep_t preprocessor; 275 276 struct bpf_object *obj; 277 void *priv; 278 bpf_program_clear_priv_t clear_priv; 279 280 bool load; 281 enum bpf_prog_type type; 282 enum bpf_attach_type expected_attach_type; 283 int prog_ifindex; 284 __u32 attach_btf_obj_fd; 285 __u32 attach_btf_id; 286 __u32 attach_prog_fd; 287 void *func_info; 288 __u32 func_info_rec_size; 289 __u32 func_info_cnt; 290 291 void *line_info; 292 __u32 line_info_rec_size; 293 __u32 line_info_cnt; 294 __u32 prog_flags; 295 }; 296 297 struct bpf_struct_ops { 298 const char *tname; 299 const struct btf_type *type; 300 struct bpf_program **progs; 301 __u32 *kern_func_off; 302 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 303 void *data; 304 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 305 * btf_vmlinux's format. 306 * struct bpf_struct_ops_tcp_congestion_ops { 307 * [... some other kernel fields ...] 308 * struct tcp_congestion_ops data; 309 * } 310 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 311 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 312 * from "data". 313 */ 314 void *kern_vdata; 315 __u32 type_id; 316 }; 317 318 #define DATA_SEC ".data" 319 #define BSS_SEC ".bss" 320 #define RODATA_SEC ".rodata" 321 #define KCONFIG_SEC ".kconfig" 322 #define KSYMS_SEC ".ksyms" 323 #define STRUCT_OPS_SEC ".struct_ops" 324 325 enum libbpf_map_type { 326 LIBBPF_MAP_UNSPEC, 327 LIBBPF_MAP_DATA, 328 LIBBPF_MAP_BSS, 329 LIBBPF_MAP_RODATA, 330 LIBBPF_MAP_KCONFIG, 331 }; 332 333 static const char * const libbpf_type_to_btf_name[] = { 334 [LIBBPF_MAP_DATA] = DATA_SEC, 335 [LIBBPF_MAP_BSS] = BSS_SEC, 336 [LIBBPF_MAP_RODATA] = RODATA_SEC, 337 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 338 }; 339 340 struct bpf_map { 341 char *name; 342 int fd; 343 int sec_idx; 344 size_t sec_offset; 345 int map_ifindex; 346 int inner_map_fd; 347 struct bpf_map_def def; 348 __u32 numa_node; 349 __u32 btf_var_idx; 350 __u32 btf_key_type_id; 351 __u32 btf_value_type_id; 352 __u32 btf_vmlinux_value_type_id; 353 void *priv; 354 bpf_map_clear_priv_t clear_priv; 355 enum libbpf_map_type libbpf_type; 356 void *mmaped; 357 struct bpf_struct_ops *st_ops; 358 struct bpf_map *inner_map; 359 void **init_slots; 360 int init_slots_sz; 361 char *pin_path; 362 bool pinned; 363 bool reused; 364 }; 365 366 enum extern_type { 367 EXT_UNKNOWN, 368 EXT_KCFG, 369 EXT_KSYM, 370 }; 371 372 enum kcfg_type { 373 KCFG_UNKNOWN, 374 KCFG_CHAR, 375 KCFG_BOOL, 376 KCFG_INT, 377 KCFG_TRISTATE, 378 KCFG_CHAR_ARR, 379 }; 380 381 struct extern_desc { 382 enum extern_type type; 383 int sym_idx; 384 int btf_id; 385 int sec_btf_id; 386 const char *name; 387 bool is_set; 388 bool is_weak; 389 union { 390 struct { 391 enum kcfg_type type; 392 int sz; 393 int align; 394 int data_off; 395 bool is_signed; 396 } kcfg; 397 struct { 398 unsigned long long addr; 399 400 /* target btf_id of the corresponding kernel var. */ 401 int kernel_btf_obj_fd; 402 int kernel_btf_id; 403 404 /* local btf_id of the ksym extern's type. */ 405 __u32 type_id; 406 } ksym; 407 }; 408 }; 409 410 static LIST_HEAD(bpf_objects_list); 411 412 struct module_btf { 413 struct btf *btf; 414 char *name; 415 __u32 id; 416 int fd; 417 }; 418 419 struct bpf_object { 420 char name[BPF_OBJ_NAME_LEN]; 421 char license[64]; 422 __u32 kern_version; 423 424 struct bpf_program *programs; 425 size_t nr_programs; 426 struct bpf_map *maps; 427 size_t nr_maps; 428 size_t maps_cap; 429 430 char *kconfig; 431 struct extern_desc *externs; 432 int nr_extern; 433 int kconfig_map_idx; 434 int rodata_map_idx; 435 436 bool loaded; 437 bool has_subcalls; 438 439 /* 440 * Information when doing elf related work. Only valid if fd 441 * is valid. 442 */ 443 struct { 444 int fd; 445 const void *obj_buf; 446 size_t obj_buf_sz; 447 Elf *elf; 448 GElf_Ehdr ehdr; 449 Elf_Data *symbols; 450 Elf_Data *data; 451 Elf_Data *rodata; 452 Elf_Data *bss; 453 Elf_Data *st_ops_data; 454 size_t shstrndx; /* section index for section name strings */ 455 size_t strtabidx; 456 struct { 457 GElf_Shdr shdr; 458 Elf_Data *data; 459 } *reloc_sects; 460 int nr_reloc_sects; 461 int maps_shndx; 462 int btf_maps_shndx; 463 __u32 btf_maps_sec_btf_id; 464 int text_shndx; 465 int symbols_shndx; 466 int data_shndx; 467 int rodata_shndx; 468 int bss_shndx; 469 int st_ops_shndx; 470 } efile; 471 /* 472 * All loaded bpf_object is linked in a list, which is 473 * hidden to caller. bpf_objects__<func> handlers deal with 474 * all objects. 475 */ 476 struct list_head list; 477 478 struct btf *btf; 479 struct btf_ext *btf_ext; 480 481 /* Parse and load BTF vmlinux if any of the programs in the object need 482 * it at load time. 483 */ 484 struct btf *btf_vmlinux; 485 /* vmlinux BTF override for CO-RE relocations */ 486 struct btf *btf_vmlinux_override; 487 /* Lazily initialized kernel module BTFs */ 488 struct module_btf *btf_modules; 489 bool btf_modules_loaded; 490 size_t btf_module_cnt; 491 size_t btf_module_cap; 492 493 void *priv; 494 bpf_object_clear_priv_t clear_priv; 495 496 char path[]; 497 }; 498 #define obj_elf_valid(o) ((o)->efile.elf) 499 500 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 501 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 502 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 503 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 504 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 505 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 506 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 507 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 508 size_t off, __u32 sym_type, GElf_Sym *sym); 509 510 void bpf_program__unload(struct bpf_program *prog) 511 { 512 int i; 513 514 if (!prog) 515 return; 516 517 /* 518 * If the object is opened but the program was never loaded, 519 * it is possible that prog->instances.nr == -1. 520 */ 521 if (prog->instances.nr > 0) { 522 for (i = 0; i < prog->instances.nr; i++) 523 zclose(prog->instances.fds[i]); 524 } else if (prog->instances.nr != -1) { 525 pr_warn("Internal error: instances.nr is %d\n", 526 prog->instances.nr); 527 } 528 529 prog->instances.nr = -1; 530 zfree(&prog->instances.fds); 531 532 zfree(&prog->func_info); 533 zfree(&prog->line_info); 534 } 535 536 static void bpf_program__exit(struct bpf_program *prog) 537 { 538 if (!prog) 539 return; 540 541 if (prog->clear_priv) 542 prog->clear_priv(prog, prog->priv); 543 544 prog->priv = NULL; 545 prog->clear_priv = NULL; 546 547 bpf_program__unload(prog); 548 zfree(&prog->name); 549 zfree(&prog->sec_name); 550 zfree(&prog->pin_name); 551 zfree(&prog->insns); 552 zfree(&prog->reloc_desc); 553 554 prog->nr_reloc = 0; 555 prog->insns_cnt = 0; 556 prog->sec_idx = -1; 557 } 558 559 static char *__bpf_program__pin_name(struct bpf_program *prog) 560 { 561 char *name, *p; 562 563 name = p = strdup(prog->sec_name); 564 while ((p = strchr(p, '/'))) 565 *p = '_'; 566 567 return name; 568 } 569 570 static bool insn_is_subprog_call(const struct bpf_insn *insn) 571 { 572 return BPF_CLASS(insn->code) == BPF_JMP && 573 BPF_OP(insn->code) == BPF_CALL && 574 BPF_SRC(insn->code) == BPF_K && 575 insn->src_reg == BPF_PSEUDO_CALL && 576 insn->dst_reg == 0 && 577 insn->off == 0; 578 } 579 580 static bool is_ldimm64(struct bpf_insn *insn) 581 { 582 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 583 } 584 585 static bool insn_is_pseudo_func(struct bpf_insn *insn) 586 { 587 return is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 588 } 589 590 static int 591 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 592 const char *name, size_t sec_idx, const char *sec_name, 593 size_t sec_off, void *insn_data, size_t insn_data_sz) 594 { 595 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 596 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 597 sec_name, name, sec_off, insn_data_sz); 598 return -EINVAL; 599 } 600 601 memset(prog, 0, sizeof(*prog)); 602 prog->obj = obj; 603 604 prog->sec_idx = sec_idx; 605 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 606 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 607 /* insns_cnt can later be increased by appending used subprograms */ 608 prog->insns_cnt = prog->sec_insn_cnt; 609 610 prog->type = BPF_PROG_TYPE_UNSPEC; 611 prog->load = true; 612 613 prog->instances.fds = NULL; 614 prog->instances.nr = -1; 615 616 prog->sec_name = strdup(sec_name); 617 if (!prog->sec_name) 618 goto errout; 619 620 prog->name = strdup(name); 621 if (!prog->name) 622 goto errout; 623 624 prog->pin_name = __bpf_program__pin_name(prog); 625 if (!prog->pin_name) 626 goto errout; 627 628 prog->insns = malloc(insn_data_sz); 629 if (!prog->insns) 630 goto errout; 631 memcpy(prog->insns, insn_data, insn_data_sz); 632 633 return 0; 634 errout: 635 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 636 bpf_program__exit(prog); 637 return -ENOMEM; 638 } 639 640 static int 641 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 642 const char *sec_name, int sec_idx) 643 { 644 struct bpf_program *prog, *progs; 645 void *data = sec_data->d_buf; 646 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 647 int nr_progs, err; 648 const char *name; 649 GElf_Sym sym; 650 651 progs = obj->programs; 652 nr_progs = obj->nr_programs; 653 sec_off = 0; 654 655 while (sec_off < sec_sz) { 656 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 657 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 658 sec_name, sec_off); 659 return -LIBBPF_ERRNO__FORMAT; 660 } 661 662 prog_sz = sym.st_size; 663 664 name = elf_sym_str(obj, sym.st_name); 665 if (!name) { 666 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 667 sec_name, sec_off); 668 return -LIBBPF_ERRNO__FORMAT; 669 } 670 671 if (sec_off + prog_sz > sec_sz) { 672 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 673 sec_name, sec_off); 674 return -LIBBPF_ERRNO__FORMAT; 675 } 676 677 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 678 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 679 680 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 681 if (!progs) { 682 /* 683 * In this case the original obj->programs 684 * is still valid, so don't need special treat for 685 * bpf_close_object(). 686 */ 687 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 688 sec_name, name); 689 return -ENOMEM; 690 } 691 obj->programs = progs; 692 693 prog = &progs[nr_progs]; 694 695 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 696 sec_off, data + sec_off, prog_sz); 697 if (err) 698 return err; 699 700 nr_progs++; 701 obj->nr_programs = nr_progs; 702 703 sec_off += prog_sz; 704 } 705 706 return 0; 707 } 708 709 static __u32 get_kernel_version(void) 710 { 711 __u32 major, minor, patch; 712 struct utsname info; 713 714 uname(&info); 715 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 716 return 0; 717 return KERNEL_VERSION(major, minor, patch); 718 } 719 720 static const struct btf_member * 721 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 722 { 723 struct btf_member *m; 724 int i; 725 726 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 727 if (btf_member_bit_offset(t, i) == bit_offset) 728 return m; 729 } 730 731 return NULL; 732 } 733 734 static const struct btf_member * 735 find_member_by_name(const struct btf *btf, const struct btf_type *t, 736 const char *name) 737 { 738 struct btf_member *m; 739 int i; 740 741 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 742 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 743 return m; 744 } 745 746 return NULL; 747 } 748 749 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 750 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 751 const char *name, __u32 kind); 752 753 static int 754 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 755 const struct btf_type **type, __u32 *type_id, 756 const struct btf_type **vtype, __u32 *vtype_id, 757 const struct btf_member **data_member) 758 { 759 const struct btf_type *kern_type, *kern_vtype; 760 const struct btf_member *kern_data_member; 761 __s32 kern_vtype_id, kern_type_id; 762 __u32 i; 763 764 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 765 if (kern_type_id < 0) { 766 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 767 tname); 768 return kern_type_id; 769 } 770 kern_type = btf__type_by_id(btf, kern_type_id); 771 772 /* Find the corresponding "map_value" type that will be used 773 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 774 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 775 * btf_vmlinux. 776 */ 777 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 778 tname, BTF_KIND_STRUCT); 779 if (kern_vtype_id < 0) { 780 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 781 STRUCT_OPS_VALUE_PREFIX, tname); 782 return kern_vtype_id; 783 } 784 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 785 786 /* Find "struct tcp_congestion_ops" from 787 * struct bpf_struct_ops_tcp_congestion_ops { 788 * [ ... ] 789 * struct tcp_congestion_ops data; 790 * } 791 */ 792 kern_data_member = btf_members(kern_vtype); 793 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 794 if (kern_data_member->type == kern_type_id) 795 break; 796 } 797 if (i == btf_vlen(kern_vtype)) { 798 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 799 tname, STRUCT_OPS_VALUE_PREFIX, tname); 800 return -EINVAL; 801 } 802 803 *type = kern_type; 804 *type_id = kern_type_id; 805 *vtype = kern_vtype; 806 *vtype_id = kern_vtype_id; 807 *data_member = kern_data_member; 808 809 return 0; 810 } 811 812 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 813 { 814 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 815 } 816 817 /* Init the map's fields that depend on kern_btf */ 818 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 819 const struct btf *btf, 820 const struct btf *kern_btf) 821 { 822 const struct btf_member *member, *kern_member, *kern_data_member; 823 const struct btf_type *type, *kern_type, *kern_vtype; 824 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 825 struct bpf_struct_ops *st_ops; 826 void *data, *kern_data; 827 const char *tname; 828 int err; 829 830 st_ops = map->st_ops; 831 type = st_ops->type; 832 tname = st_ops->tname; 833 err = find_struct_ops_kern_types(kern_btf, tname, 834 &kern_type, &kern_type_id, 835 &kern_vtype, &kern_vtype_id, 836 &kern_data_member); 837 if (err) 838 return err; 839 840 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 841 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 842 843 map->def.value_size = kern_vtype->size; 844 map->btf_vmlinux_value_type_id = kern_vtype_id; 845 846 st_ops->kern_vdata = calloc(1, kern_vtype->size); 847 if (!st_ops->kern_vdata) 848 return -ENOMEM; 849 850 data = st_ops->data; 851 kern_data_off = kern_data_member->offset / 8; 852 kern_data = st_ops->kern_vdata + kern_data_off; 853 854 member = btf_members(type); 855 for (i = 0; i < btf_vlen(type); i++, member++) { 856 const struct btf_type *mtype, *kern_mtype; 857 __u32 mtype_id, kern_mtype_id; 858 void *mdata, *kern_mdata; 859 __s64 msize, kern_msize; 860 __u32 moff, kern_moff; 861 __u32 kern_member_idx; 862 const char *mname; 863 864 mname = btf__name_by_offset(btf, member->name_off); 865 kern_member = find_member_by_name(kern_btf, kern_type, mname); 866 if (!kern_member) { 867 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 868 map->name, mname); 869 return -ENOTSUP; 870 } 871 872 kern_member_idx = kern_member - btf_members(kern_type); 873 if (btf_member_bitfield_size(type, i) || 874 btf_member_bitfield_size(kern_type, kern_member_idx)) { 875 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 876 map->name, mname); 877 return -ENOTSUP; 878 } 879 880 moff = member->offset / 8; 881 kern_moff = kern_member->offset / 8; 882 883 mdata = data + moff; 884 kern_mdata = kern_data + kern_moff; 885 886 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 887 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 888 &kern_mtype_id); 889 if (BTF_INFO_KIND(mtype->info) != 890 BTF_INFO_KIND(kern_mtype->info)) { 891 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 892 map->name, mname, BTF_INFO_KIND(mtype->info), 893 BTF_INFO_KIND(kern_mtype->info)); 894 return -ENOTSUP; 895 } 896 897 if (btf_is_ptr(mtype)) { 898 struct bpf_program *prog; 899 900 prog = st_ops->progs[i]; 901 if (!prog) 902 continue; 903 904 kern_mtype = skip_mods_and_typedefs(kern_btf, 905 kern_mtype->type, 906 &kern_mtype_id); 907 908 /* mtype->type must be a func_proto which was 909 * guaranteed in bpf_object__collect_st_ops_relos(), 910 * so only check kern_mtype for func_proto here. 911 */ 912 if (!btf_is_func_proto(kern_mtype)) { 913 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 914 map->name, mname); 915 return -ENOTSUP; 916 } 917 918 prog->attach_btf_id = kern_type_id; 919 prog->expected_attach_type = kern_member_idx; 920 921 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 922 923 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 924 map->name, mname, prog->name, moff, 925 kern_moff); 926 927 continue; 928 } 929 930 msize = btf__resolve_size(btf, mtype_id); 931 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 932 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 933 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 934 map->name, mname, (ssize_t)msize, 935 (ssize_t)kern_msize); 936 return -ENOTSUP; 937 } 938 939 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 940 map->name, mname, (unsigned int)msize, 941 moff, kern_moff); 942 memcpy(kern_mdata, mdata, msize); 943 } 944 945 return 0; 946 } 947 948 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 949 { 950 struct bpf_map *map; 951 size_t i; 952 int err; 953 954 for (i = 0; i < obj->nr_maps; i++) { 955 map = &obj->maps[i]; 956 957 if (!bpf_map__is_struct_ops(map)) 958 continue; 959 960 err = bpf_map__init_kern_struct_ops(map, obj->btf, 961 obj->btf_vmlinux); 962 if (err) 963 return err; 964 } 965 966 return 0; 967 } 968 969 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 970 { 971 const struct btf_type *type, *datasec; 972 const struct btf_var_secinfo *vsi; 973 struct bpf_struct_ops *st_ops; 974 const char *tname, *var_name; 975 __s32 type_id, datasec_id; 976 const struct btf *btf; 977 struct bpf_map *map; 978 __u32 i; 979 980 if (obj->efile.st_ops_shndx == -1) 981 return 0; 982 983 btf = obj->btf; 984 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 985 BTF_KIND_DATASEC); 986 if (datasec_id < 0) { 987 pr_warn("struct_ops init: DATASEC %s not found\n", 988 STRUCT_OPS_SEC); 989 return -EINVAL; 990 } 991 992 datasec = btf__type_by_id(btf, datasec_id); 993 vsi = btf_var_secinfos(datasec); 994 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 995 type = btf__type_by_id(obj->btf, vsi->type); 996 var_name = btf__name_by_offset(obj->btf, type->name_off); 997 998 type_id = btf__resolve_type(obj->btf, vsi->type); 999 if (type_id < 0) { 1000 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1001 vsi->type, STRUCT_OPS_SEC); 1002 return -EINVAL; 1003 } 1004 1005 type = btf__type_by_id(obj->btf, type_id); 1006 tname = btf__name_by_offset(obj->btf, type->name_off); 1007 if (!tname[0]) { 1008 pr_warn("struct_ops init: anonymous type is not supported\n"); 1009 return -ENOTSUP; 1010 } 1011 if (!btf_is_struct(type)) { 1012 pr_warn("struct_ops init: %s is not a struct\n", tname); 1013 return -EINVAL; 1014 } 1015 1016 map = bpf_object__add_map(obj); 1017 if (IS_ERR(map)) 1018 return PTR_ERR(map); 1019 1020 map->sec_idx = obj->efile.st_ops_shndx; 1021 map->sec_offset = vsi->offset; 1022 map->name = strdup(var_name); 1023 if (!map->name) 1024 return -ENOMEM; 1025 1026 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1027 map->def.key_size = sizeof(int); 1028 map->def.value_size = type->size; 1029 map->def.max_entries = 1; 1030 1031 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1032 if (!map->st_ops) 1033 return -ENOMEM; 1034 st_ops = map->st_ops; 1035 st_ops->data = malloc(type->size); 1036 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1037 st_ops->kern_func_off = malloc(btf_vlen(type) * 1038 sizeof(*st_ops->kern_func_off)); 1039 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1040 return -ENOMEM; 1041 1042 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1043 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1044 var_name, STRUCT_OPS_SEC); 1045 return -EINVAL; 1046 } 1047 1048 memcpy(st_ops->data, 1049 obj->efile.st_ops_data->d_buf + vsi->offset, 1050 type->size); 1051 st_ops->tname = tname; 1052 st_ops->type = type; 1053 st_ops->type_id = type_id; 1054 1055 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1056 tname, type_id, var_name, vsi->offset); 1057 } 1058 1059 return 0; 1060 } 1061 1062 static struct bpf_object *bpf_object__new(const char *path, 1063 const void *obj_buf, 1064 size_t obj_buf_sz, 1065 const char *obj_name) 1066 { 1067 struct bpf_object *obj; 1068 char *end; 1069 1070 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1071 if (!obj) { 1072 pr_warn("alloc memory failed for %s\n", path); 1073 return ERR_PTR(-ENOMEM); 1074 } 1075 1076 strcpy(obj->path, path); 1077 if (obj_name) { 1078 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1079 obj->name[sizeof(obj->name) - 1] = 0; 1080 } else { 1081 /* Using basename() GNU version which doesn't modify arg. */ 1082 strncpy(obj->name, basename((void *)path), 1083 sizeof(obj->name) - 1); 1084 end = strchr(obj->name, '.'); 1085 if (end) 1086 *end = 0; 1087 } 1088 1089 obj->efile.fd = -1; 1090 /* 1091 * Caller of this function should also call 1092 * bpf_object__elf_finish() after data collection to return 1093 * obj_buf to user. If not, we should duplicate the buffer to 1094 * avoid user freeing them before elf finish. 1095 */ 1096 obj->efile.obj_buf = obj_buf; 1097 obj->efile.obj_buf_sz = obj_buf_sz; 1098 obj->efile.maps_shndx = -1; 1099 obj->efile.btf_maps_shndx = -1; 1100 obj->efile.data_shndx = -1; 1101 obj->efile.rodata_shndx = -1; 1102 obj->efile.bss_shndx = -1; 1103 obj->efile.st_ops_shndx = -1; 1104 obj->kconfig_map_idx = -1; 1105 obj->rodata_map_idx = -1; 1106 1107 obj->kern_version = get_kernel_version(); 1108 obj->loaded = false; 1109 1110 INIT_LIST_HEAD(&obj->list); 1111 list_add(&obj->list, &bpf_objects_list); 1112 return obj; 1113 } 1114 1115 static void bpf_object__elf_finish(struct bpf_object *obj) 1116 { 1117 if (!obj_elf_valid(obj)) 1118 return; 1119 1120 if (obj->efile.elf) { 1121 elf_end(obj->efile.elf); 1122 obj->efile.elf = NULL; 1123 } 1124 obj->efile.symbols = NULL; 1125 obj->efile.data = NULL; 1126 obj->efile.rodata = NULL; 1127 obj->efile.bss = NULL; 1128 obj->efile.st_ops_data = NULL; 1129 1130 zfree(&obj->efile.reloc_sects); 1131 obj->efile.nr_reloc_sects = 0; 1132 zclose(obj->efile.fd); 1133 obj->efile.obj_buf = NULL; 1134 obj->efile.obj_buf_sz = 0; 1135 } 1136 1137 /* if libelf is old and doesn't support mmap(), fall back to read() */ 1138 #ifndef ELF_C_READ_MMAP 1139 #define ELF_C_READ_MMAP ELF_C_READ 1140 #endif 1141 1142 static int bpf_object__elf_init(struct bpf_object *obj) 1143 { 1144 int err = 0; 1145 GElf_Ehdr *ep; 1146 1147 if (obj_elf_valid(obj)) { 1148 pr_warn("elf: init internal error\n"); 1149 return -LIBBPF_ERRNO__LIBELF; 1150 } 1151 1152 if (obj->efile.obj_buf_sz > 0) { 1153 /* 1154 * obj_buf should have been validated by 1155 * bpf_object__open_buffer(). 1156 */ 1157 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1158 obj->efile.obj_buf_sz); 1159 } else { 1160 obj->efile.fd = open(obj->path, O_RDONLY); 1161 if (obj->efile.fd < 0) { 1162 char errmsg[STRERR_BUFSIZE], *cp; 1163 1164 err = -errno; 1165 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1166 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1167 return err; 1168 } 1169 1170 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1171 } 1172 1173 if (!obj->efile.elf) { 1174 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1175 err = -LIBBPF_ERRNO__LIBELF; 1176 goto errout; 1177 } 1178 1179 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1180 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1181 err = -LIBBPF_ERRNO__FORMAT; 1182 goto errout; 1183 } 1184 ep = &obj->efile.ehdr; 1185 1186 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1187 pr_warn("elf: failed to get section names section index for %s: %s\n", 1188 obj->path, elf_errmsg(-1)); 1189 err = -LIBBPF_ERRNO__FORMAT; 1190 goto errout; 1191 } 1192 1193 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1194 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1195 pr_warn("elf: failed to get section names strings from %s: %s\n", 1196 obj->path, elf_errmsg(-1)); 1197 return -LIBBPF_ERRNO__FORMAT; 1198 } 1199 1200 /* Old LLVM set e_machine to EM_NONE */ 1201 if (ep->e_type != ET_REL || 1202 (ep->e_machine && ep->e_machine != EM_BPF)) { 1203 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1204 err = -LIBBPF_ERRNO__FORMAT; 1205 goto errout; 1206 } 1207 1208 return 0; 1209 errout: 1210 bpf_object__elf_finish(obj); 1211 return err; 1212 } 1213 1214 static int bpf_object__check_endianness(struct bpf_object *obj) 1215 { 1216 #if __BYTE_ORDER == __LITTLE_ENDIAN 1217 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1218 return 0; 1219 #elif __BYTE_ORDER == __BIG_ENDIAN 1220 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1221 return 0; 1222 #else 1223 # error "Unrecognized __BYTE_ORDER__" 1224 #endif 1225 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1226 return -LIBBPF_ERRNO__ENDIAN; 1227 } 1228 1229 static int 1230 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1231 { 1232 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1233 pr_debug("license of %s is %s\n", obj->path, obj->license); 1234 return 0; 1235 } 1236 1237 static int 1238 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1239 { 1240 __u32 kver; 1241 1242 if (size != sizeof(kver)) { 1243 pr_warn("invalid kver section in %s\n", obj->path); 1244 return -LIBBPF_ERRNO__FORMAT; 1245 } 1246 memcpy(&kver, data, sizeof(kver)); 1247 obj->kern_version = kver; 1248 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1249 return 0; 1250 } 1251 1252 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1253 { 1254 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1255 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1256 return true; 1257 return false; 1258 } 1259 1260 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1261 __u32 *size) 1262 { 1263 int ret = -ENOENT; 1264 1265 *size = 0; 1266 if (!name) { 1267 return -EINVAL; 1268 } else if (!strcmp(name, DATA_SEC)) { 1269 if (obj->efile.data) 1270 *size = obj->efile.data->d_size; 1271 } else if (!strcmp(name, BSS_SEC)) { 1272 if (obj->efile.bss) 1273 *size = obj->efile.bss->d_size; 1274 } else if (!strcmp(name, RODATA_SEC)) { 1275 if (obj->efile.rodata) 1276 *size = obj->efile.rodata->d_size; 1277 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1278 if (obj->efile.st_ops_data) 1279 *size = obj->efile.st_ops_data->d_size; 1280 } else { 1281 Elf_Scn *scn = elf_sec_by_name(obj, name); 1282 Elf_Data *data = elf_sec_data(obj, scn); 1283 1284 if (data) { 1285 ret = 0; /* found it */ 1286 *size = data->d_size; 1287 } 1288 } 1289 1290 return *size ? 0 : ret; 1291 } 1292 1293 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1294 __u32 *off) 1295 { 1296 Elf_Data *symbols = obj->efile.symbols; 1297 const char *sname; 1298 size_t si; 1299 1300 if (!name || !off) 1301 return -EINVAL; 1302 1303 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1304 GElf_Sym sym; 1305 1306 if (!gelf_getsym(symbols, si, &sym)) 1307 continue; 1308 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1309 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1310 continue; 1311 1312 sname = elf_sym_str(obj, sym.st_name); 1313 if (!sname) { 1314 pr_warn("failed to get sym name string for var %s\n", 1315 name); 1316 return -EIO; 1317 } 1318 if (strcmp(name, sname) == 0) { 1319 *off = sym.st_value; 1320 return 0; 1321 } 1322 } 1323 1324 return -ENOENT; 1325 } 1326 1327 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1328 { 1329 struct bpf_map *new_maps; 1330 size_t new_cap; 1331 int i; 1332 1333 if (obj->nr_maps < obj->maps_cap) 1334 return &obj->maps[obj->nr_maps++]; 1335 1336 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1337 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1338 if (!new_maps) { 1339 pr_warn("alloc maps for object failed\n"); 1340 return ERR_PTR(-ENOMEM); 1341 } 1342 1343 obj->maps_cap = new_cap; 1344 obj->maps = new_maps; 1345 1346 /* zero out new maps */ 1347 memset(obj->maps + obj->nr_maps, 0, 1348 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1349 /* 1350 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1351 * when failure (zclose won't close negative fd)). 1352 */ 1353 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1354 obj->maps[i].fd = -1; 1355 obj->maps[i].inner_map_fd = -1; 1356 } 1357 1358 return &obj->maps[obj->nr_maps++]; 1359 } 1360 1361 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1362 { 1363 long page_sz = sysconf(_SC_PAGE_SIZE); 1364 size_t map_sz; 1365 1366 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1367 map_sz = roundup(map_sz, page_sz); 1368 return map_sz; 1369 } 1370 1371 static char *internal_map_name(struct bpf_object *obj, 1372 enum libbpf_map_type type) 1373 { 1374 char map_name[BPF_OBJ_NAME_LEN], *p; 1375 const char *sfx = libbpf_type_to_btf_name[type]; 1376 int sfx_len = max((size_t)7, strlen(sfx)); 1377 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1378 strlen(obj->name)); 1379 1380 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1381 sfx_len, libbpf_type_to_btf_name[type]); 1382 1383 /* sanitise map name to characters allowed by kernel */ 1384 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1385 if (!isalnum(*p) && *p != '_' && *p != '.') 1386 *p = '_'; 1387 1388 return strdup(map_name); 1389 } 1390 1391 static int 1392 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1393 int sec_idx, void *data, size_t data_sz) 1394 { 1395 struct bpf_map_def *def; 1396 struct bpf_map *map; 1397 int err; 1398 1399 map = bpf_object__add_map(obj); 1400 if (IS_ERR(map)) 1401 return PTR_ERR(map); 1402 1403 map->libbpf_type = type; 1404 map->sec_idx = sec_idx; 1405 map->sec_offset = 0; 1406 map->name = internal_map_name(obj, type); 1407 if (!map->name) { 1408 pr_warn("failed to alloc map name\n"); 1409 return -ENOMEM; 1410 } 1411 1412 def = &map->def; 1413 def->type = BPF_MAP_TYPE_ARRAY; 1414 def->key_size = sizeof(int); 1415 def->value_size = data_sz; 1416 def->max_entries = 1; 1417 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1418 ? BPF_F_RDONLY_PROG : 0; 1419 def->map_flags |= BPF_F_MMAPABLE; 1420 1421 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1422 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1423 1424 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1425 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1426 if (map->mmaped == MAP_FAILED) { 1427 err = -errno; 1428 map->mmaped = NULL; 1429 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1430 map->name, err); 1431 zfree(&map->name); 1432 return err; 1433 } 1434 1435 if (data) 1436 memcpy(map->mmaped, data, data_sz); 1437 1438 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1439 return 0; 1440 } 1441 1442 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1443 { 1444 int err; 1445 1446 /* 1447 * Populate obj->maps with libbpf internal maps. 1448 */ 1449 if (obj->efile.data_shndx >= 0) { 1450 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1451 obj->efile.data_shndx, 1452 obj->efile.data->d_buf, 1453 obj->efile.data->d_size); 1454 if (err) 1455 return err; 1456 } 1457 if (obj->efile.rodata_shndx >= 0) { 1458 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1459 obj->efile.rodata_shndx, 1460 obj->efile.rodata->d_buf, 1461 obj->efile.rodata->d_size); 1462 if (err) 1463 return err; 1464 1465 obj->rodata_map_idx = obj->nr_maps - 1; 1466 } 1467 if (obj->efile.bss_shndx >= 0) { 1468 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1469 obj->efile.bss_shndx, 1470 NULL, 1471 obj->efile.bss->d_size); 1472 if (err) 1473 return err; 1474 } 1475 return 0; 1476 } 1477 1478 1479 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1480 const void *name) 1481 { 1482 int i; 1483 1484 for (i = 0; i < obj->nr_extern; i++) { 1485 if (strcmp(obj->externs[i].name, name) == 0) 1486 return &obj->externs[i]; 1487 } 1488 return NULL; 1489 } 1490 1491 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1492 char value) 1493 { 1494 switch (ext->kcfg.type) { 1495 case KCFG_BOOL: 1496 if (value == 'm') { 1497 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1498 ext->name, value); 1499 return -EINVAL; 1500 } 1501 *(bool *)ext_val = value == 'y' ? true : false; 1502 break; 1503 case KCFG_TRISTATE: 1504 if (value == 'y') 1505 *(enum libbpf_tristate *)ext_val = TRI_YES; 1506 else if (value == 'm') 1507 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1508 else /* value == 'n' */ 1509 *(enum libbpf_tristate *)ext_val = TRI_NO; 1510 break; 1511 case KCFG_CHAR: 1512 *(char *)ext_val = value; 1513 break; 1514 case KCFG_UNKNOWN: 1515 case KCFG_INT: 1516 case KCFG_CHAR_ARR: 1517 default: 1518 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1519 ext->name, value); 1520 return -EINVAL; 1521 } 1522 ext->is_set = true; 1523 return 0; 1524 } 1525 1526 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1527 const char *value) 1528 { 1529 size_t len; 1530 1531 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1532 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1533 return -EINVAL; 1534 } 1535 1536 len = strlen(value); 1537 if (value[len - 1] != '"') { 1538 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1539 ext->name, value); 1540 return -EINVAL; 1541 } 1542 1543 /* strip quotes */ 1544 len -= 2; 1545 if (len >= ext->kcfg.sz) { 1546 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1547 ext->name, value, len, ext->kcfg.sz - 1); 1548 len = ext->kcfg.sz - 1; 1549 } 1550 memcpy(ext_val, value + 1, len); 1551 ext_val[len] = '\0'; 1552 ext->is_set = true; 1553 return 0; 1554 } 1555 1556 static int parse_u64(const char *value, __u64 *res) 1557 { 1558 char *value_end; 1559 int err; 1560 1561 errno = 0; 1562 *res = strtoull(value, &value_end, 0); 1563 if (errno) { 1564 err = -errno; 1565 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1566 return err; 1567 } 1568 if (*value_end) { 1569 pr_warn("failed to parse '%s' as integer completely\n", value); 1570 return -EINVAL; 1571 } 1572 return 0; 1573 } 1574 1575 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1576 { 1577 int bit_sz = ext->kcfg.sz * 8; 1578 1579 if (ext->kcfg.sz == 8) 1580 return true; 1581 1582 /* Validate that value stored in u64 fits in integer of `ext->sz` 1583 * bytes size without any loss of information. If the target integer 1584 * is signed, we rely on the following limits of integer type of 1585 * Y bits and subsequent transformation: 1586 * 1587 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1588 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1589 * 0 <= X + 2^(Y-1) < 2^Y 1590 * 1591 * For unsigned target integer, check that all the (64 - Y) bits are 1592 * zero. 1593 */ 1594 if (ext->kcfg.is_signed) 1595 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1596 else 1597 return (v >> bit_sz) == 0; 1598 } 1599 1600 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1601 __u64 value) 1602 { 1603 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1604 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1605 ext->name, (unsigned long long)value); 1606 return -EINVAL; 1607 } 1608 if (!is_kcfg_value_in_range(ext, value)) { 1609 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1610 ext->name, (unsigned long long)value, ext->kcfg.sz); 1611 return -ERANGE; 1612 } 1613 switch (ext->kcfg.sz) { 1614 case 1: *(__u8 *)ext_val = value; break; 1615 case 2: *(__u16 *)ext_val = value; break; 1616 case 4: *(__u32 *)ext_val = value; break; 1617 case 8: *(__u64 *)ext_val = value; break; 1618 default: 1619 return -EINVAL; 1620 } 1621 ext->is_set = true; 1622 return 0; 1623 } 1624 1625 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1626 char *buf, void *data) 1627 { 1628 struct extern_desc *ext; 1629 char *sep, *value; 1630 int len, err = 0; 1631 void *ext_val; 1632 __u64 num; 1633 1634 if (strncmp(buf, "CONFIG_", 7)) 1635 return 0; 1636 1637 sep = strchr(buf, '='); 1638 if (!sep) { 1639 pr_warn("failed to parse '%s': no separator\n", buf); 1640 return -EINVAL; 1641 } 1642 1643 /* Trim ending '\n' */ 1644 len = strlen(buf); 1645 if (buf[len - 1] == '\n') 1646 buf[len - 1] = '\0'; 1647 /* Split on '=' and ensure that a value is present. */ 1648 *sep = '\0'; 1649 if (!sep[1]) { 1650 *sep = '='; 1651 pr_warn("failed to parse '%s': no value\n", buf); 1652 return -EINVAL; 1653 } 1654 1655 ext = find_extern_by_name(obj, buf); 1656 if (!ext || ext->is_set) 1657 return 0; 1658 1659 ext_val = data + ext->kcfg.data_off; 1660 value = sep + 1; 1661 1662 switch (*value) { 1663 case 'y': case 'n': case 'm': 1664 err = set_kcfg_value_tri(ext, ext_val, *value); 1665 break; 1666 case '"': 1667 err = set_kcfg_value_str(ext, ext_val, value); 1668 break; 1669 default: 1670 /* assume integer */ 1671 err = parse_u64(value, &num); 1672 if (err) { 1673 pr_warn("extern (kcfg) %s=%s should be integer\n", 1674 ext->name, value); 1675 return err; 1676 } 1677 err = set_kcfg_value_num(ext, ext_val, num); 1678 break; 1679 } 1680 if (err) 1681 return err; 1682 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1683 return 0; 1684 } 1685 1686 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1687 { 1688 char buf[PATH_MAX]; 1689 struct utsname uts; 1690 int len, err = 0; 1691 gzFile file; 1692 1693 uname(&uts); 1694 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1695 if (len < 0) 1696 return -EINVAL; 1697 else if (len >= PATH_MAX) 1698 return -ENAMETOOLONG; 1699 1700 /* gzopen also accepts uncompressed files. */ 1701 file = gzopen(buf, "r"); 1702 if (!file) 1703 file = gzopen("/proc/config.gz", "r"); 1704 1705 if (!file) { 1706 pr_warn("failed to open system Kconfig\n"); 1707 return -ENOENT; 1708 } 1709 1710 while (gzgets(file, buf, sizeof(buf))) { 1711 err = bpf_object__process_kconfig_line(obj, buf, data); 1712 if (err) { 1713 pr_warn("error parsing system Kconfig line '%s': %d\n", 1714 buf, err); 1715 goto out; 1716 } 1717 } 1718 1719 out: 1720 gzclose(file); 1721 return err; 1722 } 1723 1724 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1725 const char *config, void *data) 1726 { 1727 char buf[PATH_MAX]; 1728 int err = 0; 1729 FILE *file; 1730 1731 file = fmemopen((void *)config, strlen(config), "r"); 1732 if (!file) { 1733 err = -errno; 1734 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1735 return err; 1736 } 1737 1738 while (fgets(buf, sizeof(buf), file)) { 1739 err = bpf_object__process_kconfig_line(obj, buf, data); 1740 if (err) { 1741 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1742 buf, err); 1743 break; 1744 } 1745 } 1746 1747 fclose(file); 1748 return err; 1749 } 1750 1751 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1752 { 1753 struct extern_desc *last_ext = NULL, *ext; 1754 size_t map_sz; 1755 int i, err; 1756 1757 for (i = 0; i < obj->nr_extern; i++) { 1758 ext = &obj->externs[i]; 1759 if (ext->type == EXT_KCFG) 1760 last_ext = ext; 1761 } 1762 1763 if (!last_ext) 1764 return 0; 1765 1766 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1767 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1768 obj->efile.symbols_shndx, 1769 NULL, map_sz); 1770 if (err) 1771 return err; 1772 1773 obj->kconfig_map_idx = obj->nr_maps - 1; 1774 1775 return 0; 1776 } 1777 1778 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1779 { 1780 Elf_Data *symbols = obj->efile.symbols; 1781 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1782 Elf_Data *data = NULL; 1783 Elf_Scn *scn; 1784 1785 if (obj->efile.maps_shndx < 0) 1786 return 0; 1787 1788 if (!symbols) 1789 return -EINVAL; 1790 1791 1792 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1793 data = elf_sec_data(obj, scn); 1794 if (!scn || !data) { 1795 pr_warn("elf: failed to get legacy map definitions for %s\n", 1796 obj->path); 1797 return -EINVAL; 1798 } 1799 1800 /* 1801 * Count number of maps. Each map has a name. 1802 * Array of maps is not supported: only the first element is 1803 * considered. 1804 * 1805 * TODO: Detect array of map and report error. 1806 */ 1807 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1808 for (i = 0; i < nr_syms; i++) { 1809 GElf_Sym sym; 1810 1811 if (!gelf_getsym(symbols, i, &sym)) 1812 continue; 1813 if (sym.st_shndx != obj->efile.maps_shndx) 1814 continue; 1815 nr_maps++; 1816 } 1817 /* Assume equally sized map definitions */ 1818 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1819 nr_maps, data->d_size, obj->path); 1820 1821 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1822 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1823 obj->path); 1824 return -EINVAL; 1825 } 1826 map_def_sz = data->d_size / nr_maps; 1827 1828 /* Fill obj->maps using data in "maps" section. */ 1829 for (i = 0; i < nr_syms; i++) { 1830 GElf_Sym sym; 1831 const char *map_name; 1832 struct bpf_map_def *def; 1833 struct bpf_map *map; 1834 1835 if (!gelf_getsym(symbols, i, &sym)) 1836 continue; 1837 if (sym.st_shndx != obj->efile.maps_shndx) 1838 continue; 1839 1840 map = bpf_object__add_map(obj); 1841 if (IS_ERR(map)) 1842 return PTR_ERR(map); 1843 1844 map_name = elf_sym_str(obj, sym.st_name); 1845 if (!map_name) { 1846 pr_warn("failed to get map #%d name sym string for obj %s\n", 1847 i, obj->path); 1848 return -LIBBPF_ERRNO__FORMAT; 1849 } 1850 1851 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1852 map->sec_idx = sym.st_shndx; 1853 map->sec_offset = sym.st_value; 1854 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1855 map_name, map->sec_idx, map->sec_offset); 1856 if (sym.st_value + map_def_sz > data->d_size) { 1857 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1858 obj->path, map_name); 1859 return -EINVAL; 1860 } 1861 1862 map->name = strdup(map_name); 1863 if (!map->name) { 1864 pr_warn("failed to alloc map name\n"); 1865 return -ENOMEM; 1866 } 1867 pr_debug("map %d is \"%s\"\n", i, map->name); 1868 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1869 /* 1870 * If the definition of the map in the object file fits in 1871 * bpf_map_def, copy it. Any extra fields in our version 1872 * of bpf_map_def will default to zero as a result of the 1873 * calloc above. 1874 */ 1875 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1876 memcpy(&map->def, def, map_def_sz); 1877 } else { 1878 /* 1879 * Here the map structure being read is bigger than what 1880 * we expect, truncate if the excess bits are all zero. 1881 * If they are not zero, reject this map as 1882 * incompatible. 1883 */ 1884 char *b; 1885 1886 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1887 b < ((char *)def) + map_def_sz; b++) { 1888 if (*b != 0) { 1889 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1890 obj->path, map_name); 1891 if (strict) 1892 return -EINVAL; 1893 } 1894 } 1895 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1896 } 1897 } 1898 return 0; 1899 } 1900 1901 static const struct btf_type * 1902 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1903 { 1904 const struct btf_type *t = btf__type_by_id(btf, id); 1905 1906 if (res_id) 1907 *res_id = id; 1908 1909 while (btf_is_mod(t) || btf_is_typedef(t)) { 1910 if (res_id) 1911 *res_id = t->type; 1912 t = btf__type_by_id(btf, t->type); 1913 } 1914 1915 return t; 1916 } 1917 1918 static const struct btf_type * 1919 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1920 { 1921 const struct btf_type *t; 1922 1923 t = skip_mods_and_typedefs(btf, id, NULL); 1924 if (!btf_is_ptr(t)) 1925 return NULL; 1926 1927 t = skip_mods_and_typedefs(btf, t->type, res_id); 1928 1929 return btf_is_func_proto(t) ? t : NULL; 1930 } 1931 1932 static const char *btf_kind_str(const struct btf_type *t) 1933 { 1934 switch (btf_kind(t)) { 1935 case BTF_KIND_UNKN: return "void"; 1936 case BTF_KIND_INT: return "int"; 1937 case BTF_KIND_PTR: return "ptr"; 1938 case BTF_KIND_ARRAY: return "array"; 1939 case BTF_KIND_STRUCT: return "struct"; 1940 case BTF_KIND_UNION: return "union"; 1941 case BTF_KIND_ENUM: return "enum"; 1942 case BTF_KIND_FWD: return "fwd"; 1943 case BTF_KIND_TYPEDEF: return "typedef"; 1944 case BTF_KIND_VOLATILE: return "volatile"; 1945 case BTF_KIND_CONST: return "const"; 1946 case BTF_KIND_RESTRICT: return "restrict"; 1947 case BTF_KIND_FUNC: return "func"; 1948 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1949 case BTF_KIND_VAR: return "var"; 1950 case BTF_KIND_DATASEC: return "datasec"; 1951 case BTF_KIND_FLOAT: return "float"; 1952 default: return "unknown"; 1953 } 1954 } 1955 1956 /* 1957 * Fetch integer attribute of BTF map definition. Such attributes are 1958 * represented using a pointer to an array, in which dimensionality of array 1959 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1960 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1961 * type definition, while using only sizeof(void *) space in ELF data section. 1962 */ 1963 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1964 const struct btf_member *m, __u32 *res) 1965 { 1966 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1967 const char *name = btf__name_by_offset(btf, m->name_off); 1968 const struct btf_array *arr_info; 1969 const struct btf_type *arr_t; 1970 1971 if (!btf_is_ptr(t)) { 1972 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1973 map_name, name, btf_kind_str(t)); 1974 return false; 1975 } 1976 1977 arr_t = btf__type_by_id(btf, t->type); 1978 if (!arr_t) { 1979 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1980 map_name, name, t->type); 1981 return false; 1982 } 1983 if (!btf_is_array(arr_t)) { 1984 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1985 map_name, name, btf_kind_str(arr_t)); 1986 return false; 1987 } 1988 arr_info = btf_array(arr_t); 1989 *res = arr_info->nelems; 1990 return true; 1991 } 1992 1993 static int build_map_pin_path(struct bpf_map *map, const char *path) 1994 { 1995 char buf[PATH_MAX]; 1996 int len; 1997 1998 if (!path) 1999 path = "/sys/fs/bpf"; 2000 2001 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2002 if (len < 0) 2003 return -EINVAL; 2004 else if (len >= PATH_MAX) 2005 return -ENAMETOOLONG; 2006 2007 return bpf_map__set_pin_path(map, buf); 2008 } 2009 2010 2011 static int parse_btf_map_def(struct bpf_object *obj, 2012 struct bpf_map *map, 2013 const struct btf_type *def, 2014 bool strict, bool is_inner, 2015 const char *pin_root_path) 2016 { 2017 const struct btf_type *t; 2018 const struct btf_member *m; 2019 int vlen, i; 2020 2021 vlen = btf_vlen(def); 2022 m = btf_members(def); 2023 for (i = 0; i < vlen; i++, m++) { 2024 const char *name = btf__name_by_offset(obj->btf, m->name_off); 2025 2026 if (!name) { 2027 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 2028 return -EINVAL; 2029 } 2030 if (strcmp(name, "type") == 0) { 2031 if (!get_map_field_int(map->name, obj->btf, m, 2032 &map->def.type)) 2033 return -EINVAL; 2034 pr_debug("map '%s': found type = %u.\n", 2035 map->name, map->def.type); 2036 } else if (strcmp(name, "max_entries") == 0) { 2037 if (!get_map_field_int(map->name, obj->btf, m, 2038 &map->def.max_entries)) 2039 return -EINVAL; 2040 pr_debug("map '%s': found max_entries = %u.\n", 2041 map->name, map->def.max_entries); 2042 } else if (strcmp(name, "map_flags") == 0) { 2043 if (!get_map_field_int(map->name, obj->btf, m, 2044 &map->def.map_flags)) 2045 return -EINVAL; 2046 pr_debug("map '%s': found map_flags = %u.\n", 2047 map->name, map->def.map_flags); 2048 } else if (strcmp(name, "numa_node") == 0) { 2049 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2050 return -EINVAL; 2051 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2052 } else if (strcmp(name, "key_size") == 0) { 2053 __u32 sz; 2054 2055 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2056 return -EINVAL; 2057 pr_debug("map '%s': found key_size = %u.\n", 2058 map->name, sz); 2059 if (map->def.key_size && map->def.key_size != sz) { 2060 pr_warn("map '%s': conflicting key size %u != %u.\n", 2061 map->name, map->def.key_size, sz); 2062 return -EINVAL; 2063 } 2064 map->def.key_size = sz; 2065 } else if (strcmp(name, "key") == 0) { 2066 __s64 sz; 2067 2068 t = btf__type_by_id(obj->btf, m->type); 2069 if (!t) { 2070 pr_warn("map '%s': key type [%d] not found.\n", 2071 map->name, m->type); 2072 return -EINVAL; 2073 } 2074 if (!btf_is_ptr(t)) { 2075 pr_warn("map '%s': key spec is not PTR: %s.\n", 2076 map->name, btf_kind_str(t)); 2077 return -EINVAL; 2078 } 2079 sz = btf__resolve_size(obj->btf, t->type); 2080 if (sz < 0) { 2081 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2082 map->name, t->type, (ssize_t)sz); 2083 return sz; 2084 } 2085 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2086 map->name, t->type, (ssize_t)sz); 2087 if (map->def.key_size && map->def.key_size != sz) { 2088 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2089 map->name, map->def.key_size, (ssize_t)sz); 2090 return -EINVAL; 2091 } 2092 map->def.key_size = sz; 2093 map->btf_key_type_id = t->type; 2094 } else if (strcmp(name, "value_size") == 0) { 2095 __u32 sz; 2096 2097 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2098 return -EINVAL; 2099 pr_debug("map '%s': found value_size = %u.\n", 2100 map->name, sz); 2101 if (map->def.value_size && map->def.value_size != sz) { 2102 pr_warn("map '%s': conflicting value size %u != %u.\n", 2103 map->name, map->def.value_size, sz); 2104 return -EINVAL; 2105 } 2106 map->def.value_size = sz; 2107 } else if (strcmp(name, "value") == 0) { 2108 __s64 sz; 2109 2110 t = btf__type_by_id(obj->btf, m->type); 2111 if (!t) { 2112 pr_warn("map '%s': value type [%d] not found.\n", 2113 map->name, m->type); 2114 return -EINVAL; 2115 } 2116 if (!btf_is_ptr(t)) { 2117 pr_warn("map '%s': value spec is not PTR: %s.\n", 2118 map->name, btf_kind_str(t)); 2119 return -EINVAL; 2120 } 2121 sz = btf__resolve_size(obj->btf, t->type); 2122 if (sz < 0) { 2123 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2124 map->name, t->type, (ssize_t)sz); 2125 return sz; 2126 } 2127 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2128 map->name, t->type, (ssize_t)sz); 2129 if (map->def.value_size && map->def.value_size != sz) { 2130 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2131 map->name, map->def.value_size, (ssize_t)sz); 2132 return -EINVAL; 2133 } 2134 map->def.value_size = sz; 2135 map->btf_value_type_id = t->type; 2136 } 2137 else if (strcmp(name, "values") == 0) { 2138 int err; 2139 2140 if (is_inner) { 2141 pr_warn("map '%s': multi-level inner maps not supported.\n", 2142 map->name); 2143 return -ENOTSUP; 2144 } 2145 if (i != vlen - 1) { 2146 pr_warn("map '%s': '%s' member should be last.\n", 2147 map->name, name); 2148 return -EINVAL; 2149 } 2150 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2151 pr_warn("map '%s': should be map-in-map.\n", 2152 map->name); 2153 return -ENOTSUP; 2154 } 2155 if (map->def.value_size && map->def.value_size != 4) { 2156 pr_warn("map '%s': conflicting value size %u != 4.\n", 2157 map->name, map->def.value_size); 2158 return -EINVAL; 2159 } 2160 map->def.value_size = 4; 2161 t = btf__type_by_id(obj->btf, m->type); 2162 if (!t) { 2163 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2164 map->name, m->type); 2165 return -EINVAL; 2166 } 2167 if (!btf_is_array(t) || btf_array(t)->nelems) { 2168 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2169 map->name); 2170 return -EINVAL; 2171 } 2172 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2173 NULL); 2174 if (!btf_is_ptr(t)) { 2175 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2176 map->name, btf_kind_str(t)); 2177 return -EINVAL; 2178 } 2179 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2180 if (!btf_is_struct(t)) { 2181 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2182 map->name, btf_kind_str(t)); 2183 return -EINVAL; 2184 } 2185 2186 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2187 if (!map->inner_map) 2188 return -ENOMEM; 2189 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2190 map->inner_map->name = malloc(strlen(map->name) + 2191 sizeof(".inner") + 1); 2192 if (!map->inner_map->name) 2193 return -ENOMEM; 2194 sprintf(map->inner_map->name, "%s.inner", map->name); 2195 2196 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2197 true /* is_inner */, NULL); 2198 if (err) 2199 return err; 2200 } else if (strcmp(name, "pinning") == 0) { 2201 __u32 val; 2202 int err; 2203 2204 if (is_inner) { 2205 pr_debug("map '%s': inner def can't be pinned.\n", 2206 map->name); 2207 return -EINVAL; 2208 } 2209 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2210 return -EINVAL; 2211 pr_debug("map '%s': found pinning = %u.\n", 2212 map->name, val); 2213 2214 if (val != LIBBPF_PIN_NONE && 2215 val != LIBBPF_PIN_BY_NAME) { 2216 pr_warn("map '%s': invalid pinning value %u.\n", 2217 map->name, val); 2218 return -EINVAL; 2219 } 2220 if (val == LIBBPF_PIN_BY_NAME) { 2221 err = build_map_pin_path(map, pin_root_path); 2222 if (err) { 2223 pr_warn("map '%s': couldn't build pin path.\n", 2224 map->name); 2225 return err; 2226 } 2227 } 2228 } else { 2229 if (strict) { 2230 pr_warn("map '%s': unknown field '%s'.\n", 2231 map->name, name); 2232 return -ENOTSUP; 2233 } 2234 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2235 map->name, name); 2236 } 2237 } 2238 2239 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2240 pr_warn("map '%s': map type isn't specified.\n", map->name); 2241 return -EINVAL; 2242 } 2243 2244 return 0; 2245 } 2246 2247 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2248 const struct btf_type *sec, 2249 int var_idx, int sec_idx, 2250 const Elf_Data *data, bool strict, 2251 const char *pin_root_path) 2252 { 2253 const struct btf_type *var, *def; 2254 const struct btf_var_secinfo *vi; 2255 const struct btf_var *var_extra; 2256 const char *map_name; 2257 struct bpf_map *map; 2258 2259 vi = btf_var_secinfos(sec) + var_idx; 2260 var = btf__type_by_id(obj->btf, vi->type); 2261 var_extra = btf_var(var); 2262 map_name = btf__name_by_offset(obj->btf, var->name_off); 2263 2264 if (map_name == NULL || map_name[0] == '\0') { 2265 pr_warn("map #%d: empty name.\n", var_idx); 2266 return -EINVAL; 2267 } 2268 if ((__u64)vi->offset + vi->size > data->d_size) { 2269 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2270 return -EINVAL; 2271 } 2272 if (!btf_is_var(var)) { 2273 pr_warn("map '%s': unexpected var kind %s.\n", 2274 map_name, btf_kind_str(var)); 2275 return -EINVAL; 2276 } 2277 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2278 var_extra->linkage != BTF_VAR_STATIC) { 2279 pr_warn("map '%s': unsupported var linkage %u.\n", 2280 map_name, var_extra->linkage); 2281 return -EOPNOTSUPP; 2282 } 2283 2284 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2285 if (!btf_is_struct(def)) { 2286 pr_warn("map '%s': unexpected def kind %s.\n", 2287 map_name, btf_kind_str(var)); 2288 return -EINVAL; 2289 } 2290 if (def->size > vi->size) { 2291 pr_warn("map '%s': invalid def size.\n", map_name); 2292 return -EINVAL; 2293 } 2294 2295 map = bpf_object__add_map(obj); 2296 if (IS_ERR(map)) 2297 return PTR_ERR(map); 2298 map->name = strdup(map_name); 2299 if (!map->name) { 2300 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2301 return -ENOMEM; 2302 } 2303 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2304 map->def.type = BPF_MAP_TYPE_UNSPEC; 2305 map->sec_idx = sec_idx; 2306 map->sec_offset = vi->offset; 2307 map->btf_var_idx = var_idx; 2308 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2309 map_name, map->sec_idx, map->sec_offset); 2310 2311 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2312 } 2313 2314 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2315 const char *pin_root_path) 2316 { 2317 const struct btf_type *sec = NULL; 2318 int nr_types, i, vlen, err; 2319 const struct btf_type *t; 2320 const char *name; 2321 Elf_Data *data; 2322 Elf_Scn *scn; 2323 2324 if (obj->efile.btf_maps_shndx < 0) 2325 return 0; 2326 2327 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2328 data = elf_sec_data(obj, scn); 2329 if (!scn || !data) { 2330 pr_warn("elf: failed to get %s map definitions for %s\n", 2331 MAPS_ELF_SEC, obj->path); 2332 return -EINVAL; 2333 } 2334 2335 nr_types = btf__get_nr_types(obj->btf); 2336 for (i = 1; i <= nr_types; i++) { 2337 t = btf__type_by_id(obj->btf, i); 2338 if (!btf_is_datasec(t)) 2339 continue; 2340 name = btf__name_by_offset(obj->btf, t->name_off); 2341 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2342 sec = t; 2343 obj->efile.btf_maps_sec_btf_id = i; 2344 break; 2345 } 2346 } 2347 2348 if (!sec) { 2349 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2350 return -ENOENT; 2351 } 2352 2353 vlen = btf_vlen(sec); 2354 for (i = 0; i < vlen; i++) { 2355 err = bpf_object__init_user_btf_map(obj, sec, i, 2356 obj->efile.btf_maps_shndx, 2357 data, strict, 2358 pin_root_path); 2359 if (err) 2360 return err; 2361 } 2362 2363 return 0; 2364 } 2365 2366 static int bpf_object__init_maps(struct bpf_object *obj, 2367 const struct bpf_object_open_opts *opts) 2368 { 2369 const char *pin_root_path; 2370 bool strict; 2371 int err; 2372 2373 strict = !OPTS_GET(opts, relaxed_maps, false); 2374 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2375 2376 err = bpf_object__init_user_maps(obj, strict); 2377 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2378 err = err ?: bpf_object__init_global_data_maps(obj); 2379 err = err ?: bpf_object__init_kconfig_map(obj); 2380 err = err ?: bpf_object__init_struct_ops_maps(obj); 2381 if (err) 2382 return err; 2383 2384 return 0; 2385 } 2386 2387 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2388 { 2389 GElf_Shdr sh; 2390 2391 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2392 return false; 2393 2394 return sh.sh_flags & SHF_EXECINSTR; 2395 } 2396 2397 static bool btf_needs_sanitization(struct bpf_object *obj) 2398 { 2399 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2400 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2401 bool has_float = kernel_supports(FEAT_BTF_FLOAT); 2402 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2403 2404 return !has_func || !has_datasec || !has_func_global || !has_float; 2405 } 2406 2407 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2408 { 2409 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2410 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2411 bool has_float = kernel_supports(FEAT_BTF_FLOAT); 2412 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2413 struct btf_type *t; 2414 int i, j, vlen; 2415 2416 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2417 t = (struct btf_type *)btf__type_by_id(btf, i); 2418 2419 if (!has_datasec && btf_is_var(t)) { 2420 /* replace VAR with INT */ 2421 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2422 /* 2423 * using size = 1 is the safest choice, 4 will be too 2424 * big and cause kernel BTF validation failure if 2425 * original variable took less than 4 bytes 2426 */ 2427 t->size = 1; 2428 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2429 } else if (!has_datasec && btf_is_datasec(t)) { 2430 /* replace DATASEC with STRUCT */ 2431 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2432 struct btf_member *m = btf_members(t); 2433 struct btf_type *vt; 2434 char *name; 2435 2436 name = (char *)btf__name_by_offset(btf, t->name_off); 2437 while (*name) { 2438 if (*name == '.') 2439 *name = '_'; 2440 name++; 2441 } 2442 2443 vlen = btf_vlen(t); 2444 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2445 for (j = 0; j < vlen; j++, v++, m++) { 2446 /* order of field assignments is important */ 2447 m->offset = v->offset * 8; 2448 m->type = v->type; 2449 /* preserve variable name as member name */ 2450 vt = (void *)btf__type_by_id(btf, v->type); 2451 m->name_off = vt->name_off; 2452 } 2453 } else if (!has_func && btf_is_func_proto(t)) { 2454 /* replace FUNC_PROTO with ENUM */ 2455 vlen = btf_vlen(t); 2456 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2457 t->size = sizeof(__u32); /* kernel enforced */ 2458 } else if (!has_func && btf_is_func(t)) { 2459 /* replace FUNC with TYPEDEF */ 2460 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2461 } else if (!has_func_global && btf_is_func(t)) { 2462 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2463 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2464 } else if (!has_float && btf_is_float(t)) { 2465 /* replace FLOAT with an equally-sized empty STRUCT; 2466 * since C compilers do not accept e.g. "float" as a 2467 * valid struct name, make it anonymous 2468 */ 2469 t->name_off = 0; 2470 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2471 } 2472 } 2473 } 2474 2475 static bool libbpf_needs_btf(const struct bpf_object *obj) 2476 { 2477 return obj->efile.btf_maps_shndx >= 0 || 2478 obj->efile.st_ops_shndx >= 0 || 2479 obj->nr_extern > 0; 2480 } 2481 2482 static bool kernel_needs_btf(const struct bpf_object *obj) 2483 { 2484 return obj->efile.st_ops_shndx >= 0; 2485 } 2486 2487 static int bpf_object__init_btf(struct bpf_object *obj, 2488 Elf_Data *btf_data, 2489 Elf_Data *btf_ext_data) 2490 { 2491 int err = -ENOENT; 2492 2493 if (btf_data) { 2494 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2495 if (IS_ERR(obj->btf)) { 2496 err = PTR_ERR(obj->btf); 2497 obj->btf = NULL; 2498 pr_warn("Error loading ELF section %s: %d.\n", 2499 BTF_ELF_SEC, err); 2500 goto out; 2501 } 2502 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2503 btf__set_pointer_size(obj->btf, 8); 2504 err = 0; 2505 } 2506 if (btf_ext_data) { 2507 if (!obj->btf) { 2508 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2509 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2510 goto out; 2511 } 2512 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2513 btf_ext_data->d_size); 2514 if (IS_ERR(obj->btf_ext)) { 2515 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2516 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2517 obj->btf_ext = NULL; 2518 goto out; 2519 } 2520 } 2521 out: 2522 if (err && libbpf_needs_btf(obj)) { 2523 pr_warn("BTF is required, but is missing or corrupted.\n"); 2524 return err; 2525 } 2526 return 0; 2527 } 2528 2529 static int bpf_object__finalize_btf(struct bpf_object *obj) 2530 { 2531 int err; 2532 2533 if (!obj->btf) 2534 return 0; 2535 2536 err = btf__finalize_data(obj, obj->btf); 2537 if (err) { 2538 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2539 return err; 2540 } 2541 2542 return 0; 2543 } 2544 2545 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2546 { 2547 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2548 prog->type == BPF_PROG_TYPE_LSM) 2549 return true; 2550 2551 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2552 * also need vmlinux BTF 2553 */ 2554 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2555 return true; 2556 2557 return false; 2558 } 2559 2560 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2561 { 2562 struct bpf_program *prog; 2563 int i; 2564 2565 /* CO-RE relocations need kernel BTF */ 2566 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2567 return true; 2568 2569 /* Support for typed ksyms needs kernel BTF */ 2570 for (i = 0; i < obj->nr_extern; i++) { 2571 const struct extern_desc *ext; 2572 2573 ext = &obj->externs[i]; 2574 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2575 return true; 2576 } 2577 2578 bpf_object__for_each_program(prog, obj) { 2579 if (!prog->load) 2580 continue; 2581 if (prog_needs_vmlinux_btf(prog)) 2582 return true; 2583 } 2584 2585 return false; 2586 } 2587 2588 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2589 { 2590 int err; 2591 2592 /* btf_vmlinux could be loaded earlier */ 2593 if (obj->btf_vmlinux) 2594 return 0; 2595 2596 if (!force && !obj_needs_vmlinux_btf(obj)) 2597 return 0; 2598 2599 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2600 if (IS_ERR(obj->btf_vmlinux)) { 2601 err = PTR_ERR(obj->btf_vmlinux); 2602 pr_warn("Error loading vmlinux BTF: %d\n", err); 2603 obj->btf_vmlinux = NULL; 2604 return err; 2605 } 2606 return 0; 2607 } 2608 2609 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2610 { 2611 struct btf *kern_btf = obj->btf; 2612 bool btf_mandatory, sanitize; 2613 int err = 0; 2614 2615 if (!obj->btf) 2616 return 0; 2617 2618 if (!kernel_supports(FEAT_BTF)) { 2619 if (kernel_needs_btf(obj)) { 2620 err = -EOPNOTSUPP; 2621 goto report; 2622 } 2623 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2624 return 0; 2625 } 2626 2627 sanitize = btf_needs_sanitization(obj); 2628 if (sanitize) { 2629 const void *raw_data; 2630 __u32 sz; 2631 2632 /* clone BTF to sanitize a copy and leave the original intact */ 2633 raw_data = btf__get_raw_data(obj->btf, &sz); 2634 kern_btf = btf__new(raw_data, sz); 2635 if (IS_ERR(kern_btf)) 2636 return PTR_ERR(kern_btf); 2637 2638 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2639 btf__set_pointer_size(obj->btf, 8); 2640 bpf_object__sanitize_btf(obj, kern_btf); 2641 } 2642 2643 err = btf__load(kern_btf); 2644 if (sanitize) { 2645 if (!err) { 2646 /* move fd to libbpf's BTF */ 2647 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2648 btf__set_fd(kern_btf, -1); 2649 } 2650 btf__free(kern_btf); 2651 } 2652 report: 2653 if (err) { 2654 btf_mandatory = kernel_needs_btf(obj); 2655 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2656 btf_mandatory ? "BTF is mandatory, can't proceed." 2657 : "BTF is optional, ignoring."); 2658 if (!btf_mandatory) 2659 err = 0; 2660 } 2661 return err; 2662 } 2663 2664 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2665 { 2666 const char *name; 2667 2668 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2669 if (!name) { 2670 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2671 off, obj->path, elf_errmsg(-1)); 2672 return NULL; 2673 } 2674 2675 return name; 2676 } 2677 2678 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2679 { 2680 const char *name; 2681 2682 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2683 if (!name) { 2684 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2685 off, obj->path, elf_errmsg(-1)); 2686 return NULL; 2687 } 2688 2689 return name; 2690 } 2691 2692 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2693 { 2694 Elf_Scn *scn; 2695 2696 scn = elf_getscn(obj->efile.elf, idx); 2697 if (!scn) { 2698 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2699 idx, obj->path, elf_errmsg(-1)); 2700 return NULL; 2701 } 2702 return scn; 2703 } 2704 2705 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2706 { 2707 Elf_Scn *scn = NULL; 2708 Elf *elf = obj->efile.elf; 2709 const char *sec_name; 2710 2711 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2712 sec_name = elf_sec_name(obj, scn); 2713 if (!sec_name) 2714 return NULL; 2715 2716 if (strcmp(sec_name, name) != 0) 2717 continue; 2718 2719 return scn; 2720 } 2721 return NULL; 2722 } 2723 2724 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2725 { 2726 if (!scn) 2727 return -EINVAL; 2728 2729 if (gelf_getshdr(scn, hdr) != hdr) { 2730 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2731 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2732 return -EINVAL; 2733 } 2734 2735 return 0; 2736 } 2737 2738 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2739 { 2740 const char *name; 2741 GElf_Shdr sh; 2742 2743 if (!scn) 2744 return NULL; 2745 2746 if (elf_sec_hdr(obj, scn, &sh)) 2747 return NULL; 2748 2749 name = elf_sec_str(obj, sh.sh_name); 2750 if (!name) { 2751 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2752 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2753 return NULL; 2754 } 2755 2756 return name; 2757 } 2758 2759 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2760 { 2761 Elf_Data *data; 2762 2763 if (!scn) 2764 return NULL; 2765 2766 data = elf_getdata(scn, 0); 2767 if (!data) { 2768 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2769 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2770 obj->path, elf_errmsg(-1)); 2771 return NULL; 2772 } 2773 2774 return data; 2775 } 2776 2777 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2778 size_t off, __u32 sym_type, GElf_Sym *sym) 2779 { 2780 Elf_Data *symbols = obj->efile.symbols; 2781 size_t n = symbols->d_size / sizeof(GElf_Sym); 2782 int i; 2783 2784 for (i = 0; i < n; i++) { 2785 if (!gelf_getsym(symbols, i, sym)) 2786 continue; 2787 if (sym->st_shndx != sec_idx || sym->st_value != off) 2788 continue; 2789 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2790 continue; 2791 return 0; 2792 } 2793 2794 return -ENOENT; 2795 } 2796 2797 static bool is_sec_name_dwarf(const char *name) 2798 { 2799 /* approximation, but the actual list is too long */ 2800 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2801 } 2802 2803 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2804 { 2805 /* no special handling of .strtab */ 2806 if (hdr->sh_type == SHT_STRTAB) 2807 return true; 2808 2809 /* ignore .llvm_addrsig section as well */ 2810 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */) 2811 return true; 2812 2813 /* no subprograms will lead to an empty .text section, ignore it */ 2814 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2815 strcmp(name, ".text") == 0) 2816 return true; 2817 2818 /* DWARF sections */ 2819 if (is_sec_name_dwarf(name)) 2820 return true; 2821 2822 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2823 name += sizeof(".rel") - 1; 2824 /* DWARF section relocations */ 2825 if (is_sec_name_dwarf(name)) 2826 return true; 2827 2828 /* .BTF and .BTF.ext don't need relocations */ 2829 if (strcmp(name, BTF_ELF_SEC) == 0 || 2830 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2831 return true; 2832 } 2833 2834 return false; 2835 } 2836 2837 static int cmp_progs(const void *_a, const void *_b) 2838 { 2839 const struct bpf_program *a = _a; 2840 const struct bpf_program *b = _b; 2841 2842 if (a->sec_idx != b->sec_idx) 2843 return a->sec_idx < b->sec_idx ? -1 : 1; 2844 2845 /* sec_insn_off can't be the same within the section */ 2846 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2847 } 2848 2849 static int bpf_object__elf_collect(struct bpf_object *obj) 2850 { 2851 Elf *elf = obj->efile.elf; 2852 Elf_Data *btf_ext_data = NULL; 2853 Elf_Data *btf_data = NULL; 2854 int idx = 0, err = 0; 2855 const char *name; 2856 Elf_Data *data; 2857 Elf_Scn *scn; 2858 GElf_Shdr sh; 2859 2860 /* a bunch of ELF parsing functionality depends on processing symbols, 2861 * so do the first pass and find the symbol table 2862 */ 2863 scn = NULL; 2864 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2865 if (elf_sec_hdr(obj, scn, &sh)) 2866 return -LIBBPF_ERRNO__FORMAT; 2867 2868 if (sh.sh_type == SHT_SYMTAB) { 2869 if (obj->efile.symbols) { 2870 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2871 return -LIBBPF_ERRNO__FORMAT; 2872 } 2873 2874 data = elf_sec_data(obj, scn); 2875 if (!data) 2876 return -LIBBPF_ERRNO__FORMAT; 2877 2878 obj->efile.symbols = data; 2879 obj->efile.symbols_shndx = elf_ndxscn(scn); 2880 obj->efile.strtabidx = sh.sh_link; 2881 } 2882 } 2883 2884 scn = NULL; 2885 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2886 idx++; 2887 2888 if (elf_sec_hdr(obj, scn, &sh)) 2889 return -LIBBPF_ERRNO__FORMAT; 2890 2891 name = elf_sec_str(obj, sh.sh_name); 2892 if (!name) 2893 return -LIBBPF_ERRNO__FORMAT; 2894 2895 if (ignore_elf_section(&sh, name)) 2896 continue; 2897 2898 data = elf_sec_data(obj, scn); 2899 if (!data) 2900 return -LIBBPF_ERRNO__FORMAT; 2901 2902 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2903 idx, name, (unsigned long)data->d_size, 2904 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2905 (int)sh.sh_type); 2906 2907 if (strcmp(name, "license") == 0) { 2908 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2909 if (err) 2910 return err; 2911 } else if (strcmp(name, "version") == 0) { 2912 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2913 if (err) 2914 return err; 2915 } else if (strcmp(name, "maps") == 0) { 2916 obj->efile.maps_shndx = idx; 2917 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2918 obj->efile.btf_maps_shndx = idx; 2919 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2920 btf_data = data; 2921 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2922 btf_ext_data = data; 2923 } else if (sh.sh_type == SHT_SYMTAB) { 2924 /* already processed during the first pass above */ 2925 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2926 if (sh.sh_flags & SHF_EXECINSTR) { 2927 if (strcmp(name, ".text") == 0) 2928 obj->efile.text_shndx = idx; 2929 err = bpf_object__add_programs(obj, data, name, idx); 2930 if (err) 2931 return err; 2932 } else if (strcmp(name, DATA_SEC) == 0) { 2933 obj->efile.data = data; 2934 obj->efile.data_shndx = idx; 2935 } else if (strcmp(name, RODATA_SEC) == 0) { 2936 obj->efile.rodata = data; 2937 obj->efile.rodata_shndx = idx; 2938 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2939 obj->efile.st_ops_data = data; 2940 obj->efile.st_ops_shndx = idx; 2941 } else { 2942 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2943 idx, name); 2944 } 2945 } else if (sh.sh_type == SHT_REL) { 2946 int nr_sects = obj->efile.nr_reloc_sects; 2947 void *sects = obj->efile.reloc_sects; 2948 int sec = sh.sh_info; /* points to other section */ 2949 2950 /* Only do relo for section with exec instructions */ 2951 if (!section_have_execinstr(obj, sec) && 2952 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2953 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2954 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2955 idx, name, sec, 2956 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2957 continue; 2958 } 2959 2960 sects = libbpf_reallocarray(sects, nr_sects + 1, 2961 sizeof(*obj->efile.reloc_sects)); 2962 if (!sects) 2963 return -ENOMEM; 2964 2965 obj->efile.reloc_sects = sects; 2966 obj->efile.nr_reloc_sects++; 2967 2968 obj->efile.reloc_sects[nr_sects].shdr = sh; 2969 obj->efile.reloc_sects[nr_sects].data = data; 2970 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2971 obj->efile.bss = data; 2972 obj->efile.bss_shndx = idx; 2973 } else { 2974 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2975 (size_t)sh.sh_size); 2976 } 2977 } 2978 2979 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2980 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2981 return -LIBBPF_ERRNO__FORMAT; 2982 } 2983 2984 /* sort BPF programs by section name and in-section instruction offset 2985 * for faster search */ 2986 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2987 2988 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2989 } 2990 2991 static bool sym_is_extern(const GElf_Sym *sym) 2992 { 2993 int bind = GELF_ST_BIND(sym->st_info); 2994 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2995 return sym->st_shndx == SHN_UNDEF && 2996 (bind == STB_GLOBAL || bind == STB_WEAK) && 2997 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2998 } 2999 3000 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx) 3001 { 3002 int bind = GELF_ST_BIND(sym->st_info); 3003 int type = GELF_ST_TYPE(sym->st_info); 3004 3005 /* in .text section */ 3006 if (sym->st_shndx != text_shndx) 3007 return false; 3008 3009 /* local function */ 3010 if (bind == STB_LOCAL && type == STT_SECTION) 3011 return true; 3012 3013 /* global function */ 3014 return bind == STB_GLOBAL && type == STT_FUNC; 3015 } 3016 3017 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3018 { 3019 const struct btf_type *t; 3020 const char *var_name; 3021 int i, n; 3022 3023 if (!btf) 3024 return -ESRCH; 3025 3026 n = btf__get_nr_types(btf); 3027 for (i = 1; i <= n; i++) { 3028 t = btf__type_by_id(btf, i); 3029 3030 if (!btf_is_var(t)) 3031 continue; 3032 3033 var_name = btf__name_by_offset(btf, t->name_off); 3034 if (strcmp(var_name, ext_name)) 3035 continue; 3036 3037 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3038 return -EINVAL; 3039 3040 return i; 3041 } 3042 3043 return -ENOENT; 3044 } 3045 3046 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3047 const struct btf_var_secinfo *vs; 3048 const struct btf_type *t; 3049 int i, j, n; 3050 3051 if (!btf) 3052 return -ESRCH; 3053 3054 n = btf__get_nr_types(btf); 3055 for (i = 1; i <= n; i++) { 3056 t = btf__type_by_id(btf, i); 3057 3058 if (!btf_is_datasec(t)) 3059 continue; 3060 3061 vs = btf_var_secinfos(t); 3062 for (j = 0; j < btf_vlen(t); j++, vs++) { 3063 if (vs->type == ext_btf_id) 3064 return i; 3065 } 3066 } 3067 3068 return -ENOENT; 3069 } 3070 3071 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3072 bool *is_signed) 3073 { 3074 const struct btf_type *t; 3075 const char *name; 3076 3077 t = skip_mods_and_typedefs(btf, id, NULL); 3078 name = btf__name_by_offset(btf, t->name_off); 3079 3080 if (is_signed) 3081 *is_signed = false; 3082 switch (btf_kind(t)) { 3083 case BTF_KIND_INT: { 3084 int enc = btf_int_encoding(t); 3085 3086 if (enc & BTF_INT_BOOL) 3087 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3088 if (is_signed) 3089 *is_signed = enc & BTF_INT_SIGNED; 3090 if (t->size == 1) 3091 return KCFG_CHAR; 3092 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3093 return KCFG_UNKNOWN; 3094 return KCFG_INT; 3095 } 3096 case BTF_KIND_ENUM: 3097 if (t->size != 4) 3098 return KCFG_UNKNOWN; 3099 if (strcmp(name, "libbpf_tristate")) 3100 return KCFG_UNKNOWN; 3101 return KCFG_TRISTATE; 3102 case BTF_KIND_ARRAY: 3103 if (btf_array(t)->nelems == 0) 3104 return KCFG_UNKNOWN; 3105 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3106 return KCFG_UNKNOWN; 3107 return KCFG_CHAR_ARR; 3108 default: 3109 return KCFG_UNKNOWN; 3110 } 3111 } 3112 3113 static int cmp_externs(const void *_a, const void *_b) 3114 { 3115 const struct extern_desc *a = _a; 3116 const struct extern_desc *b = _b; 3117 3118 if (a->type != b->type) 3119 return a->type < b->type ? -1 : 1; 3120 3121 if (a->type == EXT_KCFG) { 3122 /* descending order by alignment requirements */ 3123 if (a->kcfg.align != b->kcfg.align) 3124 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3125 /* ascending order by size, within same alignment class */ 3126 if (a->kcfg.sz != b->kcfg.sz) 3127 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3128 } 3129 3130 /* resolve ties by name */ 3131 return strcmp(a->name, b->name); 3132 } 3133 3134 static int find_int_btf_id(const struct btf *btf) 3135 { 3136 const struct btf_type *t; 3137 int i, n; 3138 3139 n = btf__get_nr_types(btf); 3140 for (i = 1; i <= n; i++) { 3141 t = btf__type_by_id(btf, i); 3142 3143 if (btf_is_int(t) && btf_int_bits(t) == 32) 3144 return i; 3145 } 3146 3147 return 0; 3148 } 3149 3150 static int bpf_object__collect_externs(struct bpf_object *obj) 3151 { 3152 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3153 const struct btf_type *t; 3154 struct extern_desc *ext; 3155 int i, n, off; 3156 const char *ext_name, *sec_name; 3157 Elf_Scn *scn; 3158 GElf_Shdr sh; 3159 3160 if (!obj->efile.symbols) 3161 return 0; 3162 3163 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3164 if (elf_sec_hdr(obj, scn, &sh)) 3165 return -LIBBPF_ERRNO__FORMAT; 3166 3167 n = sh.sh_size / sh.sh_entsize; 3168 pr_debug("looking for externs among %d symbols...\n", n); 3169 3170 for (i = 0; i < n; i++) { 3171 GElf_Sym sym; 3172 3173 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3174 return -LIBBPF_ERRNO__FORMAT; 3175 if (!sym_is_extern(&sym)) 3176 continue; 3177 ext_name = elf_sym_str(obj, sym.st_name); 3178 if (!ext_name || !ext_name[0]) 3179 continue; 3180 3181 ext = obj->externs; 3182 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3183 if (!ext) 3184 return -ENOMEM; 3185 obj->externs = ext; 3186 ext = &ext[obj->nr_extern]; 3187 memset(ext, 0, sizeof(*ext)); 3188 obj->nr_extern++; 3189 3190 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3191 if (ext->btf_id <= 0) { 3192 pr_warn("failed to find BTF for extern '%s': %d\n", 3193 ext_name, ext->btf_id); 3194 return ext->btf_id; 3195 } 3196 t = btf__type_by_id(obj->btf, ext->btf_id); 3197 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3198 ext->sym_idx = i; 3199 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3200 3201 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3202 if (ext->sec_btf_id <= 0) { 3203 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3204 ext_name, ext->btf_id, ext->sec_btf_id); 3205 return ext->sec_btf_id; 3206 } 3207 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3208 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3209 3210 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3211 kcfg_sec = sec; 3212 ext->type = EXT_KCFG; 3213 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3214 if (ext->kcfg.sz <= 0) { 3215 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3216 ext_name, ext->kcfg.sz); 3217 return ext->kcfg.sz; 3218 } 3219 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3220 if (ext->kcfg.align <= 0) { 3221 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3222 ext_name, ext->kcfg.align); 3223 return -EINVAL; 3224 } 3225 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3226 &ext->kcfg.is_signed); 3227 if (ext->kcfg.type == KCFG_UNKNOWN) { 3228 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3229 return -ENOTSUP; 3230 } 3231 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3232 ksym_sec = sec; 3233 ext->type = EXT_KSYM; 3234 skip_mods_and_typedefs(obj->btf, t->type, 3235 &ext->ksym.type_id); 3236 } else { 3237 pr_warn("unrecognized extern section '%s'\n", sec_name); 3238 return -ENOTSUP; 3239 } 3240 } 3241 pr_debug("collected %d externs total\n", obj->nr_extern); 3242 3243 if (!obj->nr_extern) 3244 return 0; 3245 3246 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3247 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3248 3249 /* for .ksyms section, we need to turn all externs into allocated 3250 * variables in BTF to pass kernel verification; we do this by 3251 * pretending that each extern is a 8-byte variable 3252 */ 3253 if (ksym_sec) { 3254 /* find existing 4-byte integer type in BTF to use for fake 3255 * extern variables in DATASEC 3256 */ 3257 int int_btf_id = find_int_btf_id(obj->btf); 3258 3259 for (i = 0; i < obj->nr_extern; i++) { 3260 ext = &obj->externs[i]; 3261 if (ext->type != EXT_KSYM) 3262 continue; 3263 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3264 i, ext->sym_idx, ext->name); 3265 } 3266 3267 sec = ksym_sec; 3268 n = btf_vlen(sec); 3269 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3270 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3271 struct btf_type *vt; 3272 3273 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3274 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3275 ext = find_extern_by_name(obj, ext_name); 3276 if (!ext) { 3277 pr_warn("failed to find extern definition for BTF var '%s'\n", 3278 ext_name); 3279 return -ESRCH; 3280 } 3281 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3282 vt->type = int_btf_id; 3283 vs->offset = off; 3284 vs->size = sizeof(int); 3285 } 3286 sec->size = off; 3287 } 3288 3289 if (kcfg_sec) { 3290 sec = kcfg_sec; 3291 /* for kcfg externs calculate their offsets within a .kconfig map */ 3292 off = 0; 3293 for (i = 0; i < obj->nr_extern; i++) { 3294 ext = &obj->externs[i]; 3295 if (ext->type != EXT_KCFG) 3296 continue; 3297 3298 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3299 off = ext->kcfg.data_off + ext->kcfg.sz; 3300 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3301 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3302 } 3303 sec->size = off; 3304 n = btf_vlen(sec); 3305 for (i = 0; i < n; i++) { 3306 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3307 3308 t = btf__type_by_id(obj->btf, vs->type); 3309 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3310 ext = find_extern_by_name(obj, ext_name); 3311 if (!ext) { 3312 pr_warn("failed to find extern definition for BTF var '%s'\n", 3313 ext_name); 3314 return -ESRCH; 3315 } 3316 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3317 vs->offset = ext->kcfg.data_off; 3318 } 3319 } 3320 return 0; 3321 } 3322 3323 struct bpf_program * 3324 bpf_object__find_program_by_title(const struct bpf_object *obj, 3325 const char *title) 3326 { 3327 struct bpf_program *pos; 3328 3329 bpf_object__for_each_program(pos, obj) { 3330 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3331 return pos; 3332 } 3333 return NULL; 3334 } 3335 3336 static bool prog_is_subprog(const struct bpf_object *obj, 3337 const struct bpf_program *prog) 3338 { 3339 /* For legacy reasons, libbpf supports an entry-point BPF programs 3340 * without SEC() attribute, i.e., those in the .text section. But if 3341 * there are 2 or more such programs in the .text section, they all 3342 * must be subprograms called from entry-point BPF programs in 3343 * designated SEC()'tions, otherwise there is no way to distinguish 3344 * which of those programs should be loaded vs which are a subprogram. 3345 * Similarly, if there is a function/program in .text and at least one 3346 * other BPF program with custom SEC() attribute, then we just assume 3347 * .text programs are subprograms (even if they are not called from 3348 * other programs), because libbpf never explicitly supported mixing 3349 * SEC()-designated BPF programs and .text entry-point BPF programs. 3350 */ 3351 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3352 } 3353 3354 struct bpf_program * 3355 bpf_object__find_program_by_name(const struct bpf_object *obj, 3356 const char *name) 3357 { 3358 struct bpf_program *prog; 3359 3360 bpf_object__for_each_program(prog, obj) { 3361 if (prog_is_subprog(obj, prog)) 3362 continue; 3363 if (!strcmp(prog->name, name)) 3364 return prog; 3365 } 3366 return NULL; 3367 } 3368 3369 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3370 int shndx) 3371 { 3372 return shndx == obj->efile.data_shndx || 3373 shndx == obj->efile.bss_shndx || 3374 shndx == obj->efile.rodata_shndx; 3375 } 3376 3377 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3378 int shndx) 3379 { 3380 return shndx == obj->efile.maps_shndx || 3381 shndx == obj->efile.btf_maps_shndx; 3382 } 3383 3384 static enum libbpf_map_type 3385 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3386 { 3387 if (shndx == obj->efile.data_shndx) 3388 return LIBBPF_MAP_DATA; 3389 else if (shndx == obj->efile.bss_shndx) 3390 return LIBBPF_MAP_BSS; 3391 else if (shndx == obj->efile.rodata_shndx) 3392 return LIBBPF_MAP_RODATA; 3393 else if (shndx == obj->efile.symbols_shndx) 3394 return LIBBPF_MAP_KCONFIG; 3395 else 3396 return LIBBPF_MAP_UNSPEC; 3397 } 3398 3399 static int bpf_program__record_reloc(struct bpf_program *prog, 3400 struct reloc_desc *reloc_desc, 3401 __u32 insn_idx, const char *sym_name, 3402 const GElf_Sym *sym, const GElf_Rel *rel) 3403 { 3404 struct bpf_insn *insn = &prog->insns[insn_idx]; 3405 size_t map_idx, nr_maps = prog->obj->nr_maps; 3406 struct bpf_object *obj = prog->obj; 3407 __u32 shdr_idx = sym->st_shndx; 3408 enum libbpf_map_type type; 3409 const char *sym_sec_name; 3410 struct bpf_map *map; 3411 3412 reloc_desc->processed = false; 3413 3414 /* sub-program call relocation */ 3415 if (insn->code == (BPF_JMP | BPF_CALL)) { 3416 if (insn->src_reg != BPF_PSEUDO_CALL) { 3417 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3418 return -LIBBPF_ERRNO__RELOC; 3419 } 3420 /* text_shndx can be 0, if no default "main" program exists */ 3421 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3422 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3423 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3424 prog->name, sym_name, sym_sec_name); 3425 return -LIBBPF_ERRNO__RELOC; 3426 } 3427 if (sym->st_value % BPF_INSN_SZ) { 3428 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3429 prog->name, sym_name, (size_t)sym->st_value); 3430 return -LIBBPF_ERRNO__RELOC; 3431 } 3432 reloc_desc->type = RELO_CALL; 3433 reloc_desc->insn_idx = insn_idx; 3434 reloc_desc->sym_off = sym->st_value; 3435 return 0; 3436 } 3437 3438 if (!is_ldimm64(insn)) { 3439 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3440 prog->name, sym_name, insn_idx, insn->code); 3441 return -LIBBPF_ERRNO__RELOC; 3442 } 3443 3444 if (sym_is_extern(sym)) { 3445 int sym_idx = GELF_R_SYM(rel->r_info); 3446 int i, n = obj->nr_extern; 3447 struct extern_desc *ext; 3448 3449 for (i = 0; i < n; i++) { 3450 ext = &obj->externs[i]; 3451 if (ext->sym_idx == sym_idx) 3452 break; 3453 } 3454 if (i >= n) { 3455 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3456 prog->name, sym_name, sym_idx); 3457 return -LIBBPF_ERRNO__RELOC; 3458 } 3459 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3460 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3461 reloc_desc->type = RELO_EXTERN; 3462 reloc_desc->insn_idx = insn_idx; 3463 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3464 return 0; 3465 } 3466 3467 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3468 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3469 prog->name, sym_name, shdr_idx); 3470 return -LIBBPF_ERRNO__RELOC; 3471 } 3472 3473 /* loading subprog addresses */ 3474 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3475 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3476 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3477 */ 3478 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3479 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3480 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3481 return -LIBBPF_ERRNO__RELOC; 3482 } 3483 3484 reloc_desc->type = RELO_SUBPROG_ADDR; 3485 reloc_desc->insn_idx = insn_idx; 3486 reloc_desc->sym_off = sym->st_value; 3487 return 0; 3488 } 3489 3490 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3491 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3492 3493 /* generic map reference relocation */ 3494 if (type == LIBBPF_MAP_UNSPEC) { 3495 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3496 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3497 prog->name, sym_name, sym_sec_name); 3498 return -LIBBPF_ERRNO__RELOC; 3499 } 3500 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3501 map = &obj->maps[map_idx]; 3502 if (map->libbpf_type != type || 3503 map->sec_idx != sym->st_shndx || 3504 map->sec_offset != sym->st_value) 3505 continue; 3506 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3507 prog->name, map_idx, map->name, map->sec_idx, 3508 map->sec_offset, insn_idx); 3509 break; 3510 } 3511 if (map_idx >= nr_maps) { 3512 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3513 prog->name, sym_sec_name, (size_t)sym->st_value); 3514 return -LIBBPF_ERRNO__RELOC; 3515 } 3516 reloc_desc->type = RELO_LD64; 3517 reloc_desc->insn_idx = insn_idx; 3518 reloc_desc->map_idx = map_idx; 3519 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3520 return 0; 3521 } 3522 3523 /* global data map relocation */ 3524 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3525 pr_warn("prog '%s': bad data relo against section '%s'\n", 3526 prog->name, sym_sec_name); 3527 return -LIBBPF_ERRNO__RELOC; 3528 } 3529 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3530 map = &obj->maps[map_idx]; 3531 if (map->libbpf_type != type) 3532 continue; 3533 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3534 prog->name, map_idx, map->name, map->sec_idx, 3535 map->sec_offset, insn_idx); 3536 break; 3537 } 3538 if (map_idx >= nr_maps) { 3539 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3540 prog->name, sym_sec_name); 3541 return -LIBBPF_ERRNO__RELOC; 3542 } 3543 3544 reloc_desc->type = RELO_DATA; 3545 reloc_desc->insn_idx = insn_idx; 3546 reloc_desc->map_idx = map_idx; 3547 reloc_desc->sym_off = sym->st_value; 3548 return 0; 3549 } 3550 3551 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3552 { 3553 return insn_idx >= prog->sec_insn_off && 3554 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3555 } 3556 3557 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3558 size_t sec_idx, size_t insn_idx) 3559 { 3560 int l = 0, r = obj->nr_programs - 1, m; 3561 struct bpf_program *prog; 3562 3563 while (l < r) { 3564 m = l + (r - l + 1) / 2; 3565 prog = &obj->programs[m]; 3566 3567 if (prog->sec_idx < sec_idx || 3568 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3569 l = m; 3570 else 3571 r = m - 1; 3572 } 3573 /* matching program could be at index l, but it still might be the 3574 * wrong one, so we need to double check conditions for the last time 3575 */ 3576 prog = &obj->programs[l]; 3577 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3578 return prog; 3579 return NULL; 3580 } 3581 3582 static int 3583 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3584 { 3585 Elf_Data *symbols = obj->efile.symbols; 3586 const char *relo_sec_name, *sec_name; 3587 size_t sec_idx = shdr->sh_info; 3588 struct bpf_program *prog; 3589 struct reloc_desc *relos; 3590 int err, i, nrels; 3591 const char *sym_name; 3592 __u32 insn_idx; 3593 GElf_Sym sym; 3594 GElf_Rel rel; 3595 3596 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3597 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3598 if (!relo_sec_name || !sec_name) 3599 return -EINVAL; 3600 3601 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3602 relo_sec_name, sec_idx, sec_name); 3603 nrels = shdr->sh_size / shdr->sh_entsize; 3604 3605 for (i = 0; i < nrels; i++) { 3606 if (!gelf_getrel(data, i, &rel)) { 3607 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3608 return -LIBBPF_ERRNO__FORMAT; 3609 } 3610 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3611 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3612 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3613 return -LIBBPF_ERRNO__FORMAT; 3614 } 3615 if (rel.r_offset % BPF_INSN_SZ) { 3616 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3617 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3618 return -LIBBPF_ERRNO__FORMAT; 3619 } 3620 3621 insn_idx = rel.r_offset / BPF_INSN_SZ; 3622 /* relocations against static functions are recorded as 3623 * relocations against the section that contains a function; 3624 * in such case, symbol will be STT_SECTION and sym.st_name 3625 * will point to empty string (0), so fetch section name 3626 * instead 3627 */ 3628 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3629 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3630 else 3631 sym_name = elf_sym_str(obj, sym.st_name); 3632 sym_name = sym_name ?: "<?"; 3633 3634 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3635 relo_sec_name, i, insn_idx, sym_name); 3636 3637 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3638 if (!prog) { 3639 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3640 relo_sec_name, i, sec_name, insn_idx); 3641 return -LIBBPF_ERRNO__RELOC; 3642 } 3643 3644 relos = libbpf_reallocarray(prog->reloc_desc, 3645 prog->nr_reloc + 1, sizeof(*relos)); 3646 if (!relos) 3647 return -ENOMEM; 3648 prog->reloc_desc = relos; 3649 3650 /* adjust insn_idx to local BPF program frame of reference */ 3651 insn_idx -= prog->sec_insn_off; 3652 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3653 insn_idx, sym_name, &sym, &rel); 3654 if (err) 3655 return err; 3656 3657 prog->nr_reloc++; 3658 } 3659 return 0; 3660 } 3661 3662 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3663 { 3664 struct bpf_map_def *def = &map->def; 3665 __u32 key_type_id = 0, value_type_id = 0; 3666 int ret; 3667 3668 /* if it's BTF-defined map, we don't need to search for type IDs. 3669 * For struct_ops map, it does not need btf_key_type_id and 3670 * btf_value_type_id. 3671 */ 3672 if (map->sec_idx == obj->efile.btf_maps_shndx || 3673 bpf_map__is_struct_ops(map)) 3674 return 0; 3675 3676 if (!bpf_map__is_internal(map)) { 3677 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3678 def->value_size, &key_type_id, 3679 &value_type_id); 3680 } else { 3681 /* 3682 * LLVM annotates global data differently in BTF, that is, 3683 * only as '.data', '.bss' or '.rodata'. 3684 */ 3685 ret = btf__find_by_name(obj->btf, 3686 libbpf_type_to_btf_name[map->libbpf_type]); 3687 } 3688 if (ret < 0) 3689 return ret; 3690 3691 map->btf_key_type_id = key_type_id; 3692 map->btf_value_type_id = bpf_map__is_internal(map) ? 3693 ret : value_type_id; 3694 return 0; 3695 } 3696 3697 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3698 { 3699 struct bpf_map_info info = {}; 3700 __u32 len = sizeof(info); 3701 int new_fd, err; 3702 char *new_name; 3703 3704 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3705 if (err) 3706 return err; 3707 3708 new_name = strdup(info.name); 3709 if (!new_name) 3710 return -errno; 3711 3712 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3713 if (new_fd < 0) { 3714 err = -errno; 3715 goto err_free_new_name; 3716 } 3717 3718 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3719 if (new_fd < 0) { 3720 err = -errno; 3721 goto err_close_new_fd; 3722 } 3723 3724 err = zclose(map->fd); 3725 if (err) { 3726 err = -errno; 3727 goto err_close_new_fd; 3728 } 3729 free(map->name); 3730 3731 map->fd = new_fd; 3732 map->name = new_name; 3733 map->def.type = info.type; 3734 map->def.key_size = info.key_size; 3735 map->def.value_size = info.value_size; 3736 map->def.max_entries = info.max_entries; 3737 map->def.map_flags = info.map_flags; 3738 map->btf_key_type_id = info.btf_key_type_id; 3739 map->btf_value_type_id = info.btf_value_type_id; 3740 map->reused = true; 3741 3742 return 0; 3743 3744 err_close_new_fd: 3745 close(new_fd); 3746 err_free_new_name: 3747 free(new_name); 3748 return err; 3749 } 3750 3751 __u32 bpf_map__max_entries(const struct bpf_map *map) 3752 { 3753 return map->def.max_entries; 3754 } 3755 3756 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3757 { 3758 if (map->fd >= 0) 3759 return -EBUSY; 3760 map->def.max_entries = max_entries; 3761 return 0; 3762 } 3763 3764 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3765 { 3766 if (!map || !max_entries) 3767 return -EINVAL; 3768 3769 return bpf_map__set_max_entries(map, max_entries); 3770 } 3771 3772 static int 3773 bpf_object__probe_loading(struct bpf_object *obj) 3774 { 3775 struct bpf_load_program_attr attr; 3776 char *cp, errmsg[STRERR_BUFSIZE]; 3777 struct bpf_insn insns[] = { 3778 BPF_MOV64_IMM(BPF_REG_0, 0), 3779 BPF_EXIT_INSN(), 3780 }; 3781 int ret; 3782 3783 /* make sure basic loading works */ 3784 3785 memset(&attr, 0, sizeof(attr)); 3786 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3787 attr.insns = insns; 3788 attr.insns_cnt = ARRAY_SIZE(insns); 3789 attr.license = "GPL"; 3790 3791 ret = bpf_load_program_xattr(&attr, NULL, 0); 3792 if (ret < 0) { 3793 ret = errno; 3794 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3795 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3796 "program. Make sure your kernel supports BPF " 3797 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3798 "set to big enough value.\n", __func__, cp, ret); 3799 return -ret; 3800 } 3801 close(ret); 3802 3803 return 0; 3804 } 3805 3806 static int probe_fd(int fd) 3807 { 3808 if (fd >= 0) 3809 close(fd); 3810 return fd >= 0; 3811 } 3812 3813 static int probe_kern_prog_name(void) 3814 { 3815 struct bpf_load_program_attr attr; 3816 struct bpf_insn insns[] = { 3817 BPF_MOV64_IMM(BPF_REG_0, 0), 3818 BPF_EXIT_INSN(), 3819 }; 3820 int ret; 3821 3822 /* make sure loading with name works */ 3823 3824 memset(&attr, 0, sizeof(attr)); 3825 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3826 attr.insns = insns; 3827 attr.insns_cnt = ARRAY_SIZE(insns); 3828 attr.license = "GPL"; 3829 attr.name = "test"; 3830 ret = bpf_load_program_xattr(&attr, NULL, 0); 3831 return probe_fd(ret); 3832 } 3833 3834 static int probe_kern_global_data(void) 3835 { 3836 struct bpf_load_program_attr prg_attr; 3837 struct bpf_create_map_attr map_attr; 3838 char *cp, errmsg[STRERR_BUFSIZE]; 3839 struct bpf_insn insns[] = { 3840 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3841 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3842 BPF_MOV64_IMM(BPF_REG_0, 0), 3843 BPF_EXIT_INSN(), 3844 }; 3845 int ret, map; 3846 3847 memset(&map_attr, 0, sizeof(map_attr)); 3848 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3849 map_attr.key_size = sizeof(int); 3850 map_attr.value_size = 32; 3851 map_attr.max_entries = 1; 3852 3853 map = bpf_create_map_xattr(&map_attr); 3854 if (map < 0) { 3855 ret = -errno; 3856 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3857 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3858 __func__, cp, -ret); 3859 return ret; 3860 } 3861 3862 insns[0].imm = map; 3863 3864 memset(&prg_attr, 0, sizeof(prg_attr)); 3865 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3866 prg_attr.insns = insns; 3867 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3868 prg_attr.license = "GPL"; 3869 3870 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3871 close(map); 3872 return probe_fd(ret); 3873 } 3874 3875 static int probe_kern_btf(void) 3876 { 3877 static const char strs[] = "\0int"; 3878 __u32 types[] = { 3879 /* int */ 3880 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3881 }; 3882 3883 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3884 strs, sizeof(strs))); 3885 } 3886 3887 static int probe_kern_btf_func(void) 3888 { 3889 static const char strs[] = "\0int\0x\0a"; 3890 /* void x(int a) {} */ 3891 __u32 types[] = { 3892 /* int */ 3893 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3894 /* FUNC_PROTO */ /* [2] */ 3895 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3896 BTF_PARAM_ENC(7, 1), 3897 /* FUNC x */ /* [3] */ 3898 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3899 }; 3900 3901 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3902 strs, sizeof(strs))); 3903 } 3904 3905 static int probe_kern_btf_func_global(void) 3906 { 3907 static const char strs[] = "\0int\0x\0a"; 3908 /* static void x(int a) {} */ 3909 __u32 types[] = { 3910 /* int */ 3911 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3912 /* FUNC_PROTO */ /* [2] */ 3913 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3914 BTF_PARAM_ENC(7, 1), 3915 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3916 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3917 }; 3918 3919 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3920 strs, sizeof(strs))); 3921 } 3922 3923 static int probe_kern_btf_datasec(void) 3924 { 3925 static const char strs[] = "\0x\0.data"; 3926 /* static int a; */ 3927 __u32 types[] = { 3928 /* int */ 3929 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3930 /* VAR x */ /* [2] */ 3931 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3932 BTF_VAR_STATIC, 3933 /* DATASEC val */ /* [3] */ 3934 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3935 BTF_VAR_SECINFO_ENC(2, 0, 4), 3936 }; 3937 3938 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3939 strs, sizeof(strs))); 3940 } 3941 3942 static int probe_kern_btf_float(void) 3943 { 3944 static const char strs[] = "\0float"; 3945 __u32 types[] = { 3946 /* float */ 3947 BTF_TYPE_FLOAT_ENC(1, 4), 3948 }; 3949 3950 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3951 strs, sizeof(strs))); 3952 } 3953 3954 static int probe_kern_array_mmap(void) 3955 { 3956 struct bpf_create_map_attr attr = { 3957 .map_type = BPF_MAP_TYPE_ARRAY, 3958 .map_flags = BPF_F_MMAPABLE, 3959 .key_size = sizeof(int), 3960 .value_size = sizeof(int), 3961 .max_entries = 1, 3962 }; 3963 3964 return probe_fd(bpf_create_map_xattr(&attr)); 3965 } 3966 3967 static int probe_kern_exp_attach_type(void) 3968 { 3969 struct bpf_load_program_attr attr; 3970 struct bpf_insn insns[] = { 3971 BPF_MOV64_IMM(BPF_REG_0, 0), 3972 BPF_EXIT_INSN(), 3973 }; 3974 3975 memset(&attr, 0, sizeof(attr)); 3976 /* use any valid combination of program type and (optional) 3977 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3978 * to see if kernel supports expected_attach_type field for 3979 * BPF_PROG_LOAD command 3980 */ 3981 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3982 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3983 attr.insns = insns; 3984 attr.insns_cnt = ARRAY_SIZE(insns); 3985 attr.license = "GPL"; 3986 3987 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3988 } 3989 3990 static int probe_kern_probe_read_kernel(void) 3991 { 3992 struct bpf_load_program_attr attr; 3993 struct bpf_insn insns[] = { 3994 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 3995 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 3996 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 3997 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 3998 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 3999 BPF_EXIT_INSN(), 4000 }; 4001 4002 memset(&attr, 0, sizeof(attr)); 4003 attr.prog_type = BPF_PROG_TYPE_KPROBE; 4004 attr.insns = insns; 4005 attr.insns_cnt = ARRAY_SIZE(insns); 4006 attr.license = "GPL"; 4007 4008 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4009 } 4010 4011 static int probe_prog_bind_map(void) 4012 { 4013 struct bpf_load_program_attr prg_attr; 4014 struct bpf_create_map_attr map_attr; 4015 char *cp, errmsg[STRERR_BUFSIZE]; 4016 struct bpf_insn insns[] = { 4017 BPF_MOV64_IMM(BPF_REG_0, 0), 4018 BPF_EXIT_INSN(), 4019 }; 4020 int ret, map, prog; 4021 4022 memset(&map_attr, 0, sizeof(map_attr)); 4023 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4024 map_attr.key_size = sizeof(int); 4025 map_attr.value_size = 32; 4026 map_attr.max_entries = 1; 4027 4028 map = bpf_create_map_xattr(&map_attr); 4029 if (map < 0) { 4030 ret = -errno; 4031 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4032 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4033 __func__, cp, -ret); 4034 return ret; 4035 } 4036 4037 memset(&prg_attr, 0, sizeof(prg_attr)); 4038 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4039 prg_attr.insns = insns; 4040 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4041 prg_attr.license = "GPL"; 4042 4043 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 4044 if (prog < 0) { 4045 close(map); 4046 return 0; 4047 } 4048 4049 ret = bpf_prog_bind_map(prog, map, NULL); 4050 4051 close(map); 4052 close(prog); 4053 4054 return ret >= 0; 4055 } 4056 4057 static int probe_module_btf(void) 4058 { 4059 static const char strs[] = "\0int"; 4060 __u32 types[] = { 4061 /* int */ 4062 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4063 }; 4064 struct bpf_btf_info info; 4065 __u32 len = sizeof(info); 4066 char name[16]; 4067 int fd, err; 4068 4069 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4070 if (fd < 0) 4071 return 0; /* BTF not supported at all */ 4072 4073 memset(&info, 0, sizeof(info)); 4074 info.name = ptr_to_u64(name); 4075 info.name_len = sizeof(name); 4076 4077 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4078 * kernel's module BTF support coincides with support for 4079 * name/name_len fields in struct bpf_btf_info. 4080 */ 4081 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4082 close(fd); 4083 return !err; 4084 } 4085 4086 enum kern_feature_result { 4087 FEAT_UNKNOWN = 0, 4088 FEAT_SUPPORTED = 1, 4089 FEAT_MISSING = 2, 4090 }; 4091 4092 typedef int (*feature_probe_fn)(void); 4093 4094 static struct kern_feature_desc { 4095 const char *desc; 4096 feature_probe_fn probe; 4097 enum kern_feature_result res; 4098 } feature_probes[__FEAT_CNT] = { 4099 [FEAT_PROG_NAME] = { 4100 "BPF program name", probe_kern_prog_name, 4101 }, 4102 [FEAT_GLOBAL_DATA] = { 4103 "global variables", probe_kern_global_data, 4104 }, 4105 [FEAT_BTF] = { 4106 "minimal BTF", probe_kern_btf, 4107 }, 4108 [FEAT_BTF_FUNC] = { 4109 "BTF functions", probe_kern_btf_func, 4110 }, 4111 [FEAT_BTF_GLOBAL_FUNC] = { 4112 "BTF global function", probe_kern_btf_func_global, 4113 }, 4114 [FEAT_BTF_DATASEC] = { 4115 "BTF data section and variable", probe_kern_btf_datasec, 4116 }, 4117 [FEAT_ARRAY_MMAP] = { 4118 "ARRAY map mmap()", probe_kern_array_mmap, 4119 }, 4120 [FEAT_EXP_ATTACH_TYPE] = { 4121 "BPF_PROG_LOAD expected_attach_type attribute", 4122 probe_kern_exp_attach_type, 4123 }, 4124 [FEAT_PROBE_READ_KERN] = { 4125 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4126 }, 4127 [FEAT_PROG_BIND_MAP] = { 4128 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4129 }, 4130 [FEAT_MODULE_BTF] = { 4131 "module BTF support", probe_module_btf, 4132 }, 4133 [FEAT_BTF_FLOAT] = { 4134 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4135 }, 4136 }; 4137 4138 static bool kernel_supports(enum kern_feature_id feat_id) 4139 { 4140 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4141 int ret; 4142 4143 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4144 ret = feat->probe(); 4145 if (ret > 0) { 4146 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4147 } else if (ret == 0) { 4148 WRITE_ONCE(feat->res, FEAT_MISSING); 4149 } else { 4150 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4151 WRITE_ONCE(feat->res, FEAT_MISSING); 4152 } 4153 } 4154 4155 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4156 } 4157 4158 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4159 { 4160 struct bpf_map_info map_info = {}; 4161 char msg[STRERR_BUFSIZE]; 4162 __u32 map_info_len; 4163 4164 map_info_len = sizeof(map_info); 4165 4166 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4167 pr_warn("failed to get map info for map FD %d: %s\n", 4168 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4169 return false; 4170 } 4171 4172 return (map_info.type == map->def.type && 4173 map_info.key_size == map->def.key_size && 4174 map_info.value_size == map->def.value_size && 4175 map_info.max_entries == map->def.max_entries && 4176 map_info.map_flags == map->def.map_flags); 4177 } 4178 4179 static int 4180 bpf_object__reuse_map(struct bpf_map *map) 4181 { 4182 char *cp, errmsg[STRERR_BUFSIZE]; 4183 int err, pin_fd; 4184 4185 pin_fd = bpf_obj_get(map->pin_path); 4186 if (pin_fd < 0) { 4187 err = -errno; 4188 if (err == -ENOENT) { 4189 pr_debug("found no pinned map to reuse at '%s'\n", 4190 map->pin_path); 4191 return 0; 4192 } 4193 4194 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4195 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4196 map->pin_path, cp); 4197 return err; 4198 } 4199 4200 if (!map_is_reuse_compat(map, pin_fd)) { 4201 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4202 map->pin_path); 4203 close(pin_fd); 4204 return -EINVAL; 4205 } 4206 4207 err = bpf_map__reuse_fd(map, pin_fd); 4208 if (err) { 4209 close(pin_fd); 4210 return err; 4211 } 4212 map->pinned = true; 4213 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4214 4215 return 0; 4216 } 4217 4218 static int 4219 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4220 { 4221 enum libbpf_map_type map_type = map->libbpf_type; 4222 char *cp, errmsg[STRERR_BUFSIZE]; 4223 int err, zero = 0; 4224 4225 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4226 if (err) { 4227 err = -errno; 4228 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4229 pr_warn("Error setting initial map(%s) contents: %s\n", 4230 map->name, cp); 4231 return err; 4232 } 4233 4234 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4235 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4236 err = bpf_map_freeze(map->fd); 4237 if (err) { 4238 err = -errno; 4239 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4240 pr_warn("Error freezing map(%s) as read-only: %s\n", 4241 map->name, cp); 4242 return err; 4243 } 4244 } 4245 return 0; 4246 } 4247 4248 static void bpf_map__destroy(struct bpf_map *map); 4249 4250 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4251 { 4252 struct bpf_create_map_attr create_attr; 4253 struct bpf_map_def *def = &map->def; 4254 4255 memset(&create_attr, 0, sizeof(create_attr)); 4256 4257 if (kernel_supports(FEAT_PROG_NAME)) 4258 create_attr.name = map->name; 4259 create_attr.map_ifindex = map->map_ifindex; 4260 create_attr.map_type = def->type; 4261 create_attr.map_flags = def->map_flags; 4262 create_attr.key_size = def->key_size; 4263 create_attr.value_size = def->value_size; 4264 create_attr.numa_node = map->numa_node; 4265 4266 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4267 int nr_cpus; 4268 4269 nr_cpus = libbpf_num_possible_cpus(); 4270 if (nr_cpus < 0) { 4271 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4272 map->name, nr_cpus); 4273 return nr_cpus; 4274 } 4275 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4276 create_attr.max_entries = nr_cpus; 4277 } else { 4278 create_attr.max_entries = def->max_entries; 4279 } 4280 4281 if (bpf_map__is_struct_ops(map)) 4282 create_attr.btf_vmlinux_value_type_id = 4283 map->btf_vmlinux_value_type_id; 4284 4285 create_attr.btf_fd = 0; 4286 create_attr.btf_key_type_id = 0; 4287 create_attr.btf_value_type_id = 0; 4288 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4289 create_attr.btf_fd = btf__fd(obj->btf); 4290 create_attr.btf_key_type_id = map->btf_key_type_id; 4291 create_attr.btf_value_type_id = map->btf_value_type_id; 4292 } 4293 4294 if (bpf_map_type__is_map_in_map(def->type)) { 4295 if (map->inner_map) { 4296 int err; 4297 4298 err = bpf_object__create_map(obj, map->inner_map); 4299 if (err) { 4300 pr_warn("map '%s': failed to create inner map: %d\n", 4301 map->name, err); 4302 return err; 4303 } 4304 map->inner_map_fd = bpf_map__fd(map->inner_map); 4305 } 4306 if (map->inner_map_fd >= 0) 4307 create_attr.inner_map_fd = map->inner_map_fd; 4308 } 4309 4310 map->fd = bpf_create_map_xattr(&create_attr); 4311 if (map->fd < 0 && (create_attr.btf_key_type_id || 4312 create_attr.btf_value_type_id)) { 4313 char *cp, errmsg[STRERR_BUFSIZE]; 4314 int err = -errno; 4315 4316 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4317 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4318 map->name, cp, err); 4319 create_attr.btf_fd = 0; 4320 create_attr.btf_key_type_id = 0; 4321 create_attr.btf_value_type_id = 0; 4322 map->btf_key_type_id = 0; 4323 map->btf_value_type_id = 0; 4324 map->fd = bpf_create_map_xattr(&create_attr); 4325 } 4326 4327 if (map->fd < 0) 4328 return -errno; 4329 4330 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4331 bpf_map__destroy(map->inner_map); 4332 zfree(&map->inner_map); 4333 } 4334 4335 return 0; 4336 } 4337 4338 static int init_map_slots(struct bpf_map *map) 4339 { 4340 const struct bpf_map *targ_map; 4341 unsigned int i; 4342 int fd, err; 4343 4344 for (i = 0; i < map->init_slots_sz; i++) { 4345 if (!map->init_slots[i]) 4346 continue; 4347 4348 targ_map = map->init_slots[i]; 4349 fd = bpf_map__fd(targ_map); 4350 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4351 if (err) { 4352 err = -errno; 4353 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4354 map->name, i, targ_map->name, 4355 fd, err); 4356 return err; 4357 } 4358 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4359 map->name, i, targ_map->name, fd); 4360 } 4361 4362 zfree(&map->init_slots); 4363 map->init_slots_sz = 0; 4364 4365 return 0; 4366 } 4367 4368 static int 4369 bpf_object__create_maps(struct bpf_object *obj) 4370 { 4371 struct bpf_map *map; 4372 char *cp, errmsg[STRERR_BUFSIZE]; 4373 unsigned int i, j; 4374 int err; 4375 4376 for (i = 0; i < obj->nr_maps; i++) { 4377 map = &obj->maps[i]; 4378 4379 if (map->pin_path) { 4380 err = bpf_object__reuse_map(map); 4381 if (err) { 4382 pr_warn("map '%s': error reusing pinned map\n", 4383 map->name); 4384 goto err_out; 4385 } 4386 } 4387 4388 if (map->fd >= 0) { 4389 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4390 map->name, map->fd); 4391 } else { 4392 err = bpf_object__create_map(obj, map); 4393 if (err) 4394 goto err_out; 4395 4396 pr_debug("map '%s': created successfully, fd=%d\n", 4397 map->name, map->fd); 4398 4399 if (bpf_map__is_internal(map)) { 4400 err = bpf_object__populate_internal_map(obj, map); 4401 if (err < 0) { 4402 zclose(map->fd); 4403 goto err_out; 4404 } 4405 } 4406 4407 if (map->init_slots_sz) { 4408 err = init_map_slots(map); 4409 if (err < 0) { 4410 zclose(map->fd); 4411 goto err_out; 4412 } 4413 } 4414 } 4415 4416 if (map->pin_path && !map->pinned) { 4417 err = bpf_map__pin(map, NULL); 4418 if (err) { 4419 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4420 map->name, map->pin_path, err); 4421 zclose(map->fd); 4422 goto err_out; 4423 } 4424 } 4425 } 4426 4427 return 0; 4428 4429 err_out: 4430 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4431 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4432 pr_perm_msg(err); 4433 for (j = 0; j < i; j++) 4434 zclose(obj->maps[j].fd); 4435 return err; 4436 } 4437 4438 #define BPF_CORE_SPEC_MAX_LEN 64 4439 4440 /* represents BPF CO-RE field or array element accessor */ 4441 struct bpf_core_accessor { 4442 __u32 type_id; /* struct/union type or array element type */ 4443 __u32 idx; /* field index or array index */ 4444 const char *name; /* field name or NULL for array accessor */ 4445 }; 4446 4447 struct bpf_core_spec { 4448 const struct btf *btf; 4449 /* high-level spec: named fields and array indices only */ 4450 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4451 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4452 __u32 root_type_id; 4453 /* CO-RE relocation kind */ 4454 enum bpf_core_relo_kind relo_kind; 4455 /* high-level spec length */ 4456 int len; 4457 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4458 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4459 /* raw spec length */ 4460 int raw_len; 4461 /* field bit offset represented by spec */ 4462 __u32 bit_offset; 4463 }; 4464 4465 static bool str_is_empty(const char *s) 4466 { 4467 return !s || !s[0]; 4468 } 4469 4470 static bool is_flex_arr(const struct btf *btf, 4471 const struct bpf_core_accessor *acc, 4472 const struct btf_array *arr) 4473 { 4474 const struct btf_type *t; 4475 4476 /* not a flexible array, if not inside a struct or has non-zero size */ 4477 if (!acc->name || arr->nelems > 0) 4478 return false; 4479 4480 /* has to be the last member of enclosing struct */ 4481 t = btf__type_by_id(btf, acc->type_id); 4482 return acc->idx == btf_vlen(t) - 1; 4483 } 4484 4485 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4486 { 4487 switch (kind) { 4488 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4489 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4490 case BPF_FIELD_EXISTS: return "field_exists"; 4491 case BPF_FIELD_SIGNED: return "signed"; 4492 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4493 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4494 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4495 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4496 case BPF_TYPE_EXISTS: return "type_exists"; 4497 case BPF_TYPE_SIZE: return "type_size"; 4498 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4499 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4500 default: return "unknown"; 4501 } 4502 } 4503 4504 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4505 { 4506 switch (kind) { 4507 case BPF_FIELD_BYTE_OFFSET: 4508 case BPF_FIELD_BYTE_SIZE: 4509 case BPF_FIELD_EXISTS: 4510 case BPF_FIELD_SIGNED: 4511 case BPF_FIELD_LSHIFT_U64: 4512 case BPF_FIELD_RSHIFT_U64: 4513 return true; 4514 default: 4515 return false; 4516 } 4517 } 4518 4519 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4520 { 4521 switch (kind) { 4522 case BPF_TYPE_ID_LOCAL: 4523 case BPF_TYPE_ID_TARGET: 4524 case BPF_TYPE_EXISTS: 4525 case BPF_TYPE_SIZE: 4526 return true; 4527 default: 4528 return false; 4529 } 4530 } 4531 4532 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4533 { 4534 switch (kind) { 4535 case BPF_ENUMVAL_EXISTS: 4536 case BPF_ENUMVAL_VALUE: 4537 return true; 4538 default: 4539 return false; 4540 } 4541 } 4542 4543 /* 4544 * Turn bpf_core_relo into a low- and high-level spec representation, 4545 * validating correctness along the way, as well as calculating resulting 4546 * field bit offset, specified by accessor string. Low-level spec captures 4547 * every single level of nestedness, including traversing anonymous 4548 * struct/union members. High-level one only captures semantically meaningful 4549 * "turning points": named fields and array indicies. 4550 * E.g., for this case: 4551 * 4552 * struct sample { 4553 * int __unimportant; 4554 * struct { 4555 * int __1; 4556 * int __2; 4557 * int a[7]; 4558 * }; 4559 * }; 4560 * 4561 * struct sample *s = ...; 4562 * 4563 * int x = &s->a[3]; // access string = '0:1:2:3' 4564 * 4565 * Low-level spec has 1:1 mapping with each element of access string (it's 4566 * just a parsed access string representation): [0, 1, 2, 3]. 4567 * 4568 * High-level spec will capture only 3 points: 4569 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4570 * - field 'a' access (corresponds to '2' in low-level spec); 4571 * - array element #3 access (corresponds to '3' in low-level spec). 4572 * 4573 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4574 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4575 * spec and raw_spec are kept empty. 4576 * 4577 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4578 * string to specify enumerator's value index that need to be relocated. 4579 */ 4580 static int bpf_core_parse_spec(const struct btf *btf, 4581 __u32 type_id, 4582 const char *spec_str, 4583 enum bpf_core_relo_kind relo_kind, 4584 struct bpf_core_spec *spec) 4585 { 4586 int access_idx, parsed_len, i; 4587 struct bpf_core_accessor *acc; 4588 const struct btf_type *t; 4589 const char *name; 4590 __u32 id; 4591 __s64 sz; 4592 4593 if (str_is_empty(spec_str) || *spec_str == ':') 4594 return -EINVAL; 4595 4596 memset(spec, 0, sizeof(*spec)); 4597 spec->btf = btf; 4598 spec->root_type_id = type_id; 4599 spec->relo_kind = relo_kind; 4600 4601 /* type-based relocations don't have a field access string */ 4602 if (core_relo_is_type_based(relo_kind)) { 4603 if (strcmp(spec_str, "0")) 4604 return -EINVAL; 4605 return 0; 4606 } 4607 4608 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4609 while (*spec_str) { 4610 if (*spec_str == ':') 4611 ++spec_str; 4612 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4613 return -EINVAL; 4614 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4615 return -E2BIG; 4616 spec_str += parsed_len; 4617 spec->raw_spec[spec->raw_len++] = access_idx; 4618 } 4619 4620 if (spec->raw_len == 0) 4621 return -EINVAL; 4622 4623 t = skip_mods_and_typedefs(btf, type_id, &id); 4624 if (!t) 4625 return -EINVAL; 4626 4627 access_idx = spec->raw_spec[0]; 4628 acc = &spec->spec[0]; 4629 acc->type_id = id; 4630 acc->idx = access_idx; 4631 spec->len++; 4632 4633 if (core_relo_is_enumval_based(relo_kind)) { 4634 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4635 return -EINVAL; 4636 4637 /* record enumerator name in a first accessor */ 4638 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4639 return 0; 4640 } 4641 4642 if (!core_relo_is_field_based(relo_kind)) 4643 return -EINVAL; 4644 4645 sz = btf__resolve_size(btf, id); 4646 if (sz < 0) 4647 return sz; 4648 spec->bit_offset = access_idx * sz * 8; 4649 4650 for (i = 1; i < spec->raw_len; i++) { 4651 t = skip_mods_and_typedefs(btf, id, &id); 4652 if (!t) 4653 return -EINVAL; 4654 4655 access_idx = spec->raw_spec[i]; 4656 acc = &spec->spec[spec->len]; 4657 4658 if (btf_is_composite(t)) { 4659 const struct btf_member *m; 4660 __u32 bit_offset; 4661 4662 if (access_idx >= btf_vlen(t)) 4663 return -EINVAL; 4664 4665 bit_offset = btf_member_bit_offset(t, access_idx); 4666 spec->bit_offset += bit_offset; 4667 4668 m = btf_members(t) + access_idx; 4669 if (m->name_off) { 4670 name = btf__name_by_offset(btf, m->name_off); 4671 if (str_is_empty(name)) 4672 return -EINVAL; 4673 4674 acc->type_id = id; 4675 acc->idx = access_idx; 4676 acc->name = name; 4677 spec->len++; 4678 } 4679 4680 id = m->type; 4681 } else if (btf_is_array(t)) { 4682 const struct btf_array *a = btf_array(t); 4683 bool flex; 4684 4685 t = skip_mods_and_typedefs(btf, a->type, &id); 4686 if (!t) 4687 return -EINVAL; 4688 4689 flex = is_flex_arr(btf, acc - 1, a); 4690 if (!flex && access_idx >= a->nelems) 4691 return -EINVAL; 4692 4693 spec->spec[spec->len].type_id = id; 4694 spec->spec[spec->len].idx = access_idx; 4695 spec->len++; 4696 4697 sz = btf__resolve_size(btf, id); 4698 if (sz < 0) 4699 return sz; 4700 spec->bit_offset += access_idx * sz * 8; 4701 } else { 4702 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4703 type_id, spec_str, i, id, btf_kind_str(t)); 4704 return -EINVAL; 4705 } 4706 } 4707 4708 return 0; 4709 } 4710 4711 static bool bpf_core_is_flavor_sep(const char *s) 4712 { 4713 /* check X___Y name pattern, where X and Y are not underscores */ 4714 return s[0] != '_' && /* X */ 4715 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4716 s[4] != '_'; /* Y */ 4717 } 4718 4719 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4720 * before last triple underscore. Struct name part after last triple 4721 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4722 */ 4723 static size_t bpf_core_essential_name_len(const char *name) 4724 { 4725 size_t n = strlen(name); 4726 int i; 4727 4728 for (i = n - 5; i >= 0; i--) { 4729 if (bpf_core_is_flavor_sep(name + i)) 4730 return i + 1; 4731 } 4732 return n; 4733 } 4734 4735 struct core_cand 4736 { 4737 const struct btf *btf; 4738 const struct btf_type *t; 4739 const char *name; 4740 __u32 id; 4741 }; 4742 4743 /* dynamically sized list of type IDs and its associated struct btf */ 4744 struct core_cand_list { 4745 struct core_cand *cands; 4746 int len; 4747 }; 4748 4749 static void bpf_core_free_cands(struct core_cand_list *cands) 4750 { 4751 free(cands->cands); 4752 free(cands); 4753 } 4754 4755 static int bpf_core_add_cands(struct core_cand *local_cand, 4756 size_t local_essent_len, 4757 const struct btf *targ_btf, 4758 const char *targ_btf_name, 4759 int targ_start_id, 4760 struct core_cand_list *cands) 4761 { 4762 struct core_cand *new_cands, *cand; 4763 const struct btf_type *t; 4764 const char *targ_name; 4765 size_t targ_essent_len; 4766 int n, i; 4767 4768 n = btf__get_nr_types(targ_btf); 4769 for (i = targ_start_id; i <= n; i++) { 4770 t = btf__type_by_id(targ_btf, i); 4771 if (btf_kind(t) != btf_kind(local_cand->t)) 4772 continue; 4773 4774 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4775 if (str_is_empty(targ_name)) 4776 continue; 4777 4778 targ_essent_len = bpf_core_essential_name_len(targ_name); 4779 if (targ_essent_len != local_essent_len) 4780 continue; 4781 4782 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 4783 continue; 4784 4785 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 4786 local_cand->id, btf_kind_str(local_cand->t), 4787 local_cand->name, i, btf_kind_str(t), targ_name, 4788 targ_btf_name); 4789 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 4790 sizeof(*cands->cands)); 4791 if (!new_cands) 4792 return -ENOMEM; 4793 4794 cand = &new_cands[cands->len]; 4795 cand->btf = targ_btf; 4796 cand->t = t; 4797 cand->name = targ_name; 4798 cand->id = i; 4799 4800 cands->cands = new_cands; 4801 cands->len++; 4802 } 4803 return 0; 4804 } 4805 4806 static int load_module_btfs(struct bpf_object *obj) 4807 { 4808 struct bpf_btf_info info; 4809 struct module_btf *mod_btf; 4810 struct btf *btf; 4811 char name[64]; 4812 __u32 id = 0, len; 4813 int err, fd; 4814 4815 if (obj->btf_modules_loaded) 4816 return 0; 4817 4818 /* don't do this again, even if we find no module BTFs */ 4819 obj->btf_modules_loaded = true; 4820 4821 /* kernel too old to support module BTFs */ 4822 if (!kernel_supports(FEAT_MODULE_BTF)) 4823 return 0; 4824 4825 while (true) { 4826 err = bpf_btf_get_next_id(id, &id); 4827 if (err && errno == ENOENT) 4828 return 0; 4829 if (err) { 4830 err = -errno; 4831 pr_warn("failed to iterate BTF objects: %d\n", err); 4832 return err; 4833 } 4834 4835 fd = bpf_btf_get_fd_by_id(id); 4836 if (fd < 0) { 4837 if (errno == ENOENT) 4838 continue; /* expected race: BTF was unloaded */ 4839 err = -errno; 4840 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 4841 return err; 4842 } 4843 4844 len = sizeof(info); 4845 memset(&info, 0, sizeof(info)); 4846 info.name = ptr_to_u64(name); 4847 info.name_len = sizeof(name); 4848 4849 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4850 if (err) { 4851 err = -errno; 4852 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 4853 goto err_out; 4854 } 4855 4856 /* ignore non-module BTFs */ 4857 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 4858 close(fd); 4859 continue; 4860 } 4861 4862 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 4863 if (IS_ERR(btf)) { 4864 pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n", 4865 name, id, PTR_ERR(btf)); 4866 err = PTR_ERR(btf); 4867 goto err_out; 4868 } 4869 4870 err = btf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 4871 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 4872 if (err) 4873 goto err_out; 4874 4875 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 4876 4877 mod_btf->btf = btf; 4878 mod_btf->id = id; 4879 mod_btf->fd = fd; 4880 mod_btf->name = strdup(name); 4881 if (!mod_btf->name) { 4882 err = -ENOMEM; 4883 goto err_out; 4884 } 4885 continue; 4886 4887 err_out: 4888 close(fd); 4889 return err; 4890 } 4891 4892 return 0; 4893 } 4894 4895 static struct core_cand_list * 4896 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 4897 { 4898 struct core_cand local_cand = {}; 4899 struct core_cand_list *cands; 4900 const struct btf *main_btf; 4901 size_t local_essent_len; 4902 int err, i; 4903 4904 local_cand.btf = local_btf; 4905 local_cand.t = btf__type_by_id(local_btf, local_type_id); 4906 if (!local_cand.t) 4907 return ERR_PTR(-EINVAL); 4908 4909 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 4910 if (str_is_empty(local_cand.name)) 4911 return ERR_PTR(-EINVAL); 4912 local_essent_len = bpf_core_essential_name_len(local_cand.name); 4913 4914 cands = calloc(1, sizeof(*cands)); 4915 if (!cands) 4916 return ERR_PTR(-ENOMEM); 4917 4918 /* Attempt to find target candidates in vmlinux BTF first */ 4919 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 4920 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 4921 if (err) 4922 goto err_out; 4923 4924 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 4925 if (cands->len) 4926 return cands; 4927 4928 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 4929 if (obj->btf_vmlinux_override) 4930 return cands; 4931 4932 /* now look through module BTFs, trying to still find candidates */ 4933 err = load_module_btfs(obj); 4934 if (err) 4935 goto err_out; 4936 4937 for (i = 0; i < obj->btf_module_cnt; i++) { 4938 err = bpf_core_add_cands(&local_cand, local_essent_len, 4939 obj->btf_modules[i].btf, 4940 obj->btf_modules[i].name, 4941 btf__get_nr_types(obj->btf_vmlinux) + 1, 4942 cands); 4943 if (err) 4944 goto err_out; 4945 } 4946 4947 return cands; 4948 err_out: 4949 bpf_core_free_cands(cands); 4950 return ERR_PTR(err); 4951 } 4952 4953 /* Check two types for compatibility for the purpose of field access 4954 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 4955 * are relocating semantically compatible entities: 4956 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4957 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4958 * - any two PTRs are always compatible; 4959 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4960 * least one of enums should be anonymous; 4961 * - for ENUMs, check sizes, names are ignored; 4962 * - for INT, size and signedness are ignored; 4963 * - for ARRAY, dimensionality is ignored, element types are checked for 4964 * compatibility recursively; 4965 * - everything else shouldn't be ever a target of relocation. 4966 * These rules are not set in stone and probably will be adjusted as we get 4967 * more experience with using BPF CO-RE relocations. 4968 */ 4969 static int bpf_core_fields_are_compat(const struct btf *local_btf, 4970 __u32 local_id, 4971 const struct btf *targ_btf, 4972 __u32 targ_id) 4973 { 4974 const struct btf_type *local_type, *targ_type; 4975 4976 recur: 4977 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4978 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4979 if (!local_type || !targ_type) 4980 return -EINVAL; 4981 4982 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4983 return 1; 4984 if (btf_kind(local_type) != btf_kind(targ_type)) 4985 return 0; 4986 4987 switch (btf_kind(local_type)) { 4988 case BTF_KIND_PTR: 4989 return 1; 4990 case BTF_KIND_FWD: 4991 case BTF_KIND_ENUM: { 4992 const char *local_name, *targ_name; 4993 size_t local_len, targ_len; 4994 4995 local_name = btf__name_by_offset(local_btf, 4996 local_type->name_off); 4997 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4998 local_len = bpf_core_essential_name_len(local_name); 4999 targ_len = bpf_core_essential_name_len(targ_name); 5000 /* one of them is anonymous or both w/ same flavor-less names */ 5001 return local_len == 0 || targ_len == 0 || 5002 (local_len == targ_len && 5003 strncmp(local_name, targ_name, local_len) == 0); 5004 } 5005 case BTF_KIND_INT: 5006 /* just reject deprecated bitfield-like integers; all other 5007 * integers are by default compatible between each other 5008 */ 5009 return btf_int_offset(local_type) == 0 && 5010 btf_int_offset(targ_type) == 0; 5011 case BTF_KIND_ARRAY: 5012 local_id = btf_array(local_type)->type; 5013 targ_id = btf_array(targ_type)->type; 5014 goto recur; 5015 default: 5016 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 5017 btf_kind(local_type), local_id, targ_id); 5018 return 0; 5019 } 5020 } 5021 5022 /* 5023 * Given single high-level named field accessor in local type, find 5024 * corresponding high-level accessor for a target type. Along the way, 5025 * maintain low-level spec for target as well. Also keep updating target 5026 * bit offset. 5027 * 5028 * Searching is performed through recursive exhaustive enumeration of all 5029 * fields of a struct/union. If there are any anonymous (embedded) 5030 * structs/unions, they are recursively searched as well. If field with 5031 * desired name is found, check compatibility between local and target types, 5032 * before returning result. 5033 * 5034 * 1 is returned, if field is found. 5035 * 0 is returned if no compatible field is found. 5036 * <0 is returned on error. 5037 */ 5038 static int bpf_core_match_member(const struct btf *local_btf, 5039 const struct bpf_core_accessor *local_acc, 5040 const struct btf *targ_btf, 5041 __u32 targ_id, 5042 struct bpf_core_spec *spec, 5043 __u32 *next_targ_id) 5044 { 5045 const struct btf_type *local_type, *targ_type; 5046 const struct btf_member *local_member, *m; 5047 const char *local_name, *targ_name; 5048 __u32 local_id; 5049 int i, n, found; 5050 5051 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5052 if (!targ_type) 5053 return -EINVAL; 5054 if (!btf_is_composite(targ_type)) 5055 return 0; 5056 5057 local_id = local_acc->type_id; 5058 local_type = btf__type_by_id(local_btf, local_id); 5059 local_member = btf_members(local_type) + local_acc->idx; 5060 local_name = btf__name_by_offset(local_btf, local_member->name_off); 5061 5062 n = btf_vlen(targ_type); 5063 m = btf_members(targ_type); 5064 for (i = 0; i < n; i++, m++) { 5065 __u32 bit_offset; 5066 5067 bit_offset = btf_member_bit_offset(targ_type, i); 5068 5069 /* too deep struct/union/array nesting */ 5070 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5071 return -E2BIG; 5072 5073 /* speculate this member will be the good one */ 5074 spec->bit_offset += bit_offset; 5075 spec->raw_spec[spec->raw_len++] = i; 5076 5077 targ_name = btf__name_by_offset(targ_btf, m->name_off); 5078 if (str_is_empty(targ_name)) { 5079 /* embedded struct/union, we need to go deeper */ 5080 found = bpf_core_match_member(local_btf, local_acc, 5081 targ_btf, m->type, 5082 spec, next_targ_id); 5083 if (found) /* either found or error */ 5084 return found; 5085 } else if (strcmp(local_name, targ_name) == 0) { 5086 /* matching named field */ 5087 struct bpf_core_accessor *targ_acc; 5088 5089 targ_acc = &spec->spec[spec->len++]; 5090 targ_acc->type_id = targ_id; 5091 targ_acc->idx = i; 5092 targ_acc->name = targ_name; 5093 5094 *next_targ_id = m->type; 5095 found = bpf_core_fields_are_compat(local_btf, 5096 local_member->type, 5097 targ_btf, m->type); 5098 if (!found) 5099 spec->len--; /* pop accessor */ 5100 return found; 5101 } 5102 /* member turned out not to be what we looked for */ 5103 spec->bit_offset -= bit_offset; 5104 spec->raw_len--; 5105 } 5106 5107 return 0; 5108 } 5109 5110 /* Check local and target types for compatibility. This check is used for 5111 * type-based CO-RE relocations and follow slightly different rules than 5112 * field-based relocations. This function assumes that root types were already 5113 * checked for name match. Beyond that initial root-level name check, names 5114 * are completely ignored. Compatibility rules are as follows: 5115 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5116 * kind should match for local and target types (i.e., STRUCT is not 5117 * compatible with UNION); 5118 * - for ENUMs, the size is ignored; 5119 * - for INT, size and signedness are ignored; 5120 * - for ARRAY, dimensionality is ignored, element types are checked for 5121 * compatibility recursively; 5122 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5123 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5124 * - FUNC_PROTOs are compatible if they have compatible signature: same 5125 * number of input args and compatible return and argument types. 5126 * These rules are not set in stone and probably will be adjusted as we get 5127 * more experience with using BPF CO-RE relocations. 5128 */ 5129 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5130 const struct btf *targ_btf, __u32 targ_id) 5131 { 5132 const struct btf_type *local_type, *targ_type; 5133 int depth = 32; /* max recursion depth */ 5134 5135 /* caller made sure that names match (ignoring flavor suffix) */ 5136 local_type = btf__type_by_id(local_btf, local_id); 5137 targ_type = btf__type_by_id(targ_btf, targ_id); 5138 if (btf_kind(local_type) != btf_kind(targ_type)) 5139 return 0; 5140 5141 recur: 5142 depth--; 5143 if (depth < 0) 5144 return -EINVAL; 5145 5146 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5147 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5148 if (!local_type || !targ_type) 5149 return -EINVAL; 5150 5151 if (btf_kind(local_type) != btf_kind(targ_type)) 5152 return 0; 5153 5154 switch (btf_kind(local_type)) { 5155 case BTF_KIND_UNKN: 5156 case BTF_KIND_STRUCT: 5157 case BTF_KIND_UNION: 5158 case BTF_KIND_ENUM: 5159 case BTF_KIND_FWD: 5160 return 1; 5161 case BTF_KIND_INT: 5162 /* just reject deprecated bitfield-like integers; all other 5163 * integers are by default compatible between each other 5164 */ 5165 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5166 case BTF_KIND_PTR: 5167 local_id = local_type->type; 5168 targ_id = targ_type->type; 5169 goto recur; 5170 case BTF_KIND_ARRAY: 5171 local_id = btf_array(local_type)->type; 5172 targ_id = btf_array(targ_type)->type; 5173 goto recur; 5174 case BTF_KIND_FUNC_PROTO: { 5175 struct btf_param *local_p = btf_params(local_type); 5176 struct btf_param *targ_p = btf_params(targ_type); 5177 __u16 local_vlen = btf_vlen(local_type); 5178 __u16 targ_vlen = btf_vlen(targ_type); 5179 int i, err; 5180 5181 if (local_vlen != targ_vlen) 5182 return 0; 5183 5184 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5185 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5186 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5187 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5188 if (err <= 0) 5189 return err; 5190 } 5191 5192 /* tail recurse for return type check */ 5193 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5194 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5195 goto recur; 5196 } 5197 default: 5198 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5199 btf_kind_str(local_type), local_id, targ_id); 5200 return 0; 5201 } 5202 } 5203 5204 /* 5205 * Try to match local spec to a target type and, if successful, produce full 5206 * target spec (high-level, low-level + bit offset). 5207 */ 5208 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 5209 const struct btf *targ_btf, __u32 targ_id, 5210 struct bpf_core_spec *targ_spec) 5211 { 5212 const struct btf_type *targ_type; 5213 const struct bpf_core_accessor *local_acc; 5214 struct bpf_core_accessor *targ_acc; 5215 int i, sz, matched; 5216 5217 memset(targ_spec, 0, sizeof(*targ_spec)); 5218 targ_spec->btf = targ_btf; 5219 targ_spec->root_type_id = targ_id; 5220 targ_spec->relo_kind = local_spec->relo_kind; 5221 5222 if (core_relo_is_type_based(local_spec->relo_kind)) { 5223 return bpf_core_types_are_compat(local_spec->btf, 5224 local_spec->root_type_id, 5225 targ_btf, targ_id); 5226 } 5227 5228 local_acc = &local_spec->spec[0]; 5229 targ_acc = &targ_spec->spec[0]; 5230 5231 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5232 size_t local_essent_len, targ_essent_len; 5233 const struct btf_enum *e; 5234 const char *targ_name; 5235 5236 /* has to resolve to an enum */ 5237 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5238 if (!btf_is_enum(targ_type)) 5239 return 0; 5240 5241 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5242 5243 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5244 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5245 targ_essent_len = bpf_core_essential_name_len(targ_name); 5246 if (targ_essent_len != local_essent_len) 5247 continue; 5248 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5249 targ_acc->type_id = targ_id; 5250 targ_acc->idx = i; 5251 targ_acc->name = targ_name; 5252 targ_spec->len++; 5253 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5254 targ_spec->raw_len++; 5255 return 1; 5256 } 5257 } 5258 return 0; 5259 } 5260 5261 if (!core_relo_is_field_based(local_spec->relo_kind)) 5262 return -EINVAL; 5263 5264 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5265 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5266 &targ_id); 5267 if (!targ_type) 5268 return -EINVAL; 5269 5270 if (local_acc->name) { 5271 matched = bpf_core_match_member(local_spec->btf, 5272 local_acc, 5273 targ_btf, targ_id, 5274 targ_spec, &targ_id); 5275 if (matched <= 0) 5276 return matched; 5277 } else { 5278 /* for i=0, targ_id is already treated as array element 5279 * type (because it's the original struct), for others 5280 * we should find array element type first 5281 */ 5282 if (i > 0) { 5283 const struct btf_array *a; 5284 bool flex; 5285 5286 if (!btf_is_array(targ_type)) 5287 return 0; 5288 5289 a = btf_array(targ_type); 5290 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5291 if (!flex && local_acc->idx >= a->nelems) 5292 return 0; 5293 if (!skip_mods_and_typedefs(targ_btf, a->type, 5294 &targ_id)) 5295 return -EINVAL; 5296 } 5297 5298 /* too deep struct/union/array nesting */ 5299 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5300 return -E2BIG; 5301 5302 targ_acc->type_id = targ_id; 5303 targ_acc->idx = local_acc->idx; 5304 targ_acc->name = NULL; 5305 targ_spec->len++; 5306 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5307 targ_spec->raw_len++; 5308 5309 sz = btf__resolve_size(targ_btf, targ_id); 5310 if (sz < 0) 5311 return sz; 5312 targ_spec->bit_offset += local_acc->idx * sz * 8; 5313 } 5314 } 5315 5316 return 1; 5317 } 5318 5319 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5320 const struct bpf_core_relo *relo, 5321 const struct bpf_core_spec *spec, 5322 __u32 *val, __u32 *field_sz, __u32 *type_id, 5323 bool *validate) 5324 { 5325 const struct bpf_core_accessor *acc; 5326 const struct btf_type *t; 5327 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5328 const struct btf_member *m; 5329 const struct btf_type *mt; 5330 bool bitfield; 5331 __s64 sz; 5332 5333 *field_sz = 0; 5334 5335 if (relo->kind == BPF_FIELD_EXISTS) { 5336 *val = spec ? 1 : 0; 5337 return 0; 5338 } 5339 5340 if (!spec) 5341 return -EUCLEAN; /* request instruction poisoning */ 5342 5343 acc = &spec->spec[spec->len - 1]; 5344 t = btf__type_by_id(spec->btf, acc->type_id); 5345 5346 /* a[n] accessor needs special handling */ 5347 if (!acc->name) { 5348 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5349 *val = spec->bit_offset / 8; 5350 /* remember field size for load/store mem size */ 5351 sz = btf__resolve_size(spec->btf, acc->type_id); 5352 if (sz < 0) 5353 return -EINVAL; 5354 *field_sz = sz; 5355 *type_id = acc->type_id; 5356 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5357 sz = btf__resolve_size(spec->btf, acc->type_id); 5358 if (sz < 0) 5359 return -EINVAL; 5360 *val = sz; 5361 } else { 5362 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5363 prog->name, relo->kind, relo->insn_off / 8); 5364 return -EINVAL; 5365 } 5366 if (validate) 5367 *validate = true; 5368 return 0; 5369 } 5370 5371 m = btf_members(t) + acc->idx; 5372 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5373 bit_off = spec->bit_offset; 5374 bit_sz = btf_member_bitfield_size(t, acc->idx); 5375 5376 bitfield = bit_sz > 0; 5377 if (bitfield) { 5378 byte_sz = mt->size; 5379 byte_off = bit_off / 8 / byte_sz * byte_sz; 5380 /* figure out smallest int size necessary for bitfield load */ 5381 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5382 if (byte_sz >= 8) { 5383 /* bitfield can't be read with 64-bit read */ 5384 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5385 prog->name, relo->kind, relo->insn_off / 8); 5386 return -E2BIG; 5387 } 5388 byte_sz *= 2; 5389 byte_off = bit_off / 8 / byte_sz * byte_sz; 5390 } 5391 } else { 5392 sz = btf__resolve_size(spec->btf, field_type_id); 5393 if (sz < 0) 5394 return -EINVAL; 5395 byte_sz = sz; 5396 byte_off = spec->bit_offset / 8; 5397 bit_sz = byte_sz * 8; 5398 } 5399 5400 /* for bitfields, all the relocatable aspects are ambiguous and we 5401 * might disagree with compiler, so turn off validation of expected 5402 * value, except for signedness 5403 */ 5404 if (validate) 5405 *validate = !bitfield; 5406 5407 switch (relo->kind) { 5408 case BPF_FIELD_BYTE_OFFSET: 5409 *val = byte_off; 5410 if (!bitfield) { 5411 *field_sz = byte_sz; 5412 *type_id = field_type_id; 5413 } 5414 break; 5415 case BPF_FIELD_BYTE_SIZE: 5416 *val = byte_sz; 5417 break; 5418 case BPF_FIELD_SIGNED: 5419 /* enums will be assumed unsigned */ 5420 *val = btf_is_enum(mt) || 5421 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5422 if (validate) 5423 *validate = true; /* signedness is never ambiguous */ 5424 break; 5425 case BPF_FIELD_LSHIFT_U64: 5426 #if __BYTE_ORDER == __LITTLE_ENDIAN 5427 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5428 #else 5429 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5430 #endif 5431 break; 5432 case BPF_FIELD_RSHIFT_U64: 5433 *val = 64 - bit_sz; 5434 if (validate) 5435 *validate = true; /* right shift is never ambiguous */ 5436 break; 5437 case BPF_FIELD_EXISTS: 5438 default: 5439 return -EOPNOTSUPP; 5440 } 5441 5442 return 0; 5443 } 5444 5445 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5446 const struct bpf_core_spec *spec, 5447 __u32 *val) 5448 { 5449 __s64 sz; 5450 5451 /* type-based relos return zero when target type is not found */ 5452 if (!spec) { 5453 *val = 0; 5454 return 0; 5455 } 5456 5457 switch (relo->kind) { 5458 case BPF_TYPE_ID_TARGET: 5459 *val = spec->root_type_id; 5460 break; 5461 case BPF_TYPE_EXISTS: 5462 *val = 1; 5463 break; 5464 case BPF_TYPE_SIZE: 5465 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5466 if (sz < 0) 5467 return -EINVAL; 5468 *val = sz; 5469 break; 5470 case BPF_TYPE_ID_LOCAL: 5471 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5472 default: 5473 return -EOPNOTSUPP; 5474 } 5475 5476 return 0; 5477 } 5478 5479 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5480 const struct bpf_core_spec *spec, 5481 __u32 *val) 5482 { 5483 const struct btf_type *t; 5484 const struct btf_enum *e; 5485 5486 switch (relo->kind) { 5487 case BPF_ENUMVAL_EXISTS: 5488 *val = spec ? 1 : 0; 5489 break; 5490 case BPF_ENUMVAL_VALUE: 5491 if (!spec) 5492 return -EUCLEAN; /* request instruction poisoning */ 5493 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5494 e = btf_enum(t) + spec->spec[0].idx; 5495 *val = e->val; 5496 break; 5497 default: 5498 return -EOPNOTSUPP; 5499 } 5500 5501 return 0; 5502 } 5503 5504 struct bpf_core_relo_res 5505 { 5506 /* expected value in the instruction, unless validate == false */ 5507 __u32 orig_val; 5508 /* new value that needs to be patched up to */ 5509 __u32 new_val; 5510 /* relocation unsuccessful, poison instruction, but don't fail load */ 5511 bool poison; 5512 /* some relocations can't be validated against orig_val */ 5513 bool validate; 5514 /* for field byte offset relocations or the forms: 5515 * *(T *)(rX + <off>) = rY 5516 * rX = *(T *)(rY + <off>), 5517 * we remember original and resolved field size to adjust direct 5518 * memory loads of pointers and integers; this is necessary for 32-bit 5519 * host kernel architectures, but also allows to automatically 5520 * relocate fields that were resized from, e.g., u32 to u64, etc. 5521 */ 5522 bool fail_memsz_adjust; 5523 __u32 orig_sz; 5524 __u32 orig_type_id; 5525 __u32 new_sz; 5526 __u32 new_type_id; 5527 }; 5528 5529 /* Calculate original and target relocation values, given local and target 5530 * specs and relocation kind. These values are calculated for each candidate. 5531 * If there are multiple candidates, resulting values should all be consistent 5532 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5533 * If instruction has to be poisoned, *poison will be set to true. 5534 */ 5535 static int bpf_core_calc_relo(const struct bpf_program *prog, 5536 const struct bpf_core_relo *relo, 5537 int relo_idx, 5538 const struct bpf_core_spec *local_spec, 5539 const struct bpf_core_spec *targ_spec, 5540 struct bpf_core_relo_res *res) 5541 { 5542 int err = -EOPNOTSUPP; 5543 5544 res->orig_val = 0; 5545 res->new_val = 0; 5546 res->poison = false; 5547 res->validate = true; 5548 res->fail_memsz_adjust = false; 5549 res->orig_sz = res->new_sz = 0; 5550 res->orig_type_id = res->new_type_id = 0; 5551 5552 if (core_relo_is_field_based(relo->kind)) { 5553 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5554 &res->orig_val, &res->orig_sz, 5555 &res->orig_type_id, &res->validate); 5556 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5557 &res->new_val, &res->new_sz, 5558 &res->new_type_id, NULL); 5559 if (err) 5560 goto done; 5561 /* Validate if it's safe to adjust load/store memory size. 5562 * Adjustments are performed only if original and new memory 5563 * sizes differ. 5564 */ 5565 res->fail_memsz_adjust = false; 5566 if (res->orig_sz != res->new_sz) { 5567 const struct btf_type *orig_t, *new_t; 5568 5569 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5570 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5571 5572 /* There are two use cases in which it's safe to 5573 * adjust load/store's mem size: 5574 * - reading a 32-bit kernel pointer, while on BPF 5575 * size pointers are always 64-bit; in this case 5576 * it's safe to "downsize" instruction size due to 5577 * pointer being treated as unsigned integer with 5578 * zero-extended upper 32-bits; 5579 * - reading unsigned integers, again due to 5580 * zero-extension is preserving the value correctly. 5581 * 5582 * In all other cases it's incorrect to attempt to 5583 * load/store field because read value will be 5584 * incorrect, so we poison relocated instruction. 5585 */ 5586 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5587 goto done; 5588 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5589 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5590 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5591 goto done; 5592 5593 /* mark as invalid mem size adjustment, but this will 5594 * only be checked for LDX/STX/ST insns 5595 */ 5596 res->fail_memsz_adjust = true; 5597 } 5598 } else if (core_relo_is_type_based(relo->kind)) { 5599 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5600 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5601 } else if (core_relo_is_enumval_based(relo->kind)) { 5602 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5603 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5604 } 5605 5606 done: 5607 if (err == -EUCLEAN) { 5608 /* EUCLEAN is used to signal instruction poisoning request */ 5609 res->poison = true; 5610 err = 0; 5611 } else if (err == -EOPNOTSUPP) { 5612 /* EOPNOTSUPP means unknown/unsupported relocation */ 5613 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5614 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5615 relo->kind, relo->insn_off / 8); 5616 } 5617 5618 return err; 5619 } 5620 5621 /* 5622 * Turn instruction for which CO_RE relocation failed into invalid one with 5623 * distinct signature. 5624 */ 5625 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5626 int insn_idx, struct bpf_insn *insn) 5627 { 5628 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5629 prog->name, relo_idx, insn_idx); 5630 insn->code = BPF_JMP | BPF_CALL; 5631 insn->dst_reg = 0; 5632 insn->src_reg = 0; 5633 insn->off = 0; 5634 /* if this instruction is reachable (not a dead code), 5635 * verifier will complain with the following message: 5636 * invalid func unknown#195896080 5637 */ 5638 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5639 } 5640 5641 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5642 { 5643 switch (BPF_SIZE(insn->code)) { 5644 case BPF_DW: return 8; 5645 case BPF_W: return 4; 5646 case BPF_H: return 2; 5647 case BPF_B: return 1; 5648 default: return -1; 5649 } 5650 } 5651 5652 static int insn_bytes_to_bpf_size(__u32 sz) 5653 { 5654 switch (sz) { 5655 case 8: return BPF_DW; 5656 case 4: return BPF_W; 5657 case 2: return BPF_H; 5658 case 1: return BPF_B; 5659 default: return -1; 5660 } 5661 } 5662 5663 /* 5664 * Patch relocatable BPF instruction. 5665 * 5666 * Patched value is determined by relocation kind and target specification. 5667 * For existence relocations target spec will be NULL if field/type is not found. 5668 * Expected insn->imm value is determined using relocation kind and local 5669 * spec, and is checked before patching instruction. If actual insn->imm value 5670 * is wrong, bail out with error. 5671 * 5672 * Currently supported classes of BPF instruction are: 5673 * 1. rX = <imm> (assignment with immediate operand); 5674 * 2. rX += <imm> (arithmetic operations with immediate operand); 5675 * 3. rX = <imm64> (load with 64-bit immediate value); 5676 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5677 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5678 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5679 */ 5680 static int bpf_core_patch_insn(struct bpf_program *prog, 5681 const struct bpf_core_relo *relo, 5682 int relo_idx, 5683 const struct bpf_core_relo_res *res) 5684 { 5685 __u32 orig_val, new_val; 5686 struct bpf_insn *insn; 5687 int insn_idx; 5688 __u8 class; 5689 5690 if (relo->insn_off % BPF_INSN_SZ) 5691 return -EINVAL; 5692 insn_idx = relo->insn_off / BPF_INSN_SZ; 5693 /* adjust insn_idx from section frame of reference to the local 5694 * program's frame of reference; (sub-)program code is not yet 5695 * relocated, so it's enough to just subtract in-section offset 5696 */ 5697 insn_idx = insn_idx - prog->sec_insn_off; 5698 insn = &prog->insns[insn_idx]; 5699 class = BPF_CLASS(insn->code); 5700 5701 if (res->poison) { 5702 poison: 5703 /* poison second part of ldimm64 to avoid confusing error from 5704 * verifier about "unknown opcode 00" 5705 */ 5706 if (is_ldimm64(insn)) 5707 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5708 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5709 return 0; 5710 } 5711 5712 orig_val = res->orig_val; 5713 new_val = res->new_val; 5714 5715 switch (class) { 5716 case BPF_ALU: 5717 case BPF_ALU64: 5718 if (BPF_SRC(insn->code) != BPF_K) 5719 return -EINVAL; 5720 if (res->validate && insn->imm != orig_val) { 5721 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5722 prog->name, relo_idx, 5723 insn_idx, insn->imm, orig_val, new_val); 5724 return -EINVAL; 5725 } 5726 orig_val = insn->imm; 5727 insn->imm = new_val; 5728 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5729 prog->name, relo_idx, insn_idx, 5730 orig_val, new_val); 5731 break; 5732 case BPF_LDX: 5733 case BPF_ST: 5734 case BPF_STX: 5735 if (res->validate && insn->off != orig_val) { 5736 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5737 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5738 return -EINVAL; 5739 } 5740 if (new_val > SHRT_MAX) { 5741 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5742 prog->name, relo_idx, insn_idx, new_val); 5743 return -ERANGE; 5744 } 5745 if (res->fail_memsz_adjust) { 5746 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5747 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5748 prog->name, relo_idx, insn_idx); 5749 goto poison; 5750 } 5751 5752 orig_val = insn->off; 5753 insn->off = new_val; 5754 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5755 prog->name, relo_idx, insn_idx, orig_val, new_val); 5756 5757 if (res->new_sz != res->orig_sz) { 5758 int insn_bytes_sz, insn_bpf_sz; 5759 5760 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5761 if (insn_bytes_sz != res->orig_sz) { 5762 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5763 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5764 return -EINVAL; 5765 } 5766 5767 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5768 if (insn_bpf_sz < 0) { 5769 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5770 prog->name, relo_idx, insn_idx, res->new_sz); 5771 return -EINVAL; 5772 } 5773 5774 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5775 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5776 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5777 } 5778 break; 5779 case BPF_LD: { 5780 __u64 imm; 5781 5782 if (!is_ldimm64(insn) || 5783 insn[0].src_reg != 0 || insn[0].off != 0 || 5784 insn_idx + 1 >= prog->insns_cnt || 5785 insn[1].code != 0 || insn[1].dst_reg != 0 || 5786 insn[1].src_reg != 0 || insn[1].off != 0) { 5787 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5788 prog->name, relo_idx, insn_idx); 5789 return -EINVAL; 5790 } 5791 5792 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5793 if (res->validate && imm != orig_val) { 5794 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5795 prog->name, relo_idx, 5796 insn_idx, (unsigned long long)imm, 5797 orig_val, new_val); 5798 return -EINVAL; 5799 } 5800 5801 insn[0].imm = new_val; 5802 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5803 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5804 prog->name, relo_idx, insn_idx, 5805 (unsigned long long)imm, new_val); 5806 break; 5807 } 5808 default: 5809 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5810 prog->name, relo_idx, insn_idx, insn->code, 5811 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5812 return -EINVAL; 5813 } 5814 5815 return 0; 5816 } 5817 5818 /* Output spec definition in the format: 5819 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5820 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5821 */ 5822 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5823 { 5824 const struct btf_type *t; 5825 const struct btf_enum *e; 5826 const char *s; 5827 __u32 type_id; 5828 int i; 5829 5830 type_id = spec->root_type_id; 5831 t = btf__type_by_id(spec->btf, type_id); 5832 s = btf__name_by_offset(spec->btf, t->name_off); 5833 5834 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5835 5836 if (core_relo_is_type_based(spec->relo_kind)) 5837 return; 5838 5839 if (core_relo_is_enumval_based(spec->relo_kind)) { 5840 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5841 e = btf_enum(t) + spec->raw_spec[0]; 5842 s = btf__name_by_offset(spec->btf, e->name_off); 5843 5844 libbpf_print(level, "::%s = %u", s, e->val); 5845 return; 5846 } 5847 5848 if (core_relo_is_field_based(spec->relo_kind)) { 5849 for (i = 0; i < spec->len; i++) { 5850 if (spec->spec[i].name) 5851 libbpf_print(level, ".%s", spec->spec[i].name); 5852 else if (i > 0 || spec->spec[i].idx > 0) 5853 libbpf_print(level, "[%u]", spec->spec[i].idx); 5854 } 5855 5856 libbpf_print(level, " ("); 5857 for (i = 0; i < spec->raw_len; i++) 5858 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5859 5860 if (spec->bit_offset % 8) 5861 libbpf_print(level, " @ offset %u.%u)", 5862 spec->bit_offset / 8, spec->bit_offset % 8); 5863 else 5864 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5865 return; 5866 } 5867 } 5868 5869 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5870 { 5871 return (size_t)key; 5872 } 5873 5874 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5875 { 5876 return k1 == k2; 5877 } 5878 5879 static void *u32_as_hash_key(__u32 x) 5880 { 5881 return (void *)(uintptr_t)x; 5882 } 5883 5884 /* 5885 * CO-RE relocate single instruction. 5886 * 5887 * The outline and important points of the algorithm: 5888 * 1. For given local type, find corresponding candidate target types. 5889 * Candidate type is a type with the same "essential" name, ignoring 5890 * everything after last triple underscore (___). E.g., `sample`, 5891 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5892 * for each other. Names with triple underscore are referred to as 5893 * "flavors" and are useful, among other things, to allow to 5894 * specify/support incompatible variations of the same kernel struct, which 5895 * might differ between different kernel versions and/or build 5896 * configurations. 5897 * 5898 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5899 * converter, when deduplicated BTF of a kernel still contains more than 5900 * one different types with the same name. In that case, ___2, ___3, etc 5901 * are appended starting from second name conflict. But start flavors are 5902 * also useful to be defined "locally", in BPF program, to extract same 5903 * data from incompatible changes between different kernel 5904 * versions/configurations. For instance, to handle field renames between 5905 * kernel versions, one can use two flavors of the struct name with the 5906 * same common name and use conditional relocations to extract that field, 5907 * depending on target kernel version. 5908 * 2. For each candidate type, try to match local specification to this 5909 * candidate target type. Matching involves finding corresponding 5910 * high-level spec accessors, meaning that all named fields should match, 5911 * as well as all array accesses should be within the actual bounds. Also, 5912 * types should be compatible (see bpf_core_fields_are_compat for details). 5913 * 3. It is supported and expected that there might be multiple flavors 5914 * matching the spec. As long as all the specs resolve to the same set of 5915 * offsets across all candidates, there is no error. If there is any 5916 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 5917 * imprefection of BTF deduplication, which can cause slight duplication of 5918 * the same BTF type, if some directly or indirectly referenced (by 5919 * pointer) type gets resolved to different actual types in different 5920 * object files. If such situation occurs, deduplicated BTF will end up 5921 * with two (or more) structurally identical types, which differ only in 5922 * types they refer to through pointer. This should be OK in most cases and 5923 * is not an error. 5924 * 4. Candidate types search is performed by linearly scanning through all 5925 * types in target BTF. It is anticipated that this is overall more 5926 * efficient memory-wise and not significantly worse (if not better) 5927 * CPU-wise compared to prebuilding a map from all local type names to 5928 * a list of candidate type names. It's also sped up by caching resolved 5929 * list of matching candidates per each local "root" type ID, that has at 5930 * least one bpf_core_relo associated with it. This list is shared 5931 * between multiple relocations for the same type ID and is updated as some 5932 * of the candidates are pruned due to structural incompatibility. 5933 */ 5934 static int bpf_core_apply_relo(struct bpf_program *prog, 5935 const struct bpf_core_relo *relo, 5936 int relo_idx, 5937 const struct btf *local_btf, 5938 struct hashmap *cand_cache) 5939 { 5940 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 5941 const void *type_key = u32_as_hash_key(relo->type_id); 5942 struct bpf_core_relo_res cand_res, targ_res; 5943 const struct btf_type *local_type; 5944 const char *local_name; 5945 struct core_cand_list *cands = NULL; 5946 __u32 local_id; 5947 const char *spec_str; 5948 int i, j, err; 5949 5950 local_id = relo->type_id; 5951 local_type = btf__type_by_id(local_btf, local_id); 5952 if (!local_type) 5953 return -EINVAL; 5954 5955 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5956 if (!local_name) 5957 return -EINVAL; 5958 5959 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5960 if (str_is_empty(spec_str)) 5961 return -EINVAL; 5962 5963 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 5964 if (err) { 5965 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 5966 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5967 str_is_empty(local_name) ? "<anon>" : local_name, 5968 spec_str, err); 5969 return -EINVAL; 5970 } 5971 5972 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 5973 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5974 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 5975 libbpf_print(LIBBPF_DEBUG, "\n"); 5976 5977 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 5978 if (relo->kind == BPF_TYPE_ID_LOCAL) { 5979 targ_res.validate = true; 5980 targ_res.poison = false; 5981 targ_res.orig_val = local_spec.root_type_id; 5982 targ_res.new_val = local_spec.root_type_id; 5983 goto patch_insn; 5984 } 5985 5986 /* libbpf doesn't support candidate search for anonymous types */ 5987 if (str_is_empty(spec_str)) { 5988 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 5989 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5990 return -EOPNOTSUPP; 5991 } 5992 5993 if (!hashmap__find(cand_cache, type_key, (void **)&cands)) { 5994 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5995 if (IS_ERR(cands)) { 5996 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5997 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5998 local_name, PTR_ERR(cands)); 5999 return PTR_ERR(cands); 6000 } 6001 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 6002 if (err) { 6003 bpf_core_free_cands(cands); 6004 return err; 6005 } 6006 } 6007 6008 for (i = 0, j = 0; i < cands->len; i++) { 6009 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 6010 cands->cands[i].id, &cand_spec); 6011 if (err < 0) { 6012 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 6013 prog->name, relo_idx, i); 6014 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 6015 libbpf_print(LIBBPF_WARN, ": %d\n", err); 6016 return err; 6017 } 6018 6019 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 6020 relo_idx, err == 0 ? "non-matching" : "matching", i); 6021 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 6022 libbpf_print(LIBBPF_DEBUG, "\n"); 6023 6024 if (err == 0) 6025 continue; 6026 6027 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 6028 if (err) 6029 return err; 6030 6031 if (j == 0) { 6032 targ_res = cand_res; 6033 targ_spec = cand_spec; 6034 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 6035 /* if there are many field relo candidates, they 6036 * should all resolve to the same bit offset 6037 */ 6038 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 6039 prog->name, relo_idx, cand_spec.bit_offset, 6040 targ_spec.bit_offset); 6041 return -EINVAL; 6042 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 6043 /* all candidates should result in the same relocation 6044 * decision and value, otherwise it's dangerous to 6045 * proceed due to ambiguity 6046 */ 6047 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 6048 prog->name, relo_idx, 6049 cand_res.poison ? "failure" : "success", cand_res.new_val, 6050 targ_res.poison ? "failure" : "success", targ_res.new_val); 6051 return -EINVAL; 6052 } 6053 6054 cands->cands[j++] = cands->cands[i]; 6055 } 6056 6057 /* 6058 * For BPF_FIELD_EXISTS relo or when used BPF program has field 6059 * existence checks or kernel version/config checks, it's expected 6060 * that we might not find any candidates. In this case, if field 6061 * wasn't found in any candidate, the list of candidates shouldn't 6062 * change at all, we'll just handle relocating appropriately, 6063 * depending on relo's kind. 6064 */ 6065 if (j > 0) 6066 cands->len = j; 6067 6068 /* 6069 * If no candidates were found, it might be both a programmer error, 6070 * as well as expected case, depending whether instruction w/ 6071 * relocation is guarded in some way that makes it unreachable (dead 6072 * code) if relocation can't be resolved. This is handled in 6073 * bpf_core_patch_insn() uniformly by replacing that instruction with 6074 * BPF helper call insn (using invalid helper ID). If that instruction 6075 * is indeed unreachable, then it will be ignored and eliminated by 6076 * verifier. If it was an error, then verifier will complain and point 6077 * to a specific instruction number in its log. 6078 */ 6079 if (j == 0) { 6080 pr_debug("prog '%s': relo #%d: no matching targets found\n", 6081 prog->name, relo_idx); 6082 6083 /* calculate single target relo result explicitly */ 6084 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 6085 if (err) 6086 return err; 6087 } 6088 6089 patch_insn: 6090 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 6091 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 6092 if (err) { 6093 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 6094 prog->name, relo_idx, relo->insn_off, err); 6095 return -EINVAL; 6096 } 6097 6098 return 0; 6099 } 6100 6101 static int 6102 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6103 { 6104 const struct btf_ext_info_sec *sec; 6105 const struct bpf_core_relo *rec; 6106 const struct btf_ext_info *seg; 6107 struct hashmap_entry *entry; 6108 struct hashmap *cand_cache = NULL; 6109 struct bpf_program *prog; 6110 const char *sec_name; 6111 int i, err = 0, insn_idx, sec_idx; 6112 6113 if (obj->btf_ext->core_relo_info.len == 0) 6114 return 0; 6115 6116 if (targ_btf_path) { 6117 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6118 if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) { 6119 err = PTR_ERR(obj->btf_vmlinux_override); 6120 pr_warn("failed to parse target BTF: %d\n", err); 6121 return err; 6122 } 6123 } 6124 6125 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6126 if (IS_ERR(cand_cache)) { 6127 err = PTR_ERR(cand_cache); 6128 goto out; 6129 } 6130 6131 seg = &obj->btf_ext->core_relo_info; 6132 for_each_btf_ext_sec(seg, sec) { 6133 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6134 if (str_is_empty(sec_name)) { 6135 err = -EINVAL; 6136 goto out; 6137 } 6138 /* bpf_object's ELF is gone by now so it's not easy to find 6139 * section index by section name, but we can find *any* 6140 * bpf_program within desired section name and use it's 6141 * prog->sec_idx to do a proper search by section index and 6142 * instruction offset 6143 */ 6144 prog = NULL; 6145 for (i = 0; i < obj->nr_programs; i++) { 6146 prog = &obj->programs[i]; 6147 if (strcmp(prog->sec_name, sec_name) == 0) 6148 break; 6149 } 6150 if (!prog) { 6151 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 6152 return -ENOENT; 6153 } 6154 sec_idx = prog->sec_idx; 6155 6156 pr_debug("sec '%s': found %d CO-RE relocations\n", 6157 sec_name, sec->num_info); 6158 6159 for_each_btf_ext_rec(seg, sec, i, rec) { 6160 insn_idx = rec->insn_off / BPF_INSN_SZ; 6161 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6162 if (!prog) { 6163 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 6164 sec_name, insn_idx, i); 6165 err = -EINVAL; 6166 goto out; 6167 } 6168 /* no need to apply CO-RE relocation if the program is 6169 * not going to be loaded 6170 */ 6171 if (!prog->load) 6172 continue; 6173 6174 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 6175 if (err) { 6176 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 6177 prog->name, i, err); 6178 goto out; 6179 } 6180 } 6181 } 6182 6183 out: 6184 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6185 btf__free(obj->btf_vmlinux_override); 6186 obj->btf_vmlinux_override = NULL; 6187 6188 if (!IS_ERR_OR_NULL(cand_cache)) { 6189 hashmap__for_each_entry(cand_cache, entry, i) { 6190 bpf_core_free_cands(entry->value); 6191 } 6192 hashmap__free(cand_cache); 6193 } 6194 return err; 6195 } 6196 6197 /* Relocate data references within program code: 6198 * - map references; 6199 * - global variable references; 6200 * - extern references. 6201 */ 6202 static int 6203 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6204 { 6205 int i; 6206 6207 for (i = 0; i < prog->nr_reloc; i++) { 6208 struct reloc_desc *relo = &prog->reloc_desc[i]; 6209 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6210 struct extern_desc *ext; 6211 6212 switch (relo->type) { 6213 case RELO_LD64: 6214 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6215 insn[0].imm = obj->maps[relo->map_idx].fd; 6216 relo->processed = true; 6217 break; 6218 case RELO_DATA: 6219 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6220 insn[1].imm = insn[0].imm + relo->sym_off; 6221 insn[0].imm = obj->maps[relo->map_idx].fd; 6222 relo->processed = true; 6223 break; 6224 case RELO_EXTERN: 6225 ext = &obj->externs[relo->sym_off]; 6226 if (ext->type == EXT_KCFG) { 6227 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6228 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6229 insn[1].imm = ext->kcfg.data_off; 6230 } else /* EXT_KSYM */ { 6231 if (ext->ksym.type_id) { /* typed ksyms */ 6232 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6233 insn[0].imm = ext->ksym.kernel_btf_id; 6234 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6235 } else { /* typeless ksyms */ 6236 insn[0].imm = (__u32)ext->ksym.addr; 6237 insn[1].imm = ext->ksym.addr >> 32; 6238 } 6239 } 6240 relo->processed = true; 6241 break; 6242 case RELO_SUBPROG_ADDR: 6243 insn[0].src_reg = BPF_PSEUDO_FUNC; 6244 /* will be handled as a follow up pass */ 6245 break; 6246 case RELO_CALL: 6247 /* will be handled as a follow up pass */ 6248 break; 6249 default: 6250 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6251 prog->name, i, relo->type); 6252 return -EINVAL; 6253 } 6254 } 6255 6256 return 0; 6257 } 6258 6259 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6260 const struct bpf_program *prog, 6261 const struct btf_ext_info *ext_info, 6262 void **prog_info, __u32 *prog_rec_cnt, 6263 __u32 *prog_rec_sz) 6264 { 6265 void *copy_start = NULL, *copy_end = NULL; 6266 void *rec, *rec_end, *new_prog_info; 6267 const struct btf_ext_info_sec *sec; 6268 size_t old_sz, new_sz; 6269 const char *sec_name; 6270 int i, off_adj; 6271 6272 for_each_btf_ext_sec(ext_info, sec) { 6273 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6274 if (!sec_name) 6275 return -EINVAL; 6276 if (strcmp(sec_name, prog->sec_name) != 0) 6277 continue; 6278 6279 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6280 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6281 6282 if (insn_off < prog->sec_insn_off) 6283 continue; 6284 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6285 break; 6286 6287 if (!copy_start) 6288 copy_start = rec; 6289 copy_end = rec + ext_info->rec_size; 6290 } 6291 6292 if (!copy_start) 6293 return -ENOENT; 6294 6295 /* append func/line info of a given (sub-)program to the main 6296 * program func/line info 6297 */ 6298 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6299 new_sz = old_sz + (copy_end - copy_start); 6300 new_prog_info = realloc(*prog_info, new_sz); 6301 if (!new_prog_info) 6302 return -ENOMEM; 6303 *prog_info = new_prog_info; 6304 *prog_rec_cnt = new_sz / ext_info->rec_size; 6305 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6306 6307 /* Kernel instruction offsets are in units of 8-byte 6308 * instructions, while .BTF.ext instruction offsets generated 6309 * by Clang are in units of bytes. So convert Clang offsets 6310 * into kernel offsets and adjust offset according to program 6311 * relocated position. 6312 */ 6313 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6314 rec = new_prog_info + old_sz; 6315 rec_end = new_prog_info + new_sz; 6316 for (; rec < rec_end; rec += ext_info->rec_size) { 6317 __u32 *insn_off = rec; 6318 6319 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6320 } 6321 *prog_rec_sz = ext_info->rec_size; 6322 return 0; 6323 } 6324 6325 return -ENOENT; 6326 } 6327 6328 static int 6329 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6330 struct bpf_program *main_prog, 6331 const struct bpf_program *prog) 6332 { 6333 int err; 6334 6335 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6336 * supprot func/line info 6337 */ 6338 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6339 return 0; 6340 6341 /* only attempt func info relocation if main program's func_info 6342 * relocation was successful 6343 */ 6344 if (main_prog != prog && !main_prog->func_info) 6345 goto line_info; 6346 6347 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6348 &main_prog->func_info, 6349 &main_prog->func_info_cnt, 6350 &main_prog->func_info_rec_size); 6351 if (err) { 6352 if (err != -ENOENT) { 6353 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6354 prog->name, err); 6355 return err; 6356 } 6357 if (main_prog->func_info) { 6358 /* 6359 * Some info has already been found but has problem 6360 * in the last btf_ext reloc. Must have to error out. 6361 */ 6362 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6363 return err; 6364 } 6365 /* Have problem loading the very first info. Ignore the rest. */ 6366 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6367 prog->name); 6368 } 6369 6370 line_info: 6371 /* don't relocate line info if main program's relocation failed */ 6372 if (main_prog != prog && !main_prog->line_info) 6373 return 0; 6374 6375 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6376 &main_prog->line_info, 6377 &main_prog->line_info_cnt, 6378 &main_prog->line_info_rec_size); 6379 if (err) { 6380 if (err != -ENOENT) { 6381 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6382 prog->name, err); 6383 return err; 6384 } 6385 if (main_prog->line_info) { 6386 /* 6387 * Some info has already been found but has problem 6388 * in the last btf_ext reloc. Must have to error out. 6389 */ 6390 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6391 return err; 6392 } 6393 /* Have problem loading the very first info. Ignore the rest. */ 6394 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6395 prog->name); 6396 } 6397 return 0; 6398 } 6399 6400 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6401 { 6402 size_t insn_idx = *(const size_t *)key; 6403 const struct reloc_desc *relo = elem; 6404 6405 if (insn_idx == relo->insn_idx) 6406 return 0; 6407 return insn_idx < relo->insn_idx ? -1 : 1; 6408 } 6409 6410 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6411 { 6412 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6413 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6414 } 6415 6416 static int 6417 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6418 struct bpf_program *prog) 6419 { 6420 size_t sub_insn_idx, insn_idx, new_cnt; 6421 struct bpf_program *subprog; 6422 struct bpf_insn *insns, *insn; 6423 struct reloc_desc *relo; 6424 int err; 6425 6426 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6427 if (err) 6428 return err; 6429 6430 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6431 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6432 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6433 continue; 6434 6435 relo = find_prog_insn_relo(prog, insn_idx); 6436 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6437 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6438 prog->name, insn_idx, relo->type); 6439 return -LIBBPF_ERRNO__RELOC; 6440 } 6441 if (relo) { 6442 /* sub-program instruction index is a combination of 6443 * an offset of a symbol pointed to by relocation and 6444 * call instruction's imm field; for global functions, 6445 * call always has imm = -1, but for static functions 6446 * relocation is against STT_SECTION and insn->imm 6447 * points to a start of a static function 6448 * 6449 * for subprog addr relocation, the relo->sym_off + insn->imm is 6450 * the byte offset in the corresponding section. 6451 */ 6452 if (relo->type == RELO_CALL) 6453 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6454 else 6455 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6456 } else if (insn_is_pseudo_func(insn)) { 6457 /* 6458 * RELO_SUBPROG_ADDR relo is always emitted even if both 6459 * functions are in the same section, so it shouldn't reach here. 6460 */ 6461 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6462 prog->name, insn_idx); 6463 return -LIBBPF_ERRNO__RELOC; 6464 } else { 6465 /* if subprogram call is to a static function within 6466 * the same ELF section, there won't be any relocation 6467 * emitted, but it also means there is no additional 6468 * offset necessary, insns->imm is relative to 6469 * instruction's original position within the section 6470 */ 6471 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6472 } 6473 6474 /* we enforce that sub-programs should be in .text section */ 6475 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6476 if (!subprog) { 6477 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6478 prog->name); 6479 return -LIBBPF_ERRNO__RELOC; 6480 } 6481 6482 /* if it's the first call instruction calling into this 6483 * subprogram (meaning this subprog hasn't been processed 6484 * yet) within the context of current main program: 6485 * - append it at the end of main program's instructions blog; 6486 * - process is recursively, while current program is put on hold; 6487 * - if that subprogram calls some other not yet processes 6488 * subprogram, same thing will happen recursively until 6489 * there are no more unprocesses subprograms left to append 6490 * and relocate. 6491 */ 6492 if (subprog->sub_insn_off == 0) { 6493 subprog->sub_insn_off = main_prog->insns_cnt; 6494 6495 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6496 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6497 if (!insns) { 6498 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6499 return -ENOMEM; 6500 } 6501 main_prog->insns = insns; 6502 main_prog->insns_cnt = new_cnt; 6503 6504 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6505 subprog->insns_cnt * sizeof(*insns)); 6506 6507 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6508 main_prog->name, subprog->insns_cnt, subprog->name); 6509 6510 err = bpf_object__reloc_code(obj, main_prog, subprog); 6511 if (err) 6512 return err; 6513 } 6514 6515 /* main_prog->insns memory could have been re-allocated, so 6516 * calculate pointer again 6517 */ 6518 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6519 /* calculate correct instruction position within current main 6520 * prog; each main prog can have a different set of 6521 * subprograms appended (potentially in different order as 6522 * well), so position of any subprog can be different for 6523 * different main programs */ 6524 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6525 6526 if (relo) 6527 relo->processed = true; 6528 6529 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6530 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6531 } 6532 6533 return 0; 6534 } 6535 6536 /* 6537 * Relocate sub-program calls. 6538 * 6539 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6540 * main prog) is processed separately. For each subprog (non-entry functions, 6541 * that can be called from either entry progs or other subprogs) gets their 6542 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6543 * hasn't been yet appended and relocated within current main prog. Once its 6544 * relocated, sub_insn_off will point at the position within current main prog 6545 * where given subprog was appended. This will further be used to relocate all 6546 * the call instructions jumping into this subprog. 6547 * 6548 * We start with main program and process all call instructions. If the call 6549 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6550 * is zero), subprog instructions are appended at the end of main program's 6551 * instruction array. Then main program is "put on hold" while we recursively 6552 * process newly appended subprogram. If that subprogram calls into another 6553 * subprogram that hasn't been appended, new subprogram is appended again to 6554 * the *main* prog's instructions (subprog's instructions are always left 6555 * untouched, as they need to be in unmodified state for subsequent main progs 6556 * and subprog instructions are always sent only as part of a main prog) and 6557 * the process continues recursively. Once all the subprogs called from a main 6558 * prog or any of its subprogs are appended (and relocated), all their 6559 * positions within finalized instructions array are known, so it's easy to 6560 * rewrite call instructions with correct relative offsets, corresponding to 6561 * desired target subprog. 6562 * 6563 * Its important to realize that some subprogs might not be called from some 6564 * main prog and any of its called/used subprogs. Those will keep their 6565 * subprog->sub_insn_off as zero at all times and won't be appended to current 6566 * main prog and won't be relocated within the context of current main prog. 6567 * They might still be used from other main progs later. 6568 * 6569 * Visually this process can be shown as below. Suppose we have two main 6570 * programs mainA and mainB and BPF object contains three subprogs: subA, 6571 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6572 * subC both call subB: 6573 * 6574 * +--------+ +-------+ 6575 * | v v | 6576 * +--+---+ +--+-+-+ +---+--+ 6577 * | subA | | subB | | subC | 6578 * +--+---+ +------+ +---+--+ 6579 * ^ ^ 6580 * | | 6581 * +---+-------+ +------+----+ 6582 * | mainA | | mainB | 6583 * +-----------+ +-----------+ 6584 * 6585 * We'll start relocating mainA, will find subA, append it and start 6586 * processing sub A recursively: 6587 * 6588 * +-----------+------+ 6589 * | mainA | subA | 6590 * +-----------+------+ 6591 * 6592 * At this point we notice that subB is used from subA, so we append it and 6593 * relocate (there are no further subcalls from subB): 6594 * 6595 * +-----------+------+------+ 6596 * | mainA | subA | subB | 6597 * +-----------+------+------+ 6598 * 6599 * At this point, we relocate subA calls, then go one level up and finish with 6600 * relocatin mainA calls. mainA is done. 6601 * 6602 * For mainB process is similar but results in different order. We start with 6603 * mainB and skip subA and subB, as mainB never calls them (at least 6604 * directly), but we see subC is needed, so we append and start processing it: 6605 * 6606 * +-----------+------+ 6607 * | mainB | subC | 6608 * +-----------+------+ 6609 * Now we see subC needs subB, so we go back to it, append and relocate it: 6610 * 6611 * +-----------+------+------+ 6612 * | mainB | subC | subB | 6613 * +-----------+------+------+ 6614 * 6615 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6616 */ 6617 static int 6618 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6619 { 6620 struct bpf_program *subprog; 6621 int i, j, err; 6622 6623 /* mark all subprogs as not relocated (yet) within the context of 6624 * current main program 6625 */ 6626 for (i = 0; i < obj->nr_programs; i++) { 6627 subprog = &obj->programs[i]; 6628 if (!prog_is_subprog(obj, subprog)) 6629 continue; 6630 6631 subprog->sub_insn_off = 0; 6632 for (j = 0; j < subprog->nr_reloc; j++) 6633 if (subprog->reloc_desc[j].type == RELO_CALL) 6634 subprog->reloc_desc[j].processed = false; 6635 } 6636 6637 err = bpf_object__reloc_code(obj, prog, prog); 6638 if (err) 6639 return err; 6640 6641 6642 return 0; 6643 } 6644 6645 static int 6646 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6647 { 6648 struct bpf_program *prog; 6649 size_t i; 6650 int err; 6651 6652 if (obj->btf_ext) { 6653 err = bpf_object__relocate_core(obj, targ_btf_path); 6654 if (err) { 6655 pr_warn("failed to perform CO-RE relocations: %d\n", 6656 err); 6657 return err; 6658 } 6659 } 6660 /* relocate data references first for all programs and sub-programs, 6661 * as they don't change relative to code locations, so subsequent 6662 * subprogram processing won't need to re-calculate any of them 6663 */ 6664 for (i = 0; i < obj->nr_programs; i++) { 6665 prog = &obj->programs[i]; 6666 err = bpf_object__relocate_data(obj, prog); 6667 if (err) { 6668 pr_warn("prog '%s': failed to relocate data references: %d\n", 6669 prog->name, err); 6670 return err; 6671 } 6672 } 6673 /* now relocate subprogram calls and append used subprograms to main 6674 * programs; each copy of subprogram code needs to be relocated 6675 * differently for each main program, because its code location might 6676 * have changed 6677 */ 6678 for (i = 0; i < obj->nr_programs; i++) { 6679 prog = &obj->programs[i]; 6680 /* sub-program's sub-calls are relocated within the context of 6681 * its main program only 6682 */ 6683 if (prog_is_subprog(obj, prog)) 6684 continue; 6685 6686 err = bpf_object__relocate_calls(obj, prog); 6687 if (err) { 6688 pr_warn("prog '%s': failed to relocate calls: %d\n", 6689 prog->name, err); 6690 return err; 6691 } 6692 } 6693 /* free up relocation descriptors */ 6694 for (i = 0; i < obj->nr_programs; i++) { 6695 prog = &obj->programs[i]; 6696 zfree(&prog->reloc_desc); 6697 prog->nr_reloc = 0; 6698 } 6699 return 0; 6700 } 6701 6702 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6703 GElf_Shdr *shdr, Elf_Data *data); 6704 6705 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6706 GElf_Shdr *shdr, Elf_Data *data) 6707 { 6708 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6709 int i, j, nrels, new_sz; 6710 const struct btf_var_secinfo *vi = NULL; 6711 const struct btf_type *sec, *var, *def; 6712 struct bpf_map *map = NULL, *targ_map; 6713 const struct btf_member *member; 6714 const char *name, *mname; 6715 Elf_Data *symbols; 6716 unsigned int moff; 6717 GElf_Sym sym; 6718 GElf_Rel rel; 6719 void *tmp; 6720 6721 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6722 return -EINVAL; 6723 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6724 if (!sec) 6725 return -EINVAL; 6726 6727 symbols = obj->efile.symbols; 6728 nrels = shdr->sh_size / shdr->sh_entsize; 6729 for (i = 0; i < nrels; i++) { 6730 if (!gelf_getrel(data, i, &rel)) { 6731 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6732 return -LIBBPF_ERRNO__FORMAT; 6733 } 6734 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6735 pr_warn(".maps relo #%d: symbol %zx not found\n", 6736 i, (size_t)GELF_R_SYM(rel.r_info)); 6737 return -LIBBPF_ERRNO__FORMAT; 6738 } 6739 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6740 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6741 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6742 i, name); 6743 return -LIBBPF_ERRNO__RELOC; 6744 } 6745 6746 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6747 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6748 (size_t)rel.r_offset, sym.st_name, name); 6749 6750 for (j = 0; j < obj->nr_maps; j++) { 6751 map = &obj->maps[j]; 6752 if (map->sec_idx != obj->efile.btf_maps_shndx) 6753 continue; 6754 6755 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6756 if (vi->offset <= rel.r_offset && 6757 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6758 break; 6759 } 6760 if (j == obj->nr_maps) { 6761 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6762 i, name, (size_t)rel.r_offset); 6763 return -EINVAL; 6764 } 6765 6766 if (!bpf_map_type__is_map_in_map(map->def.type)) 6767 return -EINVAL; 6768 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6769 map->def.key_size != sizeof(int)) { 6770 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6771 i, map->name, sizeof(int)); 6772 return -EINVAL; 6773 } 6774 6775 targ_map = bpf_object__find_map_by_name(obj, name); 6776 if (!targ_map) 6777 return -ESRCH; 6778 6779 var = btf__type_by_id(obj->btf, vi->type); 6780 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6781 if (btf_vlen(def) == 0) 6782 return -EINVAL; 6783 member = btf_members(def) + btf_vlen(def) - 1; 6784 mname = btf__name_by_offset(obj->btf, member->name_off); 6785 if (strcmp(mname, "values")) 6786 return -EINVAL; 6787 6788 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6789 if (rel.r_offset - vi->offset < moff) 6790 return -EINVAL; 6791 6792 moff = rel.r_offset - vi->offset - moff; 6793 /* here we use BPF pointer size, which is always 64 bit, as we 6794 * are parsing ELF that was built for BPF target 6795 */ 6796 if (moff % bpf_ptr_sz) 6797 return -EINVAL; 6798 moff /= bpf_ptr_sz; 6799 if (moff >= map->init_slots_sz) { 6800 new_sz = moff + 1; 6801 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6802 if (!tmp) 6803 return -ENOMEM; 6804 map->init_slots = tmp; 6805 memset(map->init_slots + map->init_slots_sz, 0, 6806 (new_sz - map->init_slots_sz) * host_ptr_sz); 6807 map->init_slots_sz = new_sz; 6808 } 6809 map->init_slots[moff] = targ_map; 6810 6811 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6812 i, map->name, moff, name); 6813 } 6814 6815 return 0; 6816 } 6817 6818 static int cmp_relocs(const void *_a, const void *_b) 6819 { 6820 const struct reloc_desc *a = _a; 6821 const struct reloc_desc *b = _b; 6822 6823 if (a->insn_idx != b->insn_idx) 6824 return a->insn_idx < b->insn_idx ? -1 : 1; 6825 6826 /* no two relocations should have the same insn_idx, but ... */ 6827 if (a->type != b->type) 6828 return a->type < b->type ? -1 : 1; 6829 6830 return 0; 6831 } 6832 6833 static int bpf_object__collect_relos(struct bpf_object *obj) 6834 { 6835 int i, err; 6836 6837 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6838 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6839 Elf_Data *data = obj->efile.reloc_sects[i].data; 6840 int idx = shdr->sh_info; 6841 6842 if (shdr->sh_type != SHT_REL) { 6843 pr_warn("internal error at %d\n", __LINE__); 6844 return -LIBBPF_ERRNO__INTERNAL; 6845 } 6846 6847 if (idx == obj->efile.st_ops_shndx) 6848 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6849 else if (idx == obj->efile.btf_maps_shndx) 6850 err = bpf_object__collect_map_relos(obj, shdr, data); 6851 else 6852 err = bpf_object__collect_prog_relos(obj, shdr, data); 6853 if (err) 6854 return err; 6855 } 6856 6857 for (i = 0; i < obj->nr_programs; i++) { 6858 struct bpf_program *p = &obj->programs[i]; 6859 6860 if (!p->nr_reloc) 6861 continue; 6862 6863 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6864 } 6865 return 0; 6866 } 6867 6868 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6869 { 6870 if (BPF_CLASS(insn->code) == BPF_JMP && 6871 BPF_OP(insn->code) == BPF_CALL && 6872 BPF_SRC(insn->code) == BPF_K && 6873 insn->src_reg == 0 && 6874 insn->dst_reg == 0) { 6875 *func_id = insn->imm; 6876 return true; 6877 } 6878 return false; 6879 } 6880 6881 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6882 { 6883 struct bpf_insn *insn = prog->insns; 6884 enum bpf_func_id func_id; 6885 int i; 6886 6887 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6888 if (!insn_is_helper_call(insn, &func_id)) 6889 continue; 6890 6891 /* on kernels that don't yet support 6892 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6893 * to bpf_probe_read() which works well for old kernels 6894 */ 6895 switch (func_id) { 6896 case BPF_FUNC_probe_read_kernel: 6897 case BPF_FUNC_probe_read_user: 6898 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6899 insn->imm = BPF_FUNC_probe_read; 6900 break; 6901 case BPF_FUNC_probe_read_kernel_str: 6902 case BPF_FUNC_probe_read_user_str: 6903 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6904 insn->imm = BPF_FUNC_probe_read_str; 6905 break; 6906 default: 6907 break; 6908 } 6909 } 6910 return 0; 6911 } 6912 6913 static int 6914 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6915 char *license, __u32 kern_version, int *pfd) 6916 { 6917 struct bpf_prog_load_params load_attr = {}; 6918 char *cp, errmsg[STRERR_BUFSIZE]; 6919 size_t log_buf_size = 0; 6920 char *log_buf = NULL; 6921 int btf_fd, ret; 6922 6923 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6924 /* 6925 * The program type must be set. Most likely we couldn't find a proper 6926 * section definition at load time, and thus we didn't infer the type. 6927 */ 6928 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6929 prog->name, prog->sec_name); 6930 return -EINVAL; 6931 } 6932 6933 if (!insns || !insns_cnt) 6934 return -EINVAL; 6935 6936 load_attr.prog_type = prog->type; 6937 /* old kernels might not support specifying expected_attach_type */ 6938 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 6939 prog->sec_def->is_exp_attach_type_optional) 6940 load_attr.expected_attach_type = 0; 6941 else 6942 load_attr.expected_attach_type = prog->expected_attach_type; 6943 if (kernel_supports(FEAT_PROG_NAME)) 6944 load_attr.name = prog->name; 6945 load_attr.insns = insns; 6946 load_attr.insn_cnt = insns_cnt; 6947 load_attr.license = license; 6948 load_attr.attach_btf_id = prog->attach_btf_id; 6949 if (prog->attach_prog_fd) 6950 load_attr.attach_prog_fd = prog->attach_prog_fd; 6951 else 6952 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6953 load_attr.attach_btf_id = prog->attach_btf_id; 6954 load_attr.kern_version = kern_version; 6955 load_attr.prog_ifindex = prog->prog_ifindex; 6956 6957 /* specify func_info/line_info only if kernel supports them */ 6958 btf_fd = bpf_object__btf_fd(prog->obj); 6959 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 6960 load_attr.prog_btf_fd = btf_fd; 6961 load_attr.func_info = prog->func_info; 6962 load_attr.func_info_rec_size = prog->func_info_rec_size; 6963 load_attr.func_info_cnt = prog->func_info_cnt; 6964 load_attr.line_info = prog->line_info; 6965 load_attr.line_info_rec_size = prog->line_info_rec_size; 6966 load_attr.line_info_cnt = prog->line_info_cnt; 6967 } 6968 load_attr.log_level = prog->log_level; 6969 load_attr.prog_flags = prog->prog_flags; 6970 6971 retry_load: 6972 if (log_buf_size) { 6973 log_buf = malloc(log_buf_size); 6974 if (!log_buf) 6975 return -ENOMEM; 6976 6977 *log_buf = 0; 6978 } 6979 6980 load_attr.log_buf = log_buf; 6981 load_attr.log_buf_sz = log_buf_size; 6982 ret = libbpf__bpf_prog_load(&load_attr); 6983 6984 if (ret >= 0) { 6985 if (log_buf && load_attr.log_level) 6986 pr_debug("verifier log:\n%s", log_buf); 6987 6988 if (prog->obj->rodata_map_idx >= 0 && 6989 kernel_supports(FEAT_PROG_BIND_MAP)) { 6990 struct bpf_map *rodata_map = 6991 &prog->obj->maps[prog->obj->rodata_map_idx]; 6992 6993 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 6994 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6995 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6996 prog->name, cp); 6997 /* Don't fail hard if can't bind rodata. */ 6998 } 6999 } 7000 7001 *pfd = ret; 7002 ret = 0; 7003 goto out; 7004 } 7005 7006 if (!log_buf || errno == ENOSPC) { 7007 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 7008 log_buf_size << 1); 7009 7010 free(log_buf); 7011 goto retry_load; 7012 } 7013 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 7014 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7015 pr_warn("load bpf program failed: %s\n", cp); 7016 pr_perm_msg(ret); 7017 7018 if (log_buf && log_buf[0] != '\0') { 7019 ret = -LIBBPF_ERRNO__VERIFY; 7020 pr_warn("-- BEGIN DUMP LOG ---\n"); 7021 pr_warn("\n%s\n", log_buf); 7022 pr_warn("-- END LOG --\n"); 7023 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 7024 pr_warn("Program too large (%zu insns), at most %d insns\n", 7025 load_attr.insn_cnt, BPF_MAXINSNS); 7026 ret = -LIBBPF_ERRNO__PROG2BIG; 7027 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 7028 /* Wrong program type? */ 7029 int fd; 7030 7031 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 7032 load_attr.expected_attach_type = 0; 7033 load_attr.log_buf = NULL; 7034 load_attr.log_buf_sz = 0; 7035 fd = libbpf__bpf_prog_load(&load_attr); 7036 if (fd >= 0) { 7037 close(fd); 7038 ret = -LIBBPF_ERRNO__PROGTYPE; 7039 goto out; 7040 } 7041 } 7042 7043 out: 7044 free(log_buf); 7045 return ret; 7046 } 7047 7048 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id); 7049 7050 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 7051 { 7052 int err = 0, fd, i; 7053 7054 if (prog->obj->loaded) { 7055 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7056 return -EINVAL; 7057 } 7058 7059 if ((prog->type == BPF_PROG_TYPE_TRACING || 7060 prog->type == BPF_PROG_TYPE_LSM || 7061 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 7062 int btf_obj_fd = 0, btf_type_id = 0; 7063 7064 err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id); 7065 if (err) 7066 return err; 7067 7068 prog->attach_btf_obj_fd = btf_obj_fd; 7069 prog->attach_btf_id = btf_type_id; 7070 } 7071 7072 if (prog->instances.nr < 0 || !prog->instances.fds) { 7073 if (prog->preprocessor) { 7074 pr_warn("Internal error: can't load program '%s'\n", 7075 prog->name); 7076 return -LIBBPF_ERRNO__INTERNAL; 7077 } 7078 7079 prog->instances.fds = malloc(sizeof(int)); 7080 if (!prog->instances.fds) { 7081 pr_warn("Not enough memory for BPF fds\n"); 7082 return -ENOMEM; 7083 } 7084 prog->instances.nr = 1; 7085 prog->instances.fds[0] = -1; 7086 } 7087 7088 if (!prog->preprocessor) { 7089 if (prog->instances.nr != 1) { 7090 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7091 prog->name, prog->instances.nr); 7092 } 7093 err = load_program(prog, prog->insns, prog->insns_cnt, 7094 license, kern_ver, &fd); 7095 if (!err) 7096 prog->instances.fds[0] = fd; 7097 goto out; 7098 } 7099 7100 for (i = 0; i < prog->instances.nr; i++) { 7101 struct bpf_prog_prep_result result; 7102 bpf_program_prep_t preprocessor = prog->preprocessor; 7103 7104 memset(&result, 0, sizeof(result)); 7105 err = preprocessor(prog, i, prog->insns, 7106 prog->insns_cnt, &result); 7107 if (err) { 7108 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7109 i, prog->name); 7110 goto out; 7111 } 7112 7113 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7114 pr_debug("Skip loading the %dth instance of program '%s'\n", 7115 i, prog->name); 7116 prog->instances.fds[i] = -1; 7117 if (result.pfd) 7118 *result.pfd = -1; 7119 continue; 7120 } 7121 7122 err = load_program(prog, result.new_insn_ptr, 7123 result.new_insn_cnt, license, kern_ver, &fd); 7124 if (err) { 7125 pr_warn("Loading the %dth instance of program '%s' failed\n", 7126 i, prog->name); 7127 goto out; 7128 } 7129 7130 if (result.pfd) 7131 *result.pfd = fd; 7132 prog->instances.fds[i] = fd; 7133 } 7134 out: 7135 if (err) 7136 pr_warn("failed to load program '%s'\n", prog->name); 7137 zfree(&prog->insns); 7138 prog->insns_cnt = 0; 7139 return err; 7140 } 7141 7142 static int 7143 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7144 { 7145 struct bpf_program *prog; 7146 size_t i; 7147 int err; 7148 7149 for (i = 0; i < obj->nr_programs; i++) { 7150 prog = &obj->programs[i]; 7151 err = bpf_object__sanitize_prog(obj, prog); 7152 if (err) 7153 return err; 7154 } 7155 7156 for (i = 0; i < obj->nr_programs; i++) { 7157 prog = &obj->programs[i]; 7158 if (prog_is_subprog(obj, prog)) 7159 continue; 7160 if (!prog->load) { 7161 pr_debug("prog '%s': skipped loading\n", prog->name); 7162 continue; 7163 } 7164 prog->log_level |= log_level; 7165 err = bpf_program__load(prog, obj->license, obj->kern_version); 7166 if (err) 7167 return err; 7168 } 7169 return 0; 7170 } 7171 7172 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7173 7174 static struct bpf_object * 7175 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7176 const struct bpf_object_open_opts *opts) 7177 { 7178 const char *obj_name, *kconfig; 7179 struct bpf_program *prog; 7180 struct bpf_object *obj; 7181 char tmp_name[64]; 7182 int err; 7183 7184 if (elf_version(EV_CURRENT) == EV_NONE) { 7185 pr_warn("failed to init libelf for %s\n", 7186 path ? : "(mem buf)"); 7187 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7188 } 7189 7190 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7191 return ERR_PTR(-EINVAL); 7192 7193 obj_name = OPTS_GET(opts, object_name, NULL); 7194 if (obj_buf) { 7195 if (!obj_name) { 7196 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7197 (unsigned long)obj_buf, 7198 (unsigned long)obj_buf_sz); 7199 obj_name = tmp_name; 7200 } 7201 path = obj_name; 7202 pr_debug("loading object '%s' from buffer\n", obj_name); 7203 } 7204 7205 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7206 if (IS_ERR(obj)) 7207 return obj; 7208 7209 kconfig = OPTS_GET(opts, kconfig, NULL); 7210 if (kconfig) { 7211 obj->kconfig = strdup(kconfig); 7212 if (!obj->kconfig) 7213 return ERR_PTR(-ENOMEM); 7214 } 7215 7216 err = bpf_object__elf_init(obj); 7217 err = err ? : bpf_object__check_endianness(obj); 7218 err = err ? : bpf_object__elf_collect(obj); 7219 err = err ? : bpf_object__collect_externs(obj); 7220 err = err ? : bpf_object__finalize_btf(obj); 7221 err = err ? : bpf_object__init_maps(obj, opts); 7222 err = err ? : bpf_object__collect_relos(obj); 7223 if (err) 7224 goto out; 7225 bpf_object__elf_finish(obj); 7226 7227 bpf_object__for_each_program(prog, obj) { 7228 prog->sec_def = find_sec_def(prog->sec_name); 7229 if (!prog->sec_def) { 7230 /* couldn't guess, but user might manually specify */ 7231 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7232 prog->name, prog->sec_name); 7233 continue; 7234 } 7235 7236 if (prog->sec_def->is_sleepable) 7237 prog->prog_flags |= BPF_F_SLEEPABLE; 7238 bpf_program__set_type(prog, prog->sec_def->prog_type); 7239 bpf_program__set_expected_attach_type(prog, 7240 prog->sec_def->expected_attach_type); 7241 7242 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7243 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7244 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7245 } 7246 7247 return obj; 7248 out: 7249 bpf_object__close(obj); 7250 return ERR_PTR(err); 7251 } 7252 7253 static struct bpf_object * 7254 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7255 { 7256 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7257 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7258 ); 7259 7260 /* param validation */ 7261 if (!attr->file) 7262 return NULL; 7263 7264 pr_debug("loading %s\n", attr->file); 7265 return __bpf_object__open(attr->file, NULL, 0, &opts); 7266 } 7267 7268 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7269 { 7270 return __bpf_object__open_xattr(attr, 0); 7271 } 7272 7273 struct bpf_object *bpf_object__open(const char *path) 7274 { 7275 struct bpf_object_open_attr attr = { 7276 .file = path, 7277 .prog_type = BPF_PROG_TYPE_UNSPEC, 7278 }; 7279 7280 return bpf_object__open_xattr(&attr); 7281 } 7282 7283 struct bpf_object * 7284 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7285 { 7286 if (!path) 7287 return ERR_PTR(-EINVAL); 7288 7289 pr_debug("loading %s\n", path); 7290 7291 return __bpf_object__open(path, NULL, 0, opts); 7292 } 7293 7294 struct bpf_object * 7295 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7296 const struct bpf_object_open_opts *opts) 7297 { 7298 if (!obj_buf || obj_buf_sz == 0) 7299 return ERR_PTR(-EINVAL); 7300 7301 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 7302 } 7303 7304 struct bpf_object * 7305 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7306 const char *name) 7307 { 7308 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7309 .object_name = name, 7310 /* wrong default, but backwards-compatible */ 7311 .relaxed_maps = true, 7312 ); 7313 7314 /* returning NULL is wrong, but backwards-compatible */ 7315 if (!obj_buf || obj_buf_sz == 0) 7316 return NULL; 7317 7318 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7319 } 7320 7321 int bpf_object__unload(struct bpf_object *obj) 7322 { 7323 size_t i; 7324 7325 if (!obj) 7326 return -EINVAL; 7327 7328 for (i = 0; i < obj->nr_maps; i++) { 7329 zclose(obj->maps[i].fd); 7330 if (obj->maps[i].st_ops) 7331 zfree(&obj->maps[i].st_ops->kern_vdata); 7332 } 7333 7334 for (i = 0; i < obj->nr_programs; i++) 7335 bpf_program__unload(&obj->programs[i]); 7336 7337 return 0; 7338 } 7339 7340 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7341 { 7342 struct bpf_map *m; 7343 7344 bpf_object__for_each_map(m, obj) { 7345 if (!bpf_map__is_internal(m)) 7346 continue; 7347 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7348 pr_warn("kernel doesn't support global data\n"); 7349 return -ENOTSUP; 7350 } 7351 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7352 m->def.map_flags ^= BPF_F_MMAPABLE; 7353 } 7354 7355 return 0; 7356 } 7357 7358 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7359 { 7360 char sym_type, sym_name[500]; 7361 unsigned long long sym_addr; 7362 struct extern_desc *ext; 7363 int ret, err = 0; 7364 FILE *f; 7365 7366 f = fopen("/proc/kallsyms", "r"); 7367 if (!f) { 7368 err = -errno; 7369 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7370 return err; 7371 } 7372 7373 while (true) { 7374 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7375 &sym_addr, &sym_type, sym_name); 7376 if (ret == EOF && feof(f)) 7377 break; 7378 if (ret != 3) { 7379 pr_warn("failed to read kallsyms entry: %d\n", ret); 7380 err = -EINVAL; 7381 goto out; 7382 } 7383 7384 ext = find_extern_by_name(obj, sym_name); 7385 if (!ext || ext->type != EXT_KSYM) 7386 continue; 7387 7388 if (ext->is_set && ext->ksym.addr != sym_addr) { 7389 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7390 sym_name, ext->ksym.addr, sym_addr); 7391 err = -EINVAL; 7392 goto out; 7393 } 7394 if (!ext->is_set) { 7395 ext->is_set = true; 7396 ext->ksym.addr = sym_addr; 7397 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7398 } 7399 } 7400 7401 out: 7402 fclose(f); 7403 return err; 7404 } 7405 7406 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7407 { 7408 struct extern_desc *ext; 7409 struct btf *btf; 7410 int i, j, id, btf_fd, err; 7411 7412 for (i = 0; i < obj->nr_extern; i++) { 7413 const struct btf_type *targ_var, *targ_type; 7414 __u32 targ_type_id, local_type_id; 7415 const char *targ_var_name; 7416 int ret; 7417 7418 ext = &obj->externs[i]; 7419 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7420 continue; 7421 7422 btf = obj->btf_vmlinux; 7423 btf_fd = 0; 7424 id = btf__find_by_name_kind(btf, ext->name, BTF_KIND_VAR); 7425 if (id == -ENOENT) { 7426 err = load_module_btfs(obj); 7427 if (err) 7428 return err; 7429 7430 for (j = 0; j < obj->btf_module_cnt; j++) { 7431 btf = obj->btf_modules[j].btf; 7432 /* we assume module BTF FD is always >0 */ 7433 btf_fd = obj->btf_modules[j].fd; 7434 id = btf__find_by_name_kind(btf, ext->name, BTF_KIND_VAR); 7435 if (id != -ENOENT) 7436 break; 7437 } 7438 } 7439 if (id <= 0) { 7440 pr_warn("extern (ksym) '%s': failed to find BTF ID in kernel BTF(s).\n", 7441 ext->name); 7442 return -ESRCH; 7443 } 7444 7445 /* find local type_id */ 7446 local_type_id = ext->ksym.type_id; 7447 7448 /* find target type_id */ 7449 targ_var = btf__type_by_id(btf, id); 7450 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7451 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7452 7453 ret = bpf_core_types_are_compat(obj->btf, local_type_id, 7454 btf, targ_type_id); 7455 if (ret <= 0) { 7456 const struct btf_type *local_type; 7457 const char *targ_name, *local_name; 7458 7459 local_type = btf__type_by_id(obj->btf, local_type_id); 7460 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7461 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7462 7463 pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7464 ext->name, local_type_id, 7465 btf_kind_str(local_type), local_name, targ_type_id, 7466 btf_kind_str(targ_type), targ_name); 7467 return -EINVAL; 7468 } 7469 7470 ext->is_set = true; 7471 ext->ksym.kernel_btf_obj_fd = btf_fd; 7472 ext->ksym.kernel_btf_id = id; 7473 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n", 7474 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7475 } 7476 return 0; 7477 } 7478 7479 static int bpf_object__resolve_externs(struct bpf_object *obj, 7480 const char *extra_kconfig) 7481 { 7482 bool need_config = false, need_kallsyms = false; 7483 bool need_vmlinux_btf = false; 7484 struct extern_desc *ext; 7485 void *kcfg_data = NULL; 7486 int err, i; 7487 7488 if (obj->nr_extern == 0) 7489 return 0; 7490 7491 if (obj->kconfig_map_idx >= 0) 7492 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7493 7494 for (i = 0; i < obj->nr_extern; i++) { 7495 ext = &obj->externs[i]; 7496 7497 if (ext->type == EXT_KCFG && 7498 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7499 void *ext_val = kcfg_data + ext->kcfg.data_off; 7500 __u32 kver = get_kernel_version(); 7501 7502 if (!kver) { 7503 pr_warn("failed to get kernel version\n"); 7504 return -EINVAL; 7505 } 7506 err = set_kcfg_value_num(ext, ext_val, kver); 7507 if (err) 7508 return err; 7509 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7510 } else if (ext->type == EXT_KCFG && 7511 strncmp(ext->name, "CONFIG_", 7) == 0) { 7512 need_config = true; 7513 } else if (ext->type == EXT_KSYM) { 7514 if (ext->ksym.type_id) 7515 need_vmlinux_btf = true; 7516 else 7517 need_kallsyms = true; 7518 } else { 7519 pr_warn("unrecognized extern '%s'\n", ext->name); 7520 return -EINVAL; 7521 } 7522 } 7523 if (need_config && extra_kconfig) { 7524 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7525 if (err) 7526 return -EINVAL; 7527 need_config = false; 7528 for (i = 0; i < obj->nr_extern; i++) { 7529 ext = &obj->externs[i]; 7530 if (ext->type == EXT_KCFG && !ext->is_set) { 7531 need_config = true; 7532 break; 7533 } 7534 } 7535 } 7536 if (need_config) { 7537 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7538 if (err) 7539 return -EINVAL; 7540 } 7541 if (need_kallsyms) { 7542 err = bpf_object__read_kallsyms_file(obj); 7543 if (err) 7544 return -EINVAL; 7545 } 7546 if (need_vmlinux_btf) { 7547 err = bpf_object__resolve_ksyms_btf_id(obj); 7548 if (err) 7549 return -EINVAL; 7550 } 7551 for (i = 0; i < obj->nr_extern; i++) { 7552 ext = &obj->externs[i]; 7553 7554 if (!ext->is_set && !ext->is_weak) { 7555 pr_warn("extern %s (strong) not resolved\n", ext->name); 7556 return -ESRCH; 7557 } else if (!ext->is_set) { 7558 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7559 ext->name); 7560 } 7561 } 7562 7563 return 0; 7564 } 7565 7566 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7567 { 7568 struct bpf_object *obj; 7569 int err, i; 7570 7571 if (!attr) 7572 return -EINVAL; 7573 obj = attr->obj; 7574 if (!obj) 7575 return -EINVAL; 7576 7577 if (obj->loaded) { 7578 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7579 return -EINVAL; 7580 } 7581 7582 err = bpf_object__probe_loading(obj); 7583 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7584 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7585 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7586 err = err ? : bpf_object__sanitize_maps(obj); 7587 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7588 err = err ? : bpf_object__create_maps(obj); 7589 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7590 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7591 7592 /* clean up module BTFs */ 7593 for (i = 0; i < obj->btf_module_cnt; i++) { 7594 close(obj->btf_modules[i].fd); 7595 btf__free(obj->btf_modules[i].btf); 7596 free(obj->btf_modules[i].name); 7597 } 7598 free(obj->btf_modules); 7599 7600 /* clean up vmlinux BTF */ 7601 btf__free(obj->btf_vmlinux); 7602 obj->btf_vmlinux = NULL; 7603 7604 obj->loaded = true; /* doesn't matter if successfully or not */ 7605 7606 if (err) 7607 goto out; 7608 7609 return 0; 7610 out: 7611 /* unpin any maps that were auto-pinned during load */ 7612 for (i = 0; i < obj->nr_maps; i++) 7613 if (obj->maps[i].pinned && !obj->maps[i].reused) 7614 bpf_map__unpin(&obj->maps[i], NULL); 7615 7616 bpf_object__unload(obj); 7617 pr_warn("failed to load object '%s'\n", obj->path); 7618 return err; 7619 } 7620 7621 int bpf_object__load(struct bpf_object *obj) 7622 { 7623 struct bpf_object_load_attr attr = { 7624 .obj = obj, 7625 }; 7626 7627 return bpf_object__load_xattr(&attr); 7628 } 7629 7630 static int make_parent_dir(const char *path) 7631 { 7632 char *cp, errmsg[STRERR_BUFSIZE]; 7633 char *dname, *dir; 7634 int err = 0; 7635 7636 dname = strdup(path); 7637 if (dname == NULL) 7638 return -ENOMEM; 7639 7640 dir = dirname(dname); 7641 if (mkdir(dir, 0700) && errno != EEXIST) 7642 err = -errno; 7643 7644 free(dname); 7645 if (err) { 7646 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7647 pr_warn("failed to mkdir %s: %s\n", path, cp); 7648 } 7649 return err; 7650 } 7651 7652 static int check_path(const char *path) 7653 { 7654 char *cp, errmsg[STRERR_BUFSIZE]; 7655 struct statfs st_fs; 7656 char *dname, *dir; 7657 int err = 0; 7658 7659 if (path == NULL) 7660 return -EINVAL; 7661 7662 dname = strdup(path); 7663 if (dname == NULL) 7664 return -ENOMEM; 7665 7666 dir = dirname(dname); 7667 if (statfs(dir, &st_fs)) { 7668 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7669 pr_warn("failed to statfs %s: %s\n", dir, cp); 7670 err = -errno; 7671 } 7672 free(dname); 7673 7674 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7675 pr_warn("specified path %s is not on BPF FS\n", path); 7676 err = -EINVAL; 7677 } 7678 7679 return err; 7680 } 7681 7682 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7683 int instance) 7684 { 7685 char *cp, errmsg[STRERR_BUFSIZE]; 7686 int err; 7687 7688 err = make_parent_dir(path); 7689 if (err) 7690 return err; 7691 7692 err = check_path(path); 7693 if (err) 7694 return err; 7695 7696 if (prog == NULL) { 7697 pr_warn("invalid program pointer\n"); 7698 return -EINVAL; 7699 } 7700 7701 if (instance < 0 || instance >= prog->instances.nr) { 7702 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7703 instance, prog->name, prog->instances.nr); 7704 return -EINVAL; 7705 } 7706 7707 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7708 err = -errno; 7709 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7710 pr_warn("failed to pin program: %s\n", cp); 7711 return err; 7712 } 7713 pr_debug("pinned program '%s'\n", path); 7714 7715 return 0; 7716 } 7717 7718 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7719 int instance) 7720 { 7721 int err; 7722 7723 err = check_path(path); 7724 if (err) 7725 return err; 7726 7727 if (prog == NULL) { 7728 pr_warn("invalid program pointer\n"); 7729 return -EINVAL; 7730 } 7731 7732 if (instance < 0 || instance >= prog->instances.nr) { 7733 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7734 instance, prog->name, prog->instances.nr); 7735 return -EINVAL; 7736 } 7737 7738 err = unlink(path); 7739 if (err != 0) 7740 return -errno; 7741 pr_debug("unpinned program '%s'\n", path); 7742 7743 return 0; 7744 } 7745 7746 int bpf_program__pin(struct bpf_program *prog, const char *path) 7747 { 7748 int i, err; 7749 7750 err = make_parent_dir(path); 7751 if (err) 7752 return err; 7753 7754 err = check_path(path); 7755 if (err) 7756 return err; 7757 7758 if (prog == NULL) { 7759 pr_warn("invalid program pointer\n"); 7760 return -EINVAL; 7761 } 7762 7763 if (prog->instances.nr <= 0) { 7764 pr_warn("no instances of prog %s to pin\n", prog->name); 7765 return -EINVAL; 7766 } 7767 7768 if (prog->instances.nr == 1) { 7769 /* don't create subdirs when pinning single instance */ 7770 return bpf_program__pin_instance(prog, path, 0); 7771 } 7772 7773 for (i = 0; i < prog->instances.nr; i++) { 7774 char buf[PATH_MAX]; 7775 int len; 7776 7777 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7778 if (len < 0) { 7779 err = -EINVAL; 7780 goto err_unpin; 7781 } else if (len >= PATH_MAX) { 7782 err = -ENAMETOOLONG; 7783 goto err_unpin; 7784 } 7785 7786 err = bpf_program__pin_instance(prog, buf, i); 7787 if (err) 7788 goto err_unpin; 7789 } 7790 7791 return 0; 7792 7793 err_unpin: 7794 for (i = i - 1; i >= 0; i--) { 7795 char buf[PATH_MAX]; 7796 int len; 7797 7798 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7799 if (len < 0) 7800 continue; 7801 else if (len >= PATH_MAX) 7802 continue; 7803 7804 bpf_program__unpin_instance(prog, buf, i); 7805 } 7806 7807 rmdir(path); 7808 7809 return err; 7810 } 7811 7812 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7813 { 7814 int i, err; 7815 7816 err = check_path(path); 7817 if (err) 7818 return err; 7819 7820 if (prog == NULL) { 7821 pr_warn("invalid program pointer\n"); 7822 return -EINVAL; 7823 } 7824 7825 if (prog->instances.nr <= 0) { 7826 pr_warn("no instances of prog %s to pin\n", prog->name); 7827 return -EINVAL; 7828 } 7829 7830 if (prog->instances.nr == 1) { 7831 /* don't create subdirs when pinning single instance */ 7832 return bpf_program__unpin_instance(prog, path, 0); 7833 } 7834 7835 for (i = 0; i < prog->instances.nr; i++) { 7836 char buf[PATH_MAX]; 7837 int len; 7838 7839 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7840 if (len < 0) 7841 return -EINVAL; 7842 else if (len >= PATH_MAX) 7843 return -ENAMETOOLONG; 7844 7845 err = bpf_program__unpin_instance(prog, buf, i); 7846 if (err) 7847 return err; 7848 } 7849 7850 err = rmdir(path); 7851 if (err) 7852 return -errno; 7853 7854 return 0; 7855 } 7856 7857 int bpf_map__pin(struct bpf_map *map, const char *path) 7858 { 7859 char *cp, errmsg[STRERR_BUFSIZE]; 7860 int err; 7861 7862 if (map == NULL) { 7863 pr_warn("invalid map pointer\n"); 7864 return -EINVAL; 7865 } 7866 7867 if (map->pin_path) { 7868 if (path && strcmp(path, map->pin_path)) { 7869 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7870 bpf_map__name(map), map->pin_path, path); 7871 return -EINVAL; 7872 } else if (map->pinned) { 7873 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7874 bpf_map__name(map), map->pin_path); 7875 return 0; 7876 } 7877 } else { 7878 if (!path) { 7879 pr_warn("missing a path to pin map '%s' at\n", 7880 bpf_map__name(map)); 7881 return -EINVAL; 7882 } else if (map->pinned) { 7883 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7884 return -EEXIST; 7885 } 7886 7887 map->pin_path = strdup(path); 7888 if (!map->pin_path) { 7889 err = -errno; 7890 goto out_err; 7891 } 7892 } 7893 7894 err = make_parent_dir(map->pin_path); 7895 if (err) 7896 return err; 7897 7898 err = check_path(map->pin_path); 7899 if (err) 7900 return err; 7901 7902 if (bpf_obj_pin(map->fd, map->pin_path)) { 7903 err = -errno; 7904 goto out_err; 7905 } 7906 7907 map->pinned = true; 7908 pr_debug("pinned map '%s'\n", map->pin_path); 7909 7910 return 0; 7911 7912 out_err: 7913 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7914 pr_warn("failed to pin map: %s\n", cp); 7915 return err; 7916 } 7917 7918 int bpf_map__unpin(struct bpf_map *map, const char *path) 7919 { 7920 int err; 7921 7922 if (map == NULL) { 7923 pr_warn("invalid map pointer\n"); 7924 return -EINVAL; 7925 } 7926 7927 if (map->pin_path) { 7928 if (path && strcmp(path, map->pin_path)) { 7929 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7930 bpf_map__name(map), map->pin_path, path); 7931 return -EINVAL; 7932 } 7933 path = map->pin_path; 7934 } else if (!path) { 7935 pr_warn("no path to unpin map '%s' from\n", 7936 bpf_map__name(map)); 7937 return -EINVAL; 7938 } 7939 7940 err = check_path(path); 7941 if (err) 7942 return err; 7943 7944 err = unlink(path); 7945 if (err != 0) 7946 return -errno; 7947 7948 map->pinned = false; 7949 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7950 7951 return 0; 7952 } 7953 7954 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7955 { 7956 char *new = NULL; 7957 7958 if (path) { 7959 new = strdup(path); 7960 if (!new) 7961 return -errno; 7962 } 7963 7964 free(map->pin_path); 7965 map->pin_path = new; 7966 return 0; 7967 } 7968 7969 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7970 { 7971 return map->pin_path; 7972 } 7973 7974 bool bpf_map__is_pinned(const struct bpf_map *map) 7975 { 7976 return map->pinned; 7977 } 7978 7979 static void sanitize_pin_path(char *s) 7980 { 7981 /* bpffs disallows periods in path names */ 7982 while (*s) { 7983 if (*s == '.') 7984 *s = '_'; 7985 s++; 7986 } 7987 } 7988 7989 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7990 { 7991 struct bpf_map *map; 7992 int err; 7993 7994 if (!obj) 7995 return -ENOENT; 7996 7997 if (!obj->loaded) { 7998 pr_warn("object not yet loaded; load it first\n"); 7999 return -ENOENT; 8000 } 8001 8002 bpf_object__for_each_map(map, obj) { 8003 char *pin_path = NULL; 8004 char buf[PATH_MAX]; 8005 8006 if (path) { 8007 int len; 8008 8009 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8010 bpf_map__name(map)); 8011 if (len < 0) { 8012 err = -EINVAL; 8013 goto err_unpin_maps; 8014 } else if (len >= PATH_MAX) { 8015 err = -ENAMETOOLONG; 8016 goto err_unpin_maps; 8017 } 8018 sanitize_pin_path(buf); 8019 pin_path = buf; 8020 } else if (!map->pin_path) { 8021 continue; 8022 } 8023 8024 err = bpf_map__pin(map, pin_path); 8025 if (err) 8026 goto err_unpin_maps; 8027 } 8028 8029 return 0; 8030 8031 err_unpin_maps: 8032 while ((map = bpf_map__prev(map, obj))) { 8033 if (!map->pin_path) 8034 continue; 8035 8036 bpf_map__unpin(map, NULL); 8037 } 8038 8039 return err; 8040 } 8041 8042 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8043 { 8044 struct bpf_map *map; 8045 int err; 8046 8047 if (!obj) 8048 return -ENOENT; 8049 8050 bpf_object__for_each_map(map, obj) { 8051 char *pin_path = NULL; 8052 char buf[PATH_MAX]; 8053 8054 if (path) { 8055 int len; 8056 8057 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8058 bpf_map__name(map)); 8059 if (len < 0) 8060 return -EINVAL; 8061 else if (len >= PATH_MAX) 8062 return -ENAMETOOLONG; 8063 sanitize_pin_path(buf); 8064 pin_path = buf; 8065 } else if (!map->pin_path) { 8066 continue; 8067 } 8068 8069 err = bpf_map__unpin(map, pin_path); 8070 if (err) 8071 return err; 8072 } 8073 8074 return 0; 8075 } 8076 8077 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8078 { 8079 struct bpf_program *prog; 8080 int err; 8081 8082 if (!obj) 8083 return -ENOENT; 8084 8085 if (!obj->loaded) { 8086 pr_warn("object not yet loaded; load it first\n"); 8087 return -ENOENT; 8088 } 8089 8090 bpf_object__for_each_program(prog, obj) { 8091 char buf[PATH_MAX]; 8092 int len; 8093 8094 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8095 prog->pin_name); 8096 if (len < 0) { 8097 err = -EINVAL; 8098 goto err_unpin_programs; 8099 } else if (len >= PATH_MAX) { 8100 err = -ENAMETOOLONG; 8101 goto err_unpin_programs; 8102 } 8103 8104 err = bpf_program__pin(prog, buf); 8105 if (err) 8106 goto err_unpin_programs; 8107 } 8108 8109 return 0; 8110 8111 err_unpin_programs: 8112 while ((prog = bpf_program__prev(prog, obj))) { 8113 char buf[PATH_MAX]; 8114 int len; 8115 8116 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8117 prog->pin_name); 8118 if (len < 0) 8119 continue; 8120 else if (len >= PATH_MAX) 8121 continue; 8122 8123 bpf_program__unpin(prog, buf); 8124 } 8125 8126 return err; 8127 } 8128 8129 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8130 { 8131 struct bpf_program *prog; 8132 int err; 8133 8134 if (!obj) 8135 return -ENOENT; 8136 8137 bpf_object__for_each_program(prog, obj) { 8138 char buf[PATH_MAX]; 8139 int len; 8140 8141 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8142 prog->pin_name); 8143 if (len < 0) 8144 return -EINVAL; 8145 else if (len >= PATH_MAX) 8146 return -ENAMETOOLONG; 8147 8148 err = bpf_program__unpin(prog, buf); 8149 if (err) 8150 return err; 8151 } 8152 8153 return 0; 8154 } 8155 8156 int bpf_object__pin(struct bpf_object *obj, const char *path) 8157 { 8158 int err; 8159 8160 err = bpf_object__pin_maps(obj, path); 8161 if (err) 8162 return err; 8163 8164 err = bpf_object__pin_programs(obj, path); 8165 if (err) { 8166 bpf_object__unpin_maps(obj, path); 8167 return err; 8168 } 8169 8170 return 0; 8171 } 8172 8173 static void bpf_map__destroy(struct bpf_map *map) 8174 { 8175 if (map->clear_priv) 8176 map->clear_priv(map, map->priv); 8177 map->priv = NULL; 8178 map->clear_priv = NULL; 8179 8180 if (map->inner_map) { 8181 bpf_map__destroy(map->inner_map); 8182 zfree(&map->inner_map); 8183 } 8184 8185 zfree(&map->init_slots); 8186 map->init_slots_sz = 0; 8187 8188 if (map->mmaped) { 8189 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8190 map->mmaped = NULL; 8191 } 8192 8193 if (map->st_ops) { 8194 zfree(&map->st_ops->data); 8195 zfree(&map->st_ops->progs); 8196 zfree(&map->st_ops->kern_func_off); 8197 zfree(&map->st_ops); 8198 } 8199 8200 zfree(&map->name); 8201 zfree(&map->pin_path); 8202 8203 if (map->fd >= 0) 8204 zclose(map->fd); 8205 } 8206 8207 void bpf_object__close(struct bpf_object *obj) 8208 { 8209 size_t i; 8210 8211 if (IS_ERR_OR_NULL(obj)) 8212 return; 8213 8214 if (obj->clear_priv) 8215 obj->clear_priv(obj, obj->priv); 8216 8217 bpf_object__elf_finish(obj); 8218 bpf_object__unload(obj); 8219 btf__free(obj->btf); 8220 btf_ext__free(obj->btf_ext); 8221 8222 for (i = 0; i < obj->nr_maps; i++) 8223 bpf_map__destroy(&obj->maps[i]); 8224 8225 zfree(&obj->kconfig); 8226 zfree(&obj->externs); 8227 obj->nr_extern = 0; 8228 8229 zfree(&obj->maps); 8230 obj->nr_maps = 0; 8231 8232 if (obj->programs && obj->nr_programs) { 8233 for (i = 0; i < obj->nr_programs; i++) 8234 bpf_program__exit(&obj->programs[i]); 8235 } 8236 zfree(&obj->programs); 8237 8238 list_del(&obj->list); 8239 free(obj); 8240 } 8241 8242 struct bpf_object * 8243 bpf_object__next(struct bpf_object *prev) 8244 { 8245 struct bpf_object *next; 8246 8247 if (!prev) 8248 next = list_first_entry(&bpf_objects_list, 8249 struct bpf_object, 8250 list); 8251 else 8252 next = list_next_entry(prev, list); 8253 8254 /* Empty list is noticed here so don't need checking on entry. */ 8255 if (&next->list == &bpf_objects_list) 8256 return NULL; 8257 8258 return next; 8259 } 8260 8261 const char *bpf_object__name(const struct bpf_object *obj) 8262 { 8263 return obj ? obj->name : ERR_PTR(-EINVAL); 8264 } 8265 8266 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8267 { 8268 return obj ? obj->kern_version : 0; 8269 } 8270 8271 struct btf *bpf_object__btf(const struct bpf_object *obj) 8272 { 8273 return obj ? obj->btf : NULL; 8274 } 8275 8276 int bpf_object__btf_fd(const struct bpf_object *obj) 8277 { 8278 return obj->btf ? btf__fd(obj->btf) : -1; 8279 } 8280 8281 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8282 bpf_object_clear_priv_t clear_priv) 8283 { 8284 if (obj->priv && obj->clear_priv) 8285 obj->clear_priv(obj, obj->priv); 8286 8287 obj->priv = priv; 8288 obj->clear_priv = clear_priv; 8289 return 0; 8290 } 8291 8292 void *bpf_object__priv(const struct bpf_object *obj) 8293 { 8294 return obj ? obj->priv : ERR_PTR(-EINVAL); 8295 } 8296 8297 static struct bpf_program * 8298 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8299 bool forward) 8300 { 8301 size_t nr_programs = obj->nr_programs; 8302 ssize_t idx; 8303 8304 if (!nr_programs) 8305 return NULL; 8306 8307 if (!p) 8308 /* Iter from the beginning */ 8309 return forward ? &obj->programs[0] : 8310 &obj->programs[nr_programs - 1]; 8311 8312 if (p->obj != obj) { 8313 pr_warn("error: program handler doesn't match object\n"); 8314 return NULL; 8315 } 8316 8317 idx = (p - obj->programs) + (forward ? 1 : -1); 8318 if (idx >= obj->nr_programs || idx < 0) 8319 return NULL; 8320 return &obj->programs[idx]; 8321 } 8322 8323 struct bpf_program * 8324 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8325 { 8326 struct bpf_program *prog = prev; 8327 8328 do { 8329 prog = __bpf_program__iter(prog, obj, true); 8330 } while (prog && prog_is_subprog(obj, prog)); 8331 8332 return prog; 8333 } 8334 8335 struct bpf_program * 8336 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8337 { 8338 struct bpf_program *prog = next; 8339 8340 do { 8341 prog = __bpf_program__iter(prog, obj, false); 8342 } while (prog && prog_is_subprog(obj, prog)); 8343 8344 return prog; 8345 } 8346 8347 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8348 bpf_program_clear_priv_t clear_priv) 8349 { 8350 if (prog->priv && prog->clear_priv) 8351 prog->clear_priv(prog, prog->priv); 8352 8353 prog->priv = priv; 8354 prog->clear_priv = clear_priv; 8355 return 0; 8356 } 8357 8358 void *bpf_program__priv(const struct bpf_program *prog) 8359 { 8360 return prog ? prog->priv : ERR_PTR(-EINVAL); 8361 } 8362 8363 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8364 { 8365 prog->prog_ifindex = ifindex; 8366 } 8367 8368 const char *bpf_program__name(const struct bpf_program *prog) 8369 { 8370 return prog->name; 8371 } 8372 8373 const char *bpf_program__section_name(const struct bpf_program *prog) 8374 { 8375 return prog->sec_name; 8376 } 8377 8378 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8379 { 8380 const char *title; 8381 8382 title = prog->sec_name; 8383 if (needs_copy) { 8384 title = strdup(title); 8385 if (!title) { 8386 pr_warn("failed to strdup program title\n"); 8387 return ERR_PTR(-ENOMEM); 8388 } 8389 } 8390 8391 return title; 8392 } 8393 8394 bool bpf_program__autoload(const struct bpf_program *prog) 8395 { 8396 return prog->load; 8397 } 8398 8399 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8400 { 8401 if (prog->obj->loaded) 8402 return -EINVAL; 8403 8404 prog->load = autoload; 8405 return 0; 8406 } 8407 8408 int bpf_program__fd(const struct bpf_program *prog) 8409 { 8410 return bpf_program__nth_fd(prog, 0); 8411 } 8412 8413 size_t bpf_program__size(const struct bpf_program *prog) 8414 { 8415 return prog->insns_cnt * BPF_INSN_SZ; 8416 } 8417 8418 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8419 bpf_program_prep_t prep) 8420 { 8421 int *instances_fds; 8422 8423 if (nr_instances <= 0 || !prep) 8424 return -EINVAL; 8425 8426 if (prog->instances.nr > 0 || prog->instances.fds) { 8427 pr_warn("Can't set pre-processor after loading\n"); 8428 return -EINVAL; 8429 } 8430 8431 instances_fds = malloc(sizeof(int) * nr_instances); 8432 if (!instances_fds) { 8433 pr_warn("alloc memory failed for fds\n"); 8434 return -ENOMEM; 8435 } 8436 8437 /* fill all fd with -1 */ 8438 memset(instances_fds, -1, sizeof(int) * nr_instances); 8439 8440 prog->instances.nr = nr_instances; 8441 prog->instances.fds = instances_fds; 8442 prog->preprocessor = prep; 8443 return 0; 8444 } 8445 8446 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8447 { 8448 int fd; 8449 8450 if (!prog) 8451 return -EINVAL; 8452 8453 if (n >= prog->instances.nr || n < 0) { 8454 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8455 n, prog->name, prog->instances.nr); 8456 return -EINVAL; 8457 } 8458 8459 fd = prog->instances.fds[n]; 8460 if (fd < 0) { 8461 pr_warn("%dth instance of program '%s' is invalid\n", 8462 n, prog->name); 8463 return -ENOENT; 8464 } 8465 8466 return fd; 8467 } 8468 8469 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 8470 { 8471 return prog->type; 8472 } 8473 8474 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8475 { 8476 prog->type = type; 8477 } 8478 8479 static bool bpf_program__is_type(const struct bpf_program *prog, 8480 enum bpf_prog_type type) 8481 { 8482 return prog ? (prog->type == type) : false; 8483 } 8484 8485 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8486 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8487 { \ 8488 if (!prog) \ 8489 return -EINVAL; \ 8490 bpf_program__set_type(prog, TYPE); \ 8491 return 0; \ 8492 } \ 8493 \ 8494 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8495 { \ 8496 return bpf_program__is_type(prog, TYPE); \ 8497 } \ 8498 8499 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8500 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8501 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8502 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8503 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8504 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8505 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8506 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8507 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8508 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8509 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8510 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8511 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8512 8513 enum bpf_attach_type 8514 bpf_program__get_expected_attach_type(struct bpf_program *prog) 8515 { 8516 return prog->expected_attach_type; 8517 } 8518 8519 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8520 enum bpf_attach_type type) 8521 { 8522 prog->expected_attach_type = type; 8523 } 8524 8525 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8526 attachable, attach_btf) \ 8527 { \ 8528 .sec = string, \ 8529 .len = sizeof(string) - 1, \ 8530 .prog_type = ptype, \ 8531 .expected_attach_type = eatype, \ 8532 .is_exp_attach_type_optional = eatype_optional, \ 8533 .is_attachable = attachable, \ 8534 .is_attach_btf = attach_btf, \ 8535 } 8536 8537 /* Programs that can NOT be attached. */ 8538 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8539 8540 /* Programs that can be attached. */ 8541 #define BPF_APROG_SEC(string, ptype, atype) \ 8542 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8543 8544 /* Programs that must specify expected attach type at load time. */ 8545 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 8546 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8547 8548 /* Programs that use BTF to identify attach point */ 8549 #define BPF_PROG_BTF(string, ptype, eatype) \ 8550 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8551 8552 /* Programs that can be attached but attach type can't be identified by section 8553 * name. Kept for backward compatibility. 8554 */ 8555 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8556 8557 #define SEC_DEF(sec_pfx, ptype, ...) { \ 8558 .sec = sec_pfx, \ 8559 .len = sizeof(sec_pfx) - 1, \ 8560 .prog_type = BPF_PROG_TYPE_##ptype, \ 8561 __VA_ARGS__ \ 8562 } 8563 8564 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8565 struct bpf_program *prog); 8566 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8567 struct bpf_program *prog); 8568 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8569 struct bpf_program *prog); 8570 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8571 struct bpf_program *prog); 8572 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8573 struct bpf_program *prog); 8574 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8575 struct bpf_program *prog); 8576 8577 static const struct bpf_sec_def section_defs[] = { 8578 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8579 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8580 SEC_DEF("kprobe/", KPROBE, 8581 .attach_fn = attach_kprobe), 8582 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8583 SEC_DEF("kretprobe/", KPROBE, 8584 .attach_fn = attach_kprobe), 8585 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8586 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8587 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8588 SEC_DEF("tracepoint/", TRACEPOINT, 8589 .attach_fn = attach_tp), 8590 SEC_DEF("tp/", TRACEPOINT, 8591 .attach_fn = attach_tp), 8592 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8593 .attach_fn = attach_raw_tp), 8594 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8595 .attach_fn = attach_raw_tp), 8596 SEC_DEF("tp_btf/", TRACING, 8597 .expected_attach_type = BPF_TRACE_RAW_TP, 8598 .is_attach_btf = true, 8599 .attach_fn = attach_trace), 8600 SEC_DEF("fentry/", TRACING, 8601 .expected_attach_type = BPF_TRACE_FENTRY, 8602 .is_attach_btf = true, 8603 .attach_fn = attach_trace), 8604 SEC_DEF("fmod_ret/", TRACING, 8605 .expected_attach_type = BPF_MODIFY_RETURN, 8606 .is_attach_btf = true, 8607 .attach_fn = attach_trace), 8608 SEC_DEF("fexit/", TRACING, 8609 .expected_attach_type = BPF_TRACE_FEXIT, 8610 .is_attach_btf = true, 8611 .attach_fn = attach_trace), 8612 SEC_DEF("fentry.s/", TRACING, 8613 .expected_attach_type = BPF_TRACE_FENTRY, 8614 .is_attach_btf = true, 8615 .is_sleepable = true, 8616 .attach_fn = attach_trace), 8617 SEC_DEF("fmod_ret.s/", TRACING, 8618 .expected_attach_type = BPF_MODIFY_RETURN, 8619 .is_attach_btf = true, 8620 .is_sleepable = true, 8621 .attach_fn = attach_trace), 8622 SEC_DEF("fexit.s/", TRACING, 8623 .expected_attach_type = BPF_TRACE_FEXIT, 8624 .is_attach_btf = true, 8625 .is_sleepable = true, 8626 .attach_fn = attach_trace), 8627 SEC_DEF("freplace/", EXT, 8628 .is_attach_btf = true, 8629 .attach_fn = attach_trace), 8630 SEC_DEF("lsm/", LSM, 8631 .is_attach_btf = true, 8632 .expected_attach_type = BPF_LSM_MAC, 8633 .attach_fn = attach_lsm), 8634 SEC_DEF("lsm.s/", LSM, 8635 .is_attach_btf = true, 8636 .is_sleepable = true, 8637 .expected_attach_type = BPF_LSM_MAC, 8638 .attach_fn = attach_lsm), 8639 SEC_DEF("iter/", TRACING, 8640 .expected_attach_type = BPF_TRACE_ITER, 8641 .is_attach_btf = true, 8642 .attach_fn = attach_iter), 8643 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8644 BPF_XDP_DEVMAP), 8645 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8646 BPF_XDP_CPUMAP), 8647 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8648 BPF_XDP), 8649 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8650 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8651 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8652 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8653 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8654 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8655 BPF_CGROUP_INET_INGRESS), 8656 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8657 BPF_CGROUP_INET_EGRESS), 8658 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8659 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8660 BPF_CGROUP_INET_SOCK_CREATE), 8661 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8662 BPF_CGROUP_INET_SOCK_RELEASE), 8663 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8664 BPF_CGROUP_INET_SOCK_CREATE), 8665 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8666 BPF_CGROUP_INET4_POST_BIND), 8667 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8668 BPF_CGROUP_INET6_POST_BIND), 8669 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8670 BPF_CGROUP_DEVICE), 8671 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8672 BPF_CGROUP_SOCK_OPS), 8673 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8674 BPF_SK_SKB_STREAM_PARSER), 8675 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8676 BPF_SK_SKB_STREAM_VERDICT), 8677 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8678 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8679 BPF_SK_MSG_VERDICT), 8680 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8681 BPF_LIRC_MODE2), 8682 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8683 BPF_FLOW_DISSECTOR), 8684 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8685 BPF_CGROUP_INET4_BIND), 8686 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8687 BPF_CGROUP_INET6_BIND), 8688 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8689 BPF_CGROUP_INET4_CONNECT), 8690 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8691 BPF_CGROUP_INET6_CONNECT), 8692 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8693 BPF_CGROUP_UDP4_SENDMSG), 8694 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8695 BPF_CGROUP_UDP6_SENDMSG), 8696 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8697 BPF_CGROUP_UDP4_RECVMSG), 8698 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8699 BPF_CGROUP_UDP6_RECVMSG), 8700 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8701 BPF_CGROUP_INET4_GETPEERNAME), 8702 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8703 BPF_CGROUP_INET6_GETPEERNAME), 8704 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8705 BPF_CGROUP_INET4_GETSOCKNAME), 8706 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8707 BPF_CGROUP_INET6_GETSOCKNAME), 8708 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8709 BPF_CGROUP_SYSCTL), 8710 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8711 BPF_CGROUP_GETSOCKOPT), 8712 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8713 BPF_CGROUP_SETSOCKOPT), 8714 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8715 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8716 BPF_SK_LOOKUP), 8717 }; 8718 8719 #undef BPF_PROG_SEC_IMPL 8720 #undef BPF_PROG_SEC 8721 #undef BPF_APROG_SEC 8722 #undef BPF_EAPROG_SEC 8723 #undef BPF_APROG_COMPAT 8724 #undef SEC_DEF 8725 8726 #define MAX_TYPE_NAME_SIZE 32 8727 8728 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8729 { 8730 int i, n = ARRAY_SIZE(section_defs); 8731 8732 for (i = 0; i < n; i++) { 8733 if (strncmp(sec_name, 8734 section_defs[i].sec, section_defs[i].len)) 8735 continue; 8736 return §ion_defs[i]; 8737 } 8738 return NULL; 8739 } 8740 8741 static char *libbpf_get_type_names(bool attach_type) 8742 { 8743 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8744 char *buf; 8745 8746 buf = malloc(len); 8747 if (!buf) 8748 return NULL; 8749 8750 buf[0] = '\0'; 8751 /* Forge string buf with all available names */ 8752 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8753 if (attach_type && !section_defs[i].is_attachable) 8754 continue; 8755 8756 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8757 free(buf); 8758 return NULL; 8759 } 8760 strcat(buf, " "); 8761 strcat(buf, section_defs[i].sec); 8762 } 8763 8764 return buf; 8765 } 8766 8767 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8768 enum bpf_attach_type *expected_attach_type) 8769 { 8770 const struct bpf_sec_def *sec_def; 8771 char *type_names; 8772 8773 if (!name) 8774 return -EINVAL; 8775 8776 sec_def = find_sec_def(name); 8777 if (sec_def) { 8778 *prog_type = sec_def->prog_type; 8779 *expected_attach_type = sec_def->expected_attach_type; 8780 return 0; 8781 } 8782 8783 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8784 type_names = libbpf_get_type_names(false); 8785 if (type_names != NULL) { 8786 pr_debug("supported section(type) names are:%s\n", type_names); 8787 free(type_names); 8788 } 8789 8790 return -ESRCH; 8791 } 8792 8793 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8794 size_t offset) 8795 { 8796 struct bpf_map *map; 8797 size_t i; 8798 8799 for (i = 0; i < obj->nr_maps; i++) { 8800 map = &obj->maps[i]; 8801 if (!bpf_map__is_struct_ops(map)) 8802 continue; 8803 if (map->sec_offset <= offset && 8804 offset - map->sec_offset < map->def.value_size) 8805 return map; 8806 } 8807 8808 return NULL; 8809 } 8810 8811 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8812 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8813 GElf_Shdr *shdr, Elf_Data *data) 8814 { 8815 const struct btf_member *member; 8816 struct bpf_struct_ops *st_ops; 8817 struct bpf_program *prog; 8818 unsigned int shdr_idx; 8819 const struct btf *btf; 8820 struct bpf_map *map; 8821 Elf_Data *symbols; 8822 unsigned int moff, insn_idx; 8823 const char *name; 8824 __u32 member_idx; 8825 GElf_Sym sym; 8826 GElf_Rel rel; 8827 int i, nrels; 8828 8829 symbols = obj->efile.symbols; 8830 btf = obj->btf; 8831 nrels = shdr->sh_size / shdr->sh_entsize; 8832 for (i = 0; i < nrels; i++) { 8833 if (!gelf_getrel(data, i, &rel)) { 8834 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8835 return -LIBBPF_ERRNO__FORMAT; 8836 } 8837 8838 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8839 pr_warn("struct_ops reloc: symbol %zx not found\n", 8840 (size_t)GELF_R_SYM(rel.r_info)); 8841 return -LIBBPF_ERRNO__FORMAT; 8842 } 8843 8844 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8845 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8846 if (!map) { 8847 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8848 (size_t)rel.r_offset); 8849 return -EINVAL; 8850 } 8851 8852 moff = rel.r_offset - map->sec_offset; 8853 shdr_idx = sym.st_shndx; 8854 st_ops = map->st_ops; 8855 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8856 map->name, 8857 (long long)(rel.r_info >> 32), 8858 (long long)sym.st_value, 8859 shdr_idx, (size_t)rel.r_offset, 8860 map->sec_offset, sym.st_name, name); 8861 8862 if (shdr_idx >= SHN_LORESERVE) { 8863 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8864 map->name, (size_t)rel.r_offset, shdr_idx); 8865 return -LIBBPF_ERRNO__RELOC; 8866 } 8867 if (sym.st_value % BPF_INSN_SZ) { 8868 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8869 map->name, (unsigned long long)sym.st_value); 8870 return -LIBBPF_ERRNO__FORMAT; 8871 } 8872 insn_idx = sym.st_value / BPF_INSN_SZ; 8873 8874 member = find_member_by_offset(st_ops->type, moff * 8); 8875 if (!member) { 8876 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8877 map->name, moff); 8878 return -EINVAL; 8879 } 8880 member_idx = member - btf_members(st_ops->type); 8881 name = btf__name_by_offset(btf, member->name_off); 8882 8883 if (!resolve_func_ptr(btf, member->type, NULL)) { 8884 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8885 map->name, name); 8886 return -EINVAL; 8887 } 8888 8889 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8890 if (!prog) { 8891 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8892 map->name, shdr_idx, name); 8893 return -EINVAL; 8894 } 8895 8896 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 8897 const struct bpf_sec_def *sec_def; 8898 8899 sec_def = find_sec_def(prog->sec_name); 8900 if (sec_def && 8901 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 8902 /* for pr_warn */ 8903 prog->type = sec_def->prog_type; 8904 goto invalid_prog; 8905 } 8906 8907 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 8908 prog->attach_btf_id = st_ops->type_id; 8909 prog->expected_attach_type = member_idx; 8910 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 8911 prog->attach_btf_id != st_ops->type_id || 8912 prog->expected_attach_type != member_idx) { 8913 goto invalid_prog; 8914 } 8915 st_ops->progs[member_idx] = prog; 8916 } 8917 8918 return 0; 8919 8920 invalid_prog: 8921 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8922 map->name, prog->name, prog->sec_name, prog->type, 8923 prog->attach_btf_id, prog->expected_attach_type, name); 8924 return -EINVAL; 8925 } 8926 8927 #define BTF_TRACE_PREFIX "btf_trace_" 8928 #define BTF_LSM_PREFIX "bpf_lsm_" 8929 #define BTF_ITER_PREFIX "bpf_iter_" 8930 #define BTF_MAX_NAME_SIZE 128 8931 8932 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8933 const char *name, __u32 kind) 8934 { 8935 char btf_type_name[BTF_MAX_NAME_SIZE]; 8936 int ret; 8937 8938 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8939 "%s%s", prefix, name); 8940 /* snprintf returns the number of characters written excluding the 8941 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8942 * indicates truncation. 8943 */ 8944 if (ret < 0 || ret >= sizeof(btf_type_name)) 8945 return -ENAMETOOLONG; 8946 return btf__find_by_name_kind(btf, btf_type_name, kind); 8947 } 8948 8949 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8950 enum bpf_attach_type attach_type) 8951 { 8952 int err; 8953 8954 if (attach_type == BPF_TRACE_RAW_TP) 8955 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 8956 BTF_KIND_TYPEDEF); 8957 else if (attach_type == BPF_LSM_MAC) 8958 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 8959 BTF_KIND_FUNC); 8960 else if (attach_type == BPF_TRACE_ITER) 8961 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 8962 BTF_KIND_FUNC); 8963 else 8964 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8965 8966 return err; 8967 } 8968 8969 int libbpf_find_vmlinux_btf_id(const char *name, 8970 enum bpf_attach_type attach_type) 8971 { 8972 struct btf *btf; 8973 int err; 8974 8975 btf = libbpf_find_kernel_btf(); 8976 if (IS_ERR(btf)) { 8977 pr_warn("vmlinux BTF is not found\n"); 8978 return -EINVAL; 8979 } 8980 8981 err = find_attach_btf_id(btf, name, attach_type); 8982 if (err <= 0) 8983 pr_warn("%s is not found in vmlinux BTF\n", name); 8984 8985 btf__free(btf); 8986 return err; 8987 } 8988 8989 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8990 { 8991 struct bpf_prog_info_linear *info_linear; 8992 struct bpf_prog_info *info; 8993 struct btf *btf = NULL; 8994 int err = -EINVAL; 8995 8996 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8997 if (IS_ERR_OR_NULL(info_linear)) { 8998 pr_warn("failed get_prog_info_linear for FD %d\n", 8999 attach_prog_fd); 9000 return -EINVAL; 9001 } 9002 info = &info_linear->info; 9003 if (!info->btf_id) { 9004 pr_warn("The target program doesn't have BTF\n"); 9005 goto out; 9006 } 9007 if (btf__get_from_id(info->btf_id, &btf)) { 9008 pr_warn("Failed to get BTF of the program\n"); 9009 goto out; 9010 } 9011 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9012 btf__free(btf); 9013 if (err <= 0) { 9014 pr_warn("%s is not found in prog's BTF\n", name); 9015 goto out; 9016 } 9017 out: 9018 free(info_linear); 9019 return err; 9020 } 9021 9022 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9023 enum bpf_attach_type attach_type, 9024 int *btf_obj_fd, int *btf_type_id) 9025 { 9026 int ret, i; 9027 9028 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9029 if (ret > 0) { 9030 *btf_obj_fd = 0; /* vmlinux BTF */ 9031 *btf_type_id = ret; 9032 return 0; 9033 } 9034 if (ret != -ENOENT) 9035 return ret; 9036 9037 ret = load_module_btfs(obj); 9038 if (ret) 9039 return ret; 9040 9041 for (i = 0; i < obj->btf_module_cnt; i++) { 9042 const struct module_btf *mod = &obj->btf_modules[i]; 9043 9044 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9045 if (ret > 0) { 9046 *btf_obj_fd = mod->fd; 9047 *btf_type_id = ret; 9048 return 0; 9049 } 9050 if (ret == -ENOENT) 9051 continue; 9052 9053 return ret; 9054 } 9055 9056 return -ESRCH; 9057 } 9058 9059 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id) 9060 { 9061 enum bpf_attach_type attach_type = prog->expected_attach_type; 9062 __u32 attach_prog_fd = prog->attach_prog_fd; 9063 const char *name = prog->sec_name, *attach_name; 9064 const struct bpf_sec_def *sec = NULL; 9065 int i, err; 9066 9067 if (!name) 9068 return -EINVAL; 9069 9070 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9071 if (!section_defs[i].is_attach_btf) 9072 continue; 9073 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9074 continue; 9075 9076 sec = §ion_defs[i]; 9077 break; 9078 } 9079 9080 if (!sec) { 9081 pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name); 9082 return -ESRCH; 9083 } 9084 attach_name = name + sec->len; 9085 9086 /* BPF program's BTF ID */ 9087 if (attach_prog_fd) { 9088 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9089 if (err < 0) { 9090 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9091 attach_prog_fd, attach_name, err); 9092 return err; 9093 } 9094 *btf_obj_fd = 0; 9095 *btf_type_id = err; 9096 return 0; 9097 } 9098 9099 /* kernel/module BTF ID */ 9100 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9101 if (err) { 9102 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9103 return err; 9104 } 9105 return 0; 9106 } 9107 9108 int libbpf_attach_type_by_name(const char *name, 9109 enum bpf_attach_type *attach_type) 9110 { 9111 char *type_names; 9112 int i; 9113 9114 if (!name) 9115 return -EINVAL; 9116 9117 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9118 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9119 continue; 9120 if (!section_defs[i].is_attachable) 9121 return -EINVAL; 9122 *attach_type = section_defs[i].expected_attach_type; 9123 return 0; 9124 } 9125 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9126 type_names = libbpf_get_type_names(true); 9127 if (type_names != NULL) { 9128 pr_debug("attachable section(type) names are:%s\n", type_names); 9129 free(type_names); 9130 } 9131 9132 return -EINVAL; 9133 } 9134 9135 int bpf_map__fd(const struct bpf_map *map) 9136 { 9137 return map ? map->fd : -EINVAL; 9138 } 9139 9140 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9141 { 9142 return map ? &map->def : ERR_PTR(-EINVAL); 9143 } 9144 9145 const char *bpf_map__name(const struct bpf_map *map) 9146 { 9147 return map ? map->name : NULL; 9148 } 9149 9150 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9151 { 9152 return map->def.type; 9153 } 9154 9155 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9156 { 9157 if (map->fd >= 0) 9158 return -EBUSY; 9159 map->def.type = type; 9160 return 0; 9161 } 9162 9163 __u32 bpf_map__map_flags(const struct bpf_map *map) 9164 { 9165 return map->def.map_flags; 9166 } 9167 9168 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9169 { 9170 if (map->fd >= 0) 9171 return -EBUSY; 9172 map->def.map_flags = flags; 9173 return 0; 9174 } 9175 9176 __u32 bpf_map__numa_node(const struct bpf_map *map) 9177 { 9178 return map->numa_node; 9179 } 9180 9181 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9182 { 9183 if (map->fd >= 0) 9184 return -EBUSY; 9185 map->numa_node = numa_node; 9186 return 0; 9187 } 9188 9189 __u32 bpf_map__key_size(const struct bpf_map *map) 9190 { 9191 return map->def.key_size; 9192 } 9193 9194 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9195 { 9196 if (map->fd >= 0) 9197 return -EBUSY; 9198 map->def.key_size = size; 9199 return 0; 9200 } 9201 9202 __u32 bpf_map__value_size(const struct bpf_map *map) 9203 { 9204 return map->def.value_size; 9205 } 9206 9207 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9208 { 9209 if (map->fd >= 0) 9210 return -EBUSY; 9211 map->def.value_size = size; 9212 return 0; 9213 } 9214 9215 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9216 { 9217 return map ? map->btf_key_type_id : 0; 9218 } 9219 9220 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9221 { 9222 return map ? map->btf_value_type_id : 0; 9223 } 9224 9225 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9226 bpf_map_clear_priv_t clear_priv) 9227 { 9228 if (!map) 9229 return -EINVAL; 9230 9231 if (map->priv) { 9232 if (map->clear_priv) 9233 map->clear_priv(map, map->priv); 9234 } 9235 9236 map->priv = priv; 9237 map->clear_priv = clear_priv; 9238 return 0; 9239 } 9240 9241 void *bpf_map__priv(const struct bpf_map *map) 9242 { 9243 return map ? map->priv : ERR_PTR(-EINVAL); 9244 } 9245 9246 int bpf_map__set_initial_value(struct bpf_map *map, 9247 const void *data, size_t size) 9248 { 9249 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9250 size != map->def.value_size || map->fd >= 0) 9251 return -EINVAL; 9252 9253 memcpy(map->mmaped, data, size); 9254 return 0; 9255 } 9256 9257 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9258 { 9259 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9260 } 9261 9262 bool bpf_map__is_internal(const struct bpf_map *map) 9263 { 9264 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9265 } 9266 9267 __u32 bpf_map__ifindex(const struct bpf_map *map) 9268 { 9269 return map->map_ifindex; 9270 } 9271 9272 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9273 { 9274 if (map->fd >= 0) 9275 return -EBUSY; 9276 map->map_ifindex = ifindex; 9277 return 0; 9278 } 9279 9280 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9281 { 9282 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9283 pr_warn("error: unsupported map type\n"); 9284 return -EINVAL; 9285 } 9286 if (map->inner_map_fd != -1) { 9287 pr_warn("error: inner_map_fd already specified\n"); 9288 return -EINVAL; 9289 } 9290 map->inner_map_fd = fd; 9291 return 0; 9292 } 9293 9294 static struct bpf_map * 9295 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9296 { 9297 ssize_t idx; 9298 struct bpf_map *s, *e; 9299 9300 if (!obj || !obj->maps) 9301 return NULL; 9302 9303 s = obj->maps; 9304 e = obj->maps + obj->nr_maps; 9305 9306 if ((m < s) || (m >= e)) { 9307 pr_warn("error in %s: map handler doesn't belong to object\n", 9308 __func__); 9309 return NULL; 9310 } 9311 9312 idx = (m - obj->maps) + i; 9313 if (idx >= obj->nr_maps || idx < 0) 9314 return NULL; 9315 return &obj->maps[idx]; 9316 } 9317 9318 struct bpf_map * 9319 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9320 { 9321 if (prev == NULL) 9322 return obj->maps; 9323 9324 return __bpf_map__iter(prev, obj, 1); 9325 } 9326 9327 struct bpf_map * 9328 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9329 { 9330 if (next == NULL) { 9331 if (!obj->nr_maps) 9332 return NULL; 9333 return obj->maps + obj->nr_maps - 1; 9334 } 9335 9336 return __bpf_map__iter(next, obj, -1); 9337 } 9338 9339 struct bpf_map * 9340 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9341 { 9342 struct bpf_map *pos; 9343 9344 bpf_object__for_each_map(pos, obj) { 9345 if (pos->name && !strcmp(pos->name, name)) 9346 return pos; 9347 } 9348 return NULL; 9349 } 9350 9351 int 9352 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9353 { 9354 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9355 } 9356 9357 struct bpf_map * 9358 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9359 { 9360 return ERR_PTR(-ENOTSUP); 9361 } 9362 9363 long libbpf_get_error(const void *ptr) 9364 { 9365 return PTR_ERR_OR_ZERO(ptr); 9366 } 9367 9368 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9369 struct bpf_object **pobj, int *prog_fd) 9370 { 9371 struct bpf_prog_load_attr attr; 9372 9373 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9374 attr.file = file; 9375 attr.prog_type = type; 9376 attr.expected_attach_type = 0; 9377 9378 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9379 } 9380 9381 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9382 struct bpf_object **pobj, int *prog_fd) 9383 { 9384 struct bpf_object_open_attr open_attr = {}; 9385 struct bpf_program *prog, *first_prog = NULL; 9386 struct bpf_object *obj; 9387 struct bpf_map *map; 9388 int err; 9389 9390 if (!attr) 9391 return -EINVAL; 9392 if (!attr->file) 9393 return -EINVAL; 9394 9395 open_attr.file = attr->file; 9396 open_attr.prog_type = attr->prog_type; 9397 9398 obj = bpf_object__open_xattr(&open_attr); 9399 if (IS_ERR_OR_NULL(obj)) 9400 return -ENOENT; 9401 9402 bpf_object__for_each_program(prog, obj) { 9403 enum bpf_attach_type attach_type = attr->expected_attach_type; 9404 /* 9405 * to preserve backwards compatibility, bpf_prog_load treats 9406 * attr->prog_type, if specified, as an override to whatever 9407 * bpf_object__open guessed 9408 */ 9409 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9410 bpf_program__set_type(prog, attr->prog_type); 9411 bpf_program__set_expected_attach_type(prog, 9412 attach_type); 9413 } 9414 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9415 /* 9416 * we haven't guessed from section name and user 9417 * didn't provide a fallback type, too bad... 9418 */ 9419 bpf_object__close(obj); 9420 return -EINVAL; 9421 } 9422 9423 prog->prog_ifindex = attr->ifindex; 9424 prog->log_level = attr->log_level; 9425 prog->prog_flags |= attr->prog_flags; 9426 if (!first_prog) 9427 first_prog = prog; 9428 } 9429 9430 bpf_object__for_each_map(map, obj) { 9431 if (!bpf_map__is_offload_neutral(map)) 9432 map->map_ifindex = attr->ifindex; 9433 } 9434 9435 if (!first_prog) { 9436 pr_warn("object file doesn't contain bpf program\n"); 9437 bpf_object__close(obj); 9438 return -ENOENT; 9439 } 9440 9441 err = bpf_object__load(obj); 9442 if (err) { 9443 bpf_object__close(obj); 9444 return err; 9445 } 9446 9447 *pobj = obj; 9448 *prog_fd = bpf_program__fd(first_prog); 9449 return 0; 9450 } 9451 9452 struct bpf_link { 9453 int (*detach)(struct bpf_link *link); 9454 int (*destroy)(struct bpf_link *link); 9455 char *pin_path; /* NULL, if not pinned */ 9456 int fd; /* hook FD, -1 if not applicable */ 9457 bool disconnected; 9458 }; 9459 9460 /* Replace link's underlying BPF program with the new one */ 9461 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9462 { 9463 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9464 } 9465 9466 /* Release "ownership" of underlying BPF resource (typically, BPF program 9467 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9468 * link, when destructed through bpf_link__destroy() call won't attempt to 9469 * detach/unregisted that BPF resource. This is useful in situations where, 9470 * say, attached BPF program has to outlive userspace program that attached it 9471 * in the system. Depending on type of BPF program, though, there might be 9472 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9473 * exit of userspace program doesn't trigger automatic detachment and clean up 9474 * inside the kernel. 9475 */ 9476 void bpf_link__disconnect(struct bpf_link *link) 9477 { 9478 link->disconnected = true; 9479 } 9480 9481 int bpf_link__destroy(struct bpf_link *link) 9482 { 9483 int err = 0; 9484 9485 if (IS_ERR_OR_NULL(link)) 9486 return 0; 9487 9488 if (!link->disconnected && link->detach) 9489 err = link->detach(link); 9490 if (link->destroy) 9491 link->destroy(link); 9492 if (link->pin_path) 9493 free(link->pin_path); 9494 free(link); 9495 9496 return err; 9497 } 9498 9499 int bpf_link__fd(const struct bpf_link *link) 9500 { 9501 return link->fd; 9502 } 9503 9504 const char *bpf_link__pin_path(const struct bpf_link *link) 9505 { 9506 return link->pin_path; 9507 } 9508 9509 static int bpf_link__detach_fd(struct bpf_link *link) 9510 { 9511 return close(link->fd); 9512 } 9513 9514 struct bpf_link *bpf_link__open(const char *path) 9515 { 9516 struct bpf_link *link; 9517 int fd; 9518 9519 fd = bpf_obj_get(path); 9520 if (fd < 0) { 9521 fd = -errno; 9522 pr_warn("failed to open link at %s: %d\n", path, fd); 9523 return ERR_PTR(fd); 9524 } 9525 9526 link = calloc(1, sizeof(*link)); 9527 if (!link) { 9528 close(fd); 9529 return ERR_PTR(-ENOMEM); 9530 } 9531 link->detach = &bpf_link__detach_fd; 9532 link->fd = fd; 9533 9534 link->pin_path = strdup(path); 9535 if (!link->pin_path) { 9536 bpf_link__destroy(link); 9537 return ERR_PTR(-ENOMEM); 9538 } 9539 9540 return link; 9541 } 9542 9543 int bpf_link__detach(struct bpf_link *link) 9544 { 9545 return bpf_link_detach(link->fd) ? -errno : 0; 9546 } 9547 9548 int bpf_link__pin(struct bpf_link *link, const char *path) 9549 { 9550 int err; 9551 9552 if (link->pin_path) 9553 return -EBUSY; 9554 err = make_parent_dir(path); 9555 if (err) 9556 return err; 9557 err = check_path(path); 9558 if (err) 9559 return err; 9560 9561 link->pin_path = strdup(path); 9562 if (!link->pin_path) 9563 return -ENOMEM; 9564 9565 if (bpf_obj_pin(link->fd, link->pin_path)) { 9566 err = -errno; 9567 zfree(&link->pin_path); 9568 return err; 9569 } 9570 9571 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9572 return 0; 9573 } 9574 9575 int bpf_link__unpin(struct bpf_link *link) 9576 { 9577 int err; 9578 9579 if (!link->pin_path) 9580 return -EINVAL; 9581 9582 err = unlink(link->pin_path); 9583 if (err != 0) 9584 return -errno; 9585 9586 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9587 zfree(&link->pin_path); 9588 return 0; 9589 } 9590 9591 static int bpf_link__detach_perf_event(struct bpf_link *link) 9592 { 9593 int err; 9594 9595 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9596 if (err) 9597 err = -errno; 9598 9599 close(link->fd); 9600 return err; 9601 } 9602 9603 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9604 int pfd) 9605 { 9606 char errmsg[STRERR_BUFSIZE]; 9607 struct bpf_link *link; 9608 int prog_fd, err; 9609 9610 if (pfd < 0) { 9611 pr_warn("prog '%s': invalid perf event FD %d\n", 9612 prog->name, pfd); 9613 return ERR_PTR(-EINVAL); 9614 } 9615 prog_fd = bpf_program__fd(prog); 9616 if (prog_fd < 0) { 9617 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9618 prog->name); 9619 return ERR_PTR(-EINVAL); 9620 } 9621 9622 link = calloc(1, sizeof(*link)); 9623 if (!link) 9624 return ERR_PTR(-ENOMEM); 9625 link->detach = &bpf_link__detach_perf_event; 9626 link->fd = pfd; 9627 9628 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9629 err = -errno; 9630 free(link); 9631 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9632 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9633 if (err == -EPROTO) 9634 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9635 prog->name, pfd); 9636 return ERR_PTR(err); 9637 } 9638 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9639 err = -errno; 9640 free(link); 9641 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9642 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9643 return ERR_PTR(err); 9644 } 9645 return link; 9646 } 9647 9648 /* 9649 * this function is expected to parse integer in the range of [0, 2^31-1] from 9650 * given file using scanf format string fmt. If actual parsed value is 9651 * negative, the result might be indistinguishable from error 9652 */ 9653 static int parse_uint_from_file(const char *file, const char *fmt) 9654 { 9655 char buf[STRERR_BUFSIZE]; 9656 int err, ret; 9657 FILE *f; 9658 9659 f = fopen(file, "r"); 9660 if (!f) { 9661 err = -errno; 9662 pr_debug("failed to open '%s': %s\n", file, 9663 libbpf_strerror_r(err, buf, sizeof(buf))); 9664 return err; 9665 } 9666 err = fscanf(f, fmt, &ret); 9667 if (err != 1) { 9668 err = err == EOF ? -EIO : -errno; 9669 pr_debug("failed to parse '%s': %s\n", file, 9670 libbpf_strerror_r(err, buf, sizeof(buf))); 9671 fclose(f); 9672 return err; 9673 } 9674 fclose(f); 9675 return ret; 9676 } 9677 9678 static int determine_kprobe_perf_type(void) 9679 { 9680 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9681 9682 return parse_uint_from_file(file, "%d\n"); 9683 } 9684 9685 static int determine_uprobe_perf_type(void) 9686 { 9687 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9688 9689 return parse_uint_from_file(file, "%d\n"); 9690 } 9691 9692 static int determine_kprobe_retprobe_bit(void) 9693 { 9694 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9695 9696 return parse_uint_from_file(file, "config:%d\n"); 9697 } 9698 9699 static int determine_uprobe_retprobe_bit(void) 9700 { 9701 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9702 9703 return parse_uint_from_file(file, "config:%d\n"); 9704 } 9705 9706 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9707 uint64_t offset, int pid) 9708 { 9709 struct perf_event_attr attr = {}; 9710 char errmsg[STRERR_BUFSIZE]; 9711 int type, pfd, err; 9712 9713 type = uprobe ? determine_uprobe_perf_type() 9714 : determine_kprobe_perf_type(); 9715 if (type < 0) { 9716 pr_warn("failed to determine %s perf type: %s\n", 9717 uprobe ? "uprobe" : "kprobe", 9718 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9719 return type; 9720 } 9721 if (retprobe) { 9722 int bit = uprobe ? determine_uprobe_retprobe_bit() 9723 : determine_kprobe_retprobe_bit(); 9724 9725 if (bit < 0) { 9726 pr_warn("failed to determine %s retprobe bit: %s\n", 9727 uprobe ? "uprobe" : "kprobe", 9728 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9729 return bit; 9730 } 9731 attr.config |= 1 << bit; 9732 } 9733 attr.size = sizeof(attr); 9734 attr.type = type; 9735 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9736 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9737 9738 /* pid filter is meaningful only for uprobes */ 9739 pfd = syscall(__NR_perf_event_open, &attr, 9740 pid < 0 ? -1 : pid /* pid */, 9741 pid == -1 ? 0 : -1 /* cpu */, 9742 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9743 if (pfd < 0) { 9744 err = -errno; 9745 pr_warn("%s perf_event_open() failed: %s\n", 9746 uprobe ? "uprobe" : "kprobe", 9747 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9748 return err; 9749 } 9750 return pfd; 9751 } 9752 9753 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9754 bool retprobe, 9755 const char *func_name) 9756 { 9757 char errmsg[STRERR_BUFSIZE]; 9758 struct bpf_link *link; 9759 int pfd, err; 9760 9761 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9762 0 /* offset */, -1 /* pid */); 9763 if (pfd < 0) { 9764 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9765 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9766 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9767 return ERR_PTR(pfd); 9768 } 9769 link = bpf_program__attach_perf_event(prog, pfd); 9770 if (IS_ERR(link)) { 9771 close(pfd); 9772 err = PTR_ERR(link); 9773 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9774 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9775 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9776 return link; 9777 } 9778 return link; 9779 } 9780 9781 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9782 struct bpf_program *prog) 9783 { 9784 const char *func_name; 9785 bool retprobe; 9786 9787 func_name = prog->sec_name + sec->len; 9788 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9789 9790 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9791 } 9792 9793 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9794 bool retprobe, pid_t pid, 9795 const char *binary_path, 9796 size_t func_offset) 9797 { 9798 char errmsg[STRERR_BUFSIZE]; 9799 struct bpf_link *link; 9800 int pfd, err; 9801 9802 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9803 binary_path, func_offset, pid); 9804 if (pfd < 0) { 9805 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9806 prog->name, retprobe ? "uretprobe" : "uprobe", 9807 binary_path, func_offset, 9808 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9809 return ERR_PTR(pfd); 9810 } 9811 link = bpf_program__attach_perf_event(prog, pfd); 9812 if (IS_ERR(link)) { 9813 close(pfd); 9814 err = PTR_ERR(link); 9815 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9816 prog->name, retprobe ? "uretprobe" : "uprobe", 9817 binary_path, func_offset, 9818 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9819 return link; 9820 } 9821 return link; 9822 } 9823 9824 static int determine_tracepoint_id(const char *tp_category, 9825 const char *tp_name) 9826 { 9827 char file[PATH_MAX]; 9828 int ret; 9829 9830 ret = snprintf(file, sizeof(file), 9831 "/sys/kernel/debug/tracing/events/%s/%s/id", 9832 tp_category, tp_name); 9833 if (ret < 0) 9834 return -errno; 9835 if (ret >= sizeof(file)) { 9836 pr_debug("tracepoint %s/%s path is too long\n", 9837 tp_category, tp_name); 9838 return -E2BIG; 9839 } 9840 return parse_uint_from_file(file, "%d\n"); 9841 } 9842 9843 static int perf_event_open_tracepoint(const char *tp_category, 9844 const char *tp_name) 9845 { 9846 struct perf_event_attr attr = {}; 9847 char errmsg[STRERR_BUFSIZE]; 9848 int tp_id, pfd, err; 9849 9850 tp_id = determine_tracepoint_id(tp_category, tp_name); 9851 if (tp_id < 0) { 9852 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9853 tp_category, tp_name, 9854 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9855 return tp_id; 9856 } 9857 9858 attr.type = PERF_TYPE_TRACEPOINT; 9859 attr.size = sizeof(attr); 9860 attr.config = tp_id; 9861 9862 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9863 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9864 if (pfd < 0) { 9865 err = -errno; 9866 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9867 tp_category, tp_name, 9868 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9869 return err; 9870 } 9871 return pfd; 9872 } 9873 9874 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 9875 const char *tp_category, 9876 const char *tp_name) 9877 { 9878 char errmsg[STRERR_BUFSIZE]; 9879 struct bpf_link *link; 9880 int pfd, err; 9881 9882 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9883 if (pfd < 0) { 9884 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9885 prog->name, tp_category, tp_name, 9886 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9887 return ERR_PTR(pfd); 9888 } 9889 link = bpf_program__attach_perf_event(prog, pfd); 9890 if (IS_ERR(link)) { 9891 close(pfd); 9892 err = PTR_ERR(link); 9893 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9894 prog->name, tp_category, tp_name, 9895 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9896 return link; 9897 } 9898 return link; 9899 } 9900 9901 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9902 struct bpf_program *prog) 9903 { 9904 char *sec_name, *tp_cat, *tp_name; 9905 struct bpf_link *link; 9906 9907 sec_name = strdup(prog->sec_name); 9908 if (!sec_name) 9909 return ERR_PTR(-ENOMEM); 9910 9911 /* extract "tp/<category>/<name>" */ 9912 tp_cat = sec_name + sec->len; 9913 tp_name = strchr(tp_cat, '/'); 9914 if (!tp_name) { 9915 link = ERR_PTR(-EINVAL); 9916 goto out; 9917 } 9918 *tp_name = '\0'; 9919 tp_name++; 9920 9921 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9922 out: 9923 free(sec_name); 9924 return link; 9925 } 9926 9927 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 9928 const char *tp_name) 9929 { 9930 char errmsg[STRERR_BUFSIZE]; 9931 struct bpf_link *link; 9932 int prog_fd, pfd; 9933 9934 prog_fd = bpf_program__fd(prog); 9935 if (prog_fd < 0) { 9936 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9937 return ERR_PTR(-EINVAL); 9938 } 9939 9940 link = calloc(1, sizeof(*link)); 9941 if (!link) 9942 return ERR_PTR(-ENOMEM); 9943 link->detach = &bpf_link__detach_fd; 9944 9945 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9946 if (pfd < 0) { 9947 pfd = -errno; 9948 free(link); 9949 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9950 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9951 return ERR_PTR(pfd); 9952 } 9953 link->fd = pfd; 9954 return link; 9955 } 9956 9957 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9958 struct bpf_program *prog) 9959 { 9960 const char *tp_name = prog->sec_name + sec->len; 9961 9962 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9963 } 9964 9965 /* Common logic for all BPF program types that attach to a btf_id */ 9966 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 9967 { 9968 char errmsg[STRERR_BUFSIZE]; 9969 struct bpf_link *link; 9970 int prog_fd, pfd; 9971 9972 prog_fd = bpf_program__fd(prog); 9973 if (prog_fd < 0) { 9974 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9975 return ERR_PTR(-EINVAL); 9976 } 9977 9978 link = calloc(1, sizeof(*link)); 9979 if (!link) 9980 return ERR_PTR(-ENOMEM); 9981 link->detach = &bpf_link__detach_fd; 9982 9983 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9984 if (pfd < 0) { 9985 pfd = -errno; 9986 free(link); 9987 pr_warn("prog '%s': failed to attach: %s\n", 9988 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9989 return ERR_PTR(pfd); 9990 } 9991 link->fd = pfd; 9992 return (struct bpf_link *)link; 9993 } 9994 9995 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 9996 { 9997 return bpf_program__attach_btf_id(prog); 9998 } 9999 10000 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 10001 { 10002 return bpf_program__attach_btf_id(prog); 10003 } 10004 10005 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 10006 struct bpf_program *prog) 10007 { 10008 return bpf_program__attach_trace(prog); 10009 } 10010 10011 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 10012 struct bpf_program *prog) 10013 { 10014 return bpf_program__attach_lsm(prog); 10015 } 10016 10017 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 10018 struct bpf_program *prog) 10019 { 10020 return bpf_program__attach_iter(prog, NULL); 10021 } 10022 10023 static struct bpf_link * 10024 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 10025 const char *target_name) 10026 { 10027 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10028 .target_btf_id = btf_id); 10029 enum bpf_attach_type attach_type; 10030 char errmsg[STRERR_BUFSIZE]; 10031 struct bpf_link *link; 10032 int prog_fd, link_fd; 10033 10034 prog_fd = bpf_program__fd(prog); 10035 if (prog_fd < 0) { 10036 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10037 return ERR_PTR(-EINVAL); 10038 } 10039 10040 link = calloc(1, sizeof(*link)); 10041 if (!link) 10042 return ERR_PTR(-ENOMEM); 10043 link->detach = &bpf_link__detach_fd; 10044 10045 attach_type = bpf_program__get_expected_attach_type(prog); 10046 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10047 if (link_fd < 0) { 10048 link_fd = -errno; 10049 free(link); 10050 pr_warn("prog '%s': failed to attach to %s: %s\n", 10051 prog->name, target_name, 10052 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10053 return ERR_PTR(link_fd); 10054 } 10055 link->fd = link_fd; 10056 return link; 10057 } 10058 10059 struct bpf_link * 10060 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 10061 { 10062 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10063 } 10064 10065 struct bpf_link * 10066 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 10067 { 10068 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10069 } 10070 10071 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 10072 { 10073 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10074 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10075 } 10076 10077 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 10078 int target_fd, 10079 const char *attach_func_name) 10080 { 10081 int btf_id; 10082 10083 if (!!target_fd != !!attach_func_name) { 10084 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10085 prog->name); 10086 return ERR_PTR(-EINVAL); 10087 } 10088 10089 if (prog->type != BPF_PROG_TYPE_EXT) { 10090 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10091 prog->name); 10092 return ERR_PTR(-EINVAL); 10093 } 10094 10095 if (target_fd) { 10096 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10097 if (btf_id < 0) 10098 return ERR_PTR(btf_id); 10099 10100 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10101 } else { 10102 /* no target, so use raw_tracepoint_open for compatibility 10103 * with old kernels 10104 */ 10105 return bpf_program__attach_trace(prog); 10106 } 10107 } 10108 10109 struct bpf_link * 10110 bpf_program__attach_iter(struct bpf_program *prog, 10111 const struct bpf_iter_attach_opts *opts) 10112 { 10113 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10114 char errmsg[STRERR_BUFSIZE]; 10115 struct bpf_link *link; 10116 int prog_fd, link_fd; 10117 __u32 target_fd = 0; 10118 10119 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10120 return ERR_PTR(-EINVAL); 10121 10122 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10123 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10124 10125 prog_fd = bpf_program__fd(prog); 10126 if (prog_fd < 0) { 10127 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10128 return ERR_PTR(-EINVAL); 10129 } 10130 10131 link = calloc(1, sizeof(*link)); 10132 if (!link) 10133 return ERR_PTR(-ENOMEM); 10134 link->detach = &bpf_link__detach_fd; 10135 10136 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10137 &link_create_opts); 10138 if (link_fd < 0) { 10139 link_fd = -errno; 10140 free(link); 10141 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10142 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10143 return ERR_PTR(link_fd); 10144 } 10145 link->fd = link_fd; 10146 return link; 10147 } 10148 10149 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 10150 { 10151 const struct bpf_sec_def *sec_def; 10152 10153 sec_def = find_sec_def(prog->sec_name); 10154 if (!sec_def || !sec_def->attach_fn) 10155 return ERR_PTR(-ESRCH); 10156 10157 return sec_def->attach_fn(sec_def, prog); 10158 } 10159 10160 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10161 { 10162 __u32 zero = 0; 10163 10164 if (bpf_map_delete_elem(link->fd, &zero)) 10165 return -errno; 10166 10167 return 0; 10168 } 10169 10170 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 10171 { 10172 struct bpf_struct_ops *st_ops; 10173 struct bpf_link *link; 10174 __u32 i, zero = 0; 10175 int err; 10176 10177 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10178 return ERR_PTR(-EINVAL); 10179 10180 link = calloc(1, sizeof(*link)); 10181 if (!link) 10182 return ERR_PTR(-EINVAL); 10183 10184 st_ops = map->st_ops; 10185 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10186 struct bpf_program *prog = st_ops->progs[i]; 10187 void *kern_data; 10188 int prog_fd; 10189 10190 if (!prog) 10191 continue; 10192 10193 prog_fd = bpf_program__fd(prog); 10194 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10195 *(unsigned long *)kern_data = prog_fd; 10196 } 10197 10198 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10199 if (err) { 10200 err = -errno; 10201 free(link); 10202 return ERR_PTR(err); 10203 } 10204 10205 link->detach = bpf_link__detach_struct_ops; 10206 link->fd = map->fd; 10207 10208 return link; 10209 } 10210 10211 enum bpf_perf_event_ret 10212 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10213 void **copy_mem, size_t *copy_size, 10214 bpf_perf_event_print_t fn, void *private_data) 10215 { 10216 struct perf_event_mmap_page *header = mmap_mem; 10217 __u64 data_head = ring_buffer_read_head(header); 10218 __u64 data_tail = header->data_tail; 10219 void *base = ((__u8 *)header) + page_size; 10220 int ret = LIBBPF_PERF_EVENT_CONT; 10221 struct perf_event_header *ehdr; 10222 size_t ehdr_size; 10223 10224 while (data_head != data_tail) { 10225 ehdr = base + (data_tail & (mmap_size - 1)); 10226 ehdr_size = ehdr->size; 10227 10228 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10229 void *copy_start = ehdr; 10230 size_t len_first = base + mmap_size - copy_start; 10231 size_t len_secnd = ehdr_size - len_first; 10232 10233 if (*copy_size < ehdr_size) { 10234 free(*copy_mem); 10235 *copy_mem = malloc(ehdr_size); 10236 if (!*copy_mem) { 10237 *copy_size = 0; 10238 ret = LIBBPF_PERF_EVENT_ERROR; 10239 break; 10240 } 10241 *copy_size = ehdr_size; 10242 } 10243 10244 memcpy(*copy_mem, copy_start, len_first); 10245 memcpy(*copy_mem + len_first, base, len_secnd); 10246 ehdr = *copy_mem; 10247 } 10248 10249 ret = fn(ehdr, private_data); 10250 data_tail += ehdr_size; 10251 if (ret != LIBBPF_PERF_EVENT_CONT) 10252 break; 10253 } 10254 10255 ring_buffer_write_tail(header, data_tail); 10256 return ret; 10257 } 10258 10259 struct perf_buffer; 10260 10261 struct perf_buffer_params { 10262 struct perf_event_attr *attr; 10263 /* if event_cb is specified, it takes precendence */ 10264 perf_buffer_event_fn event_cb; 10265 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10266 perf_buffer_sample_fn sample_cb; 10267 perf_buffer_lost_fn lost_cb; 10268 void *ctx; 10269 int cpu_cnt; 10270 int *cpus; 10271 int *map_keys; 10272 }; 10273 10274 struct perf_cpu_buf { 10275 struct perf_buffer *pb; 10276 void *base; /* mmap()'ed memory */ 10277 void *buf; /* for reconstructing segmented data */ 10278 size_t buf_size; 10279 int fd; 10280 int cpu; 10281 int map_key; 10282 }; 10283 10284 struct perf_buffer { 10285 perf_buffer_event_fn event_cb; 10286 perf_buffer_sample_fn sample_cb; 10287 perf_buffer_lost_fn lost_cb; 10288 void *ctx; /* passed into callbacks */ 10289 10290 size_t page_size; 10291 size_t mmap_size; 10292 struct perf_cpu_buf **cpu_bufs; 10293 struct epoll_event *events; 10294 int cpu_cnt; /* number of allocated CPU buffers */ 10295 int epoll_fd; /* perf event FD */ 10296 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10297 }; 10298 10299 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10300 struct perf_cpu_buf *cpu_buf) 10301 { 10302 if (!cpu_buf) 10303 return; 10304 if (cpu_buf->base && 10305 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10306 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10307 if (cpu_buf->fd >= 0) { 10308 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10309 close(cpu_buf->fd); 10310 } 10311 free(cpu_buf->buf); 10312 free(cpu_buf); 10313 } 10314 10315 void perf_buffer__free(struct perf_buffer *pb) 10316 { 10317 int i; 10318 10319 if (IS_ERR_OR_NULL(pb)) 10320 return; 10321 if (pb->cpu_bufs) { 10322 for (i = 0; i < pb->cpu_cnt; i++) { 10323 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10324 10325 if (!cpu_buf) 10326 continue; 10327 10328 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10329 perf_buffer__free_cpu_buf(pb, cpu_buf); 10330 } 10331 free(pb->cpu_bufs); 10332 } 10333 if (pb->epoll_fd >= 0) 10334 close(pb->epoll_fd); 10335 free(pb->events); 10336 free(pb); 10337 } 10338 10339 static struct perf_cpu_buf * 10340 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10341 int cpu, int map_key) 10342 { 10343 struct perf_cpu_buf *cpu_buf; 10344 char msg[STRERR_BUFSIZE]; 10345 int err; 10346 10347 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10348 if (!cpu_buf) 10349 return ERR_PTR(-ENOMEM); 10350 10351 cpu_buf->pb = pb; 10352 cpu_buf->cpu = cpu; 10353 cpu_buf->map_key = map_key; 10354 10355 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10356 -1, PERF_FLAG_FD_CLOEXEC); 10357 if (cpu_buf->fd < 0) { 10358 err = -errno; 10359 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10360 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10361 goto error; 10362 } 10363 10364 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10365 PROT_READ | PROT_WRITE, MAP_SHARED, 10366 cpu_buf->fd, 0); 10367 if (cpu_buf->base == MAP_FAILED) { 10368 cpu_buf->base = NULL; 10369 err = -errno; 10370 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10371 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10372 goto error; 10373 } 10374 10375 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10376 err = -errno; 10377 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10378 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10379 goto error; 10380 } 10381 10382 return cpu_buf; 10383 10384 error: 10385 perf_buffer__free_cpu_buf(pb, cpu_buf); 10386 return (struct perf_cpu_buf *)ERR_PTR(err); 10387 } 10388 10389 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10390 struct perf_buffer_params *p); 10391 10392 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10393 const struct perf_buffer_opts *opts) 10394 { 10395 struct perf_buffer_params p = {}; 10396 struct perf_event_attr attr = { 0, }; 10397 10398 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10399 attr.type = PERF_TYPE_SOFTWARE; 10400 attr.sample_type = PERF_SAMPLE_RAW; 10401 attr.sample_period = 1; 10402 attr.wakeup_events = 1; 10403 10404 p.attr = &attr; 10405 p.sample_cb = opts ? opts->sample_cb : NULL; 10406 p.lost_cb = opts ? opts->lost_cb : NULL; 10407 p.ctx = opts ? opts->ctx : NULL; 10408 10409 return __perf_buffer__new(map_fd, page_cnt, &p); 10410 } 10411 10412 struct perf_buffer * 10413 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10414 const struct perf_buffer_raw_opts *opts) 10415 { 10416 struct perf_buffer_params p = {}; 10417 10418 p.attr = opts->attr; 10419 p.event_cb = opts->event_cb; 10420 p.ctx = opts->ctx; 10421 p.cpu_cnt = opts->cpu_cnt; 10422 p.cpus = opts->cpus; 10423 p.map_keys = opts->map_keys; 10424 10425 return __perf_buffer__new(map_fd, page_cnt, &p); 10426 } 10427 10428 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10429 struct perf_buffer_params *p) 10430 { 10431 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10432 struct bpf_map_info map; 10433 char msg[STRERR_BUFSIZE]; 10434 struct perf_buffer *pb; 10435 bool *online = NULL; 10436 __u32 map_info_len; 10437 int err, i, j, n; 10438 10439 if (page_cnt & (page_cnt - 1)) { 10440 pr_warn("page count should be power of two, but is %zu\n", 10441 page_cnt); 10442 return ERR_PTR(-EINVAL); 10443 } 10444 10445 /* best-effort sanity checks */ 10446 memset(&map, 0, sizeof(map)); 10447 map_info_len = sizeof(map); 10448 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10449 if (err) { 10450 err = -errno; 10451 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10452 * -EBADFD, -EFAULT, or -E2BIG on real error 10453 */ 10454 if (err != -EINVAL) { 10455 pr_warn("failed to get map info for map FD %d: %s\n", 10456 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10457 return ERR_PTR(err); 10458 } 10459 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10460 map_fd); 10461 } else { 10462 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10463 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10464 map.name); 10465 return ERR_PTR(-EINVAL); 10466 } 10467 } 10468 10469 pb = calloc(1, sizeof(*pb)); 10470 if (!pb) 10471 return ERR_PTR(-ENOMEM); 10472 10473 pb->event_cb = p->event_cb; 10474 pb->sample_cb = p->sample_cb; 10475 pb->lost_cb = p->lost_cb; 10476 pb->ctx = p->ctx; 10477 10478 pb->page_size = getpagesize(); 10479 pb->mmap_size = pb->page_size * page_cnt; 10480 pb->map_fd = map_fd; 10481 10482 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10483 if (pb->epoll_fd < 0) { 10484 err = -errno; 10485 pr_warn("failed to create epoll instance: %s\n", 10486 libbpf_strerror_r(err, msg, sizeof(msg))); 10487 goto error; 10488 } 10489 10490 if (p->cpu_cnt > 0) { 10491 pb->cpu_cnt = p->cpu_cnt; 10492 } else { 10493 pb->cpu_cnt = libbpf_num_possible_cpus(); 10494 if (pb->cpu_cnt < 0) { 10495 err = pb->cpu_cnt; 10496 goto error; 10497 } 10498 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10499 pb->cpu_cnt = map.max_entries; 10500 } 10501 10502 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10503 if (!pb->events) { 10504 err = -ENOMEM; 10505 pr_warn("failed to allocate events: out of memory\n"); 10506 goto error; 10507 } 10508 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10509 if (!pb->cpu_bufs) { 10510 err = -ENOMEM; 10511 pr_warn("failed to allocate buffers: out of memory\n"); 10512 goto error; 10513 } 10514 10515 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10516 if (err) { 10517 pr_warn("failed to get online CPU mask: %d\n", err); 10518 goto error; 10519 } 10520 10521 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10522 struct perf_cpu_buf *cpu_buf; 10523 int cpu, map_key; 10524 10525 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10526 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10527 10528 /* in case user didn't explicitly requested particular CPUs to 10529 * be attached to, skip offline/not present CPUs 10530 */ 10531 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10532 continue; 10533 10534 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10535 if (IS_ERR(cpu_buf)) { 10536 err = PTR_ERR(cpu_buf); 10537 goto error; 10538 } 10539 10540 pb->cpu_bufs[j] = cpu_buf; 10541 10542 err = bpf_map_update_elem(pb->map_fd, &map_key, 10543 &cpu_buf->fd, 0); 10544 if (err) { 10545 err = -errno; 10546 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10547 cpu, map_key, cpu_buf->fd, 10548 libbpf_strerror_r(err, msg, sizeof(msg))); 10549 goto error; 10550 } 10551 10552 pb->events[j].events = EPOLLIN; 10553 pb->events[j].data.ptr = cpu_buf; 10554 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10555 &pb->events[j]) < 0) { 10556 err = -errno; 10557 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10558 cpu, cpu_buf->fd, 10559 libbpf_strerror_r(err, msg, sizeof(msg))); 10560 goto error; 10561 } 10562 j++; 10563 } 10564 pb->cpu_cnt = j; 10565 free(online); 10566 10567 return pb; 10568 10569 error: 10570 free(online); 10571 if (pb) 10572 perf_buffer__free(pb); 10573 return ERR_PTR(err); 10574 } 10575 10576 struct perf_sample_raw { 10577 struct perf_event_header header; 10578 uint32_t size; 10579 char data[]; 10580 }; 10581 10582 struct perf_sample_lost { 10583 struct perf_event_header header; 10584 uint64_t id; 10585 uint64_t lost; 10586 uint64_t sample_id; 10587 }; 10588 10589 static enum bpf_perf_event_ret 10590 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10591 { 10592 struct perf_cpu_buf *cpu_buf = ctx; 10593 struct perf_buffer *pb = cpu_buf->pb; 10594 void *data = e; 10595 10596 /* user wants full control over parsing perf event */ 10597 if (pb->event_cb) 10598 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10599 10600 switch (e->type) { 10601 case PERF_RECORD_SAMPLE: { 10602 struct perf_sample_raw *s = data; 10603 10604 if (pb->sample_cb) 10605 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10606 break; 10607 } 10608 case PERF_RECORD_LOST: { 10609 struct perf_sample_lost *s = data; 10610 10611 if (pb->lost_cb) 10612 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10613 break; 10614 } 10615 default: 10616 pr_warn("unknown perf sample type %d\n", e->type); 10617 return LIBBPF_PERF_EVENT_ERROR; 10618 } 10619 return LIBBPF_PERF_EVENT_CONT; 10620 } 10621 10622 static int perf_buffer__process_records(struct perf_buffer *pb, 10623 struct perf_cpu_buf *cpu_buf) 10624 { 10625 enum bpf_perf_event_ret ret; 10626 10627 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10628 pb->page_size, &cpu_buf->buf, 10629 &cpu_buf->buf_size, 10630 perf_buffer__process_record, cpu_buf); 10631 if (ret != LIBBPF_PERF_EVENT_CONT) 10632 return ret; 10633 return 0; 10634 } 10635 10636 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10637 { 10638 return pb->epoll_fd; 10639 } 10640 10641 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10642 { 10643 int i, cnt, err; 10644 10645 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10646 for (i = 0; i < cnt; i++) { 10647 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10648 10649 err = perf_buffer__process_records(pb, cpu_buf); 10650 if (err) { 10651 pr_warn("error while processing records: %d\n", err); 10652 return err; 10653 } 10654 } 10655 return cnt < 0 ? -errno : cnt; 10656 } 10657 10658 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10659 * manager. 10660 */ 10661 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10662 { 10663 return pb->cpu_cnt; 10664 } 10665 10666 /* 10667 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10668 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10669 * select()/poll()/epoll() Linux syscalls. 10670 */ 10671 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10672 { 10673 struct perf_cpu_buf *cpu_buf; 10674 10675 if (buf_idx >= pb->cpu_cnt) 10676 return -EINVAL; 10677 10678 cpu_buf = pb->cpu_bufs[buf_idx]; 10679 if (!cpu_buf) 10680 return -ENOENT; 10681 10682 return cpu_buf->fd; 10683 } 10684 10685 /* 10686 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10687 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10688 * consume, do nothing and return success. 10689 * Returns: 10690 * - 0 on success; 10691 * - <0 on failure. 10692 */ 10693 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10694 { 10695 struct perf_cpu_buf *cpu_buf; 10696 10697 if (buf_idx >= pb->cpu_cnt) 10698 return -EINVAL; 10699 10700 cpu_buf = pb->cpu_bufs[buf_idx]; 10701 if (!cpu_buf) 10702 return -ENOENT; 10703 10704 return perf_buffer__process_records(pb, cpu_buf); 10705 } 10706 10707 int perf_buffer__consume(struct perf_buffer *pb) 10708 { 10709 int i, err; 10710 10711 for (i = 0; i < pb->cpu_cnt; i++) { 10712 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10713 10714 if (!cpu_buf) 10715 continue; 10716 10717 err = perf_buffer__process_records(pb, cpu_buf); 10718 if (err) { 10719 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10720 return err; 10721 } 10722 } 10723 return 0; 10724 } 10725 10726 struct bpf_prog_info_array_desc { 10727 int array_offset; /* e.g. offset of jited_prog_insns */ 10728 int count_offset; /* e.g. offset of jited_prog_len */ 10729 int size_offset; /* > 0: offset of rec size, 10730 * < 0: fix size of -size_offset 10731 */ 10732 }; 10733 10734 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10735 [BPF_PROG_INFO_JITED_INSNS] = { 10736 offsetof(struct bpf_prog_info, jited_prog_insns), 10737 offsetof(struct bpf_prog_info, jited_prog_len), 10738 -1, 10739 }, 10740 [BPF_PROG_INFO_XLATED_INSNS] = { 10741 offsetof(struct bpf_prog_info, xlated_prog_insns), 10742 offsetof(struct bpf_prog_info, xlated_prog_len), 10743 -1, 10744 }, 10745 [BPF_PROG_INFO_MAP_IDS] = { 10746 offsetof(struct bpf_prog_info, map_ids), 10747 offsetof(struct bpf_prog_info, nr_map_ids), 10748 -(int)sizeof(__u32), 10749 }, 10750 [BPF_PROG_INFO_JITED_KSYMS] = { 10751 offsetof(struct bpf_prog_info, jited_ksyms), 10752 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10753 -(int)sizeof(__u64), 10754 }, 10755 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10756 offsetof(struct bpf_prog_info, jited_func_lens), 10757 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10758 -(int)sizeof(__u32), 10759 }, 10760 [BPF_PROG_INFO_FUNC_INFO] = { 10761 offsetof(struct bpf_prog_info, func_info), 10762 offsetof(struct bpf_prog_info, nr_func_info), 10763 offsetof(struct bpf_prog_info, func_info_rec_size), 10764 }, 10765 [BPF_PROG_INFO_LINE_INFO] = { 10766 offsetof(struct bpf_prog_info, line_info), 10767 offsetof(struct bpf_prog_info, nr_line_info), 10768 offsetof(struct bpf_prog_info, line_info_rec_size), 10769 }, 10770 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10771 offsetof(struct bpf_prog_info, jited_line_info), 10772 offsetof(struct bpf_prog_info, nr_jited_line_info), 10773 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10774 }, 10775 [BPF_PROG_INFO_PROG_TAGS] = { 10776 offsetof(struct bpf_prog_info, prog_tags), 10777 offsetof(struct bpf_prog_info, nr_prog_tags), 10778 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10779 }, 10780 10781 }; 10782 10783 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10784 int offset) 10785 { 10786 __u32 *array = (__u32 *)info; 10787 10788 if (offset >= 0) 10789 return array[offset / sizeof(__u32)]; 10790 return -(int)offset; 10791 } 10792 10793 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10794 int offset) 10795 { 10796 __u64 *array = (__u64 *)info; 10797 10798 if (offset >= 0) 10799 return array[offset / sizeof(__u64)]; 10800 return -(int)offset; 10801 } 10802 10803 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10804 __u32 val) 10805 { 10806 __u32 *array = (__u32 *)info; 10807 10808 if (offset >= 0) 10809 array[offset / sizeof(__u32)] = val; 10810 } 10811 10812 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10813 __u64 val) 10814 { 10815 __u64 *array = (__u64 *)info; 10816 10817 if (offset >= 0) 10818 array[offset / sizeof(__u64)] = val; 10819 } 10820 10821 struct bpf_prog_info_linear * 10822 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10823 { 10824 struct bpf_prog_info_linear *info_linear; 10825 struct bpf_prog_info info = {}; 10826 __u32 info_len = sizeof(info); 10827 __u32 data_len = 0; 10828 int i, err; 10829 void *ptr; 10830 10831 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10832 return ERR_PTR(-EINVAL); 10833 10834 /* step 1: get array dimensions */ 10835 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10836 if (err) { 10837 pr_debug("can't get prog info: %s", strerror(errno)); 10838 return ERR_PTR(-EFAULT); 10839 } 10840 10841 /* step 2: calculate total size of all arrays */ 10842 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10843 bool include_array = (arrays & (1UL << i)) > 0; 10844 struct bpf_prog_info_array_desc *desc; 10845 __u32 count, size; 10846 10847 desc = bpf_prog_info_array_desc + i; 10848 10849 /* kernel is too old to support this field */ 10850 if (info_len < desc->array_offset + sizeof(__u32) || 10851 info_len < desc->count_offset + sizeof(__u32) || 10852 (desc->size_offset > 0 && info_len < desc->size_offset)) 10853 include_array = false; 10854 10855 if (!include_array) { 10856 arrays &= ~(1UL << i); /* clear the bit */ 10857 continue; 10858 } 10859 10860 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10861 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10862 10863 data_len += count * size; 10864 } 10865 10866 /* step 3: allocate continuous memory */ 10867 data_len = roundup(data_len, sizeof(__u64)); 10868 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10869 if (!info_linear) 10870 return ERR_PTR(-ENOMEM); 10871 10872 /* step 4: fill data to info_linear->info */ 10873 info_linear->arrays = arrays; 10874 memset(&info_linear->info, 0, sizeof(info)); 10875 ptr = info_linear->data; 10876 10877 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10878 struct bpf_prog_info_array_desc *desc; 10879 __u32 count, size; 10880 10881 if ((arrays & (1UL << i)) == 0) 10882 continue; 10883 10884 desc = bpf_prog_info_array_desc + i; 10885 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10886 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10887 bpf_prog_info_set_offset_u32(&info_linear->info, 10888 desc->count_offset, count); 10889 bpf_prog_info_set_offset_u32(&info_linear->info, 10890 desc->size_offset, size); 10891 bpf_prog_info_set_offset_u64(&info_linear->info, 10892 desc->array_offset, 10893 ptr_to_u64(ptr)); 10894 ptr += count * size; 10895 } 10896 10897 /* step 5: call syscall again to get required arrays */ 10898 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10899 if (err) { 10900 pr_debug("can't get prog info: %s", strerror(errno)); 10901 free(info_linear); 10902 return ERR_PTR(-EFAULT); 10903 } 10904 10905 /* step 6: verify the data */ 10906 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10907 struct bpf_prog_info_array_desc *desc; 10908 __u32 v1, v2; 10909 10910 if ((arrays & (1UL << i)) == 0) 10911 continue; 10912 10913 desc = bpf_prog_info_array_desc + i; 10914 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10915 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10916 desc->count_offset); 10917 if (v1 != v2) 10918 pr_warn("%s: mismatch in element count\n", __func__); 10919 10920 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10921 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10922 desc->size_offset); 10923 if (v1 != v2) 10924 pr_warn("%s: mismatch in rec size\n", __func__); 10925 } 10926 10927 /* step 7: update info_len and data_len */ 10928 info_linear->info_len = sizeof(struct bpf_prog_info); 10929 info_linear->data_len = data_len; 10930 10931 return info_linear; 10932 } 10933 10934 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10935 { 10936 int i; 10937 10938 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10939 struct bpf_prog_info_array_desc *desc; 10940 __u64 addr, offs; 10941 10942 if ((info_linear->arrays & (1UL << i)) == 0) 10943 continue; 10944 10945 desc = bpf_prog_info_array_desc + i; 10946 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10947 desc->array_offset); 10948 offs = addr - ptr_to_u64(info_linear->data); 10949 bpf_prog_info_set_offset_u64(&info_linear->info, 10950 desc->array_offset, offs); 10951 } 10952 } 10953 10954 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10955 { 10956 int i; 10957 10958 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10959 struct bpf_prog_info_array_desc *desc; 10960 __u64 addr, offs; 10961 10962 if ((info_linear->arrays & (1UL << i)) == 0) 10963 continue; 10964 10965 desc = bpf_prog_info_array_desc + i; 10966 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10967 desc->array_offset); 10968 addr = offs + ptr_to_u64(info_linear->data); 10969 bpf_prog_info_set_offset_u64(&info_linear->info, 10970 desc->array_offset, addr); 10971 } 10972 } 10973 10974 int bpf_program__set_attach_target(struct bpf_program *prog, 10975 int attach_prog_fd, 10976 const char *attach_func_name) 10977 { 10978 int btf_obj_fd = 0, btf_id = 0, err; 10979 10980 if (!prog || attach_prog_fd < 0 || !attach_func_name) 10981 return -EINVAL; 10982 10983 if (prog->obj->loaded) 10984 return -EINVAL; 10985 10986 if (attach_prog_fd) { 10987 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10988 attach_prog_fd); 10989 if (btf_id < 0) 10990 return btf_id; 10991 } else { 10992 /* load btf_vmlinux, if not yet */ 10993 err = bpf_object__load_vmlinux_btf(prog->obj, true); 10994 if (err) 10995 return err; 10996 err = find_kernel_btf_id(prog->obj, attach_func_name, 10997 prog->expected_attach_type, 10998 &btf_obj_fd, &btf_id); 10999 if (err) 11000 return err; 11001 } 11002 11003 prog->attach_btf_id = btf_id; 11004 prog->attach_btf_obj_fd = btf_obj_fd; 11005 prog->attach_prog_fd = attach_prog_fd; 11006 return 0; 11007 } 11008 11009 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11010 { 11011 int err = 0, n, len, start, end = -1; 11012 bool *tmp; 11013 11014 *mask = NULL; 11015 *mask_sz = 0; 11016 11017 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11018 while (*s) { 11019 if (*s == ',' || *s == '\n') { 11020 s++; 11021 continue; 11022 } 11023 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11024 if (n <= 0 || n > 2) { 11025 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11026 err = -EINVAL; 11027 goto cleanup; 11028 } else if (n == 1) { 11029 end = start; 11030 } 11031 if (start < 0 || start > end) { 11032 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11033 start, end, s); 11034 err = -EINVAL; 11035 goto cleanup; 11036 } 11037 tmp = realloc(*mask, end + 1); 11038 if (!tmp) { 11039 err = -ENOMEM; 11040 goto cleanup; 11041 } 11042 *mask = tmp; 11043 memset(tmp + *mask_sz, 0, start - *mask_sz); 11044 memset(tmp + start, 1, end - start + 1); 11045 *mask_sz = end + 1; 11046 s += len; 11047 } 11048 if (!*mask_sz) { 11049 pr_warn("Empty CPU range\n"); 11050 return -EINVAL; 11051 } 11052 return 0; 11053 cleanup: 11054 free(*mask); 11055 *mask = NULL; 11056 return err; 11057 } 11058 11059 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11060 { 11061 int fd, err = 0, len; 11062 char buf[128]; 11063 11064 fd = open(fcpu, O_RDONLY); 11065 if (fd < 0) { 11066 err = -errno; 11067 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11068 return err; 11069 } 11070 len = read(fd, buf, sizeof(buf)); 11071 close(fd); 11072 if (len <= 0) { 11073 err = len ? -errno : -EINVAL; 11074 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11075 return err; 11076 } 11077 if (len >= sizeof(buf)) { 11078 pr_warn("CPU mask is too big in file %s\n", fcpu); 11079 return -E2BIG; 11080 } 11081 buf[len] = '\0'; 11082 11083 return parse_cpu_mask_str(buf, mask, mask_sz); 11084 } 11085 11086 int libbpf_num_possible_cpus(void) 11087 { 11088 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11089 static int cpus; 11090 int err, n, i, tmp_cpus; 11091 bool *mask; 11092 11093 tmp_cpus = READ_ONCE(cpus); 11094 if (tmp_cpus > 0) 11095 return tmp_cpus; 11096 11097 err = parse_cpu_mask_file(fcpu, &mask, &n); 11098 if (err) 11099 return err; 11100 11101 tmp_cpus = 0; 11102 for (i = 0; i < n; i++) { 11103 if (mask[i]) 11104 tmp_cpus++; 11105 } 11106 free(mask); 11107 11108 WRITE_ONCE(cpus, tmp_cpus); 11109 return tmp_cpus; 11110 } 11111 11112 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11113 const struct bpf_object_open_opts *opts) 11114 { 11115 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11116 .object_name = s->name, 11117 ); 11118 struct bpf_object *obj; 11119 int i; 11120 11121 /* Attempt to preserve opts->object_name, unless overriden by user 11122 * explicitly. Overwriting object name for skeletons is discouraged, 11123 * as it breaks global data maps, because they contain object name 11124 * prefix as their own map name prefix. When skeleton is generated, 11125 * bpftool is making an assumption that this name will stay the same. 11126 */ 11127 if (opts) { 11128 memcpy(&skel_opts, opts, sizeof(*opts)); 11129 if (!opts->object_name) 11130 skel_opts.object_name = s->name; 11131 } 11132 11133 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11134 if (IS_ERR(obj)) { 11135 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 11136 s->name, PTR_ERR(obj)); 11137 return PTR_ERR(obj); 11138 } 11139 11140 *s->obj = obj; 11141 11142 for (i = 0; i < s->map_cnt; i++) { 11143 struct bpf_map **map = s->maps[i].map; 11144 const char *name = s->maps[i].name; 11145 void **mmaped = s->maps[i].mmaped; 11146 11147 *map = bpf_object__find_map_by_name(obj, name); 11148 if (!*map) { 11149 pr_warn("failed to find skeleton map '%s'\n", name); 11150 return -ESRCH; 11151 } 11152 11153 /* externs shouldn't be pre-setup from user code */ 11154 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11155 *mmaped = (*map)->mmaped; 11156 } 11157 11158 for (i = 0; i < s->prog_cnt; i++) { 11159 struct bpf_program **prog = s->progs[i].prog; 11160 const char *name = s->progs[i].name; 11161 11162 *prog = bpf_object__find_program_by_name(obj, name); 11163 if (!*prog) { 11164 pr_warn("failed to find skeleton program '%s'\n", name); 11165 return -ESRCH; 11166 } 11167 } 11168 11169 return 0; 11170 } 11171 11172 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11173 { 11174 int i, err; 11175 11176 err = bpf_object__load(*s->obj); 11177 if (err) { 11178 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11179 return err; 11180 } 11181 11182 for (i = 0; i < s->map_cnt; i++) { 11183 struct bpf_map *map = *s->maps[i].map; 11184 size_t mmap_sz = bpf_map_mmap_sz(map); 11185 int prot, map_fd = bpf_map__fd(map); 11186 void **mmaped = s->maps[i].mmaped; 11187 11188 if (!mmaped) 11189 continue; 11190 11191 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11192 *mmaped = NULL; 11193 continue; 11194 } 11195 11196 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11197 prot = PROT_READ; 11198 else 11199 prot = PROT_READ | PROT_WRITE; 11200 11201 /* Remap anonymous mmap()-ed "map initialization image" as 11202 * a BPF map-backed mmap()-ed memory, but preserving the same 11203 * memory address. This will cause kernel to change process' 11204 * page table to point to a different piece of kernel memory, 11205 * but from userspace point of view memory address (and its 11206 * contents, being identical at this point) will stay the 11207 * same. This mapping will be released by bpf_object__close() 11208 * as per normal clean up procedure, so we don't need to worry 11209 * about it from skeleton's clean up perspective. 11210 */ 11211 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11212 MAP_SHARED | MAP_FIXED, map_fd, 0); 11213 if (*mmaped == MAP_FAILED) { 11214 err = -errno; 11215 *mmaped = NULL; 11216 pr_warn("failed to re-mmap() map '%s': %d\n", 11217 bpf_map__name(map), err); 11218 return err; 11219 } 11220 } 11221 11222 return 0; 11223 } 11224 11225 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11226 { 11227 int i; 11228 11229 for (i = 0; i < s->prog_cnt; i++) { 11230 struct bpf_program *prog = *s->progs[i].prog; 11231 struct bpf_link **link = s->progs[i].link; 11232 const struct bpf_sec_def *sec_def; 11233 11234 if (!prog->load) 11235 continue; 11236 11237 sec_def = find_sec_def(prog->sec_name); 11238 if (!sec_def || !sec_def->attach_fn) 11239 continue; 11240 11241 *link = sec_def->attach_fn(sec_def, prog); 11242 if (IS_ERR(*link)) { 11243 pr_warn("failed to auto-attach program '%s': %ld\n", 11244 bpf_program__name(prog), PTR_ERR(*link)); 11245 return PTR_ERR(*link); 11246 } 11247 } 11248 11249 return 0; 11250 } 11251 11252 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11253 { 11254 int i; 11255 11256 for (i = 0; i < s->prog_cnt; i++) { 11257 struct bpf_link **link = s->progs[i].link; 11258 11259 bpf_link__destroy(*link); 11260 *link = NULL; 11261 } 11262 } 11263 11264 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11265 { 11266 if (s->progs) 11267 bpf_object__detach_skeleton(s); 11268 if (s->obj) 11269 bpf_object__close(*s->obj); 11270 free(s->maps); 11271 free(s->progs); 11272 free(s); 11273 } 11274