1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <linux/kernel.h> 19 #include "btf.h" 20 #include "hashmap.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 26 27 static const char *pfx(int lvl) 28 { 29 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 30 } 31 32 enum btf_dump_type_order_state { 33 NOT_ORDERED, 34 ORDERING, 35 ORDERED, 36 }; 37 38 enum btf_dump_type_emit_state { 39 NOT_EMITTED, 40 EMITTING, 41 EMITTED, 42 }; 43 44 /* per-type auxiliary state */ 45 struct btf_dump_type_aux_state { 46 /* topological sorting state */ 47 enum btf_dump_type_order_state order_state: 2; 48 /* emitting state used to determine the need for forward declaration */ 49 enum btf_dump_type_emit_state emit_state: 2; 50 /* whether forward declaration was already emitted */ 51 __u8 fwd_emitted: 1; 52 /* whether unique non-duplicate name was already assigned */ 53 __u8 name_resolved: 1; 54 /* whether type is referenced from any other type */ 55 __u8 referenced: 1; 56 }; 57 58 /* indent string length; one indent string is added for each indent level */ 59 #define BTF_DATA_INDENT_STR_LEN 32 60 61 /* 62 * Common internal data for BTF type data dump operations. 63 */ 64 struct btf_dump_data { 65 const void *data_end; /* end of valid data to show */ 66 bool compact; 67 bool skip_names; 68 bool emit_zeroes; 69 __u8 indent_lvl; /* base indent level */ 70 char indent_str[BTF_DATA_INDENT_STR_LEN]; 71 /* below are used during iteration */ 72 int depth; 73 bool is_array_member; 74 bool is_array_terminated; 75 bool is_array_char; 76 }; 77 78 struct btf_dump { 79 const struct btf *btf; 80 btf_dump_printf_fn_t printf_fn; 81 void *cb_ctx; 82 int ptr_sz; 83 bool strip_mods; 84 bool skip_anon_defs; 85 int last_id; 86 87 /* per-type auxiliary state */ 88 struct btf_dump_type_aux_state *type_states; 89 size_t type_states_cap; 90 /* per-type optional cached unique name, must be freed, if present */ 91 const char **cached_names; 92 size_t cached_names_cap; 93 94 /* topo-sorted list of dependent type definitions */ 95 __u32 *emit_queue; 96 int emit_queue_cap; 97 int emit_queue_cnt; 98 99 /* 100 * stack of type declarations (e.g., chain of modifiers, arrays, 101 * funcs, etc) 102 */ 103 __u32 *decl_stack; 104 int decl_stack_cap; 105 int decl_stack_cnt; 106 107 /* maps struct/union/enum name to a number of name occurrences */ 108 struct hashmap *type_names; 109 /* 110 * maps typedef identifiers and enum value names to a number of such 111 * name occurrences 112 */ 113 struct hashmap *ident_names; 114 /* 115 * data for typed display; allocated if needed. 116 */ 117 struct btf_dump_data *typed_dump; 118 }; 119 120 static size_t str_hash_fn(const void *key, void *ctx) 121 { 122 return str_hash(key); 123 } 124 125 static bool str_equal_fn(const void *a, const void *b, void *ctx) 126 { 127 return strcmp(a, b) == 0; 128 } 129 130 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 131 { 132 return btf__name_by_offset(d->btf, name_off); 133 } 134 135 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 136 { 137 va_list args; 138 139 va_start(args, fmt); 140 d->printf_fn(d->cb_ctx, fmt, args); 141 va_end(args); 142 } 143 144 static int btf_dump_mark_referenced(struct btf_dump *d); 145 static int btf_dump_resize(struct btf_dump *d); 146 147 DEFAULT_VERSION(btf_dump__new_v0_6_0, btf_dump__new, LIBBPF_0.6.0) 148 struct btf_dump *btf_dump__new_v0_6_0(const struct btf *btf, 149 btf_dump_printf_fn_t printf_fn, 150 void *ctx, 151 const struct btf_dump_opts *opts) 152 { 153 struct btf_dump *d; 154 int err; 155 156 if (!printf_fn) 157 return libbpf_err_ptr(-EINVAL); 158 159 d = calloc(1, sizeof(struct btf_dump)); 160 if (!d) 161 return libbpf_err_ptr(-ENOMEM); 162 163 d->btf = btf; 164 d->printf_fn = printf_fn; 165 d->cb_ctx = ctx; 166 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 167 168 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 169 if (IS_ERR(d->type_names)) { 170 err = PTR_ERR(d->type_names); 171 d->type_names = NULL; 172 goto err; 173 } 174 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 175 if (IS_ERR(d->ident_names)) { 176 err = PTR_ERR(d->ident_names); 177 d->ident_names = NULL; 178 goto err; 179 } 180 181 err = btf_dump_resize(d); 182 if (err) 183 goto err; 184 185 return d; 186 err: 187 btf_dump__free(d); 188 return libbpf_err_ptr(err); 189 } 190 191 COMPAT_VERSION(btf_dump__new_deprecated, btf_dump__new, LIBBPF_0.0.4) 192 struct btf_dump *btf_dump__new_deprecated(const struct btf *btf, 193 const struct btf_ext *btf_ext, 194 const struct btf_dump_opts *opts, 195 btf_dump_printf_fn_t printf_fn) 196 { 197 if (!printf_fn) 198 return libbpf_err_ptr(-EINVAL); 199 return btf_dump__new_v0_6_0(btf, printf_fn, opts ? opts->ctx : NULL, opts); 200 } 201 202 static int btf_dump_resize(struct btf_dump *d) 203 { 204 int err, last_id = btf__type_cnt(d->btf) - 1; 205 206 if (last_id <= d->last_id) 207 return 0; 208 209 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 210 sizeof(*d->type_states), last_id + 1)) 211 return -ENOMEM; 212 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 213 sizeof(*d->cached_names), last_id + 1)) 214 return -ENOMEM; 215 216 if (d->last_id == 0) { 217 /* VOID is special */ 218 d->type_states[0].order_state = ORDERED; 219 d->type_states[0].emit_state = EMITTED; 220 } 221 222 /* eagerly determine referenced types for anon enums */ 223 err = btf_dump_mark_referenced(d); 224 if (err) 225 return err; 226 227 d->last_id = last_id; 228 return 0; 229 } 230 231 void btf_dump__free(struct btf_dump *d) 232 { 233 int i; 234 235 if (IS_ERR_OR_NULL(d)) 236 return; 237 238 free(d->type_states); 239 if (d->cached_names) { 240 /* any set cached name is owned by us and should be freed */ 241 for (i = 0; i <= d->last_id; i++) { 242 if (d->cached_names[i]) 243 free((void *)d->cached_names[i]); 244 } 245 } 246 free(d->cached_names); 247 free(d->emit_queue); 248 free(d->decl_stack); 249 hashmap__free(d->type_names); 250 hashmap__free(d->ident_names); 251 252 free(d); 253 } 254 255 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 256 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 257 258 /* 259 * Dump BTF type in a compilable C syntax, including all the necessary 260 * dependent types, necessary for compilation. If some of the dependent types 261 * were already emitted as part of previous btf_dump__dump_type() invocation 262 * for another type, they won't be emitted again. This API allows callers to 263 * filter out BTF types according to user-defined criterias and emitted only 264 * minimal subset of types, necessary to compile everything. Full struct/union 265 * definitions will still be emitted, even if the only usage is through 266 * pointer and could be satisfied with just a forward declaration. 267 * 268 * Dumping is done in two high-level passes: 269 * 1. Topologically sort type definitions to satisfy C rules of compilation. 270 * 2. Emit type definitions in C syntax. 271 * 272 * Returns 0 on success; <0, otherwise. 273 */ 274 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 275 { 276 int err, i; 277 278 if (id >= btf__type_cnt(d->btf)) 279 return libbpf_err(-EINVAL); 280 281 err = btf_dump_resize(d); 282 if (err) 283 return libbpf_err(err); 284 285 d->emit_queue_cnt = 0; 286 err = btf_dump_order_type(d, id, false); 287 if (err < 0) 288 return libbpf_err(err); 289 290 for (i = 0; i < d->emit_queue_cnt; i++) 291 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 292 293 return 0; 294 } 295 296 /* 297 * Mark all types that are referenced from any other type. This is used to 298 * determine top-level anonymous enums that need to be emitted as an 299 * independent type declarations. 300 * Anonymous enums come in two flavors: either embedded in a struct's field 301 * definition, in which case they have to be declared inline as part of field 302 * type declaration; or as a top-level anonymous enum, typically used for 303 * declaring global constants. It's impossible to distinguish between two 304 * without knowning whether given enum type was referenced from other type: 305 * top-level anonymous enum won't be referenced by anything, while embedded 306 * one will. 307 */ 308 static int btf_dump_mark_referenced(struct btf_dump *d) 309 { 310 int i, j, n = btf__type_cnt(d->btf); 311 const struct btf_type *t; 312 __u16 vlen; 313 314 for (i = d->last_id + 1; i < n; i++) { 315 t = btf__type_by_id(d->btf, i); 316 vlen = btf_vlen(t); 317 318 switch (btf_kind(t)) { 319 case BTF_KIND_INT: 320 case BTF_KIND_ENUM: 321 case BTF_KIND_FWD: 322 case BTF_KIND_FLOAT: 323 break; 324 325 case BTF_KIND_VOLATILE: 326 case BTF_KIND_CONST: 327 case BTF_KIND_RESTRICT: 328 case BTF_KIND_PTR: 329 case BTF_KIND_TYPEDEF: 330 case BTF_KIND_FUNC: 331 case BTF_KIND_VAR: 332 case BTF_KIND_DECL_TAG: 333 case BTF_KIND_TYPE_TAG: 334 d->type_states[t->type].referenced = 1; 335 break; 336 337 case BTF_KIND_ARRAY: { 338 const struct btf_array *a = btf_array(t); 339 340 d->type_states[a->index_type].referenced = 1; 341 d->type_states[a->type].referenced = 1; 342 break; 343 } 344 case BTF_KIND_STRUCT: 345 case BTF_KIND_UNION: { 346 const struct btf_member *m = btf_members(t); 347 348 for (j = 0; j < vlen; j++, m++) 349 d->type_states[m->type].referenced = 1; 350 break; 351 } 352 case BTF_KIND_FUNC_PROTO: { 353 const struct btf_param *p = btf_params(t); 354 355 for (j = 0; j < vlen; j++, p++) 356 d->type_states[p->type].referenced = 1; 357 break; 358 } 359 case BTF_KIND_DATASEC: { 360 const struct btf_var_secinfo *v = btf_var_secinfos(t); 361 362 for (j = 0; j < vlen; j++, v++) 363 d->type_states[v->type].referenced = 1; 364 break; 365 } 366 default: 367 return -EINVAL; 368 } 369 } 370 return 0; 371 } 372 373 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 374 { 375 __u32 *new_queue; 376 size_t new_cap; 377 378 if (d->emit_queue_cnt >= d->emit_queue_cap) { 379 new_cap = max(16, d->emit_queue_cap * 3 / 2); 380 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 381 if (!new_queue) 382 return -ENOMEM; 383 d->emit_queue = new_queue; 384 d->emit_queue_cap = new_cap; 385 } 386 387 d->emit_queue[d->emit_queue_cnt++] = id; 388 return 0; 389 } 390 391 /* 392 * Determine order of emitting dependent types and specified type to satisfy 393 * C compilation rules. This is done through topological sorting with an 394 * additional complication which comes from C rules. The main idea for C is 395 * that if some type is "embedded" into a struct/union, it's size needs to be 396 * known at the time of definition of containing type. E.g., for: 397 * 398 * struct A {}; 399 * struct B { struct A x; } 400 * 401 * struct A *HAS* to be defined before struct B, because it's "embedded", 402 * i.e., it is part of struct B layout. But in the following case: 403 * 404 * struct A; 405 * struct B { struct A *x; } 406 * struct A {}; 407 * 408 * it's enough to just have a forward declaration of struct A at the time of 409 * struct B definition, as struct B has a pointer to struct A, so the size of 410 * field x is known without knowing struct A size: it's sizeof(void *). 411 * 412 * Unfortunately, there are some trickier cases we need to handle, e.g.: 413 * 414 * struct A {}; // if this was forward-declaration: compilation error 415 * struct B { 416 * struct { // anonymous struct 417 * struct A y; 418 * } *x; 419 * }; 420 * 421 * In this case, struct B's field x is a pointer, so it's size is known 422 * regardless of the size of (anonymous) struct it points to. But because this 423 * struct is anonymous and thus defined inline inside struct B, *and* it 424 * embeds struct A, compiler requires full definition of struct A to be known 425 * before struct B can be defined. This creates a transitive dependency 426 * between struct A and struct B. If struct A was forward-declared before 427 * struct B definition and fully defined after struct B definition, that would 428 * trigger compilation error. 429 * 430 * All this means that while we are doing topological sorting on BTF type 431 * graph, we need to determine relationships between different types (graph 432 * nodes): 433 * - weak link (relationship) between X and Y, if Y *CAN* be 434 * forward-declared at the point of X definition; 435 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 436 * 437 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 438 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 439 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 440 * Weak/strong relationship is determined recursively during DFS traversal and 441 * is returned as a result from btf_dump_order_type(). 442 * 443 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 444 * but it is not guaranteeing that no extraneous forward declarations will be 445 * emitted. 446 * 447 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 448 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 449 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 450 * entire graph path, so depending where from one came to that BTF type, it 451 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 452 * once they are processed, there is no need to do it again, so they are 453 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 454 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 455 * in any case, once those are processed, no need to do it again, as the 456 * result won't change. 457 * 458 * Returns: 459 * - 1, if type is part of strong link (so there is strong topological 460 * ordering requirements); 461 * - 0, if type is part of weak link (so can be satisfied through forward 462 * declaration); 463 * - <0, on error (e.g., unsatisfiable type loop detected). 464 */ 465 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 466 { 467 /* 468 * Order state is used to detect strong link cycles, but only for BTF 469 * kinds that are or could be an independent definition (i.e., 470 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 471 * func_protos, modifiers are just means to get to these definitions. 472 * Int/void don't need definitions, they are assumed to be always 473 * properly defined. We also ignore datasec, var, and funcs for now. 474 * So for all non-defining kinds, we never even set ordering state, 475 * for defining kinds we set ORDERING and subsequently ORDERED if it 476 * forms a strong link. 477 */ 478 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 479 const struct btf_type *t; 480 __u16 vlen; 481 int err, i; 482 483 /* return true, letting typedefs know that it's ok to be emitted */ 484 if (tstate->order_state == ORDERED) 485 return 1; 486 487 t = btf__type_by_id(d->btf, id); 488 489 if (tstate->order_state == ORDERING) { 490 /* type loop, but resolvable through fwd declaration */ 491 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 492 return 0; 493 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 494 return -ELOOP; 495 } 496 497 switch (btf_kind(t)) { 498 case BTF_KIND_INT: 499 case BTF_KIND_FLOAT: 500 tstate->order_state = ORDERED; 501 return 0; 502 503 case BTF_KIND_PTR: 504 err = btf_dump_order_type(d, t->type, true); 505 tstate->order_state = ORDERED; 506 return err; 507 508 case BTF_KIND_ARRAY: 509 return btf_dump_order_type(d, btf_array(t)->type, false); 510 511 case BTF_KIND_STRUCT: 512 case BTF_KIND_UNION: { 513 const struct btf_member *m = btf_members(t); 514 /* 515 * struct/union is part of strong link, only if it's embedded 516 * (so no ptr in a path) or it's anonymous (so has to be 517 * defined inline, even if declared through ptr) 518 */ 519 if (through_ptr && t->name_off != 0) 520 return 0; 521 522 tstate->order_state = ORDERING; 523 524 vlen = btf_vlen(t); 525 for (i = 0; i < vlen; i++, m++) { 526 err = btf_dump_order_type(d, m->type, false); 527 if (err < 0) 528 return err; 529 } 530 531 if (t->name_off != 0) { 532 err = btf_dump_add_emit_queue_id(d, id); 533 if (err < 0) 534 return err; 535 } 536 537 tstate->order_state = ORDERED; 538 return 1; 539 } 540 case BTF_KIND_ENUM: 541 case BTF_KIND_FWD: 542 /* 543 * non-anonymous or non-referenced enums are top-level 544 * declarations and should be emitted. Same logic can be 545 * applied to FWDs, it won't hurt anyways. 546 */ 547 if (t->name_off != 0 || !tstate->referenced) { 548 err = btf_dump_add_emit_queue_id(d, id); 549 if (err) 550 return err; 551 } 552 tstate->order_state = ORDERED; 553 return 1; 554 555 case BTF_KIND_TYPEDEF: { 556 int is_strong; 557 558 is_strong = btf_dump_order_type(d, t->type, through_ptr); 559 if (is_strong < 0) 560 return is_strong; 561 562 /* typedef is similar to struct/union w.r.t. fwd-decls */ 563 if (through_ptr && !is_strong) 564 return 0; 565 566 /* typedef is always a named definition */ 567 err = btf_dump_add_emit_queue_id(d, id); 568 if (err) 569 return err; 570 571 d->type_states[id].order_state = ORDERED; 572 return 1; 573 } 574 case BTF_KIND_VOLATILE: 575 case BTF_KIND_CONST: 576 case BTF_KIND_RESTRICT: 577 case BTF_KIND_TYPE_TAG: 578 return btf_dump_order_type(d, t->type, through_ptr); 579 580 case BTF_KIND_FUNC_PROTO: { 581 const struct btf_param *p = btf_params(t); 582 bool is_strong; 583 584 err = btf_dump_order_type(d, t->type, through_ptr); 585 if (err < 0) 586 return err; 587 is_strong = err > 0; 588 589 vlen = btf_vlen(t); 590 for (i = 0; i < vlen; i++, p++) { 591 err = btf_dump_order_type(d, p->type, through_ptr); 592 if (err < 0) 593 return err; 594 if (err > 0) 595 is_strong = true; 596 } 597 return is_strong; 598 } 599 case BTF_KIND_FUNC: 600 case BTF_KIND_VAR: 601 case BTF_KIND_DATASEC: 602 case BTF_KIND_DECL_TAG: 603 d->type_states[id].order_state = ORDERED; 604 return 0; 605 606 default: 607 return -EINVAL; 608 } 609 } 610 611 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 612 const struct btf_type *t); 613 614 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 615 const struct btf_type *t); 616 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 617 const struct btf_type *t, int lvl); 618 619 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 620 const struct btf_type *t); 621 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 622 const struct btf_type *t, int lvl); 623 624 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 625 const struct btf_type *t); 626 627 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 628 const struct btf_type *t, int lvl); 629 630 /* a local view into a shared stack */ 631 struct id_stack { 632 const __u32 *ids; 633 int cnt; 634 }; 635 636 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 637 const char *fname, int lvl); 638 static void btf_dump_emit_type_chain(struct btf_dump *d, 639 struct id_stack *decl_stack, 640 const char *fname, int lvl); 641 642 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 643 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 644 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 645 const char *orig_name); 646 647 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 648 { 649 const struct btf_type *t = btf__type_by_id(d->btf, id); 650 651 /* __builtin_va_list is a compiler built-in, which causes compilation 652 * errors, when compiling w/ different compiler, then used to compile 653 * original code (e.g., GCC to compile kernel, Clang to use generated 654 * C header from BTF). As it is built-in, it should be already defined 655 * properly internally in compiler. 656 */ 657 if (t->name_off == 0) 658 return false; 659 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 660 } 661 662 /* 663 * Emit C-syntax definitions of types from chains of BTF types. 664 * 665 * High-level handling of determining necessary forward declarations are handled 666 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 667 * declarations/definitions in C syntax are handled by a combo of 668 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 669 * corresponding btf_dump_emit_*_{def,fwd}() functions. 670 * 671 * We also keep track of "containing struct/union type ID" to determine when 672 * we reference it from inside and thus can avoid emitting unnecessary forward 673 * declaration. 674 * 675 * This algorithm is designed in such a way, that even if some error occurs 676 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 677 * that doesn't comply to C rules completely), algorithm will try to proceed 678 * and produce as much meaningful output as possible. 679 */ 680 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 681 { 682 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 683 bool top_level_def = cont_id == 0; 684 const struct btf_type *t; 685 __u16 kind; 686 687 if (tstate->emit_state == EMITTED) 688 return; 689 690 t = btf__type_by_id(d->btf, id); 691 kind = btf_kind(t); 692 693 if (tstate->emit_state == EMITTING) { 694 if (tstate->fwd_emitted) 695 return; 696 697 switch (kind) { 698 case BTF_KIND_STRUCT: 699 case BTF_KIND_UNION: 700 /* 701 * if we are referencing a struct/union that we are 702 * part of - then no need for fwd declaration 703 */ 704 if (id == cont_id) 705 return; 706 if (t->name_off == 0) { 707 pr_warn("anonymous struct/union loop, id:[%u]\n", 708 id); 709 return; 710 } 711 btf_dump_emit_struct_fwd(d, id, t); 712 btf_dump_printf(d, ";\n\n"); 713 tstate->fwd_emitted = 1; 714 break; 715 case BTF_KIND_TYPEDEF: 716 /* 717 * for typedef fwd_emitted means typedef definition 718 * was emitted, but it can be used only for "weak" 719 * references through pointer only, not for embedding 720 */ 721 if (!btf_dump_is_blacklisted(d, id)) { 722 btf_dump_emit_typedef_def(d, id, t, 0); 723 btf_dump_printf(d, ";\n\n"); 724 } 725 tstate->fwd_emitted = 1; 726 break; 727 default: 728 break; 729 } 730 731 return; 732 } 733 734 switch (kind) { 735 case BTF_KIND_INT: 736 /* Emit type alias definitions if necessary */ 737 btf_dump_emit_missing_aliases(d, id, t); 738 739 tstate->emit_state = EMITTED; 740 break; 741 case BTF_KIND_ENUM: 742 if (top_level_def) { 743 btf_dump_emit_enum_def(d, id, t, 0); 744 btf_dump_printf(d, ";\n\n"); 745 } 746 tstate->emit_state = EMITTED; 747 break; 748 case BTF_KIND_PTR: 749 case BTF_KIND_VOLATILE: 750 case BTF_KIND_CONST: 751 case BTF_KIND_RESTRICT: 752 case BTF_KIND_TYPE_TAG: 753 btf_dump_emit_type(d, t->type, cont_id); 754 break; 755 case BTF_KIND_ARRAY: 756 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 757 break; 758 case BTF_KIND_FWD: 759 btf_dump_emit_fwd_def(d, id, t); 760 btf_dump_printf(d, ";\n\n"); 761 tstate->emit_state = EMITTED; 762 break; 763 case BTF_KIND_TYPEDEF: 764 tstate->emit_state = EMITTING; 765 btf_dump_emit_type(d, t->type, id); 766 /* 767 * typedef can server as both definition and forward 768 * declaration; at this stage someone depends on 769 * typedef as a forward declaration (refers to it 770 * through pointer), so unless we already did it, 771 * emit typedef as a forward declaration 772 */ 773 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 774 btf_dump_emit_typedef_def(d, id, t, 0); 775 btf_dump_printf(d, ";\n\n"); 776 } 777 tstate->emit_state = EMITTED; 778 break; 779 case BTF_KIND_STRUCT: 780 case BTF_KIND_UNION: 781 tstate->emit_state = EMITTING; 782 /* if it's a top-level struct/union definition or struct/union 783 * is anonymous, then in C we'll be emitting all fields and 784 * their types (as opposed to just `struct X`), so we need to 785 * make sure that all types, referenced from struct/union 786 * members have necessary forward-declarations, where 787 * applicable 788 */ 789 if (top_level_def || t->name_off == 0) { 790 const struct btf_member *m = btf_members(t); 791 __u16 vlen = btf_vlen(t); 792 int i, new_cont_id; 793 794 new_cont_id = t->name_off == 0 ? cont_id : id; 795 for (i = 0; i < vlen; i++, m++) 796 btf_dump_emit_type(d, m->type, new_cont_id); 797 } else if (!tstate->fwd_emitted && id != cont_id) { 798 btf_dump_emit_struct_fwd(d, id, t); 799 btf_dump_printf(d, ";\n\n"); 800 tstate->fwd_emitted = 1; 801 } 802 803 if (top_level_def) { 804 btf_dump_emit_struct_def(d, id, t, 0); 805 btf_dump_printf(d, ";\n\n"); 806 tstate->emit_state = EMITTED; 807 } else { 808 tstate->emit_state = NOT_EMITTED; 809 } 810 break; 811 case BTF_KIND_FUNC_PROTO: { 812 const struct btf_param *p = btf_params(t); 813 __u16 n = btf_vlen(t); 814 int i; 815 816 btf_dump_emit_type(d, t->type, cont_id); 817 for (i = 0; i < n; i++, p++) 818 btf_dump_emit_type(d, p->type, cont_id); 819 820 break; 821 } 822 default: 823 break; 824 } 825 } 826 827 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 828 const struct btf_type *t) 829 { 830 const struct btf_member *m; 831 int align, i, bit_sz; 832 __u16 vlen; 833 834 align = btf__align_of(btf, id); 835 /* size of a non-packed struct has to be a multiple of its alignment*/ 836 if (align && t->size % align) 837 return true; 838 839 m = btf_members(t); 840 vlen = btf_vlen(t); 841 /* all non-bitfield fields have to be naturally aligned */ 842 for (i = 0; i < vlen; i++, m++) { 843 align = btf__align_of(btf, m->type); 844 bit_sz = btf_member_bitfield_size(t, i); 845 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 846 return true; 847 } 848 849 /* 850 * if original struct was marked as packed, but its layout is 851 * naturally aligned, we'll detect that it's not packed 852 */ 853 return false; 854 } 855 856 static int chip_away_bits(int total, int at_most) 857 { 858 return total % at_most ? : at_most; 859 } 860 861 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 862 int cur_off, int m_off, int m_bit_sz, 863 int align, int lvl) 864 { 865 int off_diff = m_off - cur_off; 866 int ptr_bits = d->ptr_sz * 8; 867 868 if (off_diff <= 0) 869 /* no gap */ 870 return; 871 if (m_bit_sz == 0 && off_diff < align * 8) 872 /* natural padding will take care of a gap */ 873 return; 874 875 while (off_diff > 0) { 876 const char *pad_type; 877 int pad_bits; 878 879 if (ptr_bits > 32 && off_diff > 32) { 880 pad_type = "long"; 881 pad_bits = chip_away_bits(off_diff, ptr_bits); 882 } else if (off_diff > 16) { 883 pad_type = "int"; 884 pad_bits = chip_away_bits(off_diff, 32); 885 } else if (off_diff > 8) { 886 pad_type = "short"; 887 pad_bits = chip_away_bits(off_diff, 16); 888 } else { 889 pad_type = "char"; 890 pad_bits = chip_away_bits(off_diff, 8); 891 } 892 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 893 off_diff -= pad_bits; 894 } 895 } 896 897 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 898 const struct btf_type *t) 899 { 900 btf_dump_printf(d, "%s%s%s", 901 btf_is_struct(t) ? "struct" : "union", 902 t->name_off ? " " : "", 903 btf_dump_type_name(d, id)); 904 } 905 906 static void btf_dump_emit_struct_def(struct btf_dump *d, 907 __u32 id, 908 const struct btf_type *t, 909 int lvl) 910 { 911 const struct btf_member *m = btf_members(t); 912 bool is_struct = btf_is_struct(t); 913 int align, i, packed, off = 0; 914 __u16 vlen = btf_vlen(t); 915 916 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 917 918 btf_dump_printf(d, "%s%s%s {", 919 is_struct ? "struct" : "union", 920 t->name_off ? " " : "", 921 btf_dump_type_name(d, id)); 922 923 for (i = 0; i < vlen; i++, m++) { 924 const char *fname; 925 int m_off, m_sz; 926 927 fname = btf_name_of(d, m->name_off); 928 m_sz = btf_member_bitfield_size(t, i); 929 m_off = btf_member_bit_offset(t, i); 930 align = packed ? 1 : btf__align_of(d->btf, m->type); 931 932 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); 933 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 934 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 935 936 if (m_sz) { 937 btf_dump_printf(d, ": %d", m_sz); 938 off = m_off + m_sz; 939 } else { 940 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 941 off = m_off + m_sz * 8; 942 } 943 btf_dump_printf(d, ";"); 944 } 945 946 /* pad at the end, if necessary */ 947 if (is_struct) { 948 align = packed ? 1 : btf__align_of(d->btf, id); 949 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, 950 lvl + 1); 951 } 952 953 if (vlen) 954 btf_dump_printf(d, "\n"); 955 btf_dump_printf(d, "%s}", pfx(lvl)); 956 if (packed) 957 btf_dump_printf(d, " __attribute__((packed))"); 958 } 959 960 static const char *missing_base_types[][2] = { 961 /* 962 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 963 * SIMD intrinsics. Alias them to standard base types. 964 */ 965 { "__Poly8_t", "unsigned char" }, 966 { "__Poly16_t", "unsigned short" }, 967 { "__Poly64_t", "unsigned long long" }, 968 { "__Poly128_t", "unsigned __int128" }, 969 }; 970 971 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 972 const struct btf_type *t) 973 { 974 const char *name = btf_dump_type_name(d, id); 975 int i; 976 977 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 978 if (strcmp(name, missing_base_types[i][0]) == 0) { 979 btf_dump_printf(d, "typedef %s %s;\n\n", 980 missing_base_types[i][1], name); 981 break; 982 } 983 } 984 } 985 986 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 987 const struct btf_type *t) 988 { 989 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 990 } 991 992 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 993 const struct btf_type *t, 994 int lvl) 995 { 996 const struct btf_enum *v = btf_enum(t); 997 __u16 vlen = btf_vlen(t); 998 const char *name; 999 size_t dup_cnt; 1000 int i; 1001 1002 btf_dump_printf(d, "enum%s%s", 1003 t->name_off ? " " : "", 1004 btf_dump_type_name(d, id)); 1005 1006 if (vlen) { 1007 btf_dump_printf(d, " {"); 1008 for (i = 0; i < vlen; i++, v++) { 1009 name = btf_name_of(d, v->name_off); 1010 /* enumerators share namespace with typedef idents */ 1011 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1012 if (dup_cnt > 1) { 1013 btf_dump_printf(d, "\n%s%s___%zu = %u,", 1014 pfx(lvl + 1), name, dup_cnt, 1015 (__u32)v->val); 1016 } else { 1017 btf_dump_printf(d, "\n%s%s = %u,", 1018 pfx(lvl + 1), name, 1019 (__u32)v->val); 1020 } 1021 } 1022 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1023 } 1024 } 1025 1026 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1027 const struct btf_type *t) 1028 { 1029 const char *name = btf_dump_type_name(d, id); 1030 1031 if (btf_kflag(t)) 1032 btf_dump_printf(d, "union %s", name); 1033 else 1034 btf_dump_printf(d, "struct %s", name); 1035 } 1036 1037 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1038 const struct btf_type *t, int lvl) 1039 { 1040 const char *name = btf_dump_ident_name(d, id); 1041 1042 /* 1043 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1044 * pointing to VOID. This generates warnings from btf_dump() and 1045 * results in uncompilable header file, so we are fixing it up here 1046 * with valid typedef into __builtin_va_list. 1047 */ 1048 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1049 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1050 return; 1051 } 1052 1053 btf_dump_printf(d, "typedef "); 1054 btf_dump_emit_type_decl(d, t->type, name, lvl); 1055 } 1056 1057 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1058 { 1059 __u32 *new_stack; 1060 size_t new_cap; 1061 1062 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1063 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1064 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1065 if (!new_stack) 1066 return -ENOMEM; 1067 d->decl_stack = new_stack; 1068 d->decl_stack_cap = new_cap; 1069 } 1070 1071 d->decl_stack[d->decl_stack_cnt++] = id; 1072 1073 return 0; 1074 } 1075 1076 /* 1077 * Emit type declaration (e.g., field type declaration in a struct or argument 1078 * declaration in function prototype) in correct C syntax. 1079 * 1080 * For most types it's trivial, but there are few quirky type declaration 1081 * cases worth mentioning: 1082 * - function prototypes (especially nesting of function prototypes); 1083 * - arrays; 1084 * - const/volatile/restrict for pointers vs other types. 1085 * 1086 * For a good discussion of *PARSING* C syntax (as a human), see 1087 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1088 * Ch.3 "Unscrambling Declarations in C". 1089 * 1090 * It won't help with BTF to C conversion much, though, as it's an opposite 1091 * problem. So we came up with this algorithm in reverse to van der Linden's 1092 * parsing algorithm. It goes from structured BTF representation of type 1093 * declaration to a valid compilable C syntax. 1094 * 1095 * For instance, consider this C typedef: 1096 * typedef const int * const * arr[10] arr_t; 1097 * It will be represented in BTF with this chain of BTF types: 1098 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1099 * 1100 * Notice how [const] modifier always goes before type it modifies in BTF type 1101 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1102 * the right of pointers, but to the left of other types. There are also other 1103 * quirks, like function pointers, arrays of them, functions returning other 1104 * functions, etc. 1105 * 1106 * We handle that by pushing all the types to a stack, until we hit "terminal" 1107 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1108 * top of a stack, modifiers are handled differently. Array/function pointers 1109 * have also wildly different syntax and how nesting of them are done. See 1110 * code for authoritative definition. 1111 * 1112 * To avoid allocating new stack for each independent chain of BTF types, we 1113 * share one bigger stack, with each chain working only on its own local view 1114 * of a stack frame. Some care is required to "pop" stack frames after 1115 * processing type declaration chain. 1116 */ 1117 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1118 const struct btf_dump_emit_type_decl_opts *opts) 1119 { 1120 const char *fname; 1121 int lvl, err; 1122 1123 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1124 return libbpf_err(-EINVAL); 1125 1126 err = btf_dump_resize(d); 1127 if (err) 1128 return libbpf_err(err); 1129 1130 fname = OPTS_GET(opts, field_name, ""); 1131 lvl = OPTS_GET(opts, indent_level, 0); 1132 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1133 btf_dump_emit_type_decl(d, id, fname, lvl); 1134 d->strip_mods = false; 1135 return 0; 1136 } 1137 1138 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1139 const char *fname, int lvl) 1140 { 1141 struct id_stack decl_stack; 1142 const struct btf_type *t; 1143 int err, stack_start; 1144 1145 stack_start = d->decl_stack_cnt; 1146 for (;;) { 1147 t = btf__type_by_id(d->btf, id); 1148 if (d->strip_mods && btf_is_mod(t)) 1149 goto skip_mod; 1150 1151 err = btf_dump_push_decl_stack_id(d, id); 1152 if (err < 0) { 1153 /* 1154 * if we don't have enough memory for entire type decl 1155 * chain, restore stack, emit warning, and try to 1156 * proceed nevertheless 1157 */ 1158 pr_warn("not enough memory for decl stack:%d", err); 1159 d->decl_stack_cnt = stack_start; 1160 return; 1161 } 1162 skip_mod: 1163 /* VOID */ 1164 if (id == 0) 1165 break; 1166 1167 switch (btf_kind(t)) { 1168 case BTF_KIND_PTR: 1169 case BTF_KIND_VOLATILE: 1170 case BTF_KIND_CONST: 1171 case BTF_KIND_RESTRICT: 1172 case BTF_KIND_FUNC_PROTO: 1173 case BTF_KIND_TYPE_TAG: 1174 id = t->type; 1175 break; 1176 case BTF_KIND_ARRAY: 1177 id = btf_array(t)->type; 1178 break; 1179 case BTF_KIND_INT: 1180 case BTF_KIND_ENUM: 1181 case BTF_KIND_FWD: 1182 case BTF_KIND_STRUCT: 1183 case BTF_KIND_UNION: 1184 case BTF_KIND_TYPEDEF: 1185 case BTF_KIND_FLOAT: 1186 goto done; 1187 default: 1188 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1189 btf_kind(t), id); 1190 goto done; 1191 } 1192 } 1193 done: 1194 /* 1195 * We might be inside a chain of declarations (e.g., array of function 1196 * pointers returning anonymous (so inlined) structs, having another 1197 * array field). Each of those needs its own "stack frame" to handle 1198 * emitting of declarations. Those stack frames are non-overlapping 1199 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1200 * handle this set of nested stacks, we create a view corresponding to 1201 * our own "stack frame" and work with it as an independent stack. 1202 * We'll need to clean up after emit_type_chain() returns, though. 1203 */ 1204 decl_stack.ids = d->decl_stack + stack_start; 1205 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1206 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1207 /* 1208 * emit_type_chain() guarantees that it will pop its entire decl_stack 1209 * frame before returning. But it works with a read-only view into 1210 * decl_stack, so it doesn't actually pop anything from the 1211 * perspective of shared btf_dump->decl_stack, per se. We need to 1212 * reset decl_stack state to how it was before us to avoid it growing 1213 * all the time. 1214 */ 1215 d->decl_stack_cnt = stack_start; 1216 } 1217 1218 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1219 { 1220 const struct btf_type *t; 1221 __u32 id; 1222 1223 while (decl_stack->cnt) { 1224 id = decl_stack->ids[decl_stack->cnt - 1]; 1225 t = btf__type_by_id(d->btf, id); 1226 1227 switch (btf_kind(t)) { 1228 case BTF_KIND_VOLATILE: 1229 btf_dump_printf(d, "volatile "); 1230 break; 1231 case BTF_KIND_CONST: 1232 btf_dump_printf(d, "const "); 1233 break; 1234 case BTF_KIND_RESTRICT: 1235 btf_dump_printf(d, "restrict "); 1236 break; 1237 default: 1238 return; 1239 } 1240 decl_stack->cnt--; 1241 } 1242 } 1243 1244 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1245 { 1246 const struct btf_type *t; 1247 __u32 id; 1248 1249 while (decl_stack->cnt) { 1250 id = decl_stack->ids[decl_stack->cnt - 1]; 1251 t = btf__type_by_id(d->btf, id); 1252 if (!btf_is_mod(t)) 1253 return; 1254 decl_stack->cnt--; 1255 } 1256 } 1257 1258 static void btf_dump_emit_name(const struct btf_dump *d, 1259 const char *name, bool last_was_ptr) 1260 { 1261 bool separate = name[0] && !last_was_ptr; 1262 1263 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1264 } 1265 1266 static void btf_dump_emit_type_chain(struct btf_dump *d, 1267 struct id_stack *decls, 1268 const char *fname, int lvl) 1269 { 1270 /* 1271 * last_was_ptr is used to determine if we need to separate pointer 1272 * asterisk (*) from previous part of type signature with space, so 1273 * that we get `int ***`, instead of `int * * *`. We default to true 1274 * for cases where we have single pointer in a chain. E.g., in ptr -> 1275 * func_proto case. func_proto will start a new emit_type_chain call 1276 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1277 * don't want to prepend space for that last pointer. 1278 */ 1279 bool last_was_ptr = true; 1280 const struct btf_type *t; 1281 const char *name; 1282 __u16 kind; 1283 __u32 id; 1284 1285 while (decls->cnt) { 1286 id = decls->ids[--decls->cnt]; 1287 if (id == 0) { 1288 /* VOID is a special snowflake */ 1289 btf_dump_emit_mods(d, decls); 1290 btf_dump_printf(d, "void"); 1291 last_was_ptr = false; 1292 continue; 1293 } 1294 1295 t = btf__type_by_id(d->btf, id); 1296 kind = btf_kind(t); 1297 1298 switch (kind) { 1299 case BTF_KIND_INT: 1300 case BTF_KIND_FLOAT: 1301 btf_dump_emit_mods(d, decls); 1302 name = btf_name_of(d, t->name_off); 1303 btf_dump_printf(d, "%s", name); 1304 break; 1305 case BTF_KIND_STRUCT: 1306 case BTF_KIND_UNION: 1307 btf_dump_emit_mods(d, decls); 1308 /* inline anonymous struct/union */ 1309 if (t->name_off == 0 && !d->skip_anon_defs) 1310 btf_dump_emit_struct_def(d, id, t, lvl); 1311 else 1312 btf_dump_emit_struct_fwd(d, id, t); 1313 break; 1314 case BTF_KIND_ENUM: 1315 btf_dump_emit_mods(d, decls); 1316 /* inline anonymous enum */ 1317 if (t->name_off == 0 && !d->skip_anon_defs) 1318 btf_dump_emit_enum_def(d, id, t, lvl); 1319 else 1320 btf_dump_emit_enum_fwd(d, id, t); 1321 break; 1322 case BTF_KIND_FWD: 1323 btf_dump_emit_mods(d, decls); 1324 btf_dump_emit_fwd_def(d, id, t); 1325 break; 1326 case BTF_KIND_TYPEDEF: 1327 btf_dump_emit_mods(d, decls); 1328 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1329 break; 1330 case BTF_KIND_PTR: 1331 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1332 break; 1333 case BTF_KIND_VOLATILE: 1334 btf_dump_printf(d, " volatile"); 1335 break; 1336 case BTF_KIND_CONST: 1337 btf_dump_printf(d, " const"); 1338 break; 1339 case BTF_KIND_RESTRICT: 1340 btf_dump_printf(d, " restrict"); 1341 break; 1342 case BTF_KIND_TYPE_TAG: 1343 btf_dump_emit_mods(d, decls); 1344 name = btf_name_of(d, t->name_off); 1345 btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name); 1346 break; 1347 case BTF_KIND_ARRAY: { 1348 const struct btf_array *a = btf_array(t); 1349 const struct btf_type *next_t; 1350 __u32 next_id; 1351 bool multidim; 1352 /* 1353 * GCC has a bug 1354 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1355 * which causes it to emit extra const/volatile 1356 * modifiers for an array, if array's element type has 1357 * const/volatile modifiers. Clang doesn't do that. 1358 * In general, it doesn't seem very meaningful to have 1359 * a const/volatile modifier for array, so we are 1360 * going to silently skip them here. 1361 */ 1362 btf_dump_drop_mods(d, decls); 1363 1364 if (decls->cnt == 0) { 1365 btf_dump_emit_name(d, fname, last_was_ptr); 1366 btf_dump_printf(d, "[%u]", a->nelems); 1367 return; 1368 } 1369 1370 next_id = decls->ids[decls->cnt - 1]; 1371 next_t = btf__type_by_id(d->btf, next_id); 1372 multidim = btf_is_array(next_t); 1373 /* we need space if we have named non-pointer */ 1374 if (fname[0] && !last_was_ptr) 1375 btf_dump_printf(d, " "); 1376 /* no parentheses for multi-dimensional array */ 1377 if (!multidim) 1378 btf_dump_printf(d, "("); 1379 btf_dump_emit_type_chain(d, decls, fname, lvl); 1380 if (!multidim) 1381 btf_dump_printf(d, ")"); 1382 btf_dump_printf(d, "[%u]", a->nelems); 1383 return; 1384 } 1385 case BTF_KIND_FUNC_PROTO: { 1386 const struct btf_param *p = btf_params(t); 1387 __u16 vlen = btf_vlen(t); 1388 int i; 1389 1390 /* 1391 * GCC emits extra volatile qualifier for 1392 * __attribute__((noreturn)) function pointers. Clang 1393 * doesn't do it. It's a GCC quirk for backwards 1394 * compatibility with code written for GCC <2.5. So, 1395 * similarly to extra qualifiers for array, just drop 1396 * them, instead of handling them. 1397 */ 1398 btf_dump_drop_mods(d, decls); 1399 if (decls->cnt) { 1400 btf_dump_printf(d, " ("); 1401 btf_dump_emit_type_chain(d, decls, fname, lvl); 1402 btf_dump_printf(d, ")"); 1403 } else { 1404 btf_dump_emit_name(d, fname, last_was_ptr); 1405 } 1406 btf_dump_printf(d, "("); 1407 /* 1408 * Clang for BPF target generates func_proto with no 1409 * args as a func_proto with a single void arg (e.g., 1410 * `int (*f)(void)` vs just `int (*f)()`). We are 1411 * going to pretend there are no args for such case. 1412 */ 1413 if (vlen == 1 && p->type == 0) { 1414 btf_dump_printf(d, ")"); 1415 return; 1416 } 1417 1418 for (i = 0; i < vlen; i++, p++) { 1419 if (i > 0) 1420 btf_dump_printf(d, ", "); 1421 1422 /* last arg of type void is vararg */ 1423 if (i == vlen - 1 && p->type == 0) { 1424 btf_dump_printf(d, "..."); 1425 break; 1426 } 1427 1428 name = btf_name_of(d, p->name_off); 1429 btf_dump_emit_type_decl(d, p->type, name, lvl); 1430 } 1431 1432 btf_dump_printf(d, ")"); 1433 return; 1434 } 1435 default: 1436 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1437 kind, id); 1438 return; 1439 } 1440 1441 last_was_ptr = kind == BTF_KIND_PTR; 1442 } 1443 1444 btf_dump_emit_name(d, fname, last_was_ptr); 1445 } 1446 1447 /* show type name as (type_name) */ 1448 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1449 bool top_level) 1450 { 1451 const struct btf_type *t; 1452 1453 /* for array members, we don't bother emitting type name for each 1454 * member to avoid the redundancy of 1455 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1456 */ 1457 if (d->typed_dump->is_array_member) 1458 return; 1459 1460 /* avoid type name specification for variable/section; it will be done 1461 * for the associated variable value(s). 1462 */ 1463 t = btf__type_by_id(d->btf, id); 1464 if (btf_is_var(t) || btf_is_datasec(t)) 1465 return; 1466 1467 if (top_level) 1468 btf_dump_printf(d, "("); 1469 1470 d->skip_anon_defs = true; 1471 d->strip_mods = true; 1472 btf_dump_emit_type_decl(d, id, "", 0); 1473 d->strip_mods = false; 1474 d->skip_anon_defs = false; 1475 1476 if (top_level) 1477 btf_dump_printf(d, ")"); 1478 } 1479 1480 /* return number of duplicates (occurrences) of a given name */ 1481 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1482 const char *orig_name) 1483 { 1484 size_t dup_cnt = 0; 1485 1486 hashmap__find(name_map, orig_name, (void **)&dup_cnt); 1487 dup_cnt++; 1488 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); 1489 1490 return dup_cnt; 1491 } 1492 1493 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1494 struct hashmap *name_map) 1495 { 1496 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1497 const struct btf_type *t = btf__type_by_id(d->btf, id); 1498 const char *orig_name = btf_name_of(d, t->name_off); 1499 const char **cached_name = &d->cached_names[id]; 1500 size_t dup_cnt; 1501 1502 if (t->name_off == 0) 1503 return ""; 1504 1505 if (s->name_resolved) 1506 return *cached_name ? *cached_name : orig_name; 1507 1508 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) { 1509 s->name_resolved = 1; 1510 return orig_name; 1511 } 1512 1513 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1514 if (dup_cnt > 1) { 1515 const size_t max_len = 256; 1516 char new_name[max_len]; 1517 1518 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1519 *cached_name = strdup(new_name); 1520 } 1521 1522 s->name_resolved = 1; 1523 return *cached_name ? *cached_name : orig_name; 1524 } 1525 1526 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1527 { 1528 return btf_dump_resolve_name(d, id, d->type_names); 1529 } 1530 1531 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1532 { 1533 return btf_dump_resolve_name(d, id, d->ident_names); 1534 } 1535 1536 static int btf_dump_dump_type_data(struct btf_dump *d, 1537 const char *fname, 1538 const struct btf_type *t, 1539 __u32 id, 1540 const void *data, 1541 __u8 bits_offset, 1542 __u8 bit_sz); 1543 1544 static const char *btf_dump_data_newline(struct btf_dump *d) 1545 { 1546 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1547 } 1548 1549 static const char *btf_dump_data_delim(struct btf_dump *d) 1550 { 1551 return d->typed_dump->depth == 0 ? "" : ","; 1552 } 1553 1554 static void btf_dump_data_pfx(struct btf_dump *d) 1555 { 1556 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1557 1558 if (d->typed_dump->compact) 1559 return; 1560 1561 for (i = 0; i < lvl; i++) 1562 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1563 } 1564 1565 /* A macro is used here as btf_type_value[s]() appends format specifiers 1566 * to the format specifier passed in; these do the work of appending 1567 * delimiters etc while the caller simply has to specify the type values 1568 * in the format specifier + value(s). 1569 */ 1570 #define btf_dump_type_values(d, fmt, ...) \ 1571 btf_dump_printf(d, fmt "%s%s", \ 1572 ##__VA_ARGS__, \ 1573 btf_dump_data_delim(d), \ 1574 btf_dump_data_newline(d)) 1575 1576 static int btf_dump_unsupported_data(struct btf_dump *d, 1577 const struct btf_type *t, 1578 __u32 id) 1579 { 1580 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1581 return -ENOTSUP; 1582 } 1583 1584 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1585 const struct btf_type *t, 1586 const void *data, 1587 __u8 bits_offset, 1588 __u8 bit_sz, 1589 __u64 *value) 1590 { 1591 __u16 left_shift_bits, right_shift_bits; 1592 const __u8 *bytes = data; 1593 __u8 nr_copy_bits; 1594 __u64 num = 0; 1595 int i; 1596 1597 /* Maximum supported bitfield size is 64 bits */ 1598 if (t->size > 8) { 1599 pr_warn("unexpected bitfield size %d\n", t->size); 1600 return -EINVAL; 1601 } 1602 1603 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1604 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1605 */ 1606 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1607 for (i = t->size - 1; i >= 0; i--) 1608 num = num * 256 + bytes[i]; 1609 nr_copy_bits = bit_sz + bits_offset; 1610 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1611 for (i = 0; i < t->size; i++) 1612 num = num * 256 + bytes[i]; 1613 nr_copy_bits = t->size * 8 - bits_offset; 1614 #else 1615 # error "Unrecognized __BYTE_ORDER__" 1616 #endif 1617 left_shift_bits = 64 - nr_copy_bits; 1618 right_shift_bits = 64 - bit_sz; 1619 1620 *value = (num << left_shift_bits) >> right_shift_bits; 1621 1622 return 0; 1623 } 1624 1625 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1626 const struct btf_type *t, 1627 const void *data, 1628 __u8 bits_offset, 1629 __u8 bit_sz) 1630 { 1631 __u64 check_num; 1632 int err; 1633 1634 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1635 if (err) 1636 return err; 1637 if (check_num == 0) 1638 return -ENODATA; 1639 return 0; 1640 } 1641 1642 static int btf_dump_bitfield_data(struct btf_dump *d, 1643 const struct btf_type *t, 1644 const void *data, 1645 __u8 bits_offset, 1646 __u8 bit_sz) 1647 { 1648 __u64 print_num; 1649 int err; 1650 1651 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1652 if (err) 1653 return err; 1654 1655 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1656 1657 return 0; 1658 } 1659 1660 /* ints, floats and ptrs */ 1661 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1662 const struct btf_type *t, 1663 __u32 id, 1664 const void *data) 1665 { 1666 static __u8 bytecmp[16] = {}; 1667 int nr_bytes; 1668 1669 /* For pointer types, pointer size is not defined on a per-type basis. 1670 * On dump creation however, we store the pointer size. 1671 */ 1672 if (btf_kind(t) == BTF_KIND_PTR) 1673 nr_bytes = d->ptr_sz; 1674 else 1675 nr_bytes = t->size; 1676 1677 if (nr_bytes < 1 || nr_bytes > 16) { 1678 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1679 return -EINVAL; 1680 } 1681 1682 if (memcmp(data, bytecmp, nr_bytes) == 0) 1683 return -ENODATA; 1684 return 0; 1685 } 1686 1687 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id, 1688 const void *data) 1689 { 1690 int alignment = btf__align_of(btf, type_id); 1691 1692 if (alignment == 0) 1693 return false; 1694 1695 return ((uintptr_t)data) % alignment == 0; 1696 } 1697 1698 static int btf_dump_int_data(struct btf_dump *d, 1699 const struct btf_type *t, 1700 __u32 type_id, 1701 const void *data, 1702 __u8 bits_offset) 1703 { 1704 __u8 encoding = btf_int_encoding(t); 1705 bool sign = encoding & BTF_INT_SIGNED; 1706 char buf[16] __attribute__((aligned(16))); 1707 int sz = t->size; 1708 1709 if (sz == 0 || sz > sizeof(buf)) { 1710 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1711 return -EINVAL; 1712 } 1713 1714 /* handle packed int data - accesses of integers not aligned on 1715 * int boundaries can cause problems on some platforms. 1716 */ 1717 if (!ptr_is_aligned(d->btf, type_id, data)) { 1718 memcpy(buf, data, sz); 1719 data = buf; 1720 } 1721 1722 switch (sz) { 1723 case 16: { 1724 const __u64 *ints = data; 1725 __u64 lsi, msi; 1726 1727 /* avoid use of __int128 as some 32-bit platforms do not 1728 * support it. 1729 */ 1730 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1731 lsi = ints[0]; 1732 msi = ints[1]; 1733 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1734 lsi = ints[1]; 1735 msi = ints[0]; 1736 #else 1737 # error "Unrecognized __BYTE_ORDER__" 1738 #endif 1739 if (msi == 0) 1740 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1741 else 1742 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1743 (unsigned long long)lsi); 1744 break; 1745 } 1746 case 8: 1747 if (sign) 1748 btf_dump_type_values(d, "%lld", *(long long *)data); 1749 else 1750 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1751 break; 1752 case 4: 1753 if (sign) 1754 btf_dump_type_values(d, "%d", *(__s32 *)data); 1755 else 1756 btf_dump_type_values(d, "%u", *(__u32 *)data); 1757 break; 1758 case 2: 1759 if (sign) 1760 btf_dump_type_values(d, "%d", *(__s16 *)data); 1761 else 1762 btf_dump_type_values(d, "%u", *(__u16 *)data); 1763 break; 1764 case 1: 1765 if (d->typed_dump->is_array_char) { 1766 /* check for null terminator */ 1767 if (d->typed_dump->is_array_terminated) 1768 break; 1769 if (*(char *)data == '\0') { 1770 d->typed_dump->is_array_terminated = true; 1771 break; 1772 } 1773 if (isprint(*(char *)data)) { 1774 btf_dump_type_values(d, "'%c'", *(char *)data); 1775 break; 1776 } 1777 } 1778 if (sign) 1779 btf_dump_type_values(d, "%d", *(__s8 *)data); 1780 else 1781 btf_dump_type_values(d, "%u", *(__u8 *)data); 1782 break; 1783 default: 1784 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1785 return -EINVAL; 1786 } 1787 return 0; 1788 } 1789 1790 union float_data { 1791 long double ld; 1792 double d; 1793 float f; 1794 }; 1795 1796 static int btf_dump_float_data(struct btf_dump *d, 1797 const struct btf_type *t, 1798 __u32 type_id, 1799 const void *data) 1800 { 1801 const union float_data *flp = data; 1802 union float_data fl; 1803 int sz = t->size; 1804 1805 /* handle unaligned data; copy to local union */ 1806 if (!ptr_is_aligned(d->btf, type_id, data)) { 1807 memcpy(&fl, data, sz); 1808 flp = &fl; 1809 } 1810 1811 switch (sz) { 1812 case 16: 1813 btf_dump_type_values(d, "%Lf", flp->ld); 1814 break; 1815 case 8: 1816 btf_dump_type_values(d, "%lf", flp->d); 1817 break; 1818 case 4: 1819 btf_dump_type_values(d, "%f", flp->f); 1820 break; 1821 default: 1822 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1823 return -EINVAL; 1824 } 1825 return 0; 1826 } 1827 1828 static int btf_dump_var_data(struct btf_dump *d, 1829 const struct btf_type *v, 1830 __u32 id, 1831 const void *data) 1832 { 1833 enum btf_func_linkage linkage = btf_var(v)->linkage; 1834 const struct btf_type *t; 1835 const char *l; 1836 __u32 type_id; 1837 1838 switch (linkage) { 1839 case BTF_FUNC_STATIC: 1840 l = "static "; 1841 break; 1842 case BTF_FUNC_EXTERN: 1843 l = "extern "; 1844 break; 1845 case BTF_FUNC_GLOBAL: 1846 default: 1847 l = ""; 1848 break; 1849 } 1850 1851 /* format of output here is [linkage] [type] [varname] = (type)value, 1852 * for example "static int cpu_profile_flip = (int)1" 1853 */ 1854 btf_dump_printf(d, "%s", l); 1855 type_id = v->type; 1856 t = btf__type_by_id(d->btf, type_id); 1857 btf_dump_emit_type_cast(d, type_id, false); 1858 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 1859 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 1860 } 1861 1862 static int btf_dump_array_data(struct btf_dump *d, 1863 const struct btf_type *t, 1864 __u32 id, 1865 const void *data) 1866 { 1867 const struct btf_array *array = btf_array(t); 1868 const struct btf_type *elem_type; 1869 __u32 i, elem_type_id; 1870 __s64 elem_size; 1871 bool is_array_member; 1872 1873 elem_type_id = array->type; 1874 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 1875 elem_size = btf__resolve_size(d->btf, elem_type_id); 1876 if (elem_size <= 0) { 1877 pr_warn("unexpected elem size %zd for array type [%u]\n", 1878 (ssize_t)elem_size, id); 1879 return -EINVAL; 1880 } 1881 1882 if (btf_is_int(elem_type)) { 1883 /* 1884 * BTF_INT_CHAR encoding never seems to be set for 1885 * char arrays, so if size is 1 and element is 1886 * printable as a char, we'll do that. 1887 */ 1888 if (elem_size == 1) 1889 d->typed_dump->is_array_char = true; 1890 } 1891 1892 /* note that we increment depth before calling btf_dump_print() below; 1893 * this is intentional. btf_dump_data_newline() will not print a 1894 * newline for depth 0 (since this leaves us with trailing newlines 1895 * at the end of typed display), so depth is incremented first. 1896 * For similar reasons, we decrement depth before showing the closing 1897 * parenthesis. 1898 */ 1899 d->typed_dump->depth++; 1900 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 1901 1902 /* may be a multidimensional array, so store current "is array member" 1903 * status so we can restore it correctly later. 1904 */ 1905 is_array_member = d->typed_dump->is_array_member; 1906 d->typed_dump->is_array_member = true; 1907 for (i = 0; i < array->nelems; i++, data += elem_size) { 1908 if (d->typed_dump->is_array_terminated) 1909 break; 1910 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 1911 } 1912 d->typed_dump->is_array_member = is_array_member; 1913 d->typed_dump->depth--; 1914 btf_dump_data_pfx(d); 1915 btf_dump_type_values(d, "]"); 1916 1917 return 0; 1918 } 1919 1920 static int btf_dump_struct_data(struct btf_dump *d, 1921 const struct btf_type *t, 1922 __u32 id, 1923 const void *data) 1924 { 1925 const struct btf_member *m = btf_members(t); 1926 __u16 n = btf_vlen(t); 1927 int i, err; 1928 1929 /* note that we increment depth before calling btf_dump_print() below; 1930 * this is intentional. btf_dump_data_newline() will not print a 1931 * newline for depth 0 (since this leaves us with trailing newlines 1932 * at the end of typed display), so depth is incremented first. 1933 * For similar reasons, we decrement depth before showing the closing 1934 * parenthesis. 1935 */ 1936 d->typed_dump->depth++; 1937 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 1938 1939 for (i = 0; i < n; i++, m++) { 1940 const struct btf_type *mtype; 1941 const char *mname; 1942 __u32 moffset; 1943 __u8 bit_sz; 1944 1945 mtype = btf__type_by_id(d->btf, m->type); 1946 mname = btf_name_of(d, m->name_off); 1947 moffset = btf_member_bit_offset(t, i); 1948 1949 bit_sz = btf_member_bitfield_size(t, i); 1950 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 1951 moffset % 8, bit_sz); 1952 if (err < 0) 1953 return err; 1954 } 1955 d->typed_dump->depth--; 1956 btf_dump_data_pfx(d); 1957 btf_dump_type_values(d, "}"); 1958 return err; 1959 } 1960 1961 union ptr_data { 1962 unsigned int p; 1963 unsigned long long lp; 1964 }; 1965 1966 static int btf_dump_ptr_data(struct btf_dump *d, 1967 const struct btf_type *t, 1968 __u32 id, 1969 const void *data) 1970 { 1971 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) { 1972 btf_dump_type_values(d, "%p", *(void **)data); 1973 } else { 1974 union ptr_data pt; 1975 1976 memcpy(&pt, data, d->ptr_sz); 1977 if (d->ptr_sz == 4) 1978 btf_dump_type_values(d, "0x%x", pt.p); 1979 else 1980 btf_dump_type_values(d, "0x%llx", pt.lp); 1981 } 1982 return 0; 1983 } 1984 1985 static int btf_dump_get_enum_value(struct btf_dump *d, 1986 const struct btf_type *t, 1987 const void *data, 1988 __u32 id, 1989 __s64 *value) 1990 { 1991 /* handle unaligned enum value */ 1992 if (!ptr_is_aligned(d->btf, id, data)) { 1993 __u64 val; 1994 int err; 1995 1996 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 1997 if (err) 1998 return err; 1999 *value = (__s64)val; 2000 return 0; 2001 } 2002 2003 switch (t->size) { 2004 case 8: 2005 *value = *(__s64 *)data; 2006 return 0; 2007 case 4: 2008 *value = *(__s32 *)data; 2009 return 0; 2010 case 2: 2011 *value = *(__s16 *)data; 2012 return 0; 2013 case 1: 2014 *value = *(__s8 *)data; 2015 return 0; 2016 default: 2017 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 2018 return -EINVAL; 2019 } 2020 } 2021 2022 static int btf_dump_enum_data(struct btf_dump *d, 2023 const struct btf_type *t, 2024 __u32 id, 2025 const void *data) 2026 { 2027 const struct btf_enum *e; 2028 __s64 value; 2029 int i, err; 2030 2031 err = btf_dump_get_enum_value(d, t, data, id, &value); 2032 if (err) 2033 return err; 2034 2035 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 2036 if (value != e->val) 2037 continue; 2038 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2039 return 0; 2040 } 2041 2042 btf_dump_type_values(d, "%d", value); 2043 return 0; 2044 } 2045 2046 static int btf_dump_datasec_data(struct btf_dump *d, 2047 const struct btf_type *t, 2048 __u32 id, 2049 const void *data) 2050 { 2051 const struct btf_var_secinfo *vsi; 2052 const struct btf_type *var; 2053 __u32 i; 2054 int err; 2055 2056 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2057 2058 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2059 var = btf__type_by_id(d->btf, vsi->type); 2060 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2061 if (err < 0) 2062 return err; 2063 btf_dump_printf(d, ";"); 2064 } 2065 return 0; 2066 } 2067 2068 /* return size of type, or if base type overflows, return -E2BIG. */ 2069 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2070 const struct btf_type *t, 2071 __u32 id, 2072 const void *data, 2073 __u8 bits_offset) 2074 { 2075 __s64 size = btf__resolve_size(d->btf, id); 2076 2077 if (size < 0 || size >= INT_MAX) { 2078 pr_warn("unexpected size [%zu] for id [%u]\n", 2079 (size_t)size, id); 2080 return -EINVAL; 2081 } 2082 2083 /* Only do overflow checking for base types; we do not want to 2084 * avoid showing part of a struct, union or array, even if we 2085 * do not have enough data to show the full object. By 2086 * restricting overflow checking to base types we can ensure 2087 * that partial display succeeds, while avoiding overflowing 2088 * and using bogus data for display. 2089 */ 2090 t = skip_mods_and_typedefs(d->btf, id, NULL); 2091 if (!t) { 2092 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2093 id); 2094 return -EINVAL; 2095 } 2096 2097 switch (btf_kind(t)) { 2098 case BTF_KIND_INT: 2099 case BTF_KIND_FLOAT: 2100 case BTF_KIND_PTR: 2101 case BTF_KIND_ENUM: 2102 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2103 return -E2BIG; 2104 break; 2105 default: 2106 break; 2107 } 2108 return (int)size; 2109 } 2110 2111 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2112 const struct btf_type *t, 2113 __u32 id, 2114 const void *data, 2115 __u8 bits_offset, 2116 __u8 bit_sz) 2117 { 2118 __s64 value; 2119 int i, err; 2120 2121 /* toplevel exceptions; we show zero values if 2122 * - we ask for them (emit_zeros) 2123 * - if we are at top-level so we see "struct empty { }" 2124 * - or if we are an array member and the array is non-empty and 2125 * not a char array; we don't want to be in a situation where we 2126 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2127 * If the array contains zeroes only, or is a char array starting 2128 * with a '\0', the array-level check_zero() will prevent showing it; 2129 * we are concerned with determining zero value at the array member 2130 * level here. 2131 */ 2132 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2133 (d->typed_dump->is_array_member && 2134 !d->typed_dump->is_array_char)) 2135 return 0; 2136 2137 t = skip_mods_and_typedefs(d->btf, id, NULL); 2138 2139 switch (btf_kind(t)) { 2140 case BTF_KIND_INT: 2141 if (bit_sz) 2142 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2143 return btf_dump_base_type_check_zero(d, t, id, data); 2144 case BTF_KIND_FLOAT: 2145 case BTF_KIND_PTR: 2146 return btf_dump_base_type_check_zero(d, t, id, data); 2147 case BTF_KIND_ARRAY: { 2148 const struct btf_array *array = btf_array(t); 2149 const struct btf_type *elem_type; 2150 __u32 elem_type_id, elem_size; 2151 bool ischar; 2152 2153 elem_type_id = array->type; 2154 elem_size = btf__resolve_size(d->btf, elem_type_id); 2155 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2156 2157 ischar = btf_is_int(elem_type) && elem_size == 1; 2158 2159 /* check all elements; if _any_ element is nonzero, all 2160 * of array is displayed. We make an exception however 2161 * for char arrays where the first element is 0; these 2162 * are considered zeroed also, even if later elements are 2163 * non-zero because the string is terminated. 2164 */ 2165 for (i = 0; i < array->nelems; i++) { 2166 if (i == 0 && ischar && *(char *)data == 0) 2167 return -ENODATA; 2168 err = btf_dump_type_data_check_zero(d, elem_type, 2169 elem_type_id, 2170 data + 2171 (i * elem_size), 2172 bits_offset, 0); 2173 if (err != -ENODATA) 2174 return err; 2175 } 2176 return -ENODATA; 2177 } 2178 case BTF_KIND_STRUCT: 2179 case BTF_KIND_UNION: { 2180 const struct btf_member *m = btf_members(t); 2181 __u16 n = btf_vlen(t); 2182 2183 /* if any struct/union member is non-zero, the struct/union 2184 * is considered non-zero and dumped. 2185 */ 2186 for (i = 0; i < n; i++, m++) { 2187 const struct btf_type *mtype; 2188 __u32 moffset; 2189 2190 mtype = btf__type_by_id(d->btf, m->type); 2191 moffset = btf_member_bit_offset(t, i); 2192 2193 /* btf_int_bits() does not store member bitfield size; 2194 * bitfield size needs to be stored here so int display 2195 * of member can retrieve it. 2196 */ 2197 bit_sz = btf_member_bitfield_size(t, i); 2198 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2199 moffset % 8, bit_sz); 2200 if (err != ENODATA) 2201 return err; 2202 } 2203 return -ENODATA; 2204 } 2205 case BTF_KIND_ENUM: 2206 err = btf_dump_get_enum_value(d, t, data, id, &value); 2207 if (err) 2208 return err; 2209 if (value == 0) 2210 return -ENODATA; 2211 return 0; 2212 default: 2213 return 0; 2214 } 2215 } 2216 2217 /* returns size of data dumped, or error. */ 2218 static int btf_dump_dump_type_data(struct btf_dump *d, 2219 const char *fname, 2220 const struct btf_type *t, 2221 __u32 id, 2222 const void *data, 2223 __u8 bits_offset, 2224 __u8 bit_sz) 2225 { 2226 int size, err = 0; 2227 2228 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset); 2229 if (size < 0) 2230 return size; 2231 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2232 if (err) { 2233 /* zeroed data is expected and not an error, so simply skip 2234 * dumping such data. Record other errors however. 2235 */ 2236 if (err == -ENODATA) 2237 return size; 2238 return err; 2239 } 2240 btf_dump_data_pfx(d); 2241 2242 if (!d->typed_dump->skip_names) { 2243 if (fname && strlen(fname) > 0) 2244 btf_dump_printf(d, ".%s = ", fname); 2245 btf_dump_emit_type_cast(d, id, true); 2246 } 2247 2248 t = skip_mods_and_typedefs(d->btf, id, NULL); 2249 2250 switch (btf_kind(t)) { 2251 case BTF_KIND_UNKN: 2252 case BTF_KIND_FWD: 2253 case BTF_KIND_FUNC: 2254 case BTF_KIND_FUNC_PROTO: 2255 case BTF_KIND_DECL_TAG: 2256 err = btf_dump_unsupported_data(d, t, id); 2257 break; 2258 case BTF_KIND_INT: 2259 if (bit_sz) 2260 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2261 else 2262 err = btf_dump_int_data(d, t, id, data, bits_offset); 2263 break; 2264 case BTF_KIND_FLOAT: 2265 err = btf_dump_float_data(d, t, id, data); 2266 break; 2267 case BTF_KIND_PTR: 2268 err = btf_dump_ptr_data(d, t, id, data); 2269 break; 2270 case BTF_KIND_ARRAY: 2271 err = btf_dump_array_data(d, t, id, data); 2272 break; 2273 case BTF_KIND_STRUCT: 2274 case BTF_KIND_UNION: 2275 err = btf_dump_struct_data(d, t, id, data); 2276 break; 2277 case BTF_KIND_ENUM: 2278 /* handle bitfield and int enum values */ 2279 if (bit_sz) { 2280 __u64 print_num; 2281 __s64 enum_val; 2282 2283 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2284 &print_num); 2285 if (err) 2286 break; 2287 enum_val = (__s64)print_num; 2288 err = btf_dump_enum_data(d, t, id, &enum_val); 2289 } else 2290 err = btf_dump_enum_data(d, t, id, data); 2291 break; 2292 case BTF_KIND_VAR: 2293 err = btf_dump_var_data(d, t, id, data); 2294 break; 2295 case BTF_KIND_DATASEC: 2296 err = btf_dump_datasec_data(d, t, id, data); 2297 break; 2298 default: 2299 pr_warn("unexpected kind [%u] for id [%u]\n", 2300 BTF_INFO_KIND(t->info), id); 2301 return -EINVAL; 2302 } 2303 if (err < 0) 2304 return err; 2305 return size; 2306 } 2307 2308 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2309 const void *data, size_t data_sz, 2310 const struct btf_dump_type_data_opts *opts) 2311 { 2312 struct btf_dump_data typed_dump = {}; 2313 const struct btf_type *t; 2314 int ret; 2315 2316 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2317 return libbpf_err(-EINVAL); 2318 2319 t = btf__type_by_id(d->btf, id); 2320 if (!t) 2321 return libbpf_err(-ENOENT); 2322 2323 d->typed_dump = &typed_dump; 2324 d->typed_dump->data_end = data + data_sz; 2325 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2326 2327 /* default indent string is a tab */ 2328 if (!opts->indent_str) 2329 d->typed_dump->indent_str[0] = '\t'; 2330 else 2331 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str, 2332 sizeof(d->typed_dump->indent_str)); 2333 2334 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2335 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2336 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2337 2338 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2339 2340 d->typed_dump = NULL; 2341 2342 return libbpf_err(ret); 2343 } 2344