1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <errno.h> 14 #include <linux/err.h> 15 #include <linux/btf.h> 16 #include "btf.h" 17 #include "hashmap.h" 18 #include "libbpf.h" 19 #include "libbpf_internal.h" 20 21 /* make sure libbpf doesn't use kernel-only integer typedefs */ 22 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64 23 24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 26 27 static const char *pfx(int lvl) 28 { 29 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 30 } 31 32 enum btf_dump_type_order_state { 33 NOT_ORDERED, 34 ORDERING, 35 ORDERED, 36 }; 37 38 enum btf_dump_type_emit_state { 39 NOT_EMITTED, 40 EMITTING, 41 EMITTED, 42 }; 43 44 /* per-type auxiliary state */ 45 struct btf_dump_type_aux_state { 46 /* topological sorting state */ 47 enum btf_dump_type_order_state order_state: 2; 48 /* emitting state used to determine the need for forward declaration */ 49 enum btf_dump_type_emit_state emit_state: 2; 50 /* whether forward declaration was already emitted */ 51 __u8 fwd_emitted: 1; 52 /* whether unique non-duplicate name was already assigned */ 53 __u8 name_resolved: 1; 54 /* whether type is referenced from any other type */ 55 __u8 referenced: 1; 56 }; 57 58 struct btf_dump { 59 const struct btf *btf; 60 const struct btf_ext *btf_ext; 61 btf_dump_printf_fn_t printf_fn; 62 struct btf_dump_opts opts; 63 64 /* per-type auxiliary state */ 65 struct btf_dump_type_aux_state *type_states; 66 /* per-type optional cached unique name, must be freed, if present */ 67 const char **cached_names; 68 69 /* topo-sorted list of dependent type definitions */ 70 __u32 *emit_queue; 71 int emit_queue_cap; 72 int emit_queue_cnt; 73 74 /* 75 * stack of type declarations (e.g., chain of modifiers, arrays, 76 * funcs, etc) 77 */ 78 __u32 *decl_stack; 79 int decl_stack_cap; 80 int decl_stack_cnt; 81 82 /* maps struct/union/enum name to a number of name occurrences */ 83 struct hashmap *type_names; 84 /* 85 * maps typedef identifiers and enum value names to a number of such 86 * name occurrences 87 */ 88 struct hashmap *ident_names; 89 }; 90 91 static size_t str_hash_fn(const void *key, void *ctx) 92 { 93 const char *s = key; 94 size_t h = 0; 95 96 while (*s) { 97 h = h * 31 + *s; 98 s++; 99 } 100 return h; 101 } 102 103 static bool str_equal_fn(const void *a, const void *b, void *ctx) 104 { 105 return strcmp(a, b) == 0; 106 } 107 108 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 109 { 110 return btf__name_by_offset(d->btf, name_off); 111 } 112 113 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 114 { 115 va_list args; 116 117 va_start(args, fmt); 118 d->printf_fn(d->opts.ctx, fmt, args); 119 va_end(args); 120 } 121 122 static int btf_dump_mark_referenced(struct btf_dump *d); 123 124 struct btf_dump *btf_dump__new(const struct btf *btf, 125 const struct btf_ext *btf_ext, 126 const struct btf_dump_opts *opts, 127 btf_dump_printf_fn_t printf_fn) 128 { 129 struct btf_dump *d; 130 int err; 131 132 d = calloc(1, sizeof(struct btf_dump)); 133 if (!d) 134 return ERR_PTR(-ENOMEM); 135 136 d->btf = btf; 137 d->btf_ext = btf_ext; 138 d->printf_fn = printf_fn; 139 d->opts.ctx = opts ? opts->ctx : NULL; 140 141 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 142 if (IS_ERR(d->type_names)) { 143 err = PTR_ERR(d->type_names); 144 d->type_names = NULL; 145 goto err; 146 } 147 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 148 if (IS_ERR(d->ident_names)) { 149 err = PTR_ERR(d->ident_names); 150 d->ident_names = NULL; 151 goto err; 152 } 153 d->type_states = calloc(1 + btf__get_nr_types(d->btf), 154 sizeof(d->type_states[0])); 155 if (!d->type_states) { 156 err = -ENOMEM; 157 goto err; 158 } 159 d->cached_names = calloc(1 + btf__get_nr_types(d->btf), 160 sizeof(d->cached_names[0])); 161 if (!d->cached_names) { 162 err = -ENOMEM; 163 goto err; 164 } 165 166 /* VOID is special */ 167 d->type_states[0].order_state = ORDERED; 168 d->type_states[0].emit_state = EMITTED; 169 170 /* eagerly determine referenced types for anon enums */ 171 err = btf_dump_mark_referenced(d); 172 if (err) 173 goto err; 174 175 return d; 176 err: 177 btf_dump__free(d); 178 return ERR_PTR(err); 179 } 180 181 void btf_dump__free(struct btf_dump *d) 182 { 183 int i, cnt; 184 185 if (!d) 186 return; 187 188 free(d->type_states); 189 if (d->cached_names) { 190 /* any set cached name is owned by us and should be freed */ 191 for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) { 192 if (d->cached_names[i]) 193 free((void *)d->cached_names[i]); 194 } 195 } 196 free(d->cached_names); 197 free(d->emit_queue); 198 free(d->decl_stack); 199 hashmap__free(d->type_names); 200 hashmap__free(d->ident_names); 201 202 free(d); 203 } 204 205 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 206 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 207 208 /* 209 * Dump BTF type in a compilable C syntax, including all the necessary 210 * dependent types, necessary for compilation. If some of the dependent types 211 * were already emitted as part of previous btf_dump__dump_type() invocation 212 * for another type, they won't be emitted again. This API allows callers to 213 * filter out BTF types according to user-defined criterias and emitted only 214 * minimal subset of types, necessary to compile everything. Full struct/union 215 * definitions will still be emitted, even if the only usage is through 216 * pointer and could be satisfied with just a forward declaration. 217 * 218 * Dumping is done in two high-level passes: 219 * 1. Topologically sort type definitions to satisfy C rules of compilation. 220 * 2. Emit type definitions in C syntax. 221 * 222 * Returns 0 on success; <0, otherwise. 223 */ 224 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 225 { 226 int err, i; 227 228 if (id > btf__get_nr_types(d->btf)) 229 return -EINVAL; 230 231 d->emit_queue_cnt = 0; 232 err = btf_dump_order_type(d, id, false); 233 if (err < 0) 234 return err; 235 236 for (i = 0; i < d->emit_queue_cnt; i++) 237 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 238 239 return 0; 240 } 241 242 /* 243 * Mark all types that are referenced from any other type. This is used to 244 * determine top-level anonymous enums that need to be emitted as an 245 * independent type declarations. 246 * Anonymous enums come in two flavors: either embedded in a struct's field 247 * definition, in which case they have to be declared inline as part of field 248 * type declaration; or as a top-level anonymous enum, typically used for 249 * declaring global constants. It's impossible to distinguish between two 250 * without knowning whether given enum type was referenced from other type: 251 * top-level anonymous enum won't be referenced by anything, while embedded 252 * one will. 253 */ 254 static int btf_dump_mark_referenced(struct btf_dump *d) 255 { 256 int i, j, n = btf__get_nr_types(d->btf); 257 const struct btf_type *t; 258 __u16 vlen; 259 260 for (i = 1; i <= n; i++) { 261 t = btf__type_by_id(d->btf, i); 262 vlen = btf_vlen(t); 263 264 switch (btf_kind(t)) { 265 case BTF_KIND_INT: 266 case BTF_KIND_ENUM: 267 case BTF_KIND_FWD: 268 break; 269 270 case BTF_KIND_VOLATILE: 271 case BTF_KIND_CONST: 272 case BTF_KIND_RESTRICT: 273 case BTF_KIND_PTR: 274 case BTF_KIND_TYPEDEF: 275 case BTF_KIND_FUNC: 276 case BTF_KIND_VAR: 277 d->type_states[t->type].referenced = 1; 278 break; 279 280 case BTF_KIND_ARRAY: { 281 const struct btf_array *a = btf_array(t); 282 283 d->type_states[a->index_type].referenced = 1; 284 d->type_states[a->type].referenced = 1; 285 break; 286 } 287 case BTF_KIND_STRUCT: 288 case BTF_KIND_UNION: { 289 const struct btf_member *m = btf_members(t); 290 291 for (j = 0; j < vlen; j++, m++) 292 d->type_states[m->type].referenced = 1; 293 break; 294 } 295 case BTF_KIND_FUNC_PROTO: { 296 const struct btf_param *p = btf_params(t); 297 298 for (j = 0; j < vlen; j++, p++) 299 d->type_states[p->type].referenced = 1; 300 break; 301 } 302 case BTF_KIND_DATASEC: { 303 const struct btf_var_secinfo *v = btf_var_secinfos(t); 304 305 for (j = 0; j < vlen; j++, v++) 306 d->type_states[v->type].referenced = 1; 307 break; 308 } 309 default: 310 return -EINVAL; 311 } 312 } 313 return 0; 314 } 315 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 316 { 317 __u32 *new_queue; 318 size_t new_cap; 319 320 if (d->emit_queue_cnt >= d->emit_queue_cap) { 321 new_cap = max(16, d->emit_queue_cap * 3 / 2); 322 new_queue = realloc(d->emit_queue, 323 new_cap * sizeof(new_queue[0])); 324 if (!new_queue) 325 return -ENOMEM; 326 d->emit_queue = new_queue; 327 d->emit_queue_cap = new_cap; 328 } 329 330 d->emit_queue[d->emit_queue_cnt++] = id; 331 return 0; 332 } 333 334 /* 335 * Determine order of emitting dependent types and specified type to satisfy 336 * C compilation rules. This is done through topological sorting with an 337 * additional complication which comes from C rules. The main idea for C is 338 * that if some type is "embedded" into a struct/union, it's size needs to be 339 * known at the time of definition of containing type. E.g., for: 340 * 341 * struct A {}; 342 * struct B { struct A x; } 343 * 344 * struct A *HAS* to be defined before struct B, because it's "embedded", 345 * i.e., it is part of struct B layout. But in the following case: 346 * 347 * struct A; 348 * struct B { struct A *x; } 349 * struct A {}; 350 * 351 * it's enough to just have a forward declaration of struct A at the time of 352 * struct B definition, as struct B has a pointer to struct A, so the size of 353 * field x is known without knowing struct A size: it's sizeof(void *). 354 * 355 * Unfortunately, there are some trickier cases we need to handle, e.g.: 356 * 357 * struct A {}; // if this was forward-declaration: compilation error 358 * struct B { 359 * struct { // anonymous struct 360 * struct A y; 361 * } *x; 362 * }; 363 * 364 * In this case, struct B's field x is a pointer, so it's size is known 365 * regardless of the size of (anonymous) struct it points to. But because this 366 * struct is anonymous and thus defined inline inside struct B, *and* it 367 * embeds struct A, compiler requires full definition of struct A to be known 368 * before struct B can be defined. This creates a transitive dependency 369 * between struct A and struct B. If struct A was forward-declared before 370 * struct B definition and fully defined after struct B definition, that would 371 * trigger compilation error. 372 * 373 * All this means that while we are doing topological sorting on BTF type 374 * graph, we need to determine relationships between different types (graph 375 * nodes): 376 * - weak link (relationship) between X and Y, if Y *CAN* be 377 * forward-declared at the point of X definition; 378 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 379 * 380 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 381 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 382 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 383 * Weak/strong relationship is determined recursively during DFS traversal and 384 * is returned as a result from btf_dump_order_type(). 385 * 386 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 387 * but it is not guaranteeing that no extraneous forward declarations will be 388 * emitted. 389 * 390 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 391 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 392 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 393 * entire graph path, so depending where from one came to that BTF type, it 394 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 395 * once they are processed, there is no need to do it again, so they are 396 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 397 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 398 * in any case, once those are processed, no need to do it again, as the 399 * result won't change. 400 * 401 * Returns: 402 * - 1, if type is part of strong link (so there is strong topological 403 * ordering requirements); 404 * - 0, if type is part of weak link (so can be satisfied through forward 405 * declaration); 406 * - <0, on error (e.g., unsatisfiable type loop detected). 407 */ 408 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 409 { 410 /* 411 * Order state is used to detect strong link cycles, but only for BTF 412 * kinds that are or could be an independent definition (i.e., 413 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 414 * func_protos, modifiers are just means to get to these definitions. 415 * Int/void don't need definitions, they are assumed to be always 416 * properly defined. We also ignore datasec, var, and funcs for now. 417 * So for all non-defining kinds, we never even set ordering state, 418 * for defining kinds we set ORDERING and subsequently ORDERED if it 419 * forms a strong link. 420 */ 421 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 422 const struct btf_type *t; 423 __u16 vlen; 424 int err, i; 425 426 /* return true, letting typedefs know that it's ok to be emitted */ 427 if (tstate->order_state == ORDERED) 428 return 1; 429 430 t = btf__type_by_id(d->btf, id); 431 432 if (tstate->order_state == ORDERING) { 433 /* type loop, but resolvable through fwd declaration */ 434 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 435 return 0; 436 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 437 return -ELOOP; 438 } 439 440 switch (btf_kind(t)) { 441 case BTF_KIND_INT: 442 tstate->order_state = ORDERED; 443 return 0; 444 445 case BTF_KIND_PTR: 446 err = btf_dump_order_type(d, t->type, true); 447 tstate->order_state = ORDERED; 448 return err; 449 450 case BTF_KIND_ARRAY: 451 return btf_dump_order_type(d, btf_array(t)->type, through_ptr); 452 453 case BTF_KIND_STRUCT: 454 case BTF_KIND_UNION: { 455 const struct btf_member *m = btf_members(t); 456 /* 457 * struct/union is part of strong link, only if it's embedded 458 * (so no ptr in a path) or it's anonymous (so has to be 459 * defined inline, even if declared through ptr) 460 */ 461 if (through_ptr && t->name_off != 0) 462 return 0; 463 464 tstate->order_state = ORDERING; 465 466 vlen = btf_vlen(t); 467 for (i = 0; i < vlen; i++, m++) { 468 err = btf_dump_order_type(d, m->type, false); 469 if (err < 0) 470 return err; 471 } 472 473 if (t->name_off != 0) { 474 err = btf_dump_add_emit_queue_id(d, id); 475 if (err < 0) 476 return err; 477 } 478 479 tstate->order_state = ORDERED; 480 return 1; 481 } 482 case BTF_KIND_ENUM: 483 case BTF_KIND_FWD: 484 /* 485 * non-anonymous or non-referenced enums are top-level 486 * declarations and should be emitted. Same logic can be 487 * applied to FWDs, it won't hurt anyways. 488 */ 489 if (t->name_off != 0 || !tstate->referenced) { 490 err = btf_dump_add_emit_queue_id(d, id); 491 if (err) 492 return err; 493 } 494 tstate->order_state = ORDERED; 495 return 1; 496 497 case BTF_KIND_TYPEDEF: { 498 int is_strong; 499 500 is_strong = btf_dump_order_type(d, t->type, through_ptr); 501 if (is_strong < 0) 502 return is_strong; 503 504 /* typedef is similar to struct/union w.r.t. fwd-decls */ 505 if (through_ptr && !is_strong) 506 return 0; 507 508 /* typedef is always a named definition */ 509 err = btf_dump_add_emit_queue_id(d, id); 510 if (err) 511 return err; 512 513 d->type_states[id].order_state = ORDERED; 514 return 1; 515 } 516 case BTF_KIND_VOLATILE: 517 case BTF_KIND_CONST: 518 case BTF_KIND_RESTRICT: 519 return btf_dump_order_type(d, t->type, through_ptr); 520 521 case BTF_KIND_FUNC_PROTO: { 522 const struct btf_param *p = btf_params(t); 523 bool is_strong; 524 525 err = btf_dump_order_type(d, t->type, through_ptr); 526 if (err < 0) 527 return err; 528 is_strong = err > 0; 529 530 vlen = btf_vlen(t); 531 for (i = 0; i < vlen; i++, p++) { 532 err = btf_dump_order_type(d, p->type, through_ptr); 533 if (err < 0) 534 return err; 535 if (err > 0) 536 is_strong = true; 537 } 538 return is_strong; 539 } 540 case BTF_KIND_FUNC: 541 case BTF_KIND_VAR: 542 case BTF_KIND_DATASEC: 543 d->type_states[id].order_state = ORDERED; 544 return 0; 545 546 default: 547 return -EINVAL; 548 } 549 } 550 551 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 552 const struct btf_type *t); 553 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 554 const struct btf_type *t, int lvl); 555 556 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 557 const struct btf_type *t); 558 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 559 const struct btf_type *t, int lvl); 560 561 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 562 const struct btf_type *t); 563 564 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 565 const struct btf_type *t, int lvl); 566 567 /* a local view into a shared stack */ 568 struct id_stack { 569 const __u32 *ids; 570 int cnt; 571 }; 572 573 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 574 const char *fname, int lvl); 575 static void btf_dump_emit_type_chain(struct btf_dump *d, 576 struct id_stack *decl_stack, 577 const char *fname, int lvl); 578 579 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 580 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 581 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 582 const char *orig_name); 583 584 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 585 { 586 const struct btf_type *t = btf__type_by_id(d->btf, id); 587 588 /* __builtin_va_list is a compiler built-in, which causes compilation 589 * errors, when compiling w/ different compiler, then used to compile 590 * original code (e.g., GCC to compile kernel, Clang to use generated 591 * C header from BTF). As it is built-in, it should be already defined 592 * properly internally in compiler. 593 */ 594 if (t->name_off == 0) 595 return false; 596 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 597 } 598 599 /* 600 * Emit C-syntax definitions of types from chains of BTF types. 601 * 602 * High-level handling of determining necessary forward declarations are handled 603 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 604 * declarations/definitions in C syntax are handled by a combo of 605 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 606 * corresponding btf_dump_emit_*_{def,fwd}() functions. 607 * 608 * We also keep track of "containing struct/union type ID" to determine when 609 * we reference it from inside and thus can avoid emitting unnecessary forward 610 * declaration. 611 * 612 * This algorithm is designed in such a way, that even if some error occurs 613 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 614 * that doesn't comply to C rules completely), algorithm will try to proceed 615 * and produce as much meaningful output as possible. 616 */ 617 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 618 { 619 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 620 bool top_level_def = cont_id == 0; 621 const struct btf_type *t; 622 __u16 kind; 623 624 if (tstate->emit_state == EMITTED) 625 return; 626 627 t = btf__type_by_id(d->btf, id); 628 kind = btf_kind(t); 629 630 if (tstate->emit_state == EMITTING) { 631 if (tstate->fwd_emitted) 632 return; 633 634 switch (kind) { 635 case BTF_KIND_STRUCT: 636 case BTF_KIND_UNION: 637 /* 638 * if we are referencing a struct/union that we are 639 * part of - then no need for fwd declaration 640 */ 641 if (id == cont_id) 642 return; 643 if (t->name_off == 0) { 644 pr_warn("anonymous struct/union loop, id:[%u]\n", 645 id); 646 return; 647 } 648 btf_dump_emit_struct_fwd(d, id, t); 649 btf_dump_printf(d, ";\n\n"); 650 tstate->fwd_emitted = 1; 651 break; 652 case BTF_KIND_TYPEDEF: 653 /* 654 * for typedef fwd_emitted means typedef definition 655 * was emitted, but it can be used only for "weak" 656 * references through pointer only, not for embedding 657 */ 658 if (!btf_dump_is_blacklisted(d, id)) { 659 btf_dump_emit_typedef_def(d, id, t, 0); 660 btf_dump_printf(d, ";\n\n"); 661 } 662 tstate->fwd_emitted = 1; 663 break; 664 default: 665 break; 666 } 667 668 return; 669 } 670 671 switch (kind) { 672 case BTF_KIND_INT: 673 tstate->emit_state = EMITTED; 674 break; 675 case BTF_KIND_ENUM: 676 if (top_level_def) { 677 btf_dump_emit_enum_def(d, id, t, 0); 678 btf_dump_printf(d, ";\n\n"); 679 } 680 tstate->emit_state = EMITTED; 681 break; 682 case BTF_KIND_PTR: 683 case BTF_KIND_VOLATILE: 684 case BTF_KIND_CONST: 685 case BTF_KIND_RESTRICT: 686 btf_dump_emit_type(d, t->type, cont_id); 687 break; 688 case BTF_KIND_ARRAY: 689 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 690 break; 691 case BTF_KIND_FWD: 692 btf_dump_emit_fwd_def(d, id, t); 693 btf_dump_printf(d, ";\n\n"); 694 tstate->emit_state = EMITTED; 695 break; 696 case BTF_KIND_TYPEDEF: 697 tstate->emit_state = EMITTING; 698 btf_dump_emit_type(d, t->type, id); 699 /* 700 * typedef can server as both definition and forward 701 * declaration; at this stage someone depends on 702 * typedef as a forward declaration (refers to it 703 * through pointer), so unless we already did it, 704 * emit typedef as a forward declaration 705 */ 706 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 707 btf_dump_emit_typedef_def(d, id, t, 0); 708 btf_dump_printf(d, ";\n\n"); 709 } 710 tstate->emit_state = EMITTED; 711 break; 712 case BTF_KIND_STRUCT: 713 case BTF_KIND_UNION: 714 tstate->emit_state = EMITTING; 715 /* if it's a top-level struct/union definition or struct/union 716 * is anonymous, then in C we'll be emitting all fields and 717 * their types (as opposed to just `struct X`), so we need to 718 * make sure that all types, referenced from struct/union 719 * members have necessary forward-declarations, where 720 * applicable 721 */ 722 if (top_level_def || t->name_off == 0) { 723 const struct btf_member *m = btf_members(t); 724 __u16 vlen = btf_vlen(t); 725 int i, new_cont_id; 726 727 new_cont_id = t->name_off == 0 ? cont_id : id; 728 for (i = 0; i < vlen; i++, m++) 729 btf_dump_emit_type(d, m->type, new_cont_id); 730 } else if (!tstate->fwd_emitted && id != cont_id) { 731 btf_dump_emit_struct_fwd(d, id, t); 732 btf_dump_printf(d, ";\n\n"); 733 tstate->fwd_emitted = 1; 734 } 735 736 if (top_level_def) { 737 btf_dump_emit_struct_def(d, id, t, 0); 738 btf_dump_printf(d, ";\n\n"); 739 tstate->emit_state = EMITTED; 740 } else { 741 tstate->emit_state = NOT_EMITTED; 742 } 743 break; 744 case BTF_KIND_FUNC_PROTO: { 745 const struct btf_param *p = btf_params(t); 746 __u16 vlen = btf_vlen(t); 747 int i; 748 749 btf_dump_emit_type(d, t->type, cont_id); 750 for (i = 0; i < vlen; i++, p++) 751 btf_dump_emit_type(d, p->type, cont_id); 752 753 break; 754 } 755 default: 756 break; 757 } 758 } 759 760 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 761 const struct btf_type *t) 762 { 763 const struct btf_member *m; 764 int align, i, bit_sz; 765 __u16 vlen; 766 767 align = btf__align_of(btf, id); 768 /* size of a non-packed struct has to be a multiple of its alignment*/ 769 if (align && t->size % align) 770 return true; 771 772 m = btf_members(t); 773 vlen = btf_vlen(t); 774 /* all non-bitfield fields have to be naturally aligned */ 775 for (i = 0; i < vlen; i++, m++) { 776 align = btf__align_of(btf, m->type); 777 bit_sz = btf_member_bitfield_size(t, i); 778 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 779 return true; 780 } 781 782 /* 783 * if original struct was marked as packed, but its layout is 784 * naturally aligned, we'll detect that it's not packed 785 */ 786 return false; 787 } 788 789 static int chip_away_bits(int total, int at_most) 790 { 791 return total % at_most ? : at_most; 792 } 793 794 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 795 int cur_off, int m_off, int m_bit_sz, 796 int align, int lvl) 797 { 798 int off_diff = m_off - cur_off; 799 int ptr_bits = sizeof(void *) * 8; 800 801 if (off_diff <= 0) 802 /* no gap */ 803 return; 804 if (m_bit_sz == 0 && off_diff < align * 8) 805 /* natural padding will take care of a gap */ 806 return; 807 808 while (off_diff > 0) { 809 const char *pad_type; 810 int pad_bits; 811 812 if (ptr_bits > 32 && off_diff > 32) { 813 pad_type = "long"; 814 pad_bits = chip_away_bits(off_diff, ptr_bits); 815 } else if (off_diff > 16) { 816 pad_type = "int"; 817 pad_bits = chip_away_bits(off_diff, 32); 818 } else if (off_diff > 8) { 819 pad_type = "short"; 820 pad_bits = chip_away_bits(off_diff, 16); 821 } else { 822 pad_type = "char"; 823 pad_bits = chip_away_bits(off_diff, 8); 824 } 825 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 826 off_diff -= pad_bits; 827 } 828 } 829 830 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 831 const struct btf_type *t) 832 { 833 btf_dump_printf(d, "%s %s", 834 btf_is_struct(t) ? "struct" : "union", 835 btf_dump_type_name(d, id)); 836 } 837 838 static void btf_dump_emit_struct_def(struct btf_dump *d, 839 __u32 id, 840 const struct btf_type *t, 841 int lvl) 842 { 843 const struct btf_member *m = btf_members(t); 844 bool is_struct = btf_is_struct(t); 845 int align, i, packed, off = 0; 846 __u16 vlen = btf_vlen(t); 847 848 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 849 850 btf_dump_printf(d, "%s%s%s {", 851 is_struct ? "struct" : "union", 852 t->name_off ? " " : "", 853 btf_dump_type_name(d, id)); 854 855 for (i = 0; i < vlen; i++, m++) { 856 const char *fname; 857 int m_off, m_sz; 858 859 fname = btf_name_of(d, m->name_off); 860 m_sz = btf_member_bitfield_size(t, i); 861 m_off = btf_member_bit_offset(t, i); 862 align = packed ? 1 : btf__align_of(d->btf, m->type); 863 864 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); 865 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 866 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 867 868 if (m_sz) { 869 btf_dump_printf(d, ": %d", m_sz); 870 off = m_off + m_sz; 871 } else { 872 m_sz = max(0, btf__resolve_size(d->btf, m->type)); 873 off = m_off + m_sz * 8; 874 } 875 btf_dump_printf(d, ";"); 876 } 877 878 /* pad at the end, if necessary */ 879 if (is_struct) { 880 align = packed ? 1 : btf__align_of(d->btf, id); 881 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, 882 lvl + 1); 883 } 884 885 if (vlen) 886 btf_dump_printf(d, "\n"); 887 btf_dump_printf(d, "%s}", pfx(lvl)); 888 if (packed) 889 btf_dump_printf(d, " __attribute__((packed))"); 890 } 891 892 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 893 const struct btf_type *t) 894 { 895 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 896 } 897 898 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 899 const struct btf_type *t, 900 int lvl) 901 { 902 const struct btf_enum *v = btf_enum(t); 903 __u16 vlen = btf_vlen(t); 904 const char *name; 905 size_t dup_cnt; 906 int i; 907 908 btf_dump_printf(d, "enum%s%s", 909 t->name_off ? " " : "", 910 btf_dump_type_name(d, id)); 911 912 if (vlen) { 913 btf_dump_printf(d, " {"); 914 for (i = 0; i < vlen; i++, v++) { 915 name = btf_name_of(d, v->name_off); 916 /* enumerators share namespace with typedef idents */ 917 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 918 if (dup_cnt > 1) { 919 btf_dump_printf(d, "\n%s%s___%zu = %u,", 920 pfx(lvl + 1), name, dup_cnt, 921 (__u32)v->val); 922 } else { 923 btf_dump_printf(d, "\n%s%s = %u,", 924 pfx(lvl + 1), name, 925 (__u32)v->val); 926 } 927 } 928 btf_dump_printf(d, "\n%s}", pfx(lvl)); 929 } 930 } 931 932 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 933 const struct btf_type *t) 934 { 935 const char *name = btf_dump_type_name(d, id); 936 937 if (btf_kflag(t)) 938 btf_dump_printf(d, "union %s", name); 939 else 940 btf_dump_printf(d, "struct %s", name); 941 } 942 943 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 944 const struct btf_type *t, int lvl) 945 { 946 const char *name = btf_dump_ident_name(d, id); 947 948 /* 949 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 950 * pointing to VOID. This generates warnings from btf_dump() and 951 * results in uncompilable header file, so we are fixing it up here 952 * with valid typedef into __builtin_va_list. 953 */ 954 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 955 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 956 return; 957 } 958 959 btf_dump_printf(d, "typedef "); 960 btf_dump_emit_type_decl(d, t->type, name, lvl); 961 } 962 963 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 964 { 965 __u32 *new_stack; 966 size_t new_cap; 967 968 if (d->decl_stack_cnt >= d->decl_stack_cap) { 969 new_cap = max(16, d->decl_stack_cap * 3 / 2); 970 new_stack = realloc(d->decl_stack, 971 new_cap * sizeof(new_stack[0])); 972 if (!new_stack) 973 return -ENOMEM; 974 d->decl_stack = new_stack; 975 d->decl_stack_cap = new_cap; 976 } 977 978 d->decl_stack[d->decl_stack_cnt++] = id; 979 980 return 0; 981 } 982 983 /* 984 * Emit type declaration (e.g., field type declaration in a struct or argument 985 * declaration in function prototype) in correct C syntax. 986 * 987 * For most types it's trivial, but there are few quirky type declaration 988 * cases worth mentioning: 989 * - function prototypes (especially nesting of function prototypes); 990 * - arrays; 991 * - const/volatile/restrict for pointers vs other types. 992 * 993 * For a good discussion of *PARSING* C syntax (as a human), see 994 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 995 * Ch.3 "Unscrambling Declarations in C". 996 * 997 * It won't help with BTF to C conversion much, though, as it's an opposite 998 * problem. So we came up with this algorithm in reverse to van der Linden's 999 * parsing algorithm. It goes from structured BTF representation of type 1000 * declaration to a valid compilable C syntax. 1001 * 1002 * For instance, consider this C typedef: 1003 * typedef const int * const * arr[10] arr_t; 1004 * It will be represented in BTF with this chain of BTF types: 1005 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1006 * 1007 * Notice how [const] modifier always goes before type it modifies in BTF type 1008 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1009 * the right of pointers, but to the left of other types. There are also other 1010 * quirks, like function pointers, arrays of them, functions returning other 1011 * functions, etc. 1012 * 1013 * We handle that by pushing all the types to a stack, until we hit "terminal" 1014 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1015 * top of a stack, modifiers are handled differently. Array/function pointers 1016 * have also wildly different syntax and how nesting of them are done. See 1017 * code for authoritative definition. 1018 * 1019 * To avoid allocating new stack for each independent chain of BTF types, we 1020 * share one bigger stack, with each chain working only on its own local view 1021 * of a stack frame. Some care is required to "pop" stack frames after 1022 * processing type declaration chain. 1023 */ 1024 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1025 const struct btf_dump_emit_type_decl_opts *opts) 1026 { 1027 const char *fname; 1028 int lvl; 1029 1030 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1031 return -EINVAL; 1032 1033 fname = OPTS_GET(opts, field_name, ""); 1034 lvl = OPTS_GET(opts, indent_level, 0); 1035 btf_dump_emit_type_decl(d, id, fname, lvl); 1036 return 0; 1037 } 1038 1039 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1040 const char *fname, int lvl) 1041 { 1042 struct id_stack decl_stack; 1043 const struct btf_type *t; 1044 int err, stack_start; 1045 1046 stack_start = d->decl_stack_cnt; 1047 for (;;) { 1048 err = btf_dump_push_decl_stack_id(d, id); 1049 if (err < 0) { 1050 /* 1051 * if we don't have enough memory for entire type decl 1052 * chain, restore stack, emit warning, and try to 1053 * proceed nevertheless 1054 */ 1055 pr_warn("not enough memory for decl stack:%d", err); 1056 d->decl_stack_cnt = stack_start; 1057 return; 1058 } 1059 1060 /* VOID */ 1061 if (id == 0) 1062 break; 1063 1064 t = btf__type_by_id(d->btf, id); 1065 switch (btf_kind(t)) { 1066 case BTF_KIND_PTR: 1067 case BTF_KIND_VOLATILE: 1068 case BTF_KIND_CONST: 1069 case BTF_KIND_RESTRICT: 1070 case BTF_KIND_FUNC_PROTO: 1071 id = t->type; 1072 break; 1073 case BTF_KIND_ARRAY: 1074 id = btf_array(t)->type; 1075 break; 1076 case BTF_KIND_INT: 1077 case BTF_KIND_ENUM: 1078 case BTF_KIND_FWD: 1079 case BTF_KIND_STRUCT: 1080 case BTF_KIND_UNION: 1081 case BTF_KIND_TYPEDEF: 1082 goto done; 1083 default: 1084 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1085 btf_kind(t), id); 1086 goto done; 1087 } 1088 } 1089 done: 1090 /* 1091 * We might be inside a chain of declarations (e.g., array of function 1092 * pointers returning anonymous (so inlined) structs, having another 1093 * array field). Each of those needs its own "stack frame" to handle 1094 * emitting of declarations. Those stack frames are non-overlapping 1095 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1096 * handle this set of nested stacks, we create a view corresponding to 1097 * our own "stack frame" and work with it as an independent stack. 1098 * We'll need to clean up after emit_type_chain() returns, though. 1099 */ 1100 decl_stack.ids = d->decl_stack + stack_start; 1101 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1102 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1103 /* 1104 * emit_type_chain() guarantees that it will pop its entire decl_stack 1105 * frame before returning. But it works with a read-only view into 1106 * decl_stack, so it doesn't actually pop anything from the 1107 * perspective of shared btf_dump->decl_stack, per se. We need to 1108 * reset decl_stack state to how it was before us to avoid it growing 1109 * all the time. 1110 */ 1111 d->decl_stack_cnt = stack_start; 1112 } 1113 1114 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1115 { 1116 const struct btf_type *t; 1117 __u32 id; 1118 1119 while (decl_stack->cnt) { 1120 id = decl_stack->ids[decl_stack->cnt - 1]; 1121 t = btf__type_by_id(d->btf, id); 1122 1123 switch (btf_kind(t)) { 1124 case BTF_KIND_VOLATILE: 1125 btf_dump_printf(d, "volatile "); 1126 break; 1127 case BTF_KIND_CONST: 1128 btf_dump_printf(d, "const "); 1129 break; 1130 case BTF_KIND_RESTRICT: 1131 btf_dump_printf(d, "restrict "); 1132 break; 1133 default: 1134 return; 1135 } 1136 decl_stack->cnt--; 1137 } 1138 } 1139 1140 static void btf_dump_emit_name(const struct btf_dump *d, 1141 const char *name, bool last_was_ptr) 1142 { 1143 bool separate = name[0] && !last_was_ptr; 1144 1145 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1146 } 1147 1148 static void btf_dump_emit_type_chain(struct btf_dump *d, 1149 struct id_stack *decls, 1150 const char *fname, int lvl) 1151 { 1152 /* 1153 * last_was_ptr is used to determine if we need to separate pointer 1154 * asterisk (*) from previous part of type signature with space, so 1155 * that we get `int ***`, instead of `int * * *`. We default to true 1156 * for cases where we have single pointer in a chain. E.g., in ptr -> 1157 * func_proto case. func_proto will start a new emit_type_chain call 1158 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1159 * don't want to prepend space for that last pointer. 1160 */ 1161 bool last_was_ptr = true; 1162 const struct btf_type *t; 1163 const char *name; 1164 __u16 kind; 1165 __u32 id; 1166 1167 while (decls->cnt) { 1168 id = decls->ids[--decls->cnt]; 1169 if (id == 0) { 1170 /* VOID is a special snowflake */ 1171 btf_dump_emit_mods(d, decls); 1172 btf_dump_printf(d, "void"); 1173 last_was_ptr = false; 1174 continue; 1175 } 1176 1177 t = btf__type_by_id(d->btf, id); 1178 kind = btf_kind(t); 1179 1180 switch (kind) { 1181 case BTF_KIND_INT: 1182 btf_dump_emit_mods(d, decls); 1183 name = btf_name_of(d, t->name_off); 1184 btf_dump_printf(d, "%s", name); 1185 break; 1186 case BTF_KIND_STRUCT: 1187 case BTF_KIND_UNION: 1188 btf_dump_emit_mods(d, decls); 1189 /* inline anonymous struct/union */ 1190 if (t->name_off == 0) 1191 btf_dump_emit_struct_def(d, id, t, lvl); 1192 else 1193 btf_dump_emit_struct_fwd(d, id, t); 1194 break; 1195 case BTF_KIND_ENUM: 1196 btf_dump_emit_mods(d, decls); 1197 /* inline anonymous enum */ 1198 if (t->name_off == 0) 1199 btf_dump_emit_enum_def(d, id, t, lvl); 1200 else 1201 btf_dump_emit_enum_fwd(d, id, t); 1202 break; 1203 case BTF_KIND_FWD: 1204 btf_dump_emit_mods(d, decls); 1205 btf_dump_emit_fwd_def(d, id, t); 1206 break; 1207 case BTF_KIND_TYPEDEF: 1208 btf_dump_emit_mods(d, decls); 1209 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1210 break; 1211 case BTF_KIND_PTR: 1212 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1213 break; 1214 case BTF_KIND_VOLATILE: 1215 btf_dump_printf(d, " volatile"); 1216 break; 1217 case BTF_KIND_CONST: 1218 btf_dump_printf(d, " const"); 1219 break; 1220 case BTF_KIND_RESTRICT: 1221 btf_dump_printf(d, " restrict"); 1222 break; 1223 case BTF_KIND_ARRAY: { 1224 const struct btf_array *a = btf_array(t); 1225 const struct btf_type *next_t; 1226 __u32 next_id; 1227 bool multidim; 1228 /* 1229 * GCC has a bug 1230 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1231 * which causes it to emit extra const/volatile 1232 * modifiers for an array, if array's element type has 1233 * const/volatile modifiers. Clang doesn't do that. 1234 * In general, it doesn't seem very meaningful to have 1235 * a const/volatile modifier for array, so we are 1236 * going to silently skip them here. 1237 */ 1238 while (decls->cnt) { 1239 next_id = decls->ids[decls->cnt - 1]; 1240 next_t = btf__type_by_id(d->btf, next_id); 1241 if (btf_is_mod(next_t)) 1242 decls->cnt--; 1243 else 1244 break; 1245 } 1246 1247 if (decls->cnt == 0) { 1248 btf_dump_emit_name(d, fname, last_was_ptr); 1249 btf_dump_printf(d, "[%u]", a->nelems); 1250 return; 1251 } 1252 1253 next_id = decls->ids[decls->cnt - 1]; 1254 next_t = btf__type_by_id(d->btf, next_id); 1255 multidim = btf_is_array(next_t); 1256 /* we need space if we have named non-pointer */ 1257 if (fname[0] && !last_was_ptr) 1258 btf_dump_printf(d, " "); 1259 /* no parentheses for multi-dimensional array */ 1260 if (!multidim) 1261 btf_dump_printf(d, "("); 1262 btf_dump_emit_type_chain(d, decls, fname, lvl); 1263 if (!multidim) 1264 btf_dump_printf(d, ")"); 1265 btf_dump_printf(d, "[%u]", a->nelems); 1266 return; 1267 } 1268 case BTF_KIND_FUNC_PROTO: { 1269 const struct btf_param *p = btf_params(t); 1270 __u16 vlen = btf_vlen(t); 1271 int i; 1272 1273 btf_dump_emit_mods(d, decls); 1274 if (decls->cnt) { 1275 btf_dump_printf(d, " ("); 1276 btf_dump_emit_type_chain(d, decls, fname, lvl); 1277 btf_dump_printf(d, ")"); 1278 } else { 1279 btf_dump_emit_name(d, fname, last_was_ptr); 1280 } 1281 btf_dump_printf(d, "("); 1282 /* 1283 * Clang for BPF target generates func_proto with no 1284 * args as a func_proto with a single void arg (e.g., 1285 * `int (*f)(void)` vs just `int (*f)()`). We are 1286 * going to pretend there are no args for such case. 1287 */ 1288 if (vlen == 1 && p->type == 0) { 1289 btf_dump_printf(d, ")"); 1290 return; 1291 } 1292 1293 for (i = 0; i < vlen; i++, p++) { 1294 if (i > 0) 1295 btf_dump_printf(d, ", "); 1296 1297 /* last arg of type void is vararg */ 1298 if (i == vlen - 1 && p->type == 0) { 1299 btf_dump_printf(d, "..."); 1300 break; 1301 } 1302 1303 name = btf_name_of(d, p->name_off); 1304 btf_dump_emit_type_decl(d, p->type, name, lvl); 1305 } 1306 1307 btf_dump_printf(d, ")"); 1308 return; 1309 } 1310 default: 1311 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1312 kind, id); 1313 return; 1314 } 1315 1316 last_was_ptr = kind == BTF_KIND_PTR; 1317 } 1318 1319 btf_dump_emit_name(d, fname, last_was_ptr); 1320 } 1321 1322 /* return number of duplicates (occurrences) of a given name */ 1323 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1324 const char *orig_name) 1325 { 1326 size_t dup_cnt = 0; 1327 1328 hashmap__find(name_map, orig_name, (void **)&dup_cnt); 1329 dup_cnt++; 1330 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); 1331 1332 return dup_cnt; 1333 } 1334 1335 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1336 struct hashmap *name_map) 1337 { 1338 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1339 const struct btf_type *t = btf__type_by_id(d->btf, id); 1340 const char *orig_name = btf_name_of(d, t->name_off); 1341 const char **cached_name = &d->cached_names[id]; 1342 size_t dup_cnt; 1343 1344 if (t->name_off == 0) 1345 return ""; 1346 1347 if (s->name_resolved) 1348 return *cached_name ? *cached_name : orig_name; 1349 1350 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1351 if (dup_cnt > 1) { 1352 const size_t max_len = 256; 1353 char new_name[max_len]; 1354 1355 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1356 *cached_name = strdup(new_name); 1357 } 1358 1359 s->name_resolved = 1; 1360 return *cached_name ? *cached_name : orig_name; 1361 } 1362 1363 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1364 { 1365 return btf_dump_resolve_name(d, id, d->type_names); 1366 } 1367 1368 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1369 { 1370 return btf_dump_resolve_name(d, id, d->ident_names); 1371 } 1372