xref: /openbmc/linux/tools/lib/bpf/btf_dump.c (revision f8bcb061)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <errno.h>
14 #include <linux/err.h>
15 #include <linux/btf.h>
16 #include <linux/kernel.h>
17 #include "btf.h"
18 #include "hashmap.h"
19 #include "libbpf.h"
20 #include "libbpf_internal.h"
21 
22 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
23 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
24 
25 static const char *pfx(int lvl)
26 {
27 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
28 }
29 
30 enum btf_dump_type_order_state {
31 	NOT_ORDERED,
32 	ORDERING,
33 	ORDERED,
34 };
35 
36 enum btf_dump_type_emit_state {
37 	NOT_EMITTED,
38 	EMITTING,
39 	EMITTED,
40 };
41 
42 /* per-type auxiliary state */
43 struct btf_dump_type_aux_state {
44 	/* topological sorting state */
45 	enum btf_dump_type_order_state order_state: 2;
46 	/* emitting state used to determine the need for forward declaration */
47 	enum btf_dump_type_emit_state emit_state: 2;
48 	/* whether forward declaration was already emitted */
49 	__u8 fwd_emitted: 1;
50 	/* whether unique non-duplicate name was already assigned */
51 	__u8 name_resolved: 1;
52 	/* whether type is referenced from any other type */
53 	__u8 referenced: 1;
54 };
55 
56 struct btf_dump {
57 	const struct btf *btf;
58 	const struct btf_ext *btf_ext;
59 	btf_dump_printf_fn_t printf_fn;
60 	struct btf_dump_opts opts;
61 	int ptr_sz;
62 	bool strip_mods;
63 	int last_id;
64 
65 	/* per-type auxiliary state */
66 	struct btf_dump_type_aux_state *type_states;
67 	size_t type_states_cap;
68 	/* per-type optional cached unique name, must be freed, if present */
69 	const char **cached_names;
70 	size_t cached_names_cap;
71 
72 	/* topo-sorted list of dependent type definitions */
73 	__u32 *emit_queue;
74 	int emit_queue_cap;
75 	int emit_queue_cnt;
76 
77 	/*
78 	 * stack of type declarations (e.g., chain of modifiers, arrays,
79 	 * funcs, etc)
80 	 */
81 	__u32 *decl_stack;
82 	int decl_stack_cap;
83 	int decl_stack_cnt;
84 
85 	/* maps struct/union/enum name to a number of name occurrences */
86 	struct hashmap *type_names;
87 	/*
88 	 * maps typedef identifiers and enum value names to a number of such
89 	 * name occurrences
90 	 */
91 	struct hashmap *ident_names;
92 };
93 
94 static size_t str_hash_fn(const void *key, void *ctx)
95 {
96 	return str_hash(key);
97 }
98 
99 static bool str_equal_fn(const void *a, const void *b, void *ctx)
100 {
101 	return strcmp(a, b) == 0;
102 }
103 
104 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
105 {
106 	return btf__name_by_offset(d->btf, name_off);
107 }
108 
109 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
110 {
111 	va_list args;
112 
113 	va_start(args, fmt);
114 	d->printf_fn(d->opts.ctx, fmt, args);
115 	va_end(args);
116 }
117 
118 static int btf_dump_mark_referenced(struct btf_dump *d);
119 static int btf_dump_resize(struct btf_dump *d);
120 
121 struct btf_dump *btf_dump__new(const struct btf *btf,
122 			       const struct btf_ext *btf_ext,
123 			       const struct btf_dump_opts *opts,
124 			       btf_dump_printf_fn_t printf_fn)
125 {
126 	struct btf_dump *d;
127 	int err;
128 
129 	d = calloc(1, sizeof(struct btf_dump));
130 	if (!d)
131 		return ERR_PTR(-ENOMEM);
132 
133 	d->btf = btf;
134 	d->btf_ext = btf_ext;
135 	d->printf_fn = printf_fn;
136 	d->opts.ctx = opts ? opts->ctx : NULL;
137 	d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
138 
139 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
140 	if (IS_ERR(d->type_names)) {
141 		err = PTR_ERR(d->type_names);
142 		d->type_names = NULL;
143 		goto err;
144 	}
145 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
146 	if (IS_ERR(d->ident_names)) {
147 		err = PTR_ERR(d->ident_names);
148 		d->ident_names = NULL;
149 		goto err;
150 	}
151 
152 	err = btf_dump_resize(d);
153 	if (err)
154 		goto err;
155 
156 	return d;
157 err:
158 	btf_dump__free(d);
159 	return ERR_PTR(err);
160 }
161 
162 static int btf_dump_resize(struct btf_dump *d)
163 {
164 	int err, last_id = btf__get_nr_types(d->btf);
165 
166 	if (last_id <= d->last_id)
167 		return 0;
168 
169 	if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
170 			      sizeof(*d->type_states), last_id + 1))
171 		return -ENOMEM;
172 	if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
173 			      sizeof(*d->cached_names), last_id + 1))
174 		return -ENOMEM;
175 
176 	if (d->last_id == 0) {
177 		/* VOID is special */
178 		d->type_states[0].order_state = ORDERED;
179 		d->type_states[0].emit_state = EMITTED;
180 	}
181 
182 	/* eagerly determine referenced types for anon enums */
183 	err = btf_dump_mark_referenced(d);
184 	if (err)
185 		return err;
186 
187 	d->last_id = last_id;
188 	return 0;
189 }
190 
191 void btf_dump__free(struct btf_dump *d)
192 {
193 	int i;
194 
195 	if (IS_ERR_OR_NULL(d))
196 		return;
197 
198 	free(d->type_states);
199 	if (d->cached_names) {
200 		/* any set cached name is owned by us and should be freed */
201 		for (i = 0; i <= d->last_id; i++) {
202 			if (d->cached_names[i])
203 				free((void *)d->cached_names[i]);
204 		}
205 	}
206 	free(d->cached_names);
207 	free(d->emit_queue);
208 	free(d->decl_stack);
209 	hashmap__free(d->type_names);
210 	hashmap__free(d->ident_names);
211 
212 	free(d);
213 }
214 
215 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
216 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
217 
218 /*
219  * Dump BTF type in a compilable C syntax, including all the necessary
220  * dependent types, necessary for compilation. If some of the dependent types
221  * were already emitted as part of previous btf_dump__dump_type() invocation
222  * for another type, they won't be emitted again. This API allows callers to
223  * filter out BTF types according to user-defined criterias and emitted only
224  * minimal subset of types, necessary to compile everything. Full struct/union
225  * definitions will still be emitted, even if the only usage is through
226  * pointer and could be satisfied with just a forward declaration.
227  *
228  * Dumping is done in two high-level passes:
229  *   1. Topologically sort type definitions to satisfy C rules of compilation.
230  *   2. Emit type definitions in C syntax.
231  *
232  * Returns 0 on success; <0, otherwise.
233  */
234 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
235 {
236 	int err, i;
237 
238 	if (id > btf__get_nr_types(d->btf))
239 		return -EINVAL;
240 
241 	err = btf_dump_resize(d);
242 	if (err)
243 		return err;
244 
245 	d->emit_queue_cnt = 0;
246 	err = btf_dump_order_type(d, id, false);
247 	if (err < 0)
248 		return err;
249 
250 	for (i = 0; i < d->emit_queue_cnt; i++)
251 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
252 
253 	return 0;
254 }
255 
256 /*
257  * Mark all types that are referenced from any other type. This is used to
258  * determine top-level anonymous enums that need to be emitted as an
259  * independent type declarations.
260  * Anonymous enums come in two flavors: either embedded in a struct's field
261  * definition, in which case they have to be declared inline as part of field
262  * type declaration; or as a top-level anonymous enum, typically used for
263  * declaring global constants. It's impossible to distinguish between two
264  * without knowning whether given enum type was referenced from other type:
265  * top-level anonymous enum won't be referenced by anything, while embedded
266  * one will.
267  */
268 static int btf_dump_mark_referenced(struct btf_dump *d)
269 {
270 	int i, j, n = btf__get_nr_types(d->btf);
271 	const struct btf_type *t;
272 	__u16 vlen;
273 
274 	for (i = d->last_id + 1; i <= n; i++) {
275 		t = btf__type_by_id(d->btf, i);
276 		vlen = btf_vlen(t);
277 
278 		switch (btf_kind(t)) {
279 		case BTF_KIND_INT:
280 		case BTF_KIND_ENUM:
281 		case BTF_KIND_FWD:
282 		case BTF_KIND_FLOAT:
283 			break;
284 
285 		case BTF_KIND_VOLATILE:
286 		case BTF_KIND_CONST:
287 		case BTF_KIND_RESTRICT:
288 		case BTF_KIND_PTR:
289 		case BTF_KIND_TYPEDEF:
290 		case BTF_KIND_FUNC:
291 		case BTF_KIND_VAR:
292 			d->type_states[t->type].referenced = 1;
293 			break;
294 
295 		case BTF_KIND_ARRAY: {
296 			const struct btf_array *a = btf_array(t);
297 
298 			d->type_states[a->index_type].referenced = 1;
299 			d->type_states[a->type].referenced = 1;
300 			break;
301 		}
302 		case BTF_KIND_STRUCT:
303 		case BTF_KIND_UNION: {
304 			const struct btf_member *m = btf_members(t);
305 
306 			for (j = 0; j < vlen; j++, m++)
307 				d->type_states[m->type].referenced = 1;
308 			break;
309 		}
310 		case BTF_KIND_FUNC_PROTO: {
311 			const struct btf_param *p = btf_params(t);
312 
313 			for (j = 0; j < vlen; j++, p++)
314 				d->type_states[p->type].referenced = 1;
315 			break;
316 		}
317 		case BTF_KIND_DATASEC: {
318 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
319 
320 			for (j = 0; j < vlen; j++, v++)
321 				d->type_states[v->type].referenced = 1;
322 			break;
323 		}
324 		default:
325 			return -EINVAL;
326 		}
327 	}
328 	return 0;
329 }
330 
331 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
332 {
333 	__u32 *new_queue;
334 	size_t new_cap;
335 
336 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
337 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
338 		new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
339 		if (!new_queue)
340 			return -ENOMEM;
341 		d->emit_queue = new_queue;
342 		d->emit_queue_cap = new_cap;
343 	}
344 
345 	d->emit_queue[d->emit_queue_cnt++] = id;
346 	return 0;
347 }
348 
349 /*
350  * Determine order of emitting dependent types and specified type to satisfy
351  * C compilation rules.  This is done through topological sorting with an
352  * additional complication which comes from C rules. The main idea for C is
353  * that if some type is "embedded" into a struct/union, it's size needs to be
354  * known at the time of definition of containing type. E.g., for:
355  *
356  *	struct A {};
357  *	struct B { struct A x; }
358  *
359  * struct A *HAS* to be defined before struct B, because it's "embedded",
360  * i.e., it is part of struct B layout. But in the following case:
361  *
362  *	struct A;
363  *	struct B { struct A *x; }
364  *	struct A {};
365  *
366  * it's enough to just have a forward declaration of struct A at the time of
367  * struct B definition, as struct B has a pointer to struct A, so the size of
368  * field x is known without knowing struct A size: it's sizeof(void *).
369  *
370  * Unfortunately, there are some trickier cases we need to handle, e.g.:
371  *
372  *	struct A {}; // if this was forward-declaration: compilation error
373  *	struct B {
374  *		struct { // anonymous struct
375  *			struct A y;
376  *		} *x;
377  *	};
378  *
379  * In this case, struct B's field x is a pointer, so it's size is known
380  * regardless of the size of (anonymous) struct it points to. But because this
381  * struct is anonymous and thus defined inline inside struct B, *and* it
382  * embeds struct A, compiler requires full definition of struct A to be known
383  * before struct B can be defined. This creates a transitive dependency
384  * between struct A and struct B. If struct A was forward-declared before
385  * struct B definition and fully defined after struct B definition, that would
386  * trigger compilation error.
387  *
388  * All this means that while we are doing topological sorting on BTF type
389  * graph, we need to determine relationships between different types (graph
390  * nodes):
391  *   - weak link (relationship) between X and Y, if Y *CAN* be
392  *   forward-declared at the point of X definition;
393  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
394  *
395  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
396  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
397  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
398  * Weak/strong relationship is determined recursively during DFS traversal and
399  * is returned as a result from btf_dump_order_type().
400  *
401  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
402  * but it is not guaranteeing that no extraneous forward declarations will be
403  * emitted.
404  *
405  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
406  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
407  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
408  * entire graph path, so depending where from one came to that BTF type, it
409  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
410  * once they are processed, there is no need to do it again, so they are
411  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
412  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
413  * in any case, once those are processed, no need to do it again, as the
414  * result won't change.
415  *
416  * Returns:
417  *   - 1, if type is part of strong link (so there is strong topological
418  *   ordering requirements);
419  *   - 0, if type is part of weak link (so can be satisfied through forward
420  *   declaration);
421  *   - <0, on error (e.g., unsatisfiable type loop detected).
422  */
423 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
424 {
425 	/*
426 	 * Order state is used to detect strong link cycles, but only for BTF
427 	 * kinds that are or could be an independent definition (i.e.,
428 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
429 	 * func_protos, modifiers are just means to get to these definitions.
430 	 * Int/void don't need definitions, they are assumed to be always
431 	 * properly defined.  We also ignore datasec, var, and funcs for now.
432 	 * So for all non-defining kinds, we never even set ordering state,
433 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
434 	 * forms a strong link.
435 	 */
436 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
437 	const struct btf_type *t;
438 	__u16 vlen;
439 	int err, i;
440 
441 	/* return true, letting typedefs know that it's ok to be emitted */
442 	if (tstate->order_state == ORDERED)
443 		return 1;
444 
445 	t = btf__type_by_id(d->btf, id);
446 
447 	if (tstate->order_state == ORDERING) {
448 		/* type loop, but resolvable through fwd declaration */
449 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
450 			return 0;
451 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
452 		return -ELOOP;
453 	}
454 
455 	switch (btf_kind(t)) {
456 	case BTF_KIND_INT:
457 	case BTF_KIND_FLOAT:
458 		tstate->order_state = ORDERED;
459 		return 0;
460 
461 	case BTF_KIND_PTR:
462 		err = btf_dump_order_type(d, t->type, true);
463 		tstate->order_state = ORDERED;
464 		return err;
465 
466 	case BTF_KIND_ARRAY:
467 		return btf_dump_order_type(d, btf_array(t)->type, false);
468 
469 	case BTF_KIND_STRUCT:
470 	case BTF_KIND_UNION: {
471 		const struct btf_member *m = btf_members(t);
472 		/*
473 		 * struct/union is part of strong link, only if it's embedded
474 		 * (so no ptr in a path) or it's anonymous (so has to be
475 		 * defined inline, even if declared through ptr)
476 		 */
477 		if (through_ptr && t->name_off != 0)
478 			return 0;
479 
480 		tstate->order_state = ORDERING;
481 
482 		vlen = btf_vlen(t);
483 		for (i = 0; i < vlen; i++, m++) {
484 			err = btf_dump_order_type(d, m->type, false);
485 			if (err < 0)
486 				return err;
487 		}
488 
489 		if (t->name_off != 0) {
490 			err = btf_dump_add_emit_queue_id(d, id);
491 			if (err < 0)
492 				return err;
493 		}
494 
495 		tstate->order_state = ORDERED;
496 		return 1;
497 	}
498 	case BTF_KIND_ENUM:
499 	case BTF_KIND_FWD:
500 		/*
501 		 * non-anonymous or non-referenced enums are top-level
502 		 * declarations and should be emitted. Same logic can be
503 		 * applied to FWDs, it won't hurt anyways.
504 		 */
505 		if (t->name_off != 0 || !tstate->referenced) {
506 			err = btf_dump_add_emit_queue_id(d, id);
507 			if (err)
508 				return err;
509 		}
510 		tstate->order_state = ORDERED;
511 		return 1;
512 
513 	case BTF_KIND_TYPEDEF: {
514 		int is_strong;
515 
516 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
517 		if (is_strong < 0)
518 			return is_strong;
519 
520 		/* typedef is similar to struct/union w.r.t. fwd-decls */
521 		if (through_ptr && !is_strong)
522 			return 0;
523 
524 		/* typedef is always a named definition */
525 		err = btf_dump_add_emit_queue_id(d, id);
526 		if (err)
527 			return err;
528 
529 		d->type_states[id].order_state = ORDERED;
530 		return 1;
531 	}
532 	case BTF_KIND_VOLATILE:
533 	case BTF_KIND_CONST:
534 	case BTF_KIND_RESTRICT:
535 		return btf_dump_order_type(d, t->type, through_ptr);
536 
537 	case BTF_KIND_FUNC_PROTO: {
538 		const struct btf_param *p = btf_params(t);
539 		bool is_strong;
540 
541 		err = btf_dump_order_type(d, t->type, through_ptr);
542 		if (err < 0)
543 			return err;
544 		is_strong = err > 0;
545 
546 		vlen = btf_vlen(t);
547 		for (i = 0; i < vlen; i++, p++) {
548 			err = btf_dump_order_type(d, p->type, through_ptr);
549 			if (err < 0)
550 				return err;
551 			if (err > 0)
552 				is_strong = true;
553 		}
554 		return is_strong;
555 	}
556 	case BTF_KIND_FUNC:
557 	case BTF_KIND_VAR:
558 	case BTF_KIND_DATASEC:
559 		d->type_states[id].order_state = ORDERED;
560 		return 0;
561 
562 	default:
563 		return -EINVAL;
564 	}
565 }
566 
567 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
568 					  const struct btf_type *t);
569 
570 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
571 				     const struct btf_type *t);
572 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
573 				     const struct btf_type *t, int lvl);
574 
575 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
576 				   const struct btf_type *t);
577 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
578 				   const struct btf_type *t, int lvl);
579 
580 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
581 				  const struct btf_type *t);
582 
583 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
584 				      const struct btf_type *t, int lvl);
585 
586 /* a local view into a shared stack */
587 struct id_stack {
588 	const __u32 *ids;
589 	int cnt;
590 };
591 
592 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
593 				    const char *fname, int lvl);
594 static void btf_dump_emit_type_chain(struct btf_dump *d,
595 				     struct id_stack *decl_stack,
596 				     const char *fname, int lvl);
597 
598 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
599 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
600 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
601 				 const char *orig_name);
602 
603 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
604 {
605 	const struct btf_type *t = btf__type_by_id(d->btf, id);
606 
607 	/* __builtin_va_list is a compiler built-in, which causes compilation
608 	 * errors, when compiling w/ different compiler, then used to compile
609 	 * original code (e.g., GCC to compile kernel, Clang to use generated
610 	 * C header from BTF). As it is built-in, it should be already defined
611 	 * properly internally in compiler.
612 	 */
613 	if (t->name_off == 0)
614 		return false;
615 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
616 }
617 
618 /*
619  * Emit C-syntax definitions of types from chains of BTF types.
620  *
621  * High-level handling of determining necessary forward declarations are handled
622  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
623  * declarations/definitions in C syntax  are handled by a combo of
624  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
625  * corresponding btf_dump_emit_*_{def,fwd}() functions.
626  *
627  * We also keep track of "containing struct/union type ID" to determine when
628  * we reference it from inside and thus can avoid emitting unnecessary forward
629  * declaration.
630  *
631  * This algorithm is designed in such a way, that even if some error occurs
632  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
633  * that doesn't comply to C rules completely), algorithm will try to proceed
634  * and produce as much meaningful output as possible.
635  */
636 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
637 {
638 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
639 	bool top_level_def = cont_id == 0;
640 	const struct btf_type *t;
641 	__u16 kind;
642 
643 	if (tstate->emit_state == EMITTED)
644 		return;
645 
646 	t = btf__type_by_id(d->btf, id);
647 	kind = btf_kind(t);
648 
649 	if (tstate->emit_state == EMITTING) {
650 		if (tstate->fwd_emitted)
651 			return;
652 
653 		switch (kind) {
654 		case BTF_KIND_STRUCT:
655 		case BTF_KIND_UNION:
656 			/*
657 			 * if we are referencing a struct/union that we are
658 			 * part of - then no need for fwd declaration
659 			 */
660 			if (id == cont_id)
661 				return;
662 			if (t->name_off == 0) {
663 				pr_warn("anonymous struct/union loop, id:[%u]\n",
664 					id);
665 				return;
666 			}
667 			btf_dump_emit_struct_fwd(d, id, t);
668 			btf_dump_printf(d, ";\n\n");
669 			tstate->fwd_emitted = 1;
670 			break;
671 		case BTF_KIND_TYPEDEF:
672 			/*
673 			 * for typedef fwd_emitted means typedef definition
674 			 * was emitted, but it can be used only for "weak"
675 			 * references through pointer only, not for embedding
676 			 */
677 			if (!btf_dump_is_blacklisted(d, id)) {
678 				btf_dump_emit_typedef_def(d, id, t, 0);
679 				btf_dump_printf(d, ";\n\n");
680 			}
681 			tstate->fwd_emitted = 1;
682 			break;
683 		default:
684 			break;
685 		}
686 
687 		return;
688 	}
689 
690 	switch (kind) {
691 	case BTF_KIND_INT:
692 		/* Emit type alias definitions if necessary */
693 		btf_dump_emit_missing_aliases(d, id, t);
694 
695 		tstate->emit_state = EMITTED;
696 		break;
697 	case BTF_KIND_ENUM:
698 		if (top_level_def) {
699 			btf_dump_emit_enum_def(d, id, t, 0);
700 			btf_dump_printf(d, ";\n\n");
701 		}
702 		tstate->emit_state = EMITTED;
703 		break;
704 	case BTF_KIND_PTR:
705 	case BTF_KIND_VOLATILE:
706 	case BTF_KIND_CONST:
707 	case BTF_KIND_RESTRICT:
708 		btf_dump_emit_type(d, t->type, cont_id);
709 		break;
710 	case BTF_KIND_ARRAY:
711 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
712 		break;
713 	case BTF_KIND_FWD:
714 		btf_dump_emit_fwd_def(d, id, t);
715 		btf_dump_printf(d, ";\n\n");
716 		tstate->emit_state = EMITTED;
717 		break;
718 	case BTF_KIND_TYPEDEF:
719 		tstate->emit_state = EMITTING;
720 		btf_dump_emit_type(d, t->type, id);
721 		/*
722 		 * typedef can server as both definition and forward
723 		 * declaration; at this stage someone depends on
724 		 * typedef as a forward declaration (refers to it
725 		 * through pointer), so unless we already did it,
726 		 * emit typedef as a forward declaration
727 		 */
728 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
729 			btf_dump_emit_typedef_def(d, id, t, 0);
730 			btf_dump_printf(d, ";\n\n");
731 		}
732 		tstate->emit_state = EMITTED;
733 		break;
734 	case BTF_KIND_STRUCT:
735 	case BTF_KIND_UNION:
736 		tstate->emit_state = EMITTING;
737 		/* if it's a top-level struct/union definition or struct/union
738 		 * is anonymous, then in C we'll be emitting all fields and
739 		 * their types (as opposed to just `struct X`), so we need to
740 		 * make sure that all types, referenced from struct/union
741 		 * members have necessary forward-declarations, where
742 		 * applicable
743 		 */
744 		if (top_level_def || t->name_off == 0) {
745 			const struct btf_member *m = btf_members(t);
746 			__u16 vlen = btf_vlen(t);
747 			int i, new_cont_id;
748 
749 			new_cont_id = t->name_off == 0 ? cont_id : id;
750 			for (i = 0; i < vlen; i++, m++)
751 				btf_dump_emit_type(d, m->type, new_cont_id);
752 		} else if (!tstate->fwd_emitted && id != cont_id) {
753 			btf_dump_emit_struct_fwd(d, id, t);
754 			btf_dump_printf(d, ";\n\n");
755 			tstate->fwd_emitted = 1;
756 		}
757 
758 		if (top_level_def) {
759 			btf_dump_emit_struct_def(d, id, t, 0);
760 			btf_dump_printf(d, ";\n\n");
761 			tstate->emit_state = EMITTED;
762 		} else {
763 			tstate->emit_state = NOT_EMITTED;
764 		}
765 		break;
766 	case BTF_KIND_FUNC_PROTO: {
767 		const struct btf_param *p = btf_params(t);
768 		__u16 vlen = btf_vlen(t);
769 		int i;
770 
771 		btf_dump_emit_type(d, t->type, cont_id);
772 		for (i = 0; i < vlen; i++, p++)
773 			btf_dump_emit_type(d, p->type, cont_id);
774 
775 		break;
776 	}
777 	default:
778 		break;
779 	}
780 }
781 
782 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
783 				 const struct btf_type *t)
784 {
785 	const struct btf_member *m;
786 	int align, i, bit_sz;
787 	__u16 vlen;
788 
789 	align = btf__align_of(btf, id);
790 	/* size of a non-packed struct has to be a multiple of its alignment*/
791 	if (align && t->size % align)
792 		return true;
793 
794 	m = btf_members(t);
795 	vlen = btf_vlen(t);
796 	/* all non-bitfield fields have to be naturally aligned */
797 	for (i = 0; i < vlen; i++, m++) {
798 		align = btf__align_of(btf, m->type);
799 		bit_sz = btf_member_bitfield_size(t, i);
800 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
801 			return true;
802 	}
803 
804 	/*
805 	 * if original struct was marked as packed, but its layout is
806 	 * naturally aligned, we'll detect that it's not packed
807 	 */
808 	return false;
809 }
810 
811 static int chip_away_bits(int total, int at_most)
812 {
813 	return total % at_most ? : at_most;
814 }
815 
816 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
817 				      int cur_off, int m_off, int m_bit_sz,
818 				      int align, int lvl)
819 {
820 	int off_diff = m_off - cur_off;
821 	int ptr_bits = d->ptr_sz * 8;
822 
823 	if (off_diff <= 0)
824 		/* no gap */
825 		return;
826 	if (m_bit_sz == 0 && off_diff < align * 8)
827 		/* natural padding will take care of a gap */
828 		return;
829 
830 	while (off_diff > 0) {
831 		const char *pad_type;
832 		int pad_bits;
833 
834 		if (ptr_bits > 32 && off_diff > 32) {
835 			pad_type = "long";
836 			pad_bits = chip_away_bits(off_diff, ptr_bits);
837 		} else if (off_diff > 16) {
838 			pad_type = "int";
839 			pad_bits = chip_away_bits(off_diff, 32);
840 		} else if (off_diff > 8) {
841 			pad_type = "short";
842 			pad_bits = chip_away_bits(off_diff, 16);
843 		} else {
844 			pad_type = "char";
845 			pad_bits = chip_away_bits(off_diff, 8);
846 		}
847 		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
848 		off_diff -= pad_bits;
849 	}
850 }
851 
852 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
853 				     const struct btf_type *t)
854 {
855 	btf_dump_printf(d, "%s %s",
856 			btf_is_struct(t) ? "struct" : "union",
857 			btf_dump_type_name(d, id));
858 }
859 
860 static void btf_dump_emit_struct_def(struct btf_dump *d,
861 				     __u32 id,
862 				     const struct btf_type *t,
863 				     int lvl)
864 {
865 	const struct btf_member *m = btf_members(t);
866 	bool is_struct = btf_is_struct(t);
867 	int align, i, packed, off = 0;
868 	__u16 vlen = btf_vlen(t);
869 
870 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
871 
872 	btf_dump_printf(d, "%s%s%s {",
873 			is_struct ? "struct" : "union",
874 			t->name_off ? " " : "",
875 			btf_dump_type_name(d, id));
876 
877 	for (i = 0; i < vlen; i++, m++) {
878 		const char *fname;
879 		int m_off, m_sz;
880 
881 		fname = btf_name_of(d, m->name_off);
882 		m_sz = btf_member_bitfield_size(t, i);
883 		m_off = btf_member_bit_offset(t, i);
884 		align = packed ? 1 : btf__align_of(d->btf, m->type);
885 
886 		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
887 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
888 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
889 
890 		if (m_sz) {
891 			btf_dump_printf(d, ": %d", m_sz);
892 			off = m_off + m_sz;
893 		} else {
894 			m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
895 			off = m_off + m_sz * 8;
896 		}
897 		btf_dump_printf(d, ";");
898 	}
899 
900 	/* pad at the end, if necessary */
901 	if (is_struct) {
902 		align = packed ? 1 : btf__align_of(d->btf, id);
903 		btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
904 					  lvl + 1);
905 	}
906 
907 	if (vlen)
908 		btf_dump_printf(d, "\n");
909 	btf_dump_printf(d, "%s}", pfx(lvl));
910 	if (packed)
911 		btf_dump_printf(d, " __attribute__((packed))");
912 }
913 
914 static const char *missing_base_types[][2] = {
915 	/*
916 	 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
917 	 * SIMD intrinsics. Alias them to standard base types.
918 	 */
919 	{ "__Poly8_t",		"unsigned char" },
920 	{ "__Poly16_t",		"unsigned short" },
921 	{ "__Poly64_t",		"unsigned long long" },
922 	{ "__Poly128_t",	"unsigned __int128" },
923 };
924 
925 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
926 					  const struct btf_type *t)
927 {
928 	const char *name = btf_dump_type_name(d, id);
929 	int i;
930 
931 	for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
932 		if (strcmp(name, missing_base_types[i][0]) == 0) {
933 			btf_dump_printf(d, "typedef %s %s;\n\n",
934 					missing_base_types[i][1], name);
935 			break;
936 		}
937 	}
938 }
939 
940 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
941 				   const struct btf_type *t)
942 {
943 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
944 }
945 
946 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
947 				   const struct btf_type *t,
948 				   int lvl)
949 {
950 	const struct btf_enum *v = btf_enum(t);
951 	__u16 vlen = btf_vlen(t);
952 	const char *name;
953 	size_t dup_cnt;
954 	int i;
955 
956 	btf_dump_printf(d, "enum%s%s",
957 			t->name_off ? " " : "",
958 			btf_dump_type_name(d, id));
959 
960 	if (vlen) {
961 		btf_dump_printf(d, " {");
962 		for (i = 0; i < vlen; i++, v++) {
963 			name = btf_name_of(d, v->name_off);
964 			/* enumerators share namespace with typedef idents */
965 			dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
966 			if (dup_cnt > 1) {
967 				btf_dump_printf(d, "\n%s%s___%zu = %u,",
968 						pfx(lvl + 1), name, dup_cnt,
969 						(__u32)v->val);
970 			} else {
971 				btf_dump_printf(d, "\n%s%s = %u,",
972 						pfx(lvl + 1), name,
973 						(__u32)v->val);
974 			}
975 		}
976 		btf_dump_printf(d, "\n%s}", pfx(lvl));
977 	}
978 }
979 
980 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
981 				  const struct btf_type *t)
982 {
983 	const char *name = btf_dump_type_name(d, id);
984 
985 	if (btf_kflag(t))
986 		btf_dump_printf(d, "union %s", name);
987 	else
988 		btf_dump_printf(d, "struct %s", name);
989 }
990 
991 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
992 				     const struct btf_type *t, int lvl)
993 {
994 	const char *name = btf_dump_ident_name(d, id);
995 
996 	/*
997 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
998 	 * pointing to VOID. This generates warnings from btf_dump() and
999 	 * results in uncompilable header file, so we are fixing it up here
1000 	 * with valid typedef into __builtin_va_list.
1001 	 */
1002 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1003 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1004 		return;
1005 	}
1006 
1007 	btf_dump_printf(d, "typedef ");
1008 	btf_dump_emit_type_decl(d, t->type, name, lvl);
1009 }
1010 
1011 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1012 {
1013 	__u32 *new_stack;
1014 	size_t new_cap;
1015 
1016 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
1017 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
1018 		new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1019 		if (!new_stack)
1020 			return -ENOMEM;
1021 		d->decl_stack = new_stack;
1022 		d->decl_stack_cap = new_cap;
1023 	}
1024 
1025 	d->decl_stack[d->decl_stack_cnt++] = id;
1026 
1027 	return 0;
1028 }
1029 
1030 /*
1031  * Emit type declaration (e.g., field type declaration in a struct or argument
1032  * declaration in function prototype) in correct C syntax.
1033  *
1034  * For most types it's trivial, but there are few quirky type declaration
1035  * cases worth mentioning:
1036  *   - function prototypes (especially nesting of function prototypes);
1037  *   - arrays;
1038  *   - const/volatile/restrict for pointers vs other types.
1039  *
1040  * For a good discussion of *PARSING* C syntax (as a human), see
1041  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1042  * Ch.3 "Unscrambling Declarations in C".
1043  *
1044  * It won't help with BTF to C conversion much, though, as it's an opposite
1045  * problem. So we came up with this algorithm in reverse to van der Linden's
1046  * parsing algorithm. It goes from structured BTF representation of type
1047  * declaration to a valid compilable C syntax.
1048  *
1049  * For instance, consider this C typedef:
1050  *	typedef const int * const * arr[10] arr_t;
1051  * It will be represented in BTF with this chain of BTF types:
1052  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1053  *
1054  * Notice how [const] modifier always goes before type it modifies in BTF type
1055  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1056  * the right of pointers, but to the left of other types. There are also other
1057  * quirks, like function pointers, arrays of them, functions returning other
1058  * functions, etc.
1059  *
1060  * We handle that by pushing all the types to a stack, until we hit "terminal"
1061  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1062  * top of a stack, modifiers are handled differently. Array/function pointers
1063  * have also wildly different syntax and how nesting of them are done. See
1064  * code for authoritative definition.
1065  *
1066  * To avoid allocating new stack for each independent chain of BTF types, we
1067  * share one bigger stack, with each chain working only on its own local view
1068  * of a stack frame. Some care is required to "pop" stack frames after
1069  * processing type declaration chain.
1070  */
1071 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1072 			     const struct btf_dump_emit_type_decl_opts *opts)
1073 {
1074 	const char *fname;
1075 	int lvl, err;
1076 
1077 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1078 		return -EINVAL;
1079 
1080 	err = btf_dump_resize(d);
1081 	if (err)
1082 		return -EINVAL;
1083 
1084 	fname = OPTS_GET(opts, field_name, "");
1085 	lvl = OPTS_GET(opts, indent_level, 0);
1086 	d->strip_mods = OPTS_GET(opts, strip_mods, false);
1087 	btf_dump_emit_type_decl(d, id, fname, lvl);
1088 	d->strip_mods = false;
1089 	return 0;
1090 }
1091 
1092 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1093 				    const char *fname, int lvl)
1094 {
1095 	struct id_stack decl_stack;
1096 	const struct btf_type *t;
1097 	int err, stack_start;
1098 
1099 	stack_start = d->decl_stack_cnt;
1100 	for (;;) {
1101 		t = btf__type_by_id(d->btf, id);
1102 		if (d->strip_mods && btf_is_mod(t))
1103 			goto skip_mod;
1104 
1105 		err = btf_dump_push_decl_stack_id(d, id);
1106 		if (err < 0) {
1107 			/*
1108 			 * if we don't have enough memory for entire type decl
1109 			 * chain, restore stack, emit warning, and try to
1110 			 * proceed nevertheless
1111 			 */
1112 			pr_warn("not enough memory for decl stack:%d", err);
1113 			d->decl_stack_cnt = stack_start;
1114 			return;
1115 		}
1116 skip_mod:
1117 		/* VOID */
1118 		if (id == 0)
1119 			break;
1120 
1121 		switch (btf_kind(t)) {
1122 		case BTF_KIND_PTR:
1123 		case BTF_KIND_VOLATILE:
1124 		case BTF_KIND_CONST:
1125 		case BTF_KIND_RESTRICT:
1126 		case BTF_KIND_FUNC_PROTO:
1127 			id = t->type;
1128 			break;
1129 		case BTF_KIND_ARRAY:
1130 			id = btf_array(t)->type;
1131 			break;
1132 		case BTF_KIND_INT:
1133 		case BTF_KIND_ENUM:
1134 		case BTF_KIND_FWD:
1135 		case BTF_KIND_STRUCT:
1136 		case BTF_KIND_UNION:
1137 		case BTF_KIND_TYPEDEF:
1138 		case BTF_KIND_FLOAT:
1139 			goto done;
1140 		default:
1141 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1142 				btf_kind(t), id);
1143 			goto done;
1144 		}
1145 	}
1146 done:
1147 	/*
1148 	 * We might be inside a chain of declarations (e.g., array of function
1149 	 * pointers returning anonymous (so inlined) structs, having another
1150 	 * array field). Each of those needs its own "stack frame" to handle
1151 	 * emitting of declarations. Those stack frames are non-overlapping
1152 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1153 	 * handle this set of nested stacks, we create a view corresponding to
1154 	 * our own "stack frame" and work with it as an independent stack.
1155 	 * We'll need to clean up after emit_type_chain() returns, though.
1156 	 */
1157 	decl_stack.ids = d->decl_stack + stack_start;
1158 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1159 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1160 	/*
1161 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1162 	 * frame before returning. But it works with a read-only view into
1163 	 * decl_stack, so it doesn't actually pop anything from the
1164 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1165 	 * reset decl_stack state to how it was before us to avoid it growing
1166 	 * all the time.
1167 	 */
1168 	d->decl_stack_cnt = stack_start;
1169 }
1170 
1171 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1172 {
1173 	const struct btf_type *t;
1174 	__u32 id;
1175 
1176 	while (decl_stack->cnt) {
1177 		id = decl_stack->ids[decl_stack->cnt - 1];
1178 		t = btf__type_by_id(d->btf, id);
1179 
1180 		switch (btf_kind(t)) {
1181 		case BTF_KIND_VOLATILE:
1182 			btf_dump_printf(d, "volatile ");
1183 			break;
1184 		case BTF_KIND_CONST:
1185 			btf_dump_printf(d, "const ");
1186 			break;
1187 		case BTF_KIND_RESTRICT:
1188 			btf_dump_printf(d, "restrict ");
1189 			break;
1190 		default:
1191 			return;
1192 		}
1193 		decl_stack->cnt--;
1194 	}
1195 }
1196 
1197 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1198 {
1199 	const struct btf_type *t;
1200 	__u32 id;
1201 
1202 	while (decl_stack->cnt) {
1203 		id = decl_stack->ids[decl_stack->cnt - 1];
1204 		t = btf__type_by_id(d->btf, id);
1205 		if (!btf_is_mod(t))
1206 			return;
1207 		decl_stack->cnt--;
1208 	}
1209 }
1210 
1211 static void btf_dump_emit_name(const struct btf_dump *d,
1212 			       const char *name, bool last_was_ptr)
1213 {
1214 	bool separate = name[0] && !last_was_ptr;
1215 
1216 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1217 }
1218 
1219 static void btf_dump_emit_type_chain(struct btf_dump *d,
1220 				     struct id_stack *decls,
1221 				     const char *fname, int lvl)
1222 {
1223 	/*
1224 	 * last_was_ptr is used to determine if we need to separate pointer
1225 	 * asterisk (*) from previous part of type signature with space, so
1226 	 * that we get `int ***`, instead of `int * * *`. We default to true
1227 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1228 	 * func_proto case. func_proto will start a new emit_type_chain call
1229 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1230 	 * don't want to prepend space for that last pointer.
1231 	 */
1232 	bool last_was_ptr = true;
1233 	const struct btf_type *t;
1234 	const char *name;
1235 	__u16 kind;
1236 	__u32 id;
1237 
1238 	while (decls->cnt) {
1239 		id = decls->ids[--decls->cnt];
1240 		if (id == 0) {
1241 			/* VOID is a special snowflake */
1242 			btf_dump_emit_mods(d, decls);
1243 			btf_dump_printf(d, "void");
1244 			last_was_ptr = false;
1245 			continue;
1246 		}
1247 
1248 		t = btf__type_by_id(d->btf, id);
1249 		kind = btf_kind(t);
1250 
1251 		switch (kind) {
1252 		case BTF_KIND_INT:
1253 		case BTF_KIND_FLOAT:
1254 			btf_dump_emit_mods(d, decls);
1255 			name = btf_name_of(d, t->name_off);
1256 			btf_dump_printf(d, "%s", name);
1257 			break;
1258 		case BTF_KIND_STRUCT:
1259 		case BTF_KIND_UNION:
1260 			btf_dump_emit_mods(d, decls);
1261 			/* inline anonymous struct/union */
1262 			if (t->name_off == 0)
1263 				btf_dump_emit_struct_def(d, id, t, lvl);
1264 			else
1265 				btf_dump_emit_struct_fwd(d, id, t);
1266 			break;
1267 		case BTF_KIND_ENUM:
1268 			btf_dump_emit_mods(d, decls);
1269 			/* inline anonymous enum */
1270 			if (t->name_off == 0)
1271 				btf_dump_emit_enum_def(d, id, t, lvl);
1272 			else
1273 				btf_dump_emit_enum_fwd(d, id, t);
1274 			break;
1275 		case BTF_KIND_FWD:
1276 			btf_dump_emit_mods(d, decls);
1277 			btf_dump_emit_fwd_def(d, id, t);
1278 			break;
1279 		case BTF_KIND_TYPEDEF:
1280 			btf_dump_emit_mods(d, decls);
1281 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1282 			break;
1283 		case BTF_KIND_PTR:
1284 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1285 			break;
1286 		case BTF_KIND_VOLATILE:
1287 			btf_dump_printf(d, " volatile");
1288 			break;
1289 		case BTF_KIND_CONST:
1290 			btf_dump_printf(d, " const");
1291 			break;
1292 		case BTF_KIND_RESTRICT:
1293 			btf_dump_printf(d, " restrict");
1294 			break;
1295 		case BTF_KIND_ARRAY: {
1296 			const struct btf_array *a = btf_array(t);
1297 			const struct btf_type *next_t;
1298 			__u32 next_id;
1299 			bool multidim;
1300 			/*
1301 			 * GCC has a bug
1302 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1303 			 * which causes it to emit extra const/volatile
1304 			 * modifiers for an array, if array's element type has
1305 			 * const/volatile modifiers. Clang doesn't do that.
1306 			 * In general, it doesn't seem very meaningful to have
1307 			 * a const/volatile modifier for array, so we are
1308 			 * going to silently skip them here.
1309 			 */
1310 			btf_dump_drop_mods(d, decls);
1311 
1312 			if (decls->cnt == 0) {
1313 				btf_dump_emit_name(d, fname, last_was_ptr);
1314 				btf_dump_printf(d, "[%u]", a->nelems);
1315 				return;
1316 			}
1317 
1318 			next_id = decls->ids[decls->cnt - 1];
1319 			next_t = btf__type_by_id(d->btf, next_id);
1320 			multidim = btf_is_array(next_t);
1321 			/* we need space if we have named non-pointer */
1322 			if (fname[0] && !last_was_ptr)
1323 				btf_dump_printf(d, " ");
1324 			/* no parentheses for multi-dimensional array */
1325 			if (!multidim)
1326 				btf_dump_printf(d, "(");
1327 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1328 			if (!multidim)
1329 				btf_dump_printf(d, ")");
1330 			btf_dump_printf(d, "[%u]", a->nelems);
1331 			return;
1332 		}
1333 		case BTF_KIND_FUNC_PROTO: {
1334 			const struct btf_param *p = btf_params(t);
1335 			__u16 vlen = btf_vlen(t);
1336 			int i;
1337 
1338 			/*
1339 			 * GCC emits extra volatile qualifier for
1340 			 * __attribute__((noreturn)) function pointers. Clang
1341 			 * doesn't do it. It's a GCC quirk for backwards
1342 			 * compatibility with code written for GCC <2.5. So,
1343 			 * similarly to extra qualifiers for array, just drop
1344 			 * them, instead of handling them.
1345 			 */
1346 			btf_dump_drop_mods(d, decls);
1347 			if (decls->cnt) {
1348 				btf_dump_printf(d, " (");
1349 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1350 				btf_dump_printf(d, ")");
1351 			} else {
1352 				btf_dump_emit_name(d, fname, last_was_ptr);
1353 			}
1354 			btf_dump_printf(d, "(");
1355 			/*
1356 			 * Clang for BPF target generates func_proto with no
1357 			 * args as a func_proto with a single void arg (e.g.,
1358 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1359 			 * going to pretend there are no args for such case.
1360 			 */
1361 			if (vlen == 1 && p->type == 0) {
1362 				btf_dump_printf(d, ")");
1363 				return;
1364 			}
1365 
1366 			for (i = 0; i < vlen; i++, p++) {
1367 				if (i > 0)
1368 					btf_dump_printf(d, ", ");
1369 
1370 				/* last arg of type void is vararg */
1371 				if (i == vlen - 1 && p->type == 0) {
1372 					btf_dump_printf(d, "...");
1373 					break;
1374 				}
1375 
1376 				name = btf_name_of(d, p->name_off);
1377 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1378 			}
1379 
1380 			btf_dump_printf(d, ")");
1381 			return;
1382 		}
1383 		default:
1384 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1385 				kind, id);
1386 			return;
1387 		}
1388 
1389 		last_was_ptr = kind == BTF_KIND_PTR;
1390 	}
1391 
1392 	btf_dump_emit_name(d, fname, last_was_ptr);
1393 }
1394 
1395 /* return number of duplicates (occurrences) of a given name */
1396 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1397 				 const char *orig_name)
1398 {
1399 	size_t dup_cnt = 0;
1400 
1401 	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1402 	dup_cnt++;
1403 	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1404 
1405 	return dup_cnt;
1406 }
1407 
1408 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1409 					 struct hashmap *name_map)
1410 {
1411 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1412 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1413 	const char *orig_name = btf_name_of(d, t->name_off);
1414 	const char **cached_name = &d->cached_names[id];
1415 	size_t dup_cnt;
1416 
1417 	if (t->name_off == 0)
1418 		return "";
1419 
1420 	if (s->name_resolved)
1421 		return *cached_name ? *cached_name : orig_name;
1422 
1423 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1424 	if (dup_cnt > 1) {
1425 		const size_t max_len = 256;
1426 		char new_name[max_len];
1427 
1428 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1429 		*cached_name = strdup(new_name);
1430 	}
1431 
1432 	s->name_resolved = 1;
1433 	return *cached_name ? *cached_name : orig_name;
1434 }
1435 
1436 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1437 {
1438 	return btf_dump_resolve_name(d, id, d->type_names);
1439 }
1440 
1441 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1442 {
1443 	return btf_dump_resolve_name(d, id, d->ident_names);
1444 }
1445