1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <linux/kernel.h> 19 #include "btf.h" 20 #include "hashmap.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 26 27 static const char *pfx(int lvl) 28 { 29 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 30 } 31 32 enum btf_dump_type_order_state { 33 NOT_ORDERED, 34 ORDERING, 35 ORDERED, 36 }; 37 38 enum btf_dump_type_emit_state { 39 NOT_EMITTED, 40 EMITTING, 41 EMITTED, 42 }; 43 44 /* per-type auxiliary state */ 45 struct btf_dump_type_aux_state { 46 /* topological sorting state */ 47 enum btf_dump_type_order_state order_state: 2; 48 /* emitting state used to determine the need for forward declaration */ 49 enum btf_dump_type_emit_state emit_state: 2; 50 /* whether forward declaration was already emitted */ 51 __u8 fwd_emitted: 1; 52 /* whether unique non-duplicate name was already assigned */ 53 __u8 name_resolved: 1; 54 /* whether type is referenced from any other type */ 55 __u8 referenced: 1; 56 }; 57 58 /* indent string length; one indent string is added for each indent level */ 59 #define BTF_DATA_INDENT_STR_LEN 32 60 61 /* 62 * Common internal data for BTF type data dump operations. 63 */ 64 struct btf_dump_data { 65 const void *data_end; /* end of valid data to show */ 66 bool compact; 67 bool skip_names; 68 bool emit_zeroes; 69 __u8 indent_lvl; /* base indent level */ 70 char indent_str[BTF_DATA_INDENT_STR_LEN]; 71 /* below are used during iteration */ 72 int depth; 73 bool is_array_member; 74 bool is_array_terminated; 75 bool is_array_char; 76 }; 77 78 struct btf_dump { 79 const struct btf *btf; 80 btf_dump_printf_fn_t printf_fn; 81 void *cb_ctx; 82 int ptr_sz; 83 bool strip_mods; 84 bool skip_anon_defs; 85 int last_id; 86 87 /* per-type auxiliary state */ 88 struct btf_dump_type_aux_state *type_states; 89 size_t type_states_cap; 90 /* per-type optional cached unique name, must be freed, if present */ 91 const char **cached_names; 92 size_t cached_names_cap; 93 94 /* topo-sorted list of dependent type definitions */ 95 __u32 *emit_queue; 96 int emit_queue_cap; 97 int emit_queue_cnt; 98 99 /* 100 * stack of type declarations (e.g., chain of modifiers, arrays, 101 * funcs, etc) 102 */ 103 __u32 *decl_stack; 104 int decl_stack_cap; 105 int decl_stack_cnt; 106 107 /* maps struct/union/enum name to a number of name occurrences */ 108 struct hashmap *type_names; 109 /* 110 * maps typedef identifiers and enum value names to a number of such 111 * name occurrences 112 */ 113 struct hashmap *ident_names; 114 /* 115 * data for typed display; allocated if needed. 116 */ 117 struct btf_dump_data *typed_dump; 118 }; 119 120 static size_t str_hash_fn(long key, void *ctx) 121 { 122 return str_hash((void *)key); 123 } 124 125 static bool str_equal_fn(long a, long b, void *ctx) 126 { 127 return strcmp((void *)a, (void *)b) == 0; 128 } 129 130 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 131 { 132 return btf__name_by_offset(d->btf, name_off); 133 } 134 135 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 136 { 137 va_list args; 138 139 va_start(args, fmt); 140 d->printf_fn(d->cb_ctx, fmt, args); 141 va_end(args); 142 } 143 144 static int btf_dump_mark_referenced(struct btf_dump *d); 145 static int btf_dump_resize(struct btf_dump *d); 146 147 struct btf_dump *btf_dump__new(const struct btf *btf, 148 btf_dump_printf_fn_t printf_fn, 149 void *ctx, 150 const struct btf_dump_opts *opts) 151 { 152 struct btf_dump *d; 153 int err; 154 155 if (!OPTS_VALID(opts, btf_dump_opts)) 156 return libbpf_err_ptr(-EINVAL); 157 158 if (!printf_fn) 159 return libbpf_err_ptr(-EINVAL); 160 161 d = calloc(1, sizeof(struct btf_dump)); 162 if (!d) 163 return libbpf_err_ptr(-ENOMEM); 164 165 d->btf = btf; 166 d->printf_fn = printf_fn; 167 d->cb_ctx = ctx; 168 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 169 170 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 171 if (IS_ERR(d->type_names)) { 172 err = PTR_ERR(d->type_names); 173 d->type_names = NULL; 174 goto err; 175 } 176 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 177 if (IS_ERR(d->ident_names)) { 178 err = PTR_ERR(d->ident_names); 179 d->ident_names = NULL; 180 goto err; 181 } 182 183 err = btf_dump_resize(d); 184 if (err) 185 goto err; 186 187 return d; 188 err: 189 btf_dump__free(d); 190 return libbpf_err_ptr(err); 191 } 192 193 static int btf_dump_resize(struct btf_dump *d) 194 { 195 int err, last_id = btf__type_cnt(d->btf) - 1; 196 197 if (last_id <= d->last_id) 198 return 0; 199 200 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 201 sizeof(*d->type_states), last_id + 1)) 202 return -ENOMEM; 203 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 204 sizeof(*d->cached_names), last_id + 1)) 205 return -ENOMEM; 206 207 if (d->last_id == 0) { 208 /* VOID is special */ 209 d->type_states[0].order_state = ORDERED; 210 d->type_states[0].emit_state = EMITTED; 211 } 212 213 /* eagerly determine referenced types for anon enums */ 214 err = btf_dump_mark_referenced(d); 215 if (err) 216 return err; 217 218 d->last_id = last_id; 219 return 0; 220 } 221 222 static void btf_dump_free_names(struct hashmap *map) 223 { 224 size_t bkt; 225 struct hashmap_entry *cur; 226 227 hashmap__for_each_entry(map, cur, bkt) 228 free((void *)cur->pkey); 229 230 hashmap__free(map); 231 } 232 233 void btf_dump__free(struct btf_dump *d) 234 { 235 int i; 236 237 if (IS_ERR_OR_NULL(d)) 238 return; 239 240 free(d->type_states); 241 if (d->cached_names) { 242 /* any set cached name is owned by us and should be freed */ 243 for (i = 0; i <= d->last_id; i++) { 244 if (d->cached_names[i]) 245 free((void *)d->cached_names[i]); 246 } 247 } 248 free(d->cached_names); 249 free(d->emit_queue); 250 free(d->decl_stack); 251 btf_dump_free_names(d->type_names); 252 btf_dump_free_names(d->ident_names); 253 254 free(d); 255 } 256 257 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 258 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 259 260 /* 261 * Dump BTF type in a compilable C syntax, including all the necessary 262 * dependent types, necessary for compilation. If some of the dependent types 263 * were already emitted as part of previous btf_dump__dump_type() invocation 264 * for another type, they won't be emitted again. This API allows callers to 265 * filter out BTF types according to user-defined criterias and emitted only 266 * minimal subset of types, necessary to compile everything. Full struct/union 267 * definitions will still be emitted, even if the only usage is through 268 * pointer and could be satisfied with just a forward declaration. 269 * 270 * Dumping is done in two high-level passes: 271 * 1. Topologically sort type definitions to satisfy C rules of compilation. 272 * 2. Emit type definitions in C syntax. 273 * 274 * Returns 0 on success; <0, otherwise. 275 */ 276 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 277 { 278 int err, i; 279 280 if (id >= btf__type_cnt(d->btf)) 281 return libbpf_err(-EINVAL); 282 283 err = btf_dump_resize(d); 284 if (err) 285 return libbpf_err(err); 286 287 d->emit_queue_cnt = 0; 288 err = btf_dump_order_type(d, id, false); 289 if (err < 0) 290 return libbpf_err(err); 291 292 for (i = 0; i < d->emit_queue_cnt; i++) 293 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 294 295 return 0; 296 } 297 298 /* 299 * Mark all types that are referenced from any other type. This is used to 300 * determine top-level anonymous enums that need to be emitted as an 301 * independent type declarations. 302 * Anonymous enums come in two flavors: either embedded in a struct's field 303 * definition, in which case they have to be declared inline as part of field 304 * type declaration; or as a top-level anonymous enum, typically used for 305 * declaring global constants. It's impossible to distinguish between two 306 * without knowning whether given enum type was referenced from other type: 307 * top-level anonymous enum won't be referenced by anything, while embedded 308 * one will. 309 */ 310 static int btf_dump_mark_referenced(struct btf_dump *d) 311 { 312 int i, j, n = btf__type_cnt(d->btf); 313 const struct btf_type *t; 314 __u16 vlen; 315 316 for (i = d->last_id + 1; i < n; i++) { 317 t = btf__type_by_id(d->btf, i); 318 vlen = btf_vlen(t); 319 320 switch (btf_kind(t)) { 321 case BTF_KIND_INT: 322 case BTF_KIND_ENUM: 323 case BTF_KIND_ENUM64: 324 case BTF_KIND_FWD: 325 case BTF_KIND_FLOAT: 326 break; 327 328 case BTF_KIND_VOLATILE: 329 case BTF_KIND_CONST: 330 case BTF_KIND_RESTRICT: 331 case BTF_KIND_PTR: 332 case BTF_KIND_TYPEDEF: 333 case BTF_KIND_FUNC: 334 case BTF_KIND_VAR: 335 case BTF_KIND_DECL_TAG: 336 case BTF_KIND_TYPE_TAG: 337 d->type_states[t->type].referenced = 1; 338 break; 339 340 case BTF_KIND_ARRAY: { 341 const struct btf_array *a = btf_array(t); 342 343 d->type_states[a->index_type].referenced = 1; 344 d->type_states[a->type].referenced = 1; 345 break; 346 } 347 case BTF_KIND_STRUCT: 348 case BTF_KIND_UNION: { 349 const struct btf_member *m = btf_members(t); 350 351 for (j = 0; j < vlen; j++, m++) 352 d->type_states[m->type].referenced = 1; 353 break; 354 } 355 case BTF_KIND_FUNC_PROTO: { 356 const struct btf_param *p = btf_params(t); 357 358 for (j = 0; j < vlen; j++, p++) 359 d->type_states[p->type].referenced = 1; 360 break; 361 } 362 case BTF_KIND_DATASEC: { 363 const struct btf_var_secinfo *v = btf_var_secinfos(t); 364 365 for (j = 0; j < vlen; j++, v++) 366 d->type_states[v->type].referenced = 1; 367 break; 368 } 369 default: 370 return -EINVAL; 371 } 372 } 373 return 0; 374 } 375 376 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 377 { 378 __u32 *new_queue; 379 size_t new_cap; 380 381 if (d->emit_queue_cnt >= d->emit_queue_cap) { 382 new_cap = max(16, d->emit_queue_cap * 3 / 2); 383 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 384 if (!new_queue) 385 return -ENOMEM; 386 d->emit_queue = new_queue; 387 d->emit_queue_cap = new_cap; 388 } 389 390 d->emit_queue[d->emit_queue_cnt++] = id; 391 return 0; 392 } 393 394 /* 395 * Determine order of emitting dependent types and specified type to satisfy 396 * C compilation rules. This is done through topological sorting with an 397 * additional complication which comes from C rules. The main idea for C is 398 * that if some type is "embedded" into a struct/union, it's size needs to be 399 * known at the time of definition of containing type. E.g., for: 400 * 401 * struct A {}; 402 * struct B { struct A x; } 403 * 404 * struct A *HAS* to be defined before struct B, because it's "embedded", 405 * i.e., it is part of struct B layout. But in the following case: 406 * 407 * struct A; 408 * struct B { struct A *x; } 409 * struct A {}; 410 * 411 * it's enough to just have a forward declaration of struct A at the time of 412 * struct B definition, as struct B has a pointer to struct A, so the size of 413 * field x is known without knowing struct A size: it's sizeof(void *). 414 * 415 * Unfortunately, there are some trickier cases we need to handle, e.g.: 416 * 417 * struct A {}; // if this was forward-declaration: compilation error 418 * struct B { 419 * struct { // anonymous struct 420 * struct A y; 421 * } *x; 422 * }; 423 * 424 * In this case, struct B's field x is a pointer, so it's size is known 425 * regardless of the size of (anonymous) struct it points to. But because this 426 * struct is anonymous and thus defined inline inside struct B, *and* it 427 * embeds struct A, compiler requires full definition of struct A to be known 428 * before struct B can be defined. This creates a transitive dependency 429 * between struct A and struct B. If struct A was forward-declared before 430 * struct B definition and fully defined after struct B definition, that would 431 * trigger compilation error. 432 * 433 * All this means that while we are doing topological sorting on BTF type 434 * graph, we need to determine relationships between different types (graph 435 * nodes): 436 * - weak link (relationship) between X and Y, if Y *CAN* be 437 * forward-declared at the point of X definition; 438 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 439 * 440 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 441 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 442 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 443 * Weak/strong relationship is determined recursively during DFS traversal and 444 * is returned as a result from btf_dump_order_type(). 445 * 446 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 447 * but it is not guaranteeing that no extraneous forward declarations will be 448 * emitted. 449 * 450 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 451 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 452 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 453 * entire graph path, so depending where from one came to that BTF type, it 454 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 455 * once they are processed, there is no need to do it again, so they are 456 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 457 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 458 * in any case, once those are processed, no need to do it again, as the 459 * result won't change. 460 * 461 * Returns: 462 * - 1, if type is part of strong link (so there is strong topological 463 * ordering requirements); 464 * - 0, if type is part of weak link (so can be satisfied through forward 465 * declaration); 466 * - <0, on error (e.g., unsatisfiable type loop detected). 467 */ 468 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 469 { 470 /* 471 * Order state is used to detect strong link cycles, but only for BTF 472 * kinds that are or could be an independent definition (i.e., 473 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 474 * func_protos, modifiers are just means to get to these definitions. 475 * Int/void don't need definitions, they are assumed to be always 476 * properly defined. We also ignore datasec, var, and funcs for now. 477 * So for all non-defining kinds, we never even set ordering state, 478 * for defining kinds we set ORDERING and subsequently ORDERED if it 479 * forms a strong link. 480 */ 481 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 482 const struct btf_type *t; 483 __u16 vlen; 484 int err, i; 485 486 /* return true, letting typedefs know that it's ok to be emitted */ 487 if (tstate->order_state == ORDERED) 488 return 1; 489 490 t = btf__type_by_id(d->btf, id); 491 492 if (tstate->order_state == ORDERING) { 493 /* type loop, but resolvable through fwd declaration */ 494 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 495 return 0; 496 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 497 return -ELOOP; 498 } 499 500 switch (btf_kind(t)) { 501 case BTF_KIND_INT: 502 case BTF_KIND_FLOAT: 503 tstate->order_state = ORDERED; 504 return 0; 505 506 case BTF_KIND_PTR: 507 err = btf_dump_order_type(d, t->type, true); 508 tstate->order_state = ORDERED; 509 return err; 510 511 case BTF_KIND_ARRAY: 512 return btf_dump_order_type(d, btf_array(t)->type, false); 513 514 case BTF_KIND_STRUCT: 515 case BTF_KIND_UNION: { 516 const struct btf_member *m = btf_members(t); 517 /* 518 * struct/union is part of strong link, only if it's embedded 519 * (so no ptr in a path) or it's anonymous (so has to be 520 * defined inline, even if declared through ptr) 521 */ 522 if (through_ptr && t->name_off != 0) 523 return 0; 524 525 tstate->order_state = ORDERING; 526 527 vlen = btf_vlen(t); 528 for (i = 0; i < vlen; i++, m++) { 529 err = btf_dump_order_type(d, m->type, false); 530 if (err < 0) 531 return err; 532 } 533 534 if (t->name_off != 0) { 535 err = btf_dump_add_emit_queue_id(d, id); 536 if (err < 0) 537 return err; 538 } 539 540 tstate->order_state = ORDERED; 541 return 1; 542 } 543 case BTF_KIND_ENUM: 544 case BTF_KIND_ENUM64: 545 case BTF_KIND_FWD: 546 /* 547 * non-anonymous or non-referenced enums are top-level 548 * declarations and should be emitted. Same logic can be 549 * applied to FWDs, it won't hurt anyways. 550 */ 551 if (t->name_off != 0 || !tstate->referenced) { 552 err = btf_dump_add_emit_queue_id(d, id); 553 if (err) 554 return err; 555 } 556 tstate->order_state = ORDERED; 557 return 1; 558 559 case BTF_KIND_TYPEDEF: { 560 int is_strong; 561 562 is_strong = btf_dump_order_type(d, t->type, through_ptr); 563 if (is_strong < 0) 564 return is_strong; 565 566 /* typedef is similar to struct/union w.r.t. fwd-decls */ 567 if (through_ptr && !is_strong) 568 return 0; 569 570 /* typedef is always a named definition */ 571 err = btf_dump_add_emit_queue_id(d, id); 572 if (err) 573 return err; 574 575 d->type_states[id].order_state = ORDERED; 576 return 1; 577 } 578 case BTF_KIND_VOLATILE: 579 case BTF_KIND_CONST: 580 case BTF_KIND_RESTRICT: 581 case BTF_KIND_TYPE_TAG: 582 return btf_dump_order_type(d, t->type, through_ptr); 583 584 case BTF_KIND_FUNC_PROTO: { 585 const struct btf_param *p = btf_params(t); 586 bool is_strong; 587 588 err = btf_dump_order_type(d, t->type, through_ptr); 589 if (err < 0) 590 return err; 591 is_strong = err > 0; 592 593 vlen = btf_vlen(t); 594 for (i = 0; i < vlen; i++, p++) { 595 err = btf_dump_order_type(d, p->type, through_ptr); 596 if (err < 0) 597 return err; 598 if (err > 0) 599 is_strong = true; 600 } 601 return is_strong; 602 } 603 case BTF_KIND_FUNC: 604 case BTF_KIND_VAR: 605 case BTF_KIND_DATASEC: 606 case BTF_KIND_DECL_TAG: 607 d->type_states[id].order_state = ORDERED; 608 return 0; 609 610 default: 611 return -EINVAL; 612 } 613 } 614 615 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 616 const struct btf_type *t); 617 618 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 619 const struct btf_type *t); 620 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 621 const struct btf_type *t, int lvl); 622 623 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 624 const struct btf_type *t); 625 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 626 const struct btf_type *t, int lvl); 627 628 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 629 const struct btf_type *t); 630 631 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 632 const struct btf_type *t, int lvl); 633 634 /* a local view into a shared stack */ 635 struct id_stack { 636 const __u32 *ids; 637 int cnt; 638 }; 639 640 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 641 const char *fname, int lvl); 642 static void btf_dump_emit_type_chain(struct btf_dump *d, 643 struct id_stack *decl_stack, 644 const char *fname, int lvl); 645 646 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 647 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 648 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 649 const char *orig_name); 650 651 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 652 { 653 const struct btf_type *t = btf__type_by_id(d->btf, id); 654 655 /* __builtin_va_list is a compiler built-in, which causes compilation 656 * errors, when compiling w/ different compiler, then used to compile 657 * original code (e.g., GCC to compile kernel, Clang to use generated 658 * C header from BTF). As it is built-in, it should be already defined 659 * properly internally in compiler. 660 */ 661 if (t->name_off == 0) 662 return false; 663 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 664 } 665 666 /* 667 * Emit C-syntax definitions of types from chains of BTF types. 668 * 669 * High-level handling of determining necessary forward declarations are handled 670 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 671 * declarations/definitions in C syntax are handled by a combo of 672 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 673 * corresponding btf_dump_emit_*_{def,fwd}() functions. 674 * 675 * We also keep track of "containing struct/union type ID" to determine when 676 * we reference it from inside and thus can avoid emitting unnecessary forward 677 * declaration. 678 * 679 * This algorithm is designed in such a way, that even if some error occurs 680 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 681 * that doesn't comply to C rules completely), algorithm will try to proceed 682 * and produce as much meaningful output as possible. 683 */ 684 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 685 { 686 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 687 bool top_level_def = cont_id == 0; 688 const struct btf_type *t; 689 __u16 kind; 690 691 if (tstate->emit_state == EMITTED) 692 return; 693 694 t = btf__type_by_id(d->btf, id); 695 kind = btf_kind(t); 696 697 if (tstate->emit_state == EMITTING) { 698 if (tstate->fwd_emitted) 699 return; 700 701 switch (kind) { 702 case BTF_KIND_STRUCT: 703 case BTF_KIND_UNION: 704 /* 705 * if we are referencing a struct/union that we are 706 * part of - then no need for fwd declaration 707 */ 708 if (id == cont_id) 709 return; 710 if (t->name_off == 0) { 711 pr_warn("anonymous struct/union loop, id:[%u]\n", 712 id); 713 return; 714 } 715 btf_dump_emit_struct_fwd(d, id, t); 716 btf_dump_printf(d, ";\n\n"); 717 tstate->fwd_emitted = 1; 718 break; 719 case BTF_KIND_TYPEDEF: 720 /* 721 * for typedef fwd_emitted means typedef definition 722 * was emitted, but it can be used only for "weak" 723 * references through pointer only, not for embedding 724 */ 725 if (!btf_dump_is_blacklisted(d, id)) { 726 btf_dump_emit_typedef_def(d, id, t, 0); 727 btf_dump_printf(d, ";\n\n"); 728 } 729 tstate->fwd_emitted = 1; 730 break; 731 default: 732 break; 733 } 734 735 return; 736 } 737 738 switch (kind) { 739 case BTF_KIND_INT: 740 /* Emit type alias definitions if necessary */ 741 btf_dump_emit_missing_aliases(d, id, t); 742 743 tstate->emit_state = EMITTED; 744 break; 745 case BTF_KIND_ENUM: 746 case BTF_KIND_ENUM64: 747 if (top_level_def) { 748 btf_dump_emit_enum_def(d, id, t, 0); 749 btf_dump_printf(d, ";\n\n"); 750 } 751 tstate->emit_state = EMITTED; 752 break; 753 case BTF_KIND_PTR: 754 case BTF_KIND_VOLATILE: 755 case BTF_KIND_CONST: 756 case BTF_KIND_RESTRICT: 757 case BTF_KIND_TYPE_TAG: 758 btf_dump_emit_type(d, t->type, cont_id); 759 break; 760 case BTF_KIND_ARRAY: 761 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 762 break; 763 case BTF_KIND_FWD: 764 btf_dump_emit_fwd_def(d, id, t); 765 btf_dump_printf(d, ";\n\n"); 766 tstate->emit_state = EMITTED; 767 break; 768 case BTF_KIND_TYPEDEF: 769 tstate->emit_state = EMITTING; 770 btf_dump_emit_type(d, t->type, id); 771 /* 772 * typedef can server as both definition and forward 773 * declaration; at this stage someone depends on 774 * typedef as a forward declaration (refers to it 775 * through pointer), so unless we already did it, 776 * emit typedef as a forward declaration 777 */ 778 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 779 btf_dump_emit_typedef_def(d, id, t, 0); 780 btf_dump_printf(d, ";\n\n"); 781 } 782 tstate->emit_state = EMITTED; 783 break; 784 case BTF_KIND_STRUCT: 785 case BTF_KIND_UNION: 786 tstate->emit_state = EMITTING; 787 /* if it's a top-level struct/union definition or struct/union 788 * is anonymous, then in C we'll be emitting all fields and 789 * their types (as opposed to just `struct X`), so we need to 790 * make sure that all types, referenced from struct/union 791 * members have necessary forward-declarations, where 792 * applicable 793 */ 794 if (top_level_def || t->name_off == 0) { 795 const struct btf_member *m = btf_members(t); 796 __u16 vlen = btf_vlen(t); 797 int i, new_cont_id; 798 799 new_cont_id = t->name_off == 0 ? cont_id : id; 800 for (i = 0; i < vlen; i++, m++) 801 btf_dump_emit_type(d, m->type, new_cont_id); 802 } else if (!tstate->fwd_emitted && id != cont_id) { 803 btf_dump_emit_struct_fwd(d, id, t); 804 btf_dump_printf(d, ";\n\n"); 805 tstate->fwd_emitted = 1; 806 } 807 808 if (top_level_def) { 809 btf_dump_emit_struct_def(d, id, t, 0); 810 btf_dump_printf(d, ";\n\n"); 811 tstate->emit_state = EMITTED; 812 } else { 813 tstate->emit_state = NOT_EMITTED; 814 } 815 break; 816 case BTF_KIND_FUNC_PROTO: { 817 const struct btf_param *p = btf_params(t); 818 __u16 n = btf_vlen(t); 819 int i; 820 821 btf_dump_emit_type(d, t->type, cont_id); 822 for (i = 0; i < n; i++, p++) 823 btf_dump_emit_type(d, p->type, cont_id); 824 825 break; 826 } 827 default: 828 break; 829 } 830 } 831 832 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 833 const struct btf_type *t) 834 { 835 const struct btf_member *m; 836 int align, i, bit_sz; 837 __u16 vlen; 838 839 align = btf__align_of(btf, id); 840 /* size of a non-packed struct has to be a multiple of its alignment*/ 841 if (align && t->size % align) 842 return true; 843 844 m = btf_members(t); 845 vlen = btf_vlen(t); 846 /* all non-bitfield fields have to be naturally aligned */ 847 for (i = 0; i < vlen; i++, m++) { 848 align = btf__align_of(btf, m->type); 849 bit_sz = btf_member_bitfield_size(t, i); 850 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 851 return true; 852 } 853 854 /* 855 * if original struct was marked as packed, but its layout is 856 * naturally aligned, we'll detect that it's not packed 857 */ 858 return false; 859 } 860 861 static int chip_away_bits(int total, int at_most) 862 { 863 return total % at_most ? : at_most; 864 } 865 866 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 867 int cur_off, int m_off, int m_bit_sz, 868 int align, int lvl) 869 { 870 int off_diff = m_off - cur_off; 871 int ptr_bits = d->ptr_sz * 8; 872 873 if (off_diff <= 0) 874 /* no gap */ 875 return; 876 if (m_bit_sz == 0 && off_diff < align * 8) 877 /* natural padding will take care of a gap */ 878 return; 879 880 while (off_diff > 0) { 881 const char *pad_type; 882 int pad_bits; 883 884 if (ptr_bits > 32 && off_diff > 32) { 885 pad_type = "long"; 886 pad_bits = chip_away_bits(off_diff, ptr_bits); 887 } else if (off_diff > 16) { 888 pad_type = "int"; 889 pad_bits = chip_away_bits(off_diff, 32); 890 } else if (off_diff > 8) { 891 pad_type = "short"; 892 pad_bits = chip_away_bits(off_diff, 16); 893 } else { 894 pad_type = "char"; 895 pad_bits = chip_away_bits(off_diff, 8); 896 } 897 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 898 off_diff -= pad_bits; 899 } 900 } 901 902 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 903 const struct btf_type *t) 904 { 905 btf_dump_printf(d, "%s%s%s", 906 btf_is_struct(t) ? "struct" : "union", 907 t->name_off ? " " : "", 908 btf_dump_type_name(d, id)); 909 } 910 911 static void btf_dump_emit_struct_def(struct btf_dump *d, 912 __u32 id, 913 const struct btf_type *t, 914 int lvl) 915 { 916 const struct btf_member *m = btf_members(t); 917 bool is_struct = btf_is_struct(t); 918 int align, i, packed, off = 0; 919 __u16 vlen = btf_vlen(t); 920 921 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 922 923 btf_dump_printf(d, "%s%s%s {", 924 is_struct ? "struct" : "union", 925 t->name_off ? " " : "", 926 btf_dump_type_name(d, id)); 927 928 for (i = 0; i < vlen; i++, m++) { 929 const char *fname; 930 int m_off, m_sz; 931 932 fname = btf_name_of(d, m->name_off); 933 m_sz = btf_member_bitfield_size(t, i); 934 m_off = btf_member_bit_offset(t, i); 935 align = packed ? 1 : btf__align_of(d->btf, m->type); 936 937 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); 938 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 939 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 940 941 if (m_sz) { 942 btf_dump_printf(d, ": %d", m_sz); 943 off = m_off + m_sz; 944 } else { 945 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 946 off = m_off + m_sz * 8; 947 } 948 btf_dump_printf(d, ";"); 949 } 950 951 /* pad at the end, if necessary */ 952 if (is_struct) { 953 align = packed ? 1 : btf__align_of(d->btf, id); 954 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, 955 lvl + 1); 956 } 957 958 /* 959 * Keep `struct empty {}` on a single line, 960 * only print newline when there are regular or padding fields. 961 */ 962 if (vlen || t->size) 963 btf_dump_printf(d, "\n"); 964 btf_dump_printf(d, "%s}", pfx(lvl)); 965 if (packed) 966 btf_dump_printf(d, " __attribute__((packed))"); 967 } 968 969 static const char *missing_base_types[][2] = { 970 /* 971 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 972 * SIMD intrinsics. Alias them to standard base types. 973 */ 974 { "__Poly8_t", "unsigned char" }, 975 { "__Poly16_t", "unsigned short" }, 976 { "__Poly64_t", "unsigned long long" }, 977 { "__Poly128_t", "unsigned __int128" }, 978 }; 979 980 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 981 const struct btf_type *t) 982 { 983 const char *name = btf_dump_type_name(d, id); 984 int i; 985 986 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 987 if (strcmp(name, missing_base_types[i][0]) == 0) { 988 btf_dump_printf(d, "typedef %s %s;\n\n", 989 missing_base_types[i][1], name); 990 break; 991 } 992 } 993 } 994 995 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 996 const struct btf_type *t) 997 { 998 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 999 } 1000 1001 static void btf_dump_emit_enum32_val(struct btf_dump *d, 1002 const struct btf_type *t, 1003 int lvl, __u16 vlen) 1004 { 1005 const struct btf_enum *v = btf_enum(t); 1006 bool is_signed = btf_kflag(t); 1007 const char *fmt_str; 1008 const char *name; 1009 size_t dup_cnt; 1010 int i; 1011 1012 for (i = 0; i < vlen; i++, v++) { 1013 name = btf_name_of(d, v->name_off); 1014 /* enumerators share namespace with typedef idents */ 1015 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1016 if (dup_cnt > 1) { 1017 fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,"; 1018 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val); 1019 } else { 1020 fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,"; 1021 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val); 1022 } 1023 } 1024 } 1025 1026 static void btf_dump_emit_enum64_val(struct btf_dump *d, 1027 const struct btf_type *t, 1028 int lvl, __u16 vlen) 1029 { 1030 const struct btf_enum64 *v = btf_enum64(t); 1031 bool is_signed = btf_kflag(t); 1032 const char *fmt_str; 1033 const char *name; 1034 size_t dup_cnt; 1035 __u64 val; 1036 int i; 1037 1038 for (i = 0; i < vlen; i++, v++) { 1039 name = btf_name_of(d, v->name_off); 1040 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1041 val = btf_enum64_value(v); 1042 if (dup_cnt > 1) { 1043 fmt_str = is_signed ? "\n%s%s___%zd = %lldLL," 1044 : "\n%s%s___%zd = %lluULL,"; 1045 btf_dump_printf(d, fmt_str, 1046 pfx(lvl + 1), name, dup_cnt, 1047 (unsigned long long)val); 1048 } else { 1049 fmt_str = is_signed ? "\n%s%s = %lldLL," 1050 : "\n%s%s = %lluULL,"; 1051 btf_dump_printf(d, fmt_str, 1052 pfx(lvl + 1), name, 1053 (unsigned long long)val); 1054 } 1055 } 1056 } 1057 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 1058 const struct btf_type *t, 1059 int lvl) 1060 { 1061 __u16 vlen = btf_vlen(t); 1062 1063 btf_dump_printf(d, "enum%s%s", 1064 t->name_off ? " " : "", 1065 btf_dump_type_name(d, id)); 1066 1067 if (!vlen) 1068 return; 1069 1070 btf_dump_printf(d, " {"); 1071 if (btf_is_enum(t)) 1072 btf_dump_emit_enum32_val(d, t, lvl, vlen); 1073 else 1074 btf_dump_emit_enum64_val(d, t, lvl, vlen); 1075 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1076 } 1077 1078 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1079 const struct btf_type *t) 1080 { 1081 const char *name = btf_dump_type_name(d, id); 1082 1083 if (btf_kflag(t)) 1084 btf_dump_printf(d, "union %s", name); 1085 else 1086 btf_dump_printf(d, "struct %s", name); 1087 } 1088 1089 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1090 const struct btf_type *t, int lvl) 1091 { 1092 const char *name = btf_dump_ident_name(d, id); 1093 1094 /* 1095 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1096 * pointing to VOID. This generates warnings from btf_dump() and 1097 * results in uncompilable header file, so we are fixing it up here 1098 * with valid typedef into __builtin_va_list. 1099 */ 1100 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1101 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1102 return; 1103 } 1104 1105 btf_dump_printf(d, "typedef "); 1106 btf_dump_emit_type_decl(d, t->type, name, lvl); 1107 } 1108 1109 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1110 { 1111 __u32 *new_stack; 1112 size_t new_cap; 1113 1114 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1115 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1116 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1117 if (!new_stack) 1118 return -ENOMEM; 1119 d->decl_stack = new_stack; 1120 d->decl_stack_cap = new_cap; 1121 } 1122 1123 d->decl_stack[d->decl_stack_cnt++] = id; 1124 1125 return 0; 1126 } 1127 1128 /* 1129 * Emit type declaration (e.g., field type declaration in a struct or argument 1130 * declaration in function prototype) in correct C syntax. 1131 * 1132 * For most types it's trivial, but there are few quirky type declaration 1133 * cases worth mentioning: 1134 * - function prototypes (especially nesting of function prototypes); 1135 * - arrays; 1136 * - const/volatile/restrict for pointers vs other types. 1137 * 1138 * For a good discussion of *PARSING* C syntax (as a human), see 1139 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1140 * Ch.3 "Unscrambling Declarations in C". 1141 * 1142 * It won't help with BTF to C conversion much, though, as it's an opposite 1143 * problem. So we came up with this algorithm in reverse to van der Linden's 1144 * parsing algorithm. It goes from structured BTF representation of type 1145 * declaration to a valid compilable C syntax. 1146 * 1147 * For instance, consider this C typedef: 1148 * typedef const int * const * arr[10] arr_t; 1149 * It will be represented in BTF with this chain of BTF types: 1150 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1151 * 1152 * Notice how [const] modifier always goes before type it modifies in BTF type 1153 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1154 * the right of pointers, but to the left of other types. There are also other 1155 * quirks, like function pointers, arrays of them, functions returning other 1156 * functions, etc. 1157 * 1158 * We handle that by pushing all the types to a stack, until we hit "terminal" 1159 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1160 * top of a stack, modifiers are handled differently. Array/function pointers 1161 * have also wildly different syntax and how nesting of them are done. See 1162 * code for authoritative definition. 1163 * 1164 * To avoid allocating new stack for each independent chain of BTF types, we 1165 * share one bigger stack, with each chain working only on its own local view 1166 * of a stack frame. Some care is required to "pop" stack frames after 1167 * processing type declaration chain. 1168 */ 1169 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1170 const struct btf_dump_emit_type_decl_opts *opts) 1171 { 1172 const char *fname; 1173 int lvl, err; 1174 1175 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1176 return libbpf_err(-EINVAL); 1177 1178 err = btf_dump_resize(d); 1179 if (err) 1180 return libbpf_err(err); 1181 1182 fname = OPTS_GET(opts, field_name, ""); 1183 lvl = OPTS_GET(opts, indent_level, 0); 1184 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1185 btf_dump_emit_type_decl(d, id, fname, lvl); 1186 d->strip_mods = false; 1187 return 0; 1188 } 1189 1190 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1191 const char *fname, int lvl) 1192 { 1193 struct id_stack decl_stack; 1194 const struct btf_type *t; 1195 int err, stack_start; 1196 1197 stack_start = d->decl_stack_cnt; 1198 for (;;) { 1199 t = btf__type_by_id(d->btf, id); 1200 if (d->strip_mods && btf_is_mod(t)) 1201 goto skip_mod; 1202 1203 err = btf_dump_push_decl_stack_id(d, id); 1204 if (err < 0) { 1205 /* 1206 * if we don't have enough memory for entire type decl 1207 * chain, restore stack, emit warning, and try to 1208 * proceed nevertheless 1209 */ 1210 pr_warn("not enough memory for decl stack:%d", err); 1211 d->decl_stack_cnt = stack_start; 1212 return; 1213 } 1214 skip_mod: 1215 /* VOID */ 1216 if (id == 0) 1217 break; 1218 1219 switch (btf_kind(t)) { 1220 case BTF_KIND_PTR: 1221 case BTF_KIND_VOLATILE: 1222 case BTF_KIND_CONST: 1223 case BTF_KIND_RESTRICT: 1224 case BTF_KIND_FUNC_PROTO: 1225 case BTF_KIND_TYPE_TAG: 1226 id = t->type; 1227 break; 1228 case BTF_KIND_ARRAY: 1229 id = btf_array(t)->type; 1230 break; 1231 case BTF_KIND_INT: 1232 case BTF_KIND_ENUM: 1233 case BTF_KIND_ENUM64: 1234 case BTF_KIND_FWD: 1235 case BTF_KIND_STRUCT: 1236 case BTF_KIND_UNION: 1237 case BTF_KIND_TYPEDEF: 1238 case BTF_KIND_FLOAT: 1239 goto done; 1240 default: 1241 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1242 btf_kind(t), id); 1243 goto done; 1244 } 1245 } 1246 done: 1247 /* 1248 * We might be inside a chain of declarations (e.g., array of function 1249 * pointers returning anonymous (so inlined) structs, having another 1250 * array field). Each of those needs its own "stack frame" to handle 1251 * emitting of declarations. Those stack frames are non-overlapping 1252 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1253 * handle this set of nested stacks, we create a view corresponding to 1254 * our own "stack frame" and work with it as an independent stack. 1255 * We'll need to clean up after emit_type_chain() returns, though. 1256 */ 1257 decl_stack.ids = d->decl_stack + stack_start; 1258 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1259 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1260 /* 1261 * emit_type_chain() guarantees that it will pop its entire decl_stack 1262 * frame before returning. But it works with a read-only view into 1263 * decl_stack, so it doesn't actually pop anything from the 1264 * perspective of shared btf_dump->decl_stack, per se. We need to 1265 * reset decl_stack state to how it was before us to avoid it growing 1266 * all the time. 1267 */ 1268 d->decl_stack_cnt = stack_start; 1269 } 1270 1271 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1272 { 1273 const struct btf_type *t; 1274 __u32 id; 1275 1276 while (decl_stack->cnt) { 1277 id = decl_stack->ids[decl_stack->cnt - 1]; 1278 t = btf__type_by_id(d->btf, id); 1279 1280 switch (btf_kind(t)) { 1281 case BTF_KIND_VOLATILE: 1282 btf_dump_printf(d, "volatile "); 1283 break; 1284 case BTF_KIND_CONST: 1285 btf_dump_printf(d, "const "); 1286 break; 1287 case BTF_KIND_RESTRICT: 1288 btf_dump_printf(d, "restrict "); 1289 break; 1290 default: 1291 return; 1292 } 1293 decl_stack->cnt--; 1294 } 1295 } 1296 1297 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1298 { 1299 const struct btf_type *t; 1300 __u32 id; 1301 1302 while (decl_stack->cnt) { 1303 id = decl_stack->ids[decl_stack->cnt - 1]; 1304 t = btf__type_by_id(d->btf, id); 1305 if (!btf_is_mod(t)) 1306 return; 1307 decl_stack->cnt--; 1308 } 1309 } 1310 1311 static void btf_dump_emit_name(const struct btf_dump *d, 1312 const char *name, bool last_was_ptr) 1313 { 1314 bool separate = name[0] && !last_was_ptr; 1315 1316 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1317 } 1318 1319 static void btf_dump_emit_type_chain(struct btf_dump *d, 1320 struct id_stack *decls, 1321 const char *fname, int lvl) 1322 { 1323 /* 1324 * last_was_ptr is used to determine if we need to separate pointer 1325 * asterisk (*) from previous part of type signature with space, so 1326 * that we get `int ***`, instead of `int * * *`. We default to true 1327 * for cases where we have single pointer in a chain. E.g., in ptr -> 1328 * func_proto case. func_proto will start a new emit_type_chain call 1329 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1330 * don't want to prepend space for that last pointer. 1331 */ 1332 bool last_was_ptr = true; 1333 const struct btf_type *t; 1334 const char *name; 1335 __u16 kind; 1336 __u32 id; 1337 1338 while (decls->cnt) { 1339 id = decls->ids[--decls->cnt]; 1340 if (id == 0) { 1341 /* VOID is a special snowflake */ 1342 btf_dump_emit_mods(d, decls); 1343 btf_dump_printf(d, "void"); 1344 last_was_ptr = false; 1345 continue; 1346 } 1347 1348 t = btf__type_by_id(d->btf, id); 1349 kind = btf_kind(t); 1350 1351 switch (kind) { 1352 case BTF_KIND_INT: 1353 case BTF_KIND_FLOAT: 1354 btf_dump_emit_mods(d, decls); 1355 name = btf_name_of(d, t->name_off); 1356 btf_dump_printf(d, "%s", name); 1357 break; 1358 case BTF_KIND_STRUCT: 1359 case BTF_KIND_UNION: 1360 btf_dump_emit_mods(d, decls); 1361 /* inline anonymous struct/union */ 1362 if (t->name_off == 0 && !d->skip_anon_defs) 1363 btf_dump_emit_struct_def(d, id, t, lvl); 1364 else 1365 btf_dump_emit_struct_fwd(d, id, t); 1366 break; 1367 case BTF_KIND_ENUM: 1368 case BTF_KIND_ENUM64: 1369 btf_dump_emit_mods(d, decls); 1370 /* inline anonymous enum */ 1371 if (t->name_off == 0 && !d->skip_anon_defs) 1372 btf_dump_emit_enum_def(d, id, t, lvl); 1373 else 1374 btf_dump_emit_enum_fwd(d, id, t); 1375 break; 1376 case BTF_KIND_FWD: 1377 btf_dump_emit_mods(d, decls); 1378 btf_dump_emit_fwd_def(d, id, t); 1379 break; 1380 case BTF_KIND_TYPEDEF: 1381 btf_dump_emit_mods(d, decls); 1382 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1383 break; 1384 case BTF_KIND_PTR: 1385 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1386 break; 1387 case BTF_KIND_VOLATILE: 1388 btf_dump_printf(d, " volatile"); 1389 break; 1390 case BTF_KIND_CONST: 1391 btf_dump_printf(d, " const"); 1392 break; 1393 case BTF_KIND_RESTRICT: 1394 btf_dump_printf(d, " restrict"); 1395 break; 1396 case BTF_KIND_TYPE_TAG: 1397 btf_dump_emit_mods(d, decls); 1398 name = btf_name_of(d, t->name_off); 1399 btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name); 1400 break; 1401 case BTF_KIND_ARRAY: { 1402 const struct btf_array *a = btf_array(t); 1403 const struct btf_type *next_t; 1404 __u32 next_id; 1405 bool multidim; 1406 /* 1407 * GCC has a bug 1408 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1409 * which causes it to emit extra const/volatile 1410 * modifiers for an array, if array's element type has 1411 * const/volatile modifiers. Clang doesn't do that. 1412 * In general, it doesn't seem very meaningful to have 1413 * a const/volatile modifier for array, so we are 1414 * going to silently skip them here. 1415 */ 1416 btf_dump_drop_mods(d, decls); 1417 1418 if (decls->cnt == 0) { 1419 btf_dump_emit_name(d, fname, last_was_ptr); 1420 btf_dump_printf(d, "[%u]", a->nelems); 1421 return; 1422 } 1423 1424 next_id = decls->ids[decls->cnt - 1]; 1425 next_t = btf__type_by_id(d->btf, next_id); 1426 multidim = btf_is_array(next_t); 1427 /* we need space if we have named non-pointer */ 1428 if (fname[0] && !last_was_ptr) 1429 btf_dump_printf(d, " "); 1430 /* no parentheses for multi-dimensional array */ 1431 if (!multidim) 1432 btf_dump_printf(d, "("); 1433 btf_dump_emit_type_chain(d, decls, fname, lvl); 1434 if (!multidim) 1435 btf_dump_printf(d, ")"); 1436 btf_dump_printf(d, "[%u]", a->nelems); 1437 return; 1438 } 1439 case BTF_KIND_FUNC_PROTO: { 1440 const struct btf_param *p = btf_params(t); 1441 __u16 vlen = btf_vlen(t); 1442 int i; 1443 1444 /* 1445 * GCC emits extra volatile qualifier for 1446 * __attribute__((noreturn)) function pointers. Clang 1447 * doesn't do it. It's a GCC quirk for backwards 1448 * compatibility with code written for GCC <2.5. So, 1449 * similarly to extra qualifiers for array, just drop 1450 * them, instead of handling them. 1451 */ 1452 btf_dump_drop_mods(d, decls); 1453 if (decls->cnt) { 1454 btf_dump_printf(d, " ("); 1455 btf_dump_emit_type_chain(d, decls, fname, lvl); 1456 btf_dump_printf(d, ")"); 1457 } else { 1458 btf_dump_emit_name(d, fname, last_was_ptr); 1459 } 1460 btf_dump_printf(d, "("); 1461 /* 1462 * Clang for BPF target generates func_proto with no 1463 * args as a func_proto with a single void arg (e.g., 1464 * `int (*f)(void)` vs just `int (*f)()`). We are 1465 * going to pretend there are no args for such case. 1466 */ 1467 if (vlen == 1 && p->type == 0) { 1468 btf_dump_printf(d, ")"); 1469 return; 1470 } 1471 1472 for (i = 0; i < vlen; i++, p++) { 1473 if (i > 0) 1474 btf_dump_printf(d, ", "); 1475 1476 /* last arg of type void is vararg */ 1477 if (i == vlen - 1 && p->type == 0) { 1478 btf_dump_printf(d, "..."); 1479 break; 1480 } 1481 1482 name = btf_name_of(d, p->name_off); 1483 btf_dump_emit_type_decl(d, p->type, name, lvl); 1484 } 1485 1486 btf_dump_printf(d, ")"); 1487 return; 1488 } 1489 default: 1490 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1491 kind, id); 1492 return; 1493 } 1494 1495 last_was_ptr = kind == BTF_KIND_PTR; 1496 } 1497 1498 btf_dump_emit_name(d, fname, last_was_ptr); 1499 } 1500 1501 /* show type name as (type_name) */ 1502 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1503 bool top_level) 1504 { 1505 const struct btf_type *t; 1506 1507 /* for array members, we don't bother emitting type name for each 1508 * member to avoid the redundancy of 1509 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1510 */ 1511 if (d->typed_dump->is_array_member) 1512 return; 1513 1514 /* avoid type name specification for variable/section; it will be done 1515 * for the associated variable value(s). 1516 */ 1517 t = btf__type_by_id(d->btf, id); 1518 if (btf_is_var(t) || btf_is_datasec(t)) 1519 return; 1520 1521 if (top_level) 1522 btf_dump_printf(d, "("); 1523 1524 d->skip_anon_defs = true; 1525 d->strip_mods = true; 1526 btf_dump_emit_type_decl(d, id, "", 0); 1527 d->strip_mods = false; 1528 d->skip_anon_defs = false; 1529 1530 if (top_level) 1531 btf_dump_printf(d, ")"); 1532 } 1533 1534 /* return number of duplicates (occurrences) of a given name */ 1535 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1536 const char *orig_name) 1537 { 1538 char *old_name, *new_name; 1539 size_t dup_cnt = 0; 1540 int err; 1541 1542 new_name = strdup(orig_name); 1543 if (!new_name) 1544 return 1; 1545 1546 (void)hashmap__find(name_map, orig_name, &dup_cnt); 1547 dup_cnt++; 1548 1549 err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL); 1550 if (err) 1551 free(new_name); 1552 1553 free(old_name); 1554 1555 return dup_cnt; 1556 } 1557 1558 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1559 struct hashmap *name_map) 1560 { 1561 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1562 const struct btf_type *t = btf__type_by_id(d->btf, id); 1563 const char *orig_name = btf_name_of(d, t->name_off); 1564 const char **cached_name = &d->cached_names[id]; 1565 size_t dup_cnt; 1566 1567 if (t->name_off == 0) 1568 return ""; 1569 1570 if (s->name_resolved) 1571 return *cached_name ? *cached_name : orig_name; 1572 1573 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) { 1574 s->name_resolved = 1; 1575 return orig_name; 1576 } 1577 1578 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1579 if (dup_cnt > 1) { 1580 const size_t max_len = 256; 1581 char new_name[max_len]; 1582 1583 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1584 *cached_name = strdup(new_name); 1585 } 1586 1587 s->name_resolved = 1; 1588 return *cached_name ? *cached_name : orig_name; 1589 } 1590 1591 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1592 { 1593 return btf_dump_resolve_name(d, id, d->type_names); 1594 } 1595 1596 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1597 { 1598 return btf_dump_resolve_name(d, id, d->ident_names); 1599 } 1600 1601 static int btf_dump_dump_type_data(struct btf_dump *d, 1602 const char *fname, 1603 const struct btf_type *t, 1604 __u32 id, 1605 const void *data, 1606 __u8 bits_offset, 1607 __u8 bit_sz); 1608 1609 static const char *btf_dump_data_newline(struct btf_dump *d) 1610 { 1611 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1612 } 1613 1614 static const char *btf_dump_data_delim(struct btf_dump *d) 1615 { 1616 return d->typed_dump->depth == 0 ? "" : ","; 1617 } 1618 1619 static void btf_dump_data_pfx(struct btf_dump *d) 1620 { 1621 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1622 1623 if (d->typed_dump->compact) 1624 return; 1625 1626 for (i = 0; i < lvl; i++) 1627 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1628 } 1629 1630 /* A macro is used here as btf_type_value[s]() appends format specifiers 1631 * to the format specifier passed in; these do the work of appending 1632 * delimiters etc while the caller simply has to specify the type values 1633 * in the format specifier + value(s). 1634 */ 1635 #define btf_dump_type_values(d, fmt, ...) \ 1636 btf_dump_printf(d, fmt "%s%s", \ 1637 ##__VA_ARGS__, \ 1638 btf_dump_data_delim(d), \ 1639 btf_dump_data_newline(d)) 1640 1641 static int btf_dump_unsupported_data(struct btf_dump *d, 1642 const struct btf_type *t, 1643 __u32 id) 1644 { 1645 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1646 return -ENOTSUP; 1647 } 1648 1649 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1650 const struct btf_type *t, 1651 const void *data, 1652 __u8 bits_offset, 1653 __u8 bit_sz, 1654 __u64 *value) 1655 { 1656 __u16 left_shift_bits, right_shift_bits; 1657 const __u8 *bytes = data; 1658 __u8 nr_copy_bits; 1659 __u64 num = 0; 1660 int i; 1661 1662 /* Maximum supported bitfield size is 64 bits */ 1663 if (t->size > 8) { 1664 pr_warn("unexpected bitfield size %d\n", t->size); 1665 return -EINVAL; 1666 } 1667 1668 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1669 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1670 */ 1671 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1672 for (i = t->size - 1; i >= 0; i--) 1673 num = num * 256 + bytes[i]; 1674 nr_copy_bits = bit_sz + bits_offset; 1675 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1676 for (i = 0; i < t->size; i++) 1677 num = num * 256 + bytes[i]; 1678 nr_copy_bits = t->size * 8 - bits_offset; 1679 #else 1680 # error "Unrecognized __BYTE_ORDER__" 1681 #endif 1682 left_shift_bits = 64 - nr_copy_bits; 1683 right_shift_bits = 64 - bit_sz; 1684 1685 *value = (num << left_shift_bits) >> right_shift_bits; 1686 1687 return 0; 1688 } 1689 1690 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1691 const struct btf_type *t, 1692 const void *data, 1693 __u8 bits_offset, 1694 __u8 bit_sz) 1695 { 1696 __u64 check_num; 1697 int err; 1698 1699 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1700 if (err) 1701 return err; 1702 if (check_num == 0) 1703 return -ENODATA; 1704 return 0; 1705 } 1706 1707 static int btf_dump_bitfield_data(struct btf_dump *d, 1708 const struct btf_type *t, 1709 const void *data, 1710 __u8 bits_offset, 1711 __u8 bit_sz) 1712 { 1713 __u64 print_num; 1714 int err; 1715 1716 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1717 if (err) 1718 return err; 1719 1720 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1721 1722 return 0; 1723 } 1724 1725 /* ints, floats and ptrs */ 1726 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1727 const struct btf_type *t, 1728 __u32 id, 1729 const void *data) 1730 { 1731 static __u8 bytecmp[16] = {}; 1732 int nr_bytes; 1733 1734 /* For pointer types, pointer size is not defined on a per-type basis. 1735 * On dump creation however, we store the pointer size. 1736 */ 1737 if (btf_kind(t) == BTF_KIND_PTR) 1738 nr_bytes = d->ptr_sz; 1739 else 1740 nr_bytes = t->size; 1741 1742 if (nr_bytes < 1 || nr_bytes > 16) { 1743 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1744 return -EINVAL; 1745 } 1746 1747 if (memcmp(data, bytecmp, nr_bytes) == 0) 1748 return -ENODATA; 1749 return 0; 1750 } 1751 1752 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id, 1753 const void *data) 1754 { 1755 int alignment = btf__align_of(btf, type_id); 1756 1757 if (alignment == 0) 1758 return false; 1759 1760 return ((uintptr_t)data) % alignment == 0; 1761 } 1762 1763 static int btf_dump_int_data(struct btf_dump *d, 1764 const struct btf_type *t, 1765 __u32 type_id, 1766 const void *data, 1767 __u8 bits_offset) 1768 { 1769 __u8 encoding = btf_int_encoding(t); 1770 bool sign = encoding & BTF_INT_SIGNED; 1771 char buf[16] __attribute__((aligned(16))); 1772 int sz = t->size; 1773 1774 if (sz == 0 || sz > sizeof(buf)) { 1775 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1776 return -EINVAL; 1777 } 1778 1779 /* handle packed int data - accesses of integers not aligned on 1780 * int boundaries can cause problems on some platforms. 1781 */ 1782 if (!ptr_is_aligned(d->btf, type_id, data)) { 1783 memcpy(buf, data, sz); 1784 data = buf; 1785 } 1786 1787 switch (sz) { 1788 case 16: { 1789 const __u64 *ints = data; 1790 __u64 lsi, msi; 1791 1792 /* avoid use of __int128 as some 32-bit platforms do not 1793 * support it. 1794 */ 1795 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1796 lsi = ints[0]; 1797 msi = ints[1]; 1798 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1799 lsi = ints[1]; 1800 msi = ints[0]; 1801 #else 1802 # error "Unrecognized __BYTE_ORDER__" 1803 #endif 1804 if (msi == 0) 1805 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1806 else 1807 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1808 (unsigned long long)lsi); 1809 break; 1810 } 1811 case 8: 1812 if (sign) 1813 btf_dump_type_values(d, "%lld", *(long long *)data); 1814 else 1815 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1816 break; 1817 case 4: 1818 if (sign) 1819 btf_dump_type_values(d, "%d", *(__s32 *)data); 1820 else 1821 btf_dump_type_values(d, "%u", *(__u32 *)data); 1822 break; 1823 case 2: 1824 if (sign) 1825 btf_dump_type_values(d, "%d", *(__s16 *)data); 1826 else 1827 btf_dump_type_values(d, "%u", *(__u16 *)data); 1828 break; 1829 case 1: 1830 if (d->typed_dump->is_array_char) { 1831 /* check for null terminator */ 1832 if (d->typed_dump->is_array_terminated) 1833 break; 1834 if (*(char *)data == '\0') { 1835 d->typed_dump->is_array_terminated = true; 1836 break; 1837 } 1838 if (isprint(*(char *)data)) { 1839 btf_dump_type_values(d, "'%c'", *(char *)data); 1840 break; 1841 } 1842 } 1843 if (sign) 1844 btf_dump_type_values(d, "%d", *(__s8 *)data); 1845 else 1846 btf_dump_type_values(d, "%u", *(__u8 *)data); 1847 break; 1848 default: 1849 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1850 return -EINVAL; 1851 } 1852 return 0; 1853 } 1854 1855 union float_data { 1856 long double ld; 1857 double d; 1858 float f; 1859 }; 1860 1861 static int btf_dump_float_data(struct btf_dump *d, 1862 const struct btf_type *t, 1863 __u32 type_id, 1864 const void *data) 1865 { 1866 const union float_data *flp = data; 1867 union float_data fl; 1868 int sz = t->size; 1869 1870 /* handle unaligned data; copy to local union */ 1871 if (!ptr_is_aligned(d->btf, type_id, data)) { 1872 memcpy(&fl, data, sz); 1873 flp = &fl; 1874 } 1875 1876 switch (sz) { 1877 case 16: 1878 btf_dump_type_values(d, "%Lf", flp->ld); 1879 break; 1880 case 8: 1881 btf_dump_type_values(d, "%lf", flp->d); 1882 break; 1883 case 4: 1884 btf_dump_type_values(d, "%f", flp->f); 1885 break; 1886 default: 1887 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1888 return -EINVAL; 1889 } 1890 return 0; 1891 } 1892 1893 static int btf_dump_var_data(struct btf_dump *d, 1894 const struct btf_type *v, 1895 __u32 id, 1896 const void *data) 1897 { 1898 enum btf_func_linkage linkage = btf_var(v)->linkage; 1899 const struct btf_type *t; 1900 const char *l; 1901 __u32 type_id; 1902 1903 switch (linkage) { 1904 case BTF_FUNC_STATIC: 1905 l = "static "; 1906 break; 1907 case BTF_FUNC_EXTERN: 1908 l = "extern "; 1909 break; 1910 case BTF_FUNC_GLOBAL: 1911 default: 1912 l = ""; 1913 break; 1914 } 1915 1916 /* format of output here is [linkage] [type] [varname] = (type)value, 1917 * for example "static int cpu_profile_flip = (int)1" 1918 */ 1919 btf_dump_printf(d, "%s", l); 1920 type_id = v->type; 1921 t = btf__type_by_id(d->btf, type_id); 1922 btf_dump_emit_type_cast(d, type_id, false); 1923 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 1924 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 1925 } 1926 1927 static int btf_dump_array_data(struct btf_dump *d, 1928 const struct btf_type *t, 1929 __u32 id, 1930 const void *data) 1931 { 1932 const struct btf_array *array = btf_array(t); 1933 const struct btf_type *elem_type; 1934 __u32 i, elem_type_id; 1935 __s64 elem_size; 1936 bool is_array_member; 1937 1938 elem_type_id = array->type; 1939 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 1940 elem_size = btf__resolve_size(d->btf, elem_type_id); 1941 if (elem_size <= 0) { 1942 pr_warn("unexpected elem size %zd for array type [%u]\n", 1943 (ssize_t)elem_size, id); 1944 return -EINVAL; 1945 } 1946 1947 if (btf_is_int(elem_type)) { 1948 /* 1949 * BTF_INT_CHAR encoding never seems to be set for 1950 * char arrays, so if size is 1 and element is 1951 * printable as a char, we'll do that. 1952 */ 1953 if (elem_size == 1) 1954 d->typed_dump->is_array_char = true; 1955 } 1956 1957 /* note that we increment depth before calling btf_dump_print() below; 1958 * this is intentional. btf_dump_data_newline() will not print a 1959 * newline for depth 0 (since this leaves us with trailing newlines 1960 * at the end of typed display), so depth is incremented first. 1961 * For similar reasons, we decrement depth before showing the closing 1962 * parenthesis. 1963 */ 1964 d->typed_dump->depth++; 1965 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 1966 1967 /* may be a multidimensional array, so store current "is array member" 1968 * status so we can restore it correctly later. 1969 */ 1970 is_array_member = d->typed_dump->is_array_member; 1971 d->typed_dump->is_array_member = true; 1972 for (i = 0; i < array->nelems; i++, data += elem_size) { 1973 if (d->typed_dump->is_array_terminated) 1974 break; 1975 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 1976 } 1977 d->typed_dump->is_array_member = is_array_member; 1978 d->typed_dump->depth--; 1979 btf_dump_data_pfx(d); 1980 btf_dump_type_values(d, "]"); 1981 1982 return 0; 1983 } 1984 1985 static int btf_dump_struct_data(struct btf_dump *d, 1986 const struct btf_type *t, 1987 __u32 id, 1988 const void *data) 1989 { 1990 const struct btf_member *m = btf_members(t); 1991 __u16 n = btf_vlen(t); 1992 int i, err = 0; 1993 1994 /* note that we increment depth before calling btf_dump_print() below; 1995 * this is intentional. btf_dump_data_newline() will not print a 1996 * newline for depth 0 (since this leaves us with trailing newlines 1997 * at the end of typed display), so depth is incremented first. 1998 * For similar reasons, we decrement depth before showing the closing 1999 * parenthesis. 2000 */ 2001 d->typed_dump->depth++; 2002 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 2003 2004 for (i = 0; i < n; i++, m++) { 2005 const struct btf_type *mtype; 2006 const char *mname; 2007 __u32 moffset; 2008 __u8 bit_sz; 2009 2010 mtype = btf__type_by_id(d->btf, m->type); 2011 mname = btf_name_of(d, m->name_off); 2012 moffset = btf_member_bit_offset(t, i); 2013 2014 bit_sz = btf_member_bitfield_size(t, i); 2015 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 2016 moffset % 8, bit_sz); 2017 if (err < 0) 2018 return err; 2019 } 2020 d->typed_dump->depth--; 2021 btf_dump_data_pfx(d); 2022 btf_dump_type_values(d, "}"); 2023 return err; 2024 } 2025 2026 union ptr_data { 2027 unsigned int p; 2028 unsigned long long lp; 2029 }; 2030 2031 static int btf_dump_ptr_data(struct btf_dump *d, 2032 const struct btf_type *t, 2033 __u32 id, 2034 const void *data) 2035 { 2036 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) { 2037 btf_dump_type_values(d, "%p", *(void **)data); 2038 } else { 2039 union ptr_data pt; 2040 2041 memcpy(&pt, data, d->ptr_sz); 2042 if (d->ptr_sz == 4) 2043 btf_dump_type_values(d, "0x%x", pt.p); 2044 else 2045 btf_dump_type_values(d, "0x%llx", pt.lp); 2046 } 2047 return 0; 2048 } 2049 2050 static int btf_dump_get_enum_value(struct btf_dump *d, 2051 const struct btf_type *t, 2052 const void *data, 2053 __u32 id, 2054 __s64 *value) 2055 { 2056 bool is_signed = btf_kflag(t); 2057 2058 if (!ptr_is_aligned(d->btf, id, data)) { 2059 __u64 val; 2060 int err; 2061 2062 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 2063 if (err) 2064 return err; 2065 *value = (__s64)val; 2066 return 0; 2067 } 2068 2069 switch (t->size) { 2070 case 8: 2071 *value = *(__s64 *)data; 2072 return 0; 2073 case 4: 2074 *value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data; 2075 return 0; 2076 case 2: 2077 *value = is_signed ? *(__s16 *)data : *(__u16 *)data; 2078 return 0; 2079 case 1: 2080 *value = is_signed ? *(__s8 *)data : *(__u8 *)data; 2081 return 0; 2082 default: 2083 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 2084 return -EINVAL; 2085 } 2086 } 2087 2088 static int btf_dump_enum_data(struct btf_dump *d, 2089 const struct btf_type *t, 2090 __u32 id, 2091 const void *data) 2092 { 2093 bool is_signed; 2094 __s64 value; 2095 int i, err; 2096 2097 err = btf_dump_get_enum_value(d, t, data, id, &value); 2098 if (err) 2099 return err; 2100 2101 is_signed = btf_kflag(t); 2102 if (btf_is_enum(t)) { 2103 const struct btf_enum *e; 2104 2105 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 2106 if (value != e->val) 2107 continue; 2108 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2109 return 0; 2110 } 2111 2112 btf_dump_type_values(d, is_signed ? "%d" : "%u", value); 2113 } else { 2114 const struct btf_enum64 *e; 2115 2116 for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) { 2117 if (value != btf_enum64_value(e)) 2118 continue; 2119 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2120 return 0; 2121 } 2122 2123 btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL", 2124 (unsigned long long)value); 2125 } 2126 return 0; 2127 } 2128 2129 static int btf_dump_datasec_data(struct btf_dump *d, 2130 const struct btf_type *t, 2131 __u32 id, 2132 const void *data) 2133 { 2134 const struct btf_var_secinfo *vsi; 2135 const struct btf_type *var; 2136 __u32 i; 2137 int err; 2138 2139 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2140 2141 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2142 var = btf__type_by_id(d->btf, vsi->type); 2143 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2144 if (err < 0) 2145 return err; 2146 btf_dump_printf(d, ";"); 2147 } 2148 return 0; 2149 } 2150 2151 /* return size of type, or if base type overflows, return -E2BIG. */ 2152 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2153 const struct btf_type *t, 2154 __u32 id, 2155 const void *data, 2156 __u8 bits_offset) 2157 { 2158 __s64 size = btf__resolve_size(d->btf, id); 2159 2160 if (size < 0 || size >= INT_MAX) { 2161 pr_warn("unexpected size [%zu] for id [%u]\n", 2162 (size_t)size, id); 2163 return -EINVAL; 2164 } 2165 2166 /* Only do overflow checking for base types; we do not want to 2167 * avoid showing part of a struct, union or array, even if we 2168 * do not have enough data to show the full object. By 2169 * restricting overflow checking to base types we can ensure 2170 * that partial display succeeds, while avoiding overflowing 2171 * and using bogus data for display. 2172 */ 2173 t = skip_mods_and_typedefs(d->btf, id, NULL); 2174 if (!t) { 2175 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2176 id); 2177 return -EINVAL; 2178 } 2179 2180 switch (btf_kind(t)) { 2181 case BTF_KIND_INT: 2182 case BTF_KIND_FLOAT: 2183 case BTF_KIND_PTR: 2184 case BTF_KIND_ENUM: 2185 case BTF_KIND_ENUM64: 2186 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2187 return -E2BIG; 2188 break; 2189 default: 2190 break; 2191 } 2192 return (int)size; 2193 } 2194 2195 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2196 const struct btf_type *t, 2197 __u32 id, 2198 const void *data, 2199 __u8 bits_offset, 2200 __u8 bit_sz) 2201 { 2202 __s64 value; 2203 int i, err; 2204 2205 /* toplevel exceptions; we show zero values if 2206 * - we ask for them (emit_zeros) 2207 * - if we are at top-level so we see "struct empty { }" 2208 * - or if we are an array member and the array is non-empty and 2209 * not a char array; we don't want to be in a situation where we 2210 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2211 * If the array contains zeroes only, or is a char array starting 2212 * with a '\0', the array-level check_zero() will prevent showing it; 2213 * we are concerned with determining zero value at the array member 2214 * level here. 2215 */ 2216 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2217 (d->typed_dump->is_array_member && 2218 !d->typed_dump->is_array_char)) 2219 return 0; 2220 2221 t = skip_mods_and_typedefs(d->btf, id, NULL); 2222 2223 switch (btf_kind(t)) { 2224 case BTF_KIND_INT: 2225 if (bit_sz) 2226 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2227 return btf_dump_base_type_check_zero(d, t, id, data); 2228 case BTF_KIND_FLOAT: 2229 case BTF_KIND_PTR: 2230 return btf_dump_base_type_check_zero(d, t, id, data); 2231 case BTF_KIND_ARRAY: { 2232 const struct btf_array *array = btf_array(t); 2233 const struct btf_type *elem_type; 2234 __u32 elem_type_id, elem_size; 2235 bool ischar; 2236 2237 elem_type_id = array->type; 2238 elem_size = btf__resolve_size(d->btf, elem_type_id); 2239 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2240 2241 ischar = btf_is_int(elem_type) && elem_size == 1; 2242 2243 /* check all elements; if _any_ element is nonzero, all 2244 * of array is displayed. We make an exception however 2245 * for char arrays where the first element is 0; these 2246 * are considered zeroed also, even if later elements are 2247 * non-zero because the string is terminated. 2248 */ 2249 for (i = 0; i < array->nelems; i++) { 2250 if (i == 0 && ischar && *(char *)data == 0) 2251 return -ENODATA; 2252 err = btf_dump_type_data_check_zero(d, elem_type, 2253 elem_type_id, 2254 data + 2255 (i * elem_size), 2256 bits_offset, 0); 2257 if (err != -ENODATA) 2258 return err; 2259 } 2260 return -ENODATA; 2261 } 2262 case BTF_KIND_STRUCT: 2263 case BTF_KIND_UNION: { 2264 const struct btf_member *m = btf_members(t); 2265 __u16 n = btf_vlen(t); 2266 2267 /* if any struct/union member is non-zero, the struct/union 2268 * is considered non-zero and dumped. 2269 */ 2270 for (i = 0; i < n; i++, m++) { 2271 const struct btf_type *mtype; 2272 __u32 moffset; 2273 2274 mtype = btf__type_by_id(d->btf, m->type); 2275 moffset = btf_member_bit_offset(t, i); 2276 2277 /* btf_int_bits() does not store member bitfield size; 2278 * bitfield size needs to be stored here so int display 2279 * of member can retrieve it. 2280 */ 2281 bit_sz = btf_member_bitfield_size(t, i); 2282 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2283 moffset % 8, bit_sz); 2284 if (err != ENODATA) 2285 return err; 2286 } 2287 return -ENODATA; 2288 } 2289 case BTF_KIND_ENUM: 2290 case BTF_KIND_ENUM64: 2291 err = btf_dump_get_enum_value(d, t, data, id, &value); 2292 if (err) 2293 return err; 2294 if (value == 0) 2295 return -ENODATA; 2296 return 0; 2297 default: 2298 return 0; 2299 } 2300 } 2301 2302 /* returns size of data dumped, or error. */ 2303 static int btf_dump_dump_type_data(struct btf_dump *d, 2304 const char *fname, 2305 const struct btf_type *t, 2306 __u32 id, 2307 const void *data, 2308 __u8 bits_offset, 2309 __u8 bit_sz) 2310 { 2311 int size, err = 0; 2312 2313 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset); 2314 if (size < 0) 2315 return size; 2316 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2317 if (err) { 2318 /* zeroed data is expected and not an error, so simply skip 2319 * dumping such data. Record other errors however. 2320 */ 2321 if (err == -ENODATA) 2322 return size; 2323 return err; 2324 } 2325 btf_dump_data_pfx(d); 2326 2327 if (!d->typed_dump->skip_names) { 2328 if (fname && strlen(fname) > 0) 2329 btf_dump_printf(d, ".%s = ", fname); 2330 btf_dump_emit_type_cast(d, id, true); 2331 } 2332 2333 t = skip_mods_and_typedefs(d->btf, id, NULL); 2334 2335 switch (btf_kind(t)) { 2336 case BTF_KIND_UNKN: 2337 case BTF_KIND_FWD: 2338 case BTF_KIND_FUNC: 2339 case BTF_KIND_FUNC_PROTO: 2340 case BTF_KIND_DECL_TAG: 2341 err = btf_dump_unsupported_data(d, t, id); 2342 break; 2343 case BTF_KIND_INT: 2344 if (bit_sz) 2345 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2346 else 2347 err = btf_dump_int_data(d, t, id, data, bits_offset); 2348 break; 2349 case BTF_KIND_FLOAT: 2350 err = btf_dump_float_data(d, t, id, data); 2351 break; 2352 case BTF_KIND_PTR: 2353 err = btf_dump_ptr_data(d, t, id, data); 2354 break; 2355 case BTF_KIND_ARRAY: 2356 err = btf_dump_array_data(d, t, id, data); 2357 break; 2358 case BTF_KIND_STRUCT: 2359 case BTF_KIND_UNION: 2360 err = btf_dump_struct_data(d, t, id, data); 2361 break; 2362 case BTF_KIND_ENUM: 2363 case BTF_KIND_ENUM64: 2364 /* handle bitfield and int enum values */ 2365 if (bit_sz) { 2366 __u64 print_num; 2367 __s64 enum_val; 2368 2369 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2370 &print_num); 2371 if (err) 2372 break; 2373 enum_val = (__s64)print_num; 2374 err = btf_dump_enum_data(d, t, id, &enum_val); 2375 } else 2376 err = btf_dump_enum_data(d, t, id, data); 2377 break; 2378 case BTF_KIND_VAR: 2379 err = btf_dump_var_data(d, t, id, data); 2380 break; 2381 case BTF_KIND_DATASEC: 2382 err = btf_dump_datasec_data(d, t, id, data); 2383 break; 2384 default: 2385 pr_warn("unexpected kind [%u] for id [%u]\n", 2386 BTF_INFO_KIND(t->info), id); 2387 return -EINVAL; 2388 } 2389 if (err < 0) 2390 return err; 2391 return size; 2392 } 2393 2394 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2395 const void *data, size_t data_sz, 2396 const struct btf_dump_type_data_opts *opts) 2397 { 2398 struct btf_dump_data typed_dump = {}; 2399 const struct btf_type *t; 2400 int ret; 2401 2402 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2403 return libbpf_err(-EINVAL); 2404 2405 t = btf__type_by_id(d->btf, id); 2406 if (!t) 2407 return libbpf_err(-ENOENT); 2408 2409 d->typed_dump = &typed_dump; 2410 d->typed_dump->data_end = data + data_sz; 2411 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2412 2413 /* default indent string is a tab */ 2414 if (!OPTS_GET(opts, indent_str, NULL)) 2415 d->typed_dump->indent_str[0] = '\t'; 2416 else 2417 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str, 2418 sizeof(d->typed_dump->indent_str)); 2419 2420 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2421 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2422 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2423 2424 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2425 2426 d->typed_dump = NULL; 2427 2428 return libbpf_err(ret); 2429 } 2430