1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <libelf.h> 46 #include <gelf.h> 47 #include <zlib.h> 48 49 #include "libbpf.h" 50 #include "bpf.h" 51 #include "btf.h" 52 #include "str_error.h" 53 #include "libbpf_internal.h" 54 #include "hashmap.h" 55 #include "bpf_gen_internal.h" 56 #include "zip.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 static int map_set_def_max_entries(struct bpf_map *map); 74 75 static const char * const attach_type_name[] = { 76 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 77 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 78 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 79 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 80 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 81 [BPF_CGROUP_DEVICE] = "cgroup_device", 82 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 83 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 84 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 85 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 86 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 87 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 88 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 89 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 90 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 91 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 92 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 93 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 94 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 95 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 96 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 97 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 98 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 99 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 100 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 101 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 102 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 103 [BPF_LIRC_MODE2] = "lirc_mode2", 104 [BPF_FLOW_DISSECTOR] = "flow_dissector", 105 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 106 [BPF_TRACE_FENTRY] = "trace_fentry", 107 [BPF_TRACE_FEXIT] = "trace_fexit", 108 [BPF_MODIFY_RETURN] = "modify_return", 109 [BPF_LSM_MAC] = "lsm_mac", 110 [BPF_LSM_CGROUP] = "lsm_cgroup", 111 [BPF_SK_LOOKUP] = "sk_lookup", 112 [BPF_TRACE_ITER] = "trace_iter", 113 [BPF_XDP_DEVMAP] = "xdp_devmap", 114 [BPF_XDP_CPUMAP] = "xdp_cpumap", 115 [BPF_XDP] = "xdp", 116 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 117 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 118 [BPF_PERF_EVENT] = "perf_event", 119 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 120 [BPF_STRUCT_OPS] = "struct_ops", 121 [BPF_NETFILTER] = "netfilter", 122 [BPF_TCX_INGRESS] = "tcx_ingress", 123 [BPF_TCX_EGRESS] = "tcx_egress", 124 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 125 }; 126 127 static const char * const link_type_name[] = { 128 [BPF_LINK_TYPE_UNSPEC] = "unspec", 129 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 130 [BPF_LINK_TYPE_TRACING] = "tracing", 131 [BPF_LINK_TYPE_CGROUP] = "cgroup", 132 [BPF_LINK_TYPE_ITER] = "iter", 133 [BPF_LINK_TYPE_NETNS] = "netns", 134 [BPF_LINK_TYPE_XDP] = "xdp", 135 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 136 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 137 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 138 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 139 [BPF_LINK_TYPE_TCX] = "tcx", 140 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 141 }; 142 143 static const char * const map_type_name[] = { 144 [BPF_MAP_TYPE_UNSPEC] = "unspec", 145 [BPF_MAP_TYPE_HASH] = "hash", 146 [BPF_MAP_TYPE_ARRAY] = "array", 147 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 148 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 149 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 150 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 151 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 152 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 153 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 154 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 155 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 156 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 157 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 158 [BPF_MAP_TYPE_DEVMAP] = "devmap", 159 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 160 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 161 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 162 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 163 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 164 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 165 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 166 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 167 [BPF_MAP_TYPE_QUEUE] = "queue", 168 [BPF_MAP_TYPE_STACK] = "stack", 169 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 170 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 171 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 172 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 173 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 174 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 175 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 176 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 177 }; 178 179 static const char * const prog_type_name[] = { 180 [BPF_PROG_TYPE_UNSPEC] = "unspec", 181 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 182 [BPF_PROG_TYPE_KPROBE] = "kprobe", 183 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 184 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 185 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 186 [BPF_PROG_TYPE_XDP] = "xdp", 187 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 188 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 189 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 190 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 191 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 192 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 193 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 194 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 195 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 196 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 197 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 198 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 199 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 200 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 201 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 202 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 203 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 204 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 205 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 206 [BPF_PROG_TYPE_TRACING] = "tracing", 207 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 208 [BPF_PROG_TYPE_EXT] = "ext", 209 [BPF_PROG_TYPE_LSM] = "lsm", 210 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 211 [BPF_PROG_TYPE_SYSCALL] = "syscall", 212 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 213 }; 214 215 static int __base_pr(enum libbpf_print_level level, const char *format, 216 va_list args) 217 { 218 if (level == LIBBPF_DEBUG) 219 return 0; 220 221 return vfprintf(stderr, format, args); 222 } 223 224 static libbpf_print_fn_t __libbpf_pr = __base_pr; 225 226 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 227 { 228 libbpf_print_fn_t old_print_fn; 229 230 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 231 232 return old_print_fn; 233 } 234 235 __printf(2, 3) 236 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 237 { 238 va_list args; 239 int old_errno; 240 libbpf_print_fn_t print_fn; 241 242 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 243 if (!print_fn) 244 return; 245 246 old_errno = errno; 247 248 va_start(args, format); 249 __libbpf_pr(level, format, args); 250 va_end(args); 251 252 errno = old_errno; 253 } 254 255 static void pr_perm_msg(int err) 256 { 257 struct rlimit limit; 258 char buf[100]; 259 260 if (err != -EPERM || geteuid() != 0) 261 return; 262 263 err = getrlimit(RLIMIT_MEMLOCK, &limit); 264 if (err) 265 return; 266 267 if (limit.rlim_cur == RLIM_INFINITY) 268 return; 269 270 if (limit.rlim_cur < 1024) 271 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 272 else if (limit.rlim_cur < 1024*1024) 273 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 274 else 275 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 276 277 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 278 buf); 279 } 280 281 #define STRERR_BUFSIZE 128 282 283 /* Copied from tools/perf/util/util.h */ 284 #ifndef zfree 285 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 286 #endif 287 288 #ifndef zclose 289 # define zclose(fd) ({ \ 290 int ___err = 0; \ 291 if ((fd) >= 0) \ 292 ___err = close((fd)); \ 293 fd = -1; \ 294 ___err; }) 295 #endif 296 297 static inline __u64 ptr_to_u64(const void *ptr) 298 { 299 return (__u64) (unsigned long) ptr; 300 } 301 302 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 303 { 304 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 305 return 0; 306 } 307 308 __u32 libbpf_major_version(void) 309 { 310 return LIBBPF_MAJOR_VERSION; 311 } 312 313 __u32 libbpf_minor_version(void) 314 { 315 return LIBBPF_MINOR_VERSION; 316 } 317 318 const char *libbpf_version_string(void) 319 { 320 #define __S(X) #X 321 #define _S(X) __S(X) 322 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 323 #undef _S 324 #undef __S 325 } 326 327 enum reloc_type { 328 RELO_LD64, 329 RELO_CALL, 330 RELO_DATA, 331 RELO_EXTERN_LD64, 332 RELO_EXTERN_CALL, 333 RELO_SUBPROG_ADDR, 334 RELO_CORE, 335 }; 336 337 struct reloc_desc { 338 enum reloc_type type; 339 int insn_idx; 340 union { 341 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 342 struct { 343 int map_idx; 344 int sym_off; 345 int ext_idx; 346 }; 347 }; 348 }; 349 350 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 351 enum sec_def_flags { 352 SEC_NONE = 0, 353 /* expected_attach_type is optional, if kernel doesn't support that */ 354 SEC_EXP_ATTACH_OPT = 1, 355 /* legacy, only used by libbpf_get_type_names() and 356 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 357 * This used to be associated with cgroup (and few other) BPF programs 358 * that were attachable through BPF_PROG_ATTACH command. Pretty 359 * meaningless nowadays, though. 360 */ 361 SEC_ATTACHABLE = 2, 362 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 363 /* attachment target is specified through BTF ID in either kernel or 364 * other BPF program's BTF object 365 */ 366 SEC_ATTACH_BTF = 4, 367 /* BPF program type allows sleeping/blocking in kernel */ 368 SEC_SLEEPABLE = 8, 369 /* BPF program support non-linear XDP buffer */ 370 SEC_XDP_FRAGS = 16, 371 /* Setup proper attach type for usdt probes. */ 372 SEC_USDT = 32, 373 }; 374 375 struct bpf_sec_def { 376 char *sec; 377 enum bpf_prog_type prog_type; 378 enum bpf_attach_type expected_attach_type; 379 long cookie; 380 int handler_id; 381 382 libbpf_prog_setup_fn_t prog_setup_fn; 383 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 384 libbpf_prog_attach_fn_t prog_attach_fn; 385 }; 386 387 /* 388 * bpf_prog should be a better name but it has been used in 389 * linux/filter.h. 390 */ 391 struct bpf_program { 392 char *name; 393 char *sec_name; 394 size_t sec_idx; 395 const struct bpf_sec_def *sec_def; 396 /* this program's instruction offset (in number of instructions) 397 * within its containing ELF section 398 */ 399 size_t sec_insn_off; 400 /* number of original instructions in ELF section belonging to this 401 * program, not taking into account subprogram instructions possible 402 * appended later during relocation 403 */ 404 size_t sec_insn_cnt; 405 /* Offset (in number of instructions) of the start of instruction 406 * belonging to this BPF program within its containing main BPF 407 * program. For the entry-point (main) BPF program, this is always 408 * zero. For a sub-program, this gets reset before each of main BPF 409 * programs are processed and relocated and is used to determined 410 * whether sub-program was already appended to the main program, and 411 * if yes, at which instruction offset. 412 */ 413 size_t sub_insn_off; 414 415 /* instructions that belong to BPF program; insns[0] is located at 416 * sec_insn_off instruction within its ELF section in ELF file, so 417 * when mapping ELF file instruction index to the local instruction, 418 * one needs to subtract sec_insn_off; and vice versa. 419 */ 420 struct bpf_insn *insns; 421 /* actual number of instruction in this BPF program's image; for 422 * entry-point BPF programs this includes the size of main program 423 * itself plus all the used sub-programs, appended at the end 424 */ 425 size_t insns_cnt; 426 427 struct reloc_desc *reloc_desc; 428 int nr_reloc; 429 430 /* BPF verifier log settings */ 431 char *log_buf; 432 size_t log_size; 433 __u32 log_level; 434 435 struct bpf_object *obj; 436 437 int fd; 438 bool autoload; 439 bool autoattach; 440 bool mark_btf_static; 441 enum bpf_prog_type type; 442 enum bpf_attach_type expected_attach_type; 443 444 int prog_ifindex; 445 __u32 attach_btf_obj_fd; 446 __u32 attach_btf_id; 447 __u32 attach_prog_fd; 448 449 void *func_info; 450 __u32 func_info_rec_size; 451 __u32 func_info_cnt; 452 453 void *line_info; 454 __u32 line_info_rec_size; 455 __u32 line_info_cnt; 456 __u32 prog_flags; 457 }; 458 459 struct bpf_struct_ops { 460 const char *tname; 461 const struct btf_type *type; 462 struct bpf_program **progs; 463 __u32 *kern_func_off; 464 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 465 void *data; 466 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 467 * btf_vmlinux's format. 468 * struct bpf_struct_ops_tcp_congestion_ops { 469 * [... some other kernel fields ...] 470 * struct tcp_congestion_ops data; 471 * } 472 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 473 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 474 * from "data". 475 */ 476 void *kern_vdata; 477 __u32 type_id; 478 }; 479 480 #define DATA_SEC ".data" 481 #define BSS_SEC ".bss" 482 #define RODATA_SEC ".rodata" 483 #define KCONFIG_SEC ".kconfig" 484 #define KSYMS_SEC ".ksyms" 485 #define STRUCT_OPS_SEC ".struct_ops" 486 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 487 488 enum libbpf_map_type { 489 LIBBPF_MAP_UNSPEC, 490 LIBBPF_MAP_DATA, 491 LIBBPF_MAP_BSS, 492 LIBBPF_MAP_RODATA, 493 LIBBPF_MAP_KCONFIG, 494 }; 495 496 struct bpf_map_def { 497 unsigned int type; 498 unsigned int key_size; 499 unsigned int value_size; 500 unsigned int max_entries; 501 unsigned int map_flags; 502 }; 503 504 struct bpf_map { 505 struct bpf_object *obj; 506 char *name; 507 /* real_name is defined for special internal maps (.rodata*, 508 * .data*, .bss, .kconfig) and preserves their original ELF section 509 * name. This is important to be able to find corresponding BTF 510 * DATASEC information. 511 */ 512 char *real_name; 513 int fd; 514 int sec_idx; 515 size_t sec_offset; 516 int map_ifindex; 517 int inner_map_fd; 518 struct bpf_map_def def; 519 __u32 numa_node; 520 __u32 btf_var_idx; 521 __u32 btf_key_type_id; 522 __u32 btf_value_type_id; 523 __u32 btf_vmlinux_value_type_id; 524 enum libbpf_map_type libbpf_type; 525 void *mmaped; 526 struct bpf_struct_ops *st_ops; 527 struct bpf_map *inner_map; 528 void **init_slots; 529 int init_slots_sz; 530 char *pin_path; 531 bool pinned; 532 bool reused; 533 bool autocreate; 534 __u64 map_extra; 535 }; 536 537 enum extern_type { 538 EXT_UNKNOWN, 539 EXT_KCFG, 540 EXT_KSYM, 541 }; 542 543 enum kcfg_type { 544 KCFG_UNKNOWN, 545 KCFG_CHAR, 546 KCFG_BOOL, 547 KCFG_INT, 548 KCFG_TRISTATE, 549 KCFG_CHAR_ARR, 550 }; 551 552 struct extern_desc { 553 enum extern_type type; 554 int sym_idx; 555 int btf_id; 556 int sec_btf_id; 557 const char *name; 558 char *essent_name; 559 bool is_set; 560 bool is_weak; 561 union { 562 struct { 563 enum kcfg_type type; 564 int sz; 565 int align; 566 int data_off; 567 bool is_signed; 568 } kcfg; 569 struct { 570 unsigned long long addr; 571 572 /* target btf_id of the corresponding kernel var. */ 573 int kernel_btf_obj_fd; 574 int kernel_btf_id; 575 576 /* local btf_id of the ksym extern's type. */ 577 __u32 type_id; 578 /* BTF fd index to be patched in for insn->off, this is 579 * 0 for vmlinux BTF, index in obj->fd_array for module 580 * BTF 581 */ 582 __s16 btf_fd_idx; 583 } ksym; 584 }; 585 }; 586 587 struct module_btf { 588 struct btf *btf; 589 char *name; 590 __u32 id; 591 int fd; 592 int fd_array_idx; 593 }; 594 595 enum sec_type { 596 SEC_UNUSED = 0, 597 SEC_RELO, 598 SEC_BSS, 599 SEC_DATA, 600 SEC_RODATA, 601 }; 602 603 struct elf_sec_desc { 604 enum sec_type sec_type; 605 Elf64_Shdr *shdr; 606 Elf_Data *data; 607 }; 608 609 struct elf_state { 610 int fd; 611 const void *obj_buf; 612 size_t obj_buf_sz; 613 Elf *elf; 614 Elf64_Ehdr *ehdr; 615 Elf_Data *symbols; 616 Elf_Data *st_ops_data; 617 Elf_Data *st_ops_link_data; 618 size_t shstrndx; /* section index for section name strings */ 619 size_t strtabidx; 620 struct elf_sec_desc *secs; 621 size_t sec_cnt; 622 int btf_maps_shndx; 623 __u32 btf_maps_sec_btf_id; 624 int text_shndx; 625 int symbols_shndx; 626 int st_ops_shndx; 627 int st_ops_link_shndx; 628 }; 629 630 struct usdt_manager; 631 632 struct bpf_object { 633 char name[BPF_OBJ_NAME_LEN]; 634 char license[64]; 635 __u32 kern_version; 636 637 struct bpf_program *programs; 638 size_t nr_programs; 639 struct bpf_map *maps; 640 size_t nr_maps; 641 size_t maps_cap; 642 643 char *kconfig; 644 struct extern_desc *externs; 645 int nr_extern; 646 int kconfig_map_idx; 647 648 bool loaded; 649 bool has_subcalls; 650 bool has_rodata; 651 652 struct bpf_gen *gen_loader; 653 654 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 655 struct elf_state efile; 656 657 struct btf *btf; 658 struct btf_ext *btf_ext; 659 660 /* Parse and load BTF vmlinux if any of the programs in the object need 661 * it at load time. 662 */ 663 struct btf *btf_vmlinux; 664 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 665 * override for vmlinux BTF. 666 */ 667 char *btf_custom_path; 668 /* vmlinux BTF override for CO-RE relocations */ 669 struct btf *btf_vmlinux_override; 670 /* Lazily initialized kernel module BTFs */ 671 struct module_btf *btf_modules; 672 bool btf_modules_loaded; 673 size_t btf_module_cnt; 674 size_t btf_module_cap; 675 676 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 677 char *log_buf; 678 size_t log_size; 679 __u32 log_level; 680 681 int *fd_array; 682 size_t fd_array_cap; 683 size_t fd_array_cnt; 684 685 struct usdt_manager *usdt_man; 686 687 char path[]; 688 }; 689 690 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 691 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 692 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 693 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 694 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 695 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 696 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 697 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 698 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 699 700 void bpf_program__unload(struct bpf_program *prog) 701 { 702 if (!prog) 703 return; 704 705 zclose(prog->fd); 706 707 zfree(&prog->func_info); 708 zfree(&prog->line_info); 709 } 710 711 static void bpf_program__exit(struct bpf_program *prog) 712 { 713 if (!prog) 714 return; 715 716 bpf_program__unload(prog); 717 zfree(&prog->name); 718 zfree(&prog->sec_name); 719 zfree(&prog->insns); 720 zfree(&prog->reloc_desc); 721 722 prog->nr_reloc = 0; 723 prog->insns_cnt = 0; 724 prog->sec_idx = -1; 725 } 726 727 static bool insn_is_subprog_call(const struct bpf_insn *insn) 728 { 729 return BPF_CLASS(insn->code) == BPF_JMP && 730 BPF_OP(insn->code) == BPF_CALL && 731 BPF_SRC(insn->code) == BPF_K && 732 insn->src_reg == BPF_PSEUDO_CALL && 733 insn->dst_reg == 0 && 734 insn->off == 0; 735 } 736 737 static bool is_call_insn(const struct bpf_insn *insn) 738 { 739 return insn->code == (BPF_JMP | BPF_CALL); 740 } 741 742 static bool insn_is_pseudo_func(struct bpf_insn *insn) 743 { 744 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 745 } 746 747 static int 748 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 749 const char *name, size_t sec_idx, const char *sec_name, 750 size_t sec_off, void *insn_data, size_t insn_data_sz) 751 { 752 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 753 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 754 sec_name, name, sec_off, insn_data_sz); 755 return -EINVAL; 756 } 757 758 memset(prog, 0, sizeof(*prog)); 759 prog->obj = obj; 760 761 prog->sec_idx = sec_idx; 762 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 763 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 764 /* insns_cnt can later be increased by appending used subprograms */ 765 prog->insns_cnt = prog->sec_insn_cnt; 766 767 prog->type = BPF_PROG_TYPE_UNSPEC; 768 prog->fd = -1; 769 770 /* libbpf's convention for SEC("?abc...") is that it's just like 771 * SEC("abc...") but the corresponding bpf_program starts out with 772 * autoload set to false. 773 */ 774 if (sec_name[0] == '?') { 775 prog->autoload = false; 776 /* from now on forget there was ? in section name */ 777 sec_name++; 778 } else { 779 prog->autoload = true; 780 } 781 782 prog->autoattach = true; 783 784 /* inherit object's log_level */ 785 prog->log_level = obj->log_level; 786 787 prog->sec_name = strdup(sec_name); 788 if (!prog->sec_name) 789 goto errout; 790 791 prog->name = strdup(name); 792 if (!prog->name) 793 goto errout; 794 795 prog->insns = malloc(insn_data_sz); 796 if (!prog->insns) 797 goto errout; 798 memcpy(prog->insns, insn_data, insn_data_sz); 799 800 return 0; 801 errout: 802 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 803 bpf_program__exit(prog); 804 return -ENOMEM; 805 } 806 807 static int 808 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 809 const char *sec_name, int sec_idx) 810 { 811 Elf_Data *symbols = obj->efile.symbols; 812 struct bpf_program *prog, *progs; 813 void *data = sec_data->d_buf; 814 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 815 int nr_progs, err, i; 816 const char *name; 817 Elf64_Sym *sym; 818 819 progs = obj->programs; 820 nr_progs = obj->nr_programs; 821 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 822 823 for (i = 0; i < nr_syms; i++) { 824 sym = elf_sym_by_idx(obj, i); 825 826 if (sym->st_shndx != sec_idx) 827 continue; 828 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 829 continue; 830 831 prog_sz = sym->st_size; 832 sec_off = sym->st_value; 833 834 name = elf_sym_str(obj, sym->st_name); 835 if (!name) { 836 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 837 sec_name, sec_off); 838 return -LIBBPF_ERRNO__FORMAT; 839 } 840 841 if (sec_off + prog_sz > sec_sz) { 842 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 843 sec_name, sec_off); 844 return -LIBBPF_ERRNO__FORMAT; 845 } 846 847 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 848 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 849 return -ENOTSUP; 850 } 851 852 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 853 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 854 855 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 856 if (!progs) { 857 /* 858 * In this case the original obj->programs 859 * is still valid, so don't need special treat for 860 * bpf_close_object(). 861 */ 862 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 863 sec_name, name); 864 return -ENOMEM; 865 } 866 obj->programs = progs; 867 868 prog = &progs[nr_progs]; 869 870 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 871 sec_off, data + sec_off, prog_sz); 872 if (err) 873 return err; 874 875 /* if function is a global/weak symbol, but has restricted 876 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 877 * as static to enable more permissive BPF verification mode 878 * with more outside context available to BPF verifier 879 */ 880 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 881 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 882 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 883 prog->mark_btf_static = true; 884 885 nr_progs++; 886 obj->nr_programs = nr_progs; 887 } 888 889 return 0; 890 } 891 892 static const struct btf_member * 893 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 894 { 895 struct btf_member *m; 896 int i; 897 898 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 899 if (btf_member_bit_offset(t, i) == bit_offset) 900 return m; 901 } 902 903 return NULL; 904 } 905 906 static const struct btf_member * 907 find_member_by_name(const struct btf *btf, const struct btf_type *t, 908 const char *name) 909 { 910 struct btf_member *m; 911 int i; 912 913 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 914 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 915 return m; 916 } 917 918 return NULL; 919 } 920 921 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 922 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 923 const char *name, __u32 kind); 924 925 static int 926 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 927 const struct btf_type **type, __u32 *type_id, 928 const struct btf_type **vtype, __u32 *vtype_id, 929 const struct btf_member **data_member) 930 { 931 const struct btf_type *kern_type, *kern_vtype; 932 const struct btf_member *kern_data_member; 933 __s32 kern_vtype_id, kern_type_id; 934 __u32 i; 935 936 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 937 if (kern_type_id < 0) { 938 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 939 tname); 940 return kern_type_id; 941 } 942 kern_type = btf__type_by_id(btf, kern_type_id); 943 944 /* Find the corresponding "map_value" type that will be used 945 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 946 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 947 * btf_vmlinux. 948 */ 949 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 950 tname, BTF_KIND_STRUCT); 951 if (kern_vtype_id < 0) { 952 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 953 STRUCT_OPS_VALUE_PREFIX, tname); 954 return kern_vtype_id; 955 } 956 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 957 958 /* Find "struct tcp_congestion_ops" from 959 * struct bpf_struct_ops_tcp_congestion_ops { 960 * [ ... ] 961 * struct tcp_congestion_ops data; 962 * } 963 */ 964 kern_data_member = btf_members(kern_vtype); 965 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 966 if (kern_data_member->type == kern_type_id) 967 break; 968 } 969 if (i == btf_vlen(kern_vtype)) { 970 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 971 tname, STRUCT_OPS_VALUE_PREFIX, tname); 972 return -EINVAL; 973 } 974 975 *type = kern_type; 976 *type_id = kern_type_id; 977 *vtype = kern_vtype; 978 *vtype_id = kern_vtype_id; 979 *data_member = kern_data_member; 980 981 return 0; 982 } 983 984 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 985 { 986 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 987 } 988 989 /* Init the map's fields that depend on kern_btf */ 990 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 991 const struct btf *btf, 992 const struct btf *kern_btf) 993 { 994 const struct btf_member *member, *kern_member, *kern_data_member; 995 const struct btf_type *type, *kern_type, *kern_vtype; 996 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 997 struct bpf_struct_ops *st_ops; 998 void *data, *kern_data; 999 const char *tname; 1000 int err; 1001 1002 st_ops = map->st_ops; 1003 type = st_ops->type; 1004 tname = st_ops->tname; 1005 err = find_struct_ops_kern_types(kern_btf, tname, 1006 &kern_type, &kern_type_id, 1007 &kern_vtype, &kern_vtype_id, 1008 &kern_data_member); 1009 if (err) 1010 return err; 1011 1012 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1013 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1014 1015 map->def.value_size = kern_vtype->size; 1016 map->btf_vmlinux_value_type_id = kern_vtype_id; 1017 1018 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1019 if (!st_ops->kern_vdata) 1020 return -ENOMEM; 1021 1022 data = st_ops->data; 1023 kern_data_off = kern_data_member->offset / 8; 1024 kern_data = st_ops->kern_vdata + kern_data_off; 1025 1026 member = btf_members(type); 1027 for (i = 0; i < btf_vlen(type); i++, member++) { 1028 const struct btf_type *mtype, *kern_mtype; 1029 __u32 mtype_id, kern_mtype_id; 1030 void *mdata, *kern_mdata; 1031 __s64 msize, kern_msize; 1032 __u32 moff, kern_moff; 1033 __u32 kern_member_idx; 1034 const char *mname; 1035 1036 mname = btf__name_by_offset(btf, member->name_off); 1037 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1038 if (!kern_member) { 1039 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1040 map->name, mname); 1041 return -ENOTSUP; 1042 } 1043 1044 kern_member_idx = kern_member - btf_members(kern_type); 1045 if (btf_member_bitfield_size(type, i) || 1046 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1047 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1048 map->name, mname); 1049 return -ENOTSUP; 1050 } 1051 1052 moff = member->offset / 8; 1053 kern_moff = kern_member->offset / 8; 1054 1055 mdata = data + moff; 1056 kern_mdata = kern_data + kern_moff; 1057 1058 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1059 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1060 &kern_mtype_id); 1061 if (BTF_INFO_KIND(mtype->info) != 1062 BTF_INFO_KIND(kern_mtype->info)) { 1063 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1064 map->name, mname, BTF_INFO_KIND(mtype->info), 1065 BTF_INFO_KIND(kern_mtype->info)); 1066 return -ENOTSUP; 1067 } 1068 1069 if (btf_is_ptr(mtype)) { 1070 struct bpf_program *prog; 1071 1072 prog = st_ops->progs[i]; 1073 if (!prog) 1074 continue; 1075 1076 kern_mtype = skip_mods_and_typedefs(kern_btf, 1077 kern_mtype->type, 1078 &kern_mtype_id); 1079 1080 /* mtype->type must be a func_proto which was 1081 * guaranteed in bpf_object__collect_st_ops_relos(), 1082 * so only check kern_mtype for func_proto here. 1083 */ 1084 if (!btf_is_func_proto(kern_mtype)) { 1085 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1086 map->name, mname); 1087 return -ENOTSUP; 1088 } 1089 1090 prog->attach_btf_id = kern_type_id; 1091 prog->expected_attach_type = kern_member_idx; 1092 1093 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1094 1095 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1096 map->name, mname, prog->name, moff, 1097 kern_moff); 1098 1099 continue; 1100 } 1101 1102 msize = btf__resolve_size(btf, mtype_id); 1103 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1104 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1105 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1106 map->name, mname, (ssize_t)msize, 1107 (ssize_t)kern_msize); 1108 return -ENOTSUP; 1109 } 1110 1111 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1112 map->name, mname, (unsigned int)msize, 1113 moff, kern_moff); 1114 memcpy(kern_mdata, mdata, msize); 1115 } 1116 1117 return 0; 1118 } 1119 1120 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1121 { 1122 struct bpf_map *map; 1123 size_t i; 1124 int err; 1125 1126 for (i = 0; i < obj->nr_maps; i++) { 1127 map = &obj->maps[i]; 1128 1129 if (!bpf_map__is_struct_ops(map)) 1130 continue; 1131 1132 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1133 obj->btf_vmlinux); 1134 if (err) 1135 return err; 1136 } 1137 1138 return 0; 1139 } 1140 1141 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1142 int shndx, Elf_Data *data, __u32 map_flags) 1143 { 1144 const struct btf_type *type, *datasec; 1145 const struct btf_var_secinfo *vsi; 1146 struct bpf_struct_ops *st_ops; 1147 const char *tname, *var_name; 1148 __s32 type_id, datasec_id; 1149 const struct btf *btf; 1150 struct bpf_map *map; 1151 __u32 i; 1152 1153 if (shndx == -1) 1154 return 0; 1155 1156 btf = obj->btf; 1157 datasec_id = btf__find_by_name_kind(btf, sec_name, 1158 BTF_KIND_DATASEC); 1159 if (datasec_id < 0) { 1160 pr_warn("struct_ops init: DATASEC %s not found\n", 1161 sec_name); 1162 return -EINVAL; 1163 } 1164 1165 datasec = btf__type_by_id(btf, datasec_id); 1166 vsi = btf_var_secinfos(datasec); 1167 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1168 type = btf__type_by_id(obj->btf, vsi->type); 1169 var_name = btf__name_by_offset(obj->btf, type->name_off); 1170 1171 type_id = btf__resolve_type(obj->btf, vsi->type); 1172 if (type_id < 0) { 1173 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1174 vsi->type, sec_name); 1175 return -EINVAL; 1176 } 1177 1178 type = btf__type_by_id(obj->btf, type_id); 1179 tname = btf__name_by_offset(obj->btf, type->name_off); 1180 if (!tname[0]) { 1181 pr_warn("struct_ops init: anonymous type is not supported\n"); 1182 return -ENOTSUP; 1183 } 1184 if (!btf_is_struct(type)) { 1185 pr_warn("struct_ops init: %s is not a struct\n", tname); 1186 return -EINVAL; 1187 } 1188 1189 map = bpf_object__add_map(obj); 1190 if (IS_ERR(map)) 1191 return PTR_ERR(map); 1192 1193 map->sec_idx = shndx; 1194 map->sec_offset = vsi->offset; 1195 map->name = strdup(var_name); 1196 if (!map->name) 1197 return -ENOMEM; 1198 1199 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1200 map->def.key_size = sizeof(int); 1201 map->def.value_size = type->size; 1202 map->def.max_entries = 1; 1203 map->def.map_flags = map_flags; 1204 1205 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1206 if (!map->st_ops) 1207 return -ENOMEM; 1208 st_ops = map->st_ops; 1209 st_ops->data = malloc(type->size); 1210 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1211 st_ops->kern_func_off = malloc(btf_vlen(type) * 1212 sizeof(*st_ops->kern_func_off)); 1213 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1214 return -ENOMEM; 1215 1216 if (vsi->offset + type->size > data->d_size) { 1217 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1218 var_name, sec_name); 1219 return -EINVAL; 1220 } 1221 1222 memcpy(st_ops->data, 1223 data->d_buf + vsi->offset, 1224 type->size); 1225 st_ops->tname = tname; 1226 st_ops->type = type; 1227 st_ops->type_id = type_id; 1228 1229 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1230 tname, type_id, var_name, vsi->offset); 1231 } 1232 1233 return 0; 1234 } 1235 1236 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1237 { 1238 int err; 1239 1240 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx, 1241 obj->efile.st_ops_data, 0); 1242 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC, 1243 obj->efile.st_ops_link_shndx, 1244 obj->efile.st_ops_link_data, 1245 BPF_F_LINK); 1246 return err; 1247 } 1248 1249 static struct bpf_object *bpf_object__new(const char *path, 1250 const void *obj_buf, 1251 size_t obj_buf_sz, 1252 const char *obj_name) 1253 { 1254 struct bpf_object *obj; 1255 char *end; 1256 1257 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1258 if (!obj) { 1259 pr_warn("alloc memory failed for %s\n", path); 1260 return ERR_PTR(-ENOMEM); 1261 } 1262 1263 strcpy(obj->path, path); 1264 if (obj_name) { 1265 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1266 } else { 1267 /* Using basename() GNU version which doesn't modify arg. */ 1268 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1269 end = strchr(obj->name, '.'); 1270 if (end) 1271 *end = 0; 1272 } 1273 1274 obj->efile.fd = -1; 1275 /* 1276 * Caller of this function should also call 1277 * bpf_object__elf_finish() after data collection to return 1278 * obj_buf to user. If not, we should duplicate the buffer to 1279 * avoid user freeing them before elf finish. 1280 */ 1281 obj->efile.obj_buf = obj_buf; 1282 obj->efile.obj_buf_sz = obj_buf_sz; 1283 obj->efile.btf_maps_shndx = -1; 1284 obj->efile.st_ops_shndx = -1; 1285 obj->efile.st_ops_link_shndx = -1; 1286 obj->kconfig_map_idx = -1; 1287 1288 obj->kern_version = get_kernel_version(); 1289 obj->loaded = false; 1290 1291 return obj; 1292 } 1293 1294 static void bpf_object__elf_finish(struct bpf_object *obj) 1295 { 1296 if (!obj->efile.elf) 1297 return; 1298 1299 elf_end(obj->efile.elf); 1300 obj->efile.elf = NULL; 1301 obj->efile.symbols = NULL; 1302 obj->efile.st_ops_data = NULL; 1303 obj->efile.st_ops_link_data = NULL; 1304 1305 zfree(&obj->efile.secs); 1306 obj->efile.sec_cnt = 0; 1307 zclose(obj->efile.fd); 1308 obj->efile.obj_buf = NULL; 1309 obj->efile.obj_buf_sz = 0; 1310 } 1311 1312 static int bpf_object__elf_init(struct bpf_object *obj) 1313 { 1314 Elf64_Ehdr *ehdr; 1315 int err = 0; 1316 Elf *elf; 1317 1318 if (obj->efile.elf) { 1319 pr_warn("elf: init internal error\n"); 1320 return -LIBBPF_ERRNO__LIBELF; 1321 } 1322 1323 if (obj->efile.obj_buf_sz > 0) { 1324 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1325 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1326 } else { 1327 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1328 if (obj->efile.fd < 0) { 1329 char errmsg[STRERR_BUFSIZE], *cp; 1330 1331 err = -errno; 1332 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1333 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1334 return err; 1335 } 1336 1337 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1338 } 1339 1340 if (!elf) { 1341 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1342 err = -LIBBPF_ERRNO__LIBELF; 1343 goto errout; 1344 } 1345 1346 obj->efile.elf = elf; 1347 1348 if (elf_kind(elf) != ELF_K_ELF) { 1349 err = -LIBBPF_ERRNO__FORMAT; 1350 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1351 goto errout; 1352 } 1353 1354 if (gelf_getclass(elf) != ELFCLASS64) { 1355 err = -LIBBPF_ERRNO__FORMAT; 1356 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1357 goto errout; 1358 } 1359 1360 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1361 if (!obj->efile.ehdr) { 1362 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1363 err = -LIBBPF_ERRNO__FORMAT; 1364 goto errout; 1365 } 1366 1367 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1368 pr_warn("elf: failed to get section names section index for %s: %s\n", 1369 obj->path, elf_errmsg(-1)); 1370 err = -LIBBPF_ERRNO__FORMAT; 1371 goto errout; 1372 } 1373 1374 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1375 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1376 pr_warn("elf: failed to get section names strings from %s: %s\n", 1377 obj->path, elf_errmsg(-1)); 1378 err = -LIBBPF_ERRNO__FORMAT; 1379 goto errout; 1380 } 1381 1382 /* Old LLVM set e_machine to EM_NONE */ 1383 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1384 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1385 err = -LIBBPF_ERRNO__FORMAT; 1386 goto errout; 1387 } 1388 1389 return 0; 1390 errout: 1391 bpf_object__elf_finish(obj); 1392 return err; 1393 } 1394 1395 static int bpf_object__check_endianness(struct bpf_object *obj) 1396 { 1397 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1398 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1399 return 0; 1400 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1401 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1402 return 0; 1403 #else 1404 # error "Unrecognized __BYTE_ORDER__" 1405 #endif 1406 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1407 return -LIBBPF_ERRNO__ENDIAN; 1408 } 1409 1410 static int 1411 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1412 { 1413 if (!data) { 1414 pr_warn("invalid license section in %s\n", obj->path); 1415 return -LIBBPF_ERRNO__FORMAT; 1416 } 1417 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1418 * go over allowed ELF data section buffer 1419 */ 1420 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1421 pr_debug("license of %s is %s\n", obj->path, obj->license); 1422 return 0; 1423 } 1424 1425 static int 1426 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1427 { 1428 __u32 kver; 1429 1430 if (!data || size != sizeof(kver)) { 1431 pr_warn("invalid kver section in %s\n", obj->path); 1432 return -LIBBPF_ERRNO__FORMAT; 1433 } 1434 memcpy(&kver, data, sizeof(kver)); 1435 obj->kern_version = kver; 1436 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1437 return 0; 1438 } 1439 1440 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1441 { 1442 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1443 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1444 return true; 1445 return false; 1446 } 1447 1448 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1449 { 1450 Elf_Data *data; 1451 Elf_Scn *scn; 1452 1453 if (!name) 1454 return -EINVAL; 1455 1456 scn = elf_sec_by_name(obj, name); 1457 data = elf_sec_data(obj, scn); 1458 if (data) { 1459 *size = data->d_size; 1460 return 0; /* found it */ 1461 } 1462 1463 return -ENOENT; 1464 } 1465 1466 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1467 { 1468 Elf_Data *symbols = obj->efile.symbols; 1469 const char *sname; 1470 size_t si; 1471 1472 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1473 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1474 1475 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1476 continue; 1477 1478 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1479 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1480 continue; 1481 1482 sname = elf_sym_str(obj, sym->st_name); 1483 if (!sname) { 1484 pr_warn("failed to get sym name string for var %s\n", name); 1485 return ERR_PTR(-EIO); 1486 } 1487 if (strcmp(name, sname) == 0) 1488 return sym; 1489 } 1490 1491 return ERR_PTR(-ENOENT); 1492 } 1493 1494 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1495 { 1496 struct bpf_map *map; 1497 int err; 1498 1499 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1500 sizeof(*obj->maps), obj->nr_maps + 1); 1501 if (err) 1502 return ERR_PTR(err); 1503 1504 map = &obj->maps[obj->nr_maps++]; 1505 map->obj = obj; 1506 map->fd = -1; 1507 map->inner_map_fd = -1; 1508 map->autocreate = true; 1509 1510 return map; 1511 } 1512 1513 static size_t bpf_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1514 { 1515 const long page_sz = sysconf(_SC_PAGE_SIZE); 1516 size_t map_sz; 1517 1518 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1519 map_sz = roundup(map_sz, page_sz); 1520 return map_sz; 1521 } 1522 1523 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1524 { 1525 void *mmaped; 1526 1527 if (!map->mmaped) 1528 return -EINVAL; 1529 1530 if (old_sz == new_sz) 1531 return 0; 1532 1533 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1534 if (mmaped == MAP_FAILED) 1535 return -errno; 1536 1537 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1538 munmap(map->mmaped, old_sz); 1539 map->mmaped = mmaped; 1540 return 0; 1541 } 1542 1543 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1544 { 1545 char map_name[BPF_OBJ_NAME_LEN], *p; 1546 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1547 1548 /* This is one of the more confusing parts of libbpf for various 1549 * reasons, some of which are historical. The original idea for naming 1550 * internal names was to include as much of BPF object name prefix as 1551 * possible, so that it can be distinguished from similar internal 1552 * maps of a different BPF object. 1553 * As an example, let's say we have bpf_object named 'my_object_name' 1554 * and internal map corresponding to '.rodata' ELF section. The final 1555 * map name advertised to user and to the kernel will be 1556 * 'my_objec.rodata', taking first 8 characters of object name and 1557 * entire 7 characters of '.rodata'. 1558 * Somewhat confusingly, if internal map ELF section name is shorter 1559 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1560 * for the suffix, even though we only have 4 actual characters, and 1561 * resulting map will be called 'my_objec.bss', not even using all 15 1562 * characters allowed by the kernel. Oh well, at least the truncated 1563 * object name is somewhat consistent in this case. But if the map 1564 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1565 * (8 chars) and thus will be left with only first 7 characters of the 1566 * object name ('my_obje'). Happy guessing, user, that the final map 1567 * name will be "my_obje.kconfig". 1568 * Now, with libbpf starting to support arbitrarily named .rodata.* 1569 * and .data.* data sections, it's possible that ELF section name is 1570 * longer than allowed 15 chars, so we now need to be careful to take 1571 * only up to 15 first characters of ELF name, taking no BPF object 1572 * name characters at all. So '.rodata.abracadabra' will result in 1573 * '.rodata.abracad' kernel and user-visible name. 1574 * We need to keep this convoluted logic intact for .data, .bss and 1575 * .rodata maps, but for new custom .data.custom and .rodata.custom 1576 * maps we use their ELF names as is, not prepending bpf_object name 1577 * in front. We still need to truncate them to 15 characters for the 1578 * kernel. Full name can be recovered for such maps by using DATASEC 1579 * BTF type associated with such map's value type, though. 1580 */ 1581 if (sfx_len >= BPF_OBJ_NAME_LEN) 1582 sfx_len = BPF_OBJ_NAME_LEN - 1; 1583 1584 /* if there are two or more dots in map name, it's a custom dot map */ 1585 if (strchr(real_name + 1, '.') != NULL) 1586 pfx_len = 0; 1587 else 1588 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1589 1590 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1591 sfx_len, real_name); 1592 1593 /* sanitise map name to characters allowed by kernel */ 1594 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1595 if (!isalnum(*p) && *p != '_' && *p != '.') 1596 *p = '_'; 1597 1598 return strdup(map_name); 1599 } 1600 1601 static int 1602 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1603 1604 /* Internal BPF map is mmap()'able only if at least one of corresponding 1605 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1606 * variable and it's not marked as __hidden (which turns it into, effectively, 1607 * a STATIC variable). 1608 */ 1609 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1610 { 1611 const struct btf_type *t, *vt; 1612 struct btf_var_secinfo *vsi; 1613 int i, n; 1614 1615 if (!map->btf_value_type_id) 1616 return false; 1617 1618 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1619 if (!btf_is_datasec(t)) 1620 return false; 1621 1622 vsi = btf_var_secinfos(t); 1623 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1624 vt = btf__type_by_id(obj->btf, vsi->type); 1625 if (!btf_is_var(vt)) 1626 continue; 1627 1628 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1629 return true; 1630 } 1631 1632 return false; 1633 } 1634 1635 static int 1636 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1637 const char *real_name, int sec_idx, void *data, size_t data_sz) 1638 { 1639 struct bpf_map_def *def; 1640 struct bpf_map *map; 1641 size_t mmap_sz; 1642 int err; 1643 1644 map = bpf_object__add_map(obj); 1645 if (IS_ERR(map)) 1646 return PTR_ERR(map); 1647 1648 map->libbpf_type = type; 1649 map->sec_idx = sec_idx; 1650 map->sec_offset = 0; 1651 map->real_name = strdup(real_name); 1652 map->name = internal_map_name(obj, real_name); 1653 if (!map->real_name || !map->name) { 1654 zfree(&map->real_name); 1655 zfree(&map->name); 1656 return -ENOMEM; 1657 } 1658 1659 def = &map->def; 1660 def->type = BPF_MAP_TYPE_ARRAY; 1661 def->key_size = sizeof(int); 1662 def->value_size = data_sz; 1663 def->max_entries = 1; 1664 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1665 ? BPF_F_RDONLY_PROG : 0; 1666 1667 /* failures are fine because of maps like .rodata.str1.1 */ 1668 (void) map_fill_btf_type_info(obj, map); 1669 1670 if (map_is_mmapable(obj, map)) 1671 def->map_flags |= BPF_F_MMAPABLE; 1672 1673 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1674 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1675 1676 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 1677 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1678 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1679 if (map->mmaped == MAP_FAILED) { 1680 err = -errno; 1681 map->mmaped = NULL; 1682 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1683 map->name, err); 1684 zfree(&map->real_name); 1685 zfree(&map->name); 1686 return err; 1687 } 1688 1689 if (data) 1690 memcpy(map->mmaped, data, data_sz); 1691 1692 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1693 return 0; 1694 } 1695 1696 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1697 { 1698 struct elf_sec_desc *sec_desc; 1699 const char *sec_name; 1700 int err = 0, sec_idx; 1701 1702 /* 1703 * Populate obj->maps with libbpf internal maps. 1704 */ 1705 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1706 sec_desc = &obj->efile.secs[sec_idx]; 1707 1708 /* Skip recognized sections with size 0. */ 1709 if (!sec_desc->data || sec_desc->data->d_size == 0) 1710 continue; 1711 1712 switch (sec_desc->sec_type) { 1713 case SEC_DATA: 1714 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1715 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1716 sec_name, sec_idx, 1717 sec_desc->data->d_buf, 1718 sec_desc->data->d_size); 1719 break; 1720 case SEC_RODATA: 1721 obj->has_rodata = true; 1722 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1723 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1724 sec_name, sec_idx, 1725 sec_desc->data->d_buf, 1726 sec_desc->data->d_size); 1727 break; 1728 case SEC_BSS: 1729 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1730 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1731 sec_name, sec_idx, 1732 NULL, 1733 sec_desc->data->d_size); 1734 break; 1735 default: 1736 /* skip */ 1737 break; 1738 } 1739 if (err) 1740 return err; 1741 } 1742 return 0; 1743 } 1744 1745 1746 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1747 const void *name) 1748 { 1749 int i; 1750 1751 for (i = 0; i < obj->nr_extern; i++) { 1752 if (strcmp(obj->externs[i].name, name) == 0) 1753 return &obj->externs[i]; 1754 } 1755 return NULL; 1756 } 1757 1758 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1759 char value) 1760 { 1761 switch (ext->kcfg.type) { 1762 case KCFG_BOOL: 1763 if (value == 'm') { 1764 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1765 ext->name, value); 1766 return -EINVAL; 1767 } 1768 *(bool *)ext_val = value == 'y' ? true : false; 1769 break; 1770 case KCFG_TRISTATE: 1771 if (value == 'y') 1772 *(enum libbpf_tristate *)ext_val = TRI_YES; 1773 else if (value == 'm') 1774 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1775 else /* value == 'n' */ 1776 *(enum libbpf_tristate *)ext_val = TRI_NO; 1777 break; 1778 case KCFG_CHAR: 1779 *(char *)ext_val = value; 1780 break; 1781 case KCFG_UNKNOWN: 1782 case KCFG_INT: 1783 case KCFG_CHAR_ARR: 1784 default: 1785 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1786 ext->name, value); 1787 return -EINVAL; 1788 } 1789 ext->is_set = true; 1790 return 0; 1791 } 1792 1793 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1794 const char *value) 1795 { 1796 size_t len; 1797 1798 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1799 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1800 ext->name, value); 1801 return -EINVAL; 1802 } 1803 1804 len = strlen(value); 1805 if (value[len - 1] != '"') { 1806 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1807 ext->name, value); 1808 return -EINVAL; 1809 } 1810 1811 /* strip quotes */ 1812 len -= 2; 1813 if (len >= ext->kcfg.sz) { 1814 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1815 ext->name, value, len, ext->kcfg.sz - 1); 1816 len = ext->kcfg.sz - 1; 1817 } 1818 memcpy(ext_val, value + 1, len); 1819 ext_val[len] = '\0'; 1820 ext->is_set = true; 1821 return 0; 1822 } 1823 1824 static int parse_u64(const char *value, __u64 *res) 1825 { 1826 char *value_end; 1827 int err; 1828 1829 errno = 0; 1830 *res = strtoull(value, &value_end, 0); 1831 if (errno) { 1832 err = -errno; 1833 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1834 return err; 1835 } 1836 if (*value_end) { 1837 pr_warn("failed to parse '%s' as integer completely\n", value); 1838 return -EINVAL; 1839 } 1840 return 0; 1841 } 1842 1843 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1844 { 1845 int bit_sz = ext->kcfg.sz * 8; 1846 1847 if (ext->kcfg.sz == 8) 1848 return true; 1849 1850 /* Validate that value stored in u64 fits in integer of `ext->sz` 1851 * bytes size without any loss of information. If the target integer 1852 * is signed, we rely on the following limits of integer type of 1853 * Y bits and subsequent transformation: 1854 * 1855 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1856 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1857 * 0 <= X + 2^(Y-1) < 2^Y 1858 * 1859 * For unsigned target integer, check that all the (64 - Y) bits are 1860 * zero. 1861 */ 1862 if (ext->kcfg.is_signed) 1863 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1864 else 1865 return (v >> bit_sz) == 0; 1866 } 1867 1868 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1869 __u64 value) 1870 { 1871 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1872 ext->kcfg.type != KCFG_BOOL) { 1873 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1874 ext->name, (unsigned long long)value); 1875 return -EINVAL; 1876 } 1877 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1878 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1879 ext->name, (unsigned long long)value); 1880 return -EINVAL; 1881 1882 } 1883 if (!is_kcfg_value_in_range(ext, value)) { 1884 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1885 ext->name, (unsigned long long)value, ext->kcfg.sz); 1886 return -ERANGE; 1887 } 1888 switch (ext->kcfg.sz) { 1889 case 1: 1890 *(__u8 *)ext_val = value; 1891 break; 1892 case 2: 1893 *(__u16 *)ext_val = value; 1894 break; 1895 case 4: 1896 *(__u32 *)ext_val = value; 1897 break; 1898 case 8: 1899 *(__u64 *)ext_val = value; 1900 break; 1901 default: 1902 return -EINVAL; 1903 } 1904 ext->is_set = true; 1905 return 0; 1906 } 1907 1908 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1909 char *buf, void *data) 1910 { 1911 struct extern_desc *ext; 1912 char *sep, *value; 1913 int len, err = 0; 1914 void *ext_val; 1915 __u64 num; 1916 1917 if (!str_has_pfx(buf, "CONFIG_")) 1918 return 0; 1919 1920 sep = strchr(buf, '='); 1921 if (!sep) { 1922 pr_warn("failed to parse '%s': no separator\n", buf); 1923 return -EINVAL; 1924 } 1925 1926 /* Trim ending '\n' */ 1927 len = strlen(buf); 1928 if (buf[len - 1] == '\n') 1929 buf[len - 1] = '\0'; 1930 /* Split on '=' and ensure that a value is present. */ 1931 *sep = '\0'; 1932 if (!sep[1]) { 1933 *sep = '='; 1934 pr_warn("failed to parse '%s': no value\n", buf); 1935 return -EINVAL; 1936 } 1937 1938 ext = find_extern_by_name(obj, buf); 1939 if (!ext || ext->is_set) 1940 return 0; 1941 1942 ext_val = data + ext->kcfg.data_off; 1943 value = sep + 1; 1944 1945 switch (*value) { 1946 case 'y': case 'n': case 'm': 1947 err = set_kcfg_value_tri(ext, ext_val, *value); 1948 break; 1949 case '"': 1950 err = set_kcfg_value_str(ext, ext_val, value); 1951 break; 1952 default: 1953 /* assume integer */ 1954 err = parse_u64(value, &num); 1955 if (err) { 1956 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1957 return err; 1958 } 1959 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1960 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1961 return -EINVAL; 1962 } 1963 err = set_kcfg_value_num(ext, ext_val, num); 1964 break; 1965 } 1966 if (err) 1967 return err; 1968 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1969 return 0; 1970 } 1971 1972 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1973 { 1974 char buf[PATH_MAX]; 1975 struct utsname uts; 1976 int len, err = 0; 1977 gzFile file; 1978 1979 uname(&uts); 1980 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1981 if (len < 0) 1982 return -EINVAL; 1983 else if (len >= PATH_MAX) 1984 return -ENAMETOOLONG; 1985 1986 /* gzopen also accepts uncompressed files. */ 1987 file = gzopen(buf, "re"); 1988 if (!file) 1989 file = gzopen("/proc/config.gz", "re"); 1990 1991 if (!file) { 1992 pr_warn("failed to open system Kconfig\n"); 1993 return -ENOENT; 1994 } 1995 1996 while (gzgets(file, buf, sizeof(buf))) { 1997 err = bpf_object__process_kconfig_line(obj, buf, data); 1998 if (err) { 1999 pr_warn("error parsing system Kconfig line '%s': %d\n", 2000 buf, err); 2001 goto out; 2002 } 2003 } 2004 2005 out: 2006 gzclose(file); 2007 return err; 2008 } 2009 2010 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2011 const char *config, void *data) 2012 { 2013 char buf[PATH_MAX]; 2014 int err = 0; 2015 FILE *file; 2016 2017 file = fmemopen((void *)config, strlen(config), "r"); 2018 if (!file) { 2019 err = -errno; 2020 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2021 return err; 2022 } 2023 2024 while (fgets(buf, sizeof(buf), file)) { 2025 err = bpf_object__process_kconfig_line(obj, buf, data); 2026 if (err) { 2027 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2028 buf, err); 2029 break; 2030 } 2031 } 2032 2033 fclose(file); 2034 return err; 2035 } 2036 2037 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2038 { 2039 struct extern_desc *last_ext = NULL, *ext; 2040 size_t map_sz; 2041 int i, err; 2042 2043 for (i = 0; i < obj->nr_extern; i++) { 2044 ext = &obj->externs[i]; 2045 if (ext->type == EXT_KCFG) 2046 last_ext = ext; 2047 } 2048 2049 if (!last_ext) 2050 return 0; 2051 2052 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2053 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2054 ".kconfig", obj->efile.symbols_shndx, 2055 NULL, map_sz); 2056 if (err) 2057 return err; 2058 2059 obj->kconfig_map_idx = obj->nr_maps - 1; 2060 2061 return 0; 2062 } 2063 2064 const struct btf_type * 2065 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2066 { 2067 const struct btf_type *t = btf__type_by_id(btf, id); 2068 2069 if (res_id) 2070 *res_id = id; 2071 2072 while (btf_is_mod(t) || btf_is_typedef(t)) { 2073 if (res_id) 2074 *res_id = t->type; 2075 t = btf__type_by_id(btf, t->type); 2076 } 2077 2078 return t; 2079 } 2080 2081 static const struct btf_type * 2082 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2083 { 2084 const struct btf_type *t; 2085 2086 t = skip_mods_and_typedefs(btf, id, NULL); 2087 if (!btf_is_ptr(t)) 2088 return NULL; 2089 2090 t = skip_mods_and_typedefs(btf, t->type, res_id); 2091 2092 return btf_is_func_proto(t) ? t : NULL; 2093 } 2094 2095 static const char *__btf_kind_str(__u16 kind) 2096 { 2097 switch (kind) { 2098 case BTF_KIND_UNKN: return "void"; 2099 case BTF_KIND_INT: return "int"; 2100 case BTF_KIND_PTR: return "ptr"; 2101 case BTF_KIND_ARRAY: return "array"; 2102 case BTF_KIND_STRUCT: return "struct"; 2103 case BTF_KIND_UNION: return "union"; 2104 case BTF_KIND_ENUM: return "enum"; 2105 case BTF_KIND_FWD: return "fwd"; 2106 case BTF_KIND_TYPEDEF: return "typedef"; 2107 case BTF_KIND_VOLATILE: return "volatile"; 2108 case BTF_KIND_CONST: return "const"; 2109 case BTF_KIND_RESTRICT: return "restrict"; 2110 case BTF_KIND_FUNC: return "func"; 2111 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2112 case BTF_KIND_VAR: return "var"; 2113 case BTF_KIND_DATASEC: return "datasec"; 2114 case BTF_KIND_FLOAT: return "float"; 2115 case BTF_KIND_DECL_TAG: return "decl_tag"; 2116 case BTF_KIND_TYPE_TAG: return "type_tag"; 2117 case BTF_KIND_ENUM64: return "enum64"; 2118 default: return "unknown"; 2119 } 2120 } 2121 2122 const char *btf_kind_str(const struct btf_type *t) 2123 { 2124 return __btf_kind_str(btf_kind(t)); 2125 } 2126 2127 /* 2128 * Fetch integer attribute of BTF map definition. Such attributes are 2129 * represented using a pointer to an array, in which dimensionality of array 2130 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2131 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2132 * type definition, while using only sizeof(void *) space in ELF data section. 2133 */ 2134 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2135 const struct btf_member *m, __u32 *res) 2136 { 2137 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2138 const char *name = btf__name_by_offset(btf, m->name_off); 2139 const struct btf_array *arr_info; 2140 const struct btf_type *arr_t; 2141 2142 if (!btf_is_ptr(t)) { 2143 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2144 map_name, name, btf_kind_str(t)); 2145 return false; 2146 } 2147 2148 arr_t = btf__type_by_id(btf, t->type); 2149 if (!arr_t) { 2150 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2151 map_name, name, t->type); 2152 return false; 2153 } 2154 if (!btf_is_array(arr_t)) { 2155 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2156 map_name, name, btf_kind_str(arr_t)); 2157 return false; 2158 } 2159 arr_info = btf_array(arr_t); 2160 *res = arr_info->nelems; 2161 return true; 2162 } 2163 2164 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2165 { 2166 int len; 2167 2168 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2169 if (len < 0) 2170 return -EINVAL; 2171 if (len >= buf_sz) 2172 return -ENAMETOOLONG; 2173 2174 return 0; 2175 } 2176 2177 static int build_map_pin_path(struct bpf_map *map, const char *path) 2178 { 2179 char buf[PATH_MAX]; 2180 int err; 2181 2182 if (!path) 2183 path = "/sys/fs/bpf"; 2184 2185 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2186 if (err) 2187 return err; 2188 2189 return bpf_map__set_pin_path(map, buf); 2190 } 2191 2192 /* should match definition in bpf_helpers.h */ 2193 enum libbpf_pin_type { 2194 LIBBPF_PIN_NONE, 2195 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2196 LIBBPF_PIN_BY_NAME, 2197 }; 2198 2199 int parse_btf_map_def(const char *map_name, struct btf *btf, 2200 const struct btf_type *def_t, bool strict, 2201 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2202 { 2203 const struct btf_type *t; 2204 const struct btf_member *m; 2205 bool is_inner = inner_def == NULL; 2206 int vlen, i; 2207 2208 vlen = btf_vlen(def_t); 2209 m = btf_members(def_t); 2210 for (i = 0; i < vlen; i++, m++) { 2211 const char *name = btf__name_by_offset(btf, m->name_off); 2212 2213 if (!name) { 2214 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2215 return -EINVAL; 2216 } 2217 if (strcmp(name, "type") == 0) { 2218 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2219 return -EINVAL; 2220 map_def->parts |= MAP_DEF_MAP_TYPE; 2221 } else if (strcmp(name, "max_entries") == 0) { 2222 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2223 return -EINVAL; 2224 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2225 } else if (strcmp(name, "map_flags") == 0) { 2226 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2227 return -EINVAL; 2228 map_def->parts |= MAP_DEF_MAP_FLAGS; 2229 } else if (strcmp(name, "numa_node") == 0) { 2230 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2231 return -EINVAL; 2232 map_def->parts |= MAP_DEF_NUMA_NODE; 2233 } else if (strcmp(name, "key_size") == 0) { 2234 __u32 sz; 2235 2236 if (!get_map_field_int(map_name, btf, m, &sz)) 2237 return -EINVAL; 2238 if (map_def->key_size && map_def->key_size != sz) { 2239 pr_warn("map '%s': conflicting key size %u != %u.\n", 2240 map_name, map_def->key_size, sz); 2241 return -EINVAL; 2242 } 2243 map_def->key_size = sz; 2244 map_def->parts |= MAP_DEF_KEY_SIZE; 2245 } else if (strcmp(name, "key") == 0) { 2246 __s64 sz; 2247 2248 t = btf__type_by_id(btf, m->type); 2249 if (!t) { 2250 pr_warn("map '%s': key type [%d] not found.\n", 2251 map_name, m->type); 2252 return -EINVAL; 2253 } 2254 if (!btf_is_ptr(t)) { 2255 pr_warn("map '%s': key spec is not PTR: %s.\n", 2256 map_name, btf_kind_str(t)); 2257 return -EINVAL; 2258 } 2259 sz = btf__resolve_size(btf, t->type); 2260 if (sz < 0) { 2261 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2262 map_name, t->type, (ssize_t)sz); 2263 return sz; 2264 } 2265 if (map_def->key_size && map_def->key_size != sz) { 2266 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2267 map_name, map_def->key_size, (ssize_t)sz); 2268 return -EINVAL; 2269 } 2270 map_def->key_size = sz; 2271 map_def->key_type_id = t->type; 2272 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2273 } else if (strcmp(name, "value_size") == 0) { 2274 __u32 sz; 2275 2276 if (!get_map_field_int(map_name, btf, m, &sz)) 2277 return -EINVAL; 2278 if (map_def->value_size && map_def->value_size != sz) { 2279 pr_warn("map '%s': conflicting value size %u != %u.\n", 2280 map_name, map_def->value_size, sz); 2281 return -EINVAL; 2282 } 2283 map_def->value_size = sz; 2284 map_def->parts |= MAP_DEF_VALUE_SIZE; 2285 } else if (strcmp(name, "value") == 0) { 2286 __s64 sz; 2287 2288 t = btf__type_by_id(btf, m->type); 2289 if (!t) { 2290 pr_warn("map '%s': value type [%d] not found.\n", 2291 map_name, m->type); 2292 return -EINVAL; 2293 } 2294 if (!btf_is_ptr(t)) { 2295 pr_warn("map '%s': value spec is not PTR: %s.\n", 2296 map_name, btf_kind_str(t)); 2297 return -EINVAL; 2298 } 2299 sz = btf__resolve_size(btf, t->type); 2300 if (sz < 0) { 2301 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2302 map_name, t->type, (ssize_t)sz); 2303 return sz; 2304 } 2305 if (map_def->value_size && map_def->value_size != sz) { 2306 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2307 map_name, map_def->value_size, (ssize_t)sz); 2308 return -EINVAL; 2309 } 2310 map_def->value_size = sz; 2311 map_def->value_type_id = t->type; 2312 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2313 } 2314 else if (strcmp(name, "values") == 0) { 2315 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2316 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2317 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2318 char inner_map_name[128]; 2319 int err; 2320 2321 if (is_inner) { 2322 pr_warn("map '%s': multi-level inner maps not supported.\n", 2323 map_name); 2324 return -ENOTSUP; 2325 } 2326 if (i != vlen - 1) { 2327 pr_warn("map '%s': '%s' member should be last.\n", 2328 map_name, name); 2329 return -EINVAL; 2330 } 2331 if (!is_map_in_map && !is_prog_array) { 2332 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2333 map_name); 2334 return -ENOTSUP; 2335 } 2336 if (map_def->value_size && map_def->value_size != 4) { 2337 pr_warn("map '%s': conflicting value size %u != 4.\n", 2338 map_name, map_def->value_size); 2339 return -EINVAL; 2340 } 2341 map_def->value_size = 4; 2342 t = btf__type_by_id(btf, m->type); 2343 if (!t) { 2344 pr_warn("map '%s': %s type [%d] not found.\n", 2345 map_name, desc, m->type); 2346 return -EINVAL; 2347 } 2348 if (!btf_is_array(t) || btf_array(t)->nelems) { 2349 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2350 map_name, desc); 2351 return -EINVAL; 2352 } 2353 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2354 if (!btf_is_ptr(t)) { 2355 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2356 map_name, desc, btf_kind_str(t)); 2357 return -EINVAL; 2358 } 2359 t = skip_mods_and_typedefs(btf, t->type, NULL); 2360 if (is_prog_array) { 2361 if (!btf_is_func_proto(t)) { 2362 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2363 map_name, btf_kind_str(t)); 2364 return -EINVAL; 2365 } 2366 continue; 2367 } 2368 if (!btf_is_struct(t)) { 2369 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2370 map_name, btf_kind_str(t)); 2371 return -EINVAL; 2372 } 2373 2374 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2375 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2376 if (err) 2377 return err; 2378 2379 map_def->parts |= MAP_DEF_INNER_MAP; 2380 } else if (strcmp(name, "pinning") == 0) { 2381 __u32 val; 2382 2383 if (is_inner) { 2384 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2385 return -EINVAL; 2386 } 2387 if (!get_map_field_int(map_name, btf, m, &val)) 2388 return -EINVAL; 2389 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2390 pr_warn("map '%s': invalid pinning value %u.\n", 2391 map_name, val); 2392 return -EINVAL; 2393 } 2394 map_def->pinning = val; 2395 map_def->parts |= MAP_DEF_PINNING; 2396 } else if (strcmp(name, "map_extra") == 0) { 2397 __u32 map_extra; 2398 2399 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2400 return -EINVAL; 2401 map_def->map_extra = map_extra; 2402 map_def->parts |= MAP_DEF_MAP_EXTRA; 2403 } else { 2404 if (strict) { 2405 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2406 return -ENOTSUP; 2407 } 2408 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2409 } 2410 } 2411 2412 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2413 pr_warn("map '%s': map type isn't specified.\n", map_name); 2414 return -EINVAL; 2415 } 2416 2417 return 0; 2418 } 2419 2420 static size_t adjust_ringbuf_sz(size_t sz) 2421 { 2422 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2423 __u32 mul; 2424 2425 /* if user forgot to set any size, make sure they see error */ 2426 if (sz == 0) 2427 return 0; 2428 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2429 * a power-of-2 multiple of kernel's page size. If user diligently 2430 * satisified these conditions, pass the size through. 2431 */ 2432 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2433 return sz; 2434 2435 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2436 * user-set size to satisfy both user size request and kernel 2437 * requirements and substitute correct max_entries for map creation. 2438 */ 2439 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2440 if (mul * page_sz > sz) 2441 return mul * page_sz; 2442 } 2443 2444 /* if it's impossible to satisfy the conditions (i.e., user size is 2445 * very close to UINT_MAX but is not a power-of-2 multiple of 2446 * page_size) then just return original size and let kernel reject it 2447 */ 2448 return sz; 2449 } 2450 2451 static bool map_is_ringbuf(const struct bpf_map *map) 2452 { 2453 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2454 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2455 } 2456 2457 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2458 { 2459 map->def.type = def->map_type; 2460 map->def.key_size = def->key_size; 2461 map->def.value_size = def->value_size; 2462 map->def.max_entries = def->max_entries; 2463 map->def.map_flags = def->map_flags; 2464 map->map_extra = def->map_extra; 2465 2466 map->numa_node = def->numa_node; 2467 map->btf_key_type_id = def->key_type_id; 2468 map->btf_value_type_id = def->value_type_id; 2469 2470 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2471 if (map_is_ringbuf(map)) 2472 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2473 2474 if (def->parts & MAP_DEF_MAP_TYPE) 2475 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2476 2477 if (def->parts & MAP_DEF_KEY_TYPE) 2478 pr_debug("map '%s': found key [%u], sz = %u.\n", 2479 map->name, def->key_type_id, def->key_size); 2480 else if (def->parts & MAP_DEF_KEY_SIZE) 2481 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2482 2483 if (def->parts & MAP_DEF_VALUE_TYPE) 2484 pr_debug("map '%s': found value [%u], sz = %u.\n", 2485 map->name, def->value_type_id, def->value_size); 2486 else if (def->parts & MAP_DEF_VALUE_SIZE) 2487 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2488 2489 if (def->parts & MAP_DEF_MAX_ENTRIES) 2490 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2491 if (def->parts & MAP_DEF_MAP_FLAGS) 2492 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2493 if (def->parts & MAP_DEF_MAP_EXTRA) 2494 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2495 (unsigned long long)def->map_extra); 2496 if (def->parts & MAP_DEF_PINNING) 2497 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2498 if (def->parts & MAP_DEF_NUMA_NODE) 2499 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2500 2501 if (def->parts & MAP_DEF_INNER_MAP) 2502 pr_debug("map '%s': found inner map definition.\n", map->name); 2503 } 2504 2505 static const char *btf_var_linkage_str(__u32 linkage) 2506 { 2507 switch (linkage) { 2508 case BTF_VAR_STATIC: return "static"; 2509 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2510 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2511 default: return "unknown"; 2512 } 2513 } 2514 2515 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2516 const struct btf_type *sec, 2517 int var_idx, int sec_idx, 2518 const Elf_Data *data, bool strict, 2519 const char *pin_root_path) 2520 { 2521 struct btf_map_def map_def = {}, inner_def = {}; 2522 const struct btf_type *var, *def; 2523 const struct btf_var_secinfo *vi; 2524 const struct btf_var *var_extra; 2525 const char *map_name; 2526 struct bpf_map *map; 2527 int err; 2528 2529 vi = btf_var_secinfos(sec) + var_idx; 2530 var = btf__type_by_id(obj->btf, vi->type); 2531 var_extra = btf_var(var); 2532 map_name = btf__name_by_offset(obj->btf, var->name_off); 2533 2534 if (map_name == NULL || map_name[0] == '\0') { 2535 pr_warn("map #%d: empty name.\n", var_idx); 2536 return -EINVAL; 2537 } 2538 if ((__u64)vi->offset + vi->size > data->d_size) { 2539 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2540 return -EINVAL; 2541 } 2542 if (!btf_is_var(var)) { 2543 pr_warn("map '%s': unexpected var kind %s.\n", 2544 map_name, btf_kind_str(var)); 2545 return -EINVAL; 2546 } 2547 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2548 pr_warn("map '%s': unsupported map linkage %s.\n", 2549 map_name, btf_var_linkage_str(var_extra->linkage)); 2550 return -EOPNOTSUPP; 2551 } 2552 2553 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2554 if (!btf_is_struct(def)) { 2555 pr_warn("map '%s': unexpected def kind %s.\n", 2556 map_name, btf_kind_str(var)); 2557 return -EINVAL; 2558 } 2559 if (def->size > vi->size) { 2560 pr_warn("map '%s': invalid def size.\n", map_name); 2561 return -EINVAL; 2562 } 2563 2564 map = bpf_object__add_map(obj); 2565 if (IS_ERR(map)) 2566 return PTR_ERR(map); 2567 map->name = strdup(map_name); 2568 if (!map->name) { 2569 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2570 return -ENOMEM; 2571 } 2572 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2573 map->def.type = BPF_MAP_TYPE_UNSPEC; 2574 map->sec_idx = sec_idx; 2575 map->sec_offset = vi->offset; 2576 map->btf_var_idx = var_idx; 2577 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2578 map_name, map->sec_idx, map->sec_offset); 2579 2580 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2581 if (err) 2582 return err; 2583 2584 fill_map_from_def(map, &map_def); 2585 2586 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2587 err = build_map_pin_path(map, pin_root_path); 2588 if (err) { 2589 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2590 return err; 2591 } 2592 } 2593 2594 if (map_def.parts & MAP_DEF_INNER_MAP) { 2595 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2596 if (!map->inner_map) 2597 return -ENOMEM; 2598 map->inner_map->fd = -1; 2599 map->inner_map->sec_idx = sec_idx; 2600 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2601 if (!map->inner_map->name) 2602 return -ENOMEM; 2603 sprintf(map->inner_map->name, "%s.inner", map_name); 2604 2605 fill_map_from_def(map->inner_map, &inner_def); 2606 } 2607 2608 err = map_fill_btf_type_info(obj, map); 2609 if (err) 2610 return err; 2611 2612 return 0; 2613 } 2614 2615 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2616 const char *pin_root_path) 2617 { 2618 const struct btf_type *sec = NULL; 2619 int nr_types, i, vlen, err; 2620 const struct btf_type *t; 2621 const char *name; 2622 Elf_Data *data; 2623 Elf_Scn *scn; 2624 2625 if (obj->efile.btf_maps_shndx < 0) 2626 return 0; 2627 2628 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2629 data = elf_sec_data(obj, scn); 2630 if (!scn || !data) { 2631 pr_warn("elf: failed to get %s map definitions for %s\n", 2632 MAPS_ELF_SEC, obj->path); 2633 return -EINVAL; 2634 } 2635 2636 nr_types = btf__type_cnt(obj->btf); 2637 for (i = 1; i < nr_types; i++) { 2638 t = btf__type_by_id(obj->btf, i); 2639 if (!btf_is_datasec(t)) 2640 continue; 2641 name = btf__name_by_offset(obj->btf, t->name_off); 2642 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2643 sec = t; 2644 obj->efile.btf_maps_sec_btf_id = i; 2645 break; 2646 } 2647 } 2648 2649 if (!sec) { 2650 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2651 return -ENOENT; 2652 } 2653 2654 vlen = btf_vlen(sec); 2655 for (i = 0; i < vlen; i++) { 2656 err = bpf_object__init_user_btf_map(obj, sec, i, 2657 obj->efile.btf_maps_shndx, 2658 data, strict, 2659 pin_root_path); 2660 if (err) 2661 return err; 2662 } 2663 2664 return 0; 2665 } 2666 2667 static int bpf_object__init_maps(struct bpf_object *obj, 2668 const struct bpf_object_open_opts *opts) 2669 { 2670 const char *pin_root_path; 2671 bool strict; 2672 int err = 0; 2673 2674 strict = !OPTS_GET(opts, relaxed_maps, false); 2675 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2676 2677 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2678 err = err ?: bpf_object__init_global_data_maps(obj); 2679 err = err ?: bpf_object__init_kconfig_map(obj); 2680 err = err ?: bpf_object_init_struct_ops(obj); 2681 2682 return err; 2683 } 2684 2685 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2686 { 2687 Elf64_Shdr *sh; 2688 2689 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2690 if (!sh) 2691 return false; 2692 2693 return sh->sh_flags & SHF_EXECINSTR; 2694 } 2695 2696 static bool btf_needs_sanitization(struct bpf_object *obj) 2697 { 2698 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2699 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2700 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2701 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2702 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2703 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2704 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2705 2706 return !has_func || !has_datasec || !has_func_global || !has_float || 2707 !has_decl_tag || !has_type_tag || !has_enum64; 2708 } 2709 2710 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2711 { 2712 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2713 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2714 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2715 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2716 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2717 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2718 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2719 int enum64_placeholder_id = 0; 2720 struct btf_type *t; 2721 int i, j, vlen; 2722 2723 for (i = 1; i < btf__type_cnt(btf); i++) { 2724 t = (struct btf_type *)btf__type_by_id(btf, i); 2725 2726 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2727 /* replace VAR/DECL_TAG with INT */ 2728 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2729 /* 2730 * using size = 1 is the safest choice, 4 will be too 2731 * big and cause kernel BTF validation failure if 2732 * original variable took less than 4 bytes 2733 */ 2734 t->size = 1; 2735 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2736 } else if (!has_datasec && btf_is_datasec(t)) { 2737 /* replace DATASEC with STRUCT */ 2738 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2739 struct btf_member *m = btf_members(t); 2740 struct btf_type *vt; 2741 char *name; 2742 2743 name = (char *)btf__name_by_offset(btf, t->name_off); 2744 while (*name) { 2745 if (*name == '.') 2746 *name = '_'; 2747 name++; 2748 } 2749 2750 vlen = btf_vlen(t); 2751 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2752 for (j = 0; j < vlen; j++, v++, m++) { 2753 /* order of field assignments is important */ 2754 m->offset = v->offset * 8; 2755 m->type = v->type; 2756 /* preserve variable name as member name */ 2757 vt = (void *)btf__type_by_id(btf, v->type); 2758 m->name_off = vt->name_off; 2759 } 2760 } else if (!has_func && btf_is_func_proto(t)) { 2761 /* replace FUNC_PROTO with ENUM */ 2762 vlen = btf_vlen(t); 2763 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2764 t->size = sizeof(__u32); /* kernel enforced */ 2765 } else if (!has_func && btf_is_func(t)) { 2766 /* replace FUNC with TYPEDEF */ 2767 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2768 } else if (!has_func_global && btf_is_func(t)) { 2769 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2770 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2771 } else if (!has_float && btf_is_float(t)) { 2772 /* replace FLOAT with an equally-sized empty STRUCT; 2773 * since C compilers do not accept e.g. "float" as a 2774 * valid struct name, make it anonymous 2775 */ 2776 t->name_off = 0; 2777 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2778 } else if (!has_type_tag && btf_is_type_tag(t)) { 2779 /* replace TYPE_TAG with a CONST */ 2780 t->name_off = 0; 2781 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2782 } else if (!has_enum64 && btf_is_enum(t)) { 2783 /* clear the kflag */ 2784 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2785 } else if (!has_enum64 && btf_is_enum64(t)) { 2786 /* replace ENUM64 with a union */ 2787 struct btf_member *m; 2788 2789 if (enum64_placeholder_id == 0) { 2790 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2791 if (enum64_placeholder_id < 0) 2792 return enum64_placeholder_id; 2793 2794 t = (struct btf_type *)btf__type_by_id(btf, i); 2795 } 2796 2797 m = btf_members(t); 2798 vlen = btf_vlen(t); 2799 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2800 for (j = 0; j < vlen; j++, m++) { 2801 m->type = enum64_placeholder_id; 2802 m->offset = 0; 2803 } 2804 } 2805 } 2806 2807 return 0; 2808 } 2809 2810 static bool libbpf_needs_btf(const struct bpf_object *obj) 2811 { 2812 return obj->efile.btf_maps_shndx >= 0 || 2813 obj->efile.st_ops_shndx >= 0 || 2814 obj->efile.st_ops_link_shndx >= 0 || 2815 obj->nr_extern > 0; 2816 } 2817 2818 static bool kernel_needs_btf(const struct bpf_object *obj) 2819 { 2820 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0; 2821 } 2822 2823 static int bpf_object__init_btf(struct bpf_object *obj, 2824 Elf_Data *btf_data, 2825 Elf_Data *btf_ext_data) 2826 { 2827 int err = -ENOENT; 2828 2829 if (btf_data) { 2830 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2831 err = libbpf_get_error(obj->btf); 2832 if (err) { 2833 obj->btf = NULL; 2834 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2835 goto out; 2836 } 2837 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2838 btf__set_pointer_size(obj->btf, 8); 2839 } 2840 if (btf_ext_data) { 2841 struct btf_ext_info *ext_segs[3]; 2842 int seg_num, sec_num; 2843 2844 if (!obj->btf) { 2845 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2846 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2847 goto out; 2848 } 2849 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2850 err = libbpf_get_error(obj->btf_ext); 2851 if (err) { 2852 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2853 BTF_EXT_ELF_SEC, err); 2854 obj->btf_ext = NULL; 2855 goto out; 2856 } 2857 2858 /* setup .BTF.ext to ELF section mapping */ 2859 ext_segs[0] = &obj->btf_ext->func_info; 2860 ext_segs[1] = &obj->btf_ext->line_info; 2861 ext_segs[2] = &obj->btf_ext->core_relo_info; 2862 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2863 struct btf_ext_info *seg = ext_segs[seg_num]; 2864 const struct btf_ext_info_sec *sec; 2865 const char *sec_name; 2866 Elf_Scn *scn; 2867 2868 if (seg->sec_cnt == 0) 2869 continue; 2870 2871 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2872 if (!seg->sec_idxs) { 2873 err = -ENOMEM; 2874 goto out; 2875 } 2876 2877 sec_num = 0; 2878 for_each_btf_ext_sec(seg, sec) { 2879 /* preventively increment index to avoid doing 2880 * this before every continue below 2881 */ 2882 sec_num++; 2883 2884 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2885 if (str_is_empty(sec_name)) 2886 continue; 2887 scn = elf_sec_by_name(obj, sec_name); 2888 if (!scn) 2889 continue; 2890 2891 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2892 } 2893 } 2894 } 2895 out: 2896 if (err && libbpf_needs_btf(obj)) { 2897 pr_warn("BTF is required, but is missing or corrupted.\n"); 2898 return err; 2899 } 2900 return 0; 2901 } 2902 2903 static int compare_vsi_off(const void *_a, const void *_b) 2904 { 2905 const struct btf_var_secinfo *a = _a; 2906 const struct btf_var_secinfo *b = _b; 2907 2908 return a->offset - b->offset; 2909 } 2910 2911 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2912 struct btf_type *t) 2913 { 2914 __u32 size = 0, i, vars = btf_vlen(t); 2915 const char *sec_name = btf__name_by_offset(btf, t->name_off); 2916 struct btf_var_secinfo *vsi; 2917 bool fixup_offsets = false; 2918 int err; 2919 2920 if (!sec_name) { 2921 pr_debug("No name found in string section for DATASEC kind.\n"); 2922 return -ENOENT; 2923 } 2924 2925 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 2926 * variable offsets set at the previous step. Further, not every 2927 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 2928 * all fixups altogether for such sections and go straight to sorting 2929 * VARs within their DATASEC. 2930 */ 2931 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 2932 goto sort_vars; 2933 2934 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 2935 * fix this up. But BPF static linker already fixes this up and fills 2936 * all the sizes and offsets during static linking. So this step has 2937 * to be optional. But the STV_HIDDEN handling is non-optional for any 2938 * non-extern DATASEC, so the variable fixup loop below handles both 2939 * functions at the same time, paying the cost of BTF VAR <-> ELF 2940 * symbol matching just once. 2941 */ 2942 if (t->size == 0) { 2943 err = find_elf_sec_sz(obj, sec_name, &size); 2944 if (err || !size) { 2945 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 2946 sec_name, size, err); 2947 return -ENOENT; 2948 } 2949 2950 t->size = size; 2951 fixup_offsets = true; 2952 } 2953 2954 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2955 const struct btf_type *t_var; 2956 struct btf_var *var; 2957 const char *var_name; 2958 Elf64_Sym *sym; 2959 2960 t_var = btf__type_by_id(btf, vsi->type); 2961 if (!t_var || !btf_is_var(t_var)) { 2962 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 2963 return -EINVAL; 2964 } 2965 2966 var = btf_var(t_var); 2967 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 2968 continue; 2969 2970 var_name = btf__name_by_offset(btf, t_var->name_off); 2971 if (!var_name) { 2972 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 2973 sec_name, i); 2974 return -ENOENT; 2975 } 2976 2977 sym = find_elf_var_sym(obj, var_name); 2978 if (IS_ERR(sym)) { 2979 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 2980 sec_name, var_name); 2981 return -ENOENT; 2982 } 2983 2984 if (fixup_offsets) 2985 vsi->offset = sym->st_value; 2986 2987 /* if variable is a global/weak symbol, but has restricted 2988 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 2989 * as static. This follows similar logic for functions (BPF 2990 * subprogs) and influences libbpf's further decisions about 2991 * whether to make global data BPF array maps as 2992 * BPF_F_MMAPABLE. 2993 */ 2994 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 2995 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 2996 var->linkage = BTF_VAR_STATIC; 2997 } 2998 2999 sort_vars: 3000 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3001 return 0; 3002 } 3003 3004 static int bpf_object_fixup_btf(struct bpf_object *obj) 3005 { 3006 int i, n, err = 0; 3007 3008 if (!obj->btf) 3009 return 0; 3010 3011 n = btf__type_cnt(obj->btf); 3012 for (i = 1; i < n; i++) { 3013 struct btf_type *t = btf_type_by_id(obj->btf, i); 3014 3015 /* Loader needs to fix up some of the things compiler 3016 * couldn't get its hands on while emitting BTF. This 3017 * is section size and global variable offset. We use 3018 * the info from the ELF itself for this purpose. 3019 */ 3020 if (btf_is_datasec(t)) { 3021 err = btf_fixup_datasec(obj, obj->btf, t); 3022 if (err) 3023 return err; 3024 } 3025 } 3026 3027 return 0; 3028 } 3029 3030 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3031 { 3032 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3033 prog->type == BPF_PROG_TYPE_LSM) 3034 return true; 3035 3036 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3037 * also need vmlinux BTF 3038 */ 3039 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3040 return true; 3041 3042 return false; 3043 } 3044 3045 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3046 { 3047 struct bpf_program *prog; 3048 int i; 3049 3050 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3051 * is not specified 3052 */ 3053 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3054 return true; 3055 3056 /* Support for typed ksyms needs kernel BTF */ 3057 for (i = 0; i < obj->nr_extern; i++) { 3058 const struct extern_desc *ext; 3059 3060 ext = &obj->externs[i]; 3061 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3062 return true; 3063 } 3064 3065 bpf_object__for_each_program(prog, obj) { 3066 if (!prog->autoload) 3067 continue; 3068 if (prog_needs_vmlinux_btf(prog)) 3069 return true; 3070 } 3071 3072 return false; 3073 } 3074 3075 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3076 { 3077 int err; 3078 3079 /* btf_vmlinux could be loaded earlier */ 3080 if (obj->btf_vmlinux || obj->gen_loader) 3081 return 0; 3082 3083 if (!force && !obj_needs_vmlinux_btf(obj)) 3084 return 0; 3085 3086 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3087 err = libbpf_get_error(obj->btf_vmlinux); 3088 if (err) { 3089 pr_warn("Error loading vmlinux BTF: %d\n", err); 3090 obj->btf_vmlinux = NULL; 3091 return err; 3092 } 3093 return 0; 3094 } 3095 3096 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3097 { 3098 struct btf *kern_btf = obj->btf; 3099 bool btf_mandatory, sanitize; 3100 int i, err = 0; 3101 3102 if (!obj->btf) 3103 return 0; 3104 3105 if (!kernel_supports(obj, FEAT_BTF)) { 3106 if (kernel_needs_btf(obj)) { 3107 err = -EOPNOTSUPP; 3108 goto report; 3109 } 3110 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3111 return 0; 3112 } 3113 3114 /* Even though some subprogs are global/weak, user might prefer more 3115 * permissive BPF verification process that BPF verifier performs for 3116 * static functions, taking into account more context from the caller 3117 * functions. In such case, they need to mark such subprogs with 3118 * __attribute__((visibility("hidden"))) and libbpf will adjust 3119 * corresponding FUNC BTF type to be marked as static and trigger more 3120 * involved BPF verification process. 3121 */ 3122 for (i = 0; i < obj->nr_programs; i++) { 3123 struct bpf_program *prog = &obj->programs[i]; 3124 struct btf_type *t; 3125 const char *name; 3126 int j, n; 3127 3128 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3129 continue; 3130 3131 n = btf__type_cnt(obj->btf); 3132 for (j = 1; j < n; j++) { 3133 t = btf_type_by_id(obj->btf, j); 3134 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3135 continue; 3136 3137 name = btf__str_by_offset(obj->btf, t->name_off); 3138 if (strcmp(name, prog->name) != 0) 3139 continue; 3140 3141 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3142 break; 3143 } 3144 } 3145 3146 sanitize = btf_needs_sanitization(obj); 3147 if (sanitize) { 3148 const void *raw_data; 3149 __u32 sz; 3150 3151 /* clone BTF to sanitize a copy and leave the original intact */ 3152 raw_data = btf__raw_data(obj->btf, &sz); 3153 kern_btf = btf__new(raw_data, sz); 3154 err = libbpf_get_error(kern_btf); 3155 if (err) 3156 return err; 3157 3158 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3159 btf__set_pointer_size(obj->btf, 8); 3160 err = bpf_object__sanitize_btf(obj, kern_btf); 3161 if (err) 3162 return err; 3163 } 3164 3165 if (obj->gen_loader) { 3166 __u32 raw_size = 0; 3167 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3168 3169 if (!raw_data) 3170 return -ENOMEM; 3171 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3172 /* Pretend to have valid FD to pass various fd >= 0 checks. 3173 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3174 */ 3175 btf__set_fd(kern_btf, 0); 3176 } else { 3177 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3178 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3179 obj->log_level ? 1 : 0); 3180 } 3181 if (sanitize) { 3182 if (!err) { 3183 /* move fd to libbpf's BTF */ 3184 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3185 btf__set_fd(kern_btf, -1); 3186 } 3187 btf__free(kern_btf); 3188 } 3189 report: 3190 if (err) { 3191 btf_mandatory = kernel_needs_btf(obj); 3192 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3193 btf_mandatory ? "BTF is mandatory, can't proceed." 3194 : "BTF is optional, ignoring."); 3195 if (!btf_mandatory) 3196 err = 0; 3197 } 3198 return err; 3199 } 3200 3201 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3202 { 3203 const char *name; 3204 3205 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3206 if (!name) { 3207 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3208 off, obj->path, elf_errmsg(-1)); 3209 return NULL; 3210 } 3211 3212 return name; 3213 } 3214 3215 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3216 { 3217 const char *name; 3218 3219 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3220 if (!name) { 3221 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3222 off, obj->path, elf_errmsg(-1)); 3223 return NULL; 3224 } 3225 3226 return name; 3227 } 3228 3229 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3230 { 3231 Elf_Scn *scn; 3232 3233 scn = elf_getscn(obj->efile.elf, idx); 3234 if (!scn) { 3235 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3236 idx, obj->path, elf_errmsg(-1)); 3237 return NULL; 3238 } 3239 return scn; 3240 } 3241 3242 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3243 { 3244 Elf_Scn *scn = NULL; 3245 Elf *elf = obj->efile.elf; 3246 const char *sec_name; 3247 3248 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3249 sec_name = elf_sec_name(obj, scn); 3250 if (!sec_name) 3251 return NULL; 3252 3253 if (strcmp(sec_name, name) != 0) 3254 continue; 3255 3256 return scn; 3257 } 3258 return NULL; 3259 } 3260 3261 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3262 { 3263 Elf64_Shdr *shdr; 3264 3265 if (!scn) 3266 return NULL; 3267 3268 shdr = elf64_getshdr(scn); 3269 if (!shdr) { 3270 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3271 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3272 return NULL; 3273 } 3274 3275 return shdr; 3276 } 3277 3278 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3279 { 3280 const char *name; 3281 Elf64_Shdr *sh; 3282 3283 if (!scn) 3284 return NULL; 3285 3286 sh = elf_sec_hdr(obj, scn); 3287 if (!sh) 3288 return NULL; 3289 3290 name = elf_sec_str(obj, sh->sh_name); 3291 if (!name) { 3292 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3293 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3294 return NULL; 3295 } 3296 3297 return name; 3298 } 3299 3300 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3301 { 3302 Elf_Data *data; 3303 3304 if (!scn) 3305 return NULL; 3306 3307 data = elf_getdata(scn, 0); 3308 if (!data) { 3309 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3310 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3311 obj->path, elf_errmsg(-1)); 3312 return NULL; 3313 } 3314 3315 return data; 3316 } 3317 3318 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3319 { 3320 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3321 return NULL; 3322 3323 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3324 } 3325 3326 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3327 { 3328 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3329 return NULL; 3330 3331 return (Elf64_Rel *)data->d_buf + idx; 3332 } 3333 3334 static bool is_sec_name_dwarf(const char *name) 3335 { 3336 /* approximation, but the actual list is too long */ 3337 return str_has_pfx(name, ".debug_"); 3338 } 3339 3340 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3341 { 3342 /* no special handling of .strtab */ 3343 if (hdr->sh_type == SHT_STRTAB) 3344 return true; 3345 3346 /* ignore .llvm_addrsig section as well */ 3347 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3348 return true; 3349 3350 /* no subprograms will lead to an empty .text section, ignore it */ 3351 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3352 strcmp(name, ".text") == 0) 3353 return true; 3354 3355 /* DWARF sections */ 3356 if (is_sec_name_dwarf(name)) 3357 return true; 3358 3359 if (str_has_pfx(name, ".rel")) { 3360 name += sizeof(".rel") - 1; 3361 /* DWARF section relocations */ 3362 if (is_sec_name_dwarf(name)) 3363 return true; 3364 3365 /* .BTF and .BTF.ext don't need relocations */ 3366 if (strcmp(name, BTF_ELF_SEC) == 0 || 3367 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3368 return true; 3369 } 3370 3371 return false; 3372 } 3373 3374 static int cmp_progs(const void *_a, const void *_b) 3375 { 3376 const struct bpf_program *a = _a; 3377 const struct bpf_program *b = _b; 3378 3379 if (a->sec_idx != b->sec_idx) 3380 return a->sec_idx < b->sec_idx ? -1 : 1; 3381 3382 /* sec_insn_off can't be the same within the section */ 3383 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3384 } 3385 3386 static int bpf_object__elf_collect(struct bpf_object *obj) 3387 { 3388 struct elf_sec_desc *sec_desc; 3389 Elf *elf = obj->efile.elf; 3390 Elf_Data *btf_ext_data = NULL; 3391 Elf_Data *btf_data = NULL; 3392 int idx = 0, err = 0; 3393 const char *name; 3394 Elf_Data *data; 3395 Elf_Scn *scn; 3396 Elf64_Shdr *sh; 3397 3398 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3399 * section. Since section count retrieved by elf_getshdrnum() does 3400 * include sec #0, it is already the necessary size of an array to keep 3401 * all the sections. 3402 */ 3403 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3404 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3405 obj->path, elf_errmsg(-1)); 3406 return -LIBBPF_ERRNO__FORMAT; 3407 } 3408 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3409 if (!obj->efile.secs) 3410 return -ENOMEM; 3411 3412 /* a bunch of ELF parsing functionality depends on processing symbols, 3413 * so do the first pass and find the symbol table 3414 */ 3415 scn = NULL; 3416 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3417 sh = elf_sec_hdr(obj, scn); 3418 if (!sh) 3419 return -LIBBPF_ERRNO__FORMAT; 3420 3421 if (sh->sh_type == SHT_SYMTAB) { 3422 if (obj->efile.symbols) { 3423 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3424 return -LIBBPF_ERRNO__FORMAT; 3425 } 3426 3427 data = elf_sec_data(obj, scn); 3428 if (!data) 3429 return -LIBBPF_ERRNO__FORMAT; 3430 3431 idx = elf_ndxscn(scn); 3432 3433 obj->efile.symbols = data; 3434 obj->efile.symbols_shndx = idx; 3435 obj->efile.strtabidx = sh->sh_link; 3436 } 3437 } 3438 3439 if (!obj->efile.symbols) { 3440 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3441 obj->path); 3442 return -ENOENT; 3443 } 3444 3445 scn = NULL; 3446 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3447 idx = elf_ndxscn(scn); 3448 sec_desc = &obj->efile.secs[idx]; 3449 3450 sh = elf_sec_hdr(obj, scn); 3451 if (!sh) 3452 return -LIBBPF_ERRNO__FORMAT; 3453 3454 name = elf_sec_str(obj, sh->sh_name); 3455 if (!name) 3456 return -LIBBPF_ERRNO__FORMAT; 3457 3458 if (ignore_elf_section(sh, name)) 3459 continue; 3460 3461 data = elf_sec_data(obj, scn); 3462 if (!data) 3463 return -LIBBPF_ERRNO__FORMAT; 3464 3465 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3466 idx, name, (unsigned long)data->d_size, 3467 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3468 (int)sh->sh_type); 3469 3470 if (strcmp(name, "license") == 0) { 3471 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3472 if (err) 3473 return err; 3474 } else if (strcmp(name, "version") == 0) { 3475 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3476 if (err) 3477 return err; 3478 } else if (strcmp(name, "maps") == 0) { 3479 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3480 return -ENOTSUP; 3481 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3482 obj->efile.btf_maps_shndx = idx; 3483 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3484 if (sh->sh_type != SHT_PROGBITS) 3485 return -LIBBPF_ERRNO__FORMAT; 3486 btf_data = data; 3487 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3488 if (sh->sh_type != SHT_PROGBITS) 3489 return -LIBBPF_ERRNO__FORMAT; 3490 btf_ext_data = data; 3491 } else if (sh->sh_type == SHT_SYMTAB) { 3492 /* already processed during the first pass above */ 3493 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3494 if (sh->sh_flags & SHF_EXECINSTR) { 3495 if (strcmp(name, ".text") == 0) 3496 obj->efile.text_shndx = idx; 3497 err = bpf_object__add_programs(obj, data, name, idx); 3498 if (err) 3499 return err; 3500 } else if (strcmp(name, DATA_SEC) == 0 || 3501 str_has_pfx(name, DATA_SEC ".")) { 3502 sec_desc->sec_type = SEC_DATA; 3503 sec_desc->shdr = sh; 3504 sec_desc->data = data; 3505 } else if (strcmp(name, RODATA_SEC) == 0 || 3506 str_has_pfx(name, RODATA_SEC ".")) { 3507 sec_desc->sec_type = SEC_RODATA; 3508 sec_desc->shdr = sh; 3509 sec_desc->data = data; 3510 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3511 obj->efile.st_ops_data = data; 3512 obj->efile.st_ops_shndx = idx; 3513 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) { 3514 obj->efile.st_ops_link_data = data; 3515 obj->efile.st_ops_link_shndx = idx; 3516 } else { 3517 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3518 idx, name); 3519 } 3520 } else if (sh->sh_type == SHT_REL) { 3521 int targ_sec_idx = sh->sh_info; /* points to other section */ 3522 3523 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3524 targ_sec_idx >= obj->efile.sec_cnt) 3525 return -LIBBPF_ERRNO__FORMAT; 3526 3527 /* Only do relo for section with exec instructions */ 3528 if (!section_have_execinstr(obj, targ_sec_idx) && 3529 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3530 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3531 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3532 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3533 idx, name, targ_sec_idx, 3534 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3535 continue; 3536 } 3537 3538 sec_desc->sec_type = SEC_RELO; 3539 sec_desc->shdr = sh; 3540 sec_desc->data = data; 3541 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3542 str_has_pfx(name, BSS_SEC "."))) { 3543 sec_desc->sec_type = SEC_BSS; 3544 sec_desc->shdr = sh; 3545 sec_desc->data = data; 3546 } else { 3547 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3548 (size_t)sh->sh_size); 3549 } 3550 } 3551 3552 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3553 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3554 return -LIBBPF_ERRNO__FORMAT; 3555 } 3556 3557 /* sort BPF programs by section name and in-section instruction offset 3558 * for faster search 3559 */ 3560 if (obj->nr_programs) 3561 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3562 3563 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3564 } 3565 3566 static bool sym_is_extern(const Elf64_Sym *sym) 3567 { 3568 int bind = ELF64_ST_BIND(sym->st_info); 3569 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3570 return sym->st_shndx == SHN_UNDEF && 3571 (bind == STB_GLOBAL || bind == STB_WEAK) && 3572 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3573 } 3574 3575 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3576 { 3577 int bind = ELF64_ST_BIND(sym->st_info); 3578 int type = ELF64_ST_TYPE(sym->st_info); 3579 3580 /* in .text section */ 3581 if (sym->st_shndx != text_shndx) 3582 return false; 3583 3584 /* local function */ 3585 if (bind == STB_LOCAL && type == STT_SECTION) 3586 return true; 3587 3588 /* global function */ 3589 return bind == STB_GLOBAL && type == STT_FUNC; 3590 } 3591 3592 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3593 { 3594 const struct btf_type *t; 3595 const char *tname; 3596 int i, n; 3597 3598 if (!btf) 3599 return -ESRCH; 3600 3601 n = btf__type_cnt(btf); 3602 for (i = 1; i < n; i++) { 3603 t = btf__type_by_id(btf, i); 3604 3605 if (!btf_is_var(t) && !btf_is_func(t)) 3606 continue; 3607 3608 tname = btf__name_by_offset(btf, t->name_off); 3609 if (strcmp(tname, ext_name)) 3610 continue; 3611 3612 if (btf_is_var(t) && 3613 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3614 return -EINVAL; 3615 3616 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3617 return -EINVAL; 3618 3619 return i; 3620 } 3621 3622 return -ENOENT; 3623 } 3624 3625 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3626 const struct btf_var_secinfo *vs; 3627 const struct btf_type *t; 3628 int i, j, n; 3629 3630 if (!btf) 3631 return -ESRCH; 3632 3633 n = btf__type_cnt(btf); 3634 for (i = 1; i < n; i++) { 3635 t = btf__type_by_id(btf, i); 3636 3637 if (!btf_is_datasec(t)) 3638 continue; 3639 3640 vs = btf_var_secinfos(t); 3641 for (j = 0; j < btf_vlen(t); j++, vs++) { 3642 if (vs->type == ext_btf_id) 3643 return i; 3644 } 3645 } 3646 3647 return -ENOENT; 3648 } 3649 3650 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3651 bool *is_signed) 3652 { 3653 const struct btf_type *t; 3654 const char *name; 3655 3656 t = skip_mods_and_typedefs(btf, id, NULL); 3657 name = btf__name_by_offset(btf, t->name_off); 3658 3659 if (is_signed) 3660 *is_signed = false; 3661 switch (btf_kind(t)) { 3662 case BTF_KIND_INT: { 3663 int enc = btf_int_encoding(t); 3664 3665 if (enc & BTF_INT_BOOL) 3666 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3667 if (is_signed) 3668 *is_signed = enc & BTF_INT_SIGNED; 3669 if (t->size == 1) 3670 return KCFG_CHAR; 3671 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3672 return KCFG_UNKNOWN; 3673 return KCFG_INT; 3674 } 3675 case BTF_KIND_ENUM: 3676 if (t->size != 4) 3677 return KCFG_UNKNOWN; 3678 if (strcmp(name, "libbpf_tristate")) 3679 return KCFG_UNKNOWN; 3680 return KCFG_TRISTATE; 3681 case BTF_KIND_ENUM64: 3682 if (strcmp(name, "libbpf_tristate")) 3683 return KCFG_UNKNOWN; 3684 return KCFG_TRISTATE; 3685 case BTF_KIND_ARRAY: 3686 if (btf_array(t)->nelems == 0) 3687 return KCFG_UNKNOWN; 3688 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3689 return KCFG_UNKNOWN; 3690 return KCFG_CHAR_ARR; 3691 default: 3692 return KCFG_UNKNOWN; 3693 } 3694 } 3695 3696 static int cmp_externs(const void *_a, const void *_b) 3697 { 3698 const struct extern_desc *a = _a; 3699 const struct extern_desc *b = _b; 3700 3701 if (a->type != b->type) 3702 return a->type < b->type ? -1 : 1; 3703 3704 if (a->type == EXT_KCFG) { 3705 /* descending order by alignment requirements */ 3706 if (a->kcfg.align != b->kcfg.align) 3707 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3708 /* ascending order by size, within same alignment class */ 3709 if (a->kcfg.sz != b->kcfg.sz) 3710 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3711 } 3712 3713 /* resolve ties by name */ 3714 return strcmp(a->name, b->name); 3715 } 3716 3717 static int find_int_btf_id(const struct btf *btf) 3718 { 3719 const struct btf_type *t; 3720 int i, n; 3721 3722 n = btf__type_cnt(btf); 3723 for (i = 1; i < n; i++) { 3724 t = btf__type_by_id(btf, i); 3725 3726 if (btf_is_int(t) && btf_int_bits(t) == 32) 3727 return i; 3728 } 3729 3730 return 0; 3731 } 3732 3733 static int add_dummy_ksym_var(struct btf *btf) 3734 { 3735 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3736 const struct btf_var_secinfo *vs; 3737 const struct btf_type *sec; 3738 3739 if (!btf) 3740 return 0; 3741 3742 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3743 BTF_KIND_DATASEC); 3744 if (sec_btf_id < 0) 3745 return 0; 3746 3747 sec = btf__type_by_id(btf, sec_btf_id); 3748 vs = btf_var_secinfos(sec); 3749 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3750 const struct btf_type *vt; 3751 3752 vt = btf__type_by_id(btf, vs->type); 3753 if (btf_is_func(vt)) 3754 break; 3755 } 3756 3757 /* No func in ksyms sec. No need to add dummy var. */ 3758 if (i == btf_vlen(sec)) 3759 return 0; 3760 3761 int_btf_id = find_int_btf_id(btf); 3762 dummy_var_btf_id = btf__add_var(btf, 3763 "dummy_ksym", 3764 BTF_VAR_GLOBAL_ALLOCATED, 3765 int_btf_id); 3766 if (dummy_var_btf_id < 0) 3767 pr_warn("cannot create a dummy_ksym var\n"); 3768 3769 return dummy_var_btf_id; 3770 } 3771 3772 static int bpf_object__collect_externs(struct bpf_object *obj) 3773 { 3774 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3775 const struct btf_type *t; 3776 struct extern_desc *ext; 3777 int i, n, off, dummy_var_btf_id; 3778 const char *ext_name, *sec_name; 3779 size_t ext_essent_len; 3780 Elf_Scn *scn; 3781 Elf64_Shdr *sh; 3782 3783 if (!obj->efile.symbols) 3784 return 0; 3785 3786 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3787 sh = elf_sec_hdr(obj, scn); 3788 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3789 return -LIBBPF_ERRNO__FORMAT; 3790 3791 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3792 if (dummy_var_btf_id < 0) 3793 return dummy_var_btf_id; 3794 3795 n = sh->sh_size / sh->sh_entsize; 3796 pr_debug("looking for externs among %d symbols...\n", n); 3797 3798 for (i = 0; i < n; i++) { 3799 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3800 3801 if (!sym) 3802 return -LIBBPF_ERRNO__FORMAT; 3803 if (!sym_is_extern(sym)) 3804 continue; 3805 ext_name = elf_sym_str(obj, sym->st_name); 3806 if (!ext_name || !ext_name[0]) 3807 continue; 3808 3809 ext = obj->externs; 3810 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3811 if (!ext) 3812 return -ENOMEM; 3813 obj->externs = ext; 3814 ext = &ext[obj->nr_extern]; 3815 memset(ext, 0, sizeof(*ext)); 3816 obj->nr_extern++; 3817 3818 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3819 if (ext->btf_id <= 0) { 3820 pr_warn("failed to find BTF for extern '%s': %d\n", 3821 ext_name, ext->btf_id); 3822 return ext->btf_id; 3823 } 3824 t = btf__type_by_id(obj->btf, ext->btf_id); 3825 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3826 ext->sym_idx = i; 3827 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3828 3829 ext_essent_len = bpf_core_essential_name_len(ext->name); 3830 ext->essent_name = NULL; 3831 if (ext_essent_len != strlen(ext->name)) { 3832 ext->essent_name = strndup(ext->name, ext_essent_len); 3833 if (!ext->essent_name) 3834 return -ENOMEM; 3835 } 3836 3837 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3838 if (ext->sec_btf_id <= 0) { 3839 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3840 ext_name, ext->btf_id, ext->sec_btf_id); 3841 return ext->sec_btf_id; 3842 } 3843 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3844 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3845 3846 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3847 if (btf_is_func(t)) { 3848 pr_warn("extern function %s is unsupported under %s section\n", 3849 ext->name, KCONFIG_SEC); 3850 return -ENOTSUP; 3851 } 3852 kcfg_sec = sec; 3853 ext->type = EXT_KCFG; 3854 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3855 if (ext->kcfg.sz <= 0) { 3856 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3857 ext_name, ext->kcfg.sz); 3858 return ext->kcfg.sz; 3859 } 3860 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3861 if (ext->kcfg.align <= 0) { 3862 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3863 ext_name, ext->kcfg.align); 3864 return -EINVAL; 3865 } 3866 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3867 &ext->kcfg.is_signed); 3868 if (ext->kcfg.type == KCFG_UNKNOWN) { 3869 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3870 return -ENOTSUP; 3871 } 3872 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3873 ksym_sec = sec; 3874 ext->type = EXT_KSYM; 3875 skip_mods_and_typedefs(obj->btf, t->type, 3876 &ext->ksym.type_id); 3877 } else { 3878 pr_warn("unrecognized extern section '%s'\n", sec_name); 3879 return -ENOTSUP; 3880 } 3881 } 3882 pr_debug("collected %d externs total\n", obj->nr_extern); 3883 3884 if (!obj->nr_extern) 3885 return 0; 3886 3887 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3888 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3889 3890 /* for .ksyms section, we need to turn all externs into allocated 3891 * variables in BTF to pass kernel verification; we do this by 3892 * pretending that each extern is a 8-byte variable 3893 */ 3894 if (ksym_sec) { 3895 /* find existing 4-byte integer type in BTF to use for fake 3896 * extern variables in DATASEC 3897 */ 3898 int int_btf_id = find_int_btf_id(obj->btf); 3899 /* For extern function, a dummy_var added earlier 3900 * will be used to replace the vs->type and 3901 * its name string will be used to refill 3902 * the missing param's name. 3903 */ 3904 const struct btf_type *dummy_var; 3905 3906 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3907 for (i = 0; i < obj->nr_extern; i++) { 3908 ext = &obj->externs[i]; 3909 if (ext->type != EXT_KSYM) 3910 continue; 3911 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3912 i, ext->sym_idx, ext->name); 3913 } 3914 3915 sec = ksym_sec; 3916 n = btf_vlen(sec); 3917 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3918 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3919 struct btf_type *vt; 3920 3921 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3922 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3923 ext = find_extern_by_name(obj, ext_name); 3924 if (!ext) { 3925 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3926 btf_kind_str(vt), ext_name); 3927 return -ESRCH; 3928 } 3929 if (btf_is_func(vt)) { 3930 const struct btf_type *func_proto; 3931 struct btf_param *param; 3932 int j; 3933 3934 func_proto = btf__type_by_id(obj->btf, 3935 vt->type); 3936 param = btf_params(func_proto); 3937 /* Reuse the dummy_var string if the 3938 * func proto does not have param name. 3939 */ 3940 for (j = 0; j < btf_vlen(func_proto); j++) 3941 if (param[j].type && !param[j].name_off) 3942 param[j].name_off = 3943 dummy_var->name_off; 3944 vs->type = dummy_var_btf_id; 3945 vt->info &= ~0xffff; 3946 vt->info |= BTF_FUNC_GLOBAL; 3947 } else { 3948 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3949 vt->type = int_btf_id; 3950 } 3951 vs->offset = off; 3952 vs->size = sizeof(int); 3953 } 3954 sec->size = off; 3955 } 3956 3957 if (kcfg_sec) { 3958 sec = kcfg_sec; 3959 /* for kcfg externs calculate their offsets within a .kconfig map */ 3960 off = 0; 3961 for (i = 0; i < obj->nr_extern; i++) { 3962 ext = &obj->externs[i]; 3963 if (ext->type != EXT_KCFG) 3964 continue; 3965 3966 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3967 off = ext->kcfg.data_off + ext->kcfg.sz; 3968 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3969 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3970 } 3971 sec->size = off; 3972 n = btf_vlen(sec); 3973 for (i = 0; i < n; i++) { 3974 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3975 3976 t = btf__type_by_id(obj->btf, vs->type); 3977 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3978 ext = find_extern_by_name(obj, ext_name); 3979 if (!ext) { 3980 pr_warn("failed to find extern definition for BTF var '%s'\n", 3981 ext_name); 3982 return -ESRCH; 3983 } 3984 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3985 vs->offset = ext->kcfg.data_off; 3986 } 3987 } 3988 return 0; 3989 } 3990 3991 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3992 { 3993 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3994 } 3995 3996 struct bpf_program * 3997 bpf_object__find_program_by_name(const struct bpf_object *obj, 3998 const char *name) 3999 { 4000 struct bpf_program *prog; 4001 4002 bpf_object__for_each_program(prog, obj) { 4003 if (prog_is_subprog(obj, prog)) 4004 continue; 4005 if (!strcmp(prog->name, name)) 4006 return prog; 4007 } 4008 return errno = ENOENT, NULL; 4009 } 4010 4011 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4012 int shndx) 4013 { 4014 switch (obj->efile.secs[shndx].sec_type) { 4015 case SEC_BSS: 4016 case SEC_DATA: 4017 case SEC_RODATA: 4018 return true; 4019 default: 4020 return false; 4021 } 4022 } 4023 4024 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4025 int shndx) 4026 { 4027 return shndx == obj->efile.btf_maps_shndx; 4028 } 4029 4030 static enum libbpf_map_type 4031 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4032 { 4033 if (shndx == obj->efile.symbols_shndx) 4034 return LIBBPF_MAP_KCONFIG; 4035 4036 switch (obj->efile.secs[shndx].sec_type) { 4037 case SEC_BSS: 4038 return LIBBPF_MAP_BSS; 4039 case SEC_DATA: 4040 return LIBBPF_MAP_DATA; 4041 case SEC_RODATA: 4042 return LIBBPF_MAP_RODATA; 4043 default: 4044 return LIBBPF_MAP_UNSPEC; 4045 } 4046 } 4047 4048 static int bpf_program__record_reloc(struct bpf_program *prog, 4049 struct reloc_desc *reloc_desc, 4050 __u32 insn_idx, const char *sym_name, 4051 const Elf64_Sym *sym, const Elf64_Rel *rel) 4052 { 4053 struct bpf_insn *insn = &prog->insns[insn_idx]; 4054 size_t map_idx, nr_maps = prog->obj->nr_maps; 4055 struct bpf_object *obj = prog->obj; 4056 __u32 shdr_idx = sym->st_shndx; 4057 enum libbpf_map_type type; 4058 const char *sym_sec_name; 4059 struct bpf_map *map; 4060 4061 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4062 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4063 prog->name, sym_name, insn_idx, insn->code); 4064 return -LIBBPF_ERRNO__RELOC; 4065 } 4066 4067 if (sym_is_extern(sym)) { 4068 int sym_idx = ELF64_R_SYM(rel->r_info); 4069 int i, n = obj->nr_extern; 4070 struct extern_desc *ext; 4071 4072 for (i = 0; i < n; i++) { 4073 ext = &obj->externs[i]; 4074 if (ext->sym_idx == sym_idx) 4075 break; 4076 } 4077 if (i >= n) { 4078 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4079 prog->name, sym_name, sym_idx); 4080 return -LIBBPF_ERRNO__RELOC; 4081 } 4082 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4083 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4084 if (insn->code == (BPF_JMP | BPF_CALL)) 4085 reloc_desc->type = RELO_EXTERN_CALL; 4086 else 4087 reloc_desc->type = RELO_EXTERN_LD64; 4088 reloc_desc->insn_idx = insn_idx; 4089 reloc_desc->ext_idx = i; 4090 return 0; 4091 } 4092 4093 /* sub-program call relocation */ 4094 if (is_call_insn(insn)) { 4095 if (insn->src_reg != BPF_PSEUDO_CALL) { 4096 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4097 return -LIBBPF_ERRNO__RELOC; 4098 } 4099 /* text_shndx can be 0, if no default "main" program exists */ 4100 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4101 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4102 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4103 prog->name, sym_name, sym_sec_name); 4104 return -LIBBPF_ERRNO__RELOC; 4105 } 4106 if (sym->st_value % BPF_INSN_SZ) { 4107 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4108 prog->name, sym_name, (size_t)sym->st_value); 4109 return -LIBBPF_ERRNO__RELOC; 4110 } 4111 reloc_desc->type = RELO_CALL; 4112 reloc_desc->insn_idx = insn_idx; 4113 reloc_desc->sym_off = sym->st_value; 4114 return 0; 4115 } 4116 4117 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4118 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4119 prog->name, sym_name, shdr_idx); 4120 return -LIBBPF_ERRNO__RELOC; 4121 } 4122 4123 /* loading subprog addresses */ 4124 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4125 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4126 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4127 */ 4128 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4129 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4130 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4131 return -LIBBPF_ERRNO__RELOC; 4132 } 4133 4134 reloc_desc->type = RELO_SUBPROG_ADDR; 4135 reloc_desc->insn_idx = insn_idx; 4136 reloc_desc->sym_off = sym->st_value; 4137 return 0; 4138 } 4139 4140 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4141 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4142 4143 /* generic map reference relocation */ 4144 if (type == LIBBPF_MAP_UNSPEC) { 4145 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4146 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4147 prog->name, sym_name, sym_sec_name); 4148 return -LIBBPF_ERRNO__RELOC; 4149 } 4150 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4151 map = &obj->maps[map_idx]; 4152 if (map->libbpf_type != type || 4153 map->sec_idx != sym->st_shndx || 4154 map->sec_offset != sym->st_value) 4155 continue; 4156 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4157 prog->name, map_idx, map->name, map->sec_idx, 4158 map->sec_offset, insn_idx); 4159 break; 4160 } 4161 if (map_idx >= nr_maps) { 4162 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4163 prog->name, sym_sec_name, (size_t)sym->st_value); 4164 return -LIBBPF_ERRNO__RELOC; 4165 } 4166 reloc_desc->type = RELO_LD64; 4167 reloc_desc->insn_idx = insn_idx; 4168 reloc_desc->map_idx = map_idx; 4169 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4170 return 0; 4171 } 4172 4173 /* global data map relocation */ 4174 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4175 pr_warn("prog '%s': bad data relo against section '%s'\n", 4176 prog->name, sym_sec_name); 4177 return -LIBBPF_ERRNO__RELOC; 4178 } 4179 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4180 map = &obj->maps[map_idx]; 4181 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4182 continue; 4183 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4184 prog->name, map_idx, map->name, map->sec_idx, 4185 map->sec_offset, insn_idx); 4186 break; 4187 } 4188 if (map_idx >= nr_maps) { 4189 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4190 prog->name, sym_sec_name); 4191 return -LIBBPF_ERRNO__RELOC; 4192 } 4193 4194 reloc_desc->type = RELO_DATA; 4195 reloc_desc->insn_idx = insn_idx; 4196 reloc_desc->map_idx = map_idx; 4197 reloc_desc->sym_off = sym->st_value; 4198 return 0; 4199 } 4200 4201 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4202 { 4203 return insn_idx >= prog->sec_insn_off && 4204 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4205 } 4206 4207 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4208 size_t sec_idx, size_t insn_idx) 4209 { 4210 int l = 0, r = obj->nr_programs - 1, m; 4211 struct bpf_program *prog; 4212 4213 if (!obj->nr_programs) 4214 return NULL; 4215 4216 while (l < r) { 4217 m = l + (r - l + 1) / 2; 4218 prog = &obj->programs[m]; 4219 4220 if (prog->sec_idx < sec_idx || 4221 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4222 l = m; 4223 else 4224 r = m - 1; 4225 } 4226 /* matching program could be at index l, but it still might be the 4227 * wrong one, so we need to double check conditions for the last time 4228 */ 4229 prog = &obj->programs[l]; 4230 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4231 return prog; 4232 return NULL; 4233 } 4234 4235 static int 4236 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4237 { 4238 const char *relo_sec_name, *sec_name; 4239 size_t sec_idx = shdr->sh_info, sym_idx; 4240 struct bpf_program *prog; 4241 struct reloc_desc *relos; 4242 int err, i, nrels; 4243 const char *sym_name; 4244 __u32 insn_idx; 4245 Elf_Scn *scn; 4246 Elf_Data *scn_data; 4247 Elf64_Sym *sym; 4248 Elf64_Rel *rel; 4249 4250 if (sec_idx >= obj->efile.sec_cnt) 4251 return -EINVAL; 4252 4253 scn = elf_sec_by_idx(obj, sec_idx); 4254 scn_data = elf_sec_data(obj, scn); 4255 if (!scn_data) 4256 return -LIBBPF_ERRNO__FORMAT; 4257 4258 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4259 sec_name = elf_sec_name(obj, scn); 4260 if (!relo_sec_name || !sec_name) 4261 return -EINVAL; 4262 4263 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4264 relo_sec_name, sec_idx, sec_name); 4265 nrels = shdr->sh_size / shdr->sh_entsize; 4266 4267 for (i = 0; i < nrels; i++) { 4268 rel = elf_rel_by_idx(data, i); 4269 if (!rel) { 4270 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4271 return -LIBBPF_ERRNO__FORMAT; 4272 } 4273 4274 sym_idx = ELF64_R_SYM(rel->r_info); 4275 sym = elf_sym_by_idx(obj, sym_idx); 4276 if (!sym) { 4277 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4278 relo_sec_name, sym_idx, i); 4279 return -LIBBPF_ERRNO__FORMAT; 4280 } 4281 4282 if (sym->st_shndx >= obj->efile.sec_cnt) { 4283 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4284 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4285 return -LIBBPF_ERRNO__FORMAT; 4286 } 4287 4288 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4289 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4290 relo_sec_name, (size_t)rel->r_offset, i); 4291 return -LIBBPF_ERRNO__FORMAT; 4292 } 4293 4294 insn_idx = rel->r_offset / BPF_INSN_SZ; 4295 /* relocations against static functions are recorded as 4296 * relocations against the section that contains a function; 4297 * in such case, symbol will be STT_SECTION and sym.st_name 4298 * will point to empty string (0), so fetch section name 4299 * instead 4300 */ 4301 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4302 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4303 else 4304 sym_name = elf_sym_str(obj, sym->st_name); 4305 sym_name = sym_name ?: "<?"; 4306 4307 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4308 relo_sec_name, i, insn_idx, sym_name); 4309 4310 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4311 if (!prog) { 4312 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4313 relo_sec_name, i, sec_name, insn_idx); 4314 continue; 4315 } 4316 4317 relos = libbpf_reallocarray(prog->reloc_desc, 4318 prog->nr_reloc + 1, sizeof(*relos)); 4319 if (!relos) 4320 return -ENOMEM; 4321 prog->reloc_desc = relos; 4322 4323 /* adjust insn_idx to local BPF program frame of reference */ 4324 insn_idx -= prog->sec_insn_off; 4325 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4326 insn_idx, sym_name, sym, rel); 4327 if (err) 4328 return err; 4329 4330 prog->nr_reloc++; 4331 } 4332 return 0; 4333 } 4334 4335 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4336 { 4337 int id; 4338 4339 if (!obj->btf) 4340 return -ENOENT; 4341 4342 /* if it's BTF-defined map, we don't need to search for type IDs. 4343 * For struct_ops map, it does not need btf_key_type_id and 4344 * btf_value_type_id. 4345 */ 4346 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4347 return 0; 4348 4349 /* 4350 * LLVM annotates global data differently in BTF, that is, 4351 * only as '.data', '.bss' or '.rodata'. 4352 */ 4353 if (!bpf_map__is_internal(map)) 4354 return -ENOENT; 4355 4356 id = btf__find_by_name(obj->btf, map->real_name); 4357 if (id < 0) 4358 return id; 4359 4360 map->btf_key_type_id = 0; 4361 map->btf_value_type_id = id; 4362 return 0; 4363 } 4364 4365 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4366 { 4367 char file[PATH_MAX], buff[4096]; 4368 FILE *fp; 4369 __u32 val; 4370 int err; 4371 4372 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4373 memset(info, 0, sizeof(*info)); 4374 4375 fp = fopen(file, "re"); 4376 if (!fp) { 4377 err = -errno; 4378 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4379 err); 4380 return err; 4381 } 4382 4383 while (fgets(buff, sizeof(buff), fp)) { 4384 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4385 info->type = val; 4386 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4387 info->key_size = val; 4388 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4389 info->value_size = val; 4390 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4391 info->max_entries = val; 4392 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4393 info->map_flags = val; 4394 } 4395 4396 fclose(fp); 4397 4398 return 0; 4399 } 4400 4401 bool bpf_map__autocreate(const struct bpf_map *map) 4402 { 4403 return map->autocreate; 4404 } 4405 4406 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4407 { 4408 if (map->obj->loaded) 4409 return libbpf_err(-EBUSY); 4410 4411 map->autocreate = autocreate; 4412 return 0; 4413 } 4414 4415 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4416 { 4417 struct bpf_map_info info; 4418 __u32 len = sizeof(info), name_len; 4419 int new_fd, err; 4420 char *new_name; 4421 4422 memset(&info, 0, len); 4423 err = bpf_map_get_info_by_fd(fd, &info, &len); 4424 if (err && errno == EINVAL) 4425 err = bpf_get_map_info_from_fdinfo(fd, &info); 4426 if (err) 4427 return libbpf_err(err); 4428 4429 name_len = strlen(info.name); 4430 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4431 new_name = strdup(map->name); 4432 else 4433 new_name = strdup(info.name); 4434 4435 if (!new_name) 4436 return libbpf_err(-errno); 4437 4438 /* 4439 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4440 * This is similar to what we do in ensure_good_fd(), but without 4441 * closing original FD. 4442 */ 4443 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4444 if (new_fd < 0) { 4445 err = -errno; 4446 goto err_free_new_name; 4447 } 4448 4449 err = zclose(map->fd); 4450 if (err) { 4451 err = -errno; 4452 goto err_close_new_fd; 4453 } 4454 free(map->name); 4455 4456 map->fd = new_fd; 4457 map->name = new_name; 4458 map->def.type = info.type; 4459 map->def.key_size = info.key_size; 4460 map->def.value_size = info.value_size; 4461 map->def.max_entries = info.max_entries; 4462 map->def.map_flags = info.map_flags; 4463 map->btf_key_type_id = info.btf_key_type_id; 4464 map->btf_value_type_id = info.btf_value_type_id; 4465 map->reused = true; 4466 map->map_extra = info.map_extra; 4467 4468 return 0; 4469 4470 err_close_new_fd: 4471 close(new_fd); 4472 err_free_new_name: 4473 free(new_name); 4474 return libbpf_err(err); 4475 } 4476 4477 __u32 bpf_map__max_entries(const struct bpf_map *map) 4478 { 4479 return map->def.max_entries; 4480 } 4481 4482 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4483 { 4484 if (!bpf_map_type__is_map_in_map(map->def.type)) 4485 return errno = EINVAL, NULL; 4486 4487 return map->inner_map; 4488 } 4489 4490 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4491 { 4492 if (map->obj->loaded) 4493 return libbpf_err(-EBUSY); 4494 4495 map->def.max_entries = max_entries; 4496 4497 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4498 if (map_is_ringbuf(map)) 4499 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4500 4501 return 0; 4502 } 4503 4504 static int 4505 bpf_object__probe_loading(struct bpf_object *obj) 4506 { 4507 char *cp, errmsg[STRERR_BUFSIZE]; 4508 struct bpf_insn insns[] = { 4509 BPF_MOV64_IMM(BPF_REG_0, 0), 4510 BPF_EXIT_INSN(), 4511 }; 4512 int ret, insn_cnt = ARRAY_SIZE(insns); 4513 4514 if (obj->gen_loader) 4515 return 0; 4516 4517 ret = bump_rlimit_memlock(); 4518 if (ret) 4519 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4520 4521 /* make sure basic loading works */ 4522 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4523 if (ret < 0) 4524 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4525 if (ret < 0) { 4526 ret = errno; 4527 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4528 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4529 "program. Make sure your kernel supports BPF " 4530 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4531 "set to big enough value.\n", __func__, cp, ret); 4532 return -ret; 4533 } 4534 close(ret); 4535 4536 return 0; 4537 } 4538 4539 static int probe_fd(int fd) 4540 { 4541 if (fd >= 0) 4542 close(fd); 4543 return fd >= 0; 4544 } 4545 4546 static int probe_kern_prog_name(void) 4547 { 4548 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4549 struct bpf_insn insns[] = { 4550 BPF_MOV64_IMM(BPF_REG_0, 0), 4551 BPF_EXIT_INSN(), 4552 }; 4553 union bpf_attr attr; 4554 int ret; 4555 4556 memset(&attr, 0, attr_sz); 4557 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4558 attr.license = ptr_to_u64("GPL"); 4559 attr.insns = ptr_to_u64(insns); 4560 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4561 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4562 4563 /* make sure loading with name works */ 4564 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4565 return probe_fd(ret); 4566 } 4567 4568 static int probe_kern_global_data(void) 4569 { 4570 char *cp, errmsg[STRERR_BUFSIZE]; 4571 struct bpf_insn insns[] = { 4572 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4573 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4574 BPF_MOV64_IMM(BPF_REG_0, 0), 4575 BPF_EXIT_INSN(), 4576 }; 4577 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4578 4579 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4580 if (map < 0) { 4581 ret = -errno; 4582 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4583 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4584 __func__, cp, -ret); 4585 return ret; 4586 } 4587 4588 insns[0].imm = map; 4589 4590 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4591 close(map); 4592 return probe_fd(ret); 4593 } 4594 4595 static int probe_kern_btf(void) 4596 { 4597 static const char strs[] = "\0int"; 4598 __u32 types[] = { 4599 /* int */ 4600 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4601 }; 4602 4603 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4604 strs, sizeof(strs))); 4605 } 4606 4607 static int probe_kern_btf_func(void) 4608 { 4609 static const char strs[] = "\0int\0x\0a"; 4610 /* void x(int a) {} */ 4611 __u32 types[] = { 4612 /* int */ 4613 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4614 /* FUNC_PROTO */ /* [2] */ 4615 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4616 BTF_PARAM_ENC(7, 1), 4617 /* FUNC x */ /* [3] */ 4618 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4619 }; 4620 4621 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4622 strs, sizeof(strs))); 4623 } 4624 4625 static int probe_kern_btf_func_global(void) 4626 { 4627 static const char strs[] = "\0int\0x\0a"; 4628 /* static void x(int a) {} */ 4629 __u32 types[] = { 4630 /* int */ 4631 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4632 /* FUNC_PROTO */ /* [2] */ 4633 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4634 BTF_PARAM_ENC(7, 1), 4635 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4636 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4637 }; 4638 4639 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4640 strs, sizeof(strs))); 4641 } 4642 4643 static int probe_kern_btf_datasec(void) 4644 { 4645 static const char strs[] = "\0x\0.data"; 4646 /* static int a; */ 4647 __u32 types[] = { 4648 /* int */ 4649 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4650 /* VAR x */ /* [2] */ 4651 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4652 BTF_VAR_STATIC, 4653 /* DATASEC val */ /* [3] */ 4654 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4655 BTF_VAR_SECINFO_ENC(2, 0, 4), 4656 }; 4657 4658 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4659 strs, sizeof(strs))); 4660 } 4661 4662 static int probe_kern_btf_float(void) 4663 { 4664 static const char strs[] = "\0float"; 4665 __u32 types[] = { 4666 /* float */ 4667 BTF_TYPE_FLOAT_ENC(1, 4), 4668 }; 4669 4670 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4671 strs, sizeof(strs))); 4672 } 4673 4674 static int probe_kern_btf_decl_tag(void) 4675 { 4676 static const char strs[] = "\0tag"; 4677 __u32 types[] = { 4678 /* int */ 4679 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4680 /* VAR x */ /* [2] */ 4681 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4682 BTF_VAR_STATIC, 4683 /* attr */ 4684 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4685 }; 4686 4687 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4688 strs, sizeof(strs))); 4689 } 4690 4691 static int probe_kern_btf_type_tag(void) 4692 { 4693 static const char strs[] = "\0tag"; 4694 __u32 types[] = { 4695 /* int */ 4696 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4697 /* attr */ 4698 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4699 /* ptr */ 4700 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4701 }; 4702 4703 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4704 strs, sizeof(strs))); 4705 } 4706 4707 static int probe_kern_array_mmap(void) 4708 { 4709 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4710 int fd; 4711 4712 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4713 return probe_fd(fd); 4714 } 4715 4716 static int probe_kern_exp_attach_type(void) 4717 { 4718 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4719 struct bpf_insn insns[] = { 4720 BPF_MOV64_IMM(BPF_REG_0, 0), 4721 BPF_EXIT_INSN(), 4722 }; 4723 int fd, insn_cnt = ARRAY_SIZE(insns); 4724 4725 /* use any valid combination of program type and (optional) 4726 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4727 * to see if kernel supports expected_attach_type field for 4728 * BPF_PROG_LOAD command 4729 */ 4730 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4731 return probe_fd(fd); 4732 } 4733 4734 static int probe_kern_probe_read_kernel(void) 4735 { 4736 struct bpf_insn insns[] = { 4737 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4738 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4739 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4740 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4741 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4742 BPF_EXIT_INSN(), 4743 }; 4744 int fd, insn_cnt = ARRAY_SIZE(insns); 4745 4746 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4747 return probe_fd(fd); 4748 } 4749 4750 static int probe_prog_bind_map(void) 4751 { 4752 char *cp, errmsg[STRERR_BUFSIZE]; 4753 struct bpf_insn insns[] = { 4754 BPF_MOV64_IMM(BPF_REG_0, 0), 4755 BPF_EXIT_INSN(), 4756 }; 4757 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4758 4759 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4760 if (map < 0) { 4761 ret = -errno; 4762 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4763 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4764 __func__, cp, -ret); 4765 return ret; 4766 } 4767 4768 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4769 if (prog < 0) { 4770 close(map); 4771 return 0; 4772 } 4773 4774 ret = bpf_prog_bind_map(prog, map, NULL); 4775 4776 close(map); 4777 close(prog); 4778 4779 return ret >= 0; 4780 } 4781 4782 static int probe_module_btf(void) 4783 { 4784 static const char strs[] = "\0int"; 4785 __u32 types[] = { 4786 /* int */ 4787 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4788 }; 4789 struct bpf_btf_info info; 4790 __u32 len = sizeof(info); 4791 char name[16]; 4792 int fd, err; 4793 4794 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4795 if (fd < 0) 4796 return 0; /* BTF not supported at all */ 4797 4798 memset(&info, 0, sizeof(info)); 4799 info.name = ptr_to_u64(name); 4800 info.name_len = sizeof(name); 4801 4802 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4803 * kernel's module BTF support coincides with support for 4804 * name/name_len fields in struct bpf_btf_info. 4805 */ 4806 err = bpf_btf_get_info_by_fd(fd, &info, &len); 4807 close(fd); 4808 return !err; 4809 } 4810 4811 static int probe_perf_link(void) 4812 { 4813 struct bpf_insn insns[] = { 4814 BPF_MOV64_IMM(BPF_REG_0, 0), 4815 BPF_EXIT_INSN(), 4816 }; 4817 int prog_fd, link_fd, err; 4818 4819 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4820 insns, ARRAY_SIZE(insns), NULL); 4821 if (prog_fd < 0) 4822 return -errno; 4823 4824 /* use invalid perf_event FD to get EBADF, if link is supported; 4825 * otherwise EINVAL should be returned 4826 */ 4827 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4828 err = -errno; /* close() can clobber errno */ 4829 4830 if (link_fd >= 0) 4831 close(link_fd); 4832 close(prog_fd); 4833 4834 return link_fd < 0 && err == -EBADF; 4835 } 4836 4837 static int probe_uprobe_multi_link(void) 4838 { 4839 LIBBPF_OPTS(bpf_prog_load_opts, load_opts, 4840 .expected_attach_type = BPF_TRACE_UPROBE_MULTI, 4841 ); 4842 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 4843 struct bpf_insn insns[] = { 4844 BPF_MOV64_IMM(BPF_REG_0, 0), 4845 BPF_EXIT_INSN(), 4846 }; 4847 int prog_fd, link_fd, err; 4848 unsigned long offset = 0; 4849 4850 prog_fd = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", 4851 insns, ARRAY_SIZE(insns), &load_opts); 4852 if (prog_fd < 0) 4853 return -errno; 4854 4855 /* Creating uprobe in '/' binary should fail with -EBADF. */ 4856 link_opts.uprobe_multi.path = "/"; 4857 link_opts.uprobe_multi.offsets = &offset; 4858 link_opts.uprobe_multi.cnt = 1; 4859 4860 link_fd = bpf_link_create(prog_fd, -1, BPF_TRACE_UPROBE_MULTI, &link_opts); 4861 err = -errno; /* close() can clobber errno */ 4862 4863 if (link_fd >= 0) 4864 close(link_fd); 4865 close(prog_fd); 4866 4867 return link_fd < 0 && err == -EBADF; 4868 } 4869 4870 static int probe_kern_bpf_cookie(void) 4871 { 4872 struct bpf_insn insns[] = { 4873 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4874 BPF_EXIT_INSN(), 4875 }; 4876 int ret, insn_cnt = ARRAY_SIZE(insns); 4877 4878 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4879 return probe_fd(ret); 4880 } 4881 4882 static int probe_kern_btf_enum64(void) 4883 { 4884 static const char strs[] = "\0enum64"; 4885 __u32 types[] = { 4886 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4887 }; 4888 4889 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4890 strs, sizeof(strs))); 4891 } 4892 4893 static int probe_kern_syscall_wrapper(void); 4894 4895 enum kern_feature_result { 4896 FEAT_UNKNOWN = 0, 4897 FEAT_SUPPORTED = 1, 4898 FEAT_MISSING = 2, 4899 }; 4900 4901 typedef int (*feature_probe_fn)(void); 4902 4903 static struct kern_feature_desc { 4904 const char *desc; 4905 feature_probe_fn probe; 4906 enum kern_feature_result res; 4907 } feature_probes[__FEAT_CNT] = { 4908 [FEAT_PROG_NAME] = { 4909 "BPF program name", probe_kern_prog_name, 4910 }, 4911 [FEAT_GLOBAL_DATA] = { 4912 "global variables", probe_kern_global_data, 4913 }, 4914 [FEAT_BTF] = { 4915 "minimal BTF", probe_kern_btf, 4916 }, 4917 [FEAT_BTF_FUNC] = { 4918 "BTF functions", probe_kern_btf_func, 4919 }, 4920 [FEAT_BTF_GLOBAL_FUNC] = { 4921 "BTF global function", probe_kern_btf_func_global, 4922 }, 4923 [FEAT_BTF_DATASEC] = { 4924 "BTF data section and variable", probe_kern_btf_datasec, 4925 }, 4926 [FEAT_ARRAY_MMAP] = { 4927 "ARRAY map mmap()", probe_kern_array_mmap, 4928 }, 4929 [FEAT_EXP_ATTACH_TYPE] = { 4930 "BPF_PROG_LOAD expected_attach_type attribute", 4931 probe_kern_exp_attach_type, 4932 }, 4933 [FEAT_PROBE_READ_KERN] = { 4934 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4935 }, 4936 [FEAT_PROG_BIND_MAP] = { 4937 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4938 }, 4939 [FEAT_MODULE_BTF] = { 4940 "module BTF support", probe_module_btf, 4941 }, 4942 [FEAT_BTF_FLOAT] = { 4943 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4944 }, 4945 [FEAT_PERF_LINK] = { 4946 "BPF perf link support", probe_perf_link, 4947 }, 4948 [FEAT_BTF_DECL_TAG] = { 4949 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4950 }, 4951 [FEAT_BTF_TYPE_TAG] = { 4952 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4953 }, 4954 [FEAT_MEMCG_ACCOUNT] = { 4955 "memcg-based memory accounting", probe_memcg_account, 4956 }, 4957 [FEAT_BPF_COOKIE] = { 4958 "BPF cookie support", probe_kern_bpf_cookie, 4959 }, 4960 [FEAT_BTF_ENUM64] = { 4961 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4962 }, 4963 [FEAT_SYSCALL_WRAPPER] = { 4964 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4965 }, 4966 [FEAT_UPROBE_MULTI_LINK] = { 4967 "BPF multi-uprobe link support", probe_uprobe_multi_link, 4968 }, 4969 }; 4970 4971 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4972 { 4973 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4974 int ret; 4975 4976 if (obj && obj->gen_loader) 4977 /* To generate loader program assume the latest kernel 4978 * to avoid doing extra prog_load, map_create syscalls. 4979 */ 4980 return true; 4981 4982 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4983 ret = feat->probe(); 4984 if (ret > 0) { 4985 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4986 } else if (ret == 0) { 4987 WRITE_ONCE(feat->res, FEAT_MISSING); 4988 } else { 4989 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4990 WRITE_ONCE(feat->res, FEAT_MISSING); 4991 } 4992 } 4993 4994 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4995 } 4996 4997 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4998 { 4999 struct bpf_map_info map_info; 5000 char msg[STRERR_BUFSIZE]; 5001 __u32 map_info_len = sizeof(map_info); 5002 int err; 5003 5004 memset(&map_info, 0, map_info_len); 5005 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5006 if (err && errno == EINVAL) 5007 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5008 if (err) { 5009 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5010 libbpf_strerror_r(errno, msg, sizeof(msg))); 5011 return false; 5012 } 5013 5014 return (map_info.type == map->def.type && 5015 map_info.key_size == map->def.key_size && 5016 map_info.value_size == map->def.value_size && 5017 map_info.max_entries == map->def.max_entries && 5018 map_info.map_flags == map->def.map_flags && 5019 map_info.map_extra == map->map_extra); 5020 } 5021 5022 static int 5023 bpf_object__reuse_map(struct bpf_map *map) 5024 { 5025 char *cp, errmsg[STRERR_BUFSIZE]; 5026 int err, pin_fd; 5027 5028 pin_fd = bpf_obj_get(map->pin_path); 5029 if (pin_fd < 0) { 5030 err = -errno; 5031 if (err == -ENOENT) { 5032 pr_debug("found no pinned map to reuse at '%s'\n", 5033 map->pin_path); 5034 return 0; 5035 } 5036 5037 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5038 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5039 map->pin_path, cp); 5040 return err; 5041 } 5042 5043 if (!map_is_reuse_compat(map, pin_fd)) { 5044 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5045 map->pin_path); 5046 close(pin_fd); 5047 return -EINVAL; 5048 } 5049 5050 err = bpf_map__reuse_fd(map, pin_fd); 5051 close(pin_fd); 5052 if (err) 5053 return err; 5054 5055 map->pinned = true; 5056 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5057 5058 return 0; 5059 } 5060 5061 static int 5062 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5063 { 5064 enum libbpf_map_type map_type = map->libbpf_type; 5065 char *cp, errmsg[STRERR_BUFSIZE]; 5066 int err, zero = 0; 5067 5068 if (obj->gen_loader) { 5069 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5070 map->mmaped, map->def.value_size); 5071 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5072 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5073 return 0; 5074 } 5075 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5076 if (err) { 5077 err = -errno; 5078 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5079 pr_warn("Error setting initial map(%s) contents: %s\n", 5080 map->name, cp); 5081 return err; 5082 } 5083 5084 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5085 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5086 err = bpf_map_freeze(map->fd); 5087 if (err) { 5088 err = -errno; 5089 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5090 pr_warn("Error freezing map(%s) as read-only: %s\n", 5091 map->name, cp); 5092 return err; 5093 } 5094 } 5095 return 0; 5096 } 5097 5098 static void bpf_map__destroy(struct bpf_map *map); 5099 5100 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5101 { 5102 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5103 struct bpf_map_def *def = &map->def; 5104 const char *map_name = NULL; 5105 int err = 0; 5106 5107 if (kernel_supports(obj, FEAT_PROG_NAME)) 5108 map_name = map->name; 5109 create_attr.map_ifindex = map->map_ifindex; 5110 create_attr.map_flags = def->map_flags; 5111 create_attr.numa_node = map->numa_node; 5112 create_attr.map_extra = map->map_extra; 5113 5114 if (bpf_map__is_struct_ops(map)) 5115 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5116 5117 if (obj->btf && btf__fd(obj->btf) >= 0) { 5118 create_attr.btf_fd = btf__fd(obj->btf); 5119 create_attr.btf_key_type_id = map->btf_key_type_id; 5120 create_attr.btf_value_type_id = map->btf_value_type_id; 5121 } 5122 5123 if (bpf_map_type__is_map_in_map(def->type)) { 5124 if (map->inner_map) { 5125 err = map_set_def_max_entries(map->inner_map); 5126 if (err) 5127 return err; 5128 err = bpf_object__create_map(obj, map->inner_map, true); 5129 if (err) { 5130 pr_warn("map '%s': failed to create inner map: %d\n", 5131 map->name, err); 5132 return err; 5133 } 5134 map->inner_map_fd = bpf_map__fd(map->inner_map); 5135 } 5136 if (map->inner_map_fd >= 0) 5137 create_attr.inner_map_fd = map->inner_map_fd; 5138 } 5139 5140 switch (def->type) { 5141 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5142 case BPF_MAP_TYPE_CGROUP_ARRAY: 5143 case BPF_MAP_TYPE_STACK_TRACE: 5144 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5145 case BPF_MAP_TYPE_HASH_OF_MAPS: 5146 case BPF_MAP_TYPE_DEVMAP: 5147 case BPF_MAP_TYPE_DEVMAP_HASH: 5148 case BPF_MAP_TYPE_CPUMAP: 5149 case BPF_MAP_TYPE_XSKMAP: 5150 case BPF_MAP_TYPE_SOCKMAP: 5151 case BPF_MAP_TYPE_SOCKHASH: 5152 case BPF_MAP_TYPE_QUEUE: 5153 case BPF_MAP_TYPE_STACK: 5154 create_attr.btf_fd = 0; 5155 create_attr.btf_key_type_id = 0; 5156 create_attr.btf_value_type_id = 0; 5157 map->btf_key_type_id = 0; 5158 map->btf_value_type_id = 0; 5159 default: 5160 break; 5161 } 5162 5163 if (obj->gen_loader) { 5164 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5165 def->key_size, def->value_size, def->max_entries, 5166 &create_attr, is_inner ? -1 : map - obj->maps); 5167 /* Pretend to have valid FD to pass various fd >= 0 checks. 5168 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5169 */ 5170 map->fd = 0; 5171 } else { 5172 map->fd = bpf_map_create(def->type, map_name, 5173 def->key_size, def->value_size, 5174 def->max_entries, &create_attr); 5175 } 5176 if (map->fd < 0 && (create_attr.btf_key_type_id || 5177 create_attr.btf_value_type_id)) { 5178 char *cp, errmsg[STRERR_BUFSIZE]; 5179 5180 err = -errno; 5181 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5182 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5183 map->name, cp, err); 5184 create_attr.btf_fd = 0; 5185 create_attr.btf_key_type_id = 0; 5186 create_attr.btf_value_type_id = 0; 5187 map->btf_key_type_id = 0; 5188 map->btf_value_type_id = 0; 5189 map->fd = bpf_map_create(def->type, map_name, 5190 def->key_size, def->value_size, 5191 def->max_entries, &create_attr); 5192 } 5193 5194 err = map->fd < 0 ? -errno : 0; 5195 5196 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5197 if (obj->gen_loader) 5198 map->inner_map->fd = -1; 5199 bpf_map__destroy(map->inner_map); 5200 zfree(&map->inner_map); 5201 } 5202 5203 return err; 5204 } 5205 5206 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5207 { 5208 const struct bpf_map *targ_map; 5209 unsigned int i; 5210 int fd, err = 0; 5211 5212 for (i = 0; i < map->init_slots_sz; i++) { 5213 if (!map->init_slots[i]) 5214 continue; 5215 5216 targ_map = map->init_slots[i]; 5217 fd = bpf_map__fd(targ_map); 5218 5219 if (obj->gen_loader) { 5220 bpf_gen__populate_outer_map(obj->gen_loader, 5221 map - obj->maps, i, 5222 targ_map - obj->maps); 5223 } else { 5224 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5225 } 5226 if (err) { 5227 err = -errno; 5228 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5229 map->name, i, targ_map->name, fd, err); 5230 return err; 5231 } 5232 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5233 map->name, i, targ_map->name, fd); 5234 } 5235 5236 zfree(&map->init_slots); 5237 map->init_slots_sz = 0; 5238 5239 return 0; 5240 } 5241 5242 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5243 { 5244 const struct bpf_program *targ_prog; 5245 unsigned int i; 5246 int fd, err; 5247 5248 if (obj->gen_loader) 5249 return -ENOTSUP; 5250 5251 for (i = 0; i < map->init_slots_sz; i++) { 5252 if (!map->init_slots[i]) 5253 continue; 5254 5255 targ_prog = map->init_slots[i]; 5256 fd = bpf_program__fd(targ_prog); 5257 5258 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5259 if (err) { 5260 err = -errno; 5261 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5262 map->name, i, targ_prog->name, fd, err); 5263 return err; 5264 } 5265 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5266 map->name, i, targ_prog->name, fd); 5267 } 5268 5269 zfree(&map->init_slots); 5270 map->init_slots_sz = 0; 5271 5272 return 0; 5273 } 5274 5275 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5276 { 5277 struct bpf_map *map; 5278 int i, err; 5279 5280 for (i = 0; i < obj->nr_maps; i++) { 5281 map = &obj->maps[i]; 5282 5283 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5284 continue; 5285 5286 err = init_prog_array_slots(obj, map); 5287 if (err < 0) { 5288 zclose(map->fd); 5289 return err; 5290 } 5291 } 5292 return 0; 5293 } 5294 5295 static int map_set_def_max_entries(struct bpf_map *map) 5296 { 5297 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5298 int nr_cpus; 5299 5300 nr_cpus = libbpf_num_possible_cpus(); 5301 if (nr_cpus < 0) { 5302 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5303 map->name, nr_cpus); 5304 return nr_cpus; 5305 } 5306 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5307 map->def.max_entries = nr_cpus; 5308 } 5309 5310 return 0; 5311 } 5312 5313 static int 5314 bpf_object__create_maps(struct bpf_object *obj) 5315 { 5316 struct bpf_map *map; 5317 char *cp, errmsg[STRERR_BUFSIZE]; 5318 unsigned int i, j; 5319 int err; 5320 bool retried; 5321 5322 for (i = 0; i < obj->nr_maps; i++) { 5323 map = &obj->maps[i]; 5324 5325 /* To support old kernels, we skip creating global data maps 5326 * (.rodata, .data, .kconfig, etc); later on, during program 5327 * loading, if we detect that at least one of the to-be-loaded 5328 * programs is referencing any global data map, we'll error 5329 * out with program name and relocation index logged. 5330 * This approach allows to accommodate Clang emitting 5331 * unnecessary .rodata.str1.1 sections for string literals, 5332 * but also it allows to have CO-RE applications that use 5333 * global variables in some of BPF programs, but not others. 5334 * If those global variable-using programs are not loaded at 5335 * runtime due to bpf_program__set_autoload(prog, false), 5336 * bpf_object loading will succeed just fine even on old 5337 * kernels. 5338 */ 5339 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5340 map->autocreate = false; 5341 5342 if (!map->autocreate) { 5343 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5344 continue; 5345 } 5346 5347 err = map_set_def_max_entries(map); 5348 if (err) 5349 goto err_out; 5350 5351 retried = false; 5352 retry: 5353 if (map->pin_path) { 5354 err = bpf_object__reuse_map(map); 5355 if (err) { 5356 pr_warn("map '%s': error reusing pinned map\n", 5357 map->name); 5358 goto err_out; 5359 } 5360 if (retried && map->fd < 0) { 5361 pr_warn("map '%s': cannot find pinned map\n", 5362 map->name); 5363 err = -ENOENT; 5364 goto err_out; 5365 } 5366 } 5367 5368 if (map->fd >= 0) { 5369 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5370 map->name, map->fd); 5371 } else { 5372 err = bpf_object__create_map(obj, map, false); 5373 if (err) 5374 goto err_out; 5375 5376 pr_debug("map '%s': created successfully, fd=%d\n", 5377 map->name, map->fd); 5378 5379 if (bpf_map__is_internal(map)) { 5380 err = bpf_object__populate_internal_map(obj, map); 5381 if (err < 0) { 5382 zclose(map->fd); 5383 goto err_out; 5384 } 5385 } 5386 5387 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5388 err = init_map_in_map_slots(obj, map); 5389 if (err < 0) { 5390 zclose(map->fd); 5391 goto err_out; 5392 } 5393 } 5394 } 5395 5396 if (map->pin_path && !map->pinned) { 5397 err = bpf_map__pin(map, NULL); 5398 if (err) { 5399 zclose(map->fd); 5400 if (!retried && err == -EEXIST) { 5401 retried = true; 5402 goto retry; 5403 } 5404 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5405 map->name, map->pin_path, err); 5406 goto err_out; 5407 } 5408 } 5409 } 5410 5411 return 0; 5412 5413 err_out: 5414 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5415 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5416 pr_perm_msg(err); 5417 for (j = 0; j < i; j++) 5418 zclose(obj->maps[j].fd); 5419 return err; 5420 } 5421 5422 static bool bpf_core_is_flavor_sep(const char *s) 5423 { 5424 /* check X___Y name pattern, where X and Y are not underscores */ 5425 return s[0] != '_' && /* X */ 5426 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5427 s[4] != '_'; /* Y */ 5428 } 5429 5430 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5431 * before last triple underscore. Struct name part after last triple 5432 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5433 */ 5434 size_t bpf_core_essential_name_len(const char *name) 5435 { 5436 size_t n = strlen(name); 5437 int i; 5438 5439 for (i = n - 5; i >= 0; i--) { 5440 if (bpf_core_is_flavor_sep(name + i)) 5441 return i + 1; 5442 } 5443 return n; 5444 } 5445 5446 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5447 { 5448 if (!cands) 5449 return; 5450 5451 free(cands->cands); 5452 free(cands); 5453 } 5454 5455 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5456 size_t local_essent_len, 5457 const struct btf *targ_btf, 5458 const char *targ_btf_name, 5459 int targ_start_id, 5460 struct bpf_core_cand_list *cands) 5461 { 5462 struct bpf_core_cand *new_cands, *cand; 5463 const struct btf_type *t, *local_t; 5464 const char *targ_name, *local_name; 5465 size_t targ_essent_len; 5466 int n, i; 5467 5468 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5469 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5470 5471 n = btf__type_cnt(targ_btf); 5472 for (i = targ_start_id; i < n; i++) { 5473 t = btf__type_by_id(targ_btf, i); 5474 if (!btf_kind_core_compat(t, local_t)) 5475 continue; 5476 5477 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5478 if (str_is_empty(targ_name)) 5479 continue; 5480 5481 targ_essent_len = bpf_core_essential_name_len(targ_name); 5482 if (targ_essent_len != local_essent_len) 5483 continue; 5484 5485 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5486 continue; 5487 5488 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5489 local_cand->id, btf_kind_str(local_t), 5490 local_name, i, btf_kind_str(t), targ_name, 5491 targ_btf_name); 5492 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5493 sizeof(*cands->cands)); 5494 if (!new_cands) 5495 return -ENOMEM; 5496 5497 cand = &new_cands[cands->len]; 5498 cand->btf = targ_btf; 5499 cand->id = i; 5500 5501 cands->cands = new_cands; 5502 cands->len++; 5503 } 5504 return 0; 5505 } 5506 5507 static int load_module_btfs(struct bpf_object *obj) 5508 { 5509 struct bpf_btf_info info; 5510 struct module_btf *mod_btf; 5511 struct btf *btf; 5512 char name[64]; 5513 __u32 id = 0, len; 5514 int err, fd; 5515 5516 if (obj->btf_modules_loaded) 5517 return 0; 5518 5519 if (obj->gen_loader) 5520 return 0; 5521 5522 /* don't do this again, even if we find no module BTFs */ 5523 obj->btf_modules_loaded = true; 5524 5525 /* kernel too old to support module BTFs */ 5526 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5527 return 0; 5528 5529 while (true) { 5530 err = bpf_btf_get_next_id(id, &id); 5531 if (err && errno == ENOENT) 5532 return 0; 5533 if (err && errno == EPERM) { 5534 pr_debug("skipping module BTFs loading, missing privileges\n"); 5535 return 0; 5536 } 5537 if (err) { 5538 err = -errno; 5539 pr_warn("failed to iterate BTF objects: %d\n", err); 5540 return err; 5541 } 5542 5543 fd = bpf_btf_get_fd_by_id(id); 5544 if (fd < 0) { 5545 if (errno == ENOENT) 5546 continue; /* expected race: BTF was unloaded */ 5547 err = -errno; 5548 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5549 return err; 5550 } 5551 5552 len = sizeof(info); 5553 memset(&info, 0, sizeof(info)); 5554 info.name = ptr_to_u64(name); 5555 info.name_len = sizeof(name); 5556 5557 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5558 if (err) { 5559 err = -errno; 5560 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5561 goto err_out; 5562 } 5563 5564 /* ignore non-module BTFs */ 5565 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5566 close(fd); 5567 continue; 5568 } 5569 5570 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5571 err = libbpf_get_error(btf); 5572 if (err) { 5573 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5574 name, id, err); 5575 goto err_out; 5576 } 5577 5578 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5579 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5580 if (err) 5581 goto err_out; 5582 5583 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5584 5585 mod_btf->btf = btf; 5586 mod_btf->id = id; 5587 mod_btf->fd = fd; 5588 mod_btf->name = strdup(name); 5589 if (!mod_btf->name) { 5590 err = -ENOMEM; 5591 goto err_out; 5592 } 5593 continue; 5594 5595 err_out: 5596 close(fd); 5597 return err; 5598 } 5599 5600 return 0; 5601 } 5602 5603 static struct bpf_core_cand_list * 5604 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5605 { 5606 struct bpf_core_cand local_cand = {}; 5607 struct bpf_core_cand_list *cands; 5608 const struct btf *main_btf; 5609 const struct btf_type *local_t; 5610 const char *local_name; 5611 size_t local_essent_len; 5612 int err, i; 5613 5614 local_cand.btf = local_btf; 5615 local_cand.id = local_type_id; 5616 local_t = btf__type_by_id(local_btf, local_type_id); 5617 if (!local_t) 5618 return ERR_PTR(-EINVAL); 5619 5620 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5621 if (str_is_empty(local_name)) 5622 return ERR_PTR(-EINVAL); 5623 local_essent_len = bpf_core_essential_name_len(local_name); 5624 5625 cands = calloc(1, sizeof(*cands)); 5626 if (!cands) 5627 return ERR_PTR(-ENOMEM); 5628 5629 /* Attempt to find target candidates in vmlinux BTF first */ 5630 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5631 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5632 if (err) 5633 goto err_out; 5634 5635 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5636 if (cands->len) 5637 return cands; 5638 5639 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5640 if (obj->btf_vmlinux_override) 5641 return cands; 5642 5643 /* now look through module BTFs, trying to still find candidates */ 5644 err = load_module_btfs(obj); 5645 if (err) 5646 goto err_out; 5647 5648 for (i = 0; i < obj->btf_module_cnt; i++) { 5649 err = bpf_core_add_cands(&local_cand, local_essent_len, 5650 obj->btf_modules[i].btf, 5651 obj->btf_modules[i].name, 5652 btf__type_cnt(obj->btf_vmlinux), 5653 cands); 5654 if (err) 5655 goto err_out; 5656 } 5657 5658 return cands; 5659 err_out: 5660 bpf_core_free_cands(cands); 5661 return ERR_PTR(err); 5662 } 5663 5664 /* Check local and target types for compatibility. This check is used for 5665 * type-based CO-RE relocations and follow slightly different rules than 5666 * field-based relocations. This function assumes that root types were already 5667 * checked for name match. Beyond that initial root-level name check, names 5668 * are completely ignored. Compatibility rules are as follows: 5669 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5670 * kind should match for local and target types (i.e., STRUCT is not 5671 * compatible with UNION); 5672 * - for ENUMs, the size is ignored; 5673 * - for INT, size and signedness are ignored; 5674 * - for ARRAY, dimensionality is ignored, element types are checked for 5675 * compatibility recursively; 5676 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5677 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5678 * - FUNC_PROTOs are compatible if they have compatible signature: same 5679 * number of input args and compatible return and argument types. 5680 * These rules are not set in stone and probably will be adjusted as we get 5681 * more experience with using BPF CO-RE relocations. 5682 */ 5683 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5684 const struct btf *targ_btf, __u32 targ_id) 5685 { 5686 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5687 } 5688 5689 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5690 const struct btf *targ_btf, __u32 targ_id) 5691 { 5692 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5693 } 5694 5695 static size_t bpf_core_hash_fn(const long key, void *ctx) 5696 { 5697 return key; 5698 } 5699 5700 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5701 { 5702 return k1 == k2; 5703 } 5704 5705 static int record_relo_core(struct bpf_program *prog, 5706 const struct bpf_core_relo *core_relo, int insn_idx) 5707 { 5708 struct reloc_desc *relos, *relo; 5709 5710 relos = libbpf_reallocarray(prog->reloc_desc, 5711 prog->nr_reloc + 1, sizeof(*relos)); 5712 if (!relos) 5713 return -ENOMEM; 5714 relo = &relos[prog->nr_reloc]; 5715 relo->type = RELO_CORE; 5716 relo->insn_idx = insn_idx; 5717 relo->core_relo = core_relo; 5718 prog->reloc_desc = relos; 5719 prog->nr_reloc++; 5720 return 0; 5721 } 5722 5723 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5724 { 5725 struct reloc_desc *relo; 5726 int i; 5727 5728 for (i = 0; i < prog->nr_reloc; i++) { 5729 relo = &prog->reloc_desc[i]; 5730 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5731 continue; 5732 5733 return relo->core_relo; 5734 } 5735 5736 return NULL; 5737 } 5738 5739 static int bpf_core_resolve_relo(struct bpf_program *prog, 5740 const struct bpf_core_relo *relo, 5741 int relo_idx, 5742 const struct btf *local_btf, 5743 struct hashmap *cand_cache, 5744 struct bpf_core_relo_res *targ_res) 5745 { 5746 struct bpf_core_spec specs_scratch[3] = {}; 5747 struct bpf_core_cand_list *cands = NULL; 5748 const char *prog_name = prog->name; 5749 const struct btf_type *local_type; 5750 const char *local_name; 5751 __u32 local_id = relo->type_id; 5752 int err; 5753 5754 local_type = btf__type_by_id(local_btf, local_id); 5755 if (!local_type) 5756 return -EINVAL; 5757 5758 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5759 if (!local_name) 5760 return -EINVAL; 5761 5762 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5763 !hashmap__find(cand_cache, local_id, &cands)) { 5764 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5765 if (IS_ERR(cands)) { 5766 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5767 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5768 local_name, PTR_ERR(cands)); 5769 return PTR_ERR(cands); 5770 } 5771 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5772 if (err) { 5773 bpf_core_free_cands(cands); 5774 return err; 5775 } 5776 } 5777 5778 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5779 targ_res); 5780 } 5781 5782 static int 5783 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5784 { 5785 const struct btf_ext_info_sec *sec; 5786 struct bpf_core_relo_res targ_res; 5787 const struct bpf_core_relo *rec; 5788 const struct btf_ext_info *seg; 5789 struct hashmap_entry *entry; 5790 struct hashmap *cand_cache = NULL; 5791 struct bpf_program *prog; 5792 struct bpf_insn *insn; 5793 const char *sec_name; 5794 int i, err = 0, insn_idx, sec_idx, sec_num; 5795 5796 if (obj->btf_ext->core_relo_info.len == 0) 5797 return 0; 5798 5799 if (targ_btf_path) { 5800 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5801 err = libbpf_get_error(obj->btf_vmlinux_override); 5802 if (err) { 5803 pr_warn("failed to parse target BTF: %d\n", err); 5804 return err; 5805 } 5806 } 5807 5808 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5809 if (IS_ERR(cand_cache)) { 5810 err = PTR_ERR(cand_cache); 5811 goto out; 5812 } 5813 5814 seg = &obj->btf_ext->core_relo_info; 5815 sec_num = 0; 5816 for_each_btf_ext_sec(seg, sec) { 5817 sec_idx = seg->sec_idxs[sec_num]; 5818 sec_num++; 5819 5820 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5821 if (str_is_empty(sec_name)) { 5822 err = -EINVAL; 5823 goto out; 5824 } 5825 5826 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5827 5828 for_each_btf_ext_rec(seg, sec, i, rec) { 5829 if (rec->insn_off % BPF_INSN_SZ) 5830 return -EINVAL; 5831 insn_idx = rec->insn_off / BPF_INSN_SZ; 5832 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5833 if (!prog) { 5834 /* When __weak subprog is "overridden" by another instance 5835 * of the subprog from a different object file, linker still 5836 * appends all the .BTF.ext info that used to belong to that 5837 * eliminated subprogram. 5838 * This is similar to what x86-64 linker does for relocations. 5839 * So just ignore such relocations just like we ignore 5840 * subprog instructions when discovering subprograms. 5841 */ 5842 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5843 sec_name, i, insn_idx); 5844 continue; 5845 } 5846 /* no need to apply CO-RE relocation if the program is 5847 * not going to be loaded 5848 */ 5849 if (!prog->autoload) 5850 continue; 5851 5852 /* adjust insn_idx from section frame of reference to the local 5853 * program's frame of reference; (sub-)program code is not yet 5854 * relocated, so it's enough to just subtract in-section offset 5855 */ 5856 insn_idx = insn_idx - prog->sec_insn_off; 5857 if (insn_idx >= prog->insns_cnt) 5858 return -EINVAL; 5859 insn = &prog->insns[insn_idx]; 5860 5861 err = record_relo_core(prog, rec, insn_idx); 5862 if (err) { 5863 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5864 prog->name, i, err); 5865 goto out; 5866 } 5867 5868 if (prog->obj->gen_loader) 5869 continue; 5870 5871 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5872 if (err) { 5873 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5874 prog->name, i, err); 5875 goto out; 5876 } 5877 5878 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5879 if (err) { 5880 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5881 prog->name, i, insn_idx, err); 5882 goto out; 5883 } 5884 } 5885 } 5886 5887 out: 5888 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5889 btf__free(obj->btf_vmlinux_override); 5890 obj->btf_vmlinux_override = NULL; 5891 5892 if (!IS_ERR_OR_NULL(cand_cache)) { 5893 hashmap__for_each_entry(cand_cache, entry, i) { 5894 bpf_core_free_cands(entry->pvalue); 5895 } 5896 hashmap__free(cand_cache); 5897 } 5898 return err; 5899 } 5900 5901 /* base map load ldimm64 special constant, used also for log fixup logic */ 5902 #define POISON_LDIMM64_MAP_BASE 2001000000 5903 #define POISON_LDIMM64_MAP_PFX "200100" 5904 5905 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5906 int insn_idx, struct bpf_insn *insn, 5907 int map_idx, const struct bpf_map *map) 5908 { 5909 int i; 5910 5911 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5912 prog->name, relo_idx, insn_idx, map_idx, map->name); 5913 5914 /* we turn single ldimm64 into two identical invalid calls */ 5915 for (i = 0; i < 2; i++) { 5916 insn->code = BPF_JMP | BPF_CALL; 5917 insn->dst_reg = 0; 5918 insn->src_reg = 0; 5919 insn->off = 0; 5920 /* if this instruction is reachable (not a dead code), 5921 * verifier will complain with something like: 5922 * invalid func unknown#2001000123 5923 * where lower 123 is map index into obj->maps[] array 5924 */ 5925 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5926 5927 insn++; 5928 } 5929 } 5930 5931 /* unresolved kfunc call special constant, used also for log fixup logic */ 5932 #define POISON_CALL_KFUNC_BASE 2002000000 5933 #define POISON_CALL_KFUNC_PFX "2002" 5934 5935 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5936 int insn_idx, struct bpf_insn *insn, 5937 int ext_idx, const struct extern_desc *ext) 5938 { 5939 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5940 prog->name, relo_idx, insn_idx, ext->name); 5941 5942 /* we turn kfunc call into invalid helper call with identifiable constant */ 5943 insn->code = BPF_JMP | BPF_CALL; 5944 insn->dst_reg = 0; 5945 insn->src_reg = 0; 5946 insn->off = 0; 5947 /* if this instruction is reachable (not a dead code), 5948 * verifier will complain with something like: 5949 * invalid func unknown#2001000123 5950 * where lower 123 is extern index into obj->externs[] array 5951 */ 5952 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5953 } 5954 5955 /* Relocate data references within program code: 5956 * - map references; 5957 * - global variable references; 5958 * - extern references. 5959 */ 5960 static int 5961 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5962 { 5963 int i; 5964 5965 for (i = 0; i < prog->nr_reloc; i++) { 5966 struct reloc_desc *relo = &prog->reloc_desc[i]; 5967 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5968 const struct bpf_map *map; 5969 struct extern_desc *ext; 5970 5971 switch (relo->type) { 5972 case RELO_LD64: 5973 map = &obj->maps[relo->map_idx]; 5974 if (obj->gen_loader) { 5975 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5976 insn[0].imm = relo->map_idx; 5977 } else if (map->autocreate) { 5978 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5979 insn[0].imm = map->fd; 5980 } else { 5981 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5982 relo->map_idx, map); 5983 } 5984 break; 5985 case RELO_DATA: 5986 map = &obj->maps[relo->map_idx]; 5987 insn[1].imm = insn[0].imm + relo->sym_off; 5988 if (obj->gen_loader) { 5989 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5990 insn[0].imm = relo->map_idx; 5991 } else if (map->autocreate) { 5992 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5993 insn[0].imm = map->fd; 5994 } else { 5995 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5996 relo->map_idx, map); 5997 } 5998 break; 5999 case RELO_EXTERN_LD64: 6000 ext = &obj->externs[relo->ext_idx]; 6001 if (ext->type == EXT_KCFG) { 6002 if (obj->gen_loader) { 6003 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6004 insn[0].imm = obj->kconfig_map_idx; 6005 } else { 6006 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6007 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6008 } 6009 insn[1].imm = ext->kcfg.data_off; 6010 } else /* EXT_KSYM */ { 6011 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6012 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6013 insn[0].imm = ext->ksym.kernel_btf_id; 6014 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6015 } else { /* typeless ksyms or unresolved typed ksyms */ 6016 insn[0].imm = (__u32)ext->ksym.addr; 6017 insn[1].imm = ext->ksym.addr >> 32; 6018 } 6019 } 6020 break; 6021 case RELO_EXTERN_CALL: 6022 ext = &obj->externs[relo->ext_idx]; 6023 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6024 if (ext->is_set) { 6025 insn[0].imm = ext->ksym.kernel_btf_id; 6026 insn[0].off = ext->ksym.btf_fd_idx; 6027 } else { /* unresolved weak kfunc call */ 6028 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6029 relo->ext_idx, ext); 6030 } 6031 break; 6032 case RELO_SUBPROG_ADDR: 6033 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6034 pr_warn("prog '%s': relo #%d: bad insn\n", 6035 prog->name, i); 6036 return -EINVAL; 6037 } 6038 /* handled already */ 6039 break; 6040 case RELO_CALL: 6041 /* handled already */ 6042 break; 6043 case RELO_CORE: 6044 /* will be handled by bpf_program_record_relos() */ 6045 break; 6046 default: 6047 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6048 prog->name, i, relo->type); 6049 return -EINVAL; 6050 } 6051 } 6052 6053 return 0; 6054 } 6055 6056 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6057 const struct bpf_program *prog, 6058 const struct btf_ext_info *ext_info, 6059 void **prog_info, __u32 *prog_rec_cnt, 6060 __u32 *prog_rec_sz) 6061 { 6062 void *copy_start = NULL, *copy_end = NULL; 6063 void *rec, *rec_end, *new_prog_info; 6064 const struct btf_ext_info_sec *sec; 6065 size_t old_sz, new_sz; 6066 int i, sec_num, sec_idx, off_adj; 6067 6068 sec_num = 0; 6069 for_each_btf_ext_sec(ext_info, sec) { 6070 sec_idx = ext_info->sec_idxs[sec_num]; 6071 sec_num++; 6072 if (prog->sec_idx != sec_idx) 6073 continue; 6074 6075 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6076 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6077 6078 if (insn_off < prog->sec_insn_off) 6079 continue; 6080 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6081 break; 6082 6083 if (!copy_start) 6084 copy_start = rec; 6085 copy_end = rec + ext_info->rec_size; 6086 } 6087 6088 if (!copy_start) 6089 return -ENOENT; 6090 6091 /* append func/line info of a given (sub-)program to the main 6092 * program func/line info 6093 */ 6094 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6095 new_sz = old_sz + (copy_end - copy_start); 6096 new_prog_info = realloc(*prog_info, new_sz); 6097 if (!new_prog_info) 6098 return -ENOMEM; 6099 *prog_info = new_prog_info; 6100 *prog_rec_cnt = new_sz / ext_info->rec_size; 6101 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6102 6103 /* Kernel instruction offsets are in units of 8-byte 6104 * instructions, while .BTF.ext instruction offsets generated 6105 * by Clang are in units of bytes. So convert Clang offsets 6106 * into kernel offsets and adjust offset according to program 6107 * relocated position. 6108 */ 6109 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6110 rec = new_prog_info + old_sz; 6111 rec_end = new_prog_info + new_sz; 6112 for (; rec < rec_end; rec += ext_info->rec_size) { 6113 __u32 *insn_off = rec; 6114 6115 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6116 } 6117 *prog_rec_sz = ext_info->rec_size; 6118 return 0; 6119 } 6120 6121 return -ENOENT; 6122 } 6123 6124 static int 6125 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6126 struct bpf_program *main_prog, 6127 const struct bpf_program *prog) 6128 { 6129 int err; 6130 6131 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6132 * supprot func/line info 6133 */ 6134 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6135 return 0; 6136 6137 /* only attempt func info relocation if main program's func_info 6138 * relocation was successful 6139 */ 6140 if (main_prog != prog && !main_prog->func_info) 6141 goto line_info; 6142 6143 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6144 &main_prog->func_info, 6145 &main_prog->func_info_cnt, 6146 &main_prog->func_info_rec_size); 6147 if (err) { 6148 if (err != -ENOENT) { 6149 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6150 prog->name, err); 6151 return err; 6152 } 6153 if (main_prog->func_info) { 6154 /* 6155 * Some info has already been found but has problem 6156 * in the last btf_ext reloc. Must have to error out. 6157 */ 6158 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6159 return err; 6160 } 6161 /* Have problem loading the very first info. Ignore the rest. */ 6162 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6163 prog->name); 6164 } 6165 6166 line_info: 6167 /* don't relocate line info if main program's relocation failed */ 6168 if (main_prog != prog && !main_prog->line_info) 6169 return 0; 6170 6171 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6172 &main_prog->line_info, 6173 &main_prog->line_info_cnt, 6174 &main_prog->line_info_rec_size); 6175 if (err) { 6176 if (err != -ENOENT) { 6177 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6178 prog->name, err); 6179 return err; 6180 } 6181 if (main_prog->line_info) { 6182 /* 6183 * Some info has already been found but has problem 6184 * in the last btf_ext reloc. Must have to error out. 6185 */ 6186 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6187 return err; 6188 } 6189 /* Have problem loading the very first info. Ignore the rest. */ 6190 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6191 prog->name); 6192 } 6193 return 0; 6194 } 6195 6196 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6197 { 6198 size_t insn_idx = *(const size_t *)key; 6199 const struct reloc_desc *relo = elem; 6200 6201 if (insn_idx == relo->insn_idx) 6202 return 0; 6203 return insn_idx < relo->insn_idx ? -1 : 1; 6204 } 6205 6206 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6207 { 6208 if (!prog->nr_reloc) 6209 return NULL; 6210 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6211 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6212 } 6213 6214 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6215 { 6216 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6217 struct reloc_desc *relos; 6218 int i; 6219 6220 if (main_prog == subprog) 6221 return 0; 6222 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6223 /* if new count is zero, reallocarray can return a valid NULL result; 6224 * in this case the previous pointer will be freed, so we *have to* 6225 * reassign old pointer to the new value (even if it's NULL) 6226 */ 6227 if (!relos && new_cnt) 6228 return -ENOMEM; 6229 if (subprog->nr_reloc) 6230 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6231 sizeof(*relos) * subprog->nr_reloc); 6232 6233 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6234 relos[i].insn_idx += subprog->sub_insn_off; 6235 /* After insn_idx adjustment the 'relos' array is still sorted 6236 * by insn_idx and doesn't break bsearch. 6237 */ 6238 main_prog->reloc_desc = relos; 6239 main_prog->nr_reloc = new_cnt; 6240 return 0; 6241 } 6242 6243 static int 6244 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6245 struct bpf_program *prog) 6246 { 6247 size_t sub_insn_idx, insn_idx, new_cnt; 6248 struct bpf_program *subprog; 6249 struct bpf_insn *insns, *insn; 6250 struct reloc_desc *relo; 6251 int err; 6252 6253 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6254 if (err) 6255 return err; 6256 6257 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6258 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6259 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6260 continue; 6261 6262 relo = find_prog_insn_relo(prog, insn_idx); 6263 if (relo && relo->type == RELO_EXTERN_CALL) 6264 /* kfunc relocations will be handled later 6265 * in bpf_object__relocate_data() 6266 */ 6267 continue; 6268 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6269 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6270 prog->name, insn_idx, relo->type); 6271 return -LIBBPF_ERRNO__RELOC; 6272 } 6273 if (relo) { 6274 /* sub-program instruction index is a combination of 6275 * an offset of a symbol pointed to by relocation and 6276 * call instruction's imm field; for global functions, 6277 * call always has imm = -1, but for static functions 6278 * relocation is against STT_SECTION and insn->imm 6279 * points to a start of a static function 6280 * 6281 * for subprog addr relocation, the relo->sym_off + insn->imm is 6282 * the byte offset in the corresponding section. 6283 */ 6284 if (relo->type == RELO_CALL) 6285 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6286 else 6287 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6288 } else if (insn_is_pseudo_func(insn)) { 6289 /* 6290 * RELO_SUBPROG_ADDR relo is always emitted even if both 6291 * functions are in the same section, so it shouldn't reach here. 6292 */ 6293 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6294 prog->name, insn_idx); 6295 return -LIBBPF_ERRNO__RELOC; 6296 } else { 6297 /* if subprogram call is to a static function within 6298 * the same ELF section, there won't be any relocation 6299 * emitted, but it also means there is no additional 6300 * offset necessary, insns->imm is relative to 6301 * instruction's original position within the section 6302 */ 6303 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6304 } 6305 6306 /* we enforce that sub-programs should be in .text section */ 6307 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6308 if (!subprog) { 6309 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6310 prog->name); 6311 return -LIBBPF_ERRNO__RELOC; 6312 } 6313 6314 /* if it's the first call instruction calling into this 6315 * subprogram (meaning this subprog hasn't been processed 6316 * yet) within the context of current main program: 6317 * - append it at the end of main program's instructions blog; 6318 * - process is recursively, while current program is put on hold; 6319 * - if that subprogram calls some other not yet processes 6320 * subprogram, same thing will happen recursively until 6321 * there are no more unprocesses subprograms left to append 6322 * and relocate. 6323 */ 6324 if (subprog->sub_insn_off == 0) { 6325 subprog->sub_insn_off = main_prog->insns_cnt; 6326 6327 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6328 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6329 if (!insns) { 6330 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6331 return -ENOMEM; 6332 } 6333 main_prog->insns = insns; 6334 main_prog->insns_cnt = new_cnt; 6335 6336 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6337 subprog->insns_cnt * sizeof(*insns)); 6338 6339 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6340 main_prog->name, subprog->insns_cnt, subprog->name); 6341 6342 /* The subprog insns are now appended. Append its relos too. */ 6343 err = append_subprog_relos(main_prog, subprog); 6344 if (err) 6345 return err; 6346 err = bpf_object__reloc_code(obj, main_prog, subprog); 6347 if (err) 6348 return err; 6349 } 6350 6351 /* main_prog->insns memory could have been re-allocated, so 6352 * calculate pointer again 6353 */ 6354 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6355 /* calculate correct instruction position within current main 6356 * prog; each main prog can have a different set of 6357 * subprograms appended (potentially in different order as 6358 * well), so position of any subprog can be different for 6359 * different main programs 6360 */ 6361 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6362 6363 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6364 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6365 } 6366 6367 return 0; 6368 } 6369 6370 /* 6371 * Relocate sub-program calls. 6372 * 6373 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6374 * main prog) is processed separately. For each subprog (non-entry functions, 6375 * that can be called from either entry progs or other subprogs) gets their 6376 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6377 * hasn't been yet appended and relocated within current main prog. Once its 6378 * relocated, sub_insn_off will point at the position within current main prog 6379 * where given subprog was appended. This will further be used to relocate all 6380 * the call instructions jumping into this subprog. 6381 * 6382 * We start with main program and process all call instructions. If the call 6383 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6384 * is zero), subprog instructions are appended at the end of main program's 6385 * instruction array. Then main program is "put on hold" while we recursively 6386 * process newly appended subprogram. If that subprogram calls into another 6387 * subprogram that hasn't been appended, new subprogram is appended again to 6388 * the *main* prog's instructions (subprog's instructions are always left 6389 * untouched, as they need to be in unmodified state for subsequent main progs 6390 * and subprog instructions are always sent only as part of a main prog) and 6391 * the process continues recursively. Once all the subprogs called from a main 6392 * prog or any of its subprogs are appended (and relocated), all their 6393 * positions within finalized instructions array are known, so it's easy to 6394 * rewrite call instructions with correct relative offsets, corresponding to 6395 * desired target subprog. 6396 * 6397 * Its important to realize that some subprogs might not be called from some 6398 * main prog and any of its called/used subprogs. Those will keep their 6399 * subprog->sub_insn_off as zero at all times and won't be appended to current 6400 * main prog and won't be relocated within the context of current main prog. 6401 * They might still be used from other main progs later. 6402 * 6403 * Visually this process can be shown as below. Suppose we have two main 6404 * programs mainA and mainB and BPF object contains three subprogs: subA, 6405 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6406 * subC both call subB: 6407 * 6408 * +--------+ +-------+ 6409 * | v v | 6410 * +--+---+ +--+-+-+ +---+--+ 6411 * | subA | | subB | | subC | 6412 * +--+---+ +------+ +---+--+ 6413 * ^ ^ 6414 * | | 6415 * +---+-------+ +------+----+ 6416 * | mainA | | mainB | 6417 * +-----------+ +-----------+ 6418 * 6419 * We'll start relocating mainA, will find subA, append it and start 6420 * processing sub A recursively: 6421 * 6422 * +-----------+------+ 6423 * | mainA | subA | 6424 * +-----------+------+ 6425 * 6426 * At this point we notice that subB is used from subA, so we append it and 6427 * relocate (there are no further subcalls from subB): 6428 * 6429 * +-----------+------+------+ 6430 * | mainA | subA | subB | 6431 * +-----------+------+------+ 6432 * 6433 * At this point, we relocate subA calls, then go one level up and finish with 6434 * relocatin mainA calls. mainA is done. 6435 * 6436 * For mainB process is similar but results in different order. We start with 6437 * mainB and skip subA and subB, as mainB never calls them (at least 6438 * directly), but we see subC is needed, so we append and start processing it: 6439 * 6440 * +-----------+------+ 6441 * | mainB | subC | 6442 * +-----------+------+ 6443 * Now we see subC needs subB, so we go back to it, append and relocate it: 6444 * 6445 * +-----------+------+------+ 6446 * | mainB | subC | subB | 6447 * +-----------+------+------+ 6448 * 6449 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6450 */ 6451 static int 6452 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6453 { 6454 struct bpf_program *subprog; 6455 int i, err; 6456 6457 /* mark all subprogs as not relocated (yet) within the context of 6458 * current main program 6459 */ 6460 for (i = 0; i < obj->nr_programs; i++) { 6461 subprog = &obj->programs[i]; 6462 if (!prog_is_subprog(obj, subprog)) 6463 continue; 6464 6465 subprog->sub_insn_off = 0; 6466 } 6467 6468 err = bpf_object__reloc_code(obj, prog, prog); 6469 if (err) 6470 return err; 6471 6472 return 0; 6473 } 6474 6475 static void 6476 bpf_object__free_relocs(struct bpf_object *obj) 6477 { 6478 struct bpf_program *prog; 6479 int i; 6480 6481 /* free up relocation descriptors */ 6482 for (i = 0; i < obj->nr_programs; i++) { 6483 prog = &obj->programs[i]; 6484 zfree(&prog->reloc_desc); 6485 prog->nr_reloc = 0; 6486 } 6487 } 6488 6489 static int cmp_relocs(const void *_a, const void *_b) 6490 { 6491 const struct reloc_desc *a = _a; 6492 const struct reloc_desc *b = _b; 6493 6494 if (a->insn_idx != b->insn_idx) 6495 return a->insn_idx < b->insn_idx ? -1 : 1; 6496 6497 /* no two relocations should have the same insn_idx, but ... */ 6498 if (a->type != b->type) 6499 return a->type < b->type ? -1 : 1; 6500 6501 return 0; 6502 } 6503 6504 static void bpf_object__sort_relos(struct bpf_object *obj) 6505 { 6506 int i; 6507 6508 for (i = 0; i < obj->nr_programs; i++) { 6509 struct bpf_program *p = &obj->programs[i]; 6510 6511 if (!p->nr_reloc) 6512 continue; 6513 6514 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6515 } 6516 } 6517 6518 static int 6519 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6520 { 6521 struct bpf_program *prog; 6522 size_t i, j; 6523 int err; 6524 6525 if (obj->btf_ext) { 6526 err = bpf_object__relocate_core(obj, targ_btf_path); 6527 if (err) { 6528 pr_warn("failed to perform CO-RE relocations: %d\n", 6529 err); 6530 return err; 6531 } 6532 bpf_object__sort_relos(obj); 6533 } 6534 6535 /* Before relocating calls pre-process relocations and mark 6536 * few ld_imm64 instructions that points to subprogs. 6537 * Otherwise bpf_object__reloc_code() later would have to consider 6538 * all ld_imm64 insns as relocation candidates. That would 6539 * reduce relocation speed, since amount of find_prog_insn_relo() 6540 * would increase and most of them will fail to find a relo. 6541 */ 6542 for (i = 0; i < obj->nr_programs; i++) { 6543 prog = &obj->programs[i]; 6544 for (j = 0; j < prog->nr_reloc; j++) { 6545 struct reloc_desc *relo = &prog->reloc_desc[j]; 6546 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6547 6548 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6549 if (relo->type == RELO_SUBPROG_ADDR) 6550 insn[0].src_reg = BPF_PSEUDO_FUNC; 6551 } 6552 } 6553 6554 /* relocate subprogram calls and append used subprograms to main 6555 * programs; each copy of subprogram code needs to be relocated 6556 * differently for each main program, because its code location might 6557 * have changed. 6558 * Append subprog relos to main programs to allow data relos to be 6559 * processed after text is completely relocated. 6560 */ 6561 for (i = 0; i < obj->nr_programs; i++) { 6562 prog = &obj->programs[i]; 6563 /* sub-program's sub-calls are relocated within the context of 6564 * its main program only 6565 */ 6566 if (prog_is_subprog(obj, prog)) 6567 continue; 6568 if (!prog->autoload) 6569 continue; 6570 6571 err = bpf_object__relocate_calls(obj, prog); 6572 if (err) { 6573 pr_warn("prog '%s': failed to relocate calls: %d\n", 6574 prog->name, err); 6575 return err; 6576 } 6577 } 6578 /* Process data relos for main programs */ 6579 for (i = 0; i < obj->nr_programs; i++) { 6580 prog = &obj->programs[i]; 6581 if (prog_is_subprog(obj, prog)) 6582 continue; 6583 if (!prog->autoload) 6584 continue; 6585 err = bpf_object__relocate_data(obj, prog); 6586 if (err) { 6587 pr_warn("prog '%s': failed to relocate data references: %d\n", 6588 prog->name, err); 6589 return err; 6590 } 6591 } 6592 6593 return 0; 6594 } 6595 6596 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6597 Elf64_Shdr *shdr, Elf_Data *data); 6598 6599 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6600 Elf64_Shdr *shdr, Elf_Data *data) 6601 { 6602 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6603 int i, j, nrels, new_sz; 6604 const struct btf_var_secinfo *vi = NULL; 6605 const struct btf_type *sec, *var, *def; 6606 struct bpf_map *map = NULL, *targ_map = NULL; 6607 struct bpf_program *targ_prog = NULL; 6608 bool is_prog_array, is_map_in_map; 6609 const struct btf_member *member; 6610 const char *name, *mname, *type; 6611 unsigned int moff; 6612 Elf64_Sym *sym; 6613 Elf64_Rel *rel; 6614 void *tmp; 6615 6616 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6617 return -EINVAL; 6618 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6619 if (!sec) 6620 return -EINVAL; 6621 6622 nrels = shdr->sh_size / shdr->sh_entsize; 6623 for (i = 0; i < nrels; i++) { 6624 rel = elf_rel_by_idx(data, i); 6625 if (!rel) { 6626 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6627 return -LIBBPF_ERRNO__FORMAT; 6628 } 6629 6630 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6631 if (!sym) { 6632 pr_warn(".maps relo #%d: symbol %zx not found\n", 6633 i, (size_t)ELF64_R_SYM(rel->r_info)); 6634 return -LIBBPF_ERRNO__FORMAT; 6635 } 6636 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6637 6638 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6639 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6640 (size_t)rel->r_offset, sym->st_name, name); 6641 6642 for (j = 0; j < obj->nr_maps; j++) { 6643 map = &obj->maps[j]; 6644 if (map->sec_idx != obj->efile.btf_maps_shndx) 6645 continue; 6646 6647 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6648 if (vi->offset <= rel->r_offset && 6649 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6650 break; 6651 } 6652 if (j == obj->nr_maps) { 6653 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6654 i, name, (size_t)rel->r_offset); 6655 return -EINVAL; 6656 } 6657 6658 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6659 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6660 type = is_map_in_map ? "map" : "prog"; 6661 if (is_map_in_map) { 6662 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6663 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6664 i, name); 6665 return -LIBBPF_ERRNO__RELOC; 6666 } 6667 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6668 map->def.key_size != sizeof(int)) { 6669 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6670 i, map->name, sizeof(int)); 6671 return -EINVAL; 6672 } 6673 targ_map = bpf_object__find_map_by_name(obj, name); 6674 if (!targ_map) { 6675 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6676 i, name); 6677 return -ESRCH; 6678 } 6679 } else if (is_prog_array) { 6680 targ_prog = bpf_object__find_program_by_name(obj, name); 6681 if (!targ_prog) { 6682 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6683 i, name); 6684 return -ESRCH; 6685 } 6686 if (targ_prog->sec_idx != sym->st_shndx || 6687 targ_prog->sec_insn_off * 8 != sym->st_value || 6688 prog_is_subprog(obj, targ_prog)) { 6689 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6690 i, name); 6691 return -LIBBPF_ERRNO__RELOC; 6692 } 6693 } else { 6694 return -EINVAL; 6695 } 6696 6697 var = btf__type_by_id(obj->btf, vi->type); 6698 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6699 if (btf_vlen(def) == 0) 6700 return -EINVAL; 6701 member = btf_members(def) + btf_vlen(def) - 1; 6702 mname = btf__name_by_offset(obj->btf, member->name_off); 6703 if (strcmp(mname, "values")) 6704 return -EINVAL; 6705 6706 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6707 if (rel->r_offset - vi->offset < moff) 6708 return -EINVAL; 6709 6710 moff = rel->r_offset - vi->offset - moff; 6711 /* here we use BPF pointer size, which is always 64 bit, as we 6712 * are parsing ELF that was built for BPF target 6713 */ 6714 if (moff % bpf_ptr_sz) 6715 return -EINVAL; 6716 moff /= bpf_ptr_sz; 6717 if (moff >= map->init_slots_sz) { 6718 new_sz = moff + 1; 6719 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6720 if (!tmp) 6721 return -ENOMEM; 6722 map->init_slots = tmp; 6723 memset(map->init_slots + map->init_slots_sz, 0, 6724 (new_sz - map->init_slots_sz) * host_ptr_sz); 6725 map->init_slots_sz = new_sz; 6726 } 6727 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6728 6729 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6730 i, map->name, moff, type, name); 6731 } 6732 6733 return 0; 6734 } 6735 6736 static int bpf_object__collect_relos(struct bpf_object *obj) 6737 { 6738 int i, err; 6739 6740 for (i = 0; i < obj->efile.sec_cnt; i++) { 6741 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6742 Elf64_Shdr *shdr; 6743 Elf_Data *data; 6744 int idx; 6745 6746 if (sec_desc->sec_type != SEC_RELO) 6747 continue; 6748 6749 shdr = sec_desc->shdr; 6750 data = sec_desc->data; 6751 idx = shdr->sh_info; 6752 6753 if (shdr->sh_type != SHT_REL) { 6754 pr_warn("internal error at %d\n", __LINE__); 6755 return -LIBBPF_ERRNO__INTERNAL; 6756 } 6757 6758 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx) 6759 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6760 else if (idx == obj->efile.btf_maps_shndx) 6761 err = bpf_object__collect_map_relos(obj, shdr, data); 6762 else 6763 err = bpf_object__collect_prog_relos(obj, shdr, data); 6764 if (err) 6765 return err; 6766 } 6767 6768 bpf_object__sort_relos(obj); 6769 return 0; 6770 } 6771 6772 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6773 { 6774 if (BPF_CLASS(insn->code) == BPF_JMP && 6775 BPF_OP(insn->code) == BPF_CALL && 6776 BPF_SRC(insn->code) == BPF_K && 6777 insn->src_reg == 0 && 6778 insn->dst_reg == 0) { 6779 *func_id = insn->imm; 6780 return true; 6781 } 6782 return false; 6783 } 6784 6785 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6786 { 6787 struct bpf_insn *insn = prog->insns; 6788 enum bpf_func_id func_id; 6789 int i; 6790 6791 if (obj->gen_loader) 6792 return 0; 6793 6794 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6795 if (!insn_is_helper_call(insn, &func_id)) 6796 continue; 6797 6798 /* on kernels that don't yet support 6799 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6800 * to bpf_probe_read() which works well for old kernels 6801 */ 6802 switch (func_id) { 6803 case BPF_FUNC_probe_read_kernel: 6804 case BPF_FUNC_probe_read_user: 6805 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6806 insn->imm = BPF_FUNC_probe_read; 6807 break; 6808 case BPF_FUNC_probe_read_kernel_str: 6809 case BPF_FUNC_probe_read_user_str: 6810 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6811 insn->imm = BPF_FUNC_probe_read_str; 6812 break; 6813 default: 6814 break; 6815 } 6816 } 6817 return 0; 6818 } 6819 6820 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6821 int *btf_obj_fd, int *btf_type_id); 6822 6823 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6824 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6825 struct bpf_prog_load_opts *opts, long cookie) 6826 { 6827 enum sec_def_flags def = cookie; 6828 6829 /* old kernels might not support specifying expected_attach_type */ 6830 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6831 opts->expected_attach_type = 0; 6832 6833 if (def & SEC_SLEEPABLE) 6834 opts->prog_flags |= BPF_F_SLEEPABLE; 6835 6836 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6837 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6838 6839 /* special check for usdt to use uprobe_multi link */ 6840 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 6841 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 6842 6843 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6844 int btf_obj_fd = 0, btf_type_id = 0, err; 6845 const char *attach_name; 6846 6847 attach_name = strchr(prog->sec_name, '/'); 6848 if (!attach_name) { 6849 /* if BPF program is annotated with just SEC("fentry") 6850 * (or similar) without declaratively specifying 6851 * target, then it is expected that target will be 6852 * specified with bpf_program__set_attach_target() at 6853 * runtime before BPF object load step. If not, then 6854 * there is nothing to load into the kernel as BPF 6855 * verifier won't be able to validate BPF program 6856 * correctness anyways. 6857 */ 6858 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6859 prog->name); 6860 return -EINVAL; 6861 } 6862 attach_name++; /* skip over / */ 6863 6864 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6865 if (err) 6866 return err; 6867 6868 /* cache resolved BTF FD and BTF type ID in the prog */ 6869 prog->attach_btf_obj_fd = btf_obj_fd; 6870 prog->attach_btf_id = btf_type_id; 6871 6872 /* but by now libbpf common logic is not utilizing 6873 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6874 * this callback is called after opts were populated by 6875 * libbpf, so this callback has to update opts explicitly here 6876 */ 6877 opts->attach_btf_obj_fd = btf_obj_fd; 6878 opts->attach_btf_id = btf_type_id; 6879 } 6880 return 0; 6881 } 6882 6883 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6884 6885 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6886 struct bpf_insn *insns, int insns_cnt, 6887 const char *license, __u32 kern_version, int *prog_fd) 6888 { 6889 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6890 const char *prog_name = NULL; 6891 char *cp, errmsg[STRERR_BUFSIZE]; 6892 size_t log_buf_size = 0; 6893 char *log_buf = NULL, *tmp; 6894 int btf_fd, ret, err; 6895 bool own_log_buf = true; 6896 __u32 log_level = prog->log_level; 6897 6898 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6899 /* 6900 * The program type must be set. Most likely we couldn't find a proper 6901 * section definition at load time, and thus we didn't infer the type. 6902 */ 6903 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6904 prog->name, prog->sec_name); 6905 return -EINVAL; 6906 } 6907 6908 if (!insns || !insns_cnt) 6909 return -EINVAL; 6910 6911 if (kernel_supports(obj, FEAT_PROG_NAME)) 6912 prog_name = prog->name; 6913 load_attr.attach_prog_fd = prog->attach_prog_fd; 6914 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6915 load_attr.attach_btf_id = prog->attach_btf_id; 6916 load_attr.kern_version = kern_version; 6917 load_attr.prog_ifindex = prog->prog_ifindex; 6918 6919 /* specify func_info/line_info only if kernel supports them */ 6920 btf_fd = bpf_object__btf_fd(obj); 6921 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6922 load_attr.prog_btf_fd = btf_fd; 6923 load_attr.func_info = prog->func_info; 6924 load_attr.func_info_rec_size = prog->func_info_rec_size; 6925 load_attr.func_info_cnt = prog->func_info_cnt; 6926 load_attr.line_info = prog->line_info; 6927 load_attr.line_info_rec_size = prog->line_info_rec_size; 6928 load_attr.line_info_cnt = prog->line_info_cnt; 6929 } 6930 load_attr.log_level = log_level; 6931 load_attr.prog_flags = prog->prog_flags; 6932 load_attr.fd_array = obj->fd_array; 6933 6934 /* adjust load_attr if sec_def provides custom preload callback */ 6935 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6936 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6937 if (err < 0) { 6938 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6939 prog->name, err); 6940 return err; 6941 } 6942 insns = prog->insns; 6943 insns_cnt = prog->insns_cnt; 6944 } 6945 6946 /* allow prog_prepare_load_fn to change expected_attach_type */ 6947 load_attr.expected_attach_type = prog->expected_attach_type; 6948 6949 if (obj->gen_loader) { 6950 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6951 license, insns, insns_cnt, &load_attr, 6952 prog - obj->programs); 6953 *prog_fd = -1; 6954 return 0; 6955 } 6956 6957 retry_load: 6958 /* if log_level is zero, we don't request logs initially even if 6959 * custom log_buf is specified; if the program load fails, then we'll 6960 * bump log_level to 1 and use either custom log_buf or we'll allocate 6961 * our own and retry the load to get details on what failed 6962 */ 6963 if (log_level) { 6964 if (prog->log_buf) { 6965 log_buf = prog->log_buf; 6966 log_buf_size = prog->log_size; 6967 own_log_buf = false; 6968 } else if (obj->log_buf) { 6969 log_buf = obj->log_buf; 6970 log_buf_size = obj->log_size; 6971 own_log_buf = false; 6972 } else { 6973 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6974 tmp = realloc(log_buf, log_buf_size); 6975 if (!tmp) { 6976 ret = -ENOMEM; 6977 goto out; 6978 } 6979 log_buf = tmp; 6980 log_buf[0] = '\0'; 6981 own_log_buf = true; 6982 } 6983 } 6984 6985 load_attr.log_buf = log_buf; 6986 load_attr.log_size = log_buf_size; 6987 load_attr.log_level = log_level; 6988 6989 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6990 if (ret >= 0) { 6991 if (log_level && own_log_buf) { 6992 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6993 prog->name, log_buf); 6994 } 6995 6996 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6997 struct bpf_map *map; 6998 int i; 6999 7000 for (i = 0; i < obj->nr_maps; i++) { 7001 map = &prog->obj->maps[i]; 7002 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7003 continue; 7004 7005 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 7006 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7007 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7008 prog->name, map->real_name, cp); 7009 /* Don't fail hard if can't bind rodata. */ 7010 } 7011 } 7012 } 7013 7014 *prog_fd = ret; 7015 ret = 0; 7016 goto out; 7017 } 7018 7019 if (log_level == 0) { 7020 log_level = 1; 7021 goto retry_load; 7022 } 7023 /* On ENOSPC, increase log buffer size and retry, unless custom 7024 * log_buf is specified. 7025 * Be careful to not overflow u32, though. Kernel's log buf size limit 7026 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7027 * multiply by 2 unless we are sure we'll fit within 32 bits. 7028 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7029 */ 7030 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7031 goto retry_load; 7032 7033 ret = -errno; 7034 7035 /* post-process verifier log to improve error descriptions */ 7036 fixup_verifier_log(prog, log_buf, log_buf_size); 7037 7038 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7039 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7040 pr_perm_msg(ret); 7041 7042 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7043 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7044 prog->name, log_buf); 7045 } 7046 7047 out: 7048 if (own_log_buf) 7049 free(log_buf); 7050 return ret; 7051 } 7052 7053 static char *find_prev_line(char *buf, char *cur) 7054 { 7055 char *p; 7056 7057 if (cur == buf) /* end of a log buf */ 7058 return NULL; 7059 7060 p = cur - 1; 7061 while (p - 1 >= buf && *(p - 1) != '\n') 7062 p--; 7063 7064 return p; 7065 } 7066 7067 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7068 char *orig, size_t orig_sz, const char *patch) 7069 { 7070 /* size of the remaining log content to the right from the to-be-replaced part */ 7071 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7072 size_t patch_sz = strlen(patch); 7073 7074 if (patch_sz != orig_sz) { 7075 /* If patch line(s) are longer than original piece of verifier log, 7076 * shift log contents by (patch_sz - orig_sz) bytes to the right 7077 * starting from after to-be-replaced part of the log. 7078 * 7079 * If patch line(s) are shorter than original piece of verifier log, 7080 * shift log contents by (orig_sz - patch_sz) bytes to the left 7081 * starting from after to-be-replaced part of the log 7082 * 7083 * We need to be careful about not overflowing available 7084 * buf_sz capacity. If that's the case, we'll truncate the end 7085 * of the original log, as necessary. 7086 */ 7087 if (patch_sz > orig_sz) { 7088 if (orig + patch_sz >= buf + buf_sz) { 7089 /* patch is big enough to cover remaining space completely */ 7090 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7091 rem_sz = 0; 7092 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7093 /* patch causes part of remaining log to be truncated */ 7094 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7095 } 7096 } 7097 /* shift remaining log to the right by calculated amount */ 7098 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7099 } 7100 7101 memcpy(orig, patch, patch_sz); 7102 } 7103 7104 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7105 char *buf, size_t buf_sz, size_t log_sz, 7106 char *line1, char *line2, char *line3) 7107 { 7108 /* Expected log for failed and not properly guarded CO-RE relocation: 7109 * line1 -> 123: (85) call unknown#195896080 7110 * line2 -> invalid func unknown#195896080 7111 * line3 -> <anything else or end of buffer> 7112 * 7113 * "123" is the index of the instruction that was poisoned. We extract 7114 * instruction index to find corresponding CO-RE relocation and 7115 * replace this part of the log with more relevant information about 7116 * failed CO-RE relocation. 7117 */ 7118 const struct bpf_core_relo *relo; 7119 struct bpf_core_spec spec; 7120 char patch[512], spec_buf[256]; 7121 int insn_idx, err, spec_len; 7122 7123 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7124 return; 7125 7126 relo = find_relo_core(prog, insn_idx); 7127 if (!relo) 7128 return; 7129 7130 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7131 if (err) 7132 return; 7133 7134 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7135 snprintf(patch, sizeof(patch), 7136 "%d: <invalid CO-RE relocation>\n" 7137 "failed to resolve CO-RE relocation %s%s\n", 7138 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7139 7140 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7141 } 7142 7143 static void fixup_log_missing_map_load(struct bpf_program *prog, 7144 char *buf, size_t buf_sz, size_t log_sz, 7145 char *line1, char *line2, char *line3) 7146 { 7147 /* Expected log for failed and not properly guarded map reference: 7148 * line1 -> 123: (85) call unknown#2001000345 7149 * line2 -> invalid func unknown#2001000345 7150 * line3 -> <anything else or end of buffer> 7151 * 7152 * "123" is the index of the instruction that was poisoned. 7153 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7154 */ 7155 struct bpf_object *obj = prog->obj; 7156 const struct bpf_map *map; 7157 int insn_idx, map_idx; 7158 char patch[128]; 7159 7160 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7161 return; 7162 7163 map_idx -= POISON_LDIMM64_MAP_BASE; 7164 if (map_idx < 0 || map_idx >= obj->nr_maps) 7165 return; 7166 map = &obj->maps[map_idx]; 7167 7168 snprintf(patch, sizeof(patch), 7169 "%d: <invalid BPF map reference>\n" 7170 "BPF map '%s' is referenced but wasn't created\n", 7171 insn_idx, map->name); 7172 7173 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7174 } 7175 7176 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7177 char *buf, size_t buf_sz, size_t log_sz, 7178 char *line1, char *line2, char *line3) 7179 { 7180 /* Expected log for failed and not properly guarded kfunc call: 7181 * line1 -> 123: (85) call unknown#2002000345 7182 * line2 -> invalid func unknown#2002000345 7183 * line3 -> <anything else or end of buffer> 7184 * 7185 * "123" is the index of the instruction that was poisoned. 7186 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7187 */ 7188 struct bpf_object *obj = prog->obj; 7189 const struct extern_desc *ext; 7190 int insn_idx, ext_idx; 7191 char patch[128]; 7192 7193 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7194 return; 7195 7196 ext_idx -= POISON_CALL_KFUNC_BASE; 7197 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7198 return; 7199 ext = &obj->externs[ext_idx]; 7200 7201 snprintf(patch, sizeof(patch), 7202 "%d: <invalid kfunc call>\n" 7203 "kfunc '%s' is referenced but wasn't resolved\n", 7204 insn_idx, ext->name); 7205 7206 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7207 } 7208 7209 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7210 { 7211 /* look for familiar error patterns in last N lines of the log */ 7212 const size_t max_last_line_cnt = 10; 7213 char *prev_line, *cur_line, *next_line; 7214 size_t log_sz; 7215 int i; 7216 7217 if (!buf) 7218 return; 7219 7220 log_sz = strlen(buf) + 1; 7221 next_line = buf + log_sz - 1; 7222 7223 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7224 cur_line = find_prev_line(buf, next_line); 7225 if (!cur_line) 7226 return; 7227 7228 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7229 prev_line = find_prev_line(buf, cur_line); 7230 if (!prev_line) 7231 continue; 7232 7233 /* failed CO-RE relocation case */ 7234 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7235 prev_line, cur_line, next_line); 7236 return; 7237 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7238 prev_line = find_prev_line(buf, cur_line); 7239 if (!prev_line) 7240 continue; 7241 7242 /* reference to uncreated BPF map */ 7243 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7244 prev_line, cur_line, next_line); 7245 return; 7246 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7247 prev_line = find_prev_line(buf, cur_line); 7248 if (!prev_line) 7249 continue; 7250 7251 /* reference to unresolved kfunc */ 7252 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7253 prev_line, cur_line, next_line); 7254 return; 7255 } 7256 } 7257 } 7258 7259 static int bpf_program_record_relos(struct bpf_program *prog) 7260 { 7261 struct bpf_object *obj = prog->obj; 7262 int i; 7263 7264 for (i = 0; i < prog->nr_reloc; i++) { 7265 struct reloc_desc *relo = &prog->reloc_desc[i]; 7266 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7267 int kind; 7268 7269 switch (relo->type) { 7270 case RELO_EXTERN_LD64: 7271 if (ext->type != EXT_KSYM) 7272 continue; 7273 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7274 BTF_KIND_VAR : BTF_KIND_FUNC; 7275 bpf_gen__record_extern(obj->gen_loader, ext->name, 7276 ext->is_weak, !ext->ksym.type_id, 7277 true, kind, relo->insn_idx); 7278 break; 7279 case RELO_EXTERN_CALL: 7280 bpf_gen__record_extern(obj->gen_loader, ext->name, 7281 ext->is_weak, false, false, BTF_KIND_FUNC, 7282 relo->insn_idx); 7283 break; 7284 case RELO_CORE: { 7285 struct bpf_core_relo cr = { 7286 .insn_off = relo->insn_idx * 8, 7287 .type_id = relo->core_relo->type_id, 7288 .access_str_off = relo->core_relo->access_str_off, 7289 .kind = relo->core_relo->kind, 7290 }; 7291 7292 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7293 break; 7294 } 7295 default: 7296 continue; 7297 } 7298 } 7299 return 0; 7300 } 7301 7302 static int 7303 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7304 { 7305 struct bpf_program *prog; 7306 size_t i; 7307 int err; 7308 7309 for (i = 0; i < obj->nr_programs; i++) { 7310 prog = &obj->programs[i]; 7311 err = bpf_object__sanitize_prog(obj, prog); 7312 if (err) 7313 return err; 7314 } 7315 7316 for (i = 0; i < obj->nr_programs; i++) { 7317 prog = &obj->programs[i]; 7318 if (prog_is_subprog(obj, prog)) 7319 continue; 7320 if (!prog->autoload) { 7321 pr_debug("prog '%s': skipped loading\n", prog->name); 7322 continue; 7323 } 7324 prog->log_level |= log_level; 7325 7326 if (obj->gen_loader) 7327 bpf_program_record_relos(prog); 7328 7329 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7330 obj->license, obj->kern_version, &prog->fd); 7331 if (err) { 7332 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7333 return err; 7334 } 7335 } 7336 7337 bpf_object__free_relocs(obj); 7338 return 0; 7339 } 7340 7341 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7342 7343 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7344 { 7345 struct bpf_program *prog; 7346 int err; 7347 7348 bpf_object__for_each_program(prog, obj) { 7349 prog->sec_def = find_sec_def(prog->sec_name); 7350 if (!prog->sec_def) { 7351 /* couldn't guess, but user might manually specify */ 7352 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7353 prog->name, prog->sec_name); 7354 continue; 7355 } 7356 7357 prog->type = prog->sec_def->prog_type; 7358 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7359 7360 /* sec_def can have custom callback which should be called 7361 * after bpf_program is initialized to adjust its properties 7362 */ 7363 if (prog->sec_def->prog_setup_fn) { 7364 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7365 if (err < 0) { 7366 pr_warn("prog '%s': failed to initialize: %d\n", 7367 prog->name, err); 7368 return err; 7369 } 7370 } 7371 } 7372 7373 return 0; 7374 } 7375 7376 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7377 const struct bpf_object_open_opts *opts) 7378 { 7379 const char *obj_name, *kconfig, *btf_tmp_path; 7380 struct bpf_object *obj; 7381 char tmp_name[64]; 7382 int err; 7383 char *log_buf; 7384 size_t log_size; 7385 __u32 log_level; 7386 7387 if (elf_version(EV_CURRENT) == EV_NONE) { 7388 pr_warn("failed to init libelf for %s\n", 7389 path ? : "(mem buf)"); 7390 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7391 } 7392 7393 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7394 return ERR_PTR(-EINVAL); 7395 7396 obj_name = OPTS_GET(opts, object_name, NULL); 7397 if (obj_buf) { 7398 if (!obj_name) { 7399 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7400 (unsigned long)obj_buf, 7401 (unsigned long)obj_buf_sz); 7402 obj_name = tmp_name; 7403 } 7404 path = obj_name; 7405 pr_debug("loading object '%s' from buffer\n", obj_name); 7406 } 7407 7408 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7409 log_size = OPTS_GET(opts, kernel_log_size, 0); 7410 log_level = OPTS_GET(opts, kernel_log_level, 0); 7411 if (log_size > UINT_MAX) 7412 return ERR_PTR(-EINVAL); 7413 if (log_size && !log_buf) 7414 return ERR_PTR(-EINVAL); 7415 7416 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7417 if (IS_ERR(obj)) 7418 return obj; 7419 7420 obj->log_buf = log_buf; 7421 obj->log_size = log_size; 7422 obj->log_level = log_level; 7423 7424 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7425 if (btf_tmp_path) { 7426 if (strlen(btf_tmp_path) >= PATH_MAX) { 7427 err = -ENAMETOOLONG; 7428 goto out; 7429 } 7430 obj->btf_custom_path = strdup(btf_tmp_path); 7431 if (!obj->btf_custom_path) { 7432 err = -ENOMEM; 7433 goto out; 7434 } 7435 } 7436 7437 kconfig = OPTS_GET(opts, kconfig, NULL); 7438 if (kconfig) { 7439 obj->kconfig = strdup(kconfig); 7440 if (!obj->kconfig) { 7441 err = -ENOMEM; 7442 goto out; 7443 } 7444 } 7445 7446 err = bpf_object__elf_init(obj); 7447 err = err ? : bpf_object__check_endianness(obj); 7448 err = err ? : bpf_object__elf_collect(obj); 7449 err = err ? : bpf_object__collect_externs(obj); 7450 err = err ? : bpf_object_fixup_btf(obj); 7451 err = err ? : bpf_object__init_maps(obj, opts); 7452 err = err ? : bpf_object_init_progs(obj, opts); 7453 err = err ? : bpf_object__collect_relos(obj); 7454 if (err) 7455 goto out; 7456 7457 bpf_object__elf_finish(obj); 7458 7459 return obj; 7460 out: 7461 bpf_object__close(obj); 7462 return ERR_PTR(err); 7463 } 7464 7465 struct bpf_object * 7466 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7467 { 7468 if (!path) 7469 return libbpf_err_ptr(-EINVAL); 7470 7471 pr_debug("loading %s\n", path); 7472 7473 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7474 } 7475 7476 struct bpf_object *bpf_object__open(const char *path) 7477 { 7478 return bpf_object__open_file(path, NULL); 7479 } 7480 7481 struct bpf_object * 7482 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7483 const struct bpf_object_open_opts *opts) 7484 { 7485 if (!obj_buf || obj_buf_sz == 0) 7486 return libbpf_err_ptr(-EINVAL); 7487 7488 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7489 } 7490 7491 static int bpf_object_unload(struct bpf_object *obj) 7492 { 7493 size_t i; 7494 7495 if (!obj) 7496 return libbpf_err(-EINVAL); 7497 7498 for (i = 0; i < obj->nr_maps; i++) { 7499 zclose(obj->maps[i].fd); 7500 if (obj->maps[i].st_ops) 7501 zfree(&obj->maps[i].st_ops->kern_vdata); 7502 } 7503 7504 for (i = 0; i < obj->nr_programs; i++) 7505 bpf_program__unload(&obj->programs[i]); 7506 7507 return 0; 7508 } 7509 7510 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7511 { 7512 struct bpf_map *m; 7513 7514 bpf_object__for_each_map(m, obj) { 7515 if (!bpf_map__is_internal(m)) 7516 continue; 7517 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7518 m->def.map_flags &= ~BPF_F_MMAPABLE; 7519 } 7520 7521 return 0; 7522 } 7523 7524 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7525 { 7526 char sym_type, sym_name[500]; 7527 unsigned long long sym_addr; 7528 int ret, err = 0; 7529 FILE *f; 7530 7531 f = fopen("/proc/kallsyms", "re"); 7532 if (!f) { 7533 err = -errno; 7534 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7535 return err; 7536 } 7537 7538 while (true) { 7539 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7540 &sym_addr, &sym_type, sym_name); 7541 if (ret == EOF && feof(f)) 7542 break; 7543 if (ret != 3) { 7544 pr_warn("failed to read kallsyms entry: %d\n", ret); 7545 err = -EINVAL; 7546 break; 7547 } 7548 7549 err = cb(sym_addr, sym_type, sym_name, ctx); 7550 if (err) 7551 break; 7552 } 7553 7554 fclose(f); 7555 return err; 7556 } 7557 7558 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7559 const char *sym_name, void *ctx) 7560 { 7561 struct bpf_object *obj = ctx; 7562 const struct btf_type *t; 7563 struct extern_desc *ext; 7564 7565 ext = find_extern_by_name(obj, sym_name); 7566 if (!ext || ext->type != EXT_KSYM) 7567 return 0; 7568 7569 t = btf__type_by_id(obj->btf, ext->btf_id); 7570 if (!btf_is_var(t)) 7571 return 0; 7572 7573 if (ext->is_set && ext->ksym.addr != sym_addr) { 7574 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7575 sym_name, ext->ksym.addr, sym_addr); 7576 return -EINVAL; 7577 } 7578 if (!ext->is_set) { 7579 ext->is_set = true; 7580 ext->ksym.addr = sym_addr; 7581 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7582 } 7583 return 0; 7584 } 7585 7586 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7587 { 7588 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7589 } 7590 7591 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7592 __u16 kind, struct btf **res_btf, 7593 struct module_btf **res_mod_btf) 7594 { 7595 struct module_btf *mod_btf; 7596 struct btf *btf; 7597 int i, id, err; 7598 7599 btf = obj->btf_vmlinux; 7600 mod_btf = NULL; 7601 id = btf__find_by_name_kind(btf, ksym_name, kind); 7602 7603 if (id == -ENOENT) { 7604 err = load_module_btfs(obj); 7605 if (err) 7606 return err; 7607 7608 for (i = 0; i < obj->btf_module_cnt; i++) { 7609 /* we assume module_btf's BTF FD is always >0 */ 7610 mod_btf = &obj->btf_modules[i]; 7611 btf = mod_btf->btf; 7612 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7613 if (id != -ENOENT) 7614 break; 7615 } 7616 } 7617 if (id <= 0) 7618 return -ESRCH; 7619 7620 *res_btf = btf; 7621 *res_mod_btf = mod_btf; 7622 return id; 7623 } 7624 7625 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7626 struct extern_desc *ext) 7627 { 7628 const struct btf_type *targ_var, *targ_type; 7629 __u32 targ_type_id, local_type_id; 7630 struct module_btf *mod_btf = NULL; 7631 const char *targ_var_name; 7632 struct btf *btf = NULL; 7633 int id, err; 7634 7635 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7636 if (id < 0) { 7637 if (id == -ESRCH && ext->is_weak) 7638 return 0; 7639 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7640 ext->name); 7641 return id; 7642 } 7643 7644 /* find local type_id */ 7645 local_type_id = ext->ksym.type_id; 7646 7647 /* find target type_id */ 7648 targ_var = btf__type_by_id(btf, id); 7649 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7650 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7651 7652 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7653 btf, targ_type_id); 7654 if (err <= 0) { 7655 const struct btf_type *local_type; 7656 const char *targ_name, *local_name; 7657 7658 local_type = btf__type_by_id(obj->btf, local_type_id); 7659 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7660 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7661 7662 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7663 ext->name, local_type_id, 7664 btf_kind_str(local_type), local_name, targ_type_id, 7665 btf_kind_str(targ_type), targ_name); 7666 return -EINVAL; 7667 } 7668 7669 ext->is_set = true; 7670 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7671 ext->ksym.kernel_btf_id = id; 7672 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7673 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7674 7675 return 0; 7676 } 7677 7678 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7679 struct extern_desc *ext) 7680 { 7681 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7682 struct module_btf *mod_btf = NULL; 7683 const struct btf_type *kern_func; 7684 struct btf *kern_btf = NULL; 7685 int ret; 7686 7687 local_func_proto_id = ext->ksym.type_id; 7688 7689 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 7690 &mod_btf); 7691 if (kfunc_id < 0) { 7692 if (kfunc_id == -ESRCH && ext->is_weak) 7693 return 0; 7694 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7695 ext->name); 7696 return kfunc_id; 7697 } 7698 7699 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7700 kfunc_proto_id = kern_func->type; 7701 7702 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7703 kern_btf, kfunc_proto_id); 7704 if (ret <= 0) { 7705 if (ext->is_weak) 7706 return 0; 7707 7708 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 7709 ext->name, local_func_proto_id, 7710 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 7711 return -EINVAL; 7712 } 7713 7714 /* set index for module BTF fd in fd_array, if unset */ 7715 if (mod_btf && !mod_btf->fd_array_idx) { 7716 /* insn->off is s16 */ 7717 if (obj->fd_array_cnt == INT16_MAX) { 7718 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7719 ext->name, mod_btf->fd_array_idx); 7720 return -E2BIG; 7721 } 7722 /* Cannot use index 0 for module BTF fd */ 7723 if (!obj->fd_array_cnt) 7724 obj->fd_array_cnt = 1; 7725 7726 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7727 obj->fd_array_cnt + 1); 7728 if (ret) 7729 return ret; 7730 mod_btf->fd_array_idx = obj->fd_array_cnt; 7731 /* we assume module BTF FD is always >0 */ 7732 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7733 } 7734 7735 ext->is_set = true; 7736 ext->ksym.kernel_btf_id = kfunc_id; 7737 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7738 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 7739 * populates FD into ld_imm64 insn when it's used to point to kfunc. 7740 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 7741 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 7742 */ 7743 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7744 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 7745 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 7746 7747 return 0; 7748 } 7749 7750 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7751 { 7752 const struct btf_type *t; 7753 struct extern_desc *ext; 7754 int i, err; 7755 7756 for (i = 0; i < obj->nr_extern; i++) { 7757 ext = &obj->externs[i]; 7758 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7759 continue; 7760 7761 if (obj->gen_loader) { 7762 ext->is_set = true; 7763 ext->ksym.kernel_btf_obj_fd = 0; 7764 ext->ksym.kernel_btf_id = 0; 7765 continue; 7766 } 7767 t = btf__type_by_id(obj->btf, ext->btf_id); 7768 if (btf_is_var(t)) 7769 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7770 else 7771 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7772 if (err) 7773 return err; 7774 } 7775 return 0; 7776 } 7777 7778 static int bpf_object__resolve_externs(struct bpf_object *obj, 7779 const char *extra_kconfig) 7780 { 7781 bool need_config = false, need_kallsyms = false; 7782 bool need_vmlinux_btf = false; 7783 struct extern_desc *ext; 7784 void *kcfg_data = NULL; 7785 int err, i; 7786 7787 if (obj->nr_extern == 0) 7788 return 0; 7789 7790 if (obj->kconfig_map_idx >= 0) 7791 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7792 7793 for (i = 0; i < obj->nr_extern; i++) { 7794 ext = &obj->externs[i]; 7795 7796 if (ext->type == EXT_KSYM) { 7797 if (ext->ksym.type_id) 7798 need_vmlinux_btf = true; 7799 else 7800 need_kallsyms = true; 7801 continue; 7802 } else if (ext->type == EXT_KCFG) { 7803 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7804 __u64 value = 0; 7805 7806 /* Kconfig externs need actual /proc/config.gz */ 7807 if (str_has_pfx(ext->name, "CONFIG_")) { 7808 need_config = true; 7809 continue; 7810 } 7811 7812 /* Virtual kcfg externs are customly handled by libbpf */ 7813 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7814 value = get_kernel_version(); 7815 if (!value) { 7816 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7817 return -EINVAL; 7818 } 7819 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7820 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7821 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7822 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7823 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7824 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7825 * __kconfig externs, where LINUX_ ones are virtual and filled out 7826 * customly by libbpf (their values don't come from Kconfig). 7827 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7828 * __weak, it defaults to zero value, just like for CONFIG_xxx 7829 * externs. 7830 */ 7831 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7832 return -EINVAL; 7833 } 7834 7835 err = set_kcfg_value_num(ext, ext_ptr, value); 7836 if (err) 7837 return err; 7838 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7839 ext->name, (long long)value); 7840 } else { 7841 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7842 return -EINVAL; 7843 } 7844 } 7845 if (need_config && extra_kconfig) { 7846 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7847 if (err) 7848 return -EINVAL; 7849 need_config = false; 7850 for (i = 0; i < obj->nr_extern; i++) { 7851 ext = &obj->externs[i]; 7852 if (ext->type == EXT_KCFG && !ext->is_set) { 7853 need_config = true; 7854 break; 7855 } 7856 } 7857 } 7858 if (need_config) { 7859 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7860 if (err) 7861 return -EINVAL; 7862 } 7863 if (need_kallsyms) { 7864 err = bpf_object__read_kallsyms_file(obj); 7865 if (err) 7866 return -EINVAL; 7867 } 7868 if (need_vmlinux_btf) { 7869 err = bpf_object__resolve_ksyms_btf_id(obj); 7870 if (err) 7871 return -EINVAL; 7872 } 7873 for (i = 0; i < obj->nr_extern; i++) { 7874 ext = &obj->externs[i]; 7875 7876 if (!ext->is_set && !ext->is_weak) { 7877 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7878 return -ESRCH; 7879 } else if (!ext->is_set) { 7880 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7881 ext->name); 7882 } 7883 } 7884 7885 return 0; 7886 } 7887 7888 static void bpf_map_prepare_vdata(const struct bpf_map *map) 7889 { 7890 struct bpf_struct_ops *st_ops; 7891 __u32 i; 7892 7893 st_ops = map->st_ops; 7894 for (i = 0; i < btf_vlen(st_ops->type); i++) { 7895 struct bpf_program *prog = st_ops->progs[i]; 7896 void *kern_data; 7897 int prog_fd; 7898 7899 if (!prog) 7900 continue; 7901 7902 prog_fd = bpf_program__fd(prog); 7903 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 7904 *(unsigned long *)kern_data = prog_fd; 7905 } 7906 } 7907 7908 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 7909 { 7910 int i; 7911 7912 for (i = 0; i < obj->nr_maps; i++) 7913 if (bpf_map__is_struct_ops(&obj->maps[i])) 7914 bpf_map_prepare_vdata(&obj->maps[i]); 7915 7916 return 0; 7917 } 7918 7919 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7920 { 7921 int err, i; 7922 7923 if (!obj) 7924 return libbpf_err(-EINVAL); 7925 7926 if (obj->loaded) { 7927 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7928 return libbpf_err(-EINVAL); 7929 } 7930 7931 if (obj->gen_loader) 7932 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7933 7934 err = bpf_object__probe_loading(obj); 7935 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7936 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7937 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7938 err = err ? : bpf_object__sanitize_maps(obj); 7939 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7940 err = err ? : bpf_object__create_maps(obj); 7941 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7942 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7943 err = err ? : bpf_object_init_prog_arrays(obj); 7944 err = err ? : bpf_object_prepare_struct_ops(obj); 7945 7946 if (obj->gen_loader) { 7947 /* reset FDs */ 7948 if (obj->btf) 7949 btf__set_fd(obj->btf, -1); 7950 for (i = 0; i < obj->nr_maps; i++) 7951 obj->maps[i].fd = -1; 7952 if (!err) 7953 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7954 } 7955 7956 /* clean up fd_array */ 7957 zfree(&obj->fd_array); 7958 7959 /* clean up module BTFs */ 7960 for (i = 0; i < obj->btf_module_cnt; i++) { 7961 close(obj->btf_modules[i].fd); 7962 btf__free(obj->btf_modules[i].btf); 7963 free(obj->btf_modules[i].name); 7964 } 7965 free(obj->btf_modules); 7966 7967 /* clean up vmlinux BTF */ 7968 btf__free(obj->btf_vmlinux); 7969 obj->btf_vmlinux = NULL; 7970 7971 obj->loaded = true; /* doesn't matter if successfully or not */ 7972 7973 if (err) 7974 goto out; 7975 7976 return 0; 7977 out: 7978 /* unpin any maps that were auto-pinned during load */ 7979 for (i = 0; i < obj->nr_maps; i++) 7980 if (obj->maps[i].pinned && !obj->maps[i].reused) 7981 bpf_map__unpin(&obj->maps[i], NULL); 7982 7983 bpf_object_unload(obj); 7984 pr_warn("failed to load object '%s'\n", obj->path); 7985 return libbpf_err(err); 7986 } 7987 7988 int bpf_object__load(struct bpf_object *obj) 7989 { 7990 return bpf_object_load(obj, 0, NULL); 7991 } 7992 7993 static int make_parent_dir(const char *path) 7994 { 7995 char *cp, errmsg[STRERR_BUFSIZE]; 7996 char *dname, *dir; 7997 int err = 0; 7998 7999 dname = strdup(path); 8000 if (dname == NULL) 8001 return -ENOMEM; 8002 8003 dir = dirname(dname); 8004 if (mkdir(dir, 0700) && errno != EEXIST) 8005 err = -errno; 8006 8007 free(dname); 8008 if (err) { 8009 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8010 pr_warn("failed to mkdir %s: %s\n", path, cp); 8011 } 8012 return err; 8013 } 8014 8015 static int check_path(const char *path) 8016 { 8017 char *cp, errmsg[STRERR_BUFSIZE]; 8018 struct statfs st_fs; 8019 char *dname, *dir; 8020 int err = 0; 8021 8022 if (path == NULL) 8023 return -EINVAL; 8024 8025 dname = strdup(path); 8026 if (dname == NULL) 8027 return -ENOMEM; 8028 8029 dir = dirname(dname); 8030 if (statfs(dir, &st_fs)) { 8031 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8032 pr_warn("failed to statfs %s: %s\n", dir, cp); 8033 err = -errno; 8034 } 8035 free(dname); 8036 8037 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8038 pr_warn("specified path %s is not on BPF FS\n", path); 8039 err = -EINVAL; 8040 } 8041 8042 return err; 8043 } 8044 8045 int bpf_program__pin(struct bpf_program *prog, const char *path) 8046 { 8047 char *cp, errmsg[STRERR_BUFSIZE]; 8048 int err; 8049 8050 if (prog->fd < 0) { 8051 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8052 return libbpf_err(-EINVAL); 8053 } 8054 8055 err = make_parent_dir(path); 8056 if (err) 8057 return libbpf_err(err); 8058 8059 err = check_path(path); 8060 if (err) 8061 return libbpf_err(err); 8062 8063 if (bpf_obj_pin(prog->fd, path)) { 8064 err = -errno; 8065 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8066 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8067 return libbpf_err(err); 8068 } 8069 8070 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8071 return 0; 8072 } 8073 8074 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8075 { 8076 int err; 8077 8078 if (prog->fd < 0) { 8079 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8080 return libbpf_err(-EINVAL); 8081 } 8082 8083 err = check_path(path); 8084 if (err) 8085 return libbpf_err(err); 8086 8087 err = unlink(path); 8088 if (err) 8089 return libbpf_err(-errno); 8090 8091 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8092 return 0; 8093 } 8094 8095 int bpf_map__pin(struct bpf_map *map, const char *path) 8096 { 8097 char *cp, errmsg[STRERR_BUFSIZE]; 8098 int err; 8099 8100 if (map == NULL) { 8101 pr_warn("invalid map pointer\n"); 8102 return libbpf_err(-EINVAL); 8103 } 8104 8105 if (map->pin_path) { 8106 if (path && strcmp(path, map->pin_path)) { 8107 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8108 bpf_map__name(map), map->pin_path, path); 8109 return libbpf_err(-EINVAL); 8110 } else if (map->pinned) { 8111 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8112 bpf_map__name(map), map->pin_path); 8113 return 0; 8114 } 8115 } else { 8116 if (!path) { 8117 pr_warn("missing a path to pin map '%s' at\n", 8118 bpf_map__name(map)); 8119 return libbpf_err(-EINVAL); 8120 } else if (map->pinned) { 8121 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8122 return libbpf_err(-EEXIST); 8123 } 8124 8125 map->pin_path = strdup(path); 8126 if (!map->pin_path) { 8127 err = -errno; 8128 goto out_err; 8129 } 8130 } 8131 8132 err = make_parent_dir(map->pin_path); 8133 if (err) 8134 return libbpf_err(err); 8135 8136 err = check_path(map->pin_path); 8137 if (err) 8138 return libbpf_err(err); 8139 8140 if (bpf_obj_pin(map->fd, map->pin_path)) { 8141 err = -errno; 8142 goto out_err; 8143 } 8144 8145 map->pinned = true; 8146 pr_debug("pinned map '%s'\n", map->pin_path); 8147 8148 return 0; 8149 8150 out_err: 8151 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8152 pr_warn("failed to pin map: %s\n", cp); 8153 return libbpf_err(err); 8154 } 8155 8156 int bpf_map__unpin(struct bpf_map *map, const char *path) 8157 { 8158 int err; 8159 8160 if (map == NULL) { 8161 pr_warn("invalid map pointer\n"); 8162 return libbpf_err(-EINVAL); 8163 } 8164 8165 if (map->pin_path) { 8166 if (path && strcmp(path, map->pin_path)) { 8167 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8168 bpf_map__name(map), map->pin_path, path); 8169 return libbpf_err(-EINVAL); 8170 } 8171 path = map->pin_path; 8172 } else if (!path) { 8173 pr_warn("no path to unpin map '%s' from\n", 8174 bpf_map__name(map)); 8175 return libbpf_err(-EINVAL); 8176 } 8177 8178 err = check_path(path); 8179 if (err) 8180 return libbpf_err(err); 8181 8182 err = unlink(path); 8183 if (err != 0) 8184 return libbpf_err(-errno); 8185 8186 map->pinned = false; 8187 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8188 8189 return 0; 8190 } 8191 8192 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8193 { 8194 char *new = NULL; 8195 8196 if (path) { 8197 new = strdup(path); 8198 if (!new) 8199 return libbpf_err(-errno); 8200 } 8201 8202 free(map->pin_path); 8203 map->pin_path = new; 8204 return 0; 8205 } 8206 8207 __alias(bpf_map__pin_path) 8208 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8209 8210 const char *bpf_map__pin_path(const struct bpf_map *map) 8211 { 8212 return map->pin_path; 8213 } 8214 8215 bool bpf_map__is_pinned(const struct bpf_map *map) 8216 { 8217 return map->pinned; 8218 } 8219 8220 static void sanitize_pin_path(char *s) 8221 { 8222 /* bpffs disallows periods in path names */ 8223 while (*s) { 8224 if (*s == '.') 8225 *s = '_'; 8226 s++; 8227 } 8228 } 8229 8230 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8231 { 8232 struct bpf_map *map; 8233 int err; 8234 8235 if (!obj) 8236 return libbpf_err(-ENOENT); 8237 8238 if (!obj->loaded) { 8239 pr_warn("object not yet loaded; load it first\n"); 8240 return libbpf_err(-ENOENT); 8241 } 8242 8243 bpf_object__for_each_map(map, obj) { 8244 char *pin_path = NULL; 8245 char buf[PATH_MAX]; 8246 8247 if (!map->autocreate) 8248 continue; 8249 8250 if (path) { 8251 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8252 if (err) 8253 goto err_unpin_maps; 8254 sanitize_pin_path(buf); 8255 pin_path = buf; 8256 } else if (!map->pin_path) { 8257 continue; 8258 } 8259 8260 err = bpf_map__pin(map, pin_path); 8261 if (err) 8262 goto err_unpin_maps; 8263 } 8264 8265 return 0; 8266 8267 err_unpin_maps: 8268 while ((map = bpf_object__prev_map(obj, map))) { 8269 if (!map->pin_path) 8270 continue; 8271 8272 bpf_map__unpin(map, NULL); 8273 } 8274 8275 return libbpf_err(err); 8276 } 8277 8278 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8279 { 8280 struct bpf_map *map; 8281 int err; 8282 8283 if (!obj) 8284 return libbpf_err(-ENOENT); 8285 8286 bpf_object__for_each_map(map, obj) { 8287 char *pin_path = NULL; 8288 char buf[PATH_MAX]; 8289 8290 if (path) { 8291 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8292 if (err) 8293 return libbpf_err(err); 8294 sanitize_pin_path(buf); 8295 pin_path = buf; 8296 } else if (!map->pin_path) { 8297 continue; 8298 } 8299 8300 err = bpf_map__unpin(map, pin_path); 8301 if (err) 8302 return libbpf_err(err); 8303 } 8304 8305 return 0; 8306 } 8307 8308 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8309 { 8310 struct bpf_program *prog; 8311 char buf[PATH_MAX]; 8312 int err; 8313 8314 if (!obj) 8315 return libbpf_err(-ENOENT); 8316 8317 if (!obj->loaded) { 8318 pr_warn("object not yet loaded; load it first\n"); 8319 return libbpf_err(-ENOENT); 8320 } 8321 8322 bpf_object__for_each_program(prog, obj) { 8323 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8324 if (err) 8325 goto err_unpin_programs; 8326 8327 err = bpf_program__pin(prog, buf); 8328 if (err) 8329 goto err_unpin_programs; 8330 } 8331 8332 return 0; 8333 8334 err_unpin_programs: 8335 while ((prog = bpf_object__prev_program(obj, prog))) { 8336 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8337 continue; 8338 8339 bpf_program__unpin(prog, buf); 8340 } 8341 8342 return libbpf_err(err); 8343 } 8344 8345 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8346 { 8347 struct bpf_program *prog; 8348 int err; 8349 8350 if (!obj) 8351 return libbpf_err(-ENOENT); 8352 8353 bpf_object__for_each_program(prog, obj) { 8354 char buf[PATH_MAX]; 8355 8356 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8357 if (err) 8358 return libbpf_err(err); 8359 8360 err = bpf_program__unpin(prog, buf); 8361 if (err) 8362 return libbpf_err(err); 8363 } 8364 8365 return 0; 8366 } 8367 8368 int bpf_object__pin(struct bpf_object *obj, const char *path) 8369 { 8370 int err; 8371 8372 err = bpf_object__pin_maps(obj, path); 8373 if (err) 8374 return libbpf_err(err); 8375 8376 err = bpf_object__pin_programs(obj, path); 8377 if (err) { 8378 bpf_object__unpin_maps(obj, path); 8379 return libbpf_err(err); 8380 } 8381 8382 return 0; 8383 } 8384 8385 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8386 { 8387 int err; 8388 8389 err = bpf_object__unpin_programs(obj, path); 8390 if (err) 8391 return libbpf_err(err); 8392 8393 err = bpf_object__unpin_maps(obj, path); 8394 if (err) 8395 return libbpf_err(err); 8396 8397 return 0; 8398 } 8399 8400 static void bpf_map__destroy(struct bpf_map *map) 8401 { 8402 if (map->inner_map) { 8403 bpf_map__destroy(map->inner_map); 8404 zfree(&map->inner_map); 8405 } 8406 8407 zfree(&map->init_slots); 8408 map->init_slots_sz = 0; 8409 8410 if (map->mmaped) { 8411 size_t mmap_sz; 8412 8413 mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 8414 munmap(map->mmaped, mmap_sz); 8415 map->mmaped = NULL; 8416 } 8417 8418 if (map->st_ops) { 8419 zfree(&map->st_ops->data); 8420 zfree(&map->st_ops->progs); 8421 zfree(&map->st_ops->kern_func_off); 8422 zfree(&map->st_ops); 8423 } 8424 8425 zfree(&map->name); 8426 zfree(&map->real_name); 8427 zfree(&map->pin_path); 8428 8429 if (map->fd >= 0) 8430 zclose(map->fd); 8431 } 8432 8433 void bpf_object__close(struct bpf_object *obj) 8434 { 8435 size_t i; 8436 8437 if (IS_ERR_OR_NULL(obj)) 8438 return; 8439 8440 usdt_manager_free(obj->usdt_man); 8441 obj->usdt_man = NULL; 8442 8443 bpf_gen__free(obj->gen_loader); 8444 bpf_object__elf_finish(obj); 8445 bpf_object_unload(obj); 8446 btf__free(obj->btf); 8447 btf__free(obj->btf_vmlinux); 8448 btf_ext__free(obj->btf_ext); 8449 8450 for (i = 0; i < obj->nr_maps; i++) 8451 bpf_map__destroy(&obj->maps[i]); 8452 8453 zfree(&obj->btf_custom_path); 8454 zfree(&obj->kconfig); 8455 8456 for (i = 0; i < obj->nr_extern; i++) 8457 zfree(&obj->externs[i].essent_name); 8458 8459 zfree(&obj->externs); 8460 obj->nr_extern = 0; 8461 8462 zfree(&obj->maps); 8463 obj->nr_maps = 0; 8464 8465 if (obj->programs && obj->nr_programs) { 8466 for (i = 0; i < obj->nr_programs; i++) 8467 bpf_program__exit(&obj->programs[i]); 8468 } 8469 zfree(&obj->programs); 8470 8471 free(obj); 8472 } 8473 8474 const char *bpf_object__name(const struct bpf_object *obj) 8475 { 8476 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8477 } 8478 8479 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8480 { 8481 return obj ? obj->kern_version : 0; 8482 } 8483 8484 struct btf *bpf_object__btf(const struct bpf_object *obj) 8485 { 8486 return obj ? obj->btf : NULL; 8487 } 8488 8489 int bpf_object__btf_fd(const struct bpf_object *obj) 8490 { 8491 return obj->btf ? btf__fd(obj->btf) : -1; 8492 } 8493 8494 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8495 { 8496 if (obj->loaded) 8497 return libbpf_err(-EINVAL); 8498 8499 obj->kern_version = kern_version; 8500 8501 return 0; 8502 } 8503 8504 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8505 { 8506 struct bpf_gen *gen; 8507 8508 if (!opts) 8509 return -EFAULT; 8510 if (!OPTS_VALID(opts, gen_loader_opts)) 8511 return -EINVAL; 8512 gen = calloc(sizeof(*gen), 1); 8513 if (!gen) 8514 return -ENOMEM; 8515 gen->opts = opts; 8516 obj->gen_loader = gen; 8517 return 0; 8518 } 8519 8520 static struct bpf_program * 8521 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8522 bool forward) 8523 { 8524 size_t nr_programs = obj->nr_programs; 8525 ssize_t idx; 8526 8527 if (!nr_programs) 8528 return NULL; 8529 8530 if (!p) 8531 /* Iter from the beginning */ 8532 return forward ? &obj->programs[0] : 8533 &obj->programs[nr_programs - 1]; 8534 8535 if (p->obj != obj) { 8536 pr_warn("error: program handler doesn't match object\n"); 8537 return errno = EINVAL, NULL; 8538 } 8539 8540 idx = (p - obj->programs) + (forward ? 1 : -1); 8541 if (idx >= obj->nr_programs || idx < 0) 8542 return NULL; 8543 return &obj->programs[idx]; 8544 } 8545 8546 struct bpf_program * 8547 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8548 { 8549 struct bpf_program *prog = prev; 8550 8551 do { 8552 prog = __bpf_program__iter(prog, obj, true); 8553 } while (prog && prog_is_subprog(obj, prog)); 8554 8555 return prog; 8556 } 8557 8558 struct bpf_program * 8559 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8560 { 8561 struct bpf_program *prog = next; 8562 8563 do { 8564 prog = __bpf_program__iter(prog, obj, false); 8565 } while (prog && prog_is_subprog(obj, prog)); 8566 8567 return prog; 8568 } 8569 8570 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8571 { 8572 prog->prog_ifindex = ifindex; 8573 } 8574 8575 const char *bpf_program__name(const struct bpf_program *prog) 8576 { 8577 return prog->name; 8578 } 8579 8580 const char *bpf_program__section_name(const struct bpf_program *prog) 8581 { 8582 return prog->sec_name; 8583 } 8584 8585 bool bpf_program__autoload(const struct bpf_program *prog) 8586 { 8587 return prog->autoload; 8588 } 8589 8590 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8591 { 8592 if (prog->obj->loaded) 8593 return libbpf_err(-EINVAL); 8594 8595 prog->autoload = autoload; 8596 return 0; 8597 } 8598 8599 bool bpf_program__autoattach(const struct bpf_program *prog) 8600 { 8601 return prog->autoattach; 8602 } 8603 8604 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8605 { 8606 prog->autoattach = autoattach; 8607 } 8608 8609 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8610 { 8611 return prog->insns; 8612 } 8613 8614 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8615 { 8616 return prog->insns_cnt; 8617 } 8618 8619 int bpf_program__set_insns(struct bpf_program *prog, 8620 struct bpf_insn *new_insns, size_t new_insn_cnt) 8621 { 8622 struct bpf_insn *insns; 8623 8624 if (prog->obj->loaded) 8625 return -EBUSY; 8626 8627 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8628 /* NULL is a valid return from reallocarray if the new count is zero */ 8629 if (!insns && new_insn_cnt) { 8630 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8631 return -ENOMEM; 8632 } 8633 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8634 8635 prog->insns = insns; 8636 prog->insns_cnt = new_insn_cnt; 8637 return 0; 8638 } 8639 8640 int bpf_program__fd(const struct bpf_program *prog) 8641 { 8642 if (!prog) 8643 return libbpf_err(-EINVAL); 8644 8645 if (prog->fd < 0) 8646 return libbpf_err(-ENOENT); 8647 8648 return prog->fd; 8649 } 8650 8651 __alias(bpf_program__type) 8652 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8653 8654 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8655 { 8656 return prog->type; 8657 } 8658 8659 static size_t custom_sec_def_cnt; 8660 static struct bpf_sec_def *custom_sec_defs; 8661 static struct bpf_sec_def custom_fallback_def; 8662 static bool has_custom_fallback_def; 8663 static int last_custom_sec_def_handler_id; 8664 8665 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8666 { 8667 if (prog->obj->loaded) 8668 return libbpf_err(-EBUSY); 8669 8670 /* if type is not changed, do nothing */ 8671 if (prog->type == type) 8672 return 0; 8673 8674 prog->type = type; 8675 8676 /* If a program type was changed, we need to reset associated SEC() 8677 * handler, as it will be invalid now. The only exception is a generic 8678 * fallback handler, which by definition is program type-agnostic and 8679 * is a catch-all custom handler, optionally set by the application, 8680 * so should be able to handle any type of BPF program. 8681 */ 8682 if (prog->sec_def != &custom_fallback_def) 8683 prog->sec_def = NULL; 8684 return 0; 8685 } 8686 8687 __alias(bpf_program__expected_attach_type) 8688 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8689 8690 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8691 { 8692 return prog->expected_attach_type; 8693 } 8694 8695 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8696 enum bpf_attach_type type) 8697 { 8698 if (prog->obj->loaded) 8699 return libbpf_err(-EBUSY); 8700 8701 prog->expected_attach_type = type; 8702 return 0; 8703 } 8704 8705 __u32 bpf_program__flags(const struct bpf_program *prog) 8706 { 8707 return prog->prog_flags; 8708 } 8709 8710 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8711 { 8712 if (prog->obj->loaded) 8713 return libbpf_err(-EBUSY); 8714 8715 prog->prog_flags = flags; 8716 return 0; 8717 } 8718 8719 __u32 bpf_program__log_level(const struct bpf_program *prog) 8720 { 8721 return prog->log_level; 8722 } 8723 8724 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8725 { 8726 if (prog->obj->loaded) 8727 return libbpf_err(-EBUSY); 8728 8729 prog->log_level = log_level; 8730 return 0; 8731 } 8732 8733 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8734 { 8735 *log_size = prog->log_size; 8736 return prog->log_buf; 8737 } 8738 8739 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8740 { 8741 if (log_size && !log_buf) 8742 return -EINVAL; 8743 if (prog->log_size > UINT_MAX) 8744 return -EINVAL; 8745 if (prog->obj->loaded) 8746 return -EBUSY; 8747 8748 prog->log_buf = log_buf; 8749 prog->log_size = log_size; 8750 return 0; 8751 } 8752 8753 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8754 .sec = (char *)sec_pfx, \ 8755 .prog_type = BPF_PROG_TYPE_##ptype, \ 8756 .expected_attach_type = atype, \ 8757 .cookie = (long)(flags), \ 8758 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8759 __VA_ARGS__ \ 8760 } 8761 8762 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8763 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8764 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8765 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8766 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8767 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8768 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8769 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8770 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8771 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8772 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8773 8774 static const struct bpf_sec_def section_defs[] = { 8775 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8776 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8777 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8778 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8779 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8780 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8781 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8782 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8783 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8784 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8785 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8786 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8787 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 8788 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8789 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 8790 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8791 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8792 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 8793 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 8794 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 8795 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 8796 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 8797 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 8798 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8799 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8800 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 8801 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8802 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8803 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8804 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8805 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8806 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8807 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8808 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8809 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8810 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8811 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8812 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8813 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8814 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8815 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8816 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8817 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8818 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8819 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8820 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8821 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8822 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8823 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8824 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8825 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8826 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8827 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8828 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8829 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8830 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8831 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8832 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8833 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8834 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8835 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8836 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8837 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8838 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8839 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8840 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8841 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8842 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8843 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8844 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8845 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8846 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8847 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8848 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8849 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8850 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8851 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8852 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8853 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8854 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8855 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8856 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8857 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8858 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8859 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8860 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8861 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8862 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8863 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8864 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 8865 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8866 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 8867 }; 8868 8869 int libbpf_register_prog_handler(const char *sec, 8870 enum bpf_prog_type prog_type, 8871 enum bpf_attach_type exp_attach_type, 8872 const struct libbpf_prog_handler_opts *opts) 8873 { 8874 struct bpf_sec_def *sec_def; 8875 8876 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8877 return libbpf_err(-EINVAL); 8878 8879 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8880 return libbpf_err(-E2BIG); 8881 8882 if (sec) { 8883 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8884 sizeof(*sec_def)); 8885 if (!sec_def) 8886 return libbpf_err(-ENOMEM); 8887 8888 custom_sec_defs = sec_def; 8889 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8890 } else { 8891 if (has_custom_fallback_def) 8892 return libbpf_err(-EBUSY); 8893 8894 sec_def = &custom_fallback_def; 8895 } 8896 8897 sec_def->sec = sec ? strdup(sec) : NULL; 8898 if (sec && !sec_def->sec) 8899 return libbpf_err(-ENOMEM); 8900 8901 sec_def->prog_type = prog_type; 8902 sec_def->expected_attach_type = exp_attach_type; 8903 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8904 8905 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8906 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8907 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8908 8909 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8910 8911 if (sec) 8912 custom_sec_def_cnt++; 8913 else 8914 has_custom_fallback_def = true; 8915 8916 return sec_def->handler_id; 8917 } 8918 8919 int libbpf_unregister_prog_handler(int handler_id) 8920 { 8921 struct bpf_sec_def *sec_defs; 8922 int i; 8923 8924 if (handler_id <= 0) 8925 return libbpf_err(-EINVAL); 8926 8927 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8928 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8929 has_custom_fallback_def = false; 8930 return 0; 8931 } 8932 8933 for (i = 0; i < custom_sec_def_cnt; i++) { 8934 if (custom_sec_defs[i].handler_id == handler_id) 8935 break; 8936 } 8937 8938 if (i == custom_sec_def_cnt) 8939 return libbpf_err(-ENOENT); 8940 8941 free(custom_sec_defs[i].sec); 8942 for (i = i + 1; i < custom_sec_def_cnt; i++) 8943 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8944 custom_sec_def_cnt--; 8945 8946 /* try to shrink the array, but it's ok if we couldn't */ 8947 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8948 /* if new count is zero, reallocarray can return a valid NULL result; 8949 * in this case the previous pointer will be freed, so we *have to* 8950 * reassign old pointer to the new value (even if it's NULL) 8951 */ 8952 if (sec_defs || custom_sec_def_cnt == 0) 8953 custom_sec_defs = sec_defs; 8954 8955 return 0; 8956 } 8957 8958 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8959 { 8960 size_t len = strlen(sec_def->sec); 8961 8962 /* "type/" always has to have proper SEC("type/extras") form */ 8963 if (sec_def->sec[len - 1] == '/') { 8964 if (str_has_pfx(sec_name, sec_def->sec)) 8965 return true; 8966 return false; 8967 } 8968 8969 /* "type+" means it can be either exact SEC("type") or 8970 * well-formed SEC("type/extras") with proper '/' separator 8971 */ 8972 if (sec_def->sec[len - 1] == '+') { 8973 len--; 8974 /* not even a prefix */ 8975 if (strncmp(sec_name, sec_def->sec, len) != 0) 8976 return false; 8977 /* exact match or has '/' separator */ 8978 if (sec_name[len] == '\0' || sec_name[len] == '/') 8979 return true; 8980 return false; 8981 } 8982 8983 return strcmp(sec_name, sec_def->sec) == 0; 8984 } 8985 8986 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8987 { 8988 const struct bpf_sec_def *sec_def; 8989 int i, n; 8990 8991 n = custom_sec_def_cnt; 8992 for (i = 0; i < n; i++) { 8993 sec_def = &custom_sec_defs[i]; 8994 if (sec_def_matches(sec_def, sec_name)) 8995 return sec_def; 8996 } 8997 8998 n = ARRAY_SIZE(section_defs); 8999 for (i = 0; i < n; i++) { 9000 sec_def = §ion_defs[i]; 9001 if (sec_def_matches(sec_def, sec_name)) 9002 return sec_def; 9003 } 9004 9005 if (has_custom_fallback_def) 9006 return &custom_fallback_def; 9007 9008 return NULL; 9009 } 9010 9011 #define MAX_TYPE_NAME_SIZE 32 9012 9013 static char *libbpf_get_type_names(bool attach_type) 9014 { 9015 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9016 char *buf; 9017 9018 buf = malloc(len); 9019 if (!buf) 9020 return NULL; 9021 9022 buf[0] = '\0'; 9023 /* Forge string buf with all available names */ 9024 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9025 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9026 9027 if (attach_type) { 9028 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9029 continue; 9030 9031 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9032 continue; 9033 } 9034 9035 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9036 free(buf); 9037 return NULL; 9038 } 9039 strcat(buf, " "); 9040 strcat(buf, section_defs[i].sec); 9041 } 9042 9043 return buf; 9044 } 9045 9046 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9047 enum bpf_attach_type *expected_attach_type) 9048 { 9049 const struct bpf_sec_def *sec_def; 9050 char *type_names; 9051 9052 if (!name) 9053 return libbpf_err(-EINVAL); 9054 9055 sec_def = find_sec_def(name); 9056 if (sec_def) { 9057 *prog_type = sec_def->prog_type; 9058 *expected_attach_type = sec_def->expected_attach_type; 9059 return 0; 9060 } 9061 9062 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9063 type_names = libbpf_get_type_names(false); 9064 if (type_names != NULL) { 9065 pr_debug("supported section(type) names are:%s\n", type_names); 9066 free(type_names); 9067 } 9068 9069 return libbpf_err(-ESRCH); 9070 } 9071 9072 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9073 { 9074 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9075 return NULL; 9076 9077 return attach_type_name[t]; 9078 } 9079 9080 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9081 { 9082 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9083 return NULL; 9084 9085 return link_type_name[t]; 9086 } 9087 9088 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9089 { 9090 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9091 return NULL; 9092 9093 return map_type_name[t]; 9094 } 9095 9096 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9097 { 9098 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9099 return NULL; 9100 9101 return prog_type_name[t]; 9102 } 9103 9104 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9105 int sec_idx, 9106 size_t offset) 9107 { 9108 struct bpf_map *map; 9109 size_t i; 9110 9111 for (i = 0; i < obj->nr_maps; i++) { 9112 map = &obj->maps[i]; 9113 if (!bpf_map__is_struct_ops(map)) 9114 continue; 9115 if (map->sec_idx == sec_idx && 9116 map->sec_offset <= offset && 9117 offset - map->sec_offset < map->def.value_size) 9118 return map; 9119 } 9120 9121 return NULL; 9122 } 9123 9124 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 9125 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9126 Elf64_Shdr *shdr, Elf_Data *data) 9127 { 9128 const struct btf_member *member; 9129 struct bpf_struct_ops *st_ops; 9130 struct bpf_program *prog; 9131 unsigned int shdr_idx; 9132 const struct btf *btf; 9133 struct bpf_map *map; 9134 unsigned int moff, insn_idx; 9135 const char *name; 9136 __u32 member_idx; 9137 Elf64_Sym *sym; 9138 Elf64_Rel *rel; 9139 int i, nrels; 9140 9141 btf = obj->btf; 9142 nrels = shdr->sh_size / shdr->sh_entsize; 9143 for (i = 0; i < nrels; i++) { 9144 rel = elf_rel_by_idx(data, i); 9145 if (!rel) { 9146 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9147 return -LIBBPF_ERRNO__FORMAT; 9148 } 9149 9150 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9151 if (!sym) { 9152 pr_warn("struct_ops reloc: symbol %zx not found\n", 9153 (size_t)ELF64_R_SYM(rel->r_info)); 9154 return -LIBBPF_ERRNO__FORMAT; 9155 } 9156 9157 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9158 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9159 if (!map) { 9160 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9161 (size_t)rel->r_offset); 9162 return -EINVAL; 9163 } 9164 9165 moff = rel->r_offset - map->sec_offset; 9166 shdr_idx = sym->st_shndx; 9167 st_ops = map->st_ops; 9168 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9169 map->name, 9170 (long long)(rel->r_info >> 32), 9171 (long long)sym->st_value, 9172 shdr_idx, (size_t)rel->r_offset, 9173 map->sec_offset, sym->st_name, name); 9174 9175 if (shdr_idx >= SHN_LORESERVE) { 9176 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9177 map->name, (size_t)rel->r_offset, shdr_idx); 9178 return -LIBBPF_ERRNO__RELOC; 9179 } 9180 if (sym->st_value % BPF_INSN_SZ) { 9181 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9182 map->name, (unsigned long long)sym->st_value); 9183 return -LIBBPF_ERRNO__FORMAT; 9184 } 9185 insn_idx = sym->st_value / BPF_INSN_SZ; 9186 9187 member = find_member_by_offset(st_ops->type, moff * 8); 9188 if (!member) { 9189 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9190 map->name, moff); 9191 return -EINVAL; 9192 } 9193 member_idx = member - btf_members(st_ops->type); 9194 name = btf__name_by_offset(btf, member->name_off); 9195 9196 if (!resolve_func_ptr(btf, member->type, NULL)) { 9197 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9198 map->name, name); 9199 return -EINVAL; 9200 } 9201 9202 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9203 if (!prog) { 9204 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9205 map->name, shdr_idx, name); 9206 return -EINVAL; 9207 } 9208 9209 /* prevent the use of BPF prog with invalid type */ 9210 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9211 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9212 map->name, prog->name); 9213 return -EINVAL; 9214 } 9215 9216 /* if we haven't yet processed this BPF program, record proper 9217 * attach_btf_id and member_idx 9218 */ 9219 if (!prog->attach_btf_id) { 9220 prog->attach_btf_id = st_ops->type_id; 9221 prog->expected_attach_type = member_idx; 9222 } 9223 9224 /* struct_ops BPF prog can be re-used between multiple 9225 * .struct_ops & .struct_ops.link as long as it's the 9226 * same struct_ops struct definition and the same 9227 * function pointer field 9228 */ 9229 if (prog->attach_btf_id != st_ops->type_id || 9230 prog->expected_attach_type != member_idx) { 9231 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 9232 map->name, prog->name, prog->sec_name, prog->type, 9233 prog->attach_btf_id, prog->expected_attach_type, name); 9234 return -EINVAL; 9235 } 9236 9237 st_ops->progs[member_idx] = prog; 9238 } 9239 9240 return 0; 9241 } 9242 9243 #define BTF_TRACE_PREFIX "btf_trace_" 9244 #define BTF_LSM_PREFIX "bpf_lsm_" 9245 #define BTF_ITER_PREFIX "bpf_iter_" 9246 #define BTF_MAX_NAME_SIZE 128 9247 9248 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9249 const char **prefix, int *kind) 9250 { 9251 switch (attach_type) { 9252 case BPF_TRACE_RAW_TP: 9253 *prefix = BTF_TRACE_PREFIX; 9254 *kind = BTF_KIND_TYPEDEF; 9255 break; 9256 case BPF_LSM_MAC: 9257 case BPF_LSM_CGROUP: 9258 *prefix = BTF_LSM_PREFIX; 9259 *kind = BTF_KIND_FUNC; 9260 break; 9261 case BPF_TRACE_ITER: 9262 *prefix = BTF_ITER_PREFIX; 9263 *kind = BTF_KIND_FUNC; 9264 break; 9265 default: 9266 *prefix = ""; 9267 *kind = BTF_KIND_FUNC; 9268 } 9269 } 9270 9271 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9272 const char *name, __u32 kind) 9273 { 9274 char btf_type_name[BTF_MAX_NAME_SIZE]; 9275 int ret; 9276 9277 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9278 "%s%s", prefix, name); 9279 /* snprintf returns the number of characters written excluding the 9280 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9281 * indicates truncation. 9282 */ 9283 if (ret < 0 || ret >= sizeof(btf_type_name)) 9284 return -ENAMETOOLONG; 9285 return btf__find_by_name_kind(btf, btf_type_name, kind); 9286 } 9287 9288 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9289 enum bpf_attach_type attach_type) 9290 { 9291 const char *prefix; 9292 int kind; 9293 9294 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9295 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9296 } 9297 9298 int libbpf_find_vmlinux_btf_id(const char *name, 9299 enum bpf_attach_type attach_type) 9300 { 9301 struct btf *btf; 9302 int err; 9303 9304 btf = btf__load_vmlinux_btf(); 9305 err = libbpf_get_error(btf); 9306 if (err) { 9307 pr_warn("vmlinux BTF is not found\n"); 9308 return libbpf_err(err); 9309 } 9310 9311 err = find_attach_btf_id(btf, name, attach_type); 9312 if (err <= 0) 9313 pr_warn("%s is not found in vmlinux BTF\n", name); 9314 9315 btf__free(btf); 9316 return libbpf_err(err); 9317 } 9318 9319 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9320 { 9321 struct bpf_prog_info info; 9322 __u32 info_len = sizeof(info); 9323 struct btf *btf; 9324 int err; 9325 9326 memset(&info, 0, info_len); 9327 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9328 if (err) { 9329 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9330 attach_prog_fd, err); 9331 return err; 9332 } 9333 9334 err = -EINVAL; 9335 if (!info.btf_id) { 9336 pr_warn("The target program doesn't have BTF\n"); 9337 goto out; 9338 } 9339 btf = btf__load_from_kernel_by_id(info.btf_id); 9340 err = libbpf_get_error(btf); 9341 if (err) { 9342 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9343 goto out; 9344 } 9345 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9346 btf__free(btf); 9347 if (err <= 0) { 9348 pr_warn("%s is not found in prog's BTF\n", name); 9349 goto out; 9350 } 9351 out: 9352 return err; 9353 } 9354 9355 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9356 enum bpf_attach_type attach_type, 9357 int *btf_obj_fd, int *btf_type_id) 9358 { 9359 int ret, i; 9360 9361 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9362 if (ret > 0) { 9363 *btf_obj_fd = 0; /* vmlinux BTF */ 9364 *btf_type_id = ret; 9365 return 0; 9366 } 9367 if (ret != -ENOENT) 9368 return ret; 9369 9370 ret = load_module_btfs(obj); 9371 if (ret) 9372 return ret; 9373 9374 for (i = 0; i < obj->btf_module_cnt; i++) { 9375 const struct module_btf *mod = &obj->btf_modules[i]; 9376 9377 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9378 if (ret > 0) { 9379 *btf_obj_fd = mod->fd; 9380 *btf_type_id = ret; 9381 return 0; 9382 } 9383 if (ret == -ENOENT) 9384 continue; 9385 9386 return ret; 9387 } 9388 9389 return -ESRCH; 9390 } 9391 9392 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9393 int *btf_obj_fd, int *btf_type_id) 9394 { 9395 enum bpf_attach_type attach_type = prog->expected_attach_type; 9396 __u32 attach_prog_fd = prog->attach_prog_fd; 9397 int err = 0; 9398 9399 /* BPF program's BTF ID */ 9400 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9401 if (!attach_prog_fd) { 9402 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9403 return -EINVAL; 9404 } 9405 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9406 if (err < 0) { 9407 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9408 prog->name, attach_prog_fd, attach_name, err); 9409 return err; 9410 } 9411 *btf_obj_fd = 0; 9412 *btf_type_id = err; 9413 return 0; 9414 } 9415 9416 /* kernel/module BTF ID */ 9417 if (prog->obj->gen_loader) { 9418 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9419 *btf_obj_fd = 0; 9420 *btf_type_id = 1; 9421 } else { 9422 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9423 } 9424 if (err) { 9425 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9426 prog->name, attach_name, err); 9427 return err; 9428 } 9429 return 0; 9430 } 9431 9432 int libbpf_attach_type_by_name(const char *name, 9433 enum bpf_attach_type *attach_type) 9434 { 9435 char *type_names; 9436 const struct bpf_sec_def *sec_def; 9437 9438 if (!name) 9439 return libbpf_err(-EINVAL); 9440 9441 sec_def = find_sec_def(name); 9442 if (!sec_def) { 9443 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9444 type_names = libbpf_get_type_names(true); 9445 if (type_names != NULL) { 9446 pr_debug("attachable section(type) names are:%s\n", type_names); 9447 free(type_names); 9448 } 9449 9450 return libbpf_err(-EINVAL); 9451 } 9452 9453 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9454 return libbpf_err(-EINVAL); 9455 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9456 return libbpf_err(-EINVAL); 9457 9458 *attach_type = sec_def->expected_attach_type; 9459 return 0; 9460 } 9461 9462 int bpf_map__fd(const struct bpf_map *map) 9463 { 9464 return map ? map->fd : libbpf_err(-EINVAL); 9465 } 9466 9467 static bool map_uses_real_name(const struct bpf_map *map) 9468 { 9469 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9470 * their user-visible name differs from kernel-visible name. Users see 9471 * such map's corresponding ELF section name as a map name. 9472 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9473 * maps to know which name has to be returned to the user. 9474 */ 9475 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9476 return true; 9477 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9478 return true; 9479 return false; 9480 } 9481 9482 const char *bpf_map__name(const struct bpf_map *map) 9483 { 9484 if (!map) 9485 return NULL; 9486 9487 if (map_uses_real_name(map)) 9488 return map->real_name; 9489 9490 return map->name; 9491 } 9492 9493 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9494 { 9495 return map->def.type; 9496 } 9497 9498 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9499 { 9500 if (map->fd >= 0) 9501 return libbpf_err(-EBUSY); 9502 map->def.type = type; 9503 return 0; 9504 } 9505 9506 __u32 bpf_map__map_flags(const struct bpf_map *map) 9507 { 9508 return map->def.map_flags; 9509 } 9510 9511 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9512 { 9513 if (map->fd >= 0) 9514 return libbpf_err(-EBUSY); 9515 map->def.map_flags = flags; 9516 return 0; 9517 } 9518 9519 __u64 bpf_map__map_extra(const struct bpf_map *map) 9520 { 9521 return map->map_extra; 9522 } 9523 9524 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9525 { 9526 if (map->fd >= 0) 9527 return libbpf_err(-EBUSY); 9528 map->map_extra = map_extra; 9529 return 0; 9530 } 9531 9532 __u32 bpf_map__numa_node(const struct bpf_map *map) 9533 { 9534 return map->numa_node; 9535 } 9536 9537 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9538 { 9539 if (map->fd >= 0) 9540 return libbpf_err(-EBUSY); 9541 map->numa_node = numa_node; 9542 return 0; 9543 } 9544 9545 __u32 bpf_map__key_size(const struct bpf_map *map) 9546 { 9547 return map->def.key_size; 9548 } 9549 9550 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9551 { 9552 if (map->fd >= 0) 9553 return libbpf_err(-EBUSY); 9554 map->def.key_size = size; 9555 return 0; 9556 } 9557 9558 __u32 bpf_map__value_size(const struct bpf_map *map) 9559 { 9560 return map->def.value_size; 9561 } 9562 9563 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 9564 { 9565 struct btf *btf; 9566 struct btf_type *datasec_type, *var_type; 9567 struct btf_var_secinfo *var; 9568 const struct btf_type *array_type; 9569 const struct btf_array *array; 9570 int vlen, element_sz, new_array_id; 9571 __u32 nr_elements; 9572 9573 /* check btf existence */ 9574 btf = bpf_object__btf(map->obj); 9575 if (!btf) 9576 return -ENOENT; 9577 9578 /* verify map is datasec */ 9579 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 9580 if (!btf_is_datasec(datasec_type)) { 9581 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 9582 bpf_map__name(map)); 9583 return -EINVAL; 9584 } 9585 9586 /* verify datasec has at least one var */ 9587 vlen = btf_vlen(datasec_type); 9588 if (vlen == 0) { 9589 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 9590 bpf_map__name(map)); 9591 return -EINVAL; 9592 } 9593 9594 /* verify last var in the datasec is an array */ 9595 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9596 var_type = btf_type_by_id(btf, var->type); 9597 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 9598 if (!btf_is_array(array_type)) { 9599 pr_warn("map '%s': cannot be resized, last var must be an array\n", 9600 bpf_map__name(map)); 9601 return -EINVAL; 9602 } 9603 9604 /* verify request size aligns with array */ 9605 array = btf_array(array_type); 9606 element_sz = btf__resolve_size(btf, array->type); 9607 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 9608 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 9609 bpf_map__name(map), element_sz, size); 9610 return -EINVAL; 9611 } 9612 9613 /* create a new array based on the existing array, but with new length */ 9614 nr_elements = (size - var->offset) / element_sz; 9615 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 9616 if (new_array_id < 0) 9617 return new_array_id; 9618 9619 /* adding a new btf type invalidates existing pointers to btf objects, 9620 * so refresh pointers before proceeding 9621 */ 9622 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 9623 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 9624 var_type = btf_type_by_id(btf, var->type); 9625 9626 /* finally update btf info */ 9627 datasec_type->size = size; 9628 var->size = size - var->offset; 9629 var_type->type = new_array_id; 9630 9631 return 0; 9632 } 9633 9634 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9635 { 9636 if (map->fd >= 0) 9637 return libbpf_err(-EBUSY); 9638 9639 if (map->mmaped) { 9640 int err; 9641 size_t mmap_old_sz, mmap_new_sz; 9642 9643 mmap_old_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 9644 mmap_new_sz = bpf_map_mmap_sz(size, map->def.max_entries); 9645 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 9646 if (err) { 9647 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 9648 bpf_map__name(map), err); 9649 return err; 9650 } 9651 err = map_btf_datasec_resize(map, size); 9652 if (err && err != -ENOENT) { 9653 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 9654 bpf_map__name(map), err); 9655 map->btf_value_type_id = 0; 9656 map->btf_key_type_id = 0; 9657 } 9658 } 9659 9660 map->def.value_size = size; 9661 return 0; 9662 } 9663 9664 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9665 { 9666 return map ? map->btf_key_type_id : 0; 9667 } 9668 9669 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9670 { 9671 return map ? map->btf_value_type_id : 0; 9672 } 9673 9674 int bpf_map__set_initial_value(struct bpf_map *map, 9675 const void *data, size_t size) 9676 { 9677 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9678 size != map->def.value_size || map->fd >= 0) 9679 return libbpf_err(-EINVAL); 9680 9681 memcpy(map->mmaped, data, size); 9682 return 0; 9683 } 9684 9685 void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9686 { 9687 if (!map->mmaped) 9688 return NULL; 9689 *psize = map->def.value_size; 9690 return map->mmaped; 9691 } 9692 9693 bool bpf_map__is_internal(const struct bpf_map *map) 9694 { 9695 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9696 } 9697 9698 __u32 bpf_map__ifindex(const struct bpf_map *map) 9699 { 9700 return map->map_ifindex; 9701 } 9702 9703 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9704 { 9705 if (map->fd >= 0) 9706 return libbpf_err(-EBUSY); 9707 map->map_ifindex = ifindex; 9708 return 0; 9709 } 9710 9711 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9712 { 9713 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9714 pr_warn("error: unsupported map type\n"); 9715 return libbpf_err(-EINVAL); 9716 } 9717 if (map->inner_map_fd != -1) { 9718 pr_warn("error: inner_map_fd already specified\n"); 9719 return libbpf_err(-EINVAL); 9720 } 9721 if (map->inner_map) { 9722 bpf_map__destroy(map->inner_map); 9723 zfree(&map->inner_map); 9724 } 9725 map->inner_map_fd = fd; 9726 return 0; 9727 } 9728 9729 static struct bpf_map * 9730 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9731 { 9732 ssize_t idx; 9733 struct bpf_map *s, *e; 9734 9735 if (!obj || !obj->maps) 9736 return errno = EINVAL, NULL; 9737 9738 s = obj->maps; 9739 e = obj->maps + obj->nr_maps; 9740 9741 if ((m < s) || (m >= e)) { 9742 pr_warn("error in %s: map handler doesn't belong to object\n", 9743 __func__); 9744 return errno = EINVAL, NULL; 9745 } 9746 9747 idx = (m - obj->maps) + i; 9748 if (idx >= obj->nr_maps || idx < 0) 9749 return NULL; 9750 return &obj->maps[idx]; 9751 } 9752 9753 struct bpf_map * 9754 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9755 { 9756 if (prev == NULL) 9757 return obj->maps; 9758 9759 return __bpf_map__iter(prev, obj, 1); 9760 } 9761 9762 struct bpf_map * 9763 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9764 { 9765 if (next == NULL) { 9766 if (!obj->nr_maps) 9767 return NULL; 9768 return obj->maps + obj->nr_maps - 1; 9769 } 9770 9771 return __bpf_map__iter(next, obj, -1); 9772 } 9773 9774 struct bpf_map * 9775 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9776 { 9777 struct bpf_map *pos; 9778 9779 bpf_object__for_each_map(pos, obj) { 9780 /* if it's a special internal map name (which always starts 9781 * with dot) then check if that special name matches the 9782 * real map name (ELF section name) 9783 */ 9784 if (name[0] == '.') { 9785 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9786 return pos; 9787 continue; 9788 } 9789 /* otherwise map name has to be an exact match */ 9790 if (map_uses_real_name(pos)) { 9791 if (strcmp(pos->real_name, name) == 0) 9792 return pos; 9793 continue; 9794 } 9795 if (strcmp(pos->name, name) == 0) 9796 return pos; 9797 } 9798 return errno = ENOENT, NULL; 9799 } 9800 9801 int 9802 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9803 { 9804 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9805 } 9806 9807 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9808 size_t value_sz, bool check_value_sz) 9809 { 9810 if (map->fd <= 0) 9811 return -ENOENT; 9812 9813 if (map->def.key_size != key_sz) { 9814 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9815 map->name, key_sz, map->def.key_size); 9816 return -EINVAL; 9817 } 9818 9819 if (!check_value_sz) 9820 return 0; 9821 9822 switch (map->def.type) { 9823 case BPF_MAP_TYPE_PERCPU_ARRAY: 9824 case BPF_MAP_TYPE_PERCPU_HASH: 9825 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9826 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9827 int num_cpu = libbpf_num_possible_cpus(); 9828 size_t elem_sz = roundup(map->def.value_size, 8); 9829 9830 if (value_sz != num_cpu * elem_sz) { 9831 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9832 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9833 return -EINVAL; 9834 } 9835 break; 9836 } 9837 default: 9838 if (map->def.value_size != value_sz) { 9839 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9840 map->name, value_sz, map->def.value_size); 9841 return -EINVAL; 9842 } 9843 break; 9844 } 9845 return 0; 9846 } 9847 9848 int bpf_map__lookup_elem(const struct bpf_map *map, 9849 const void *key, size_t key_sz, 9850 void *value, size_t value_sz, __u64 flags) 9851 { 9852 int err; 9853 9854 err = validate_map_op(map, key_sz, value_sz, true); 9855 if (err) 9856 return libbpf_err(err); 9857 9858 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9859 } 9860 9861 int bpf_map__update_elem(const struct bpf_map *map, 9862 const void *key, size_t key_sz, 9863 const void *value, size_t value_sz, __u64 flags) 9864 { 9865 int err; 9866 9867 err = validate_map_op(map, key_sz, value_sz, true); 9868 if (err) 9869 return libbpf_err(err); 9870 9871 return bpf_map_update_elem(map->fd, key, value, flags); 9872 } 9873 9874 int bpf_map__delete_elem(const struct bpf_map *map, 9875 const void *key, size_t key_sz, __u64 flags) 9876 { 9877 int err; 9878 9879 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9880 if (err) 9881 return libbpf_err(err); 9882 9883 return bpf_map_delete_elem_flags(map->fd, key, flags); 9884 } 9885 9886 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9887 const void *key, size_t key_sz, 9888 void *value, size_t value_sz, __u64 flags) 9889 { 9890 int err; 9891 9892 err = validate_map_op(map, key_sz, value_sz, true); 9893 if (err) 9894 return libbpf_err(err); 9895 9896 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9897 } 9898 9899 int bpf_map__get_next_key(const struct bpf_map *map, 9900 const void *cur_key, void *next_key, size_t key_sz) 9901 { 9902 int err; 9903 9904 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9905 if (err) 9906 return libbpf_err(err); 9907 9908 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9909 } 9910 9911 long libbpf_get_error(const void *ptr) 9912 { 9913 if (!IS_ERR_OR_NULL(ptr)) 9914 return 0; 9915 9916 if (IS_ERR(ptr)) 9917 errno = -PTR_ERR(ptr); 9918 9919 /* If ptr == NULL, then errno should be already set by the failing 9920 * API, because libbpf never returns NULL on success and it now always 9921 * sets errno on error. So no extra errno handling for ptr == NULL 9922 * case. 9923 */ 9924 return -errno; 9925 } 9926 9927 /* Replace link's underlying BPF program with the new one */ 9928 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9929 { 9930 int ret; 9931 9932 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9933 return libbpf_err_errno(ret); 9934 } 9935 9936 /* Release "ownership" of underlying BPF resource (typically, BPF program 9937 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9938 * link, when destructed through bpf_link__destroy() call won't attempt to 9939 * detach/unregisted that BPF resource. This is useful in situations where, 9940 * say, attached BPF program has to outlive userspace program that attached it 9941 * in the system. Depending on type of BPF program, though, there might be 9942 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9943 * exit of userspace program doesn't trigger automatic detachment and clean up 9944 * inside the kernel. 9945 */ 9946 void bpf_link__disconnect(struct bpf_link *link) 9947 { 9948 link->disconnected = true; 9949 } 9950 9951 int bpf_link__destroy(struct bpf_link *link) 9952 { 9953 int err = 0; 9954 9955 if (IS_ERR_OR_NULL(link)) 9956 return 0; 9957 9958 if (!link->disconnected && link->detach) 9959 err = link->detach(link); 9960 if (link->pin_path) 9961 free(link->pin_path); 9962 if (link->dealloc) 9963 link->dealloc(link); 9964 else 9965 free(link); 9966 9967 return libbpf_err(err); 9968 } 9969 9970 int bpf_link__fd(const struct bpf_link *link) 9971 { 9972 return link->fd; 9973 } 9974 9975 const char *bpf_link__pin_path(const struct bpf_link *link) 9976 { 9977 return link->pin_path; 9978 } 9979 9980 static int bpf_link__detach_fd(struct bpf_link *link) 9981 { 9982 return libbpf_err_errno(close(link->fd)); 9983 } 9984 9985 struct bpf_link *bpf_link__open(const char *path) 9986 { 9987 struct bpf_link *link; 9988 int fd; 9989 9990 fd = bpf_obj_get(path); 9991 if (fd < 0) { 9992 fd = -errno; 9993 pr_warn("failed to open link at %s: %d\n", path, fd); 9994 return libbpf_err_ptr(fd); 9995 } 9996 9997 link = calloc(1, sizeof(*link)); 9998 if (!link) { 9999 close(fd); 10000 return libbpf_err_ptr(-ENOMEM); 10001 } 10002 link->detach = &bpf_link__detach_fd; 10003 link->fd = fd; 10004 10005 link->pin_path = strdup(path); 10006 if (!link->pin_path) { 10007 bpf_link__destroy(link); 10008 return libbpf_err_ptr(-ENOMEM); 10009 } 10010 10011 return link; 10012 } 10013 10014 int bpf_link__detach(struct bpf_link *link) 10015 { 10016 return bpf_link_detach(link->fd) ? -errno : 0; 10017 } 10018 10019 int bpf_link__pin(struct bpf_link *link, const char *path) 10020 { 10021 int err; 10022 10023 if (link->pin_path) 10024 return libbpf_err(-EBUSY); 10025 err = make_parent_dir(path); 10026 if (err) 10027 return libbpf_err(err); 10028 err = check_path(path); 10029 if (err) 10030 return libbpf_err(err); 10031 10032 link->pin_path = strdup(path); 10033 if (!link->pin_path) 10034 return libbpf_err(-ENOMEM); 10035 10036 if (bpf_obj_pin(link->fd, link->pin_path)) { 10037 err = -errno; 10038 zfree(&link->pin_path); 10039 return libbpf_err(err); 10040 } 10041 10042 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10043 return 0; 10044 } 10045 10046 int bpf_link__unpin(struct bpf_link *link) 10047 { 10048 int err; 10049 10050 if (!link->pin_path) 10051 return libbpf_err(-EINVAL); 10052 10053 err = unlink(link->pin_path); 10054 if (err != 0) 10055 return -errno; 10056 10057 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10058 zfree(&link->pin_path); 10059 return 0; 10060 } 10061 10062 struct bpf_link_perf { 10063 struct bpf_link link; 10064 int perf_event_fd; 10065 /* legacy kprobe support: keep track of probe identifier and type */ 10066 char *legacy_probe_name; 10067 bool legacy_is_kprobe; 10068 bool legacy_is_retprobe; 10069 }; 10070 10071 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10072 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10073 10074 static int bpf_link_perf_detach(struct bpf_link *link) 10075 { 10076 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10077 int err = 0; 10078 10079 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10080 err = -errno; 10081 10082 if (perf_link->perf_event_fd != link->fd) 10083 close(perf_link->perf_event_fd); 10084 close(link->fd); 10085 10086 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10087 if (perf_link->legacy_probe_name) { 10088 if (perf_link->legacy_is_kprobe) { 10089 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10090 perf_link->legacy_is_retprobe); 10091 } else { 10092 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10093 perf_link->legacy_is_retprobe); 10094 } 10095 } 10096 10097 return err; 10098 } 10099 10100 static void bpf_link_perf_dealloc(struct bpf_link *link) 10101 { 10102 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10103 10104 free(perf_link->legacy_probe_name); 10105 free(perf_link); 10106 } 10107 10108 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10109 const struct bpf_perf_event_opts *opts) 10110 { 10111 char errmsg[STRERR_BUFSIZE]; 10112 struct bpf_link_perf *link; 10113 int prog_fd, link_fd = -1, err; 10114 bool force_ioctl_attach; 10115 10116 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10117 return libbpf_err_ptr(-EINVAL); 10118 10119 if (pfd < 0) { 10120 pr_warn("prog '%s': invalid perf event FD %d\n", 10121 prog->name, pfd); 10122 return libbpf_err_ptr(-EINVAL); 10123 } 10124 prog_fd = bpf_program__fd(prog); 10125 if (prog_fd < 0) { 10126 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10127 prog->name); 10128 return libbpf_err_ptr(-EINVAL); 10129 } 10130 10131 link = calloc(1, sizeof(*link)); 10132 if (!link) 10133 return libbpf_err_ptr(-ENOMEM); 10134 link->link.detach = &bpf_link_perf_detach; 10135 link->link.dealloc = &bpf_link_perf_dealloc; 10136 link->perf_event_fd = pfd; 10137 10138 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10139 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10140 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10141 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10142 10143 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10144 if (link_fd < 0) { 10145 err = -errno; 10146 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10147 prog->name, pfd, 10148 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10149 goto err_out; 10150 } 10151 link->link.fd = link_fd; 10152 } else { 10153 if (OPTS_GET(opts, bpf_cookie, 0)) { 10154 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10155 err = -EOPNOTSUPP; 10156 goto err_out; 10157 } 10158 10159 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10160 err = -errno; 10161 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10162 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10163 if (err == -EPROTO) 10164 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10165 prog->name, pfd); 10166 goto err_out; 10167 } 10168 link->link.fd = pfd; 10169 } 10170 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10171 err = -errno; 10172 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10173 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10174 goto err_out; 10175 } 10176 10177 return &link->link; 10178 err_out: 10179 if (link_fd >= 0) 10180 close(link_fd); 10181 free(link); 10182 return libbpf_err_ptr(err); 10183 } 10184 10185 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10186 { 10187 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10188 } 10189 10190 /* 10191 * this function is expected to parse integer in the range of [0, 2^31-1] from 10192 * given file using scanf format string fmt. If actual parsed value is 10193 * negative, the result might be indistinguishable from error 10194 */ 10195 static int parse_uint_from_file(const char *file, const char *fmt) 10196 { 10197 char buf[STRERR_BUFSIZE]; 10198 int err, ret; 10199 FILE *f; 10200 10201 f = fopen(file, "re"); 10202 if (!f) { 10203 err = -errno; 10204 pr_debug("failed to open '%s': %s\n", file, 10205 libbpf_strerror_r(err, buf, sizeof(buf))); 10206 return err; 10207 } 10208 err = fscanf(f, fmt, &ret); 10209 if (err != 1) { 10210 err = err == EOF ? -EIO : -errno; 10211 pr_debug("failed to parse '%s': %s\n", file, 10212 libbpf_strerror_r(err, buf, sizeof(buf))); 10213 fclose(f); 10214 return err; 10215 } 10216 fclose(f); 10217 return ret; 10218 } 10219 10220 static int determine_kprobe_perf_type(void) 10221 { 10222 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10223 10224 return parse_uint_from_file(file, "%d\n"); 10225 } 10226 10227 static int determine_uprobe_perf_type(void) 10228 { 10229 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10230 10231 return parse_uint_from_file(file, "%d\n"); 10232 } 10233 10234 static int determine_kprobe_retprobe_bit(void) 10235 { 10236 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10237 10238 return parse_uint_from_file(file, "config:%d\n"); 10239 } 10240 10241 static int determine_uprobe_retprobe_bit(void) 10242 { 10243 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10244 10245 return parse_uint_from_file(file, "config:%d\n"); 10246 } 10247 10248 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10249 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10250 10251 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10252 uint64_t offset, int pid, size_t ref_ctr_off) 10253 { 10254 const size_t attr_sz = sizeof(struct perf_event_attr); 10255 struct perf_event_attr attr; 10256 char errmsg[STRERR_BUFSIZE]; 10257 int type, pfd; 10258 10259 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10260 return -EINVAL; 10261 10262 memset(&attr, 0, attr_sz); 10263 10264 type = uprobe ? determine_uprobe_perf_type() 10265 : determine_kprobe_perf_type(); 10266 if (type < 0) { 10267 pr_warn("failed to determine %s perf type: %s\n", 10268 uprobe ? "uprobe" : "kprobe", 10269 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10270 return type; 10271 } 10272 if (retprobe) { 10273 int bit = uprobe ? determine_uprobe_retprobe_bit() 10274 : determine_kprobe_retprobe_bit(); 10275 10276 if (bit < 0) { 10277 pr_warn("failed to determine %s retprobe bit: %s\n", 10278 uprobe ? "uprobe" : "kprobe", 10279 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10280 return bit; 10281 } 10282 attr.config |= 1 << bit; 10283 } 10284 attr.size = attr_sz; 10285 attr.type = type; 10286 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10287 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10288 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10289 10290 /* pid filter is meaningful only for uprobes */ 10291 pfd = syscall(__NR_perf_event_open, &attr, 10292 pid < 0 ? -1 : pid /* pid */, 10293 pid == -1 ? 0 : -1 /* cpu */, 10294 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10295 return pfd >= 0 ? pfd : -errno; 10296 } 10297 10298 static int append_to_file(const char *file, const char *fmt, ...) 10299 { 10300 int fd, n, err = 0; 10301 va_list ap; 10302 char buf[1024]; 10303 10304 va_start(ap, fmt); 10305 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10306 va_end(ap); 10307 10308 if (n < 0 || n >= sizeof(buf)) 10309 return -EINVAL; 10310 10311 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10312 if (fd < 0) 10313 return -errno; 10314 10315 if (write(fd, buf, n) < 0) 10316 err = -errno; 10317 10318 close(fd); 10319 return err; 10320 } 10321 10322 #define DEBUGFS "/sys/kernel/debug/tracing" 10323 #define TRACEFS "/sys/kernel/tracing" 10324 10325 static bool use_debugfs(void) 10326 { 10327 static int has_debugfs = -1; 10328 10329 if (has_debugfs < 0) 10330 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10331 10332 return has_debugfs == 1; 10333 } 10334 10335 static const char *tracefs_path(void) 10336 { 10337 return use_debugfs() ? DEBUGFS : TRACEFS; 10338 } 10339 10340 static const char *tracefs_kprobe_events(void) 10341 { 10342 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10343 } 10344 10345 static const char *tracefs_uprobe_events(void) 10346 { 10347 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10348 } 10349 10350 static const char *tracefs_available_filter_functions(void) 10351 { 10352 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10353 : TRACEFS"/available_filter_functions"; 10354 } 10355 10356 static const char *tracefs_available_filter_functions_addrs(void) 10357 { 10358 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10359 : TRACEFS"/available_filter_functions_addrs"; 10360 } 10361 10362 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10363 const char *kfunc_name, size_t offset) 10364 { 10365 static int index = 0; 10366 int i; 10367 10368 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10369 __sync_fetch_and_add(&index, 1)); 10370 10371 /* sanitize binary_path in the probe name */ 10372 for (i = 0; buf[i]; i++) { 10373 if (!isalnum(buf[i])) 10374 buf[i] = '_'; 10375 } 10376 } 10377 10378 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10379 const char *kfunc_name, size_t offset) 10380 { 10381 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10382 retprobe ? 'r' : 'p', 10383 retprobe ? "kretprobes" : "kprobes", 10384 probe_name, kfunc_name, offset); 10385 } 10386 10387 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10388 { 10389 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10390 retprobe ? "kretprobes" : "kprobes", probe_name); 10391 } 10392 10393 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10394 { 10395 char file[256]; 10396 10397 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10398 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10399 10400 return parse_uint_from_file(file, "%d\n"); 10401 } 10402 10403 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10404 const char *kfunc_name, size_t offset, int pid) 10405 { 10406 const size_t attr_sz = sizeof(struct perf_event_attr); 10407 struct perf_event_attr attr; 10408 char errmsg[STRERR_BUFSIZE]; 10409 int type, pfd, err; 10410 10411 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10412 if (err < 0) { 10413 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10414 kfunc_name, offset, 10415 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10416 return err; 10417 } 10418 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10419 if (type < 0) { 10420 err = type; 10421 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10422 kfunc_name, offset, 10423 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10424 goto err_clean_legacy; 10425 } 10426 10427 memset(&attr, 0, attr_sz); 10428 attr.size = attr_sz; 10429 attr.config = type; 10430 attr.type = PERF_TYPE_TRACEPOINT; 10431 10432 pfd = syscall(__NR_perf_event_open, &attr, 10433 pid < 0 ? -1 : pid, /* pid */ 10434 pid == -1 ? 0 : -1, /* cpu */ 10435 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10436 if (pfd < 0) { 10437 err = -errno; 10438 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10439 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10440 goto err_clean_legacy; 10441 } 10442 return pfd; 10443 10444 err_clean_legacy: 10445 /* Clear the newly added legacy kprobe_event */ 10446 remove_kprobe_event_legacy(probe_name, retprobe); 10447 return err; 10448 } 10449 10450 static const char *arch_specific_syscall_pfx(void) 10451 { 10452 #if defined(__x86_64__) 10453 return "x64"; 10454 #elif defined(__i386__) 10455 return "ia32"; 10456 #elif defined(__s390x__) 10457 return "s390x"; 10458 #elif defined(__s390__) 10459 return "s390"; 10460 #elif defined(__arm__) 10461 return "arm"; 10462 #elif defined(__aarch64__) 10463 return "arm64"; 10464 #elif defined(__mips__) 10465 return "mips"; 10466 #elif defined(__riscv) 10467 return "riscv"; 10468 #elif defined(__powerpc__) 10469 return "powerpc"; 10470 #elif defined(__powerpc64__) 10471 return "powerpc64"; 10472 #else 10473 return NULL; 10474 #endif 10475 } 10476 10477 static int probe_kern_syscall_wrapper(void) 10478 { 10479 char syscall_name[64]; 10480 const char *ksys_pfx; 10481 10482 ksys_pfx = arch_specific_syscall_pfx(); 10483 if (!ksys_pfx) 10484 return 0; 10485 10486 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10487 10488 if (determine_kprobe_perf_type() >= 0) { 10489 int pfd; 10490 10491 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10492 if (pfd >= 0) 10493 close(pfd); 10494 10495 return pfd >= 0 ? 1 : 0; 10496 } else { /* legacy mode */ 10497 char probe_name[128]; 10498 10499 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10500 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10501 return 0; 10502 10503 (void)remove_kprobe_event_legacy(probe_name, false); 10504 return 1; 10505 } 10506 } 10507 10508 struct bpf_link * 10509 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10510 const char *func_name, 10511 const struct bpf_kprobe_opts *opts) 10512 { 10513 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10514 enum probe_attach_mode attach_mode; 10515 char errmsg[STRERR_BUFSIZE]; 10516 char *legacy_probe = NULL; 10517 struct bpf_link *link; 10518 size_t offset; 10519 bool retprobe, legacy; 10520 int pfd, err; 10521 10522 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10523 return libbpf_err_ptr(-EINVAL); 10524 10525 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 10526 retprobe = OPTS_GET(opts, retprobe, false); 10527 offset = OPTS_GET(opts, offset, 0); 10528 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10529 10530 legacy = determine_kprobe_perf_type() < 0; 10531 switch (attach_mode) { 10532 case PROBE_ATTACH_MODE_LEGACY: 10533 legacy = true; 10534 pe_opts.force_ioctl_attach = true; 10535 break; 10536 case PROBE_ATTACH_MODE_PERF: 10537 if (legacy) 10538 return libbpf_err_ptr(-ENOTSUP); 10539 pe_opts.force_ioctl_attach = true; 10540 break; 10541 case PROBE_ATTACH_MODE_LINK: 10542 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 10543 return libbpf_err_ptr(-ENOTSUP); 10544 break; 10545 case PROBE_ATTACH_MODE_DEFAULT: 10546 break; 10547 default: 10548 return libbpf_err_ptr(-EINVAL); 10549 } 10550 10551 if (!legacy) { 10552 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10553 func_name, offset, 10554 -1 /* pid */, 0 /* ref_ctr_off */); 10555 } else { 10556 char probe_name[256]; 10557 10558 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10559 func_name, offset); 10560 10561 legacy_probe = strdup(probe_name); 10562 if (!legacy_probe) 10563 return libbpf_err_ptr(-ENOMEM); 10564 10565 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10566 offset, -1 /* pid */); 10567 } 10568 if (pfd < 0) { 10569 err = -errno; 10570 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10571 prog->name, retprobe ? "kretprobe" : "kprobe", 10572 func_name, offset, 10573 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10574 goto err_out; 10575 } 10576 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10577 err = libbpf_get_error(link); 10578 if (err) { 10579 close(pfd); 10580 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10581 prog->name, retprobe ? "kretprobe" : "kprobe", 10582 func_name, offset, 10583 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10584 goto err_clean_legacy; 10585 } 10586 if (legacy) { 10587 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10588 10589 perf_link->legacy_probe_name = legacy_probe; 10590 perf_link->legacy_is_kprobe = true; 10591 perf_link->legacy_is_retprobe = retprobe; 10592 } 10593 10594 return link; 10595 10596 err_clean_legacy: 10597 if (legacy) 10598 remove_kprobe_event_legacy(legacy_probe, retprobe); 10599 err_out: 10600 free(legacy_probe); 10601 return libbpf_err_ptr(err); 10602 } 10603 10604 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10605 bool retprobe, 10606 const char *func_name) 10607 { 10608 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10609 .retprobe = retprobe, 10610 ); 10611 10612 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10613 } 10614 10615 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10616 const char *syscall_name, 10617 const struct bpf_ksyscall_opts *opts) 10618 { 10619 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10620 char func_name[128]; 10621 10622 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10623 return libbpf_err_ptr(-EINVAL); 10624 10625 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10626 /* arch_specific_syscall_pfx() should never return NULL here 10627 * because it is guarded by kernel_supports(). However, since 10628 * compiler does not know that we have an explicit conditional 10629 * as well. 10630 */ 10631 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10632 arch_specific_syscall_pfx() ? : "", syscall_name); 10633 } else { 10634 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10635 } 10636 10637 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10638 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10639 10640 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10641 } 10642 10643 /* Adapted from perf/util/string.c */ 10644 bool glob_match(const char *str, const char *pat) 10645 { 10646 while (*str && *pat && *pat != '*') { 10647 if (*pat == '?') { /* Matches any single character */ 10648 str++; 10649 pat++; 10650 continue; 10651 } 10652 if (*str != *pat) 10653 return false; 10654 str++; 10655 pat++; 10656 } 10657 /* Check wild card */ 10658 if (*pat == '*') { 10659 while (*pat == '*') 10660 pat++; 10661 if (!*pat) /* Tail wild card matches all */ 10662 return true; 10663 while (*str) 10664 if (glob_match(str++, pat)) 10665 return true; 10666 } 10667 return !*str && !*pat; 10668 } 10669 10670 struct kprobe_multi_resolve { 10671 const char *pattern; 10672 unsigned long *addrs; 10673 size_t cap; 10674 size_t cnt; 10675 }; 10676 10677 struct avail_kallsyms_data { 10678 char **syms; 10679 size_t cnt; 10680 struct kprobe_multi_resolve *res; 10681 }; 10682 10683 static int avail_func_cmp(const void *a, const void *b) 10684 { 10685 return strcmp(*(const char **)a, *(const char **)b); 10686 } 10687 10688 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 10689 const char *sym_name, void *ctx) 10690 { 10691 struct avail_kallsyms_data *data = ctx; 10692 struct kprobe_multi_resolve *res = data->res; 10693 int err; 10694 10695 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 10696 return 0; 10697 10698 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 10699 if (err) 10700 return err; 10701 10702 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10703 return 0; 10704 } 10705 10706 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 10707 { 10708 const char *available_functions_file = tracefs_available_filter_functions(); 10709 struct avail_kallsyms_data data; 10710 char sym_name[500]; 10711 FILE *f; 10712 int err = 0, ret, i; 10713 char **syms = NULL; 10714 size_t cap = 0, cnt = 0; 10715 10716 f = fopen(available_functions_file, "re"); 10717 if (!f) { 10718 err = -errno; 10719 pr_warn("failed to open %s: %d\n", available_functions_file, err); 10720 return err; 10721 } 10722 10723 while (true) { 10724 char *name; 10725 10726 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 10727 if (ret == EOF && feof(f)) 10728 break; 10729 10730 if (ret != 1) { 10731 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 10732 err = -EINVAL; 10733 goto cleanup; 10734 } 10735 10736 if (!glob_match(sym_name, res->pattern)) 10737 continue; 10738 10739 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 10740 if (err) 10741 goto cleanup; 10742 10743 name = strdup(sym_name); 10744 if (!name) { 10745 err = -errno; 10746 goto cleanup; 10747 } 10748 10749 syms[cnt++] = name; 10750 } 10751 10752 /* no entries found, bail out */ 10753 if (cnt == 0) { 10754 err = -ENOENT; 10755 goto cleanup; 10756 } 10757 10758 /* sort available functions */ 10759 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 10760 10761 data.syms = syms; 10762 data.res = res; 10763 data.cnt = cnt; 10764 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 10765 10766 if (res->cnt == 0) 10767 err = -ENOENT; 10768 10769 cleanup: 10770 for (i = 0; i < cnt; i++) 10771 free((char *)syms[i]); 10772 free(syms); 10773 10774 fclose(f); 10775 return err; 10776 } 10777 10778 static bool has_available_filter_functions_addrs(void) 10779 { 10780 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 10781 } 10782 10783 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 10784 { 10785 const char *available_path = tracefs_available_filter_functions_addrs(); 10786 char sym_name[500]; 10787 FILE *f; 10788 int ret, err = 0; 10789 unsigned long long sym_addr; 10790 10791 f = fopen(available_path, "re"); 10792 if (!f) { 10793 err = -errno; 10794 pr_warn("failed to open %s: %d\n", available_path, err); 10795 return err; 10796 } 10797 10798 while (true) { 10799 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 10800 if (ret == EOF && feof(f)) 10801 break; 10802 10803 if (ret != 2) { 10804 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 10805 ret); 10806 err = -EINVAL; 10807 goto cleanup; 10808 } 10809 10810 if (!glob_match(sym_name, res->pattern)) 10811 continue; 10812 10813 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 10814 sizeof(*res->addrs), res->cnt + 1); 10815 if (err) 10816 goto cleanup; 10817 10818 res->addrs[res->cnt++] = (unsigned long)sym_addr; 10819 } 10820 10821 if (res->cnt == 0) 10822 err = -ENOENT; 10823 10824 cleanup: 10825 fclose(f); 10826 return err; 10827 } 10828 10829 struct bpf_link * 10830 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10831 const char *pattern, 10832 const struct bpf_kprobe_multi_opts *opts) 10833 { 10834 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10835 struct kprobe_multi_resolve res = { 10836 .pattern = pattern, 10837 }; 10838 struct bpf_link *link = NULL; 10839 char errmsg[STRERR_BUFSIZE]; 10840 const unsigned long *addrs; 10841 int err, link_fd, prog_fd; 10842 const __u64 *cookies; 10843 const char **syms; 10844 bool retprobe; 10845 size_t cnt; 10846 10847 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10848 return libbpf_err_ptr(-EINVAL); 10849 10850 syms = OPTS_GET(opts, syms, false); 10851 addrs = OPTS_GET(opts, addrs, false); 10852 cnt = OPTS_GET(opts, cnt, false); 10853 cookies = OPTS_GET(opts, cookies, false); 10854 10855 if (!pattern && !addrs && !syms) 10856 return libbpf_err_ptr(-EINVAL); 10857 if (pattern && (addrs || syms || cookies || cnt)) 10858 return libbpf_err_ptr(-EINVAL); 10859 if (!pattern && !cnt) 10860 return libbpf_err_ptr(-EINVAL); 10861 if (addrs && syms) 10862 return libbpf_err_ptr(-EINVAL); 10863 10864 if (pattern) { 10865 if (has_available_filter_functions_addrs()) 10866 err = libbpf_available_kprobes_parse(&res); 10867 else 10868 err = libbpf_available_kallsyms_parse(&res); 10869 if (err) 10870 goto error; 10871 addrs = res.addrs; 10872 cnt = res.cnt; 10873 } 10874 10875 retprobe = OPTS_GET(opts, retprobe, false); 10876 10877 lopts.kprobe_multi.syms = syms; 10878 lopts.kprobe_multi.addrs = addrs; 10879 lopts.kprobe_multi.cookies = cookies; 10880 lopts.kprobe_multi.cnt = cnt; 10881 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10882 10883 link = calloc(1, sizeof(*link)); 10884 if (!link) { 10885 err = -ENOMEM; 10886 goto error; 10887 } 10888 link->detach = &bpf_link__detach_fd; 10889 10890 prog_fd = bpf_program__fd(prog); 10891 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10892 if (link_fd < 0) { 10893 err = -errno; 10894 pr_warn("prog '%s': failed to attach: %s\n", 10895 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10896 goto error; 10897 } 10898 link->fd = link_fd; 10899 free(res.addrs); 10900 return link; 10901 10902 error: 10903 free(link); 10904 free(res.addrs); 10905 return libbpf_err_ptr(err); 10906 } 10907 10908 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10909 { 10910 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10911 unsigned long offset = 0; 10912 const char *func_name; 10913 char *func; 10914 int n; 10915 10916 *link = NULL; 10917 10918 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10919 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10920 return 0; 10921 10922 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10923 if (opts.retprobe) 10924 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10925 else 10926 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10927 10928 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10929 if (n < 1) { 10930 pr_warn("kprobe name is invalid: %s\n", func_name); 10931 return -EINVAL; 10932 } 10933 if (opts.retprobe && offset != 0) { 10934 free(func); 10935 pr_warn("kretprobes do not support offset specification\n"); 10936 return -EINVAL; 10937 } 10938 10939 opts.offset = offset; 10940 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10941 free(func); 10942 return libbpf_get_error(*link); 10943 } 10944 10945 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10946 { 10947 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10948 const char *syscall_name; 10949 10950 *link = NULL; 10951 10952 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10953 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10954 return 0; 10955 10956 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10957 if (opts.retprobe) 10958 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10959 else 10960 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10961 10962 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10963 return *link ? 0 : -errno; 10964 } 10965 10966 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10967 { 10968 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10969 const char *spec; 10970 char *pattern; 10971 int n; 10972 10973 *link = NULL; 10974 10975 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10976 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10977 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10978 return 0; 10979 10980 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10981 if (opts.retprobe) 10982 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10983 else 10984 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10985 10986 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10987 if (n < 1) { 10988 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 10989 return -EINVAL; 10990 } 10991 10992 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10993 free(pattern); 10994 return libbpf_get_error(*link); 10995 } 10996 10997 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10998 { 10999 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11000 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11001 int n, ret = -EINVAL; 11002 11003 *link = NULL; 11004 11005 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%ms", 11006 &probe_type, &binary_path, &func_name); 11007 switch (n) { 11008 case 1: 11009 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11010 ret = 0; 11011 break; 11012 case 3: 11013 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11014 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11015 ret = libbpf_get_error(*link); 11016 break; 11017 default: 11018 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11019 prog->sec_name); 11020 break; 11021 } 11022 free(probe_type); 11023 free(binary_path); 11024 free(func_name); 11025 return ret; 11026 } 11027 11028 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11029 const char *binary_path, uint64_t offset) 11030 { 11031 int i; 11032 11033 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11034 11035 /* sanitize binary_path in the probe name */ 11036 for (i = 0; buf[i]; i++) { 11037 if (!isalnum(buf[i])) 11038 buf[i] = '_'; 11039 } 11040 } 11041 11042 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11043 const char *binary_path, size_t offset) 11044 { 11045 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11046 retprobe ? 'r' : 'p', 11047 retprobe ? "uretprobes" : "uprobes", 11048 probe_name, binary_path, offset); 11049 } 11050 11051 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11052 { 11053 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11054 retprobe ? "uretprobes" : "uprobes", probe_name); 11055 } 11056 11057 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11058 { 11059 char file[512]; 11060 11061 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11062 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11063 11064 return parse_uint_from_file(file, "%d\n"); 11065 } 11066 11067 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11068 const char *binary_path, size_t offset, int pid) 11069 { 11070 const size_t attr_sz = sizeof(struct perf_event_attr); 11071 struct perf_event_attr attr; 11072 int type, pfd, err; 11073 11074 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11075 if (err < 0) { 11076 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11077 binary_path, (size_t)offset, err); 11078 return err; 11079 } 11080 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11081 if (type < 0) { 11082 err = type; 11083 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11084 binary_path, offset, err); 11085 goto err_clean_legacy; 11086 } 11087 11088 memset(&attr, 0, attr_sz); 11089 attr.size = attr_sz; 11090 attr.config = type; 11091 attr.type = PERF_TYPE_TRACEPOINT; 11092 11093 pfd = syscall(__NR_perf_event_open, &attr, 11094 pid < 0 ? -1 : pid, /* pid */ 11095 pid == -1 ? 0 : -1, /* cpu */ 11096 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11097 if (pfd < 0) { 11098 err = -errno; 11099 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11100 goto err_clean_legacy; 11101 } 11102 return pfd; 11103 11104 err_clean_legacy: 11105 /* Clear the newly added legacy uprobe_event */ 11106 remove_uprobe_event_legacy(probe_name, retprobe); 11107 return err; 11108 } 11109 11110 /* Find offset of function name in archive specified by path. Currently 11111 * supported are .zip files that do not compress their contents, as used on 11112 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11113 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11114 * library functions. 11115 * 11116 * An overview of the APK format specifically provided here: 11117 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11118 */ 11119 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11120 const char *func_name) 11121 { 11122 struct zip_archive *archive; 11123 struct zip_entry entry; 11124 long ret; 11125 Elf *elf; 11126 11127 archive = zip_archive_open(archive_path); 11128 if (IS_ERR(archive)) { 11129 ret = PTR_ERR(archive); 11130 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11131 return ret; 11132 } 11133 11134 ret = zip_archive_find_entry(archive, file_name, &entry); 11135 if (ret) { 11136 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11137 archive_path, ret); 11138 goto out; 11139 } 11140 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11141 (unsigned long)entry.data_offset); 11142 11143 if (entry.compression) { 11144 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11145 archive_path); 11146 ret = -LIBBPF_ERRNO__FORMAT; 11147 goto out; 11148 } 11149 11150 elf = elf_memory((void *)entry.data, entry.data_length); 11151 if (!elf) { 11152 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11153 elf_errmsg(-1)); 11154 ret = -LIBBPF_ERRNO__LIBELF; 11155 goto out; 11156 } 11157 11158 ret = elf_find_func_offset(elf, file_name, func_name); 11159 if (ret > 0) { 11160 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11161 func_name, file_name, archive_path, entry.data_offset, ret, 11162 ret + entry.data_offset); 11163 ret += entry.data_offset; 11164 } 11165 elf_end(elf); 11166 11167 out: 11168 zip_archive_close(archive); 11169 return ret; 11170 } 11171 11172 static const char *arch_specific_lib_paths(void) 11173 { 11174 /* 11175 * Based on https://packages.debian.org/sid/libc6. 11176 * 11177 * Assume that the traced program is built for the same architecture 11178 * as libbpf, which should cover the vast majority of cases. 11179 */ 11180 #if defined(__x86_64__) 11181 return "/lib/x86_64-linux-gnu"; 11182 #elif defined(__i386__) 11183 return "/lib/i386-linux-gnu"; 11184 #elif defined(__s390x__) 11185 return "/lib/s390x-linux-gnu"; 11186 #elif defined(__s390__) 11187 return "/lib/s390-linux-gnu"; 11188 #elif defined(__arm__) && defined(__SOFTFP__) 11189 return "/lib/arm-linux-gnueabi"; 11190 #elif defined(__arm__) && !defined(__SOFTFP__) 11191 return "/lib/arm-linux-gnueabihf"; 11192 #elif defined(__aarch64__) 11193 return "/lib/aarch64-linux-gnu"; 11194 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11195 return "/lib/mips64el-linux-gnuabi64"; 11196 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11197 return "/lib/mipsel-linux-gnu"; 11198 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11199 return "/lib/powerpc64le-linux-gnu"; 11200 #elif defined(__sparc__) && defined(__arch64__) 11201 return "/lib/sparc64-linux-gnu"; 11202 #elif defined(__riscv) && __riscv_xlen == 64 11203 return "/lib/riscv64-linux-gnu"; 11204 #else 11205 return NULL; 11206 #endif 11207 } 11208 11209 /* Get full path to program/shared library. */ 11210 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11211 { 11212 const char *search_paths[3] = {}; 11213 int i, perm; 11214 11215 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11216 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11217 search_paths[1] = "/usr/lib64:/usr/lib"; 11218 search_paths[2] = arch_specific_lib_paths(); 11219 perm = R_OK; 11220 } else { 11221 search_paths[0] = getenv("PATH"); 11222 search_paths[1] = "/usr/bin:/usr/sbin"; 11223 perm = R_OK | X_OK; 11224 } 11225 11226 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11227 const char *s; 11228 11229 if (!search_paths[i]) 11230 continue; 11231 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11232 char *next_path; 11233 int seg_len; 11234 11235 if (s[0] == ':') 11236 s++; 11237 next_path = strchr(s, ':'); 11238 seg_len = next_path ? next_path - s : strlen(s); 11239 if (!seg_len) 11240 continue; 11241 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11242 /* ensure it has required permissions */ 11243 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11244 continue; 11245 pr_debug("resolved '%s' to '%s'\n", file, result); 11246 return 0; 11247 } 11248 } 11249 return -ENOENT; 11250 } 11251 11252 struct bpf_link * 11253 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11254 pid_t pid, 11255 const char *path, 11256 const char *func_pattern, 11257 const struct bpf_uprobe_multi_opts *opts) 11258 { 11259 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11260 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11261 unsigned long *resolved_offsets = NULL; 11262 int err = 0, link_fd, prog_fd; 11263 struct bpf_link *link = NULL; 11264 char errmsg[STRERR_BUFSIZE]; 11265 char full_path[PATH_MAX]; 11266 const __u64 *cookies; 11267 const char **syms; 11268 size_t cnt; 11269 11270 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11271 return libbpf_err_ptr(-EINVAL); 11272 11273 syms = OPTS_GET(opts, syms, NULL); 11274 offsets = OPTS_GET(opts, offsets, NULL); 11275 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11276 cookies = OPTS_GET(opts, cookies, NULL); 11277 cnt = OPTS_GET(opts, cnt, 0); 11278 11279 /* 11280 * User can specify 2 mutually exclusive set of inputs: 11281 * 11282 * 1) use only path/func_pattern/pid arguments 11283 * 11284 * 2) use path/pid with allowed combinations of: 11285 * syms/offsets/ref_ctr_offsets/cookies/cnt 11286 * 11287 * - syms and offsets are mutually exclusive 11288 * - ref_ctr_offsets and cookies are optional 11289 * 11290 * Any other usage results in error. 11291 */ 11292 11293 if (!path) 11294 return libbpf_err_ptr(-EINVAL); 11295 if (!func_pattern && cnt == 0) 11296 return libbpf_err_ptr(-EINVAL); 11297 11298 if (func_pattern) { 11299 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11300 return libbpf_err_ptr(-EINVAL); 11301 } else { 11302 if (!!syms == !!offsets) 11303 return libbpf_err_ptr(-EINVAL); 11304 } 11305 11306 if (func_pattern) { 11307 if (!strchr(path, '/')) { 11308 err = resolve_full_path(path, full_path, sizeof(full_path)); 11309 if (err) { 11310 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11311 prog->name, path, err); 11312 return libbpf_err_ptr(err); 11313 } 11314 path = full_path; 11315 } 11316 11317 err = elf_resolve_pattern_offsets(path, func_pattern, 11318 &resolved_offsets, &cnt); 11319 if (err < 0) 11320 return libbpf_err_ptr(err); 11321 offsets = resolved_offsets; 11322 } else if (syms) { 11323 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets); 11324 if (err < 0) 11325 return libbpf_err_ptr(err); 11326 offsets = resolved_offsets; 11327 } 11328 11329 lopts.uprobe_multi.path = path; 11330 lopts.uprobe_multi.offsets = offsets; 11331 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11332 lopts.uprobe_multi.cookies = cookies; 11333 lopts.uprobe_multi.cnt = cnt; 11334 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11335 11336 if (pid == 0) 11337 pid = getpid(); 11338 if (pid > 0) 11339 lopts.uprobe_multi.pid = pid; 11340 11341 link = calloc(1, sizeof(*link)); 11342 if (!link) { 11343 err = -ENOMEM; 11344 goto error; 11345 } 11346 link->detach = &bpf_link__detach_fd; 11347 11348 prog_fd = bpf_program__fd(prog); 11349 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11350 if (link_fd < 0) { 11351 err = -errno; 11352 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11353 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11354 goto error; 11355 } 11356 link->fd = link_fd; 11357 free(resolved_offsets); 11358 return link; 11359 11360 error: 11361 free(resolved_offsets); 11362 free(link); 11363 return libbpf_err_ptr(err); 11364 } 11365 11366 LIBBPF_API struct bpf_link * 11367 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11368 const char *binary_path, size_t func_offset, 11369 const struct bpf_uprobe_opts *opts) 11370 { 11371 const char *archive_path = NULL, *archive_sep = NULL; 11372 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11373 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11374 enum probe_attach_mode attach_mode; 11375 char full_path[PATH_MAX]; 11376 struct bpf_link *link; 11377 size_t ref_ctr_off; 11378 int pfd, err; 11379 bool retprobe, legacy; 11380 const char *func_name; 11381 11382 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11383 return libbpf_err_ptr(-EINVAL); 11384 11385 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11386 retprobe = OPTS_GET(opts, retprobe, false); 11387 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11388 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11389 11390 if (!binary_path) 11391 return libbpf_err_ptr(-EINVAL); 11392 11393 /* Check if "binary_path" refers to an archive. */ 11394 archive_sep = strstr(binary_path, "!/"); 11395 if (archive_sep) { 11396 full_path[0] = '\0'; 11397 libbpf_strlcpy(full_path, binary_path, 11398 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11399 archive_path = full_path; 11400 binary_path = archive_sep + 2; 11401 } else if (!strchr(binary_path, '/')) { 11402 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11403 if (err) { 11404 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11405 prog->name, binary_path, err); 11406 return libbpf_err_ptr(err); 11407 } 11408 binary_path = full_path; 11409 } 11410 func_name = OPTS_GET(opts, func_name, NULL); 11411 if (func_name) { 11412 long sym_off; 11413 11414 if (archive_path) { 11415 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11416 func_name); 11417 binary_path = archive_path; 11418 } else { 11419 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11420 } 11421 if (sym_off < 0) 11422 return libbpf_err_ptr(sym_off); 11423 func_offset += sym_off; 11424 } 11425 11426 legacy = determine_uprobe_perf_type() < 0; 11427 switch (attach_mode) { 11428 case PROBE_ATTACH_MODE_LEGACY: 11429 legacy = true; 11430 pe_opts.force_ioctl_attach = true; 11431 break; 11432 case PROBE_ATTACH_MODE_PERF: 11433 if (legacy) 11434 return libbpf_err_ptr(-ENOTSUP); 11435 pe_opts.force_ioctl_attach = true; 11436 break; 11437 case PROBE_ATTACH_MODE_LINK: 11438 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11439 return libbpf_err_ptr(-ENOTSUP); 11440 break; 11441 case PROBE_ATTACH_MODE_DEFAULT: 11442 break; 11443 default: 11444 return libbpf_err_ptr(-EINVAL); 11445 } 11446 11447 if (!legacy) { 11448 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 11449 func_offset, pid, ref_ctr_off); 11450 } else { 11451 char probe_name[PATH_MAX + 64]; 11452 11453 if (ref_ctr_off) 11454 return libbpf_err_ptr(-EINVAL); 11455 11456 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 11457 binary_path, func_offset); 11458 11459 legacy_probe = strdup(probe_name); 11460 if (!legacy_probe) 11461 return libbpf_err_ptr(-ENOMEM); 11462 11463 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 11464 binary_path, func_offset, pid); 11465 } 11466 if (pfd < 0) { 11467 err = -errno; 11468 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 11469 prog->name, retprobe ? "uretprobe" : "uprobe", 11470 binary_path, func_offset, 11471 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11472 goto err_out; 11473 } 11474 11475 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11476 err = libbpf_get_error(link); 11477 if (err) { 11478 close(pfd); 11479 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 11480 prog->name, retprobe ? "uretprobe" : "uprobe", 11481 binary_path, func_offset, 11482 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11483 goto err_clean_legacy; 11484 } 11485 if (legacy) { 11486 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11487 11488 perf_link->legacy_probe_name = legacy_probe; 11489 perf_link->legacy_is_kprobe = false; 11490 perf_link->legacy_is_retprobe = retprobe; 11491 } 11492 return link; 11493 11494 err_clean_legacy: 11495 if (legacy) 11496 remove_uprobe_event_legacy(legacy_probe, retprobe); 11497 err_out: 11498 free(legacy_probe); 11499 return libbpf_err_ptr(err); 11500 } 11501 11502 /* Format of u[ret]probe section definition supporting auto-attach: 11503 * u[ret]probe/binary:function[+offset] 11504 * 11505 * binary can be an absolute/relative path or a filename; the latter is resolved to a 11506 * full binary path via bpf_program__attach_uprobe_opts. 11507 * 11508 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 11509 * specified (and auto-attach is not possible) or the above format is specified for 11510 * auto-attach. 11511 */ 11512 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11513 { 11514 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 11515 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11516 int n, ret = -EINVAL; 11517 long offset = 0; 11518 11519 *link = NULL; 11520 11521 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 11522 &probe_type, &binary_path, &func_name, &offset); 11523 switch (n) { 11524 case 1: 11525 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11526 ret = 0; 11527 break; 11528 case 2: 11529 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 11530 prog->name, prog->sec_name); 11531 break; 11532 case 3: 11533 case 4: 11534 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 11535 strcmp(probe_type, "uretprobe.s") == 0; 11536 if (opts.retprobe && offset != 0) { 11537 pr_warn("prog '%s': uretprobes do not support offset specification\n", 11538 prog->name); 11539 break; 11540 } 11541 opts.func_name = func_name; 11542 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 11543 ret = libbpf_get_error(*link); 11544 break; 11545 default: 11546 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11547 prog->sec_name); 11548 break; 11549 } 11550 free(probe_type); 11551 free(binary_path); 11552 free(func_name); 11553 11554 return ret; 11555 } 11556 11557 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 11558 bool retprobe, pid_t pid, 11559 const char *binary_path, 11560 size_t func_offset) 11561 { 11562 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 11563 11564 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 11565 } 11566 11567 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 11568 pid_t pid, const char *binary_path, 11569 const char *usdt_provider, const char *usdt_name, 11570 const struct bpf_usdt_opts *opts) 11571 { 11572 char resolved_path[512]; 11573 struct bpf_object *obj = prog->obj; 11574 struct bpf_link *link; 11575 __u64 usdt_cookie; 11576 int err; 11577 11578 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11579 return libbpf_err_ptr(-EINVAL); 11580 11581 if (bpf_program__fd(prog) < 0) { 11582 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 11583 prog->name); 11584 return libbpf_err_ptr(-EINVAL); 11585 } 11586 11587 if (!binary_path) 11588 return libbpf_err_ptr(-EINVAL); 11589 11590 if (!strchr(binary_path, '/')) { 11591 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 11592 if (err) { 11593 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11594 prog->name, binary_path, err); 11595 return libbpf_err_ptr(err); 11596 } 11597 binary_path = resolved_path; 11598 } 11599 11600 /* USDT manager is instantiated lazily on first USDT attach. It will 11601 * be destroyed together with BPF object in bpf_object__close(). 11602 */ 11603 if (IS_ERR(obj->usdt_man)) 11604 return libbpf_ptr(obj->usdt_man); 11605 if (!obj->usdt_man) { 11606 obj->usdt_man = usdt_manager_new(obj); 11607 if (IS_ERR(obj->usdt_man)) 11608 return libbpf_ptr(obj->usdt_man); 11609 } 11610 11611 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 11612 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 11613 usdt_provider, usdt_name, usdt_cookie); 11614 err = libbpf_get_error(link); 11615 if (err) 11616 return libbpf_err_ptr(err); 11617 return link; 11618 } 11619 11620 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11621 { 11622 char *path = NULL, *provider = NULL, *name = NULL; 11623 const char *sec_name; 11624 int n, err; 11625 11626 sec_name = bpf_program__section_name(prog); 11627 if (strcmp(sec_name, "usdt") == 0) { 11628 /* no auto-attach for just SEC("usdt") */ 11629 *link = NULL; 11630 return 0; 11631 } 11632 11633 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 11634 if (n != 3) { 11635 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 11636 sec_name); 11637 err = -EINVAL; 11638 } else { 11639 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 11640 provider, name, NULL); 11641 err = libbpf_get_error(*link); 11642 } 11643 free(path); 11644 free(provider); 11645 free(name); 11646 return err; 11647 } 11648 11649 static int determine_tracepoint_id(const char *tp_category, 11650 const char *tp_name) 11651 { 11652 char file[PATH_MAX]; 11653 int ret; 11654 11655 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11656 tracefs_path(), tp_category, tp_name); 11657 if (ret < 0) 11658 return -errno; 11659 if (ret >= sizeof(file)) { 11660 pr_debug("tracepoint %s/%s path is too long\n", 11661 tp_category, tp_name); 11662 return -E2BIG; 11663 } 11664 return parse_uint_from_file(file, "%d\n"); 11665 } 11666 11667 static int perf_event_open_tracepoint(const char *tp_category, 11668 const char *tp_name) 11669 { 11670 const size_t attr_sz = sizeof(struct perf_event_attr); 11671 struct perf_event_attr attr; 11672 char errmsg[STRERR_BUFSIZE]; 11673 int tp_id, pfd, err; 11674 11675 tp_id = determine_tracepoint_id(tp_category, tp_name); 11676 if (tp_id < 0) { 11677 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11678 tp_category, tp_name, 11679 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11680 return tp_id; 11681 } 11682 11683 memset(&attr, 0, attr_sz); 11684 attr.type = PERF_TYPE_TRACEPOINT; 11685 attr.size = attr_sz; 11686 attr.config = tp_id; 11687 11688 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11689 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11690 if (pfd < 0) { 11691 err = -errno; 11692 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11693 tp_category, tp_name, 11694 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11695 return err; 11696 } 11697 return pfd; 11698 } 11699 11700 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11701 const char *tp_category, 11702 const char *tp_name, 11703 const struct bpf_tracepoint_opts *opts) 11704 { 11705 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11706 char errmsg[STRERR_BUFSIZE]; 11707 struct bpf_link *link; 11708 int pfd, err; 11709 11710 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11711 return libbpf_err_ptr(-EINVAL); 11712 11713 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11714 11715 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11716 if (pfd < 0) { 11717 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11718 prog->name, tp_category, tp_name, 11719 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11720 return libbpf_err_ptr(pfd); 11721 } 11722 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11723 err = libbpf_get_error(link); 11724 if (err) { 11725 close(pfd); 11726 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11727 prog->name, tp_category, tp_name, 11728 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11729 return libbpf_err_ptr(err); 11730 } 11731 return link; 11732 } 11733 11734 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11735 const char *tp_category, 11736 const char *tp_name) 11737 { 11738 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11739 } 11740 11741 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11742 { 11743 char *sec_name, *tp_cat, *tp_name; 11744 11745 *link = NULL; 11746 11747 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11748 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11749 return 0; 11750 11751 sec_name = strdup(prog->sec_name); 11752 if (!sec_name) 11753 return -ENOMEM; 11754 11755 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11756 if (str_has_pfx(prog->sec_name, "tp/")) 11757 tp_cat = sec_name + sizeof("tp/") - 1; 11758 else 11759 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11760 tp_name = strchr(tp_cat, '/'); 11761 if (!tp_name) { 11762 free(sec_name); 11763 return -EINVAL; 11764 } 11765 *tp_name = '\0'; 11766 tp_name++; 11767 11768 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11769 free(sec_name); 11770 return libbpf_get_error(*link); 11771 } 11772 11773 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11774 const char *tp_name) 11775 { 11776 char errmsg[STRERR_BUFSIZE]; 11777 struct bpf_link *link; 11778 int prog_fd, pfd; 11779 11780 prog_fd = bpf_program__fd(prog); 11781 if (prog_fd < 0) { 11782 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11783 return libbpf_err_ptr(-EINVAL); 11784 } 11785 11786 link = calloc(1, sizeof(*link)); 11787 if (!link) 11788 return libbpf_err_ptr(-ENOMEM); 11789 link->detach = &bpf_link__detach_fd; 11790 11791 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11792 if (pfd < 0) { 11793 pfd = -errno; 11794 free(link); 11795 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11796 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11797 return libbpf_err_ptr(pfd); 11798 } 11799 link->fd = pfd; 11800 return link; 11801 } 11802 11803 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11804 { 11805 static const char *const prefixes[] = { 11806 "raw_tp", 11807 "raw_tracepoint", 11808 "raw_tp.w", 11809 "raw_tracepoint.w", 11810 }; 11811 size_t i; 11812 const char *tp_name = NULL; 11813 11814 *link = NULL; 11815 11816 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11817 size_t pfx_len; 11818 11819 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11820 continue; 11821 11822 pfx_len = strlen(prefixes[i]); 11823 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11824 if (prog->sec_name[pfx_len] == '\0') 11825 return 0; 11826 11827 if (prog->sec_name[pfx_len] != '/') 11828 continue; 11829 11830 tp_name = prog->sec_name + pfx_len + 1; 11831 break; 11832 } 11833 11834 if (!tp_name) { 11835 pr_warn("prog '%s': invalid section name '%s'\n", 11836 prog->name, prog->sec_name); 11837 return -EINVAL; 11838 } 11839 11840 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11841 return libbpf_get_error(*link); 11842 } 11843 11844 /* Common logic for all BPF program types that attach to a btf_id */ 11845 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11846 const struct bpf_trace_opts *opts) 11847 { 11848 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11849 char errmsg[STRERR_BUFSIZE]; 11850 struct bpf_link *link; 11851 int prog_fd, pfd; 11852 11853 if (!OPTS_VALID(opts, bpf_trace_opts)) 11854 return libbpf_err_ptr(-EINVAL); 11855 11856 prog_fd = bpf_program__fd(prog); 11857 if (prog_fd < 0) { 11858 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11859 return libbpf_err_ptr(-EINVAL); 11860 } 11861 11862 link = calloc(1, sizeof(*link)); 11863 if (!link) 11864 return libbpf_err_ptr(-ENOMEM); 11865 link->detach = &bpf_link__detach_fd; 11866 11867 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11868 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11869 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11870 if (pfd < 0) { 11871 pfd = -errno; 11872 free(link); 11873 pr_warn("prog '%s': failed to attach: %s\n", 11874 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11875 return libbpf_err_ptr(pfd); 11876 } 11877 link->fd = pfd; 11878 return link; 11879 } 11880 11881 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11882 { 11883 return bpf_program__attach_btf_id(prog, NULL); 11884 } 11885 11886 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11887 const struct bpf_trace_opts *opts) 11888 { 11889 return bpf_program__attach_btf_id(prog, opts); 11890 } 11891 11892 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11893 { 11894 return bpf_program__attach_btf_id(prog, NULL); 11895 } 11896 11897 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11898 { 11899 *link = bpf_program__attach_trace(prog); 11900 return libbpf_get_error(*link); 11901 } 11902 11903 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11904 { 11905 *link = bpf_program__attach_lsm(prog); 11906 return libbpf_get_error(*link); 11907 } 11908 11909 static struct bpf_link * 11910 bpf_program_attach_fd(const struct bpf_program *prog, 11911 int target_fd, const char *target_name, 11912 const struct bpf_link_create_opts *opts) 11913 { 11914 enum bpf_attach_type attach_type; 11915 char errmsg[STRERR_BUFSIZE]; 11916 struct bpf_link *link; 11917 int prog_fd, link_fd; 11918 11919 prog_fd = bpf_program__fd(prog); 11920 if (prog_fd < 0) { 11921 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11922 return libbpf_err_ptr(-EINVAL); 11923 } 11924 11925 link = calloc(1, sizeof(*link)); 11926 if (!link) 11927 return libbpf_err_ptr(-ENOMEM); 11928 link->detach = &bpf_link__detach_fd; 11929 11930 attach_type = bpf_program__expected_attach_type(prog); 11931 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 11932 if (link_fd < 0) { 11933 link_fd = -errno; 11934 free(link); 11935 pr_warn("prog '%s': failed to attach to %s: %s\n", 11936 prog->name, target_name, 11937 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11938 return libbpf_err_ptr(link_fd); 11939 } 11940 link->fd = link_fd; 11941 return link; 11942 } 11943 11944 struct bpf_link * 11945 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11946 { 11947 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 11948 } 11949 11950 struct bpf_link * 11951 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11952 { 11953 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 11954 } 11955 11956 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11957 { 11958 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11959 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 11960 } 11961 11962 struct bpf_link * 11963 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 11964 const struct bpf_tcx_opts *opts) 11965 { 11966 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11967 __u32 relative_id; 11968 int relative_fd; 11969 11970 if (!OPTS_VALID(opts, bpf_tcx_opts)) 11971 return libbpf_err_ptr(-EINVAL); 11972 11973 relative_id = OPTS_GET(opts, relative_id, 0); 11974 relative_fd = OPTS_GET(opts, relative_fd, 0); 11975 11976 /* validate we don't have unexpected combinations of non-zero fields */ 11977 if (!ifindex) { 11978 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 11979 prog->name); 11980 return libbpf_err_ptr(-EINVAL); 11981 } 11982 if (relative_fd && relative_id) { 11983 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 11984 prog->name); 11985 return libbpf_err_ptr(-EINVAL); 11986 } 11987 11988 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 11989 link_create_opts.tcx.relative_fd = relative_fd; 11990 link_create_opts.tcx.relative_id = relative_id; 11991 link_create_opts.flags = OPTS_GET(opts, flags, 0); 11992 11993 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11994 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 11995 } 11996 11997 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11998 int target_fd, 11999 const char *attach_func_name) 12000 { 12001 int btf_id; 12002 12003 if (!!target_fd != !!attach_func_name) { 12004 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12005 prog->name); 12006 return libbpf_err_ptr(-EINVAL); 12007 } 12008 12009 if (prog->type != BPF_PROG_TYPE_EXT) { 12010 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12011 prog->name); 12012 return libbpf_err_ptr(-EINVAL); 12013 } 12014 12015 if (target_fd) { 12016 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12017 12018 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12019 if (btf_id < 0) 12020 return libbpf_err_ptr(btf_id); 12021 12022 target_opts.target_btf_id = btf_id; 12023 12024 return bpf_program_attach_fd(prog, target_fd, "freplace", 12025 &target_opts); 12026 } else { 12027 /* no target, so use raw_tracepoint_open for compatibility 12028 * with old kernels 12029 */ 12030 return bpf_program__attach_trace(prog); 12031 } 12032 } 12033 12034 struct bpf_link * 12035 bpf_program__attach_iter(const struct bpf_program *prog, 12036 const struct bpf_iter_attach_opts *opts) 12037 { 12038 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12039 char errmsg[STRERR_BUFSIZE]; 12040 struct bpf_link *link; 12041 int prog_fd, link_fd; 12042 __u32 target_fd = 0; 12043 12044 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12045 return libbpf_err_ptr(-EINVAL); 12046 12047 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12048 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12049 12050 prog_fd = bpf_program__fd(prog); 12051 if (prog_fd < 0) { 12052 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12053 return libbpf_err_ptr(-EINVAL); 12054 } 12055 12056 link = calloc(1, sizeof(*link)); 12057 if (!link) 12058 return libbpf_err_ptr(-ENOMEM); 12059 link->detach = &bpf_link__detach_fd; 12060 12061 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12062 &link_create_opts); 12063 if (link_fd < 0) { 12064 link_fd = -errno; 12065 free(link); 12066 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12067 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12068 return libbpf_err_ptr(link_fd); 12069 } 12070 link->fd = link_fd; 12071 return link; 12072 } 12073 12074 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12075 { 12076 *link = bpf_program__attach_iter(prog, NULL); 12077 return libbpf_get_error(*link); 12078 } 12079 12080 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12081 const struct bpf_netfilter_opts *opts) 12082 { 12083 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12084 struct bpf_link *link; 12085 int prog_fd, link_fd; 12086 12087 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12088 return libbpf_err_ptr(-EINVAL); 12089 12090 prog_fd = bpf_program__fd(prog); 12091 if (prog_fd < 0) { 12092 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12093 return libbpf_err_ptr(-EINVAL); 12094 } 12095 12096 link = calloc(1, sizeof(*link)); 12097 if (!link) 12098 return libbpf_err_ptr(-ENOMEM); 12099 12100 link->detach = &bpf_link__detach_fd; 12101 12102 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12103 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12104 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12105 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12106 12107 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12108 if (link_fd < 0) { 12109 char errmsg[STRERR_BUFSIZE]; 12110 12111 link_fd = -errno; 12112 free(link); 12113 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12114 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12115 return libbpf_err_ptr(link_fd); 12116 } 12117 link->fd = link_fd; 12118 12119 return link; 12120 } 12121 12122 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12123 { 12124 struct bpf_link *link = NULL; 12125 int err; 12126 12127 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12128 return libbpf_err_ptr(-EOPNOTSUPP); 12129 12130 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12131 if (err) 12132 return libbpf_err_ptr(err); 12133 12134 /* When calling bpf_program__attach() explicitly, auto-attach support 12135 * is expected to work, so NULL returned link is considered an error. 12136 * This is different for skeleton's attach, see comment in 12137 * bpf_object__attach_skeleton(). 12138 */ 12139 if (!link) 12140 return libbpf_err_ptr(-EOPNOTSUPP); 12141 12142 return link; 12143 } 12144 12145 struct bpf_link_struct_ops { 12146 struct bpf_link link; 12147 int map_fd; 12148 }; 12149 12150 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12151 { 12152 struct bpf_link_struct_ops *st_link; 12153 __u32 zero = 0; 12154 12155 st_link = container_of(link, struct bpf_link_struct_ops, link); 12156 12157 if (st_link->map_fd < 0) 12158 /* w/o a real link */ 12159 return bpf_map_delete_elem(link->fd, &zero); 12160 12161 return close(link->fd); 12162 } 12163 12164 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12165 { 12166 struct bpf_link_struct_ops *link; 12167 __u32 zero = 0; 12168 int err, fd; 12169 12170 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 12171 return libbpf_err_ptr(-EINVAL); 12172 12173 link = calloc(1, sizeof(*link)); 12174 if (!link) 12175 return libbpf_err_ptr(-EINVAL); 12176 12177 /* kern_vdata should be prepared during the loading phase. */ 12178 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12179 /* It can be EBUSY if the map has been used to create or 12180 * update a link before. We don't allow updating the value of 12181 * a struct_ops once it is set. That ensures that the value 12182 * never changed. So, it is safe to skip EBUSY. 12183 */ 12184 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12185 free(link); 12186 return libbpf_err_ptr(err); 12187 } 12188 12189 link->link.detach = bpf_link__detach_struct_ops; 12190 12191 if (!(map->def.map_flags & BPF_F_LINK)) { 12192 /* w/o a real link */ 12193 link->link.fd = map->fd; 12194 link->map_fd = -1; 12195 return &link->link; 12196 } 12197 12198 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12199 if (fd < 0) { 12200 free(link); 12201 return libbpf_err_ptr(fd); 12202 } 12203 12204 link->link.fd = fd; 12205 link->map_fd = map->fd; 12206 12207 return &link->link; 12208 } 12209 12210 /* 12211 * Swap the back struct_ops of a link with a new struct_ops map. 12212 */ 12213 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12214 { 12215 struct bpf_link_struct_ops *st_ops_link; 12216 __u32 zero = 0; 12217 int err; 12218 12219 if (!bpf_map__is_struct_ops(map) || map->fd < 0) 12220 return -EINVAL; 12221 12222 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12223 /* Ensure the type of a link is correct */ 12224 if (st_ops_link->map_fd < 0) 12225 return -EINVAL; 12226 12227 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12228 /* It can be EBUSY if the map has been used to create or 12229 * update a link before. We don't allow updating the value of 12230 * a struct_ops once it is set. That ensures that the value 12231 * never changed. So, it is safe to skip EBUSY. 12232 */ 12233 if (err && err != -EBUSY) 12234 return err; 12235 12236 err = bpf_link_update(link->fd, map->fd, NULL); 12237 if (err < 0) 12238 return err; 12239 12240 st_ops_link->map_fd = map->fd; 12241 12242 return 0; 12243 } 12244 12245 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12246 void *private_data); 12247 12248 static enum bpf_perf_event_ret 12249 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12250 void **copy_mem, size_t *copy_size, 12251 bpf_perf_event_print_t fn, void *private_data) 12252 { 12253 struct perf_event_mmap_page *header = mmap_mem; 12254 __u64 data_head = ring_buffer_read_head(header); 12255 __u64 data_tail = header->data_tail; 12256 void *base = ((__u8 *)header) + page_size; 12257 int ret = LIBBPF_PERF_EVENT_CONT; 12258 struct perf_event_header *ehdr; 12259 size_t ehdr_size; 12260 12261 while (data_head != data_tail) { 12262 ehdr = base + (data_tail & (mmap_size - 1)); 12263 ehdr_size = ehdr->size; 12264 12265 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12266 void *copy_start = ehdr; 12267 size_t len_first = base + mmap_size - copy_start; 12268 size_t len_secnd = ehdr_size - len_first; 12269 12270 if (*copy_size < ehdr_size) { 12271 free(*copy_mem); 12272 *copy_mem = malloc(ehdr_size); 12273 if (!*copy_mem) { 12274 *copy_size = 0; 12275 ret = LIBBPF_PERF_EVENT_ERROR; 12276 break; 12277 } 12278 *copy_size = ehdr_size; 12279 } 12280 12281 memcpy(*copy_mem, copy_start, len_first); 12282 memcpy(*copy_mem + len_first, base, len_secnd); 12283 ehdr = *copy_mem; 12284 } 12285 12286 ret = fn(ehdr, private_data); 12287 data_tail += ehdr_size; 12288 if (ret != LIBBPF_PERF_EVENT_CONT) 12289 break; 12290 } 12291 12292 ring_buffer_write_tail(header, data_tail); 12293 return libbpf_err(ret); 12294 } 12295 12296 struct perf_buffer; 12297 12298 struct perf_buffer_params { 12299 struct perf_event_attr *attr; 12300 /* if event_cb is specified, it takes precendence */ 12301 perf_buffer_event_fn event_cb; 12302 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12303 perf_buffer_sample_fn sample_cb; 12304 perf_buffer_lost_fn lost_cb; 12305 void *ctx; 12306 int cpu_cnt; 12307 int *cpus; 12308 int *map_keys; 12309 }; 12310 12311 struct perf_cpu_buf { 12312 struct perf_buffer *pb; 12313 void *base; /* mmap()'ed memory */ 12314 void *buf; /* for reconstructing segmented data */ 12315 size_t buf_size; 12316 int fd; 12317 int cpu; 12318 int map_key; 12319 }; 12320 12321 struct perf_buffer { 12322 perf_buffer_event_fn event_cb; 12323 perf_buffer_sample_fn sample_cb; 12324 perf_buffer_lost_fn lost_cb; 12325 void *ctx; /* passed into callbacks */ 12326 12327 size_t page_size; 12328 size_t mmap_size; 12329 struct perf_cpu_buf **cpu_bufs; 12330 struct epoll_event *events; 12331 int cpu_cnt; /* number of allocated CPU buffers */ 12332 int epoll_fd; /* perf event FD */ 12333 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12334 }; 12335 12336 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12337 struct perf_cpu_buf *cpu_buf) 12338 { 12339 if (!cpu_buf) 12340 return; 12341 if (cpu_buf->base && 12342 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12343 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12344 if (cpu_buf->fd >= 0) { 12345 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12346 close(cpu_buf->fd); 12347 } 12348 free(cpu_buf->buf); 12349 free(cpu_buf); 12350 } 12351 12352 void perf_buffer__free(struct perf_buffer *pb) 12353 { 12354 int i; 12355 12356 if (IS_ERR_OR_NULL(pb)) 12357 return; 12358 if (pb->cpu_bufs) { 12359 for (i = 0; i < pb->cpu_cnt; i++) { 12360 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12361 12362 if (!cpu_buf) 12363 continue; 12364 12365 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 12366 perf_buffer__free_cpu_buf(pb, cpu_buf); 12367 } 12368 free(pb->cpu_bufs); 12369 } 12370 if (pb->epoll_fd >= 0) 12371 close(pb->epoll_fd); 12372 free(pb->events); 12373 free(pb); 12374 } 12375 12376 static struct perf_cpu_buf * 12377 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 12378 int cpu, int map_key) 12379 { 12380 struct perf_cpu_buf *cpu_buf; 12381 char msg[STRERR_BUFSIZE]; 12382 int err; 12383 12384 cpu_buf = calloc(1, sizeof(*cpu_buf)); 12385 if (!cpu_buf) 12386 return ERR_PTR(-ENOMEM); 12387 12388 cpu_buf->pb = pb; 12389 cpu_buf->cpu = cpu; 12390 cpu_buf->map_key = map_key; 12391 12392 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 12393 -1, PERF_FLAG_FD_CLOEXEC); 12394 if (cpu_buf->fd < 0) { 12395 err = -errno; 12396 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 12397 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12398 goto error; 12399 } 12400 12401 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 12402 PROT_READ | PROT_WRITE, MAP_SHARED, 12403 cpu_buf->fd, 0); 12404 if (cpu_buf->base == MAP_FAILED) { 12405 cpu_buf->base = NULL; 12406 err = -errno; 12407 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 12408 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12409 goto error; 12410 } 12411 12412 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 12413 err = -errno; 12414 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 12415 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 12416 goto error; 12417 } 12418 12419 return cpu_buf; 12420 12421 error: 12422 perf_buffer__free_cpu_buf(pb, cpu_buf); 12423 return (struct perf_cpu_buf *)ERR_PTR(err); 12424 } 12425 12426 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12427 struct perf_buffer_params *p); 12428 12429 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 12430 perf_buffer_sample_fn sample_cb, 12431 perf_buffer_lost_fn lost_cb, 12432 void *ctx, 12433 const struct perf_buffer_opts *opts) 12434 { 12435 const size_t attr_sz = sizeof(struct perf_event_attr); 12436 struct perf_buffer_params p = {}; 12437 struct perf_event_attr attr; 12438 __u32 sample_period; 12439 12440 if (!OPTS_VALID(opts, perf_buffer_opts)) 12441 return libbpf_err_ptr(-EINVAL); 12442 12443 sample_period = OPTS_GET(opts, sample_period, 1); 12444 if (!sample_period) 12445 sample_period = 1; 12446 12447 memset(&attr, 0, attr_sz); 12448 attr.size = attr_sz; 12449 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 12450 attr.type = PERF_TYPE_SOFTWARE; 12451 attr.sample_type = PERF_SAMPLE_RAW; 12452 attr.sample_period = sample_period; 12453 attr.wakeup_events = sample_period; 12454 12455 p.attr = &attr; 12456 p.sample_cb = sample_cb; 12457 p.lost_cb = lost_cb; 12458 p.ctx = ctx; 12459 12460 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12461 } 12462 12463 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 12464 struct perf_event_attr *attr, 12465 perf_buffer_event_fn event_cb, void *ctx, 12466 const struct perf_buffer_raw_opts *opts) 12467 { 12468 struct perf_buffer_params p = {}; 12469 12470 if (!attr) 12471 return libbpf_err_ptr(-EINVAL); 12472 12473 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 12474 return libbpf_err_ptr(-EINVAL); 12475 12476 p.attr = attr; 12477 p.event_cb = event_cb; 12478 p.ctx = ctx; 12479 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 12480 p.cpus = OPTS_GET(opts, cpus, NULL); 12481 p.map_keys = OPTS_GET(opts, map_keys, NULL); 12482 12483 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 12484 } 12485 12486 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 12487 struct perf_buffer_params *p) 12488 { 12489 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 12490 struct bpf_map_info map; 12491 char msg[STRERR_BUFSIZE]; 12492 struct perf_buffer *pb; 12493 bool *online = NULL; 12494 __u32 map_info_len; 12495 int err, i, j, n; 12496 12497 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 12498 pr_warn("page count should be power of two, but is %zu\n", 12499 page_cnt); 12500 return ERR_PTR(-EINVAL); 12501 } 12502 12503 /* best-effort sanity checks */ 12504 memset(&map, 0, sizeof(map)); 12505 map_info_len = sizeof(map); 12506 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 12507 if (err) { 12508 err = -errno; 12509 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 12510 * -EBADFD, -EFAULT, or -E2BIG on real error 12511 */ 12512 if (err != -EINVAL) { 12513 pr_warn("failed to get map info for map FD %d: %s\n", 12514 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 12515 return ERR_PTR(err); 12516 } 12517 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 12518 map_fd); 12519 } else { 12520 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 12521 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 12522 map.name); 12523 return ERR_PTR(-EINVAL); 12524 } 12525 } 12526 12527 pb = calloc(1, sizeof(*pb)); 12528 if (!pb) 12529 return ERR_PTR(-ENOMEM); 12530 12531 pb->event_cb = p->event_cb; 12532 pb->sample_cb = p->sample_cb; 12533 pb->lost_cb = p->lost_cb; 12534 pb->ctx = p->ctx; 12535 12536 pb->page_size = getpagesize(); 12537 pb->mmap_size = pb->page_size * page_cnt; 12538 pb->map_fd = map_fd; 12539 12540 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 12541 if (pb->epoll_fd < 0) { 12542 err = -errno; 12543 pr_warn("failed to create epoll instance: %s\n", 12544 libbpf_strerror_r(err, msg, sizeof(msg))); 12545 goto error; 12546 } 12547 12548 if (p->cpu_cnt > 0) { 12549 pb->cpu_cnt = p->cpu_cnt; 12550 } else { 12551 pb->cpu_cnt = libbpf_num_possible_cpus(); 12552 if (pb->cpu_cnt < 0) { 12553 err = pb->cpu_cnt; 12554 goto error; 12555 } 12556 if (map.max_entries && map.max_entries < pb->cpu_cnt) 12557 pb->cpu_cnt = map.max_entries; 12558 } 12559 12560 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 12561 if (!pb->events) { 12562 err = -ENOMEM; 12563 pr_warn("failed to allocate events: out of memory\n"); 12564 goto error; 12565 } 12566 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 12567 if (!pb->cpu_bufs) { 12568 err = -ENOMEM; 12569 pr_warn("failed to allocate buffers: out of memory\n"); 12570 goto error; 12571 } 12572 12573 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 12574 if (err) { 12575 pr_warn("failed to get online CPU mask: %d\n", err); 12576 goto error; 12577 } 12578 12579 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 12580 struct perf_cpu_buf *cpu_buf; 12581 int cpu, map_key; 12582 12583 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 12584 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 12585 12586 /* in case user didn't explicitly requested particular CPUs to 12587 * be attached to, skip offline/not present CPUs 12588 */ 12589 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 12590 continue; 12591 12592 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 12593 if (IS_ERR(cpu_buf)) { 12594 err = PTR_ERR(cpu_buf); 12595 goto error; 12596 } 12597 12598 pb->cpu_bufs[j] = cpu_buf; 12599 12600 err = bpf_map_update_elem(pb->map_fd, &map_key, 12601 &cpu_buf->fd, 0); 12602 if (err) { 12603 err = -errno; 12604 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 12605 cpu, map_key, cpu_buf->fd, 12606 libbpf_strerror_r(err, msg, sizeof(msg))); 12607 goto error; 12608 } 12609 12610 pb->events[j].events = EPOLLIN; 12611 pb->events[j].data.ptr = cpu_buf; 12612 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 12613 &pb->events[j]) < 0) { 12614 err = -errno; 12615 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 12616 cpu, cpu_buf->fd, 12617 libbpf_strerror_r(err, msg, sizeof(msg))); 12618 goto error; 12619 } 12620 j++; 12621 } 12622 pb->cpu_cnt = j; 12623 free(online); 12624 12625 return pb; 12626 12627 error: 12628 free(online); 12629 if (pb) 12630 perf_buffer__free(pb); 12631 return ERR_PTR(err); 12632 } 12633 12634 struct perf_sample_raw { 12635 struct perf_event_header header; 12636 uint32_t size; 12637 char data[]; 12638 }; 12639 12640 struct perf_sample_lost { 12641 struct perf_event_header header; 12642 uint64_t id; 12643 uint64_t lost; 12644 uint64_t sample_id; 12645 }; 12646 12647 static enum bpf_perf_event_ret 12648 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 12649 { 12650 struct perf_cpu_buf *cpu_buf = ctx; 12651 struct perf_buffer *pb = cpu_buf->pb; 12652 void *data = e; 12653 12654 /* user wants full control over parsing perf event */ 12655 if (pb->event_cb) 12656 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 12657 12658 switch (e->type) { 12659 case PERF_RECORD_SAMPLE: { 12660 struct perf_sample_raw *s = data; 12661 12662 if (pb->sample_cb) 12663 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 12664 break; 12665 } 12666 case PERF_RECORD_LOST: { 12667 struct perf_sample_lost *s = data; 12668 12669 if (pb->lost_cb) 12670 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 12671 break; 12672 } 12673 default: 12674 pr_warn("unknown perf sample type %d\n", e->type); 12675 return LIBBPF_PERF_EVENT_ERROR; 12676 } 12677 return LIBBPF_PERF_EVENT_CONT; 12678 } 12679 12680 static int perf_buffer__process_records(struct perf_buffer *pb, 12681 struct perf_cpu_buf *cpu_buf) 12682 { 12683 enum bpf_perf_event_ret ret; 12684 12685 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 12686 pb->page_size, &cpu_buf->buf, 12687 &cpu_buf->buf_size, 12688 perf_buffer__process_record, cpu_buf); 12689 if (ret != LIBBPF_PERF_EVENT_CONT) 12690 return ret; 12691 return 0; 12692 } 12693 12694 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 12695 { 12696 return pb->epoll_fd; 12697 } 12698 12699 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 12700 { 12701 int i, cnt, err; 12702 12703 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 12704 if (cnt < 0) 12705 return -errno; 12706 12707 for (i = 0; i < cnt; i++) { 12708 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 12709 12710 err = perf_buffer__process_records(pb, cpu_buf); 12711 if (err) { 12712 pr_warn("error while processing records: %d\n", err); 12713 return libbpf_err(err); 12714 } 12715 } 12716 return cnt; 12717 } 12718 12719 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 12720 * manager. 12721 */ 12722 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 12723 { 12724 return pb->cpu_cnt; 12725 } 12726 12727 /* 12728 * Return perf_event FD of a ring buffer in *buf_idx* slot of 12729 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 12730 * select()/poll()/epoll() Linux syscalls. 12731 */ 12732 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 12733 { 12734 struct perf_cpu_buf *cpu_buf; 12735 12736 if (buf_idx >= pb->cpu_cnt) 12737 return libbpf_err(-EINVAL); 12738 12739 cpu_buf = pb->cpu_bufs[buf_idx]; 12740 if (!cpu_buf) 12741 return libbpf_err(-ENOENT); 12742 12743 return cpu_buf->fd; 12744 } 12745 12746 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 12747 { 12748 struct perf_cpu_buf *cpu_buf; 12749 12750 if (buf_idx >= pb->cpu_cnt) 12751 return libbpf_err(-EINVAL); 12752 12753 cpu_buf = pb->cpu_bufs[buf_idx]; 12754 if (!cpu_buf) 12755 return libbpf_err(-ENOENT); 12756 12757 *buf = cpu_buf->base; 12758 *buf_size = pb->mmap_size; 12759 return 0; 12760 } 12761 12762 /* 12763 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 12764 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 12765 * consume, do nothing and return success. 12766 * Returns: 12767 * - 0 on success; 12768 * - <0 on failure. 12769 */ 12770 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 12771 { 12772 struct perf_cpu_buf *cpu_buf; 12773 12774 if (buf_idx >= pb->cpu_cnt) 12775 return libbpf_err(-EINVAL); 12776 12777 cpu_buf = pb->cpu_bufs[buf_idx]; 12778 if (!cpu_buf) 12779 return libbpf_err(-ENOENT); 12780 12781 return perf_buffer__process_records(pb, cpu_buf); 12782 } 12783 12784 int perf_buffer__consume(struct perf_buffer *pb) 12785 { 12786 int i, err; 12787 12788 for (i = 0; i < pb->cpu_cnt; i++) { 12789 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12790 12791 if (!cpu_buf) 12792 continue; 12793 12794 err = perf_buffer__process_records(pb, cpu_buf); 12795 if (err) { 12796 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12797 return libbpf_err(err); 12798 } 12799 } 12800 return 0; 12801 } 12802 12803 int bpf_program__set_attach_target(struct bpf_program *prog, 12804 int attach_prog_fd, 12805 const char *attach_func_name) 12806 { 12807 int btf_obj_fd = 0, btf_id = 0, err; 12808 12809 if (!prog || attach_prog_fd < 0) 12810 return libbpf_err(-EINVAL); 12811 12812 if (prog->obj->loaded) 12813 return libbpf_err(-EINVAL); 12814 12815 if (attach_prog_fd && !attach_func_name) { 12816 /* remember attach_prog_fd and let bpf_program__load() find 12817 * BTF ID during the program load 12818 */ 12819 prog->attach_prog_fd = attach_prog_fd; 12820 return 0; 12821 } 12822 12823 if (attach_prog_fd) { 12824 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12825 attach_prog_fd); 12826 if (btf_id < 0) 12827 return libbpf_err(btf_id); 12828 } else { 12829 if (!attach_func_name) 12830 return libbpf_err(-EINVAL); 12831 12832 /* load btf_vmlinux, if not yet */ 12833 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12834 if (err) 12835 return libbpf_err(err); 12836 err = find_kernel_btf_id(prog->obj, attach_func_name, 12837 prog->expected_attach_type, 12838 &btf_obj_fd, &btf_id); 12839 if (err) 12840 return libbpf_err(err); 12841 } 12842 12843 prog->attach_btf_id = btf_id; 12844 prog->attach_btf_obj_fd = btf_obj_fd; 12845 prog->attach_prog_fd = attach_prog_fd; 12846 return 0; 12847 } 12848 12849 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12850 { 12851 int err = 0, n, len, start, end = -1; 12852 bool *tmp; 12853 12854 *mask = NULL; 12855 *mask_sz = 0; 12856 12857 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12858 while (*s) { 12859 if (*s == ',' || *s == '\n') { 12860 s++; 12861 continue; 12862 } 12863 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12864 if (n <= 0 || n > 2) { 12865 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12866 err = -EINVAL; 12867 goto cleanup; 12868 } else if (n == 1) { 12869 end = start; 12870 } 12871 if (start < 0 || start > end) { 12872 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12873 start, end, s); 12874 err = -EINVAL; 12875 goto cleanup; 12876 } 12877 tmp = realloc(*mask, end + 1); 12878 if (!tmp) { 12879 err = -ENOMEM; 12880 goto cleanup; 12881 } 12882 *mask = tmp; 12883 memset(tmp + *mask_sz, 0, start - *mask_sz); 12884 memset(tmp + start, 1, end - start + 1); 12885 *mask_sz = end + 1; 12886 s += len; 12887 } 12888 if (!*mask_sz) { 12889 pr_warn("Empty CPU range\n"); 12890 return -EINVAL; 12891 } 12892 return 0; 12893 cleanup: 12894 free(*mask); 12895 *mask = NULL; 12896 return err; 12897 } 12898 12899 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12900 { 12901 int fd, err = 0, len; 12902 char buf[128]; 12903 12904 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12905 if (fd < 0) { 12906 err = -errno; 12907 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12908 return err; 12909 } 12910 len = read(fd, buf, sizeof(buf)); 12911 close(fd); 12912 if (len <= 0) { 12913 err = len ? -errno : -EINVAL; 12914 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12915 return err; 12916 } 12917 if (len >= sizeof(buf)) { 12918 pr_warn("CPU mask is too big in file %s\n", fcpu); 12919 return -E2BIG; 12920 } 12921 buf[len] = '\0'; 12922 12923 return parse_cpu_mask_str(buf, mask, mask_sz); 12924 } 12925 12926 int libbpf_num_possible_cpus(void) 12927 { 12928 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12929 static int cpus; 12930 int err, n, i, tmp_cpus; 12931 bool *mask; 12932 12933 tmp_cpus = READ_ONCE(cpus); 12934 if (tmp_cpus > 0) 12935 return tmp_cpus; 12936 12937 err = parse_cpu_mask_file(fcpu, &mask, &n); 12938 if (err) 12939 return libbpf_err(err); 12940 12941 tmp_cpus = 0; 12942 for (i = 0; i < n; i++) { 12943 if (mask[i]) 12944 tmp_cpus++; 12945 } 12946 free(mask); 12947 12948 WRITE_ONCE(cpus, tmp_cpus); 12949 return tmp_cpus; 12950 } 12951 12952 static int populate_skeleton_maps(const struct bpf_object *obj, 12953 struct bpf_map_skeleton *maps, 12954 size_t map_cnt) 12955 { 12956 int i; 12957 12958 for (i = 0; i < map_cnt; i++) { 12959 struct bpf_map **map = maps[i].map; 12960 const char *name = maps[i].name; 12961 void **mmaped = maps[i].mmaped; 12962 12963 *map = bpf_object__find_map_by_name(obj, name); 12964 if (!*map) { 12965 pr_warn("failed to find skeleton map '%s'\n", name); 12966 return -ESRCH; 12967 } 12968 12969 /* externs shouldn't be pre-setup from user code */ 12970 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12971 *mmaped = (*map)->mmaped; 12972 } 12973 return 0; 12974 } 12975 12976 static int populate_skeleton_progs(const struct bpf_object *obj, 12977 struct bpf_prog_skeleton *progs, 12978 size_t prog_cnt) 12979 { 12980 int i; 12981 12982 for (i = 0; i < prog_cnt; i++) { 12983 struct bpf_program **prog = progs[i].prog; 12984 const char *name = progs[i].name; 12985 12986 *prog = bpf_object__find_program_by_name(obj, name); 12987 if (!*prog) { 12988 pr_warn("failed to find skeleton program '%s'\n", name); 12989 return -ESRCH; 12990 } 12991 } 12992 return 0; 12993 } 12994 12995 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12996 const struct bpf_object_open_opts *opts) 12997 { 12998 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12999 .object_name = s->name, 13000 ); 13001 struct bpf_object *obj; 13002 int err; 13003 13004 /* Attempt to preserve opts->object_name, unless overriden by user 13005 * explicitly. Overwriting object name for skeletons is discouraged, 13006 * as it breaks global data maps, because they contain object name 13007 * prefix as their own map name prefix. When skeleton is generated, 13008 * bpftool is making an assumption that this name will stay the same. 13009 */ 13010 if (opts) { 13011 memcpy(&skel_opts, opts, sizeof(*opts)); 13012 if (!opts->object_name) 13013 skel_opts.object_name = s->name; 13014 } 13015 13016 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13017 err = libbpf_get_error(obj); 13018 if (err) { 13019 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13020 s->name, err); 13021 return libbpf_err(err); 13022 } 13023 13024 *s->obj = obj; 13025 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13026 if (err) { 13027 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13028 return libbpf_err(err); 13029 } 13030 13031 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13032 if (err) { 13033 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13034 return libbpf_err(err); 13035 } 13036 13037 return 0; 13038 } 13039 13040 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13041 { 13042 int err, len, var_idx, i; 13043 const char *var_name; 13044 const struct bpf_map *map; 13045 struct btf *btf; 13046 __u32 map_type_id; 13047 const struct btf_type *map_type, *var_type; 13048 const struct bpf_var_skeleton *var_skel; 13049 struct btf_var_secinfo *var; 13050 13051 if (!s->obj) 13052 return libbpf_err(-EINVAL); 13053 13054 btf = bpf_object__btf(s->obj); 13055 if (!btf) { 13056 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13057 bpf_object__name(s->obj)); 13058 return libbpf_err(-errno); 13059 } 13060 13061 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13062 if (err) { 13063 pr_warn("failed to populate subskeleton maps: %d\n", err); 13064 return libbpf_err(err); 13065 } 13066 13067 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13068 if (err) { 13069 pr_warn("failed to populate subskeleton maps: %d\n", err); 13070 return libbpf_err(err); 13071 } 13072 13073 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13074 var_skel = &s->vars[var_idx]; 13075 map = *var_skel->map; 13076 map_type_id = bpf_map__btf_value_type_id(map); 13077 map_type = btf__type_by_id(btf, map_type_id); 13078 13079 if (!btf_is_datasec(map_type)) { 13080 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13081 bpf_map__name(map), 13082 __btf_kind_str(btf_kind(map_type))); 13083 return libbpf_err(-EINVAL); 13084 } 13085 13086 len = btf_vlen(map_type); 13087 var = btf_var_secinfos(map_type); 13088 for (i = 0; i < len; i++, var++) { 13089 var_type = btf__type_by_id(btf, var->type); 13090 var_name = btf__name_by_offset(btf, var_type->name_off); 13091 if (strcmp(var_name, var_skel->name) == 0) { 13092 *var_skel->addr = map->mmaped + var->offset; 13093 break; 13094 } 13095 } 13096 } 13097 return 0; 13098 } 13099 13100 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13101 { 13102 if (!s) 13103 return; 13104 free(s->maps); 13105 free(s->progs); 13106 free(s->vars); 13107 free(s); 13108 } 13109 13110 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13111 { 13112 int i, err; 13113 13114 err = bpf_object__load(*s->obj); 13115 if (err) { 13116 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13117 return libbpf_err(err); 13118 } 13119 13120 for (i = 0; i < s->map_cnt; i++) { 13121 struct bpf_map *map = *s->maps[i].map; 13122 size_t mmap_sz = bpf_map_mmap_sz(map->def.value_size, map->def.max_entries); 13123 int prot, map_fd = bpf_map__fd(map); 13124 void **mmaped = s->maps[i].mmaped; 13125 13126 if (!mmaped) 13127 continue; 13128 13129 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13130 *mmaped = NULL; 13131 continue; 13132 } 13133 13134 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13135 prot = PROT_READ; 13136 else 13137 prot = PROT_READ | PROT_WRITE; 13138 13139 /* Remap anonymous mmap()-ed "map initialization image" as 13140 * a BPF map-backed mmap()-ed memory, but preserving the same 13141 * memory address. This will cause kernel to change process' 13142 * page table to point to a different piece of kernel memory, 13143 * but from userspace point of view memory address (and its 13144 * contents, being identical at this point) will stay the 13145 * same. This mapping will be released by bpf_object__close() 13146 * as per normal clean up procedure, so we don't need to worry 13147 * about it from skeleton's clean up perspective. 13148 */ 13149 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13150 if (*mmaped == MAP_FAILED) { 13151 err = -errno; 13152 *mmaped = NULL; 13153 pr_warn("failed to re-mmap() map '%s': %d\n", 13154 bpf_map__name(map), err); 13155 return libbpf_err(err); 13156 } 13157 } 13158 13159 return 0; 13160 } 13161 13162 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13163 { 13164 int i, err; 13165 13166 for (i = 0; i < s->prog_cnt; i++) { 13167 struct bpf_program *prog = *s->progs[i].prog; 13168 struct bpf_link **link = s->progs[i].link; 13169 13170 if (!prog->autoload || !prog->autoattach) 13171 continue; 13172 13173 /* auto-attaching not supported for this program */ 13174 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13175 continue; 13176 13177 /* if user already set the link manually, don't attempt auto-attach */ 13178 if (*link) 13179 continue; 13180 13181 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13182 if (err) { 13183 pr_warn("prog '%s': failed to auto-attach: %d\n", 13184 bpf_program__name(prog), err); 13185 return libbpf_err(err); 13186 } 13187 13188 /* It's possible that for some SEC() definitions auto-attach 13189 * is supported in some cases (e.g., if definition completely 13190 * specifies target information), but is not in other cases. 13191 * SEC("uprobe") is one such case. If user specified target 13192 * binary and function name, such BPF program can be 13193 * auto-attached. But if not, it shouldn't trigger skeleton's 13194 * attach to fail. It should just be skipped. 13195 * attach_fn signals such case with returning 0 (no error) and 13196 * setting link to NULL. 13197 */ 13198 } 13199 13200 return 0; 13201 } 13202 13203 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13204 { 13205 int i; 13206 13207 for (i = 0; i < s->prog_cnt; i++) { 13208 struct bpf_link **link = s->progs[i].link; 13209 13210 bpf_link__destroy(*link); 13211 *link = NULL; 13212 } 13213 } 13214 13215 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13216 { 13217 if (!s) 13218 return; 13219 13220 if (s->progs) 13221 bpf_object__detach_skeleton(s); 13222 if (s->obj) 13223 bpf_object__close(*s->obj); 13224 free(s->maps); 13225 free(s->progs); 13226 free(s); 13227 } 13228