1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 #include "bpf_gen_internal.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 73 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 74 75 static int __base_pr(enum libbpf_print_level level, const char *format, 76 va_list args) 77 { 78 if (level == LIBBPF_DEBUG) 79 return 0; 80 81 return vfprintf(stderr, format, args); 82 } 83 84 static libbpf_print_fn_t __libbpf_pr = __base_pr; 85 86 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 87 { 88 libbpf_print_fn_t old_print_fn = __libbpf_pr; 89 90 __libbpf_pr = fn; 91 return old_print_fn; 92 } 93 94 __printf(2, 3) 95 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 96 { 97 va_list args; 98 99 if (!__libbpf_pr) 100 return; 101 102 va_start(args, format); 103 __libbpf_pr(level, format, args); 104 va_end(args); 105 } 106 107 static void pr_perm_msg(int err) 108 { 109 struct rlimit limit; 110 char buf[100]; 111 112 if (err != -EPERM || geteuid() != 0) 113 return; 114 115 err = getrlimit(RLIMIT_MEMLOCK, &limit); 116 if (err) 117 return; 118 119 if (limit.rlim_cur == RLIM_INFINITY) 120 return; 121 122 if (limit.rlim_cur < 1024) 123 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 124 else if (limit.rlim_cur < 1024*1024) 125 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 126 else 127 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 128 129 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 130 buf); 131 } 132 133 #define STRERR_BUFSIZE 128 134 135 /* Copied from tools/perf/util/util.h */ 136 #ifndef zfree 137 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 138 #endif 139 140 #ifndef zclose 141 # define zclose(fd) ({ \ 142 int ___err = 0; \ 143 if ((fd) >= 0) \ 144 ___err = close((fd)); \ 145 fd = -1; \ 146 ___err; }) 147 #endif 148 149 static inline __u64 ptr_to_u64(const void *ptr) 150 { 151 return (__u64) (unsigned long) ptr; 152 } 153 154 /* this goes away in libbpf 1.0 */ 155 enum libbpf_strict_mode libbpf_mode = LIBBPF_STRICT_NONE; 156 157 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 158 { 159 /* __LIBBPF_STRICT_LAST is the last power-of-2 value used + 1, so to 160 * get all possible values we compensate last +1, and then (2*x - 1) 161 * to get the bit mask 162 */ 163 if (mode != LIBBPF_STRICT_ALL 164 && (mode & ~((__LIBBPF_STRICT_LAST - 1) * 2 - 1))) 165 return errno = EINVAL, -EINVAL; 166 167 libbpf_mode = mode; 168 return 0; 169 } 170 171 enum kern_feature_id { 172 /* v4.14: kernel support for program & map names. */ 173 FEAT_PROG_NAME, 174 /* v5.2: kernel support for global data sections. */ 175 FEAT_GLOBAL_DATA, 176 /* BTF support */ 177 FEAT_BTF, 178 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 179 FEAT_BTF_FUNC, 180 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 181 FEAT_BTF_DATASEC, 182 /* BTF_FUNC_GLOBAL is supported */ 183 FEAT_BTF_GLOBAL_FUNC, 184 /* BPF_F_MMAPABLE is supported for arrays */ 185 FEAT_ARRAY_MMAP, 186 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 187 FEAT_EXP_ATTACH_TYPE, 188 /* bpf_probe_read_{kernel,user}[_str] helpers */ 189 FEAT_PROBE_READ_KERN, 190 /* BPF_PROG_BIND_MAP is supported */ 191 FEAT_PROG_BIND_MAP, 192 /* Kernel support for module BTFs */ 193 FEAT_MODULE_BTF, 194 /* BTF_KIND_FLOAT support */ 195 FEAT_BTF_FLOAT, 196 /* BPF perf link support */ 197 FEAT_PERF_LINK, 198 /* BTF_KIND_DECL_TAG support */ 199 FEAT_BTF_DECL_TAG, 200 __FEAT_CNT, 201 }; 202 203 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id); 204 205 enum reloc_type { 206 RELO_LD64, 207 RELO_CALL, 208 RELO_DATA, 209 RELO_EXTERN_VAR, 210 RELO_EXTERN_FUNC, 211 RELO_SUBPROG_ADDR, 212 }; 213 214 struct reloc_desc { 215 enum reloc_type type; 216 int insn_idx; 217 int map_idx; 218 int sym_off; 219 }; 220 221 struct bpf_sec_def; 222 223 typedef int (*init_fn_t)(struct bpf_program *prog, long cookie); 224 typedef int (*preload_fn_t)(struct bpf_program *prog, struct bpf_prog_load_params *attr, long cookie); 225 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_program *prog, long cookie); 226 227 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 228 enum sec_def_flags { 229 SEC_NONE = 0, 230 /* expected_attach_type is optional, if kernel doesn't support that */ 231 SEC_EXP_ATTACH_OPT = 1, 232 /* legacy, only used by libbpf_get_type_names() and 233 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 234 * This used to be associated with cgroup (and few other) BPF programs 235 * that were attachable through BPF_PROG_ATTACH command. Pretty 236 * meaningless nowadays, though. 237 */ 238 SEC_ATTACHABLE = 2, 239 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 240 /* attachment target is specified through BTF ID in either kernel or 241 * other BPF program's BTF object */ 242 SEC_ATTACH_BTF = 4, 243 /* BPF program type allows sleeping/blocking in kernel */ 244 SEC_SLEEPABLE = 8, 245 /* allow non-strict prefix matching */ 246 SEC_SLOPPY_PFX = 16, 247 }; 248 249 struct bpf_sec_def { 250 const char *sec; 251 enum bpf_prog_type prog_type; 252 enum bpf_attach_type expected_attach_type; 253 long cookie; 254 255 init_fn_t init_fn; 256 preload_fn_t preload_fn; 257 attach_fn_t attach_fn; 258 }; 259 260 /* 261 * bpf_prog should be a better name but it has been used in 262 * linux/filter.h. 263 */ 264 struct bpf_program { 265 const struct bpf_sec_def *sec_def; 266 char *sec_name; 267 size_t sec_idx; 268 /* this program's instruction offset (in number of instructions) 269 * within its containing ELF section 270 */ 271 size_t sec_insn_off; 272 /* number of original instructions in ELF section belonging to this 273 * program, not taking into account subprogram instructions possible 274 * appended later during relocation 275 */ 276 size_t sec_insn_cnt; 277 /* Offset (in number of instructions) of the start of instruction 278 * belonging to this BPF program within its containing main BPF 279 * program. For the entry-point (main) BPF program, this is always 280 * zero. For a sub-program, this gets reset before each of main BPF 281 * programs are processed and relocated and is used to determined 282 * whether sub-program was already appended to the main program, and 283 * if yes, at which instruction offset. 284 */ 285 size_t sub_insn_off; 286 287 char *name; 288 /* name with / replaced by _; makes recursive pinning 289 * in bpf_object__pin_programs easier 290 */ 291 char *pin_name; 292 293 /* instructions that belong to BPF program; insns[0] is located at 294 * sec_insn_off instruction within its ELF section in ELF file, so 295 * when mapping ELF file instruction index to the local instruction, 296 * one needs to subtract sec_insn_off; and vice versa. 297 */ 298 struct bpf_insn *insns; 299 /* actual number of instruction in this BPF program's image; for 300 * entry-point BPF programs this includes the size of main program 301 * itself plus all the used sub-programs, appended at the end 302 */ 303 size_t insns_cnt; 304 305 struct reloc_desc *reloc_desc; 306 int nr_reloc; 307 int log_level; 308 309 struct { 310 int nr; 311 int *fds; 312 } instances; 313 bpf_program_prep_t preprocessor; 314 315 struct bpf_object *obj; 316 void *priv; 317 bpf_program_clear_priv_t clear_priv; 318 319 bool load; 320 bool mark_btf_static; 321 enum bpf_prog_type type; 322 enum bpf_attach_type expected_attach_type; 323 int prog_ifindex; 324 __u32 attach_btf_obj_fd; 325 __u32 attach_btf_id; 326 __u32 attach_prog_fd; 327 void *func_info; 328 __u32 func_info_rec_size; 329 __u32 func_info_cnt; 330 331 void *line_info; 332 __u32 line_info_rec_size; 333 __u32 line_info_cnt; 334 __u32 prog_flags; 335 }; 336 337 struct bpf_struct_ops { 338 const char *tname; 339 const struct btf_type *type; 340 struct bpf_program **progs; 341 __u32 *kern_func_off; 342 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 343 void *data; 344 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 345 * btf_vmlinux's format. 346 * struct bpf_struct_ops_tcp_congestion_ops { 347 * [... some other kernel fields ...] 348 * struct tcp_congestion_ops data; 349 * } 350 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 351 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 352 * from "data". 353 */ 354 void *kern_vdata; 355 __u32 type_id; 356 }; 357 358 #define DATA_SEC ".data" 359 #define BSS_SEC ".bss" 360 #define RODATA_SEC ".rodata" 361 #define KCONFIG_SEC ".kconfig" 362 #define KSYMS_SEC ".ksyms" 363 #define STRUCT_OPS_SEC ".struct_ops" 364 365 enum libbpf_map_type { 366 LIBBPF_MAP_UNSPEC, 367 LIBBPF_MAP_DATA, 368 LIBBPF_MAP_BSS, 369 LIBBPF_MAP_RODATA, 370 LIBBPF_MAP_KCONFIG, 371 }; 372 373 struct bpf_map { 374 char *name; 375 /* real_name is defined for special internal maps (.rodata*, 376 * .data*, .bss, .kconfig) and preserves their original ELF section 377 * name. This is important to be be able to find corresponding BTF 378 * DATASEC information. 379 */ 380 char *real_name; 381 int fd; 382 int sec_idx; 383 size_t sec_offset; 384 int map_ifindex; 385 int inner_map_fd; 386 struct bpf_map_def def; 387 __u32 numa_node; 388 __u32 btf_var_idx; 389 __u32 btf_key_type_id; 390 __u32 btf_value_type_id; 391 __u32 btf_vmlinux_value_type_id; 392 void *priv; 393 bpf_map_clear_priv_t clear_priv; 394 enum libbpf_map_type libbpf_type; 395 void *mmaped; 396 struct bpf_struct_ops *st_ops; 397 struct bpf_map *inner_map; 398 void **init_slots; 399 int init_slots_sz; 400 char *pin_path; 401 bool pinned; 402 bool reused; 403 __u64 map_extra; 404 }; 405 406 enum extern_type { 407 EXT_UNKNOWN, 408 EXT_KCFG, 409 EXT_KSYM, 410 }; 411 412 enum kcfg_type { 413 KCFG_UNKNOWN, 414 KCFG_CHAR, 415 KCFG_BOOL, 416 KCFG_INT, 417 KCFG_TRISTATE, 418 KCFG_CHAR_ARR, 419 }; 420 421 struct extern_desc { 422 enum extern_type type; 423 int sym_idx; 424 int btf_id; 425 int sec_btf_id; 426 const char *name; 427 bool is_set; 428 bool is_weak; 429 union { 430 struct { 431 enum kcfg_type type; 432 int sz; 433 int align; 434 int data_off; 435 bool is_signed; 436 } kcfg; 437 struct { 438 unsigned long long addr; 439 440 /* target btf_id of the corresponding kernel var. */ 441 int kernel_btf_obj_fd; 442 int kernel_btf_id; 443 444 /* local btf_id of the ksym extern's type. */ 445 __u32 type_id; 446 /* BTF fd index to be patched in for insn->off, this is 447 * 0 for vmlinux BTF, index in obj->fd_array for module 448 * BTF 449 */ 450 __s16 btf_fd_idx; 451 } ksym; 452 }; 453 }; 454 455 static LIST_HEAD(bpf_objects_list); 456 457 struct module_btf { 458 struct btf *btf; 459 char *name; 460 __u32 id; 461 int fd; 462 int fd_array_idx; 463 }; 464 465 enum sec_type { 466 SEC_UNUSED = 0, 467 SEC_RELO, 468 SEC_BSS, 469 SEC_DATA, 470 SEC_RODATA, 471 }; 472 473 struct elf_sec_desc { 474 enum sec_type sec_type; 475 Elf64_Shdr *shdr; 476 Elf_Data *data; 477 }; 478 479 struct elf_state { 480 int fd; 481 const void *obj_buf; 482 size_t obj_buf_sz; 483 Elf *elf; 484 Elf64_Ehdr *ehdr; 485 Elf_Data *symbols; 486 Elf_Data *st_ops_data; 487 size_t shstrndx; /* section index for section name strings */ 488 size_t strtabidx; 489 struct elf_sec_desc *secs; 490 int sec_cnt; 491 int maps_shndx; 492 int btf_maps_shndx; 493 __u32 btf_maps_sec_btf_id; 494 int text_shndx; 495 int symbols_shndx; 496 int st_ops_shndx; 497 }; 498 499 struct bpf_object { 500 char name[BPF_OBJ_NAME_LEN]; 501 char license[64]; 502 __u32 kern_version; 503 504 struct bpf_program *programs; 505 size_t nr_programs; 506 struct bpf_map *maps; 507 size_t nr_maps; 508 size_t maps_cap; 509 510 char *kconfig; 511 struct extern_desc *externs; 512 int nr_extern; 513 int kconfig_map_idx; 514 515 bool loaded; 516 bool has_subcalls; 517 bool has_rodata; 518 519 struct bpf_gen *gen_loader; 520 521 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 522 struct elf_state efile; 523 /* 524 * All loaded bpf_object are linked in a list, which is 525 * hidden to caller. bpf_objects__<func> handlers deal with 526 * all objects. 527 */ 528 struct list_head list; 529 530 struct btf *btf; 531 struct btf_ext *btf_ext; 532 533 /* Parse and load BTF vmlinux if any of the programs in the object need 534 * it at load time. 535 */ 536 struct btf *btf_vmlinux; 537 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 538 * override for vmlinux BTF. 539 */ 540 char *btf_custom_path; 541 /* vmlinux BTF override for CO-RE relocations */ 542 struct btf *btf_vmlinux_override; 543 /* Lazily initialized kernel module BTFs */ 544 struct module_btf *btf_modules; 545 bool btf_modules_loaded; 546 size_t btf_module_cnt; 547 size_t btf_module_cap; 548 549 void *priv; 550 bpf_object_clear_priv_t clear_priv; 551 552 int *fd_array; 553 size_t fd_array_cap; 554 size_t fd_array_cnt; 555 556 char path[]; 557 }; 558 559 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 560 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 561 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 562 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 563 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 564 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 565 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 566 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 567 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 568 569 void bpf_program__unload(struct bpf_program *prog) 570 { 571 int i; 572 573 if (!prog) 574 return; 575 576 /* 577 * If the object is opened but the program was never loaded, 578 * it is possible that prog->instances.nr == -1. 579 */ 580 if (prog->instances.nr > 0) { 581 for (i = 0; i < prog->instances.nr; i++) 582 zclose(prog->instances.fds[i]); 583 } else if (prog->instances.nr != -1) { 584 pr_warn("Internal error: instances.nr is %d\n", 585 prog->instances.nr); 586 } 587 588 prog->instances.nr = -1; 589 zfree(&prog->instances.fds); 590 591 zfree(&prog->func_info); 592 zfree(&prog->line_info); 593 } 594 595 static void bpf_program__exit(struct bpf_program *prog) 596 { 597 if (!prog) 598 return; 599 600 if (prog->clear_priv) 601 prog->clear_priv(prog, prog->priv); 602 603 prog->priv = NULL; 604 prog->clear_priv = NULL; 605 606 bpf_program__unload(prog); 607 zfree(&prog->name); 608 zfree(&prog->sec_name); 609 zfree(&prog->pin_name); 610 zfree(&prog->insns); 611 zfree(&prog->reloc_desc); 612 613 prog->nr_reloc = 0; 614 prog->insns_cnt = 0; 615 prog->sec_idx = -1; 616 } 617 618 static char *__bpf_program__pin_name(struct bpf_program *prog) 619 { 620 char *name, *p; 621 622 if (libbpf_mode & LIBBPF_STRICT_SEC_NAME) 623 name = strdup(prog->name); 624 else 625 name = strdup(prog->sec_name); 626 627 if (!name) 628 return NULL; 629 630 p = name; 631 632 while ((p = strchr(p, '/'))) 633 *p = '_'; 634 635 return name; 636 } 637 638 static bool insn_is_subprog_call(const struct bpf_insn *insn) 639 { 640 return BPF_CLASS(insn->code) == BPF_JMP && 641 BPF_OP(insn->code) == BPF_CALL && 642 BPF_SRC(insn->code) == BPF_K && 643 insn->src_reg == BPF_PSEUDO_CALL && 644 insn->dst_reg == 0 && 645 insn->off == 0; 646 } 647 648 static bool is_call_insn(const struct bpf_insn *insn) 649 { 650 return insn->code == (BPF_JMP | BPF_CALL); 651 } 652 653 static bool insn_is_pseudo_func(struct bpf_insn *insn) 654 { 655 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 656 } 657 658 static int 659 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 660 const char *name, size_t sec_idx, const char *sec_name, 661 size_t sec_off, void *insn_data, size_t insn_data_sz) 662 { 663 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 664 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 665 sec_name, name, sec_off, insn_data_sz); 666 return -EINVAL; 667 } 668 669 memset(prog, 0, sizeof(*prog)); 670 prog->obj = obj; 671 672 prog->sec_idx = sec_idx; 673 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 674 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 675 /* insns_cnt can later be increased by appending used subprograms */ 676 prog->insns_cnt = prog->sec_insn_cnt; 677 678 prog->type = BPF_PROG_TYPE_UNSPEC; 679 prog->load = true; 680 681 prog->instances.fds = NULL; 682 prog->instances.nr = -1; 683 684 prog->sec_name = strdup(sec_name); 685 if (!prog->sec_name) 686 goto errout; 687 688 prog->name = strdup(name); 689 if (!prog->name) 690 goto errout; 691 692 prog->pin_name = __bpf_program__pin_name(prog); 693 if (!prog->pin_name) 694 goto errout; 695 696 prog->insns = malloc(insn_data_sz); 697 if (!prog->insns) 698 goto errout; 699 memcpy(prog->insns, insn_data, insn_data_sz); 700 701 return 0; 702 errout: 703 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 704 bpf_program__exit(prog); 705 return -ENOMEM; 706 } 707 708 static int 709 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 710 const char *sec_name, int sec_idx) 711 { 712 Elf_Data *symbols = obj->efile.symbols; 713 struct bpf_program *prog, *progs; 714 void *data = sec_data->d_buf; 715 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 716 int nr_progs, err, i; 717 const char *name; 718 Elf64_Sym *sym; 719 720 progs = obj->programs; 721 nr_progs = obj->nr_programs; 722 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 723 sec_off = 0; 724 725 for (i = 0; i < nr_syms; i++) { 726 sym = elf_sym_by_idx(obj, i); 727 728 if (sym->st_shndx != sec_idx) 729 continue; 730 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 731 continue; 732 733 prog_sz = sym->st_size; 734 sec_off = sym->st_value; 735 736 name = elf_sym_str(obj, sym->st_name); 737 if (!name) { 738 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 739 sec_name, sec_off); 740 return -LIBBPF_ERRNO__FORMAT; 741 } 742 743 if (sec_off + prog_sz > sec_sz) { 744 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 745 sec_name, sec_off); 746 return -LIBBPF_ERRNO__FORMAT; 747 } 748 749 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 750 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 751 return -ENOTSUP; 752 } 753 754 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 755 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 756 757 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 758 if (!progs) { 759 /* 760 * In this case the original obj->programs 761 * is still valid, so don't need special treat for 762 * bpf_close_object(). 763 */ 764 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 765 sec_name, name); 766 return -ENOMEM; 767 } 768 obj->programs = progs; 769 770 prog = &progs[nr_progs]; 771 772 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 773 sec_off, data + sec_off, prog_sz); 774 if (err) 775 return err; 776 777 /* if function is a global/weak symbol, but has restricted 778 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 779 * as static to enable more permissive BPF verification mode 780 * with more outside context available to BPF verifier 781 */ 782 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 783 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 784 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 785 prog->mark_btf_static = true; 786 787 nr_progs++; 788 obj->nr_programs = nr_progs; 789 } 790 791 return 0; 792 } 793 794 static __u32 get_kernel_version(void) 795 { 796 __u32 major, minor, patch; 797 struct utsname info; 798 799 uname(&info); 800 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 801 return 0; 802 return KERNEL_VERSION(major, minor, patch); 803 } 804 805 static const struct btf_member * 806 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 807 { 808 struct btf_member *m; 809 int i; 810 811 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 812 if (btf_member_bit_offset(t, i) == bit_offset) 813 return m; 814 } 815 816 return NULL; 817 } 818 819 static const struct btf_member * 820 find_member_by_name(const struct btf *btf, const struct btf_type *t, 821 const char *name) 822 { 823 struct btf_member *m; 824 int i; 825 826 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 827 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 828 return m; 829 } 830 831 return NULL; 832 } 833 834 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 835 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 836 const char *name, __u32 kind); 837 838 static int 839 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 840 const struct btf_type **type, __u32 *type_id, 841 const struct btf_type **vtype, __u32 *vtype_id, 842 const struct btf_member **data_member) 843 { 844 const struct btf_type *kern_type, *kern_vtype; 845 const struct btf_member *kern_data_member; 846 __s32 kern_vtype_id, kern_type_id; 847 __u32 i; 848 849 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 850 if (kern_type_id < 0) { 851 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 852 tname); 853 return kern_type_id; 854 } 855 kern_type = btf__type_by_id(btf, kern_type_id); 856 857 /* Find the corresponding "map_value" type that will be used 858 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 859 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 860 * btf_vmlinux. 861 */ 862 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 863 tname, BTF_KIND_STRUCT); 864 if (kern_vtype_id < 0) { 865 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 866 STRUCT_OPS_VALUE_PREFIX, tname); 867 return kern_vtype_id; 868 } 869 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 870 871 /* Find "struct tcp_congestion_ops" from 872 * struct bpf_struct_ops_tcp_congestion_ops { 873 * [ ... ] 874 * struct tcp_congestion_ops data; 875 * } 876 */ 877 kern_data_member = btf_members(kern_vtype); 878 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 879 if (kern_data_member->type == kern_type_id) 880 break; 881 } 882 if (i == btf_vlen(kern_vtype)) { 883 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 884 tname, STRUCT_OPS_VALUE_PREFIX, tname); 885 return -EINVAL; 886 } 887 888 *type = kern_type; 889 *type_id = kern_type_id; 890 *vtype = kern_vtype; 891 *vtype_id = kern_vtype_id; 892 *data_member = kern_data_member; 893 894 return 0; 895 } 896 897 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 898 { 899 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 900 } 901 902 /* Init the map's fields that depend on kern_btf */ 903 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 904 const struct btf *btf, 905 const struct btf *kern_btf) 906 { 907 const struct btf_member *member, *kern_member, *kern_data_member; 908 const struct btf_type *type, *kern_type, *kern_vtype; 909 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 910 struct bpf_struct_ops *st_ops; 911 void *data, *kern_data; 912 const char *tname; 913 int err; 914 915 st_ops = map->st_ops; 916 type = st_ops->type; 917 tname = st_ops->tname; 918 err = find_struct_ops_kern_types(kern_btf, tname, 919 &kern_type, &kern_type_id, 920 &kern_vtype, &kern_vtype_id, 921 &kern_data_member); 922 if (err) 923 return err; 924 925 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 926 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 927 928 map->def.value_size = kern_vtype->size; 929 map->btf_vmlinux_value_type_id = kern_vtype_id; 930 931 st_ops->kern_vdata = calloc(1, kern_vtype->size); 932 if (!st_ops->kern_vdata) 933 return -ENOMEM; 934 935 data = st_ops->data; 936 kern_data_off = kern_data_member->offset / 8; 937 kern_data = st_ops->kern_vdata + kern_data_off; 938 939 member = btf_members(type); 940 for (i = 0; i < btf_vlen(type); i++, member++) { 941 const struct btf_type *mtype, *kern_mtype; 942 __u32 mtype_id, kern_mtype_id; 943 void *mdata, *kern_mdata; 944 __s64 msize, kern_msize; 945 __u32 moff, kern_moff; 946 __u32 kern_member_idx; 947 const char *mname; 948 949 mname = btf__name_by_offset(btf, member->name_off); 950 kern_member = find_member_by_name(kern_btf, kern_type, mname); 951 if (!kern_member) { 952 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 953 map->name, mname); 954 return -ENOTSUP; 955 } 956 957 kern_member_idx = kern_member - btf_members(kern_type); 958 if (btf_member_bitfield_size(type, i) || 959 btf_member_bitfield_size(kern_type, kern_member_idx)) { 960 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 961 map->name, mname); 962 return -ENOTSUP; 963 } 964 965 moff = member->offset / 8; 966 kern_moff = kern_member->offset / 8; 967 968 mdata = data + moff; 969 kern_mdata = kern_data + kern_moff; 970 971 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 972 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 973 &kern_mtype_id); 974 if (BTF_INFO_KIND(mtype->info) != 975 BTF_INFO_KIND(kern_mtype->info)) { 976 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 977 map->name, mname, BTF_INFO_KIND(mtype->info), 978 BTF_INFO_KIND(kern_mtype->info)); 979 return -ENOTSUP; 980 } 981 982 if (btf_is_ptr(mtype)) { 983 struct bpf_program *prog; 984 985 prog = st_ops->progs[i]; 986 if (!prog) 987 continue; 988 989 kern_mtype = skip_mods_and_typedefs(kern_btf, 990 kern_mtype->type, 991 &kern_mtype_id); 992 993 /* mtype->type must be a func_proto which was 994 * guaranteed in bpf_object__collect_st_ops_relos(), 995 * so only check kern_mtype for func_proto here. 996 */ 997 if (!btf_is_func_proto(kern_mtype)) { 998 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 999 map->name, mname); 1000 return -ENOTSUP; 1001 } 1002 1003 prog->attach_btf_id = kern_type_id; 1004 prog->expected_attach_type = kern_member_idx; 1005 1006 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1007 1008 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1009 map->name, mname, prog->name, moff, 1010 kern_moff); 1011 1012 continue; 1013 } 1014 1015 msize = btf__resolve_size(btf, mtype_id); 1016 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1017 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1018 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1019 map->name, mname, (ssize_t)msize, 1020 (ssize_t)kern_msize); 1021 return -ENOTSUP; 1022 } 1023 1024 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1025 map->name, mname, (unsigned int)msize, 1026 moff, kern_moff); 1027 memcpy(kern_mdata, mdata, msize); 1028 } 1029 1030 return 0; 1031 } 1032 1033 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1034 { 1035 struct bpf_map *map; 1036 size_t i; 1037 int err; 1038 1039 for (i = 0; i < obj->nr_maps; i++) { 1040 map = &obj->maps[i]; 1041 1042 if (!bpf_map__is_struct_ops(map)) 1043 continue; 1044 1045 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1046 obj->btf_vmlinux); 1047 if (err) 1048 return err; 1049 } 1050 1051 return 0; 1052 } 1053 1054 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1055 { 1056 const struct btf_type *type, *datasec; 1057 const struct btf_var_secinfo *vsi; 1058 struct bpf_struct_ops *st_ops; 1059 const char *tname, *var_name; 1060 __s32 type_id, datasec_id; 1061 const struct btf *btf; 1062 struct bpf_map *map; 1063 __u32 i; 1064 1065 if (obj->efile.st_ops_shndx == -1) 1066 return 0; 1067 1068 btf = obj->btf; 1069 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1070 BTF_KIND_DATASEC); 1071 if (datasec_id < 0) { 1072 pr_warn("struct_ops init: DATASEC %s not found\n", 1073 STRUCT_OPS_SEC); 1074 return -EINVAL; 1075 } 1076 1077 datasec = btf__type_by_id(btf, datasec_id); 1078 vsi = btf_var_secinfos(datasec); 1079 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1080 type = btf__type_by_id(obj->btf, vsi->type); 1081 var_name = btf__name_by_offset(obj->btf, type->name_off); 1082 1083 type_id = btf__resolve_type(obj->btf, vsi->type); 1084 if (type_id < 0) { 1085 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1086 vsi->type, STRUCT_OPS_SEC); 1087 return -EINVAL; 1088 } 1089 1090 type = btf__type_by_id(obj->btf, type_id); 1091 tname = btf__name_by_offset(obj->btf, type->name_off); 1092 if (!tname[0]) { 1093 pr_warn("struct_ops init: anonymous type is not supported\n"); 1094 return -ENOTSUP; 1095 } 1096 if (!btf_is_struct(type)) { 1097 pr_warn("struct_ops init: %s is not a struct\n", tname); 1098 return -EINVAL; 1099 } 1100 1101 map = bpf_object__add_map(obj); 1102 if (IS_ERR(map)) 1103 return PTR_ERR(map); 1104 1105 map->sec_idx = obj->efile.st_ops_shndx; 1106 map->sec_offset = vsi->offset; 1107 map->name = strdup(var_name); 1108 if (!map->name) 1109 return -ENOMEM; 1110 1111 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1112 map->def.key_size = sizeof(int); 1113 map->def.value_size = type->size; 1114 map->def.max_entries = 1; 1115 1116 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1117 if (!map->st_ops) 1118 return -ENOMEM; 1119 st_ops = map->st_ops; 1120 st_ops->data = malloc(type->size); 1121 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1122 st_ops->kern_func_off = malloc(btf_vlen(type) * 1123 sizeof(*st_ops->kern_func_off)); 1124 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1125 return -ENOMEM; 1126 1127 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1128 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1129 var_name, STRUCT_OPS_SEC); 1130 return -EINVAL; 1131 } 1132 1133 memcpy(st_ops->data, 1134 obj->efile.st_ops_data->d_buf + vsi->offset, 1135 type->size); 1136 st_ops->tname = tname; 1137 st_ops->type = type; 1138 st_ops->type_id = type_id; 1139 1140 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1141 tname, type_id, var_name, vsi->offset); 1142 } 1143 1144 return 0; 1145 } 1146 1147 static struct bpf_object *bpf_object__new(const char *path, 1148 const void *obj_buf, 1149 size_t obj_buf_sz, 1150 const char *obj_name) 1151 { 1152 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 1153 struct bpf_object *obj; 1154 char *end; 1155 1156 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1157 if (!obj) { 1158 pr_warn("alloc memory failed for %s\n", path); 1159 return ERR_PTR(-ENOMEM); 1160 } 1161 1162 strcpy(obj->path, path); 1163 if (obj_name) { 1164 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1165 obj->name[sizeof(obj->name) - 1] = 0; 1166 } else { 1167 /* Using basename() GNU version which doesn't modify arg. */ 1168 strncpy(obj->name, basename((void *)path), 1169 sizeof(obj->name) - 1); 1170 end = strchr(obj->name, '.'); 1171 if (end) 1172 *end = 0; 1173 } 1174 1175 obj->efile.fd = -1; 1176 /* 1177 * Caller of this function should also call 1178 * bpf_object__elf_finish() after data collection to return 1179 * obj_buf to user. If not, we should duplicate the buffer to 1180 * avoid user freeing them before elf finish. 1181 */ 1182 obj->efile.obj_buf = obj_buf; 1183 obj->efile.obj_buf_sz = obj_buf_sz; 1184 obj->efile.maps_shndx = -1; 1185 obj->efile.btf_maps_shndx = -1; 1186 obj->efile.st_ops_shndx = -1; 1187 obj->kconfig_map_idx = -1; 1188 1189 obj->kern_version = get_kernel_version(); 1190 obj->loaded = false; 1191 1192 INIT_LIST_HEAD(&obj->list); 1193 if (!strict) 1194 list_add(&obj->list, &bpf_objects_list); 1195 return obj; 1196 } 1197 1198 static void bpf_object__elf_finish(struct bpf_object *obj) 1199 { 1200 if (!obj->efile.elf) 1201 return; 1202 1203 if (obj->efile.elf) { 1204 elf_end(obj->efile.elf); 1205 obj->efile.elf = NULL; 1206 } 1207 obj->efile.symbols = NULL; 1208 obj->efile.st_ops_data = NULL; 1209 1210 zfree(&obj->efile.secs); 1211 obj->efile.sec_cnt = 0; 1212 zclose(obj->efile.fd); 1213 obj->efile.obj_buf = NULL; 1214 obj->efile.obj_buf_sz = 0; 1215 } 1216 1217 static int bpf_object__elf_init(struct bpf_object *obj) 1218 { 1219 Elf64_Ehdr *ehdr; 1220 int err = 0; 1221 Elf *elf; 1222 1223 if (obj->efile.elf) { 1224 pr_warn("elf: init internal error\n"); 1225 return -LIBBPF_ERRNO__LIBELF; 1226 } 1227 1228 if (obj->efile.obj_buf_sz > 0) { 1229 /* 1230 * obj_buf should have been validated by 1231 * bpf_object__open_buffer(). 1232 */ 1233 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1234 } else { 1235 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1236 if (obj->efile.fd < 0) { 1237 char errmsg[STRERR_BUFSIZE], *cp; 1238 1239 err = -errno; 1240 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1241 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1242 return err; 1243 } 1244 1245 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1246 } 1247 1248 if (!elf) { 1249 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1250 err = -LIBBPF_ERRNO__LIBELF; 1251 goto errout; 1252 } 1253 1254 obj->efile.elf = elf; 1255 1256 if (elf_kind(elf) != ELF_K_ELF) { 1257 err = -LIBBPF_ERRNO__FORMAT; 1258 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1259 goto errout; 1260 } 1261 1262 if (gelf_getclass(elf) != ELFCLASS64) { 1263 err = -LIBBPF_ERRNO__FORMAT; 1264 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1265 goto errout; 1266 } 1267 1268 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1269 if (!obj->efile.ehdr) { 1270 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1271 err = -LIBBPF_ERRNO__FORMAT; 1272 goto errout; 1273 } 1274 1275 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1276 pr_warn("elf: failed to get section names section index for %s: %s\n", 1277 obj->path, elf_errmsg(-1)); 1278 err = -LIBBPF_ERRNO__FORMAT; 1279 goto errout; 1280 } 1281 1282 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1283 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1284 pr_warn("elf: failed to get section names strings from %s: %s\n", 1285 obj->path, elf_errmsg(-1)); 1286 err = -LIBBPF_ERRNO__FORMAT; 1287 goto errout; 1288 } 1289 1290 /* Old LLVM set e_machine to EM_NONE */ 1291 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1292 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1293 err = -LIBBPF_ERRNO__FORMAT; 1294 goto errout; 1295 } 1296 1297 return 0; 1298 errout: 1299 bpf_object__elf_finish(obj); 1300 return err; 1301 } 1302 1303 static int bpf_object__check_endianness(struct bpf_object *obj) 1304 { 1305 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1306 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1307 return 0; 1308 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1309 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1310 return 0; 1311 #else 1312 # error "Unrecognized __BYTE_ORDER__" 1313 #endif 1314 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1315 return -LIBBPF_ERRNO__ENDIAN; 1316 } 1317 1318 static int 1319 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1320 { 1321 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1322 pr_debug("license of %s is %s\n", obj->path, obj->license); 1323 return 0; 1324 } 1325 1326 static int 1327 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1328 { 1329 __u32 kver; 1330 1331 if (size != sizeof(kver)) { 1332 pr_warn("invalid kver section in %s\n", obj->path); 1333 return -LIBBPF_ERRNO__FORMAT; 1334 } 1335 memcpy(&kver, data, sizeof(kver)); 1336 obj->kern_version = kver; 1337 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1338 return 0; 1339 } 1340 1341 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1342 { 1343 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1344 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1345 return true; 1346 return false; 1347 } 1348 1349 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1350 { 1351 int ret = -ENOENT; 1352 Elf_Data *data; 1353 Elf_Scn *scn; 1354 1355 *size = 0; 1356 if (!name) 1357 return -EINVAL; 1358 1359 scn = elf_sec_by_name(obj, name); 1360 data = elf_sec_data(obj, scn); 1361 if (data) { 1362 ret = 0; /* found it */ 1363 *size = data->d_size; 1364 } 1365 1366 return *size ? 0 : ret; 1367 } 1368 1369 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1370 { 1371 Elf_Data *symbols = obj->efile.symbols; 1372 const char *sname; 1373 size_t si; 1374 1375 if (!name || !off) 1376 return -EINVAL; 1377 1378 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1379 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1380 1381 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL || 1382 ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1383 continue; 1384 1385 sname = elf_sym_str(obj, sym->st_name); 1386 if (!sname) { 1387 pr_warn("failed to get sym name string for var %s\n", name); 1388 return -EIO; 1389 } 1390 if (strcmp(name, sname) == 0) { 1391 *off = sym->st_value; 1392 return 0; 1393 } 1394 } 1395 1396 return -ENOENT; 1397 } 1398 1399 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1400 { 1401 struct bpf_map *new_maps; 1402 size_t new_cap; 1403 int i; 1404 1405 if (obj->nr_maps < obj->maps_cap) 1406 return &obj->maps[obj->nr_maps++]; 1407 1408 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1409 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1410 if (!new_maps) { 1411 pr_warn("alloc maps for object failed\n"); 1412 return ERR_PTR(-ENOMEM); 1413 } 1414 1415 obj->maps_cap = new_cap; 1416 obj->maps = new_maps; 1417 1418 /* zero out new maps */ 1419 memset(obj->maps + obj->nr_maps, 0, 1420 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1421 /* 1422 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1423 * when failure (zclose won't close negative fd)). 1424 */ 1425 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1426 obj->maps[i].fd = -1; 1427 obj->maps[i].inner_map_fd = -1; 1428 } 1429 1430 return &obj->maps[obj->nr_maps++]; 1431 } 1432 1433 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1434 { 1435 long page_sz = sysconf(_SC_PAGE_SIZE); 1436 size_t map_sz; 1437 1438 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1439 map_sz = roundup(map_sz, page_sz); 1440 return map_sz; 1441 } 1442 1443 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1444 { 1445 char map_name[BPF_OBJ_NAME_LEN], *p; 1446 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1447 1448 /* This is one of the more confusing parts of libbpf for various 1449 * reasons, some of which are historical. The original idea for naming 1450 * internal names was to include as much of BPF object name prefix as 1451 * possible, so that it can be distinguished from similar internal 1452 * maps of a different BPF object. 1453 * As an example, let's say we have bpf_object named 'my_object_name' 1454 * and internal map corresponding to '.rodata' ELF section. The final 1455 * map name advertised to user and to the kernel will be 1456 * 'my_objec.rodata', taking first 8 characters of object name and 1457 * entire 7 characters of '.rodata'. 1458 * Somewhat confusingly, if internal map ELF section name is shorter 1459 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1460 * for the suffix, even though we only have 4 actual characters, and 1461 * resulting map will be called 'my_objec.bss', not even using all 15 1462 * characters allowed by the kernel. Oh well, at least the truncated 1463 * object name is somewhat consistent in this case. But if the map 1464 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1465 * (8 chars) and thus will be left with only first 7 characters of the 1466 * object name ('my_obje'). Happy guessing, user, that the final map 1467 * name will be "my_obje.kconfig". 1468 * Now, with libbpf starting to support arbitrarily named .rodata.* 1469 * and .data.* data sections, it's possible that ELF section name is 1470 * longer than allowed 15 chars, so we now need to be careful to take 1471 * only up to 15 first characters of ELF name, taking no BPF object 1472 * name characters at all. So '.rodata.abracadabra' will result in 1473 * '.rodata.abracad' kernel and user-visible name. 1474 * We need to keep this convoluted logic intact for .data, .bss and 1475 * .rodata maps, but for new custom .data.custom and .rodata.custom 1476 * maps we use their ELF names as is, not prepending bpf_object name 1477 * in front. We still need to truncate them to 15 characters for the 1478 * kernel. Full name can be recovered for such maps by using DATASEC 1479 * BTF type associated with such map's value type, though. 1480 */ 1481 if (sfx_len >= BPF_OBJ_NAME_LEN) 1482 sfx_len = BPF_OBJ_NAME_LEN - 1; 1483 1484 /* if there are two or more dots in map name, it's a custom dot map */ 1485 if (strchr(real_name + 1, '.') != NULL) 1486 pfx_len = 0; 1487 else 1488 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1489 1490 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1491 sfx_len, real_name); 1492 1493 /* sanitise map name to characters allowed by kernel */ 1494 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1495 if (!isalnum(*p) && *p != '_' && *p != '.') 1496 *p = '_'; 1497 1498 return strdup(map_name); 1499 } 1500 1501 static int 1502 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1503 const char *real_name, int sec_idx, void *data, size_t data_sz) 1504 { 1505 struct bpf_map_def *def; 1506 struct bpf_map *map; 1507 int err; 1508 1509 map = bpf_object__add_map(obj); 1510 if (IS_ERR(map)) 1511 return PTR_ERR(map); 1512 1513 map->libbpf_type = type; 1514 map->sec_idx = sec_idx; 1515 map->sec_offset = 0; 1516 map->real_name = strdup(real_name); 1517 map->name = internal_map_name(obj, real_name); 1518 if (!map->real_name || !map->name) { 1519 zfree(&map->real_name); 1520 zfree(&map->name); 1521 return -ENOMEM; 1522 } 1523 1524 def = &map->def; 1525 def->type = BPF_MAP_TYPE_ARRAY; 1526 def->key_size = sizeof(int); 1527 def->value_size = data_sz; 1528 def->max_entries = 1; 1529 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1530 ? BPF_F_RDONLY_PROG : 0; 1531 def->map_flags |= BPF_F_MMAPABLE; 1532 1533 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1534 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1535 1536 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1537 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1538 if (map->mmaped == MAP_FAILED) { 1539 err = -errno; 1540 map->mmaped = NULL; 1541 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1542 map->name, err); 1543 zfree(&map->real_name); 1544 zfree(&map->name); 1545 return err; 1546 } 1547 1548 if (data) 1549 memcpy(map->mmaped, data, data_sz); 1550 1551 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1552 return 0; 1553 } 1554 1555 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1556 { 1557 struct elf_sec_desc *sec_desc; 1558 const char *sec_name; 1559 int err = 0, sec_idx; 1560 1561 /* 1562 * Populate obj->maps with libbpf internal maps. 1563 */ 1564 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1565 sec_desc = &obj->efile.secs[sec_idx]; 1566 1567 switch (sec_desc->sec_type) { 1568 case SEC_DATA: 1569 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1570 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1571 sec_name, sec_idx, 1572 sec_desc->data->d_buf, 1573 sec_desc->data->d_size); 1574 break; 1575 case SEC_RODATA: 1576 obj->has_rodata = true; 1577 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1578 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1579 sec_name, sec_idx, 1580 sec_desc->data->d_buf, 1581 sec_desc->data->d_size); 1582 break; 1583 case SEC_BSS: 1584 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1585 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1586 sec_name, sec_idx, 1587 NULL, 1588 sec_desc->data->d_size); 1589 break; 1590 default: 1591 /* skip */ 1592 break; 1593 } 1594 if (err) 1595 return err; 1596 } 1597 return 0; 1598 } 1599 1600 1601 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1602 const void *name) 1603 { 1604 int i; 1605 1606 for (i = 0; i < obj->nr_extern; i++) { 1607 if (strcmp(obj->externs[i].name, name) == 0) 1608 return &obj->externs[i]; 1609 } 1610 return NULL; 1611 } 1612 1613 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1614 char value) 1615 { 1616 switch (ext->kcfg.type) { 1617 case KCFG_BOOL: 1618 if (value == 'm') { 1619 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1620 ext->name, value); 1621 return -EINVAL; 1622 } 1623 *(bool *)ext_val = value == 'y' ? true : false; 1624 break; 1625 case KCFG_TRISTATE: 1626 if (value == 'y') 1627 *(enum libbpf_tristate *)ext_val = TRI_YES; 1628 else if (value == 'm') 1629 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1630 else /* value == 'n' */ 1631 *(enum libbpf_tristate *)ext_val = TRI_NO; 1632 break; 1633 case KCFG_CHAR: 1634 *(char *)ext_val = value; 1635 break; 1636 case KCFG_UNKNOWN: 1637 case KCFG_INT: 1638 case KCFG_CHAR_ARR: 1639 default: 1640 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1641 ext->name, value); 1642 return -EINVAL; 1643 } 1644 ext->is_set = true; 1645 return 0; 1646 } 1647 1648 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1649 const char *value) 1650 { 1651 size_t len; 1652 1653 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1654 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1655 return -EINVAL; 1656 } 1657 1658 len = strlen(value); 1659 if (value[len - 1] != '"') { 1660 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1661 ext->name, value); 1662 return -EINVAL; 1663 } 1664 1665 /* strip quotes */ 1666 len -= 2; 1667 if (len >= ext->kcfg.sz) { 1668 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1669 ext->name, value, len, ext->kcfg.sz - 1); 1670 len = ext->kcfg.sz - 1; 1671 } 1672 memcpy(ext_val, value + 1, len); 1673 ext_val[len] = '\0'; 1674 ext->is_set = true; 1675 return 0; 1676 } 1677 1678 static int parse_u64(const char *value, __u64 *res) 1679 { 1680 char *value_end; 1681 int err; 1682 1683 errno = 0; 1684 *res = strtoull(value, &value_end, 0); 1685 if (errno) { 1686 err = -errno; 1687 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1688 return err; 1689 } 1690 if (*value_end) { 1691 pr_warn("failed to parse '%s' as integer completely\n", value); 1692 return -EINVAL; 1693 } 1694 return 0; 1695 } 1696 1697 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1698 { 1699 int bit_sz = ext->kcfg.sz * 8; 1700 1701 if (ext->kcfg.sz == 8) 1702 return true; 1703 1704 /* Validate that value stored in u64 fits in integer of `ext->sz` 1705 * bytes size without any loss of information. If the target integer 1706 * is signed, we rely on the following limits of integer type of 1707 * Y bits and subsequent transformation: 1708 * 1709 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1710 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1711 * 0 <= X + 2^(Y-1) < 2^Y 1712 * 1713 * For unsigned target integer, check that all the (64 - Y) bits are 1714 * zero. 1715 */ 1716 if (ext->kcfg.is_signed) 1717 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1718 else 1719 return (v >> bit_sz) == 0; 1720 } 1721 1722 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1723 __u64 value) 1724 { 1725 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1726 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1727 ext->name, (unsigned long long)value); 1728 return -EINVAL; 1729 } 1730 if (!is_kcfg_value_in_range(ext, value)) { 1731 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1732 ext->name, (unsigned long long)value, ext->kcfg.sz); 1733 return -ERANGE; 1734 } 1735 switch (ext->kcfg.sz) { 1736 case 1: *(__u8 *)ext_val = value; break; 1737 case 2: *(__u16 *)ext_val = value; break; 1738 case 4: *(__u32 *)ext_val = value; break; 1739 case 8: *(__u64 *)ext_val = value; break; 1740 default: 1741 return -EINVAL; 1742 } 1743 ext->is_set = true; 1744 return 0; 1745 } 1746 1747 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1748 char *buf, void *data) 1749 { 1750 struct extern_desc *ext; 1751 char *sep, *value; 1752 int len, err = 0; 1753 void *ext_val; 1754 __u64 num; 1755 1756 if (!str_has_pfx(buf, "CONFIG_")) 1757 return 0; 1758 1759 sep = strchr(buf, '='); 1760 if (!sep) { 1761 pr_warn("failed to parse '%s': no separator\n", buf); 1762 return -EINVAL; 1763 } 1764 1765 /* Trim ending '\n' */ 1766 len = strlen(buf); 1767 if (buf[len - 1] == '\n') 1768 buf[len - 1] = '\0'; 1769 /* Split on '=' and ensure that a value is present. */ 1770 *sep = '\0'; 1771 if (!sep[1]) { 1772 *sep = '='; 1773 pr_warn("failed to parse '%s': no value\n", buf); 1774 return -EINVAL; 1775 } 1776 1777 ext = find_extern_by_name(obj, buf); 1778 if (!ext || ext->is_set) 1779 return 0; 1780 1781 ext_val = data + ext->kcfg.data_off; 1782 value = sep + 1; 1783 1784 switch (*value) { 1785 case 'y': case 'n': case 'm': 1786 err = set_kcfg_value_tri(ext, ext_val, *value); 1787 break; 1788 case '"': 1789 err = set_kcfg_value_str(ext, ext_val, value); 1790 break; 1791 default: 1792 /* assume integer */ 1793 err = parse_u64(value, &num); 1794 if (err) { 1795 pr_warn("extern (kcfg) %s=%s should be integer\n", 1796 ext->name, value); 1797 return err; 1798 } 1799 err = set_kcfg_value_num(ext, ext_val, num); 1800 break; 1801 } 1802 if (err) 1803 return err; 1804 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1805 return 0; 1806 } 1807 1808 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1809 { 1810 char buf[PATH_MAX]; 1811 struct utsname uts; 1812 int len, err = 0; 1813 gzFile file; 1814 1815 uname(&uts); 1816 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1817 if (len < 0) 1818 return -EINVAL; 1819 else if (len >= PATH_MAX) 1820 return -ENAMETOOLONG; 1821 1822 /* gzopen also accepts uncompressed files. */ 1823 file = gzopen(buf, "r"); 1824 if (!file) 1825 file = gzopen("/proc/config.gz", "r"); 1826 1827 if (!file) { 1828 pr_warn("failed to open system Kconfig\n"); 1829 return -ENOENT; 1830 } 1831 1832 while (gzgets(file, buf, sizeof(buf))) { 1833 err = bpf_object__process_kconfig_line(obj, buf, data); 1834 if (err) { 1835 pr_warn("error parsing system Kconfig line '%s': %d\n", 1836 buf, err); 1837 goto out; 1838 } 1839 } 1840 1841 out: 1842 gzclose(file); 1843 return err; 1844 } 1845 1846 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1847 const char *config, void *data) 1848 { 1849 char buf[PATH_MAX]; 1850 int err = 0; 1851 FILE *file; 1852 1853 file = fmemopen((void *)config, strlen(config), "r"); 1854 if (!file) { 1855 err = -errno; 1856 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1857 return err; 1858 } 1859 1860 while (fgets(buf, sizeof(buf), file)) { 1861 err = bpf_object__process_kconfig_line(obj, buf, data); 1862 if (err) { 1863 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1864 buf, err); 1865 break; 1866 } 1867 } 1868 1869 fclose(file); 1870 return err; 1871 } 1872 1873 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1874 { 1875 struct extern_desc *last_ext = NULL, *ext; 1876 size_t map_sz; 1877 int i, err; 1878 1879 for (i = 0; i < obj->nr_extern; i++) { 1880 ext = &obj->externs[i]; 1881 if (ext->type == EXT_KCFG) 1882 last_ext = ext; 1883 } 1884 1885 if (!last_ext) 1886 return 0; 1887 1888 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1889 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1890 ".kconfig", obj->efile.symbols_shndx, 1891 NULL, map_sz); 1892 if (err) 1893 return err; 1894 1895 obj->kconfig_map_idx = obj->nr_maps - 1; 1896 1897 return 0; 1898 } 1899 1900 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1901 { 1902 Elf_Data *symbols = obj->efile.symbols; 1903 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1904 Elf_Data *data = NULL; 1905 Elf_Scn *scn; 1906 1907 if (obj->efile.maps_shndx < 0) 1908 return 0; 1909 1910 if (!symbols) 1911 return -EINVAL; 1912 1913 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1914 data = elf_sec_data(obj, scn); 1915 if (!scn || !data) { 1916 pr_warn("elf: failed to get legacy map definitions for %s\n", 1917 obj->path); 1918 return -EINVAL; 1919 } 1920 1921 /* 1922 * Count number of maps. Each map has a name. 1923 * Array of maps is not supported: only the first element is 1924 * considered. 1925 * 1926 * TODO: Detect array of map and report error. 1927 */ 1928 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 1929 for (i = 0; i < nr_syms; i++) { 1930 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1931 1932 if (sym->st_shndx != obj->efile.maps_shndx) 1933 continue; 1934 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1935 continue; 1936 nr_maps++; 1937 } 1938 /* Assume equally sized map definitions */ 1939 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1940 nr_maps, data->d_size, obj->path); 1941 1942 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1943 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1944 obj->path); 1945 return -EINVAL; 1946 } 1947 map_def_sz = data->d_size / nr_maps; 1948 1949 /* Fill obj->maps using data in "maps" section. */ 1950 for (i = 0; i < nr_syms; i++) { 1951 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 1952 const char *map_name; 1953 struct bpf_map_def *def; 1954 struct bpf_map *map; 1955 1956 if (sym->st_shndx != obj->efile.maps_shndx) 1957 continue; 1958 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION) 1959 continue; 1960 1961 map = bpf_object__add_map(obj); 1962 if (IS_ERR(map)) 1963 return PTR_ERR(map); 1964 1965 map_name = elf_sym_str(obj, sym->st_name); 1966 if (!map_name) { 1967 pr_warn("failed to get map #%d name sym string for obj %s\n", 1968 i, obj->path); 1969 return -LIBBPF_ERRNO__FORMAT; 1970 } 1971 1972 if (ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 1973 pr_warn("map '%s' (legacy): static maps are not supported\n", map_name); 1974 return -ENOTSUP; 1975 } 1976 1977 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1978 map->sec_idx = sym->st_shndx; 1979 map->sec_offset = sym->st_value; 1980 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1981 map_name, map->sec_idx, map->sec_offset); 1982 if (sym->st_value + map_def_sz > data->d_size) { 1983 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1984 obj->path, map_name); 1985 return -EINVAL; 1986 } 1987 1988 map->name = strdup(map_name); 1989 if (!map->name) { 1990 pr_warn("map '%s': failed to alloc map name\n", map_name); 1991 return -ENOMEM; 1992 } 1993 pr_debug("map %d is \"%s\"\n", i, map->name); 1994 def = (struct bpf_map_def *)(data->d_buf + sym->st_value); 1995 /* 1996 * If the definition of the map in the object file fits in 1997 * bpf_map_def, copy it. Any extra fields in our version 1998 * of bpf_map_def will default to zero as a result of the 1999 * calloc above. 2000 */ 2001 if (map_def_sz <= sizeof(struct bpf_map_def)) { 2002 memcpy(&map->def, def, map_def_sz); 2003 } else { 2004 /* 2005 * Here the map structure being read is bigger than what 2006 * we expect, truncate if the excess bits are all zero. 2007 * If they are not zero, reject this map as 2008 * incompatible. 2009 */ 2010 char *b; 2011 2012 for (b = ((char *)def) + sizeof(struct bpf_map_def); 2013 b < ((char *)def) + map_def_sz; b++) { 2014 if (*b != 0) { 2015 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 2016 obj->path, map_name); 2017 if (strict) 2018 return -EINVAL; 2019 } 2020 } 2021 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 2022 } 2023 } 2024 return 0; 2025 } 2026 2027 const struct btf_type * 2028 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2029 { 2030 const struct btf_type *t = btf__type_by_id(btf, id); 2031 2032 if (res_id) 2033 *res_id = id; 2034 2035 while (btf_is_mod(t) || btf_is_typedef(t)) { 2036 if (res_id) 2037 *res_id = t->type; 2038 t = btf__type_by_id(btf, t->type); 2039 } 2040 2041 return t; 2042 } 2043 2044 static const struct btf_type * 2045 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2046 { 2047 const struct btf_type *t; 2048 2049 t = skip_mods_and_typedefs(btf, id, NULL); 2050 if (!btf_is_ptr(t)) 2051 return NULL; 2052 2053 t = skip_mods_and_typedefs(btf, t->type, res_id); 2054 2055 return btf_is_func_proto(t) ? t : NULL; 2056 } 2057 2058 static const char *__btf_kind_str(__u16 kind) 2059 { 2060 switch (kind) { 2061 case BTF_KIND_UNKN: return "void"; 2062 case BTF_KIND_INT: return "int"; 2063 case BTF_KIND_PTR: return "ptr"; 2064 case BTF_KIND_ARRAY: return "array"; 2065 case BTF_KIND_STRUCT: return "struct"; 2066 case BTF_KIND_UNION: return "union"; 2067 case BTF_KIND_ENUM: return "enum"; 2068 case BTF_KIND_FWD: return "fwd"; 2069 case BTF_KIND_TYPEDEF: return "typedef"; 2070 case BTF_KIND_VOLATILE: return "volatile"; 2071 case BTF_KIND_CONST: return "const"; 2072 case BTF_KIND_RESTRICT: return "restrict"; 2073 case BTF_KIND_FUNC: return "func"; 2074 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2075 case BTF_KIND_VAR: return "var"; 2076 case BTF_KIND_DATASEC: return "datasec"; 2077 case BTF_KIND_FLOAT: return "float"; 2078 case BTF_KIND_DECL_TAG: return "decl_tag"; 2079 default: return "unknown"; 2080 } 2081 } 2082 2083 const char *btf_kind_str(const struct btf_type *t) 2084 { 2085 return __btf_kind_str(btf_kind(t)); 2086 } 2087 2088 /* 2089 * Fetch integer attribute of BTF map definition. Such attributes are 2090 * represented using a pointer to an array, in which dimensionality of array 2091 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2092 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2093 * type definition, while using only sizeof(void *) space in ELF data section. 2094 */ 2095 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2096 const struct btf_member *m, __u32 *res) 2097 { 2098 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2099 const char *name = btf__name_by_offset(btf, m->name_off); 2100 const struct btf_array *arr_info; 2101 const struct btf_type *arr_t; 2102 2103 if (!btf_is_ptr(t)) { 2104 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2105 map_name, name, btf_kind_str(t)); 2106 return false; 2107 } 2108 2109 arr_t = btf__type_by_id(btf, t->type); 2110 if (!arr_t) { 2111 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2112 map_name, name, t->type); 2113 return false; 2114 } 2115 if (!btf_is_array(arr_t)) { 2116 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2117 map_name, name, btf_kind_str(arr_t)); 2118 return false; 2119 } 2120 arr_info = btf_array(arr_t); 2121 *res = arr_info->nelems; 2122 return true; 2123 } 2124 2125 static int build_map_pin_path(struct bpf_map *map, const char *path) 2126 { 2127 char buf[PATH_MAX]; 2128 int len; 2129 2130 if (!path) 2131 path = "/sys/fs/bpf"; 2132 2133 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2134 if (len < 0) 2135 return -EINVAL; 2136 else if (len >= PATH_MAX) 2137 return -ENAMETOOLONG; 2138 2139 return bpf_map__set_pin_path(map, buf); 2140 } 2141 2142 int parse_btf_map_def(const char *map_name, struct btf *btf, 2143 const struct btf_type *def_t, bool strict, 2144 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2145 { 2146 const struct btf_type *t; 2147 const struct btf_member *m; 2148 bool is_inner = inner_def == NULL; 2149 int vlen, i; 2150 2151 vlen = btf_vlen(def_t); 2152 m = btf_members(def_t); 2153 for (i = 0; i < vlen; i++, m++) { 2154 const char *name = btf__name_by_offset(btf, m->name_off); 2155 2156 if (!name) { 2157 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2158 return -EINVAL; 2159 } 2160 if (strcmp(name, "type") == 0) { 2161 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2162 return -EINVAL; 2163 map_def->parts |= MAP_DEF_MAP_TYPE; 2164 } else if (strcmp(name, "max_entries") == 0) { 2165 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2166 return -EINVAL; 2167 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2168 } else if (strcmp(name, "map_flags") == 0) { 2169 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2170 return -EINVAL; 2171 map_def->parts |= MAP_DEF_MAP_FLAGS; 2172 } else if (strcmp(name, "numa_node") == 0) { 2173 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2174 return -EINVAL; 2175 map_def->parts |= MAP_DEF_NUMA_NODE; 2176 } else if (strcmp(name, "key_size") == 0) { 2177 __u32 sz; 2178 2179 if (!get_map_field_int(map_name, btf, m, &sz)) 2180 return -EINVAL; 2181 if (map_def->key_size && map_def->key_size != sz) { 2182 pr_warn("map '%s': conflicting key size %u != %u.\n", 2183 map_name, map_def->key_size, sz); 2184 return -EINVAL; 2185 } 2186 map_def->key_size = sz; 2187 map_def->parts |= MAP_DEF_KEY_SIZE; 2188 } else if (strcmp(name, "key") == 0) { 2189 __s64 sz; 2190 2191 t = btf__type_by_id(btf, m->type); 2192 if (!t) { 2193 pr_warn("map '%s': key type [%d] not found.\n", 2194 map_name, m->type); 2195 return -EINVAL; 2196 } 2197 if (!btf_is_ptr(t)) { 2198 pr_warn("map '%s': key spec is not PTR: %s.\n", 2199 map_name, btf_kind_str(t)); 2200 return -EINVAL; 2201 } 2202 sz = btf__resolve_size(btf, t->type); 2203 if (sz < 0) { 2204 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2205 map_name, t->type, (ssize_t)sz); 2206 return sz; 2207 } 2208 if (map_def->key_size && map_def->key_size != sz) { 2209 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2210 map_name, map_def->key_size, (ssize_t)sz); 2211 return -EINVAL; 2212 } 2213 map_def->key_size = sz; 2214 map_def->key_type_id = t->type; 2215 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2216 } else if (strcmp(name, "value_size") == 0) { 2217 __u32 sz; 2218 2219 if (!get_map_field_int(map_name, btf, m, &sz)) 2220 return -EINVAL; 2221 if (map_def->value_size && map_def->value_size != sz) { 2222 pr_warn("map '%s': conflicting value size %u != %u.\n", 2223 map_name, map_def->value_size, sz); 2224 return -EINVAL; 2225 } 2226 map_def->value_size = sz; 2227 map_def->parts |= MAP_DEF_VALUE_SIZE; 2228 } else if (strcmp(name, "value") == 0) { 2229 __s64 sz; 2230 2231 t = btf__type_by_id(btf, m->type); 2232 if (!t) { 2233 pr_warn("map '%s': value type [%d] not found.\n", 2234 map_name, m->type); 2235 return -EINVAL; 2236 } 2237 if (!btf_is_ptr(t)) { 2238 pr_warn("map '%s': value spec is not PTR: %s.\n", 2239 map_name, btf_kind_str(t)); 2240 return -EINVAL; 2241 } 2242 sz = btf__resolve_size(btf, t->type); 2243 if (sz < 0) { 2244 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2245 map_name, t->type, (ssize_t)sz); 2246 return sz; 2247 } 2248 if (map_def->value_size && map_def->value_size != sz) { 2249 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2250 map_name, map_def->value_size, (ssize_t)sz); 2251 return -EINVAL; 2252 } 2253 map_def->value_size = sz; 2254 map_def->value_type_id = t->type; 2255 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2256 } 2257 else if (strcmp(name, "values") == 0) { 2258 char inner_map_name[128]; 2259 int err; 2260 2261 if (is_inner) { 2262 pr_warn("map '%s': multi-level inner maps not supported.\n", 2263 map_name); 2264 return -ENOTSUP; 2265 } 2266 if (i != vlen - 1) { 2267 pr_warn("map '%s': '%s' member should be last.\n", 2268 map_name, name); 2269 return -EINVAL; 2270 } 2271 if (!bpf_map_type__is_map_in_map(map_def->map_type)) { 2272 pr_warn("map '%s': should be map-in-map.\n", 2273 map_name); 2274 return -ENOTSUP; 2275 } 2276 if (map_def->value_size && map_def->value_size != 4) { 2277 pr_warn("map '%s': conflicting value size %u != 4.\n", 2278 map_name, map_def->value_size); 2279 return -EINVAL; 2280 } 2281 map_def->value_size = 4; 2282 t = btf__type_by_id(btf, m->type); 2283 if (!t) { 2284 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2285 map_name, m->type); 2286 return -EINVAL; 2287 } 2288 if (!btf_is_array(t) || btf_array(t)->nelems) { 2289 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2290 map_name); 2291 return -EINVAL; 2292 } 2293 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2294 if (!btf_is_ptr(t)) { 2295 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2296 map_name, btf_kind_str(t)); 2297 return -EINVAL; 2298 } 2299 t = skip_mods_and_typedefs(btf, t->type, NULL); 2300 if (!btf_is_struct(t)) { 2301 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2302 map_name, btf_kind_str(t)); 2303 return -EINVAL; 2304 } 2305 2306 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2307 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2308 if (err) 2309 return err; 2310 2311 map_def->parts |= MAP_DEF_INNER_MAP; 2312 } else if (strcmp(name, "pinning") == 0) { 2313 __u32 val; 2314 2315 if (is_inner) { 2316 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2317 return -EINVAL; 2318 } 2319 if (!get_map_field_int(map_name, btf, m, &val)) 2320 return -EINVAL; 2321 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2322 pr_warn("map '%s': invalid pinning value %u.\n", 2323 map_name, val); 2324 return -EINVAL; 2325 } 2326 map_def->pinning = val; 2327 map_def->parts |= MAP_DEF_PINNING; 2328 } else if (strcmp(name, "map_extra") == 0) { 2329 __u32 map_extra; 2330 2331 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2332 return -EINVAL; 2333 map_def->map_extra = map_extra; 2334 map_def->parts |= MAP_DEF_MAP_EXTRA; 2335 } else { 2336 if (strict) { 2337 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2338 return -ENOTSUP; 2339 } 2340 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2341 } 2342 } 2343 2344 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2345 pr_warn("map '%s': map type isn't specified.\n", map_name); 2346 return -EINVAL; 2347 } 2348 2349 return 0; 2350 } 2351 2352 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2353 { 2354 map->def.type = def->map_type; 2355 map->def.key_size = def->key_size; 2356 map->def.value_size = def->value_size; 2357 map->def.max_entries = def->max_entries; 2358 map->def.map_flags = def->map_flags; 2359 map->map_extra = def->map_extra; 2360 2361 map->numa_node = def->numa_node; 2362 map->btf_key_type_id = def->key_type_id; 2363 map->btf_value_type_id = def->value_type_id; 2364 2365 if (def->parts & MAP_DEF_MAP_TYPE) 2366 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2367 2368 if (def->parts & MAP_DEF_KEY_TYPE) 2369 pr_debug("map '%s': found key [%u], sz = %u.\n", 2370 map->name, def->key_type_id, def->key_size); 2371 else if (def->parts & MAP_DEF_KEY_SIZE) 2372 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2373 2374 if (def->parts & MAP_DEF_VALUE_TYPE) 2375 pr_debug("map '%s': found value [%u], sz = %u.\n", 2376 map->name, def->value_type_id, def->value_size); 2377 else if (def->parts & MAP_DEF_VALUE_SIZE) 2378 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2379 2380 if (def->parts & MAP_DEF_MAX_ENTRIES) 2381 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2382 if (def->parts & MAP_DEF_MAP_FLAGS) 2383 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2384 if (def->parts & MAP_DEF_MAP_EXTRA) 2385 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2386 (unsigned long long)def->map_extra); 2387 if (def->parts & MAP_DEF_PINNING) 2388 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2389 if (def->parts & MAP_DEF_NUMA_NODE) 2390 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2391 2392 if (def->parts & MAP_DEF_INNER_MAP) 2393 pr_debug("map '%s': found inner map definition.\n", map->name); 2394 } 2395 2396 static const char *btf_var_linkage_str(__u32 linkage) 2397 { 2398 switch (linkage) { 2399 case BTF_VAR_STATIC: return "static"; 2400 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2401 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2402 default: return "unknown"; 2403 } 2404 } 2405 2406 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2407 const struct btf_type *sec, 2408 int var_idx, int sec_idx, 2409 const Elf_Data *data, bool strict, 2410 const char *pin_root_path) 2411 { 2412 struct btf_map_def map_def = {}, inner_def = {}; 2413 const struct btf_type *var, *def; 2414 const struct btf_var_secinfo *vi; 2415 const struct btf_var *var_extra; 2416 const char *map_name; 2417 struct bpf_map *map; 2418 int err; 2419 2420 vi = btf_var_secinfos(sec) + var_idx; 2421 var = btf__type_by_id(obj->btf, vi->type); 2422 var_extra = btf_var(var); 2423 map_name = btf__name_by_offset(obj->btf, var->name_off); 2424 2425 if (map_name == NULL || map_name[0] == '\0') { 2426 pr_warn("map #%d: empty name.\n", var_idx); 2427 return -EINVAL; 2428 } 2429 if ((__u64)vi->offset + vi->size > data->d_size) { 2430 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2431 return -EINVAL; 2432 } 2433 if (!btf_is_var(var)) { 2434 pr_warn("map '%s': unexpected var kind %s.\n", 2435 map_name, btf_kind_str(var)); 2436 return -EINVAL; 2437 } 2438 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2439 pr_warn("map '%s': unsupported map linkage %s.\n", 2440 map_name, btf_var_linkage_str(var_extra->linkage)); 2441 return -EOPNOTSUPP; 2442 } 2443 2444 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2445 if (!btf_is_struct(def)) { 2446 pr_warn("map '%s': unexpected def kind %s.\n", 2447 map_name, btf_kind_str(var)); 2448 return -EINVAL; 2449 } 2450 if (def->size > vi->size) { 2451 pr_warn("map '%s': invalid def size.\n", map_name); 2452 return -EINVAL; 2453 } 2454 2455 map = bpf_object__add_map(obj); 2456 if (IS_ERR(map)) 2457 return PTR_ERR(map); 2458 map->name = strdup(map_name); 2459 if (!map->name) { 2460 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2461 return -ENOMEM; 2462 } 2463 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2464 map->def.type = BPF_MAP_TYPE_UNSPEC; 2465 map->sec_idx = sec_idx; 2466 map->sec_offset = vi->offset; 2467 map->btf_var_idx = var_idx; 2468 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2469 map_name, map->sec_idx, map->sec_offset); 2470 2471 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2472 if (err) 2473 return err; 2474 2475 fill_map_from_def(map, &map_def); 2476 2477 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2478 err = build_map_pin_path(map, pin_root_path); 2479 if (err) { 2480 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2481 return err; 2482 } 2483 } 2484 2485 if (map_def.parts & MAP_DEF_INNER_MAP) { 2486 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2487 if (!map->inner_map) 2488 return -ENOMEM; 2489 map->inner_map->fd = -1; 2490 map->inner_map->sec_idx = sec_idx; 2491 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2492 if (!map->inner_map->name) 2493 return -ENOMEM; 2494 sprintf(map->inner_map->name, "%s.inner", map_name); 2495 2496 fill_map_from_def(map->inner_map, &inner_def); 2497 } 2498 2499 return 0; 2500 } 2501 2502 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2503 const char *pin_root_path) 2504 { 2505 const struct btf_type *sec = NULL; 2506 int nr_types, i, vlen, err; 2507 const struct btf_type *t; 2508 const char *name; 2509 Elf_Data *data; 2510 Elf_Scn *scn; 2511 2512 if (obj->efile.btf_maps_shndx < 0) 2513 return 0; 2514 2515 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2516 data = elf_sec_data(obj, scn); 2517 if (!scn || !data) { 2518 pr_warn("elf: failed to get %s map definitions for %s\n", 2519 MAPS_ELF_SEC, obj->path); 2520 return -EINVAL; 2521 } 2522 2523 nr_types = btf__type_cnt(obj->btf); 2524 for (i = 1; i < nr_types; i++) { 2525 t = btf__type_by_id(obj->btf, i); 2526 if (!btf_is_datasec(t)) 2527 continue; 2528 name = btf__name_by_offset(obj->btf, t->name_off); 2529 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2530 sec = t; 2531 obj->efile.btf_maps_sec_btf_id = i; 2532 break; 2533 } 2534 } 2535 2536 if (!sec) { 2537 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2538 return -ENOENT; 2539 } 2540 2541 vlen = btf_vlen(sec); 2542 for (i = 0; i < vlen; i++) { 2543 err = bpf_object__init_user_btf_map(obj, sec, i, 2544 obj->efile.btf_maps_shndx, 2545 data, strict, 2546 pin_root_path); 2547 if (err) 2548 return err; 2549 } 2550 2551 return 0; 2552 } 2553 2554 static int bpf_object__init_maps(struct bpf_object *obj, 2555 const struct bpf_object_open_opts *opts) 2556 { 2557 const char *pin_root_path; 2558 bool strict; 2559 int err; 2560 2561 strict = !OPTS_GET(opts, relaxed_maps, false); 2562 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2563 2564 err = bpf_object__init_user_maps(obj, strict); 2565 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2566 err = err ?: bpf_object__init_global_data_maps(obj); 2567 err = err ?: bpf_object__init_kconfig_map(obj); 2568 err = err ?: bpf_object__init_struct_ops_maps(obj); 2569 2570 return err; 2571 } 2572 2573 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2574 { 2575 Elf64_Shdr *sh; 2576 2577 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2578 if (!sh) 2579 return false; 2580 2581 return sh->sh_flags & SHF_EXECINSTR; 2582 } 2583 2584 static bool btf_needs_sanitization(struct bpf_object *obj) 2585 { 2586 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2587 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2588 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2589 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2590 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2591 2592 return !has_func || !has_datasec || !has_func_global || !has_float || !has_decl_tag; 2593 } 2594 2595 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2596 { 2597 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2598 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2599 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2600 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2601 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2602 struct btf_type *t; 2603 int i, j, vlen; 2604 2605 for (i = 1; i < btf__type_cnt(btf); i++) { 2606 t = (struct btf_type *)btf__type_by_id(btf, i); 2607 2608 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2609 /* replace VAR/DECL_TAG with INT */ 2610 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2611 /* 2612 * using size = 1 is the safest choice, 4 will be too 2613 * big and cause kernel BTF validation failure if 2614 * original variable took less than 4 bytes 2615 */ 2616 t->size = 1; 2617 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2618 } else if (!has_datasec && btf_is_datasec(t)) { 2619 /* replace DATASEC with STRUCT */ 2620 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2621 struct btf_member *m = btf_members(t); 2622 struct btf_type *vt; 2623 char *name; 2624 2625 name = (char *)btf__name_by_offset(btf, t->name_off); 2626 while (*name) { 2627 if (*name == '.') 2628 *name = '_'; 2629 name++; 2630 } 2631 2632 vlen = btf_vlen(t); 2633 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2634 for (j = 0; j < vlen; j++, v++, m++) { 2635 /* order of field assignments is important */ 2636 m->offset = v->offset * 8; 2637 m->type = v->type; 2638 /* preserve variable name as member name */ 2639 vt = (void *)btf__type_by_id(btf, v->type); 2640 m->name_off = vt->name_off; 2641 } 2642 } else if (!has_func && btf_is_func_proto(t)) { 2643 /* replace FUNC_PROTO with ENUM */ 2644 vlen = btf_vlen(t); 2645 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2646 t->size = sizeof(__u32); /* kernel enforced */ 2647 } else if (!has_func && btf_is_func(t)) { 2648 /* replace FUNC with TYPEDEF */ 2649 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2650 } else if (!has_func_global && btf_is_func(t)) { 2651 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2652 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2653 } else if (!has_float && btf_is_float(t)) { 2654 /* replace FLOAT with an equally-sized empty STRUCT; 2655 * since C compilers do not accept e.g. "float" as a 2656 * valid struct name, make it anonymous 2657 */ 2658 t->name_off = 0; 2659 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2660 } 2661 } 2662 } 2663 2664 static bool libbpf_needs_btf(const struct bpf_object *obj) 2665 { 2666 return obj->efile.btf_maps_shndx >= 0 || 2667 obj->efile.st_ops_shndx >= 0 || 2668 obj->nr_extern > 0; 2669 } 2670 2671 static bool kernel_needs_btf(const struct bpf_object *obj) 2672 { 2673 return obj->efile.st_ops_shndx >= 0; 2674 } 2675 2676 static int bpf_object__init_btf(struct bpf_object *obj, 2677 Elf_Data *btf_data, 2678 Elf_Data *btf_ext_data) 2679 { 2680 int err = -ENOENT; 2681 2682 if (btf_data) { 2683 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2684 err = libbpf_get_error(obj->btf); 2685 if (err) { 2686 obj->btf = NULL; 2687 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2688 goto out; 2689 } 2690 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2691 btf__set_pointer_size(obj->btf, 8); 2692 } 2693 if (btf_ext_data) { 2694 if (!obj->btf) { 2695 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2696 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2697 goto out; 2698 } 2699 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2700 err = libbpf_get_error(obj->btf_ext); 2701 if (err) { 2702 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2703 BTF_EXT_ELF_SEC, err); 2704 obj->btf_ext = NULL; 2705 goto out; 2706 } 2707 } 2708 out: 2709 if (err && libbpf_needs_btf(obj)) { 2710 pr_warn("BTF is required, but is missing or corrupted.\n"); 2711 return err; 2712 } 2713 return 0; 2714 } 2715 2716 static int compare_vsi_off(const void *_a, const void *_b) 2717 { 2718 const struct btf_var_secinfo *a = _a; 2719 const struct btf_var_secinfo *b = _b; 2720 2721 return a->offset - b->offset; 2722 } 2723 2724 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2725 struct btf_type *t) 2726 { 2727 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2728 const char *name = btf__name_by_offset(btf, t->name_off); 2729 const struct btf_type *t_var; 2730 struct btf_var_secinfo *vsi; 2731 const struct btf_var *var; 2732 int ret; 2733 2734 if (!name) { 2735 pr_debug("No name found in string section for DATASEC kind.\n"); 2736 return -ENOENT; 2737 } 2738 2739 /* .extern datasec size and var offsets were set correctly during 2740 * extern collection step, so just skip straight to sorting variables 2741 */ 2742 if (t->size) 2743 goto sort_vars; 2744 2745 ret = find_elf_sec_sz(obj, name, &size); 2746 if (ret || !size || (t->size && t->size != size)) { 2747 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2748 return -ENOENT; 2749 } 2750 2751 t->size = size; 2752 2753 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2754 t_var = btf__type_by_id(btf, vsi->type); 2755 var = btf_var(t_var); 2756 2757 if (!btf_is_var(t_var)) { 2758 pr_debug("Non-VAR type seen in section %s\n", name); 2759 return -EINVAL; 2760 } 2761 2762 if (var->linkage == BTF_VAR_STATIC) 2763 continue; 2764 2765 name = btf__name_by_offset(btf, t_var->name_off); 2766 if (!name) { 2767 pr_debug("No name found in string section for VAR kind\n"); 2768 return -ENOENT; 2769 } 2770 2771 ret = find_elf_var_offset(obj, name, &off); 2772 if (ret) { 2773 pr_debug("No offset found in symbol table for VAR %s\n", 2774 name); 2775 return -ENOENT; 2776 } 2777 2778 vsi->offset = off; 2779 } 2780 2781 sort_vars: 2782 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2783 return 0; 2784 } 2785 2786 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2787 { 2788 int err = 0; 2789 __u32 i, n = btf__type_cnt(btf); 2790 2791 for (i = 1; i < n; i++) { 2792 struct btf_type *t = btf_type_by_id(btf, i); 2793 2794 /* Loader needs to fix up some of the things compiler 2795 * couldn't get its hands on while emitting BTF. This 2796 * is section size and global variable offset. We use 2797 * the info from the ELF itself for this purpose. 2798 */ 2799 if (btf_is_datasec(t)) { 2800 err = btf_fixup_datasec(obj, btf, t); 2801 if (err) 2802 break; 2803 } 2804 } 2805 2806 return libbpf_err(err); 2807 } 2808 2809 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 2810 { 2811 return btf_finalize_data(obj, btf); 2812 } 2813 2814 static int bpf_object__finalize_btf(struct bpf_object *obj) 2815 { 2816 int err; 2817 2818 if (!obj->btf) 2819 return 0; 2820 2821 err = btf_finalize_data(obj, obj->btf); 2822 if (err) { 2823 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2824 return err; 2825 } 2826 2827 return 0; 2828 } 2829 2830 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2831 { 2832 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2833 prog->type == BPF_PROG_TYPE_LSM) 2834 return true; 2835 2836 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2837 * also need vmlinux BTF 2838 */ 2839 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2840 return true; 2841 2842 return false; 2843 } 2844 2845 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2846 { 2847 struct bpf_program *prog; 2848 int i; 2849 2850 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2851 * is not specified 2852 */ 2853 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2854 return true; 2855 2856 /* Support for typed ksyms needs kernel BTF */ 2857 for (i = 0; i < obj->nr_extern; i++) { 2858 const struct extern_desc *ext; 2859 2860 ext = &obj->externs[i]; 2861 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2862 return true; 2863 } 2864 2865 bpf_object__for_each_program(prog, obj) { 2866 if (!prog->load) 2867 continue; 2868 if (prog_needs_vmlinux_btf(prog)) 2869 return true; 2870 } 2871 2872 return false; 2873 } 2874 2875 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2876 { 2877 int err; 2878 2879 /* btf_vmlinux could be loaded earlier */ 2880 if (obj->btf_vmlinux || obj->gen_loader) 2881 return 0; 2882 2883 if (!force && !obj_needs_vmlinux_btf(obj)) 2884 return 0; 2885 2886 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2887 err = libbpf_get_error(obj->btf_vmlinux); 2888 if (err) { 2889 pr_warn("Error loading vmlinux BTF: %d\n", err); 2890 obj->btf_vmlinux = NULL; 2891 return err; 2892 } 2893 return 0; 2894 } 2895 2896 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2897 { 2898 struct btf *kern_btf = obj->btf; 2899 bool btf_mandatory, sanitize; 2900 int i, err = 0; 2901 2902 if (!obj->btf) 2903 return 0; 2904 2905 if (!kernel_supports(obj, FEAT_BTF)) { 2906 if (kernel_needs_btf(obj)) { 2907 err = -EOPNOTSUPP; 2908 goto report; 2909 } 2910 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2911 return 0; 2912 } 2913 2914 /* Even though some subprogs are global/weak, user might prefer more 2915 * permissive BPF verification process that BPF verifier performs for 2916 * static functions, taking into account more context from the caller 2917 * functions. In such case, they need to mark such subprogs with 2918 * __attribute__((visibility("hidden"))) and libbpf will adjust 2919 * corresponding FUNC BTF type to be marked as static and trigger more 2920 * involved BPF verification process. 2921 */ 2922 for (i = 0; i < obj->nr_programs; i++) { 2923 struct bpf_program *prog = &obj->programs[i]; 2924 struct btf_type *t; 2925 const char *name; 2926 int j, n; 2927 2928 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2929 continue; 2930 2931 n = btf__type_cnt(obj->btf); 2932 for (j = 1; j < n; j++) { 2933 t = btf_type_by_id(obj->btf, j); 2934 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2935 continue; 2936 2937 name = btf__str_by_offset(obj->btf, t->name_off); 2938 if (strcmp(name, prog->name) != 0) 2939 continue; 2940 2941 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2942 break; 2943 } 2944 } 2945 2946 sanitize = btf_needs_sanitization(obj); 2947 if (sanitize) { 2948 const void *raw_data; 2949 __u32 sz; 2950 2951 /* clone BTF to sanitize a copy and leave the original intact */ 2952 raw_data = btf__raw_data(obj->btf, &sz); 2953 kern_btf = btf__new(raw_data, sz); 2954 err = libbpf_get_error(kern_btf); 2955 if (err) 2956 return err; 2957 2958 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2959 btf__set_pointer_size(obj->btf, 8); 2960 bpf_object__sanitize_btf(obj, kern_btf); 2961 } 2962 2963 if (obj->gen_loader) { 2964 __u32 raw_size = 0; 2965 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 2966 2967 if (!raw_data) 2968 return -ENOMEM; 2969 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 2970 /* Pretend to have valid FD to pass various fd >= 0 checks. 2971 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 2972 */ 2973 btf__set_fd(kern_btf, 0); 2974 } else { 2975 err = btf__load_into_kernel(kern_btf); 2976 } 2977 if (sanitize) { 2978 if (!err) { 2979 /* move fd to libbpf's BTF */ 2980 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2981 btf__set_fd(kern_btf, -1); 2982 } 2983 btf__free(kern_btf); 2984 } 2985 report: 2986 if (err) { 2987 btf_mandatory = kernel_needs_btf(obj); 2988 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2989 btf_mandatory ? "BTF is mandatory, can't proceed." 2990 : "BTF is optional, ignoring."); 2991 if (!btf_mandatory) 2992 err = 0; 2993 } 2994 return err; 2995 } 2996 2997 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2998 { 2999 const char *name; 3000 3001 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3002 if (!name) { 3003 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3004 off, obj->path, elf_errmsg(-1)); 3005 return NULL; 3006 } 3007 3008 return name; 3009 } 3010 3011 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3012 { 3013 const char *name; 3014 3015 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3016 if (!name) { 3017 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3018 off, obj->path, elf_errmsg(-1)); 3019 return NULL; 3020 } 3021 3022 return name; 3023 } 3024 3025 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3026 { 3027 Elf_Scn *scn; 3028 3029 scn = elf_getscn(obj->efile.elf, idx); 3030 if (!scn) { 3031 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3032 idx, obj->path, elf_errmsg(-1)); 3033 return NULL; 3034 } 3035 return scn; 3036 } 3037 3038 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3039 { 3040 Elf_Scn *scn = NULL; 3041 Elf *elf = obj->efile.elf; 3042 const char *sec_name; 3043 3044 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3045 sec_name = elf_sec_name(obj, scn); 3046 if (!sec_name) 3047 return NULL; 3048 3049 if (strcmp(sec_name, name) != 0) 3050 continue; 3051 3052 return scn; 3053 } 3054 return NULL; 3055 } 3056 3057 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3058 { 3059 Elf64_Shdr *shdr; 3060 3061 if (!scn) 3062 return NULL; 3063 3064 shdr = elf64_getshdr(scn); 3065 if (!shdr) { 3066 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3067 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3068 return NULL; 3069 } 3070 3071 return shdr; 3072 } 3073 3074 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3075 { 3076 const char *name; 3077 Elf64_Shdr *sh; 3078 3079 if (!scn) 3080 return NULL; 3081 3082 sh = elf_sec_hdr(obj, scn); 3083 if (!sh) 3084 return NULL; 3085 3086 name = elf_sec_str(obj, sh->sh_name); 3087 if (!name) { 3088 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3089 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3090 return NULL; 3091 } 3092 3093 return name; 3094 } 3095 3096 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3097 { 3098 Elf_Data *data; 3099 3100 if (!scn) 3101 return NULL; 3102 3103 data = elf_getdata(scn, 0); 3104 if (!data) { 3105 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3106 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3107 obj->path, elf_errmsg(-1)); 3108 return NULL; 3109 } 3110 3111 return data; 3112 } 3113 3114 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3115 { 3116 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3117 return NULL; 3118 3119 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3120 } 3121 3122 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3123 { 3124 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3125 return NULL; 3126 3127 return (Elf64_Rel *)data->d_buf + idx; 3128 } 3129 3130 static bool is_sec_name_dwarf(const char *name) 3131 { 3132 /* approximation, but the actual list is too long */ 3133 return str_has_pfx(name, ".debug_"); 3134 } 3135 3136 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3137 { 3138 /* no special handling of .strtab */ 3139 if (hdr->sh_type == SHT_STRTAB) 3140 return true; 3141 3142 /* ignore .llvm_addrsig section as well */ 3143 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3144 return true; 3145 3146 /* no subprograms will lead to an empty .text section, ignore it */ 3147 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3148 strcmp(name, ".text") == 0) 3149 return true; 3150 3151 /* DWARF sections */ 3152 if (is_sec_name_dwarf(name)) 3153 return true; 3154 3155 if (str_has_pfx(name, ".rel")) { 3156 name += sizeof(".rel") - 1; 3157 /* DWARF section relocations */ 3158 if (is_sec_name_dwarf(name)) 3159 return true; 3160 3161 /* .BTF and .BTF.ext don't need relocations */ 3162 if (strcmp(name, BTF_ELF_SEC) == 0 || 3163 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3164 return true; 3165 } 3166 3167 return false; 3168 } 3169 3170 static int cmp_progs(const void *_a, const void *_b) 3171 { 3172 const struct bpf_program *a = _a; 3173 const struct bpf_program *b = _b; 3174 3175 if (a->sec_idx != b->sec_idx) 3176 return a->sec_idx < b->sec_idx ? -1 : 1; 3177 3178 /* sec_insn_off can't be the same within the section */ 3179 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3180 } 3181 3182 static int bpf_object__elf_collect(struct bpf_object *obj) 3183 { 3184 struct elf_sec_desc *sec_desc; 3185 Elf *elf = obj->efile.elf; 3186 Elf_Data *btf_ext_data = NULL; 3187 Elf_Data *btf_data = NULL; 3188 int idx = 0, err = 0; 3189 const char *name; 3190 Elf_Data *data; 3191 Elf_Scn *scn; 3192 Elf64_Shdr *sh; 3193 3194 /* ELF section indices are 1-based, so allocate +1 element to keep 3195 * indexing simple. Also include 0th invalid section into sec_cnt for 3196 * simpler and more traditional iteration logic. 3197 */ 3198 obj->efile.sec_cnt = 1 + obj->efile.ehdr->e_shnum; 3199 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3200 if (!obj->efile.secs) 3201 return -ENOMEM; 3202 3203 /* a bunch of ELF parsing functionality depends on processing symbols, 3204 * so do the first pass and find the symbol table 3205 */ 3206 scn = NULL; 3207 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3208 sh = elf_sec_hdr(obj, scn); 3209 if (!sh) 3210 return -LIBBPF_ERRNO__FORMAT; 3211 3212 if (sh->sh_type == SHT_SYMTAB) { 3213 if (obj->efile.symbols) { 3214 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3215 return -LIBBPF_ERRNO__FORMAT; 3216 } 3217 3218 data = elf_sec_data(obj, scn); 3219 if (!data) 3220 return -LIBBPF_ERRNO__FORMAT; 3221 3222 idx = elf_ndxscn(scn); 3223 3224 obj->efile.symbols = data; 3225 obj->efile.symbols_shndx = idx; 3226 obj->efile.strtabidx = sh->sh_link; 3227 } 3228 } 3229 3230 if (!obj->efile.symbols) { 3231 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3232 obj->path); 3233 return -ENOENT; 3234 } 3235 3236 scn = NULL; 3237 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3238 idx = elf_ndxscn(scn); 3239 sec_desc = &obj->efile.secs[idx]; 3240 3241 sh = elf_sec_hdr(obj, scn); 3242 if (!sh) 3243 return -LIBBPF_ERRNO__FORMAT; 3244 3245 name = elf_sec_str(obj, sh->sh_name); 3246 if (!name) 3247 return -LIBBPF_ERRNO__FORMAT; 3248 3249 if (ignore_elf_section(sh, name)) 3250 continue; 3251 3252 data = elf_sec_data(obj, scn); 3253 if (!data) 3254 return -LIBBPF_ERRNO__FORMAT; 3255 3256 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3257 idx, name, (unsigned long)data->d_size, 3258 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3259 (int)sh->sh_type); 3260 3261 if (strcmp(name, "license") == 0) { 3262 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3263 if (err) 3264 return err; 3265 } else if (strcmp(name, "version") == 0) { 3266 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3267 if (err) 3268 return err; 3269 } else if (strcmp(name, "maps") == 0) { 3270 obj->efile.maps_shndx = idx; 3271 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3272 obj->efile.btf_maps_shndx = idx; 3273 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3274 btf_data = data; 3275 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3276 btf_ext_data = data; 3277 } else if (sh->sh_type == SHT_SYMTAB) { 3278 /* already processed during the first pass above */ 3279 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3280 if (sh->sh_flags & SHF_EXECINSTR) { 3281 if (strcmp(name, ".text") == 0) 3282 obj->efile.text_shndx = idx; 3283 err = bpf_object__add_programs(obj, data, name, idx); 3284 if (err) 3285 return err; 3286 } else if (strcmp(name, DATA_SEC) == 0 || 3287 str_has_pfx(name, DATA_SEC ".")) { 3288 sec_desc->sec_type = SEC_DATA; 3289 sec_desc->shdr = sh; 3290 sec_desc->data = data; 3291 } else if (strcmp(name, RODATA_SEC) == 0 || 3292 str_has_pfx(name, RODATA_SEC ".")) { 3293 sec_desc->sec_type = SEC_RODATA; 3294 sec_desc->shdr = sh; 3295 sec_desc->data = data; 3296 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3297 obj->efile.st_ops_data = data; 3298 obj->efile.st_ops_shndx = idx; 3299 } else { 3300 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3301 idx, name); 3302 } 3303 } else if (sh->sh_type == SHT_REL) { 3304 int targ_sec_idx = sh->sh_info; /* points to other section */ 3305 3306 /* Only do relo for section with exec instructions */ 3307 if (!section_have_execinstr(obj, targ_sec_idx) && 3308 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3309 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3310 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3311 idx, name, targ_sec_idx, 3312 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3313 continue; 3314 } 3315 3316 sec_desc->sec_type = SEC_RELO; 3317 sec_desc->shdr = sh; 3318 sec_desc->data = data; 3319 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3320 sec_desc->sec_type = SEC_BSS; 3321 sec_desc->shdr = sh; 3322 sec_desc->data = data; 3323 } else { 3324 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3325 (size_t)sh->sh_size); 3326 } 3327 } 3328 3329 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3330 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3331 return -LIBBPF_ERRNO__FORMAT; 3332 } 3333 3334 /* sort BPF programs by section name and in-section instruction offset 3335 * for faster search */ 3336 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3337 3338 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3339 } 3340 3341 static bool sym_is_extern(const Elf64_Sym *sym) 3342 { 3343 int bind = ELF64_ST_BIND(sym->st_info); 3344 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3345 return sym->st_shndx == SHN_UNDEF && 3346 (bind == STB_GLOBAL || bind == STB_WEAK) && 3347 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3348 } 3349 3350 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3351 { 3352 int bind = ELF64_ST_BIND(sym->st_info); 3353 int type = ELF64_ST_TYPE(sym->st_info); 3354 3355 /* in .text section */ 3356 if (sym->st_shndx != text_shndx) 3357 return false; 3358 3359 /* local function */ 3360 if (bind == STB_LOCAL && type == STT_SECTION) 3361 return true; 3362 3363 /* global function */ 3364 return bind == STB_GLOBAL && type == STT_FUNC; 3365 } 3366 3367 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3368 { 3369 const struct btf_type *t; 3370 const char *tname; 3371 int i, n; 3372 3373 if (!btf) 3374 return -ESRCH; 3375 3376 n = btf__type_cnt(btf); 3377 for (i = 1; i < n; i++) { 3378 t = btf__type_by_id(btf, i); 3379 3380 if (!btf_is_var(t) && !btf_is_func(t)) 3381 continue; 3382 3383 tname = btf__name_by_offset(btf, t->name_off); 3384 if (strcmp(tname, ext_name)) 3385 continue; 3386 3387 if (btf_is_var(t) && 3388 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3389 return -EINVAL; 3390 3391 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3392 return -EINVAL; 3393 3394 return i; 3395 } 3396 3397 return -ENOENT; 3398 } 3399 3400 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3401 const struct btf_var_secinfo *vs; 3402 const struct btf_type *t; 3403 int i, j, n; 3404 3405 if (!btf) 3406 return -ESRCH; 3407 3408 n = btf__type_cnt(btf); 3409 for (i = 1; i < n; i++) { 3410 t = btf__type_by_id(btf, i); 3411 3412 if (!btf_is_datasec(t)) 3413 continue; 3414 3415 vs = btf_var_secinfos(t); 3416 for (j = 0; j < btf_vlen(t); j++, vs++) { 3417 if (vs->type == ext_btf_id) 3418 return i; 3419 } 3420 } 3421 3422 return -ENOENT; 3423 } 3424 3425 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3426 bool *is_signed) 3427 { 3428 const struct btf_type *t; 3429 const char *name; 3430 3431 t = skip_mods_and_typedefs(btf, id, NULL); 3432 name = btf__name_by_offset(btf, t->name_off); 3433 3434 if (is_signed) 3435 *is_signed = false; 3436 switch (btf_kind(t)) { 3437 case BTF_KIND_INT: { 3438 int enc = btf_int_encoding(t); 3439 3440 if (enc & BTF_INT_BOOL) 3441 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3442 if (is_signed) 3443 *is_signed = enc & BTF_INT_SIGNED; 3444 if (t->size == 1) 3445 return KCFG_CHAR; 3446 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3447 return KCFG_UNKNOWN; 3448 return KCFG_INT; 3449 } 3450 case BTF_KIND_ENUM: 3451 if (t->size != 4) 3452 return KCFG_UNKNOWN; 3453 if (strcmp(name, "libbpf_tristate")) 3454 return KCFG_UNKNOWN; 3455 return KCFG_TRISTATE; 3456 case BTF_KIND_ARRAY: 3457 if (btf_array(t)->nelems == 0) 3458 return KCFG_UNKNOWN; 3459 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3460 return KCFG_UNKNOWN; 3461 return KCFG_CHAR_ARR; 3462 default: 3463 return KCFG_UNKNOWN; 3464 } 3465 } 3466 3467 static int cmp_externs(const void *_a, const void *_b) 3468 { 3469 const struct extern_desc *a = _a; 3470 const struct extern_desc *b = _b; 3471 3472 if (a->type != b->type) 3473 return a->type < b->type ? -1 : 1; 3474 3475 if (a->type == EXT_KCFG) { 3476 /* descending order by alignment requirements */ 3477 if (a->kcfg.align != b->kcfg.align) 3478 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3479 /* ascending order by size, within same alignment class */ 3480 if (a->kcfg.sz != b->kcfg.sz) 3481 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3482 } 3483 3484 /* resolve ties by name */ 3485 return strcmp(a->name, b->name); 3486 } 3487 3488 static int find_int_btf_id(const struct btf *btf) 3489 { 3490 const struct btf_type *t; 3491 int i, n; 3492 3493 n = btf__type_cnt(btf); 3494 for (i = 1; i < n; i++) { 3495 t = btf__type_by_id(btf, i); 3496 3497 if (btf_is_int(t) && btf_int_bits(t) == 32) 3498 return i; 3499 } 3500 3501 return 0; 3502 } 3503 3504 static int add_dummy_ksym_var(struct btf *btf) 3505 { 3506 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3507 const struct btf_var_secinfo *vs; 3508 const struct btf_type *sec; 3509 3510 if (!btf) 3511 return 0; 3512 3513 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3514 BTF_KIND_DATASEC); 3515 if (sec_btf_id < 0) 3516 return 0; 3517 3518 sec = btf__type_by_id(btf, sec_btf_id); 3519 vs = btf_var_secinfos(sec); 3520 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3521 const struct btf_type *vt; 3522 3523 vt = btf__type_by_id(btf, vs->type); 3524 if (btf_is_func(vt)) 3525 break; 3526 } 3527 3528 /* No func in ksyms sec. No need to add dummy var. */ 3529 if (i == btf_vlen(sec)) 3530 return 0; 3531 3532 int_btf_id = find_int_btf_id(btf); 3533 dummy_var_btf_id = btf__add_var(btf, 3534 "dummy_ksym", 3535 BTF_VAR_GLOBAL_ALLOCATED, 3536 int_btf_id); 3537 if (dummy_var_btf_id < 0) 3538 pr_warn("cannot create a dummy_ksym var\n"); 3539 3540 return dummy_var_btf_id; 3541 } 3542 3543 static int bpf_object__collect_externs(struct bpf_object *obj) 3544 { 3545 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3546 const struct btf_type *t; 3547 struct extern_desc *ext; 3548 int i, n, off, dummy_var_btf_id; 3549 const char *ext_name, *sec_name; 3550 Elf_Scn *scn; 3551 Elf64_Shdr *sh; 3552 3553 if (!obj->efile.symbols) 3554 return 0; 3555 3556 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3557 sh = elf_sec_hdr(obj, scn); 3558 if (!sh) 3559 return -LIBBPF_ERRNO__FORMAT; 3560 3561 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3562 if (dummy_var_btf_id < 0) 3563 return dummy_var_btf_id; 3564 3565 n = sh->sh_size / sh->sh_entsize; 3566 pr_debug("looking for externs among %d symbols...\n", n); 3567 3568 for (i = 0; i < n; i++) { 3569 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3570 3571 if (!sym) 3572 return -LIBBPF_ERRNO__FORMAT; 3573 if (!sym_is_extern(sym)) 3574 continue; 3575 ext_name = elf_sym_str(obj, sym->st_name); 3576 if (!ext_name || !ext_name[0]) 3577 continue; 3578 3579 ext = obj->externs; 3580 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3581 if (!ext) 3582 return -ENOMEM; 3583 obj->externs = ext; 3584 ext = &ext[obj->nr_extern]; 3585 memset(ext, 0, sizeof(*ext)); 3586 obj->nr_extern++; 3587 3588 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3589 if (ext->btf_id <= 0) { 3590 pr_warn("failed to find BTF for extern '%s': %d\n", 3591 ext_name, ext->btf_id); 3592 return ext->btf_id; 3593 } 3594 t = btf__type_by_id(obj->btf, ext->btf_id); 3595 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3596 ext->sym_idx = i; 3597 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3598 3599 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3600 if (ext->sec_btf_id <= 0) { 3601 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3602 ext_name, ext->btf_id, ext->sec_btf_id); 3603 return ext->sec_btf_id; 3604 } 3605 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3606 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3607 3608 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3609 if (btf_is_func(t)) { 3610 pr_warn("extern function %s is unsupported under %s section\n", 3611 ext->name, KCONFIG_SEC); 3612 return -ENOTSUP; 3613 } 3614 kcfg_sec = sec; 3615 ext->type = EXT_KCFG; 3616 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3617 if (ext->kcfg.sz <= 0) { 3618 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3619 ext_name, ext->kcfg.sz); 3620 return ext->kcfg.sz; 3621 } 3622 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3623 if (ext->kcfg.align <= 0) { 3624 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3625 ext_name, ext->kcfg.align); 3626 return -EINVAL; 3627 } 3628 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3629 &ext->kcfg.is_signed); 3630 if (ext->kcfg.type == KCFG_UNKNOWN) { 3631 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3632 return -ENOTSUP; 3633 } 3634 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3635 ksym_sec = sec; 3636 ext->type = EXT_KSYM; 3637 skip_mods_and_typedefs(obj->btf, t->type, 3638 &ext->ksym.type_id); 3639 } else { 3640 pr_warn("unrecognized extern section '%s'\n", sec_name); 3641 return -ENOTSUP; 3642 } 3643 } 3644 pr_debug("collected %d externs total\n", obj->nr_extern); 3645 3646 if (!obj->nr_extern) 3647 return 0; 3648 3649 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3650 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3651 3652 /* for .ksyms section, we need to turn all externs into allocated 3653 * variables in BTF to pass kernel verification; we do this by 3654 * pretending that each extern is a 8-byte variable 3655 */ 3656 if (ksym_sec) { 3657 /* find existing 4-byte integer type in BTF to use for fake 3658 * extern variables in DATASEC 3659 */ 3660 int int_btf_id = find_int_btf_id(obj->btf); 3661 /* For extern function, a dummy_var added earlier 3662 * will be used to replace the vs->type and 3663 * its name string will be used to refill 3664 * the missing param's name. 3665 */ 3666 const struct btf_type *dummy_var; 3667 3668 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3669 for (i = 0; i < obj->nr_extern; i++) { 3670 ext = &obj->externs[i]; 3671 if (ext->type != EXT_KSYM) 3672 continue; 3673 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3674 i, ext->sym_idx, ext->name); 3675 } 3676 3677 sec = ksym_sec; 3678 n = btf_vlen(sec); 3679 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3680 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3681 struct btf_type *vt; 3682 3683 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3684 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3685 ext = find_extern_by_name(obj, ext_name); 3686 if (!ext) { 3687 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3688 btf_kind_str(vt), ext_name); 3689 return -ESRCH; 3690 } 3691 if (btf_is_func(vt)) { 3692 const struct btf_type *func_proto; 3693 struct btf_param *param; 3694 int j; 3695 3696 func_proto = btf__type_by_id(obj->btf, 3697 vt->type); 3698 param = btf_params(func_proto); 3699 /* Reuse the dummy_var string if the 3700 * func proto does not have param name. 3701 */ 3702 for (j = 0; j < btf_vlen(func_proto); j++) 3703 if (param[j].type && !param[j].name_off) 3704 param[j].name_off = 3705 dummy_var->name_off; 3706 vs->type = dummy_var_btf_id; 3707 vt->info &= ~0xffff; 3708 vt->info |= BTF_FUNC_GLOBAL; 3709 } else { 3710 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3711 vt->type = int_btf_id; 3712 } 3713 vs->offset = off; 3714 vs->size = sizeof(int); 3715 } 3716 sec->size = off; 3717 } 3718 3719 if (kcfg_sec) { 3720 sec = kcfg_sec; 3721 /* for kcfg externs calculate their offsets within a .kconfig map */ 3722 off = 0; 3723 for (i = 0; i < obj->nr_extern; i++) { 3724 ext = &obj->externs[i]; 3725 if (ext->type != EXT_KCFG) 3726 continue; 3727 3728 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3729 off = ext->kcfg.data_off + ext->kcfg.sz; 3730 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3731 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3732 } 3733 sec->size = off; 3734 n = btf_vlen(sec); 3735 for (i = 0; i < n; i++) { 3736 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3737 3738 t = btf__type_by_id(obj->btf, vs->type); 3739 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3740 ext = find_extern_by_name(obj, ext_name); 3741 if (!ext) { 3742 pr_warn("failed to find extern definition for BTF var '%s'\n", 3743 ext_name); 3744 return -ESRCH; 3745 } 3746 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3747 vs->offset = ext->kcfg.data_off; 3748 } 3749 } 3750 return 0; 3751 } 3752 3753 struct bpf_program * 3754 bpf_object__find_program_by_title(const struct bpf_object *obj, 3755 const char *title) 3756 { 3757 struct bpf_program *pos; 3758 3759 bpf_object__for_each_program(pos, obj) { 3760 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3761 return pos; 3762 } 3763 return errno = ENOENT, NULL; 3764 } 3765 3766 static bool prog_is_subprog(const struct bpf_object *obj, 3767 const struct bpf_program *prog) 3768 { 3769 /* For legacy reasons, libbpf supports an entry-point BPF programs 3770 * without SEC() attribute, i.e., those in the .text section. But if 3771 * there are 2 or more such programs in the .text section, they all 3772 * must be subprograms called from entry-point BPF programs in 3773 * designated SEC()'tions, otherwise there is no way to distinguish 3774 * which of those programs should be loaded vs which are a subprogram. 3775 * Similarly, if there is a function/program in .text and at least one 3776 * other BPF program with custom SEC() attribute, then we just assume 3777 * .text programs are subprograms (even if they are not called from 3778 * other programs), because libbpf never explicitly supported mixing 3779 * SEC()-designated BPF programs and .text entry-point BPF programs. 3780 */ 3781 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3782 } 3783 3784 struct bpf_program * 3785 bpf_object__find_program_by_name(const struct bpf_object *obj, 3786 const char *name) 3787 { 3788 struct bpf_program *prog; 3789 3790 bpf_object__for_each_program(prog, obj) { 3791 if (prog_is_subprog(obj, prog)) 3792 continue; 3793 if (!strcmp(prog->name, name)) 3794 return prog; 3795 } 3796 return errno = ENOENT, NULL; 3797 } 3798 3799 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3800 int shndx) 3801 { 3802 switch (obj->efile.secs[shndx].sec_type) { 3803 case SEC_BSS: 3804 case SEC_DATA: 3805 case SEC_RODATA: 3806 return true; 3807 default: 3808 return false; 3809 } 3810 } 3811 3812 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3813 int shndx) 3814 { 3815 return shndx == obj->efile.maps_shndx || 3816 shndx == obj->efile.btf_maps_shndx; 3817 } 3818 3819 static enum libbpf_map_type 3820 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3821 { 3822 if (shndx == obj->efile.symbols_shndx) 3823 return LIBBPF_MAP_KCONFIG; 3824 3825 switch (obj->efile.secs[shndx].sec_type) { 3826 case SEC_BSS: 3827 return LIBBPF_MAP_BSS; 3828 case SEC_DATA: 3829 return LIBBPF_MAP_DATA; 3830 case SEC_RODATA: 3831 return LIBBPF_MAP_RODATA; 3832 default: 3833 return LIBBPF_MAP_UNSPEC; 3834 } 3835 } 3836 3837 static int bpf_program__record_reloc(struct bpf_program *prog, 3838 struct reloc_desc *reloc_desc, 3839 __u32 insn_idx, const char *sym_name, 3840 const Elf64_Sym *sym, const Elf64_Rel *rel) 3841 { 3842 struct bpf_insn *insn = &prog->insns[insn_idx]; 3843 size_t map_idx, nr_maps = prog->obj->nr_maps; 3844 struct bpf_object *obj = prog->obj; 3845 __u32 shdr_idx = sym->st_shndx; 3846 enum libbpf_map_type type; 3847 const char *sym_sec_name; 3848 struct bpf_map *map; 3849 3850 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3851 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3852 prog->name, sym_name, insn_idx, insn->code); 3853 return -LIBBPF_ERRNO__RELOC; 3854 } 3855 3856 if (sym_is_extern(sym)) { 3857 int sym_idx = ELF64_R_SYM(rel->r_info); 3858 int i, n = obj->nr_extern; 3859 struct extern_desc *ext; 3860 3861 for (i = 0; i < n; i++) { 3862 ext = &obj->externs[i]; 3863 if (ext->sym_idx == sym_idx) 3864 break; 3865 } 3866 if (i >= n) { 3867 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3868 prog->name, sym_name, sym_idx); 3869 return -LIBBPF_ERRNO__RELOC; 3870 } 3871 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3872 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3873 if (insn->code == (BPF_JMP | BPF_CALL)) 3874 reloc_desc->type = RELO_EXTERN_FUNC; 3875 else 3876 reloc_desc->type = RELO_EXTERN_VAR; 3877 reloc_desc->insn_idx = insn_idx; 3878 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3879 return 0; 3880 } 3881 3882 /* sub-program call relocation */ 3883 if (is_call_insn(insn)) { 3884 if (insn->src_reg != BPF_PSEUDO_CALL) { 3885 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3886 return -LIBBPF_ERRNO__RELOC; 3887 } 3888 /* text_shndx can be 0, if no default "main" program exists */ 3889 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3890 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3891 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3892 prog->name, sym_name, sym_sec_name); 3893 return -LIBBPF_ERRNO__RELOC; 3894 } 3895 if (sym->st_value % BPF_INSN_SZ) { 3896 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3897 prog->name, sym_name, (size_t)sym->st_value); 3898 return -LIBBPF_ERRNO__RELOC; 3899 } 3900 reloc_desc->type = RELO_CALL; 3901 reloc_desc->insn_idx = insn_idx; 3902 reloc_desc->sym_off = sym->st_value; 3903 return 0; 3904 } 3905 3906 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3907 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3908 prog->name, sym_name, shdr_idx); 3909 return -LIBBPF_ERRNO__RELOC; 3910 } 3911 3912 /* loading subprog addresses */ 3913 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3914 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3915 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3916 */ 3917 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3918 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3919 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3920 return -LIBBPF_ERRNO__RELOC; 3921 } 3922 3923 reloc_desc->type = RELO_SUBPROG_ADDR; 3924 reloc_desc->insn_idx = insn_idx; 3925 reloc_desc->sym_off = sym->st_value; 3926 return 0; 3927 } 3928 3929 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3930 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3931 3932 /* generic map reference relocation */ 3933 if (type == LIBBPF_MAP_UNSPEC) { 3934 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3935 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3936 prog->name, sym_name, sym_sec_name); 3937 return -LIBBPF_ERRNO__RELOC; 3938 } 3939 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3940 map = &obj->maps[map_idx]; 3941 if (map->libbpf_type != type || 3942 map->sec_idx != sym->st_shndx || 3943 map->sec_offset != sym->st_value) 3944 continue; 3945 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3946 prog->name, map_idx, map->name, map->sec_idx, 3947 map->sec_offset, insn_idx); 3948 break; 3949 } 3950 if (map_idx >= nr_maps) { 3951 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3952 prog->name, sym_sec_name, (size_t)sym->st_value); 3953 return -LIBBPF_ERRNO__RELOC; 3954 } 3955 reloc_desc->type = RELO_LD64; 3956 reloc_desc->insn_idx = insn_idx; 3957 reloc_desc->map_idx = map_idx; 3958 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3959 return 0; 3960 } 3961 3962 /* global data map relocation */ 3963 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3964 pr_warn("prog '%s': bad data relo against section '%s'\n", 3965 prog->name, sym_sec_name); 3966 return -LIBBPF_ERRNO__RELOC; 3967 } 3968 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3969 map = &obj->maps[map_idx]; 3970 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 3971 continue; 3972 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3973 prog->name, map_idx, map->name, map->sec_idx, 3974 map->sec_offset, insn_idx); 3975 break; 3976 } 3977 if (map_idx >= nr_maps) { 3978 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3979 prog->name, sym_sec_name); 3980 return -LIBBPF_ERRNO__RELOC; 3981 } 3982 3983 reloc_desc->type = RELO_DATA; 3984 reloc_desc->insn_idx = insn_idx; 3985 reloc_desc->map_idx = map_idx; 3986 reloc_desc->sym_off = sym->st_value; 3987 return 0; 3988 } 3989 3990 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3991 { 3992 return insn_idx >= prog->sec_insn_off && 3993 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3994 } 3995 3996 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3997 size_t sec_idx, size_t insn_idx) 3998 { 3999 int l = 0, r = obj->nr_programs - 1, m; 4000 struct bpf_program *prog; 4001 4002 while (l < r) { 4003 m = l + (r - l + 1) / 2; 4004 prog = &obj->programs[m]; 4005 4006 if (prog->sec_idx < sec_idx || 4007 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4008 l = m; 4009 else 4010 r = m - 1; 4011 } 4012 /* matching program could be at index l, but it still might be the 4013 * wrong one, so we need to double check conditions for the last time 4014 */ 4015 prog = &obj->programs[l]; 4016 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4017 return prog; 4018 return NULL; 4019 } 4020 4021 static int 4022 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4023 { 4024 const char *relo_sec_name, *sec_name; 4025 size_t sec_idx = shdr->sh_info; 4026 struct bpf_program *prog; 4027 struct reloc_desc *relos; 4028 int err, i, nrels; 4029 const char *sym_name; 4030 __u32 insn_idx; 4031 Elf_Scn *scn; 4032 Elf_Data *scn_data; 4033 Elf64_Sym *sym; 4034 Elf64_Rel *rel; 4035 4036 scn = elf_sec_by_idx(obj, sec_idx); 4037 scn_data = elf_sec_data(obj, scn); 4038 4039 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4040 sec_name = elf_sec_name(obj, scn); 4041 if (!relo_sec_name || !sec_name) 4042 return -EINVAL; 4043 4044 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4045 relo_sec_name, sec_idx, sec_name); 4046 nrels = shdr->sh_size / shdr->sh_entsize; 4047 4048 for (i = 0; i < nrels; i++) { 4049 rel = elf_rel_by_idx(data, i); 4050 if (!rel) { 4051 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4052 return -LIBBPF_ERRNO__FORMAT; 4053 } 4054 4055 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 4056 if (!sym) { 4057 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 4058 relo_sec_name, (size_t)ELF64_R_SYM(rel->r_info), i); 4059 return -LIBBPF_ERRNO__FORMAT; 4060 } 4061 4062 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4063 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4064 relo_sec_name, (size_t)ELF64_R_SYM(rel->r_info), i); 4065 return -LIBBPF_ERRNO__FORMAT; 4066 } 4067 4068 insn_idx = rel->r_offset / BPF_INSN_SZ; 4069 /* relocations against static functions are recorded as 4070 * relocations against the section that contains a function; 4071 * in such case, symbol will be STT_SECTION and sym.st_name 4072 * will point to empty string (0), so fetch section name 4073 * instead 4074 */ 4075 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4076 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4077 else 4078 sym_name = elf_sym_str(obj, sym->st_name); 4079 sym_name = sym_name ?: "<?"; 4080 4081 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4082 relo_sec_name, i, insn_idx, sym_name); 4083 4084 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4085 if (!prog) { 4086 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4087 relo_sec_name, i, sec_name, insn_idx); 4088 continue; 4089 } 4090 4091 relos = libbpf_reallocarray(prog->reloc_desc, 4092 prog->nr_reloc + 1, sizeof(*relos)); 4093 if (!relos) 4094 return -ENOMEM; 4095 prog->reloc_desc = relos; 4096 4097 /* adjust insn_idx to local BPF program frame of reference */ 4098 insn_idx -= prog->sec_insn_off; 4099 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4100 insn_idx, sym_name, sym, rel); 4101 if (err) 4102 return err; 4103 4104 prog->nr_reloc++; 4105 } 4106 return 0; 4107 } 4108 4109 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4110 { 4111 struct bpf_map_def *def = &map->def; 4112 __u32 key_type_id = 0, value_type_id = 0; 4113 int ret; 4114 4115 /* if it's BTF-defined map, we don't need to search for type IDs. 4116 * For struct_ops map, it does not need btf_key_type_id and 4117 * btf_value_type_id. 4118 */ 4119 if (map->sec_idx == obj->efile.btf_maps_shndx || 4120 bpf_map__is_struct_ops(map)) 4121 return 0; 4122 4123 if (!bpf_map__is_internal(map)) { 4124 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 4125 def->value_size, &key_type_id, 4126 &value_type_id); 4127 } else { 4128 /* 4129 * LLVM annotates global data differently in BTF, that is, 4130 * only as '.data', '.bss' or '.rodata'. 4131 */ 4132 ret = btf__find_by_name(obj->btf, map->real_name); 4133 } 4134 if (ret < 0) 4135 return ret; 4136 4137 map->btf_key_type_id = key_type_id; 4138 map->btf_value_type_id = bpf_map__is_internal(map) ? 4139 ret : value_type_id; 4140 return 0; 4141 } 4142 4143 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4144 { 4145 char file[PATH_MAX], buff[4096]; 4146 FILE *fp; 4147 __u32 val; 4148 int err; 4149 4150 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4151 memset(info, 0, sizeof(*info)); 4152 4153 fp = fopen(file, "r"); 4154 if (!fp) { 4155 err = -errno; 4156 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4157 err); 4158 return err; 4159 } 4160 4161 while (fgets(buff, sizeof(buff), fp)) { 4162 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4163 info->type = val; 4164 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4165 info->key_size = val; 4166 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4167 info->value_size = val; 4168 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4169 info->max_entries = val; 4170 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4171 info->map_flags = val; 4172 } 4173 4174 fclose(fp); 4175 4176 return 0; 4177 } 4178 4179 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4180 { 4181 struct bpf_map_info info = {}; 4182 __u32 len = sizeof(info); 4183 int new_fd, err; 4184 char *new_name; 4185 4186 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4187 if (err && errno == EINVAL) 4188 err = bpf_get_map_info_from_fdinfo(fd, &info); 4189 if (err) 4190 return libbpf_err(err); 4191 4192 new_name = strdup(info.name); 4193 if (!new_name) 4194 return libbpf_err(-errno); 4195 4196 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4197 if (new_fd < 0) { 4198 err = -errno; 4199 goto err_free_new_name; 4200 } 4201 4202 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4203 if (new_fd < 0) { 4204 err = -errno; 4205 goto err_close_new_fd; 4206 } 4207 4208 err = zclose(map->fd); 4209 if (err) { 4210 err = -errno; 4211 goto err_close_new_fd; 4212 } 4213 free(map->name); 4214 4215 map->fd = new_fd; 4216 map->name = new_name; 4217 map->def.type = info.type; 4218 map->def.key_size = info.key_size; 4219 map->def.value_size = info.value_size; 4220 map->def.max_entries = info.max_entries; 4221 map->def.map_flags = info.map_flags; 4222 map->btf_key_type_id = info.btf_key_type_id; 4223 map->btf_value_type_id = info.btf_value_type_id; 4224 map->reused = true; 4225 map->map_extra = info.map_extra; 4226 4227 return 0; 4228 4229 err_close_new_fd: 4230 close(new_fd); 4231 err_free_new_name: 4232 free(new_name); 4233 return libbpf_err(err); 4234 } 4235 4236 __u32 bpf_map__max_entries(const struct bpf_map *map) 4237 { 4238 return map->def.max_entries; 4239 } 4240 4241 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4242 { 4243 if (!bpf_map_type__is_map_in_map(map->def.type)) 4244 return errno = EINVAL, NULL; 4245 4246 return map->inner_map; 4247 } 4248 4249 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4250 { 4251 if (map->fd >= 0) 4252 return libbpf_err(-EBUSY); 4253 map->def.max_entries = max_entries; 4254 return 0; 4255 } 4256 4257 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 4258 { 4259 if (!map || !max_entries) 4260 return libbpf_err(-EINVAL); 4261 4262 return bpf_map__set_max_entries(map, max_entries); 4263 } 4264 4265 static int 4266 bpf_object__probe_loading(struct bpf_object *obj) 4267 { 4268 struct bpf_load_program_attr attr; 4269 char *cp, errmsg[STRERR_BUFSIZE]; 4270 struct bpf_insn insns[] = { 4271 BPF_MOV64_IMM(BPF_REG_0, 0), 4272 BPF_EXIT_INSN(), 4273 }; 4274 int ret; 4275 4276 if (obj->gen_loader) 4277 return 0; 4278 4279 /* make sure basic loading works */ 4280 4281 memset(&attr, 0, sizeof(attr)); 4282 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4283 attr.insns = insns; 4284 attr.insns_cnt = ARRAY_SIZE(insns); 4285 attr.license = "GPL"; 4286 4287 ret = bpf_load_program_xattr(&attr, NULL, 0); 4288 if (ret < 0) { 4289 attr.prog_type = BPF_PROG_TYPE_TRACEPOINT; 4290 ret = bpf_load_program_xattr(&attr, NULL, 0); 4291 } 4292 if (ret < 0) { 4293 ret = errno; 4294 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4295 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4296 "program. Make sure your kernel supports BPF " 4297 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4298 "set to big enough value.\n", __func__, cp, ret); 4299 return -ret; 4300 } 4301 close(ret); 4302 4303 return 0; 4304 } 4305 4306 static int probe_fd(int fd) 4307 { 4308 if (fd >= 0) 4309 close(fd); 4310 return fd >= 0; 4311 } 4312 4313 static int probe_kern_prog_name(void) 4314 { 4315 struct bpf_load_program_attr attr; 4316 struct bpf_insn insns[] = { 4317 BPF_MOV64_IMM(BPF_REG_0, 0), 4318 BPF_EXIT_INSN(), 4319 }; 4320 int ret; 4321 4322 /* make sure loading with name works */ 4323 4324 memset(&attr, 0, sizeof(attr)); 4325 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4326 attr.insns = insns; 4327 attr.insns_cnt = ARRAY_SIZE(insns); 4328 attr.license = "GPL"; 4329 attr.name = "test"; 4330 ret = bpf_load_program_xattr(&attr, NULL, 0); 4331 return probe_fd(ret); 4332 } 4333 4334 static int probe_kern_global_data(void) 4335 { 4336 struct bpf_load_program_attr prg_attr; 4337 struct bpf_create_map_attr map_attr; 4338 char *cp, errmsg[STRERR_BUFSIZE]; 4339 struct bpf_insn insns[] = { 4340 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4341 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4342 BPF_MOV64_IMM(BPF_REG_0, 0), 4343 BPF_EXIT_INSN(), 4344 }; 4345 int ret, map; 4346 4347 memset(&map_attr, 0, sizeof(map_attr)); 4348 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4349 map_attr.key_size = sizeof(int); 4350 map_attr.value_size = 32; 4351 map_attr.max_entries = 1; 4352 4353 map = bpf_create_map_xattr(&map_attr); 4354 if (map < 0) { 4355 ret = -errno; 4356 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4357 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4358 __func__, cp, -ret); 4359 return ret; 4360 } 4361 4362 insns[0].imm = map; 4363 4364 memset(&prg_attr, 0, sizeof(prg_attr)); 4365 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4366 prg_attr.insns = insns; 4367 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4368 prg_attr.license = "GPL"; 4369 4370 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 4371 close(map); 4372 return probe_fd(ret); 4373 } 4374 4375 static int probe_kern_btf(void) 4376 { 4377 static const char strs[] = "\0int"; 4378 __u32 types[] = { 4379 /* int */ 4380 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4381 }; 4382 4383 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4384 strs, sizeof(strs))); 4385 } 4386 4387 static int probe_kern_btf_func(void) 4388 { 4389 static const char strs[] = "\0int\0x\0a"; 4390 /* void x(int a) {} */ 4391 __u32 types[] = { 4392 /* int */ 4393 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4394 /* FUNC_PROTO */ /* [2] */ 4395 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4396 BTF_PARAM_ENC(7, 1), 4397 /* FUNC x */ /* [3] */ 4398 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4399 }; 4400 4401 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4402 strs, sizeof(strs))); 4403 } 4404 4405 static int probe_kern_btf_func_global(void) 4406 { 4407 static const char strs[] = "\0int\0x\0a"; 4408 /* static void x(int a) {} */ 4409 __u32 types[] = { 4410 /* int */ 4411 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4412 /* FUNC_PROTO */ /* [2] */ 4413 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4414 BTF_PARAM_ENC(7, 1), 4415 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4416 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4417 }; 4418 4419 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4420 strs, sizeof(strs))); 4421 } 4422 4423 static int probe_kern_btf_datasec(void) 4424 { 4425 static const char strs[] = "\0x\0.data"; 4426 /* static int a; */ 4427 __u32 types[] = { 4428 /* int */ 4429 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4430 /* VAR x */ /* [2] */ 4431 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4432 BTF_VAR_STATIC, 4433 /* DATASEC val */ /* [3] */ 4434 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4435 BTF_VAR_SECINFO_ENC(2, 0, 4), 4436 }; 4437 4438 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4439 strs, sizeof(strs))); 4440 } 4441 4442 static int probe_kern_btf_float(void) 4443 { 4444 static const char strs[] = "\0float"; 4445 __u32 types[] = { 4446 /* float */ 4447 BTF_TYPE_FLOAT_ENC(1, 4), 4448 }; 4449 4450 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4451 strs, sizeof(strs))); 4452 } 4453 4454 static int probe_kern_btf_decl_tag(void) 4455 { 4456 static const char strs[] = "\0tag"; 4457 __u32 types[] = { 4458 /* int */ 4459 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4460 /* VAR x */ /* [2] */ 4461 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4462 BTF_VAR_STATIC, 4463 /* attr */ 4464 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4465 }; 4466 4467 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4468 strs, sizeof(strs))); 4469 } 4470 4471 static int probe_kern_array_mmap(void) 4472 { 4473 struct bpf_create_map_attr attr = { 4474 .map_type = BPF_MAP_TYPE_ARRAY, 4475 .map_flags = BPF_F_MMAPABLE, 4476 .key_size = sizeof(int), 4477 .value_size = sizeof(int), 4478 .max_entries = 1, 4479 }; 4480 4481 return probe_fd(bpf_create_map_xattr(&attr)); 4482 } 4483 4484 static int probe_kern_exp_attach_type(void) 4485 { 4486 struct bpf_load_program_attr attr; 4487 struct bpf_insn insns[] = { 4488 BPF_MOV64_IMM(BPF_REG_0, 0), 4489 BPF_EXIT_INSN(), 4490 }; 4491 4492 memset(&attr, 0, sizeof(attr)); 4493 /* use any valid combination of program type and (optional) 4494 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4495 * to see if kernel supports expected_attach_type field for 4496 * BPF_PROG_LOAD command 4497 */ 4498 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 4499 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 4500 attr.insns = insns; 4501 attr.insns_cnt = ARRAY_SIZE(insns); 4502 attr.license = "GPL"; 4503 4504 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4505 } 4506 4507 static int probe_kern_probe_read_kernel(void) 4508 { 4509 struct bpf_load_program_attr attr; 4510 struct bpf_insn insns[] = { 4511 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4512 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4513 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4514 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4515 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4516 BPF_EXIT_INSN(), 4517 }; 4518 4519 memset(&attr, 0, sizeof(attr)); 4520 attr.prog_type = BPF_PROG_TYPE_KPROBE; 4521 attr.insns = insns; 4522 attr.insns_cnt = ARRAY_SIZE(insns); 4523 attr.license = "GPL"; 4524 4525 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4526 } 4527 4528 static int probe_prog_bind_map(void) 4529 { 4530 struct bpf_load_program_attr prg_attr; 4531 struct bpf_create_map_attr map_attr; 4532 char *cp, errmsg[STRERR_BUFSIZE]; 4533 struct bpf_insn insns[] = { 4534 BPF_MOV64_IMM(BPF_REG_0, 0), 4535 BPF_EXIT_INSN(), 4536 }; 4537 int ret, map, prog; 4538 4539 memset(&map_attr, 0, sizeof(map_attr)); 4540 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4541 map_attr.key_size = sizeof(int); 4542 map_attr.value_size = 32; 4543 map_attr.max_entries = 1; 4544 4545 map = bpf_create_map_xattr(&map_attr); 4546 if (map < 0) { 4547 ret = -errno; 4548 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4549 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4550 __func__, cp, -ret); 4551 return ret; 4552 } 4553 4554 memset(&prg_attr, 0, sizeof(prg_attr)); 4555 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4556 prg_attr.insns = insns; 4557 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4558 prg_attr.license = "GPL"; 4559 4560 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 4561 if (prog < 0) { 4562 close(map); 4563 return 0; 4564 } 4565 4566 ret = bpf_prog_bind_map(prog, map, NULL); 4567 4568 close(map); 4569 close(prog); 4570 4571 return ret >= 0; 4572 } 4573 4574 static int probe_module_btf(void) 4575 { 4576 static const char strs[] = "\0int"; 4577 __u32 types[] = { 4578 /* int */ 4579 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4580 }; 4581 struct bpf_btf_info info; 4582 __u32 len = sizeof(info); 4583 char name[16]; 4584 int fd, err; 4585 4586 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4587 if (fd < 0) 4588 return 0; /* BTF not supported at all */ 4589 4590 memset(&info, 0, sizeof(info)); 4591 info.name = ptr_to_u64(name); 4592 info.name_len = sizeof(name); 4593 4594 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4595 * kernel's module BTF support coincides with support for 4596 * name/name_len fields in struct bpf_btf_info. 4597 */ 4598 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4599 close(fd); 4600 return !err; 4601 } 4602 4603 static int probe_perf_link(void) 4604 { 4605 struct bpf_load_program_attr attr; 4606 struct bpf_insn insns[] = { 4607 BPF_MOV64_IMM(BPF_REG_0, 0), 4608 BPF_EXIT_INSN(), 4609 }; 4610 int prog_fd, link_fd, err; 4611 4612 memset(&attr, 0, sizeof(attr)); 4613 attr.prog_type = BPF_PROG_TYPE_TRACEPOINT; 4614 attr.insns = insns; 4615 attr.insns_cnt = ARRAY_SIZE(insns); 4616 attr.license = "GPL"; 4617 prog_fd = bpf_load_program_xattr(&attr, NULL, 0); 4618 if (prog_fd < 0) 4619 return -errno; 4620 4621 /* use invalid perf_event FD to get EBADF, if link is supported; 4622 * otherwise EINVAL should be returned 4623 */ 4624 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4625 err = -errno; /* close() can clobber errno */ 4626 4627 if (link_fd >= 0) 4628 close(link_fd); 4629 close(prog_fd); 4630 4631 return link_fd < 0 && err == -EBADF; 4632 } 4633 4634 enum kern_feature_result { 4635 FEAT_UNKNOWN = 0, 4636 FEAT_SUPPORTED = 1, 4637 FEAT_MISSING = 2, 4638 }; 4639 4640 typedef int (*feature_probe_fn)(void); 4641 4642 static struct kern_feature_desc { 4643 const char *desc; 4644 feature_probe_fn probe; 4645 enum kern_feature_result res; 4646 } feature_probes[__FEAT_CNT] = { 4647 [FEAT_PROG_NAME] = { 4648 "BPF program name", probe_kern_prog_name, 4649 }, 4650 [FEAT_GLOBAL_DATA] = { 4651 "global variables", probe_kern_global_data, 4652 }, 4653 [FEAT_BTF] = { 4654 "minimal BTF", probe_kern_btf, 4655 }, 4656 [FEAT_BTF_FUNC] = { 4657 "BTF functions", probe_kern_btf_func, 4658 }, 4659 [FEAT_BTF_GLOBAL_FUNC] = { 4660 "BTF global function", probe_kern_btf_func_global, 4661 }, 4662 [FEAT_BTF_DATASEC] = { 4663 "BTF data section and variable", probe_kern_btf_datasec, 4664 }, 4665 [FEAT_ARRAY_MMAP] = { 4666 "ARRAY map mmap()", probe_kern_array_mmap, 4667 }, 4668 [FEAT_EXP_ATTACH_TYPE] = { 4669 "BPF_PROG_LOAD expected_attach_type attribute", 4670 probe_kern_exp_attach_type, 4671 }, 4672 [FEAT_PROBE_READ_KERN] = { 4673 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4674 }, 4675 [FEAT_PROG_BIND_MAP] = { 4676 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4677 }, 4678 [FEAT_MODULE_BTF] = { 4679 "module BTF support", probe_module_btf, 4680 }, 4681 [FEAT_BTF_FLOAT] = { 4682 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4683 }, 4684 [FEAT_PERF_LINK] = { 4685 "BPF perf link support", probe_perf_link, 4686 }, 4687 [FEAT_BTF_DECL_TAG] = { 4688 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4689 }, 4690 }; 4691 4692 static bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4693 { 4694 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4695 int ret; 4696 4697 if (obj->gen_loader) 4698 /* To generate loader program assume the latest kernel 4699 * to avoid doing extra prog_load, map_create syscalls. 4700 */ 4701 return true; 4702 4703 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4704 ret = feat->probe(); 4705 if (ret > 0) { 4706 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4707 } else if (ret == 0) { 4708 WRITE_ONCE(feat->res, FEAT_MISSING); 4709 } else { 4710 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4711 WRITE_ONCE(feat->res, FEAT_MISSING); 4712 } 4713 } 4714 4715 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4716 } 4717 4718 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4719 { 4720 struct bpf_map_info map_info = {}; 4721 char msg[STRERR_BUFSIZE]; 4722 __u32 map_info_len; 4723 int err; 4724 4725 map_info_len = sizeof(map_info); 4726 4727 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4728 if (err && errno == EINVAL) 4729 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4730 if (err) { 4731 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4732 libbpf_strerror_r(errno, msg, sizeof(msg))); 4733 return false; 4734 } 4735 4736 return (map_info.type == map->def.type && 4737 map_info.key_size == map->def.key_size && 4738 map_info.value_size == map->def.value_size && 4739 map_info.max_entries == map->def.max_entries && 4740 map_info.map_flags == map->def.map_flags && 4741 map_info.map_extra == map->map_extra); 4742 } 4743 4744 static int 4745 bpf_object__reuse_map(struct bpf_map *map) 4746 { 4747 char *cp, errmsg[STRERR_BUFSIZE]; 4748 int err, pin_fd; 4749 4750 pin_fd = bpf_obj_get(map->pin_path); 4751 if (pin_fd < 0) { 4752 err = -errno; 4753 if (err == -ENOENT) { 4754 pr_debug("found no pinned map to reuse at '%s'\n", 4755 map->pin_path); 4756 return 0; 4757 } 4758 4759 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4760 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4761 map->pin_path, cp); 4762 return err; 4763 } 4764 4765 if (!map_is_reuse_compat(map, pin_fd)) { 4766 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4767 map->pin_path); 4768 close(pin_fd); 4769 return -EINVAL; 4770 } 4771 4772 err = bpf_map__reuse_fd(map, pin_fd); 4773 if (err) { 4774 close(pin_fd); 4775 return err; 4776 } 4777 map->pinned = true; 4778 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4779 4780 return 0; 4781 } 4782 4783 static int 4784 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4785 { 4786 enum libbpf_map_type map_type = map->libbpf_type; 4787 char *cp, errmsg[STRERR_BUFSIZE]; 4788 int err, zero = 0; 4789 4790 if (obj->gen_loader) { 4791 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4792 map->mmaped, map->def.value_size); 4793 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4794 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4795 return 0; 4796 } 4797 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4798 if (err) { 4799 err = -errno; 4800 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4801 pr_warn("Error setting initial map(%s) contents: %s\n", 4802 map->name, cp); 4803 return err; 4804 } 4805 4806 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4807 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4808 err = bpf_map_freeze(map->fd); 4809 if (err) { 4810 err = -errno; 4811 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4812 pr_warn("Error freezing map(%s) as read-only: %s\n", 4813 map->name, cp); 4814 return err; 4815 } 4816 } 4817 return 0; 4818 } 4819 4820 static void bpf_map__destroy(struct bpf_map *map); 4821 4822 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4823 { 4824 struct bpf_create_map_params create_attr; 4825 struct bpf_map_def *def = &map->def; 4826 int err = 0; 4827 4828 memset(&create_attr, 0, sizeof(create_attr)); 4829 4830 if (kernel_supports(obj, FEAT_PROG_NAME)) 4831 create_attr.name = map->name; 4832 create_attr.map_ifindex = map->map_ifindex; 4833 create_attr.map_type = def->type; 4834 create_attr.map_flags = def->map_flags; 4835 create_attr.key_size = def->key_size; 4836 create_attr.value_size = def->value_size; 4837 create_attr.numa_node = map->numa_node; 4838 create_attr.map_extra = map->map_extra; 4839 4840 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4841 int nr_cpus; 4842 4843 nr_cpus = libbpf_num_possible_cpus(); 4844 if (nr_cpus < 0) { 4845 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4846 map->name, nr_cpus); 4847 return nr_cpus; 4848 } 4849 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4850 create_attr.max_entries = nr_cpus; 4851 } else { 4852 create_attr.max_entries = def->max_entries; 4853 } 4854 4855 if (bpf_map__is_struct_ops(map)) 4856 create_attr.btf_vmlinux_value_type_id = 4857 map->btf_vmlinux_value_type_id; 4858 4859 create_attr.btf_fd = 0; 4860 create_attr.btf_key_type_id = 0; 4861 create_attr.btf_value_type_id = 0; 4862 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4863 create_attr.btf_fd = btf__fd(obj->btf); 4864 create_attr.btf_key_type_id = map->btf_key_type_id; 4865 create_attr.btf_value_type_id = map->btf_value_type_id; 4866 } 4867 4868 if (bpf_map_type__is_map_in_map(def->type)) { 4869 if (map->inner_map) { 4870 err = bpf_object__create_map(obj, map->inner_map, true); 4871 if (err) { 4872 pr_warn("map '%s': failed to create inner map: %d\n", 4873 map->name, err); 4874 return err; 4875 } 4876 map->inner_map_fd = bpf_map__fd(map->inner_map); 4877 } 4878 if (map->inner_map_fd >= 0) 4879 create_attr.inner_map_fd = map->inner_map_fd; 4880 } 4881 4882 switch (def->type) { 4883 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4884 case BPF_MAP_TYPE_CGROUP_ARRAY: 4885 case BPF_MAP_TYPE_STACK_TRACE: 4886 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4887 case BPF_MAP_TYPE_HASH_OF_MAPS: 4888 case BPF_MAP_TYPE_DEVMAP: 4889 case BPF_MAP_TYPE_DEVMAP_HASH: 4890 case BPF_MAP_TYPE_CPUMAP: 4891 case BPF_MAP_TYPE_XSKMAP: 4892 case BPF_MAP_TYPE_SOCKMAP: 4893 case BPF_MAP_TYPE_SOCKHASH: 4894 case BPF_MAP_TYPE_QUEUE: 4895 case BPF_MAP_TYPE_STACK: 4896 case BPF_MAP_TYPE_RINGBUF: 4897 create_attr.btf_fd = 0; 4898 create_attr.btf_key_type_id = 0; 4899 create_attr.btf_value_type_id = 0; 4900 map->btf_key_type_id = 0; 4901 map->btf_value_type_id = 0; 4902 default: 4903 break; 4904 } 4905 4906 if (obj->gen_loader) { 4907 bpf_gen__map_create(obj->gen_loader, &create_attr, is_inner ? -1 : map - obj->maps); 4908 /* Pretend to have valid FD to pass various fd >= 0 checks. 4909 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 4910 */ 4911 map->fd = 0; 4912 } else { 4913 map->fd = libbpf__bpf_create_map_xattr(&create_attr); 4914 } 4915 if (map->fd < 0 && (create_attr.btf_key_type_id || 4916 create_attr.btf_value_type_id)) { 4917 char *cp, errmsg[STRERR_BUFSIZE]; 4918 4919 err = -errno; 4920 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4921 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4922 map->name, cp, err); 4923 create_attr.btf_fd = 0; 4924 create_attr.btf_key_type_id = 0; 4925 create_attr.btf_value_type_id = 0; 4926 map->btf_key_type_id = 0; 4927 map->btf_value_type_id = 0; 4928 map->fd = libbpf__bpf_create_map_xattr(&create_attr); 4929 } 4930 4931 err = map->fd < 0 ? -errno : 0; 4932 4933 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4934 if (obj->gen_loader) 4935 map->inner_map->fd = -1; 4936 bpf_map__destroy(map->inner_map); 4937 zfree(&map->inner_map); 4938 } 4939 4940 return err; 4941 } 4942 4943 static int init_map_slots(struct bpf_object *obj, struct bpf_map *map) 4944 { 4945 const struct bpf_map *targ_map; 4946 unsigned int i; 4947 int fd, err = 0; 4948 4949 for (i = 0; i < map->init_slots_sz; i++) { 4950 if (!map->init_slots[i]) 4951 continue; 4952 4953 targ_map = map->init_slots[i]; 4954 fd = bpf_map__fd(targ_map); 4955 if (obj->gen_loader) { 4956 pr_warn("// TODO map_update_elem: idx %td key %d value==map_idx %td\n", 4957 map - obj->maps, i, targ_map - obj->maps); 4958 return -ENOTSUP; 4959 } else { 4960 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4961 } 4962 if (err) { 4963 err = -errno; 4964 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4965 map->name, i, targ_map->name, 4966 fd, err); 4967 return err; 4968 } 4969 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4970 map->name, i, targ_map->name, fd); 4971 } 4972 4973 zfree(&map->init_slots); 4974 map->init_slots_sz = 0; 4975 4976 return 0; 4977 } 4978 4979 static int 4980 bpf_object__create_maps(struct bpf_object *obj) 4981 { 4982 struct bpf_map *map; 4983 char *cp, errmsg[STRERR_BUFSIZE]; 4984 unsigned int i, j; 4985 int err; 4986 bool retried; 4987 4988 for (i = 0; i < obj->nr_maps; i++) { 4989 map = &obj->maps[i]; 4990 4991 retried = false; 4992 retry: 4993 if (map->pin_path) { 4994 err = bpf_object__reuse_map(map); 4995 if (err) { 4996 pr_warn("map '%s': error reusing pinned map\n", 4997 map->name); 4998 goto err_out; 4999 } 5000 if (retried && map->fd < 0) { 5001 pr_warn("map '%s': cannot find pinned map\n", 5002 map->name); 5003 err = -ENOENT; 5004 goto err_out; 5005 } 5006 } 5007 5008 if (map->fd >= 0) { 5009 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5010 map->name, map->fd); 5011 } else { 5012 err = bpf_object__create_map(obj, map, false); 5013 if (err) 5014 goto err_out; 5015 5016 pr_debug("map '%s': created successfully, fd=%d\n", 5017 map->name, map->fd); 5018 5019 if (bpf_map__is_internal(map)) { 5020 err = bpf_object__populate_internal_map(obj, map); 5021 if (err < 0) { 5022 zclose(map->fd); 5023 goto err_out; 5024 } 5025 } 5026 5027 if (map->init_slots_sz) { 5028 err = init_map_slots(obj, map); 5029 if (err < 0) { 5030 zclose(map->fd); 5031 goto err_out; 5032 } 5033 } 5034 } 5035 5036 if (map->pin_path && !map->pinned) { 5037 err = bpf_map__pin(map, NULL); 5038 if (err) { 5039 zclose(map->fd); 5040 if (!retried && err == -EEXIST) { 5041 retried = true; 5042 goto retry; 5043 } 5044 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5045 map->name, map->pin_path, err); 5046 goto err_out; 5047 } 5048 } 5049 } 5050 5051 return 0; 5052 5053 err_out: 5054 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5055 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5056 pr_perm_msg(err); 5057 for (j = 0; j < i; j++) 5058 zclose(obj->maps[j].fd); 5059 return err; 5060 } 5061 5062 static bool bpf_core_is_flavor_sep(const char *s) 5063 { 5064 /* check X___Y name pattern, where X and Y are not underscores */ 5065 return s[0] != '_' && /* X */ 5066 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5067 s[4] != '_'; /* Y */ 5068 } 5069 5070 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5071 * before last triple underscore. Struct name part after last triple 5072 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5073 */ 5074 size_t bpf_core_essential_name_len(const char *name) 5075 { 5076 size_t n = strlen(name); 5077 int i; 5078 5079 for (i = n - 5; i >= 0; i--) { 5080 if (bpf_core_is_flavor_sep(name + i)) 5081 return i + 1; 5082 } 5083 return n; 5084 } 5085 5086 static void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5087 { 5088 free(cands->cands); 5089 free(cands); 5090 } 5091 5092 static int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5093 size_t local_essent_len, 5094 const struct btf *targ_btf, 5095 const char *targ_btf_name, 5096 int targ_start_id, 5097 struct bpf_core_cand_list *cands) 5098 { 5099 struct bpf_core_cand *new_cands, *cand; 5100 const struct btf_type *t; 5101 const char *targ_name; 5102 size_t targ_essent_len; 5103 int n, i; 5104 5105 n = btf__type_cnt(targ_btf); 5106 for (i = targ_start_id; i < n; i++) { 5107 t = btf__type_by_id(targ_btf, i); 5108 if (btf_kind(t) != btf_kind(local_cand->t)) 5109 continue; 5110 5111 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5112 if (str_is_empty(targ_name)) 5113 continue; 5114 5115 targ_essent_len = bpf_core_essential_name_len(targ_name); 5116 if (targ_essent_len != local_essent_len) 5117 continue; 5118 5119 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 5120 continue; 5121 5122 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5123 local_cand->id, btf_kind_str(local_cand->t), 5124 local_cand->name, i, btf_kind_str(t), targ_name, 5125 targ_btf_name); 5126 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5127 sizeof(*cands->cands)); 5128 if (!new_cands) 5129 return -ENOMEM; 5130 5131 cand = &new_cands[cands->len]; 5132 cand->btf = targ_btf; 5133 cand->t = t; 5134 cand->name = targ_name; 5135 cand->id = i; 5136 5137 cands->cands = new_cands; 5138 cands->len++; 5139 } 5140 return 0; 5141 } 5142 5143 static int load_module_btfs(struct bpf_object *obj) 5144 { 5145 struct bpf_btf_info info; 5146 struct module_btf *mod_btf; 5147 struct btf *btf; 5148 char name[64]; 5149 __u32 id = 0, len; 5150 int err, fd; 5151 5152 if (obj->btf_modules_loaded) 5153 return 0; 5154 5155 if (obj->gen_loader) 5156 return 0; 5157 5158 /* don't do this again, even if we find no module BTFs */ 5159 obj->btf_modules_loaded = true; 5160 5161 /* kernel too old to support module BTFs */ 5162 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5163 return 0; 5164 5165 while (true) { 5166 err = bpf_btf_get_next_id(id, &id); 5167 if (err && errno == ENOENT) 5168 return 0; 5169 if (err) { 5170 err = -errno; 5171 pr_warn("failed to iterate BTF objects: %d\n", err); 5172 return err; 5173 } 5174 5175 fd = bpf_btf_get_fd_by_id(id); 5176 if (fd < 0) { 5177 if (errno == ENOENT) 5178 continue; /* expected race: BTF was unloaded */ 5179 err = -errno; 5180 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5181 return err; 5182 } 5183 5184 len = sizeof(info); 5185 memset(&info, 0, sizeof(info)); 5186 info.name = ptr_to_u64(name); 5187 info.name_len = sizeof(name); 5188 5189 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5190 if (err) { 5191 err = -errno; 5192 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5193 goto err_out; 5194 } 5195 5196 /* ignore non-module BTFs */ 5197 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5198 close(fd); 5199 continue; 5200 } 5201 5202 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5203 err = libbpf_get_error(btf); 5204 if (err) { 5205 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5206 name, id, err); 5207 goto err_out; 5208 } 5209 5210 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5211 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5212 if (err) 5213 goto err_out; 5214 5215 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5216 5217 mod_btf->btf = btf; 5218 mod_btf->id = id; 5219 mod_btf->fd = fd; 5220 mod_btf->name = strdup(name); 5221 if (!mod_btf->name) { 5222 err = -ENOMEM; 5223 goto err_out; 5224 } 5225 continue; 5226 5227 err_out: 5228 close(fd); 5229 return err; 5230 } 5231 5232 return 0; 5233 } 5234 5235 static struct bpf_core_cand_list * 5236 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5237 { 5238 struct bpf_core_cand local_cand = {}; 5239 struct bpf_core_cand_list *cands; 5240 const struct btf *main_btf; 5241 size_t local_essent_len; 5242 int err, i; 5243 5244 local_cand.btf = local_btf; 5245 local_cand.t = btf__type_by_id(local_btf, local_type_id); 5246 if (!local_cand.t) 5247 return ERR_PTR(-EINVAL); 5248 5249 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 5250 if (str_is_empty(local_cand.name)) 5251 return ERR_PTR(-EINVAL); 5252 local_essent_len = bpf_core_essential_name_len(local_cand.name); 5253 5254 cands = calloc(1, sizeof(*cands)); 5255 if (!cands) 5256 return ERR_PTR(-ENOMEM); 5257 5258 /* Attempt to find target candidates in vmlinux BTF first */ 5259 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5260 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5261 if (err) 5262 goto err_out; 5263 5264 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5265 if (cands->len) 5266 return cands; 5267 5268 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5269 if (obj->btf_vmlinux_override) 5270 return cands; 5271 5272 /* now look through module BTFs, trying to still find candidates */ 5273 err = load_module_btfs(obj); 5274 if (err) 5275 goto err_out; 5276 5277 for (i = 0; i < obj->btf_module_cnt; i++) { 5278 err = bpf_core_add_cands(&local_cand, local_essent_len, 5279 obj->btf_modules[i].btf, 5280 obj->btf_modules[i].name, 5281 btf__type_cnt(obj->btf_vmlinux), 5282 cands); 5283 if (err) 5284 goto err_out; 5285 } 5286 5287 return cands; 5288 err_out: 5289 bpf_core_free_cands(cands); 5290 return ERR_PTR(err); 5291 } 5292 5293 /* Check local and target types for compatibility. This check is used for 5294 * type-based CO-RE relocations and follow slightly different rules than 5295 * field-based relocations. This function assumes that root types were already 5296 * checked for name match. Beyond that initial root-level name check, names 5297 * are completely ignored. Compatibility rules are as follows: 5298 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5299 * kind should match for local and target types (i.e., STRUCT is not 5300 * compatible with UNION); 5301 * - for ENUMs, the size is ignored; 5302 * - for INT, size and signedness are ignored; 5303 * - for ARRAY, dimensionality is ignored, element types are checked for 5304 * compatibility recursively; 5305 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5306 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5307 * - FUNC_PROTOs are compatible if they have compatible signature: same 5308 * number of input args and compatible return and argument types. 5309 * These rules are not set in stone and probably will be adjusted as we get 5310 * more experience with using BPF CO-RE relocations. 5311 */ 5312 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5313 const struct btf *targ_btf, __u32 targ_id) 5314 { 5315 const struct btf_type *local_type, *targ_type; 5316 int depth = 32; /* max recursion depth */ 5317 5318 /* caller made sure that names match (ignoring flavor suffix) */ 5319 local_type = btf__type_by_id(local_btf, local_id); 5320 targ_type = btf__type_by_id(targ_btf, targ_id); 5321 if (btf_kind(local_type) != btf_kind(targ_type)) 5322 return 0; 5323 5324 recur: 5325 depth--; 5326 if (depth < 0) 5327 return -EINVAL; 5328 5329 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5330 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5331 if (!local_type || !targ_type) 5332 return -EINVAL; 5333 5334 if (btf_kind(local_type) != btf_kind(targ_type)) 5335 return 0; 5336 5337 switch (btf_kind(local_type)) { 5338 case BTF_KIND_UNKN: 5339 case BTF_KIND_STRUCT: 5340 case BTF_KIND_UNION: 5341 case BTF_KIND_ENUM: 5342 case BTF_KIND_FWD: 5343 return 1; 5344 case BTF_KIND_INT: 5345 /* just reject deprecated bitfield-like integers; all other 5346 * integers are by default compatible between each other 5347 */ 5348 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5349 case BTF_KIND_PTR: 5350 local_id = local_type->type; 5351 targ_id = targ_type->type; 5352 goto recur; 5353 case BTF_KIND_ARRAY: 5354 local_id = btf_array(local_type)->type; 5355 targ_id = btf_array(targ_type)->type; 5356 goto recur; 5357 case BTF_KIND_FUNC_PROTO: { 5358 struct btf_param *local_p = btf_params(local_type); 5359 struct btf_param *targ_p = btf_params(targ_type); 5360 __u16 local_vlen = btf_vlen(local_type); 5361 __u16 targ_vlen = btf_vlen(targ_type); 5362 int i, err; 5363 5364 if (local_vlen != targ_vlen) 5365 return 0; 5366 5367 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5368 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5369 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5370 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5371 if (err <= 0) 5372 return err; 5373 } 5374 5375 /* tail recurse for return type check */ 5376 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5377 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5378 goto recur; 5379 } 5380 default: 5381 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5382 btf_kind_str(local_type), local_id, targ_id); 5383 return 0; 5384 } 5385 } 5386 5387 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5388 { 5389 return (size_t)key; 5390 } 5391 5392 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5393 { 5394 return k1 == k2; 5395 } 5396 5397 static void *u32_as_hash_key(__u32 x) 5398 { 5399 return (void *)(uintptr_t)x; 5400 } 5401 5402 static int bpf_core_apply_relo(struct bpf_program *prog, 5403 const struct bpf_core_relo *relo, 5404 int relo_idx, 5405 const struct btf *local_btf, 5406 struct hashmap *cand_cache) 5407 { 5408 const void *type_key = u32_as_hash_key(relo->type_id); 5409 struct bpf_core_cand_list *cands = NULL; 5410 const char *prog_name = prog->name; 5411 const struct btf_type *local_type; 5412 const char *local_name; 5413 __u32 local_id = relo->type_id; 5414 struct bpf_insn *insn; 5415 int insn_idx, err; 5416 5417 if (relo->insn_off % BPF_INSN_SZ) 5418 return -EINVAL; 5419 insn_idx = relo->insn_off / BPF_INSN_SZ; 5420 /* adjust insn_idx from section frame of reference to the local 5421 * program's frame of reference; (sub-)program code is not yet 5422 * relocated, so it's enough to just subtract in-section offset 5423 */ 5424 insn_idx = insn_idx - prog->sec_insn_off; 5425 if (insn_idx >= prog->insns_cnt) 5426 return -EINVAL; 5427 insn = &prog->insns[insn_idx]; 5428 5429 local_type = btf__type_by_id(local_btf, local_id); 5430 if (!local_type) 5431 return -EINVAL; 5432 5433 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5434 if (!local_name) 5435 return -EINVAL; 5436 5437 if (prog->obj->gen_loader) { 5438 pr_warn("// TODO core_relo: prog %td insn[%d] %s kind %d\n", 5439 prog - prog->obj->programs, relo->insn_off / 8, 5440 local_name, relo->kind); 5441 return -ENOTSUP; 5442 } 5443 5444 if (relo->kind != BPF_TYPE_ID_LOCAL && 5445 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5446 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5447 if (IS_ERR(cands)) { 5448 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5449 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5450 local_name, PTR_ERR(cands)); 5451 return PTR_ERR(cands); 5452 } 5453 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5454 if (err) { 5455 bpf_core_free_cands(cands); 5456 return err; 5457 } 5458 } 5459 5460 return bpf_core_apply_relo_insn(prog_name, insn, insn_idx, relo, relo_idx, local_btf, cands); 5461 } 5462 5463 static int 5464 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5465 { 5466 const struct btf_ext_info_sec *sec; 5467 const struct bpf_core_relo *rec; 5468 const struct btf_ext_info *seg; 5469 struct hashmap_entry *entry; 5470 struct hashmap *cand_cache = NULL; 5471 struct bpf_program *prog; 5472 const char *sec_name; 5473 int i, err = 0, insn_idx, sec_idx; 5474 5475 if (obj->btf_ext->core_relo_info.len == 0) 5476 return 0; 5477 5478 if (targ_btf_path) { 5479 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5480 err = libbpf_get_error(obj->btf_vmlinux_override); 5481 if (err) { 5482 pr_warn("failed to parse target BTF: %d\n", err); 5483 return err; 5484 } 5485 } 5486 5487 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5488 if (IS_ERR(cand_cache)) { 5489 err = PTR_ERR(cand_cache); 5490 goto out; 5491 } 5492 5493 seg = &obj->btf_ext->core_relo_info; 5494 for_each_btf_ext_sec(seg, sec) { 5495 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5496 if (str_is_empty(sec_name)) { 5497 err = -EINVAL; 5498 goto out; 5499 } 5500 /* bpf_object's ELF is gone by now so it's not easy to find 5501 * section index by section name, but we can find *any* 5502 * bpf_program within desired section name and use it's 5503 * prog->sec_idx to do a proper search by section index and 5504 * instruction offset 5505 */ 5506 prog = NULL; 5507 for (i = 0; i < obj->nr_programs; i++) { 5508 prog = &obj->programs[i]; 5509 if (strcmp(prog->sec_name, sec_name) == 0) 5510 break; 5511 } 5512 if (!prog) { 5513 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 5514 return -ENOENT; 5515 } 5516 sec_idx = prog->sec_idx; 5517 5518 pr_debug("sec '%s': found %d CO-RE relocations\n", 5519 sec_name, sec->num_info); 5520 5521 for_each_btf_ext_rec(seg, sec, i, rec) { 5522 insn_idx = rec->insn_off / BPF_INSN_SZ; 5523 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5524 if (!prog) { 5525 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 5526 sec_name, insn_idx, i); 5527 err = -EINVAL; 5528 goto out; 5529 } 5530 /* no need to apply CO-RE relocation if the program is 5531 * not going to be loaded 5532 */ 5533 if (!prog->load) 5534 continue; 5535 5536 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 5537 if (err) { 5538 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5539 prog->name, i, err); 5540 goto out; 5541 } 5542 } 5543 } 5544 5545 out: 5546 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5547 btf__free(obj->btf_vmlinux_override); 5548 obj->btf_vmlinux_override = NULL; 5549 5550 if (!IS_ERR_OR_NULL(cand_cache)) { 5551 hashmap__for_each_entry(cand_cache, entry, i) { 5552 bpf_core_free_cands(entry->value); 5553 } 5554 hashmap__free(cand_cache); 5555 } 5556 return err; 5557 } 5558 5559 /* Relocate data references within program code: 5560 * - map references; 5561 * - global variable references; 5562 * - extern references. 5563 */ 5564 static int 5565 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5566 { 5567 int i; 5568 5569 for (i = 0; i < prog->nr_reloc; i++) { 5570 struct reloc_desc *relo = &prog->reloc_desc[i]; 5571 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5572 struct extern_desc *ext; 5573 5574 switch (relo->type) { 5575 case RELO_LD64: 5576 if (obj->gen_loader) { 5577 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5578 insn[0].imm = relo->map_idx; 5579 } else { 5580 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5581 insn[0].imm = obj->maps[relo->map_idx].fd; 5582 } 5583 break; 5584 case RELO_DATA: 5585 insn[1].imm = insn[0].imm + relo->sym_off; 5586 if (obj->gen_loader) { 5587 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5588 insn[0].imm = relo->map_idx; 5589 } else { 5590 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5591 insn[0].imm = obj->maps[relo->map_idx].fd; 5592 } 5593 break; 5594 case RELO_EXTERN_VAR: 5595 ext = &obj->externs[relo->sym_off]; 5596 if (ext->type == EXT_KCFG) { 5597 if (obj->gen_loader) { 5598 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5599 insn[0].imm = obj->kconfig_map_idx; 5600 } else { 5601 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5602 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5603 } 5604 insn[1].imm = ext->kcfg.data_off; 5605 } else /* EXT_KSYM */ { 5606 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5607 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5608 insn[0].imm = ext->ksym.kernel_btf_id; 5609 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5610 } else { /* typeless ksyms or unresolved typed ksyms */ 5611 insn[0].imm = (__u32)ext->ksym.addr; 5612 insn[1].imm = ext->ksym.addr >> 32; 5613 } 5614 } 5615 break; 5616 case RELO_EXTERN_FUNC: 5617 ext = &obj->externs[relo->sym_off]; 5618 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5619 if (ext->is_set) { 5620 insn[0].imm = ext->ksym.kernel_btf_id; 5621 insn[0].off = ext->ksym.btf_fd_idx; 5622 } else { /* unresolved weak kfunc */ 5623 insn[0].imm = 0; 5624 insn[0].off = 0; 5625 } 5626 break; 5627 case RELO_SUBPROG_ADDR: 5628 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5629 pr_warn("prog '%s': relo #%d: bad insn\n", 5630 prog->name, i); 5631 return -EINVAL; 5632 } 5633 /* handled already */ 5634 break; 5635 case RELO_CALL: 5636 /* handled already */ 5637 break; 5638 default: 5639 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5640 prog->name, i, relo->type); 5641 return -EINVAL; 5642 } 5643 } 5644 5645 return 0; 5646 } 5647 5648 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5649 const struct bpf_program *prog, 5650 const struct btf_ext_info *ext_info, 5651 void **prog_info, __u32 *prog_rec_cnt, 5652 __u32 *prog_rec_sz) 5653 { 5654 void *copy_start = NULL, *copy_end = NULL; 5655 void *rec, *rec_end, *new_prog_info; 5656 const struct btf_ext_info_sec *sec; 5657 size_t old_sz, new_sz; 5658 const char *sec_name; 5659 int i, off_adj; 5660 5661 for_each_btf_ext_sec(ext_info, sec) { 5662 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5663 if (!sec_name) 5664 return -EINVAL; 5665 if (strcmp(sec_name, prog->sec_name) != 0) 5666 continue; 5667 5668 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5669 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5670 5671 if (insn_off < prog->sec_insn_off) 5672 continue; 5673 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5674 break; 5675 5676 if (!copy_start) 5677 copy_start = rec; 5678 copy_end = rec + ext_info->rec_size; 5679 } 5680 5681 if (!copy_start) 5682 return -ENOENT; 5683 5684 /* append func/line info of a given (sub-)program to the main 5685 * program func/line info 5686 */ 5687 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5688 new_sz = old_sz + (copy_end - copy_start); 5689 new_prog_info = realloc(*prog_info, new_sz); 5690 if (!new_prog_info) 5691 return -ENOMEM; 5692 *prog_info = new_prog_info; 5693 *prog_rec_cnt = new_sz / ext_info->rec_size; 5694 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5695 5696 /* Kernel instruction offsets are in units of 8-byte 5697 * instructions, while .BTF.ext instruction offsets generated 5698 * by Clang are in units of bytes. So convert Clang offsets 5699 * into kernel offsets and adjust offset according to program 5700 * relocated position. 5701 */ 5702 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5703 rec = new_prog_info + old_sz; 5704 rec_end = new_prog_info + new_sz; 5705 for (; rec < rec_end; rec += ext_info->rec_size) { 5706 __u32 *insn_off = rec; 5707 5708 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5709 } 5710 *prog_rec_sz = ext_info->rec_size; 5711 return 0; 5712 } 5713 5714 return -ENOENT; 5715 } 5716 5717 static int 5718 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5719 struct bpf_program *main_prog, 5720 const struct bpf_program *prog) 5721 { 5722 int err; 5723 5724 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5725 * supprot func/line info 5726 */ 5727 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5728 return 0; 5729 5730 /* only attempt func info relocation if main program's func_info 5731 * relocation was successful 5732 */ 5733 if (main_prog != prog && !main_prog->func_info) 5734 goto line_info; 5735 5736 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5737 &main_prog->func_info, 5738 &main_prog->func_info_cnt, 5739 &main_prog->func_info_rec_size); 5740 if (err) { 5741 if (err != -ENOENT) { 5742 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5743 prog->name, err); 5744 return err; 5745 } 5746 if (main_prog->func_info) { 5747 /* 5748 * Some info has already been found but has problem 5749 * in the last btf_ext reloc. Must have to error out. 5750 */ 5751 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5752 return err; 5753 } 5754 /* Have problem loading the very first info. Ignore the rest. */ 5755 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5756 prog->name); 5757 } 5758 5759 line_info: 5760 /* don't relocate line info if main program's relocation failed */ 5761 if (main_prog != prog && !main_prog->line_info) 5762 return 0; 5763 5764 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5765 &main_prog->line_info, 5766 &main_prog->line_info_cnt, 5767 &main_prog->line_info_rec_size); 5768 if (err) { 5769 if (err != -ENOENT) { 5770 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5771 prog->name, err); 5772 return err; 5773 } 5774 if (main_prog->line_info) { 5775 /* 5776 * Some info has already been found but has problem 5777 * in the last btf_ext reloc. Must have to error out. 5778 */ 5779 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 5780 return err; 5781 } 5782 /* Have problem loading the very first info. Ignore the rest. */ 5783 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 5784 prog->name); 5785 } 5786 return 0; 5787 } 5788 5789 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 5790 { 5791 size_t insn_idx = *(const size_t *)key; 5792 const struct reloc_desc *relo = elem; 5793 5794 if (insn_idx == relo->insn_idx) 5795 return 0; 5796 return insn_idx < relo->insn_idx ? -1 : 1; 5797 } 5798 5799 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 5800 { 5801 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 5802 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 5803 } 5804 5805 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 5806 { 5807 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 5808 struct reloc_desc *relos; 5809 int i; 5810 5811 if (main_prog == subprog) 5812 return 0; 5813 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 5814 if (!relos) 5815 return -ENOMEM; 5816 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 5817 sizeof(*relos) * subprog->nr_reloc); 5818 5819 for (i = main_prog->nr_reloc; i < new_cnt; i++) 5820 relos[i].insn_idx += subprog->sub_insn_off; 5821 /* After insn_idx adjustment the 'relos' array is still sorted 5822 * by insn_idx and doesn't break bsearch. 5823 */ 5824 main_prog->reloc_desc = relos; 5825 main_prog->nr_reloc = new_cnt; 5826 return 0; 5827 } 5828 5829 static int 5830 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 5831 struct bpf_program *prog) 5832 { 5833 size_t sub_insn_idx, insn_idx, new_cnt; 5834 struct bpf_program *subprog; 5835 struct bpf_insn *insns, *insn; 5836 struct reloc_desc *relo; 5837 int err; 5838 5839 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 5840 if (err) 5841 return err; 5842 5843 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 5844 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5845 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 5846 continue; 5847 5848 relo = find_prog_insn_relo(prog, insn_idx); 5849 if (relo && relo->type == RELO_EXTERN_FUNC) 5850 /* kfunc relocations will be handled later 5851 * in bpf_object__relocate_data() 5852 */ 5853 continue; 5854 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 5855 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 5856 prog->name, insn_idx, relo->type); 5857 return -LIBBPF_ERRNO__RELOC; 5858 } 5859 if (relo) { 5860 /* sub-program instruction index is a combination of 5861 * an offset of a symbol pointed to by relocation and 5862 * call instruction's imm field; for global functions, 5863 * call always has imm = -1, but for static functions 5864 * relocation is against STT_SECTION and insn->imm 5865 * points to a start of a static function 5866 * 5867 * for subprog addr relocation, the relo->sym_off + insn->imm is 5868 * the byte offset in the corresponding section. 5869 */ 5870 if (relo->type == RELO_CALL) 5871 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 5872 else 5873 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 5874 } else if (insn_is_pseudo_func(insn)) { 5875 /* 5876 * RELO_SUBPROG_ADDR relo is always emitted even if both 5877 * functions are in the same section, so it shouldn't reach here. 5878 */ 5879 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 5880 prog->name, insn_idx); 5881 return -LIBBPF_ERRNO__RELOC; 5882 } else { 5883 /* if subprogram call is to a static function within 5884 * the same ELF section, there won't be any relocation 5885 * emitted, but it also means there is no additional 5886 * offset necessary, insns->imm is relative to 5887 * instruction's original position within the section 5888 */ 5889 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 5890 } 5891 5892 /* we enforce that sub-programs should be in .text section */ 5893 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 5894 if (!subprog) { 5895 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 5896 prog->name); 5897 return -LIBBPF_ERRNO__RELOC; 5898 } 5899 5900 /* if it's the first call instruction calling into this 5901 * subprogram (meaning this subprog hasn't been processed 5902 * yet) within the context of current main program: 5903 * - append it at the end of main program's instructions blog; 5904 * - process is recursively, while current program is put on hold; 5905 * - if that subprogram calls some other not yet processes 5906 * subprogram, same thing will happen recursively until 5907 * there are no more unprocesses subprograms left to append 5908 * and relocate. 5909 */ 5910 if (subprog->sub_insn_off == 0) { 5911 subprog->sub_insn_off = main_prog->insns_cnt; 5912 5913 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 5914 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 5915 if (!insns) { 5916 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 5917 return -ENOMEM; 5918 } 5919 main_prog->insns = insns; 5920 main_prog->insns_cnt = new_cnt; 5921 5922 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 5923 subprog->insns_cnt * sizeof(*insns)); 5924 5925 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 5926 main_prog->name, subprog->insns_cnt, subprog->name); 5927 5928 /* The subprog insns are now appended. Append its relos too. */ 5929 err = append_subprog_relos(main_prog, subprog); 5930 if (err) 5931 return err; 5932 err = bpf_object__reloc_code(obj, main_prog, subprog); 5933 if (err) 5934 return err; 5935 } 5936 5937 /* main_prog->insns memory could have been re-allocated, so 5938 * calculate pointer again 5939 */ 5940 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 5941 /* calculate correct instruction position within current main 5942 * prog; each main prog can have a different set of 5943 * subprograms appended (potentially in different order as 5944 * well), so position of any subprog can be different for 5945 * different main programs */ 5946 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 5947 5948 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 5949 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 5950 } 5951 5952 return 0; 5953 } 5954 5955 /* 5956 * Relocate sub-program calls. 5957 * 5958 * Algorithm operates as follows. Each entry-point BPF program (referred to as 5959 * main prog) is processed separately. For each subprog (non-entry functions, 5960 * that can be called from either entry progs or other subprogs) gets their 5961 * sub_insn_off reset to zero. This serves as indicator that this subprogram 5962 * hasn't been yet appended and relocated within current main prog. Once its 5963 * relocated, sub_insn_off will point at the position within current main prog 5964 * where given subprog was appended. This will further be used to relocate all 5965 * the call instructions jumping into this subprog. 5966 * 5967 * We start with main program and process all call instructions. If the call 5968 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 5969 * is zero), subprog instructions are appended at the end of main program's 5970 * instruction array. Then main program is "put on hold" while we recursively 5971 * process newly appended subprogram. If that subprogram calls into another 5972 * subprogram that hasn't been appended, new subprogram is appended again to 5973 * the *main* prog's instructions (subprog's instructions are always left 5974 * untouched, as they need to be in unmodified state for subsequent main progs 5975 * and subprog instructions are always sent only as part of a main prog) and 5976 * the process continues recursively. Once all the subprogs called from a main 5977 * prog or any of its subprogs are appended (and relocated), all their 5978 * positions within finalized instructions array are known, so it's easy to 5979 * rewrite call instructions with correct relative offsets, corresponding to 5980 * desired target subprog. 5981 * 5982 * Its important to realize that some subprogs might not be called from some 5983 * main prog and any of its called/used subprogs. Those will keep their 5984 * subprog->sub_insn_off as zero at all times and won't be appended to current 5985 * main prog and won't be relocated within the context of current main prog. 5986 * They might still be used from other main progs later. 5987 * 5988 * Visually this process can be shown as below. Suppose we have two main 5989 * programs mainA and mainB and BPF object contains three subprogs: subA, 5990 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 5991 * subC both call subB: 5992 * 5993 * +--------+ +-------+ 5994 * | v v | 5995 * +--+---+ +--+-+-+ +---+--+ 5996 * | subA | | subB | | subC | 5997 * +--+---+ +------+ +---+--+ 5998 * ^ ^ 5999 * | | 6000 * +---+-------+ +------+----+ 6001 * | mainA | | mainB | 6002 * +-----------+ +-----------+ 6003 * 6004 * We'll start relocating mainA, will find subA, append it and start 6005 * processing sub A recursively: 6006 * 6007 * +-----------+------+ 6008 * | mainA | subA | 6009 * +-----------+------+ 6010 * 6011 * At this point we notice that subB is used from subA, so we append it and 6012 * relocate (there are no further subcalls from subB): 6013 * 6014 * +-----------+------+------+ 6015 * | mainA | subA | subB | 6016 * +-----------+------+------+ 6017 * 6018 * At this point, we relocate subA calls, then go one level up and finish with 6019 * relocatin mainA calls. mainA is done. 6020 * 6021 * For mainB process is similar but results in different order. We start with 6022 * mainB and skip subA and subB, as mainB never calls them (at least 6023 * directly), but we see subC is needed, so we append and start processing it: 6024 * 6025 * +-----------+------+ 6026 * | mainB | subC | 6027 * +-----------+------+ 6028 * Now we see subC needs subB, so we go back to it, append and relocate it: 6029 * 6030 * +-----------+------+------+ 6031 * | mainB | subC | subB | 6032 * +-----------+------+------+ 6033 * 6034 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6035 */ 6036 static int 6037 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6038 { 6039 struct bpf_program *subprog; 6040 int i, err; 6041 6042 /* mark all subprogs as not relocated (yet) within the context of 6043 * current main program 6044 */ 6045 for (i = 0; i < obj->nr_programs; i++) { 6046 subprog = &obj->programs[i]; 6047 if (!prog_is_subprog(obj, subprog)) 6048 continue; 6049 6050 subprog->sub_insn_off = 0; 6051 } 6052 6053 err = bpf_object__reloc_code(obj, prog, prog); 6054 if (err) 6055 return err; 6056 6057 6058 return 0; 6059 } 6060 6061 static void 6062 bpf_object__free_relocs(struct bpf_object *obj) 6063 { 6064 struct bpf_program *prog; 6065 int i; 6066 6067 /* free up relocation descriptors */ 6068 for (i = 0; i < obj->nr_programs; i++) { 6069 prog = &obj->programs[i]; 6070 zfree(&prog->reloc_desc); 6071 prog->nr_reloc = 0; 6072 } 6073 } 6074 6075 static int 6076 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6077 { 6078 struct bpf_program *prog; 6079 size_t i, j; 6080 int err; 6081 6082 if (obj->btf_ext) { 6083 err = bpf_object__relocate_core(obj, targ_btf_path); 6084 if (err) { 6085 pr_warn("failed to perform CO-RE relocations: %d\n", 6086 err); 6087 return err; 6088 } 6089 } 6090 6091 /* Before relocating calls pre-process relocations and mark 6092 * few ld_imm64 instructions that points to subprogs. 6093 * Otherwise bpf_object__reloc_code() later would have to consider 6094 * all ld_imm64 insns as relocation candidates. That would 6095 * reduce relocation speed, since amount of find_prog_insn_relo() 6096 * would increase and most of them will fail to find a relo. 6097 */ 6098 for (i = 0; i < obj->nr_programs; i++) { 6099 prog = &obj->programs[i]; 6100 for (j = 0; j < prog->nr_reloc; j++) { 6101 struct reloc_desc *relo = &prog->reloc_desc[j]; 6102 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6103 6104 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6105 if (relo->type == RELO_SUBPROG_ADDR) 6106 insn[0].src_reg = BPF_PSEUDO_FUNC; 6107 } 6108 } 6109 6110 /* relocate subprogram calls and append used subprograms to main 6111 * programs; each copy of subprogram code needs to be relocated 6112 * differently for each main program, because its code location might 6113 * have changed. 6114 * Append subprog relos to main programs to allow data relos to be 6115 * processed after text is completely relocated. 6116 */ 6117 for (i = 0; i < obj->nr_programs; i++) { 6118 prog = &obj->programs[i]; 6119 /* sub-program's sub-calls are relocated within the context of 6120 * its main program only 6121 */ 6122 if (prog_is_subprog(obj, prog)) 6123 continue; 6124 6125 err = bpf_object__relocate_calls(obj, prog); 6126 if (err) { 6127 pr_warn("prog '%s': failed to relocate calls: %d\n", 6128 prog->name, err); 6129 return err; 6130 } 6131 } 6132 /* Process data relos for main programs */ 6133 for (i = 0; i < obj->nr_programs; i++) { 6134 prog = &obj->programs[i]; 6135 if (prog_is_subprog(obj, prog)) 6136 continue; 6137 err = bpf_object__relocate_data(obj, prog); 6138 if (err) { 6139 pr_warn("prog '%s': failed to relocate data references: %d\n", 6140 prog->name, err); 6141 return err; 6142 } 6143 } 6144 if (!obj->gen_loader) 6145 bpf_object__free_relocs(obj); 6146 return 0; 6147 } 6148 6149 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6150 Elf64_Shdr *shdr, Elf_Data *data); 6151 6152 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6153 Elf64_Shdr *shdr, Elf_Data *data) 6154 { 6155 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6156 int i, j, nrels, new_sz; 6157 const struct btf_var_secinfo *vi = NULL; 6158 const struct btf_type *sec, *var, *def; 6159 struct bpf_map *map = NULL, *targ_map; 6160 const struct btf_member *member; 6161 const char *name, *mname; 6162 unsigned int moff; 6163 Elf64_Sym *sym; 6164 Elf64_Rel *rel; 6165 void *tmp; 6166 6167 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6168 return -EINVAL; 6169 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6170 if (!sec) 6171 return -EINVAL; 6172 6173 nrels = shdr->sh_size / shdr->sh_entsize; 6174 for (i = 0; i < nrels; i++) { 6175 rel = elf_rel_by_idx(data, i); 6176 if (!rel) { 6177 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6178 return -LIBBPF_ERRNO__FORMAT; 6179 } 6180 6181 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6182 if (!sym) { 6183 pr_warn(".maps relo #%d: symbol %zx not found\n", 6184 i, (size_t)ELF64_R_SYM(rel->r_info)); 6185 return -LIBBPF_ERRNO__FORMAT; 6186 } 6187 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6188 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6189 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6190 i, name); 6191 return -LIBBPF_ERRNO__RELOC; 6192 } 6193 6194 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6195 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6196 (size_t)rel->r_offset, sym->st_name, name); 6197 6198 for (j = 0; j < obj->nr_maps; j++) { 6199 map = &obj->maps[j]; 6200 if (map->sec_idx != obj->efile.btf_maps_shndx) 6201 continue; 6202 6203 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6204 if (vi->offset <= rel->r_offset && 6205 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6206 break; 6207 } 6208 if (j == obj->nr_maps) { 6209 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6210 i, name, (size_t)rel->r_offset); 6211 return -EINVAL; 6212 } 6213 6214 if (!bpf_map_type__is_map_in_map(map->def.type)) 6215 return -EINVAL; 6216 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6217 map->def.key_size != sizeof(int)) { 6218 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6219 i, map->name, sizeof(int)); 6220 return -EINVAL; 6221 } 6222 6223 targ_map = bpf_object__find_map_by_name(obj, name); 6224 if (!targ_map) 6225 return -ESRCH; 6226 6227 var = btf__type_by_id(obj->btf, vi->type); 6228 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6229 if (btf_vlen(def) == 0) 6230 return -EINVAL; 6231 member = btf_members(def) + btf_vlen(def) - 1; 6232 mname = btf__name_by_offset(obj->btf, member->name_off); 6233 if (strcmp(mname, "values")) 6234 return -EINVAL; 6235 6236 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6237 if (rel->r_offset - vi->offset < moff) 6238 return -EINVAL; 6239 6240 moff = rel->r_offset - vi->offset - moff; 6241 /* here we use BPF pointer size, which is always 64 bit, as we 6242 * are parsing ELF that was built for BPF target 6243 */ 6244 if (moff % bpf_ptr_sz) 6245 return -EINVAL; 6246 moff /= bpf_ptr_sz; 6247 if (moff >= map->init_slots_sz) { 6248 new_sz = moff + 1; 6249 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6250 if (!tmp) 6251 return -ENOMEM; 6252 map->init_slots = tmp; 6253 memset(map->init_slots + map->init_slots_sz, 0, 6254 (new_sz - map->init_slots_sz) * host_ptr_sz); 6255 map->init_slots_sz = new_sz; 6256 } 6257 map->init_slots[moff] = targ_map; 6258 6259 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6260 i, map->name, moff, name); 6261 } 6262 6263 return 0; 6264 } 6265 6266 static int cmp_relocs(const void *_a, const void *_b) 6267 { 6268 const struct reloc_desc *a = _a; 6269 const struct reloc_desc *b = _b; 6270 6271 if (a->insn_idx != b->insn_idx) 6272 return a->insn_idx < b->insn_idx ? -1 : 1; 6273 6274 /* no two relocations should have the same insn_idx, but ... */ 6275 if (a->type != b->type) 6276 return a->type < b->type ? -1 : 1; 6277 6278 return 0; 6279 } 6280 6281 static int bpf_object__collect_relos(struct bpf_object *obj) 6282 { 6283 int i, err; 6284 6285 for (i = 0; i < obj->efile.sec_cnt; i++) { 6286 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6287 Elf64_Shdr *shdr; 6288 Elf_Data *data; 6289 int idx; 6290 6291 if (sec_desc->sec_type != SEC_RELO) 6292 continue; 6293 6294 shdr = sec_desc->shdr; 6295 data = sec_desc->data; 6296 idx = shdr->sh_info; 6297 6298 if (shdr->sh_type != SHT_REL) { 6299 pr_warn("internal error at %d\n", __LINE__); 6300 return -LIBBPF_ERRNO__INTERNAL; 6301 } 6302 6303 if (idx == obj->efile.st_ops_shndx) 6304 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6305 else if (idx == obj->efile.btf_maps_shndx) 6306 err = bpf_object__collect_map_relos(obj, shdr, data); 6307 else 6308 err = bpf_object__collect_prog_relos(obj, shdr, data); 6309 if (err) 6310 return err; 6311 } 6312 6313 for (i = 0; i < obj->nr_programs; i++) { 6314 struct bpf_program *p = &obj->programs[i]; 6315 6316 if (!p->nr_reloc) 6317 continue; 6318 6319 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6320 } 6321 return 0; 6322 } 6323 6324 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6325 { 6326 if (BPF_CLASS(insn->code) == BPF_JMP && 6327 BPF_OP(insn->code) == BPF_CALL && 6328 BPF_SRC(insn->code) == BPF_K && 6329 insn->src_reg == 0 && 6330 insn->dst_reg == 0) { 6331 *func_id = insn->imm; 6332 return true; 6333 } 6334 return false; 6335 } 6336 6337 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6338 { 6339 struct bpf_insn *insn = prog->insns; 6340 enum bpf_func_id func_id; 6341 int i; 6342 6343 if (obj->gen_loader) 6344 return 0; 6345 6346 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6347 if (!insn_is_helper_call(insn, &func_id)) 6348 continue; 6349 6350 /* on kernels that don't yet support 6351 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6352 * to bpf_probe_read() which works well for old kernels 6353 */ 6354 switch (func_id) { 6355 case BPF_FUNC_probe_read_kernel: 6356 case BPF_FUNC_probe_read_user: 6357 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6358 insn->imm = BPF_FUNC_probe_read; 6359 break; 6360 case BPF_FUNC_probe_read_kernel_str: 6361 case BPF_FUNC_probe_read_user_str: 6362 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6363 insn->imm = BPF_FUNC_probe_read_str; 6364 break; 6365 default: 6366 break; 6367 } 6368 } 6369 return 0; 6370 } 6371 6372 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6373 int *btf_obj_fd, int *btf_type_id); 6374 6375 /* this is called as prog->sec_def->preload_fn for libbpf-supported sec_defs */ 6376 static int libbpf_preload_prog(struct bpf_program *prog, 6377 struct bpf_prog_load_params *attr, long cookie) 6378 { 6379 enum sec_def_flags def = cookie; 6380 6381 /* old kernels might not support specifying expected_attach_type */ 6382 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6383 attr->expected_attach_type = 0; 6384 6385 if (def & SEC_SLEEPABLE) 6386 attr->prog_flags |= BPF_F_SLEEPABLE; 6387 6388 if ((prog->type == BPF_PROG_TYPE_TRACING || 6389 prog->type == BPF_PROG_TYPE_LSM || 6390 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6391 int btf_obj_fd = 0, btf_type_id = 0, err; 6392 const char *attach_name; 6393 6394 attach_name = strchr(prog->sec_name, '/') + 1; 6395 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6396 if (err) 6397 return err; 6398 6399 /* cache resolved BTF FD and BTF type ID in the prog */ 6400 prog->attach_btf_obj_fd = btf_obj_fd; 6401 prog->attach_btf_id = btf_type_id; 6402 6403 /* but by now libbpf common logic is not utilizing 6404 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6405 * this callback is called after attrs were populated by 6406 * libbpf, so this callback has to update attr explicitly here 6407 */ 6408 attr->attach_btf_obj_fd = btf_obj_fd; 6409 attr->attach_btf_id = btf_type_id; 6410 } 6411 return 0; 6412 } 6413 6414 static int 6415 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6416 char *license, __u32 kern_version, int *pfd) 6417 { 6418 struct bpf_prog_load_params load_attr = {}; 6419 struct bpf_object *obj = prog->obj; 6420 char *cp, errmsg[STRERR_BUFSIZE]; 6421 size_t log_buf_size = 0; 6422 char *log_buf = NULL; 6423 int btf_fd, ret, err; 6424 6425 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6426 /* 6427 * The program type must be set. Most likely we couldn't find a proper 6428 * section definition at load time, and thus we didn't infer the type. 6429 */ 6430 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6431 prog->name, prog->sec_name); 6432 return -EINVAL; 6433 } 6434 6435 if (!insns || !insns_cnt) 6436 return -EINVAL; 6437 6438 load_attr.prog_type = prog->type; 6439 load_attr.expected_attach_type = prog->expected_attach_type; 6440 if (kernel_supports(obj, FEAT_PROG_NAME)) 6441 load_attr.name = prog->name; 6442 load_attr.insns = insns; 6443 load_attr.insn_cnt = insns_cnt; 6444 load_attr.license = license; 6445 load_attr.attach_btf_id = prog->attach_btf_id; 6446 load_attr.attach_prog_fd = prog->attach_prog_fd; 6447 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6448 load_attr.attach_btf_id = prog->attach_btf_id; 6449 load_attr.kern_version = kern_version; 6450 load_attr.prog_ifindex = prog->prog_ifindex; 6451 6452 /* specify func_info/line_info only if kernel supports them */ 6453 btf_fd = bpf_object__btf_fd(obj); 6454 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6455 load_attr.prog_btf_fd = btf_fd; 6456 load_attr.func_info = prog->func_info; 6457 load_attr.func_info_rec_size = prog->func_info_rec_size; 6458 load_attr.func_info_cnt = prog->func_info_cnt; 6459 load_attr.line_info = prog->line_info; 6460 load_attr.line_info_rec_size = prog->line_info_rec_size; 6461 load_attr.line_info_cnt = prog->line_info_cnt; 6462 } 6463 load_attr.log_level = prog->log_level; 6464 load_attr.prog_flags = prog->prog_flags; 6465 load_attr.fd_array = obj->fd_array; 6466 6467 /* adjust load_attr if sec_def provides custom preload callback */ 6468 if (prog->sec_def && prog->sec_def->preload_fn) { 6469 err = prog->sec_def->preload_fn(prog, &load_attr, prog->sec_def->cookie); 6470 if (err < 0) { 6471 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6472 prog->name, err); 6473 return err; 6474 } 6475 } 6476 6477 if (obj->gen_loader) { 6478 bpf_gen__prog_load(obj->gen_loader, &load_attr, 6479 prog - obj->programs); 6480 *pfd = -1; 6481 return 0; 6482 } 6483 retry_load: 6484 if (log_buf_size) { 6485 log_buf = malloc(log_buf_size); 6486 if (!log_buf) 6487 return -ENOMEM; 6488 6489 *log_buf = 0; 6490 } 6491 6492 load_attr.log_buf = log_buf; 6493 load_attr.log_buf_sz = log_buf_size; 6494 ret = libbpf__bpf_prog_load(&load_attr); 6495 6496 if (ret >= 0) { 6497 if (log_buf && load_attr.log_level) 6498 pr_debug("verifier log:\n%s", log_buf); 6499 6500 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6501 struct bpf_map *map; 6502 int i; 6503 6504 for (i = 0; i < obj->nr_maps; i++) { 6505 map = &prog->obj->maps[i]; 6506 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6507 continue; 6508 6509 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6510 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6511 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6512 prog->name, cp); 6513 /* Don't fail hard if can't bind rodata. */ 6514 } 6515 } 6516 } 6517 6518 *pfd = ret; 6519 ret = 0; 6520 goto out; 6521 } 6522 6523 if (!log_buf || errno == ENOSPC) { 6524 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6525 log_buf_size << 1); 6526 6527 free(log_buf); 6528 goto retry_load; 6529 } 6530 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6531 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6532 pr_warn("load bpf program failed: %s\n", cp); 6533 pr_perm_msg(ret); 6534 6535 if (log_buf && log_buf[0] != '\0') { 6536 ret = -LIBBPF_ERRNO__VERIFY; 6537 pr_warn("-- BEGIN DUMP LOG ---\n"); 6538 pr_warn("\n%s\n", log_buf); 6539 pr_warn("-- END LOG --\n"); 6540 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 6541 pr_warn("Program too large (%zu insns), at most %d insns\n", 6542 load_attr.insn_cnt, BPF_MAXINSNS); 6543 ret = -LIBBPF_ERRNO__PROG2BIG; 6544 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6545 /* Wrong program type? */ 6546 int fd; 6547 6548 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6549 load_attr.expected_attach_type = 0; 6550 load_attr.log_buf = NULL; 6551 load_attr.log_buf_sz = 0; 6552 fd = libbpf__bpf_prog_load(&load_attr); 6553 if (fd >= 0) { 6554 close(fd); 6555 ret = -LIBBPF_ERRNO__PROGTYPE; 6556 goto out; 6557 } 6558 } 6559 6560 out: 6561 free(log_buf); 6562 return ret; 6563 } 6564 6565 static int bpf_program__record_externs(struct bpf_program *prog) 6566 { 6567 struct bpf_object *obj = prog->obj; 6568 int i; 6569 6570 for (i = 0; i < prog->nr_reloc; i++) { 6571 struct reloc_desc *relo = &prog->reloc_desc[i]; 6572 struct extern_desc *ext = &obj->externs[relo->sym_off]; 6573 6574 switch (relo->type) { 6575 case RELO_EXTERN_VAR: 6576 if (ext->type != EXT_KSYM) 6577 continue; 6578 bpf_gen__record_extern(obj->gen_loader, ext->name, 6579 ext->is_weak, !ext->ksym.type_id, 6580 BTF_KIND_VAR, relo->insn_idx); 6581 break; 6582 case RELO_EXTERN_FUNC: 6583 bpf_gen__record_extern(obj->gen_loader, ext->name, 6584 ext->is_weak, false, BTF_KIND_FUNC, 6585 relo->insn_idx); 6586 break; 6587 default: 6588 continue; 6589 } 6590 } 6591 return 0; 6592 } 6593 6594 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6595 { 6596 int err = 0, fd, i; 6597 6598 if (prog->obj->loaded) { 6599 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6600 return libbpf_err(-EINVAL); 6601 } 6602 6603 if (prog->instances.nr < 0 || !prog->instances.fds) { 6604 if (prog->preprocessor) { 6605 pr_warn("Internal error: can't load program '%s'\n", 6606 prog->name); 6607 return libbpf_err(-LIBBPF_ERRNO__INTERNAL); 6608 } 6609 6610 prog->instances.fds = malloc(sizeof(int)); 6611 if (!prog->instances.fds) { 6612 pr_warn("Not enough memory for BPF fds\n"); 6613 return libbpf_err(-ENOMEM); 6614 } 6615 prog->instances.nr = 1; 6616 prog->instances.fds[0] = -1; 6617 } 6618 6619 if (!prog->preprocessor) { 6620 if (prog->instances.nr != 1) { 6621 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 6622 prog->name, prog->instances.nr); 6623 } 6624 if (prog->obj->gen_loader) 6625 bpf_program__record_externs(prog); 6626 err = load_program(prog, prog->insns, prog->insns_cnt, 6627 license, kern_ver, &fd); 6628 if (!err) 6629 prog->instances.fds[0] = fd; 6630 goto out; 6631 } 6632 6633 for (i = 0; i < prog->instances.nr; i++) { 6634 struct bpf_prog_prep_result result; 6635 bpf_program_prep_t preprocessor = prog->preprocessor; 6636 6637 memset(&result, 0, sizeof(result)); 6638 err = preprocessor(prog, i, prog->insns, 6639 prog->insns_cnt, &result); 6640 if (err) { 6641 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 6642 i, prog->name); 6643 goto out; 6644 } 6645 6646 if (!result.new_insn_ptr || !result.new_insn_cnt) { 6647 pr_debug("Skip loading the %dth instance of program '%s'\n", 6648 i, prog->name); 6649 prog->instances.fds[i] = -1; 6650 if (result.pfd) 6651 *result.pfd = -1; 6652 continue; 6653 } 6654 6655 err = load_program(prog, result.new_insn_ptr, 6656 result.new_insn_cnt, license, kern_ver, &fd); 6657 if (err) { 6658 pr_warn("Loading the %dth instance of program '%s' failed\n", 6659 i, prog->name); 6660 goto out; 6661 } 6662 6663 if (result.pfd) 6664 *result.pfd = fd; 6665 prog->instances.fds[i] = fd; 6666 } 6667 out: 6668 if (err) 6669 pr_warn("failed to load program '%s'\n", prog->name); 6670 return libbpf_err(err); 6671 } 6672 6673 static int 6674 bpf_object__load_progs(struct bpf_object *obj, int log_level) 6675 { 6676 struct bpf_program *prog; 6677 size_t i; 6678 int err; 6679 6680 for (i = 0; i < obj->nr_programs; i++) { 6681 prog = &obj->programs[i]; 6682 err = bpf_object__sanitize_prog(obj, prog); 6683 if (err) 6684 return err; 6685 } 6686 6687 for (i = 0; i < obj->nr_programs; i++) { 6688 prog = &obj->programs[i]; 6689 if (prog_is_subprog(obj, prog)) 6690 continue; 6691 if (!prog->load) { 6692 pr_debug("prog '%s': skipped loading\n", prog->name); 6693 continue; 6694 } 6695 prog->log_level |= log_level; 6696 err = bpf_program__load(prog, obj->license, obj->kern_version); 6697 if (err) 6698 return err; 6699 } 6700 if (obj->gen_loader) 6701 bpf_object__free_relocs(obj); 6702 return 0; 6703 } 6704 6705 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 6706 6707 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 6708 { 6709 struct bpf_program *prog; 6710 int err; 6711 6712 bpf_object__for_each_program(prog, obj) { 6713 prog->sec_def = find_sec_def(prog->sec_name); 6714 if (!prog->sec_def) { 6715 /* couldn't guess, but user might manually specify */ 6716 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 6717 prog->name, prog->sec_name); 6718 continue; 6719 } 6720 6721 bpf_program__set_type(prog, prog->sec_def->prog_type); 6722 bpf_program__set_expected_attach_type(prog, prog->sec_def->expected_attach_type); 6723 6724 #pragma GCC diagnostic push 6725 #pragma GCC diagnostic ignored "-Wdeprecated-declarations" 6726 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 6727 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 6728 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 6729 #pragma GCC diagnostic pop 6730 6731 /* sec_def can have custom callback which should be called 6732 * after bpf_program is initialized to adjust its properties 6733 */ 6734 if (prog->sec_def->init_fn) { 6735 err = prog->sec_def->init_fn(prog, prog->sec_def->cookie); 6736 if (err < 0) { 6737 pr_warn("prog '%s': failed to initialize: %d\n", 6738 prog->name, err); 6739 return err; 6740 } 6741 } 6742 } 6743 6744 return 0; 6745 } 6746 6747 static struct bpf_object * 6748 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 6749 const struct bpf_object_open_opts *opts) 6750 { 6751 const char *obj_name, *kconfig, *btf_tmp_path; 6752 struct bpf_object *obj; 6753 char tmp_name[64]; 6754 int err; 6755 6756 if (elf_version(EV_CURRENT) == EV_NONE) { 6757 pr_warn("failed to init libelf for %s\n", 6758 path ? : "(mem buf)"); 6759 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 6760 } 6761 6762 if (!OPTS_VALID(opts, bpf_object_open_opts)) 6763 return ERR_PTR(-EINVAL); 6764 6765 obj_name = OPTS_GET(opts, object_name, NULL); 6766 if (obj_buf) { 6767 if (!obj_name) { 6768 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 6769 (unsigned long)obj_buf, 6770 (unsigned long)obj_buf_sz); 6771 obj_name = tmp_name; 6772 } 6773 path = obj_name; 6774 pr_debug("loading object '%s' from buffer\n", obj_name); 6775 } 6776 6777 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 6778 if (IS_ERR(obj)) 6779 return obj; 6780 6781 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 6782 if (btf_tmp_path) { 6783 if (strlen(btf_tmp_path) >= PATH_MAX) { 6784 err = -ENAMETOOLONG; 6785 goto out; 6786 } 6787 obj->btf_custom_path = strdup(btf_tmp_path); 6788 if (!obj->btf_custom_path) { 6789 err = -ENOMEM; 6790 goto out; 6791 } 6792 } 6793 6794 kconfig = OPTS_GET(opts, kconfig, NULL); 6795 if (kconfig) { 6796 obj->kconfig = strdup(kconfig); 6797 if (!obj->kconfig) { 6798 err = -ENOMEM; 6799 goto out; 6800 } 6801 } 6802 6803 err = bpf_object__elf_init(obj); 6804 err = err ? : bpf_object__check_endianness(obj); 6805 err = err ? : bpf_object__elf_collect(obj); 6806 err = err ? : bpf_object__collect_externs(obj); 6807 err = err ? : bpf_object__finalize_btf(obj); 6808 err = err ? : bpf_object__init_maps(obj, opts); 6809 err = err ? : bpf_object_init_progs(obj, opts); 6810 err = err ? : bpf_object__collect_relos(obj); 6811 if (err) 6812 goto out; 6813 6814 bpf_object__elf_finish(obj); 6815 6816 return obj; 6817 out: 6818 bpf_object__close(obj); 6819 return ERR_PTR(err); 6820 } 6821 6822 static struct bpf_object * 6823 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 6824 { 6825 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6826 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 6827 ); 6828 6829 /* param validation */ 6830 if (!attr->file) 6831 return NULL; 6832 6833 pr_debug("loading %s\n", attr->file); 6834 return __bpf_object__open(attr->file, NULL, 0, &opts); 6835 } 6836 6837 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 6838 { 6839 return libbpf_ptr(__bpf_object__open_xattr(attr, 0)); 6840 } 6841 6842 struct bpf_object *bpf_object__open(const char *path) 6843 { 6844 struct bpf_object_open_attr attr = { 6845 .file = path, 6846 .prog_type = BPF_PROG_TYPE_UNSPEC, 6847 }; 6848 6849 return libbpf_ptr(__bpf_object__open_xattr(&attr, 0)); 6850 } 6851 6852 struct bpf_object * 6853 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 6854 { 6855 if (!path) 6856 return libbpf_err_ptr(-EINVAL); 6857 6858 pr_debug("loading %s\n", path); 6859 6860 return libbpf_ptr(__bpf_object__open(path, NULL, 0, opts)); 6861 } 6862 6863 struct bpf_object * 6864 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 6865 const struct bpf_object_open_opts *opts) 6866 { 6867 if (!obj_buf || obj_buf_sz == 0) 6868 return libbpf_err_ptr(-EINVAL); 6869 6870 return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, opts)); 6871 } 6872 6873 struct bpf_object * 6874 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 6875 const char *name) 6876 { 6877 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 6878 .object_name = name, 6879 /* wrong default, but backwards-compatible */ 6880 .relaxed_maps = true, 6881 ); 6882 6883 /* returning NULL is wrong, but backwards-compatible */ 6884 if (!obj_buf || obj_buf_sz == 0) 6885 return errno = EINVAL, NULL; 6886 6887 return libbpf_ptr(__bpf_object__open(NULL, obj_buf, obj_buf_sz, &opts)); 6888 } 6889 6890 static int bpf_object_unload(struct bpf_object *obj) 6891 { 6892 size_t i; 6893 6894 if (!obj) 6895 return libbpf_err(-EINVAL); 6896 6897 for (i = 0; i < obj->nr_maps; i++) { 6898 zclose(obj->maps[i].fd); 6899 if (obj->maps[i].st_ops) 6900 zfree(&obj->maps[i].st_ops->kern_vdata); 6901 } 6902 6903 for (i = 0; i < obj->nr_programs; i++) 6904 bpf_program__unload(&obj->programs[i]); 6905 6906 return 0; 6907 } 6908 6909 int bpf_object__unload(struct bpf_object *obj) __attribute__((alias("bpf_object_unload"))); 6910 6911 static int bpf_object__sanitize_maps(struct bpf_object *obj) 6912 { 6913 struct bpf_map *m; 6914 6915 bpf_object__for_each_map(m, obj) { 6916 if (!bpf_map__is_internal(m)) 6917 continue; 6918 if (!kernel_supports(obj, FEAT_GLOBAL_DATA)) { 6919 pr_warn("kernel doesn't support global data\n"); 6920 return -ENOTSUP; 6921 } 6922 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 6923 m->def.map_flags ^= BPF_F_MMAPABLE; 6924 } 6925 6926 return 0; 6927 } 6928 6929 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 6930 { 6931 char sym_type, sym_name[500]; 6932 unsigned long long sym_addr; 6933 const struct btf_type *t; 6934 struct extern_desc *ext; 6935 int ret, err = 0; 6936 FILE *f; 6937 6938 f = fopen("/proc/kallsyms", "r"); 6939 if (!f) { 6940 err = -errno; 6941 pr_warn("failed to open /proc/kallsyms: %d\n", err); 6942 return err; 6943 } 6944 6945 while (true) { 6946 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 6947 &sym_addr, &sym_type, sym_name); 6948 if (ret == EOF && feof(f)) 6949 break; 6950 if (ret != 3) { 6951 pr_warn("failed to read kallsyms entry: %d\n", ret); 6952 err = -EINVAL; 6953 goto out; 6954 } 6955 6956 ext = find_extern_by_name(obj, sym_name); 6957 if (!ext || ext->type != EXT_KSYM) 6958 continue; 6959 6960 t = btf__type_by_id(obj->btf, ext->btf_id); 6961 if (!btf_is_var(t)) 6962 continue; 6963 6964 if (ext->is_set && ext->ksym.addr != sym_addr) { 6965 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 6966 sym_name, ext->ksym.addr, sym_addr); 6967 err = -EINVAL; 6968 goto out; 6969 } 6970 if (!ext->is_set) { 6971 ext->is_set = true; 6972 ext->ksym.addr = sym_addr; 6973 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 6974 } 6975 } 6976 6977 out: 6978 fclose(f); 6979 return err; 6980 } 6981 6982 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 6983 __u16 kind, struct btf **res_btf, 6984 struct module_btf **res_mod_btf) 6985 { 6986 struct module_btf *mod_btf; 6987 struct btf *btf; 6988 int i, id, err; 6989 6990 btf = obj->btf_vmlinux; 6991 mod_btf = NULL; 6992 id = btf__find_by_name_kind(btf, ksym_name, kind); 6993 6994 if (id == -ENOENT) { 6995 err = load_module_btfs(obj); 6996 if (err) 6997 return err; 6998 6999 for (i = 0; i < obj->btf_module_cnt; i++) { 7000 /* we assume module_btf's BTF FD is always >0 */ 7001 mod_btf = &obj->btf_modules[i]; 7002 btf = mod_btf->btf; 7003 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7004 if (id != -ENOENT) 7005 break; 7006 } 7007 } 7008 if (id <= 0) 7009 return -ESRCH; 7010 7011 *res_btf = btf; 7012 *res_mod_btf = mod_btf; 7013 return id; 7014 } 7015 7016 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7017 struct extern_desc *ext) 7018 { 7019 const struct btf_type *targ_var, *targ_type; 7020 __u32 targ_type_id, local_type_id; 7021 struct module_btf *mod_btf = NULL; 7022 const char *targ_var_name; 7023 struct btf *btf = NULL; 7024 int id, err; 7025 7026 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7027 if (id < 0) { 7028 if (id == -ESRCH && ext->is_weak) 7029 return 0; 7030 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7031 ext->name); 7032 return id; 7033 } 7034 7035 /* find local type_id */ 7036 local_type_id = ext->ksym.type_id; 7037 7038 /* find target type_id */ 7039 targ_var = btf__type_by_id(btf, id); 7040 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7041 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7042 7043 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7044 btf, targ_type_id); 7045 if (err <= 0) { 7046 const struct btf_type *local_type; 7047 const char *targ_name, *local_name; 7048 7049 local_type = btf__type_by_id(obj->btf, local_type_id); 7050 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7051 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7052 7053 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7054 ext->name, local_type_id, 7055 btf_kind_str(local_type), local_name, targ_type_id, 7056 btf_kind_str(targ_type), targ_name); 7057 return -EINVAL; 7058 } 7059 7060 ext->is_set = true; 7061 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7062 ext->ksym.kernel_btf_id = id; 7063 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7064 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7065 7066 return 0; 7067 } 7068 7069 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7070 struct extern_desc *ext) 7071 { 7072 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7073 struct module_btf *mod_btf = NULL; 7074 const struct btf_type *kern_func; 7075 struct btf *kern_btf = NULL; 7076 int ret; 7077 7078 local_func_proto_id = ext->ksym.type_id; 7079 7080 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7081 if (kfunc_id < 0) { 7082 if (kfunc_id == -ESRCH && ext->is_weak) 7083 return 0; 7084 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7085 ext->name); 7086 return kfunc_id; 7087 } 7088 7089 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7090 kfunc_proto_id = kern_func->type; 7091 7092 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7093 kern_btf, kfunc_proto_id); 7094 if (ret <= 0) { 7095 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7096 ext->name, local_func_proto_id, kfunc_proto_id); 7097 return -EINVAL; 7098 } 7099 7100 /* set index for module BTF fd in fd_array, if unset */ 7101 if (mod_btf && !mod_btf->fd_array_idx) { 7102 /* insn->off is s16 */ 7103 if (obj->fd_array_cnt == INT16_MAX) { 7104 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7105 ext->name, mod_btf->fd_array_idx); 7106 return -E2BIG; 7107 } 7108 /* Cannot use index 0 for module BTF fd */ 7109 if (!obj->fd_array_cnt) 7110 obj->fd_array_cnt = 1; 7111 7112 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7113 obj->fd_array_cnt + 1); 7114 if (ret) 7115 return ret; 7116 mod_btf->fd_array_idx = obj->fd_array_cnt; 7117 /* we assume module BTF FD is always >0 */ 7118 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7119 } 7120 7121 ext->is_set = true; 7122 ext->ksym.kernel_btf_id = kfunc_id; 7123 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7124 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7125 ext->name, kfunc_id); 7126 7127 return 0; 7128 } 7129 7130 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7131 { 7132 const struct btf_type *t; 7133 struct extern_desc *ext; 7134 int i, err; 7135 7136 for (i = 0; i < obj->nr_extern; i++) { 7137 ext = &obj->externs[i]; 7138 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7139 continue; 7140 7141 if (obj->gen_loader) { 7142 ext->is_set = true; 7143 ext->ksym.kernel_btf_obj_fd = 0; 7144 ext->ksym.kernel_btf_id = 0; 7145 continue; 7146 } 7147 t = btf__type_by_id(obj->btf, ext->btf_id); 7148 if (btf_is_var(t)) 7149 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7150 else 7151 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7152 if (err) 7153 return err; 7154 } 7155 return 0; 7156 } 7157 7158 static int bpf_object__resolve_externs(struct bpf_object *obj, 7159 const char *extra_kconfig) 7160 { 7161 bool need_config = false, need_kallsyms = false; 7162 bool need_vmlinux_btf = false; 7163 struct extern_desc *ext; 7164 void *kcfg_data = NULL; 7165 int err, i; 7166 7167 if (obj->nr_extern == 0) 7168 return 0; 7169 7170 if (obj->kconfig_map_idx >= 0) 7171 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7172 7173 for (i = 0; i < obj->nr_extern; i++) { 7174 ext = &obj->externs[i]; 7175 7176 if (ext->type == EXT_KCFG && 7177 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7178 void *ext_val = kcfg_data + ext->kcfg.data_off; 7179 __u32 kver = get_kernel_version(); 7180 7181 if (!kver) { 7182 pr_warn("failed to get kernel version\n"); 7183 return -EINVAL; 7184 } 7185 err = set_kcfg_value_num(ext, ext_val, kver); 7186 if (err) 7187 return err; 7188 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7189 } else if (ext->type == EXT_KCFG && str_has_pfx(ext->name, "CONFIG_")) { 7190 need_config = true; 7191 } else if (ext->type == EXT_KSYM) { 7192 if (ext->ksym.type_id) 7193 need_vmlinux_btf = true; 7194 else 7195 need_kallsyms = true; 7196 } else { 7197 pr_warn("unrecognized extern '%s'\n", ext->name); 7198 return -EINVAL; 7199 } 7200 } 7201 if (need_config && extra_kconfig) { 7202 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7203 if (err) 7204 return -EINVAL; 7205 need_config = false; 7206 for (i = 0; i < obj->nr_extern; i++) { 7207 ext = &obj->externs[i]; 7208 if (ext->type == EXT_KCFG && !ext->is_set) { 7209 need_config = true; 7210 break; 7211 } 7212 } 7213 } 7214 if (need_config) { 7215 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7216 if (err) 7217 return -EINVAL; 7218 } 7219 if (need_kallsyms) { 7220 err = bpf_object__read_kallsyms_file(obj); 7221 if (err) 7222 return -EINVAL; 7223 } 7224 if (need_vmlinux_btf) { 7225 err = bpf_object__resolve_ksyms_btf_id(obj); 7226 if (err) 7227 return -EINVAL; 7228 } 7229 for (i = 0; i < obj->nr_extern; i++) { 7230 ext = &obj->externs[i]; 7231 7232 if (!ext->is_set && !ext->is_weak) { 7233 pr_warn("extern %s (strong) not resolved\n", ext->name); 7234 return -ESRCH; 7235 } else if (!ext->is_set) { 7236 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7237 ext->name); 7238 } 7239 } 7240 7241 return 0; 7242 } 7243 7244 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7245 { 7246 struct bpf_object *obj; 7247 int err, i; 7248 7249 if (!attr) 7250 return libbpf_err(-EINVAL); 7251 obj = attr->obj; 7252 if (!obj) 7253 return libbpf_err(-EINVAL); 7254 7255 if (obj->loaded) { 7256 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7257 return libbpf_err(-EINVAL); 7258 } 7259 7260 if (obj->gen_loader) 7261 bpf_gen__init(obj->gen_loader, attr->log_level, obj->nr_programs, obj->nr_maps); 7262 7263 err = bpf_object__probe_loading(obj); 7264 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7265 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7266 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7267 err = err ? : bpf_object__sanitize_maps(obj); 7268 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7269 err = err ? : bpf_object__create_maps(obj); 7270 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : attr->target_btf_path); 7271 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7272 7273 if (obj->gen_loader) { 7274 /* reset FDs */ 7275 if (obj->btf) 7276 btf__set_fd(obj->btf, -1); 7277 for (i = 0; i < obj->nr_maps; i++) 7278 obj->maps[i].fd = -1; 7279 if (!err) 7280 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7281 } 7282 7283 /* clean up fd_array */ 7284 zfree(&obj->fd_array); 7285 7286 /* clean up module BTFs */ 7287 for (i = 0; i < obj->btf_module_cnt; i++) { 7288 close(obj->btf_modules[i].fd); 7289 btf__free(obj->btf_modules[i].btf); 7290 free(obj->btf_modules[i].name); 7291 } 7292 free(obj->btf_modules); 7293 7294 /* clean up vmlinux BTF */ 7295 btf__free(obj->btf_vmlinux); 7296 obj->btf_vmlinux = NULL; 7297 7298 obj->loaded = true; /* doesn't matter if successfully or not */ 7299 7300 if (err) 7301 goto out; 7302 7303 return 0; 7304 out: 7305 /* unpin any maps that were auto-pinned during load */ 7306 for (i = 0; i < obj->nr_maps; i++) 7307 if (obj->maps[i].pinned && !obj->maps[i].reused) 7308 bpf_map__unpin(&obj->maps[i], NULL); 7309 7310 bpf_object_unload(obj); 7311 pr_warn("failed to load object '%s'\n", obj->path); 7312 return libbpf_err(err); 7313 } 7314 7315 int bpf_object__load(struct bpf_object *obj) 7316 { 7317 struct bpf_object_load_attr attr = { 7318 .obj = obj, 7319 }; 7320 7321 return bpf_object__load_xattr(&attr); 7322 } 7323 7324 static int make_parent_dir(const char *path) 7325 { 7326 char *cp, errmsg[STRERR_BUFSIZE]; 7327 char *dname, *dir; 7328 int err = 0; 7329 7330 dname = strdup(path); 7331 if (dname == NULL) 7332 return -ENOMEM; 7333 7334 dir = dirname(dname); 7335 if (mkdir(dir, 0700) && errno != EEXIST) 7336 err = -errno; 7337 7338 free(dname); 7339 if (err) { 7340 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7341 pr_warn("failed to mkdir %s: %s\n", path, cp); 7342 } 7343 return err; 7344 } 7345 7346 static int check_path(const char *path) 7347 { 7348 char *cp, errmsg[STRERR_BUFSIZE]; 7349 struct statfs st_fs; 7350 char *dname, *dir; 7351 int err = 0; 7352 7353 if (path == NULL) 7354 return -EINVAL; 7355 7356 dname = strdup(path); 7357 if (dname == NULL) 7358 return -ENOMEM; 7359 7360 dir = dirname(dname); 7361 if (statfs(dir, &st_fs)) { 7362 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7363 pr_warn("failed to statfs %s: %s\n", dir, cp); 7364 err = -errno; 7365 } 7366 free(dname); 7367 7368 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7369 pr_warn("specified path %s is not on BPF FS\n", path); 7370 err = -EINVAL; 7371 } 7372 7373 return err; 7374 } 7375 7376 static int bpf_program_pin_instance(struct bpf_program *prog, const char *path, int instance) 7377 { 7378 char *cp, errmsg[STRERR_BUFSIZE]; 7379 int err; 7380 7381 err = make_parent_dir(path); 7382 if (err) 7383 return libbpf_err(err); 7384 7385 err = check_path(path); 7386 if (err) 7387 return libbpf_err(err); 7388 7389 if (prog == NULL) { 7390 pr_warn("invalid program pointer\n"); 7391 return libbpf_err(-EINVAL); 7392 } 7393 7394 if (instance < 0 || instance >= prog->instances.nr) { 7395 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7396 instance, prog->name, prog->instances.nr); 7397 return libbpf_err(-EINVAL); 7398 } 7399 7400 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7401 err = -errno; 7402 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7403 pr_warn("failed to pin program: %s\n", cp); 7404 return libbpf_err(err); 7405 } 7406 pr_debug("pinned program '%s'\n", path); 7407 7408 return 0; 7409 } 7410 7411 static int bpf_program_unpin_instance(struct bpf_program *prog, const char *path, int instance) 7412 { 7413 int err; 7414 7415 err = check_path(path); 7416 if (err) 7417 return libbpf_err(err); 7418 7419 if (prog == NULL) { 7420 pr_warn("invalid program pointer\n"); 7421 return libbpf_err(-EINVAL); 7422 } 7423 7424 if (instance < 0 || instance >= prog->instances.nr) { 7425 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7426 instance, prog->name, prog->instances.nr); 7427 return libbpf_err(-EINVAL); 7428 } 7429 7430 err = unlink(path); 7431 if (err != 0) 7432 return libbpf_err(-errno); 7433 7434 pr_debug("unpinned program '%s'\n", path); 7435 7436 return 0; 7437 } 7438 7439 __attribute__((alias("bpf_program_pin_instance"))) 7440 int bpf_object__pin_instance(struct bpf_program *prog, const char *path, int instance); 7441 7442 __attribute__((alias("bpf_program_unpin_instance"))) 7443 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, int instance); 7444 7445 int bpf_program__pin(struct bpf_program *prog, const char *path) 7446 { 7447 int i, err; 7448 7449 err = make_parent_dir(path); 7450 if (err) 7451 return libbpf_err(err); 7452 7453 err = check_path(path); 7454 if (err) 7455 return libbpf_err(err); 7456 7457 if (prog == NULL) { 7458 pr_warn("invalid program pointer\n"); 7459 return libbpf_err(-EINVAL); 7460 } 7461 7462 if (prog->instances.nr <= 0) { 7463 pr_warn("no instances of prog %s to pin\n", prog->name); 7464 return libbpf_err(-EINVAL); 7465 } 7466 7467 if (prog->instances.nr == 1) { 7468 /* don't create subdirs when pinning single instance */ 7469 return bpf_program_pin_instance(prog, path, 0); 7470 } 7471 7472 for (i = 0; i < prog->instances.nr; i++) { 7473 char buf[PATH_MAX]; 7474 int len; 7475 7476 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7477 if (len < 0) { 7478 err = -EINVAL; 7479 goto err_unpin; 7480 } else if (len >= PATH_MAX) { 7481 err = -ENAMETOOLONG; 7482 goto err_unpin; 7483 } 7484 7485 err = bpf_program_pin_instance(prog, buf, i); 7486 if (err) 7487 goto err_unpin; 7488 } 7489 7490 return 0; 7491 7492 err_unpin: 7493 for (i = i - 1; i >= 0; i--) { 7494 char buf[PATH_MAX]; 7495 int len; 7496 7497 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7498 if (len < 0) 7499 continue; 7500 else if (len >= PATH_MAX) 7501 continue; 7502 7503 bpf_program_unpin_instance(prog, buf, i); 7504 } 7505 7506 rmdir(path); 7507 7508 return libbpf_err(err); 7509 } 7510 7511 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7512 { 7513 int i, err; 7514 7515 err = check_path(path); 7516 if (err) 7517 return libbpf_err(err); 7518 7519 if (prog == NULL) { 7520 pr_warn("invalid program pointer\n"); 7521 return libbpf_err(-EINVAL); 7522 } 7523 7524 if (prog->instances.nr <= 0) { 7525 pr_warn("no instances of prog %s to pin\n", prog->name); 7526 return libbpf_err(-EINVAL); 7527 } 7528 7529 if (prog->instances.nr == 1) { 7530 /* don't create subdirs when pinning single instance */ 7531 return bpf_program_unpin_instance(prog, path, 0); 7532 } 7533 7534 for (i = 0; i < prog->instances.nr; i++) { 7535 char buf[PATH_MAX]; 7536 int len; 7537 7538 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7539 if (len < 0) 7540 return libbpf_err(-EINVAL); 7541 else if (len >= PATH_MAX) 7542 return libbpf_err(-ENAMETOOLONG); 7543 7544 err = bpf_program_unpin_instance(prog, buf, i); 7545 if (err) 7546 return err; 7547 } 7548 7549 err = rmdir(path); 7550 if (err) 7551 return libbpf_err(-errno); 7552 7553 return 0; 7554 } 7555 7556 int bpf_map__pin(struct bpf_map *map, const char *path) 7557 { 7558 char *cp, errmsg[STRERR_BUFSIZE]; 7559 int err; 7560 7561 if (map == NULL) { 7562 pr_warn("invalid map pointer\n"); 7563 return libbpf_err(-EINVAL); 7564 } 7565 7566 if (map->pin_path) { 7567 if (path && strcmp(path, map->pin_path)) { 7568 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7569 bpf_map__name(map), map->pin_path, path); 7570 return libbpf_err(-EINVAL); 7571 } else if (map->pinned) { 7572 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7573 bpf_map__name(map), map->pin_path); 7574 return 0; 7575 } 7576 } else { 7577 if (!path) { 7578 pr_warn("missing a path to pin map '%s' at\n", 7579 bpf_map__name(map)); 7580 return libbpf_err(-EINVAL); 7581 } else if (map->pinned) { 7582 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7583 return libbpf_err(-EEXIST); 7584 } 7585 7586 map->pin_path = strdup(path); 7587 if (!map->pin_path) { 7588 err = -errno; 7589 goto out_err; 7590 } 7591 } 7592 7593 err = make_parent_dir(map->pin_path); 7594 if (err) 7595 return libbpf_err(err); 7596 7597 err = check_path(map->pin_path); 7598 if (err) 7599 return libbpf_err(err); 7600 7601 if (bpf_obj_pin(map->fd, map->pin_path)) { 7602 err = -errno; 7603 goto out_err; 7604 } 7605 7606 map->pinned = true; 7607 pr_debug("pinned map '%s'\n", map->pin_path); 7608 7609 return 0; 7610 7611 out_err: 7612 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7613 pr_warn("failed to pin map: %s\n", cp); 7614 return libbpf_err(err); 7615 } 7616 7617 int bpf_map__unpin(struct bpf_map *map, const char *path) 7618 { 7619 int err; 7620 7621 if (map == NULL) { 7622 pr_warn("invalid map pointer\n"); 7623 return libbpf_err(-EINVAL); 7624 } 7625 7626 if (map->pin_path) { 7627 if (path && strcmp(path, map->pin_path)) { 7628 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7629 bpf_map__name(map), map->pin_path, path); 7630 return libbpf_err(-EINVAL); 7631 } 7632 path = map->pin_path; 7633 } else if (!path) { 7634 pr_warn("no path to unpin map '%s' from\n", 7635 bpf_map__name(map)); 7636 return libbpf_err(-EINVAL); 7637 } 7638 7639 err = check_path(path); 7640 if (err) 7641 return libbpf_err(err); 7642 7643 err = unlink(path); 7644 if (err != 0) 7645 return libbpf_err(-errno); 7646 7647 map->pinned = false; 7648 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7649 7650 return 0; 7651 } 7652 7653 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7654 { 7655 char *new = NULL; 7656 7657 if (path) { 7658 new = strdup(path); 7659 if (!new) 7660 return libbpf_err(-errno); 7661 } 7662 7663 free(map->pin_path); 7664 map->pin_path = new; 7665 return 0; 7666 } 7667 7668 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7669 { 7670 return map->pin_path; 7671 } 7672 7673 const char *bpf_map__pin_path(const struct bpf_map *map) 7674 { 7675 return map->pin_path; 7676 } 7677 7678 bool bpf_map__is_pinned(const struct bpf_map *map) 7679 { 7680 return map->pinned; 7681 } 7682 7683 static void sanitize_pin_path(char *s) 7684 { 7685 /* bpffs disallows periods in path names */ 7686 while (*s) { 7687 if (*s == '.') 7688 *s = '_'; 7689 s++; 7690 } 7691 } 7692 7693 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7694 { 7695 struct bpf_map *map; 7696 int err; 7697 7698 if (!obj) 7699 return libbpf_err(-ENOENT); 7700 7701 if (!obj->loaded) { 7702 pr_warn("object not yet loaded; load it first\n"); 7703 return libbpf_err(-ENOENT); 7704 } 7705 7706 bpf_object__for_each_map(map, obj) { 7707 char *pin_path = NULL; 7708 char buf[PATH_MAX]; 7709 7710 if (path) { 7711 int len; 7712 7713 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7714 bpf_map__name(map)); 7715 if (len < 0) { 7716 err = -EINVAL; 7717 goto err_unpin_maps; 7718 } else if (len >= PATH_MAX) { 7719 err = -ENAMETOOLONG; 7720 goto err_unpin_maps; 7721 } 7722 sanitize_pin_path(buf); 7723 pin_path = buf; 7724 } else if (!map->pin_path) { 7725 continue; 7726 } 7727 7728 err = bpf_map__pin(map, pin_path); 7729 if (err) 7730 goto err_unpin_maps; 7731 } 7732 7733 return 0; 7734 7735 err_unpin_maps: 7736 while ((map = bpf_map__prev(map, obj))) { 7737 if (!map->pin_path) 7738 continue; 7739 7740 bpf_map__unpin(map, NULL); 7741 } 7742 7743 return libbpf_err(err); 7744 } 7745 7746 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7747 { 7748 struct bpf_map *map; 7749 int err; 7750 7751 if (!obj) 7752 return libbpf_err(-ENOENT); 7753 7754 bpf_object__for_each_map(map, obj) { 7755 char *pin_path = NULL; 7756 char buf[PATH_MAX]; 7757 7758 if (path) { 7759 int len; 7760 7761 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7762 bpf_map__name(map)); 7763 if (len < 0) 7764 return libbpf_err(-EINVAL); 7765 else if (len >= PATH_MAX) 7766 return libbpf_err(-ENAMETOOLONG); 7767 sanitize_pin_path(buf); 7768 pin_path = buf; 7769 } else if (!map->pin_path) { 7770 continue; 7771 } 7772 7773 err = bpf_map__unpin(map, pin_path); 7774 if (err) 7775 return libbpf_err(err); 7776 } 7777 7778 return 0; 7779 } 7780 7781 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7782 { 7783 struct bpf_program *prog; 7784 int err; 7785 7786 if (!obj) 7787 return libbpf_err(-ENOENT); 7788 7789 if (!obj->loaded) { 7790 pr_warn("object not yet loaded; load it first\n"); 7791 return libbpf_err(-ENOENT); 7792 } 7793 7794 bpf_object__for_each_program(prog, obj) { 7795 char buf[PATH_MAX]; 7796 int len; 7797 7798 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7799 prog->pin_name); 7800 if (len < 0) { 7801 err = -EINVAL; 7802 goto err_unpin_programs; 7803 } else if (len >= PATH_MAX) { 7804 err = -ENAMETOOLONG; 7805 goto err_unpin_programs; 7806 } 7807 7808 err = bpf_program__pin(prog, buf); 7809 if (err) 7810 goto err_unpin_programs; 7811 } 7812 7813 return 0; 7814 7815 err_unpin_programs: 7816 while ((prog = bpf_program__prev(prog, obj))) { 7817 char buf[PATH_MAX]; 7818 int len; 7819 7820 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7821 prog->pin_name); 7822 if (len < 0) 7823 continue; 7824 else if (len >= PATH_MAX) 7825 continue; 7826 7827 bpf_program__unpin(prog, buf); 7828 } 7829 7830 return libbpf_err(err); 7831 } 7832 7833 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 7834 { 7835 struct bpf_program *prog; 7836 int err; 7837 7838 if (!obj) 7839 return libbpf_err(-ENOENT); 7840 7841 bpf_object__for_each_program(prog, obj) { 7842 char buf[PATH_MAX]; 7843 int len; 7844 7845 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7846 prog->pin_name); 7847 if (len < 0) 7848 return libbpf_err(-EINVAL); 7849 else if (len >= PATH_MAX) 7850 return libbpf_err(-ENAMETOOLONG); 7851 7852 err = bpf_program__unpin(prog, buf); 7853 if (err) 7854 return libbpf_err(err); 7855 } 7856 7857 return 0; 7858 } 7859 7860 int bpf_object__pin(struct bpf_object *obj, const char *path) 7861 { 7862 int err; 7863 7864 err = bpf_object__pin_maps(obj, path); 7865 if (err) 7866 return libbpf_err(err); 7867 7868 err = bpf_object__pin_programs(obj, path); 7869 if (err) { 7870 bpf_object__unpin_maps(obj, path); 7871 return libbpf_err(err); 7872 } 7873 7874 return 0; 7875 } 7876 7877 static void bpf_map__destroy(struct bpf_map *map) 7878 { 7879 if (map->clear_priv) 7880 map->clear_priv(map, map->priv); 7881 map->priv = NULL; 7882 map->clear_priv = NULL; 7883 7884 if (map->inner_map) { 7885 bpf_map__destroy(map->inner_map); 7886 zfree(&map->inner_map); 7887 } 7888 7889 zfree(&map->init_slots); 7890 map->init_slots_sz = 0; 7891 7892 if (map->mmaped) { 7893 munmap(map->mmaped, bpf_map_mmap_sz(map)); 7894 map->mmaped = NULL; 7895 } 7896 7897 if (map->st_ops) { 7898 zfree(&map->st_ops->data); 7899 zfree(&map->st_ops->progs); 7900 zfree(&map->st_ops->kern_func_off); 7901 zfree(&map->st_ops); 7902 } 7903 7904 zfree(&map->name); 7905 zfree(&map->real_name); 7906 zfree(&map->pin_path); 7907 7908 if (map->fd >= 0) 7909 zclose(map->fd); 7910 } 7911 7912 void bpf_object__close(struct bpf_object *obj) 7913 { 7914 size_t i; 7915 7916 if (IS_ERR_OR_NULL(obj)) 7917 return; 7918 7919 if (obj->clear_priv) 7920 obj->clear_priv(obj, obj->priv); 7921 7922 bpf_gen__free(obj->gen_loader); 7923 bpf_object__elf_finish(obj); 7924 bpf_object_unload(obj); 7925 btf__free(obj->btf); 7926 btf_ext__free(obj->btf_ext); 7927 7928 for (i = 0; i < obj->nr_maps; i++) 7929 bpf_map__destroy(&obj->maps[i]); 7930 7931 zfree(&obj->btf_custom_path); 7932 zfree(&obj->kconfig); 7933 zfree(&obj->externs); 7934 obj->nr_extern = 0; 7935 7936 zfree(&obj->maps); 7937 obj->nr_maps = 0; 7938 7939 if (obj->programs && obj->nr_programs) { 7940 for (i = 0; i < obj->nr_programs; i++) 7941 bpf_program__exit(&obj->programs[i]); 7942 } 7943 zfree(&obj->programs); 7944 7945 list_del(&obj->list); 7946 free(obj); 7947 } 7948 7949 struct bpf_object * 7950 bpf_object__next(struct bpf_object *prev) 7951 { 7952 struct bpf_object *next; 7953 bool strict = (libbpf_mode & LIBBPF_STRICT_NO_OBJECT_LIST); 7954 7955 if (strict) 7956 return NULL; 7957 7958 if (!prev) 7959 next = list_first_entry(&bpf_objects_list, 7960 struct bpf_object, 7961 list); 7962 else 7963 next = list_next_entry(prev, list); 7964 7965 /* Empty list is noticed here so don't need checking on entry. */ 7966 if (&next->list == &bpf_objects_list) 7967 return NULL; 7968 7969 return next; 7970 } 7971 7972 const char *bpf_object__name(const struct bpf_object *obj) 7973 { 7974 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 7975 } 7976 7977 unsigned int bpf_object__kversion(const struct bpf_object *obj) 7978 { 7979 return obj ? obj->kern_version : 0; 7980 } 7981 7982 struct btf *bpf_object__btf(const struct bpf_object *obj) 7983 { 7984 return obj ? obj->btf : NULL; 7985 } 7986 7987 int bpf_object__btf_fd(const struct bpf_object *obj) 7988 { 7989 return obj->btf ? btf__fd(obj->btf) : -1; 7990 } 7991 7992 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 7993 { 7994 if (obj->loaded) 7995 return libbpf_err(-EINVAL); 7996 7997 obj->kern_version = kern_version; 7998 7999 return 0; 8000 } 8001 8002 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8003 bpf_object_clear_priv_t clear_priv) 8004 { 8005 if (obj->priv && obj->clear_priv) 8006 obj->clear_priv(obj, obj->priv); 8007 8008 obj->priv = priv; 8009 obj->clear_priv = clear_priv; 8010 return 0; 8011 } 8012 8013 void *bpf_object__priv(const struct bpf_object *obj) 8014 { 8015 return obj ? obj->priv : libbpf_err_ptr(-EINVAL); 8016 } 8017 8018 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8019 { 8020 struct bpf_gen *gen; 8021 8022 if (!opts) 8023 return -EFAULT; 8024 if (!OPTS_VALID(opts, gen_loader_opts)) 8025 return -EINVAL; 8026 gen = calloc(sizeof(*gen), 1); 8027 if (!gen) 8028 return -ENOMEM; 8029 gen->opts = opts; 8030 obj->gen_loader = gen; 8031 return 0; 8032 } 8033 8034 static struct bpf_program * 8035 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8036 bool forward) 8037 { 8038 size_t nr_programs = obj->nr_programs; 8039 ssize_t idx; 8040 8041 if (!nr_programs) 8042 return NULL; 8043 8044 if (!p) 8045 /* Iter from the beginning */ 8046 return forward ? &obj->programs[0] : 8047 &obj->programs[nr_programs - 1]; 8048 8049 if (p->obj != obj) { 8050 pr_warn("error: program handler doesn't match object\n"); 8051 return errno = EINVAL, NULL; 8052 } 8053 8054 idx = (p - obj->programs) + (forward ? 1 : -1); 8055 if (idx >= obj->nr_programs || idx < 0) 8056 return NULL; 8057 return &obj->programs[idx]; 8058 } 8059 8060 struct bpf_program * 8061 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8062 { 8063 return bpf_object__next_program(obj, prev); 8064 } 8065 8066 struct bpf_program * 8067 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8068 { 8069 struct bpf_program *prog = prev; 8070 8071 do { 8072 prog = __bpf_program__iter(prog, obj, true); 8073 } while (prog && prog_is_subprog(obj, prog)); 8074 8075 return prog; 8076 } 8077 8078 struct bpf_program * 8079 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8080 { 8081 return bpf_object__prev_program(obj, next); 8082 } 8083 8084 struct bpf_program * 8085 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8086 { 8087 struct bpf_program *prog = next; 8088 8089 do { 8090 prog = __bpf_program__iter(prog, obj, false); 8091 } while (prog && prog_is_subprog(obj, prog)); 8092 8093 return prog; 8094 } 8095 8096 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8097 bpf_program_clear_priv_t clear_priv) 8098 { 8099 if (prog->priv && prog->clear_priv) 8100 prog->clear_priv(prog, prog->priv); 8101 8102 prog->priv = priv; 8103 prog->clear_priv = clear_priv; 8104 return 0; 8105 } 8106 8107 void *bpf_program__priv(const struct bpf_program *prog) 8108 { 8109 return prog ? prog->priv : libbpf_err_ptr(-EINVAL); 8110 } 8111 8112 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8113 { 8114 prog->prog_ifindex = ifindex; 8115 } 8116 8117 const char *bpf_program__name(const struct bpf_program *prog) 8118 { 8119 return prog->name; 8120 } 8121 8122 const char *bpf_program__section_name(const struct bpf_program *prog) 8123 { 8124 return prog->sec_name; 8125 } 8126 8127 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8128 { 8129 const char *title; 8130 8131 title = prog->sec_name; 8132 if (needs_copy) { 8133 title = strdup(title); 8134 if (!title) { 8135 pr_warn("failed to strdup program title\n"); 8136 return libbpf_err_ptr(-ENOMEM); 8137 } 8138 } 8139 8140 return title; 8141 } 8142 8143 bool bpf_program__autoload(const struct bpf_program *prog) 8144 { 8145 return prog->load; 8146 } 8147 8148 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8149 { 8150 if (prog->obj->loaded) 8151 return libbpf_err(-EINVAL); 8152 8153 prog->load = autoload; 8154 return 0; 8155 } 8156 8157 int bpf_program__fd(const struct bpf_program *prog) 8158 { 8159 return bpf_program__nth_fd(prog, 0); 8160 } 8161 8162 size_t bpf_program__size(const struct bpf_program *prog) 8163 { 8164 return prog->insns_cnt * BPF_INSN_SZ; 8165 } 8166 8167 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8168 { 8169 return prog->insns; 8170 } 8171 8172 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8173 { 8174 return prog->insns_cnt; 8175 } 8176 8177 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8178 bpf_program_prep_t prep) 8179 { 8180 int *instances_fds; 8181 8182 if (nr_instances <= 0 || !prep) 8183 return libbpf_err(-EINVAL); 8184 8185 if (prog->instances.nr > 0 || prog->instances.fds) { 8186 pr_warn("Can't set pre-processor after loading\n"); 8187 return libbpf_err(-EINVAL); 8188 } 8189 8190 instances_fds = malloc(sizeof(int) * nr_instances); 8191 if (!instances_fds) { 8192 pr_warn("alloc memory failed for fds\n"); 8193 return libbpf_err(-ENOMEM); 8194 } 8195 8196 /* fill all fd with -1 */ 8197 memset(instances_fds, -1, sizeof(int) * nr_instances); 8198 8199 prog->instances.nr = nr_instances; 8200 prog->instances.fds = instances_fds; 8201 prog->preprocessor = prep; 8202 return 0; 8203 } 8204 8205 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8206 { 8207 int fd; 8208 8209 if (!prog) 8210 return libbpf_err(-EINVAL); 8211 8212 if (n >= prog->instances.nr || n < 0) { 8213 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8214 n, prog->name, prog->instances.nr); 8215 return libbpf_err(-EINVAL); 8216 } 8217 8218 fd = prog->instances.fds[n]; 8219 if (fd < 0) { 8220 pr_warn("%dth instance of program '%s' is invalid\n", 8221 n, prog->name); 8222 return libbpf_err(-ENOENT); 8223 } 8224 8225 return fd; 8226 } 8227 8228 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 8229 { 8230 return prog->type; 8231 } 8232 8233 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8234 { 8235 prog->type = type; 8236 } 8237 8238 static bool bpf_program__is_type(const struct bpf_program *prog, 8239 enum bpf_prog_type type) 8240 { 8241 return prog ? (prog->type == type) : false; 8242 } 8243 8244 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8245 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8246 { \ 8247 if (!prog) \ 8248 return libbpf_err(-EINVAL); \ 8249 bpf_program__set_type(prog, TYPE); \ 8250 return 0; \ 8251 } \ 8252 \ 8253 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8254 { \ 8255 return bpf_program__is_type(prog, TYPE); \ 8256 } \ 8257 8258 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8259 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8260 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8261 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8262 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8263 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8264 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8265 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8266 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8267 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8268 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8269 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8270 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8271 8272 enum bpf_attach_type 8273 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 8274 { 8275 return prog->expected_attach_type; 8276 } 8277 8278 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8279 enum bpf_attach_type type) 8280 { 8281 prog->expected_attach_type = type; 8282 } 8283 8284 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8285 .sec = sec_pfx, \ 8286 .prog_type = BPF_PROG_TYPE_##ptype, \ 8287 .expected_attach_type = atype, \ 8288 .cookie = (long)(flags), \ 8289 .preload_fn = libbpf_preload_prog, \ 8290 __VA_ARGS__ \ 8291 } 8292 8293 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie); 8294 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie); 8295 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie); 8296 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie); 8297 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie); 8298 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie); 8299 8300 static const struct bpf_sec_def section_defs[] = { 8301 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE | SEC_SLOPPY_PFX), 8302 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8303 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8304 SEC_DEF("kprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8305 SEC_DEF("uprobe/", KPROBE, 0, SEC_NONE), 8306 SEC_DEF("kretprobe/", KPROBE, 0, SEC_NONE, attach_kprobe), 8307 SEC_DEF("uretprobe/", KPROBE, 0, SEC_NONE), 8308 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8309 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE | SEC_SLOPPY_PFX), 8310 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8311 SEC_DEF("tracepoint/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8312 SEC_DEF("tp/", TRACEPOINT, 0, SEC_NONE, attach_tp), 8313 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8314 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8315 SEC_DEF("raw_tracepoint.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8316 SEC_DEF("raw_tp.w/", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8317 SEC_DEF("tp_btf/", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8318 SEC_DEF("fentry/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8319 SEC_DEF("fmod_ret/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8320 SEC_DEF("fexit/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8321 SEC_DEF("fentry.s/", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8322 SEC_DEF("fmod_ret.s/", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8323 SEC_DEF("fexit.s/", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8324 SEC_DEF("freplace/", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8325 SEC_DEF("lsm/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8326 SEC_DEF("lsm.s/", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8327 SEC_DEF("iter/", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8328 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8329 SEC_DEF("xdp_devmap/", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8330 SEC_DEF("xdp_cpumap/", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8331 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8332 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8333 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE | SEC_SLOPPY_PFX), 8334 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8335 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE | SEC_SLOPPY_PFX), 8336 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE | SEC_SLOPPY_PFX), 8337 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8338 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8339 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8340 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8341 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8342 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8343 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8344 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8345 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8346 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8347 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8348 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8349 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE | SEC_SLOPPY_PFX), 8350 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8351 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8352 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT | SEC_SLOPPY_PFX), 8353 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8354 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8355 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8356 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8357 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8358 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8359 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8360 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8361 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8362 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8363 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8364 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8365 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8366 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8367 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8368 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8369 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE | SEC_SLOPPY_PFX), 8370 }; 8371 8372 #define MAX_TYPE_NAME_SIZE 32 8373 8374 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8375 { 8376 const struct bpf_sec_def *sec_def; 8377 enum sec_def_flags sec_flags; 8378 int i, n = ARRAY_SIZE(section_defs), len; 8379 bool strict = libbpf_mode & LIBBPF_STRICT_SEC_NAME; 8380 8381 for (i = 0; i < n; i++) { 8382 sec_def = §ion_defs[i]; 8383 sec_flags = sec_def->cookie; 8384 len = strlen(sec_def->sec); 8385 8386 /* "type/" always has to have proper SEC("type/extras") form */ 8387 if (sec_def->sec[len - 1] == '/') { 8388 if (str_has_pfx(sec_name, sec_def->sec)) 8389 return sec_def; 8390 continue; 8391 } 8392 8393 /* "type+" means it can be either exact SEC("type") or 8394 * well-formed SEC("type/extras") with proper '/' separator 8395 */ 8396 if (sec_def->sec[len - 1] == '+') { 8397 len--; 8398 /* not even a prefix */ 8399 if (strncmp(sec_name, sec_def->sec, len) != 0) 8400 continue; 8401 /* exact match or has '/' separator */ 8402 if (sec_name[len] == '\0' || sec_name[len] == '/') 8403 return sec_def; 8404 continue; 8405 } 8406 8407 /* SEC_SLOPPY_PFX definitions are allowed to be just prefix 8408 * matches, unless strict section name mode 8409 * (LIBBPF_STRICT_SEC_NAME) is enabled, in which case the 8410 * match has to be exact. 8411 */ 8412 if ((sec_flags & SEC_SLOPPY_PFX) && !strict) { 8413 if (str_has_pfx(sec_name, sec_def->sec)) 8414 return sec_def; 8415 continue; 8416 } 8417 8418 /* Definitions not marked SEC_SLOPPY_PFX (e.g., 8419 * SEC("syscall")) are exact matches in both modes. 8420 */ 8421 if (strcmp(sec_name, sec_def->sec) == 0) 8422 return sec_def; 8423 } 8424 return NULL; 8425 } 8426 8427 static char *libbpf_get_type_names(bool attach_type) 8428 { 8429 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8430 char *buf; 8431 8432 buf = malloc(len); 8433 if (!buf) 8434 return NULL; 8435 8436 buf[0] = '\0'; 8437 /* Forge string buf with all available names */ 8438 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8439 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8440 8441 if (attach_type) { 8442 if (sec_def->preload_fn != libbpf_preload_prog) 8443 continue; 8444 8445 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8446 continue; 8447 } 8448 8449 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8450 free(buf); 8451 return NULL; 8452 } 8453 strcat(buf, " "); 8454 strcat(buf, section_defs[i].sec); 8455 } 8456 8457 return buf; 8458 } 8459 8460 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8461 enum bpf_attach_type *expected_attach_type) 8462 { 8463 const struct bpf_sec_def *sec_def; 8464 char *type_names; 8465 8466 if (!name) 8467 return libbpf_err(-EINVAL); 8468 8469 sec_def = find_sec_def(name); 8470 if (sec_def) { 8471 *prog_type = sec_def->prog_type; 8472 *expected_attach_type = sec_def->expected_attach_type; 8473 return 0; 8474 } 8475 8476 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8477 type_names = libbpf_get_type_names(false); 8478 if (type_names != NULL) { 8479 pr_debug("supported section(type) names are:%s\n", type_names); 8480 free(type_names); 8481 } 8482 8483 return libbpf_err(-ESRCH); 8484 } 8485 8486 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8487 size_t offset) 8488 { 8489 struct bpf_map *map; 8490 size_t i; 8491 8492 for (i = 0; i < obj->nr_maps; i++) { 8493 map = &obj->maps[i]; 8494 if (!bpf_map__is_struct_ops(map)) 8495 continue; 8496 if (map->sec_offset <= offset && 8497 offset - map->sec_offset < map->def.value_size) 8498 return map; 8499 } 8500 8501 return NULL; 8502 } 8503 8504 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8505 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8506 Elf64_Shdr *shdr, Elf_Data *data) 8507 { 8508 const struct btf_member *member; 8509 struct bpf_struct_ops *st_ops; 8510 struct bpf_program *prog; 8511 unsigned int shdr_idx; 8512 const struct btf *btf; 8513 struct bpf_map *map; 8514 unsigned int moff, insn_idx; 8515 const char *name; 8516 __u32 member_idx; 8517 Elf64_Sym *sym; 8518 Elf64_Rel *rel; 8519 int i, nrels; 8520 8521 btf = obj->btf; 8522 nrels = shdr->sh_size / shdr->sh_entsize; 8523 for (i = 0; i < nrels; i++) { 8524 rel = elf_rel_by_idx(data, i); 8525 if (!rel) { 8526 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8527 return -LIBBPF_ERRNO__FORMAT; 8528 } 8529 8530 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8531 if (!sym) { 8532 pr_warn("struct_ops reloc: symbol %zx not found\n", 8533 (size_t)ELF64_R_SYM(rel->r_info)); 8534 return -LIBBPF_ERRNO__FORMAT; 8535 } 8536 8537 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8538 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8539 if (!map) { 8540 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8541 (size_t)rel->r_offset); 8542 return -EINVAL; 8543 } 8544 8545 moff = rel->r_offset - map->sec_offset; 8546 shdr_idx = sym->st_shndx; 8547 st_ops = map->st_ops; 8548 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8549 map->name, 8550 (long long)(rel->r_info >> 32), 8551 (long long)sym->st_value, 8552 shdr_idx, (size_t)rel->r_offset, 8553 map->sec_offset, sym->st_name, name); 8554 8555 if (shdr_idx >= SHN_LORESERVE) { 8556 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8557 map->name, (size_t)rel->r_offset, shdr_idx); 8558 return -LIBBPF_ERRNO__RELOC; 8559 } 8560 if (sym->st_value % BPF_INSN_SZ) { 8561 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8562 map->name, (unsigned long long)sym->st_value); 8563 return -LIBBPF_ERRNO__FORMAT; 8564 } 8565 insn_idx = sym->st_value / BPF_INSN_SZ; 8566 8567 member = find_member_by_offset(st_ops->type, moff * 8); 8568 if (!member) { 8569 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8570 map->name, moff); 8571 return -EINVAL; 8572 } 8573 member_idx = member - btf_members(st_ops->type); 8574 name = btf__name_by_offset(btf, member->name_off); 8575 8576 if (!resolve_func_ptr(btf, member->type, NULL)) { 8577 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8578 map->name, name); 8579 return -EINVAL; 8580 } 8581 8582 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8583 if (!prog) { 8584 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8585 map->name, shdr_idx, name); 8586 return -EINVAL; 8587 } 8588 8589 /* prevent the use of BPF prog with invalid type */ 8590 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8591 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8592 map->name, prog->name); 8593 return -EINVAL; 8594 } 8595 8596 /* if we haven't yet processed this BPF program, record proper 8597 * attach_btf_id and member_idx 8598 */ 8599 if (!prog->attach_btf_id) { 8600 prog->attach_btf_id = st_ops->type_id; 8601 prog->expected_attach_type = member_idx; 8602 } 8603 8604 /* struct_ops BPF prog can be re-used between multiple 8605 * .struct_ops as long as it's the same struct_ops struct 8606 * definition and the same function pointer field 8607 */ 8608 if (prog->attach_btf_id != st_ops->type_id || 8609 prog->expected_attach_type != member_idx) { 8610 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8611 map->name, prog->name, prog->sec_name, prog->type, 8612 prog->attach_btf_id, prog->expected_attach_type, name); 8613 return -EINVAL; 8614 } 8615 8616 st_ops->progs[member_idx] = prog; 8617 } 8618 8619 return 0; 8620 } 8621 8622 #define BTF_TRACE_PREFIX "btf_trace_" 8623 #define BTF_LSM_PREFIX "bpf_lsm_" 8624 #define BTF_ITER_PREFIX "bpf_iter_" 8625 #define BTF_MAX_NAME_SIZE 128 8626 8627 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8628 const char **prefix, int *kind) 8629 { 8630 switch (attach_type) { 8631 case BPF_TRACE_RAW_TP: 8632 *prefix = BTF_TRACE_PREFIX; 8633 *kind = BTF_KIND_TYPEDEF; 8634 break; 8635 case BPF_LSM_MAC: 8636 *prefix = BTF_LSM_PREFIX; 8637 *kind = BTF_KIND_FUNC; 8638 break; 8639 case BPF_TRACE_ITER: 8640 *prefix = BTF_ITER_PREFIX; 8641 *kind = BTF_KIND_FUNC; 8642 break; 8643 default: 8644 *prefix = ""; 8645 *kind = BTF_KIND_FUNC; 8646 } 8647 } 8648 8649 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8650 const char *name, __u32 kind) 8651 { 8652 char btf_type_name[BTF_MAX_NAME_SIZE]; 8653 int ret; 8654 8655 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8656 "%s%s", prefix, name); 8657 /* snprintf returns the number of characters written excluding the 8658 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8659 * indicates truncation. 8660 */ 8661 if (ret < 0 || ret >= sizeof(btf_type_name)) 8662 return -ENAMETOOLONG; 8663 return btf__find_by_name_kind(btf, btf_type_name, kind); 8664 } 8665 8666 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8667 enum bpf_attach_type attach_type) 8668 { 8669 const char *prefix; 8670 int kind; 8671 8672 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8673 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8674 } 8675 8676 int libbpf_find_vmlinux_btf_id(const char *name, 8677 enum bpf_attach_type attach_type) 8678 { 8679 struct btf *btf; 8680 int err; 8681 8682 btf = btf__load_vmlinux_btf(); 8683 err = libbpf_get_error(btf); 8684 if (err) { 8685 pr_warn("vmlinux BTF is not found\n"); 8686 return libbpf_err(err); 8687 } 8688 8689 err = find_attach_btf_id(btf, name, attach_type); 8690 if (err <= 0) 8691 pr_warn("%s is not found in vmlinux BTF\n", name); 8692 8693 btf__free(btf); 8694 return libbpf_err(err); 8695 } 8696 8697 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8698 { 8699 struct bpf_prog_info info = {}; 8700 __u32 info_len = sizeof(info); 8701 struct btf *btf; 8702 int err; 8703 8704 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 8705 if (err) { 8706 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 8707 attach_prog_fd, err); 8708 return err; 8709 } 8710 8711 err = -EINVAL; 8712 if (!info.btf_id) { 8713 pr_warn("The target program doesn't have BTF\n"); 8714 goto out; 8715 } 8716 btf = btf__load_from_kernel_by_id(info.btf_id); 8717 err = libbpf_get_error(btf); 8718 if (err) { 8719 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 8720 goto out; 8721 } 8722 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8723 btf__free(btf); 8724 if (err <= 0) { 8725 pr_warn("%s is not found in prog's BTF\n", name); 8726 goto out; 8727 } 8728 out: 8729 return err; 8730 } 8731 8732 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 8733 enum bpf_attach_type attach_type, 8734 int *btf_obj_fd, int *btf_type_id) 8735 { 8736 int ret, i; 8737 8738 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 8739 if (ret > 0) { 8740 *btf_obj_fd = 0; /* vmlinux BTF */ 8741 *btf_type_id = ret; 8742 return 0; 8743 } 8744 if (ret != -ENOENT) 8745 return ret; 8746 8747 ret = load_module_btfs(obj); 8748 if (ret) 8749 return ret; 8750 8751 for (i = 0; i < obj->btf_module_cnt; i++) { 8752 const struct module_btf *mod = &obj->btf_modules[i]; 8753 8754 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 8755 if (ret > 0) { 8756 *btf_obj_fd = mod->fd; 8757 *btf_type_id = ret; 8758 return 0; 8759 } 8760 if (ret == -ENOENT) 8761 continue; 8762 8763 return ret; 8764 } 8765 8766 return -ESRCH; 8767 } 8768 8769 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 8770 int *btf_obj_fd, int *btf_type_id) 8771 { 8772 enum bpf_attach_type attach_type = prog->expected_attach_type; 8773 __u32 attach_prog_fd = prog->attach_prog_fd; 8774 int err = 0; 8775 8776 /* BPF program's BTF ID */ 8777 if (attach_prog_fd) { 8778 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 8779 if (err < 0) { 8780 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 8781 attach_prog_fd, attach_name, err); 8782 return err; 8783 } 8784 *btf_obj_fd = 0; 8785 *btf_type_id = err; 8786 return 0; 8787 } 8788 8789 /* kernel/module BTF ID */ 8790 if (prog->obj->gen_loader) { 8791 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 8792 *btf_obj_fd = 0; 8793 *btf_type_id = 1; 8794 } else { 8795 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 8796 } 8797 if (err) { 8798 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 8799 return err; 8800 } 8801 return 0; 8802 } 8803 8804 int libbpf_attach_type_by_name(const char *name, 8805 enum bpf_attach_type *attach_type) 8806 { 8807 char *type_names; 8808 const struct bpf_sec_def *sec_def; 8809 8810 if (!name) 8811 return libbpf_err(-EINVAL); 8812 8813 sec_def = find_sec_def(name); 8814 if (!sec_def) { 8815 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 8816 type_names = libbpf_get_type_names(true); 8817 if (type_names != NULL) { 8818 pr_debug("attachable section(type) names are:%s\n", type_names); 8819 free(type_names); 8820 } 8821 8822 return libbpf_err(-EINVAL); 8823 } 8824 8825 if (sec_def->preload_fn != libbpf_preload_prog) 8826 return libbpf_err(-EINVAL); 8827 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8828 return libbpf_err(-EINVAL); 8829 8830 *attach_type = sec_def->expected_attach_type; 8831 return 0; 8832 } 8833 8834 int bpf_map__fd(const struct bpf_map *map) 8835 { 8836 return map ? map->fd : libbpf_err(-EINVAL); 8837 } 8838 8839 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 8840 { 8841 return map ? &map->def : libbpf_err_ptr(-EINVAL); 8842 } 8843 8844 static bool map_uses_real_name(const struct bpf_map *map) 8845 { 8846 /* Since libbpf started to support custom .data.* and .rodata.* maps, 8847 * their user-visible name differs from kernel-visible name. Users see 8848 * such map's corresponding ELF section name as a map name. 8849 * This check distinguishes .data/.rodata from .data.* and .rodata.* 8850 * maps to know which name has to be returned to the user. 8851 */ 8852 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 8853 return true; 8854 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 8855 return true; 8856 return false; 8857 } 8858 8859 const char *bpf_map__name(const struct bpf_map *map) 8860 { 8861 if (!map) 8862 return NULL; 8863 8864 if (map_uses_real_name(map)) 8865 return map->real_name; 8866 8867 return map->name; 8868 } 8869 8870 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 8871 { 8872 return map->def.type; 8873 } 8874 8875 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 8876 { 8877 if (map->fd >= 0) 8878 return libbpf_err(-EBUSY); 8879 map->def.type = type; 8880 return 0; 8881 } 8882 8883 __u32 bpf_map__map_flags(const struct bpf_map *map) 8884 { 8885 return map->def.map_flags; 8886 } 8887 8888 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 8889 { 8890 if (map->fd >= 0) 8891 return libbpf_err(-EBUSY); 8892 map->def.map_flags = flags; 8893 return 0; 8894 } 8895 8896 __u64 bpf_map__map_extra(const struct bpf_map *map) 8897 { 8898 return map->map_extra; 8899 } 8900 8901 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 8902 { 8903 if (map->fd >= 0) 8904 return libbpf_err(-EBUSY); 8905 map->map_extra = map_extra; 8906 return 0; 8907 } 8908 8909 __u32 bpf_map__numa_node(const struct bpf_map *map) 8910 { 8911 return map->numa_node; 8912 } 8913 8914 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 8915 { 8916 if (map->fd >= 0) 8917 return libbpf_err(-EBUSY); 8918 map->numa_node = numa_node; 8919 return 0; 8920 } 8921 8922 __u32 bpf_map__key_size(const struct bpf_map *map) 8923 { 8924 return map->def.key_size; 8925 } 8926 8927 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 8928 { 8929 if (map->fd >= 0) 8930 return libbpf_err(-EBUSY); 8931 map->def.key_size = size; 8932 return 0; 8933 } 8934 8935 __u32 bpf_map__value_size(const struct bpf_map *map) 8936 { 8937 return map->def.value_size; 8938 } 8939 8940 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 8941 { 8942 if (map->fd >= 0) 8943 return libbpf_err(-EBUSY); 8944 map->def.value_size = size; 8945 return 0; 8946 } 8947 8948 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 8949 { 8950 return map ? map->btf_key_type_id : 0; 8951 } 8952 8953 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 8954 { 8955 return map ? map->btf_value_type_id : 0; 8956 } 8957 8958 int bpf_map__set_priv(struct bpf_map *map, void *priv, 8959 bpf_map_clear_priv_t clear_priv) 8960 { 8961 if (!map) 8962 return libbpf_err(-EINVAL); 8963 8964 if (map->priv) { 8965 if (map->clear_priv) 8966 map->clear_priv(map, map->priv); 8967 } 8968 8969 map->priv = priv; 8970 map->clear_priv = clear_priv; 8971 return 0; 8972 } 8973 8974 void *bpf_map__priv(const struct bpf_map *map) 8975 { 8976 return map ? map->priv : libbpf_err_ptr(-EINVAL); 8977 } 8978 8979 int bpf_map__set_initial_value(struct bpf_map *map, 8980 const void *data, size_t size) 8981 { 8982 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 8983 size != map->def.value_size || map->fd >= 0) 8984 return libbpf_err(-EINVAL); 8985 8986 memcpy(map->mmaped, data, size); 8987 return 0; 8988 } 8989 8990 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 8991 { 8992 if (!map->mmaped) 8993 return NULL; 8994 *psize = map->def.value_size; 8995 return map->mmaped; 8996 } 8997 8998 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 8999 { 9000 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9001 } 9002 9003 bool bpf_map__is_internal(const struct bpf_map *map) 9004 { 9005 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9006 } 9007 9008 __u32 bpf_map__ifindex(const struct bpf_map *map) 9009 { 9010 return map->map_ifindex; 9011 } 9012 9013 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9014 { 9015 if (map->fd >= 0) 9016 return libbpf_err(-EBUSY); 9017 map->map_ifindex = ifindex; 9018 return 0; 9019 } 9020 9021 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9022 { 9023 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9024 pr_warn("error: unsupported map type\n"); 9025 return libbpf_err(-EINVAL); 9026 } 9027 if (map->inner_map_fd != -1) { 9028 pr_warn("error: inner_map_fd already specified\n"); 9029 return libbpf_err(-EINVAL); 9030 } 9031 zfree(&map->inner_map); 9032 map->inner_map_fd = fd; 9033 return 0; 9034 } 9035 9036 static struct bpf_map * 9037 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9038 { 9039 ssize_t idx; 9040 struct bpf_map *s, *e; 9041 9042 if (!obj || !obj->maps) 9043 return errno = EINVAL, NULL; 9044 9045 s = obj->maps; 9046 e = obj->maps + obj->nr_maps; 9047 9048 if ((m < s) || (m >= e)) { 9049 pr_warn("error in %s: map handler doesn't belong to object\n", 9050 __func__); 9051 return errno = EINVAL, NULL; 9052 } 9053 9054 idx = (m - obj->maps) + i; 9055 if (idx >= obj->nr_maps || idx < 0) 9056 return NULL; 9057 return &obj->maps[idx]; 9058 } 9059 9060 struct bpf_map * 9061 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9062 { 9063 return bpf_object__next_map(obj, prev); 9064 } 9065 9066 struct bpf_map * 9067 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9068 { 9069 if (prev == NULL) 9070 return obj->maps; 9071 9072 return __bpf_map__iter(prev, obj, 1); 9073 } 9074 9075 struct bpf_map * 9076 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9077 { 9078 return bpf_object__prev_map(obj, next); 9079 } 9080 9081 struct bpf_map * 9082 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9083 { 9084 if (next == NULL) { 9085 if (!obj->nr_maps) 9086 return NULL; 9087 return obj->maps + obj->nr_maps - 1; 9088 } 9089 9090 return __bpf_map__iter(next, obj, -1); 9091 } 9092 9093 struct bpf_map * 9094 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9095 { 9096 struct bpf_map *pos; 9097 9098 bpf_object__for_each_map(pos, obj) { 9099 /* if it's a special internal map name (which always starts 9100 * with dot) then check if that special name matches the 9101 * real map name (ELF section name) 9102 */ 9103 if (name[0] == '.') { 9104 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9105 return pos; 9106 continue; 9107 } 9108 /* otherwise map name has to be an exact match */ 9109 if (map_uses_real_name(pos)) { 9110 if (strcmp(pos->real_name, name) == 0) 9111 return pos; 9112 continue; 9113 } 9114 if (strcmp(pos->name, name) == 0) 9115 return pos; 9116 } 9117 return errno = ENOENT, NULL; 9118 } 9119 9120 int 9121 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9122 { 9123 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9124 } 9125 9126 struct bpf_map * 9127 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9128 { 9129 return libbpf_err_ptr(-ENOTSUP); 9130 } 9131 9132 long libbpf_get_error(const void *ptr) 9133 { 9134 if (!IS_ERR_OR_NULL(ptr)) 9135 return 0; 9136 9137 if (IS_ERR(ptr)) 9138 errno = -PTR_ERR(ptr); 9139 9140 /* If ptr == NULL, then errno should be already set by the failing 9141 * API, because libbpf never returns NULL on success and it now always 9142 * sets errno on error. So no extra errno handling for ptr == NULL 9143 * case. 9144 */ 9145 return -errno; 9146 } 9147 9148 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9149 struct bpf_object **pobj, int *prog_fd) 9150 { 9151 struct bpf_prog_load_attr attr; 9152 9153 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9154 attr.file = file; 9155 attr.prog_type = type; 9156 attr.expected_attach_type = 0; 9157 9158 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9159 } 9160 9161 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9162 struct bpf_object **pobj, int *prog_fd) 9163 { 9164 struct bpf_object_open_attr open_attr = {}; 9165 struct bpf_program *prog, *first_prog = NULL; 9166 struct bpf_object *obj; 9167 struct bpf_map *map; 9168 int err; 9169 9170 if (!attr) 9171 return libbpf_err(-EINVAL); 9172 if (!attr->file) 9173 return libbpf_err(-EINVAL); 9174 9175 open_attr.file = attr->file; 9176 open_attr.prog_type = attr->prog_type; 9177 9178 obj = bpf_object__open_xattr(&open_attr); 9179 err = libbpf_get_error(obj); 9180 if (err) 9181 return libbpf_err(-ENOENT); 9182 9183 bpf_object__for_each_program(prog, obj) { 9184 enum bpf_attach_type attach_type = attr->expected_attach_type; 9185 /* 9186 * to preserve backwards compatibility, bpf_prog_load treats 9187 * attr->prog_type, if specified, as an override to whatever 9188 * bpf_object__open guessed 9189 */ 9190 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9191 bpf_program__set_type(prog, attr->prog_type); 9192 bpf_program__set_expected_attach_type(prog, 9193 attach_type); 9194 } 9195 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9196 /* 9197 * we haven't guessed from section name and user 9198 * didn't provide a fallback type, too bad... 9199 */ 9200 bpf_object__close(obj); 9201 return libbpf_err(-EINVAL); 9202 } 9203 9204 prog->prog_ifindex = attr->ifindex; 9205 prog->log_level = attr->log_level; 9206 prog->prog_flags |= attr->prog_flags; 9207 if (!first_prog) 9208 first_prog = prog; 9209 } 9210 9211 bpf_object__for_each_map(map, obj) { 9212 if (!bpf_map__is_offload_neutral(map)) 9213 map->map_ifindex = attr->ifindex; 9214 } 9215 9216 if (!first_prog) { 9217 pr_warn("object file doesn't contain bpf program\n"); 9218 bpf_object__close(obj); 9219 return libbpf_err(-ENOENT); 9220 } 9221 9222 err = bpf_object__load(obj); 9223 if (err) { 9224 bpf_object__close(obj); 9225 return libbpf_err(err); 9226 } 9227 9228 *pobj = obj; 9229 *prog_fd = bpf_program__fd(first_prog); 9230 return 0; 9231 } 9232 9233 struct bpf_link { 9234 int (*detach)(struct bpf_link *link); 9235 void (*dealloc)(struct bpf_link *link); 9236 char *pin_path; /* NULL, if not pinned */ 9237 int fd; /* hook FD, -1 if not applicable */ 9238 bool disconnected; 9239 }; 9240 9241 /* Replace link's underlying BPF program with the new one */ 9242 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9243 { 9244 int ret; 9245 9246 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9247 return libbpf_err_errno(ret); 9248 } 9249 9250 /* Release "ownership" of underlying BPF resource (typically, BPF program 9251 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9252 * link, when destructed through bpf_link__destroy() call won't attempt to 9253 * detach/unregisted that BPF resource. This is useful in situations where, 9254 * say, attached BPF program has to outlive userspace program that attached it 9255 * in the system. Depending on type of BPF program, though, there might be 9256 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9257 * exit of userspace program doesn't trigger automatic detachment and clean up 9258 * inside the kernel. 9259 */ 9260 void bpf_link__disconnect(struct bpf_link *link) 9261 { 9262 link->disconnected = true; 9263 } 9264 9265 int bpf_link__destroy(struct bpf_link *link) 9266 { 9267 int err = 0; 9268 9269 if (IS_ERR_OR_NULL(link)) 9270 return 0; 9271 9272 if (!link->disconnected && link->detach) 9273 err = link->detach(link); 9274 if (link->pin_path) 9275 free(link->pin_path); 9276 if (link->dealloc) 9277 link->dealloc(link); 9278 else 9279 free(link); 9280 9281 return libbpf_err(err); 9282 } 9283 9284 int bpf_link__fd(const struct bpf_link *link) 9285 { 9286 return link->fd; 9287 } 9288 9289 const char *bpf_link__pin_path(const struct bpf_link *link) 9290 { 9291 return link->pin_path; 9292 } 9293 9294 static int bpf_link__detach_fd(struct bpf_link *link) 9295 { 9296 return libbpf_err_errno(close(link->fd)); 9297 } 9298 9299 struct bpf_link *bpf_link__open(const char *path) 9300 { 9301 struct bpf_link *link; 9302 int fd; 9303 9304 fd = bpf_obj_get(path); 9305 if (fd < 0) { 9306 fd = -errno; 9307 pr_warn("failed to open link at %s: %d\n", path, fd); 9308 return libbpf_err_ptr(fd); 9309 } 9310 9311 link = calloc(1, sizeof(*link)); 9312 if (!link) { 9313 close(fd); 9314 return libbpf_err_ptr(-ENOMEM); 9315 } 9316 link->detach = &bpf_link__detach_fd; 9317 link->fd = fd; 9318 9319 link->pin_path = strdup(path); 9320 if (!link->pin_path) { 9321 bpf_link__destroy(link); 9322 return libbpf_err_ptr(-ENOMEM); 9323 } 9324 9325 return link; 9326 } 9327 9328 int bpf_link__detach(struct bpf_link *link) 9329 { 9330 return bpf_link_detach(link->fd) ? -errno : 0; 9331 } 9332 9333 int bpf_link__pin(struct bpf_link *link, const char *path) 9334 { 9335 int err; 9336 9337 if (link->pin_path) 9338 return libbpf_err(-EBUSY); 9339 err = make_parent_dir(path); 9340 if (err) 9341 return libbpf_err(err); 9342 err = check_path(path); 9343 if (err) 9344 return libbpf_err(err); 9345 9346 link->pin_path = strdup(path); 9347 if (!link->pin_path) 9348 return libbpf_err(-ENOMEM); 9349 9350 if (bpf_obj_pin(link->fd, link->pin_path)) { 9351 err = -errno; 9352 zfree(&link->pin_path); 9353 return libbpf_err(err); 9354 } 9355 9356 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9357 return 0; 9358 } 9359 9360 int bpf_link__unpin(struct bpf_link *link) 9361 { 9362 int err; 9363 9364 if (!link->pin_path) 9365 return libbpf_err(-EINVAL); 9366 9367 err = unlink(link->pin_path); 9368 if (err != 0) 9369 return -errno; 9370 9371 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9372 zfree(&link->pin_path); 9373 return 0; 9374 } 9375 9376 struct bpf_link_perf { 9377 struct bpf_link link; 9378 int perf_event_fd; 9379 /* legacy kprobe support: keep track of probe identifier and type */ 9380 char *legacy_probe_name; 9381 bool legacy_is_kprobe; 9382 bool legacy_is_retprobe; 9383 }; 9384 9385 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9386 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9387 9388 static int bpf_link_perf_detach(struct bpf_link *link) 9389 { 9390 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9391 int err = 0; 9392 9393 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9394 err = -errno; 9395 9396 if (perf_link->perf_event_fd != link->fd) 9397 close(perf_link->perf_event_fd); 9398 close(link->fd); 9399 9400 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9401 if (perf_link->legacy_probe_name) { 9402 if (perf_link->legacy_is_kprobe) { 9403 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9404 perf_link->legacy_is_retprobe); 9405 } else { 9406 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9407 perf_link->legacy_is_retprobe); 9408 } 9409 } 9410 9411 return err; 9412 } 9413 9414 static void bpf_link_perf_dealloc(struct bpf_link *link) 9415 { 9416 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9417 9418 free(perf_link->legacy_probe_name); 9419 free(perf_link); 9420 } 9421 9422 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9423 const struct bpf_perf_event_opts *opts) 9424 { 9425 char errmsg[STRERR_BUFSIZE]; 9426 struct bpf_link_perf *link; 9427 int prog_fd, link_fd = -1, err; 9428 9429 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9430 return libbpf_err_ptr(-EINVAL); 9431 9432 if (pfd < 0) { 9433 pr_warn("prog '%s': invalid perf event FD %d\n", 9434 prog->name, pfd); 9435 return libbpf_err_ptr(-EINVAL); 9436 } 9437 prog_fd = bpf_program__fd(prog); 9438 if (prog_fd < 0) { 9439 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9440 prog->name); 9441 return libbpf_err_ptr(-EINVAL); 9442 } 9443 9444 link = calloc(1, sizeof(*link)); 9445 if (!link) 9446 return libbpf_err_ptr(-ENOMEM); 9447 link->link.detach = &bpf_link_perf_detach; 9448 link->link.dealloc = &bpf_link_perf_dealloc; 9449 link->perf_event_fd = pfd; 9450 9451 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9452 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9453 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9454 9455 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9456 if (link_fd < 0) { 9457 err = -errno; 9458 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9459 prog->name, pfd, 9460 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9461 goto err_out; 9462 } 9463 link->link.fd = link_fd; 9464 } else { 9465 if (OPTS_GET(opts, bpf_cookie, 0)) { 9466 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9467 err = -EOPNOTSUPP; 9468 goto err_out; 9469 } 9470 9471 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9472 err = -errno; 9473 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9474 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9475 if (err == -EPROTO) 9476 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9477 prog->name, pfd); 9478 goto err_out; 9479 } 9480 link->link.fd = pfd; 9481 } 9482 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9483 err = -errno; 9484 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9485 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9486 goto err_out; 9487 } 9488 9489 return &link->link; 9490 err_out: 9491 if (link_fd >= 0) 9492 close(link_fd); 9493 free(link); 9494 return libbpf_err_ptr(err); 9495 } 9496 9497 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9498 { 9499 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9500 } 9501 9502 /* 9503 * this function is expected to parse integer in the range of [0, 2^31-1] from 9504 * given file using scanf format string fmt. If actual parsed value is 9505 * negative, the result might be indistinguishable from error 9506 */ 9507 static int parse_uint_from_file(const char *file, const char *fmt) 9508 { 9509 char buf[STRERR_BUFSIZE]; 9510 int err, ret; 9511 FILE *f; 9512 9513 f = fopen(file, "r"); 9514 if (!f) { 9515 err = -errno; 9516 pr_debug("failed to open '%s': %s\n", file, 9517 libbpf_strerror_r(err, buf, sizeof(buf))); 9518 return err; 9519 } 9520 err = fscanf(f, fmt, &ret); 9521 if (err != 1) { 9522 err = err == EOF ? -EIO : -errno; 9523 pr_debug("failed to parse '%s': %s\n", file, 9524 libbpf_strerror_r(err, buf, sizeof(buf))); 9525 fclose(f); 9526 return err; 9527 } 9528 fclose(f); 9529 return ret; 9530 } 9531 9532 static int determine_kprobe_perf_type(void) 9533 { 9534 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9535 9536 return parse_uint_from_file(file, "%d\n"); 9537 } 9538 9539 static int determine_uprobe_perf_type(void) 9540 { 9541 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9542 9543 return parse_uint_from_file(file, "%d\n"); 9544 } 9545 9546 static int determine_kprobe_retprobe_bit(void) 9547 { 9548 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9549 9550 return parse_uint_from_file(file, "config:%d\n"); 9551 } 9552 9553 static int determine_uprobe_retprobe_bit(void) 9554 { 9555 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9556 9557 return parse_uint_from_file(file, "config:%d\n"); 9558 } 9559 9560 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9561 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9562 9563 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9564 uint64_t offset, int pid, size_t ref_ctr_off) 9565 { 9566 struct perf_event_attr attr = {}; 9567 char errmsg[STRERR_BUFSIZE]; 9568 int type, pfd, err; 9569 9570 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9571 return -EINVAL; 9572 9573 type = uprobe ? determine_uprobe_perf_type() 9574 : determine_kprobe_perf_type(); 9575 if (type < 0) { 9576 pr_warn("failed to determine %s perf type: %s\n", 9577 uprobe ? "uprobe" : "kprobe", 9578 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9579 return type; 9580 } 9581 if (retprobe) { 9582 int bit = uprobe ? determine_uprobe_retprobe_bit() 9583 : determine_kprobe_retprobe_bit(); 9584 9585 if (bit < 0) { 9586 pr_warn("failed to determine %s retprobe bit: %s\n", 9587 uprobe ? "uprobe" : "kprobe", 9588 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9589 return bit; 9590 } 9591 attr.config |= 1 << bit; 9592 } 9593 attr.size = sizeof(attr); 9594 attr.type = type; 9595 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9596 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9597 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9598 9599 /* pid filter is meaningful only for uprobes */ 9600 pfd = syscall(__NR_perf_event_open, &attr, 9601 pid < 0 ? -1 : pid /* pid */, 9602 pid == -1 ? 0 : -1 /* cpu */, 9603 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9604 if (pfd < 0) { 9605 err = -errno; 9606 pr_warn("%s perf_event_open() failed: %s\n", 9607 uprobe ? "uprobe" : "kprobe", 9608 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9609 return err; 9610 } 9611 return pfd; 9612 } 9613 9614 static int append_to_file(const char *file, const char *fmt, ...) 9615 { 9616 int fd, n, err = 0; 9617 va_list ap; 9618 9619 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9620 if (fd < 0) 9621 return -errno; 9622 9623 va_start(ap, fmt); 9624 n = vdprintf(fd, fmt, ap); 9625 va_end(ap); 9626 9627 if (n < 0) 9628 err = -errno; 9629 9630 close(fd); 9631 return err; 9632 } 9633 9634 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9635 const char *kfunc_name, size_t offset) 9636 { 9637 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), kfunc_name, offset); 9638 } 9639 9640 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9641 const char *kfunc_name, size_t offset) 9642 { 9643 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9644 9645 return append_to_file(file, "%c:%s/%s %s+0x%zx", 9646 retprobe ? 'r' : 'p', 9647 retprobe ? "kretprobes" : "kprobes", 9648 probe_name, kfunc_name, offset); 9649 } 9650 9651 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9652 { 9653 const char *file = "/sys/kernel/debug/tracing/kprobe_events"; 9654 9655 return append_to_file(file, "-:%s/%s", retprobe ? "kretprobes" : "kprobes", probe_name); 9656 } 9657 9658 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9659 { 9660 char file[256]; 9661 9662 snprintf(file, sizeof(file), 9663 "/sys/kernel/debug/tracing/events/%s/%s/id", 9664 retprobe ? "kretprobes" : "kprobes", probe_name); 9665 9666 return parse_uint_from_file(file, "%d\n"); 9667 } 9668 9669 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9670 const char *kfunc_name, size_t offset, int pid) 9671 { 9672 struct perf_event_attr attr = {}; 9673 char errmsg[STRERR_BUFSIZE]; 9674 int type, pfd, err; 9675 9676 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9677 if (err < 0) { 9678 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9679 kfunc_name, offset, 9680 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9681 return err; 9682 } 9683 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9684 if (type < 0) { 9685 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9686 kfunc_name, offset, 9687 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9688 return type; 9689 } 9690 attr.size = sizeof(attr); 9691 attr.config = type; 9692 attr.type = PERF_TYPE_TRACEPOINT; 9693 9694 pfd = syscall(__NR_perf_event_open, &attr, 9695 pid < 0 ? -1 : pid, /* pid */ 9696 pid == -1 ? 0 : -1, /* cpu */ 9697 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9698 if (pfd < 0) { 9699 err = -errno; 9700 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 9701 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9702 return err; 9703 } 9704 return pfd; 9705 } 9706 9707 struct bpf_link * 9708 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 9709 const char *func_name, 9710 const struct bpf_kprobe_opts *opts) 9711 { 9712 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 9713 char errmsg[STRERR_BUFSIZE]; 9714 char *legacy_probe = NULL; 9715 struct bpf_link *link; 9716 size_t offset; 9717 bool retprobe, legacy; 9718 int pfd, err; 9719 9720 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 9721 return libbpf_err_ptr(-EINVAL); 9722 9723 retprobe = OPTS_GET(opts, retprobe, false); 9724 offset = OPTS_GET(opts, offset, 0); 9725 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 9726 9727 legacy = determine_kprobe_perf_type() < 0; 9728 if (!legacy) { 9729 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 9730 func_name, offset, 9731 -1 /* pid */, 0 /* ref_ctr_off */); 9732 } else { 9733 char probe_name[256]; 9734 9735 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 9736 func_name, offset); 9737 9738 legacy_probe = strdup(func_name); 9739 if (!legacy_probe) 9740 return libbpf_err_ptr(-ENOMEM); 9741 9742 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 9743 offset, -1 /* pid */); 9744 } 9745 if (pfd < 0) { 9746 err = -errno; 9747 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 9748 prog->name, retprobe ? "kretprobe" : "kprobe", 9749 func_name, offset, 9750 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9751 goto err_out; 9752 } 9753 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 9754 err = libbpf_get_error(link); 9755 if (err) { 9756 close(pfd); 9757 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 9758 prog->name, retprobe ? "kretprobe" : "kprobe", 9759 func_name, offset, 9760 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9761 goto err_out; 9762 } 9763 if (legacy) { 9764 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9765 9766 perf_link->legacy_probe_name = legacy_probe; 9767 perf_link->legacy_is_kprobe = true; 9768 perf_link->legacy_is_retprobe = retprobe; 9769 } 9770 9771 return link; 9772 err_out: 9773 free(legacy_probe); 9774 return libbpf_err_ptr(err); 9775 } 9776 9777 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 9778 bool retprobe, 9779 const char *func_name) 9780 { 9781 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 9782 .retprobe = retprobe, 9783 ); 9784 9785 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 9786 } 9787 9788 static struct bpf_link *attach_kprobe(const struct bpf_program *prog, long cookie) 9789 { 9790 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 9791 unsigned long offset = 0; 9792 struct bpf_link *link; 9793 const char *func_name; 9794 char *func; 9795 int n, err; 9796 9797 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 9798 if (opts.retprobe) 9799 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 9800 else 9801 func_name = prog->sec_name + sizeof("kprobe/") - 1; 9802 9803 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 9804 if (n < 1) { 9805 err = -EINVAL; 9806 pr_warn("kprobe name is invalid: %s\n", func_name); 9807 return libbpf_err_ptr(err); 9808 } 9809 if (opts.retprobe && offset != 0) { 9810 free(func); 9811 err = -EINVAL; 9812 pr_warn("kretprobes do not support offset specification\n"); 9813 return libbpf_err_ptr(err); 9814 } 9815 9816 opts.offset = offset; 9817 link = bpf_program__attach_kprobe_opts(prog, func, &opts); 9818 free(func); 9819 return link; 9820 } 9821 9822 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 9823 const char *binary_path, uint64_t offset) 9824 { 9825 int i; 9826 9827 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 9828 9829 /* sanitize binary_path in the probe name */ 9830 for (i = 0; buf[i]; i++) { 9831 if (!isalnum(buf[i])) 9832 buf[i] = '_'; 9833 } 9834 } 9835 9836 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 9837 const char *binary_path, size_t offset) 9838 { 9839 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 9840 9841 return append_to_file(file, "%c:%s/%s %s:0x%zx", 9842 retprobe ? 'r' : 'p', 9843 retprobe ? "uretprobes" : "uprobes", 9844 probe_name, binary_path, offset); 9845 } 9846 9847 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 9848 { 9849 const char *file = "/sys/kernel/debug/tracing/uprobe_events"; 9850 9851 return append_to_file(file, "-:%s/%s", retprobe ? "uretprobes" : "uprobes", probe_name); 9852 } 9853 9854 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9855 { 9856 char file[512]; 9857 9858 snprintf(file, sizeof(file), 9859 "/sys/kernel/debug/tracing/events/%s/%s/id", 9860 retprobe ? "uretprobes" : "uprobes", probe_name); 9861 9862 return parse_uint_from_file(file, "%d\n"); 9863 } 9864 9865 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 9866 const char *binary_path, size_t offset, int pid) 9867 { 9868 struct perf_event_attr attr; 9869 int type, pfd, err; 9870 9871 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 9872 if (err < 0) { 9873 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 9874 binary_path, (size_t)offset, err); 9875 return err; 9876 } 9877 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 9878 if (type < 0) { 9879 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 9880 binary_path, offset, err); 9881 return type; 9882 } 9883 9884 memset(&attr, 0, sizeof(attr)); 9885 attr.size = sizeof(attr); 9886 attr.config = type; 9887 attr.type = PERF_TYPE_TRACEPOINT; 9888 9889 pfd = syscall(__NR_perf_event_open, &attr, 9890 pid < 0 ? -1 : pid, /* pid */ 9891 pid == -1 ? 0 : -1, /* cpu */ 9892 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9893 if (pfd < 0) { 9894 err = -errno; 9895 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 9896 return err; 9897 } 9898 return pfd; 9899 } 9900 9901 LIBBPF_API struct bpf_link * 9902 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 9903 const char *binary_path, size_t func_offset, 9904 const struct bpf_uprobe_opts *opts) 9905 { 9906 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 9907 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 9908 struct bpf_link *link; 9909 size_t ref_ctr_off; 9910 int pfd, err; 9911 bool retprobe, legacy; 9912 9913 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 9914 return libbpf_err_ptr(-EINVAL); 9915 9916 retprobe = OPTS_GET(opts, retprobe, false); 9917 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 9918 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 9919 9920 legacy = determine_uprobe_perf_type() < 0; 9921 if (!legacy) { 9922 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 9923 func_offset, pid, ref_ctr_off); 9924 } else { 9925 char probe_name[512]; 9926 9927 if (ref_ctr_off) 9928 return libbpf_err_ptr(-EINVAL); 9929 9930 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 9931 binary_path, func_offset); 9932 9933 legacy_probe = strdup(probe_name); 9934 if (!legacy_probe) 9935 return libbpf_err_ptr(-ENOMEM); 9936 9937 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 9938 binary_path, func_offset, pid); 9939 } 9940 if (pfd < 0) { 9941 err = -errno; 9942 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9943 prog->name, retprobe ? "uretprobe" : "uprobe", 9944 binary_path, func_offset, 9945 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9946 goto err_out; 9947 } 9948 9949 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 9950 err = libbpf_get_error(link); 9951 if (err) { 9952 close(pfd); 9953 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9954 prog->name, retprobe ? "uretprobe" : "uprobe", 9955 binary_path, func_offset, 9956 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9957 goto err_out; 9958 } 9959 if (legacy) { 9960 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9961 9962 perf_link->legacy_probe_name = legacy_probe; 9963 perf_link->legacy_is_kprobe = false; 9964 perf_link->legacy_is_retprobe = retprobe; 9965 } 9966 return link; 9967 err_out: 9968 free(legacy_probe); 9969 return libbpf_err_ptr(err); 9970 9971 } 9972 9973 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 9974 bool retprobe, pid_t pid, 9975 const char *binary_path, 9976 size_t func_offset) 9977 { 9978 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 9979 9980 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 9981 } 9982 9983 static int determine_tracepoint_id(const char *tp_category, 9984 const char *tp_name) 9985 { 9986 char file[PATH_MAX]; 9987 int ret; 9988 9989 ret = snprintf(file, sizeof(file), 9990 "/sys/kernel/debug/tracing/events/%s/%s/id", 9991 tp_category, tp_name); 9992 if (ret < 0) 9993 return -errno; 9994 if (ret >= sizeof(file)) { 9995 pr_debug("tracepoint %s/%s path is too long\n", 9996 tp_category, tp_name); 9997 return -E2BIG; 9998 } 9999 return parse_uint_from_file(file, "%d\n"); 10000 } 10001 10002 static int perf_event_open_tracepoint(const char *tp_category, 10003 const char *tp_name) 10004 { 10005 struct perf_event_attr attr = {}; 10006 char errmsg[STRERR_BUFSIZE]; 10007 int tp_id, pfd, err; 10008 10009 tp_id = determine_tracepoint_id(tp_category, tp_name); 10010 if (tp_id < 0) { 10011 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10012 tp_category, tp_name, 10013 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10014 return tp_id; 10015 } 10016 10017 attr.type = PERF_TYPE_TRACEPOINT; 10018 attr.size = sizeof(attr); 10019 attr.config = tp_id; 10020 10021 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10022 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10023 if (pfd < 0) { 10024 err = -errno; 10025 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10026 tp_category, tp_name, 10027 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10028 return err; 10029 } 10030 return pfd; 10031 } 10032 10033 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 10034 const char *tp_category, 10035 const char *tp_name, 10036 const struct bpf_tracepoint_opts *opts) 10037 { 10038 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10039 char errmsg[STRERR_BUFSIZE]; 10040 struct bpf_link *link; 10041 int pfd, err; 10042 10043 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 10044 return libbpf_err_ptr(-EINVAL); 10045 10046 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10047 10048 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10049 if (pfd < 0) { 10050 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10051 prog->name, tp_category, tp_name, 10052 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10053 return libbpf_err_ptr(pfd); 10054 } 10055 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10056 err = libbpf_get_error(link); 10057 if (err) { 10058 close(pfd); 10059 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10060 prog->name, tp_category, tp_name, 10061 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10062 return libbpf_err_ptr(err); 10063 } 10064 return link; 10065 } 10066 10067 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 10068 const char *tp_category, 10069 const char *tp_name) 10070 { 10071 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 10072 } 10073 10074 static struct bpf_link *attach_tp(const struct bpf_program *prog, long cookie) 10075 { 10076 char *sec_name, *tp_cat, *tp_name; 10077 struct bpf_link *link; 10078 10079 sec_name = strdup(prog->sec_name); 10080 if (!sec_name) 10081 return libbpf_err_ptr(-ENOMEM); 10082 10083 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 10084 if (str_has_pfx(prog->sec_name, "tp/")) 10085 tp_cat = sec_name + sizeof("tp/") - 1; 10086 else 10087 tp_cat = sec_name + sizeof("tracepoint/") - 1; 10088 tp_name = strchr(tp_cat, '/'); 10089 if (!tp_name) { 10090 free(sec_name); 10091 return libbpf_err_ptr(-EINVAL); 10092 } 10093 *tp_name = '\0'; 10094 tp_name++; 10095 10096 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10097 free(sec_name); 10098 return link; 10099 } 10100 10101 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 10102 const char *tp_name) 10103 { 10104 char errmsg[STRERR_BUFSIZE]; 10105 struct bpf_link *link; 10106 int prog_fd, pfd; 10107 10108 prog_fd = bpf_program__fd(prog); 10109 if (prog_fd < 0) { 10110 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10111 return libbpf_err_ptr(-EINVAL); 10112 } 10113 10114 link = calloc(1, sizeof(*link)); 10115 if (!link) 10116 return libbpf_err_ptr(-ENOMEM); 10117 link->detach = &bpf_link__detach_fd; 10118 10119 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10120 if (pfd < 0) { 10121 pfd = -errno; 10122 free(link); 10123 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10124 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10125 return libbpf_err_ptr(pfd); 10126 } 10127 link->fd = pfd; 10128 return link; 10129 } 10130 10131 static struct bpf_link *attach_raw_tp(const struct bpf_program *prog, long cookie) 10132 { 10133 static const char *const prefixes[] = { 10134 "raw_tp/", 10135 "raw_tracepoint/", 10136 "raw_tp.w/", 10137 "raw_tracepoint.w/", 10138 }; 10139 size_t i; 10140 const char *tp_name = NULL; 10141 10142 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 10143 if (str_has_pfx(prog->sec_name, prefixes[i])) { 10144 tp_name = prog->sec_name + strlen(prefixes[i]); 10145 break; 10146 } 10147 } 10148 if (!tp_name) { 10149 pr_warn("prog '%s': invalid section name '%s'\n", 10150 prog->name, prog->sec_name); 10151 return libbpf_err_ptr(-EINVAL); 10152 } 10153 10154 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10155 } 10156 10157 /* Common logic for all BPF program types that attach to a btf_id */ 10158 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog) 10159 { 10160 char errmsg[STRERR_BUFSIZE]; 10161 struct bpf_link *link; 10162 int prog_fd, pfd; 10163 10164 prog_fd = bpf_program__fd(prog); 10165 if (prog_fd < 0) { 10166 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10167 return libbpf_err_ptr(-EINVAL); 10168 } 10169 10170 link = calloc(1, sizeof(*link)); 10171 if (!link) 10172 return libbpf_err_ptr(-ENOMEM); 10173 link->detach = &bpf_link__detach_fd; 10174 10175 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10176 if (pfd < 0) { 10177 pfd = -errno; 10178 free(link); 10179 pr_warn("prog '%s': failed to attach: %s\n", 10180 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10181 return libbpf_err_ptr(pfd); 10182 } 10183 link->fd = pfd; 10184 return (struct bpf_link *)link; 10185 } 10186 10187 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 10188 { 10189 return bpf_program__attach_btf_id(prog); 10190 } 10191 10192 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 10193 { 10194 return bpf_program__attach_btf_id(prog); 10195 } 10196 10197 static struct bpf_link *attach_trace(const struct bpf_program *prog, long cookie) 10198 { 10199 return bpf_program__attach_trace(prog); 10200 } 10201 10202 static struct bpf_link *attach_lsm(const struct bpf_program *prog, long cookie) 10203 { 10204 return bpf_program__attach_lsm(prog); 10205 } 10206 10207 static struct bpf_link * 10208 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 10209 const char *target_name) 10210 { 10211 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10212 .target_btf_id = btf_id); 10213 enum bpf_attach_type attach_type; 10214 char errmsg[STRERR_BUFSIZE]; 10215 struct bpf_link *link; 10216 int prog_fd, link_fd; 10217 10218 prog_fd = bpf_program__fd(prog); 10219 if (prog_fd < 0) { 10220 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10221 return libbpf_err_ptr(-EINVAL); 10222 } 10223 10224 link = calloc(1, sizeof(*link)); 10225 if (!link) 10226 return libbpf_err_ptr(-ENOMEM); 10227 link->detach = &bpf_link__detach_fd; 10228 10229 attach_type = bpf_program__get_expected_attach_type(prog); 10230 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10231 if (link_fd < 0) { 10232 link_fd = -errno; 10233 free(link); 10234 pr_warn("prog '%s': failed to attach to %s: %s\n", 10235 prog->name, target_name, 10236 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10237 return libbpf_err_ptr(link_fd); 10238 } 10239 link->fd = link_fd; 10240 return link; 10241 } 10242 10243 struct bpf_link * 10244 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 10245 { 10246 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10247 } 10248 10249 struct bpf_link * 10250 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 10251 { 10252 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10253 } 10254 10255 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 10256 { 10257 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10258 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10259 } 10260 10261 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 10262 int target_fd, 10263 const char *attach_func_name) 10264 { 10265 int btf_id; 10266 10267 if (!!target_fd != !!attach_func_name) { 10268 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10269 prog->name); 10270 return libbpf_err_ptr(-EINVAL); 10271 } 10272 10273 if (prog->type != BPF_PROG_TYPE_EXT) { 10274 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10275 prog->name); 10276 return libbpf_err_ptr(-EINVAL); 10277 } 10278 10279 if (target_fd) { 10280 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10281 if (btf_id < 0) 10282 return libbpf_err_ptr(btf_id); 10283 10284 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10285 } else { 10286 /* no target, so use raw_tracepoint_open for compatibility 10287 * with old kernels 10288 */ 10289 return bpf_program__attach_trace(prog); 10290 } 10291 } 10292 10293 struct bpf_link * 10294 bpf_program__attach_iter(const struct bpf_program *prog, 10295 const struct bpf_iter_attach_opts *opts) 10296 { 10297 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10298 char errmsg[STRERR_BUFSIZE]; 10299 struct bpf_link *link; 10300 int prog_fd, link_fd; 10301 __u32 target_fd = 0; 10302 10303 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10304 return libbpf_err_ptr(-EINVAL); 10305 10306 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10307 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10308 10309 prog_fd = bpf_program__fd(prog); 10310 if (prog_fd < 0) { 10311 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10312 return libbpf_err_ptr(-EINVAL); 10313 } 10314 10315 link = calloc(1, sizeof(*link)); 10316 if (!link) 10317 return libbpf_err_ptr(-ENOMEM); 10318 link->detach = &bpf_link__detach_fd; 10319 10320 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10321 &link_create_opts); 10322 if (link_fd < 0) { 10323 link_fd = -errno; 10324 free(link); 10325 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10326 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10327 return libbpf_err_ptr(link_fd); 10328 } 10329 link->fd = link_fd; 10330 return link; 10331 } 10332 10333 static struct bpf_link *attach_iter(const struct bpf_program *prog, long cookie) 10334 { 10335 return bpf_program__attach_iter(prog, NULL); 10336 } 10337 10338 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 10339 { 10340 if (!prog->sec_def || !prog->sec_def->attach_fn) 10341 return libbpf_err_ptr(-ESRCH); 10342 10343 return prog->sec_def->attach_fn(prog, prog->sec_def->cookie); 10344 } 10345 10346 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10347 { 10348 __u32 zero = 0; 10349 10350 if (bpf_map_delete_elem(link->fd, &zero)) 10351 return -errno; 10352 10353 return 0; 10354 } 10355 10356 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 10357 { 10358 struct bpf_struct_ops *st_ops; 10359 struct bpf_link *link; 10360 __u32 i, zero = 0; 10361 int err; 10362 10363 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10364 return libbpf_err_ptr(-EINVAL); 10365 10366 link = calloc(1, sizeof(*link)); 10367 if (!link) 10368 return libbpf_err_ptr(-EINVAL); 10369 10370 st_ops = map->st_ops; 10371 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10372 struct bpf_program *prog = st_ops->progs[i]; 10373 void *kern_data; 10374 int prog_fd; 10375 10376 if (!prog) 10377 continue; 10378 10379 prog_fd = bpf_program__fd(prog); 10380 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10381 *(unsigned long *)kern_data = prog_fd; 10382 } 10383 10384 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10385 if (err) { 10386 err = -errno; 10387 free(link); 10388 return libbpf_err_ptr(err); 10389 } 10390 10391 link->detach = bpf_link__detach_struct_ops; 10392 link->fd = map->fd; 10393 10394 return link; 10395 } 10396 10397 enum bpf_perf_event_ret 10398 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10399 void **copy_mem, size_t *copy_size, 10400 bpf_perf_event_print_t fn, void *private_data) 10401 { 10402 struct perf_event_mmap_page *header = mmap_mem; 10403 __u64 data_head = ring_buffer_read_head(header); 10404 __u64 data_tail = header->data_tail; 10405 void *base = ((__u8 *)header) + page_size; 10406 int ret = LIBBPF_PERF_EVENT_CONT; 10407 struct perf_event_header *ehdr; 10408 size_t ehdr_size; 10409 10410 while (data_head != data_tail) { 10411 ehdr = base + (data_tail & (mmap_size - 1)); 10412 ehdr_size = ehdr->size; 10413 10414 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10415 void *copy_start = ehdr; 10416 size_t len_first = base + mmap_size - copy_start; 10417 size_t len_secnd = ehdr_size - len_first; 10418 10419 if (*copy_size < ehdr_size) { 10420 free(*copy_mem); 10421 *copy_mem = malloc(ehdr_size); 10422 if (!*copy_mem) { 10423 *copy_size = 0; 10424 ret = LIBBPF_PERF_EVENT_ERROR; 10425 break; 10426 } 10427 *copy_size = ehdr_size; 10428 } 10429 10430 memcpy(*copy_mem, copy_start, len_first); 10431 memcpy(*copy_mem + len_first, base, len_secnd); 10432 ehdr = *copy_mem; 10433 } 10434 10435 ret = fn(ehdr, private_data); 10436 data_tail += ehdr_size; 10437 if (ret != LIBBPF_PERF_EVENT_CONT) 10438 break; 10439 } 10440 10441 ring_buffer_write_tail(header, data_tail); 10442 return libbpf_err(ret); 10443 } 10444 10445 struct perf_buffer; 10446 10447 struct perf_buffer_params { 10448 struct perf_event_attr *attr; 10449 /* if event_cb is specified, it takes precendence */ 10450 perf_buffer_event_fn event_cb; 10451 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10452 perf_buffer_sample_fn sample_cb; 10453 perf_buffer_lost_fn lost_cb; 10454 void *ctx; 10455 int cpu_cnt; 10456 int *cpus; 10457 int *map_keys; 10458 }; 10459 10460 struct perf_cpu_buf { 10461 struct perf_buffer *pb; 10462 void *base; /* mmap()'ed memory */ 10463 void *buf; /* for reconstructing segmented data */ 10464 size_t buf_size; 10465 int fd; 10466 int cpu; 10467 int map_key; 10468 }; 10469 10470 struct perf_buffer { 10471 perf_buffer_event_fn event_cb; 10472 perf_buffer_sample_fn sample_cb; 10473 perf_buffer_lost_fn lost_cb; 10474 void *ctx; /* passed into callbacks */ 10475 10476 size_t page_size; 10477 size_t mmap_size; 10478 struct perf_cpu_buf **cpu_bufs; 10479 struct epoll_event *events; 10480 int cpu_cnt; /* number of allocated CPU buffers */ 10481 int epoll_fd; /* perf event FD */ 10482 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10483 }; 10484 10485 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10486 struct perf_cpu_buf *cpu_buf) 10487 { 10488 if (!cpu_buf) 10489 return; 10490 if (cpu_buf->base && 10491 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10492 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10493 if (cpu_buf->fd >= 0) { 10494 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10495 close(cpu_buf->fd); 10496 } 10497 free(cpu_buf->buf); 10498 free(cpu_buf); 10499 } 10500 10501 void perf_buffer__free(struct perf_buffer *pb) 10502 { 10503 int i; 10504 10505 if (IS_ERR_OR_NULL(pb)) 10506 return; 10507 if (pb->cpu_bufs) { 10508 for (i = 0; i < pb->cpu_cnt; i++) { 10509 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10510 10511 if (!cpu_buf) 10512 continue; 10513 10514 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10515 perf_buffer__free_cpu_buf(pb, cpu_buf); 10516 } 10517 free(pb->cpu_bufs); 10518 } 10519 if (pb->epoll_fd >= 0) 10520 close(pb->epoll_fd); 10521 free(pb->events); 10522 free(pb); 10523 } 10524 10525 static struct perf_cpu_buf * 10526 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10527 int cpu, int map_key) 10528 { 10529 struct perf_cpu_buf *cpu_buf; 10530 char msg[STRERR_BUFSIZE]; 10531 int err; 10532 10533 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10534 if (!cpu_buf) 10535 return ERR_PTR(-ENOMEM); 10536 10537 cpu_buf->pb = pb; 10538 cpu_buf->cpu = cpu; 10539 cpu_buf->map_key = map_key; 10540 10541 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10542 -1, PERF_FLAG_FD_CLOEXEC); 10543 if (cpu_buf->fd < 0) { 10544 err = -errno; 10545 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10546 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10547 goto error; 10548 } 10549 10550 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10551 PROT_READ | PROT_WRITE, MAP_SHARED, 10552 cpu_buf->fd, 0); 10553 if (cpu_buf->base == MAP_FAILED) { 10554 cpu_buf->base = NULL; 10555 err = -errno; 10556 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10557 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10558 goto error; 10559 } 10560 10561 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10562 err = -errno; 10563 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10564 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10565 goto error; 10566 } 10567 10568 return cpu_buf; 10569 10570 error: 10571 perf_buffer__free_cpu_buf(pb, cpu_buf); 10572 return (struct perf_cpu_buf *)ERR_PTR(err); 10573 } 10574 10575 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10576 struct perf_buffer_params *p); 10577 10578 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10579 const struct perf_buffer_opts *opts) 10580 { 10581 struct perf_buffer_params p = {}; 10582 struct perf_event_attr attr = { 0, }; 10583 10584 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10585 attr.type = PERF_TYPE_SOFTWARE; 10586 attr.sample_type = PERF_SAMPLE_RAW; 10587 attr.sample_period = 1; 10588 attr.wakeup_events = 1; 10589 10590 p.attr = &attr; 10591 p.sample_cb = opts ? opts->sample_cb : NULL; 10592 p.lost_cb = opts ? opts->lost_cb : NULL; 10593 p.ctx = opts ? opts->ctx : NULL; 10594 10595 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10596 } 10597 10598 struct perf_buffer * 10599 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10600 const struct perf_buffer_raw_opts *opts) 10601 { 10602 struct perf_buffer_params p = {}; 10603 10604 p.attr = opts->attr; 10605 p.event_cb = opts->event_cb; 10606 p.ctx = opts->ctx; 10607 p.cpu_cnt = opts->cpu_cnt; 10608 p.cpus = opts->cpus; 10609 p.map_keys = opts->map_keys; 10610 10611 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 10612 } 10613 10614 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10615 struct perf_buffer_params *p) 10616 { 10617 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10618 struct bpf_map_info map; 10619 char msg[STRERR_BUFSIZE]; 10620 struct perf_buffer *pb; 10621 bool *online = NULL; 10622 __u32 map_info_len; 10623 int err, i, j, n; 10624 10625 if (page_cnt & (page_cnt - 1)) { 10626 pr_warn("page count should be power of two, but is %zu\n", 10627 page_cnt); 10628 return ERR_PTR(-EINVAL); 10629 } 10630 10631 /* best-effort sanity checks */ 10632 memset(&map, 0, sizeof(map)); 10633 map_info_len = sizeof(map); 10634 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10635 if (err) { 10636 err = -errno; 10637 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10638 * -EBADFD, -EFAULT, or -E2BIG on real error 10639 */ 10640 if (err != -EINVAL) { 10641 pr_warn("failed to get map info for map FD %d: %s\n", 10642 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10643 return ERR_PTR(err); 10644 } 10645 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10646 map_fd); 10647 } else { 10648 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10649 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10650 map.name); 10651 return ERR_PTR(-EINVAL); 10652 } 10653 } 10654 10655 pb = calloc(1, sizeof(*pb)); 10656 if (!pb) 10657 return ERR_PTR(-ENOMEM); 10658 10659 pb->event_cb = p->event_cb; 10660 pb->sample_cb = p->sample_cb; 10661 pb->lost_cb = p->lost_cb; 10662 pb->ctx = p->ctx; 10663 10664 pb->page_size = getpagesize(); 10665 pb->mmap_size = pb->page_size * page_cnt; 10666 pb->map_fd = map_fd; 10667 10668 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10669 if (pb->epoll_fd < 0) { 10670 err = -errno; 10671 pr_warn("failed to create epoll instance: %s\n", 10672 libbpf_strerror_r(err, msg, sizeof(msg))); 10673 goto error; 10674 } 10675 10676 if (p->cpu_cnt > 0) { 10677 pb->cpu_cnt = p->cpu_cnt; 10678 } else { 10679 pb->cpu_cnt = libbpf_num_possible_cpus(); 10680 if (pb->cpu_cnt < 0) { 10681 err = pb->cpu_cnt; 10682 goto error; 10683 } 10684 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10685 pb->cpu_cnt = map.max_entries; 10686 } 10687 10688 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10689 if (!pb->events) { 10690 err = -ENOMEM; 10691 pr_warn("failed to allocate events: out of memory\n"); 10692 goto error; 10693 } 10694 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10695 if (!pb->cpu_bufs) { 10696 err = -ENOMEM; 10697 pr_warn("failed to allocate buffers: out of memory\n"); 10698 goto error; 10699 } 10700 10701 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10702 if (err) { 10703 pr_warn("failed to get online CPU mask: %d\n", err); 10704 goto error; 10705 } 10706 10707 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10708 struct perf_cpu_buf *cpu_buf; 10709 int cpu, map_key; 10710 10711 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10712 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10713 10714 /* in case user didn't explicitly requested particular CPUs to 10715 * be attached to, skip offline/not present CPUs 10716 */ 10717 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10718 continue; 10719 10720 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10721 if (IS_ERR(cpu_buf)) { 10722 err = PTR_ERR(cpu_buf); 10723 goto error; 10724 } 10725 10726 pb->cpu_bufs[j] = cpu_buf; 10727 10728 err = bpf_map_update_elem(pb->map_fd, &map_key, 10729 &cpu_buf->fd, 0); 10730 if (err) { 10731 err = -errno; 10732 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10733 cpu, map_key, cpu_buf->fd, 10734 libbpf_strerror_r(err, msg, sizeof(msg))); 10735 goto error; 10736 } 10737 10738 pb->events[j].events = EPOLLIN; 10739 pb->events[j].data.ptr = cpu_buf; 10740 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10741 &pb->events[j]) < 0) { 10742 err = -errno; 10743 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10744 cpu, cpu_buf->fd, 10745 libbpf_strerror_r(err, msg, sizeof(msg))); 10746 goto error; 10747 } 10748 j++; 10749 } 10750 pb->cpu_cnt = j; 10751 free(online); 10752 10753 return pb; 10754 10755 error: 10756 free(online); 10757 if (pb) 10758 perf_buffer__free(pb); 10759 return ERR_PTR(err); 10760 } 10761 10762 struct perf_sample_raw { 10763 struct perf_event_header header; 10764 uint32_t size; 10765 char data[]; 10766 }; 10767 10768 struct perf_sample_lost { 10769 struct perf_event_header header; 10770 uint64_t id; 10771 uint64_t lost; 10772 uint64_t sample_id; 10773 }; 10774 10775 static enum bpf_perf_event_ret 10776 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10777 { 10778 struct perf_cpu_buf *cpu_buf = ctx; 10779 struct perf_buffer *pb = cpu_buf->pb; 10780 void *data = e; 10781 10782 /* user wants full control over parsing perf event */ 10783 if (pb->event_cb) 10784 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10785 10786 switch (e->type) { 10787 case PERF_RECORD_SAMPLE: { 10788 struct perf_sample_raw *s = data; 10789 10790 if (pb->sample_cb) 10791 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10792 break; 10793 } 10794 case PERF_RECORD_LOST: { 10795 struct perf_sample_lost *s = data; 10796 10797 if (pb->lost_cb) 10798 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10799 break; 10800 } 10801 default: 10802 pr_warn("unknown perf sample type %d\n", e->type); 10803 return LIBBPF_PERF_EVENT_ERROR; 10804 } 10805 return LIBBPF_PERF_EVENT_CONT; 10806 } 10807 10808 static int perf_buffer__process_records(struct perf_buffer *pb, 10809 struct perf_cpu_buf *cpu_buf) 10810 { 10811 enum bpf_perf_event_ret ret; 10812 10813 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10814 pb->page_size, &cpu_buf->buf, 10815 &cpu_buf->buf_size, 10816 perf_buffer__process_record, cpu_buf); 10817 if (ret != LIBBPF_PERF_EVENT_CONT) 10818 return ret; 10819 return 0; 10820 } 10821 10822 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10823 { 10824 return pb->epoll_fd; 10825 } 10826 10827 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10828 { 10829 int i, cnt, err; 10830 10831 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10832 if (cnt < 0) 10833 return -errno; 10834 10835 for (i = 0; i < cnt; i++) { 10836 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10837 10838 err = perf_buffer__process_records(pb, cpu_buf); 10839 if (err) { 10840 pr_warn("error while processing records: %d\n", err); 10841 return libbpf_err(err); 10842 } 10843 } 10844 return cnt; 10845 } 10846 10847 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10848 * manager. 10849 */ 10850 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10851 { 10852 return pb->cpu_cnt; 10853 } 10854 10855 /* 10856 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10857 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10858 * select()/poll()/epoll() Linux syscalls. 10859 */ 10860 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10861 { 10862 struct perf_cpu_buf *cpu_buf; 10863 10864 if (buf_idx >= pb->cpu_cnt) 10865 return libbpf_err(-EINVAL); 10866 10867 cpu_buf = pb->cpu_bufs[buf_idx]; 10868 if (!cpu_buf) 10869 return libbpf_err(-ENOENT); 10870 10871 return cpu_buf->fd; 10872 } 10873 10874 /* 10875 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10876 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10877 * consume, do nothing and return success. 10878 * Returns: 10879 * - 0 on success; 10880 * - <0 on failure. 10881 */ 10882 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10883 { 10884 struct perf_cpu_buf *cpu_buf; 10885 10886 if (buf_idx >= pb->cpu_cnt) 10887 return libbpf_err(-EINVAL); 10888 10889 cpu_buf = pb->cpu_bufs[buf_idx]; 10890 if (!cpu_buf) 10891 return libbpf_err(-ENOENT); 10892 10893 return perf_buffer__process_records(pb, cpu_buf); 10894 } 10895 10896 int perf_buffer__consume(struct perf_buffer *pb) 10897 { 10898 int i, err; 10899 10900 for (i = 0; i < pb->cpu_cnt; i++) { 10901 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10902 10903 if (!cpu_buf) 10904 continue; 10905 10906 err = perf_buffer__process_records(pb, cpu_buf); 10907 if (err) { 10908 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10909 return libbpf_err(err); 10910 } 10911 } 10912 return 0; 10913 } 10914 10915 struct bpf_prog_info_array_desc { 10916 int array_offset; /* e.g. offset of jited_prog_insns */ 10917 int count_offset; /* e.g. offset of jited_prog_len */ 10918 int size_offset; /* > 0: offset of rec size, 10919 * < 0: fix size of -size_offset 10920 */ 10921 }; 10922 10923 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10924 [BPF_PROG_INFO_JITED_INSNS] = { 10925 offsetof(struct bpf_prog_info, jited_prog_insns), 10926 offsetof(struct bpf_prog_info, jited_prog_len), 10927 -1, 10928 }, 10929 [BPF_PROG_INFO_XLATED_INSNS] = { 10930 offsetof(struct bpf_prog_info, xlated_prog_insns), 10931 offsetof(struct bpf_prog_info, xlated_prog_len), 10932 -1, 10933 }, 10934 [BPF_PROG_INFO_MAP_IDS] = { 10935 offsetof(struct bpf_prog_info, map_ids), 10936 offsetof(struct bpf_prog_info, nr_map_ids), 10937 -(int)sizeof(__u32), 10938 }, 10939 [BPF_PROG_INFO_JITED_KSYMS] = { 10940 offsetof(struct bpf_prog_info, jited_ksyms), 10941 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10942 -(int)sizeof(__u64), 10943 }, 10944 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10945 offsetof(struct bpf_prog_info, jited_func_lens), 10946 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10947 -(int)sizeof(__u32), 10948 }, 10949 [BPF_PROG_INFO_FUNC_INFO] = { 10950 offsetof(struct bpf_prog_info, func_info), 10951 offsetof(struct bpf_prog_info, nr_func_info), 10952 offsetof(struct bpf_prog_info, func_info_rec_size), 10953 }, 10954 [BPF_PROG_INFO_LINE_INFO] = { 10955 offsetof(struct bpf_prog_info, line_info), 10956 offsetof(struct bpf_prog_info, nr_line_info), 10957 offsetof(struct bpf_prog_info, line_info_rec_size), 10958 }, 10959 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10960 offsetof(struct bpf_prog_info, jited_line_info), 10961 offsetof(struct bpf_prog_info, nr_jited_line_info), 10962 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10963 }, 10964 [BPF_PROG_INFO_PROG_TAGS] = { 10965 offsetof(struct bpf_prog_info, prog_tags), 10966 offsetof(struct bpf_prog_info, nr_prog_tags), 10967 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10968 }, 10969 10970 }; 10971 10972 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10973 int offset) 10974 { 10975 __u32 *array = (__u32 *)info; 10976 10977 if (offset >= 0) 10978 return array[offset / sizeof(__u32)]; 10979 return -(int)offset; 10980 } 10981 10982 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10983 int offset) 10984 { 10985 __u64 *array = (__u64 *)info; 10986 10987 if (offset >= 0) 10988 return array[offset / sizeof(__u64)]; 10989 return -(int)offset; 10990 } 10991 10992 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10993 __u32 val) 10994 { 10995 __u32 *array = (__u32 *)info; 10996 10997 if (offset >= 0) 10998 array[offset / sizeof(__u32)] = val; 10999 } 11000 11001 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11002 __u64 val) 11003 { 11004 __u64 *array = (__u64 *)info; 11005 11006 if (offset >= 0) 11007 array[offset / sizeof(__u64)] = val; 11008 } 11009 11010 struct bpf_prog_info_linear * 11011 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11012 { 11013 struct bpf_prog_info_linear *info_linear; 11014 struct bpf_prog_info info = {}; 11015 __u32 info_len = sizeof(info); 11016 __u32 data_len = 0; 11017 int i, err; 11018 void *ptr; 11019 11020 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11021 return libbpf_err_ptr(-EINVAL); 11022 11023 /* step 1: get array dimensions */ 11024 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11025 if (err) { 11026 pr_debug("can't get prog info: %s", strerror(errno)); 11027 return libbpf_err_ptr(-EFAULT); 11028 } 11029 11030 /* step 2: calculate total size of all arrays */ 11031 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11032 bool include_array = (arrays & (1UL << i)) > 0; 11033 struct bpf_prog_info_array_desc *desc; 11034 __u32 count, size; 11035 11036 desc = bpf_prog_info_array_desc + i; 11037 11038 /* kernel is too old to support this field */ 11039 if (info_len < desc->array_offset + sizeof(__u32) || 11040 info_len < desc->count_offset + sizeof(__u32) || 11041 (desc->size_offset > 0 && info_len < desc->size_offset)) 11042 include_array = false; 11043 11044 if (!include_array) { 11045 arrays &= ~(1UL << i); /* clear the bit */ 11046 continue; 11047 } 11048 11049 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11050 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11051 11052 data_len += count * size; 11053 } 11054 11055 /* step 3: allocate continuous memory */ 11056 data_len = roundup(data_len, sizeof(__u64)); 11057 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11058 if (!info_linear) 11059 return libbpf_err_ptr(-ENOMEM); 11060 11061 /* step 4: fill data to info_linear->info */ 11062 info_linear->arrays = arrays; 11063 memset(&info_linear->info, 0, sizeof(info)); 11064 ptr = info_linear->data; 11065 11066 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11067 struct bpf_prog_info_array_desc *desc; 11068 __u32 count, size; 11069 11070 if ((arrays & (1UL << i)) == 0) 11071 continue; 11072 11073 desc = bpf_prog_info_array_desc + i; 11074 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11075 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11076 bpf_prog_info_set_offset_u32(&info_linear->info, 11077 desc->count_offset, count); 11078 bpf_prog_info_set_offset_u32(&info_linear->info, 11079 desc->size_offset, size); 11080 bpf_prog_info_set_offset_u64(&info_linear->info, 11081 desc->array_offset, 11082 ptr_to_u64(ptr)); 11083 ptr += count * size; 11084 } 11085 11086 /* step 5: call syscall again to get required arrays */ 11087 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11088 if (err) { 11089 pr_debug("can't get prog info: %s", strerror(errno)); 11090 free(info_linear); 11091 return libbpf_err_ptr(-EFAULT); 11092 } 11093 11094 /* step 6: verify the data */ 11095 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11096 struct bpf_prog_info_array_desc *desc; 11097 __u32 v1, v2; 11098 11099 if ((arrays & (1UL << i)) == 0) 11100 continue; 11101 11102 desc = bpf_prog_info_array_desc + i; 11103 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11104 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11105 desc->count_offset); 11106 if (v1 != v2) 11107 pr_warn("%s: mismatch in element count\n", __func__); 11108 11109 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11110 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11111 desc->size_offset); 11112 if (v1 != v2) 11113 pr_warn("%s: mismatch in rec size\n", __func__); 11114 } 11115 11116 /* step 7: update info_len and data_len */ 11117 info_linear->info_len = sizeof(struct bpf_prog_info); 11118 info_linear->data_len = data_len; 11119 11120 return info_linear; 11121 } 11122 11123 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11124 { 11125 int i; 11126 11127 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11128 struct bpf_prog_info_array_desc *desc; 11129 __u64 addr, offs; 11130 11131 if ((info_linear->arrays & (1UL << i)) == 0) 11132 continue; 11133 11134 desc = bpf_prog_info_array_desc + i; 11135 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11136 desc->array_offset); 11137 offs = addr - ptr_to_u64(info_linear->data); 11138 bpf_prog_info_set_offset_u64(&info_linear->info, 11139 desc->array_offset, offs); 11140 } 11141 } 11142 11143 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11144 { 11145 int i; 11146 11147 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11148 struct bpf_prog_info_array_desc *desc; 11149 __u64 addr, offs; 11150 11151 if ((info_linear->arrays & (1UL << i)) == 0) 11152 continue; 11153 11154 desc = bpf_prog_info_array_desc + i; 11155 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11156 desc->array_offset); 11157 addr = offs + ptr_to_u64(info_linear->data); 11158 bpf_prog_info_set_offset_u64(&info_linear->info, 11159 desc->array_offset, addr); 11160 } 11161 } 11162 11163 int bpf_program__set_attach_target(struct bpf_program *prog, 11164 int attach_prog_fd, 11165 const char *attach_func_name) 11166 { 11167 int btf_obj_fd = 0, btf_id = 0, err; 11168 11169 if (!prog || attach_prog_fd < 0) 11170 return libbpf_err(-EINVAL); 11171 11172 if (prog->obj->loaded) 11173 return libbpf_err(-EINVAL); 11174 11175 if (attach_prog_fd && !attach_func_name) { 11176 /* remember attach_prog_fd and let bpf_program__load() find 11177 * BTF ID during the program load 11178 */ 11179 prog->attach_prog_fd = attach_prog_fd; 11180 return 0; 11181 } 11182 11183 if (attach_prog_fd) { 11184 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11185 attach_prog_fd); 11186 if (btf_id < 0) 11187 return libbpf_err(btf_id); 11188 } else { 11189 if (!attach_func_name) 11190 return libbpf_err(-EINVAL); 11191 11192 /* load btf_vmlinux, if not yet */ 11193 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11194 if (err) 11195 return libbpf_err(err); 11196 err = find_kernel_btf_id(prog->obj, attach_func_name, 11197 prog->expected_attach_type, 11198 &btf_obj_fd, &btf_id); 11199 if (err) 11200 return libbpf_err(err); 11201 } 11202 11203 prog->attach_btf_id = btf_id; 11204 prog->attach_btf_obj_fd = btf_obj_fd; 11205 prog->attach_prog_fd = attach_prog_fd; 11206 return 0; 11207 } 11208 11209 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11210 { 11211 int err = 0, n, len, start, end = -1; 11212 bool *tmp; 11213 11214 *mask = NULL; 11215 *mask_sz = 0; 11216 11217 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11218 while (*s) { 11219 if (*s == ',' || *s == '\n') { 11220 s++; 11221 continue; 11222 } 11223 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11224 if (n <= 0 || n > 2) { 11225 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11226 err = -EINVAL; 11227 goto cleanup; 11228 } else if (n == 1) { 11229 end = start; 11230 } 11231 if (start < 0 || start > end) { 11232 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11233 start, end, s); 11234 err = -EINVAL; 11235 goto cleanup; 11236 } 11237 tmp = realloc(*mask, end + 1); 11238 if (!tmp) { 11239 err = -ENOMEM; 11240 goto cleanup; 11241 } 11242 *mask = tmp; 11243 memset(tmp + *mask_sz, 0, start - *mask_sz); 11244 memset(tmp + start, 1, end - start + 1); 11245 *mask_sz = end + 1; 11246 s += len; 11247 } 11248 if (!*mask_sz) { 11249 pr_warn("Empty CPU range\n"); 11250 return -EINVAL; 11251 } 11252 return 0; 11253 cleanup: 11254 free(*mask); 11255 *mask = NULL; 11256 return err; 11257 } 11258 11259 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11260 { 11261 int fd, err = 0, len; 11262 char buf[128]; 11263 11264 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 11265 if (fd < 0) { 11266 err = -errno; 11267 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11268 return err; 11269 } 11270 len = read(fd, buf, sizeof(buf)); 11271 close(fd); 11272 if (len <= 0) { 11273 err = len ? -errno : -EINVAL; 11274 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11275 return err; 11276 } 11277 if (len >= sizeof(buf)) { 11278 pr_warn("CPU mask is too big in file %s\n", fcpu); 11279 return -E2BIG; 11280 } 11281 buf[len] = '\0'; 11282 11283 return parse_cpu_mask_str(buf, mask, mask_sz); 11284 } 11285 11286 int libbpf_num_possible_cpus(void) 11287 { 11288 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11289 static int cpus; 11290 int err, n, i, tmp_cpus; 11291 bool *mask; 11292 11293 tmp_cpus = READ_ONCE(cpus); 11294 if (tmp_cpus > 0) 11295 return tmp_cpus; 11296 11297 err = parse_cpu_mask_file(fcpu, &mask, &n); 11298 if (err) 11299 return libbpf_err(err); 11300 11301 tmp_cpus = 0; 11302 for (i = 0; i < n; i++) { 11303 if (mask[i]) 11304 tmp_cpus++; 11305 } 11306 free(mask); 11307 11308 WRITE_ONCE(cpus, tmp_cpus); 11309 return tmp_cpus; 11310 } 11311 11312 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11313 const struct bpf_object_open_opts *opts) 11314 { 11315 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11316 .object_name = s->name, 11317 ); 11318 struct bpf_object *obj; 11319 int i, err; 11320 11321 /* Attempt to preserve opts->object_name, unless overriden by user 11322 * explicitly. Overwriting object name for skeletons is discouraged, 11323 * as it breaks global data maps, because they contain object name 11324 * prefix as their own map name prefix. When skeleton is generated, 11325 * bpftool is making an assumption that this name will stay the same. 11326 */ 11327 if (opts) { 11328 memcpy(&skel_opts, opts, sizeof(*opts)); 11329 if (!opts->object_name) 11330 skel_opts.object_name = s->name; 11331 } 11332 11333 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11334 err = libbpf_get_error(obj); 11335 if (err) { 11336 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 11337 s->name, err); 11338 return libbpf_err(err); 11339 } 11340 11341 *s->obj = obj; 11342 11343 for (i = 0; i < s->map_cnt; i++) { 11344 struct bpf_map **map = s->maps[i].map; 11345 const char *name = s->maps[i].name; 11346 void **mmaped = s->maps[i].mmaped; 11347 11348 *map = bpf_object__find_map_by_name(obj, name); 11349 if (!*map) { 11350 pr_warn("failed to find skeleton map '%s'\n", name); 11351 return libbpf_err(-ESRCH); 11352 } 11353 11354 /* externs shouldn't be pre-setup from user code */ 11355 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11356 *mmaped = (*map)->mmaped; 11357 } 11358 11359 for (i = 0; i < s->prog_cnt; i++) { 11360 struct bpf_program **prog = s->progs[i].prog; 11361 const char *name = s->progs[i].name; 11362 11363 *prog = bpf_object__find_program_by_name(obj, name); 11364 if (!*prog) { 11365 pr_warn("failed to find skeleton program '%s'\n", name); 11366 return libbpf_err(-ESRCH); 11367 } 11368 } 11369 11370 return 0; 11371 } 11372 11373 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11374 { 11375 int i, err; 11376 11377 err = bpf_object__load(*s->obj); 11378 if (err) { 11379 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11380 return libbpf_err(err); 11381 } 11382 11383 for (i = 0; i < s->map_cnt; i++) { 11384 struct bpf_map *map = *s->maps[i].map; 11385 size_t mmap_sz = bpf_map_mmap_sz(map); 11386 int prot, map_fd = bpf_map__fd(map); 11387 void **mmaped = s->maps[i].mmaped; 11388 11389 if (!mmaped) 11390 continue; 11391 11392 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11393 *mmaped = NULL; 11394 continue; 11395 } 11396 11397 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11398 prot = PROT_READ; 11399 else 11400 prot = PROT_READ | PROT_WRITE; 11401 11402 /* Remap anonymous mmap()-ed "map initialization image" as 11403 * a BPF map-backed mmap()-ed memory, but preserving the same 11404 * memory address. This will cause kernel to change process' 11405 * page table to point to a different piece of kernel memory, 11406 * but from userspace point of view memory address (and its 11407 * contents, being identical at this point) will stay the 11408 * same. This mapping will be released by bpf_object__close() 11409 * as per normal clean up procedure, so we don't need to worry 11410 * about it from skeleton's clean up perspective. 11411 */ 11412 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11413 MAP_SHARED | MAP_FIXED, map_fd, 0); 11414 if (*mmaped == MAP_FAILED) { 11415 err = -errno; 11416 *mmaped = NULL; 11417 pr_warn("failed to re-mmap() map '%s': %d\n", 11418 bpf_map__name(map), err); 11419 return libbpf_err(err); 11420 } 11421 } 11422 11423 return 0; 11424 } 11425 11426 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11427 { 11428 int i, err; 11429 11430 for (i = 0; i < s->prog_cnt; i++) { 11431 struct bpf_program *prog = *s->progs[i].prog; 11432 struct bpf_link **link = s->progs[i].link; 11433 11434 if (!prog->load) 11435 continue; 11436 11437 /* auto-attaching not supported for this program */ 11438 if (!prog->sec_def || !prog->sec_def->attach_fn) 11439 continue; 11440 11441 *link = bpf_program__attach(prog); 11442 err = libbpf_get_error(*link); 11443 if (err) { 11444 pr_warn("failed to auto-attach program '%s': %d\n", 11445 bpf_program__name(prog), err); 11446 return libbpf_err(err); 11447 } 11448 } 11449 11450 return 0; 11451 } 11452 11453 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11454 { 11455 int i; 11456 11457 for (i = 0; i < s->prog_cnt; i++) { 11458 struct bpf_link **link = s->progs[i].link; 11459 11460 bpf_link__destroy(*link); 11461 *link = NULL; 11462 } 11463 } 11464 11465 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11466 { 11467 if (s->progs) 11468 bpf_object__detach_skeleton(s); 11469 if (s->obj) 11470 bpf_object__close(*s->obj); 11471 free(s->maps); 11472 free(s->progs); 11473 free(s); 11474 } 11475