1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <linux/version.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const link_type_name[] = { 122 [BPF_LINK_TYPE_UNSPEC] = "unspec", 123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 124 [BPF_LINK_TYPE_TRACING] = "tracing", 125 [BPF_LINK_TYPE_CGROUP] = "cgroup", 126 [BPF_LINK_TYPE_ITER] = "iter", 127 [BPF_LINK_TYPE_NETNS] = "netns", 128 [BPF_LINK_TYPE_XDP] = "xdp", 129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 132 }; 133 134 static const char * const map_type_name[] = { 135 [BPF_MAP_TYPE_UNSPEC] = "unspec", 136 [BPF_MAP_TYPE_HASH] = "hash", 137 [BPF_MAP_TYPE_ARRAY] = "array", 138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 149 [BPF_MAP_TYPE_DEVMAP] = "devmap", 150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 152 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 153 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 158 [BPF_MAP_TYPE_QUEUE] = "queue", 159 [BPF_MAP_TYPE_STACK] = "stack", 160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 166 }; 167 168 static const char * const prog_type_name[] = { 169 [BPF_PROG_TYPE_UNSPEC] = "unspec", 170 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 171 [BPF_PROG_TYPE_KPROBE] = "kprobe", 172 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 173 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 174 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 175 [BPF_PROG_TYPE_XDP] = "xdp", 176 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 177 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 178 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 179 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 180 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 181 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 182 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 183 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 184 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 185 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 186 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 187 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 188 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 189 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 190 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 191 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 192 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 193 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 194 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 195 [BPF_PROG_TYPE_TRACING] = "tracing", 196 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 197 [BPF_PROG_TYPE_EXT] = "ext", 198 [BPF_PROG_TYPE_LSM] = "lsm", 199 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 200 [BPF_PROG_TYPE_SYSCALL] = "syscall", 201 }; 202 203 static int __base_pr(enum libbpf_print_level level, const char *format, 204 va_list args) 205 { 206 if (level == LIBBPF_DEBUG) 207 return 0; 208 209 return vfprintf(stderr, format, args); 210 } 211 212 static libbpf_print_fn_t __libbpf_pr = __base_pr; 213 214 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 215 { 216 libbpf_print_fn_t old_print_fn = __libbpf_pr; 217 218 __libbpf_pr = fn; 219 return old_print_fn; 220 } 221 222 __printf(2, 3) 223 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 224 { 225 va_list args; 226 int old_errno; 227 228 if (!__libbpf_pr) 229 return; 230 231 old_errno = errno; 232 233 va_start(args, format); 234 __libbpf_pr(level, format, args); 235 va_end(args); 236 237 errno = old_errno; 238 } 239 240 static void pr_perm_msg(int err) 241 { 242 struct rlimit limit; 243 char buf[100]; 244 245 if (err != -EPERM || geteuid() != 0) 246 return; 247 248 err = getrlimit(RLIMIT_MEMLOCK, &limit); 249 if (err) 250 return; 251 252 if (limit.rlim_cur == RLIM_INFINITY) 253 return; 254 255 if (limit.rlim_cur < 1024) 256 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 257 else if (limit.rlim_cur < 1024*1024) 258 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 259 else 260 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 261 262 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 263 buf); 264 } 265 266 #define STRERR_BUFSIZE 128 267 268 /* Copied from tools/perf/util/util.h */ 269 #ifndef zfree 270 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 271 #endif 272 273 #ifndef zclose 274 # define zclose(fd) ({ \ 275 int ___err = 0; \ 276 if ((fd) >= 0) \ 277 ___err = close((fd)); \ 278 fd = -1; \ 279 ___err; }) 280 #endif 281 282 static inline __u64 ptr_to_u64(const void *ptr) 283 { 284 return (__u64) (unsigned long) ptr; 285 } 286 287 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 288 { 289 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 290 return 0; 291 } 292 293 __u32 libbpf_major_version(void) 294 { 295 return LIBBPF_MAJOR_VERSION; 296 } 297 298 __u32 libbpf_minor_version(void) 299 { 300 return LIBBPF_MINOR_VERSION; 301 } 302 303 const char *libbpf_version_string(void) 304 { 305 #define __S(X) #X 306 #define _S(X) __S(X) 307 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 308 #undef _S 309 #undef __S 310 } 311 312 enum reloc_type { 313 RELO_LD64, 314 RELO_CALL, 315 RELO_DATA, 316 RELO_EXTERN_VAR, 317 RELO_EXTERN_FUNC, 318 RELO_SUBPROG_ADDR, 319 RELO_CORE, 320 }; 321 322 struct reloc_desc { 323 enum reloc_type type; 324 int insn_idx; 325 union { 326 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 327 struct { 328 int map_idx; 329 int sym_off; 330 }; 331 }; 332 }; 333 334 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 335 enum sec_def_flags { 336 SEC_NONE = 0, 337 /* expected_attach_type is optional, if kernel doesn't support that */ 338 SEC_EXP_ATTACH_OPT = 1, 339 /* legacy, only used by libbpf_get_type_names() and 340 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 341 * This used to be associated with cgroup (and few other) BPF programs 342 * that were attachable through BPF_PROG_ATTACH command. Pretty 343 * meaningless nowadays, though. 344 */ 345 SEC_ATTACHABLE = 2, 346 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 347 /* attachment target is specified through BTF ID in either kernel or 348 * other BPF program's BTF object */ 349 SEC_ATTACH_BTF = 4, 350 /* BPF program type allows sleeping/blocking in kernel */ 351 SEC_SLEEPABLE = 8, 352 /* BPF program support non-linear XDP buffer */ 353 SEC_XDP_FRAGS = 16, 354 }; 355 356 struct bpf_sec_def { 357 char *sec; 358 enum bpf_prog_type prog_type; 359 enum bpf_attach_type expected_attach_type; 360 long cookie; 361 int handler_id; 362 363 libbpf_prog_setup_fn_t prog_setup_fn; 364 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 365 libbpf_prog_attach_fn_t prog_attach_fn; 366 }; 367 368 /* 369 * bpf_prog should be a better name but it has been used in 370 * linux/filter.h. 371 */ 372 struct bpf_program { 373 char *name; 374 char *sec_name; 375 size_t sec_idx; 376 const struct bpf_sec_def *sec_def; 377 /* this program's instruction offset (in number of instructions) 378 * within its containing ELF section 379 */ 380 size_t sec_insn_off; 381 /* number of original instructions in ELF section belonging to this 382 * program, not taking into account subprogram instructions possible 383 * appended later during relocation 384 */ 385 size_t sec_insn_cnt; 386 /* Offset (in number of instructions) of the start of instruction 387 * belonging to this BPF program within its containing main BPF 388 * program. For the entry-point (main) BPF program, this is always 389 * zero. For a sub-program, this gets reset before each of main BPF 390 * programs are processed and relocated and is used to determined 391 * whether sub-program was already appended to the main program, and 392 * if yes, at which instruction offset. 393 */ 394 size_t sub_insn_off; 395 396 /* instructions that belong to BPF program; insns[0] is located at 397 * sec_insn_off instruction within its ELF section in ELF file, so 398 * when mapping ELF file instruction index to the local instruction, 399 * one needs to subtract sec_insn_off; and vice versa. 400 */ 401 struct bpf_insn *insns; 402 /* actual number of instruction in this BPF program's image; for 403 * entry-point BPF programs this includes the size of main program 404 * itself plus all the used sub-programs, appended at the end 405 */ 406 size_t insns_cnt; 407 408 struct reloc_desc *reloc_desc; 409 int nr_reloc; 410 411 /* BPF verifier log settings */ 412 char *log_buf; 413 size_t log_size; 414 __u32 log_level; 415 416 struct bpf_object *obj; 417 418 int fd; 419 bool autoload; 420 bool autoattach; 421 bool mark_btf_static; 422 enum bpf_prog_type type; 423 enum bpf_attach_type expected_attach_type; 424 425 int prog_ifindex; 426 __u32 attach_btf_obj_fd; 427 __u32 attach_btf_id; 428 __u32 attach_prog_fd; 429 430 void *func_info; 431 __u32 func_info_rec_size; 432 __u32 func_info_cnt; 433 434 void *line_info; 435 __u32 line_info_rec_size; 436 __u32 line_info_cnt; 437 __u32 prog_flags; 438 }; 439 440 struct bpf_struct_ops { 441 const char *tname; 442 const struct btf_type *type; 443 struct bpf_program **progs; 444 __u32 *kern_func_off; 445 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 446 void *data; 447 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 448 * btf_vmlinux's format. 449 * struct bpf_struct_ops_tcp_congestion_ops { 450 * [... some other kernel fields ...] 451 * struct tcp_congestion_ops data; 452 * } 453 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 454 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 455 * from "data". 456 */ 457 void *kern_vdata; 458 __u32 type_id; 459 }; 460 461 #define DATA_SEC ".data" 462 #define BSS_SEC ".bss" 463 #define RODATA_SEC ".rodata" 464 #define KCONFIG_SEC ".kconfig" 465 #define KSYMS_SEC ".ksyms" 466 #define STRUCT_OPS_SEC ".struct_ops" 467 468 enum libbpf_map_type { 469 LIBBPF_MAP_UNSPEC, 470 LIBBPF_MAP_DATA, 471 LIBBPF_MAP_BSS, 472 LIBBPF_MAP_RODATA, 473 LIBBPF_MAP_KCONFIG, 474 }; 475 476 struct bpf_map_def { 477 unsigned int type; 478 unsigned int key_size; 479 unsigned int value_size; 480 unsigned int max_entries; 481 unsigned int map_flags; 482 }; 483 484 struct bpf_map { 485 struct bpf_object *obj; 486 char *name; 487 /* real_name is defined for special internal maps (.rodata*, 488 * .data*, .bss, .kconfig) and preserves their original ELF section 489 * name. This is important to be be able to find corresponding BTF 490 * DATASEC information. 491 */ 492 char *real_name; 493 int fd; 494 int sec_idx; 495 size_t sec_offset; 496 int map_ifindex; 497 int inner_map_fd; 498 struct bpf_map_def def; 499 __u32 numa_node; 500 __u32 btf_var_idx; 501 __u32 btf_key_type_id; 502 __u32 btf_value_type_id; 503 __u32 btf_vmlinux_value_type_id; 504 enum libbpf_map_type libbpf_type; 505 void *mmaped; 506 struct bpf_struct_ops *st_ops; 507 struct bpf_map *inner_map; 508 void **init_slots; 509 int init_slots_sz; 510 char *pin_path; 511 bool pinned; 512 bool reused; 513 bool autocreate; 514 __u64 map_extra; 515 }; 516 517 enum extern_type { 518 EXT_UNKNOWN, 519 EXT_KCFG, 520 EXT_KSYM, 521 }; 522 523 enum kcfg_type { 524 KCFG_UNKNOWN, 525 KCFG_CHAR, 526 KCFG_BOOL, 527 KCFG_INT, 528 KCFG_TRISTATE, 529 KCFG_CHAR_ARR, 530 }; 531 532 struct extern_desc { 533 enum extern_type type; 534 int sym_idx; 535 int btf_id; 536 int sec_btf_id; 537 const char *name; 538 bool is_set; 539 bool is_weak; 540 union { 541 struct { 542 enum kcfg_type type; 543 int sz; 544 int align; 545 int data_off; 546 bool is_signed; 547 } kcfg; 548 struct { 549 unsigned long long addr; 550 551 /* target btf_id of the corresponding kernel var. */ 552 int kernel_btf_obj_fd; 553 int kernel_btf_id; 554 555 /* local btf_id of the ksym extern's type. */ 556 __u32 type_id; 557 /* BTF fd index to be patched in for insn->off, this is 558 * 0 for vmlinux BTF, index in obj->fd_array for module 559 * BTF 560 */ 561 __s16 btf_fd_idx; 562 } ksym; 563 }; 564 }; 565 566 struct module_btf { 567 struct btf *btf; 568 char *name; 569 __u32 id; 570 int fd; 571 int fd_array_idx; 572 }; 573 574 enum sec_type { 575 SEC_UNUSED = 0, 576 SEC_RELO, 577 SEC_BSS, 578 SEC_DATA, 579 SEC_RODATA, 580 }; 581 582 struct elf_sec_desc { 583 enum sec_type sec_type; 584 Elf64_Shdr *shdr; 585 Elf_Data *data; 586 }; 587 588 struct elf_state { 589 int fd; 590 const void *obj_buf; 591 size_t obj_buf_sz; 592 Elf *elf; 593 Elf64_Ehdr *ehdr; 594 Elf_Data *symbols; 595 Elf_Data *st_ops_data; 596 size_t shstrndx; /* section index for section name strings */ 597 size_t strtabidx; 598 struct elf_sec_desc *secs; 599 int sec_cnt; 600 int btf_maps_shndx; 601 __u32 btf_maps_sec_btf_id; 602 int text_shndx; 603 int symbols_shndx; 604 int st_ops_shndx; 605 }; 606 607 struct usdt_manager; 608 609 struct bpf_object { 610 char name[BPF_OBJ_NAME_LEN]; 611 char license[64]; 612 __u32 kern_version; 613 614 struct bpf_program *programs; 615 size_t nr_programs; 616 struct bpf_map *maps; 617 size_t nr_maps; 618 size_t maps_cap; 619 620 char *kconfig; 621 struct extern_desc *externs; 622 int nr_extern; 623 int kconfig_map_idx; 624 625 bool loaded; 626 bool has_subcalls; 627 bool has_rodata; 628 629 struct bpf_gen *gen_loader; 630 631 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 632 struct elf_state efile; 633 634 struct btf *btf; 635 struct btf_ext *btf_ext; 636 637 /* Parse and load BTF vmlinux if any of the programs in the object need 638 * it at load time. 639 */ 640 struct btf *btf_vmlinux; 641 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 642 * override for vmlinux BTF. 643 */ 644 char *btf_custom_path; 645 /* vmlinux BTF override for CO-RE relocations */ 646 struct btf *btf_vmlinux_override; 647 /* Lazily initialized kernel module BTFs */ 648 struct module_btf *btf_modules; 649 bool btf_modules_loaded; 650 size_t btf_module_cnt; 651 size_t btf_module_cap; 652 653 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 654 char *log_buf; 655 size_t log_size; 656 __u32 log_level; 657 658 int *fd_array; 659 size_t fd_array_cap; 660 size_t fd_array_cnt; 661 662 struct usdt_manager *usdt_man; 663 664 char path[]; 665 }; 666 667 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 668 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 669 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 670 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 671 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 672 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 673 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 674 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 675 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 676 677 void bpf_program__unload(struct bpf_program *prog) 678 { 679 if (!prog) 680 return; 681 682 zclose(prog->fd); 683 684 zfree(&prog->func_info); 685 zfree(&prog->line_info); 686 } 687 688 static void bpf_program__exit(struct bpf_program *prog) 689 { 690 if (!prog) 691 return; 692 693 bpf_program__unload(prog); 694 zfree(&prog->name); 695 zfree(&prog->sec_name); 696 zfree(&prog->insns); 697 zfree(&prog->reloc_desc); 698 699 prog->nr_reloc = 0; 700 prog->insns_cnt = 0; 701 prog->sec_idx = -1; 702 } 703 704 static bool insn_is_subprog_call(const struct bpf_insn *insn) 705 { 706 return BPF_CLASS(insn->code) == BPF_JMP && 707 BPF_OP(insn->code) == BPF_CALL && 708 BPF_SRC(insn->code) == BPF_K && 709 insn->src_reg == BPF_PSEUDO_CALL && 710 insn->dst_reg == 0 && 711 insn->off == 0; 712 } 713 714 static bool is_call_insn(const struct bpf_insn *insn) 715 { 716 return insn->code == (BPF_JMP | BPF_CALL); 717 } 718 719 static bool insn_is_pseudo_func(struct bpf_insn *insn) 720 { 721 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 722 } 723 724 static int 725 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 726 const char *name, size_t sec_idx, const char *sec_name, 727 size_t sec_off, void *insn_data, size_t insn_data_sz) 728 { 729 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 730 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 731 sec_name, name, sec_off, insn_data_sz); 732 return -EINVAL; 733 } 734 735 memset(prog, 0, sizeof(*prog)); 736 prog->obj = obj; 737 738 prog->sec_idx = sec_idx; 739 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 740 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 741 /* insns_cnt can later be increased by appending used subprograms */ 742 prog->insns_cnt = prog->sec_insn_cnt; 743 744 prog->type = BPF_PROG_TYPE_UNSPEC; 745 prog->fd = -1; 746 747 /* libbpf's convention for SEC("?abc...") is that it's just like 748 * SEC("abc...") but the corresponding bpf_program starts out with 749 * autoload set to false. 750 */ 751 if (sec_name[0] == '?') { 752 prog->autoload = false; 753 /* from now on forget there was ? in section name */ 754 sec_name++; 755 } else { 756 prog->autoload = true; 757 } 758 759 prog->autoattach = true; 760 761 /* inherit object's log_level */ 762 prog->log_level = obj->log_level; 763 764 prog->sec_name = strdup(sec_name); 765 if (!prog->sec_name) 766 goto errout; 767 768 prog->name = strdup(name); 769 if (!prog->name) 770 goto errout; 771 772 prog->insns = malloc(insn_data_sz); 773 if (!prog->insns) 774 goto errout; 775 memcpy(prog->insns, insn_data, insn_data_sz); 776 777 return 0; 778 errout: 779 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 780 bpf_program__exit(prog); 781 return -ENOMEM; 782 } 783 784 static int 785 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 786 const char *sec_name, int sec_idx) 787 { 788 Elf_Data *symbols = obj->efile.symbols; 789 struct bpf_program *prog, *progs; 790 void *data = sec_data->d_buf; 791 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 792 int nr_progs, err, i; 793 const char *name; 794 Elf64_Sym *sym; 795 796 progs = obj->programs; 797 nr_progs = obj->nr_programs; 798 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 799 sec_off = 0; 800 801 for (i = 0; i < nr_syms; i++) { 802 sym = elf_sym_by_idx(obj, i); 803 804 if (sym->st_shndx != sec_idx) 805 continue; 806 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 807 continue; 808 809 prog_sz = sym->st_size; 810 sec_off = sym->st_value; 811 812 name = elf_sym_str(obj, sym->st_name); 813 if (!name) { 814 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 815 sec_name, sec_off); 816 return -LIBBPF_ERRNO__FORMAT; 817 } 818 819 if (sec_off + prog_sz > sec_sz) { 820 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 821 sec_name, sec_off); 822 return -LIBBPF_ERRNO__FORMAT; 823 } 824 825 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 826 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 827 return -ENOTSUP; 828 } 829 830 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 831 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 832 833 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 834 if (!progs) { 835 /* 836 * In this case the original obj->programs 837 * is still valid, so don't need special treat for 838 * bpf_close_object(). 839 */ 840 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 841 sec_name, name); 842 return -ENOMEM; 843 } 844 obj->programs = progs; 845 846 prog = &progs[nr_progs]; 847 848 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 849 sec_off, data + sec_off, prog_sz); 850 if (err) 851 return err; 852 853 /* if function is a global/weak symbol, but has restricted 854 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 855 * as static to enable more permissive BPF verification mode 856 * with more outside context available to BPF verifier 857 */ 858 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 859 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 860 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 861 prog->mark_btf_static = true; 862 863 nr_progs++; 864 obj->nr_programs = nr_progs; 865 } 866 867 return 0; 868 } 869 870 __u32 get_kernel_version(void) 871 { 872 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 873 * but Ubuntu provides /proc/version_signature file, as described at 874 * https://ubuntu.com/kernel, with an example contents below, which we 875 * can use to get a proper LINUX_VERSION_CODE. 876 * 877 * Ubuntu 5.4.0-12.15-generic 5.4.8 878 * 879 * In the above, 5.4.8 is what kernel is actually expecting, while 880 * uname() call will return 5.4.0 in info.release. 881 */ 882 const char *ubuntu_kver_file = "/proc/version_signature"; 883 __u32 major, minor, patch; 884 struct utsname info; 885 886 if (access(ubuntu_kver_file, R_OK) == 0) { 887 FILE *f; 888 889 f = fopen(ubuntu_kver_file, "r"); 890 if (f) { 891 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 892 fclose(f); 893 return KERNEL_VERSION(major, minor, patch); 894 } 895 fclose(f); 896 } 897 /* something went wrong, fall back to uname() approach */ 898 } 899 900 uname(&info); 901 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 902 return 0; 903 return KERNEL_VERSION(major, minor, patch); 904 } 905 906 static const struct btf_member * 907 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 908 { 909 struct btf_member *m; 910 int i; 911 912 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 913 if (btf_member_bit_offset(t, i) == bit_offset) 914 return m; 915 } 916 917 return NULL; 918 } 919 920 static const struct btf_member * 921 find_member_by_name(const struct btf *btf, const struct btf_type *t, 922 const char *name) 923 { 924 struct btf_member *m; 925 int i; 926 927 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 928 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 929 return m; 930 } 931 932 return NULL; 933 } 934 935 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 936 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 937 const char *name, __u32 kind); 938 939 static int 940 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 941 const struct btf_type **type, __u32 *type_id, 942 const struct btf_type **vtype, __u32 *vtype_id, 943 const struct btf_member **data_member) 944 { 945 const struct btf_type *kern_type, *kern_vtype; 946 const struct btf_member *kern_data_member; 947 __s32 kern_vtype_id, kern_type_id; 948 __u32 i; 949 950 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 951 if (kern_type_id < 0) { 952 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 953 tname); 954 return kern_type_id; 955 } 956 kern_type = btf__type_by_id(btf, kern_type_id); 957 958 /* Find the corresponding "map_value" type that will be used 959 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 960 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 961 * btf_vmlinux. 962 */ 963 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 964 tname, BTF_KIND_STRUCT); 965 if (kern_vtype_id < 0) { 966 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 967 STRUCT_OPS_VALUE_PREFIX, tname); 968 return kern_vtype_id; 969 } 970 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 971 972 /* Find "struct tcp_congestion_ops" from 973 * struct bpf_struct_ops_tcp_congestion_ops { 974 * [ ... ] 975 * struct tcp_congestion_ops data; 976 * } 977 */ 978 kern_data_member = btf_members(kern_vtype); 979 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 980 if (kern_data_member->type == kern_type_id) 981 break; 982 } 983 if (i == btf_vlen(kern_vtype)) { 984 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 985 tname, STRUCT_OPS_VALUE_PREFIX, tname); 986 return -EINVAL; 987 } 988 989 *type = kern_type; 990 *type_id = kern_type_id; 991 *vtype = kern_vtype; 992 *vtype_id = kern_vtype_id; 993 *data_member = kern_data_member; 994 995 return 0; 996 } 997 998 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 999 { 1000 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1001 } 1002 1003 /* Init the map's fields that depend on kern_btf */ 1004 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1005 const struct btf *btf, 1006 const struct btf *kern_btf) 1007 { 1008 const struct btf_member *member, *kern_member, *kern_data_member; 1009 const struct btf_type *type, *kern_type, *kern_vtype; 1010 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1011 struct bpf_struct_ops *st_ops; 1012 void *data, *kern_data; 1013 const char *tname; 1014 int err; 1015 1016 st_ops = map->st_ops; 1017 type = st_ops->type; 1018 tname = st_ops->tname; 1019 err = find_struct_ops_kern_types(kern_btf, tname, 1020 &kern_type, &kern_type_id, 1021 &kern_vtype, &kern_vtype_id, 1022 &kern_data_member); 1023 if (err) 1024 return err; 1025 1026 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1027 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1028 1029 map->def.value_size = kern_vtype->size; 1030 map->btf_vmlinux_value_type_id = kern_vtype_id; 1031 1032 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1033 if (!st_ops->kern_vdata) 1034 return -ENOMEM; 1035 1036 data = st_ops->data; 1037 kern_data_off = kern_data_member->offset / 8; 1038 kern_data = st_ops->kern_vdata + kern_data_off; 1039 1040 member = btf_members(type); 1041 for (i = 0; i < btf_vlen(type); i++, member++) { 1042 const struct btf_type *mtype, *kern_mtype; 1043 __u32 mtype_id, kern_mtype_id; 1044 void *mdata, *kern_mdata; 1045 __s64 msize, kern_msize; 1046 __u32 moff, kern_moff; 1047 __u32 kern_member_idx; 1048 const char *mname; 1049 1050 mname = btf__name_by_offset(btf, member->name_off); 1051 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1052 if (!kern_member) { 1053 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1054 map->name, mname); 1055 return -ENOTSUP; 1056 } 1057 1058 kern_member_idx = kern_member - btf_members(kern_type); 1059 if (btf_member_bitfield_size(type, i) || 1060 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1061 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1062 map->name, mname); 1063 return -ENOTSUP; 1064 } 1065 1066 moff = member->offset / 8; 1067 kern_moff = kern_member->offset / 8; 1068 1069 mdata = data + moff; 1070 kern_mdata = kern_data + kern_moff; 1071 1072 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1073 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1074 &kern_mtype_id); 1075 if (BTF_INFO_KIND(mtype->info) != 1076 BTF_INFO_KIND(kern_mtype->info)) { 1077 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1078 map->name, mname, BTF_INFO_KIND(mtype->info), 1079 BTF_INFO_KIND(kern_mtype->info)); 1080 return -ENOTSUP; 1081 } 1082 1083 if (btf_is_ptr(mtype)) { 1084 struct bpf_program *prog; 1085 1086 prog = st_ops->progs[i]; 1087 if (!prog) 1088 continue; 1089 1090 kern_mtype = skip_mods_and_typedefs(kern_btf, 1091 kern_mtype->type, 1092 &kern_mtype_id); 1093 1094 /* mtype->type must be a func_proto which was 1095 * guaranteed in bpf_object__collect_st_ops_relos(), 1096 * so only check kern_mtype for func_proto here. 1097 */ 1098 if (!btf_is_func_proto(kern_mtype)) { 1099 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1100 map->name, mname); 1101 return -ENOTSUP; 1102 } 1103 1104 prog->attach_btf_id = kern_type_id; 1105 prog->expected_attach_type = kern_member_idx; 1106 1107 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1108 1109 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1110 map->name, mname, prog->name, moff, 1111 kern_moff); 1112 1113 continue; 1114 } 1115 1116 msize = btf__resolve_size(btf, mtype_id); 1117 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1118 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1119 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1120 map->name, mname, (ssize_t)msize, 1121 (ssize_t)kern_msize); 1122 return -ENOTSUP; 1123 } 1124 1125 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1126 map->name, mname, (unsigned int)msize, 1127 moff, kern_moff); 1128 memcpy(kern_mdata, mdata, msize); 1129 } 1130 1131 return 0; 1132 } 1133 1134 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1135 { 1136 struct bpf_map *map; 1137 size_t i; 1138 int err; 1139 1140 for (i = 0; i < obj->nr_maps; i++) { 1141 map = &obj->maps[i]; 1142 1143 if (!bpf_map__is_struct_ops(map)) 1144 continue; 1145 1146 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1147 obj->btf_vmlinux); 1148 if (err) 1149 return err; 1150 } 1151 1152 return 0; 1153 } 1154 1155 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1156 { 1157 const struct btf_type *type, *datasec; 1158 const struct btf_var_secinfo *vsi; 1159 struct bpf_struct_ops *st_ops; 1160 const char *tname, *var_name; 1161 __s32 type_id, datasec_id; 1162 const struct btf *btf; 1163 struct bpf_map *map; 1164 __u32 i; 1165 1166 if (obj->efile.st_ops_shndx == -1) 1167 return 0; 1168 1169 btf = obj->btf; 1170 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1171 BTF_KIND_DATASEC); 1172 if (datasec_id < 0) { 1173 pr_warn("struct_ops init: DATASEC %s not found\n", 1174 STRUCT_OPS_SEC); 1175 return -EINVAL; 1176 } 1177 1178 datasec = btf__type_by_id(btf, datasec_id); 1179 vsi = btf_var_secinfos(datasec); 1180 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1181 type = btf__type_by_id(obj->btf, vsi->type); 1182 var_name = btf__name_by_offset(obj->btf, type->name_off); 1183 1184 type_id = btf__resolve_type(obj->btf, vsi->type); 1185 if (type_id < 0) { 1186 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1187 vsi->type, STRUCT_OPS_SEC); 1188 return -EINVAL; 1189 } 1190 1191 type = btf__type_by_id(obj->btf, type_id); 1192 tname = btf__name_by_offset(obj->btf, type->name_off); 1193 if (!tname[0]) { 1194 pr_warn("struct_ops init: anonymous type is not supported\n"); 1195 return -ENOTSUP; 1196 } 1197 if (!btf_is_struct(type)) { 1198 pr_warn("struct_ops init: %s is not a struct\n", tname); 1199 return -EINVAL; 1200 } 1201 1202 map = bpf_object__add_map(obj); 1203 if (IS_ERR(map)) 1204 return PTR_ERR(map); 1205 1206 map->sec_idx = obj->efile.st_ops_shndx; 1207 map->sec_offset = vsi->offset; 1208 map->name = strdup(var_name); 1209 if (!map->name) 1210 return -ENOMEM; 1211 1212 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1213 map->def.key_size = sizeof(int); 1214 map->def.value_size = type->size; 1215 map->def.max_entries = 1; 1216 1217 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1218 if (!map->st_ops) 1219 return -ENOMEM; 1220 st_ops = map->st_ops; 1221 st_ops->data = malloc(type->size); 1222 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1223 st_ops->kern_func_off = malloc(btf_vlen(type) * 1224 sizeof(*st_ops->kern_func_off)); 1225 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1226 return -ENOMEM; 1227 1228 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1229 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1230 var_name, STRUCT_OPS_SEC); 1231 return -EINVAL; 1232 } 1233 1234 memcpy(st_ops->data, 1235 obj->efile.st_ops_data->d_buf + vsi->offset, 1236 type->size); 1237 st_ops->tname = tname; 1238 st_ops->type = type; 1239 st_ops->type_id = type_id; 1240 1241 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1242 tname, type_id, var_name, vsi->offset); 1243 } 1244 1245 return 0; 1246 } 1247 1248 static struct bpf_object *bpf_object__new(const char *path, 1249 const void *obj_buf, 1250 size_t obj_buf_sz, 1251 const char *obj_name) 1252 { 1253 struct bpf_object *obj; 1254 char *end; 1255 1256 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1257 if (!obj) { 1258 pr_warn("alloc memory failed for %s\n", path); 1259 return ERR_PTR(-ENOMEM); 1260 } 1261 1262 strcpy(obj->path, path); 1263 if (obj_name) { 1264 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1265 } else { 1266 /* Using basename() GNU version which doesn't modify arg. */ 1267 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1268 end = strchr(obj->name, '.'); 1269 if (end) 1270 *end = 0; 1271 } 1272 1273 obj->efile.fd = -1; 1274 /* 1275 * Caller of this function should also call 1276 * bpf_object__elf_finish() after data collection to return 1277 * obj_buf to user. If not, we should duplicate the buffer to 1278 * avoid user freeing them before elf finish. 1279 */ 1280 obj->efile.obj_buf = obj_buf; 1281 obj->efile.obj_buf_sz = obj_buf_sz; 1282 obj->efile.btf_maps_shndx = -1; 1283 obj->efile.st_ops_shndx = -1; 1284 obj->kconfig_map_idx = -1; 1285 1286 obj->kern_version = get_kernel_version(); 1287 obj->loaded = false; 1288 1289 return obj; 1290 } 1291 1292 static void bpf_object__elf_finish(struct bpf_object *obj) 1293 { 1294 if (!obj->efile.elf) 1295 return; 1296 1297 elf_end(obj->efile.elf); 1298 obj->efile.elf = NULL; 1299 obj->efile.symbols = NULL; 1300 obj->efile.st_ops_data = NULL; 1301 1302 zfree(&obj->efile.secs); 1303 obj->efile.sec_cnt = 0; 1304 zclose(obj->efile.fd); 1305 obj->efile.obj_buf = NULL; 1306 obj->efile.obj_buf_sz = 0; 1307 } 1308 1309 static int bpf_object__elf_init(struct bpf_object *obj) 1310 { 1311 Elf64_Ehdr *ehdr; 1312 int err = 0; 1313 Elf *elf; 1314 1315 if (obj->efile.elf) { 1316 pr_warn("elf: init internal error\n"); 1317 return -LIBBPF_ERRNO__LIBELF; 1318 } 1319 1320 if (obj->efile.obj_buf_sz > 0) { 1321 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1322 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1323 } else { 1324 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1325 if (obj->efile.fd < 0) { 1326 char errmsg[STRERR_BUFSIZE], *cp; 1327 1328 err = -errno; 1329 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1330 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1331 return err; 1332 } 1333 1334 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1335 } 1336 1337 if (!elf) { 1338 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1339 err = -LIBBPF_ERRNO__LIBELF; 1340 goto errout; 1341 } 1342 1343 obj->efile.elf = elf; 1344 1345 if (elf_kind(elf) != ELF_K_ELF) { 1346 err = -LIBBPF_ERRNO__FORMAT; 1347 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1348 goto errout; 1349 } 1350 1351 if (gelf_getclass(elf) != ELFCLASS64) { 1352 err = -LIBBPF_ERRNO__FORMAT; 1353 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1354 goto errout; 1355 } 1356 1357 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1358 if (!obj->efile.ehdr) { 1359 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1360 err = -LIBBPF_ERRNO__FORMAT; 1361 goto errout; 1362 } 1363 1364 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1365 pr_warn("elf: failed to get section names section index for %s: %s\n", 1366 obj->path, elf_errmsg(-1)); 1367 err = -LIBBPF_ERRNO__FORMAT; 1368 goto errout; 1369 } 1370 1371 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1372 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1373 pr_warn("elf: failed to get section names strings from %s: %s\n", 1374 obj->path, elf_errmsg(-1)); 1375 err = -LIBBPF_ERRNO__FORMAT; 1376 goto errout; 1377 } 1378 1379 /* Old LLVM set e_machine to EM_NONE */ 1380 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1381 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1382 err = -LIBBPF_ERRNO__FORMAT; 1383 goto errout; 1384 } 1385 1386 return 0; 1387 errout: 1388 bpf_object__elf_finish(obj); 1389 return err; 1390 } 1391 1392 static int bpf_object__check_endianness(struct bpf_object *obj) 1393 { 1394 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1395 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1396 return 0; 1397 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1398 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1399 return 0; 1400 #else 1401 # error "Unrecognized __BYTE_ORDER__" 1402 #endif 1403 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1404 return -LIBBPF_ERRNO__ENDIAN; 1405 } 1406 1407 static int 1408 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1409 { 1410 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1411 * go over allowed ELF data section buffer 1412 */ 1413 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1414 pr_debug("license of %s is %s\n", obj->path, obj->license); 1415 return 0; 1416 } 1417 1418 static int 1419 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1420 { 1421 __u32 kver; 1422 1423 if (size != sizeof(kver)) { 1424 pr_warn("invalid kver section in %s\n", obj->path); 1425 return -LIBBPF_ERRNO__FORMAT; 1426 } 1427 memcpy(&kver, data, sizeof(kver)); 1428 obj->kern_version = kver; 1429 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1430 return 0; 1431 } 1432 1433 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1434 { 1435 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1436 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1437 return true; 1438 return false; 1439 } 1440 1441 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1442 { 1443 Elf_Data *data; 1444 Elf_Scn *scn; 1445 1446 if (!name) 1447 return -EINVAL; 1448 1449 scn = elf_sec_by_name(obj, name); 1450 data = elf_sec_data(obj, scn); 1451 if (data) { 1452 *size = data->d_size; 1453 return 0; /* found it */ 1454 } 1455 1456 return -ENOENT; 1457 } 1458 1459 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1460 { 1461 Elf_Data *symbols = obj->efile.symbols; 1462 const char *sname; 1463 size_t si; 1464 1465 if (!name || !off) 1466 return -EINVAL; 1467 1468 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1469 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1470 1471 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1472 continue; 1473 1474 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1475 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1476 continue; 1477 1478 sname = elf_sym_str(obj, sym->st_name); 1479 if (!sname) { 1480 pr_warn("failed to get sym name string for var %s\n", name); 1481 return -EIO; 1482 } 1483 if (strcmp(name, sname) == 0) { 1484 *off = sym->st_value; 1485 return 0; 1486 } 1487 } 1488 1489 return -ENOENT; 1490 } 1491 1492 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1493 { 1494 struct bpf_map *map; 1495 int err; 1496 1497 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1498 sizeof(*obj->maps), obj->nr_maps + 1); 1499 if (err) 1500 return ERR_PTR(err); 1501 1502 map = &obj->maps[obj->nr_maps++]; 1503 map->obj = obj; 1504 map->fd = -1; 1505 map->inner_map_fd = -1; 1506 map->autocreate = true; 1507 1508 return map; 1509 } 1510 1511 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1512 { 1513 long page_sz = sysconf(_SC_PAGE_SIZE); 1514 size_t map_sz; 1515 1516 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1517 map_sz = roundup(map_sz, page_sz); 1518 return map_sz; 1519 } 1520 1521 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1522 { 1523 char map_name[BPF_OBJ_NAME_LEN], *p; 1524 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1525 1526 /* This is one of the more confusing parts of libbpf for various 1527 * reasons, some of which are historical. The original idea for naming 1528 * internal names was to include as much of BPF object name prefix as 1529 * possible, so that it can be distinguished from similar internal 1530 * maps of a different BPF object. 1531 * As an example, let's say we have bpf_object named 'my_object_name' 1532 * and internal map corresponding to '.rodata' ELF section. The final 1533 * map name advertised to user and to the kernel will be 1534 * 'my_objec.rodata', taking first 8 characters of object name and 1535 * entire 7 characters of '.rodata'. 1536 * Somewhat confusingly, if internal map ELF section name is shorter 1537 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1538 * for the suffix, even though we only have 4 actual characters, and 1539 * resulting map will be called 'my_objec.bss', not even using all 15 1540 * characters allowed by the kernel. Oh well, at least the truncated 1541 * object name is somewhat consistent in this case. But if the map 1542 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1543 * (8 chars) and thus will be left with only first 7 characters of the 1544 * object name ('my_obje'). Happy guessing, user, that the final map 1545 * name will be "my_obje.kconfig". 1546 * Now, with libbpf starting to support arbitrarily named .rodata.* 1547 * and .data.* data sections, it's possible that ELF section name is 1548 * longer than allowed 15 chars, so we now need to be careful to take 1549 * only up to 15 first characters of ELF name, taking no BPF object 1550 * name characters at all. So '.rodata.abracadabra' will result in 1551 * '.rodata.abracad' kernel and user-visible name. 1552 * We need to keep this convoluted logic intact for .data, .bss and 1553 * .rodata maps, but for new custom .data.custom and .rodata.custom 1554 * maps we use their ELF names as is, not prepending bpf_object name 1555 * in front. We still need to truncate them to 15 characters for the 1556 * kernel. Full name can be recovered for such maps by using DATASEC 1557 * BTF type associated with such map's value type, though. 1558 */ 1559 if (sfx_len >= BPF_OBJ_NAME_LEN) 1560 sfx_len = BPF_OBJ_NAME_LEN - 1; 1561 1562 /* if there are two or more dots in map name, it's a custom dot map */ 1563 if (strchr(real_name + 1, '.') != NULL) 1564 pfx_len = 0; 1565 else 1566 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1567 1568 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1569 sfx_len, real_name); 1570 1571 /* sanitise map name to characters allowed by kernel */ 1572 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1573 if (!isalnum(*p) && *p != '_' && *p != '.') 1574 *p = '_'; 1575 1576 return strdup(map_name); 1577 } 1578 1579 static int 1580 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1581 1582 static int 1583 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1584 const char *real_name, int sec_idx, void *data, size_t data_sz) 1585 { 1586 struct bpf_map_def *def; 1587 struct bpf_map *map; 1588 int err; 1589 1590 map = bpf_object__add_map(obj); 1591 if (IS_ERR(map)) 1592 return PTR_ERR(map); 1593 1594 map->libbpf_type = type; 1595 map->sec_idx = sec_idx; 1596 map->sec_offset = 0; 1597 map->real_name = strdup(real_name); 1598 map->name = internal_map_name(obj, real_name); 1599 if (!map->real_name || !map->name) { 1600 zfree(&map->real_name); 1601 zfree(&map->name); 1602 return -ENOMEM; 1603 } 1604 1605 def = &map->def; 1606 def->type = BPF_MAP_TYPE_ARRAY; 1607 def->key_size = sizeof(int); 1608 def->value_size = data_sz; 1609 def->max_entries = 1; 1610 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1611 ? BPF_F_RDONLY_PROG : 0; 1612 def->map_flags |= BPF_F_MMAPABLE; 1613 1614 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1615 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1616 1617 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1618 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1619 if (map->mmaped == MAP_FAILED) { 1620 err = -errno; 1621 map->mmaped = NULL; 1622 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1623 map->name, err); 1624 zfree(&map->real_name); 1625 zfree(&map->name); 1626 return err; 1627 } 1628 1629 /* failures are fine because of maps like .rodata.str1.1 */ 1630 (void) bpf_map_find_btf_info(obj, map); 1631 1632 if (data) 1633 memcpy(map->mmaped, data, data_sz); 1634 1635 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1636 return 0; 1637 } 1638 1639 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1640 { 1641 struct elf_sec_desc *sec_desc; 1642 const char *sec_name; 1643 int err = 0, sec_idx; 1644 1645 /* 1646 * Populate obj->maps with libbpf internal maps. 1647 */ 1648 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1649 sec_desc = &obj->efile.secs[sec_idx]; 1650 1651 /* Skip recognized sections with size 0. */ 1652 if (!sec_desc->data || sec_desc->data->d_size == 0) 1653 continue; 1654 1655 switch (sec_desc->sec_type) { 1656 case SEC_DATA: 1657 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1658 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1659 sec_name, sec_idx, 1660 sec_desc->data->d_buf, 1661 sec_desc->data->d_size); 1662 break; 1663 case SEC_RODATA: 1664 obj->has_rodata = true; 1665 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1666 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1667 sec_name, sec_idx, 1668 sec_desc->data->d_buf, 1669 sec_desc->data->d_size); 1670 break; 1671 case SEC_BSS: 1672 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1673 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1674 sec_name, sec_idx, 1675 NULL, 1676 sec_desc->data->d_size); 1677 break; 1678 default: 1679 /* skip */ 1680 break; 1681 } 1682 if (err) 1683 return err; 1684 } 1685 return 0; 1686 } 1687 1688 1689 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1690 const void *name) 1691 { 1692 int i; 1693 1694 for (i = 0; i < obj->nr_extern; i++) { 1695 if (strcmp(obj->externs[i].name, name) == 0) 1696 return &obj->externs[i]; 1697 } 1698 return NULL; 1699 } 1700 1701 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1702 char value) 1703 { 1704 switch (ext->kcfg.type) { 1705 case KCFG_BOOL: 1706 if (value == 'm') { 1707 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1708 ext->name, value); 1709 return -EINVAL; 1710 } 1711 *(bool *)ext_val = value == 'y' ? true : false; 1712 break; 1713 case KCFG_TRISTATE: 1714 if (value == 'y') 1715 *(enum libbpf_tristate *)ext_val = TRI_YES; 1716 else if (value == 'm') 1717 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1718 else /* value == 'n' */ 1719 *(enum libbpf_tristate *)ext_val = TRI_NO; 1720 break; 1721 case KCFG_CHAR: 1722 *(char *)ext_val = value; 1723 break; 1724 case KCFG_UNKNOWN: 1725 case KCFG_INT: 1726 case KCFG_CHAR_ARR: 1727 default: 1728 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1729 ext->name, value); 1730 return -EINVAL; 1731 } 1732 ext->is_set = true; 1733 return 0; 1734 } 1735 1736 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1737 const char *value) 1738 { 1739 size_t len; 1740 1741 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1742 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1743 ext->name, value); 1744 return -EINVAL; 1745 } 1746 1747 len = strlen(value); 1748 if (value[len - 1] != '"') { 1749 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1750 ext->name, value); 1751 return -EINVAL; 1752 } 1753 1754 /* strip quotes */ 1755 len -= 2; 1756 if (len >= ext->kcfg.sz) { 1757 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1758 ext->name, value, len, ext->kcfg.sz - 1); 1759 len = ext->kcfg.sz - 1; 1760 } 1761 memcpy(ext_val, value + 1, len); 1762 ext_val[len] = '\0'; 1763 ext->is_set = true; 1764 return 0; 1765 } 1766 1767 static int parse_u64(const char *value, __u64 *res) 1768 { 1769 char *value_end; 1770 int err; 1771 1772 errno = 0; 1773 *res = strtoull(value, &value_end, 0); 1774 if (errno) { 1775 err = -errno; 1776 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1777 return err; 1778 } 1779 if (*value_end) { 1780 pr_warn("failed to parse '%s' as integer completely\n", value); 1781 return -EINVAL; 1782 } 1783 return 0; 1784 } 1785 1786 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1787 { 1788 int bit_sz = ext->kcfg.sz * 8; 1789 1790 if (ext->kcfg.sz == 8) 1791 return true; 1792 1793 /* Validate that value stored in u64 fits in integer of `ext->sz` 1794 * bytes size without any loss of information. If the target integer 1795 * is signed, we rely on the following limits of integer type of 1796 * Y bits and subsequent transformation: 1797 * 1798 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1799 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1800 * 0 <= X + 2^(Y-1) < 2^Y 1801 * 1802 * For unsigned target integer, check that all the (64 - Y) bits are 1803 * zero. 1804 */ 1805 if (ext->kcfg.is_signed) 1806 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1807 else 1808 return (v >> bit_sz) == 0; 1809 } 1810 1811 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1812 __u64 value) 1813 { 1814 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1815 ext->kcfg.type != KCFG_BOOL) { 1816 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1817 ext->name, (unsigned long long)value); 1818 return -EINVAL; 1819 } 1820 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1821 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1822 ext->name, (unsigned long long)value); 1823 return -EINVAL; 1824 1825 } 1826 if (!is_kcfg_value_in_range(ext, value)) { 1827 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1828 ext->name, (unsigned long long)value, ext->kcfg.sz); 1829 return -ERANGE; 1830 } 1831 switch (ext->kcfg.sz) { 1832 case 1: *(__u8 *)ext_val = value; break; 1833 case 2: *(__u16 *)ext_val = value; break; 1834 case 4: *(__u32 *)ext_val = value; break; 1835 case 8: *(__u64 *)ext_val = value; break; 1836 default: 1837 return -EINVAL; 1838 } 1839 ext->is_set = true; 1840 return 0; 1841 } 1842 1843 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1844 char *buf, void *data) 1845 { 1846 struct extern_desc *ext; 1847 char *sep, *value; 1848 int len, err = 0; 1849 void *ext_val; 1850 __u64 num; 1851 1852 if (!str_has_pfx(buf, "CONFIG_")) 1853 return 0; 1854 1855 sep = strchr(buf, '='); 1856 if (!sep) { 1857 pr_warn("failed to parse '%s': no separator\n", buf); 1858 return -EINVAL; 1859 } 1860 1861 /* Trim ending '\n' */ 1862 len = strlen(buf); 1863 if (buf[len - 1] == '\n') 1864 buf[len - 1] = '\0'; 1865 /* Split on '=' and ensure that a value is present. */ 1866 *sep = '\0'; 1867 if (!sep[1]) { 1868 *sep = '='; 1869 pr_warn("failed to parse '%s': no value\n", buf); 1870 return -EINVAL; 1871 } 1872 1873 ext = find_extern_by_name(obj, buf); 1874 if (!ext || ext->is_set) 1875 return 0; 1876 1877 ext_val = data + ext->kcfg.data_off; 1878 value = sep + 1; 1879 1880 switch (*value) { 1881 case 'y': case 'n': case 'm': 1882 err = set_kcfg_value_tri(ext, ext_val, *value); 1883 break; 1884 case '"': 1885 err = set_kcfg_value_str(ext, ext_val, value); 1886 break; 1887 default: 1888 /* assume integer */ 1889 err = parse_u64(value, &num); 1890 if (err) { 1891 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1892 return err; 1893 } 1894 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1895 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1896 return -EINVAL; 1897 } 1898 err = set_kcfg_value_num(ext, ext_val, num); 1899 break; 1900 } 1901 if (err) 1902 return err; 1903 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1904 return 0; 1905 } 1906 1907 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1908 { 1909 char buf[PATH_MAX]; 1910 struct utsname uts; 1911 int len, err = 0; 1912 gzFile file; 1913 1914 uname(&uts); 1915 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1916 if (len < 0) 1917 return -EINVAL; 1918 else if (len >= PATH_MAX) 1919 return -ENAMETOOLONG; 1920 1921 /* gzopen also accepts uncompressed files. */ 1922 file = gzopen(buf, "r"); 1923 if (!file) 1924 file = gzopen("/proc/config.gz", "r"); 1925 1926 if (!file) { 1927 pr_warn("failed to open system Kconfig\n"); 1928 return -ENOENT; 1929 } 1930 1931 while (gzgets(file, buf, sizeof(buf))) { 1932 err = bpf_object__process_kconfig_line(obj, buf, data); 1933 if (err) { 1934 pr_warn("error parsing system Kconfig line '%s': %d\n", 1935 buf, err); 1936 goto out; 1937 } 1938 } 1939 1940 out: 1941 gzclose(file); 1942 return err; 1943 } 1944 1945 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1946 const char *config, void *data) 1947 { 1948 char buf[PATH_MAX]; 1949 int err = 0; 1950 FILE *file; 1951 1952 file = fmemopen((void *)config, strlen(config), "r"); 1953 if (!file) { 1954 err = -errno; 1955 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1956 return err; 1957 } 1958 1959 while (fgets(buf, sizeof(buf), file)) { 1960 err = bpf_object__process_kconfig_line(obj, buf, data); 1961 if (err) { 1962 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1963 buf, err); 1964 break; 1965 } 1966 } 1967 1968 fclose(file); 1969 return err; 1970 } 1971 1972 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1973 { 1974 struct extern_desc *last_ext = NULL, *ext; 1975 size_t map_sz; 1976 int i, err; 1977 1978 for (i = 0; i < obj->nr_extern; i++) { 1979 ext = &obj->externs[i]; 1980 if (ext->type == EXT_KCFG) 1981 last_ext = ext; 1982 } 1983 1984 if (!last_ext) 1985 return 0; 1986 1987 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1988 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1989 ".kconfig", obj->efile.symbols_shndx, 1990 NULL, map_sz); 1991 if (err) 1992 return err; 1993 1994 obj->kconfig_map_idx = obj->nr_maps - 1; 1995 1996 return 0; 1997 } 1998 1999 const struct btf_type * 2000 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2001 { 2002 const struct btf_type *t = btf__type_by_id(btf, id); 2003 2004 if (res_id) 2005 *res_id = id; 2006 2007 while (btf_is_mod(t) || btf_is_typedef(t)) { 2008 if (res_id) 2009 *res_id = t->type; 2010 t = btf__type_by_id(btf, t->type); 2011 } 2012 2013 return t; 2014 } 2015 2016 static const struct btf_type * 2017 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2018 { 2019 const struct btf_type *t; 2020 2021 t = skip_mods_and_typedefs(btf, id, NULL); 2022 if (!btf_is_ptr(t)) 2023 return NULL; 2024 2025 t = skip_mods_and_typedefs(btf, t->type, res_id); 2026 2027 return btf_is_func_proto(t) ? t : NULL; 2028 } 2029 2030 static const char *__btf_kind_str(__u16 kind) 2031 { 2032 switch (kind) { 2033 case BTF_KIND_UNKN: return "void"; 2034 case BTF_KIND_INT: return "int"; 2035 case BTF_KIND_PTR: return "ptr"; 2036 case BTF_KIND_ARRAY: return "array"; 2037 case BTF_KIND_STRUCT: return "struct"; 2038 case BTF_KIND_UNION: return "union"; 2039 case BTF_KIND_ENUM: return "enum"; 2040 case BTF_KIND_FWD: return "fwd"; 2041 case BTF_KIND_TYPEDEF: return "typedef"; 2042 case BTF_KIND_VOLATILE: return "volatile"; 2043 case BTF_KIND_CONST: return "const"; 2044 case BTF_KIND_RESTRICT: return "restrict"; 2045 case BTF_KIND_FUNC: return "func"; 2046 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2047 case BTF_KIND_VAR: return "var"; 2048 case BTF_KIND_DATASEC: return "datasec"; 2049 case BTF_KIND_FLOAT: return "float"; 2050 case BTF_KIND_DECL_TAG: return "decl_tag"; 2051 case BTF_KIND_TYPE_TAG: return "type_tag"; 2052 case BTF_KIND_ENUM64: return "enum64"; 2053 default: return "unknown"; 2054 } 2055 } 2056 2057 const char *btf_kind_str(const struct btf_type *t) 2058 { 2059 return __btf_kind_str(btf_kind(t)); 2060 } 2061 2062 /* 2063 * Fetch integer attribute of BTF map definition. Such attributes are 2064 * represented using a pointer to an array, in which dimensionality of array 2065 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2066 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2067 * type definition, while using only sizeof(void *) space in ELF data section. 2068 */ 2069 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2070 const struct btf_member *m, __u32 *res) 2071 { 2072 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2073 const char *name = btf__name_by_offset(btf, m->name_off); 2074 const struct btf_array *arr_info; 2075 const struct btf_type *arr_t; 2076 2077 if (!btf_is_ptr(t)) { 2078 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2079 map_name, name, btf_kind_str(t)); 2080 return false; 2081 } 2082 2083 arr_t = btf__type_by_id(btf, t->type); 2084 if (!arr_t) { 2085 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2086 map_name, name, t->type); 2087 return false; 2088 } 2089 if (!btf_is_array(arr_t)) { 2090 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2091 map_name, name, btf_kind_str(arr_t)); 2092 return false; 2093 } 2094 arr_info = btf_array(arr_t); 2095 *res = arr_info->nelems; 2096 return true; 2097 } 2098 2099 static int build_map_pin_path(struct bpf_map *map, const char *path) 2100 { 2101 char buf[PATH_MAX]; 2102 int len; 2103 2104 if (!path) 2105 path = "/sys/fs/bpf"; 2106 2107 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2108 if (len < 0) 2109 return -EINVAL; 2110 else if (len >= PATH_MAX) 2111 return -ENAMETOOLONG; 2112 2113 return bpf_map__set_pin_path(map, buf); 2114 } 2115 2116 /* should match definition in bpf_helpers.h */ 2117 enum libbpf_pin_type { 2118 LIBBPF_PIN_NONE, 2119 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2120 LIBBPF_PIN_BY_NAME, 2121 }; 2122 2123 int parse_btf_map_def(const char *map_name, struct btf *btf, 2124 const struct btf_type *def_t, bool strict, 2125 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2126 { 2127 const struct btf_type *t; 2128 const struct btf_member *m; 2129 bool is_inner = inner_def == NULL; 2130 int vlen, i; 2131 2132 vlen = btf_vlen(def_t); 2133 m = btf_members(def_t); 2134 for (i = 0; i < vlen; i++, m++) { 2135 const char *name = btf__name_by_offset(btf, m->name_off); 2136 2137 if (!name) { 2138 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2139 return -EINVAL; 2140 } 2141 if (strcmp(name, "type") == 0) { 2142 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2143 return -EINVAL; 2144 map_def->parts |= MAP_DEF_MAP_TYPE; 2145 } else if (strcmp(name, "max_entries") == 0) { 2146 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2147 return -EINVAL; 2148 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2149 } else if (strcmp(name, "map_flags") == 0) { 2150 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2151 return -EINVAL; 2152 map_def->parts |= MAP_DEF_MAP_FLAGS; 2153 } else if (strcmp(name, "numa_node") == 0) { 2154 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2155 return -EINVAL; 2156 map_def->parts |= MAP_DEF_NUMA_NODE; 2157 } else if (strcmp(name, "key_size") == 0) { 2158 __u32 sz; 2159 2160 if (!get_map_field_int(map_name, btf, m, &sz)) 2161 return -EINVAL; 2162 if (map_def->key_size && map_def->key_size != sz) { 2163 pr_warn("map '%s': conflicting key size %u != %u.\n", 2164 map_name, map_def->key_size, sz); 2165 return -EINVAL; 2166 } 2167 map_def->key_size = sz; 2168 map_def->parts |= MAP_DEF_KEY_SIZE; 2169 } else if (strcmp(name, "key") == 0) { 2170 __s64 sz; 2171 2172 t = btf__type_by_id(btf, m->type); 2173 if (!t) { 2174 pr_warn("map '%s': key type [%d] not found.\n", 2175 map_name, m->type); 2176 return -EINVAL; 2177 } 2178 if (!btf_is_ptr(t)) { 2179 pr_warn("map '%s': key spec is not PTR: %s.\n", 2180 map_name, btf_kind_str(t)); 2181 return -EINVAL; 2182 } 2183 sz = btf__resolve_size(btf, t->type); 2184 if (sz < 0) { 2185 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2186 map_name, t->type, (ssize_t)sz); 2187 return sz; 2188 } 2189 if (map_def->key_size && map_def->key_size != sz) { 2190 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2191 map_name, map_def->key_size, (ssize_t)sz); 2192 return -EINVAL; 2193 } 2194 map_def->key_size = sz; 2195 map_def->key_type_id = t->type; 2196 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2197 } else if (strcmp(name, "value_size") == 0) { 2198 __u32 sz; 2199 2200 if (!get_map_field_int(map_name, btf, m, &sz)) 2201 return -EINVAL; 2202 if (map_def->value_size && map_def->value_size != sz) { 2203 pr_warn("map '%s': conflicting value size %u != %u.\n", 2204 map_name, map_def->value_size, sz); 2205 return -EINVAL; 2206 } 2207 map_def->value_size = sz; 2208 map_def->parts |= MAP_DEF_VALUE_SIZE; 2209 } else if (strcmp(name, "value") == 0) { 2210 __s64 sz; 2211 2212 t = btf__type_by_id(btf, m->type); 2213 if (!t) { 2214 pr_warn("map '%s': value type [%d] not found.\n", 2215 map_name, m->type); 2216 return -EINVAL; 2217 } 2218 if (!btf_is_ptr(t)) { 2219 pr_warn("map '%s': value spec is not PTR: %s.\n", 2220 map_name, btf_kind_str(t)); 2221 return -EINVAL; 2222 } 2223 sz = btf__resolve_size(btf, t->type); 2224 if (sz < 0) { 2225 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2226 map_name, t->type, (ssize_t)sz); 2227 return sz; 2228 } 2229 if (map_def->value_size && map_def->value_size != sz) { 2230 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2231 map_name, map_def->value_size, (ssize_t)sz); 2232 return -EINVAL; 2233 } 2234 map_def->value_size = sz; 2235 map_def->value_type_id = t->type; 2236 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2237 } 2238 else if (strcmp(name, "values") == 0) { 2239 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2240 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2241 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2242 char inner_map_name[128]; 2243 int err; 2244 2245 if (is_inner) { 2246 pr_warn("map '%s': multi-level inner maps not supported.\n", 2247 map_name); 2248 return -ENOTSUP; 2249 } 2250 if (i != vlen - 1) { 2251 pr_warn("map '%s': '%s' member should be last.\n", 2252 map_name, name); 2253 return -EINVAL; 2254 } 2255 if (!is_map_in_map && !is_prog_array) { 2256 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2257 map_name); 2258 return -ENOTSUP; 2259 } 2260 if (map_def->value_size && map_def->value_size != 4) { 2261 pr_warn("map '%s': conflicting value size %u != 4.\n", 2262 map_name, map_def->value_size); 2263 return -EINVAL; 2264 } 2265 map_def->value_size = 4; 2266 t = btf__type_by_id(btf, m->type); 2267 if (!t) { 2268 pr_warn("map '%s': %s type [%d] not found.\n", 2269 map_name, desc, m->type); 2270 return -EINVAL; 2271 } 2272 if (!btf_is_array(t) || btf_array(t)->nelems) { 2273 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2274 map_name, desc); 2275 return -EINVAL; 2276 } 2277 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2278 if (!btf_is_ptr(t)) { 2279 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2280 map_name, desc, btf_kind_str(t)); 2281 return -EINVAL; 2282 } 2283 t = skip_mods_and_typedefs(btf, t->type, NULL); 2284 if (is_prog_array) { 2285 if (!btf_is_func_proto(t)) { 2286 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2287 map_name, btf_kind_str(t)); 2288 return -EINVAL; 2289 } 2290 continue; 2291 } 2292 if (!btf_is_struct(t)) { 2293 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2294 map_name, btf_kind_str(t)); 2295 return -EINVAL; 2296 } 2297 2298 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2299 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2300 if (err) 2301 return err; 2302 2303 map_def->parts |= MAP_DEF_INNER_MAP; 2304 } else if (strcmp(name, "pinning") == 0) { 2305 __u32 val; 2306 2307 if (is_inner) { 2308 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2309 return -EINVAL; 2310 } 2311 if (!get_map_field_int(map_name, btf, m, &val)) 2312 return -EINVAL; 2313 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2314 pr_warn("map '%s': invalid pinning value %u.\n", 2315 map_name, val); 2316 return -EINVAL; 2317 } 2318 map_def->pinning = val; 2319 map_def->parts |= MAP_DEF_PINNING; 2320 } else if (strcmp(name, "map_extra") == 0) { 2321 __u32 map_extra; 2322 2323 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2324 return -EINVAL; 2325 map_def->map_extra = map_extra; 2326 map_def->parts |= MAP_DEF_MAP_EXTRA; 2327 } else { 2328 if (strict) { 2329 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2330 return -ENOTSUP; 2331 } 2332 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2333 } 2334 } 2335 2336 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2337 pr_warn("map '%s': map type isn't specified.\n", map_name); 2338 return -EINVAL; 2339 } 2340 2341 return 0; 2342 } 2343 2344 static size_t adjust_ringbuf_sz(size_t sz) 2345 { 2346 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2347 __u32 mul; 2348 2349 /* if user forgot to set any size, make sure they see error */ 2350 if (sz == 0) 2351 return 0; 2352 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2353 * a power-of-2 multiple of kernel's page size. If user diligently 2354 * satisified these conditions, pass the size through. 2355 */ 2356 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2357 return sz; 2358 2359 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2360 * user-set size to satisfy both user size request and kernel 2361 * requirements and substitute correct max_entries for map creation. 2362 */ 2363 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2364 if (mul * page_sz > sz) 2365 return mul * page_sz; 2366 } 2367 2368 /* if it's impossible to satisfy the conditions (i.e., user size is 2369 * very close to UINT_MAX but is not a power-of-2 multiple of 2370 * page_size) then just return original size and let kernel reject it 2371 */ 2372 return sz; 2373 } 2374 2375 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2376 { 2377 map->def.type = def->map_type; 2378 map->def.key_size = def->key_size; 2379 map->def.value_size = def->value_size; 2380 map->def.max_entries = def->max_entries; 2381 map->def.map_flags = def->map_flags; 2382 map->map_extra = def->map_extra; 2383 2384 map->numa_node = def->numa_node; 2385 map->btf_key_type_id = def->key_type_id; 2386 map->btf_value_type_id = def->value_type_id; 2387 2388 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2389 if (map->def.type == BPF_MAP_TYPE_RINGBUF) 2390 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2391 2392 if (def->parts & MAP_DEF_MAP_TYPE) 2393 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2394 2395 if (def->parts & MAP_DEF_KEY_TYPE) 2396 pr_debug("map '%s': found key [%u], sz = %u.\n", 2397 map->name, def->key_type_id, def->key_size); 2398 else if (def->parts & MAP_DEF_KEY_SIZE) 2399 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2400 2401 if (def->parts & MAP_DEF_VALUE_TYPE) 2402 pr_debug("map '%s': found value [%u], sz = %u.\n", 2403 map->name, def->value_type_id, def->value_size); 2404 else if (def->parts & MAP_DEF_VALUE_SIZE) 2405 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2406 2407 if (def->parts & MAP_DEF_MAX_ENTRIES) 2408 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2409 if (def->parts & MAP_DEF_MAP_FLAGS) 2410 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2411 if (def->parts & MAP_DEF_MAP_EXTRA) 2412 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2413 (unsigned long long)def->map_extra); 2414 if (def->parts & MAP_DEF_PINNING) 2415 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2416 if (def->parts & MAP_DEF_NUMA_NODE) 2417 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2418 2419 if (def->parts & MAP_DEF_INNER_MAP) 2420 pr_debug("map '%s': found inner map definition.\n", map->name); 2421 } 2422 2423 static const char *btf_var_linkage_str(__u32 linkage) 2424 { 2425 switch (linkage) { 2426 case BTF_VAR_STATIC: return "static"; 2427 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2428 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2429 default: return "unknown"; 2430 } 2431 } 2432 2433 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2434 const struct btf_type *sec, 2435 int var_idx, int sec_idx, 2436 const Elf_Data *data, bool strict, 2437 const char *pin_root_path) 2438 { 2439 struct btf_map_def map_def = {}, inner_def = {}; 2440 const struct btf_type *var, *def; 2441 const struct btf_var_secinfo *vi; 2442 const struct btf_var *var_extra; 2443 const char *map_name; 2444 struct bpf_map *map; 2445 int err; 2446 2447 vi = btf_var_secinfos(sec) + var_idx; 2448 var = btf__type_by_id(obj->btf, vi->type); 2449 var_extra = btf_var(var); 2450 map_name = btf__name_by_offset(obj->btf, var->name_off); 2451 2452 if (map_name == NULL || map_name[0] == '\0') { 2453 pr_warn("map #%d: empty name.\n", var_idx); 2454 return -EINVAL; 2455 } 2456 if ((__u64)vi->offset + vi->size > data->d_size) { 2457 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2458 return -EINVAL; 2459 } 2460 if (!btf_is_var(var)) { 2461 pr_warn("map '%s': unexpected var kind %s.\n", 2462 map_name, btf_kind_str(var)); 2463 return -EINVAL; 2464 } 2465 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2466 pr_warn("map '%s': unsupported map linkage %s.\n", 2467 map_name, btf_var_linkage_str(var_extra->linkage)); 2468 return -EOPNOTSUPP; 2469 } 2470 2471 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2472 if (!btf_is_struct(def)) { 2473 pr_warn("map '%s': unexpected def kind %s.\n", 2474 map_name, btf_kind_str(var)); 2475 return -EINVAL; 2476 } 2477 if (def->size > vi->size) { 2478 pr_warn("map '%s': invalid def size.\n", map_name); 2479 return -EINVAL; 2480 } 2481 2482 map = bpf_object__add_map(obj); 2483 if (IS_ERR(map)) 2484 return PTR_ERR(map); 2485 map->name = strdup(map_name); 2486 if (!map->name) { 2487 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2488 return -ENOMEM; 2489 } 2490 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2491 map->def.type = BPF_MAP_TYPE_UNSPEC; 2492 map->sec_idx = sec_idx; 2493 map->sec_offset = vi->offset; 2494 map->btf_var_idx = var_idx; 2495 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2496 map_name, map->sec_idx, map->sec_offset); 2497 2498 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2499 if (err) 2500 return err; 2501 2502 fill_map_from_def(map, &map_def); 2503 2504 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2505 err = build_map_pin_path(map, pin_root_path); 2506 if (err) { 2507 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2508 return err; 2509 } 2510 } 2511 2512 if (map_def.parts & MAP_DEF_INNER_MAP) { 2513 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2514 if (!map->inner_map) 2515 return -ENOMEM; 2516 map->inner_map->fd = -1; 2517 map->inner_map->sec_idx = sec_idx; 2518 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2519 if (!map->inner_map->name) 2520 return -ENOMEM; 2521 sprintf(map->inner_map->name, "%s.inner", map_name); 2522 2523 fill_map_from_def(map->inner_map, &inner_def); 2524 } 2525 2526 err = bpf_map_find_btf_info(obj, map); 2527 if (err) 2528 return err; 2529 2530 return 0; 2531 } 2532 2533 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2534 const char *pin_root_path) 2535 { 2536 const struct btf_type *sec = NULL; 2537 int nr_types, i, vlen, err; 2538 const struct btf_type *t; 2539 const char *name; 2540 Elf_Data *data; 2541 Elf_Scn *scn; 2542 2543 if (obj->efile.btf_maps_shndx < 0) 2544 return 0; 2545 2546 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2547 data = elf_sec_data(obj, scn); 2548 if (!scn || !data) { 2549 pr_warn("elf: failed to get %s map definitions for %s\n", 2550 MAPS_ELF_SEC, obj->path); 2551 return -EINVAL; 2552 } 2553 2554 nr_types = btf__type_cnt(obj->btf); 2555 for (i = 1; i < nr_types; i++) { 2556 t = btf__type_by_id(obj->btf, i); 2557 if (!btf_is_datasec(t)) 2558 continue; 2559 name = btf__name_by_offset(obj->btf, t->name_off); 2560 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2561 sec = t; 2562 obj->efile.btf_maps_sec_btf_id = i; 2563 break; 2564 } 2565 } 2566 2567 if (!sec) { 2568 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2569 return -ENOENT; 2570 } 2571 2572 vlen = btf_vlen(sec); 2573 for (i = 0; i < vlen; i++) { 2574 err = bpf_object__init_user_btf_map(obj, sec, i, 2575 obj->efile.btf_maps_shndx, 2576 data, strict, 2577 pin_root_path); 2578 if (err) 2579 return err; 2580 } 2581 2582 return 0; 2583 } 2584 2585 static int bpf_object__init_maps(struct bpf_object *obj, 2586 const struct bpf_object_open_opts *opts) 2587 { 2588 const char *pin_root_path; 2589 bool strict; 2590 int err = 0; 2591 2592 strict = !OPTS_GET(opts, relaxed_maps, false); 2593 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2594 2595 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2596 err = err ?: bpf_object__init_global_data_maps(obj); 2597 err = err ?: bpf_object__init_kconfig_map(obj); 2598 err = err ?: bpf_object__init_struct_ops_maps(obj); 2599 2600 return err; 2601 } 2602 2603 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2604 { 2605 Elf64_Shdr *sh; 2606 2607 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2608 if (!sh) 2609 return false; 2610 2611 return sh->sh_flags & SHF_EXECINSTR; 2612 } 2613 2614 static bool btf_needs_sanitization(struct bpf_object *obj) 2615 { 2616 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2617 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2618 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2619 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2620 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2621 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2622 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2623 2624 return !has_func || !has_datasec || !has_func_global || !has_float || 2625 !has_decl_tag || !has_type_tag || !has_enum64; 2626 } 2627 2628 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2629 { 2630 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2631 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2632 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2633 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2634 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2635 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2636 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2637 int enum64_placeholder_id = 0; 2638 struct btf_type *t; 2639 int i, j, vlen; 2640 2641 for (i = 1; i < btf__type_cnt(btf); i++) { 2642 t = (struct btf_type *)btf__type_by_id(btf, i); 2643 2644 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2645 /* replace VAR/DECL_TAG with INT */ 2646 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2647 /* 2648 * using size = 1 is the safest choice, 4 will be too 2649 * big and cause kernel BTF validation failure if 2650 * original variable took less than 4 bytes 2651 */ 2652 t->size = 1; 2653 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2654 } else if (!has_datasec && btf_is_datasec(t)) { 2655 /* replace DATASEC with STRUCT */ 2656 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2657 struct btf_member *m = btf_members(t); 2658 struct btf_type *vt; 2659 char *name; 2660 2661 name = (char *)btf__name_by_offset(btf, t->name_off); 2662 while (*name) { 2663 if (*name == '.') 2664 *name = '_'; 2665 name++; 2666 } 2667 2668 vlen = btf_vlen(t); 2669 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2670 for (j = 0; j < vlen; j++, v++, m++) { 2671 /* order of field assignments is important */ 2672 m->offset = v->offset * 8; 2673 m->type = v->type; 2674 /* preserve variable name as member name */ 2675 vt = (void *)btf__type_by_id(btf, v->type); 2676 m->name_off = vt->name_off; 2677 } 2678 } else if (!has_func && btf_is_func_proto(t)) { 2679 /* replace FUNC_PROTO with ENUM */ 2680 vlen = btf_vlen(t); 2681 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2682 t->size = sizeof(__u32); /* kernel enforced */ 2683 } else if (!has_func && btf_is_func(t)) { 2684 /* replace FUNC with TYPEDEF */ 2685 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2686 } else if (!has_func_global && btf_is_func(t)) { 2687 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2688 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2689 } else if (!has_float && btf_is_float(t)) { 2690 /* replace FLOAT with an equally-sized empty STRUCT; 2691 * since C compilers do not accept e.g. "float" as a 2692 * valid struct name, make it anonymous 2693 */ 2694 t->name_off = 0; 2695 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2696 } else if (!has_type_tag && btf_is_type_tag(t)) { 2697 /* replace TYPE_TAG with a CONST */ 2698 t->name_off = 0; 2699 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2700 } else if (!has_enum64 && btf_is_enum(t)) { 2701 /* clear the kflag */ 2702 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2703 } else if (!has_enum64 && btf_is_enum64(t)) { 2704 /* replace ENUM64 with a union */ 2705 struct btf_member *m; 2706 2707 if (enum64_placeholder_id == 0) { 2708 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2709 if (enum64_placeholder_id < 0) 2710 return enum64_placeholder_id; 2711 2712 t = (struct btf_type *)btf__type_by_id(btf, i); 2713 } 2714 2715 m = btf_members(t); 2716 vlen = btf_vlen(t); 2717 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2718 for (j = 0; j < vlen; j++, m++) { 2719 m->type = enum64_placeholder_id; 2720 m->offset = 0; 2721 } 2722 } 2723 } 2724 2725 return 0; 2726 } 2727 2728 static bool libbpf_needs_btf(const struct bpf_object *obj) 2729 { 2730 return obj->efile.btf_maps_shndx >= 0 || 2731 obj->efile.st_ops_shndx >= 0 || 2732 obj->nr_extern > 0; 2733 } 2734 2735 static bool kernel_needs_btf(const struct bpf_object *obj) 2736 { 2737 return obj->efile.st_ops_shndx >= 0; 2738 } 2739 2740 static int bpf_object__init_btf(struct bpf_object *obj, 2741 Elf_Data *btf_data, 2742 Elf_Data *btf_ext_data) 2743 { 2744 int err = -ENOENT; 2745 2746 if (btf_data) { 2747 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2748 err = libbpf_get_error(obj->btf); 2749 if (err) { 2750 obj->btf = NULL; 2751 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2752 goto out; 2753 } 2754 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2755 btf__set_pointer_size(obj->btf, 8); 2756 } 2757 if (btf_ext_data) { 2758 struct btf_ext_info *ext_segs[3]; 2759 int seg_num, sec_num; 2760 2761 if (!obj->btf) { 2762 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2763 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2764 goto out; 2765 } 2766 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2767 err = libbpf_get_error(obj->btf_ext); 2768 if (err) { 2769 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2770 BTF_EXT_ELF_SEC, err); 2771 obj->btf_ext = NULL; 2772 goto out; 2773 } 2774 2775 /* setup .BTF.ext to ELF section mapping */ 2776 ext_segs[0] = &obj->btf_ext->func_info; 2777 ext_segs[1] = &obj->btf_ext->line_info; 2778 ext_segs[2] = &obj->btf_ext->core_relo_info; 2779 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2780 struct btf_ext_info *seg = ext_segs[seg_num]; 2781 const struct btf_ext_info_sec *sec; 2782 const char *sec_name; 2783 Elf_Scn *scn; 2784 2785 if (seg->sec_cnt == 0) 2786 continue; 2787 2788 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2789 if (!seg->sec_idxs) { 2790 err = -ENOMEM; 2791 goto out; 2792 } 2793 2794 sec_num = 0; 2795 for_each_btf_ext_sec(seg, sec) { 2796 /* preventively increment index to avoid doing 2797 * this before every continue below 2798 */ 2799 sec_num++; 2800 2801 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2802 if (str_is_empty(sec_name)) 2803 continue; 2804 scn = elf_sec_by_name(obj, sec_name); 2805 if (!scn) 2806 continue; 2807 2808 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2809 } 2810 } 2811 } 2812 out: 2813 if (err && libbpf_needs_btf(obj)) { 2814 pr_warn("BTF is required, but is missing or corrupted.\n"); 2815 return err; 2816 } 2817 return 0; 2818 } 2819 2820 static int compare_vsi_off(const void *_a, const void *_b) 2821 { 2822 const struct btf_var_secinfo *a = _a; 2823 const struct btf_var_secinfo *b = _b; 2824 2825 return a->offset - b->offset; 2826 } 2827 2828 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2829 struct btf_type *t) 2830 { 2831 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2832 const char *name = btf__name_by_offset(btf, t->name_off); 2833 const struct btf_type *t_var; 2834 struct btf_var_secinfo *vsi; 2835 const struct btf_var *var; 2836 int ret; 2837 2838 if (!name) { 2839 pr_debug("No name found in string section for DATASEC kind.\n"); 2840 return -ENOENT; 2841 } 2842 2843 /* .extern datasec size and var offsets were set correctly during 2844 * extern collection step, so just skip straight to sorting variables 2845 */ 2846 if (t->size) 2847 goto sort_vars; 2848 2849 ret = find_elf_sec_sz(obj, name, &size); 2850 if (ret || !size) { 2851 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2852 return -ENOENT; 2853 } 2854 2855 t->size = size; 2856 2857 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2858 t_var = btf__type_by_id(btf, vsi->type); 2859 if (!t_var || !btf_is_var(t_var)) { 2860 pr_debug("Non-VAR type seen in section %s\n", name); 2861 return -EINVAL; 2862 } 2863 2864 var = btf_var(t_var); 2865 if (var->linkage == BTF_VAR_STATIC) 2866 continue; 2867 2868 name = btf__name_by_offset(btf, t_var->name_off); 2869 if (!name) { 2870 pr_debug("No name found in string section for VAR kind\n"); 2871 return -ENOENT; 2872 } 2873 2874 ret = find_elf_var_offset(obj, name, &off); 2875 if (ret) { 2876 pr_debug("No offset found in symbol table for VAR %s\n", 2877 name); 2878 return -ENOENT; 2879 } 2880 2881 vsi->offset = off; 2882 } 2883 2884 sort_vars: 2885 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2886 return 0; 2887 } 2888 2889 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2890 { 2891 int err = 0; 2892 __u32 i, n = btf__type_cnt(btf); 2893 2894 for (i = 1; i < n; i++) { 2895 struct btf_type *t = btf_type_by_id(btf, i); 2896 2897 /* Loader needs to fix up some of the things compiler 2898 * couldn't get its hands on while emitting BTF. This 2899 * is section size and global variable offset. We use 2900 * the info from the ELF itself for this purpose. 2901 */ 2902 if (btf_is_datasec(t)) { 2903 err = btf_fixup_datasec(obj, btf, t); 2904 if (err) 2905 break; 2906 } 2907 } 2908 2909 return libbpf_err(err); 2910 } 2911 2912 static int bpf_object__finalize_btf(struct bpf_object *obj) 2913 { 2914 int err; 2915 2916 if (!obj->btf) 2917 return 0; 2918 2919 err = btf_finalize_data(obj, obj->btf); 2920 if (err) { 2921 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2922 return err; 2923 } 2924 2925 return 0; 2926 } 2927 2928 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2929 { 2930 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2931 prog->type == BPF_PROG_TYPE_LSM) 2932 return true; 2933 2934 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2935 * also need vmlinux BTF 2936 */ 2937 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2938 return true; 2939 2940 return false; 2941 } 2942 2943 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2944 { 2945 struct bpf_program *prog; 2946 int i; 2947 2948 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2949 * is not specified 2950 */ 2951 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2952 return true; 2953 2954 /* Support for typed ksyms needs kernel BTF */ 2955 for (i = 0; i < obj->nr_extern; i++) { 2956 const struct extern_desc *ext; 2957 2958 ext = &obj->externs[i]; 2959 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2960 return true; 2961 } 2962 2963 bpf_object__for_each_program(prog, obj) { 2964 if (!prog->autoload) 2965 continue; 2966 if (prog_needs_vmlinux_btf(prog)) 2967 return true; 2968 } 2969 2970 return false; 2971 } 2972 2973 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2974 { 2975 int err; 2976 2977 /* btf_vmlinux could be loaded earlier */ 2978 if (obj->btf_vmlinux || obj->gen_loader) 2979 return 0; 2980 2981 if (!force && !obj_needs_vmlinux_btf(obj)) 2982 return 0; 2983 2984 obj->btf_vmlinux = btf__load_vmlinux_btf(); 2985 err = libbpf_get_error(obj->btf_vmlinux); 2986 if (err) { 2987 pr_warn("Error loading vmlinux BTF: %d\n", err); 2988 obj->btf_vmlinux = NULL; 2989 return err; 2990 } 2991 return 0; 2992 } 2993 2994 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2995 { 2996 struct btf *kern_btf = obj->btf; 2997 bool btf_mandatory, sanitize; 2998 int i, err = 0; 2999 3000 if (!obj->btf) 3001 return 0; 3002 3003 if (!kernel_supports(obj, FEAT_BTF)) { 3004 if (kernel_needs_btf(obj)) { 3005 err = -EOPNOTSUPP; 3006 goto report; 3007 } 3008 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3009 return 0; 3010 } 3011 3012 /* Even though some subprogs are global/weak, user might prefer more 3013 * permissive BPF verification process that BPF verifier performs for 3014 * static functions, taking into account more context from the caller 3015 * functions. In such case, they need to mark such subprogs with 3016 * __attribute__((visibility("hidden"))) and libbpf will adjust 3017 * corresponding FUNC BTF type to be marked as static and trigger more 3018 * involved BPF verification process. 3019 */ 3020 for (i = 0; i < obj->nr_programs; i++) { 3021 struct bpf_program *prog = &obj->programs[i]; 3022 struct btf_type *t; 3023 const char *name; 3024 int j, n; 3025 3026 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3027 continue; 3028 3029 n = btf__type_cnt(obj->btf); 3030 for (j = 1; j < n; j++) { 3031 t = btf_type_by_id(obj->btf, j); 3032 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3033 continue; 3034 3035 name = btf__str_by_offset(obj->btf, t->name_off); 3036 if (strcmp(name, prog->name) != 0) 3037 continue; 3038 3039 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3040 break; 3041 } 3042 } 3043 3044 sanitize = btf_needs_sanitization(obj); 3045 if (sanitize) { 3046 const void *raw_data; 3047 __u32 sz; 3048 3049 /* clone BTF to sanitize a copy and leave the original intact */ 3050 raw_data = btf__raw_data(obj->btf, &sz); 3051 kern_btf = btf__new(raw_data, sz); 3052 err = libbpf_get_error(kern_btf); 3053 if (err) 3054 return err; 3055 3056 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3057 btf__set_pointer_size(obj->btf, 8); 3058 err = bpf_object__sanitize_btf(obj, kern_btf); 3059 if (err) 3060 return err; 3061 } 3062 3063 if (obj->gen_loader) { 3064 __u32 raw_size = 0; 3065 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3066 3067 if (!raw_data) 3068 return -ENOMEM; 3069 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3070 /* Pretend to have valid FD to pass various fd >= 0 checks. 3071 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3072 */ 3073 btf__set_fd(kern_btf, 0); 3074 } else { 3075 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3076 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3077 obj->log_level ? 1 : 0); 3078 } 3079 if (sanitize) { 3080 if (!err) { 3081 /* move fd to libbpf's BTF */ 3082 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3083 btf__set_fd(kern_btf, -1); 3084 } 3085 btf__free(kern_btf); 3086 } 3087 report: 3088 if (err) { 3089 btf_mandatory = kernel_needs_btf(obj); 3090 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3091 btf_mandatory ? "BTF is mandatory, can't proceed." 3092 : "BTF is optional, ignoring."); 3093 if (!btf_mandatory) 3094 err = 0; 3095 } 3096 return err; 3097 } 3098 3099 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3100 { 3101 const char *name; 3102 3103 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3104 if (!name) { 3105 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3106 off, obj->path, elf_errmsg(-1)); 3107 return NULL; 3108 } 3109 3110 return name; 3111 } 3112 3113 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3114 { 3115 const char *name; 3116 3117 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3118 if (!name) { 3119 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3120 off, obj->path, elf_errmsg(-1)); 3121 return NULL; 3122 } 3123 3124 return name; 3125 } 3126 3127 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3128 { 3129 Elf_Scn *scn; 3130 3131 scn = elf_getscn(obj->efile.elf, idx); 3132 if (!scn) { 3133 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3134 idx, obj->path, elf_errmsg(-1)); 3135 return NULL; 3136 } 3137 return scn; 3138 } 3139 3140 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3141 { 3142 Elf_Scn *scn = NULL; 3143 Elf *elf = obj->efile.elf; 3144 const char *sec_name; 3145 3146 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3147 sec_name = elf_sec_name(obj, scn); 3148 if (!sec_name) 3149 return NULL; 3150 3151 if (strcmp(sec_name, name) != 0) 3152 continue; 3153 3154 return scn; 3155 } 3156 return NULL; 3157 } 3158 3159 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3160 { 3161 Elf64_Shdr *shdr; 3162 3163 if (!scn) 3164 return NULL; 3165 3166 shdr = elf64_getshdr(scn); 3167 if (!shdr) { 3168 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3169 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3170 return NULL; 3171 } 3172 3173 return shdr; 3174 } 3175 3176 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3177 { 3178 const char *name; 3179 Elf64_Shdr *sh; 3180 3181 if (!scn) 3182 return NULL; 3183 3184 sh = elf_sec_hdr(obj, scn); 3185 if (!sh) 3186 return NULL; 3187 3188 name = elf_sec_str(obj, sh->sh_name); 3189 if (!name) { 3190 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3191 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3192 return NULL; 3193 } 3194 3195 return name; 3196 } 3197 3198 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3199 { 3200 Elf_Data *data; 3201 3202 if (!scn) 3203 return NULL; 3204 3205 data = elf_getdata(scn, 0); 3206 if (!data) { 3207 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3208 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3209 obj->path, elf_errmsg(-1)); 3210 return NULL; 3211 } 3212 3213 return data; 3214 } 3215 3216 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3217 { 3218 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3219 return NULL; 3220 3221 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3222 } 3223 3224 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3225 { 3226 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3227 return NULL; 3228 3229 return (Elf64_Rel *)data->d_buf + idx; 3230 } 3231 3232 static bool is_sec_name_dwarf(const char *name) 3233 { 3234 /* approximation, but the actual list is too long */ 3235 return str_has_pfx(name, ".debug_"); 3236 } 3237 3238 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3239 { 3240 /* no special handling of .strtab */ 3241 if (hdr->sh_type == SHT_STRTAB) 3242 return true; 3243 3244 /* ignore .llvm_addrsig section as well */ 3245 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3246 return true; 3247 3248 /* no subprograms will lead to an empty .text section, ignore it */ 3249 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3250 strcmp(name, ".text") == 0) 3251 return true; 3252 3253 /* DWARF sections */ 3254 if (is_sec_name_dwarf(name)) 3255 return true; 3256 3257 if (str_has_pfx(name, ".rel")) { 3258 name += sizeof(".rel") - 1; 3259 /* DWARF section relocations */ 3260 if (is_sec_name_dwarf(name)) 3261 return true; 3262 3263 /* .BTF and .BTF.ext don't need relocations */ 3264 if (strcmp(name, BTF_ELF_SEC) == 0 || 3265 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3266 return true; 3267 } 3268 3269 return false; 3270 } 3271 3272 static int cmp_progs(const void *_a, const void *_b) 3273 { 3274 const struct bpf_program *a = _a; 3275 const struct bpf_program *b = _b; 3276 3277 if (a->sec_idx != b->sec_idx) 3278 return a->sec_idx < b->sec_idx ? -1 : 1; 3279 3280 /* sec_insn_off can't be the same within the section */ 3281 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3282 } 3283 3284 static int bpf_object__elf_collect(struct bpf_object *obj) 3285 { 3286 struct elf_sec_desc *sec_desc; 3287 Elf *elf = obj->efile.elf; 3288 Elf_Data *btf_ext_data = NULL; 3289 Elf_Data *btf_data = NULL; 3290 int idx = 0, err = 0; 3291 const char *name; 3292 Elf_Data *data; 3293 Elf_Scn *scn; 3294 Elf64_Shdr *sh; 3295 3296 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3297 * section. e_shnum does include sec #0, so e_shnum is the necessary 3298 * size of an array to keep all the sections. 3299 */ 3300 obj->efile.sec_cnt = obj->efile.ehdr->e_shnum; 3301 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3302 if (!obj->efile.secs) 3303 return -ENOMEM; 3304 3305 /* a bunch of ELF parsing functionality depends on processing symbols, 3306 * so do the first pass and find the symbol table 3307 */ 3308 scn = NULL; 3309 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3310 sh = elf_sec_hdr(obj, scn); 3311 if (!sh) 3312 return -LIBBPF_ERRNO__FORMAT; 3313 3314 if (sh->sh_type == SHT_SYMTAB) { 3315 if (obj->efile.symbols) { 3316 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3317 return -LIBBPF_ERRNO__FORMAT; 3318 } 3319 3320 data = elf_sec_data(obj, scn); 3321 if (!data) 3322 return -LIBBPF_ERRNO__FORMAT; 3323 3324 idx = elf_ndxscn(scn); 3325 3326 obj->efile.symbols = data; 3327 obj->efile.symbols_shndx = idx; 3328 obj->efile.strtabidx = sh->sh_link; 3329 } 3330 } 3331 3332 if (!obj->efile.symbols) { 3333 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3334 obj->path); 3335 return -ENOENT; 3336 } 3337 3338 scn = NULL; 3339 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3340 idx = elf_ndxscn(scn); 3341 sec_desc = &obj->efile.secs[idx]; 3342 3343 sh = elf_sec_hdr(obj, scn); 3344 if (!sh) 3345 return -LIBBPF_ERRNO__FORMAT; 3346 3347 name = elf_sec_str(obj, sh->sh_name); 3348 if (!name) 3349 return -LIBBPF_ERRNO__FORMAT; 3350 3351 if (ignore_elf_section(sh, name)) 3352 continue; 3353 3354 data = elf_sec_data(obj, scn); 3355 if (!data) 3356 return -LIBBPF_ERRNO__FORMAT; 3357 3358 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3359 idx, name, (unsigned long)data->d_size, 3360 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3361 (int)sh->sh_type); 3362 3363 if (strcmp(name, "license") == 0) { 3364 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3365 if (err) 3366 return err; 3367 } else if (strcmp(name, "version") == 0) { 3368 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3369 if (err) 3370 return err; 3371 } else if (strcmp(name, "maps") == 0) { 3372 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3373 return -ENOTSUP; 3374 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3375 obj->efile.btf_maps_shndx = idx; 3376 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3377 if (sh->sh_type != SHT_PROGBITS) 3378 return -LIBBPF_ERRNO__FORMAT; 3379 btf_data = data; 3380 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3381 if (sh->sh_type != SHT_PROGBITS) 3382 return -LIBBPF_ERRNO__FORMAT; 3383 btf_ext_data = data; 3384 } else if (sh->sh_type == SHT_SYMTAB) { 3385 /* already processed during the first pass above */ 3386 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3387 if (sh->sh_flags & SHF_EXECINSTR) { 3388 if (strcmp(name, ".text") == 0) 3389 obj->efile.text_shndx = idx; 3390 err = bpf_object__add_programs(obj, data, name, idx); 3391 if (err) 3392 return err; 3393 } else if (strcmp(name, DATA_SEC) == 0 || 3394 str_has_pfx(name, DATA_SEC ".")) { 3395 sec_desc->sec_type = SEC_DATA; 3396 sec_desc->shdr = sh; 3397 sec_desc->data = data; 3398 } else if (strcmp(name, RODATA_SEC) == 0 || 3399 str_has_pfx(name, RODATA_SEC ".")) { 3400 sec_desc->sec_type = SEC_RODATA; 3401 sec_desc->shdr = sh; 3402 sec_desc->data = data; 3403 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3404 obj->efile.st_ops_data = data; 3405 obj->efile.st_ops_shndx = idx; 3406 } else { 3407 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3408 idx, name); 3409 } 3410 } else if (sh->sh_type == SHT_REL) { 3411 int targ_sec_idx = sh->sh_info; /* points to other section */ 3412 3413 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3414 targ_sec_idx >= obj->efile.sec_cnt) 3415 return -LIBBPF_ERRNO__FORMAT; 3416 3417 /* Only do relo for section with exec instructions */ 3418 if (!section_have_execinstr(obj, targ_sec_idx) && 3419 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3420 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3421 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3422 idx, name, targ_sec_idx, 3423 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3424 continue; 3425 } 3426 3427 sec_desc->sec_type = SEC_RELO; 3428 sec_desc->shdr = sh; 3429 sec_desc->data = data; 3430 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3431 sec_desc->sec_type = SEC_BSS; 3432 sec_desc->shdr = sh; 3433 sec_desc->data = data; 3434 } else { 3435 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3436 (size_t)sh->sh_size); 3437 } 3438 } 3439 3440 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3441 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3442 return -LIBBPF_ERRNO__FORMAT; 3443 } 3444 3445 /* sort BPF programs by section name and in-section instruction offset 3446 * for faster search */ 3447 if (obj->nr_programs) 3448 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3449 3450 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3451 } 3452 3453 static bool sym_is_extern(const Elf64_Sym *sym) 3454 { 3455 int bind = ELF64_ST_BIND(sym->st_info); 3456 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3457 return sym->st_shndx == SHN_UNDEF && 3458 (bind == STB_GLOBAL || bind == STB_WEAK) && 3459 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3460 } 3461 3462 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3463 { 3464 int bind = ELF64_ST_BIND(sym->st_info); 3465 int type = ELF64_ST_TYPE(sym->st_info); 3466 3467 /* in .text section */ 3468 if (sym->st_shndx != text_shndx) 3469 return false; 3470 3471 /* local function */ 3472 if (bind == STB_LOCAL && type == STT_SECTION) 3473 return true; 3474 3475 /* global function */ 3476 return bind == STB_GLOBAL && type == STT_FUNC; 3477 } 3478 3479 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3480 { 3481 const struct btf_type *t; 3482 const char *tname; 3483 int i, n; 3484 3485 if (!btf) 3486 return -ESRCH; 3487 3488 n = btf__type_cnt(btf); 3489 for (i = 1; i < n; i++) { 3490 t = btf__type_by_id(btf, i); 3491 3492 if (!btf_is_var(t) && !btf_is_func(t)) 3493 continue; 3494 3495 tname = btf__name_by_offset(btf, t->name_off); 3496 if (strcmp(tname, ext_name)) 3497 continue; 3498 3499 if (btf_is_var(t) && 3500 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3501 return -EINVAL; 3502 3503 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3504 return -EINVAL; 3505 3506 return i; 3507 } 3508 3509 return -ENOENT; 3510 } 3511 3512 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3513 const struct btf_var_secinfo *vs; 3514 const struct btf_type *t; 3515 int i, j, n; 3516 3517 if (!btf) 3518 return -ESRCH; 3519 3520 n = btf__type_cnt(btf); 3521 for (i = 1; i < n; i++) { 3522 t = btf__type_by_id(btf, i); 3523 3524 if (!btf_is_datasec(t)) 3525 continue; 3526 3527 vs = btf_var_secinfos(t); 3528 for (j = 0; j < btf_vlen(t); j++, vs++) { 3529 if (vs->type == ext_btf_id) 3530 return i; 3531 } 3532 } 3533 3534 return -ENOENT; 3535 } 3536 3537 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3538 bool *is_signed) 3539 { 3540 const struct btf_type *t; 3541 const char *name; 3542 3543 t = skip_mods_and_typedefs(btf, id, NULL); 3544 name = btf__name_by_offset(btf, t->name_off); 3545 3546 if (is_signed) 3547 *is_signed = false; 3548 switch (btf_kind(t)) { 3549 case BTF_KIND_INT: { 3550 int enc = btf_int_encoding(t); 3551 3552 if (enc & BTF_INT_BOOL) 3553 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3554 if (is_signed) 3555 *is_signed = enc & BTF_INT_SIGNED; 3556 if (t->size == 1) 3557 return KCFG_CHAR; 3558 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3559 return KCFG_UNKNOWN; 3560 return KCFG_INT; 3561 } 3562 case BTF_KIND_ENUM: 3563 if (t->size != 4) 3564 return KCFG_UNKNOWN; 3565 if (strcmp(name, "libbpf_tristate")) 3566 return KCFG_UNKNOWN; 3567 return KCFG_TRISTATE; 3568 case BTF_KIND_ENUM64: 3569 if (strcmp(name, "libbpf_tristate")) 3570 return KCFG_UNKNOWN; 3571 return KCFG_TRISTATE; 3572 case BTF_KIND_ARRAY: 3573 if (btf_array(t)->nelems == 0) 3574 return KCFG_UNKNOWN; 3575 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3576 return KCFG_UNKNOWN; 3577 return KCFG_CHAR_ARR; 3578 default: 3579 return KCFG_UNKNOWN; 3580 } 3581 } 3582 3583 static int cmp_externs(const void *_a, const void *_b) 3584 { 3585 const struct extern_desc *a = _a; 3586 const struct extern_desc *b = _b; 3587 3588 if (a->type != b->type) 3589 return a->type < b->type ? -1 : 1; 3590 3591 if (a->type == EXT_KCFG) { 3592 /* descending order by alignment requirements */ 3593 if (a->kcfg.align != b->kcfg.align) 3594 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3595 /* ascending order by size, within same alignment class */ 3596 if (a->kcfg.sz != b->kcfg.sz) 3597 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3598 } 3599 3600 /* resolve ties by name */ 3601 return strcmp(a->name, b->name); 3602 } 3603 3604 static int find_int_btf_id(const struct btf *btf) 3605 { 3606 const struct btf_type *t; 3607 int i, n; 3608 3609 n = btf__type_cnt(btf); 3610 for (i = 1; i < n; i++) { 3611 t = btf__type_by_id(btf, i); 3612 3613 if (btf_is_int(t) && btf_int_bits(t) == 32) 3614 return i; 3615 } 3616 3617 return 0; 3618 } 3619 3620 static int add_dummy_ksym_var(struct btf *btf) 3621 { 3622 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3623 const struct btf_var_secinfo *vs; 3624 const struct btf_type *sec; 3625 3626 if (!btf) 3627 return 0; 3628 3629 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3630 BTF_KIND_DATASEC); 3631 if (sec_btf_id < 0) 3632 return 0; 3633 3634 sec = btf__type_by_id(btf, sec_btf_id); 3635 vs = btf_var_secinfos(sec); 3636 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3637 const struct btf_type *vt; 3638 3639 vt = btf__type_by_id(btf, vs->type); 3640 if (btf_is_func(vt)) 3641 break; 3642 } 3643 3644 /* No func in ksyms sec. No need to add dummy var. */ 3645 if (i == btf_vlen(sec)) 3646 return 0; 3647 3648 int_btf_id = find_int_btf_id(btf); 3649 dummy_var_btf_id = btf__add_var(btf, 3650 "dummy_ksym", 3651 BTF_VAR_GLOBAL_ALLOCATED, 3652 int_btf_id); 3653 if (dummy_var_btf_id < 0) 3654 pr_warn("cannot create a dummy_ksym var\n"); 3655 3656 return dummy_var_btf_id; 3657 } 3658 3659 static int bpf_object__collect_externs(struct bpf_object *obj) 3660 { 3661 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3662 const struct btf_type *t; 3663 struct extern_desc *ext; 3664 int i, n, off, dummy_var_btf_id; 3665 const char *ext_name, *sec_name; 3666 Elf_Scn *scn; 3667 Elf64_Shdr *sh; 3668 3669 if (!obj->efile.symbols) 3670 return 0; 3671 3672 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3673 sh = elf_sec_hdr(obj, scn); 3674 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3675 return -LIBBPF_ERRNO__FORMAT; 3676 3677 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3678 if (dummy_var_btf_id < 0) 3679 return dummy_var_btf_id; 3680 3681 n = sh->sh_size / sh->sh_entsize; 3682 pr_debug("looking for externs among %d symbols...\n", n); 3683 3684 for (i = 0; i < n; i++) { 3685 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3686 3687 if (!sym) 3688 return -LIBBPF_ERRNO__FORMAT; 3689 if (!sym_is_extern(sym)) 3690 continue; 3691 ext_name = elf_sym_str(obj, sym->st_name); 3692 if (!ext_name || !ext_name[0]) 3693 continue; 3694 3695 ext = obj->externs; 3696 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3697 if (!ext) 3698 return -ENOMEM; 3699 obj->externs = ext; 3700 ext = &ext[obj->nr_extern]; 3701 memset(ext, 0, sizeof(*ext)); 3702 obj->nr_extern++; 3703 3704 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3705 if (ext->btf_id <= 0) { 3706 pr_warn("failed to find BTF for extern '%s': %d\n", 3707 ext_name, ext->btf_id); 3708 return ext->btf_id; 3709 } 3710 t = btf__type_by_id(obj->btf, ext->btf_id); 3711 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3712 ext->sym_idx = i; 3713 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3714 3715 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3716 if (ext->sec_btf_id <= 0) { 3717 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3718 ext_name, ext->btf_id, ext->sec_btf_id); 3719 return ext->sec_btf_id; 3720 } 3721 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3722 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3723 3724 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3725 if (btf_is_func(t)) { 3726 pr_warn("extern function %s is unsupported under %s section\n", 3727 ext->name, KCONFIG_SEC); 3728 return -ENOTSUP; 3729 } 3730 kcfg_sec = sec; 3731 ext->type = EXT_KCFG; 3732 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3733 if (ext->kcfg.sz <= 0) { 3734 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3735 ext_name, ext->kcfg.sz); 3736 return ext->kcfg.sz; 3737 } 3738 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3739 if (ext->kcfg.align <= 0) { 3740 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3741 ext_name, ext->kcfg.align); 3742 return -EINVAL; 3743 } 3744 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3745 &ext->kcfg.is_signed); 3746 if (ext->kcfg.type == KCFG_UNKNOWN) { 3747 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3748 return -ENOTSUP; 3749 } 3750 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3751 ksym_sec = sec; 3752 ext->type = EXT_KSYM; 3753 skip_mods_and_typedefs(obj->btf, t->type, 3754 &ext->ksym.type_id); 3755 } else { 3756 pr_warn("unrecognized extern section '%s'\n", sec_name); 3757 return -ENOTSUP; 3758 } 3759 } 3760 pr_debug("collected %d externs total\n", obj->nr_extern); 3761 3762 if (!obj->nr_extern) 3763 return 0; 3764 3765 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3766 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3767 3768 /* for .ksyms section, we need to turn all externs into allocated 3769 * variables in BTF to pass kernel verification; we do this by 3770 * pretending that each extern is a 8-byte variable 3771 */ 3772 if (ksym_sec) { 3773 /* find existing 4-byte integer type in BTF to use for fake 3774 * extern variables in DATASEC 3775 */ 3776 int int_btf_id = find_int_btf_id(obj->btf); 3777 /* For extern function, a dummy_var added earlier 3778 * will be used to replace the vs->type and 3779 * its name string will be used to refill 3780 * the missing param's name. 3781 */ 3782 const struct btf_type *dummy_var; 3783 3784 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3785 for (i = 0; i < obj->nr_extern; i++) { 3786 ext = &obj->externs[i]; 3787 if (ext->type != EXT_KSYM) 3788 continue; 3789 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3790 i, ext->sym_idx, ext->name); 3791 } 3792 3793 sec = ksym_sec; 3794 n = btf_vlen(sec); 3795 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3796 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3797 struct btf_type *vt; 3798 3799 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3800 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3801 ext = find_extern_by_name(obj, ext_name); 3802 if (!ext) { 3803 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3804 btf_kind_str(vt), ext_name); 3805 return -ESRCH; 3806 } 3807 if (btf_is_func(vt)) { 3808 const struct btf_type *func_proto; 3809 struct btf_param *param; 3810 int j; 3811 3812 func_proto = btf__type_by_id(obj->btf, 3813 vt->type); 3814 param = btf_params(func_proto); 3815 /* Reuse the dummy_var string if the 3816 * func proto does not have param name. 3817 */ 3818 for (j = 0; j < btf_vlen(func_proto); j++) 3819 if (param[j].type && !param[j].name_off) 3820 param[j].name_off = 3821 dummy_var->name_off; 3822 vs->type = dummy_var_btf_id; 3823 vt->info &= ~0xffff; 3824 vt->info |= BTF_FUNC_GLOBAL; 3825 } else { 3826 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3827 vt->type = int_btf_id; 3828 } 3829 vs->offset = off; 3830 vs->size = sizeof(int); 3831 } 3832 sec->size = off; 3833 } 3834 3835 if (kcfg_sec) { 3836 sec = kcfg_sec; 3837 /* for kcfg externs calculate their offsets within a .kconfig map */ 3838 off = 0; 3839 for (i = 0; i < obj->nr_extern; i++) { 3840 ext = &obj->externs[i]; 3841 if (ext->type != EXT_KCFG) 3842 continue; 3843 3844 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3845 off = ext->kcfg.data_off + ext->kcfg.sz; 3846 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3847 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3848 } 3849 sec->size = off; 3850 n = btf_vlen(sec); 3851 for (i = 0; i < n; i++) { 3852 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3853 3854 t = btf__type_by_id(obj->btf, vs->type); 3855 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3856 ext = find_extern_by_name(obj, ext_name); 3857 if (!ext) { 3858 pr_warn("failed to find extern definition for BTF var '%s'\n", 3859 ext_name); 3860 return -ESRCH; 3861 } 3862 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3863 vs->offset = ext->kcfg.data_off; 3864 } 3865 } 3866 return 0; 3867 } 3868 3869 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3870 { 3871 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3872 } 3873 3874 struct bpf_program * 3875 bpf_object__find_program_by_name(const struct bpf_object *obj, 3876 const char *name) 3877 { 3878 struct bpf_program *prog; 3879 3880 bpf_object__for_each_program(prog, obj) { 3881 if (prog_is_subprog(obj, prog)) 3882 continue; 3883 if (!strcmp(prog->name, name)) 3884 return prog; 3885 } 3886 return errno = ENOENT, NULL; 3887 } 3888 3889 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3890 int shndx) 3891 { 3892 switch (obj->efile.secs[shndx].sec_type) { 3893 case SEC_BSS: 3894 case SEC_DATA: 3895 case SEC_RODATA: 3896 return true; 3897 default: 3898 return false; 3899 } 3900 } 3901 3902 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3903 int shndx) 3904 { 3905 return shndx == obj->efile.btf_maps_shndx; 3906 } 3907 3908 static enum libbpf_map_type 3909 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3910 { 3911 if (shndx == obj->efile.symbols_shndx) 3912 return LIBBPF_MAP_KCONFIG; 3913 3914 switch (obj->efile.secs[shndx].sec_type) { 3915 case SEC_BSS: 3916 return LIBBPF_MAP_BSS; 3917 case SEC_DATA: 3918 return LIBBPF_MAP_DATA; 3919 case SEC_RODATA: 3920 return LIBBPF_MAP_RODATA; 3921 default: 3922 return LIBBPF_MAP_UNSPEC; 3923 } 3924 } 3925 3926 static int bpf_program__record_reloc(struct bpf_program *prog, 3927 struct reloc_desc *reloc_desc, 3928 __u32 insn_idx, const char *sym_name, 3929 const Elf64_Sym *sym, const Elf64_Rel *rel) 3930 { 3931 struct bpf_insn *insn = &prog->insns[insn_idx]; 3932 size_t map_idx, nr_maps = prog->obj->nr_maps; 3933 struct bpf_object *obj = prog->obj; 3934 __u32 shdr_idx = sym->st_shndx; 3935 enum libbpf_map_type type; 3936 const char *sym_sec_name; 3937 struct bpf_map *map; 3938 3939 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3940 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3941 prog->name, sym_name, insn_idx, insn->code); 3942 return -LIBBPF_ERRNO__RELOC; 3943 } 3944 3945 if (sym_is_extern(sym)) { 3946 int sym_idx = ELF64_R_SYM(rel->r_info); 3947 int i, n = obj->nr_extern; 3948 struct extern_desc *ext; 3949 3950 for (i = 0; i < n; i++) { 3951 ext = &obj->externs[i]; 3952 if (ext->sym_idx == sym_idx) 3953 break; 3954 } 3955 if (i >= n) { 3956 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3957 prog->name, sym_name, sym_idx); 3958 return -LIBBPF_ERRNO__RELOC; 3959 } 3960 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3961 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3962 if (insn->code == (BPF_JMP | BPF_CALL)) 3963 reloc_desc->type = RELO_EXTERN_FUNC; 3964 else 3965 reloc_desc->type = RELO_EXTERN_VAR; 3966 reloc_desc->insn_idx = insn_idx; 3967 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3968 return 0; 3969 } 3970 3971 /* sub-program call relocation */ 3972 if (is_call_insn(insn)) { 3973 if (insn->src_reg != BPF_PSEUDO_CALL) { 3974 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3975 return -LIBBPF_ERRNO__RELOC; 3976 } 3977 /* text_shndx can be 0, if no default "main" program exists */ 3978 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3979 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3980 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3981 prog->name, sym_name, sym_sec_name); 3982 return -LIBBPF_ERRNO__RELOC; 3983 } 3984 if (sym->st_value % BPF_INSN_SZ) { 3985 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3986 prog->name, sym_name, (size_t)sym->st_value); 3987 return -LIBBPF_ERRNO__RELOC; 3988 } 3989 reloc_desc->type = RELO_CALL; 3990 reloc_desc->insn_idx = insn_idx; 3991 reloc_desc->sym_off = sym->st_value; 3992 return 0; 3993 } 3994 3995 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3996 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3997 prog->name, sym_name, shdr_idx); 3998 return -LIBBPF_ERRNO__RELOC; 3999 } 4000 4001 /* loading subprog addresses */ 4002 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4003 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4004 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4005 */ 4006 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4007 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4008 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4009 return -LIBBPF_ERRNO__RELOC; 4010 } 4011 4012 reloc_desc->type = RELO_SUBPROG_ADDR; 4013 reloc_desc->insn_idx = insn_idx; 4014 reloc_desc->sym_off = sym->st_value; 4015 return 0; 4016 } 4017 4018 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4019 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4020 4021 /* generic map reference relocation */ 4022 if (type == LIBBPF_MAP_UNSPEC) { 4023 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4024 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4025 prog->name, sym_name, sym_sec_name); 4026 return -LIBBPF_ERRNO__RELOC; 4027 } 4028 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4029 map = &obj->maps[map_idx]; 4030 if (map->libbpf_type != type || 4031 map->sec_idx != sym->st_shndx || 4032 map->sec_offset != sym->st_value) 4033 continue; 4034 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4035 prog->name, map_idx, map->name, map->sec_idx, 4036 map->sec_offset, insn_idx); 4037 break; 4038 } 4039 if (map_idx >= nr_maps) { 4040 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4041 prog->name, sym_sec_name, (size_t)sym->st_value); 4042 return -LIBBPF_ERRNO__RELOC; 4043 } 4044 reloc_desc->type = RELO_LD64; 4045 reloc_desc->insn_idx = insn_idx; 4046 reloc_desc->map_idx = map_idx; 4047 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4048 return 0; 4049 } 4050 4051 /* global data map relocation */ 4052 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4053 pr_warn("prog '%s': bad data relo against section '%s'\n", 4054 prog->name, sym_sec_name); 4055 return -LIBBPF_ERRNO__RELOC; 4056 } 4057 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4058 map = &obj->maps[map_idx]; 4059 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4060 continue; 4061 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4062 prog->name, map_idx, map->name, map->sec_idx, 4063 map->sec_offset, insn_idx); 4064 break; 4065 } 4066 if (map_idx >= nr_maps) { 4067 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4068 prog->name, sym_sec_name); 4069 return -LIBBPF_ERRNO__RELOC; 4070 } 4071 4072 reloc_desc->type = RELO_DATA; 4073 reloc_desc->insn_idx = insn_idx; 4074 reloc_desc->map_idx = map_idx; 4075 reloc_desc->sym_off = sym->st_value; 4076 return 0; 4077 } 4078 4079 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4080 { 4081 return insn_idx >= prog->sec_insn_off && 4082 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4083 } 4084 4085 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4086 size_t sec_idx, size_t insn_idx) 4087 { 4088 int l = 0, r = obj->nr_programs - 1, m; 4089 struct bpf_program *prog; 4090 4091 while (l < r) { 4092 m = l + (r - l + 1) / 2; 4093 prog = &obj->programs[m]; 4094 4095 if (prog->sec_idx < sec_idx || 4096 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4097 l = m; 4098 else 4099 r = m - 1; 4100 } 4101 /* matching program could be at index l, but it still might be the 4102 * wrong one, so we need to double check conditions for the last time 4103 */ 4104 prog = &obj->programs[l]; 4105 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4106 return prog; 4107 return NULL; 4108 } 4109 4110 static int 4111 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4112 { 4113 const char *relo_sec_name, *sec_name; 4114 size_t sec_idx = shdr->sh_info, sym_idx; 4115 struct bpf_program *prog; 4116 struct reloc_desc *relos; 4117 int err, i, nrels; 4118 const char *sym_name; 4119 __u32 insn_idx; 4120 Elf_Scn *scn; 4121 Elf_Data *scn_data; 4122 Elf64_Sym *sym; 4123 Elf64_Rel *rel; 4124 4125 if (sec_idx >= obj->efile.sec_cnt) 4126 return -EINVAL; 4127 4128 scn = elf_sec_by_idx(obj, sec_idx); 4129 scn_data = elf_sec_data(obj, scn); 4130 4131 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4132 sec_name = elf_sec_name(obj, scn); 4133 if (!relo_sec_name || !sec_name) 4134 return -EINVAL; 4135 4136 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4137 relo_sec_name, sec_idx, sec_name); 4138 nrels = shdr->sh_size / shdr->sh_entsize; 4139 4140 for (i = 0; i < nrels; i++) { 4141 rel = elf_rel_by_idx(data, i); 4142 if (!rel) { 4143 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4144 return -LIBBPF_ERRNO__FORMAT; 4145 } 4146 4147 sym_idx = ELF64_R_SYM(rel->r_info); 4148 sym = elf_sym_by_idx(obj, sym_idx); 4149 if (!sym) { 4150 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4151 relo_sec_name, sym_idx, i); 4152 return -LIBBPF_ERRNO__FORMAT; 4153 } 4154 4155 if (sym->st_shndx >= obj->efile.sec_cnt) { 4156 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4157 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4158 return -LIBBPF_ERRNO__FORMAT; 4159 } 4160 4161 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4162 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4163 relo_sec_name, (size_t)rel->r_offset, i); 4164 return -LIBBPF_ERRNO__FORMAT; 4165 } 4166 4167 insn_idx = rel->r_offset / BPF_INSN_SZ; 4168 /* relocations against static functions are recorded as 4169 * relocations against the section that contains a function; 4170 * in such case, symbol will be STT_SECTION and sym.st_name 4171 * will point to empty string (0), so fetch section name 4172 * instead 4173 */ 4174 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4175 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4176 else 4177 sym_name = elf_sym_str(obj, sym->st_name); 4178 sym_name = sym_name ?: "<?"; 4179 4180 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4181 relo_sec_name, i, insn_idx, sym_name); 4182 4183 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4184 if (!prog) { 4185 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4186 relo_sec_name, i, sec_name, insn_idx); 4187 continue; 4188 } 4189 4190 relos = libbpf_reallocarray(prog->reloc_desc, 4191 prog->nr_reloc + 1, sizeof(*relos)); 4192 if (!relos) 4193 return -ENOMEM; 4194 prog->reloc_desc = relos; 4195 4196 /* adjust insn_idx to local BPF program frame of reference */ 4197 insn_idx -= prog->sec_insn_off; 4198 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4199 insn_idx, sym_name, sym, rel); 4200 if (err) 4201 return err; 4202 4203 prog->nr_reloc++; 4204 } 4205 return 0; 4206 } 4207 4208 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4209 { 4210 int id; 4211 4212 if (!obj->btf) 4213 return -ENOENT; 4214 4215 /* if it's BTF-defined map, we don't need to search for type IDs. 4216 * For struct_ops map, it does not need btf_key_type_id and 4217 * btf_value_type_id. 4218 */ 4219 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4220 return 0; 4221 4222 /* 4223 * LLVM annotates global data differently in BTF, that is, 4224 * only as '.data', '.bss' or '.rodata'. 4225 */ 4226 if (!bpf_map__is_internal(map)) 4227 return -ENOENT; 4228 4229 id = btf__find_by_name(obj->btf, map->real_name); 4230 if (id < 0) 4231 return id; 4232 4233 map->btf_key_type_id = 0; 4234 map->btf_value_type_id = id; 4235 return 0; 4236 } 4237 4238 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4239 { 4240 char file[PATH_MAX], buff[4096]; 4241 FILE *fp; 4242 __u32 val; 4243 int err; 4244 4245 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4246 memset(info, 0, sizeof(*info)); 4247 4248 fp = fopen(file, "r"); 4249 if (!fp) { 4250 err = -errno; 4251 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4252 err); 4253 return err; 4254 } 4255 4256 while (fgets(buff, sizeof(buff), fp)) { 4257 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4258 info->type = val; 4259 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4260 info->key_size = val; 4261 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4262 info->value_size = val; 4263 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4264 info->max_entries = val; 4265 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4266 info->map_flags = val; 4267 } 4268 4269 fclose(fp); 4270 4271 return 0; 4272 } 4273 4274 bool bpf_map__autocreate(const struct bpf_map *map) 4275 { 4276 return map->autocreate; 4277 } 4278 4279 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4280 { 4281 if (map->obj->loaded) 4282 return libbpf_err(-EBUSY); 4283 4284 map->autocreate = autocreate; 4285 return 0; 4286 } 4287 4288 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4289 { 4290 struct bpf_map_info info; 4291 __u32 len = sizeof(info), name_len; 4292 int new_fd, err; 4293 char *new_name; 4294 4295 memset(&info, 0, len); 4296 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4297 if (err && errno == EINVAL) 4298 err = bpf_get_map_info_from_fdinfo(fd, &info); 4299 if (err) 4300 return libbpf_err(err); 4301 4302 name_len = strlen(info.name); 4303 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4304 new_name = strdup(map->name); 4305 else 4306 new_name = strdup(info.name); 4307 4308 if (!new_name) 4309 return libbpf_err(-errno); 4310 4311 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4312 if (new_fd < 0) { 4313 err = -errno; 4314 goto err_free_new_name; 4315 } 4316 4317 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4318 if (new_fd < 0) { 4319 err = -errno; 4320 goto err_close_new_fd; 4321 } 4322 4323 err = zclose(map->fd); 4324 if (err) { 4325 err = -errno; 4326 goto err_close_new_fd; 4327 } 4328 free(map->name); 4329 4330 map->fd = new_fd; 4331 map->name = new_name; 4332 map->def.type = info.type; 4333 map->def.key_size = info.key_size; 4334 map->def.value_size = info.value_size; 4335 map->def.max_entries = info.max_entries; 4336 map->def.map_flags = info.map_flags; 4337 map->btf_key_type_id = info.btf_key_type_id; 4338 map->btf_value_type_id = info.btf_value_type_id; 4339 map->reused = true; 4340 map->map_extra = info.map_extra; 4341 4342 return 0; 4343 4344 err_close_new_fd: 4345 close(new_fd); 4346 err_free_new_name: 4347 free(new_name); 4348 return libbpf_err(err); 4349 } 4350 4351 __u32 bpf_map__max_entries(const struct bpf_map *map) 4352 { 4353 return map->def.max_entries; 4354 } 4355 4356 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4357 { 4358 if (!bpf_map_type__is_map_in_map(map->def.type)) 4359 return errno = EINVAL, NULL; 4360 4361 return map->inner_map; 4362 } 4363 4364 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4365 { 4366 if (map->obj->loaded) 4367 return libbpf_err(-EBUSY); 4368 4369 map->def.max_entries = max_entries; 4370 4371 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4372 if (map->def.type == BPF_MAP_TYPE_RINGBUF) 4373 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4374 4375 return 0; 4376 } 4377 4378 static int 4379 bpf_object__probe_loading(struct bpf_object *obj) 4380 { 4381 char *cp, errmsg[STRERR_BUFSIZE]; 4382 struct bpf_insn insns[] = { 4383 BPF_MOV64_IMM(BPF_REG_0, 0), 4384 BPF_EXIT_INSN(), 4385 }; 4386 int ret, insn_cnt = ARRAY_SIZE(insns); 4387 4388 if (obj->gen_loader) 4389 return 0; 4390 4391 ret = bump_rlimit_memlock(); 4392 if (ret) 4393 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4394 4395 /* make sure basic loading works */ 4396 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4397 if (ret < 0) 4398 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4399 if (ret < 0) { 4400 ret = errno; 4401 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4402 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4403 "program. Make sure your kernel supports BPF " 4404 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4405 "set to big enough value.\n", __func__, cp, ret); 4406 return -ret; 4407 } 4408 close(ret); 4409 4410 return 0; 4411 } 4412 4413 static int probe_fd(int fd) 4414 { 4415 if (fd >= 0) 4416 close(fd); 4417 return fd >= 0; 4418 } 4419 4420 static int probe_kern_prog_name(void) 4421 { 4422 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4423 struct bpf_insn insns[] = { 4424 BPF_MOV64_IMM(BPF_REG_0, 0), 4425 BPF_EXIT_INSN(), 4426 }; 4427 union bpf_attr attr; 4428 int ret; 4429 4430 memset(&attr, 0, attr_sz); 4431 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4432 attr.license = ptr_to_u64("GPL"); 4433 attr.insns = ptr_to_u64(insns); 4434 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4435 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4436 4437 /* make sure loading with name works */ 4438 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4439 return probe_fd(ret); 4440 } 4441 4442 static int probe_kern_global_data(void) 4443 { 4444 char *cp, errmsg[STRERR_BUFSIZE]; 4445 struct bpf_insn insns[] = { 4446 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4447 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4448 BPF_MOV64_IMM(BPF_REG_0, 0), 4449 BPF_EXIT_INSN(), 4450 }; 4451 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4452 4453 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4454 if (map < 0) { 4455 ret = -errno; 4456 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4457 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4458 __func__, cp, -ret); 4459 return ret; 4460 } 4461 4462 insns[0].imm = map; 4463 4464 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4465 close(map); 4466 return probe_fd(ret); 4467 } 4468 4469 static int probe_kern_btf(void) 4470 { 4471 static const char strs[] = "\0int"; 4472 __u32 types[] = { 4473 /* int */ 4474 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4475 }; 4476 4477 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4478 strs, sizeof(strs))); 4479 } 4480 4481 static int probe_kern_btf_func(void) 4482 { 4483 static const char strs[] = "\0int\0x\0a"; 4484 /* void x(int a) {} */ 4485 __u32 types[] = { 4486 /* int */ 4487 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4488 /* FUNC_PROTO */ /* [2] */ 4489 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4490 BTF_PARAM_ENC(7, 1), 4491 /* FUNC x */ /* [3] */ 4492 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4493 }; 4494 4495 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4496 strs, sizeof(strs))); 4497 } 4498 4499 static int probe_kern_btf_func_global(void) 4500 { 4501 static const char strs[] = "\0int\0x\0a"; 4502 /* static void x(int a) {} */ 4503 __u32 types[] = { 4504 /* int */ 4505 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4506 /* FUNC_PROTO */ /* [2] */ 4507 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4508 BTF_PARAM_ENC(7, 1), 4509 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4510 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4511 }; 4512 4513 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4514 strs, sizeof(strs))); 4515 } 4516 4517 static int probe_kern_btf_datasec(void) 4518 { 4519 static const char strs[] = "\0x\0.data"; 4520 /* static int a; */ 4521 __u32 types[] = { 4522 /* int */ 4523 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4524 /* VAR x */ /* [2] */ 4525 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4526 BTF_VAR_STATIC, 4527 /* DATASEC val */ /* [3] */ 4528 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4529 BTF_VAR_SECINFO_ENC(2, 0, 4), 4530 }; 4531 4532 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4533 strs, sizeof(strs))); 4534 } 4535 4536 static int probe_kern_btf_float(void) 4537 { 4538 static const char strs[] = "\0float"; 4539 __u32 types[] = { 4540 /* float */ 4541 BTF_TYPE_FLOAT_ENC(1, 4), 4542 }; 4543 4544 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4545 strs, sizeof(strs))); 4546 } 4547 4548 static int probe_kern_btf_decl_tag(void) 4549 { 4550 static const char strs[] = "\0tag"; 4551 __u32 types[] = { 4552 /* int */ 4553 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4554 /* VAR x */ /* [2] */ 4555 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4556 BTF_VAR_STATIC, 4557 /* attr */ 4558 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4559 }; 4560 4561 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4562 strs, sizeof(strs))); 4563 } 4564 4565 static int probe_kern_btf_type_tag(void) 4566 { 4567 static const char strs[] = "\0tag"; 4568 __u32 types[] = { 4569 /* int */ 4570 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4571 /* attr */ 4572 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4573 /* ptr */ 4574 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4575 }; 4576 4577 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4578 strs, sizeof(strs))); 4579 } 4580 4581 static int probe_kern_array_mmap(void) 4582 { 4583 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4584 int fd; 4585 4586 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4587 return probe_fd(fd); 4588 } 4589 4590 static int probe_kern_exp_attach_type(void) 4591 { 4592 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4593 struct bpf_insn insns[] = { 4594 BPF_MOV64_IMM(BPF_REG_0, 0), 4595 BPF_EXIT_INSN(), 4596 }; 4597 int fd, insn_cnt = ARRAY_SIZE(insns); 4598 4599 /* use any valid combination of program type and (optional) 4600 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4601 * to see if kernel supports expected_attach_type field for 4602 * BPF_PROG_LOAD command 4603 */ 4604 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4605 return probe_fd(fd); 4606 } 4607 4608 static int probe_kern_probe_read_kernel(void) 4609 { 4610 struct bpf_insn insns[] = { 4611 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4612 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4613 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4614 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4615 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4616 BPF_EXIT_INSN(), 4617 }; 4618 int fd, insn_cnt = ARRAY_SIZE(insns); 4619 4620 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4621 return probe_fd(fd); 4622 } 4623 4624 static int probe_prog_bind_map(void) 4625 { 4626 char *cp, errmsg[STRERR_BUFSIZE]; 4627 struct bpf_insn insns[] = { 4628 BPF_MOV64_IMM(BPF_REG_0, 0), 4629 BPF_EXIT_INSN(), 4630 }; 4631 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4632 4633 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4634 if (map < 0) { 4635 ret = -errno; 4636 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4637 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4638 __func__, cp, -ret); 4639 return ret; 4640 } 4641 4642 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4643 if (prog < 0) { 4644 close(map); 4645 return 0; 4646 } 4647 4648 ret = bpf_prog_bind_map(prog, map, NULL); 4649 4650 close(map); 4651 close(prog); 4652 4653 return ret >= 0; 4654 } 4655 4656 static int probe_module_btf(void) 4657 { 4658 static const char strs[] = "\0int"; 4659 __u32 types[] = { 4660 /* int */ 4661 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4662 }; 4663 struct bpf_btf_info info; 4664 __u32 len = sizeof(info); 4665 char name[16]; 4666 int fd, err; 4667 4668 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4669 if (fd < 0) 4670 return 0; /* BTF not supported at all */ 4671 4672 memset(&info, 0, sizeof(info)); 4673 info.name = ptr_to_u64(name); 4674 info.name_len = sizeof(name); 4675 4676 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4677 * kernel's module BTF support coincides with support for 4678 * name/name_len fields in struct bpf_btf_info. 4679 */ 4680 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4681 close(fd); 4682 return !err; 4683 } 4684 4685 static int probe_perf_link(void) 4686 { 4687 struct bpf_insn insns[] = { 4688 BPF_MOV64_IMM(BPF_REG_0, 0), 4689 BPF_EXIT_INSN(), 4690 }; 4691 int prog_fd, link_fd, err; 4692 4693 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4694 insns, ARRAY_SIZE(insns), NULL); 4695 if (prog_fd < 0) 4696 return -errno; 4697 4698 /* use invalid perf_event FD to get EBADF, if link is supported; 4699 * otherwise EINVAL should be returned 4700 */ 4701 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4702 err = -errno; /* close() can clobber errno */ 4703 4704 if (link_fd >= 0) 4705 close(link_fd); 4706 close(prog_fd); 4707 4708 return link_fd < 0 && err == -EBADF; 4709 } 4710 4711 static int probe_kern_bpf_cookie(void) 4712 { 4713 struct bpf_insn insns[] = { 4714 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4715 BPF_EXIT_INSN(), 4716 }; 4717 int ret, insn_cnt = ARRAY_SIZE(insns); 4718 4719 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4720 return probe_fd(ret); 4721 } 4722 4723 static int probe_kern_btf_enum64(void) 4724 { 4725 static const char strs[] = "\0enum64"; 4726 __u32 types[] = { 4727 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4728 }; 4729 4730 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4731 strs, sizeof(strs))); 4732 } 4733 4734 static int probe_kern_syscall_wrapper(void); 4735 4736 enum kern_feature_result { 4737 FEAT_UNKNOWN = 0, 4738 FEAT_SUPPORTED = 1, 4739 FEAT_MISSING = 2, 4740 }; 4741 4742 typedef int (*feature_probe_fn)(void); 4743 4744 static struct kern_feature_desc { 4745 const char *desc; 4746 feature_probe_fn probe; 4747 enum kern_feature_result res; 4748 } feature_probes[__FEAT_CNT] = { 4749 [FEAT_PROG_NAME] = { 4750 "BPF program name", probe_kern_prog_name, 4751 }, 4752 [FEAT_GLOBAL_DATA] = { 4753 "global variables", probe_kern_global_data, 4754 }, 4755 [FEAT_BTF] = { 4756 "minimal BTF", probe_kern_btf, 4757 }, 4758 [FEAT_BTF_FUNC] = { 4759 "BTF functions", probe_kern_btf_func, 4760 }, 4761 [FEAT_BTF_GLOBAL_FUNC] = { 4762 "BTF global function", probe_kern_btf_func_global, 4763 }, 4764 [FEAT_BTF_DATASEC] = { 4765 "BTF data section and variable", probe_kern_btf_datasec, 4766 }, 4767 [FEAT_ARRAY_MMAP] = { 4768 "ARRAY map mmap()", probe_kern_array_mmap, 4769 }, 4770 [FEAT_EXP_ATTACH_TYPE] = { 4771 "BPF_PROG_LOAD expected_attach_type attribute", 4772 probe_kern_exp_attach_type, 4773 }, 4774 [FEAT_PROBE_READ_KERN] = { 4775 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4776 }, 4777 [FEAT_PROG_BIND_MAP] = { 4778 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4779 }, 4780 [FEAT_MODULE_BTF] = { 4781 "module BTF support", probe_module_btf, 4782 }, 4783 [FEAT_BTF_FLOAT] = { 4784 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4785 }, 4786 [FEAT_PERF_LINK] = { 4787 "BPF perf link support", probe_perf_link, 4788 }, 4789 [FEAT_BTF_DECL_TAG] = { 4790 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4791 }, 4792 [FEAT_BTF_TYPE_TAG] = { 4793 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4794 }, 4795 [FEAT_MEMCG_ACCOUNT] = { 4796 "memcg-based memory accounting", probe_memcg_account, 4797 }, 4798 [FEAT_BPF_COOKIE] = { 4799 "BPF cookie support", probe_kern_bpf_cookie, 4800 }, 4801 [FEAT_BTF_ENUM64] = { 4802 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4803 }, 4804 [FEAT_SYSCALL_WRAPPER] = { 4805 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4806 }, 4807 }; 4808 4809 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4810 { 4811 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4812 int ret; 4813 4814 if (obj && obj->gen_loader) 4815 /* To generate loader program assume the latest kernel 4816 * to avoid doing extra prog_load, map_create syscalls. 4817 */ 4818 return true; 4819 4820 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4821 ret = feat->probe(); 4822 if (ret > 0) { 4823 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4824 } else if (ret == 0) { 4825 WRITE_ONCE(feat->res, FEAT_MISSING); 4826 } else { 4827 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4828 WRITE_ONCE(feat->res, FEAT_MISSING); 4829 } 4830 } 4831 4832 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4833 } 4834 4835 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4836 { 4837 struct bpf_map_info map_info; 4838 char msg[STRERR_BUFSIZE]; 4839 __u32 map_info_len = sizeof(map_info); 4840 int err; 4841 4842 memset(&map_info, 0, map_info_len); 4843 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4844 if (err && errno == EINVAL) 4845 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4846 if (err) { 4847 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4848 libbpf_strerror_r(errno, msg, sizeof(msg))); 4849 return false; 4850 } 4851 4852 return (map_info.type == map->def.type && 4853 map_info.key_size == map->def.key_size && 4854 map_info.value_size == map->def.value_size && 4855 map_info.max_entries == map->def.max_entries && 4856 map_info.map_flags == map->def.map_flags && 4857 map_info.map_extra == map->map_extra); 4858 } 4859 4860 static int 4861 bpf_object__reuse_map(struct bpf_map *map) 4862 { 4863 char *cp, errmsg[STRERR_BUFSIZE]; 4864 int err, pin_fd; 4865 4866 pin_fd = bpf_obj_get(map->pin_path); 4867 if (pin_fd < 0) { 4868 err = -errno; 4869 if (err == -ENOENT) { 4870 pr_debug("found no pinned map to reuse at '%s'\n", 4871 map->pin_path); 4872 return 0; 4873 } 4874 4875 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4876 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4877 map->pin_path, cp); 4878 return err; 4879 } 4880 4881 if (!map_is_reuse_compat(map, pin_fd)) { 4882 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4883 map->pin_path); 4884 close(pin_fd); 4885 return -EINVAL; 4886 } 4887 4888 err = bpf_map__reuse_fd(map, pin_fd); 4889 close(pin_fd); 4890 if (err) { 4891 return err; 4892 } 4893 map->pinned = true; 4894 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4895 4896 return 0; 4897 } 4898 4899 static int 4900 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4901 { 4902 enum libbpf_map_type map_type = map->libbpf_type; 4903 char *cp, errmsg[STRERR_BUFSIZE]; 4904 int err, zero = 0; 4905 4906 if (obj->gen_loader) { 4907 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4908 map->mmaped, map->def.value_size); 4909 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4910 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4911 return 0; 4912 } 4913 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4914 if (err) { 4915 err = -errno; 4916 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4917 pr_warn("Error setting initial map(%s) contents: %s\n", 4918 map->name, cp); 4919 return err; 4920 } 4921 4922 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4923 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4924 err = bpf_map_freeze(map->fd); 4925 if (err) { 4926 err = -errno; 4927 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4928 pr_warn("Error freezing map(%s) as read-only: %s\n", 4929 map->name, cp); 4930 return err; 4931 } 4932 } 4933 return 0; 4934 } 4935 4936 static void bpf_map__destroy(struct bpf_map *map); 4937 4938 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4939 { 4940 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4941 struct bpf_map_def *def = &map->def; 4942 const char *map_name = NULL; 4943 int err = 0; 4944 4945 if (kernel_supports(obj, FEAT_PROG_NAME)) 4946 map_name = map->name; 4947 create_attr.map_ifindex = map->map_ifindex; 4948 create_attr.map_flags = def->map_flags; 4949 create_attr.numa_node = map->numa_node; 4950 create_attr.map_extra = map->map_extra; 4951 4952 if (bpf_map__is_struct_ops(map)) 4953 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4954 4955 if (obj->btf && btf__fd(obj->btf) >= 0) { 4956 create_attr.btf_fd = btf__fd(obj->btf); 4957 create_attr.btf_key_type_id = map->btf_key_type_id; 4958 create_attr.btf_value_type_id = map->btf_value_type_id; 4959 } 4960 4961 if (bpf_map_type__is_map_in_map(def->type)) { 4962 if (map->inner_map) { 4963 err = bpf_object__create_map(obj, map->inner_map, true); 4964 if (err) { 4965 pr_warn("map '%s': failed to create inner map: %d\n", 4966 map->name, err); 4967 return err; 4968 } 4969 map->inner_map_fd = bpf_map__fd(map->inner_map); 4970 } 4971 if (map->inner_map_fd >= 0) 4972 create_attr.inner_map_fd = map->inner_map_fd; 4973 } 4974 4975 switch (def->type) { 4976 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 4977 case BPF_MAP_TYPE_CGROUP_ARRAY: 4978 case BPF_MAP_TYPE_STACK_TRACE: 4979 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 4980 case BPF_MAP_TYPE_HASH_OF_MAPS: 4981 case BPF_MAP_TYPE_DEVMAP: 4982 case BPF_MAP_TYPE_DEVMAP_HASH: 4983 case BPF_MAP_TYPE_CPUMAP: 4984 case BPF_MAP_TYPE_XSKMAP: 4985 case BPF_MAP_TYPE_SOCKMAP: 4986 case BPF_MAP_TYPE_SOCKHASH: 4987 case BPF_MAP_TYPE_QUEUE: 4988 case BPF_MAP_TYPE_STACK: 4989 create_attr.btf_fd = 0; 4990 create_attr.btf_key_type_id = 0; 4991 create_attr.btf_value_type_id = 0; 4992 map->btf_key_type_id = 0; 4993 map->btf_value_type_id = 0; 4994 default: 4995 break; 4996 } 4997 4998 if (obj->gen_loader) { 4999 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5000 def->key_size, def->value_size, def->max_entries, 5001 &create_attr, is_inner ? -1 : map - obj->maps); 5002 /* Pretend to have valid FD to pass various fd >= 0 checks. 5003 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5004 */ 5005 map->fd = 0; 5006 } else { 5007 map->fd = bpf_map_create(def->type, map_name, 5008 def->key_size, def->value_size, 5009 def->max_entries, &create_attr); 5010 } 5011 if (map->fd < 0 && (create_attr.btf_key_type_id || 5012 create_attr.btf_value_type_id)) { 5013 char *cp, errmsg[STRERR_BUFSIZE]; 5014 5015 err = -errno; 5016 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5017 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5018 map->name, cp, err); 5019 create_attr.btf_fd = 0; 5020 create_attr.btf_key_type_id = 0; 5021 create_attr.btf_value_type_id = 0; 5022 map->btf_key_type_id = 0; 5023 map->btf_value_type_id = 0; 5024 map->fd = bpf_map_create(def->type, map_name, 5025 def->key_size, def->value_size, 5026 def->max_entries, &create_attr); 5027 } 5028 5029 err = map->fd < 0 ? -errno : 0; 5030 5031 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5032 if (obj->gen_loader) 5033 map->inner_map->fd = -1; 5034 bpf_map__destroy(map->inner_map); 5035 zfree(&map->inner_map); 5036 } 5037 5038 return err; 5039 } 5040 5041 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5042 { 5043 const struct bpf_map *targ_map; 5044 unsigned int i; 5045 int fd, err = 0; 5046 5047 for (i = 0; i < map->init_slots_sz; i++) { 5048 if (!map->init_slots[i]) 5049 continue; 5050 5051 targ_map = map->init_slots[i]; 5052 fd = bpf_map__fd(targ_map); 5053 5054 if (obj->gen_loader) { 5055 bpf_gen__populate_outer_map(obj->gen_loader, 5056 map - obj->maps, i, 5057 targ_map - obj->maps); 5058 } else { 5059 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5060 } 5061 if (err) { 5062 err = -errno; 5063 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5064 map->name, i, targ_map->name, fd, err); 5065 return err; 5066 } 5067 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5068 map->name, i, targ_map->name, fd); 5069 } 5070 5071 zfree(&map->init_slots); 5072 map->init_slots_sz = 0; 5073 5074 return 0; 5075 } 5076 5077 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5078 { 5079 const struct bpf_program *targ_prog; 5080 unsigned int i; 5081 int fd, err; 5082 5083 if (obj->gen_loader) 5084 return -ENOTSUP; 5085 5086 for (i = 0; i < map->init_slots_sz; i++) { 5087 if (!map->init_slots[i]) 5088 continue; 5089 5090 targ_prog = map->init_slots[i]; 5091 fd = bpf_program__fd(targ_prog); 5092 5093 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5094 if (err) { 5095 err = -errno; 5096 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5097 map->name, i, targ_prog->name, fd, err); 5098 return err; 5099 } 5100 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5101 map->name, i, targ_prog->name, fd); 5102 } 5103 5104 zfree(&map->init_slots); 5105 map->init_slots_sz = 0; 5106 5107 return 0; 5108 } 5109 5110 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5111 { 5112 struct bpf_map *map; 5113 int i, err; 5114 5115 for (i = 0; i < obj->nr_maps; i++) { 5116 map = &obj->maps[i]; 5117 5118 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5119 continue; 5120 5121 err = init_prog_array_slots(obj, map); 5122 if (err < 0) { 5123 zclose(map->fd); 5124 return err; 5125 } 5126 } 5127 return 0; 5128 } 5129 5130 static int map_set_def_max_entries(struct bpf_map *map) 5131 { 5132 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5133 int nr_cpus; 5134 5135 nr_cpus = libbpf_num_possible_cpus(); 5136 if (nr_cpus < 0) { 5137 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5138 map->name, nr_cpus); 5139 return nr_cpus; 5140 } 5141 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5142 map->def.max_entries = nr_cpus; 5143 } 5144 5145 return 0; 5146 } 5147 5148 static int 5149 bpf_object__create_maps(struct bpf_object *obj) 5150 { 5151 struct bpf_map *map; 5152 char *cp, errmsg[STRERR_BUFSIZE]; 5153 unsigned int i, j; 5154 int err; 5155 bool retried; 5156 5157 for (i = 0; i < obj->nr_maps; i++) { 5158 map = &obj->maps[i]; 5159 5160 /* To support old kernels, we skip creating global data maps 5161 * (.rodata, .data, .kconfig, etc); later on, during program 5162 * loading, if we detect that at least one of the to-be-loaded 5163 * programs is referencing any global data map, we'll error 5164 * out with program name and relocation index logged. 5165 * This approach allows to accommodate Clang emitting 5166 * unnecessary .rodata.str1.1 sections for string literals, 5167 * but also it allows to have CO-RE applications that use 5168 * global variables in some of BPF programs, but not others. 5169 * If those global variable-using programs are not loaded at 5170 * runtime due to bpf_program__set_autoload(prog, false), 5171 * bpf_object loading will succeed just fine even on old 5172 * kernels. 5173 */ 5174 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5175 map->autocreate = false; 5176 5177 if (!map->autocreate) { 5178 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5179 continue; 5180 } 5181 5182 err = map_set_def_max_entries(map); 5183 if (err) 5184 goto err_out; 5185 5186 retried = false; 5187 retry: 5188 if (map->pin_path) { 5189 err = bpf_object__reuse_map(map); 5190 if (err) { 5191 pr_warn("map '%s': error reusing pinned map\n", 5192 map->name); 5193 goto err_out; 5194 } 5195 if (retried && map->fd < 0) { 5196 pr_warn("map '%s': cannot find pinned map\n", 5197 map->name); 5198 err = -ENOENT; 5199 goto err_out; 5200 } 5201 } 5202 5203 if (map->fd >= 0) { 5204 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5205 map->name, map->fd); 5206 } else { 5207 err = bpf_object__create_map(obj, map, false); 5208 if (err) 5209 goto err_out; 5210 5211 pr_debug("map '%s': created successfully, fd=%d\n", 5212 map->name, map->fd); 5213 5214 if (bpf_map__is_internal(map)) { 5215 err = bpf_object__populate_internal_map(obj, map); 5216 if (err < 0) { 5217 zclose(map->fd); 5218 goto err_out; 5219 } 5220 } 5221 5222 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5223 err = init_map_in_map_slots(obj, map); 5224 if (err < 0) { 5225 zclose(map->fd); 5226 goto err_out; 5227 } 5228 } 5229 } 5230 5231 if (map->pin_path && !map->pinned) { 5232 err = bpf_map__pin(map, NULL); 5233 if (err) { 5234 zclose(map->fd); 5235 if (!retried && err == -EEXIST) { 5236 retried = true; 5237 goto retry; 5238 } 5239 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5240 map->name, map->pin_path, err); 5241 goto err_out; 5242 } 5243 } 5244 } 5245 5246 return 0; 5247 5248 err_out: 5249 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5250 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5251 pr_perm_msg(err); 5252 for (j = 0; j < i; j++) 5253 zclose(obj->maps[j].fd); 5254 return err; 5255 } 5256 5257 static bool bpf_core_is_flavor_sep(const char *s) 5258 { 5259 /* check X___Y name pattern, where X and Y are not underscores */ 5260 return s[0] != '_' && /* X */ 5261 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5262 s[4] != '_'; /* Y */ 5263 } 5264 5265 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5266 * before last triple underscore. Struct name part after last triple 5267 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5268 */ 5269 size_t bpf_core_essential_name_len(const char *name) 5270 { 5271 size_t n = strlen(name); 5272 int i; 5273 5274 for (i = n - 5; i >= 0; i--) { 5275 if (bpf_core_is_flavor_sep(name + i)) 5276 return i + 1; 5277 } 5278 return n; 5279 } 5280 5281 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5282 { 5283 if (!cands) 5284 return; 5285 5286 free(cands->cands); 5287 free(cands); 5288 } 5289 5290 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5291 size_t local_essent_len, 5292 const struct btf *targ_btf, 5293 const char *targ_btf_name, 5294 int targ_start_id, 5295 struct bpf_core_cand_list *cands) 5296 { 5297 struct bpf_core_cand *new_cands, *cand; 5298 const struct btf_type *t, *local_t; 5299 const char *targ_name, *local_name; 5300 size_t targ_essent_len; 5301 int n, i; 5302 5303 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5304 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5305 5306 n = btf__type_cnt(targ_btf); 5307 for (i = targ_start_id; i < n; i++) { 5308 t = btf__type_by_id(targ_btf, i); 5309 if (!btf_kind_core_compat(t, local_t)) 5310 continue; 5311 5312 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5313 if (str_is_empty(targ_name)) 5314 continue; 5315 5316 targ_essent_len = bpf_core_essential_name_len(targ_name); 5317 if (targ_essent_len != local_essent_len) 5318 continue; 5319 5320 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5321 continue; 5322 5323 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5324 local_cand->id, btf_kind_str(local_t), 5325 local_name, i, btf_kind_str(t), targ_name, 5326 targ_btf_name); 5327 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5328 sizeof(*cands->cands)); 5329 if (!new_cands) 5330 return -ENOMEM; 5331 5332 cand = &new_cands[cands->len]; 5333 cand->btf = targ_btf; 5334 cand->id = i; 5335 5336 cands->cands = new_cands; 5337 cands->len++; 5338 } 5339 return 0; 5340 } 5341 5342 static int load_module_btfs(struct bpf_object *obj) 5343 { 5344 struct bpf_btf_info info; 5345 struct module_btf *mod_btf; 5346 struct btf *btf; 5347 char name[64]; 5348 __u32 id = 0, len; 5349 int err, fd; 5350 5351 if (obj->btf_modules_loaded) 5352 return 0; 5353 5354 if (obj->gen_loader) 5355 return 0; 5356 5357 /* don't do this again, even if we find no module BTFs */ 5358 obj->btf_modules_loaded = true; 5359 5360 /* kernel too old to support module BTFs */ 5361 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5362 return 0; 5363 5364 while (true) { 5365 err = bpf_btf_get_next_id(id, &id); 5366 if (err && errno == ENOENT) 5367 return 0; 5368 if (err) { 5369 err = -errno; 5370 pr_warn("failed to iterate BTF objects: %d\n", err); 5371 return err; 5372 } 5373 5374 fd = bpf_btf_get_fd_by_id(id); 5375 if (fd < 0) { 5376 if (errno == ENOENT) 5377 continue; /* expected race: BTF was unloaded */ 5378 err = -errno; 5379 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5380 return err; 5381 } 5382 5383 len = sizeof(info); 5384 memset(&info, 0, sizeof(info)); 5385 info.name = ptr_to_u64(name); 5386 info.name_len = sizeof(name); 5387 5388 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5389 if (err) { 5390 err = -errno; 5391 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5392 goto err_out; 5393 } 5394 5395 /* ignore non-module BTFs */ 5396 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5397 close(fd); 5398 continue; 5399 } 5400 5401 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5402 err = libbpf_get_error(btf); 5403 if (err) { 5404 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5405 name, id, err); 5406 goto err_out; 5407 } 5408 5409 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5410 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5411 if (err) 5412 goto err_out; 5413 5414 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5415 5416 mod_btf->btf = btf; 5417 mod_btf->id = id; 5418 mod_btf->fd = fd; 5419 mod_btf->name = strdup(name); 5420 if (!mod_btf->name) { 5421 err = -ENOMEM; 5422 goto err_out; 5423 } 5424 continue; 5425 5426 err_out: 5427 close(fd); 5428 return err; 5429 } 5430 5431 return 0; 5432 } 5433 5434 static struct bpf_core_cand_list * 5435 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5436 { 5437 struct bpf_core_cand local_cand = {}; 5438 struct bpf_core_cand_list *cands; 5439 const struct btf *main_btf; 5440 const struct btf_type *local_t; 5441 const char *local_name; 5442 size_t local_essent_len; 5443 int err, i; 5444 5445 local_cand.btf = local_btf; 5446 local_cand.id = local_type_id; 5447 local_t = btf__type_by_id(local_btf, local_type_id); 5448 if (!local_t) 5449 return ERR_PTR(-EINVAL); 5450 5451 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5452 if (str_is_empty(local_name)) 5453 return ERR_PTR(-EINVAL); 5454 local_essent_len = bpf_core_essential_name_len(local_name); 5455 5456 cands = calloc(1, sizeof(*cands)); 5457 if (!cands) 5458 return ERR_PTR(-ENOMEM); 5459 5460 /* Attempt to find target candidates in vmlinux BTF first */ 5461 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5462 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5463 if (err) 5464 goto err_out; 5465 5466 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5467 if (cands->len) 5468 return cands; 5469 5470 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5471 if (obj->btf_vmlinux_override) 5472 return cands; 5473 5474 /* now look through module BTFs, trying to still find candidates */ 5475 err = load_module_btfs(obj); 5476 if (err) 5477 goto err_out; 5478 5479 for (i = 0; i < obj->btf_module_cnt; i++) { 5480 err = bpf_core_add_cands(&local_cand, local_essent_len, 5481 obj->btf_modules[i].btf, 5482 obj->btf_modules[i].name, 5483 btf__type_cnt(obj->btf_vmlinux), 5484 cands); 5485 if (err) 5486 goto err_out; 5487 } 5488 5489 return cands; 5490 err_out: 5491 bpf_core_free_cands(cands); 5492 return ERR_PTR(err); 5493 } 5494 5495 /* Check local and target types for compatibility. This check is used for 5496 * type-based CO-RE relocations and follow slightly different rules than 5497 * field-based relocations. This function assumes that root types were already 5498 * checked for name match. Beyond that initial root-level name check, names 5499 * are completely ignored. Compatibility rules are as follows: 5500 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5501 * kind should match for local and target types (i.e., STRUCT is not 5502 * compatible with UNION); 5503 * - for ENUMs, the size is ignored; 5504 * - for INT, size and signedness are ignored; 5505 * - for ARRAY, dimensionality is ignored, element types are checked for 5506 * compatibility recursively; 5507 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5508 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5509 * - FUNC_PROTOs are compatible if they have compatible signature: same 5510 * number of input args and compatible return and argument types. 5511 * These rules are not set in stone and probably will be adjusted as we get 5512 * more experience with using BPF CO-RE relocations. 5513 */ 5514 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5515 const struct btf *targ_btf, __u32 targ_id) 5516 { 5517 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5518 } 5519 5520 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5521 const struct btf *targ_btf, __u32 targ_id) 5522 { 5523 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5524 } 5525 5526 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5527 { 5528 return (size_t)key; 5529 } 5530 5531 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5532 { 5533 return k1 == k2; 5534 } 5535 5536 static void *u32_as_hash_key(__u32 x) 5537 { 5538 return (void *)(uintptr_t)x; 5539 } 5540 5541 static int record_relo_core(struct bpf_program *prog, 5542 const struct bpf_core_relo *core_relo, int insn_idx) 5543 { 5544 struct reloc_desc *relos, *relo; 5545 5546 relos = libbpf_reallocarray(prog->reloc_desc, 5547 prog->nr_reloc + 1, sizeof(*relos)); 5548 if (!relos) 5549 return -ENOMEM; 5550 relo = &relos[prog->nr_reloc]; 5551 relo->type = RELO_CORE; 5552 relo->insn_idx = insn_idx; 5553 relo->core_relo = core_relo; 5554 prog->reloc_desc = relos; 5555 prog->nr_reloc++; 5556 return 0; 5557 } 5558 5559 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5560 { 5561 struct reloc_desc *relo; 5562 int i; 5563 5564 for (i = 0; i < prog->nr_reloc; i++) { 5565 relo = &prog->reloc_desc[i]; 5566 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5567 continue; 5568 5569 return relo->core_relo; 5570 } 5571 5572 return NULL; 5573 } 5574 5575 static int bpf_core_resolve_relo(struct bpf_program *prog, 5576 const struct bpf_core_relo *relo, 5577 int relo_idx, 5578 const struct btf *local_btf, 5579 struct hashmap *cand_cache, 5580 struct bpf_core_relo_res *targ_res) 5581 { 5582 struct bpf_core_spec specs_scratch[3] = {}; 5583 const void *type_key = u32_as_hash_key(relo->type_id); 5584 struct bpf_core_cand_list *cands = NULL; 5585 const char *prog_name = prog->name; 5586 const struct btf_type *local_type; 5587 const char *local_name; 5588 __u32 local_id = relo->type_id; 5589 int err; 5590 5591 local_type = btf__type_by_id(local_btf, local_id); 5592 if (!local_type) 5593 return -EINVAL; 5594 5595 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5596 if (!local_name) 5597 return -EINVAL; 5598 5599 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5600 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5601 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5602 if (IS_ERR(cands)) { 5603 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5604 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5605 local_name, PTR_ERR(cands)); 5606 return PTR_ERR(cands); 5607 } 5608 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5609 if (err) { 5610 bpf_core_free_cands(cands); 5611 return err; 5612 } 5613 } 5614 5615 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5616 targ_res); 5617 } 5618 5619 static int 5620 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5621 { 5622 const struct btf_ext_info_sec *sec; 5623 struct bpf_core_relo_res targ_res; 5624 const struct bpf_core_relo *rec; 5625 const struct btf_ext_info *seg; 5626 struct hashmap_entry *entry; 5627 struct hashmap *cand_cache = NULL; 5628 struct bpf_program *prog; 5629 struct bpf_insn *insn; 5630 const char *sec_name; 5631 int i, err = 0, insn_idx, sec_idx, sec_num; 5632 5633 if (obj->btf_ext->core_relo_info.len == 0) 5634 return 0; 5635 5636 if (targ_btf_path) { 5637 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5638 err = libbpf_get_error(obj->btf_vmlinux_override); 5639 if (err) { 5640 pr_warn("failed to parse target BTF: %d\n", err); 5641 return err; 5642 } 5643 } 5644 5645 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5646 if (IS_ERR(cand_cache)) { 5647 err = PTR_ERR(cand_cache); 5648 goto out; 5649 } 5650 5651 seg = &obj->btf_ext->core_relo_info; 5652 sec_num = 0; 5653 for_each_btf_ext_sec(seg, sec) { 5654 sec_idx = seg->sec_idxs[sec_num]; 5655 sec_num++; 5656 5657 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5658 if (str_is_empty(sec_name)) { 5659 err = -EINVAL; 5660 goto out; 5661 } 5662 5663 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5664 5665 for_each_btf_ext_rec(seg, sec, i, rec) { 5666 if (rec->insn_off % BPF_INSN_SZ) 5667 return -EINVAL; 5668 insn_idx = rec->insn_off / BPF_INSN_SZ; 5669 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5670 if (!prog) { 5671 /* When __weak subprog is "overridden" by another instance 5672 * of the subprog from a different object file, linker still 5673 * appends all the .BTF.ext info that used to belong to that 5674 * eliminated subprogram. 5675 * This is similar to what x86-64 linker does for relocations. 5676 * So just ignore such relocations just like we ignore 5677 * subprog instructions when discovering subprograms. 5678 */ 5679 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5680 sec_name, i, insn_idx); 5681 continue; 5682 } 5683 /* no need to apply CO-RE relocation if the program is 5684 * not going to be loaded 5685 */ 5686 if (!prog->autoload) 5687 continue; 5688 5689 /* adjust insn_idx from section frame of reference to the local 5690 * program's frame of reference; (sub-)program code is not yet 5691 * relocated, so it's enough to just subtract in-section offset 5692 */ 5693 insn_idx = insn_idx - prog->sec_insn_off; 5694 if (insn_idx >= prog->insns_cnt) 5695 return -EINVAL; 5696 insn = &prog->insns[insn_idx]; 5697 5698 err = record_relo_core(prog, rec, insn_idx); 5699 if (err) { 5700 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5701 prog->name, i, err); 5702 goto out; 5703 } 5704 5705 if (prog->obj->gen_loader) 5706 continue; 5707 5708 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5709 if (err) { 5710 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5711 prog->name, i, err); 5712 goto out; 5713 } 5714 5715 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5716 if (err) { 5717 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5718 prog->name, i, insn_idx, err); 5719 goto out; 5720 } 5721 } 5722 } 5723 5724 out: 5725 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5726 btf__free(obj->btf_vmlinux_override); 5727 obj->btf_vmlinux_override = NULL; 5728 5729 if (!IS_ERR_OR_NULL(cand_cache)) { 5730 hashmap__for_each_entry(cand_cache, entry, i) { 5731 bpf_core_free_cands(entry->value); 5732 } 5733 hashmap__free(cand_cache); 5734 } 5735 return err; 5736 } 5737 5738 /* base map load ldimm64 special constant, used also for log fixup logic */ 5739 #define MAP_LDIMM64_POISON_BASE 2001000000 5740 #define MAP_LDIMM64_POISON_PFX "200100" 5741 5742 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5743 int insn_idx, struct bpf_insn *insn, 5744 int map_idx, const struct bpf_map *map) 5745 { 5746 int i; 5747 5748 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5749 prog->name, relo_idx, insn_idx, map_idx, map->name); 5750 5751 /* we turn single ldimm64 into two identical invalid calls */ 5752 for (i = 0; i < 2; i++) { 5753 insn->code = BPF_JMP | BPF_CALL; 5754 insn->dst_reg = 0; 5755 insn->src_reg = 0; 5756 insn->off = 0; 5757 /* if this instruction is reachable (not a dead code), 5758 * verifier will complain with something like: 5759 * invalid func unknown#2001000123 5760 * where lower 123 is map index into obj->maps[] array 5761 */ 5762 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5763 5764 insn++; 5765 } 5766 } 5767 5768 /* Relocate data references within program code: 5769 * - map references; 5770 * - global variable references; 5771 * - extern references. 5772 */ 5773 static int 5774 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5775 { 5776 int i; 5777 5778 for (i = 0; i < prog->nr_reloc; i++) { 5779 struct reloc_desc *relo = &prog->reloc_desc[i]; 5780 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5781 const struct bpf_map *map; 5782 struct extern_desc *ext; 5783 5784 switch (relo->type) { 5785 case RELO_LD64: 5786 map = &obj->maps[relo->map_idx]; 5787 if (obj->gen_loader) { 5788 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5789 insn[0].imm = relo->map_idx; 5790 } else if (map->autocreate) { 5791 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5792 insn[0].imm = map->fd; 5793 } else { 5794 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5795 relo->map_idx, map); 5796 } 5797 break; 5798 case RELO_DATA: 5799 map = &obj->maps[relo->map_idx]; 5800 insn[1].imm = insn[0].imm + relo->sym_off; 5801 if (obj->gen_loader) { 5802 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5803 insn[0].imm = relo->map_idx; 5804 } else if (map->autocreate) { 5805 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5806 insn[0].imm = map->fd; 5807 } else { 5808 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5809 relo->map_idx, map); 5810 } 5811 break; 5812 case RELO_EXTERN_VAR: 5813 ext = &obj->externs[relo->sym_off]; 5814 if (ext->type == EXT_KCFG) { 5815 if (obj->gen_loader) { 5816 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5817 insn[0].imm = obj->kconfig_map_idx; 5818 } else { 5819 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5820 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5821 } 5822 insn[1].imm = ext->kcfg.data_off; 5823 } else /* EXT_KSYM */ { 5824 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5825 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5826 insn[0].imm = ext->ksym.kernel_btf_id; 5827 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5828 } else { /* typeless ksyms or unresolved typed ksyms */ 5829 insn[0].imm = (__u32)ext->ksym.addr; 5830 insn[1].imm = ext->ksym.addr >> 32; 5831 } 5832 } 5833 break; 5834 case RELO_EXTERN_FUNC: 5835 ext = &obj->externs[relo->sym_off]; 5836 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5837 if (ext->is_set) { 5838 insn[0].imm = ext->ksym.kernel_btf_id; 5839 insn[0].off = ext->ksym.btf_fd_idx; 5840 } else { /* unresolved weak kfunc */ 5841 insn[0].imm = 0; 5842 insn[0].off = 0; 5843 } 5844 break; 5845 case RELO_SUBPROG_ADDR: 5846 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5847 pr_warn("prog '%s': relo #%d: bad insn\n", 5848 prog->name, i); 5849 return -EINVAL; 5850 } 5851 /* handled already */ 5852 break; 5853 case RELO_CALL: 5854 /* handled already */ 5855 break; 5856 case RELO_CORE: 5857 /* will be handled by bpf_program_record_relos() */ 5858 break; 5859 default: 5860 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5861 prog->name, i, relo->type); 5862 return -EINVAL; 5863 } 5864 } 5865 5866 return 0; 5867 } 5868 5869 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5870 const struct bpf_program *prog, 5871 const struct btf_ext_info *ext_info, 5872 void **prog_info, __u32 *prog_rec_cnt, 5873 __u32 *prog_rec_sz) 5874 { 5875 void *copy_start = NULL, *copy_end = NULL; 5876 void *rec, *rec_end, *new_prog_info; 5877 const struct btf_ext_info_sec *sec; 5878 size_t old_sz, new_sz; 5879 int i, sec_num, sec_idx, off_adj; 5880 5881 sec_num = 0; 5882 for_each_btf_ext_sec(ext_info, sec) { 5883 sec_idx = ext_info->sec_idxs[sec_num]; 5884 sec_num++; 5885 if (prog->sec_idx != sec_idx) 5886 continue; 5887 5888 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5889 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5890 5891 if (insn_off < prog->sec_insn_off) 5892 continue; 5893 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5894 break; 5895 5896 if (!copy_start) 5897 copy_start = rec; 5898 copy_end = rec + ext_info->rec_size; 5899 } 5900 5901 if (!copy_start) 5902 return -ENOENT; 5903 5904 /* append func/line info of a given (sub-)program to the main 5905 * program func/line info 5906 */ 5907 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5908 new_sz = old_sz + (copy_end - copy_start); 5909 new_prog_info = realloc(*prog_info, new_sz); 5910 if (!new_prog_info) 5911 return -ENOMEM; 5912 *prog_info = new_prog_info; 5913 *prog_rec_cnt = new_sz / ext_info->rec_size; 5914 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5915 5916 /* Kernel instruction offsets are in units of 8-byte 5917 * instructions, while .BTF.ext instruction offsets generated 5918 * by Clang are in units of bytes. So convert Clang offsets 5919 * into kernel offsets and adjust offset according to program 5920 * relocated position. 5921 */ 5922 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5923 rec = new_prog_info + old_sz; 5924 rec_end = new_prog_info + new_sz; 5925 for (; rec < rec_end; rec += ext_info->rec_size) { 5926 __u32 *insn_off = rec; 5927 5928 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5929 } 5930 *prog_rec_sz = ext_info->rec_size; 5931 return 0; 5932 } 5933 5934 return -ENOENT; 5935 } 5936 5937 static int 5938 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5939 struct bpf_program *main_prog, 5940 const struct bpf_program *prog) 5941 { 5942 int err; 5943 5944 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5945 * supprot func/line info 5946 */ 5947 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5948 return 0; 5949 5950 /* only attempt func info relocation if main program's func_info 5951 * relocation was successful 5952 */ 5953 if (main_prog != prog && !main_prog->func_info) 5954 goto line_info; 5955 5956 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5957 &main_prog->func_info, 5958 &main_prog->func_info_cnt, 5959 &main_prog->func_info_rec_size); 5960 if (err) { 5961 if (err != -ENOENT) { 5962 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5963 prog->name, err); 5964 return err; 5965 } 5966 if (main_prog->func_info) { 5967 /* 5968 * Some info has already been found but has problem 5969 * in the last btf_ext reloc. Must have to error out. 5970 */ 5971 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 5972 return err; 5973 } 5974 /* Have problem loading the very first info. Ignore the rest. */ 5975 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 5976 prog->name); 5977 } 5978 5979 line_info: 5980 /* don't relocate line info if main program's relocation failed */ 5981 if (main_prog != prog && !main_prog->line_info) 5982 return 0; 5983 5984 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 5985 &main_prog->line_info, 5986 &main_prog->line_info_cnt, 5987 &main_prog->line_info_rec_size); 5988 if (err) { 5989 if (err != -ENOENT) { 5990 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 5991 prog->name, err); 5992 return err; 5993 } 5994 if (main_prog->line_info) { 5995 /* 5996 * Some info has already been found but has problem 5997 * in the last btf_ext reloc. Must have to error out. 5998 */ 5999 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6000 return err; 6001 } 6002 /* Have problem loading the very first info. Ignore the rest. */ 6003 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6004 prog->name); 6005 } 6006 return 0; 6007 } 6008 6009 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6010 { 6011 size_t insn_idx = *(const size_t *)key; 6012 const struct reloc_desc *relo = elem; 6013 6014 if (insn_idx == relo->insn_idx) 6015 return 0; 6016 return insn_idx < relo->insn_idx ? -1 : 1; 6017 } 6018 6019 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6020 { 6021 if (!prog->nr_reloc) 6022 return NULL; 6023 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6024 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6025 } 6026 6027 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6028 { 6029 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6030 struct reloc_desc *relos; 6031 int i; 6032 6033 if (main_prog == subprog) 6034 return 0; 6035 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6036 if (!relos) 6037 return -ENOMEM; 6038 if (subprog->nr_reloc) 6039 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6040 sizeof(*relos) * subprog->nr_reloc); 6041 6042 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6043 relos[i].insn_idx += subprog->sub_insn_off; 6044 /* After insn_idx adjustment the 'relos' array is still sorted 6045 * by insn_idx and doesn't break bsearch. 6046 */ 6047 main_prog->reloc_desc = relos; 6048 main_prog->nr_reloc = new_cnt; 6049 return 0; 6050 } 6051 6052 static int 6053 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6054 struct bpf_program *prog) 6055 { 6056 size_t sub_insn_idx, insn_idx, new_cnt; 6057 struct bpf_program *subprog; 6058 struct bpf_insn *insns, *insn; 6059 struct reloc_desc *relo; 6060 int err; 6061 6062 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6063 if (err) 6064 return err; 6065 6066 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6067 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6068 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6069 continue; 6070 6071 relo = find_prog_insn_relo(prog, insn_idx); 6072 if (relo && relo->type == RELO_EXTERN_FUNC) 6073 /* kfunc relocations will be handled later 6074 * in bpf_object__relocate_data() 6075 */ 6076 continue; 6077 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6078 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6079 prog->name, insn_idx, relo->type); 6080 return -LIBBPF_ERRNO__RELOC; 6081 } 6082 if (relo) { 6083 /* sub-program instruction index is a combination of 6084 * an offset of a symbol pointed to by relocation and 6085 * call instruction's imm field; for global functions, 6086 * call always has imm = -1, but for static functions 6087 * relocation is against STT_SECTION and insn->imm 6088 * points to a start of a static function 6089 * 6090 * for subprog addr relocation, the relo->sym_off + insn->imm is 6091 * the byte offset in the corresponding section. 6092 */ 6093 if (relo->type == RELO_CALL) 6094 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6095 else 6096 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6097 } else if (insn_is_pseudo_func(insn)) { 6098 /* 6099 * RELO_SUBPROG_ADDR relo is always emitted even if both 6100 * functions are in the same section, so it shouldn't reach here. 6101 */ 6102 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6103 prog->name, insn_idx); 6104 return -LIBBPF_ERRNO__RELOC; 6105 } else { 6106 /* if subprogram call is to a static function within 6107 * the same ELF section, there won't be any relocation 6108 * emitted, but it also means there is no additional 6109 * offset necessary, insns->imm is relative to 6110 * instruction's original position within the section 6111 */ 6112 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6113 } 6114 6115 /* we enforce that sub-programs should be in .text section */ 6116 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6117 if (!subprog) { 6118 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6119 prog->name); 6120 return -LIBBPF_ERRNO__RELOC; 6121 } 6122 6123 /* if it's the first call instruction calling into this 6124 * subprogram (meaning this subprog hasn't been processed 6125 * yet) within the context of current main program: 6126 * - append it at the end of main program's instructions blog; 6127 * - process is recursively, while current program is put on hold; 6128 * - if that subprogram calls some other not yet processes 6129 * subprogram, same thing will happen recursively until 6130 * there are no more unprocesses subprograms left to append 6131 * and relocate. 6132 */ 6133 if (subprog->sub_insn_off == 0) { 6134 subprog->sub_insn_off = main_prog->insns_cnt; 6135 6136 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6137 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6138 if (!insns) { 6139 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6140 return -ENOMEM; 6141 } 6142 main_prog->insns = insns; 6143 main_prog->insns_cnt = new_cnt; 6144 6145 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6146 subprog->insns_cnt * sizeof(*insns)); 6147 6148 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6149 main_prog->name, subprog->insns_cnt, subprog->name); 6150 6151 /* The subprog insns are now appended. Append its relos too. */ 6152 err = append_subprog_relos(main_prog, subprog); 6153 if (err) 6154 return err; 6155 err = bpf_object__reloc_code(obj, main_prog, subprog); 6156 if (err) 6157 return err; 6158 } 6159 6160 /* main_prog->insns memory could have been re-allocated, so 6161 * calculate pointer again 6162 */ 6163 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6164 /* calculate correct instruction position within current main 6165 * prog; each main prog can have a different set of 6166 * subprograms appended (potentially in different order as 6167 * well), so position of any subprog can be different for 6168 * different main programs */ 6169 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6170 6171 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6172 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6173 } 6174 6175 return 0; 6176 } 6177 6178 /* 6179 * Relocate sub-program calls. 6180 * 6181 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6182 * main prog) is processed separately. For each subprog (non-entry functions, 6183 * that can be called from either entry progs or other subprogs) gets their 6184 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6185 * hasn't been yet appended and relocated within current main prog. Once its 6186 * relocated, sub_insn_off will point at the position within current main prog 6187 * where given subprog was appended. This will further be used to relocate all 6188 * the call instructions jumping into this subprog. 6189 * 6190 * We start with main program and process all call instructions. If the call 6191 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6192 * is zero), subprog instructions are appended at the end of main program's 6193 * instruction array. Then main program is "put on hold" while we recursively 6194 * process newly appended subprogram. If that subprogram calls into another 6195 * subprogram that hasn't been appended, new subprogram is appended again to 6196 * the *main* prog's instructions (subprog's instructions are always left 6197 * untouched, as they need to be in unmodified state for subsequent main progs 6198 * and subprog instructions are always sent only as part of a main prog) and 6199 * the process continues recursively. Once all the subprogs called from a main 6200 * prog or any of its subprogs are appended (and relocated), all their 6201 * positions within finalized instructions array are known, so it's easy to 6202 * rewrite call instructions with correct relative offsets, corresponding to 6203 * desired target subprog. 6204 * 6205 * Its important to realize that some subprogs might not be called from some 6206 * main prog and any of its called/used subprogs. Those will keep their 6207 * subprog->sub_insn_off as zero at all times and won't be appended to current 6208 * main prog and won't be relocated within the context of current main prog. 6209 * They might still be used from other main progs later. 6210 * 6211 * Visually this process can be shown as below. Suppose we have two main 6212 * programs mainA and mainB and BPF object contains three subprogs: subA, 6213 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6214 * subC both call subB: 6215 * 6216 * +--------+ +-------+ 6217 * | v v | 6218 * +--+---+ +--+-+-+ +---+--+ 6219 * | subA | | subB | | subC | 6220 * +--+---+ +------+ +---+--+ 6221 * ^ ^ 6222 * | | 6223 * +---+-------+ +------+----+ 6224 * | mainA | | mainB | 6225 * +-----------+ +-----------+ 6226 * 6227 * We'll start relocating mainA, will find subA, append it and start 6228 * processing sub A recursively: 6229 * 6230 * +-----------+------+ 6231 * | mainA | subA | 6232 * +-----------+------+ 6233 * 6234 * At this point we notice that subB is used from subA, so we append it and 6235 * relocate (there are no further subcalls from subB): 6236 * 6237 * +-----------+------+------+ 6238 * | mainA | subA | subB | 6239 * +-----------+------+------+ 6240 * 6241 * At this point, we relocate subA calls, then go one level up and finish with 6242 * relocatin mainA calls. mainA is done. 6243 * 6244 * For mainB process is similar but results in different order. We start with 6245 * mainB and skip subA and subB, as mainB never calls them (at least 6246 * directly), but we see subC is needed, so we append and start processing it: 6247 * 6248 * +-----------+------+ 6249 * | mainB | subC | 6250 * +-----------+------+ 6251 * Now we see subC needs subB, so we go back to it, append and relocate it: 6252 * 6253 * +-----------+------+------+ 6254 * | mainB | subC | subB | 6255 * +-----------+------+------+ 6256 * 6257 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6258 */ 6259 static int 6260 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6261 { 6262 struct bpf_program *subprog; 6263 int i, err; 6264 6265 /* mark all subprogs as not relocated (yet) within the context of 6266 * current main program 6267 */ 6268 for (i = 0; i < obj->nr_programs; i++) { 6269 subprog = &obj->programs[i]; 6270 if (!prog_is_subprog(obj, subprog)) 6271 continue; 6272 6273 subprog->sub_insn_off = 0; 6274 } 6275 6276 err = bpf_object__reloc_code(obj, prog, prog); 6277 if (err) 6278 return err; 6279 6280 return 0; 6281 } 6282 6283 static void 6284 bpf_object__free_relocs(struct bpf_object *obj) 6285 { 6286 struct bpf_program *prog; 6287 int i; 6288 6289 /* free up relocation descriptors */ 6290 for (i = 0; i < obj->nr_programs; i++) { 6291 prog = &obj->programs[i]; 6292 zfree(&prog->reloc_desc); 6293 prog->nr_reloc = 0; 6294 } 6295 } 6296 6297 static int cmp_relocs(const void *_a, const void *_b) 6298 { 6299 const struct reloc_desc *a = _a; 6300 const struct reloc_desc *b = _b; 6301 6302 if (a->insn_idx != b->insn_idx) 6303 return a->insn_idx < b->insn_idx ? -1 : 1; 6304 6305 /* no two relocations should have the same insn_idx, but ... */ 6306 if (a->type != b->type) 6307 return a->type < b->type ? -1 : 1; 6308 6309 return 0; 6310 } 6311 6312 static void bpf_object__sort_relos(struct bpf_object *obj) 6313 { 6314 int i; 6315 6316 for (i = 0; i < obj->nr_programs; i++) { 6317 struct bpf_program *p = &obj->programs[i]; 6318 6319 if (!p->nr_reloc) 6320 continue; 6321 6322 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6323 } 6324 } 6325 6326 static int 6327 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6328 { 6329 struct bpf_program *prog; 6330 size_t i, j; 6331 int err; 6332 6333 if (obj->btf_ext) { 6334 err = bpf_object__relocate_core(obj, targ_btf_path); 6335 if (err) { 6336 pr_warn("failed to perform CO-RE relocations: %d\n", 6337 err); 6338 return err; 6339 } 6340 bpf_object__sort_relos(obj); 6341 } 6342 6343 /* Before relocating calls pre-process relocations and mark 6344 * few ld_imm64 instructions that points to subprogs. 6345 * Otherwise bpf_object__reloc_code() later would have to consider 6346 * all ld_imm64 insns as relocation candidates. That would 6347 * reduce relocation speed, since amount of find_prog_insn_relo() 6348 * would increase and most of them will fail to find a relo. 6349 */ 6350 for (i = 0; i < obj->nr_programs; i++) { 6351 prog = &obj->programs[i]; 6352 for (j = 0; j < prog->nr_reloc; j++) { 6353 struct reloc_desc *relo = &prog->reloc_desc[j]; 6354 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6355 6356 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6357 if (relo->type == RELO_SUBPROG_ADDR) 6358 insn[0].src_reg = BPF_PSEUDO_FUNC; 6359 } 6360 } 6361 6362 /* relocate subprogram calls and append used subprograms to main 6363 * programs; each copy of subprogram code needs to be relocated 6364 * differently for each main program, because its code location might 6365 * have changed. 6366 * Append subprog relos to main programs to allow data relos to be 6367 * processed after text is completely relocated. 6368 */ 6369 for (i = 0; i < obj->nr_programs; i++) { 6370 prog = &obj->programs[i]; 6371 /* sub-program's sub-calls are relocated within the context of 6372 * its main program only 6373 */ 6374 if (prog_is_subprog(obj, prog)) 6375 continue; 6376 if (!prog->autoload) 6377 continue; 6378 6379 err = bpf_object__relocate_calls(obj, prog); 6380 if (err) { 6381 pr_warn("prog '%s': failed to relocate calls: %d\n", 6382 prog->name, err); 6383 return err; 6384 } 6385 } 6386 /* Process data relos for main programs */ 6387 for (i = 0; i < obj->nr_programs; i++) { 6388 prog = &obj->programs[i]; 6389 if (prog_is_subprog(obj, prog)) 6390 continue; 6391 if (!prog->autoload) 6392 continue; 6393 err = bpf_object__relocate_data(obj, prog); 6394 if (err) { 6395 pr_warn("prog '%s': failed to relocate data references: %d\n", 6396 prog->name, err); 6397 return err; 6398 } 6399 } 6400 6401 return 0; 6402 } 6403 6404 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6405 Elf64_Shdr *shdr, Elf_Data *data); 6406 6407 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6408 Elf64_Shdr *shdr, Elf_Data *data) 6409 { 6410 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6411 int i, j, nrels, new_sz; 6412 const struct btf_var_secinfo *vi = NULL; 6413 const struct btf_type *sec, *var, *def; 6414 struct bpf_map *map = NULL, *targ_map = NULL; 6415 struct bpf_program *targ_prog = NULL; 6416 bool is_prog_array, is_map_in_map; 6417 const struct btf_member *member; 6418 const char *name, *mname, *type; 6419 unsigned int moff; 6420 Elf64_Sym *sym; 6421 Elf64_Rel *rel; 6422 void *tmp; 6423 6424 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6425 return -EINVAL; 6426 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6427 if (!sec) 6428 return -EINVAL; 6429 6430 nrels = shdr->sh_size / shdr->sh_entsize; 6431 for (i = 0; i < nrels; i++) { 6432 rel = elf_rel_by_idx(data, i); 6433 if (!rel) { 6434 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6435 return -LIBBPF_ERRNO__FORMAT; 6436 } 6437 6438 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6439 if (!sym) { 6440 pr_warn(".maps relo #%d: symbol %zx not found\n", 6441 i, (size_t)ELF64_R_SYM(rel->r_info)); 6442 return -LIBBPF_ERRNO__FORMAT; 6443 } 6444 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6445 6446 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6447 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6448 (size_t)rel->r_offset, sym->st_name, name); 6449 6450 for (j = 0; j < obj->nr_maps; j++) { 6451 map = &obj->maps[j]; 6452 if (map->sec_idx != obj->efile.btf_maps_shndx) 6453 continue; 6454 6455 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6456 if (vi->offset <= rel->r_offset && 6457 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6458 break; 6459 } 6460 if (j == obj->nr_maps) { 6461 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6462 i, name, (size_t)rel->r_offset); 6463 return -EINVAL; 6464 } 6465 6466 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6467 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6468 type = is_map_in_map ? "map" : "prog"; 6469 if (is_map_in_map) { 6470 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6471 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6472 i, name); 6473 return -LIBBPF_ERRNO__RELOC; 6474 } 6475 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6476 map->def.key_size != sizeof(int)) { 6477 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6478 i, map->name, sizeof(int)); 6479 return -EINVAL; 6480 } 6481 targ_map = bpf_object__find_map_by_name(obj, name); 6482 if (!targ_map) { 6483 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6484 i, name); 6485 return -ESRCH; 6486 } 6487 } else if (is_prog_array) { 6488 targ_prog = bpf_object__find_program_by_name(obj, name); 6489 if (!targ_prog) { 6490 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6491 i, name); 6492 return -ESRCH; 6493 } 6494 if (targ_prog->sec_idx != sym->st_shndx || 6495 targ_prog->sec_insn_off * 8 != sym->st_value || 6496 prog_is_subprog(obj, targ_prog)) { 6497 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6498 i, name); 6499 return -LIBBPF_ERRNO__RELOC; 6500 } 6501 } else { 6502 return -EINVAL; 6503 } 6504 6505 var = btf__type_by_id(obj->btf, vi->type); 6506 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6507 if (btf_vlen(def) == 0) 6508 return -EINVAL; 6509 member = btf_members(def) + btf_vlen(def) - 1; 6510 mname = btf__name_by_offset(obj->btf, member->name_off); 6511 if (strcmp(mname, "values")) 6512 return -EINVAL; 6513 6514 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6515 if (rel->r_offset - vi->offset < moff) 6516 return -EINVAL; 6517 6518 moff = rel->r_offset - vi->offset - moff; 6519 /* here we use BPF pointer size, which is always 64 bit, as we 6520 * are parsing ELF that was built for BPF target 6521 */ 6522 if (moff % bpf_ptr_sz) 6523 return -EINVAL; 6524 moff /= bpf_ptr_sz; 6525 if (moff >= map->init_slots_sz) { 6526 new_sz = moff + 1; 6527 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6528 if (!tmp) 6529 return -ENOMEM; 6530 map->init_slots = tmp; 6531 memset(map->init_slots + map->init_slots_sz, 0, 6532 (new_sz - map->init_slots_sz) * host_ptr_sz); 6533 map->init_slots_sz = new_sz; 6534 } 6535 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6536 6537 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6538 i, map->name, moff, type, name); 6539 } 6540 6541 return 0; 6542 } 6543 6544 static int bpf_object__collect_relos(struct bpf_object *obj) 6545 { 6546 int i, err; 6547 6548 for (i = 0; i < obj->efile.sec_cnt; i++) { 6549 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6550 Elf64_Shdr *shdr; 6551 Elf_Data *data; 6552 int idx; 6553 6554 if (sec_desc->sec_type != SEC_RELO) 6555 continue; 6556 6557 shdr = sec_desc->shdr; 6558 data = sec_desc->data; 6559 idx = shdr->sh_info; 6560 6561 if (shdr->sh_type != SHT_REL) { 6562 pr_warn("internal error at %d\n", __LINE__); 6563 return -LIBBPF_ERRNO__INTERNAL; 6564 } 6565 6566 if (idx == obj->efile.st_ops_shndx) 6567 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6568 else if (idx == obj->efile.btf_maps_shndx) 6569 err = bpf_object__collect_map_relos(obj, shdr, data); 6570 else 6571 err = bpf_object__collect_prog_relos(obj, shdr, data); 6572 if (err) 6573 return err; 6574 } 6575 6576 bpf_object__sort_relos(obj); 6577 return 0; 6578 } 6579 6580 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6581 { 6582 if (BPF_CLASS(insn->code) == BPF_JMP && 6583 BPF_OP(insn->code) == BPF_CALL && 6584 BPF_SRC(insn->code) == BPF_K && 6585 insn->src_reg == 0 && 6586 insn->dst_reg == 0) { 6587 *func_id = insn->imm; 6588 return true; 6589 } 6590 return false; 6591 } 6592 6593 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6594 { 6595 struct bpf_insn *insn = prog->insns; 6596 enum bpf_func_id func_id; 6597 int i; 6598 6599 if (obj->gen_loader) 6600 return 0; 6601 6602 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6603 if (!insn_is_helper_call(insn, &func_id)) 6604 continue; 6605 6606 /* on kernels that don't yet support 6607 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6608 * to bpf_probe_read() which works well for old kernels 6609 */ 6610 switch (func_id) { 6611 case BPF_FUNC_probe_read_kernel: 6612 case BPF_FUNC_probe_read_user: 6613 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6614 insn->imm = BPF_FUNC_probe_read; 6615 break; 6616 case BPF_FUNC_probe_read_kernel_str: 6617 case BPF_FUNC_probe_read_user_str: 6618 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6619 insn->imm = BPF_FUNC_probe_read_str; 6620 break; 6621 default: 6622 break; 6623 } 6624 } 6625 return 0; 6626 } 6627 6628 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6629 int *btf_obj_fd, int *btf_type_id); 6630 6631 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6632 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6633 struct bpf_prog_load_opts *opts, long cookie) 6634 { 6635 enum sec_def_flags def = cookie; 6636 6637 /* old kernels might not support specifying expected_attach_type */ 6638 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6639 opts->expected_attach_type = 0; 6640 6641 if (def & SEC_SLEEPABLE) 6642 opts->prog_flags |= BPF_F_SLEEPABLE; 6643 6644 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6645 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6646 6647 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6648 int btf_obj_fd = 0, btf_type_id = 0, err; 6649 const char *attach_name; 6650 6651 attach_name = strchr(prog->sec_name, '/'); 6652 if (!attach_name) { 6653 /* if BPF program is annotated with just SEC("fentry") 6654 * (or similar) without declaratively specifying 6655 * target, then it is expected that target will be 6656 * specified with bpf_program__set_attach_target() at 6657 * runtime before BPF object load step. If not, then 6658 * there is nothing to load into the kernel as BPF 6659 * verifier won't be able to validate BPF program 6660 * correctness anyways. 6661 */ 6662 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6663 prog->name); 6664 return -EINVAL; 6665 } 6666 attach_name++; /* skip over / */ 6667 6668 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6669 if (err) 6670 return err; 6671 6672 /* cache resolved BTF FD and BTF type ID in the prog */ 6673 prog->attach_btf_obj_fd = btf_obj_fd; 6674 prog->attach_btf_id = btf_type_id; 6675 6676 /* but by now libbpf common logic is not utilizing 6677 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6678 * this callback is called after opts were populated by 6679 * libbpf, so this callback has to update opts explicitly here 6680 */ 6681 opts->attach_btf_obj_fd = btf_obj_fd; 6682 opts->attach_btf_id = btf_type_id; 6683 } 6684 return 0; 6685 } 6686 6687 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6688 6689 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6690 struct bpf_insn *insns, int insns_cnt, 6691 const char *license, __u32 kern_version, int *prog_fd) 6692 { 6693 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6694 const char *prog_name = NULL; 6695 char *cp, errmsg[STRERR_BUFSIZE]; 6696 size_t log_buf_size = 0; 6697 char *log_buf = NULL, *tmp; 6698 int btf_fd, ret, err; 6699 bool own_log_buf = true; 6700 __u32 log_level = prog->log_level; 6701 6702 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6703 /* 6704 * The program type must be set. Most likely we couldn't find a proper 6705 * section definition at load time, and thus we didn't infer the type. 6706 */ 6707 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6708 prog->name, prog->sec_name); 6709 return -EINVAL; 6710 } 6711 6712 if (!insns || !insns_cnt) 6713 return -EINVAL; 6714 6715 load_attr.expected_attach_type = prog->expected_attach_type; 6716 if (kernel_supports(obj, FEAT_PROG_NAME)) 6717 prog_name = prog->name; 6718 load_attr.attach_prog_fd = prog->attach_prog_fd; 6719 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6720 load_attr.attach_btf_id = prog->attach_btf_id; 6721 load_attr.kern_version = kern_version; 6722 load_attr.prog_ifindex = prog->prog_ifindex; 6723 6724 /* specify func_info/line_info only if kernel supports them */ 6725 btf_fd = bpf_object__btf_fd(obj); 6726 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6727 load_attr.prog_btf_fd = btf_fd; 6728 load_attr.func_info = prog->func_info; 6729 load_attr.func_info_rec_size = prog->func_info_rec_size; 6730 load_attr.func_info_cnt = prog->func_info_cnt; 6731 load_attr.line_info = prog->line_info; 6732 load_attr.line_info_rec_size = prog->line_info_rec_size; 6733 load_attr.line_info_cnt = prog->line_info_cnt; 6734 } 6735 load_attr.log_level = log_level; 6736 load_attr.prog_flags = prog->prog_flags; 6737 load_attr.fd_array = obj->fd_array; 6738 6739 /* adjust load_attr if sec_def provides custom preload callback */ 6740 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6741 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6742 if (err < 0) { 6743 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6744 prog->name, err); 6745 return err; 6746 } 6747 insns = prog->insns; 6748 insns_cnt = prog->insns_cnt; 6749 } 6750 6751 if (obj->gen_loader) { 6752 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6753 license, insns, insns_cnt, &load_attr, 6754 prog - obj->programs); 6755 *prog_fd = -1; 6756 return 0; 6757 } 6758 6759 retry_load: 6760 /* if log_level is zero, we don't request logs initially even if 6761 * custom log_buf is specified; if the program load fails, then we'll 6762 * bump log_level to 1 and use either custom log_buf or we'll allocate 6763 * our own and retry the load to get details on what failed 6764 */ 6765 if (log_level) { 6766 if (prog->log_buf) { 6767 log_buf = prog->log_buf; 6768 log_buf_size = prog->log_size; 6769 own_log_buf = false; 6770 } else if (obj->log_buf) { 6771 log_buf = obj->log_buf; 6772 log_buf_size = obj->log_size; 6773 own_log_buf = false; 6774 } else { 6775 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6776 tmp = realloc(log_buf, log_buf_size); 6777 if (!tmp) { 6778 ret = -ENOMEM; 6779 goto out; 6780 } 6781 log_buf = tmp; 6782 log_buf[0] = '\0'; 6783 own_log_buf = true; 6784 } 6785 } 6786 6787 load_attr.log_buf = log_buf; 6788 load_attr.log_size = log_buf_size; 6789 load_attr.log_level = log_level; 6790 6791 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6792 if (ret >= 0) { 6793 if (log_level && own_log_buf) { 6794 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6795 prog->name, log_buf); 6796 } 6797 6798 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6799 struct bpf_map *map; 6800 int i; 6801 6802 for (i = 0; i < obj->nr_maps; i++) { 6803 map = &prog->obj->maps[i]; 6804 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6805 continue; 6806 6807 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6808 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6809 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6810 prog->name, map->real_name, cp); 6811 /* Don't fail hard if can't bind rodata. */ 6812 } 6813 } 6814 } 6815 6816 *prog_fd = ret; 6817 ret = 0; 6818 goto out; 6819 } 6820 6821 if (log_level == 0) { 6822 log_level = 1; 6823 goto retry_load; 6824 } 6825 /* On ENOSPC, increase log buffer size and retry, unless custom 6826 * log_buf is specified. 6827 * Be careful to not overflow u32, though. Kernel's log buf size limit 6828 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6829 * multiply by 2 unless we are sure we'll fit within 32 bits. 6830 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6831 */ 6832 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6833 goto retry_load; 6834 6835 ret = -errno; 6836 6837 /* post-process verifier log to improve error descriptions */ 6838 fixup_verifier_log(prog, log_buf, log_buf_size); 6839 6840 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6841 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6842 pr_perm_msg(ret); 6843 6844 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6845 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6846 prog->name, log_buf); 6847 } 6848 6849 out: 6850 if (own_log_buf) 6851 free(log_buf); 6852 return ret; 6853 } 6854 6855 static char *find_prev_line(char *buf, char *cur) 6856 { 6857 char *p; 6858 6859 if (cur == buf) /* end of a log buf */ 6860 return NULL; 6861 6862 p = cur - 1; 6863 while (p - 1 >= buf && *(p - 1) != '\n') 6864 p--; 6865 6866 return p; 6867 } 6868 6869 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6870 char *orig, size_t orig_sz, const char *patch) 6871 { 6872 /* size of the remaining log content to the right from the to-be-replaced part */ 6873 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6874 size_t patch_sz = strlen(patch); 6875 6876 if (patch_sz != orig_sz) { 6877 /* If patch line(s) are longer than original piece of verifier log, 6878 * shift log contents by (patch_sz - orig_sz) bytes to the right 6879 * starting from after to-be-replaced part of the log. 6880 * 6881 * If patch line(s) are shorter than original piece of verifier log, 6882 * shift log contents by (orig_sz - patch_sz) bytes to the left 6883 * starting from after to-be-replaced part of the log 6884 * 6885 * We need to be careful about not overflowing available 6886 * buf_sz capacity. If that's the case, we'll truncate the end 6887 * of the original log, as necessary. 6888 */ 6889 if (patch_sz > orig_sz) { 6890 if (orig + patch_sz >= buf + buf_sz) { 6891 /* patch is big enough to cover remaining space completely */ 6892 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6893 rem_sz = 0; 6894 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6895 /* patch causes part of remaining log to be truncated */ 6896 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6897 } 6898 } 6899 /* shift remaining log to the right by calculated amount */ 6900 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6901 } 6902 6903 memcpy(orig, patch, patch_sz); 6904 } 6905 6906 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6907 char *buf, size_t buf_sz, size_t log_sz, 6908 char *line1, char *line2, char *line3) 6909 { 6910 /* Expected log for failed and not properly guarded CO-RE relocation: 6911 * line1 -> 123: (85) call unknown#195896080 6912 * line2 -> invalid func unknown#195896080 6913 * line3 -> <anything else or end of buffer> 6914 * 6915 * "123" is the index of the instruction that was poisoned. We extract 6916 * instruction index to find corresponding CO-RE relocation and 6917 * replace this part of the log with more relevant information about 6918 * failed CO-RE relocation. 6919 */ 6920 const struct bpf_core_relo *relo; 6921 struct bpf_core_spec spec; 6922 char patch[512], spec_buf[256]; 6923 int insn_idx, err, spec_len; 6924 6925 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 6926 return; 6927 6928 relo = find_relo_core(prog, insn_idx); 6929 if (!relo) 6930 return; 6931 6932 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 6933 if (err) 6934 return; 6935 6936 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 6937 snprintf(patch, sizeof(patch), 6938 "%d: <invalid CO-RE relocation>\n" 6939 "failed to resolve CO-RE relocation %s%s\n", 6940 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 6941 6942 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6943 } 6944 6945 static void fixup_log_missing_map_load(struct bpf_program *prog, 6946 char *buf, size_t buf_sz, size_t log_sz, 6947 char *line1, char *line2, char *line3) 6948 { 6949 /* Expected log for failed and not properly guarded CO-RE relocation: 6950 * line1 -> 123: (85) call unknown#2001000345 6951 * line2 -> invalid func unknown#2001000345 6952 * line3 -> <anything else or end of buffer> 6953 * 6954 * "123" is the index of the instruction that was poisoned. 6955 * "345" in "2001000345" are map index in obj->maps to fetch map name. 6956 */ 6957 struct bpf_object *obj = prog->obj; 6958 const struct bpf_map *map; 6959 int insn_idx, map_idx; 6960 char patch[128]; 6961 6962 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 6963 return; 6964 6965 map_idx -= MAP_LDIMM64_POISON_BASE; 6966 if (map_idx < 0 || map_idx >= obj->nr_maps) 6967 return; 6968 map = &obj->maps[map_idx]; 6969 6970 snprintf(patch, sizeof(patch), 6971 "%d: <invalid BPF map reference>\n" 6972 "BPF map '%s' is referenced but wasn't created\n", 6973 insn_idx, map->name); 6974 6975 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6976 } 6977 6978 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 6979 { 6980 /* look for familiar error patterns in last N lines of the log */ 6981 const size_t max_last_line_cnt = 10; 6982 char *prev_line, *cur_line, *next_line; 6983 size_t log_sz; 6984 int i; 6985 6986 if (!buf) 6987 return; 6988 6989 log_sz = strlen(buf) + 1; 6990 next_line = buf + log_sz - 1; 6991 6992 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 6993 cur_line = find_prev_line(buf, next_line); 6994 if (!cur_line) 6995 return; 6996 6997 /* failed CO-RE relocation case */ 6998 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 6999 prev_line = find_prev_line(buf, cur_line); 7000 if (!prev_line) 7001 continue; 7002 7003 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7004 prev_line, cur_line, next_line); 7005 return; 7006 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7007 prev_line = find_prev_line(buf, cur_line); 7008 if (!prev_line) 7009 continue; 7010 7011 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7012 prev_line, cur_line, next_line); 7013 return; 7014 } 7015 } 7016 } 7017 7018 static int bpf_program_record_relos(struct bpf_program *prog) 7019 { 7020 struct bpf_object *obj = prog->obj; 7021 int i; 7022 7023 for (i = 0; i < prog->nr_reloc; i++) { 7024 struct reloc_desc *relo = &prog->reloc_desc[i]; 7025 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7026 7027 switch (relo->type) { 7028 case RELO_EXTERN_VAR: 7029 if (ext->type != EXT_KSYM) 7030 continue; 7031 bpf_gen__record_extern(obj->gen_loader, ext->name, 7032 ext->is_weak, !ext->ksym.type_id, 7033 BTF_KIND_VAR, relo->insn_idx); 7034 break; 7035 case RELO_EXTERN_FUNC: 7036 bpf_gen__record_extern(obj->gen_loader, ext->name, 7037 ext->is_weak, false, BTF_KIND_FUNC, 7038 relo->insn_idx); 7039 break; 7040 case RELO_CORE: { 7041 struct bpf_core_relo cr = { 7042 .insn_off = relo->insn_idx * 8, 7043 .type_id = relo->core_relo->type_id, 7044 .access_str_off = relo->core_relo->access_str_off, 7045 .kind = relo->core_relo->kind, 7046 }; 7047 7048 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7049 break; 7050 } 7051 default: 7052 continue; 7053 } 7054 } 7055 return 0; 7056 } 7057 7058 static int 7059 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7060 { 7061 struct bpf_program *prog; 7062 size_t i; 7063 int err; 7064 7065 for (i = 0; i < obj->nr_programs; i++) { 7066 prog = &obj->programs[i]; 7067 err = bpf_object__sanitize_prog(obj, prog); 7068 if (err) 7069 return err; 7070 } 7071 7072 for (i = 0; i < obj->nr_programs; i++) { 7073 prog = &obj->programs[i]; 7074 if (prog_is_subprog(obj, prog)) 7075 continue; 7076 if (!prog->autoload) { 7077 pr_debug("prog '%s': skipped loading\n", prog->name); 7078 continue; 7079 } 7080 prog->log_level |= log_level; 7081 7082 if (obj->gen_loader) 7083 bpf_program_record_relos(prog); 7084 7085 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7086 obj->license, obj->kern_version, &prog->fd); 7087 if (err) { 7088 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7089 return err; 7090 } 7091 } 7092 7093 bpf_object__free_relocs(obj); 7094 return 0; 7095 } 7096 7097 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7098 7099 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7100 { 7101 struct bpf_program *prog; 7102 int err; 7103 7104 bpf_object__for_each_program(prog, obj) { 7105 prog->sec_def = find_sec_def(prog->sec_name); 7106 if (!prog->sec_def) { 7107 /* couldn't guess, but user might manually specify */ 7108 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7109 prog->name, prog->sec_name); 7110 continue; 7111 } 7112 7113 prog->type = prog->sec_def->prog_type; 7114 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7115 7116 /* sec_def can have custom callback which should be called 7117 * after bpf_program is initialized to adjust its properties 7118 */ 7119 if (prog->sec_def->prog_setup_fn) { 7120 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7121 if (err < 0) { 7122 pr_warn("prog '%s': failed to initialize: %d\n", 7123 prog->name, err); 7124 return err; 7125 } 7126 } 7127 } 7128 7129 return 0; 7130 } 7131 7132 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7133 const struct bpf_object_open_opts *opts) 7134 { 7135 const char *obj_name, *kconfig, *btf_tmp_path; 7136 struct bpf_object *obj; 7137 char tmp_name[64]; 7138 int err; 7139 char *log_buf; 7140 size_t log_size; 7141 __u32 log_level; 7142 7143 if (elf_version(EV_CURRENT) == EV_NONE) { 7144 pr_warn("failed to init libelf for %s\n", 7145 path ? : "(mem buf)"); 7146 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7147 } 7148 7149 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7150 return ERR_PTR(-EINVAL); 7151 7152 obj_name = OPTS_GET(opts, object_name, NULL); 7153 if (obj_buf) { 7154 if (!obj_name) { 7155 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7156 (unsigned long)obj_buf, 7157 (unsigned long)obj_buf_sz); 7158 obj_name = tmp_name; 7159 } 7160 path = obj_name; 7161 pr_debug("loading object '%s' from buffer\n", obj_name); 7162 } 7163 7164 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7165 log_size = OPTS_GET(opts, kernel_log_size, 0); 7166 log_level = OPTS_GET(opts, kernel_log_level, 0); 7167 if (log_size > UINT_MAX) 7168 return ERR_PTR(-EINVAL); 7169 if (log_size && !log_buf) 7170 return ERR_PTR(-EINVAL); 7171 7172 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7173 if (IS_ERR(obj)) 7174 return obj; 7175 7176 obj->log_buf = log_buf; 7177 obj->log_size = log_size; 7178 obj->log_level = log_level; 7179 7180 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7181 if (btf_tmp_path) { 7182 if (strlen(btf_tmp_path) >= PATH_MAX) { 7183 err = -ENAMETOOLONG; 7184 goto out; 7185 } 7186 obj->btf_custom_path = strdup(btf_tmp_path); 7187 if (!obj->btf_custom_path) { 7188 err = -ENOMEM; 7189 goto out; 7190 } 7191 } 7192 7193 kconfig = OPTS_GET(opts, kconfig, NULL); 7194 if (kconfig) { 7195 obj->kconfig = strdup(kconfig); 7196 if (!obj->kconfig) { 7197 err = -ENOMEM; 7198 goto out; 7199 } 7200 } 7201 7202 err = bpf_object__elf_init(obj); 7203 err = err ? : bpf_object__check_endianness(obj); 7204 err = err ? : bpf_object__elf_collect(obj); 7205 err = err ? : bpf_object__collect_externs(obj); 7206 err = err ? : bpf_object__finalize_btf(obj); 7207 err = err ? : bpf_object__init_maps(obj, opts); 7208 err = err ? : bpf_object_init_progs(obj, opts); 7209 err = err ? : bpf_object__collect_relos(obj); 7210 if (err) 7211 goto out; 7212 7213 bpf_object__elf_finish(obj); 7214 7215 return obj; 7216 out: 7217 bpf_object__close(obj); 7218 return ERR_PTR(err); 7219 } 7220 7221 struct bpf_object * 7222 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7223 { 7224 if (!path) 7225 return libbpf_err_ptr(-EINVAL); 7226 7227 pr_debug("loading %s\n", path); 7228 7229 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7230 } 7231 7232 struct bpf_object *bpf_object__open(const char *path) 7233 { 7234 return bpf_object__open_file(path, NULL); 7235 } 7236 7237 struct bpf_object * 7238 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7239 const struct bpf_object_open_opts *opts) 7240 { 7241 if (!obj_buf || obj_buf_sz == 0) 7242 return libbpf_err_ptr(-EINVAL); 7243 7244 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7245 } 7246 7247 static int bpf_object_unload(struct bpf_object *obj) 7248 { 7249 size_t i; 7250 7251 if (!obj) 7252 return libbpf_err(-EINVAL); 7253 7254 for (i = 0; i < obj->nr_maps; i++) { 7255 zclose(obj->maps[i].fd); 7256 if (obj->maps[i].st_ops) 7257 zfree(&obj->maps[i].st_ops->kern_vdata); 7258 } 7259 7260 for (i = 0; i < obj->nr_programs; i++) 7261 bpf_program__unload(&obj->programs[i]); 7262 7263 return 0; 7264 } 7265 7266 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7267 { 7268 struct bpf_map *m; 7269 7270 bpf_object__for_each_map(m, obj) { 7271 if (!bpf_map__is_internal(m)) 7272 continue; 7273 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7274 m->def.map_flags ^= BPF_F_MMAPABLE; 7275 } 7276 7277 return 0; 7278 } 7279 7280 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7281 { 7282 char sym_type, sym_name[500]; 7283 unsigned long long sym_addr; 7284 int ret, err = 0; 7285 FILE *f; 7286 7287 f = fopen("/proc/kallsyms", "r"); 7288 if (!f) { 7289 err = -errno; 7290 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7291 return err; 7292 } 7293 7294 while (true) { 7295 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7296 &sym_addr, &sym_type, sym_name); 7297 if (ret == EOF && feof(f)) 7298 break; 7299 if (ret != 3) { 7300 pr_warn("failed to read kallsyms entry: %d\n", ret); 7301 err = -EINVAL; 7302 break; 7303 } 7304 7305 err = cb(sym_addr, sym_type, sym_name, ctx); 7306 if (err) 7307 break; 7308 } 7309 7310 fclose(f); 7311 return err; 7312 } 7313 7314 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7315 const char *sym_name, void *ctx) 7316 { 7317 struct bpf_object *obj = ctx; 7318 const struct btf_type *t; 7319 struct extern_desc *ext; 7320 7321 ext = find_extern_by_name(obj, sym_name); 7322 if (!ext || ext->type != EXT_KSYM) 7323 return 0; 7324 7325 t = btf__type_by_id(obj->btf, ext->btf_id); 7326 if (!btf_is_var(t)) 7327 return 0; 7328 7329 if (ext->is_set && ext->ksym.addr != sym_addr) { 7330 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7331 sym_name, ext->ksym.addr, sym_addr); 7332 return -EINVAL; 7333 } 7334 if (!ext->is_set) { 7335 ext->is_set = true; 7336 ext->ksym.addr = sym_addr; 7337 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7338 } 7339 return 0; 7340 } 7341 7342 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7343 { 7344 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7345 } 7346 7347 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7348 __u16 kind, struct btf **res_btf, 7349 struct module_btf **res_mod_btf) 7350 { 7351 struct module_btf *mod_btf; 7352 struct btf *btf; 7353 int i, id, err; 7354 7355 btf = obj->btf_vmlinux; 7356 mod_btf = NULL; 7357 id = btf__find_by_name_kind(btf, ksym_name, kind); 7358 7359 if (id == -ENOENT) { 7360 err = load_module_btfs(obj); 7361 if (err) 7362 return err; 7363 7364 for (i = 0; i < obj->btf_module_cnt; i++) { 7365 /* we assume module_btf's BTF FD is always >0 */ 7366 mod_btf = &obj->btf_modules[i]; 7367 btf = mod_btf->btf; 7368 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7369 if (id != -ENOENT) 7370 break; 7371 } 7372 } 7373 if (id <= 0) 7374 return -ESRCH; 7375 7376 *res_btf = btf; 7377 *res_mod_btf = mod_btf; 7378 return id; 7379 } 7380 7381 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7382 struct extern_desc *ext) 7383 { 7384 const struct btf_type *targ_var, *targ_type; 7385 __u32 targ_type_id, local_type_id; 7386 struct module_btf *mod_btf = NULL; 7387 const char *targ_var_name; 7388 struct btf *btf = NULL; 7389 int id, err; 7390 7391 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7392 if (id < 0) { 7393 if (id == -ESRCH && ext->is_weak) 7394 return 0; 7395 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7396 ext->name); 7397 return id; 7398 } 7399 7400 /* find local type_id */ 7401 local_type_id = ext->ksym.type_id; 7402 7403 /* find target type_id */ 7404 targ_var = btf__type_by_id(btf, id); 7405 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7406 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7407 7408 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7409 btf, targ_type_id); 7410 if (err <= 0) { 7411 const struct btf_type *local_type; 7412 const char *targ_name, *local_name; 7413 7414 local_type = btf__type_by_id(obj->btf, local_type_id); 7415 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7416 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7417 7418 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7419 ext->name, local_type_id, 7420 btf_kind_str(local_type), local_name, targ_type_id, 7421 btf_kind_str(targ_type), targ_name); 7422 return -EINVAL; 7423 } 7424 7425 ext->is_set = true; 7426 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7427 ext->ksym.kernel_btf_id = id; 7428 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7429 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7430 7431 return 0; 7432 } 7433 7434 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7435 struct extern_desc *ext) 7436 { 7437 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7438 struct module_btf *mod_btf = NULL; 7439 const struct btf_type *kern_func; 7440 struct btf *kern_btf = NULL; 7441 int ret; 7442 7443 local_func_proto_id = ext->ksym.type_id; 7444 7445 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7446 if (kfunc_id < 0) { 7447 if (kfunc_id == -ESRCH && ext->is_weak) 7448 return 0; 7449 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7450 ext->name); 7451 return kfunc_id; 7452 } 7453 7454 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7455 kfunc_proto_id = kern_func->type; 7456 7457 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7458 kern_btf, kfunc_proto_id); 7459 if (ret <= 0) { 7460 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7461 ext->name, local_func_proto_id, kfunc_proto_id); 7462 return -EINVAL; 7463 } 7464 7465 /* set index for module BTF fd in fd_array, if unset */ 7466 if (mod_btf && !mod_btf->fd_array_idx) { 7467 /* insn->off is s16 */ 7468 if (obj->fd_array_cnt == INT16_MAX) { 7469 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7470 ext->name, mod_btf->fd_array_idx); 7471 return -E2BIG; 7472 } 7473 /* Cannot use index 0 for module BTF fd */ 7474 if (!obj->fd_array_cnt) 7475 obj->fd_array_cnt = 1; 7476 7477 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7478 obj->fd_array_cnt + 1); 7479 if (ret) 7480 return ret; 7481 mod_btf->fd_array_idx = obj->fd_array_cnt; 7482 /* we assume module BTF FD is always >0 */ 7483 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7484 } 7485 7486 ext->is_set = true; 7487 ext->ksym.kernel_btf_id = kfunc_id; 7488 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7489 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7490 ext->name, kfunc_id); 7491 7492 return 0; 7493 } 7494 7495 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7496 { 7497 const struct btf_type *t; 7498 struct extern_desc *ext; 7499 int i, err; 7500 7501 for (i = 0; i < obj->nr_extern; i++) { 7502 ext = &obj->externs[i]; 7503 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7504 continue; 7505 7506 if (obj->gen_loader) { 7507 ext->is_set = true; 7508 ext->ksym.kernel_btf_obj_fd = 0; 7509 ext->ksym.kernel_btf_id = 0; 7510 continue; 7511 } 7512 t = btf__type_by_id(obj->btf, ext->btf_id); 7513 if (btf_is_var(t)) 7514 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7515 else 7516 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7517 if (err) 7518 return err; 7519 } 7520 return 0; 7521 } 7522 7523 static int bpf_object__resolve_externs(struct bpf_object *obj, 7524 const char *extra_kconfig) 7525 { 7526 bool need_config = false, need_kallsyms = false; 7527 bool need_vmlinux_btf = false; 7528 struct extern_desc *ext; 7529 void *kcfg_data = NULL; 7530 int err, i; 7531 7532 if (obj->nr_extern == 0) 7533 return 0; 7534 7535 if (obj->kconfig_map_idx >= 0) 7536 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7537 7538 for (i = 0; i < obj->nr_extern; i++) { 7539 ext = &obj->externs[i]; 7540 7541 if (ext->type == EXT_KSYM) { 7542 if (ext->ksym.type_id) 7543 need_vmlinux_btf = true; 7544 else 7545 need_kallsyms = true; 7546 continue; 7547 } else if (ext->type == EXT_KCFG) { 7548 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7549 __u64 value = 0; 7550 7551 /* Kconfig externs need actual /proc/config.gz */ 7552 if (str_has_pfx(ext->name, "CONFIG_")) { 7553 need_config = true; 7554 continue; 7555 } 7556 7557 /* Virtual kcfg externs are customly handled by libbpf */ 7558 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7559 value = get_kernel_version(); 7560 if (!value) { 7561 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7562 return -EINVAL; 7563 } 7564 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7565 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7566 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7567 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7568 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7569 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7570 * __kconfig externs, where LINUX_ ones are virtual and filled out 7571 * customly by libbpf (their values don't come from Kconfig). 7572 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7573 * __weak, it defaults to zero value, just like for CONFIG_xxx 7574 * externs. 7575 */ 7576 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7577 return -EINVAL; 7578 } 7579 7580 err = set_kcfg_value_num(ext, ext_ptr, value); 7581 if (err) 7582 return err; 7583 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7584 ext->name, (long long)value); 7585 } else { 7586 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7587 return -EINVAL; 7588 } 7589 } 7590 if (need_config && extra_kconfig) { 7591 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7592 if (err) 7593 return -EINVAL; 7594 need_config = false; 7595 for (i = 0; i < obj->nr_extern; i++) { 7596 ext = &obj->externs[i]; 7597 if (ext->type == EXT_KCFG && !ext->is_set) { 7598 need_config = true; 7599 break; 7600 } 7601 } 7602 } 7603 if (need_config) { 7604 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7605 if (err) 7606 return -EINVAL; 7607 } 7608 if (need_kallsyms) { 7609 err = bpf_object__read_kallsyms_file(obj); 7610 if (err) 7611 return -EINVAL; 7612 } 7613 if (need_vmlinux_btf) { 7614 err = bpf_object__resolve_ksyms_btf_id(obj); 7615 if (err) 7616 return -EINVAL; 7617 } 7618 for (i = 0; i < obj->nr_extern; i++) { 7619 ext = &obj->externs[i]; 7620 7621 if (!ext->is_set && !ext->is_weak) { 7622 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7623 return -ESRCH; 7624 } else if (!ext->is_set) { 7625 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7626 ext->name); 7627 } 7628 } 7629 7630 return 0; 7631 } 7632 7633 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7634 { 7635 int err, i; 7636 7637 if (!obj) 7638 return libbpf_err(-EINVAL); 7639 7640 if (obj->loaded) { 7641 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7642 return libbpf_err(-EINVAL); 7643 } 7644 7645 if (obj->gen_loader) 7646 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7647 7648 err = bpf_object__probe_loading(obj); 7649 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7650 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7651 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7652 err = err ? : bpf_object__sanitize_maps(obj); 7653 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7654 err = err ? : bpf_object__create_maps(obj); 7655 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7656 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7657 err = err ? : bpf_object_init_prog_arrays(obj); 7658 7659 if (obj->gen_loader) { 7660 /* reset FDs */ 7661 if (obj->btf) 7662 btf__set_fd(obj->btf, -1); 7663 for (i = 0; i < obj->nr_maps; i++) 7664 obj->maps[i].fd = -1; 7665 if (!err) 7666 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7667 } 7668 7669 /* clean up fd_array */ 7670 zfree(&obj->fd_array); 7671 7672 /* clean up module BTFs */ 7673 for (i = 0; i < obj->btf_module_cnt; i++) { 7674 close(obj->btf_modules[i].fd); 7675 btf__free(obj->btf_modules[i].btf); 7676 free(obj->btf_modules[i].name); 7677 } 7678 free(obj->btf_modules); 7679 7680 /* clean up vmlinux BTF */ 7681 btf__free(obj->btf_vmlinux); 7682 obj->btf_vmlinux = NULL; 7683 7684 obj->loaded = true; /* doesn't matter if successfully or not */ 7685 7686 if (err) 7687 goto out; 7688 7689 return 0; 7690 out: 7691 /* unpin any maps that were auto-pinned during load */ 7692 for (i = 0; i < obj->nr_maps; i++) 7693 if (obj->maps[i].pinned && !obj->maps[i].reused) 7694 bpf_map__unpin(&obj->maps[i], NULL); 7695 7696 bpf_object_unload(obj); 7697 pr_warn("failed to load object '%s'\n", obj->path); 7698 return libbpf_err(err); 7699 } 7700 7701 int bpf_object__load(struct bpf_object *obj) 7702 { 7703 return bpf_object_load(obj, 0, NULL); 7704 } 7705 7706 static int make_parent_dir(const char *path) 7707 { 7708 char *cp, errmsg[STRERR_BUFSIZE]; 7709 char *dname, *dir; 7710 int err = 0; 7711 7712 dname = strdup(path); 7713 if (dname == NULL) 7714 return -ENOMEM; 7715 7716 dir = dirname(dname); 7717 if (mkdir(dir, 0700) && errno != EEXIST) 7718 err = -errno; 7719 7720 free(dname); 7721 if (err) { 7722 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7723 pr_warn("failed to mkdir %s: %s\n", path, cp); 7724 } 7725 return err; 7726 } 7727 7728 static int check_path(const char *path) 7729 { 7730 char *cp, errmsg[STRERR_BUFSIZE]; 7731 struct statfs st_fs; 7732 char *dname, *dir; 7733 int err = 0; 7734 7735 if (path == NULL) 7736 return -EINVAL; 7737 7738 dname = strdup(path); 7739 if (dname == NULL) 7740 return -ENOMEM; 7741 7742 dir = dirname(dname); 7743 if (statfs(dir, &st_fs)) { 7744 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7745 pr_warn("failed to statfs %s: %s\n", dir, cp); 7746 err = -errno; 7747 } 7748 free(dname); 7749 7750 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7751 pr_warn("specified path %s is not on BPF FS\n", path); 7752 err = -EINVAL; 7753 } 7754 7755 return err; 7756 } 7757 7758 int bpf_program__pin(struct bpf_program *prog, const char *path) 7759 { 7760 char *cp, errmsg[STRERR_BUFSIZE]; 7761 int err; 7762 7763 if (prog->fd < 0) { 7764 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7765 return libbpf_err(-EINVAL); 7766 } 7767 7768 err = make_parent_dir(path); 7769 if (err) 7770 return libbpf_err(err); 7771 7772 err = check_path(path); 7773 if (err) 7774 return libbpf_err(err); 7775 7776 if (bpf_obj_pin(prog->fd, path)) { 7777 err = -errno; 7778 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7779 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7780 return libbpf_err(err); 7781 } 7782 7783 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7784 return 0; 7785 } 7786 7787 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7788 { 7789 int err; 7790 7791 if (prog->fd < 0) { 7792 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7793 return libbpf_err(-EINVAL); 7794 } 7795 7796 err = check_path(path); 7797 if (err) 7798 return libbpf_err(err); 7799 7800 err = unlink(path); 7801 if (err) 7802 return libbpf_err(-errno); 7803 7804 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7805 return 0; 7806 } 7807 7808 int bpf_map__pin(struct bpf_map *map, const char *path) 7809 { 7810 char *cp, errmsg[STRERR_BUFSIZE]; 7811 int err; 7812 7813 if (map == NULL) { 7814 pr_warn("invalid map pointer\n"); 7815 return libbpf_err(-EINVAL); 7816 } 7817 7818 if (map->pin_path) { 7819 if (path && strcmp(path, map->pin_path)) { 7820 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7821 bpf_map__name(map), map->pin_path, path); 7822 return libbpf_err(-EINVAL); 7823 } else if (map->pinned) { 7824 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7825 bpf_map__name(map), map->pin_path); 7826 return 0; 7827 } 7828 } else { 7829 if (!path) { 7830 pr_warn("missing a path to pin map '%s' at\n", 7831 bpf_map__name(map)); 7832 return libbpf_err(-EINVAL); 7833 } else if (map->pinned) { 7834 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7835 return libbpf_err(-EEXIST); 7836 } 7837 7838 map->pin_path = strdup(path); 7839 if (!map->pin_path) { 7840 err = -errno; 7841 goto out_err; 7842 } 7843 } 7844 7845 err = make_parent_dir(map->pin_path); 7846 if (err) 7847 return libbpf_err(err); 7848 7849 err = check_path(map->pin_path); 7850 if (err) 7851 return libbpf_err(err); 7852 7853 if (bpf_obj_pin(map->fd, map->pin_path)) { 7854 err = -errno; 7855 goto out_err; 7856 } 7857 7858 map->pinned = true; 7859 pr_debug("pinned map '%s'\n", map->pin_path); 7860 7861 return 0; 7862 7863 out_err: 7864 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7865 pr_warn("failed to pin map: %s\n", cp); 7866 return libbpf_err(err); 7867 } 7868 7869 int bpf_map__unpin(struct bpf_map *map, const char *path) 7870 { 7871 int err; 7872 7873 if (map == NULL) { 7874 pr_warn("invalid map pointer\n"); 7875 return libbpf_err(-EINVAL); 7876 } 7877 7878 if (map->pin_path) { 7879 if (path && strcmp(path, map->pin_path)) { 7880 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7881 bpf_map__name(map), map->pin_path, path); 7882 return libbpf_err(-EINVAL); 7883 } 7884 path = map->pin_path; 7885 } else if (!path) { 7886 pr_warn("no path to unpin map '%s' from\n", 7887 bpf_map__name(map)); 7888 return libbpf_err(-EINVAL); 7889 } 7890 7891 err = check_path(path); 7892 if (err) 7893 return libbpf_err(err); 7894 7895 err = unlink(path); 7896 if (err != 0) 7897 return libbpf_err(-errno); 7898 7899 map->pinned = false; 7900 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7901 7902 return 0; 7903 } 7904 7905 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7906 { 7907 char *new = NULL; 7908 7909 if (path) { 7910 new = strdup(path); 7911 if (!new) 7912 return libbpf_err(-errno); 7913 } 7914 7915 free(map->pin_path); 7916 map->pin_path = new; 7917 return 0; 7918 } 7919 7920 __alias(bpf_map__pin_path) 7921 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7922 7923 const char *bpf_map__pin_path(const struct bpf_map *map) 7924 { 7925 return map->pin_path; 7926 } 7927 7928 bool bpf_map__is_pinned(const struct bpf_map *map) 7929 { 7930 return map->pinned; 7931 } 7932 7933 static void sanitize_pin_path(char *s) 7934 { 7935 /* bpffs disallows periods in path names */ 7936 while (*s) { 7937 if (*s == '.') 7938 *s = '_'; 7939 s++; 7940 } 7941 } 7942 7943 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7944 { 7945 struct bpf_map *map; 7946 int err; 7947 7948 if (!obj) 7949 return libbpf_err(-ENOENT); 7950 7951 if (!obj->loaded) { 7952 pr_warn("object not yet loaded; load it first\n"); 7953 return libbpf_err(-ENOENT); 7954 } 7955 7956 bpf_object__for_each_map(map, obj) { 7957 char *pin_path = NULL; 7958 char buf[PATH_MAX]; 7959 7960 if (!map->autocreate) 7961 continue; 7962 7963 if (path) { 7964 int len; 7965 7966 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7967 bpf_map__name(map)); 7968 if (len < 0) { 7969 err = -EINVAL; 7970 goto err_unpin_maps; 7971 } else if (len >= PATH_MAX) { 7972 err = -ENAMETOOLONG; 7973 goto err_unpin_maps; 7974 } 7975 sanitize_pin_path(buf); 7976 pin_path = buf; 7977 } else if (!map->pin_path) { 7978 continue; 7979 } 7980 7981 err = bpf_map__pin(map, pin_path); 7982 if (err) 7983 goto err_unpin_maps; 7984 } 7985 7986 return 0; 7987 7988 err_unpin_maps: 7989 while ((map = bpf_object__prev_map(obj, map))) { 7990 if (!map->pin_path) 7991 continue; 7992 7993 bpf_map__unpin(map, NULL); 7994 } 7995 7996 return libbpf_err(err); 7997 } 7998 7999 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8000 { 8001 struct bpf_map *map; 8002 int err; 8003 8004 if (!obj) 8005 return libbpf_err(-ENOENT); 8006 8007 bpf_object__for_each_map(map, obj) { 8008 char *pin_path = NULL; 8009 char buf[PATH_MAX]; 8010 8011 if (path) { 8012 int len; 8013 8014 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8015 bpf_map__name(map)); 8016 if (len < 0) 8017 return libbpf_err(-EINVAL); 8018 else if (len >= PATH_MAX) 8019 return libbpf_err(-ENAMETOOLONG); 8020 sanitize_pin_path(buf); 8021 pin_path = buf; 8022 } else if (!map->pin_path) { 8023 continue; 8024 } 8025 8026 err = bpf_map__unpin(map, pin_path); 8027 if (err) 8028 return libbpf_err(err); 8029 } 8030 8031 return 0; 8032 } 8033 8034 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8035 { 8036 struct bpf_program *prog; 8037 int err; 8038 8039 if (!obj) 8040 return libbpf_err(-ENOENT); 8041 8042 if (!obj->loaded) { 8043 pr_warn("object not yet loaded; load it first\n"); 8044 return libbpf_err(-ENOENT); 8045 } 8046 8047 bpf_object__for_each_program(prog, obj) { 8048 char buf[PATH_MAX]; 8049 int len; 8050 8051 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name); 8052 if (len < 0) { 8053 err = -EINVAL; 8054 goto err_unpin_programs; 8055 } else if (len >= PATH_MAX) { 8056 err = -ENAMETOOLONG; 8057 goto err_unpin_programs; 8058 } 8059 8060 err = bpf_program__pin(prog, buf); 8061 if (err) 8062 goto err_unpin_programs; 8063 } 8064 8065 return 0; 8066 8067 err_unpin_programs: 8068 while ((prog = bpf_object__prev_program(obj, prog))) { 8069 char buf[PATH_MAX]; 8070 int len; 8071 8072 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name); 8073 if (len < 0) 8074 continue; 8075 else if (len >= PATH_MAX) 8076 continue; 8077 8078 bpf_program__unpin(prog, buf); 8079 } 8080 8081 return libbpf_err(err); 8082 } 8083 8084 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8085 { 8086 struct bpf_program *prog; 8087 int err; 8088 8089 if (!obj) 8090 return libbpf_err(-ENOENT); 8091 8092 bpf_object__for_each_program(prog, obj) { 8093 char buf[PATH_MAX]; 8094 int len; 8095 8096 len = snprintf(buf, PATH_MAX, "%s/%s", path, prog->name); 8097 if (len < 0) 8098 return libbpf_err(-EINVAL); 8099 else if (len >= PATH_MAX) 8100 return libbpf_err(-ENAMETOOLONG); 8101 8102 err = bpf_program__unpin(prog, buf); 8103 if (err) 8104 return libbpf_err(err); 8105 } 8106 8107 return 0; 8108 } 8109 8110 int bpf_object__pin(struct bpf_object *obj, const char *path) 8111 { 8112 int err; 8113 8114 err = bpf_object__pin_maps(obj, path); 8115 if (err) 8116 return libbpf_err(err); 8117 8118 err = bpf_object__pin_programs(obj, path); 8119 if (err) { 8120 bpf_object__unpin_maps(obj, path); 8121 return libbpf_err(err); 8122 } 8123 8124 return 0; 8125 } 8126 8127 static void bpf_map__destroy(struct bpf_map *map) 8128 { 8129 if (map->inner_map) { 8130 bpf_map__destroy(map->inner_map); 8131 zfree(&map->inner_map); 8132 } 8133 8134 zfree(&map->init_slots); 8135 map->init_slots_sz = 0; 8136 8137 if (map->mmaped) { 8138 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8139 map->mmaped = NULL; 8140 } 8141 8142 if (map->st_ops) { 8143 zfree(&map->st_ops->data); 8144 zfree(&map->st_ops->progs); 8145 zfree(&map->st_ops->kern_func_off); 8146 zfree(&map->st_ops); 8147 } 8148 8149 zfree(&map->name); 8150 zfree(&map->real_name); 8151 zfree(&map->pin_path); 8152 8153 if (map->fd >= 0) 8154 zclose(map->fd); 8155 } 8156 8157 void bpf_object__close(struct bpf_object *obj) 8158 { 8159 size_t i; 8160 8161 if (IS_ERR_OR_NULL(obj)) 8162 return; 8163 8164 usdt_manager_free(obj->usdt_man); 8165 obj->usdt_man = NULL; 8166 8167 bpf_gen__free(obj->gen_loader); 8168 bpf_object__elf_finish(obj); 8169 bpf_object_unload(obj); 8170 btf__free(obj->btf); 8171 btf_ext__free(obj->btf_ext); 8172 8173 for (i = 0; i < obj->nr_maps; i++) 8174 bpf_map__destroy(&obj->maps[i]); 8175 8176 zfree(&obj->btf_custom_path); 8177 zfree(&obj->kconfig); 8178 zfree(&obj->externs); 8179 obj->nr_extern = 0; 8180 8181 zfree(&obj->maps); 8182 obj->nr_maps = 0; 8183 8184 if (obj->programs && obj->nr_programs) { 8185 for (i = 0; i < obj->nr_programs; i++) 8186 bpf_program__exit(&obj->programs[i]); 8187 } 8188 zfree(&obj->programs); 8189 8190 free(obj); 8191 } 8192 8193 const char *bpf_object__name(const struct bpf_object *obj) 8194 { 8195 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8196 } 8197 8198 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8199 { 8200 return obj ? obj->kern_version : 0; 8201 } 8202 8203 struct btf *bpf_object__btf(const struct bpf_object *obj) 8204 { 8205 return obj ? obj->btf : NULL; 8206 } 8207 8208 int bpf_object__btf_fd(const struct bpf_object *obj) 8209 { 8210 return obj->btf ? btf__fd(obj->btf) : -1; 8211 } 8212 8213 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8214 { 8215 if (obj->loaded) 8216 return libbpf_err(-EINVAL); 8217 8218 obj->kern_version = kern_version; 8219 8220 return 0; 8221 } 8222 8223 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8224 { 8225 struct bpf_gen *gen; 8226 8227 if (!opts) 8228 return -EFAULT; 8229 if (!OPTS_VALID(opts, gen_loader_opts)) 8230 return -EINVAL; 8231 gen = calloc(sizeof(*gen), 1); 8232 if (!gen) 8233 return -ENOMEM; 8234 gen->opts = opts; 8235 obj->gen_loader = gen; 8236 return 0; 8237 } 8238 8239 static struct bpf_program * 8240 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8241 bool forward) 8242 { 8243 size_t nr_programs = obj->nr_programs; 8244 ssize_t idx; 8245 8246 if (!nr_programs) 8247 return NULL; 8248 8249 if (!p) 8250 /* Iter from the beginning */ 8251 return forward ? &obj->programs[0] : 8252 &obj->programs[nr_programs - 1]; 8253 8254 if (p->obj != obj) { 8255 pr_warn("error: program handler doesn't match object\n"); 8256 return errno = EINVAL, NULL; 8257 } 8258 8259 idx = (p - obj->programs) + (forward ? 1 : -1); 8260 if (idx >= obj->nr_programs || idx < 0) 8261 return NULL; 8262 return &obj->programs[idx]; 8263 } 8264 8265 struct bpf_program * 8266 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8267 { 8268 struct bpf_program *prog = prev; 8269 8270 do { 8271 prog = __bpf_program__iter(prog, obj, true); 8272 } while (prog && prog_is_subprog(obj, prog)); 8273 8274 return prog; 8275 } 8276 8277 struct bpf_program * 8278 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8279 { 8280 struct bpf_program *prog = next; 8281 8282 do { 8283 prog = __bpf_program__iter(prog, obj, false); 8284 } while (prog && prog_is_subprog(obj, prog)); 8285 8286 return prog; 8287 } 8288 8289 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8290 { 8291 prog->prog_ifindex = ifindex; 8292 } 8293 8294 const char *bpf_program__name(const struct bpf_program *prog) 8295 { 8296 return prog->name; 8297 } 8298 8299 const char *bpf_program__section_name(const struct bpf_program *prog) 8300 { 8301 return prog->sec_name; 8302 } 8303 8304 bool bpf_program__autoload(const struct bpf_program *prog) 8305 { 8306 return prog->autoload; 8307 } 8308 8309 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8310 { 8311 if (prog->obj->loaded) 8312 return libbpf_err(-EINVAL); 8313 8314 prog->autoload = autoload; 8315 return 0; 8316 } 8317 8318 bool bpf_program__autoattach(const struct bpf_program *prog) 8319 { 8320 return prog->autoattach; 8321 } 8322 8323 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8324 { 8325 prog->autoattach = autoattach; 8326 } 8327 8328 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8329 { 8330 return prog->insns; 8331 } 8332 8333 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8334 { 8335 return prog->insns_cnt; 8336 } 8337 8338 int bpf_program__set_insns(struct bpf_program *prog, 8339 struct bpf_insn *new_insns, size_t new_insn_cnt) 8340 { 8341 struct bpf_insn *insns; 8342 8343 if (prog->obj->loaded) 8344 return -EBUSY; 8345 8346 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8347 if (!insns) { 8348 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8349 return -ENOMEM; 8350 } 8351 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8352 8353 prog->insns = insns; 8354 prog->insns_cnt = new_insn_cnt; 8355 return 0; 8356 } 8357 8358 int bpf_program__fd(const struct bpf_program *prog) 8359 { 8360 if (!prog) 8361 return libbpf_err(-EINVAL); 8362 8363 if (prog->fd < 0) 8364 return libbpf_err(-ENOENT); 8365 8366 return prog->fd; 8367 } 8368 8369 __alias(bpf_program__type) 8370 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8371 8372 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8373 { 8374 return prog->type; 8375 } 8376 8377 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8378 { 8379 if (prog->obj->loaded) 8380 return libbpf_err(-EBUSY); 8381 8382 prog->type = type; 8383 return 0; 8384 } 8385 8386 __alias(bpf_program__expected_attach_type) 8387 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8388 8389 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8390 { 8391 return prog->expected_attach_type; 8392 } 8393 8394 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8395 enum bpf_attach_type type) 8396 { 8397 if (prog->obj->loaded) 8398 return libbpf_err(-EBUSY); 8399 8400 prog->expected_attach_type = type; 8401 return 0; 8402 } 8403 8404 __u32 bpf_program__flags(const struct bpf_program *prog) 8405 { 8406 return prog->prog_flags; 8407 } 8408 8409 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8410 { 8411 if (prog->obj->loaded) 8412 return libbpf_err(-EBUSY); 8413 8414 prog->prog_flags = flags; 8415 return 0; 8416 } 8417 8418 __u32 bpf_program__log_level(const struct bpf_program *prog) 8419 { 8420 return prog->log_level; 8421 } 8422 8423 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8424 { 8425 if (prog->obj->loaded) 8426 return libbpf_err(-EBUSY); 8427 8428 prog->log_level = log_level; 8429 return 0; 8430 } 8431 8432 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8433 { 8434 *log_size = prog->log_size; 8435 return prog->log_buf; 8436 } 8437 8438 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8439 { 8440 if (log_size && !log_buf) 8441 return -EINVAL; 8442 if (prog->log_size > UINT_MAX) 8443 return -EINVAL; 8444 if (prog->obj->loaded) 8445 return -EBUSY; 8446 8447 prog->log_buf = log_buf; 8448 prog->log_size = log_size; 8449 return 0; 8450 } 8451 8452 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8453 .sec = (char *)sec_pfx, \ 8454 .prog_type = BPF_PROG_TYPE_##ptype, \ 8455 .expected_attach_type = atype, \ 8456 .cookie = (long)(flags), \ 8457 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8458 __VA_ARGS__ \ 8459 } 8460 8461 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8462 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8463 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8464 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8465 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8466 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8467 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8468 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8469 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8470 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8471 8472 static const struct bpf_sec_def section_defs[] = { 8473 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8474 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8475 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8476 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8477 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8478 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8479 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8480 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8481 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8482 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8483 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8484 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8485 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8486 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8487 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8488 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8489 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8490 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8491 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8492 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8493 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8494 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8495 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8496 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8497 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8498 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8499 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8500 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8501 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8502 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8503 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8504 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8505 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8506 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8507 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8508 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8509 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8510 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8511 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8512 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8513 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8514 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8515 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8516 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8517 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8518 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8519 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8520 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8521 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8522 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8523 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8524 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8525 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8526 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8527 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8528 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8529 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8530 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8531 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8532 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8533 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8534 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8535 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8536 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8537 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8538 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8539 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8540 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8541 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8542 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8543 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8544 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8545 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8546 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8547 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8548 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8549 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8550 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8551 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8552 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8553 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8554 }; 8555 8556 static size_t custom_sec_def_cnt; 8557 static struct bpf_sec_def *custom_sec_defs; 8558 static struct bpf_sec_def custom_fallback_def; 8559 static bool has_custom_fallback_def; 8560 8561 static int last_custom_sec_def_handler_id; 8562 8563 int libbpf_register_prog_handler(const char *sec, 8564 enum bpf_prog_type prog_type, 8565 enum bpf_attach_type exp_attach_type, 8566 const struct libbpf_prog_handler_opts *opts) 8567 { 8568 struct bpf_sec_def *sec_def; 8569 8570 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8571 return libbpf_err(-EINVAL); 8572 8573 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8574 return libbpf_err(-E2BIG); 8575 8576 if (sec) { 8577 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8578 sizeof(*sec_def)); 8579 if (!sec_def) 8580 return libbpf_err(-ENOMEM); 8581 8582 custom_sec_defs = sec_def; 8583 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8584 } else { 8585 if (has_custom_fallback_def) 8586 return libbpf_err(-EBUSY); 8587 8588 sec_def = &custom_fallback_def; 8589 } 8590 8591 sec_def->sec = sec ? strdup(sec) : NULL; 8592 if (sec && !sec_def->sec) 8593 return libbpf_err(-ENOMEM); 8594 8595 sec_def->prog_type = prog_type; 8596 sec_def->expected_attach_type = exp_attach_type; 8597 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8598 8599 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8600 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8601 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8602 8603 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8604 8605 if (sec) 8606 custom_sec_def_cnt++; 8607 else 8608 has_custom_fallback_def = true; 8609 8610 return sec_def->handler_id; 8611 } 8612 8613 int libbpf_unregister_prog_handler(int handler_id) 8614 { 8615 struct bpf_sec_def *sec_defs; 8616 int i; 8617 8618 if (handler_id <= 0) 8619 return libbpf_err(-EINVAL); 8620 8621 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8622 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8623 has_custom_fallback_def = false; 8624 return 0; 8625 } 8626 8627 for (i = 0; i < custom_sec_def_cnt; i++) { 8628 if (custom_sec_defs[i].handler_id == handler_id) 8629 break; 8630 } 8631 8632 if (i == custom_sec_def_cnt) 8633 return libbpf_err(-ENOENT); 8634 8635 free(custom_sec_defs[i].sec); 8636 for (i = i + 1; i < custom_sec_def_cnt; i++) 8637 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8638 custom_sec_def_cnt--; 8639 8640 /* try to shrink the array, but it's ok if we couldn't */ 8641 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8642 if (sec_defs) 8643 custom_sec_defs = sec_defs; 8644 8645 return 0; 8646 } 8647 8648 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8649 { 8650 size_t len = strlen(sec_def->sec); 8651 8652 /* "type/" always has to have proper SEC("type/extras") form */ 8653 if (sec_def->sec[len - 1] == '/') { 8654 if (str_has_pfx(sec_name, sec_def->sec)) 8655 return true; 8656 return false; 8657 } 8658 8659 /* "type+" means it can be either exact SEC("type") or 8660 * well-formed SEC("type/extras") with proper '/' separator 8661 */ 8662 if (sec_def->sec[len - 1] == '+') { 8663 len--; 8664 /* not even a prefix */ 8665 if (strncmp(sec_name, sec_def->sec, len) != 0) 8666 return false; 8667 /* exact match or has '/' separator */ 8668 if (sec_name[len] == '\0' || sec_name[len] == '/') 8669 return true; 8670 return false; 8671 } 8672 8673 return strcmp(sec_name, sec_def->sec) == 0; 8674 } 8675 8676 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8677 { 8678 const struct bpf_sec_def *sec_def; 8679 int i, n; 8680 8681 n = custom_sec_def_cnt; 8682 for (i = 0; i < n; i++) { 8683 sec_def = &custom_sec_defs[i]; 8684 if (sec_def_matches(sec_def, sec_name)) 8685 return sec_def; 8686 } 8687 8688 n = ARRAY_SIZE(section_defs); 8689 for (i = 0; i < n; i++) { 8690 sec_def = §ion_defs[i]; 8691 if (sec_def_matches(sec_def, sec_name)) 8692 return sec_def; 8693 } 8694 8695 if (has_custom_fallback_def) 8696 return &custom_fallback_def; 8697 8698 return NULL; 8699 } 8700 8701 #define MAX_TYPE_NAME_SIZE 32 8702 8703 static char *libbpf_get_type_names(bool attach_type) 8704 { 8705 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8706 char *buf; 8707 8708 buf = malloc(len); 8709 if (!buf) 8710 return NULL; 8711 8712 buf[0] = '\0'; 8713 /* Forge string buf with all available names */ 8714 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8715 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8716 8717 if (attach_type) { 8718 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8719 continue; 8720 8721 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8722 continue; 8723 } 8724 8725 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8726 free(buf); 8727 return NULL; 8728 } 8729 strcat(buf, " "); 8730 strcat(buf, section_defs[i].sec); 8731 } 8732 8733 return buf; 8734 } 8735 8736 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8737 enum bpf_attach_type *expected_attach_type) 8738 { 8739 const struct bpf_sec_def *sec_def; 8740 char *type_names; 8741 8742 if (!name) 8743 return libbpf_err(-EINVAL); 8744 8745 sec_def = find_sec_def(name); 8746 if (sec_def) { 8747 *prog_type = sec_def->prog_type; 8748 *expected_attach_type = sec_def->expected_attach_type; 8749 return 0; 8750 } 8751 8752 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8753 type_names = libbpf_get_type_names(false); 8754 if (type_names != NULL) { 8755 pr_debug("supported section(type) names are:%s\n", type_names); 8756 free(type_names); 8757 } 8758 8759 return libbpf_err(-ESRCH); 8760 } 8761 8762 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8763 { 8764 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8765 return NULL; 8766 8767 return attach_type_name[t]; 8768 } 8769 8770 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8771 { 8772 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8773 return NULL; 8774 8775 return link_type_name[t]; 8776 } 8777 8778 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8779 { 8780 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8781 return NULL; 8782 8783 return map_type_name[t]; 8784 } 8785 8786 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8787 { 8788 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8789 return NULL; 8790 8791 return prog_type_name[t]; 8792 } 8793 8794 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8795 size_t offset) 8796 { 8797 struct bpf_map *map; 8798 size_t i; 8799 8800 for (i = 0; i < obj->nr_maps; i++) { 8801 map = &obj->maps[i]; 8802 if (!bpf_map__is_struct_ops(map)) 8803 continue; 8804 if (map->sec_offset <= offset && 8805 offset - map->sec_offset < map->def.value_size) 8806 return map; 8807 } 8808 8809 return NULL; 8810 } 8811 8812 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8813 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8814 Elf64_Shdr *shdr, Elf_Data *data) 8815 { 8816 const struct btf_member *member; 8817 struct bpf_struct_ops *st_ops; 8818 struct bpf_program *prog; 8819 unsigned int shdr_idx; 8820 const struct btf *btf; 8821 struct bpf_map *map; 8822 unsigned int moff, insn_idx; 8823 const char *name; 8824 __u32 member_idx; 8825 Elf64_Sym *sym; 8826 Elf64_Rel *rel; 8827 int i, nrels; 8828 8829 btf = obj->btf; 8830 nrels = shdr->sh_size / shdr->sh_entsize; 8831 for (i = 0; i < nrels; i++) { 8832 rel = elf_rel_by_idx(data, i); 8833 if (!rel) { 8834 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8835 return -LIBBPF_ERRNO__FORMAT; 8836 } 8837 8838 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8839 if (!sym) { 8840 pr_warn("struct_ops reloc: symbol %zx not found\n", 8841 (size_t)ELF64_R_SYM(rel->r_info)); 8842 return -LIBBPF_ERRNO__FORMAT; 8843 } 8844 8845 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8846 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8847 if (!map) { 8848 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8849 (size_t)rel->r_offset); 8850 return -EINVAL; 8851 } 8852 8853 moff = rel->r_offset - map->sec_offset; 8854 shdr_idx = sym->st_shndx; 8855 st_ops = map->st_ops; 8856 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8857 map->name, 8858 (long long)(rel->r_info >> 32), 8859 (long long)sym->st_value, 8860 shdr_idx, (size_t)rel->r_offset, 8861 map->sec_offset, sym->st_name, name); 8862 8863 if (shdr_idx >= SHN_LORESERVE) { 8864 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8865 map->name, (size_t)rel->r_offset, shdr_idx); 8866 return -LIBBPF_ERRNO__RELOC; 8867 } 8868 if (sym->st_value % BPF_INSN_SZ) { 8869 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8870 map->name, (unsigned long long)sym->st_value); 8871 return -LIBBPF_ERRNO__FORMAT; 8872 } 8873 insn_idx = sym->st_value / BPF_INSN_SZ; 8874 8875 member = find_member_by_offset(st_ops->type, moff * 8); 8876 if (!member) { 8877 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8878 map->name, moff); 8879 return -EINVAL; 8880 } 8881 member_idx = member - btf_members(st_ops->type); 8882 name = btf__name_by_offset(btf, member->name_off); 8883 8884 if (!resolve_func_ptr(btf, member->type, NULL)) { 8885 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8886 map->name, name); 8887 return -EINVAL; 8888 } 8889 8890 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8891 if (!prog) { 8892 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8893 map->name, shdr_idx, name); 8894 return -EINVAL; 8895 } 8896 8897 /* prevent the use of BPF prog with invalid type */ 8898 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8899 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8900 map->name, prog->name); 8901 return -EINVAL; 8902 } 8903 8904 /* if we haven't yet processed this BPF program, record proper 8905 * attach_btf_id and member_idx 8906 */ 8907 if (!prog->attach_btf_id) { 8908 prog->attach_btf_id = st_ops->type_id; 8909 prog->expected_attach_type = member_idx; 8910 } 8911 8912 /* struct_ops BPF prog can be re-used between multiple 8913 * .struct_ops as long as it's the same struct_ops struct 8914 * definition and the same function pointer field 8915 */ 8916 if (prog->attach_btf_id != st_ops->type_id || 8917 prog->expected_attach_type != member_idx) { 8918 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8919 map->name, prog->name, prog->sec_name, prog->type, 8920 prog->attach_btf_id, prog->expected_attach_type, name); 8921 return -EINVAL; 8922 } 8923 8924 st_ops->progs[member_idx] = prog; 8925 } 8926 8927 return 0; 8928 } 8929 8930 #define BTF_TRACE_PREFIX "btf_trace_" 8931 #define BTF_LSM_PREFIX "bpf_lsm_" 8932 #define BTF_ITER_PREFIX "bpf_iter_" 8933 #define BTF_MAX_NAME_SIZE 128 8934 8935 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8936 const char **prefix, int *kind) 8937 { 8938 switch (attach_type) { 8939 case BPF_TRACE_RAW_TP: 8940 *prefix = BTF_TRACE_PREFIX; 8941 *kind = BTF_KIND_TYPEDEF; 8942 break; 8943 case BPF_LSM_MAC: 8944 case BPF_LSM_CGROUP: 8945 *prefix = BTF_LSM_PREFIX; 8946 *kind = BTF_KIND_FUNC; 8947 break; 8948 case BPF_TRACE_ITER: 8949 *prefix = BTF_ITER_PREFIX; 8950 *kind = BTF_KIND_FUNC; 8951 break; 8952 default: 8953 *prefix = ""; 8954 *kind = BTF_KIND_FUNC; 8955 } 8956 } 8957 8958 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8959 const char *name, __u32 kind) 8960 { 8961 char btf_type_name[BTF_MAX_NAME_SIZE]; 8962 int ret; 8963 8964 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8965 "%s%s", prefix, name); 8966 /* snprintf returns the number of characters written excluding the 8967 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8968 * indicates truncation. 8969 */ 8970 if (ret < 0 || ret >= sizeof(btf_type_name)) 8971 return -ENAMETOOLONG; 8972 return btf__find_by_name_kind(btf, btf_type_name, kind); 8973 } 8974 8975 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8976 enum bpf_attach_type attach_type) 8977 { 8978 const char *prefix; 8979 int kind; 8980 8981 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8982 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8983 } 8984 8985 int libbpf_find_vmlinux_btf_id(const char *name, 8986 enum bpf_attach_type attach_type) 8987 { 8988 struct btf *btf; 8989 int err; 8990 8991 btf = btf__load_vmlinux_btf(); 8992 err = libbpf_get_error(btf); 8993 if (err) { 8994 pr_warn("vmlinux BTF is not found\n"); 8995 return libbpf_err(err); 8996 } 8997 8998 err = find_attach_btf_id(btf, name, attach_type); 8999 if (err <= 0) 9000 pr_warn("%s is not found in vmlinux BTF\n", name); 9001 9002 btf__free(btf); 9003 return libbpf_err(err); 9004 } 9005 9006 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9007 { 9008 struct bpf_prog_info info; 9009 __u32 info_len = sizeof(info); 9010 struct btf *btf; 9011 int err; 9012 9013 memset(&info, 0, info_len); 9014 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9015 if (err) { 9016 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9017 attach_prog_fd, err); 9018 return err; 9019 } 9020 9021 err = -EINVAL; 9022 if (!info.btf_id) { 9023 pr_warn("The target program doesn't have BTF\n"); 9024 goto out; 9025 } 9026 btf = btf__load_from_kernel_by_id(info.btf_id); 9027 err = libbpf_get_error(btf); 9028 if (err) { 9029 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9030 goto out; 9031 } 9032 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9033 btf__free(btf); 9034 if (err <= 0) { 9035 pr_warn("%s is not found in prog's BTF\n", name); 9036 goto out; 9037 } 9038 out: 9039 return err; 9040 } 9041 9042 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9043 enum bpf_attach_type attach_type, 9044 int *btf_obj_fd, int *btf_type_id) 9045 { 9046 int ret, i; 9047 9048 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9049 if (ret > 0) { 9050 *btf_obj_fd = 0; /* vmlinux BTF */ 9051 *btf_type_id = ret; 9052 return 0; 9053 } 9054 if (ret != -ENOENT) 9055 return ret; 9056 9057 ret = load_module_btfs(obj); 9058 if (ret) 9059 return ret; 9060 9061 for (i = 0; i < obj->btf_module_cnt; i++) { 9062 const struct module_btf *mod = &obj->btf_modules[i]; 9063 9064 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9065 if (ret > 0) { 9066 *btf_obj_fd = mod->fd; 9067 *btf_type_id = ret; 9068 return 0; 9069 } 9070 if (ret == -ENOENT) 9071 continue; 9072 9073 return ret; 9074 } 9075 9076 return -ESRCH; 9077 } 9078 9079 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9080 int *btf_obj_fd, int *btf_type_id) 9081 { 9082 enum bpf_attach_type attach_type = prog->expected_attach_type; 9083 __u32 attach_prog_fd = prog->attach_prog_fd; 9084 int err = 0; 9085 9086 /* BPF program's BTF ID */ 9087 if (attach_prog_fd) { 9088 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9089 if (err < 0) { 9090 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9091 attach_prog_fd, attach_name, err); 9092 return err; 9093 } 9094 *btf_obj_fd = 0; 9095 *btf_type_id = err; 9096 return 0; 9097 } 9098 9099 /* kernel/module BTF ID */ 9100 if (prog->obj->gen_loader) { 9101 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9102 *btf_obj_fd = 0; 9103 *btf_type_id = 1; 9104 } else { 9105 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9106 } 9107 if (err) { 9108 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9109 return err; 9110 } 9111 return 0; 9112 } 9113 9114 int libbpf_attach_type_by_name(const char *name, 9115 enum bpf_attach_type *attach_type) 9116 { 9117 char *type_names; 9118 const struct bpf_sec_def *sec_def; 9119 9120 if (!name) 9121 return libbpf_err(-EINVAL); 9122 9123 sec_def = find_sec_def(name); 9124 if (!sec_def) { 9125 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9126 type_names = libbpf_get_type_names(true); 9127 if (type_names != NULL) { 9128 pr_debug("attachable section(type) names are:%s\n", type_names); 9129 free(type_names); 9130 } 9131 9132 return libbpf_err(-EINVAL); 9133 } 9134 9135 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9136 return libbpf_err(-EINVAL); 9137 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9138 return libbpf_err(-EINVAL); 9139 9140 *attach_type = sec_def->expected_attach_type; 9141 return 0; 9142 } 9143 9144 int bpf_map__fd(const struct bpf_map *map) 9145 { 9146 return map ? map->fd : libbpf_err(-EINVAL); 9147 } 9148 9149 static bool map_uses_real_name(const struct bpf_map *map) 9150 { 9151 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9152 * their user-visible name differs from kernel-visible name. Users see 9153 * such map's corresponding ELF section name as a map name. 9154 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9155 * maps to know which name has to be returned to the user. 9156 */ 9157 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9158 return true; 9159 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9160 return true; 9161 return false; 9162 } 9163 9164 const char *bpf_map__name(const struct bpf_map *map) 9165 { 9166 if (!map) 9167 return NULL; 9168 9169 if (map_uses_real_name(map)) 9170 return map->real_name; 9171 9172 return map->name; 9173 } 9174 9175 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9176 { 9177 return map->def.type; 9178 } 9179 9180 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9181 { 9182 if (map->fd >= 0) 9183 return libbpf_err(-EBUSY); 9184 map->def.type = type; 9185 return 0; 9186 } 9187 9188 __u32 bpf_map__map_flags(const struct bpf_map *map) 9189 { 9190 return map->def.map_flags; 9191 } 9192 9193 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9194 { 9195 if (map->fd >= 0) 9196 return libbpf_err(-EBUSY); 9197 map->def.map_flags = flags; 9198 return 0; 9199 } 9200 9201 __u64 bpf_map__map_extra(const struct bpf_map *map) 9202 { 9203 return map->map_extra; 9204 } 9205 9206 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9207 { 9208 if (map->fd >= 0) 9209 return libbpf_err(-EBUSY); 9210 map->map_extra = map_extra; 9211 return 0; 9212 } 9213 9214 __u32 bpf_map__numa_node(const struct bpf_map *map) 9215 { 9216 return map->numa_node; 9217 } 9218 9219 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9220 { 9221 if (map->fd >= 0) 9222 return libbpf_err(-EBUSY); 9223 map->numa_node = numa_node; 9224 return 0; 9225 } 9226 9227 __u32 bpf_map__key_size(const struct bpf_map *map) 9228 { 9229 return map->def.key_size; 9230 } 9231 9232 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9233 { 9234 if (map->fd >= 0) 9235 return libbpf_err(-EBUSY); 9236 map->def.key_size = size; 9237 return 0; 9238 } 9239 9240 __u32 bpf_map__value_size(const struct bpf_map *map) 9241 { 9242 return map->def.value_size; 9243 } 9244 9245 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9246 { 9247 if (map->fd >= 0) 9248 return libbpf_err(-EBUSY); 9249 map->def.value_size = size; 9250 return 0; 9251 } 9252 9253 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9254 { 9255 return map ? map->btf_key_type_id : 0; 9256 } 9257 9258 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9259 { 9260 return map ? map->btf_value_type_id : 0; 9261 } 9262 9263 int bpf_map__set_initial_value(struct bpf_map *map, 9264 const void *data, size_t size) 9265 { 9266 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9267 size != map->def.value_size || map->fd >= 0) 9268 return libbpf_err(-EINVAL); 9269 9270 memcpy(map->mmaped, data, size); 9271 return 0; 9272 } 9273 9274 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9275 { 9276 if (!map->mmaped) 9277 return NULL; 9278 *psize = map->def.value_size; 9279 return map->mmaped; 9280 } 9281 9282 bool bpf_map__is_internal(const struct bpf_map *map) 9283 { 9284 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9285 } 9286 9287 __u32 bpf_map__ifindex(const struct bpf_map *map) 9288 { 9289 return map->map_ifindex; 9290 } 9291 9292 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9293 { 9294 if (map->fd >= 0) 9295 return libbpf_err(-EBUSY); 9296 map->map_ifindex = ifindex; 9297 return 0; 9298 } 9299 9300 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9301 { 9302 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9303 pr_warn("error: unsupported map type\n"); 9304 return libbpf_err(-EINVAL); 9305 } 9306 if (map->inner_map_fd != -1) { 9307 pr_warn("error: inner_map_fd already specified\n"); 9308 return libbpf_err(-EINVAL); 9309 } 9310 if (map->inner_map) { 9311 bpf_map__destroy(map->inner_map); 9312 zfree(&map->inner_map); 9313 } 9314 map->inner_map_fd = fd; 9315 return 0; 9316 } 9317 9318 static struct bpf_map * 9319 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9320 { 9321 ssize_t idx; 9322 struct bpf_map *s, *e; 9323 9324 if (!obj || !obj->maps) 9325 return errno = EINVAL, NULL; 9326 9327 s = obj->maps; 9328 e = obj->maps + obj->nr_maps; 9329 9330 if ((m < s) || (m >= e)) { 9331 pr_warn("error in %s: map handler doesn't belong to object\n", 9332 __func__); 9333 return errno = EINVAL, NULL; 9334 } 9335 9336 idx = (m - obj->maps) + i; 9337 if (idx >= obj->nr_maps || idx < 0) 9338 return NULL; 9339 return &obj->maps[idx]; 9340 } 9341 9342 struct bpf_map * 9343 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9344 { 9345 if (prev == NULL) 9346 return obj->maps; 9347 9348 return __bpf_map__iter(prev, obj, 1); 9349 } 9350 9351 struct bpf_map * 9352 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9353 { 9354 if (next == NULL) { 9355 if (!obj->nr_maps) 9356 return NULL; 9357 return obj->maps + obj->nr_maps - 1; 9358 } 9359 9360 return __bpf_map__iter(next, obj, -1); 9361 } 9362 9363 struct bpf_map * 9364 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9365 { 9366 struct bpf_map *pos; 9367 9368 bpf_object__for_each_map(pos, obj) { 9369 /* if it's a special internal map name (which always starts 9370 * with dot) then check if that special name matches the 9371 * real map name (ELF section name) 9372 */ 9373 if (name[0] == '.') { 9374 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9375 return pos; 9376 continue; 9377 } 9378 /* otherwise map name has to be an exact match */ 9379 if (map_uses_real_name(pos)) { 9380 if (strcmp(pos->real_name, name) == 0) 9381 return pos; 9382 continue; 9383 } 9384 if (strcmp(pos->name, name) == 0) 9385 return pos; 9386 } 9387 return errno = ENOENT, NULL; 9388 } 9389 9390 int 9391 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9392 { 9393 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9394 } 9395 9396 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9397 size_t value_sz, bool check_value_sz) 9398 { 9399 if (map->fd <= 0) 9400 return -ENOENT; 9401 9402 if (map->def.key_size != key_sz) { 9403 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9404 map->name, key_sz, map->def.key_size); 9405 return -EINVAL; 9406 } 9407 9408 if (!check_value_sz) 9409 return 0; 9410 9411 switch (map->def.type) { 9412 case BPF_MAP_TYPE_PERCPU_ARRAY: 9413 case BPF_MAP_TYPE_PERCPU_HASH: 9414 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9415 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9416 int num_cpu = libbpf_num_possible_cpus(); 9417 size_t elem_sz = roundup(map->def.value_size, 8); 9418 9419 if (value_sz != num_cpu * elem_sz) { 9420 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9421 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9422 return -EINVAL; 9423 } 9424 break; 9425 } 9426 default: 9427 if (map->def.value_size != value_sz) { 9428 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9429 map->name, value_sz, map->def.value_size); 9430 return -EINVAL; 9431 } 9432 break; 9433 } 9434 return 0; 9435 } 9436 9437 int bpf_map__lookup_elem(const struct bpf_map *map, 9438 const void *key, size_t key_sz, 9439 void *value, size_t value_sz, __u64 flags) 9440 { 9441 int err; 9442 9443 err = validate_map_op(map, key_sz, value_sz, true); 9444 if (err) 9445 return libbpf_err(err); 9446 9447 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9448 } 9449 9450 int bpf_map__update_elem(const struct bpf_map *map, 9451 const void *key, size_t key_sz, 9452 const void *value, size_t value_sz, __u64 flags) 9453 { 9454 int err; 9455 9456 err = validate_map_op(map, key_sz, value_sz, true); 9457 if (err) 9458 return libbpf_err(err); 9459 9460 return bpf_map_update_elem(map->fd, key, value, flags); 9461 } 9462 9463 int bpf_map__delete_elem(const struct bpf_map *map, 9464 const void *key, size_t key_sz, __u64 flags) 9465 { 9466 int err; 9467 9468 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9469 if (err) 9470 return libbpf_err(err); 9471 9472 return bpf_map_delete_elem_flags(map->fd, key, flags); 9473 } 9474 9475 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9476 const void *key, size_t key_sz, 9477 void *value, size_t value_sz, __u64 flags) 9478 { 9479 int err; 9480 9481 err = validate_map_op(map, key_sz, value_sz, true); 9482 if (err) 9483 return libbpf_err(err); 9484 9485 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9486 } 9487 9488 int bpf_map__get_next_key(const struct bpf_map *map, 9489 const void *cur_key, void *next_key, size_t key_sz) 9490 { 9491 int err; 9492 9493 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9494 if (err) 9495 return libbpf_err(err); 9496 9497 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9498 } 9499 9500 long libbpf_get_error(const void *ptr) 9501 { 9502 if (!IS_ERR_OR_NULL(ptr)) 9503 return 0; 9504 9505 if (IS_ERR(ptr)) 9506 errno = -PTR_ERR(ptr); 9507 9508 /* If ptr == NULL, then errno should be already set by the failing 9509 * API, because libbpf never returns NULL on success and it now always 9510 * sets errno on error. So no extra errno handling for ptr == NULL 9511 * case. 9512 */ 9513 return -errno; 9514 } 9515 9516 /* Replace link's underlying BPF program with the new one */ 9517 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9518 { 9519 int ret; 9520 9521 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9522 return libbpf_err_errno(ret); 9523 } 9524 9525 /* Release "ownership" of underlying BPF resource (typically, BPF program 9526 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9527 * link, when destructed through bpf_link__destroy() call won't attempt to 9528 * detach/unregisted that BPF resource. This is useful in situations where, 9529 * say, attached BPF program has to outlive userspace program that attached it 9530 * in the system. Depending on type of BPF program, though, there might be 9531 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9532 * exit of userspace program doesn't trigger automatic detachment and clean up 9533 * inside the kernel. 9534 */ 9535 void bpf_link__disconnect(struct bpf_link *link) 9536 { 9537 link->disconnected = true; 9538 } 9539 9540 int bpf_link__destroy(struct bpf_link *link) 9541 { 9542 int err = 0; 9543 9544 if (IS_ERR_OR_NULL(link)) 9545 return 0; 9546 9547 if (!link->disconnected && link->detach) 9548 err = link->detach(link); 9549 if (link->pin_path) 9550 free(link->pin_path); 9551 if (link->dealloc) 9552 link->dealloc(link); 9553 else 9554 free(link); 9555 9556 return libbpf_err(err); 9557 } 9558 9559 int bpf_link__fd(const struct bpf_link *link) 9560 { 9561 return link->fd; 9562 } 9563 9564 const char *bpf_link__pin_path(const struct bpf_link *link) 9565 { 9566 return link->pin_path; 9567 } 9568 9569 static int bpf_link__detach_fd(struct bpf_link *link) 9570 { 9571 return libbpf_err_errno(close(link->fd)); 9572 } 9573 9574 struct bpf_link *bpf_link__open(const char *path) 9575 { 9576 struct bpf_link *link; 9577 int fd; 9578 9579 fd = bpf_obj_get(path); 9580 if (fd < 0) { 9581 fd = -errno; 9582 pr_warn("failed to open link at %s: %d\n", path, fd); 9583 return libbpf_err_ptr(fd); 9584 } 9585 9586 link = calloc(1, sizeof(*link)); 9587 if (!link) { 9588 close(fd); 9589 return libbpf_err_ptr(-ENOMEM); 9590 } 9591 link->detach = &bpf_link__detach_fd; 9592 link->fd = fd; 9593 9594 link->pin_path = strdup(path); 9595 if (!link->pin_path) { 9596 bpf_link__destroy(link); 9597 return libbpf_err_ptr(-ENOMEM); 9598 } 9599 9600 return link; 9601 } 9602 9603 int bpf_link__detach(struct bpf_link *link) 9604 { 9605 return bpf_link_detach(link->fd) ? -errno : 0; 9606 } 9607 9608 int bpf_link__pin(struct bpf_link *link, const char *path) 9609 { 9610 int err; 9611 9612 if (link->pin_path) 9613 return libbpf_err(-EBUSY); 9614 err = make_parent_dir(path); 9615 if (err) 9616 return libbpf_err(err); 9617 err = check_path(path); 9618 if (err) 9619 return libbpf_err(err); 9620 9621 link->pin_path = strdup(path); 9622 if (!link->pin_path) 9623 return libbpf_err(-ENOMEM); 9624 9625 if (bpf_obj_pin(link->fd, link->pin_path)) { 9626 err = -errno; 9627 zfree(&link->pin_path); 9628 return libbpf_err(err); 9629 } 9630 9631 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9632 return 0; 9633 } 9634 9635 int bpf_link__unpin(struct bpf_link *link) 9636 { 9637 int err; 9638 9639 if (!link->pin_path) 9640 return libbpf_err(-EINVAL); 9641 9642 err = unlink(link->pin_path); 9643 if (err != 0) 9644 return -errno; 9645 9646 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9647 zfree(&link->pin_path); 9648 return 0; 9649 } 9650 9651 struct bpf_link_perf { 9652 struct bpf_link link; 9653 int perf_event_fd; 9654 /* legacy kprobe support: keep track of probe identifier and type */ 9655 char *legacy_probe_name; 9656 bool legacy_is_kprobe; 9657 bool legacy_is_retprobe; 9658 }; 9659 9660 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9661 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9662 9663 static int bpf_link_perf_detach(struct bpf_link *link) 9664 { 9665 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9666 int err = 0; 9667 9668 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9669 err = -errno; 9670 9671 if (perf_link->perf_event_fd != link->fd) 9672 close(perf_link->perf_event_fd); 9673 close(link->fd); 9674 9675 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9676 if (perf_link->legacy_probe_name) { 9677 if (perf_link->legacy_is_kprobe) { 9678 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9679 perf_link->legacy_is_retprobe); 9680 } else { 9681 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9682 perf_link->legacy_is_retprobe); 9683 } 9684 } 9685 9686 return err; 9687 } 9688 9689 static void bpf_link_perf_dealloc(struct bpf_link *link) 9690 { 9691 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9692 9693 free(perf_link->legacy_probe_name); 9694 free(perf_link); 9695 } 9696 9697 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9698 const struct bpf_perf_event_opts *opts) 9699 { 9700 char errmsg[STRERR_BUFSIZE]; 9701 struct bpf_link_perf *link; 9702 int prog_fd, link_fd = -1, err; 9703 9704 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9705 return libbpf_err_ptr(-EINVAL); 9706 9707 if (pfd < 0) { 9708 pr_warn("prog '%s': invalid perf event FD %d\n", 9709 prog->name, pfd); 9710 return libbpf_err_ptr(-EINVAL); 9711 } 9712 prog_fd = bpf_program__fd(prog); 9713 if (prog_fd < 0) { 9714 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9715 prog->name); 9716 return libbpf_err_ptr(-EINVAL); 9717 } 9718 9719 link = calloc(1, sizeof(*link)); 9720 if (!link) 9721 return libbpf_err_ptr(-ENOMEM); 9722 link->link.detach = &bpf_link_perf_detach; 9723 link->link.dealloc = &bpf_link_perf_dealloc; 9724 link->perf_event_fd = pfd; 9725 9726 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9727 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9728 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9729 9730 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9731 if (link_fd < 0) { 9732 err = -errno; 9733 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9734 prog->name, pfd, 9735 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9736 goto err_out; 9737 } 9738 link->link.fd = link_fd; 9739 } else { 9740 if (OPTS_GET(opts, bpf_cookie, 0)) { 9741 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9742 err = -EOPNOTSUPP; 9743 goto err_out; 9744 } 9745 9746 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9747 err = -errno; 9748 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9749 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9750 if (err == -EPROTO) 9751 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9752 prog->name, pfd); 9753 goto err_out; 9754 } 9755 link->link.fd = pfd; 9756 } 9757 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9758 err = -errno; 9759 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9760 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9761 goto err_out; 9762 } 9763 9764 return &link->link; 9765 err_out: 9766 if (link_fd >= 0) 9767 close(link_fd); 9768 free(link); 9769 return libbpf_err_ptr(err); 9770 } 9771 9772 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9773 { 9774 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9775 } 9776 9777 /* 9778 * this function is expected to parse integer in the range of [0, 2^31-1] from 9779 * given file using scanf format string fmt. If actual parsed value is 9780 * negative, the result might be indistinguishable from error 9781 */ 9782 static int parse_uint_from_file(const char *file, const char *fmt) 9783 { 9784 char buf[STRERR_BUFSIZE]; 9785 int err, ret; 9786 FILE *f; 9787 9788 f = fopen(file, "r"); 9789 if (!f) { 9790 err = -errno; 9791 pr_debug("failed to open '%s': %s\n", file, 9792 libbpf_strerror_r(err, buf, sizeof(buf))); 9793 return err; 9794 } 9795 err = fscanf(f, fmt, &ret); 9796 if (err != 1) { 9797 err = err == EOF ? -EIO : -errno; 9798 pr_debug("failed to parse '%s': %s\n", file, 9799 libbpf_strerror_r(err, buf, sizeof(buf))); 9800 fclose(f); 9801 return err; 9802 } 9803 fclose(f); 9804 return ret; 9805 } 9806 9807 static int determine_kprobe_perf_type(void) 9808 { 9809 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9810 9811 return parse_uint_from_file(file, "%d\n"); 9812 } 9813 9814 static int determine_uprobe_perf_type(void) 9815 { 9816 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9817 9818 return parse_uint_from_file(file, "%d\n"); 9819 } 9820 9821 static int determine_kprobe_retprobe_bit(void) 9822 { 9823 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9824 9825 return parse_uint_from_file(file, "config:%d\n"); 9826 } 9827 9828 static int determine_uprobe_retprobe_bit(void) 9829 { 9830 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9831 9832 return parse_uint_from_file(file, "config:%d\n"); 9833 } 9834 9835 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9836 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9837 9838 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9839 uint64_t offset, int pid, size_t ref_ctr_off) 9840 { 9841 const size_t attr_sz = sizeof(struct perf_event_attr); 9842 struct perf_event_attr attr; 9843 char errmsg[STRERR_BUFSIZE]; 9844 int type, pfd; 9845 9846 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9847 return -EINVAL; 9848 9849 memset(&attr, 0, attr_sz); 9850 9851 type = uprobe ? determine_uprobe_perf_type() 9852 : determine_kprobe_perf_type(); 9853 if (type < 0) { 9854 pr_warn("failed to determine %s perf type: %s\n", 9855 uprobe ? "uprobe" : "kprobe", 9856 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9857 return type; 9858 } 9859 if (retprobe) { 9860 int bit = uprobe ? determine_uprobe_retprobe_bit() 9861 : determine_kprobe_retprobe_bit(); 9862 9863 if (bit < 0) { 9864 pr_warn("failed to determine %s retprobe bit: %s\n", 9865 uprobe ? "uprobe" : "kprobe", 9866 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9867 return bit; 9868 } 9869 attr.config |= 1 << bit; 9870 } 9871 attr.size = attr_sz; 9872 attr.type = type; 9873 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9874 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9875 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9876 9877 /* pid filter is meaningful only for uprobes */ 9878 pfd = syscall(__NR_perf_event_open, &attr, 9879 pid < 0 ? -1 : pid /* pid */, 9880 pid == -1 ? 0 : -1 /* cpu */, 9881 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9882 return pfd >= 0 ? pfd : -errno; 9883 } 9884 9885 static int append_to_file(const char *file, const char *fmt, ...) 9886 { 9887 int fd, n, err = 0; 9888 va_list ap; 9889 9890 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9891 if (fd < 0) 9892 return -errno; 9893 9894 va_start(ap, fmt); 9895 n = vdprintf(fd, fmt, ap); 9896 va_end(ap); 9897 9898 if (n < 0) 9899 err = -errno; 9900 9901 close(fd); 9902 return err; 9903 } 9904 9905 #define DEBUGFS "/sys/kernel/debug/tracing" 9906 #define TRACEFS "/sys/kernel/tracing" 9907 9908 static bool use_debugfs(void) 9909 { 9910 static int has_debugfs = -1; 9911 9912 if (has_debugfs < 0) 9913 has_debugfs = access(DEBUGFS, F_OK) == 0; 9914 9915 return has_debugfs == 1; 9916 } 9917 9918 static const char *tracefs_path(void) 9919 { 9920 return use_debugfs() ? DEBUGFS : TRACEFS; 9921 } 9922 9923 static const char *tracefs_kprobe_events(void) 9924 { 9925 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 9926 } 9927 9928 static const char *tracefs_uprobe_events(void) 9929 { 9930 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 9931 } 9932 9933 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9934 const char *kfunc_name, size_t offset) 9935 { 9936 static int index = 0; 9937 9938 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9939 __sync_fetch_and_add(&index, 1)); 9940 } 9941 9942 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9943 const char *kfunc_name, size_t offset) 9944 { 9945 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 9946 retprobe ? 'r' : 'p', 9947 retprobe ? "kretprobes" : "kprobes", 9948 probe_name, kfunc_name, offset); 9949 } 9950 9951 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9952 { 9953 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 9954 retprobe ? "kretprobes" : "kprobes", probe_name); 9955 } 9956 9957 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9958 { 9959 char file[256]; 9960 9961 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 9962 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 9963 9964 return parse_uint_from_file(file, "%d\n"); 9965 } 9966 9967 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9968 const char *kfunc_name, size_t offset, int pid) 9969 { 9970 const size_t attr_sz = sizeof(struct perf_event_attr); 9971 struct perf_event_attr attr; 9972 char errmsg[STRERR_BUFSIZE]; 9973 int type, pfd, err; 9974 9975 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9976 if (err < 0) { 9977 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9978 kfunc_name, offset, 9979 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9980 return err; 9981 } 9982 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9983 if (type < 0) { 9984 err = type; 9985 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9986 kfunc_name, offset, 9987 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9988 goto err_clean_legacy; 9989 } 9990 9991 memset(&attr, 0, attr_sz); 9992 attr.size = attr_sz; 9993 attr.config = type; 9994 attr.type = PERF_TYPE_TRACEPOINT; 9995 9996 pfd = syscall(__NR_perf_event_open, &attr, 9997 pid < 0 ? -1 : pid, /* pid */ 9998 pid == -1 ? 0 : -1, /* cpu */ 9999 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10000 if (pfd < 0) { 10001 err = -errno; 10002 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10003 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10004 goto err_clean_legacy; 10005 } 10006 return pfd; 10007 10008 err_clean_legacy: 10009 /* Clear the newly added legacy kprobe_event */ 10010 remove_kprobe_event_legacy(probe_name, retprobe); 10011 return err; 10012 } 10013 10014 static const char *arch_specific_syscall_pfx(void) 10015 { 10016 #if defined(__x86_64__) 10017 return "x64"; 10018 #elif defined(__i386__) 10019 return "ia32"; 10020 #elif defined(__s390x__) 10021 return "s390x"; 10022 #elif defined(__s390__) 10023 return "s390"; 10024 #elif defined(__arm__) 10025 return "arm"; 10026 #elif defined(__aarch64__) 10027 return "arm64"; 10028 #elif defined(__mips__) 10029 return "mips"; 10030 #elif defined(__riscv) 10031 return "riscv"; 10032 #elif defined(__powerpc__) 10033 return "powerpc"; 10034 #elif defined(__powerpc64__) 10035 return "powerpc64"; 10036 #else 10037 return NULL; 10038 #endif 10039 } 10040 10041 static int probe_kern_syscall_wrapper(void) 10042 { 10043 char syscall_name[64]; 10044 const char *ksys_pfx; 10045 10046 ksys_pfx = arch_specific_syscall_pfx(); 10047 if (!ksys_pfx) 10048 return 0; 10049 10050 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10051 10052 if (determine_kprobe_perf_type() >= 0) { 10053 int pfd; 10054 10055 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10056 if (pfd >= 0) 10057 close(pfd); 10058 10059 return pfd >= 0 ? 1 : 0; 10060 } else { /* legacy mode */ 10061 char probe_name[128]; 10062 10063 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10064 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10065 return 0; 10066 10067 (void)remove_kprobe_event_legacy(probe_name, false); 10068 return 1; 10069 } 10070 } 10071 10072 struct bpf_link * 10073 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10074 const char *func_name, 10075 const struct bpf_kprobe_opts *opts) 10076 { 10077 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10078 char errmsg[STRERR_BUFSIZE]; 10079 char *legacy_probe = NULL; 10080 struct bpf_link *link; 10081 size_t offset; 10082 bool retprobe, legacy; 10083 int pfd, err; 10084 10085 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10086 return libbpf_err_ptr(-EINVAL); 10087 10088 retprobe = OPTS_GET(opts, retprobe, false); 10089 offset = OPTS_GET(opts, offset, 0); 10090 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10091 10092 legacy = determine_kprobe_perf_type() < 0; 10093 if (!legacy) { 10094 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10095 func_name, offset, 10096 -1 /* pid */, 0 /* ref_ctr_off */); 10097 } else { 10098 char probe_name[256]; 10099 10100 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10101 func_name, offset); 10102 10103 legacy_probe = strdup(probe_name); 10104 if (!legacy_probe) 10105 return libbpf_err_ptr(-ENOMEM); 10106 10107 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10108 offset, -1 /* pid */); 10109 } 10110 if (pfd < 0) { 10111 err = -errno; 10112 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10113 prog->name, retprobe ? "kretprobe" : "kprobe", 10114 func_name, offset, 10115 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10116 goto err_out; 10117 } 10118 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10119 err = libbpf_get_error(link); 10120 if (err) { 10121 close(pfd); 10122 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10123 prog->name, retprobe ? "kretprobe" : "kprobe", 10124 func_name, offset, 10125 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10126 goto err_clean_legacy; 10127 } 10128 if (legacy) { 10129 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10130 10131 perf_link->legacy_probe_name = legacy_probe; 10132 perf_link->legacy_is_kprobe = true; 10133 perf_link->legacy_is_retprobe = retprobe; 10134 } 10135 10136 return link; 10137 10138 err_clean_legacy: 10139 if (legacy) 10140 remove_kprobe_event_legacy(legacy_probe, retprobe); 10141 err_out: 10142 free(legacy_probe); 10143 return libbpf_err_ptr(err); 10144 } 10145 10146 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10147 bool retprobe, 10148 const char *func_name) 10149 { 10150 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10151 .retprobe = retprobe, 10152 ); 10153 10154 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10155 } 10156 10157 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10158 const char *syscall_name, 10159 const struct bpf_ksyscall_opts *opts) 10160 { 10161 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10162 char func_name[128]; 10163 10164 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10165 return libbpf_err_ptr(-EINVAL); 10166 10167 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10168 /* arch_specific_syscall_pfx() should never return NULL here 10169 * because it is guarded by kernel_supports(). However, since 10170 * compiler does not know that we have an explicit conditional 10171 * as well. 10172 */ 10173 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10174 arch_specific_syscall_pfx() ? : "", syscall_name); 10175 } else { 10176 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10177 } 10178 10179 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10180 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10181 10182 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10183 } 10184 10185 /* Adapted from perf/util/string.c */ 10186 static bool glob_match(const char *str, const char *pat) 10187 { 10188 while (*str && *pat && *pat != '*') { 10189 if (*pat == '?') { /* Matches any single character */ 10190 str++; 10191 pat++; 10192 continue; 10193 } 10194 if (*str != *pat) 10195 return false; 10196 str++; 10197 pat++; 10198 } 10199 /* Check wild card */ 10200 if (*pat == '*') { 10201 while (*pat == '*') 10202 pat++; 10203 if (!*pat) /* Tail wild card matches all */ 10204 return true; 10205 while (*str) 10206 if (glob_match(str++, pat)) 10207 return true; 10208 } 10209 return !*str && !*pat; 10210 } 10211 10212 struct kprobe_multi_resolve { 10213 const char *pattern; 10214 unsigned long *addrs; 10215 size_t cap; 10216 size_t cnt; 10217 }; 10218 10219 static int 10220 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10221 const char *sym_name, void *ctx) 10222 { 10223 struct kprobe_multi_resolve *res = ctx; 10224 int err; 10225 10226 if (!glob_match(sym_name, res->pattern)) 10227 return 0; 10228 10229 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10230 res->cnt + 1); 10231 if (err) 10232 return err; 10233 10234 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10235 return 0; 10236 } 10237 10238 struct bpf_link * 10239 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10240 const char *pattern, 10241 const struct bpf_kprobe_multi_opts *opts) 10242 { 10243 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10244 struct kprobe_multi_resolve res = { 10245 .pattern = pattern, 10246 }; 10247 struct bpf_link *link = NULL; 10248 char errmsg[STRERR_BUFSIZE]; 10249 const unsigned long *addrs; 10250 int err, link_fd, prog_fd; 10251 const __u64 *cookies; 10252 const char **syms; 10253 bool retprobe; 10254 size_t cnt; 10255 10256 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10257 return libbpf_err_ptr(-EINVAL); 10258 10259 syms = OPTS_GET(opts, syms, false); 10260 addrs = OPTS_GET(opts, addrs, false); 10261 cnt = OPTS_GET(opts, cnt, false); 10262 cookies = OPTS_GET(opts, cookies, false); 10263 10264 if (!pattern && !addrs && !syms) 10265 return libbpf_err_ptr(-EINVAL); 10266 if (pattern && (addrs || syms || cookies || cnt)) 10267 return libbpf_err_ptr(-EINVAL); 10268 if (!pattern && !cnt) 10269 return libbpf_err_ptr(-EINVAL); 10270 if (addrs && syms) 10271 return libbpf_err_ptr(-EINVAL); 10272 10273 if (pattern) { 10274 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10275 if (err) 10276 goto error; 10277 if (!res.cnt) { 10278 err = -ENOENT; 10279 goto error; 10280 } 10281 addrs = res.addrs; 10282 cnt = res.cnt; 10283 } 10284 10285 retprobe = OPTS_GET(opts, retprobe, false); 10286 10287 lopts.kprobe_multi.syms = syms; 10288 lopts.kprobe_multi.addrs = addrs; 10289 lopts.kprobe_multi.cookies = cookies; 10290 lopts.kprobe_multi.cnt = cnt; 10291 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10292 10293 link = calloc(1, sizeof(*link)); 10294 if (!link) { 10295 err = -ENOMEM; 10296 goto error; 10297 } 10298 link->detach = &bpf_link__detach_fd; 10299 10300 prog_fd = bpf_program__fd(prog); 10301 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10302 if (link_fd < 0) { 10303 err = -errno; 10304 pr_warn("prog '%s': failed to attach: %s\n", 10305 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10306 goto error; 10307 } 10308 link->fd = link_fd; 10309 free(res.addrs); 10310 return link; 10311 10312 error: 10313 free(link); 10314 free(res.addrs); 10315 return libbpf_err_ptr(err); 10316 } 10317 10318 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10319 { 10320 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10321 unsigned long offset = 0; 10322 const char *func_name; 10323 char *func; 10324 int n; 10325 10326 *link = NULL; 10327 10328 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10329 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10330 return 0; 10331 10332 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10333 if (opts.retprobe) 10334 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10335 else 10336 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10337 10338 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10339 if (n < 1) { 10340 pr_warn("kprobe name is invalid: %s\n", func_name); 10341 return -EINVAL; 10342 } 10343 if (opts.retprobe && offset != 0) { 10344 free(func); 10345 pr_warn("kretprobes do not support offset specification\n"); 10346 return -EINVAL; 10347 } 10348 10349 opts.offset = offset; 10350 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10351 free(func); 10352 return libbpf_get_error(*link); 10353 } 10354 10355 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10356 { 10357 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10358 const char *syscall_name; 10359 10360 *link = NULL; 10361 10362 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10363 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10364 return 0; 10365 10366 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10367 if (opts.retprobe) 10368 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10369 else 10370 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10371 10372 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10373 return *link ? 0 : -errno; 10374 } 10375 10376 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10377 { 10378 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10379 const char *spec; 10380 char *pattern; 10381 int n; 10382 10383 *link = NULL; 10384 10385 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10386 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10387 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10388 return 0; 10389 10390 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10391 if (opts.retprobe) 10392 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10393 else 10394 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10395 10396 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10397 if (n < 1) { 10398 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10399 return -EINVAL; 10400 } 10401 10402 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10403 free(pattern); 10404 return libbpf_get_error(*link); 10405 } 10406 10407 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10408 const char *binary_path, uint64_t offset) 10409 { 10410 int i; 10411 10412 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10413 10414 /* sanitize binary_path in the probe name */ 10415 for (i = 0; buf[i]; i++) { 10416 if (!isalnum(buf[i])) 10417 buf[i] = '_'; 10418 } 10419 } 10420 10421 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10422 const char *binary_path, size_t offset) 10423 { 10424 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10425 retprobe ? 'r' : 'p', 10426 retprobe ? "uretprobes" : "uprobes", 10427 probe_name, binary_path, offset); 10428 } 10429 10430 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10431 { 10432 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10433 retprobe ? "uretprobes" : "uprobes", probe_name); 10434 } 10435 10436 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10437 { 10438 char file[512]; 10439 10440 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10441 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10442 10443 return parse_uint_from_file(file, "%d\n"); 10444 } 10445 10446 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10447 const char *binary_path, size_t offset, int pid) 10448 { 10449 const size_t attr_sz = sizeof(struct perf_event_attr); 10450 struct perf_event_attr attr; 10451 int type, pfd, err; 10452 10453 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10454 if (err < 0) { 10455 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10456 binary_path, (size_t)offset, err); 10457 return err; 10458 } 10459 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10460 if (type < 0) { 10461 err = type; 10462 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10463 binary_path, offset, err); 10464 goto err_clean_legacy; 10465 } 10466 10467 memset(&attr, 0, attr_sz); 10468 attr.size = attr_sz; 10469 attr.config = type; 10470 attr.type = PERF_TYPE_TRACEPOINT; 10471 10472 pfd = syscall(__NR_perf_event_open, &attr, 10473 pid < 0 ? -1 : pid, /* pid */ 10474 pid == -1 ? 0 : -1, /* cpu */ 10475 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10476 if (pfd < 0) { 10477 err = -errno; 10478 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10479 goto err_clean_legacy; 10480 } 10481 return pfd; 10482 10483 err_clean_legacy: 10484 /* Clear the newly added legacy uprobe_event */ 10485 remove_uprobe_event_legacy(probe_name, retprobe); 10486 return err; 10487 } 10488 10489 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10490 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10491 { 10492 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10493 GElf_Shdr sh; 10494 10495 if (!gelf_getshdr(scn, &sh)) 10496 continue; 10497 if (sh.sh_type == sh_type) 10498 return scn; 10499 } 10500 return NULL; 10501 } 10502 10503 /* Find offset of function name in object specified by path. "name" matches 10504 * symbol name or name@@LIB for library functions. 10505 */ 10506 static long elf_find_func_offset(const char *binary_path, const char *name) 10507 { 10508 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10509 bool is_shared_lib, is_name_qualified; 10510 char errmsg[STRERR_BUFSIZE]; 10511 long ret = -ENOENT; 10512 size_t name_len; 10513 GElf_Ehdr ehdr; 10514 Elf *elf; 10515 10516 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10517 if (fd < 0) { 10518 ret = -errno; 10519 pr_warn("failed to open %s: %s\n", binary_path, 10520 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10521 return ret; 10522 } 10523 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10524 if (!elf) { 10525 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10526 close(fd); 10527 return -LIBBPF_ERRNO__FORMAT; 10528 } 10529 if (!gelf_getehdr(elf, &ehdr)) { 10530 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10531 ret = -LIBBPF_ERRNO__FORMAT; 10532 goto out; 10533 } 10534 /* for shared lib case, we do not need to calculate relative offset */ 10535 is_shared_lib = ehdr.e_type == ET_DYN; 10536 10537 name_len = strlen(name); 10538 /* Does name specify "@@LIB"? */ 10539 is_name_qualified = strstr(name, "@@") != NULL; 10540 10541 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10542 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10543 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10544 * reported as a warning/error. 10545 */ 10546 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10547 size_t nr_syms, strtabidx, idx; 10548 Elf_Data *symbols = NULL; 10549 Elf_Scn *scn = NULL; 10550 int last_bind = -1; 10551 const char *sname; 10552 GElf_Shdr sh; 10553 10554 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10555 if (!scn) { 10556 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10557 binary_path); 10558 continue; 10559 } 10560 if (!gelf_getshdr(scn, &sh)) 10561 continue; 10562 strtabidx = sh.sh_link; 10563 symbols = elf_getdata(scn, 0); 10564 if (!symbols) { 10565 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10566 binary_path, elf_errmsg(-1)); 10567 ret = -LIBBPF_ERRNO__FORMAT; 10568 goto out; 10569 } 10570 nr_syms = symbols->d_size / sh.sh_entsize; 10571 10572 for (idx = 0; idx < nr_syms; idx++) { 10573 int curr_bind; 10574 GElf_Sym sym; 10575 Elf_Scn *sym_scn; 10576 GElf_Shdr sym_sh; 10577 10578 if (!gelf_getsym(symbols, idx, &sym)) 10579 continue; 10580 10581 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10582 continue; 10583 10584 sname = elf_strptr(elf, strtabidx, sym.st_name); 10585 if (!sname) 10586 continue; 10587 10588 curr_bind = GELF_ST_BIND(sym.st_info); 10589 10590 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10591 if (strncmp(sname, name, name_len) != 0) 10592 continue; 10593 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10594 * additional characters in sname should be of the form "@@LIB". 10595 */ 10596 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10597 continue; 10598 10599 if (ret >= 0) { 10600 /* handle multiple matches */ 10601 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10602 /* Only accept one non-weak bind. */ 10603 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10604 sname, name, binary_path); 10605 ret = -LIBBPF_ERRNO__FORMAT; 10606 goto out; 10607 } else if (curr_bind == STB_WEAK) { 10608 /* already have a non-weak bind, and 10609 * this is a weak bind, so ignore. 10610 */ 10611 continue; 10612 } 10613 } 10614 10615 /* Transform symbol's virtual address (absolute for 10616 * binaries and relative for shared libs) into file 10617 * offset, which is what kernel is expecting for 10618 * uprobe/uretprobe attachment. 10619 * See Documentation/trace/uprobetracer.rst for more 10620 * details. 10621 * This is done by looking up symbol's containing 10622 * section's header and using it's virtual address 10623 * (sh_addr) and corresponding file offset (sh_offset) 10624 * to transform sym.st_value (virtual address) into 10625 * desired final file offset. 10626 */ 10627 sym_scn = elf_getscn(elf, sym.st_shndx); 10628 if (!sym_scn) 10629 continue; 10630 if (!gelf_getshdr(sym_scn, &sym_sh)) 10631 continue; 10632 10633 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10634 last_bind = curr_bind; 10635 } 10636 if (ret > 0) 10637 break; 10638 } 10639 10640 if (ret > 0) { 10641 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10642 ret); 10643 } else { 10644 if (ret == 0) { 10645 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10646 is_shared_lib ? "should not be 0 in a shared library" : 10647 "try using shared library path instead"); 10648 ret = -ENOENT; 10649 } else { 10650 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10651 } 10652 } 10653 out: 10654 elf_end(elf); 10655 close(fd); 10656 return ret; 10657 } 10658 10659 static const char *arch_specific_lib_paths(void) 10660 { 10661 /* 10662 * Based on https://packages.debian.org/sid/libc6. 10663 * 10664 * Assume that the traced program is built for the same architecture 10665 * as libbpf, which should cover the vast majority of cases. 10666 */ 10667 #if defined(__x86_64__) 10668 return "/lib/x86_64-linux-gnu"; 10669 #elif defined(__i386__) 10670 return "/lib/i386-linux-gnu"; 10671 #elif defined(__s390x__) 10672 return "/lib/s390x-linux-gnu"; 10673 #elif defined(__s390__) 10674 return "/lib/s390-linux-gnu"; 10675 #elif defined(__arm__) && defined(__SOFTFP__) 10676 return "/lib/arm-linux-gnueabi"; 10677 #elif defined(__arm__) && !defined(__SOFTFP__) 10678 return "/lib/arm-linux-gnueabihf"; 10679 #elif defined(__aarch64__) 10680 return "/lib/aarch64-linux-gnu"; 10681 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10682 return "/lib/mips64el-linux-gnuabi64"; 10683 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10684 return "/lib/mipsel-linux-gnu"; 10685 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10686 return "/lib/powerpc64le-linux-gnu"; 10687 #elif defined(__sparc__) && defined(__arch64__) 10688 return "/lib/sparc64-linux-gnu"; 10689 #elif defined(__riscv) && __riscv_xlen == 64 10690 return "/lib/riscv64-linux-gnu"; 10691 #else 10692 return NULL; 10693 #endif 10694 } 10695 10696 /* Get full path to program/shared library. */ 10697 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10698 { 10699 const char *search_paths[3] = {}; 10700 int i, perm; 10701 10702 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10703 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10704 search_paths[1] = "/usr/lib64:/usr/lib"; 10705 search_paths[2] = arch_specific_lib_paths(); 10706 perm = R_OK; 10707 } else { 10708 search_paths[0] = getenv("PATH"); 10709 search_paths[1] = "/usr/bin:/usr/sbin"; 10710 perm = R_OK | X_OK; 10711 } 10712 10713 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10714 const char *s; 10715 10716 if (!search_paths[i]) 10717 continue; 10718 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10719 char *next_path; 10720 int seg_len; 10721 10722 if (s[0] == ':') 10723 s++; 10724 next_path = strchr(s, ':'); 10725 seg_len = next_path ? next_path - s : strlen(s); 10726 if (!seg_len) 10727 continue; 10728 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10729 /* ensure it has required permissions */ 10730 if (access(result, perm) < 0) 10731 continue; 10732 pr_debug("resolved '%s' to '%s'\n", file, result); 10733 return 0; 10734 } 10735 } 10736 return -ENOENT; 10737 } 10738 10739 LIBBPF_API struct bpf_link * 10740 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10741 const char *binary_path, size_t func_offset, 10742 const struct bpf_uprobe_opts *opts) 10743 { 10744 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10745 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10746 char full_binary_path[PATH_MAX]; 10747 struct bpf_link *link; 10748 size_t ref_ctr_off; 10749 int pfd, err; 10750 bool retprobe, legacy; 10751 const char *func_name; 10752 10753 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10754 return libbpf_err_ptr(-EINVAL); 10755 10756 retprobe = OPTS_GET(opts, retprobe, false); 10757 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10758 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10759 10760 if (!binary_path) 10761 return libbpf_err_ptr(-EINVAL); 10762 10763 if (!strchr(binary_path, '/')) { 10764 err = resolve_full_path(binary_path, full_binary_path, 10765 sizeof(full_binary_path)); 10766 if (err) { 10767 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10768 prog->name, binary_path, err); 10769 return libbpf_err_ptr(err); 10770 } 10771 binary_path = full_binary_path; 10772 } 10773 func_name = OPTS_GET(opts, func_name, NULL); 10774 if (func_name) { 10775 long sym_off; 10776 10777 sym_off = elf_find_func_offset(binary_path, func_name); 10778 if (sym_off < 0) 10779 return libbpf_err_ptr(sym_off); 10780 func_offset += sym_off; 10781 } 10782 10783 legacy = determine_uprobe_perf_type() < 0; 10784 if (!legacy) { 10785 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10786 func_offset, pid, ref_ctr_off); 10787 } else { 10788 char probe_name[PATH_MAX + 64]; 10789 10790 if (ref_ctr_off) 10791 return libbpf_err_ptr(-EINVAL); 10792 10793 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10794 binary_path, func_offset); 10795 10796 legacy_probe = strdup(probe_name); 10797 if (!legacy_probe) 10798 return libbpf_err_ptr(-ENOMEM); 10799 10800 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10801 binary_path, func_offset, pid); 10802 } 10803 if (pfd < 0) { 10804 err = -errno; 10805 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10806 prog->name, retprobe ? "uretprobe" : "uprobe", 10807 binary_path, func_offset, 10808 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10809 goto err_out; 10810 } 10811 10812 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10813 err = libbpf_get_error(link); 10814 if (err) { 10815 close(pfd); 10816 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10817 prog->name, retprobe ? "uretprobe" : "uprobe", 10818 binary_path, func_offset, 10819 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10820 goto err_clean_legacy; 10821 } 10822 if (legacy) { 10823 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10824 10825 perf_link->legacy_probe_name = legacy_probe; 10826 perf_link->legacy_is_kprobe = false; 10827 perf_link->legacy_is_retprobe = retprobe; 10828 } 10829 return link; 10830 10831 err_clean_legacy: 10832 if (legacy) 10833 remove_uprobe_event_legacy(legacy_probe, retprobe); 10834 err_out: 10835 free(legacy_probe); 10836 return libbpf_err_ptr(err); 10837 } 10838 10839 /* Format of u[ret]probe section definition supporting auto-attach: 10840 * u[ret]probe/binary:function[+offset] 10841 * 10842 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10843 * full binary path via bpf_program__attach_uprobe_opts. 10844 * 10845 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10846 * specified (and auto-attach is not possible) or the above format is specified for 10847 * auto-attach. 10848 */ 10849 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10850 { 10851 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10852 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10853 int n, ret = -EINVAL; 10854 long offset = 0; 10855 10856 *link = NULL; 10857 10858 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10859 &probe_type, &binary_path, &func_name, &offset); 10860 switch (n) { 10861 case 1: 10862 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10863 ret = 0; 10864 break; 10865 case 2: 10866 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10867 prog->name, prog->sec_name); 10868 break; 10869 case 3: 10870 case 4: 10871 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 10872 strcmp(probe_type, "uretprobe.s") == 0; 10873 if (opts.retprobe && offset != 0) { 10874 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10875 prog->name); 10876 break; 10877 } 10878 opts.func_name = func_name; 10879 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10880 ret = libbpf_get_error(*link); 10881 break; 10882 default: 10883 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10884 prog->sec_name); 10885 break; 10886 } 10887 free(probe_type); 10888 free(binary_path); 10889 free(func_name); 10890 10891 return ret; 10892 } 10893 10894 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10895 bool retprobe, pid_t pid, 10896 const char *binary_path, 10897 size_t func_offset) 10898 { 10899 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10900 10901 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10902 } 10903 10904 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10905 pid_t pid, const char *binary_path, 10906 const char *usdt_provider, const char *usdt_name, 10907 const struct bpf_usdt_opts *opts) 10908 { 10909 char resolved_path[512]; 10910 struct bpf_object *obj = prog->obj; 10911 struct bpf_link *link; 10912 __u64 usdt_cookie; 10913 int err; 10914 10915 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10916 return libbpf_err_ptr(-EINVAL); 10917 10918 if (bpf_program__fd(prog) < 0) { 10919 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10920 prog->name); 10921 return libbpf_err_ptr(-EINVAL); 10922 } 10923 10924 if (!binary_path) 10925 return libbpf_err_ptr(-EINVAL); 10926 10927 if (!strchr(binary_path, '/')) { 10928 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10929 if (err) { 10930 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10931 prog->name, binary_path, err); 10932 return libbpf_err_ptr(err); 10933 } 10934 binary_path = resolved_path; 10935 } 10936 10937 /* USDT manager is instantiated lazily on first USDT attach. It will 10938 * be destroyed together with BPF object in bpf_object__close(). 10939 */ 10940 if (IS_ERR(obj->usdt_man)) 10941 return libbpf_ptr(obj->usdt_man); 10942 if (!obj->usdt_man) { 10943 obj->usdt_man = usdt_manager_new(obj); 10944 if (IS_ERR(obj->usdt_man)) 10945 return libbpf_ptr(obj->usdt_man); 10946 } 10947 10948 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 10949 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 10950 usdt_provider, usdt_name, usdt_cookie); 10951 err = libbpf_get_error(link); 10952 if (err) 10953 return libbpf_err_ptr(err); 10954 return link; 10955 } 10956 10957 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10958 { 10959 char *path = NULL, *provider = NULL, *name = NULL; 10960 const char *sec_name; 10961 int n, err; 10962 10963 sec_name = bpf_program__section_name(prog); 10964 if (strcmp(sec_name, "usdt") == 0) { 10965 /* no auto-attach for just SEC("usdt") */ 10966 *link = NULL; 10967 return 0; 10968 } 10969 10970 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 10971 if (n != 3) { 10972 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 10973 sec_name); 10974 err = -EINVAL; 10975 } else { 10976 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 10977 provider, name, NULL); 10978 err = libbpf_get_error(*link); 10979 } 10980 free(path); 10981 free(provider); 10982 free(name); 10983 return err; 10984 } 10985 10986 static int determine_tracepoint_id(const char *tp_category, 10987 const char *tp_name) 10988 { 10989 char file[PATH_MAX]; 10990 int ret; 10991 10992 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10993 tracefs_path(), tp_category, tp_name); 10994 if (ret < 0) 10995 return -errno; 10996 if (ret >= sizeof(file)) { 10997 pr_debug("tracepoint %s/%s path is too long\n", 10998 tp_category, tp_name); 10999 return -E2BIG; 11000 } 11001 return parse_uint_from_file(file, "%d\n"); 11002 } 11003 11004 static int perf_event_open_tracepoint(const char *tp_category, 11005 const char *tp_name) 11006 { 11007 const size_t attr_sz = sizeof(struct perf_event_attr); 11008 struct perf_event_attr attr; 11009 char errmsg[STRERR_BUFSIZE]; 11010 int tp_id, pfd, err; 11011 11012 tp_id = determine_tracepoint_id(tp_category, tp_name); 11013 if (tp_id < 0) { 11014 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11015 tp_category, tp_name, 11016 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11017 return tp_id; 11018 } 11019 11020 memset(&attr, 0, attr_sz); 11021 attr.type = PERF_TYPE_TRACEPOINT; 11022 attr.size = attr_sz; 11023 attr.config = tp_id; 11024 11025 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11026 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11027 if (pfd < 0) { 11028 err = -errno; 11029 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11030 tp_category, tp_name, 11031 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11032 return err; 11033 } 11034 return pfd; 11035 } 11036 11037 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11038 const char *tp_category, 11039 const char *tp_name, 11040 const struct bpf_tracepoint_opts *opts) 11041 { 11042 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11043 char errmsg[STRERR_BUFSIZE]; 11044 struct bpf_link *link; 11045 int pfd, err; 11046 11047 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11048 return libbpf_err_ptr(-EINVAL); 11049 11050 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11051 11052 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11053 if (pfd < 0) { 11054 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11055 prog->name, tp_category, tp_name, 11056 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11057 return libbpf_err_ptr(pfd); 11058 } 11059 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11060 err = libbpf_get_error(link); 11061 if (err) { 11062 close(pfd); 11063 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11064 prog->name, tp_category, tp_name, 11065 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11066 return libbpf_err_ptr(err); 11067 } 11068 return link; 11069 } 11070 11071 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11072 const char *tp_category, 11073 const char *tp_name) 11074 { 11075 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11076 } 11077 11078 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11079 { 11080 char *sec_name, *tp_cat, *tp_name; 11081 11082 *link = NULL; 11083 11084 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11085 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11086 return 0; 11087 11088 sec_name = strdup(prog->sec_name); 11089 if (!sec_name) 11090 return -ENOMEM; 11091 11092 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11093 if (str_has_pfx(prog->sec_name, "tp/")) 11094 tp_cat = sec_name + sizeof("tp/") - 1; 11095 else 11096 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11097 tp_name = strchr(tp_cat, '/'); 11098 if (!tp_name) { 11099 free(sec_name); 11100 return -EINVAL; 11101 } 11102 *tp_name = '\0'; 11103 tp_name++; 11104 11105 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11106 free(sec_name); 11107 return libbpf_get_error(*link); 11108 } 11109 11110 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11111 const char *tp_name) 11112 { 11113 char errmsg[STRERR_BUFSIZE]; 11114 struct bpf_link *link; 11115 int prog_fd, pfd; 11116 11117 prog_fd = bpf_program__fd(prog); 11118 if (prog_fd < 0) { 11119 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11120 return libbpf_err_ptr(-EINVAL); 11121 } 11122 11123 link = calloc(1, sizeof(*link)); 11124 if (!link) 11125 return libbpf_err_ptr(-ENOMEM); 11126 link->detach = &bpf_link__detach_fd; 11127 11128 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11129 if (pfd < 0) { 11130 pfd = -errno; 11131 free(link); 11132 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11133 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11134 return libbpf_err_ptr(pfd); 11135 } 11136 link->fd = pfd; 11137 return link; 11138 } 11139 11140 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11141 { 11142 static const char *const prefixes[] = { 11143 "raw_tp", 11144 "raw_tracepoint", 11145 "raw_tp.w", 11146 "raw_tracepoint.w", 11147 }; 11148 size_t i; 11149 const char *tp_name = NULL; 11150 11151 *link = NULL; 11152 11153 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11154 size_t pfx_len; 11155 11156 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11157 continue; 11158 11159 pfx_len = strlen(prefixes[i]); 11160 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11161 if (prog->sec_name[pfx_len] == '\0') 11162 return 0; 11163 11164 if (prog->sec_name[pfx_len] != '/') 11165 continue; 11166 11167 tp_name = prog->sec_name + pfx_len + 1; 11168 break; 11169 } 11170 11171 if (!tp_name) { 11172 pr_warn("prog '%s': invalid section name '%s'\n", 11173 prog->name, prog->sec_name); 11174 return -EINVAL; 11175 } 11176 11177 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11178 return libbpf_get_error(link); 11179 } 11180 11181 /* Common logic for all BPF program types that attach to a btf_id */ 11182 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11183 const struct bpf_trace_opts *opts) 11184 { 11185 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11186 char errmsg[STRERR_BUFSIZE]; 11187 struct bpf_link *link; 11188 int prog_fd, pfd; 11189 11190 if (!OPTS_VALID(opts, bpf_trace_opts)) 11191 return libbpf_err_ptr(-EINVAL); 11192 11193 prog_fd = bpf_program__fd(prog); 11194 if (prog_fd < 0) { 11195 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11196 return libbpf_err_ptr(-EINVAL); 11197 } 11198 11199 link = calloc(1, sizeof(*link)); 11200 if (!link) 11201 return libbpf_err_ptr(-ENOMEM); 11202 link->detach = &bpf_link__detach_fd; 11203 11204 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11205 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11206 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11207 if (pfd < 0) { 11208 pfd = -errno; 11209 free(link); 11210 pr_warn("prog '%s': failed to attach: %s\n", 11211 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11212 return libbpf_err_ptr(pfd); 11213 } 11214 link->fd = pfd; 11215 return link; 11216 } 11217 11218 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11219 { 11220 return bpf_program__attach_btf_id(prog, NULL); 11221 } 11222 11223 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11224 const struct bpf_trace_opts *opts) 11225 { 11226 return bpf_program__attach_btf_id(prog, opts); 11227 } 11228 11229 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11230 { 11231 return bpf_program__attach_btf_id(prog, NULL); 11232 } 11233 11234 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11235 { 11236 *link = bpf_program__attach_trace(prog); 11237 return libbpf_get_error(*link); 11238 } 11239 11240 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11241 { 11242 *link = bpf_program__attach_lsm(prog); 11243 return libbpf_get_error(*link); 11244 } 11245 11246 static struct bpf_link * 11247 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11248 const char *target_name) 11249 { 11250 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11251 .target_btf_id = btf_id); 11252 enum bpf_attach_type attach_type; 11253 char errmsg[STRERR_BUFSIZE]; 11254 struct bpf_link *link; 11255 int prog_fd, link_fd; 11256 11257 prog_fd = bpf_program__fd(prog); 11258 if (prog_fd < 0) { 11259 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11260 return libbpf_err_ptr(-EINVAL); 11261 } 11262 11263 link = calloc(1, sizeof(*link)); 11264 if (!link) 11265 return libbpf_err_ptr(-ENOMEM); 11266 link->detach = &bpf_link__detach_fd; 11267 11268 attach_type = bpf_program__expected_attach_type(prog); 11269 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11270 if (link_fd < 0) { 11271 link_fd = -errno; 11272 free(link); 11273 pr_warn("prog '%s': failed to attach to %s: %s\n", 11274 prog->name, target_name, 11275 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11276 return libbpf_err_ptr(link_fd); 11277 } 11278 link->fd = link_fd; 11279 return link; 11280 } 11281 11282 struct bpf_link * 11283 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11284 { 11285 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11286 } 11287 11288 struct bpf_link * 11289 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11290 { 11291 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11292 } 11293 11294 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11295 { 11296 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11297 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11298 } 11299 11300 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11301 int target_fd, 11302 const char *attach_func_name) 11303 { 11304 int btf_id; 11305 11306 if (!!target_fd != !!attach_func_name) { 11307 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11308 prog->name); 11309 return libbpf_err_ptr(-EINVAL); 11310 } 11311 11312 if (prog->type != BPF_PROG_TYPE_EXT) { 11313 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11314 prog->name); 11315 return libbpf_err_ptr(-EINVAL); 11316 } 11317 11318 if (target_fd) { 11319 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11320 if (btf_id < 0) 11321 return libbpf_err_ptr(btf_id); 11322 11323 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11324 } else { 11325 /* no target, so use raw_tracepoint_open for compatibility 11326 * with old kernels 11327 */ 11328 return bpf_program__attach_trace(prog); 11329 } 11330 } 11331 11332 struct bpf_link * 11333 bpf_program__attach_iter(const struct bpf_program *prog, 11334 const struct bpf_iter_attach_opts *opts) 11335 { 11336 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11337 char errmsg[STRERR_BUFSIZE]; 11338 struct bpf_link *link; 11339 int prog_fd, link_fd; 11340 __u32 target_fd = 0; 11341 11342 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11343 return libbpf_err_ptr(-EINVAL); 11344 11345 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11346 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11347 11348 prog_fd = bpf_program__fd(prog); 11349 if (prog_fd < 0) { 11350 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11351 return libbpf_err_ptr(-EINVAL); 11352 } 11353 11354 link = calloc(1, sizeof(*link)); 11355 if (!link) 11356 return libbpf_err_ptr(-ENOMEM); 11357 link->detach = &bpf_link__detach_fd; 11358 11359 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11360 &link_create_opts); 11361 if (link_fd < 0) { 11362 link_fd = -errno; 11363 free(link); 11364 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11365 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11366 return libbpf_err_ptr(link_fd); 11367 } 11368 link->fd = link_fd; 11369 return link; 11370 } 11371 11372 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11373 { 11374 *link = bpf_program__attach_iter(prog, NULL); 11375 return libbpf_get_error(*link); 11376 } 11377 11378 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11379 { 11380 struct bpf_link *link = NULL; 11381 int err; 11382 11383 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11384 return libbpf_err_ptr(-EOPNOTSUPP); 11385 11386 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11387 if (err) 11388 return libbpf_err_ptr(err); 11389 11390 /* When calling bpf_program__attach() explicitly, auto-attach support 11391 * is expected to work, so NULL returned link is considered an error. 11392 * This is different for skeleton's attach, see comment in 11393 * bpf_object__attach_skeleton(). 11394 */ 11395 if (!link) 11396 return libbpf_err_ptr(-EOPNOTSUPP); 11397 11398 return link; 11399 } 11400 11401 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11402 { 11403 __u32 zero = 0; 11404 11405 if (bpf_map_delete_elem(link->fd, &zero)) 11406 return -errno; 11407 11408 return 0; 11409 } 11410 11411 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11412 { 11413 struct bpf_struct_ops *st_ops; 11414 struct bpf_link *link; 11415 __u32 i, zero = 0; 11416 int err; 11417 11418 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11419 return libbpf_err_ptr(-EINVAL); 11420 11421 link = calloc(1, sizeof(*link)); 11422 if (!link) 11423 return libbpf_err_ptr(-EINVAL); 11424 11425 st_ops = map->st_ops; 11426 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11427 struct bpf_program *prog = st_ops->progs[i]; 11428 void *kern_data; 11429 int prog_fd; 11430 11431 if (!prog) 11432 continue; 11433 11434 prog_fd = bpf_program__fd(prog); 11435 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11436 *(unsigned long *)kern_data = prog_fd; 11437 } 11438 11439 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11440 if (err) { 11441 err = -errno; 11442 free(link); 11443 return libbpf_err_ptr(err); 11444 } 11445 11446 link->detach = bpf_link__detach_struct_ops; 11447 link->fd = map->fd; 11448 11449 return link; 11450 } 11451 11452 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11453 void *private_data); 11454 11455 static enum bpf_perf_event_ret 11456 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11457 void **copy_mem, size_t *copy_size, 11458 bpf_perf_event_print_t fn, void *private_data) 11459 { 11460 struct perf_event_mmap_page *header = mmap_mem; 11461 __u64 data_head = ring_buffer_read_head(header); 11462 __u64 data_tail = header->data_tail; 11463 void *base = ((__u8 *)header) + page_size; 11464 int ret = LIBBPF_PERF_EVENT_CONT; 11465 struct perf_event_header *ehdr; 11466 size_t ehdr_size; 11467 11468 while (data_head != data_tail) { 11469 ehdr = base + (data_tail & (mmap_size - 1)); 11470 ehdr_size = ehdr->size; 11471 11472 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11473 void *copy_start = ehdr; 11474 size_t len_first = base + mmap_size - copy_start; 11475 size_t len_secnd = ehdr_size - len_first; 11476 11477 if (*copy_size < ehdr_size) { 11478 free(*copy_mem); 11479 *copy_mem = malloc(ehdr_size); 11480 if (!*copy_mem) { 11481 *copy_size = 0; 11482 ret = LIBBPF_PERF_EVENT_ERROR; 11483 break; 11484 } 11485 *copy_size = ehdr_size; 11486 } 11487 11488 memcpy(*copy_mem, copy_start, len_first); 11489 memcpy(*copy_mem + len_first, base, len_secnd); 11490 ehdr = *copy_mem; 11491 } 11492 11493 ret = fn(ehdr, private_data); 11494 data_tail += ehdr_size; 11495 if (ret != LIBBPF_PERF_EVENT_CONT) 11496 break; 11497 } 11498 11499 ring_buffer_write_tail(header, data_tail); 11500 return libbpf_err(ret); 11501 } 11502 11503 struct perf_buffer; 11504 11505 struct perf_buffer_params { 11506 struct perf_event_attr *attr; 11507 /* if event_cb is specified, it takes precendence */ 11508 perf_buffer_event_fn event_cb; 11509 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11510 perf_buffer_sample_fn sample_cb; 11511 perf_buffer_lost_fn lost_cb; 11512 void *ctx; 11513 int cpu_cnt; 11514 int *cpus; 11515 int *map_keys; 11516 }; 11517 11518 struct perf_cpu_buf { 11519 struct perf_buffer *pb; 11520 void *base; /* mmap()'ed memory */ 11521 void *buf; /* for reconstructing segmented data */ 11522 size_t buf_size; 11523 int fd; 11524 int cpu; 11525 int map_key; 11526 }; 11527 11528 struct perf_buffer { 11529 perf_buffer_event_fn event_cb; 11530 perf_buffer_sample_fn sample_cb; 11531 perf_buffer_lost_fn lost_cb; 11532 void *ctx; /* passed into callbacks */ 11533 11534 size_t page_size; 11535 size_t mmap_size; 11536 struct perf_cpu_buf **cpu_bufs; 11537 struct epoll_event *events; 11538 int cpu_cnt; /* number of allocated CPU buffers */ 11539 int epoll_fd; /* perf event FD */ 11540 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11541 }; 11542 11543 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11544 struct perf_cpu_buf *cpu_buf) 11545 { 11546 if (!cpu_buf) 11547 return; 11548 if (cpu_buf->base && 11549 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11550 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11551 if (cpu_buf->fd >= 0) { 11552 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11553 close(cpu_buf->fd); 11554 } 11555 free(cpu_buf->buf); 11556 free(cpu_buf); 11557 } 11558 11559 void perf_buffer__free(struct perf_buffer *pb) 11560 { 11561 int i; 11562 11563 if (IS_ERR_OR_NULL(pb)) 11564 return; 11565 if (pb->cpu_bufs) { 11566 for (i = 0; i < pb->cpu_cnt; i++) { 11567 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11568 11569 if (!cpu_buf) 11570 continue; 11571 11572 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11573 perf_buffer__free_cpu_buf(pb, cpu_buf); 11574 } 11575 free(pb->cpu_bufs); 11576 } 11577 if (pb->epoll_fd >= 0) 11578 close(pb->epoll_fd); 11579 free(pb->events); 11580 free(pb); 11581 } 11582 11583 static struct perf_cpu_buf * 11584 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11585 int cpu, int map_key) 11586 { 11587 struct perf_cpu_buf *cpu_buf; 11588 char msg[STRERR_BUFSIZE]; 11589 int err; 11590 11591 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11592 if (!cpu_buf) 11593 return ERR_PTR(-ENOMEM); 11594 11595 cpu_buf->pb = pb; 11596 cpu_buf->cpu = cpu; 11597 cpu_buf->map_key = map_key; 11598 11599 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11600 -1, PERF_FLAG_FD_CLOEXEC); 11601 if (cpu_buf->fd < 0) { 11602 err = -errno; 11603 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11604 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11605 goto error; 11606 } 11607 11608 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11609 PROT_READ | PROT_WRITE, MAP_SHARED, 11610 cpu_buf->fd, 0); 11611 if (cpu_buf->base == MAP_FAILED) { 11612 cpu_buf->base = NULL; 11613 err = -errno; 11614 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11615 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11616 goto error; 11617 } 11618 11619 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11620 err = -errno; 11621 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11622 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11623 goto error; 11624 } 11625 11626 return cpu_buf; 11627 11628 error: 11629 perf_buffer__free_cpu_buf(pb, cpu_buf); 11630 return (struct perf_cpu_buf *)ERR_PTR(err); 11631 } 11632 11633 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11634 struct perf_buffer_params *p); 11635 11636 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11637 perf_buffer_sample_fn sample_cb, 11638 perf_buffer_lost_fn lost_cb, 11639 void *ctx, 11640 const struct perf_buffer_opts *opts) 11641 { 11642 const size_t attr_sz = sizeof(struct perf_event_attr); 11643 struct perf_buffer_params p = {}; 11644 struct perf_event_attr attr; 11645 11646 if (!OPTS_VALID(opts, perf_buffer_opts)) 11647 return libbpf_err_ptr(-EINVAL); 11648 11649 memset(&attr, 0, attr_sz); 11650 attr.size = attr_sz; 11651 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11652 attr.type = PERF_TYPE_SOFTWARE; 11653 attr.sample_type = PERF_SAMPLE_RAW; 11654 attr.sample_period = 1; 11655 attr.wakeup_events = 1; 11656 11657 p.attr = &attr; 11658 p.sample_cb = sample_cb; 11659 p.lost_cb = lost_cb; 11660 p.ctx = ctx; 11661 11662 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11663 } 11664 11665 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11666 struct perf_event_attr *attr, 11667 perf_buffer_event_fn event_cb, void *ctx, 11668 const struct perf_buffer_raw_opts *opts) 11669 { 11670 struct perf_buffer_params p = {}; 11671 11672 if (!attr) 11673 return libbpf_err_ptr(-EINVAL); 11674 11675 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11676 return libbpf_err_ptr(-EINVAL); 11677 11678 p.attr = attr; 11679 p.event_cb = event_cb; 11680 p.ctx = ctx; 11681 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11682 p.cpus = OPTS_GET(opts, cpus, NULL); 11683 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11684 11685 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11686 } 11687 11688 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11689 struct perf_buffer_params *p) 11690 { 11691 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11692 struct bpf_map_info map; 11693 char msg[STRERR_BUFSIZE]; 11694 struct perf_buffer *pb; 11695 bool *online = NULL; 11696 __u32 map_info_len; 11697 int err, i, j, n; 11698 11699 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11700 pr_warn("page count should be power of two, but is %zu\n", 11701 page_cnt); 11702 return ERR_PTR(-EINVAL); 11703 } 11704 11705 /* best-effort sanity checks */ 11706 memset(&map, 0, sizeof(map)); 11707 map_info_len = sizeof(map); 11708 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11709 if (err) { 11710 err = -errno; 11711 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11712 * -EBADFD, -EFAULT, or -E2BIG on real error 11713 */ 11714 if (err != -EINVAL) { 11715 pr_warn("failed to get map info for map FD %d: %s\n", 11716 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11717 return ERR_PTR(err); 11718 } 11719 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11720 map_fd); 11721 } else { 11722 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11723 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11724 map.name); 11725 return ERR_PTR(-EINVAL); 11726 } 11727 } 11728 11729 pb = calloc(1, sizeof(*pb)); 11730 if (!pb) 11731 return ERR_PTR(-ENOMEM); 11732 11733 pb->event_cb = p->event_cb; 11734 pb->sample_cb = p->sample_cb; 11735 pb->lost_cb = p->lost_cb; 11736 pb->ctx = p->ctx; 11737 11738 pb->page_size = getpagesize(); 11739 pb->mmap_size = pb->page_size * page_cnt; 11740 pb->map_fd = map_fd; 11741 11742 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11743 if (pb->epoll_fd < 0) { 11744 err = -errno; 11745 pr_warn("failed to create epoll instance: %s\n", 11746 libbpf_strerror_r(err, msg, sizeof(msg))); 11747 goto error; 11748 } 11749 11750 if (p->cpu_cnt > 0) { 11751 pb->cpu_cnt = p->cpu_cnt; 11752 } else { 11753 pb->cpu_cnt = libbpf_num_possible_cpus(); 11754 if (pb->cpu_cnt < 0) { 11755 err = pb->cpu_cnt; 11756 goto error; 11757 } 11758 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11759 pb->cpu_cnt = map.max_entries; 11760 } 11761 11762 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11763 if (!pb->events) { 11764 err = -ENOMEM; 11765 pr_warn("failed to allocate events: out of memory\n"); 11766 goto error; 11767 } 11768 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11769 if (!pb->cpu_bufs) { 11770 err = -ENOMEM; 11771 pr_warn("failed to allocate buffers: out of memory\n"); 11772 goto error; 11773 } 11774 11775 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11776 if (err) { 11777 pr_warn("failed to get online CPU mask: %d\n", err); 11778 goto error; 11779 } 11780 11781 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11782 struct perf_cpu_buf *cpu_buf; 11783 int cpu, map_key; 11784 11785 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11786 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11787 11788 /* in case user didn't explicitly requested particular CPUs to 11789 * be attached to, skip offline/not present CPUs 11790 */ 11791 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11792 continue; 11793 11794 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11795 if (IS_ERR(cpu_buf)) { 11796 err = PTR_ERR(cpu_buf); 11797 goto error; 11798 } 11799 11800 pb->cpu_bufs[j] = cpu_buf; 11801 11802 err = bpf_map_update_elem(pb->map_fd, &map_key, 11803 &cpu_buf->fd, 0); 11804 if (err) { 11805 err = -errno; 11806 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11807 cpu, map_key, cpu_buf->fd, 11808 libbpf_strerror_r(err, msg, sizeof(msg))); 11809 goto error; 11810 } 11811 11812 pb->events[j].events = EPOLLIN; 11813 pb->events[j].data.ptr = cpu_buf; 11814 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11815 &pb->events[j]) < 0) { 11816 err = -errno; 11817 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11818 cpu, cpu_buf->fd, 11819 libbpf_strerror_r(err, msg, sizeof(msg))); 11820 goto error; 11821 } 11822 j++; 11823 } 11824 pb->cpu_cnt = j; 11825 free(online); 11826 11827 return pb; 11828 11829 error: 11830 free(online); 11831 if (pb) 11832 perf_buffer__free(pb); 11833 return ERR_PTR(err); 11834 } 11835 11836 struct perf_sample_raw { 11837 struct perf_event_header header; 11838 uint32_t size; 11839 char data[]; 11840 }; 11841 11842 struct perf_sample_lost { 11843 struct perf_event_header header; 11844 uint64_t id; 11845 uint64_t lost; 11846 uint64_t sample_id; 11847 }; 11848 11849 static enum bpf_perf_event_ret 11850 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11851 { 11852 struct perf_cpu_buf *cpu_buf = ctx; 11853 struct perf_buffer *pb = cpu_buf->pb; 11854 void *data = e; 11855 11856 /* user wants full control over parsing perf event */ 11857 if (pb->event_cb) 11858 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11859 11860 switch (e->type) { 11861 case PERF_RECORD_SAMPLE: { 11862 struct perf_sample_raw *s = data; 11863 11864 if (pb->sample_cb) 11865 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11866 break; 11867 } 11868 case PERF_RECORD_LOST: { 11869 struct perf_sample_lost *s = data; 11870 11871 if (pb->lost_cb) 11872 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11873 break; 11874 } 11875 default: 11876 pr_warn("unknown perf sample type %d\n", e->type); 11877 return LIBBPF_PERF_EVENT_ERROR; 11878 } 11879 return LIBBPF_PERF_EVENT_CONT; 11880 } 11881 11882 static int perf_buffer__process_records(struct perf_buffer *pb, 11883 struct perf_cpu_buf *cpu_buf) 11884 { 11885 enum bpf_perf_event_ret ret; 11886 11887 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11888 pb->page_size, &cpu_buf->buf, 11889 &cpu_buf->buf_size, 11890 perf_buffer__process_record, cpu_buf); 11891 if (ret != LIBBPF_PERF_EVENT_CONT) 11892 return ret; 11893 return 0; 11894 } 11895 11896 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11897 { 11898 return pb->epoll_fd; 11899 } 11900 11901 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11902 { 11903 int i, cnt, err; 11904 11905 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11906 if (cnt < 0) 11907 return -errno; 11908 11909 for (i = 0; i < cnt; i++) { 11910 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11911 11912 err = perf_buffer__process_records(pb, cpu_buf); 11913 if (err) { 11914 pr_warn("error while processing records: %d\n", err); 11915 return libbpf_err(err); 11916 } 11917 } 11918 return cnt; 11919 } 11920 11921 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11922 * manager. 11923 */ 11924 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11925 { 11926 return pb->cpu_cnt; 11927 } 11928 11929 /* 11930 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11931 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11932 * select()/poll()/epoll() Linux syscalls. 11933 */ 11934 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11935 { 11936 struct perf_cpu_buf *cpu_buf; 11937 11938 if (buf_idx >= pb->cpu_cnt) 11939 return libbpf_err(-EINVAL); 11940 11941 cpu_buf = pb->cpu_bufs[buf_idx]; 11942 if (!cpu_buf) 11943 return libbpf_err(-ENOENT); 11944 11945 return cpu_buf->fd; 11946 } 11947 11948 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 11949 { 11950 struct perf_cpu_buf *cpu_buf; 11951 11952 if (buf_idx >= pb->cpu_cnt) 11953 return libbpf_err(-EINVAL); 11954 11955 cpu_buf = pb->cpu_bufs[buf_idx]; 11956 if (!cpu_buf) 11957 return libbpf_err(-ENOENT); 11958 11959 *buf = cpu_buf->base; 11960 *buf_size = pb->mmap_size; 11961 return 0; 11962 } 11963 11964 /* 11965 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11966 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11967 * consume, do nothing and return success. 11968 * Returns: 11969 * - 0 on success; 11970 * - <0 on failure. 11971 */ 11972 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11973 { 11974 struct perf_cpu_buf *cpu_buf; 11975 11976 if (buf_idx >= pb->cpu_cnt) 11977 return libbpf_err(-EINVAL); 11978 11979 cpu_buf = pb->cpu_bufs[buf_idx]; 11980 if (!cpu_buf) 11981 return libbpf_err(-ENOENT); 11982 11983 return perf_buffer__process_records(pb, cpu_buf); 11984 } 11985 11986 int perf_buffer__consume(struct perf_buffer *pb) 11987 { 11988 int i, err; 11989 11990 for (i = 0; i < pb->cpu_cnt; i++) { 11991 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11992 11993 if (!cpu_buf) 11994 continue; 11995 11996 err = perf_buffer__process_records(pb, cpu_buf); 11997 if (err) { 11998 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 11999 return libbpf_err(err); 12000 } 12001 } 12002 return 0; 12003 } 12004 12005 int bpf_program__set_attach_target(struct bpf_program *prog, 12006 int attach_prog_fd, 12007 const char *attach_func_name) 12008 { 12009 int btf_obj_fd = 0, btf_id = 0, err; 12010 12011 if (!prog || attach_prog_fd < 0) 12012 return libbpf_err(-EINVAL); 12013 12014 if (prog->obj->loaded) 12015 return libbpf_err(-EINVAL); 12016 12017 if (attach_prog_fd && !attach_func_name) { 12018 /* remember attach_prog_fd and let bpf_program__load() find 12019 * BTF ID during the program load 12020 */ 12021 prog->attach_prog_fd = attach_prog_fd; 12022 return 0; 12023 } 12024 12025 if (attach_prog_fd) { 12026 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12027 attach_prog_fd); 12028 if (btf_id < 0) 12029 return libbpf_err(btf_id); 12030 } else { 12031 if (!attach_func_name) 12032 return libbpf_err(-EINVAL); 12033 12034 /* load btf_vmlinux, if not yet */ 12035 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12036 if (err) 12037 return libbpf_err(err); 12038 err = find_kernel_btf_id(prog->obj, attach_func_name, 12039 prog->expected_attach_type, 12040 &btf_obj_fd, &btf_id); 12041 if (err) 12042 return libbpf_err(err); 12043 } 12044 12045 prog->attach_btf_id = btf_id; 12046 prog->attach_btf_obj_fd = btf_obj_fd; 12047 prog->attach_prog_fd = attach_prog_fd; 12048 return 0; 12049 } 12050 12051 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12052 { 12053 int err = 0, n, len, start, end = -1; 12054 bool *tmp; 12055 12056 *mask = NULL; 12057 *mask_sz = 0; 12058 12059 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12060 while (*s) { 12061 if (*s == ',' || *s == '\n') { 12062 s++; 12063 continue; 12064 } 12065 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12066 if (n <= 0 || n > 2) { 12067 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12068 err = -EINVAL; 12069 goto cleanup; 12070 } else if (n == 1) { 12071 end = start; 12072 } 12073 if (start < 0 || start > end) { 12074 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12075 start, end, s); 12076 err = -EINVAL; 12077 goto cleanup; 12078 } 12079 tmp = realloc(*mask, end + 1); 12080 if (!tmp) { 12081 err = -ENOMEM; 12082 goto cleanup; 12083 } 12084 *mask = tmp; 12085 memset(tmp + *mask_sz, 0, start - *mask_sz); 12086 memset(tmp + start, 1, end - start + 1); 12087 *mask_sz = end + 1; 12088 s += len; 12089 } 12090 if (!*mask_sz) { 12091 pr_warn("Empty CPU range\n"); 12092 return -EINVAL; 12093 } 12094 return 0; 12095 cleanup: 12096 free(*mask); 12097 *mask = NULL; 12098 return err; 12099 } 12100 12101 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12102 { 12103 int fd, err = 0, len; 12104 char buf[128]; 12105 12106 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12107 if (fd < 0) { 12108 err = -errno; 12109 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12110 return err; 12111 } 12112 len = read(fd, buf, sizeof(buf)); 12113 close(fd); 12114 if (len <= 0) { 12115 err = len ? -errno : -EINVAL; 12116 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12117 return err; 12118 } 12119 if (len >= sizeof(buf)) { 12120 pr_warn("CPU mask is too big in file %s\n", fcpu); 12121 return -E2BIG; 12122 } 12123 buf[len] = '\0'; 12124 12125 return parse_cpu_mask_str(buf, mask, mask_sz); 12126 } 12127 12128 int libbpf_num_possible_cpus(void) 12129 { 12130 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12131 static int cpus; 12132 int err, n, i, tmp_cpus; 12133 bool *mask; 12134 12135 tmp_cpus = READ_ONCE(cpus); 12136 if (tmp_cpus > 0) 12137 return tmp_cpus; 12138 12139 err = parse_cpu_mask_file(fcpu, &mask, &n); 12140 if (err) 12141 return libbpf_err(err); 12142 12143 tmp_cpus = 0; 12144 for (i = 0; i < n; i++) { 12145 if (mask[i]) 12146 tmp_cpus++; 12147 } 12148 free(mask); 12149 12150 WRITE_ONCE(cpus, tmp_cpus); 12151 return tmp_cpus; 12152 } 12153 12154 static int populate_skeleton_maps(const struct bpf_object *obj, 12155 struct bpf_map_skeleton *maps, 12156 size_t map_cnt) 12157 { 12158 int i; 12159 12160 for (i = 0; i < map_cnt; i++) { 12161 struct bpf_map **map = maps[i].map; 12162 const char *name = maps[i].name; 12163 void **mmaped = maps[i].mmaped; 12164 12165 *map = bpf_object__find_map_by_name(obj, name); 12166 if (!*map) { 12167 pr_warn("failed to find skeleton map '%s'\n", name); 12168 return -ESRCH; 12169 } 12170 12171 /* externs shouldn't be pre-setup from user code */ 12172 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12173 *mmaped = (*map)->mmaped; 12174 } 12175 return 0; 12176 } 12177 12178 static int populate_skeleton_progs(const struct bpf_object *obj, 12179 struct bpf_prog_skeleton *progs, 12180 size_t prog_cnt) 12181 { 12182 int i; 12183 12184 for (i = 0; i < prog_cnt; i++) { 12185 struct bpf_program **prog = progs[i].prog; 12186 const char *name = progs[i].name; 12187 12188 *prog = bpf_object__find_program_by_name(obj, name); 12189 if (!*prog) { 12190 pr_warn("failed to find skeleton program '%s'\n", name); 12191 return -ESRCH; 12192 } 12193 } 12194 return 0; 12195 } 12196 12197 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12198 const struct bpf_object_open_opts *opts) 12199 { 12200 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12201 .object_name = s->name, 12202 ); 12203 struct bpf_object *obj; 12204 int err; 12205 12206 /* Attempt to preserve opts->object_name, unless overriden by user 12207 * explicitly. Overwriting object name for skeletons is discouraged, 12208 * as it breaks global data maps, because they contain object name 12209 * prefix as their own map name prefix. When skeleton is generated, 12210 * bpftool is making an assumption that this name will stay the same. 12211 */ 12212 if (opts) { 12213 memcpy(&skel_opts, opts, sizeof(*opts)); 12214 if (!opts->object_name) 12215 skel_opts.object_name = s->name; 12216 } 12217 12218 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12219 err = libbpf_get_error(obj); 12220 if (err) { 12221 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12222 s->name, err); 12223 return libbpf_err(err); 12224 } 12225 12226 *s->obj = obj; 12227 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12228 if (err) { 12229 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12230 return libbpf_err(err); 12231 } 12232 12233 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12234 if (err) { 12235 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12236 return libbpf_err(err); 12237 } 12238 12239 return 0; 12240 } 12241 12242 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12243 { 12244 int err, len, var_idx, i; 12245 const char *var_name; 12246 const struct bpf_map *map; 12247 struct btf *btf; 12248 __u32 map_type_id; 12249 const struct btf_type *map_type, *var_type; 12250 const struct bpf_var_skeleton *var_skel; 12251 struct btf_var_secinfo *var; 12252 12253 if (!s->obj) 12254 return libbpf_err(-EINVAL); 12255 12256 btf = bpf_object__btf(s->obj); 12257 if (!btf) { 12258 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12259 bpf_object__name(s->obj)); 12260 return libbpf_err(-errno); 12261 } 12262 12263 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12264 if (err) { 12265 pr_warn("failed to populate subskeleton maps: %d\n", err); 12266 return libbpf_err(err); 12267 } 12268 12269 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12270 if (err) { 12271 pr_warn("failed to populate subskeleton maps: %d\n", err); 12272 return libbpf_err(err); 12273 } 12274 12275 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12276 var_skel = &s->vars[var_idx]; 12277 map = *var_skel->map; 12278 map_type_id = bpf_map__btf_value_type_id(map); 12279 map_type = btf__type_by_id(btf, map_type_id); 12280 12281 if (!btf_is_datasec(map_type)) { 12282 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12283 bpf_map__name(map), 12284 __btf_kind_str(btf_kind(map_type))); 12285 return libbpf_err(-EINVAL); 12286 } 12287 12288 len = btf_vlen(map_type); 12289 var = btf_var_secinfos(map_type); 12290 for (i = 0; i < len; i++, var++) { 12291 var_type = btf__type_by_id(btf, var->type); 12292 var_name = btf__name_by_offset(btf, var_type->name_off); 12293 if (strcmp(var_name, var_skel->name) == 0) { 12294 *var_skel->addr = map->mmaped + var->offset; 12295 break; 12296 } 12297 } 12298 } 12299 return 0; 12300 } 12301 12302 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12303 { 12304 if (!s) 12305 return; 12306 free(s->maps); 12307 free(s->progs); 12308 free(s->vars); 12309 free(s); 12310 } 12311 12312 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12313 { 12314 int i, err; 12315 12316 err = bpf_object__load(*s->obj); 12317 if (err) { 12318 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12319 return libbpf_err(err); 12320 } 12321 12322 for (i = 0; i < s->map_cnt; i++) { 12323 struct bpf_map *map = *s->maps[i].map; 12324 size_t mmap_sz = bpf_map_mmap_sz(map); 12325 int prot, map_fd = bpf_map__fd(map); 12326 void **mmaped = s->maps[i].mmaped; 12327 12328 if (!mmaped) 12329 continue; 12330 12331 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12332 *mmaped = NULL; 12333 continue; 12334 } 12335 12336 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12337 prot = PROT_READ; 12338 else 12339 prot = PROT_READ | PROT_WRITE; 12340 12341 /* Remap anonymous mmap()-ed "map initialization image" as 12342 * a BPF map-backed mmap()-ed memory, but preserving the same 12343 * memory address. This will cause kernel to change process' 12344 * page table to point to a different piece of kernel memory, 12345 * but from userspace point of view memory address (and its 12346 * contents, being identical at this point) will stay the 12347 * same. This mapping will be released by bpf_object__close() 12348 * as per normal clean up procedure, so we don't need to worry 12349 * about it from skeleton's clean up perspective. 12350 */ 12351 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12352 MAP_SHARED | MAP_FIXED, map_fd, 0); 12353 if (*mmaped == MAP_FAILED) { 12354 err = -errno; 12355 *mmaped = NULL; 12356 pr_warn("failed to re-mmap() map '%s': %d\n", 12357 bpf_map__name(map), err); 12358 return libbpf_err(err); 12359 } 12360 } 12361 12362 return 0; 12363 } 12364 12365 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12366 { 12367 int i, err; 12368 12369 for (i = 0; i < s->prog_cnt; i++) { 12370 struct bpf_program *prog = *s->progs[i].prog; 12371 struct bpf_link **link = s->progs[i].link; 12372 12373 if (!prog->autoload || !prog->autoattach) 12374 continue; 12375 12376 /* auto-attaching not supported for this program */ 12377 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12378 continue; 12379 12380 /* if user already set the link manually, don't attempt auto-attach */ 12381 if (*link) 12382 continue; 12383 12384 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12385 if (err) { 12386 pr_warn("prog '%s': failed to auto-attach: %d\n", 12387 bpf_program__name(prog), err); 12388 return libbpf_err(err); 12389 } 12390 12391 /* It's possible that for some SEC() definitions auto-attach 12392 * is supported in some cases (e.g., if definition completely 12393 * specifies target information), but is not in other cases. 12394 * SEC("uprobe") is one such case. If user specified target 12395 * binary and function name, such BPF program can be 12396 * auto-attached. But if not, it shouldn't trigger skeleton's 12397 * attach to fail. It should just be skipped. 12398 * attach_fn signals such case with returning 0 (no error) and 12399 * setting link to NULL. 12400 */ 12401 } 12402 12403 return 0; 12404 } 12405 12406 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12407 { 12408 int i; 12409 12410 for (i = 0; i < s->prog_cnt; i++) { 12411 struct bpf_link **link = s->progs[i].link; 12412 12413 bpf_link__destroy(*link); 12414 *link = NULL; 12415 } 12416 } 12417 12418 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12419 { 12420 if (!s) 12421 return; 12422 12423 if (s->progs) 12424 bpf_object__detach_skeleton(s); 12425 if (s->obj) 12426 bpf_object__close(*s->obj); 12427 free(s->maps); 12428 free(s->progs); 12429 free(s); 12430 } 12431