1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/list.h> 35 #include <linux/limits.h> 36 #include <linux/perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <linux/version.h> 39 #include <sys/epoll.h> 40 #include <sys/ioctl.h> 41 #include <sys/mman.h> 42 #include <sys/stat.h> 43 #include <sys/types.h> 44 #include <sys/vfs.h> 45 #include <sys/utsname.h> 46 #include <sys/resource.h> 47 #include <libelf.h> 48 #include <gelf.h> 49 #include <zlib.h> 50 51 #include "libbpf.h" 52 #include "bpf.h" 53 #include "btf.h" 54 #include "str_error.h" 55 #include "libbpf_internal.h" 56 #include "hashmap.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static int __base_pr(enum libbpf_print_level level, const char *format, 75 va_list args) 76 { 77 if (level == LIBBPF_DEBUG) 78 return 0; 79 80 return vfprintf(stderr, format, args); 81 } 82 83 static libbpf_print_fn_t __libbpf_pr = __base_pr; 84 85 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 86 { 87 libbpf_print_fn_t old_print_fn = __libbpf_pr; 88 89 __libbpf_pr = fn; 90 return old_print_fn; 91 } 92 93 __printf(2, 3) 94 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 95 { 96 va_list args; 97 98 if (!__libbpf_pr) 99 return; 100 101 va_start(args, format); 102 __libbpf_pr(level, format, args); 103 va_end(args); 104 } 105 106 static void pr_perm_msg(int err) 107 { 108 struct rlimit limit; 109 char buf[100]; 110 111 if (err != -EPERM || geteuid() != 0) 112 return; 113 114 err = getrlimit(RLIMIT_MEMLOCK, &limit); 115 if (err) 116 return; 117 118 if (limit.rlim_cur == RLIM_INFINITY) 119 return; 120 121 if (limit.rlim_cur < 1024) 122 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 123 else if (limit.rlim_cur < 1024*1024) 124 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 125 else 126 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 127 128 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 129 buf); 130 } 131 132 #define STRERR_BUFSIZE 128 133 134 /* Copied from tools/perf/util/util.h */ 135 #ifndef zfree 136 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 137 #endif 138 139 #ifndef zclose 140 # define zclose(fd) ({ \ 141 int ___err = 0; \ 142 if ((fd) >= 0) \ 143 ___err = close((fd)); \ 144 fd = -1; \ 145 ___err; }) 146 #endif 147 148 static inline __u64 ptr_to_u64(const void *ptr) 149 { 150 return (__u64) (unsigned long) ptr; 151 } 152 153 enum kern_feature_id { 154 /* v4.14: kernel support for program & map names. */ 155 FEAT_PROG_NAME, 156 /* v5.2: kernel support for global data sections. */ 157 FEAT_GLOBAL_DATA, 158 /* BTF support */ 159 FEAT_BTF, 160 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 161 FEAT_BTF_FUNC, 162 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 163 FEAT_BTF_DATASEC, 164 /* BTF_FUNC_GLOBAL is supported */ 165 FEAT_BTF_GLOBAL_FUNC, 166 /* BPF_F_MMAPABLE is supported for arrays */ 167 FEAT_ARRAY_MMAP, 168 /* kernel support for expected_attach_type in BPF_PROG_LOAD */ 169 FEAT_EXP_ATTACH_TYPE, 170 /* bpf_probe_read_{kernel,user}[_str] helpers */ 171 FEAT_PROBE_READ_KERN, 172 /* BPF_PROG_BIND_MAP is supported */ 173 FEAT_PROG_BIND_MAP, 174 /* Kernel support for module BTFs */ 175 FEAT_MODULE_BTF, 176 /* BTF_KIND_FLOAT support */ 177 FEAT_BTF_FLOAT, 178 __FEAT_CNT, 179 }; 180 181 static bool kernel_supports(enum kern_feature_id feat_id); 182 183 enum reloc_type { 184 RELO_LD64, 185 RELO_CALL, 186 RELO_DATA, 187 RELO_EXTERN_VAR, 188 RELO_EXTERN_FUNC, 189 RELO_SUBPROG_ADDR, 190 }; 191 192 struct reloc_desc { 193 enum reloc_type type; 194 int insn_idx; 195 int map_idx; 196 int sym_off; 197 }; 198 199 struct bpf_sec_def; 200 201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 202 struct bpf_program *prog); 203 204 struct bpf_sec_def { 205 const char *sec; 206 size_t len; 207 enum bpf_prog_type prog_type; 208 enum bpf_attach_type expected_attach_type; 209 bool is_exp_attach_type_optional; 210 bool is_attachable; 211 bool is_attach_btf; 212 bool is_sleepable; 213 attach_fn_t attach_fn; 214 }; 215 216 /* 217 * bpf_prog should be a better name but it has been used in 218 * linux/filter.h. 219 */ 220 struct bpf_program { 221 const struct bpf_sec_def *sec_def; 222 char *sec_name; 223 size_t sec_idx; 224 /* this program's instruction offset (in number of instructions) 225 * within its containing ELF section 226 */ 227 size_t sec_insn_off; 228 /* number of original instructions in ELF section belonging to this 229 * program, not taking into account subprogram instructions possible 230 * appended later during relocation 231 */ 232 size_t sec_insn_cnt; 233 /* Offset (in number of instructions) of the start of instruction 234 * belonging to this BPF program within its containing main BPF 235 * program. For the entry-point (main) BPF program, this is always 236 * zero. For a sub-program, this gets reset before each of main BPF 237 * programs are processed and relocated and is used to determined 238 * whether sub-program was already appended to the main program, and 239 * if yes, at which instruction offset. 240 */ 241 size_t sub_insn_off; 242 243 char *name; 244 /* sec_name with / replaced by _; makes recursive pinning 245 * in bpf_object__pin_programs easier 246 */ 247 char *pin_name; 248 249 /* instructions that belong to BPF program; insns[0] is located at 250 * sec_insn_off instruction within its ELF section in ELF file, so 251 * when mapping ELF file instruction index to the local instruction, 252 * one needs to subtract sec_insn_off; and vice versa. 253 */ 254 struct bpf_insn *insns; 255 /* actual number of instruction in this BPF program's image; for 256 * entry-point BPF programs this includes the size of main program 257 * itself plus all the used sub-programs, appended at the end 258 */ 259 size_t insns_cnt; 260 261 struct reloc_desc *reloc_desc; 262 int nr_reloc; 263 int log_level; 264 265 struct { 266 int nr; 267 int *fds; 268 } instances; 269 bpf_program_prep_t preprocessor; 270 271 struct bpf_object *obj; 272 void *priv; 273 bpf_program_clear_priv_t clear_priv; 274 275 bool load; 276 bool mark_btf_static; 277 enum bpf_prog_type type; 278 enum bpf_attach_type expected_attach_type; 279 int prog_ifindex; 280 __u32 attach_btf_obj_fd; 281 __u32 attach_btf_id; 282 __u32 attach_prog_fd; 283 void *func_info; 284 __u32 func_info_rec_size; 285 __u32 func_info_cnt; 286 287 void *line_info; 288 __u32 line_info_rec_size; 289 __u32 line_info_cnt; 290 __u32 prog_flags; 291 }; 292 293 struct bpf_struct_ops { 294 const char *tname; 295 const struct btf_type *type; 296 struct bpf_program **progs; 297 __u32 *kern_func_off; 298 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 299 void *data; 300 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 301 * btf_vmlinux's format. 302 * struct bpf_struct_ops_tcp_congestion_ops { 303 * [... some other kernel fields ...] 304 * struct tcp_congestion_ops data; 305 * } 306 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 307 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 308 * from "data". 309 */ 310 void *kern_vdata; 311 __u32 type_id; 312 }; 313 314 #define DATA_SEC ".data" 315 #define BSS_SEC ".bss" 316 #define RODATA_SEC ".rodata" 317 #define KCONFIG_SEC ".kconfig" 318 #define KSYMS_SEC ".ksyms" 319 #define STRUCT_OPS_SEC ".struct_ops" 320 321 enum libbpf_map_type { 322 LIBBPF_MAP_UNSPEC, 323 LIBBPF_MAP_DATA, 324 LIBBPF_MAP_BSS, 325 LIBBPF_MAP_RODATA, 326 LIBBPF_MAP_KCONFIG, 327 }; 328 329 static const char * const libbpf_type_to_btf_name[] = { 330 [LIBBPF_MAP_DATA] = DATA_SEC, 331 [LIBBPF_MAP_BSS] = BSS_SEC, 332 [LIBBPF_MAP_RODATA] = RODATA_SEC, 333 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 334 }; 335 336 struct bpf_map { 337 char *name; 338 int fd; 339 int sec_idx; 340 size_t sec_offset; 341 int map_ifindex; 342 int inner_map_fd; 343 struct bpf_map_def def; 344 __u32 numa_node; 345 __u32 btf_var_idx; 346 __u32 btf_key_type_id; 347 __u32 btf_value_type_id; 348 __u32 btf_vmlinux_value_type_id; 349 void *priv; 350 bpf_map_clear_priv_t clear_priv; 351 enum libbpf_map_type libbpf_type; 352 void *mmaped; 353 struct bpf_struct_ops *st_ops; 354 struct bpf_map *inner_map; 355 void **init_slots; 356 int init_slots_sz; 357 char *pin_path; 358 bool pinned; 359 bool reused; 360 }; 361 362 enum extern_type { 363 EXT_UNKNOWN, 364 EXT_KCFG, 365 EXT_KSYM, 366 }; 367 368 enum kcfg_type { 369 KCFG_UNKNOWN, 370 KCFG_CHAR, 371 KCFG_BOOL, 372 KCFG_INT, 373 KCFG_TRISTATE, 374 KCFG_CHAR_ARR, 375 }; 376 377 struct extern_desc { 378 enum extern_type type; 379 int sym_idx; 380 int btf_id; 381 int sec_btf_id; 382 const char *name; 383 bool is_set; 384 bool is_weak; 385 union { 386 struct { 387 enum kcfg_type type; 388 int sz; 389 int align; 390 int data_off; 391 bool is_signed; 392 } kcfg; 393 struct { 394 unsigned long long addr; 395 396 /* target btf_id of the corresponding kernel var. */ 397 int kernel_btf_obj_fd; 398 int kernel_btf_id; 399 400 /* local btf_id of the ksym extern's type. */ 401 __u32 type_id; 402 } ksym; 403 }; 404 }; 405 406 static LIST_HEAD(bpf_objects_list); 407 408 struct module_btf { 409 struct btf *btf; 410 char *name; 411 __u32 id; 412 int fd; 413 }; 414 415 struct bpf_object { 416 char name[BPF_OBJ_NAME_LEN]; 417 char license[64]; 418 __u32 kern_version; 419 420 struct bpf_program *programs; 421 size_t nr_programs; 422 struct bpf_map *maps; 423 size_t nr_maps; 424 size_t maps_cap; 425 426 char *kconfig; 427 struct extern_desc *externs; 428 int nr_extern; 429 int kconfig_map_idx; 430 int rodata_map_idx; 431 432 bool loaded; 433 bool has_subcalls; 434 435 /* 436 * Information when doing elf related work. Only valid if fd 437 * is valid. 438 */ 439 struct { 440 int fd; 441 const void *obj_buf; 442 size_t obj_buf_sz; 443 Elf *elf; 444 GElf_Ehdr ehdr; 445 Elf_Data *symbols; 446 Elf_Data *data; 447 Elf_Data *rodata; 448 Elf_Data *bss; 449 Elf_Data *st_ops_data; 450 size_t shstrndx; /* section index for section name strings */ 451 size_t strtabidx; 452 struct { 453 GElf_Shdr shdr; 454 Elf_Data *data; 455 } *reloc_sects; 456 int nr_reloc_sects; 457 int maps_shndx; 458 int btf_maps_shndx; 459 __u32 btf_maps_sec_btf_id; 460 int text_shndx; 461 int symbols_shndx; 462 int data_shndx; 463 int rodata_shndx; 464 int bss_shndx; 465 int st_ops_shndx; 466 } efile; 467 /* 468 * All loaded bpf_object is linked in a list, which is 469 * hidden to caller. bpf_objects__<func> handlers deal with 470 * all objects. 471 */ 472 struct list_head list; 473 474 struct btf *btf; 475 struct btf_ext *btf_ext; 476 477 /* Parse and load BTF vmlinux if any of the programs in the object need 478 * it at load time. 479 */ 480 struct btf *btf_vmlinux; 481 /* vmlinux BTF override for CO-RE relocations */ 482 struct btf *btf_vmlinux_override; 483 /* Lazily initialized kernel module BTFs */ 484 struct module_btf *btf_modules; 485 bool btf_modules_loaded; 486 size_t btf_module_cnt; 487 size_t btf_module_cap; 488 489 void *priv; 490 bpf_object_clear_priv_t clear_priv; 491 492 char path[]; 493 }; 494 #define obj_elf_valid(o) ((o)->efile.elf) 495 496 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 497 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 498 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 499 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 500 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr); 501 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 502 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 503 504 void bpf_program__unload(struct bpf_program *prog) 505 { 506 int i; 507 508 if (!prog) 509 return; 510 511 /* 512 * If the object is opened but the program was never loaded, 513 * it is possible that prog->instances.nr == -1. 514 */ 515 if (prog->instances.nr > 0) { 516 for (i = 0; i < prog->instances.nr; i++) 517 zclose(prog->instances.fds[i]); 518 } else if (prog->instances.nr != -1) { 519 pr_warn("Internal error: instances.nr is %d\n", 520 prog->instances.nr); 521 } 522 523 prog->instances.nr = -1; 524 zfree(&prog->instances.fds); 525 526 zfree(&prog->func_info); 527 zfree(&prog->line_info); 528 } 529 530 static void bpf_program__exit(struct bpf_program *prog) 531 { 532 if (!prog) 533 return; 534 535 if (prog->clear_priv) 536 prog->clear_priv(prog, prog->priv); 537 538 prog->priv = NULL; 539 prog->clear_priv = NULL; 540 541 bpf_program__unload(prog); 542 zfree(&prog->name); 543 zfree(&prog->sec_name); 544 zfree(&prog->pin_name); 545 zfree(&prog->insns); 546 zfree(&prog->reloc_desc); 547 548 prog->nr_reloc = 0; 549 prog->insns_cnt = 0; 550 prog->sec_idx = -1; 551 } 552 553 static char *__bpf_program__pin_name(struct bpf_program *prog) 554 { 555 char *name, *p; 556 557 name = p = strdup(prog->sec_name); 558 while ((p = strchr(p, '/'))) 559 *p = '_'; 560 561 return name; 562 } 563 564 static bool insn_is_subprog_call(const struct bpf_insn *insn) 565 { 566 return BPF_CLASS(insn->code) == BPF_JMP && 567 BPF_OP(insn->code) == BPF_CALL && 568 BPF_SRC(insn->code) == BPF_K && 569 insn->src_reg == BPF_PSEUDO_CALL && 570 insn->dst_reg == 0 && 571 insn->off == 0; 572 } 573 574 static bool is_ldimm64_insn(struct bpf_insn *insn) 575 { 576 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 577 } 578 579 static bool is_call_insn(const struct bpf_insn *insn) 580 { 581 return insn->code == (BPF_JMP | BPF_CALL); 582 } 583 584 static bool insn_is_pseudo_func(struct bpf_insn *insn) 585 { 586 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 587 } 588 589 static int 590 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 591 const char *name, size_t sec_idx, const char *sec_name, 592 size_t sec_off, void *insn_data, size_t insn_data_sz) 593 { 594 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 595 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 596 sec_name, name, sec_off, insn_data_sz); 597 return -EINVAL; 598 } 599 600 memset(prog, 0, sizeof(*prog)); 601 prog->obj = obj; 602 603 prog->sec_idx = sec_idx; 604 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 605 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 606 /* insns_cnt can later be increased by appending used subprograms */ 607 prog->insns_cnt = prog->sec_insn_cnt; 608 609 prog->type = BPF_PROG_TYPE_UNSPEC; 610 prog->load = true; 611 612 prog->instances.fds = NULL; 613 prog->instances.nr = -1; 614 615 prog->sec_name = strdup(sec_name); 616 if (!prog->sec_name) 617 goto errout; 618 619 prog->name = strdup(name); 620 if (!prog->name) 621 goto errout; 622 623 prog->pin_name = __bpf_program__pin_name(prog); 624 if (!prog->pin_name) 625 goto errout; 626 627 prog->insns = malloc(insn_data_sz); 628 if (!prog->insns) 629 goto errout; 630 memcpy(prog->insns, insn_data, insn_data_sz); 631 632 return 0; 633 errout: 634 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 635 bpf_program__exit(prog); 636 return -ENOMEM; 637 } 638 639 static int 640 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 641 const char *sec_name, int sec_idx) 642 { 643 Elf_Data *symbols = obj->efile.symbols; 644 struct bpf_program *prog, *progs; 645 void *data = sec_data->d_buf; 646 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 647 int nr_progs, err, i; 648 const char *name; 649 GElf_Sym sym; 650 651 progs = obj->programs; 652 nr_progs = obj->nr_programs; 653 nr_syms = symbols->d_size / sizeof(GElf_Sym); 654 sec_off = 0; 655 656 for (i = 0; i < nr_syms; i++) { 657 if (!gelf_getsym(symbols, i, &sym)) 658 continue; 659 if (sym.st_shndx != sec_idx) 660 continue; 661 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 662 continue; 663 664 prog_sz = sym.st_size; 665 sec_off = sym.st_value; 666 667 name = elf_sym_str(obj, sym.st_name); 668 if (!name) { 669 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 670 sec_name, sec_off); 671 return -LIBBPF_ERRNO__FORMAT; 672 } 673 674 if (sec_off + prog_sz > sec_sz) { 675 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 676 sec_name, sec_off); 677 return -LIBBPF_ERRNO__FORMAT; 678 } 679 680 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 681 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 682 683 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 684 if (!progs) { 685 /* 686 * In this case the original obj->programs 687 * is still valid, so don't need special treat for 688 * bpf_close_object(). 689 */ 690 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 691 sec_name, name); 692 return -ENOMEM; 693 } 694 obj->programs = progs; 695 696 prog = &progs[nr_progs]; 697 698 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 699 sec_off, data + sec_off, prog_sz); 700 if (err) 701 return err; 702 703 /* if function is a global/weak symbol, but has hidden 704 * visibility (STV_HIDDEN), mark its BTF FUNC as static to 705 * enable more permissive BPF verification mode with more 706 * outside context available to BPF verifier 707 */ 708 if (GELF_ST_BIND(sym.st_info) != STB_LOCAL 709 && GELF_ST_VISIBILITY(sym.st_other) == STV_HIDDEN) 710 prog->mark_btf_static = true; 711 712 nr_progs++; 713 obj->nr_programs = nr_progs; 714 } 715 716 return 0; 717 } 718 719 static __u32 get_kernel_version(void) 720 { 721 __u32 major, minor, patch; 722 struct utsname info; 723 724 uname(&info); 725 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 726 return 0; 727 return KERNEL_VERSION(major, minor, patch); 728 } 729 730 static const struct btf_member * 731 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 732 { 733 struct btf_member *m; 734 int i; 735 736 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 737 if (btf_member_bit_offset(t, i) == bit_offset) 738 return m; 739 } 740 741 return NULL; 742 } 743 744 static const struct btf_member * 745 find_member_by_name(const struct btf *btf, const struct btf_type *t, 746 const char *name) 747 { 748 struct btf_member *m; 749 int i; 750 751 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 752 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 753 return m; 754 } 755 756 return NULL; 757 } 758 759 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 760 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 761 const char *name, __u32 kind); 762 763 static int 764 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 765 const struct btf_type **type, __u32 *type_id, 766 const struct btf_type **vtype, __u32 *vtype_id, 767 const struct btf_member **data_member) 768 { 769 const struct btf_type *kern_type, *kern_vtype; 770 const struct btf_member *kern_data_member; 771 __s32 kern_vtype_id, kern_type_id; 772 __u32 i; 773 774 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 775 if (kern_type_id < 0) { 776 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 777 tname); 778 return kern_type_id; 779 } 780 kern_type = btf__type_by_id(btf, kern_type_id); 781 782 /* Find the corresponding "map_value" type that will be used 783 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 784 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 785 * btf_vmlinux. 786 */ 787 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 788 tname, BTF_KIND_STRUCT); 789 if (kern_vtype_id < 0) { 790 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 791 STRUCT_OPS_VALUE_PREFIX, tname); 792 return kern_vtype_id; 793 } 794 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 795 796 /* Find "struct tcp_congestion_ops" from 797 * struct bpf_struct_ops_tcp_congestion_ops { 798 * [ ... ] 799 * struct tcp_congestion_ops data; 800 * } 801 */ 802 kern_data_member = btf_members(kern_vtype); 803 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 804 if (kern_data_member->type == kern_type_id) 805 break; 806 } 807 if (i == btf_vlen(kern_vtype)) { 808 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 809 tname, STRUCT_OPS_VALUE_PREFIX, tname); 810 return -EINVAL; 811 } 812 813 *type = kern_type; 814 *type_id = kern_type_id; 815 *vtype = kern_vtype; 816 *vtype_id = kern_vtype_id; 817 *data_member = kern_data_member; 818 819 return 0; 820 } 821 822 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 823 { 824 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 825 } 826 827 /* Init the map's fields that depend on kern_btf */ 828 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 829 const struct btf *btf, 830 const struct btf *kern_btf) 831 { 832 const struct btf_member *member, *kern_member, *kern_data_member; 833 const struct btf_type *type, *kern_type, *kern_vtype; 834 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 835 struct bpf_struct_ops *st_ops; 836 void *data, *kern_data; 837 const char *tname; 838 int err; 839 840 st_ops = map->st_ops; 841 type = st_ops->type; 842 tname = st_ops->tname; 843 err = find_struct_ops_kern_types(kern_btf, tname, 844 &kern_type, &kern_type_id, 845 &kern_vtype, &kern_vtype_id, 846 &kern_data_member); 847 if (err) 848 return err; 849 850 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 851 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 852 853 map->def.value_size = kern_vtype->size; 854 map->btf_vmlinux_value_type_id = kern_vtype_id; 855 856 st_ops->kern_vdata = calloc(1, kern_vtype->size); 857 if (!st_ops->kern_vdata) 858 return -ENOMEM; 859 860 data = st_ops->data; 861 kern_data_off = kern_data_member->offset / 8; 862 kern_data = st_ops->kern_vdata + kern_data_off; 863 864 member = btf_members(type); 865 for (i = 0; i < btf_vlen(type); i++, member++) { 866 const struct btf_type *mtype, *kern_mtype; 867 __u32 mtype_id, kern_mtype_id; 868 void *mdata, *kern_mdata; 869 __s64 msize, kern_msize; 870 __u32 moff, kern_moff; 871 __u32 kern_member_idx; 872 const char *mname; 873 874 mname = btf__name_by_offset(btf, member->name_off); 875 kern_member = find_member_by_name(kern_btf, kern_type, mname); 876 if (!kern_member) { 877 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 878 map->name, mname); 879 return -ENOTSUP; 880 } 881 882 kern_member_idx = kern_member - btf_members(kern_type); 883 if (btf_member_bitfield_size(type, i) || 884 btf_member_bitfield_size(kern_type, kern_member_idx)) { 885 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 886 map->name, mname); 887 return -ENOTSUP; 888 } 889 890 moff = member->offset / 8; 891 kern_moff = kern_member->offset / 8; 892 893 mdata = data + moff; 894 kern_mdata = kern_data + kern_moff; 895 896 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 897 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 898 &kern_mtype_id); 899 if (BTF_INFO_KIND(mtype->info) != 900 BTF_INFO_KIND(kern_mtype->info)) { 901 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 902 map->name, mname, BTF_INFO_KIND(mtype->info), 903 BTF_INFO_KIND(kern_mtype->info)); 904 return -ENOTSUP; 905 } 906 907 if (btf_is_ptr(mtype)) { 908 struct bpf_program *prog; 909 910 prog = st_ops->progs[i]; 911 if (!prog) 912 continue; 913 914 kern_mtype = skip_mods_and_typedefs(kern_btf, 915 kern_mtype->type, 916 &kern_mtype_id); 917 918 /* mtype->type must be a func_proto which was 919 * guaranteed in bpf_object__collect_st_ops_relos(), 920 * so only check kern_mtype for func_proto here. 921 */ 922 if (!btf_is_func_proto(kern_mtype)) { 923 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 924 map->name, mname); 925 return -ENOTSUP; 926 } 927 928 prog->attach_btf_id = kern_type_id; 929 prog->expected_attach_type = kern_member_idx; 930 931 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 932 933 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 934 map->name, mname, prog->name, moff, 935 kern_moff); 936 937 continue; 938 } 939 940 msize = btf__resolve_size(btf, mtype_id); 941 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 942 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 943 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 944 map->name, mname, (ssize_t)msize, 945 (ssize_t)kern_msize); 946 return -ENOTSUP; 947 } 948 949 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 950 map->name, mname, (unsigned int)msize, 951 moff, kern_moff); 952 memcpy(kern_mdata, mdata, msize); 953 } 954 955 return 0; 956 } 957 958 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 959 { 960 struct bpf_map *map; 961 size_t i; 962 int err; 963 964 for (i = 0; i < obj->nr_maps; i++) { 965 map = &obj->maps[i]; 966 967 if (!bpf_map__is_struct_ops(map)) 968 continue; 969 970 err = bpf_map__init_kern_struct_ops(map, obj->btf, 971 obj->btf_vmlinux); 972 if (err) 973 return err; 974 } 975 976 return 0; 977 } 978 979 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 980 { 981 const struct btf_type *type, *datasec; 982 const struct btf_var_secinfo *vsi; 983 struct bpf_struct_ops *st_ops; 984 const char *tname, *var_name; 985 __s32 type_id, datasec_id; 986 const struct btf *btf; 987 struct bpf_map *map; 988 __u32 i; 989 990 if (obj->efile.st_ops_shndx == -1) 991 return 0; 992 993 btf = obj->btf; 994 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 995 BTF_KIND_DATASEC); 996 if (datasec_id < 0) { 997 pr_warn("struct_ops init: DATASEC %s not found\n", 998 STRUCT_OPS_SEC); 999 return -EINVAL; 1000 } 1001 1002 datasec = btf__type_by_id(btf, datasec_id); 1003 vsi = btf_var_secinfos(datasec); 1004 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1005 type = btf__type_by_id(obj->btf, vsi->type); 1006 var_name = btf__name_by_offset(obj->btf, type->name_off); 1007 1008 type_id = btf__resolve_type(obj->btf, vsi->type); 1009 if (type_id < 0) { 1010 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1011 vsi->type, STRUCT_OPS_SEC); 1012 return -EINVAL; 1013 } 1014 1015 type = btf__type_by_id(obj->btf, type_id); 1016 tname = btf__name_by_offset(obj->btf, type->name_off); 1017 if (!tname[0]) { 1018 pr_warn("struct_ops init: anonymous type is not supported\n"); 1019 return -ENOTSUP; 1020 } 1021 if (!btf_is_struct(type)) { 1022 pr_warn("struct_ops init: %s is not a struct\n", tname); 1023 return -EINVAL; 1024 } 1025 1026 map = bpf_object__add_map(obj); 1027 if (IS_ERR(map)) 1028 return PTR_ERR(map); 1029 1030 map->sec_idx = obj->efile.st_ops_shndx; 1031 map->sec_offset = vsi->offset; 1032 map->name = strdup(var_name); 1033 if (!map->name) 1034 return -ENOMEM; 1035 1036 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1037 map->def.key_size = sizeof(int); 1038 map->def.value_size = type->size; 1039 map->def.max_entries = 1; 1040 1041 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1042 if (!map->st_ops) 1043 return -ENOMEM; 1044 st_ops = map->st_ops; 1045 st_ops->data = malloc(type->size); 1046 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1047 st_ops->kern_func_off = malloc(btf_vlen(type) * 1048 sizeof(*st_ops->kern_func_off)); 1049 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1050 return -ENOMEM; 1051 1052 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1053 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1054 var_name, STRUCT_OPS_SEC); 1055 return -EINVAL; 1056 } 1057 1058 memcpy(st_ops->data, 1059 obj->efile.st_ops_data->d_buf + vsi->offset, 1060 type->size); 1061 st_ops->tname = tname; 1062 st_ops->type = type; 1063 st_ops->type_id = type_id; 1064 1065 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1066 tname, type_id, var_name, vsi->offset); 1067 } 1068 1069 return 0; 1070 } 1071 1072 static struct bpf_object *bpf_object__new(const char *path, 1073 const void *obj_buf, 1074 size_t obj_buf_sz, 1075 const char *obj_name) 1076 { 1077 struct bpf_object *obj; 1078 char *end; 1079 1080 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1081 if (!obj) { 1082 pr_warn("alloc memory failed for %s\n", path); 1083 return ERR_PTR(-ENOMEM); 1084 } 1085 1086 strcpy(obj->path, path); 1087 if (obj_name) { 1088 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 1089 obj->name[sizeof(obj->name) - 1] = 0; 1090 } else { 1091 /* Using basename() GNU version which doesn't modify arg. */ 1092 strncpy(obj->name, basename((void *)path), 1093 sizeof(obj->name) - 1); 1094 end = strchr(obj->name, '.'); 1095 if (end) 1096 *end = 0; 1097 } 1098 1099 obj->efile.fd = -1; 1100 /* 1101 * Caller of this function should also call 1102 * bpf_object__elf_finish() after data collection to return 1103 * obj_buf to user. If not, we should duplicate the buffer to 1104 * avoid user freeing them before elf finish. 1105 */ 1106 obj->efile.obj_buf = obj_buf; 1107 obj->efile.obj_buf_sz = obj_buf_sz; 1108 obj->efile.maps_shndx = -1; 1109 obj->efile.btf_maps_shndx = -1; 1110 obj->efile.data_shndx = -1; 1111 obj->efile.rodata_shndx = -1; 1112 obj->efile.bss_shndx = -1; 1113 obj->efile.st_ops_shndx = -1; 1114 obj->kconfig_map_idx = -1; 1115 obj->rodata_map_idx = -1; 1116 1117 obj->kern_version = get_kernel_version(); 1118 obj->loaded = false; 1119 1120 INIT_LIST_HEAD(&obj->list); 1121 list_add(&obj->list, &bpf_objects_list); 1122 return obj; 1123 } 1124 1125 static void bpf_object__elf_finish(struct bpf_object *obj) 1126 { 1127 if (!obj_elf_valid(obj)) 1128 return; 1129 1130 if (obj->efile.elf) { 1131 elf_end(obj->efile.elf); 1132 obj->efile.elf = NULL; 1133 } 1134 obj->efile.symbols = NULL; 1135 obj->efile.data = NULL; 1136 obj->efile.rodata = NULL; 1137 obj->efile.bss = NULL; 1138 obj->efile.st_ops_data = NULL; 1139 1140 zfree(&obj->efile.reloc_sects); 1141 obj->efile.nr_reloc_sects = 0; 1142 zclose(obj->efile.fd); 1143 obj->efile.obj_buf = NULL; 1144 obj->efile.obj_buf_sz = 0; 1145 } 1146 1147 static int bpf_object__elf_init(struct bpf_object *obj) 1148 { 1149 int err = 0; 1150 GElf_Ehdr *ep; 1151 1152 if (obj_elf_valid(obj)) { 1153 pr_warn("elf: init internal error\n"); 1154 return -LIBBPF_ERRNO__LIBELF; 1155 } 1156 1157 if (obj->efile.obj_buf_sz > 0) { 1158 /* 1159 * obj_buf should have been validated by 1160 * bpf_object__open_buffer(). 1161 */ 1162 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 1163 obj->efile.obj_buf_sz); 1164 } else { 1165 obj->efile.fd = open(obj->path, O_RDONLY); 1166 if (obj->efile.fd < 0) { 1167 char errmsg[STRERR_BUFSIZE], *cp; 1168 1169 err = -errno; 1170 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1171 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1172 return err; 1173 } 1174 1175 obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1176 } 1177 1178 if (!obj->efile.elf) { 1179 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1180 err = -LIBBPF_ERRNO__LIBELF; 1181 goto errout; 1182 } 1183 1184 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 1185 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1186 err = -LIBBPF_ERRNO__FORMAT; 1187 goto errout; 1188 } 1189 ep = &obj->efile.ehdr; 1190 1191 if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) { 1192 pr_warn("elf: failed to get section names section index for %s: %s\n", 1193 obj->path, elf_errmsg(-1)); 1194 err = -LIBBPF_ERRNO__FORMAT; 1195 goto errout; 1196 } 1197 1198 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1199 if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) { 1200 pr_warn("elf: failed to get section names strings from %s: %s\n", 1201 obj->path, elf_errmsg(-1)); 1202 err = -LIBBPF_ERRNO__FORMAT; 1203 goto errout; 1204 } 1205 1206 /* Old LLVM set e_machine to EM_NONE */ 1207 if (ep->e_type != ET_REL || 1208 (ep->e_machine && ep->e_machine != EM_BPF)) { 1209 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1210 err = -LIBBPF_ERRNO__FORMAT; 1211 goto errout; 1212 } 1213 1214 return 0; 1215 errout: 1216 bpf_object__elf_finish(obj); 1217 return err; 1218 } 1219 1220 static int bpf_object__check_endianness(struct bpf_object *obj) 1221 { 1222 #if __BYTE_ORDER == __LITTLE_ENDIAN 1223 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 1224 return 0; 1225 #elif __BYTE_ORDER == __BIG_ENDIAN 1226 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 1227 return 0; 1228 #else 1229 # error "Unrecognized __BYTE_ORDER__" 1230 #endif 1231 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1232 return -LIBBPF_ERRNO__ENDIAN; 1233 } 1234 1235 static int 1236 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1237 { 1238 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 1239 pr_debug("license of %s is %s\n", obj->path, obj->license); 1240 return 0; 1241 } 1242 1243 static int 1244 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1245 { 1246 __u32 kver; 1247 1248 if (size != sizeof(kver)) { 1249 pr_warn("invalid kver section in %s\n", obj->path); 1250 return -LIBBPF_ERRNO__FORMAT; 1251 } 1252 memcpy(&kver, data, sizeof(kver)); 1253 obj->kern_version = kver; 1254 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1255 return 0; 1256 } 1257 1258 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1259 { 1260 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1261 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1262 return true; 1263 return false; 1264 } 1265 1266 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 1267 __u32 *size) 1268 { 1269 int ret = -ENOENT; 1270 1271 *size = 0; 1272 if (!name) { 1273 return -EINVAL; 1274 } else if (!strcmp(name, DATA_SEC)) { 1275 if (obj->efile.data) 1276 *size = obj->efile.data->d_size; 1277 } else if (!strcmp(name, BSS_SEC)) { 1278 if (obj->efile.bss) 1279 *size = obj->efile.bss->d_size; 1280 } else if (!strcmp(name, RODATA_SEC)) { 1281 if (obj->efile.rodata) 1282 *size = obj->efile.rodata->d_size; 1283 } else if (!strcmp(name, STRUCT_OPS_SEC)) { 1284 if (obj->efile.st_ops_data) 1285 *size = obj->efile.st_ops_data->d_size; 1286 } else { 1287 Elf_Scn *scn = elf_sec_by_name(obj, name); 1288 Elf_Data *data = elf_sec_data(obj, scn); 1289 1290 if (data) { 1291 ret = 0; /* found it */ 1292 *size = data->d_size; 1293 } 1294 } 1295 1296 return *size ? 0 : ret; 1297 } 1298 1299 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 1300 __u32 *off) 1301 { 1302 Elf_Data *symbols = obj->efile.symbols; 1303 const char *sname; 1304 size_t si; 1305 1306 if (!name || !off) 1307 return -EINVAL; 1308 1309 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 1310 GElf_Sym sym; 1311 1312 if (!gelf_getsym(symbols, si, &sym)) 1313 continue; 1314 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 1315 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 1316 continue; 1317 1318 sname = elf_sym_str(obj, sym.st_name); 1319 if (!sname) { 1320 pr_warn("failed to get sym name string for var %s\n", 1321 name); 1322 return -EIO; 1323 } 1324 if (strcmp(name, sname) == 0) { 1325 *off = sym.st_value; 1326 return 0; 1327 } 1328 } 1329 1330 return -ENOENT; 1331 } 1332 1333 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1334 { 1335 struct bpf_map *new_maps; 1336 size_t new_cap; 1337 int i; 1338 1339 if (obj->nr_maps < obj->maps_cap) 1340 return &obj->maps[obj->nr_maps++]; 1341 1342 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 1343 new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps)); 1344 if (!new_maps) { 1345 pr_warn("alloc maps for object failed\n"); 1346 return ERR_PTR(-ENOMEM); 1347 } 1348 1349 obj->maps_cap = new_cap; 1350 obj->maps = new_maps; 1351 1352 /* zero out new maps */ 1353 memset(obj->maps + obj->nr_maps, 0, 1354 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 1355 /* 1356 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 1357 * when failure (zclose won't close negative fd)). 1358 */ 1359 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 1360 obj->maps[i].fd = -1; 1361 obj->maps[i].inner_map_fd = -1; 1362 } 1363 1364 return &obj->maps[obj->nr_maps++]; 1365 } 1366 1367 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1368 { 1369 long page_sz = sysconf(_SC_PAGE_SIZE); 1370 size_t map_sz; 1371 1372 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1373 map_sz = roundup(map_sz, page_sz); 1374 return map_sz; 1375 } 1376 1377 static char *internal_map_name(struct bpf_object *obj, 1378 enum libbpf_map_type type) 1379 { 1380 char map_name[BPF_OBJ_NAME_LEN], *p; 1381 const char *sfx = libbpf_type_to_btf_name[type]; 1382 int sfx_len = max((size_t)7, strlen(sfx)); 1383 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 1384 strlen(obj->name)); 1385 1386 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1387 sfx_len, libbpf_type_to_btf_name[type]); 1388 1389 /* sanitise map name to characters allowed by kernel */ 1390 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1391 if (!isalnum(*p) && *p != '_' && *p != '.') 1392 *p = '_'; 1393 1394 return strdup(map_name); 1395 } 1396 1397 static int 1398 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1399 int sec_idx, void *data, size_t data_sz) 1400 { 1401 struct bpf_map_def *def; 1402 struct bpf_map *map; 1403 int err; 1404 1405 map = bpf_object__add_map(obj); 1406 if (IS_ERR(map)) 1407 return PTR_ERR(map); 1408 1409 map->libbpf_type = type; 1410 map->sec_idx = sec_idx; 1411 map->sec_offset = 0; 1412 map->name = internal_map_name(obj, type); 1413 if (!map->name) { 1414 pr_warn("failed to alloc map name\n"); 1415 return -ENOMEM; 1416 } 1417 1418 def = &map->def; 1419 def->type = BPF_MAP_TYPE_ARRAY; 1420 def->key_size = sizeof(int); 1421 def->value_size = data_sz; 1422 def->max_entries = 1; 1423 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1424 ? BPF_F_RDONLY_PROG : 0; 1425 def->map_flags |= BPF_F_MMAPABLE; 1426 1427 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1428 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1429 1430 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1431 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1432 if (map->mmaped == MAP_FAILED) { 1433 err = -errno; 1434 map->mmaped = NULL; 1435 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1436 map->name, err); 1437 zfree(&map->name); 1438 return err; 1439 } 1440 1441 if (data) 1442 memcpy(map->mmaped, data, data_sz); 1443 1444 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1445 return 0; 1446 } 1447 1448 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1449 { 1450 int err; 1451 1452 /* 1453 * Populate obj->maps with libbpf internal maps. 1454 */ 1455 if (obj->efile.data_shndx >= 0) { 1456 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1457 obj->efile.data_shndx, 1458 obj->efile.data->d_buf, 1459 obj->efile.data->d_size); 1460 if (err) 1461 return err; 1462 } 1463 if (obj->efile.rodata_shndx >= 0) { 1464 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1465 obj->efile.rodata_shndx, 1466 obj->efile.rodata->d_buf, 1467 obj->efile.rodata->d_size); 1468 if (err) 1469 return err; 1470 1471 obj->rodata_map_idx = obj->nr_maps - 1; 1472 } 1473 if (obj->efile.bss_shndx >= 0) { 1474 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1475 obj->efile.bss_shndx, 1476 NULL, 1477 obj->efile.bss->d_size); 1478 if (err) 1479 return err; 1480 } 1481 return 0; 1482 } 1483 1484 1485 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1486 const void *name) 1487 { 1488 int i; 1489 1490 for (i = 0; i < obj->nr_extern; i++) { 1491 if (strcmp(obj->externs[i].name, name) == 0) 1492 return &obj->externs[i]; 1493 } 1494 return NULL; 1495 } 1496 1497 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1498 char value) 1499 { 1500 switch (ext->kcfg.type) { 1501 case KCFG_BOOL: 1502 if (value == 'm') { 1503 pr_warn("extern (kcfg) %s=%c should be tristate or char\n", 1504 ext->name, value); 1505 return -EINVAL; 1506 } 1507 *(bool *)ext_val = value == 'y' ? true : false; 1508 break; 1509 case KCFG_TRISTATE: 1510 if (value == 'y') 1511 *(enum libbpf_tristate *)ext_val = TRI_YES; 1512 else if (value == 'm') 1513 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1514 else /* value == 'n' */ 1515 *(enum libbpf_tristate *)ext_val = TRI_NO; 1516 break; 1517 case KCFG_CHAR: 1518 *(char *)ext_val = value; 1519 break; 1520 case KCFG_UNKNOWN: 1521 case KCFG_INT: 1522 case KCFG_CHAR_ARR: 1523 default: 1524 pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n", 1525 ext->name, value); 1526 return -EINVAL; 1527 } 1528 ext->is_set = true; 1529 return 0; 1530 } 1531 1532 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1533 const char *value) 1534 { 1535 size_t len; 1536 1537 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1538 pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value); 1539 return -EINVAL; 1540 } 1541 1542 len = strlen(value); 1543 if (value[len - 1] != '"') { 1544 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1545 ext->name, value); 1546 return -EINVAL; 1547 } 1548 1549 /* strip quotes */ 1550 len -= 2; 1551 if (len >= ext->kcfg.sz) { 1552 pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1553 ext->name, value, len, ext->kcfg.sz - 1); 1554 len = ext->kcfg.sz - 1; 1555 } 1556 memcpy(ext_val, value + 1, len); 1557 ext_val[len] = '\0'; 1558 ext->is_set = true; 1559 return 0; 1560 } 1561 1562 static int parse_u64(const char *value, __u64 *res) 1563 { 1564 char *value_end; 1565 int err; 1566 1567 errno = 0; 1568 *res = strtoull(value, &value_end, 0); 1569 if (errno) { 1570 err = -errno; 1571 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1572 return err; 1573 } 1574 if (*value_end) { 1575 pr_warn("failed to parse '%s' as integer completely\n", value); 1576 return -EINVAL; 1577 } 1578 return 0; 1579 } 1580 1581 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1582 { 1583 int bit_sz = ext->kcfg.sz * 8; 1584 1585 if (ext->kcfg.sz == 8) 1586 return true; 1587 1588 /* Validate that value stored in u64 fits in integer of `ext->sz` 1589 * bytes size without any loss of information. If the target integer 1590 * is signed, we rely on the following limits of integer type of 1591 * Y bits and subsequent transformation: 1592 * 1593 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1594 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1595 * 0 <= X + 2^(Y-1) < 2^Y 1596 * 1597 * For unsigned target integer, check that all the (64 - Y) bits are 1598 * zero. 1599 */ 1600 if (ext->kcfg.is_signed) 1601 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1602 else 1603 return (v >> bit_sz) == 0; 1604 } 1605 1606 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1607 __u64 value) 1608 { 1609 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1610 pr_warn("extern (kcfg) %s=%llu should be integer\n", 1611 ext->name, (unsigned long long)value); 1612 return -EINVAL; 1613 } 1614 if (!is_kcfg_value_in_range(ext, value)) { 1615 pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n", 1616 ext->name, (unsigned long long)value, ext->kcfg.sz); 1617 return -ERANGE; 1618 } 1619 switch (ext->kcfg.sz) { 1620 case 1: *(__u8 *)ext_val = value; break; 1621 case 2: *(__u16 *)ext_val = value; break; 1622 case 4: *(__u32 *)ext_val = value; break; 1623 case 8: *(__u64 *)ext_val = value; break; 1624 default: 1625 return -EINVAL; 1626 } 1627 ext->is_set = true; 1628 return 0; 1629 } 1630 1631 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1632 char *buf, void *data) 1633 { 1634 struct extern_desc *ext; 1635 char *sep, *value; 1636 int len, err = 0; 1637 void *ext_val; 1638 __u64 num; 1639 1640 if (strncmp(buf, "CONFIG_", 7)) 1641 return 0; 1642 1643 sep = strchr(buf, '='); 1644 if (!sep) { 1645 pr_warn("failed to parse '%s': no separator\n", buf); 1646 return -EINVAL; 1647 } 1648 1649 /* Trim ending '\n' */ 1650 len = strlen(buf); 1651 if (buf[len - 1] == '\n') 1652 buf[len - 1] = '\0'; 1653 /* Split on '=' and ensure that a value is present. */ 1654 *sep = '\0'; 1655 if (!sep[1]) { 1656 *sep = '='; 1657 pr_warn("failed to parse '%s': no value\n", buf); 1658 return -EINVAL; 1659 } 1660 1661 ext = find_extern_by_name(obj, buf); 1662 if (!ext || ext->is_set) 1663 return 0; 1664 1665 ext_val = data + ext->kcfg.data_off; 1666 value = sep + 1; 1667 1668 switch (*value) { 1669 case 'y': case 'n': case 'm': 1670 err = set_kcfg_value_tri(ext, ext_val, *value); 1671 break; 1672 case '"': 1673 err = set_kcfg_value_str(ext, ext_val, value); 1674 break; 1675 default: 1676 /* assume integer */ 1677 err = parse_u64(value, &num); 1678 if (err) { 1679 pr_warn("extern (kcfg) %s=%s should be integer\n", 1680 ext->name, value); 1681 return err; 1682 } 1683 err = set_kcfg_value_num(ext, ext_val, num); 1684 break; 1685 } 1686 if (err) 1687 return err; 1688 pr_debug("extern (kcfg) %s=%s\n", ext->name, value); 1689 return 0; 1690 } 1691 1692 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1693 { 1694 char buf[PATH_MAX]; 1695 struct utsname uts; 1696 int len, err = 0; 1697 gzFile file; 1698 1699 uname(&uts); 1700 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1701 if (len < 0) 1702 return -EINVAL; 1703 else if (len >= PATH_MAX) 1704 return -ENAMETOOLONG; 1705 1706 /* gzopen also accepts uncompressed files. */ 1707 file = gzopen(buf, "r"); 1708 if (!file) 1709 file = gzopen("/proc/config.gz", "r"); 1710 1711 if (!file) { 1712 pr_warn("failed to open system Kconfig\n"); 1713 return -ENOENT; 1714 } 1715 1716 while (gzgets(file, buf, sizeof(buf))) { 1717 err = bpf_object__process_kconfig_line(obj, buf, data); 1718 if (err) { 1719 pr_warn("error parsing system Kconfig line '%s': %d\n", 1720 buf, err); 1721 goto out; 1722 } 1723 } 1724 1725 out: 1726 gzclose(file); 1727 return err; 1728 } 1729 1730 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1731 const char *config, void *data) 1732 { 1733 char buf[PATH_MAX]; 1734 int err = 0; 1735 FILE *file; 1736 1737 file = fmemopen((void *)config, strlen(config), "r"); 1738 if (!file) { 1739 err = -errno; 1740 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1741 return err; 1742 } 1743 1744 while (fgets(buf, sizeof(buf), file)) { 1745 err = bpf_object__process_kconfig_line(obj, buf, data); 1746 if (err) { 1747 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1748 buf, err); 1749 break; 1750 } 1751 } 1752 1753 fclose(file); 1754 return err; 1755 } 1756 1757 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1758 { 1759 struct extern_desc *last_ext = NULL, *ext; 1760 size_t map_sz; 1761 int i, err; 1762 1763 for (i = 0; i < obj->nr_extern; i++) { 1764 ext = &obj->externs[i]; 1765 if (ext->type == EXT_KCFG) 1766 last_ext = ext; 1767 } 1768 1769 if (!last_ext) 1770 return 0; 1771 1772 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1773 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1774 obj->efile.symbols_shndx, 1775 NULL, map_sz); 1776 if (err) 1777 return err; 1778 1779 obj->kconfig_map_idx = obj->nr_maps - 1; 1780 1781 return 0; 1782 } 1783 1784 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1785 { 1786 Elf_Data *symbols = obj->efile.symbols; 1787 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1788 Elf_Data *data = NULL; 1789 Elf_Scn *scn; 1790 1791 if (obj->efile.maps_shndx < 0) 1792 return 0; 1793 1794 if (!symbols) 1795 return -EINVAL; 1796 1797 1798 scn = elf_sec_by_idx(obj, obj->efile.maps_shndx); 1799 data = elf_sec_data(obj, scn); 1800 if (!scn || !data) { 1801 pr_warn("elf: failed to get legacy map definitions for %s\n", 1802 obj->path); 1803 return -EINVAL; 1804 } 1805 1806 /* 1807 * Count number of maps. Each map has a name. 1808 * Array of maps is not supported: only the first element is 1809 * considered. 1810 * 1811 * TODO: Detect array of map and report error. 1812 */ 1813 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1814 for (i = 0; i < nr_syms; i++) { 1815 GElf_Sym sym; 1816 1817 if (!gelf_getsym(symbols, i, &sym)) 1818 continue; 1819 if (sym.st_shndx != obj->efile.maps_shndx) 1820 continue; 1821 nr_maps++; 1822 } 1823 /* Assume equally sized map definitions */ 1824 pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n", 1825 nr_maps, data->d_size, obj->path); 1826 1827 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1828 pr_warn("elf: unable to determine legacy map definition size in %s\n", 1829 obj->path); 1830 return -EINVAL; 1831 } 1832 map_def_sz = data->d_size / nr_maps; 1833 1834 /* Fill obj->maps using data in "maps" section. */ 1835 for (i = 0; i < nr_syms; i++) { 1836 GElf_Sym sym; 1837 const char *map_name; 1838 struct bpf_map_def *def; 1839 struct bpf_map *map; 1840 1841 if (!gelf_getsym(symbols, i, &sym)) 1842 continue; 1843 if (sym.st_shndx != obj->efile.maps_shndx) 1844 continue; 1845 1846 map = bpf_object__add_map(obj); 1847 if (IS_ERR(map)) 1848 return PTR_ERR(map); 1849 1850 map_name = elf_sym_str(obj, sym.st_name); 1851 if (!map_name) { 1852 pr_warn("failed to get map #%d name sym string for obj %s\n", 1853 i, obj->path); 1854 return -LIBBPF_ERRNO__FORMAT; 1855 } 1856 1857 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1858 map->sec_idx = sym.st_shndx; 1859 map->sec_offset = sym.st_value; 1860 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1861 map_name, map->sec_idx, map->sec_offset); 1862 if (sym.st_value + map_def_sz > data->d_size) { 1863 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1864 obj->path, map_name); 1865 return -EINVAL; 1866 } 1867 1868 map->name = strdup(map_name); 1869 if (!map->name) { 1870 pr_warn("failed to alloc map name\n"); 1871 return -ENOMEM; 1872 } 1873 pr_debug("map %d is \"%s\"\n", i, map->name); 1874 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1875 /* 1876 * If the definition of the map in the object file fits in 1877 * bpf_map_def, copy it. Any extra fields in our version 1878 * of bpf_map_def will default to zero as a result of the 1879 * calloc above. 1880 */ 1881 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1882 memcpy(&map->def, def, map_def_sz); 1883 } else { 1884 /* 1885 * Here the map structure being read is bigger than what 1886 * we expect, truncate if the excess bits are all zero. 1887 * If they are not zero, reject this map as 1888 * incompatible. 1889 */ 1890 char *b; 1891 1892 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1893 b < ((char *)def) + map_def_sz; b++) { 1894 if (*b != 0) { 1895 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1896 obj->path, map_name); 1897 if (strict) 1898 return -EINVAL; 1899 } 1900 } 1901 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1902 } 1903 } 1904 return 0; 1905 } 1906 1907 const struct btf_type * 1908 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1909 { 1910 const struct btf_type *t = btf__type_by_id(btf, id); 1911 1912 if (res_id) 1913 *res_id = id; 1914 1915 while (btf_is_mod(t) || btf_is_typedef(t)) { 1916 if (res_id) 1917 *res_id = t->type; 1918 t = btf__type_by_id(btf, t->type); 1919 } 1920 1921 return t; 1922 } 1923 1924 static const struct btf_type * 1925 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 1926 { 1927 const struct btf_type *t; 1928 1929 t = skip_mods_and_typedefs(btf, id, NULL); 1930 if (!btf_is_ptr(t)) 1931 return NULL; 1932 1933 t = skip_mods_and_typedefs(btf, t->type, res_id); 1934 1935 return btf_is_func_proto(t) ? t : NULL; 1936 } 1937 1938 static const char *__btf_kind_str(__u16 kind) 1939 { 1940 switch (kind) { 1941 case BTF_KIND_UNKN: return "void"; 1942 case BTF_KIND_INT: return "int"; 1943 case BTF_KIND_PTR: return "ptr"; 1944 case BTF_KIND_ARRAY: return "array"; 1945 case BTF_KIND_STRUCT: return "struct"; 1946 case BTF_KIND_UNION: return "union"; 1947 case BTF_KIND_ENUM: return "enum"; 1948 case BTF_KIND_FWD: return "fwd"; 1949 case BTF_KIND_TYPEDEF: return "typedef"; 1950 case BTF_KIND_VOLATILE: return "volatile"; 1951 case BTF_KIND_CONST: return "const"; 1952 case BTF_KIND_RESTRICT: return "restrict"; 1953 case BTF_KIND_FUNC: return "func"; 1954 case BTF_KIND_FUNC_PROTO: return "func_proto"; 1955 case BTF_KIND_VAR: return "var"; 1956 case BTF_KIND_DATASEC: return "datasec"; 1957 case BTF_KIND_FLOAT: return "float"; 1958 default: return "unknown"; 1959 } 1960 } 1961 1962 const char *btf_kind_str(const struct btf_type *t) 1963 { 1964 return __btf_kind_str(btf_kind(t)); 1965 } 1966 1967 /* 1968 * Fetch integer attribute of BTF map definition. Such attributes are 1969 * represented using a pointer to an array, in which dimensionality of array 1970 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1971 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1972 * type definition, while using only sizeof(void *) space in ELF data section. 1973 */ 1974 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1975 const struct btf_member *m, __u32 *res) 1976 { 1977 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1978 const char *name = btf__name_by_offset(btf, m->name_off); 1979 const struct btf_array *arr_info; 1980 const struct btf_type *arr_t; 1981 1982 if (!btf_is_ptr(t)) { 1983 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 1984 map_name, name, btf_kind_str(t)); 1985 return false; 1986 } 1987 1988 arr_t = btf__type_by_id(btf, t->type); 1989 if (!arr_t) { 1990 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1991 map_name, name, t->type); 1992 return false; 1993 } 1994 if (!btf_is_array(arr_t)) { 1995 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 1996 map_name, name, btf_kind_str(arr_t)); 1997 return false; 1998 } 1999 arr_info = btf_array(arr_t); 2000 *res = arr_info->nelems; 2001 return true; 2002 } 2003 2004 static int build_map_pin_path(struct bpf_map *map, const char *path) 2005 { 2006 char buf[PATH_MAX]; 2007 int len; 2008 2009 if (!path) 2010 path = "/sys/fs/bpf"; 2011 2012 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 2013 if (len < 0) 2014 return -EINVAL; 2015 else if (len >= PATH_MAX) 2016 return -ENAMETOOLONG; 2017 2018 return bpf_map__set_pin_path(map, buf); 2019 } 2020 2021 int parse_btf_map_def(const char *map_name, struct btf *btf, 2022 const struct btf_type *def_t, bool strict, 2023 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2024 { 2025 const struct btf_type *t; 2026 const struct btf_member *m; 2027 bool is_inner = inner_def == NULL; 2028 int vlen, i; 2029 2030 vlen = btf_vlen(def_t); 2031 m = btf_members(def_t); 2032 for (i = 0; i < vlen; i++, m++) { 2033 const char *name = btf__name_by_offset(btf, m->name_off); 2034 2035 if (!name) { 2036 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2037 return -EINVAL; 2038 } 2039 if (strcmp(name, "type") == 0) { 2040 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2041 return -EINVAL; 2042 map_def->parts |= MAP_DEF_MAP_TYPE; 2043 } else if (strcmp(name, "max_entries") == 0) { 2044 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2045 return -EINVAL; 2046 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2047 } else if (strcmp(name, "map_flags") == 0) { 2048 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2049 return -EINVAL; 2050 map_def->parts |= MAP_DEF_MAP_FLAGS; 2051 } else if (strcmp(name, "numa_node") == 0) { 2052 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2053 return -EINVAL; 2054 map_def->parts |= MAP_DEF_NUMA_NODE; 2055 } else if (strcmp(name, "key_size") == 0) { 2056 __u32 sz; 2057 2058 if (!get_map_field_int(map_name, btf, m, &sz)) 2059 return -EINVAL; 2060 if (map_def->key_size && map_def->key_size != sz) { 2061 pr_warn("map '%s': conflicting key size %u != %u.\n", 2062 map_name, map_def->key_size, sz); 2063 return -EINVAL; 2064 } 2065 map_def->key_size = sz; 2066 map_def->parts |= MAP_DEF_KEY_SIZE; 2067 } else if (strcmp(name, "key") == 0) { 2068 __s64 sz; 2069 2070 t = btf__type_by_id(btf, m->type); 2071 if (!t) { 2072 pr_warn("map '%s': key type [%d] not found.\n", 2073 map_name, m->type); 2074 return -EINVAL; 2075 } 2076 if (!btf_is_ptr(t)) { 2077 pr_warn("map '%s': key spec is not PTR: %s.\n", 2078 map_name, btf_kind_str(t)); 2079 return -EINVAL; 2080 } 2081 sz = btf__resolve_size(btf, t->type); 2082 if (sz < 0) { 2083 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2084 map_name, t->type, (ssize_t)sz); 2085 return sz; 2086 } 2087 if (map_def->key_size && map_def->key_size != sz) { 2088 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2089 map_name, map_def->key_size, (ssize_t)sz); 2090 return -EINVAL; 2091 } 2092 map_def->key_size = sz; 2093 map_def->key_type_id = t->type; 2094 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2095 } else if (strcmp(name, "value_size") == 0) { 2096 __u32 sz; 2097 2098 if (!get_map_field_int(map_name, btf, m, &sz)) 2099 return -EINVAL; 2100 if (map_def->value_size && map_def->value_size != sz) { 2101 pr_warn("map '%s': conflicting value size %u != %u.\n", 2102 map_name, map_def->value_size, sz); 2103 return -EINVAL; 2104 } 2105 map_def->value_size = sz; 2106 map_def->parts |= MAP_DEF_VALUE_SIZE; 2107 } else if (strcmp(name, "value") == 0) { 2108 __s64 sz; 2109 2110 t = btf__type_by_id(btf, m->type); 2111 if (!t) { 2112 pr_warn("map '%s': value type [%d] not found.\n", 2113 map_name, m->type); 2114 return -EINVAL; 2115 } 2116 if (!btf_is_ptr(t)) { 2117 pr_warn("map '%s': value spec is not PTR: %s.\n", 2118 map_name, btf_kind_str(t)); 2119 return -EINVAL; 2120 } 2121 sz = btf__resolve_size(btf, t->type); 2122 if (sz < 0) { 2123 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2124 map_name, t->type, (ssize_t)sz); 2125 return sz; 2126 } 2127 if (map_def->value_size && map_def->value_size != sz) { 2128 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2129 map_name, map_def->value_size, (ssize_t)sz); 2130 return -EINVAL; 2131 } 2132 map_def->value_size = sz; 2133 map_def->value_type_id = t->type; 2134 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2135 } 2136 else if (strcmp(name, "values") == 0) { 2137 char inner_map_name[128]; 2138 int err; 2139 2140 if (is_inner) { 2141 pr_warn("map '%s': multi-level inner maps not supported.\n", 2142 map_name); 2143 return -ENOTSUP; 2144 } 2145 if (i != vlen - 1) { 2146 pr_warn("map '%s': '%s' member should be last.\n", 2147 map_name, name); 2148 return -EINVAL; 2149 } 2150 if (!bpf_map_type__is_map_in_map(map_def->map_type)) { 2151 pr_warn("map '%s': should be map-in-map.\n", 2152 map_name); 2153 return -ENOTSUP; 2154 } 2155 if (map_def->value_size && map_def->value_size != 4) { 2156 pr_warn("map '%s': conflicting value size %u != 4.\n", 2157 map_name, map_def->value_size); 2158 return -EINVAL; 2159 } 2160 map_def->value_size = 4; 2161 t = btf__type_by_id(btf, m->type); 2162 if (!t) { 2163 pr_warn("map '%s': map-in-map inner type [%d] not found.\n", 2164 map_name, m->type); 2165 return -EINVAL; 2166 } 2167 if (!btf_is_array(t) || btf_array(t)->nelems) { 2168 pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n", 2169 map_name); 2170 return -EINVAL; 2171 } 2172 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2173 if (!btf_is_ptr(t)) { 2174 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2175 map_name, btf_kind_str(t)); 2176 return -EINVAL; 2177 } 2178 t = skip_mods_and_typedefs(btf, t->type, NULL); 2179 if (!btf_is_struct(t)) { 2180 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2181 map_name, btf_kind_str(t)); 2182 return -EINVAL; 2183 } 2184 2185 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2186 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2187 if (err) 2188 return err; 2189 2190 map_def->parts |= MAP_DEF_INNER_MAP; 2191 } else if (strcmp(name, "pinning") == 0) { 2192 __u32 val; 2193 2194 if (is_inner) { 2195 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2196 return -EINVAL; 2197 } 2198 if (!get_map_field_int(map_name, btf, m, &val)) 2199 return -EINVAL; 2200 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2201 pr_warn("map '%s': invalid pinning value %u.\n", 2202 map_name, val); 2203 return -EINVAL; 2204 } 2205 map_def->pinning = val; 2206 map_def->parts |= MAP_DEF_PINNING; 2207 } else { 2208 if (strict) { 2209 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2210 return -ENOTSUP; 2211 } 2212 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2213 } 2214 } 2215 2216 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2217 pr_warn("map '%s': map type isn't specified.\n", map_name); 2218 return -EINVAL; 2219 } 2220 2221 return 0; 2222 } 2223 2224 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2225 { 2226 map->def.type = def->map_type; 2227 map->def.key_size = def->key_size; 2228 map->def.value_size = def->value_size; 2229 map->def.max_entries = def->max_entries; 2230 map->def.map_flags = def->map_flags; 2231 2232 map->numa_node = def->numa_node; 2233 map->btf_key_type_id = def->key_type_id; 2234 map->btf_value_type_id = def->value_type_id; 2235 2236 if (def->parts & MAP_DEF_MAP_TYPE) 2237 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2238 2239 if (def->parts & MAP_DEF_KEY_TYPE) 2240 pr_debug("map '%s': found key [%u], sz = %u.\n", 2241 map->name, def->key_type_id, def->key_size); 2242 else if (def->parts & MAP_DEF_KEY_SIZE) 2243 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2244 2245 if (def->parts & MAP_DEF_VALUE_TYPE) 2246 pr_debug("map '%s': found value [%u], sz = %u.\n", 2247 map->name, def->value_type_id, def->value_size); 2248 else if (def->parts & MAP_DEF_VALUE_SIZE) 2249 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2250 2251 if (def->parts & MAP_DEF_MAX_ENTRIES) 2252 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2253 if (def->parts & MAP_DEF_MAP_FLAGS) 2254 pr_debug("map '%s': found map_flags = %u.\n", map->name, def->map_flags); 2255 if (def->parts & MAP_DEF_PINNING) 2256 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2257 if (def->parts & MAP_DEF_NUMA_NODE) 2258 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2259 2260 if (def->parts & MAP_DEF_INNER_MAP) 2261 pr_debug("map '%s': found inner map definition.\n", map->name); 2262 } 2263 2264 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2265 const struct btf_type *sec, 2266 int var_idx, int sec_idx, 2267 const Elf_Data *data, bool strict, 2268 const char *pin_root_path) 2269 { 2270 struct btf_map_def map_def = {}, inner_def = {}; 2271 const struct btf_type *var, *def; 2272 const struct btf_var_secinfo *vi; 2273 const struct btf_var *var_extra; 2274 const char *map_name; 2275 struct bpf_map *map; 2276 int err; 2277 2278 vi = btf_var_secinfos(sec) + var_idx; 2279 var = btf__type_by_id(obj->btf, vi->type); 2280 var_extra = btf_var(var); 2281 map_name = btf__name_by_offset(obj->btf, var->name_off); 2282 2283 if (map_name == NULL || map_name[0] == '\0') { 2284 pr_warn("map #%d: empty name.\n", var_idx); 2285 return -EINVAL; 2286 } 2287 if ((__u64)vi->offset + vi->size > data->d_size) { 2288 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2289 return -EINVAL; 2290 } 2291 if (!btf_is_var(var)) { 2292 pr_warn("map '%s': unexpected var kind %s.\n", 2293 map_name, btf_kind_str(var)); 2294 return -EINVAL; 2295 } 2296 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 2297 var_extra->linkage != BTF_VAR_STATIC) { 2298 pr_warn("map '%s': unsupported var linkage %u.\n", 2299 map_name, var_extra->linkage); 2300 return -EOPNOTSUPP; 2301 } 2302 2303 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2304 if (!btf_is_struct(def)) { 2305 pr_warn("map '%s': unexpected def kind %s.\n", 2306 map_name, btf_kind_str(var)); 2307 return -EINVAL; 2308 } 2309 if (def->size > vi->size) { 2310 pr_warn("map '%s': invalid def size.\n", map_name); 2311 return -EINVAL; 2312 } 2313 2314 map = bpf_object__add_map(obj); 2315 if (IS_ERR(map)) 2316 return PTR_ERR(map); 2317 map->name = strdup(map_name); 2318 if (!map->name) { 2319 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2320 return -ENOMEM; 2321 } 2322 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2323 map->def.type = BPF_MAP_TYPE_UNSPEC; 2324 map->sec_idx = sec_idx; 2325 map->sec_offset = vi->offset; 2326 map->btf_var_idx = var_idx; 2327 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2328 map_name, map->sec_idx, map->sec_offset); 2329 2330 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2331 if (err) 2332 return err; 2333 2334 fill_map_from_def(map, &map_def); 2335 2336 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2337 err = build_map_pin_path(map, pin_root_path); 2338 if (err) { 2339 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2340 return err; 2341 } 2342 } 2343 2344 if (map_def.parts & MAP_DEF_INNER_MAP) { 2345 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2346 if (!map->inner_map) 2347 return -ENOMEM; 2348 map->inner_map->fd = -1; 2349 map->inner_map->sec_idx = sec_idx; 2350 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2351 if (!map->inner_map->name) 2352 return -ENOMEM; 2353 sprintf(map->inner_map->name, "%s.inner", map_name); 2354 2355 fill_map_from_def(map->inner_map, &inner_def); 2356 } 2357 2358 return 0; 2359 } 2360 2361 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2362 const char *pin_root_path) 2363 { 2364 const struct btf_type *sec = NULL; 2365 int nr_types, i, vlen, err; 2366 const struct btf_type *t; 2367 const char *name; 2368 Elf_Data *data; 2369 Elf_Scn *scn; 2370 2371 if (obj->efile.btf_maps_shndx < 0) 2372 return 0; 2373 2374 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2375 data = elf_sec_data(obj, scn); 2376 if (!scn || !data) { 2377 pr_warn("elf: failed to get %s map definitions for %s\n", 2378 MAPS_ELF_SEC, obj->path); 2379 return -EINVAL; 2380 } 2381 2382 nr_types = btf__get_nr_types(obj->btf); 2383 for (i = 1; i <= nr_types; i++) { 2384 t = btf__type_by_id(obj->btf, i); 2385 if (!btf_is_datasec(t)) 2386 continue; 2387 name = btf__name_by_offset(obj->btf, t->name_off); 2388 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2389 sec = t; 2390 obj->efile.btf_maps_sec_btf_id = i; 2391 break; 2392 } 2393 } 2394 2395 if (!sec) { 2396 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2397 return -ENOENT; 2398 } 2399 2400 vlen = btf_vlen(sec); 2401 for (i = 0; i < vlen; i++) { 2402 err = bpf_object__init_user_btf_map(obj, sec, i, 2403 obj->efile.btf_maps_shndx, 2404 data, strict, 2405 pin_root_path); 2406 if (err) 2407 return err; 2408 } 2409 2410 return 0; 2411 } 2412 2413 static int bpf_object__init_maps(struct bpf_object *obj, 2414 const struct bpf_object_open_opts *opts) 2415 { 2416 const char *pin_root_path; 2417 bool strict; 2418 int err; 2419 2420 strict = !OPTS_GET(opts, relaxed_maps, false); 2421 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2422 2423 err = bpf_object__init_user_maps(obj, strict); 2424 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2425 err = err ?: bpf_object__init_global_data_maps(obj); 2426 err = err ?: bpf_object__init_kconfig_map(obj); 2427 err = err ?: bpf_object__init_struct_ops_maps(obj); 2428 if (err) 2429 return err; 2430 2431 return 0; 2432 } 2433 2434 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2435 { 2436 GElf_Shdr sh; 2437 2438 if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh)) 2439 return false; 2440 2441 return sh.sh_flags & SHF_EXECINSTR; 2442 } 2443 2444 static bool btf_needs_sanitization(struct bpf_object *obj) 2445 { 2446 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2447 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2448 bool has_float = kernel_supports(FEAT_BTF_FLOAT); 2449 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2450 2451 return !has_func || !has_datasec || !has_func_global || !has_float; 2452 } 2453 2454 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2455 { 2456 bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC); 2457 bool has_datasec = kernel_supports(FEAT_BTF_DATASEC); 2458 bool has_float = kernel_supports(FEAT_BTF_FLOAT); 2459 bool has_func = kernel_supports(FEAT_BTF_FUNC); 2460 struct btf_type *t; 2461 int i, j, vlen; 2462 2463 for (i = 1; i <= btf__get_nr_types(btf); i++) { 2464 t = (struct btf_type *)btf__type_by_id(btf, i); 2465 2466 if (!has_datasec && btf_is_var(t)) { 2467 /* replace VAR with INT */ 2468 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2469 /* 2470 * using size = 1 is the safest choice, 4 will be too 2471 * big and cause kernel BTF validation failure if 2472 * original variable took less than 4 bytes 2473 */ 2474 t->size = 1; 2475 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2476 } else if (!has_datasec && btf_is_datasec(t)) { 2477 /* replace DATASEC with STRUCT */ 2478 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2479 struct btf_member *m = btf_members(t); 2480 struct btf_type *vt; 2481 char *name; 2482 2483 name = (char *)btf__name_by_offset(btf, t->name_off); 2484 while (*name) { 2485 if (*name == '.') 2486 *name = '_'; 2487 name++; 2488 } 2489 2490 vlen = btf_vlen(t); 2491 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2492 for (j = 0; j < vlen; j++, v++, m++) { 2493 /* order of field assignments is important */ 2494 m->offset = v->offset * 8; 2495 m->type = v->type; 2496 /* preserve variable name as member name */ 2497 vt = (void *)btf__type_by_id(btf, v->type); 2498 m->name_off = vt->name_off; 2499 } 2500 } else if (!has_func && btf_is_func_proto(t)) { 2501 /* replace FUNC_PROTO with ENUM */ 2502 vlen = btf_vlen(t); 2503 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2504 t->size = sizeof(__u32); /* kernel enforced */ 2505 } else if (!has_func && btf_is_func(t)) { 2506 /* replace FUNC with TYPEDEF */ 2507 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2508 } else if (!has_func_global && btf_is_func(t)) { 2509 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2510 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2511 } else if (!has_float && btf_is_float(t)) { 2512 /* replace FLOAT with an equally-sized empty STRUCT; 2513 * since C compilers do not accept e.g. "float" as a 2514 * valid struct name, make it anonymous 2515 */ 2516 t->name_off = 0; 2517 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2518 } 2519 } 2520 } 2521 2522 static bool libbpf_needs_btf(const struct bpf_object *obj) 2523 { 2524 return obj->efile.btf_maps_shndx >= 0 || 2525 obj->efile.st_ops_shndx >= 0 || 2526 obj->nr_extern > 0; 2527 } 2528 2529 static bool kernel_needs_btf(const struct bpf_object *obj) 2530 { 2531 return obj->efile.st_ops_shndx >= 0; 2532 } 2533 2534 static int bpf_object__init_btf(struct bpf_object *obj, 2535 Elf_Data *btf_data, 2536 Elf_Data *btf_ext_data) 2537 { 2538 int err = -ENOENT; 2539 2540 if (btf_data) { 2541 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2542 if (IS_ERR(obj->btf)) { 2543 err = PTR_ERR(obj->btf); 2544 obj->btf = NULL; 2545 pr_warn("Error loading ELF section %s: %d.\n", 2546 BTF_ELF_SEC, err); 2547 goto out; 2548 } 2549 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2550 btf__set_pointer_size(obj->btf, 8); 2551 err = 0; 2552 } 2553 if (btf_ext_data) { 2554 if (!obj->btf) { 2555 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2556 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2557 goto out; 2558 } 2559 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 2560 btf_ext_data->d_size); 2561 if (IS_ERR(obj->btf_ext)) { 2562 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 2563 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 2564 obj->btf_ext = NULL; 2565 goto out; 2566 } 2567 } 2568 out: 2569 if (err && libbpf_needs_btf(obj)) { 2570 pr_warn("BTF is required, but is missing or corrupted.\n"); 2571 return err; 2572 } 2573 return 0; 2574 } 2575 2576 static int bpf_object__finalize_btf(struct bpf_object *obj) 2577 { 2578 int err; 2579 2580 if (!obj->btf) 2581 return 0; 2582 2583 err = btf__finalize_data(obj, obj->btf); 2584 if (err) { 2585 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2586 return err; 2587 } 2588 2589 return 0; 2590 } 2591 2592 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2593 { 2594 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2595 prog->type == BPF_PROG_TYPE_LSM) 2596 return true; 2597 2598 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2599 * also need vmlinux BTF 2600 */ 2601 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2602 return true; 2603 2604 return false; 2605 } 2606 2607 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2608 { 2609 struct bpf_program *prog; 2610 int i; 2611 2612 /* CO-RE relocations need kernel BTF */ 2613 if (obj->btf_ext && obj->btf_ext->core_relo_info.len) 2614 return true; 2615 2616 /* Support for typed ksyms needs kernel BTF */ 2617 for (i = 0; i < obj->nr_extern; i++) { 2618 const struct extern_desc *ext; 2619 2620 ext = &obj->externs[i]; 2621 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2622 return true; 2623 } 2624 2625 bpf_object__for_each_program(prog, obj) { 2626 if (!prog->load) 2627 continue; 2628 if (prog_needs_vmlinux_btf(prog)) 2629 return true; 2630 } 2631 2632 return false; 2633 } 2634 2635 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2636 { 2637 int err; 2638 2639 /* btf_vmlinux could be loaded earlier */ 2640 if (obj->btf_vmlinux) 2641 return 0; 2642 2643 if (!force && !obj_needs_vmlinux_btf(obj)) 2644 return 0; 2645 2646 obj->btf_vmlinux = libbpf_find_kernel_btf(); 2647 if (IS_ERR(obj->btf_vmlinux)) { 2648 err = PTR_ERR(obj->btf_vmlinux); 2649 pr_warn("Error loading vmlinux BTF: %d\n", err); 2650 obj->btf_vmlinux = NULL; 2651 return err; 2652 } 2653 return 0; 2654 } 2655 2656 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 2657 { 2658 struct btf *kern_btf = obj->btf; 2659 bool btf_mandatory, sanitize; 2660 int i, err = 0; 2661 2662 if (!obj->btf) 2663 return 0; 2664 2665 if (!kernel_supports(FEAT_BTF)) { 2666 if (kernel_needs_btf(obj)) { 2667 err = -EOPNOTSUPP; 2668 goto report; 2669 } 2670 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 2671 return 0; 2672 } 2673 2674 /* Even though some subprogs are global/weak, user might prefer more 2675 * permissive BPF verification process that BPF verifier performs for 2676 * static functions, taking into account more context from the caller 2677 * functions. In such case, they need to mark such subprogs with 2678 * __attribute__((visibility("hidden"))) and libbpf will adjust 2679 * corresponding FUNC BTF type to be marked as static and trigger more 2680 * involved BPF verification process. 2681 */ 2682 for (i = 0; i < obj->nr_programs; i++) { 2683 struct bpf_program *prog = &obj->programs[i]; 2684 struct btf_type *t; 2685 const char *name; 2686 int j, n; 2687 2688 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 2689 continue; 2690 2691 n = btf__get_nr_types(obj->btf); 2692 for (j = 1; j <= n; j++) { 2693 t = btf_type_by_id(obj->btf, j); 2694 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 2695 continue; 2696 2697 name = btf__str_by_offset(obj->btf, t->name_off); 2698 if (strcmp(name, prog->name) != 0) 2699 continue; 2700 2701 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 2702 break; 2703 } 2704 } 2705 2706 sanitize = btf_needs_sanitization(obj); 2707 if (sanitize) { 2708 const void *raw_data; 2709 __u32 sz; 2710 2711 /* clone BTF to sanitize a copy and leave the original intact */ 2712 raw_data = btf__get_raw_data(obj->btf, &sz); 2713 kern_btf = btf__new(raw_data, sz); 2714 if (IS_ERR(kern_btf)) 2715 return PTR_ERR(kern_btf); 2716 2717 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2718 btf__set_pointer_size(obj->btf, 8); 2719 bpf_object__sanitize_btf(obj, kern_btf); 2720 } 2721 2722 err = btf__load(kern_btf); 2723 if (sanitize) { 2724 if (!err) { 2725 /* move fd to libbpf's BTF */ 2726 btf__set_fd(obj->btf, btf__fd(kern_btf)); 2727 btf__set_fd(kern_btf, -1); 2728 } 2729 btf__free(kern_btf); 2730 } 2731 report: 2732 if (err) { 2733 btf_mandatory = kernel_needs_btf(obj); 2734 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 2735 btf_mandatory ? "BTF is mandatory, can't proceed." 2736 : "BTF is optional, ignoring."); 2737 if (!btf_mandatory) 2738 err = 0; 2739 } 2740 return err; 2741 } 2742 2743 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 2744 { 2745 const char *name; 2746 2747 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 2748 if (!name) { 2749 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2750 off, obj->path, elf_errmsg(-1)); 2751 return NULL; 2752 } 2753 2754 return name; 2755 } 2756 2757 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 2758 { 2759 const char *name; 2760 2761 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 2762 if (!name) { 2763 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 2764 off, obj->path, elf_errmsg(-1)); 2765 return NULL; 2766 } 2767 2768 return name; 2769 } 2770 2771 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 2772 { 2773 Elf_Scn *scn; 2774 2775 scn = elf_getscn(obj->efile.elf, idx); 2776 if (!scn) { 2777 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 2778 idx, obj->path, elf_errmsg(-1)); 2779 return NULL; 2780 } 2781 return scn; 2782 } 2783 2784 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 2785 { 2786 Elf_Scn *scn = NULL; 2787 Elf *elf = obj->efile.elf; 2788 const char *sec_name; 2789 2790 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2791 sec_name = elf_sec_name(obj, scn); 2792 if (!sec_name) 2793 return NULL; 2794 2795 if (strcmp(sec_name, name) != 0) 2796 continue; 2797 2798 return scn; 2799 } 2800 return NULL; 2801 } 2802 2803 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr) 2804 { 2805 if (!scn) 2806 return -EINVAL; 2807 2808 if (gelf_getshdr(scn, hdr) != hdr) { 2809 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 2810 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2811 return -EINVAL; 2812 } 2813 2814 return 0; 2815 } 2816 2817 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 2818 { 2819 const char *name; 2820 GElf_Shdr sh; 2821 2822 if (!scn) 2823 return NULL; 2824 2825 if (elf_sec_hdr(obj, scn, &sh)) 2826 return NULL; 2827 2828 name = elf_sec_str(obj, sh.sh_name); 2829 if (!name) { 2830 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 2831 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 2832 return NULL; 2833 } 2834 2835 return name; 2836 } 2837 2838 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 2839 { 2840 Elf_Data *data; 2841 2842 if (!scn) 2843 return NULL; 2844 2845 data = elf_getdata(scn, 0); 2846 if (!data) { 2847 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 2848 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 2849 obj->path, elf_errmsg(-1)); 2850 return NULL; 2851 } 2852 2853 return data; 2854 } 2855 2856 static bool is_sec_name_dwarf(const char *name) 2857 { 2858 /* approximation, but the actual list is too long */ 2859 return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0; 2860 } 2861 2862 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name) 2863 { 2864 /* no special handling of .strtab */ 2865 if (hdr->sh_type == SHT_STRTAB) 2866 return true; 2867 2868 /* ignore .llvm_addrsig section as well */ 2869 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 2870 return true; 2871 2872 /* no subprograms will lead to an empty .text section, ignore it */ 2873 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 2874 strcmp(name, ".text") == 0) 2875 return true; 2876 2877 /* DWARF sections */ 2878 if (is_sec_name_dwarf(name)) 2879 return true; 2880 2881 if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) { 2882 name += sizeof(".rel") - 1; 2883 /* DWARF section relocations */ 2884 if (is_sec_name_dwarf(name)) 2885 return true; 2886 2887 /* .BTF and .BTF.ext don't need relocations */ 2888 if (strcmp(name, BTF_ELF_SEC) == 0 || 2889 strcmp(name, BTF_EXT_ELF_SEC) == 0) 2890 return true; 2891 } 2892 2893 return false; 2894 } 2895 2896 static int cmp_progs(const void *_a, const void *_b) 2897 { 2898 const struct bpf_program *a = _a; 2899 const struct bpf_program *b = _b; 2900 2901 if (a->sec_idx != b->sec_idx) 2902 return a->sec_idx < b->sec_idx ? -1 : 1; 2903 2904 /* sec_insn_off can't be the same within the section */ 2905 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 2906 } 2907 2908 static int bpf_object__elf_collect(struct bpf_object *obj) 2909 { 2910 Elf *elf = obj->efile.elf; 2911 Elf_Data *btf_ext_data = NULL; 2912 Elf_Data *btf_data = NULL; 2913 int idx = 0, err = 0; 2914 const char *name; 2915 Elf_Data *data; 2916 Elf_Scn *scn; 2917 GElf_Shdr sh; 2918 2919 /* a bunch of ELF parsing functionality depends on processing symbols, 2920 * so do the first pass and find the symbol table 2921 */ 2922 scn = NULL; 2923 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2924 if (elf_sec_hdr(obj, scn, &sh)) 2925 return -LIBBPF_ERRNO__FORMAT; 2926 2927 if (sh.sh_type == SHT_SYMTAB) { 2928 if (obj->efile.symbols) { 2929 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 2930 return -LIBBPF_ERRNO__FORMAT; 2931 } 2932 2933 data = elf_sec_data(obj, scn); 2934 if (!data) 2935 return -LIBBPF_ERRNO__FORMAT; 2936 2937 obj->efile.symbols = data; 2938 obj->efile.symbols_shndx = elf_ndxscn(scn); 2939 obj->efile.strtabidx = sh.sh_link; 2940 } 2941 } 2942 2943 scn = NULL; 2944 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2945 idx++; 2946 2947 if (elf_sec_hdr(obj, scn, &sh)) 2948 return -LIBBPF_ERRNO__FORMAT; 2949 2950 name = elf_sec_str(obj, sh.sh_name); 2951 if (!name) 2952 return -LIBBPF_ERRNO__FORMAT; 2953 2954 if (ignore_elf_section(&sh, name)) 2955 continue; 2956 2957 data = elf_sec_data(obj, scn); 2958 if (!data) 2959 return -LIBBPF_ERRNO__FORMAT; 2960 2961 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2962 idx, name, (unsigned long)data->d_size, 2963 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2964 (int)sh.sh_type); 2965 2966 if (strcmp(name, "license") == 0) { 2967 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 2968 if (err) 2969 return err; 2970 } else if (strcmp(name, "version") == 0) { 2971 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 2972 if (err) 2973 return err; 2974 } else if (strcmp(name, "maps") == 0) { 2975 obj->efile.maps_shndx = idx; 2976 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2977 obj->efile.btf_maps_shndx = idx; 2978 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2979 btf_data = data; 2980 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2981 btf_ext_data = data; 2982 } else if (sh.sh_type == SHT_SYMTAB) { 2983 /* already processed during the first pass above */ 2984 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2985 if (sh.sh_flags & SHF_EXECINSTR) { 2986 if (strcmp(name, ".text") == 0) 2987 obj->efile.text_shndx = idx; 2988 err = bpf_object__add_programs(obj, data, name, idx); 2989 if (err) 2990 return err; 2991 } else if (strcmp(name, DATA_SEC) == 0) { 2992 obj->efile.data = data; 2993 obj->efile.data_shndx = idx; 2994 } else if (strcmp(name, RODATA_SEC) == 0) { 2995 obj->efile.rodata = data; 2996 obj->efile.rodata_shndx = idx; 2997 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 2998 obj->efile.st_ops_data = data; 2999 obj->efile.st_ops_shndx = idx; 3000 } else { 3001 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3002 idx, name); 3003 } 3004 } else if (sh.sh_type == SHT_REL) { 3005 int nr_sects = obj->efile.nr_reloc_sects; 3006 void *sects = obj->efile.reloc_sects; 3007 int sec = sh.sh_info; /* points to other section */ 3008 3009 /* Only do relo for section with exec instructions */ 3010 if (!section_have_execinstr(obj, sec) && 3011 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3012 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3013 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3014 idx, name, sec, 3015 elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>"); 3016 continue; 3017 } 3018 3019 sects = libbpf_reallocarray(sects, nr_sects + 1, 3020 sizeof(*obj->efile.reloc_sects)); 3021 if (!sects) 3022 return -ENOMEM; 3023 3024 obj->efile.reloc_sects = sects; 3025 obj->efile.nr_reloc_sects++; 3026 3027 obj->efile.reloc_sects[nr_sects].shdr = sh; 3028 obj->efile.reloc_sects[nr_sects].data = data; 3029 } else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3030 obj->efile.bss = data; 3031 obj->efile.bss_shndx = idx; 3032 } else { 3033 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3034 (size_t)sh.sh_size); 3035 } 3036 } 3037 3038 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3039 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3040 return -LIBBPF_ERRNO__FORMAT; 3041 } 3042 3043 /* sort BPF programs by section name and in-section instruction offset 3044 * for faster search */ 3045 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3046 3047 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3048 } 3049 3050 static bool sym_is_extern(const GElf_Sym *sym) 3051 { 3052 int bind = GELF_ST_BIND(sym->st_info); 3053 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3054 return sym->st_shndx == SHN_UNDEF && 3055 (bind == STB_GLOBAL || bind == STB_WEAK) && 3056 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 3057 } 3058 3059 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx) 3060 { 3061 int bind = GELF_ST_BIND(sym->st_info); 3062 int type = GELF_ST_TYPE(sym->st_info); 3063 3064 /* in .text section */ 3065 if (sym->st_shndx != text_shndx) 3066 return false; 3067 3068 /* local function */ 3069 if (bind == STB_LOCAL && type == STT_SECTION) 3070 return true; 3071 3072 /* global function */ 3073 return bind == STB_GLOBAL && type == STT_FUNC; 3074 } 3075 3076 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3077 { 3078 const struct btf_type *t; 3079 const char *tname; 3080 int i, n; 3081 3082 if (!btf) 3083 return -ESRCH; 3084 3085 n = btf__get_nr_types(btf); 3086 for (i = 1; i <= n; i++) { 3087 t = btf__type_by_id(btf, i); 3088 3089 if (!btf_is_var(t) && !btf_is_func(t)) 3090 continue; 3091 3092 tname = btf__name_by_offset(btf, t->name_off); 3093 if (strcmp(tname, ext_name)) 3094 continue; 3095 3096 if (btf_is_var(t) && 3097 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3098 return -EINVAL; 3099 3100 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3101 return -EINVAL; 3102 3103 return i; 3104 } 3105 3106 return -ENOENT; 3107 } 3108 3109 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3110 const struct btf_var_secinfo *vs; 3111 const struct btf_type *t; 3112 int i, j, n; 3113 3114 if (!btf) 3115 return -ESRCH; 3116 3117 n = btf__get_nr_types(btf); 3118 for (i = 1; i <= n; i++) { 3119 t = btf__type_by_id(btf, i); 3120 3121 if (!btf_is_datasec(t)) 3122 continue; 3123 3124 vs = btf_var_secinfos(t); 3125 for (j = 0; j < btf_vlen(t); j++, vs++) { 3126 if (vs->type == ext_btf_id) 3127 return i; 3128 } 3129 } 3130 3131 return -ENOENT; 3132 } 3133 3134 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3135 bool *is_signed) 3136 { 3137 const struct btf_type *t; 3138 const char *name; 3139 3140 t = skip_mods_and_typedefs(btf, id, NULL); 3141 name = btf__name_by_offset(btf, t->name_off); 3142 3143 if (is_signed) 3144 *is_signed = false; 3145 switch (btf_kind(t)) { 3146 case BTF_KIND_INT: { 3147 int enc = btf_int_encoding(t); 3148 3149 if (enc & BTF_INT_BOOL) 3150 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3151 if (is_signed) 3152 *is_signed = enc & BTF_INT_SIGNED; 3153 if (t->size == 1) 3154 return KCFG_CHAR; 3155 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3156 return KCFG_UNKNOWN; 3157 return KCFG_INT; 3158 } 3159 case BTF_KIND_ENUM: 3160 if (t->size != 4) 3161 return KCFG_UNKNOWN; 3162 if (strcmp(name, "libbpf_tristate")) 3163 return KCFG_UNKNOWN; 3164 return KCFG_TRISTATE; 3165 case BTF_KIND_ARRAY: 3166 if (btf_array(t)->nelems == 0) 3167 return KCFG_UNKNOWN; 3168 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3169 return KCFG_UNKNOWN; 3170 return KCFG_CHAR_ARR; 3171 default: 3172 return KCFG_UNKNOWN; 3173 } 3174 } 3175 3176 static int cmp_externs(const void *_a, const void *_b) 3177 { 3178 const struct extern_desc *a = _a; 3179 const struct extern_desc *b = _b; 3180 3181 if (a->type != b->type) 3182 return a->type < b->type ? -1 : 1; 3183 3184 if (a->type == EXT_KCFG) { 3185 /* descending order by alignment requirements */ 3186 if (a->kcfg.align != b->kcfg.align) 3187 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3188 /* ascending order by size, within same alignment class */ 3189 if (a->kcfg.sz != b->kcfg.sz) 3190 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3191 } 3192 3193 /* resolve ties by name */ 3194 return strcmp(a->name, b->name); 3195 } 3196 3197 static int find_int_btf_id(const struct btf *btf) 3198 { 3199 const struct btf_type *t; 3200 int i, n; 3201 3202 n = btf__get_nr_types(btf); 3203 for (i = 1; i <= n; i++) { 3204 t = btf__type_by_id(btf, i); 3205 3206 if (btf_is_int(t) && btf_int_bits(t) == 32) 3207 return i; 3208 } 3209 3210 return 0; 3211 } 3212 3213 static int add_dummy_ksym_var(struct btf *btf) 3214 { 3215 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3216 const struct btf_var_secinfo *vs; 3217 const struct btf_type *sec; 3218 3219 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3220 BTF_KIND_DATASEC); 3221 if (sec_btf_id < 0) 3222 return 0; 3223 3224 sec = btf__type_by_id(btf, sec_btf_id); 3225 vs = btf_var_secinfos(sec); 3226 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3227 const struct btf_type *vt; 3228 3229 vt = btf__type_by_id(btf, vs->type); 3230 if (btf_is_func(vt)) 3231 break; 3232 } 3233 3234 /* No func in ksyms sec. No need to add dummy var. */ 3235 if (i == btf_vlen(sec)) 3236 return 0; 3237 3238 int_btf_id = find_int_btf_id(btf); 3239 dummy_var_btf_id = btf__add_var(btf, 3240 "dummy_ksym", 3241 BTF_VAR_GLOBAL_ALLOCATED, 3242 int_btf_id); 3243 if (dummy_var_btf_id < 0) 3244 pr_warn("cannot create a dummy_ksym var\n"); 3245 3246 return dummy_var_btf_id; 3247 } 3248 3249 static int bpf_object__collect_externs(struct bpf_object *obj) 3250 { 3251 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3252 const struct btf_type *t; 3253 struct extern_desc *ext; 3254 int i, n, off, dummy_var_btf_id; 3255 const char *ext_name, *sec_name; 3256 Elf_Scn *scn; 3257 GElf_Shdr sh; 3258 3259 if (!obj->efile.symbols) 3260 return 0; 3261 3262 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3263 if (elf_sec_hdr(obj, scn, &sh)) 3264 return -LIBBPF_ERRNO__FORMAT; 3265 3266 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3267 if (dummy_var_btf_id < 0) 3268 return dummy_var_btf_id; 3269 3270 n = sh.sh_size / sh.sh_entsize; 3271 pr_debug("looking for externs among %d symbols...\n", n); 3272 3273 for (i = 0; i < n; i++) { 3274 GElf_Sym sym; 3275 3276 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 3277 return -LIBBPF_ERRNO__FORMAT; 3278 if (!sym_is_extern(&sym)) 3279 continue; 3280 ext_name = elf_sym_str(obj, sym.st_name); 3281 if (!ext_name || !ext_name[0]) 3282 continue; 3283 3284 ext = obj->externs; 3285 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3286 if (!ext) 3287 return -ENOMEM; 3288 obj->externs = ext; 3289 ext = &ext[obj->nr_extern]; 3290 memset(ext, 0, sizeof(*ext)); 3291 obj->nr_extern++; 3292 3293 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3294 if (ext->btf_id <= 0) { 3295 pr_warn("failed to find BTF for extern '%s': %d\n", 3296 ext_name, ext->btf_id); 3297 return ext->btf_id; 3298 } 3299 t = btf__type_by_id(obj->btf, ext->btf_id); 3300 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3301 ext->sym_idx = i; 3302 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 3303 3304 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3305 if (ext->sec_btf_id <= 0) { 3306 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3307 ext_name, ext->btf_id, ext->sec_btf_id); 3308 return ext->sec_btf_id; 3309 } 3310 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3311 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3312 3313 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3314 if (btf_is_func(t)) { 3315 pr_warn("extern function %s is unsupported under %s section\n", 3316 ext->name, KCONFIG_SEC); 3317 return -ENOTSUP; 3318 } 3319 kcfg_sec = sec; 3320 ext->type = EXT_KCFG; 3321 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3322 if (ext->kcfg.sz <= 0) { 3323 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3324 ext_name, ext->kcfg.sz); 3325 return ext->kcfg.sz; 3326 } 3327 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3328 if (ext->kcfg.align <= 0) { 3329 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3330 ext_name, ext->kcfg.align); 3331 return -EINVAL; 3332 } 3333 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3334 &ext->kcfg.is_signed); 3335 if (ext->kcfg.type == KCFG_UNKNOWN) { 3336 pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name); 3337 return -ENOTSUP; 3338 } 3339 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3340 if (btf_is_func(t) && ext->is_weak) { 3341 pr_warn("extern weak function %s is unsupported\n", 3342 ext->name); 3343 return -ENOTSUP; 3344 } 3345 ksym_sec = sec; 3346 ext->type = EXT_KSYM; 3347 skip_mods_and_typedefs(obj->btf, t->type, 3348 &ext->ksym.type_id); 3349 } else { 3350 pr_warn("unrecognized extern section '%s'\n", sec_name); 3351 return -ENOTSUP; 3352 } 3353 } 3354 pr_debug("collected %d externs total\n", obj->nr_extern); 3355 3356 if (!obj->nr_extern) 3357 return 0; 3358 3359 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3360 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3361 3362 /* for .ksyms section, we need to turn all externs into allocated 3363 * variables in BTF to pass kernel verification; we do this by 3364 * pretending that each extern is a 8-byte variable 3365 */ 3366 if (ksym_sec) { 3367 /* find existing 4-byte integer type in BTF to use for fake 3368 * extern variables in DATASEC 3369 */ 3370 int int_btf_id = find_int_btf_id(obj->btf); 3371 /* For extern function, a dummy_var added earlier 3372 * will be used to replace the vs->type and 3373 * its name string will be used to refill 3374 * the missing param's name. 3375 */ 3376 const struct btf_type *dummy_var; 3377 3378 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3379 for (i = 0; i < obj->nr_extern; i++) { 3380 ext = &obj->externs[i]; 3381 if (ext->type != EXT_KSYM) 3382 continue; 3383 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3384 i, ext->sym_idx, ext->name); 3385 } 3386 3387 sec = ksym_sec; 3388 n = btf_vlen(sec); 3389 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3390 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3391 struct btf_type *vt; 3392 3393 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3394 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3395 ext = find_extern_by_name(obj, ext_name); 3396 if (!ext) { 3397 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3398 btf_kind_str(vt), ext_name); 3399 return -ESRCH; 3400 } 3401 if (btf_is_func(vt)) { 3402 const struct btf_type *func_proto; 3403 struct btf_param *param; 3404 int j; 3405 3406 func_proto = btf__type_by_id(obj->btf, 3407 vt->type); 3408 param = btf_params(func_proto); 3409 /* Reuse the dummy_var string if the 3410 * func proto does not have param name. 3411 */ 3412 for (j = 0; j < btf_vlen(func_proto); j++) 3413 if (param[j].type && !param[j].name_off) 3414 param[j].name_off = 3415 dummy_var->name_off; 3416 vs->type = dummy_var_btf_id; 3417 vt->info &= ~0xffff; 3418 vt->info |= BTF_FUNC_GLOBAL; 3419 } else { 3420 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3421 vt->type = int_btf_id; 3422 } 3423 vs->offset = off; 3424 vs->size = sizeof(int); 3425 } 3426 sec->size = off; 3427 } 3428 3429 if (kcfg_sec) { 3430 sec = kcfg_sec; 3431 /* for kcfg externs calculate their offsets within a .kconfig map */ 3432 off = 0; 3433 for (i = 0; i < obj->nr_extern; i++) { 3434 ext = &obj->externs[i]; 3435 if (ext->type != EXT_KCFG) 3436 continue; 3437 3438 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3439 off = ext->kcfg.data_off + ext->kcfg.sz; 3440 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3441 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3442 } 3443 sec->size = off; 3444 n = btf_vlen(sec); 3445 for (i = 0; i < n; i++) { 3446 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3447 3448 t = btf__type_by_id(obj->btf, vs->type); 3449 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3450 ext = find_extern_by_name(obj, ext_name); 3451 if (!ext) { 3452 pr_warn("failed to find extern definition for BTF var '%s'\n", 3453 ext_name); 3454 return -ESRCH; 3455 } 3456 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3457 vs->offset = ext->kcfg.data_off; 3458 } 3459 } 3460 return 0; 3461 } 3462 3463 struct bpf_program * 3464 bpf_object__find_program_by_title(const struct bpf_object *obj, 3465 const char *title) 3466 { 3467 struct bpf_program *pos; 3468 3469 bpf_object__for_each_program(pos, obj) { 3470 if (pos->sec_name && !strcmp(pos->sec_name, title)) 3471 return pos; 3472 } 3473 return NULL; 3474 } 3475 3476 static bool prog_is_subprog(const struct bpf_object *obj, 3477 const struct bpf_program *prog) 3478 { 3479 /* For legacy reasons, libbpf supports an entry-point BPF programs 3480 * without SEC() attribute, i.e., those in the .text section. But if 3481 * there are 2 or more such programs in the .text section, they all 3482 * must be subprograms called from entry-point BPF programs in 3483 * designated SEC()'tions, otherwise there is no way to distinguish 3484 * which of those programs should be loaded vs which are a subprogram. 3485 * Similarly, if there is a function/program in .text and at least one 3486 * other BPF program with custom SEC() attribute, then we just assume 3487 * .text programs are subprograms (even if they are not called from 3488 * other programs), because libbpf never explicitly supported mixing 3489 * SEC()-designated BPF programs and .text entry-point BPF programs. 3490 */ 3491 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3492 } 3493 3494 struct bpf_program * 3495 bpf_object__find_program_by_name(const struct bpf_object *obj, 3496 const char *name) 3497 { 3498 struct bpf_program *prog; 3499 3500 bpf_object__for_each_program(prog, obj) { 3501 if (prog_is_subprog(obj, prog)) 3502 continue; 3503 if (!strcmp(prog->name, name)) 3504 return prog; 3505 } 3506 return NULL; 3507 } 3508 3509 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3510 int shndx) 3511 { 3512 return shndx == obj->efile.data_shndx || 3513 shndx == obj->efile.bss_shndx || 3514 shndx == obj->efile.rodata_shndx; 3515 } 3516 3517 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3518 int shndx) 3519 { 3520 return shndx == obj->efile.maps_shndx || 3521 shndx == obj->efile.btf_maps_shndx; 3522 } 3523 3524 static enum libbpf_map_type 3525 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3526 { 3527 if (shndx == obj->efile.data_shndx) 3528 return LIBBPF_MAP_DATA; 3529 else if (shndx == obj->efile.bss_shndx) 3530 return LIBBPF_MAP_BSS; 3531 else if (shndx == obj->efile.rodata_shndx) 3532 return LIBBPF_MAP_RODATA; 3533 else if (shndx == obj->efile.symbols_shndx) 3534 return LIBBPF_MAP_KCONFIG; 3535 else 3536 return LIBBPF_MAP_UNSPEC; 3537 } 3538 3539 static int bpf_program__record_reloc(struct bpf_program *prog, 3540 struct reloc_desc *reloc_desc, 3541 __u32 insn_idx, const char *sym_name, 3542 const GElf_Sym *sym, const GElf_Rel *rel) 3543 { 3544 struct bpf_insn *insn = &prog->insns[insn_idx]; 3545 size_t map_idx, nr_maps = prog->obj->nr_maps; 3546 struct bpf_object *obj = prog->obj; 3547 __u32 shdr_idx = sym->st_shndx; 3548 enum libbpf_map_type type; 3549 const char *sym_sec_name; 3550 struct bpf_map *map; 3551 3552 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3553 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3554 prog->name, sym_name, insn_idx, insn->code); 3555 return -LIBBPF_ERRNO__RELOC; 3556 } 3557 3558 if (sym_is_extern(sym)) { 3559 int sym_idx = GELF_R_SYM(rel->r_info); 3560 int i, n = obj->nr_extern; 3561 struct extern_desc *ext; 3562 3563 for (i = 0; i < n; i++) { 3564 ext = &obj->externs[i]; 3565 if (ext->sym_idx == sym_idx) 3566 break; 3567 } 3568 if (i >= n) { 3569 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3570 prog->name, sym_name, sym_idx); 3571 return -LIBBPF_ERRNO__RELOC; 3572 } 3573 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3574 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3575 if (insn->code == (BPF_JMP | BPF_CALL)) 3576 reloc_desc->type = RELO_EXTERN_FUNC; 3577 else 3578 reloc_desc->type = RELO_EXTERN_VAR; 3579 reloc_desc->insn_idx = insn_idx; 3580 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3581 return 0; 3582 } 3583 3584 /* sub-program call relocation */ 3585 if (is_call_insn(insn)) { 3586 if (insn->src_reg != BPF_PSEUDO_CALL) { 3587 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 3588 return -LIBBPF_ERRNO__RELOC; 3589 } 3590 /* text_shndx can be 0, if no default "main" program exists */ 3591 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 3592 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3593 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 3594 prog->name, sym_name, sym_sec_name); 3595 return -LIBBPF_ERRNO__RELOC; 3596 } 3597 if (sym->st_value % BPF_INSN_SZ) { 3598 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 3599 prog->name, sym_name, (size_t)sym->st_value); 3600 return -LIBBPF_ERRNO__RELOC; 3601 } 3602 reloc_desc->type = RELO_CALL; 3603 reloc_desc->insn_idx = insn_idx; 3604 reloc_desc->sym_off = sym->st_value; 3605 return 0; 3606 } 3607 3608 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 3609 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 3610 prog->name, sym_name, shdr_idx); 3611 return -LIBBPF_ERRNO__RELOC; 3612 } 3613 3614 /* loading subprog addresses */ 3615 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 3616 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 3617 * local_func: sym->st_value = 0, insn->imm = offset in the section. 3618 */ 3619 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 3620 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 3621 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 3622 return -LIBBPF_ERRNO__RELOC; 3623 } 3624 3625 reloc_desc->type = RELO_SUBPROG_ADDR; 3626 reloc_desc->insn_idx = insn_idx; 3627 reloc_desc->sym_off = sym->st_value; 3628 return 0; 3629 } 3630 3631 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 3632 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 3633 3634 /* generic map reference relocation */ 3635 if (type == LIBBPF_MAP_UNSPEC) { 3636 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 3637 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 3638 prog->name, sym_name, sym_sec_name); 3639 return -LIBBPF_ERRNO__RELOC; 3640 } 3641 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3642 map = &obj->maps[map_idx]; 3643 if (map->libbpf_type != type || 3644 map->sec_idx != sym->st_shndx || 3645 map->sec_offset != sym->st_value) 3646 continue; 3647 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 3648 prog->name, map_idx, map->name, map->sec_idx, 3649 map->sec_offset, insn_idx); 3650 break; 3651 } 3652 if (map_idx >= nr_maps) { 3653 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 3654 prog->name, sym_sec_name, (size_t)sym->st_value); 3655 return -LIBBPF_ERRNO__RELOC; 3656 } 3657 reloc_desc->type = RELO_LD64; 3658 reloc_desc->insn_idx = insn_idx; 3659 reloc_desc->map_idx = map_idx; 3660 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 3661 return 0; 3662 } 3663 3664 /* global data map relocation */ 3665 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 3666 pr_warn("prog '%s': bad data relo against section '%s'\n", 3667 prog->name, sym_sec_name); 3668 return -LIBBPF_ERRNO__RELOC; 3669 } 3670 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 3671 map = &obj->maps[map_idx]; 3672 if (map->libbpf_type != type) 3673 continue; 3674 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 3675 prog->name, map_idx, map->name, map->sec_idx, 3676 map->sec_offset, insn_idx); 3677 break; 3678 } 3679 if (map_idx >= nr_maps) { 3680 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 3681 prog->name, sym_sec_name); 3682 return -LIBBPF_ERRNO__RELOC; 3683 } 3684 3685 reloc_desc->type = RELO_DATA; 3686 reloc_desc->insn_idx = insn_idx; 3687 reloc_desc->map_idx = map_idx; 3688 reloc_desc->sym_off = sym->st_value; 3689 return 0; 3690 } 3691 3692 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 3693 { 3694 return insn_idx >= prog->sec_insn_off && 3695 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 3696 } 3697 3698 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 3699 size_t sec_idx, size_t insn_idx) 3700 { 3701 int l = 0, r = obj->nr_programs - 1, m; 3702 struct bpf_program *prog; 3703 3704 while (l < r) { 3705 m = l + (r - l + 1) / 2; 3706 prog = &obj->programs[m]; 3707 3708 if (prog->sec_idx < sec_idx || 3709 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 3710 l = m; 3711 else 3712 r = m - 1; 3713 } 3714 /* matching program could be at index l, but it still might be the 3715 * wrong one, so we need to double check conditions for the last time 3716 */ 3717 prog = &obj->programs[l]; 3718 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 3719 return prog; 3720 return NULL; 3721 } 3722 3723 static int 3724 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data) 3725 { 3726 Elf_Data *symbols = obj->efile.symbols; 3727 const char *relo_sec_name, *sec_name; 3728 size_t sec_idx = shdr->sh_info; 3729 struct bpf_program *prog; 3730 struct reloc_desc *relos; 3731 int err, i, nrels; 3732 const char *sym_name; 3733 __u32 insn_idx; 3734 Elf_Scn *scn; 3735 Elf_Data *scn_data; 3736 GElf_Sym sym; 3737 GElf_Rel rel; 3738 3739 scn = elf_sec_by_idx(obj, sec_idx); 3740 scn_data = elf_sec_data(obj, scn); 3741 3742 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 3743 sec_name = elf_sec_name(obj, scn); 3744 if (!relo_sec_name || !sec_name) 3745 return -EINVAL; 3746 3747 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 3748 relo_sec_name, sec_idx, sec_name); 3749 nrels = shdr->sh_size / shdr->sh_entsize; 3750 3751 for (i = 0; i < nrels; i++) { 3752 if (!gelf_getrel(data, i, &rel)) { 3753 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 3754 return -LIBBPF_ERRNO__FORMAT; 3755 } 3756 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 3757 pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n", 3758 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3759 return -LIBBPF_ERRNO__FORMAT; 3760 } 3761 3762 if (rel.r_offset % BPF_INSN_SZ || rel.r_offset >= scn_data->d_size) { 3763 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 3764 relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i); 3765 return -LIBBPF_ERRNO__FORMAT; 3766 } 3767 3768 insn_idx = rel.r_offset / BPF_INSN_SZ; 3769 /* relocations against static functions are recorded as 3770 * relocations against the section that contains a function; 3771 * in such case, symbol will be STT_SECTION and sym.st_name 3772 * will point to empty string (0), so fetch section name 3773 * instead 3774 */ 3775 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0) 3776 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx)); 3777 else 3778 sym_name = elf_sym_str(obj, sym.st_name); 3779 sym_name = sym_name ?: "<?"; 3780 3781 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 3782 relo_sec_name, i, insn_idx, sym_name); 3783 3784 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 3785 if (!prog) { 3786 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 3787 relo_sec_name, i, sec_name, insn_idx); 3788 continue; 3789 } 3790 3791 relos = libbpf_reallocarray(prog->reloc_desc, 3792 prog->nr_reloc + 1, sizeof(*relos)); 3793 if (!relos) 3794 return -ENOMEM; 3795 prog->reloc_desc = relos; 3796 3797 /* adjust insn_idx to local BPF program frame of reference */ 3798 insn_idx -= prog->sec_insn_off; 3799 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 3800 insn_idx, sym_name, &sym, &rel); 3801 if (err) 3802 return err; 3803 3804 prog->nr_reloc++; 3805 } 3806 return 0; 3807 } 3808 3809 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 3810 { 3811 struct bpf_map_def *def = &map->def; 3812 __u32 key_type_id = 0, value_type_id = 0; 3813 int ret; 3814 3815 /* if it's BTF-defined map, we don't need to search for type IDs. 3816 * For struct_ops map, it does not need btf_key_type_id and 3817 * btf_value_type_id. 3818 */ 3819 if (map->sec_idx == obj->efile.btf_maps_shndx || 3820 bpf_map__is_struct_ops(map)) 3821 return 0; 3822 3823 if (!bpf_map__is_internal(map)) { 3824 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 3825 def->value_size, &key_type_id, 3826 &value_type_id); 3827 } else { 3828 /* 3829 * LLVM annotates global data differently in BTF, that is, 3830 * only as '.data', '.bss' or '.rodata'. 3831 */ 3832 ret = btf__find_by_name(obj->btf, 3833 libbpf_type_to_btf_name[map->libbpf_type]); 3834 } 3835 if (ret < 0) 3836 return ret; 3837 3838 map->btf_key_type_id = key_type_id; 3839 map->btf_value_type_id = bpf_map__is_internal(map) ? 3840 ret : value_type_id; 3841 return 0; 3842 } 3843 3844 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 3845 { 3846 struct bpf_map_info info = {}; 3847 __u32 len = sizeof(info); 3848 int new_fd, err; 3849 char *new_name; 3850 3851 err = bpf_obj_get_info_by_fd(fd, &info, &len); 3852 if (err) 3853 return err; 3854 3855 new_name = strdup(info.name); 3856 if (!new_name) 3857 return -errno; 3858 3859 new_fd = open("/", O_RDONLY | O_CLOEXEC); 3860 if (new_fd < 0) { 3861 err = -errno; 3862 goto err_free_new_name; 3863 } 3864 3865 new_fd = dup3(fd, new_fd, O_CLOEXEC); 3866 if (new_fd < 0) { 3867 err = -errno; 3868 goto err_close_new_fd; 3869 } 3870 3871 err = zclose(map->fd); 3872 if (err) { 3873 err = -errno; 3874 goto err_close_new_fd; 3875 } 3876 free(map->name); 3877 3878 map->fd = new_fd; 3879 map->name = new_name; 3880 map->def.type = info.type; 3881 map->def.key_size = info.key_size; 3882 map->def.value_size = info.value_size; 3883 map->def.max_entries = info.max_entries; 3884 map->def.map_flags = info.map_flags; 3885 map->btf_key_type_id = info.btf_key_type_id; 3886 map->btf_value_type_id = info.btf_value_type_id; 3887 map->reused = true; 3888 3889 return 0; 3890 3891 err_close_new_fd: 3892 close(new_fd); 3893 err_free_new_name: 3894 free(new_name); 3895 return err; 3896 } 3897 3898 __u32 bpf_map__max_entries(const struct bpf_map *map) 3899 { 3900 return map->def.max_entries; 3901 } 3902 3903 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 3904 { 3905 if (!bpf_map_type__is_map_in_map(map->def.type)) 3906 return NULL; 3907 3908 return map->inner_map; 3909 } 3910 3911 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 3912 { 3913 if (map->fd >= 0) 3914 return -EBUSY; 3915 map->def.max_entries = max_entries; 3916 return 0; 3917 } 3918 3919 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 3920 { 3921 if (!map || !max_entries) 3922 return -EINVAL; 3923 3924 return bpf_map__set_max_entries(map, max_entries); 3925 } 3926 3927 static int 3928 bpf_object__probe_loading(struct bpf_object *obj) 3929 { 3930 struct bpf_load_program_attr attr; 3931 char *cp, errmsg[STRERR_BUFSIZE]; 3932 struct bpf_insn insns[] = { 3933 BPF_MOV64_IMM(BPF_REG_0, 0), 3934 BPF_EXIT_INSN(), 3935 }; 3936 int ret; 3937 3938 /* make sure basic loading works */ 3939 3940 memset(&attr, 0, sizeof(attr)); 3941 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3942 attr.insns = insns; 3943 attr.insns_cnt = ARRAY_SIZE(insns); 3944 attr.license = "GPL"; 3945 3946 ret = bpf_load_program_xattr(&attr, NULL, 0); 3947 if (ret < 0) { 3948 ret = errno; 3949 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 3950 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 3951 "program. Make sure your kernel supports BPF " 3952 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 3953 "set to big enough value.\n", __func__, cp, ret); 3954 return -ret; 3955 } 3956 close(ret); 3957 3958 return 0; 3959 } 3960 3961 static int probe_fd(int fd) 3962 { 3963 if (fd >= 0) 3964 close(fd); 3965 return fd >= 0; 3966 } 3967 3968 static int probe_kern_prog_name(void) 3969 { 3970 struct bpf_load_program_attr attr; 3971 struct bpf_insn insns[] = { 3972 BPF_MOV64_IMM(BPF_REG_0, 0), 3973 BPF_EXIT_INSN(), 3974 }; 3975 int ret; 3976 3977 /* make sure loading with name works */ 3978 3979 memset(&attr, 0, sizeof(attr)); 3980 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 3981 attr.insns = insns; 3982 attr.insns_cnt = ARRAY_SIZE(insns); 3983 attr.license = "GPL"; 3984 attr.name = "test"; 3985 ret = bpf_load_program_xattr(&attr, NULL, 0); 3986 return probe_fd(ret); 3987 } 3988 3989 static int probe_kern_global_data(void) 3990 { 3991 struct bpf_load_program_attr prg_attr; 3992 struct bpf_create_map_attr map_attr; 3993 char *cp, errmsg[STRERR_BUFSIZE]; 3994 struct bpf_insn insns[] = { 3995 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 3996 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 3997 BPF_MOV64_IMM(BPF_REG_0, 0), 3998 BPF_EXIT_INSN(), 3999 }; 4000 int ret, map; 4001 4002 memset(&map_attr, 0, sizeof(map_attr)); 4003 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4004 map_attr.key_size = sizeof(int); 4005 map_attr.value_size = 32; 4006 map_attr.max_entries = 1; 4007 4008 map = bpf_create_map_xattr(&map_attr); 4009 if (map < 0) { 4010 ret = -errno; 4011 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4012 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4013 __func__, cp, -ret); 4014 return ret; 4015 } 4016 4017 insns[0].imm = map; 4018 4019 memset(&prg_attr, 0, sizeof(prg_attr)); 4020 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4021 prg_attr.insns = insns; 4022 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4023 prg_attr.license = "GPL"; 4024 4025 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 4026 close(map); 4027 return probe_fd(ret); 4028 } 4029 4030 static int probe_kern_btf(void) 4031 { 4032 static const char strs[] = "\0int"; 4033 __u32 types[] = { 4034 /* int */ 4035 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4036 }; 4037 4038 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4039 strs, sizeof(strs))); 4040 } 4041 4042 static int probe_kern_btf_func(void) 4043 { 4044 static const char strs[] = "\0int\0x\0a"; 4045 /* void x(int a) {} */ 4046 __u32 types[] = { 4047 /* int */ 4048 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4049 /* FUNC_PROTO */ /* [2] */ 4050 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4051 BTF_PARAM_ENC(7, 1), 4052 /* FUNC x */ /* [3] */ 4053 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4054 }; 4055 4056 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4057 strs, sizeof(strs))); 4058 } 4059 4060 static int probe_kern_btf_func_global(void) 4061 { 4062 static const char strs[] = "\0int\0x\0a"; 4063 /* static void x(int a) {} */ 4064 __u32 types[] = { 4065 /* int */ 4066 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4067 /* FUNC_PROTO */ /* [2] */ 4068 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4069 BTF_PARAM_ENC(7, 1), 4070 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4071 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4072 }; 4073 4074 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4075 strs, sizeof(strs))); 4076 } 4077 4078 static int probe_kern_btf_datasec(void) 4079 { 4080 static const char strs[] = "\0x\0.data"; 4081 /* static int a; */ 4082 __u32 types[] = { 4083 /* int */ 4084 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4085 /* VAR x */ /* [2] */ 4086 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4087 BTF_VAR_STATIC, 4088 /* DATASEC val */ /* [3] */ 4089 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4090 BTF_VAR_SECINFO_ENC(2, 0, 4), 4091 }; 4092 4093 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4094 strs, sizeof(strs))); 4095 } 4096 4097 static int probe_kern_btf_float(void) 4098 { 4099 static const char strs[] = "\0float"; 4100 __u32 types[] = { 4101 /* float */ 4102 BTF_TYPE_FLOAT_ENC(1, 4), 4103 }; 4104 4105 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4106 strs, sizeof(strs))); 4107 } 4108 4109 static int probe_kern_array_mmap(void) 4110 { 4111 struct bpf_create_map_attr attr = { 4112 .map_type = BPF_MAP_TYPE_ARRAY, 4113 .map_flags = BPF_F_MMAPABLE, 4114 .key_size = sizeof(int), 4115 .value_size = sizeof(int), 4116 .max_entries = 1, 4117 }; 4118 4119 return probe_fd(bpf_create_map_xattr(&attr)); 4120 } 4121 4122 static int probe_kern_exp_attach_type(void) 4123 { 4124 struct bpf_load_program_attr attr; 4125 struct bpf_insn insns[] = { 4126 BPF_MOV64_IMM(BPF_REG_0, 0), 4127 BPF_EXIT_INSN(), 4128 }; 4129 4130 memset(&attr, 0, sizeof(attr)); 4131 /* use any valid combination of program type and (optional) 4132 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4133 * to see if kernel supports expected_attach_type field for 4134 * BPF_PROG_LOAD command 4135 */ 4136 attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK; 4137 attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE; 4138 attr.insns = insns; 4139 attr.insns_cnt = ARRAY_SIZE(insns); 4140 attr.license = "GPL"; 4141 4142 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4143 } 4144 4145 static int probe_kern_probe_read_kernel(void) 4146 { 4147 struct bpf_load_program_attr attr; 4148 struct bpf_insn insns[] = { 4149 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4150 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4151 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4152 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4153 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4154 BPF_EXIT_INSN(), 4155 }; 4156 4157 memset(&attr, 0, sizeof(attr)); 4158 attr.prog_type = BPF_PROG_TYPE_KPROBE; 4159 attr.insns = insns; 4160 attr.insns_cnt = ARRAY_SIZE(insns); 4161 attr.license = "GPL"; 4162 4163 return probe_fd(bpf_load_program_xattr(&attr, NULL, 0)); 4164 } 4165 4166 static int probe_prog_bind_map(void) 4167 { 4168 struct bpf_load_program_attr prg_attr; 4169 struct bpf_create_map_attr map_attr; 4170 char *cp, errmsg[STRERR_BUFSIZE]; 4171 struct bpf_insn insns[] = { 4172 BPF_MOV64_IMM(BPF_REG_0, 0), 4173 BPF_EXIT_INSN(), 4174 }; 4175 int ret, map, prog; 4176 4177 memset(&map_attr, 0, sizeof(map_attr)); 4178 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 4179 map_attr.key_size = sizeof(int); 4180 map_attr.value_size = 32; 4181 map_attr.max_entries = 1; 4182 4183 map = bpf_create_map_xattr(&map_attr); 4184 if (map < 0) { 4185 ret = -errno; 4186 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4187 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4188 __func__, cp, -ret); 4189 return ret; 4190 } 4191 4192 memset(&prg_attr, 0, sizeof(prg_attr)); 4193 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4194 prg_attr.insns = insns; 4195 prg_attr.insns_cnt = ARRAY_SIZE(insns); 4196 prg_attr.license = "GPL"; 4197 4198 prog = bpf_load_program_xattr(&prg_attr, NULL, 0); 4199 if (prog < 0) { 4200 close(map); 4201 return 0; 4202 } 4203 4204 ret = bpf_prog_bind_map(prog, map, NULL); 4205 4206 close(map); 4207 close(prog); 4208 4209 return ret >= 0; 4210 } 4211 4212 static int probe_module_btf(void) 4213 { 4214 static const char strs[] = "\0int"; 4215 __u32 types[] = { 4216 /* int */ 4217 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4218 }; 4219 struct bpf_btf_info info; 4220 __u32 len = sizeof(info); 4221 char name[16]; 4222 int fd, err; 4223 4224 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4225 if (fd < 0) 4226 return 0; /* BTF not supported at all */ 4227 4228 memset(&info, 0, sizeof(info)); 4229 info.name = ptr_to_u64(name); 4230 info.name_len = sizeof(name); 4231 4232 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4233 * kernel's module BTF support coincides with support for 4234 * name/name_len fields in struct bpf_btf_info. 4235 */ 4236 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4237 close(fd); 4238 return !err; 4239 } 4240 4241 enum kern_feature_result { 4242 FEAT_UNKNOWN = 0, 4243 FEAT_SUPPORTED = 1, 4244 FEAT_MISSING = 2, 4245 }; 4246 4247 typedef int (*feature_probe_fn)(void); 4248 4249 static struct kern_feature_desc { 4250 const char *desc; 4251 feature_probe_fn probe; 4252 enum kern_feature_result res; 4253 } feature_probes[__FEAT_CNT] = { 4254 [FEAT_PROG_NAME] = { 4255 "BPF program name", probe_kern_prog_name, 4256 }, 4257 [FEAT_GLOBAL_DATA] = { 4258 "global variables", probe_kern_global_data, 4259 }, 4260 [FEAT_BTF] = { 4261 "minimal BTF", probe_kern_btf, 4262 }, 4263 [FEAT_BTF_FUNC] = { 4264 "BTF functions", probe_kern_btf_func, 4265 }, 4266 [FEAT_BTF_GLOBAL_FUNC] = { 4267 "BTF global function", probe_kern_btf_func_global, 4268 }, 4269 [FEAT_BTF_DATASEC] = { 4270 "BTF data section and variable", probe_kern_btf_datasec, 4271 }, 4272 [FEAT_ARRAY_MMAP] = { 4273 "ARRAY map mmap()", probe_kern_array_mmap, 4274 }, 4275 [FEAT_EXP_ATTACH_TYPE] = { 4276 "BPF_PROG_LOAD expected_attach_type attribute", 4277 probe_kern_exp_attach_type, 4278 }, 4279 [FEAT_PROBE_READ_KERN] = { 4280 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4281 }, 4282 [FEAT_PROG_BIND_MAP] = { 4283 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4284 }, 4285 [FEAT_MODULE_BTF] = { 4286 "module BTF support", probe_module_btf, 4287 }, 4288 [FEAT_BTF_FLOAT] = { 4289 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4290 }, 4291 }; 4292 4293 static bool kernel_supports(enum kern_feature_id feat_id) 4294 { 4295 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4296 int ret; 4297 4298 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4299 ret = feat->probe(); 4300 if (ret > 0) { 4301 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4302 } else if (ret == 0) { 4303 WRITE_ONCE(feat->res, FEAT_MISSING); 4304 } else { 4305 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4306 WRITE_ONCE(feat->res, FEAT_MISSING); 4307 } 4308 } 4309 4310 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4311 } 4312 4313 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4314 { 4315 struct bpf_map_info map_info = {}; 4316 char msg[STRERR_BUFSIZE]; 4317 __u32 map_info_len; 4318 4319 map_info_len = sizeof(map_info); 4320 4321 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 4322 pr_warn("failed to get map info for map FD %d: %s\n", 4323 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 4324 return false; 4325 } 4326 4327 return (map_info.type == map->def.type && 4328 map_info.key_size == map->def.key_size && 4329 map_info.value_size == map->def.value_size && 4330 map_info.max_entries == map->def.max_entries && 4331 map_info.map_flags == map->def.map_flags); 4332 } 4333 4334 static int 4335 bpf_object__reuse_map(struct bpf_map *map) 4336 { 4337 char *cp, errmsg[STRERR_BUFSIZE]; 4338 int err, pin_fd; 4339 4340 pin_fd = bpf_obj_get(map->pin_path); 4341 if (pin_fd < 0) { 4342 err = -errno; 4343 if (err == -ENOENT) { 4344 pr_debug("found no pinned map to reuse at '%s'\n", 4345 map->pin_path); 4346 return 0; 4347 } 4348 4349 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4350 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4351 map->pin_path, cp); 4352 return err; 4353 } 4354 4355 if (!map_is_reuse_compat(map, pin_fd)) { 4356 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4357 map->pin_path); 4358 close(pin_fd); 4359 return -EINVAL; 4360 } 4361 4362 err = bpf_map__reuse_fd(map, pin_fd); 4363 if (err) { 4364 close(pin_fd); 4365 return err; 4366 } 4367 map->pinned = true; 4368 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4369 4370 return 0; 4371 } 4372 4373 static int 4374 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4375 { 4376 enum libbpf_map_type map_type = map->libbpf_type; 4377 char *cp, errmsg[STRERR_BUFSIZE]; 4378 int err, zero = 0; 4379 4380 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4381 if (err) { 4382 err = -errno; 4383 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4384 pr_warn("Error setting initial map(%s) contents: %s\n", 4385 map->name, cp); 4386 return err; 4387 } 4388 4389 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4390 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4391 err = bpf_map_freeze(map->fd); 4392 if (err) { 4393 err = -errno; 4394 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4395 pr_warn("Error freezing map(%s) as read-only: %s\n", 4396 map->name, cp); 4397 return err; 4398 } 4399 } 4400 return 0; 4401 } 4402 4403 static void bpf_map__destroy(struct bpf_map *map); 4404 4405 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map) 4406 { 4407 struct bpf_create_map_attr create_attr; 4408 struct bpf_map_def *def = &map->def; 4409 4410 memset(&create_attr, 0, sizeof(create_attr)); 4411 4412 if (kernel_supports(FEAT_PROG_NAME)) 4413 create_attr.name = map->name; 4414 create_attr.map_ifindex = map->map_ifindex; 4415 create_attr.map_type = def->type; 4416 create_attr.map_flags = def->map_flags; 4417 create_attr.key_size = def->key_size; 4418 create_attr.value_size = def->value_size; 4419 create_attr.numa_node = map->numa_node; 4420 4421 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) { 4422 int nr_cpus; 4423 4424 nr_cpus = libbpf_num_possible_cpus(); 4425 if (nr_cpus < 0) { 4426 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 4427 map->name, nr_cpus); 4428 return nr_cpus; 4429 } 4430 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 4431 create_attr.max_entries = nr_cpus; 4432 } else { 4433 create_attr.max_entries = def->max_entries; 4434 } 4435 4436 if (bpf_map__is_struct_ops(map)) 4437 create_attr.btf_vmlinux_value_type_id = 4438 map->btf_vmlinux_value_type_id; 4439 4440 create_attr.btf_fd = 0; 4441 create_attr.btf_key_type_id = 0; 4442 create_attr.btf_value_type_id = 0; 4443 if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) { 4444 create_attr.btf_fd = btf__fd(obj->btf); 4445 create_attr.btf_key_type_id = map->btf_key_type_id; 4446 create_attr.btf_value_type_id = map->btf_value_type_id; 4447 } 4448 4449 if (bpf_map_type__is_map_in_map(def->type)) { 4450 if (map->inner_map) { 4451 int err; 4452 4453 err = bpf_object__create_map(obj, map->inner_map); 4454 if (err) { 4455 pr_warn("map '%s': failed to create inner map: %d\n", 4456 map->name, err); 4457 return err; 4458 } 4459 map->inner_map_fd = bpf_map__fd(map->inner_map); 4460 } 4461 if (map->inner_map_fd >= 0) 4462 create_attr.inner_map_fd = map->inner_map_fd; 4463 } 4464 4465 map->fd = bpf_create_map_xattr(&create_attr); 4466 if (map->fd < 0 && (create_attr.btf_key_type_id || 4467 create_attr.btf_value_type_id)) { 4468 char *cp, errmsg[STRERR_BUFSIZE]; 4469 int err = -errno; 4470 4471 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4472 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 4473 map->name, cp, err); 4474 create_attr.btf_fd = 0; 4475 create_attr.btf_key_type_id = 0; 4476 create_attr.btf_value_type_id = 0; 4477 map->btf_key_type_id = 0; 4478 map->btf_value_type_id = 0; 4479 map->fd = bpf_create_map_xattr(&create_attr); 4480 } 4481 4482 if (map->fd < 0) 4483 return -errno; 4484 4485 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 4486 bpf_map__destroy(map->inner_map); 4487 zfree(&map->inner_map); 4488 } 4489 4490 return 0; 4491 } 4492 4493 static int init_map_slots(struct bpf_map *map) 4494 { 4495 const struct bpf_map *targ_map; 4496 unsigned int i; 4497 int fd, err; 4498 4499 for (i = 0; i < map->init_slots_sz; i++) { 4500 if (!map->init_slots[i]) 4501 continue; 4502 4503 targ_map = map->init_slots[i]; 4504 fd = bpf_map__fd(targ_map); 4505 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 4506 if (err) { 4507 err = -errno; 4508 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 4509 map->name, i, targ_map->name, 4510 fd, err); 4511 return err; 4512 } 4513 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 4514 map->name, i, targ_map->name, fd); 4515 } 4516 4517 zfree(&map->init_slots); 4518 map->init_slots_sz = 0; 4519 4520 return 0; 4521 } 4522 4523 static int 4524 bpf_object__create_maps(struct bpf_object *obj) 4525 { 4526 struct bpf_map *map; 4527 char *cp, errmsg[STRERR_BUFSIZE]; 4528 unsigned int i, j; 4529 int err; 4530 4531 for (i = 0; i < obj->nr_maps; i++) { 4532 map = &obj->maps[i]; 4533 4534 if (map->pin_path) { 4535 err = bpf_object__reuse_map(map); 4536 if (err) { 4537 pr_warn("map '%s': error reusing pinned map\n", 4538 map->name); 4539 goto err_out; 4540 } 4541 } 4542 4543 if (map->fd >= 0) { 4544 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 4545 map->name, map->fd); 4546 } else { 4547 err = bpf_object__create_map(obj, map); 4548 if (err) 4549 goto err_out; 4550 4551 pr_debug("map '%s': created successfully, fd=%d\n", 4552 map->name, map->fd); 4553 4554 if (bpf_map__is_internal(map)) { 4555 err = bpf_object__populate_internal_map(obj, map); 4556 if (err < 0) { 4557 zclose(map->fd); 4558 goto err_out; 4559 } 4560 } 4561 4562 if (map->init_slots_sz) { 4563 err = init_map_slots(map); 4564 if (err < 0) { 4565 zclose(map->fd); 4566 goto err_out; 4567 } 4568 } 4569 } 4570 4571 if (map->pin_path && !map->pinned) { 4572 err = bpf_map__pin(map, NULL); 4573 if (err) { 4574 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 4575 map->name, map->pin_path, err); 4576 zclose(map->fd); 4577 goto err_out; 4578 } 4579 } 4580 } 4581 4582 return 0; 4583 4584 err_out: 4585 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4586 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 4587 pr_perm_msg(err); 4588 for (j = 0; j < i; j++) 4589 zclose(obj->maps[j].fd); 4590 return err; 4591 } 4592 4593 #define BPF_CORE_SPEC_MAX_LEN 64 4594 4595 /* represents BPF CO-RE field or array element accessor */ 4596 struct bpf_core_accessor { 4597 __u32 type_id; /* struct/union type or array element type */ 4598 __u32 idx; /* field index or array index */ 4599 const char *name; /* field name or NULL for array accessor */ 4600 }; 4601 4602 struct bpf_core_spec { 4603 const struct btf *btf; 4604 /* high-level spec: named fields and array indices only */ 4605 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 4606 /* original unresolved (no skip_mods_or_typedefs) root type ID */ 4607 __u32 root_type_id; 4608 /* CO-RE relocation kind */ 4609 enum bpf_core_relo_kind relo_kind; 4610 /* high-level spec length */ 4611 int len; 4612 /* raw, low-level spec: 1-to-1 with accessor spec string */ 4613 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 4614 /* raw spec length */ 4615 int raw_len; 4616 /* field bit offset represented by spec */ 4617 __u32 bit_offset; 4618 }; 4619 4620 static bool str_is_empty(const char *s) 4621 { 4622 return !s || !s[0]; 4623 } 4624 4625 static bool is_flex_arr(const struct btf *btf, 4626 const struct bpf_core_accessor *acc, 4627 const struct btf_array *arr) 4628 { 4629 const struct btf_type *t; 4630 4631 /* not a flexible array, if not inside a struct or has non-zero size */ 4632 if (!acc->name || arr->nelems > 0) 4633 return false; 4634 4635 /* has to be the last member of enclosing struct */ 4636 t = btf__type_by_id(btf, acc->type_id); 4637 return acc->idx == btf_vlen(t) - 1; 4638 } 4639 4640 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 4641 { 4642 switch (kind) { 4643 case BPF_FIELD_BYTE_OFFSET: return "byte_off"; 4644 case BPF_FIELD_BYTE_SIZE: return "byte_sz"; 4645 case BPF_FIELD_EXISTS: return "field_exists"; 4646 case BPF_FIELD_SIGNED: return "signed"; 4647 case BPF_FIELD_LSHIFT_U64: return "lshift_u64"; 4648 case BPF_FIELD_RSHIFT_U64: return "rshift_u64"; 4649 case BPF_TYPE_ID_LOCAL: return "local_type_id"; 4650 case BPF_TYPE_ID_TARGET: return "target_type_id"; 4651 case BPF_TYPE_EXISTS: return "type_exists"; 4652 case BPF_TYPE_SIZE: return "type_size"; 4653 case BPF_ENUMVAL_EXISTS: return "enumval_exists"; 4654 case BPF_ENUMVAL_VALUE: return "enumval_value"; 4655 default: return "unknown"; 4656 } 4657 } 4658 4659 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 4660 { 4661 switch (kind) { 4662 case BPF_FIELD_BYTE_OFFSET: 4663 case BPF_FIELD_BYTE_SIZE: 4664 case BPF_FIELD_EXISTS: 4665 case BPF_FIELD_SIGNED: 4666 case BPF_FIELD_LSHIFT_U64: 4667 case BPF_FIELD_RSHIFT_U64: 4668 return true; 4669 default: 4670 return false; 4671 } 4672 } 4673 4674 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 4675 { 4676 switch (kind) { 4677 case BPF_TYPE_ID_LOCAL: 4678 case BPF_TYPE_ID_TARGET: 4679 case BPF_TYPE_EXISTS: 4680 case BPF_TYPE_SIZE: 4681 return true; 4682 default: 4683 return false; 4684 } 4685 } 4686 4687 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 4688 { 4689 switch (kind) { 4690 case BPF_ENUMVAL_EXISTS: 4691 case BPF_ENUMVAL_VALUE: 4692 return true; 4693 default: 4694 return false; 4695 } 4696 } 4697 4698 /* 4699 * Turn bpf_core_relo into a low- and high-level spec representation, 4700 * validating correctness along the way, as well as calculating resulting 4701 * field bit offset, specified by accessor string. Low-level spec captures 4702 * every single level of nestedness, including traversing anonymous 4703 * struct/union members. High-level one only captures semantically meaningful 4704 * "turning points": named fields and array indicies. 4705 * E.g., for this case: 4706 * 4707 * struct sample { 4708 * int __unimportant; 4709 * struct { 4710 * int __1; 4711 * int __2; 4712 * int a[7]; 4713 * }; 4714 * }; 4715 * 4716 * struct sample *s = ...; 4717 * 4718 * int x = &s->a[3]; // access string = '0:1:2:3' 4719 * 4720 * Low-level spec has 1:1 mapping with each element of access string (it's 4721 * just a parsed access string representation): [0, 1, 2, 3]. 4722 * 4723 * High-level spec will capture only 3 points: 4724 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 4725 * - field 'a' access (corresponds to '2' in low-level spec); 4726 * - array element #3 access (corresponds to '3' in low-level spec). 4727 * 4728 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 4729 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 4730 * spec and raw_spec are kept empty. 4731 * 4732 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 4733 * string to specify enumerator's value index that need to be relocated. 4734 */ 4735 static int bpf_core_parse_spec(const struct btf *btf, 4736 __u32 type_id, 4737 const char *spec_str, 4738 enum bpf_core_relo_kind relo_kind, 4739 struct bpf_core_spec *spec) 4740 { 4741 int access_idx, parsed_len, i; 4742 struct bpf_core_accessor *acc; 4743 const struct btf_type *t; 4744 const char *name; 4745 __u32 id; 4746 __s64 sz; 4747 4748 if (str_is_empty(spec_str) || *spec_str == ':') 4749 return -EINVAL; 4750 4751 memset(spec, 0, sizeof(*spec)); 4752 spec->btf = btf; 4753 spec->root_type_id = type_id; 4754 spec->relo_kind = relo_kind; 4755 4756 /* type-based relocations don't have a field access string */ 4757 if (core_relo_is_type_based(relo_kind)) { 4758 if (strcmp(spec_str, "0")) 4759 return -EINVAL; 4760 return 0; 4761 } 4762 4763 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 4764 while (*spec_str) { 4765 if (*spec_str == ':') 4766 ++spec_str; 4767 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 4768 return -EINVAL; 4769 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 4770 return -E2BIG; 4771 spec_str += parsed_len; 4772 spec->raw_spec[spec->raw_len++] = access_idx; 4773 } 4774 4775 if (spec->raw_len == 0) 4776 return -EINVAL; 4777 4778 t = skip_mods_and_typedefs(btf, type_id, &id); 4779 if (!t) 4780 return -EINVAL; 4781 4782 access_idx = spec->raw_spec[0]; 4783 acc = &spec->spec[0]; 4784 acc->type_id = id; 4785 acc->idx = access_idx; 4786 spec->len++; 4787 4788 if (core_relo_is_enumval_based(relo_kind)) { 4789 if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 4790 return -EINVAL; 4791 4792 /* record enumerator name in a first accessor */ 4793 acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off); 4794 return 0; 4795 } 4796 4797 if (!core_relo_is_field_based(relo_kind)) 4798 return -EINVAL; 4799 4800 sz = btf__resolve_size(btf, id); 4801 if (sz < 0) 4802 return sz; 4803 spec->bit_offset = access_idx * sz * 8; 4804 4805 for (i = 1; i < spec->raw_len; i++) { 4806 t = skip_mods_and_typedefs(btf, id, &id); 4807 if (!t) 4808 return -EINVAL; 4809 4810 access_idx = spec->raw_spec[i]; 4811 acc = &spec->spec[spec->len]; 4812 4813 if (btf_is_composite(t)) { 4814 const struct btf_member *m; 4815 __u32 bit_offset; 4816 4817 if (access_idx >= btf_vlen(t)) 4818 return -EINVAL; 4819 4820 bit_offset = btf_member_bit_offset(t, access_idx); 4821 spec->bit_offset += bit_offset; 4822 4823 m = btf_members(t) + access_idx; 4824 if (m->name_off) { 4825 name = btf__name_by_offset(btf, m->name_off); 4826 if (str_is_empty(name)) 4827 return -EINVAL; 4828 4829 acc->type_id = id; 4830 acc->idx = access_idx; 4831 acc->name = name; 4832 spec->len++; 4833 } 4834 4835 id = m->type; 4836 } else if (btf_is_array(t)) { 4837 const struct btf_array *a = btf_array(t); 4838 bool flex; 4839 4840 t = skip_mods_and_typedefs(btf, a->type, &id); 4841 if (!t) 4842 return -EINVAL; 4843 4844 flex = is_flex_arr(btf, acc - 1, a); 4845 if (!flex && access_idx >= a->nelems) 4846 return -EINVAL; 4847 4848 spec->spec[spec->len].type_id = id; 4849 spec->spec[spec->len].idx = access_idx; 4850 spec->len++; 4851 4852 sz = btf__resolve_size(btf, id); 4853 if (sz < 0) 4854 return sz; 4855 spec->bit_offset += access_idx * sz * 8; 4856 } else { 4857 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 4858 type_id, spec_str, i, id, btf_kind_str(t)); 4859 return -EINVAL; 4860 } 4861 } 4862 4863 return 0; 4864 } 4865 4866 static bool bpf_core_is_flavor_sep(const char *s) 4867 { 4868 /* check X___Y name pattern, where X and Y are not underscores */ 4869 return s[0] != '_' && /* X */ 4870 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 4871 s[4] != '_'; /* Y */ 4872 } 4873 4874 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 4875 * before last triple underscore. Struct name part after last triple 4876 * underscore is ignored by BPF CO-RE relocation during relocation matching. 4877 */ 4878 static size_t bpf_core_essential_name_len(const char *name) 4879 { 4880 size_t n = strlen(name); 4881 int i; 4882 4883 for (i = n - 5; i >= 0; i--) { 4884 if (bpf_core_is_flavor_sep(name + i)) 4885 return i + 1; 4886 } 4887 return n; 4888 } 4889 4890 struct core_cand 4891 { 4892 const struct btf *btf; 4893 const struct btf_type *t; 4894 const char *name; 4895 __u32 id; 4896 }; 4897 4898 /* dynamically sized list of type IDs and its associated struct btf */ 4899 struct core_cand_list { 4900 struct core_cand *cands; 4901 int len; 4902 }; 4903 4904 static void bpf_core_free_cands(struct core_cand_list *cands) 4905 { 4906 free(cands->cands); 4907 free(cands); 4908 } 4909 4910 static int bpf_core_add_cands(struct core_cand *local_cand, 4911 size_t local_essent_len, 4912 const struct btf *targ_btf, 4913 const char *targ_btf_name, 4914 int targ_start_id, 4915 struct core_cand_list *cands) 4916 { 4917 struct core_cand *new_cands, *cand; 4918 const struct btf_type *t; 4919 const char *targ_name; 4920 size_t targ_essent_len; 4921 int n, i; 4922 4923 n = btf__get_nr_types(targ_btf); 4924 for (i = targ_start_id; i <= n; i++) { 4925 t = btf__type_by_id(targ_btf, i); 4926 if (btf_kind(t) != btf_kind(local_cand->t)) 4927 continue; 4928 4929 targ_name = btf__name_by_offset(targ_btf, t->name_off); 4930 if (str_is_empty(targ_name)) 4931 continue; 4932 4933 targ_essent_len = bpf_core_essential_name_len(targ_name); 4934 if (targ_essent_len != local_essent_len) 4935 continue; 4936 4937 if (strncmp(local_cand->name, targ_name, local_essent_len) != 0) 4938 continue; 4939 4940 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 4941 local_cand->id, btf_kind_str(local_cand->t), 4942 local_cand->name, i, btf_kind_str(t), targ_name, 4943 targ_btf_name); 4944 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 4945 sizeof(*cands->cands)); 4946 if (!new_cands) 4947 return -ENOMEM; 4948 4949 cand = &new_cands[cands->len]; 4950 cand->btf = targ_btf; 4951 cand->t = t; 4952 cand->name = targ_name; 4953 cand->id = i; 4954 4955 cands->cands = new_cands; 4956 cands->len++; 4957 } 4958 return 0; 4959 } 4960 4961 static int load_module_btfs(struct bpf_object *obj) 4962 { 4963 struct bpf_btf_info info; 4964 struct module_btf *mod_btf; 4965 struct btf *btf; 4966 char name[64]; 4967 __u32 id = 0, len; 4968 int err, fd; 4969 4970 if (obj->btf_modules_loaded) 4971 return 0; 4972 4973 /* don't do this again, even if we find no module BTFs */ 4974 obj->btf_modules_loaded = true; 4975 4976 /* kernel too old to support module BTFs */ 4977 if (!kernel_supports(FEAT_MODULE_BTF)) 4978 return 0; 4979 4980 while (true) { 4981 err = bpf_btf_get_next_id(id, &id); 4982 if (err && errno == ENOENT) 4983 return 0; 4984 if (err) { 4985 err = -errno; 4986 pr_warn("failed to iterate BTF objects: %d\n", err); 4987 return err; 4988 } 4989 4990 fd = bpf_btf_get_fd_by_id(id); 4991 if (fd < 0) { 4992 if (errno == ENOENT) 4993 continue; /* expected race: BTF was unloaded */ 4994 err = -errno; 4995 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 4996 return err; 4997 } 4998 4999 len = sizeof(info); 5000 memset(&info, 0, sizeof(info)); 5001 info.name = ptr_to_u64(name); 5002 info.name_len = sizeof(name); 5003 5004 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5005 if (err) { 5006 err = -errno; 5007 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5008 goto err_out; 5009 } 5010 5011 /* ignore non-module BTFs */ 5012 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5013 close(fd); 5014 continue; 5015 } 5016 5017 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5018 if (IS_ERR(btf)) { 5019 pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n", 5020 name, id, PTR_ERR(btf)); 5021 err = PTR_ERR(btf); 5022 goto err_out; 5023 } 5024 5025 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5026 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5027 if (err) 5028 goto err_out; 5029 5030 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5031 5032 mod_btf->btf = btf; 5033 mod_btf->id = id; 5034 mod_btf->fd = fd; 5035 mod_btf->name = strdup(name); 5036 if (!mod_btf->name) { 5037 err = -ENOMEM; 5038 goto err_out; 5039 } 5040 continue; 5041 5042 err_out: 5043 close(fd); 5044 return err; 5045 } 5046 5047 return 0; 5048 } 5049 5050 static struct core_cand_list * 5051 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5052 { 5053 struct core_cand local_cand = {}; 5054 struct core_cand_list *cands; 5055 const struct btf *main_btf; 5056 size_t local_essent_len; 5057 int err, i; 5058 5059 local_cand.btf = local_btf; 5060 local_cand.t = btf__type_by_id(local_btf, local_type_id); 5061 if (!local_cand.t) 5062 return ERR_PTR(-EINVAL); 5063 5064 local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off); 5065 if (str_is_empty(local_cand.name)) 5066 return ERR_PTR(-EINVAL); 5067 local_essent_len = bpf_core_essential_name_len(local_cand.name); 5068 5069 cands = calloc(1, sizeof(*cands)); 5070 if (!cands) 5071 return ERR_PTR(-ENOMEM); 5072 5073 /* Attempt to find target candidates in vmlinux BTF first */ 5074 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5075 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5076 if (err) 5077 goto err_out; 5078 5079 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5080 if (cands->len) 5081 return cands; 5082 5083 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5084 if (obj->btf_vmlinux_override) 5085 return cands; 5086 5087 /* now look through module BTFs, trying to still find candidates */ 5088 err = load_module_btfs(obj); 5089 if (err) 5090 goto err_out; 5091 5092 for (i = 0; i < obj->btf_module_cnt; i++) { 5093 err = bpf_core_add_cands(&local_cand, local_essent_len, 5094 obj->btf_modules[i].btf, 5095 obj->btf_modules[i].name, 5096 btf__get_nr_types(obj->btf_vmlinux) + 1, 5097 cands); 5098 if (err) 5099 goto err_out; 5100 } 5101 5102 return cands; 5103 err_out: 5104 bpf_core_free_cands(cands); 5105 return ERR_PTR(err); 5106 } 5107 5108 /* Check two types for compatibility for the purpose of field access 5109 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 5110 * are relocating semantically compatible entities: 5111 * - any two STRUCTs/UNIONs are compatible and can be mixed; 5112 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 5113 * - any two PTRs are always compatible; 5114 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 5115 * least one of enums should be anonymous; 5116 * - for ENUMs, check sizes, names are ignored; 5117 * - for INT, size and signedness are ignored; 5118 * - any two FLOATs are always compatible; 5119 * - for ARRAY, dimensionality is ignored, element types are checked for 5120 * compatibility recursively; 5121 * - everything else shouldn't be ever a target of relocation. 5122 * These rules are not set in stone and probably will be adjusted as we get 5123 * more experience with using BPF CO-RE relocations. 5124 */ 5125 static int bpf_core_fields_are_compat(const struct btf *local_btf, 5126 __u32 local_id, 5127 const struct btf *targ_btf, 5128 __u32 targ_id) 5129 { 5130 const struct btf_type *local_type, *targ_type; 5131 5132 recur: 5133 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5134 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5135 if (!local_type || !targ_type) 5136 return -EINVAL; 5137 5138 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 5139 return 1; 5140 if (btf_kind(local_type) != btf_kind(targ_type)) 5141 return 0; 5142 5143 switch (btf_kind(local_type)) { 5144 case BTF_KIND_PTR: 5145 case BTF_KIND_FLOAT: 5146 return 1; 5147 case BTF_KIND_FWD: 5148 case BTF_KIND_ENUM: { 5149 const char *local_name, *targ_name; 5150 size_t local_len, targ_len; 5151 5152 local_name = btf__name_by_offset(local_btf, 5153 local_type->name_off); 5154 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 5155 local_len = bpf_core_essential_name_len(local_name); 5156 targ_len = bpf_core_essential_name_len(targ_name); 5157 /* one of them is anonymous or both w/ same flavor-less names */ 5158 return local_len == 0 || targ_len == 0 || 5159 (local_len == targ_len && 5160 strncmp(local_name, targ_name, local_len) == 0); 5161 } 5162 case BTF_KIND_INT: 5163 /* just reject deprecated bitfield-like integers; all other 5164 * integers are by default compatible between each other 5165 */ 5166 return btf_int_offset(local_type) == 0 && 5167 btf_int_offset(targ_type) == 0; 5168 case BTF_KIND_ARRAY: 5169 local_id = btf_array(local_type)->type; 5170 targ_id = btf_array(targ_type)->type; 5171 goto recur; 5172 default: 5173 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 5174 btf_kind(local_type), local_id, targ_id); 5175 return 0; 5176 } 5177 } 5178 5179 /* 5180 * Given single high-level named field accessor in local type, find 5181 * corresponding high-level accessor for a target type. Along the way, 5182 * maintain low-level spec for target as well. Also keep updating target 5183 * bit offset. 5184 * 5185 * Searching is performed through recursive exhaustive enumeration of all 5186 * fields of a struct/union. If there are any anonymous (embedded) 5187 * structs/unions, they are recursively searched as well. If field with 5188 * desired name is found, check compatibility between local and target types, 5189 * before returning result. 5190 * 5191 * 1 is returned, if field is found. 5192 * 0 is returned if no compatible field is found. 5193 * <0 is returned on error. 5194 */ 5195 static int bpf_core_match_member(const struct btf *local_btf, 5196 const struct bpf_core_accessor *local_acc, 5197 const struct btf *targ_btf, 5198 __u32 targ_id, 5199 struct bpf_core_spec *spec, 5200 __u32 *next_targ_id) 5201 { 5202 const struct btf_type *local_type, *targ_type; 5203 const struct btf_member *local_member, *m; 5204 const char *local_name, *targ_name; 5205 __u32 local_id; 5206 int i, n, found; 5207 5208 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5209 if (!targ_type) 5210 return -EINVAL; 5211 if (!btf_is_composite(targ_type)) 5212 return 0; 5213 5214 local_id = local_acc->type_id; 5215 local_type = btf__type_by_id(local_btf, local_id); 5216 local_member = btf_members(local_type) + local_acc->idx; 5217 local_name = btf__name_by_offset(local_btf, local_member->name_off); 5218 5219 n = btf_vlen(targ_type); 5220 m = btf_members(targ_type); 5221 for (i = 0; i < n; i++, m++) { 5222 __u32 bit_offset; 5223 5224 bit_offset = btf_member_bit_offset(targ_type, i); 5225 5226 /* too deep struct/union/array nesting */ 5227 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5228 return -E2BIG; 5229 5230 /* speculate this member will be the good one */ 5231 spec->bit_offset += bit_offset; 5232 spec->raw_spec[spec->raw_len++] = i; 5233 5234 targ_name = btf__name_by_offset(targ_btf, m->name_off); 5235 if (str_is_empty(targ_name)) { 5236 /* embedded struct/union, we need to go deeper */ 5237 found = bpf_core_match_member(local_btf, local_acc, 5238 targ_btf, m->type, 5239 spec, next_targ_id); 5240 if (found) /* either found or error */ 5241 return found; 5242 } else if (strcmp(local_name, targ_name) == 0) { 5243 /* matching named field */ 5244 struct bpf_core_accessor *targ_acc; 5245 5246 targ_acc = &spec->spec[spec->len++]; 5247 targ_acc->type_id = targ_id; 5248 targ_acc->idx = i; 5249 targ_acc->name = targ_name; 5250 5251 *next_targ_id = m->type; 5252 found = bpf_core_fields_are_compat(local_btf, 5253 local_member->type, 5254 targ_btf, m->type); 5255 if (!found) 5256 spec->len--; /* pop accessor */ 5257 return found; 5258 } 5259 /* member turned out not to be what we looked for */ 5260 spec->bit_offset -= bit_offset; 5261 spec->raw_len--; 5262 } 5263 5264 return 0; 5265 } 5266 5267 /* Check local and target types for compatibility. This check is used for 5268 * type-based CO-RE relocations and follow slightly different rules than 5269 * field-based relocations. This function assumes that root types were already 5270 * checked for name match. Beyond that initial root-level name check, names 5271 * are completely ignored. Compatibility rules are as follows: 5272 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5273 * kind should match for local and target types (i.e., STRUCT is not 5274 * compatible with UNION); 5275 * - for ENUMs, the size is ignored; 5276 * - for INT, size and signedness are ignored; 5277 * - for ARRAY, dimensionality is ignored, element types are checked for 5278 * compatibility recursively; 5279 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5280 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5281 * - FUNC_PROTOs are compatible if they have compatible signature: same 5282 * number of input args and compatible return and argument types. 5283 * These rules are not set in stone and probably will be adjusted as we get 5284 * more experience with using BPF CO-RE relocations. 5285 */ 5286 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5287 const struct btf *targ_btf, __u32 targ_id) 5288 { 5289 const struct btf_type *local_type, *targ_type; 5290 int depth = 32; /* max recursion depth */ 5291 5292 /* caller made sure that names match (ignoring flavor suffix) */ 5293 local_type = btf__type_by_id(local_btf, local_id); 5294 targ_type = btf__type_by_id(targ_btf, targ_id); 5295 if (btf_kind(local_type) != btf_kind(targ_type)) 5296 return 0; 5297 5298 recur: 5299 depth--; 5300 if (depth < 0) 5301 return -EINVAL; 5302 5303 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 5304 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 5305 if (!local_type || !targ_type) 5306 return -EINVAL; 5307 5308 if (btf_kind(local_type) != btf_kind(targ_type)) 5309 return 0; 5310 5311 switch (btf_kind(local_type)) { 5312 case BTF_KIND_UNKN: 5313 case BTF_KIND_STRUCT: 5314 case BTF_KIND_UNION: 5315 case BTF_KIND_ENUM: 5316 case BTF_KIND_FWD: 5317 return 1; 5318 case BTF_KIND_INT: 5319 /* just reject deprecated bitfield-like integers; all other 5320 * integers are by default compatible between each other 5321 */ 5322 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 5323 case BTF_KIND_PTR: 5324 local_id = local_type->type; 5325 targ_id = targ_type->type; 5326 goto recur; 5327 case BTF_KIND_ARRAY: 5328 local_id = btf_array(local_type)->type; 5329 targ_id = btf_array(targ_type)->type; 5330 goto recur; 5331 case BTF_KIND_FUNC_PROTO: { 5332 struct btf_param *local_p = btf_params(local_type); 5333 struct btf_param *targ_p = btf_params(targ_type); 5334 __u16 local_vlen = btf_vlen(local_type); 5335 __u16 targ_vlen = btf_vlen(targ_type); 5336 int i, err; 5337 5338 if (local_vlen != targ_vlen) 5339 return 0; 5340 5341 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 5342 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 5343 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 5344 err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id); 5345 if (err <= 0) 5346 return err; 5347 } 5348 5349 /* tail recurse for return type check */ 5350 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 5351 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 5352 goto recur; 5353 } 5354 default: 5355 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 5356 btf_kind_str(local_type), local_id, targ_id); 5357 return 0; 5358 } 5359 } 5360 5361 /* 5362 * Try to match local spec to a target type and, if successful, produce full 5363 * target spec (high-level, low-level + bit offset). 5364 */ 5365 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 5366 const struct btf *targ_btf, __u32 targ_id, 5367 struct bpf_core_spec *targ_spec) 5368 { 5369 const struct btf_type *targ_type; 5370 const struct bpf_core_accessor *local_acc; 5371 struct bpf_core_accessor *targ_acc; 5372 int i, sz, matched; 5373 5374 memset(targ_spec, 0, sizeof(*targ_spec)); 5375 targ_spec->btf = targ_btf; 5376 targ_spec->root_type_id = targ_id; 5377 targ_spec->relo_kind = local_spec->relo_kind; 5378 5379 if (core_relo_is_type_based(local_spec->relo_kind)) { 5380 return bpf_core_types_are_compat(local_spec->btf, 5381 local_spec->root_type_id, 5382 targ_btf, targ_id); 5383 } 5384 5385 local_acc = &local_spec->spec[0]; 5386 targ_acc = &targ_spec->spec[0]; 5387 5388 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 5389 size_t local_essent_len, targ_essent_len; 5390 const struct btf_enum *e; 5391 const char *targ_name; 5392 5393 /* has to resolve to an enum */ 5394 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 5395 if (!btf_is_enum(targ_type)) 5396 return 0; 5397 5398 local_essent_len = bpf_core_essential_name_len(local_acc->name); 5399 5400 for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) { 5401 targ_name = btf__name_by_offset(targ_spec->btf, e->name_off); 5402 targ_essent_len = bpf_core_essential_name_len(targ_name); 5403 if (targ_essent_len != local_essent_len) 5404 continue; 5405 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 5406 targ_acc->type_id = targ_id; 5407 targ_acc->idx = i; 5408 targ_acc->name = targ_name; 5409 targ_spec->len++; 5410 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5411 targ_spec->raw_len++; 5412 return 1; 5413 } 5414 } 5415 return 0; 5416 } 5417 5418 if (!core_relo_is_field_based(local_spec->relo_kind)) 5419 return -EINVAL; 5420 5421 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 5422 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 5423 &targ_id); 5424 if (!targ_type) 5425 return -EINVAL; 5426 5427 if (local_acc->name) { 5428 matched = bpf_core_match_member(local_spec->btf, 5429 local_acc, 5430 targ_btf, targ_id, 5431 targ_spec, &targ_id); 5432 if (matched <= 0) 5433 return matched; 5434 } else { 5435 /* for i=0, targ_id is already treated as array element 5436 * type (because it's the original struct), for others 5437 * we should find array element type first 5438 */ 5439 if (i > 0) { 5440 const struct btf_array *a; 5441 bool flex; 5442 5443 if (!btf_is_array(targ_type)) 5444 return 0; 5445 5446 a = btf_array(targ_type); 5447 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 5448 if (!flex && local_acc->idx >= a->nelems) 5449 return 0; 5450 if (!skip_mods_and_typedefs(targ_btf, a->type, 5451 &targ_id)) 5452 return -EINVAL; 5453 } 5454 5455 /* too deep struct/union/array nesting */ 5456 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 5457 return -E2BIG; 5458 5459 targ_acc->type_id = targ_id; 5460 targ_acc->idx = local_acc->idx; 5461 targ_acc->name = NULL; 5462 targ_spec->len++; 5463 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 5464 targ_spec->raw_len++; 5465 5466 sz = btf__resolve_size(targ_btf, targ_id); 5467 if (sz < 0) 5468 return sz; 5469 targ_spec->bit_offset += local_acc->idx * sz * 8; 5470 } 5471 } 5472 5473 return 1; 5474 } 5475 5476 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 5477 const struct bpf_core_relo *relo, 5478 const struct bpf_core_spec *spec, 5479 __u32 *val, __u32 *field_sz, __u32 *type_id, 5480 bool *validate) 5481 { 5482 const struct bpf_core_accessor *acc; 5483 const struct btf_type *t; 5484 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 5485 const struct btf_member *m; 5486 const struct btf_type *mt; 5487 bool bitfield; 5488 __s64 sz; 5489 5490 *field_sz = 0; 5491 5492 if (relo->kind == BPF_FIELD_EXISTS) { 5493 *val = spec ? 1 : 0; 5494 return 0; 5495 } 5496 5497 if (!spec) 5498 return -EUCLEAN; /* request instruction poisoning */ 5499 5500 acc = &spec->spec[spec->len - 1]; 5501 t = btf__type_by_id(spec->btf, acc->type_id); 5502 5503 /* a[n] accessor needs special handling */ 5504 if (!acc->name) { 5505 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 5506 *val = spec->bit_offset / 8; 5507 /* remember field size for load/store mem size */ 5508 sz = btf__resolve_size(spec->btf, acc->type_id); 5509 if (sz < 0) 5510 return -EINVAL; 5511 *field_sz = sz; 5512 *type_id = acc->type_id; 5513 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 5514 sz = btf__resolve_size(spec->btf, acc->type_id); 5515 if (sz < 0) 5516 return -EINVAL; 5517 *val = sz; 5518 } else { 5519 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 5520 prog->name, relo->kind, relo->insn_off / 8); 5521 return -EINVAL; 5522 } 5523 if (validate) 5524 *validate = true; 5525 return 0; 5526 } 5527 5528 m = btf_members(t) + acc->idx; 5529 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 5530 bit_off = spec->bit_offset; 5531 bit_sz = btf_member_bitfield_size(t, acc->idx); 5532 5533 bitfield = bit_sz > 0; 5534 if (bitfield) { 5535 byte_sz = mt->size; 5536 byte_off = bit_off / 8 / byte_sz * byte_sz; 5537 /* figure out smallest int size necessary for bitfield load */ 5538 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 5539 if (byte_sz >= 8) { 5540 /* bitfield can't be read with 64-bit read */ 5541 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 5542 prog->name, relo->kind, relo->insn_off / 8); 5543 return -E2BIG; 5544 } 5545 byte_sz *= 2; 5546 byte_off = bit_off / 8 / byte_sz * byte_sz; 5547 } 5548 } else { 5549 sz = btf__resolve_size(spec->btf, field_type_id); 5550 if (sz < 0) 5551 return -EINVAL; 5552 byte_sz = sz; 5553 byte_off = spec->bit_offset / 8; 5554 bit_sz = byte_sz * 8; 5555 } 5556 5557 /* for bitfields, all the relocatable aspects are ambiguous and we 5558 * might disagree with compiler, so turn off validation of expected 5559 * value, except for signedness 5560 */ 5561 if (validate) 5562 *validate = !bitfield; 5563 5564 switch (relo->kind) { 5565 case BPF_FIELD_BYTE_OFFSET: 5566 *val = byte_off; 5567 if (!bitfield) { 5568 *field_sz = byte_sz; 5569 *type_id = field_type_id; 5570 } 5571 break; 5572 case BPF_FIELD_BYTE_SIZE: 5573 *val = byte_sz; 5574 break; 5575 case BPF_FIELD_SIGNED: 5576 /* enums will be assumed unsigned */ 5577 *val = btf_is_enum(mt) || 5578 (btf_int_encoding(mt) & BTF_INT_SIGNED); 5579 if (validate) 5580 *validate = true; /* signedness is never ambiguous */ 5581 break; 5582 case BPF_FIELD_LSHIFT_U64: 5583 #if __BYTE_ORDER == __LITTLE_ENDIAN 5584 *val = 64 - (bit_off + bit_sz - byte_off * 8); 5585 #else 5586 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 5587 #endif 5588 break; 5589 case BPF_FIELD_RSHIFT_U64: 5590 *val = 64 - bit_sz; 5591 if (validate) 5592 *validate = true; /* right shift is never ambiguous */ 5593 break; 5594 case BPF_FIELD_EXISTS: 5595 default: 5596 return -EOPNOTSUPP; 5597 } 5598 5599 return 0; 5600 } 5601 5602 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 5603 const struct bpf_core_spec *spec, 5604 __u32 *val) 5605 { 5606 __s64 sz; 5607 5608 /* type-based relos return zero when target type is not found */ 5609 if (!spec) { 5610 *val = 0; 5611 return 0; 5612 } 5613 5614 switch (relo->kind) { 5615 case BPF_TYPE_ID_TARGET: 5616 *val = spec->root_type_id; 5617 break; 5618 case BPF_TYPE_EXISTS: 5619 *val = 1; 5620 break; 5621 case BPF_TYPE_SIZE: 5622 sz = btf__resolve_size(spec->btf, spec->root_type_id); 5623 if (sz < 0) 5624 return -EINVAL; 5625 *val = sz; 5626 break; 5627 case BPF_TYPE_ID_LOCAL: 5628 /* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 5629 default: 5630 return -EOPNOTSUPP; 5631 } 5632 5633 return 0; 5634 } 5635 5636 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 5637 const struct bpf_core_spec *spec, 5638 __u32 *val) 5639 { 5640 const struct btf_type *t; 5641 const struct btf_enum *e; 5642 5643 switch (relo->kind) { 5644 case BPF_ENUMVAL_EXISTS: 5645 *val = spec ? 1 : 0; 5646 break; 5647 case BPF_ENUMVAL_VALUE: 5648 if (!spec) 5649 return -EUCLEAN; /* request instruction poisoning */ 5650 t = btf__type_by_id(spec->btf, spec->spec[0].type_id); 5651 e = btf_enum(t) + spec->spec[0].idx; 5652 *val = e->val; 5653 break; 5654 default: 5655 return -EOPNOTSUPP; 5656 } 5657 5658 return 0; 5659 } 5660 5661 struct bpf_core_relo_res 5662 { 5663 /* expected value in the instruction, unless validate == false */ 5664 __u32 orig_val; 5665 /* new value that needs to be patched up to */ 5666 __u32 new_val; 5667 /* relocation unsuccessful, poison instruction, but don't fail load */ 5668 bool poison; 5669 /* some relocations can't be validated against orig_val */ 5670 bool validate; 5671 /* for field byte offset relocations or the forms: 5672 * *(T *)(rX + <off>) = rY 5673 * rX = *(T *)(rY + <off>), 5674 * we remember original and resolved field size to adjust direct 5675 * memory loads of pointers and integers; this is necessary for 32-bit 5676 * host kernel architectures, but also allows to automatically 5677 * relocate fields that were resized from, e.g., u32 to u64, etc. 5678 */ 5679 bool fail_memsz_adjust; 5680 __u32 orig_sz; 5681 __u32 orig_type_id; 5682 __u32 new_sz; 5683 __u32 new_type_id; 5684 }; 5685 5686 /* Calculate original and target relocation values, given local and target 5687 * specs and relocation kind. These values are calculated for each candidate. 5688 * If there are multiple candidates, resulting values should all be consistent 5689 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 5690 * If instruction has to be poisoned, *poison will be set to true. 5691 */ 5692 static int bpf_core_calc_relo(const struct bpf_program *prog, 5693 const struct bpf_core_relo *relo, 5694 int relo_idx, 5695 const struct bpf_core_spec *local_spec, 5696 const struct bpf_core_spec *targ_spec, 5697 struct bpf_core_relo_res *res) 5698 { 5699 int err = -EOPNOTSUPP; 5700 5701 res->orig_val = 0; 5702 res->new_val = 0; 5703 res->poison = false; 5704 res->validate = true; 5705 res->fail_memsz_adjust = false; 5706 res->orig_sz = res->new_sz = 0; 5707 res->orig_type_id = res->new_type_id = 0; 5708 5709 if (core_relo_is_field_based(relo->kind)) { 5710 err = bpf_core_calc_field_relo(prog, relo, local_spec, 5711 &res->orig_val, &res->orig_sz, 5712 &res->orig_type_id, &res->validate); 5713 err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec, 5714 &res->new_val, &res->new_sz, 5715 &res->new_type_id, NULL); 5716 if (err) 5717 goto done; 5718 /* Validate if it's safe to adjust load/store memory size. 5719 * Adjustments are performed only if original and new memory 5720 * sizes differ. 5721 */ 5722 res->fail_memsz_adjust = false; 5723 if (res->orig_sz != res->new_sz) { 5724 const struct btf_type *orig_t, *new_t; 5725 5726 orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id); 5727 new_t = btf__type_by_id(targ_spec->btf, res->new_type_id); 5728 5729 /* There are two use cases in which it's safe to 5730 * adjust load/store's mem size: 5731 * - reading a 32-bit kernel pointer, while on BPF 5732 * size pointers are always 64-bit; in this case 5733 * it's safe to "downsize" instruction size due to 5734 * pointer being treated as unsigned integer with 5735 * zero-extended upper 32-bits; 5736 * - reading unsigned integers, again due to 5737 * zero-extension is preserving the value correctly. 5738 * 5739 * In all other cases it's incorrect to attempt to 5740 * load/store field because read value will be 5741 * incorrect, so we poison relocated instruction. 5742 */ 5743 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 5744 goto done; 5745 if (btf_is_int(orig_t) && btf_is_int(new_t) && 5746 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 5747 btf_int_encoding(new_t) != BTF_INT_SIGNED) 5748 goto done; 5749 5750 /* mark as invalid mem size adjustment, but this will 5751 * only be checked for LDX/STX/ST insns 5752 */ 5753 res->fail_memsz_adjust = true; 5754 } 5755 } else if (core_relo_is_type_based(relo->kind)) { 5756 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val); 5757 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val); 5758 } else if (core_relo_is_enumval_based(relo->kind)) { 5759 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 5760 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 5761 } 5762 5763 done: 5764 if (err == -EUCLEAN) { 5765 /* EUCLEAN is used to signal instruction poisoning request */ 5766 res->poison = true; 5767 err = 0; 5768 } else if (err == -EOPNOTSUPP) { 5769 /* EOPNOTSUPP means unknown/unsupported relocation */ 5770 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 5771 prog->name, relo_idx, core_relo_kind_str(relo->kind), 5772 relo->kind, relo->insn_off / 8); 5773 } 5774 5775 return err; 5776 } 5777 5778 /* 5779 * Turn instruction for which CO_RE relocation failed into invalid one with 5780 * distinct signature. 5781 */ 5782 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx, 5783 int insn_idx, struct bpf_insn *insn) 5784 { 5785 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 5786 prog->name, relo_idx, insn_idx); 5787 insn->code = BPF_JMP | BPF_CALL; 5788 insn->dst_reg = 0; 5789 insn->src_reg = 0; 5790 insn->off = 0; 5791 /* if this instruction is reachable (not a dead code), 5792 * verifier will complain with the following message: 5793 * invalid func unknown#195896080 5794 */ 5795 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 5796 } 5797 5798 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 5799 { 5800 switch (BPF_SIZE(insn->code)) { 5801 case BPF_DW: return 8; 5802 case BPF_W: return 4; 5803 case BPF_H: return 2; 5804 case BPF_B: return 1; 5805 default: return -1; 5806 } 5807 } 5808 5809 static int insn_bytes_to_bpf_size(__u32 sz) 5810 { 5811 switch (sz) { 5812 case 8: return BPF_DW; 5813 case 4: return BPF_W; 5814 case 2: return BPF_H; 5815 case 1: return BPF_B; 5816 default: return -1; 5817 } 5818 } 5819 5820 /* 5821 * Patch relocatable BPF instruction. 5822 * 5823 * Patched value is determined by relocation kind and target specification. 5824 * For existence relocations target spec will be NULL if field/type is not found. 5825 * Expected insn->imm value is determined using relocation kind and local 5826 * spec, and is checked before patching instruction. If actual insn->imm value 5827 * is wrong, bail out with error. 5828 * 5829 * Currently supported classes of BPF instruction are: 5830 * 1. rX = <imm> (assignment with immediate operand); 5831 * 2. rX += <imm> (arithmetic operations with immediate operand); 5832 * 3. rX = <imm64> (load with 64-bit immediate value); 5833 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 5834 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 5835 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 5836 */ 5837 static int bpf_core_patch_insn(struct bpf_program *prog, 5838 const struct bpf_core_relo *relo, 5839 int relo_idx, 5840 const struct bpf_core_relo_res *res) 5841 { 5842 __u32 orig_val, new_val; 5843 struct bpf_insn *insn; 5844 int insn_idx; 5845 __u8 class; 5846 5847 if (relo->insn_off % BPF_INSN_SZ) 5848 return -EINVAL; 5849 insn_idx = relo->insn_off / BPF_INSN_SZ; 5850 /* adjust insn_idx from section frame of reference to the local 5851 * program's frame of reference; (sub-)program code is not yet 5852 * relocated, so it's enough to just subtract in-section offset 5853 */ 5854 insn_idx = insn_idx - prog->sec_insn_off; 5855 insn = &prog->insns[insn_idx]; 5856 class = BPF_CLASS(insn->code); 5857 5858 if (res->poison) { 5859 poison: 5860 /* poison second part of ldimm64 to avoid confusing error from 5861 * verifier about "unknown opcode 00" 5862 */ 5863 if (is_ldimm64_insn(insn)) 5864 bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1); 5865 bpf_core_poison_insn(prog, relo_idx, insn_idx, insn); 5866 return 0; 5867 } 5868 5869 orig_val = res->orig_val; 5870 new_val = res->new_val; 5871 5872 switch (class) { 5873 case BPF_ALU: 5874 case BPF_ALU64: 5875 if (BPF_SRC(insn->code) != BPF_K) 5876 return -EINVAL; 5877 if (res->validate && insn->imm != orig_val) { 5878 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n", 5879 prog->name, relo_idx, 5880 insn_idx, insn->imm, orig_val, new_val); 5881 return -EINVAL; 5882 } 5883 orig_val = insn->imm; 5884 insn->imm = new_val; 5885 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n", 5886 prog->name, relo_idx, insn_idx, 5887 orig_val, new_val); 5888 break; 5889 case BPF_LDX: 5890 case BPF_ST: 5891 case BPF_STX: 5892 if (res->validate && insn->off != orig_val) { 5893 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n", 5894 prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val); 5895 return -EINVAL; 5896 } 5897 if (new_val > SHRT_MAX) { 5898 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n", 5899 prog->name, relo_idx, insn_idx, new_val); 5900 return -ERANGE; 5901 } 5902 if (res->fail_memsz_adjust) { 5903 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 5904 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 5905 prog->name, relo_idx, insn_idx); 5906 goto poison; 5907 } 5908 5909 orig_val = insn->off; 5910 insn->off = new_val; 5911 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n", 5912 prog->name, relo_idx, insn_idx, orig_val, new_val); 5913 5914 if (res->new_sz != res->orig_sz) { 5915 int insn_bytes_sz, insn_bpf_sz; 5916 5917 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 5918 if (insn_bytes_sz != res->orig_sz) { 5919 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 5920 prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 5921 return -EINVAL; 5922 } 5923 5924 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 5925 if (insn_bpf_sz < 0) { 5926 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 5927 prog->name, relo_idx, insn_idx, res->new_sz); 5928 return -EINVAL; 5929 } 5930 5931 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 5932 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 5933 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 5934 } 5935 break; 5936 case BPF_LD: { 5937 __u64 imm; 5938 5939 if (!is_ldimm64_insn(insn) || 5940 insn[0].src_reg != 0 || insn[0].off != 0 || 5941 insn_idx + 1 >= prog->insns_cnt || 5942 insn[1].code != 0 || insn[1].dst_reg != 0 || 5943 insn[1].src_reg != 0 || insn[1].off != 0) { 5944 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 5945 prog->name, relo_idx, insn_idx); 5946 return -EINVAL; 5947 } 5948 5949 imm = insn[0].imm + ((__u64)insn[1].imm << 32); 5950 if (res->validate && imm != orig_val) { 5951 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n", 5952 prog->name, relo_idx, 5953 insn_idx, (unsigned long long)imm, 5954 orig_val, new_val); 5955 return -EINVAL; 5956 } 5957 5958 insn[0].imm = new_val; 5959 insn[1].imm = 0; /* currently only 32-bit values are supported */ 5960 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n", 5961 prog->name, relo_idx, insn_idx, 5962 (unsigned long long)imm, new_val); 5963 break; 5964 } 5965 default: 5966 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 5967 prog->name, relo_idx, insn_idx, insn->code, 5968 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 5969 return -EINVAL; 5970 } 5971 5972 return 0; 5973 } 5974 5975 /* Output spec definition in the format: 5976 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 5977 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 5978 */ 5979 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 5980 { 5981 const struct btf_type *t; 5982 const struct btf_enum *e; 5983 const char *s; 5984 __u32 type_id; 5985 int i; 5986 5987 type_id = spec->root_type_id; 5988 t = btf__type_by_id(spec->btf, type_id); 5989 s = btf__name_by_offset(spec->btf, t->name_off); 5990 5991 libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 5992 5993 if (core_relo_is_type_based(spec->relo_kind)) 5994 return; 5995 5996 if (core_relo_is_enumval_based(spec->relo_kind)) { 5997 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 5998 e = btf_enum(t) + spec->raw_spec[0]; 5999 s = btf__name_by_offset(spec->btf, e->name_off); 6000 6001 libbpf_print(level, "::%s = %u", s, e->val); 6002 return; 6003 } 6004 6005 if (core_relo_is_field_based(spec->relo_kind)) { 6006 for (i = 0; i < spec->len; i++) { 6007 if (spec->spec[i].name) 6008 libbpf_print(level, ".%s", spec->spec[i].name); 6009 else if (i > 0 || spec->spec[i].idx > 0) 6010 libbpf_print(level, "[%u]", spec->spec[i].idx); 6011 } 6012 6013 libbpf_print(level, " ("); 6014 for (i = 0; i < spec->raw_len; i++) 6015 libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 6016 6017 if (spec->bit_offset % 8) 6018 libbpf_print(level, " @ offset %u.%u)", 6019 spec->bit_offset / 8, spec->bit_offset % 8); 6020 else 6021 libbpf_print(level, " @ offset %u)", spec->bit_offset / 8); 6022 return; 6023 } 6024 } 6025 6026 static size_t bpf_core_hash_fn(const void *key, void *ctx) 6027 { 6028 return (size_t)key; 6029 } 6030 6031 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 6032 { 6033 return k1 == k2; 6034 } 6035 6036 static void *u32_as_hash_key(__u32 x) 6037 { 6038 return (void *)(uintptr_t)x; 6039 } 6040 6041 /* 6042 * CO-RE relocate single instruction. 6043 * 6044 * The outline and important points of the algorithm: 6045 * 1. For given local type, find corresponding candidate target types. 6046 * Candidate type is a type with the same "essential" name, ignoring 6047 * everything after last triple underscore (___). E.g., `sample`, 6048 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 6049 * for each other. Names with triple underscore are referred to as 6050 * "flavors" and are useful, among other things, to allow to 6051 * specify/support incompatible variations of the same kernel struct, which 6052 * might differ between different kernel versions and/or build 6053 * configurations. 6054 * 6055 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 6056 * converter, when deduplicated BTF of a kernel still contains more than 6057 * one different types with the same name. In that case, ___2, ___3, etc 6058 * are appended starting from second name conflict. But start flavors are 6059 * also useful to be defined "locally", in BPF program, to extract same 6060 * data from incompatible changes between different kernel 6061 * versions/configurations. For instance, to handle field renames between 6062 * kernel versions, one can use two flavors of the struct name with the 6063 * same common name and use conditional relocations to extract that field, 6064 * depending on target kernel version. 6065 * 2. For each candidate type, try to match local specification to this 6066 * candidate target type. Matching involves finding corresponding 6067 * high-level spec accessors, meaning that all named fields should match, 6068 * as well as all array accesses should be within the actual bounds. Also, 6069 * types should be compatible (see bpf_core_fields_are_compat for details). 6070 * 3. It is supported and expected that there might be multiple flavors 6071 * matching the spec. As long as all the specs resolve to the same set of 6072 * offsets across all candidates, there is no error. If there is any 6073 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 6074 * imprefection of BTF deduplication, which can cause slight duplication of 6075 * the same BTF type, if some directly or indirectly referenced (by 6076 * pointer) type gets resolved to different actual types in different 6077 * object files. If such situation occurs, deduplicated BTF will end up 6078 * with two (or more) structurally identical types, which differ only in 6079 * types they refer to through pointer. This should be OK in most cases and 6080 * is not an error. 6081 * 4. Candidate types search is performed by linearly scanning through all 6082 * types in target BTF. It is anticipated that this is overall more 6083 * efficient memory-wise and not significantly worse (if not better) 6084 * CPU-wise compared to prebuilding a map from all local type names to 6085 * a list of candidate type names. It's also sped up by caching resolved 6086 * list of matching candidates per each local "root" type ID, that has at 6087 * least one bpf_core_relo associated with it. This list is shared 6088 * between multiple relocations for the same type ID and is updated as some 6089 * of the candidates are pruned due to structural incompatibility. 6090 */ 6091 static int bpf_core_apply_relo(struct bpf_program *prog, 6092 const struct bpf_core_relo *relo, 6093 int relo_idx, 6094 const struct btf *local_btf, 6095 struct hashmap *cand_cache) 6096 { 6097 struct bpf_core_spec local_spec, cand_spec, targ_spec = {}; 6098 const void *type_key = u32_as_hash_key(relo->type_id); 6099 struct bpf_core_relo_res cand_res, targ_res; 6100 const struct btf_type *local_type; 6101 const char *local_name; 6102 struct core_cand_list *cands = NULL; 6103 __u32 local_id; 6104 const char *spec_str; 6105 int i, j, err; 6106 6107 local_id = relo->type_id; 6108 local_type = btf__type_by_id(local_btf, local_id); 6109 if (!local_type) 6110 return -EINVAL; 6111 6112 local_name = btf__name_by_offset(local_btf, local_type->name_off); 6113 if (!local_name) 6114 return -EINVAL; 6115 6116 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 6117 if (str_is_empty(spec_str)) 6118 return -EINVAL; 6119 6120 err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec); 6121 if (err) { 6122 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 6123 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6124 str_is_empty(local_name) ? "<anon>" : local_name, 6125 spec_str, err); 6126 return -EINVAL; 6127 } 6128 6129 pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name, 6130 relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6131 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 6132 libbpf_print(LIBBPF_DEBUG, "\n"); 6133 6134 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 6135 if (relo->kind == BPF_TYPE_ID_LOCAL) { 6136 targ_res.validate = true; 6137 targ_res.poison = false; 6138 targ_res.orig_val = local_spec.root_type_id; 6139 targ_res.new_val = local_spec.root_type_id; 6140 goto patch_insn; 6141 } 6142 6143 /* libbpf doesn't support candidate search for anonymous types */ 6144 if (str_is_empty(spec_str)) { 6145 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 6146 prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 6147 return -EOPNOTSUPP; 6148 } 6149 6150 if (!hashmap__find(cand_cache, type_key, (void **)&cands)) { 6151 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 6152 if (IS_ERR(cands)) { 6153 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 6154 prog->name, relo_idx, local_id, btf_kind_str(local_type), 6155 local_name, PTR_ERR(cands)); 6156 return PTR_ERR(cands); 6157 } 6158 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 6159 if (err) { 6160 bpf_core_free_cands(cands); 6161 return err; 6162 } 6163 } 6164 6165 for (i = 0, j = 0; i < cands->len; i++) { 6166 err = bpf_core_spec_match(&local_spec, cands->cands[i].btf, 6167 cands->cands[i].id, &cand_spec); 6168 if (err < 0) { 6169 pr_warn("prog '%s': relo #%d: error matching candidate #%d ", 6170 prog->name, relo_idx, i); 6171 bpf_core_dump_spec(LIBBPF_WARN, &cand_spec); 6172 libbpf_print(LIBBPF_WARN, ": %d\n", err); 6173 return err; 6174 } 6175 6176 pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name, 6177 relo_idx, err == 0 ? "non-matching" : "matching", i); 6178 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 6179 libbpf_print(LIBBPF_DEBUG, "\n"); 6180 6181 if (err == 0) 6182 continue; 6183 6184 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res); 6185 if (err) 6186 return err; 6187 6188 if (j == 0) { 6189 targ_res = cand_res; 6190 targ_spec = cand_spec; 6191 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 6192 /* if there are many field relo candidates, they 6193 * should all resolve to the same bit offset 6194 */ 6195 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 6196 prog->name, relo_idx, cand_spec.bit_offset, 6197 targ_spec.bit_offset); 6198 return -EINVAL; 6199 } else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) { 6200 /* all candidates should result in the same relocation 6201 * decision and value, otherwise it's dangerous to 6202 * proceed due to ambiguity 6203 */ 6204 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n", 6205 prog->name, relo_idx, 6206 cand_res.poison ? "failure" : "success", cand_res.new_val, 6207 targ_res.poison ? "failure" : "success", targ_res.new_val); 6208 return -EINVAL; 6209 } 6210 6211 cands->cands[j++] = cands->cands[i]; 6212 } 6213 6214 /* 6215 * For BPF_FIELD_EXISTS relo or when used BPF program has field 6216 * existence checks or kernel version/config checks, it's expected 6217 * that we might not find any candidates. In this case, if field 6218 * wasn't found in any candidate, the list of candidates shouldn't 6219 * change at all, we'll just handle relocating appropriately, 6220 * depending on relo's kind. 6221 */ 6222 if (j > 0) 6223 cands->len = j; 6224 6225 /* 6226 * If no candidates were found, it might be both a programmer error, 6227 * as well as expected case, depending whether instruction w/ 6228 * relocation is guarded in some way that makes it unreachable (dead 6229 * code) if relocation can't be resolved. This is handled in 6230 * bpf_core_patch_insn() uniformly by replacing that instruction with 6231 * BPF helper call insn (using invalid helper ID). If that instruction 6232 * is indeed unreachable, then it will be ignored and eliminated by 6233 * verifier. If it was an error, then verifier will complain and point 6234 * to a specific instruction number in its log. 6235 */ 6236 if (j == 0) { 6237 pr_debug("prog '%s': relo #%d: no matching targets found\n", 6238 prog->name, relo_idx); 6239 6240 /* calculate single target relo result explicitly */ 6241 err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res); 6242 if (err) 6243 return err; 6244 } 6245 6246 patch_insn: 6247 /* bpf_core_patch_insn() should know how to handle missing targ_spec */ 6248 err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res); 6249 if (err) { 6250 pr_warn("prog '%s': relo #%d: failed to patch insn #%zu: %d\n", 6251 prog->name, relo_idx, relo->insn_off / BPF_INSN_SZ, err); 6252 return -EINVAL; 6253 } 6254 6255 return 0; 6256 } 6257 6258 static int 6259 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 6260 { 6261 const struct btf_ext_info_sec *sec; 6262 const struct bpf_core_relo *rec; 6263 const struct btf_ext_info *seg; 6264 struct hashmap_entry *entry; 6265 struct hashmap *cand_cache = NULL; 6266 struct bpf_program *prog; 6267 const char *sec_name; 6268 int i, err = 0, insn_idx, sec_idx; 6269 6270 if (obj->btf_ext->core_relo_info.len == 0) 6271 return 0; 6272 6273 if (targ_btf_path) { 6274 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 6275 if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) { 6276 err = PTR_ERR(obj->btf_vmlinux_override); 6277 pr_warn("failed to parse target BTF: %d\n", err); 6278 return err; 6279 } 6280 } 6281 6282 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 6283 if (IS_ERR(cand_cache)) { 6284 err = PTR_ERR(cand_cache); 6285 goto out; 6286 } 6287 6288 seg = &obj->btf_ext->core_relo_info; 6289 for_each_btf_ext_sec(seg, sec) { 6290 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6291 if (str_is_empty(sec_name)) { 6292 err = -EINVAL; 6293 goto out; 6294 } 6295 /* bpf_object's ELF is gone by now so it's not easy to find 6296 * section index by section name, but we can find *any* 6297 * bpf_program within desired section name and use it's 6298 * prog->sec_idx to do a proper search by section index and 6299 * instruction offset 6300 */ 6301 prog = NULL; 6302 for (i = 0; i < obj->nr_programs; i++) { 6303 prog = &obj->programs[i]; 6304 if (strcmp(prog->sec_name, sec_name) == 0) 6305 break; 6306 } 6307 if (!prog) { 6308 pr_warn("sec '%s': failed to find a BPF program\n", sec_name); 6309 return -ENOENT; 6310 } 6311 sec_idx = prog->sec_idx; 6312 6313 pr_debug("sec '%s': found %d CO-RE relocations\n", 6314 sec_name, sec->num_info); 6315 6316 for_each_btf_ext_rec(seg, sec, i, rec) { 6317 insn_idx = rec->insn_off / BPF_INSN_SZ; 6318 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 6319 if (!prog) { 6320 pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n", 6321 sec_name, insn_idx, i); 6322 err = -EINVAL; 6323 goto out; 6324 } 6325 /* no need to apply CO-RE relocation if the program is 6326 * not going to be loaded 6327 */ 6328 if (!prog->load) 6329 continue; 6330 6331 err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache); 6332 if (err) { 6333 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 6334 prog->name, i, err); 6335 goto out; 6336 } 6337 } 6338 } 6339 6340 out: 6341 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6342 btf__free(obj->btf_vmlinux_override); 6343 obj->btf_vmlinux_override = NULL; 6344 6345 if (!IS_ERR_OR_NULL(cand_cache)) { 6346 hashmap__for_each_entry(cand_cache, entry, i) { 6347 bpf_core_free_cands(entry->value); 6348 } 6349 hashmap__free(cand_cache); 6350 } 6351 return err; 6352 } 6353 6354 /* Relocate data references within program code: 6355 * - map references; 6356 * - global variable references; 6357 * - extern references. 6358 */ 6359 static int 6360 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6361 { 6362 int i; 6363 6364 for (i = 0; i < prog->nr_reloc; i++) { 6365 struct reloc_desc *relo = &prog->reloc_desc[i]; 6366 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6367 struct extern_desc *ext; 6368 6369 switch (relo->type) { 6370 case RELO_LD64: 6371 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6372 insn[0].imm = obj->maps[relo->map_idx].fd; 6373 break; 6374 case RELO_DATA: 6375 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6376 insn[1].imm = insn[0].imm + relo->sym_off; 6377 insn[0].imm = obj->maps[relo->map_idx].fd; 6378 break; 6379 case RELO_EXTERN_VAR: 6380 ext = &obj->externs[relo->sym_off]; 6381 if (ext->type == EXT_KCFG) { 6382 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6383 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6384 insn[1].imm = ext->kcfg.data_off; 6385 } else /* EXT_KSYM */ { 6386 if (ext->ksym.type_id) { /* typed ksyms */ 6387 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6388 insn[0].imm = ext->ksym.kernel_btf_id; 6389 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6390 } else { /* typeless ksyms */ 6391 insn[0].imm = (__u32)ext->ksym.addr; 6392 insn[1].imm = ext->ksym.addr >> 32; 6393 } 6394 } 6395 break; 6396 case RELO_EXTERN_FUNC: 6397 ext = &obj->externs[relo->sym_off]; 6398 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6399 insn[0].imm = ext->ksym.kernel_btf_id; 6400 break; 6401 case RELO_SUBPROG_ADDR: 6402 insn[0].src_reg = BPF_PSEUDO_FUNC; 6403 /* will be handled as a follow up pass */ 6404 break; 6405 case RELO_CALL: 6406 /* will be handled as a follow up pass */ 6407 break; 6408 default: 6409 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6410 prog->name, i, relo->type); 6411 return -EINVAL; 6412 } 6413 } 6414 6415 return 0; 6416 } 6417 6418 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6419 const struct bpf_program *prog, 6420 const struct btf_ext_info *ext_info, 6421 void **prog_info, __u32 *prog_rec_cnt, 6422 __u32 *prog_rec_sz) 6423 { 6424 void *copy_start = NULL, *copy_end = NULL; 6425 void *rec, *rec_end, *new_prog_info; 6426 const struct btf_ext_info_sec *sec; 6427 size_t old_sz, new_sz; 6428 const char *sec_name; 6429 int i, off_adj; 6430 6431 for_each_btf_ext_sec(ext_info, sec) { 6432 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 6433 if (!sec_name) 6434 return -EINVAL; 6435 if (strcmp(sec_name, prog->sec_name) != 0) 6436 continue; 6437 6438 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6439 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6440 6441 if (insn_off < prog->sec_insn_off) 6442 continue; 6443 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6444 break; 6445 6446 if (!copy_start) 6447 copy_start = rec; 6448 copy_end = rec + ext_info->rec_size; 6449 } 6450 6451 if (!copy_start) 6452 return -ENOENT; 6453 6454 /* append func/line info of a given (sub-)program to the main 6455 * program func/line info 6456 */ 6457 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6458 new_sz = old_sz + (copy_end - copy_start); 6459 new_prog_info = realloc(*prog_info, new_sz); 6460 if (!new_prog_info) 6461 return -ENOMEM; 6462 *prog_info = new_prog_info; 6463 *prog_rec_cnt = new_sz / ext_info->rec_size; 6464 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6465 6466 /* Kernel instruction offsets are in units of 8-byte 6467 * instructions, while .BTF.ext instruction offsets generated 6468 * by Clang are in units of bytes. So convert Clang offsets 6469 * into kernel offsets and adjust offset according to program 6470 * relocated position. 6471 */ 6472 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6473 rec = new_prog_info + old_sz; 6474 rec_end = new_prog_info + new_sz; 6475 for (; rec < rec_end; rec += ext_info->rec_size) { 6476 __u32 *insn_off = rec; 6477 6478 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6479 } 6480 *prog_rec_sz = ext_info->rec_size; 6481 return 0; 6482 } 6483 6484 return -ENOENT; 6485 } 6486 6487 static int 6488 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6489 struct bpf_program *main_prog, 6490 const struct bpf_program *prog) 6491 { 6492 int err; 6493 6494 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6495 * supprot func/line info 6496 */ 6497 if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC)) 6498 return 0; 6499 6500 /* only attempt func info relocation if main program's func_info 6501 * relocation was successful 6502 */ 6503 if (main_prog != prog && !main_prog->func_info) 6504 goto line_info; 6505 6506 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6507 &main_prog->func_info, 6508 &main_prog->func_info_cnt, 6509 &main_prog->func_info_rec_size); 6510 if (err) { 6511 if (err != -ENOENT) { 6512 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6513 prog->name, err); 6514 return err; 6515 } 6516 if (main_prog->func_info) { 6517 /* 6518 * Some info has already been found but has problem 6519 * in the last btf_ext reloc. Must have to error out. 6520 */ 6521 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6522 return err; 6523 } 6524 /* Have problem loading the very first info. Ignore the rest. */ 6525 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6526 prog->name); 6527 } 6528 6529 line_info: 6530 /* don't relocate line info if main program's relocation failed */ 6531 if (main_prog != prog && !main_prog->line_info) 6532 return 0; 6533 6534 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6535 &main_prog->line_info, 6536 &main_prog->line_info_cnt, 6537 &main_prog->line_info_rec_size); 6538 if (err) { 6539 if (err != -ENOENT) { 6540 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6541 prog->name, err); 6542 return err; 6543 } 6544 if (main_prog->line_info) { 6545 /* 6546 * Some info has already been found but has problem 6547 * in the last btf_ext reloc. Must have to error out. 6548 */ 6549 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6550 return err; 6551 } 6552 /* Have problem loading the very first info. Ignore the rest. */ 6553 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6554 prog->name); 6555 } 6556 return 0; 6557 } 6558 6559 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6560 { 6561 size_t insn_idx = *(const size_t *)key; 6562 const struct reloc_desc *relo = elem; 6563 6564 if (insn_idx == relo->insn_idx) 6565 return 0; 6566 return insn_idx < relo->insn_idx ? -1 : 1; 6567 } 6568 6569 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6570 { 6571 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6572 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6573 } 6574 6575 static int 6576 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6577 struct bpf_program *prog) 6578 { 6579 size_t sub_insn_idx, insn_idx, new_cnt; 6580 struct bpf_program *subprog; 6581 struct bpf_insn *insns, *insn; 6582 struct reloc_desc *relo; 6583 int err; 6584 6585 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6586 if (err) 6587 return err; 6588 6589 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6590 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6591 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6592 continue; 6593 6594 relo = find_prog_insn_relo(prog, insn_idx); 6595 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6596 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6597 prog->name, insn_idx, relo->type); 6598 return -LIBBPF_ERRNO__RELOC; 6599 } 6600 if (relo) { 6601 /* sub-program instruction index is a combination of 6602 * an offset of a symbol pointed to by relocation and 6603 * call instruction's imm field; for global functions, 6604 * call always has imm = -1, but for static functions 6605 * relocation is against STT_SECTION and insn->imm 6606 * points to a start of a static function 6607 * 6608 * for subprog addr relocation, the relo->sym_off + insn->imm is 6609 * the byte offset in the corresponding section. 6610 */ 6611 if (relo->type == RELO_CALL) 6612 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6613 else 6614 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6615 } else if (insn_is_pseudo_func(insn)) { 6616 /* 6617 * RELO_SUBPROG_ADDR relo is always emitted even if both 6618 * functions are in the same section, so it shouldn't reach here. 6619 */ 6620 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6621 prog->name, insn_idx); 6622 return -LIBBPF_ERRNO__RELOC; 6623 } else { 6624 /* if subprogram call is to a static function within 6625 * the same ELF section, there won't be any relocation 6626 * emitted, but it also means there is no additional 6627 * offset necessary, insns->imm is relative to 6628 * instruction's original position within the section 6629 */ 6630 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6631 } 6632 6633 /* we enforce that sub-programs should be in .text section */ 6634 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6635 if (!subprog) { 6636 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6637 prog->name); 6638 return -LIBBPF_ERRNO__RELOC; 6639 } 6640 6641 /* if it's the first call instruction calling into this 6642 * subprogram (meaning this subprog hasn't been processed 6643 * yet) within the context of current main program: 6644 * - append it at the end of main program's instructions blog; 6645 * - process is recursively, while current program is put on hold; 6646 * - if that subprogram calls some other not yet processes 6647 * subprogram, same thing will happen recursively until 6648 * there are no more unprocesses subprograms left to append 6649 * and relocate. 6650 */ 6651 if (subprog->sub_insn_off == 0) { 6652 subprog->sub_insn_off = main_prog->insns_cnt; 6653 6654 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6655 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6656 if (!insns) { 6657 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6658 return -ENOMEM; 6659 } 6660 main_prog->insns = insns; 6661 main_prog->insns_cnt = new_cnt; 6662 6663 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6664 subprog->insns_cnt * sizeof(*insns)); 6665 6666 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6667 main_prog->name, subprog->insns_cnt, subprog->name); 6668 6669 err = bpf_object__reloc_code(obj, main_prog, subprog); 6670 if (err) 6671 return err; 6672 } 6673 6674 /* main_prog->insns memory could have been re-allocated, so 6675 * calculate pointer again 6676 */ 6677 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6678 /* calculate correct instruction position within current main 6679 * prog; each main prog can have a different set of 6680 * subprograms appended (potentially in different order as 6681 * well), so position of any subprog can be different for 6682 * different main programs */ 6683 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6684 6685 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6686 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6687 } 6688 6689 return 0; 6690 } 6691 6692 /* 6693 * Relocate sub-program calls. 6694 * 6695 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6696 * main prog) is processed separately. For each subprog (non-entry functions, 6697 * that can be called from either entry progs or other subprogs) gets their 6698 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6699 * hasn't been yet appended and relocated within current main prog. Once its 6700 * relocated, sub_insn_off will point at the position within current main prog 6701 * where given subprog was appended. This will further be used to relocate all 6702 * the call instructions jumping into this subprog. 6703 * 6704 * We start with main program and process all call instructions. If the call 6705 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6706 * is zero), subprog instructions are appended at the end of main program's 6707 * instruction array. Then main program is "put on hold" while we recursively 6708 * process newly appended subprogram. If that subprogram calls into another 6709 * subprogram that hasn't been appended, new subprogram is appended again to 6710 * the *main* prog's instructions (subprog's instructions are always left 6711 * untouched, as they need to be in unmodified state for subsequent main progs 6712 * and subprog instructions are always sent only as part of a main prog) and 6713 * the process continues recursively. Once all the subprogs called from a main 6714 * prog or any of its subprogs are appended (and relocated), all their 6715 * positions within finalized instructions array are known, so it's easy to 6716 * rewrite call instructions with correct relative offsets, corresponding to 6717 * desired target subprog. 6718 * 6719 * Its important to realize that some subprogs might not be called from some 6720 * main prog and any of its called/used subprogs. Those will keep their 6721 * subprog->sub_insn_off as zero at all times and won't be appended to current 6722 * main prog and won't be relocated within the context of current main prog. 6723 * They might still be used from other main progs later. 6724 * 6725 * Visually this process can be shown as below. Suppose we have two main 6726 * programs mainA and mainB and BPF object contains three subprogs: subA, 6727 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6728 * subC both call subB: 6729 * 6730 * +--------+ +-------+ 6731 * | v v | 6732 * +--+---+ +--+-+-+ +---+--+ 6733 * | subA | | subB | | subC | 6734 * +--+---+ +------+ +---+--+ 6735 * ^ ^ 6736 * | | 6737 * +---+-------+ +------+----+ 6738 * | mainA | | mainB | 6739 * +-----------+ +-----------+ 6740 * 6741 * We'll start relocating mainA, will find subA, append it and start 6742 * processing sub A recursively: 6743 * 6744 * +-----------+------+ 6745 * | mainA | subA | 6746 * +-----------+------+ 6747 * 6748 * At this point we notice that subB is used from subA, so we append it and 6749 * relocate (there are no further subcalls from subB): 6750 * 6751 * +-----------+------+------+ 6752 * | mainA | subA | subB | 6753 * +-----------+------+------+ 6754 * 6755 * At this point, we relocate subA calls, then go one level up and finish with 6756 * relocatin mainA calls. mainA is done. 6757 * 6758 * For mainB process is similar but results in different order. We start with 6759 * mainB and skip subA and subB, as mainB never calls them (at least 6760 * directly), but we see subC is needed, so we append and start processing it: 6761 * 6762 * +-----------+------+ 6763 * | mainB | subC | 6764 * +-----------+------+ 6765 * Now we see subC needs subB, so we go back to it, append and relocate it: 6766 * 6767 * +-----------+------+------+ 6768 * | mainB | subC | subB | 6769 * +-----------+------+------+ 6770 * 6771 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6772 */ 6773 static int 6774 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6775 { 6776 struct bpf_program *subprog; 6777 int i, err; 6778 6779 /* mark all subprogs as not relocated (yet) within the context of 6780 * current main program 6781 */ 6782 for (i = 0; i < obj->nr_programs; i++) { 6783 subprog = &obj->programs[i]; 6784 if (!prog_is_subprog(obj, subprog)) 6785 continue; 6786 6787 subprog->sub_insn_off = 0; 6788 } 6789 6790 err = bpf_object__reloc_code(obj, prog, prog); 6791 if (err) 6792 return err; 6793 6794 6795 return 0; 6796 } 6797 6798 static int 6799 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6800 { 6801 struct bpf_program *prog; 6802 size_t i; 6803 int err; 6804 6805 if (obj->btf_ext) { 6806 err = bpf_object__relocate_core(obj, targ_btf_path); 6807 if (err) { 6808 pr_warn("failed to perform CO-RE relocations: %d\n", 6809 err); 6810 return err; 6811 } 6812 } 6813 /* relocate data references first for all programs and sub-programs, 6814 * as they don't change relative to code locations, so subsequent 6815 * subprogram processing won't need to re-calculate any of them 6816 */ 6817 for (i = 0; i < obj->nr_programs; i++) { 6818 prog = &obj->programs[i]; 6819 err = bpf_object__relocate_data(obj, prog); 6820 if (err) { 6821 pr_warn("prog '%s': failed to relocate data references: %d\n", 6822 prog->name, err); 6823 return err; 6824 } 6825 } 6826 /* now relocate subprogram calls and append used subprograms to main 6827 * programs; each copy of subprogram code needs to be relocated 6828 * differently for each main program, because its code location might 6829 * have changed 6830 */ 6831 for (i = 0; i < obj->nr_programs; i++) { 6832 prog = &obj->programs[i]; 6833 /* sub-program's sub-calls are relocated within the context of 6834 * its main program only 6835 */ 6836 if (prog_is_subprog(obj, prog)) 6837 continue; 6838 6839 err = bpf_object__relocate_calls(obj, prog); 6840 if (err) { 6841 pr_warn("prog '%s': failed to relocate calls: %d\n", 6842 prog->name, err); 6843 return err; 6844 } 6845 } 6846 /* free up relocation descriptors */ 6847 for (i = 0; i < obj->nr_programs; i++) { 6848 prog = &obj->programs[i]; 6849 zfree(&prog->reloc_desc); 6850 prog->nr_reloc = 0; 6851 } 6852 return 0; 6853 } 6854 6855 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6856 GElf_Shdr *shdr, Elf_Data *data); 6857 6858 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6859 GElf_Shdr *shdr, Elf_Data *data) 6860 { 6861 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6862 int i, j, nrels, new_sz; 6863 const struct btf_var_secinfo *vi = NULL; 6864 const struct btf_type *sec, *var, *def; 6865 struct bpf_map *map = NULL, *targ_map; 6866 const struct btf_member *member; 6867 const char *name, *mname; 6868 Elf_Data *symbols; 6869 unsigned int moff; 6870 GElf_Sym sym; 6871 GElf_Rel rel; 6872 void *tmp; 6873 6874 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6875 return -EINVAL; 6876 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6877 if (!sec) 6878 return -EINVAL; 6879 6880 symbols = obj->efile.symbols; 6881 nrels = shdr->sh_size / shdr->sh_entsize; 6882 for (i = 0; i < nrels; i++) { 6883 if (!gelf_getrel(data, i, &rel)) { 6884 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6885 return -LIBBPF_ERRNO__FORMAT; 6886 } 6887 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 6888 pr_warn(".maps relo #%d: symbol %zx not found\n", 6889 i, (size_t)GELF_R_SYM(rel.r_info)); 6890 return -LIBBPF_ERRNO__FORMAT; 6891 } 6892 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 6893 if (sym.st_shndx != obj->efile.btf_maps_shndx) { 6894 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6895 i, name); 6896 return -LIBBPF_ERRNO__RELOC; 6897 } 6898 6899 pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n", 6900 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value, 6901 (size_t)rel.r_offset, sym.st_name, name); 6902 6903 for (j = 0; j < obj->nr_maps; j++) { 6904 map = &obj->maps[j]; 6905 if (map->sec_idx != obj->efile.btf_maps_shndx) 6906 continue; 6907 6908 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6909 if (vi->offset <= rel.r_offset && 6910 rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6911 break; 6912 } 6913 if (j == obj->nr_maps) { 6914 pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n", 6915 i, name, (size_t)rel.r_offset); 6916 return -EINVAL; 6917 } 6918 6919 if (!bpf_map_type__is_map_in_map(map->def.type)) 6920 return -EINVAL; 6921 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6922 map->def.key_size != sizeof(int)) { 6923 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6924 i, map->name, sizeof(int)); 6925 return -EINVAL; 6926 } 6927 6928 targ_map = bpf_object__find_map_by_name(obj, name); 6929 if (!targ_map) 6930 return -ESRCH; 6931 6932 var = btf__type_by_id(obj->btf, vi->type); 6933 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6934 if (btf_vlen(def) == 0) 6935 return -EINVAL; 6936 member = btf_members(def) + btf_vlen(def) - 1; 6937 mname = btf__name_by_offset(obj->btf, member->name_off); 6938 if (strcmp(mname, "values")) 6939 return -EINVAL; 6940 6941 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6942 if (rel.r_offset - vi->offset < moff) 6943 return -EINVAL; 6944 6945 moff = rel.r_offset - vi->offset - moff; 6946 /* here we use BPF pointer size, which is always 64 bit, as we 6947 * are parsing ELF that was built for BPF target 6948 */ 6949 if (moff % bpf_ptr_sz) 6950 return -EINVAL; 6951 moff /= bpf_ptr_sz; 6952 if (moff >= map->init_slots_sz) { 6953 new_sz = moff + 1; 6954 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6955 if (!tmp) 6956 return -ENOMEM; 6957 map->init_slots = tmp; 6958 memset(map->init_slots + map->init_slots_sz, 0, 6959 (new_sz - map->init_slots_sz) * host_ptr_sz); 6960 map->init_slots_sz = new_sz; 6961 } 6962 map->init_slots[moff] = targ_map; 6963 6964 pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n", 6965 i, map->name, moff, name); 6966 } 6967 6968 return 0; 6969 } 6970 6971 static int cmp_relocs(const void *_a, const void *_b) 6972 { 6973 const struct reloc_desc *a = _a; 6974 const struct reloc_desc *b = _b; 6975 6976 if (a->insn_idx != b->insn_idx) 6977 return a->insn_idx < b->insn_idx ? -1 : 1; 6978 6979 /* no two relocations should have the same insn_idx, but ... */ 6980 if (a->type != b->type) 6981 return a->type < b->type ? -1 : 1; 6982 6983 return 0; 6984 } 6985 6986 static int bpf_object__collect_relos(struct bpf_object *obj) 6987 { 6988 int i, err; 6989 6990 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 6991 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 6992 Elf_Data *data = obj->efile.reloc_sects[i].data; 6993 int idx = shdr->sh_info; 6994 6995 if (shdr->sh_type != SHT_REL) { 6996 pr_warn("internal error at %d\n", __LINE__); 6997 return -LIBBPF_ERRNO__INTERNAL; 6998 } 6999 7000 if (idx == obj->efile.st_ops_shndx) 7001 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7002 else if (idx == obj->efile.btf_maps_shndx) 7003 err = bpf_object__collect_map_relos(obj, shdr, data); 7004 else 7005 err = bpf_object__collect_prog_relos(obj, shdr, data); 7006 if (err) 7007 return err; 7008 } 7009 7010 for (i = 0; i < obj->nr_programs; i++) { 7011 struct bpf_program *p = &obj->programs[i]; 7012 7013 if (!p->nr_reloc) 7014 continue; 7015 7016 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 7017 } 7018 return 0; 7019 } 7020 7021 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7022 { 7023 if (BPF_CLASS(insn->code) == BPF_JMP && 7024 BPF_OP(insn->code) == BPF_CALL && 7025 BPF_SRC(insn->code) == BPF_K && 7026 insn->src_reg == 0 && 7027 insn->dst_reg == 0) { 7028 *func_id = insn->imm; 7029 return true; 7030 } 7031 return false; 7032 } 7033 7034 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7035 { 7036 struct bpf_insn *insn = prog->insns; 7037 enum bpf_func_id func_id; 7038 int i; 7039 7040 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7041 if (!insn_is_helper_call(insn, &func_id)) 7042 continue; 7043 7044 /* on kernels that don't yet support 7045 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7046 * to bpf_probe_read() which works well for old kernels 7047 */ 7048 switch (func_id) { 7049 case BPF_FUNC_probe_read_kernel: 7050 case BPF_FUNC_probe_read_user: 7051 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 7052 insn->imm = BPF_FUNC_probe_read; 7053 break; 7054 case BPF_FUNC_probe_read_kernel_str: 7055 case BPF_FUNC_probe_read_user_str: 7056 if (!kernel_supports(FEAT_PROBE_READ_KERN)) 7057 insn->imm = BPF_FUNC_probe_read_str; 7058 break; 7059 default: 7060 break; 7061 } 7062 } 7063 return 0; 7064 } 7065 7066 static int 7067 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 7068 char *license, __u32 kern_version, int *pfd) 7069 { 7070 struct bpf_prog_load_params load_attr = {}; 7071 char *cp, errmsg[STRERR_BUFSIZE]; 7072 size_t log_buf_size = 0; 7073 char *log_buf = NULL; 7074 int btf_fd, ret; 7075 7076 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7077 /* 7078 * The program type must be set. Most likely we couldn't find a proper 7079 * section definition at load time, and thus we didn't infer the type. 7080 */ 7081 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7082 prog->name, prog->sec_name); 7083 return -EINVAL; 7084 } 7085 7086 if (!insns || !insns_cnt) 7087 return -EINVAL; 7088 7089 load_attr.prog_type = prog->type; 7090 /* old kernels might not support specifying expected_attach_type */ 7091 if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def && 7092 prog->sec_def->is_exp_attach_type_optional) 7093 load_attr.expected_attach_type = 0; 7094 else 7095 load_attr.expected_attach_type = prog->expected_attach_type; 7096 if (kernel_supports(FEAT_PROG_NAME)) 7097 load_attr.name = prog->name; 7098 load_attr.insns = insns; 7099 load_attr.insn_cnt = insns_cnt; 7100 load_attr.license = license; 7101 load_attr.attach_btf_id = prog->attach_btf_id; 7102 if (prog->attach_prog_fd) 7103 load_attr.attach_prog_fd = prog->attach_prog_fd; 7104 else 7105 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7106 load_attr.attach_btf_id = prog->attach_btf_id; 7107 load_attr.kern_version = kern_version; 7108 load_attr.prog_ifindex = prog->prog_ifindex; 7109 7110 /* specify func_info/line_info only if kernel supports them */ 7111 btf_fd = bpf_object__btf_fd(prog->obj); 7112 if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) { 7113 load_attr.prog_btf_fd = btf_fd; 7114 load_attr.func_info = prog->func_info; 7115 load_attr.func_info_rec_size = prog->func_info_rec_size; 7116 load_attr.func_info_cnt = prog->func_info_cnt; 7117 load_attr.line_info = prog->line_info; 7118 load_attr.line_info_rec_size = prog->line_info_rec_size; 7119 load_attr.line_info_cnt = prog->line_info_cnt; 7120 } 7121 load_attr.log_level = prog->log_level; 7122 load_attr.prog_flags = prog->prog_flags; 7123 7124 retry_load: 7125 if (log_buf_size) { 7126 log_buf = malloc(log_buf_size); 7127 if (!log_buf) 7128 return -ENOMEM; 7129 7130 *log_buf = 0; 7131 } 7132 7133 load_attr.log_buf = log_buf; 7134 load_attr.log_buf_sz = log_buf_size; 7135 ret = libbpf__bpf_prog_load(&load_attr); 7136 7137 if (ret >= 0) { 7138 if (log_buf && load_attr.log_level) 7139 pr_debug("verifier log:\n%s", log_buf); 7140 7141 if (prog->obj->rodata_map_idx >= 0 && 7142 kernel_supports(FEAT_PROG_BIND_MAP)) { 7143 struct bpf_map *rodata_map = 7144 &prog->obj->maps[prog->obj->rodata_map_idx]; 7145 7146 if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) { 7147 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7148 pr_warn("prog '%s': failed to bind .rodata map: %s\n", 7149 prog->name, cp); 7150 /* Don't fail hard if can't bind rodata. */ 7151 } 7152 } 7153 7154 *pfd = ret; 7155 ret = 0; 7156 goto out; 7157 } 7158 7159 if (!log_buf || errno == ENOSPC) { 7160 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, 7161 log_buf_size << 1); 7162 7163 free(log_buf); 7164 goto retry_load; 7165 } 7166 ret = errno ? -errno : -LIBBPF_ERRNO__LOAD; 7167 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7168 pr_warn("load bpf program failed: %s\n", cp); 7169 pr_perm_msg(ret); 7170 7171 if (log_buf && log_buf[0] != '\0') { 7172 ret = -LIBBPF_ERRNO__VERIFY; 7173 pr_warn("-- BEGIN DUMP LOG ---\n"); 7174 pr_warn("\n%s\n", log_buf); 7175 pr_warn("-- END LOG --\n"); 7176 } else if (load_attr.insn_cnt >= BPF_MAXINSNS) { 7177 pr_warn("Program too large (%zu insns), at most %d insns\n", 7178 load_attr.insn_cnt, BPF_MAXINSNS); 7179 ret = -LIBBPF_ERRNO__PROG2BIG; 7180 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 7181 /* Wrong program type? */ 7182 int fd; 7183 7184 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 7185 load_attr.expected_attach_type = 0; 7186 load_attr.log_buf = NULL; 7187 load_attr.log_buf_sz = 0; 7188 fd = libbpf__bpf_prog_load(&load_attr); 7189 if (fd >= 0) { 7190 close(fd); 7191 ret = -LIBBPF_ERRNO__PROGTYPE; 7192 goto out; 7193 } 7194 } 7195 7196 out: 7197 free(log_buf); 7198 return ret; 7199 } 7200 7201 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id); 7202 7203 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 7204 { 7205 int err = 0, fd, i; 7206 7207 if (prog->obj->loaded) { 7208 pr_warn("prog '%s': can't load after object was loaded\n", prog->name); 7209 return -EINVAL; 7210 } 7211 7212 if ((prog->type == BPF_PROG_TYPE_TRACING || 7213 prog->type == BPF_PROG_TYPE_LSM || 7214 prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) { 7215 int btf_obj_fd = 0, btf_type_id = 0; 7216 7217 err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id); 7218 if (err) 7219 return err; 7220 7221 prog->attach_btf_obj_fd = btf_obj_fd; 7222 prog->attach_btf_id = btf_type_id; 7223 } 7224 7225 if (prog->instances.nr < 0 || !prog->instances.fds) { 7226 if (prog->preprocessor) { 7227 pr_warn("Internal error: can't load program '%s'\n", 7228 prog->name); 7229 return -LIBBPF_ERRNO__INTERNAL; 7230 } 7231 7232 prog->instances.fds = malloc(sizeof(int)); 7233 if (!prog->instances.fds) { 7234 pr_warn("Not enough memory for BPF fds\n"); 7235 return -ENOMEM; 7236 } 7237 prog->instances.nr = 1; 7238 prog->instances.fds[0] = -1; 7239 } 7240 7241 if (!prog->preprocessor) { 7242 if (prog->instances.nr != 1) { 7243 pr_warn("prog '%s': inconsistent nr(%d) != 1\n", 7244 prog->name, prog->instances.nr); 7245 } 7246 err = load_program(prog, prog->insns, prog->insns_cnt, 7247 license, kern_ver, &fd); 7248 if (!err) 7249 prog->instances.fds[0] = fd; 7250 goto out; 7251 } 7252 7253 for (i = 0; i < prog->instances.nr; i++) { 7254 struct bpf_prog_prep_result result; 7255 bpf_program_prep_t preprocessor = prog->preprocessor; 7256 7257 memset(&result, 0, sizeof(result)); 7258 err = preprocessor(prog, i, prog->insns, 7259 prog->insns_cnt, &result); 7260 if (err) { 7261 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 7262 i, prog->name); 7263 goto out; 7264 } 7265 7266 if (!result.new_insn_ptr || !result.new_insn_cnt) { 7267 pr_debug("Skip loading the %dth instance of program '%s'\n", 7268 i, prog->name); 7269 prog->instances.fds[i] = -1; 7270 if (result.pfd) 7271 *result.pfd = -1; 7272 continue; 7273 } 7274 7275 err = load_program(prog, result.new_insn_ptr, 7276 result.new_insn_cnt, license, kern_ver, &fd); 7277 if (err) { 7278 pr_warn("Loading the %dth instance of program '%s' failed\n", 7279 i, prog->name); 7280 goto out; 7281 } 7282 7283 if (result.pfd) 7284 *result.pfd = fd; 7285 prog->instances.fds[i] = fd; 7286 } 7287 out: 7288 if (err) 7289 pr_warn("failed to load program '%s'\n", prog->name); 7290 zfree(&prog->insns); 7291 prog->insns_cnt = 0; 7292 return err; 7293 } 7294 7295 static int 7296 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7297 { 7298 struct bpf_program *prog; 7299 size_t i; 7300 int err; 7301 7302 for (i = 0; i < obj->nr_programs; i++) { 7303 prog = &obj->programs[i]; 7304 err = bpf_object__sanitize_prog(obj, prog); 7305 if (err) 7306 return err; 7307 } 7308 7309 for (i = 0; i < obj->nr_programs; i++) { 7310 prog = &obj->programs[i]; 7311 if (prog_is_subprog(obj, prog)) 7312 continue; 7313 if (!prog->load) { 7314 pr_debug("prog '%s': skipped loading\n", prog->name); 7315 continue; 7316 } 7317 prog->log_level |= log_level; 7318 err = bpf_program__load(prog, obj->license, obj->kern_version); 7319 if (err) 7320 return err; 7321 } 7322 return 0; 7323 } 7324 7325 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7326 7327 static struct bpf_object * 7328 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7329 const struct bpf_object_open_opts *opts) 7330 { 7331 const char *obj_name, *kconfig; 7332 struct bpf_program *prog; 7333 struct bpf_object *obj; 7334 char tmp_name[64]; 7335 int err; 7336 7337 if (elf_version(EV_CURRENT) == EV_NONE) { 7338 pr_warn("failed to init libelf for %s\n", 7339 path ? : "(mem buf)"); 7340 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7341 } 7342 7343 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7344 return ERR_PTR(-EINVAL); 7345 7346 obj_name = OPTS_GET(opts, object_name, NULL); 7347 if (obj_buf) { 7348 if (!obj_name) { 7349 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7350 (unsigned long)obj_buf, 7351 (unsigned long)obj_buf_sz); 7352 obj_name = tmp_name; 7353 } 7354 path = obj_name; 7355 pr_debug("loading object '%s' from buffer\n", obj_name); 7356 } 7357 7358 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7359 if (IS_ERR(obj)) 7360 return obj; 7361 7362 kconfig = OPTS_GET(opts, kconfig, NULL); 7363 if (kconfig) { 7364 obj->kconfig = strdup(kconfig); 7365 if (!obj->kconfig) 7366 return ERR_PTR(-ENOMEM); 7367 } 7368 7369 err = bpf_object__elf_init(obj); 7370 err = err ? : bpf_object__check_endianness(obj); 7371 err = err ? : bpf_object__elf_collect(obj); 7372 err = err ? : bpf_object__collect_externs(obj); 7373 err = err ? : bpf_object__finalize_btf(obj); 7374 err = err ? : bpf_object__init_maps(obj, opts); 7375 err = err ? : bpf_object__collect_relos(obj); 7376 if (err) 7377 goto out; 7378 bpf_object__elf_finish(obj); 7379 7380 bpf_object__for_each_program(prog, obj) { 7381 prog->sec_def = find_sec_def(prog->sec_name); 7382 if (!prog->sec_def) { 7383 /* couldn't guess, but user might manually specify */ 7384 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7385 prog->name, prog->sec_name); 7386 continue; 7387 } 7388 7389 if (prog->sec_def->is_sleepable) 7390 prog->prog_flags |= BPF_F_SLEEPABLE; 7391 bpf_program__set_type(prog, prog->sec_def->prog_type); 7392 bpf_program__set_expected_attach_type(prog, 7393 prog->sec_def->expected_attach_type); 7394 7395 if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING || 7396 prog->sec_def->prog_type == BPF_PROG_TYPE_EXT) 7397 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 7398 } 7399 7400 return obj; 7401 out: 7402 bpf_object__close(obj); 7403 return ERR_PTR(err); 7404 } 7405 7406 static struct bpf_object * 7407 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 7408 { 7409 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7410 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 7411 ); 7412 7413 /* param validation */ 7414 if (!attr->file) 7415 return NULL; 7416 7417 pr_debug("loading %s\n", attr->file); 7418 return __bpf_object__open(attr->file, NULL, 0, &opts); 7419 } 7420 7421 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 7422 { 7423 return __bpf_object__open_xattr(attr, 0); 7424 } 7425 7426 struct bpf_object *bpf_object__open(const char *path) 7427 { 7428 struct bpf_object_open_attr attr = { 7429 .file = path, 7430 .prog_type = BPF_PROG_TYPE_UNSPEC, 7431 }; 7432 7433 return bpf_object__open_xattr(&attr); 7434 } 7435 7436 struct bpf_object * 7437 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7438 { 7439 if (!path) 7440 return ERR_PTR(-EINVAL); 7441 7442 pr_debug("loading %s\n", path); 7443 7444 return __bpf_object__open(path, NULL, 0, opts); 7445 } 7446 7447 struct bpf_object * 7448 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7449 const struct bpf_object_open_opts *opts) 7450 { 7451 if (!obj_buf || obj_buf_sz == 0) 7452 return ERR_PTR(-EINVAL); 7453 7454 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 7455 } 7456 7457 struct bpf_object * 7458 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 7459 const char *name) 7460 { 7461 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 7462 .object_name = name, 7463 /* wrong default, but backwards-compatible */ 7464 .relaxed_maps = true, 7465 ); 7466 7467 /* returning NULL is wrong, but backwards-compatible */ 7468 if (!obj_buf || obj_buf_sz == 0) 7469 return NULL; 7470 7471 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 7472 } 7473 7474 int bpf_object__unload(struct bpf_object *obj) 7475 { 7476 size_t i; 7477 7478 if (!obj) 7479 return -EINVAL; 7480 7481 for (i = 0; i < obj->nr_maps; i++) { 7482 zclose(obj->maps[i].fd); 7483 if (obj->maps[i].st_ops) 7484 zfree(&obj->maps[i].st_ops->kern_vdata); 7485 } 7486 7487 for (i = 0; i < obj->nr_programs; i++) 7488 bpf_program__unload(&obj->programs[i]); 7489 7490 return 0; 7491 } 7492 7493 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7494 { 7495 struct bpf_map *m; 7496 7497 bpf_object__for_each_map(m, obj) { 7498 if (!bpf_map__is_internal(m)) 7499 continue; 7500 if (!kernel_supports(FEAT_GLOBAL_DATA)) { 7501 pr_warn("kernel doesn't support global data\n"); 7502 return -ENOTSUP; 7503 } 7504 if (!kernel_supports(FEAT_ARRAY_MMAP)) 7505 m->def.map_flags ^= BPF_F_MMAPABLE; 7506 } 7507 7508 return 0; 7509 } 7510 7511 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7512 { 7513 char sym_type, sym_name[500]; 7514 unsigned long long sym_addr; 7515 const struct btf_type *t; 7516 struct extern_desc *ext; 7517 int ret, err = 0; 7518 FILE *f; 7519 7520 f = fopen("/proc/kallsyms", "r"); 7521 if (!f) { 7522 err = -errno; 7523 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7524 return err; 7525 } 7526 7527 while (true) { 7528 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7529 &sym_addr, &sym_type, sym_name); 7530 if (ret == EOF && feof(f)) 7531 break; 7532 if (ret != 3) { 7533 pr_warn("failed to read kallsyms entry: %d\n", ret); 7534 err = -EINVAL; 7535 goto out; 7536 } 7537 7538 ext = find_extern_by_name(obj, sym_name); 7539 if (!ext || ext->type != EXT_KSYM) 7540 continue; 7541 7542 t = btf__type_by_id(obj->btf, ext->btf_id); 7543 if (!btf_is_var(t)) 7544 continue; 7545 7546 if (ext->is_set && ext->ksym.addr != sym_addr) { 7547 pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n", 7548 sym_name, ext->ksym.addr, sym_addr); 7549 err = -EINVAL; 7550 goto out; 7551 } 7552 if (!ext->is_set) { 7553 ext->is_set = true; 7554 ext->ksym.addr = sym_addr; 7555 pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr); 7556 } 7557 } 7558 7559 out: 7560 fclose(f); 7561 return err; 7562 } 7563 7564 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7565 __u16 kind, struct btf **res_btf, 7566 int *res_btf_fd) 7567 { 7568 int i, id, btf_fd, err; 7569 struct btf *btf; 7570 7571 btf = obj->btf_vmlinux; 7572 btf_fd = 0; 7573 id = btf__find_by_name_kind(btf, ksym_name, kind); 7574 7575 if (id == -ENOENT) { 7576 err = load_module_btfs(obj); 7577 if (err) 7578 return err; 7579 7580 for (i = 0; i < obj->btf_module_cnt; i++) { 7581 btf = obj->btf_modules[i].btf; 7582 /* we assume module BTF FD is always >0 */ 7583 btf_fd = obj->btf_modules[i].fd; 7584 id = btf__find_by_name_kind(btf, ksym_name, kind); 7585 if (id != -ENOENT) 7586 break; 7587 } 7588 } 7589 if (id <= 0) { 7590 pr_warn("extern (%s ksym) '%s': failed to find BTF ID in kernel BTF(s).\n", 7591 __btf_kind_str(kind), ksym_name); 7592 return -ESRCH; 7593 } 7594 7595 *res_btf = btf; 7596 *res_btf_fd = btf_fd; 7597 return id; 7598 } 7599 7600 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7601 struct extern_desc *ext) 7602 { 7603 const struct btf_type *targ_var, *targ_type; 7604 __u32 targ_type_id, local_type_id; 7605 const char *targ_var_name; 7606 int id, btf_fd = 0, err; 7607 struct btf *btf = NULL; 7608 7609 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &btf_fd); 7610 if (id < 0) 7611 return id; 7612 7613 /* find local type_id */ 7614 local_type_id = ext->ksym.type_id; 7615 7616 /* find target type_id */ 7617 targ_var = btf__type_by_id(btf, id); 7618 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7619 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7620 7621 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7622 btf, targ_type_id); 7623 if (err <= 0) { 7624 const struct btf_type *local_type; 7625 const char *targ_name, *local_name; 7626 7627 local_type = btf__type_by_id(obj->btf, local_type_id); 7628 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7629 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7630 7631 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7632 ext->name, local_type_id, 7633 btf_kind_str(local_type), local_name, targ_type_id, 7634 btf_kind_str(targ_type), targ_name); 7635 return -EINVAL; 7636 } 7637 7638 ext->is_set = true; 7639 ext->ksym.kernel_btf_obj_fd = btf_fd; 7640 ext->ksym.kernel_btf_id = id; 7641 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7642 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7643 7644 return 0; 7645 } 7646 7647 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7648 struct extern_desc *ext) 7649 { 7650 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7651 const struct btf_type *kern_func; 7652 struct btf *kern_btf = NULL; 7653 int ret, kern_btf_fd = 0; 7654 7655 local_func_proto_id = ext->ksym.type_id; 7656 7657 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, 7658 &kern_btf, &kern_btf_fd); 7659 if (kfunc_id < 0) { 7660 pr_warn("extern (func ksym) '%s': not found in kernel BTF\n", 7661 ext->name); 7662 return kfunc_id; 7663 } 7664 7665 if (kern_btf != obj->btf_vmlinux) { 7666 pr_warn("extern (func ksym) '%s': function in kernel module is not supported\n", 7667 ext->name); 7668 return -ENOTSUP; 7669 } 7670 7671 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7672 kfunc_proto_id = kern_func->type; 7673 7674 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7675 kern_btf, kfunc_proto_id); 7676 if (ret <= 0) { 7677 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7678 ext->name, local_func_proto_id, kfunc_proto_id); 7679 return -EINVAL; 7680 } 7681 7682 ext->is_set = true; 7683 ext->ksym.kernel_btf_obj_fd = kern_btf_fd; 7684 ext->ksym.kernel_btf_id = kfunc_id; 7685 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7686 ext->name, kfunc_id); 7687 7688 return 0; 7689 } 7690 7691 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7692 { 7693 const struct btf_type *t; 7694 struct extern_desc *ext; 7695 int i, err; 7696 7697 for (i = 0; i < obj->nr_extern; i++) { 7698 ext = &obj->externs[i]; 7699 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7700 continue; 7701 7702 t = btf__type_by_id(obj->btf, ext->btf_id); 7703 if (btf_is_var(t)) 7704 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7705 else 7706 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7707 if (err) 7708 return err; 7709 } 7710 return 0; 7711 } 7712 7713 static int bpf_object__resolve_externs(struct bpf_object *obj, 7714 const char *extra_kconfig) 7715 { 7716 bool need_config = false, need_kallsyms = false; 7717 bool need_vmlinux_btf = false; 7718 struct extern_desc *ext; 7719 void *kcfg_data = NULL; 7720 int err, i; 7721 7722 if (obj->nr_extern == 0) 7723 return 0; 7724 7725 if (obj->kconfig_map_idx >= 0) 7726 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7727 7728 for (i = 0; i < obj->nr_extern; i++) { 7729 ext = &obj->externs[i]; 7730 7731 if (ext->type == EXT_KCFG && 7732 strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7733 void *ext_val = kcfg_data + ext->kcfg.data_off; 7734 __u32 kver = get_kernel_version(); 7735 7736 if (!kver) { 7737 pr_warn("failed to get kernel version\n"); 7738 return -EINVAL; 7739 } 7740 err = set_kcfg_value_num(ext, ext_val, kver); 7741 if (err) 7742 return err; 7743 pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver); 7744 } else if (ext->type == EXT_KCFG && 7745 strncmp(ext->name, "CONFIG_", 7) == 0) { 7746 need_config = true; 7747 } else if (ext->type == EXT_KSYM) { 7748 if (ext->ksym.type_id) 7749 need_vmlinux_btf = true; 7750 else 7751 need_kallsyms = true; 7752 } else { 7753 pr_warn("unrecognized extern '%s'\n", ext->name); 7754 return -EINVAL; 7755 } 7756 } 7757 if (need_config && extra_kconfig) { 7758 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7759 if (err) 7760 return -EINVAL; 7761 need_config = false; 7762 for (i = 0; i < obj->nr_extern; i++) { 7763 ext = &obj->externs[i]; 7764 if (ext->type == EXT_KCFG && !ext->is_set) { 7765 need_config = true; 7766 break; 7767 } 7768 } 7769 } 7770 if (need_config) { 7771 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7772 if (err) 7773 return -EINVAL; 7774 } 7775 if (need_kallsyms) { 7776 err = bpf_object__read_kallsyms_file(obj); 7777 if (err) 7778 return -EINVAL; 7779 } 7780 if (need_vmlinux_btf) { 7781 err = bpf_object__resolve_ksyms_btf_id(obj); 7782 if (err) 7783 return -EINVAL; 7784 } 7785 for (i = 0; i < obj->nr_extern; i++) { 7786 ext = &obj->externs[i]; 7787 7788 if (!ext->is_set && !ext->is_weak) { 7789 pr_warn("extern %s (strong) not resolved\n", ext->name); 7790 return -ESRCH; 7791 } else if (!ext->is_set) { 7792 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 7793 ext->name); 7794 } 7795 } 7796 7797 return 0; 7798 } 7799 7800 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 7801 { 7802 struct bpf_object *obj; 7803 int err, i; 7804 7805 if (!attr) 7806 return -EINVAL; 7807 obj = attr->obj; 7808 if (!obj) 7809 return -EINVAL; 7810 7811 if (obj->loaded) { 7812 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7813 return -EINVAL; 7814 } 7815 7816 err = bpf_object__probe_loading(obj); 7817 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7818 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7819 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7820 err = err ? : bpf_object__sanitize_maps(obj); 7821 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7822 err = err ? : bpf_object__create_maps(obj); 7823 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 7824 err = err ? : bpf_object__load_progs(obj, attr->log_level); 7825 7826 /* clean up module BTFs */ 7827 for (i = 0; i < obj->btf_module_cnt; i++) { 7828 close(obj->btf_modules[i].fd); 7829 btf__free(obj->btf_modules[i].btf); 7830 free(obj->btf_modules[i].name); 7831 } 7832 free(obj->btf_modules); 7833 7834 /* clean up vmlinux BTF */ 7835 btf__free(obj->btf_vmlinux); 7836 obj->btf_vmlinux = NULL; 7837 7838 obj->loaded = true; /* doesn't matter if successfully or not */ 7839 7840 if (err) 7841 goto out; 7842 7843 return 0; 7844 out: 7845 /* unpin any maps that were auto-pinned during load */ 7846 for (i = 0; i < obj->nr_maps; i++) 7847 if (obj->maps[i].pinned && !obj->maps[i].reused) 7848 bpf_map__unpin(&obj->maps[i], NULL); 7849 7850 bpf_object__unload(obj); 7851 pr_warn("failed to load object '%s'\n", obj->path); 7852 return err; 7853 } 7854 7855 int bpf_object__load(struct bpf_object *obj) 7856 { 7857 struct bpf_object_load_attr attr = { 7858 .obj = obj, 7859 }; 7860 7861 return bpf_object__load_xattr(&attr); 7862 } 7863 7864 static int make_parent_dir(const char *path) 7865 { 7866 char *cp, errmsg[STRERR_BUFSIZE]; 7867 char *dname, *dir; 7868 int err = 0; 7869 7870 dname = strdup(path); 7871 if (dname == NULL) 7872 return -ENOMEM; 7873 7874 dir = dirname(dname); 7875 if (mkdir(dir, 0700) && errno != EEXIST) 7876 err = -errno; 7877 7878 free(dname); 7879 if (err) { 7880 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7881 pr_warn("failed to mkdir %s: %s\n", path, cp); 7882 } 7883 return err; 7884 } 7885 7886 static int check_path(const char *path) 7887 { 7888 char *cp, errmsg[STRERR_BUFSIZE]; 7889 struct statfs st_fs; 7890 char *dname, *dir; 7891 int err = 0; 7892 7893 if (path == NULL) 7894 return -EINVAL; 7895 7896 dname = strdup(path); 7897 if (dname == NULL) 7898 return -ENOMEM; 7899 7900 dir = dirname(dname); 7901 if (statfs(dir, &st_fs)) { 7902 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7903 pr_warn("failed to statfs %s: %s\n", dir, cp); 7904 err = -errno; 7905 } 7906 free(dname); 7907 7908 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7909 pr_warn("specified path %s is not on BPF FS\n", path); 7910 err = -EINVAL; 7911 } 7912 7913 return err; 7914 } 7915 7916 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 7917 int instance) 7918 { 7919 char *cp, errmsg[STRERR_BUFSIZE]; 7920 int err; 7921 7922 err = make_parent_dir(path); 7923 if (err) 7924 return err; 7925 7926 err = check_path(path); 7927 if (err) 7928 return err; 7929 7930 if (prog == NULL) { 7931 pr_warn("invalid program pointer\n"); 7932 return -EINVAL; 7933 } 7934 7935 if (instance < 0 || instance >= prog->instances.nr) { 7936 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7937 instance, prog->name, prog->instances.nr); 7938 return -EINVAL; 7939 } 7940 7941 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 7942 err = -errno; 7943 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7944 pr_warn("failed to pin program: %s\n", cp); 7945 return err; 7946 } 7947 pr_debug("pinned program '%s'\n", path); 7948 7949 return 0; 7950 } 7951 7952 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 7953 int instance) 7954 { 7955 int err; 7956 7957 err = check_path(path); 7958 if (err) 7959 return err; 7960 7961 if (prog == NULL) { 7962 pr_warn("invalid program pointer\n"); 7963 return -EINVAL; 7964 } 7965 7966 if (instance < 0 || instance >= prog->instances.nr) { 7967 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 7968 instance, prog->name, prog->instances.nr); 7969 return -EINVAL; 7970 } 7971 7972 err = unlink(path); 7973 if (err != 0) 7974 return -errno; 7975 pr_debug("unpinned program '%s'\n", path); 7976 7977 return 0; 7978 } 7979 7980 int bpf_program__pin(struct bpf_program *prog, const char *path) 7981 { 7982 int i, err; 7983 7984 err = make_parent_dir(path); 7985 if (err) 7986 return err; 7987 7988 err = check_path(path); 7989 if (err) 7990 return err; 7991 7992 if (prog == NULL) { 7993 pr_warn("invalid program pointer\n"); 7994 return -EINVAL; 7995 } 7996 7997 if (prog->instances.nr <= 0) { 7998 pr_warn("no instances of prog %s to pin\n", prog->name); 7999 return -EINVAL; 8000 } 8001 8002 if (prog->instances.nr == 1) { 8003 /* don't create subdirs when pinning single instance */ 8004 return bpf_program__pin_instance(prog, path, 0); 8005 } 8006 8007 for (i = 0; i < prog->instances.nr; i++) { 8008 char buf[PATH_MAX]; 8009 int len; 8010 8011 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8012 if (len < 0) { 8013 err = -EINVAL; 8014 goto err_unpin; 8015 } else if (len >= PATH_MAX) { 8016 err = -ENAMETOOLONG; 8017 goto err_unpin; 8018 } 8019 8020 err = bpf_program__pin_instance(prog, buf, i); 8021 if (err) 8022 goto err_unpin; 8023 } 8024 8025 return 0; 8026 8027 err_unpin: 8028 for (i = i - 1; i >= 0; i--) { 8029 char buf[PATH_MAX]; 8030 int len; 8031 8032 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8033 if (len < 0) 8034 continue; 8035 else if (len >= PATH_MAX) 8036 continue; 8037 8038 bpf_program__unpin_instance(prog, buf, i); 8039 } 8040 8041 rmdir(path); 8042 8043 return err; 8044 } 8045 8046 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8047 { 8048 int i, err; 8049 8050 err = check_path(path); 8051 if (err) 8052 return err; 8053 8054 if (prog == NULL) { 8055 pr_warn("invalid program pointer\n"); 8056 return -EINVAL; 8057 } 8058 8059 if (prog->instances.nr <= 0) { 8060 pr_warn("no instances of prog %s to pin\n", prog->name); 8061 return -EINVAL; 8062 } 8063 8064 if (prog->instances.nr == 1) { 8065 /* don't create subdirs when pinning single instance */ 8066 return bpf_program__unpin_instance(prog, path, 0); 8067 } 8068 8069 for (i = 0; i < prog->instances.nr; i++) { 8070 char buf[PATH_MAX]; 8071 int len; 8072 8073 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 8074 if (len < 0) 8075 return -EINVAL; 8076 else if (len >= PATH_MAX) 8077 return -ENAMETOOLONG; 8078 8079 err = bpf_program__unpin_instance(prog, buf, i); 8080 if (err) 8081 return err; 8082 } 8083 8084 err = rmdir(path); 8085 if (err) 8086 return -errno; 8087 8088 return 0; 8089 } 8090 8091 int bpf_map__pin(struct bpf_map *map, const char *path) 8092 { 8093 char *cp, errmsg[STRERR_BUFSIZE]; 8094 int err; 8095 8096 if (map == NULL) { 8097 pr_warn("invalid map pointer\n"); 8098 return -EINVAL; 8099 } 8100 8101 if (map->pin_path) { 8102 if (path && strcmp(path, map->pin_path)) { 8103 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8104 bpf_map__name(map), map->pin_path, path); 8105 return -EINVAL; 8106 } else if (map->pinned) { 8107 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8108 bpf_map__name(map), map->pin_path); 8109 return 0; 8110 } 8111 } else { 8112 if (!path) { 8113 pr_warn("missing a path to pin map '%s' at\n", 8114 bpf_map__name(map)); 8115 return -EINVAL; 8116 } else if (map->pinned) { 8117 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8118 return -EEXIST; 8119 } 8120 8121 map->pin_path = strdup(path); 8122 if (!map->pin_path) { 8123 err = -errno; 8124 goto out_err; 8125 } 8126 } 8127 8128 err = make_parent_dir(map->pin_path); 8129 if (err) 8130 return err; 8131 8132 err = check_path(map->pin_path); 8133 if (err) 8134 return err; 8135 8136 if (bpf_obj_pin(map->fd, map->pin_path)) { 8137 err = -errno; 8138 goto out_err; 8139 } 8140 8141 map->pinned = true; 8142 pr_debug("pinned map '%s'\n", map->pin_path); 8143 8144 return 0; 8145 8146 out_err: 8147 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8148 pr_warn("failed to pin map: %s\n", cp); 8149 return err; 8150 } 8151 8152 int bpf_map__unpin(struct bpf_map *map, const char *path) 8153 { 8154 int err; 8155 8156 if (map == NULL) { 8157 pr_warn("invalid map pointer\n"); 8158 return -EINVAL; 8159 } 8160 8161 if (map->pin_path) { 8162 if (path && strcmp(path, map->pin_path)) { 8163 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8164 bpf_map__name(map), map->pin_path, path); 8165 return -EINVAL; 8166 } 8167 path = map->pin_path; 8168 } else if (!path) { 8169 pr_warn("no path to unpin map '%s' from\n", 8170 bpf_map__name(map)); 8171 return -EINVAL; 8172 } 8173 8174 err = check_path(path); 8175 if (err) 8176 return err; 8177 8178 err = unlink(path); 8179 if (err != 0) 8180 return -errno; 8181 8182 map->pinned = false; 8183 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8184 8185 return 0; 8186 } 8187 8188 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8189 { 8190 char *new = NULL; 8191 8192 if (path) { 8193 new = strdup(path); 8194 if (!new) 8195 return -errno; 8196 } 8197 8198 free(map->pin_path); 8199 map->pin_path = new; 8200 return 0; 8201 } 8202 8203 const char *bpf_map__get_pin_path(const struct bpf_map *map) 8204 { 8205 return map->pin_path; 8206 } 8207 8208 bool bpf_map__is_pinned(const struct bpf_map *map) 8209 { 8210 return map->pinned; 8211 } 8212 8213 static void sanitize_pin_path(char *s) 8214 { 8215 /* bpffs disallows periods in path names */ 8216 while (*s) { 8217 if (*s == '.') 8218 *s = '_'; 8219 s++; 8220 } 8221 } 8222 8223 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8224 { 8225 struct bpf_map *map; 8226 int err; 8227 8228 if (!obj) 8229 return -ENOENT; 8230 8231 if (!obj->loaded) { 8232 pr_warn("object not yet loaded; load it first\n"); 8233 return -ENOENT; 8234 } 8235 8236 bpf_object__for_each_map(map, obj) { 8237 char *pin_path = NULL; 8238 char buf[PATH_MAX]; 8239 8240 if (path) { 8241 int len; 8242 8243 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8244 bpf_map__name(map)); 8245 if (len < 0) { 8246 err = -EINVAL; 8247 goto err_unpin_maps; 8248 } else if (len >= PATH_MAX) { 8249 err = -ENAMETOOLONG; 8250 goto err_unpin_maps; 8251 } 8252 sanitize_pin_path(buf); 8253 pin_path = buf; 8254 } else if (!map->pin_path) { 8255 continue; 8256 } 8257 8258 err = bpf_map__pin(map, pin_path); 8259 if (err) 8260 goto err_unpin_maps; 8261 } 8262 8263 return 0; 8264 8265 err_unpin_maps: 8266 while ((map = bpf_map__prev(map, obj))) { 8267 if (!map->pin_path) 8268 continue; 8269 8270 bpf_map__unpin(map, NULL); 8271 } 8272 8273 return err; 8274 } 8275 8276 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8277 { 8278 struct bpf_map *map; 8279 int err; 8280 8281 if (!obj) 8282 return -ENOENT; 8283 8284 bpf_object__for_each_map(map, obj) { 8285 char *pin_path = NULL; 8286 char buf[PATH_MAX]; 8287 8288 if (path) { 8289 int len; 8290 8291 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8292 bpf_map__name(map)); 8293 if (len < 0) 8294 return -EINVAL; 8295 else if (len >= PATH_MAX) 8296 return -ENAMETOOLONG; 8297 sanitize_pin_path(buf); 8298 pin_path = buf; 8299 } else if (!map->pin_path) { 8300 continue; 8301 } 8302 8303 err = bpf_map__unpin(map, pin_path); 8304 if (err) 8305 return err; 8306 } 8307 8308 return 0; 8309 } 8310 8311 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8312 { 8313 struct bpf_program *prog; 8314 int err; 8315 8316 if (!obj) 8317 return -ENOENT; 8318 8319 if (!obj->loaded) { 8320 pr_warn("object not yet loaded; load it first\n"); 8321 return -ENOENT; 8322 } 8323 8324 bpf_object__for_each_program(prog, obj) { 8325 char buf[PATH_MAX]; 8326 int len; 8327 8328 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8329 prog->pin_name); 8330 if (len < 0) { 8331 err = -EINVAL; 8332 goto err_unpin_programs; 8333 } else if (len >= PATH_MAX) { 8334 err = -ENAMETOOLONG; 8335 goto err_unpin_programs; 8336 } 8337 8338 err = bpf_program__pin(prog, buf); 8339 if (err) 8340 goto err_unpin_programs; 8341 } 8342 8343 return 0; 8344 8345 err_unpin_programs: 8346 while ((prog = bpf_program__prev(prog, obj))) { 8347 char buf[PATH_MAX]; 8348 int len; 8349 8350 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8351 prog->pin_name); 8352 if (len < 0) 8353 continue; 8354 else if (len >= PATH_MAX) 8355 continue; 8356 8357 bpf_program__unpin(prog, buf); 8358 } 8359 8360 return err; 8361 } 8362 8363 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8364 { 8365 struct bpf_program *prog; 8366 int err; 8367 8368 if (!obj) 8369 return -ENOENT; 8370 8371 bpf_object__for_each_program(prog, obj) { 8372 char buf[PATH_MAX]; 8373 int len; 8374 8375 len = snprintf(buf, PATH_MAX, "%s/%s", path, 8376 prog->pin_name); 8377 if (len < 0) 8378 return -EINVAL; 8379 else if (len >= PATH_MAX) 8380 return -ENAMETOOLONG; 8381 8382 err = bpf_program__unpin(prog, buf); 8383 if (err) 8384 return err; 8385 } 8386 8387 return 0; 8388 } 8389 8390 int bpf_object__pin(struct bpf_object *obj, const char *path) 8391 { 8392 int err; 8393 8394 err = bpf_object__pin_maps(obj, path); 8395 if (err) 8396 return err; 8397 8398 err = bpf_object__pin_programs(obj, path); 8399 if (err) { 8400 bpf_object__unpin_maps(obj, path); 8401 return err; 8402 } 8403 8404 return 0; 8405 } 8406 8407 static void bpf_map__destroy(struct bpf_map *map) 8408 { 8409 if (map->clear_priv) 8410 map->clear_priv(map, map->priv); 8411 map->priv = NULL; 8412 map->clear_priv = NULL; 8413 8414 if (map->inner_map) { 8415 bpf_map__destroy(map->inner_map); 8416 zfree(&map->inner_map); 8417 } 8418 8419 zfree(&map->init_slots); 8420 map->init_slots_sz = 0; 8421 8422 if (map->mmaped) { 8423 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8424 map->mmaped = NULL; 8425 } 8426 8427 if (map->st_ops) { 8428 zfree(&map->st_ops->data); 8429 zfree(&map->st_ops->progs); 8430 zfree(&map->st_ops->kern_func_off); 8431 zfree(&map->st_ops); 8432 } 8433 8434 zfree(&map->name); 8435 zfree(&map->pin_path); 8436 8437 if (map->fd >= 0) 8438 zclose(map->fd); 8439 } 8440 8441 void bpf_object__close(struct bpf_object *obj) 8442 { 8443 size_t i; 8444 8445 if (IS_ERR_OR_NULL(obj)) 8446 return; 8447 8448 if (obj->clear_priv) 8449 obj->clear_priv(obj, obj->priv); 8450 8451 bpf_object__elf_finish(obj); 8452 bpf_object__unload(obj); 8453 btf__free(obj->btf); 8454 btf_ext__free(obj->btf_ext); 8455 8456 for (i = 0; i < obj->nr_maps; i++) 8457 bpf_map__destroy(&obj->maps[i]); 8458 8459 zfree(&obj->kconfig); 8460 zfree(&obj->externs); 8461 obj->nr_extern = 0; 8462 8463 zfree(&obj->maps); 8464 obj->nr_maps = 0; 8465 8466 if (obj->programs && obj->nr_programs) { 8467 for (i = 0; i < obj->nr_programs; i++) 8468 bpf_program__exit(&obj->programs[i]); 8469 } 8470 zfree(&obj->programs); 8471 8472 list_del(&obj->list); 8473 free(obj); 8474 } 8475 8476 struct bpf_object * 8477 bpf_object__next(struct bpf_object *prev) 8478 { 8479 struct bpf_object *next; 8480 8481 if (!prev) 8482 next = list_first_entry(&bpf_objects_list, 8483 struct bpf_object, 8484 list); 8485 else 8486 next = list_next_entry(prev, list); 8487 8488 /* Empty list is noticed here so don't need checking on entry. */ 8489 if (&next->list == &bpf_objects_list) 8490 return NULL; 8491 8492 return next; 8493 } 8494 8495 const char *bpf_object__name(const struct bpf_object *obj) 8496 { 8497 return obj ? obj->name : ERR_PTR(-EINVAL); 8498 } 8499 8500 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8501 { 8502 return obj ? obj->kern_version : 0; 8503 } 8504 8505 struct btf *bpf_object__btf(const struct bpf_object *obj) 8506 { 8507 return obj ? obj->btf : NULL; 8508 } 8509 8510 int bpf_object__btf_fd(const struct bpf_object *obj) 8511 { 8512 return obj->btf ? btf__fd(obj->btf) : -1; 8513 } 8514 8515 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8516 { 8517 if (obj->loaded) 8518 return -EINVAL; 8519 8520 obj->kern_version = kern_version; 8521 8522 return 0; 8523 } 8524 8525 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 8526 bpf_object_clear_priv_t clear_priv) 8527 { 8528 if (obj->priv && obj->clear_priv) 8529 obj->clear_priv(obj, obj->priv); 8530 8531 obj->priv = priv; 8532 obj->clear_priv = clear_priv; 8533 return 0; 8534 } 8535 8536 void *bpf_object__priv(const struct bpf_object *obj) 8537 { 8538 return obj ? obj->priv : ERR_PTR(-EINVAL); 8539 } 8540 8541 static struct bpf_program * 8542 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8543 bool forward) 8544 { 8545 size_t nr_programs = obj->nr_programs; 8546 ssize_t idx; 8547 8548 if (!nr_programs) 8549 return NULL; 8550 8551 if (!p) 8552 /* Iter from the beginning */ 8553 return forward ? &obj->programs[0] : 8554 &obj->programs[nr_programs - 1]; 8555 8556 if (p->obj != obj) { 8557 pr_warn("error: program handler doesn't match object\n"); 8558 return NULL; 8559 } 8560 8561 idx = (p - obj->programs) + (forward ? 1 : -1); 8562 if (idx >= obj->nr_programs || idx < 0) 8563 return NULL; 8564 return &obj->programs[idx]; 8565 } 8566 8567 struct bpf_program * 8568 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 8569 { 8570 struct bpf_program *prog = prev; 8571 8572 do { 8573 prog = __bpf_program__iter(prog, obj, true); 8574 } while (prog && prog_is_subprog(obj, prog)); 8575 8576 return prog; 8577 } 8578 8579 struct bpf_program * 8580 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 8581 { 8582 struct bpf_program *prog = next; 8583 8584 do { 8585 prog = __bpf_program__iter(prog, obj, false); 8586 } while (prog && prog_is_subprog(obj, prog)); 8587 8588 return prog; 8589 } 8590 8591 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 8592 bpf_program_clear_priv_t clear_priv) 8593 { 8594 if (prog->priv && prog->clear_priv) 8595 prog->clear_priv(prog, prog->priv); 8596 8597 prog->priv = priv; 8598 prog->clear_priv = clear_priv; 8599 return 0; 8600 } 8601 8602 void *bpf_program__priv(const struct bpf_program *prog) 8603 { 8604 return prog ? prog->priv : ERR_PTR(-EINVAL); 8605 } 8606 8607 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8608 { 8609 prog->prog_ifindex = ifindex; 8610 } 8611 8612 const char *bpf_program__name(const struct bpf_program *prog) 8613 { 8614 return prog->name; 8615 } 8616 8617 const char *bpf_program__section_name(const struct bpf_program *prog) 8618 { 8619 return prog->sec_name; 8620 } 8621 8622 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 8623 { 8624 const char *title; 8625 8626 title = prog->sec_name; 8627 if (needs_copy) { 8628 title = strdup(title); 8629 if (!title) { 8630 pr_warn("failed to strdup program title\n"); 8631 return ERR_PTR(-ENOMEM); 8632 } 8633 } 8634 8635 return title; 8636 } 8637 8638 bool bpf_program__autoload(const struct bpf_program *prog) 8639 { 8640 return prog->load; 8641 } 8642 8643 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8644 { 8645 if (prog->obj->loaded) 8646 return -EINVAL; 8647 8648 prog->load = autoload; 8649 return 0; 8650 } 8651 8652 int bpf_program__fd(const struct bpf_program *prog) 8653 { 8654 return bpf_program__nth_fd(prog, 0); 8655 } 8656 8657 size_t bpf_program__size(const struct bpf_program *prog) 8658 { 8659 return prog->insns_cnt * BPF_INSN_SZ; 8660 } 8661 8662 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 8663 bpf_program_prep_t prep) 8664 { 8665 int *instances_fds; 8666 8667 if (nr_instances <= 0 || !prep) 8668 return -EINVAL; 8669 8670 if (prog->instances.nr > 0 || prog->instances.fds) { 8671 pr_warn("Can't set pre-processor after loading\n"); 8672 return -EINVAL; 8673 } 8674 8675 instances_fds = malloc(sizeof(int) * nr_instances); 8676 if (!instances_fds) { 8677 pr_warn("alloc memory failed for fds\n"); 8678 return -ENOMEM; 8679 } 8680 8681 /* fill all fd with -1 */ 8682 memset(instances_fds, -1, sizeof(int) * nr_instances); 8683 8684 prog->instances.nr = nr_instances; 8685 prog->instances.fds = instances_fds; 8686 prog->preprocessor = prep; 8687 return 0; 8688 } 8689 8690 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 8691 { 8692 int fd; 8693 8694 if (!prog) 8695 return -EINVAL; 8696 8697 if (n >= prog->instances.nr || n < 0) { 8698 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 8699 n, prog->name, prog->instances.nr); 8700 return -EINVAL; 8701 } 8702 8703 fd = prog->instances.fds[n]; 8704 if (fd < 0) { 8705 pr_warn("%dth instance of program '%s' is invalid\n", 8706 n, prog->name); 8707 return -ENOENT; 8708 } 8709 8710 return fd; 8711 } 8712 8713 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog) 8714 { 8715 return prog->type; 8716 } 8717 8718 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8719 { 8720 prog->type = type; 8721 } 8722 8723 static bool bpf_program__is_type(const struct bpf_program *prog, 8724 enum bpf_prog_type type) 8725 { 8726 return prog ? (prog->type == type) : false; 8727 } 8728 8729 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 8730 int bpf_program__set_##NAME(struct bpf_program *prog) \ 8731 { \ 8732 if (!prog) \ 8733 return -EINVAL; \ 8734 bpf_program__set_type(prog, TYPE); \ 8735 return 0; \ 8736 } \ 8737 \ 8738 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 8739 { \ 8740 return bpf_program__is_type(prog, TYPE); \ 8741 } \ 8742 8743 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 8744 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM); 8745 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 8746 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 8747 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 8748 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 8749 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 8750 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 8751 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 8752 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 8753 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS); 8754 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT); 8755 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP); 8756 8757 enum bpf_attach_type 8758 bpf_program__get_expected_attach_type(const struct bpf_program *prog) 8759 { 8760 return prog->expected_attach_type; 8761 } 8762 8763 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 8764 enum bpf_attach_type type) 8765 { 8766 prog->expected_attach_type = type; 8767 } 8768 8769 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional, \ 8770 attachable, attach_btf) \ 8771 { \ 8772 .sec = string, \ 8773 .len = sizeof(string) - 1, \ 8774 .prog_type = ptype, \ 8775 .expected_attach_type = eatype, \ 8776 .is_exp_attach_type_optional = eatype_optional, \ 8777 .is_attachable = attachable, \ 8778 .is_attach_btf = attach_btf, \ 8779 } 8780 8781 /* Programs that can NOT be attached. */ 8782 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 8783 8784 /* Programs that can be attached. */ 8785 #define BPF_APROG_SEC(string, ptype, atype) \ 8786 BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0) 8787 8788 /* Programs that must specify expected attach type at load time. */ 8789 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 8790 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0) 8791 8792 /* Programs that use BTF to identify attach point */ 8793 #define BPF_PROG_BTF(string, ptype, eatype) \ 8794 BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1) 8795 8796 /* Programs that can be attached but attach type can't be identified by section 8797 * name. Kept for backward compatibility. 8798 */ 8799 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 8800 8801 #define SEC_DEF(sec_pfx, ptype, ...) { \ 8802 .sec = sec_pfx, \ 8803 .len = sizeof(sec_pfx) - 1, \ 8804 .prog_type = BPF_PROG_TYPE_##ptype, \ 8805 __VA_ARGS__ \ 8806 } 8807 8808 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 8809 struct bpf_program *prog); 8810 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 8811 struct bpf_program *prog); 8812 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 8813 struct bpf_program *prog); 8814 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 8815 struct bpf_program *prog); 8816 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 8817 struct bpf_program *prog); 8818 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 8819 struct bpf_program *prog); 8820 8821 static const struct bpf_sec_def section_defs[] = { 8822 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 8823 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 8824 SEC_DEF("kprobe/", KPROBE, 8825 .attach_fn = attach_kprobe), 8826 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 8827 SEC_DEF("kretprobe/", KPROBE, 8828 .attach_fn = attach_kprobe), 8829 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 8830 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 8831 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 8832 SEC_DEF("tracepoint/", TRACEPOINT, 8833 .attach_fn = attach_tp), 8834 SEC_DEF("tp/", TRACEPOINT, 8835 .attach_fn = attach_tp), 8836 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 8837 .attach_fn = attach_raw_tp), 8838 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 8839 .attach_fn = attach_raw_tp), 8840 SEC_DEF("tp_btf/", TRACING, 8841 .expected_attach_type = BPF_TRACE_RAW_TP, 8842 .is_attach_btf = true, 8843 .attach_fn = attach_trace), 8844 SEC_DEF("fentry/", TRACING, 8845 .expected_attach_type = BPF_TRACE_FENTRY, 8846 .is_attach_btf = true, 8847 .attach_fn = attach_trace), 8848 SEC_DEF("fmod_ret/", TRACING, 8849 .expected_attach_type = BPF_MODIFY_RETURN, 8850 .is_attach_btf = true, 8851 .attach_fn = attach_trace), 8852 SEC_DEF("fexit/", TRACING, 8853 .expected_attach_type = BPF_TRACE_FEXIT, 8854 .is_attach_btf = true, 8855 .attach_fn = attach_trace), 8856 SEC_DEF("fentry.s/", TRACING, 8857 .expected_attach_type = BPF_TRACE_FENTRY, 8858 .is_attach_btf = true, 8859 .is_sleepable = true, 8860 .attach_fn = attach_trace), 8861 SEC_DEF("fmod_ret.s/", TRACING, 8862 .expected_attach_type = BPF_MODIFY_RETURN, 8863 .is_attach_btf = true, 8864 .is_sleepable = true, 8865 .attach_fn = attach_trace), 8866 SEC_DEF("fexit.s/", TRACING, 8867 .expected_attach_type = BPF_TRACE_FEXIT, 8868 .is_attach_btf = true, 8869 .is_sleepable = true, 8870 .attach_fn = attach_trace), 8871 SEC_DEF("freplace/", EXT, 8872 .is_attach_btf = true, 8873 .attach_fn = attach_trace), 8874 SEC_DEF("lsm/", LSM, 8875 .is_attach_btf = true, 8876 .expected_attach_type = BPF_LSM_MAC, 8877 .attach_fn = attach_lsm), 8878 SEC_DEF("lsm.s/", LSM, 8879 .is_attach_btf = true, 8880 .is_sleepable = true, 8881 .expected_attach_type = BPF_LSM_MAC, 8882 .attach_fn = attach_lsm), 8883 SEC_DEF("iter/", TRACING, 8884 .expected_attach_type = BPF_TRACE_ITER, 8885 .is_attach_btf = true, 8886 .attach_fn = attach_iter), 8887 BPF_EAPROG_SEC("xdp_devmap/", BPF_PROG_TYPE_XDP, 8888 BPF_XDP_DEVMAP), 8889 BPF_EAPROG_SEC("xdp_cpumap/", BPF_PROG_TYPE_XDP, 8890 BPF_XDP_CPUMAP), 8891 BPF_APROG_SEC("xdp", BPF_PROG_TYPE_XDP, 8892 BPF_XDP), 8893 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 8894 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 8895 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 8896 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 8897 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 8898 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 8899 BPF_CGROUP_INET_INGRESS), 8900 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 8901 BPF_CGROUP_INET_EGRESS), 8902 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 8903 BPF_EAPROG_SEC("cgroup/sock_create", BPF_PROG_TYPE_CGROUP_SOCK, 8904 BPF_CGROUP_INET_SOCK_CREATE), 8905 BPF_EAPROG_SEC("cgroup/sock_release", BPF_PROG_TYPE_CGROUP_SOCK, 8906 BPF_CGROUP_INET_SOCK_RELEASE), 8907 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 8908 BPF_CGROUP_INET_SOCK_CREATE), 8909 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 8910 BPF_CGROUP_INET4_POST_BIND), 8911 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 8912 BPF_CGROUP_INET6_POST_BIND), 8913 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 8914 BPF_CGROUP_DEVICE), 8915 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 8916 BPF_CGROUP_SOCK_OPS), 8917 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 8918 BPF_SK_SKB_STREAM_PARSER), 8919 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 8920 BPF_SK_SKB_STREAM_VERDICT), 8921 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 8922 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 8923 BPF_SK_MSG_VERDICT), 8924 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 8925 BPF_LIRC_MODE2), 8926 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 8927 BPF_FLOW_DISSECTOR), 8928 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8929 BPF_CGROUP_INET4_BIND), 8930 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8931 BPF_CGROUP_INET6_BIND), 8932 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8933 BPF_CGROUP_INET4_CONNECT), 8934 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8935 BPF_CGROUP_INET6_CONNECT), 8936 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8937 BPF_CGROUP_UDP4_SENDMSG), 8938 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8939 BPF_CGROUP_UDP6_SENDMSG), 8940 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8941 BPF_CGROUP_UDP4_RECVMSG), 8942 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8943 BPF_CGROUP_UDP6_RECVMSG), 8944 BPF_EAPROG_SEC("cgroup/getpeername4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8945 BPF_CGROUP_INET4_GETPEERNAME), 8946 BPF_EAPROG_SEC("cgroup/getpeername6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8947 BPF_CGROUP_INET6_GETPEERNAME), 8948 BPF_EAPROG_SEC("cgroup/getsockname4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8949 BPF_CGROUP_INET4_GETSOCKNAME), 8950 BPF_EAPROG_SEC("cgroup/getsockname6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 8951 BPF_CGROUP_INET6_GETSOCKNAME), 8952 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 8953 BPF_CGROUP_SYSCTL), 8954 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8955 BPF_CGROUP_GETSOCKOPT), 8956 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 8957 BPF_CGROUP_SETSOCKOPT), 8958 BPF_PROG_SEC("struct_ops", BPF_PROG_TYPE_STRUCT_OPS), 8959 BPF_EAPROG_SEC("sk_lookup/", BPF_PROG_TYPE_SK_LOOKUP, 8960 BPF_SK_LOOKUP), 8961 }; 8962 8963 #undef BPF_PROG_SEC_IMPL 8964 #undef BPF_PROG_SEC 8965 #undef BPF_APROG_SEC 8966 #undef BPF_EAPROG_SEC 8967 #undef BPF_APROG_COMPAT 8968 #undef SEC_DEF 8969 8970 #define MAX_TYPE_NAME_SIZE 32 8971 8972 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8973 { 8974 int i, n = ARRAY_SIZE(section_defs); 8975 8976 for (i = 0; i < n; i++) { 8977 if (strncmp(sec_name, 8978 section_defs[i].sec, section_defs[i].len)) 8979 continue; 8980 return §ion_defs[i]; 8981 } 8982 return NULL; 8983 } 8984 8985 static char *libbpf_get_type_names(bool attach_type) 8986 { 8987 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8988 char *buf; 8989 8990 buf = malloc(len); 8991 if (!buf) 8992 return NULL; 8993 8994 buf[0] = '\0'; 8995 /* Forge string buf with all available names */ 8996 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8997 if (attach_type && !section_defs[i].is_attachable) 8998 continue; 8999 9000 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9001 free(buf); 9002 return NULL; 9003 } 9004 strcat(buf, " "); 9005 strcat(buf, section_defs[i].sec); 9006 } 9007 9008 return buf; 9009 } 9010 9011 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9012 enum bpf_attach_type *expected_attach_type) 9013 { 9014 const struct bpf_sec_def *sec_def; 9015 char *type_names; 9016 9017 if (!name) 9018 return -EINVAL; 9019 9020 sec_def = find_sec_def(name); 9021 if (sec_def) { 9022 *prog_type = sec_def->prog_type; 9023 *expected_attach_type = sec_def->expected_attach_type; 9024 return 0; 9025 } 9026 9027 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9028 type_names = libbpf_get_type_names(false); 9029 if (type_names != NULL) { 9030 pr_debug("supported section(type) names are:%s\n", type_names); 9031 free(type_names); 9032 } 9033 9034 return -ESRCH; 9035 } 9036 9037 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9038 size_t offset) 9039 { 9040 struct bpf_map *map; 9041 size_t i; 9042 9043 for (i = 0; i < obj->nr_maps; i++) { 9044 map = &obj->maps[i]; 9045 if (!bpf_map__is_struct_ops(map)) 9046 continue; 9047 if (map->sec_offset <= offset && 9048 offset - map->sec_offset < map->def.value_size) 9049 return map; 9050 } 9051 9052 return NULL; 9053 } 9054 9055 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9056 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9057 GElf_Shdr *shdr, Elf_Data *data) 9058 { 9059 const struct btf_member *member; 9060 struct bpf_struct_ops *st_ops; 9061 struct bpf_program *prog; 9062 unsigned int shdr_idx; 9063 const struct btf *btf; 9064 struct bpf_map *map; 9065 Elf_Data *symbols; 9066 unsigned int moff, insn_idx; 9067 const char *name; 9068 __u32 member_idx; 9069 GElf_Sym sym; 9070 GElf_Rel rel; 9071 int i, nrels; 9072 9073 symbols = obj->efile.symbols; 9074 btf = obj->btf; 9075 nrels = shdr->sh_size / shdr->sh_entsize; 9076 for (i = 0; i < nrels; i++) { 9077 if (!gelf_getrel(data, i, &rel)) { 9078 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9079 return -LIBBPF_ERRNO__FORMAT; 9080 } 9081 9082 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 9083 pr_warn("struct_ops reloc: symbol %zx not found\n", 9084 (size_t)GELF_R_SYM(rel.r_info)); 9085 return -LIBBPF_ERRNO__FORMAT; 9086 } 9087 9088 name = elf_sym_str(obj, sym.st_name) ?: "<?>"; 9089 map = find_struct_ops_map_by_offset(obj, rel.r_offset); 9090 if (!map) { 9091 pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n", 9092 (size_t)rel.r_offset); 9093 return -EINVAL; 9094 } 9095 9096 moff = rel.r_offset - map->sec_offset; 9097 shdr_idx = sym.st_shndx; 9098 st_ops = map->st_ops; 9099 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9100 map->name, 9101 (long long)(rel.r_info >> 32), 9102 (long long)sym.st_value, 9103 shdr_idx, (size_t)rel.r_offset, 9104 map->sec_offset, sym.st_name, name); 9105 9106 if (shdr_idx >= SHN_LORESERVE) { 9107 pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n", 9108 map->name, (size_t)rel.r_offset, shdr_idx); 9109 return -LIBBPF_ERRNO__RELOC; 9110 } 9111 if (sym.st_value % BPF_INSN_SZ) { 9112 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9113 map->name, (unsigned long long)sym.st_value); 9114 return -LIBBPF_ERRNO__FORMAT; 9115 } 9116 insn_idx = sym.st_value / BPF_INSN_SZ; 9117 9118 member = find_member_by_offset(st_ops->type, moff * 8); 9119 if (!member) { 9120 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9121 map->name, moff); 9122 return -EINVAL; 9123 } 9124 member_idx = member - btf_members(st_ops->type); 9125 name = btf__name_by_offset(btf, member->name_off); 9126 9127 if (!resolve_func_ptr(btf, member->type, NULL)) { 9128 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9129 map->name, name); 9130 return -EINVAL; 9131 } 9132 9133 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9134 if (!prog) { 9135 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9136 map->name, shdr_idx, name); 9137 return -EINVAL; 9138 } 9139 9140 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 9141 const struct bpf_sec_def *sec_def; 9142 9143 sec_def = find_sec_def(prog->sec_name); 9144 if (sec_def && 9145 sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) { 9146 /* for pr_warn */ 9147 prog->type = sec_def->prog_type; 9148 goto invalid_prog; 9149 } 9150 9151 prog->type = BPF_PROG_TYPE_STRUCT_OPS; 9152 prog->attach_btf_id = st_ops->type_id; 9153 prog->expected_attach_type = member_idx; 9154 } else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS || 9155 prog->attach_btf_id != st_ops->type_id || 9156 prog->expected_attach_type != member_idx) { 9157 goto invalid_prog; 9158 } 9159 st_ops->progs[member_idx] = prog; 9160 } 9161 9162 return 0; 9163 9164 invalid_prog: 9165 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9166 map->name, prog->name, prog->sec_name, prog->type, 9167 prog->attach_btf_id, prog->expected_attach_type, name); 9168 return -EINVAL; 9169 } 9170 9171 #define BTF_TRACE_PREFIX "btf_trace_" 9172 #define BTF_LSM_PREFIX "bpf_lsm_" 9173 #define BTF_ITER_PREFIX "bpf_iter_" 9174 #define BTF_MAX_NAME_SIZE 128 9175 9176 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9177 const char *name, __u32 kind) 9178 { 9179 char btf_type_name[BTF_MAX_NAME_SIZE]; 9180 int ret; 9181 9182 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9183 "%s%s", prefix, name); 9184 /* snprintf returns the number of characters written excluding the 9185 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9186 * indicates truncation. 9187 */ 9188 if (ret < 0 || ret >= sizeof(btf_type_name)) 9189 return -ENAMETOOLONG; 9190 return btf__find_by_name_kind(btf, btf_type_name, kind); 9191 } 9192 9193 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9194 enum bpf_attach_type attach_type) 9195 { 9196 int err; 9197 9198 if (attach_type == BPF_TRACE_RAW_TP) 9199 err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name, 9200 BTF_KIND_TYPEDEF); 9201 else if (attach_type == BPF_LSM_MAC) 9202 err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name, 9203 BTF_KIND_FUNC); 9204 else if (attach_type == BPF_TRACE_ITER) 9205 err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name, 9206 BTF_KIND_FUNC); 9207 else 9208 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9209 9210 return err; 9211 } 9212 9213 int libbpf_find_vmlinux_btf_id(const char *name, 9214 enum bpf_attach_type attach_type) 9215 { 9216 struct btf *btf; 9217 int err; 9218 9219 btf = libbpf_find_kernel_btf(); 9220 if (IS_ERR(btf)) { 9221 pr_warn("vmlinux BTF is not found\n"); 9222 return -EINVAL; 9223 } 9224 9225 err = find_attach_btf_id(btf, name, attach_type); 9226 if (err <= 0) 9227 pr_warn("%s is not found in vmlinux BTF\n", name); 9228 9229 btf__free(btf); 9230 return err; 9231 } 9232 9233 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9234 { 9235 struct bpf_prog_info_linear *info_linear; 9236 struct bpf_prog_info *info; 9237 struct btf *btf = NULL; 9238 int err = -EINVAL; 9239 9240 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 9241 if (IS_ERR_OR_NULL(info_linear)) { 9242 pr_warn("failed get_prog_info_linear for FD %d\n", 9243 attach_prog_fd); 9244 return -EINVAL; 9245 } 9246 info = &info_linear->info; 9247 if (!info->btf_id) { 9248 pr_warn("The target program doesn't have BTF\n"); 9249 goto out; 9250 } 9251 if (btf__get_from_id(info->btf_id, &btf)) { 9252 pr_warn("Failed to get BTF of the program\n"); 9253 goto out; 9254 } 9255 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9256 btf__free(btf); 9257 if (err <= 0) { 9258 pr_warn("%s is not found in prog's BTF\n", name); 9259 goto out; 9260 } 9261 out: 9262 free(info_linear); 9263 return err; 9264 } 9265 9266 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9267 enum bpf_attach_type attach_type, 9268 int *btf_obj_fd, int *btf_type_id) 9269 { 9270 int ret, i; 9271 9272 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9273 if (ret > 0) { 9274 *btf_obj_fd = 0; /* vmlinux BTF */ 9275 *btf_type_id = ret; 9276 return 0; 9277 } 9278 if (ret != -ENOENT) 9279 return ret; 9280 9281 ret = load_module_btfs(obj); 9282 if (ret) 9283 return ret; 9284 9285 for (i = 0; i < obj->btf_module_cnt; i++) { 9286 const struct module_btf *mod = &obj->btf_modules[i]; 9287 9288 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9289 if (ret > 0) { 9290 *btf_obj_fd = mod->fd; 9291 *btf_type_id = ret; 9292 return 0; 9293 } 9294 if (ret == -ENOENT) 9295 continue; 9296 9297 return ret; 9298 } 9299 9300 return -ESRCH; 9301 } 9302 9303 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id) 9304 { 9305 enum bpf_attach_type attach_type = prog->expected_attach_type; 9306 __u32 attach_prog_fd = prog->attach_prog_fd; 9307 const char *name = prog->sec_name, *attach_name; 9308 const struct bpf_sec_def *sec = NULL; 9309 int i, err; 9310 9311 if (!name) 9312 return -EINVAL; 9313 9314 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9315 if (!section_defs[i].is_attach_btf) 9316 continue; 9317 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9318 continue; 9319 9320 sec = §ion_defs[i]; 9321 break; 9322 } 9323 9324 if (!sec) { 9325 pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name); 9326 return -ESRCH; 9327 } 9328 attach_name = name + sec->len; 9329 9330 /* BPF program's BTF ID */ 9331 if (attach_prog_fd) { 9332 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9333 if (err < 0) { 9334 pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9335 attach_prog_fd, attach_name, err); 9336 return err; 9337 } 9338 *btf_obj_fd = 0; 9339 *btf_type_id = err; 9340 return 0; 9341 } 9342 9343 /* kernel/module BTF ID */ 9344 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9345 if (err) { 9346 pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err); 9347 return err; 9348 } 9349 return 0; 9350 } 9351 9352 int libbpf_attach_type_by_name(const char *name, 9353 enum bpf_attach_type *attach_type) 9354 { 9355 char *type_names; 9356 int i; 9357 9358 if (!name) 9359 return -EINVAL; 9360 9361 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9362 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 9363 continue; 9364 if (!section_defs[i].is_attachable) 9365 return -EINVAL; 9366 *attach_type = section_defs[i].expected_attach_type; 9367 return 0; 9368 } 9369 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9370 type_names = libbpf_get_type_names(true); 9371 if (type_names != NULL) { 9372 pr_debug("attachable section(type) names are:%s\n", type_names); 9373 free(type_names); 9374 } 9375 9376 return -EINVAL; 9377 } 9378 9379 int bpf_map__fd(const struct bpf_map *map) 9380 { 9381 return map ? map->fd : -EINVAL; 9382 } 9383 9384 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 9385 { 9386 return map ? &map->def : ERR_PTR(-EINVAL); 9387 } 9388 9389 const char *bpf_map__name(const struct bpf_map *map) 9390 { 9391 return map ? map->name : NULL; 9392 } 9393 9394 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9395 { 9396 return map->def.type; 9397 } 9398 9399 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9400 { 9401 if (map->fd >= 0) 9402 return -EBUSY; 9403 map->def.type = type; 9404 return 0; 9405 } 9406 9407 __u32 bpf_map__map_flags(const struct bpf_map *map) 9408 { 9409 return map->def.map_flags; 9410 } 9411 9412 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9413 { 9414 if (map->fd >= 0) 9415 return -EBUSY; 9416 map->def.map_flags = flags; 9417 return 0; 9418 } 9419 9420 __u32 bpf_map__numa_node(const struct bpf_map *map) 9421 { 9422 return map->numa_node; 9423 } 9424 9425 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9426 { 9427 if (map->fd >= 0) 9428 return -EBUSY; 9429 map->numa_node = numa_node; 9430 return 0; 9431 } 9432 9433 __u32 bpf_map__key_size(const struct bpf_map *map) 9434 { 9435 return map->def.key_size; 9436 } 9437 9438 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9439 { 9440 if (map->fd >= 0) 9441 return -EBUSY; 9442 map->def.key_size = size; 9443 return 0; 9444 } 9445 9446 __u32 bpf_map__value_size(const struct bpf_map *map) 9447 { 9448 return map->def.value_size; 9449 } 9450 9451 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9452 { 9453 if (map->fd >= 0) 9454 return -EBUSY; 9455 map->def.value_size = size; 9456 return 0; 9457 } 9458 9459 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9460 { 9461 return map ? map->btf_key_type_id : 0; 9462 } 9463 9464 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9465 { 9466 return map ? map->btf_value_type_id : 0; 9467 } 9468 9469 int bpf_map__set_priv(struct bpf_map *map, void *priv, 9470 bpf_map_clear_priv_t clear_priv) 9471 { 9472 if (!map) 9473 return -EINVAL; 9474 9475 if (map->priv) { 9476 if (map->clear_priv) 9477 map->clear_priv(map, map->priv); 9478 } 9479 9480 map->priv = priv; 9481 map->clear_priv = clear_priv; 9482 return 0; 9483 } 9484 9485 void *bpf_map__priv(const struct bpf_map *map) 9486 { 9487 return map ? map->priv : ERR_PTR(-EINVAL); 9488 } 9489 9490 int bpf_map__set_initial_value(struct bpf_map *map, 9491 const void *data, size_t size) 9492 { 9493 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9494 size != map->def.value_size || map->fd >= 0) 9495 return -EINVAL; 9496 9497 memcpy(map->mmaped, data, size); 9498 return 0; 9499 } 9500 9501 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 9502 { 9503 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 9504 } 9505 9506 bool bpf_map__is_internal(const struct bpf_map *map) 9507 { 9508 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9509 } 9510 9511 __u32 bpf_map__ifindex(const struct bpf_map *map) 9512 { 9513 return map->map_ifindex; 9514 } 9515 9516 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9517 { 9518 if (map->fd >= 0) 9519 return -EBUSY; 9520 map->map_ifindex = ifindex; 9521 return 0; 9522 } 9523 9524 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9525 { 9526 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9527 pr_warn("error: unsupported map type\n"); 9528 return -EINVAL; 9529 } 9530 if (map->inner_map_fd != -1) { 9531 pr_warn("error: inner_map_fd already specified\n"); 9532 return -EINVAL; 9533 } 9534 zfree(&map->inner_map); 9535 map->inner_map_fd = fd; 9536 return 0; 9537 } 9538 9539 static struct bpf_map * 9540 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9541 { 9542 ssize_t idx; 9543 struct bpf_map *s, *e; 9544 9545 if (!obj || !obj->maps) 9546 return NULL; 9547 9548 s = obj->maps; 9549 e = obj->maps + obj->nr_maps; 9550 9551 if ((m < s) || (m >= e)) { 9552 pr_warn("error in %s: map handler doesn't belong to object\n", 9553 __func__); 9554 return NULL; 9555 } 9556 9557 idx = (m - obj->maps) + i; 9558 if (idx >= obj->nr_maps || idx < 0) 9559 return NULL; 9560 return &obj->maps[idx]; 9561 } 9562 9563 struct bpf_map * 9564 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 9565 { 9566 if (prev == NULL) 9567 return obj->maps; 9568 9569 return __bpf_map__iter(prev, obj, 1); 9570 } 9571 9572 struct bpf_map * 9573 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 9574 { 9575 if (next == NULL) { 9576 if (!obj->nr_maps) 9577 return NULL; 9578 return obj->maps + obj->nr_maps - 1; 9579 } 9580 9581 return __bpf_map__iter(next, obj, -1); 9582 } 9583 9584 struct bpf_map * 9585 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9586 { 9587 struct bpf_map *pos; 9588 9589 bpf_object__for_each_map(pos, obj) { 9590 if (pos->name && !strcmp(pos->name, name)) 9591 return pos; 9592 } 9593 return NULL; 9594 } 9595 9596 int 9597 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9598 { 9599 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9600 } 9601 9602 struct bpf_map * 9603 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 9604 { 9605 return ERR_PTR(-ENOTSUP); 9606 } 9607 9608 long libbpf_get_error(const void *ptr) 9609 { 9610 return PTR_ERR_OR_ZERO(ptr); 9611 } 9612 9613 int bpf_prog_load(const char *file, enum bpf_prog_type type, 9614 struct bpf_object **pobj, int *prog_fd) 9615 { 9616 struct bpf_prog_load_attr attr; 9617 9618 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 9619 attr.file = file; 9620 attr.prog_type = type; 9621 attr.expected_attach_type = 0; 9622 9623 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 9624 } 9625 9626 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 9627 struct bpf_object **pobj, int *prog_fd) 9628 { 9629 struct bpf_object_open_attr open_attr = {}; 9630 struct bpf_program *prog, *first_prog = NULL; 9631 struct bpf_object *obj; 9632 struct bpf_map *map; 9633 int err; 9634 9635 if (!attr) 9636 return -EINVAL; 9637 if (!attr->file) 9638 return -EINVAL; 9639 9640 open_attr.file = attr->file; 9641 open_attr.prog_type = attr->prog_type; 9642 9643 obj = bpf_object__open_xattr(&open_attr); 9644 if (IS_ERR_OR_NULL(obj)) 9645 return -ENOENT; 9646 9647 bpf_object__for_each_program(prog, obj) { 9648 enum bpf_attach_type attach_type = attr->expected_attach_type; 9649 /* 9650 * to preserve backwards compatibility, bpf_prog_load treats 9651 * attr->prog_type, if specified, as an override to whatever 9652 * bpf_object__open guessed 9653 */ 9654 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 9655 bpf_program__set_type(prog, attr->prog_type); 9656 bpf_program__set_expected_attach_type(prog, 9657 attach_type); 9658 } 9659 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 9660 /* 9661 * we haven't guessed from section name and user 9662 * didn't provide a fallback type, too bad... 9663 */ 9664 bpf_object__close(obj); 9665 return -EINVAL; 9666 } 9667 9668 prog->prog_ifindex = attr->ifindex; 9669 prog->log_level = attr->log_level; 9670 prog->prog_flags |= attr->prog_flags; 9671 if (!first_prog) 9672 first_prog = prog; 9673 } 9674 9675 bpf_object__for_each_map(map, obj) { 9676 if (!bpf_map__is_offload_neutral(map)) 9677 map->map_ifindex = attr->ifindex; 9678 } 9679 9680 if (!first_prog) { 9681 pr_warn("object file doesn't contain bpf program\n"); 9682 bpf_object__close(obj); 9683 return -ENOENT; 9684 } 9685 9686 err = bpf_object__load(obj); 9687 if (err) { 9688 bpf_object__close(obj); 9689 return err; 9690 } 9691 9692 *pobj = obj; 9693 *prog_fd = bpf_program__fd(first_prog); 9694 return 0; 9695 } 9696 9697 struct bpf_link { 9698 int (*detach)(struct bpf_link *link); 9699 int (*destroy)(struct bpf_link *link); 9700 char *pin_path; /* NULL, if not pinned */ 9701 int fd; /* hook FD, -1 if not applicable */ 9702 bool disconnected; 9703 }; 9704 9705 /* Replace link's underlying BPF program with the new one */ 9706 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9707 { 9708 return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9709 } 9710 9711 /* Release "ownership" of underlying BPF resource (typically, BPF program 9712 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9713 * link, when destructed through bpf_link__destroy() call won't attempt to 9714 * detach/unregisted that BPF resource. This is useful in situations where, 9715 * say, attached BPF program has to outlive userspace program that attached it 9716 * in the system. Depending on type of BPF program, though, there might be 9717 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9718 * exit of userspace program doesn't trigger automatic detachment and clean up 9719 * inside the kernel. 9720 */ 9721 void bpf_link__disconnect(struct bpf_link *link) 9722 { 9723 link->disconnected = true; 9724 } 9725 9726 int bpf_link__destroy(struct bpf_link *link) 9727 { 9728 int err = 0; 9729 9730 if (IS_ERR_OR_NULL(link)) 9731 return 0; 9732 9733 if (!link->disconnected && link->detach) 9734 err = link->detach(link); 9735 if (link->destroy) 9736 link->destroy(link); 9737 if (link->pin_path) 9738 free(link->pin_path); 9739 free(link); 9740 9741 return err; 9742 } 9743 9744 int bpf_link__fd(const struct bpf_link *link) 9745 { 9746 return link->fd; 9747 } 9748 9749 const char *bpf_link__pin_path(const struct bpf_link *link) 9750 { 9751 return link->pin_path; 9752 } 9753 9754 static int bpf_link__detach_fd(struct bpf_link *link) 9755 { 9756 return close(link->fd); 9757 } 9758 9759 struct bpf_link *bpf_link__open(const char *path) 9760 { 9761 struct bpf_link *link; 9762 int fd; 9763 9764 fd = bpf_obj_get(path); 9765 if (fd < 0) { 9766 fd = -errno; 9767 pr_warn("failed to open link at %s: %d\n", path, fd); 9768 return ERR_PTR(fd); 9769 } 9770 9771 link = calloc(1, sizeof(*link)); 9772 if (!link) { 9773 close(fd); 9774 return ERR_PTR(-ENOMEM); 9775 } 9776 link->detach = &bpf_link__detach_fd; 9777 link->fd = fd; 9778 9779 link->pin_path = strdup(path); 9780 if (!link->pin_path) { 9781 bpf_link__destroy(link); 9782 return ERR_PTR(-ENOMEM); 9783 } 9784 9785 return link; 9786 } 9787 9788 int bpf_link__detach(struct bpf_link *link) 9789 { 9790 return bpf_link_detach(link->fd) ? -errno : 0; 9791 } 9792 9793 int bpf_link__pin(struct bpf_link *link, const char *path) 9794 { 9795 int err; 9796 9797 if (link->pin_path) 9798 return -EBUSY; 9799 err = make_parent_dir(path); 9800 if (err) 9801 return err; 9802 err = check_path(path); 9803 if (err) 9804 return err; 9805 9806 link->pin_path = strdup(path); 9807 if (!link->pin_path) 9808 return -ENOMEM; 9809 9810 if (bpf_obj_pin(link->fd, link->pin_path)) { 9811 err = -errno; 9812 zfree(&link->pin_path); 9813 return err; 9814 } 9815 9816 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9817 return 0; 9818 } 9819 9820 int bpf_link__unpin(struct bpf_link *link) 9821 { 9822 int err; 9823 9824 if (!link->pin_path) 9825 return -EINVAL; 9826 9827 err = unlink(link->pin_path); 9828 if (err != 0) 9829 return -errno; 9830 9831 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9832 zfree(&link->pin_path); 9833 return 0; 9834 } 9835 9836 static int bpf_link__detach_perf_event(struct bpf_link *link) 9837 { 9838 int err; 9839 9840 err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0); 9841 if (err) 9842 err = -errno; 9843 9844 close(link->fd); 9845 return err; 9846 } 9847 9848 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 9849 int pfd) 9850 { 9851 char errmsg[STRERR_BUFSIZE]; 9852 struct bpf_link *link; 9853 int prog_fd, err; 9854 9855 if (pfd < 0) { 9856 pr_warn("prog '%s': invalid perf event FD %d\n", 9857 prog->name, pfd); 9858 return ERR_PTR(-EINVAL); 9859 } 9860 prog_fd = bpf_program__fd(prog); 9861 if (prog_fd < 0) { 9862 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9863 prog->name); 9864 return ERR_PTR(-EINVAL); 9865 } 9866 9867 link = calloc(1, sizeof(*link)); 9868 if (!link) 9869 return ERR_PTR(-ENOMEM); 9870 link->detach = &bpf_link__detach_perf_event; 9871 link->fd = pfd; 9872 9873 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9874 err = -errno; 9875 free(link); 9876 pr_warn("prog '%s': failed to attach to pfd %d: %s\n", 9877 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9878 if (err == -EPROTO) 9879 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9880 prog->name, pfd); 9881 return ERR_PTR(err); 9882 } 9883 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9884 err = -errno; 9885 free(link); 9886 pr_warn("prog '%s': failed to enable pfd %d: %s\n", 9887 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9888 return ERR_PTR(err); 9889 } 9890 return link; 9891 } 9892 9893 /* 9894 * this function is expected to parse integer in the range of [0, 2^31-1] from 9895 * given file using scanf format string fmt. If actual parsed value is 9896 * negative, the result might be indistinguishable from error 9897 */ 9898 static int parse_uint_from_file(const char *file, const char *fmt) 9899 { 9900 char buf[STRERR_BUFSIZE]; 9901 int err, ret; 9902 FILE *f; 9903 9904 f = fopen(file, "r"); 9905 if (!f) { 9906 err = -errno; 9907 pr_debug("failed to open '%s': %s\n", file, 9908 libbpf_strerror_r(err, buf, sizeof(buf))); 9909 return err; 9910 } 9911 err = fscanf(f, fmt, &ret); 9912 if (err != 1) { 9913 err = err == EOF ? -EIO : -errno; 9914 pr_debug("failed to parse '%s': %s\n", file, 9915 libbpf_strerror_r(err, buf, sizeof(buf))); 9916 fclose(f); 9917 return err; 9918 } 9919 fclose(f); 9920 return ret; 9921 } 9922 9923 static int determine_kprobe_perf_type(void) 9924 { 9925 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9926 9927 return parse_uint_from_file(file, "%d\n"); 9928 } 9929 9930 static int determine_uprobe_perf_type(void) 9931 { 9932 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9933 9934 return parse_uint_from_file(file, "%d\n"); 9935 } 9936 9937 static int determine_kprobe_retprobe_bit(void) 9938 { 9939 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9940 9941 return parse_uint_from_file(file, "config:%d\n"); 9942 } 9943 9944 static int determine_uprobe_retprobe_bit(void) 9945 { 9946 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9947 9948 return parse_uint_from_file(file, "config:%d\n"); 9949 } 9950 9951 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9952 uint64_t offset, int pid) 9953 { 9954 struct perf_event_attr attr = {}; 9955 char errmsg[STRERR_BUFSIZE]; 9956 int type, pfd, err; 9957 9958 type = uprobe ? determine_uprobe_perf_type() 9959 : determine_kprobe_perf_type(); 9960 if (type < 0) { 9961 pr_warn("failed to determine %s perf type: %s\n", 9962 uprobe ? "uprobe" : "kprobe", 9963 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9964 return type; 9965 } 9966 if (retprobe) { 9967 int bit = uprobe ? determine_uprobe_retprobe_bit() 9968 : determine_kprobe_retprobe_bit(); 9969 9970 if (bit < 0) { 9971 pr_warn("failed to determine %s retprobe bit: %s\n", 9972 uprobe ? "uprobe" : "kprobe", 9973 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9974 return bit; 9975 } 9976 attr.config |= 1 << bit; 9977 } 9978 attr.size = sizeof(attr); 9979 attr.type = type; 9980 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9981 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9982 9983 /* pid filter is meaningful only for uprobes */ 9984 pfd = syscall(__NR_perf_event_open, &attr, 9985 pid < 0 ? -1 : pid /* pid */, 9986 pid == -1 ? 0 : -1 /* cpu */, 9987 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9988 if (pfd < 0) { 9989 err = -errno; 9990 pr_warn("%s perf_event_open() failed: %s\n", 9991 uprobe ? "uprobe" : "kprobe", 9992 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9993 return err; 9994 } 9995 return pfd; 9996 } 9997 9998 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 9999 bool retprobe, 10000 const char *func_name) 10001 { 10002 char errmsg[STRERR_BUFSIZE]; 10003 struct bpf_link *link; 10004 int pfd, err; 10005 10006 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 10007 0 /* offset */, -1 /* pid */); 10008 if (pfd < 0) { 10009 pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n", 10010 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 10011 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10012 return ERR_PTR(pfd); 10013 } 10014 link = bpf_program__attach_perf_event(prog, pfd); 10015 if (IS_ERR(link)) { 10016 close(pfd); 10017 err = PTR_ERR(link); 10018 pr_warn("prog '%s': failed to attach to %s '%s': %s\n", 10019 prog->name, retprobe ? "kretprobe" : "kprobe", func_name, 10020 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10021 return link; 10022 } 10023 return link; 10024 } 10025 10026 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 10027 struct bpf_program *prog) 10028 { 10029 const char *func_name; 10030 bool retprobe; 10031 10032 func_name = prog->sec_name + sec->len; 10033 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 10034 10035 return bpf_program__attach_kprobe(prog, retprobe, func_name); 10036 } 10037 10038 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 10039 bool retprobe, pid_t pid, 10040 const char *binary_path, 10041 size_t func_offset) 10042 { 10043 char errmsg[STRERR_BUFSIZE]; 10044 struct bpf_link *link; 10045 int pfd, err; 10046 10047 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 10048 binary_path, func_offset, pid); 10049 if (pfd < 0) { 10050 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10051 prog->name, retprobe ? "uretprobe" : "uprobe", 10052 binary_path, func_offset, 10053 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10054 return ERR_PTR(pfd); 10055 } 10056 link = bpf_program__attach_perf_event(prog, pfd); 10057 if (IS_ERR(link)) { 10058 close(pfd); 10059 err = PTR_ERR(link); 10060 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10061 prog->name, retprobe ? "uretprobe" : "uprobe", 10062 binary_path, func_offset, 10063 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10064 return link; 10065 } 10066 return link; 10067 } 10068 10069 static int determine_tracepoint_id(const char *tp_category, 10070 const char *tp_name) 10071 { 10072 char file[PATH_MAX]; 10073 int ret; 10074 10075 ret = snprintf(file, sizeof(file), 10076 "/sys/kernel/debug/tracing/events/%s/%s/id", 10077 tp_category, tp_name); 10078 if (ret < 0) 10079 return -errno; 10080 if (ret >= sizeof(file)) { 10081 pr_debug("tracepoint %s/%s path is too long\n", 10082 tp_category, tp_name); 10083 return -E2BIG; 10084 } 10085 return parse_uint_from_file(file, "%d\n"); 10086 } 10087 10088 static int perf_event_open_tracepoint(const char *tp_category, 10089 const char *tp_name) 10090 { 10091 struct perf_event_attr attr = {}; 10092 char errmsg[STRERR_BUFSIZE]; 10093 int tp_id, pfd, err; 10094 10095 tp_id = determine_tracepoint_id(tp_category, tp_name); 10096 if (tp_id < 0) { 10097 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 10098 tp_category, tp_name, 10099 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 10100 return tp_id; 10101 } 10102 10103 attr.type = PERF_TYPE_TRACEPOINT; 10104 attr.size = sizeof(attr); 10105 attr.config = tp_id; 10106 10107 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 10108 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10109 if (pfd < 0) { 10110 err = -errno; 10111 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 10112 tp_category, tp_name, 10113 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10114 return err; 10115 } 10116 return pfd; 10117 } 10118 10119 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 10120 const char *tp_category, 10121 const char *tp_name) 10122 { 10123 char errmsg[STRERR_BUFSIZE]; 10124 struct bpf_link *link; 10125 int pfd, err; 10126 10127 pfd = perf_event_open_tracepoint(tp_category, tp_name); 10128 if (pfd < 0) { 10129 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 10130 prog->name, tp_category, tp_name, 10131 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10132 return ERR_PTR(pfd); 10133 } 10134 link = bpf_program__attach_perf_event(prog, pfd); 10135 if (IS_ERR(link)) { 10136 close(pfd); 10137 err = PTR_ERR(link); 10138 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 10139 prog->name, tp_category, tp_name, 10140 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10141 return link; 10142 } 10143 return link; 10144 } 10145 10146 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 10147 struct bpf_program *prog) 10148 { 10149 char *sec_name, *tp_cat, *tp_name; 10150 struct bpf_link *link; 10151 10152 sec_name = strdup(prog->sec_name); 10153 if (!sec_name) 10154 return ERR_PTR(-ENOMEM); 10155 10156 /* extract "tp/<category>/<name>" */ 10157 tp_cat = sec_name + sec->len; 10158 tp_name = strchr(tp_cat, '/'); 10159 if (!tp_name) { 10160 link = ERR_PTR(-EINVAL); 10161 goto out; 10162 } 10163 *tp_name = '\0'; 10164 tp_name++; 10165 10166 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 10167 out: 10168 free(sec_name); 10169 return link; 10170 } 10171 10172 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 10173 const char *tp_name) 10174 { 10175 char errmsg[STRERR_BUFSIZE]; 10176 struct bpf_link *link; 10177 int prog_fd, pfd; 10178 10179 prog_fd = bpf_program__fd(prog); 10180 if (prog_fd < 0) { 10181 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10182 return ERR_PTR(-EINVAL); 10183 } 10184 10185 link = calloc(1, sizeof(*link)); 10186 if (!link) 10187 return ERR_PTR(-ENOMEM); 10188 link->detach = &bpf_link__detach_fd; 10189 10190 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 10191 if (pfd < 0) { 10192 pfd = -errno; 10193 free(link); 10194 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 10195 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10196 return ERR_PTR(pfd); 10197 } 10198 link->fd = pfd; 10199 return link; 10200 } 10201 10202 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 10203 struct bpf_program *prog) 10204 { 10205 const char *tp_name = prog->sec_name + sec->len; 10206 10207 return bpf_program__attach_raw_tracepoint(prog, tp_name); 10208 } 10209 10210 /* Common logic for all BPF program types that attach to a btf_id */ 10211 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog) 10212 { 10213 char errmsg[STRERR_BUFSIZE]; 10214 struct bpf_link *link; 10215 int prog_fd, pfd; 10216 10217 prog_fd = bpf_program__fd(prog); 10218 if (prog_fd < 0) { 10219 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10220 return ERR_PTR(-EINVAL); 10221 } 10222 10223 link = calloc(1, sizeof(*link)); 10224 if (!link) 10225 return ERR_PTR(-ENOMEM); 10226 link->detach = &bpf_link__detach_fd; 10227 10228 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 10229 if (pfd < 0) { 10230 pfd = -errno; 10231 free(link); 10232 pr_warn("prog '%s': failed to attach: %s\n", 10233 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 10234 return ERR_PTR(pfd); 10235 } 10236 link->fd = pfd; 10237 return (struct bpf_link *)link; 10238 } 10239 10240 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 10241 { 10242 return bpf_program__attach_btf_id(prog); 10243 } 10244 10245 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog) 10246 { 10247 return bpf_program__attach_btf_id(prog); 10248 } 10249 10250 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 10251 struct bpf_program *prog) 10252 { 10253 return bpf_program__attach_trace(prog); 10254 } 10255 10256 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec, 10257 struct bpf_program *prog) 10258 { 10259 return bpf_program__attach_lsm(prog); 10260 } 10261 10262 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec, 10263 struct bpf_program *prog) 10264 { 10265 return bpf_program__attach_iter(prog, NULL); 10266 } 10267 10268 static struct bpf_link * 10269 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id, 10270 const char *target_name) 10271 { 10272 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 10273 .target_btf_id = btf_id); 10274 enum bpf_attach_type attach_type; 10275 char errmsg[STRERR_BUFSIZE]; 10276 struct bpf_link *link; 10277 int prog_fd, link_fd; 10278 10279 prog_fd = bpf_program__fd(prog); 10280 if (prog_fd < 0) { 10281 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10282 return ERR_PTR(-EINVAL); 10283 } 10284 10285 link = calloc(1, sizeof(*link)); 10286 if (!link) 10287 return ERR_PTR(-ENOMEM); 10288 link->detach = &bpf_link__detach_fd; 10289 10290 attach_type = bpf_program__get_expected_attach_type(prog); 10291 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 10292 if (link_fd < 0) { 10293 link_fd = -errno; 10294 free(link); 10295 pr_warn("prog '%s': failed to attach to %s: %s\n", 10296 prog->name, target_name, 10297 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10298 return ERR_PTR(link_fd); 10299 } 10300 link->fd = link_fd; 10301 return link; 10302 } 10303 10304 struct bpf_link * 10305 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd) 10306 { 10307 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 10308 } 10309 10310 struct bpf_link * 10311 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd) 10312 { 10313 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 10314 } 10315 10316 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex) 10317 { 10318 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 10319 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 10320 } 10321 10322 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog, 10323 int target_fd, 10324 const char *attach_func_name) 10325 { 10326 int btf_id; 10327 10328 if (!!target_fd != !!attach_func_name) { 10329 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 10330 prog->name); 10331 return ERR_PTR(-EINVAL); 10332 } 10333 10334 if (prog->type != BPF_PROG_TYPE_EXT) { 10335 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 10336 prog->name); 10337 return ERR_PTR(-EINVAL); 10338 } 10339 10340 if (target_fd) { 10341 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 10342 if (btf_id < 0) 10343 return ERR_PTR(btf_id); 10344 10345 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 10346 } else { 10347 /* no target, so use raw_tracepoint_open for compatibility 10348 * with old kernels 10349 */ 10350 return bpf_program__attach_trace(prog); 10351 } 10352 } 10353 10354 struct bpf_link * 10355 bpf_program__attach_iter(struct bpf_program *prog, 10356 const struct bpf_iter_attach_opts *opts) 10357 { 10358 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 10359 char errmsg[STRERR_BUFSIZE]; 10360 struct bpf_link *link; 10361 int prog_fd, link_fd; 10362 __u32 target_fd = 0; 10363 10364 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 10365 return ERR_PTR(-EINVAL); 10366 10367 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 10368 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 10369 10370 prog_fd = bpf_program__fd(prog); 10371 if (prog_fd < 0) { 10372 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 10373 return ERR_PTR(-EINVAL); 10374 } 10375 10376 link = calloc(1, sizeof(*link)); 10377 if (!link) 10378 return ERR_PTR(-ENOMEM); 10379 link->detach = &bpf_link__detach_fd; 10380 10381 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 10382 &link_create_opts); 10383 if (link_fd < 0) { 10384 link_fd = -errno; 10385 free(link); 10386 pr_warn("prog '%s': failed to attach to iterator: %s\n", 10387 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 10388 return ERR_PTR(link_fd); 10389 } 10390 link->fd = link_fd; 10391 return link; 10392 } 10393 10394 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 10395 { 10396 const struct bpf_sec_def *sec_def; 10397 10398 sec_def = find_sec_def(prog->sec_name); 10399 if (!sec_def || !sec_def->attach_fn) 10400 return ERR_PTR(-ESRCH); 10401 10402 return sec_def->attach_fn(sec_def, prog); 10403 } 10404 10405 static int bpf_link__detach_struct_ops(struct bpf_link *link) 10406 { 10407 __u32 zero = 0; 10408 10409 if (bpf_map_delete_elem(link->fd, &zero)) 10410 return -errno; 10411 10412 return 0; 10413 } 10414 10415 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map) 10416 { 10417 struct bpf_struct_ops *st_ops; 10418 struct bpf_link *link; 10419 __u32 i, zero = 0; 10420 int err; 10421 10422 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 10423 return ERR_PTR(-EINVAL); 10424 10425 link = calloc(1, sizeof(*link)); 10426 if (!link) 10427 return ERR_PTR(-EINVAL); 10428 10429 st_ops = map->st_ops; 10430 for (i = 0; i < btf_vlen(st_ops->type); i++) { 10431 struct bpf_program *prog = st_ops->progs[i]; 10432 void *kern_data; 10433 int prog_fd; 10434 10435 if (!prog) 10436 continue; 10437 10438 prog_fd = bpf_program__fd(prog); 10439 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 10440 *(unsigned long *)kern_data = prog_fd; 10441 } 10442 10443 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 10444 if (err) { 10445 err = -errno; 10446 free(link); 10447 return ERR_PTR(err); 10448 } 10449 10450 link->detach = bpf_link__detach_struct_ops; 10451 link->fd = map->fd; 10452 10453 return link; 10454 } 10455 10456 enum bpf_perf_event_ret 10457 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 10458 void **copy_mem, size_t *copy_size, 10459 bpf_perf_event_print_t fn, void *private_data) 10460 { 10461 struct perf_event_mmap_page *header = mmap_mem; 10462 __u64 data_head = ring_buffer_read_head(header); 10463 __u64 data_tail = header->data_tail; 10464 void *base = ((__u8 *)header) + page_size; 10465 int ret = LIBBPF_PERF_EVENT_CONT; 10466 struct perf_event_header *ehdr; 10467 size_t ehdr_size; 10468 10469 while (data_head != data_tail) { 10470 ehdr = base + (data_tail & (mmap_size - 1)); 10471 ehdr_size = ehdr->size; 10472 10473 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 10474 void *copy_start = ehdr; 10475 size_t len_first = base + mmap_size - copy_start; 10476 size_t len_secnd = ehdr_size - len_first; 10477 10478 if (*copy_size < ehdr_size) { 10479 free(*copy_mem); 10480 *copy_mem = malloc(ehdr_size); 10481 if (!*copy_mem) { 10482 *copy_size = 0; 10483 ret = LIBBPF_PERF_EVENT_ERROR; 10484 break; 10485 } 10486 *copy_size = ehdr_size; 10487 } 10488 10489 memcpy(*copy_mem, copy_start, len_first); 10490 memcpy(*copy_mem + len_first, base, len_secnd); 10491 ehdr = *copy_mem; 10492 } 10493 10494 ret = fn(ehdr, private_data); 10495 data_tail += ehdr_size; 10496 if (ret != LIBBPF_PERF_EVENT_CONT) 10497 break; 10498 } 10499 10500 ring_buffer_write_tail(header, data_tail); 10501 return ret; 10502 } 10503 10504 struct perf_buffer; 10505 10506 struct perf_buffer_params { 10507 struct perf_event_attr *attr; 10508 /* if event_cb is specified, it takes precendence */ 10509 perf_buffer_event_fn event_cb; 10510 /* sample_cb and lost_cb are higher-level common-case callbacks */ 10511 perf_buffer_sample_fn sample_cb; 10512 perf_buffer_lost_fn lost_cb; 10513 void *ctx; 10514 int cpu_cnt; 10515 int *cpus; 10516 int *map_keys; 10517 }; 10518 10519 struct perf_cpu_buf { 10520 struct perf_buffer *pb; 10521 void *base; /* mmap()'ed memory */ 10522 void *buf; /* for reconstructing segmented data */ 10523 size_t buf_size; 10524 int fd; 10525 int cpu; 10526 int map_key; 10527 }; 10528 10529 struct perf_buffer { 10530 perf_buffer_event_fn event_cb; 10531 perf_buffer_sample_fn sample_cb; 10532 perf_buffer_lost_fn lost_cb; 10533 void *ctx; /* passed into callbacks */ 10534 10535 size_t page_size; 10536 size_t mmap_size; 10537 struct perf_cpu_buf **cpu_bufs; 10538 struct epoll_event *events; 10539 int cpu_cnt; /* number of allocated CPU buffers */ 10540 int epoll_fd; /* perf event FD */ 10541 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 10542 }; 10543 10544 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 10545 struct perf_cpu_buf *cpu_buf) 10546 { 10547 if (!cpu_buf) 10548 return; 10549 if (cpu_buf->base && 10550 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 10551 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 10552 if (cpu_buf->fd >= 0) { 10553 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 10554 close(cpu_buf->fd); 10555 } 10556 free(cpu_buf->buf); 10557 free(cpu_buf); 10558 } 10559 10560 void perf_buffer__free(struct perf_buffer *pb) 10561 { 10562 int i; 10563 10564 if (IS_ERR_OR_NULL(pb)) 10565 return; 10566 if (pb->cpu_bufs) { 10567 for (i = 0; i < pb->cpu_cnt; i++) { 10568 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10569 10570 if (!cpu_buf) 10571 continue; 10572 10573 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 10574 perf_buffer__free_cpu_buf(pb, cpu_buf); 10575 } 10576 free(pb->cpu_bufs); 10577 } 10578 if (pb->epoll_fd >= 0) 10579 close(pb->epoll_fd); 10580 free(pb->events); 10581 free(pb); 10582 } 10583 10584 static struct perf_cpu_buf * 10585 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 10586 int cpu, int map_key) 10587 { 10588 struct perf_cpu_buf *cpu_buf; 10589 char msg[STRERR_BUFSIZE]; 10590 int err; 10591 10592 cpu_buf = calloc(1, sizeof(*cpu_buf)); 10593 if (!cpu_buf) 10594 return ERR_PTR(-ENOMEM); 10595 10596 cpu_buf->pb = pb; 10597 cpu_buf->cpu = cpu; 10598 cpu_buf->map_key = map_key; 10599 10600 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 10601 -1, PERF_FLAG_FD_CLOEXEC); 10602 if (cpu_buf->fd < 0) { 10603 err = -errno; 10604 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 10605 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10606 goto error; 10607 } 10608 10609 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 10610 PROT_READ | PROT_WRITE, MAP_SHARED, 10611 cpu_buf->fd, 0); 10612 if (cpu_buf->base == MAP_FAILED) { 10613 cpu_buf->base = NULL; 10614 err = -errno; 10615 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 10616 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10617 goto error; 10618 } 10619 10620 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10621 err = -errno; 10622 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 10623 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 10624 goto error; 10625 } 10626 10627 return cpu_buf; 10628 10629 error: 10630 perf_buffer__free_cpu_buf(pb, cpu_buf); 10631 return (struct perf_cpu_buf *)ERR_PTR(err); 10632 } 10633 10634 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10635 struct perf_buffer_params *p); 10636 10637 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 10638 const struct perf_buffer_opts *opts) 10639 { 10640 struct perf_buffer_params p = {}; 10641 struct perf_event_attr attr = { 0, }; 10642 10643 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 10644 attr.type = PERF_TYPE_SOFTWARE; 10645 attr.sample_type = PERF_SAMPLE_RAW; 10646 attr.sample_period = 1; 10647 attr.wakeup_events = 1; 10648 10649 p.attr = &attr; 10650 p.sample_cb = opts ? opts->sample_cb : NULL; 10651 p.lost_cb = opts ? opts->lost_cb : NULL; 10652 p.ctx = opts ? opts->ctx : NULL; 10653 10654 return __perf_buffer__new(map_fd, page_cnt, &p); 10655 } 10656 10657 struct perf_buffer * 10658 perf_buffer__new_raw(int map_fd, size_t page_cnt, 10659 const struct perf_buffer_raw_opts *opts) 10660 { 10661 struct perf_buffer_params p = {}; 10662 10663 p.attr = opts->attr; 10664 p.event_cb = opts->event_cb; 10665 p.ctx = opts->ctx; 10666 p.cpu_cnt = opts->cpu_cnt; 10667 p.cpus = opts->cpus; 10668 p.map_keys = opts->map_keys; 10669 10670 return __perf_buffer__new(map_fd, page_cnt, &p); 10671 } 10672 10673 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 10674 struct perf_buffer_params *p) 10675 { 10676 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 10677 struct bpf_map_info map; 10678 char msg[STRERR_BUFSIZE]; 10679 struct perf_buffer *pb; 10680 bool *online = NULL; 10681 __u32 map_info_len; 10682 int err, i, j, n; 10683 10684 if (page_cnt & (page_cnt - 1)) { 10685 pr_warn("page count should be power of two, but is %zu\n", 10686 page_cnt); 10687 return ERR_PTR(-EINVAL); 10688 } 10689 10690 /* best-effort sanity checks */ 10691 memset(&map, 0, sizeof(map)); 10692 map_info_len = sizeof(map); 10693 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 10694 if (err) { 10695 err = -errno; 10696 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 10697 * -EBADFD, -EFAULT, or -E2BIG on real error 10698 */ 10699 if (err != -EINVAL) { 10700 pr_warn("failed to get map info for map FD %d: %s\n", 10701 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 10702 return ERR_PTR(err); 10703 } 10704 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 10705 map_fd); 10706 } else { 10707 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 10708 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 10709 map.name); 10710 return ERR_PTR(-EINVAL); 10711 } 10712 } 10713 10714 pb = calloc(1, sizeof(*pb)); 10715 if (!pb) 10716 return ERR_PTR(-ENOMEM); 10717 10718 pb->event_cb = p->event_cb; 10719 pb->sample_cb = p->sample_cb; 10720 pb->lost_cb = p->lost_cb; 10721 pb->ctx = p->ctx; 10722 10723 pb->page_size = getpagesize(); 10724 pb->mmap_size = pb->page_size * page_cnt; 10725 pb->map_fd = map_fd; 10726 10727 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 10728 if (pb->epoll_fd < 0) { 10729 err = -errno; 10730 pr_warn("failed to create epoll instance: %s\n", 10731 libbpf_strerror_r(err, msg, sizeof(msg))); 10732 goto error; 10733 } 10734 10735 if (p->cpu_cnt > 0) { 10736 pb->cpu_cnt = p->cpu_cnt; 10737 } else { 10738 pb->cpu_cnt = libbpf_num_possible_cpus(); 10739 if (pb->cpu_cnt < 0) { 10740 err = pb->cpu_cnt; 10741 goto error; 10742 } 10743 if (map.max_entries && map.max_entries < pb->cpu_cnt) 10744 pb->cpu_cnt = map.max_entries; 10745 } 10746 10747 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 10748 if (!pb->events) { 10749 err = -ENOMEM; 10750 pr_warn("failed to allocate events: out of memory\n"); 10751 goto error; 10752 } 10753 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 10754 if (!pb->cpu_bufs) { 10755 err = -ENOMEM; 10756 pr_warn("failed to allocate buffers: out of memory\n"); 10757 goto error; 10758 } 10759 10760 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 10761 if (err) { 10762 pr_warn("failed to get online CPU mask: %d\n", err); 10763 goto error; 10764 } 10765 10766 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 10767 struct perf_cpu_buf *cpu_buf; 10768 int cpu, map_key; 10769 10770 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 10771 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 10772 10773 /* in case user didn't explicitly requested particular CPUs to 10774 * be attached to, skip offline/not present CPUs 10775 */ 10776 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 10777 continue; 10778 10779 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 10780 if (IS_ERR(cpu_buf)) { 10781 err = PTR_ERR(cpu_buf); 10782 goto error; 10783 } 10784 10785 pb->cpu_bufs[j] = cpu_buf; 10786 10787 err = bpf_map_update_elem(pb->map_fd, &map_key, 10788 &cpu_buf->fd, 0); 10789 if (err) { 10790 err = -errno; 10791 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 10792 cpu, map_key, cpu_buf->fd, 10793 libbpf_strerror_r(err, msg, sizeof(msg))); 10794 goto error; 10795 } 10796 10797 pb->events[j].events = EPOLLIN; 10798 pb->events[j].data.ptr = cpu_buf; 10799 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 10800 &pb->events[j]) < 0) { 10801 err = -errno; 10802 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 10803 cpu, cpu_buf->fd, 10804 libbpf_strerror_r(err, msg, sizeof(msg))); 10805 goto error; 10806 } 10807 j++; 10808 } 10809 pb->cpu_cnt = j; 10810 free(online); 10811 10812 return pb; 10813 10814 error: 10815 free(online); 10816 if (pb) 10817 perf_buffer__free(pb); 10818 return ERR_PTR(err); 10819 } 10820 10821 struct perf_sample_raw { 10822 struct perf_event_header header; 10823 uint32_t size; 10824 char data[]; 10825 }; 10826 10827 struct perf_sample_lost { 10828 struct perf_event_header header; 10829 uint64_t id; 10830 uint64_t lost; 10831 uint64_t sample_id; 10832 }; 10833 10834 static enum bpf_perf_event_ret 10835 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 10836 { 10837 struct perf_cpu_buf *cpu_buf = ctx; 10838 struct perf_buffer *pb = cpu_buf->pb; 10839 void *data = e; 10840 10841 /* user wants full control over parsing perf event */ 10842 if (pb->event_cb) 10843 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 10844 10845 switch (e->type) { 10846 case PERF_RECORD_SAMPLE: { 10847 struct perf_sample_raw *s = data; 10848 10849 if (pb->sample_cb) 10850 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 10851 break; 10852 } 10853 case PERF_RECORD_LOST: { 10854 struct perf_sample_lost *s = data; 10855 10856 if (pb->lost_cb) 10857 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 10858 break; 10859 } 10860 default: 10861 pr_warn("unknown perf sample type %d\n", e->type); 10862 return LIBBPF_PERF_EVENT_ERROR; 10863 } 10864 return LIBBPF_PERF_EVENT_CONT; 10865 } 10866 10867 static int perf_buffer__process_records(struct perf_buffer *pb, 10868 struct perf_cpu_buf *cpu_buf) 10869 { 10870 enum bpf_perf_event_ret ret; 10871 10872 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 10873 pb->page_size, &cpu_buf->buf, 10874 &cpu_buf->buf_size, 10875 perf_buffer__process_record, cpu_buf); 10876 if (ret != LIBBPF_PERF_EVENT_CONT) 10877 return ret; 10878 return 0; 10879 } 10880 10881 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 10882 { 10883 return pb->epoll_fd; 10884 } 10885 10886 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 10887 { 10888 int i, cnt, err; 10889 10890 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 10891 for (i = 0; i < cnt; i++) { 10892 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 10893 10894 err = perf_buffer__process_records(pb, cpu_buf); 10895 if (err) { 10896 pr_warn("error while processing records: %d\n", err); 10897 return err; 10898 } 10899 } 10900 return cnt < 0 ? -errno : cnt; 10901 } 10902 10903 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 10904 * manager. 10905 */ 10906 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 10907 { 10908 return pb->cpu_cnt; 10909 } 10910 10911 /* 10912 * Return perf_event FD of a ring buffer in *buf_idx* slot of 10913 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 10914 * select()/poll()/epoll() Linux syscalls. 10915 */ 10916 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 10917 { 10918 struct perf_cpu_buf *cpu_buf; 10919 10920 if (buf_idx >= pb->cpu_cnt) 10921 return -EINVAL; 10922 10923 cpu_buf = pb->cpu_bufs[buf_idx]; 10924 if (!cpu_buf) 10925 return -ENOENT; 10926 10927 return cpu_buf->fd; 10928 } 10929 10930 /* 10931 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 10932 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 10933 * consume, do nothing and return success. 10934 * Returns: 10935 * - 0 on success; 10936 * - <0 on failure. 10937 */ 10938 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 10939 { 10940 struct perf_cpu_buf *cpu_buf; 10941 10942 if (buf_idx >= pb->cpu_cnt) 10943 return -EINVAL; 10944 10945 cpu_buf = pb->cpu_bufs[buf_idx]; 10946 if (!cpu_buf) 10947 return -ENOENT; 10948 10949 return perf_buffer__process_records(pb, cpu_buf); 10950 } 10951 10952 int perf_buffer__consume(struct perf_buffer *pb) 10953 { 10954 int i, err; 10955 10956 for (i = 0; i < pb->cpu_cnt; i++) { 10957 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 10958 10959 if (!cpu_buf) 10960 continue; 10961 10962 err = perf_buffer__process_records(pb, cpu_buf); 10963 if (err) { 10964 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 10965 return err; 10966 } 10967 } 10968 return 0; 10969 } 10970 10971 struct bpf_prog_info_array_desc { 10972 int array_offset; /* e.g. offset of jited_prog_insns */ 10973 int count_offset; /* e.g. offset of jited_prog_len */ 10974 int size_offset; /* > 0: offset of rec size, 10975 * < 0: fix size of -size_offset 10976 */ 10977 }; 10978 10979 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 10980 [BPF_PROG_INFO_JITED_INSNS] = { 10981 offsetof(struct bpf_prog_info, jited_prog_insns), 10982 offsetof(struct bpf_prog_info, jited_prog_len), 10983 -1, 10984 }, 10985 [BPF_PROG_INFO_XLATED_INSNS] = { 10986 offsetof(struct bpf_prog_info, xlated_prog_insns), 10987 offsetof(struct bpf_prog_info, xlated_prog_len), 10988 -1, 10989 }, 10990 [BPF_PROG_INFO_MAP_IDS] = { 10991 offsetof(struct bpf_prog_info, map_ids), 10992 offsetof(struct bpf_prog_info, nr_map_ids), 10993 -(int)sizeof(__u32), 10994 }, 10995 [BPF_PROG_INFO_JITED_KSYMS] = { 10996 offsetof(struct bpf_prog_info, jited_ksyms), 10997 offsetof(struct bpf_prog_info, nr_jited_ksyms), 10998 -(int)sizeof(__u64), 10999 }, 11000 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 11001 offsetof(struct bpf_prog_info, jited_func_lens), 11002 offsetof(struct bpf_prog_info, nr_jited_func_lens), 11003 -(int)sizeof(__u32), 11004 }, 11005 [BPF_PROG_INFO_FUNC_INFO] = { 11006 offsetof(struct bpf_prog_info, func_info), 11007 offsetof(struct bpf_prog_info, nr_func_info), 11008 offsetof(struct bpf_prog_info, func_info_rec_size), 11009 }, 11010 [BPF_PROG_INFO_LINE_INFO] = { 11011 offsetof(struct bpf_prog_info, line_info), 11012 offsetof(struct bpf_prog_info, nr_line_info), 11013 offsetof(struct bpf_prog_info, line_info_rec_size), 11014 }, 11015 [BPF_PROG_INFO_JITED_LINE_INFO] = { 11016 offsetof(struct bpf_prog_info, jited_line_info), 11017 offsetof(struct bpf_prog_info, nr_jited_line_info), 11018 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 11019 }, 11020 [BPF_PROG_INFO_PROG_TAGS] = { 11021 offsetof(struct bpf_prog_info, prog_tags), 11022 offsetof(struct bpf_prog_info, nr_prog_tags), 11023 -(int)sizeof(__u8) * BPF_TAG_SIZE, 11024 }, 11025 11026 }; 11027 11028 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 11029 int offset) 11030 { 11031 __u32 *array = (__u32 *)info; 11032 11033 if (offset >= 0) 11034 return array[offset / sizeof(__u32)]; 11035 return -(int)offset; 11036 } 11037 11038 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 11039 int offset) 11040 { 11041 __u64 *array = (__u64 *)info; 11042 11043 if (offset >= 0) 11044 return array[offset / sizeof(__u64)]; 11045 return -(int)offset; 11046 } 11047 11048 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 11049 __u32 val) 11050 { 11051 __u32 *array = (__u32 *)info; 11052 11053 if (offset >= 0) 11054 array[offset / sizeof(__u32)] = val; 11055 } 11056 11057 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 11058 __u64 val) 11059 { 11060 __u64 *array = (__u64 *)info; 11061 11062 if (offset >= 0) 11063 array[offset / sizeof(__u64)] = val; 11064 } 11065 11066 struct bpf_prog_info_linear * 11067 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 11068 { 11069 struct bpf_prog_info_linear *info_linear; 11070 struct bpf_prog_info info = {}; 11071 __u32 info_len = sizeof(info); 11072 __u32 data_len = 0; 11073 int i, err; 11074 void *ptr; 11075 11076 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 11077 return ERR_PTR(-EINVAL); 11078 11079 /* step 1: get array dimensions */ 11080 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 11081 if (err) { 11082 pr_debug("can't get prog info: %s", strerror(errno)); 11083 return ERR_PTR(-EFAULT); 11084 } 11085 11086 /* step 2: calculate total size of all arrays */ 11087 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11088 bool include_array = (arrays & (1UL << i)) > 0; 11089 struct bpf_prog_info_array_desc *desc; 11090 __u32 count, size; 11091 11092 desc = bpf_prog_info_array_desc + i; 11093 11094 /* kernel is too old to support this field */ 11095 if (info_len < desc->array_offset + sizeof(__u32) || 11096 info_len < desc->count_offset + sizeof(__u32) || 11097 (desc->size_offset > 0 && info_len < desc->size_offset)) 11098 include_array = false; 11099 11100 if (!include_array) { 11101 arrays &= ~(1UL << i); /* clear the bit */ 11102 continue; 11103 } 11104 11105 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11106 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11107 11108 data_len += count * size; 11109 } 11110 11111 /* step 3: allocate continuous memory */ 11112 data_len = roundup(data_len, sizeof(__u64)); 11113 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 11114 if (!info_linear) 11115 return ERR_PTR(-ENOMEM); 11116 11117 /* step 4: fill data to info_linear->info */ 11118 info_linear->arrays = arrays; 11119 memset(&info_linear->info, 0, sizeof(info)); 11120 ptr = info_linear->data; 11121 11122 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11123 struct bpf_prog_info_array_desc *desc; 11124 __u32 count, size; 11125 11126 if ((arrays & (1UL << i)) == 0) 11127 continue; 11128 11129 desc = bpf_prog_info_array_desc + i; 11130 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11131 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11132 bpf_prog_info_set_offset_u32(&info_linear->info, 11133 desc->count_offset, count); 11134 bpf_prog_info_set_offset_u32(&info_linear->info, 11135 desc->size_offset, size); 11136 bpf_prog_info_set_offset_u64(&info_linear->info, 11137 desc->array_offset, 11138 ptr_to_u64(ptr)); 11139 ptr += count * size; 11140 } 11141 11142 /* step 5: call syscall again to get required arrays */ 11143 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 11144 if (err) { 11145 pr_debug("can't get prog info: %s", strerror(errno)); 11146 free(info_linear); 11147 return ERR_PTR(-EFAULT); 11148 } 11149 11150 /* step 6: verify the data */ 11151 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11152 struct bpf_prog_info_array_desc *desc; 11153 __u32 v1, v2; 11154 11155 if ((arrays & (1UL << i)) == 0) 11156 continue; 11157 11158 desc = bpf_prog_info_array_desc + i; 11159 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 11160 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11161 desc->count_offset); 11162 if (v1 != v2) 11163 pr_warn("%s: mismatch in element count\n", __func__); 11164 11165 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 11166 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 11167 desc->size_offset); 11168 if (v1 != v2) 11169 pr_warn("%s: mismatch in rec size\n", __func__); 11170 } 11171 11172 /* step 7: update info_len and data_len */ 11173 info_linear->info_len = sizeof(struct bpf_prog_info); 11174 info_linear->data_len = data_len; 11175 11176 return info_linear; 11177 } 11178 11179 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 11180 { 11181 int i; 11182 11183 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11184 struct bpf_prog_info_array_desc *desc; 11185 __u64 addr, offs; 11186 11187 if ((info_linear->arrays & (1UL << i)) == 0) 11188 continue; 11189 11190 desc = bpf_prog_info_array_desc + i; 11191 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 11192 desc->array_offset); 11193 offs = addr - ptr_to_u64(info_linear->data); 11194 bpf_prog_info_set_offset_u64(&info_linear->info, 11195 desc->array_offset, offs); 11196 } 11197 } 11198 11199 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 11200 { 11201 int i; 11202 11203 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 11204 struct bpf_prog_info_array_desc *desc; 11205 __u64 addr, offs; 11206 11207 if ((info_linear->arrays & (1UL << i)) == 0) 11208 continue; 11209 11210 desc = bpf_prog_info_array_desc + i; 11211 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 11212 desc->array_offset); 11213 addr = offs + ptr_to_u64(info_linear->data); 11214 bpf_prog_info_set_offset_u64(&info_linear->info, 11215 desc->array_offset, addr); 11216 } 11217 } 11218 11219 int bpf_program__set_attach_target(struct bpf_program *prog, 11220 int attach_prog_fd, 11221 const char *attach_func_name) 11222 { 11223 int btf_obj_fd = 0, btf_id = 0, err; 11224 11225 if (!prog || attach_prog_fd < 0 || !attach_func_name) 11226 return -EINVAL; 11227 11228 if (prog->obj->loaded) 11229 return -EINVAL; 11230 11231 if (attach_prog_fd) { 11232 btf_id = libbpf_find_prog_btf_id(attach_func_name, 11233 attach_prog_fd); 11234 if (btf_id < 0) 11235 return btf_id; 11236 } else { 11237 /* load btf_vmlinux, if not yet */ 11238 err = bpf_object__load_vmlinux_btf(prog->obj, true); 11239 if (err) 11240 return err; 11241 err = find_kernel_btf_id(prog->obj, attach_func_name, 11242 prog->expected_attach_type, 11243 &btf_obj_fd, &btf_id); 11244 if (err) 11245 return err; 11246 } 11247 11248 prog->attach_btf_id = btf_id; 11249 prog->attach_btf_obj_fd = btf_obj_fd; 11250 prog->attach_prog_fd = attach_prog_fd; 11251 return 0; 11252 } 11253 11254 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 11255 { 11256 int err = 0, n, len, start, end = -1; 11257 bool *tmp; 11258 11259 *mask = NULL; 11260 *mask_sz = 0; 11261 11262 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 11263 while (*s) { 11264 if (*s == ',' || *s == '\n') { 11265 s++; 11266 continue; 11267 } 11268 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 11269 if (n <= 0 || n > 2) { 11270 pr_warn("Failed to get CPU range %s: %d\n", s, n); 11271 err = -EINVAL; 11272 goto cleanup; 11273 } else if (n == 1) { 11274 end = start; 11275 } 11276 if (start < 0 || start > end) { 11277 pr_warn("Invalid CPU range [%d,%d] in %s\n", 11278 start, end, s); 11279 err = -EINVAL; 11280 goto cleanup; 11281 } 11282 tmp = realloc(*mask, end + 1); 11283 if (!tmp) { 11284 err = -ENOMEM; 11285 goto cleanup; 11286 } 11287 *mask = tmp; 11288 memset(tmp + *mask_sz, 0, start - *mask_sz); 11289 memset(tmp + start, 1, end - start + 1); 11290 *mask_sz = end + 1; 11291 s += len; 11292 } 11293 if (!*mask_sz) { 11294 pr_warn("Empty CPU range\n"); 11295 return -EINVAL; 11296 } 11297 return 0; 11298 cleanup: 11299 free(*mask); 11300 *mask = NULL; 11301 return err; 11302 } 11303 11304 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 11305 { 11306 int fd, err = 0, len; 11307 char buf[128]; 11308 11309 fd = open(fcpu, O_RDONLY); 11310 if (fd < 0) { 11311 err = -errno; 11312 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 11313 return err; 11314 } 11315 len = read(fd, buf, sizeof(buf)); 11316 close(fd); 11317 if (len <= 0) { 11318 err = len ? -errno : -EINVAL; 11319 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 11320 return err; 11321 } 11322 if (len >= sizeof(buf)) { 11323 pr_warn("CPU mask is too big in file %s\n", fcpu); 11324 return -E2BIG; 11325 } 11326 buf[len] = '\0'; 11327 11328 return parse_cpu_mask_str(buf, mask, mask_sz); 11329 } 11330 11331 int libbpf_num_possible_cpus(void) 11332 { 11333 static const char *fcpu = "/sys/devices/system/cpu/possible"; 11334 static int cpus; 11335 int err, n, i, tmp_cpus; 11336 bool *mask; 11337 11338 tmp_cpus = READ_ONCE(cpus); 11339 if (tmp_cpus > 0) 11340 return tmp_cpus; 11341 11342 err = parse_cpu_mask_file(fcpu, &mask, &n); 11343 if (err) 11344 return err; 11345 11346 tmp_cpus = 0; 11347 for (i = 0; i < n; i++) { 11348 if (mask[i]) 11349 tmp_cpus++; 11350 } 11351 free(mask); 11352 11353 WRITE_ONCE(cpus, tmp_cpus); 11354 return tmp_cpus; 11355 } 11356 11357 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 11358 const struct bpf_object_open_opts *opts) 11359 { 11360 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 11361 .object_name = s->name, 11362 ); 11363 struct bpf_object *obj; 11364 int i; 11365 11366 /* Attempt to preserve opts->object_name, unless overriden by user 11367 * explicitly. Overwriting object name for skeletons is discouraged, 11368 * as it breaks global data maps, because they contain object name 11369 * prefix as their own map name prefix. When skeleton is generated, 11370 * bpftool is making an assumption that this name will stay the same. 11371 */ 11372 if (opts) { 11373 memcpy(&skel_opts, opts, sizeof(*opts)); 11374 if (!opts->object_name) 11375 skel_opts.object_name = s->name; 11376 } 11377 11378 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 11379 if (IS_ERR(obj)) { 11380 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 11381 s->name, PTR_ERR(obj)); 11382 return PTR_ERR(obj); 11383 } 11384 11385 *s->obj = obj; 11386 11387 for (i = 0; i < s->map_cnt; i++) { 11388 struct bpf_map **map = s->maps[i].map; 11389 const char *name = s->maps[i].name; 11390 void **mmaped = s->maps[i].mmaped; 11391 11392 *map = bpf_object__find_map_by_name(obj, name); 11393 if (!*map) { 11394 pr_warn("failed to find skeleton map '%s'\n", name); 11395 return -ESRCH; 11396 } 11397 11398 /* externs shouldn't be pre-setup from user code */ 11399 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 11400 *mmaped = (*map)->mmaped; 11401 } 11402 11403 for (i = 0; i < s->prog_cnt; i++) { 11404 struct bpf_program **prog = s->progs[i].prog; 11405 const char *name = s->progs[i].name; 11406 11407 *prog = bpf_object__find_program_by_name(obj, name); 11408 if (!*prog) { 11409 pr_warn("failed to find skeleton program '%s'\n", name); 11410 return -ESRCH; 11411 } 11412 } 11413 11414 return 0; 11415 } 11416 11417 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 11418 { 11419 int i, err; 11420 11421 err = bpf_object__load(*s->obj); 11422 if (err) { 11423 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 11424 return err; 11425 } 11426 11427 for (i = 0; i < s->map_cnt; i++) { 11428 struct bpf_map *map = *s->maps[i].map; 11429 size_t mmap_sz = bpf_map_mmap_sz(map); 11430 int prot, map_fd = bpf_map__fd(map); 11431 void **mmaped = s->maps[i].mmaped; 11432 11433 if (!mmaped) 11434 continue; 11435 11436 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 11437 *mmaped = NULL; 11438 continue; 11439 } 11440 11441 if (map->def.map_flags & BPF_F_RDONLY_PROG) 11442 prot = PROT_READ; 11443 else 11444 prot = PROT_READ | PROT_WRITE; 11445 11446 /* Remap anonymous mmap()-ed "map initialization image" as 11447 * a BPF map-backed mmap()-ed memory, but preserving the same 11448 * memory address. This will cause kernel to change process' 11449 * page table to point to a different piece of kernel memory, 11450 * but from userspace point of view memory address (and its 11451 * contents, being identical at this point) will stay the 11452 * same. This mapping will be released by bpf_object__close() 11453 * as per normal clean up procedure, so we don't need to worry 11454 * about it from skeleton's clean up perspective. 11455 */ 11456 *mmaped = mmap(map->mmaped, mmap_sz, prot, 11457 MAP_SHARED | MAP_FIXED, map_fd, 0); 11458 if (*mmaped == MAP_FAILED) { 11459 err = -errno; 11460 *mmaped = NULL; 11461 pr_warn("failed to re-mmap() map '%s': %d\n", 11462 bpf_map__name(map), err); 11463 return err; 11464 } 11465 } 11466 11467 return 0; 11468 } 11469 11470 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 11471 { 11472 int i; 11473 11474 for (i = 0; i < s->prog_cnt; i++) { 11475 struct bpf_program *prog = *s->progs[i].prog; 11476 struct bpf_link **link = s->progs[i].link; 11477 const struct bpf_sec_def *sec_def; 11478 11479 if (!prog->load) 11480 continue; 11481 11482 sec_def = find_sec_def(prog->sec_name); 11483 if (!sec_def || !sec_def->attach_fn) 11484 continue; 11485 11486 *link = sec_def->attach_fn(sec_def, prog); 11487 if (IS_ERR(*link)) { 11488 pr_warn("failed to auto-attach program '%s': %ld\n", 11489 bpf_program__name(prog), PTR_ERR(*link)); 11490 return PTR_ERR(*link); 11491 } 11492 } 11493 11494 return 0; 11495 } 11496 11497 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 11498 { 11499 int i; 11500 11501 for (i = 0; i < s->prog_cnt; i++) { 11502 struct bpf_link **link = s->progs[i].link; 11503 11504 bpf_link__destroy(*link); 11505 *link = NULL; 11506 } 11507 } 11508 11509 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 11510 { 11511 if (s->progs) 11512 bpf_object__detach_skeleton(s); 11513 if (s->obj) 11514 bpf_object__close(*s->obj); 11515 free(s->maps); 11516 free(s->progs); 11517 free(s); 11518 } 11519