1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <linux/kernel.h> 19 #include "btf.h" 20 #include "hashmap.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 26 27 static const char *pfx(int lvl) 28 { 29 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 30 } 31 32 enum btf_dump_type_order_state { 33 NOT_ORDERED, 34 ORDERING, 35 ORDERED, 36 }; 37 38 enum btf_dump_type_emit_state { 39 NOT_EMITTED, 40 EMITTING, 41 EMITTED, 42 }; 43 44 /* per-type auxiliary state */ 45 struct btf_dump_type_aux_state { 46 /* topological sorting state */ 47 enum btf_dump_type_order_state order_state: 2; 48 /* emitting state used to determine the need for forward declaration */ 49 enum btf_dump_type_emit_state emit_state: 2; 50 /* whether forward declaration was already emitted */ 51 __u8 fwd_emitted: 1; 52 /* whether unique non-duplicate name was already assigned */ 53 __u8 name_resolved: 1; 54 /* whether type is referenced from any other type */ 55 __u8 referenced: 1; 56 }; 57 58 /* indent string length; one indent string is added for each indent level */ 59 #define BTF_DATA_INDENT_STR_LEN 32 60 61 /* 62 * Common internal data for BTF type data dump operations. 63 */ 64 struct btf_dump_data { 65 const void *data_end; /* end of valid data to show */ 66 bool compact; 67 bool skip_names; 68 bool emit_zeroes; 69 __u8 indent_lvl; /* base indent level */ 70 char indent_str[BTF_DATA_INDENT_STR_LEN]; 71 /* below are used during iteration */ 72 int depth; 73 bool is_array_member; 74 bool is_array_terminated; 75 bool is_array_char; 76 }; 77 78 struct btf_dump { 79 const struct btf *btf; 80 const struct btf_ext *btf_ext; 81 btf_dump_printf_fn_t printf_fn; 82 struct btf_dump_opts opts; 83 int ptr_sz; 84 bool strip_mods; 85 bool skip_anon_defs; 86 int last_id; 87 88 /* per-type auxiliary state */ 89 struct btf_dump_type_aux_state *type_states; 90 size_t type_states_cap; 91 /* per-type optional cached unique name, must be freed, if present */ 92 const char **cached_names; 93 size_t cached_names_cap; 94 95 /* topo-sorted list of dependent type definitions */ 96 __u32 *emit_queue; 97 int emit_queue_cap; 98 int emit_queue_cnt; 99 100 /* 101 * stack of type declarations (e.g., chain of modifiers, arrays, 102 * funcs, etc) 103 */ 104 __u32 *decl_stack; 105 int decl_stack_cap; 106 int decl_stack_cnt; 107 108 /* maps struct/union/enum name to a number of name occurrences */ 109 struct hashmap *type_names; 110 /* 111 * maps typedef identifiers and enum value names to a number of such 112 * name occurrences 113 */ 114 struct hashmap *ident_names; 115 /* 116 * data for typed display; allocated if needed. 117 */ 118 struct btf_dump_data *typed_dump; 119 }; 120 121 static size_t str_hash_fn(const void *key, void *ctx) 122 { 123 return str_hash(key); 124 } 125 126 static bool str_equal_fn(const void *a, const void *b, void *ctx) 127 { 128 return strcmp(a, b) == 0; 129 } 130 131 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 132 { 133 return btf__name_by_offset(d->btf, name_off); 134 } 135 136 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 137 { 138 va_list args; 139 140 va_start(args, fmt); 141 d->printf_fn(d->opts.ctx, fmt, args); 142 va_end(args); 143 } 144 145 static int btf_dump_mark_referenced(struct btf_dump *d); 146 static int btf_dump_resize(struct btf_dump *d); 147 148 struct btf_dump *btf_dump__new(const struct btf *btf, 149 const struct btf_ext *btf_ext, 150 const struct btf_dump_opts *opts, 151 btf_dump_printf_fn_t printf_fn) 152 { 153 struct btf_dump *d; 154 int err; 155 156 d = calloc(1, sizeof(struct btf_dump)); 157 if (!d) 158 return libbpf_err_ptr(-ENOMEM); 159 160 d->btf = btf; 161 d->btf_ext = btf_ext; 162 d->printf_fn = printf_fn; 163 d->opts.ctx = opts ? opts->ctx : NULL; 164 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 165 166 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 167 if (IS_ERR(d->type_names)) { 168 err = PTR_ERR(d->type_names); 169 d->type_names = NULL; 170 goto err; 171 } 172 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 173 if (IS_ERR(d->ident_names)) { 174 err = PTR_ERR(d->ident_names); 175 d->ident_names = NULL; 176 goto err; 177 } 178 179 err = btf_dump_resize(d); 180 if (err) 181 goto err; 182 183 return d; 184 err: 185 btf_dump__free(d); 186 return libbpf_err_ptr(err); 187 } 188 189 static int btf_dump_resize(struct btf_dump *d) 190 { 191 int err, last_id = btf__get_nr_types(d->btf); 192 193 if (last_id <= d->last_id) 194 return 0; 195 196 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 197 sizeof(*d->type_states), last_id + 1)) 198 return -ENOMEM; 199 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 200 sizeof(*d->cached_names), last_id + 1)) 201 return -ENOMEM; 202 203 if (d->last_id == 0) { 204 /* VOID is special */ 205 d->type_states[0].order_state = ORDERED; 206 d->type_states[0].emit_state = EMITTED; 207 } 208 209 /* eagerly determine referenced types for anon enums */ 210 err = btf_dump_mark_referenced(d); 211 if (err) 212 return err; 213 214 d->last_id = last_id; 215 return 0; 216 } 217 218 void btf_dump__free(struct btf_dump *d) 219 { 220 int i; 221 222 if (IS_ERR_OR_NULL(d)) 223 return; 224 225 free(d->type_states); 226 if (d->cached_names) { 227 /* any set cached name is owned by us and should be freed */ 228 for (i = 0; i <= d->last_id; i++) { 229 if (d->cached_names[i]) 230 free((void *)d->cached_names[i]); 231 } 232 } 233 free(d->cached_names); 234 free(d->emit_queue); 235 free(d->decl_stack); 236 hashmap__free(d->type_names); 237 hashmap__free(d->ident_names); 238 239 free(d); 240 } 241 242 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 243 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 244 245 /* 246 * Dump BTF type in a compilable C syntax, including all the necessary 247 * dependent types, necessary for compilation. If some of the dependent types 248 * were already emitted as part of previous btf_dump__dump_type() invocation 249 * for another type, they won't be emitted again. This API allows callers to 250 * filter out BTF types according to user-defined criterias and emitted only 251 * minimal subset of types, necessary to compile everything. Full struct/union 252 * definitions will still be emitted, even if the only usage is through 253 * pointer and could be satisfied with just a forward declaration. 254 * 255 * Dumping is done in two high-level passes: 256 * 1. Topologically sort type definitions to satisfy C rules of compilation. 257 * 2. Emit type definitions in C syntax. 258 * 259 * Returns 0 on success; <0, otherwise. 260 */ 261 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 262 { 263 int err, i; 264 265 if (id > btf__get_nr_types(d->btf)) 266 return libbpf_err(-EINVAL); 267 268 err = btf_dump_resize(d); 269 if (err) 270 return libbpf_err(err); 271 272 d->emit_queue_cnt = 0; 273 err = btf_dump_order_type(d, id, false); 274 if (err < 0) 275 return libbpf_err(err); 276 277 for (i = 0; i < d->emit_queue_cnt; i++) 278 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 279 280 return 0; 281 } 282 283 /* 284 * Mark all types that are referenced from any other type. This is used to 285 * determine top-level anonymous enums that need to be emitted as an 286 * independent type declarations. 287 * Anonymous enums come in two flavors: either embedded in a struct's field 288 * definition, in which case they have to be declared inline as part of field 289 * type declaration; or as a top-level anonymous enum, typically used for 290 * declaring global constants. It's impossible to distinguish between two 291 * without knowning whether given enum type was referenced from other type: 292 * top-level anonymous enum won't be referenced by anything, while embedded 293 * one will. 294 */ 295 static int btf_dump_mark_referenced(struct btf_dump *d) 296 { 297 int i, j, n = btf__get_nr_types(d->btf); 298 const struct btf_type *t; 299 __u16 vlen; 300 301 for (i = d->last_id + 1; i <= n; i++) { 302 t = btf__type_by_id(d->btf, i); 303 vlen = btf_vlen(t); 304 305 switch (btf_kind(t)) { 306 case BTF_KIND_INT: 307 case BTF_KIND_ENUM: 308 case BTF_KIND_FWD: 309 case BTF_KIND_FLOAT: 310 break; 311 312 case BTF_KIND_VOLATILE: 313 case BTF_KIND_CONST: 314 case BTF_KIND_RESTRICT: 315 case BTF_KIND_PTR: 316 case BTF_KIND_TYPEDEF: 317 case BTF_KIND_FUNC: 318 case BTF_KIND_VAR: 319 d->type_states[t->type].referenced = 1; 320 break; 321 322 case BTF_KIND_ARRAY: { 323 const struct btf_array *a = btf_array(t); 324 325 d->type_states[a->index_type].referenced = 1; 326 d->type_states[a->type].referenced = 1; 327 break; 328 } 329 case BTF_KIND_STRUCT: 330 case BTF_KIND_UNION: { 331 const struct btf_member *m = btf_members(t); 332 333 for (j = 0; j < vlen; j++, m++) 334 d->type_states[m->type].referenced = 1; 335 break; 336 } 337 case BTF_KIND_FUNC_PROTO: { 338 const struct btf_param *p = btf_params(t); 339 340 for (j = 0; j < vlen; j++, p++) 341 d->type_states[p->type].referenced = 1; 342 break; 343 } 344 case BTF_KIND_DATASEC: { 345 const struct btf_var_secinfo *v = btf_var_secinfos(t); 346 347 for (j = 0; j < vlen; j++, v++) 348 d->type_states[v->type].referenced = 1; 349 break; 350 } 351 default: 352 return -EINVAL; 353 } 354 } 355 return 0; 356 } 357 358 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 359 { 360 __u32 *new_queue; 361 size_t new_cap; 362 363 if (d->emit_queue_cnt >= d->emit_queue_cap) { 364 new_cap = max(16, d->emit_queue_cap * 3 / 2); 365 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 366 if (!new_queue) 367 return -ENOMEM; 368 d->emit_queue = new_queue; 369 d->emit_queue_cap = new_cap; 370 } 371 372 d->emit_queue[d->emit_queue_cnt++] = id; 373 return 0; 374 } 375 376 /* 377 * Determine order of emitting dependent types and specified type to satisfy 378 * C compilation rules. This is done through topological sorting with an 379 * additional complication which comes from C rules. The main idea for C is 380 * that if some type is "embedded" into a struct/union, it's size needs to be 381 * known at the time of definition of containing type. E.g., for: 382 * 383 * struct A {}; 384 * struct B { struct A x; } 385 * 386 * struct A *HAS* to be defined before struct B, because it's "embedded", 387 * i.e., it is part of struct B layout. But in the following case: 388 * 389 * struct A; 390 * struct B { struct A *x; } 391 * struct A {}; 392 * 393 * it's enough to just have a forward declaration of struct A at the time of 394 * struct B definition, as struct B has a pointer to struct A, so the size of 395 * field x is known without knowing struct A size: it's sizeof(void *). 396 * 397 * Unfortunately, there are some trickier cases we need to handle, e.g.: 398 * 399 * struct A {}; // if this was forward-declaration: compilation error 400 * struct B { 401 * struct { // anonymous struct 402 * struct A y; 403 * } *x; 404 * }; 405 * 406 * In this case, struct B's field x is a pointer, so it's size is known 407 * regardless of the size of (anonymous) struct it points to. But because this 408 * struct is anonymous and thus defined inline inside struct B, *and* it 409 * embeds struct A, compiler requires full definition of struct A to be known 410 * before struct B can be defined. This creates a transitive dependency 411 * between struct A and struct B. If struct A was forward-declared before 412 * struct B definition and fully defined after struct B definition, that would 413 * trigger compilation error. 414 * 415 * All this means that while we are doing topological sorting on BTF type 416 * graph, we need to determine relationships between different types (graph 417 * nodes): 418 * - weak link (relationship) between X and Y, if Y *CAN* be 419 * forward-declared at the point of X definition; 420 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 421 * 422 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 423 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 424 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 425 * Weak/strong relationship is determined recursively during DFS traversal and 426 * is returned as a result from btf_dump_order_type(). 427 * 428 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 429 * but it is not guaranteeing that no extraneous forward declarations will be 430 * emitted. 431 * 432 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 433 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 434 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 435 * entire graph path, so depending where from one came to that BTF type, it 436 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 437 * once they are processed, there is no need to do it again, so they are 438 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 439 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 440 * in any case, once those are processed, no need to do it again, as the 441 * result won't change. 442 * 443 * Returns: 444 * - 1, if type is part of strong link (so there is strong topological 445 * ordering requirements); 446 * - 0, if type is part of weak link (so can be satisfied through forward 447 * declaration); 448 * - <0, on error (e.g., unsatisfiable type loop detected). 449 */ 450 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 451 { 452 /* 453 * Order state is used to detect strong link cycles, but only for BTF 454 * kinds that are or could be an independent definition (i.e., 455 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 456 * func_protos, modifiers are just means to get to these definitions. 457 * Int/void don't need definitions, they are assumed to be always 458 * properly defined. We also ignore datasec, var, and funcs for now. 459 * So for all non-defining kinds, we never even set ordering state, 460 * for defining kinds we set ORDERING and subsequently ORDERED if it 461 * forms a strong link. 462 */ 463 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 464 const struct btf_type *t; 465 __u16 vlen; 466 int err, i; 467 468 /* return true, letting typedefs know that it's ok to be emitted */ 469 if (tstate->order_state == ORDERED) 470 return 1; 471 472 t = btf__type_by_id(d->btf, id); 473 474 if (tstate->order_state == ORDERING) { 475 /* type loop, but resolvable through fwd declaration */ 476 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 477 return 0; 478 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 479 return -ELOOP; 480 } 481 482 switch (btf_kind(t)) { 483 case BTF_KIND_INT: 484 case BTF_KIND_FLOAT: 485 tstate->order_state = ORDERED; 486 return 0; 487 488 case BTF_KIND_PTR: 489 err = btf_dump_order_type(d, t->type, true); 490 tstate->order_state = ORDERED; 491 return err; 492 493 case BTF_KIND_ARRAY: 494 return btf_dump_order_type(d, btf_array(t)->type, false); 495 496 case BTF_KIND_STRUCT: 497 case BTF_KIND_UNION: { 498 const struct btf_member *m = btf_members(t); 499 /* 500 * struct/union is part of strong link, only if it's embedded 501 * (so no ptr in a path) or it's anonymous (so has to be 502 * defined inline, even if declared through ptr) 503 */ 504 if (through_ptr && t->name_off != 0) 505 return 0; 506 507 tstate->order_state = ORDERING; 508 509 vlen = btf_vlen(t); 510 for (i = 0; i < vlen; i++, m++) { 511 err = btf_dump_order_type(d, m->type, false); 512 if (err < 0) 513 return err; 514 } 515 516 if (t->name_off != 0) { 517 err = btf_dump_add_emit_queue_id(d, id); 518 if (err < 0) 519 return err; 520 } 521 522 tstate->order_state = ORDERED; 523 return 1; 524 } 525 case BTF_KIND_ENUM: 526 case BTF_KIND_FWD: 527 /* 528 * non-anonymous or non-referenced enums are top-level 529 * declarations and should be emitted. Same logic can be 530 * applied to FWDs, it won't hurt anyways. 531 */ 532 if (t->name_off != 0 || !tstate->referenced) { 533 err = btf_dump_add_emit_queue_id(d, id); 534 if (err) 535 return err; 536 } 537 tstate->order_state = ORDERED; 538 return 1; 539 540 case BTF_KIND_TYPEDEF: { 541 int is_strong; 542 543 is_strong = btf_dump_order_type(d, t->type, through_ptr); 544 if (is_strong < 0) 545 return is_strong; 546 547 /* typedef is similar to struct/union w.r.t. fwd-decls */ 548 if (through_ptr && !is_strong) 549 return 0; 550 551 /* typedef is always a named definition */ 552 err = btf_dump_add_emit_queue_id(d, id); 553 if (err) 554 return err; 555 556 d->type_states[id].order_state = ORDERED; 557 return 1; 558 } 559 case BTF_KIND_VOLATILE: 560 case BTF_KIND_CONST: 561 case BTF_KIND_RESTRICT: 562 return btf_dump_order_type(d, t->type, through_ptr); 563 564 case BTF_KIND_FUNC_PROTO: { 565 const struct btf_param *p = btf_params(t); 566 bool is_strong; 567 568 err = btf_dump_order_type(d, t->type, through_ptr); 569 if (err < 0) 570 return err; 571 is_strong = err > 0; 572 573 vlen = btf_vlen(t); 574 for (i = 0; i < vlen; i++, p++) { 575 err = btf_dump_order_type(d, p->type, through_ptr); 576 if (err < 0) 577 return err; 578 if (err > 0) 579 is_strong = true; 580 } 581 return is_strong; 582 } 583 case BTF_KIND_FUNC: 584 case BTF_KIND_VAR: 585 case BTF_KIND_DATASEC: 586 d->type_states[id].order_state = ORDERED; 587 return 0; 588 589 default: 590 return -EINVAL; 591 } 592 } 593 594 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 595 const struct btf_type *t); 596 597 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 598 const struct btf_type *t); 599 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 600 const struct btf_type *t, int lvl); 601 602 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 603 const struct btf_type *t); 604 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 605 const struct btf_type *t, int lvl); 606 607 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 608 const struct btf_type *t); 609 610 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 611 const struct btf_type *t, int lvl); 612 613 /* a local view into a shared stack */ 614 struct id_stack { 615 const __u32 *ids; 616 int cnt; 617 }; 618 619 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 620 const char *fname, int lvl); 621 static void btf_dump_emit_type_chain(struct btf_dump *d, 622 struct id_stack *decl_stack, 623 const char *fname, int lvl); 624 625 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 626 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 627 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 628 const char *orig_name); 629 630 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 631 { 632 const struct btf_type *t = btf__type_by_id(d->btf, id); 633 634 /* __builtin_va_list is a compiler built-in, which causes compilation 635 * errors, when compiling w/ different compiler, then used to compile 636 * original code (e.g., GCC to compile kernel, Clang to use generated 637 * C header from BTF). As it is built-in, it should be already defined 638 * properly internally in compiler. 639 */ 640 if (t->name_off == 0) 641 return false; 642 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 643 } 644 645 /* 646 * Emit C-syntax definitions of types from chains of BTF types. 647 * 648 * High-level handling of determining necessary forward declarations are handled 649 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 650 * declarations/definitions in C syntax are handled by a combo of 651 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 652 * corresponding btf_dump_emit_*_{def,fwd}() functions. 653 * 654 * We also keep track of "containing struct/union type ID" to determine when 655 * we reference it from inside and thus can avoid emitting unnecessary forward 656 * declaration. 657 * 658 * This algorithm is designed in such a way, that even if some error occurs 659 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 660 * that doesn't comply to C rules completely), algorithm will try to proceed 661 * and produce as much meaningful output as possible. 662 */ 663 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 664 { 665 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 666 bool top_level_def = cont_id == 0; 667 const struct btf_type *t; 668 __u16 kind; 669 670 if (tstate->emit_state == EMITTED) 671 return; 672 673 t = btf__type_by_id(d->btf, id); 674 kind = btf_kind(t); 675 676 if (tstate->emit_state == EMITTING) { 677 if (tstate->fwd_emitted) 678 return; 679 680 switch (kind) { 681 case BTF_KIND_STRUCT: 682 case BTF_KIND_UNION: 683 /* 684 * if we are referencing a struct/union that we are 685 * part of - then no need for fwd declaration 686 */ 687 if (id == cont_id) 688 return; 689 if (t->name_off == 0) { 690 pr_warn("anonymous struct/union loop, id:[%u]\n", 691 id); 692 return; 693 } 694 btf_dump_emit_struct_fwd(d, id, t); 695 btf_dump_printf(d, ";\n\n"); 696 tstate->fwd_emitted = 1; 697 break; 698 case BTF_KIND_TYPEDEF: 699 /* 700 * for typedef fwd_emitted means typedef definition 701 * was emitted, but it can be used only for "weak" 702 * references through pointer only, not for embedding 703 */ 704 if (!btf_dump_is_blacklisted(d, id)) { 705 btf_dump_emit_typedef_def(d, id, t, 0); 706 btf_dump_printf(d, ";\n\n"); 707 } 708 tstate->fwd_emitted = 1; 709 break; 710 default: 711 break; 712 } 713 714 return; 715 } 716 717 switch (kind) { 718 case BTF_KIND_INT: 719 /* Emit type alias definitions if necessary */ 720 btf_dump_emit_missing_aliases(d, id, t); 721 722 tstate->emit_state = EMITTED; 723 break; 724 case BTF_KIND_ENUM: 725 if (top_level_def) { 726 btf_dump_emit_enum_def(d, id, t, 0); 727 btf_dump_printf(d, ";\n\n"); 728 } 729 tstate->emit_state = EMITTED; 730 break; 731 case BTF_KIND_PTR: 732 case BTF_KIND_VOLATILE: 733 case BTF_KIND_CONST: 734 case BTF_KIND_RESTRICT: 735 btf_dump_emit_type(d, t->type, cont_id); 736 break; 737 case BTF_KIND_ARRAY: 738 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 739 break; 740 case BTF_KIND_FWD: 741 btf_dump_emit_fwd_def(d, id, t); 742 btf_dump_printf(d, ";\n\n"); 743 tstate->emit_state = EMITTED; 744 break; 745 case BTF_KIND_TYPEDEF: 746 tstate->emit_state = EMITTING; 747 btf_dump_emit_type(d, t->type, id); 748 /* 749 * typedef can server as both definition and forward 750 * declaration; at this stage someone depends on 751 * typedef as a forward declaration (refers to it 752 * through pointer), so unless we already did it, 753 * emit typedef as a forward declaration 754 */ 755 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 756 btf_dump_emit_typedef_def(d, id, t, 0); 757 btf_dump_printf(d, ";\n\n"); 758 } 759 tstate->emit_state = EMITTED; 760 break; 761 case BTF_KIND_STRUCT: 762 case BTF_KIND_UNION: 763 tstate->emit_state = EMITTING; 764 /* if it's a top-level struct/union definition or struct/union 765 * is anonymous, then in C we'll be emitting all fields and 766 * their types (as opposed to just `struct X`), so we need to 767 * make sure that all types, referenced from struct/union 768 * members have necessary forward-declarations, where 769 * applicable 770 */ 771 if (top_level_def || t->name_off == 0) { 772 const struct btf_member *m = btf_members(t); 773 __u16 vlen = btf_vlen(t); 774 int i, new_cont_id; 775 776 new_cont_id = t->name_off == 0 ? cont_id : id; 777 for (i = 0; i < vlen; i++, m++) 778 btf_dump_emit_type(d, m->type, new_cont_id); 779 } else if (!tstate->fwd_emitted && id != cont_id) { 780 btf_dump_emit_struct_fwd(d, id, t); 781 btf_dump_printf(d, ";\n\n"); 782 tstate->fwd_emitted = 1; 783 } 784 785 if (top_level_def) { 786 btf_dump_emit_struct_def(d, id, t, 0); 787 btf_dump_printf(d, ";\n\n"); 788 tstate->emit_state = EMITTED; 789 } else { 790 tstate->emit_state = NOT_EMITTED; 791 } 792 break; 793 case BTF_KIND_FUNC_PROTO: { 794 const struct btf_param *p = btf_params(t); 795 __u16 n = btf_vlen(t); 796 int i; 797 798 btf_dump_emit_type(d, t->type, cont_id); 799 for (i = 0; i < n; i++, p++) 800 btf_dump_emit_type(d, p->type, cont_id); 801 802 break; 803 } 804 default: 805 break; 806 } 807 } 808 809 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 810 const struct btf_type *t) 811 { 812 const struct btf_member *m; 813 int align, i, bit_sz; 814 __u16 vlen; 815 816 align = btf__align_of(btf, id); 817 /* size of a non-packed struct has to be a multiple of its alignment*/ 818 if (align && t->size % align) 819 return true; 820 821 m = btf_members(t); 822 vlen = btf_vlen(t); 823 /* all non-bitfield fields have to be naturally aligned */ 824 for (i = 0; i < vlen; i++, m++) { 825 align = btf__align_of(btf, m->type); 826 bit_sz = btf_member_bitfield_size(t, i); 827 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 828 return true; 829 } 830 831 /* 832 * if original struct was marked as packed, but its layout is 833 * naturally aligned, we'll detect that it's not packed 834 */ 835 return false; 836 } 837 838 static int chip_away_bits(int total, int at_most) 839 { 840 return total % at_most ? : at_most; 841 } 842 843 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 844 int cur_off, int m_off, int m_bit_sz, 845 int align, int lvl) 846 { 847 int off_diff = m_off - cur_off; 848 int ptr_bits = d->ptr_sz * 8; 849 850 if (off_diff <= 0) 851 /* no gap */ 852 return; 853 if (m_bit_sz == 0 && off_diff < align * 8) 854 /* natural padding will take care of a gap */ 855 return; 856 857 while (off_diff > 0) { 858 const char *pad_type; 859 int pad_bits; 860 861 if (ptr_bits > 32 && off_diff > 32) { 862 pad_type = "long"; 863 pad_bits = chip_away_bits(off_diff, ptr_bits); 864 } else if (off_diff > 16) { 865 pad_type = "int"; 866 pad_bits = chip_away_bits(off_diff, 32); 867 } else if (off_diff > 8) { 868 pad_type = "short"; 869 pad_bits = chip_away_bits(off_diff, 16); 870 } else { 871 pad_type = "char"; 872 pad_bits = chip_away_bits(off_diff, 8); 873 } 874 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 875 off_diff -= pad_bits; 876 } 877 } 878 879 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 880 const struct btf_type *t) 881 { 882 btf_dump_printf(d, "%s%s%s", 883 btf_is_struct(t) ? "struct" : "union", 884 t->name_off ? " " : "", 885 btf_dump_type_name(d, id)); 886 } 887 888 static void btf_dump_emit_struct_def(struct btf_dump *d, 889 __u32 id, 890 const struct btf_type *t, 891 int lvl) 892 { 893 const struct btf_member *m = btf_members(t); 894 bool is_struct = btf_is_struct(t); 895 int align, i, packed, off = 0; 896 __u16 vlen = btf_vlen(t); 897 898 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 899 900 btf_dump_printf(d, "%s%s%s {", 901 is_struct ? "struct" : "union", 902 t->name_off ? " " : "", 903 btf_dump_type_name(d, id)); 904 905 for (i = 0; i < vlen; i++, m++) { 906 const char *fname; 907 int m_off, m_sz; 908 909 fname = btf_name_of(d, m->name_off); 910 m_sz = btf_member_bitfield_size(t, i); 911 m_off = btf_member_bit_offset(t, i); 912 align = packed ? 1 : btf__align_of(d->btf, m->type); 913 914 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); 915 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 916 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 917 918 if (m_sz) { 919 btf_dump_printf(d, ": %d", m_sz); 920 off = m_off + m_sz; 921 } else { 922 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 923 off = m_off + m_sz * 8; 924 } 925 btf_dump_printf(d, ";"); 926 } 927 928 /* pad at the end, if necessary */ 929 if (is_struct) { 930 align = packed ? 1 : btf__align_of(d->btf, id); 931 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, 932 lvl + 1); 933 } 934 935 if (vlen) 936 btf_dump_printf(d, "\n"); 937 btf_dump_printf(d, "%s}", pfx(lvl)); 938 if (packed) 939 btf_dump_printf(d, " __attribute__((packed))"); 940 } 941 942 static const char *missing_base_types[][2] = { 943 /* 944 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 945 * SIMD intrinsics. Alias them to standard base types. 946 */ 947 { "__Poly8_t", "unsigned char" }, 948 { "__Poly16_t", "unsigned short" }, 949 { "__Poly64_t", "unsigned long long" }, 950 { "__Poly128_t", "unsigned __int128" }, 951 }; 952 953 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 954 const struct btf_type *t) 955 { 956 const char *name = btf_dump_type_name(d, id); 957 int i; 958 959 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 960 if (strcmp(name, missing_base_types[i][0]) == 0) { 961 btf_dump_printf(d, "typedef %s %s;\n\n", 962 missing_base_types[i][1], name); 963 break; 964 } 965 } 966 } 967 968 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 969 const struct btf_type *t) 970 { 971 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 972 } 973 974 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 975 const struct btf_type *t, 976 int lvl) 977 { 978 const struct btf_enum *v = btf_enum(t); 979 __u16 vlen = btf_vlen(t); 980 const char *name; 981 size_t dup_cnt; 982 int i; 983 984 btf_dump_printf(d, "enum%s%s", 985 t->name_off ? " " : "", 986 btf_dump_type_name(d, id)); 987 988 if (vlen) { 989 btf_dump_printf(d, " {"); 990 for (i = 0; i < vlen; i++, v++) { 991 name = btf_name_of(d, v->name_off); 992 /* enumerators share namespace with typedef idents */ 993 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 994 if (dup_cnt > 1) { 995 btf_dump_printf(d, "\n%s%s___%zu = %u,", 996 pfx(lvl + 1), name, dup_cnt, 997 (__u32)v->val); 998 } else { 999 btf_dump_printf(d, "\n%s%s = %u,", 1000 pfx(lvl + 1), name, 1001 (__u32)v->val); 1002 } 1003 } 1004 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1005 } 1006 } 1007 1008 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1009 const struct btf_type *t) 1010 { 1011 const char *name = btf_dump_type_name(d, id); 1012 1013 if (btf_kflag(t)) 1014 btf_dump_printf(d, "union %s", name); 1015 else 1016 btf_dump_printf(d, "struct %s", name); 1017 } 1018 1019 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1020 const struct btf_type *t, int lvl) 1021 { 1022 const char *name = btf_dump_ident_name(d, id); 1023 1024 /* 1025 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1026 * pointing to VOID. This generates warnings from btf_dump() and 1027 * results in uncompilable header file, so we are fixing it up here 1028 * with valid typedef into __builtin_va_list. 1029 */ 1030 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1031 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1032 return; 1033 } 1034 1035 btf_dump_printf(d, "typedef "); 1036 btf_dump_emit_type_decl(d, t->type, name, lvl); 1037 } 1038 1039 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1040 { 1041 __u32 *new_stack; 1042 size_t new_cap; 1043 1044 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1045 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1046 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1047 if (!new_stack) 1048 return -ENOMEM; 1049 d->decl_stack = new_stack; 1050 d->decl_stack_cap = new_cap; 1051 } 1052 1053 d->decl_stack[d->decl_stack_cnt++] = id; 1054 1055 return 0; 1056 } 1057 1058 /* 1059 * Emit type declaration (e.g., field type declaration in a struct or argument 1060 * declaration in function prototype) in correct C syntax. 1061 * 1062 * For most types it's trivial, but there are few quirky type declaration 1063 * cases worth mentioning: 1064 * - function prototypes (especially nesting of function prototypes); 1065 * - arrays; 1066 * - const/volatile/restrict for pointers vs other types. 1067 * 1068 * For a good discussion of *PARSING* C syntax (as a human), see 1069 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1070 * Ch.3 "Unscrambling Declarations in C". 1071 * 1072 * It won't help with BTF to C conversion much, though, as it's an opposite 1073 * problem. So we came up with this algorithm in reverse to van der Linden's 1074 * parsing algorithm. It goes from structured BTF representation of type 1075 * declaration to a valid compilable C syntax. 1076 * 1077 * For instance, consider this C typedef: 1078 * typedef const int * const * arr[10] arr_t; 1079 * It will be represented in BTF with this chain of BTF types: 1080 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1081 * 1082 * Notice how [const] modifier always goes before type it modifies in BTF type 1083 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1084 * the right of pointers, but to the left of other types. There are also other 1085 * quirks, like function pointers, arrays of them, functions returning other 1086 * functions, etc. 1087 * 1088 * We handle that by pushing all the types to a stack, until we hit "terminal" 1089 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1090 * top of a stack, modifiers are handled differently. Array/function pointers 1091 * have also wildly different syntax and how nesting of them are done. See 1092 * code for authoritative definition. 1093 * 1094 * To avoid allocating new stack for each independent chain of BTF types, we 1095 * share one bigger stack, with each chain working only on its own local view 1096 * of a stack frame. Some care is required to "pop" stack frames after 1097 * processing type declaration chain. 1098 */ 1099 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1100 const struct btf_dump_emit_type_decl_opts *opts) 1101 { 1102 const char *fname; 1103 int lvl, err; 1104 1105 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1106 return libbpf_err(-EINVAL); 1107 1108 err = btf_dump_resize(d); 1109 if (err) 1110 return libbpf_err(err); 1111 1112 fname = OPTS_GET(opts, field_name, ""); 1113 lvl = OPTS_GET(opts, indent_level, 0); 1114 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1115 btf_dump_emit_type_decl(d, id, fname, lvl); 1116 d->strip_mods = false; 1117 return 0; 1118 } 1119 1120 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1121 const char *fname, int lvl) 1122 { 1123 struct id_stack decl_stack; 1124 const struct btf_type *t; 1125 int err, stack_start; 1126 1127 stack_start = d->decl_stack_cnt; 1128 for (;;) { 1129 t = btf__type_by_id(d->btf, id); 1130 if (d->strip_mods && btf_is_mod(t)) 1131 goto skip_mod; 1132 1133 err = btf_dump_push_decl_stack_id(d, id); 1134 if (err < 0) { 1135 /* 1136 * if we don't have enough memory for entire type decl 1137 * chain, restore stack, emit warning, and try to 1138 * proceed nevertheless 1139 */ 1140 pr_warn("not enough memory for decl stack:%d", err); 1141 d->decl_stack_cnt = stack_start; 1142 return; 1143 } 1144 skip_mod: 1145 /* VOID */ 1146 if (id == 0) 1147 break; 1148 1149 switch (btf_kind(t)) { 1150 case BTF_KIND_PTR: 1151 case BTF_KIND_VOLATILE: 1152 case BTF_KIND_CONST: 1153 case BTF_KIND_RESTRICT: 1154 case BTF_KIND_FUNC_PROTO: 1155 id = t->type; 1156 break; 1157 case BTF_KIND_ARRAY: 1158 id = btf_array(t)->type; 1159 break; 1160 case BTF_KIND_INT: 1161 case BTF_KIND_ENUM: 1162 case BTF_KIND_FWD: 1163 case BTF_KIND_STRUCT: 1164 case BTF_KIND_UNION: 1165 case BTF_KIND_TYPEDEF: 1166 case BTF_KIND_FLOAT: 1167 goto done; 1168 default: 1169 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1170 btf_kind(t), id); 1171 goto done; 1172 } 1173 } 1174 done: 1175 /* 1176 * We might be inside a chain of declarations (e.g., array of function 1177 * pointers returning anonymous (so inlined) structs, having another 1178 * array field). Each of those needs its own "stack frame" to handle 1179 * emitting of declarations. Those stack frames are non-overlapping 1180 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1181 * handle this set of nested stacks, we create a view corresponding to 1182 * our own "stack frame" and work with it as an independent stack. 1183 * We'll need to clean up after emit_type_chain() returns, though. 1184 */ 1185 decl_stack.ids = d->decl_stack + stack_start; 1186 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1187 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1188 /* 1189 * emit_type_chain() guarantees that it will pop its entire decl_stack 1190 * frame before returning. But it works with a read-only view into 1191 * decl_stack, so it doesn't actually pop anything from the 1192 * perspective of shared btf_dump->decl_stack, per se. We need to 1193 * reset decl_stack state to how it was before us to avoid it growing 1194 * all the time. 1195 */ 1196 d->decl_stack_cnt = stack_start; 1197 } 1198 1199 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1200 { 1201 const struct btf_type *t; 1202 __u32 id; 1203 1204 while (decl_stack->cnt) { 1205 id = decl_stack->ids[decl_stack->cnt - 1]; 1206 t = btf__type_by_id(d->btf, id); 1207 1208 switch (btf_kind(t)) { 1209 case BTF_KIND_VOLATILE: 1210 btf_dump_printf(d, "volatile "); 1211 break; 1212 case BTF_KIND_CONST: 1213 btf_dump_printf(d, "const "); 1214 break; 1215 case BTF_KIND_RESTRICT: 1216 btf_dump_printf(d, "restrict "); 1217 break; 1218 default: 1219 return; 1220 } 1221 decl_stack->cnt--; 1222 } 1223 } 1224 1225 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1226 { 1227 const struct btf_type *t; 1228 __u32 id; 1229 1230 while (decl_stack->cnt) { 1231 id = decl_stack->ids[decl_stack->cnt - 1]; 1232 t = btf__type_by_id(d->btf, id); 1233 if (!btf_is_mod(t)) 1234 return; 1235 decl_stack->cnt--; 1236 } 1237 } 1238 1239 static void btf_dump_emit_name(const struct btf_dump *d, 1240 const char *name, bool last_was_ptr) 1241 { 1242 bool separate = name[0] && !last_was_ptr; 1243 1244 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1245 } 1246 1247 static void btf_dump_emit_type_chain(struct btf_dump *d, 1248 struct id_stack *decls, 1249 const char *fname, int lvl) 1250 { 1251 /* 1252 * last_was_ptr is used to determine if we need to separate pointer 1253 * asterisk (*) from previous part of type signature with space, so 1254 * that we get `int ***`, instead of `int * * *`. We default to true 1255 * for cases where we have single pointer in a chain. E.g., in ptr -> 1256 * func_proto case. func_proto will start a new emit_type_chain call 1257 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1258 * don't want to prepend space for that last pointer. 1259 */ 1260 bool last_was_ptr = true; 1261 const struct btf_type *t; 1262 const char *name; 1263 __u16 kind; 1264 __u32 id; 1265 1266 while (decls->cnt) { 1267 id = decls->ids[--decls->cnt]; 1268 if (id == 0) { 1269 /* VOID is a special snowflake */ 1270 btf_dump_emit_mods(d, decls); 1271 btf_dump_printf(d, "void"); 1272 last_was_ptr = false; 1273 continue; 1274 } 1275 1276 t = btf__type_by_id(d->btf, id); 1277 kind = btf_kind(t); 1278 1279 switch (kind) { 1280 case BTF_KIND_INT: 1281 case BTF_KIND_FLOAT: 1282 btf_dump_emit_mods(d, decls); 1283 name = btf_name_of(d, t->name_off); 1284 btf_dump_printf(d, "%s", name); 1285 break; 1286 case BTF_KIND_STRUCT: 1287 case BTF_KIND_UNION: 1288 btf_dump_emit_mods(d, decls); 1289 /* inline anonymous struct/union */ 1290 if (t->name_off == 0 && !d->skip_anon_defs) 1291 btf_dump_emit_struct_def(d, id, t, lvl); 1292 else 1293 btf_dump_emit_struct_fwd(d, id, t); 1294 break; 1295 case BTF_KIND_ENUM: 1296 btf_dump_emit_mods(d, decls); 1297 /* inline anonymous enum */ 1298 if (t->name_off == 0 && !d->skip_anon_defs) 1299 btf_dump_emit_enum_def(d, id, t, lvl); 1300 else 1301 btf_dump_emit_enum_fwd(d, id, t); 1302 break; 1303 case BTF_KIND_FWD: 1304 btf_dump_emit_mods(d, decls); 1305 btf_dump_emit_fwd_def(d, id, t); 1306 break; 1307 case BTF_KIND_TYPEDEF: 1308 btf_dump_emit_mods(d, decls); 1309 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1310 break; 1311 case BTF_KIND_PTR: 1312 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1313 break; 1314 case BTF_KIND_VOLATILE: 1315 btf_dump_printf(d, " volatile"); 1316 break; 1317 case BTF_KIND_CONST: 1318 btf_dump_printf(d, " const"); 1319 break; 1320 case BTF_KIND_RESTRICT: 1321 btf_dump_printf(d, " restrict"); 1322 break; 1323 case BTF_KIND_ARRAY: { 1324 const struct btf_array *a = btf_array(t); 1325 const struct btf_type *next_t; 1326 __u32 next_id; 1327 bool multidim; 1328 /* 1329 * GCC has a bug 1330 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1331 * which causes it to emit extra const/volatile 1332 * modifiers for an array, if array's element type has 1333 * const/volatile modifiers. Clang doesn't do that. 1334 * In general, it doesn't seem very meaningful to have 1335 * a const/volatile modifier for array, so we are 1336 * going to silently skip them here. 1337 */ 1338 btf_dump_drop_mods(d, decls); 1339 1340 if (decls->cnt == 0) { 1341 btf_dump_emit_name(d, fname, last_was_ptr); 1342 btf_dump_printf(d, "[%u]", a->nelems); 1343 return; 1344 } 1345 1346 next_id = decls->ids[decls->cnt - 1]; 1347 next_t = btf__type_by_id(d->btf, next_id); 1348 multidim = btf_is_array(next_t); 1349 /* we need space if we have named non-pointer */ 1350 if (fname[0] && !last_was_ptr) 1351 btf_dump_printf(d, " "); 1352 /* no parentheses for multi-dimensional array */ 1353 if (!multidim) 1354 btf_dump_printf(d, "("); 1355 btf_dump_emit_type_chain(d, decls, fname, lvl); 1356 if (!multidim) 1357 btf_dump_printf(d, ")"); 1358 btf_dump_printf(d, "[%u]", a->nelems); 1359 return; 1360 } 1361 case BTF_KIND_FUNC_PROTO: { 1362 const struct btf_param *p = btf_params(t); 1363 __u16 vlen = btf_vlen(t); 1364 int i; 1365 1366 /* 1367 * GCC emits extra volatile qualifier for 1368 * __attribute__((noreturn)) function pointers. Clang 1369 * doesn't do it. It's a GCC quirk for backwards 1370 * compatibility with code written for GCC <2.5. So, 1371 * similarly to extra qualifiers for array, just drop 1372 * them, instead of handling them. 1373 */ 1374 btf_dump_drop_mods(d, decls); 1375 if (decls->cnt) { 1376 btf_dump_printf(d, " ("); 1377 btf_dump_emit_type_chain(d, decls, fname, lvl); 1378 btf_dump_printf(d, ")"); 1379 } else { 1380 btf_dump_emit_name(d, fname, last_was_ptr); 1381 } 1382 btf_dump_printf(d, "("); 1383 /* 1384 * Clang for BPF target generates func_proto with no 1385 * args as a func_proto with a single void arg (e.g., 1386 * `int (*f)(void)` vs just `int (*f)()`). We are 1387 * going to pretend there are no args for such case. 1388 */ 1389 if (vlen == 1 && p->type == 0) { 1390 btf_dump_printf(d, ")"); 1391 return; 1392 } 1393 1394 for (i = 0; i < vlen; i++, p++) { 1395 if (i > 0) 1396 btf_dump_printf(d, ", "); 1397 1398 /* last arg of type void is vararg */ 1399 if (i == vlen - 1 && p->type == 0) { 1400 btf_dump_printf(d, "..."); 1401 break; 1402 } 1403 1404 name = btf_name_of(d, p->name_off); 1405 btf_dump_emit_type_decl(d, p->type, name, lvl); 1406 } 1407 1408 btf_dump_printf(d, ")"); 1409 return; 1410 } 1411 default: 1412 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1413 kind, id); 1414 return; 1415 } 1416 1417 last_was_ptr = kind == BTF_KIND_PTR; 1418 } 1419 1420 btf_dump_emit_name(d, fname, last_was_ptr); 1421 } 1422 1423 /* show type name as (type_name) */ 1424 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1425 bool top_level) 1426 { 1427 const struct btf_type *t; 1428 1429 /* for array members, we don't bother emitting type name for each 1430 * member to avoid the redundancy of 1431 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1432 */ 1433 if (d->typed_dump->is_array_member) 1434 return; 1435 1436 /* avoid type name specification for variable/section; it will be done 1437 * for the associated variable value(s). 1438 */ 1439 t = btf__type_by_id(d->btf, id); 1440 if (btf_is_var(t) || btf_is_datasec(t)) 1441 return; 1442 1443 if (top_level) 1444 btf_dump_printf(d, "("); 1445 1446 d->skip_anon_defs = true; 1447 d->strip_mods = true; 1448 btf_dump_emit_type_decl(d, id, "", 0); 1449 d->strip_mods = false; 1450 d->skip_anon_defs = false; 1451 1452 if (top_level) 1453 btf_dump_printf(d, ")"); 1454 } 1455 1456 /* return number of duplicates (occurrences) of a given name */ 1457 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1458 const char *orig_name) 1459 { 1460 size_t dup_cnt = 0; 1461 1462 hashmap__find(name_map, orig_name, (void **)&dup_cnt); 1463 dup_cnt++; 1464 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); 1465 1466 return dup_cnt; 1467 } 1468 1469 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1470 struct hashmap *name_map) 1471 { 1472 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1473 const struct btf_type *t = btf__type_by_id(d->btf, id); 1474 const char *orig_name = btf_name_of(d, t->name_off); 1475 const char **cached_name = &d->cached_names[id]; 1476 size_t dup_cnt; 1477 1478 if (t->name_off == 0) 1479 return ""; 1480 1481 if (s->name_resolved) 1482 return *cached_name ? *cached_name : orig_name; 1483 1484 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1485 if (dup_cnt > 1) { 1486 const size_t max_len = 256; 1487 char new_name[max_len]; 1488 1489 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1490 *cached_name = strdup(new_name); 1491 } 1492 1493 s->name_resolved = 1; 1494 return *cached_name ? *cached_name : orig_name; 1495 } 1496 1497 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1498 { 1499 return btf_dump_resolve_name(d, id, d->type_names); 1500 } 1501 1502 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1503 { 1504 return btf_dump_resolve_name(d, id, d->ident_names); 1505 } 1506 1507 static int btf_dump_dump_type_data(struct btf_dump *d, 1508 const char *fname, 1509 const struct btf_type *t, 1510 __u32 id, 1511 const void *data, 1512 __u8 bits_offset, 1513 __u8 bit_sz); 1514 1515 static const char *btf_dump_data_newline(struct btf_dump *d) 1516 { 1517 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1518 } 1519 1520 static const char *btf_dump_data_delim(struct btf_dump *d) 1521 { 1522 return d->typed_dump->depth == 0 ? "" : ","; 1523 } 1524 1525 static void btf_dump_data_pfx(struct btf_dump *d) 1526 { 1527 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1528 1529 if (d->typed_dump->compact) 1530 return; 1531 1532 for (i = 0; i < lvl; i++) 1533 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1534 } 1535 1536 /* A macro is used here as btf_type_value[s]() appends format specifiers 1537 * to the format specifier passed in; these do the work of appending 1538 * delimiters etc while the caller simply has to specify the type values 1539 * in the format specifier + value(s). 1540 */ 1541 #define btf_dump_type_values(d, fmt, ...) \ 1542 btf_dump_printf(d, fmt "%s%s", \ 1543 ##__VA_ARGS__, \ 1544 btf_dump_data_delim(d), \ 1545 btf_dump_data_newline(d)) 1546 1547 static int btf_dump_unsupported_data(struct btf_dump *d, 1548 const struct btf_type *t, 1549 __u32 id) 1550 { 1551 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1552 return -ENOTSUP; 1553 } 1554 1555 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1556 const struct btf_type *t, 1557 const void *data, 1558 __u8 bits_offset, 1559 __u8 bit_sz, 1560 __u64 *value) 1561 { 1562 __u16 left_shift_bits, right_shift_bits; 1563 __u8 nr_copy_bits, nr_copy_bytes; 1564 const __u8 *bytes = data; 1565 int sz = t->size; 1566 __u64 num = 0; 1567 int i; 1568 1569 /* Maximum supported bitfield size is 64 bits */ 1570 if (sz > 8) { 1571 pr_warn("unexpected bitfield size %d\n", sz); 1572 return -EINVAL; 1573 } 1574 1575 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1576 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1577 */ 1578 nr_copy_bits = bit_sz + bits_offset; 1579 nr_copy_bytes = t->size; 1580 #if __BYTE_ORDER == __LITTLE_ENDIAN 1581 for (i = nr_copy_bytes - 1; i >= 0; i--) 1582 num = num * 256 + bytes[i]; 1583 #elif __BYTE_ORDER == __BIG_ENDIAN 1584 for (i = 0; i < nr_copy_bytes; i++) 1585 num = num * 256 + bytes[i]; 1586 #else 1587 # error "Unrecognized __BYTE_ORDER__" 1588 #endif 1589 left_shift_bits = 64 - nr_copy_bits; 1590 right_shift_bits = 64 - bit_sz; 1591 1592 *value = (num << left_shift_bits) >> right_shift_bits; 1593 1594 return 0; 1595 } 1596 1597 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1598 const struct btf_type *t, 1599 const void *data, 1600 __u8 bits_offset, 1601 __u8 bit_sz) 1602 { 1603 __u64 check_num; 1604 int err; 1605 1606 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1607 if (err) 1608 return err; 1609 if (check_num == 0) 1610 return -ENODATA; 1611 return 0; 1612 } 1613 1614 static int btf_dump_bitfield_data(struct btf_dump *d, 1615 const struct btf_type *t, 1616 const void *data, 1617 __u8 bits_offset, 1618 __u8 bit_sz) 1619 { 1620 __u64 print_num; 1621 int err; 1622 1623 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1624 if (err) 1625 return err; 1626 1627 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1628 1629 return 0; 1630 } 1631 1632 /* ints, floats and ptrs */ 1633 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1634 const struct btf_type *t, 1635 __u32 id, 1636 const void *data) 1637 { 1638 static __u8 bytecmp[16] = {}; 1639 int nr_bytes; 1640 1641 /* For pointer types, pointer size is not defined on a per-type basis. 1642 * On dump creation however, we store the pointer size. 1643 */ 1644 if (btf_kind(t) == BTF_KIND_PTR) 1645 nr_bytes = d->ptr_sz; 1646 else 1647 nr_bytes = t->size; 1648 1649 if (nr_bytes < 1 || nr_bytes > 16) { 1650 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1651 return -EINVAL; 1652 } 1653 1654 if (memcmp(data, bytecmp, nr_bytes) == 0) 1655 return -ENODATA; 1656 return 0; 1657 } 1658 1659 static bool ptr_is_aligned(const void *data, int data_sz) 1660 { 1661 return ((uintptr_t)data) % data_sz == 0; 1662 } 1663 1664 static int btf_dump_int_data(struct btf_dump *d, 1665 const struct btf_type *t, 1666 __u32 type_id, 1667 const void *data, 1668 __u8 bits_offset) 1669 { 1670 __u8 encoding = btf_int_encoding(t); 1671 bool sign = encoding & BTF_INT_SIGNED; 1672 int sz = t->size; 1673 1674 if (sz == 0) { 1675 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1676 return -EINVAL; 1677 } 1678 1679 /* handle packed int data - accesses of integers not aligned on 1680 * int boundaries can cause problems on some platforms. 1681 */ 1682 if (!ptr_is_aligned(data, sz)) 1683 return btf_dump_bitfield_data(d, t, data, 0, 0); 1684 1685 switch (sz) { 1686 case 16: { 1687 const __u64 *ints = data; 1688 __u64 lsi, msi; 1689 1690 /* avoid use of __int128 as some 32-bit platforms do not 1691 * support it. 1692 */ 1693 #if __BYTE_ORDER == __LITTLE_ENDIAN 1694 lsi = ints[0]; 1695 msi = ints[1]; 1696 #elif __BYTE_ORDER == __BIG_ENDIAN 1697 lsi = ints[1]; 1698 msi = ints[0]; 1699 #else 1700 # error "Unrecognized __BYTE_ORDER__" 1701 #endif 1702 if (msi == 0) 1703 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1704 else 1705 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1706 (unsigned long long)lsi); 1707 break; 1708 } 1709 case 8: 1710 if (sign) 1711 btf_dump_type_values(d, "%lld", *(long long *)data); 1712 else 1713 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1714 break; 1715 case 4: 1716 if (sign) 1717 btf_dump_type_values(d, "%d", *(__s32 *)data); 1718 else 1719 btf_dump_type_values(d, "%u", *(__u32 *)data); 1720 break; 1721 case 2: 1722 if (sign) 1723 btf_dump_type_values(d, "%d", *(__s16 *)data); 1724 else 1725 btf_dump_type_values(d, "%u", *(__u16 *)data); 1726 break; 1727 case 1: 1728 if (d->typed_dump->is_array_char) { 1729 /* check for null terminator */ 1730 if (d->typed_dump->is_array_terminated) 1731 break; 1732 if (*(char *)data == '\0') { 1733 d->typed_dump->is_array_terminated = true; 1734 break; 1735 } 1736 if (isprint(*(char *)data)) { 1737 btf_dump_type_values(d, "'%c'", *(char *)data); 1738 break; 1739 } 1740 } 1741 if (sign) 1742 btf_dump_type_values(d, "%d", *(__s8 *)data); 1743 else 1744 btf_dump_type_values(d, "%u", *(__u8 *)data); 1745 break; 1746 default: 1747 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1748 return -EINVAL; 1749 } 1750 return 0; 1751 } 1752 1753 union float_data { 1754 long double ld; 1755 double d; 1756 float f; 1757 }; 1758 1759 static int btf_dump_float_data(struct btf_dump *d, 1760 const struct btf_type *t, 1761 __u32 type_id, 1762 const void *data) 1763 { 1764 const union float_data *flp = data; 1765 union float_data fl; 1766 int sz = t->size; 1767 1768 /* handle unaligned data; copy to local union */ 1769 if (!ptr_is_aligned(data, sz)) { 1770 memcpy(&fl, data, sz); 1771 flp = &fl; 1772 } 1773 1774 switch (sz) { 1775 case 16: 1776 btf_dump_type_values(d, "%Lf", flp->ld); 1777 break; 1778 case 8: 1779 btf_dump_type_values(d, "%lf", flp->d); 1780 break; 1781 case 4: 1782 btf_dump_type_values(d, "%f", flp->f); 1783 break; 1784 default: 1785 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1786 return -EINVAL; 1787 } 1788 return 0; 1789 } 1790 1791 static int btf_dump_var_data(struct btf_dump *d, 1792 const struct btf_type *v, 1793 __u32 id, 1794 const void *data) 1795 { 1796 enum btf_func_linkage linkage = btf_var(v)->linkage; 1797 const struct btf_type *t; 1798 const char *l; 1799 __u32 type_id; 1800 1801 switch (linkage) { 1802 case BTF_FUNC_STATIC: 1803 l = "static "; 1804 break; 1805 case BTF_FUNC_EXTERN: 1806 l = "extern "; 1807 break; 1808 case BTF_FUNC_GLOBAL: 1809 default: 1810 l = ""; 1811 break; 1812 } 1813 1814 /* format of output here is [linkage] [type] [varname] = (type)value, 1815 * for example "static int cpu_profile_flip = (int)1" 1816 */ 1817 btf_dump_printf(d, "%s", l); 1818 type_id = v->type; 1819 t = btf__type_by_id(d->btf, type_id); 1820 btf_dump_emit_type_cast(d, type_id, false); 1821 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 1822 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 1823 } 1824 1825 static int btf_dump_array_data(struct btf_dump *d, 1826 const struct btf_type *t, 1827 __u32 id, 1828 const void *data) 1829 { 1830 const struct btf_array *array = btf_array(t); 1831 const struct btf_type *elem_type; 1832 __u32 i, elem_size = 0, elem_type_id; 1833 bool is_array_member; 1834 1835 elem_type_id = array->type; 1836 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 1837 elem_size = btf__resolve_size(d->btf, elem_type_id); 1838 if (elem_size <= 0) { 1839 pr_warn("unexpected elem size %d for array type [%u]\n", elem_size, id); 1840 return -EINVAL; 1841 } 1842 1843 if (btf_is_int(elem_type)) { 1844 /* 1845 * BTF_INT_CHAR encoding never seems to be set for 1846 * char arrays, so if size is 1 and element is 1847 * printable as a char, we'll do that. 1848 */ 1849 if (elem_size == 1) 1850 d->typed_dump->is_array_char = true; 1851 } 1852 1853 /* note that we increment depth before calling btf_dump_print() below; 1854 * this is intentional. btf_dump_data_newline() will not print a 1855 * newline for depth 0 (since this leaves us with trailing newlines 1856 * at the end of typed display), so depth is incremented first. 1857 * For similar reasons, we decrement depth before showing the closing 1858 * parenthesis. 1859 */ 1860 d->typed_dump->depth++; 1861 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 1862 1863 /* may be a multidimensional array, so store current "is array member" 1864 * status so we can restore it correctly later. 1865 */ 1866 is_array_member = d->typed_dump->is_array_member; 1867 d->typed_dump->is_array_member = true; 1868 for (i = 0; i < array->nelems; i++, data += elem_size) { 1869 if (d->typed_dump->is_array_terminated) 1870 break; 1871 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 1872 } 1873 d->typed_dump->is_array_member = is_array_member; 1874 d->typed_dump->depth--; 1875 btf_dump_data_pfx(d); 1876 btf_dump_type_values(d, "]"); 1877 1878 return 0; 1879 } 1880 1881 static int btf_dump_struct_data(struct btf_dump *d, 1882 const struct btf_type *t, 1883 __u32 id, 1884 const void *data) 1885 { 1886 const struct btf_member *m = btf_members(t); 1887 __u16 n = btf_vlen(t); 1888 int i, err; 1889 1890 /* note that we increment depth before calling btf_dump_print() below; 1891 * this is intentional. btf_dump_data_newline() will not print a 1892 * newline for depth 0 (since this leaves us with trailing newlines 1893 * at the end of typed display), so depth is incremented first. 1894 * For similar reasons, we decrement depth before showing the closing 1895 * parenthesis. 1896 */ 1897 d->typed_dump->depth++; 1898 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 1899 1900 for (i = 0; i < n; i++, m++) { 1901 const struct btf_type *mtype; 1902 const char *mname; 1903 __u32 moffset; 1904 __u8 bit_sz; 1905 1906 mtype = btf__type_by_id(d->btf, m->type); 1907 mname = btf_name_of(d, m->name_off); 1908 moffset = btf_member_bit_offset(t, i); 1909 1910 bit_sz = btf_member_bitfield_size(t, i); 1911 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 1912 moffset % 8, bit_sz); 1913 if (err < 0) 1914 return err; 1915 } 1916 d->typed_dump->depth--; 1917 btf_dump_data_pfx(d); 1918 btf_dump_type_values(d, "}"); 1919 return err; 1920 } 1921 1922 union ptr_data { 1923 unsigned int p; 1924 unsigned long long lp; 1925 }; 1926 1927 static int btf_dump_ptr_data(struct btf_dump *d, 1928 const struct btf_type *t, 1929 __u32 id, 1930 const void *data) 1931 { 1932 if (ptr_is_aligned(data, d->ptr_sz) && d->ptr_sz == sizeof(void *)) { 1933 btf_dump_type_values(d, "%p", *(void **)data); 1934 } else { 1935 union ptr_data pt; 1936 1937 memcpy(&pt, data, d->ptr_sz); 1938 if (d->ptr_sz == 4) 1939 btf_dump_type_values(d, "0x%x", pt.p); 1940 else 1941 btf_dump_type_values(d, "0x%llx", pt.lp); 1942 } 1943 return 0; 1944 } 1945 1946 static int btf_dump_get_enum_value(struct btf_dump *d, 1947 const struct btf_type *t, 1948 const void *data, 1949 __u32 id, 1950 __s64 *value) 1951 { 1952 int sz = t->size; 1953 1954 /* handle unaligned enum value */ 1955 if (!ptr_is_aligned(data, sz)) { 1956 __u64 val; 1957 int err; 1958 1959 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 1960 if (err) 1961 return err; 1962 *value = (__s64)val; 1963 return 0; 1964 } 1965 1966 switch (t->size) { 1967 case 8: 1968 *value = *(__s64 *)data; 1969 return 0; 1970 case 4: 1971 *value = *(__s32 *)data; 1972 return 0; 1973 case 2: 1974 *value = *(__s16 *)data; 1975 return 0; 1976 case 1: 1977 *value = *(__s8 *)data; 1978 return 0; 1979 default: 1980 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 1981 return -EINVAL; 1982 } 1983 } 1984 1985 static int btf_dump_enum_data(struct btf_dump *d, 1986 const struct btf_type *t, 1987 __u32 id, 1988 const void *data) 1989 { 1990 const struct btf_enum *e; 1991 __s64 value; 1992 int i, err; 1993 1994 err = btf_dump_get_enum_value(d, t, data, id, &value); 1995 if (err) 1996 return err; 1997 1998 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 1999 if (value != e->val) 2000 continue; 2001 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2002 return 0; 2003 } 2004 2005 btf_dump_type_values(d, "%d", value); 2006 return 0; 2007 } 2008 2009 static int btf_dump_datasec_data(struct btf_dump *d, 2010 const struct btf_type *t, 2011 __u32 id, 2012 const void *data) 2013 { 2014 const struct btf_var_secinfo *vsi; 2015 const struct btf_type *var; 2016 __u32 i; 2017 int err; 2018 2019 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2020 2021 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2022 var = btf__type_by_id(d->btf, vsi->type); 2023 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2024 if (err < 0) 2025 return err; 2026 btf_dump_printf(d, ";"); 2027 } 2028 return 0; 2029 } 2030 2031 /* return size of type, or if base type overflows, return -E2BIG. */ 2032 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2033 const struct btf_type *t, 2034 __u32 id, 2035 const void *data, 2036 __u8 bits_offset) 2037 { 2038 __s64 size = btf__resolve_size(d->btf, id); 2039 2040 if (size < 0 || size >= INT_MAX) { 2041 pr_warn("unexpected size [%zu] for id [%u]\n", 2042 (size_t)size, id); 2043 return -EINVAL; 2044 } 2045 2046 /* Only do overflow checking for base types; we do not want to 2047 * avoid showing part of a struct, union or array, even if we 2048 * do not have enough data to show the full object. By 2049 * restricting overflow checking to base types we can ensure 2050 * that partial display succeeds, while avoiding overflowing 2051 * and using bogus data for display. 2052 */ 2053 t = skip_mods_and_typedefs(d->btf, id, NULL); 2054 if (!t) { 2055 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2056 id); 2057 return -EINVAL; 2058 } 2059 2060 switch (btf_kind(t)) { 2061 case BTF_KIND_INT: 2062 case BTF_KIND_FLOAT: 2063 case BTF_KIND_PTR: 2064 case BTF_KIND_ENUM: 2065 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2066 return -E2BIG; 2067 break; 2068 default: 2069 break; 2070 } 2071 return (int)size; 2072 } 2073 2074 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2075 const struct btf_type *t, 2076 __u32 id, 2077 const void *data, 2078 __u8 bits_offset, 2079 __u8 bit_sz) 2080 { 2081 __s64 value; 2082 int i, err; 2083 2084 /* toplevel exceptions; we show zero values if 2085 * - we ask for them (emit_zeros) 2086 * - if we are at top-level so we see "struct empty { }" 2087 * - or if we are an array member and the array is non-empty and 2088 * not a char array; we don't want to be in a situation where we 2089 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2090 * If the array contains zeroes only, or is a char array starting 2091 * with a '\0', the array-level check_zero() will prevent showing it; 2092 * we are concerned with determining zero value at the array member 2093 * level here. 2094 */ 2095 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2096 (d->typed_dump->is_array_member && 2097 !d->typed_dump->is_array_char)) 2098 return 0; 2099 2100 t = skip_mods_and_typedefs(d->btf, id, NULL); 2101 2102 switch (btf_kind(t)) { 2103 case BTF_KIND_INT: 2104 if (bit_sz) 2105 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2106 return btf_dump_base_type_check_zero(d, t, id, data); 2107 case BTF_KIND_FLOAT: 2108 case BTF_KIND_PTR: 2109 return btf_dump_base_type_check_zero(d, t, id, data); 2110 case BTF_KIND_ARRAY: { 2111 const struct btf_array *array = btf_array(t); 2112 const struct btf_type *elem_type; 2113 __u32 elem_type_id, elem_size; 2114 bool ischar; 2115 2116 elem_type_id = array->type; 2117 elem_size = btf__resolve_size(d->btf, elem_type_id); 2118 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2119 2120 ischar = btf_is_int(elem_type) && elem_size == 1; 2121 2122 /* check all elements; if _any_ element is nonzero, all 2123 * of array is displayed. We make an exception however 2124 * for char arrays where the first element is 0; these 2125 * are considered zeroed also, even if later elements are 2126 * non-zero because the string is terminated. 2127 */ 2128 for (i = 0; i < array->nelems; i++) { 2129 if (i == 0 && ischar && *(char *)data == 0) 2130 return -ENODATA; 2131 err = btf_dump_type_data_check_zero(d, elem_type, 2132 elem_type_id, 2133 data + 2134 (i * elem_size), 2135 bits_offset, 0); 2136 if (err != -ENODATA) 2137 return err; 2138 } 2139 return -ENODATA; 2140 } 2141 case BTF_KIND_STRUCT: 2142 case BTF_KIND_UNION: { 2143 const struct btf_member *m = btf_members(t); 2144 __u16 n = btf_vlen(t); 2145 2146 /* if any struct/union member is non-zero, the struct/union 2147 * is considered non-zero and dumped. 2148 */ 2149 for (i = 0; i < n; i++, m++) { 2150 const struct btf_type *mtype; 2151 __u32 moffset; 2152 2153 mtype = btf__type_by_id(d->btf, m->type); 2154 moffset = btf_member_bit_offset(t, i); 2155 2156 /* btf_int_bits() does not store member bitfield size; 2157 * bitfield size needs to be stored here so int display 2158 * of member can retrieve it. 2159 */ 2160 bit_sz = btf_member_bitfield_size(t, i); 2161 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2162 moffset % 8, bit_sz); 2163 if (err != ENODATA) 2164 return err; 2165 } 2166 return -ENODATA; 2167 } 2168 case BTF_KIND_ENUM: 2169 err = btf_dump_get_enum_value(d, t, data, id, &value); 2170 if (err) 2171 return err; 2172 if (value == 0) 2173 return -ENODATA; 2174 return 0; 2175 default: 2176 return 0; 2177 } 2178 } 2179 2180 /* returns size of data dumped, or error. */ 2181 static int btf_dump_dump_type_data(struct btf_dump *d, 2182 const char *fname, 2183 const struct btf_type *t, 2184 __u32 id, 2185 const void *data, 2186 __u8 bits_offset, 2187 __u8 bit_sz) 2188 { 2189 int size, err; 2190 2191 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset); 2192 if (size < 0) 2193 return size; 2194 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2195 if (err) { 2196 /* zeroed data is expected and not an error, so simply skip 2197 * dumping such data. Record other errors however. 2198 */ 2199 if (err == -ENODATA) 2200 return size; 2201 return err; 2202 } 2203 btf_dump_data_pfx(d); 2204 2205 if (!d->typed_dump->skip_names) { 2206 if (fname && strlen(fname) > 0) 2207 btf_dump_printf(d, ".%s = ", fname); 2208 btf_dump_emit_type_cast(d, id, true); 2209 } 2210 2211 t = skip_mods_and_typedefs(d->btf, id, NULL); 2212 2213 switch (btf_kind(t)) { 2214 case BTF_KIND_UNKN: 2215 case BTF_KIND_FWD: 2216 case BTF_KIND_FUNC: 2217 case BTF_KIND_FUNC_PROTO: 2218 err = btf_dump_unsupported_data(d, t, id); 2219 break; 2220 case BTF_KIND_INT: 2221 if (bit_sz) 2222 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2223 else 2224 err = btf_dump_int_data(d, t, id, data, bits_offset); 2225 break; 2226 case BTF_KIND_FLOAT: 2227 err = btf_dump_float_data(d, t, id, data); 2228 break; 2229 case BTF_KIND_PTR: 2230 err = btf_dump_ptr_data(d, t, id, data); 2231 break; 2232 case BTF_KIND_ARRAY: 2233 err = btf_dump_array_data(d, t, id, data); 2234 break; 2235 case BTF_KIND_STRUCT: 2236 case BTF_KIND_UNION: 2237 err = btf_dump_struct_data(d, t, id, data); 2238 break; 2239 case BTF_KIND_ENUM: 2240 /* handle bitfield and int enum values */ 2241 if (bit_sz) { 2242 __u64 print_num; 2243 __s64 enum_val; 2244 2245 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2246 &print_num); 2247 if (err) 2248 break; 2249 enum_val = (__s64)print_num; 2250 err = btf_dump_enum_data(d, t, id, &enum_val); 2251 } else 2252 err = btf_dump_enum_data(d, t, id, data); 2253 break; 2254 case BTF_KIND_VAR: 2255 err = btf_dump_var_data(d, t, id, data); 2256 break; 2257 case BTF_KIND_DATASEC: 2258 err = btf_dump_datasec_data(d, t, id, data); 2259 break; 2260 default: 2261 pr_warn("unexpected kind [%u] for id [%u]\n", 2262 BTF_INFO_KIND(t->info), id); 2263 return -EINVAL; 2264 } 2265 if (err < 0) 2266 return err; 2267 return size; 2268 } 2269 2270 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2271 const void *data, size_t data_sz, 2272 const struct btf_dump_type_data_opts *opts) 2273 { 2274 struct btf_dump_data typed_dump = {}; 2275 const struct btf_type *t; 2276 int ret; 2277 2278 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2279 return libbpf_err(-EINVAL); 2280 2281 t = btf__type_by_id(d->btf, id); 2282 if (!t) 2283 return libbpf_err(-ENOENT); 2284 2285 d->typed_dump = &typed_dump; 2286 d->typed_dump->data_end = data + data_sz; 2287 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2288 2289 /* default indent string is a tab */ 2290 if (!opts->indent_str) 2291 d->typed_dump->indent_str[0] = '\t'; 2292 else 2293 strncat(d->typed_dump->indent_str, opts->indent_str, 2294 sizeof(d->typed_dump->indent_str) - 1); 2295 2296 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2297 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2298 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2299 2300 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2301 2302 d->typed_dump = NULL; 2303 2304 return libbpf_err(ret); 2305 } 2306