1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef EM_BPF 59 #define EM_BPF 247 60 #endif 61 62 #ifndef BPF_FS_MAGIC 63 #define BPF_FS_MAGIC 0xcafe4a11 64 #endif 65 66 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 67 68 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 69 * compilation if user enables corresponding warning. Disable it explicitly. 70 */ 71 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 72 73 #define __printf(a, b) __attribute__((format(printf, a, b))) 74 75 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 76 static const struct btf_type * 77 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id); 78 79 static int __base_pr(enum libbpf_print_level level, const char *format, 80 va_list args) 81 { 82 if (level == LIBBPF_DEBUG) 83 return 0; 84 85 return vfprintf(stderr, format, args); 86 } 87 88 static libbpf_print_fn_t __libbpf_pr = __base_pr; 89 90 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 91 { 92 libbpf_print_fn_t old_print_fn = __libbpf_pr; 93 94 __libbpf_pr = fn; 95 return old_print_fn; 96 } 97 98 __printf(2, 3) 99 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 100 { 101 va_list args; 102 103 if (!__libbpf_pr) 104 return; 105 106 va_start(args, format); 107 __libbpf_pr(level, format, args); 108 va_end(args); 109 } 110 111 static void pr_perm_msg(int err) 112 { 113 struct rlimit limit; 114 char buf[100]; 115 116 if (err != -EPERM || geteuid() != 0) 117 return; 118 119 err = getrlimit(RLIMIT_MEMLOCK, &limit); 120 if (err) 121 return; 122 123 if (limit.rlim_cur == RLIM_INFINITY) 124 return; 125 126 if (limit.rlim_cur < 1024) 127 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 128 else if (limit.rlim_cur < 1024*1024) 129 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 130 else 131 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 132 133 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 134 buf); 135 } 136 137 #define STRERR_BUFSIZE 128 138 139 /* Copied from tools/perf/util/util.h */ 140 #ifndef zfree 141 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 142 #endif 143 144 #ifndef zclose 145 # define zclose(fd) ({ \ 146 int ___err = 0; \ 147 if ((fd) >= 0) \ 148 ___err = close((fd)); \ 149 fd = -1; \ 150 ___err; }) 151 #endif 152 153 static inline __u64 ptr_to_u64(const void *ptr) 154 { 155 return (__u64) (unsigned long) ptr; 156 } 157 158 enum kern_feature_id { 159 /* v4.14: kernel support for program & map names. */ 160 FEAT_PROG_NAME, 161 /* v5.2: kernel support for global data sections. */ 162 FEAT_GLOBAL_DATA, 163 /* BTF support */ 164 FEAT_BTF, 165 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 166 FEAT_BTF_FUNC, 167 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 168 FEAT_BTF_DATASEC, 169 /* BTF_FUNC_GLOBAL is supported */ 170 FEAT_BTF_GLOBAL_FUNC, 171 /* BPF_F_MMAPABLE is supported for arrays */ 172 FEAT_ARRAY_MMAP, 173 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 174 FEAT_EXP_ATTACH_TYPE, 175 /* bpf_probe_read_{kernel,user}[_str] helpers */ 176 FEAT_PROBE_READ_KERN, 177 /* BPF_PROG_BIND_MAP is supported */ 178 FEAT_PROG_BIND_MAP, 179 /* Kernel support for module BTFs */ 180 FEAT_MODULE_BTF, 181 __FEAT_CNT, 182 }; 183 184 static bool kernel_supports(enum kern_feature_id feat_id); 185 186 enum reloc_type { 187 RELO_LD64, 188 RELO_CALL, 189 RELO_DATA, 190 RELO_EXTERN, 191 }; 192 193 struct reloc_desc { 194 enum reloc_type type; 195 int insn_idx; 196 int map_idx; 197 int sym_off; 198 bool processed; 199 }; 200 201 struct bpf_sec_def; 202 203 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 204 struct bpf_program *prog); 205 206 struct bpf_sec_def { 207 const char *sec; 208 size_t len; 209 enum bpf_prog_type prog_type; 210 enum bpf_attach_type expected_attach_type; 211 bool is_exp_attach_type_optional; 212 bool is_attachable; 213 bool is_attach_btf; 214 bool is_sleepable; 215 attach_fn_t attach_fn; 216 }; 217 218 /* 219 * bpf_prog should be a better name but it has been used in 220 * linux/filter.h. 221 */ 222 struct bpf_program { 223 const struct bpf_sec_def *sec_def; 224 char *sec_name; 225 size_t sec_idx; 226 /* this program's instruction offset (in number of instructions) 227 * within its containing ELF section 228 */ 229 size_t sec_insn_off; 230 /* number of original instructions in ELF section belonging to this 231 * program, not taking into account subprogram instructions possible 232 * appended later during relocation 233 */ 234 size_t sec_insn_cnt; 235 /* Offset (in number of instructions) of the start of instruction 236 * belonging to this BPF program within its containing main BPF 237 * program. For the entry-point (main) BPF program, this is always 238 * zero. For a sub-program, this gets reset before each of main BPF 239 * programs are processed and relocated and is used to determined 240 * whether sub-program was already appended to the main program, and 241 * if yes, at which instruction offset. 242 */ 243 size_t sub_insn_off; 244 245 char *name; 246 /* sec_name with / replaced by _; makes recursive pinning 247 * in bpf_object__pin_programs easier 248 */ 249 char *pin_name; 250 251 /* instructions that belong to BPF program; insns[0] is located at 252 * sec_insn_off instruction within its ELF section in ELF file, so 253 * when mapping ELF file instruction index to the local instruction, 254 * one needs to subtract sec_insn_off; and vice versa. 255 */ 256 struct bpf_insn *insns; 257 /* actual number of instruction in this BPF program's image; for 258 * entry-point BPF programs this includes the size of main program 259 * itself plus all the used sub-programs, appended at the end 260 */ 261 size_t insns_cnt; 262 263 struct reloc_desc *reloc_desc; 264 int nr_reloc; 265 int log_level; 266 267 struct { 268 int nr; 269 int *fds; 270 } instances; 271 bpf_program_prep_t preprocessor; 272 273 struct bpf_object *obj; 274 void *priv; 275 bpf_program_clear_priv_t clear_priv; 276 277 bool load; 278 enum bpf_prog_type type; 279 enum bpf_attach_type expected_attach_type; 280 int prog_ifindex; 281 __u32 attach_btf_obj_fd; 282 __u32 attach_btf_id; 283 __u32 attach_prog_fd; 284 void *func_info; 285 __u32 func_info_rec_size; 286 __u32 func_info_cnt; 287 288 void *line_info; 289 __u32 line_info_rec_size; 290 __u32 line_info_cnt; 291 __u32 prog_flags; 292 }; 293 294 struct bpf_struct_ops { 295 const char *tname; 296 const struct btf_type *type; 297 struct bpf_program **progs; 298 __u32 *kern_func_off; 299 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 300 void *data; 301 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 302 * btf_vmlinux's format. 303 * struct bpf_struct_ops_tcp_congestion_ops { 304 * [... some other kernel fields ...] 305 * struct tcp_congestion_ops data; 306 * } 307 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 308 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 309 * from "data". 310 */ 311 void *kern_vdata; 312 __u32 type_id; 313 }; 314 315 #define DATA_SEC ".data" 316 #define BSS_SEC ".bss" 317 #define RODATA_SEC ".rodata" 318 #define KCONFIG_SEC ".kconfig" 319 #define KSYMS_SEC ".ksyms" 320 #define STRUCT_OPS_SEC ".struct_ops" 321 322 enum libbpf_map_type { 323 LIBBPF_MAP_UNSPEC, 324 LIBBPF_MAP_DATA, 325 LIBBPF_MAP_BSS, 326 LIBBPF_MAP_RODATA, 327 LIBBPF_MAP_KCONFIG, 328 }; 329 330 static const char * const libbpf_type_to_btf_name[] = { 331 [LIBBPF_MAP_DATA] = DATA_SEC, 332 [LIBBPF_MAP_BSS] = BSS_SEC, 333 [LIBBPF_MAP_RODATA] = RODATA_SEC, 334 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 335 }; 336 337 struct bpf_map { 338 char *name; 339 int fd; 340 int sec_idx; 341 size_t sec_offset; 342 int map_ifindex; 343 int inner_map_fd; 344 struct bpf_map_def def; 345 __u32 numa_node; 346 __u32 btf_var_idx; 347 __u32 btf_key_type_id; 348 __u32 btf_value_type_id; 349 __u32 btf_vmlinux_value_type_id; 350 void *priv; 351 bpf_map_clear_priv_t clear_priv; 352 enum libbpf_map_type libbpf_type; 353 void *mmaped; 354 struct bpf_struct_ops *st_ops; 355 struct bpf_map *inner_map; 356 void **init_slots; 357 int init_slots_sz; 358 char *pin_path; 359 bool pinned; 360 bool reused; 361 }; 362 363 enum extern_type { 364 EXT_UNKNOWN, 365 EXT_KCFG, 366 EXT_KSYM, 367 }; 368 369 enum kcfg_type { 370 KCFG_UNKNOWN, 371 KCFG_CHAR, 372 KCFG_BOOL, 373 KCFG_INT, 374 KCFG_TRISTATE, 375 KCFG_CHAR_ARR, 376 }; 377 378 struct extern_desc { 379 enum extern_type type; 380 int sym_idx; 381 int btf_id; 382 int sec_btf_id; 383 const char *name; 384 bool is_set; 385 bool is_weak; 386 union { 387 struct { 388 enum kcfg_type type; 389 int sz; 390 int align; 391 int data_off; 392 bool is_signed; 393 } kcfg; 394 struct { 395 unsigned long long addr; 396 397 /* target btf_id of the corresponding kernel var. */ 398 int vmlinux_btf_id; 399 400 /* local btf_id of the ksym extern's type. */ 401 __u32 type_id; 402 } ksym; 403 }; 404 }; 405 406 static LIST_HEAD(bpf_objects_list); 407 408 struct module_btf { 409 struct btf *btf; 410 char *name; 411 __u32 id; 412 int fd; 413 }; 414 415 struct bpf_object { 416 char name[BPF_OBJ_NAME_LEN]; 417 char license[64]; 418 __u32 kern_version; 419 420 struct bpf_program *programs; 421 size_t nr_programs; 422 struct bpf_map *maps; 423 size_t nr_maps; 424 size_t maps_cap; 425 426 char *kconfig; 427 struct extern_desc *externs; 428 int nr_extern; 429 int kconfig_map_idx; 430 int rodata_map_idx; 431 432 bool loaded; 433 bool has_subcalls; 434 435 /* 436 * Information when doing elf related work. Only valid if fd 437 * is valid. 438 */ 439 struct { 440 int fd; 441 const void *obj_buf; 442 size_t obj_buf_sz; 443 Elf *elf; 444 GElf_Ehdr ehdr; 445 Elf_Data *symbols; 446 Elf_Data *data; 447 Elf_Data *rodata; 448 Elf_Data *bss; 449 Elf_Data *st_ops_data; 450 size_t shstrndx; /* section index for section name strings */ 451 size_t strtabidx; 452 struct { 453 GElf_Shdr shdr; 454 Elf_Data *data; 455 } *reloc_sects; 456 int nr_reloc_sects; 457 int maps_shndx; 458 int btf_maps_shndx; 459 __u32 btf_maps_sec_btf_id; 460 int text_shndx; 461 int symbols_shndx; 462 int data_shndx; 463 int rodata_shndx; 464 int bss_shndx; 465 int st_ops_shndx; 466 } efile; 467 /* 468 * All loaded bpf_object is linked in a list, which is 469 * hidden to caller. bpf_objects__<func> handlers deal with 470 * all objects. 471 */ 472 struct list_head list; 473 474 struct btf *btf; 475 struct btf_ext *btf_ext; 476 477 /* Parse and load BTF vmlinux if any of the programs in the object need 478 * it at load time. 479 */ 480 struct btf *btf_vmlinux; 481 /* vmlinux BTF override for CO-RE relocations */ 482 struct btf *btf_vmlinux_override; 483 /* Lazily initialized kernel module BTFs */ 484 struct module_btf *btf_modules; 485 bool btf_modules_loaded; 486 size_t btf_module_cnt; 487 size_t btf_module_cap; 488 489 void *priv; 490 bpf_object_clear_priv_t clear_priv; 491 492 char path[]; 493 }; 494 #define obj_elf_valid(o) ((o)->efile.elf) 495 496 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 497 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 498 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 499 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 500 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 501 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 502 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 503 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 504 size_t off, __u32 sym_type, GElf_Sym *sym); 505 506 void bpf_program__unload(struct bpf_program *prog) 507 { 508 int i; 509 510 if (!prog) 511 return; 512 513 /* 514 * If the object is opened but the program was never loaded, 515 * it is possible that prog->instances.nr == -1. 516 */ 517 if (prog->instances.nr > 0) { 518 for (i = 0; i < prog->instances.nr; i++) 519 zclose(prog->instances.fds[i]); 520 } else if (prog->instances.nr != -1) { 521 pr_warn("Internal error: instances.nr is %d\n", 522 prog->instances.nr); 523 } 524 525 prog->instances.nr = -1; 526 zfree(&prog->instances.fds); 527 528 zfree(&prog->func_info); 529 zfree(&prog->line_info); 530 } 531 532 static void bpf_program__exit(struct bpf_program *prog) 533 { 534 if (!prog) 535 return; 536 537 if (prog->clear_priv) 538 prog->clear_priv(prog, prog->priv); 539 540 prog->priv = NULL; 541 prog->clear_priv = NULL; 542 543 bpf_program__unload(prog); 544 zfree(&prog->name); 545 zfree(&prog->sec_name); 546 zfree(&prog->pin_name); 547 zfree(&prog->insns); 548 zfree(&prog->reloc_desc); 549 550 prog->nr_reloc = 0; 551 prog->insns_cnt = 0; 552 prog->sec_idx = -1; 553 } 554 555 static char *__bpf_program__pin_name(struct bpf_program *prog) 556 { 557 char *name, *p; 558 559 name = p = strdup(prog->sec_name); 560 while ((p = strchr(p, '/'))) 561 *p = '_'; 562 563 return name; 564 } 565 566 static bool insn_is_subprog_call(const struct bpf_insn *insn) 567 { 568 return BPF_CLASS(insn->code) == BPF_JMP && 569 BPF_OP(insn->code) == BPF_CALL && 570 BPF_SRC(insn->code) == BPF_K && 571 insn->src_reg == BPF_PSEUDO_CALL && 572 insn->dst_reg == 0 && 573 insn->off == 0; 574 } 575 576 static int 577 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 578 const char *name, size_t sec_idx, const char *sec_name, 579 size_t sec_off, void *insn_data, size_t insn_data_sz) 580 { 581 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 582 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 583 sec_name, name, sec_off, insn_data_sz); 584 return -EINVAL; 585 } 586 587 memset(prog, 0, sizeof(*prog)); 588 prog->obj = obj; 589 590 prog->sec_idx = sec_idx; 591 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 592 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 593 /* insns_cnt can later be increased by appending used subprograms */ 594 prog->insns_cnt = prog->sec_insn_cnt; 595 596 prog->type = BPF_PROG_TYPE_UNSPEC; 597 prog->load = true; 598 599 prog->instances.fds = NULL; 600 prog->instances.nr = -1; 601 602 prog->sec_name = strdup(sec_name); 603 if (!prog->sec_name) 604 goto errout; 605 606 prog->name = strdup(name); 607 if (!prog->name) 608 goto errout; 609 610 prog->pin_name = __bpf_program__pin_name(prog); 611 if (!prog->pin_name) 612 goto errout; 613 614 prog->insns = malloc(insn_data_sz); 615 if (!prog->insns) 616 goto errout; 617 memcpy(prog->insns, insn_data, insn_data_sz); 618 619 return 0; 620 errout: 621 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 622 bpf_program__exit(prog); 623 return -ENOMEM; 624 } 625 626 static int 627 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 628 const char *sec_name, int sec_idx) 629 { 630 struct bpf_program *prog, *progs; 631 void *data = sec_data->d_buf; 632 size_t sec_sz = sec_data->d_size, sec_off, prog_sz; 633 int nr_progs, err; 634 const char *name; 635 GElf_Sym sym; 636 637 progs = obj->programs; 638 nr_progs = obj->nr_programs; 639 sec_off = 0; 640 641 while (sec_off < sec_sz) { 642 if (elf_sym_by_sec_off(obj, sec_idx, sec_off, STT_FUNC, &sym)) { 643 pr_warn("sec '%s': failed to find program symbol at offset %zu\n", 644 sec_name, sec_off); 645 return -LIBBPF_ERRNO__FORMAT; 646 } 647 648 prog_sz = sym.st_size; 649 650 name = elf_sym_str(obj, sym.st_name); 651 if (!name) { 652 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 653 sec_name, sec_off); 654 return -LIBBPF_ERRNO__FORMAT; 655 } 656 657 if (sec_off + prog_sz > sec_sz) { 658 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 659 sec_name, sec_off); 660 return -LIBBPF_ERRNO__FORMAT; 661 } 662 663 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 664 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 665 666 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 667 if (!progs) { 668 /* 669 * In this case the original obj->programs 670 * is still valid, so don't need special treat for 671 * bpf_close_object(). 672 */ 673 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 674 sec_name, name); 675 return -ENOMEM; 676 } 677 obj->programs = progs; 678 679 prog = &progs[nr_progs]; 680 681 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 682 sec_off, data + sec_off, prog_sz); 683 if (err) 684 return err; 685 686 nr_progs++; 687 obj->nr_programs = nr_progs; 688 689 sec_off += prog_sz; 690 } 691 692 return 0; 693 } 694 695 static __u32 get_kernel_version(void) 696 { 697 __u32 major, minor, patch; 698 struct utsname info; 699 700 uname(&info); 701 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 702 return 0; 703 return KERNEL_VERSION(major, minor, patch); 704 } 705 706 static const struct btf_member * 707 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 708 { 709 struct btf_member *m; 710 int i; 711 712 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 713 if (btf_member_bit_offset(t, i) == bit_offset) 714 return m; 715 } 716 717 return NULL; 718 } 719 720 static const struct btf_member * 721 find_member_by_name(const struct btf *btf, const struct btf_type *t, 722 const char *name) 723 { 724 struct btf_member *m; 725 int i; 726 727 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 728 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 729 return m; 730 } 731 732 return NULL; 733 } 734 735 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 736 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 737 const char *name, __u32 kind); 738 739 static int 740 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 741 const struct btf_type **type, __u32 *type_id, 742 const struct btf_type **vtype, __u32 *vtype_id, 743 const struct btf_member **data_member) 744 { 745 const struct btf_type *kern_type, *kern_vtype; 746 const struct btf_member *kern_data_member; 747 __s32 kern_vtype_id, kern_type_id; 748 __u32 i; 749 750 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 751 if (kern_type_id < 0) { 752 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 753 tname); 754 return kern_type_id; 755 } 756 kern_type = btf__type_by_id(btf, kern_type_id); 757 758 /* Find the corresponding "map_value" type that will be used 759 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 760 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 761 * btf_vmlinux. 762 */ 763 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 764 tname, BTF_KIND_STRUCT); 765 if (kern_vtype_id < 0) { 766 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 767 STRUCT_OPS_VALUE_PREFIX, tname); 768 return kern_vtype_id; 769 } 770 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 771 772 /* Find "struct tcp_congestion_ops" from 773 * struct bpf_struct_ops_tcp_congestion_ops { 774 * [ ... ] 775 * struct tcp_congestion_ops data; 776 * } 777 */ 778 kern_data_member = btf_members(kern_vtype); 779 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 780 if (kern_data_member->type == kern_type_id) 781 break; 782 } 783 if (i == btf_vlen(kern_vtype)) { 784 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 785 tname, STRUCT_OPS_VALUE_PREFIX, tname); 786 return -EINVAL; 787 } 788 789 *type = kern_type; 790 *type_id = kern_type_id; 791 *vtype = kern_vtype; 792 *vtype_id = kern_vtype_id; 793 *data_member = kern_data_member; 794 795 return 0; 796 } 797 798 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 799 { 800 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 801 } 802 803 /* Init the map's fields that depend on kern_btf */ 804 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 805 const struct btf *btf, 806 const struct btf *kern_btf) 807 { 808 const struct btf_member *member, *kern_member, *kern_data_member; 809 const struct btf_type *type, *kern_type, *kern_vtype; 810 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 811 struct bpf_struct_ops *st_ops; 812 void *data, *kern_data; 813 const char *tname; 814 int err; 815 816 st_ops = map->st_ops; 817 type = st_ops->type; 818 tname = st_ops->tname; 819 err = find_struct_ops_kern_types(kern_btf, tname, 820 &kern_type, &kern_type_id, 821 &kern_vtype, &kern_vtype_id, 822 &kern_data_member); 823 if (err) 824 return err; 825 826 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 827 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 828 829 map->def.value_size = kern_vtype->size; 830 map->btf_vmlinux_value_type_id = kern_vtype_id; 831 832 st_ops->kern_vdata = calloc(1, kern_vtype->size); 833 if (!st_ops->kern_vdata) 834 return -ENOMEM; 835 836 data = st_ops->data; 837 kern_data_off = kern_data_member->offset / 8; 838 kern_data = st_ops->kern_vdata + kern_data_off; 839 840 member = btf_members(type); 841 for (i = 0; i < btf_vlen(type); i++, member++) { 842 const struct btf_type *mtype, *kern_mtype; 843 __u32 mtype_id, kern_mtype_id; 844 void *mdata, *kern_mdata; 845 __s64 msize, kern_msize; 846 __u32 moff, kern_moff; 847 __u32 kern_member_idx; 848 const char *mname; 849 850 mname = btf__name_by_offset(btf, member->name_off); 851 kern_member = find_member_by_name(kern_btf, kern_type, mname); 852 if (!kern_member) { 853 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 854 map->name, mname); 855 return -ENOTSUP; 856 } 857 858 kern_member_idx = kern_member - btf_members(kern_type); 859 if (btf_member_bitfield_size(type, i) || 860 btf_member_bitfield_size(kern_type, kern_member_idx)) { 861 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 862 map->name, mname); 863 return -ENOTSUP; 864 } 865 866 moff = member->offset / 8; 867 kern_moff = kern_member->offset / 8; 868 869 mdata = data + moff; 870 kern_mdata = kern_data + kern_moff; 871 872 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 873 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 874 &kern_mtype_id); 875 if (BTF_INFO_KIND(mtype->info) != 876 BTF_INFO_KIND(kern_mtype->info)) { 877 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 878 map->name, mname, BTF_INFO_KIND(mtype->info), 879 BTF_INFO_KIND(kern_mtype->info)); 880 return -ENOTSUP; 881 } 882 883 if (btf_is_ptr(mtype)) { 884 struct bpf_program *prog; 885 886 mtype = skip_mods_and_typedefs(btf, mtype->type, &mtype_id); 887 kern_mtype = skip_mods_and_typedefs(kern_btf, 888 kern_mtype->type, 889 &kern_mtype_id); 890 if (!btf_is_func_proto(mtype) || 891 !btf_is_func_proto(kern_mtype)) { 892 pr_warn("struct_ops init_kern %s: non func ptr %s is not supported\n", 893 map->name, mname); 894 return -ENOTSUP; 895 } 896 897 prog = st_ops->progs[i]; 898 if (!prog) { 899 pr_debug("struct_ops init_kern %s: func ptr %s is not set\n", 900 map->name, mname); 901 continue; 902 } 903 904 prog->attach_btf_id = kern_type_id; 905 prog->expected_attach_type = kern_member_idx; 906 907 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 908 909 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 910 map->name, mname, prog->name, moff, 911 kern_moff); 912 913 continue; 914 } 915 916 msize = btf__resolve_size(btf, mtype_id); 917 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 918 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 919 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 920 map->name, mname, (ssize_t)msize, 921 (ssize_t)kern_msize); 922 return -ENOTSUP; 923 } 924 925 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 926 map->name, mname, (unsigned int)msize, 927 moff, kern_moff); 928 memcpy(kern_mdata, mdata, msize); 929 } 930 931 return 0; 932 } 933 934 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 935 { 936 struct bpf_map *map; 937 size_t i; 938 int err; 939 940 for (i = 0; i < obj->nr_maps; i++) { 941 map = &obj->maps[i]; 942 943 if (!bpf_map__is_struct_ops(map)) 944 continue; 945 946 err = bpf_map__init_kern_struct_ops(map, obj->btf, 947 obj->btf_vmlinux); 948 if (err) 949 return err; 950 } 951 952 return 0; 953 } 954 955 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 956 { 957 const struct btf_type *type, *datasec; 958 const struct btf_var_secinfo *vsi; 959 struct bpf_struct_ops *st_ops; 960 const char *tname, *var_name; 961 __s32 type_id, datasec_id; 962 const struct btf *btf; 963 struct bpf_map *map; 964 __u32 i; 965 966 if (obj->efile.st_ops_shndx == -1) 967 return 0; 968 969 btf = obj->btf; 970 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 971 BTF_KIND_DATASEC); 972 if (datasec_id < 0) { 973 pr_warn("struct_ops init: DATASEC %s not found\n", 974 STRUCT_OPS_SEC); 975 return -EINVAL; 976 } 977 978 datasec = btf__type_by_id(btf, datasec_id); 979 vsi = btf_var_secinfos(datasec); 980 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 981 type = btf__type_by_id(obj->btf, vsi->type); 982 var_name = btf__name_by_offset(obj->btf, type->name_off); 983 984 type_id = btf__resolve_type(obj->btf, vsi->type); 985 if (type_id < 0) { 986 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 987 vsi->type, STRUCT_OPS_SEC); 988 return -EINVAL; 989 } 990 991 type = btf__type_by_id(obj->btf, type_id); 992 tname = btf__name_by_offset(obj->btf, type->name_off); 993 if (!tname[0]) { 994 pr_warn("struct_ops init: anonymous type is not supported\n"); 995 return -ENOTSUP; 996 } 997 if (!btf_is_struct(type)) { 998 pr_warn("struct_ops init: %s is not a struct\n", tname); 999 return -EINVAL; 1000 } 1001 1002 map = bpf_object__add_map(obj); 1003 if (IS_ERR(map)) 1004 return PTR_ERR(map); 1005 1006 map->sec_idx = obj->efile.st_ops_shndx; 1007 map->sec_offset = vsi->offset; 1008 map->name = strdup(var_name); 1009 if (!map->name) 1010 return -ENOMEM; 1011 1012 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1013 map->def.key_size = sizeof(int); 1014 map->def.value_size = type->size; 1015 map->def.max_entries = 1; 1016 1017 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1018 if (!map->st_ops) 1019 return -ENOMEM; 1020 st_ops = map->st_ops; 1021 st_ops->data = malloc(type->size); 1022 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1023 st_ops->kern_func_off = malloc(btf_vlen(type) * 1024 sizeof(*st_ops->kern_func_off)); 1025 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1026 return -ENOMEM; 1027 1028 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1029 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1030 var_name, STRUCT_OPS_SEC); 1031 return -EINVAL; 1032 } 1033 1034 memcpy(st_ops->data, 1035 obj->efile.st_ops_data->d_buf + vsi->offset, 1036 type->size); 1037 st_ops->tname = tname; 1038 st_ops->type = type; 1039 st_ops->type_id = type_id; 1040 1041 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1042 tname, type_id, var_name, vsi->offset); 1043 } 1044 1045 return 0; 1046 } 1047 1048 static struct bpf_object *bpf_object__new(const char *path, 1049 const void *obj_buf, 1050 size_t obj_buf_sz, 1051 const char *obj_name) 1052 { 1053 struct bpf_object *obj; 1054 char *end; 1055 1056 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1057 if (!obj) { 1058 pr_warn("alloc memory failed for %s\n", path); 1059 return ERR_PTR(-ENOMEM); 1060 } 1061 1062 strcpy(obj->path, path); 1063 if (obj_name) { 1064 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1065 obj->name[sizeof(obj->name) - 1] = 0; 1066 } else { 1067 /* Using basename() GNU version which doesn't modify arg. */ 1068 strncpy(obj->name, basename((void *)path), 1069 sizeof(obj->name) - 1); 1070 end = strchr(obj->name, '.'); 1071 if (end) 1072 *end = 0; 1073 } 1074 1075 obj->efile.fd = -1; 1076 /* 1077 * Caller of this function should also call 1078 * bpf_object__elf_finish() after data collection to return 1079 * obj_buf to user. If not, we should duplicate the buffer to 1080 * avoid user freeing them before elf finish. 1081 */ 1082 obj->efile.obj_buf = obj_buf; 1083 obj->efile.obj_buf_sz = obj_buf_sz; 1084 obj->efile.maps_shndx = -1; 1085 obj->efile.btf_maps_shndx = -1; 1086 obj->efile.data_shndx = -1; 1087 obj->efile.rodata_shndx = -1; 1088 obj->efile.bss_shndx = -1; 1089 obj->efile.st_ops_shndx = -1; 1090 obj->kconfig_map_idx = -1; 1091 obj->rodata_map_idx = -1; 1092 1093 obj->kern_version = get_kernel_version(); 1094 obj->loaded = false; 1095 1096 INIT_LIST_HEAD(&obj->list); 1097 list_add(&obj->list, &bpf_objects_list); 1098 return obj; 1099 } 1100 1101 static void bpf_object__elf_finish(struct bpf_object *obj) 1102 { 1103 if (!obj_elf_valid(obj)) 1104 return; 1105 1106 if (obj->efile.elf) { 1107 elf_end(obj->efile.elf); 1108 obj->efile.elf = NULL; 1109 } 1110 obj->efile.symbols = NULL; 1111 obj->efile.data = NULL; 1112 obj->efile.rodata = NULL; 1113 obj->efile.bss = NULL; 1114 obj->efile.st_ops_data = NULL; 1115 1116 zfree(&obj->efile.reloc_sects); 1117 obj->efile.nr_reloc_sects = 0; 1118 zclose(obj->efile.fd); 1119 obj->efile.obj_buf = NULL; 1120 obj->efile.obj_buf_sz = 0; 1121 } 1122 1123 /* if libelf is old and doesn't support mmap(), fall back to read() */ 1124 #ifndef ELF_C_READ_MMAP 1125 #define ELF_C_READ_MMAP ELF_C_READ 1126 #endif 1127 1128 static int bpf_object__elf_init(struct bpf_object *obj) 1129 { 1130 int err = 0; 1131 GElf_Ehdr *ep; 1132 1133 if (obj_elf_valid(obj)) { 1134 pr_warn("elf: init internal error\n"); 1135 return -LIBBPF_ERRNO__LIBELF; 1136 } 1137 1138 if (obj->efile.obj_buf_sz > 0) { 1139 /* 1140 * obj_buf should have been validated by 1141 * bpf_object__open_buffer(). 1142 */ 1143 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1144 obj->efile.obj_buf_sz); 1145 } else { 1146 obj->efile.fd = open(obj->path, O_RDONLY); 1147 if (obj->efile.fd < 0) { 1148 char errmsg[STRERR_BUFSIZE], *cp; 1149 1150 err = -errno; 1151 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1152 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1153 return err; 1154 } 1155 1156 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1157 } 1158 1159 if (!obj->efile.elf) { 1160 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1161 err = -LIBBPF_ERRNO__LIBELF; 1162 goto errout; 1163 } 1164 1165 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1166 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1167 err = -LIBBPF_ERRNO__FORMAT; 1168 goto errout; 1169 } 1170 ep = &obj->efile.ehdr; 1171 1172 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1173 pr_warn("elf: failed to get section names section index for %s: %s\n", 1174 obj->path, elf_errmsg(-1)); 1175 err = -LIBBPF_ERRNO__FORMAT; 1176 goto errout; 1177 } 1178 1179 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1180 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1181 pr_warn("elf: failed to get section names strings from %s: %s\n", 1182 obj->path, elf_errmsg(-1)); 1183 return -LIBBPF_ERRNO__FORMAT; 1184 } 1185 1186 /* Old LLVM set e_machine to EM_NONE */ 1187 if (ep->e_type != ET_REL || 1188 (ep->e_machine && ep->e_machine != EM_BPF)) { 1189 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1190 err = -LIBBPF_ERRNO__FORMAT; 1191 goto errout; 1192 } 1193 1194 return 0; 1195 errout: 1196 bpf_object__elf_finish(obj); 1197 return err; 1198 } 1199 1200 static int bpf_object__check_endianness(struct bpf_object *obj) 1201 { 1202 #if __BYTE_ORDER == __LITTLE_ENDIAN 1203 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1204 return 0; 1205 #elif __BYTE_ORDER == __BIG_ENDIAN 1206 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1207 return 0; 1208 #else 1209 # error "Unrecognized __BYTE_ORDER__" 1210 #endif 1211 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1212 return -LIBBPF_ERRNO__ENDIAN; 1213 } 1214 1215 static int 1216 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1217 { 1218 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1219 pr_debug("license of %s is %s\n", obj->path, obj->license); 1220 return 0; 1221 } 1222 1223 static int 1224 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1225 { 1226 __u32 kver; 1227 1228 if (size != sizeof(kver)) { 1229 pr_warn("invalid kver section in %s\n", obj->path); 1230 return -LIBBPF_ERRNO__FORMAT; 1231 } 1232 memcpy(&kver, data, sizeof(kver)); 1233 obj->kern_version = kver; 1234 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1235 return 0; 1236 } 1237 1238 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1239 { 1240 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1241 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1242 return true; 1243 return false; 1244 } 1245 1246 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1247 __u32 *size) 1248 { 1249 int ret = -ENOENT; 1250 1251 *size = 0; 1252 if (!name) { 1253 return -EINVAL; 1254 } else if (!strcmp(name, DATA_SEC)) { 1255 if (obj->efile.data) 1256 *size = obj->efile.data->d_size; 1257 } else if (!strcmp(name, BSS_SEC)) { 1258 if (obj->efile.bss) 1259 *size = obj->efile.bss->d_size; 1260 } else if (!strcmp(name, RODATA_SEC)) { 1261 if (obj->efile.rodata) 1262 *size = obj->efile.rodata->d_size; 1263 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1264 if (obj->efile.st_ops_data) 1265 *size = obj->efile.st_ops_data->d_size; 1266 } else { 1267 Elf_Scn *scn = elf_sec_by_name(obj, name); 1268 Elf_Data *data = elf_sec_data(obj, scn); 1269 1270 if (data) { 1271 ret = 0; /* found it */ 1272 *size = data->d_size; 1273 } 1274 } 1275 1276 return *size ? 0 : ret; 1277 } 1278 1279 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1280 __u32 *off) 1281 { 1282 Elf_Data *symbols = obj->efile.symbols; 1283 const char *sname; 1284 size_t si; 1285 1286 if (!name || !off) 1287 return -EINVAL; 1288 1289 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1290 GElf_Sym sym; 1291 1292 if (!gelf_getsym(symbols, si, &sym)) 1293 continue; 1294 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1295 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1296 continue; 1297 1298 sname = elf_sym_str(obj, sym.st_name); 1299 if (!sname) { 1300 pr_warn("failed to get sym name string for var %s\n", 1301 name); 1302 return -EIO; 1303 } 1304 if (strcmp(name, sname) == 0) { 1305 *off = sym.st_value; 1306 return 0; 1307 } 1308 } 1309 1310 return -ENOENT; 1311 } 1312 1313 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1314 { 1315 struct bpf_map *new_maps; 1316 size_t new_cap; 1317 int i; 1318 1319 if (obj->nr_maps < obj->maps_cap) 1320 return &obj->maps[obj->nr_maps++]; 1321 1322 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1323 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1324 if (!new_maps) { 1325 pr_warn("alloc maps for object failed\n"); 1326 return ERR_PTR(-ENOMEM); 1327 } 1328 1329 obj->maps_cap = new_cap; 1330 obj->maps = new_maps; 1331 1332 /* zero out new maps */ 1333 memset(obj->maps + obj->nr_maps, 0, 1334 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1335 /* 1336 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1337 * when failure (zclose won't close negative fd)). 1338 */ 1339 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1340 obj->maps[i].fd = -1; 1341 obj->maps[i].inner_map_fd = -1; 1342 } 1343 1344 return &obj->maps[obj->nr_maps++]; 1345 } 1346 1347 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1348 { 1349 long page_sz = sysconf(_SC_PAGE_SIZE); 1350 size_t map_sz; 1351 1352 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1353 map_sz = roundup(map_sz, page_sz); 1354 return map_sz; 1355 } 1356 1357 static char *internal_map_name(struct bpf_object *obj, 1358 enum libbpf_map_type type) 1359 { 1360 char map_name[BPF_OBJ_NAME_LEN], *p; 1361 const char *sfx = libbpf_type_to_btf_name[type]; 1362 int sfx_len = max((size_t)7, strlen(sfx)); 1363 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1364 strlen(obj->name)); 1365 1366 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1367 sfx_len, libbpf_type_to_btf_name[type]); 1368 1369 /* sanitise map name to characters allowed by kernel */ 1370 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1371 if (!isalnum(*p) && *p != '_' && *p != '.') 1372 *p = '_'; 1373 1374 return strdup(map_name); 1375 } 1376 1377 static int 1378 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1379 int sec_idx, void *data, size_t data_sz) 1380 { 1381 struct bpf_map_def *def; 1382 struct bpf_map *map; 1383 int err; 1384 1385 map = bpf_object__add_map(obj); 1386 if (IS_ERR(map)) 1387 return PTR_ERR(map); 1388 1389 map->libbpf_type = type; 1390 map->sec_idx = sec_idx; 1391 map->sec_offset = 0; 1392 map->name = internal_map_name(obj, type); 1393 if (!map->name) { 1394 pr_warn("failed to alloc map name\n"); 1395 return -ENOMEM; 1396 } 1397 1398 def = &map->def; 1399 def->type = BPF_MAP_TYPE_ARRAY; 1400 def->key_size = sizeof(int); 1401 def->value_size = data_sz; 1402 def->max_entries = 1; 1403 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1404 ? BPF_F_RDONLY_PROG : 0; 1405 def->map_flags |= BPF_F_MMAPABLE; 1406 1407 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1408 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1409 1410 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1411 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1412 if (map->mmaped == MAP_FAILED) { 1413 err = -errno; 1414 map->mmaped = NULL; 1415 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1416 map->name, err); 1417 zfree(&map->name); 1418 return err; 1419 } 1420 1421 if (data) 1422 memcpy(map->mmaped, data, data_sz); 1423 1424 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1425 return 0; 1426 } 1427 1428 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1429 { 1430 int err; 1431 1432 /* 1433 * Populate obj->maps with libbpf internal maps. 1434 */ 1435 if (obj->efile.data_shndx >= 0) { 1436 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1437 obj->efile.data_shndx, 1438 obj->efile.data->d_buf, 1439 obj->efile.data->d_size); 1440 if (err) 1441 return err; 1442 } 1443 if (obj->efile.rodata_shndx >= 0) { 1444 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1445 obj->efile.rodata_shndx, 1446 obj->efile.rodata->d_buf, 1447 obj->efile.rodata->d_size); 1448 if (err) 1449 return err; 1450 1451 obj->rodata_map_idx = obj->nr_maps - 1; 1452 } 1453 if (obj->efile.bss_shndx >= 0) { 1454 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1455 obj->efile.bss_shndx, 1456 NULL, 1457 obj->efile.bss->d_size); 1458 if (err) 1459 return err; 1460 } 1461 return 0; 1462 } 1463 1464 1465 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1466 const void *name) 1467 { 1468 int i; 1469 1470 for (i = 0; i < obj->nr_extern; i++) { 1471 if (strcmp(obj->externs[i].name, name) == 0) 1472 return &obj->externs[i]; 1473 } 1474 return NULL; 1475 } 1476 1477 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1478 char value) 1479 { 1480 switch (ext->kcfg.type) { 1481 case KCFG_BOOL: 1482 if (value == 'm') { 1483 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1484 ext->name, value); 1485 return -EINVAL; 1486 } 1487 *(bool *)ext_val = value == 'y' ? true : false; 1488 break; 1489 case KCFG_TRISTATE: 1490 if (value == 'y') 1491 *(enum libbpf_tristate *)ext_val = TRI_YES; 1492 else if (value == 'm') 1493 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1494 else /* value == 'n' */ 1495 *(enum libbpf_tristate *)ext_val = TRI_NO; 1496 break; 1497 case KCFG_CHAR: 1498 *(char *)ext_val = value; 1499 break; 1500 case KCFG_UNKNOWN: 1501 case KCFG_INT: 1502 case KCFG_CHAR_ARR: 1503 default: 1504 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1505 ext->name, value); 1506 return -EINVAL; 1507 } 1508 ext->is_set = true; 1509 return 0; 1510 } 1511 1512 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1513 const char *value) 1514 { 1515 size_t len; 1516 1517 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1518 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1519 return -EINVAL; 1520 } 1521 1522 len = strlen(value); 1523 if (value[len - 1] != '"') { 1524 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1525 ext->name, value); 1526 return -EINVAL; 1527 } 1528 1529 /* strip quotes */ 1530 len -= 2; 1531 if (len >= ext->kcfg.sz) { 1532 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1533 ext->name, value, len, ext->kcfg.sz - 1); 1534 len = ext->kcfg.sz - 1; 1535 } 1536 memcpy(ext_val, value + 1, len); 1537 ext_val[len] = '\0'; 1538 ext->is_set = true; 1539 return 0; 1540 } 1541 1542 static int parse_u64(const char *value, __u64 *res) 1543 { 1544 char *value_end; 1545 int err; 1546 1547 errno = 0; 1548 *res = strtoull(value, &value_end, 0); 1549 if (errno) { 1550 err = -errno; 1551 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1552 return err; 1553 } 1554 if (*value_end) { 1555 pr_warn("failed to parse '%s' as integer completely\n", value); 1556 return -EINVAL; 1557 } 1558 return 0; 1559 } 1560 1561 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1562 { 1563 int bit_sz = ext->kcfg.sz * 8; 1564 1565 if (ext->kcfg.sz == 8) 1566 return true; 1567 1568 /* Validate that value stored in u64 fits in integer of `ext->sz` 1569 * bytes size without any loss of information. If the target integer 1570 * is signed, we rely on the following limits of integer type of 1571 * Y bits and subsequent transformation: 1572 * 1573 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1574 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1575 * 0 <= X + 2^(Y-1) < 2^Y 1576 * 1577 * For unsigned target integer, check that all the (64 - Y) bits are 1578 * zero. 1579 */ 1580 if (ext->kcfg.is_signed) 1581 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1582 else 1583 return (v >> bit_sz) == 0; 1584 } 1585 1586 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1587 __u64 value) 1588 { 1589 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1590 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1591 ext->name, (unsigned long long)value); 1592 return -EINVAL; 1593 } 1594 if (!is_kcfg_value_in_range(ext, value)) { 1595 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1596 ext->name, (unsigned long long)value, ext->kcfg.sz); 1597 return -ERANGE; 1598 } 1599 switch (ext->kcfg.sz) { 1600 case 1: *(__u8 *)ext_val = value; break; 1601 case 2: *(__u16 *)ext_val = value; break; 1602 case 4: *(__u32 *)ext_val = value; break; 1603 case 8: *(__u64 *)ext_val = value; break; 1604 default: 1605 return -EINVAL; 1606 } 1607 ext->is_set = true; 1608 return 0; 1609 } 1610 1611 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1612 char *buf, void *data) 1613 { 1614 struct extern_desc *ext; 1615 char *sep, *value; 1616 int len, err = 0; 1617 void *ext_val; 1618 __u64 num; 1619 1620 if (strncmp(buf, "CONFIG_", 7)) 1621 return 0; 1622 1623 sep = strchr(buf, '='); 1624 if (!sep) { 1625 pr_warn("failed to parse '%s': no separator\n", buf); 1626 return -EINVAL; 1627 } 1628 1629 /* Trim ending '\n' */ 1630 len = strlen(buf); 1631 if (buf[len - 1] == '\n') 1632 buf[len - 1] = '\0'; 1633 /* Split on '=' and ensure that a value is present. */ 1634 *sep = '\0'; 1635 if (!sep[1]) { 1636 *sep = '='; 1637 pr_warn("failed to parse '%s': no value\n", buf); 1638 return -EINVAL; 1639 } 1640 1641 ext = find_extern_by_name(obj, buf); 1642 if (!ext || ext->is_set) 1643 return 0; 1644 1645 ext_val = data + ext->kcfg.data_off; 1646 value = sep + 1; 1647 1648 switch (*value) { 1649 case 'y': case 'n': case 'm': 1650 err = set_kcfg_value_tri(ext, ext_val, *value); 1651 break; 1652 case '"': 1653 err = set_kcfg_value_str(ext, ext_val, value); 1654 break; 1655 default: 1656 /* assume integer */ 1657 err = parse_u64(value, &num); 1658 if (err) { 1659 pr_warn("extern (kcfg) %s=%s should be integer\n", 1660 ext->name, value); 1661 return err; 1662 } 1663 err = set_kcfg_value_num(ext, ext_val, num); 1664 break; 1665 } 1666 if (err) 1667 return err; 1668 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1669 return 0; 1670 } 1671 1672 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1673 { 1674 char buf[PATH_MAX]; 1675 struct utsname uts; 1676 int len, err = 0; 1677 gzFile file; 1678 1679 uname(&uts); 1680 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1681 if (len < 0) 1682 return -EINVAL; 1683 else if (len >= PATH_MAX) 1684 return -ENAMETOOLONG; 1685 1686 /* gzopen also accepts uncompressed files. */ 1687 file = gzopen(buf, "r"); 1688 if (!file) 1689 file = gzopen("/proc/config.gz", "r"); 1690 1691 if (!file) { 1692 pr_warn("failed to open system Kconfig\n"); 1693 return -ENOENT; 1694 } 1695 1696 while (gzgets(file, buf, sizeof(buf))) { 1697 err = bpf_object__process_kconfig_line(obj, buf, data); 1698 if (err) { 1699 pr_warn("error parsing system Kconfig line '%s': %d\n", 1700 buf, err); 1701 goto out; 1702 } 1703 } 1704 1705 out: 1706 gzclose(file); 1707 return err; 1708 } 1709 1710 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1711 const char *config, void *data) 1712 { 1713 char buf[PATH_MAX]; 1714 int err = 0; 1715 FILE *file; 1716 1717 file = fmemopen((void *)config, strlen(config), "r"); 1718 if (!file) { 1719 err = -errno; 1720 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1721 return err; 1722 } 1723 1724 while (fgets(buf, sizeof(buf), file)) { 1725 err = bpf_object__process_kconfig_line(obj, buf, data); 1726 if (err) { 1727 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1728 buf, err); 1729 break; 1730 } 1731 } 1732 1733 fclose(file); 1734 return err; 1735 } 1736 1737 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1738 { 1739 struct extern_desc *last_ext = NULL, *ext; 1740 size_t map_sz; 1741 int i, err; 1742 1743 for (i = 0; i < obj->nr_extern; i++) { 1744 ext = &obj->externs[i]; 1745 if (ext->type == EXT_KCFG) 1746 last_ext = ext; 1747 } 1748 1749 if (!last_ext) 1750 return 0; 1751 1752 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1753 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1754 obj->efile.symbols_shndx, 1755 NULL, map_sz); 1756 if (err) 1757 return err; 1758 1759 obj->kconfig_map_idx = obj->nr_maps - 1; 1760 1761 return 0; 1762 } 1763 1764 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1765 { 1766 Elf_Data *symbols = obj->efile.symbols; 1767 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1768 Elf_Data *data = NULL; 1769 Elf_Scn *scn; 1770 1771 if (obj->efile.maps_shndx < 0) 1772 return 0; 1773 1774 if (!symbols) 1775 return -EINVAL; 1776 1777 1778 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1779 data = elf_sec_data(obj, scn); 1780 if (!scn || !data) { 1781 pr_warn("elf: failed to get legacy map definitions for %s\n", 1782 obj->path); 1783 return -EINVAL; 1784 } 1785 1786 /* 1787 * Count number of maps. Each map has a name. 1788 * Array of maps is not supported: only the first element is 1789 * considered. 1790 * 1791 * TODO: Detect array of map and report error. 1792 */ 1793 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1794 for (i = 0; i < nr_syms; i++) { 1795 GElf_Sym sym; 1796 1797 if (!gelf_getsym(symbols, i, &sym)) 1798 continue; 1799 if (sym.st_shndx != obj->efile.maps_shndx) 1800 continue; 1801 nr_maps++; 1802 } 1803 /* Assume equally sized map definitions */ 1804 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1805 nr_maps, data->d_size, obj->path); 1806 1807 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1808 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1809 obj->path); 1810 return -EINVAL; 1811 } 1812 map_def_sz = data->d_size / nr_maps; 1813 1814 /* Fill obj->maps using data in "maps" section. */ 1815 for (i = 0; i < nr_syms; i++) { 1816 GElf_Sym sym; 1817 const char *map_name; 1818 struct bpf_map_def *def; 1819 struct bpf_map *map; 1820 1821 if (!gelf_getsym(symbols, i, &sym)) 1822 continue; 1823 if (sym.st_shndx != obj->efile.maps_shndx) 1824 continue; 1825 1826 map = bpf_object__add_map(obj); 1827 if (IS_ERR(map)) 1828 return PTR_ERR(map); 1829 1830 map_name = elf_sym_str(obj, sym.st_name); 1831 if (!map_name) { 1832 pr_warn("failed to get map #%d name sym string for obj %s\n", 1833 i, obj->path); 1834 return -LIBBPF_ERRNO__FORMAT; 1835 } 1836 1837 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1838 map->sec_idx = sym.st_shndx; 1839 map->sec_offset = sym.st_value; 1840 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1841 map_name, map->sec_idx, map->sec_offset); 1842 if (sym.st_value + map_def_sz > data->d_size) { 1843 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1844 obj->path, map_name); 1845 return -EINVAL; 1846 } 1847 1848 map->name = strdup(map_name); 1849 if (!map->name) { 1850 pr_warn("failed to alloc map name\n"); 1851 return -ENOMEM; 1852 } 1853 pr_debug("map %d is \"%s\"\n", i, map->name); 1854 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1855 /* 1856 * If the definition of the map in the object file fits in 1857 * bpf_map_def, copy it. Any extra fields in our version 1858 * of bpf_map_def will default to zero as a result of the 1859 * calloc above. 1860 */ 1861 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1862 memcpy(&map->def, def, map_def_sz); 1863 } else { 1864 /* 1865 * Here the map structure being read is bigger than what 1866 * we expect, truncate if the excess bits are all zero. 1867 * If they are not zero, reject this map as 1868 * incompatible. 1869 */ 1870 char *b; 1871 1872 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1873 b < ((char *)def) + map_def_sz; b++) { 1874 if (*b != 0) { 1875 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1876 obj->path, map_name); 1877 if (strict) 1878 return -EINVAL; 1879 } 1880 } 1881 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1882 } 1883 } 1884 return 0; 1885 } 1886 1887 static const struct btf_type * 1888 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1889 { 1890 const struct btf_type *t = btf__type_by_id(btf, id); 1891 1892 if (res_id) 1893 *res_id = id; 1894 1895 while (btf_is_mod(t) || btf_is_typedef(t)) { 1896 if (res_id) 1897 *res_id = t->type; 1898 t = btf__type_by_id(btf, t->type); 1899 } 1900 1901 return t; 1902 } 1903 1904 static const struct btf_type * 1905 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1906 { 1907 const struct btf_type *t; 1908 1909 t = skip_mods_and_typedefs(btf, id, NULL); 1910 if (!btf_is_ptr(t)) 1911 return NULL; 1912 1913 t = skip_mods_and_typedefs(btf, t->type, res_id); 1914 1915 return btf_is_func_proto(t) ? t : NULL; 1916 } 1917 1918 static const char *btf_kind_str(const struct btf_type *t) 1919 { 1920 switch (btf_kind(t)) { 1921 case BTF_KIND_UNKN: return "void"; 1922 case BTF_KIND_INT: return "int"; 1923 case BTF_KIND_PTR: return "ptr"; 1924 case BTF_KIND_ARRAY: return "array"; 1925 case BTF_KIND_STRUCT: return "struct"; 1926 case BTF_KIND_UNION: return "union"; 1927 case BTF_KIND_ENUM: return "enum"; 1928 case BTF_KIND_FWD: return "fwd"; 1929 case BTF_KIND_TYPEDEF: return "typedef"; 1930 case BTF_KIND_VOLATILE: return "volatile"; 1931 case BTF_KIND_CONST: return "const"; 1932 case BTF_KIND_RESTRICT: return "restrict"; 1933 case BTF_KIND_FUNC: return "func"; 1934 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1935 case BTF_KIND_VAR: return "var"; 1936 case BTF_KIND_DATASEC: return "datasec"; 1937 default: return "unknown"; 1938 } 1939 } 1940 1941 /* 1942 * Fetch integer attribute of BTF map definition. Such attributes are 1943 * represented using a pointer to an array, in which dimensionality of array 1944 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1945 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1946 * type definition, while using only sizeof(void *) space in ELF data section. 1947 */ 1948 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1949 const struct btf_member *m, __u32 *res) 1950 { 1951 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1952 const char *name = btf__name_by_offset(btf, m->name_off); 1953 const struct btf_array *arr_info; 1954 const struct btf_type *arr_t; 1955 1956 if (!btf_is_ptr(t)) { 1957 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1958 map_name, name, btf_kind_str(t)); 1959 return false; 1960 } 1961 1962 arr_t = btf__type_by_id(btf, t->type); 1963 if (!arr_t) { 1964 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1965 map_name, name, t->type); 1966 return false; 1967 } 1968 if (!btf_is_array(arr_t)) { 1969 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1970 map_name, name, btf_kind_str(arr_t)); 1971 return false; 1972 } 1973 arr_info = btf_array(arr_t); 1974 *res = arr_info->nelems; 1975 return true; 1976 } 1977 1978 static int build_map_pin_path(struct bpf_map *map, const char *path) 1979 { 1980 char buf[PATH_MAX]; 1981 int len; 1982 1983 if (!path) 1984 path = "/sys/fs/bpf"; 1985 1986 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1987 if (len < 0) 1988 return -EINVAL; 1989 else if (len >= PATH_MAX) 1990 return -ENAMETOOLONG; 1991 1992 return bpf_map__set_pin_path(map, buf); 1993 } 1994 1995 1996 static int parse_btf_map_def(struct bpf_object *obj, 1997 struct bpf_map *map, 1998 const struct btf_type *def, 1999 bool strict, bool is_inner, 2000 const char *pin_root_path) 2001 { 2002 const struct btf_type *t; 2003 const struct btf_member *m; 2004 int vlen, i; 2005 2006 vlen = btf_vlen(def); 2007 m = btf_members(def); 2008 for (i = 0; i < vlen; i++, m++) { 2009 const char *name = btf__name_by_offset(obj->btf, m->name_off); 2010 2011 if (!name) { 2012 pr_warn("map '%s': invalid field #%d.\n", map->name, i); 2013 return -EINVAL; 2014 } 2015 if (strcmp(name, "type") == 0) { 2016 if (!get_map_field_int(map->name, obj->btf, m, 2017 &map->def.type)) 2018 return -EINVAL; 2019 pr_debug("map '%s': found type = %u.\n", 2020 map->name, map->def.type); 2021 } else if (strcmp(name, "max_entries") == 0) { 2022 if (!get_map_field_int(map->name, obj->btf, m, 2023 &map->def.max_entries)) 2024 return -EINVAL; 2025 pr_debug("map '%s': found max_entries = %u.\n", 2026 map->name, map->def.max_entries); 2027 } else if (strcmp(name, "map_flags") == 0) { 2028 if (!get_map_field_int(map->name, obj->btf, m, 2029 &map->def.map_flags)) 2030 return -EINVAL; 2031 pr_debug("map '%s': found map_flags = %u.\n", 2032 map->name, map->def.map_flags); 2033 } else if (strcmp(name, "numa_node") == 0) { 2034 if (!get_map_field_int(map->name, obj->btf, m, &map->numa_node)) 2035 return -EINVAL; 2036 pr_debug("map '%s': found numa_node = %u.\n", map->name, map->numa_node); 2037 } else if (strcmp(name, "key_size") == 0) { 2038 __u32 sz; 2039 2040 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2041 return -EINVAL; 2042 pr_debug("map '%s': found key_size = %u.\n", 2043 map->name, sz); 2044 if (map->def.key_size && map->def.key_size != sz) { 2045 pr_warn("map '%s': conflicting key size %u != %u.\n", 2046 map->name, map->def.key_size, sz); 2047 return -EINVAL; 2048 } 2049 map->def.key_size = sz; 2050 } else if (strcmp(name, "key") == 0) { 2051 __s64 sz; 2052 2053 t = btf__type_by_id(obj->btf, m->type); 2054 if (!t) { 2055 pr_warn("map '%s': key type [%d] not found.\n", 2056 map->name, m->type); 2057 return -EINVAL; 2058 } 2059 if (!btf_is_ptr(t)) { 2060 pr_warn("map '%s': key spec is not PTR: %s.\n", 2061 map->name, btf_kind_str(t)); 2062 return -EINVAL; 2063 } 2064 sz = btf__resolve_size(obj->btf, t->type); 2065 if (sz < 0) { 2066 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2067 map->name, t->type, (ssize_t)sz); 2068 return sz; 2069 } 2070 pr_debug("map '%s': found key [%u], sz = %zd.\n", 2071 map->name, t->type, (ssize_t)sz); 2072 if (map->def.key_size && map->def.key_size != sz) { 2073 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2074 map->name, map->def.key_size, (ssize_t)sz); 2075 return -EINVAL; 2076 } 2077 map->def.key_size = sz; 2078 map->btf_key_type_id = t->type; 2079 } else if (strcmp(name, "value_size") == 0) { 2080 __u32 sz; 2081 2082 if (!get_map_field_int(map->name, obj->btf, m, &sz)) 2083 return -EINVAL; 2084 pr_debug("map '%s': found value_size = %u.\n", 2085 map->name, sz); 2086 if (map->def.value_size && map->def.value_size != sz) { 2087 pr_warn("map '%s': conflicting value size %u != %u.\n", 2088 map->name, map->def.value_size, sz); 2089 return -EINVAL; 2090 } 2091 map->def.value_size = sz; 2092 } else if (strcmp(name, "value") == 0) { 2093 __s64 sz; 2094 2095 t = btf__type_by_id(obj->btf, m->type); 2096 if (!t) { 2097 pr_warn("map '%s': value type [%d] not found.\n", 2098 map->name, m->type); 2099 return -EINVAL; 2100 } 2101 if (!btf_is_ptr(t)) { 2102 pr_warn("map '%s': value spec is not PTR: %s.\n", 2103 map->name, btf_kind_str(t)); 2104 return -EINVAL; 2105 } 2106 sz = btf__resolve_size(obj->btf, t->type); 2107 if (sz < 0) { 2108 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2109 map->name, t->type, (ssize_t)sz); 2110 return sz; 2111 } 2112 pr_debug("map '%s': found value [%u], sz = %zd.\n", 2113 map->name, t->type, (ssize_t)sz); 2114 if (map->def.value_size && map->def.value_size != sz) { 2115 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2116 map->name, map->def.value_size, (ssize_t)sz); 2117 return -EINVAL; 2118 } 2119 map->def.value_size = sz; 2120 map->btf_value_type_id = t->type; 2121 } 2122 else if (strcmp(name, "values") == 0) { 2123 int err; 2124 2125 if (is_inner) { 2126 pr_warn("map '%s': multi-level inner maps not supported.\n", 2127 map->name); 2128 return -ENOTSUP; 2129 } 2130 if (i != vlen - 1) { 2131 pr_warn("map '%s': '%s' member should be last.\n", 2132 map->name, name); 2133 return -EINVAL; 2134 } 2135 if (!bpf_map_type__is_map_in_map(map->def.type)) { 2136 pr_warn("map '%s': should be map-in-map.\n", 2137 map->name); 2138 return -ENOTSUP; 2139 } 2140 if (map->def.value_size && map->def.value_size != 4) { 2141 pr_warn("map '%s': conflicting value size %u != 4.\n", 2142 map->name, map->def.value_size); 2143 return -EINVAL; 2144 } 2145 map->def.value_size = 4; 2146 t = btf__type_by_id(obj->btf, m->type); 2147 if (!t) { 2148 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2149 map->name, m->type); 2150 return -EINVAL; 2151 } 2152 if (!btf_is_array(t) || btf_array(t)->nelems) { 2153 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2154 map->name); 2155 return -EINVAL; 2156 } 2157 t = skip_mods_and_typedefs(obj->btf, btf_array(t)->type, 2158 NULL); 2159 if (!btf_is_ptr(t)) { 2160 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2161 map->name, btf_kind_str(t)); 2162 return -EINVAL; 2163 } 2164 t = skip_mods_and_typedefs(obj->btf, t->type, NULL); 2165 if (!btf_is_struct(t)) { 2166 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2167 map->name, btf_kind_str(t)); 2168 return -EINVAL; 2169 } 2170 2171 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2172 if (!map->inner_map) 2173 return -ENOMEM; 2174 map->inner_map->sec_idx = obj->efile.btf_maps_shndx; 2175 map->inner_map->name = malloc(strlen(map->name) + 2176 sizeof(".inner") + 1); 2177 if (!map->inner_map->name) 2178 return -ENOMEM; 2179 sprintf(map->inner_map->name, "%s.inner", map->name); 2180 2181 err = parse_btf_map_def(obj, map->inner_map, t, strict, 2182 true /* is_inner */, NULL); 2183 if (err) 2184 return err; 2185 } else if (strcmp(name, "pinning") == 0) { 2186 __u32 val; 2187 int err; 2188 2189 if (is_inner) { 2190 pr_debug("map '%s': inner def can't be pinned.\n", 2191 map->name); 2192 return -EINVAL; 2193 } 2194 if (!get_map_field_int(map->name, obj->btf, m, &val)) 2195 return -EINVAL; 2196 pr_debug("map '%s': found pinning = %u.\n", 2197 map->name, val); 2198 2199 if (val != LIBBPF_PIN_NONE && 2200 val != LIBBPF_PIN_BY_NAME) { 2201 pr_warn("map '%s': invalid pinning value %u.\n", 2202 map->name, val); 2203 return -EINVAL; 2204 } 2205 if (val == LIBBPF_PIN_BY_NAME) { 2206 err = build_map_pin_path(map, pin_root_path); 2207 if (err) { 2208 pr_warn("map '%s': couldn't build pin path.\n", 2209 map->name); 2210 return err; 2211 } 2212 } 2213 } else { 2214 if (strict) { 2215 pr_warn("map '%s': unknown field '%s'.\n", 2216 map->name, name); 2217 return -ENOTSUP; 2218 } 2219 pr_debug("map '%s': ignoring unknown field '%s'.\n", 2220 map->name, name); 2221 } 2222 } 2223 2224 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 2225 pr_warn("map '%s': map type isn't specified.\n", map->name); 2226 return -EINVAL; 2227 } 2228 2229 return 0; 2230 } 2231 2232 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2233 const struct btf_type *sec, 2234 int var_idx, int sec_idx, 2235 const Elf_Data *data, bool strict, 2236 const char *pin_root_path) 2237 { 2238 const struct btf_type *var, *def; 2239 const struct btf_var_secinfo *vi; 2240 const struct btf_var *var_extra; 2241 const char *map_name; 2242 struct bpf_map *map; 2243 2244 vi = btf_var_secinfos(sec) + var_idx; 2245 var = btf__type_by_id(obj->btf, vi->type); 2246 var_extra = btf_var(var); 2247 map_name = btf__name_by_offset(obj->btf, var->name_off); 2248 2249 if (map_name == NULL || map_name[0] == '\0') { 2250 pr_warn("map #%d: empty name.\n", var_idx); 2251 return -EINVAL; 2252 } 2253 if ((__u64)vi->offset + vi->size > data->d_size) { 2254 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2255 return -EINVAL; 2256 } 2257 if (!btf_is_var(var)) { 2258 pr_warn("map '%s': unexpected var kind %s.\n", 2259 map_name, btf_kind_str(var)); 2260 return -EINVAL; 2261 } 2262 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2263 var_extra->linkage != BTF_VAR_STATIC) { 2264 pr_warn("map '%s': unsupported var linkage %u.\n", 2265 map_name, var_extra->linkage); 2266 return -EOPNOTSUPP; 2267 } 2268 2269 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2270 if (!btf_is_struct(def)) { 2271 pr_warn("map '%s': unexpected def kind %s.\n", 2272 map_name, btf_kind_str(var)); 2273 return -EINVAL; 2274 } 2275 if (def->size > vi->size) { 2276 pr_warn("map '%s': invalid def size.\n", map_name); 2277 return -EINVAL; 2278 } 2279 2280 map = bpf_object__add_map(obj); 2281 if (IS_ERR(map)) 2282 return PTR_ERR(map); 2283 map->name = strdup(map_name); 2284 if (!map->name) { 2285 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2286 return -ENOMEM; 2287 } 2288 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2289 map->def.type = BPF_MAP_TYPE_UNSPEC; 2290 map->sec_idx = sec_idx; 2291 map->sec_offset = vi->offset; 2292 map->btf_var_idx = var_idx; 2293 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2294 map_name, map->sec_idx, map->sec_offset); 2295 2296 return parse_btf_map_def(obj, map, def, strict, false, pin_root_path); 2297 } 2298 2299 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2300 const char *pin_root_path) 2301 { 2302 const struct btf_type *sec = NULL; 2303 int nr_types, i, vlen, err; 2304 const struct btf_type *t; 2305 const char *name; 2306 Elf_Data *data; 2307 Elf_Scn *scn; 2308 2309 if (obj->efile.btf_maps_shndx < 0) 2310 return 0; 2311 2312 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2313 data = elf_sec_data(obj, scn); 2314 if (!scn || !data) { 2315 pr_warn("elf: failed to get %s map definitions for %s\n", 2316 MAPS_ELF_SEC, obj->path); 2317 return -EINVAL; 2318 } 2319 2320 nr_types = btf__get_nr_types(obj->btf); 2321 for (i = 1; i <= nr_types; i++) { 2322 t = btf__type_by_id(obj->btf, i); 2323 if (!btf_is_datasec(t)) 2324 continue; 2325 name = btf__name_by_offset(obj->btf, t->name_off); 2326 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2327 sec = t; 2328 obj->efile.btf_maps_sec_btf_id = i; 2329 break; 2330 } 2331 } 2332 2333 if (!sec) { 2334 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2335 return -ENOENT; 2336 } 2337 2338 vlen = btf_vlen(sec); 2339 for (i = 0; i < vlen; i++) { 2340 err = bpf_object__init_user_btf_map(obj, sec, i, 2341 obj->efile.btf_maps_shndx, 2342 data, strict, 2343 pin_root_path); 2344 if (err) 2345 return err; 2346 } 2347 2348 return 0; 2349 } 2350 2351 static int bpf_object__init_maps(struct bpf_object *obj, 2352 const struct bpf_object_open_opts *opts) 2353 { 2354 const char *pin_root_path; 2355 bool strict; 2356 int err; 2357 2358 strict = !OPTS_GET(opts, relaxed_maps, false); 2359 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2360 2361 err = bpf_object__init_user_maps(obj, strict); 2362 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2363 err = err ?: bpf_object__init_global_data_maps(obj); 2364 err = err ?: bpf_object__init_kconfig_map(obj); 2365 err = err ?: bpf_object__init_struct_ops_maps(obj); 2366 if (err) 2367 return err; 2368 2369 return 0; 2370 } 2371 2372 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2373 { 2374 GElf_Shdr sh; 2375 2376 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2377 return false; 2378 2379 return sh.sh_flags & SHF_EXECINSTR; 2380 } 2381 2382 static bool btf_needs_sanitization(struct bpf_object *obj) 2383 { 2384 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2385 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2386 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2387 2388 return !has_func || !has_datasec || !has_func_global; 2389 } 2390 2391 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2392 { 2393 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2394 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2395 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2396 struct btf_type *t; 2397 int i, j, vlen; 2398 2399 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2400 t = (struct btf_type *)btf__type_by_id(btf, i); 2401 2402 if (!has_datasec && btf_is_var(t)) { 2403 /* replace VAR with INT */ 2404 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2405 /* 2406 * using size = 1 is the safest choice, 4 will be too 2407 * big and cause kernel BTF validation failure if 2408 * original variable took less than 4 bytes 2409 */ 2410 t->size = 1; 2411 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2412 } else if (!has_datasec && btf_is_datasec(t)) { 2413 /* replace DATASEC with STRUCT */ 2414 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2415 struct btf_member *m = btf_members(t); 2416 struct btf_type *vt; 2417 char *name; 2418 2419 name = (char *)btf__name_by_offset(btf, t->name_off); 2420 while (*name) { 2421 if (*name == '.') 2422 *name = '_'; 2423 name++; 2424 } 2425 2426 vlen = btf_vlen(t); 2427 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2428 for (j = 0; j < vlen; j++, v++, m++) { 2429 /* order of field assignments is important */ 2430 m->offset = v->offset * 8; 2431 m->type = v->type; 2432 /* preserve variable name as member name */ 2433 vt = (void *)btf__type_by_id(btf, v->type); 2434 m->name_off = vt->name_off; 2435 } 2436 } else if (!has_func && btf_is_func_proto(t)) { 2437 /* replace FUNC_PROTO with ENUM */ 2438 vlen = btf_vlen(t); 2439 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2440 t->size = sizeof(__u32); /* kernel enforced */ 2441 } else if (!has_func && btf_is_func(t)) { 2442 /* replace FUNC with TYPEDEF */ 2443 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2444 } else if (!has_func_global && btf_is_func(t)) { 2445 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2446 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2447 } 2448 } 2449 } 2450 2451 static bool libbpf_needs_btf(const struct bpf_object *obj) 2452 { 2453 return obj->efile.btf_maps_shndx >= 0 || 2454 obj->efile.st_ops_shndx >= 0 || 2455 obj->nr_extern > 0; 2456 } 2457 2458 static bool kernel_needs_btf(const struct bpf_object *obj) 2459 { 2460 return obj->efile.st_ops_shndx >= 0; 2461 } 2462 2463 static int bpf_object__init_btf(struct bpf_object *obj, 2464 Elf_Data *btf_data, 2465 Elf_Data *btf_ext_data) 2466 { 2467 int err = -ENOENT; 2468 2469 if (btf_data) { 2470 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2471 if (IS_ERR(obj->btf)) { 2472 err = PTR_ERR(obj->btf); 2473 obj->btf = NULL; 2474 pr_warn("Error loading ELF section %s: %d.\n", 2475 BTF_ELF_SEC, err); 2476 goto out; 2477 } 2478 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2479 btf__set_pointer_size(obj->btf, 8); 2480 err = 0; 2481 } 2482 if (btf_ext_data) { 2483 if (!obj->btf) { 2484 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2485 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2486 goto out; 2487 } 2488 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2489 btf_ext_data->d_size); 2490 if (IS_ERR(obj->btf_ext)) { 2491 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2492 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2493 obj->btf_ext = NULL; 2494 goto out; 2495 } 2496 } 2497 out: 2498 if (err && libbpf_needs_btf(obj)) { 2499 pr_warn("BTF is required, but is missing or corrupted.\n"); 2500 return err; 2501 } 2502 return 0; 2503 } 2504 2505 static int bpf_object__finalize_btf(struct bpf_object *obj) 2506 { 2507 int err; 2508 2509 if (!obj->btf) 2510 return 0; 2511 2512 err = btf__finalize_data(obj, obj->btf); 2513 if (err) { 2514 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2515 return err; 2516 } 2517 2518 return 0; 2519 } 2520 2521 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2522 { 2523 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2524 prog->type == BPF_PROG_TYPE_LSM) 2525 return true; 2526 2527 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2528 * also need vmlinux BTF 2529 */ 2530 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2531 return true; 2532 2533 return false; 2534 } 2535 2536 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2537 { 2538 struct bpf_program *prog; 2539 int i; 2540 2541 /* CO-RE relocations need kernel BTF */ 2542 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2543 return true; 2544 2545 /* Support for typed ksyms needs kernel BTF */ 2546 for (i = 0; i < obj->nr_extern; i++) { 2547 const struct extern_desc *ext; 2548 2549 ext = &obj->externs[i]; 2550 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2551 return true; 2552 } 2553 2554 bpf_object__for_each_program(prog, obj) { 2555 if (!prog->load) 2556 continue; 2557 if (prog_needs_vmlinux_btf(prog)) 2558 return true; 2559 } 2560 2561 return false; 2562 } 2563 2564 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2565 { 2566 int err; 2567 2568 /* btf_vmlinux could be loaded earlier */ 2569 if (obj->btf_vmlinux) 2570 return 0; 2571 2572 if (!force && !obj_needs_vmlinux_btf(obj)) 2573 return 0; 2574 2575 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2576 if (IS_ERR(obj->btf_vmlinux)) { 2577 err = PTR_ERR(obj->btf_vmlinux); 2578 pr_warn("Error loading vmlinux BTF: %d\n", err); 2579 obj->btf_vmlinux = NULL; 2580 return err; 2581 } 2582 return 0; 2583 } 2584 2585 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2586 { 2587 struct btf *kern_btf = obj->btf; 2588 bool btf_mandatory, sanitize; 2589 int err = 0; 2590 2591 if (!obj->btf) 2592 return 0; 2593 2594 if (!kernel_supports(FEAT_BTF)) { 2595 if (kernel_needs_btf(obj)) { 2596 err = -EOPNOTSUPP; 2597 goto report; 2598 } 2599 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2600 return 0; 2601 } 2602 2603 sanitize = btf_needs_sanitization(obj); 2604 if (sanitize) { 2605 const void *raw_data; 2606 __u32 sz; 2607 2608 /* clone BTF to sanitize a copy and leave the original intact */ 2609 raw_data = btf__get_raw_data(obj->btf, &sz); 2610 kern_btf = btf__new(raw_data, sz); 2611 if (IS_ERR(kern_btf)) 2612 return PTR_ERR(kern_btf); 2613 2614 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2615 btf__set_pointer_size(obj->btf, 8); 2616 bpf_object__sanitize_btf(obj, kern_btf); 2617 } 2618 2619 err = btf__load(kern_btf); 2620 if (sanitize) { 2621 if (!err) { 2622 /* move fd to libbpf's BTF */ 2623 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2624 btf__set_fd(kern_btf, -1); 2625 } 2626 btf__free(kern_btf); 2627 } 2628 report: 2629 if (err) { 2630 btf_mandatory = kernel_needs_btf(obj); 2631 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2632 btf_mandatory ? "BTF is mandatory, can't proceed." 2633 : "BTF is optional, ignoring."); 2634 if (!btf_mandatory) 2635 err = 0; 2636 } 2637 return err; 2638 } 2639 2640 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2641 { 2642 const char *name; 2643 2644 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2645 if (!name) { 2646 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2647 off, obj->path, elf_errmsg(-1)); 2648 return NULL; 2649 } 2650 2651 return name; 2652 } 2653 2654 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2655 { 2656 const char *name; 2657 2658 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2659 if (!name) { 2660 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2661 off, obj->path, elf_errmsg(-1)); 2662 return NULL; 2663 } 2664 2665 return name; 2666 } 2667 2668 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2669 { 2670 Elf_Scn *scn; 2671 2672 scn = elf_getscn(obj->efile.elf, idx); 2673 if (!scn) { 2674 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2675 idx, obj->path, elf_errmsg(-1)); 2676 return NULL; 2677 } 2678 return scn; 2679 } 2680 2681 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2682 { 2683 Elf_Scn *scn = NULL; 2684 Elf *elf = obj->efile.elf; 2685 const char *sec_name; 2686 2687 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2688 sec_name = elf_sec_name(obj, scn); 2689 if (!sec_name) 2690 return NULL; 2691 2692 if (strcmp(sec_name, name) != 0) 2693 continue; 2694 2695 return scn; 2696 } 2697 return NULL; 2698 } 2699 2700 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2701 { 2702 if (!scn) 2703 return -EINVAL; 2704 2705 if (gelf_getshdr(scn, hdr) != hdr) { 2706 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2707 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2708 return -EINVAL; 2709 } 2710 2711 return 0; 2712 } 2713 2714 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2715 { 2716 const char *name; 2717 GElf_Shdr sh; 2718 2719 if (!scn) 2720 return NULL; 2721 2722 if (elf_sec_hdr(obj, scn, &sh)) 2723 return NULL; 2724 2725 name = elf_sec_str(obj, sh.sh_name); 2726 if (!name) { 2727 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2728 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2729 return NULL; 2730 } 2731 2732 return name; 2733 } 2734 2735 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2736 { 2737 Elf_Data *data; 2738 2739 if (!scn) 2740 return NULL; 2741 2742 data = elf_getdata(scn, 0); 2743 if (!data) { 2744 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2745 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2746 obj->path, elf_errmsg(-1)); 2747 return NULL; 2748 } 2749 2750 return data; 2751 } 2752 2753 static int elf_sym_by_sec_off(const struct bpf_object *obj, size_t sec_idx, 2754 size_t off, __u32 sym_type, GElf_Sym *sym) 2755 { 2756 Elf_Data *symbols = obj->efile.symbols; 2757 size_t n = symbols->d_size / sizeof(GElf_Sym); 2758 int i; 2759 2760 for (i = 0; i < n; i++) { 2761 if (!gelf_getsym(symbols, i, sym)) 2762 continue; 2763 if (sym->st_shndx != sec_idx || sym->st_value != off) 2764 continue; 2765 if (GELF_ST_TYPE(sym->st_info) != sym_type) 2766 continue; 2767 return 0; 2768 } 2769 2770 return -ENOENT; 2771 } 2772 2773 static bool is_sec_name_dwarf(const char *name) 2774 { 2775 /* approximation, but the actual list is too long */ 2776 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2777 } 2778 2779 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2780 { 2781 /* no special handling of .strtab */ 2782 if (hdr->sh_type == SHT_STRTAB) 2783 return true; 2784 2785 /* ignore .llvm_addrsig section as well */ 2786 if (hdr->sh_type == 0x6FFF4C03 /* SHT_LLVM_ADDRSIG */) 2787 return true; 2788 2789 /* no subprograms will lead to an empty .text section, ignore it */ 2790 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2791 strcmp(name, ".text") == 0) 2792 return true; 2793 2794 /* DWARF sections */ 2795 if (is_sec_name_dwarf(name)) 2796 return true; 2797 2798 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2799 name += sizeof(".rel") - 1; 2800 /* DWARF section relocations */ 2801 if (is_sec_name_dwarf(name)) 2802 return true; 2803 2804 /* .BTF and .BTF.ext don't need relocations */ 2805 if (strcmp(name, BTF_ELF_SEC) == 0 || 2806 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2807 return true; 2808 } 2809 2810 return false; 2811 } 2812 2813 static int cmp_progs(const void *_a, const void *_b) 2814 { 2815 const struct bpf_program *a = _a; 2816 const struct bpf_program *b = _b; 2817 2818 if (a->sec_idx != b->sec_idx) 2819 return a->sec_idx < b->sec_idx ? -1 : 1; 2820 2821 /* sec_insn_off can't be the same within the section */ 2822 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2823 } 2824 2825 static int bpf_object__elf_collect(struct bpf_object *obj) 2826 { 2827 Elf *elf = obj->efile.elf; 2828 Elf_Data *btf_ext_data = NULL; 2829 Elf_Data *btf_data = NULL; 2830 int idx = 0, err = 0; 2831 const char *name; 2832 Elf_Data *data; 2833 Elf_Scn *scn; 2834 GElf_Shdr sh; 2835 2836 /* a bunch of ELF parsing functionality depends on processing symbols, 2837 * so do the first pass and find the symbol table 2838 */ 2839 scn = NULL; 2840 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2841 if (elf_sec_hdr(obj, scn, &sh)) 2842 return -LIBBPF_ERRNO__FORMAT; 2843 2844 if (sh.sh_type == SHT_SYMTAB) { 2845 if (obj->efile.symbols) { 2846 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2847 return -LIBBPF_ERRNO__FORMAT; 2848 } 2849 2850 data = elf_sec_data(obj, scn); 2851 if (!data) 2852 return -LIBBPF_ERRNO__FORMAT; 2853 2854 obj->efile.symbols = data; 2855 obj->efile.symbols_shndx = elf_ndxscn(scn); 2856 obj->efile.strtabidx = sh.sh_link; 2857 } 2858 } 2859 2860 scn = NULL; 2861 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2862 idx++; 2863 2864 if (elf_sec_hdr(obj, scn, &sh)) 2865 return -LIBBPF_ERRNO__FORMAT; 2866 2867 name = elf_sec_str(obj, sh.sh_name); 2868 if (!name) 2869 return -LIBBPF_ERRNO__FORMAT; 2870 2871 if (ignore_elf_section(&sh, name)) 2872 continue; 2873 2874 data = elf_sec_data(obj, scn); 2875 if (!data) 2876 return -LIBBPF_ERRNO__FORMAT; 2877 2878 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2879 idx, name, (unsigned long)data->d_size, 2880 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2881 (int)sh.sh_type); 2882 2883 if (strcmp(name, "license") == 0) { 2884 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2885 if (err) 2886 return err; 2887 } else if (strcmp(name, "version") == 0) { 2888 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2889 if (err) 2890 return err; 2891 } else if (strcmp(name, "maps") == 0) { 2892 obj->efile.maps_shndx = idx; 2893 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2894 obj->efile.btf_maps_shndx = idx; 2895 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2896 btf_data = data; 2897 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2898 btf_ext_data = data; 2899 } else if (sh.sh_type == SHT_SYMTAB) { 2900 /* already processed during the first pass above */ 2901 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2902 if (sh.sh_flags & SHF_EXECINSTR) { 2903 if (strcmp(name, ".text") == 0) 2904 obj->efile.text_shndx = idx; 2905 err = bpf_object__add_programs(obj, data, name, idx); 2906 if (err) 2907 return err; 2908 } else if (strcmp(name, DATA_SEC) == 0) { 2909 obj->efile.data = data; 2910 obj->efile.data_shndx = idx; 2911 } else if (strcmp(name, RODATA_SEC) == 0) { 2912 obj->efile.rodata = data; 2913 obj->efile.rodata_shndx = idx; 2914 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2915 obj->efile.st_ops_data = data; 2916 obj->efile.st_ops_shndx = idx; 2917 } else { 2918 pr_info("elf: skipping unrecognized data section(%d) %s\n", 2919 idx, name); 2920 } 2921 } else if (sh.sh_type == SHT_REL) { 2922 int nr_sects = obj->efile.nr_reloc_sects; 2923 void *sects = obj->efile.reloc_sects; 2924 int sec = sh.sh_info; /* points to other section */ 2925 2926 /* Only do relo for section with exec instructions */ 2927 if (!section_have_execinstr(obj, sec) && 2928 strcmp(name, ".rel" STRUCT_OPS_SEC) && 2929 strcmp(name, ".rel" MAPS_ELF_SEC)) { 2930 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 2931 idx, name, sec, 2932 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 2933 continue; 2934 } 2935 2936 sects = libbpf_reallocarray(sects, nr_sects + 1, 2937 sizeof(*obj->efile.reloc_sects)); 2938 if (!sects) 2939 return -ENOMEM; 2940 2941 obj->efile.reloc_sects = sects; 2942 obj->efile.nr_reloc_sects++; 2943 2944 obj->efile.reloc_sects[nr_sects].shdr = sh; 2945 obj->efile.reloc_sects[nr_sects].data = data; 2946 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 2947 obj->efile.bss = data; 2948 obj->efile.bss_shndx = idx; 2949 } else { 2950 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 2951 (size_t)sh.sh_size); 2952 } 2953 } 2954 2955 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2956 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 2957 return -LIBBPF_ERRNO__FORMAT; 2958 } 2959 2960 /* sort BPF programs by section name and in-section instruction offset 2961 * for faster search */ 2962 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 2963 2964 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2965 } 2966 2967 static bool sym_is_extern(const GElf_Sym *sym) 2968 { 2969 int bind = GELF_ST_BIND(sym->st_info); 2970 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2971 return sym->st_shndx == SHN_UNDEF && 2972 (bind == STB_GLOBAL || bind == STB_WEAK) && 2973 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2974 } 2975 2976 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2977 { 2978 const struct btf_type *t; 2979 const char *var_name; 2980 int i, n; 2981 2982 if (!btf) 2983 return -ESRCH; 2984 2985 n = btf__get_nr_types(btf); 2986 for (i = 1; i <= n; i++) { 2987 t = btf__type_by_id(btf, i); 2988 2989 if (!btf_is_var(t)) 2990 continue; 2991 2992 var_name = btf__name_by_offset(btf, t->name_off); 2993 if (strcmp(var_name, ext_name)) 2994 continue; 2995 2996 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2997 return -EINVAL; 2998 2999 return i; 3000 } 3001 3002 return -ENOENT; 3003 } 3004 3005 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3006 const struct btf_var_secinfo *vs; 3007 const struct btf_type *t; 3008 int i, j, n; 3009 3010 if (!btf) 3011 return -ESRCH; 3012 3013 n = btf__get_nr_types(btf); 3014 for (i = 1; i <= n; i++) { 3015 t = btf__type_by_id(btf, i); 3016 3017 if (!btf_is_datasec(t)) 3018 continue; 3019 3020 vs = btf_var_secinfos(t); 3021 for (j = 0; j < btf_vlen(t); j++, vs++) { 3022 if (vs->type == ext_btf_id) 3023 return i; 3024 } 3025 } 3026 3027 return -ENOENT; 3028 } 3029 3030 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3031 bool *is_signed) 3032 { 3033 const struct btf_type *t; 3034 const char *name; 3035 3036 t = skip_mods_and_typedefs(btf, id, NULL); 3037 name = btf__name_by_offset(btf, t->name_off); 3038 3039 if (is_signed) 3040 *is_signed = false; 3041 switch (btf_kind(t)) { 3042 case BTF_KIND_INT: { 3043 int enc = btf_int_encoding(t); 3044 3045 if (enc & BTF_INT_BOOL) 3046 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3047 if (is_signed) 3048 *is_signed = enc & BTF_INT_SIGNED; 3049 if (t->size == 1) 3050 return KCFG_CHAR; 3051 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3052 return KCFG_UNKNOWN; 3053 return KCFG_INT; 3054 } 3055 case BTF_KIND_ENUM: 3056 if (t->size != 4) 3057 return KCFG_UNKNOWN; 3058 if (strcmp(name, "libbpf_tristate")) 3059 return KCFG_UNKNOWN; 3060 return KCFG_TRISTATE; 3061 case BTF_KIND_ARRAY: 3062 if (btf_array(t)->nelems == 0) 3063 return KCFG_UNKNOWN; 3064 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3065 return KCFG_UNKNOWN; 3066 return KCFG_CHAR_ARR; 3067 default: 3068 return KCFG_UNKNOWN; 3069 } 3070 } 3071 3072 static int cmp_externs(const void *_a, const void *_b) 3073 { 3074 const struct extern_desc *a = _a; 3075 const struct extern_desc *b = _b; 3076 3077 if (a->type != b->type) 3078 return a->type < b->type ? -1 : 1; 3079 3080 if (a->type == EXT_KCFG) { 3081 /* descending order by alignment requirements */ 3082 if (a->kcfg.align != b->kcfg.align) 3083 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3084 /* ascending order by size, within same alignment class */ 3085 if (a->kcfg.sz != b->kcfg.sz) 3086 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3087 } 3088 3089 /* resolve ties by name */ 3090 return strcmp(a->name, b->name); 3091 } 3092 3093 static int find_int_btf_id(const struct btf *btf) 3094 { 3095 const struct btf_type *t; 3096 int i, n; 3097 3098 n = btf__get_nr_types(btf); 3099 for (i = 1; i <= n; i++) { 3100 t = btf__type_by_id(btf, i); 3101 3102 if (btf_is_int(t) && btf_int_bits(t) == 32) 3103 return i; 3104 } 3105 3106 return 0; 3107 } 3108 3109 static int bpf_object__collect_externs(struct bpf_object *obj) 3110 { 3111 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3112 const struct btf_type *t; 3113 struct extern_desc *ext; 3114 int i, n, off; 3115 const char *ext_name, *sec_name; 3116 Elf_Scn *scn; 3117 GElf_Shdr sh; 3118 3119 if (!obj->efile.symbols) 3120 return 0; 3121 3122 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3123 if (elf_sec_hdr(obj, scn, &sh)) 3124 return -LIBBPF_ERRNO__FORMAT; 3125 3126 n = sh.sh_size / sh.sh_entsize; 3127 pr_debug("looking for externs among %d symbols...\n", n); 3128 3129 for (i = 0; i < n; i++) { 3130 GElf_Sym sym; 3131 3132 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3133 return -LIBBPF_ERRNO__FORMAT; 3134 if (!sym_is_extern(&sym)) 3135 continue; 3136 ext_name = elf_sym_str(obj, sym.st_name); 3137 if (!ext_name || !ext_name[0]) 3138 continue; 3139 3140 ext = obj->externs; 3141 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3142 if (!ext) 3143 return -ENOMEM; 3144 obj->externs = ext; 3145 ext = &ext[obj->nr_extern]; 3146 memset(ext, 0, sizeof(*ext)); 3147 obj->nr_extern++; 3148 3149 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3150 if (ext->btf_id <= 0) { 3151 pr_warn("failed to find BTF for extern '%s': %d\n", 3152 ext_name, ext->btf_id); 3153 return ext->btf_id; 3154 } 3155 t = btf__type_by_id(obj->btf, ext->btf_id); 3156 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3157 ext->sym_idx = i; 3158 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3159 3160 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3161 if (ext->sec_btf_id <= 0) { 3162 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3163 ext_name, ext->btf_id, ext->sec_btf_id); 3164 return ext->sec_btf_id; 3165 } 3166 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3167 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3168 3169 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3170 kcfg_sec = sec; 3171 ext->type = EXT_KCFG; 3172 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3173 if (ext->kcfg.sz <= 0) { 3174 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3175 ext_name, ext->kcfg.sz); 3176 return ext->kcfg.sz; 3177 } 3178 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3179 if (ext->kcfg.align <= 0) { 3180 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3181 ext_name, ext->kcfg.align); 3182 return -EINVAL; 3183 } 3184 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3185 &ext->kcfg.is_signed); 3186 if (ext->kcfg.type == KCFG_UNKNOWN) { 3187 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3188 return -ENOTSUP; 3189 } 3190 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3191 ksym_sec = sec; 3192 ext->type = EXT_KSYM; 3193 skip_mods_and_typedefs(obj->btf, t->type, 3194 &ext->ksym.type_id); 3195 } else { 3196 pr_warn("unrecognized extern section '%s'\n", sec_name); 3197 return -ENOTSUP; 3198 } 3199 } 3200 pr_debug("collected %d externs total\n", obj->nr_extern); 3201 3202 if (!obj->nr_extern) 3203 return 0; 3204 3205 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3206 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3207 3208 /* for .ksyms section, we need to turn all externs into allocated 3209 * variables in BTF to pass kernel verification; we do this by 3210 * pretending that each extern is a 8-byte variable 3211 */ 3212 if (ksym_sec) { 3213 /* find existing 4-byte integer type in BTF to use for fake 3214 * extern variables in DATASEC 3215 */ 3216 int int_btf_id = find_int_btf_id(obj->btf); 3217 3218 for (i = 0; i < obj->nr_extern; i++) { 3219 ext = &obj->externs[i]; 3220 if (ext->type != EXT_KSYM) 3221 continue; 3222 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3223 i, ext->sym_idx, ext->name); 3224 } 3225 3226 sec = ksym_sec; 3227 n = btf_vlen(sec); 3228 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3229 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3230 struct btf_type *vt; 3231 3232 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3233 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3234 ext = find_extern_by_name(obj, ext_name); 3235 if (!ext) { 3236 pr_warn("failed to find extern definition for BTF var '%s'\n", 3237 ext_name); 3238 return -ESRCH; 3239 } 3240 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3241 vt->type = int_btf_id; 3242 vs->offset = off; 3243 vs->size = sizeof(int); 3244 } 3245 sec->size = off; 3246 } 3247 3248 if (kcfg_sec) { 3249 sec = kcfg_sec; 3250 /* for kcfg externs calculate their offsets within a .kconfig map */ 3251 off = 0; 3252 for (i = 0; i < obj->nr_extern; i++) { 3253 ext = &obj->externs[i]; 3254 if (ext->type != EXT_KCFG) 3255 continue; 3256 3257 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3258 off = ext->kcfg.data_off + ext->kcfg.sz; 3259 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3260 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3261 } 3262 sec->size = off; 3263 n = btf_vlen(sec); 3264 for (i = 0; i < n; i++) { 3265 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3266 3267 t = btf__type_by_id(obj->btf, vs->type); 3268 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3269 ext = find_extern_by_name(obj, ext_name); 3270 if (!ext) { 3271 pr_warn("failed to find extern definition for BTF var '%s'\n", 3272 ext_name); 3273 return -ESRCH; 3274 } 3275 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3276 vs->offset = ext->kcfg.data_off; 3277 } 3278 } 3279 return 0; 3280 } 3281 3282 struct bpf_program * 3283 bpf_object__find_program_by_title(const struct bpf_object *obj, 3284 const char *title) 3285 { 3286 struct bpf_program *pos; 3287 3288 bpf_object__for_each_program(pos, obj) { 3289 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3290 return pos; 3291 } 3292 return NULL; 3293 } 3294 3295 static bool prog_is_subprog(const struct bpf_object *obj, 3296 const struct bpf_program *prog) 3297 { 3298 /* For legacy reasons, libbpf supports an entry-point BPF programs 3299 * without SEC() attribute, i.e., those in the .text section. But if 3300 * there are 2 or more such programs in the .text section, they all 3301 * must be subprograms called from entry-point BPF programs in 3302 * designated SEC()'tions, otherwise there is no way to distinguish 3303 * which of those programs should be loaded vs which are a subprogram. 3304 * Similarly, if there is a function/program in .text and at least one 3305 * other BPF program with custom SEC() attribute, then we just assume 3306 * .text programs are subprograms (even if they are not called from 3307 * other programs), because libbpf never explicitly supported mixing 3308 * SEC()-designated BPF programs and .text entry-point BPF programs. 3309 */ 3310 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3311 } 3312 3313 struct bpf_program * 3314 bpf_object__find_program_by_name(const struct bpf_object *obj, 3315 const char *name) 3316 { 3317 struct bpf_program *prog; 3318 3319 bpf_object__for_each_program(prog, obj) { 3320 if (prog_is_subprog(obj, prog)) 3321 continue; 3322 if (!strcmp(prog->name, name)) 3323 return prog; 3324 } 3325 return NULL; 3326 } 3327 3328 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3329 int shndx) 3330 { 3331 return shndx == obj->efile.data_shndx || 3332 shndx == obj->efile.bss_shndx || 3333 shndx == obj->efile.rodata_shndx; 3334 } 3335 3336 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3337 int shndx) 3338 { 3339 return shndx == obj->efile.maps_shndx || 3340 shndx == obj->efile.btf_maps_shndx; 3341 } 3342 3343 static enum libbpf_map_type 3344 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3345 { 3346 if (shndx == obj->efile.data_shndx) 3347 return LIBBPF_MAP_DATA; 3348 else if (shndx == obj->efile.bss_shndx) 3349 return LIBBPF_MAP_BSS; 3350 else if (shndx == obj->efile.rodata_shndx) 3351 return LIBBPF_MAP_RODATA; 3352 else if (shndx == obj->efile.symbols_shndx) 3353 return LIBBPF_MAP_KCONFIG; 3354 else 3355 return LIBBPF_MAP_UNSPEC; 3356 } 3357 3358 static int bpf_program__record_reloc(struct bpf_program *prog, 3359 struct reloc_desc *reloc_desc, 3360 __u32 insn_idx, const char *sym_name, 3361 const GElf_Sym *sym, const GElf_Rel *rel) 3362 { 3363 struct bpf_insn *insn = &prog->insns[insn_idx]; 3364 size_t map_idx, nr_maps = prog->obj->nr_maps; 3365 struct bpf_object *obj = prog->obj; 3366 __u32 shdr_idx = sym->st_shndx; 3367 enum libbpf_map_type type; 3368 const char *sym_sec_name; 3369 struct bpf_map *map; 3370 3371 reloc_desc->processed = false; 3372 3373 /* sub-program call relocation */ 3374 if (insn->code == (BPF_JMP | BPF_CALL)) { 3375 if (insn->src_reg != BPF_PSEUDO_CALL) { 3376 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3377 return -LIBBPF_ERRNO__RELOC; 3378 } 3379 /* text_shndx can be 0, if no default "main" program exists */ 3380 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3381 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3382 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3383 prog->name, sym_name, sym_sec_name); 3384 return -LIBBPF_ERRNO__RELOC; 3385 } 3386 if (sym->st_value % BPF_INSN_SZ) { 3387 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3388 prog->name, sym_name, (size_t)sym->st_value); 3389 return -LIBBPF_ERRNO__RELOC; 3390 } 3391 reloc_desc->type = RELO_CALL; 3392 reloc_desc->insn_idx = insn_idx; 3393 reloc_desc->sym_off = sym->st_value; 3394 return 0; 3395 } 3396 3397 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 3398 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3399 prog->name, sym_name, insn_idx, insn->code); 3400 return -LIBBPF_ERRNO__RELOC; 3401 } 3402 3403 if (sym_is_extern(sym)) { 3404 int sym_idx = GELF_R_SYM(rel->r_info); 3405 int i, n = obj->nr_extern; 3406 struct extern_desc *ext; 3407 3408 for (i = 0; i < n; i++) { 3409 ext = &obj->externs[i]; 3410 if (ext->sym_idx == sym_idx) 3411 break; 3412 } 3413 if (i >= n) { 3414 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3415 prog->name, sym_name, sym_idx); 3416 return -LIBBPF_ERRNO__RELOC; 3417 } 3418 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3419 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3420 reloc_desc->type = RELO_EXTERN; 3421 reloc_desc->insn_idx = insn_idx; 3422 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3423 return 0; 3424 } 3425 3426 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3427 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3428 prog->name, sym_name, shdr_idx); 3429 return -LIBBPF_ERRNO__RELOC; 3430 } 3431 3432 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3433 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3434 3435 /* generic map reference relocation */ 3436 if (type == LIBBPF_MAP_UNSPEC) { 3437 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3438 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3439 prog->name, sym_name, sym_sec_name); 3440 return -LIBBPF_ERRNO__RELOC; 3441 } 3442 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3443 map = &obj->maps[map_idx]; 3444 if (map->libbpf_type != type || 3445 map->sec_idx != sym->st_shndx || 3446 map->sec_offset != sym->st_value) 3447 continue; 3448 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3449 prog->name, map_idx, map->name, map->sec_idx, 3450 map->sec_offset, insn_idx); 3451 break; 3452 } 3453 if (map_idx >= nr_maps) { 3454 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3455 prog->name, sym_sec_name, (size_t)sym->st_value); 3456 return -LIBBPF_ERRNO__RELOC; 3457 } 3458 reloc_desc->type = RELO_LD64; 3459 reloc_desc->insn_idx = insn_idx; 3460 reloc_desc->map_idx = map_idx; 3461 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3462 return 0; 3463 } 3464 3465 /* global data map relocation */ 3466 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3467 pr_warn("prog '%s': bad data relo against section '%s'\n", 3468 prog->name, sym_sec_name); 3469 return -LIBBPF_ERRNO__RELOC; 3470 } 3471 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3472 map = &obj->maps[map_idx]; 3473 if (map->libbpf_type != type) 3474 continue; 3475 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3476 prog->name, map_idx, map->name, map->sec_idx, 3477 map->sec_offset, insn_idx); 3478 break; 3479 } 3480 if (map_idx >= nr_maps) { 3481 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3482 prog->name, sym_sec_name); 3483 return -LIBBPF_ERRNO__RELOC; 3484 } 3485 3486 reloc_desc->type = RELO_DATA; 3487 reloc_desc->insn_idx = insn_idx; 3488 reloc_desc->map_idx = map_idx; 3489 reloc_desc->sym_off = sym->st_value; 3490 return 0; 3491 } 3492 3493 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3494 { 3495 return insn_idx >= prog->sec_insn_off && 3496 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3497 } 3498 3499 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3500 size_t sec_idx, size_t insn_idx) 3501 { 3502 int l = 0, r = obj->nr_programs - 1, m; 3503 struct bpf_program *prog; 3504 3505 while (l < r) { 3506 m = l + (r - l + 1) / 2; 3507 prog = &obj->programs[m]; 3508 3509 if (prog->sec_idx < sec_idx || 3510 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3511 l = m; 3512 else 3513 r = m - 1; 3514 } 3515 /* matching program could be at index l, but it still might be the 3516 * wrong one, so we need to double check conditions for the last time 3517 */ 3518 prog = &obj->programs[l]; 3519 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3520 return prog; 3521 return NULL; 3522 } 3523 3524 static int 3525 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3526 { 3527 Elf_Data *symbols = obj->efile.symbols; 3528 const char *relo_sec_name, *sec_name; 3529 size_t sec_idx = shdr->sh_info; 3530 struct bpf_program *prog; 3531 struct reloc_desc *relos; 3532 int err, i, nrels; 3533 const char *sym_name; 3534 __u32 insn_idx; 3535 GElf_Sym sym; 3536 GElf_Rel rel; 3537 3538 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3539 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 3540 if (!relo_sec_name || !sec_name) 3541 return -EINVAL; 3542 3543 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3544 relo_sec_name, sec_idx, sec_name); 3545 nrels = shdr->sh_size / shdr->sh_entsize; 3546 3547 for (i = 0; i < nrels; i++) { 3548 if (!gelf_getrel(data, i, &rel)) { 3549 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3550 return -LIBBPF_ERRNO__FORMAT; 3551 } 3552 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3553 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3554 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3555 return -LIBBPF_ERRNO__FORMAT; 3556 } 3557 if (rel.r_offset % BPF_INSN_SZ) { 3558 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3559 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3560 return -LIBBPF_ERRNO__FORMAT; 3561 } 3562 3563 insn_idx = rel.r_offset / BPF_INSN_SZ; 3564 /* relocations against static functions are recorded as 3565 * relocations against the section that contains a function; 3566 * in such case, symbol will be STT_SECTION and sym.st_name 3567 * will point to empty string (0), so fetch section name 3568 * instead 3569 */ 3570 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3571 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3572 else 3573 sym_name = elf_sym_str(obj, sym.st_name); 3574 sym_name = sym_name ?: "<?"; 3575 3576 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3577 relo_sec_name, i, insn_idx, sym_name); 3578 3579 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3580 if (!prog) { 3581 pr_warn("sec '%s': relo #%d: program not found in section '%s' for insn #%u\n", 3582 relo_sec_name, i, sec_name, insn_idx); 3583 return -LIBBPF_ERRNO__RELOC; 3584 } 3585 3586 relos = libbpf_reallocarray(prog->reloc_desc, 3587 prog->nr_reloc + 1, sizeof(*relos)); 3588 if (!relos) 3589 return -ENOMEM; 3590 prog->reloc_desc = relos; 3591 3592 /* adjust insn_idx to local BPF program frame of reference */ 3593 insn_idx -= prog->sec_insn_off; 3594 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3595 insn_idx, sym_name, &sym, &rel); 3596 if (err) 3597 return err; 3598 3599 prog->nr_reloc++; 3600 } 3601 return 0; 3602 } 3603 3604 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3605 { 3606 struct bpf_map_def *def = &map->def; 3607 __u32 key_type_id = 0, value_type_id = 0; 3608 int ret; 3609 3610 /* if it's BTF-defined map, we don't need to search for type IDs. 3611 * For struct_ops map, it does not need btf_key_type_id and 3612 * btf_value_type_id. 3613 */ 3614 if (map->sec_idx == obj->efile.btf_maps_shndx || 3615 bpf_map__is_struct_ops(map)) 3616 return 0; 3617 3618 if (!bpf_map__is_internal(map)) { 3619 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3620 def->value_size, &key_type_id, 3621 &value_type_id); 3622 } else { 3623 /* 3624 * LLVM annotates global data differently in BTF, that is, 3625 * only as '.data', '.bss' or '.rodata'. 3626 */ 3627 ret = btf__find_by_name(obj->btf, 3628 libbpf_type_to_btf_name[map->libbpf_type]); 3629 } 3630 if (ret < 0) 3631 return ret; 3632 3633 map->btf_key_type_id = key_type_id; 3634 map->btf_value_type_id = bpf_map__is_internal(map) ? 3635 ret : value_type_id; 3636 return 0; 3637 } 3638 3639 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3640 { 3641 struct bpf_map_info info = {}; 3642 __u32 len = sizeof(info); 3643 int new_fd, err; 3644 char *new_name; 3645 3646 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3647 if (err) 3648 return err; 3649 3650 new_name = strdup(info.name); 3651 if (!new_name) 3652 return -errno; 3653 3654 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3655 if (new_fd < 0) { 3656 err = -errno; 3657 goto err_free_new_name; 3658 } 3659 3660 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3661 if (new_fd < 0) { 3662 err = -errno; 3663 goto err_close_new_fd; 3664 } 3665 3666 err = zclose(map->fd); 3667 if (err) { 3668 err = -errno; 3669 goto err_close_new_fd; 3670 } 3671 free(map->name); 3672 3673 map->fd = new_fd; 3674 map->name = new_name; 3675 map->def.type = info.type; 3676 map->def.key_size = info.key_size; 3677 map->def.value_size = info.value_size; 3678 map->def.max_entries = info.max_entries; 3679 map->def.map_flags = info.map_flags; 3680 map->btf_key_type_id = info.btf_key_type_id; 3681 map->btf_value_type_id = info.btf_value_type_id; 3682 map->reused = true; 3683 3684 return 0; 3685 3686 err_close_new_fd: 3687 close(new_fd); 3688 err_free_new_name: 3689 free(new_name); 3690 return err; 3691 } 3692 3693 __u32 bpf_map__max_entries(const struct bpf_map *map) 3694 { 3695 return map->def.max_entries; 3696 } 3697 3698 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3699 { 3700 if (map->fd >= 0) 3701 return -EBUSY; 3702 map->def.max_entries = max_entries; 3703 return 0; 3704 } 3705 3706 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3707 { 3708 if (!map || !max_entries) 3709 return -EINVAL; 3710 3711 return bpf_map__set_max_entries(map, max_entries); 3712 } 3713 3714 static int 3715 bpf_object__probe_loading(struct bpf_object *obj) 3716 { 3717 struct bpf_load_program_attr attr; 3718 char *cp, errmsg[STRERR_BUFSIZE]; 3719 struct bpf_insn insns[] = { 3720 BPF_MOV64_IMM(BPF_REG_0, 0), 3721 BPF_EXIT_INSN(), 3722 }; 3723 int ret; 3724 3725 /* make sure basic loading works */ 3726 3727 memset(&attr, 0, sizeof(attr)); 3728 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3729 attr.insns = insns; 3730 attr.insns_cnt = ARRAY_SIZE(insns); 3731 attr.license = "GPL"; 3732 3733 ret = bpf_load_program_xattr(&attr, NULL, 0); 3734 if (ret < 0) { 3735 ret = errno; 3736 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3737 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3738 "program. Make sure your kernel supports BPF " 3739 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3740 "set to big enough value.\n", __func__, cp, ret); 3741 return -ret; 3742 } 3743 close(ret); 3744 3745 return 0; 3746 } 3747 3748 static int probe_fd(int fd) 3749 { 3750 if (fd >= 0) 3751 close(fd); 3752 return fd >= 0; 3753 } 3754 3755 static int probe_kern_prog_name(void) 3756 { 3757 struct bpf_load_program_attr attr; 3758 struct bpf_insn insns[] = { 3759 BPF_MOV64_IMM(BPF_REG_0, 0), 3760 BPF_EXIT_INSN(), 3761 }; 3762 int ret; 3763 3764 /* make sure loading with name works */ 3765 3766 memset(&attr, 0, sizeof(attr)); 3767 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3768 attr.insns = insns; 3769 attr.insns_cnt = ARRAY_SIZE(insns); 3770 attr.license = "GPL"; 3771 attr.name = "test"; 3772 ret = bpf_load_program_xattr(&attr, NULL, 0); 3773 return probe_fd(ret); 3774 } 3775 3776 static int probe_kern_global_data(void) 3777 { 3778 struct bpf_load_program_attr prg_attr; 3779 struct bpf_create_map_attr map_attr; 3780 char *cp, errmsg[STRERR_BUFSIZE]; 3781 struct bpf_insn insns[] = { 3782 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3783 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3784 BPF_MOV64_IMM(BPF_REG_0, 0), 3785 BPF_EXIT_INSN(), 3786 }; 3787 int ret, map; 3788 3789 memset(&map_attr, 0, sizeof(map_attr)); 3790 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3791 map_attr.key_size = sizeof(int); 3792 map_attr.value_size = 32; 3793 map_attr.max_entries = 1; 3794 3795 map = bpf_create_map_xattr(&map_attr); 3796 if (map < 0) { 3797 ret = -errno; 3798 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3799 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3800 __func__, cp, -ret); 3801 return ret; 3802 } 3803 3804 insns[0].imm = map; 3805 3806 memset(&prg_attr, 0, sizeof(prg_attr)); 3807 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3808 prg_attr.insns = insns; 3809 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3810 prg_attr.license = "GPL"; 3811 3812 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 3813 close(map); 3814 return probe_fd(ret); 3815 } 3816 3817 static int probe_kern_btf(void) 3818 { 3819 static const char strs[] = "\0int"; 3820 __u32 types[] = { 3821 /* int */ 3822 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3823 }; 3824 3825 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3826 strs, sizeof(strs))); 3827 } 3828 3829 static int probe_kern_btf_func(void) 3830 { 3831 static const char strs[] = "\0int\0x\0a"; 3832 /* void x(int a) {} */ 3833 __u32 types[] = { 3834 /* int */ 3835 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3836 /* FUNC_PROTO */ /* [2] */ 3837 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3838 BTF_PARAM_ENC(7, 1), 3839 /* FUNC x */ /* [3] */ 3840 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 3841 }; 3842 3843 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3844 strs, sizeof(strs))); 3845 } 3846 3847 static int probe_kern_btf_func_global(void) 3848 { 3849 static const char strs[] = "\0int\0x\0a"; 3850 /* static void x(int a) {} */ 3851 __u32 types[] = { 3852 /* int */ 3853 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3854 /* FUNC_PROTO */ /* [2] */ 3855 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 3856 BTF_PARAM_ENC(7, 1), 3857 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 3858 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 3859 }; 3860 3861 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3862 strs, sizeof(strs))); 3863 } 3864 3865 static int probe_kern_btf_datasec(void) 3866 { 3867 static const char strs[] = "\0x\0.data"; 3868 /* static int a; */ 3869 __u32 types[] = { 3870 /* int */ 3871 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 3872 /* VAR x */ /* [2] */ 3873 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 3874 BTF_VAR_STATIC, 3875 /* DATASEC val */ /* [3] */ 3876 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 3877 BTF_VAR_SECINFO_ENC(2, 0, 4), 3878 }; 3879 3880 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 3881 strs, sizeof(strs))); 3882 } 3883 3884 static int probe_kern_array_mmap(void) 3885 { 3886 struct bpf_create_map_attr attr = { 3887 .map_type = BPF_MAP_TYPE_ARRAY, 3888 .map_flags = BPF_F_MMAPABLE, 3889 .key_size = sizeof(int), 3890 .value_size = sizeof(int), 3891 .max_entries = 1, 3892 }; 3893 3894 return probe_fd(bpf_create_map_xattr(&attr)); 3895 } 3896 3897 static int probe_kern_exp_attach_type(void) 3898 { 3899 struct bpf_load_program_attr attr; 3900 struct bpf_insn insns[] = { 3901 BPF_MOV64_IMM(BPF_REG_0, 0), 3902 BPF_EXIT_INSN(), 3903 }; 3904 3905 memset(&attr, 0, sizeof(attr)); 3906 /* use any valid combination of program type and (optional) 3907 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 3908 * to see if kernel supports expected_attach_type field for 3909 * BPF_PROG_LOAD command 3910 */ 3911 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 3912 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 3913 attr.insns = insns; 3914 attr.insns_cnt = ARRAY_SIZE(insns); 3915 attr.license = "GPL"; 3916 3917 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3918 } 3919 3920 static int probe_kern_probe_read_kernel(void) 3921 { 3922 struct bpf_load_program_attr attr; 3923 struct bpf_insn insns[] = { 3924 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 3925 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 3926 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 3927 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 3928 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 3929 BPF_EXIT_INSN(), 3930 }; 3931 3932 memset(&attr, 0, sizeof(attr)); 3933 attr.prog_type = BPF_PROG_TYPE_KPROBE; 3934 attr.insns = insns; 3935 attr.insns_cnt = ARRAY_SIZE(insns); 3936 attr.license = "GPL"; 3937 3938 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 3939 } 3940 3941 static int probe_prog_bind_map(void) 3942 { 3943 struct bpf_load_program_attr prg_attr; 3944 struct bpf_create_map_attr map_attr; 3945 char *cp, errmsg[STRERR_BUFSIZE]; 3946 struct bpf_insn insns[] = { 3947 BPF_MOV64_IMM(BPF_REG_0, 0), 3948 BPF_EXIT_INSN(), 3949 }; 3950 int ret, map, prog; 3951 3952 memset(&map_attr, 0, sizeof(map_attr)); 3953 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 3954 map_attr.key_size = sizeof(int); 3955 map_attr.value_size = 32; 3956 map_attr.max_entries = 1; 3957 3958 map = bpf_create_map_xattr(&map_attr); 3959 if (map < 0) { 3960 ret = -errno; 3961 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3962 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 3963 __func__, cp, -ret); 3964 return ret; 3965 } 3966 3967 memset(&prg_attr, 0, sizeof(prg_attr)); 3968 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3969 prg_attr.insns = insns; 3970 prg_attr.insns_cnt = ARRAY_SIZE(insns); 3971 prg_attr.license = "GPL"; 3972 3973 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 3974 if (prog < 0) { 3975 close(map); 3976 return 0; 3977 } 3978 3979 ret = bpf_prog_bind_map(prog, map, NULL); 3980 3981 close(map); 3982 close(prog); 3983 3984 return ret >= 0; 3985 } 3986 3987 static int probe_module_btf(void) 3988 { 3989 static const char strs[] = "\0int"; 3990 __u32 types[] = { 3991 /* int */ 3992 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 3993 }; 3994 struct bpf_btf_info info; 3995 __u32 len = sizeof(info); 3996 char name[16]; 3997 int fd, err; 3998 3999 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4000 if (fd < 0) 4001 return 0; /* BTF not supported at all */ 4002 4003 memset(&info, 0, sizeof(info)); 4004 info.name = ptr_to_u64(name); 4005 info.name_len = sizeof(name); 4006 4007 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4008 * kernel's module BTF support coincides with support for 4009 * name/name_len fields in struct bpf_btf_info. 4010 */ 4011 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4012 close(fd); 4013 return !err; 4014 } 4015 4016 enum kern_feature_result { 4017 FEAT_UNKNOWN = 0, 4018 FEAT_SUPPORTED = 1, 4019 FEAT_MISSING = 2, 4020 }; 4021 4022 typedef int (*feature_probe_fn)(void); 4023 4024 static struct kern_feature_desc { 4025 const char *desc; 4026 feature_probe_fn probe; 4027 enum kern_feature_result res; 4028 } feature_probes[__FEAT_CNT] = { 4029 [FEAT_PROG_NAME] = { 4030 "BPF program name", probe_kern_prog_name, 4031 }, 4032 [FEAT_GLOBAL_DATA] = { 4033 "global variables", probe_kern_global_data, 4034 }, 4035 [FEAT_BTF] = { 4036 "minimal BTF", probe_kern_btf, 4037 }, 4038 [FEAT_BTF_FUNC] = { 4039 "BTF functions", probe_kern_btf_func, 4040 }, 4041 [FEAT_BTF_GLOBAL_FUNC] = { 4042 "BTF global function", probe_kern_btf_func_global, 4043 }, 4044 [FEAT_BTF_DATASEC] = { 4045 "BTF data section and variable", probe_kern_btf_datasec, 4046 }, 4047 [FEAT_ARRAY_MMAP] = { 4048 "ARRAY map mmap()", probe_kern_array_mmap, 4049 }, 4050 [FEAT_EXP_ATTACH_TYPE] = { 4051 "BPF_PROG_LOAD expected_attach_type attribute", 4052 probe_kern_exp_attach_type, 4053 }, 4054 [FEAT_PROBE_READ_KERN] = { 4055 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4056 }, 4057 [FEAT_PROG_BIND_MAP] = { 4058 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4059 }, 4060 [FEAT_MODULE_BTF] = { 4061 "module BTF support", probe_module_btf, 4062 }, 4063 }; 4064 4065 static bool kernel_supports(enum kern_feature_id feat_id) 4066 { 4067 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4068 int ret; 4069 4070 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4071 ret = feat->probe(); 4072 if (ret > 0) { 4073 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4074 } else if (ret == 0) { 4075 WRITE_ONCE(feat->res, FEAT_MISSING); 4076 } else { 4077 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4078 WRITE_ONCE(feat->res, FEAT_MISSING); 4079 } 4080 } 4081 4082 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4083 } 4084 4085 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4086 { 4087 struct bpf_map_info map_info = {}; 4088 char msg[STRERR_BUFSIZE]; 4089 __u32 map_info_len; 4090 4091 map_info_len = sizeof(map_info); 4092 4093 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4094 pr_warn("failed to get map info for map FD %d: %s\n", 4095 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4096 return false; 4097 } 4098 4099 return (map_info.type == map->def.type && 4100 map_info.key_size == map->def.key_size && 4101 map_info.value_size == map->def.value_size && 4102 map_info.max_entries == map->def.max_entries && 4103 map_info.map_flags == map->def.map_flags); 4104 } 4105 4106 static int 4107 bpf_object__reuse_map(struct bpf_map *map) 4108 { 4109 char *cp, errmsg[STRERR_BUFSIZE]; 4110 int err, pin_fd; 4111 4112 pin_fd = bpf_obj_get(map->pin_path); 4113 if (pin_fd < 0) { 4114 err = -errno; 4115 if (err == -ENOENT) { 4116 pr_debug("found no pinned map to reuse at '%s'\n", 4117 map->pin_path); 4118 return 0; 4119 } 4120 4121 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4122 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4123 map->pin_path, cp); 4124 return err; 4125 } 4126 4127 if (!map_is_reuse_compat(map, pin_fd)) { 4128 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4129 map->pin_path); 4130 close(pin_fd); 4131 return -EINVAL; 4132 } 4133 4134 err = bpf_map__reuse_fd(map, pin_fd); 4135 if (err) { 4136 close(pin_fd); 4137 return err; 4138 } 4139 map->pinned = true; 4140 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4141 4142 return 0; 4143 } 4144 4145 static int 4146 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4147 { 4148 enum libbpf_map_type map_type = map->libbpf_type; 4149 char *cp, errmsg[STRERR_BUFSIZE]; 4150 int err, zero = 0; 4151 4152 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4153 if (err) { 4154 err = -errno; 4155 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4156 pr_warn("Error setting initial map(%s) contents: %s\n", 4157 map->name, cp); 4158 return err; 4159 } 4160 4161 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4162 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4163 err = bpf_map_freeze(map->fd); 4164 if (err) { 4165 err = -errno; 4166 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4167 pr_warn("Error freezing map(%s) as read-only: %s\n", 4168 map->name, cp); 4169 return err; 4170 } 4171 } 4172 return 0; 4173 } 4174 4175 static void bpf_map__destroy(struct bpf_map *map); 4176 4177 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4178 { 4179 struct bpf_create_map_attr create_attr; 4180 struct bpf_map_def *def = &map->def; 4181 4182 memset(&create_attr, 0, sizeof(create_attr)); 4183 4184 if (kernel_supports(FEAT_PROG_NAME)) 4185 create_attr.name = map->name; 4186 create_attr.map_ifindex = map->map_ifindex; 4187 create_attr.map_type = def->type; 4188 create_attr.map_flags = def->map_flags; 4189 create_attr.key_size = def->key_size; 4190 create_attr.value_size = def->value_size; 4191 create_attr.numa_node = map->numa_node; 4192 4193 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4194 int nr_cpus; 4195 4196 nr_cpus = libbpf_num_possible_cpus(); 4197 if (nr_cpus < 0) { 4198 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4199 map->name, nr_cpus); 4200 return nr_cpus; 4201 } 4202 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4203 create_attr.max_entries = nr_cpus; 4204 } else { 4205 create_attr.max_entries = def->max_entries; 4206 } 4207 4208 if (bpf_map__is_struct_ops(map)) 4209 create_attr.btf_vmlinux_value_type_id = 4210 map->btf_vmlinux_value_type_id; 4211 4212 create_attr.btf_fd = 0; 4213 create_attr.btf_key_type_id = 0; 4214 create_attr.btf_value_type_id = 0; 4215 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4216 create_attr.btf_fd = btf__fd(obj->btf); 4217 create_attr.btf_key_type_id = map->btf_key_type_id; 4218 create_attr.btf_value_type_id = map->btf_value_type_id; 4219 } 4220 4221 if (bpf_map_type__is_map_in_map(def->type)) { 4222 if (map->inner_map) { 4223 int err; 4224 4225 err = bpf_object__create_map(obj, map->inner_map); 4226 if (err) { 4227 pr_warn("map '%s': failed to create inner map: %d\n", 4228 map->name, err); 4229 return err; 4230 } 4231 map->inner_map_fd = bpf_map__fd(map->inner_map); 4232 } 4233 if (map->inner_map_fd >= 0) 4234 create_attr.inner_map_fd = map->inner_map_fd; 4235 } 4236 4237 map->fd = bpf_create_map_xattr(&create_attr); 4238 if (map->fd < 0 && (create_attr.btf_key_type_id || 4239 create_attr.btf_value_type_id)) { 4240 char *cp, errmsg[STRERR_BUFSIZE]; 4241 int err = -errno; 4242 4243 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4244 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4245 map->name, cp, err); 4246 create_attr.btf_fd = 0; 4247 create_attr.btf_key_type_id = 0; 4248 create_attr.btf_value_type_id = 0; 4249 map->btf_key_type_id = 0; 4250 map->btf_value_type_id = 0; 4251 map->fd = bpf_create_map_xattr(&create_attr); 4252 } 4253 4254 if (map->fd < 0) 4255 return -errno; 4256 4257 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4258 bpf_map__destroy(map->inner_map); 4259 zfree(&map->inner_map); 4260 } 4261 4262 return 0; 4263 } 4264 4265 static int init_map_slots(struct bpf_map *map) 4266 { 4267 const struct bpf_map *targ_map; 4268 unsigned int i; 4269 int fd, err; 4270 4271 for (i = 0; i < map->init_slots_sz; i++) { 4272 if (!map->init_slots[i]) 4273 continue; 4274 4275 targ_map = map->init_slots[i]; 4276 fd = bpf_map__fd(targ_map); 4277 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4278 if (err) { 4279 err = -errno; 4280 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4281 map->name, i, targ_map->name, 4282 fd, err); 4283 return err; 4284 } 4285 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4286 map->name, i, targ_map->name, fd); 4287 } 4288 4289 zfree(&map->init_slots); 4290 map->init_slots_sz = 0; 4291 4292 return 0; 4293 } 4294 4295 static int 4296 bpf_object__create_maps(struct bpf_object *obj) 4297 { 4298 struct bpf_map *map; 4299 char *cp, errmsg[STRERR_BUFSIZE]; 4300 unsigned int i, j; 4301 int err; 4302 4303 for (i = 0; i < obj->nr_maps; i++) { 4304 map = &obj->maps[i]; 4305 4306 if (map->pin_path) { 4307 err = bpf_object__reuse_map(map); 4308 if (err) { 4309 pr_warn("map '%s': error reusing pinned map\n", 4310 map->name); 4311 goto err_out; 4312 } 4313 } 4314 4315 if (map->fd >= 0) { 4316 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4317 map->name, map->fd); 4318 } else { 4319 err = bpf_object__create_map(obj, map); 4320 if (err) 4321 goto err_out; 4322 4323 pr_debug("map '%s': created successfully, fd=%d\n", 4324 map->name, map->fd); 4325 4326 if (bpf_map__is_internal(map)) { 4327 err = bpf_object__populate_internal_map(obj, map); 4328 if (err < 0) { 4329 zclose(map->fd); 4330 goto err_out; 4331 } 4332 } 4333 4334 if (map->init_slots_sz) { 4335 err = init_map_slots(map); 4336 if (err < 0) { 4337 zclose(map->fd); 4338 goto err_out; 4339 } 4340 } 4341 } 4342 4343 if (map->pin_path && !map->pinned) { 4344 err = bpf_map__pin(map, NULL); 4345 if (err) { 4346 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4347 map->name, map->pin_path, err); 4348 zclose(map->fd); 4349 goto err_out; 4350 } 4351 } 4352 } 4353 4354 return 0; 4355 4356 err_out: 4357 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4358 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4359 pr_perm_msg(err); 4360 for (j = 0; j < i; j++) 4361 zclose(obj->maps[j].fd); 4362 return err; 4363 } 4364 4365 #define BPF_CORE_SPEC_MAX_LEN 64 4366 4367 /* represents BPF CO-RE field or array element accessor */ 4368 struct bpf_core_accessor { 4369 __u32 type_id; /* struct/union type or array element type */ 4370 __u32 idx; /* field index or array index */ 4371 const char *name; /* field name or NULL for array accessor */ 4372 }; 4373 4374 struct bpf_core_spec { 4375 const struct btf *btf; 4376 /* high-level spec: named fields and array indices only */ 4377 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4378 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4379 __u32 root_type_id; 4380 /* CO-RE relocation kind */ 4381 enum bpf_core_relo_kind relo_kind; 4382 /* high-level spec length */ 4383 int len; 4384 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4385 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4386 /* raw spec length */ 4387 int raw_len; 4388 /* field bit offset represented by spec */ 4389 __u32 bit_offset; 4390 }; 4391 4392 static bool str_is_empty(const char *s) 4393 { 4394 return !s || !s[0]; 4395 } 4396 4397 static bool is_flex_arr(const struct btf *btf, 4398 const struct bpf_core_accessor *acc, 4399 const struct btf_array *arr) 4400 { 4401 const struct btf_type *t; 4402 4403 /* not a flexible array, if not inside a struct or has non-zero size */ 4404 if (!acc->name || arr->nelems > 0) 4405 return false; 4406 4407 /* has to be the last member of enclosing struct */ 4408 t = btf__type_by_id(btf, acc->type_id); 4409 return acc->idx == btf_vlen(t) - 1; 4410 } 4411 4412 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4413 { 4414 switch (kind) { 4415 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4416 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4417 case BPF_FIELD_EXISTS: return "field_exists"; 4418 case BPF_FIELD_SIGNED: return "signed"; 4419 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4420 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4421 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4422 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4423 case BPF_TYPE_EXISTS: return "type_exists"; 4424 case BPF_TYPE_SIZE: return "type_size"; 4425 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4426 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4427 default: return "unknown"; 4428 } 4429 } 4430 4431 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4432 { 4433 switch (kind) { 4434 case BPF_FIELD_BYTE_OFFSET: 4435 case BPF_FIELD_BYTE_SIZE: 4436 case BPF_FIELD_EXISTS: 4437 case BPF_FIELD_SIGNED: 4438 case BPF_FIELD_LSHIFT_U64: 4439 case BPF_FIELD_RSHIFT_U64: 4440 return true; 4441 default: 4442 return false; 4443 } 4444 } 4445 4446 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4447 { 4448 switch (kind) { 4449 case BPF_TYPE_ID_LOCAL: 4450 case BPF_TYPE_ID_TARGET: 4451 case BPF_TYPE_EXISTS: 4452 case BPF_TYPE_SIZE: 4453 return true; 4454 default: 4455 return false; 4456 } 4457 } 4458 4459 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4460 { 4461 switch (kind) { 4462 case BPF_ENUMVAL_EXISTS: 4463 case BPF_ENUMVAL_VALUE: 4464 return true; 4465 default: 4466 return false; 4467 } 4468 } 4469 4470 /* 4471 * Turn bpf_core_relo into a low- and high-level spec representation, 4472 * validating correctness along the way, as well as calculating resulting 4473 * field bit offset, specified by accessor string. Low-level spec captures 4474 * every single level of nestedness, including traversing anonymous 4475 * struct/union members. High-level one only captures semantically meaningful 4476 * "turning points": named fields and array indicies. 4477 * E.g., for this case: 4478 * 4479 * struct sample { 4480 * int __unimportant; 4481 * struct { 4482 * int __1; 4483 * int __2; 4484 * int a[7]; 4485 * }; 4486 * }; 4487 * 4488 * struct sample *s = ...; 4489 * 4490 * int x = &s->a[3]; // access string = '0:1:2:3' 4491 * 4492 * Low-level spec has 1:1 mapping with each element of access string (it's 4493 * just a parsed access string representation): [0, 1, 2, 3]. 4494 * 4495 * High-level spec will capture only 3 points: 4496 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4497 * - field 'a' access (corresponds to '2' in low-level spec); 4498 * - array element #3 access (corresponds to '3' in low-level spec). 4499 * 4500 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4501 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4502 * spec and raw_spec are kept empty. 4503 * 4504 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4505 * string to specify enumerator's value index that need to be relocated. 4506 */ 4507 static int bpf_core_parse_spec(const struct btf *btf, 4508 __u32 type_id, 4509 const char *spec_str, 4510 enum bpf_core_relo_kind relo_kind, 4511 struct bpf_core_spec *spec) 4512 { 4513 int access_idx, parsed_len, i; 4514 struct bpf_core_accessor *acc; 4515 const struct btf_type *t; 4516 const char *name; 4517 __u32 id; 4518 __s64 sz; 4519 4520 if (str_is_empty(spec_str) || *spec_str == ':') 4521 return -EINVAL; 4522 4523 memset(spec, 0, sizeof(*spec)); 4524 spec->btf = btf; 4525 spec->root_type_id = type_id; 4526 spec->relo_kind = relo_kind; 4527 4528 /* type-based relocations don't have a field access string */ 4529 if (core_relo_is_type_based(relo_kind)) { 4530 if (strcmp(spec_str, "0")) 4531 return -EINVAL; 4532 return 0; 4533 } 4534 4535 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4536 while (*spec_str) { 4537 if (*spec_str == ':') 4538 ++spec_str; 4539 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4540 return -EINVAL; 4541 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4542 return -E2BIG; 4543 spec_str += parsed_len; 4544 spec->raw_spec[spec->raw_len++] = access_idx; 4545 } 4546 4547 if (spec->raw_len == 0) 4548 return -EINVAL; 4549 4550 t = skip_mods_and_typedefs(btf, type_id, &id); 4551 if (!t) 4552 return -EINVAL; 4553 4554 access_idx = spec->raw_spec[0]; 4555 acc = &spec->spec[0]; 4556 acc->type_id = id; 4557 acc->idx = access_idx; 4558 spec->len++; 4559 4560 if (core_relo_is_enumval_based(relo_kind)) { 4561 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4562 return -EINVAL; 4563 4564 /* record enumerator name in a first accessor */ 4565 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4566 return 0; 4567 } 4568 4569 if (!core_relo_is_field_based(relo_kind)) 4570 return -EINVAL; 4571 4572 sz = btf__resolve_size(btf, id); 4573 if (sz < 0) 4574 return sz; 4575 spec->bit_offset = access_idx * sz * 8; 4576 4577 for (i = 1; i < spec->raw_len; i++) { 4578 t = skip_mods_and_typedefs(btf, id, &id); 4579 if (!t) 4580 return -EINVAL; 4581 4582 access_idx = spec->raw_spec[i]; 4583 acc = &spec->spec[spec->len]; 4584 4585 if (btf_is_composite(t)) { 4586 const struct btf_member *m; 4587 __u32 bit_offset; 4588 4589 if (access_idx >= btf_vlen(t)) 4590 return -EINVAL; 4591 4592 bit_offset = btf_member_bit_offset(t, access_idx); 4593 spec->bit_offset += bit_offset; 4594 4595 m = btf_members(t) + access_idx; 4596 if (m->name_off) { 4597 name = btf__name_by_offset(btf, m->name_off); 4598 if (str_is_empty(name)) 4599 return -EINVAL; 4600 4601 acc->type_id = id; 4602 acc->idx = access_idx; 4603 acc->name = name; 4604 spec->len++; 4605 } 4606 4607 id = m->type; 4608 } else if (btf_is_array(t)) { 4609 const struct btf_array *a = btf_array(t); 4610 bool flex; 4611 4612 t = skip_mods_and_typedefs(btf, a->type, &id); 4613 if (!t) 4614 return -EINVAL; 4615 4616 flex = is_flex_arr(btf, acc - 1, a); 4617 if (!flex && access_idx >= a->nelems) 4618 return -EINVAL; 4619 4620 spec->spec[spec->len].type_id = id; 4621 spec->spec[spec->len].idx = access_idx; 4622 spec->len++; 4623 4624 sz = btf__resolve_size(btf, id); 4625 if (sz < 0) 4626 return sz; 4627 spec->bit_offset += access_idx * sz * 8; 4628 } else { 4629 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4630 type_id, spec_str, i, id, btf_kind_str(t)); 4631 return -EINVAL; 4632 } 4633 } 4634 4635 return 0; 4636 } 4637 4638 static bool bpf_core_is_flavor_sep(const char *s) 4639 { 4640 /* check X___Y name pattern, where X and Y are not underscores */ 4641 return s[0] != '_' && /* X */ 4642 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4643 s[4] != '_'; /* Y */ 4644 } 4645 4646 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4647 * before last triple underscore. Struct name part after last triple 4648 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4649 */ 4650 static size_t bpf_core_essential_name_len(const char *name) 4651 { 4652 size_t n = strlen(name); 4653 int i; 4654 4655 for (i = n - 5; i >= 0; i--) { 4656 if (bpf_core_is_flavor_sep(name + i)) 4657 return i + 1; 4658 } 4659 return n; 4660 } 4661 4662 struct core_cand 4663 { 4664 const struct btf *btf; 4665 const struct btf_type *t; 4666 const char *name; 4667 __u32 id; 4668 }; 4669 4670 /* dynamically sized list of type IDs and its associated struct btf */ 4671 struct core_cand_list { 4672 struct core_cand *cands; 4673 int len; 4674 }; 4675 4676 static void bpf_core_free_cands(struct core_cand_list *cands) 4677 { 4678 free(cands->cands); 4679 free(cands); 4680 } 4681 4682 static int bpf_core_add_cands(struct core_cand *local_cand, 4683 size_t local_essent_len, 4684 const struct btf *targ_btf, 4685 const char *targ_btf_name, 4686 int targ_start_id, 4687 struct core_cand_list *cands) 4688 { 4689 struct core_cand *new_cands, *cand; 4690 const struct btf_type *t; 4691 const char *targ_name; 4692 size_t targ_essent_len; 4693 int n, i; 4694 4695 n = btf__get_nr_types(targ_btf); 4696 for (i = targ_start_id; i <= n; i++) { 4697 t = btf__type_by_id(targ_btf, i); 4698 if (btf_kind(t) != btf_kind(local_cand->t)) 4699 continue; 4700 4701 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4702 if (str_is_empty(targ_name)) 4703 continue; 4704 4705 targ_essent_len = bpf_core_essential_name_len(targ_name); 4706 if (targ_essent_len != local_essent_len) 4707 continue; 4708 4709 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 4710 continue; 4711 4712 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 4713 local_cand->id, btf_kind_str(local_cand->t), 4714 local_cand->name, i, btf_kind_str(t), targ_name, 4715 targ_btf_name); 4716 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 4717 sizeof(*cands->cands)); 4718 if (!new_cands) 4719 return -ENOMEM; 4720 4721 cand = &new_cands[cands->len]; 4722 cand->btf = targ_btf; 4723 cand->t = t; 4724 cand->name = targ_name; 4725 cand->id = i; 4726 4727 cands->cands = new_cands; 4728 cands->len++; 4729 } 4730 return 0; 4731 } 4732 4733 static int load_module_btfs(struct bpf_object *obj) 4734 { 4735 struct bpf_btf_info info; 4736 struct module_btf *mod_btf; 4737 struct btf *btf; 4738 char name[64]; 4739 __u32 id = 0, len; 4740 int err, fd; 4741 4742 if (obj->btf_modules_loaded) 4743 return 0; 4744 4745 /* don't do this again, even if we find no module BTFs */ 4746 obj->btf_modules_loaded = true; 4747 4748 /* kernel too old to support module BTFs */ 4749 if (!kernel_supports(FEAT_MODULE_BTF)) 4750 return 0; 4751 4752 while (true) { 4753 err = bpf_btf_get_next_id(id, &id); 4754 if (err && errno == ENOENT) 4755 return 0; 4756 if (err) { 4757 err = -errno; 4758 pr_warn("failed to iterate BTF objects: %d\n", err); 4759 return err; 4760 } 4761 4762 fd = bpf_btf_get_fd_by_id(id); 4763 if (fd < 0) { 4764 if (errno == ENOENT) 4765 continue; /* expected race: BTF was unloaded */ 4766 err = -errno; 4767 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 4768 return err; 4769 } 4770 4771 len = sizeof(info); 4772 memset(&info, 0, sizeof(info)); 4773 info.name = ptr_to_u64(name); 4774 info.name_len = sizeof(name); 4775 4776 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4777 if (err) { 4778 err = -errno; 4779 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 4780 goto err_out; 4781 } 4782 4783 /* ignore non-module BTFs */ 4784 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 4785 close(fd); 4786 continue; 4787 } 4788 4789 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 4790 if (IS_ERR(btf)) { 4791 pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n", 4792 name, id, PTR_ERR(btf)); 4793 err = PTR_ERR(btf); 4794 goto err_out; 4795 } 4796 4797 err = btf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 4798 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 4799 if (err) 4800 goto err_out; 4801 4802 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 4803 4804 mod_btf->btf = btf; 4805 mod_btf->id = id; 4806 mod_btf->fd = fd; 4807 mod_btf->name = strdup(name); 4808 if (!mod_btf->name) { 4809 err = -ENOMEM; 4810 goto err_out; 4811 } 4812 continue; 4813 4814 err_out: 4815 close(fd); 4816 return err; 4817 } 4818 4819 return 0; 4820 } 4821 4822 static struct core_cand_list * 4823 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 4824 { 4825 struct core_cand local_cand = {}; 4826 struct core_cand_list *cands; 4827 const struct btf *main_btf; 4828 size_t local_essent_len; 4829 int err, i; 4830 4831 local_cand.btf = local_btf; 4832 local_cand.t = btf__type_by_id(local_btf, local_type_id); 4833 if (!local_cand.t) 4834 return ERR_PTR(-EINVAL); 4835 4836 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 4837 if (str_is_empty(local_cand.name)) 4838 return ERR_PTR(-EINVAL); 4839 local_essent_len = bpf_core_essential_name_len(local_cand.name); 4840 4841 cands = calloc(1, sizeof(*cands)); 4842 if (!cands) 4843 return ERR_PTR(-ENOMEM); 4844 4845 /* Attempt to find target candidates in vmlinux BTF first */ 4846 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 4847 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 4848 if (err) 4849 goto err_out; 4850 4851 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 4852 if (cands->len) 4853 return cands; 4854 4855 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 4856 if (obj->btf_vmlinux_override) 4857 return cands; 4858 4859 /* now look through module BTFs, trying to still find candidates */ 4860 err = load_module_btfs(obj); 4861 if (err) 4862 goto err_out; 4863 4864 for (i = 0; i < obj->btf_module_cnt; i++) { 4865 err = bpf_core_add_cands(&local_cand, local_essent_len, 4866 obj->btf_modules[i].btf, 4867 obj->btf_modules[i].name, 4868 btf__get_nr_types(obj->btf_vmlinux) + 1, 4869 cands); 4870 if (err) 4871 goto err_out; 4872 } 4873 4874 return cands; 4875 err_out: 4876 bpf_core_free_cands(cands); 4877 return ERR_PTR(err); 4878 } 4879 4880 /* Check two types for compatibility for the purpose of field access 4881 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 4882 * are relocating semantically compatible entities: 4883 * - any two STRUCTs/UNIONs are compatible and can be mixed; 4884 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 4885 * - any two PTRs are always compatible; 4886 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 4887 * least one of enums should be anonymous; 4888 * - for ENUMs, check sizes, names are ignored; 4889 * - for INT, size and signedness are ignored; 4890 * - for ARRAY, dimensionality is ignored, element types are checked for 4891 * compatibility recursively; 4892 * - everything else shouldn't be ever a target of relocation. 4893 * These rules are not set in stone and probably will be adjusted as we get 4894 * more experience with using BPF CO-RE relocations. 4895 */ 4896 static int bpf_core_fields_are_compat(const struct btf *local_btf, 4897 __u32 local_id, 4898 const struct btf *targ_btf, 4899 __u32 targ_id) 4900 { 4901 const struct btf_type *local_type, *targ_type; 4902 4903 recur: 4904 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 4905 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4906 if (!local_type || !targ_type) 4907 return -EINVAL; 4908 4909 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 4910 return 1; 4911 if (btf_kind(local_type) != btf_kind(targ_type)) 4912 return 0; 4913 4914 switch (btf_kind(local_type)) { 4915 case BTF_KIND_PTR: 4916 return 1; 4917 case BTF_KIND_FWD: 4918 case BTF_KIND_ENUM: { 4919 const char *local_name, *targ_name; 4920 size_t local_len, targ_len; 4921 4922 local_name = btf__name_by_offset(local_btf, 4923 local_type->name_off); 4924 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 4925 local_len = bpf_core_essential_name_len(local_name); 4926 targ_len = bpf_core_essential_name_len(targ_name); 4927 /* one of them is anonymous or both w/ same flavor-less names */ 4928 return local_len == 0 || targ_len == 0 || 4929 (local_len == targ_len && 4930 strncmp(local_name, targ_name, local_len) == 0); 4931 } 4932 case BTF_KIND_INT: 4933 /* just reject deprecated bitfield-like integers; all other 4934 * integers are by default compatible between each other 4935 */ 4936 return btf_int_offset(local_type) == 0 && 4937 btf_int_offset(targ_type) == 0; 4938 case BTF_KIND_ARRAY: 4939 local_id = btf_array(local_type)->type; 4940 targ_id = btf_array(targ_type)->type; 4941 goto recur; 4942 default: 4943 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 4944 btf_kind(local_type), local_id, targ_id); 4945 return 0; 4946 } 4947 } 4948 4949 /* 4950 * Given single high-level named field accessor in local type, find 4951 * corresponding high-level accessor for a target type. Along the way, 4952 * maintain low-level spec for target as well. Also keep updating target 4953 * bit offset. 4954 * 4955 * Searching is performed through recursive exhaustive enumeration of all 4956 * fields of a struct/union. If there are any anonymous (embedded) 4957 * structs/unions, they are recursively searched as well. If field with 4958 * desired name is found, check compatibility between local and target types, 4959 * before returning result. 4960 * 4961 * 1 is returned, if field is found. 4962 * 0 is returned if no compatible field is found. 4963 * <0 is returned on error. 4964 */ 4965 static int bpf_core_match_member(const struct btf *local_btf, 4966 const struct bpf_core_accessor *local_acc, 4967 const struct btf *targ_btf, 4968 __u32 targ_id, 4969 struct bpf_core_spec *spec, 4970 __u32 *next_targ_id) 4971 { 4972 const struct btf_type *local_type, *targ_type; 4973 const struct btf_member *local_member, *m; 4974 const char *local_name, *targ_name; 4975 __u32 local_id; 4976 int i, n, found; 4977 4978 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 4979 if (!targ_type) 4980 return -EINVAL; 4981 if (!btf_is_composite(targ_type)) 4982 return 0; 4983 4984 local_id = local_acc->type_id; 4985 local_type = btf__type_by_id(local_btf, local_id); 4986 local_member = btf_members(local_type) + local_acc->idx; 4987 local_name = btf__name_by_offset(local_btf, local_member->name_off); 4988 4989 n = btf_vlen(targ_type); 4990 m = btf_members(targ_type); 4991 for (i = 0; i < n; i++, m++) { 4992 __u32 bit_offset; 4993 4994 bit_offset = btf_member_bit_offset(targ_type, i); 4995 4996 /* too deep struct/union/array nesting */ 4997 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4998 return -E2BIG; 4999 5000 /* speculate this member will be the good one */ 5001 spec->bit_offset += bit_offset; 5002 spec->raw_spec[spec->raw_len++] = i; 5003 5004 targ_name = btf__name_by_offset(targ_btf, m->name_off); 5005 if (str_is_empty(targ_name)) { 5006 /* embedded struct/union, we need to go deeper */ 5007 found = bpf_core_match_member(local_btf, local_acc, 5008 targ_btf, m->type, 5009 spec, next_targ_id); 5010 if (found) /* either found or error */ 5011 return found; 5012 } else if (strcmp(local_name, targ_name) == 0) { 5013 /* matching named field */ 5014 struct bpf_core_accessor *targ_acc; 5015 5016 targ_acc = &spec->spec[spec->len++]; 5017 targ_acc->type_id = targ_id; 5018 targ_acc->idx = i; 5019 targ_acc->name = targ_name; 5020 5021 *next_targ_id = m->type; 5022 found = bpf_core_fields_are_compat(local_btf, 5023 local_member->type, 5024 targ_btf, m->type); 5025 if (!found) 5026 spec->len--; /* pop accessor */ 5027 return found; 5028 } 5029 /* member turned out not to be what we looked for */ 5030 spec->bit_offset -= bit_offset; 5031 spec->raw_len--; 5032 } 5033 5034 return 0; 5035 } 5036 5037 /* Check local and target types for compatibility. This check is used for 5038 * type-based CO-RE relocations and follow slightly different rules than 5039 * field-based relocations. This function assumes that root types were already 5040 * checked for name match. Beyond that initial root-level name check, names 5041 * are completely ignored. Compatibility rules are as follows: 5042 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5043 * kind should match for local and target types (i.e., STRUCT is not 5044 * compatible with UNION); 5045 * - for ENUMs, the size is ignored; 5046 * - for INT, size and signedness are ignored; 5047 * - for ARRAY, dimensionality is ignored, element types are checked for 5048 * compatibility recursively; 5049 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5050 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5051 * - FUNC_PROTOs are compatible if they have compatible signature: same 5052 * number of input args and compatible return and argument types. 5053 * These rules are not set in stone and probably will be adjusted as we get 5054 * more experience with using BPF CO-RE relocations. 5055 */ 5056 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5057 const struct btf *targ_btf, __u32 targ_id) 5058 { 5059 const struct btf_type *local_type, *targ_type; 5060 int depth = 32; /* max recursion depth */ 5061 5062 /* caller made sure that names match (ignoring flavor suffix) */ 5063 local_type = btf__type_by_id(local_btf, local_id); 5064 targ_type = btf__type_by_id(targ_btf, targ_id); 5065 if (btf_kind(local_type) != btf_kind(targ_type)) 5066 return 0; 5067 5068 recur: 5069 depth--; 5070 if (depth < 0) 5071 return -EINVAL; 5072 5073 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5074 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5075 if (!local_type || !targ_type) 5076 return -EINVAL; 5077 5078 if (btf_kind(local_type) != btf_kind(targ_type)) 5079 return 0; 5080 5081 switch (btf_kind(local_type)) { 5082 case BTF_KIND_UNKN: 5083 case BTF_KIND_STRUCT: 5084 case BTF_KIND_UNION: 5085 case BTF_KIND_ENUM: 5086 case BTF_KIND_FWD: 5087 return 1; 5088 case BTF_KIND_INT: 5089 /* just reject deprecated bitfield-like integers; all other 5090 * integers are by default compatible between each other 5091 */ 5092 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5093 case BTF_KIND_PTR: 5094 local_id = local_type->type; 5095 targ_id = targ_type->type; 5096 goto recur; 5097 case BTF_KIND_ARRAY: 5098 local_id = btf_array(local_type)->type; 5099 targ_id = btf_array(targ_type)->type; 5100 goto recur; 5101 case BTF_KIND_FUNC_PROTO: { 5102 struct btf_param *local_p = btf_params(local_type); 5103 struct btf_param *targ_p = btf_params(targ_type); 5104 __u16 local_vlen = btf_vlen(local_type); 5105 __u16 targ_vlen = btf_vlen(targ_type); 5106 int i, err; 5107 5108 if (local_vlen != targ_vlen) 5109 return 0; 5110 5111 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5112 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5113 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5114 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5115 if (err <= 0) 5116 return err; 5117 } 5118 5119 /* tail recurse for return type check */ 5120 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5121 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5122 goto recur; 5123 } 5124 default: 5125 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5126 btf_kind_str(local_type), local_id, targ_id); 5127 return 0; 5128 } 5129 } 5130 5131 /* 5132 * Try to match local spec to a target type and, if successful, produce full 5133 * target spec (high-level, low-level + bit offset). 5134 */ 5135 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 5136 const struct btf *targ_btf, __u32 targ_id, 5137 struct bpf_core_spec *targ_spec) 5138 { 5139 const struct btf_type *targ_type; 5140 const struct bpf_core_accessor *local_acc; 5141 struct bpf_core_accessor *targ_acc; 5142 int i, sz, matched; 5143 5144 memset(targ_spec, 0, sizeof(*targ_spec)); 5145 targ_spec->btf = targ_btf; 5146 targ_spec->root_type_id = targ_id; 5147 targ_spec->relo_kind = local_spec->relo_kind; 5148 5149 if (core_relo_is_type_based(local_spec->relo_kind)) { 5150 return bpf_core_types_are_compat(local_spec->btf, 5151 local_spec->root_type_id, 5152 targ_btf, targ_id); 5153 } 5154 5155 local_acc = &local_spec->spec[0]; 5156 targ_acc = &targ_spec->spec[0]; 5157 5158 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5159 size_t local_essent_len, targ_essent_len; 5160 const struct btf_enum *e; 5161 const char *targ_name; 5162 5163 /* has to resolve to an enum */ 5164 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5165 if (!btf_is_enum(targ_type)) 5166 return 0; 5167 5168 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5169 5170 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5171 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5172 targ_essent_len = bpf_core_essential_name_len(targ_name); 5173 if (targ_essent_len != local_essent_len) 5174 continue; 5175 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5176 targ_acc->type_id = targ_id; 5177 targ_acc->idx = i; 5178 targ_acc->name = targ_name; 5179 targ_spec->len++; 5180 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5181 targ_spec->raw_len++; 5182 return 1; 5183 } 5184 } 5185 return 0; 5186 } 5187 5188 if (!core_relo_is_field_based(local_spec->relo_kind)) 5189 return -EINVAL; 5190 5191 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5192 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5193 &targ_id); 5194 if (!targ_type) 5195 return -EINVAL; 5196 5197 if (local_acc->name) { 5198 matched = bpf_core_match_member(local_spec->btf, 5199 local_acc, 5200 targ_btf, targ_id, 5201 targ_spec, &targ_id); 5202 if (matched <= 0) 5203 return matched; 5204 } else { 5205 /* for i=0, targ_id is already treated as array element 5206 * type (because it's the original struct), for others 5207 * we should find array element type first 5208 */ 5209 if (i > 0) { 5210 const struct btf_array *a; 5211 bool flex; 5212 5213 if (!btf_is_array(targ_type)) 5214 return 0; 5215 5216 a = btf_array(targ_type); 5217 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5218 if (!flex && local_acc->idx >= a->nelems) 5219 return 0; 5220 if (!skip_mods_and_typedefs(targ_btf, a->type, 5221 &targ_id)) 5222 return -EINVAL; 5223 } 5224 5225 /* too deep struct/union/array nesting */ 5226 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5227 return -E2BIG; 5228 5229 targ_acc->type_id = targ_id; 5230 targ_acc->idx = local_acc->idx; 5231 targ_acc->name = NULL; 5232 targ_spec->len++; 5233 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5234 targ_spec->raw_len++; 5235 5236 sz = btf__resolve_size(targ_btf, targ_id); 5237 if (sz < 0) 5238 return sz; 5239 targ_spec->bit_offset += local_acc->idx * sz * 8; 5240 } 5241 } 5242 5243 return 1; 5244 } 5245 5246 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5247 const struct bpf_core_relo *relo, 5248 const struct bpf_core_spec *spec, 5249 __u32 *val, __u32 *field_sz, __u32 *type_id, 5250 bool *validate) 5251 { 5252 const struct bpf_core_accessor *acc; 5253 const struct btf_type *t; 5254 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5255 const struct btf_member *m; 5256 const struct btf_type *mt; 5257 bool bitfield; 5258 __s64 sz; 5259 5260 *field_sz = 0; 5261 5262 if (relo->kind == BPF_FIELD_EXISTS) { 5263 *val = spec ? 1 : 0; 5264 return 0; 5265 } 5266 5267 if (!spec) 5268 return -EUCLEAN; /* request instruction poisoning */ 5269 5270 acc = &spec->spec[spec->len - 1]; 5271 t = btf__type_by_id(spec->btf, acc->type_id); 5272 5273 /* a[n] accessor needs special handling */ 5274 if (!acc->name) { 5275 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5276 *val = spec->bit_offset / 8; 5277 /* remember field size for load/store mem size */ 5278 sz = btf__resolve_size(spec->btf, acc->type_id); 5279 if (sz < 0) 5280 return -EINVAL; 5281 *field_sz = sz; 5282 *type_id = acc->type_id; 5283 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5284 sz = btf__resolve_size(spec->btf, acc->type_id); 5285 if (sz < 0) 5286 return -EINVAL; 5287 *val = sz; 5288 } else { 5289 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5290 prog->name, relo->kind, relo->insn_off / 8); 5291 return -EINVAL; 5292 } 5293 if (validate) 5294 *validate = true; 5295 return 0; 5296 } 5297 5298 m = btf_members(t) + acc->idx; 5299 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5300 bit_off = spec->bit_offset; 5301 bit_sz = btf_member_bitfield_size(t, acc->idx); 5302 5303 bitfield = bit_sz > 0; 5304 if (bitfield) { 5305 byte_sz = mt->size; 5306 byte_off = bit_off / 8 / byte_sz * byte_sz; 5307 /* figure out smallest int size necessary for bitfield load */ 5308 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5309 if (byte_sz >= 8) { 5310 /* bitfield can't be read with 64-bit read */ 5311 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5312 prog->name, relo->kind, relo->insn_off / 8); 5313 return -E2BIG; 5314 } 5315 byte_sz *= 2; 5316 byte_off = bit_off / 8 / byte_sz * byte_sz; 5317 } 5318 } else { 5319 sz = btf__resolve_size(spec->btf, field_type_id); 5320 if (sz < 0) 5321 return -EINVAL; 5322 byte_sz = sz; 5323 byte_off = spec->bit_offset / 8; 5324 bit_sz = byte_sz * 8; 5325 } 5326 5327 /* for bitfields, all the relocatable aspects are ambiguous and we 5328 * might disagree with compiler, so turn off validation of expected 5329 * value, except for signedness 5330 */ 5331 if (validate) 5332 *validate = !bitfield; 5333 5334 switch (relo->kind) { 5335 case BPF_FIELD_BYTE_OFFSET: 5336 *val = byte_off; 5337 if (!bitfield) { 5338 *field_sz = byte_sz; 5339 *type_id = field_type_id; 5340 } 5341 break; 5342 case BPF_FIELD_BYTE_SIZE: 5343 *val = byte_sz; 5344 break; 5345 case BPF_FIELD_SIGNED: 5346 /* enums will be assumed unsigned */ 5347 *val = btf_is_enum(mt) || 5348 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5349 if (validate) 5350 *validate = true; /* signedness is never ambiguous */ 5351 break; 5352 case BPF_FIELD_LSHIFT_U64: 5353 #if __BYTE_ORDER == __LITTLE_ENDIAN 5354 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5355 #else 5356 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5357 #endif 5358 break; 5359 case BPF_FIELD_RSHIFT_U64: 5360 *val = 64 - bit_sz; 5361 if (validate) 5362 *validate = true; /* right shift is never ambiguous */ 5363 break; 5364 case BPF_FIELD_EXISTS: 5365 default: 5366 return -EOPNOTSUPP; 5367 } 5368 5369 return 0; 5370 } 5371 5372 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5373 const struct bpf_core_spec *spec, 5374 __u32 *val) 5375 { 5376 __s64 sz; 5377 5378 /* type-based relos return zero when target type is not found */ 5379 if (!spec) { 5380 *val = 0; 5381 return 0; 5382 } 5383 5384 switch (relo->kind) { 5385 case BPF_TYPE_ID_TARGET: 5386 *val = spec->root_type_id; 5387 break; 5388 case BPF_TYPE_EXISTS: 5389 *val = 1; 5390 break; 5391 case BPF_TYPE_SIZE: 5392 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5393 if (sz < 0) 5394 return -EINVAL; 5395 *val = sz; 5396 break; 5397 case BPF_TYPE_ID_LOCAL: 5398 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5399 default: 5400 return -EOPNOTSUPP; 5401 } 5402 5403 return 0; 5404 } 5405 5406 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5407 const struct bpf_core_spec *spec, 5408 __u32 *val) 5409 { 5410 const struct btf_type *t; 5411 const struct btf_enum *e; 5412 5413 switch (relo->kind) { 5414 case BPF_ENUMVAL_EXISTS: 5415 *val = spec ? 1 : 0; 5416 break; 5417 case BPF_ENUMVAL_VALUE: 5418 if (!spec) 5419 return -EUCLEAN; /* request instruction poisoning */ 5420 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5421 e = btf_enum(t) + spec->spec[0].idx; 5422 *val = e->val; 5423 break; 5424 default: 5425 return -EOPNOTSUPP; 5426 } 5427 5428 return 0; 5429 } 5430 5431 struct bpf_core_relo_res 5432 { 5433 /* expected value in the instruction, unless validate == false */ 5434 __u32 orig_val; 5435 /* new value that needs to be patched up to */ 5436 __u32 new_val; 5437 /* relocation unsuccessful, poison instruction, but don't fail load */ 5438 bool poison; 5439 /* some relocations can't be validated against orig_val */ 5440 bool validate; 5441 /* for field byte offset relocations or the forms: 5442 * *(T *)(rX + <off>) = rY 5443 * rX = *(T *)(rY + <off>), 5444 * we remember original and resolved field size to adjust direct 5445 * memory loads of pointers and integers; this is necessary for 32-bit 5446 * host kernel architectures, but also allows to automatically 5447 * relocate fields that were resized from, e.g., u32 to u64, etc. 5448 */ 5449 bool fail_memsz_adjust; 5450 __u32 orig_sz; 5451 __u32 orig_type_id; 5452 __u32 new_sz; 5453 __u32 new_type_id; 5454 }; 5455 5456 /* Calculate original and target relocation values, given local and target 5457 * specs and relocation kind. These values are calculated for each candidate. 5458 * If there are multiple candidates, resulting values should all be consistent 5459 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5460 * If instruction has to be poisoned, *poison will be set to true. 5461 */ 5462 static int bpf_core_calc_relo(const struct bpf_program *prog, 5463 const struct bpf_core_relo *relo, 5464 int relo_idx, 5465 const struct bpf_core_spec *local_spec, 5466 const struct bpf_core_spec *targ_spec, 5467 struct bpf_core_relo_res *res) 5468 { 5469 int err = -EOPNOTSUPP; 5470 5471 res->orig_val = 0; 5472 res->new_val = 0; 5473 res->poison = false; 5474 res->validate = true; 5475 res->fail_memsz_adjust = false; 5476 res->orig_sz = res->new_sz = 0; 5477 res->orig_type_id = res->new_type_id = 0; 5478 5479 if (core_relo_is_field_based(relo->kind)) { 5480 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5481 &res->orig_val, &res->orig_sz, 5482 &res->orig_type_id, &res->validate); 5483 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5484 &res->new_val, &res->new_sz, 5485 &res->new_type_id, NULL); 5486 if (err) 5487 goto done; 5488 /* Validate if it's safe to adjust load/store memory size. 5489 * Adjustments are performed only if original and new memory 5490 * sizes differ. 5491 */ 5492 res->fail_memsz_adjust = false; 5493 if (res->orig_sz != res->new_sz) { 5494 const struct btf_type *orig_t, *new_t; 5495 5496 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5497 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5498 5499 /* There are two use cases in which it's safe to 5500 * adjust load/store's mem size: 5501 * - reading a 32-bit kernel pointer, while on BPF 5502 * size pointers are always 64-bit; in this case 5503 * it's safe to "downsize" instruction size due to 5504 * pointer being treated as unsigned integer with 5505 * zero-extended upper 32-bits; 5506 * - reading unsigned integers, again due to 5507 * zero-extension is preserving the value correctly. 5508 * 5509 * In all other cases it's incorrect to attempt to 5510 * load/store field because read value will be 5511 * incorrect, so we poison relocated instruction. 5512 */ 5513 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5514 goto done; 5515 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5516 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5517 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5518 goto done; 5519 5520 /* mark as invalid mem size adjustment, but this will 5521 * only be checked for LDX/STX/ST insns 5522 */ 5523 res->fail_memsz_adjust = true; 5524 } 5525 } else if (core_relo_is_type_based(relo->kind)) { 5526 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5527 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5528 } else if (core_relo_is_enumval_based(relo->kind)) { 5529 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5530 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5531 } 5532 5533 done: 5534 if (err == -EUCLEAN) { 5535 /* EUCLEAN is used to signal instruction poisoning request */ 5536 res->poison = true; 5537 err = 0; 5538 } else if (err == -EOPNOTSUPP) { 5539 /* EOPNOTSUPP means unknown/unsupported relocation */ 5540 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5541 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5542 relo->kind, relo->insn_off / 8); 5543 } 5544 5545 return err; 5546 } 5547 5548 /* 5549 * Turn instruction for which CO_RE relocation failed into invalid one with 5550 * distinct signature. 5551 */ 5552 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5553 int insn_idx, struct bpf_insn *insn) 5554 { 5555 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5556 prog->name, relo_idx, insn_idx); 5557 insn->code = BPF_JMP | BPF_CALL; 5558 insn->dst_reg = 0; 5559 insn->src_reg = 0; 5560 insn->off = 0; 5561 /* if this instruction is reachable (not a dead code), 5562 * verifier will complain with the following message: 5563 * invalid func unknown#195896080 5564 */ 5565 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5566 } 5567 5568 static bool is_ldimm64(struct bpf_insn *insn) 5569 { 5570 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 5571 } 5572 5573 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5574 { 5575 switch (BPF_SIZE(insn->code)) { 5576 case BPF_DW: return 8; 5577 case BPF_W: return 4; 5578 case BPF_H: return 2; 5579 case BPF_B: return 1; 5580 default: return -1; 5581 } 5582 } 5583 5584 static int insn_bytes_to_bpf_size(__u32 sz) 5585 { 5586 switch (sz) { 5587 case 8: return BPF_DW; 5588 case 4: return BPF_W; 5589 case 2: return BPF_H; 5590 case 1: return BPF_B; 5591 default: return -1; 5592 } 5593 } 5594 5595 /* 5596 * Patch relocatable BPF instruction. 5597 * 5598 * Patched value is determined by relocation kind and target specification. 5599 * For existence relocations target spec will be NULL if field/type is not found. 5600 * Expected insn->imm value is determined using relocation kind and local 5601 * spec, and is checked before patching instruction. If actual insn->imm value 5602 * is wrong, bail out with error. 5603 * 5604 * Currently supported classes of BPF instruction are: 5605 * 1. rX = <imm> (assignment with immediate operand); 5606 * 2. rX += <imm> (arithmetic operations with immediate operand); 5607 * 3. rX = <imm64> (load with 64-bit immediate value); 5608 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5609 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5610 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5611 */ 5612 static int bpf_core_patch_insn(struct bpf_program *prog, 5613 const struct bpf_core_relo *relo, 5614 int relo_idx, 5615 const struct bpf_core_relo_res *res) 5616 { 5617 __u32 orig_val, new_val; 5618 struct bpf_insn *insn; 5619 int insn_idx; 5620 __u8 class; 5621 5622 if (relo->insn_off % BPF_INSN_SZ) 5623 return -EINVAL; 5624 insn_idx = relo->insn_off / BPF_INSN_SZ; 5625 /* adjust insn_idx from section frame of reference to the local 5626 * program's frame of reference; (sub-)program code is not yet 5627 * relocated, so it's enough to just subtract in-section offset 5628 */ 5629 insn_idx = insn_idx - prog->sec_insn_off; 5630 insn = &prog->insns[insn_idx]; 5631 class = BPF_CLASS(insn->code); 5632 5633 if (res->poison) { 5634 poison: 5635 /* poison second part of ldimm64 to avoid confusing error from 5636 * verifier about "unknown opcode 00" 5637 */ 5638 if (is_ldimm64(insn)) 5639 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5640 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5641 return 0; 5642 } 5643 5644 orig_val = res->orig_val; 5645 new_val = res->new_val; 5646 5647 switch (class) { 5648 case BPF_ALU: 5649 case BPF_ALU64: 5650 if (BPF_SRC(insn->code) != BPF_K) 5651 return -EINVAL; 5652 if (res->validate && insn->imm != orig_val) { 5653 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5654 prog->name, relo_idx, 5655 insn_idx, insn->imm, orig_val, new_val); 5656 return -EINVAL; 5657 } 5658 orig_val = insn->imm; 5659 insn->imm = new_val; 5660 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5661 prog->name, relo_idx, insn_idx, 5662 orig_val, new_val); 5663 break; 5664 case BPF_LDX: 5665 case BPF_ST: 5666 case BPF_STX: 5667 if (res->validate && insn->off != orig_val) { 5668 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5669 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5670 return -EINVAL; 5671 } 5672 if (new_val > SHRT_MAX) { 5673 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5674 prog->name, relo_idx, insn_idx, new_val); 5675 return -ERANGE; 5676 } 5677 if (res->fail_memsz_adjust) { 5678 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5679 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5680 prog->name, relo_idx, insn_idx); 5681 goto poison; 5682 } 5683 5684 orig_val = insn->off; 5685 insn->off = new_val; 5686 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5687 prog->name, relo_idx, insn_idx, orig_val, new_val); 5688 5689 if (res->new_sz != res->orig_sz) { 5690 int insn_bytes_sz, insn_bpf_sz; 5691 5692 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5693 if (insn_bytes_sz != res->orig_sz) { 5694 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5695 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5696 return -EINVAL; 5697 } 5698 5699 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5700 if (insn_bpf_sz < 0) { 5701 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5702 prog->name, relo_idx, insn_idx, res->new_sz); 5703 return -EINVAL; 5704 } 5705 5706 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5707 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5708 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5709 } 5710 break; 5711 case BPF_LD: { 5712 __u64 imm; 5713 5714 if (!is_ldimm64(insn) || 5715 insn[0].src_reg != 0 || insn[0].off != 0 || 5716 insn_idx + 1 >= prog->insns_cnt || 5717 insn[1].code != 0 || insn[1].dst_reg != 0 || 5718 insn[1].src_reg != 0 || insn[1].off != 0) { 5719 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5720 prog->name, relo_idx, insn_idx); 5721 return -EINVAL; 5722 } 5723 5724 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5725 if (res->validate && imm != orig_val) { 5726 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5727 prog->name, relo_idx, 5728 insn_idx, (unsigned long long)imm, 5729 orig_val, new_val); 5730 return -EINVAL; 5731 } 5732 5733 insn[0].imm = new_val; 5734 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5735 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5736 prog->name, relo_idx, insn_idx, 5737 (unsigned long long)imm, new_val); 5738 break; 5739 } 5740 default: 5741 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5742 prog->name, relo_idx, insn_idx, insn->code, 5743 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5744 return -EINVAL; 5745 } 5746 5747 return 0; 5748 } 5749 5750 /* Output spec definition in the format: 5751 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5752 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5753 */ 5754 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5755 { 5756 const struct btf_type *t; 5757 const struct btf_enum *e; 5758 const char *s; 5759 __u32 type_id; 5760 int i; 5761 5762 type_id = spec->root_type_id; 5763 t = btf__type_by_id(spec->btf, type_id); 5764 s = btf__name_by_offset(spec->btf, t->name_off); 5765 5766 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5767 5768 if (core_relo_is_type_based(spec->relo_kind)) 5769 return; 5770 5771 if (core_relo_is_enumval_based(spec->relo_kind)) { 5772 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5773 e = btf_enum(t) + spec->raw_spec[0]; 5774 s = btf__name_by_offset(spec->btf, e->name_off); 5775 5776 libbpf_print(level, "::%s = %u", s, e->val); 5777 return; 5778 } 5779 5780 if (core_relo_is_field_based(spec->relo_kind)) { 5781 for (i = 0; i < spec->len; i++) { 5782 if (spec->spec[i].name) 5783 libbpf_print(level, ".%s", spec->spec[i].name); 5784 else if (i > 0 || spec->spec[i].idx > 0) 5785 libbpf_print(level, "[%u]", spec->spec[i].idx); 5786 } 5787 5788 libbpf_print(level, " ("); 5789 for (i = 0; i < spec->raw_len; i++) 5790 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 5791 5792 if (spec->bit_offset % 8) 5793 libbpf_print(level, " @ offset %u.%u)", 5794 spec->bit_offset / 8, spec->bit_offset % 8); 5795 else 5796 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 5797 return; 5798 } 5799 } 5800 5801 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5802 { 5803 return (size_t)key; 5804 } 5805 5806 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5807 { 5808 return k1 == k2; 5809 } 5810 5811 static void *u32_as_hash_key(__u32 x) 5812 { 5813 return (void *)(uintptr_t)x; 5814 } 5815 5816 /* 5817 * CO-RE relocate single instruction. 5818 * 5819 * The outline and important points of the algorithm: 5820 * 1. For given local type, find corresponding candidate target types. 5821 * Candidate type is a type with the same "essential" name, ignoring 5822 * everything after last triple underscore (___). E.g., `sample`, 5823 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 5824 * for each other. Names with triple underscore are referred to as 5825 * "flavors" and are useful, among other things, to allow to 5826 * specify/support incompatible variations of the same kernel struct, which 5827 * might differ between different kernel versions and/or build 5828 * configurations. 5829 * 5830 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 5831 * converter, when deduplicated BTF of a kernel still contains more than 5832 * one different types with the same name. In that case, ___2, ___3, etc 5833 * are appended starting from second name conflict. But start flavors are 5834 * also useful to be defined "locally", in BPF program, to extract same 5835 * data from incompatible changes between different kernel 5836 * versions/configurations. For instance, to handle field renames between 5837 * kernel versions, one can use two flavors of the struct name with the 5838 * same common name and use conditional relocations to extract that field, 5839 * depending on target kernel version. 5840 * 2. For each candidate type, try to match local specification to this 5841 * candidate target type. Matching involves finding corresponding 5842 * high-level spec accessors, meaning that all named fields should match, 5843 * as well as all array accesses should be within the actual bounds. Also, 5844 * types should be compatible (see bpf_core_fields_are_compat for details). 5845 * 3. It is supported and expected that there might be multiple flavors 5846 * matching the spec. As long as all the specs resolve to the same set of 5847 * offsets across all candidates, there is no error. If there is any 5848 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 5849 * imprefection of BTF deduplication, which can cause slight duplication of 5850 * the same BTF type, if some directly or indirectly referenced (by 5851 * pointer) type gets resolved to different actual types in different 5852 * object files. If such situation occurs, deduplicated BTF will end up 5853 * with two (or more) structurally identical types, which differ only in 5854 * types they refer to through pointer. This should be OK in most cases and 5855 * is not an error. 5856 * 4. Candidate types search is performed by linearly scanning through all 5857 * types in target BTF. It is anticipated that this is overall more 5858 * efficient memory-wise and not significantly worse (if not better) 5859 * CPU-wise compared to prebuilding a map from all local type names to 5860 * a list of candidate type names. It's also sped up by caching resolved 5861 * list of matching candidates per each local "root" type ID, that has at 5862 * least one bpf_core_relo associated with it. This list is shared 5863 * between multiple relocations for the same type ID and is updated as some 5864 * of the candidates are pruned due to structural incompatibility. 5865 */ 5866 static int bpf_core_apply_relo(struct bpf_program *prog, 5867 const struct bpf_core_relo *relo, 5868 int relo_idx, 5869 const struct btf *local_btf, 5870 struct hashmap *cand_cache) 5871 { 5872 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 5873 const void *type_key = u32_as_hash_key(relo->type_id); 5874 struct bpf_core_relo_res cand_res, targ_res; 5875 const struct btf_type *local_type; 5876 const char *local_name; 5877 struct core_cand_list *cands = NULL; 5878 __u32 local_id; 5879 const char *spec_str; 5880 int i, j, err; 5881 5882 local_id = relo->type_id; 5883 local_type = btf__type_by_id(local_btf, local_id); 5884 if (!local_type) 5885 return -EINVAL; 5886 5887 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5888 if (!local_name) 5889 return -EINVAL; 5890 5891 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 5892 if (str_is_empty(spec_str)) 5893 return -EINVAL; 5894 5895 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 5896 if (err) { 5897 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 5898 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5899 str_is_empty(local_name) ? "<anon>" : local_name, 5900 spec_str, err); 5901 return -EINVAL; 5902 } 5903 5904 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 5905 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5906 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 5907 libbpf_print(LIBBPF_DEBUG, "\n"); 5908 5909 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 5910 if (relo->kind == BPF_TYPE_ID_LOCAL) { 5911 targ_res.validate = true; 5912 targ_res.poison = false; 5913 targ_res.orig_val = local_spec.root_type_id; 5914 targ_res.new_val = local_spec.root_type_id; 5915 goto patch_insn; 5916 } 5917 5918 /* libbpf doesn't support candidate search for anonymous types */ 5919 if (str_is_empty(spec_str)) { 5920 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 5921 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 5922 return -EOPNOTSUPP; 5923 } 5924 5925 if (!hashmap__find(cand_cache, type_key, (void **)&cands)) { 5926 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5927 if (IS_ERR(cands)) { 5928 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5929 prog->name, relo_idx, local_id, btf_kind_str(local_type), 5930 local_name, PTR_ERR(cands)); 5931 return PTR_ERR(cands); 5932 } 5933 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5934 if (err) { 5935 bpf_core_free_cands(cands); 5936 return err; 5937 } 5938 } 5939 5940 for (i = 0, j = 0; i < cands->len; i++) { 5941 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 5942 cands->cands[i].id, &cand_spec); 5943 if (err < 0) { 5944 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 5945 prog->name, relo_idx, i); 5946 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 5947 libbpf_print(LIBBPF_WARN, ": %d\n", err); 5948 return err; 5949 } 5950 5951 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 5952 relo_idx, err == 0 ? "non-matching" : "matching", i); 5953 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 5954 libbpf_print(LIBBPF_DEBUG, "\n"); 5955 5956 if (err == 0) 5957 continue; 5958 5959 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 5960 if (err) 5961 return err; 5962 5963 if (j == 0) { 5964 targ_res = cand_res; 5965 targ_spec = cand_spec; 5966 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 5967 /* if there are many field relo candidates, they 5968 * should all resolve to the same bit offset 5969 */ 5970 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 5971 prog->name, relo_idx, cand_spec.bit_offset, 5972 targ_spec.bit_offset); 5973 return -EINVAL; 5974 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 5975 /* all candidates should result in the same relocation 5976 * decision and value, otherwise it's dangerous to 5977 * proceed due to ambiguity 5978 */ 5979 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 5980 prog->name, relo_idx, 5981 cand_res.poison ? "failure" : "success", cand_res.new_val, 5982 targ_res.poison ? "failure" : "success", targ_res.new_val); 5983 return -EINVAL; 5984 } 5985 5986 cands->cands[j++] = cands->cands[i]; 5987 } 5988 5989 /* 5990 * For BPF_FIELD_EXISTS relo or when used BPF program has field 5991 * existence checks or kernel version/config checks, it's expected 5992 * that we might not find any candidates. In this case, if field 5993 * wasn't found in any candidate, the list of candidates shouldn't 5994 * change at all, we'll just handle relocating appropriately, 5995 * depending on relo's kind. 5996 */ 5997 if (j > 0) 5998 cands->len = j; 5999 6000 /* 6001 * If no candidates were found, it might be both a programmer error, 6002 * as well as expected case, depending whether instruction w/ 6003 * relocation is guarded in some way that makes it unreachable (dead 6004 * code) if relocation can't be resolved. This is handled in 6005 * bpf_core_patch_insn() uniformly by replacing that instruction with 6006 * BPF helper call insn (using invalid helper ID). If that instruction 6007 * is indeed unreachable, then it will be ignored and eliminated by 6008 * verifier. If it was an error, then verifier will complain and point 6009 * to a specific instruction number in its log. 6010 */ 6011 if (j == 0) { 6012 pr_debug("prog '%s': relo #%d: no matching targets found\n", 6013 prog->name, relo_idx); 6014 6015 /* calculate single target relo result explicitly */ 6016 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 6017 if (err) 6018 return err; 6019 } 6020 6021 patch_insn: 6022 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 6023 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 6024 if (err) { 6025 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 6026 prog->name, relo_idx, relo->insn_off, err); 6027 return -EINVAL; 6028 } 6029 6030 return 0; 6031 } 6032 6033 static int 6034 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6035 { 6036 const struct btf_ext_info_sec *sec; 6037 const struct bpf_core_relo *rec; 6038 const struct btf_ext_info *seg; 6039 struct hashmap_entry *entry; 6040 struct hashmap *cand_cache = NULL; 6041 struct bpf_program *prog; 6042 const char *sec_name; 6043 int i, err = 0, insn_idx, sec_idx; 6044 6045 if (obj->btf_ext->core_relo_info.len == 0) 6046 return 0; 6047 6048 if (targ_btf_path) { 6049 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6050 if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) { 6051 err = PTR_ERR(obj->btf_vmlinux_override); 6052 pr_warn("failed to parse target BTF: %d\n", err); 6053 return err; 6054 } 6055 } 6056 6057 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6058 if (IS_ERR(cand_cache)) { 6059 err = PTR_ERR(cand_cache); 6060 goto out; 6061 } 6062 6063 seg = &obj->btf_ext->core_relo_info; 6064 for_each_btf_ext_sec(seg, sec) { 6065 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6066 if (str_is_empty(sec_name)) { 6067 err = -EINVAL; 6068 goto out; 6069 } 6070 /* bpf_object's ELF is gone by now so it's not easy to find 6071 * section index by section name, but we can find *any* 6072 * bpf_program within desired section name and use it's 6073 * prog->sec_idx to do a proper search by section index and 6074 * instruction offset 6075 */ 6076 prog = NULL; 6077 for (i = 0; i < obj->nr_programs; i++) { 6078 prog = &obj->programs[i]; 6079 if (strcmp(prog->sec_name, sec_name) == 0) 6080 break; 6081 } 6082 if (!prog) { 6083 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 6084 return -ENOENT; 6085 } 6086 sec_idx = prog->sec_idx; 6087 6088 pr_debug("sec '%s': found %d CO-RE relocations\n", 6089 sec_name, sec->num_info); 6090 6091 for_each_btf_ext_rec(seg, sec, i, rec) { 6092 insn_idx = rec->insn_off / BPF_INSN_SZ; 6093 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6094 if (!prog) { 6095 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 6096 sec_name, insn_idx, i); 6097 err = -EINVAL; 6098 goto out; 6099 } 6100 /* no need to apply CO-RE relocation if the program is 6101 * not going to be loaded 6102 */ 6103 if (!prog->load) 6104 continue; 6105 6106 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 6107 if (err) { 6108 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 6109 prog->name, i, err); 6110 goto out; 6111 } 6112 } 6113 } 6114 6115 out: 6116 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6117 btf__free(obj->btf_vmlinux_override); 6118 obj->btf_vmlinux_override = NULL; 6119 6120 if (!IS_ERR_OR_NULL(cand_cache)) { 6121 hashmap__for_each_entry(cand_cache, entry, i) { 6122 bpf_core_free_cands(entry->value); 6123 } 6124 hashmap__free(cand_cache); 6125 } 6126 return err; 6127 } 6128 6129 /* Relocate data references within program code: 6130 * - map references; 6131 * - global variable references; 6132 * - extern references. 6133 */ 6134 static int 6135 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6136 { 6137 int i; 6138 6139 for (i = 0; i < prog->nr_reloc; i++) { 6140 struct reloc_desc *relo = &prog->reloc_desc[i]; 6141 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6142 struct extern_desc *ext; 6143 6144 switch (relo->type) { 6145 case RELO_LD64: 6146 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6147 insn[0].imm = obj->maps[relo->map_idx].fd; 6148 relo->processed = true; 6149 break; 6150 case RELO_DATA: 6151 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6152 insn[1].imm = insn[0].imm + relo->sym_off; 6153 insn[0].imm = obj->maps[relo->map_idx].fd; 6154 relo->processed = true; 6155 break; 6156 case RELO_EXTERN: 6157 ext = &obj->externs[relo->sym_off]; 6158 if (ext->type == EXT_KCFG) { 6159 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6160 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6161 insn[1].imm = ext->kcfg.data_off; 6162 } else /* EXT_KSYM */ { 6163 if (ext->ksym.type_id) { /* typed ksyms */ 6164 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6165 insn[0].imm = ext->ksym.vmlinux_btf_id; 6166 } else { /* typeless ksyms */ 6167 insn[0].imm = (__u32)ext->ksym.addr; 6168 insn[1].imm = ext->ksym.addr >> 32; 6169 } 6170 } 6171 relo->processed = true; 6172 break; 6173 case RELO_CALL: 6174 /* will be handled as a follow up pass */ 6175 break; 6176 default: 6177 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6178 prog->name, i, relo->type); 6179 return -EINVAL; 6180 } 6181 } 6182 6183 return 0; 6184 } 6185 6186 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6187 const struct bpf_program *prog, 6188 const struct btf_ext_info *ext_info, 6189 void **prog_info, __u32 *prog_rec_cnt, 6190 __u32 *prog_rec_sz) 6191 { 6192 void *copy_start = NULL, *copy_end = NULL; 6193 void *rec, *rec_end, *new_prog_info; 6194 const struct btf_ext_info_sec *sec; 6195 size_t old_sz, new_sz; 6196 const char *sec_name; 6197 int i, off_adj; 6198 6199 for_each_btf_ext_sec(ext_info, sec) { 6200 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6201 if (!sec_name) 6202 return -EINVAL; 6203 if (strcmp(sec_name, prog->sec_name) != 0) 6204 continue; 6205 6206 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6207 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6208 6209 if (insn_off < prog->sec_insn_off) 6210 continue; 6211 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6212 break; 6213 6214 if (!copy_start) 6215 copy_start = rec; 6216 copy_end = rec + ext_info->rec_size; 6217 } 6218 6219 if (!copy_start) 6220 return -ENOENT; 6221 6222 /* append func/line info of a given (sub-)program to the main 6223 * program func/line info 6224 */ 6225 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6226 new_sz = old_sz + (copy_end - copy_start); 6227 new_prog_info = realloc(*prog_info, new_sz); 6228 if (!new_prog_info) 6229 return -ENOMEM; 6230 *prog_info = new_prog_info; 6231 *prog_rec_cnt = new_sz / ext_info->rec_size; 6232 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6233 6234 /* Kernel instruction offsets are in units of 8-byte 6235 * instructions, while .BTF.ext instruction offsets generated 6236 * by Clang are in units of bytes. So convert Clang offsets 6237 * into kernel offsets and adjust offset according to program 6238 * relocated position. 6239 */ 6240 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6241 rec = new_prog_info + old_sz; 6242 rec_end = new_prog_info + new_sz; 6243 for (; rec < rec_end; rec += ext_info->rec_size) { 6244 __u32 *insn_off = rec; 6245 6246 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6247 } 6248 *prog_rec_sz = ext_info->rec_size; 6249 return 0; 6250 } 6251 6252 return -ENOENT; 6253 } 6254 6255 static int 6256 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6257 struct bpf_program *main_prog, 6258 const struct bpf_program *prog) 6259 { 6260 int err; 6261 6262 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6263 * supprot func/line info 6264 */ 6265 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6266 return 0; 6267 6268 /* only attempt func info relocation if main program's func_info 6269 * relocation was successful 6270 */ 6271 if (main_prog != prog && !main_prog->func_info) 6272 goto line_info; 6273 6274 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6275 &main_prog->func_info, 6276 &main_prog->func_info_cnt, 6277 &main_prog->func_info_rec_size); 6278 if (err) { 6279 if (err != -ENOENT) { 6280 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6281 prog->name, err); 6282 return err; 6283 } 6284 if (main_prog->func_info) { 6285 /* 6286 * Some info has already been found but has problem 6287 * in the last btf_ext reloc. Must have to error out. 6288 */ 6289 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6290 return err; 6291 } 6292 /* Have problem loading the very first info. Ignore the rest. */ 6293 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6294 prog->name); 6295 } 6296 6297 line_info: 6298 /* don't relocate line info if main program's relocation failed */ 6299 if (main_prog != prog && !main_prog->line_info) 6300 return 0; 6301 6302 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6303 &main_prog->line_info, 6304 &main_prog->line_info_cnt, 6305 &main_prog->line_info_rec_size); 6306 if (err) { 6307 if (err != -ENOENT) { 6308 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6309 prog->name, err); 6310 return err; 6311 } 6312 if (main_prog->line_info) { 6313 /* 6314 * Some info has already been found but has problem 6315 * in the last btf_ext reloc. Must have to error out. 6316 */ 6317 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6318 return err; 6319 } 6320 /* Have problem loading the very first info. Ignore the rest. */ 6321 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6322 prog->name); 6323 } 6324 return 0; 6325 } 6326 6327 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6328 { 6329 size_t insn_idx = *(const size_t *)key; 6330 const struct reloc_desc *relo = elem; 6331 6332 if (insn_idx == relo->insn_idx) 6333 return 0; 6334 return insn_idx < relo->insn_idx ? -1 : 1; 6335 } 6336 6337 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6338 { 6339 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6340 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6341 } 6342 6343 static int 6344 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6345 struct bpf_program *prog) 6346 { 6347 size_t sub_insn_idx, insn_idx, new_cnt; 6348 struct bpf_program *subprog; 6349 struct bpf_insn *insns, *insn; 6350 struct reloc_desc *relo; 6351 int err; 6352 6353 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6354 if (err) 6355 return err; 6356 6357 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6358 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6359 if (!insn_is_subprog_call(insn)) 6360 continue; 6361 6362 relo = find_prog_insn_relo(prog, insn_idx); 6363 if (relo && relo->type != RELO_CALL) { 6364 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6365 prog->name, insn_idx, relo->type); 6366 return -LIBBPF_ERRNO__RELOC; 6367 } 6368 if (relo) { 6369 /* sub-program instruction index is a combination of 6370 * an offset of a symbol pointed to by relocation and 6371 * call instruction's imm field; for global functions, 6372 * call always has imm = -1, but for static functions 6373 * relocation is against STT_SECTION and insn->imm 6374 * points to a start of a static function 6375 */ 6376 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6377 } else { 6378 /* if subprogram call is to a static function within 6379 * the same ELF section, there won't be any relocation 6380 * emitted, but it also means there is no additional 6381 * offset necessary, insns->imm is relative to 6382 * instruction's original position within the section 6383 */ 6384 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6385 } 6386 6387 /* we enforce that sub-programs should be in .text section */ 6388 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6389 if (!subprog) { 6390 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6391 prog->name); 6392 return -LIBBPF_ERRNO__RELOC; 6393 } 6394 6395 /* if it's the first call instruction calling into this 6396 * subprogram (meaning this subprog hasn't been processed 6397 * yet) within the context of current main program: 6398 * - append it at the end of main program's instructions blog; 6399 * - process is recursively, while current program is put on hold; 6400 * - if that subprogram calls some other not yet processes 6401 * subprogram, same thing will happen recursively until 6402 * there are no more unprocesses subprograms left to append 6403 * and relocate. 6404 */ 6405 if (subprog->sub_insn_off == 0) { 6406 subprog->sub_insn_off = main_prog->insns_cnt; 6407 6408 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6409 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6410 if (!insns) { 6411 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6412 return -ENOMEM; 6413 } 6414 main_prog->insns = insns; 6415 main_prog->insns_cnt = new_cnt; 6416 6417 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6418 subprog->insns_cnt * sizeof(*insns)); 6419 6420 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6421 main_prog->name, subprog->insns_cnt, subprog->name); 6422 6423 err = bpf_object__reloc_code(obj, main_prog, subprog); 6424 if (err) 6425 return err; 6426 } 6427 6428 /* main_prog->insns memory could have been re-allocated, so 6429 * calculate pointer again 6430 */ 6431 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6432 /* calculate correct instruction position within current main 6433 * prog; each main prog can have a different set of 6434 * subprograms appended (potentially in different order as 6435 * well), so position of any subprog can be different for 6436 * different main programs */ 6437 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6438 6439 if (relo) 6440 relo->processed = true; 6441 6442 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6443 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6444 } 6445 6446 return 0; 6447 } 6448 6449 /* 6450 * Relocate sub-program calls. 6451 * 6452 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6453 * main prog) is processed separately. For each subprog (non-entry functions, 6454 * that can be called from either entry progs or other subprogs) gets their 6455 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6456 * hasn't been yet appended and relocated within current main prog. Once its 6457 * relocated, sub_insn_off will point at the position within current main prog 6458 * where given subprog was appended. This will further be used to relocate all 6459 * the call instructions jumping into this subprog. 6460 * 6461 * We start with main program and process all call instructions. If the call 6462 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6463 * is zero), subprog instructions are appended at the end of main program's 6464 * instruction array. Then main program is "put on hold" while we recursively 6465 * process newly appended subprogram. If that subprogram calls into another 6466 * subprogram that hasn't been appended, new subprogram is appended again to 6467 * the *main* prog's instructions (subprog's instructions are always left 6468 * untouched, as they need to be in unmodified state for subsequent main progs 6469 * and subprog instructions are always sent only as part of a main prog) and 6470 * the process continues recursively. Once all the subprogs called from a main 6471 * prog or any of its subprogs are appended (and relocated), all their 6472 * positions within finalized instructions array are known, so it's easy to 6473 * rewrite call instructions with correct relative offsets, corresponding to 6474 * desired target subprog. 6475 * 6476 * Its important to realize that some subprogs might not be called from some 6477 * main prog and any of its called/used subprogs. Those will keep their 6478 * subprog->sub_insn_off as zero at all times and won't be appended to current 6479 * main prog and won't be relocated within the context of current main prog. 6480 * They might still be used from other main progs later. 6481 * 6482 * Visually this process can be shown as below. Suppose we have two main 6483 * programs mainA and mainB and BPF object contains three subprogs: subA, 6484 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6485 * subC both call subB: 6486 * 6487 * +--------+ +-------+ 6488 * | v v | 6489 * +--+---+ +--+-+-+ +---+--+ 6490 * | subA | | subB | | subC | 6491 * +--+---+ +------+ +---+--+ 6492 * ^ ^ 6493 * | | 6494 * +---+-------+ +------+----+ 6495 * | mainA | | mainB | 6496 * +-----------+ +-----------+ 6497 * 6498 * We'll start relocating mainA, will find subA, append it and start 6499 * processing sub A recursively: 6500 * 6501 * +-----------+------+ 6502 * | mainA | subA | 6503 * +-----------+------+ 6504 * 6505 * At this point we notice that subB is used from subA, so we append it and 6506 * relocate (there are no further subcalls from subB): 6507 * 6508 * +-----------+------+------+ 6509 * | mainA | subA | subB | 6510 * +-----------+------+------+ 6511 * 6512 * At this point, we relocate subA calls, then go one level up and finish with 6513 * relocatin mainA calls. mainA is done. 6514 * 6515 * For mainB process is similar but results in different order. We start with 6516 * mainB and skip subA and subB, as mainB never calls them (at least 6517 * directly), but we see subC is needed, so we append and start processing it: 6518 * 6519 * +-----------+------+ 6520 * | mainB | subC | 6521 * +-----------+------+ 6522 * Now we see subC needs subB, so we go back to it, append and relocate it: 6523 * 6524 * +-----------+------+------+ 6525 * | mainB | subC | subB | 6526 * +-----------+------+------+ 6527 * 6528 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6529 */ 6530 static int 6531 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6532 { 6533 struct bpf_program *subprog; 6534 int i, j, err; 6535 6536 /* mark all subprogs as not relocated (yet) within the context of 6537 * current main program 6538 */ 6539 for (i = 0; i < obj->nr_programs; i++) { 6540 subprog = &obj->programs[i]; 6541 if (!prog_is_subprog(obj, subprog)) 6542 continue; 6543 6544 subprog->sub_insn_off = 0; 6545 for (j = 0; j < subprog->nr_reloc; j++) 6546 if (subprog->reloc_desc[j].type == RELO_CALL) 6547 subprog->reloc_desc[j].processed = false; 6548 } 6549 6550 err = bpf_object__reloc_code(obj, prog, prog); 6551 if (err) 6552 return err; 6553 6554 6555 return 0; 6556 } 6557 6558 static int 6559 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6560 { 6561 struct bpf_program *prog; 6562 size_t i; 6563 int err; 6564 6565 if (obj->btf_ext) { 6566 err = bpf_object__relocate_core(obj, targ_btf_path); 6567 if (err) { 6568 pr_warn("failed to perform CO-RE relocations: %d\n", 6569 err); 6570 return err; 6571 } 6572 } 6573 /* relocate data references first for all programs and sub-programs, 6574 * as they don't change relative to code locations, so subsequent 6575 * subprogram processing won't need to re-calculate any of them 6576 */ 6577 for (i = 0; i < obj->nr_programs; i++) { 6578 prog = &obj->programs[i]; 6579 err = bpf_object__relocate_data(obj, prog); 6580 if (err) { 6581 pr_warn("prog '%s': failed to relocate data references: %d\n", 6582 prog->name, err); 6583 return err; 6584 } 6585 } 6586 /* now relocate subprogram calls and append used subprograms to main 6587 * programs; each copy of subprogram code needs to be relocated 6588 * differently for each main program, because its code location might 6589 * have changed 6590 */ 6591 for (i = 0; i < obj->nr_programs; i++) { 6592 prog = &obj->programs[i]; 6593 /* sub-program's sub-calls are relocated within the context of 6594 * its main program only 6595 */ 6596 if (prog_is_subprog(obj, prog)) 6597 continue; 6598 6599 err = bpf_object__relocate_calls(obj, prog); 6600 if (err) { 6601 pr_warn("prog '%s': failed to relocate calls: %d\n", 6602 prog->name, err); 6603 return err; 6604 } 6605 } 6606 /* free up relocation descriptors */ 6607 for (i = 0; i < obj->nr_programs; i++) { 6608 prog = &obj->programs[i]; 6609 zfree(&prog->reloc_desc); 6610 prog->nr_reloc = 0; 6611 } 6612 return 0; 6613 } 6614 6615 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6616 GElf_Shdr *shdr, Elf_Data *data); 6617 6618 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6619 GElf_Shdr *shdr, Elf_Data *data) 6620 { 6621 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6622 int i, j, nrels, new_sz; 6623 const struct btf_var_secinfo *vi = NULL; 6624 const struct btf_type *sec, *var, *def; 6625 struct bpf_map *map = NULL, *targ_map; 6626 const struct btf_member *member; 6627 const char *name, *mname; 6628 Elf_Data *symbols; 6629 unsigned int moff; 6630 GElf_Sym sym; 6631 GElf_Rel rel; 6632 void *tmp; 6633 6634 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6635 return -EINVAL; 6636 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6637 if (!sec) 6638 return -EINVAL; 6639 6640 symbols = obj->efile.symbols; 6641 nrels = shdr->sh_size / shdr->sh_entsize; 6642 for (i = 0; i < nrels; i++) { 6643 if (!gelf_getrel(data, i, &rel)) { 6644 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6645 return -LIBBPF_ERRNO__FORMAT; 6646 } 6647 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6648 pr_warn(".maps relo #%d: symbol %zx not found\n", 6649 i, (size_t)GELF_R_SYM(rel.r_info)); 6650 return -LIBBPF_ERRNO__FORMAT; 6651 } 6652 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6653 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6654 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6655 i, name); 6656 return -LIBBPF_ERRNO__RELOC; 6657 } 6658 6659 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6660 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6661 (size_t)rel.r_offset, sym.st_name, name); 6662 6663 for (j = 0; j < obj->nr_maps; j++) { 6664 map = &obj->maps[j]; 6665 if (map->sec_idx != obj->efile.btf_maps_shndx) 6666 continue; 6667 6668 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6669 if (vi->offset <= rel.r_offset && 6670 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6671 break; 6672 } 6673 if (j == obj->nr_maps) { 6674 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6675 i, name, (size_t)rel.r_offset); 6676 return -EINVAL; 6677 } 6678 6679 if (!bpf_map_type__is_map_in_map(map->def.type)) 6680 return -EINVAL; 6681 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6682 map->def.key_size != sizeof(int)) { 6683 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6684 i, map->name, sizeof(int)); 6685 return -EINVAL; 6686 } 6687 6688 targ_map = bpf_object__find_map_by_name(obj, name); 6689 if (!targ_map) 6690 return -ESRCH; 6691 6692 var = btf__type_by_id(obj->btf, vi->type); 6693 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6694 if (btf_vlen(def) == 0) 6695 return -EINVAL; 6696 member = btf_members(def) + btf_vlen(def) - 1; 6697 mname = btf__name_by_offset(obj->btf, member->name_off); 6698 if (strcmp(mname, "values")) 6699 return -EINVAL; 6700 6701 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6702 if (rel.r_offset - vi->offset < moff) 6703 return -EINVAL; 6704 6705 moff = rel.r_offset - vi->offset - moff; 6706 /* here we use BPF pointer size, which is always 64 bit, as we 6707 * are parsing ELF that was built for BPF target 6708 */ 6709 if (moff % bpf_ptr_sz) 6710 return -EINVAL; 6711 moff /= bpf_ptr_sz; 6712 if (moff >= map->init_slots_sz) { 6713 new_sz = moff + 1; 6714 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6715 if (!tmp) 6716 return -ENOMEM; 6717 map->init_slots = tmp; 6718 memset(map->init_slots + map->init_slots_sz, 0, 6719 (new_sz - map->init_slots_sz) * host_ptr_sz); 6720 map->init_slots_sz = new_sz; 6721 } 6722 map->init_slots[moff] = targ_map; 6723 6724 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6725 i, map->name, moff, name); 6726 } 6727 6728 return 0; 6729 } 6730 6731 static int cmp_relocs(const void *_a, const void *_b) 6732 { 6733 const struct reloc_desc *a = _a; 6734 const struct reloc_desc *b = _b; 6735 6736 if (a->insn_idx != b->insn_idx) 6737 return a->insn_idx < b->insn_idx ? -1 : 1; 6738 6739 /* no two relocations should have the same insn_idx, but ... */ 6740 if (a->type != b->type) 6741 return a->type < b->type ? -1 : 1; 6742 6743 return 0; 6744 } 6745 6746 static int bpf_object__collect_relos(struct bpf_object *obj) 6747 { 6748 int i, err; 6749 6750 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6751 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6752 Elf_Data *data = obj->efile.reloc_sects[i].data; 6753 int idx = shdr->sh_info; 6754 6755 if (shdr->sh_type != SHT_REL) { 6756 pr_warn("internal error at %d\n", __LINE__); 6757 return -LIBBPF_ERRNO__INTERNAL; 6758 } 6759 6760 if (idx == obj->efile.st_ops_shndx) 6761 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6762 else if (idx == obj->efile.btf_maps_shndx) 6763 err = bpf_object__collect_map_relos(obj, shdr, data); 6764 else 6765 err = bpf_object__collect_prog_relos(obj, shdr, data); 6766 if (err) 6767 return err; 6768 } 6769 6770 for (i = 0; i < obj->nr_programs; i++) { 6771 struct bpf_program *p = &obj->programs[i]; 6772 6773 if (!p->nr_reloc) 6774 continue; 6775 6776 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6777 } 6778 return 0; 6779 } 6780 6781 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6782 { 6783 if (BPF_CLASS(insn->code) == BPF_JMP && 6784 BPF_OP(insn->code) == BPF_CALL && 6785 BPF_SRC(insn->code) == BPF_K && 6786 insn->src_reg == 0 && 6787 insn->dst_reg == 0) { 6788 *func_id = insn->imm; 6789 return true; 6790 } 6791 return false; 6792 } 6793 6794 static int bpf_object__sanitize_prog(struct bpf_object* obj, struct bpf_program *prog) 6795 { 6796 struct bpf_insn *insn = prog->insns; 6797 enum bpf_func_id func_id; 6798 int i; 6799 6800 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6801 if (!insn_is_helper_call(insn, &func_id)) 6802 continue; 6803 6804 /* on kernels that don't yet support 6805 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6806 * to bpf_probe_read() which works well for old kernels 6807 */ 6808 switch (func_id) { 6809 case BPF_FUNC_probe_read_kernel: 6810 case BPF_FUNC_probe_read_user: 6811 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6812 insn->imm = BPF_FUNC_probe_read; 6813 break; 6814 case BPF_FUNC_probe_read_kernel_str: 6815 case BPF_FUNC_probe_read_user_str: 6816 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 6817 insn->imm = BPF_FUNC_probe_read_str; 6818 break; 6819 default: 6820 break; 6821 } 6822 } 6823 return 0; 6824 } 6825 6826 static int 6827 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 6828 char *license, __u32 kern_version, int *pfd) 6829 { 6830 struct bpf_prog_load_params load_attr = {}; 6831 char *cp, errmsg[STRERR_BUFSIZE]; 6832 size_t log_buf_size = 0; 6833 char *log_buf = NULL; 6834 int btf_fd, ret; 6835 6836 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6837 /* 6838 * The program type must be set. Most likely we couldn't find a proper 6839 * section definition at load time, and thus we didn't infer the type. 6840 */ 6841 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6842 prog->name, prog->sec_name); 6843 return -EINVAL; 6844 } 6845 6846 if (!insns || !insns_cnt) 6847 return -EINVAL; 6848 6849 load_attr.prog_type = prog->type; 6850 /* old kernels might not support specifying expected_attach_type */ 6851 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 6852 prog->sec_def->is_exp_attach_type_optional) 6853 load_attr.expected_attach_type = 0; 6854 else 6855 load_attr.expected_attach_type = prog->expected_attach_type; 6856 if (kernel_supports(FEAT_PROG_NAME)) 6857 load_attr.name = prog->name; 6858 load_attr.insns = insns; 6859 load_attr.insn_cnt = insns_cnt; 6860 load_attr.license = license; 6861 load_attr.attach_btf_id = prog->attach_btf_id; 6862 if (prog->attach_prog_fd) 6863 load_attr.attach_prog_fd = prog->attach_prog_fd; 6864 else 6865 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6866 load_attr.attach_btf_id = prog->attach_btf_id; 6867 load_attr.kern_version = kern_version; 6868 load_attr.prog_ifindex = prog->prog_ifindex; 6869 6870 /* specify func_info/line_info only if kernel supports them */ 6871 btf_fd = bpf_object__btf_fd(prog->obj); 6872 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 6873 load_attr.prog_btf_fd = btf_fd; 6874 load_attr.func_info = prog->func_info; 6875 load_attr.func_info_rec_size = prog->func_info_rec_size; 6876 load_attr.func_info_cnt = prog->func_info_cnt; 6877 load_attr.line_info = prog->line_info; 6878 load_attr.line_info_rec_size = prog->line_info_rec_size; 6879 load_attr.line_info_cnt = prog->line_info_cnt; 6880 } 6881 load_attr.log_level = prog->log_level; 6882 load_attr.prog_flags = prog->prog_flags; 6883 6884 retry_load: 6885 if (log_buf_size) { 6886 log_buf = malloc(log_buf_size); 6887 if (!log_buf) 6888 return -ENOMEM; 6889 6890 *log_buf = 0; 6891 } 6892 6893 load_attr.log_buf = log_buf; 6894 load_attr.log_buf_sz = log_buf_size; 6895 ret = libbpf__bpf_prog_load(&load_attr); 6896 6897 if (ret >= 0) { 6898 if (log_buf && load_attr.log_level) 6899 pr_debug("verifier log:\n%s", log_buf); 6900 6901 if (prog->obj->rodata_map_idx >= 0 && 6902 kernel_supports(FEAT_PROG_BIND_MAP)) { 6903 struct bpf_map *rodata_map = 6904 &prog->obj->maps[prog->obj->rodata_map_idx]; 6905 6906 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 6907 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6908 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 6909 prog->name, cp); 6910 /* Don't fail hard if can't bind rodata. */ 6911 } 6912 } 6913 6914 *pfd = ret; 6915 ret = 0; 6916 goto out; 6917 } 6918 6919 if (!log_buf || errno == ENOSPC) { 6920 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 6921 log_buf_size << 1); 6922 6923 free(log_buf); 6924 goto retry_load; 6925 } 6926 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 6927 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6928 pr_warn("load bpf program failed: %s\n", cp); 6929 pr_perm_msg(ret); 6930 6931 if (log_buf && log_buf[0] != '\0') { 6932 ret = -LIBBPF_ERRNO__VERIFY; 6933 pr_warn("-- BEGIN DUMP LOG ---\n"); 6934 pr_warn("\n%s\n", log_buf); 6935 pr_warn("-- END LOG --\n"); 6936 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 6937 pr_warn("Program too large (%zu insns), at most %d insns\n", 6938 load_attr.insn_cnt, BPF_MAXINSNS); 6939 ret = -LIBBPF_ERRNO__PROG2BIG; 6940 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 6941 /* Wrong program type? */ 6942 int fd; 6943 6944 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 6945 load_attr.expected_attach_type = 0; 6946 load_attr.log_buf = NULL; 6947 load_attr.log_buf_sz = 0; 6948 fd = libbpf__bpf_prog_load(&load_attr); 6949 if (fd >= 0) { 6950 close(fd); 6951 ret = -LIBBPF_ERRNO__PROGTYPE; 6952 goto out; 6953 } 6954 } 6955 6956 out: 6957 free(log_buf); 6958 return ret; 6959 } 6960 6961 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id); 6962 6963 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 6964 { 6965 int err = 0, fd, i; 6966 6967 if (prog->obj->loaded) { 6968 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 6969 return -EINVAL; 6970 } 6971 6972 if ((prog->type == BPF_PROG_TYPE_TRACING || 6973 prog->type == BPF_PROG_TYPE_LSM || 6974 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 6975 int btf_obj_fd = 0, btf_type_id = 0; 6976 6977 err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id); 6978 if (err) 6979 return err; 6980 6981 prog->attach_btf_obj_fd = btf_obj_fd; 6982 prog->attach_btf_id = btf_type_id; 6983 } 6984 6985 if (prog->instances.nr < 0 || !prog->instances.fds) { 6986 if (prog->preprocessor) { 6987 pr_warn("Internal error: can't load program '%s'\n", 6988 prog->name); 6989 return -LIBBPF_ERRNO__INTERNAL; 6990 } 6991 6992 prog->instances.fds = malloc(sizeof(int)); 6993 if (!prog->instances.fds) { 6994 pr_warn("Not enough memory for BPF fds\n"); 6995 return -ENOMEM; 6996 } 6997 prog->instances.nr = 1; 6998 prog->instances.fds[0] = -1; 6999 } 7000 7001 if (!prog->preprocessor) { 7002 if (prog->instances.nr != 1) { 7003 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7004 prog->name, prog->instances.nr); 7005 } 7006 err = load_program(prog, prog->insns, prog->insns_cnt, 7007 license, kern_ver, &fd); 7008 if (!err) 7009 prog->instances.fds[0] = fd; 7010 goto out; 7011 } 7012 7013 for (i = 0; i < prog->instances.nr; i++) { 7014 struct bpf_prog_prep_result result; 7015 bpf_program_prep_t preprocessor = prog->preprocessor; 7016 7017 memset(&result, 0, sizeof(result)); 7018 err = preprocessor(prog, i, prog->insns, 7019 prog->insns_cnt, &result); 7020 if (err) { 7021 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7022 i, prog->name); 7023 goto out; 7024 } 7025 7026 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7027 pr_debug("Skip loading the %dth instance of program '%s'\n", 7028 i, prog->name); 7029 prog->instances.fds[i] = -1; 7030 if (result.pfd) 7031 *result.pfd = -1; 7032 continue; 7033 } 7034 7035 err = load_program(prog, result.new_insn_ptr, 7036 result.new_insn_cnt, license, kern_ver, &fd); 7037 if (err) { 7038 pr_warn("Loading the %dth instance of program '%s' failed\n", 7039 i, prog->name); 7040 goto out; 7041 } 7042 7043 if (result.pfd) 7044 *result.pfd = fd; 7045 prog->instances.fds[i] = fd; 7046 } 7047 out: 7048 if (err) 7049 pr_warn("failed to load program '%s'\n", prog->name); 7050 zfree(&prog->insns); 7051 prog->insns_cnt = 0; 7052 return err; 7053 } 7054 7055 static int 7056 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7057 { 7058 struct bpf_program *prog; 7059 size_t i; 7060 int err; 7061 7062 for (i = 0; i < obj->nr_programs; i++) { 7063 prog = &obj->programs[i]; 7064 err = bpf_object__sanitize_prog(obj, prog); 7065 if (err) 7066 return err; 7067 } 7068 7069 for (i = 0; i < obj->nr_programs; i++) { 7070 prog = &obj->programs[i]; 7071 if (prog_is_subprog(obj, prog)) 7072 continue; 7073 if (!prog->load) { 7074 pr_debug("prog '%s': skipped loading\n", prog->name); 7075 continue; 7076 } 7077 prog->log_level |= log_level; 7078 err = bpf_program__load(prog, obj->license, obj->kern_version); 7079 if (err) 7080 return err; 7081 } 7082 return 0; 7083 } 7084 7085 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7086 7087 static struct bpf_object * 7088 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7089 const struct bpf_object_open_opts *opts) 7090 { 7091 const char *obj_name, *kconfig; 7092 struct bpf_program *prog; 7093 struct bpf_object *obj; 7094 char tmp_name[64]; 7095 int err; 7096 7097 if (elf_version(EV_CURRENT) == EV_NONE) { 7098 pr_warn("failed to init libelf for %s\n", 7099 path ? : "(mem buf)"); 7100 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7101 } 7102 7103 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7104 return ERR_PTR(-EINVAL); 7105 7106 obj_name = OPTS_GET(opts, object_name, NULL); 7107 if (obj_buf) { 7108 if (!obj_name) { 7109 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7110 (unsigned long)obj_buf, 7111 (unsigned long)obj_buf_sz); 7112 obj_name = tmp_name; 7113 } 7114 path = obj_name; 7115 pr_debug("loading object '%s' from buffer\n", obj_name); 7116 } 7117 7118 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7119 if (IS_ERR(obj)) 7120 return obj; 7121 7122 kconfig = OPTS_GET(opts, kconfig, NULL); 7123 if (kconfig) { 7124 obj->kconfig = strdup(kconfig); 7125 if (!obj->kconfig) 7126 return ERR_PTR(-ENOMEM); 7127 } 7128 7129 err = bpf_object__elf_init(obj); 7130 err = err ? : bpf_object__check_endianness(obj); 7131 err = err ? : bpf_object__elf_collect(obj); 7132 err = err ? : bpf_object__collect_externs(obj); 7133 err = err ? : bpf_object__finalize_btf(obj); 7134 err = err ? : bpf_object__init_maps(obj, opts); 7135 err = err ? : bpf_object__collect_relos(obj); 7136 if (err) 7137 goto out; 7138 bpf_object__elf_finish(obj); 7139 7140 bpf_object__for_each_program(prog, obj) { 7141 prog->sec_def = find_sec_def(prog->sec_name); 7142 if (!prog->sec_def) { 7143 /* couldn't guess, but user might manually specify */ 7144 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7145 prog->name, prog->sec_name); 7146 continue; 7147 } 7148 7149 if (prog->sec_def->is_sleepable) 7150 prog->prog_flags |= BPF_F_SLEEPABLE; 7151 bpf_program__set_type(prog, prog->sec_def->prog_type); 7152 bpf_program__set_expected_attach_type(prog, 7153 prog->sec_def->expected_attach_type); 7154 7155 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7156 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7157 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7158 } 7159 7160 return obj; 7161 out: 7162 bpf_object__close(obj); 7163 return ERR_PTR(err); 7164 } 7165 7166 static struct bpf_object * 7167 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7168 { 7169 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7170 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7171 ); 7172 7173 /* param validation */ 7174 if (!attr->file) 7175 return NULL; 7176 7177 pr_debug("loading %s\n", attr->file); 7178 return __bpf_object__open(attr->file, NULL, 0, &opts); 7179 } 7180 7181 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7182 { 7183 return __bpf_object__open_xattr(attr, 0); 7184 } 7185 7186 struct bpf_object *bpf_object__open(const char *path) 7187 { 7188 struct bpf_object_open_attr attr = { 7189 .file = path, 7190 .prog_type = BPF_PROG_TYPE_UNSPEC, 7191 }; 7192 7193 return bpf_object__open_xattr(&attr); 7194 } 7195 7196 struct bpf_object * 7197 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7198 { 7199 if (!path) 7200 return ERR_PTR(-EINVAL); 7201 7202 pr_debug("loading %s\n", path); 7203 7204 return __bpf_object__open(path, NULL, 0, opts); 7205 } 7206 7207 struct bpf_object * 7208 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7209 const struct bpf_object_open_opts *opts) 7210 { 7211 if (!obj_buf || obj_buf_sz == 0) 7212 return ERR_PTR(-EINVAL); 7213 7214 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 7215 } 7216 7217 struct bpf_object * 7218 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7219 const char *name) 7220 { 7221 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7222 .object_name = name, 7223 /* wrong default, but backwards-compatible */ 7224 .relaxed_maps = true, 7225 ); 7226 7227 /* returning NULL is wrong, but backwards-compatible */ 7228 if (!obj_buf || obj_buf_sz == 0) 7229 return NULL; 7230 7231 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7232 } 7233 7234 int bpf_object__unload(struct bpf_object *obj) 7235 { 7236 size_t i; 7237 7238 if (!obj) 7239 return -EINVAL; 7240 7241 for (i = 0; i < obj->nr_maps; i++) { 7242 zclose(obj->maps[i].fd); 7243 if (obj->maps[i].st_ops) 7244 zfree(&obj->maps[i].st_ops->kern_vdata); 7245 } 7246 7247 for (i = 0; i < obj->nr_programs; i++) 7248 bpf_program__unload(&obj->programs[i]); 7249 7250 return 0; 7251 } 7252 7253 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7254 { 7255 struct bpf_map *m; 7256 7257 bpf_object__for_each_map(m, obj) { 7258 if (!bpf_map__is_internal(m)) 7259 continue; 7260 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7261 pr_warn("kernel doesn't support global data\n"); 7262 return -ENOTSUP; 7263 } 7264 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7265 m->def.map_flags ^= BPF_F_MMAPABLE; 7266 } 7267 7268 return 0; 7269 } 7270 7271 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7272 { 7273 char sym_type, sym_name[500]; 7274 unsigned long long sym_addr; 7275 struct extern_desc *ext; 7276 int ret, err = 0; 7277 FILE *f; 7278 7279 f = fopen("/proc/kallsyms", "r"); 7280 if (!f) { 7281 err = -errno; 7282 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7283 return err; 7284 } 7285 7286 while (true) { 7287 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7288 &sym_addr, &sym_type, sym_name); 7289 if (ret == EOF && feof(f)) 7290 break; 7291 if (ret != 3) { 7292 pr_warn("failed to read kallsyms entry: %d\n", ret); 7293 err = -EINVAL; 7294 goto out; 7295 } 7296 7297 ext = find_extern_by_name(obj, sym_name); 7298 if (!ext || ext->type != EXT_KSYM) 7299 continue; 7300 7301 if (ext->is_set && ext->ksym.addr != sym_addr) { 7302 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7303 sym_name, ext->ksym.addr, sym_addr); 7304 err = -EINVAL; 7305 goto out; 7306 } 7307 if (!ext->is_set) { 7308 ext->is_set = true; 7309 ext->ksym.addr = sym_addr; 7310 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7311 } 7312 } 7313 7314 out: 7315 fclose(f); 7316 return err; 7317 } 7318 7319 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7320 { 7321 struct extern_desc *ext; 7322 int i, id; 7323 7324 for (i = 0; i < obj->nr_extern; i++) { 7325 const struct btf_type *targ_var, *targ_type; 7326 __u32 targ_type_id, local_type_id; 7327 const char *targ_var_name; 7328 int ret; 7329 7330 ext = &obj->externs[i]; 7331 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7332 continue; 7333 7334 id = btf__find_by_name_kind(obj->btf_vmlinux, ext->name, 7335 BTF_KIND_VAR); 7336 if (id <= 0) { 7337 pr_warn("extern (ksym) '%s': failed to find BTF ID in vmlinux BTF.\n", 7338 ext->name); 7339 return -ESRCH; 7340 } 7341 7342 /* find local type_id */ 7343 local_type_id = ext->ksym.type_id; 7344 7345 /* find target type_id */ 7346 targ_var = btf__type_by_id(obj->btf_vmlinux, id); 7347 targ_var_name = btf__name_by_offset(obj->btf_vmlinux, 7348 targ_var->name_off); 7349 targ_type = skip_mods_and_typedefs(obj->btf_vmlinux, 7350 targ_var->type, 7351 &targ_type_id); 7352 7353 ret = bpf_core_types_are_compat(obj->btf, local_type_id, 7354 obj->btf_vmlinux, targ_type_id); 7355 if (ret <= 0) { 7356 const struct btf_type *local_type; 7357 const char *targ_name, *local_name; 7358 7359 local_type = btf__type_by_id(obj->btf, local_type_id); 7360 local_name = btf__name_by_offset(obj->btf, 7361 local_type->name_off); 7362 targ_name = btf__name_by_offset(obj->btf_vmlinux, 7363 targ_type->name_off); 7364 7365 pr_warn("extern (ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7366 ext->name, local_type_id, 7367 btf_kind_str(local_type), local_name, targ_type_id, 7368 btf_kind_str(targ_type), targ_name); 7369 return -EINVAL; 7370 } 7371 7372 ext->is_set = true; 7373 ext->ksym.vmlinux_btf_id = id; 7374 pr_debug("extern (ksym) '%s': resolved to [%d] %s %s\n", 7375 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7376 } 7377 return 0; 7378 } 7379 7380 static int bpf_object__resolve_externs(struct bpf_object *obj, 7381 const char *extra_kconfig) 7382 { 7383 bool need_config = false, need_kallsyms = false; 7384 bool need_vmlinux_btf = false; 7385 struct extern_desc *ext; 7386 void *kcfg_data = NULL; 7387 int err, i; 7388 7389 if (obj->nr_extern == 0) 7390 return 0; 7391 7392 if (obj->kconfig_map_idx >= 0) 7393 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7394 7395 for (i = 0; i < obj->nr_extern; i++) { 7396 ext = &obj->externs[i]; 7397 7398 if (ext->type == EXT_KCFG && 7399 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7400 void *ext_val = kcfg_data + ext->kcfg.data_off; 7401 __u32 kver = get_kernel_version(); 7402 7403 if (!kver) { 7404 pr_warn("failed to get kernel version\n"); 7405 return -EINVAL; 7406 } 7407 err = set_kcfg_value_num(ext, ext_val, kver); 7408 if (err) 7409 return err; 7410 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7411 } else if (ext->type == EXT_KCFG && 7412 strncmp(ext->name, "CONFIG_", 7) == 0) { 7413 need_config = true; 7414 } else if (ext->type == EXT_KSYM) { 7415 if (ext->ksym.type_id) 7416 need_vmlinux_btf = true; 7417 else 7418 need_kallsyms = true; 7419 } else { 7420 pr_warn("unrecognized extern '%s'\n", ext->name); 7421 return -EINVAL; 7422 } 7423 } 7424 if (need_config && extra_kconfig) { 7425 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7426 if (err) 7427 return -EINVAL; 7428 need_config = false; 7429 for (i = 0; i < obj->nr_extern; i++) { 7430 ext = &obj->externs[i]; 7431 if (ext->type == EXT_KCFG && !ext->is_set) { 7432 need_config = true; 7433 break; 7434 } 7435 } 7436 } 7437 if (need_config) { 7438 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7439 if (err) 7440 return -EINVAL; 7441 } 7442 if (need_kallsyms) { 7443 err = bpf_object__read_kallsyms_file(obj); 7444 if (err) 7445 return -EINVAL; 7446 } 7447 if (need_vmlinux_btf) { 7448 err = bpf_object__resolve_ksyms_btf_id(obj); 7449 if (err) 7450 return -EINVAL; 7451 } 7452 for (i = 0; i < obj->nr_extern; i++) { 7453 ext = &obj->externs[i]; 7454 7455 if (!ext->is_set && !ext->is_weak) { 7456 pr_warn("extern %s (strong) not resolved\n", ext->name); 7457 return -ESRCH; 7458 } else if (!ext->is_set) { 7459 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7460 ext->name); 7461 } 7462 } 7463 7464 return 0; 7465 } 7466 7467 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7468 { 7469 struct bpf_object *obj; 7470 int err, i; 7471 7472 if (!attr) 7473 return -EINVAL; 7474 obj = attr->obj; 7475 if (!obj) 7476 return -EINVAL; 7477 7478 if (obj->loaded) { 7479 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7480 return -EINVAL; 7481 } 7482 7483 err = bpf_object__probe_loading(obj); 7484 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7485 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7486 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7487 err = err ? : bpf_object__sanitize_maps(obj); 7488 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7489 err = err ? : bpf_object__create_maps(obj); 7490 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7491 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7492 7493 /* clean up module BTFs */ 7494 for (i = 0; i < obj->btf_module_cnt; i++) { 7495 close(obj->btf_modules[i].fd); 7496 btf__free(obj->btf_modules[i].btf); 7497 free(obj->btf_modules[i].name); 7498 } 7499 free(obj->btf_modules); 7500 7501 /* clean up vmlinux BTF */ 7502 btf__free(obj->btf_vmlinux); 7503 obj->btf_vmlinux = NULL; 7504 7505 obj->loaded = true; /* doesn't matter if successfully or not */ 7506 7507 if (err) 7508 goto out; 7509 7510 return 0; 7511 out: 7512 /* unpin any maps that were auto-pinned during load */ 7513 for (i = 0; i < obj->nr_maps; i++) 7514 if (obj->maps[i].pinned && !obj->maps[i].reused) 7515 bpf_map__unpin(&obj->maps[i], NULL); 7516 7517 bpf_object__unload(obj); 7518 pr_warn("failed to load object '%s'\n", obj->path); 7519 return err; 7520 } 7521 7522 int bpf_object__load(struct bpf_object *obj) 7523 { 7524 struct bpf_object_load_attr attr = { 7525 .obj = obj, 7526 }; 7527 7528 return bpf_object__load_xattr(&attr); 7529 } 7530 7531 static int make_parent_dir(const char *path) 7532 { 7533 char *cp, errmsg[STRERR_BUFSIZE]; 7534 char *dname, *dir; 7535 int err = 0; 7536 7537 dname = strdup(path); 7538 if (dname == NULL) 7539 return -ENOMEM; 7540 7541 dir = dirname(dname); 7542 if (mkdir(dir, 0700) && errno != EEXIST) 7543 err = -errno; 7544 7545 free(dname); 7546 if (err) { 7547 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7548 pr_warn("failed to mkdir %s: %s\n", path, cp); 7549 } 7550 return err; 7551 } 7552 7553 static int check_path(const char *path) 7554 { 7555 char *cp, errmsg[STRERR_BUFSIZE]; 7556 struct statfs st_fs; 7557 char *dname, *dir; 7558 int err = 0; 7559 7560 if (path == NULL) 7561 return -EINVAL; 7562 7563 dname = strdup(path); 7564 if (dname == NULL) 7565 return -ENOMEM; 7566 7567 dir = dirname(dname); 7568 if (statfs(dir, &st_fs)) { 7569 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7570 pr_warn("failed to statfs %s: %s\n", dir, cp); 7571 err = -errno; 7572 } 7573 free(dname); 7574 7575 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7576 pr_warn("specified path %s is not on BPF FS\n", path); 7577 err = -EINVAL; 7578 } 7579 7580 return err; 7581 } 7582 7583 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7584 int instance) 7585 { 7586 char *cp, errmsg[STRERR_BUFSIZE]; 7587 int err; 7588 7589 err = make_parent_dir(path); 7590 if (err) 7591 return err; 7592 7593 err = check_path(path); 7594 if (err) 7595 return err; 7596 7597 if (prog == NULL) { 7598 pr_warn("invalid program pointer\n"); 7599 return -EINVAL; 7600 } 7601 7602 if (instance < 0 || instance >= prog->instances.nr) { 7603 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7604 instance, prog->name, prog->instances.nr); 7605 return -EINVAL; 7606 } 7607 7608 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7609 err = -errno; 7610 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7611 pr_warn("failed to pin program: %s\n", cp); 7612 return err; 7613 } 7614 pr_debug("pinned program '%s'\n", path); 7615 7616 return 0; 7617 } 7618 7619 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7620 int instance) 7621 { 7622 int err; 7623 7624 err = check_path(path); 7625 if (err) 7626 return err; 7627 7628 if (prog == NULL) { 7629 pr_warn("invalid program pointer\n"); 7630 return -EINVAL; 7631 } 7632 7633 if (instance < 0 || instance >= prog->instances.nr) { 7634 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7635 instance, prog->name, prog->instances.nr); 7636 return -EINVAL; 7637 } 7638 7639 err = unlink(path); 7640 if (err != 0) 7641 return -errno; 7642 pr_debug("unpinned program '%s'\n", path); 7643 7644 return 0; 7645 } 7646 7647 int bpf_program__pin(struct bpf_program *prog, const char *path) 7648 { 7649 int i, err; 7650 7651 err = make_parent_dir(path); 7652 if (err) 7653 return err; 7654 7655 err = check_path(path); 7656 if (err) 7657 return err; 7658 7659 if (prog == NULL) { 7660 pr_warn("invalid program pointer\n"); 7661 return -EINVAL; 7662 } 7663 7664 if (prog->instances.nr <= 0) { 7665 pr_warn("no instances of prog %s to pin\n", prog->name); 7666 return -EINVAL; 7667 } 7668 7669 if (prog->instances.nr == 1) { 7670 /* don't create subdirs when pinning single instance */ 7671 return bpf_program__pin_instance(prog, path, 0); 7672 } 7673 7674 for (i = 0; i < prog->instances.nr; i++) { 7675 char buf[PATH_MAX]; 7676 int len; 7677 7678 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7679 if (len < 0) { 7680 err = -EINVAL; 7681 goto err_unpin; 7682 } else if (len >= PATH_MAX) { 7683 err = -ENAMETOOLONG; 7684 goto err_unpin; 7685 } 7686 7687 err = bpf_program__pin_instance(prog, buf, i); 7688 if (err) 7689 goto err_unpin; 7690 } 7691 7692 return 0; 7693 7694 err_unpin: 7695 for (i = i - 1; i >= 0; i--) { 7696 char buf[PATH_MAX]; 7697 int len; 7698 7699 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7700 if (len < 0) 7701 continue; 7702 else if (len >= PATH_MAX) 7703 continue; 7704 7705 bpf_program__unpin_instance(prog, buf, i); 7706 } 7707 7708 rmdir(path); 7709 7710 return err; 7711 } 7712 7713 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7714 { 7715 int i, err; 7716 7717 err = check_path(path); 7718 if (err) 7719 return err; 7720 7721 if (prog == NULL) { 7722 pr_warn("invalid program pointer\n"); 7723 return -EINVAL; 7724 } 7725 7726 if (prog->instances.nr <= 0) { 7727 pr_warn("no instances of prog %s to pin\n", prog->name); 7728 return -EINVAL; 7729 } 7730 7731 if (prog->instances.nr == 1) { 7732 /* don't create subdirs when pinning single instance */ 7733 return bpf_program__unpin_instance(prog, path, 0); 7734 } 7735 7736 for (i = 0; i < prog->instances.nr; i++) { 7737 char buf[PATH_MAX]; 7738 int len; 7739 7740 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 7741 if (len < 0) 7742 return -EINVAL; 7743 else if (len >= PATH_MAX) 7744 return -ENAMETOOLONG; 7745 7746 err = bpf_program__unpin_instance(prog, buf, i); 7747 if (err) 7748 return err; 7749 } 7750 7751 err = rmdir(path); 7752 if (err) 7753 return -errno; 7754 7755 return 0; 7756 } 7757 7758 int bpf_map__pin(struct bpf_map *map, const char *path) 7759 { 7760 char *cp, errmsg[STRERR_BUFSIZE]; 7761 int err; 7762 7763 if (map == NULL) { 7764 pr_warn("invalid map pointer\n"); 7765 return -EINVAL; 7766 } 7767 7768 if (map->pin_path) { 7769 if (path && strcmp(path, map->pin_path)) { 7770 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7771 bpf_map__name(map), map->pin_path, path); 7772 return -EINVAL; 7773 } else if (map->pinned) { 7774 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7775 bpf_map__name(map), map->pin_path); 7776 return 0; 7777 } 7778 } else { 7779 if (!path) { 7780 pr_warn("missing a path to pin map '%s' at\n", 7781 bpf_map__name(map)); 7782 return -EINVAL; 7783 } else if (map->pinned) { 7784 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7785 return -EEXIST; 7786 } 7787 7788 map->pin_path = strdup(path); 7789 if (!map->pin_path) { 7790 err = -errno; 7791 goto out_err; 7792 } 7793 } 7794 7795 err = make_parent_dir(map->pin_path); 7796 if (err) 7797 return err; 7798 7799 err = check_path(map->pin_path); 7800 if (err) 7801 return err; 7802 7803 if (bpf_obj_pin(map->fd, map->pin_path)) { 7804 err = -errno; 7805 goto out_err; 7806 } 7807 7808 map->pinned = true; 7809 pr_debug("pinned map '%s'\n", map->pin_path); 7810 7811 return 0; 7812 7813 out_err: 7814 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7815 pr_warn("failed to pin map: %s\n", cp); 7816 return err; 7817 } 7818 7819 int bpf_map__unpin(struct bpf_map *map, const char *path) 7820 { 7821 int err; 7822 7823 if (map == NULL) { 7824 pr_warn("invalid map pointer\n"); 7825 return -EINVAL; 7826 } 7827 7828 if (map->pin_path) { 7829 if (path && strcmp(path, map->pin_path)) { 7830 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7831 bpf_map__name(map), map->pin_path, path); 7832 return -EINVAL; 7833 } 7834 path = map->pin_path; 7835 } else if (!path) { 7836 pr_warn("no path to unpin map '%s' from\n", 7837 bpf_map__name(map)); 7838 return -EINVAL; 7839 } 7840 7841 err = check_path(path); 7842 if (err) 7843 return err; 7844 7845 err = unlink(path); 7846 if (err != 0) 7847 return -errno; 7848 7849 map->pinned = false; 7850 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7851 7852 return 0; 7853 } 7854 7855 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7856 { 7857 char *new = NULL; 7858 7859 if (path) { 7860 new = strdup(path); 7861 if (!new) 7862 return -errno; 7863 } 7864 7865 free(map->pin_path); 7866 map->pin_path = new; 7867 return 0; 7868 } 7869 7870 const char *bpf_map__get_pin_path(const struct bpf_map *map) 7871 { 7872 return map->pin_path; 7873 } 7874 7875 bool bpf_map__is_pinned(const struct bpf_map *map) 7876 { 7877 return map->pinned; 7878 } 7879 7880 static void sanitize_pin_path(char *s) 7881 { 7882 /* bpffs disallows periods in path names */ 7883 while (*s) { 7884 if (*s == '.') 7885 *s = '_'; 7886 s++; 7887 } 7888 } 7889 7890 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7891 { 7892 struct bpf_map *map; 7893 int err; 7894 7895 if (!obj) 7896 return -ENOENT; 7897 7898 if (!obj->loaded) { 7899 pr_warn("object not yet loaded; load it first\n"); 7900 return -ENOENT; 7901 } 7902 7903 bpf_object__for_each_map(map, obj) { 7904 char *pin_path = NULL; 7905 char buf[PATH_MAX]; 7906 7907 if (path) { 7908 int len; 7909 7910 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7911 bpf_map__name(map)); 7912 if (len < 0) { 7913 err = -EINVAL; 7914 goto err_unpin_maps; 7915 } else if (len >= PATH_MAX) { 7916 err = -ENAMETOOLONG; 7917 goto err_unpin_maps; 7918 } 7919 sanitize_pin_path(buf); 7920 pin_path = buf; 7921 } else if (!map->pin_path) { 7922 continue; 7923 } 7924 7925 err = bpf_map__pin(map, pin_path); 7926 if (err) 7927 goto err_unpin_maps; 7928 } 7929 7930 return 0; 7931 7932 err_unpin_maps: 7933 while ((map = bpf_map__prev(map, obj))) { 7934 if (!map->pin_path) 7935 continue; 7936 7937 bpf_map__unpin(map, NULL); 7938 } 7939 7940 return err; 7941 } 7942 7943 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 7944 { 7945 struct bpf_map *map; 7946 int err; 7947 7948 if (!obj) 7949 return -ENOENT; 7950 7951 bpf_object__for_each_map(map, obj) { 7952 char *pin_path = NULL; 7953 char buf[PATH_MAX]; 7954 7955 if (path) { 7956 int len; 7957 7958 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7959 bpf_map__name(map)); 7960 if (len < 0) 7961 return -EINVAL; 7962 else if (len >= PATH_MAX) 7963 return -ENAMETOOLONG; 7964 sanitize_pin_path(buf); 7965 pin_path = buf; 7966 } else if (!map->pin_path) { 7967 continue; 7968 } 7969 7970 err = bpf_map__unpin(map, pin_path); 7971 if (err) 7972 return err; 7973 } 7974 7975 return 0; 7976 } 7977 7978 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 7979 { 7980 struct bpf_program *prog; 7981 int err; 7982 7983 if (!obj) 7984 return -ENOENT; 7985 7986 if (!obj->loaded) { 7987 pr_warn("object not yet loaded; load it first\n"); 7988 return -ENOENT; 7989 } 7990 7991 bpf_object__for_each_program(prog, obj) { 7992 char buf[PATH_MAX]; 7993 int len; 7994 7995 len = snprintf(buf, PATH_MAX, "%s/%s", path, 7996 prog->pin_name); 7997 if (len < 0) { 7998 err = -EINVAL; 7999 goto err_unpin_programs; 8000 } else if (len >= PATH_MAX) { 8001 err = -ENAMETOOLONG; 8002 goto err_unpin_programs; 8003 } 8004 8005 err = bpf_program__pin(prog, buf); 8006 if (err) 8007 goto err_unpin_programs; 8008 } 8009 8010 return 0; 8011 8012 err_unpin_programs: 8013 while ((prog = bpf_program__prev(prog, obj))) { 8014 char buf[PATH_MAX]; 8015 int len; 8016 8017 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8018 prog->pin_name); 8019 if (len < 0) 8020 continue; 8021 else if (len >= PATH_MAX) 8022 continue; 8023 8024 bpf_program__unpin(prog, buf); 8025 } 8026 8027 return err; 8028 } 8029 8030 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8031 { 8032 struct bpf_program *prog; 8033 int err; 8034 8035 if (!obj) 8036 return -ENOENT; 8037 8038 bpf_object__for_each_program(prog, obj) { 8039 char buf[PATH_MAX]; 8040 int len; 8041 8042 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8043 prog->pin_name); 8044 if (len < 0) 8045 return -EINVAL; 8046 else if (len >= PATH_MAX) 8047 return -ENAMETOOLONG; 8048 8049 err = bpf_program__unpin(prog, buf); 8050 if (err) 8051 return err; 8052 } 8053 8054 return 0; 8055 } 8056 8057 int bpf_object__pin(struct bpf_object *obj, const char *path) 8058 { 8059 int err; 8060 8061 err = bpf_object__pin_maps(obj, path); 8062 if (err) 8063 return err; 8064 8065 err = bpf_object__pin_programs(obj, path); 8066 if (err) { 8067 bpf_object__unpin_maps(obj, path); 8068 return err; 8069 } 8070 8071 return 0; 8072 } 8073 8074 static void bpf_map__destroy(struct bpf_map *map) 8075 { 8076 if (map->clear_priv) 8077 map->clear_priv(map, map->priv); 8078 map->priv = NULL; 8079 map->clear_priv = NULL; 8080 8081 if (map->inner_map) { 8082 bpf_map__destroy(map->inner_map); 8083 zfree(&map->inner_map); 8084 } 8085 8086 zfree(&map->init_slots); 8087 map->init_slots_sz = 0; 8088 8089 if (map->mmaped) { 8090 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8091 map->mmaped = NULL; 8092 } 8093 8094 if (map->st_ops) { 8095 zfree(&map->st_ops->data); 8096 zfree(&map->st_ops->progs); 8097 zfree(&map->st_ops->kern_func_off); 8098 zfree(&map->st_ops); 8099 } 8100 8101 zfree(&map->name); 8102 zfree(&map->pin_path); 8103 8104 if (map->fd >= 0) 8105 zclose(map->fd); 8106 } 8107 8108 void bpf_object__close(struct bpf_object *obj) 8109 { 8110 size_t i; 8111 8112 if (IS_ERR_OR_NULL(obj)) 8113 return; 8114 8115 if (obj->clear_priv) 8116 obj->clear_priv(obj, obj->priv); 8117 8118 bpf_object__elf_finish(obj); 8119 bpf_object__unload(obj); 8120 btf__free(obj->btf); 8121 btf_ext__free(obj->btf_ext); 8122 8123 for (i = 0; i < obj->nr_maps; i++) 8124 bpf_map__destroy(&obj->maps[i]); 8125 8126 zfree(&obj->kconfig); 8127 zfree(&obj->externs); 8128 obj->nr_extern = 0; 8129 8130 zfree(&obj->maps); 8131 obj->nr_maps = 0; 8132 8133 if (obj->programs && obj->nr_programs) { 8134 for (i = 0; i < obj->nr_programs; i++) 8135 bpf_program__exit(&obj->programs[i]); 8136 } 8137 zfree(&obj->programs); 8138 8139 list_del(&obj->list); 8140 free(obj); 8141 } 8142 8143 struct bpf_object * 8144 bpf_object__next(struct bpf_object *prev) 8145 { 8146 struct bpf_object *next; 8147 8148 if (!prev) 8149 next = list_first_entry(&bpf_objects_list, 8150 struct bpf_object, 8151 list); 8152 else 8153 next = list_next_entry(prev, list); 8154 8155 /* Empty list is noticed here so don't need checking on entry. */ 8156 if (&next->list == &bpf_objects_list) 8157 return NULL; 8158 8159 return next; 8160 } 8161 8162 const char *bpf_object__name(const struct bpf_object *obj) 8163 { 8164 return obj ? obj->name : ERR_PTR(-EINVAL); 8165 } 8166 8167 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8168 { 8169 return obj ? obj->kern_version : 0; 8170 } 8171 8172 struct btf *bpf_object__btf(const struct bpf_object *obj) 8173 { 8174 return obj ? obj->btf : NULL; 8175 } 8176 8177 int bpf_object__btf_fd(const struct bpf_object *obj) 8178 { 8179 return obj->btf ? btf__fd(obj->btf) : -1; 8180 } 8181 8182 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8183 bpf_object_clear_priv_t clear_priv) 8184 { 8185 if (obj->priv && obj->clear_priv) 8186 obj->clear_priv(obj, obj->priv); 8187 8188 obj->priv = priv; 8189 obj->clear_priv = clear_priv; 8190 return 0; 8191 } 8192 8193 void *bpf_object__priv(const struct bpf_object *obj) 8194 { 8195 return obj ? obj->priv : ERR_PTR(-EINVAL); 8196 } 8197 8198 static struct bpf_program * 8199 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8200 bool forward) 8201 { 8202 size_t nr_programs = obj->nr_programs; 8203 ssize_t idx; 8204 8205 if (!nr_programs) 8206 return NULL; 8207 8208 if (!p) 8209 /* Iter from the beginning */ 8210 return forward ? &obj->programs[0] : 8211 &obj->programs[nr_programs - 1]; 8212 8213 if (p->obj != obj) { 8214 pr_warn("error: program handler doesn't match object\n"); 8215 return NULL; 8216 } 8217 8218 idx = (p - obj->programs) + (forward ? 1 : -1); 8219 if (idx >= obj->nr_programs || idx < 0) 8220 return NULL; 8221 return &obj->programs[idx]; 8222 } 8223 8224 struct bpf_program * 8225 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8226 { 8227 struct bpf_program *prog = prev; 8228 8229 do { 8230 prog = __bpf_program__iter(prog, obj, true); 8231 } while (prog && prog_is_subprog(obj, prog)); 8232 8233 return prog; 8234 } 8235 8236 struct bpf_program * 8237 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8238 { 8239 struct bpf_program *prog = next; 8240 8241 do { 8242 prog = __bpf_program__iter(prog, obj, false); 8243 } while (prog && prog_is_subprog(obj, prog)); 8244 8245 return prog; 8246 } 8247 8248 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8249 bpf_program_clear_priv_t clear_priv) 8250 { 8251 if (prog->priv && prog->clear_priv) 8252 prog->clear_priv(prog, prog->priv); 8253 8254 prog->priv = priv; 8255 prog->clear_priv = clear_priv; 8256 return 0; 8257 } 8258 8259 void *bpf_program__priv(const struct bpf_program *prog) 8260 { 8261 return prog ? prog->priv : ERR_PTR(-EINVAL); 8262 } 8263 8264 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8265 { 8266 prog->prog_ifindex = ifindex; 8267 } 8268 8269 const char *bpf_program__name(const struct bpf_program *prog) 8270 { 8271 return prog->name; 8272 } 8273 8274 const char *bpf_program__section_name(const struct bpf_program *prog) 8275 { 8276 return prog->sec_name; 8277 } 8278 8279 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8280 { 8281 const char *title; 8282 8283 title = prog->sec_name; 8284 if (needs_copy) { 8285 title = strdup(title); 8286 if (!title) { 8287 pr_warn("failed to strdup program title\n"); 8288 return ERR_PTR(-ENOMEM); 8289 } 8290 } 8291 8292 return title; 8293 } 8294 8295 bool bpf_program__autoload(const struct bpf_program *prog) 8296 { 8297 return prog->load; 8298 } 8299 8300 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8301 { 8302 if (prog->obj->loaded) 8303 return -EINVAL; 8304 8305 prog->load = autoload; 8306 return 0; 8307 } 8308 8309 int bpf_program__fd(const struct bpf_program *prog) 8310 { 8311 return bpf_program__nth_fd(prog, 0); 8312 } 8313 8314 size_t bpf_program__size(const struct bpf_program *prog) 8315 { 8316 return prog->insns_cnt * BPF_INSN_SZ; 8317 } 8318 8319 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8320 bpf_program_prep_t prep) 8321 { 8322 int *instances_fds; 8323 8324 if (nr_instances <= 0 || !prep) 8325 return -EINVAL; 8326 8327 if (prog->instances.nr > 0 || prog->instances.fds) { 8328 pr_warn("Can't set pre-processor after loading\n"); 8329 return -EINVAL; 8330 } 8331 8332 instances_fds = malloc(sizeof(int) * nr_instances); 8333 if (!instances_fds) { 8334 pr_warn("alloc memory failed for fds\n"); 8335 return -ENOMEM; 8336 } 8337 8338 /* fill all fd with -1 */ 8339 memset(instances_fds, -1, sizeof(int) * nr_instances); 8340 8341 prog->instances.nr = nr_instances; 8342 prog->instances.fds = instances_fds; 8343 prog->preprocessor = prep; 8344 return 0; 8345 } 8346 8347 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8348 { 8349 int fd; 8350 8351 if (!prog) 8352 return -EINVAL; 8353 8354 if (n >= prog->instances.nr || n < 0) { 8355 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8356 n, prog->name, prog->instances.nr); 8357 return -EINVAL; 8358 } 8359 8360 fd = prog->instances.fds[n]; 8361 if (fd < 0) { 8362 pr_warn("%dth instance of program '%s' is invalid\n", 8363 n, prog->name); 8364 return -ENOENT; 8365 } 8366 8367 return fd; 8368 } 8369 8370 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 8371 { 8372 return prog->type; 8373 } 8374 8375 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8376 { 8377 prog->type = type; 8378 } 8379 8380 static bool bpf_program__is_type(const struct bpf_program *prog, 8381 enum bpf_prog_type type) 8382 { 8383 return prog ? (prog->type == type) : false; 8384 } 8385 8386 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8387 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8388 { \ 8389 if (!prog) \ 8390 return -EINVAL; \ 8391 bpf_program__set_type(prog, TYPE); \ 8392 return 0; \ 8393 } \ 8394 \ 8395 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8396 { \ 8397 return bpf_program__is_type(prog, TYPE); \ 8398 } \ 8399 8400 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8401 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8402 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8403 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8404 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8405 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8406 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8407 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8408 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8409 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8410 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8411 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8412 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8413 8414 enum bpf_attach_type 8415 bpf_program__get_expected_attach_type(struct bpf_program *prog) 8416 { 8417 return prog->expected_attach_type; 8418 } 8419 8420 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8421 enum bpf_attach_type type) 8422 { 8423 prog->expected_attach_type = type; 8424 } 8425 8426 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8427 attachable, attach_btf) \ 8428 { \ 8429 .sec = string, \ 8430 .len = sizeof(string) - 1, \ 8431 .prog_type = ptype, \ 8432 .expected_attach_type = eatype, \ 8433 .is_exp_attach_type_optional = eatype_optional, \ 8434 .is_attachable = attachable, \ 8435 .is_attach_btf = attach_btf, \ 8436 } 8437 8438 /* Programs that can NOT be attached. */ 8439 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8440 8441 /* Programs that can be attached. */ 8442 #define BPF_APROG_SEC(string, ptype, atype) \ 8443 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8444 8445 /* Programs that must specify expected attach type at load time. */ 8446 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 8447 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8448 8449 /* Programs that use BTF to identify attach point */ 8450 #define BPF_PROG_BTF(string, ptype, eatype) \ 8451 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8452 8453 /* Programs that can be attached but attach type can't be identified by section 8454 * name. Kept for backward compatibility. 8455 */ 8456 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8457 8458 #define SEC_DEF(sec_pfx, ptype, ...) { \ 8459 .sec = sec_pfx, \ 8460 .len = sizeof(sec_pfx) - 1, \ 8461 .prog_type = BPF_PROG_TYPE_##ptype, \ 8462 __VA_ARGS__ \ 8463 } 8464 8465 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8466 struct bpf_program *prog); 8467 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8468 struct bpf_program *prog); 8469 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8470 struct bpf_program *prog); 8471 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8472 struct bpf_program *prog); 8473 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8474 struct bpf_program *prog); 8475 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8476 struct bpf_program *prog); 8477 8478 static const struct bpf_sec_def section_defs[] = { 8479 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8480 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8481 SEC_DEF("kprobe/", KPROBE, 8482 .attach_fn = attach_kprobe), 8483 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8484 SEC_DEF("kretprobe/", KPROBE, 8485 .attach_fn = attach_kprobe), 8486 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8487 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8488 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8489 SEC_DEF("tracepoint/", TRACEPOINT, 8490 .attach_fn = attach_tp), 8491 SEC_DEF("tp/", TRACEPOINT, 8492 .attach_fn = attach_tp), 8493 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8494 .attach_fn = attach_raw_tp), 8495 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8496 .attach_fn = attach_raw_tp), 8497 SEC_DEF("tp_btf/", TRACING, 8498 .expected_attach_type = BPF_TRACE_RAW_TP, 8499 .is_attach_btf = true, 8500 .attach_fn = attach_trace), 8501 SEC_DEF("fentry/", TRACING, 8502 .expected_attach_type = BPF_TRACE_FENTRY, 8503 .is_attach_btf = true, 8504 .attach_fn = attach_trace), 8505 SEC_DEF("fmod_ret/", TRACING, 8506 .expected_attach_type = BPF_MODIFY_RETURN, 8507 .is_attach_btf = true, 8508 .attach_fn = attach_trace), 8509 SEC_DEF("fexit/", TRACING, 8510 .expected_attach_type = BPF_TRACE_FEXIT, 8511 .is_attach_btf = true, 8512 .attach_fn = attach_trace), 8513 SEC_DEF("fentry.s/", TRACING, 8514 .expected_attach_type = BPF_TRACE_FENTRY, 8515 .is_attach_btf = true, 8516 .is_sleepable = true, 8517 .attach_fn = attach_trace), 8518 SEC_DEF("fmod_ret.s/", TRACING, 8519 .expected_attach_type = BPF_MODIFY_RETURN, 8520 .is_attach_btf = true, 8521 .is_sleepable = true, 8522 .attach_fn = attach_trace), 8523 SEC_DEF("fexit.s/", TRACING, 8524 .expected_attach_type = BPF_TRACE_FEXIT, 8525 .is_attach_btf = true, 8526 .is_sleepable = true, 8527 .attach_fn = attach_trace), 8528 SEC_DEF("freplace/", EXT, 8529 .is_attach_btf = true, 8530 .attach_fn = attach_trace), 8531 SEC_DEF("lsm/", LSM, 8532 .is_attach_btf = true, 8533 .expected_attach_type = BPF_LSM_MAC, 8534 .attach_fn = attach_lsm), 8535 SEC_DEF("lsm.s/", LSM, 8536 .is_attach_btf = true, 8537 .is_sleepable = true, 8538 .expected_attach_type = BPF_LSM_MAC, 8539 .attach_fn = attach_lsm), 8540 SEC_DEF("iter/", TRACING, 8541 .expected_attach_type = BPF_TRACE_ITER, 8542 .is_attach_btf = true, 8543 .attach_fn = attach_iter), 8544 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8545 BPF_XDP_DEVMAP), 8546 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8547 BPF_XDP_CPUMAP), 8548 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8549 BPF_XDP), 8550 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8551 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8552 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8553 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8554 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8555 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8556 BPF_CGROUP_INET_INGRESS), 8557 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8558 BPF_CGROUP_INET_EGRESS), 8559 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8560 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8561 BPF_CGROUP_INET_SOCK_CREATE), 8562 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8563 BPF_CGROUP_INET_SOCK_RELEASE), 8564 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8565 BPF_CGROUP_INET_SOCK_CREATE), 8566 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8567 BPF_CGROUP_INET4_POST_BIND), 8568 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8569 BPF_CGROUP_INET6_POST_BIND), 8570 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8571 BPF_CGROUP_DEVICE), 8572 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8573 BPF_CGROUP_SOCK_OPS), 8574 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8575 BPF_SK_SKB_STREAM_PARSER), 8576 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8577 BPF_SK_SKB_STREAM_VERDICT), 8578 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8579 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8580 BPF_SK_MSG_VERDICT), 8581 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8582 BPF_LIRC_MODE2), 8583 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8584 BPF_FLOW_DISSECTOR), 8585 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8586 BPF_CGROUP_INET4_BIND), 8587 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8588 BPF_CGROUP_INET6_BIND), 8589 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8590 BPF_CGROUP_INET4_CONNECT), 8591 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8592 BPF_CGROUP_INET6_CONNECT), 8593 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8594 BPF_CGROUP_UDP4_SENDMSG), 8595 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8596 BPF_CGROUP_UDP6_SENDMSG), 8597 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8598 BPF_CGROUP_UDP4_RECVMSG), 8599 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8600 BPF_CGROUP_UDP6_RECVMSG), 8601 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8602 BPF_CGROUP_INET4_GETPEERNAME), 8603 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8604 BPF_CGROUP_INET6_GETPEERNAME), 8605 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8606 BPF_CGROUP_INET4_GETSOCKNAME), 8607 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8608 BPF_CGROUP_INET6_GETSOCKNAME), 8609 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8610 BPF_CGROUP_SYSCTL), 8611 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8612 BPF_CGROUP_GETSOCKOPT), 8613 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8614 BPF_CGROUP_SETSOCKOPT), 8615 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8616 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8617 BPF_SK_LOOKUP), 8618 }; 8619 8620 #undef BPF_PROG_SEC_IMPL 8621 #undef BPF_PROG_SEC 8622 #undef BPF_APROG_SEC 8623 #undef BPF_EAPROG_SEC 8624 #undef BPF_APROG_COMPAT 8625 #undef SEC_DEF 8626 8627 #define MAX_TYPE_NAME_SIZE 32 8628 8629 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8630 { 8631 int i, n = ARRAY_SIZE(section_defs); 8632 8633 for (i = 0; i < n; i++) { 8634 if (strncmp(sec_name, 8635 section_defs[i].sec, section_defs[i].len)) 8636 continue; 8637 return §ion_defs[i]; 8638 } 8639 return NULL; 8640 } 8641 8642 static char *libbpf_get_type_names(bool attach_type) 8643 { 8644 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8645 char *buf; 8646 8647 buf = malloc(len); 8648 if (!buf) 8649 return NULL; 8650 8651 buf[0] = '\0'; 8652 /* Forge string buf with all available names */ 8653 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8654 if (attach_type && !section_defs[i].is_attachable) 8655 continue; 8656 8657 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8658 free(buf); 8659 return NULL; 8660 } 8661 strcat(buf, " "); 8662 strcat(buf, section_defs[i].sec); 8663 } 8664 8665 return buf; 8666 } 8667 8668 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8669 enum bpf_attach_type *expected_attach_type) 8670 { 8671 const struct bpf_sec_def *sec_def; 8672 char *type_names; 8673 8674 if (!name) 8675 return -EINVAL; 8676 8677 sec_def = find_sec_def(name); 8678 if (sec_def) { 8679 *prog_type = sec_def->prog_type; 8680 *expected_attach_type = sec_def->expected_attach_type; 8681 return 0; 8682 } 8683 8684 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8685 type_names = libbpf_get_type_names(false); 8686 if (type_names != NULL) { 8687 pr_debug("supported section(type) names are:%s\n", type_names); 8688 free(type_names); 8689 } 8690 8691 return -ESRCH; 8692 } 8693 8694 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8695 size_t offset) 8696 { 8697 struct bpf_map *map; 8698 size_t i; 8699 8700 for (i = 0; i < obj->nr_maps; i++) { 8701 map = &obj->maps[i]; 8702 if (!bpf_map__is_struct_ops(map)) 8703 continue; 8704 if (map->sec_offset <= offset && 8705 offset - map->sec_offset < map->def.value_size) 8706 return map; 8707 } 8708 8709 return NULL; 8710 } 8711 8712 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8713 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8714 GElf_Shdr *shdr, Elf_Data *data) 8715 { 8716 const struct btf_member *member; 8717 struct bpf_struct_ops *st_ops; 8718 struct bpf_program *prog; 8719 unsigned int shdr_idx; 8720 const struct btf *btf; 8721 struct bpf_map *map; 8722 Elf_Data *symbols; 8723 unsigned int moff, insn_idx; 8724 const char *name; 8725 __u32 member_idx; 8726 GElf_Sym sym; 8727 GElf_Rel rel; 8728 int i, nrels; 8729 8730 symbols = obj->efile.symbols; 8731 btf = obj->btf; 8732 nrels = shdr->sh_size / shdr->sh_entsize; 8733 for (i = 0; i < nrels; i++) { 8734 if (!gelf_getrel(data, i, &rel)) { 8735 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8736 return -LIBBPF_ERRNO__FORMAT; 8737 } 8738 8739 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 8740 pr_warn("struct_ops reloc: symbol %zx not found\n", 8741 (size_t)GELF_R_SYM(rel.r_info)); 8742 return -LIBBPF_ERRNO__FORMAT; 8743 } 8744 8745 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 8746 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 8747 if (!map) { 8748 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 8749 (size_t)rel.r_offset); 8750 return -EINVAL; 8751 } 8752 8753 moff = rel.r_offset - map->sec_offset; 8754 shdr_idx = sym.st_shndx; 8755 st_ops = map->st_ops; 8756 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8757 map->name, 8758 (long long)(rel.r_info >> 32), 8759 (long long)sym.st_value, 8760 shdr_idx, (size_t)rel.r_offset, 8761 map->sec_offset, sym.st_name, name); 8762 8763 if (shdr_idx >= SHN_LORESERVE) { 8764 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 8765 map->name, (size_t)rel.r_offset, shdr_idx); 8766 return -LIBBPF_ERRNO__RELOC; 8767 } 8768 if (sym.st_value % BPF_INSN_SZ) { 8769 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8770 map->name, (unsigned long long)sym.st_value); 8771 return -LIBBPF_ERRNO__FORMAT; 8772 } 8773 insn_idx = sym.st_value / BPF_INSN_SZ; 8774 8775 member = find_member_by_offset(st_ops->type, moff * 8); 8776 if (!member) { 8777 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8778 map->name, moff); 8779 return -EINVAL; 8780 } 8781 member_idx = member - btf_members(st_ops->type); 8782 name = btf__name_by_offset(btf, member->name_off); 8783 8784 if (!resolve_func_ptr(btf, member->type, NULL)) { 8785 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8786 map->name, name); 8787 return -EINVAL; 8788 } 8789 8790 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8791 if (!prog) { 8792 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8793 map->name, shdr_idx, name); 8794 return -EINVAL; 8795 } 8796 8797 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 8798 const struct bpf_sec_def *sec_def; 8799 8800 sec_def = find_sec_def(prog->sec_name); 8801 if (sec_def && 8802 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 8803 /* for pr_warn */ 8804 prog->type = sec_def->prog_type; 8805 goto invalid_prog; 8806 } 8807 8808 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 8809 prog->attach_btf_id = st_ops->type_id; 8810 prog->expected_attach_type = member_idx; 8811 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 8812 prog->attach_btf_id != st_ops->type_id || 8813 prog->expected_attach_type != member_idx) { 8814 goto invalid_prog; 8815 } 8816 st_ops->progs[member_idx] = prog; 8817 } 8818 8819 return 0; 8820 8821 invalid_prog: 8822 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8823 map->name, prog->name, prog->sec_name, prog->type, 8824 prog->attach_btf_id, prog->expected_attach_type, name); 8825 return -EINVAL; 8826 } 8827 8828 #define BTF_TRACE_PREFIX "btf_trace_" 8829 #define BTF_LSM_PREFIX "bpf_lsm_" 8830 #define BTF_ITER_PREFIX "bpf_iter_" 8831 #define BTF_MAX_NAME_SIZE 128 8832 8833 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8834 const char *name, __u32 kind) 8835 { 8836 char btf_type_name[BTF_MAX_NAME_SIZE]; 8837 int ret; 8838 8839 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8840 "%s%s", prefix, name); 8841 /* snprintf returns the number of characters written excluding the 8842 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8843 * indicates truncation. 8844 */ 8845 if (ret < 0 || ret >= sizeof(btf_type_name)) 8846 return -ENAMETOOLONG; 8847 return btf__find_by_name_kind(btf, btf_type_name, kind); 8848 } 8849 8850 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8851 enum bpf_attach_type attach_type) 8852 { 8853 int err; 8854 8855 if (attach_type == BPF_TRACE_RAW_TP) 8856 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 8857 BTF_KIND_TYPEDEF); 8858 else if (attach_type == BPF_LSM_MAC) 8859 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 8860 BTF_KIND_FUNC); 8861 else if (attach_type == BPF_TRACE_ITER) 8862 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 8863 BTF_KIND_FUNC); 8864 else 8865 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8866 8867 return err; 8868 } 8869 8870 int libbpf_find_vmlinux_btf_id(const char *name, 8871 enum bpf_attach_type attach_type) 8872 { 8873 struct btf *btf; 8874 int err; 8875 8876 btf = libbpf_find_kernel_btf(); 8877 if (IS_ERR(btf)) { 8878 pr_warn("vmlinux BTF is not found\n"); 8879 return -EINVAL; 8880 } 8881 8882 err = find_attach_btf_id(btf, name, attach_type); 8883 if (err <= 0) 8884 pr_warn("%s is not found in vmlinux BTF\n", name); 8885 8886 btf__free(btf); 8887 return err; 8888 } 8889 8890 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 8891 { 8892 struct bpf_prog_info_linear *info_linear; 8893 struct bpf_prog_info *info; 8894 struct btf *btf = NULL; 8895 int err = -EINVAL; 8896 8897 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 8898 if (IS_ERR_OR_NULL(info_linear)) { 8899 pr_warn("failed get_prog_info_linear for FD %d\n", 8900 attach_prog_fd); 8901 return -EINVAL; 8902 } 8903 info = &info_linear->info; 8904 if (!info->btf_id) { 8905 pr_warn("The target program doesn't have BTF\n"); 8906 goto out; 8907 } 8908 if (btf__get_from_id(info->btf_id, &btf)) { 8909 pr_warn("Failed to get BTF of the program\n"); 8910 goto out; 8911 } 8912 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 8913 btf__free(btf); 8914 if (err <= 0) { 8915 pr_warn("%s is not found in prog's BTF\n", name); 8916 goto out; 8917 } 8918 out: 8919 free(info_linear); 8920 return err; 8921 } 8922 8923 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 8924 enum bpf_attach_type attach_type, 8925 int *btf_obj_fd, int *btf_type_id) 8926 { 8927 int ret, i; 8928 8929 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 8930 if (ret > 0) { 8931 *btf_obj_fd = 0; /* vmlinux BTF */ 8932 *btf_type_id = ret; 8933 return 0; 8934 } 8935 if (ret != -ENOENT) 8936 return ret; 8937 8938 ret = load_module_btfs(obj); 8939 if (ret) 8940 return ret; 8941 8942 for (i = 0; i < obj->btf_module_cnt; i++) { 8943 const struct module_btf *mod = &obj->btf_modules[i]; 8944 8945 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 8946 if (ret > 0) { 8947 *btf_obj_fd = mod->fd; 8948 *btf_type_id = ret; 8949 return 0; 8950 } 8951 if (ret == -ENOENT) 8952 continue; 8953 8954 return ret; 8955 } 8956 8957 return -ESRCH; 8958 } 8959 8960 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id) 8961 { 8962 enum bpf_attach_type attach_type = prog->expected_attach_type; 8963 __u32 attach_prog_fd = prog->attach_prog_fd; 8964 const char *name = prog->sec_name, *attach_name; 8965 const struct bpf_sec_def *sec = NULL; 8966 int i, err; 8967 8968 if (!name) 8969 return -EINVAL; 8970 8971 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8972 if (!section_defs[i].is_attach_btf) 8973 continue; 8974 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 8975 continue; 8976 8977 sec = §ion_defs[i]; 8978 break; 8979 } 8980 8981 if (!sec) { 8982 pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name); 8983 return -ESRCH; 8984 } 8985 attach_name = name + sec->len; 8986 8987 /* BPF program's BTF ID */ 8988 if (attach_prog_fd) { 8989 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 8990 if (err < 0) { 8991 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 8992 attach_prog_fd, attach_name, err); 8993 return err; 8994 } 8995 *btf_obj_fd = 0; 8996 *btf_type_id = err; 8997 return 0; 8998 } 8999 9000 /* kernel/module BTF ID */ 9001 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9002 if (err) { 9003 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9004 return err; 9005 } 9006 return 0; 9007 } 9008 9009 int libbpf_attach_type_by_name(const char *name, 9010 enum bpf_attach_type *attach_type) 9011 { 9012 char *type_names; 9013 int i; 9014 9015 if (!name) 9016 return -EINVAL; 9017 9018 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9019 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9020 continue; 9021 if (!section_defs[i].is_attachable) 9022 return -EINVAL; 9023 *attach_type = section_defs[i].expected_attach_type; 9024 return 0; 9025 } 9026 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9027 type_names = libbpf_get_type_names(true); 9028 if (type_names != NULL) { 9029 pr_debug("attachable section(type) names are:%s\n", type_names); 9030 free(type_names); 9031 } 9032 9033 return -EINVAL; 9034 } 9035 9036 int bpf_map__fd(const struct bpf_map *map) 9037 { 9038 return map ? map->fd : -EINVAL; 9039 } 9040 9041 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9042 { 9043 return map ? &map->def : ERR_PTR(-EINVAL); 9044 } 9045 9046 const char *bpf_map__name(const struct bpf_map *map) 9047 { 9048 return map ? map->name : NULL; 9049 } 9050 9051 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9052 { 9053 return map->def.type; 9054 } 9055 9056 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9057 { 9058 if (map->fd >= 0) 9059 return -EBUSY; 9060 map->def.type = type; 9061 return 0; 9062 } 9063 9064 __u32 bpf_map__map_flags(const struct bpf_map *map) 9065 { 9066 return map->def.map_flags; 9067 } 9068 9069 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9070 { 9071 if (map->fd >= 0) 9072 return -EBUSY; 9073 map->def.map_flags = flags; 9074 return 0; 9075 } 9076 9077 __u32 bpf_map__numa_node(const struct bpf_map *map) 9078 { 9079 return map->numa_node; 9080 } 9081 9082 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9083 { 9084 if (map->fd >= 0) 9085 return -EBUSY; 9086 map->numa_node = numa_node; 9087 return 0; 9088 } 9089 9090 __u32 bpf_map__key_size(const struct bpf_map *map) 9091 { 9092 return map->def.key_size; 9093 } 9094 9095 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9096 { 9097 if (map->fd >= 0) 9098 return -EBUSY; 9099 map->def.key_size = size; 9100 return 0; 9101 } 9102 9103 __u32 bpf_map__value_size(const struct bpf_map *map) 9104 { 9105 return map->def.value_size; 9106 } 9107 9108 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9109 { 9110 if (map->fd >= 0) 9111 return -EBUSY; 9112 map->def.value_size = size; 9113 return 0; 9114 } 9115 9116 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9117 { 9118 return map ? map->btf_key_type_id : 0; 9119 } 9120 9121 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9122 { 9123 return map ? map->btf_value_type_id : 0; 9124 } 9125 9126 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9127 bpf_map_clear_priv_t clear_priv) 9128 { 9129 if (!map) 9130 return -EINVAL; 9131 9132 if (map->priv) { 9133 if (map->clear_priv) 9134 map->clear_priv(map, map->priv); 9135 } 9136 9137 map->priv = priv; 9138 map->clear_priv = clear_priv; 9139 return 0; 9140 } 9141 9142 void *bpf_map__priv(const struct bpf_map *map) 9143 { 9144 return map ? map->priv : ERR_PTR(-EINVAL); 9145 } 9146 9147 int bpf_map__set_initial_value(struct bpf_map *map, 9148 const void *data, size_t size) 9149 { 9150 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9151 size != map->def.value_size || map->fd >= 0) 9152 return -EINVAL; 9153 9154 memcpy(map->mmaped, data, size); 9155 return 0; 9156 } 9157 9158 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9159 { 9160 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9161 } 9162 9163 bool bpf_map__is_internal(const struct bpf_map *map) 9164 { 9165 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9166 } 9167 9168 __u32 bpf_map__ifindex(const struct bpf_map *map) 9169 { 9170 return map->map_ifindex; 9171 } 9172 9173 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9174 { 9175 if (map->fd >= 0) 9176 return -EBUSY; 9177 map->map_ifindex = ifindex; 9178 return 0; 9179 } 9180 9181 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9182 { 9183 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9184 pr_warn("error: unsupported map type\n"); 9185 return -EINVAL; 9186 } 9187 if (map->inner_map_fd != -1) { 9188 pr_warn("error: inner_map_fd already specified\n"); 9189 return -EINVAL; 9190 } 9191 map->inner_map_fd = fd; 9192 return 0; 9193 } 9194 9195 static struct bpf_map * 9196 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9197 { 9198 ssize_t idx; 9199 struct bpf_map *s, *e; 9200 9201 if (!obj || !obj->maps) 9202 return NULL; 9203 9204 s = obj->maps; 9205 e = obj->maps + obj->nr_maps; 9206 9207 if ((m < s) || (m >= e)) { 9208 pr_warn("error in %s: map handler doesn't belong to object\n", 9209 __func__); 9210 return NULL; 9211 } 9212 9213 idx = (m - obj->maps) + i; 9214 if (idx >= obj->nr_maps || idx < 0) 9215 return NULL; 9216 return &obj->maps[idx]; 9217 } 9218 9219 struct bpf_map * 9220 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9221 { 9222 if (prev == NULL) 9223 return obj->maps; 9224 9225 return __bpf_map__iter(prev, obj, 1); 9226 } 9227 9228 struct bpf_map * 9229 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9230 { 9231 if (next == NULL) { 9232 if (!obj->nr_maps) 9233 return NULL; 9234 return obj->maps + obj->nr_maps - 1; 9235 } 9236 9237 return __bpf_map__iter(next, obj, -1); 9238 } 9239 9240 struct bpf_map * 9241 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9242 { 9243 struct bpf_map *pos; 9244 9245 bpf_object__for_each_map(pos, obj) { 9246 if (pos->name && !strcmp(pos->name, name)) 9247 return pos; 9248 } 9249 return NULL; 9250 } 9251 9252 int 9253 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9254 { 9255 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9256 } 9257 9258 struct bpf_map * 9259 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9260 { 9261 return ERR_PTR(-ENOTSUP); 9262 } 9263 9264 long libbpf_get_error(const void *ptr) 9265 { 9266 return PTR_ERR_OR_ZERO(ptr); 9267 } 9268 9269 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9270 struct bpf_object **pobj, int *prog_fd) 9271 { 9272 struct bpf_prog_load_attr attr; 9273 9274 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9275 attr.file = file; 9276 attr.prog_type = type; 9277 attr.expected_attach_type = 0; 9278 9279 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9280 } 9281 9282 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9283 struct bpf_object **pobj, int *prog_fd) 9284 { 9285 struct bpf_object_open_attr open_attr = {}; 9286 struct bpf_program *prog, *first_prog = NULL; 9287 struct bpf_object *obj; 9288 struct bpf_map *map; 9289 int err; 9290 9291 if (!attr) 9292 return -EINVAL; 9293 if (!attr->file) 9294 return -EINVAL; 9295 9296 open_attr.file = attr->file; 9297 open_attr.prog_type = attr->prog_type; 9298 9299 obj = bpf_object__open_xattr(&open_attr); 9300 if (IS_ERR_OR_NULL(obj)) 9301 return -ENOENT; 9302 9303 bpf_object__for_each_program(prog, obj) { 9304 enum bpf_attach_type attach_type = attr->expected_attach_type; 9305 /* 9306 * to preserve backwards compatibility, bpf_prog_load treats 9307 * attr->prog_type, if specified, as an override to whatever 9308 * bpf_object__open guessed 9309 */ 9310 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9311 bpf_program__set_type(prog, attr->prog_type); 9312 bpf_program__set_expected_attach_type(prog, 9313 attach_type); 9314 } 9315 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9316 /* 9317 * we haven't guessed from section name and user 9318 * didn't provide a fallback type, too bad... 9319 */ 9320 bpf_object__close(obj); 9321 return -EINVAL; 9322 } 9323 9324 prog->prog_ifindex = attr->ifindex; 9325 prog->log_level = attr->log_level; 9326 prog->prog_flags |= attr->prog_flags; 9327 if (!first_prog) 9328 first_prog = prog; 9329 } 9330 9331 bpf_object__for_each_map(map, obj) { 9332 if (!bpf_map__is_offload_neutral(map)) 9333 map->map_ifindex = attr->ifindex; 9334 } 9335 9336 if (!first_prog) { 9337 pr_warn("object file doesn't contain bpf program\n"); 9338 bpf_object__close(obj); 9339 return -ENOENT; 9340 } 9341 9342 err = bpf_object__load(obj); 9343 if (err) { 9344 bpf_object__close(obj); 9345 return err; 9346 } 9347 9348 *pobj = obj; 9349 *prog_fd = bpf_program__fd(first_prog); 9350 return 0; 9351 } 9352 9353 struct bpf_link { 9354 int (*detach)(struct bpf_link *link); 9355 int (*destroy)(struct bpf_link *link); 9356 char *pin_path; /* NULL, if not pinned */ 9357 int fd; /* hook FD, -1 if not applicable */ 9358 bool disconnected; 9359 }; 9360 9361 /* Replace link's underlying BPF program with the new one */ 9362 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9363 { 9364 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9365 } 9366 9367 /* Release "ownership" of underlying BPF resource (typically, BPF program 9368 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9369 * link, when destructed through bpf_link__destroy() call won't attempt to 9370 * detach/unregisted that BPF resource. This is useful in situations where, 9371 * say, attached BPF program has to outlive userspace program that attached it 9372 * in the system. Depending on type of BPF program, though, there might be 9373 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9374 * exit of userspace program doesn't trigger automatic detachment and clean up 9375 * inside the kernel. 9376 */ 9377 void bpf_link__disconnect(struct bpf_link *link) 9378 { 9379 link->disconnected = true; 9380 } 9381 9382 int bpf_link__destroy(struct bpf_link *link) 9383 { 9384 int err = 0; 9385 9386 if (IS_ERR_OR_NULL(link)) 9387 return 0; 9388 9389 if (!link->disconnected && link->detach) 9390 err = link->detach(link); 9391 if (link->destroy) 9392 link->destroy(link); 9393 if (link->pin_path) 9394 free(link->pin_path); 9395 free(link); 9396 9397 return err; 9398 } 9399 9400 int bpf_link__fd(const struct bpf_link *link) 9401 { 9402 return link->fd; 9403 } 9404 9405 const char *bpf_link__pin_path(const struct bpf_link *link) 9406 { 9407 return link->pin_path; 9408 } 9409 9410 static int bpf_link__detach_fd(struct bpf_link *link) 9411 { 9412 return close(link->fd); 9413 } 9414 9415 struct bpf_link *bpf_link__open(const char *path) 9416 { 9417 struct bpf_link *link; 9418 int fd; 9419 9420 fd = bpf_obj_get(path); 9421 if (fd < 0) { 9422 fd = -errno; 9423 pr_warn("failed to open link at %s: %d\n", path, fd); 9424 return ERR_PTR(fd); 9425 } 9426 9427 link = calloc(1, sizeof(*link)); 9428 if (!link) { 9429 close(fd); 9430 return ERR_PTR(-ENOMEM); 9431 } 9432 link->detach = &bpf_link__detach_fd; 9433 link->fd = fd; 9434 9435 link->pin_path = strdup(path); 9436 if (!link->pin_path) { 9437 bpf_link__destroy(link); 9438 return ERR_PTR(-ENOMEM); 9439 } 9440 9441 return link; 9442 } 9443 9444 int bpf_link__detach(struct bpf_link *link) 9445 { 9446 return bpf_link_detach(link->fd) ? -errno : 0; 9447 } 9448 9449 int bpf_link__pin(struct bpf_link *link, const char *path) 9450 { 9451 int err; 9452 9453 if (link->pin_path) 9454 return -EBUSY; 9455 err = make_parent_dir(path); 9456 if (err) 9457 return err; 9458 err = check_path(path); 9459 if (err) 9460 return err; 9461 9462 link->pin_path = strdup(path); 9463 if (!link->pin_path) 9464 return -ENOMEM; 9465 9466 if (bpf_obj_pin(link->fd, link->pin_path)) { 9467 err = -errno; 9468 zfree(&link->pin_path); 9469 return err; 9470 } 9471 9472 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9473 return 0; 9474 } 9475 9476 int bpf_link__unpin(struct bpf_link *link) 9477 { 9478 int err; 9479 9480 if (!link->pin_path) 9481 return -EINVAL; 9482 9483 err = unlink(link->pin_path); 9484 if (err != 0) 9485 return -errno; 9486 9487 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9488 zfree(&link->pin_path); 9489 return 0; 9490 } 9491 9492 static int bpf_link__detach_perf_event(struct bpf_link *link) 9493 { 9494 int err; 9495 9496 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9497 if (err) 9498 err = -errno; 9499 9500 close(link->fd); 9501 return err; 9502 } 9503 9504 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9505 int pfd) 9506 { 9507 char errmsg[STRERR_BUFSIZE]; 9508 struct bpf_link *link; 9509 int prog_fd, err; 9510 9511 if (pfd < 0) { 9512 pr_warn("prog '%s': invalid perf event FD %d\n", 9513 prog->name, pfd); 9514 return ERR_PTR(-EINVAL); 9515 } 9516 prog_fd = bpf_program__fd(prog); 9517 if (prog_fd < 0) { 9518 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9519 prog->name); 9520 return ERR_PTR(-EINVAL); 9521 } 9522 9523 link = calloc(1, sizeof(*link)); 9524 if (!link) 9525 return ERR_PTR(-ENOMEM); 9526 link->detach = &bpf_link__detach_perf_event; 9527 link->fd = pfd; 9528 9529 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9530 err = -errno; 9531 free(link); 9532 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9533 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9534 if (err == -EPROTO) 9535 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9536 prog->name, pfd); 9537 return ERR_PTR(err); 9538 } 9539 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9540 err = -errno; 9541 free(link); 9542 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9543 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9544 return ERR_PTR(err); 9545 } 9546 return link; 9547 } 9548 9549 /* 9550 * this function is expected to parse integer in the range of [0, 2^31-1] from 9551 * given file using scanf format string fmt. If actual parsed value is 9552 * negative, the result might be indistinguishable from error 9553 */ 9554 static int parse_uint_from_file(const char *file, const char *fmt) 9555 { 9556 char buf[STRERR_BUFSIZE]; 9557 int err, ret; 9558 FILE *f; 9559 9560 f = fopen(file, "r"); 9561 if (!f) { 9562 err = -errno; 9563 pr_debug("failed to open '%s': %s\n", file, 9564 libbpf_strerror_r(err, buf, sizeof(buf))); 9565 return err; 9566 } 9567 err = fscanf(f, fmt, &ret); 9568 if (err != 1) { 9569 err = err == EOF ? -EIO : -errno; 9570 pr_debug("failed to parse '%s': %s\n", file, 9571 libbpf_strerror_r(err, buf, sizeof(buf))); 9572 fclose(f); 9573 return err; 9574 } 9575 fclose(f); 9576 return ret; 9577 } 9578 9579 static int determine_kprobe_perf_type(void) 9580 { 9581 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9582 9583 return parse_uint_from_file(file, "%d\n"); 9584 } 9585 9586 static int determine_uprobe_perf_type(void) 9587 { 9588 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9589 9590 return parse_uint_from_file(file, "%d\n"); 9591 } 9592 9593 static int determine_kprobe_retprobe_bit(void) 9594 { 9595 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9596 9597 return parse_uint_from_file(file, "config:%d\n"); 9598 } 9599 9600 static int determine_uprobe_retprobe_bit(void) 9601 { 9602 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9603 9604 return parse_uint_from_file(file, "config:%d\n"); 9605 } 9606 9607 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9608 uint64_t offset, int pid) 9609 { 9610 struct perf_event_attr attr = {}; 9611 char errmsg[STRERR_BUFSIZE]; 9612 int type, pfd, err; 9613 9614 type = uprobe ? determine_uprobe_perf_type() 9615 : determine_kprobe_perf_type(); 9616 if (type < 0) { 9617 pr_warn("failed to determine %s perf type: %s\n", 9618 uprobe ? "uprobe" : "kprobe", 9619 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9620 return type; 9621 } 9622 if (retprobe) { 9623 int bit = uprobe ? determine_uprobe_retprobe_bit() 9624 : determine_kprobe_retprobe_bit(); 9625 9626 if (bit < 0) { 9627 pr_warn("failed to determine %s retprobe bit: %s\n", 9628 uprobe ? "uprobe" : "kprobe", 9629 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9630 return bit; 9631 } 9632 attr.config |= 1 << bit; 9633 } 9634 attr.size = sizeof(attr); 9635 attr.type = type; 9636 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9637 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9638 9639 /* pid filter is meaningful only for uprobes */ 9640 pfd = syscall(__NR_perf_event_open, &attr, 9641 pid < 0 ? -1 : pid /* pid */, 9642 pid == -1 ? 0 : -1 /* cpu */, 9643 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9644 if (pfd < 0) { 9645 err = -errno; 9646 pr_warn("%s perf_event_open() failed: %s\n", 9647 uprobe ? "uprobe" : "kprobe", 9648 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9649 return err; 9650 } 9651 return pfd; 9652 } 9653 9654 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9655 bool retprobe, 9656 const char *func_name) 9657 { 9658 char errmsg[STRERR_BUFSIZE]; 9659 struct bpf_link *link; 9660 int pfd, err; 9661 9662 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 9663 0 /* offset */, -1 /* pid */); 9664 if (pfd < 0) { 9665 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 9666 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9667 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9668 return ERR_PTR(pfd); 9669 } 9670 link = bpf_program__attach_perf_event(prog, pfd); 9671 if (IS_ERR(link)) { 9672 close(pfd); 9673 err = PTR_ERR(link); 9674 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 9675 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 9676 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9677 return link; 9678 } 9679 return link; 9680 } 9681 9682 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 9683 struct bpf_program *prog) 9684 { 9685 const char *func_name; 9686 bool retprobe; 9687 9688 func_name = prog->sec_name + sec->len; 9689 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 9690 9691 return bpf_program__attach_kprobe(prog, retprobe, func_name); 9692 } 9693 9694 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 9695 bool retprobe, pid_t pid, 9696 const char *binary_path, 9697 size_t func_offset) 9698 { 9699 char errmsg[STRERR_BUFSIZE]; 9700 struct bpf_link *link; 9701 int pfd, err; 9702 9703 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 9704 binary_path, func_offset, pid); 9705 if (pfd < 0) { 9706 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 9707 prog->name, retprobe ? "uretprobe" : "uprobe", 9708 binary_path, func_offset, 9709 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9710 return ERR_PTR(pfd); 9711 } 9712 link = bpf_program__attach_perf_event(prog, pfd); 9713 if (IS_ERR(link)) { 9714 close(pfd); 9715 err = PTR_ERR(link); 9716 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 9717 prog->name, retprobe ? "uretprobe" : "uprobe", 9718 binary_path, func_offset, 9719 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9720 return link; 9721 } 9722 return link; 9723 } 9724 9725 static int determine_tracepoint_id(const char *tp_category, 9726 const char *tp_name) 9727 { 9728 char file[PATH_MAX]; 9729 int ret; 9730 9731 ret = snprintf(file, sizeof(file), 9732 "/sys/kernel/debug/tracing/events/%s/%s/id", 9733 tp_category, tp_name); 9734 if (ret < 0) 9735 return -errno; 9736 if (ret >= sizeof(file)) { 9737 pr_debug("tracepoint %s/%s path is too long\n", 9738 tp_category, tp_name); 9739 return -E2BIG; 9740 } 9741 return parse_uint_from_file(file, "%d\n"); 9742 } 9743 9744 static int perf_event_open_tracepoint(const char *tp_category, 9745 const char *tp_name) 9746 { 9747 struct perf_event_attr attr = {}; 9748 char errmsg[STRERR_BUFSIZE]; 9749 int tp_id, pfd, err; 9750 9751 tp_id = determine_tracepoint_id(tp_category, tp_name); 9752 if (tp_id < 0) { 9753 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 9754 tp_category, tp_name, 9755 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 9756 return tp_id; 9757 } 9758 9759 attr.type = PERF_TYPE_TRACEPOINT; 9760 attr.size = sizeof(attr); 9761 attr.config = tp_id; 9762 9763 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 9764 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9765 if (pfd < 0) { 9766 err = -errno; 9767 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 9768 tp_category, tp_name, 9769 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9770 return err; 9771 } 9772 return pfd; 9773 } 9774 9775 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 9776 const char *tp_category, 9777 const char *tp_name) 9778 { 9779 char errmsg[STRERR_BUFSIZE]; 9780 struct bpf_link *link; 9781 int pfd, err; 9782 9783 pfd = perf_event_open_tracepoint(tp_category, tp_name); 9784 if (pfd < 0) { 9785 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 9786 prog->name, tp_category, tp_name, 9787 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9788 return ERR_PTR(pfd); 9789 } 9790 link = bpf_program__attach_perf_event(prog, pfd); 9791 if (IS_ERR(link)) { 9792 close(pfd); 9793 err = PTR_ERR(link); 9794 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 9795 prog->name, tp_category, tp_name, 9796 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9797 return link; 9798 } 9799 return link; 9800 } 9801 9802 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 9803 struct bpf_program *prog) 9804 { 9805 char *sec_name, *tp_cat, *tp_name; 9806 struct bpf_link *link; 9807 9808 sec_name = strdup(prog->sec_name); 9809 if (!sec_name) 9810 return ERR_PTR(-ENOMEM); 9811 9812 /* extract "tp/<category>/<name>" */ 9813 tp_cat = sec_name + sec->len; 9814 tp_name = strchr(tp_cat, '/'); 9815 if (!tp_name) { 9816 link = ERR_PTR(-EINVAL); 9817 goto out; 9818 } 9819 *tp_name = '\0'; 9820 tp_name++; 9821 9822 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 9823 out: 9824 free(sec_name); 9825 return link; 9826 } 9827 9828 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 9829 const char *tp_name) 9830 { 9831 char errmsg[STRERR_BUFSIZE]; 9832 struct bpf_link *link; 9833 int prog_fd, pfd; 9834 9835 prog_fd = bpf_program__fd(prog); 9836 if (prog_fd < 0) { 9837 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9838 return ERR_PTR(-EINVAL); 9839 } 9840 9841 link = calloc(1, sizeof(*link)); 9842 if (!link) 9843 return ERR_PTR(-ENOMEM); 9844 link->detach = &bpf_link__detach_fd; 9845 9846 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 9847 if (pfd < 0) { 9848 pfd = -errno; 9849 free(link); 9850 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 9851 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9852 return ERR_PTR(pfd); 9853 } 9854 link->fd = pfd; 9855 return link; 9856 } 9857 9858 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 9859 struct bpf_program *prog) 9860 { 9861 const char *tp_name = prog->sec_name + sec->len; 9862 9863 return bpf_program__attach_raw_tracepoint(prog, tp_name); 9864 } 9865 9866 /* Common logic for all BPF program types that attach to a btf_id */ 9867 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 9868 { 9869 char errmsg[STRERR_BUFSIZE]; 9870 struct bpf_link *link; 9871 int prog_fd, pfd; 9872 9873 prog_fd = bpf_program__fd(prog); 9874 if (prog_fd < 0) { 9875 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9876 return ERR_PTR(-EINVAL); 9877 } 9878 9879 link = calloc(1, sizeof(*link)); 9880 if (!link) 9881 return ERR_PTR(-ENOMEM); 9882 link->detach = &bpf_link__detach_fd; 9883 9884 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 9885 if (pfd < 0) { 9886 pfd = -errno; 9887 free(link); 9888 pr_warn("prog '%s': failed to attach: %s\n", 9889 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 9890 return ERR_PTR(pfd); 9891 } 9892 link->fd = pfd; 9893 return (struct bpf_link *)link; 9894 } 9895 9896 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 9897 { 9898 return bpf_program__attach_btf_id(prog); 9899 } 9900 9901 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 9902 { 9903 return bpf_program__attach_btf_id(prog); 9904 } 9905 9906 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 9907 struct bpf_program *prog) 9908 { 9909 return bpf_program__attach_trace(prog); 9910 } 9911 9912 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 9913 struct bpf_program *prog) 9914 { 9915 return bpf_program__attach_lsm(prog); 9916 } 9917 9918 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 9919 struct bpf_program *prog) 9920 { 9921 return bpf_program__attach_iter(prog, NULL); 9922 } 9923 9924 static struct bpf_link * 9925 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 9926 const char *target_name) 9927 { 9928 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 9929 .target_btf_id = btf_id); 9930 enum bpf_attach_type attach_type; 9931 char errmsg[STRERR_BUFSIZE]; 9932 struct bpf_link *link; 9933 int prog_fd, link_fd; 9934 9935 prog_fd = bpf_program__fd(prog); 9936 if (prog_fd < 0) { 9937 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 9938 return ERR_PTR(-EINVAL); 9939 } 9940 9941 link = calloc(1, sizeof(*link)); 9942 if (!link) 9943 return ERR_PTR(-ENOMEM); 9944 link->detach = &bpf_link__detach_fd; 9945 9946 attach_type = bpf_program__get_expected_attach_type(prog); 9947 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 9948 if (link_fd < 0) { 9949 link_fd = -errno; 9950 free(link); 9951 pr_warn("prog '%s': failed to attach to %s: %s\n", 9952 prog->name, target_name, 9953 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 9954 return ERR_PTR(link_fd); 9955 } 9956 link->fd = link_fd; 9957 return link; 9958 } 9959 9960 struct bpf_link * 9961 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 9962 { 9963 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 9964 } 9965 9966 struct bpf_link * 9967 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 9968 { 9969 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 9970 } 9971 9972 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 9973 { 9974 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 9975 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 9976 } 9977 9978 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 9979 int target_fd, 9980 const char *attach_func_name) 9981 { 9982 int btf_id; 9983 9984 if (!!target_fd != !!attach_func_name) { 9985 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 9986 prog->name); 9987 return ERR_PTR(-EINVAL); 9988 } 9989 9990 if (prog->type != BPF_PROG_TYPE_EXT) { 9991 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 9992 prog->name); 9993 return ERR_PTR(-EINVAL); 9994 } 9995 9996 if (target_fd) { 9997 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 9998 if (btf_id < 0) 9999 return ERR_PTR(btf_id); 10000 10001 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10002 } else { 10003 /* no target, so use raw_tracepoint_open for compatibility 10004 * with old kernels 10005 */ 10006 return bpf_program__attach_trace(prog); 10007 } 10008 } 10009 10010 struct bpf_link * 10011 bpf_program__attach_iter(struct bpf_program *prog, 10012 const struct bpf_iter_attach_opts *opts) 10013 { 10014 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10015 char errmsg[STRERR_BUFSIZE]; 10016 struct bpf_link *link; 10017 int prog_fd, link_fd; 10018 __u32 target_fd = 0; 10019 10020 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10021 return ERR_PTR(-EINVAL); 10022 10023 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10024 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10025 10026 prog_fd = bpf_program__fd(prog); 10027 if (prog_fd < 0) { 10028 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10029 return ERR_PTR(-EINVAL); 10030 } 10031 10032 link = calloc(1, sizeof(*link)); 10033 if (!link) 10034 return ERR_PTR(-ENOMEM); 10035 link->detach = &bpf_link__detach_fd; 10036 10037 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10038 &link_create_opts); 10039 if (link_fd < 0) { 10040 link_fd = -errno; 10041 free(link); 10042 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10043 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10044 return ERR_PTR(link_fd); 10045 } 10046 link->fd = link_fd; 10047 return link; 10048 } 10049 10050 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 10051 { 10052 const struct bpf_sec_def *sec_def; 10053 10054 sec_def = find_sec_def(prog->sec_name); 10055 if (!sec_def || !sec_def->attach_fn) 10056 return ERR_PTR(-ESRCH); 10057 10058 return sec_def->attach_fn(sec_def, prog); 10059 } 10060 10061 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10062 { 10063 __u32 zero = 0; 10064 10065 if (bpf_map_delete_elem(link->fd, &zero)) 10066 return -errno; 10067 10068 return 0; 10069 } 10070 10071 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 10072 { 10073 struct bpf_struct_ops *st_ops; 10074 struct bpf_link *link; 10075 __u32 i, zero = 0; 10076 int err; 10077 10078 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10079 return ERR_PTR(-EINVAL); 10080 10081 link = calloc(1, sizeof(*link)); 10082 if (!link) 10083 return ERR_PTR(-EINVAL); 10084 10085 st_ops = map->st_ops; 10086 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10087 struct bpf_program *prog = st_ops->progs[i]; 10088 void *kern_data; 10089 int prog_fd; 10090 10091 if (!prog) 10092 continue; 10093 10094 prog_fd = bpf_program__fd(prog); 10095 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10096 *(unsigned long *)kern_data = prog_fd; 10097 } 10098 10099 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10100 if (err) { 10101 err = -errno; 10102 free(link); 10103 return ERR_PTR(err); 10104 } 10105 10106 link->detach = bpf_link__detach_struct_ops; 10107 link->fd = map->fd; 10108 10109 return link; 10110 } 10111 10112 enum bpf_perf_event_ret 10113 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10114 void **copy_mem, size_t *copy_size, 10115 bpf_perf_event_print_t fn, void *private_data) 10116 { 10117 struct perf_event_mmap_page *header = mmap_mem; 10118 __u64 data_head = ring_buffer_read_head(header); 10119 __u64 data_tail = header->data_tail; 10120 void *base = ((__u8 *)header) + page_size; 10121 int ret = LIBBPF_PERF_EVENT_CONT; 10122 struct perf_event_header *ehdr; 10123 size_t ehdr_size; 10124 10125 while (data_head != data_tail) { 10126 ehdr = base + (data_tail & (mmap_size - 1)); 10127 ehdr_size = ehdr->size; 10128 10129 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10130 void *copy_start = ehdr; 10131 size_t len_first = base + mmap_size - copy_start; 10132 size_t len_secnd = ehdr_size - len_first; 10133 10134 if (*copy_size < ehdr_size) { 10135 free(*copy_mem); 10136 *copy_mem = malloc(ehdr_size); 10137 if (!*copy_mem) { 10138 *copy_size = 0; 10139 ret = LIBBPF_PERF_EVENT_ERROR; 10140 break; 10141 } 10142 *copy_size = ehdr_size; 10143 } 10144 10145 memcpy(*copy_mem, copy_start, len_first); 10146 memcpy(*copy_mem + len_first, base, len_secnd); 10147 ehdr = *copy_mem; 10148 } 10149 10150 ret = fn(ehdr, private_data); 10151 data_tail += ehdr_size; 10152 if (ret != LIBBPF_PERF_EVENT_CONT) 10153 break; 10154 } 10155 10156 ring_buffer_write_tail(header, data_tail); 10157 return ret; 10158 } 10159 10160 struct perf_buffer; 10161 10162 struct perf_buffer_params { 10163 struct perf_event_attr *attr; 10164 /* if event_cb is specified, it takes precendence */ 10165 perf_buffer_event_fn event_cb; 10166 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10167 perf_buffer_sample_fn sample_cb; 10168 perf_buffer_lost_fn lost_cb; 10169 void *ctx; 10170 int cpu_cnt; 10171 int *cpus; 10172 int *map_keys; 10173 }; 10174 10175 struct perf_cpu_buf { 10176 struct perf_buffer *pb; 10177 void *base; /* mmap()'ed memory */ 10178 void *buf; /* for reconstructing segmented data */ 10179 size_t buf_size; 10180 int fd; 10181 int cpu; 10182 int map_key; 10183 }; 10184 10185 struct perf_buffer { 10186 perf_buffer_event_fn event_cb; 10187 perf_buffer_sample_fn sample_cb; 10188 perf_buffer_lost_fn lost_cb; 10189 void *ctx; /* passed into callbacks */ 10190 10191 size_t page_size; 10192 size_t mmap_size; 10193 struct perf_cpu_buf **cpu_bufs; 10194 struct epoll_event *events; 10195 int cpu_cnt; /* number of allocated CPU buffers */ 10196 int epoll_fd; /* perf event FD */ 10197 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10198 }; 10199 10200 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10201 struct perf_cpu_buf *cpu_buf) 10202 { 10203 if (!cpu_buf) 10204 return; 10205 if (cpu_buf->base && 10206 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10207 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10208 if (cpu_buf->fd >= 0) { 10209 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10210 close(cpu_buf->fd); 10211 } 10212 free(cpu_buf->buf); 10213 free(cpu_buf); 10214 } 10215 10216 void perf_buffer__free(struct perf_buffer *pb) 10217 { 10218 int i; 10219 10220 if (IS_ERR_OR_NULL(pb)) 10221 return; 10222 if (pb->cpu_bufs) { 10223 for (i = 0; i < pb->cpu_cnt; i++) { 10224 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10225 10226 if (!cpu_buf) 10227 continue; 10228 10229 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10230 perf_buffer__free_cpu_buf(pb, cpu_buf); 10231 } 10232 free(pb->cpu_bufs); 10233 } 10234 if (pb->epoll_fd >= 0) 10235 close(pb->epoll_fd); 10236 free(pb->events); 10237 free(pb); 10238 } 10239 10240 static struct perf_cpu_buf * 10241 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10242 int cpu, int map_key) 10243 { 10244 struct perf_cpu_buf *cpu_buf; 10245 char msg[STRERR_BUFSIZE]; 10246 int err; 10247 10248 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10249 if (!cpu_buf) 10250 return ERR_PTR(-ENOMEM); 10251 10252 cpu_buf->pb = pb; 10253 cpu_buf->cpu = cpu; 10254 cpu_buf->map_key = map_key; 10255 10256 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10257 -1, PERF_FLAG_FD_CLOEXEC); 10258 if (cpu_buf->fd < 0) { 10259 err = -errno; 10260 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10261 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10262 goto error; 10263 } 10264 10265 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10266 PROT_READ | PROT_WRITE, MAP_SHARED, 10267 cpu_buf->fd, 0); 10268 if (cpu_buf->base == MAP_FAILED) { 10269 cpu_buf->base = NULL; 10270 err = -errno; 10271 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10272 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10273 goto error; 10274 } 10275 10276 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10277 err = -errno; 10278 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10279 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10280 goto error; 10281 } 10282 10283 return cpu_buf; 10284 10285 error: 10286 perf_buffer__free_cpu_buf(pb, cpu_buf); 10287 return (struct perf_cpu_buf *)ERR_PTR(err); 10288 } 10289 10290 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10291 struct perf_buffer_params *p); 10292 10293 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10294 const struct perf_buffer_opts *opts) 10295 { 10296 struct perf_buffer_params p = {}; 10297 struct perf_event_attr attr = { 0, }; 10298 10299 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10300 attr.type = PERF_TYPE_SOFTWARE; 10301 attr.sample_type = PERF_SAMPLE_RAW; 10302 attr.sample_period = 1; 10303 attr.wakeup_events = 1; 10304 10305 p.attr = &attr; 10306 p.sample_cb = opts ? opts->sample_cb : NULL; 10307 p.lost_cb = opts ? opts->lost_cb : NULL; 10308 p.ctx = opts ? opts->ctx : NULL; 10309 10310 return __perf_buffer__new(map_fd, page_cnt, &p); 10311 } 10312 10313 struct perf_buffer * 10314 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10315 const struct perf_buffer_raw_opts *opts) 10316 { 10317 struct perf_buffer_params p = {}; 10318 10319 p.attr = opts->attr; 10320 p.event_cb = opts->event_cb; 10321 p.ctx = opts->ctx; 10322 p.cpu_cnt = opts->cpu_cnt; 10323 p.cpus = opts->cpus; 10324 p.map_keys = opts->map_keys; 10325 10326 return __perf_buffer__new(map_fd, page_cnt, &p); 10327 } 10328 10329 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10330 struct perf_buffer_params *p) 10331 { 10332 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10333 struct bpf_map_info map; 10334 char msg[STRERR_BUFSIZE]; 10335 struct perf_buffer *pb; 10336 bool *online = NULL; 10337 __u32 map_info_len; 10338 int err, i, j, n; 10339 10340 if (page_cnt & (page_cnt - 1)) { 10341 pr_warn("page count should be power of two, but is %zu\n", 10342 page_cnt); 10343 return ERR_PTR(-EINVAL); 10344 } 10345 10346 /* best-effort sanity checks */ 10347 memset(&map, 0, sizeof(map)); 10348 map_info_len = sizeof(map); 10349 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10350 if (err) { 10351 err = -errno; 10352 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10353 * -EBADFD, -EFAULT, or -E2BIG on real error 10354 */ 10355 if (err != -EINVAL) { 10356 pr_warn("failed to get map info for map FD %d: %s\n", 10357 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10358 return ERR_PTR(err); 10359 } 10360 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10361 map_fd); 10362 } else { 10363 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10364 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10365 map.name); 10366 return ERR_PTR(-EINVAL); 10367 } 10368 } 10369 10370 pb = calloc(1, sizeof(*pb)); 10371 if (!pb) 10372 return ERR_PTR(-ENOMEM); 10373 10374 pb->event_cb = p->event_cb; 10375 pb->sample_cb = p->sample_cb; 10376 pb->lost_cb = p->lost_cb; 10377 pb->ctx = p->ctx; 10378 10379 pb->page_size = getpagesize(); 10380 pb->mmap_size = pb->page_size * page_cnt; 10381 pb->map_fd = map_fd; 10382 10383 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10384 if (pb->epoll_fd < 0) { 10385 err = -errno; 10386 pr_warn("failed to create epoll instance: %s\n", 10387 libbpf_strerror_r(err, msg, sizeof(msg))); 10388 goto error; 10389 } 10390 10391 if (p->cpu_cnt > 0) { 10392 pb->cpu_cnt = p->cpu_cnt; 10393 } else { 10394 pb->cpu_cnt = libbpf_num_possible_cpus(); 10395 if (pb->cpu_cnt < 0) { 10396 err = pb->cpu_cnt; 10397 goto error; 10398 } 10399 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10400 pb->cpu_cnt = map.max_entries; 10401 } 10402 10403 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10404 if (!pb->events) { 10405 err = -ENOMEM; 10406 pr_warn("failed to allocate events: out of memory\n"); 10407 goto error; 10408 } 10409 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10410 if (!pb->cpu_bufs) { 10411 err = -ENOMEM; 10412 pr_warn("failed to allocate buffers: out of memory\n"); 10413 goto error; 10414 } 10415 10416 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10417 if (err) { 10418 pr_warn("failed to get online CPU mask: %d\n", err); 10419 goto error; 10420 } 10421 10422 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10423 struct perf_cpu_buf *cpu_buf; 10424 int cpu, map_key; 10425 10426 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10427 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10428 10429 /* in case user didn't explicitly requested particular CPUs to 10430 * be attached to, skip offline/not present CPUs 10431 */ 10432 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10433 continue; 10434 10435 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10436 if (IS_ERR(cpu_buf)) { 10437 err = PTR_ERR(cpu_buf); 10438 goto error; 10439 } 10440 10441 pb->cpu_bufs[j] = cpu_buf; 10442 10443 err = bpf_map_update_elem(pb->map_fd, &map_key, 10444 &cpu_buf->fd, 0); 10445 if (err) { 10446 err = -errno; 10447 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10448 cpu, map_key, cpu_buf->fd, 10449 libbpf_strerror_r(err, msg, sizeof(msg))); 10450 goto error; 10451 } 10452 10453 pb->events[j].events = EPOLLIN; 10454 pb->events[j].data.ptr = cpu_buf; 10455 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10456 &pb->events[j]) < 0) { 10457 err = -errno; 10458 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10459 cpu, cpu_buf->fd, 10460 libbpf_strerror_r(err, msg, sizeof(msg))); 10461 goto error; 10462 } 10463 j++; 10464 } 10465 pb->cpu_cnt = j; 10466 free(online); 10467 10468 return pb; 10469 10470 error: 10471 free(online); 10472 if (pb) 10473 perf_buffer__free(pb); 10474 return ERR_PTR(err); 10475 } 10476 10477 struct perf_sample_raw { 10478 struct perf_event_header header; 10479 uint32_t size; 10480 char data[]; 10481 }; 10482 10483 struct perf_sample_lost { 10484 struct perf_event_header header; 10485 uint64_t id; 10486 uint64_t lost; 10487 uint64_t sample_id; 10488 }; 10489 10490 static enum bpf_perf_event_ret 10491 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10492 { 10493 struct perf_cpu_buf *cpu_buf = ctx; 10494 struct perf_buffer *pb = cpu_buf->pb; 10495 void *data = e; 10496 10497 /* user wants full control over parsing perf event */ 10498 if (pb->event_cb) 10499 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10500 10501 switch (e->type) { 10502 case PERF_RECORD_SAMPLE: { 10503 struct perf_sample_raw *s = data; 10504 10505 if (pb->sample_cb) 10506 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10507 break; 10508 } 10509 case PERF_RECORD_LOST: { 10510 struct perf_sample_lost *s = data; 10511 10512 if (pb->lost_cb) 10513 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10514 break; 10515 } 10516 default: 10517 pr_warn("unknown perf sample type %d\n", e->type); 10518 return LIBBPF_PERF_EVENT_ERROR; 10519 } 10520 return LIBBPF_PERF_EVENT_CONT; 10521 } 10522 10523 static int perf_buffer__process_records(struct perf_buffer *pb, 10524 struct perf_cpu_buf *cpu_buf) 10525 { 10526 enum bpf_perf_event_ret ret; 10527 10528 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10529 pb->page_size, &cpu_buf->buf, 10530 &cpu_buf->buf_size, 10531 perf_buffer__process_record, cpu_buf); 10532 if (ret != LIBBPF_PERF_EVENT_CONT) 10533 return ret; 10534 return 0; 10535 } 10536 10537 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10538 { 10539 return pb->epoll_fd; 10540 } 10541 10542 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10543 { 10544 int i, cnt, err; 10545 10546 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10547 for (i = 0; i < cnt; i++) { 10548 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10549 10550 err = perf_buffer__process_records(pb, cpu_buf); 10551 if (err) { 10552 pr_warn("error while processing records: %d\n", err); 10553 return err; 10554 } 10555 } 10556 return cnt < 0 ? -errno : cnt; 10557 } 10558 10559 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10560 * manager. 10561 */ 10562 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10563 { 10564 return pb->cpu_cnt; 10565 } 10566 10567 /* 10568 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10569 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10570 * select()/poll()/epoll() Linux syscalls. 10571 */ 10572 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10573 { 10574 struct perf_cpu_buf *cpu_buf; 10575 10576 if (buf_idx >= pb->cpu_cnt) 10577 return -EINVAL; 10578 10579 cpu_buf = pb->cpu_bufs[buf_idx]; 10580 if (!cpu_buf) 10581 return -ENOENT; 10582 10583 return cpu_buf->fd; 10584 } 10585 10586 /* 10587 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10588 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10589 * consume, do nothing and return success. 10590 * Returns: 10591 * - 0 on success; 10592 * - <0 on failure. 10593 */ 10594 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10595 { 10596 struct perf_cpu_buf *cpu_buf; 10597 10598 if (buf_idx >= pb->cpu_cnt) 10599 return -EINVAL; 10600 10601 cpu_buf = pb->cpu_bufs[buf_idx]; 10602 if (!cpu_buf) 10603 return -ENOENT; 10604 10605 return perf_buffer__process_records(pb, cpu_buf); 10606 } 10607 10608 int perf_buffer__consume(struct perf_buffer *pb) 10609 { 10610 int i, err; 10611 10612 for (i = 0; i < pb->cpu_cnt; i++) { 10613 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10614 10615 if (!cpu_buf) 10616 continue; 10617 10618 err = perf_buffer__process_records(pb, cpu_buf); 10619 if (err) { 10620 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10621 return err; 10622 } 10623 } 10624 return 0; 10625 } 10626 10627 struct bpf_prog_info_array_desc { 10628 int array_offset; /* e.g. offset of jited_prog_insns */ 10629 int count_offset; /* e.g. offset of jited_prog_len */ 10630 int size_offset; /* > 0: offset of rec size, 10631 * < 0: fix size of -size_offset 10632 */ 10633 }; 10634 10635 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10636 [BPF_PROG_INFO_JITED_INSNS] = { 10637 offsetof(struct bpf_prog_info, jited_prog_insns), 10638 offsetof(struct bpf_prog_info, jited_prog_len), 10639 -1, 10640 }, 10641 [BPF_PROG_INFO_XLATED_INSNS] = { 10642 offsetof(struct bpf_prog_info, xlated_prog_insns), 10643 offsetof(struct bpf_prog_info, xlated_prog_len), 10644 -1, 10645 }, 10646 [BPF_PROG_INFO_MAP_IDS] = { 10647 offsetof(struct bpf_prog_info, map_ids), 10648 offsetof(struct bpf_prog_info, nr_map_ids), 10649 -(int)sizeof(__u32), 10650 }, 10651 [BPF_PROG_INFO_JITED_KSYMS] = { 10652 offsetof(struct bpf_prog_info, jited_ksyms), 10653 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10654 -(int)sizeof(__u64), 10655 }, 10656 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 10657 offsetof(struct bpf_prog_info, jited_func_lens), 10658 offsetof(struct bpf_prog_info, nr_jited_func_lens), 10659 -(int)sizeof(__u32), 10660 }, 10661 [BPF_PROG_INFO_FUNC_INFO] = { 10662 offsetof(struct bpf_prog_info, func_info), 10663 offsetof(struct bpf_prog_info, nr_func_info), 10664 offsetof(struct bpf_prog_info, func_info_rec_size), 10665 }, 10666 [BPF_PROG_INFO_LINE_INFO] = { 10667 offsetof(struct bpf_prog_info, line_info), 10668 offsetof(struct bpf_prog_info, nr_line_info), 10669 offsetof(struct bpf_prog_info, line_info_rec_size), 10670 }, 10671 [BPF_PROG_INFO_JITED_LINE_INFO] = { 10672 offsetof(struct bpf_prog_info, jited_line_info), 10673 offsetof(struct bpf_prog_info, nr_jited_line_info), 10674 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 10675 }, 10676 [BPF_PROG_INFO_PROG_TAGS] = { 10677 offsetof(struct bpf_prog_info, prog_tags), 10678 offsetof(struct bpf_prog_info, nr_prog_tags), 10679 -(int)sizeof(__u8) * BPF_TAG_SIZE, 10680 }, 10681 10682 }; 10683 10684 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 10685 int offset) 10686 { 10687 __u32 *array = (__u32 *)info; 10688 10689 if (offset >= 0) 10690 return array[offset / sizeof(__u32)]; 10691 return -(int)offset; 10692 } 10693 10694 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 10695 int offset) 10696 { 10697 __u64 *array = (__u64 *)info; 10698 10699 if (offset >= 0) 10700 return array[offset / sizeof(__u64)]; 10701 return -(int)offset; 10702 } 10703 10704 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 10705 __u32 val) 10706 { 10707 __u32 *array = (__u32 *)info; 10708 10709 if (offset >= 0) 10710 array[offset / sizeof(__u32)] = val; 10711 } 10712 10713 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 10714 __u64 val) 10715 { 10716 __u64 *array = (__u64 *)info; 10717 10718 if (offset >= 0) 10719 array[offset / sizeof(__u64)] = val; 10720 } 10721 10722 struct bpf_prog_info_linear * 10723 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 10724 { 10725 struct bpf_prog_info_linear *info_linear; 10726 struct bpf_prog_info info = {}; 10727 __u32 info_len = sizeof(info); 10728 __u32 data_len = 0; 10729 int i, err; 10730 void *ptr; 10731 10732 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 10733 return ERR_PTR(-EINVAL); 10734 10735 /* step 1: get array dimensions */ 10736 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 10737 if (err) { 10738 pr_debug("can't get prog info: %s", strerror(errno)); 10739 return ERR_PTR(-EFAULT); 10740 } 10741 10742 /* step 2: calculate total size of all arrays */ 10743 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10744 bool include_array = (arrays & (1UL << i)) > 0; 10745 struct bpf_prog_info_array_desc *desc; 10746 __u32 count, size; 10747 10748 desc = bpf_prog_info_array_desc + i; 10749 10750 /* kernel is too old to support this field */ 10751 if (info_len < desc->array_offset + sizeof(__u32) || 10752 info_len < desc->count_offset + sizeof(__u32) || 10753 (desc->size_offset > 0 && info_len < desc->size_offset)) 10754 include_array = false; 10755 10756 if (!include_array) { 10757 arrays &= ~(1UL << i); /* clear the bit */ 10758 continue; 10759 } 10760 10761 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10762 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10763 10764 data_len += count * size; 10765 } 10766 10767 /* step 3: allocate continuous memory */ 10768 data_len = roundup(data_len, sizeof(__u64)); 10769 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 10770 if (!info_linear) 10771 return ERR_PTR(-ENOMEM); 10772 10773 /* step 4: fill data to info_linear->info */ 10774 info_linear->arrays = arrays; 10775 memset(&info_linear->info, 0, sizeof(info)); 10776 ptr = info_linear->data; 10777 10778 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10779 struct bpf_prog_info_array_desc *desc; 10780 __u32 count, size; 10781 10782 if ((arrays & (1UL << i)) == 0) 10783 continue; 10784 10785 desc = bpf_prog_info_array_desc + i; 10786 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10787 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10788 bpf_prog_info_set_offset_u32(&info_linear->info, 10789 desc->count_offset, count); 10790 bpf_prog_info_set_offset_u32(&info_linear->info, 10791 desc->size_offset, size); 10792 bpf_prog_info_set_offset_u64(&info_linear->info, 10793 desc->array_offset, 10794 ptr_to_u64(ptr)); 10795 ptr += count * size; 10796 } 10797 10798 /* step 5: call syscall again to get required arrays */ 10799 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 10800 if (err) { 10801 pr_debug("can't get prog info: %s", strerror(errno)); 10802 free(info_linear); 10803 return ERR_PTR(-EFAULT); 10804 } 10805 10806 /* step 6: verify the data */ 10807 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10808 struct bpf_prog_info_array_desc *desc; 10809 __u32 v1, v2; 10810 10811 if ((arrays & (1UL << i)) == 0) 10812 continue; 10813 10814 desc = bpf_prog_info_array_desc + i; 10815 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 10816 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10817 desc->count_offset); 10818 if (v1 != v2) 10819 pr_warn("%s: mismatch in element count\n", __func__); 10820 10821 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 10822 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 10823 desc->size_offset); 10824 if (v1 != v2) 10825 pr_warn("%s: mismatch in rec size\n", __func__); 10826 } 10827 10828 /* step 7: update info_len and data_len */ 10829 info_linear->info_len = sizeof(struct bpf_prog_info); 10830 info_linear->data_len = data_len; 10831 10832 return info_linear; 10833 } 10834 10835 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 10836 { 10837 int i; 10838 10839 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10840 struct bpf_prog_info_array_desc *desc; 10841 __u64 addr, offs; 10842 10843 if ((info_linear->arrays & (1UL << i)) == 0) 10844 continue; 10845 10846 desc = bpf_prog_info_array_desc + i; 10847 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 10848 desc->array_offset); 10849 offs = addr - ptr_to_u64(info_linear->data); 10850 bpf_prog_info_set_offset_u64(&info_linear->info, 10851 desc->array_offset, offs); 10852 } 10853 } 10854 10855 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 10856 { 10857 int i; 10858 10859 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 10860 struct bpf_prog_info_array_desc *desc; 10861 __u64 addr, offs; 10862 10863 if ((info_linear->arrays & (1UL << i)) == 0) 10864 continue; 10865 10866 desc = bpf_prog_info_array_desc + i; 10867 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 10868 desc->array_offset); 10869 addr = offs + ptr_to_u64(info_linear->data); 10870 bpf_prog_info_set_offset_u64(&info_linear->info, 10871 desc->array_offset, addr); 10872 } 10873 } 10874 10875 int bpf_program__set_attach_target(struct bpf_program *prog, 10876 int attach_prog_fd, 10877 const char *attach_func_name) 10878 { 10879 int btf_obj_fd = 0, btf_id = 0, err; 10880 10881 if (!prog || attach_prog_fd < 0 || !attach_func_name) 10882 return -EINVAL; 10883 10884 if (prog->obj->loaded) 10885 return -EINVAL; 10886 10887 if (attach_prog_fd) { 10888 btf_id = libbpf_find_prog_btf_id(attach_func_name, 10889 attach_prog_fd); 10890 if (btf_id < 0) 10891 return btf_id; 10892 } else { 10893 /* load btf_vmlinux, if not yet */ 10894 err = bpf_object__load_vmlinux_btf(prog->obj, true); 10895 if (err) 10896 return err; 10897 err = find_kernel_btf_id(prog->obj, attach_func_name, 10898 prog->expected_attach_type, 10899 &btf_obj_fd, &btf_id); 10900 if (err) 10901 return err; 10902 } 10903 10904 prog->attach_btf_id = btf_id; 10905 prog->attach_btf_obj_fd = btf_obj_fd; 10906 prog->attach_prog_fd = attach_prog_fd; 10907 return 0; 10908 } 10909 10910 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 10911 { 10912 int err = 0, n, len, start, end = -1; 10913 bool *tmp; 10914 10915 *mask = NULL; 10916 *mask_sz = 0; 10917 10918 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 10919 while (*s) { 10920 if (*s == ',' || *s == '\n') { 10921 s++; 10922 continue; 10923 } 10924 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 10925 if (n <= 0 || n > 2) { 10926 pr_warn("Failed to get CPU range %s: %d\n", s, n); 10927 err = -EINVAL; 10928 goto cleanup; 10929 } else if (n == 1) { 10930 end = start; 10931 } 10932 if (start < 0 || start > end) { 10933 pr_warn("Invalid CPU range [%d,%d] in %s\n", 10934 start, end, s); 10935 err = -EINVAL; 10936 goto cleanup; 10937 } 10938 tmp = realloc(*mask, end + 1); 10939 if (!tmp) { 10940 err = -ENOMEM; 10941 goto cleanup; 10942 } 10943 *mask = tmp; 10944 memset(tmp + *mask_sz, 0, start - *mask_sz); 10945 memset(tmp + start, 1, end - start + 1); 10946 *mask_sz = end + 1; 10947 s += len; 10948 } 10949 if (!*mask_sz) { 10950 pr_warn("Empty CPU range\n"); 10951 return -EINVAL; 10952 } 10953 return 0; 10954 cleanup: 10955 free(*mask); 10956 *mask = NULL; 10957 return err; 10958 } 10959 10960 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 10961 { 10962 int fd, err = 0, len; 10963 char buf[128]; 10964 10965 fd = open(fcpu, O_RDONLY); 10966 if (fd < 0) { 10967 err = -errno; 10968 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 10969 return err; 10970 } 10971 len = read(fd, buf, sizeof(buf)); 10972 close(fd); 10973 if (len <= 0) { 10974 err = len ? -errno : -EINVAL; 10975 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 10976 return err; 10977 } 10978 if (len >= sizeof(buf)) { 10979 pr_warn("CPU mask is too big in file %s\n", fcpu); 10980 return -E2BIG; 10981 } 10982 buf[len] = '\0'; 10983 10984 return parse_cpu_mask_str(buf, mask, mask_sz); 10985 } 10986 10987 int libbpf_num_possible_cpus(void) 10988 { 10989 static const char *fcpu = "/sys/devices/system/cpu/possible"; 10990 static int cpus; 10991 int err, n, i, tmp_cpus; 10992 bool *mask; 10993 10994 tmp_cpus = READ_ONCE(cpus); 10995 if (tmp_cpus > 0) 10996 return tmp_cpus; 10997 10998 err = parse_cpu_mask_file(fcpu, &mask, &n); 10999 if (err) 11000 return err; 11001 11002 tmp_cpus = 0; 11003 for (i = 0; i < n; i++) { 11004 if (mask[i]) 11005 tmp_cpus++; 11006 } 11007 free(mask); 11008 11009 WRITE_ONCE(cpus, tmp_cpus); 11010 return tmp_cpus; 11011 } 11012 11013 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11014 const struct bpf_object_open_opts *opts) 11015 { 11016 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11017 .object_name = s->name, 11018 ); 11019 struct bpf_object *obj; 11020 int i; 11021 11022 /* Attempt to preserve opts->object_name, unless overriden by user 11023 * explicitly. Overwriting object name for skeletons is discouraged, 11024 * as it breaks global data maps, because they contain object name 11025 * prefix as their own map name prefix. When skeleton is generated, 11026 * bpftool is making an assumption that this name will stay the same. 11027 */ 11028 if (opts) { 11029 memcpy(&skel_opts, opts, sizeof(*opts)); 11030 if (!opts->object_name) 11031 skel_opts.object_name = s->name; 11032 } 11033 11034 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11035 if (IS_ERR(obj)) { 11036 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 11037 s->name, PTR_ERR(obj)); 11038 return PTR_ERR(obj); 11039 } 11040 11041 *s->obj = obj; 11042 11043 for (i = 0; i < s->map_cnt; i++) { 11044 struct bpf_map **map = s->maps[i].map; 11045 const char *name = s->maps[i].name; 11046 void **mmaped = s->maps[i].mmaped; 11047 11048 *map = bpf_object__find_map_by_name(obj, name); 11049 if (!*map) { 11050 pr_warn("failed to find skeleton map '%s'\n", name); 11051 return -ESRCH; 11052 } 11053 11054 /* externs shouldn't be pre-setup from user code */ 11055 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11056 *mmaped = (*map)->mmaped; 11057 } 11058 11059 for (i = 0; i < s->prog_cnt; i++) { 11060 struct bpf_program **prog = s->progs[i].prog; 11061 const char *name = s->progs[i].name; 11062 11063 *prog = bpf_object__find_program_by_name(obj, name); 11064 if (!*prog) { 11065 pr_warn("failed to find skeleton program '%s'\n", name); 11066 return -ESRCH; 11067 } 11068 } 11069 11070 return 0; 11071 } 11072 11073 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11074 { 11075 int i, err; 11076 11077 err = bpf_object__load(*s->obj); 11078 if (err) { 11079 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11080 return err; 11081 } 11082 11083 for (i = 0; i < s->map_cnt; i++) { 11084 struct bpf_map *map = *s->maps[i].map; 11085 size_t mmap_sz = bpf_map_mmap_sz(map); 11086 int prot, map_fd = bpf_map__fd(map); 11087 void **mmaped = s->maps[i].mmaped; 11088 11089 if (!mmaped) 11090 continue; 11091 11092 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11093 *mmaped = NULL; 11094 continue; 11095 } 11096 11097 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11098 prot = PROT_READ; 11099 else 11100 prot = PROT_READ | PROT_WRITE; 11101 11102 /* Remap anonymous mmap()-ed "map initialization image" as 11103 * a BPF map-backed mmap()-ed memory, but preserving the same 11104 * memory address. This will cause kernel to change process' 11105 * page table to point to a different piece of kernel memory, 11106 * but from userspace point of view memory address (and its 11107 * contents, being identical at this point) will stay the 11108 * same. This mapping will be released by bpf_object__close() 11109 * as per normal clean up procedure, so we don't need to worry 11110 * about it from skeleton's clean up perspective. 11111 */ 11112 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11113 MAP_SHARED | MAP_FIXED, map_fd, 0); 11114 if (*mmaped == MAP_FAILED) { 11115 err = -errno; 11116 *mmaped = NULL; 11117 pr_warn("failed to re-mmap() map '%s': %d\n", 11118 bpf_map__name(map), err); 11119 return err; 11120 } 11121 } 11122 11123 return 0; 11124 } 11125 11126 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11127 { 11128 int i; 11129 11130 for (i = 0; i < s->prog_cnt; i++) { 11131 struct bpf_program *prog = *s->progs[i].prog; 11132 struct bpf_link **link = s->progs[i].link; 11133 const struct bpf_sec_def *sec_def; 11134 11135 if (!prog->load) 11136 continue; 11137 11138 sec_def = find_sec_def(prog->sec_name); 11139 if (!sec_def || !sec_def->attach_fn) 11140 continue; 11141 11142 *link = sec_def->attach_fn(sec_def, prog); 11143 if (IS_ERR(*link)) { 11144 pr_warn("failed to auto-attach program '%s': %ld\n", 11145 bpf_program__name(prog), PTR_ERR(*link)); 11146 return PTR_ERR(*link); 11147 } 11148 } 11149 11150 return 0; 11151 } 11152 11153 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11154 { 11155 int i; 11156 11157 for (i = 0; i < s->prog_cnt; i++) { 11158 struct bpf_link **link = s->progs[i].link; 11159 11160 bpf_link__destroy(*link); 11161 *link = NULL; 11162 } 11163 } 11164 11165 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11166 { 11167 if (s->progs) 11168 bpf_object__detach_skeleton(s); 11169 if (s->obj) 11170 bpf_object__close(*s->obj); 11171 free(s->maps); 11172 free(s->progs); 11173 free(s); 11174 } 11175