xref: /openbmc/linux/tools/lib/bpf/libbpf.c (revision 06676aa1)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/list.h>
35 #include <linux/limits.h>
36 #include <linux/perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <linux/version.h>
39 #include <sys/epoll.h>
40 #include <sys/ioctl.h>
41 #include <sys/mman.h>
42 #include <sys/stat.h>
43 #include <sys/types.h>
44 #include <sys/vfs.h>
45 #include <sys/utsname.h>
46 #include <sys/resource.h>
47 #include <libelf.h>
48 #include <gelf.h>
49 #include <zlib.h>
50 
51 #include "libbpf.h"
52 #include "bpf.h"
53 #include "btf.h"
54 #include "str_error.h"
55 #include "libbpf_internal.h"
56 #include "hashmap.h"
57 
58 #ifndef BPF_FS_MAGIC
59 #define BPF_FS_MAGIC		0xcafe4a11
60 #endif
61 
62 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
63 
64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
65  * compilation if user enables corresponding warning. Disable it explicitly.
66  */
67 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
68 
69 #define __printf(a, b)	__attribute__((format(printf, a, b)))
70 
71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73 
74 static int __base_pr(enum libbpf_print_level level, const char *format,
75 		     va_list args)
76 {
77 	if (level == LIBBPF_DEBUG)
78 		return 0;
79 
80 	return vfprintf(stderr, format, args);
81 }
82 
83 static libbpf_print_fn_t __libbpf_pr = __base_pr;
84 
85 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
86 {
87 	libbpf_print_fn_t old_print_fn = __libbpf_pr;
88 
89 	__libbpf_pr = fn;
90 	return old_print_fn;
91 }
92 
93 __printf(2, 3)
94 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
95 {
96 	va_list args;
97 
98 	if (!__libbpf_pr)
99 		return;
100 
101 	va_start(args, format);
102 	__libbpf_pr(level, format, args);
103 	va_end(args);
104 }
105 
106 static void pr_perm_msg(int err)
107 {
108 	struct rlimit limit;
109 	char buf[100];
110 
111 	if (err != -EPERM || geteuid() != 0)
112 		return;
113 
114 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
115 	if (err)
116 		return;
117 
118 	if (limit.rlim_cur == RLIM_INFINITY)
119 		return;
120 
121 	if (limit.rlim_cur < 1024)
122 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
123 	else if (limit.rlim_cur < 1024*1024)
124 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
125 	else
126 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
127 
128 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
129 		buf);
130 }
131 
132 #define STRERR_BUFSIZE  128
133 
134 /* Copied from tools/perf/util/util.h */
135 #ifndef zfree
136 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
137 #endif
138 
139 #ifndef zclose
140 # define zclose(fd) ({			\
141 	int ___err = 0;			\
142 	if ((fd) >= 0)			\
143 		___err = close((fd));	\
144 	fd = -1;			\
145 	___err; })
146 #endif
147 
148 static inline __u64 ptr_to_u64(const void *ptr)
149 {
150 	return (__u64) (unsigned long) ptr;
151 }
152 
153 enum kern_feature_id {
154 	/* v4.14: kernel support for program & map names. */
155 	FEAT_PROG_NAME,
156 	/* v5.2: kernel support for global data sections. */
157 	FEAT_GLOBAL_DATA,
158 	/* BTF support */
159 	FEAT_BTF,
160 	/* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */
161 	FEAT_BTF_FUNC,
162 	/* BTF_KIND_VAR and BTF_KIND_DATASEC support */
163 	FEAT_BTF_DATASEC,
164 	/* BTF_FUNC_GLOBAL is supported */
165 	FEAT_BTF_GLOBAL_FUNC,
166 	/* BPF_F_MMAPABLE is supported for arrays */
167 	FEAT_ARRAY_MMAP,
168 	/* kernel support for expected_attach_type in BPF_PROG_LOAD */
169 	FEAT_EXP_ATTACH_TYPE,
170 	/* bpf_probe_read_{kernel,user}[_str] helpers */
171 	FEAT_PROBE_READ_KERN,
172 	/* BPF_PROG_BIND_MAP is supported */
173 	FEAT_PROG_BIND_MAP,
174 	/* Kernel support for module BTFs */
175 	FEAT_MODULE_BTF,
176 	/* BTF_KIND_FLOAT support */
177 	FEAT_BTF_FLOAT,
178 	__FEAT_CNT,
179 };
180 
181 static bool kernel_supports(enum kern_feature_id feat_id);
182 
183 enum reloc_type {
184 	RELO_LD64,
185 	RELO_CALL,
186 	RELO_DATA,
187 	RELO_EXTERN_VAR,
188 	RELO_EXTERN_FUNC,
189 	RELO_SUBPROG_ADDR,
190 };
191 
192 struct reloc_desc {
193 	enum reloc_type type;
194 	int insn_idx;
195 	int map_idx;
196 	int sym_off;
197 };
198 
199 struct bpf_sec_def;
200 
201 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec,
202 					struct bpf_program *prog);
203 
204 struct bpf_sec_def {
205 	const char *sec;
206 	size_t len;
207 	enum bpf_prog_type prog_type;
208 	enum bpf_attach_type expected_attach_type;
209 	bool is_exp_attach_type_optional;
210 	bool is_attachable;
211 	bool is_attach_btf;
212 	bool is_sleepable;
213 	attach_fn_t attach_fn;
214 };
215 
216 /*
217  * bpf_prog should be a better name but it has been used in
218  * linux/filter.h.
219  */
220 struct bpf_program {
221 	const struct bpf_sec_def *sec_def;
222 	char *sec_name;
223 	size_t sec_idx;
224 	/* this program's instruction offset (in number of instructions)
225 	 * within its containing ELF section
226 	 */
227 	size_t sec_insn_off;
228 	/* number of original instructions in ELF section belonging to this
229 	 * program, not taking into account subprogram instructions possible
230 	 * appended later during relocation
231 	 */
232 	size_t sec_insn_cnt;
233 	/* Offset (in number of instructions) of the start of instruction
234 	 * belonging to this BPF program  within its containing main BPF
235 	 * program. For the entry-point (main) BPF program, this is always
236 	 * zero. For a sub-program, this gets reset before each of main BPF
237 	 * programs are processed and relocated and is used to determined
238 	 * whether sub-program was already appended to the main program, and
239 	 * if yes, at which instruction offset.
240 	 */
241 	size_t sub_insn_off;
242 
243 	char *name;
244 	/* sec_name with / replaced by _; makes recursive pinning
245 	 * in bpf_object__pin_programs easier
246 	 */
247 	char *pin_name;
248 
249 	/* instructions that belong to BPF program; insns[0] is located at
250 	 * sec_insn_off instruction within its ELF section in ELF file, so
251 	 * when mapping ELF file instruction index to the local instruction,
252 	 * one needs to subtract sec_insn_off; and vice versa.
253 	 */
254 	struct bpf_insn *insns;
255 	/* actual number of instruction in this BPF program's image; for
256 	 * entry-point BPF programs this includes the size of main program
257 	 * itself plus all the used sub-programs, appended at the end
258 	 */
259 	size_t insns_cnt;
260 
261 	struct reloc_desc *reloc_desc;
262 	int nr_reloc;
263 	int log_level;
264 
265 	struct {
266 		int nr;
267 		int *fds;
268 	} instances;
269 	bpf_program_prep_t preprocessor;
270 
271 	struct bpf_object *obj;
272 	void *priv;
273 	bpf_program_clear_priv_t clear_priv;
274 
275 	bool load;
276 	bool mark_btf_static;
277 	enum bpf_prog_type type;
278 	enum bpf_attach_type expected_attach_type;
279 	int prog_ifindex;
280 	__u32 attach_btf_obj_fd;
281 	__u32 attach_btf_id;
282 	__u32 attach_prog_fd;
283 	void *func_info;
284 	__u32 func_info_rec_size;
285 	__u32 func_info_cnt;
286 
287 	void *line_info;
288 	__u32 line_info_rec_size;
289 	__u32 line_info_cnt;
290 	__u32 prog_flags;
291 };
292 
293 struct bpf_struct_ops {
294 	const char *tname;
295 	const struct btf_type *type;
296 	struct bpf_program **progs;
297 	__u32 *kern_func_off;
298 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
299 	void *data;
300 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
301 	 *      btf_vmlinux's format.
302 	 * struct bpf_struct_ops_tcp_congestion_ops {
303 	 *	[... some other kernel fields ...]
304 	 *	struct tcp_congestion_ops data;
305 	 * }
306 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
307 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
308 	 * from "data".
309 	 */
310 	void *kern_vdata;
311 	__u32 type_id;
312 };
313 
314 #define DATA_SEC ".data"
315 #define BSS_SEC ".bss"
316 #define RODATA_SEC ".rodata"
317 #define KCONFIG_SEC ".kconfig"
318 #define KSYMS_SEC ".ksyms"
319 #define STRUCT_OPS_SEC ".struct_ops"
320 
321 enum libbpf_map_type {
322 	LIBBPF_MAP_UNSPEC,
323 	LIBBPF_MAP_DATA,
324 	LIBBPF_MAP_BSS,
325 	LIBBPF_MAP_RODATA,
326 	LIBBPF_MAP_KCONFIG,
327 };
328 
329 static const char * const libbpf_type_to_btf_name[] = {
330 	[LIBBPF_MAP_DATA]	= DATA_SEC,
331 	[LIBBPF_MAP_BSS]	= BSS_SEC,
332 	[LIBBPF_MAP_RODATA]	= RODATA_SEC,
333 	[LIBBPF_MAP_KCONFIG]	= KCONFIG_SEC,
334 };
335 
336 struct bpf_map {
337 	char *name;
338 	int fd;
339 	int sec_idx;
340 	size_t sec_offset;
341 	int map_ifindex;
342 	int inner_map_fd;
343 	struct bpf_map_def def;
344 	__u32 numa_node;
345 	__u32 btf_var_idx;
346 	__u32 btf_key_type_id;
347 	__u32 btf_value_type_id;
348 	__u32 btf_vmlinux_value_type_id;
349 	void *priv;
350 	bpf_map_clear_priv_t clear_priv;
351 	enum libbpf_map_type libbpf_type;
352 	void *mmaped;
353 	struct bpf_struct_ops *st_ops;
354 	struct bpf_map *inner_map;
355 	void **init_slots;
356 	int init_slots_sz;
357 	char *pin_path;
358 	bool pinned;
359 	bool reused;
360 };
361 
362 enum extern_type {
363 	EXT_UNKNOWN,
364 	EXT_KCFG,
365 	EXT_KSYM,
366 };
367 
368 enum kcfg_type {
369 	KCFG_UNKNOWN,
370 	KCFG_CHAR,
371 	KCFG_BOOL,
372 	KCFG_INT,
373 	KCFG_TRISTATE,
374 	KCFG_CHAR_ARR,
375 };
376 
377 struct extern_desc {
378 	enum extern_type type;
379 	int sym_idx;
380 	int btf_id;
381 	int sec_btf_id;
382 	const char *name;
383 	bool is_set;
384 	bool is_weak;
385 	union {
386 		struct {
387 			enum kcfg_type type;
388 			int sz;
389 			int align;
390 			int data_off;
391 			bool is_signed;
392 		} kcfg;
393 		struct {
394 			unsigned long long addr;
395 
396 			/* target btf_id of the corresponding kernel var. */
397 			int kernel_btf_obj_fd;
398 			int kernel_btf_id;
399 
400 			/* local btf_id of the ksym extern's type. */
401 			__u32 type_id;
402 		} ksym;
403 	};
404 };
405 
406 static LIST_HEAD(bpf_objects_list);
407 
408 struct module_btf {
409 	struct btf *btf;
410 	char *name;
411 	__u32 id;
412 	int fd;
413 };
414 
415 struct bpf_object {
416 	char name[BPF_OBJ_NAME_LEN];
417 	char license[64];
418 	__u32 kern_version;
419 
420 	struct bpf_program *programs;
421 	size_t nr_programs;
422 	struct bpf_map *maps;
423 	size_t nr_maps;
424 	size_t maps_cap;
425 
426 	char *kconfig;
427 	struct extern_desc *externs;
428 	int nr_extern;
429 	int kconfig_map_idx;
430 	int rodata_map_idx;
431 
432 	bool loaded;
433 	bool has_subcalls;
434 
435 	/*
436 	 * Information when doing elf related work. Only valid if fd
437 	 * is valid.
438 	 */
439 	struct {
440 		int fd;
441 		const void *obj_buf;
442 		size_t obj_buf_sz;
443 		Elf *elf;
444 		GElf_Ehdr ehdr;
445 		Elf_Data *symbols;
446 		Elf_Data *data;
447 		Elf_Data *rodata;
448 		Elf_Data *bss;
449 		Elf_Data *st_ops_data;
450 		size_t shstrndx; /* section index for section name strings */
451 		size_t strtabidx;
452 		struct {
453 			GElf_Shdr shdr;
454 			Elf_Data *data;
455 		} *reloc_sects;
456 		int nr_reloc_sects;
457 		int maps_shndx;
458 		int btf_maps_shndx;
459 		__u32 btf_maps_sec_btf_id;
460 		int text_shndx;
461 		int symbols_shndx;
462 		int data_shndx;
463 		int rodata_shndx;
464 		int bss_shndx;
465 		int st_ops_shndx;
466 	} efile;
467 	/*
468 	 * All loaded bpf_object is linked in a list, which is
469 	 * hidden to caller. bpf_objects__<func> handlers deal with
470 	 * all objects.
471 	 */
472 	struct list_head list;
473 
474 	struct btf *btf;
475 	struct btf_ext *btf_ext;
476 
477 	/* Parse and load BTF vmlinux if any of the programs in the object need
478 	 * it at load time.
479 	 */
480 	struct btf *btf_vmlinux;
481 	/* vmlinux BTF override for CO-RE relocations */
482 	struct btf *btf_vmlinux_override;
483 	/* Lazily initialized kernel module BTFs */
484 	struct module_btf *btf_modules;
485 	bool btf_modules_loaded;
486 	size_t btf_module_cnt;
487 	size_t btf_module_cap;
488 
489 	void *priv;
490 	bpf_object_clear_priv_t clear_priv;
491 
492 	char path[];
493 };
494 #define obj_elf_valid(o)	((o)->efile.elf)
495 
496 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
497 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
498 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
499 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
500 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr);
501 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
502 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
503 
504 void bpf_program__unload(struct bpf_program *prog)
505 {
506 	int i;
507 
508 	if (!prog)
509 		return;
510 
511 	/*
512 	 * If the object is opened but the program was never loaded,
513 	 * it is possible that prog->instances.nr == -1.
514 	 */
515 	if (prog->instances.nr > 0) {
516 		for (i = 0; i < prog->instances.nr; i++)
517 			zclose(prog->instances.fds[i]);
518 	} else if (prog->instances.nr != -1) {
519 		pr_warn("Internal error: instances.nr is %d\n",
520 			prog->instances.nr);
521 	}
522 
523 	prog->instances.nr = -1;
524 	zfree(&prog->instances.fds);
525 
526 	zfree(&prog->func_info);
527 	zfree(&prog->line_info);
528 }
529 
530 static void bpf_program__exit(struct bpf_program *prog)
531 {
532 	if (!prog)
533 		return;
534 
535 	if (prog->clear_priv)
536 		prog->clear_priv(prog, prog->priv);
537 
538 	prog->priv = NULL;
539 	prog->clear_priv = NULL;
540 
541 	bpf_program__unload(prog);
542 	zfree(&prog->name);
543 	zfree(&prog->sec_name);
544 	zfree(&prog->pin_name);
545 	zfree(&prog->insns);
546 	zfree(&prog->reloc_desc);
547 
548 	prog->nr_reloc = 0;
549 	prog->insns_cnt = 0;
550 	prog->sec_idx = -1;
551 }
552 
553 static char *__bpf_program__pin_name(struct bpf_program *prog)
554 {
555 	char *name, *p;
556 
557 	name = p = strdup(prog->sec_name);
558 	while ((p = strchr(p, '/')))
559 		*p = '_';
560 
561 	return name;
562 }
563 
564 static bool insn_is_subprog_call(const struct bpf_insn *insn)
565 {
566 	return BPF_CLASS(insn->code) == BPF_JMP &&
567 	       BPF_OP(insn->code) == BPF_CALL &&
568 	       BPF_SRC(insn->code) == BPF_K &&
569 	       insn->src_reg == BPF_PSEUDO_CALL &&
570 	       insn->dst_reg == 0 &&
571 	       insn->off == 0;
572 }
573 
574 static bool is_ldimm64_insn(struct bpf_insn *insn)
575 {
576 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
577 }
578 
579 static bool is_call_insn(const struct bpf_insn *insn)
580 {
581 	return insn->code == (BPF_JMP | BPF_CALL);
582 }
583 
584 static bool insn_is_pseudo_func(struct bpf_insn *insn)
585 {
586 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
587 }
588 
589 static int
590 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
591 		      const char *name, size_t sec_idx, const char *sec_name,
592 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
593 {
594 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
595 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
596 			sec_name, name, sec_off, insn_data_sz);
597 		return -EINVAL;
598 	}
599 
600 	memset(prog, 0, sizeof(*prog));
601 	prog->obj = obj;
602 
603 	prog->sec_idx = sec_idx;
604 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
605 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
606 	/* insns_cnt can later be increased by appending used subprograms */
607 	prog->insns_cnt = prog->sec_insn_cnt;
608 
609 	prog->type = BPF_PROG_TYPE_UNSPEC;
610 	prog->load = true;
611 
612 	prog->instances.fds = NULL;
613 	prog->instances.nr = -1;
614 
615 	prog->sec_name = strdup(sec_name);
616 	if (!prog->sec_name)
617 		goto errout;
618 
619 	prog->name = strdup(name);
620 	if (!prog->name)
621 		goto errout;
622 
623 	prog->pin_name = __bpf_program__pin_name(prog);
624 	if (!prog->pin_name)
625 		goto errout;
626 
627 	prog->insns = malloc(insn_data_sz);
628 	if (!prog->insns)
629 		goto errout;
630 	memcpy(prog->insns, insn_data, insn_data_sz);
631 
632 	return 0;
633 errout:
634 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
635 	bpf_program__exit(prog);
636 	return -ENOMEM;
637 }
638 
639 static int
640 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
641 			 const char *sec_name, int sec_idx)
642 {
643 	Elf_Data *symbols = obj->efile.symbols;
644 	struct bpf_program *prog, *progs;
645 	void *data = sec_data->d_buf;
646 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
647 	int nr_progs, err, i;
648 	const char *name;
649 	GElf_Sym sym;
650 
651 	progs = obj->programs;
652 	nr_progs = obj->nr_programs;
653 	nr_syms = symbols->d_size / sizeof(GElf_Sym);
654 	sec_off = 0;
655 
656 	for (i = 0; i < nr_syms; i++) {
657 		if (!gelf_getsym(symbols, i, &sym))
658 			continue;
659 		if (sym.st_shndx != sec_idx)
660 			continue;
661 		if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
662 			continue;
663 
664 		prog_sz = sym.st_size;
665 		sec_off = sym.st_value;
666 
667 		name = elf_sym_str(obj, sym.st_name);
668 		if (!name) {
669 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
670 				sec_name, sec_off);
671 			return -LIBBPF_ERRNO__FORMAT;
672 		}
673 
674 		if (sec_off + prog_sz > sec_sz) {
675 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
676 				sec_name, sec_off);
677 			return -LIBBPF_ERRNO__FORMAT;
678 		}
679 
680 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
681 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
682 
683 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
684 		if (!progs) {
685 			/*
686 			 * In this case the original obj->programs
687 			 * is still valid, so don't need special treat for
688 			 * bpf_close_object().
689 			 */
690 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
691 				sec_name, name);
692 			return -ENOMEM;
693 		}
694 		obj->programs = progs;
695 
696 		prog = &progs[nr_progs];
697 
698 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
699 					    sec_off, data + sec_off, prog_sz);
700 		if (err)
701 			return err;
702 
703 		/* if function is a global/weak symbol, but has hidden
704 		 * visibility (STV_HIDDEN), mark its BTF FUNC as static to
705 		 * enable more permissive BPF verification mode with more
706 		 * outside context available to BPF verifier
707 		 */
708 		if (GELF_ST_BIND(sym.st_info) != STB_LOCAL
709 		    && GELF_ST_VISIBILITY(sym.st_other) == STV_HIDDEN)
710 			prog->mark_btf_static = true;
711 
712 		nr_progs++;
713 		obj->nr_programs = nr_progs;
714 	}
715 
716 	return 0;
717 }
718 
719 static __u32 get_kernel_version(void)
720 {
721 	__u32 major, minor, patch;
722 	struct utsname info;
723 
724 	uname(&info);
725 	if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3)
726 		return 0;
727 	return KERNEL_VERSION(major, minor, patch);
728 }
729 
730 static const struct btf_member *
731 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
732 {
733 	struct btf_member *m;
734 	int i;
735 
736 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
737 		if (btf_member_bit_offset(t, i) == bit_offset)
738 			return m;
739 	}
740 
741 	return NULL;
742 }
743 
744 static const struct btf_member *
745 find_member_by_name(const struct btf *btf, const struct btf_type *t,
746 		    const char *name)
747 {
748 	struct btf_member *m;
749 	int i;
750 
751 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
752 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
753 			return m;
754 	}
755 
756 	return NULL;
757 }
758 
759 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
760 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
761 				   const char *name, __u32 kind);
762 
763 static int
764 find_struct_ops_kern_types(const struct btf *btf, const char *tname,
765 			   const struct btf_type **type, __u32 *type_id,
766 			   const struct btf_type **vtype, __u32 *vtype_id,
767 			   const struct btf_member **data_member)
768 {
769 	const struct btf_type *kern_type, *kern_vtype;
770 	const struct btf_member *kern_data_member;
771 	__s32 kern_vtype_id, kern_type_id;
772 	__u32 i;
773 
774 	kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
775 	if (kern_type_id < 0) {
776 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
777 			tname);
778 		return kern_type_id;
779 	}
780 	kern_type = btf__type_by_id(btf, kern_type_id);
781 
782 	/* Find the corresponding "map_value" type that will be used
783 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
784 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
785 	 * btf_vmlinux.
786 	 */
787 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
788 						tname, BTF_KIND_STRUCT);
789 	if (kern_vtype_id < 0) {
790 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
791 			STRUCT_OPS_VALUE_PREFIX, tname);
792 		return kern_vtype_id;
793 	}
794 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
795 
796 	/* Find "struct tcp_congestion_ops" from
797 	 * struct bpf_struct_ops_tcp_congestion_ops {
798 	 *	[ ... ]
799 	 *	struct tcp_congestion_ops data;
800 	 * }
801 	 */
802 	kern_data_member = btf_members(kern_vtype);
803 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
804 		if (kern_data_member->type == kern_type_id)
805 			break;
806 	}
807 	if (i == btf_vlen(kern_vtype)) {
808 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
809 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
810 		return -EINVAL;
811 	}
812 
813 	*type = kern_type;
814 	*type_id = kern_type_id;
815 	*vtype = kern_vtype;
816 	*vtype_id = kern_vtype_id;
817 	*data_member = kern_data_member;
818 
819 	return 0;
820 }
821 
822 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
823 {
824 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
825 }
826 
827 /* Init the map's fields that depend on kern_btf */
828 static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
829 					 const struct btf *btf,
830 					 const struct btf *kern_btf)
831 {
832 	const struct btf_member *member, *kern_member, *kern_data_member;
833 	const struct btf_type *type, *kern_type, *kern_vtype;
834 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
835 	struct bpf_struct_ops *st_ops;
836 	void *data, *kern_data;
837 	const char *tname;
838 	int err;
839 
840 	st_ops = map->st_ops;
841 	type = st_ops->type;
842 	tname = st_ops->tname;
843 	err = find_struct_ops_kern_types(kern_btf, tname,
844 					 &kern_type, &kern_type_id,
845 					 &kern_vtype, &kern_vtype_id,
846 					 &kern_data_member);
847 	if (err)
848 		return err;
849 
850 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
851 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
852 
853 	map->def.value_size = kern_vtype->size;
854 	map->btf_vmlinux_value_type_id = kern_vtype_id;
855 
856 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
857 	if (!st_ops->kern_vdata)
858 		return -ENOMEM;
859 
860 	data = st_ops->data;
861 	kern_data_off = kern_data_member->offset / 8;
862 	kern_data = st_ops->kern_vdata + kern_data_off;
863 
864 	member = btf_members(type);
865 	for (i = 0; i < btf_vlen(type); i++, member++) {
866 		const struct btf_type *mtype, *kern_mtype;
867 		__u32 mtype_id, kern_mtype_id;
868 		void *mdata, *kern_mdata;
869 		__s64 msize, kern_msize;
870 		__u32 moff, kern_moff;
871 		__u32 kern_member_idx;
872 		const char *mname;
873 
874 		mname = btf__name_by_offset(btf, member->name_off);
875 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
876 		if (!kern_member) {
877 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
878 				map->name, mname);
879 			return -ENOTSUP;
880 		}
881 
882 		kern_member_idx = kern_member - btf_members(kern_type);
883 		if (btf_member_bitfield_size(type, i) ||
884 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
885 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
886 				map->name, mname);
887 			return -ENOTSUP;
888 		}
889 
890 		moff = member->offset / 8;
891 		kern_moff = kern_member->offset / 8;
892 
893 		mdata = data + moff;
894 		kern_mdata = kern_data + kern_moff;
895 
896 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
897 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
898 						    &kern_mtype_id);
899 		if (BTF_INFO_KIND(mtype->info) !=
900 		    BTF_INFO_KIND(kern_mtype->info)) {
901 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
902 				map->name, mname, BTF_INFO_KIND(mtype->info),
903 				BTF_INFO_KIND(kern_mtype->info));
904 			return -ENOTSUP;
905 		}
906 
907 		if (btf_is_ptr(mtype)) {
908 			struct bpf_program *prog;
909 
910 			prog = st_ops->progs[i];
911 			if (!prog)
912 				continue;
913 
914 			kern_mtype = skip_mods_and_typedefs(kern_btf,
915 							    kern_mtype->type,
916 							    &kern_mtype_id);
917 
918 			/* mtype->type must be a func_proto which was
919 			 * guaranteed in bpf_object__collect_st_ops_relos(),
920 			 * so only check kern_mtype for func_proto here.
921 			 */
922 			if (!btf_is_func_proto(kern_mtype)) {
923 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
924 					map->name, mname);
925 				return -ENOTSUP;
926 			}
927 
928 			prog->attach_btf_id = kern_type_id;
929 			prog->expected_attach_type = kern_member_idx;
930 
931 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
932 
933 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
934 				 map->name, mname, prog->name, moff,
935 				 kern_moff);
936 
937 			continue;
938 		}
939 
940 		msize = btf__resolve_size(btf, mtype_id);
941 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
942 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
943 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
944 				map->name, mname, (ssize_t)msize,
945 				(ssize_t)kern_msize);
946 			return -ENOTSUP;
947 		}
948 
949 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
950 			 map->name, mname, (unsigned int)msize,
951 			 moff, kern_moff);
952 		memcpy(kern_mdata, mdata, msize);
953 	}
954 
955 	return 0;
956 }
957 
958 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
959 {
960 	struct bpf_map *map;
961 	size_t i;
962 	int err;
963 
964 	for (i = 0; i < obj->nr_maps; i++) {
965 		map = &obj->maps[i];
966 
967 		if (!bpf_map__is_struct_ops(map))
968 			continue;
969 
970 		err = bpf_map__init_kern_struct_ops(map, obj->btf,
971 						    obj->btf_vmlinux);
972 		if (err)
973 			return err;
974 	}
975 
976 	return 0;
977 }
978 
979 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj)
980 {
981 	const struct btf_type *type, *datasec;
982 	const struct btf_var_secinfo *vsi;
983 	struct bpf_struct_ops *st_ops;
984 	const char *tname, *var_name;
985 	__s32 type_id, datasec_id;
986 	const struct btf *btf;
987 	struct bpf_map *map;
988 	__u32 i;
989 
990 	if (obj->efile.st_ops_shndx == -1)
991 		return 0;
992 
993 	btf = obj->btf;
994 	datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC,
995 					    BTF_KIND_DATASEC);
996 	if (datasec_id < 0) {
997 		pr_warn("struct_ops init: DATASEC %s not found\n",
998 			STRUCT_OPS_SEC);
999 		return -EINVAL;
1000 	}
1001 
1002 	datasec = btf__type_by_id(btf, datasec_id);
1003 	vsi = btf_var_secinfos(datasec);
1004 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1005 		type = btf__type_by_id(obj->btf, vsi->type);
1006 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1007 
1008 		type_id = btf__resolve_type(obj->btf, vsi->type);
1009 		if (type_id < 0) {
1010 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1011 				vsi->type, STRUCT_OPS_SEC);
1012 			return -EINVAL;
1013 		}
1014 
1015 		type = btf__type_by_id(obj->btf, type_id);
1016 		tname = btf__name_by_offset(obj->btf, type->name_off);
1017 		if (!tname[0]) {
1018 			pr_warn("struct_ops init: anonymous type is not supported\n");
1019 			return -ENOTSUP;
1020 		}
1021 		if (!btf_is_struct(type)) {
1022 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1023 			return -EINVAL;
1024 		}
1025 
1026 		map = bpf_object__add_map(obj);
1027 		if (IS_ERR(map))
1028 			return PTR_ERR(map);
1029 
1030 		map->sec_idx = obj->efile.st_ops_shndx;
1031 		map->sec_offset = vsi->offset;
1032 		map->name = strdup(var_name);
1033 		if (!map->name)
1034 			return -ENOMEM;
1035 
1036 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1037 		map->def.key_size = sizeof(int);
1038 		map->def.value_size = type->size;
1039 		map->def.max_entries = 1;
1040 
1041 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1042 		if (!map->st_ops)
1043 			return -ENOMEM;
1044 		st_ops = map->st_ops;
1045 		st_ops->data = malloc(type->size);
1046 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1047 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1048 					       sizeof(*st_ops->kern_func_off));
1049 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1050 			return -ENOMEM;
1051 
1052 		if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) {
1053 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1054 				var_name, STRUCT_OPS_SEC);
1055 			return -EINVAL;
1056 		}
1057 
1058 		memcpy(st_ops->data,
1059 		       obj->efile.st_ops_data->d_buf + vsi->offset,
1060 		       type->size);
1061 		st_ops->tname = tname;
1062 		st_ops->type = type;
1063 		st_ops->type_id = type_id;
1064 
1065 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1066 			 tname, type_id, var_name, vsi->offset);
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 static struct bpf_object *bpf_object__new(const char *path,
1073 					  const void *obj_buf,
1074 					  size_t obj_buf_sz,
1075 					  const char *obj_name)
1076 {
1077 	struct bpf_object *obj;
1078 	char *end;
1079 
1080 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1081 	if (!obj) {
1082 		pr_warn("alloc memory failed for %s\n", path);
1083 		return ERR_PTR(-ENOMEM);
1084 	}
1085 
1086 	strcpy(obj->path, path);
1087 	if (obj_name) {
1088 		strncpy(obj->name, obj_name, sizeof(obj->name) - 1);
1089 		obj->name[sizeof(obj->name) - 1] = 0;
1090 	} else {
1091 		/* Using basename() GNU version which doesn't modify arg. */
1092 		strncpy(obj->name, basename((void *)path),
1093 			sizeof(obj->name) - 1);
1094 		end = strchr(obj->name, '.');
1095 		if (end)
1096 			*end = 0;
1097 	}
1098 
1099 	obj->efile.fd = -1;
1100 	/*
1101 	 * Caller of this function should also call
1102 	 * bpf_object__elf_finish() after data collection to return
1103 	 * obj_buf to user. If not, we should duplicate the buffer to
1104 	 * avoid user freeing them before elf finish.
1105 	 */
1106 	obj->efile.obj_buf = obj_buf;
1107 	obj->efile.obj_buf_sz = obj_buf_sz;
1108 	obj->efile.maps_shndx = -1;
1109 	obj->efile.btf_maps_shndx = -1;
1110 	obj->efile.data_shndx = -1;
1111 	obj->efile.rodata_shndx = -1;
1112 	obj->efile.bss_shndx = -1;
1113 	obj->efile.st_ops_shndx = -1;
1114 	obj->kconfig_map_idx = -1;
1115 	obj->rodata_map_idx = -1;
1116 
1117 	obj->kern_version = get_kernel_version();
1118 	obj->loaded = false;
1119 
1120 	INIT_LIST_HEAD(&obj->list);
1121 	list_add(&obj->list, &bpf_objects_list);
1122 	return obj;
1123 }
1124 
1125 static void bpf_object__elf_finish(struct bpf_object *obj)
1126 {
1127 	if (!obj_elf_valid(obj))
1128 		return;
1129 
1130 	if (obj->efile.elf) {
1131 		elf_end(obj->efile.elf);
1132 		obj->efile.elf = NULL;
1133 	}
1134 	obj->efile.symbols = NULL;
1135 	obj->efile.data = NULL;
1136 	obj->efile.rodata = NULL;
1137 	obj->efile.bss = NULL;
1138 	obj->efile.st_ops_data = NULL;
1139 
1140 	zfree(&obj->efile.reloc_sects);
1141 	obj->efile.nr_reloc_sects = 0;
1142 	zclose(obj->efile.fd);
1143 	obj->efile.obj_buf = NULL;
1144 	obj->efile.obj_buf_sz = 0;
1145 }
1146 
1147 static int bpf_object__elf_init(struct bpf_object *obj)
1148 {
1149 	int err = 0;
1150 	GElf_Ehdr *ep;
1151 
1152 	if (obj_elf_valid(obj)) {
1153 		pr_warn("elf: init internal error\n");
1154 		return -LIBBPF_ERRNO__LIBELF;
1155 	}
1156 
1157 	if (obj->efile.obj_buf_sz > 0) {
1158 		/*
1159 		 * obj_buf should have been validated by
1160 		 * bpf_object__open_buffer().
1161 		 */
1162 		obj->efile.elf = elf_memory((char *)obj->efile.obj_buf,
1163 					    obj->efile.obj_buf_sz);
1164 	} else {
1165 		obj->efile.fd = open(obj->path, O_RDONLY);
1166 		if (obj->efile.fd < 0) {
1167 			char errmsg[STRERR_BUFSIZE], *cp;
1168 
1169 			err = -errno;
1170 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1171 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1172 			return err;
1173 		}
1174 
1175 		obj->efile.elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1176 	}
1177 
1178 	if (!obj->efile.elf) {
1179 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1180 		err = -LIBBPF_ERRNO__LIBELF;
1181 		goto errout;
1182 	}
1183 
1184 	if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) {
1185 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1186 		err = -LIBBPF_ERRNO__FORMAT;
1187 		goto errout;
1188 	}
1189 	ep = &obj->efile.ehdr;
1190 
1191 	if (elf_getshdrstrndx(obj->efile.elf, &obj->efile.shstrndx)) {
1192 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1193 			obj->path, elf_errmsg(-1));
1194 		err = -LIBBPF_ERRNO__FORMAT;
1195 		goto errout;
1196 	}
1197 
1198 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
1199 	if (!elf_rawdata(elf_getscn(obj->efile.elf, obj->efile.shstrndx), NULL)) {
1200 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1201 			obj->path, elf_errmsg(-1));
1202 		err = -LIBBPF_ERRNO__FORMAT;
1203 		goto errout;
1204 	}
1205 
1206 	/* Old LLVM set e_machine to EM_NONE */
1207 	if (ep->e_type != ET_REL ||
1208 	    (ep->e_machine && ep->e_machine != EM_BPF)) {
1209 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1210 		err = -LIBBPF_ERRNO__FORMAT;
1211 		goto errout;
1212 	}
1213 
1214 	return 0;
1215 errout:
1216 	bpf_object__elf_finish(obj);
1217 	return err;
1218 }
1219 
1220 static int bpf_object__check_endianness(struct bpf_object *obj)
1221 {
1222 #if __BYTE_ORDER == __LITTLE_ENDIAN
1223 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB)
1224 		return 0;
1225 #elif __BYTE_ORDER == __BIG_ENDIAN
1226 	if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
1227 		return 0;
1228 #else
1229 # error "Unrecognized __BYTE_ORDER__"
1230 #endif
1231 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1232 	return -LIBBPF_ERRNO__ENDIAN;
1233 }
1234 
1235 static int
1236 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1237 {
1238 	memcpy(obj->license, data, min(size, sizeof(obj->license) - 1));
1239 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1240 	return 0;
1241 }
1242 
1243 static int
1244 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1245 {
1246 	__u32 kver;
1247 
1248 	if (size != sizeof(kver)) {
1249 		pr_warn("invalid kver section in %s\n", obj->path);
1250 		return -LIBBPF_ERRNO__FORMAT;
1251 	}
1252 	memcpy(&kver, data, sizeof(kver));
1253 	obj->kern_version = kver;
1254 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1255 	return 0;
1256 }
1257 
1258 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1259 {
1260 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1261 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1262 		return true;
1263 	return false;
1264 }
1265 
1266 int bpf_object__section_size(const struct bpf_object *obj, const char *name,
1267 			     __u32 *size)
1268 {
1269 	int ret = -ENOENT;
1270 
1271 	*size = 0;
1272 	if (!name) {
1273 		return -EINVAL;
1274 	} else if (!strcmp(name, DATA_SEC)) {
1275 		if (obj->efile.data)
1276 			*size = obj->efile.data->d_size;
1277 	} else if (!strcmp(name, BSS_SEC)) {
1278 		if (obj->efile.bss)
1279 			*size = obj->efile.bss->d_size;
1280 	} else if (!strcmp(name, RODATA_SEC)) {
1281 		if (obj->efile.rodata)
1282 			*size = obj->efile.rodata->d_size;
1283 	} else if (!strcmp(name, STRUCT_OPS_SEC)) {
1284 		if (obj->efile.st_ops_data)
1285 			*size = obj->efile.st_ops_data->d_size;
1286 	} else {
1287 		Elf_Scn *scn = elf_sec_by_name(obj, name);
1288 		Elf_Data *data = elf_sec_data(obj, scn);
1289 
1290 		if (data) {
1291 			ret = 0; /* found it */
1292 			*size = data->d_size;
1293 		}
1294 	}
1295 
1296 	return *size ? 0 : ret;
1297 }
1298 
1299 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name,
1300 				__u32 *off)
1301 {
1302 	Elf_Data *symbols = obj->efile.symbols;
1303 	const char *sname;
1304 	size_t si;
1305 
1306 	if (!name || !off)
1307 		return -EINVAL;
1308 
1309 	for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) {
1310 		GElf_Sym sym;
1311 
1312 		if (!gelf_getsym(symbols, si, &sym))
1313 			continue;
1314 		if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
1315 		    GELF_ST_TYPE(sym.st_info) != STT_OBJECT)
1316 			continue;
1317 
1318 		sname = elf_sym_str(obj, sym.st_name);
1319 		if (!sname) {
1320 			pr_warn("failed to get sym name string for var %s\n",
1321 				name);
1322 			return -EIO;
1323 		}
1324 		if (strcmp(name, sname) == 0) {
1325 			*off = sym.st_value;
1326 			return 0;
1327 		}
1328 	}
1329 
1330 	return -ENOENT;
1331 }
1332 
1333 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1334 {
1335 	struct bpf_map *new_maps;
1336 	size_t new_cap;
1337 	int i;
1338 
1339 	if (obj->nr_maps < obj->maps_cap)
1340 		return &obj->maps[obj->nr_maps++];
1341 
1342 	new_cap = max((size_t)4, obj->maps_cap * 3 / 2);
1343 	new_maps = libbpf_reallocarray(obj->maps, new_cap, sizeof(*obj->maps));
1344 	if (!new_maps) {
1345 		pr_warn("alloc maps for object failed\n");
1346 		return ERR_PTR(-ENOMEM);
1347 	}
1348 
1349 	obj->maps_cap = new_cap;
1350 	obj->maps = new_maps;
1351 
1352 	/* zero out new maps */
1353 	memset(obj->maps + obj->nr_maps, 0,
1354 	       (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps));
1355 	/*
1356 	 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin)
1357 	 * when failure (zclose won't close negative fd)).
1358 	 */
1359 	for (i = obj->nr_maps; i < obj->maps_cap; i++) {
1360 		obj->maps[i].fd = -1;
1361 		obj->maps[i].inner_map_fd = -1;
1362 	}
1363 
1364 	return &obj->maps[obj->nr_maps++];
1365 }
1366 
1367 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1368 {
1369 	long page_sz = sysconf(_SC_PAGE_SIZE);
1370 	size_t map_sz;
1371 
1372 	map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1373 	map_sz = roundup(map_sz, page_sz);
1374 	return map_sz;
1375 }
1376 
1377 static char *internal_map_name(struct bpf_object *obj,
1378 			       enum libbpf_map_type type)
1379 {
1380 	char map_name[BPF_OBJ_NAME_LEN], *p;
1381 	const char *sfx = libbpf_type_to_btf_name[type];
1382 	int sfx_len = max((size_t)7, strlen(sfx));
1383 	int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1,
1384 			  strlen(obj->name));
1385 
1386 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1387 		 sfx_len, libbpf_type_to_btf_name[type]);
1388 
1389 	/* sanitise map name to characters allowed by kernel */
1390 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1391 		if (!isalnum(*p) && *p != '_' && *p != '.')
1392 			*p = '_';
1393 
1394 	return strdup(map_name);
1395 }
1396 
1397 static int
1398 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1399 			      int sec_idx, void *data, size_t data_sz)
1400 {
1401 	struct bpf_map_def *def;
1402 	struct bpf_map *map;
1403 	int err;
1404 
1405 	map = bpf_object__add_map(obj);
1406 	if (IS_ERR(map))
1407 		return PTR_ERR(map);
1408 
1409 	map->libbpf_type = type;
1410 	map->sec_idx = sec_idx;
1411 	map->sec_offset = 0;
1412 	map->name = internal_map_name(obj, type);
1413 	if (!map->name) {
1414 		pr_warn("failed to alloc map name\n");
1415 		return -ENOMEM;
1416 	}
1417 
1418 	def = &map->def;
1419 	def->type = BPF_MAP_TYPE_ARRAY;
1420 	def->key_size = sizeof(int);
1421 	def->value_size = data_sz;
1422 	def->max_entries = 1;
1423 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1424 			 ? BPF_F_RDONLY_PROG : 0;
1425 	def->map_flags |= BPF_F_MMAPABLE;
1426 
1427 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1428 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1429 
1430 	map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1431 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1432 	if (map->mmaped == MAP_FAILED) {
1433 		err = -errno;
1434 		map->mmaped = NULL;
1435 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1436 			map->name, err);
1437 		zfree(&map->name);
1438 		return err;
1439 	}
1440 
1441 	if (data)
1442 		memcpy(map->mmaped, data, data_sz);
1443 
1444 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1445 	return 0;
1446 }
1447 
1448 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1449 {
1450 	int err;
1451 
1452 	/*
1453 	 * Populate obj->maps with libbpf internal maps.
1454 	 */
1455 	if (obj->efile.data_shndx >= 0) {
1456 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1457 						    obj->efile.data_shndx,
1458 						    obj->efile.data->d_buf,
1459 						    obj->efile.data->d_size);
1460 		if (err)
1461 			return err;
1462 	}
1463 	if (obj->efile.rodata_shndx >= 0) {
1464 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1465 						    obj->efile.rodata_shndx,
1466 						    obj->efile.rodata->d_buf,
1467 						    obj->efile.rodata->d_size);
1468 		if (err)
1469 			return err;
1470 
1471 		obj->rodata_map_idx = obj->nr_maps - 1;
1472 	}
1473 	if (obj->efile.bss_shndx >= 0) {
1474 		err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1475 						    obj->efile.bss_shndx,
1476 						    NULL,
1477 						    obj->efile.bss->d_size);
1478 		if (err)
1479 			return err;
1480 	}
1481 	return 0;
1482 }
1483 
1484 
1485 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1486 					       const void *name)
1487 {
1488 	int i;
1489 
1490 	for (i = 0; i < obj->nr_extern; i++) {
1491 		if (strcmp(obj->externs[i].name, name) == 0)
1492 			return &obj->externs[i];
1493 	}
1494 	return NULL;
1495 }
1496 
1497 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1498 			      char value)
1499 {
1500 	switch (ext->kcfg.type) {
1501 	case KCFG_BOOL:
1502 		if (value == 'm') {
1503 			pr_warn("extern (kcfg) %s=%c should be tristate or char\n",
1504 				ext->name, value);
1505 			return -EINVAL;
1506 		}
1507 		*(bool *)ext_val = value == 'y' ? true : false;
1508 		break;
1509 	case KCFG_TRISTATE:
1510 		if (value == 'y')
1511 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1512 		else if (value == 'm')
1513 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1514 		else /* value == 'n' */
1515 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1516 		break;
1517 	case KCFG_CHAR:
1518 		*(char *)ext_val = value;
1519 		break;
1520 	case KCFG_UNKNOWN:
1521 	case KCFG_INT:
1522 	case KCFG_CHAR_ARR:
1523 	default:
1524 		pr_warn("extern (kcfg) %s=%c should be bool, tristate, or char\n",
1525 			ext->name, value);
1526 		return -EINVAL;
1527 	}
1528 	ext->is_set = true;
1529 	return 0;
1530 }
1531 
1532 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1533 			      const char *value)
1534 {
1535 	size_t len;
1536 
1537 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1538 		pr_warn("extern (kcfg) %s=%s should be char array\n", ext->name, value);
1539 		return -EINVAL;
1540 	}
1541 
1542 	len = strlen(value);
1543 	if (value[len - 1] != '"') {
1544 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1545 			ext->name, value);
1546 		return -EINVAL;
1547 	}
1548 
1549 	/* strip quotes */
1550 	len -= 2;
1551 	if (len >= ext->kcfg.sz) {
1552 		pr_warn("extern (kcfg) '%s': long string config %s of (%zu bytes) truncated to %d bytes\n",
1553 			ext->name, value, len, ext->kcfg.sz - 1);
1554 		len = ext->kcfg.sz - 1;
1555 	}
1556 	memcpy(ext_val, value + 1, len);
1557 	ext_val[len] = '\0';
1558 	ext->is_set = true;
1559 	return 0;
1560 }
1561 
1562 static int parse_u64(const char *value, __u64 *res)
1563 {
1564 	char *value_end;
1565 	int err;
1566 
1567 	errno = 0;
1568 	*res = strtoull(value, &value_end, 0);
1569 	if (errno) {
1570 		err = -errno;
1571 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1572 		return err;
1573 	}
1574 	if (*value_end) {
1575 		pr_warn("failed to parse '%s' as integer completely\n", value);
1576 		return -EINVAL;
1577 	}
1578 	return 0;
1579 }
1580 
1581 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1582 {
1583 	int bit_sz = ext->kcfg.sz * 8;
1584 
1585 	if (ext->kcfg.sz == 8)
1586 		return true;
1587 
1588 	/* Validate that value stored in u64 fits in integer of `ext->sz`
1589 	 * bytes size without any loss of information. If the target integer
1590 	 * is signed, we rely on the following limits of integer type of
1591 	 * Y bits and subsequent transformation:
1592 	 *
1593 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
1594 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
1595 	 *            0 <= X + 2^(Y-1) <  2^Y
1596 	 *
1597 	 *  For unsigned target integer, check that all the (64 - Y) bits are
1598 	 *  zero.
1599 	 */
1600 	if (ext->kcfg.is_signed)
1601 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1602 	else
1603 		return (v >> bit_sz) == 0;
1604 }
1605 
1606 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1607 			      __u64 value)
1608 {
1609 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1610 		pr_warn("extern (kcfg) %s=%llu should be integer\n",
1611 			ext->name, (unsigned long long)value);
1612 		return -EINVAL;
1613 	}
1614 	if (!is_kcfg_value_in_range(ext, value)) {
1615 		pr_warn("extern (kcfg) %s=%llu value doesn't fit in %d bytes\n",
1616 			ext->name, (unsigned long long)value, ext->kcfg.sz);
1617 		return -ERANGE;
1618 	}
1619 	switch (ext->kcfg.sz) {
1620 		case 1: *(__u8 *)ext_val = value; break;
1621 		case 2: *(__u16 *)ext_val = value; break;
1622 		case 4: *(__u32 *)ext_val = value; break;
1623 		case 8: *(__u64 *)ext_val = value; break;
1624 		default:
1625 			return -EINVAL;
1626 	}
1627 	ext->is_set = true;
1628 	return 0;
1629 }
1630 
1631 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1632 					    char *buf, void *data)
1633 {
1634 	struct extern_desc *ext;
1635 	char *sep, *value;
1636 	int len, err = 0;
1637 	void *ext_val;
1638 	__u64 num;
1639 
1640 	if (strncmp(buf, "CONFIG_", 7))
1641 		return 0;
1642 
1643 	sep = strchr(buf, '=');
1644 	if (!sep) {
1645 		pr_warn("failed to parse '%s': no separator\n", buf);
1646 		return -EINVAL;
1647 	}
1648 
1649 	/* Trim ending '\n' */
1650 	len = strlen(buf);
1651 	if (buf[len - 1] == '\n')
1652 		buf[len - 1] = '\0';
1653 	/* Split on '=' and ensure that a value is present. */
1654 	*sep = '\0';
1655 	if (!sep[1]) {
1656 		*sep = '=';
1657 		pr_warn("failed to parse '%s': no value\n", buf);
1658 		return -EINVAL;
1659 	}
1660 
1661 	ext = find_extern_by_name(obj, buf);
1662 	if (!ext || ext->is_set)
1663 		return 0;
1664 
1665 	ext_val = data + ext->kcfg.data_off;
1666 	value = sep + 1;
1667 
1668 	switch (*value) {
1669 	case 'y': case 'n': case 'm':
1670 		err = set_kcfg_value_tri(ext, ext_val, *value);
1671 		break;
1672 	case '"':
1673 		err = set_kcfg_value_str(ext, ext_val, value);
1674 		break;
1675 	default:
1676 		/* assume integer */
1677 		err = parse_u64(value, &num);
1678 		if (err) {
1679 			pr_warn("extern (kcfg) %s=%s should be integer\n",
1680 				ext->name, value);
1681 			return err;
1682 		}
1683 		err = set_kcfg_value_num(ext, ext_val, num);
1684 		break;
1685 	}
1686 	if (err)
1687 		return err;
1688 	pr_debug("extern (kcfg) %s=%s\n", ext->name, value);
1689 	return 0;
1690 }
1691 
1692 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1693 {
1694 	char buf[PATH_MAX];
1695 	struct utsname uts;
1696 	int len, err = 0;
1697 	gzFile file;
1698 
1699 	uname(&uts);
1700 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1701 	if (len < 0)
1702 		return -EINVAL;
1703 	else if (len >= PATH_MAX)
1704 		return -ENAMETOOLONG;
1705 
1706 	/* gzopen also accepts uncompressed files. */
1707 	file = gzopen(buf, "r");
1708 	if (!file)
1709 		file = gzopen("/proc/config.gz", "r");
1710 
1711 	if (!file) {
1712 		pr_warn("failed to open system Kconfig\n");
1713 		return -ENOENT;
1714 	}
1715 
1716 	while (gzgets(file, buf, sizeof(buf))) {
1717 		err = bpf_object__process_kconfig_line(obj, buf, data);
1718 		if (err) {
1719 			pr_warn("error parsing system Kconfig line '%s': %d\n",
1720 				buf, err);
1721 			goto out;
1722 		}
1723 	}
1724 
1725 out:
1726 	gzclose(file);
1727 	return err;
1728 }
1729 
1730 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1731 					const char *config, void *data)
1732 {
1733 	char buf[PATH_MAX];
1734 	int err = 0;
1735 	FILE *file;
1736 
1737 	file = fmemopen((void *)config, strlen(config), "r");
1738 	if (!file) {
1739 		err = -errno;
1740 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
1741 		return err;
1742 	}
1743 
1744 	while (fgets(buf, sizeof(buf), file)) {
1745 		err = bpf_object__process_kconfig_line(obj, buf, data);
1746 		if (err) {
1747 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1748 				buf, err);
1749 			break;
1750 		}
1751 	}
1752 
1753 	fclose(file);
1754 	return err;
1755 }
1756 
1757 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
1758 {
1759 	struct extern_desc *last_ext = NULL, *ext;
1760 	size_t map_sz;
1761 	int i, err;
1762 
1763 	for (i = 0; i < obj->nr_extern; i++) {
1764 		ext = &obj->externs[i];
1765 		if (ext->type == EXT_KCFG)
1766 			last_ext = ext;
1767 	}
1768 
1769 	if (!last_ext)
1770 		return 0;
1771 
1772 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
1773 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
1774 					    obj->efile.symbols_shndx,
1775 					    NULL, map_sz);
1776 	if (err)
1777 		return err;
1778 
1779 	obj->kconfig_map_idx = obj->nr_maps - 1;
1780 
1781 	return 0;
1782 }
1783 
1784 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict)
1785 {
1786 	Elf_Data *symbols = obj->efile.symbols;
1787 	int i, map_def_sz = 0, nr_maps = 0, nr_syms;
1788 	Elf_Data *data = NULL;
1789 	Elf_Scn *scn;
1790 
1791 	if (obj->efile.maps_shndx < 0)
1792 		return 0;
1793 
1794 	if (!symbols)
1795 		return -EINVAL;
1796 
1797 
1798 	scn = elf_sec_by_idx(obj, obj->efile.maps_shndx);
1799 	data = elf_sec_data(obj, scn);
1800 	if (!scn || !data) {
1801 		pr_warn("elf: failed to get legacy map definitions for %s\n",
1802 			obj->path);
1803 		return -EINVAL;
1804 	}
1805 
1806 	/*
1807 	 * Count number of maps. Each map has a name.
1808 	 * Array of maps is not supported: only the first element is
1809 	 * considered.
1810 	 *
1811 	 * TODO: Detect array of map and report error.
1812 	 */
1813 	nr_syms = symbols->d_size / sizeof(GElf_Sym);
1814 	for (i = 0; i < nr_syms; i++) {
1815 		GElf_Sym sym;
1816 
1817 		if (!gelf_getsym(symbols, i, &sym))
1818 			continue;
1819 		if (sym.st_shndx != obj->efile.maps_shndx)
1820 			continue;
1821 		nr_maps++;
1822 	}
1823 	/* Assume equally sized map definitions */
1824 	pr_debug("elf: found %d legacy map definitions (%zd bytes) in %s\n",
1825 		 nr_maps, data->d_size, obj->path);
1826 
1827 	if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) {
1828 		pr_warn("elf: unable to determine legacy map definition size in %s\n",
1829 			obj->path);
1830 		return -EINVAL;
1831 	}
1832 	map_def_sz = data->d_size / nr_maps;
1833 
1834 	/* Fill obj->maps using data in "maps" section.  */
1835 	for (i = 0; i < nr_syms; i++) {
1836 		GElf_Sym sym;
1837 		const char *map_name;
1838 		struct bpf_map_def *def;
1839 		struct bpf_map *map;
1840 
1841 		if (!gelf_getsym(symbols, i, &sym))
1842 			continue;
1843 		if (sym.st_shndx != obj->efile.maps_shndx)
1844 			continue;
1845 
1846 		map = bpf_object__add_map(obj);
1847 		if (IS_ERR(map))
1848 			return PTR_ERR(map);
1849 
1850 		map_name = elf_sym_str(obj, sym.st_name);
1851 		if (!map_name) {
1852 			pr_warn("failed to get map #%d name sym string for obj %s\n",
1853 				i, obj->path);
1854 			return -LIBBPF_ERRNO__FORMAT;
1855 		}
1856 
1857 		map->libbpf_type = LIBBPF_MAP_UNSPEC;
1858 		map->sec_idx = sym.st_shndx;
1859 		map->sec_offset = sym.st_value;
1860 		pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n",
1861 			 map_name, map->sec_idx, map->sec_offset);
1862 		if (sym.st_value + map_def_sz > data->d_size) {
1863 			pr_warn("corrupted maps section in %s: last map \"%s\" too small\n",
1864 				obj->path, map_name);
1865 			return -EINVAL;
1866 		}
1867 
1868 		map->name = strdup(map_name);
1869 		if (!map->name) {
1870 			pr_warn("failed to alloc map name\n");
1871 			return -ENOMEM;
1872 		}
1873 		pr_debug("map %d is \"%s\"\n", i, map->name);
1874 		def = (struct bpf_map_def *)(data->d_buf + sym.st_value);
1875 		/*
1876 		 * If the definition of the map in the object file fits in
1877 		 * bpf_map_def, copy it.  Any extra fields in our version
1878 		 * of bpf_map_def will default to zero as a result of the
1879 		 * calloc above.
1880 		 */
1881 		if (map_def_sz <= sizeof(struct bpf_map_def)) {
1882 			memcpy(&map->def, def, map_def_sz);
1883 		} else {
1884 			/*
1885 			 * Here the map structure being read is bigger than what
1886 			 * we expect, truncate if the excess bits are all zero.
1887 			 * If they are not zero, reject this map as
1888 			 * incompatible.
1889 			 */
1890 			char *b;
1891 
1892 			for (b = ((char *)def) + sizeof(struct bpf_map_def);
1893 			     b < ((char *)def) + map_def_sz; b++) {
1894 				if (*b != 0) {
1895 					pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n",
1896 						obj->path, map_name);
1897 					if (strict)
1898 						return -EINVAL;
1899 				}
1900 			}
1901 			memcpy(&map->def, def, sizeof(struct bpf_map_def));
1902 		}
1903 	}
1904 	return 0;
1905 }
1906 
1907 const struct btf_type *
1908 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
1909 {
1910 	const struct btf_type *t = btf__type_by_id(btf, id);
1911 
1912 	if (res_id)
1913 		*res_id = id;
1914 
1915 	while (btf_is_mod(t) || btf_is_typedef(t)) {
1916 		if (res_id)
1917 			*res_id = t->type;
1918 		t = btf__type_by_id(btf, t->type);
1919 	}
1920 
1921 	return t;
1922 }
1923 
1924 static const struct btf_type *
1925 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
1926 {
1927 	const struct btf_type *t;
1928 
1929 	t = skip_mods_and_typedefs(btf, id, NULL);
1930 	if (!btf_is_ptr(t))
1931 		return NULL;
1932 
1933 	t = skip_mods_and_typedefs(btf, t->type, res_id);
1934 
1935 	return btf_is_func_proto(t) ? t : NULL;
1936 }
1937 
1938 static const char *__btf_kind_str(__u16 kind)
1939 {
1940 	switch (kind) {
1941 	case BTF_KIND_UNKN: return "void";
1942 	case BTF_KIND_INT: return "int";
1943 	case BTF_KIND_PTR: return "ptr";
1944 	case BTF_KIND_ARRAY: return "array";
1945 	case BTF_KIND_STRUCT: return "struct";
1946 	case BTF_KIND_UNION: return "union";
1947 	case BTF_KIND_ENUM: return "enum";
1948 	case BTF_KIND_FWD: return "fwd";
1949 	case BTF_KIND_TYPEDEF: return "typedef";
1950 	case BTF_KIND_VOLATILE: return "volatile";
1951 	case BTF_KIND_CONST: return "const";
1952 	case BTF_KIND_RESTRICT: return "restrict";
1953 	case BTF_KIND_FUNC: return "func";
1954 	case BTF_KIND_FUNC_PROTO: return "func_proto";
1955 	case BTF_KIND_VAR: return "var";
1956 	case BTF_KIND_DATASEC: return "datasec";
1957 	case BTF_KIND_FLOAT: return "float";
1958 	default: return "unknown";
1959 	}
1960 }
1961 
1962 const char *btf_kind_str(const struct btf_type *t)
1963 {
1964 	return __btf_kind_str(btf_kind(t));
1965 }
1966 
1967 /*
1968  * Fetch integer attribute of BTF map definition. Such attributes are
1969  * represented using a pointer to an array, in which dimensionality of array
1970  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
1971  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
1972  * type definition, while using only sizeof(void *) space in ELF data section.
1973  */
1974 static bool get_map_field_int(const char *map_name, const struct btf *btf,
1975 			      const struct btf_member *m, __u32 *res)
1976 {
1977 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
1978 	const char *name = btf__name_by_offset(btf, m->name_off);
1979 	const struct btf_array *arr_info;
1980 	const struct btf_type *arr_t;
1981 
1982 	if (!btf_is_ptr(t)) {
1983 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
1984 			map_name, name, btf_kind_str(t));
1985 		return false;
1986 	}
1987 
1988 	arr_t = btf__type_by_id(btf, t->type);
1989 	if (!arr_t) {
1990 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
1991 			map_name, name, t->type);
1992 		return false;
1993 	}
1994 	if (!btf_is_array(arr_t)) {
1995 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
1996 			map_name, name, btf_kind_str(arr_t));
1997 		return false;
1998 	}
1999 	arr_info = btf_array(arr_t);
2000 	*res = arr_info->nelems;
2001 	return true;
2002 }
2003 
2004 static int build_map_pin_path(struct bpf_map *map, const char *path)
2005 {
2006 	char buf[PATH_MAX];
2007 	int len;
2008 
2009 	if (!path)
2010 		path = "/sys/fs/bpf";
2011 
2012 	len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map));
2013 	if (len < 0)
2014 		return -EINVAL;
2015 	else if (len >= PATH_MAX)
2016 		return -ENAMETOOLONG;
2017 
2018 	return bpf_map__set_pin_path(map, buf);
2019 }
2020 
2021 int parse_btf_map_def(const char *map_name, struct btf *btf,
2022 		      const struct btf_type *def_t, bool strict,
2023 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2024 {
2025 	const struct btf_type *t;
2026 	const struct btf_member *m;
2027 	bool is_inner = inner_def == NULL;
2028 	int vlen, i;
2029 
2030 	vlen = btf_vlen(def_t);
2031 	m = btf_members(def_t);
2032 	for (i = 0; i < vlen; i++, m++) {
2033 		const char *name = btf__name_by_offset(btf, m->name_off);
2034 
2035 		if (!name) {
2036 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2037 			return -EINVAL;
2038 		}
2039 		if (strcmp(name, "type") == 0) {
2040 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2041 				return -EINVAL;
2042 			map_def->parts |= MAP_DEF_MAP_TYPE;
2043 		} else if (strcmp(name, "max_entries") == 0) {
2044 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2045 				return -EINVAL;
2046 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2047 		} else if (strcmp(name, "map_flags") == 0) {
2048 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2049 				return -EINVAL;
2050 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2051 		} else if (strcmp(name, "numa_node") == 0) {
2052 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2053 				return -EINVAL;
2054 			map_def->parts |= MAP_DEF_NUMA_NODE;
2055 		} else if (strcmp(name, "key_size") == 0) {
2056 			__u32 sz;
2057 
2058 			if (!get_map_field_int(map_name, btf, m, &sz))
2059 				return -EINVAL;
2060 			if (map_def->key_size && map_def->key_size != sz) {
2061 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2062 					map_name, map_def->key_size, sz);
2063 				return -EINVAL;
2064 			}
2065 			map_def->key_size = sz;
2066 			map_def->parts |= MAP_DEF_KEY_SIZE;
2067 		} else if (strcmp(name, "key") == 0) {
2068 			__s64 sz;
2069 
2070 			t = btf__type_by_id(btf, m->type);
2071 			if (!t) {
2072 				pr_warn("map '%s': key type [%d] not found.\n",
2073 					map_name, m->type);
2074 				return -EINVAL;
2075 			}
2076 			if (!btf_is_ptr(t)) {
2077 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2078 					map_name, btf_kind_str(t));
2079 				return -EINVAL;
2080 			}
2081 			sz = btf__resolve_size(btf, t->type);
2082 			if (sz < 0) {
2083 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2084 					map_name, t->type, (ssize_t)sz);
2085 				return sz;
2086 			}
2087 			if (map_def->key_size && map_def->key_size != sz) {
2088 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2089 					map_name, map_def->key_size, (ssize_t)sz);
2090 				return -EINVAL;
2091 			}
2092 			map_def->key_size = sz;
2093 			map_def->key_type_id = t->type;
2094 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2095 		} else if (strcmp(name, "value_size") == 0) {
2096 			__u32 sz;
2097 
2098 			if (!get_map_field_int(map_name, btf, m, &sz))
2099 				return -EINVAL;
2100 			if (map_def->value_size && map_def->value_size != sz) {
2101 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2102 					map_name, map_def->value_size, sz);
2103 				return -EINVAL;
2104 			}
2105 			map_def->value_size = sz;
2106 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2107 		} else if (strcmp(name, "value") == 0) {
2108 			__s64 sz;
2109 
2110 			t = btf__type_by_id(btf, m->type);
2111 			if (!t) {
2112 				pr_warn("map '%s': value type [%d] not found.\n",
2113 					map_name, m->type);
2114 				return -EINVAL;
2115 			}
2116 			if (!btf_is_ptr(t)) {
2117 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2118 					map_name, btf_kind_str(t));
2119 				return -EINVAL;
2120 			}
2121 			sz = btf__resolve_size(btf, t->type);
2122 			if (sz < 0) {
2123 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2124 					map_name, t->type, (ssize_t)sz);
2125 				return sz;
2126 			}
2127 			if (map_def->value_size && map_def->value_size != sz) {
2128 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2129 					map_name, map_def->value_size, (ssize_t)sz);
2130 				return -EINVAL;
2131 			}
2132 			map_def->value_size = sz;
2133 			map_def->value_type_id = t->type;
2134 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2135 		}
2136 		else if (strcmp(name, "values") == 0) {
2137 			char inner_map_name[128];
2138 			int err;
2139 
2140 			if (is_inner) {
2141 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2142 					map_name);
2143 				return -ENOTSUP;
2144 			}
2145 			if (i != vlen - 1) {
2146 				pr_warn("map '%s': '%s' member should be last.\n",
2147 					map_name, name);
2148 				return -EINVAL;
2149 			}
2150 			if (!bpf_map_type__is_map_in_map(map_def->map_type)) {
2151 				pr_warn("map '%s': should be map-in-map.\n",
2152 					map_name);
2153 				return -ENOTSUP;
2154 			}
2155 			if (map_def->value_size && map_def->value_size != 4) {
2156 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2157 					map_name, map_def->value_size);
2158 				return -EINVAL;
2159 			}
2160 			map_def->value_size = 4;
2161 			t = btf__type_by_id(btf, m->type);
2162 			if (!t) {
2163 				pr_warn("map '%s': map-in-map inner type [%d] not found.\n",
2164 					map_name, m->type);
2165 				return -EINVAL;
2166 			}
2167 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2168 				pr_warn("map '%s': map-in-map inner spec is not a zero-sized array.\n",
2169 					map_name);
2170 				return -EINVAL;
2171 			}
2172 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2173 			if (!btf_is_ptr(t)) {
2174 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2175 					map_name, btf_kind_str(t));
2176 				return -EINVAL;
2177 			}
2178 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2179 			if (!btf_is_struct(t)) {
2180 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2181 					map_name, btf_kind_str(t));
2182 				return -EINVAL;
2183 			}
2184 
2185 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2186 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2187 			if (err)
2188 				return err;
2189 
2190 			map_def->parts |= MAP_DEF_INNER_MAP;
2191 		} else if (strcmp(name, "pinning") == 0) {
2192 			__u32 val;
2193 
2194 			if (is_inner) {
2195 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2196 				return -EINVAL;
2197 			}
2198 			if (!get_map_field_int(map_name, btf, m, &val))
2199 				return -EINVAL;
2200 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2201 				pr_warn("map '%s': invalid pinning value %u.\n",
2202 					map_name, val);
2203 				return -EINVAL;
2204 			}
2205 			map_def->pinning = val;
2206 			map_def->parts |= MAP_DEF_PINNING;
2207 		} else {
2208 			if (strict) {
2209 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2210 				return -ENOTSUP;
2211 			}
2212 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2213 		}
2214 	}
2215 
2216 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2217 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2218 		return -EINVAL;
2219 	}
2220 
2221 	return 0;
2222 }
2223 
2224 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2225 {
2226 	map->def.type = def->map_type;
2227 	map->def.key_size = def->key_size;
2228 	map->def.value_size = def->value_size;
2229 	map->def.max_entries = def->max_entries;
2230 	map->def.map_flags = def->map_flags;
2231 
2232 	map->numa_node = def->numa_node;
2233 	map->btf_key_type_id = def->key_type_id;
2234 	map->btf_value_type_id = def->value_type_id;
2235 
2236 	if (def->parts & MAP_DEF_MAP_TYPE)
2237 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2238 
2239 	if (def->parts & MAP_DEF_KEY_TYPE)
2240 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2241 			 map->name, def->key_type_id, def->key_size);
2242 	else if (def->parts & MAP_DEF_KEY_SIZE)
2243 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2244 
2245 	if (def->parts & MAP_DEF_VALUE_TYPE)
2246 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2247 			 map->name, def->value_type_id, def->value_size);
2248 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2249 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2250 
2251 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2252 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2253 	if (def->parts & MAP_DEF_MAP_FLAGS)
2254 		pr_debug("map '%s': found map_flags = %u.\n", map->name, def->map_flags);
2255 	if (def->parts & MAP_DEF_PINNING)
2256 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2257 	if (def->parts & MAP_DEF_NUMA_NODE)
2258 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2259 
2260 	if (def->parts & MAP_DEF_INNER_MAP)
2261 		pr_debug("map '%s': found inner map definition.\n", map->name);
2262 }
2263 
2264 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2265 					 const struct btf_type *sec,
2266 					 int var_idx, int sec_idx,
2267 					 const Elf_Data *data, bool strict,
2268 					 const char *pin_root_path)
2269 {
2270 	struct btf_map_def map_def = {}, inner_def = {};
2271 	const struct btf_type *var, *def;
2272 	const struct btf_var_secinfo *vi;
2273 	const struct btf_var *var_extra;
2274 	const char *map_name;
2275 	struct bpf_map *map;
2276 	int err;
2277 
2278 	vi = btf_var_secinfos(sec) + var_idx;
2279 	var = btf__type_by_id(obj->btf, vi->type);
2280 	var_extra = btf_var(var);
2281 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2282 
2283 	if (map_name == NULL || map_name[0] == '\0') {
2284 		pr_warn("map #%d: empty name.\n", var_idx);
2285 		return -EINVAL;
2286 	}
2287 	if ((__u64)vi->offset + vi->size > data->d_size) {
2288 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2289 		return -EINVAL;
2290 	}
2291 	if (!btf_is_var(var)) {
2292 		pr_warn("map '%s': unexpected var kind %s.\n",
2293 			map_name, btf_kind_str(var));
2294 		return -EINVAL;
2295 	}
2296 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2297 	    var_extra->linkage != BTF_VAR_STATIC) {
2298 		pr_warn("map '%s': unsupported var linkage %u.\n",
2299 			map_name, var_extra->linkage);
2300 		return -EOPNOTSUPP;
2301 	}
2302 
2303 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2304 	if (!btf_is_struct(def)) {
2305 		pr_warn("map '%s': unexpected def kind %s.\n",
2306 			map_name, btf_kind_str(var));
2307 		return -EINVAL;
2308 	}
2309 	if (def->size > vi->size) {
2310 		pr_warn("map '%s': invalid def size.\n", map_name);
2311 		return -EINVAL;
2312 	}
2313 
2314 	map = bpf_object__add_map(obj);
2315 	if (IS_ERR(map))
2316 		return PTR_ERR(map);
2317 	map->name = strdup(map_name);
2318 	if (!map->name) {
2319 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2320 		return -ENOMEM;
2321 	}
2322 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2323 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2324 	map->sec_idx = sec_idx;
2325 	map->sec_offset = vi->offset;
2326 	map->btf_var_idx = var_idx;
2327 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2328 		 map_name, map->sec_idx, map->sec_offset);
2329 
2330 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2331 	if (err)
2332 		return err;
2333 
2334 	fill_map_from_def(map, &map_def);
2335 
2336 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2337 		err = build_map_pin_path(map, pin_root_path);
2338 		if (err) {
2339 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2340 			return err;
2341 		}
2342 	}
2343 
2344 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2345 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2346 		if (!map->inner_map)
2347 			return -ENOMEM;
2348 		map->inner_map->fd = -1;
2349 		map->inner_map->sec_idx = sec_idx;
2350 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2351 		if (!map->inner_map->name)
2352 			return -ENOMEM;
2353 		sprintf(map->inner_map->name, "%s.inner", map_name);
2354 
2355 		fill_map_from_def(map->inner_map, &inner_def);
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2362 					  const char *pin_root_path)
2363 {
2364 	const struct btf_type *sec = NULL;
2365 	int nr_types, i, vlen, err;
2366 	const struct btf_type *t;
2367 	const char *name;
2368 	Elf_Data *data;
2369 	Elf_Scn *scn;
2370 
2371 	if (obj->efile.btf_maps_shndx < 0)
2372 		return 0;
2373 
2374 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2375 	data = elf_sec_data(obj, scn);
2376 	if (!scn || !data) {
2377 		pr_warn("elf: failed to get %s map definitions for %s\n",
2378 			MAPS_ELF_SEC, obj->path);
2379 		return -EINVAL;
2380 	}
2381 
2382 	nr_types = btf__get_nr_types(obj->btf);
2383 	for (i = 1; i <= nr_types; i++) {
2384 		t = btf__type_by_id(obj->btf, i);
2385 		if (!btf_is_datasec(t))
2386 			continue;
2387 		name = btf__name_by_offset(obj->btf, t->name_off);
2388 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2389 			sec = t;
2390 			obj->efile.btf_maps_sec_btf_id = i;
2391 			break;
2392 		}
2393 	}
2394 
2395 	if (!sec) {
2396 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2397 		return -ENOENT;
2398 	}
2399 
2400 	vlen = btf_vlen(sec);
2401 	for (i = 0; i < vlen; i++) {
2402 		err = bpf_object__init_user_btf_map(obj, sec, i,
2403 						    obj->efile.btf_maps_shndx,
2404 						    data, strict,
2405 						    pin_root_path);
2406 		if (err)
2407 			return err;
2408 	}
2409 
2410 	return 0;
2411 }
2412 
2413 static int bpf_object__init_maps(struct bpf_object *obj,
2414 				 const struct bpf_object_open_opts *opts)
2415 {
2416 	const char *pin_root_path;
2417 	bool strict;
2418 	int err;
2419 
2420 	strict = !OPTS_GET(opts, relaxed_maps, false);
2421 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2422 
2423 	err = bpf_object__init_user_maps(obj, strict);
2424 	err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2425 	err = err ?: bpf_object__init_global_data_maps(obj);
2426 	err = err ?: bpf_object__init_kconfig_map(obj);
2427 	err = err ?: bpf_object__init_struct_ops_maps(obj);
2428 	if (err)
2429 		return err;
2430 
2431 	return 0;
2432 }
2433 
2434 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2435 {
2436 	GElf_Shdr sh;
2437 
2438 	if (elf_sec_hdr(obj, elf_sec_by_idx(obj, idx), &sh))
2439 		return false;
2440 
2441 	return sh.sh_flags & SHF_EXECINSTR;
2442 }
2443 
2444 static bool btf_needs_sanitization(struct bpf_object *obj)
2445 {
2446 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2447 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2448 	bool has_float = kernel_supports(FEAT_BTF_FLOAT);
2449 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2450 
2451 	return !has_func || !has_datasec || !has_func_global || !has_float;
2452 }
2453 
2454 static void bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2455 {
2456 	bool has_func_global = kernel_supports(FEAT_BTF_GLOBAL_FUNC);
2457 	bool has_datasec = kernel_supports(FEAT_BTF_DATASEC);
2458 	bool has_float = kernel_supports(FEAT_BTF_FLOAT);
2459 	bool has_func = kernel_supports(FEAT_BTF_FUNC);
2460 	struct btf_type *t;
2461 	int i, j, vlen;
2462 
2463 	for (i = 1; i <= btf__get_nr_types(btf); i++) {
2464 		t = (struct btf_type *)btf__type_by_id(btf, i);
2465 
2466 		if (!has_datasec && btf_is_var(t)) {
2467 			/* replace VAR with INT */
2468 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2469 			/*
2470 			 * using size = 1 is the safest choice, 4 will be too
2471 			 * big and cause kernel BTF validation failure if
2472 			 * original variable took less than 4 bytes
2473 			 */
2474 			t->size = 1;
2475 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2476 		} else if (!has_datasec && btf_is_datasec(t)) {
2477 			/* replace DATASEC with STRUCT */
2478 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
2479 			struct btf_member *m = btf_members(t);
2480 			struct btf_type *vt;
2481 			char *name;
2482 
2483 			name = (char *)btf__name_by_offset(btf, t->name_off);
2484 			while (*name) {
2485 				if (*name == '.')
2486 					*name = '_';
2487 				name++;
2488 			}
2489 
2490 			vlen = btf_vlen(t);
2491 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2492 			for (j = 0; j < vlen; j++, v++, m++) {
2493 				/* order of field assignments is important */
2494 				m->offset = v->offset * 8;
2495 				m->type = v->type;
2496 				/* preserve variable name as member name */
2497 				vt = (void *)btf__type_by_id(btf, v->type);
2498 				m->name_off = vt->name_off;
2499 			}
2500 		} else if (!has_func && btf_is_func_proto(t)) {
2501 			/* replace FUNC_PROTO with ENUM */
2502 			vlen = btf_vlen(t);
2503 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2504 			t->size = sizeof(__u32); /* kernel enforced */
2505 		} else if (!has_func && btf_is_func(t)) {
2506 			/* replace FUNC with TYPEDEF */
2507 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2508 		} else if (!has_func_global && btf_is_func(t)) {
2509 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2510 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2511 		} else if (!has_float && btf_is_float(t)) {
2512 			/* replace FLOAT with an equally-sized empty STRUCT;
2513 			 * since C compilers do not accept e.g. "float" as a
2514 			 * valid struct name, make it anonymous
2515 			 */
2516 			t->name_off = 0;
2517 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2518 		}
2519 	}
2520 }
2521 
2522 static bool libbpf_needs_btf(const struct bpf_object *obj)
2523 {
2524 	return obj->efile.btf_maps_shndx >= 0 ||
2525 	       obj->efile.st_ops_shndx >= 0 ||
2526 	       obj->nr_extern > 0;
2527 }
2528 
2529 static bool kernel_needs_btf(const struct bpf_object *obj)
2530 {
2531 	return obj->efile.st_ops_shndx >= 0;
2532 }
2533 
2534 static int bpf_object__init_btf(struct bpf_object *obj,
2535 				Elf_Data *btf_data,
2536 				Elf_Data *btf_ext_data)
2537 {
2538 	int err = -ENOENT;
2539 
2540 	if (btf_data) {
2541 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2542 		if (IS_ERR(obj->btf)) {
2543 			err = PTR_ERR(obj->btf);
2544 			obj->btf = NULL;
2545 			pr_warn("Error loading ELF section %s: %d.\n",
2546 				BTF_ELF_SEC, err);
2547 			goto out;
2548 		}
2549 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2550 		btf__set_pointer_size(obj->btf, 8);
2551 		err = 0;
2552 	}
2553 	if (btf_ext_data) {
2554 		if (!obj->btf) {
2555 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2556 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2557 			goto out;
2558 		}
2559 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf,
2560 					    btf_ext_data->d_size);
2561 		if (IS_ERR(obj->btf_ext)) {
2562 			pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n",
2563 				BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext));
2564 			obj->btf_ext = NULL;
2565 			goto out;
2566 		}
2567 	}
2568 out:
2569 	if (err && libbpf_needs_btf(obj)) {
2570 		pr_warn("BTF is required, but is missing or corrupted.\n");
2571 		return err;
2572 	}
2573 	return 0;
2574 }
2575 
2576 static int bpf_object__finalize_btf(struct bpf_object *obj)
2577 {
2578 	int err;
2579 
2580 	if (!obj->btf)
2581 		return 0;
2582 
2583 	err = btf__finalize_data(obj, obj->btf);
2584 	if (err) {
2585 		pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err);
2586 		return err;
2587 	}
2588 
2589 	return 0;
2590 }
2591 
2592 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2593 {
2594 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
2595 	    prog->type == BPF_PROG_TYPE_LSM)
2596 		return true;
2597 
2598 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
2599 	 * also need vmlinux BTF
2600 	 */
2601 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
2602 		return true;
2603 
2604 	return false;
2605 }
2606 
2607 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
2608 {
2609 	struct bpf_program *prog;
2610 	int i;
2611 
2612 	/* CO-RE relocations need kernel BTF */
2613 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len)
2614 		return true;
2615 
2616 	/* Support for typed ksyms needs kernel BTF */
2617 	for (i = 0; i < obj->nr_extern; i++) {
2618 		const struct extern_desc *ext;
2619 
2620 		ext = &obj->externs[i];
2621 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
2622 			return true;
2623 	}
2624 
2625 	bpf_object__for_each_program(prog, obj) {
2626 		if (!prog->load)
2627 			continue;
2628 		if (prog_needs_vmlinux_btf(prog))
2629 			return true;
2630 	}
2631 
2632 	return false;
2633 }
2634 
2635 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
2636 {
2637 	int err;
2638 
2639 	/* btf_vmlinux could be loaded earlier */
2640 	if (obj->btf_vmlinux)
2641 		return 0;
2642 
2643 	if (!force && !obj_needs_vmlinux_btf(obj))
2644 		return 0;
2645 
2646 	obj->btf_vmlinux = libbpf_find_kernel_btf();
2647 	if (IS_ERR(obj->btf_vmlinux)) {
2648 		err = PTR_ERR(obj->btf_vmlinux);
2649 		pr_warn("Error loading vmlinux BTF: %d\n", err);
2650 		obj->btf_vmlinux = NULL;
2651 		return err;
2652 	}
2653 	return 0;
2654 }
2655 
2656 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
2657 {
2658 	struct btf *kern_btf = obj->btf;
2659 	bool btf_mandatory, sanitize;
2660 	int i, err = 0;
2661 
2662 	if (!obj->btf)
2663 		return 0;
2664 
2665 	if (!kernel_supports(FEAT_BTF)) {
2666 		if (kernel_needs_btf(obj)) {
2667 			err = -EOPNOTSUPP;
2668 			goto report;
2669 		}
2670 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
2671 		return 0;
2672 	}
2673 
2674 	/* Even though some subprogs are global/weak, user might prefer more
2675 	 * permissive BPF verification process that BPF verifier performs for
2676 	 * static functions, taking into account more context from the caller
2677 	 * functions. In such case, they need to mark such subprogs with
2678 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
2679 	 * corresponding FUNC BTF type to be marked as static and trigger more
2680 	 * involved BPF verification process.
2681 	 */
2682 	for (i = 0; i < obj->nr_programs; i++) {
2683 		struct bpf_program *prog = &obj->programs[i];
2684 		struct btf_type *t;
2685 		const char *name;
2686 		int j, n;
2687 
2688 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
2689 			continue;
2690 
2691 		n = btf__get_nr_types(obj->btf);
2692 		for (j = 1; j <= n; j++) {
2693 			t = btf_type_by_id(obj->btf, j);
2694 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
2695 				continue;
2696 
2697 			name = btf__str_by_offset(obj->btf, t->name_off);
2698 			if (strcmp(name, prog->name) != 0)
2699 				continue;
2700 
2701 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
2702 			break;
2703 		}
2704 	}
2705 
2706 	sanitize = btf_needs_sanitization(obj);
2707 	if (sanitize) {
2708 		const void *raw_data;
2709 		__u32 sz;
2710 
2711 		/* clone BTF to sanitize a copy and leave the original intact */
2712 		raw_data = btf__get_raw_data(obj->btf, &sz);
2713 		kern_btf = btf__new(raw_data, sz);
2714 		if (IS_ERR(kern_btf))
2715 			return PTR_ERR(kern_btf);
2716 
2717 		/* enforce 8-byte pointers for BPF-targeted BTFs */
2718 		btf__set_pointer_size(obj->btf, 8);
2719 		bpf_object__sanitize_btf(obj, kern_btf);
2720 	}
2721 
2722 	err = btf__load(kern_btf);
2723 	if (sanitize) {
2724 		if (!err) {
2725 			/* move fd to libbpf's BTF */
2726 			btf__set_fd(obj->btf, btf__fd(kern_btf));
2727 			btf__set_fd(kern_btf, -1);
2728 		}
2729 		btf__free(kern_btf);
2730 	}
2731 report:
2732 	if (err) {
2733 		btf_mandatory = kernel_needs_btf(obj);
2734 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
2735 			btf_mandatory ? "BTF is mandatory, can't proceed."
2736 				      : "BTF is optional, ignoring.");
2737 		if (!btf_mandatory)
2738 			err = 0;
2739 	}
2740 	return err;
2741 }
2742 
2743 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
2744 {
2745 	const char *name;
2746 
2747 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
2748 	if (!name) {
2749 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2750 			off, obj->path, elf_errmsg(-1));
2751 		return NULL;
2752 	}
2753 
2754 	return name;
2755 }
2756 
2757 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
2758 {
2759 	const char *name;
2760 
2761 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
2762 	if (!name) {
2763 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
2764 			off, obj->path, elf_errmsg(-1));
2765 		return NULL;
2766 	}
2767 
2768 	return name;
2769 }
2770 
2771 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
2772 {
2773 	Elf_Scn *scn;
2774 
2775 	scn = elf_getscn(obj->efile.elf, idx);
2776 	if (!scn) {
2777 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
2778 			idx, obj->path, elf_errmsg(-1));
2779 		return NULL;
2780 	}
2781 	return scn;
2782 }
2783 
2784 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
2785 {
2786 	Elf_Scn *scn = NULL;
2787 	Elf *elf = obj->efile.elf;
2788 	const char *sec_name;
2789 
2790 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2791 		sec_name = elf_sec_name(obj, scn);
2792 		if (!sec_name)
2793 			return NULL;
2794 
2795 		if (strcmp(sec_name, name) != 0)
2796 			continue;
2797 
2798 		return scn;
2799 	}
2800 	return NULL;
2801 }
2802 
2803 static int elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn, GElf_Shdr *hdr)
2804 {
2805 	if (!scn)
2806 		return -EINVAL;
2807 
2808 	if (gelf_getshdr(scn, hdr) != hdr) {
2809 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
2810 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2811 		return -EINVAL;
2812 	}
2813 
2814 	return 0;
2815 }
2816 
2817 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
2818 {
2819 	const char *name;
2820 	GElf_Shdr sh;
2821 
2822 	if (!scn)
2823 		return NULL;
2824 
2825 	if (elf_sec_hdr(obj, scn, &sh))
2826 		return NULL;
2827 
2828 	name = elf_sec_str(obj, sh.sh_name);
2829 	if (!name) {
2830 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
2831 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
2832 		return NULL;
2833 	}
2834 
2835 	return name;
2836 }
2837 
2838 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
2839 {
2840 	Elf_Data *data;
2841 
2842 	if (!scn)
2843 		return NULL;
2844 
2845 	data = elf_getdata(scn, 0);
2846 	if (!data) {
2847 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
2848 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
2849 			obj->path, elf_errmsg(-1));
2850 		return NULL;
2851 	}
2852 
2853 	return data;
2854 }
2855 
2856 static bool is_sec_name_dwarf(const char *name)
2857 {
2858 	/* approximation, but the actual list is too long */
2859 	return strncmp(name, ".debug_", sizeof(".debug_") - 1) == 0;
2860 }
2861 
2862 static bool ignore_elf_section(GElf_Shdr *hdr, const char *name)
2863 {
2864 	/* no special handling of .strtab */
2865 	if (hdr->sh_type == SHT_STRTAB)
2866 		return true;
2867 
2868 	/* ignore .llvm_addrsig section as well */
2869 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
2870 		return true;
2871 
2872 	/* no subprograms will lead to an empty .text section, ignore it */
2873 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
2874 	    strcmp(name, ".text") == 0)
2875 		return true;
2876 
2877 	/* DWARF sections */
2878 	if (is_sec_name_dwarf(name))
2879 		return true;
2880 
2881 	if (strncmp(name, ".rel", sizeof(".rel") - 1) == 0) {
2882 		name += sizeof(".rel") - 1;
2883 		/* DWARF section relocations */
2884 		if (is_sec_name_dwarf(name))
2885 			return true;
2886 
2887 		/* .BTF and .BTF.ext don't need relocations */
2888 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
2889 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
2890 			return true;
2891 	}
2892 
2893 	return false;
2894 }
2895 
2896 static int cmp_progs(const void *_a, const void *_b)
2897 {
2898 	const struct bpf_program *a = _a;
2899 	const struct bpf_program *b = _b;
2900 
2901 	if (a->sec_idx != b->sec_idx)
2902 		return a->sec_idx < b->sec_idx ? -1 : 1;
2903 
2904 	/* sec_insn_off can't be the same within the section */
2905 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
2906 }
2907 
2908 static int bpf_object__elf_collect(struct bpf_object *obj)
2909 {
2910 	Elf *elf = obj->efile.elf;
2911 	Elf_Data *btf_ext_data = NULL;
2912 	Elf_Data *btf_data = NULL;
2913 	int idx = 0, err = 0;
2914 	const char *name;
2915 	Elf_Data *data;
2916 	Elf_Scn *scn;
2917 	GElf_Shdr sh;
2918 
2919 	/* a bunch of ELF parsing functionality depends on processing symbols,
2920 	 * so do the first pass and find the symbol table
2921 	 */
2922 	scn = NULL;
2923 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2924 		if (elf_sec_hdr(obj, scn, &sh))
2925 			return -LIBBPF_ERRNO__FORMAT;
2926 
2927 		if (sh.sh_type == SHT_SYMTAB) {
2928 			if (obj->efile.symbols) {
2929 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
2930 				return -LIBBPF_ERRNO__FORMAT;
2931 			}
2932 
2933 			data = elf_sec_data(obj, scn);
2934 			if (!data)
2935 				return -LIBBPF_ERRNO__FORMAT;
2936 
2937 			obj->efile.symbols = data;
2938 			obj->efile.symbols_shndx = elf_ndxscn(scn);
2939 			obj->efile.strtabidx = sh.sh_link;
2940 		}
2941 	}
2942 
2943 	scn = NULL;
2944 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
2945 		idx++;
2946 
2947 		if (elf_sec_hdr(obj, scn, &sh))
2948 			return -LIBBPF_ERRNO__FORMAT;
2949 
2950 		name = elf_sec_str(obj, sh.sh_name);
2951 		if (!name)
2952 			return -LIBBPF_ERRNO__FORMAT;
2953 
2954 		if (ignore_elf_section(&sh, name))
2955 			continue;
2956 
2957 		data = elf_sec_data(obj, scn);
2958 		if (!data)
2959 			return -LIBBPF_ERRNO__FORMAT;
2960 
2961 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
2962 			 idx, name, (unsigned long)data->d_size,
2963 			 (int)sh.sh_link, (unsigned long)sh.sh_flags,
2964 			 (int)sh.sh_type);
2965 
2966 		if (strcmp(name, "license") == 0) {
2967 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
2968 			if (err)
2969 				return err;
2970 		} else if (strcmp(name, "version") == 0) {
2971 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
2972 			if (err)
2973 				return err;
2974 		} else if (strcmp(name, "maps") == 0) {
2975 			obj->efile.maps_shndx = idx;
2976 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
2977 			obj->efile.btf_maps_shndx = idx;
2978 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
2979 			btf_data = data;
2980 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
2981 			btf_ext_data = data;
2982 		} else if (sh.sh_type == SHT_SYMTAB) {
2983 			/* already processed during the first pass above */
2984 		} else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) {
2985 			if (sh.sh_flags & SHF_EXECINSTR) {
2986 				if (strcmp(name, ".text") == 0)
2987 					obj->efile.text_shndx = idx;
2988 				err = bpf_object__add_programs(obj, data, name, idx);
2989 				if (err)
2990 					return err;
2991 			} else if (strcmp(name, DATA_SEC) == 0) {
2992 				obj->efile.data = data;
2993 				obj->efile.data_shndx = idx;
2994 			} else if (strcmp(name, RODATA_SEC) == 0) {
2995 				obj->efile.rodata = data;
2996 				obj->efile.rodata_shndx = idx;
2997 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
2998 				obj->efile.st_ops_data = data;
2999 				obj->efile.st_ops_shndx = idx;
3000 			} else {
3001 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3002 					idx, name);
3003 			}
3004 		} else if (sh.sh_type == SHT_REL) {
3005 			int nr_sects = obj->efile.nr_reloc_sects;
3006 			void *sects = obj->efile.reloc_sects;
3007 			int sec = sh.sh_info; /* points to other section */
3008 
3009 			/* Only do relo for section with exec instructions */
3010 			if (!section_have_execinstr(obj, sec) &&
3011 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3012 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3013 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3014 					idx, name, sec,
3015 					elf_sec_name(obj, elf_sec_by_idx(obj, sec)) ?: "<?>");
3016 				continue;
3017 			}
3018 
3019 			sects = libbpf_reallocarray(sects, nr_sects + 1,
3020 						    sizeof(*obj->efile.reloc_sects));
3021 			if (!sects)
3022 				return -ENOMEM;
3023 
3024 			obj->efile.reloc_sects = sects;
3025 			obj->efile.nr_reloc_sects++;
3026 
3027 			obj->efile.reloc_sects[nr_sects].shdr = sh;
3028 			obj->efile.reloc_sects[nr_sects].data = data;
3029 		} else if (sh.sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) {
3030 			obj->efile.bss = data;
3031 			obj->efile.bss_shndx = idx;
3032 		} else {
3033 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3034 				(size_t)sh.sh_size);
3035 		}
3036 	}
3037 
3038 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3039 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3040 		return -LIBBPF_ERRNO__FORMAT;
3041 	}
3042 
3043 	/* sort BPF programs by section name and in-section instruction offset
3044 	 * for faster search */
3045 	qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3046 
3047 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3048 }
3049 
3050 static bool sym_is_extern(const GElf_Sym *sym)
3051 {
3052 	int bind = GELF_ST_BIND(sym->st_info);
3053 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3054 	return sym->st_shndx == SHN_UNDEF &&
3055 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3056 	       GELF_ST_TYPE(sym->st_info) == STT_NOTYPE;
3057 }
3058 
3059 static bool sym_is_subprog(const GElf_Sym *sym, int text_shndx)
3060 {
3061 	int bind = GELF_ST_BIND(sym->st_info);
3062 	int type = GELF_ST_TYPE(sym->st_info);
3063 
3064 	/* in .text section */
3065 	if (sym->st_shndx != text_shndx)
3066 		return false;
3067 
3068 	/* local function */
3069 	if (bind == STB_LOCAL && type == STT_SECTION)
3070 		return true;
3071 
3072 	/* global function */
3073 	return bind == STB_GLOBAL && type == STT_FUNC;
3074 }
3075 
3076 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3077 {
3078 	const struct btf_type *t;
3079 	const char *tname;
3080 	int i, n;
3081 
3082 	if (!btf)
3083 		return -ESRCH;
3084 
3085 	n = btf__get_nr_types(btf);
3086 	for (i = 1; i <= n; i++) {
3087 		t = btf__type_by_id(btf, i);
3088 
3089 		if (!btf_is_var(t) && !btf_is_func(t))
3090 			continue;
3091 
3092 		tname = btf__name_by_offset(btf, t->name_off);
3093 		if (strcmp(tname, ext_name))
3094 			continue;
3095 
3096 		if (btf_is_var(t) &&
3097 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3098 			return -EINVAL;
3099 
3100 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3101 			return -EINVAL;
3102 
3103 		return i;
3104 	}
3105 
3106 	return -ENOENT;
3107 }
3108 
3109 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3110 	const struct btf_var_secinfo *vs;
3111 	const struct btf_type *t;
3112 	int i, j, n;
3113 
3114 	if (!btf)
3115 		return -ESRCH;
3116 
3117 	n = btf__get_nr_types(btf);
3118 	for (i = 1; i <= n; i++) {
3119 		t = btf__type_by_id(btf, i);
3120 
3121 		if (!btf_is_datasec(t))
3122 			continue;
3123 
3124 		vs = btf_var_secinfos(t);
3125 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3126 			if (vs->type == ext_btf_id)
3127 				return i;
3128 		}
3129 	}
3130 
3131 	return -ENOENT;
3132 }
3133 
3134 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3135 				     bool *is_signed)
3136 {
3137 	const struct btf_type *t;
3138 	const char *name;
3139 
3140 	t = skip_mods_and_typedefs(btf, id, NULL);
3141 	name = btf__name_by_offset(btf, t->name_off);
3142 
3143 	if (is_signed)
3144 		*is_signed = false;
3145 	switch (btf_kind(t)) {
3146 	case BTF_KIND_INT: {
3147 		int enc = btf_int_encoding(t);
3148 
3149 		if (enc & BTF_INT_BOOL)
3150 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3151 		if (is_signed)
3152 			*is_signed = enc & BTF_INT_SIGNED;
3153 		if (t->size == 1)
3154 			return KCFG_CHAR;
3155 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3156 			return KCFG_UNKNOWN;
3157 		return KCFG_INT;
3158 	}
3159 	case BTF_KIND_ENUM:
3160 		if (t->size != 4)
3161 			return KCFG_UNKNOWN;
3162 		if (strcmp(name, "libbpf_tristate"))
3163 			return KCFG_UNKNOWN;
3164 		return KCFG_TRISTATE;
3165 	case BTF_KIND_ARRAY:
3166 		if (btf_array(t)->nelems == 0)
3167 			return KCFG_UNKNOWN;
3168 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3169 			return KCFG_UNKNOWN;
3170 		return KCFG_CHAR_ARR;
3171 	default:
3172 		return KCFG_UNKNOWN;
3173 	}
3174 }
3175 
3176 static int cmp_externs(const void *_a, const void *_b)
3177 {
3178 	const struct extern_desc *a = _a;
3179 	const struct extern_desc *b = _b;
3180 
3181 	if (a->type != b->type)
3182 		return a->type < b->type ? -1 : 1;
3183 
3184 	if (a->type == EXT_KCFG) {
3185 		/* descending order by alignment requirements */
3186 		if (a->kcfg.align != b->kcfg.align)
3187 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
3188 		/* ascending order by size, within same alignment class */
3189 		if (a->kcfg.sz != b->kcfg.sz)
3190 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3191 	}
3192 
3193 	/* resolve ties by name */
3194 	return strcmp(a->name, b->name);
3195 }
3196 
3197 static int find_int_btf_id(const struct btf *btf)
3198 {
3199 	const struct btf_type *t;
3200 	int i, n;
3201 
3202 	n = btf__get_nr_types(btf);
3203 	for (i = 1; i <= n; i++) {
3204 		t = btf__type_by_id(btf, i);
3205 
3206 		if (btf_is_int(t) && btf_int_bits(t) == 32)
3207 			return i;
3208 	}
3209 
3210 	return 0;
3211 }
3212 
3213 static int add_dummy_ksym_var(struct btf *btf)
3214 {
3215 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3216 	const struct btf_var_secinfo *vs;
3217 	const struct btf_type *sec;
3218 
3219 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3220 					    BTF_KIND_DATASEC);
3221 	if (sec_btf_id < 0)
3222 		return 0;
3223 
3224 	sec = btf__type_by_id(btf, sec_btf_id);
3225 	vs = btf_var_secinfos(sec);
3226 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
3227 		const struct btf_type *vt;
3228 
3229 		vt = btf__type_by_id(btf, vs->type);
3230 		if (btf_is_func(vt))
3231 			break;
3232 	}
3233 
3234 	/* No func in ksyms sec.  No need to add dummy var. */
3235 	if (i == btf_vlen(sec))
3236 		return 0;
3237 
3238 	int_btf_id = find_int_btf_id(btf);
3239 	dummy_var_btf_id = btf__add_var(btf,
3240 					"dummy_ksym",
3241 					BTF_VAR_GLOBAL_ALLOCATED,
3242 					int_btf_id);
3243 	if (dummy_var_btf_id < 0)
3244 		pr_warn("cannot create a dummy_ksym var\n");
3245 
3246 	return dummy_var_btf_id;
3247 }
3248 
3249 static int bpf_object__collect_externs(struct bpf_object *obj)
3250 {
3251 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3252 	const struct btf_type *t;
3253 	struct extern_desc *ext;
3254 	int i, n, off, dummy_var_btf_id;
3255 	const char *ext_name, *sec_name;
3256 	Elf_Scn *scn;
3257 	GElf_Shdr sh;
3258 
3259 	if (!obj->efile.symbols)
3260 		return 0;
3261 
3262 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3263 	if (elf_sec_hdr(obj, scn, &sh))
3264 		return -LIBBPF_ERRNO__FORMAT;
3265 
3266 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3267 	if (dummy_var_btf_id < 0)
3268 		return dummy_var_btf_id;
3269 
3270 	n = sh.sh_size / sh.sh_entsize;
3271 	pr_debug("looking for externs among %d symbols...\n", n);
3272 
3273 	for (i = 0; i < n; i++) {
3274 		GElf_Sym sym;
3275 
3276 		if (!gelf_getsym(obj->efile.symbols, i, &sym))
3277 			return -LIBBPF_ERRNO__FORMAT;
3278 		if (!sym_is_extern(&sym))
3279 			continue;
3280 		ext_name = elf_sym_str(obj, sym.st_name);
3281 		if (!ext_name || !ext_name[0])
3282 			continue;
3283 
3284 		ext = obj->externs;
3285 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3286 		if (!ext)
3287 			return -ENOMEM;
3288 		obj->externs = ext;
3289 		ext = &ext[obj->nr_extern];
3290 		memset(ext, 0, sizeof(*ext));
3291 		obj->nr_extern++;
3292 
3293 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3294 		if (ext->btf_id <= 0) {
3295 			pr_warn("failed to find BTF for extern '%s': %d\n",
3296 				ext_name, ext->btf_id);
3297 			return ext->btf_id;
3298 		}
3299 		t = btf__type_by_id(obj->btf, ext->btf_id);
3300 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
3301 		ext->sym_idx = i;
3302 		ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK;
3303 
3304 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3305 		if (ext->sec_btf_id <= 0) {
3306 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3307 				ext_name, ext->btf_id, ext->sec_btf_id);
3308 			return ext->sec_btf_id;
3309 		}
3310 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3311 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3312 
3313 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3314 			if (btf_is_func(t)) {
3315 				pr_warn("extern function %s is unsupported under %s section\n",
3316 					ext->name, KCONFIG_SEC);
3317 				return -ENOTSUP;
3318 			}
3319 			kcfg_sec = sec;
3320 			ext->type = EXT_KCFG;
3321 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3322 			if (ext->kcfg.sz <= 0) {
3323 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3324 					ext_name, ext->kcfg.sz);
3325 				return ext->kcfg.sz;
3326 			}
3327 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
3328 			if (ext->kcfg.align <= 0) {
3329 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3330 					ext_name, ext->kcfg.align);
3331 				return -EINVAL;
3332 			}
3333 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3334 						        &ext->kcfg.is_signed);
3335 			if (ext->kcfg.type == KCFG_UNKNOWN) {
3336 				pr_warn("extern (kcfg) '%s' type is unsupported\n", ext_name);
3337 				return -ENOTSUP;
3338 			}
3339 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3340 			if (btf_is_func(t) && ext->is_weak) {
3341 				pr_warn("extern weak function %s is unsupported\n",
3342 					ext->name);
3343 				return -ENOTSUP;
3344 			}
3345 			ksym_sec = sec;
3346 			ext->type = EXT_KSYM;
3347 			skip_mods_and_typedefs(obj->btf, t->type,
3348 					       &ext->ksym.type_id);
3349 		} else {
3350 			pr_warn("unrecognized extern section '%s'\n", sec_name);
3351 			return -ENOTSUP;
3352 		}
3353 	}
3354 	pr_debug("collected %d externs total\n", obj->nr_extern);
3355 
3356 	if (!obj->nr_extern)
3357 		return 0;
3358 
3359 	/* sort externs by type, for kcfg ones also by (align, size, name) */
3360 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3361 
3362 	/* for .ksyms section, we need to turn all externs into allocated
3363 	 * variables in BTF to pass kernel verification; we do this by
3364 	 * pretending that each extern is a 8-byte variable
3365 	 */
3366 	if (ksym_sec) {
3367 		/* find existing 4-byte integer type in BTF to use for fake
3368 		 * extern variables in DATASEC
3369 		 */
3370 		int int_btf_id = find_int_btf_id(obj->btf);
3371 		/* For extern function, a dummy_var added earlier
3372 		 * will be used to replace the vs->type and
3373 		 * its name string will be used to refill
3374 		 * the missing param's name.
3375 		 */
3376 		const struct btf_type *dummy_var;
3377 
3378 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3379 		for (i = 0; i < obj->nr_extern; i++) {
3380 			ext = &obj->externs[i];
3381 			if (ext->type != EXT_KSYM)
3382 				continue;
3383 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3384 				 i, ext->sym_idx, ext->name);
3385 		}
3386 
3387 		sec = ksym_sec;
3388 		n = btf_vlen(sec);
3389 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3390 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3391 			struct btf_type *vt;
3392 
3393 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
3394 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3395 			ext = find_extern_by_name(obj, ext_name);
3396 			if (!ext) {
3397 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
3398 					btf_kind_str(vt), ext_name);
3399 				return -ESRCH;
3400 			}
3401 			if (btf_is_func(vt)) {
3402 				const struct btf_type *func_proto;
3403 				struct btf_param *param;
3404 				int j;
3405 
3406 				func_proto = btf__type_by_id(obj->btf,
3407 							     vt->type);
3408 				param = btf_params(func_proto);
3409 				/* Reuse the dummy_var string if the
3410 				 * func proto does not have param name.
3411 				 */
3412 				for (j = 0; j < btf_vlen(func_proto); j++)
3413 					if (param[j].type && !param[j].name_off)
3414 						param[j].name_off =
3415 							dummy_var->name_off;
3416 				vs->type = dummy_var_btf_id;
3417 				vt->info &= ~0xffff;
3418 				vt->info |= BTF_FUNC_GLOBAL;
3419 			} else {
3420 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3421 				vt->type = int_btf_id;
3422 			}
3423 			vs->offset = off;
3424 			vs->size = sizeof(int);
3425 		}
3426 		sec->size = off;
3427 	}
3428 
3429 	if (kcfg_sec) {
3430 		sec = kcfg_sec;
3431 		/* for kcfg externs calculate their offsets within a .kconfig map */
3432 		off = 0;
3433 		for (i = 0; i < obj->nr_extern; i++) {
3434 			ext = &obj->externs[i];
3435 			if (ext->type != EXT_KCFG)
3436 				continue;
3437 
3438 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3439 			off = ext->kcfg.data_off + ext->kcfg.sz;
3440 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3441 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3442 		}
3443 		sec->size = off;
3444 		n = btf_vlen(sec);
3445 		for (i = 0; i < n; i++) {
3446 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3447 
3448 			t = btf__type_by_id(obj->btf, vs->type);
3449 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
3450 			ext = find_extern_by_name(obj, ext_name);
3451 			if (!ext) {
3452 				pr_warn("failed to find extern definition for BTF var '%s'\n",
3453 					ext_name);
3454 				return -ESRCH;
3455 			}
3456 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3457 			vs->offset = ext->kcfg.data_off;
3458 		}
3459 	}
3460 	return 0;
3461 }
3462 
3463 struct bpf_program *
3464 bpf_object__find_program_by_title(const struct bpf_object *obj,
3465 				  const char *title)
3466 {
3467 	struct bpf_program *pos;
3468 
3469 	bpf_object__for_each_program(pos, obj) {
3470 		if (pos->sec_name && !strcmp(pos->sec_name, title))
3471 			return pos;
3472 	}
3473 	return NULL;
3474 }
3475 
3476 static bool prog_is_subprog(const struct bpf_object *obj,
3477 			    const struct bpf_program *prog)
3478 {
3479 	/* For legacy reasons, libbpf supports an entry-point BPF programs
3480 	 * without SEC() attribute, i.e., those in the .text section. But if
3481 	 * there are 2 or more such programs in the .text section, they all
3482 	 * must be subprograms called from entry-point BPF programs in
3483 	 * designated SEC()'tions, otherwise there is no way to distinguish
3484 	 * which of those programs should be loaded vs which are a subprogram.
3485 	 * Similarly, if there is a function/program in .text and at least one
3486 	 * other BPF program with custom SEC() attribute, then we just assume
3487 	 * .text programs are subprograms (even if they are not called from
3488 	 * other programs), because libbpf never explicitly supported mixing
3489 	 * SEC()-designated BPF programs and .text entry-point BPF programs.
3490 	 */
3491 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3492 }
3493 
3494 struct bpf_program *
3495 bpf_object__find_program_by_name(const struct bpf_object *obj,
3496 				 const char *name)
3497 {
3498 	struct bpf_program *prog;
3499 
3500 	bpf_object__for_each_program(prog, obj) {
3501 		if (prog_is_subprog(obj, prog))
3502 			continue;
3503 		if (!strcmp(prog->name, name))
3504 			return prog;
3505 	}
3506 	return NULL;
3507 }
3508 
3509 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3510 				      int shndx)
3511 {
3512 	return shndx == obj->efile.data_shndx ||
3513 	       shndx == obj->efile.bss_shndx ||
3514 	       shndx == obj->efile.rodata_shndx;
3515 }
3516 
3517 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3518 				      int shndx)
3519 {
3520 	return shndx == obj->efile.maps_shndx ||
3521 	       shndx == obj->efile.btf_maps_shndx;
3522 }
3523 
3524 static enum libbpf_map_type
3525 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3526 {
3527 	if (shndx == obj->efile.data_shndx)
3528 		return LIBBPF_MAP_DATA;
3529 	else if (shndx == obj->efile.bss_shndx)
3530 		return LIBBPF_MAP_BSS;
3531 	else if (shndx == obj->efile.rodata_shndx)
3532 		return LIBBPF_MAP_RODATA;
3533 	else if (shndx == obj->efile.symbols_shndx)
3534 		return LIBBPF_MAP_KCONFIG;
3535 	else
3536 		return LIBBPF_MAP_UNSPEC;
3537 }
3538 
3539 static int bpf_program__record_reloc(struct bpf_program *prog,
3540 				     struct reloc_desc *reloc_desc,
3541 				     __u32 insn_idx, const char *sym_name,
3542 				     const GElf_Sym *sym, const GElf_Rel *rel)
3543 {
3544 	struct bpf_insn *insn = &prog->insns[insn_idx];
3545 	size_t map_idx, nr_maps = prog->obj->nr_maps;
3546 	struct bpf_object *obj = prog->obj;
3547 	__u32 shdr_idx = sym->st_shndx;
3548 	enum libbpf_map_type type;
3549 	const char *sym_sec_name;
3550 	struct bpf_map *map;
3551 
3552 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
3553 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
3554 			prog->name, sym_name, insn_idx, insn->code);
3555 		return -LIBBPF_ERRNO__RELOC;
3556 	}
3557 
3558 	if (sym_is_extern(sym)) {
3559 		int sym_idx = GELF_R_SYM(rel->r_info);
3560 		int i, n = obj->nr_extern;
3561 		struct extern_desc *ext;
3562 
3563 		for (i = 0; i < n; i++) {
3564 			ext = &obj->externs[i];
3565 			if (ext->sym_idx == sym_idx)
3566 				break;
3567 		}
3568 		if (i >= n) {
3569 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
3570 				prog->name, sym_name, sym_idx);
3571 			return -LIBBPF_ERRNO__RELOC;
3572 		}
3573 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
3574 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
3575 		if (insn->code == (BPF_JMP | BPF_CALL))
3576 			reloc_desc->type = RELO_EXTERN_FUNC;
3577 		else
3578 			reloc_desc->type = RELO_EXTERN_VAR;
3579 		reloc_desc->insn_idx = insn_idx;
3580 		reloc_desc->sym_off = i; /* sym_off stores extern index */
3581 		return 0;
3582 	}
3583 
3584 	/* sub-program call relocation */
3585 	if (is_call_insn(insn)) {
3586 		if (insn->src_reg != BPF_PSEUDO_CALL) {
3587 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
3588 			return -LIBBPF_ERRNO__RELOC;
3589 		}
3590 		/* text_shndx can be 0, if no default "main" program exists */
3591 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
3592 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3593 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
3594 				prog->name, sym_name, sym_sec_name);
3595 			return -LIBBPF_ERRNO__RELOC;
3596 		}
3597 		if (sym->st_value % BPF_INSN_SZ) {
3598 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
3599 				prog->name, sym_name, (size_t)sym->st_value);
3600 			return -LIBBPF_ERRNO__RELOC;
3601 		}
3602 		reloc_desc->type = RELO_CALL;
3603 		reloc_desc->insn_idx = insn_idx;
3604 		reloc_desc->sym_off = sym->st_value;
3605 		return 0;
3606 	}
3607 
3608 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
3609 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
3610 			prog->name, sym_name, shdr_idx);
3611 		return -LIBBPF_ERRNO__RELOC;
3612 	}
3613 
3614 	/* loading subprog addresses */
3615 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
3616 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
3617 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
3618 		 */
3619 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
3620 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
3621 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
3622 			return -LIBBPF_ERRNO__RELOC;
3623 		}
3624 
3625 		reloc_desc->type = RELO_SUBPROG_ADDR;
3626 		reloc_desc->insn_idx = insn_idx;
3627 		reloc_desc->sym_off = sym->st_value;
3628 		return 0;
3629 	}
3630 
3631 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
3632 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
3633 
3634 	/* generic map reference relocation */
3635 	if (type == LIBBPF_MAP_UNSPEC) {
3636 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
3637 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
3638 				prog->name, sym_name, sym_sec_name);
3639 			return -LIBBPF_ERRNO__RELOC;
3640 		}
3641 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3642 			map = &obj->maps[map_idx];
3643 			if (map->libbpf_type != type ||
3644 			    map->sec_idx != sym->st_shndx ||
3645 			    map->sec_offset != sym->st_value)
3646 				continue;
3647 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
3648 				 prog->name, map_idx, map->name, map->sec_idx,
3649 				 map->sec_offset, insn_idx);
3650 			break;
3651 		}
3652 		if (map_idx >= nr_maps) {
3653 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
3654 				prog->name, sym_sec_name, (size_t)sym->st_value);
3655 			return -LIBBPF_ERRNO__RELOC;
3656 		}
3657 		reloc_desc->type = RELO_LD64;
3658 		reloc_desc->insn_idx = insn_idx;
3659 		reloc_desc->map_idx = map_idx;
3660 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
3661 		return 0;
3662 	}
3663 
3664 	/* global data map relocation */
3665 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
3666 		pr_warn("prog '%s': bad data relo against section '%s'\n",
3667 			prog->name, sym_sec_name);
3668 		return -LIBBPF_ERRNO__RELOC;
3669 	}
3670 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
3671 		map = &obj->maps[map_idx];
3672 		if (map->libbpf_type != type)
3673 			continue;
3674 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
3675 			 prog->name, map_idx, map->name, map->sec_idx,
3676 			 map->sec_offset, insn_idx);
3677 		break;
3678 	}
3679 	if (map_idx >= nr_maps) {
3680 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
3681 			prog->name, sym_sec_name);
3682 		return -LIBBPF_ERRNO__RELOC;
3683 	}
3684 
3685 	reloc_desc->type = RELO_DATA;
3686 	reloc_desc->insn_idx = insn_idx;
3687 	reloc_desc->map_idx = map_idx;
3688 	reloc_desc->sym_off = sym->st_value;
3689 	return 0;
3690 }
3691 
3692 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
3693 {
3694 	return insn_idx >= prog->sec_insn_off &&
3695 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
3696 }
3697 
3698 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
3699 						 size_t sec_idx, size_t insn_idx)
3700 {
3701 	int l = 0, r = obj->nr_programs - 1, m;
3702 	struct bpf_program *prog;
3703 
3704 	while (l < r) {
3705 		m = l + (r - l + 1) / 2;
3706 		prog = &obj->programs[m];
3707 
3708 		if (prog->sec_idx < sec_idx ||
3709 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
3710 			l = m;
3711 		else
3712 			r = m - 1;
3713 	}
3714 	/* matching program could be at index l, but it still might be the
3715 	 * wrong one, so we need to double check conditions for the last time
3716 	 */
3717 	prog = &obj->programs[l];
3718 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
3719 		return prog;
3720 	return NULL;
3721 }
3722 
3723 static int
3724 bpf_object__collect_prog_relos(struct bpf_object *obj, GElf_Shdr *shdr, Elf_Data *data)
3725 {
3726 	Elf_Data *symbols = obj->efile.symbols;
3727 	const char *relo_sec_name, *sec_name;
3728 	size_t sec_idx = shdr->sh_info;
3729 	struct bpf_program *prog;
3730 	struct reloc_desc *relos;
3731 	int err, i, nrels;
3732 	const char *sym_name;
3733 	__u32 insn_idx;
3734 	Elf_Scn *scn;
3735 	Elf_Data *scn_data;
3736 	GElf_Sym sym;
3737 	GElf_Rel rel;
3738 
3739 	scn = elf_sec_by_idx(obj, sec_idx);
3740 	scn_data = elf_sec_data(obj, scn);
3741 
3742 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
3743 	sec_name = elf_sec_name(obj, scn);
3744 	if (!relo_sec_name || !sec_name)
3745 		return -EINVAL;
3746 
3747 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
3748 		 relo_sec_name, sec_idx, sec_name);
3749 	nrels = shdr->sh_size / shdr->sh_entsize;
3750 
3751 	for (i = 0; i < nrels; i++) {
3752 		if (!gelf_getrel(data, i, &rel)) {
3753 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
3754 			return -LIBBPF_ERRNO__FORMAT;
3755 		}
3756 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
3757 			pr_warn("sec '%s': symbol 0x%zx not found for relo #%d\n",
3758 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3759 			return -LIBBPF_ERRNO__FORMAT;
3760 		}
3761 
3762 		if (rel.r_offset % BPF_INSN_SZ || rel.r_offset >= scn_data->d_size) {
3763 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
3764 				relo_sec_name, (size_t)GELF_R_SYM(rel.r_info), i);
3765 			return -LIBBPF_ERRNO__FORMAT;
3766 		}
3767 
3768 		insn_idx = rel.r_offset / BPF_INSN_SZ;
3769 		/* relocations against static functions are recorded as
3770 		 * relocations against the section that contains a function;
3771 		 * in such case, symbol will be STT_SECTION and sym.st_name
3772 		 * will point to empty string (0), so fetch section name
3773 		 * instead
3774 		 */
3775 		if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && sym.st_name == 0)
3776 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym.st_shndx));
3777 		else
3778 			sym_name = elf_sym_str(obj, sym.st_name);
3779 		sym_name = sym_name ?: "<?";
3780 
3781 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
3782 			 relo_sec_name, i, insn_idx, sym_name);
3783 
3784 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
3785 		if (!prog) {
3786 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
3787 				relo_sec_name, i, sec_name, insn_idx);
3788 			continue;
3789 		}
3790 
3791 		relos = libbpf_reallocarray(prog->reloc_desc,
3792 					    prog->nr_reloc + 1, sizeof(*relos));
3793 		if (!relos)
3794 			return -ENOMEM;
3795 		prog->reloc_desc = relos;
3796 
3797 		/* adjust insn_idx to local BPF program frame of reference */
3798 		insn_idx -= prog->sec_insn_off;
3799 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
3800 						insn_idx, sym_name, &sym, &rel);
3801 		if (err)
3802 			return err;
3803 
3804 		prog->nr_reloc++;
3805 	}
3806 	return 0;
3807 }
3808 
3809 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map)
3810 {
3811 	struct bpf_map_def *def = &map->def;
3812 	__u32 key_type_id = 0, value_type_id = 0;
3813 	int ret;
3814 
3815 	/* if it's BTF-defined map, we don't need to search for type IDs.
3816 	 * For struct_ops map, it does not need btf_key_type_id and
3817 	 * btf_value_type_id.
3818 	 */
3819 	if (map->sec_idx == obj->efile.btf_maps_shndx ||
3820 	    bpf_map__is_struct_ops(map))
3821 		return 0;
3822 
3823 	if (!bpf_map__is_internal(map)) {
3824 		ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size,
3825 					   def->value_size, &key_type_id,
3826 					   &value_type_id);
3827 	} else {
3828 		/*
3829 		 * LLVM annotates global data differently in BTF, that is,
3830 		 * only as '.data', '.bss' or '.rodata'.
3831 		 */
3832 		ret = btf__find_by_name(obj->btf,
3833 				libbpf_type_to_btf_name[map->libbpf_type]);
3834 	}
3835 	if (ret < 0)
3836 		return ret;
3837 
3838 	map->btf_key_type_id = key_type_id;
3839 	map->btf_value_type_id = bpf_map__is_internal(map) ?
3840 				 ret : value_type_id;
3841 	return 0;
3842 }
3843 
3844 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
3845 {
3846 	struct bpf_map_info info = {};
3847 	__u32 len = sizeof(info);
3848 	int new_fd, err;
3849 	char *new_name;
3850 
3851 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
3852 	if (err)
3853 		return err;
3854 
3855 	new_name = strdup(info.name);
3856 	if (!new_name)
3857 		return -errno;
3858 
3859 	new_fd = open("/", O_RDONLY | O_CLOEXEC);
3860 	if (new_fd < 0) {
3861 		err = -errno;
3862 		goto err_free_new_name;
3863 	}
3864 
3865 	new_fd = dup3(fd, new_fd, O_CLOEXEC);
3866 	if (new_fd < 0) {
3867 		err = -errno;
3868 		goto err_close_new_fd;
3869 	}
3870 
3871 	err = zclose(map->fd);
3872 	if (err) {
3873 		err = -errno;
3874 		goto err_close_new_fd;
3875 	}
3876 	free(map->name);
3877 
3878 	map->fd = new_fd;
3879 	map->name = new_name;
3880 	map->def.type = info.type;
3881 	map->def.key_size = info.key_size;
3882 	map->def.value_size = info.value_size;
3883 	map->def.max_entries = info.max_entries;
3884 	map->def.map_flags = info.map_flags;
3885 	map->btf_key_type_id = info.btf_key_type_id;
3886 	map->btf_value_type_id = info.btf_value_type_id;
3887 	map->reused = true;
3888 
3889 	return 0;
3890 
3891 err_close_new_fd:
3892 	close(new_fd);
3893 err_free_new_name:
3894 	free(new_name);
3895 	return err;
3896 }
3897 
3898 __u32 bpf_map__max_entries(const struct bpf_map *map)
3899 {
3900 	return map->def.max_entries;
3901 }
3902 
3903 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
3904 {
3905 	if (!bpf_map_type__is_map_in_map(map->def.type))
3906 		return NULL;
3907 
3908 	return map->inner_map;
3909 }
3910 
3911 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
3912 {
3913 	if (map->fd >= 0)
3914 		return -EBUSY;
3915 	map->def.max_entries = max_entries;
3916 	return 0;
3917 }
3918 
3919 int bpf_map__resize(struct bpf_map *map, __u32 max_entries)
3920 {
3921 	if (!map || !max_entries)
3922 		return -EINVAL;
3923 
3924 	return bpf_map__set_max_entries(map, max_entries);
3925 }
3926 
3927 static int
3928 bpf_object__probe_loading(struct bpf_object *obj)
3929 {
3930 	struct bpf_load_program_attr attr;
3931 	char *cp, errmsg[STRERR_BUFSIZE];
3932 	struct bpf_insn insns[] = {
3933 		BPF_MOV64_IMM(BPF_REG_0, 0),
3934 		BPF_EXIT_INSN(),
3935 	};
3936 	int ret;
3937 
3938 	/* make sure basic loading works */
3939 
3940 	memset(&attr, 0, sizeof(attr));
3941 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3942 	attr.insns = insns;
3943 	attr.insns_cnt = ARRAY_SIZE(insns);
3944 	attr.license = "GPL";
3945 
3946 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3947 	if (ret < 0) {
3948 		ret = errno;
3949 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
3950 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
3951 			"program. Make sure your kernel supports BPF "
3952 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
3953 			"set to big enough value.\n", __func__, cp, ret);
3954 		return -ret;
3955 	}
3956 	close(ret);
3957 
3958 	return 0;
3959 }
3960 
3961 static int probe_fd(int fd)
3962 {
3963 	if (fd >= 0)
3964 		close(fd);
3965 	return fd >= 0;
3966 }
3967 
3968 static int probe_kern_prog_name(void)
3969 {
3970 	struct bpf_load_program_attr attr;
3971 	struct bpf_insn insns[] = {
3972 		BPF_MOV64_IMM(BPF_REG_0, 0),
3973 		BPF_EXIT_INSN(),
3974 	};
3975 	int ret;
3976 
3977 	/* make sure loading with name works */
3978 
3979 	memset(&attr, 0, sizeof(attr));
3980 	attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
3981 	attr.insns = insns;
3982 	attr.insns_cnt = ARRAY_SIZE(insns);
3983 	attr.license = "GPL";
3984 	attr.name = "test";
3985 	ret = bpf_load_program_xattr(&attr, NULL, 0);
3986 	return probe_fd(ret);
3987 }
3988 
3989 static int probe_kern_global_data(void)
3990 {
3991 	struct bpf_load_program_attr prg_attr;
3992 	struct bpf_create_map_attr map_attr;
3993 	char *cp, errmsg[STRERR_BUFSIZE];
3994 	struct bpf_insn insns[] = {
3995 		BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
3996 		BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
3997 		BPF_MOV64_IMM(BPF_REG_0, 0),
3998 		BPF_EXIT_INSN(),
3999 	};
4000 	int ret, map;
4001 
4002 	memset(&map_attr, 0, sizeof(map_attr));
4003 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
4004 	map_attr.key_size = sizeof(int);
4005 	map_attr.value_size = 32;
4006 	map_attr.max_entries = 1;
4007 
4008 	map = bpf_create_map_xattr(&map_attr);
4009 	if (map < 0) {
4010 		ret = -errno;
4011 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4012 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4013 			__func__, cp, -ret);
4014 		return ret;
4015 	}
4016 
4017 	insns[0].imm = map;
4018 
4019 	memset(&prg_attr, 0, sizeof(prg_attr));
4020 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4021 	prg_attr.insns = insns;
4022 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
4023 	prg_attr.license = "GPL";
4024 
4025 	ret = bpf_load_program_xattr(&prg_attr, NULL, 0);
4026 	close(map);
4027 	return probe_fd(ret);
4028 }
4029 
4030 static int probe_kern_btf(void)
4031 {
4032 	static const char strs[] = "\0int";
4033 	__u32 types[] = {
4034 		/* int */
4035 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4036 	};
4037 
4038 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4039 					     strs, sizeof(strs)));
4040 }
4041 
4042 static int probe_kern_btf_func(void)
4043 {
4044 	static const char strs[] = "\0int\0x\0a";
4045 	/* void x(int a) {} */
4046 	__u32 types[] = {
4047 		/* int */
4048 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4049 		/* FUNC_PROTO */                                /* [2] */
4050 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4051 		BTF_PARAM_ENC(7, 1),
4052 		/* FUNC x */                                    /* [3] */
4053 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4054 	};
4055 
4056 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4057 					     strs, sizeof(strs)));
4058 }
4059 
4060 static int probe_kern_btf_func_global(void)
4061 {
4062 	static const char strs[] = "\0int\0x\0a";
4063 	/* static void x(int a) {} */
4064 	__u32 types[] = {
4065 		/* int */
4066 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4067 		/* FUNC_PROTO */                                /* [2] */
4068 		BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4069 		BTF_PARAM_ENC(7, 1),
4070 		/* FUNC x BTF_FUNC_GLOBAL */                    /* [3] */
4071 		BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4072 	};
4073 
4074 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4075 					     strs, sizeof(strs)));
4076 }
4077 
4078 static int probe_kern_btf_datasec(void)
4079 {
4080 	static const char strs[] = "\0x\0.data";
4081 	/* static int a; */
4082 	__u32 types[] = {
4083 		/* int */
4084 		BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
4085 		/* VAR x */                                     /* [2] */
4086 		BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4087 		BTF_VAR_STATIC,
4088 		/* DATASEC val */                               /* [3] */
4089 		BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4090 		BTF_VAR_SECINFO_ENC(2, 0, 4),
4091 	};
4092 
4093 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4094 					     strs, sizeof(strs)));
4095 }
4096 
4097 static int probe_kern_btf_float(void)
4098 {
4099 	static const char strs[] = "\0float";
4100 	__u32 types[] = {
4101 		/* float */
4102 		BTF_TYPE_FLOAT_ENC(1, 4),
4103 	};
4104 
4105 	return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4106 					     strs, sizeof(strs)));
4107 }
4108 
4109 static int probe_kern_array_mmap(void)
4110 {
4111 	struct bpf_create_map_attr attr = {
4112 		.map_type = BPF_MAP_TYPE_ARRAY,
4113 		.map_flags = BPF_F_MMAPABLE,
4114 		.key_size = sizeof(int),
4115 		.value_size = sizeof(int),
4116 		.max_entries = 1,
4117 	};
4118 
4119 	return probe_fd(bpf_create_map_xattr(&attr));
4120 }
4121 
4122 static int probe_kern_exp_attach_type(void)
4123 {
4124 	struct bpf_load_program_attr attr;
4125 	struct bpf_insn insns[] = {
4126 		BPF_MOV64_IMM(BPF_REG_0, 0),
4127 		BPF_EXIT_INSN(),
4128 	};
4129 
4130 	memset(&attr, 0, sizeof(attr));
4131 	/* use any valid combination of program type and (optional)
4132 	 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4133 	 * to see if kernel supports expected_attach_type field for
4134 	 * BPF_PROG_LOAD command
4135 	 */
4136 	attr.prog_type = BPF_PROG_TYPE_CGROUP_SOCK;
4137 	attr.expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE;
4138 	attr.insns = insns;
4139 	attr.insns_cnt = ARRAY_SIZE(insns);
4140 	attr.license = "GPL";
4141 
4142 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
4143 }
4144 
4145 static int probe_kern_probe_read_kernel(void)
4146 {
4147 	struct bpf_load_program_attr attr;
4148 	struct bpf_insn insns[] = {
4149 		BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),	/* r1 = r10 (fp) */
4150 		BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8),	/* r1 += -8 */
4151 		BPF_MOV64_IMM(BPF_REG_2, 8),		/* r2 = 8 */
4152 		BPF_MOV64_IMM(BPF_REG_3, 0),		/* r3 = 0 */
4153 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4154 		BPF_EXIT_INSN(),
4155 	};
4156 
4157 	memset(&attr, 0, sizeof(attr));
4158 	attr.prog_type = BPF_PROG_TYPE_KPROBE;
4159 	attr.insns = insns;
4160 	attr.insns_cnt = ARRAY_SIZE(insns);
4161 	attr.license = "GPL";
4162 
4163 	return probe_fd(bpf_load_program_xattr(&attr, NULL, 0));
4164 }
4165 
4166 static int probe_prog_bind_map(void)
4167 {
4168 	struct bpf_load_program_attr prg_attr;
4169 	struct bpf_create_map_attr map_attr;
4170 	char *cp, errmsg[STRERR_BUFSIZE];
4171 	struct bpf_insn insns[] = {
4172 		BPF_MOV64_IMM(BPF_REG_0, 0),
4173 		BPF_EXIT_INSN(),
4174 	};
4175 	int ret, map, prog;
4176 
4177 	memset(&map_attr, 0, sizeof(map_attr));
4178 	map_attr.map_type = BPF_MAP_TYPE_ARRAY;
4179 	map_attr.key_size = sizeof(int);
4180 	map_attr.value_size = 32;
4181 	map_attr.max_entries = 1;
4182 
4183 	map = bpf_create_map_xattr(&map_attr);
4184 	if (map < 0) {
4185 		ret = -errno;
4186 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4187 		pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4188 			__func__, cp, -ret);
4189 		return ret;
4190 	}
4191 
4192 	memset(&prg_attr, 0, sizeof(prg_attr));
4193 	prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4194 	prg_attr.insns = insns;
4195 	prg_attr.insns_cnt = ARRAY_SIZE(insns);
4196 	prg_attr.license = "GPL";
4197 
4198 	prog = bpf_load_program_xattr(&prg_attr, NULL, 0);
4199 	if (prog < 0) {
4200 		close(map);
4201 		return 0;
4202 	}
4203 
4204 	ret = bpf_prog_bind_map(prog, map, NULL);
4205 
4206 	close(map);
4207 	close(prog);
4208 
4209 	return ret >= 0;
4210 }
4211 
4212 static int probe_module_btf(void)
4213 {
4214 	static const char strs[] = "\0int";
4215 	__u32 types[] = {
4216 		/* int */
4217 		BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4218 	};
4219 	struct bpf_btf_info info;
4220 	__u32 len = sizeof(info);
4221 	char name[16];
4222 	int fd, err;
4223 
4224 	fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4225 	if (fd < 0)
4226 		return 0; /* BTF not supported at all */
4227 
4228 	memset(&info, 0, sizeof(info));
4229 	info.name = ptr_to_u64(name);
4230 	info.name_len = sizeof(name);
4231 
4232 	/* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4233 	 * kernel's module BTF support coincides with support for
4234 	 * name/name_len fields in struct bpf_btf_info.
4235 	 */
4236 	err = bpf_obj_get_info_by_fd(fd, &info, &len);
4237 	close(fd);
4238 	return !err;
4239 }
4240 
4241 enum kern_feature_result {
4242 	FEAT_UNKNOWN = 0,
4243 	FEAT_SUPPORTED = 1,
4244 	FEAT_MISSING = 2,
4245 };
4246 
4247 typedef int (*feature_probe_fn)(void);
4248 
4249 static struct kern_feature_desc {
4250 	const char *desc;
4251 	feature_probe_fn probe;
4252 	enum kern_feature_result res;
4253 } feature_probes[__FEAT_CNT] = {
4254 	[FEAT_PROG_NAME] = {
4255 		"BPF program name", probe_kern_prog_name,
4256 	},
4257 	[FEAT_GLOBAL_DATA] = {
4258 		"global variables", probe_kern_global_data,
4259 	},
4260 	[FEAT_BTF] = {
4261 		"minimal BTF", probe_kern_btf,
4262 	},
4263 	[FEAT_BTF_FUNC] = {
4264 		"BTF functions", probe_kern_btf_func,
4265 	},
4266 	[FEAT_BTF_GLOBAL_FUNC] = {
4267 		"BTF global function", probe_kern_btf_func_global,
4268 	},
4269 	[FEAT_BTF_DATASEC] = {
4270 		"BTF data section and variable", probe_kern_btf_datasec,
4271 	},
4272 	[FEAT_ARRAY_MMAP] = {
4273 		"ARRAY map mmap()", probe_kern_array_mmap,
4274 	},
4275 	[FEAT_EXP_ATTACH_TYPE] = {
4276 		"BPF_PROG_LOAD expected_attach_type attribute",
4277 		probe_kern_exp_attach_type,
4278 	},
4279 	[FEAT_PROBE_READ_KERN] = {
4280 		"bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4281 	},
4282 	[FEAT_PROG_BIND_MAP] = {
4283 		"BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4284 	},
4285 	[FEAT_MODULE_BTF] = {
4286 		"module BTF support", probe_module_btf,
4287 	},
4288 	[FEAT_BTF_FLOAT] = {
4289 		"BTF_KIND_FLOAT support", probe_kern_btf_float,
4290 	},
4291 };
4292 
4293 static bool kernel_supports(enum kern_feature_id feat_id)
4294 {
4295 	struct kern_feature_desc *feat = &feature_probes[feat_id];
4296 	int ret;
4297 
4298 	if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4299 		ret = feat->probe();
4300 		if (ret > 0) {
4301 			WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4302 		} else if (ret == 0) {
4303 			WRITE_ONCE(feat->res, FEAT_MISSING);
4304 		} else {
4305 			pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4306 			WRITE_ONCE(feat->res, FEAT_MISSING);
4307 		}
4308 	}
4309 
4310 	return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4311 }
4312 
4313 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4314 {
4315 	struct bpf_map_info map_info = {};
4316 	char msg[STRERR_BUFSIZE];
4317 	__u32 map_info_len;
4318 
4319 	map_info_len = sizeof(map_info);
4320 
4321 	if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) {
4322 		pr_warn("failed to get map info for map FD %d: %s\n",
4323 			map_fd, libbpf_strerror_r(errno, msg, sizeof(msg)));
4324 		return false;
4325 	}
4326 
4327 	return (map_info.type == map->def.type &&
4328 		map_info.key_size == map->def.key_size &&
4329 		map_info.value_size == map->def.value_size &&
4330 		map_info.max_entries == map->def.max_entries &&
4331 		map_info.map_flags == map->def.map_flags);
4332 }
4333 
4334 static int
4335 bpf_object__reuse_map(struct bpf_map *map)
4336 {
4337 	char *cp, errmsg[STRERR_BUFSIZE];
4338 	int err, pin_fd;
4339 
4340 	pin_fd = bpf_obj_get(map->pin_path);
4341 	if (pin_fd < 0) {
4342 		err = -errno;
4343 		if (err == -ENOENT) {
4344 			pr_debug("found no pinned map to reuse at '%s'\n",
4345 				 map->pin_path);
4346 			return 0;
4347 		}
4348 
4349 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4350 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4351 			map->pin_path, cp);
4352 		return err;
4353 	}
4354 
4355 	if (!map_is_reuse_compat(map, pin_fd)) {
4356 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4357 			map->pin_path);
4358 		close(pin_fd);
4359 		return -EINVAL;
4360 	}
4361 
4362 	err = bpf_map__reuse_fd(map, pin_fd);
4363 	if (err) {
4364 		close(pin_fd);
4365 		return err;
4366 	}
4367 	map->pinned = true;
4368 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4369 
4370 	return 0;
4371 }
4372 
4373 static int
4374 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4375 {
4376 	enum libbpf_map_type map_type = map->libbpf_type;
4377 	char *cp, errmsg[STRERR_BUFSIZE];
4378 	int err, zero = 0;
4379 
4380 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4381 	if (err) {
4382 		err = -errno;
4383 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4384 		pr_warn("Error setting initial map(%s) contents: %s\n",
4385 			map->name, cp);
4386 		return err;
4387 	}
4388 
4389 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
4390 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
4391 		err = bpf_map_freeze(map->fd);
4392 		if (err) {
4393 			err = -errno;
4394 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4395 			pr_warn("Error freezing map(%s) as read-only: %s\n",
4396 				map->name, cp);
4397 			return err;
4398 		}
4399 	}
4400 	return 0;
4401 }
4402 
4403 static void bpf_map__destroy(struct bpf_map *map);
4404 
4405 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map)
4406 {
4407 	struct bpf_create_map_attr create_attr;
4408 	struct bpf_map_def *def = &map->def;
4409 
4410 	memset(&create_attr, 0, sizeof(create_attr));
4411 
4412 	if (kernel_supports(FEAT_PROG_NAME))
4413 		create_attr.name = map->name;
4414 	create_attr.map_ifindex = map->map_ifindex;
4415 	create_attr.map_type = def->type;
4416 	create_attr.map_flags = def->map_flags;
4417 	create_attr.key_size = def->key_size;
4418 	create_attr.value_size = def->value_size;
4419 	create_attr.numa_node = map->numa_node;
4420 
4421 	if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !def->max_entries) {
4422 		int nr_cpus;
4423 
4424 		nr_cpus = libbpf_num_possible_cpus();
4425 		if (nr_cpus < 0) {
4426 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
4427 				map->name, nr_cpus);
4428 			return nr_cpus;
4429 		}
4430 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
4431 		create_attr.max_entries = nr_cpus;
4432 	} else {
4433 		create_attr.max_entries = def->max_entries;
4434 	}
4435 
4436 	if (bpf_map__is_struct_ops(map))
4437 		create_attr.btf_vmlinux_value_type_id =
4438 			map->btf_vmlinux_value_type_id;
4439 
4440 	create_attr.btf_fd = 0;
4441 	create_attr.btf_key_type_id = 0;
4442 	create_attr.btf_value_type_id = 0;
4443 	if (obj->btf && btf__fd(obj->btf) >= 0 && !bpf_map_find_btf_info(obj, map)) {
4444 		create_attr.btf_fd = btf__fd(obj->btf);
4445 		create_attr.btf_key_type_id = map->btf_key_type_id;
4446 		create_attr.btf_value_type_id = map->btf_value_type_id;
4447 	}
4448 
4449 	if (bpf_map_type__is_map_in_map(def->type)) {
4450 		if (map->inner_map) {
4451 			int err;
4452 
4453 			err = bpf_object__create_map(obj, map->inner_map);
4454 			if (err) {
4455 				pr_warn("map '%s': failed to create inner map: %d\n",
4456 					map->name, err);
4457 				return err;
4458 			}
4459 			map->inner_map_fd = bpf_map__fd(map->inner_map);
4460 		}
4461 		if (map->inner_map_fd >= 0)
4462 			create_attr.inner_map_fd = map->inner_map_fd;
4463 	}
4464 
4465 	map->fd = bpf_create_map_xattr(&create_attr);
4466 	if (map->fd < 0 && (create_attr.btf_key_type_id ||
4467 			    create_attr.btf_value_type_id)) {
4468 		char *cp, errmsg[STRERR_BUFSIZE];
4469 		int err = -errno;
4470 
4471 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4472 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
4473 			map->name, cp, err);
4474 		create_attr.btf_fd = 0;
4475 		create_attr.btf_key_type_id = 0;
4476 		create_attr.btf_value_type_id = 0;
4477 		map->btf_key_type_id = 0;
4478 		map->btf_value_type_id = 0;
4479 		map->fd = bpf_create_map_xattr(&create_attr);
4480 	}
4481 
4482 	if (map->fd < 0)
4483 		return -errno;
4484 
4485 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
4486 		bpf_map__destroy(map->inner_map);
4487 		zfree(&map->inner_map);
4488 	}
4489 
4490 	return 0;
4491 }
4492 
4493 static int init_map_slots(struct bpf_map *map)
4494 {
4495 	const struct bpf_map *targ_map;
4496 	unsigned int i;
4497 	int fd, err;
4498 
4499 	for (i = 0; i < map->init_slots_sz; i++) {
4500 		if (!map->init_slots[i])
4501 			continue;
4502 
4503 		targ_map = map->init_slots[i];
4504 		fd = bpf_map__fd(targ_map);
4505 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
4506 		if (err) {
4507 			err = -errno;
4508 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
4509 				map->name, i, targ_map->name,
4510 				fd, err);
4511 			return err;
4512 		}
4513 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
4514 			 map->name, i, targ_map->name, fd);
4515 	}
4516 
4517 	zfree(&map->init_slots);
4518 	map->init_slots_sz = 0;
4519 
4520 	return 0;
4521 }
4522 
4523 static int
4524 bpf_object__create_maps(struct bpf_object *obj)
4525 {
4526 	struct bpf_map *map;
4527 	char *cp, errmsg[STRERR_BUFSIZE];
4528 	unsigned int i, j;
4529 	int err;
4530 
4531 	for (i = 0; i < obj->nr_maps; i++) {
4532 		map = &obj->maps[i];
4533 
4534 		if (map->pin_path) {
4535 			err = bpf_object__reuse_map(map);
4536 			if (err) {
4537 				pr_warn("map '%s': error reusing pinned map\n",
4538 					map->name);
4539 				goto err_out;
4540 			}
4541 		}
4542 
4543 		if (map->fd >= 0) {
4544 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
4545 				 map->name, map->fd);
4546 		} else {
4547 			err = bpf_object__create_map(obj, map);
4548 			if (err)
4549 				goto err_out;
4550 
4551 			pr_debug("map '%s': created successfully, fd=%d\n",
4552 				 map->name, map->fd);
4553 
4554 			if (bpf_map__is_internal(map)) {
4555 				err = bpf_object__populate_internal_map(obj, map);
4556 				if (err < 0) {
4557 					zclose(map->fd);
4558 					goto err_out;
4559 				}
4560 			}
4561 
4562 			if (map->init_slots_sz) {
4563 				err = init_map_slots(map);
4564 				if (err < 0) {
4565 					zclose(map->fd);
4566 					goto err_out;
4567 				}
4568 			}
4569 		}
4570 
4571 		if (map->pin_path && !map->pinned) {
4572 			err = bpf_map__pin(map, NULL);
4573 			if (err) {
4574 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
4575 					map->name, map->pin_path, err);
4576 				zclose(map->fd);
4577 				goto err_out;
4578 			}
4579 		}
4580 	}
4581 
4582 	return 0;
4583 
4584 err_out:
4585 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
4586 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
4587 	pr_perm_msg(err);
4588 	for (j = 0; j < i; j++)
4589 		zclose(obj->maps[j].fd);
4590 	return err;
4591 }
4592 
4593 #define BPF_CORE_SPEC_MAX_LEN 64
4594 
4595 /* represents BPF CO-RE field or array element accessor */
4596 struct bpf_core_accessor {
4597 	__u32 type_id;		/* struct/union type or array element type */
4598 	__u32 idx;		/* field index or array index */
4599 	const char *name;	/* field name or NULL for array accessor */
4600 };
4601 
4602 struct bpf_core_spec {
4603 	const struct btf *btf;
4604 	/* high-level spec: named fields and array indices only */
4605 	struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN];
4606 	/* original unresolved (no skip_mods_or_typedefs) root type ID */
4607 	__u32 root_type_id;
4608 	/* CO-RE relocation kind */
4609 	enum bpf_core_relo_kind relo_kind;
4610 	/* high-level spec length */
4611 	int len;
4612 	/* raw, low-level spec: 1-to-1 with accessor spec string */
4613 	int raw_spec[BPF_CORE_SPEC_MAX_LEN];
4614 	/* raw spec length */
4615 	int raw_len;
4616 	/* field bit offset represented by spec */
4617 	__u32 bit_offset;
4618 };
4619 
4620 static bool str_is_empty(const char *s)
4621 {
4622 	return !s || !s[0];
4623 }
4624 
4625 static bool is_flex_arr(const struct btf *btf,
4626 			const struct bpf_core_accessor *acc,
4627 			const struct btf_array *arr)
4628 {
4629 	const struct btf_type *t;
4630 
4631 	/* not a flexible array, if not inside a struct or has non-zero size */
4632 	if (!acc->name || arr->nelems > 0)
4633 		return false;
4634 
4635 	/* has to be the last member of enclosing struct */
4636 	t = btf__type_by_id(btf, acc->type_id);
4637 	return acc->idx == btf_vlen(t) - 1;
4638 }
4639 
4640 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
4641 {
4642 	switch (kind) {
4643 	case BPF_FIELD_BYTE_OFFSET: return "byte_off";
4644 	case BPF_FIELD_BYTE_SIZE: return "byte_sz";
4645 	case BPF_FIELD_EXISTS: return "field_exists";
4646 	case BPF_FIELD_SIGNED: return "signed";
4647 	case BPF_FIELD_LSHIFT_U64: return "lshift_u64";
4648 	case BPF_FIELD_RSHIFT_U64: return "rshift_u64";
4649 	case BPF_TYPE_ID_LOCAL: return "local_type_id";
4650 	case BPF_TYPE_ID_TARGET: return "target_type_id";
4651 	case BPF_TYPE_EXISTS: return "type_exists";
4652 	case BPF_TYPE_SIZE: return "type_size";
4653 	case BPF_ENUMVAL_EXISTS: return "enumval_exists";
4654 	case BPF_ENUMVAL_VALUE: return "enumval_value";
4655 	default: return "unknown";
4656 	}
4657 }
4658 
4659 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
4660 {
4661 	switch (kind) {
4662 	case BPF_FIELD_BYTE_OFFSET:
4663 	case BPF_FIELD_BYTE_SIZE:
4664 	case BPF_FIELD_EXISTS:
4665 	case BPF_FIELD_SIGNED:
4666 	case BPF_FIELD_LSHIFT_U64:
4667 	case BPF_FIELD_RSHIFT_U64:
4668 		return true;
4669 	default:
4670 		return false;
4671 	}
4672 }
4673 
4674 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
4675 {
4676 	switch (kind) {
4677 	case BPF_TYPE_ID_LOCAL:
4678 	case BPF_TYPE_ID_TARGET:
4679 	case BPF_TYPE_EXISTS:
4680 	case BPF_TYPE_SIZE:
4681 		return true;
4682 	default:
4683 		return false;
4684 	}
4685 }
4686 
4687 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
4688 {
4689 	switch (kind) {
4690 	case BPF_ENUMVAL_EXISTS:
4691 	case BPF_ENUMVAL_VALUE:
4692 		return true;
4693 	default:
4694 		return false;
4695 	}
4696 }
4697 
4698 /*
4699  * Turn bpf_core_relo into a low- and high-level spec representation,
4700  * validating correctness along the way, as well as calculating resulting
4701  * field bit offset, specified by accessor string. Low-level spec captures
4702  * every single level of nestedness, including traversing anonymous
4703  * struct/union members. High-level one only captures semantically meaningful
4704  * "turning points": named fields and array indicies.
4705  * E.g., for this case:
4706  *
4707  *   struct sample {
4708  *       int __unimportant;
4709  *       struct {
4710  *           int __1;
4711  *           int __2;
4712  *           int a[7];
4713  *       };
4714  *   };
4715  *
4716  *   struct sample *s = ...;
4717  *
4718  *   int x = &s->a[3]; // access string = '0:1:2:3'
4719  *
4720  * Low-level spec has 1:1 mapping with each element of access string (it's
4721  * just a parsed access string representation): [0, 1, 2, 3].
4722  *
4723  * High-level spec will capture only 3 points:
4724  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
4725  *   - field 'a' access (corresponds to '2' in low-level spec);
4726  *   - array element #3 access (corresponds to '3' in low-level spec).
4727  *
4728  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
4729  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
4730  * spec and raw_spec are kept empty.
4731  *
4732  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
4733  * string to specify enumerator's value index that need to be relocated.
4734  */
4735 static int bpf_core_parse_spec(const struct btf *btf,
4736 			       __u32 type_id,
4737 			       const char *spec_str,
4738 			       enum bpf_core_relo_kind relo_kind,
4739 			       struct bpf_core_spec *spec)
4740 {
4741 	int access_idx, parsed_len, i;
4742 	struct bpf_core_accessor *acc;
4743 	const struct btf_type *t;
4744 	const char *name;
4745 	__u32 id;
4746 	__s64 sz;
4747 
4748 	if (str_is_empty(spec_str) || *spec_str == ':')
4749 		return -EINVAL;
4750 
4751 	memset(spec, 0, sizeof(*spec));
4752 	spec->btf = btf;
4753 	spec->root_type_id = type_id;
4754 	spec->relo_kind = relo_kind;
4755 
4756 	/* type-based relocations don't have a field access string */
4757 	if (core_relo_is_type_based(relo_kind)) {
4758 		if (strcmp(spec_str, "0"))
4759 			return -EINVAL;
4760 		return 0;
4761 	}
4762 
4763 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
4764 	while (*spec_str) {
4765 		if (*spec_str == ':')
4766 			++spec_str;
4767 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
4768 			return -EINVAL;
4769 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
4770 			return -E2BIG;
4771 		spec_str += parsed_len;
4772 		spec->raw_spec[spec->raw_len++] = access_idx;
4773 	}
4774 
4775 	if (spec->raw_len == 0)
4776 		return -EINVAL;
4777 
4778 	t = skip_mods_and_typedefs(btf, type_id, &id);
4779 	if (!t)
4780 		return -EINVAL;
4781 
4782 	access_idx = spec->raw_spec[0];
4783 	acc = &spec->spec[0];
4784 	acc->type_id = id;
4785 	acc->idx = access_idx;
4786 	spec->len++;
4787 
4788 	if (core_relo_is_enumval_based(relo_kind)) {
4789 		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
4790 			return -EINVAL;
4791 
4792 		/* record enumerator name in a first accessor */
4793 		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
4794 		return 0;
4795 	}
4796 
4797 	if (!core_relo_is_field_based(relo_kind))
4798 		return -EINVAL;
4799 
4800 	sz = btf__resolve_size(btf, id);
4801 	if (sz < 0)
4802 		return sz;
4803 	spec->bit_offset = access_idx * sz * 8;
4804 
4805 	for (i = 1; i < spec->raw_len; i++) {
4806 		t = skip_mods_and_typedefs(btf, id, &id);
4807 		if (!t)
4808 			return -EINVAL;
4809 
4810 		access_idx = spec->raw_spec[i];
4811 		acc = &spec->spec[spec->len];
4812 
4813 		if (btf_is_composite(t)) {
4814 			const struct btf_member *m;
4815 			__u32 bit_offset;
4816 
4817 			if (access_idx >= btf_vlen(t))
4818 				return -EINVAL;
4819 
4820 			bit_offset = btf_member_bit_offset(t, access_idx);
4821 			spec->bit_offset += bit_offset;
4822 
4823 			m = btf_members(t) + access_idx;
4824 			if (m->name_off) {
4825 				name = btf__name_by_offset(btf, m->name_off);
4826 				if (str_is_empty(name))
4827 					return -EINVAL;
4828 
4829 				acc->type_id = id;
4830 				acc->idx = access_idx;
4831 				acc->name = name;
4832 				spec->len++;
4833 			}
4834 
4835 			id = m->type;
4836 		} else if (btf_is_array(t)) {
4837 			const struct btf_array *a = btf_array(t);
4838 			bool flex;
4839 
4840 			t = skip_mods_and_typedefs(btf, a->type, &id);
4841 			if (!t)
4842 				return -EINVAL;
4843 
4844 			flex = is_flex_arr(btf, acc - 1, a);
4845 			if (!flex && access_idx >= a->nelems)
4846 				return -EINVAL;
4847 
4848 			spec->spec[spec->len].type_id = id;
4849 			spec->spec[spec->len].idx = access_idx;
4850 			spec->len++;
4851 
4852 			sz = btf__resolve_size(btf, id);
4853 			if (sz < 0)
4854 				return sz;
4855 			spec->bit_offset += access_idx * sz * 8;
4856 		} else {
4857 			pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
4858 				type_id, spec_str, i, id, btf_kind_str(t));
4859 			return -EINVAL;
4860 		}
4861 	}
4862 
4863 	return 0;
4864 }
4865 
4866 static bool bpf_core_is_flavor_sep(const char *s)
4867 {
4868 	/* check X___Y name pattern, where X and Y are not underscores */
4869 	return s[0] != '_' &&				      /* X */
4870 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
4871 	       s[4] != '_';				      /* Y */
4872 }
4873 
4874 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
4875  * before last triple underscore. Struct name part after last triple
4876  * underscore is ignored by BPF CO-RE relocation during relocation matching.
4877  */
4878 static size_t bpf_core_essential_name_len(const char *name)
4879 {
4880 	size_t n = strlen(name);
4881 	int i;
4882 
4883 	for (i = n - 5; i >= 0; i--) {
4884 		if (bpf_core_is_flavor_sep(name + i))
4885 			return i + 1;
4886 	}
4887 	return n;
4888 }
4889 
4890 struct core_cand
4891 {
4892 	const struct btf *btf;
4893 	const struct btf_type *t;
4894 	const char *name;
4895 	__u32 id;
4896 };
4897 
4898 /* dynamically sized list of type IDs and its associated struct btf */
4899 struct core_cand_list {
4900 	struct core_cand *cands;
4901 	int len;
4902 };
4903 
4904 static void bpf_core_free_cands(struct core_cand_list *cands)
4905 {
4906 	free(cands->cands);
4907 	free(cands);
4908 }
4909 
4910 static int bpf_core_add_cands(struct core_cand *local_cand,
4911 			      size_t local_essent_len,
4912 			      const struct btf *targ_btf,
4913 			      const char *targ_btf_name,
4914 			      int targ_start_id,
4915 			      struct core_cand_list *cands)
4916 {
4917 	struct core_cand *new_cands, *cand;
4918 	const struct btf_type *t;
4919 	const char *targ_name;
4920 	size_t targ_essent_len;
4921 	int n, i;
4922 
4923 	n = btf__get_nr_types(targ_btf);
4924 	for (i = targ_start_id; i <= n; i++) {
4925 		t = btf__type_by_id(targ_btf, i);
4926 		if (btf_kind(t) != btf_kind(local_cand->t))
4927 			continue;
4928 
4929 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
4930 		if (str_is_empty(targ_name))
4931 			continue;
4932 
4933 		targ_essent_len = bpf_core_essential_name_len(targ_name);
4934 		if (targ_essent_len != local_essent_len)
4935 			continue;
4936 
4937 		if (strncmp(local_cand->name, targ_name, local_essent_len) != 0)
4938 			continue;
4939 
4940 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
4941 			 local_cand->id, btf_kind_str(local_cand->t),
4942 			 local_cand->name, i, btf_kind_str(t), targ_name,
4943 			 targ_btf_name);
4944 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
4945 					      sizeof(*cands->cands));
4946 		if (!new_cands)
4947 			return -ENOMEM;
4948 
4949 		cand = &new_cands[cands->len];
4950 		cand->btf = targ_btf;
4951 		cand->t = t;
4952 		cand->name = targ_name;
4953 		cand->id = i;
4954 
4955 		cands->cands = new_cands;
4956 		cands->len++;
4957 	}
4958 	return 0;
4959 }
4960 
4961 static int load_module_btfs(struct bpf_object *obj)
4962 {
4963 	struct bpf_btf_info info;
4964 	struct module_btf *mod_btf;
4965 	struct btf *btf;
4966 	char name[64];
4967 	__u32 id = 0, len;
4968 	int err, fd;
4969 
4970 	if (obj->btf_modules_loaded)
4971 		return 0;
4972 
4973 	/* don't do this again, even if we find no module BTFs */
4974 	obj->btf_modules_loaded = true;
4975 
4976 	/* kernel too old to support module BTFs */
4977 	if (!kernel_supports(FEAT_MODULE_BTF))
4978 		return 0;
4979 
4980 	while (true) {
4981 		err = bpf_btf_get_next_id(id, &id);
4982 		if (err && errno == ENOENT)
4983 			return 0;
4984 		if (err) {
4985 			err = -errno;
4986 			pr_warn("failed to iterate BTF objects: %d\n", err);
4987 			return err;
4988 		}
4989 
4990 		fd = bpf_btf_get_fd_by_id(id);
4991 		if (fd < 0) {
4992 			if (errno == ENOENT)
4993 				continue; /* expected race: BTF was unloaded */
4994 			err = -errno;
4995 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
4996 			return err;
4997 		}
4998 
4999 		len = sizeof(info);
5000 		memset(&info, 0, sizeof(info));
5001 		info.name = ptr_to_u64(name);
5002 		info.name_len = sizeof(name);
5003 
5004 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
5005 		if (err) {
5006 			err = -errno;
5007 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5008 			goto err_out;
5009 		}
5010 
5011 		/* ignore non-module BTFs */
5012 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5013 			close(fd);
5014 			continue;
5015 		}
5016 
5017 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5018 		if (IS_ERR(btf)) {
5019 			pr_warn("failed to load module [%s]'s BTF object #%d: %ld\n",
5020 				name, id, PTR_ERR(btf));
5021 			err = PTR_ERR(btf);
5022 			goto err_out;
5023 		}
5024 
5025 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5026 				        sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5027 		if (err)
5028 			goto err_out;
5029 
5030 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5031 
5032 		mod_btf->btf = btf;
5033 		mod_btf->id = id;
5034 		mod_btf->fd = fd;
5035 		mod_btf->name = strdup(name);
5036 		if (!mod_btf->name) {
5037 			err = -ENOMEM;
5038 			goto err_out;
5039 		}
5040 		continue;
5041 
5042 err_out:
5043 		close(fd);
5044 		return err;
5045 	}
5046 
5047 	return 0;
5048 }
5049 
5050 static struct core_cand_list *
5051 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5052 {
5053 	struct core_cand local_cand = {};
5054 	struct core_cand_list *cands;
5055 	const struct btf *main_btf;
5056 	size_t local_essent_len;
5057 	int err, i;
5058 
5059 	local_cand.btf = local_btf;
5060 	local_cand.t = btf__type_by_id(local_btf, local_type_id);
5061 	if (!local_cand.t)
5062 		return ERR_PTR(-EINVAL);
5063 
5064 	local_cand.name = btf__name_by_offset(local_btf, local_cand.t->name_off);
5065 	if (str_is_empty(local_cand.name))
5066 		return ERR_PTR(-EINVAL);
5067 	local_essent_len = bpf_core_essential_name_len(local_cand.name);
5068 
5069 	cands = calloc(1, sizeof(*cands));
5070 	if (!cands)
5071 		return ERR_PTR(-ENOMEM);
5072 
5073 	/* Attempt to find target candidates in vmlinux BTF first */
5074 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5075 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5076 	if (err)
5077 		goto err_out;
5078 
5079 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5080 	if (cands->len)
5081 		return cands;
5082 
5083 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5084 	if (obj->btf_vmlinux_override)
5085 		return cands;
5086 
5087 	/* now look through module BTFs, trying to still find candidates */
5088 	err = load_module_btfs(obj);
5089 	if (err)
5090 		goto err_out;
5091 
5092 	for (i = 0; i < obj->btf_module_cnt; i++) {
5093 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5094 					 obj->btf_modules[i].btf,
5095 					 obj->btf_modules[i].name,
5096 					 btf__get_nr_types(obj->btf_vmlinux) + 1,
5097 					 cands);
5098 		if (err)
5099 			goto err_out;
5100 	}
5101 
5102 	return cands;
5103 err_out:
5104 	bpf_core_free_cands(cands);
5105 	return ERR_PTR(err);
5106 }
5107 
5108 /* Check two types for compatibility for the purpose of field access
5109  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
5110  * are relocating semantically compatible entities:
5111  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
5112  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
5113  *   - any two PTRs are always compatible;
5114  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
5115  *     least one of enums should be anonymous;
5116  *   - for ENUMs, check sizes, names are ignored;
5117  *   - for INT, size and signedness are ignored;
5118  *   - any two FLOATs are always compatible;
5119  *   - for ARRAY, dimensionality is ignored, element types are checked for
5120  *     compatibility recursively;
5121  *   - everything else shouldn't be ever a target of relocation.
5122  * These rules are not set in stone and probably will be adjusted as we get
5123  * more experience with using BPF CO-RE relocations.
5124  */
5125 static int bpf_core_fields_are_compat(const struct btf *local_btf,
5126 				      __u32 local_id,
5127 				      const struct btf *targ_btf,
5128 				      __u32 targ_id)
5129 {
5130 	const struct btf_type *local_type, *targ_type;
5131 
5132 recur:
5133 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5134 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5135 	if (!local_type || !targ_type)
5136 		return -EINVAL;
5137 
5138 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
5139 		return 1;
5140 	if (btf_kind(local_type) != btf_kind(targ_type))
5141 		return 0;
5142 
5143 	switch (btf_kind(local_type)) {
5144 	case BTF_KIND_PTR:
5145 	case BTF_KIND_FLOAT:
5146 		return 1;
5147 	case BTF_KIND_FWD:
5148 	case BTF_KIND_ENUM: {
5149 		const char *local_name, *targ_name;
5150 		size_t local_len, targ_len;
5151 
5152 		local_name = btf__name_by_offset(local_btf,
5153 						 local_type->name_off);
5154 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
5155 		local_len = bpf_core_essential_name_len(local_name);
5156 		targ_len = bpf_core_essential_name_len(targ_name);
5157 		/* one of them is anonymous or both w/ same flavor-less names */
5158 		return local_len == 0 || targ_len == 0 ||
5159 		       (local_len == targ_len &&
5160 			strncmp(local_name, targ_name, local_len) == 0);
5161 	}
5162 	case BTF_KIND_INT:
5163 		/* just reject deprecated bitfield-like integers; all other
5164 		 * integers are by default compatible between each other
5165 		 */
5166 		return btf_int_offset(local_type) == 0 &&
5167 		       btf_int_offset(targ_type) == 0;
5168 	case BTF_KIND_ARRAY:
5169 		local_id = btf_array(local_type)->type;
5170 		targ_id = btf_array(targ_type)->type;
5171 		goto recur;
5172 	default:
5173 		pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n",
5174 			btf_kind(local_type), local_id, targ_id);
5175 		return 0;
5176 	}
5177 }
5178 
5179 /*
5180  * Given single high-level named field accessor in local type, find
5181  * corresponding high-level accessor for a target type. Along the way,
5182  * maintain low-level spec for target as well. Also keep updating target
5183  * bit offset.
5184  *
5185  * Searching is performed through recursive exhaustive enumeration of all
5186  * fields of a struct/union. If there are any anonymous (embedded)
5187  * structs/unions, they are recursively searched as well. If field with
5188  * desired name is found, check compatibility between local and target types,
5189  * before returning result.
5190  *
5191  * 1 is returned, if field is found.
5192  * 0 is returned if no compatible field is found.
5193  * <0 is returned on error.
5194  */
5195 static int bpf_core_match_member(const struct btf *local_btf,
5196 				 const struct bpf_core_accessor *local_acc,
5197 				 const struct btf *targ_btf,
5198 				 __u32 targ_id,
5199 				 struct bpf_core_spec *spec,
5200 				 __u32 *next_targ_id)
5201 {
5202 	const struct btf_type *local_type, *targ_type;
5203 	const struct btf_member *local_member, *m;
5204 	const char *local_name, *targ_name;
5205 	__u32 local_id;
5206 	int i, n, found;
5207 
5208 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5209 	if (!targ_type)
5210 		return -EINVAL;
5211 	if (!btf_is_composite(targ_type))
5212 		return 0;
5213 
5214 	local_id = local_acc->type_id;
5215 	local_type = btf__type_by_id(local_btf, local_id);
5216 	local_member = btf_members(local_type) + local_acc->idx;
5217 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
5218 
5219 	n = btf_vlen(targ_type);
5220 	m = btf_members(targ_type);
5221 	for (i = 0; i < n; i++, m++) {
5222 		__u32 bit_offset;
5223 
5224 		bit_offset = btf_member_bit_offset(targ_type, i);
5225 
5226 		/* too deep struct/union/array nesting */
5227 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5228 			return -E2BIG;
5229 
5230 		/* speculate this member will be the good one */
5231 		spec->bit_offset += bit_offset;
5232 		spec->raw_spec[spec->raw_len++] = i;
5233 
5234 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
5235 		if (str_is_empty(targ_name)) {
5236 			/* embedded struct/union, we need to go deeper */
5237 			found = bpf_core_match_member(local_btf, local_acc,
5238 						      targ_btf, m->type,
5239 						      spec, next_targ_id);
5240 			if (found) /* either found or error */
5241 				return found;
5242 		} else if (strcmp(local_name, targ_name) == 0) {
5243 			/* matching named field */
5244 			struct bpf_core_accessor *targ_acc;
5245 
5246 			targ_acc = &spec->spec[spec->len++];
5247 			targ_acc->type_id = targ_id;
5248 			targ_acc->idx = i;
5249 			targ_acc->name = targ_name;
5250 
5251 			*next_targ_id = m->type;
5252 			found = bpf_core_fields_are_compat(local_btf,
5253 							   local_member->type,
5254 							   targ_btf, m->type);
5255 			if (!found)
5256 				spec->len--; /* pop accessor */
5257 			return found;
5258 		}
5259 		/* member turned out not to be what we looked for */
5260 		spec->bit_offset -= bit_offset;
5261 		spec->raw_len--;
5262 	}
5263 
5264 	return 0;
5265 }
5266 
5267 /* Check local and target types for compatibility. This check is used for
5268  * type-based CO-RE relocations and follow slightly different rules than
5269  * field-based relocations. This function assumes that root types were already
5270  * checked for name match. Beyond that initial root-level name check, names
5271  * are completely ignored. Compatibility rules are as follows:
5272  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5273  *     kind should match for local and target types (i.e., STRUCT is not
5274  *     compatible with UNION);
5275  *   - for ENUMs, the size is ignored;
5276  *   - for INT, size and signedness are ignored;
5277  *   - for ARRAY, dimensionality is ignored, element types are checked for
5278  *     compatibility recursively;
5279  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5280  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5281  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5282  *     number of input args and compatible return and argument types.
5283  * These rules are not set in stone and probably will be adjusted as we get
5284  * more experience with using BPF CO-RE relocations.
5285  */
5286 static int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5287 				     const struct btf *targ_btf, __u32 targ_id)
5288 {
5289 	const struct btf_type *local_type, *targ_type;
5290 	int depth = 32; /* max recursion depth */
5291 
5292 	/* caller made sure that names match (ignoring flavor suffix) */
5293 	local_type = btf__type_by_id(local_btf, local_id);
5294 	targ_type = btf__type_by_id(targ_btf, targ_id);
5295 	if (btf_kind(local_type) != btf_kind(targ_type))
5296 		return 0;
5297 
5298 recur:
5299 	depth--;
5300 	if (depth < 0)
5301 		return -EINVAL;
5302 
5303 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
5304 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
5305 	if (!local_type || !targ_type)
5306 		return -EINVAL;
5307 
5308 	if (btf_kind(local_type) != btf_kind(targ_type))
5309 		return 0;
5310 
5311 	switch (btf_kind(local_type)) {
5312 	case BTF_KIND_UNKN:
5313 	case BTF_KIND_STRUCT:
5314 	case BTF_KIND_UNION:
5315 	case BTF_KIND_ENUM:
5316 	case BTF_KIND_FWD:
5317 		return 1;
5318 	case BTF_KIND_INT:
5319 		/* just reject deprecated bitfield-like integers; all other
5320 		 * integers are by default compatible between each other
5321 		 */
5322 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
5323 	case BTF_KIND_PTR:
5324 		local_id = local_type->type;
5325 		targ_id = targ_type->type;
5326 		goto recur;
5327 	case BTF_KIND_ARRAY:
5328 		local_id = btf_array(local_type)->type;
5329 		targ_id = btf_array(targ_type)->type;
5330 		goto recur;
5331 	case BTF_KIND_FUNC_PROTO: {
5332 		struct btf_param *local_p = btf_params(local_type);
5333 		struct btf_param *targ_p = btf_params(targ_type);
5334 		__u16 local_vlen = btf_vlen(local_type);
5335 		__u16 targ_vlen = btf_vlen(targ_type);
5336 		int i, err;
5337 
5338 		if (local_vlen != targ_vlen)
5339 			return 0;
5340 
5341 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
5342 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
5343 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
5344 			err = bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id);
5345 			if (err <= 0)
5346 				return err;
5347 		}
5348 
5349 		/* tail recurse for return type check */
5350 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
5351 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
5352 		goto recur;
5353 	}
5354 	default:
5355 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
5356 			btf_kind_str(local_type), local_id, targ_id);
5357 		return 0;
5358 	}
5359 }
5360 
5361 /*
5362  * Try to match local spec to a target type and, if successful, produce full
5363  * target spec (high-level, low-level + bit offset).
5364  */
5365 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
5366 			       const struct btf *targ_btf, __u32 targ_id,
5367 			       struct bpf_core_spec *targ_spec)
5368 {
5369 	const struct btf_type *targ_type;
5370 	const struct bpf_core_accessor *local_acc;
5371 	struct bpf_core_accessor *targ_acc;
5372 	int i, sz, matched;
5373 
5374 	memset(targ_spec, 0, sizeof(*targ_spec));
5375 	targ_spec->btf = targ_btf;
5376 	targ_spec->root_type_id = targ_id;
5377 	targ_spec->relo_kind = local_spec->relo_kind;
5378 
5379 	if (core_relo_is_type_based(local_spec->relo_kind)) {
5380 		return bpf_core_types_are_compat(local_spec->btf,
5381 						 local_spec->root_type_id,
5382 						 targ_btf, targ_id);
5383 	}
5384 
5385 	local_acc = &local_spec->spec[0];
5386 	targ_acc = &targ_spec->spec[0];
5387 
5388 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
5389 		size_t local_essent_len, targ_essent_len;
5390 		const struct btf_enum *e;
5391 		const char *targ_name;
5392 
5393 		/* has to resolve to an enum */
5394 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
5395 		if (!btf_is_enum(targ_type))
5396 			return 0;
5397 
5398 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
5399 
5400 		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
5401 			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
5402 			targ_essent_len = bpf_core_essential_name_len(targ_name);
5403 			if (targ_essent_len != local_essent_len)
5404 				continue;
5405 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
5406 				targ_acc->type_id = targ_id;
5407 				targ_acc->idx = i;
5408 				targ_acc->name = targ_name;
5409 				targ_spec->len++;
5410 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5411 				targ_spec->raw_len++;
5412 				return 1;
5413 			}
5414 		}
5415 		return 0;
5416 	}
5417 
5418 	if (!core_relo_is_field_based(local_spec->relo_kind))
5419 		return -EINVAL;
5420 
5421 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
5422 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
5423 						   &targ_id);
5424 		if (!targ_type)
5425 			return -EINVAL;
5426 
5427 		if (local_acc->name) {
5428 			matched = bpf_core_match_member(local_spec->btf,
5429 							local_acc,
5430 							targ_btf, targ_id,
5431 							targ_spec, &targ_id);
5432 			if (matched <= 0)
5433 				return matched;
5434 		} else {
5435 			/* for i=0, targ_id is already treated as array element
5436 			 * type (because it's the original struct), for others
5437 			 * we should find array element type first
5438 			 */
5439 			if (i > 0) {
5440 				const struct btf_array *a;
5441 				bool flex;
5442 
5443 				if (!btf_is_array(targ_type))
5444 					return 0;
5445 
5446 				a = btf_array(targ_type);
5447 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
5448 				if (!flex && local_acc->idx >= a->nelems)
5449 					return 0;
5450 				if (!skip_mods_and_typedefs(targ_btf, a->type,
5451 							    &targ_id))
5452 					return -EINVAL;
5453 			}
5454 
5455 			/* too deep struct/union/array nesting */
5456 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
5457 				return -E2BIG;
5458 
5459 			targ_acc->type_id = targ_id;
5460 			targ_acc->idx = local_acc->idx;
5461 			targ_acc->name = NULL;
5462 			targ_spec->len++;
5463 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
5464 			targ_spec->raw_len++;
5465 
5466 			sz = btf__resolve_size(targ_btf, targ_id);
5467 			if (sz < 0)
5468 				return sz;
5469 			targ_spec->bit_offset += local_acc->idx * sz * 8;
5470 		}
5471 	}
5472 
5473 	return 1;
5474 }
5475 
5476 static int bpf_core_calc_field_relo(const struct bpf_program *prog,
5477 				    const struct bpf_core_relo *relo,
5478 				    const struct bpf_core_spec *spec,
5479 				    __u32 *val, __u32 *field_sz, __u32 *type_id,
5480 				    bool *validate)
5481 {
5482 	const struct bpf_core_accessor *acc;
5483 	const struct btf_type *t;
5484 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
5485 	const struct btf_member *m;
5486 	const struct btf_type *mt;
5487 	bool bitfield;
5488 	__s64 sz;
5489 
5490 	*field_sz = 0;
5491 
5492 	if (relo->kind == BPF_FIELD_EXISTS) {
5493 		*val = spec ? 1 : 0;
5494 		return 0;
5495 	}
5496 
5497 	if (!spec)
5498 		return -EUCLEAN; /* request instruction poisoning */
5499 
5500 	acc = &spec->spec[spec->len - 1];
5501 	t = btf__type_by_id(spec->btf, acc->type_id);
5502 
5503 	/* a[n] accessor needs special handling */
5504 	if (!acc->name) {
5505 		if (relo->kind == BPF_FIELD_BYTE_OFFSET) {
5506 			*val = spec->bit_offset / 8;
5507 			/* remember field size for load/store mem size */
5508 			sz = btf__resolve_size(spec->btf, acc->type_id);
5509 			if (sz < 0)
5510 				return -EINVAL;
5511 			*field_sz = sz;
5512 			*type_id = acc->type_id;
5513 		} else if (relo->kind == BPF_FIELD_BYTE_SIZE) {
5514 			sz = btf__resolve_size(spec->btf, acc->type_id);
5515 			if (sz < 0)
5516 				return -EINVAL;
5517 			*val = sz;
5518 		} else {
5519 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
5520 				prog->name, relo->kind, relo->insn_off / 8);
5521 			return -EINVAL;
5522 		}
5523 		if (validate)
5524 			*validate = true;
5525 		return 0;
5526 	}
5527 
5528 	m = btf_members(t) + acc->idx;
5529 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
5530 	bit_off = spec->bit_offset;
5531 	bit_sz = btf_member_bitfield_size(t, acc->idx);
5532 
5533 	bitfield = bit_sz > 0;
5534 	if (bitfield) {
5535 		byte_sz = mt->size;
5536 		byte_off = bit_off / 8 / byte_sz * byte_sz;
5537 		/* figure out smallest int size necessary for bitfield load */
5538 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
5539 			if (byte_sz >= 8) {
5540 				/* bitfield can't be read with 64-bit read */
5541 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
5542 					prog->name, relo->kind, relo->insn_off / 8);
5543 				return -E2BIG;
5544 			}
5545 			byte_sz *= 2;
5546 			byte_off = bit_off / 8 / byte_sz * byte_sz;
5547 		}
5548 	} else {
5549 		sz = btf__resolve_size(spec->btf, field_type_id);
5550 		if (sz < 0)
5551 			return -EINVAL;
5552 		byte_sz = sz;
5553 		byte_off = spec->bit_offset / 8;
5554 		bit_sz = byte_sz * 8;
5555 	}
5556 
5557 	/* for bitfields, all the relocatable aspects are ambiguous and we
5558 	 * might disagree with compiler, so turn off validation of expected
5559 	 * value, except for signedness
5560 	 */
5561 	if (validate)
5562 		*validate = !bitfield;
5563 
5564 	switch (relo->kind) {
5565 	case BPF_FIELD_BYTE_OFFSET:
5566 		*val = byte_off;
5567 		if (!bitfield) {
5568 			*field_sz = byte_sz;
5569 			*type_id = field_type_id;
5570 		}
5571 		break;
5572 	case BPF_FIELD_BYTE_SIZE:
5573 		*val = byte_sz;
5574 		break;
5575 	case BPF_FIELD_SIGNED:
5576 		/* enums will be assumed unsigned */
5577 		*val = btf_is_enum(mt) ||
5578 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
5579 		if (validate)
5580 			*validate = true; /* signedness is never ambiguous */
5581 		break;
5582 	case BPF_FIELD_LSHIFT_U64:
5583 #if __BYTE_ORDER == __LITTLE_ENDIAN
5584 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
5585 #else
5586 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
5587 #endif
5588 		break;
5589 	case BPF_FIELD_RSHIFT_U64:
5590 		*val = 64 - bit_sz;
5591 		if (validate)
5592 			*validate = true; /* right shift is never ambiguous */
5593 		break;
5594 	case BPF_FIELD_EXISTS:
5595 	default:
5596 		return -EOPNOTSUPP;
5597 	}
5598 
5599 	return 0;
5600 }
5601 
5602 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
5603 				   const struct bpf_core_spec *spec,
5604 				   __u32 *val)
5605 {
5606 	__s64 sz;
5607 
5608 	/* type-based relos return zero when target type is not found */
5609 	if (!spec) {
5610 		*val = 0;
5611 		return 0;
5612 	}
5613 
5614 	switch (relo->kind) {
5615 	case BPF_TYPE_ID_TARGET:
5616 		*val = spec->root_type_id;
5617 		break;
5618 	case BPF_TYPE_EXISTS:
5619 		*val = 1;
5620 		break;
5621 	case BPF_TYPE_SIZE:
5622 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
5623 		if (sz < 0)
5624 			return -EINVAL;
5625 		*val = sz;
5626 		break;
5627 	case BPF_TYPE_ID_LOCAL:
5628 	/* BPF_TYPE_ID_LOCAL is handled specially and shouldn't get here */
5629 	default:
5630 		return -EOPNOTSUPP;
5631 	}
5632 
5633 	return 0;
5634 }
5635 
5636 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
5637 				      const struct bpf_core_spec *spec,
5638 				      __u32 *val)
5639 {
5640 	const struct btf_type *t;
5641 	const struct btf_enum *e;
5642 
5643 	switch (relo->kind) {
5644 	case BPF_ENUMVAL_EXISTS:
5645 		*val = spec ? 1 : 0;
5646 		break;
5647 	case BPF_ENUMVAL_VALUE:
5648 		if (!spec)
5649 			return -EUCLEAN; /* request instruction poisoning */
5650 		t = btf__type_by_id(spec->btf, spec->spec[0].type_id);
5651 		e = btf_enum(t) + spec->spec[0].idx;
5652 		*val = e->val;
5653 		break;
5654 	default:
5655 		return -EOPNOTSUPP;
5656 	}
5657 
5658 	return 0;
5659 }
5660 
5661 struct bpf_core_relo_res
5662 {
5663 	/* expected value in the instruction, unless validate == false */
5664 	__u32 orig_val;
5665 	/* new value that needs to be patched up to */
5666 	__u32 new_val;
5667 	/* relocation unsuccessful, poison instruction, but don't fail load */
5668 	bool poison;
5669 	/* some relocations can't be validated against orig_val */
5670 	bool validate;
5671 	/* for field byte offset relocations or the forms:
5672 	 *     *(T *)(rX + <off>) = rY
5673 	 *     rX = *(T *)(rY + <off>),
5674 	 * we remember original and resolved field size to adjust direct
5675 	 * memory loads of pointers and integers; this is necessary for 32-bit
5676 	 * host kernel architectures, but also allows to automatically
5677 	 * relocate fields that were resized from, e.g., u32 to u64, etc.
5678 	 */
5679 	bool fail_memsz_adjust;
5680 	__u32 orig_sz;
5681 	__u32 orig_type_id;
5682 	__u32 new_sz;
5683 	__u32 new_type_id;
5684 };
5685 
5686 /* Calculate original and target relocation values, given local and target
5687  * specs and relocation kind. These values are calculated for each candidate.
5688  * If there are multiple candidates, resulting values should all be consistent
5689  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
5690  * If instruction has to be poisoned, *poison will be set to true.
5691  */
5692 static int bpf_core_calc_relo(const struct bpf_program *prog,
5693 			      const struct bpf_core_relo *relo,
5694 			      int relo_idx,
5695 			      const struct bpf_core_spec *local_spec,
5696 			      const struct bpf_core_spec *targ_spec,
5697 			      struct bpf_core_relo_res *res)
5698 {
5699 	int err = -EOPNOTSUPP;
5700 
5701 	res->orig_val = 0;
5702 	res->new_val = 0;
5703 	res->poison = false;
5704 	res->validate = true;
5705 	res->fail_memsz_adjust = false;
5706 	res->orig_sz = res->new_sz = 0;
5707 	res->orig_type_id = res->new_type_id = 0;
5708 
5709 	if (core_relo_is_field_based(relo->kind)) {
5710 		err = bpf_core_calc_field_relo(prog, relo, local_spec,
5711 					       &res->orig_val, &res->orig_sz,
5712 					       &res->orig_type_id, &res->validate);
5713 		err = err ?: bpf_core_calc_field_relo(prog, relo, targ_spec,
5714 						      &res->new_val, &res->new_sz,
5715 						      &res->new_type_id, NULL);
5716 		if (err)
5717 			goto done;
5718 		/* Validate if it's safe to adjust load/store memory size.
5719 		 * Adjustments are performed only if original and new memory
5720 		 * sizes differ.
5721 		 */
5722 		res->fail_memsz_adjust = false;
5723 		if (res->orig_sz != res->new_sz) {
5724 			const struct btf_type *orig_t, *new_t;
5725 
5726 			orig_t = btf__type_by_id(local_spec->btf, res->orig_type_id);
5727 			new_t = btf__type_by_id(targ_spec->btf, res->new_type_id);
5728 
5729 			/* There are two use cases in which it's safe to
5730 			 * adjust load/store's mem size:
5731 			 *   - reading a 32-bit kernel pointer, while on BPF
5732 			 *   size pointers are always 64-bit; in this case
5733 			 *   it's safe to "downsize" instruction size due to
5734 			 *   pointer being treated as unsigned integer with
5735 			 *   zero-extended upper 32-bits;
5736 			 *   - reading unsigned integers, again due to
5737 			 *   zero-extension is preserving the value correctly.
5738 			 *
5739 			 * In all other cases it's incorrect to attempt to
5740 			 * load/store field because read value will be
5741 			 * incorrect, so we poison relocated instruction.
5742 			 */
5743 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
5744 				goto done;
5745 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
5746 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
5747 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
5748 				goto done;
5749 
5750 			/* mark as invalid mem size adjustment, but this will
5751 			 * only be checked for LDX/STX/ST insns
5752 			 */
5753 			res->fail_memsz_adjust = true;
5754 		}
5755 	} else if (core_relo_is_type_based(relo->kind)) {
5756 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val);
5757 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val);
5758 	} else if (core_relo_is_enumval_based(relo->kind)) {
5759 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
5760 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
5761 	}
5762 
5763 done:
5764 	if (err == -EUCLEAN) {
5765 		/* EUCLEAN is used to signal instruction poisoning request */
5766 		res->poison = true;
5767 		err = 0;
5768 	} else if (err == -EOPNOTSUPP) {
5769 		/* EOPNOTSUPP means unknown/unsupported relocation */
5770 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
5771 			prog->name, relo_idx, core_relo_kind_str(relo->kind),
5772 			relo->kind, relo->insn_off / 8);
5773 	}
5774 
5775 	return err;
5776 }
5777 
5778 /*
5779  * Turn instruction for which CO_RE relocation failed into invalid one with
5780  * distinct signature.
5781  */
5782 static void bpf_core_poison_insn(struct bpf_program *prog, int relo_idx,
5783 				 int insn_idx, struct bpf_insn *insn)
5784 {
5785 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
5786 		 prog->name, relo_idx, insn_idx);
5787 	insn->code = BPF_JMP | BPF_CALL;
5788 	insn->dst_reg = 0;
5789 	insn->src_reg = 0;
5790 	insn->off = 0;
5791 	/* if this instruction is reachable (not a dead code),
5792 	 * verifier will complain with the following message:
5793 	 * invalid func unknown#195896080
5794 	 */
5795 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
5796 }
5797 
5798 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
5799 {
5800 	switch (BPF_SIZE(insn->code)) {
5801 	case BPF_DW: return 8;
5802 	case BPF_W: return 4;
5803 	case BPF_H: return 2;
5804 	case BPF_B: return 1;
5805 	default: return -1;
5806 	}
5807 }
5808 
5809 static int insn_bytes_to_bpf_size(__u32 sz)
5810 {
5811 	switch (sz) {
5812 	case 8: return BPF_DW;
5813 	case 4: return BPF_W;
5814 	case 2: return BPF_H;
5815 	case 1: return BPF_B;
5816 	default: return -1;
5817 	}
5818 }
5819 
5820 /*
5821  * Patch relocatable BPF instruction.
5822  *
5823  * Patched value is determined by relocation kind and target specification.
5824  * For existence relocations target spec will be NULL if field/type is not found.
5825  * Expected insn->imm value is determined using relocation kind and local
5826  * spec, and is checked before patching instruction. If actual insn->imm value
5827  * is wrong, bail out with error.
5828  *
5829  * Currently supported classes of BPF instruction are:
5830  * 1. rX = <imm> (assignment with immediate operand);
5831  * 2. rX += <imm> (arithmetic operations with immediate operand);
5832  * 3. rX = <imm64> (load with 64-bit immediate value);
5833  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
5834  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
5835  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
5836  */
5837 static int bpf_core_patch_insn(struct bpf_program *prog,
5838 			       const struct bpf_core_relo *relo,
5839 			       int relo_idx,
5840 			       const struct bpf_core_relo_res *res)
5841 {
5842 	__u32 orig_val, new_val;
5843 	struct bpf_insn *insn;
5844 	int insn_idx;
5845 	__u8 class;
5846 
5847 	if (relo->insn_off % BPF_INSN_SZ)
5848 		return -EINVAL;
5849 	insn_idx = relo->insn_off / BPF_INSN_SZ;
5850 	/* adjust insn_idx from section frame of reference to the local
5851 	 * program's frame of reference; (sub-)program code is not yet
5852 	 * relocated, so it's enough to just subtract in-section offset
5853 	 */
5854 	insn_idx = insn_idx - prog->sec_insn_off;
5855 	insn = &prog->insns[insn_idx];
5856 	class = BPF_CLASS(insn->code);
5857 
5858 	if (res->poison) {
5859 poison:
5860 		/* poison second part of ldimm64 to avoid confusing error from
5861 		 * verifier about "unknown opcode 00"
5862 		 */
5863 		if (is_ldimm64_insn(insn))
5864 			bpf_core_poison_insn(prog, relo_idx, insn_idx + 1, insn + 1);
5865 		bpf_core_poison_insn(prog, relo_idx, insn_idx, insn);
5866 		return 0;
5867 	}
5868 
5869 	orig_val = res->orig_val;
5870 	new_val = res->new_val;
5871 
5872 	switch (class) {
5873 	case BPF_ALU:
5874 	case BPF_ALU64:
5875 		if (BPF_SRC(insn->code) != BPF_K)
5876 			return -EINVAL;
5877 		if (res->validate && insn->imm != orig_val) {
5878 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
5879 				prog->name, relo_idx,
5880 				insn_idx, insn->imm, orig_val, new_val);
5881 			return -EINVAL;
5882 		}
5883 		orig_val = insn->imm;
5884 		insn->imm = new_val;
5885 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
5886 			 prog->name, relo_idx, insn_idx,
5887 			 orig_val, new_val);
5888 		break;
5889 	case BPF_LDX:
5890 	case BPF_ST:
5891 	case BPF_STX:
5892 		if (res->validate && insn->off != orig_val) {
5893 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
5894 				prog->name, relo_idx, insn_idx, insn->off, orig_val, new_val);
5895 			return -EINVAL;
5896 		}
5897 		if (new_val > SHRT_MAX) {
5898 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
5899 				prog->name, relo_idx, insn_idx, new_val);
5900 			return -ERANGE;
5901 		}
5902 		if (res->fail_memsz_adjust) {
5903 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
5904 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
5905 				prog->name, relo_idx, insn_idx);
5906 			goto poison;
5907 		}
5908 
5909 		orig_val = insn->off;
5910 		insn->off = new_val;
5911 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
5912 			 prog->name, relo_idx, insn_idx, orig_val, new_val);
5913 
5914 		if (res->new_sz != res->orig_sz) {
5915 			int insn_bytes_sz, insn_bpf_sz;
5916 
5917 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
5918 			if (insn_bytes_sz != res->orig_sz) {
5919 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
5920 					prog->name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
5921 				return -EINVAL;
5922 			}
5923 
5924 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
5925 			if (insn_bpf_sz < 0) {
5926 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
5927 					prog->name, relo_idx, insn_idx, res->new_sz);
5928 				return -EINVAL;
5929 			}
5930 
5931 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
5932 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
5933 				 prog->name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
5934 		}
5935 		break;
5936 	case BPF_LD: {
5937 		__u64 imm;
5938 
5939 		if (!is_ldimm64_insn(insn) ||
5940 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
5941 		    insn_idx + 1 >= prog->insns_cnt ||
5942 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
5943 		    insn[1].src_reg != 0 || insn[1].off != 0) {
5944 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
5945 				prog->name, relo_idx, insn_idx);
5946 			return -EINVAL;
5947 		}
5948 
5949 		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
5950 		if (res->validate && imm != orig_val) {
5951 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
5952 				prog->name, relo_idx,
5953 				insn_idx, (unsigned long long)imm,
5954 				orig_val, new_val);
5955 			return -EINVAL;
5956 		}
5957 
5958 		insn[0].imm = new_val;
5959 		insn[1].imm = 0; /* currently only 32-bit values are supported */
5960 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
5961 			 prog->name, relo_idx, insn_idx,
5962 			 (unsigned long long)imm, new_val);
5963 		break;
5964 	}
5965 	default:
5966 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
5967 			prog->name, relo_idx, insn_idx, insn->code,
5968 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
5969 		return -EINVAL;
5970 	}
5971 
5972 	return 0;
5973 }
5974 
5975 /* Output spec definition in the format:
5976  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
5977  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
5978  */
5979 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec)
5980 {
5981 	const struct btf_type *t;
5982 	const struct btf_enum *e;
5983 	const char *s;
5984 	__u32 type_id;
5985 	int i;
5986 
5987 	type_id = spec->root_type_id;
5988 	t = btf__type_by_id(spec->btf, type_id);
5989 	s = btf__name_by_offset(spec->btf, t->name_off);
5990 
5991 	libbpf_print(level, "[%u] %s %s", type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
5992 
5993 	if (core_relo_is_type_based(spec->relo_kind))
5994 		return;
5995 
5996 	if (core_relo_is_enumval_based(spec->relo_kind)) {
5997 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
5998 		e = btf_enum(t) + spec->raw_spec[0];
5999 		s = btf__name_by_offset(spec->btf, e->name_off);
6000 
6001 		libbpf_print(level, "::%s = %u", s, e->val);
6002 		return;
6003 	}
6004 
6005 	if (core_relo_is_field_based(spec->relo_kind)) {
6006 		for (i = 0; i < spec->len; i++) {
6007 			if (spec->spec[i].name)
6008 				libbpf_print(level, ".%s", spec->spec[i].name);
6009 			else if (i > 0 || spec->spec[i].idx > 0)
6010 				libbpf_print(level, "[%u]", spec->spec[i].idx);
6011 		}
6012 
6013 		libbpf_print(level, " (");
6014 		for (i = 0; i < spec->raw_len; i++)
6015 			libbpf_print(level, "%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
6016 
6017 		if (spec->bit_offset % 8)
6018 			libbpf_print(level, " @ offset %u.%u)",
6019 				     spec->bit_offset / 8, spec->bit_offset % 8);
6020 		else
6021 			libbpf_print(level, " @ offset %u)", spec->bit_offset / 8);
6022 		return;
6023 	}
6024 }
6025 
6026 static size_t bpf_core_hash_fn(const void *key, void *ctx)
6027 {
6028 	return (size_t)key;
6029 }
6030 
6031 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx)
6032 {
6033 	return k1 == k2;
6034 }
6035 
6036 static void *u32_as_hash_key(__u32 x)
6037 {
6038 	return (void *)(uintptr_t)x;
6039 }
6040 
6041 /*
6042  * CO-RE relocate single instruction.
6043  *
6044  * The outline and important points of the algorithm:
6045  * 1. For given local type, find corresponding candidate target types.
6046  *    Candidate type is a type with the same "essential" name, ignoring
6047  *    everything after last triple underscore (___). E.g., `sample`,
6048  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
6049  *    for each other. Names with triple underscore are referred to as
6050  *    "flavors" and are useful, among other things, to allow to
6051  *    specify/support incompatible variations of the same kernel struct, which
6052  *    might differ between different kernel versions and/or build
6053  *    configurations.
6054  *
6055  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
6056  *    converter, when deduplicated BTF of a kernel still contains more than
6057  *    one different types with the same name. In that case, ___2, ___3, etc
6058  *    are appended starting from second name conflict. But start flavors are
6059  *    also useful to be defined "locally", in BPF program, to extract same
6060  *    data from incompatible changes between different kernel
6061  *    versions/configurations. For instance, to handle field renames between
6062  *    kernel versions, one can use two flavors of the struct name with the
6063  *    same common name and use conditional relocations to extract that field,
6064  *    depending on target kernel version.
6065  * 2. For each candidate type, try to match local specification to this
6066  *    candidate target type. Matching involves finding corresponding
6067  *    high-level spec accessors, meaning that all named fields should match,
6068  *    as well as all array accesses should be within the actual bounds. Also,
6069  *    types should be compatible (see bpf_core_fields_are_compat for details).
6070  * 3. It is supported and expected that there might be multiple flavors
6071  *    matching the spec. As long as all the specs resolve to the same set of
6072  *    offsets across all candidates, there is no error. If there is any
6073  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
6074  *    imprefection of BTF deduplication, which can cause slight duplication of
6075  *    the same BTF type, if some directly or indirectly referenced (by
6076  *    pointer) type gets resolved to different actual types in different
6077  *    object files. If such situation occurs, deduplicated BTF will end up
6078  *    with two (or more) structurally identical types, which differ only in
6079  *    types they refer to through pointer. This should be OK in most cases and
6080  *    is not an error.
6081  * 4. Candidate types search is performed by linearly scanning through all
6082  *    types in target BTF. It is anticipated that this is overall more
6083  *    efficient memory-wise and not significantly worse (if not better)
6084  *    CPU-wise compared to prebuilding a map from all local type names to
6085  *    a list of candidate type names. It's also sped up by caching resolved
6086  *    list of matching candidates per each local "root" type ID, that has at
6087  *    least one bpf_core_relo associated with it. This list is shared
6088  *    between multiple relocations for the same type ID and is updated as some
6089  *    of the candidates are pruned due to structural incompatibility.
6090  */
6091 static int bpf_core_apply_relo(struct bpf_program *prog,
6092 			       const struct bpf_core_relo *relo,
6093 			       int relo_idx,
6094 			       const struct btf *local_btf,
6095 			       struct hashmap *cand_cache)
6096 {
6097 	struct bpf_core_spec local_spec, cand_spec, targ_spec = {};
6098 	const void *type_key = u32_as_hash_key(relo->type_id);
6099 	struct bpf_core_relo_res cand_res, targ_res;
6100 	const struct btf_type *local_type;
6101 	const char *local_name;
6102 	struct core_cand_list *cands = NULL;
6103 	__u32 local_id;
6104 	const char *spec_str;
6105 	int i, j, err;
6106 
6107 	local_id = relo->type_id;
6108 	local_type = btf__type_by_id(local_btf, local_id);
6109 	if (!local_type)
6110 		return -EINVAL;
6111 
6112 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
6113 	if (!local_name)
6114 		return -EINVAL;
6115 
6116 	spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
6117 	if (str_is_empty(spec_str))
6118 		return -EINVAL;
6119 
6120 	err = bpf_core_parse_spec(local_btf, local_id, spec_str, relo->kind, &local_spec);
6121 	if (err) {
6122 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
6123 			prog->name, relo_idx, local_id, btf_kind_str(local_type),
6124 			str_is_empty(local_name) ? "<anon>" : local_name,
6125 			spec_str, err);
6126 		return -EINVAL;
6127 	}
6128 
6129 	pr_debug("prog '%s': relo #%d: kind <%s> (%d), spec is ", prog->name,
6130 		 relo_idx, core_relo_kind_str(relo->kind), relo->kind);
6131 	bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec);
6132 	libbpf_print(LIBBPF_DEBUG, "\n");
6133 
6134 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
6135 	if (relo->kind == BPF_TYPE_ID_LOCAL) {
6136 		targ_res.validate = true;
6137 		targ_res.poison = false;
6138 		targ_res.orig_val = local_spec.root_type_id;
6139 		targ_res.new_val = local_spec.root_type_id;
6140 		goto patch_insn;
6141 	}
6142 
6143 	/* libbpf doesn't support candidate search for anonymous types */
6144 	if (str_is_empty(spec_str)) {
6145 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
6146 			prog->name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
6147 		return -EOPNOTSUPP;
6148 	}
6149 
6150 	if (!hashmap__find(cand_cache, type_key, (void **)&cands)) {
6151 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
6152 		if (IS_ERR(cands)) {
6153 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
6154 				prog->name, relo_idx, local_id, btf_kind_str(local_type),
6155 				local_name, PTR_ERR(cands));
6156 			return PTR_ERR(cands);
6157 		}
6158 		err = hashmap__set(cand_cache, type_key, cands, NULL, NULL);
6159 		if (err) {
6160 			bpf_core_free_cands(cands);
6161 			return err;
6162 		}
6163 	}
6164 
6165 	for (i = 0, j = 0; i < cands->len; i++) {
6166 		err = bpf_core_spec_match(&local_spec, cands->cands[i].btf,
6167 					  cands->cands[i].id, &cand_spec);
6168 		if (err < 0) {
6169 			pr_warn("prog '%s': relo #%d: error matching candidate #%d ",
6170 				prog->name, relo_idx, i);
6171 			bpf_core_dump_spec(LIBBPF_WARN, &cand_spec);
6172 			libbpf_print(LIBBPF_WARN, ": %d\n", err);
6173 			return err;
6174 		}
6175 
6176 		pr_debug("prog '%s': relo #%d: %s candidate #%d ", prog->name,
6177 			 relo_idx, err == 0 ? "non-matching" : "matching", i);
6178 		bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec);
6179 		libbpf_print(LIBBPF_DEBUG, "\n");
6180 
6181 		if (err == 0)
6182 			continue;
6183 
6184 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, &cand_spec, &cand_res);
6185 		if (err)
6186 			return err;
6187 
6188 		if (j == 0) {
6189 			targ_res = cand_res;
6190 			targ_spec = cand_spec;
6191 		} else if (cand_spec.bit_offset != targ_spec.bit_offset) {
6192 			/* if there are many field relo candidates, they
6193 			 * should all resolve to the same bit offset
6194 			 */
6195 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
6196 				prog->name, relo_idx, cand_spec.bit_offset,
6197 				targ_spec.bit_offset);
6198 			return -EINVAL;
6199 		} else if (cand_res.poison != targ_res.poison || cand_res.new_val != targ_res.new_val) {
6200 			/* all candidates should result in the same relocation
6201 			 * decision and value, otherwise it's dangerous to
6202 			 * proceed due to ambiguity
6203 			 */
6204 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
6205 				prog->name, relo_idx,
6206 				cand_res.poison ? "failure" : "success", cand_res.new_val,
6207 				targ_res.poison ? "failure" : "success", targ_res.new_val);
6208 			return -EINVAL;
6209 		}
6210 
6211 		cands->cands[j++] = cands->cands[i];
6212 	}
6213 
6214 	/*
6215 	 * For BPF_FIELD_EXISTS relo or when used BPF program has field
6216 	 * existence checks or kernel version/config checks, it's expected
6217 	 * that we might not find any candidates. In this case, if field
6218 	 * wasn't found in any candidate, the list of candidates shouldn't
6219 	 * change at all, we'll just handle relocating appropriately,
6220 	 * depending on relo's kind.
6221 	 */
6222 	if (j > 0)
6223 		cands->len = j;
6224 
6225 	/*
6226 	 * If no candidates were found, it might be both a programmer error,
6227 	 * as well as expected case, depending whether instruction w/
6228 	 * relocation is guarded in some way that makes it unreachable (dead
6229 	 * code) if relocation can't be resolved. This is handled in
6230 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
6231 	 * BPF helper call insn (using invalid helper ID). If that instruction
6232 	 * is indeed unreachable, then it will be ignored and eliminated by
6233 	 * verifier. If it was an error, then verifier will complain and point
6234 	 * to a specific instruction number in its log.
6235 	 */
6236 	if (j == 0) {
6237 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
6238 			 prog->name, relo_idx);
6239 
6240 		/* calculate single target relo result explicitly */
6241 		err = bpf_core_calc_relo(prog, relo, relo_idx, &local_spec, NULL, &targ_res);
6242 		if (err)
6243 			return err;
6244 	}
6245 
6246 patch_insn:
6247 	/* bpf_core_patch_insn() should know how to handle missing targ_spec */
6248 	err = bpf_core_patch_insn(prog, relo, relo_idx, &targ_res);
6249 	if (err) {
6250 		pr_warn("prog '%s': relo #%d: failed to patch insn #%zu: %d\n",
6251 			prog->name, relo_idx, relo->insn_off / BPF_INSN_SZ, err);
6252 		return -EINVAL;
6253 	}
6254 
6255 	return 0;
6256 }
6257 
6258 static int
6259 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
6260 {
6261 	const struct btf_ext_info_sec *sec;
6262 	const struct bpf_core_relo *rec;
6263 	const struct btf_ext_info *seg;
6264 	struct hashmap_entry *entry;
6265 	struct hashmap *cand_cache = NULL;
6266 	struct bpf_program *prog;
6267 	const char *sec_name;
6268 	int i, err = 0, insn_idx, sec_idx;
6269 
6270 	if (obj->btf_ext->core_relo_info.len == 0)
6271 		return 0;
6272 
6273 	if (targ_btf_path) {
6274 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
6275 		if (IS_ERR_OR_NULL(obj->btf_vmlinux_override)) {
6276 			err = PTR_ERR(obj->btf_vmlinux_override);
6277 			pr_warn("failed to parse target BTF: %d\n", err);
6278 			return err;
6279 		}
6280 	}
6281 
6282 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
6283 	if (IS_ERR(cand_cache)) {
6284 		err = PTR_ERR(cand_cache);
6285 		goto out;
6286 	}
6287 
6288 	seg = &obj->btf_ext->core_relo_info;
6289 	for_each_btf_ext_sec(seg, sec) {
6290 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6291 		if (str_is_empty(sec_name)) {
6292 			err = -EINVAL;
6293 			goto out;
6294 		}
6295 		/* bpf_object's ELF is gone by now so it's not easy to find
6296 		 * section index by section name, but we can find *any*
6297 		 * bpf_program within desired section name and use it's
6298 		 * prog->sec_idx to do a proper search by section index and
6299 		 * instruction offset
6300 		 */
6301 		prog = NULL;
6302 		for (i = 0; i < obj->nr_programs; i++) {
6303 			prog = &obj->programs[i];
6304 			if (strcmp(prog->sec_name, sec_name) == 0)
6305 				break;
6306 		}
6307 		if (!prog) {
6308 			pr_warn("sec '%s': failed to find a BPF program\n", sec_name);
6309 			return -ENOENT;
6310 		}
6311 		sec_idx = prog->sec_idx;
6312 
6313 		pr_debug("sec '%s': found %d CO-RE relocations\n",
6314 			 sec_name, sec->num_info);
6315 
6316 		for_each_btf_ext_rec(seg, sec, i, rec) {
6317 			insn_idx = rec->insn_off / BPF_INSN_SZ;
6318 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
6319 			if (!prog) {
6320 				pr_warn("sec '%s': failed to find program at insn #%d for CO-RE offset relocation #%d\n",
6321 					sec_name, insn_idx, i);
6322 				err = -EINVAL;
6323 				goto out;
6324 			}
6325 			/* no need to apply CO-RE relocation if the program is
6326 			 * not going to be loaded
6327 			 */
6328 			if (!prog->load)
6329 				continue;
6330 
6331 			err = bpf_core_apply_relo(prog, rec, i, obj->btf, cand_cache);
6332 			if (err) {
6333 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
6334 					prog->name, i, err);
6335 				goto out;
6336 			}
6337 		}
6338 	}
6339 
6340 out:
6341 	/* obj->btf_vmlinux and module BTFs are freed after object load */
6342 	btf__free(obj->btf_vmlinux_override);
6343 	obj->btf_vmlinux_override = NULL;
6344 
6345 	if (!IS_ERR_OR_NULL(cand_cache)) {
6346 		hashmap__for_each_entry(cand_cache, entry, i) {
6347 			bpf_core_free_cands(entry->value);
6348 		}
6349 		hashmap__free(cand_cache);
6350 	}
6351 	return err;
6352 }
6353 
6354 /* Relocate data references within program code:
6355  *  - map references;
6356  *  - global variable references;
6357  *  - extern references.
6358  */
6359 static int
6360 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
6361 {
6362 	int i;
6363 
6364 	for (i = 0; i < prog->nr_reloc; i++) {
6365 		struct reloc_desc *relo = &prog->reloc_desc[i];
6366 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6367 		struct extern_desc *ext;
6368 
6369 		switch (relo->type) {
6370 		case RELO_LD64:
6371 			insn[0].src_reg = BPF_PSEUDO_MAP_FD;
6372 			insn[0].imm = obj->maps[relo->map_idx].fd;
6373 			break;
6374 		case RELO_DATA:
6375 			insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6376 			insn[1].imm = insn[0].imm + relo->sym_off;
6377 			insn[0].imm = obj->maps[relo->map_idx].fd;
6378 			break;
6379 		case RELO_EXTERN_VAR:
6380 			ext = &obj->externs[relo->sym_off];
6381 			if (ext->type == EXT_KCFG) {
6382 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
6383 				insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
6384 				insn[1].imm = ext->kcfg.data_off;
6385 			} else /* EXT_KSYM */ {
6386 				if (ext->ksym.type_id) { /* typed ksyms */
6387 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
6388 					insn[0].imm = ext->ksym.kernel_btf_id;
6389 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
6390 				} else { /* typeless ksyms */
6391 					insn[0].imm = (__u32)ext->ksym.addr;
6392 					insn[1].imm = ext->ksym.addr >> 32;
6393 				}
6394 			}
6395 			break;
6396 		case RELO_EXTERN_FUNC:
6397 			ext = &obj->externs[relo->sym_off];
6398 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6399 			insn[0].imm = ext->ksym.kernel_btf_id;
6400 			break;
6401 		case RELO_SUBPROG_ADDR:
6402 			insn[0].src_reg = BPF_PSEUDO_FUNC;
6403 			/* will be handled as a follow up pass */
6404 			break;
6405 		case RELO_CALL:
6406 			/* will be handled as a follow up pass */
6407 			break;
6408 		default:
6409 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6410 				prog->name, i, relo->type);
6411 			return -EINVAL;
6412 		}
6413 	}
6414 
6415 	return 0;
6416 }
6417 
6418 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6419 				    const struct bpf_program *prog,
6420 				    const struct btf_ext_info *ext_info,
6421 				    void **prog_info, __u32 *prog_rec_cnt,
6422 				    __u32 *prog_rec_sz)
6423 {
6424 	void *copy_start = NULL, *copy_end = NULL;
6425 	void *rec, *rec_end, *new_prog_info;
6426 	const struct btf_ext_info_sec *sec;
6427 	size_t old_sz, new_sz;
6428 	const char *sec_name;
6429 	int i, off_adj;
6430 
6431 	for_each_btf_ext_sec(ext_info, sec) {
6432 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
6433 		if (!sec_name)
6434 			return -EINVAL;
6435 		if (strcmp(sec_name, prog->sec_name) != 0)
6436 			continue;
6437 
6438 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6439 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6440 
6441 			if (insn_off < prog->sec_insn_off)
6442 				continue;
6443 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6444 				break;
6445 
6446 			if (!copy_start)
6447 				copy_start = rec;
6448 			copy_end = rec + ext_info->rec_size;
6449 		}
6450 
6451 		if (!copy_start)
6452 			return -ENOENT;
6453 
6454 		/* append func/line info of a given (sub-)program to the main
6455 		 * program func/line info
6456 		 */
6457 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6458 		new_sz = old_sz + (copy_end - copy_start);
6459 		new_prog_info = realloc(*prog_info, new_sz);
6460 		if (!new_prog_info)
6461 			return -ENOMEM;
6462 		*prog_info = new_prog_info;
6463 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6464 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6465 
6466 		/* Kernel instruction offsets are in units of 8-byte
6467 		 * instructions, while .BTF.ext instruction offsets generated
6468 		 * by Clang are in units of bytes. So convert Clang offsets
6469 		 * into kernel offsets and adjust offset according to program
6470 		 * relocated position.
6471 		 */
6472 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6473 		rec = new_prog_info + old_sz;
6474 		rec_end = new_prog_info + new_sz;
6475 		for (; rec < rec_end; rec += ext_info->rec_size) {
6476 			__u32 *insn_off = rec;
6477 
6478 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6479 		}
6480 		*prog_rec_sz = ext_info->rec_size;
6481 		return 0;
6482 	}
6483 
6484 	return -ENOENT;
6485 }
6486 
6487 static int
6488 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6489 			      struct bpf_program *main_prog,
6490 			      const struct bpf_program *prog)
6491 {
6492 	int err;
6493 
6494 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6495 	 * supprot func/line info
6496 	 */
6497 	if (!obj->btf_ext || !kernel_supports(FEAT_BTF_FUNC))
6498 		return 0;
6499 
6500 	/* only attempt func info relocation if main program's func_info
6501 	 * relocation was successful
6502 	 */
6503 	if (main_prog != prog && !main_prog->func_info)
6504 		goto line_info;
6505 
6506 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6507 				       &main_prog->func_info,
6508 				       &main_prog->func_info_cnt,
6509 				       &main_prog->func_info_rec_size);
6510 	if (err) {
6511 		if (err != -ENOENT) {
6512 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6513 				prog->name, err);
6514 			return err;
6515 		}
6516 		if (main_prog->func_info) {
6517 			/*
6518 			 * Some info has already been found but has problem
6519 			 * in the last btf_ext reloc. Must have to error out.
6520 			 */
6521 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6522 			return err;
6523 		}
6524 		/* Have problem loading the very first info. Ignore the rest. */
6525 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6526 			prog->name);
6527 	}
6528 
6529 line_info:
6530 	/* don't relocate line info if main program's relocation failed */
6531 	if (main_prog != prog && !main_prog->line_info)
6532 		return 0;
6533 
6534 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6535 				       &main_prog->line_info,
6536 				       &main_prog->line_info_cnt,
6537 				       &main_prog->line_info_rec_size);
6538 	if (err) {
6539 		if (err != -ENOENT) {
6540 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6541 				prog->name, err);
6542 			return err;
6543 		}
6544 		if (main_prog->line_info) {
6545 			/*
6546 			 * Some info has already been found but has problem
6547 			 * in the last btf_ext reloc. Must have to error out.
6548 			 */
6549 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6550 			return err;
6551 		}
6552 		/* Have problem loading the very first info. Ignore the rest. */
6553 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6554 			prog->name);
6555 	}
6556 	return 0;
6557 }
6558 
6559 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6560 {
6561 	size_t insn_idx = *(const size_t *)key;
6562 	const struct reloc_desc *relo = elem;
6563 
6564 	if (insn_idx == relo->insn_idx)
6565 		return 0;
6566 	return insn_idx < relo->insn_idx ? -1 : 1;
6567 }
6568 
6569 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6570 {
6571 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6572 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6573 }
6574 
6575 static int
6576 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6577 		       struct bpf_program *prog)
6578 {
6579 	size_t sub_insn_idx, insn_idx, new_cnt;
6580 	struct bpf_program *subprog;
6581 	struct bpf_insn *insns, *insn;
6582 	struct reloc_desc *relo;
6583 	int err;
6584 
6585 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6586 	if (err)
6587 		return err;
6588 
6589 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6590 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6591 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6592 			continue;
6593 
6594 		relo = find_prog_insn_relo(prog, insn_idx);
6595 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6596 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6597 				prog->name, insn_idx, relo->type);
6598 			return -LIBBPF_ERRNO__RELOC;
6599 		}
6600 		if (relo) {
6601 			/* sub-program instruction index is a combination of
6602 			 * an offset of a symbol pointed to by relocation and
6603 			 * call instruction's imm field; for global functions,
6604 			 * call always has imm = -1, but for static functions
6605 			 * relocation is against STT_SECTION and insn->imm
6606 			 * points to a start of a static function
6607 			 *
6608 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6609 			 * the byte offset in the corresponding section.
6610 			 */
6611 			if (relo->type == RELO_CALL)
6612 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6613 			else
6614 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6615 		} else if (insn_is_pseudo_func(insn)) {
6616 			/*
6617 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6618 			 * functions are in the same section, so it shouldn't reach here.
6619 			 */
6620 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6621 				prog->name, insn_idx);
6622 			return -LIBBPF_ERRNO__RELOC;
6623 		} else {
6624 			/* if subprogram call is to a static function within
6625 			 * the same ELF section, there won't be any relocation
6626 			 * emitted, but it also means there is no additional
6627 			 * offset necessary, insns->imm is relative to
6628 			 * instruction's original position within the section
6629 			 */
6630 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6631 		}
6632 
6633 		/* we enforce that sub-programs should be in .text section */
6634 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6635 		if (!subprog) {
6636 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6637 				prog->name);
6638 			return -LIBBPF_ERRNO__RELOC;
6639 		}
6640 
6641 		/* if it's the first call instruction calling into this
6642 		 * subprogram (meaning this subprog hasn't been processed
6643 		 * yet) within the context of current main program:
6644 		 *   - append it at the end of main program's instructions blog;
6645 		 *   - process is recursively, while current program is put on hold;
6646 		 *   - if that subprogram calls some other not yet processes
6647 		 *   subprogram, same thing will happen recursively until
6648 		 *   there are no more unprocesses subprograms left to append
6649 		 *   and relocate.
6650 		 */
6651 		if (subprog->sub_insn_off == 0) {
6652 			subprog->sub_insn_off = main_prog->insns_cnt;
6653 
6654 			new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6655 			insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6656 			if (!insns) {
6657 				pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6658 				return -ENOMEM;
6659 			}
6660 			main_prog->insns = insns;
6661 			main_prog->insns_cnt = new_cnt;
6662 
6663 			memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6664 			       subprog->insns_cnt * sizeof(*insns));
6665 
6666 			pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6667 				 main_prog->name, subprog->insns_cnt, subprog->name);
6668 
6669 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6670 			if (err)
6671 				return err;
6672 		}
6673 
6674 		/* main_prog->insns memory could have been re-allocated, so
6675 		 * calculate pointer again
6676 		 */
6677 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6678 		/* calculate correct instruction position within current main
6679 		 * prog; each main prog can have a different set of
6680 		 * subprograms appended (potentially in different order as
6681 		 * well), so position of any subprog can be different for
6682 		 * different main programs */
6683 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6684 
6685 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6686 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6687 	}
6688 
6689 	return 0;
6690 }
6691 
6692 /*
6693  * Relocate sub-program calls.
6694  *
6695  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6696  * main prog) is processed separately. For each subprog (non-entry functions,
6697  * that can be called from either entry progs or other subprogs) gets their
6698  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6699  * hasn't been yet appended and relocated within current main prog. Once its
6700  * relocated, sub_insn_off will point at the position within current main prog
6701  * where given subprog was appended. This will further be used to relocate all
6702  * the call instructions jumping into this subprog.
6703  *
6704  * We start with main program and process all call instructions. If the call
6705  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6706  * is zero), subprog instructions are appended at the end of main program's
6707  * instruction array. Then main program is "put on hold" while we recursively
6708  * process newly appended subprogram. If that subprogram calls into another
6709  * subprogram that hasn't been appended, new subprogram is appended again to
6710  * the *main* prog's instructions (subprog's instructions are always left
6711  * untouched, as they need to be in unmodified state for subsequent main progs
6712  * and subprog instructions are always sent only as part of a main prog) and
6713  * the process continues recursively. Once all the subprogs called from a main
6714  * prog or any of its subprogs are appended (and relocated), all their
6715  * positions within finalized instructions array are known, so it's easy to
6716  * rewrite call instructions with correct relative offsets, corresponding to
6717  * desired target subprog.
6718  *
6719  * Its important to realize that some subprogs might not be called from some
6720  * main prog and any of its called/used subprogs. Those will keep their
6721  * subprog->sub_insn_off as zero at all times and won't be appended to current
6722  * main prog and won't be relocated within the context of current main prog.
6723  * They might still be used from other main progs later.
6724  *
6725  * Visually this process can be shown as below. Suppose we have two main
6726  * programs mainA and mainB and BPF object contains three subprogs: subA,
6727  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6728  * subC both call subB:
6729  *
6730  *        +--------+ +-------+
6731  *        |        v v       |
6732  *     +--+---+ +--+-+-+ +---+--+
6733  *     | subA | | subB | | subC |
6734  *     +--+---+ +------+ +---+--+
6735  *        ^                  ^
6736  *        |                  |
6737  *    +---+-------+   +------+----+
6738  *    |   mainA   |   |   mainB   |
6739  *    +-----------+   +-----------+
6740  *
6741  * We'll start relocating mainA, will find subA, append it and start
6742  * processing sub A recursively:
6743  *
6744  *    +-----------+------+
6745  *    |   mainA   | subA |
6746  *    +-----------+------+
6747  *
6748  * At this point we notice that subB is used from subA, so we append it and
6749  * relocate (there are no further subcalls from subB):
6750  *
6751  *    +-----------+------+------+
6752  *    |   mainA   | subA | subB |
6753  *    +-----------+------+------+
6754  *
6755  * At this point, we relocate subA calls, then go one level up and finish with
6756  * relocatin mainA calls. mainA is done.
6757  *
6758  * For mainB process is similar but results in different order. We start with
6759  * mainB and skip subA and subB, as mainB never calls them (at least
6760  * directly), but we see subC is needed, so we append and start processing it:
6761  *
6762  *    +-----------+------+
6763  *    |   mainB   | subC |
6764  *    +-----------+------+
6765  * Now we see subC needs subB, so we go back to it, append and relocate it:
6766  *
6767  *    +-----------+------+------+
6768  *    |   mainB   | subC | subB |
6769  *    +-----------+------+------+
6770  *
6771  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6772  */
6773 static int
6774 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6775 {
6776 	struct bpf_program *subprog;
6777 	int i, err;
6778 
6779 	/* mark all subprogs as not relocated (yet) within the context of
6780 	 * current main program
6781 	 */
6782 	for (i = 0; i < obj->nr_programs; i++) {
6783 		subprog = &obj->programs[i];
6784 		if (!prog_is_subprog(obj, subprog))
6785 			continue;
6786 
6787 		subprog->sub_insn_off = 0;
6788 	}
6789 
6790 	err = bpf_object__reloc_code(obj, prog, prog);
6791 	if (err)
6792 		return err;
6793 
6794 
6795 	return 0;
6796 }
6797 
6798 static int
6799 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6800 {
6801 	struct bpf_program *prog;
6802 	size_t i;
6803 	int err;
6804 
6805 	if (obj->btf_ext) {
6806 		err = bpf_object__relocate_core(obj, targ_btf_path);
6807 		if (err) {
6808 			pr_warn("failed to perform CO-RE relocations: %d\n",
6809 				err);
6810 			return err;
6811 		}
6812 	}
6813 	/* relocate data references first for all programs and sub-programs,
6814 	 * as they don't change relative to code locations, so subsequent
6815 	 * subprogram processing won't need to re-calculate any of them
6816 	 */
6817 	for (i = 0; i < obj->nr_programs; i++) {
6818 		prog = &obj->programs[i];
6819 		err = bpf_object__relocate_data(obj, prog);
6820 		if (err) {
6821 			pr_warn("prog '%s': failed to relocate data references: %d\n",
6822 				prog->name, err);
6823 			return err;
6824 		}
6825 	}
6826 	/* now relocate subprogram calls and append used subprograms to main
6827 	 * programs; each copy of subprogram code needs to be relocated
6828 	 * differently for each main program, because its code location might
6829 	 * have changed
6830 	 */
6831 	for (i = 0; i < obj->nr_programs; i++) {
6832 		prog = &obj->programs[i];
6833 		/* sub-program's sub-calls are relocated within the context of
6834 		 * its main program only
6835 		 */
6836 		if (prog_is_subprog(obj, prog))
6837 			continue;
6838 
6839 		err = bpf_object__relocate_calls(obj, prog);
6840 		if (err) {
6841 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6842 				prog->name, err);
6843 			return err;
6844 		}
6845 	}
6846 	/* free up relocation descriptors */
6847 	for (i = 0; i < obj->nr_programs; i++) {
6848 		prog = &obj->programs[i];
6849 		zfree(&prog->reloc_desc);
6850 		prog->nr_reloc = 0;
6851 	}
6852 	return 0;
6853 }
6854 
6855 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6856 					    GElf_Shdr *shdr, Elf_Data *data);
6857 
6858 static int bpf_object__collect_map_relos(struct bpf_object *obj,
6859 					 GElf_Shdr *shdr, Elf_Data *data)
6860 {
6861 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6862 	int i, j, nrels, new_sz;
6863 	const struct btf_var_secinfo *vi = NULL;
6864 	const struct btf_type *sec, *var, *def;
6865 	struct bpf_map *map = NULL, *targ_map;
6866 	const struct btf_member *member;
6867 	const char *name, *mname;
6868 	Elf_Data *symbols;
6869 	unsigned int moff;
6870 	GElf_Sym sym;
6871 	GElf_Rel rel;
6872 	void *tmp;
6873 
6874 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6875 		return -EINVAL;
6876 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6877 	if (!sec)
6878 		return -EINVAL;
6879 
6880 	symbols = obj->efile.symbols;
6881 	nrels = shdr->sh_size / shdr->sh_entsize;
6882 	for (i = 0; i < nrels; i++) {
6883 		if (!gelf_getrel(data, i, &rel)) {
6884 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6885 			return -LIBBPF_ERRNO__FORMAT;
6886 		}
6887 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
6888 			pr_warn(".maps relo #%d: symbol %zx not found\n",
6889 				i, (size_t)GELF_R_SYM(rel.r_info));
6890 			return -LIBBPF_ERRNO__FORMAT;
6891 		}
6892 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
6893 		if (sym.st_shndx != obj->efile.btf_maps_shndx) {
6894 			pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6895 				i, name);
6896 			return -LIBBPF_ERRNO__RELOC;
6897 		}
6898 
6899 		pr_debug(".maps relo #%d: for %zd value %zd rel.r_offset %zu name %d ('%s')\n",
6900 			 i, (ssize_t)(rel.r_info >> 32), (size_t)sym.st_value,
6901 			 (size_t)rel.r_offset, sym.st_name, name);
6902 
6903 		for (j = 0; j < obj->nr_maps; j++) {
6904 			map = &obj->maps[j];
6905 			if (map->sec_idx != obj->efile.btf_maps_shndx)
6906 				continue;
6907 
6908 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
6909 			if (vi->offset <= rel.r_offset &&
6910 			    rel.r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6911 				break;
6912 		}
6913 		if (j == obj->nr_maps) {
6914 			pr_warn(".maps relo #%d: cannot find map '%s' at rel.r_offset %zu\n",
6915 				i, name, (size_t)rel.r_offset);
6916 			return -EINVAL;
6917 		}
6918 
6919 		if (!bpf_map_type__is_map_in_map(map->def.type))
6920 			return -EINVAL;
6921 		if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6922 		    map->def.key_size != sizeof(int)) {
6923 			pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6924 				i, map->name, sizeof(int));
6925 			return -EINVAL;
6926 		}
6927 
6928 		targ_map = bpf_object__find_map_by_name(obj, name);
6929 		if (!targ_map)
6930 			return -ESRCH;
6931 
6932 		var = btf__type_by_id(obj->btf, vi->type);
6933 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6934 		if (btf_vlen(def) == 0)
6935 			return -EINVAL;
6936 		member = btf_members(def) + btf_vlen(def) - 1;
6937 		mname = btf__name_by_offset(obj->btf, member->name_off);
6938 		if (strcmp(mname, "values"))
6939 			return -EINVAL;
6940 
6941 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6942 		if (rel.r_offset - vi->offset < moff)
6943 			return -EINVAL;
6944 
6945 		moff = rel.r_offset - vi->offset - moff;
6946 		/* here we use BPF pointer size, which is always 64 bit, as we
6947 		 * are parsing ELF that was built for BPF target
6948 		 */
6949 		if (moff % bpf_ptr_sz)
6950 			return -EINVAL;
6951 		moff /= bpf_ptr_sz;
6952 		if (moff >= map->init_slots_sz) {
6953 			new_sz = moff + 1;
6954 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6955 			if (!tmp)
6956 				return -ENOMEM;
6957 			map->init_slots = tmp;
6958 			memset(map->init_slots + map->init_slots_sz, 0,
6959 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
6960 			map->init_slots_sz = new_sz;
6961 		}
6962 		map->init_slots[moff] = targ_map;
6963 
6964 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to map '%s'\n",
6965 			 i, map->name, moff, name);
6966 	}
6967 
6968 	return 0;
6969 }
6970 
6971 static int cmp_relocs(const void *_a, const void *_b)
6972 {
6973 	const struct reloc_desc *a = _a;
6974 	const struct reloc_desc *b = _b;
6975 
6976 	if (a->insn_idx != b->insn_idx)
6977 		return a->insn_idx < b->insn_idx ? -1 : 1;
6978 
6979 	/* no two relocations should have the same insn_idx, but ... */
6980 	if (a->type != b->type)
6981 		return a->type < b->type ? -1 : 1;
6982 
6983 	return 0;
6984 }
6985 
6986 static int bpf_object__collect_relos(struct bpf_object *obj)
6987 {
6988 	int i, err;
6989 
6990 	for (i = 0; i < obj->efile.nr_reloc_sects; i++) {
6991 		GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr;
6992 		Elf_Data *data = obj->efile.reloc_sects[i].data;
6993 		int idx = shdr->sh_info;
6994 
6995 		if (shdr->sh_type != SHT_REL) {
6996 			pr_warn("internal error at %d\n", __LINE__);
6997 			return -LIBBPF_ERRNO__INTERNAL;
6998 		}
6999 
7000 		if (idx == obj->efile.st_ops_shndx)
7001 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7002 		else if (idx == obj->efile.btf_maps_shndx)
7003 			err = bpf_object__collect_map_relos(obj, shdr, data);
7004 		else
7005 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7006 		if (err)
7007 			return err;
7008 	}
7009 
7010 	for (i = 0; i < obj->nr_programs; i++) {
7011 		struct bpf_program *p = &obj->programs[i];
7012 
7013 		if (!p->nr_reloc)
7014 			continue;
7015 
7016 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
7017 	}
7018 	return 0;
7019 }
7020 
7021 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7022 {
7023 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7024 	    BPF_OP(insn->code) == BPF_CALL &&
7025 	    BPF_SRC(insn->code) == BPF_K &&
7026 	    insn->src_reg == 0 &&
7027 	    insn->dst_reg == 0) {
7028 		    *func_id = insn->imm;
7029 		    return true;
7030 	}
7031 	return false;
7032 }
7033 
7034 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7035 {
7036 	struct bpf_insn *insn = prog->insns;
7037 	enum bpf_func_id func_id;
7038 	int i;
7039 
7040 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7041 		if (!insn_is_helper_call(insn, &func_id))
7042 			continue;
7043 
7044 		/* on kernels that don't yet support
7045 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7046 		 * to bpf_probe_read() which works well for old kernels
7047 		 */
7048 		switch (func_id) {
7049 		case BPF_FUNC_probe_read_kernel:
7050 		case BPF_FUNC_probe_read_user:
7051 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
7052 				insn->imm = BPF_FUNC_probe_read;
7053 			break;
7054 		case BPF_FUNC_probe_read_kernel_str:
7055 		case BPF_FUNC_probe_read_user_str:
7056 			if (!kernel_supports(FEAT_PROBE_READ_KERN))
7057 				insn->imm = BPF_FUNC_probe_read_str;
7058 			break;
7059 		default:
7060 			break;
7061 		}
7062 	}
7063 	return 0;
7064 }
7065 
7066 static int
7067 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt,
7068 	     char *license, __u32 kern_version, int *pfd)
7069 {
7070 	struct bpf_prog_load_params load_attr = {};
7071 	char *cp, errmsg[STRERR_BUFSIZE];
7072 	size_t log_buf_size = 0;
7073 	char *log_buf = NULL;
7074 	int btf_fd, ret;
7075 
7076 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7077 		/*
7078 		 * The program type must be set.  Most likely we couldn't find a proper
7079 		 * section definition at load time, and thus we didn't infer the type.
7080 		 */
7081 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7082 			prog->name, prog->sec_name);
7083 		return -EINVAL;
7084 	}
7085 
7086 	if (!insns || !insns_cnt)
7087 		return -EINVAL;
7088 
7089 	load_attr.prog_type = prog->type;
7090 	/* old kernels might not support specifying expected_attach_type */
7091 	if (!kernel_supports(FEAT_EXP_ATTACH_TYPE) && prog->sec_def &&
7092 	    prog->sec_def->is_exp_attach_type_optional)
7093 		load_attr.expected_attach_type = 0;
7094 	else
7095 		load_attr.expected_attach_type = prog->expected_attach_type;
7096 	if (kernel_supports(FEAT_PROG_NAME))
7097 		load_attr.name = prog->name;
7098 	load_attr.insns = insns;
7099 	load_attr.insn_cnt = insns_cnt;
7100 	load_attr.license = license;
7101 	load_attr.attach_btf_id = prog->attach_btf_id;
7102 	if (prog->attach_prog_fd)
7103 		load_attr.attach_prog_fd = prog->attach_prog_fd;
7104 	else
7105 		load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7106 	load_attr.attach_btf_id = prog->attach_btf_id;
7107 	load_attr.kern_version = kern_version;
7108 	load_attr.prog_ifindex = prog->prog_ifindex;
7109 
7110 	/* specify func_info/line_info only if kernel supports them */
7111 	btf_fd = bpf_object__btf_fd(prog->obj);
7112 	if (btf_fd >= 0 && kernel_supports(FEAT_BTF_FUNC)) {
7113 		load_attr.prog_btf_fd = btf_fd;
7114 		load_attr.func_info = prog->func_info;
7115 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7116 		load_attr.func_info_cnt = prog->func_info_cnt;
7117 		load_attr.line_info = prog->line_info;
7118 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7119 		load_attr.line_info_cnt = prog->line_info_cnt;
7120 	}
7121 	load_attr.log_level = prog->log_level;
7122 	load_attr.prog_flags = prog->prog_flags;
7123 
7124 retry_load:
7125 	if (log_buf_size) {
7126 		log_buf = malloc(log_buf_size);
7127 		if (!log_buf)
7128 			return -ENOMEM;
7129 
7130 		*log_buf = 0;
7131 	}
7132 
7133 	load_attr.log_buf = log_buf;
7134 	load_attr.log_buf_sz = log_buf_size;
7135 	ret = libbpf__bpf_prog_load(&load_attr);
7136 
7137 	if (ret >= 0) {
7138 		if (log_buf && load_attr.log_level)
7139 			pr_debug("verifier log:\n%s", log_buf);
7140 
7141 		if (prog->obj->rodata_map_idx >= 0 &&
7142 		    kernel_supports(FEAT_PROG_BIND_MAP)) {
7143 			struct bpf_map *rodata_map =
7144 				&prog->obj->maps[prog->obj->rodata_map_idx];
7145 
7146 			if (bpf_prog_bind_map(ret, bpf_map__fd(rodata_map), NULL)) {
7147 				cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7148 				pr_warn("prog '%s': failed to bind .rodata map: %s\n",
7149 					prog->name, cp);
7150 				/* Don't fail hard if can't bind rodata. */
7151 			}
7152 		}
7153 
7154 		*pfd = ret;
7155 		ret = 0;
7156 		goto out;
7157 	}
7158 
7159 	if (!log_buf || errno == ENOSPC) {
7160 		log_buf_size = max((size_t)BPF_LOG_BUF_SIZE,
7161 				   log_buf_size << 1);
7162 
7163 		free(log_buf);
7164 		goto retry_load;
7165 	}
7166 	ret = errno ? -errno : -LIBBPF_ERRNO__LOAD;
7167 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7168 	pr_warn("load bpf program failed: %s\n", cp);
7169 	pr_perm_msg(ret);
7170 
7171 	if (log_buf && log_buf[0] != '\0') {
7172 		ret = -LIBBPF_ERRNO__VERIFY;
7173 		pr_warn("-- BEGIN DUMP LOG ---\n");
7174 		pr_warn("\n%s\n", log_buf);
7175 		pr_warn("-- END LOG --\n");
7176 	} else if (load_attr.insn_cnt >= BPF_MAXINSNS) {
7177 		pr_warn("Program too large (%zu insns), at most %d insns\n",
7178 			load_attr.insn_cnt, BPF_MAXINSNS);
7179 		ret = -LIBBPF_ERRNO__PROG2BIG;
7180 	} else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) {
7181 		/* Wrong program type? */
7182 		int fd;
7183 
7184 		load_attr.prog_type = BPF_PROG_TYPE_KPROBE;
7185 		load_attr.expected_attach_type = 0;
7186 		load_attr.log_buf = NULL;
7187 		load_attr.log_buf_sz = 0;
7188 		fd = libbpf__bpf_prog_load(&load_attr);
7189 		if (fd >= 0) {
7190 			close(fd);
7191 			ret = -LIBBPF_ERRNO__PROGTYPE;
7192 			goto out;
7193 		}
7194 	}
7195 
7196 out:
7197 	free(log_buf);
7198 	return ret;
7199 }
7200 
7201 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id);
7202 
7203 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver)
7204 {
7205 	int err = 0, fd, i;
7206 
7207 	if (prog->obj->loaded) {
7208 		pr_warn("prog '%s': can't load after object was loaded\n", prog->name);
7209 		return -EINVAL;
7210 	}
7211 
7212 	if ((prog->type == BPF_PROG_TYPE_TRACING ||
7213 	     prog->type == BPF_PROG_TYPE_LSM ||
7214 	     prog->type == BPF_PROG_TYPE_EXT) && !prog->attach_btf_id) {
7215 		int btf_obj_fd = 0, btf_type_id = 0;
7216 
7217 		err = libbpf_find_attach_btf_id(prog, &btf_obj_fd, &btf_type_id);
7218 		if (err)
7219 			return err;
7220 
7221 		prog->attach_btf_obj_fd = btf_obj_fd;
7222 		prog->attach_btf_id = btf_type_id;
7223 	}
7224 
7225 	if (prog->instances.nr < 0 || !prog->instances.fds) {
7226 		if (prog->preprocessor) {
7227 			pr_warn("Internal error: can't load program '%s'\n",
7228 				prog->name);
7229 			return -LIBBPF_ERRNO__INTERNAL;
7230 		}
7231 
7232 		prog->instances.fds = malloc(sizeof(int));
7233 		if (!prog->instances.fds) {
7234 			pr_warn("Not enough memory for BPF fds\n");
7235 			return -ENOMEM;
7236 		}
7237 		prog->instances.nr = 1;
7238 		prog->instances.fds[0] = -1;
7239 	}
7240 
7241 	if (!prog->preprocessor) {
7242 		if (prog->instances.nr != 1) {
7243 			pr_warn("prog '%s': inconsistent nr(%d) != 1\n",
7244 				prog->name, prog->instances.nr);
7245 		}
7246 		err = load_program(prog, prog->insns, prog->insns_cnt,
7247 				   license, kern_ver, &fd);
7248 		if (!err)
7249 			prog->instances.fds[0] = fd;
7250 		goto out;
7251 	}
7252 
7253 	for (i = 0; i < prog->instances.nr; i++) {
7254 		struct bpf_prog_prep_result result;
7255 		bpf_program_prep_t preprocessor = prog->preprocessor;
7256 
7257 		memset(&result, 0, sizeof(result));
7258 		err = preprocessor(prog, i, prog->insns,
7259 				   prog->insns_cnt, &result);
7260 		if (err) {
7261 			pr_warn("Preprocessing the %dth instance of program '%s' failed\n",
7262 				i, prog->name);
7263 			goto out;
7264 		}
7265 
7266 		if (!result.new_insn_ptr || !result.new_insn_cnt) {
7267 			pr_debug("Skip loading the %dth instance of program '%s'\n",
7268 				 i, prog->name);
7269 			prog->instances.fds[i] = -1;
7270 			if (result.pfd)
7271 				*result.pfd = -1;
7272 			continue;
7273 		}
7274 
7275 		err = load_program(prog, result.new_insn_ptr,
7276 				   result.new_insn_cnt, license, kern_ver, &fd);
7277 		if (err) {
7278 			pr_warn("Loading the %dth instance of program '%s' failed\n",
7279 				i, prog->name);
7280 			goto out;
7281 		}
7282 
7283 		if (result.pfd)
7284 			*result.pfd = fd;
7285 		prog->instances.fds[i] = fd;
7286 	}
7287 out:
7288 	if (err)
7289 		pr_warn("failed to load program '%s'\n", prog->name);
7290 	zfree(&prog->insns);
7291 	prog->insns_cnt = 0;
7292 	return err;
7293 }
7294 
7295 static int
7296 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7297 {
7298 	struct bpf_program *prog;
7299 	size_t i;
7300 	int err;
7301 
7302 	for (i = 0; i < obj->nr_programs; i++) {
7303 		prog = &obj->programs[i];
7304 		err = bpf_object__sanitize_prog(obj, prog);
7305 		if (err)
7306 			return err;
7307 	}
7308 
7309 	for (i = 0; i < obj->nr_programs; i++) {
7310 		prog = &obj->programs[i];
7311 		if (prog_is_subprog(obj, prog))
7312 			continue;
7313 		if (!prog->load) {
7314 			pr_debug("prog '%s': skipped loading\n", prog->name);
7315 			continue;
7316 		}
7317 		prog->log_level |= log_level;
7318 		err = bpf_program__load(prog, obj->license, obj->kern_version);
7319 		if (err)
7320 			return err;
7321 	}
7322 	return 0;
7323 }
7324 
7325 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7326 
7327 static struct bpf_object *
7328 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7329 		   const struct bpf_object_open_opts *opts)
7330 {
7331 	const char *obj_name, *kconfig;
7332 	struct bpf_program *prog;
7333 	struct bpf_object *obj;
7334 	char tmp_name[64];
7335 	int err;
7336 
7337 	if (elf_version(EV_CURRENT) == EV_NONE) {
7338 		pr_warn("failed to init libelf for %s\n",
7339 			path ? : "(mem buf)");
7340 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7341 	}
7342 
7343 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7344 		return ERR_PTR(-EINVAL);
7345 
7346 	obj_name = OPTS_GET(opts, object_name, NULL);
7347 	if (obj_buf) {
7348 		if (!obj_name) {
7349 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7350 				 (unsigned long)obj_buf,
7351 				 (unsigned long)obj_buf_sz);
7352 			obj_name = tmp_name;
7353 		}
7354 		path = obj_name;
7355 		pr_debug("loading object '%s' from buffer\n", obj_name);
7356 	}
7357 
7358 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7359 	if (IS_ERR(obj))
7360 		return obj;
7361 
7362 	kconfig = OPTS_GET(opts, kconfig, NULL);
7363 	if (kconfig) {
7364 		obj->kconfig = strdup(kconfig);
7365 		if (!obj->kconfig)
7366 			return ERR_PTR(-ENOMEM);
7367 	}
7368 
7369 	err = bpf_object__elf_init(obj);
7370 	err = err ? : bpf_object__check_endianness(obj);
7371 	err = err ? : bpf_object__elf_collect(obj);
7372 	err = err ? : bpf_object__collect_externs(obj);
7373 	err = err ? : bpf_object__finalize_btf(obj);
7374 	err = err ? : bpf_object__init_maps(obj, opts);
7375 	err = err ? : bpf_object__collect_relos(obj);
7376 	if (err)
7377 		goto out;
7378 	bpf_object__elf_finish(obj);
7379 
7380 	bpf_object__for_each_program(prog, obj) {
7381 		prog->sec_def = find_sec_def(prog->sec_name);
7382 		if (!prog->sec_def) {
7383 			/* couldn't guess, but user might manually specify */
7384 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7385 				prog->name, prog->sec_name);
7386 			continue;
7387 		}
7388 
7389 		if (prog->sec_def->is_sleepable)
7390 			prog->prog_flags |= BPF_F_SLEEPABLE;
7391 		bpf_program__set_type(prog, prog->sec_def->prog_type);
7392 		bpf_program__set_expected_attach_type(prog,
7393 				prog->sec_def->expected_attach_type);
7394 
7395 		if (prog->sec_def->prog_type == BPF_PROG_TYPE_TRACING ||
7396 		    prog->sec_def->prog_type == BPF_PROG_TYPE_EXT)
7397 			prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0);
7398 	}
7399 
7400 	return obj;
7401 out:
7402 	bpf_object__close(obj);
7403 	return ERR_PTR(err);
7404 }
7405 
7406 static struct bpf_object *
7407 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags)
7408 {
7409 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7410 		.relaxed_maps = flags & MAPS_RELAX_COMPAT,
7411 	);
7412 
7413 	/* param validation */
7414 	if (!attr->file)
7415 		return NULL;
7416 
7417 	pr_debug("loading %s\n", attr->file);
7418 	return __bpf_object__open(attr->file, NULL, 0, &opts);
7419 }
7420 
7421 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr)
7422 {
7423 	return __bpf_object__open_xattr(attr, 0);
7424 }
7425 
7426 struct bpf_object *bpf_object__open(const char *path)
7427 {
7428 	struct bpf_object_open_attr attr = {
7429 		.file		= path,
7430 		.prog_type	= BPF_PROG_TYPE_UNSPEC,
7431 	};
7432 
7433 	return bpf_object__open_xattr(&attr);
7434 }
7435 
7436 struct bpf_object *
7437 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7438 {
7439 	if (!path)
7440 		return ERR_PTR(-EINVAL);
7441 
7442 	pr_debug("loading %s\n", path);
7443 
7444 	return __bpf_object__open(path, NULL, 0, opts);
7445 }
7446 
7447 struct bpf_object *
7448 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7449 		     const struct bpf_object_open_opts *opts)
7450 {
7451 	if (!obj_buf || obj_buf_sz == 0)
7452 		return ERR_PTR(-EINVAL);
7453 
7454 	return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts);
7455 }
7456 
7457 struct bpf_object *
7458 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz,
7459 			const char *name)
7460 {
7461 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts,
7462 		.object_name = name,
7463 		/* wrong default, but backwards-compatible */
7464 		.relaxed_maps = true,
7465 	);
7466 
7467 	/* returning NULL is wrong, but backwards-compatible */
7468 	if (!obj_buf || obj_buf_sz == 0)
7469 		return NULL;
7470 
7471 	return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts);
7472 }
7473 
7474 int bpf_object__unload(struct bpf_object *obj)
7475 {
7476 	size_t i;
7477 
7478 	if (!obj)
7479 		return -EINVAL;
7480 
7481 	for (i = 0; i < obj->nr_maps; i++) {
7482 		zclose(obj->maps[i].fd);
7483 		if (obj->maps[i].st_ops)
7484 			zfree(&obj->maps[i].st_ops->kern_vdata);
7485 	}
7486 
7487 	for (i = 0; i < obj->nr_programs; i++)
7488 		bpf_program__unload(&obj->programs[i]);
7489 
7490 	return 0;
7491 }
7492 
7493 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7494 {
7495 	struct bpf_map *m;
7496 
7497 	bpf_object__for_each_map(m, obj) {
7498 		if (!bpf_map__is_internal(m))
7499 			continue;
7500 		if (!kernel_supports(FEAT_GLOBAL_DATA)) {
7501 			pr_warn("kernel doesn't support global data\n");
7502 			return -ENOTSUP;
7503 		}
7504 		if (!kernel_supports(FEAT_ARRAY_MMAP))
7505 			m->def.map_flags ^= BPF_F_MMAPABLE;
7506 	}
7507 
7508 	return 0;
7509 }
7510 
7511 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7512 {
7513 	char sym_type, sym_name[500];
7514 	unsigned long long sym_addr;
7515 	const struct btf_type *t;
7516 	struct extern_desc *ext;
7517 	int ret, err = 0;
7518 	FILE *f;
7519 
7520 	f = fopen("/proc/kallsyms", "r");
7521 	if (!f) {
7522 		err = -errno;
7523 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7524 		return err;
7525 	}
7526 
7527 	while (true) {
7528 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7529 			     &sym_addr, &sym_type, sym_name);
7530 		if (ret == EOF && feof(f))
7531 			break;
7532 		if (ret != 3) {
7533 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7534 			err = -EINVAL;
7535 			goto out;
7536 		}
7537 
7538 		ext = find_extern_by_name(obj, sym_name);
7539 		if (!ext || ext->type != EXT_KSYM)
7540 			continue;
7541 
7542 		t = btf__type_by_id(obj->btf, ext->btf_id);
7543 		if (!btf_is_var(t))
7544 			continue;
7545 
7546 		if (ext->is_set && ext->ksym.addr != sym_addr) {
7547 			pr_warn("extern (ksym) '%s' resolution is ambiguous: 0x%llx or 0x%llx\n",
7548 				sym_name, ext->ksym.addr, sym_addr);
7549 			err = -EINVAL;
7550 			goto out;
7551 		}
7552 		if (!ext->is_set) {
7553 			ext->is_set = true;
7554 			ext->ksym.addr = sym_addr;
7555 			pr_debug("extern (ksym) %s=0x%llx\n", sym_name, sym_addr);
7556 		}
7557 	}
7558 
7559 out:
7560 	fclose(f);
7561 	return err;
7562 }
7563 
7564 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7565 			    __u16 kind, struct btf **res_btf,
7566 			    int *res_btf_fd)
7567 {
7568 	int i, id, btf_fd, err;
7569 	struct btf *btf;
7570 
7571 	btf = obj->btf_vmlinux;
7572 	btf_fd = 0;
7573 	id = btf__find_by_name_kind(btf, ksym_name, kind);
7574 
7575 	if (id == -ENOENT) {
7576 		err = load_module_btfs(obj);
7577 		if (err)
7578 			return err;
7579 
7580 		for (i = 0; i < obj->btf_module_cnt; i++) {
7581 			btf = obj->btf_modules[i].btf;
7582 			/* we assume module BTF FD is always >0 */
7583 			btf_fd = obj->btf_modules[i].fd;
7584 			id = btf__find_by_name_kind(btf, ksym_name, kind);
7585 			if (id != -ENOENT)
7586 				break;
7587 		}
7588 	}
7589 	if (id <= 0) {
7590 		pr_warn("extern (%s ksym) '%s': failed to find BTF ID in kernel BTF(s).\n",
7591 			__btf_kind_str(kind), ksym_name);
7592 		return -ESRCH;
7593 	}
7594 
7595 	*res_btf = btf;
7596 	*res_btf_fd = btf_fd;
7597 	return id;
7598 }
7599 
7600 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7601 					       struct extern_desc *ext)
7602 {
7603 	const struct btf_type *targ_var, *targ_type;
7604 	__u32 targ_type_id, local_type_id;
7605 	const char *targ_var_name;
7606 	int id, btf_fd = 0, err;
7607 	struct btf *btf = NULL;
7608 
7609 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &btf_fd);
7610 	if (id < 0)
7611 		return id;
7612 
7613 	/* find local type_id */
7614 	local_type_id = ext->ksym.type_id;
7615 
7616 	/* find target type_id */
7617 	targ_var = btf__type_by_id(btf, id);
7618 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7619 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7620 
7621 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
7622 					btf, targ_type_id);
7623 	if (err <= 0) {
7624 		const struct btf_type *local_type;
7625 		const char *targ_name, *local_name;
7626 
7627 		local_type = btf__type_by_id(obj->btf, local_type_id);
7628 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7629 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
7630 
7631 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7632 			ext->name, local_type_id,
7633 			btf_kind_str(local_type), local_name, targ_type_id,
7634 			btf_kind_str(targ_type), targ_name);
7635 		return -EINVAL;
7636 	}
7637 
7638 	ext->is_set = true;
7639 	ext->ksym.kernel_btf_obj_fd = btf_fd;
7640 	ext->ksym.kernel_btf_id = id;
7641 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7642 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7643 
7644 	return 0;
7645 }
7646 
7647 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7648 						struct extern_desc *ext)
7649 {
7650 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
7651 	const struct btf_type *kern_func;
7652 	struct btf *kern_btf = NULL;
7653 	int ret, kern_btf_fd = 0;
7654 
7655 	local_func_proto_id = ext->ksym.type_id;
7656 
7657 	kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC,
7658 				    &kern_btf, &kern_btf_fd);
7659 	if (kfunc_id < 0) {
7660 		pr_warn("extern (func ksym) '%s': not found in kernel BTF\n",
7661 			ext->name);
7662 		return kfunc_id;
7663 	}
7664 
7665 	if (kern_btf != obj->btf_vmlinux) {
7666 		pr_warn("extern (func ksym) '%s': function in kernel module is not supported\n",
7667 			ext->name);
7668 		return -ENOTSUP;
7669 	}
7670 
7671 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
7672 	kfunc_proto_id = kern_func->type;
7673 
7674 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7675 					kern_btf, kfunc_proto_id);
7676 	if (ret <= 0) {
7677 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n",
7678 			ext->name, local_func_proto_id, kfunc_proto_id);
7679 		return -EINVAL;
7680 	}
7681 
7682 	ext->is_set = true;
7683 	ext->ksym.kernel_btf_obj_fd = kern_btf_fd;
7684 	ext->ksym.kernel_btf_id = kfunc_id;
7685 	pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n",
7686 		 ext->name, kfunc_id);
7687 
7688 	return 0;
7689 }
7690 
7691 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7692 {
7693 	const struct btf_type *t;
7694 	struct extern_desc *ext;
7695 	int i, err;
7696 
7697 	for (i = 0; i < obj->nr_extern; i++) {
7698 		ext = &obj->externs[i];
7699 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7700 			continue;
7701 
7702 		t = btf__type_by_id(obj->btf, ext->btf_id);
7703 		if (btf_is_var(t))
7704 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7705 		else
7706 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7707 		if (err)
7708 			return err;
7709 	}
7710 	return 0;
7711 }
7712 
7713 static int bpf_object__resolve_externs(struct bpf_object *obj,
7714 				       const char *extra_kconfig)
7715 {
7716 	bool need_config = false, need_kallsyms = false;
7717 	bool need_vmlinux_btf = false;
7718 	struct extern_desc *ext;
7719 	void *kcfg_data = NULL;
7720 	int err, i;
7721 
7722 	if (obj->nr_extern == 0)
7723 		return 0;
7724 
7725 	if (obj->kconfig_map_idx >= 0)
7726 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7727 
7728 	for (i = 0; i < obj->nr_extern; i++) {
7729 		ext = &obj->externs[i];
7730 
7731 		if (ext->type == EXT_KCFG &&
7732 		    strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7733 			void *ext_val = kcfg_data + ext->kcfg.data_off;
7734 			__u32 kver = get_kernel_version();
7735 
7736 			if (!kver) {
7737 				pr_warn("failed to get kernel version\n");
7738 				return -EINVAL;
7739 			}
7740 			err = set_kcfg_value_num(ext, ext_val, kver);
7741 			if (err)
7742 				return err;
7743 			pr_debug("extern (kcfg) %s=0x%x\n", ext->name, kver);
7744 		} else if (ext->type == EXT_KCFG &&
7745 			   strncmp(ext->name, "CONFIG_", 7) == 0) {
7746 			need_config = true;
7747 		} else if (ext->type == EXT_KSYM) {
7748 			if (ext->ksym.type_id)
7749 				need_vmlinux_btf = true;
7750 			else
7751 				need_kallsyms = true;
7752 		} else {
7753 			pr_warn("unrecognized extern '%s'\n", ext->name);
7754 			return -EINVAL;
7755 		}
7756 	}
7757 	if (need_config && extra_kconfig) {
7758 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7759 		if (err)
7760 			return -EINVAL;
7761 		need_config = false;
7762 		for (i = 0; i < obj->nr_extern; i++) {
7763 			ext = &obj->externs[i];
7764 			if (ext->type == EXT_KCFG && !ext->is_set) {
7765 				need_config = true;
7766 				break;
7767 			}
7768 		}
7769 	}
7770 	if (need_config) {
7771 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
7772 		if (err)
7773 			return -EINVAL;
7774 	}
7775 	if (need_kallsyms) {
7776 		err = bpf_object__read_kallsyms_file(obj);
7777 		if (err)
7778 			return -EINVAL;
7779 	}
7780 	if (need_vmlinux_btf) {
7781 		err = bpf_object__resolve_ksyms_btf_id(obj);
7782 		if (err)
7783 			return -EINVAL;
7784 	}
7785 	for (i = 0; i < obj->nr_extern; i++) {
7786 		ext = &obj->externs[i];
7787 
7788 		if (!ext->is_set && !ext->is_weak) {
7789 			pr_warn("extern %s (strong) not resolved\n", ext->name);
7790 			return -ESRCH;
7791 		} else if (!ext->is_set) {
7792 			pr_debug("extern %s (weak) not resolved, defaulting to zero\n",
7793 				 ext->name);
7794 		}
7795 	}
7796 
7797 	return 0;
7798 }
7799 
7800 int bpf_object__load_xattr(struct bpf_object_load_attr *attr)
7801 {
7802 	struct bpf_object *obj;
7803 	int err, i;
7804 
7805 	if (!attr)
7806 		return -EINVAL;
7807 	obj = attr->obj;
7808 	if (!obj)
7809 		return -EINVAL;
7810 
7811 	if (obj->loaded) {
7812 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7813 		return -EINVAL;
7814 	}
7815 
7816 	err = bpf_object__probe_loading(obj);
7817 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7818 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7819 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
7820 	err = err ? : bpf_object__sanitize_maps(obj);
7821 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7822 	err = err ? : bpf_object__create_maps(obj);
7823 	err = err ? : bpf_object__relocate(obj, attr->target_btf_path);
7824 	err = err ? : bpf_object__load_progs(obj, attr->log_level);
7825 
7826 	/* clean up module BTFs */
7827 	for (i = 0; i < obj->btf_module_cnt; i++) {
7828 		close(obj->btf_modules[i].fd);
7829 		btf__free(obj->btf_modules[i].btf);
7830 		free(obj->btf_modules[i].name);
7831 	}
7832 	free(obj->btf_modules);
7833 
7834 	/* clean up vmlinux BTF */
7835 	btf__free(obj->btf_vmlinux);
7836 	obj->btf_vmlinux = NULL;
7837 
7838 	obj->loaded = true; /* doesn't matter if successfully or not */
7839 
7840 	if (err)
7841 		goto out;
7842 
7843 	return 0;
7844 out:
7845 	/* unpin any maps that were auto-pinned during load */
7846 	for (i = 0; i < obj->nr_maps; i++)
7847 		if (obj->maps[i].pinned && !obj->maps[i].reused)
7848 			bpf_map__unpin(&obj->maps[i], NULL);
7849 
7850 	bpf_object__unload(obj);
7851 	pr_warn("failed to load object '%s'\n", obj->path);
7852 	return err;
7853 }
7854 
7855 int bpf_object__load(struct bpf_object *obj)
7856 {
7857 	struct bpf_object_load_attr attr = {
7858 		.obj = obj,
7859 	};
7860 
7861 	return bpf_object__load_xattr(&attr);
7862 }
7863 
7864 static int make_parent_dir(const char *path)
7865 {
7866 	char *cp, errmsg[STRERR_BUFSIZE];
7867 	char *dname, *dir;
7868 	int err = 0;
7869 
7870 	dname = strdup(path);
7871 	if (dname == NULL)
7872 		return -ENOMEM;
7873 
7874 	dir = dirname(dname);
7875 	if (mkdir(dir, 0700) && errno != EEXIST)
7876 		err = -errno;
7877 
7878 	free(dname);
7879 	if (err) {
7880 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7881 		pr_warn("failed to mkdir %s: %s\n", path, cp);
7882 	}
7883 	return err;
7884 }
7885 
7886 static int check_path(const char *path)
7887 {
7888 	char *cp, errmsg[STRERR_BUFSIZE];
7889 	struct statfs st_fs;
7890 	char *dname, *dir;
7891 	int err = 0;
7892 
7893 	if (path == NULL)
7894 		return -EINVAL;
7895 
7896 	dname = strdup(path);
7897 	if (dname == NULL)
7898 		return -ENOMEM;
7899 
7900 	dir = dirname(dname);
7901 	if (statfs(dir, &st_fs)) {
7902 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7903 		pr_warn("failed to statfs %s: %s\n", dir, cp);
7904 		err = -errno;
7905 	}
7906 	free(dname);
7907 
7908 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7909 		pr_warn("specified path %s is not on BPF FS\n", path);
7910 		err = -EINVAL;
7911 	}
7912 
7913 	return err;
7914 }
7915 
7916 int bpf_program__pin_instance(struct bpf_program *prog, const char *path,
7917 			      int instance)
7918 {
7919 	char *cp, errmsg[STRERR_BUFSIZE];
7920 	int err;
7921 
7922 	err = make_parent_dir(path);
7923 	if (err)
7924 		return err;
7925 
7926 	err = check_path(path);
7927 	if (err)
7928 		return err;
7929 
7930 	if (prog == NULL) {
7931 		pr_warn("invalid program pointer\n");
7932 		return -EINVAL;
7933 	}
7934 
7935 	if (instance < 0 || instance >= prog->instances.nr) {
7936 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7937 			instance, prog->name, prog->instances.nr);
7938 		return -EINVAL;
7939 	}
7940 
7941 	if (bpf_obj_pin(prog->instances.fds[instance], path)) {
7942 		err = -errno;
7943 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7944 		pr_warn("failed to pin program: %s\n", cp);
7945 		return err;
7946 	}
7947 	pr_debug("pinned program '%s'\n", path);
7948 
7949 	return 0;
7950 }
7951 
7952 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path,
7953 				int instance)
7954 {
7955 	int err;
7956 
7957 	err = check_path(path);
7958 	if (err)
7959 		return err;
7960 
7961 	if (prog == NULL) {
7962 		pr_warn("invalid program pointer\n");
7963 		return -EINVAL;
7964 	}
7965 
7966 	if (instance < 0 || instance >= prog->instances.nr) {
7967 		pr_warn("invalid prog instance %d of prog %s (max %d)\n",
7968 			instance, prog->name, prog->instances.nr);
7969 		return -EINVAL;
7970 	}
7971 
7972 	err = unlink(path);
7973 	if (err != 0)
7974 		return -errno;
7975 	pr_debug("unpinned program '%s'\n", path);
7976 
7977 	return 0;
7978 }
7979 
7980 int bpf_program__pin(struct bpf_program *prog, const char *path)
7981 {
7982 	int i, err;
7983 
7984 	err = make_parent_dir(path);
7985 	if (err)
7986 		return err;
7987 
7988 	err = check_path(path);
7989 	if (err)
7990 		return err;
7991 
7992 	if (prog == NULL) {
7993 		pr_warn("invalid program pointer\n");
7994 		return -EINVAL;
7995 	}
7996 
7997 	if (prog->instances.nr <= 0) {
7998 		pr_warn("no instances of prog %s to pin\n", prog->name);
7999 		return -EINVAL;
8000 	}
8001 
8002 	if (prog->instances.nr == 1) {
8003 		/* don't create subdirs when pinning single instance */
8004 		return bpf_program__pin_instance(prog, path, 0);
8005 	}
8006 
8007 	for (i = 0; i < prog->instances.nr; i++) {
8008 		char buf[PATH_MAX];
8009 		int len;
8010 
8011 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8012 		if (len < 0) {
8013 			err = -EINVAL;
8014 			goto err_unpin;
8015 		} else if (len >= PATH_MAX) {
8016 			err = -ENAMETOOLONG;
8017 			goto err_unpin;
8018 		}
8019 
8020 		err = bpf_program__pin_instance(prog, buf, i);
8021 		if (err)
8022 			goto err_unpin;
8023 	}
8024 
8025 	return 0;
8026 
8027 err_unpin:
8028 	for (i = i - 1; i >= 0; i--) {
8029 		char buf[PATH_MAX];
8030 		int len;
8031 
8032 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8033 		if (len < 0)
8034 			continue;
8035 		else if (len >= PATH_MAX)
8036 			continue;
8037 
8038 		bpf_program__unpin_instance(prog, buf, i);
8039 	}
8040 
8041 	rmdir(path);
8042 
8043 	return err;
8044 }
8045 
8046 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8047 {
8048 	int i, err;
8049 
8050 	err = check_path(path);
8051 	if (err)
8052 		return err;
8053 
8054 	if (prog == NULL) {
8055 		pr_warn("invalid program pointer\n");
8056 		return -EINVAL;
8057 	}
8058 
8059 	if (prog->instances.nr <= 0) {
8060 		pr_warn("no instances of prog %s to pin\n", prog->name);
8061 		return -EINVAL;
8062 	}
8063 
8064 	if (prog->instances.nr == 1) {
8065 		/* don't create subdirs when pinning single instance */
8066 		return bpf_program__unpin_instance(prog, path, 0);
8067 	}
8068 
8069 	for (i = 0; i < prog->instances.nr; i++) {
8070 		char buf[PATH_MAX];
8071 		int len;
8072 
8073 		len = snprintf(buf, PATH_MAX, "%s/%d", path, i);
8074 		if (len < 0)
8075 			return -EINVAL;
8076 		else if (len >= PATH_MAX)
8077 			return -ENAMETOOLONG;
8078 
8079 		err = bpf_program__unpin_instance(prog, buf, i);
8080 		if (err)
8081 			return err;
8082 	}
8083 
8084 	err = rmdir(path);
8085 	if (err)
8086 		return -errno;
8087 
8088 	return 0;
8089 }
8090 
8091 int bpf_map__pin(struct bpf_map *map, const char *path)
8092 {
8093 	char *cp, errmsg[STRERR_BUFSIZE];
8094 	int err;
8095 
8096 	if (map == NULL) {
8097 		pr_warn("invalid map pointer\n");
8098 		return -EINVAL;
8099 	}
8100 
8101 	if (map->pin_path) {
8102 		if (path && strcmp(path, map->pin_path)) {
8103 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8104 				bpf_map__name(map), map->pin_path, path);
8105 			return -EINVAL;
8106 		} else if (map->pinned) {
8107 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8108 				 bpf_map__name(map), map->pin_path);
8109 			return 0;
8110 		}
8111 	} else {
8112 		if (!path) {
8113 			pr_warn("missing a path to pin map '%s' at\n",
8114 				bpf_map__name(map));
8115 			return -EINVAL;
8116 		} else if (map->pinned) {
8117 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8118 			return -EEXIST;
8119 		}
8120 
8121 		map->pin_path = strdup(path);
8122 		if (!map->pin_path) {
8123 			err = -errno;
8124 			goto out_err;
8125 		}
8126 	}
8127 
8128 	err = make_parent_dir(map->pin_path);
8129 	if (err)
8130 		return err;
8131 
8132 	err = check_path(map->pin_path);
8133 	if (err)
8134 		return err;
8135 
8136 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8137 		err = -errno;
8138 		goto out_err;
8139 	}
8140 
8141 	map->pinned = true;
8142 	pr_debug("pinned map '%s'\n", map->pin_path);
8143 
8144 	return 0;
8145 
8146 out_err:
8147 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8148 	pr_warn("failed to pin map: %s\n", cp);
8149 	return err;
8150 }
8151 
8152 int bpf_map__unpin(struct bpf_map *map, const char *path)
8153 {
8154 	int err;
8155 
8156 	if (map == NULL) {
8157 		pr_warn("invalid map pointer\n");
8158 		return -EINVAL;
8159 	}
8160 
8161 	if (map->pin_path) {
8162 		if (path && strcmp(path, map->pin_path)) {
8163 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8164 				bpf_map__name(map), map->pin_path, path);
8165 			return -EINVAL;
8166 		}
8167 		path = map->pin_path;
8168 	} else if (!path) {
8169 		pr_warn("no path to unpin map '%s' from\n",
8170 			bpf_map__name(map));
8171 		return -EINVAL;
8172 	}
8173 
8174 	err = check_path(path);
8175 	if (err)
8176 		return err;
8177 
8178 	err = unlink(path);
8179 	if (err != 0)
8180 		return -errno;
8181 
8182 	map->pinned = false;
8183 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8184 
8185 	return 0;
8186 }
8187 
8188 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8189 {
8190 	char *new = NULL;
8191 
8192 	if (path) {
8193 		new = strdup(path);
8194 		if (!new)
8195 			return -errno;
8196 	}
8197 
8198 	free(map->pin_path);
8199 	map->pin_path = new;
8200 	return 0;
8201 }
8202 
8203 const char *bpf_map__get_pin_path(const struct bpf_map *map)
8204 {
8205 	return map->pin_path;
8206 }
8207 
8208 bool bpf_map__is_pinned(const struct bpf_map *map)
8209 {
8210 	return map->pinned;
8211 }
8212 
8213 static void sanitize_pin_path(char *s)
8214 {
8215 	/* bpffs disallows periods in path names */
8216 	while (*s) {
8217 		if (*s == '.')
8218 			*s = '_';
8219 		s++;
8220 	}
8221 }
8222 
8223 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8224 {
8225 	struct bpf_map *map;
8226 	int err;
8227 
8228 	if (!obj)
8229 		return -ENOENT;
8230 
8231 	if (!obj->loaded) {
8232 		pr_warn("object not yet loaded; load it first\n");
8233 		return -ENOENT;
8234 	}
8235 
8236 	bpf_object__for_each_map(map, obj) {
8237 		char *pin_path = NULL;
8238 		char buf[PATH_MAX];
8239 
8240 		if (path) {
8241 			int len;
8242 
8243 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
8244 				       bpf_map__name(map));
8245 			if (len < 0) {
8246 				err = -EINVAL;
8247 				goto err_unpin_maps;
8248 			} else if (len >= PATH_MAX) {
8249 				err = -ENAMETOOLONG;
8250 				goto err_unpin_maps;
8251 			}
8252 			sanitize_pin_path(buf);
8253 			pin_path = buf;
8254 		} else if (!map->pin_path) {
8255 			continue;
8256 		}
8257 
8258 		err = bpf_map__pin(map, pin_path);
8259 		if (err)
8260 			goto err_unpin_maps;
8261 	}
8262 
8263 	return 0;
8264 
8265 err_unpin_maps:
8266 	while ((map = bpf_map__prev(map, obj))) {
8267 		if (!map->pin_path)
8268 			continue;
8269 
8270 		bpf_map__unpin(map, NULL);
8271 	}
8272 
8273 	return err;
8274 }
8275 
8276 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8277 {
8278 	struct bpf_map *map;
8279 	int err;
8280 
8281 	if (!obj)
8282 		return -ENOENT;
8283 
8284 	bpf_object__for_each_map(map, obj) {
8285 		char *pin_path = NULL;
8286 		char buf[PATH_MAX];
8287 
8288 		if (path) {
8289 			int len;
8290 
8291 			len = snprintf(buf, PATH_MAX, "%s/%s", path,
8292 				       bpf_map__name(map));
8293 			if (len < 0)
8294 				return -EINVAL;
8295 			else if (len >= PATH_MAX)
8296 				return -ENAMETOOLONG;
8297 			sanitize_pin_path(buf);
8298 			pin_path = buf;
8299 		} else if (!map->pin_path) {
8300 			continue;
8301 		}
8302 
8303 		err = bpf_map__unpin(map, pin_path);
8304 		if (err)
8305 			return err;
8306 	}
8307 
8308 	return 0;
8309 }
8310 
8311 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8312 {
8313 	struct bpf_program *prog;
8314 	int err;
8315 
8316 	if (!obj)
8317 		return -ENOENT;
8318 
8319 	if (!obj->loaded) {
8320 		pr_warn("object not yet loaded; load it first\n");
8321 		return -ENOENT;
8322 	}
8323 
8324 	bpf_object__for_each_program(prog, obj) {
8325 		char buf[PATH_MAX];
8326 		int len;
8327 
8328 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8329 			       prog->pin_name);
8330 		if (len < 0) {
8331 			err = -EINVAL;
8332 			goto err_unpin_programs;
8333 		} else if (len >= PATH_MAX) {
8334 			err = -ENAMETOOLONG;
8335 			goto err_unpin_programs;
8336 		}
8337 
8338 		err = bpf_program__pin(prog, buf);
8339 		if (err)
8340 			goto err_unpin_programs;
8341 	}
8342 
8343 	return 0;
8344 
8345 err_unpin_programs:
8346 	while ((prog = bpf_program__prev(prog, obj))) {
8347 		char buf[PATH_MAX];
8348 		int len;
8349 
8350 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8351 			       prog->pin_name);
8352 		if (len < 0)
8353 			continue;
8354 		else if (len >= PATH_MAX)
8355 			continue;
8356 
8357 		bpf_program__unpin(prog, buf);
8358 	}
8359 
8360 	return err;
8361 }
8362 
8363 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8364 {
8365 	struct bpf_program *prog;
8366 	int err;
8367 
8368 	if (!obj)
8369 		return -ENOENT;
8370 
8371 	bpf_object__for_each_program(prog, obj) {
8372 		char buf[PATH_MAX];
8373 		int len;
8374 
8375 		len = snprintf(buf, PATH_MAX, "%s/%s", path,
8376 			       prog->pin_name);
8377 		if (len < 0)
8378 			return -EINVAL;
8379 		else if (len >= PATH_MAX)
8380 			return -ENAMETOOLONG;
8381 
8382 		err = bpf_program__unpin(prog, buf);
8383 		if (err)
8384 			return err;
8385 	}
8386 
8387 	return 0;
8388 }
8389 
8390 int bpf_object__pin(struct bpf_object *obj, const char *path)
8391 {
8392 	int err;
8393 
8394 	err = bpf_object__pin_maps(obj, path);
8395 	if (err)
8396 		return err;
8397 
8398 	err = bpf_object__pin_programs(obj, path);
8399 	if (err) {
8400 		bpf_object__unpin_maps(obj, path);
8401 		return err;
8402 	}
8403 
8404 	return 0;
8405 }
8406 
8407 static void bpf_map__destroy(struct bpf_map *map)
8408 {
8409 	if (map->clear_priv)
8410 		map->clear_priv(map, map->priv);
8411 	map->priv = NULL;
8412 	map->clear_priv = NULL;
8413 
8414 	if (map->inner_map) {
8415 		bpf_map__destroy(map->inner_map);
8416 		zfree(&map->inner_map);
8417 	}
8418 
8419 	zfree(&map->init_slots);
8420 	map->init_slots_sz = 0;
8421 
8422 	if (map->mmaped) {
8423 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8424 		map->mmaped = NULL;
8425 	}
8426 
8427 	if (map->st_ops) {
8428 		zfree(&map->st_ops->data);
8429 		zfree(&map->st_ops->progs);
8430 		zfree(&map->st_ops->kern_func_off);
8431 		zfree(&map->st_ops);
8432 	}
8433 
8434 	zfree(&map->name);
8435 	zfree(&map->pin_path);
8436 
8437 	if (map->fd >= 0)
8438 		zclose(map->fd);
8439 }
8440 
8441 void bpf_object__close(struct bpf_object *obj)
8442 {
8443 	size_t i;
8444 
8445 	if (IS_ERR_OR_NULL(obj))
8446 		return;
8447 
8448 	if (obj->clear_priv)
8449 		obj->clear_priv(obj, obj->priv);
8450 
8451 	bpf_object__elf_finish(obj);
8452 	bpf_object__unload(obj);
8453 	btf__free(obj->btf);
8454 	btf_ext__free(obj->btf_ext);
8455 
8456 	for (i = 0; i < obj->nr_maps; i++)
8457 		bpf_map__destroy(&obj->maps[i]);
8458 
8459 	zfree(&obj->kconfig);
8460 	zfree(&obj->externs);
8461 	obj->nr_extern = 0;
8462 
8463 	zfree(&obj->maps);
8464 	obj->nr_maps = 0;
8465 
8466 	if (obj->programs && obj->nr_programs) {
8467 		for (i = 0; i < obj->nr_programs; i++)
8468 			bpf_program__exit(&obj->programs[i]);
8469 	}
8470 	zfree(&obj->programs);
8471 
8472 	list_del(&obj->list);
8473 	free(obj);
8474 }
8475 
8476 struct bpf_object *
8477 bpf_object__next(struct bpf_object *prev)
8478 {
8479 	struct bpf_object *next;
8480 
8481 	if (!prev)
8482 		next = list_first_entry(&bpf_objects_list,
8483 					struct bpf_object,
8484 					list);
8485 	else
8486 		next = list_next_entry(prev, list);
8487 
8488 	/* Empty list is noticed here so don't need checking on entry. */
8489 	if (&next->list == &bpf_objects_list)
8490 		return NULL;
8491 
8492 	return next;
8493 }
8494 
8495 const char *bpf_object__name(const struct bpf_object *obj)
8496 {
8497 	return obj ? obj->name : ERR_PTR(-EINVAL);
8498 }
8499 
8500 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8501 {
8502 	return obj ? obj->kern_version : 0;
8503 }
8504 
8505 struct btf *bpf_object__btf(const struct bpf_object *obj)
8506 {
8507 	return obj ? obj->btf : NULL;
8508 }
8509 
8510 int bpf_object__btf_fd(const struct bpf_object *obj)
8511 {
8512 	return obj->btf ? btf__fd(obj->btf) : -1;
8513 }
8514 
8515 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8516 {
8517 	if (obj->loaded)
8518 		return -EINVAL;
8519 
8520 	obj->kern_version = kern_version;
8521 
8522 	return 0;
8523 }
8524 
8525 int bpf_object__set_priv(struct bpf_object *obj, void *priv,
8526 			 bpf_object_clear_priv_t clear_priv)
8527 {
8528 	if (obj->priv && obj->clear_priv)
8529 		obj->clear_priv(obj, obj->priv);
8530 
8531 	obj->priv = priv;
8532 	obj->clear_priv = clear_priv;
8533 	return 0;
8534 }
8535 
8536 void *bpf_object__priv(const struct bpf_object *obj)
8537 {
8538 	return obj ? obj->priv : ERR_PTR(-EINVAL);
8539 }
8540 
8541 static struct bpf_program *
8542 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8543 		    bool forward)
8544 {
8545 	size_t nr_programs = obj->nr_programs;
8546 	ssize_t idx;
8547 
8548 	if (!nr_programs)
8549 		return NULL;
8550 
8551 	if (!p)
8552 		/* Iter from the beginning */
8553 		return forward ? &obj->programs[0] :
8554 			&obj->programs[nr_programs - 1];
8555 
8556 	if (p->obj != obj) {
8557 		pr_warn("error: program handler doesn't match object\n");
8558 		return NULL;
8559 	}
8560 
8561 	idx = (p - obj->programs) + (forward ? 1 : -1);
8562 	if (idx >= obj->nr_programs || idx < 0)
8563 		return NULL;
8564 	return &obj->programs[idx];
8565 }
8566 
8567 struct bpf_program *
8568 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj)
8569 {
8570 	struct bpf_program *prog = prev;
8571 
8572 	do {
8573 		prog = __bpf_program__iter(prog, obj, true);
8574 	} while (prog && prog_is_subprog(obj, prog));
8575 
8576 	return prog;
8577 }
8578 
8579 struct bpf_program *
8580 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj)
8581 {
8582 	struct bpf_program *prog = next;
8583 
8584 	do {
8585 		prog = __bpf_program__iter(prog, obj, false);
8586 	} while (prog && prog_is_subprog(obj, prog));
8587 
8588 	return prog;
8589 }
8590 
8591 int bpf_program__set_priv(struct bpf_program *prog, void *priv,
8592 			  bpf_program_clear_priv_t clear_priv)
8593 {
8594 	if (prog->priv && prog->clear_priv)
8595 		prog->clear_priv(prog, prog->priv);
8596 
8597 	prog->priv = priv;
8598 	prog->clear_priv = clear_priv;
8599 	return 0;
8600 }
8601 
8602 void *bpf_program__priv(const struct bpf_program *prog)
8603 {
8604 	return prog ? prog->priv : ERR_PTR(-EINVAL);
8605 }
8606 
8607 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8608 {
8609 	prog->prog_ifindex = ifindex;
8610 }
8611 
8612 const char *bpf_program__name(const struct bpf_program *prog)
8613 {
8614 	return prog->name;
8615 }
8616 
8617 const char *bpf_program__section_name(const struct bpf_program *prog)
8618 {
8619 	return prog->sec_name;
8620 }
8621 
8622 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy)
8623 {
8624 	const char *title;
8625 
8626 	title = prog->sec_name;
8627 	if (needs_copy) {
8628 		title = strdup(title);
8629 		if (!title) {
8630 			pr_warn("failed to strdup program title\n");
8631 			return ERR_PTR(-ENOMEM);
8632 		}
8633 	}
8634 
8635 	return title;
8636 }
8637 
8638 bool bpf_program__autoload(const struct bpf_program *prog)
8639 {
8640 	return prog->load;
8641 }
8642 
8643 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8644 {
8645 	if (prog->obj->loaded)
8646 		return -EINVAL;
8647 
8648 	prog->load = autoload;
8649 	return 0;
8650 }
8651 
8652 int bpf_program__fd(const struct bpf_program *prog)
8653 {
8654 	return bpf_program__nth_fd(prog, 0);
8655 }
8656 
8657 size_t bpf_program__size(const struct bpf_program *prog)
8658 {
8659 	return prog->insns_cnt * BPF_INSN_SZ;
8660 }
8661 
8662 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances,
8663 			  bpf_program_prep_t prep)
8664 {
8665 	int *instances_fds;
8666 
8667 	if (nr_instances <= 0 || !prep)
8668 		return -EINVAL;
8669 
8670 	if (prog->instances.nr > 0 || prog->instances.fds) {
8671 		pr_warn("Can't set pre-processor after loading\n");
8672 		return -EINVAL;
8673 	}
8674 
8675 	instances_fds = malloc(sizeof(int) * nr_instances);
8676 	if (!instances_fds) {
8677 		pr_warn("alloc memory failed for fds\n");
8678 		return -ENOMEM;
8679 	}
8680 
8681 	/* fill all fd with -1 */
8682 	memset(instances_fds, -1, sizeof(int) * nr_instances);
8683 
8684 	prog->instances.nr = nr_instances;
8685 	prog->instances.fds = instances_fds;
8686 	prog->preprocessor = prep;
8687 	return 0;
8688 }
8689 
8690 int bpf_program__nth_fd(const struct bpf_program *prog, int n)
8691 {
8692 	int fd;
8693 
8694 	if (!prog)
8695 		return -EINVAL;
8696 
8697 	if (n >= prog->instances.nr || n < 0) {
8698 		pr_warn("Can't get the %dth fd from program %s: only %d instances\n",
8699 			n, prog->name, prog->instances.nr);
8700 		return -EINVAL;
8701 	}
8702 
8703 	fd = prog->instances.fds[n];
8704 	if (fd < 0) {
8705 		pr_warn("%dth instance of program '%s' is invalid\n",
8706 			n, prog->name);
8707 		return -ENOENT;
8708 	}
8709 
8710 	return fd;
8711 }
8712 
8713 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog)
8714 {
8715 	return prog->type;
8716 }
8717 
8718 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8719 {
8720 	prog->type = type;
8721 }
8722 
8723 static bool bpf_program__is_type(const struct bpf_program *prog,
8724 				 enum bpf_prog_type type)
8725 {
8726 	return prog ? (prog->type == type) : false;
8727 }
8728 
8729 #define BPF_PROG_TYPE_FNS(NAME, TYPE)				\
8730 int bpf_program__set_##NAME(struct bpf_program *prog)		\
8731 {								\
8732 	if (!prog)						\
8733 		return -EINVAL;					\
8734 	bpf_program__set_type(prog, TYPE);			\
8735 	return 0;						\
8736 }								\
8737 								\
8738 bool bpf_program__is_##NAME(const struct bpf_program *prog)	\
8739 {								\
8740 	return bpf_program__is_type(prog, TYPE);		\
8741 }								\
8742 
8743 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER);
8744 BPF_PROG_TYPE_FNS(lsm, BPF_PROG_TYPE_LSM);
8745 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE);
8746 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS);
8747 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT);
8748 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT);
8749 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT);
8750 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP);
8751 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT);
8752 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING);
8753 BPF_PROG_TYPE_FNS(struct_ops, BPF_PROG_TYPE_STRUCT_OPS);
8754 BPF_PROG_TYPE_FNS(extension, BPF_PROG_TYPE_EXT);
8755 BPF_PROG_TYPE_FNS(sk_lookup, BPF_PROG_TYPE_SK_LOOKUP);
8756 
8757 enum bpf_attach_type
8758 bpf_program__get_expected_attach_type(const struct bpf_program *prog)
8759 {
8760 	return prog->expected_attach_type;
8761 }
8762 
8763 void bpf_program__set_expected_attach_type(struct bpf_program *prog,
8764 					   enum bpf_attach_type type)
8765 {
8766 	prog->expected_attach_type = type;
8767 }
8768 
8769 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, eatype_optional,	    \
8770 			  attachable, attach_btf)			    \
8771 	{								    \
8772 		.sec = string,						    \
8773 		.len = sizeof(string) - 1,				    \
8774 		.prog_type = ptype,					    \
8775 		.expected_attach_type = eatype,				    \
8776 		.is_exp_attach_type_optional = eatype_optional,		    \
8777 		.is_attachable = attachable,				    \
8778 		.is_attach_btf = attach_btf,				    \
8779 	}
8780 
8781 /* Programs that can NOT be attached. */
8782 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0)
8783 
8784 /* Programs that can be attached. */
8785 #define BPF_APROG_SEC(string, ptype, atype) \
8786 	BPF_PROG_SEC_IMPL(string, ptype, atype, true, 1, 0)
8787 
8788 /* Programs that must specify expected attach type at load time. */
8789 #define BPF_EAPROG_SEC(string, ptype, eatype) \
8790 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 1, 0)
8791 
8792 /* Programs that use BTF to identify attach point */
8793 #define BPF_PROG_BTF(string, ptype, eatype) \
8794 	BPF_PROG_SEC_IMPL(string, ptype, eatype, false, 0, 1)
8795 
8796 /* Programs that can be attached but attach type can't be identified by section
8797  * name. Kept for backward compatibility.
8798  */
8799 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype)
8800 
8801 #define SEC_DEF(sec_pfx, ptype, ...) {					    \
8802 	.sec = sec_pfx,							    \
8803 	.len = sizeof(sec_pfx) - 1,					    \
8804 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
8805 	__VA_ARGS__							    \
8806 }
8807 
8808 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
8809 				      struct bpf_program *prog);
8810 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
8811 				  struct bpf_program *prog);
8812 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
8813 				      struct bpf_program *prog);
8814 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
8815 				     struct bpf_program *prog);
8816 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
8817 				   struct bpf_program *prog);
8818 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
8819 				    struct bpf_program *prog);
8820 
8821 static const struct bpf_sec_def section_defs[] = {
8822 	BPF_PROG_SEC("socket",			BPF_PROG_TYPE_SOCKET_FILTER),
8823 	BPF_PROG_SEC("sk_reuseport",		BPF_PROG_TYPE_SK_REUSEPORT),
8824 	SEC_DEF("kprobe/", KPROBE,
8825 		.attach_fn = attach_kprobe),
8826 	BPF_PROG_SEC("uprobe/",			BPF_PROG_TYPE_KPROBE),
8827 	SEC_DEF("kretprobe/", KPROBE,
8828 		.attach_fn = attach_kprobe),
8829 	BPF_PROG_SEC("uretprobe/",		BPF_PROG_TYPE_KPROBE),
8830 	BPF_PROG_SEC("classifier",		BPF_PROG_TYPE_SCHED_CLS),
8831 	BPF_PROG_SEC("action",			BPF_PROG_TYPE_SCHED_ACT),
8832 	SEC_DEF("tracepoint/", TRACEPOINT,
8833 		.attach_fn = attach_tp),
8834 	SEC_DEF("tp/", TRACEPOINT,
8835 		.attach_fn = attach_tp),
8836 	SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT,
8837 		.attach_fn = attach_raw_tp),
8838 	SEC_DEF("raw_tp/", RAW_TRACEPOINT,
8839 		.attach_fn = attach_raw_tp),
8840 	SEC_DEF("tp_btf/", TRACING,
8841 		.expected_attach_type = BPF_TRACE_RAW_TP,
8842 		.is_attach_btf = true,
8843 		.attach_fn = attach_trace),
8844 	SEC_DEF("fentry/", TRACING,
8845 		.expected_attach_type = BPF_TRACE_FENTRY,
8846 		.is_attach_btf = true,
8847 		.attach_fn = attach_trace),
8848 	SEC_DEF("fmod_ret/", TRACING,
8849 		.expected_attach_type = BPF_MODIFY_RETURN,
8850 		.is_attach_btf = true,
8851 		.attach_fn = attach_trace),
8852 	SEC_DEF("fexit/", TRACING,
8853 		.expected_attach_type = BPF_TRACE_FEXIT,
8854 		.is_attach_btf = true,
8855 		.attach_fn = attach_trace),
8856 	SEC_DEF("fentry.s/", TRACING,
8857 		.expected_attach_type = BPF_TRACE_FENTRY,
8858 		.is_attach_btf = true,
8859 		.is_sleepable = true,
8860 		.attach_fn = attach_trace),
8861 	SEC_DEF("fmod_ret.s/", TRACING,
8862 		.expected_attach_type = BPF_MODIFY_RETURN,
8863 		.is_attach_btf = true,
8864 		.is_sleepable = true,
8865 		.attach_fn = attach_trace),
8866 	SEC_DEF("fexit.s/", TRACING,
8867 		.expected_attach_type = BPF_TRACE_FEXIT,
8868 		.is_attach_btf = true,
8869 		.is_sleepable = true,
8870 		.attach_fn = attach_trace),
8871 	SEC_DEF("freplace/", EXT,
8872 		.is_attach_btf = true,
8873 		.attach_fn = attach_trace),
8874 	SEC_DEF("lsm/", LSM,
8875 		.is_attach_btf = true,
8876 		.expected_attach_type = BPF_LSM_MAC,
8877 		.attach_fn = attach_lsm),
8878 	SEC_DEF("lsm.s/", LSM,
8879 		.is_attach_btf = true,
8880 		.is_sleepable = true,
8881 		.expected_attach_type = BPF_LSM_MAC,
8882 		.attach_fn = attach_lsm),
8883 	SEC_DEF("iter/", TRACING,
8884 		.expected_attach_type = BPF_TRACE_ITER,
8885 		.is_attach_btf = true,
8886 		.attach_fn = attach_iter),
8887 	BPF_EAPROG_SEC("xdp_devmap/",		BPF_PROG_TYPE_XDP,
8888 						BPF_XDP_DEVMAP),
8889 	BPF_EAPROG_SEC("xdp_cpumap/",		BPF_PROG_TYPE_XDP,
8890 						BPF_XDP_CPUMAP),
8891 	BPF_APROG_SEC("xdp",			BPF_PROG_TYPE_XDP,
8892 						BPF_XDP),
8893 	BPF_PROG_SEC("perf_event",		BPF_PROG_TYPE_PERF_EVENT),
8894 	BPF_PROG_SEC("lwt_in",			BPF_PROG_TYPE_LWT_IN),
8895 	BPF_PROG_SEC("lwt_out",			BPF_PROG_TYPE_LWT_OUT),
8896 	BPF_PROG_SEC("lwt_xmit",		BPF_PROG_TYPE_LWT_XMIT),
8897 	BPF_PROG_SEC("lwt_seg6local",		BPF_PROG_TYPE_LWT_SEG6LOCAL),
8898 	BPF_APROG_SEC("cgroup_skb/ingress",	BPF_PROG_TYPE_CGROUP_SKB,
8899 						BPF_CGROUP_INET_INGRESS),
8900 	BPF_APROG_SEC("cgroup_skb/egress",	BPF_PROG_TYPE_CGROUP_SKB,
8901 						BPF_CGROUP_INET_EGRESS),
8902 	BPF_APROG_COMPAT("cgroup/skb",		BPF_PROG_TYPE_CGROUP_SKB),
8903 	BPF_EAPROG_SEC("cgroup/sock_create",	BPF_PROG_TYPE_CGROUP_SOCK,
8904 						BPF_CGROUP_INET_SOCK_CREATE),
8905 	BPF_EAPROG_SEC("cgroup/sock_release",	BPF_PROG_TYPE_CGROUP_SOCK,
8906 						BPF_CGROUP_INET_SOCK_RELEASE),
8907 	BPF_APROG_SEC("cgroup/sock",		BPF_PROG_TYPE_CGROUP_SOCK,
8908 						BPF_CGROUP_INET_SOCK_CREATE),
8909 	BPF_EAPROG_SEC("cgroup/post_bind4",	BPF_PROG_TYPE_CGROUP_SOCK,
8910 						BPF_CGROUP_INET4_POST_BIND),
8911 	BPF_EAPROG_SEC("cgroup/post_bind6",	BPF_PROG_TYPE_CGROUP_SOCK,
8912 						BPF_CGROUP_INET6_POST_BIND),
8913 	BPF_APROG_SEC("cgroup/dev",		BPF_PROG_TYPE_CGROUP_DEVICE,
8914 						BPF_CGROUP_DEVICE),
8915 	BPF_APROG_SEC("sockops",		BPF_PROG_TYPE_SOCK_OPS,
8916 						BPF_CGROUP_SOCK_OPS),
8917 	BPF_APROG_SEC("sk_skb/stream_parser",	BPF_PROG_TYPE_SK_SKB,
8918 						BPF_SK_SKB_STREAM_PARSER),
8919 	BPF_APROG_SEC("sk_skb/stream_verdict",	BPF_PROG_TYPE_SK_SKB,
8920 						BPF_SK_SKB_STREAM_VERDICT),
8921 	BPF_APROG_COMPAT("sk_skb",		BPF_PROG_TYPE_SK_SKB),
8922 	BPF_APROG_SEC("sk_msg",			BPF_PROG_TYPE_SK_MSG,
8923 						BPF_SK_MSG_VERDICT),
8924 	BPF_APROG_SEC("lirc_mode2",		BPF_PROG_TYPE_LIRC_MODE2,
8925 						BPF_LIRC_MODE2),
8926 	BPF_APROG_SEC("flow_dissector",		BPF_PROG_TYPE_FLOW_DISSECTOR,
8927 						BPF_FLOW_DISSECTOR),
8928 	BPF_EAPROG_SEC("cgroup/bind4",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8929 						BPF_CGROUP_INET4_BIND),
8930 	BPF_EAPROG_SEC("cgroup/bind6",		BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8931 						BPF_CGROUP_INET6_BIND),
8932 	BPF_EAPROG_SEC("cgroup/connect4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8933 						BPF_CGROUP_INET4_CONNECT),
8934 	BPF_EAPROG_SEC("cgroup/connect6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8935 						BPF_CGROUP_INET6_CONNECT),
8936 	BPF_EAPROG_SEC("cgroup/sendmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8937 						BPF_CGROUP_UDP4_SENDMSG),
8938 	BPF_EAPROG_SEC("cgroup/sendmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8939 						BPF_CGROUP_UDP6_SENDMSG),
8940 	BPF_EAPROG_SEC("cgroup/recvmsg4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8941 						BPF_CGROUP_UDP4_RECVMSG),
8942 	BPF_EAPROG_SEC("cgroup/recvmsg6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8943 						BPF_CGROUP_UDP6_RECVMSG),
8944 	BPF_EAPROG_SEC("cgroup/getpeername4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8945 						BPF_CGROUP_INET4_GETPEERNAME),
8946 	BPF_EAPROG_SEC("cgroup/getpeername6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8947 						BPF_CGROUP_INET6_GETPEERNAME),
8948 	BPF_EAPROG_SEC("cgroup/getsockname4",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8949 						BPF_CGROUP_INET4_GETSOCKNAME),
8950 	BPF_EAPROG_SEC("cgroup/getsockname6",	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
8951 						BPF_CGROUP_INET6_GETSOCKNAME),
8952 	BPF_EAPROG_SEC("cgroup/sysctl",		BPF_PROG_TYPE_CGROUP_SYSCTL,
8953 						BPF_CGROUP_SYSCTL),
8954 	BPF_EAPROG_SEC("cgroup/getsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8955 						BPF_CGROUP_GETSOCKOPT),
8956 	BPF_EAPROG_SEC("cgroup/setsockopt",	BPF_PROG_TYPE_CGROUP_SOCKOPT,
8957 						BPF_CGROUP_SETSOCKOPT),
8958 	BPF_PROG_SEC("struct_ops",		BPF_PROG_TYPE_STRUCT_OPS),
8959 	BPF_EAPROG_SEC("sk_lookup/",		BPF_PROG_TYPE_SK_LOOKUP,
8960 						BPF_SK_LOOKUP),
8961 };
8962 
8963 #undef BPF_PROG_SEC_IMPL
8964 #undef BPF_PROG_SEC
8965 #undef BPF_APROG_SEC
8966 #undef BPF_EAPROG_SEC
8967 #undef BPF_APROG_COMPAT
8968 #undef SEC_DEF
8969 
8970 #define MAX_TYPE_NAME_SIZE 32
8971 
8972 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8973 {
8974 	int i, n = ARRAY_SIZE(section_defs);
8975 
8976 	for (i = 0; i < n; i++) {
8977 		if (strncmp(sec_name,
8978 			    section_defs[i].sec, section_defs[i].len))
8979 			continue;
8980 		return &section_defs[i];
8981 	}
8982 	return NULL;
8983 }
8984 
8985 static char *libbpf_get_type_names(bool attach_type)
8986 {
8987 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8988 	char *buf;
8989 
8990 	buf = malloc(len);
8991 	if (!buf)
8992 		return NULL;
8993 
8994 	buf[0] = '\0';
8995 	/* Forge string buf with all available names */
8996 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8997 		if (attach_type && !section_defs[i].is_attachable)
8998 			continue;
8999 
9000 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9001 			free(buf);
9002 			return NULL;
9003 		}
9004 		strcat(buf, " ");
9005 		strcat(buf, section_defs[i].sec);
9006 	}
9007 
9008 	return buf;
9009 }
9010 
9011 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9012 			     enum bpf_attach_type *expected_attach_type)
9013 {
9014 	const struct bpf_sec_def *sec_def;
9015 	char *type_names;
9016 
9017 	if (!name)
9018 		return -EINVAL;
9019 
9020 	sec_def = find_sec_def(name);
9021 	if (sec_def) {
9022 		*prog_type = sec_def->prog_type;
9023 		*expected_attach_type = sec_def->expected_attach_type;
9024 		return 0;
9025 	}
9026 
9027 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9028 	type_names = libbpf_get_type_names(false);
9029 	if (type_names != NULL) {
9030 		pr_debug("supported section(type) names are:%s\n", type_names);
9031 		free(type_names);
9032 	}
9033 
9034 	return -ESRCH;
9035 }
9036 
9037 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9038 						     size_t offset)
9039 {
9040 	struct bpf_map *map;
9041 	size_t i;
9042 
9043 	for (i = 0; i < obj->nr_maps; i++) {
9044 		map = &obj->maps[i];
9045 		if (!bpf_map__is_struct_ops(map))
9046 			continue;
9047 		if (map->sec_offset <= offset &&
9048 		    offset - map->sec_offset < map->def.value_size)
9049 			return map;
9050 	}
9051 
9052 	return NULL;
9053 }
9054 
9055 /* Collect the reloc from ELF and populate the st_ops->progs[] */
9056 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9057 					    GElf_Shdr *shdr, Elf_Data *data)
9058 {
9059 	const struct btf_member *member;
9060 	struct bpf_struct_ops *st_ops;
9061 	struct bpf_program *prog;
9062 	unsigned int shdr_idx;
9063 	const struct btf *btf;
9064 	struct bpf_map *map;
9065 	Elf_Data *symbols;
9066 	unsigned int moff, insn_idx;
9067 	const char *name;
9068 	__u32 member_idx;
9069 	GElf_Sym sym;
9070 	GElf_Rel rel;
9071 	int i, nrels;
9072 
9073 	symbols = obj->efile.symbols;
9074 	btf = obj->btf;
9075 	nrels = shdr->sh_size / shdr->sh_entsize;
9076 	for (i = 0; i < nrels; i++) {
9077 		if (!gelf_getrel(data, i, &rel)) {
9078 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9079 			return -LIBBPF_ERRNO__FORMAT;
9080 		}
9081 
9082 		if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) {
9083 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9084 				(size_t)GELF_R_SYM(rel.r_info));
9085 			return -LIBBPF_ERRNO__FORMAT;
9086 		}
9087 
9088 		name = elf_sym_str(obj, sym.st_name) ?: "<?>";
9089 		map = find_struct_ops_map_by_offset(obj, rel.r_offset);
9090 		if (!map) {
9091 			pr_warn("struct_ops reloc: cannot find map at rel.r_offset %zu\n",
9092 				(size_t)rel.r_offset);
9093 			return -EINVAL;
9094 		}
9095 
9096 		moff = rel.r_offset - map->sec_offset;
9097 		shdr_idx = sym.st_shndx;
9098 		st_ops = map->st_ops;
9099 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel.r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9100 			 map->name,
9101 			 (long long)(rel.r_info >> 32),
9102 			 (long long)sym.st_value,
9103 			 shdr_idx, (size_t)rel.r_offset,
9104 			 map->sec_offset, sym.st_name, name);
9105 
9106 		if (shdr_idx >= SHN_LORESERVE) {
9107 			pr_warn("struct_ops reloc %s: rel.r_offset %zu shdr_idx %u unsupported non-static function\n",
9108 				map->name, (size_t)rel.r_offset, shdr_idx);
9109 			return -LIBBPF_ERRNO__RELOC;
9110 		}
9111 		if (sym.st_value % BPF_INSN_SZ) {
9112 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9113 				map->name, (unsigned long long)sym.st_value);
9114 			return -LIBBPF_ERRNO__FORMAT;
9115 		}
9116 		insn_idx = sym.st_value / BPF_INSN_SZ;
9117 
9118 		member = find_member_by_offset(st_ops->type, moff * 8);
9119 		if (!member) {
9120 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9121 				map->name, moff);
9122 			return -EINVAL;
9123 		}
9124 		member_idx = member - btf_members(st_ops->type);
9125 		name = btf__name_by_offset(btf, member->name_off);
9126 
9127 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9128 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9129 				map->name, name);
9130 			return -EINVAL;
9131 		}
9132 
9133 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9134 		if (!prog) {
9135 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9136 				map->name, shdr_idx, name);
9137 			return -EINVAL;
9138 		}
9139 
9140 		if (prog->type == BPF_PROG_TYPE_UNSPEC) {
9141 			const struct bpf_sec_def *sec_def;
9142 
9143 			sec_def = find_sec_def(prog->sec_name);
9144 			if (sec_def &&
9145 			    sec_def->prog_type != BPF_PROG_TYPE_STRUCT_OPS) {
9146 				/* for pr_warn */
9147 				prog->type = sec_def->prog_type;
9148 				goto invalid_prog;
9149 			}
9150 
9151 			prog->type = BPF_PROG_TYPE_STRUCT_OPS;
9152 			prog->attach_btf_id = st_ops->type_id;
9153 			prog->expected_attach_type = member_idx;
9154 		} else if (prog->type != BPF_PROG_TYPE_STRUCT_OPS ||
9155 			   prog->attach_btf_id != st_ops->type_id ||
9156 			   prog->expected_attach_type != member_idx) {
9157 			goto invalid_prog;
9158 		}
9159 		st_ops->progs[member_idx] = prog;
9160 	}
9161 
9162 	return 0;
9163 
9164 invalid_prog:
9165 	pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9166 		map->name, prog->name, prog->sec_name, prog->type,
9167 		prog->attach_btf_id, prog->expected_attach_type, name);
9168 	return -EINVAL;
9169 }
9170 
9171 #define BTF_TRACE_PREFIX "btf_trace_"
9172 #define BTF_LSM_PREFIX "bpf_lsm_"
9173 #define BTF_ITER_PREFIX "bpf_iter_"
9174 #define BTF_MAX_NAME_SIZE 128
9175 
9176 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9177 				   const char *name, __u32 kind)
9178 {
9179 	char btf_type_name[BTF_MAX_NAME_SIZE];
9180 	int ret;
9181 
9182 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9183 		       "%s%s", prefix, name);
9184 	/* snprintf returns the number of characters written excluding the
9185 	 * the terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9186 	 * indicates truncation.
9187 	 */
9188 	if (ret < 0 || ret >= sizeof(btf_type_name))
9189 		return -ENAMETOOLONG;
9190 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9191 }
9192 
9193 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9194 				     enum bpf_attach_type attach_type)
9195 {
9196 	int err;
9197 
9198 	if (attach_type == BPF_TRACE_RAW_TP)
9199 		err = find_btf_by_prefix_kind(btf, BTF_TRACE_PREFIX, name,
9200 					      BTF_KIND_TYPEDEF);
9201 	else if (attach_type == BPF_LSM_MAC)
9202 		err = find_btf_by_prefix_kind(btf, BTF_LSM_PREFIX, name,
9203 					      BTF_KIND_FUNC);
9204 	else if (attach_type == BPF_TRACE_ITER)
9205 		err = find_btf_by_prefix_kind(btf, BTF_ITER_PREFIX, name,
9206 					      BTF_KIND_FUNC);
9207 	else
9208 		err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9209 
9210 	return err;
9211 }
9212 
9213 int libbpf_find_vmlinux_btf_id(const char *name,
9214 			       enum bpf_attach_type attach_type)
9215 {
9216 	struct btf *btf;
9217 	int err;
9218 
9219 	btf = libbpf_find_kernel_btf();
9220 	if (IS_ERR(btf)) {
9221 		pr_warn("vmlinux BTF is not found\n");
9222 		return -EINVAL;
9223 	}
9224 
9225 	err = find_attach_btf_id(btf, name, attach_type);
9226 	if (err <= 0)
9227 		pr_warn("%s is not found in vmlinux BTF\n", name);
9228 
9229 	btf__free(btf);
9230 	return err;
9231 }
9232 
9233 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9234 {
9235 	struct bpf_prog_info_linear *info_linear;
9236 	struct bpf_prog_info *info;
9237 	struct btf *btf = NULL;
9238 	int err = -EINVAL;
9239 
9240 	info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0);
9241 	if (IS_ERR_OR_NULL(info_linear)) {
9242 		pr_warn("failed get_prog_info_linear for FD %d\n",
9243 			attach_prog_fd);
9244 		return -EINVAL;
9245 	}
9246 	info = &info_linear->info;
9247 	if (!info->btf_id) {
9248 		pr_warn("The target program doesn't have BTF\n");
9249 		goto out;
9250 	}
9251 	if (btf__get_from_id(info->btf_id, &btf)) {
9252 		pr_warn("Failed to get BTF of the program\n");
9253 		goto out;
9254 	}
9255 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9256 	btf__free(btf);
9257 	if (err <= 0) {
9258 		pr_warn("%s is not found in prog's BTF\n", name);
9259 		goto out;
9260 	}
9261 out:
9262 	free(info_linear);
9263 	return err;
9264 }
9265 
9266 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9267 			      enum bpf_attach_type attach_type,
9268 			      int *btf_obj_fd, int *btf_type_id)
9269 {
9270 	int ret, i;
9271 
9272 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9273 	if (ret > 0) {
9274 		*btf_obj_fd = 0; /* vmlinux BTF */
9275 		*btf_type_id = ret;
9276 		return 0;
9277 	}
9278 	if (ret != -ENOENT)
9279 		return ret;
9280 
9281 	ret = load_module_btfs(obj);
9282 	if (ret)
9283 		return ret;
9284 
9285 	for (i = 0; i < obj->btf_module_cnt; i++) {
9286 		const struct module_btf *mod = &obj->btf_modules[i];
9287 
9288 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9289 		if (ret > 0) {
9290 			*btf_obj_fd = mod->fd;
9291 			*btf_type_id = ret;
9292 			return 0;
9293 		}
9294 		if (ret == -ENOENT)
9295 			continue;
9296 
9297 		return ret;
9298 	}
9299 
9300 	return -ESRCH;
9301 }
9302 
9303 static int libbpf_find_attach_btf_id(struct bpf_program *prog, int *btf_obj_fd, int *btf_type_id)
9304 {
9305 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9306 	__u32 attach_prog_fd = prog->attach_prog_fd;
9307 	const char *name = prog->sec_name, *attach_name;
9308 	const struct bpf_sec_def *sec = NULL;
9309 	int i, err;
9310 
9311 	if (!name)
9312 		return -EINVAL;
9313 
9314 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9315 		if (!section_defs[i].is_attach_btf)
9316 			continue;
9317 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9318 			continue;
9319 
9320 		sec = &section_defs[i];
9321 		break;
9322 	}
9323 
9324 	if (!sec) {
9325 		pr_warn("failed to identify BTF ID based on ELF section name '%s'\n", name);
9326 		return -ESRCH;
9327 	}
9328 	attach_name = name + sec->len;
9329 
9330 	/* BPF program's BTF ID */
9331 	if (attach_prog_fd) {
9332 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9333 		if (err < 0) {
9334 			pr_warn("failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9335 				 attach_prog_fd, attach_name, err);
9336 			return err;
9337 		}
9338 		*btf_obj_fd = 0;
9339 		*btf_type_id = err;
9340 		return 0;
9341 	}
9342 
9343 	/* kernel/module BTF ID */
9344 	err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9345 	if (err) {
9346 		pr_warn("failed to find kernel BTF type ID of '%s': %d\n", attach_name, err);
9347 		return err;
9348 	}
9349 	return 0;
9350 }
9351 
9352 int libbpf_attach_type_by_name(const char *name,
9353 			       enum bpf_attach_type *attach_type)
9354 {
9355 	char *type_names;
9356 	int i;
9357 
9358 	if (!name)
9359 		return -EINVAL;
9360 
9361 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9362 		if (strncmp(name, section_defs[i].sec, section_defs[i].len))
9363 			continue;
9364 		if (!section_defs[i].is_attachable)
9365 			return -EINVAL;
9366 		*attach_type = section_defs[i].expected_attach_type;
9367 		return 0;
9368 	}
9369 	pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9370 	type_names = libbpf_get_type_names(true);
9371 	if (type_names != NULL) {
9372 		pr_debug("attachable section(type) names are:%s\n", type_names);
9373 		free(type_names);
9374 	}
9375 
9376 	return -EINVAL;
9377 }
9378 
9379 int bpf_map__fd(const struct bpf_map *map)
9380 {
9381 	return map ? map->fd : -EINVAL;
9382 }
9383 
9384 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map)
9385 {
9386 	return map ? &map->def : ERR_PTR(-EINVAL);
9387 }
9388 
9389 const char *bpf_map__name(const struct bpf_map *map)
9390 {
9391 	return map ? map->name : NULL;
9392 }
9393 
9394 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9395 {
9396 	return map->def.type;
9397 }
9398 
9399 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9400 {
9401 	if (map->fd >= 0)
9402 		return -EBUSY;
9403 	map->def.type = type;
9404 	return 0;
9405 }
9406 
9407 __u32 bpf_map__map_flags(const struct bpf_map *map)
9408 {
9409 	return map->def.map_flags;
9410 }
9411 
9412 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9413 {
9414 	if (map->fd >= 0)
9415 		return -EBUSY;
9416 	map->def.map_flags = flags;
9417 	return 0;
9418 }
9419 
9420 __u32 bpf_map__numa_node(const struct bpf_map *map)
9421 {
9422 	return map->numa_node;
9423 }
9424 
9425 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9426 {
9427 	if (map->fd >= 0)
9428 		return -EBUSY;
9429 	map->numa_node = numa_node;
9430 	return 0;
9431 }
9432 
9433 __u32 bpf_map__key_size(const struct bpf_map *map)
9434 {
9435 	return map->def.key_size;
9436 }
9437 
9438 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9439 {
9440 	if (map->fd >= 0)
9441 		return -EBUSY;
9442 	map->def.key_size = size;
9443 	return 0;
9444 }
9445 
9446 __u32 bpf_map__value_size(const struct bpf_map *map)
9447 {
9448 	return map->def.value_size;
9449 }
9450 
9451 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9452 {
9453 	if (map->fd >= 0)
9454 		return -EBUSY;
9455 	map->def.value_size = size;
9456 	return 0;
9457 }
9458 
9459 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9460 {
9461 	return map ? map->btf_key_type_id : 0;
9462 }
9463 
9464 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9465 {
9466 	return map ? map->btf_value_type_id : 0;
9467 }
9468 
9469 int bpf_map__set_priv(struct bpf_map *map, void *priv,
9470 		     bpf_map_clear_priv_t clear_priv)
9471 {
9472 	if (!map)
9473 		return -EINVAL;
9474 
9475 	if (map->priv) {
9476 		if (map->clear_priv)
9477 			map->clear_priv(map, map->priv);
9478 	}
9479 
9480 	map->priv = priv;
9481 	map->clear_priv = clear_priv;
9482 	return 0;
9483 }
9484 
9485 void *bpf_map__priv(const struct bpf_map *map)
9486 {
9487 	return map ? map->priv : ERR_PTR(-EINVAL);
9488 }
9489 
9490 int bpf_map__set_initial_value(struct bpf_map *map,
9491 			       const void *data, size_t size)
9492 {
9493 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9494 	    size != map->def.value_size || map->fd >= 0)
9495 		return -EINVAL;
9496 
9497 	memcpy(map->mmaped, data, size);
9498 	return 0;
9499 }
9500 
9501 bool bpf_map__is_offload_neutral(const struct bpf_map *map)
9502 {
9503 	return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
9504 }
9505 
9506 bool bpf_map__is_internal(const struct bpf_map *map)
9507 {
9508 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9509 }
9510 
9511 __u32 bpf_map__ifindex(const struct bpf_map *map)
9512 {
9513 	return map->map_ifindex;
9514 }
9515 
9516 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9517 {
9518 	if (map->fd >= 0)
9519 		return -EBUSY;
9520 	map->map_ifindex = ifindex;
9521 	return 0;
9522 }
9523 
9524 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9525 {
9526 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
9527 		pr_warn("error: unsupported map type\n");
9528 		return -EINVAL;
9529 	}
9530 	if (map->inner_map_fd != -1) {
9531 		pr_warn("error: inner_map_fd already specified\n");
9532 		return -EINVAL;
9533 	}
9534 	zfree(&map->inner_map);
9535 	map->inner_map_fd = fd;
9536 	return 0;
9537 }
9538 
9539 static struct bpf_map *
9540 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9541 {
9542 	ssize_t idx;
9543 	struct bpf_map *s, *e;
9544 
9545 	if (!obj || !obj->maps)
9546 		return NULL;
9547 
9548 	s = obj->maps;
9549 	e = obj->maps + obj->nr_maps;
9550 
9551 	if ((m < s) || (m >= e)) {
9552 		pr_warn("error in %s: map handler doesn't belong to object\n",
9553 			 __func__);
9554 		return NULL;
9555 	}
9556 
9557 	idx = (m - obj->maps) + i;
9558 	if (idx >= obj->nr_maps || idx < 0)
9559 		return NULL;
9560 	return &obj->maps[idx];
9561 }
9562 
9563 struct bpf_map *
9564 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj)
9565 {
9566 	if (prev == NULL)
9567 		return obj->maps;
9568 
9569 	return __bpf_map__iter(prev, obj, 1);
9570 }
9571 
9572 struct bpf_map *
9573 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj)
9574 {
9575 	if (next == NULL) {
9576 		if (!obj->nr_maps)
9577 			return NULL;
9578 		return obj->maps + obj->nr_maps - 1;
9579 	}
9580 
9581 	return __bpf_map__iter(next, obj, -1);
9582 }
9583 
9584 struct bpf_map *
9585 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9586 {
9587 	struct bpf_map *pos;
9588 
9589 	bpf_object__for_each_map(pos, obj) {
9590 		if (pos->name && !strcmp(pos->name, name))
9591 			return pos;
9592 	}
9593 	return NULL;
9594 }
9595 
9596 int
9597 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9598 {
9599 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9600 }
9601 
9602 struct bpf_map *
9603 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset)
9604 {
9605 	return ERR_PTR(-ENOTSUP);
9606 }
9607 
9608 long libbpf_get_error(const void *ptr)
9609 {
9610 	return PTR_ERR_OR_ZERO(ptr);
9611 }
9612 
9613 int bpf_prog_load(const char *file, enum bpf_prog_type type,
9614 		  struct bpf_object **pobj, int *prog_fd)
9615 {
9616 	struct bpf_prog_load_attr attr;
9617 
9618 	memset(&attr, 0, sizeof(struct bpf_prog_load_attr));
9619 	attr.file = file;
9620 	attr.prog_type = type;
9621 	attr.expected_attach_type = 0;
9622 
9623 	return bpf_prog_load_xattr(&attr, pobj, prog_fd);
9624 }
9625 
9626 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr,
9627 			struct bpf_object **pobj, int *prog_fd)
9628 {
9629 	struct bpf_object_open_attr open_attr = {};
9630 	struct bpf_program *prog, *first_prog = NULL;
9631 	struct bpf_object *obj;
9632 	struct bpf_map *map;
9633 	int err;
9634 
9635 	if (!attr)
9636 		return -EINVAL;
9637 	if (!attr->file)
9638 		return -EINVAL;
9639 
9640 	open_attr.file = attr->file;
9641 	open_attr.prog_type = attr->prog_type;
9642 
9643 	obj = bpf_object__open_xattr(&open_attr);
9644 	if (IS_ERR_OR_NULL(obj))
9645 		return -ENOENT;
9646 
9647 	bpf_object__for_each_program(prog, obj) {
9648 		enum bpf_attach_type attach_type = attr->expected_attach_type;
9649 		/*
9650 		 * to preserve backwards compatibility, bpf_prog_load treats
9651 		 * attr->prog_type, if specified, as an override to whatever
9652 		 * bpf_object__open guessed
9653 		 */
9654 		if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) {
9655 			bpf_program__set_type(prog, attr->prog_type);
9656 			bpf_program__set_expected_attach_type(prog,
9657 							      attach_type);
9658 		}
9659 		if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) {
9660 			/*
9661 			 * we haven't guessed from section name and user
9662 			 * didn't provide a fallback type, too bad...
9663 			 */
9664 			bpf_object__close(obj);
9665 			return -EINVAL;
9666 		}
9667 
9668 		prog->prog_ifindex = attr->ifindex;
9669 		prog->log_level = attr->log_level;
9670 		prog->prog_flags |= attr->prog_flags;
9671 		if (!first_prog)
9672 			first_prog = prog;
9673 	}
9674 
9675 	bpf_object__for_each_map(map, obj) {
9676 		if (!bpf_map__is_offload_neutral(map))
9677 			map->map_ifindex = attr->ifindex;
9678 	}
9679 
9680 	if (!first_prog) {
9681 		pr_warn("object file doesn't contain bpf program\n");
9682 		bpf_object__close(obj);
9683 		return -ENOENT;
9684 	}
9685 
9686 	err = bpf_object__load(obj);
9687 	if (err) {
9688 		bpf_object__close(obj);
9689 		return err;
9690 	}
9691 
9692 	*pobj = obj;
9693 	*prog_fd = bpf_program__fd(first_prog);
9694 	return 0;
9695 }
9696 
9697 struct bpf_link {
9698 	int (*detach)(struct bpf_link *link);
9699 	int (*destroy)(struct bpf_link *link);
9700 	char *pin_path;		/* NULL, if not pinned */
9701 	int fd;			/* hook FD, -1 if not applicable */
9702 	bool disconnected;
9703 };
9704 
9705 /* Replace link's underlying BPF program with the new one */
9706 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9707 {
9708 	return bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9709 }
9710 
9711 /* Release "ownership" of underlying BPF resource (typically, BPF program
9712  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9713  * link, when destructed through bpf_link__destroy() call won't attempt to
9714  * detach/unregisted that BPF resource. This is useful in situations where,
9715  * say, attached BPF program has to outlive userspace program that attached it
9716  * in the system. Depending on type of BPF program, though, there might be
9717  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9718  * exit of userspace program doesn't trigger automatic detachment and clean up
9719  * inside the kernel.
9720  */
9721 void bpf_link__disconnect(struct bpf_link *link)
9722 {
9723 	link->disconnected = true;
9724 }
9725 
9726 int bpf_link__destroy(struct bpf_link *link)
9727 {
9728 	int err = 0;
9729 
9730 	if (IS_ERR_OR_NULL(link))
9731 		return 0;
9732 
9733 	if (!link->disconnected && link->detach)
9734 		err = link->detach(link);
9735 	if (link->destroy)
9736 		link->destroy(link);
9737 	if (link->pin_path)
9738 		free(link->pin_path);
9739 	free(link);
9740 
9741 	return err;
9742 }
9743 
9744 int bpf_link__fd(const struct bpf_link *link)
9745 {
9746 	return link->fd;
9747 }
9748 
9749 const char *bpf_link__pin_path(const struct bpf_link *link)
9750 {
9751 	return link->pin_path;
9752 }
9753 
9754 static int bpf_link__detach_fd(struct bpf_link *link)
9755 {
9756 	return close(link->fd);
9757 }
9758 
9759 struct bpf_link *bpf_link__open(const char *path)
9760 {
9761 	struct bpf_link *link;
9762 	int fd;
9763 
9764 	fd = bpf_obj_get(path);
9765 	if (fd < 0) {
9766 		fd = -errno;
9767 		pr_warn("failed to open link at %s: %d\n", path, fd);
9768 		return ERR_PTR(fd);
9769 	}
9770 
9771 	link = calloc(1, sizeof(*link));
9772 	if (!link) {
9773 		close(fd);
9774 		return ERR_PTR(-ENOMEM);
9775 	}
9776 	link->detach = &bpf_link__detach_fd;
9777 	link->fd = fd;
9778 
9779 	link->pin_path = strdup(path);
9780 	if (!link->pin_path) {
9781 		bpf_link__destroy(link);
9782 		return ERR_PTR(-ENOMEM);
9783 	}
9784 
9785 	return link;
9786 }
9787 
9788 int bpf_link__detach(struct bpf_link *link)
9789 {
9790 	return bpf_link_detach(link->fd) ? -errno : 0;
9791 }
9792 
9793 int bpf_link__pin(struct bpf_link *link, const char *path)
9794 {
9795 	int err;
9796 
9797 	if (link->pin_path)
9798 		return -EBUSY;
9799 	err = make_parent_dir(path);
9800 	if (err)
9801 		return err;
9802 	err = check_path(path);
9803 	if (err)
9804 		return err;
9805 
9806 	link->pin_path = strdup(path);
9807 	if (!link->pin_path)
9808 		return -ENOMEM;
9809 
9810 	if (bpf_obj_pin(link->fd, link->pin_path)) {
9811 		err = -errno;
9812 		zfree(&link->pin_path);
9813 		return err;
9814 	}
9815 
9816 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9817 	return 0;
9818 }
9819 
9820 int bpf_link__unpin(struct bpf_link *link)
9821 {
9822 	int err;
9823 
9824 	if (!link->pin_path)
9825 		return -EINVAL;
9826 
9827 	err = unlink(link->pin_path);
9828 	if (err != 0)
9829 		return -errno;
9830 
9831 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9832 	zfree(&link->pin_path);
9833 	return 0;
9834 }
9835 
9836 static int bpf_link__detach_perf_event(struct bpf_link *link)
9837 {
9838 	int err;
9839 
9840 	err = ioctl(link->fd, PERF_EVENT_IOC_DISABLE, 0);
9841 	if (err)
9842 		err = -errno;
9843 
9844 	close(link->fd);
9845 	return err;
9846 }
9847 
9848 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog,
9849 						int pfd)
9850 {
9851 	char errmsg[STRERR_BUFSIZE];
9852 	struct bpf_link *link;
9853 	int prog_fd, err;
9854 
9855 	if (pfd < 0) {
9856 		pr_warn("prog '%s': invalid perf event FD %d\n",
9857 			prog->name, pfd);
9858 		return ERR_PTR(-EINVAL);
9859 	}
9860 	prog_fd = bpf_program__fd(prog);
9861 	if (prog_fd < 0) {
9862 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9863 			prog->name);
9864 		return ERR_PTR(-EINVAL);
9865 	}
9866 
9867 	link = calloc(1, sizeof(*link));
9868 	if (!link)
9869 		return ERR_PTR(-ENOMEM);
9870 	link->detach = &bpf_link__detach_perf_event;
9871 	link->fd = pfd;
9872 
9873 	if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9874 		err = -errno;
9875 		free(link);
9876 		pr_warn("prog '%s': failed to attach to pfd %d: %s\n",
9877 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9878 		if (err == -EPROTO)
9879 			pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9880 				prog->name, pfd);
9881 		return ERR_PTR(err);
9882 	}
9883 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9884 		err = -errno;
9885 		free(link);
9886 		pr_warn("prog '%s': failed to enable pfd %d: %s\n",
9887 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9888 		return ERR_PTR(err);
9889 	}
9890 	return link;
9891 }
9892 
9893 /*
9894  * this function is expected to parse integer in the range of [0, 2^31-1] from
9895  * given file using scanf format string fmt. If actual parsed value is
9896  * negative, the result might be indistinguishable from error
9897  */
9898 static int parse_uint_from_file(const char *file, const char *fmt)
9899 {
9900 	char buf[STRERR_BUFSIZE];
9901 	int err, ret;
9902 	FILE *f;
9903 
9904 	f = fopen(file, "r");
9905 	if (!f) {
9906 		err = -errno;
9907 		pr_debug("failed to open '%s': %s\n", file,
9908 			 libbpf_strerror_r(err, buf, sizeof(buf)));
9909 		return err;
9910 	}
9911 	err = fscanf(f, fmt, &ret);
9912 	if (err != 1) {
9913 		err = err == EOF ? -EIO : -errno;
9914 		pr_debug("failed to parse '%s': %s\n", file,
9915 			libbpf_strerror_r(err, buf, sizeof(buf)));
9916 		fclose(f);
9917 		return err;
9918 	}
9919 	fclose(f);
9920 	return ret;
9921 }
9922 
9923 static int determine_kprobe_perf_type(void)
9924 {
9925 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
9926 
9927 	return parse_uint_from_file(file, "%d\n");
9928 }
9929 
9930 static int determine_uprobe_perf_type(void)
9931 {
9932 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
9933 
9934 	return parse_uint_from_file(file, "%d\n");
9935 }
9936 
9937 static int determine_kprobe_retprobe_bit(void)
9938 {
9939 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9940 
9941 	return parse_uint_from_file(file, "config:%d\n");
9942 }
9943 
9944 static int determine_uprobe_retprobe_bit(void)
9945 {
9946 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
9947 
9948 	return parse_uint_from_file(file, "config:%d\n");
9949 }
9950 
9951 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
9952 				 uint64_t offset, int pid)
9953 {
9954 	struct perf_event_attr attr = {};
9955 	char errmsg[STRERR_BUFSIZE];
9956 	int type, pfd, err;
9957 
9958 	type = uprobe ? determine_uprobe_perf_type()
9959 		      : determine_kprobe_perf_type();
9960 	if (type < 0) {
9961 		pr_warn("failed to determine %s perf type: %s\n",
9962 			uprobe ? "uprobe" : "kprobe",
9963 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
9964 		return type;
9965 	}
9966 	if (retprobe) {
9967 		int bit = uprobe ? determine_uprobe_retprobe_bit()
9968 				 : determine_kprobe_retprobe_bit();
9969 
9970 		if (bit < 0) {
9971 			pr_warn("failed to determine %s retprobe bit: %s\n",
9972 				uprobe ? "uprobe" : "kprobe",
9973 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
9974 			return bit;
9975 		}
9976 		attr.config |= 1 << bit;
9977 	}
9978 	attr.size = sizeof(attr);
9979 	attr.type = type;
9980 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
9981 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
9982 
9983 	/* pid filter is meaningful only for uprobes */
9984 	pfd = syscall(__NR_perf_event_open, &attr,
9985 		      pid < 0 ? -1 : pid /* pid */,
9986 		      pid == -1 ? 0 : -1 /* cpu */,
9987 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
9988 	if (pfd < 0) {
9989 		err = -errno;
9990 		pr_warn("%s perf_event_open() failed: %s\n",
9991 			uprobe ? "uprobe" : "kprobe",
9992 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9993 		return err;
9994 	}
9995 	return pfd;
9996 }
9997 
9998 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog,
9999 					    bool retprobe,
10000 					    const char *func_name)
10001 {
10002 	char errmsg[STRERR_BUFSIZE];
10003 	struct bpf_link *link;
10004 	int pfd, err;
10005 
10006 	pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name,
10007 				    0 /* offset */, -1 /* pid */);
10008 	if (pfd < 0) {
10009 		pr_warn("prog '%s': failed to create %s '%s' perf event: %s\n",
10010 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
10011 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10012 		return ERR_PTR(pfd);
10013 	}
10014 	link = bpf_program__attach_perf_event(prog, pfd);
10015 	if (IS_ERR(link)) {
10016 		close(pfd);
10017 		err = PTR_ERR(link);
10018 		pr_warn("prog '%s': failed to attach to %s '%s': %s\n",
10019 			prog->name, retprobe ? "kretprobe" : "kprobe", func_name,
10020 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10021 		return link;
10022 	}
10023 	return link;
10024 }
10025 
10026 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec,
10027 				      struct bpf_program *prog)
10028 {
10029 	const char *func_name;
10030 	bool retprobe;
10031 
10032 	func_name = prog->sec_name + sec->len;
10033 	retprobe = strcmp(sec->sec, "kretprobe/") == 0;
10034 
10035 	return bpf_program__attach_kprobe(prog, retprobe, func_name);
10036 }
10037 
10038 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog,
10039 					    bool retprobe, pid_t pid,
10040 					    const char *binary_path,
10041 					    size_t func_offset)
10042 {
10043 	char errmsg[STRERR_BUFSIZE];
10044 	struct bpf_link *link;
10045 	int pfd, err;
10046 
10047 	pfd = perf_event_open_probe(true /* uprobe */, retprobe,
10048 				    binary_path, func_offset, pid);
10049 	if (pfd < 0) {
10050 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
10051 			prog->name, retprobe ? "uretprobe" : "uprobe",
10052 			binary_path, func_offset,
10053 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10054 		return ERR_PTR(pfd);
10055 	}
10056 	link = bpf_program__attach_perf_event(prog, pfd);
10057 	if (IS_ERR(link)) {
10058 		close(pfd);
10059 		err = PTR_ERR(link);
10060 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
10061 			prog->name, retprobe ? "uretprobe" : "uprobe",
10062 			binary_path, func_offset,
10063 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10064 		return link;
10065 	}
10066 	return link;
10067 }
10068 
10069 static int determine_tracepoint_id(const char *tp_category,
10070 				   const char *tp_name)
10071 {
10072 	char file[PATH_MAX];
10073 	int ret;
10074 
10075 	ret = snprintf(file, sizeof(file),
10076 		       "/sys/kernel/debug/tracing/events/%s/%s/id",
10077 		       tp_category, tp_name);
10078 	if (ret < 0)
10079 		return -errno;
10080 	if (ret >= sizeof(file)) {
10081 		pr_debug("tracepoint %s/%s path is too long\n",
10082 			 tp_category, tp_name);
10083 		return -E2BIG;
10084 	}
10085 	return parse_uint_from_file(file, "%d\n");
10086 }
10087 
10088 static int perf_event_open_tracepoint(const char *tp_category,
10089 				      const char *tp_name)
10090 {
10091 	struct perf_event_attr attr = {};
10092 	char errmsg[STRERR_BUFSIZE];
10093 	int tp_id, pfd, err;
10094 
10095 	tp_id = determine_tracepoint_id(tp_category, tp_name);
10096 	if (tp_id < 0) {
10097 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
10098 			tp_category, tp_name,
10099 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
10100 		return tp_id;
10101 	}
10102 
10103 	attr.type = PERF_TYPE_TRACEPOINT;
10104 	attr.size = sizeof(attr);
10105 	attr.config = tp_id;
10106 
10107 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
10108 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10109 	if (pfd < 0) {
10110 		err = -errno;
10111 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
10112 			tp_category, tp_name,
10113 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10114 		return err;
10115 	}
10116 	return pfd;
10117 }
10118 
10119 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog,
10120 						const char *tp_category,
10121 						const char *tp_name)
10122 {
10123 	char errmsg[STRERR_BUFSIZE];
10124 	struct bpf_link *link;
10125 	int pfd, err;
10126 
10127 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
10128 	if (pfd < 0) {
10129 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
10130 			prog->name, tp_category, tp_name,
10131 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10132 		return ERR_PTR(pfd);
10133 	}
10134 	link = bpf_program__attach_perf_event(prog, pfd);
10135 	if (IS_ERR(link)) {
10136 		close(pfd);
10137 		err = PTR_ERR(link);
10138 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
10139 			prog->name, tp_category, tp_name,
10140 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10141 		return link;
10142 	}
10143 	return link;
10144 }
10145 
10146 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec,
10147 				  struct bpf_program *prog)
10148 {
10149 	char *sec_name, *tp_cat, *tp_name;
10150 	struct bpf_link *link;
10151 
10152 	sec_name = strdup(prog->sec_name);
10153 	if (!sec_name)
10154 		return ERR_PTR(-ENOMEM);
10155 
10156 	/* extract "tp/<category>/<name>" */
10157 	tp_cat = sec_name + sec->len;
10158 	tp_name = strchr(tp_cat, '/');
10159 	if (!tp_name) {
10160 		link = ERR_PTR(-EINVAL);
10161 		goto out;
10162 	}
10163 	*tp_name = '\0';
10164 	tp_name++;
10165 
10166 	link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
10167 out:
10168 	free(sec_name);
10169 	return link;
10170 }
10171 
10172 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog,
10173 						    const char *tp_name)
10174 {
10175 	char errmsg[STRERR_BUFSIZE];
10176 	struct bpf_link *link;
10177 	int prog_fd, pfd;
10178 
10179 	prog_fd = bpf_program__fd(prog);
10180 	if (prog_fd < 0) {
10181 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10182 		return ERR_PTR(-EINVAL);
10183 	}
10184 
10185 	link = calloc(1, sizeof(*link));
10186 	if (!link)
10187 		return ERR_PTR(-ENOMEM);
10188 	link->detach = &bpf_link__detach_fd;
10189 
10190 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
10191 	if (pfd < 0) {
10192 		pfd = -errno;
10193 		free(link);
10194 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
10195 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10196 		return ERR_PTR(pfd);
10197 	}
10198 	link->fd = pfd;
10199 	return link;
10200 }
10201 
10202 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec,
10203 				      struct bpf_program *prog)
10204 {
10205 	const char *tp_name = prog->sec_name + sec->len;
10206 
10207 	return bpf_program__attach_raw_tracepoint(prog, tp_name);
10208 }
10209 
10210 /* Common logic for all BPF program types that attach to a btf_id */
10211 static struct bpf_link *bpf_program__attach_btf_id(struct bpf_program *prog)
10212 {
10213 	char errmsg[STRERR_BUFSIZE];
10214 	struct bpf_link *link;
10215 	int prog_fd, pfd;
10216 
10217 	prog_fd = bpf_program__fd(prog);
10218 	if (prog_fd < 0) {
10219 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10220 		return ERR_PTR(-EINVAL);
10221 	}
10222 
10223 	link = calloc(1, sizeof(*link));
10224 	if (!link)
10225 		return ERR_PTR(-ENOMEM);
10226 	link->detach = &bpf_link__detach_fd;
10227 
10228 	pfd = bpf_raw_tracepoint_open(NULL, prog_fd);
10229 	if (pfd < 0) {
10230 		pfd = -errno;
10231 		free(link);
10232 		pr_warn("prog '%s': failed to attach: %s\n",
10233 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
10234 		return ERR_PTR(pfd);
10235 	}
10236 	link->fd = pfd;
10237 	return (struct bpf_link *)link;
10238 }
10239 
10240 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog)
10241 {
10242 	return bpf_program__attach_btf_id(prog);
10243 }
10244 
10245 struct bpf_link *bpf_program__attach_lsm(struct bpf_program *prog)
10246 {
10247 	return bpf_program__attach_btf_id(prog);
10248 }
10249 
10250 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec,
10251 				     struct bpf_program *prog)
10252 {
10253 	return bpf_program__attach_trace(prog);
10254 }
10255 
10256 static struct bpf_link *attach_lsm(const struct bpf_sec_def *sec,
10257 				   struct bpf_program *prog)
10258 {
10259 	return bpf_program__attach_lsm(prog);
10260 }
10261 
10262 static struct bpf_link *attach_iter(const struct bpf_sec_def *sec,
10263 				    struct bpf_program *prog)
10264 {
10265 	return bpf_program__attach_iter(prog, NULL);
10266 }
10267 
10268 static struct bpf_link *
10269 bpf_program__attach_fd(struct bpf_program *prog, int target_fd, int btf_id,
10270 		       const char *target_name)
10271 {
10272 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
10273 			    .target_btf_id = btf_id);
10274 	enum bpf_attach_type attach_type;
10275 	char errmsg[STRERR_BUFSIZE];
10276 	struct bpf_link *link;
10277 	int prog_fd, link_fd;
10278 
10279 	prog_fd = bpf_program__fd(prog);
10280 	if (prog_fd < 0) {
10281 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10282 		return ERR_PTR(-EINVAL);
10283 	}
10284 
10285 	link = calloc(1, sizeof(*link));
10286 	if (!link)
10287 		return ERR_PTR(-ENOMEM);
10288 	link->detach = &bpf_link__detach_fd;
10289 
10290 	attach_type = bpf_program__get_expected_attach_type(prog);
10291 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
10292 	if (link_fd < 0) {
10293 		link_fd = -errno;
10294 		free(link);
10295 		pr_warn("prog '%s': failed to attach to %s: %s\n",
10296 			prog->name, target_name,
10297 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10298 		return ERR_PTR(link_fd);
10299 	}
10300 	link->fd = link_fd;
10301 	return link;
10302 }
10303 
10304 struct bpf_link *
10305 bpf_program__attach_cgroup(struct bpf_program *prog, int cgroup_fd)
10306 {
10307 	return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
10308 }
10309 
10310 struct bpf_link *
10311 bpf_program__attach_netns(struct bpf_program *prog, int netns_fd)
10312 {
10313 	return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
10314 }
10315 
10316 struct bpf_link *bpf_program__attach_xdp(struct bpf_program *prog, int ifindex)
10317 {
10318 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
10319 	return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
10320 }
10321 
10322 struct bpf_link *bpf_program__attach_freplace(struct bpf_program *prog,
10323 					      int target_fd,
10324 					      const char *attach_func_name)
10325 {
10326 	int btf_id;
10327 
10328 	if (!!target_fd != !!attach_func_name) {
10329 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
10330 			prog->name);
10331 		return ERR_PTR(-EINVAL);
10332 	}
10333 
10334 	if (prog->type != BPF_PROG_TYPE_EXT) {
10335 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
10336 			prog->name);
10337 		return ERR_PTR(-EINVAL);
10338 	}
10339 
10340 	if (target_fd) {
10341 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
10342 		if (btf_id < 0)
10343 			return ERR_PTR(btf_id);
10344 
10345 		return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
10346 	} else {
10347 		/* no target, so use raw_tracepoint_open for compatibility
10348 		 * with old kernels
10349 		 */
10350 		return bpf_program__attach_trace(prog);
10351 	}
10352 }
10353 
10354 struct bpf_link *
10355 bpf_program__attach_iter(struct bpf_program *prog,
10356 			 const struct bpf_iter_attach_opts *opts)
10357 {
10358 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
10359 	char errmsg[STRERR_BUFSIZE];
10360 	struct bpf_link *link;
10361 	int prog_fd, link_fd;
10362 	__u32 target_fd = 0;
10363 
10364 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
10365 		return ERR_PTR(-EINVAL);
10366 
10367 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
10368 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
10369 
10370 	prog_fd = bpf_program__fd(prog);
10371 	if (prog_fd < 0) {
10372 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
10373 		return ERR_PTR(-EINVAL);
10374 	}
10375 
10376 	link = calloc(1, sizeof(*link));
10377 	if (!link)
10378 		return ERR_PTR(-ENOMEM);
10379 	link->detach = &bpf_link__detach_fd;
10380 
10381 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
10382 				  &link_create_opts);
10383 	if (link_fd < 0) {
10384 		link_fd = -errno;
10385 		free(link);
10386 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
10387 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
10388 		return ERR_PTR(link_fd);
10389 	}
10390 	link->fd = link_fd;
10391 	return link;
10392 }
10393 
10394 struct bpf_link *bpf_program__attach(struct bpf_program *prog)
10395 {
10396 	const struct bpf_sec_def *sec_def;
10397 
10398 	sec_def = find_sec_def(prog->sec_name);
10399 	if (!sec_def || !sec_def->attach_fn)
10400 		return ERR_PTR(-ESRCH);
10401 
10402 	return sec_def->attach_fn(sec_def, prog);
10403 }
10404 
10405 static int bpf_link__detach_struct_ops(struct bpf_link *link)
10406 {
10407 	__u32 zero = 0;
10408 
10409 	if (bpf_map_delete_elem(link->fd, &zero))
10410 		return -errno;
10411 
10412 	return 0;
10413 }
10414 
10415 struct bpf_link *bpf_map__attach_struct_ops(struct bpf_map *map)
10416 {
10417 	struct bpf_struct_ops *st_ops;
10418 	struct bpf_link *link;
10419 	__u32 i, zero = 0;
10420 	int err;
10421 
10422 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
10423 		return ERR_PTR(-EINVAL);
10424 
10425 	link = calloc(1, sizeof(*link));
10426 	if (!link)
10427 		return ERR_PTR(-EINVAL);
10428 
10429 	st_ops = map->st_ops;
10430 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
10431 		struct bpf_program *prog = st_ops->progs[i];
10432 		void *kern_data;
10433 		int prog_fd;
10434 
10435 		if (!prog)
10436 			continue;
10437 
10438 		prog_fd = bpf_program__fd(prog);
10439 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
10440 		*(unsigned long *)kern_data = prog_fd;
10441 	}
10442 
10443 	err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0);
10444 	if (err) {
10445 		err = -errno;
10446 		free(link);
10447 		return ERR_PTR(err);
10448 	}
10449 
10450 	link->detach = bpf_link__detach_struct_ops;
10451 	link->fd = map->fd;
10452 
10453 	return link;
10454 }
10455 
10456 enum bpf_perf_event_ret
10457 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
10458 			   void **copy_mem, size_t *copy_size,
10459 			   bpf_perf_event_print_t fn, void *private_data)
10460 {
10461 	struct perf_event_mmap_page *header = mmap_mem;
10462 	__u64 data_head = ring_buffer_read_head(header);
10463 	__u64 data_tail = header->data_tail;
10464 	void *base = ((__u8 *)header) + page_size;
10465 	int ret = LIBBPF_PERF_EVENT_CONT;
10466 	struct perf_event_header *ehdr;
10467 	size_t ehdr_size;
10468 
10469 	while (data_head != data_tail) {
10470 		ehdr = base + (data_tail & (mmap_size - 1));
10471 		ehdr_size = ehdr->size;
10472 
10473 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
10474 			void *copy_start = ehdr;
10475 			size_t len_first = base + mmap_size - copy_start;
10476 			size_t len_secnd = ehdr_size - len_first;
10477 
10478 			if (*copy_size < ehdr_size) {
10479 				free(*copy_mem);
10480 				*copy_mem = malloc(ehdr_size);
10481 				if (!*copy_mem) {
10482 					*copy_size = 0;
10483 					ret = LIBBPF_PERF_EVENT_ERROR;
10484 					break;
10485 				}
10486 				*copy_size = ehdr_size;
10487 			}
10488 
10489 			memcpy(*copy_mem, copy_start, len_first);
10490 			memcpy(*copy_mem + len_first, base, len_secnd);
10491 			ehdr = *copy_mem;
10492 		}
10493 
10494 		ret = fn(ehdr, private_data);
10495 		data_tail += ehdr_size;
10496 		if (ret != LIBBPF_PERF_EVENT_CONT)
10497 			break;
10498 	}
10499 
10500 	ring_buffer_write_tail(header, data_tail);
10501 	return ret;
10502 }
10503 
10504 struct perf_buffer;
10505 
10506 struct perf_buffer_params {
10507 	struct perf_event_attr *attr;
10508 	/* if event_cb is specified, it takes precendence */
10509 	perf_buffer_event_fn event_cb;
10510 	/* sample_cb and lost_cb are higher-level common-case callbacks */
10511 	perf_buffer_sample_fn sample_cb;
10512 	perf_buffer_lost_fn lost_cb;
10513 	void *ctx;
10514 	int cpu_cnt;
10515 	int *cpus;
10516 	int *map_keys;
10517 };
10518 
10519 struct perf_cpu_buf {
10520 	struct perf_buffer *pb;
10521 	void *base; /* mmap()'ed memory */
10522 	void *buf; /* for reconstructing segmented data */
10523 	size_t buf_size;
10524 	int fd;
10525 	int cpu;
10526 	int map_key;
10527 };
10528 
10529 struct perf_buffer {
10530 	perf_buffer_event_fn event_cb;
10531 	perf_buffer_sample_fn sample_cb;
10532 	perf_buffer_lost_fn lost_cb;
10533 	void *ctx; /* passed into callbacks */
10534 
10535 	size_t page_size;
10536 	size_t mmap_size;
10537 	struct perf_cpu_buf **cpu_bufs;
10538 	struct epoll_event *events;
10539 	int cpu_cnt; /* number of allocated CPU buffers */
10540 	int epoll_fd; /* perf event FD */
10541 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
10542 };
10543 
10544 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
10545 				      struct perf_cpu_buf *cpu_buf)
10546 {
10547 	if (!cpu_buf)
10548 		return;
10549 	if (cpu_buf->base &&
10550 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
10551 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
10552 	if (cpu_buf->fd >= 0) {
10553 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
10554 		close(cpu_buf->fd);
10555 	}
10556 	free(cpu_buf->buf);
10557 	free(cpu_buf);
10558 }
10559 
10560 void perf_buffer__free(struct perf_buffer *pb)
10561 {
10562 	int i;
10563 
10564 	if (IS_ERR_OR_NULL(pb))
10565 		return;
10566 	if (pb->cpu_bufs) {
10567 		for (i = 0; i < pb->cpu_cnt; i++) {
10568 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10569 
10570 			if (!cpu_buf)
10571 				continue;
10572 
10573 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
10574 			perf_buffer__free_cpu_buf(pb, cpu_buf);
10575 		}
10576 		free(pb->cpu_bufs);
10577 	}
10578 	if (pb->epoll_fd >= 0)
10579 		close(pb->epoll_fd);
10580 	free(pb->events);
10581 	free(pb);
10582 }
10583 
10584 static struct perf_cpu_buf *
10585 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
10586 			  int cpu, int map_key)
10587 {
10588 	struct perf_cpu_buf *cpu_buf;
10589 	char msg[STRERR_BUFSIZE];
10590 	int err;
10591 
10592 	cpu_buf = calloc(1, sizeof(*cpu_buf));
10593 	if (!cpu_buf)
10594 		return ERR_PTR(-ENOMEM);
10595 
10596 	cpu_buf->pb = pb;
10597 	cpu_buf->cpu = cpu;
10598 	cpu_buf->map_key = map_key;
10599 
10600 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
10601 			      -1, PERF_FLAG_FD_CLOEXEC);
10602 	if (cpu_buf->fd < 0) {
10603 		err = -errno;
10604 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
10605 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10606 		goto error;
10607 	}
10608 
10609 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
10610 			     PROT_READ | PROT_WRITE, MAP_SHARED,
10611 			     cpu_buf->fd, 0);
10612 	if (cpu_buf->base == MAP_FAILED) {
10613 		cpu_buf->base = NULL;
10614 		err = -errno;
10615 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
10616 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10617 		goto error;
10618 	}
10619 
10620 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10621 		err = -errno;
10622 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
10623 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
10624 		goto error;
10625 	}
10626 
10627 	return cpu_buf;
10628 
10629 error:
10630 	perf_buffer__free_cpu_buf(pb, cpu_buf);
10631 	return (struct perf_cpu_buf *)ERR_PTR(err);
10632 }
10633 
10634 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10635 					      struct perf_buffer_params *p);
10636 
10637 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
10638 				     const struct perf_buffer_opts *opts)
10639 {
10640 	struct perf_buffer_params p = {};
10641 	struct perf_event_attr attr = { 0, };
10642 
10643 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
10644 	attr.type = PERF_TYPE_SOFTWARE;
10645 	attr.sample_type = PERF_SAMPLE_RAW;
10646 	attr.sample_period = 1;
10647 	attr.wakeup_events = 1;
10648 
10649 	p.attr = &attr;
10650 	p.sample_cb = opts ? opts->sample_cb : NULL;
10651 	p.lost_cb = opts ? opts->lost_cb : NULL;
10652 	p.ctx = opts ? opts->ctx : NULL;
10653 
10654 	return __perf_buffer__new(map_fd, page_cnt, &p);
10655 }
10656 
10657 struct perf_buffer *
10658 perf_buffer__new_raw(int map_fd, size_t page_cnt,
10659 		     const struct perf_buffer_raw_opts *opts)
10660 {
10661 	struct perf_buffer_params p = {};
10662 
10663 	p.attr = opts->attr;
10664 	p.event_cb = opts->event_cb;
10665 	p.ctx = opts->ctx;
10666 	p.cpu_cnt = opts->cpu_cnt;
10667 	p.cpus = opts->cpus;
10668 	p.map_keys = opts->map_keys;
10669 
10670 	return __perf_buffer__new(map_fd, page_cnt, &p);
10671 }
10672 
10673 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
10674 					      struct perf_buffer_params *p)
10675 {
10676 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
10677 	struct bpf_map_info map;
10678 	char msg[STRERR_BUFSIZE];
10679 	struct perf_buffer *pb;
10680 	bool *online = NULL;
10681 	__u32 map_info_len;
10682 	int err, i, j, n;
10683 
10684 	if (page_cnt & (page_cnt - 1)) {
10685 		pr_warn("page count should be power of two, but is %zu\n",
10686 			page_cnt);
10687 		return ERR_PTR(-EINVAL);
10688 	}
10689 
10690 	/* best-effort sanity checks */
10691 	memset(&map, 0, sizeof(map));
10692 	map_info_len = sizeof(map);
10693 	err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len);
10694 	if (err) {
10695 		err = -errno;
10696 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
10697 		 * -EBADFD, -EFAULT, or -E2BIG on real error
10698 		 */
10699 		if (err != -EINVAL) {
10700 			pr_warn("failed to get map info for map FD %d: %s\n",
10701 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
10702 			return ERR_PTR(err);
10703 		}
10704 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
10705 			 map_fd);
10706 	} else {
10707 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
10708 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
10709 				map.name);
10710 			return ERR_PTR(-EINVAL);
10711 		}
10712 	}
10713 
10714 	pb = calloc(1, sizeof(*pb));
10715 	if (!pb)
10716 		return ERR_PTR(-ENOMEM);
10717 
10718 	pb->event_cb = p->event_cb;
10719 	pb->sample_cb = p->sample_cb;
10720 	pb->lost_cb = p->lost_cb;
10721 	pb->ctx = p->ctx;
10722 
10723 	pb->page_size = getpagesize();
10724 	pb->mmap_size = pb->page_size * page_cnt;
10725 	pb->map_fd = map_fd;
10726 
10727 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
10728 	if (pb->epoll_fd < 0) {
10729 		err = -errno;
10730 		pr_warn("failed to create epoll instance: %s\n",
10731 			libbpf_strerror_r(err, msg, sizeof(msg)));
10732 		goto error;
10733 	}
10734 
10735 	if (p->cpu_cnt > 0) {
10736 		pb->cpu_cnt = p->cpu_cnt;
10737 	} else {
10738 		pb->cpu_cnt = libbpf_num_possible_cpus();
10739 		if (pb->cpu_cnt < 0) {
10740 			err = pb->cpu_cnt;
10741 			goto error;
10742 		}
10743 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
10744 			pb->cpu_cnt = map.max_entries;
10745 	}
10746 
10747 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
10748 	if (!pb->events) {
10749 		err = -ENOMEM;
10750 		pr_warn("failed to allocate events: out of memory\n");
10751 		goto error;
10752 	}
10753 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
10754 	if (!pb->cpu_bufs) {
10755 		err = -ENOMEM;
10756 		pr_warn("failed to allocate buffers: out of memory\n");
10757 		goto error;
10758 	}
10759 
10760 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
10761 	if (err) {
10762 		pr_warn("failed to get online CPU mask: %d\n", err);
10763 		goto error;
10764 	}
10765 
10766 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
10767 		struct perf_cpu_buf *cpu_buf;
10768 		int cpu, map_key;
10769 
10770 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
10771 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
10772 
10773 		/* in case user didn't explicitly requested particular CPUs to
10774 		 * be attached to, skip offline/not present CPUs
10775 		 */
10776 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
10777 			continue;
10778 
10779 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
10780 		if (IS_ERR(cpu_buf)) {
10781 			err = PTR_ERR(cpu_buf);
10782 			goto error;
10783 		}
10784 
10785 		pb->cpu_bufs[j] = cpu_buf;
10786 
10787 		err = bpf_map_update_elem(pb->map_fd, &map_key,
10788 					  &cpu_buf->fd, 0);
10789 		if (err) {
10790 			err = -errno;
10791 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
10792 				cpu, map_key, cpu_buf->fd,
10793 				libbpf_strerror_r(err, msg, sizeof(msg)));
10794 			goto error;
10795 		}
10796 
10797 		pb->events[j].events = EPOLLIN;
10798 		pb->events[j].data.ptr = cpu_buf;
10799 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
10800 			      &pb->events[j]) < 0) {
10801 			err = -errno;
10802 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
10803 				cpu, cpu_buf->fd,
10804 				libbpf_strerror_r(err, msg, sizeof(msg)));
10805 			goto error;
10806 		}
10807 		j++;
10808 	}
10809 	pb->cpu_cnt = j;
10810 	free(online);
10811 
10812 	return pb;
10813 
10814 error:
10815 	free(online);
10816 	if (pb)
10817 		perf_buffer__free(pb);
10818 	return ERR_PTR(err);
10819 }
10820 
10821 struct perf_sample_raw {
10822 	struct perf_event_header header;
10823 	uint32_t size;
10824 	char data[];
10825 };
10826 
10827 struct perf_sample_lost {
10828 	struct perf_event_header header;
10829 	uint64_t id;
10830 	uint64_t lost;
10831 	uint64_t sample_id;
10832 };
10833 
10834 static enum bpf_perf_event_ret
10835 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
10836 {
10837 	struct perf_cpu_buf *cpu_buf = ctx;
10838 	struct perf_buffer *pb = cpu_buf->pb;
10839 	void *data = e;
10840 
10841 	/* user wants full control over parsing perf event */
10842 	if (pb->event_cb)
10843 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
10844 
10845 	switch (e->type) {
10846 	case PERF_RECORD_SAMPLE: {
10847 		struct perf_sample_raw *s = data;
10848 
10849 		if (pb->sample_cb)
10850 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
10851 		break;
10852 	}
10853 	case PERF_RECORD_LOST: {
10854 		struct perf_sample_lost *s = data;
10855 
10856 		if (pb->lost_cb)
10857 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
10858 		break;
10859 	}
10860 	default:
10861 		pr_warn("unknown perf sample type %d\n", e->type);
10862 		return LIBBPF_PERF_EVENT_ERROR;
10863 	}
10864 	return LIBBPF_PERF_EVENT_CONT;
10865 }
10866 
10867 static int perf_buffer__process_records(struct perf_buffer *pb,
10868 					struct perf_cpu_buf *cpu_buf)
10869 {
10870 	enum bpf_perf_event_ret ret;
10871 
10872 	ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size,
10873 					 pb->page_size, &cpu_buf->buf,
10874 					 &cpu_buf->buf_size,
10875 					 perf_buffer__process_record, cpu_buf);
10876 	if (ret != LIBBPF_PERF_EVENT_CONT)
10877 		return ret;
10878 	return 0;
10879 }
10880 
10881 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
10882 {
10883 	return pb->epoll_fd;
10884 }
10885 
10886 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
10887 {
10888 	int i, cnt, err;
10889 
10890 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
10891 	for (i = 0; i < cnt; i++) {
10892 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
10893 
10894 		err = perf_buffer__process_records(pb, cpu_buf);
10895 		if (err) {
10896 			pr_warn("error while processing records: %d\n", err);
10897 			return err;
10898 		}
10899 	}
10900 	return cnt < 0 ? -errno : cnt;
10901 }
10902 
10903 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
10904  * manager.
10905  */
10906 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
10907 {
10908 	return pb->cpu_cnt;
10909 }
10910 
10911 /*
10912  * Return perf_event FD of a ring buffer in *buf_idx* slot of
10913  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
10914  * select()/poll()/epoll() Linux syscalls.
10915  */
10916 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
10917 {
10918 	struct perf_cpu_buf *cpu_buf;
10919 
10920 	if (buf_idx >= pb->cpu_cnt)
10921 		return -EINVAL;
10922 
10923 	cpu_buf = pb->cpu_bufs[buf_idx];
10924 	if (!cpu_buf)
10925 		return -ENOENT;
10926 
10927 	return cpu_buf->fd;
10928 }
10929 
10930 /*
10931  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
10932  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
10933  * consume, do nothing and return success.
10934  * Returns:
10935  *   - 0 on success;
10936  *   - <0 on failure.
10937  */
10938 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
10939 {
10940 	struct perf_cpu_buf *cpu_buf;
10941 
10942 	if (buf_idx >= pb->cpu_cnt)
10943 		return -EINVAL;
10944 
10945 	cpu_buf = pb->cpu_bufs[buf_idx];
10946 	if (!cpu_buf)
10947 		return -ENOENT;
10948 
10949 	return perf_buffer__process_records(pb, cpu_buf);
10950 }
10951 
10952 int perf_buffer__consume(struct perf_buffer *pb)
10953 {
10954 	int i, err;
10955 
10956 	for (i = 0; i < pb->cpu_cnt; i++) {
10957 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
10958 
10959 		if (!cpu_buf)
10960 			continue;
10961 
10962 		err = perf_buffer__process_records(pb, cpu_buf);
10963 		if (err) {
10964 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
10965 			return err;
10966 		}
10967 	}
10968 	return 0;
10969 }
10970 
10971 struct bpf_prog_info_array_desc {
10972 	int	array_offset;	/* e.g. offset of jited_prog_insns */
10973 	int	count_offset;	/* e.g. offset of jited_prog_len */
10974 	int	size_offset;	/* > 0: offset of rec size,
10975 				 * < 0: fix size of -size_offset
10976 				 */
10977 };
10978 
10979 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = {
10980 	[BPF_PROG_INFO_JITED_INSNS] = {
10981 		offsetof(struct bpf_prog_info, jited_prog_insns),
10982 		offsetof(struct bpf_prog_info, jited_prog_len),
10983 		-1,
10984 	},
10985 	[BPF_PROG_INFO_XLATED_INSNS] = {
10986 		offsetof(struct bpf_prog_info, xlated_prog_insns),
10987 		offsetof(struct bpf_prog_info, xlated_prog_len),
10988 		-1,
10989 	},
10990 	[BPF_PROG_INFO_MAP_IDS] = {
10991 		offsetof(struct bpf_prog_info, map_ids),
10992 		offsetof(struct bpf_prog_info, nr_map_ids),
10993 		-(int)sizeof(__u32),
10994 	},
10995 	[BPF_PROG_INFO_JITED_KSYMS] = {
10996 		offsetof(struct bpf_prog_info, jited_ksyms),
10997 		offsetof(struct bpf_prog_info, nr_jited_ksyms),
10998 		-(int)sizeof(__u64),
10999 	},
11000 	[BPF_PROG_INFO_JITED_FUNC_LENS] = {
11001 		offsetof(struct bpf_prog_info, jited_func_lens),
11002 		offsetof(struct bpf_prog_info, nr_jited_func_lens),
11003 		-(int)sizeof(__u32),
11004 	},
11005 	[BPF_PROG_INFO_FUNC_INFO] = {
11006 		offsetof(struct bpf_prog_info, func_info),
11007 		offsetof(struct bpf_prog_info, nr_func_info),
11008 		offsetof(struct bpf_prog_info, func_info_rec_size),
11009 	},
11010 	[BPF_PROG_INFO_LINE_INFO] = {
11011 		offsetof(struct bpf_prog_info, line_info),
11012 		offsetof(struct bpf_prog_info, nr_line_info),
11013 		offsetof(struct bpf_prog_info, line_info_rec_size),
11014 	},
11015 	[BPF_PROG_INFO_JITED_LINE_INFO] = {
11016 		offsetof(struct bpf_prog_info, jited_line_info),
11017 		offsetof(struct bpf_prog_info, nr_jited_line_info),
11018 		offsetof(struct bpf_prog_info, jited_line_info_rec_size),
11019 	},
11020 	[BPF_PROG_INFO_PROG_TAGS] = {
11021 		offsetof(struct bpf_prog_info, prog_tags),
11022 		offsetof(struct bpf_prog_info, nr_prog_tags),
11023 		-(int)sizeof(__u8) * BPF_TAG_SIZE,
11024 	},
11025 
11026 };
11027 
11028 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info,
11029 					   int offset)
11030 {
11031 	__u32 *array = (__u32 *)info;
11032 
11033 	if (offset >= 0)
11034 		return array[offset / sizeof(__u32)];
11035 	return -(int)offset;
11036 }
11037 
11038 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info,
11039 					   int offset)
11040 {
11041 	__u64 *array = (__u64 *)info;
11042 
11043 	if (offset >= 0)
11044 		return array[offset / sizeof(__u64)];
11045 	return -(int)offset;
11046 }
11047 
11048 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset,
11049 					 __u32 val)
11050 {
11051 	__u32 *array = (__u32 *)info;
11052 
11053 	if (offset >= 0)
11054 		array[offset / sizeof(__u32)] = val;
11055 }
11056 
11057 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset,
11058 					 __u64 val)
11059 {
11060 	__u64 *array = (__u64 *)info;
11061 
11062 	if (offset >= 0)
11063 		array[offset / sizeof(__u64)] = val;
11064 }
11065 
11066 struct bpf_prog_info_linear *
11067 bpf_program__get_prog_info_linear(int fd, __u64 arrays)
11068 {
11069 	struct bpf_prog_info_linear *info_linear;
11070 	struct bpf_prog_info info = {};
11071 	__u32 info_len = sizeof(info);
11072 	__u32 data_len = 0;
11073 	int i, err;
11074 	void *ptr;
11075 
11076 	if (arrays >> BPF_PROG_INFO_LAST_ARRAY)
11077 		return ERR_PTR(-EINVAL);
11078 
11079 	/* step 1: get array dimensions */
11080 	err = bpf_obj_get_info_by_fd(fd, &info, &info_len);
11081 	if (err) {
11082 		pr_debug("can't get prog info: %s", strerror(errno));
11083 		return ERR_PTR(-EFAULT);
11084 	}
11085 
11086 	/* step 2: calculate total size of all arrays */
11087 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11088 		bool include_array = (arrays & (1UL << i)) > 0;
11089 		struct bpf_prog_info_array_desc *desc;
11090 		__u32 count, size;
11091 
11092 		desc = bpf_prog_info_array_desc + i;
11093 
11094 		/* kernel is too old to support this field */
11095 		if (info_len < desc->array_offset + sizeof(__u32) ||
11096 		    info_len < desc->count_offset + sizeof(__u32) ||
11097 		    (desc->size_offset > 0 && info_len < desc->size_offset))
11098 			include_array = false;
11099 
11100 		if (!include_array) {
11101 			arrays &= ~(1UL << i);	/* clear the bit */
11102 			continue;
11103 		}
11104 
11105 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11106 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11107 
11108 		data_len += count * size;
11109 	}
11110 
11111 	/* step 3: allocate continuous memory */
11112 	data_len = roundup(data_len, sizeof(__u64));
11113 	info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len);
11114 	if (!info_linear)
11115 		return ERR_PTR(-ENOMEM);
11116 
11117 	/* step 4: fill data to info_linear->info */
11118 	info_linear->arrays = arrays;
11119 	memset(&info_linear->info, 0, sizeof(info));
11120 	ptr = info_linear->data;
11121 
11122 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11123 		struct bpf_prog_info_array_desc *desc;
11124 		__u32 count, size;
11125 
11126 		if ((arrays & (1UL << i)) == 0)
11127 			continue;
11128 
11129 		desc  = bpf_prog_info_array_desc + i;
11130 		count = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11131 		size  = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11132 		bpf_prog_info_set_offset_u32(&info_linear->info,
11133 					     desc->count_offset, count);
11134 		bpf_prog_info_set_offset_u32(&info_linear->info,
11135 					     desc->size_offset, size);
11136 		bpf_prog_info_set_offset_u64(&info_linear->info,
11137 					     desc->array_offset,
11138 					     ptr_to_u64(ptr));
11139 		ptr += count * size;
11140 	}
11141 
11142 	/* step 5: call syscall again to get required arrays */
11143 	err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len);
11144 	if (err) {
11145 		pr_debug("can't get prog info: %s", strerror(errno));
11146 		free(info_linear);
11147 		return ERR_PTR(-EFAULT);
11148 	}
11149 
11150 	/* step 6: verify the data */
11151 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11152 		struct bpf_prog_info_array_desc *desc;
11153 		__u32 v1, v2;
11154 
11155 		if ((arrays & (1UL << i)) == 0)
11156 			continue;
11157 
11158 		desc = bpf_prog_info_array_desc + i;
11159 		v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset);
11160 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11161 						   desc->count_offset);
11162 		if (v1 != v2)
11163 			pr_warn("%s: mismatch in element count\n", __func__);
11164 
11165 		v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset);
11166 		v2 = bpf_prog_info_read_offset_u32(&info_linear->info,
11167 						   desc->size_offset);
11168 		if (v1 != v2)
11169 			pr_warn("%s: mismatch in rec size\n", __func__);
11170 	}
11171 
11172 	/* step 7: update info_len and data_len */
11173 	info_linear->info_len = sizeof(struct bpf_prog_info);
11174 	info_linear->data_len = data_len;
11175 
11176 	return info_linear;
11177 }
11178 
11179 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear)
11180 {
11181 	int i;
11182 
11183 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11184 		struct bpf_prog_info_array_desc *desc;
11185 		__u64 addr, offs;
11186 
11187 		if ((info_linear->arrays & (1UL << i)) == 0)
11188 			continue;
11189 
11190 		desc = bpf_prog_info_array_desc + i;
11191 		addr = bpf_prog_info_read_offset_u64(&info_linear->info,
11192 						     desc->array_offset);
11193 		offs = addr - ptr_to_u64(info_linear->data);
11194 		bpf_prog_info_set_offset_u64(&info_linear->info,
11195 					     desc->array_offset, offs);
11196 	}
11197 }
11198 
11199 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear)
11200 {
11201 	int i;
11202 
11203 	for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) {
11204 		struct bpf_prog_info_array_desc *desc;
11205 		__u64 addr, offs;
11206 
11207 		if ((info_linear->arrays & (1UL << i)) == 0)
11208 			continue;
11209 
11210 		desc = bpf_prog_info_array_desc + i;
11211 		offs = bpf_prog_info_read_offset_u64(&info_linear->info,
11212 						     desc->array_offset);
11213 		addr = offs + ptr_to_u64(info_linear->data);
11214 		bpf_prog_info_set_offset_u64(&info_linear->info,
11215 					     desc->array_offset, addr);
11216 	}
11217 }
11218 
11219 int bpf_program__set_attach_target(struct bpf_program *prog,
11220 				   int attach_prog_fd,
11221 				   const char *attach_func_name)
11222 {
11223 	int btf_obj_fd = 0, btf_id = 0, err;
11224 
11225 	if (!prog || attach_prog_fd < 0 || !attach_func_name)
11226 		return -EINVAL;
11227 
11228 	if (prog->obj->loaded)
11229 		return -EINVAL;
11230 
11231 	if (attach_prog_fd) {
11232 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
11233 						 attach_prog_fd);
11234 		if (btf_id < 0)
11235 			return btf_id;
11236 	} else {
11237 		/* load btf_vmlinux, if not yet */
11238 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
11239 		if (err)
11240 			return err;
11241 		err = find_kernel_btf_id(prog->obj, attach_func_name,
11242 					 prog->expected_attach_type,
11243 					 &btf_obj_fd, &btf_id);
11244 		if (err)
11245 			return err;
11246 	}
11247 
11248 	prog->attach_btf_id = btf_id;
11249 	prog->attach_btf_obj_fd = btf_obj_fd;
11250 	prog->attach_prog_fd = attach_prog_fd;
11251 	return 0;
11252 }
11253 
11254 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
11255 {
11256 	int err = 0, n, len, start, end = -1;
11257 	bool *tmp;
11258 
11259 	*mask = NULL;
11260 	*mask_sz = 0;
11261 
11262 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
11263 	while (*s) {
11264 		if (*s == ',' || *s == '\n') {
11265 			s++;
11266 			continue;
11267 		}
11268 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
11269 		if (n <= 0 || n > 2) {
11270 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
11271 			err = -EINVAL;
11272 			goto cleanup;
11273 		} else if (n == 1) {
11274 			end = start;
11275 		}
11276 		if (start < 0 || start > end) {
11277 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
11278 				start, end, s);
11279 			err = -EINVAL;
11280 			goto cleanup;
11281 		}
11282 		tmp = realloc(*mask, end + 1);
11283 		if (!tmp) {
11284 			err = -ENOMEM;
11285 			goto cleanup;
11286 		}
11287 		*mask = tmp;
11288 		memset(tmp + *mask_sz, 0, start - *mask_sz);
11289 		memset(tmp + start, 1, end - start + 1);
11290 		*mask_sz = end + 1;
11291 		s += len;
11292 	}
11293 	if (!*mask_sz) {
11294 		pr_warn("Empty CPU range\n");
11295 		return -EINVAL;
11296 	}
11297 	return 0;
11298 cleanup:
11299 	free(*mask);
11300 	*mask = NULL;
11301 	return err;
11302 }
11303 
11304 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
11305 {
11306 	int fd, err = 0, len;
11307 	char buf[128];
11308 
11309 	fd = open(fcpu, O_RDONLY);
11310 	if (fd < 0) {
11311 		err = -errno;
11312 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
11313 		return err;
11314 	}
11315 	len = read(fd, buf, sizeof(buf));
11316 	close(fd);
11317 	if (len <= 0) {
11318 		err = len ? -errno : -EINVAL;
11319 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
11320 		return err;
11321 	}
11322 	if (len >= sizeof(buf)) {
11323 		pr_warn("CPU mask is too big in file %s\n", fcpu);
11324 		return -E2BIG;
11325 	}
11326 	buf[len] = '\0';
11327 
11328 	return parse_cpu_mask_str(buf, mask, mask_sz);
11329 }
11330 
11331 int libbpf_num_possible_cpus(void)
11332 {
11333 	static const char *fcpu = "/sys/devices/system/cpu/possible";
11334 	static int cpus;
11335 	int err, n, i, tmp_cpus;
11336 	bool *mask;
11337 
11338 	tmp_cpus = READ_ONCE(cpus);
11339 	if (tmp_cpus > 0)
11340 		return tmp_cpus;
11341 
11342 	err = parse_cpu_mask_file(fcpu, &mask, &n);
11343 	if (err)
11344 		return err;
11345 
11346 	tmp_cpus = 0;
11347 	for (i = 0; i < n; i++) {
11348 		if (mask[i])
11349 			tmp_cpus++;
11350 	}
11351 	free(mask);
11352 
11353 	WRITE_ONCE(cpus, tmp_cpus);
11354 	return tmp_cpus;
11355 }
11356 
11357 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
11358 			      const struct bpf_object_open_opts *opts)
11359 {
11360 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
11361 		.object_name = s->name,
11362 	);
11363 	struct bpf_object *obj;
11364 	int i;
11365 
11366 	/* Attempt to preserve opts->object_name, unless overriden by user
11367 	 * explicitly. Overwriting object name for skeletons is discouraged,
11368 	 * as it breaks global data maps, because they contain object name
11369 	 * prefix as their own map name prefix. When skeleton is generated,
11370 	 * bpftool is making an assumption that this name will stay the same.
11371 	 */
11372 	if (opts) {
11373 		memcpy(&skel_opts, opts, sizeof(*opts));
11374 		if (!opts->object_name)
11375 			skel_opts.object_name = s->name;
11376 	}
11377 
11378 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
11379 	if (IS_ERR(obj)) {
11380 		pr_warn("failed to initialize skeleton BPF object '%s': %ld\n",
11381 			s->name, PTR_ERR(obj));
11382 		return PTR_ERR(obj);
11383 	}
11384 
11385 	*s->obj = obj;
11386 
11387 	for (i = 0; i < s->map_cnt; i++) {
11388 		struct bpf_map **map = s->maps[i].map;
11389 		const char *name = s->maps[i].name;
11390 		void **mmaped = s->maps[i].mmaped;
11391 
11392 		*map = bpf_object__find_map_by_name(obj, name);
11393 		if (!*map) {
11394 			pr_warn("failed to find skeleton map '%s'\n", name);
11395 			return -ESRCH;
11396 		}
11397 
11398 		/* externs shouldn't be pre-setup from user code */
11399 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
11400 			*mmaped = (*map)->mmaped;
11401 	}
11402 
11403 	for (i = 0; i < s->prog_cnt; i++) {
11404 		struct bpf_program **prog = s->progs[i].prog;
11405 		const char *name = s->progs[i].name;
11406 
11407 		*prog = bpf_object__find_program_by_name(obj, name);
11408 		if (!*prog) {
11409 			pr_warn("failed to find skeleton program '%s'\n", name);
11410 			return -ESRCH;
11411 		}
11412 	}
11413 
11414 	return 0;
11415 }
11416 
11417 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
11418 {
11419 	int i, err;
11420 
11421 	err = bpf_object__load(*s->obj);
11422 	if (err) {
11423 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
11424 		return err;
11425 	}
11426 
11427 	for (i = 0; i < s->map_cnt; i++) {
11428 		struct bpf_map *map = *s->maps[i].map;
11429 		size_t mmap_sz = bpf_map_mmap_sz(map);
11430 		int prot, map_fd = bpf_map__fd(map);
11431 		void **mmaped = s->maps[i].mmaped;
11432 
11433 		if (!mmaped)
11434 			continue;
11435 
11436 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
11437 			*mmaped = NULL;
11438 			continue;
11439 		}
11440 
11441 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
11442 			prot = PROT_READ;
11443 		else
11444 			prot = PROT_READ | PROT_WRITE;
11445 
11446 		/* Remap anonymous mmap()-ed "map initialization image" as
11447 		 * a BPF map-backed mmap()-ed memory, but preserving the same
11448 		 * memory address. This will cause kernel to change process'
11449 		 * page table to point to a different piece of kernel memory,
11450 		 * but from userspace point of view memory address (and its
11451 		 * contents, being identical at this point) will stay the
11452 		 * same. This mapping will be released by bpf_object__close()
11453 		 * as per normal clean up procedure, so we don't need to worry
11454 		 * about it from skeleton's clean up perspective.
11455 		 */
11456 		*mmaped = mmap(map->mmaped, mmap_sz, prot,
11457 				MAP_SHARED | MAP_FIXED, map_fd, 0);
11458 		if (*mmaped == MAP_FAILED) {
11459 			err = -errno;
11460 			*mmaped = NULL;
11461 			pr_warn("failed to re-mmap() map '%s': %d\n",
11462 				 bpf_map__name(map), err);
11463 			return err;
11464 		}
11465 	}
11466 
11467 	return 0;
11468 }
11469 
11470 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
11471 {
11472 	int i;
11473 
11474 	for (i = 0; i < s->prog_cnt; i++) {
11475 		struct bpf_program *prog = *s->progs[i].prog;
11476 		struct bpf_link **link = s->progs[i].link;
11477 		const struct bpf_sec_def *sec_def;
11478 
11479 		if (!prog->load)
11480 			continue;
11481 
11482 		sec_def = find_sec_def(prog->sec_name);
11483 		if (!sec_def || !sec_def->attach_fn)
11484 			continue;
11485 
11486 		*link = sec_def->attach_fn(sec_def, prog);
11487 		if (IS_ERR(*link)) {
11488 			pr_warn("failed to auto-attach program '%s': %ld\n",
11489 				bpf_program__name(prog), PTR_ERR(*link));
11490 			return PTR_ERR(*link);
11491 		}
11492 	}
11493 
11494 	return 0;
11495 }
11496 
11497 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
11498 {
11499 	int i;
11500 
11501 	for (i = 0; i < s->prog_cnt; i++) {
11502 		struct bpf_link **link = s->progs[i].link;
11503 
11504 		bpf_link__destroy(*link);
11505 		*link = NULL;
11506 	}
11507 }
11508 
11509 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
11510 {
11511 	if (s->progs)
11512 		bpf_object__detach_skeleton(s);
11513 	if (s->obj)
11514 		bpf_object__close(*s->obj);
11515 	free(s->maps);
11516 	free(s->progs);
11517 	free(s);
11518 }
11519