1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 [BPF_STRUCT_OPS] = "struct_ops", 120 }; 121 122 static const char * const link_type_name[] = { 123 [BPF_LINK_TYPE_UNSPEC] = "unspec", 124 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 125 [BPF_LINK_TYPE_TRACING] = "tracing", 126 [BPF_LINK_TYPE_CGROUP] = "cgroup", 127 [BPF_LINK_TYPE_ITER] = "iter", 128 [BPF_LINK_TYPE_NETNS] = "netns", 129 [BPF_LINK_TYPE_XDP] = "xdp", 130 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 131 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 132 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 133 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 134 }; 135 136 static const char * const map_type_name[] = { 137 [BPF_MAP_TYPE_UNSPEC] = "unspec", 138 [BPF_MAP_TYPE_HASH] = "hash", 139 [BPF_MAP_TYPE_ARRAY] = "array", 140 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 141 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 142 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 143 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 144 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 145 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 146 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 147 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 148 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 149 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 150 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 151 [BPF_MAP_TYPE_DEVMAP] = "devmap", 152 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 153 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 154 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 155 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 156 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 157 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 158 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 159 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 160 [BPF_MAP_TYPE_QUEUE] = "queue", 161 [BPF_MAP_TYPE_STACK] = "stack", 162 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 163 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 164 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 165 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 166 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 167 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 168 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 169 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 170 }; 171 172 static const char * const prog_type_name[] = { 173 [BPF_PROG_TYPE_UNSPEC] = "unspec", 174 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 175 [BPF_PROG_TYPE_KPROBE] = "kprobe", 176 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 177 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 178 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 179 [BPF_PROG_TYPE_XDP] = "xdp", 180 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 181 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 182 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 183 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 184 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 185 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 186 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 187 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 188 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 189 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 190 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 191 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 192 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 193 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 194 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 195 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 196 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 197 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 198 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 199 [BPF_PROG_TYPE_TRACING] = "tracing", 200 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 201 [BPF_PROG_TYPE_EXT] = "ext", 202 [BPF_PROG_TYPE_LSM] = "lsm", 203 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 204 [BPF_PROG_TYPE_SYSCALL] = "syscall", 205 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 206 }; 207 208 static int __base_pr(enum libbpf_print_level level, const char *format, 209 va_list args) 210 { 211 if (level == LIBBPF_DEBUG) 212 return 0; 213 214 return vfprintf(stderr, format, args); 215 } 216 217 static libbpf_print_fn_t __libbpf_pr = __base_pr; 218 219 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 220 { 221 libbpf_print_fn_t old_print_fn; 222 223 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 224 225 return old_print_fn; 226 } 227 228 __printf(2, 3) 229 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 230 { 231 va_list args; 232 int old_errno; 233 libbpf_print_fn_t print_fn; 234 235 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 236 if (!print_fn) 237 return; 238 239 old_errno = errno; 240 241 va_start(args, format); 242 __libbpf_pr(level, format, args); 243 va_end(args); 244 245 errno = old_errno; 246 } 247 248 static void pr_perm_msg(int err) 249 { 250 struct rlimit limit; 251 char buf[100]; 252 253 if (err != -EPERM || geteuid() != 0) 254 return; 255 256 err = getrlimit(RLIMIT_MEMLOCK, &limit); 257 if (err) 258 return; 259 260 if (limit.rlim_cur == RLIM_INFINITY) 261 return; 262 263 if (limit.rlim_cur < 1024) 264 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 265 else if (limit.rlim_cur < 1024*1024) 266 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 267 else 268 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 269 270 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 271 buf); 272 } 273 274 #define STRERR_BUFSIZE 128 275 276 /* Copied from tools/perf/util/util.h */ 277 #ifndef zfree 278 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 279 #endif 280 281 #ifndef zclose 282 # define zclose(fd) ({ \ 283 int ___err = 0; \ 284 if ((fd) >= 0) \ 285 ___err = close((fd)); \ 286 fd = -1; \ 287 ___err; }) 288 #endif 289 290 static inline __u64 ptr_to_u64(const void *ptr) 291 { 292 return (__u64) (unsigned long) ptr; 293 } 294 295 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 296 { 297 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 298 return 0; 299 } 300 301 __u32 libbpf_major_version(void) 302 { 303 return LIBBPF_MAJOR_VERSION; 304 } 305 306 __u32 libbpf_minor_version(void) 307 { 308 return LIBBPF_MINOR_VERSION; 309 } 310 311 const char *libbpf_version_string(void) 312 { 313 #define __S(X) #X 314 #define _S(X) __S(X) 315 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 316 #undef _S 317 #undef __S 318 } 319 320 enum reloc_type { 321 RELO_LD64, 322 RELO_CALL, 323 RELO_DATA, 324 RELO_EXTERN_LD64, 325 RELO_EXTERN_CALL, 326 RELO_SUBPROG_ADDR, 327 RELO_CORE, 328 }; 329 330 struct reloc_desc { 331 enum reloc_type type; 332 int insn_idx; 333 union { 334 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 335 struct { 336 int map_idx; 337 int sym_off; 338 int ext_idx; 339 }; 340 }; 341 }; 342 343 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 344 enum sec_def_flags { 345 SEC_NONE = 0, 346 /* expected_attach_type is optional, if kernel doesn't support that */ 347 SEC_EXP_ATTACH_OPT = 1, 348 /* legacy, only used by libbpf_get_type_names() and 349 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 350 * This used to be associated with cgroup (and few other) BPF programs 351 * that were attachable through BPF_PROG_ATTACH command. Pretty 352 * meaningless nowadays, though. 353 */ 354 SEC_ATTACHABLE = 2, 355 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 356 /* attachment target is specified through BTF ID in either kernel or 357 * other BPF program's BTF object 358 */ 359 SEC_ATTACH_BTF = 4, 360 /* BPF program type allows sleeping/blocking in kernel */ 361 SEC_SLEEPABLE = 8, 362 /* BPF program support non-linear XDP buffer */ 363 SEC_XDP_FRAGS = 16, 364 }; 365 366 struct bpf_sec_def { 367 char *sec; 368 enum bpf_prog_type prog_type; 369 enum bpf_attach_type expected_attach_type; 370 long cookie; 371 int handler_id; 372 373 libbpf_prog_setup_fn_t prog_setup_fn; 374 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 375 libbpf_prog_attach_fn_t prog_attach_fn; 376 }; 377 378 /* 379 * bpf_prog should be a better name but it has been used in 380 * linux/filter.h. 381 */ 382 struct bpf_program { 383 char *name; 384 char *sec_name; 385 size_t sec_idx; 386 const struct bpf_sec_def *sec_def; 387 /* this program's instruction offset (in number of instructions) 388 * within its containing ELF section 389 */ 390 size_t sec_insn_off; 391 /* number of original instructions in ELF section belonging to this 392 * program, not taking into account subprogram instructions possible 393 * appended later during relocation 394 */ 395 size_t sec_insn_cnt; 396 /* Offset (in number of instructions) of the start of instruction 397 * belonging to this BPF program within its containing main BPF 398 * program. For the entry-point (main) BPF program, this is always 399 * zero. For a sub-program, this gets reset before each of main BPF 400 * programs are processed and relocated and is used to determined 401 * whether sub-program was already appended to the main program, and 402 * if yes, at which instruction offset. 403 */ 404 size_t sub_insn_off; 405 406 /* instructions that belong to BPF program; insns[0] is located at 407 * sec_insn_off instruction within its ELF section in ELF file, so 408 * when mapping ELF file instruction index to the local instruction, 409 * one needs to subtract sec_insn_off; and vice versa. 410 */ 411 struct bpf_insn *insns; 412 /* actual number of instruction in this BPF program's image; for 413 * entry-point BPF programs this includes the size of main program 414 * itself plus all the used sub-programs, appended at the end 415 */ 416 size_t insns_cnt; 417 418 struct reloc_desc *reloc_desc; 419 int nr_reloc; 420 421 /* BPF verifier log settings */ 422 char *log_buf; 423 size_t log_size; 424 __u32 log_level; 425 426 struct bpf_object *obj; 427 428 int fd; 429 bool autoload; 430 bool autoattach; 431 bool mark_btf_static; 432 enum bpf_prog_type type; 433 enum bpf_attach_type expected_attach_type; 434 435 int prog_ifindex; 436 __u32 attach_btf_obj_fd; 437 __u32 attach_btf_id; 438 __u32 attach_prog_fd; 439 440 void *func_info; 441 __u32 func_info_rec_size; 442 __u32 func_info_cnt; 443 444 void *line_info; 445 __u32 line_info_rec_size; 446 __u32 line_info_cnt; 447 __u32 prog_flags; 448 }; 449 450 struct bpf_struct_ops { 451 const char *tname; 452 const struct btf_type *type; 453 struct bpf_program **progs; 454 __u32 *kern_func_off; 455 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 456 void *data; 457 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 458 * btf_vmlinux's format. 459 * struct bpf_struct_ops_tcp_congestion_ops { 460 * [... some other kernel fields ...] 461 * struct tcp_congestion_ops data; 462 * } 463 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 464 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 465 * from "data". 466 */ 467 void *kern_vdata; 468 __u32 type_id; 469 }; 470 471 #define DATA_SEC ".data" 472 #define BSS_SEC ".bss" 473 #define RODATA_SEC ".rodata" 474 #define KCONFIG_SEC ".kconfig" 475 #define KSYMS_SEC ".ksyms" 476 #define STRUCT_OPS_SEC ".struct_ops" 477 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 478 479 enum libbpf_map_type { 480 LIBBPF_MAP_UNSPEC, 481 LIBBPF_MAP_DATA, 482 LIBBPF_MAP_BSS, 483 LIBBPF_MAP_RODATA, 484 LIBBPF_MAP_KCONFIG, 485 }; 486 487 struct bpf_map_def { 488 unsigned int type; 489 unsigned int key_size; 490 unsigned int value_size; 491 unsigned int max_entries; 492 unsigned int map_flags; 493 }; 494 495 struct bpf_map { 496 struct bpf_object *obj; 497 char *name; 498 /* real_name is defined for special internal maps (.rodata*, 499 * .data*, .bss, .kconfig) and preserves their original ELF section 500 * name. This is important to be able to find corresponding BTF 501 * DATASEC information. 502 */ 503 char *real_name; 504 int fd; 505 int sec_idx; 506 size_t sec_offset; 507 int map_ifindex; 508 int inner_map_fd; 509 struct bpf_map_def def; 510 __u32 numa_node; 511 __u32 btf_var_idx; 512 __u32 btf_key_type_id; 513 __u32 btf_value_type_id; 514 __u32 btf_vmlinux_value_type_id; 515 enum libbpf_map_type libbpf_type; 516 void *mmaped; 517 struct bpf_struct_ops *st_ops; 518 struct bpf_map *inner_map; 519 void **init_slots; 520 int init_slots_sz; 521 char *pin_path; 522 bool pinned; 523 bool reused; 524 bool autocreate; 525 __u64 map_extra; 526 }; 527 528 enum extern_type { 529 EXT_UNKNOWN, 530 EXT_KCFG, 531 EXT_KSYM, 532 }; 533 534 enum kcfg_type { 535 KCFG_UNKNOWN, 536 KCFG_CHAR, 537 KCFG_BOOL, 538 KCFG_INT, 539 KCFG_TRISTATE, 540 KCFG_CHAR_ARR, 541 }; 542 543 struct extern_desc { 544 enum extern_type type; 545 int sym_idx; 546 int btf_id; 547 int sec_btf_id; 548 const char *name; 549 bool is_set; 550 bool is_weak; 551 union { 552 struct { 553 enum kcfg_type type; 554 int sz; 555 int align; 556 int data_off; 557 bool is_signed; 558 } kcfg; 559 struct { 560 unsigned long long addr; 561 562 /* target btf_id of the corresponding kernel var. */ 563 int kernel_btf_obj_fd; 564 int kernel_btf_id; 565 566 /* local btf_id of the ksym extern's type. */ 567 __u32 type_id; 568 /* BTF fd index to be patched in for insn->off, this is 569 * 0 for vmlinux BTF, index in obj->fd_array for module 570 * BTF 571 */ 572 __s16 btf_fd_idx; 573 } ksym; 574 }; 575 }; 576 577 struct module_btf { 578 struct btf *btf; 579 char *name; 580 __u32 id; 581 int fd; 582 int fd_array_idx; 583 }; 584 585 enum sec_type { 586 SEC_UNUSED = 0, 587 SEC_RELO, 588 SEC_BSS, 589 SEC_DATA, 590 SEC_RODATA, 591 }; 592 593 struct elf_sec_desc { 594 enum sec_type sec_type; 595 Elf64_Shdr *shdr; 596 Elf_Data *data; 597 }; 598 599 struct elf_state { 600 int fd; 601 const void *obj_buf; 602 size_t obj_buf_sz; 603 Elf *elf; 604 Elf64_Ehdr *ehdr; 605 Elf_Data *symbols; 606 Elf_Data *st_ops_data; 607 Elf_Data *st_ops_link_data; 608 size_t shstrndx; /* section index for section name strings */ 609 size_t strtabidx; 610 struct elf_sec_desc *secs; 611 size_t sec_cnt; 612 int btf_maps_shndx; 613 __u32 btf_maps_sec_btf_id; 614 int text_shndx; 615 int symbols_shndx; 616 int st_ops_shndx; 617 int st_ops_link_shndx; 618 }; 619 620 struct usdt_manager; 621 622 struct bpf_object { 623 char name[BPF_OBJ_NAME_LEN]; 624 char license[64]; 625 __u32 kern_version; 626 627 struct bpf_program *programs; 628 size_t nr_programs; 629 struct bpf_map *maps; 630 size_t nr_maps; 631 size_t maps_cap; 632 633 char *kconfig; 634 struct extern_desc *externs; 635 int nr_extern; 636 int kconfig_map_idx; 637 638 bool loaded; 639 bool has_subcalls; 640 bool has_rodata; 641 642 struct bpf_gen *gen_loader; 643 644 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 645 struct elf_state efile; 646 647 struct btf *btf; 648 struct btf_ext *btf_ext; 649 650 /* Parse and load BTF vmlinux if any of the programs in the object need 651 * it at load time. 652 */ 653 struct btf *btf_vmlinux; 654 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 655 * override for vmlinux BTF. 656 */ 657 char *btf_custom_path; 658 /* vmlinux BTF override for CO-RE relocations */ 659 struct btf *btf_vmlinux_override; 660 /* Lazily initialized kernel module BTFs */ 661 struct module_btf *btf_modules; 662 bool btf_modules_loaded; 663 size_t btf_module_cnt; 664 size_t btf_module_cap; 665 666 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 667 char *log_buf; 668 size_t log_size; 669 __u32 log_level; 670 671 int *fd_array; 672 size_t fd_array_cap; 673 size_t fd_array_cnt; 674 675 struct usdt_manager *usdt_man; 676 677 char path[]; 678 }; 679 680 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 681 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 682 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 683 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 684 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 685 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 686 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 687 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 688 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 689 690 void bpf_program__unload(struct bpf_program *prog) 691 { 692 if (!prog) 693 return; 694 695 zclose(prog->fd); 696 697 zfree(&prog->func_info); 698 zfree(&prog->line_info); 699 } 700 701 static void bpf_program__exit(struct bpf_program *prog) 702 { 703 if (!prog) 704 return; 705 706 bpf_program__unload(prog); 707 zfree(&prog->name); 708 zfree(&prog->sec_name); 709 zfree(&prog->insns); 710 zfree(&prog->reloc_desc); 711 712 prog->nr_reloc = 0; 713 prog->insns_cnt = 0; 714 prog->sec_idx = -1; 715 } 716 717 static bool insn_is_subprog_call(const struct bpf_insn *insn) 718 { 719 return BPF_CLASS(insn->code) == BPF_JMP && 720 BPF_OP(insn->code) == BPF_CALL && 721 BPF_SRC(insn->code) == BPF_K && 722 insn->src_reg == BPF_PSEUDO_CALL && 723 insn->dst_reg == 0 && 724 insn->off == 0; 725 } 726 727 static bool is_call_insn(const struct bpf_insn *insn) 728 { 729 return insn->code == (BPF_JMP | BPF_CALL); 730 } 731 732 static bool insn_is_pseudo_func(struct bpf_insn *insn) 733 { 734 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 735 } 736 737 static int 738 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 739 const char *name, size_t sec_idx, const char *sec_name, 740 size_t sec_off, void *insn_data, size_t insn_data_sz) 741 { 742 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 743 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 744 sec_name, name, sec_off, insn_data_sz); 745 return -EINVAL; 746 } 747 748 memset(prog, 0, sizeof(*prog)); 749 prog->obj = obj; 750 751 prog->sec_idx = sec_idx; 752 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 753 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 754 /* insns_cnt can later be increased by appending used subprograms */ 755 prog->insns_cnt = prog->sec_insn_cnt; 756 757 prog->type = BPF_PROG_TYPE_UNSPEC; 758 prog->fd = -1; 759 760 /* libbpf's convention for SEC("?abc...") is that it's just like 761 * SEC("abc...") but the corresponding bpf_program starts out with 762 * autoload set to false. 763 */ 764 if (sec_name[0] == '?') { 765 prog->autoload = false; 766 /* from now on forget there was ? in section name */ 767 sec_name++; 768 } else { 769 prog->autoload = true; 770 } 771 772 prog->autoattach = true; 773 774 /* inherit object's log_level */ 775 prog->log_level = obj->log_level; 776 777 prog->sec_name = strdup(sec_name); 778 if (!prog->sec_name) 779 goto errout; 780 781 prog->name = strdup(name); 782 if (!prog->name) 783 goto errout; 784 785 prog->insns = malloc(insn_data_sz); 786 if (!prog->insns) 787 goto errout; 788 memcpy(prog->insns, insn_data, insn_data_sz); 789 790 return 0; 791 errout: 792 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 793 bpf_program__exit(prog); 794 return -ENOMEM; 795 } 796 797 static int 798 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 799 const char *sec_name, int sec_idx) 800 { 801 Elf_Data *symbols = obj->efile.symbols; 802 struct bpf_program *prog, *progs; 803 void *data = sec_data->d_buf; 804 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 805 int nr_progs, err, i; 806 const char *name; 807 Elf64_Sym *sym; 808 809 progs = obj->programs; 810 nr_progs = obj->nr_programs; 811 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 812 813 for (i = 0; i < nr_syms; i++) { 814 sym = elf_sym_by_idx(obj, i); 815 816 if (sym->st_shndx != sec_idx) 817 continue; 818 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 819 continue; 820 821 prog_sz = sym->st_size; 822 sec_off = sym->st_value; 823 824 name = elf_sym_str(obj, sym->st_name); 825 if (!name) { 826 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 827 sec_name, sec_off); 828 return -LIBBPF_ERRNO__FORMAT; 829 } 830 831 if (sec_off + prog_sz > sec_sz) { 832 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 833 sec_name, sec_off); 834 return -LIBBPF_ERRNO__FORMAT; 835 } 836 837 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 838 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 839 return -ENOTSUP; 840 } 841 842 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 843 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 844 845 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 846 if (!progs) { 847 /* 848 * In this case the original obj->programs 849 * is still valid, so don't need special treat for 850 * bpf_close_object(). 851 */ 852 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 853 sec_name, name); 854 return -ENOMEM; 855 } 856 obj->programs = progs; 857 858 prog = &progs[nr_progs]; 859 860 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 861 sec_off, data + sec_off, prog_sz); 862 if (err) 863 return err; 864 865 /* if function is a global/weak symbol, but has restricted 866 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 867 * as static to enable more permissive BPF verification mode 868 * with more outside context available to BPF verifier 869 */ 870 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 871 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 872 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 873 prog->mark_btf_static = true; 874 875 nr_progs++; 876 obj->nr_programs = nr_progs; 877 } 878 879 return 0; 880 } 881 882 static const struct btf_member * 883 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 884 { 885 struct btf_member *m; 886 int i; 887 888 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 889 if (btf_member_bit_offset(t, i) == bit_offset) 890 return m; 891 } 892 893 return NULL; 894 } 895 896 static const struct btf_member * 897 find_member_by_name(const struct btf *btf, const struct btf_type *t, 898 const char *name) 899 { 900 struct btf_member *m; 901 int i; 902 903 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 904 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 905 return m; 906 } 907 908 return NULL; 909 } 910 911 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 912 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 913 const char *name, __u32 kind); 914 915 static int 916 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 917 const struct btf_type **type, __u32 *type_id, 918 const struct btf_type **vtype, __u32 *vtype_id, 919 const struct btf_member **data_member) 920 { 921 const struct btf_type *kern_type, *kern_vtype; 922 const struct btf_member *kern_data_member; 923 __s32 kern_vtype_id, kern_type_id; 924 __u32 i; 925 926 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 927 if (kern_type_id < 0) { 928 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 929 tname); 930 return kern_type_id; 931 } 932 kern_type = btf__type_by_id(btf, kern_type_id); 933 934 /* Find the corresponding "map_value" type that will be used 935 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 936 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 937 * btf_vmlinux. 938 */ 939 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 940 tname, BTF_KIND_STRUCT); 941 if (kern_vtype_id < 0) { 942 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 943 STRUCT_OPS_VALUE_PREFIX, tname); 944 return kern_vtype_id; 945 } 946 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 947 948 /* Find "struct tcp_congestion_ops" from 949 * struct bpf_struct_ops_tcp_congestion_ops { 950 * [ ... ] 951 * struct tcp_congestion_ops data; 952 * } 953 */ 954 kern_data_member = btf_members(kern_vtype); 955 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 956 if (kern_data_member->type == kern_type_id) 957 break; 958 } 959 if (i == btf_vlen(kern_vtype)) { 960 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 961 tname, STRUCT_OPS_VALUE_PREFIX, tname); 962 return -EINVAL; 963 } 964 965 *type = kern_type; 966 *type_id = kern_type_id; 967 *vtype = kern_vtype; 968 *vtype_id = kern_vtype_id; 969 *data_member = kern_data_member; 970 971 return 0; 972 } 973 974 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 975 { 976 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 977 } 978 979 /* Init the map's fields that depend on kern_btf */ 980 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 981 const struct btf *btf, 982 const struct btf *kern_btf) 983 { 984 const struct btf_member *member, *kern_member, *kern_data_member; 985 const struct btf_type *type, *kern_type, *kern_vtype; 986 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 987 struct bpf_struct_ops *st_ops; 988 void *data, *kern_data; 989 const char *tname; 990 int err; 991 992 st_ops = map->st_ops; 993 type = st_ops->type; 994 tname = st_ops->tname; 995 err = find_struct_ops_kern_types(kern_btf, tname, 996 &kern_type, &kern_type_id, 997 &kern_vtype, &kern_vtype_id, 998 &kern_data_member); 999 if (err) 1000 return err; 1001 1002 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1003 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1004 1005 map->def.value_size = kern_vtype->size; 1006 map->btf_vmlinux_value_type_id = kern_vtype_id; 1007 1008 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1009 if (!st_ops->kern_vdata) 1010 return -ENOMEM; 1011 1012 data = st_ops->data; 1013 kern_data_off = kern_data_member->offset / 8; 1014 kern_data = st_ops->kern_vdata + kern_data_off; 1015 1016 member = btf_members(type); 1017 for (i = 0; i < btf_vlen(type); i++, member++) { 1018 const struct btf_type *mtype, *kern_mtype; 1019 __u32 mtype_id, kern_mtype_id; 1020 void *mdata, *kern_mdata; 1021 __s64 msize, kern_msize; 1022 __u32 moff, kern_moff; 1023 __u32 kern_member_idx; 1024 const char *mname; 1025 1026 mname = btf__name_by_offset(btf, member->name_off); 1027 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1028 if (!kern_member) { 1029 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1030 map->name, mname); 1031 return -ENOTSUP; 1032 } 1033 1034 kern_member_idx = kern_member - btf_members(kern_type); 1035 if (btf_member_bitfield_size(type, i) || 1036 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1037 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1038 map->name, mname); 1039 return -ENOTSUP; 1040 } 1041 1042 moff = member->offset / 8; 1043 kern_moff = kern_member->offset / 8; 1044 1045 mdata = data + moff; 1046 kern_mdata = kern_data + kern_moff; 1047 1048 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1049 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1050 &kern_mtype_id); 1051 if (BTF_INFO_KIND(mtype->info) != 1052 BTF_INFO_KIND(kern_mtype->info)) { 1053 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1054 map->name, mname, BTF_INFO_KIND(mtype->info), 1055 BTF_INFO_KIND(kern_mtype->info)); 1056 return -ENOTSUP; 1057 } 1058 1059 if (btf_is_ptr(mtype)) { 1060 struct bpf_program *prog; 1061 1062 prog = st_ops->progs[i]; 1063 if (!prog) 1064 continue; 1065 1066 kern_mtype = skip_mods_and_typedefs(kern_btf, 1067 kern_mtype->type, 1068 &kern_mtype_id); 1069 1070 /* mtype->type must be a func_proto which was 1071 * guaranteed in bpf_object__collect_st_ops_relos(), 1072 * so only check kern_mtype for func_proto here. 1073 */ 1074 if (!btf_is_func_proto(kern_mtype)) { 1075 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1076 map->name, mname); 1077 return -ENOTSUP; 1078 } 1079 1080 prog->attach_btf_id = kern_type_id; 1081 prog->expected_attach_type = kern_member_idx; 1082 1083 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1084 1085 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1086 map->name, mname, prog->name, moff, 1087 kern_moff); 1088 1089 continue; 1090 } 1091 1092 msize = btf__resolve_size(btf, mtype_id); 1093 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1094 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1095 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1096 map->name, mname, (ssize_t)msize, 1097 (ssize_t)kern_msize); 1098 return -ENOTSUP; 1099 } 1100 1101 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1102 map->name, mname, (unsigned int)msize, 1103 moff, kern_moff); 1104 memcpy(kern_mdata, mdata, msize); 1105 } 1106 1107 return 0; 1108 } 1109 1110 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1111 { 1112 struct bpf_map *map; 1113 size_t i; 1114 int err; 1115 1116 for (i = 0; i < obj->nr_maps; i++) { 1117 map = &obj->maps[i]; 1118 1119 if (!bpf_map__is_struct_ops(map)) 1120 continue; 1121 1122 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1123 obj->btf_vmlinux); 1124 if (err) 1125 return err; 1126 } 1127 1128 return 0; 1129 } 1130 1131 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1132 int shndx, Elf_Data *data, __u32 map_flags) 1133 { 1134 const struct btf_type *type, *datasec; 1135 const struct btf_var_secinfo *vsi; 1136 struct bpf_struct_ops *st_ops; 1137 const char *tname, *var_name; 1138 __s32 type_id, datasec_id; 1139 const struct btf *btf; 1140 struct bpf_map *map; 1141 __u32 i; 1142 1143 if (shndx == -1) 1144 return 0; 1145 1146 btf = obj->btf; 1147 datasec_id = btf__find_by_name_kind(btf, sec_name, 1148 BTF_KIND_DATASEC); 1149 if (datasec_id < 0) { 1150 pr_warn("struct_ops init: DATASEC %s not found\n", 1151 sec_name); 1152 return -EINVAL; 1153 } 1154 1155 datasec = btf__type_by_id(btf, datasec_id); 1156 vsi = btf_var_secinfos(datasec); 1157 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1158 type = btf__type_by_id(obj->btf, vsi->type); 1159 var_name = btf__name_by_offset(obj->btf, type->name_off); 1160 1161 type_id = btf__resolve_type(obj->btf, vsi->type); 1162 if (type_id < 0) { 1163 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1164 vsi->type, sec_name); 1165 return -EINVAL; 1166 } 1167 1168 type = btf__type_by_id(obj->btf, type_id); 1169 tname = btf__name_by_offset(obj->btf, type->name_off); 1170 if (!tname[0]) { 1171 pr_warn("struct_ops init: anonymous type is not supported\n"); 1172 return -ENOTSUP; 1173 } 1174 if (!btf_is_struct(type)) { 1175 pr_warn("struct_ops init: %s is not a struct\n", tname); 1176 return -EINVAL; 1177 } 1178 1179 map = bpf_object__add_map(obj); 1180 if (IS_ERR(map)) 1181 return PTR_ERR(map); 1182 1183 map->sec_idx = shndx; 1184 map->sec_offset = vsi->offset; 1185 map->name = strdup(var_name); 1186 if (!map->name) 1187 return -ENOMEM; 1188 1189 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1190 map->def.key_size = sizeof(int); 1191 map->def.value_size = type->size; 1192 map->def.max_entries = 1; 1193 map->def.map_flags = map_flags; 1194 1195 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1196 if (!map->st_ops) 1197 return -ENOMEM; 1198 st_ops = map->st_ops; 1199 st_ops->data = malloc(type->size); 1200 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1201 st_ops->kern_func_off = malloc(btf_vlen(type) * 1202 sizeof(*st_ops->kern_func_off)); 1203 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1204 return -ENOMEM; 1205 1206 if (vsi->offset + type->size > data->d_size) { 1207 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1208 var_name, sec_name); 1209 return -EINVAL; 1210 } 1211 1212 memcpy(st_ops->data, 1213 data->d_buf + vsi->offset, 1214 type->size); 1215 st_ops->tname = tname; 1216 st_ops->type = type; 1217 st_ops->type_id = type_id; 1218 1219 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1220 tname, type_id, var_name, vsi->offset); 1221 } 1222 1223 return 0; 1224 } 1225 1226 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1227 { 1228 int err; 1229 1230 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1231 obj->efile.st_ops_data, 0); 1232 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1233 obj->efile.st_ops_link_shndx, 1234 obj->efile.st_ops_link_data, 1235 BPF_F_LINK); 1236 return err; 1237 } 1238 1239 static struct bpf_object *bpf_object__new(const char *path, 1240 const void *obj_buf, 1241 size_t obj_buf_sz, 1242 const char *obj_name) 1243 { 1244 struct bpf_object *obj; 1245 char *end; 1246 1247 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1248 if (!obj) { 1249 pr_warn("alloc memory failed for %s\n", path); 1250 return ERR_PTR(-ENOMEM); 1251 } 1252 1253 strcpy(obj->path, path); 1254 if (obj_name) { 1255 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1256 } else { 1257 /* Using basename() GNU version which doesn't modify arg. */ 1258 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1259 end = strchr(obj->name, '.'); 1260 if (end) 1261 *end = 0; 1262 } 1263 1264 obj->efile.fd = -1; 1265 /* 1266 * Caller of this function should also call 1267 * bpf_object__elf_finish() after data collection to return 1268 * obj_buf to user. If not, we should duplicate the buffer to 1269 * avoid user freeing them before elf finish. 1270 */ 1271 obj->efile.obj_buf = obj_buf; 1272 obj->efile.obj_buf_sz = obj_buf_sz; 1273 obj->efile.btf_maps_shndx = -1; 1274 obj->efile.st_ops_shndx = -1; 1275 obj->efile.st_ops_link_shndx = -1; 1276 obj->kconfig_map_idx = -1; 1277 1278 obj->kern_version = get_kernel_version(); 1279 obj->loaded = false; 1280 1281 return obj; 1282 } 1283 1284 static void bpf_object__elf_finish(struct bpf_object *obj) 1285 { 1286 if (!obj->efile.elf) 1287 return; 1288 1289 elf_end(obj->efile.elf); 1290 obj->efile.elf = NULL; 1291 obj->efile.symbols = NULL; 1292 obj->efile.st_ops_data = NULL; 1293 obj->efile.st_ops_link_data = NULL; 1294 1295 zfree(&obj->efile.secs); 1296 obj->efile.sec_cnt = 0; 1297 zclose(obj->efile.fd); 1298 obj->efile.obj_buf = NULL; 1299 obj->efile.obj_buf_sz = 0; 1300 } 1301 1302 static int bpf_object__elf_init(struct bpf_object *obj) 1303 { 1304 Elf64_Ehdr *ehdr; 1305 int err = 0; 1306 Elf *elf; 1307 1308 if (obj->efile.elf) { 1309 pr_warn("elf: init internal error\n"); 1310 return -LIBBPF_ERRNO__LIBELF; 1311 } 1312 1313 if (obj->efile.obj_buf_sz > 0) { 1314 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1315 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1316 } else { 1317 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1318 if (obj->efile.fd < 0) { 1319 char errmsg[STRERR_BUFSIZE], *cp; 1320 1321 err = -errno; 1322 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1323 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1324 return err; 1325 } 1326 1327 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1328 } 1329 1330 if (!elf) { 1331 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1332 err = -LIBBPF_ERRNO__LIBELF; 1333 goto errout; 1334 } 1335 1336 obj->efile.elf = elf; 1337 1338 if (elf_kind(elf) != ELF_K_ELF) { 1339 err = -LIBBPF_ERRNO__FORMAT; 1340 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1341 goto errout; 1342 } 1343 1344 if (gelf_getclass(elf) != ELFCLASS64) { 1345 err = -LIBBPF_ERRNO__FORMAT; 1346 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1347 goto errout; 1348 } 1349 1350 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1351 if (!obj->efile.ehdr) { 1352 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1353 err = -LIBBPF_ERRNO__FORMAT; 1354 goto errout; 1355 } 1356 1357 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1358 pr_warn("elf: failed to get section names section index for %s: %s\n", 1359 obj->path, elf_errmsg(-1)); 1360 err = -LIBBPF_ERRNO__FORMAT; 1361 goto errout; 1362 } 1363 1364 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1365 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1366 pr_warn("elf: failed to get section names strings from %s: %s\n", 1367 obj->path, elf_errmsg(-1)); 1368 err = -LIBBPF_ERRNO__FORMAT; 1369 goto errout; 1370 } 1371 1372 /* Old LLVM set e_machine to EM_NONE */ 1373 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1374 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1375 err = -LIBBPF_ERRNO__FORMAT; 1376 goto errout; 1377 } 1378 1379 return 0; 1380 errout: 1381 bpf_object__elf_finish(obj); 1382 return err; 1383 } 1384 1385 static int bpf_object__check_endianness(struct bpf_object *obj) 1386 { 1387 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1388 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1389 return 0; 1390 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1391 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1392 return 0; 1393 #else 1394 # error "Unrecognized __BYTE_ORDER__" 1395 #endif 1396 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1397 return -LIBBPF_ERRNO__ENDIAN; 1398 } 1399 1400 static int 1401 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1402 { 1403 if (!data) { 1404 pr_warn("invalid license section in %s\n", obj->path); 1405 return -LIBBPF_ERRNO__FORMAT; 1406 } 1407 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1408 * go over allowed ELF data section buffer 1409 */ 1410 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1411 pr_debug("license of %s is %s\n", obj->path, obj->license); 1412 return 0; 1413 } 1414 1415 static int 1416 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1417 { 1418 __u32 kver; 1419 1420 if (!data || size != sizeof(kver)) { 1421 pr_warn("invalid kver section in %s\n", obj->path); 1422 return -LIBBPF_ERRNO__FORMAT; 1423 } 1424 memcpy(&kver, data, sizeof(kver)); 1425 obj->kern_version = kver; 1426 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1427 return 0; 1428 } 1429 1430 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1431 { 1432 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1433 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1434 return true; 1435 return false; 1436 } 1437 1438 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1439 { 1440 Elf_Data *data; 1441 Elf_Scn *scn; 1442 1443 if (!name) 1444 return -EINVAL; 1445 1446 scn = elf_sec_by_name(obj, name); 1447 data = elf_sec_data(obj, scn); 1448 if (data) { 1449 *size = data->d_size; 1450 return 0; /* found it */ 1451 } 1452 1453 return -ENOENT; 1454 } 1455 1456 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1457 { 1458 Elf_Data *symbols = obj->efile.symbols; 1459 const char *sname; 1460 size_t si; 1461 1462 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1463 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1464 1465 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1466 continue; 1467 1468 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1469 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1470 continue; 1471 1472 sname = elf_sym_str(obj, sym->st_name); 1473 if (!sname) { 1474 pr_warn("failed to get sym name string for var %s\n", name); 1475 return ERR_PTR(-EIO); 1476 } 1477 if (strcmp(name, sname) == 0) 1478 return sym; 1479 } 1480 1481 return ERR_PTR(-ENOENT); 1482 } 1483 1484 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1485 { 1486 struct bpf_map *map; 1487 int err; 1488 1489 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1490 sizeof(*obj->maps), obj->nr_maps + 1); 1491 if (err) 1492 return ERR_PTR(err); 1493 1494 map = &obj->maps[obj->nr_maps++]; 1495 map->obj = obj; 1496 map->fd = -1; 1497 map->inner_map_fd = -1; 1498 map->autocreate = true; 1499 1500 return map; 1501 } 1502 1503 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1504 { 1505 long page_sz = sysconf(_SC_PAGE_SIZE); 1506 size_t map_sz; 1507 1508 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1509 map_sz = roundup(map_sz, page_sz); 1510 return map_sz; 1511 } 1512 1513 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1514 { 1515 char map_name[BPF_OBJ_NAME_LEN], *p; 1516 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1517 1518 /* This is one of the more confusing parts of libbpf for various 1519 * reasons, some of which are historical. The original idea for naming 1520 * internal names was to include as much of BPF object name prefix as 1521 * possible, so that it can be distinguished from similar internal 1522 * maps of a different BPF object. 1523 * As an example, let's say we have bpf_object named 'my_object_name' 1524 * and internal map corresponding to '.rodata' ELF section. The final 1525 * map name advertised to user and to the kernel will be 1526 * 'my_objec.rodata', taking first 8 characters of object name and 1527 * entire 7 characters of '.rodata'. 1528 * Somewhat confusingly, if internal map ELF section name is shorter 1529 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1530 * for the suffix, even though we only have 4 actual characters, and 1531 * resulting map will be called 'my_objec.bss', not even using all 15 1532 * characters allowed by the kernel. Oh well, at least the truncated 1533 * object name is somewhat consistent in this case. But if the map 1534 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1535 * (8 chars) and thus will be left with only first 7 characters of the 1536 * object name ('my_obje'). Happy guessing, user, that the final map 1537 * name will be "my_obje.kconfig". 1538 * Now, with libbpf starting to support arbitrarily named .rodata.* 1539 * and .data.* data sections, it's possible that ELF section name is 1540 * longer than allowed 15 chars, so we now need to be careful to take 1541 * only up to 15 first characters of ELF name, taking no BPF object 1542 * name characters at all. So '.rodata.abracadabra' will result in 1543 * '.rodata.abracad' kernel and user-visible name. 1544 * We need to keep this convoluted logic intact for .data, .bss and 1545 * .rodata maps, but for new custom .data.custom and .rodata.custom 1546 * maps we use their ELF names as is, not prepending bpf_object name 1547 * in front. We still need to truncate them to 15 characters for the 1548 * kernel. Full name can be recovered for such maps by using DATASEC 1549 * BTF type associated with such map's value type, though. 1550 */ 1551 if (sfx_len >= BPF_OBJ_NAME_LEN) 1552 sfx_len = BPF_OBJ_NAME_LEN - 1; 1553 1554 /* if there are two or more dots in map name, it's a custom dot map */ 1555 if (strchr(real_name + 1, '.') != NULL) 1556 pfx_len = 0; 1557 else 1558 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1559 1560 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1561 sfx_len, real_name); 1562 1563 /* sanitise map name to characters allowed by kernel */ 1564 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1565 if (!isalnum(*p) && *p != '_' && *p != '.') 1566 *p = '_'; 1567 1568 return strdup(map_name); 1569 } 1570 1571 static int 1572 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1573 1574 /* Internal BPF map is mmap()'able only if at least one of corresponding 1575 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1576 * variable and it's not marked as __hidden (which turns it into, effectively, 1577 * a STATIC variable). 1578 */ 1579 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1580 { 1581 const struct btf_type *t, *vt; 1582 struct btf_var_secinfo *vsi; 1583 int i, n; 1584 1585 if (!map->btf_value_type_id) 1586 return false; 1587 1588 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1589 if (!btf_is_datasec(t)) 1590 return false; 1591 1592 vsi = btf_var_secinfos(t); 1593 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1594 vt = btf__type_by_id(obj->btf, vsi->type); 1595 if (!btf_is_var(vt)) 1596 continue; 1597 1598 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1599 return true; 1600 } 1601 1602 return false; 1603 } 1604 1605 static int 1606 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1607 const char *real_name, int sec_idx, void *data, size_t data_sz) 1608 { 1609 struct bpf_map_def *def; 1610 struct bpf_map *map; 1611 int err; 1612 1613 map = bpf_object__add_map(obj); 1614 if (IS_ERR(map)) 1615 return PTR_ERR(map); 1616 1617 map->libbpf_type = type; 1618 map->sec_idx = sec_idx; 1619 map->sec_offset = 0; 1620 map->real_name = strdup(real_name); 1621 map->name = internal_map_name(obj, real_name); 1622 if (!map->real_name || !map->name) { 1623 zfree(&map->real_name); 1624 zfree(&map->name); 1625 return -ENOMEM; 1626 } 1627 1628 def = &map->def; 1629 def->type = BPF_MAP_TYPE_ARRAY; 1630 def->key_size = sizeof(int); 1631 def->value_size = data_sz; 1632 def->max_entries = 1; 1633 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1634 ? BPF_F_RDONLY_PROG : 0; 1635 1636 /* failures are fine because of maps like .rodata.str1.1 */ 1637 (void) map_fill_btf_type_info(obj, map); 1638 1639 if (map_is_mmapable(obj, map)) 1640 def->map_flags |= BPF_F_MMAPABLE; 1641 1642 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1643 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1644 1645 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1646 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1647 if (map->mmaped == MAP_FAILED) { 1648 err = -errno; 1649 map->mmaped = NULL; 1650 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1651 map->name, err); 1652 zfree(&map->real_name); 1653 zfree(&map->name); 1654 return err; 1655 } 1656 1657 if (data) 1658 memcpy(map->mmaped, data, data_sz); 1659 1660 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1661 return 0; 1662 } 1663 1664 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1665 { 1666 struct elf_sec_desc *sec_desc; 1667 const char *sec_name; 1668 int err = 0, sec_idx; 1669 1670 /* 1671 * Populate obj->maps with libbpf internal maps. 1672 */ 1673 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1674 sec_desc = &obj->efile.secs[sec_idx]; 1675 1676 /* Skip recognized sections with size 0. */ 1677 if (!sec_desc->data || sec_desc->data->d_size == 0) 1678 continue; 1679 1680 switch (sec_desc->sec_type) { 1681 case SEC_DATA: 1682 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1683 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1684 sec_name, sec_idx, 1685 sec_desc->data->d_buf, 1686 sec_desc->data->d_size); 1687 break; 1688 case SEC_RODATA: 1689 obj->has_rodata = true; 1690 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1691 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1692 sec_name, sec_idx, 1693 sec_desc->data->d_buf, 1694 sec_desc->data->d_size); 1695 break; 1696 case SEC_BSS: 1697 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1698 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1699 sec_name, sec_idx, 1700 NULL, 1701 sec_desc->data->d_size); 1702 break; 1703 default: 1704 /* skip */ 1705 break; 1706 } 1707 if (err) 1708 return err; 1709 } 1710 return 0; 1711 } 1712 1713 1714 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1715 const void *name) 1716 { 1717 int i; 1718 1719 for (i = 0; i < obj->nr_extern; i++) { 1720 if (strcmp(obj->externs[i].name, name) == 0) 1721 return &obj->externs[i]; 1722 } 1723 return NULL; 1724 } 1725 1726 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1727 char value) 1728 { 1729 switch (ext->kcfg.type) { 1730 case KCFG_BOOL: 1731 if (value == 'm') { 1732 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1733 ext->name, value); 1734 return -EINVAL; 1735 } 1736 *(bool *)ext_val = value == 'y' ? true : false; 1737 break; 1738 case KCFG_TRISTATE: 1739 if (value == 'y') 1740 *(enum libbpf_tristate *)ext_val = TRI_YES; 1741 else if (value == 'm') 1742 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1743 else /* value == 'n' */ 1744 *(enum libbpf_tristate *)ext_val = TRI_NO; 1745 break; 1746 case KCFG_CHAR: 1747 *(char *)ext_val = value; 1748 break; 1749 case KCFG_UNKNOWN: 1750 case KCFG_INT: 1751 case KCFG_CHAR_ARR: 1752 default: 1753 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1754 ext->name, value); 1755 return -EINVAL; 1756 } 1757 ext->is_set = true; 1758 return 0; 1759 } 1760 1761 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1762 const char *value) 1763 { 1764 size_t len; 1765 1766 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1767 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1768 ext->name, value); 1769 return -EINVAL; 1770 } 1771 1772 len = strlen(value); 1773 if (value[len - 1] != '"') { 1774 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1775 ext->name, value); 1776 return -EINVAL; 1777 } 1778 1779 /* strip quotes */ 1780 len -= 2; 1781 if (len >= ext->kcfg.sz) { 1782 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1783 ext->name, value, len, ext->kcfg.sz - 1); 1784 len = ext->kcfg.sz - 1; 1785 } 1786 memcpy(ext_val, value + 1, len); 1787 ext_val[len] = '\0'; 1788 ext->is_set = true; 1789 return 0; 1790 } 1791 1792 static int parse_u64(const char *value, __u64 *res) 1793 { 1794 char *value_end; 1795 int err; 1796 1797 errno = 0; 1798 *res = strtoull(value, &value_end, 0); 1799 if (errno) { 1800 err = -errno; 1801 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1802 return err; 1803 } 1804 if (*value_end) { 1805 pr_warn("failed to parse '%s' as integer completely\n", value); 1806 return -EINVAL; 1807 } 1808 return 0; 1809 } 1810 1811 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1812 { 1813 int bit_sz = ext->kcfg.sz * 8; 1814 1815 if (ext->kcfg.sz == 8) 1816 return true; 1817 1818 /* Validate that value stored in u64 fits in integer of `ext->sz` 1819 * bytes size without any loss of information. If the target integer 1820 * is signed, we rely on the following limits of integer type of 1821 * Y bits and subsequent transformation: 1822 * 1823 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1824 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1825 * 0 <= X + 2^(Y-1) < 2^Y 1826 * 1827 * For unsigned target integer, check that all the (64 - Y) bits are 1828 * zero. 1829 */ 1830 if (ext->kcfg.is_signed) 1831 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1832 else 1833 return (v >> bit_sz) == 0; 1834 } 1835 1836 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1837 __u64 value) 1838 { 1839 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1840 ext->kcfg.type != KCFG_BOOL) { 1841 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1842 ext->name, (unsigned long long)value); 1843 return -EINVAL; 1844 } 1845 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1846 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1847 ext->name, (unsigned long long)value); 1848 return -EINVAL; 1849 1850 } 1851 if (!is_kcfg_value_in_range(ext, value)) { 1852 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1853 ext->name, (unsigned long long)value, ext->kcfg.sz); 1854 return -ERANGE; 1855 } 1856 switch (ext->kcfg.sz) { 1857 case 1: 1858 *(__u8 *)ext_val = value; 1859 break; 1860 case 2: 1861 *(__u16 *)ext_val = value; 1862 break; 1863 case 4: 1864 *(__u32 *)ext_val = value; 1865 break; 1866 case 8: 1867 *(__u64 *)ext_val = value; 1868 break; 1869 default: 1870 return -EINVAL; 1871 } 1872 ext->is_set = true; 1873 return 0; 1874 } 1875 1876 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1877 char *buf, void *data) 1878 { 1879 struct extern_desc *ext; 1880 char *sep, *value; 1881 int len, err = 0; 1882 void *ext_val; 1883 __u64 num; 1884 1885 if (!str_has_pfx(buf, "CONFIG_")) 1886 return 0; 1887 1888 sep = strchr(buf, '='); 1889 if (!sep) { 1890 pr_warn("failed to parse '%s': no separator\n", buf); 1891 return -EINVAL; 1892 } 1893 1894 /* Trim ending '\n' */ 1895 len = strlen(buf); 1896 if (buf[len - 1] == '\n') 1897 buf[len - 1] = '\0'; 1898 /* Split on '=' and ensure that a value is present. */ 1899 *sep = '\0'; 1900 if (!sep[1]) { 1901 *sep = '='; 1902 pr_warn("failed to parse '%s': no value\n", buf); 1903 return -EINVAL; 1904 } 1905 1906 ext = find_extern_by_name(obj, buf); 1907 if (!ext || ext->is_set) 1908 return 0; 1909 1910 ext_val = data + ext->kcfg.data_off; 1911 value = sep + 1; 1912 1913 switch (*value) { 1914 case 'y': case 'n': case 'm': 1915 err = set_kcfg_value_tri(ext, ext_val, *value); 1916 break; 1917 case '"': 1918 err = set_kcfg_value_str(ext, ext_val, value); 1919 break; 1920 default: 1921 /* assume integer */ 1922 err = parse_u64(value, &num); 1923 if (err) { 1924 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1925 return err; 1926 } 1927 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1928 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1929 return -EINVAL; 1930 } 1931 err = set_kcfg_value_num(ext, ext_val, num); 1932 break; 1933 } 1934 if (err) 1935 return err; 1936 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1937 return 0; 1938 } 1939 1940 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1941 { 1942 char buf[PATH_MAX]; 1943 struct utsname uts; 1944 int len, err = 0; 1945 gzFile file; 1946 1947 uname(&uts); 1948 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1949 if (len < 0) 1950 return -EINVAL; 1951 else if (len >= PATH_MAX) 1952 return -ENAMETOOLONG; 1953 1954 /* gzopen also accepts uncompressed files. */ 1955 file = gzopen(buf, "r"); 1956 if (!file) 1957 file = gzopen("/proc/config.gz", "r"); 1958 1959 if (!file) { 1960 pr_warn("failed to open system Kconfig\n"); 1961 return -ENOENT; 1962 } 1963 1964 while (gzgets(file, buf, sizeof(buf))) { 1965 err = bpf_object__process_kconfig_line(obj, buf, data); 1966 if (err) { 1967 pr_warn("error parsing system Kconfig line '%s': %d\n", 1968 buf, err); 1969 goto out; 1970 } 1971 } 1972 1973 out: 1974 gzclose(file); 1975 return err; 1976 } 1977 1978 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1979 const char *config, void *data) 1980 { 1981 char buf[PATH_MAX]; 1982 int err = 0; 1983 FILE *file; 1984 1985 file = fmemopen((void *)config, strlen(config), "r"); 1986 if (!file) { 1987 err = -errno; 1988 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1989 return err; 1990 } 1991 1992 while (fgets(buf, sizeof(buf), file)) { 1993 err = bpf_object__process_kconfig_line(obj, buf, data); 1994 if (err) { 1995 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1996 buf, err); 1997 break; 1998 } 1999 } 2000 2001 fclose(file); 2002 return err; 2003 } 2004 2005 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2006 { 2007 struct extern_desc *last_ext = NULL, *ext; 2008 size_t map_sz; 2009 int i, err; 2010 2011 for (i = 0; i < obj->nr_extern; i++) { 2012 ext = &obj->externs[i]; 2013 if (ext->type == EXT_KCFG) 2014 last_ext = ext; 2015 } 2016 2017 if (!last_ext) 2018 return 0; 2019 2020 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2021 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2022 ".kconfig", obj->efile.symbols_shndx, 2023 NULL, map_sz); 2024 if (err) 2025 return err; 2026 2027 obj->kconfig_map_idx = obj->nr_maps - 1; 2028 2029 return 0; 2030 } 2031 2032 const struct btf_type * 2033 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2034 { 2035 const struct btf_type *t = btf__type_by_id(btf, id); 2036 2037 if (res_id) 2038 *res_id = id; 2039 2040 while (btf_is_mod(t) || btf_is_typedef(t)) { 2041 if (res_id) 2042 *res_id = t->type; 2043 t = btf__type_by_id(btf, t->type); 2044 } 2045 2046 return t; 2047 } 2048 2049 static const struct btf_type * 2050 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2051 { 2052 const struct btf_type *t; 2053 2054 t = skip_mods_and_typedefs(btf, id, NULL); 2055 if (!btf_is_ptr(t)) 2056 return NULL; 2057 2058 t = skip_mods_and_typedefs(btf, t->type, res_id); 2059 2060 return btf_is_func_proto(t) ? t : NULL; 2061 } 2062 2063 static const char *__btf_kind_str(__u16 kind) 2064 { 2065 switch (kind) { 2066 case BTF_KIND_UNKN: return "void"; 2067 case BTF_KIND_INT: return "int"; 2068 case BTF_KIND_PTR: return "ptr"; 2069 case BTF_KIND_ARRAY: return "array"; 2070 case BTF_KIND_STRUCT: return "struct"; 2071 case BTF_KIND_UNION: return "union"; 2072 case BTF_KIND_ENUM: return "enum"; 2073 case BTF_KIND_FWD: return "fwd"; 2074 case BTF_KIND_TYPEDEF: return "typedef"; 2075 case BTF_KIND_VOLATILE: return "volatile"; 2076 case BTF_KIND_CONST: return "const"; 2077 case BTF_KIND_RESTRICT: return "restrict"; 2078 case BTF_KIND_FUNC: return "func"; 2079 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2080 case BTF_KIND_VAR: return "var"; 2081 case BTF_KIND_DATASEC: return "datasec"; 2082 case BTF_KIND_FLOAT: return "float"; 2083 case BTF_KIND_DECL_TAG: return "decl_tag"; 2084 case BTF_KIND_TYPE_TAG: return "type_tag"; 2085 case BTF_KIND_ENUM64: return "enum64"; 2086 default: return "unknown"; 2087 } 2088 } 2089 2090 const char *btf_kind_str(const struct btf_type *t) 2091 { 2092 return __btf_kind_str(btf_kind(t)); 2093 } 2094 2095 /* 2096 * Fetch integer attribute of BTF map definition. Such attributes are 2097 * represented using a pointer to an array, in which dimensionality of array 2098 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2099 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2100 * type definition, while using only sizeof(void *) space in ELF data section. 2101 */ 2102 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2103 const struct btf_member *m, __u32 *res) 2104 { 2105 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2106 const char *name = btf__name_by_offset(btf, m->name_off); 2107 const struct btf_array *arr_info; 2108 const struct btf_type *arr_t; 2109 2110 if (!btf_is_ptr(t)) { 2111 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2112 map_name, name, btf_kind_str(t)); 2113 return false; 2114 } 2115 2116 arr_t = btf__type_by_id(btf, t->type); 2117 if (!arr_t) { 2118 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2119 map_name, name, t->type); 2120 return false; 2121 } 2122 if (!btf_is_array(arr_t)) { 2123 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2124 map_name, name, btf_kind_str(arr_t)); 2125 return false; 2126 } 2127 arr_info = btf_array(arr_t); 2128 *res = arr_info->nelems; 2129 return true; 2130 } 2131 2132 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2133 { 2134 int len; 2135 2136 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2137 if (len < 0) 2138 return -EINVAL; 2139 if (len >= buf_sz) 2140 return -ENAMETOOLONG; 2141 2142 return 0; 2143 } 2144 2145 static int build_map_pin_path(struct bpf_map *map, const char *path) 2146 { 2147 char buf[PATH_MAX]; 2148 int err; 2149 2150 if (!path) 2151 path = "/sys/fs/bpf"; 2152 2153 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2154 if (err) 2155 return err; 2156 2157 return bpf_map__set_pin_path(map, buf); 2158 } 2159 2160 /* should match definition in bpf_helpers.h */ 2161 enum libbpf_pin_type { 2162 LIBBPF_PIN_NONE, 2163 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2164 LIBBPF_PIN_BY_NAME, 2165 }; 2166 2167 int parse_btf_map_def(const char *map_name, struct btf *btf, 2168 const struct btf_type *def_t, bool strict, 2169 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2170 { 2171 const struct btf_type *t; 2172 const struct btf_member *m; 2173 bool is_inner = inner_def == NULL; 2174 int vlen, i; 2175 2176 vlen = btf_vlen(def_t); 2177 m = btf_members(def_t); 2178 for (i = 0; i < vlen; i++, m++) { 2179 const char *name = btf__name_by_offset(btf, m->name_off); 2180 2181 if (!name) { 2182 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2183 return -EINVAL; 2184 } 2185 if (strcmp(name, "type") == 0) { 2186 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2187 return -EINVAL; 2188 map_def->parts |= MAP_DEF_MAP_TYPE; 2189 } else if (strcmp(name, "max_entries") == 0) { 2190 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2191 return -EINVAL; 2192 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2193 } else if (strcmp(name, "map_flags") == 0) { 2194 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2195 return -EINVAL; 2196 map_def->parts |= MAP_DEF_MAP_FLAGS; 2197 } else if (strcmp(name, "numa_node") == 0) { 2198 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2199 return -EINVAL; 2200 map_def->parts |= MAP_DEF_NUMA_NODE; 2201 } else if (strcmp(name, "key_size") == 0) { 2202 __u32 sz; 2203 2204 if (!get_map_field_int(map_name, btf, m, &sz)) 2205 return -EINVAL; 2206 if (map_def->key_size && map_def->key_size != sz) { 2207 pr_warn("map '%s': conflicting key size %u != %u.\n", 2208 map_name, map_def->key_size, sz); 2209 return -EINVAL; 2210 } 2211 map_def->key_size = sz; 2212 map_def->parts |= MAP_DEF_KEY_SIZE; 2213 } else if (strcmp(name, "key") == 0) { 2214 __s64 sz; 2215 2216 t = btf__type_by_id(btf, m->type); 2217 if (!t) { 2218 pr_warn("map '%s': key type [%d] not found.\n", 2219 map_name, m->type); 2220 return -EINVAL; 2221 } 2222 if (!btf_is_ptr(t)) { 2223 pr_warn("map '%s': key spec is not PTR: %s.\n", 2224 map_name, btf_kind_str(t)); 2225 return -EINVAL; 2226 } 2227 sz = btf__resolve_size(btf, t->type); 2228 if (sz < 0) { 2229 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2230 map_name, t->type, (ssize_t)sz); 2231 return sz; 2232 } 2233 if (map_def->key_size && map_def->key_size != sz) { 2234 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2235 map_name, map_def->key_size, (ssize_t)sz); 2236 return -EINVAL; 2237 } 2238 map_def->key_size = sz; 2239 map_def->key_type_id = t->type; 2240 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2241 } else if (strcmp(name, "value_size") == 0) { 2242 __u32 sz; 2243 2244 if (!get_map_field_int(map_name, btf, m, &sz)) 2245 return -EINVAL; 2246 if (map_def->value_size && map_def->value_size != sz) { 2247 pr_warn("map '%s': conflicting value size %u != %u.\n", 2248 map_name, map_def->value_size, sz); 2249 return -EINVAL; 2250 } 2251 map_def->value_size = sz; 2252 map_def->parts |= MAP_DEF_VALUE_SIZE; 2253 } else if (strcmp(name, "value") == 0) { 2254 __s64 sz; 2255 2256 t = btf__type_by_id(btf, m->type); 2257 if (!t) { 2258 pr_warn("map '%s': value type [%d] not found.\n", 2259 map_name, m->type); 2260 return -EINVAL; 2261 } 2262 if (!btf_is_ptr(t)) { 2263 pr_warn("map '%s': value spec is not PTR: %s.\n", 2264 map_name, btf_kind_str(t)); 2265 return -EINVAL; 2266 } 2267 sz = btf__resolve_size(btf, t->type); 2268 if (sz < 0) { 2269 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2270 map_name, t->type, (ssize_t)sz); 2271 return sz; 2272 } 2273 if (map_def->value_size && map_def->value_size != sz) { 2274 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2275 map_name, map_def->value_size, (ssize_t)sz); 2276 return -EINVAL; 2277 } 2278 map_def->value_size = sz; 2279 map_def->value_type_id = t->type; 2280 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2281 } 2282 else if (strcmp(name, "values") == 0) { 2283 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2284 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2285 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2286 char inner_map_name[128]; 2287 int err; 2288 2289 if (is_inner) { 2290 pr_warn("map '%s': multi-level inner maps not supported.\n", 2291 map_name); 2292 return -ENOTSUP; 2293 } 2294 if (i != vlen - 1) { 2295 pr_warn("map '%s': '%s' member should be last.\n", 2296 map_name, name); 2297 return -EINVAL; 2298 } 2299 if (!is_map_in_map && !is_prog_array) { 2300 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2301 map_name); 2302 return -ENOTSUP; 2303 } 2304 if (map_def->value_size && map_def->value_size != 4) { 2305 pr_warn("map '%s': conflicting value size %u != 4.\n", 2306 map_name, map_def->value_size); 2307 return -EINVAL; 2308 } 2309 map_def->value_size = 4; 2310 t = btf__type_by_id(btf, m->type); 2311 if (!t) { 2312 pr_warn("map '%s': %s type [%d] not found.\n", 2313 map_name, desc, m->type); 2314 return -EINVAL; 2315 } 2316 if (!btf_is_array(t) || btf_array(t)->nelems) { 2317 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2318 map_name, desc); 2319 return -EINVAL; 2320 } 2321 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2322 if (!btf_is_ptr(t)) { 2323 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2324 map_name, desc, btf_kind_str(t)); 2325 return -EINVAL; 2326 } 2327 t = skip_mods_and_typedefs(btf, t->type, NULL); 2328 if (is_prog_array) { 2329 if (!btf_is_func_proto(t)) { 2330 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2331 map_name, btf_kind_str(t)); 2332 return -EINVAL; 2333 } 2334 continue; 2335 } 2336 if (!btf_is_struct(t)) { 2337 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2338 map_name, btf_kind_str(t)); 2339 return -EINVAL; 2340 } 2341 2342 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2343 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2344 if (err) 2345 return err; 2346 2347 map_def->parts |= MAP_DEF_INNER_MAP; 2348 } else if (strcmp(name, "pinning") == 0) { 2349 __u32 val; 2350 2351 if (is_inner) { 2352 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2353 return -EINVAL; 2354 } 2355 if (!get_map_field_int(map_name, btf, m, &val)) 2356 return -EINVAL; 2357 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2358 pr_warn("map '%s': invalid pinning value %u.\n", 2359 map_name, val); 2360 return -EINVAL; 2361 } 2362 map_def->pinning = val; 2363 map_def->parts |= MAP_DEF_PINNING; 2364 } else if (strcmp(name, "map_extra") == 0) { 2365 __u32 map_extra; 2366 2367 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2368 return -EINVAL; 2369 map_def->map_extra = map_extra; 2370 map_def->parts |= MAP_DEF_MAP_EXTRA; 2371 } else { 2372 if (strict) { 2373 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2374 return -ENOTSUP; 2375 } 2376 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2377 } 2378 } 2379 2380 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2381 pr_warn("map '%s': map type isn't specified.\n", map_name); 2382 return -EINVAL; 2383 } 2384 2385 return 0; 2386 } 2387 2388 static size_t adjust_ringbuf_sz(size_t sz) 2389 { 2390 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2391 __u32 mul; 2392 2393 /* if user forgot to set any size, make sure they see error */ 2394 if (sz == 0) 2395 return 0; 2396 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2397 * a power-of-2 multiple of kernel's page size. If user diligently 2398 * satisified these conditions, pass the size through. 2399 */ 2400 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2401 return sz; 2402 2403 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2404 * user-set size to satisfy both user size request and kernel 2405 * requirements and substitute correct max_entries for map creation. 2406 */ 2407 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2408 if (mul * page_sz > sz) 2409 return mul * page_sz; 2410 } 2411 2412 /* if it's impossible to satisfy the conditions (i.e., user size is 2413 * very close to UINT_MAX but is not a power-of-2 multiple of 2414 * page_size) then just return original size and let kernel reject it 2415 */ 2416 return sz; 2417 } 2418 2419 static bool map_is_ringbuf(const struct bpf_map *map) 2420 { 2421 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2422 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2423 } 2424 2425 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2426 { 2427 map->def.type = def->map_type; 2428 map->def.key_size = def->key_size; 2429 map->def.value_size = def->value_size; 2430 map->def.max_entries = def->max_entries; 2431 map->def.map_flags = def->map_flags; 2432 map->map_extra = def->map_extra; 2433 2434 map->numa_node = def->numa_node; 2435 map->btf_key_type_id = def->key_type_id; 2436 map->btf_value_type_id = def->value_type_id; 2437 2438 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2439 if (map_is_ringbuf(map)) 2440 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2441 2442 if (def->parts & MAP_DEF_MAP_TYPE) 2443 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2444 2445 if (def->parts & MAP_DEF_KEY_TYPE) 2446 pr_debug("map '%s': found key [%u], sz = %u.\n", 2447 map->name, def->key_type_id, def->key_size); 2448 else if (def->parts & MAP_DEF_KEY_SIZE) 2449 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2450 2451 if (def->parts & MAP_DEF_VALUE_TYPE) 2452 pr_debug("map '%s': found value [%u], sz = %u.\n", 2453 map->name, def->value_type_id, def->value_size); 2454 else if (def->parts & MAP_DEF_VALUE_SIZE) 2455 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2456 2457 if (def->parts & MAP_DEF_MAX_ENTRIES) 2458 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2459 if (def->parts & MAP_DEF_MAP_FLAGS) 2460 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2461 if (def->parts & MAP_DEF_MAP_EXTRA) 2462 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2463 (unsigned long long)def->map_extra); 2464 if (def->parts & MAP_DEF_PINNING) 2465 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2466 if (def->parts & MAP_DEF_NUMA_NODE) 2467 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2468 2469 if (def->parts & MAP_DEF_INNER_MAP) 2470 pr_debug("map '%s': found inner map definition.\n", map->name); 2471 } 2472 2473 static const char *btf_var_linkage_str(__u32 linkage) 2474 { 2475 switch (linkage) { 2476 case BTF_VAR_STATIC: return "static"; 2477 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2478 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2479 default: return "unknown"; 2480 } 2481 } 2482 2483 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2484 const struct btf_type *sec, 2485 int var_idx, int sec_idx, 2486 const Elf_Data *data, bool strict, 2487 const char *pin_root_path) 2488 { 2489 struct btf_map_def map_def = {}, inner_def = {}; 2490 const struct btf_type *var, *def; 2491 const struct btf_var_secinfo *vi; 2492 const struct btf_var *var_extra; 2493 const char *map_name; 2494 struct bpf_map *map; 2495 int err; 2496 2497 vi = btf_var_secinfos(sec) + var_idx; 2498 var = btf__type_by_id(obj->btf, vi->type); 2499 var_extra = btf_var(var); 2500 map_name = btf__name_by_offset(obj->btf, var->name_off); 2501 2502 if (map_name == NULL || map_name[0] == '\0') { 2503 pr_warn("map #%d: empty name.\n", var_idx); 2504 return -EINVAL; 2505 } 2506 if ((__u64)vi->offset + vi->size > data->d_size) { 2507 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2508 return -EINVAL; 2509 } 2510 if (!btf_is_var(var)) { 2511 pr_warn("map '%s': unexpected var kind %s.\n", 2512 map_name, btf_kind_str(var)); 2513 return -EINVAL; 2514 } 2515 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2516 pr_warn("map '%s': unsupported map linkage %s.\n", 2517 map_name, btf_var_linkage_str(var_extra->linkage)); 2518 return -EOPNOTSUPP; 2519 } 2520 2521 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2522 if (!btf_is_struct(def)) { 2523 pr_warn("map '%s': unexpected def kind %s.\n", 2524 map_name, btf_kind_str(var)); 2525 return -EINVAL; 2526 } 2527 if (def->size > vi->size) { 2528 pr_warn("map '%s': invalid def size.\n", map_name); 2529 return -EINVAL; 2530 } 2531 2532 map = bpf_object__add_map(obj); 2533 if (IS_ERR(map)) 2534 return PTR_ERR(map); 2535 map->name = strdup(map_name); 2536 if (!map->name) { 2537 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2538 return -ENOMEM; 2539 } 2540 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2541 map->def.type = BPF_MAP_TYPE_UNSPEC; 2542 map->sec_idx = sec_idx; 2543 map->sec_offset = vi->offset; 2544 map->btf_var_idx = var_idx; 2545 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2546 map_name, map->sec_idx, map->sec_offset); 2547 2548 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2549 if (err) 2550 return err; 2551 2552 fill_map_from_def(map, &map_def); 2553 2554 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2555 err = build_map_pin_path(map, pin_root_path); 2556 if (err) { 2557 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2558 return err; 2559 } 2560 } 2561 2562 if (map_def.parts & MAP_DEF_INNER_MAP) { 2563 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2564 if (!map->inner_map) 2565 return -ENOMEM; 2566 map->inner_map->fd = -1; 2567 map->inner_map->sec_idx = sec_idx; 2568 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2569 if (!map->inner_map->name) 2570 return -ENOMEM; 2571 sprintf(map->inner_map->name, "%s.inner", map_name); 2572 2573 fill_map_from_def(map->inner_map, &inner_def); 2574 } 2575 2576 err = map_fill_btf_type_info(obj, map); 2577 if (err) 2578 return err; 2579 2580 return 0; 2581 } 2582 2583 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2584 const char *pin_root_path) 2585 { 2586 const struct btf_type *sec = NULL; 2587 int nr_types, i, vlen, err; 2588 const struct btf_type *t; 2589 const char *name; 2590 Elf_Data *data; 2591 Elf_Scn *scn; 2592 2593 if (obj->efile.btf_maps_shndx < 0) 2594 return 0; 2595 2596 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2597 data = elf_sec_data(obj, scn); 2598 if (!scn || !data) { 2599 pr_warn("elf: failed to get %s map definitions for %s\n", 2600 MAPS_ELF_SEC, obj->path); 2601 return -EINVAL; 2602 } 2603 2604 nr_types = btf__type_cnt(obj->btf); 2605 for (i = 1; i < nr_types; i++) { 2606 t = btf__type_by_id(obj->btf, i); 2607 if (!btf_is_datasec(t)) 2608 continue; 2609 name = btf__name_by_offset(obj->btf, t->name_off); 2610 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2611 sec = t; 2612 obj->efile.btf_maps_sec_btf_id = i; 2613 break; 2614 } 2615 } 2616 2617 if (!sec) { 2618 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2619 return -ENOENT; 2620 } 2621 2622 vlen = btf_vlen(sec); 2623 for (i = 0; i < vlen; i++) { 2624 err = bpf_object__init_user_btf_map(obj, sec, i, 2625 obj->efile.btf_maps_shndx, 2626 data, strict, 2627 pin_root_path); 2628 if (err) 2629 return err; 2630 } 2631 2632 return 0; 2633 } 2634 2635 static int bpf_object__init_maps(struct bpf_object *obj, 2636 const struct bpf_object_open_opts *opts) 2637 { 2638 const char *pin_root_path; 2639 bool strict; 2640 int err = 0; 2641 2642 strict = !OPTS_GET(opts, relaxed_maps, false); 2643 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2644 2645 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2646 err = err ?: bpf_object__init_global_data_maps(obj); 2647 err = err ?: bpf_object__init_kconfig_map(obj); 2648 err = err ?: bpf_object_init_struct_ops(obj); 2649 2650 return err; 2651 } 2652 2653 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2654 { 2655 Elf64_Shdr *sh; 2656 2657 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2658 if (!sh) 2659 return false; 2660 2661 return sh->sh_flags & SHF_EXECINSTR; 2662 } 2663 2664 static bool btf_needs_sanitization(struct bpf_object *obj) 2665 { 2666 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2667 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2668 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2669 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2670 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2671 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2672 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2673 2674 return !has_func || !has_datasec || !has_func_global || !has_float || 2675 !has_decl_tag || !has_type_tag || !has_enum64; 2676 } 2677 2678 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2679 { 2680 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2681 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2682 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2683 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2684 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2685 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2686 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2687 int enum64_placeholder_id = 0; 2688 struct btf_type *t; 2689 int i, j, vlen; 2690 2691 for (i = 1; i < btf__type_cnt(btf); i++) { 2692 t = (struct btf_type *)btf__type_by_id(btf, i); 2693 2694 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2695 /* replace VAR/DECL_TAG with INT */ 2696 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2697 /* 2698 * using size = 1 is the safest choice, 4 will be too 2699 * big and cause kernel BTF validation failure if 2700 * original variable took less than 4 bytes 2701 */ 2702 t->size = 1; 2703 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2704 } else if (!has_datasec && btf_is_datasec(t)) { 2705 /* replace DATASEC with STRUCT */ 2706 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2707 struct btf_member *m = btf_members(t); 2708 struct btf_type *vt; 2709 char *name; 2710 2711 name = (char *)btf__name_by_offset(btf, t->name_off); 2712 while (*name) { 2713 if (*name == '.') 2714 *name = '_'; 2715 name++; 2716 } 2717 2718 vlen = btf_vlen(t); 2719 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2720 for (j = 0; j < vlen; j++, v++, m++) { 2721 /* order of field assignments is important */ 2722 m->offset = v->offset * 8; 2723 m->type = v->type; 2724 /* preserve variable name as member name */ 2725 vt = (void *)btf__type_by_id(btf, v->type); 2726 m->name_off = vt->name_off; 2727 } 2728 } else if (!has_func && btf_is_func_proto(t)) { 2729 /* replace FUNC_PROTO with ENUM */ 2730 vlen = btf_vlen(t); 2731 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2732 t->size = sizeof(__u32); /* kernel enforced */ 2733 } else if (!has_func && btf_is_func(t)) { 2734 /* replace FUNC with TYPEDEF */ 2735 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2736 } else if (!has_func_global && btf_is_func(t)) { 2737 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2738 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2739 } else if (!has_float && btf_is_float(t)) { 2740 /* replace FLOAT with an equally-sized empty STRUCT; 2741 * since C compilers do not accept e.g. "float" as a 2742 * valid struct name, make it anonymous 2743 */ 2744 t->name_off = 0; 2745 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2746 } else if (!has_type_tag && btf_is_type_tag(t)) { 2747 /* replace TYPE_TAG with a CONST */ 2748 t->name_off = 0; 2749 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2750 } else if (!has_enum64 && btf_is_enum(t)) { 2751 /* clear the kflag */ 2752 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2753 } else if (!has_enum64 && btf_is_enum64(t)) { 2754 /* replace ENUM64 with a union */ 2755 struct btf_member *m; 2756 2757 if (enum64_placeholder_id == 0) { 2758 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2759 if (enum64_placeholder_id < 0) 2760 return enum64_placeholder_id; 2761 2762 t = (struct btf_type *)btf__type_by_id(btf, i); 2763 } 2764 2765 m = btf_members(t); 2766 vlen = btf_vlen(t); 2767 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2768 for (j = 0; j < vlen; j++, m++) { 2769 m->type = enum64_placeholder_id; 2770 m->offset = 0; 2771 } 2772 } 2773 } 2774 2775 return 0; 2776 } 2777 2778 static bool libbpf_needs_btf(const struct bpf_object *obj) 2779 { 2780 return obj->efile.btf_maps_shndx >= 0 || 2781 obj->efile.st_ops_shndx >= 0 || 2782 obj->efile.st_ops_link_shndx >= 0 || 2783 obj->nr_extern > 0; 2784 } 2785 2786 static bool kernel_needs_btf(const struct bpf_object *obj) 2787 { 2788 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2789 } 2790 2791 static int bpf_object__init_btf(struct bpf_object *obj, 2792 Elf_Data *btf_data, 2793 Elf_Data *btf_ext_data) 2794 { 2795 int err = -ENOENT; 2796 2797 if (btf_data) { 2798 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2799 err = libbpf_get_error(obj->btf); 2800 if (err) { 2801 obj->btf = NULL; 2802 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2803 goto out; 2804 } 2805 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2806 btf__set_pointer_size(obj->btf, 8); 2807 } 2808 if (btf_ext_data) { 2809 struct btf_ext_info *ext_segs[3]; 2810 int seg_num, sec_num; 2811 2812 if (!obj->btf) { 2813 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2814 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2815 goto out; 2816 } 2817 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2818 err = libbpf_get_error(obj->btf_ext); 2819 if (err) { 2820 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2821 BTF_EXT_ELF_SEC, err); 2822 obj->btf_ext = NULL; 2823 goto out; 2824 } 2825 2826 /* setup .BTF.ext to ELF section mapping */ 2827 ext_segs[0] = &obj->btf_ext->func_info; 2828 ext_segs[1] = &obj->btf_ext->line_info; 2829 ext_segs[2] = &obj->btf_ext->core_relo_info; 2830 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2831 struct btf_ext_info *seg = ext_segs[seg_num]; 2832 const struct btf_ext_info_sec *sec; 2833 const char *sec_name; 2834 Elf_Scn *scn; 2835 2836 if (seg->sec_cnt == 0) 2837 continue; 2838 2839 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2840 if (!seg->sec_idxs) { 2841 err = -ENOMEM; 2842 goto out; 2843 } 2844 2845 sec_num = 0; 2846 for_each_btf_ext_sec(seg, sec) { 2847 /* preventively increment index to avoid doing 2848 * this before every continue below 2849 */ 2850 sec_num++; 2851 2852 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2853 if (str_is_empty(sec_name)) 2854 continue; 2855 scn = elf_sec_by_name(obj, sec_name); 2856 if (!scn) 2857 continue; 2858 2859 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2860 } 2861 } 2862 } 2863 out: 2864 if (err && libbpf_needs_btf(obj)) { 2865 pr_warn("BTF is required, but is missing or corrupted.\n"); 2866 return err; 2867 } 2868 return 0; 2869 } 2870 2871 static int compare_vsi_off(const void *_a, const void *_b) 2872 { 2873 const struct btf_var_secinfo *a = _a; 2874 const struct btf_var_secinfo *b = _b; 2875 2876 return a->offset - b->offset; 2877 } 2878 2879 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2880 struct btf_type *t) 2881 { 2882 __u32 size = 0, i, vars = btf_vlen(t); 2883 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2884 struct btf_var_secinfo *vsi; 2885 bool fixup_offsets = false; 2886 int err; 2887 2888 if (!sec_name) { 2889 pr_debug("No name found in string section for DATASEC kind.\n"); 2890 return -ENOENT; 2891 } 2892 2893 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2894 * variable offsets set at the previous step. Further, not every 2895 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2896 * all fixups altogether for such sections and go straight to sorting 2897 * VARs within their DATASEC. 2898 */ 2899 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2900 goto sort_vars; 2901 2902 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2903 * fix this up. But BPF static linker already fixes this up and fills 2904 * all the sizes and offsets during static linking. So this step has 2905 * to be optional. But the STV_HIDDEN handling is non-optional for any 2906 * non-extern DATASEC, so the variable fixup loop below handles both 2907 * functions at the same time, paying the cost of BTF VAR <-> ELF 2908 * symbol matching just once. 2909 */ 2910 if (t->size == 0) { 2911 err = find_elf_sec_sz(obj, sec_name, &size); 2912 if (err || !size) { 2913 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2914 sec_name, size, err); 2915 return -ENOENT; 2916 } 2917 2918 t->size = size; 2919 fixup_offsets = true; 2920 } 2921 2922 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2923 const struct btf_type *t_var; 2924 struct btf_var *var; 2925 const char *var_name; 2926 Elf64_Sym *sym; 2927 2928 t_var = btf__type_by_id(btf, vsi->type); 2929 if (!t_var || !btf_is_var(t_var)) { 2930 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2931 return -EINVAL; 2932 } 2933 2934 var = btf_var(t_var); 2935 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2936 continue; 2937 2938 var_name = btf__name_by_offset(btf, t_var->name_off); 2939 if (!var_name) { 2940 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2941 sec_name, i); 2942 return -ENOENT; 2943 } 2944 2945 sym = find_elf_var_sym(obj, var_name); 2946 if (IS_ERR(sym)) { 2947 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2948 sec_name, var_name); 2949 return -ENOENT; 2950 } 2951 2952 if (fixup_offsets) 2953 vsi->offset = sym->st_value; 2954 2955 /* if variable is a global/weak symbol, but has restricted 2956 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2957 * as static. This follows similar logic for functions (BPF 2958 * subprogs) and influences libbpf's further decisions about 2959 * whether to make global data BPF array maps as 2960 * BPF_F_MMAPABLE. 2961 */ 2962 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2963 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2964 var->linkage = BTF_VAR_STATIC; 2965 } 2966 2967 sort_vars: 2968 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2969 return 0; 2970 } 2971 2972 static int bpf_object_fixup_btf(struct bpf_object *obj) 2973 { 2974 int i, n, err = 0; 2975 2976 if (!obj->btf) 2977 return 0; 2978 2979 n = btf__type_cnt(obj->btf); 2980 for (i = 1; i < n; i++) { 2981 struct btf_type *t = btf_type_by_id(obj->btf, i); 2982 2983 /* Loader needs to fix up some of the things compiler 2984 * couldn't get its hands on while emitting BTF. This 2985 * is section size and global variable offset. We use 2986 * the info from the ELF itself for this purpose. 2987 */ 2988 if (btf_is_datasec(t)) { 2989 err = btf_fixup_datasec(obj, obj->btf, t); 2990 if (err) 2991 return err; 2992 } 2993 } 2994 2995 return 0; 2996 } 2997 2998 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2999 { 3000 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3001 prog->type == BPF_PROG_TYPE_LSM) 3002 return true; 3003 3004 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3005 * also need vmlinux BTF 3006 */ 3007 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3008 return true; 3009 3010 return false; 3011 } 3012 3013 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3014 { 3015 struct bpf_program *prog; 3016 int i; 3017 3018 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3019 * is not specified 3020 */ 3021 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3022 return true; 3023 3024 /* Support for typed ksyms needs kernel BTF */ 3025 for (i = 0; i < obj->nr_extern; i++) { 3026 const struct extern_desc *ext; 3027 3028 ext = &obj->externs[i]; 3029 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3030 return true; 3031 } 3032 3033 bpf_object__for_each_program(prog, obj) { 3034 if (!prog->autoload) 3035 continue; 3036 if (prog_needs_vmlinux_btf(prog)) 3037 return true; 3038 } 3039 3040 return false; 3041 } 3042 3043 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3044 { 3045 int err; 3046 3047 /* btf_vmlinux could be loaded earlier */ 3048 if (obj->btf_vmlinux || obj->gen_loader) 3049 return 0; 3050 3051 if (!force && !obj_needs_vmlinux_btf(obj)) 3052 return 0; 3053 3054 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3055 err = libbpf_get_error(obj->btf_vmlinux); 3056 if (err) { 3057 pr_warn("Error loading vmlinux BTF: %d\n", err); 3058 obj->btf_vmlinux = NULL; 3059 return err; 3060 } 3061 return 0; 3062 } 3063 3064 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3065 { 3066 struct btf *kern_btf = obj->btf; 3067 bool btf_mandatory, sanitize; 3068 int i, err = 0; 3069 3070 if (!obj->btf) 3071 return 0; 3072 3073 if (!kernel_supports(obj, FEAT_BTF)) { 3074 if (kernel_needs_btf(obj)) { 3075 err = -EOPNOTSUPP; 3076 goto report; 3077 } 3078 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3079 return 0; 3080 } 3081 3082 /* Even though some subprogs are global/weak, user might prefer more 3083 * permissive BPF verification process that BPF verifier performs for 3084 * static functions, taking into account more context from the caller 3085 * functions. In such case, they need to mark such subprogs with 3086 * __attribute__((visibility("hidden"))) and libbpf will adjust 3087 * corresponding FUNC BTF type to be marked as static and trigger more 3088 * involved BPF verification process. 3089 */ 3090 for (i = 0; i < obj->nr_programs; i++) { 3091 struct bpf_program *prog = &obj->programs[i]; 3092 struct btf_type *t; 3093 const char *name; 3094 int j, n; 3095 3096 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3097 continue; 3098 3099 n = btf__type_cnt(obj->btf); 3100 for (j = 1; j < n; j++) { 3101 t = btf_type_by_id(obj->btf, j); 3102 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3103 continue; 3104 3105 name = btf__str_by_offset(obj->btf, t->name_off); 3106 if (strcmp(name, prog->name) != 0) 3107 continue; 3108 3109 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3110 break; 3111 } 3112 } 3113 3114 sanitize = btf_needs_sanitization(obj); 3115 if (sanitize) { 3116 const void *raw_data; 3117 __u32 sz; 3118 3119 /* clone BTF to sanitize a copy and leave the original intact */ 3120 raw_data = btf__raw_data(obj->btf, &sz); 3121 kern_btf = btf__new(raw_data, sz); 3122 err = libbpf_get_error(kern_btf); 3123 if (err) 3124 return err; 3125 3126 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3127 btf__set_pointer_size(obj->btf, 8); 3128 err = bpf_object__sanitize_btf(obj, kern_btf); 3129 if (err) 3130 return err; 3131 } 3132 3133 if (obj->gen_loader) { 3134 __u32 raw_size = 0; 3135 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3136 3137 if (!raw_data) 3138 return -ENOMEM; 3139 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3140 /* Pretend to have valid FD to pass various fd >= 0 checks. 3141 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3142 */ 3143 btf__set_fd(kern_btf, 0); 3144 } else { 3145 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3146 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3147 obj->log_level ? 1 : 0); 3148 } 3149 if (sanitize) { 3150 if (!err) { 3151 /* move fd to libbpf's BTF */ 3152 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3153 btf__set_fd(kern_btf, -1); 3154 } 3155 btf__free(kern_btf); 3156 } 3157 report: 3158 if (err) { 3159 btf_mandatory = kernel_needs_btf(obj); 3160 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3161 btf_mandatory ? "BTF is mandatory, can't proceed." 3162 : "BTF is optional, ignoring."); 3163 if (!btf_mandatory) 3164 err = 0; 3165 } 3166 return err; 3167 } 3168 3169 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3170 { 3171 const char *name; 3172 3173 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3174 if (!name) { 3175 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3176 off, obj->path, elf_errmsg(-1)); 3177 return NULL; 3178 } 3179 3180 return name; 3181 } 3182 3183 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3184 { 3185 const char *name; 3186 3187 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3188 if (!name) { 3189 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3190 off, obj->path, elf_errmsg(-1)); 3191 return NULL; 3192 } 3193 3194 return name; 3195 } 3196 3197 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3198 { 3199 Elf_Scn *scn; 3200 3201 scn = elf_getscn(obj->efile.elf, idx); 3202 if (!scn) { 3203 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3204 idx, obj->path, elf_errmsg(-1)); 3205 return NULL; 3206 } 3207 return scn; 3208 } 3209 3210 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3211 { 3212 Elf_Scn *scn = NULL; 3213 Elf *elf = obj->efile.elf; 3214 const char *sec_name; 3215 3216 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3217 sec_name = elf_sec_name(obj, scn); 3218 if (!sec_name) 3219 return NULL; 3220 3221 if (strcmp(sec_name, name) != 0) 3222 continue; 3223 3224 return scn; 3225 } 3226 return NULL; 3227 } 3228 3229 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3230 { 3231 Elf64_Shdr *shdr; 3232 3233 if (!scn) 3234 return NULL; 3235 3236 shdr = elf64_getshdr(scn); 3237 if (!shdr) { 3238 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3239 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3240 return NULL; 3241 } 3242 3243 return shdr; 3244 } 3245 3246 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3247 { 3248 const char *name; 3249 Elf64_Shdr *sh; 3250 3251 if (!scn) 3252 return NULL; 3253 3254 sh = elf_sec_hdr(obj, scn); 3255 if (!sh) 3256 return NULL; 3257 3258 name = elf_sec_str(obj, sh->sh_name); 3259 if (!name) { 3260 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3261 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3262 return NULL; 3263 } 3264 3265 return name; 3266 } 3267 3268 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3269 { 3270 Elf_Data *data; 3271 3272 if (!scn) 3273 return NULL; 3274 3275 data = elf_getdata(scn, 0); 3276 if (!data) { 3277 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3278 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3279 obj->path, elf_errmsg(-1)); 3280 return NULL; 3281 } 3282 3283 return data; 3284 } 3285 3286 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3287 { 3288 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3289 return NULL; 3290 3291 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3292 } 3293 3294 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3295 { 3296 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3297 return NULL; 3298 3299 return (Elf64_Rel *)data->d_buf + idx; 3300 } 3301 3302 static bool is_sec_name_dwarf(const char *name) 3303 { 3304 /* approximation, but the actual list is too long */ 3305 return str_has_pfx(name, ".debug_"); 3306 } 3307 3308 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3309 { 3310 /* no special handling of .strtab */ 3311 if (hdr->sh_type == SHT_STRTAB) 3312 return true; 3313 3314 /* ignore .llvm_addrsig section as well */ 3315 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3316 return true; 3317 3318 /* no subprograms will lead to an empty .text section, ignore it */ 3319 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3320 strcmp(name, ".text") == 0) 3321 return true; 3322 3323 /* DWARF sections */ 3324 if (is_sec_name_dwarf(name)) 3325 return true; 3326 3327 if (str_has_pfx(name, ".rel")) { 3328 name += sizeof(".rel") - 1; 3329 /* DWARF section relocations */ 3330 if (is_sec_name_dwarf(name)) 3331 return true; 3332 3333 /* .BTF and .BTF.ext don't need relocations */ 3334 if (strcmp(name, BTF_ELF_SEC) == 0 || 3335 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3336 return true; 3337 } 3338 3339 return false; 3340 } 3341 3342 static int cmp_progs(const void *_a, const void *_b) 3343 { 3344 const struct bpf_program *a = _a; 3345 const struct bpf_program *b = _b; 3346 3347 if (a->sec_idx != b->sec_idx) 3348 return a->sec_idx < b->sec_idx ? -1 : 1; 3349 3350 /* sec_insn_off can't be the same within the section */ 3351 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3352 } 3353 3354 static int bpf_object__elf_collect(struct bpf_object *obj) 3355 { 3356 struct elf_sec_desc *sec_desc; 3357 Elf *elf = obj->efile.elf; 3358 Elf_Data *btf_ext_data = NULL; 3359 Elf_Data *btf_data = NULL; 3360 int idx = 0, err = 0; 3361 const char *name; 3362 Elf_Data *data; 3363 Elf_Scn *scn; 3364 Elf64_Shdr *sh; 3365 3366 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3367 * section. Since section count retrieved by elf_getshdrnum() does 3368 * include sec #0, it is already the necessary size of an array to keep 3369 * all the sections. 3370 */ 3371 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3372 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3373 obj->path, elf_errmsg(-1)); 3374 return -LIBBPF_ERRNO__FORMAT; 3375 } 3376 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3377 if (!obj->efile.secs) 3378 return -ENOMEM; 3379 3380 /* a bunch of ELF parsing functionality depends on processing symbols, 3381 * so do the first pass and find the symbol table 3382 */ 3383 scn = NULL; 3384 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3385 sh = elf_sec_hdr(obj, scn); 3386 if (!sh) 3387 return -LIBBPF_ERRNO__FORMAT; 3388 3389 if (sh->sh_type == SHT_SYMTAB) { 3390 if (obj->efile.symbols) { 3391 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3392 return -LIBBPF_ERRNO__FORMAT; 3393 } 3394 3395 data = elf_sec_data(obj, scn); 3396 if (!data) 3397 return -LIBBPF_ERRNO__FORMAT; 3398 3399 idx = elf_ndxscn(scn); 3400 3401 obj->efile.symbols = data; 3402 obj->efile.symbols_shndx = idx; 3403 obj->efile.strtabidx = sh->sh_link; 3404 } 3405 } 3406 3407 if (!obj->efile.symbols) { 3408 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3409 obj->path); 3410 return -ENOENT; 3411 } 3412 3413 scn = NULL; 3414 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3415 idx = elf_ndxscn(scn); 3416 sec_desc = &obj->efile.secs[idx]; 3417 3418 sh = elf_sec_hdr(obj, scn); 3419 if (!sh) 3420 return -LIBBPF_ERRNO__FORMAT; 3421 3422 name = elf_sec_str(obj, sh->sh_name); 3423 if (!name) 3424 return -LIBBPF_ERRNO__FORMAT; 3425 3426 if (ignore_elf_section(sh, name)) 3427 continue; 3428 3429 data = elf_sec_data(obj, scn); 3430 if (!data) 3431 return -LIBBPF_ERRNO__FORMAT; 3432 3433 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3434 idx, name, (unsigned long)data->d_size, 3435 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3436 (int)sh->sh_type); 3437 3438 if (strcmp(name, "license") == 0) { 3439 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3440 if (err) 3441 return err; 3442 } else if (strcmp(name, "version") == 0) { 3443 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3444 if (err) 3445 return err; 3446 } else if (strcmp(name, "maps") == 0) { 3447 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3448 return -ENOTSUP; 3449 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3450 obj->efile.btf_maps_shndx = idx; 3451 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3452 if (sh->sh_type != SHT_PROGBITS) 3453 return -LIBBPF_ERRNO__FORMAT; 3454 btf_data = data; 3455 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3456 if (sh->sh_type != SHT_PROGBITS) 3457 return -LIBBPF_ERRNO__FORMAT; 3458 btf_ext_data = data; 3459 } else if (sh->sh_type == SHT_SYMTAB) { 3460 /* already processed during the first pass above */ 3461 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3462 if (sh->sh_flags & SHF_EXECINSTR) { 3463 if (strcmp(name, ".text") == 0) 3464 obj->efile.text_shndx = idx; 3465 err = bpf_object__add_programs(obj, data, name, idx); 3466 if (err) 3467 return err; 3468 } else if (strcmp(name, DATA_SEC) == 0 || 3469 str_has_pfx(name, DATA_SEC ".")) { 3470 sec_desc->sec_type = SEC_DATA; 3471 sec_desc->shdr = sh; 3472 sec_desc->data = data; 3473 } else if (strcmp(name, RODATA_SEC) == 0 || 3474 str_has_pfx(name, RODATA_SEC ".")) { 3475 sec_desc->sec_type = SEC_RODATA; 3476 sec_desc->shdr = sh; 3477 sec_desc->data = data; 3478 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3479 obj->efile.st_ops_data = data; 3480 obj->efile.st_ops_shndx = idx; 3481 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3482 obj->efile.st_ops_link_data = data; 3483 obj->efile.st_ops_link_shndx = idx; 3484 } else { 3485 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3486 idx, name); 3487 } 3488 } else if (sh->sh_type == SHT_REL) { 3489 int targ_sec_idx = sh->sh_info; /* points to other section */ 3490 3491 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3492 targ_sec_idx >= obj->efile.sec_cnt) 3493 return -LIBBPF_ERRNO__FORMAT; 3494 3495 /* Only do relo for section with exec instructions */ 3496 if (!section_have_execinstr(obj, targ_sec_idx) && 3497 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3498 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3499 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3500 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3501 idx, name, targ_sec_idx, 3502 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3503 continue; 3504 } 3505 3506 sec_desc->sec_type = SEC_RELO; 3507 sec_desc->shdr = sh; 3508 sec_desc->data = data; 3509 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3510 str_has_pfx(name, BSS_SEC "."))) { 3511 sec_desc->sec_type = SEC_BSS; 3512 sec_desc->shdr = sh; 3513 sec_desc->data = data; 3514 } else { 3515 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3516 (size_t)sh->sh_size); 3517 } 3518 } 3519 3520 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3521 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3522 return -LIBBPF_ERRNO__FORMAT; 3523 } 3524 3525 /* sort BPF programs by section name and in-section instruction offset 3526 * for faster search 3527 */ 3528 if (obj->nr_programs) 3529 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3530 3531 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3532 } 3533 3534 static bool sym_is_extern(const Elf64_Sym *sym) 3535 { 3536 int bind = ELF64_ST_BIND(sym->st_info); 3537 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3538 return sym->st_shndx == SHN_UNDEF && 3539 (bind == STB_GLOBAL || bind == STB_WEAK) && 3540 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3541 } 3542 3543 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3544 { 3545 int bind = ELF64_ST_BIND(sym->st_info); 3546 int type = ELF64_ST_TYPE(sym->st_info); 3547 3548 /* in .text section */ 3549 if (sym->st_shndx != text_shndx) 3550 return false; 3551 3552 /* local function */ 3553 if (bind == STB_LOCAL && type == STT_SECTION) 3554 return true; 3555 3556 /* global function */ 3557 return bind == STB_GLOBAL && type == STT_FUNC; 3558 } 3559 3560 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3561 { 3562 const struct btf_type *t; 3563 const char *tname; 3564 int i, n; 3565 3566 if (!btf) 3567 return -ESRCH; 3568 3569 n = btf__type_cnt(btf); 3570 for (i = 1; i < n; i++) { 3571 t = btf__type_by_id(btf, i); 3572 3573 if (!btf_is_var(t) && !btf_is_func(t)) 3574 continue; 3575 3576 tname = btf__name_by_offset(btf, t->name_off); 3577 if (strcmp(tname, ext_name)) 3578 continue; 3579 3580 if (btf_is_var(t) && 3581 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3582 return -EINVAL; 3583 3584 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3585 return -EINVAL; 3586 3587 return i; 3588 } 3589 3590 return -ENOENT; 3591 } 3592 3593 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3594 const struct btf_var_secinfo *vs; 3595 const struct btf_type *t; 3596 int i, j, n; 3597 3598 if (!btf) 3599 return -ESRCH; 3600 3601 n = btf__type_cnt(btf); 3602 for (i = 1; i < n; i++) { 3603 t = btf__type_by_id(btf, i); 3604 3605 if (!btf_is_datasec(t)) 3606 continue; 3607 3608 vs = btf_var_secinfos(t); 3609 for (j = 0; j < btf_vlen(t); j++, vs++) { 3610 if (vs->type == ext_btf_id) 3611 return i; 3612 } 3613 } 3614 3615 return -ENOENT; 3616 } 3617 3618 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3619 bool *is_signed) 3620 { 3621 const struct btf_type *t; 3622 const char *name; 3623 3624 t = skip_mods_and_typedefs(btf, id, NULL); 3625 name = btf__name_by_offset(btf, t->name_off); 3626 3627 if (is_signed) 3628 *is_signed = false; 3629 switch (btf_kind(t)) { 3630 case BTF_KIND_INT: { 3631 int enc = btf_int_encoding(t); 3632 3633 if (enc & BTF_INT_BOOL) 3634 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3635 if (is_signed) 3636 *is_signed = enc & BTF_INT_SIGNED; 3637 if (t->size == 1) 3638 return KCFG_CHAR; 3639 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3640 return KCFG_UNKNOWN; 3641 return KCFG_INT; 3642 } 3643 case BTF_KIND_ENUM: 3644 if (t->size != 4) 3645 return KCFG_UNKNOWN; 3646 if (strcmp(name, "libbpf_tristate")) 3647 return KCFG_UNKNOWN; 3648 return KCFG_TRISTATE; 3649 case BTF_KIND_ENUM64: 3650 if (strcmp(name, "libbpf_tristate")) 3651 return KCFG_UNKNOWN; 3652 return KCFG_TRISTATE; 3653 case BTF_KIND_ARRAY: 3654 if (btf_array(t)->nelems == 0) 3655 return KCFG_UNKNOWN; 3656 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3657 return KCFG_UNKNOWN; 3658 return KCFG_CHAR_ARR; 3659 default: 3660 return KCFG_UNKNOWN; 3661 } 3662 } 3663 3664 static int cmp_externs(const void *_a, const void *_b) 3665 { 3666 const struct extern_desc *a = _a; 3667 const struct extern_desc *b = _b; 3668 3669 if (a->type != b->type) 3670 return a->type < b->type ? -1 : 1; 3671 3672 if (a->type == EXT_KCFG) { 3673 /* descending order by alignment requirements */ 3674 if (a->kcfg.align != b->kcfg.align) 3675 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3676 /* ascending order by size, within same alignment class */ 3677 if (a->kcfg.sz != b->kcfg.sz) 3678 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3679 } 3680 3681 /* resolve ties by name */ 3682 return strcmp(a->name, b->name); 3683 } 3684 3685 static int find_int_btf_id(const struct btf *btf) 3686 { 3687 const struct btf_type *t; 3688 int i, n; 3689 3690 n = btf__type_cnt(btf); 3691 for (i = 1; i < n; i++) { 3692 t = btf__type_by_id(btf, i); 3693 3694 if (btf_is_int(t) && btf_int_bits(t) == 32) 3695 return i; 3696 } 3697 3698 return 0; 3699 } 3700 3701 static int add_dummy_ksym_var(struct btf *btf) 3702 { 3703 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3704 const struct btf_var_secinfo *vs; 3705 const struct btf_type *sec; 3706 3707 if (!btf) 3708 return 0; 3709 3710 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3711 BTF_KIND_DATASEC); 3712 if (sec_btf_id < 0) 3713 return 0; 3714 3715 sec = btf__type_by_id(btf, sec_btf_id); 3716 vs = btf_var_secinfos(sec); 3717 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3718 const struct btf_type *vt; 3719 3720 vt = btf__type_by_id(btf, vs->type); 3721 if (btf_is_func(vt)) 3722 break; 3723 } 3724 3725 /* No func in ksyms sec. No need to add dummy var. */ 3726 if (i == btf_vlen(sec)) 3727 return 0; 3728 3729 int_btf_id = find_int_btf_id(btf); 3730 dummy_var_btf_id = btf__add_var(btf, 3731 "dummy_ksym", 3732 BTF_VAR_GLOBAL_ALLOCATED, 3733 int_btf_id); 3734 if (dummy_var_btf_id < 0) 3735 pr_warn("cannot create a dummy_ksym var\n"); 3736 3737 return dummy_var_btf_id; 3738 } 3739 3740 static int bpf_object__collect_externs(struct bpf_object *obj) 3741 { 3742 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3743 const struct btf_type *t; 3744 struct extern_desc *ext; 3745 int i, n, off, dummy_var_btf_id; 3746 const char *ext_name, *sec_name; 3747 Elf_Scn *scn; 3748 Elf64_Shdr *sh; 3749 3750 if (!obj->efile.symbols) 3751 return 0; 3752 3753 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3754 sh = elf_sec_hdr(obj, scn); 3755 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3756 return -LIBBPF_ERRNO__FORMAT; 3757 3758 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3759 if (dummy_var_btf_id < 0) 3760 return dummy_var_btf_id; 3761 3762 n = sh->sh_size / sh->sh_entsize; 3763 pr_debug("looking for externs among %d symbols...\n", n); 3764 3765 for (i = 0; i < n; i++) { 3766 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3767 3768 if (!sym) 3769 return -LIBBPF_ERRNO__FORMAT; 3770 if (!sym_is_extern(sym)) 3771 continue; 3772 ext_name = elf_sym_str(obj, sym->st_name); 3773 if (!ext_name || !ext_name[0]) 3774 continue; 3775 3776 ext = obj->externs; 3777 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3778 if (!ext) 3779 return -ENOMEM; 3780 obj->externs = ext; 3781 ext = &ext[obj->nr_extern]; 3782 memset(ext, 0, sizeof(*ext)); 3783 obj->nr_extern++; 3784 3785 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3786 if (ext->btf_id <= 0) { 3787 pr_warn("failed to find BTF for extern '%s': %d\n", 3788 ext_name, ext->btf_id); 3789 return ext->btf_id; 3790 } 3791 t = btf__type_by_id(obj->btf, ext->btf_id); 3792 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3793 ext->sym_idx = i; 3794 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3795 3796 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3797 if (ext->sec_btf_id <= 0) { 3798 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3799 ext_name, ext->btf_id, ext->sec_btf_id); 3800 return ext->sec_btf_id; 3801 } 3802 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3803 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3804 3805 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3806 if (btf_is_func(t)) { 3807 pr_warn("extern function %s is unsupported under %s section\n", 3808 ext->name, KCONFIG_SEC); 3809 return -ENOTSUP; 3810 } 3811 kcfg_sec = sec; 3812 ext->type = EXT_KCFG; 3813 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3814 if (ext->kcfg.sz <= 0) { 3815 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3816 ext_name, ext->kcfg.sz); 3817 return ext->kcfg.sz; 3818 } 3819 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3820 if (ext->kcfg.align <= 0) { 3821 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3822 ext_name, ext->kcfg.align); 3823 return -EINVAL; 3824 } 3825 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3826 &ext->kcfg.is_signed); 3827 if (ext->kcfg.type == KCFG_UNKNOWN) { 3828 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3829 return -ENOTSUP; 3830 } 3831 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3832 ksym_sec = sec; 3833 ext->type = EXT_KSYM; 3834 skip_mods_and_typedefs(obj->btf, t->type, 3835 &ext->ksym.type_id); 3836 } else { 3837 pr_warn("unrecognized extern section '%s'\n", sec_name); 3838 return -ENOTSUP; 3839 } 3840 } 3841 pr_debug("collected %d externs total\n", obj->nr_extern); 3842 3843 if (!obj->nr_extern) 3844 return 0; 3845 3846 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3847 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3848 3849 /* for .ksyms section, we need to turn all externs into allocated 3850 * variables in BTF to pass kernel verification; we do this by 3851 * pretending that each extern is a 8-byte variable 3852 */ 3853 if (ksym_sec) { 3854 /* find existing 4-byte integer type in BTF to use for fake 3855 * extern variables in DATASEC 3856 */ 3857 int int_btf_id = find_int_btf_id(obj->btf); 3858 /* For extern function, a dummy_var added earlier 3859 * will be used to replace the vs->type and 3860 * its name string will be used to refill 3861 * the missing param's name. 3862 */ 3863 const struct btf_type *dummy_var; 3864 3865 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3866 for (i = 0; i < obj->nr_extern; i++) { 3867 ext = &obj->externs[i]; 3868 if (ext->type != EXT_KSYM) 3869 continue; 3870 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3871 i, ext->sym_idx, ext->name); 3872 } 3873 3874 sec = ksym_sec; 3875 n = btf_vlen(sec); 3876 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3877 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3878 struct btf_type *vt; 3879 3880 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3881 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3882 ext = find_extern_by_name(obj, ext_name); 3883 if (!ext) { 3884 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3885 btf_kind_str(vt), ext_name); 3886 return -ESRCH; 3887 } 3888 if (btf_is_func(vt)) { 3889 const struct btf_type *func_proto; 3890 struct btf_param *param; 3891 int j; 3892 3893 func_proto = btf__type_by_id(obj->btf, 3894 vt->type); 3895 param = btf_params(func_proto); 3896 /* Reuse the dummy_var string if the 3897 * func proto does not have param name. 3898 */ 3899 for (j = 0; j < btf_vlen(func_proto); j++) 3900 if (param[j].type && !param[j].name_off) 3901 param[j].name_off = 3902 dummy_var->name_off; 3903 vs->type = dummy_var_btf_id; 3904 vt->info &= ~0xffff; 3905 vt->info |= BTF_FUNC_GLOBAL; 3906 } else { 3907 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3908 vt->type = int_btf_id; 3909 } 3910 vs->offset = off; 3911 vs->size = sizeof(int); 3912 } 3913 sec->size = off; 3914 } 3915 3916 if (kcfg_sec) { 3917 sec = kcfg_sec; 3918 /* for kcfg externs calculate their offsets within a .kconfig map */ 3919 off = 0; 3920 for (i = 0; i < obj->nr_extern; i++) { 3921 ext = &obj->externs[i]; 3922 if (ext->type != EXT_KCFG) 3923 continue; 3924 3925 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3926 off = ext->kcfg.data_off + ext->kcfg.sz; 3927 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3928 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3929 } 3930 sec->size = off; 3931 n = btf_vlen(sec); 3932 for (i = 0; i < n; i++) { 3933 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3934 3935 t = btf__type_by_id(obj->btf, vs->type); 3936 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3937 ext = find_extern_by_name(obj, ext_name); 3938 if (!ext) { 3939 pr_warn("failed to find extern definition for BTF var '%s'\n", 3940 ext_name); 3941 return -ESRCH; 3942 } 3943 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3944 vs->offset = ext->kcfg.data_off; 3945 } 3946 } 3947 return 0; 3948 } 3949 3950 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3951 { 3952 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3953 } 3954 3955 struct bpf_program * 3956 bpf_object__find_program_by_name(const struct bpf_object *obj, 3957 const char *name) 3958 { 3959 struct bpf_program *prog; 3960 3961 bpf_object__for_each_program(prog, obj) { 3962 if (prog_is_subprog(obj, prog)) 3963 continue; 3964 if (!strcmp(prog->name, name)) 3965 return prog; 3966 } 3967 return errno = ENOENT, NULL; 3968 } 3969 3970 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3971 int shndx) 3972 { 3973 switch (obj->efile.secs[shndx].sec_type) { 3974 case SEC_BSS: 3975 case SEC_DATA: 3976 case SEC_RODATA: 3977 return true; 3978 default: 3979 return false; 3980 } 3981 } 3982 3983 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3984 int shndx) 3985 { 3986 return shndx == obj->efile.btf_maps_shndx; 3987 } 3988 3989 static enum libbpf_map_type 3990 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3991 { 3992 if (shndx == obj->efile.symbols_shndx) 3993 return LIBBPF_MAP_KCONFIG; 3994 3995 switch (obj->efile.secs[shndx].sec_type) { 3996 case SEC_BSS: 3997 return LIBBPF_MAP_BSS; 3998 case SEC_DATA: 3999 return LIBBPF_MAP_DATA; 4000 case SEC_RODATA: 4001 return LIBBPF_MAP_RODATA; 4002 default: 4003 return LIBBPF_MAP_UNSPEC; 4004 } 4005 } 4006 4007 static int bpf_program__record_reloc(struct bpf_program *prog, 4008 struct reloc_desc *reloc_desc, 4009 __u32 insn_idx, const char *sym_name, 4010 const Elf64_Sym *sym, const Elf64_Rel *rel) 4011 { 4012 struct bpf_insn *insn = &prog->insns[insn_idx]; 4013 size_t map_idx, nr_maps = prog->obj->nr_maps; 4014 struct bpf_object *obj = prog->obj; 4015 __u32 shdr_idx = sym->st_shndx; 4016 enum libbpf_map_type type; 4017 const char *sym_sec_name; 4018 struct bpf_map *map; 4019 4020 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4021 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4022 prog->name, sym_name, insn_idx, insn->code); 4023 return -LIBBPF_ERRNO__RELOC; 4024 } 4025 4026 if (sym_is_extern(sym)) { 4027 int sym_idx = ELF64_R_SYM(rel->r_info); 4028 int i, n = obj->nr_extern; 4029 struct extern_desc *ext; 4030 4031 for (i = 0; i < n; i++) { 4032 ext = &obj->externs[i]; 4033 if (ext->sym_idx == sym_idx) 4034 break; 4035 } 4036 if (i >= n) { 4037 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4038 prog->name, sym_name, sym_idx); 4039 return -LIBBPF_ERRNO__RELOC; 4040 } 4041 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4042 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4043 if (insn->code == (BPF_JMP | BPF_CALL)) 4044 reloc_desc->type = RELO_EXTERN_CALL; 4045 else 4046 reloc_desc->type = RELO_EXTERN_LD64; 4047 reloc_desc->insn_idx = insn_idx; 4048 reloc_desc->ext_idx = i; 4049 return 0; 4050 } 4051 4052 /* sub-program call relocation */ 4053 if (is_call_insn(insn)) { 4054 if (insn->src_reg != BPF_PSEUDO_CALL) { 4055 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4056 return -LIBBPF_ERRNO__RELOC; 4057 } 4058 /* text_shndx can be 0, if no default "main" program exists */ 4059 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4060 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4061 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4062 prog->name, sym_name, sym_sec_name); 4063 return -LIBBPF_ERRNO__RELOC; 4064 } 4065 if (sym->st_value % BPF_INSN_SZ) { 4066 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4067 prog->name, sym_name, (size_t)sym->st_value); 4068 return -LIBBPF_ERRNO__RELOC; 4069 } 4070 reloc_desc->type = RELO_CALL; 4071 reloc_desc->insn_idx = insn_idx; 4072 reloc_desc->sym_off = sym->st_value; 4073 return 0; 4074 } 4075 4076 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4077 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4078 prog->name, sym_name, shdr_idx); 4079 return -LIBBPF_ERRNO__RELOC; 4080 } 4081 4082 /* loading subprog addresses */ 4083 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4084 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4085 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4086 */ 4087 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4088 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4089 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4090 return -LIBBPF_ERRNO__RELOC; 4091 } 4092 4093 reloc_desc->type = RELO_SUBPROG_ADDR; 4094 reloc_desc->insn_idx = insn_idx; 4095 reloc_desc->sym_off = sym->st_value; 4096 return 0; 4097 } 4098 4099 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4100 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4101 4102 /* generic map reference relocation */ 4103 if (type == LIBBPF_MAP_UNSPEC) { 4104 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4105 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4106 prog->name, sym_name, sym_sec_name); 4107 return -LIBBPF_ERRNO__RELOC; 4108 } 4109 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4110 map = &obj->maps[map_idx]; 4111 if (map->libbpf_type != type || 4112 map->sec_idx != sym->st_shndx || 4113 map->sec_offset != sym->st_value) 4114 continue; 4115 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4116 prog->name, map_idx, map->name, map->sec_idx, 4117 map->sec_offset, insn_idx); 4118 break; 4119 } 4120 if (map_idx >= nr_maps) { 4121 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4122 prog->name, sym_sec_name, (size_t)sym->st_value); 4123 return -LIBBPF_ERRNO__RELOC; 4124 } 4125 reloc_desc->type = RELO_LD64; 4126 reloc_desc->insn_idx = insn_idx; 4127 reloc_desc->map_idx = map_idx; 4128 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4129 return 0; 4130 } 4131 4132 /* global data map relocation */ 4133 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4134 pr_warn("prog '%s': bad data relo against section '%s'\n", 4135 prog->name, sym_sec_name); 4136 return -LIBBPF_ERRNO__RELOC; 4137 } 4138 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4139 map = &obj->maps[map_idx]; 4140 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4141 continue; 4142 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4143 prog->name, map_idx, map->name, map->sec_idx, 4144 map->sec_offset, insn_idx); 4145 break; 4146 } 4147 if (map_idx >= nr_maps) { 4148 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4149 prog->name, sym_sec_name); 4150 return -LIBBPF_ERRNO__RELOC; 4151 } 4152 4153 reloc_desc->type = RELO_DATA; 4154 reloc_desc->insn_idx = insn_idx; 4155 reloc_desc->map_idx = map_idx; 4156 reloc_desc->sym_off = sym->st_value; 4157 return 0; 4158 } 4159 4160 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4161 { 4162 return insn_idx >= prog->sec_insn_off && 4163 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4164 } 4165 4166 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4167 size_t sec_idx, size_t insn_idx) 4168 { 4169 int l = 0, r = obj->nr_programs - 1, m; 4170 struct bpf_program *prog; 4171 4172 if (!obj->nr_programs) 4173 return NULL; 4174 4175 while (l < r) { 4176 m = l + (r - l + 1) / 2; 4177 prog = &obj->programs[m]; 4178 4179 if (prog->sec_idx < sec_idx || 4180 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4181 l = m; 4182 else 4183 r = m - 1; 4184 } 4185 /* matching program could be at index l, but it still might be the 4186 * wrong one, so we need to double check conditions for the last time 4187 */ 4188 prog = &obj->programs[l]; 4189 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4190 return prog; 4191 return NULL; 4192 } 4193 4194 static int 4195 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4196 { 4197 const char *relo_sec_name, *sec_name; 4198 size_t sec_idx = shdr->sh_info, sym_idx; 4199 struct bpf_program *prog; 4200 struct reloc_desc *relos; 4201 int err, i, nrels; 4202 const char *sym_name; 4203 __u32 insn_idx; 4204 Elf_Scn *scn; 4205 Elf_Data *scn_data; 4206 Elf64_Sym *sym; 4207 Elf64_Rel *rel; 4208 4209 if (sec_idx >= obj->efile.sec_cnt) 4210 return -EINVAL; 4211 4212 scn = elf_sec_by_idx(obj, sec_idx); 4213 scn_data = elf_sec_data(obj, scn); 4214 4215 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4216 sec_name = elf_sec_name(obj, scn); 4217 if (!relo_sec_name || !sec_name) 4218 return -EINVAL; 4219 4220 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4221 relo_sec_name, sec_idx, sec_name); 4222 nrels = shdr->sh_size / shdr->sh_entsize; 4223 4224 for (i = 0; i < nrels; i++) { 4225 rel = elf_rel_by_idx(data, i); 4226 if (!rel) { 4227 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4228 return -LIBBPF_ERRNO__FORMAT; 4229 } 4230 4231 sym_idx = ELF64_R_SYM(rel->r_info); 4232 sym = elf_sym_by_idx(obj, sym_idx); 4233 if (!sym) { 4234 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4235 relo_sec_name, sym_idx, i); 4236 return -LIBBPF_ERRNO__FORMAT; 4237 } 4238 4239 if (sym->st_shndx >= obj->efile.sec_cnt) { 4240 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4241 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4242 return -LIBBPF_ERRNO__FORMAT; 4243 } 4244 4245 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4246 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4247 relo_sec_name, (size_t)rel->r_offset, i); 4248 return -LIBBPF_ERRNO__FORMAT; 4249 } 4250 4251 insn_idx = rel->r_offset / BPF_INSN_SZ; 4252 /* relocations against static functions are recorded as 4253 * relocations against the section that contains a function; 4254 * in such case, symbol will be STT_SECTION and sym.st_name 4255 * will point to empty string (0), so fetch section name 4256 * instead 4257 */ 4258 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4259 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4260 else 4261 sym_name = elf_sym_str(obj, sym->st_name); 4262 sym_name = sym_name ?: "<?"; 4263 4264 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4265 relo_sec_name, i, insn_idx, sym_name); 4266 4267 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4268 if (!prog) { 4269 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4270 relo_sec_name, i, sec_name, insn_idx); 4271 continue; 4272 } 4273 4274 relos = libbpf_reallocarray(prog->reloc_desc, 4275 prog->nr_reloc + 1, sizeof(*relos)); 4276 if (!relos) 4277 return -ENOMEM; 4278 prog->reloc_desc = relos; 4279 4280 /* adjust insn_idx to local BPF program frame of reference */ 4281 insn_idx -= prog->sec_insn_off; 4282 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4283 insn_idx, sym_name, sym, rel); 4284 if (err) 4285 return err; 4286 4287 prog->nr_reloc++; 4288 } 4289 return 0; 4290 } 4291 4292 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4293 { 4294 int id; 4295 4296 if (!obj->btf) 4297 return -ENOENT; 4298 4299 /* if it's BTF-defined map, we don't need to search for type IDs. 4300 * For struct_ops map, it does not need btf_key_type_id and 4301 * btf_value_type_id. 4302 */ 4303 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4304 return 0; 4305 4306 /* 4307 * LLVM annotates global data differently in BTF, that is, 4308 * only as '.data', '.bss' or '.rodata'. 4309 */ 4310 if (!bpf_map__is_internal(map)) 4311 return -ENOENT; 4312 4313 id = btf__find_by_name(obj->btf, map->real_name); 4314 if (id < 0) 4315 return id; 4316 4317 map->btf_key_type_id = 0; 4318 map->btf_value_type_id = id; 4319 return 0; 4320 } 4321 4322 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4323 { 4324 char file[PATH_MAX], buff[4096]; 4325 FILE *fp; 4326 __u32 val; 4327 int err; 4328 4329 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4330 memset(info, 0, sizeof(*info)); 4331 4332 fp = fopen(file, "r"); 4333 if (!fp) { 4334 err = -errno; 4335 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4336 err); 4337 return err; 4338 } 4339 4340 while (fgets(buff, sizeof(buff), fp)) { 4341 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4342 info->type = val; 4343 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4344 info->key_size = val; 4345 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4346 info->value_size = val; 4347 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4348 info->max_entries = val; 4349 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4350 info->map_flags = val; 4351 } 4352 4353 fclose(fp); 4354 4355 return 0; 4356 } 4357 4358 bool bpf_map__autocreate(const struct bpf_map *map) 4359 { 4360 return map->autocreate; 4361 } 4362 4363 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4364 { 4365 if (map->obj->loaded) 4366 return libbpf_err(-EBUSY); 4367 4368 map->autocreate = autocreate; 4369 return 0; 4370 } 4371 4372 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4373 { 4374 struct bpf_map_info info; 4375 __u32 len = sizeof(info), name_len; 4376 int new_fd, err; 4377 char *new_name; 4378 4379 memset(&info, 0, len); 4380 err = bpf_map_get_info_by_fd(fd, &info, &len); 4381 if (err && errno == EINVAL) 4382 err = bpf_get_map_info_from_fdinfo(fd, &info); 4383 if (err) 4384 return libbpf_err(err); 4385 4386 name_len = strlen(info.name); 4387 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4388 new_name = strdup(map->name); 4389 else 4390 new_name = strdup(info.name); 4391 4392 if (!new_name) 4393 return libbpf_err(-errno); 4394 4395 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4396 if (new_fd < 0) { 4397 err = -errno; 4398 goto err_free_new_name; 4399 } 4400 4401 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4402 if (new_fd < 0) { 4403 err = -errno; 4404 goto err_close_new_fd; 4405 } 4406 4407 err = zclose(map->fd); 4408 if (err) { 4409 err = -errno; 4410 goto err_close_new_fd; 4411 } 4412 free(map->name); 4413 4414 map->fd = new_fd; 4415 map->name = new_name; 4416 map->def.type = info.type; 4417 map->def.key_size = info.key_size; 4418 map->def.value_size = info.value_size; 4419 map->def.max_entries = info.max_entries; 4420 map->def.map_flags = info.map_flags; 4421 map->btf_key_type_id = info.btf_key_type_id; 4422 map->btf_value_type_id = info.btf_value_type_id; 4423 map->reused = true; 4424 map->map_extra = info.map_extra; 4425 4426 return 0; 4427 4428 err_close_new_fd: 4429 close(new_fd); 4430 err_free_new_name: 4431 free(new_name); 4432 return libbpf_err(err); 4433 } 4434 4435 __u32 bpf_map__max_entries(const struct bpf_map *map) 4436 { 4437 return map->def.max_entries; 4438 } 4439 4440 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4441 { 4442 if (!bpf_map_type__is_map_in_map(map->def.type)) 4443 return errno = EINVAL, NULL; 4444 4445 return map->inner_map; 4446 } 4447 4448 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4449 { 4450 if (map->obj->loaded) 4451 return libbpf_err(-EBUSY); 4452 4453 map->def.max_entries = max_entries; 4454 4455 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4456 if (map_is_ringbuf(map)) 4457 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4458 4459 return 0; 4460 } 4461 4462 static int 4463 bpf_object__probe_loading(struct bpf_object *obj) 4464 { 4465 char *cp, errmsg[STRERR_BUFSIZE]; 4466 struct bpf_insn insns[] = { 4467 BPF_MOV64_IMM(BPF_REG_0, 0), 4468 BPF_EXIT_INSN(), 4469 }; 4470 int ret, insn_cnt = ARRAY_SIZE(insns); 4471 4472 if (obj->gen_loader) 4473 return 0; 4474 4475 ret = bump_rlimit_memlock(); 4476 if (ret) 4477 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4478 4479 /* make sure basic loading works */ 4480 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4481 if (ret < 0) 4482 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4483 if (ret < 0) { 4484 ret = errno; 4485 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4486 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4487 "program. Make sure your kernel supports BPF " 4488 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4489 "set to big enough value.\n", __func__, cp, ret); 4490 return -ret; 4491 } 4492 close(ret); 4493 4494 return 0; 4495 } 4496 4497 static int probe_fd(int fd) 4498 { 4499 if (fd >= 0) 4500 close(fd); 4501 return fd >= 0; 4502 } 4503 4504 static int probe_kern_prog_name(void) 4505 { 4506 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4507 struct bpf_insn insns[] = { 4508 BPF_MOV64_IMM(BPF_REG_0, 0), 4509 BPF_EXIT_INSN(), 4510 }; 4511 union bpf_attr attr; 4512 int ret; 4513 4514 memset(&attr, 0, attr_sz); 4515 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4516 attr.license = ptr_to_u64("GPL"); 4517 attr.insns = ptr_to_u64(insns); 4518 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4519 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4520 4521 /* make sure loading with name works */ 4522 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4523 return probe_fd(ret); 4524 } 4525 4526 static int probe_kern_global_data(void) 4527 { 4528 char *cp, errmsg[STRERR_BUFSIZE]; 4529 struct bpf_insn insns[] = { 4530 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4531 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4532 BPF_MOV64_IMM(BPF_REG_0, 0), 4533 BPF_EXIT_INSN(), 4534 }; 4535 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4536 4537 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4538 if (map < 0) { 4539 ret = -errno; 4540 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4541 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4542 __func__, cp, -ret); 4543 return ret; 4544 } 4545 4546 insns[0].imm = map; 4547 4548 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4549 close(map); 4550 return probe_fd(ret); 4551 } 4552 4553 static int probe_kern_btf(void) 4554 { 4555 static const char strs[] = "\0int"; 4556 __u32 types[] = { 4557 /* int */ 4558 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4559 }; 4560 4561 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4562 strs, sizeof(strs))); 4563 } 4564 4565 static int probe_kern_btf_func(void) 4566 { 4567 static const char strs[] = "\0int\0x\0a"; 4568 /* void x(int a) {} */ 4569 __u32 types[] = { 4570 /* int */ 4571 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4572 /* FUNC_PROTO */ /* [2] */ 4573 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4574 BTF_PARAM_ENC(7, 1), 4575 /* FUNC x */ /* [3] */ 4576 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4577 }; 4578 4579 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4580 strs, sizeof(strs))); 4581 } 4582 4583 static int probe_kern_btf_func_global(void) 4584 { 4585 static const char strs[] = "\0int\0x\0a"; 4586 /* static void x(int a) {} */ 4587 __u32 types[] = { 4588 /* int */ 4589 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4590 /* FUNC_PROTO */ /* [2] */ 4591 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4592 BTF_PARAM_ENC(7, 1), 4593 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4594 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4595 }; 4596 4597 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4598 strs, sizeof(strs))); 4599 } 4600 4601 static int probe_kern_btf_datasec(void) 4602 { 4603 static const char strs[] = "\0x\0.data"; 4604 /* static int a; */ 4605 __u32 types[] = { 4606 /* int */ 4607 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4608 /* VAR x */ /* [2] */ 4609 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4610 BTF_VAR_STATIC, 4611 /* DATASEC val */ /* [3] */ 4612 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4613 BTF_VAR_SECINFO_ENC(2, 0, 4), 4614 }; 4615 4616 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4617 strs, sizeof(strs))); 4618 } 4619 4620 static int probe_kern_btf_float(void) 4621 { 4622 static const char strs[] = "\0float"; 4623 __u32 types[] = { 4624 /* float */ 4625 BTF_TYPE_FLOAT_ENC(1, 4), 4626 }; 4627 4628 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4629 strs, sizeof(strs))); 4630 } 4631 4632 static int probe_kern_btf_decl_tag(void) 4633 { 4634 static const char strs[] = "\0tag"; 4635 __u32 types[] = { 4636 /* int */ 4637 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4638 /* VAR x */ /* [2] */ 4639 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4640 BTF_VAR_STATIC, 4641 /* attr */ 4642 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4643 }; 4644 4645 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4646 strs, sizeof(strs))); 4647 } 4648 4649 static int probe_kern_btf_type_tag(void) 4650 { 4651 static const char strs[] = "\0tag"; 4652 __u32 types[] = { 4653 /* int */ 4654 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4655 /* attr */ 4656 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4657 /* ptr */ 4658 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4659 }; 4660 4661 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4662 strs, sizeof(strs))); 4663 } 4664 4665 static int probe_kern_array_mmap(void) 4666 { 4667 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4668 int fd; 4669 4670 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4671 return probe_fd(fd); 4672 } 4673 4674 static int probe_kern_exp_attach_type(void) 4675 { 4676 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4677 struct bpf_insn insns[] = { 4678 BPF_MOV64_IMM(BPF_REG_0, 0), 4679 BPF_EXIT_INSN(), 4680 }; 4681 int fd, insn_cnt = ARRAY_SIZE(insns); 4682 4683 /* use any valid combination of program type and (optional) 4684 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4685 * to see if kernel supports expected_attach_type field for 4686 * BPF_PROG_LOAD command 4687 */ 4688 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4689 return probe_fd(fd); 4690 } 4691 4692 static int probe_kern_probe_read_kernel(void) 4693 { 4694 struct bpf_insn insns[] = { 4695 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4696 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4697 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4698 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4699 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4700 BPF_EXIT_INSN(), 4701 }; 4702 int fd, insn_cnt = ARRAY_SIZE(insns); 4703 4704 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4705 return probe_fd(fd); 4706 } 4707 4708 static int probe_prog_bind_map(void) 4709 { 4710 char *cp, errmsg[STRERR_BUFSIZE]; 4711 struct bpf_insn insns[] = { 4712 BPF_MOV64_IMM(BPF_REG_0, 0), 4713 BPF_EXIT_INSN(), 4714 }; 4715 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4716 4717 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4718 if (map < 0) { 4719 ret = -errno; 4720 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4721 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4722 __func__, cp, -ret); 4723 return ret; 4724 } 4725 4726 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4727 if (prog < 0) { 4728 close(map); 4729 return 0; 4730 } 4731 4732 ret = bpf_prog_bind_map(prog, map, NULL); 4733 4734 close(map); 4735 close(prog); 4736 4737 return ret >= 0; 4738 } 4739 4740 static int probe_module_btf(void) 4741 { 4742 static const char strs[] = "\0int"; 4743 __u32 types[] = { 4744 /* int */ 4745 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4746 }; 4747 struct bpf_btf_info info; 4748 __u32 len = sizeof(info); 4749 char name[16]; 4750 int fd, err; 4751 4752 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4753 if (fd < 0) 4754 return 0; /* BTF not supported at all */ 4755 4756 memset(&info, 0, sizeof(info)); 4757 info.name = ptr_to_u64(name); 4758 info.name_len = sizeof(name); 4759 4760 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4761 * kernel's module BTF support coincides with support for 4762 * name/name_len fields in struct bpf_btf_info. 4763 */ 4764 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4765 close(fd); 4766 return !err; 4767 } 4768 4769 static int probe_perf_link(void) 4770 { 4771 struct bpf_insn insns[] = { 4772 BPF_MOV64_IMM(BPF_REG_0, 0), 4773 BPF_EXIT_INSN(), 4774 }; 4775 int prog_fd, link_fd, err; 4776 4777 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4778 insns, ARRAY_SIZE(insns), NULL); 4779 if (prog_fd < 0) 4780 return -errno; 4781 4782 /* use invalid perf_event FD to get EBADF, if link is supported; 4783 * otherwise EINVAL should be returned 4784 */ 4785 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4786 err = -errno; /* close() can clobber errno */ 4787 4788 if (link_fd >= 0) 4789 close(link_fd); 4790 close(prog_fd); 4791 4792 return link_fd < 0 && err == -EBADF; 4793 } 4794 4795 static int probe_kern_bpf_cookie(void) 4796 { 4797 struct bpf_insn insns[] = { 4798 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4799 BPF_EXIT_INSN(), 4800 }; 4801 int ret, insn_cnt = ARRAY_SIZE(insns); 4802 4803 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4804 return probe_fd(ret); 4805 } 4806 4807 static int probe_kern_btf_enum64(void) 4808 { 4809 static const char strs[] = "\0enum64"; 4810 __u32 types[] = { 4811 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4812 }; 4813 4814 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4815 strs, sizeof(strs))); 4816 } 4817 4818 static int probe_kern_syscall_wrapper(void); 4819 4820 enum kern_feature_result { 4821 FEAT_UNKNOWN = 0, 4822 FEAT_SUPPORTED = 1, 4823 FEAT_MISSING = 2, 4824 }; 4825 4826 typedef int (*feature_probe_fn)(void); 4827 4828 static struct kern_feature_desc { 4829 const char *desc; 4830 feature_probe_fn probe; 4831 enum kern_feature_result res; 4832 } feature_probes[__FEAT_CNT] = { 4833 [FEAT_PROG_NAME] = { 4834 "BPF program name", probe_kern_prog_name, 4835 }, 4836 [FEAT_GLOBAL_DATA] = { 4837 "global variables", probe_kern_global_data, 4838 }, 4839 [FEAT_BTF] = { 4840 "minimal BTF", probe_kern_btf, 4841 }, 4842 [FEAT_BTF_FUNC] = { 4843 "BTF functions", probe_kern_btf_func, 4844 }, 4845 [FEAT_BTF_GLOBAL_FUNC] = { 4846 "BTF global function", probe_kern_btf_func_global, 4847 }, 4848 [FEAT_BTF_DATASEC] = { 4849 "BTF data section and variable", probe_kern_btf_datasec, 4850 }, 4851 [FEAT_ARRAY_MMAP] = { 4852 "ARRAY map mmap()", probe_kern_array_mmap, 4853 }, 4854 [FEAT_EXP_ATTACH_TYPE] = { 4855 "BPF_PROG_LOAD expected_attach_type attribute", 4856 probe_kern_exp_attach_type, 4857 }, 4858 [FEAT_PROBE_READ_KERN] = { 4859 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4860 }, 4861 [FEAT_PROG_BIND_MAP] = { 4862 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4863 }, 4864 [FEAT_MODULE_BTF] = { 4865 "module BTF support", probe_module_btf, 4866 }, 4867 [FEAT_BTF_FLOAT] = { 4868 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4869 }, 4870 [FEAT_PERF_LINK] = { 4871 "BPF perf link support", probe_perf_link, 4872 }, 4873 [FEAT_BTF_DECL_TAG] = { 4874 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4875 }, 4876 [FEAT_BTF_TYPE_TAG] = { 4877 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4878 }, 4879 [FEAT_MEMCG_ACCOUNT] = { 4880 "memcg-based memory accounting", probe_memcg_account, 4881 }, 4882 [FEAT_BPF_COOKIE] = { 4883 "BPF cookie support", probe_kern_bpf_cookie, 4884 }, 4885 [FEAT_BTF_ENUM64] = { 4886 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4887 }, 4888 [FEAT_SYSCALL_WRAPPER] = { 4889 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4890 }, 4891 }; 4892 4893 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4894 { 4895 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4896 int ret; 4897 4898 if (obj && obj->gen_loader) 4899 /* To generate loader program assume the latest kernel 4900 * to avoid doing extra prog_load, map_create syscalls. 4901 */ 4902 return true; 4903 4904 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4905 ret = feat->probe(); 4906 if (ret > 0) { 4907 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4908 } else if (ret == 0) { 4909 WRITE_ONCE(feat->res, FEAT_MISSING); 4910 } else { 4911 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4912 WRITE_ONCE(feat->res, FEAT_MISSING); 4913 } 4914 } 4915 4916 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4917 } 4918 4919 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4920 { 4921 struct bpf_map_info map_info; 4922 char msg[STRERR_BUFSIZE]; 4923 __u32 map_info_len = sizeof(map_info); 4924 int err; 4925 4926 memset(&map_info, 0, map_info_len); 4927 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4928 if (err && errno == EINVAL) 4929 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4930 if (err) { 4931 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4932 libbpf_strerror_r(errno, msg, sizeof(msg))); 4933 return false; 4934 } 4935 4936 return (map_info.type == map->def.type && 4937 map_info.key_size == map->def.key_size && 4938 map_info.value_size == map->def.value_size && 4939 map_info.max_entries == map->def.max_entries && 4940 map_info.map_flags == map->def.map_flags && 4941 map_info.map_extra == map->map_extra); 4942 } 4943 4944 static int 4945 bpf_object__reuse_map(struct bpf_map *map) 4946 { 4947 char *cp, errmsg[STRERR_BUFSIZE]; 4948 int err, pin_fd; 4949 4950 pin_fd = bpf_obj_get(map->pin_path); 4951 if (pin_fd < 0) { 4952 err = -errno; 4953 if (err == -ENOENT) { 4954 pr_debug("found no pinned map to reuse at '%s'\n", 4955 map->pin_path); 4956 return 0; 4957 } 4958 4959 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4960 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4961 map->pin_path, cp); 4962 return err; 4963 } 4964 4965 if (!map_is_reuse_compat(map, pin_fd)) { 4966 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4967 map->pin_path); 4968 close(pin_fd); 4969 return -EINVAL; 4970 } 4971 4972 err = bpf_map__reuse_fd(map, pin_fd); 4973 close(pin_fd); 4974 if (err) 4975 return err; 4976 4977 map->pinned = true; 4978 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4979 4980 return 0; 4981 } 4982 4983 static int 4984 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4985 { 4986 enum libbpf_map_type map_type = map->libbpf_type; 4987 char *cp, errmsg[STRERR_BUFSIZE]; 4988 int err, zero = 0; 4989 4990 if (obj->gen_loader) { 4991 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4992 map->mmaped, map->def.value_size); 4993 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4994 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4995 return 0; 4996 } 4997 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4998 if (err) { 4999 err = -errno; 5000 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5001 pr_warn("Error setting initial map(%s) contents: %s\n", 5002 map->name, cp); 5003 return err; 5004 } 5005 5006 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5007 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5008 err = bpf_map_freeze(map->fd); 5009 if (err) { 5010 err = -errno; 5011 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5012 pr_warn("Error freezing map(%s) as read-only: %s\n", 5013 map->name, cp); 5014 return err; 5015 } 5016 } 5017 return 0; 5018 } 5019 5020 static void bpf_map__destroy(struct bpf_map *map); 5021 5022 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5023 { 5024 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5025 struct bpf_map_def *def = &map->def; 5026 const char *map_name = NULL; 5027 int err = 0; 5028 5029 if (kernel_supports(obj, FEAT_PROG_NAME)) 5030 map_name = map->name; 5031 create_attr.map_ifindex = map->map_ifindex; 5032 create_attr.map_flags = def->map_flags; 5033 create_attr.numa_node = map->numa_node; 5034 create_attr.map_extra = map->map_extra; 5035 5036 if (bpf_map__is_struct_ops(map)) 5037 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5038 5039 if (obj->btf && btf__fd(obj->btf) >= 0) { 5040 create_attr.btf_fd = btf__fd(obj->btf); 5041 create_attr.btf_key_type_id = map->btf_key_type_id; 5042 create_attr.btf_value_type_id = map->btf_value_type_id; 5043 } 5044 5045 if (bpf_map_type__is_map_in_map(def->type)) { 5046 if (map->inner_map) { 5047 err = bpf_object__create_map(obj, map->inner_map, true); 5048 if (err) { 5049 pr_warn("map '%s': failed to create inner map: %d\n", 5050 map->name, err); 5051 return err; 5052 } 5053 map->inner_map_fd = bpf_map__fd(map->inner_map); 5054 } 5055 if (map->inner_map_fd >= 0) 5056 create_attr.inner_map_fd = map->inner_map_fd; 5057 } 5058 5059 switch (def->type) { 5060 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5061 case BPF_MAP_TYPE_CGROUP_ARRAY: 5062 case BPF_MAP_TYPE_STACK_TRACE: 5063 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5064 case BPF_MAP_TYPE_HASH_OF_MAPS: 5065 case BPF_MAP_TYPE_DEVMAP: 5066 case BPF_MAP_TYPE_DEVMAP_HASH: 5067 case BPF_MAP_TYPE_CPUMAP: 5068 case BPF_MAP_TYPE_XSKMAP: 5069 case BPF_MAP_TYPE_SOCKMAP: 5070 case BPF_MAP_TYPE_SOCKHASH: 5071 case BPF_MAP_TYPE_QUEUE: 5072 case BPF_MAP_TYPE_STACK: 5073 create_attr.btf_fd = 0; 5074 create_attr.btf_key_type_id = 0; 5075 create_attr.btf_value_type_id = 0; 5076 map->btf_key_type_id = 0; 5077 map->btf_value_type_id = 0; 5078 default: 5079 break; 5080 } 5081 5082 if (obj->gen_loader) { 5083 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5084 def->key_size, def->value_size, def->max_entries, 5085 &create_attr, is_inner ? -1 : map - obj->maps); 5086 /* Pretend to have valid FD to pass various fd >= 0 checks. 5087 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5088 */ 5089 map->fd = 0; 5090 } else { 5091 map->fd = bpf_map_create(def->type, map_name, 5092 def->key_size, def->value_size, 5093 def->max_entries, &create_attr); 5094 } 5095 if (map->fd < 0 && (create_attr.btf_key_type_id || 5096 create_attr.btf_value_type_id)) { 5097 char *cp, errmsg[STRERR_BUFSIZE]; 5098 5099 err = -errno; 5100 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5101 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5102 map->name, cp, err); 5103 create_attr.btf_fd = 0; 5104 create_attr.btf_key_type_id = 0; 5105 create_attr.btf_value_type_id = 0; 5106 map->btf_key_type_id = 0; 5107 map->btf_value_type_id = 0; 5108 map->fd = bpf_map_create(def->type, map_name, 5109 def->key_size, def->value_size, 5110 def->max_entries, &create_attr); 5111 } 5112 5113 err = map->fd < 0 ? -errno : 0; 5114 5115 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5116 if (obj->gen_loader) 5117 map->inner_map->fd = -1; 5118 bpf_map__destroy(map->inner_map); 5119 zfree(&map->inner_map); 5120 } 5121 5122 return err; 5123 } 5124 5125 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5126 { 5127 const struct bpf_map *targ_map; 5128 unsigned int i; 5129 int fd, err = 0; 5130 5131 for (i = 0; i < map->init_slots_sz; i++) { 5132 if (!map->init_slots[i]) 5133 continue; 5134 5135 targ_map = map->init_slots[i]; 5136 fd = bpf_map__fd(targ_map); 5137 5138 if (obj->gen_loader) { 5139 bpf_gen__populate_outer_map(obj->gen_loader, 5140 map - obj->maps, i, 5141 targ_map - obj->maps); 5142 } else { 5143 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5144 } 5145 if (err) { 5146 err = -errno; 5147 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5148 map->name, i, targ_map->name, fd, err); 5149 return err; 5150 } 5151 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5152 map->name, i, targ_map->name, fd); 5153 } 5154 5155 zfree(&map->init_slots); 5156 map->init_slots_sz = 0; 5157 5158 return 0; 5159 } 5160 5161 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5162 { 5163 const struct bpf_program *targ_prog; 5164 unsigned int i; 5165 int fd, err; 5166 5167 if (obj->gen_loader) 5168 return -ENOTSUP; 5169 5170 for (i = 0; i < map->init_slots_sz; i++) { 5171 if (!map->init_slots[i]) 5172 continue; 5173 5174 targ_prog = map->init_slots[i]; 5175 fd = bpf_program__fd(targ_prog); 5176 5177 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5178 if (err) { 5179 err = -errno; 5180 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5181 map->name, i, targ_prog->name, fd, err); 5182 return err; 5183 } 5184 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5185 map->name, i, targ_prog->name, fd); 5186 } 5187 5188 zfree(&map->init_slots); 5189 map->init_slots_sz = 0; 5190 5191 return 0; 5192 } 5193 5194 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5195 { 5196 struct bpf_map *map; 5197 int i, err; 5198 5199 for (i = 0; i < obj->nr_maps; i++) { 5200 map = &obj->maps[i]; 5201 5202 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5203 continue; 5204 5205 err = init_prog_array_slots(obj, map); 5206 if (err < 0) { 5207 zclose(map->fd); 5208 return err; 5209 } 5210 } 5211 return 0; 5212 } 5213 5214 static int map_set_def_max_entries(struct bpf_map *map) 5215 { 5216 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5217 int nr_cpus; 5218 5219 nr_cpus = libbpf_num_possible_cpus(); 5220 if (nr_cpus < 0) { 5221 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5222 map->name, nr_cpus); 5223 return nr_cpus; 5224 } 5225 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5226 map->def.max_entries = nr_cpus; 5227 } 5228 5229 return 0; 5230 } 5231 5232 static int 5233 bpf_object__create_maps(struct bpf_object *obj) 5234 { 5235 struct bpf_map *map; 5236 char *cp, errmsg[STRERR_BUFSIZE]; 5237 unsigned int i, j; 5238 int err; 5239 bool retried; 5240 5241 for (i = 0; i < obj->nr_maps; i++) { 5242 map = &obj->maps[i]; 5243 5244 /* To support old kernels, we skip creating global data maps 5245 * (.rodata, .data, .kconfig, etc); later on, during program 5246 * loading, if we detect that at least one of the to-be-loaded 5247 * programs is referencing any global data map, we'll error 5248 * out with program name and relocation index logged. 5249 * This approach allows to accommodate Clang emitting 5250 * unnecessary .rodata.str1.1 sections for string literals, 5251 * but also it allows to have CO-RE applications that use 5252 * global variables in some of BPF programs, but not others. 5253 * If those global variable-using programs are not loaded at 5254 * runtime due to bpf_program__set_autoload(prog, false), 5255 * bpf_object loading will succeed just fine even on old 5256 * kernels. 5257 */ 5258 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5259 map->autocreate = false; 5260 5261 if (!map->autocreate) { 5262 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5263 continue; 5264 } 5265 5266 err = map_set_def_max_entries(map); 5267 if (err) 5268 goto err_out; 5269 5270 retried = false; 5271 retry: 5272 if (map->pin_path) { 5273 err = bpf_object__reuse_map(map); 5274 if (err) { 5275 pr_warn("map '%s': error reusing pinned map\n", 5276 map->name); 5277 goto err_out; 5278 } 5279 if (retried && map->fd < 0) { 5280 pr_warn("map '%s': cannot find pinned map\n", 5281 map->name); 5282 err = -ENOENT; 5283 goto err_out; 5284 } 5285 } 5286 5287 if (map->fd >= 0) { 5288 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5289 map->name, map->fd); 5290 } else { 5291 err = bpf_object__create_map(obj, map, false); 5292 if (err) 5293 goto err_out; 5294 5295 pr_debug("map '%s': created successfully, fd=%d\n", 5296 map->name, map->fd); 5297 5298 if (bpf_map__is_internal(map)) { 5299 err = bpf_object__populate_internal_map(obj, map); 5300 if (err < 0) { 5301 zclose(map->fd); 5302 goto err_out; 5303 } 5304 } 5305 5306 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5307 err = init_map_in_map_slots(obj, map); 5308 if (err < 0) { 5309 zclose(map->fd); 5310 goto err_out; 5311 } 5312 } 5313 } 5314 5315 if (map->pin_path && !map->pinned) { 5316 err = bpf_map__pin(map, NULL); 5317 if (err) { 5318 zclose(map->fd); 5319 if (!retried && err == -EEXIST) { 5320 retried = true; 5321 goto retry; 5322 } 5323 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5324 map->name, map->pin_path, err); 5325 goto err_out; 5326 } 5327 } 5328 } 5329 5330 return 0; 5331 5332 err_out: 5333 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5334 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5335 pr_perm_msg(err); 5336 for (j = 0; j < i; j++) 5337 zclose(obj->maps[j].fd); 5338 return err; 5339 } 5340 5341 static bool bpf_core_is_flavor_sep(const char *s) 5342 { 5343 /* check X___Y name pattern, where X and Y are not underscores */ 5344 return s[0] != '_' && /* X */ 5345 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5346 s[4] != '_'; /* Y */ 5347 } 5348 5349 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5350 * before last triple underscore. Struct name part after last triple 5351 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5352 */ 5353 size_t bpf_core_essential_name_len(const char *name) 5354 { 5355 size_t n = strlen(name); 5356 int i; 5357 5358 for (i = n - 5; i >= 0; i--) { 5359 if (bpf_core_is_flavor_sep(name + i)) 5360 return i + 1; 5361 } 5362 return n; 5363 } 5364 5365 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5366 { 5367 if (!cands) 5368 return; 5369 5370 free(cands->cands); 5371 free(cands); 5372 } 5373 5374 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5375 size_t local_essent_len, 5376 const struct btf *targ_btf, 5377 const char *targ_btf_name, 5378 int targ_start_id, 5379 struct bpf_core_cand_list *cands) 5380 { 5381 struct bpf_core_cand *new_cands, *cand; 5382 const struct btf_type *t, *local_t; 5383 const char *targ_name, *local_name; 5384 size_t targ_essent_len; 5385 int n, i; 5386 5387 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5388 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5389 5390 n = btf__type_cnt(targ_btf); 5391 for (i = targ_start_id; i < n; i++) { 5392 t = btf__type_by_id(targ_btf, i); 5393 if (!btf_kind_core_compat(t, local_t)) 5394 continue; 5395 5396 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5397 if (str_is_empty(targ_name)) 5398 continue; 5399 5400 targ_essent_len = bpf_core_essential_name_len(targ_name); 5401 if (targ_essent_len != local_essent_len) 5402 continue; 5403 5404 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5405 continue; 5406 5407 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5408 local_cand->id, btf_kind_str(local_t), 5409 local_name, i, btf_kind_str(t), targ_name, 5410 targ_btf_name); 5411 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5412 sizeof(*cands->cands)); 5413 if (!new_cands) 5414 return -ENOMEM; 5415 5416 cand = &new_cands[cands->len]; 5417 cand->btf = targ_btf; 5418 cand->id = i; 5419 5420 cands->cands = new_cands; 5421 cands->len++; 5422 } 5423 return 0; 5424 } 5425 5426 static int load_module_btfs(struct bpf_object *obj) 5427 { 5428 struct bpf_btf_info info; 5429 struct module_btf *mod_btf; 5430 struct btf *btf; 5431 char name[64]; 5432 __u32 id = 0, len; 5433 int err, fd; 5434 5435 if (obj->btf_modules_loaded) 5436 return 0; 5437 5438 if (obj->gen_loader) 5439 return 0; 5440 5441 /* don't do this again, even if we find no module BTFs */ 5442 obj->btf_modules_loaded = true; 5443 5444 /* kernel too old to support module BTFs */ 5445 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5446 return 0; 5447 5448 while (true) { 5449 err = bpf_btf_get_next_id(id, &id); 5450 if (err && errno == ENOENT) 5451 return 0; 5452 if (err) { 5453 err = -errno; 5454 pr_warn("failed to iterate BTF objects: %d\n", err); 5455 return err; 5456 } 5457 5458 fd = bpf_btf_get_fd_by_id(id); 5459 if (fd < 0) { 5460 if (errno == ENOENT) 5461 continue; /* expected race: BTF was unloaded */ 5462 err = -errno; 5463 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5464 return err; 5465 } 5466 5467 len = sizeof(info); 5468 memset(&info, 0, sizeof(info)); 5469 info.name = ptr_to_u64(name); 5470 info.name_len = sizeof(name); 5471 5472 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5473 if (err) { 5474 err = -errno; 5475 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5476 goto err_out; 5477 } 5478 5479 /* ignore non-module BTFs */ 5480 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5481 close(fd); 5482 continue; 5483 } 5484 5485 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5486 err = libbpf_get_error(btf); 5487 if (err) { 5488 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5489 name, id, err); 5490 goto err_out; 5491 } 5492 5493 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5494 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5495 if (err) 5496 goto err_out; 5497 5498 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5499 5500 mod_btf->btf = btf; 5501 mod_btf->id = id; 5502 mod_btf->fd = fd; 5503 mod_btf->name = strdup(name); 5504 if (!mod_btf->name) { 5505 err = -ENOMEM; 5506 goto err_out; 5507 } 5508 continue; 5509 5510 err_out: 5511 close(fd); 5512 return err; 5513 } 5514 5515 return 0; 5516 } 5517 5518 static struct bpf_core_cand_list * 5519 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5520 { 5521 struct bpf_core_cand local_cand = {}; 5522 struct bpf_core_cand_list *cands; 5523 const struct btf *main_btf; 5524 const struct btf_type *local_t; 5525 const char *local_name; 5526 size_t local_essent_len; 5527 int err, i; 5528 5529 local_cand.btf = local_btf; 5530 local_cand.id = local_type_id; 5531 local_t = btf__type_by_id(local_btf, local_type_id); 5532 if (!local_t) 5533 return ERR_PTR(-EINVAL); 5534 5535 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5536 if (str_is_empty(local_name)) 5537 return ERR_PTR(-EINVAL); 5538 local_essent_len = bpf_core_essential_name_len(local_name); 5539 5540 cands = calloc(1, sizeof(*cands)); 5541 if (!cands) 5542 return ERR_PTR(-ENOMEM); 5543 5544 /* Attempt to find target candidates in vmlinux BTF first */ 5545 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5546 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5547 if (err) 5548 goto err_out; 5549 5550 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5551 if (cands->len) 5552 return cands; 5553 5554 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5555 if (obj->btf_vmlinux_override) 5556 return cands; 5557 5558 /* now look through module BTFs, trying to still find candidates */ 5559 err = load_module_btfs(obj); 5560 if (err) 5561 goto err_out; 5562 5563 for (i = 0; i < obj->btf_module_cnt; i++) { 5564 err = bpf_core_add_cands(&local_cand, local_essent_len, 5565 obj->btf_modules[i].btf, 5566 obj->btf_modules[i].name, 5567 btf__type_cnt(obj->btf_vmlinux), 5568 cands); 5569 if (err) 5570 goto err_out; 5571 } 5572 5573 return cands; 5574 err_out: 5575 bpf_core_free_cands(cands); 5576 return ERR_PTR(err); 5577 } 5578 5579 /* Check local and target types for compatibility. This check is used for 5580 * type-based CO-RE relocations and follow slightly different rules than 5581 * field-based relocations. This function assumes that root types were already 5582 * checked for name match. Beyond that initial root-level name check, names 5583 * are completely ignored. Compatibility rules are as follows: 5584 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5585 * kind should match for local and target types (i.e., STRUCT is not 5586 * compatible with UNION); 5587 * - for ENUMs, the size is ignored; 5588 * - for INT, size and signedness are ignored; 5589 * - for ARRAY, dimensionality is ignored, element types are checked for 5590 * compatibility recursively; 5591 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5592 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5593 * - FUNC_PROTOs are compatible if they have compatible signature: same 5594 * number of input args and compatible return and argument types. 5595 * These rules are not set in stone and probably will be adjusted as we get 5596 * more experience with using BPF CO-RE relocations. 5597 */ 5598 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5599 const struct btf *targ_btf, __u32 targ_id) 5600 { 5601 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5602 } 5603 5604 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5605 const struct btf *targ_btf, __u32 targ_id) 5606 { 5607 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5608 } 5609 5610 static size_t bpf_core_hash_fn(const long key, void *ctx) 5611 { 5612 return key; 5613 } 5614 5615 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5616 { 5617 return k1 == k2; 5618 } 5619 5620 static int record_relo_core(struct bpf_program *prog, 5621 const struct bpf_core_relo *core_relo, int insn_idx) 5622 { 5623 struct reloc_desc *relos, *relo; 5624 5625 relos = libbpf_reallocarray(prog->reloc_desc, 5626 prog->nr_reloc + 1, sizeof(*relos)); 5627 if (!relos) 5628 return -ENOMEM; 5629 relo = &relos[prog->nr_reloc]; 5630 relo->type = RELO_CORE; 5631 relo->insn_idx = insn_idx; 5632 relo->core_relo = core_relo; 5633 prog->reloc_desc = relos; 5634 prog->nr_reloc++; 5635 return 0; 5636 } 5637 5638 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5639 { 5640 struct reloc_desc *relo; 5641 int i; 5642 5643 for (i = 0; i < prog->nr_reloc; i++) { 5644 relo = &prog->reloc_desc[i]; 5645 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5646 continue; 5647 5648 return relo->core_relo; 5649 } 5650 5651 return NULL; 5652 } 5653 5654 static int bpf_core_resolve_relo(struct bpf_program *prog, 5655 const struct bpf_core_relo *relo, 5656 int relo_idx, 5657 const struct btf *local_btf, 5658 struct hashmap *cand_cache, 5659 struct bpf_core_relo_res *targ_res) 5660 { 5661 struct bpf_core_spec specs_scratch[3] = {}; 5662 struct bpf_core_cand_list *cands = NULL; 5663 const char *prog_name = prog->name; 5664 const struct btf_type *local_type; 5665 const char *local_name; 5666 __u32 local_id = relo->type_id; 5667 int err; 5668 5669 local_type = btf__type_by_id(local_btf, local_id); 5670 if (!local_type) 5671 return -EINVAL; 5672 5673 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5674 if (!local_name) 5675 return -EINVAL; 5676 5677 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5678 !hashmap__find(cand_cache, local_id, &cands)) { 5679 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5680 if (IS_ERR(cands)) { 5681 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5682 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5683 local_name, PTR_ERR(cands)); 5684 return PTR_ERR(cands); 5685 } 5686 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5687 if (err) { 5688 bpf_core_free_cands(cands); 5689 return err; 5690 } 5691 } 5692 5693 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5694 targ_res); 5695 } 5696 5697 static int 5698 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5699 { 5700 const struct btf_ext_info_sec *sec; 5701 struct bpf_core_relo_res targ_res; 5702 const struct bpf_core_relo *rec; 5703 const struct btf_ext_info *seg; 5704 struct hashmap_entry *entry; 5705 struct hashmap *cand_cache = NULL; 5706 struct bpf_program *prog; 5707 struct bpf_insn *insn; 5708 const char *sec_name; 5709 int i, err = 0, insn_idx, sec_idx, sec_num; 5710 5711 if (obj->btf_ext->core_relo_info.len == 0) 5712 return 0; 5713 5714 if (targ_btf_path) { 5715 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5716 err = libbpf_get_error(obj->btf_vmlinux_override); 5717 if (err) { 5718 pr_warn("failed to parse target BTF: %d\n", err); 5719 return err; 5720 } 5721 } 5722 5723 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5724 if (IS_ERR(cand_cache)) { 5725 err = PTR_ERR(cand_cache); 5726 goto out; 5727 } 5728 5729 seg = &obj->btf_ext->core_relo_info; 5730 sec_num = 0; 5731 for_each_btf_ext_sec(seg, sec) { 5732 sec_idx = seg->sec_idxs[sec_num]; 5733 sec_num++; 5734 5735 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5736 if (str_is_empty(sec_name)) { 5737 err = -EINVAL; 5738 goto out; 5739 } 5740 5741 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5742 5743 for_each_btf_ext_rec(seg, sec, i, rec) { 5744 if (rec->insn_off % BPF_INSN_SZ) 5745 return -EINVAL; 5746 insn_idx = rec->insn_off / BPF_INSN_SZ; 5747 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5748 if (!prog) { 5749 /* When __weak subprog is "overridden" by another instance 5750 * of the subprog from a different object file, linker still 5751 * appends all the .BTF.ext info that used to belong to that 5752 * eliminated subprogram. 5753 * This is similar to what x86-64 linker does for relocations. 5754 * So just ignore such relocations just like we ignore 5755 * subprog instructions when discovering subprograms. 5756 */ 5757 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5758 sec_name, i, insn_idx); 5759 continue; 5760 } 5761 /* no need to apply CO-RE relocation if the program is 5762 * not going to be loaded 5763 */ 5764 if (!prog->autoload) 5765 continue; 5766 5767 /* adjust insn_idx from section frame of reference to the local 5768 * program's frame of reference; (sub-)program code is not yet 5769 * relocated, so it's enough to just subtract in-section offset 5770 */ 5771 insn_idx = insn_idx - prog->sec_insn_off; 5772 if (insn_idx >= prog->insns_cnt) 5773 return -EINVAL; 5774 insn = &prog->insns[insn_idx]; 5775 5776 err = record_relo_core(prog, rec, insn_idx); 5777 if (err) { 5778 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5779 prog->name, i, err); 5780 goto out; 5781 } 5782 5783 if (prog->obj->gen_loader) 5784 continue; 5785 5786 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5787 if (err) { 5788 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5789 prog->name, i, err); 5790 goto out; 5791 } 5792 5793 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5794 if (err) { 5795 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5796 prog->name, i, insn_idx, err); 5797 goto out; 5798 } 5799 } 5800 } 5801 5802 out: 5803 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5804 btf__free(obj->btf_vmlinux_override); 5805 obj->btf_vmlinux_override = NULL; 5806 5807 if (!IS_ERR_OR_NULL(cand_cache)) { 5808 hashmap__for_each_entry(cand_cache, entry, i) { 5809 bpf_core_free_cands(entry->pvalue); 5810 } 5811 hashmap__free(cand_cache); 5812 } 5813 return err; 5814 } 5815 5816 /* base map load ldimm64 special constant, used also for log fixup logic */ 5817 #define POISON_LDIMM64_MAP_BASE 2001000000 5818 #define POISON_LDIMM64_MAP_PFX "200100" 5819 5820 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5821 int insn_idx, struct bpf_insn *insn, 5822 int map_idx, const struct bpf_map *map) 5823 { 5824 int i; 5825 5826 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5827 prog->name, relo_idx, insn_idx, map_idx, map->name); 5828 5829 /* we turn single ldimm64 into two identical invalid calls */ 5830 for (i = 0; i < 2; i++) { 5831 insn->code = BPF_JMP | BPF_CALL; 5832 insn->dst_reg = 0; 5833 insn->src_reg = 0; 5834 insn->off = 0; 5835 /* if this instruction is reachable (not a dead code), 5836 * verifier will complain with something like: 5837 * invalid func unknown#2001000123 5838 * where lower 123 is map index into obj->maps[] array 5839 */ 5840 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5841 5842 insn++; 5843 } 5844 } 5845 5846 /* unresolved kfunc call special constant, used also for log fixup logic */ 5847 #define POISON_CALL_KFUNC_BASE 2002000000 5848 #define POISON_CALL_KFUNC_PFX "2002" 5849 5850 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5851 int insn_idx, struct bpf_insn *insn, 5852 int ext_idx, const struct extern_desc *ext) 5853 { 5854 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5855 prog->name, relo_idx, insn_idx, ext->name); 5856 5857 /* we turn kfunc call into invalid helper call with identifiable constant */ 5858 insn->code = BPF_JMP | BPF_CALL; 5859 insn->dst_reg = 0; 5860 insn->src_reg = 0; 5861 insn->off = 0; 5862 /* if this instruction is reachable (not a dead code), 5863 * verifier will complain with something like: 5864 * invalid func unknown#2001000123 5865 * where lower 123 is extern index into obj->externs[] array 5866 */ 5867 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5868 } 5869 5870 /* Relocate data references within program code: 5871 * - map references; 5872 * - global variable references; 5873 * - extern references. 5874 */ 5875 static int 5876 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5877 { 5878 int i; 5879 5880 for (i = 0; i < prog->nr_reloc; i++) { 5881 struct reloc_desc *relo = &prog->reloc_desc[i]; 5882 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5883 const struct bpf_map *map; 5884 struct extern_desc *ext; 5885 5886 switch (relo->type) { 5887 case RELO_LD64: 5888 map = &obj->maps[relo->map_idx]; 5889 if (obj->gen_loader) { 5890 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5891 insn[0].imm = relo->map_idx; 5892 } else if (map->autocreate) { 5893 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5894 insn[0].imm = map->fd; 5895 } else { 5896 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5897 relo->map_idx, map); 5898 } 5899 break; 5900 case RELO_DATA: 5901 map = &obj->maps[relo->map_idx]; 5902 insn[1].imm = insn[0].imm + relo->sym_off; 5903 if (obj->gen_loader) { 5904 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5905 insn[0].imm = relo->map_idx; 5906 } else if (map->autocreate) { 5907 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5908 insn[0].imm = map->fd; 5909 } else { 5910 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5911 relo->map_idx, map); 5912 } 5913 break; 5914 case RELO_EXTERN_LD64: 5915 ext = &obj->externs[relo->ext_idx]; 5916 if (ext->type == EXT_KCFG) { 5917 if (obj->gen_loader) { 5918 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5919 insn[0].imm = obj->kconfig_map_idx; 5920 } else { 5921 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5922 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5923 } 5924 insn[1].imm = ext->kcfg.data_off; 5925 } else /* EXT_KSYM */ { 5926 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5927 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5928 insn[0].imm = ext->ksym.kernel_btf_id; 5929 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5930 } else { /* typeless ksyms or unresolved typed ksyms */ 5931 insn[0].imm = (__u32)ext->ksym.addr; 5932 insn[1].imm = ext->ksym.addr >> 32; 5933 } 5934 } 5935 break; 5936 case RELO_EXTERN_CALL: 5937 ext = &obj->externs[relo->ext_idx]; 5938 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5939 if (ext->is_set) { 5940 insn[0].imm = ext->ksym.kernel_btf_id; 5941 insn[0].off = ext->ksym.btf_fd_idx; 5942 } else { /* unresolved weak kfunc call */ 5943 poison_kfunc_call(prog, i, relo->insn_idx, insn, 5944 relo->ext_idx, ext); 5945 } 5946 break; 5947 case RELO_SUBPROG_ADDR: 5948 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5949 pr_warn("prog '%s': relo #%d: bad insn\n", 5950 prog->name, i); 5951 return -EINVAL; 5952 } 5953 /* handled already */ 5954 break; 5955 case RELO_CALL: 5956 /* handled already */ 5957 break; 5958 case RELO_CORE: 5959 /* will be handled by bpf_program_record_relos() */ 5960 break; 5961 default: 5962 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5963 prog->name, i, relo->type); 5964 return -EINVAL; 5965 } 5966 } 5967 5968 return 0; 5969 } 5970 5971 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5972 const struct bpf_program *prog, 5973 const struct btf_ext_info *ext_info, 5974 void **prog_info, __u32 *prog_rec_cnt, 5975 __u32 *prog_rec_sz) 5976 { 5977 void *copy_start = NULL, *copy_end = NULL; 5978 void *rec, *rec_end, *new_prog_info; 5979 const struct btf_ext_info_sec *sec; 5980 size_t old_sz, new_sz; 5981 int i, sec_num, sec_idx, off_adj; 5982 5983 sec_num = 0; 5984 for_each_btf_ext_sec(ext_info, sec) { 5985 sec_idx = ext_info->sec_idxs[sec_num]; 5986 sec_num++; 5987 if (prog->sec_idx != sec_idx) 5988 continue; 5989 5990 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5991 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5992 5993 if (insn_off < prog->sec_insn_off) 5994 continue; 5995 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5996 break; 5997 5998 if (!copy_start) 5999 copy_start = rec; 6000 copy_end = rec + ext_info->rec_size; 6001 } 6002 6003 if (!copy_start) 6004 return -ENOENT; 6005 6006 /* append func/line info of a given (sub-)program to the main 6007 * program func/line info 6008 */ 6009 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6010 new_sz = old_sz + (copy_end - copy_start); 6011 new_prog_info = realloc(*prog_info, new_sz); 6012 if (!new_prog_info) 6013 return -ENOMEM; 6014 *prog_info = new_prog_info; 6015 *prog_rec_cnt = new_sz / ext_info->rec_size; 6016 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6017 6018 /* Kernel instruction offsets are in units of 8-byte 6019 * instructions, while .BTF.ext instruction offsets generated 6020 * by Clang are in units of bytes. So convert Clang offsets 6021 * into kernel offsets and adjust offset according to program 6022 * relocated position. 6023 */ 6024 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6025 rec = new_prog_info + old_sz; 6026 rec_end = new_prog_info + new_sz; 6027 for (; rec < rec_end; rec += ext_info->rec_size) { 6028 __u32 *insn_off = rec; 6029 6030 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6031 } 6032 *prog_rec_sz = ext_info->rec_size; 6033 return 0; 6034 } 6035 6036 return -ENOENT; 6037 } 6038 6039 static int 6040 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6041 struct bpf_program *main_prog, 6042 const struct bpf_program *prog) 6043 { 6044 int err; 6045 6046 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6047 * supprot func/line info 6048 */ 6049 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6050 return 0; 6051 6052 /* only attempt func info relocation if main program's func_info 6053 * relocation was successful 6054 */ 6055 if (main_prog != prog && !main_prog->func_info) 6056 goto line_info; 6057 6058 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6059 &main_prog->func_info, 6060 &main_prog->func_info_cnt, 6061 &main_prog->func_info_rec_size); 6062 if (err) { 6063 if (err != -ENOENT) { 6064 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6065 prog->name, err); 6066 return err; 6067 } 6068 if (main_prog->func_info) { 6069 /* 6070 * Some info has already been found but has problem 6071 * in the last btf_ext reloc. Must have to error out. 6072 */ 6073 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6074 return err; 6075 } 6076 /* Have problem loading the very first info. Ignore the rest. */ 6077 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6078 prog->name); 6079 } 6080 6081 line_info: 6082 /* don't relocate line info if main program's relocation failed */ 6083 if (main_prog != prog && !main_prog->line_info) 6084 return 0; 6085 6086 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6087 &main_prog->line_info, 6088 &main_prog->line_info_cnt, 6089 &main_prog->line_info_rec_size); 6090 if (err) { 6091 if (err != -ENOENT) { 6092 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6093 prog->name, err); 6094 return err; 6095 } 6096 if (main_prog->line_info) { 6097 /* 6098 * Some info has already been found but has problem 6099 * in the last btf_ext reloc. Must have to error out. 6100 */ 6101 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6102 return err; 6103 } 6104 /* Have problem loading the very first info. Ignore the rest. */ 6105 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6106 prog->name); 6107 } 6108 return 0; 6109 } 6110 6111 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6112 { 6113 size_t insn_idx = *(const size_t *)key; 6114 const struct reloc_desc *relo = elem; 6115 6116 if (insn_idx == relo->insn_idx) 6117 return 0; 6118 return insn_idx < relo->insn_idx ? -1 : 1; 6119 } 6120 6121 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6122 { 6123 if (!prog->nr_reloc) 6124 return NULL; 6125 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6126 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6127 } 6128 6129 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6130 { 6131 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6132 struct reloc_desc *relos; 6133 int i; 6134 6135 if (main_prog == subprog) 6136 return 0; 6137 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6138 if (!relos) 6139 return -ENOMEM; 6140 if (subprog->nr_reloc) 6141 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6142 sizeof(*relos) * subprog->nr_reloc); 6143 6144 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6145 relos[i].insn_idx += subprog->sub_insn_off; 6146 /* After insn_idx adjustment the 'relos' array is still sorted 6147 * by insn_idx and doesn't break bsearch. 6148 */ 6149 main_prog->reloc_desc = relos; 6150 main_prog->nr_reloc = new_cnt; 6151 return 0; 6152 } 6153 6154 static int 6155 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6156 struct bpf_program *prog) 6157 { 6158 size_t sub_insn_idx, insn_idx, new_cnt; 6159 struct bpf_program *subprog; 6160 struct bpf_insn *insns, *insn; 6161 struct reloc_desc *relo; 6162 int err; 6163 6164 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6165 if (err) 6166 return err; 6167 6168 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6169 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6170 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6171 continue; 6172 6173 relo = find_prog_insn_relo(prog, insn_idx); 6174 if (relo && relo->type == RELO_EXTERN_CALL) 6175 /* kfunc relocations will be handled later 6176 * in bpf_object__relocate_data() 6177 */ 6178 continue; 6179 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6180 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6181 prog->name, insn_idx, relo->type); 6182 return -LIBBPF_ERRNO__RELOC; 6183 } 6184 if (relo) { 6185 /* sub-program instruction index is a combination of 6186 * an offset of a symbol pointed to by relocation and 6187 * call instruction's imm field; for global functions, 6188 * call always has imm = -1, but for static functions 6189 * relocation is against STT_SECTION and insn->imm 6190 * points to a start of a static function 6191 * 6192 * for subprog addr relocation, the relo->sym_off + insn->imm is 6193 * the byte offset in the corresponding section. 6194 */ 6195 if (relo->type == RELO_CALL) 6196 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6197 else 6198 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6199 } else if (insn_is_pseudo_func(insn)) { 6200 /* 6201 * RELO_SUBPROG_ADDR relo is always emitted even if both 6202 * functions are in the same section, so it shouldn't reach here. 6203 */ 6204 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6205 prog->name, insn_idx); 6206 return -LIBBPF_ERRNO__RELOC; 6207 } else { 6208 /* if subprogram call is to a static function within 6209 * the same ELF section, there won't be any relocation 6210 * emitted, but it also means there is no additional 6211 * offset necessary, insns->imm is relative to 6212 * instruction's original position within the section 6213 */ 6214 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6215 } 6216 6217 /* we enforce that sub-programs should be in .text section */ 6218 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6219 if (!subprog) { 6220 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6221 prog->name); 6222 return -LIBBPF_ERRNO__RELOC; 6223 } 6224 6225 /* if it's the first call instruction calling into this 6226 * subprogram (meaning this subprog hasn't been processed 6227 * yet) within the context of current main program: 6228 * - append it at the end of main program's instructions blog; 6229 * - process is recursively, while current program is put on hold; 6230 * - if that subprogram calls some other not yet processes 6231 * subprogram, same thing will happen recursively until 6232 * there are no more unprocesses subprograms left to append 6233 * and relocate. 6234 */ 6235 if (subprog->sub_insn_off == 0) { 6236 subprog->sub_insn_off = main_prog->insns_cnt; 6237 6238 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6239 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6240 if (!insns) { 6241 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6242 return -ENOMEM; 6243 } 6244 main_prog->insns = insns; 6245 main_prog->insns_cnt = new_cnt; 6246 6247 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6248 subprog->insns_cnt * sizeof(*insns)); 6249 6250 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6251 main_prog->name, subprog->insns_cnt, subprog->name); 6252 6253 /* The subprog insns are now appended. Append its relos too. */ 6254 err = append_subprog_relos(main_prog, subprog); 6255 if (err) 6256 return err; 6257 err = bpf_object__reloc_code(obj, main_prog, subprog); 6258 if (err) 6259 return err; 6260 } 6261 6262 /* main_prog->insns memory could have been re-allocated, so 6263 * calculate pointer again 6264 */ 6265 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6266 /* calculate correct instruction position within current main 6267 * prog; each main prog can have a different set of 6268 * subprograms appended (potentially in different order as 6269 * well), so position of any subprog can be different for 6270 * different main programs 6271 */ 6272 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6273 6274 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6275 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6276 } 6277 6278 return 0; 6279 } 6280 6281 /* 6282 * Relocate sub-program calls. 6283 * 6284 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6285 * main prog) is processed separately. For each subprog (non-entry functions, 6286 * that can be called from either entry progs or other subprogs) gets their 6287 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6288 * hasn't been yet appended and relocated within current main prog. Once its 6289 * relocated, sub_insn_off will point at the position within current main prog 6290 * where given subprog was appended. This will further be used to relocate all 6291 * the call instructions jumping into this subprog. 6292 * 6293 * We start with main program and process all call instructions. If the call 6294 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6295 * is zero), subprog instructions are appended at the end of main program's 6296 * instruction array. Then main program is "put on hold" while we recursively 6297 * process newly appended subprogram. If that subprogram calls into another 6298 * subprogram that hasn't been appended, new subprogram is appended again to 6299 * the *main* prog's instructions (subprog's instructions are always left 6300 * untouched, as they need to be in unmodified state for subsequent main progs 6301 * and subprog instructions are always sent only as part of a main prog) and 6302 * the process continues recursively. Once all the subprogs called from a main 6303 * prog or any of its subprogs are appended (and relocated), all their 6304 * positions within finalized instructions array are known, so it's easy to 6305 * rewrite call instructions with correct relative offsets, corresponding to 6306 * desired target subprog. 6307 * 6308 * Its important to realize that some subprogs might not be called from some 6309 * main prog and any of its called/used subprogs. Those will keep their 6310 * subprog->sub_insn_off as zero at all times and won't be appended to current 6311 * main prog and won't be relocated within the context of current main prog. 6312 * They might still be used from other main progs later. 6313 * 6314 * Visually this process can be shown as below. Suppose we have two main 6315 * programs mainA and mainB and BPF object contains three subprogs: subA, 6316 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6317 * subC both call subB: 6318 * 6319 * +--------+ +-------+ 6320 * | v v | 6321 * +--+---+ +--+-+-+ +---+--+ 6322 * | subA | | subB | | subC | 6323 * +--+---+ +------+ +---+--+ 6324 * ^ ^ 6325 * | | 6326 * +---+-------+ +------+----+ 6327 * | mainA | | mainB | 6328 * +-----------+ +-----------+ 6329 * 6330 * We'll start relocating mainA, will find subA, append it and start 6331 * processing sub A recursively: 6332 * 6333 * +-----------+------+ 6334 * | mainA | subA | 6335 * +-----------+------+ 6336 * 6337 * At this point we notice that subB is used from subA, so we append it and 6338 * relocate (there are no further subcalls from subB): 6339 * 6340 * +-----------+------+------+ 6341 * | mainA | subA | subB | 6342 * +-----------+------+------+ 6343 * 6344 * At this point, we relocate subA calls, then go one level up and finish with 6345 * relocatin mainA calls. mainA is done. 6346 * 6347 * For mainB process is similar but results in different order. We start with 6348 * mainB and skip subA and subB, as mainB never calls them (at least 6349 * directly), but we see subC is needed, so we append and start processing it: 6350 * 6351 * +-----------+------+ 6352 * | mainB | subC | 6353 * +-----------+------+ 6354 * Now we see subC needs subB, so we go back to it, append and relocate it: 6355 * 6356 * +-----------+------+------+ 6357 * | mainB | subC | subB | 6358 * +-----------+------+------+ 6359 * 6360 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6361 */ 6362 static int 6363 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6364 { 6365 struct bpf_program *subprog; 6366 int i, err; 6367 6368 /* mark all subprogs as not relocated (yet) within the context of 6369 * current main program 6370 */ 6371 for (i = 0; i < obj->nr_programs; i++) { 6372 subprog = &obj->programs[i]; 6373 if (!prog_is_subprog(obj, subprog)) 6374 continue; 6375 6376 subprog->sub_insn_off = 0; 6377 } 6378 6379 err = bpf_object__reloc_code(obj, prog, prog); 6380 if (err) 6381 return err; 6382 6383 return 0; 6384 } 6385 6386 static void 6387 bpf_object__free_relocs(struct bpf_object *obj) 6388 { 6389 struct bpf_program *prog; 6390 int i; 6391 6392 /* free up relocation descriptors */ 6393 for (i = 0; i < obj->nr_programs; i++) { 6394 prog = &obj->programs[i]; 6395 zfree(&prog->reloc_desc); 6396 prog->nr_reloc = 0; 6397 } 6398 } 6399 6400 static int cmp_relocs(const void *_a, const void *_b) 6401 { 6402 const struct reloc_desc *a = _a; 6403 const struct reloc_desc *b = _b; 6404 6405 if (a->insn_idx != b->insn_idx) 6406 return a->insn_idx < b->insn_idx ? -1 : 1; 6407 6408 /* no two relocations should have the same insn_idx, but ... */ 6409 if (a->type != b->type) 6410 return a->type < b->type ? -1 : 1; 6411 6412 return 0; 6413 } 6414 6415 static void bpf_object__sort_relos(struct bpf_object *obj) 6416 { 6417 int i; 6418 6419 for (i = 0; i < obj->nr_programs; i++) { 6420 struct bpf_program *p = &obj->programs[i]; 6421 6422 if (!p->nr_reloc) 6423 continue; 6424 6425 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6426 } 6427 } 6428 6429 static int 6430 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6431 { 6432 struct bpf_program *prog; 6433 size_t i, j; 6434 int err; 6435 6436 if (obj->btf_ext) { 6437 err = bpf_object__relocate_core(obj, targ_btf_path); 6438 if (err) { 6439 pr_warn("failed to perform CO-RE relocations: %d\n", 6440 err); 6441 return err; 6442 } 6443 bpf_object__sort_relos(obj); 6444 } 6445 6446 /* Before relocating calls pre-process relocations and mark 6447 * few ld_imm64 instructions that points to subprogs. 6448 * Otherwise bpf_object__reloc_code() later would have to consider 6449 * all ld_imm64 insns as relocation candidates. That would 6450 * reduce relocation speed, since amount of find_prog_insn_relo() 6451 * would increase and most of them will fail to find a relo. 6452 */ 6453 for (i = 0; i < obj->nr_programs; i++) { 6454 prog = &obj->programs[i]; 6455 for (j = 0; j < prog->nr_reloc; j++) { 6456 struct reloc_desc *relo = &prog->reloc_desc[j]; 6457 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6458 6459 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6460 if (relo->type == RELO_SUBPROG_ADDR) 6461 insn[0].src_reg = BPF_PSEUDO_FUNC; 6462 } 6463 } 6464 6465 /* relocate subprogram calls and append used subprograms to main 6466 * programs; each copy of subprogram code needs to be relocated 6467 * differently for each main program, because its code location might 6468 * have changed. 6469 * Append subprog relos to main programs to allow data relos to be 6470 * processed after text is completely relocated. 6471 */ 6472 for (i = 0; i < obj->nr_programs; i++) { 6473 prog = &obj->programs[i]; 6474 /* sub-program's sub-calls are relocated within the context of 6475 * its main program only 6476 */ 6477 if (prog_is_subprog(obj, prog)) 6478 continue; 6479 if (!prog->autoload) 6480 continue; 6481 6482 err = bpf_object__relocate_calls(obj, prog); 6483 if (err) { 6484 pr_warn("prog '%s': failed to relocate calls: %d\n", 6485 prog->name, err); 6486 return err; 6487 } 6488 } 6489 /* Process data relos for main programs */ 6490 for (i = 0; i < obj->nr_programs; i++) { 6491 prog = &obj->programs[i]; 6492 if (prog_is_subprog(obj, prog)) 6493 continue; 6494 if (!prog->autoload) 6495 continue; 6496 err = bpf_object__relocate_data(obj, prog); 6497 if (err) { 6498 pr_warn("prog '%s': failed to relocate data references: %d\n", 6499 prog->name, err); 6500 return err; 6501 } 6502 } 6503 6504 return 0; 6505 } 6506 6507 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6508 Elf64_Shdr *shdr, Elf_Data *data); 6509 6510 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6511 Elf64_Shdr *shdr, Elf_Data *data) 6512 { 6513 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6514 int i, j, nrels, new_sz; 6515 const struct btf_var_secinfo *vi = NULL; 6516 const struct btf_type *sec, *var, *def; 6517 struct bpf_map *map = NULL, *targ_map = NULL; 6518 struct bpf_program *targ_prog = NULL; 6519 bool is_prog_array, is_map_in_map; 6520 const struct btf_member *member; 6521 const char *name, *mname, *type; 6522 unsigned int moff; 6523 Elf64_Sym *sym; 6524 Elf64_Rel *rel; 6525 void *tmp; 6526 6527 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6528 return -EINVAL; 6529 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6530 if (!sec) 6531 return -EINVAL; 6532 6533 nrels = shdr->sh_size / shdr->sh_entsize; 6534 for (i = 0; i < nrels; i++) { 6535 rel = elf_rel_by_idx(data, i); 6536 if (!rel) { 6537 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6538 return -LIBBPF_ERRNO__FORMAT; 6539 } 6540 6541 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6542 if (!sym) { 6543 pr_warn(".maps relo #%d: symbol %zx not found\n", 6544 i, (size_t)ELF64_R_SYM(rel->r_info)); 6545 return -LIBBPF_ERRNO__FORMAT; 6546 } 6547 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6548 6549 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6550 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6551 (size_t)rel->r_offset, sym->st_name, name); 6552 6553 for (j = 0; j < obj->nr_maps; j++) { 6554 map = &obj->maps[j]; 6555 if (map->sec_idx != obj->efile.btf_maps_shndx) 6556 continue; 6557 6558 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6559 if (vi->offset <= rel->r_offset && 6560 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6561 break; 6562 } 6563 if (j == obj->nr_maps) { 6564 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6565 i, name, (size_t)rel->r_offset); 6566 return -EINVAL; 6567 } 6568 6569 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6570 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6571 type = is_map_in_map ? "map" : "prog"; 6572 if (is_map_in_map) { 6573 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6574 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6575 i, name); 6576 return -LIBBPF_ERRNO__RELOC; 6577 } 6578 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6579 map->def.key_size != sizeof(int)) { 6580 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6581 i, map->name, sizeof(int)); 6582 return -EINVAL; 6583 } 6584 targ_map = bpf_object__find_map_by_name(obj, name); 6585 if (!targ_map) { 6586 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6587 i, name); 6588 return -ESRCH; 6589 } 6590 } else if (is_prog_array) { 6591 targ_prog = bpf_object__find_program_by_name(obj, name); 6592 if (!targ_prog) { 6593 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6594 i, name); 6595 return -ESRCH; 6596 } 6597 if (targ_prog->sec_idx != sym->st_shndx || 6598 targ_prog->sec_insn_off * 8 != sym->st_value || 6599 prog_is_subprog(obj, targ_prog)) { 6600 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6601 i, name); 6602 return -LIBBPF_ERRNO__RELOC; 6603 } 6604 } else { 6605 return -EINVAL; 6606 } 6607 6608 var = btf__type_by_id(obj->btf, vi->type); 6609 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6610 if (btf_vlen(def) == 0) 6611 return -EINVAL; 6612 member = btf_members(def) + btf_vlen(def) - 1; 6613 mname = btf__name_by_offset(obj->btf, member->name_off); 6614 if (strcmp(mname, "values")) 6615 return -EINVAL; 6616 6617 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6618 if (rel->r_offset - vi->offset < moff) 6619 return -EINVAL; 6620 6621 moff = rel->r_offset - vi->offset - moff; 6622 /* here we use BPF pointer size, which is always 64 bit, as we 6623 * are parsing ELF that was built for BPF target 6624 */ 6625 if (moff % bpf_ptr_sz) 6626 return -EINVAL; 6627 moff /= bpf_ptr_sz; 6628 if (moff >= map->init_slots_sz) { 6629 new_sz = moff + 1; 6630 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6631 if (!tmp) 6632 return -ENOMEM; 6633 map->init_slots = tmp; 6634 memset(map->init_slots + map->init_slots_sz, 0, 6635 (new_sz - map->init_slots_sz) * host_ptr_sz); 6636 map->init_slots_sz = new_sz; 6637 } 6638 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6639 6640 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6641 i, map->name, moff, type, name); 6642 } 6643 6644 return 0; 6645 } 6646 6647 static int bpf_object__collect_relos(struct bpf_object *obj) 6648 { 6649 int i, err; 6650 6651 for (i = 0; i < obj->efile.sec_cnt; i++) { 6652 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6653 Elf64_Shdr *shdr; 6654 Elf_Data *data; 6655 int idx; 6656 6657 if (sec_desc->sec_type != SEC_RELO) 6658 continue; 6659 6660 shdr = sec_desc->shdr; 6661 data = sec_desc->data; 6662 idx = shdr->sh_info; 6663 6664 if (shdr->sh_type != SHT_REL) { 6665 pr_warn("internal error at %d\n", __LINE__); 6666 return -LIBBPF_ERRNO__INTERNAL; 6667 } 6668 6669 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6670 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6671 else if (idx == obj->efile.btf_maps_shndx) 6672 err = bpf_object__collect_map_relos(obj, shdr, data); 6673 else 6674 err = bpf_object__collect_prog_relos(obj, shdr, data); 6675 if (err) 6676 return err; 6677 } 6678 6679 bpf_object__sort_relos(obj); 6680 return 0; 6681 } 6682 6683 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6684 { 6685 if (BPF_CLASS(insn->code) == BPF_JMP && 6686 BPF_OP(insn->code) == BPF_CALL && 6687 BPF_SRC(insn->code) == BPF_K && 6688 insn->src_reg == 0 && 6689 insn->dst_reg == 0) { 6690 *func_id = insn->imm; 6691 return true; 6692 } 6693 return false; 6694 } 6695 6696 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6697 { 6698 struct bpf_insn *insn = prog->insns; 6699 enum bpf_func_id func_id; 6700 int i; 6701 6702 if (obj->gen_loader) 6703 return 0; 6704 6705 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6706 if (!insn_is_helper_call(insn, &func_id)) 6707 continue; 6708 6709 /* on kernels that don't yet support 6710 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6711 * to bpf_probe_read() which works well for old kernels 6712 */ 6713 switch (func_id) { 6714 case BPF_FUNC_probe_read_kernel: 6715 case BPF_FUNC_probe_read_user: 6716 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6717 insn->imm = BPF_FUNC_probe_read; 6718 break; 6719 case BPF_FUNC_probe_read_kernel_str: 6720 case BPF_FUNC_probe_read_user_str: 6721 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6722 insn->imm = BPF_FUNC_probe_read_str; 6723 break; 6724 default: 6725 break; 6726 } 6727 } 6728 return 0; 6729 } 6730 6731 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6732 int *btf_obj_fd, int *btf_type_id); 6733 6734 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6735 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6736 struct bpf_prog_load_opts *opts, long cookie) 6737 { 6738 enum sec_def_flags def = cookie; 6739 6740 /* old kernels might not support specifying expected_attach_type */ 6741 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6742 opts->expected_attach_type = 0; 6743 6744 if (def & SEC_SLEEPABLE) 6745 opts->prog_flags |= BPF_F_SLEEPABLE; 6746 6747 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6748 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6749 6750 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6751 int btf_obj_fd = 0, btf_type_id = 0, err; 6752 const char *attach_name; 6753 6754 attach_name = strchr(prog->sec_name, '/'); 6755 if (!attach_name) { 6756 /* if BPF program is annotated with just SEC("fentry") 6757 * (or similar) without declaratively specifying 6758 * target, then it is expected that target will be 6759 * specified with bpf_program__set_attach_target() at 6760 * runtime before BPF object load step. If not, then 6761 * there is nothing to load into the kernel as BPF 6762 * verifier won't be able to validate BPF program 6763 * correctness anyways. 6764 */ 6765 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6766 prog->name); 6767 return -EINVAL; 6768 } 6769 attach_name++; /* skip over / */ 6770 6771 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6772 if (err) 6773 return err; 6774 6775 /* cache resolved BTF FD and BTF type ID in the prog */ 6776 prog->attach_btf_obj_fd = btf_obj_fd; 6777 prog->attach_btf_id = btf_type_id; 6778 6779 /* but by now libbpf common logic is not utilizing 6780 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6781 * this callback is called after opts were populated by 6782 * libbpf, so this callback has to update opts explicitly here 6783 */ 6784 opts->attach_btf_obj_fd = btf_obj_fd; 6785 opts->attach_btf_id = btf_type_id; 6786 } 6787 return 0; 6788 } 6789 6790 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6791 6792 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6793 struct bpf_insn *insns, int insns_cnt, 6794 const char *license, __u32 kern_version, int *prog_fd) 6795 { 6796 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6797 const char *prog_name = NULL; 6798 char *cp, errmsg[STRERR_BUFSIZE]; 6799 size_t log_buf_size = 0; 6800 char *log_buf = NULL, *tmp; 6801 int btf_fd, ret, err; 6802 bool own_log_buf = true; 6803 __u32 log_level = prog->log_level; 6804 6805 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6806 /* 6807 * The program type must be set. Most likely we couldn't find a proper 6808 * section definition at load time, and thus we didn't infer the type. 6809 */ 6810 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6811 prog->name, prog->sec_name); 6812 return -EINVAL; 6813 } 6814 6815 if (!insns || !insns_cnt) 6816 return -EINVAL; 6817 6818 load_attr.expected_attach_type = prog->expected_attach_type; 6819 if (kernel_supports(obj, FEAT_PROG_NAME)) 6820 prog_name = prog->name; 6821 load_attr.attach_prog_fd = prog->attach_prog_fd; 6822 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6823 load_attr.attach_btf_id = prog->attach_btf_id; 6824 load_attr.kern_version = kern_version; 6825 load_attr.prog_ifindex = prog->prog_ifindex; 6826 6827 /* specify func_info/line_info only if kernel supports them */ 6828 btf_fd = bpf_object__btf_fd(obj); 6829 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6830 load_attr.prog_btf_fd = btf_fd; 6831 load_attr.func_info = prog->func_info; 6832 load_attr.func_info_rec_size = prog->func_info_rec_size; 6833 load_attr.func_info_cnt = prog->func_info_cnt; 6834 load_attr.line_info = prog->line_info; 6835 load_attr.line_info_rec_size = prog->line_info_rec_size; 6836 load_attr.line_info_cnt = prog->line_info_cnt; 6837 } 6838 load_attr.log_level = log_level; 6839 load_attr.prog_flags = prog->prog_flags; 6840 load_attr.fd_array = obj->fd_array; 6841 6842 /* adjust load_attr if sec_def provides custom preload callback */ 6843 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6844 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6845 if (err < 0) { 6846 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6847 prog->name, err); 6848 return err; 6849 } 6850 insns = prog->insns; 6851 insns_cnt = prog->insns_cnt; 6852 } 6853 6854 if (obj->gen_loader) { 6855 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6856 license, insns, insns_cnt, &load_attr, 6857 prog - obj->programs); 6858 *prog_fd = -1; 6859 return 0; 6860 } 6861 6862 retry_load: 6863 /* if log_level is zero, we don't request logs initially even if 6864 * custom log_buf is specified; if the program load fails, then we'll 6865 * bump log_level to 1 and use either custom log_buf or we'll allocate 6866 * our own and retry the load to get details on what failed 6867 */ 6868 if (log_level) { 6869 if (prog->log_buf) { 6870 log_buf = prog->log_buf; 6871 log_buf_size = prog->log_size; 6872 own_log_buf = false; 6873 } else if (obj->log_buf) { 6874 log_buf = obj->log_buf; 6875 log_buf_size = obj->log_size; 6876 own_log_buf = false; 6877 } else { 6878 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6879 tmp = realloc(log_buf, log_buf_size); 6880 if (!tmp) { 6881 ret = -ENOMEM; 6882 goto out; 6883 } 6884 log_buf = tmp; 6885 log_buf[0] = '\0'; 6886 own_log_buf = true; 6887 } 6888 } 6889 6890 load_attr.log_buf = log_buf; 6891 load_attr.log_size = log_buf_size; 6892 load_attr.log_level = log_level; 6893 6894 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6895 if (ret >= 0) { 6896 if (log_level && own_log_buf) { 6897 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6898 prog->name, log_buf); 6899 } 6900 6901 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6902 struct bpf_map *map; 6903 int i; 6904 6905 for (i = 0; i < obj->nr_maps; i++) { 6906 map = &prog->obj->maps[i]; 6907 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6908 continue; 6909 6910 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6911 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6912 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6913 prog->name, map->real_name, cp); 6914 /* Don't fail hard if can't bind rodata. */ 6915 } 6916 } 6917 } 6918 6919 *prog_fd = ret; 6920 ret = 0; 6921 goto out; 6922 } 6923 6924 if (log_level == 0) { 6925 log_level = 1; 6926 goto retry_load; 6927 } 6928 /* On ENOSPC, increase log buffer size and retry, unless custom 6929 * log_buf is specified. 6930 * Be careful to not overflow u32, though. Kernel's log buf size limit 6931 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6932 * multiply by 2 unless we are sure we'll fit within 32 bits. 6933 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6934 */ 6935 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6936 goto retry_load; 6937 6938 ret = -errno; 6939 6940 /* post-process verifier log to improve error descriptions */ 6941 fixup_verifier_log(prog, log_buf, log_buf_size); 6942 6943 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6944 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6945 pr_perm_msg(ret); 6946 6947 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6948 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6949 prog->name, log_buf); 6950 } 6951 6952 out: 6953 if (own_log_buf) 6954 free(log_buf); 6955 return ret; 6956 } 6957 6958 static char *find_prev_line(char *buf, char *cur) 6959 { 6960 char *p; 6961 6962 if (cur == buf) /* end of a log buf */ 6963 return NULL; 6964 6965 p = cur - 1; 6966 while (p - 1 >= buf && *(p - 1) != '\n') 6967 p--; 6968 6969 return p; 6970 } 6971 6972 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6973 char *orig, size_t orig_sz, const char *patch) 6974 { 6975 /* size of the remaining log content to the right from the to-be-replaced part */ 6976 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6977 size_t patch_sz = strlen(patch); 6978 6979 if (patch_sz != orig_sz) { 6980 /* If patch line(s) are longer than original piece of verifier log, 6981 * shift log contents by (patch_sz - orig_sz) bytes to the right 6982 * starting from after to-be-replaced part of the log. 6983 * 6984 * If patch line(s) are shorter than original piece of verifier log, 6985 * shift log contents by (orig_sz - patch_sz) bytes to the left 6986 * starting from after to-be-replaced part of the log 6987 * 6988 * We need to be careful about not overflowing available 6989 * buf_sz capacity. If that's the case, we'll truncate the end 6990 * of the original log, as necessary. 6991 */ 6992 if (patch_sz > orig_sz) { 6993 if (orig + patch_sz >= buf + buf_sz) { 6994 /* patch is big enough to cover remaining space completely */ 6995 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6996 rem_sz = 0; 6997 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6998 /* patch causes part of remaining log to be truncated */ 6999 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7000 } 7001 } 7002 /* shift remaining log to the right by calculated amount */ 7003 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7004 } 7005 7006 memcpy(orig, patch, patch_sz); 7007 } 7008 7009 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7010 char *buf, size_t buf_sz, size_t log_sz, 7011 char *line1, char *line2, char *line3) 7012 { 7013 /* Expected log for failed and not properly guarded CO-RE relocation: 7014 * line1 -> 123: (85) call unknown#195896080 7015 * line2 -> invalid func unknown#195896080 7016 * line3 -> <anything else or end of buffer> 7017 * 7018 * "123" is the index of the instruction that was poisoned. We extract 7019 * instruction index to find corresponding CO-RE relocation and 7020 * replace this part of the log with more relevant information about 7021 * failed CO-RE relocation. 7022 */ 7023 const struct bpf_core_relo *relo; 7024 struct bpf_core_spec spec; 7025 char patch[512], spec_buf[256]; 7026 int insn_idx, err, spec_len; 7027 7028 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7029 return; 7030 7031 relo = find_relo_core(prog, insn_idx); 7032 if (!relo) 7033 return; 7034 7035 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7036 if (err) 7037 return; 7038 7039 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7040 snprintf(patch, sizeof(patch), 7041 "%d: <invalid CO-RE relocation>\n" 7042 "failed to resolve CO-RE relocation %s%s\n", 7043 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7044 7045 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7046 } 7047 7048 static void fixup_log_missing_map_load(struct bpf_program *prog, 7049 char *buf, size_t buf_sz, size_t log_sz, 7050 char *line1, char *line2, char *line3) 7051 { 7052 /* Expected log for failed and not properly guarded map reference: 7053 * line1 -> 123: (85) call unknown#2001000345 7054 * line2 -> invalid func unknown#2001000345 7055 * line3 -> <anything else or end of buffer> 7056 * 7057 * "123" is the index of the instruction that was poisoned. 7058 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7059 */ 7060 struct bpf_object *obj = prog->obj; 7061 const struct bpf_map *map; 7062 int insn_idx, map_idx; 7063 char patch[128]; 7064 7065 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7066 return; 7067 7068 map_idx -= POISON_LDIMM64_MAP_BASE; 7069 if (map_idx < 0 || map_idx >= obj->nr_maps) 7070 return; 7071 map = &obj->maps[map_idx]; 7072 7073 snprintf(patch, sizeof(patch), 7074 "%d: <invalid BPF map reference>\n" 7075 "BPF map '%s' is referenced but wasn't created\n", 7076 insn_idx, map->name); 7077 7078 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7079 } 7080 7081 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7082 char *buf, size_t buf_sz, size_t log_sz, 7083 char *line1, char *line2, char *line3) 7084 { 7085 /* Expected log for failed and not properly guarded kfunc call: 7086 * line1 -> 123: (85) call unknown#2002000345 7087 * line2 -> invalid func unknown#2002000345 7088 * line3 -> <anything else or end of buffer> 7089 * 7090 * "123" is the index of the instruction that was poisoned. 7091 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7092 */ 7093 struct bpf_object *obj = prog->obj; 7094 const struct extern_desc *ext; 7095 int insn_idx, ext_idx; 7096 char patch[128]; 7097 7098 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7099 return; 7100 7101 ext_idx -= POISON_CALL_KFUNC_BASE; 7102 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7103 return; 7104 ext = &obj->externs[ext_idx]; 7105 7106 snprintf(patch, sizeof(patch), 7107 "%d: <invalid kfunc call>\n" 7108 "kfunc '%s' is referenced but wasn't resolved\n", 7109 insn_idx, ext->name); 7110 7111 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7112 } 7113 7114 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7115 { 7116 /* look for familiar error patterns in last N lines of the log */ 7117 const size_t max_last_line_cnt = 10; 7118 char *prev_line, *cur_line, *next_line; 7119 size_t log_sz; 7120 int i; 7121 7122 if (!buf) 7123 return; 7124 7125 log_sz = strlen(buf) + 1; 7126 next_line = buf + log_sz - 1; 7127 7128 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7129 cur_line = find_prev_line(buf, next_line); 7130 if (!cur_line) 7131 return; 7132 7133 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7134 prev_line = find_prev_line(buf, cur_line); 7135 if (!prev_line) 7136 continue; 7137 7138 /* failed CO-RE relocation case */ 7139 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7140 prev_line, cur_line, next_line); 7141 return; 7142 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7143 prev_line = find_prev_line(buf, cur_line); 7144 if (!prev_line) 7145 continue; 7146 7147 /* reference to uncreated BPF map */ 7148 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7149 prev_line, cur_line, next_line); 7150 return; 7151 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7152 prev_line = find_prev_line(buf, cur_line); 7153 if (!prev_line) 7154 continue; 7155 7156 /* reference to unresolved kfunc */ 7157 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7158 prev_line, cur_line, next_line); 7159 return; 7160 } 7161 } 7162 } 7163 7164 static int bpf_program_record_relos(struct bpf_program *prog) 7165 { 7166 struct bpf_object *obj = prog->obj; 7167 int i; 7168 7169 for (i = 0; i < prog->nr_reloc; i++) { 7170 struct reloc_desc *relo = &prog->reloc_desc[i]; 7171 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7172 int kind; 7173 7174 switch (relo->type) { 7175 case RELO_EXTERN_LD64: 7176 if (ext->type != EXT_KSYM) 7177 continue; 7178 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7179 BTF_KIND_VAR : BTF_KIND_FUNC; 7180 bpf_gen__record_extern(obj->gen_loader, ext->name, 7181 ext->is_weak, !ext->ksym.type_id, 7182 true, kind, relo->insn_idx); 7183 break; 7184 case RELO_EXTERN_CALL: 7185 bpf_gen__record_extern(obj->gen_loader, ext->name, 7186 ext->is_weak, false, false, BTF_KIND_FUNC, 7187 relo->insn_idx); 7188 break; 7189 case RELO_CORE: { 7190 struct bpf_core_relo cr = { 7191 .insn_off = relo->insn_idx * 8, 7192 .type_id = relo->core_relo->type_id, 7193 .access_str_off = relo->core_relo->access_str_off, 7194 .kind = relo->core_relo->kind, 7195 }; 7196 7197 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7198 break; 7199 } 7200 default: 7201 continue; 7202 } 7203 } 7204 return 0; 7205 } 7206 7207 static int 7208 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7209 { 7210 struct bpf_program *prog; 7211 size_t i; 7212 int err; 7213 7214 for (i = 0; i < obj->nr_programs; i++) { 7215 prog = &obj->programs[i]; 7216 err = bpf_object__sanitize_prog(obj, prog); 7217 if (err) 7218 return err; 7219 } 7220 7221 for (i = 0; i < obj->nr_programs; i++) { 7222 prog = &obj->programs[i]; 7223 if (prog_is_subprog(obj, prog)) 7224 continue; 7225 if (!prog->autoload) { 7226 pr_debug("prog '%s': skipped loading\n", prog->name); 7227 continue; 7228 } 7229 prog->log_level |= log_level; 7230 7231 if (obj->gen_loader) 7232 bpf_program_record_relos(prog); 7233 7234 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7235 obj->license, obj->kern_version, &prog->fd); 7236 if (err) { 7237 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7238 return err; 7239 } 7240 } 7241 7242 bpf_object__free_relocs(obj); 7243 return 0; 7244 } 7245 7246 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7247 7248 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7249 { 7250 struct bpf_program *prog; 7251 int err; 7252 7253 bpf_object__for_each_program(prog, obj) { 7254 prog->sec_def = find_sec_def(prog->sec_name); 7255 if (!prog->sec_def) { 7256 /* couldn't guess, but user might manually specify */ 7257 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7258 prog->name, prog->sec_name); 7259 continue; 7260 } 7261 7262 prog->type = prog->sec_def->prog_type; 7263 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7264 7265 /* sec_def can have custom callback which should be called 7266 * after bpf_program is initialized to adjust its properties 7267 */ 7268 if (prog->sec_def->prog_setup_fn) { 7269 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7270 if (err < 0) { 7271 pr_warn("prog '%s': failed to initialize: %d\n", 7272 prog->name, err); 7273 return err; 7274 } 7275 } 7276 } 7277 7278 return 0; 7279 } 7280 7281 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7282 const struct bpf_object_open_opts *opts) 7283 { 7284 const char *obj_name, *kconfig, *btf_tmp_path; 7285 struct bpf_object *obj; 7286 char tmp_name[64]; 7287 int err; 7288 char *log_buf; 7289 size_t log_size; 7290 __u32 log_level; 7291 7292 if (elf_version(EV_CURRENT) == EV_NONE) { 7293 pr_warn("failed to init libelf for %s\n", 7294 path ? : "(mem buf)"); 7295 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7296 } 7297 7298 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7299 return ERR_PTR(-EINVAL); 7300 7301 obj_name = OPTS_GET(opts, object_name, NULL); 7302 if (obj_buf) { 7303 if (!obj_name) { 7304 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7305 (unsigned long)obj_buf, 7306 (unsigned long)obj_buf_sz); 7307 obj_name = tmp_name; 7308 } 7309 path = obj_name; 7310 pr_debug("loading object '%s' from buffer\n", obj_name); 7311 } 7312 7313 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7314 log_size = OPTS_GET(opts, kernel_log_size, 0); 7315 log_level = OPTS_GET(opts, kernel_log_level, 0); 7316 if (log_size > UINT_MAX) 7317 return ERR_PTR(-EINVAL); 7318 if (log_size && !log_buf) 7319 return ERR_PTR(-EINVAL); 7320 7321 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7322 if (IS_ERR(obj)) 7323 return obj; 7324 7325 obj->log_buf = log_buf; 7326 obj->log_size = log_size; 7327 obj->log_level = log_level; 7328 7329 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7330 if (btf_tmp_path) { 7331 if (strlen(btf_tmp_path) >= PATH_MAX) { 7332 err = -ENAMETOOLONG; 7333 goto out; 7334 } 7335 obj->btf_custom_path = strdup(btf_tmp_path); 7336 if (!obj->btf_custom_path) { 7337 err = -ENOMEM; 7338 goto out; 7339 } 7340 } 7341 7342 kconfig = OPTS_GET(opts, kconfig, NULL); 7343 if (kconfig) { 7344 obj->kconfig = strdup(kconfig); 7345 if (!obj->kconfig) { 7346 err = -ENOMEM; 7347 goto out; 7348 } 7349 } 7350 7351 err = bpf_object__elf_init(obj); 7352 err = err ? : bpf_object__check_endianness(obj); 7353 err = err ? : bpf_object__elf_collect(obj); 7354 err = err ? : bpf_object__collect_externs(obj); 7355 err = err ? : bpf_object_fixup_btf(obj); 7356 err = err ? : bpf_object__init_maps(obj, opts); 7357 err = err ? : bpf_object_init_progs(obj, opts); 7358 err = err ? : bpf_object__collect_relos(obj); 7359 if (err) 7360 goto out; 7361 7362 bpf_object__elf_finish(obj); 7363 7364 return obj; 7365 out: 7366 bpf_object__close(obj); 7367 return ERR_PTR(err); 7368 } 7369 7370 struct bpf_object * 7371 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7372 { 7373 if (!path) 7374 return libbpf_err_ptr(-EINVAL); 7375 7376 pr_debug("loading %s\n", path); 7377 7378 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7379 } 7380 7381 struct bpf_object *bpf_object__open(const char *path) 7382 { 7383 return bpf_object__open_file(path, NULL); 7384 } 7385 7386 struct bpf_object * 7387 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7388 const struct bpf_object_open_opts *opts) 7389 { 7390 if (!obj_buf || obj_buf_sz == 0) 7391 return libbpf_err_ptr(-EINVAL); 7392 7393 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7394 } 7395 7396 static int bpf_object_unload(struct bpf_object *obj) 7397 { 7398 size_t i; 7399 7400 if (!obj) 7401 return libbpf_err(-EINVAL); 7402 7403 for (i = 0; i < obj->nr_maps; i++) { 7404 zclose(obj->maps[i].fd); 7405 if (obj->maps[i].st_ops) 7406 zfree(&obj->maps[i].st_ops->kern_vdata); 7407 } 7408 7409 for (i = 0; i < obj->nr_programs; i++) 7410 bpf_program__unload(&obj->programs[i]); 7411 7412 return 0; 7413 } 7414 7415 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7416 { 7417 struct bpf_map *m; 7418 7419 bpf_object__for_each_map(m, obj) { 7420 if (!bpf_map__is_internal(m)) 7421 continue; 7422 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7423 m->def.map_flags &= ~BPF_F_MMAPABLE; 7424 } 7425 7426 return 0; 7427 } 7428 7429 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7430 { 7431 char sym_type, sym_name[500]; 7432 unsigned long long sym_addr; 7433 int ret, err = 0; 7434 FILE *f; 7435 7436 f = fopen("/proc/kallsyms", "r"); 7437 if (!f) { 7438 err = -errno; 7439 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7440 return err; 7441 } 7442 7443 while (true) { 7444 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7445 &sym_addr, &sym_type, sym_name); 7446 if (ret == EOF && feof(f)) 7447 break; 7448 if (ret != 3) { 7449 pr_warn("failed to read kallsyms entry: %d\n", ret); 7450 err = -EINVAL; 7451 break; 7452 } 7453 7454 err = cb(sym_addr, sym_type, sym_name, ctx); 7455 if (err) 7456 break; 7457 } 7458 7459 fclose(f); 7460 return err; 7461 } 7462 7463 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7464 const char *sym_name, void *ctx) 7465 { 7466 struct bpf_object *obj = ctx; 7467 const struct btf_type *t; 7468 struct extern_desc *ext; 7469 7470 ext = find_extern_by_name(obj, sym_name); 7471 if (!ext || ext->type != EXT_KSYM) 7472 return 0; 7473 7474 t = btf__type_by_id(obj->btf, ext->btf_id); 7475 if (!btf_is_var(t)) 7476 return 0; 7477 7478 if (ext->is_set && ext->ksym.addr != sym_addr) { 7479 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7480 sym_name, ext->ksym.addr, sym_addr); 7481 return -EINVAL; 7482 } 7483 if (!ext->is_set) { 7484 ext->is_set = true; 7485 ext->ksym.addr = sym_addr; 7486 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7487 } 7488 return 0; 7489 } 7490 7491 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7492 { 7493 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7494 } 7495 7496 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7497 __u16 kind, struct btf **res_btf, 7498 struct module_btf **res_mod_btf) 7499 { 7500 struct module_btf *mod_btf; 7501 struct btf *btf; 7502 int i, id, err; 7503 7504 btf = obj->btf_vmlinux; 7505 mod_btf = NULL; 7506 id = btf__find_by_name_kind(btf, ksym_name, kind); 7507 7508 if (id == -ENOENT) { 7509 err = load_module_btfs(obj); 7510 if (err) 7511 return err; 7512 7513 for (i = 0; i < obj->btf_module_cnt; i++) { 7514 /* we assume module_btf's BTF FD is always >0 */ 7515 mod_btf = &obj->btf_modules[i]; 7516 btf = mod_btf->btf; 7517 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7518 if (id != -ENOENT) 7519 break; 7520 } 7521 } 7522 if (id <= 0) 7523 return -ESRCH; 7524 7525 *res_btf = btf; 7526 *res_mod_btf = mod_btf; 7527 return id; 7528 } 7529 7530 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7531 struct extern_desc *ext) 7532 { 7533 const struct btf_type *targ_var, *targ_type; 7534 __u32 targ_type_id, local_type_id; 7535 struct module_btf *mod_btf = NULL; 7536 const char *targ_var_name; 7537 struct btf *btf = NULL; 7538 int id, err; 7539 7540 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7541 if (id < 0) { 7542 if (id == -ESRCH && ext->is_weak) 7543 return 0; 7544 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7545 ext->name); 7546 return id; 7547 } 7548 7549 /* find local type_id */ 7550 local_type_id = ext->ksym.type_id; 7551 7552 /* find target type_id */ 7553 targ_var = btf__type_by_id(btf, id); 7554 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7555 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7556 7557 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7558 btf, targ_type_id); 7559 if (err <= 0) { 7560 const struct btf_type *local_type; 7561 const char *targ_name, *local_name; 7562 7563 local_type = btf__type_by_id(obj->btf, local_type_id); 7564 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7565 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7566 7567 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7568 ext->name, local_type_id, 7569 btf_kind_str(local_type), local_name, targ_type_id, 7570 btf_kind_str(targ_type), targ_name); 7571 return -EINVAL; 7572 } 7573 7574 ext->is_set = true; 7575 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7576 ext->ksym.kernel_btf_id = id; 7577 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7578 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7579 7580 return 0; 7581 } 7582 7583 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7584 struct extern_desc *ext) 7585 { 7586 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7587 struct module_btf *mod_btf = NULL; 7588 const struct btf_type *kern_func; 7589 struct btf *kern_btf = NULL; 7590 int ret; 7591 7592 local_func_proto_id = ext->ksym.type_id; 7593 7594 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7595 if (kfunc_id < 0) { 7596 if (kfunc_id == -ESRCH && ext->is_weak) 7597 return 0; 7598 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7599 ext->name); 7600 return kfunc_id; 7601 } 7602 7603 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7604 kfunc_proto_id = kern_func->type; 7605 7606 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7607 kern_btf, kfunc_proto_id); 7608 if (ret <= 0) { 7609 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7610 ext->name, local_func_proto_id, 7611 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7612 return -EINVAL; 7613 } 7614 7615 /* set index for module BTF fd in fd_array, if unset */ 7616 if (mod_btf && !mod_btf->fd_array_idx) { 7617 /* insn->off is s16 */ 7618 if (obj->fd_array_cnt == INT16_MAX) { 7619 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7620 ext->name, mod_btf->fd_array_idx); 7621 return -E2BIG; 7622 } 7623 /* Cannot use index 0 for module BTF fd */ 7624 if (!obj->fd_array_cnt) 7625 obj->fd_array_cnt = 1; 7626 7627 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7628 obj->fd_array_cnt + 1); 7629 if (ret) 7630 return ret; 7631 mod_btf->fd_array_idx = obj->fd_array_cnt; 7632 /* we assume module BTF FD is always >0 */ 7633 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7634 } 7635 7636 ext->is_set = true; 7637 ext->ksym.kernel_btf_id = kfunc_id; 7638 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7639 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7640 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7641 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7642 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7643 */ 7644 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7645 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7646 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7647 7648 return 0; 7649 } 7650 7651 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7652 { 7653 const struct btf_type *t; 7654 struct extern_desc *ext; 7655 int i, err; 7656 7657 for (i = 0; i < obj->nr_extern; i++) { 7658 ext = &obj->externs[i]; 7659 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7660 continue; 7661 7662 if (obj->gen_loader) { 7663 ext->is_set = true; 7664 ext->ksym.kernel_btf_obj_fd = 0; 7665 ext->ksym.kernel_btf_id = 0; 7666 continue; 7667 } 7668 t = btf__type_by_id(obj->btf, ext->btf_id); 7669 if (btf_is_var(t)) 7670 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7671 else 7672 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7673 if (err) 7674 return err; 7675 } 7676 return 0; 7677 } 7678 7679 static int bpf_object__resolve_externs(struct bpf_object *obj, 7680 const char *extra_kconfig) 7681 { 7682 bool need_config = false, need_kallsyms = false; 7683 bool need_vmlinux_btf = false; 7684 struct extern_desc *ext; 7685 void *kcfg_data = NULL; 7686 int err, i; 7687 7688 if (obj->nr_extern == 0) 7689 return 0; 7690 7691 if (obj->kconfig_map_idx >= 0) 7692 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7693 7694 for (i = 0; i < obj->nr_extern; i++) { 7695 ext = &obj->externs[i]; 7696 7697 if (ext->type == EXT_KSYM) { 7698 if (ext->ksym.type_id) 7699 need_vmlinux_btf = true; 7700 else 7701 need_kallsyms = true; 7702 continue; 7703 } else if (ext->type == EXT_KCFG) { 7704 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7705 __u64 value = 0; 7706 7707 /* Kconfig externs need actual /proc/config.gz */ 7708 if (str_has_pfx(ext->name, "CONFIG_")) { 7709 need_config = true; 7710 continue; 7711 } 7712 7713 /* Virtual kcfg externs are customly handled by libbpf */ 7714 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7715 value = get_kernel_version(); 7716 if (!value) { 7717 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7718 return -EINVAL; 7719 } 7720 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7721 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7722 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7723 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7724 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7725 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7726 * __kconfig externs, where LINUX_ ones are virtual and filled out 7727 * customly by libbpf (their values don't come from Kconfig). 7728 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7729 * __weak, it defaults to zero value, just like for CONFIG_xxx 7730 * externs. 7731 */ 7732 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7733 return -EINVAL; 7734 } 7735 7736 err = set_kcfg_value_num(ext, ext_ptr, value); 7737 if (err) 7738 return err; 7739 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7740 ext->name, (long long)value); 7741 } else { 7742 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7743 return -EINVAL; 7744 } 7745 } 7746 if (need_config && extra_kconfig) { 7747 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7748 if (err) 7749 return -EINVAL; 7750 need_config = false; 7751 for (i = 0; i < obj->nr_extern; i++) { 7752 ext = &obj->externs[i]; 7753 if (ext->type == EXT_KCFG && !ext->is_set) { 7754 need_config = true; 7755 break; 7756 } 7757 } 7758 } 7759 if (need_config) { 7760 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7761 if (err) 7762 return -EINVAL; 7763 } 7764 if (need_kallsyms) { 7765 err = bpf_object__read_kallsyms_file(obj); 7766 if (err) 7767 return -EINVAL; 7768 } 7769 if (need_vmlinux_btf) { 7770 err = bpf_object__resolve_ksyms_btf_id(obj); 7771 if (err) 7772 return -EINVAL; 7773 } 7774 for (i = 0; i < obj->nr_extern; i++) { 7775 ext = &obj->externs[i]; 7776 7777 if (!ext->is_set && !ext->is_weak) { 7778 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7779 return -ESRCH; 7780 } else if (!ext->is_set) { 7781 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7782 ext->name); 7783 } 7784 } 7785 7786 return 0; 7787 } 7788 7789 static void bpf_map_prepare_vdata(const struct bpf_map *map) 7790 { 7791 struct bpf_struct_ops *st_ops; 7792 __u32 i; 7793 7794 st_ops = map->st_ops; 7795 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7796 struct bpf_program *prog = st_ops->progs[i]; 7797 void *kern_data; 7798 int prog_fd; 7799 7800 if (!prog) 7801 continue; 7802 7803 prog_fd = bpf_program__fd(prog); 7804 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7805 *(unsigned long *)kern_data = prog_fd; 7806 } 7807 } 7808 7809 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 7810 { 7811 int i; 7812 7813 for (i = 0; i < obj->nr_maps; i++) 7814 if (bpf_map__is_struct_ops(&obj->maps[i])) 7815 bpf_map_prepare_vdata(&obj->maps[i]); 7816 7817 return 0; 7818 } 7819 7820 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7821 { 7822 int err, i; 7823 7824 if (!obj) 7825 return libbpf_err(-EINVAL); 7826 7827 if (obj->loaded) { 7828 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7829 return libbpf_err(-EINVAL); 7830 } 7831 7832 if (obj->gen_loader) 7833 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7834 7835 err = bpf_object__probe_loading(obj); 7836 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7837 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7838 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7839 err = err ? : bpf_object__sanitize_maps(obj); 7840 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7841 err = err ? : bpf_object__create_maps(obj); 7842 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7843 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7844 err = err ? : bpf_object_init_prog_arrays(obj); 7845 err = err ? : bpf_object_prepare_struct_ops(obj); 7846 7847 if (obj->gen_loader) { 7848 /* reset FDs */ 7849 if (obj->btf) 7850 btf__set_fd(obj->btf, -1); 7851 for (i = 0; i < obj->nr_maps; i++) 7852 obj->maps[i].fd = -1; 7853 if (!err) 7854 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7855 } 7856 7857 /* clean up fd_array */ 7858 zfree(&obj->fd_array); 7859 7860 /* clean up module BTFs */ 7861 for (i = 0; i < obj->btf_module_cnt; i++) { 7862 close(obj->btf_modules[i].fd); 7863 btf__free(obj->btf_modules[i].btf); 7864 free(obj->btf_modules[i].name); 7865 } 7866 free(obj->btf_modules); 7867 7868 /* clean up vmlinux BTF */ 7869 btf__free(obj->btf_vmlinux); 7870 obj->btf_vmlinux = NULL; 7871 7872 obj->loaded = true; /* doesn't matter if successfully or not */ 7873 7874 if (err) 7875 goto out; 7876 7877 return 0; 7878 out: 7879 /* unpin any maps that were auto-pinned during load */ 7880 for (i = 0; i < obj->nr_maps; i++) 7881 if (obj->maps[i].pinned && !obj->maps[i].reused) 7882 bpf_map__unpin(&obj->maps[i], NULL); 7883 7884 bpf_object_unload(obj); 7885 pr_warn("failed to load object '%s'\n", obj->path); 7886 return libbpf_err(err); 7887 } 7888 7889 int bpf_object__load(struct bpf_object *obj) 7890 { 7891 return bpf_object_load(obj, 0, NULL); 7892 } 7893 7894 static int make_parent_dir(const char *path) 7895 { 7896 char *cp, errmsg[STRERR_BUFSIZE]; 7897 char *dname, *dir; 7898 int err = 0; 7899 7900 dname = strdup(path); 7901 if (dname == NULL) 7902 return -ENOMEM; 7903 7904 dir = dirname(dname); 7905 if (mkdir(dir, 0700) && errno != EEXIST) 7906 err = -errno; 7907 7908 free(dname); 7909 if (err) { 7910 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7911 pr_warn("failed to mkdir %s: %s\n", path, cp); 7912 } 7913 return err; 7914 } 7915 7916 static int check_path(const char *path) 7917 { 7918 char *cp, errmsg[STRERR_BUFSIZE]; 7919 struct statfs st_fs; 7920 char *dname, *dir; 7921 int err = 0; 7922 7923 if (path == NULL) 7924 return -EINVAL; 7925 7926 dname = strdup(path); 7927 if (dname == NULL) 7928 return -ENOMEM; 7929 7930 dir = dirname(dname); 7931 if (statfs(dir, &st_fs)) { 7932 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7933 pr_warn("failed to statfs %s: %s\n", dir, cp); 7934 err = -errno; 7935 } 7936 free(dname); 7937 7938 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7939 pr_warn("specified path %s is not on BPF FS\n", path); 7940 err = -EINVAL; 7941 } 7942 7943 return err; 7944 } 7945 7946 int bpf_program__pin(struct bpf_program *prog, const char *path) 7947 { 7948 char *cp, errmsg[STRERR_BUFSIZE]; 7949 int err; 7950 7951 if (prog->fd < 0) { 7952 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7953 return libbpf_err(-EINVAL); 7954 } 7955 7956 err = make_parent_dir(path); 7957 if (err) 7958 return libbpf_err(err); 7959 7960 err = check_path(path); 7961 if (err) 7962 return libbpf_err(err); 7963 7964 if (bpf_obj_pin(prog->fd, path)) { 7965 err = -errno; 7966 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7967 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7968 return libbpf_err(err); 7969 } 7970 7971 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7972 return 0; 7973 } 7974 7975 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7976 { 7977 int err; 7978 7979 if (prog->fd < 0) { 7980 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7981 return libbpf_err(-EINVAL); 7982 } 7983 7984 err = check_path(path); 7985 if (err) 7986 return libbpf_err(err); 7987 7988 err = unlink(path); 7989 if (err) 7990 return libbpf_err(-errno); 7991 7992 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7993 return 0; 7994 } 7995 7996 int bpf_map__pin(struct bpf_map *map, const char *path) 7997 { 7998 char *cp, errmsg[STRERR_BUFSIZE]; 7999 int err; 8000 8001 if (map == NULL) { 8002 pr_warn("invalid map pointer\n"); 8003 return libbpf_err(-EINVAL); 8004 } 8005 8006 if (map->pin_path) { 8007 if (path && strcmp(path, map->pin_path)) { 8008 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8009 bpf_map__name(map), map->pin_path, path); 8010 return libbpf_err(-EINVAL); 8011 } else if (map->pinned) { 8012 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8013 bpf_map__name(map), map->pin_path); 8014 return 0; 8015 } 8016 } else { 8017 if (!path) { 8018 pr_warn("missing a path to pin map '%s' at\n", 8019 bpf_map__name(map)); 8020 return libbpf_err(-EINVAL); 8021 } else if (map->pinned) { 8022 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8023 return libbpf_err(-EEXIST); 8024 } 8025 8026 map->pin_path = strdup(path); 8027 if (!map->pin_path) { 8028 err = -errno; 8029 goto out_err; 8030 } 8031 } 8032 8033 err = make_parent_dir(map->pin_path); 8034 if (err) 8035 return libbpf_err(err); 8036 8037 err = check_path(map->pin_path); 8038 if (err) 8039 return libbpf_err(err); 8040 8041 if (bpf_obj_pin(map->fd, map->pin_path)) { 8042 err = -errno; 8043 goto out_err; 8044 } 8045 8046 map->pinned = true; 8047 pr_debug("pinned map '%s'\n", map->pin_path); 8048 8049 return 0; 8050 8051 out_err: 8052 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8053 pr_warn("failed to pin map: %s\n", cp); 8054 return libbpf_err(err); 8055 } 8056 8057 int bpf_map__unpin(struct bpf_map *map, const char *path) 8058 { 8059 int err; 8060 8061 if (map == NULL) { 8062 pr_warn("invalid map pointer\n"); 8063 return libbpf_err(-EINVAL); 8064 } 8065 8066 if (map->pin_path) { 8067 if (path && strcmp(path, map->pin_path)) { 8068 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8069 bpf_map__name(map), map->pin_path, path); 8070 return libbpf_err(-EINVAL); 8071 } 8072 path = map->pin_path; 8073 } else if (!path) { 8074 pr_warn("no path to unpin map '%s' from\n", 8075 bpf_map__name(map)); 8076 return libbpf_err(-EINVAL); 8077 } 8078 8079 err = check_path(path); 8080 if (err) 8081 return libbpf_err(err); 8082 8083 err = unlink(path); 8084 if (err != 0) 8085 return libbpf_err(-errno); 8086 8087 map->pinned = false; 8088 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8089 8090 return 0; 8091 } 8092 8093 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8094 { 8095 char *new = NULL; 8096 8097 if (path) { 8098 new = strdup(path); 8099 if (!new) 8100 return libbpf_err(-errno); 8101 } 8102 8103 free(map->pin_path); 8104 map->pin_path = new; 8105 return 0; 8106 } 8107 8108 __alias(bpf_map__pin_path) 8109 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8110 8111 const char *bpf_map__pin_path(const struct bpf_map *map) 8112 { 8113 return map->pin_path; 8114 } 8115 8116 bool bpf_map__is_pinned(const struct bpf_map *map) 8117 { 8118 return map->pinned; 8119 } 8120 8121 static void sanitize_pin_path(char *s) 8122 { 8123 /* bpffs disallows periods in path names */ 8124 while (*s) { 8125 if (*s == '.') 8126 *s = '_'; 8127 s++; 8128 } 8129 } 8130 8131 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8132 { 8133 struct bpf_map *map; 8134 int err; 8135 8136 if (!obj) 8137 return libbpf_err(-ENOENT); 8138 8139 if (!obj->loaded) { 8140 pr_warn("object not yet loaded; load it first\n"); 8141 return libbpf_err(-ENOENT); 8142 } 8143 8144 bpf_object__for_each_map(map, obj) { 8145 char *pin_path = NULL; 8146 char buf[PATH_MAX]; 8147 8148 if (!map->autocreate) 8149 continue; 8150 8151 if (path) { 8152 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8153 if (err) 8154 goto err_unpin_maps; 8155 sanitize_pin_path(buf); 8156 pin_path = buf; 8157 } else if (!map->pin_path) { 8158 continue; 8159 } 8160 8161 err = bpf_map__pin(map, pin_path); 8162 if (err) 8163 goto err_unpin_maps; 8164 } 8165 8166 return 0; 8167 8168 err_unpin_maps: 8169 while ((map = bpf_object__prev_map(obj, map))) { 8170 if (!map->pin_path) 8171 continue; 8172 8173 bpf_map__unpin(map, NULL); 8174 } 8175 8176 return libbpf_err(err); 8177 } 8178 8179 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8180 { 8181 struct bpf_map *map; 8182 int err; 8183 8184 if (!obj) 8185 return libbpf_err(-ENOENT); 8186 8187 bpf_object__for_each_map(map, obj) { 8188 char *pin_path = NULL; 8189 char buf[PATH_MAX]; 8190 8191 if (path) { 8192 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8193 if (err) 8194 return libbpf_err(err); 8195 sanitize_pin_path(buf); 8196 pin_path = buf; 8197 } else if (!map->pin_path) { 8198 continue; 8199 } 8200 8201 err = bpf_map__unpin(map, pin_path); 8202 if (err) 8203 return libbpf_err(err); 8204 } 8205 8206 return 0; 8207 } 8208 8209 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8210 { 8211 struct bpf_program *prog; 8212 char buf[PATH_MAX]; 8213 int err; 8214 8215 if (!obj) 8216 return libbpf_err(-ENOENT); 8217 8218 if (!obj->loaded) { 8219 pr_warn("object not yet loaded; load it first\n"); 8220 return libbpf_err(-ENOENT); 8221 } 8222 8223 bpf_object__for_each_program(prog, obj) { 8224 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8225 if (err) 8226 goto err_unpin_programs; 8227 8228 err = bpf_program__pin(prog, buf); 8229 if (err) 8230 goto err_unpin_programs; 8231 } 8232 8233 return 0; 8234 8235 err_unpin_programs: 8236 while ((prog = bpf_object__prev_program(obj, prog))) { 8237 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8238 continue; 8239 8240 bpf_program__unpin(prog, buf); 8241 } 8242 8243 return libbpf_err(err); 8244 } 8245 8246 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8247 { 8248 struct bpf_program *prog; 8249 int err; 8250 8251 if (!obj) 8252 return libbpf_err(-ENOENT); 8253 8254 bpf_object__for_each_program(prog, obj) { 8255 char buf[PATH_MAX]; 8256 8257 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8258 if (err) 8259 return libbpf_err(err); 8260 8261 err = bpf_program__unpin(prog, buf); 8262 if (err) 8263 return libbpf_err(err); 8264 } 8265 8266 return 0; 8267 } 8268 8269 int bpf_object__pin(struct bpf_object *obj, const char *path) 8270 { 8271 int err; 8272 8273 err = bpf_object__pin_maps(obj, path); 8274 if (err) 8275 return libbpf_err(err); 8276 8277 err = bpf_object__pin_programs(obj, path); 8278 if (err) { 8279 bpf_object__unpin_maps(obj, path); 8280 return libbpf_err(err); 8281 } 8282 8283 return 0; 8284 } 8285 8286 static void bpf_map__destroy(struct bpf_map *map) 8287 { 8288 if (map->inner_map) { 8289 bpf_map__destroy(map->inner_map); 8290 zfree(&map->inner_map); 8291 } 8292 8293 zfree(&map->init_slots); 8294 map->init_slots_sz = 0; 8295 8296 if (map->mmaped) { 8297 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8298 map->mmaped = NULL; 8299 } 8300 8301 if (map->st_ops) { 8302 zfree(&map->st_ops->data); 8303 zfree(&map->st_ops->progs); 8304 zfree(&map->st_ops->kern_func_off); 8305 zfree(&map->st_ops); 8306 } 8307 8308 zfree(&map->name); 8309 zfree(&map->real_name); 8310 zfree(&map->pin_path); 8311 8312 if (map->fd >= 0) 8313 zclose(map->fd); 8314 } 8315 8316 void bpf_object__close(struct bpf_object *obj) 8317 { 8318 size_t i; 8319 8320 if (IS_ERR_OR_NULL(obj)) 8321 return; 8322 8323 usdt_manager_free(obj->usdt_man); 8324 obj->usdt_man = NULL; 8325 8326 bpf_gen__free(obj->gen_loader); 8327 bpf_object__elf_finish(obj); 8328 bpf_object_unload(obj); 8329 btf__free(obj->btf); 8330 btf_ext__free(obj->btf_ext); 8331 8332 for (i = 0; i < obj->nr_maps; i++) 8333 bpf_map__destroy(&obj->maps[i]); 8334 8335 zfree(&obj->btf_custom_path); 8336 zfree(&obj->kconfig); 8337 zfree(&obj->externs); 8338 obj->nr_extern = 0; 8339 8340 zfree(&obj->maps); 8341 obj->nr_maps = 0; 8342 8343 if (obj->programs && obj->nr_programs) { 8344 for (i = 0; i < obj->nr_programs; i++) 8345 bpf_program__exit(&obj->programs[i]); 8346 } 8347 zfree(&obj->programs); 8348 8349 free(obj); 8350 } 8351 8352 const char *bpf_object__name(const struct bpf_object *obj) 8353 { 8354 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8355 } 8356 8357 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8358 { 8359 return obj ? obj->kern_version : 0; 8360 } 8361 8362 struct btf *bpf_object__btf(const struct bpf_object *obj) 8363 { 8364 return obj ? obj->btf : NULL; 8365 } 8366 8367 int bpf_object__btf_fd(const struct bpf_object *obj) 8368 { 8369 return obj->btf ? btf__fd(obj->btf) : -1; 8370 } 8371 8372 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8373 { 8374 if (obj->loaded) 8375 return libbpf_err(-EINVAL); 8376 8377 obj->kern_version = kern_version; 8378 8379 return 0; 8380 } 8381 8382 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8383 { 8384 struct bpf_gen *gen; 8385 8386 if (!opts) 8387 return -EFAULT; 8388 if (!OPTS_VALID(opts, gen_loader_opts)) 8389 return -EINVAL; 8390 gen = calloc(sizeof(*gen), 1); 8391 if (!gen) 8392 return -ENOMEM; 8393 gen->opts = opts; 8394 obj->gen_loader = gen; 8395 return 0; 8396 } 8397 8398 static struct bpf_program * 8399 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8400 bool forward) 8401 { 8402 size_t nr_programs = obj->nr_programs; 8403 ssize_t idx; 8404 8405 if (!nr_programs) 8406 return NULL; 8407 8408 if (!p) 8409 /* Iter from the beginning */ 8410 return forward ? &obj->programs[0] : 8411 &obj->programs[nr_programs - 1]; 8412 8413 if (p->obj != obj) { 8414 pr_warn("error: program handler doesn't match object\n"); 8415 return errno = EINVAL, NULL; 8416 } 8417 8418 idx = (p - obj->programs) + (forward ? 1 : -1); 8419 if (idx >= obj->nr_programs || idx < 0) 8420 return NULL; 8421 return &obj->programs[idx]; 8422 } 8423 8424 struct bpf_program * 8425 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8426 { 8427 struct bpf_program *prog = prev; 8428 8429 do { 8430 prog = __bpf_program__iter(prog, obj, true); 8431 } while (prog && prog_is_subprog(obj, prog)); 8432 8433 return prog; 8434 } 8435 8436 struct bpf_program * 8437 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8438 { 8439 struct bpf_program *prog = next; 8440 8441 do { 8442 prog = __bpf_program__iter(prog, obj, false); 8443 } while (prog && prog_is_subprog(obj, prog)); 8444 8445 return prog; 8446 } 8447 8448 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8449 { 8450 prog->prog_ifindex = ifindex; 8451 } 8452 8453 const char *bpf_program__name(const struct bpf_program *prog) 8454 { 8455 return prog->name; 8456 } 8457 8458 const char *bpf_program__section_name(const struct bpf_program *prog) 8459 { 8460 return prog->sec_name; 8461 } 8462 8463 bool bpf_program__autoload(const struct bpf_program *prog) 8464 { 8465 return prog->autoload; 8466 } 8467 8468 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8469 { 8470 if (prog->obj->loaded) 8471 return libbpf_err(-EINVAL); 8472 8473 prog->autoload = autoload; 8474 return 0; 8475 } 8476 8477 bool bpf_program__autoattach(const struct bpf_program *prog) 8478 { 8479 return prog->autoattach; 8480 } 8481 8482 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8483 { 8484 prog->autoattach = autoattach; 8485 } 8486 8487 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8488 { 8489 return prog->insns; 8490 } 8491 8492 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8493 { 8494 return prog->insns_cnt; 8495 } 8496 8497 int bpf_program__set_insns(struct bpf_program *prog, 8498 struct bpf_insn *new_insns, size_t new_insn_cnt) 8499 { 8500 struct bpf_insn *insns; 8501 8502 if (prog->obj->loaded) 8503 return -EBUSY; 8504 8505 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8506 if (!insns) { 8507 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8508 return -ENOMEM; 8509 } 8510 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8511 8512 prog->insns = insns; 8513 prog->insns_cnt = new_insn_cnt; 8514 return 0; 8515 } 8516 8517 int bpf_program__fd(const struct bpf_program *prog) 8518 { 8519 if (!prog) 8520 return libbpf_err(-EINVAL); 8521 8522 if (prog->fd < 0) 8523 return libbpf_err(-ENOENT); 8524 8525 return prog->fd; 8526 } 8527 8528 __alias(bpf_program__type) 8529 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8530 8531 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8532 { 8533 return prog->type; 8534 } 8535 8536 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8537 { 8538 if (prog->obj->loaded) 8539 return libbpf_err(-EBUSY); 8540 8541 prog->type = type; 8542 prog->sec_def = NULL; 8543 return 0; 8544 } 8545 8546 __alias(bpf_program__expected_attach_type) 8547 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8548 8549 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8550 { 8551 return prog->expected_attach_type; 8552 } 8553 8554 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8555 enum bpf_attach_type type) 8556 { 8557 if (prog->obj->loaded) 8558 return libbpf_err(-EBUSY); 8559 8560 prog->expected_attach_type = type; 8561 return 0; 8562 } 8563 8564 __u32 bpf_program__flags(const struct bpf_program *prog) 8565 { 8566 return prog->prog_flags; 8567 } 8568 8569 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8570 { 8571 if (prog->obj->loaded) 8572 return libbpf_err(-EBUSY); 8573 8574 prog->prog_flags = flags; 8575 return 0; 8576 } 8577 8578 __u32 bpf_program__log_level(const struct bpf_program *prog) 8579 { 8580 return prog->log_level; 8581 } 8582 8583 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8584 { 8585 if (prog->obj->loaded) 8586 return libbpf_err(-EBUSY); 8587 8588 prog->log_level = log_level; 8589 return 0; 8590 } 8591 8592 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8593 { 8594 *log_size = prog->log_size; 8595 return prog->log_buf; 8596 } 8597 8598 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8599 { 8600 if (log_size && !log_buf) 8601 return -EINVAL; 8602 if (prog->log_size > UINT_MAX) 8603 return -EINVAL; 8604 if (prog->obj->loaded) 8605 return -EBUSY; 8606 8607 prog->log_buf = log_buf; 8608 prog->log_size = log_size; 8609 return 0; 8610 } 8611 8612 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8613 .sec = (char *)sec_pfx, \ 8614 .prog_type = BPF_PROG_TYPE_##ptype, \ 8615 .expected_attach_type = atype, \ 8616 .cookie = (long)(flags), \ 8617 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8618 __VA_ARGS__ \ 8619 } 8620 8621 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8622 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8623 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8624 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8625 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8626 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8627 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8628 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8629 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8630 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8631 8632 static const struct bpf_sec_def section_defs[] = { 8633 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8634 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8635 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8636 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8637 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8638 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8639 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8640 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8641 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8642 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8643 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8644 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8645 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8646 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8647 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8648 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8649 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8650 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8651 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8652 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8653 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8654 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8655 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8656 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8657 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8658 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8659 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8660 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8661 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8662 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8663 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8664 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8665 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8666 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8667 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8668 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8669 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8670 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8671 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8672 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8673 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8674 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8675 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8676 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8677 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8678 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8679 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8680 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8681 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8682 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8683 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8684 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8685 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8686 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8687 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8688 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8689 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8690 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8691 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8692 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8693 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8694 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8695 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8696 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8697 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8698 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8699 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8700 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8701 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8702 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8703 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8704 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8705 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8706 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8707 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8708 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8709 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8710 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8711 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8712 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8713 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8714 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8715 SEC_DEF("netfilter", NETFILTER, 0, SEC_NONE), 8716 }; 8717 8718 static size_t custom_sec_def_cnt; 8719 static struct bpf_sec_def *custom_sec_defs; 8720 static struct bpf_sec_def custom_fallback_def; 8721 static bool has_custom_fallback_def; 8722 8723 static int last_custom_sec_def_handler_id; 8724 8725 int libbpf_register_prog_handler(const char *sec, 8726 enum bpf_prog_type prog_type, 8727 enum bpf_attach_type exp_attach_type, 8728 const struct libbpf_prog_handler_opts *opts) 8729 { 8730 struct bpf_sec_def *sec_def; 8731 8732 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8733 return libbpf_err(-EINVAL); 8734 8735 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8736 return libbpf_err(-E2BIG); 8737 8738 if (sec) { 8739 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8740 sizeof(*sec_def)); 8741 if (!sec_def) 8742 return libbpf_err(-ENOMEM); 8743 8744 custom_sec_defs = sec_def; 8745 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8746 } else { 8747 if (has_custom_fallback_def) 8748 return libbpf_err(-EBUSY); 8749 8750 sec_def = &custom_fallback_def; 8751 } 8752 8753 sec_def->sec = sec ? strdup(sec) : NULL; 8754 if (sec && !sec_def->sec) 8755 return libbpf_err(-ENOMEM); 8756 8757 sec_def->prog_type = prog_type; 8758 sec_def->expected_attach_type = exp_attach_type; 8759 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8760 8761 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8762 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8763 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8764 8765 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8766 8767 if (sec) 8768 custom_sec_def_cnt++; 8769 else 8770 has_custom_fallback_def = true; 8771 8772 return sec_def->handler_id; 8773 } 8774 8775 int libbpf_unregister_prog_handler(int handler_id) 8776 { 8777 struct bpf_sec_def *sec_defs; 8778 int i; 8779 8780 if (handler_id <= 0) 8781 return libbpf_err(-EINVAL); 8782 8783 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8784 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8785 has_custom_fallback_def = false; 8786 return 0; 8787 } 8788 8789 for (i = 0; i < custom_sec_def_cnt; i++) { 8790 if (custom_sec_defs[i].handler_id == handler_id) 8791 break; 8792 } 8793 8794 if (i == custom_sec_def_cnt) 8795 return libbpf_err(-ENOENT); 8796 8797 free(custom_sec_defs[i].sec); 8798 for (i = i + 1; i < custom_sec_def_cnt; i++) 8799 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8800 custom_sec_def_cnt--; 8801 8802 /* try to shrink the array, but it's ok if we couldn't */ 8803 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8804 if (sec_defs) 8805 custom_sec_defs = sec_defs; 8806 8807 return 0; 8808 } 8809 8810 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8811 { 8812 size_t len = strlen(sec_def->sec); 8813 8814 /* "type/" always has to have proper SEC("type/extras") form */ 8815 if (sec_def->sec[len - 1] == '/') { 8816 if (str_has_pfx(sec_name, sec_def->sec)) 8817 return true; 8818 return false; 8819 } 8820 8821 /* "type+" means it can be either exact SEC("type") or 8822 * well-formed SEC("type/extras") with proper '/' separator 8823 */ 8824 if (sec_def->sec[len - 1] == '+') { 8825 len--; 8826 /* not even a prefix */ 8827 if (strncmp(sec_name, sec_def->sec, len) != 0) 8828 return false; 8829 /* exact match or has '/' separator */ 8830 if (sec_name[len] == '\0' || sec_name[len] == '/') 8831 return true; 8832 return false; 8833 } 8834 8835 return strcmp(sec_name, sec_def->sec) == 0; 8836 } 8837 8838 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8839 { 8840 const struct bpf_sec_def *sec_def; 8841 int i, n; 8842 8843 n = custom_sec_def_cnt; 8844 for (i = 0; i < n; i++) { 8845 sec_def = &custom_sec_defs[i]; 8846 if (sec_def_matches(sec_def, sec_name)) 8847 return sec_def; 8848 } 8849 8850 n = ARRAY_SIZE(section_defs); 8851 for (i = 0; i < n; i++) { 8852 sec_def = §ion_defs[i]; 8853 if (sec_def_matches(sec_def, sec_name)) 8854 return sec_def; 8855 } 8856 8857 if (has_custom_fallback_def) 8858 return &custom_fallback_def; 8859 8860 return NULL; 8861 } 8862 8863 #define MAX_TYPE_NAME_SIZE 32 8864 8865 static char *libbpf_get_type_names(bool attach_type) 8866 { 8867 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8868 char *buf; 8869 8870 buf = malloc(len); 8871 if (!buf) 8872 return NULL; 8873 8874 buf[0] = '\0'; 8875 /* Forge string buf with all available names */ 8876 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8877 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8878 8879 if (attach_type) { 8880 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8881 continue; 8882 8883 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8884 continue; 8885 } 8886 8887 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8888 free(buf); 8889 return NULL; 8890 } 8891 strcat(buf, " "); 8892 strcat(buf, section_defs[i].sec); 8893 } 8894 8895 return buf; 8896 } 8897 8898 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8899 enum bpf_attach_type *expected_attach_type) 8900 { 8901 const struct bpf_sec_def *sec_def; 8902 char *type_names; 8903 8904 if (!name) 8905 return libbpf_err(-EINVAL); 8906 8907 sec_def = find_sec_def(name); 8908 if (sec_def) { 8909 *prog_type = sec_def->prog_type; 8910 *expected_attach_type = sec_def->expected_attach_type; 8911 return 0; 8912 } 8913 8914 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8915 type_names = libbpf_get_type_names(false); 8916 if (type_names != NULL) { 8917 pr_debug("supported section(type) names are:%s\n", type_names); 8918 free(type_names); 8919 } 8920 8921 return libbpf_err(-ESRCH); 8922 } 8923 8924 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8925 { 8926 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8927 return NULL; 8928 8929 return attach_type_name[t]; 8930 } 8931 8932 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8933 { 8934 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8935 return NULL; 8936 8937 return link_type_name[t]; 8938 } 8939 8940 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8941 { 8942 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8943 return NULL; 8944 8945 return map_type_name[t]; 8946 } 8947 8948 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8949 { 8950 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8951 return NULL; 8952 8953 return prog_type_name[t]; 8954 } 8955 8956 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8957 int sec_idx, 8958 size_t offset) 8959 { 8960 struct bpf_map *map; 8961 size_t i; 8962 8963 for (i = 0; i < obj->nr_maps; i++) { 8964 map = &obj->maps[i]; 8965 if (!bpf_map__is_struct_ops(map)) 8966 continue; 8967 if (map->sec_idx == sec_idx && 8968 map->sec_offset <= offset && 8969 offset - map->sec_offset < map->def.value_size) 8970 return map; 8971 } 8972 8973 return NULL; 8974 } 8975 8976 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8977 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8978 Elf64_Shdr *shdr, Elf_Data *data) 8979 { 8980 const struct btf_member *member; 8981 struct bpf_struct_ops *st_ops; 8982 struct bpf_program *prog; 8983 unsigned int shdr_idx; 8984 const struct btf *btf; 8985 struct bpf_map *map; 8986 unsigned int moff, insn_idx; 8987 const char *name; 8988 __u32 member_idx; 8989 Elf64_Sym *sym; 8990 Elf64_Rel *rel; 8991 int i, nrels; 8992 8993 btf = obj->btf; 8994 nrels = shdr->sh_size / shdr->sh_entsize; 8995 for (i = 0; i < nrels; i++) { 8996 rel = elf_rel_by_idx(data, i); 8997 if (!rel) { 8998 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8999 return -LIBBPF_ERRNO__FORMAT; 9000 } 9001 9002 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9003 if (!sym) { 9004 pr_warn("struct_ops reloc: symbol %zx not found\n", 9005 (size_t)ELF64_R_SYM(rel->r_info)); 9006 return -LIBBPF_ERRNO__FORMAT; 9007 } 9008 9009 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9010 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9011 if (!map) { 9012 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9013 (size_t)rel->r_offset); 9014 return -EINVAL; 9015 } 9016 9017 moff = rel->r_offset - map->sec_offset; 9018 shdr_idx = sym->st_shndx; 9019 st_ops = map->st_ops; 9020 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9021 map->name, 9022 (long long)(rel->r_info >> 32), 9023 (long long)sym->st_value, 9024 shdr_idx, (size_t)rel->r_offset, 9025 map->sec_offset, sym->st_name, name); 9026 9027 if (shdr_idx >= SHN_LORESERVE) { 9028 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9029 map->name, (size_t)rel->r_offset, shdr_idx); 9030 return -LIBBPF_ERRNO__RELOC; 9031 } 9032 if (sym->st_value % BPF_INSN_SZ) { 9033 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9034 map->name, (unsigned long long)sym->st_value); 9035 return -LIBBPF_ERRNO__FORMAT; 9036 } 9037 insn_idx = sym->st_value / BPF_INSN_SZ; 9038 9039 member = find_member_by_offset(st_ops->type, moff * 8); 9040 if (!member) { 9041 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9042 map->name, moff); 9043 return -EINVAL; 9044 } 9045 member_idx = member - btf_members(st_ops->type); 9046 name = btf__name_by_offset(btf, member->name_off); 9047 9048 if (!resolve_func_ptr(btf, member->type, NULL)) { 9049 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9050 map->name, name); 9051 return -EINVAL; 9052 } 9053 9054 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9055 if (!prog) { 9056 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9057 map->name, shdr_idx, name); 9058 return -EINVAL; 9059 } 9060 9061 /* prevent the use of BPF prog with invalid type */ 9062 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9063 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9064 map->name, prog->name); 9065 return -EINVAL; 9066 } 9067 9068 /* if we haven't yet processed this BPF program, record proper 9069 * attach_btf_id and member_idx 9070 */ 9071 if (!prog->attach_btf_id) { 9072 prog->attach_btf_id = st_ops->type_id; 9073 prog->expected_attach_type = member_idx; 9074 } 9075 9076 /* struct_ops BPF prog can be re-used between multiple 9077 * .struct_ops & .struct_ops.link as long as it's the 9078 * same struct_ops struct definition and the same 9079 * function pointer field 9080 */ 9081 if (prog->attach_btf_id != st_ops->type_id || 9082 prog->expected_attach_type != member_idx) { 9083 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9084 map->name, prog->name, prog->sec_name, prog->type, 9085 prog->attach_btf_id, prog->expected_attach_type, name); 9086 return -EINVAL; 9087 } 9088 9089 st_ops->progs[member_idx] = prog; 9090 } 9091 9092 return 0; 9093 } 9094 9095 #define BTF_TRACE_PREFIX "btf_trace_" 9096 #define BTF_LSM_PREFIX "bpf_lsm_" 9097 #define BTF_ITER_PREFIX "bpf_iter_" 9098 #define BTF_MAX_NAME_SIZE 128 9099 9100 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9101 const char **prefix, int *kind) 9102 { 9103 switch (attach_type) { 9104 case BPF_TRACE_RAW_TP: 9105 *prefix = BTF_TRACE_PREFIX; 9106 *kind = BTF_KIND_TYPEDEF; 9107 break; 9108 case BPF_LSM_MAC: 9109 case BPF_LSM_CGROUP: 9110 *prefix = BTF_LSM_PREFIX; 9111 *kind = BTF_KIND_FUNC; 9112 break; 9113 case BPF_TRACE_ITER: 9114 *prefix = BTF_ITER_PREFIX; 9115 *kind = BTF_KIND_FUNC; 9116 break; 9117 default: 9118 *prefix = ""; 9119 *kind = BTF_KIND_FUNC; 9120 } 9121 } 9122 9123 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9124 const char *name, __u32 kind) 9125 { 9126 char btf_type_name[BTF_MAX_NAME_SIZE]; 9127 int ret; 9128 9129 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9130 "%s%s", prefix, name); 9131 /* snprintf returns the number of characters written excluding the 9132 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9133 * indicates truncation. 9134 */ 9135 if (ret < 0 || ret >= sizeof(btf_type_name)) 9136 return -ENAMETOOLONG; 9137 return btf__find_by_name_kind(btf, btf_type_name, kind); 9138 } 9139 9140 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9141 enum bpf_attach_type attach_type) 9142 { 9143 const char *prefix; 9144 int kind; 9145 9146 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9147 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9148 } 9149 9150 int libbpf_find_vmlinux_btf_id(const char *name, 9151 enum bpf_attach_type attach_type) 9152 { 9153 struct btf *btf; 9154 int err; 9155 9156 btf = btf__load_vmlinux_btf(); 9157 err = libbpf_get_error(btf); 9158 if (err) { 9159 pr_warn("vmlinux BTF is not found\n"); 9160 return libbpf_err(err); 9161 } 9162 9163 err = find_attach_btf_id(btf, name, attach_type); 9164 if (err <= 0) 9165 pr_warn("%s is not found in vmlinux BTF\n", name); 9166 9167 btf__free(btf); 9168 return libbpf_err(err); 9169 } 9170 9171 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9172 { 9173 struct bpf_prog_info info; 9174 __u32 info_len = sizeof(info); 9175 struct btf *btf; 9176 int err; 9177 9178 memset(&info, 0, info_len); 9179 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9180 if (err) { 9181 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9182 attach_prog_fd, err); 9183 return err; 9184 } 9185 9186 err = -EINVAL; 9187 if (!info.btf_id) { 9188 pr_warn("The target program doesn't have BTF\n"); 9189 goto out; 9190 } 9191 btf = btf__load_from_kernel_by_id(info.btf_id); 9192 err = libbpf_get_error(btf); 9193 if (err) { 9194 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9195 goto out; 9196 } 9197 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9198 btf__free(btf); 9199 if (err <= 0) { 9200 pr_warn("%s is not found in prog's BTF\n", name); 9201 goto out; 9202 } 9203 out: 9204 return err; 9205 } 9206 9207 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9208 enum bpf_attach_type attach_type, 9209 int *btf_obj_fd, int *btf_type_id) 9210 { 9211 int ret, i; 9212 9213 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9214 if (ret > 0) { 9215 *btf_obj_fd = 0; /* vmlinux BTF */ 9216 *btf_type_id = ret; 9217 return 0; 9218 } 9219 if (ret != -ENOENT) 9220 return ret; 9221 9222 ret = load_module_btfs(obj); 9223 if (ret) 9224 return ret; 9225 9226 for (i = 0; i < obj->btf_module_cnt; i++) { 9227 const struct module_btf *mod = &obj->btf_modules[i]; 9228 9229 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9230 if (ret > 0) { 9231 *btf_obj_fd = mod->fd; 9232 *btf_type_id = ret; 9233 return 0; 9234 } 9235 if (ret == -ENOENT) 9236 continue; 9237 9238 return ret; 9239 } 9240 9241 return -ESRCH; 9242 } 9243 9244 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9245 int *btf_obj_fd, int *btf_type_id) 9246 { 9247 enum bpf_attach_type attach_type = prog->expected_attach_type; 9248 __u32 attach_prog_fd = prog->attach_prog_fd; 9249 int err = 0; 9250 9251 /* BPF program's BTF ID */ 9252 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9253 if (!attach_prog_fd) { 9254 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9255 return -EINVAL; 9256 } 9257 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9258 if (err < 0) { 9259 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9260 prog->name, attach_prog_fd, attach_name, err); 9261 return err; 9262 } 9263 *btf_obj_fd = 0; 9264 *btf_type_id = err; 9265 return 0; 9266 } 9267 9268 /* kernel/module BTF ID */ 9269 if (prog->obj->gen_loader) { 9270 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9271 *btf_obj_fd = 0; 9272 *btf_type_id = 1; 9273 } else { 9274 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9275 } 9276 if (err) { 9277 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9278 prog->name, attach_name, err); 9279 return err; 9280 } 9281 return 0; 9282 } 9283 9284 int libbpf_attach_type_by_name(const char *name, 9285 enum bpf_attach_type *attach_type) 9286 { 9287 char *type_names; 9288 const struct bpf_sec_def *sec_def; 9289 9290 if (!name) 9291 return libbpf_err(-EINVAL); 9292 9293 sec_def = find_sec_def(name); 9294 if (!sec_def) { 9295 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9296 type_names = libbpf_get_type_names(true); 9297 if (type_names != NULL) { 9298 pr_debug("attachable section(type) names are:%s\n", type_names); 9299 free(type_names); 9300 } 9301 9302 return libbpf_err(-EINVAL); 9303 } 9304 9305 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9306 return libbpf_err(-EINVAL); 9307 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9308 return libbpf_err(-EINVAL); 9309 9310 *attach_type = sec_def->expected_attach_type; 9311 return 0; 9312 } 9313 9314 int bpf_map__fd(const struct bpf_map *map) 9315 { 9316 return map ? map->fd : libbpf_err(-EINVAL); 9317 } 9318 9319 static bool map_uses_real_name(const struct bpf_map *map) 9320 { 9321 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9322 * their user-visible name differs from kernel-visible name. Users see 9323 * such map's corresponding ELF section name as a map name. 9324 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9325 * maps to know which name has to be returned to the user. 9326 */ 9327 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9328 return true; 9329 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9330 return true; 9331 return false; 9332 } 9333 9334 const char *bpf_map__name(const struct bpf_map *map) 9335 { 9336 if (!map) 9337 return NULL; 9338 9339 if (map_uses_real_name(map)) 9340 return map->real_name; 9341 9342 return map->name; 9343 } 9344 9345 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9346 { 9347 return map->def.type; 9348 } 9349 9350 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9351 { 9352 if (map->fd >= 0) 9353 return libbpf_err(-EBUSY); 9354 map->def.type = type; 9355 return 0; 9356 } 9357 9358 __u32 bpf_map__map_flags(const struct bpf_map *map) 9359 { 9360 return map->def.map_flags; 9361 } 9362 9363 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9364 { 9365 if (map->fd >= 0) 9366 return libbpf_err(-EBUSY); 9367 map->def.map_flags = flags; 9368 return 0; 9369 } 9370 9371 __u64 bpf_map__map_extra(const struct bpf_map *map) 9372 { 9373 return map->map_extra; 9374 } 9375 9376 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9377 { 9378 if (map->fd >= 0) 9379 return libbpf_err(-EBUSY); 9380 map->map_extra = map_extra; 9381 return 0; 9382 } 9383 9384 __u32 bpf_map__numa_node(const struct bpf_map *map) 9385 { 9386 return map->numa_node; 9387 } 9388 9389 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9390 { 9391 if (map->fd >= 0) 9392 return libbpf_err(-EBUSY); 9393 map->numa_node = numa_node; 9394 return 0; 9395 } 9396 9397 __u32 bpf_map__key_size(const struct bpf_map *map) 9398 { 9399 return map->def.key_size; 9400 } 9401 9402 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9403 { 9404 if (map->fd >= 0) 9405 return libbpf_err(-EBUSY); 9406 map->def.key_size = size; 9407 return 0; 9408 } 9409 9410 __u32 bpf_map__value_size(const struct bpf_map *map) 9411 { 9412 return map->def.value_size; 9413 } 9414 9415 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9416 { 9417 if (map->fd >= 0) 9418 return libbpf_err(-EBUSY); 9419 map->def.value_size = size; 9420 return 0; 9421 } 9422 9423 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9424 { 9425 return map ? map->btf_key_type_id : 0; 9426 } 9427 9428 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9429 { 9430 return map ? map->btf_value_type_id : 0; 9431 } 9432 9433 int bpf_map__set_initial_value(struct bpf_map *map, 9434 const void *data, size_t size) 9435 { 9436 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9437 size != map->def.value_size || map->fd >= 0) 9438 return libbpf_err(-EINVAL); 9439 9440 memcpy(map->mmaped, data, size); 9441 return 0; 9442 } 9443 9444 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9445 { 9446 if (!map->mmaped) 9447 return NULL; 9448 *psize = map->def.value_size; 9449 return map->mmaped; 9450 } 9451 9452 bool bpf_map__is_internal(const struct bpf_map *map) 9453 { 9454 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9455 } 9456 9457 __u32 bpf_map__ifindex(const struct bpf_map *map) 9458 { 9459 return map->map_ifindex; 9460 } 9461 9462 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9463 { 9464 if (map->fd >= 0) 9465 return libbpf_err(-EBUSY); 9466 map->map_ifindex = ifindex; 9467 return 0; 9468 } 9469 9470 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9471 { 9472 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9473 pr_warn("error: unsupported map type\n"); 9474 return libbpf_err(-EINVAL); 9475 } 9476 if (map->inner_map_fd != -1) { 9477 pr_warn("error: inner_map_fd already specified\n"); 9478 return libbpf_err(-EINVAL); 9479 } 9480 if (map->inner_map) { 9481 bpf_map__destroy(map->inner_map); 9482 zfree(&map->inner_map); 9483 } 9484 map->inner_map_fd = fd; 9485 return 0; 9486 } 9487 9488 static struct bpf_map * 9489 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9490 { 9491 ssize_t idx; 9492 struct bpf_map *s, *e; 9493 9494 if (!obj || !obj->maps) 9495 return errno = EINVAL, NULL; 9496 9497 s = obj->maps; 9498 e = obj->maps + obj->nr_maps; 9499 9500 if ((m < s) || (m >= e)) { 9501 pr_warn("error in %s: map handler doesn't belong to object\n", 9502 __func__); 9503 return errno = EINVAL, NULL; 9504 } 9505 9506 idx = (m - obj->maps) + i; 9507 if (idx >= obj->nr_maps || idx < 0) 9508 return NULL; 9509 return &obj->maps[idx]; 9510 } 9511 9512 struct bpf_map * 9513 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9514 { 9515 if (prev == NULL) 9516 return obj->maps; 9517 9518 return __bpf_map__iter(prev, obj, 1); 9519 } 9520 9521 struct bpf_map * 9522 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9523 { 9524 if (next == NULL) { 9525 if (!obj->nr_maps) 9526 return NULL; 9527 return obj->maps + obj->nr_maps - 1; 9528 } 9529 9530 return __bpf_map__iter(next, obj, -1); 9531 } 9532 9533 struct bpf_map * 9534 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9535 { 9536 struct bpf_map *pos; 9537 9538 bpf_object__for_each_map(pos, obj) { 9539 /* if it's a special internal map name (which always starts 9540 * with dot) then check if that special name matches the 9541 * real map name (ELF section name) 9542 */ 9543 if (name[0] == '.') { 9544 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9545 return pos; 9546 continue; 9547 } 9548 /* otherwise map name has to be an exact match */ 9549 if (map_uses_real_name(pos)) { 9550 if (strcmp(pos->real_name, name) == 0) 9551 return pos; 9552 continue; 9553 } 9554 if (strcmp(pos->name, name) == 0) 9555 return pos; 9556 } 9557 return errno = ENOENT, NULL; 9558 } 9559 9560 int 9561 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9562 { 9563 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9564 } 9565 9566 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9567 size_t value_sz, bool check_value_sz) 9568 { 9569 if (map->fd <= 0) 9570 return -ENOENT; 9571 9572 if (map->def.key_size != key_sz) { 9573 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9574 map->name, key_sz, map->def.key_size); 9575 return -EINVAL; 9576 } 9577 9578 if (!check_value_sz) 9579 return 0; 9580 9581 switch (map->def.type) { 9582 case BPF_MAP_TYPE_PERCPU_ARRAY: 9583 case BPF_MAP_TYPE_PERCPU_HASH: 9584 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9585 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9586 int num_cpu = libbpf_num_possible_cpus(); 9587 size_t elem_sz = roundup(map->def.value_size, 8); 9588 9589 if (value_sz != num_cpu * elem_sz) { 9590 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9591 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9592 return -EINVAL; 9593 } 9594 break; 9595 } 9596 default: 9597 if (map->def.value_size != value_sz) { 9598 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9599 map->name, value_sz, map->def.value_size); 9600 return -EINVAL; 9601 } 9602 break; 9603 } 9604 return 0; 9605 } 9606 9607 int bpf_map__lookup_elem(const struct bpf_map *map, 9608 const void *key, size_t key_sz, 9609 void *value, size_t value_sz, __u64 flags) 9610 { 9611 int err; 9612 9613 err = validate_map_op(map, key_sz, value_sz, true); 9614 if (err) 9615 return libbpf_err(err); 9616 9617 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9618 } 9619 9620 int bpf_map__update_elem(const struct bpf_map *map, 9621 const void *key, size_t key_sz, 9622 const void *value, size_t value_sz, __u64 flags) 9623 { 9624 int err; 9625 9626 err = validate_map_op(map, key_sz, value_sz, true); 9627 if (err) 9628 return libbpf_err(err); 9629 9630 return bpf_map_update_elem(map->fd, key, value, flags); 9631 } 9632 9633 int bpf_map__delete_elem(const struct bpf_map *map, 9634 const void *key, size_t key_sz, __u64 flags) 9635 { 9636 int err; 9637 9638 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9639 if (err) 9640 return libbpf_err(err); 9641 9642 return bpf_map_delete_elem_flags(map->fd, key, flags); 9643 } 9644 9645 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9646 const void *key, size_t key_sz, 9647 void *value, size_t value_sz, __u64 flags) 9648 { 9649 int err; 9650 9651 err = validate_map_op(map, key_sz, value_sz, true); 9652 if (err) 9653 return libbpf_err(err); 9654 9655 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9656 } 9657 9658 int bpf_map__get_next_key(const struct bpf_map *map, 9659 const void *cur_key, void *next_key, size_t key_sz) 9660 { 9661 int err; 9662 9663 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9664 if (err) 9665 return libbpf_err(err); 9666 9667 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9668 } 9669 9670 long libbpf_get_error(const void *ptr) 9671 { 9672 if (!IS_ERR_OR_NULL(ptr)) 9673 return 0; 9674 9675 if (IS_ERR(ptr)) 9676 errno = -PTR_ERR(ptr); 9677 9678 /* If ptr == NULL, then errno should be already set by the failing 9679 * API, because libbpf never returns NULL on success and it now always 9680 * sets errno on error. So no extra errno handling for ptr == NULL 9681 * case. 9682 */ 9683 return -errno; 9684 } 9685 9686 /* Replace link's underlying BPF program with the new one */ 9687 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9688 { 9689 int ret; 9690 9691 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9692 return libbpf_err_errno(ret); 9693 } 9694 9695 /* Release "ownership" of underlying BPF resource (typically, BPF program 9696 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9697 * link, when destructed through bpf_link__destroy() call won't attempt to 9698 * detach/unregisted that BPF resource. This is useful in situations where, 9699 * say, attached BPF program has to outlive userspace program that attached it 9700 * in the system. Depending on type of BPF program, though, there might be 9701 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9702 * exit of userspace program doesn't trigger automatic detachment and clean up 9703 * inside the kernel. 9704 */ 9705 void bpf_link__disconnect(struct bpf_link *link) 9706 { 9707 link->disconnected = true; 9708 } 9709 9710 int bpf_link__destroy(struct bpf_link *link) 9711 { 9712 int err = 0; 9713 9714 if (IS_ERR_OR_NULL(link)) 9715 return 0; 9716 9717 if (!link->disconnected && link->detach) 9718 err = link->detach(link); 9719 if (link->pin_path) 9720 free(link->pin_path); 9721 if (link->dealloc) 9722 link->dealloc(link); 9723 else 9724 free(link); 9725 9726 return libbpf_err(err); 9727 } 9728 9729 int bpf_link__fd(const struct bpf_link *link) 9730 { 9731 return link->fd; 9732 } 9733 9734 const char *bpf_link__pin_path(const struct bpf_link *link) 9735 { 9736 return link->pin_path; 9737 } 9738 9739 static int bpf_link__detach_fd(struct bpf_link *link) 9740 { 9741 return libbpf_err_errno(close(link->fd)); 9742 } 9743 9744 struct bpf_link *bpf_link__open(const char *path) 9745 { 9746 struct bpf_link *link; 9747 int fd; 9748 9749 fd = bpf_obj_get(path); 9750 if (fd < 0) { 9751 fd = -errno; 9752 pr_warn("failed to open link at %s: %d\n", path, fd); 9753 return libbpf_err_ptr(fd); 9754 } 9755 9756 link = calloc(1, sizeof(*link)); 9757 if (!link) { 9758 close(fd); 9759 return libbpf_err_ptr(-ENOMEM); 9760 } 9761 link->detach = &bpf_link__detach_fd; 9762 link->fd = fd; 9763 9764 link->pin_path = strdup(path); 9765 if (!link->pin_path) { 9766 bpf_link__destroy(link); 9767 return libbpf_err_ptr(-ENOMEM); 9768 } 9769 9770 return link; 9771 } 9772 9773 int bpf_link__detach(struct bpf_link *link) 9774 { 9775 return bpf_link_detach(link->fd) ? -errno : 0; 9776 } 9777 9778 int bpf_link__pin(struct bpf_link *link, const char *path) 9779 { 9780 int err; 9781 9782 if (link->pin_path) 9783 return libbpf_err(-EBUSY); 9784 err = make_parent_dir(path); 9785 if (err) 9786 return libbpf_err(err); 9787 err = check_path(path); 9788 if (err) 9789 return libbpf_err(err); 9790 9791 link->pin_path = strdup(path); 9792 if (!link->pin_path) 9793 return libbpf_err(-ENOMEM); 9794 9795 if (bpf_obj_pin(link->fd, link->pin_path)) { 9796 err = -errno; 9797 zfree(&link->pin_path); 9798 return libbpf_err(err); 9799 } 9800 9801 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9802 return 0; 9803 } 9804 9805 int bpf_link__unpin(struct bpf_link *link) 9806 { 9807 int err; 9808 9809 if (!link->pin_path) 9810 return libbpf_err(-EINVAL); 9811 9812 err = unlink(link->pin_path); 9813 if (err != 0) 9814 return -errno; 9815 9816 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9817 zfree(&link->pin_path); 9818 return 0; 9819 } 9820 9821 struct bpf_link_perf { 9822 struct bpf_link link; 9823 int perf_event_fd; 9824 /* legacy kprobe support: keep track of probe identifier and type */ 9825 char *legacy_probe_name; 9826 bool legacy_is_kprobe; 9827 bool legacy_is_retprobe; 9828 }; 9829 9830 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9831 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9832 9833 static int bpf_link_perf_detach(struct bpf_link *link) 9834 { 9835 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9836 int err = 0; 9837 9838 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9839 err = -errno; 9840 9841 if (perf_link->perf_event_fd != link->fd) 9842 close(perf_link->perf_event_fd); 9843 close(link->fd); 9844 9845 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9846 if (perf_link->legacy_probe_name) { 9847 if (perf_link->legacy_is_kprobe) { 9848 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9849 perf_link->legacy_is_retprobe); 9850 } else { 9851 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9852 perf_link->legacy_is_retprobe); 9853 } 9854 } 9855 9856 return err; 9857 } 9858 9859 static void bpf_link_perf_dealloc(struct bpf_link *link) 9860 { 9861 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9862 9863 free(perf_link->legacy_probe_name); 9864 free(perf_link); 9865 } 9866 9867 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9868 const struct bpf_perf_event_opts *opts) 9869 { 9870 char errmsg[STRERR_BUFSIZE]; 9871 struct bpf_link_perf *link; 9872 int prog_fd, link_fd = -1, err; 9873 bool force_ioctl_attach; 9874 9875 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9876 return libbpf_err_ptr(-EINVAL); 9877 9878 if (pfd < 0) { 9879 pr_warn("prog '%s': invalid perf event FD %d\n", 9880 prog->name, pfd); 9881 return libbpf_err_ptr(-EINVAL); 9882 } 9883 prog_fd = bpf_program__fd(prog); 9884 if (prog_fd < 0) { 9885 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9886 prog->name); 9887 return libbpf_err_ptr(-EINVAL); 9888 } 9889 9890 link = calloc(1, sizeof(*link)); 9891 if (!link) 9892 return libbpf_err_ptr(-ENOMEM); 9893 link->link.detach = &bpf_link_perf_detach; 9894 link->link.dealloc = &bpf_link_perf_dealloc; 9895 link->perf_event_fd = pfd; 9896 9897 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 9898 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 9899 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9900 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9901 9902 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9903 if (link_fd < 0) { 9904 err = -errno; 9905 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9906 prog->name, pfd, 9907 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9908 goto err_out; 9909 } 9910 link->link.fd = link_fd; 9911 } else { 9912 if (OPTS_GET(opts, bpf_cookie, 0)) { 9913 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9914 err = -EOPNOTSUPP; 9915 goto err_out; 9916 } 9917 9918 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9919 err = -errno; 9920 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9921 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9922 if (err == -EPROTO) 9923 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9924 prog->name, pfd); 9925 goto err_out; 9926 } 9927 link->link.fd = pfd; 9928 } 9929 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9930 err = -errno; 9931 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9932 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9933 goto err_out; 9934 } 9935 9936 return &link->link; 9937 err_out: 9938 if (link_fd >= 0) 9939 close(link_fd); 9940 free(link); 9941 return libbpf_err_ptr(err); 9942 } 9943 9944 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9945 { 9946 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9947 } 9948 9949 /* 9950 * this function is expected to parse integer in the range of [0, 2^31-1] from 9951 * given file using scanf format string fmt. If actual parsed value is 9952 * negative, the result might be indistinguishable from error 9953 */ 9954 static int parse_uint_from_file(const char *file, const char *fmt) 9955 { 9956 char buf[STRERR_BUFSIZE]; 9957 int err, ret; 9958 FILE *f; 9959 9960 f = fopen(file, "r"); 9961 if (!f) { 9962 err = -errno; 9963 pr_debug("failed to open '%s': %s\n", file, 9964 libbpf_strerror_r(err, buf, sizeof(buf))); 9965 return err; 9966 } 9967 err = fscanf(f, fmt, &ret); 9968 if (err != 1) { 9969 err = err == EOF ? -EIO : -errno; 9970 pr_debug("failed to parse '%s': %s\n", file, 9971 libbpf_strerror_r(err, buf, sizeof(buf))); 9972 fclose(f); 9973 return err; 9974 } 9975 fclose(f); 9976 return ret; 9977 } 9978 9979 static int determine_kprobe_perf_type(void) 9980 { 9981 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9982 9983 return parse_uint_from_file(file, "%d\n"); 9984 } 9985 9986 static int determine_uprobe_perf_type(void) 9987 { 9988 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9989 9990 return parse_uint_from_file(file, "%d\n"); 9991 } 9992 9993 static int determine_kprobe_retprobe_bit(void) 9994 { 9995 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9996 9997 return parse_uint_from_file(file, "config:%d\n"); 9998 } 9999 10000 static int determine_uprobe_retprobe_bit(void) 10001 { 10002 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10003 10004 return parse_uint_from_file(file, "config:%d\n"); 10005 } 10006 10007 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10008 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10009 10010 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10011 uint64_t offset, int pid, size_t ref_ctr_off) 10012 { 10013 const size_t attr_sz = sizeof(struct perf_event_attr); 10014 struct perf_event_attr attr; 10015 char errmsg[STRERR_BUFSIZE]; 10016 int type, pfd; 10017 10018 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10019 return -EINVAL; 10020 10021 memset(&attr, 0, attr_sz); 10022 10023 type = uprobe ? determine_uprobe_perf_type() 10024 : determine_kprobe_perf_type(); 10025 if (type < 0) { 10026 pr_warn("failed to determine %s perf type: %s\n", 10027 uprobe ? "uprobe" : "kprobe", 10028 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10029 return type; 10030 } 10031 if (retprobe) { 10032 int bit = uprobe ? determine_uprobe_retprobe_bit() 10033 : determine_kprobe_retprobe_bit(); 10034 10035 if (bit < 0) { 10036 pr_warn("failed to determine %s retprobe bit: %s\n", 10037 uprobe ? "uprobe" : "kprobe", 10038 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10039 return bit; 10040 } 10041 attr.config |= 1 << bit; 10042 } 10043 attr.size = attr_sz; 10044 attr.type = type; 10045 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10046 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10047 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10048 10049 /* pid filter is meaningful only for uprobes */ 10050 pfd = syscall(__NR_perf_event_open, &attr, 10051 pid < 0 ? -1 : pid /* pid */, 10052 pid == -1 ? 0 : -1 /* cpu */, 10053 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10054 return pfd >= 0 ? pfd : -errno; 10055 } 10056 10057 static int append_to_file(const char *file, const char *fmt, ...) 10058 { 10059 int fd, n, err = 0; 10060 va_list ap; 10061 char buf[1024]; 10062 10063 va_start(ap, fmt); 10064 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10065 va_end(ap); 10066 10067 if (n < 0 || n >= sizeof(buf)) 10068 return -EINVAL; 10069 10070 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10071 if (fd < 0) 10072 return -errno; 10073 10074 if (write(fd, buf, n) < 0) 10075 err = -errno; 10076 10077 close(fd); 10078 return err; 10079 } 10080 10081 #define DEBUGFS "/sys/kernel/debug/tracing" 10082 #define TRACEFS "/sys/kernel/tracing" 10083 10084 static bool use_debugfs(void) 10085 { 10086 static int has_debugfs = -1; 10087 10088 if (has_debugfs < 0) 10089 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10090 10091 return has_debugfs == 1; 10092 } 10093 10094 static const char *tracefs_path(void) 10095 { 10096 return use_debugfs() ? DEBUGFS : TRACEFS; 10097 } 10098 10099 static const char *tracefs_kprobe_events(void) 10100 { 10101 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10102 } 10103 10104 static const char *tracefs_uprobe_events(void) 10105 { 10106 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10107 } 10108 10109 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10110 const char *kfunc_name, size_t offset) 10111 { 10112 static int index = 0; 10113 int i; 10114 10115 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10116 __sync_fetch_and_add(&index, 1)); 10117 10118 /* sanitize binary_path in the probe name */ 10119 for (i = 0; buf[i]; i++) { 10120 if (!isalnum(buf[i])) 10121 buf[i] = '_'; 10122 } 10123 } 10124 10125 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10126 const char *kfunc_name, size_t offset) 10127 { 10128 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10129 retprobe ? 'r' : 'p', 10130 retprobe ? "kretprobes" : "kprobes", 10131 probe_name, kfunc_name, offset); 10132 } 10133 10134 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10135 { 10136 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10137 retprobe ? "kretprobes" : "kprobes", probe_name); 10138 } 10139 10140 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10141 { 10142 char file[256]; 10143 10144 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10145 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10146 10147 return parse_uint_from_file(file, "%d\n"); 10148 } 10149 10150 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10151 const char *kfunc_name, size_t offset, int pid) 10152 { 10153 const size_t attr_sz = sizeof(struct perf_event_attr); 10154 struct perf_event_attr attr; 10155 char errmsg[STRERR_BUFSIZE]; 10156 int type, pfd, err; 10157 10158 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10159 if (err < 0) { 10160 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10161 kfunc_name, offset, 10162 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10163 return err; 10164 } 10165 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10166 if (type < 0) { 10167 err = type; 10168 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10169 kfunc_name, offset, 10170 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10171 goto err_clean_legacy; 10172 } 10173 10174 memset(&attr, 0, attr_sz); 10175 attr.size = attr_sz; 10176 attr.config = type; 10177 attr.type = PERF_TYPE_TRACEPOINT; 10178 10179 pfd = syscall(__NR_perf_event_open, &attr, 10180 pid < 0 ? -1 : pid, /* pid */ 10181 pid == -1 ? 0 : -1, /* cpu */ 10182 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10183 if (pfd < 0) { 10184 err = -errno; 10185 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10186 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10187 goto err_clean_legacy; 10188 } 10189 return pfd; 10190 10191 err_clean_legacy: 10192 /* Clear the newly added legacy kprobe_event */ 10193 remove_kprobe_event_legacy(probe_name, retprobe); 10194 return err; 10195 } 10196 10197 static const char *arch_specific_syscall_pfx(void) 10198 { 10199 #if defined(__x86_64__) 10200 return "x64"; 10201 #elif defined(__i386__) 10202 return "ia32"; 10203 #elif defined(__s390x__) 10204 return "s390x"; 10205 #elif defined(__s390__) 10206 return "s390"; 10207 #elif defined(__arm__) 10208 return "arm"; 10209 #elif defined(__aarch64__) 10210 return "arm64"; 10211 #elif defined(__mips__) 10212 return "mips"; 10213 #elif defined(__riscv) 10214 return "riscv"; 10215 #elif defined(__powerpc__) 10216 return "powerpc"; 10217 #elif defined(__powerpc64__) 10218 return "powerpc64"; 10219 #else 10220 return NULL; 10221 #endif 10222 } 10223 10224 static int probe_kern_syscall_wrapper(void) 10225 { 10226 char syscall_name[64]; 10227 const char *ksys_pfx; 10228 10229 ksys_pfx = arch_specific_syscall_pfx(); 10230 if (!ksys_pfx) 10231 return 0; 10232 10233 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10234 10235 if (determine_kprobe_perf_type() >= 0) { 10236 int pfd; 10237 10238 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10239 if (pfd >= 0) 10240 close(pfd); 10241 10242 return pfd >= 0 ? 1 : 0; 10243 } else { /* legacy mode */ 10244 char probe_name[128]; 10245 10246 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10247 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10248 return 0; 10249 10250 (void)remove_kprobe_event_legacy(probe_name, false); 10251 return 1; 10252 } 10253 } 10254 10255 struct bpf_link * 10256 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10257 const char *func_name, 10258 const struct bpf_kprobe_opts *opts) 10259 { 10260 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10261 enum probe_attach_mode attach_mode; 10262 char errmsg[STRERR_BUFSIZE]; 10263 char *legacy_probe = NULL; 10264 struct bpf_link *link; 10265 size_t offset; 10266 bool retprobe, legacy; 10267 int pfd, err; 10268 10269 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10270 return libbpf_err_ptr(-EINVAL); 10271 10272 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10273 retprobe = OPTS_GET(opts, retprobe, false); 10274 offset = OPTS_GET(opts, offset, 0); 10275 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10276 10277 legacy = determine_kprobe_perf_type() < 0; 10278 switch (attach_mode) { 10279 case PROBE_ATTACH_MODE_LEGACY: 10280 legacy = true; 10281 pe_opts.force_ioctl_attach = true; 10282 break; 10283 case PROBE_ATTACH_MODE_PERF: 10284 if (legacy) 10285 return libbpf_err_ptr(-ENOTSUP); 10286 pe_opts.force_ioctl_attach = true; 10287 break; 10288 case PROBE_ATTACH_MODE_LINK: 10289 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10290 return libbpf_err_ptr(-ENOTSUP); 10291 break; 10292 case PROBE_ATTACH_MODE_DEFAULT: 10293 break; 10294 default: 10295 return libbpf_err_ptr(-EINVAL); 10296 } 10297 10298 if (!legacy) { 10299 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10300 func_name, offset, 10301 -1 /* pid */, 0 /* ref_ctr_off */); 10302 } else { 10303 char probe_name[256]; 10304 10305 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10306 func_name, offset); 10307 10308 legacy_probe = strdup(probe_name); 10309 if (!legacy_probe) 10310 return libbpf_err_ptr(-ENOMEM); 10311 10312 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10313 offset, -1 /* pid */); 10314 } 10315 if (pfd < 0) { 10316 err = -errno; 10317 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10318 prog->name, retprobe ? "kretprobe" : "kprobe", 10319 func_name, offset, 10320 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10321 goto err_out; 10322 } 10323 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10324 err = libbpf_get_error(link); 10325 if (err) { 10326 close(pfd); 10327 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10328 prog->name, retprobe ? "kretprobe" : "kprobe", 10329 func_name, offset, 10330 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10331 goto err_clean_legacy; 10332 } 10333 if (legacy) { 10334 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10335 10336 perf_link->legacy_probe_name = legacy_probe; 10337 perf_link->legacy_is_kprobe = true; 10338 perf_link->legacy_is_retprobe = retprobe; 10339 } 10340 10341 return link; 10342 10343 err_clean_legacy: 10344 if (legacy) 10345 remove_kprobe_event_legacy(legacy_probe, retprobe); 10346 err_out: 10347 free(legacy_probe); 10348 return libbpf_err_ptr(err); 10349 } 10350 10351 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10352 bool retprobe, 10353 const char *func_name) 10354 { 10355 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10356 .retprobe = retprobe, 10357 ); 10358 10359 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10360 } 10361 10362 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10363 const char *syscall_name, 10364 const struct bpf_ksyscall_opts *opts) 10365 { 10366 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10367 char func_name[128]; 10368 10369 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10370 return libbpf_err_ptr(-EINVAL); 10371 10372 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10373 /* arch_specific_syscall_pfx() should never return NULL here 10374 * because it is guarded by kernel_supports(). However, since 10375 * compiler does not know that we have an explicit conditional 10376 * as well. 10377 */ 10378 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10379 arch_specific_syscall_pfx() ? : "", syscall_name); 10380 } else { 10381 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10382 } 10383 10384 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10385 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10386 10387 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10388 } 10389 10390 /* Adapted from perf/util/string.c */ 10391 static bool glob_match(const char *str, const char *pat) 10392 { 10393 while (*str && *pat && *pat != '*') { 10394 if (*pat == '?') { /* Matches any single character */ 10395 str++; 10396 pat++; 10397 continue; 10398 } 10399 if (*str != *pat) 10400 return false; 10401 str++; 10402 pat++; 10403 } 10404 /* Check wild card */ 10405 if (*pat == '*') { 10406 while (*pat == '*') 10407 pat++; 10408 if (!*pat) /* Tail wild card matches all */ 10409 return true; 10410 while (*str) 10411 if (glob_match(str++, pat)) 10412 return true; 10413 } 10414 return !*str && !*pat; 10415 } 10416 10417 struct kprobe_multi_resolve { 10418 const char *pattern; 10419 unsigned long *addrs; 10420 size_t cap; 10421 size_t cnt; 10422 }; 10423 10424 static int 10425 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10426 const char *sym_name, void *ctx) 10427 { 10428 struct kprobe_multi_resolve *res = ctx; 10429 int err; 10430 10431 if (!glob_match(sym_name, res->pattern)) 10432 return 0; 10433 10434 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10435 res->cnt + 1); 10436 if (err) 10437 return err; 10438 10439 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10440 return 0; 10441 } 10442 10443 struct bpf_link * 10444 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10445 const char *pattern, 10446 const struct bpf_kprobe_multi_opts *opts) 10447 { 10448 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10449 struct kprobe_multi_resolve res = { 10450 .pattern = pattern, 10451 }; 10452 struct bpf_link *link = NULL; 10453 char errmsg[STRERR_BUFSIZE]; 10454 const unsigned long *addrs; 10455 int err, link_fd, prog_fd; 10456 const __u64 *cookies; 10457 const char **syms; 10458 bool retprobe; 10459 size_t cnt; 10460 10461 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10462 return libbpf_err_ptr(-EINVAL); 10463 10464 syms = OPTS_GET(opts, syms, false); 10465 addrs = OPTS_GET(opts, addrs, false); 10466 cnt = OPTS_GET(opts, cnt, false); 10467 cookies = OPTS_GET(opts, cookies, false); 10468 10469 if (!pattern && !addrs && !syms) 10470 return libbpf_err_ptr(-EINVAL); 10471 if (pattern && (addrs || syms || cookies || cnt)) 10472 return libbpf_err_ptr(-EINVAL); 10473 if (!pattern && !cnt) 10474 return libbpf_err_ptr(-EINVAL); 10475 if (addrs && syms) 10476 return libbpf_err_ptr(-EINVAL); 10477 10478 if (pattern) { 10479 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10480 if (err) 10481 goto error; 10482 if (!res.cnt) { 10483 err = -ENOENT; 10484 goto error; 10485 } 10486 addrs = res.addrs; 10487 cnt = res.cnt; 10488 } 10489 10490 retprobe = OPTS_GET(opts, retprobe, false); 10491 10492 lopts.kprobe_multi.syms = syms; 10493 lopts.kprobe_multi.addrs = addrs; 10494 lopts.kprobe_multi.cookies = cookies; 10495 lopts.kprobe_multi.cnt = cnt; 10496 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10497 10498 link = calloc(1, sizeof(*link)); 10499 if (!link) { 10500 err = -ENOMEM; 10501 goto error; 10502 } 10503 link->detach = &bpf_link__detach_fd; 10504 10505 prog_fd = bpf_program__fd(prog); 10506 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10507 if (link_fd < 0) { 10508 err = -errno; 10509 pr_warn("prog '%s': failed to attach: %s\n", 10510 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10511 goto error; 10512 } 10513 link->fd = link_fd; 10514 free(res.addrs); 10515 return link; 10516 10517 error: 10518 free(link); 10519 free(res.addrs); 10520 return libbpf_err_ptr(err); 10521 } 10522 10523 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10524 { 10525 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10526 unsigned long offset = 0; 10527 const char *func_name; 10528 char *func; 10529 int n; 10530 10531 *link = NULL; 10532 10533 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10534 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10535 return 0; 10536 10537 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10538 if (opts.retprobe) 10539 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10540 else 10541 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10542 10543 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10544 if (n < 1) { 10545 pr_warn("kprobe name is invalid: %s\n", func_name); 10546 return -EINVAL; 10547 } 10548 if (opts.retprobe && offset != 0) { 10549 free(func); 10550 pr_warn("kretprobes do not support offset specification\n"); 10551 return -EINVAL; 10552 } 10553 10554 opts.offset = offset; 10555 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10556 free(func); 10557 return libbpf_get_error(*link); 10558 } 10559 10560 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10561 { 10562 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10563 const char *syscall_name; 10564 10565 *link = NULL; 10566 10567 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10568 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10569 return 0; 10570 10571 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10572 if (opts.retprobe) 10573 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10574 else 10575 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10576 10577 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10578 return *link ? 0 : -errno; 10579 } 10580 10581 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10582 { 10583 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10584 const char *spec; 10585 char *pattern; 10586 int n; 10587 10588 *link = NULL; 10589 10590 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10591 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10592 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10593 return 0; 10594 10595 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10596 if (opts.retprobe) 10597 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10598 else 10599 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10600 10601 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10602 if (n < 1) { 10603 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10604 return -EINVAL; 10605 } 10606 10607 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10608 free(pattern); 10609 return libbpf_get_error(*link); 10610 } 10611 10612 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10613 const char *binary_path, uint64_t offset) 10614 { 10615 int i; 10616 10617 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10618 10619 /* sanitize binary_path in the probe name */ 10620 for (i = 0; buf[i]; i++) { 10621 if (!isalnum(buf[i])) 10622 buf[i] = '_'; 10623 } 10624 } 10625 10626 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10627 const char *binary_path, size_t offset) 10628 { 10629 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10630 retprobe ? 'r' : 'p', 10631 retprobe ? "uretprobes" : "uprobes", 10632 probe_name, binary_path, offset); 10633 } 10634 10635 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10636 { 10637 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10638 retprobe ? "uretprobes" : "uprobes", probe_name); 10639 } 10640 10641 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10642 { 10643 char file[512]; 10644 10645 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10646 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10647 10648 return parse_uint_from_file(file, "%d\n"); 10649 } 10650 10651 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10652 const char *binary_path, size_t offset, int pid) 10653 { 10654 const size_t attr_sz = sizeof(struct perf_event_attr); 10655 struct perf_event_attr attr; 10656 int type, pfd, err; 10657 10658 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10659 if (err < 0) { 10660 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10661 binary_path, (size_t)offset, err); 10662 return err; 10663 } 10664 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10665 if (type < 0) { 10666 err = type; 10667 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10668 binary_path, offset, err); 10669 goto err_clean_legacy; 10670 } 10671 10672 memset(&attr, 0, attr_sz); 10673 attr.size = attr_sz; 10674 attr.config = type; 10675 attr.type = PERF_TYPE_TRACEPOINT; 10676 10677 pfd = syscall(__NR_perf_event_open, &attr, 10678 pid < 0 ? -1 : pid, /* pid */ 10679 pid == -1 ? 0 : -1, /* cpu */ 10680 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10681 if (pfd < 0) { 10682 err = -errno; 10683 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10684 goto err_clean_legacy; 10685 } 10686 return pfd; 10687 10688 err_clean_legacy: 10689 /* Clear the newly added legacy uprobe_event */ 10690 remove_uprobe_event_legacy(probe_name, retprobe); 10691 return err; 10692 } 10693 10694 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10695 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10696 { 10697 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10698 GElf_Shdr sh; 10699 10700 if (!gelf_getshdr(scn, &sh)) 10701 continue; 10702 if (sh.sh_type == sh_type) 10703 return scn; 10704 } 10705 return NULL; 10706 } 10707 10708 /* Find offset of function name in the provided ELF object. "binary_path" is 10709 * the path to the ELF binary represented by "elf", and only used for error 10710 * reporting matters. "name" matches symbol name or name@@LIB for library 10711 * functions. 10712 */ 10713 static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name) 10714 { 10715 int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10716 bool is_shared_lib, is_name_qualified; 10717 long ret = -ENOENT; 10718 size_t name_len; 10719 GElf_Ehdr ehdr; 10720 10721 if (!gelf_getehdr(elf, &ehdr)) { 10722 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10723 ret = -LIBBPF_ERRNO__FORMAT; 10724 goto out; 10725 } 10726 /* for shared lib case, we do not need to calculate relative offset */ 10727 is_shared_lib = ehdr.e_type == ET_DYN; 10728 10729 name_len = strlen(name); 10730 /* Does name specify "@@LIB"? */ 10731 is_name_qualified = strstr(name, "@@") != NULL; 10732 10733 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10734 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10735 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10736 * reported as a warning/error. 10737 */ 10738 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10739 size_t nr_syms, strtabidx, idx; 10740 Elf_Data *symbols = NULL; 10741 Elf_Scn *scn = NULL; 10742 int last_bind = -1; 10743 const char *sname; 10744 GElf_Shdr sh; 10745 10746 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10747 if (!scn) { 10748 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10749 binary_path); 10750 continue; 10751 } 10752 if (!gelf_getshdr(scn, &sh)) 10753 continue; 10754 strtabidx = sh.sh_link; 10755 symbols = elf_getdata(scn, 0); 10756 if (!symbols) { 10757 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10758 binary_path, elf_errmsg(-1)); 10759 ret = -LIBBPF_ERRNO__FORMAT; 10760 goto out; 10761 } 10762 nr_syms = symbols->d_size / sh.sh_entsize; 10763 10764 for (idx = 0; idx < nr_syms; idx++) { 10765 int curr_bind; 10766 GElf_Sym sym; 10767 Elf_Scn *sym_scn; 10768 GElf_Shdr sym_sh; 10769 10770 if (!gelf_getsym(symbols, idx, &sym)) 10771 continue; 10772 10773 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10774 continue; 10775 10776 sname = elf_strptr(elf, strtabidx, sym.st_name); 10777 if (!sname) 10778 continue; 10779 10780 curr_bind = GELF_ST_BIND(sym.st_info); 10781 10782 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10783 if (strncmp(sname, name, name_len) != 0) 10784 continue; 10785 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10786 * additional characters in sname should be of the form "@@LIB". 10787 */ 10788 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10789 continue; 10790 10791 if (ret >= 0) { 10792 /* handle multiple matches */ 10793 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10794 /* Only accept one non-weak bind. */ 10795 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10796 sname, name, binary_path); 10797 ret = -LIBBPF_ERRNO__FORMAT; 10798 goto out; 10799 } else if (curr_bind == STB_WEAK) { 10800 /* already have a non-weak bind, and 10801 * this is a weak bind, so ignore. 10802 */ 10803 continue; 10804 } 10805 } 10806 10807 /* Transform symbol's virtual address (absolute for 10808 * binaries and relative for shared libs) into file 10809 * offset, which is what kernel is expecting for 10810 * uprobe/uretprobe attachment. 10811 * See Documentation/trace/uprobetracer.rst for more 10812 * details. 10813 * This is done by looking up symbol's containing 10814 * section's header and using it's virtual address 10815 * (sh_addr) and corresponding file offset (sh_offset) 10816 * to transform sym.st_value (virtual address) into 10817 * desired final file offset. 10818 */ 10819 sym_scn = elf_getscn(elf, sym.st_shndx); 10820 if (!sym_scn) 10821 continue; 10822 if (!gelf_getshdr(sym_scn, &sym_sh)) 10823 continue; 10824 10825 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10826 last_bind = curr_bind; 10827 } 10828 if (ret > 0) 10829 break; 10830 } 10831 10832 if (ret > 0) { 10833 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10834 ret); 10835 } else { 10836 if (ret == 0) { 10837 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10838 is_shared_lib ? "should not be 0 in a shared library" : 10839 "try using shared library path instead"); 10840 ret = -ENOENT; 10841 } else { 10842 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10843 } 10844 } 10845 out: 10846 return ret; 10847 } 10848 10849 /* Find offset of function name in ELF object specified by path. "name" matches 10850 * symbol name or name@@LIB for library functions. 10851 */ 10852 static long elf_find_func_offset_from_file(const char *binary_path, const char *name) 10853 { 10854 char errmsg[STRERR_BUFSIZE]; 10855 long ret = -ENOENT; 10856 Elf *elf; 10857 int fd; 10858 10859 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10860 if (fd < 0) { 10861 ret = -errno; 10862 pr_warn("failed to open %s: %s\n", binary_path, 10863 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10864 return ret; 10865 } 10866 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10867 if (!elf) { 10868 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10869 close(fd); 10870 return -LIBBPF_ERRNO__FORMAT; 10871 } 10872 10873 ret = elf_find_func_offset(elf, binary_path, name); 10874 elf_end(elf); 10875 close(fd); 10876 return ret; 10877 } 10878 10879 /* Find offset of function name in archive specified by path. Currently 10880 * supported are .zip files that do not compress their contents, as used on 10881 * Android in the form of APKs, for example. "file_name" is the name of the ELF 10882 * file inside the archive. "func_name" matches symbol name or name@@LIB for 10883 * library functions. 10884 * 10885 * An overview of the APK format specifically provided here: 10886 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 10887 */ 10888 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 10889 const char *func_name) 10890 { 10891 struct zip_archive *archive; 10892 struct zip_entry entry; 10893 long ret; 10894 Elf *elf; 10895 10896 archive = zip_archive_open(archive_path); 10897 if (IS_ERR(archive)) { 10898 ret = PTR_ERR(archive); 10899 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 10900 return ret; 10901 } 10902 10903 ret = zip_archive_find_entry(archive, file_name, &entry); 10904 if (ret) { 10905 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 10906 archive_path, ret); 10907 goto out; 10908 } 10909 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 10910 (unsigned long)entry.data_offset); 10911 10912 if (entry.compression) { 10913 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 10914 archive_path); 10915 ret = -LIBBPF_ERRNO__FORMAT; 10916 goto out; 10917 } 10918 10919 elf = elf_memory((void *)entry.data, entry.data_length); 10920 if (!elf) { 10921 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 10922 elf_errmsg(-1)); 10923 ret = -LIBBPF_ERRNO__LIBELF; 10924 goto out; 10925 } 10926 10927 ret = elf_find_func_offset(elf, file_name, func_name); 10928 if (ret > 0) { 10929 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 10930 func_name, file_name, archive_path, entry.data_offset, ret, 10931 ret + entry.data_offset); 10932 ret += entry.data_offset; 10933 } 10934 elf_end(elf); 10935 10936 out: 10937 zip_archive_close(archive); 10938 return ret; 10939 } 10940 10941 static const char *arch_specific_lib_paths(void) 10942 { 10943 /* 10944 * Based on https://packages.debian.org/sid/libc6. 10945 * 10946 * Assume that the traced program is built for the same architecture 10947 * as libbpf, which should cover the vast majority of cases. 10948 */ 10949 #if defined(__x86_64__) 10950 return "/lib/x86_64-linux-gnu"; 10951 #elif defined(__i386__) 10952 return "/lib/i386-linux-gnu"; 10953 #elif defined(__s390x__) 10954 return "/lib/s390x-linux-gnu"; 10955 #elif defined(__s390__) 10956 return "/lib/s390-linux-gnu"; 10957 #elif defined(__arm__) && defined(__SOFTFP__) 10958 return "/lib/arm-linux-gnueabi"; 10959 #elif defined(__arm__) && !defined(__SOFTFP__) 10960 return "/lib/arm-linux-gnueabihf"; 10961 #elif defined(__aarch64__) 10962 return "/lib/aarch64-linux-gnu"; 10963 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10964 return "/lib/mips64el-linux-gnuabi64"; 10965 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10966 return "/lib/mipsel-linux-gnu"; 10967 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10968 return "/lib/powerpc64le-linux-gnu"; 10969 #elif defined(__sparc__) && defined(__arch64__) 10970 return "/lib/sparc64-linux-gnu"; 10971 #elif defined(__riscv) && __riscv_xlen == 64 10972 return "/lib/riscv64-linux-gnu"; 10973 #else 10974 return NULL; 10975 #endif 10976 } 10977 10978 /* Get full path to program/shared library. */ 10979 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10980 { 10981 const char *search_paths[3] = {}; 10982 int i, perm; 10983 10984 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10985 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10986 search_paths[1] = "/usr/lib64:/usr/lib"; 10987 search_paths[2] = arch_specific_lib_paths(); 10988 perm = R_OK; 10989 } else { 10990 search_paths[0] = getenv("PATH"); 10991 search_paths[1] = "/usr/bin:/usr/sbin"; 10992 perm = R_OK | X_OK; 10993 } 10994 10995 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10996 const char *s; 10997 10998 if (!search_paths[i]) 10999 continue; 11000 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11001 char *next_path; 11002 int seg_len; 11003 11004 if (s[0] == ':') 11005 s++; 11006 next_path = strchr(s, ':'); 11007 seg_len = next_path ? next_path - s : strlen(s); 11008 if (!seg_len) 11009 continue; 11010 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11011 /* ensure it has required permissions */ 11012 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11013 continue; 11014 pr_debug("resolved '%s' to '%s'\n", file, result); 11015 return 0; 11016 } 11017 } 11018 return -ENOENT; 11019 } 11020 11021 LIBBPF_API struct bpf_link * 11022 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11023 const char *binary_path, size_t func_offset, 11024 const struct bpf_uprobe_opts *opts) 11025 { 11026 const char *archive_path = NULL, *archive_sep = NULL; 11027 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11028 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11029 enum probe_attach_mode attach_mode; 11030 char full_path[PATH_MAX]; 11031 struct bpf_link *link; 11032 size_t ref_ctr_off; 11033 int pfd, err; 11034 bool retprobe, legacy; 11035 const char *func_name; 11036 11037 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11038 return libbpf_err_ptr(-EINVAL); 11039 11040 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11041 retprobe = OPTS_GET(opts, retprobe, false); 11042 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11043 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11044 11045 if (!binary_path) 11046 return libbpf_err_ptr(-EINVAL); 11047 11048 /* Check if "binary_path" refers to an archive. */ 11049 archive_sep = strstr(binary_path, "!/"); 11050 if (archive_sep) { 11051 full_path[0] = '\0'; 11052 libbpf_strlcpy(full_path, binary_path, 11053 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11054 archive_path = full_path; 11055 binary_path = archive_sep + 2; 11056 } else if (!strchr(binary_path, '/')) { 11057 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11058 if (err) { 11059 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11060 prog->name, binary_path, err); 11061 return libbpf_err_ptr(err); 11062 } 11063 binary_path = full_path; 11064 } 11065 func_name = OPTS_GET(opts, func_name, NULL); 11066 if (func_name) { 11067 long sym_off; 11068 11069 if (archive_path) { 11070 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11071 func_name); 11072 binary_path = archive_path; 11073 } else { 11074 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11075 } 11076 if (sym_off < 0) 11077 return libbpf_err_ptr(sym_off); 11078 func_offset += sym_off; 11079 } 11080 11081 legacy = determine_uprobe_perf_type() < 0; 11082 switch (attach_mode) { 11083 case PROBE_ATTACH_MODE_LEGACY: 11084 legacy = true; 11085 pe_opts.force_ioctl_attach = true; 11086 break; 11087 case PROBE_ATTACH_MODE_PERF: 11088 if (legacy) 11089 return libbpf_err_ptr(-ENOTSUP); 11090 pe_opts.force_ioctl_attach = true; 11091 break; 11092 case PROBE_ATTACH_MODE_LINK: 11093 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11094 return libbpf_err_ptr(-ENOTSUP); 11095 break; 11096 case PROBE_ATTACH_MODE_DEFAULT: 11097 break; 11098 default: 11099 return libbpf_err_ptr(-EINVAL); 11100 } 11101 11102 if (!legacy) { 11103 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11104 func_offset, pid, ref_ctr_off); 11105 } else { 11106 char probe_name[PATH_MAX + 64]; 11107 11108 if (ref_ctr_off) 11109 return libbpf_err_ptr(-EINVAL); 11110 11111 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11112 binary_path, func_offset); 11113 11114 legacy_probe = strdup(probe_name); 11115 if (!legacy_probe) 11116 return libbpf_err_ptr(-ENOMEM); 11117 11118 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11119 binary_path, func_offset, pid); 11120 } 11121 if (pfd < 0) { 11122 err = -errno; 11123 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11124 prog->name, retprobe ? "uretprobe" : "uprobe", 11125 binary_path, func_offset, 11126 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11127 goto err_out; 11128 } 11129 11130 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11131 err = libbpf_get_error(link); 11132 if (err) { 11133 close(pfd); 11134 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11135 prog->name, retprobe ? "uretprobe" : "uprobe", 11136 binary_path, func_offset, 11137 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11138 goto err_clean_legacy; 11139 } 11140 if (legacy) { 11141 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11142 11143 perf_link->legacy_probe_name = legacy_probe; 11144 perf_link->legacy_is_kprobe = false; 11145 perf_link->legacy_is_retprobe = retprobe; 11146 } 11147 return link; 11148 11149 err_clean_legacy: 11150 if (legacy) 11151 remove_uprobe_event_legacy(legacy_probe, retprobe); 11152 err_out: 11153 free(legacy_probe); 11154 return libbpf_err_ptr(err); 11155 } 11156 11157 /* Format of u[ret]probe section definition supporting auto-attach: 11158 * u[ret]probe/binary:function[+offset] 11159 * 11160 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11161 * full binary path via bpf_program__attach_uprobe_opts. 11162 * 11163 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11164 * specified (and auto-attach is not possible) or the above format is specified for 11165 * auto-attach. 11166 */ 11167 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11168 { 11169 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11170 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11171 int n, ret = -EINVAL; 11172 long offset = 0; 11173 11174 *link = NULL; 11175 11176 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11177 &probe_type, &binary_path, &func_name, &offset); 11178 switch (n) { 11179 case 1: 11180 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11181 ret = 0; 11182 break; 11183 case 2: 11184 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11185 prog->name, prog->sec_name); 11186 break; 11187 case 3: 11188 case 4: 11189 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11190 strcmp(probe_type, "uretprobe.s") == 0; 11191 if (opts.retprobe && offset != 0) { 11192 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11193 prog->name); 11194 break; 11195 } 11196 opts.func_name = func_name; 11197 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11198 ret = libbpf_get_error(*link); 11199 break; 11200 default: 11201 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11202 prog->sec_name); 11203 break; 11204 } 11205 free(probe_type); 11206 free(binary_path); 11207 free(func_name); 11208 11209 return ret; 11210 } 11211 11212 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11213 bool retprobe, pid_t pid, 11214 const char *binary_path, 11215 size_t func_offset) 11216 { 11217 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11218 11219 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11220 } 11221 11222 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11223 pid_t pid, const char *binary_path, 11224 const char *usdt_provider, const char *usdt_name, 11225 const struct bpf_usdt_opts *opts) 11226 { 11227 char resolved_path[512]; 11228 struct bpf_object *obj = prog->obj; 11229 struct bpf_link *link; 11230 __u64 usdt_cookie; 11231 int err; 11232 11233 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11234 return libbpf_err_ptr(-EINVAL); 11235 11236 if (bpf_program__fd(prog) < 0) { 11237 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11238 prog->name); 11239 return libbpf_err_ptr(-EINVAL); 11240 } 11241 11242 if (!binary_path) 11243 return libbpf_err_ptr(-EINVAL); 11244 11245 if (!strchr(binary_path, '/')) { 11246 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11247 if (err) { 11248 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11249 prog->name, binary_path, err); 11250 return libbpf_err_ptr(err); 11251 } 11252 binary_path = resolved_path; 11253 } 11254 11255 /* USDT manager is instantiated lazily on first USDT attach. It will 11256 * be destroyed together with BPF object in bpf_object__close(). 11257 */ 11258 if (IS_ERR(obj->usdt_man)) 11259 return libbpf_ptr(obj->usdt_man); 11260 if (!obj->usdt_man) { 11261 obj->usdt_man = usdt_manager_new(obj); 11262 if (IS_ERR(obj->usdt_man)) 11263 return libbpf_ptr(obj->usdt_man); 11264 } 11265 11266 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11267 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11268 usdt_provider, usdt_name, usdt_cookie); 11269 err = libbpf_get_error(link); 11270 if (err) 11271 return libbpf_err_ptr(err); 11272 return link; 11273 } 11274 11275 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11276 { 11277 char *path = NULL, *provider = NULL, *name = NULL; 11278 const char *sec_name; 11279 int n, err; 11280 11281 sec_name = bpf_program__section_name(prog); 11282 if (strcmp(sec_name, "usdt") == 0) { 11283 /* no auto-attach for just SEC("usdt") */ 11284 *link = NULL; 11285 return 0; 11286 } 11287 11288 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11289 if (n != 3) { 11290 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11291 sec_name); 11292 err = -EINVAL; 11293 } else { 11294 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11295 provider, name, NULL); 11296 err = libbpf_get_error(*link); 11297 } 11298 free(path); 11299 free(provider); 11300 free(name); 11301 return err; 11302 } 11303 11304 static int determine_tracepoint_id(const char *tp_category, 11305 const char *tp_name) 11306 { 11307 char file[PATH_MAX]; 11308 int ret; 11309 11310 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11311 tracefs_path(), tp_category, tp_name); 11312 if (ret < 0) 11313 return -errno; 11314 if (ret >= sizeof(file)) { 11315 pr_debug("tracepoint %s/%s path is too long\n", 11316 tp_category, tp_name); 11317 return -E2BIG; 11318 } 11319 return parse_uint_from_file(file, "%d\n"); 11320 } 11321 11322 static int perf_event_open_tracepoint(const char *tp_category, 11323 const char *tp_name) 11324 { 11325 const size_t attr_sz = sizeof(struct perf_event_attr); 11326 struct perf_event_attr attr; 11327 char errmsg[STRERR_BUFSIZE]; 11328 int tp_id, pfd, err; 11329 11330 tp_id = determine_tracepoint_id(tp_category, tp_name); 11331 if (tp_id < 0) { 11332 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11333 tp_category, tp_name, 11334 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11335 return tp_id; 11336 } 11337 11338 memset(&attr, 0, attr_sz); 11339 attr.type = PERF_TYPE_TRACEPOINT; 11340 attr.size = attr_sz; 11341 attr.config = tp_id; 11342 11343 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11344 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11345 if (pfd < 0) { 11346 err = -errno; 11347 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11348 tp_category, tp_name, 11349 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11350 return err; 11351 } 11352 return pfd; 11353 } 11354 11355 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11356 const char *tp_category, 11357 const char *tp_name, 11358 const struct bpf_tracepoint_opts *opts) 11359 { 11360 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11361 char errmsg[STRERR_BUFSIZE]; 11362 struct bpf_link *link; 11363 int pfd, err; 11364 11365 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11366 return libbpf_err_ptr(-EINVAL); 11367 11368 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11369 11370 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11371 if (pfd < 0) { 11372 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11373 prog->name, tp_category, tp_name, 11374 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11375 return libbpf_err_ptr(pfd); 11376 } 11377 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11378 err = libbpf_get_error(link); 11379 if (err) { 11380 close(pfd); 11381 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11382 prog->name, tp_category, tp_name, 11383 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11384 return libbpf_err_ptr(err); 11385 } 11386 return link; 11387 } 11388 11389 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11390 const char *tp_category, 11391 const char *tp_name) 11392 { 11393 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11394 } 11395 11396 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11397 { 11398 char *sec_name, *tp_cat, *tp_name; 11399 11400 *link = NULL; 11401 11402 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11403 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11404 return 0; 11405 11406 sec_name = strdup(prog->sec_name); 11407 if (!sec_name) 11408 return -ENOMEM; 11409 11410 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11411 if (str_has_pfx(prog->sec_name, "tp/")) 11412 tp_cat = sec_name + sizeof("tp/") - 1; 11413 else 11414 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11415 tp_name = strchr(tp_cat, '/'); 11416 if (!tp_name) { 11417 free(sec_name); 11418 return -EINVAL; 11419 } 11420 *tp_name = '\0'; 11421 tp_name++; 11422 11423 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11424 free(sec_name); 11425 return libbpf_get_error(*link); 11426 } 11427 11428 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11429 const char *tp_name) 11430 { 11431 char errmsg[STRERR_BUFSIZE]; 11432 struct bpf_link *link; 11433 int prog_fd, pfd; 11434 11435 prog_fd = bpf_program__fd(prog); 11436 if (prog_fd < 0) { 11437 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11438 return libbpf_err_ptr(-EINVAL); 11439 } 11440 11441 link = calloc(1, sizeof(*link)); 11442 if (!link) 11443 return libbpf_err_ptr(-ENOMEM); 11444 link->detach = &bpf_link__detach_fd; 11445 11446 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11447 if (pfd < 0) { 11448 pfd = -errno; 11449 free(link); 11450 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11451 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11452 return libbpf_err_ptr(pfd); 11453 } 11454 link->fd = pfd; 11455 return link; 11456 } 11457 11458 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11459 { 11460 static const char *const prefixes[] = { 11461 "raw_tp", 11462 "raw_tracepoint", 11463 "raw_tp.w", 11464 "raw_tracepoint.w", 11465 }; 11466 size_t i; 11467 const char *tp_name = NULL; 11468 11469 *link = NULL; 11470 11471 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11472 size_t pfx_len; 11473 11474 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11475 continue; 11476 11477 pfx_len = strlen(prefixes[i]); 11478 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11479 if (prog->sec_name[pfx_len] == '\0') 11480 return 0; 11481 11482 if (prog->sec_name[pfx_len] != '/') 11483 continue; 11484 11485 tp_name = prog->sec_name + pfx_len + 1; 11486 break; 11487 } 11488 11489 if (!tp_name) { 11490 pr_warn("prog '%s': invalid section name '%s'\n", 11491 prog->name, prog->sec_name); 11492 return -EINVAL; 11493 } 11494 11495 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11496 return libbpf_get_error(*link); 11497 } 11498 11499 /* Common logic for all BPF program types that attach to a btf_id */ 11500 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11501 const struct bpf_trace_opts *opts) 11502 { 11503 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11504 char errmsg[STRERR_BUFSIZE]; 11505 struct bpf_link *link; 11506 int prog_fd, pfd; 11507 11508 if (!OPTS_VALID(opts, bpf_trace_opts)) 11509 return libbpf_err_ptr(-EINVAL); 11510 11511 prog_fd = bpf_program__fd(prog); 11512 if (prog_fd < 0) { 11513 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11514 return libbpf_err_ptr(-EINVAL); 11515 } 11516 11517 link = calloc(1, sizeof(*link)); 11518 if (!link) 11519 return libbpf_err_ptr(-ENOMEM); 11520 link->detach = &bpf_link__detach_fd; 11521 11522 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11523 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11524 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11525 if (pfd < 0) { 11526 pfd = -errno; 11527 free(link); 11528 pr_warn("prog '%s': failed to attach: %s\n", 11529 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11530 return libbpf_err_ptr(pfd); 11531 } 11532 link->fd = pfd; 11533 return link; 11534 } 11535 11536 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11537 { 11538 return bpf_program__attach_btf_id(prog, NULL); 11539 } 11540 11541 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11542 const struct bpf_trace_opts *opts) 11543 { 11544 return bpf_program__attach_btf_id(prog, opts); 11545 } 11546 11547 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11548 { 11549 return bpf_program__attach_btf_id(prog, NULL); 11550 } 11551 11552 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11553 { 11554 *link = bpf_program__attach_trace(prog); 11555 return libbpf_get_error(*link); 11556 } 11557 11558 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11559 { 11560 *link = bpf_program__attach_lsm(prog); 11561 return libbpf_get_error(*link); 11562 } 11563 11564 static struct bpf_link * 11565 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11566 const char *target_name) 11567 { 11568 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11569 .target_btf_id = btf_id); 11570 enum bpf_attach_type attach_type; 11571 char errmsg[STRERR_BUFSIZE]; 11572 struct bpf_link *link; 11573 int prog_fd, link_fd; 11574 11575 prog_fd = bpf_program__fd(prog); 11576 if (prog_fd < 0) { 11577 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11578 return libbpf_err_ptr(-EINVAL); 11579 } 11580 11581 link = calloc(1, sizeof(*link)); 11582 if (!link) 11583 return libbpf_err_ptr(-ENOMEM); 11584 link->detach = &bpf_link__detach_fd; 11585 11586 attach_type = bpf_program__expected_attach_type(prog); 11587 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11588 if (link_fd < 0) { 11589 link_fd = -errno; 11590 free(link); 11591 pr_warn("prog '%s': failed to attach to %s: %s\n", 11592 prog->name, target_name, 11593 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11594 return libbpf_err_ptr(link_fd); 11595 } 11596 link->fd = link_fd; 11597 return link; 11598 } 11599 11600 struct bpf_link * 11601 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11602 { 11603 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11604 } 11605 11606 struct bpf_link * 11607 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11608 { 11609 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11610 } 11611 11612 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11613 { 11614 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11615 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11616 } 11617 11618 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11619 int target_fd, 11620 const char *attach_func_name) 11621 { 11622 int btf_id; 11623 11624 if (!!target_fd != !!attach_func_name) { 11625 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11626 prog->name); 11627 return libbpf_err_ptr(-EINVAL); 11628 } 11629 11630 if (prog->type != BPF_PROG_TYPE_EXT) { 11631 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11632 prog->name); 11633 return libbpf_err_ptr(-EINVAL); 11634 } 11635 11636 if (target_fd) { 11637 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11638 if (btf_id < 0) 11639 return libbpf_err_ptr(btf_id); 11640 11641 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11642 } else { 11643 /* no target, so use raw_tracepoint_open for compatibility 11644 * with old kernels 11645 */ 11646 return bpf_program__attach_trace(prog); 11647 } 11648 } 11649 11650 struct bpf_link * 11651 bpf_program__attach_iter(const struct bpf_program *prog, 11652 const struct bpf_iter_attach_opts *opts) 11653 { 11654 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11655 char errmsg[STRERR_BUFSIZE]; 11656 struct bpf_link *link; 11657 int prog_fd, link_fd; 11658 __u32 target_fd = 0; 11659 11660 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11661 return libbpf_err_ptr(-EINVAL); 11662 11663 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11664 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11665 11666 prog_fd = bpf_program__fd(prog); 11667 if (prog_fd < 0) { 11668 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11669 return libbpf_err_ptr(-EINVAL); 11670 } 11671 11672 link = calloc(1, sizeof(*link)); 11673 if (!link) 11674 return libbpf_err_ptr(-ENOMEM); 11675 link->detach = &bpf_link__detach_fd; 11676 11677 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11678 &link_create_opts); 11679 if (link_fd < 0) { 11680 link_fd = -errno; 11681 free(link); 11682 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11683 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11684 return libbpf_err_ptr(link_fd); 11685 } 11686 link->fd = link_fd; 11687 return link; 11688 } 11689 11690 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11691 { 11692 *link = bpf_program__attach_iter(prog, NULL); 11693 return libbpf_get_error(*link); 11694 } 11695 11696 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11697 { 11698 struct bpf_link *link = NULL; 11699 int err; 11700 11701 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11702 return libbpf_err_ptr(-EOPNOTSUPP); 11703 11704 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11705 if (err) 11706 return libbpf_err_ptr(err); 11707 11708 /* When calling bpf_program__attach() explicitly, auto-attach support 11709 * is expected to work, so NULL returned link is considered an error. 11710 * This is different for skeleton's attach, see comment in 11711 * bpf_object__attach_skeleton(). 11712 */ 11713 if (!link) 11714 return libbpf_err_ptr(-EOPNOTSUPP); 11715 11716 return link; 11717 } 11718 11719 struct bpf_link_struct_ops { 11720 struct bpf_link link; 11721 int map_fd; 11722 }; 11723 11724 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11725 { 11726 struct bpf_link_struct_ops *st_link; 11727 __u32 zero = 0; 11728 11729 st_link = container_of(link, struct bpf_link_struct_ops, link); 11730 11731 if (st_link->map_fd < 0) 11732 /* w/o a real link */ 11733 return bpf_map_delete_elem(link->fd, &zero); 11734 11735 return close(link->fd); 11736 } 11737 11738 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11739 { 11740 struct bpf_link_struct_ops *link; 11741 __u32 zero = 0; 11742 int err, fd; 11743 11744 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11745 return libbpf_err_ptr(-EINVAL); 11746 11747 link = calloc(1, sizeof(*link)); 11748 if (!link) 11749 return libbpf_err_ptr(-EINVAL); 11750 11751 /* kern_vdata should be prepared during the loading phase. */ 11752 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11753 /* It can be EBUSY if the map has been used to create or 11754 * update a link before. We don't allow updating the value of 11755 * a struct_ops once it is set. That ensures that the value 11756 * never changed. So, it is safe to skip EBUSY. 11757 */ 11758 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 11759 free(link); 11760 return libbpf_err_ptr(err); 11761 } 11762 11763 link->link.detach = bpf_link__detach_struct_ops; 11764 11765 if (!(map->def.map_flags & BPF_F_LINK)) { 11766 /* w/o a real link */ 11767 link->link.fd = map->fd; 11768 link->map_fd = -1; 11769 return &link->link; 11770 } 11771 11772 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 11773 if (fd < 0) { 11774 free(link); 11775 return libbpf_err_ptr(fd); 11776 } 11777 11778 link->link.fd = fd; 11779 link->map_fd = map->fd; 11780 11781 return &link->link; 11782 } 11783 11784 /* 11785 * Swap the back struct_ops of a link with a new struct_ops map. 11786 */ 11787 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 11788 { 11789 struct bpf_link_struct_ops *st_ops_link; 11790 __u32 zero = 0; 11791 int err; 11792 11793 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 11794 return -EINVAL; 11795 11796 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 11797 /* Ensure the type of a link is correct */ 11798 if (st_ops_link->map_fd < 0) 11799 return -EINVAL; 11800 11801 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 11802 /* It can be EBUSY if the map has been used to create or 11803 * update a link before. We don't allow updating the value of 11804 * a struct_ops once it is set. That ensures that the value 11805 * never changed. So, it is safe to skip EBUSY. 11806 */ 11807 if (err && err != -EBUSY) 11808 return err; 11809 11810 err = bpf_link_update(link->fd, map->fd, NULL); 11811 if (err < 0) 11812 return err; 11813 11814 st_ops_link->map_fd = map->fd; 11815 11816 return 0; 11817 } 11818 11819 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11820 void *private_data); 11821 11822 static enum bpf_perf_event_ret 11823 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11824 void **copy_mem, size_t *copy_size, 11825 bpf_perf_event_print_t fn, void *private_data) 11826 { 11827 struct perf_event_mmap_page *header = mmap_mem; 11828 __u64 data_head = ring_buffer_read_head(header); 11829 __u64 data_tail = header->data_tail; 11830 void *base = ((__u8 *)header) + page_size; 11831 int ret = LIBBPF_PERF_EVENT_CONT; 11832 struct perf_event_header *ehdr; 11833 size_t ehdr_size; 11834 11835 while (data_head != data_tail) { 11836 ehdr = base + (data_tail & (mmap_size - 1)); 11837 ehdr_size = ehdr->size; 11838 11839 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11840 void *copy_start = ehdr; 11841 size_t len_first = base + mmap_size - copy_start; 11842 size_t len_secnd = ehdr_size - len_first; 11843 11844 if (*copy_size < ehdr_size) { 11845 free(*copy_mem); 11846 *copy_mem = malloc(ehdr_size); 11847 if (!*copy_mem) { 11848 *copy_size = 0; 11849 ret = LIBBPF_PERF_EVENT_ERROR; 11850 break; 11851 } 11852 *copy_size = ehdr_size; 11853 } 11854 11855 memcpy(*copy_mem, copy_start, len_first); 11856 memcpy(*copy_mem + len_first, base, len_secnd); 11857 ehdr = *copy_mem; 11858 } 11859 11860 ret = fn(ehdr, private_data); 11861 data_tail += ehdr_size; 11862 if (ret != LIBBPF_PERF_EVENT_CONT) 11863 break; 11864 } 11865 11866 ring_buffer_write_tail(header, data_tail); 11867 return libbpf_err(ret); 11868 } 11869 11870 struct perf_buffer; 11871 11872 struct perf_buffer_params { 11873 struct perf_event_attr *attr; 11874 /* if event_cb is specified, it takes precendence */ 11875 perf_buffer_event_fn event_cb; 11876 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11877 perf_buffer_sample_fn sample_cb; 11878 perf_buffer_lost_fn lost_cb; 11879 void *ctx; 11880 int cpu_cnt; 11881 int *cpus; 11882 int *map_keys; 11883 }; 11884 11885 struct perf_cpu_buf { 11886 struct perf_buffer *pb; 11887 void *base; /* mmap()'ed memory */ 11888 void *buf; /* for reconstructing segmented data */ 11889 size_t buf_size; 11890 int fd; 11891 int cpu; 11892 int map_key; 11893 }; 11894 11895 struct perf_buffer { 11896 perf_buffer_event_fn event_cb; 11897 perf_buffer_sample_fn sample_cb; 11898 perf_buffer_lost_fn lost_cb; 11899 void *ctx; /* passed into callbacks */ 11900 11901 size_t page_size; 11902 size_t mmap_size; 11903 struct perf_cpu_buf **cpu_bufs; 11904 struct epoll_event *events; 11905 int cpu_cnt; /* number of allocated CPU buffers */ 11906 int epoll_fd; /* perf event FD */ 11907 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11908 }; 11909 11910 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11911 struct perf_cpu_buf *cpu_buf) 11912 { 11913 if (!cpu_buf) 11914 return; 11915 if (cpu_buf->base && 11916 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11917 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11918 if (cpu_buf->fd >= 0) { 11919 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11920 close(cpu_buf->fd); 11921 } 11922 free(cpu_buf->buf); 11923 free(cpu_buf); 11924 } 11925 11926 void perf_buffer__free(struct perf_buffer *pb) 11927 { 11928 int i; 11929 11930 if (IS_ERR_OR_NULL(pb)) 11931 return; 11932 if (pb->cpu_bufs) { 11933 for (i = 0; i < pb->cpu_cnt; i++) { 11934 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11935 11936 if (!cpu_buf) 11937 continue; 11938 11939 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11940 perf_buffer__free_cpu_buf(pb, cpu_buf); 11941 } 11942 free(pb->cpu_bufs); 11943 } 11944 if (pb->epoll_fd >= 0) 11945 close(pb->epoll_fd); 11946 free(pb->events); 11947 free(pb); 11948 } 11949 11950 static struct perf_cpu_buf * 11951 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11952 int cpu, int map_key) 11953 { 11954 struct perf_cpu_buf *cpu_buf; 11955 char msg[STRERR_BUFSIZE]; 11956 int err; 11957 11958 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11959 if (!cpu_buf) 11960 return ERR_PTR(-ENOMEM); 11961 11962 cpu_buf->pb = pb; 11963 cpu_buf->cpu = cpu; 11964 cpu_buf->map_key = map_key; 11965 11966 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11967 -1, PERF_FLAG_FD_CLOEXEC); 11968 if (cpu_buf->fd < 0) { 11969 err = -errno; 11970 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11971 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11972 goto error; 11973 } 11974 11975 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11976 PROT_READ | PROT_WRITE, MAP_SHARED, 11977 cpu_buf->fd, 0); 11978 if (cpu_buf->base == MAP_FAILED) { 11979 cpu_buf->base = NULL; 11980 err = -errno; 11981 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11982 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11983 goto error; 11984 } 11985 11986 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11987 err = -errno; 11988 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11989 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11990 goto error; 11991 } 11992 11993 return cpu_buf; 11994 11995 error: 11996 perf_buffer__free_cpu_buf(pb, cpu_buf); 11997 return (struct perf_cpu_buf *)ERR_PTR(err); 11998 } 11999 12000 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12001 struct perf_buffer_params *p); 12002 12003 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12004 perf_buffer_sample_fn sample_cb, 12005 perf_buffer_lost_fn lost_cb, 12006 void *ctx, 12007 const struct perf_buffer_opts *opts) 12008 { 12009 const size_t attr_sz = sizeof(struct perf_event_attr); 12010 struct perf_buffer_params p = {}; 12011 struct perf_event_attr attr; 12012 __u32 sample_period; 12013 12014 if (!OPTS_VALID(opts, perf_buffer_opts)) 12015 return libbpf_err_ptr(-EINVAL); 12016 12017 sample_period = OPTS_GET(opts, sample_period, 1); 12018 if (!sample_period) 12019 sample_period = 1; 12020 12021 memset(&attr, 0, attr_sz); 12022 attr.size = attr_sz; 12023 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12024 attr.type = PERF_TYPE_SOFTWARE; 12025 attr.sample_type = PERF_SAMPLE_RAW; 12026 attr.sample_period = sample_period; 12027 attr.wakeup_events = sample_period; 12028 12029 p.attr = &attr; 12030 p.sample_cb = sample_cb; 12031 p.lost_cb = lost_cb; 12032 p.ctx = ctx; 12033 12034 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12035 } 12036 12037 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12038 struct perf_event_attr *attr, 12039 perf_buffer_event_fn event_cb, void *ctx, 12040 const struct perf_buffer_raw_opts *opts) 12041 { 12042 struct perf_buffer_params p = {}; 12043 12044 if (!attr) 12045 return libbpf_err_ptr(-EINVAL); 12046 12047 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12048 return libbpf_err_ptr(-EINVAL); 12049 12050 p.attr = attr; 12051 p.event_cb = event_cb; 12052 p.ctx = ctx; 12053 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12054 p.cpus = OPTS_GET(opts, cpus, NULL); 12055 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12056 12057 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12058 } 12059 12060 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12061 struct perf_buffer_params *p) 12062 { 12063 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12064 struct bpf_map_info map; 12065 char msg[STRERR_BUFSIZE]; 12066 struct perf_buffer *pb; 12067 bool *online = NULL; 12068 __u32 map_info_len; 12069 int err, i, j, n; 12070 12071 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12072 pr_warn("page count should be power of two, but is %zu\n", 12073 page_cnt); 12074 return ERR_PTR(-EINVAL); 12075 } 12076 12077 /* best-effort sanity checks */ 12078 memset(&map, 0, sizeof(map)); 12079 map_info_len = sizeof(map); 12080 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12081 if (err) { 12082 err = -errno; 12083 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12084 * -EBADFD, -EFAULT, or -E2BIG on real error 12085 */ 12086 if (err != -EINVAL) { 12087 pr_warn("failed to get map info for map FD %d: %s\n", 12088 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12089 return ERR_PTR(err); 12090 } 12091 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12092 map_fd); 12093 } else { 12094 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12095 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12096 map.name); 12097 return ERR_PTR(-EINVAL); 12098 } 12099 } 12100 12101 pb = calloc(1, sizeof(*pb)); 12102 if (!pb) 12103 return ERR_PTR(-ENOMEM); 12104 12105 pb->event_cb = p->event_cb; 12106 pb->sample_cb = p->sample_cb; 12107 pb->lost_cb = p->lost_cb; 12108 pb->ctx = p->ctx; 12109 12110 pb->page_size = getpagesize(); 12111 pb->mmap_size = pb->page_size * page_cnt; 12112 pb->map_fd = map_fd; 12113 12114 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12115 if (pb->epoll_fd < 0) { 12116 err = -errno; 12117 pr_warn("failed to create epoll instance: %s\n", 12118 libbpf_strerror_r(err, msg, sizeof(msg))); 12119 goto error; 12120 } 12121 12122 if (p->cpu_cnt > 0) { 12123 pb->cpu_cnt = p->cpu_cnt; 12124 } else { 12125 pb->cpu_cnt = libbpf_num_possible_cpus(); 12126 if (pb->cpu_cnt < 0) { 12127 err = pb->cpu_cnt; 12128 goto error; 12129 } 12130 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12131 pb->cpu_cnt = map.max_entries; 12132 } 12133 12134 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12135 if (!pb->events) { 12136 err = -ENOMEM; 12137 pr_warn("failed to allocate events: out of memory\n"); 12138 goto error; 12139 } 12140 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12141 if (!pb->cpu_bufs) { 12142 err = -ENOMEM; 12143 pr_warn("failed to allocate buffers: out of memory\n"); 12144 goto error; 12145 } 12146 12147 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12148 if (err) { 12149 pr_warn("failed to get online CPU mask: %d\n", err); 12150 goto error; 12151 } 12152 12153 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12154 struct perf_cpu_buf *cpu_buf; 12155 int cpu, map_key; 12156 12157 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12158 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12159 12160 /* in case user didn't explicitly requested particular CPUs to 12161 * be attached to, skip offline/not present CPUs 12162 */ 12163 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12164 continue; 12165 12166 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12167 if (IS_ERR(cpu_buf)) { 12168 err = PTR_ERR(cpu_buf); 12169 goto error; 12170 } 12171 12172 pb->cpu_bufs[j] = cpu_buf; 12173 12174 err = bpf_map_update_elem(pb->map_fd, &map_key, 12175 &cpu_buf->fd, 0); 12176 if (err) { 12177 err = -errno; 12178 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12179 cpu, map_key, cpu_buf->fd, 12180 libbpf_strerror_r(err, msg, sizeof(msg))); 12181 goto error; 12182 } 12183 12184 pb->events[j].events = EPOLLIN; 12185 pb->events[j].data.ptr = cpu_buf; 12186 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12187 &pb->events[j]) < 0) { 12188 err = -errno; 12189 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12190 cpu, cpu_buf->fd, 12191 libbpf_strerror_r(err, msg, sizeof(msg))); 12192 goto error; 12193 } 12194 j++; 12195 } 12196 pb->cpu_cnt = j; 12197 free(online); 12198 12199 return pb; 12200 12201 error: 12202 free(online); 12203 if (pb) 12204 perf_buffer__free(pb); 12205 return ERR_PTR(err); 12206 } 12207 12208 struct perf_sample_raw { 12209 struct perf_event_header header; 12210 uint32_t size; 12211 char data[]; 12212 }; 12213 12214 struct perf_sample_lost { 12215 struct perf_event_header header; 12216 uint64_t id; 12217 uint64_t lost; 12218 uint64_t sample_id; 12219 }; 12220 12221 static enum bpf_perf_event_ret 12222 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12223 { 12224 struct perf_cpu_buf *cpu_buf = ctx; 12225 struct perf_buffer *pb = cpu_buf->pb; 12226 void *data = e; 12227 12228 /* user wants full control over parsing perf event */ 12229 if (pb->event_cb) 12230 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12231 12232 switch (e->type) { 12233 case PERF_RECORD_SAMPLE: { 12234 struct perf_sample_raw *s = data; 12235 12236 if (pb->sample_cb) 12237 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12238 break; 12239 } 12240 case PERF_RECORD_LOST: { 12241 struct perf_sample_lost *s = data; 12242 12243 if (pb->lost_cb) 12244 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12245 break; 12246 } 12247 default: 12248 pr_warn("unknown perf sample type %d\n", e->type); 12249 return LIBBPF_PERF_EVENT_ERROR; 12250 } 12251 return LIBBPF_PERF_EVENT_CONT; 12252 } 12253 12254 static int perf_buffer__process_records(struct perf_buffer *pb, 12255 struct perf_cpu_buf *cpu_buf) 12256 { 12257 enum bpf_perf_event_ret ret; 12258 12259 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12260 pb->page_size, &cpu_buf->buf, 12261 &cpu_buf->buf_size, 12262 perf_buffer__process_record, cpu_buf); 12263 if (ret != LIBBPF_PERF_EVENT_CONT) 12264 return ret; 12265 return 0; 12266 } 12267 12268 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12269 { 12270 return pb->epoll_fd; 12271 } 12272 12273 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12274 { 12275 int i, cnt, err; 12276 12277 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12278 if (cnt < 0) 12279 return -errno; 12280 12281 for (i = 0; i < cnt; i++) { 12282 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12283 12284 err = perf_buffer__process_records(pb, cpu_buf); 12285 if (err) { 12286 pr_warn("error while processing records: %d\n", err); 12287 return libbpf_err(err); 12288 } 12289 } 12290 return cnt; 12291 } 12292 12293 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12294 * manager. 12295 */ 12296 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12297 { 12298 return pb->cpu_cnt; 12299 } 12300 12301 /* 12302 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12303 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12304 * select()/poll()/epoll() Linux syscalls. 12305 */ 12306 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12307 { 12308 struct perf_cpu_buf *cpu_buf; 12309 12310 if (buf_idx >= pb->cpu_cnt) 12311 return libbpf_err(-EINVAL); 12312 12313 cpu_buf = pb->cpu_bufs[buf_idx]; 12314 if (!cpu_buf) 12315 return libbpf_err(-ENOENT); 12316 12317 return cpu_buf->fd; 12318 } 12319 12320 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12321 { 12322 struct perf_cpu_buf *cpu_buf; 12323 12324 if (buf_idx >= pb->cpu_cnt) 12325 return libbpf_err(-EINVAL); 12326 12327 cpu_buf = pb->cpu_bufs[buf_idx]; 12328 if (!cpu_buf) 12329 return libbpf_err(-ENOENT); 12330 12331 *buf = cpu_buf->base; 12332 *buf_size = pb->mmap_size; 12333 return 0; 12334 } 12335 12336 /* 12337 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12338 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12339 * consume, do nothing and return success. 12340 * Returns: 12341 * - 0 on success; 12342 * - <0 on failure. 12343 */ 12344 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12345 { 12346 struct perf_cpu_buf *cpu_buf; 12347 12348 if (buf_idx >= pb->cpu_cnt) 12349 return libbpf_err(-EINVAL); 12350 12351 cpu_buf = pb->cpu_bufs[buf_idx]; 12352 if (!cpu_buf) 12353 return libbpf_err(-ENOENT); 12354 12355 return perf_buffer__process_records(pb, cpu_buf); 12356 } 12357 12358 int perf_buffer__consume(struct perf_buffer *pb) 12359 { 12360 int i, err; 12361 12362 for (i = 0; i < pb->cpu_cnt; i++) { 12363 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12364 12365 if (!cpu_buf) 12366 continue; 12367 12368 err = perf_buffer__process_records(pb, cpu_buf); 12369 if (err) { 12370 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12371 return libbpf_err(err); 12372 } 12373 } 12374 return 0; 12375 } 12376 12377 int bpf_program__set_attach_target(struct bpf_program *prog, 12378 int attach_prog_fd, 12379 const char *attach_func_name) 12380 { 12381 int btf_obj_fd = 0, btf_id = 0, err; 12382 12383 if (!prog || attach_prog_fd < 0) 12384 return libbpf_err(-EINVAL); 12385 12386 if (prog->obj->loaded) 12387 return libbpf_err(-EINVAL); 12388 12389 if (attach_prog_fd && !attach_func_name) { 12390 /* remember attach_prog_fd and let bpf_program__load() find 12391 * BTF ID during the program load 12392 */ 12393 prog->attach_prog_fd = attach_prog_fd; 12394 return 0; 12395 } 12396 12397 if (attach_prog_fd) { 12398 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12399 attach_prog_fd); 12400 if (btf_id < 0) 12401 return libbpf_err(btf_id); 12402 } else { 12403 if (!attach_func_name) 12404 return libbpf_err(-EINVAL); 12405 12406 /* load btf_vmlinux, if not yet */ 12407 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12408 if (err) 12409 return libbpf_err(err); 12410 err = find_kernel_btf_id(prog->obj, attach_func_name, 12411 prog->expected_attach_type, 12412 &btf_obj_fd, &btf_id); 12413 if (err) 12414 return libbpf_err(err); 12415 } 12416 12417 prog->attach_btf_id = btf_id; 12418 prog->attach_btf_obj_fd = btf_obj_fd; 12419 prog->attach_prog_fd = attach_prog_fd; 12420 return 0; 12421 } 12422 12423 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12424 { 12425 int err = 0, n, len, start, end = -1; 12426 bool *tmp; 12427 12428 *mask = NULL; 12429 *mask_sz = 0; 12430 12431 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12432 while (*s) { 12433 if (*s == ',' || *s == '\n') { 12434 s++; 12435 continue; 12436 } 12437 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12438 if (n <= 0 || n > 2) { 12439 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12440 err = -EINVAL; 12441 goto cleanup; 12442 } else if (n == 1) { 12443 end = start; 12444 } 12445 if (start < 0 || start > end) { 12446 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12447 start, end, s); 12448 err = -EINVAL; 12449 goto cleanup; 12450 } 12451 tmp = realloc(*mask, end + 1); 12452 if (!tmp) { 12453 err = -ENOMEM; 12454 goto cleanup; 12455 } 12456 *mask = tmp; 12457 memset(tmp + *mask_sz, 0, start - *mask_sz); 12458 memset(tmp + start, 1, end - start + 1); 12459 *mask_sz = end + 1; 12460 s += len; 12461 } 12462 if (!*mask_sz) { 12463 pr_warn("Empty CPU range\n"); 12464 return -EINVAL; 12465 } 12466 return 0; 12467 cleanup: 12468 free(*mask); 12469 *mask = NULL; 12470 return err; 12471 } 12472 12473 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12474 { 12475 int fd, err = 0, len; 12476 char buf[128]; 12477 12478 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12479 if (fd < 0) { 12480 err = -errno; 12481 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12482 return err; 12483 } 12484 len = read(fd, buf, sizeof(buf)); 12485 close(fd); 12486 if (len <= 0) { 12487 err = len ? -errno : -EINVAL; 12488 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12489 return err; 12490 } 12491 if (len >= sizeof(buf)) { 12492 pr_warn("CPU mask is too big in file %s\n", fcpu); 12493 return -E2BIG; 12494 } 12495 buf[len] = '\0'; 12496 12497 return parse_cpu_mask_str(buf, mask, mask_sz); 12498 } 12499 12500 int libbpf_num_possible_cpus(void) 12501 { 12502 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12503 static int cpus; 12504 int err, n, i, tmp_cpus; 12505 bool *mask; 12506 12507 tmp_cpus = READ_ONCE(cpus); 12508 if (tmp_cpus > 0) 12509 return tmp_cpus; 12510 12511 err = parse_cpu_mask_file(fcpu, &mask, &n); 12512 if (err) 12513 return libbpf_err(err); 12514 12515 tmp_cpus = 0; 12516 for (i = 0; i < n; i++) { 12517 if (mask[i]) 12518 tmp_cpus++; 12519 } 12520 free(mask); 12521 12522 WRITE_ONCE(cpus, tmp_cpus); 12523 return tmp_cpus; 12524 } 12525 12526 static int populate_skeleton_maps(const struct bpf_object *obj, 12527 struct bpf_map_skeleton *maps, 12528 size_t map_cnt) 12529 { 12530 int i; 12531 12532 for (i = 0; i < map_cnt; i++) { 12533 struct bpf_map **map = maps[i].map; 12534 const char *name = maps[i].name; 12535 void **mmaped = maps[i].mmaped; 12536 12537 *map = bpf_object__find_map_by_name(obj, name); 12538 if (!*map) { 12539 pr_warn("failed to find skeleton map '%s'\n", name); 12540 return -ESRCH; 12541 } 12542 12543 /* externs shouldn't be pre-setup from user code */ 12544 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12545 *mmaped = (*map)->mmaped; 12546 } 12547 return 0; 12548 } 12549 12550 static int populate_skeleton_progs(const struct bpf_object *obj, 12551 struct bpf_prog_skeleton *progs, 12552 size_t prog_cnt) 12553 { 12554 int i; 12555 12556 for (i = 0; i < prog_cnt; i++) { 12557 struct bpf_program **prog = progs[i].prog; 12558 const char *name = progs[i].name; 12559 12560 *prog = bpf_object__find_program_by_name(obj, name); 12561 if (!*prog) { 12562 pr_warn("failed to find skeleton program '%s'\n", name); 12563 return -ESRCH; 12564 } 12565 } 12566 return 0; 12567 } 12568 12569 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12570 const struct bpf_object_open_opts *opts) 12571 { 12572 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12573 .object_name = s->name, 12574 ); 12575 struct bpf_object *obj; 12576 int err; 12577 12578 /* Attempt to preserve opts->object_name, unless overriden by user 12579 * explicitly. Overwriting object name for skeletons is discouraged, 12580 * as it breaks global data maps, because they contain object name 12581 * prefix as their own map name prefix. When skeleton is generated, 12582 * bpftool is making an assumption that this name will stay the same. 12583 */ 12584 if (opts) { 12585 memcpy(&skel_opts, opts, sizeof(*opts)); 12586 if (!opts->object_name) 12587 skel_opts.object_name = s->name; 12588 } 12589 12590 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12591 err = libbpf_get_error(obj); 12592 if (err) { 12593 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12594 s->name, err); 12595 return libbpf_err(err); 12596 } 12597 12598 *s->obj = obj; 12599 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12600 if (err) { 12601 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12602 return libbpf_err(err); 12603 } 12604 12605 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12606 if (err) { 12607 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12608 return libbpf_err(err); 12609 } 12610 12611 return 0; 12612 } 12613 12614 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12615 { 12616 int err, len, var_idx, i; 12617 const char *var_name; 12618 const struct bpf_map *map; 12619 struct btf *btf; 12620 __u32 map_type_id; 12621 const struct btf_type *map_type, *var_type; 12622 const struct bpf_var_skeleton *var_skel; 12623 struct btf_var_secinfo *var; 12624 12625 if (!s->obj) 12626 return libbpf_err(-EINVAL); 12627 12628 btf = bpf_object__btf(s->obj); 12629 if (!btf) { 12630 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12631 bpf_object__name(s->obj)); 12632 return libbpf_err(-errno); 12633 } 12634 12635 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12636 if (err) { 12637 pr_warn("failed to populate subskeleton maps: %d\n", err); 12638 return libbpf_err(err); 12639 } 12640 12641 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12642 if (err) { 12643 pr_warn("failed to populate subskeleton maps: %d\n", err); 12644 return libbpf_err(err); 12645 } 12646 12647 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12648 var_skel = &s->vars[var_idx]; 12649 map = *var_skel->map; 12650 map_type_id = bpf_map__btf_value_type_id(map); 12651 map_type = btf__type_by_id(btf, map_type_id); 12652 12653 if (!btf_is_datasec(map_type)) { 12654 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12655 bpf_map__name(map), 12656 __btf_kind_str(btf_kind(map_type))); 12657 return libbpf_err(-EINVAL); 12658 } 12659 12660 len = btf_vlen(map_type); 12661 var = btf_var_secinfos(map_type); 12662 for (i = 0; i < len; i++, var++) { 12663 var_type = btf__type_by_id(btf, var->type); 12664 var_name = btf__name_by_offset(btf, var_type->name_off); 12665 if (strcmp(var_name, var_skel->name) == 0) { 12666 *var_skel->addr = map->mmaped + var->offset; 12667 break; 12668 } 12669 } 12670 } 12671 return 0; 12672 } 12673 12674 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12675 { 12676 if (!s) 12677 return; 12678 free(s->maps); 12679 free(s->progs); 12680 free(s->vars); 12681 free(s); 12682 } 12683 12684 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12685 { 12686 int i, err; 12687 12688 err = bpf_object__load(*s->obj); 12689 if (err) { 12690 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12691 return libbpf_err(err); 12692 } 12693 12694 for (i = 0; i < s->map_cnt; i++) { 12695 struct bpf_map *map = *s->maps[i].map; 12696 size_t mmap_sz = bpf_map_mmap_sz(map); 12697 int prot, map_fd = bpf_map__fd(map); 12698 void **mmaped = s->maps[i].mmaped; 12699 12700 if (!mmaped) 12701 continue; 12702 12703 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12704 *mmaped = NULL; 12705 continue; 12706 } 12707 12708 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12709 prot = PROT_READ; 12710 else 12711 prot = PROT_READ | PROT_WRITE; 12712 12713 /* Remap anonymous mmap()-ed "map initialization image" as 12714 * a BPF map-backed mmap()-ed memory, but preserving the same 12715 * memory address. This will cause kernel to change process' 12716 * page table to point to a different piece of kernel memory, 12717 * but from userspace point of view memory address (and its 12718 * contents, being identical at this point) will stay the 12719 * same. This mapping will be released by bpf_object__close() 12720 * as per normal clean up procedure, so we don't need to worry 12721 * about it from skeleton's clean up perspective. 12722 */ 12723 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12724 MAP_SHARED | MAP_FIXED, map_fd, 0); 12725 if (*mmaped == MAP_FAILED) { 12726 err = -errno; 12727 *mmaped = NULL; 12728 pr_warn("failed to re-mmap() map '%s': %d\n", 12729 bpf_map__name(map), err); 12730 return libbpf_err(err); 12731 } 12732 } 12733 12734 return 0; 12735 } 12736 12737 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12738 { 12739 int i, err; 12740 12741 for (i = 0; i < s->prog_cnt; i++) { 12742 struct bpf_program *prog = *s->progs[i].prog; 12743 struct bpf_link **link = s->progs[i].link; 12744 12745 if (!prog->autoload || !prog->autoattach) 12746 continue; 12747 12748 /* auto-attaching not supported for this program */ 12749 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12750 continue; 12751 12752 /* if user already set the link manually, don't attempt auto-attach */ 12753 if (*link) 12754 continue; 12755 12756 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12757 if (err) { 12758 pr_warn("prog '%s': failed to auto-attach: %d\n", 12759 bpf_program__name(prog), err); 12760 return libbpf_err(err); 12761 } 12762 12763 /* It's possible that for some SEC() definitions auto-attach 12764 * is supported in some cases (e.g., if definition completely 12765 * specifies target information), but is not in other cases. 12766 * SEC("uprobe") is one such case. If user specified target 12767 * binary and function name, such BPF program can be 12768 * auto-attached. But if not, it shouldn't trigger skeleton's 12769 * attach to fail. It should just be skipped. 12770 * attach_fn signals such case with returning 0 (no error) and 12771 * setting link to NULL. 12772 */ 12773 } 12774 12775 return 0; 12776 } 12777 12778 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12779 { 12780 int i; 12781 12782 for (i = 0; i < s->prog_cnt; i++) { 12783 struct bpf_link **link = s->progs[i].link; 12784 12785 bpf_link__destroy(*link); 12786 *link = NULL; 12787 } 12788 } 12789 12790 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12791 { 12792 if (!s) 12793 return; 12794 12795 if (s->progs) 12796 bpf_object__detach_skeleton(s); 12797 if (s->obj) 12798 bpf_object__close(*s->obj); 12799 free(s->maps); 12800 free(s->progs); 12801 free(s); 12802 } 12803