xref: /openbmc/linux/tools/lib/bpf/btf_dump.c (revision 9726bfcd)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <errno.h>
14 #include <linux/err.h>
15 #include <linux/btf.h>
16 #include "btf.h"
17 #include "hashmap.h"
18 #include "libbpf.h"
19 #include "libbpf_internal.h"
20 
21 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
22 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
23 
24 static const char *pfx(int lvl)
25 {
26 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
27 }
28 
29 enum btf_dump_type_order_state {
30 	NOT_ORDERED,
31 	ORDERING,
32 	ORDERED,
33 };
34 
35 enum btf_dump_type_emit_state {
36 	NOT_EMITTED,
37 	EMITTING,
38 	EMITTED,
39 };
40 
41 /* per-type auxiliary state */
42 struct btf_dump_type_aux_state {
43 	/* topological sorting state */
44 	enum btf_dump_type_order_state order_state: 2;
45 	/* emitting state used to determine the need for forward declaration */
46 	enum btf_dump_type_emit_state emit_state: 2;
47 	/* whether forward declaration was already emitted */
48 	__u8 fwd_emitted: 1;
49 	/* whether unique non-duplicate name was already assigned */
50 	__u8 name_resolved: 1;
51 };
52 
53 struct btf_dump {
54 	const struct btf *btf;
55 	const struct btf_ext *btf_ext;
56 	btf_dump_printf_fn_t printf_fn;
57 	struct btf_dump_opts opts;
58 
59 	/* per-type auxiliary state */
60 	struct btf_dump_type_aux_state *type_states;
61 	/* per-type optional cached unique name, must be freed, if present */
62 	const char **cached_names;
63 
64 	/* topo-sorted list of dependent type definitions */
65 	__u32 *emit_queue;
66 	int emit_queue_cap;
67 	int emit_queue_cnt;
68 
69 	/*
70 	 * stack of type declarations (e.g., chain of modifiers, arrays,
71 	 * funcs, etc)
72 	 */
73 	__u32 *decl_stack;
74 	int decl_stack_cap;
75 	int decl_stack_cnt;
76 
77 	/* maps struct/union/enum name to a number of name occurrences */
78 	struct hashmap *type_names;
79 	/*
80 	 * maps typedef identifiers and enum value names to a number of such
81 	 * name occurrences
82 	 */
83 	struct hashmap *ident_names;
84 };
85 
86 static size_t str_hash_fn(const void *key, void *ctx)
87 {
88 	const char *s = key;
89 	size_t h = 0;
90 
91 	while (*s) {
92 		h = h * 31 + *s;
93 		s++;
94 	}
95 	return h;
96 }
97 
98 static bool str_equal_fn(const void *a, const void *b, void *ctx)
99 {
100 	return strcmp(a, b) == 0;
101 }
102 
103 static __u16 btf_kind_of(const struct btf_type *t)
104 {
105 	return BTF_INFO_KIND(t->info);
106 }
107 
108 static __u16 btf_vlen_of(const struct btf_type *t)
109 {
110 	return BTF_INFO_VLEN(t->info);
111 }
112 
113 static bool btf_kflag_of(const struct btf_type *t)
114 {
115 	return BTF_INFO_KFLAG(t->info);
116 }
117 
118 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
119 {
120 	return btf__name_by_offset(d->btf, name_off);
121 }
122 
123 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
124 {
125 	va_list args;
126 
127 	va_start(args, fmt);
128 	d->printf_fn(d->opts.ctx, fmt, args);
129 	va_end(args);
130 }
131 
132 struct btf_dump *btf_dump__new(const struct btf *btf,
133 			       const struct btf_ext *btf_ext,
134 			       const struct btf_dump_opts *opts,
135 			       btf_dump_printf_fn_t printf_fn)
136 {
137 	struct btf_dump *d;
138 	int err;
139 
140 	d = calloc(1, sizeof(struct btf_dump));
141 	if (!d)
142 		return ERR_PTR(-ENOMEM);
143 
144 	d->btf = btf;
145 	d->btf_ext = btf_ext;
146 	d->printf_fn = printf_fn;
147 	d->opts.ctx = opts ? opts->ctx : NULL;
148 
149 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
150 	if (IS_ERR(d->type_names)) {
151 		err = PTR_ERR(d->type_names);
152 		d->type_names = NULL;
153 		btf_dump__free(d);
154 		return ERR_PTR(err);
155 	}
156 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
157 	if (IS_ERR(d->ident_names)) {
158 		err = PTR_ERR(d->ident_names);
159 		d->ident_names = NULL;
160 		btf_dump__free(d);
161 		return ERR_PTR(err);
162 	}
163 
164 	return d;
165 }
166 
167 void btf_dump__free(struct btf_dump *d)
168 {
169 	int i, cnt;
170 
171 	if (!d)
172 		return;
173 
174 	free(d->type_states);
175 	if (d->cached_names) {
176 		/* any set cached name is owned by us and should be freed */
177 		for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
178 			if (d->cached_names[i])
179 				free((void *)d->cached_names[i]);
180 		}
181 	}
182 	free(d->cached_names);
183 	free(d->emit_queue);
184 	free(d->decl_stack);
185 	hashmap__free(d->type_names);
186 	hashmap__free(d->ident_names);
187 
188 	free(d);
189 }
190 
191 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
192 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
193 
194 /*
195  * Dump BTF type in a compilable C syntax, including all the necessary
196  * dependent types, necessary for compilation. If some of the dependent types
197  * were already emitted as part of previous btf_dump__dump_type() invocation
198  * for another type, they won't be emitted again. This API allows callers to
199  * filter out BTF types according to user-defined criterias and emitted only
200  * minimal subset of types, necessary to compile everything. Full struct/union
201  * definitions will still be emitted, even if the only usage is through
202  * pointer and could be satisfied with just a forward declaration.
203  *
204  * Dumping is done in two high-level passes:
205  *   1. Topologically sort type definitions to satisfy C rules of compilation.
206  *   2. Emit type definitions in C syntax.
207  *
208  * Returns 0 on success; <0, otherwise.
209  */
210 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
211 {
212 	int err, i;
213 
214 	if (id > btf__get_nr_types(d->btf))
215 		return -EINVAL;
216 
217 	/* type states are lazily allocated, as they might not be needed */
218 	if (!d->type_states) {
219 		d->type_states = calloc(1 + btf__get_nr_types(d->btf),
220 					sizeof(d->type_states[0]));
221 		if (!d->type_states)
222 			return -ENOMEM;
223 		d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
224 					 sizeof(d->cached_names[0]));
225 		if (!d->cached_names)
226 			return -ENOMEM;
227 
228 		/* VOID is special */
229 		d->type_states[0].order_state = ORDERED;
230 		d->type_states[0].emit_state = EMITTED;
231 	}
232 
233 	d->emit_queue_cnt = 0;
234 	err = btf_dump_order_type(d, id, false);
235 	if (err < 0)
236 		return err;
237 
238 	for (i = 0; i < d->emit_queue_cnt; i++)
239 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
240 
241 	return 0;
242 }
243 
244 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
245 {
246 	__u32 *new_queue;
247 	size_t new_cap;
248 
249 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
250 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
251 		new_queue = realloc(d->emit_queue,
252 				    new_cap * sizeof(new_queue[0]));
253 		if (!new_queue)
254 			return -ENOMEM;
255 		d->emit_queue = new_queue;
256 		d->emit_queue_cap = new_cap;
257 	}
258 
259 	d->emit_queue[d->emit_queue_cnt++] = id;
260 	return 0;
261 }
262 
263 /*
264  * Determine order of emitting dependent types and specified type to satisfy
265  * C compilation rules.  This is done through topological sorting with an
266  * additional complication which comes from C rules. The main idea for C is
267  * that if some type is "embedded" into a struct/union, it's size needs to be
268  * known at the time of definition of containing type. E.g., for:
269  *
270  *	struct A {};
271  *	struct B { struct A x; }
272  *
273  * struct A *HAS* to be defined before struct B, because it's "embedded",
274  * i.e., it is part of struct B layout. But in the following case:
275  *
276  *	struct A;
277  *	struct B { struct A *x; }
278  *	struct A {};
279  *
280  * it's enough to just have a forward declaration of struct A at the time of
281  * struct B definition, as struct B has a pointer to struct A, so the size of
282  * field x is known without knowing struct A size: it's sizeof(void *).
283  *
284  * Unfortunately, there are some trickier cases we need to handle, e.g.:
285  *
286  *	struct A {}; // if this was forward-declaration: compilation error
287  *	struct B {
288  *		struct { // anonymous struct
289  *			struct A y;
290  *		} *x;
291  *	};
292  *
293  * In this case, struct B's field x is a pointer, so it's size is known
294  * regardless of the size of (anonymous) struct it points to. But because this
295  * struct is anonymous and thus defined inline inside struct B, *and* it
296  * embeds struct A, compiler requires full definition of struct A to be known
297  * before struct B can be defined. This creates a transitive dependency
298  * between struct A and struct B. If struct A was forward-declared before
299  * struct B definition and fully defined after struct B definition, that would
300  * trigger compilation error.
301  *
302  * All this means that while we are doing topological sorting on BTF type
303  * graph, we need to determine relationships between different types (graph
304  * nodes):
305  *   - weak link (relationship) between X and Y, if Y *CAN* be
306  *   forward-declared at the point of X definition;
307  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
308  *
309  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
310  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
311  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
312  * Weak/strong relationship is determined recursively during DFS traversal and
313  * is returned as a result from btf_dump_order_type().
314  *
315  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
316  * but it is not guaranteeing that no extraneous forward declarations will be
317  * emitted.
318  *
319  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
320  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
321  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
322  * entire graph path, so depending where from one came to that BTF type, it
323  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
324  * once they are processed, there is no need to do it again, so they are
325  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
326  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
327  * in any case, once those are processed, no need to do it again, as the
328  * result won't change.
329  *
330  * Returns:
331  *   - 1, if type is part of strong link (so there is strong topological
332  *   ordering requirements);
333  *   - 0, if type is part of weak link (so can be satisfied through forward
334  *   declaration);
335  *   - <0, on error (e.g., unsatisfiable type loop detected).
336  */
337 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
338 {
339 	/*
340 	 * Order state is used to detect strong link cycles, but only for BTF
341 	 * kinds that are or could be an independent definition (i.e.,
342 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
343 	 * func_protos, modifiers are just means to get to these definitions.
344 	 * Int/void don't need definitions, they are assumed to be always
345 	 * properly defined.  We also ignore datasec, var, and funcs for now.
346 	 * So for all non-defining kinds, we never even set ordering state,
347 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
348 	 * forms a strong link.
349 	 */
350 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
351 	const struct btf_type *t;
352 	__u16 kind, vlen;
353 	int err, i;
354 
355 	/* return true, letting typedefs know that it's ok to be emitted */
356 	if (tstate->order_state == ORDERED)
357 		return 1;
358 
359 	t = btf__type_by_id(d->btf, id);
360 	kind = btf_kind_of(t);
361 
362 	if (tstate->order_state == ORDERING) {
363 		/* type loop, but resolvable through fwd declaration */
364 		if ((kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION) &&
365 		    through_ptr && t->name_off != 0)
366 			return 0;
367 		pr_warning("unsatisfiable type cycle, id:[%u]\n", id);
368 		return -ELOOP;
369 	}
370 
371 	switch (kind) {
372 	case BTF_KIND_INT:
373 		tstate->order_state = ORDERED;
374 		return 0;
375 
376 	case BTF_KIND_PTR:
377 		err = btf_dump_order_type(d, t->type, true);
378 		tstate->order_state = ORDERED;
379 		return err;
380 
381 	case BTF_KIND_ARRAY: {
382 		const struct btf_array *a = (void *)(t + 1);
383 
384 		return btf_dump_order_type(d, a->type, through_ptr);
385 	}
386 	case BTF_KIND_STRUCT:
387 	case BTF_KIND_UNION: {
388 		const struct btf_member *m = (void *)(t + 1);
389 		/*
390 		 * struct/union is part of strong link, only if it's embedded
391 		 * (so no ptr in a path) or it's anonymous (so has to be
392 		 * defined inline, even if declared through ptr)
393 		 */
394 		if (through_ptr && t->name_off != 0)
395 			return 0;
396 
397 		tstate->order_state = ORDERING;
398 
399 		vlen = btf_vlen_of(t);
400 		for (i = 0; i < vlen; i++, m++) {
401 			err = btf_dump_order_type(d, m->type, false);
402 			if (err < 0)
403 				return err;
404 		}
405 
406 		if (t->name_off != 0) {
407 			err = btf_dump_add_emit_queue_id(d, id);
408 			if (err < 0)
409 				return err;
410 		}
411 
412 		tstate->order_state = ORDERED;
413 		return 1;
414 	}
415 	case BTF_KIND_ENUM:
416 	case BTF_KIND_FWD:
417 		if (t->name_off != 0) {
418 			err = btf_dump_add_emit_queue_id(d, id);
419 			if (err)
420 				return err;
421 		}
422 		tstate->order_state = ORDERED;
423 		return 1;
424 
425 	case BTF_KIND_TYPEDEF: {
426 		int is_strong;
427 
428 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
429 		if (is_strong < 0)
430 			return is_strong;
431 
432 		/* typedef is similar to struct/union w.r.t. fwd-decls */
433 		if (through_ptr && !is_strong)
434 			return 0;
435 
436 		/* typedef is always a named definition */
437 		err = btf_dump_add_emit_queue_id(d, id);
438 		if (err)
439 			return err;
440 
441 		d->type_states[id].order_state = ORDERED;
442 		return 1;
443 	}
444 	case BTF_KIND_VOLATILE:
445 	case BTF_KIND_CONST:
446 	case BTF_KIND_RESTRICT:
447 		return btf_dump_order_type(d, t->type, through_ptr);
448 
449 	case BTF_KIND_FUNC_PROTO: {
450 		const struct btf_param *p = (void *)(t + 1);
451 		bool is_strong;
452 
453 		err = btf_dump_order_type(d, t->type, through_ptr);
454 		if (err < 0)
455 			return err;
456 		is_strong = err > 0;
457 
458 		vlen = btf_vlen_of(t);
459 		for (i = 0; i < vlen; i++, p++) {
460 			err = btf_dump_order_type(d, p->type, through_ptr);
461 			if (err < 0)
462 				return err;
463 			if (err > 0)
464 				is_strong = true;
465 		}
466 		return is_strong;
467 	}
468 	case BTF_KIND_FUNC:
469 	case BTF_KIND_VAR:
470 	case BTF_KIND_DATASEC:
471 		d->type_states[id].order_state = ORDERED;
472 		return 0;
473 
474 	default:
475 		return -EINVAL;
476 	}
477 }
478 
479 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
480 				     const struct btf_type *t);
481 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
482 				     const struct btf_type *t, int lvl);
483 
484 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
485 				   const struct btf_type *t);
486 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
487 				   const struct btf_type *t, int lvl);
488 
489 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
490 				  const struct btf_type *t);
491 
492 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
493 				      const struct btf_type *t, int lvl);
494 
495 /* a local view into a shared stack */
496 struct id_stack {
497 	const __u32 *ids;
498 	int cnt;
499 };
500 
501 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
502 				    const char *fname, int lvl);
503 static void btf_dump_emit_type_chain(struct btf_dump *d,
504 				     struct id_stack *decl_stack,
505 				     const char *fname, int lvl);
506 
507 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
508 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
509 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
510 				 const char *orig_name);
511 
512 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
513 {
514 	const struct btf_type *t = btf__type_by_id(d->btf, id);
515 
516 	/* __builtin_va_list is a compiler built-in, which causes compilation
517 	 * errors, when compiling w/ different compiler, then used to compile
518 	 * original code (e.g., GCC to compile kernel, Clang to use generated
519 	 * C header from BTF). As it is built-in, it should be already defined
520 	 * properly internally in compiler.
521 	 */
522 	if (t->name_off == 0)
523 		return false;
524 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
525 }
526 
527 /*
528  * Emit C-syntax definitions of types from chains of BTF types.
529  *
530  * High-level handling of determining necessary forward declarations are handled
531  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
532  * declarations/definitions in C syntax  are handled by a combo of
533  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
534  * corresponding btf_dump_emit_*_{def,fwd}() functions.
535  *
536  * We also keep track of "containing struct/union type ID" to determine when
537  * we reference it from inside and thus can avoid emitting unnecessary forward
538  * declaration.
539  *
540  * This algorithm is designed in such a way, that even if some error occurs
541  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
542  * that doesn't comply to C rules completely), algorithm will try to proceed
543  * and produce as much meaningful output as possible.
544  */
545 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
546 {
547 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
548 	bool top_level_def = cont_id == 0;
549 	const struct btf_type *t;
550 	__u16 kind;
551 
552 	if (tstate->emit_state == EMITTED)
553 		return;
554 
555 	t = btf__type_by_id(d->btf, id);
556 	kind = btf_kind_of(t);
557 
558 	if (top_level_def && t->name_off == 0) {
559 		pr_warning("unexpected nameless definition, id:[%u]\n", id);
560 		return;
561 	}
562 
563 	if (tstate->emit_state == EMITTING) {
564 		if (tstate->fwd_emitted)
565 			return;
566 
567 		switch (kind) {
568 		case BTF_KIND_STRUCT:
569 		case BTF_KIND_UNION:
570 			/*
571 			 * if we are referencing a struct/union that we are
572 			 * part of - then no need for fwd declaration
573 			 */
574 			if (id == cont_id)
575 				return;
576 			if (t->name_off == 0) {
577 				pr_warning("anonymous struct/union loop, id:[%u]\n",
578 					   id);
579 				return;
580 			}
581 			btf_dump_emit_struct_fwd(d, id, t);
582 			btf_dump_printf(d, ";\n\n");
583 			tstate->fwd_emitted = 1;
584 			break;
585 		case BTF_KIND_TYPEDEF:
586 			/*
587 			 * for typedef fwd_emitted means typedef definition
588 			 * was emitted, but it can be used only for "weak"
589 			 * references through pointer only, not for embedding
590 			 */
591 			if (!btf_dump_is_blacklisted(d, id)) {
592 				btf_dump_emit_typedef_def(d, id, t, 0);
593 				btf_dump_printf(d, ";\n\n");
594 			};
595 			tstate->fwd_emitted = 1;
596 			break;
597 		default:
598 			break;
599 		}
600 
601 		return;
602 	}
603 
604 	switch (kind) {
605 	case BTF_KIND_INT:
606 		tstate->emit_state = EMITTED;
607 		break;
608 	case BTF_KIND_ENUM:
609 		if (top_level_def) {
610 			btf_dump_emit_enum_def(d, id, t, 0);
611 			btf_dump_printf(d, ";\n\n");
612 		}
613 		tstate->emit_state = EMITTED;
614 		break;
615 	case BTF_KIND_PTR:
616 	case BTF_KIND_VOLATILE:
617 	case BTF_KIND_CONST:
618 	case BTF_KIND_RESTRICT:
619 		btf_dump_emit_type(d, t->type, cont_id);
620 		break;
621 	case BTF_KIND_ARRAY: {
622 		const struct btf_array *a = (void *)(t + 1);
623 
624 		btf_dump_emit_type(d, a->type, cont_id);
625 		break;
626 	}
627 	case BTF_KIND_FWD:
628 		btf_dump_emit_fwd_def(d, id, t);
629 		btf_dump_printf(d, ";\n\n");
630 		tstate->emit_state = EMITTED;
631 		break;
632 	case BTF_KIND_TYPEDEF:
633 		tstate->emit_state = EMITTING;
634 		btf_dump_emit_type(d, t->type, id);
635 		/*
636 		 * typedef can server as both definition and forward
637 		 * declaration; at this stage someone depends on
638 		 * typedef as a forward declaration (refers to it
639 		 * through pointer), so unless we already did it,
640 		 * emit typedef as a forward declaration
641 		 */
642 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
643 			btf_dump_emit_typedef_def(d, id, t, 0);
644 			btf_dump_printf(d, ";\n\n");
645 		}
646 		tstate->emit_state = EMITTED;
647 		break;
648 	case BTF_KIND_STRUCT:
649 	case BTF_KIND_UNION:
650 		tstate->emit_state = EMITTING;
651 		/* if it's a top-level struct/union definition or struct/union
652 		 * is anonymous, then in C we'll be emitting all fields and
653 		 * their types (as opposed to just `struct X`), so we need to
654 		 * make sure that all types, referenced from struct/union
655 		 * members have necessary forward-declarations, where
656 		 * applicable
657 		 */
658 		if (top_level_def || t->name_off == 0) {
659 			const struct btf_member *m = (void *)(t + 1);
660 			__u16 vlen = btf_vlen_of(t);
661 			int i, new_cont_id;
662 
663 			new_cont_id = t->name_off == 0 ? cont_id : id;
664 			for (i = 0; i < vlen; i++, m++)
665 				btf_dump_emit_type(d, m->type, new_cont_id);
666 		} else if (!tstate->fwd_emitted && id != cont_id) {
667 			btf_dump_emit_struct_fwd(d, id, t);
668 			btf_dump_printf(d, ";\n\n");
669 			tstate->fwd_emitted = 1;
670 		}
671 
672 		if (top_level_def) {
673 			btf_dump_emit_struct_def(d, id, t, 0);
674 			btf_dump_printf(d, ";\n\n");
675 			tstate->emit_state = EMITTED;
676 		} else {
677 			tstate->emit_state = NOT_EMITTED;
678 		}
679 		break;
680 	case BTF_KIND_FUNC_PROTO: {
681 		const struct btf_param *p = (void *)(t + 1);
682 		__u16 vlen = btf_vlen_of(t);
683 		int i;
684 
685 		btf_dump_emit_type(d, t->type, cont_id);
686 		for (i = 0; i < vlen; i++, p++)
687 			btf_dump_emit_type(d, p->type, cont_id);
688 
689 		break;
690 	}
691 	default:
692 		break;
693 	}
694 }
695 
696 static int btf_align_of(const struct btf *btf, __u32 id)
697 {
698 	const struct btf_type *t = btf__type_by_id(btf, id);
699 	__u16 kind = btf_kind_of(t);
700 
701 	switch (kind) {
702 	case BTF_KIND_INT:
703 	case BTF_KIND_ENUM:
704 		return min(sizeof(void *), t->size);
705 	case BTF_KIND_PTR:
706 		return sizeof(void *);
707 	case BTF_KIND_TYPEDEF:
708 	case BTF_KIND_VOLATILE:
709 	case BTF_KIND_CONST:
710 	case BTF_KIND_RESTRICT:
711 		return btf_align_of(btf, t->type);
712 	case BTF_KIND_ARRAY: {
713 		const struct btf_array *a = (void *)(t + 1);
714 
715 		return btf_align_of(btf, a->type);
716 	}
717 	case BTF_KIND_STRUCT:
718 	case BTF_KIND_UNION: {
719 		const struct btf_member *m = (void *)(t + 1);
720 		__u16 vlen = btf_vlen_of(t);
721 		int i, align = 1;
722 
723 		for (i = 0; i < vlen; i++, m++)
724 			align = max(align, btf_align_of(btf, m->type));
725 
726 		return align;
727 	}
728 	default:
729 		pr_warning("unsupported BTF_KIND:%u\n", btf_kind_of(t));
730 		return 1;
731 	}
732 }
733 
734 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
735 				 const struct btf_type *t)
736 {
737 	const struct btf_member *m;
738 	int align, i, bit_sz;
739 	__u16 vlen;
740 	bool kflag;
741 
742 	align = btf_align_of(btf, id);
743 	/* size of a non-packed struct has to be a multiple of its alignment*/
744 	if (t->size % align)
745 		return true;
746 
747 	m = (void *)(t + 1);
748 	kflag = btf_kflag_of(t);
749 	vlen = btf_vlen_of(t);
750 	/* all non-bitfield fields have to be naturally aligned */
751 	for (i = 0; i < vlen; i++, m++) {
752 		align = btf_align_of(btf, m->type);
753 		bit_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0;
754 		if (bit_sz == 0 && m->offset % (8 * align) != 0)
755 			return true;
756 	}
757 
758 	/*
759 	 * if original struct was marked as packed, but its layout is
760 	 * naturally aligned, we'll detect that it's not packed
761 	 */
762 	return false;
763 }
764 
765 static int chip_away_bits(int total, int at_most)
766 {
767 	return total % at_most ? : at_most;
768 }
769 
770 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
771 				      int cur_off, int m_off, int m_bit_sz,
772 				      int align, int lvl)
773 {
774 	int off_diff = m_off - cur_off;
775 	int ptr_bits = sizeof(void *) * 8;
776 
777 	if (off_diff <= 0)
778 		/* no gap */
779 		return;
780 	if (m_bit_sz == 0 && off_diff < align * 8)
781 		/* natural padding will take care of a gap */
782 		return;
783 
784 	while (off_diff > 0) {
785 		const char *pad_type;
786 		int pad_bits;
787 
788 		if (ptr_bits > 32 && off_diff > 32) {
789 			pad_type = "long";
790 			pad_bits = chip_away_bits(off_diff, ptr_bits);
791 		} else if (off_diff > 16) {
792 			pad_type = "int";
793 			pad_bits = chip_away_bits(off_diff, 32);
794 		} else if (off_diff > 8) {
795 			pad_type = "short";
796 			pad_bits = chip_away_bits(off_diff, 16);
797 		} else {
798 			pad_type = "char";
799 			pad_bits = chip_away_bits(off_diff, 8);
800 		}
801 		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
802 		off_diff -= pad_bits;
803 	}
804 }
805 
806 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
807 				     const struct btf_type *t)
808 {
809 	btf_dump_printf(d, "%s %s",
810 			btf_kind_of(t) == BTF_KIND_STRUCT ? "struct" : "union",
811 			btf_dump_type_name(d, id));
812 }
813 
814 static void btf_dump_emit_struct_def(struct btf_dump *d,
815 				     __u32 id,
816 				     const struct btf_type *t,
817 				     int lvl)
818 {
819 	const struct btf_member *m = (void *)(t + 1);
820 	bool kflag = btf_kflag_of(t), is_struct;
821 	int align, i, packed, off = 0;
822 	__u16 vlen = btf_vlen_of(t);
823 
824 	is_struct = btf_kind_of(t) == BTF_KIND_STRUCT;
825 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
826 	align = packed ? 1 : btf_align_of(d->btf, id);
827 
828 	btf_dump_printf(d, "%s%s%s {",
829 			is_struct ? "struct" : "union",
830 			t->name_off ? " " : "",
831 			btf_dump_type_name(d, id));
832 
833 	for (i = 0; i < vlen; i++, m++) {
834 		const char *fname;
835 		int m_off, m_sz;
836 
837 		fname = btf_name_of(d, m->name_off);
838 		m_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0;
839 		m_off = kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset;
840 		align = packed ? 1 : btf_align_of(d->btf, m->type);
841 
842 		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
843 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
844 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
845 
846 		if (m_sz) {
847 			btf_dump_printf(d, ": %d", m_sz);
848 			off = m_off + m_sz;
849 		} else {
850 			m_sz = max(0, btf__resolve_size(d->btf, m->type));
851 			off = m_off + m_sz * 8;
852 		}
853 		btf_dump_printf(d, ";");
854 	}
855 
856 	if (vlen)
857 		btf_dump_printf(d, "\n");
858 	btf_dump_printf(d, "%s}", pfx(lvl));
859 	if (packed)
860 		btf_dump_printf(d, " __attribute__((packed))");
861 }
862 
863 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
864 				   const struct btf_type *t)
865 {
866 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
867 }
868 
869 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
870 				   const struct btf_type *t,
871 				   int lvl)
872 {
873 	const struct btf_enum *v = (void *)(t+1);
874 	__u16 vlen = btf_vlen_of(t);
875 	const char *name;
876 	size_t dup_cnt;
877 	int i;
878 
879 	btf_dump_printf(d, "enum%s%s",
880 			t->name_off ? " " : "",
881 			btf_dump_type_name(d, id));
882 
883 	if (vlen) {
884 		btf_dump_printf(d, " {");
885 		for (i = 0; i < vlen; i++, v++) {
886 			name = btf_name_of(d, v->name_off);
887 			/* enumerators share namespace with typedef idents */
888 			dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
889 			if (dup_cnt > 1) {
890 				btf_dump_printf(d, "\n%s%s___%zu = %d,",
891 						pfx(lvl + 1), name, dup_cnt,
892 						(__s32)v->val);
893 			} else {
894 				btf_dump_printf(d, "\n%s%s = %d,",
895 						pfx(lvl + 1), name,
896 						(__s32)v->val);
897 			}
898 		}
899 		btf_dump_printf(d, "\n%s}", pfx(lvl));
900 	}
901 }
902 
903 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
904 				  const struct btf_type *t)
905 {
906 	const char *name = btf_dump_type_name(d, id);
907 
908 	if (btf_kflag_of(t))
909 		btf_dump_printf(d, "union %s", name);
910 	else
911 		btf_dump_printf(d, "struct %s", name);
912 }
913 
914 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
915 				     const struct btf_type *t, int lvl)
916 {
917 	const char *name = btf_dump_ident_name(d, id);
918 
919 	btf_dump_printf(d, "typedef ");
920 	btf_dump_emit_type_decl(d, t->type, name, lvl);
921 }
922 
923 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
924 {
925 	__u32 *new_stack;
926 	size_t new_cap;
927 
928 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
929 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
930 		new_stack = realloc(d->decl_stack,
931 				    new_cap * sizeof(new_stack[0]));
932 		if (!new_stack)
933 			return -ENOMEM;
934 		d->decl_stack = new_stack;
935 		d->decl_stack_cap = new_cap;
936 	}
937 
938 	d->decl_stack[d->decl_stack_cnt++] = id;
939 
940 	return 0;
941 }
942 
943 /*
944  * Emit type declaration (e.g., field type declaration in a struct or argument
945  * declaration in function prototype) in correct C syntax.
946  *
947  * For most types it's trivial, but there are few quirky type declaration
948  * cases worth mentioning:
949  *   - function prototypes (especially nesting of function prototypes);
950  *   - arrays;
951  *   - const/volatile/restrict for pointers vs other types.
952  *
953  * For a good discussion of *PARSING* C syntax (as a human), see
954  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
955  * Ch.3 "Unscrambling Declarations in C".
956  *
957  * It won't help with BTF to C conversion much, though, as it's an opposite
958  * problem. So we came up with this algorithm in reverse to van der Linden's
959  * parsing algorithm. It goes from structured BTF representation of type
960  * declaration to a valid compilable C syntax.
961  *
962  * For instance, consider this C typedef:
963  *	typedef const int * const * arr[10] arr_t;
964  * It will be represented in BTF with this chain of BTF types:
965  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
966  *
967  * Notice how [const] modifier always goes before type it modifies in BTF type
968  * graph, but in C syntax, const/volatile/restrict modifiers are written to
969  * the right of pointers, but to the left of other types. There are also other
970  * quirks, like function pointers, arrays of them, functions returning other
971  * functions, etc.
972  *
973  * We handle that by pushing all the types to a stack, until we hit "terminal"
974  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
975  * top of a stack, modifiers are handled differently. Array/function pointers
976  * have also wildly different syntax and how nesting of them are done. See
977  * code for authoritative definition.
978  *
979  * To avoid allocating new stack for each independent chain of BTF types, we
980  * share one bigger stack, with each chain working only on its own local view
981  * of a stack frame. Some care is required to "pop" stack frames after
982  * processing type declaration chain.
983  */
984 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
985 				    const char *fname, int lvl)
986 {
987 	struct id_stack decl_stack;
988 	const struct btf_type *t;
989 	int err, stack_start;
990 	__u16 kind;
991 
992 	stack_start = d->decl_stack_cnt;
993 	for (;;) {
994 		err = btf_dump_push_decl_stack_id(d, id);
995 		if (err < 0) {
996 			/*
997 			 * if we don't have enough memory for entire type decl
998 			 * chain, restore stack, emit warning, and try to
999 			 * proceed nevertheless
1000 			 */
1001 			pr_warning("not enough memory for decl stack:%d", err);
1002 			d->decl_stack_cnt = stack_start;
1003 			return;
1004 		}
1005 
1006 		/* VOID */
1007 		if (id == 0)
1008 			break;
1009 
1010 		t = btf__type_by_id(d->btf, id);
1011 		kind = btf_kind_of(t);
1012 		switch (kind) {
1013 		case BTF_KIND_PTR:
1014 		case BTF_KIND_VOLATILE:
1015 		case BTF_KIND_CONST:
1016 		case BTF_KIND_RESTRICT:
1017 		case BTF_KIND_FUNC_PROTO:
1018 			id = t->type;
1019 			break;
1020 		case BTF_KIND_ARRAY: {
1021 			const struct btf_array *a = (void *)(t + 1);
1022 
1023 			id = a->type;
1024 			break;
1025 		}
1026 		case BTF_KIND_INT:
1027 		case BTF_KIND_ENUM:
1028 		case BTF_KIND_FWD:
1029 		case BTF_KIND_STRUCT:
1030 		case BTF_KIND_UNION:
1031 		case BTF_KIND_TYPEDEF:
1032 			goto done;
1033 		default:
1034 			pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1035 				   kind, id);
1036 			goto done;
1037 		}
1038 	}
1039 done:
1040 	/*
1041 	 * We might be inside a chain of declarations (e.g., array of function
1042 	 * pointers returning anonymous (so inlined) structs, having another
1043 	 * array field). Each of those needs its own "stack frame" to handle
1044 	 * emitting of declarations. Those stack frames are non-overlapping
1045 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1046 	 * handle this set of nested stacks, we create a view corresponding to
1047 	 * our own "stack frame" and work with it as an independent stack.
1048 	 * We'll need to clean up after emit_type_chain() returns, though.
1049 	 */
1050 	decl_stack.ids = d->decl_stack + stack_start;
1051 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1052 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1053 	/*
1054 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1055 	 * frame before returning. But it works with a read-only view into
1056 	 * decl_stack, so it doesn't actually pop anything from the
1057 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1058 	 * reset decl_stack state to how it was before us to avoid it growing
1059 	 * all the time.
1060 	 */
1061 	d->decl_stack_cnt = stack_start;
1062 }
1063 
1064 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1065 {
1066 	const struct btf_type *t;
1067 	__u32 id;
1068 
1069 	while (decl_stack->cnt) {
1070 		id = decl_stack->ids[decl_stack->cnt - 1];
1071 		t = btf__type_by_id(d->btf, id);
1072 
1073 		switch (btf_kind_of(t)) {
1074 		case BTF_KIND_VOLATILE:
1075 			btf_dump_printf(d, "volatile ");
1076 			break;
1077 		case BTF_KIND_CONST:
1078 			btf_dump_printf(d, "const ");
1079 			break;
1080 		case BTF_KIND_RESTRICT:
1081 			btf_dump_printf(d, "restrict ");
1082 			break;
1083 		default:
1084 			return;
1085 		}
1086 		decl_stack->cnt--;
1087 	}
1088 }
1089 
1090 static bool btf_is_mod_kind(const struct btf *btf, __u32 id)
1091 {
1092 	const struct btf_type *t = btf__type_by_id(btf, id);
1093 
1094 	switch (btf_kind_of(t)) {
1095 	case BTF_KIND_VOLATILE:
1096 	case BTF_KIND_CONST:
1097 	case BTF_KIND_RESTRICT:
1098 		return true;
1099 	default:
1100 		return false;
1101 	}
1102 }
1103 
1104 static void btf_dump_emit_name(const struct btf_dump *d,
1105 			       const char *name, bool last_was_ptr)
1106 {
1107 	bool separate = name[0] && !last_was_ptr;
1108 
1109 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1110 }
1111 
1112 static void btf_dump_emit_type_chain(struct btf_dump *d,
1113 				     struct id_stack *decls,
1114 				     const char *fname, int lvl)
1115 {
1116 	/*
1117 	 * last_was_ptr is used to determine if we need to separate pointer
1118 	 * asterisk (*) from previous part of type signature with space, so
1119 	 * that we get `int ***`, instead of `int * * *`. We default to true
1120 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1121 	 * func_proto case. func_proto will start a new emit_type_chain call
1122 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1123 	 * don't want to prepend space for that last pointer.
1124 	 */
1125 	bool last_was_ptr = true;
1126 	const struct btf_type *t;
1127 	const char *name;
1128 	__u16 kind;
1129 	__u32 id;
1130 
1131 	while (decls->cnt) {
1132 		id = decls->ids[--decls->cnt];
1133 		if (id == 0) {
1134 			/* VOID is a special snowflake */
1135 			btf_dump_emit_mods(d, decls);
1136 			btf_dump_printf(d, "void");
1137 			last_was_ptr = false;
1138 			continue;
1139 		}
1140 
1141 		t = btf__type_by_id(d->btf, id);
1142 		kind = btf_kind_of(t);
1143 
1144 		switch (kind) {
1145 		case BTF_KIND_INT:
1146 			btf_dump_emit_mods(d, decls);
1147 			name = btf_name_of(d, t->name_off);
1148 			btf_dump_printf(d, "%s", name);
1149 			break;
1150 		case BTF_KIND_STRUCT:
1151 		case BTF_KIND_UNION:
1152 			btf_dump_emit_mods(d, decls);
1153 			/* inline anonymous struct/union */
1154 			if (t->name_off == 0)
1155 				btf_dump_emit_struct_def(d, id, t, lvl);
1156 			else
1157 				btf_dump_emit_struct_fwd(d, id, t);
1158 			break;
1159 		case BTF_KIND_ENUM:
1160 			btf_dump_emit_mods(d, decls);
1161 			/* inline anonymous enum */
1162 			if (t->name_off == 0)
1163 				btf_dump_emit_enum_def(d, id, t, lvl);
1164 			else
1165 				btf_dump_emit_enum_fwd(d, id, t);
1166 			break;
1167 		case BTF_KIND_FWD:
1168 			btf_dump_emit_mods(d, decls);
1169 			btf_dump_emit_fwd_def(d, id, t);
1170 			break;
1171 		case BTF_KIND_TYPEDEF:
1172 			btf_dump_emit_mods(d, decls);
1173 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1174 			break;
1175 		case BTF_KIND_PTR:
1176 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1177 			break;
1178 		case BTF_KIND_VOLATILE:
1179 			btf_dump_printf(d, " volatile");
1180 			break;
1181 		case BTF_KIND_CONST:
1182 			btf_dump_printf(d, " const");
1183 			break;
1184 		case BTF_KIND_RESTRICT:
1185 			btf_dump_printf(d, " restrict");
1186 			break;
1187 		case BTF_KIND_ARRAY: {
1188 			const struct btf_array *a = (void *)(t + 1);
1189 			const struct btf_type *next_t;
1190 			__u32 next_id;
1191 			bool multidim;
1192 			/*
1193 			 * GCC has a bug
1194 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1195 			 * which causes it to emit extra const/volatile
1196 			 * modifiers for an array, if array's element type has
1197 			 * const/volatile modifiers. Clang doesn't do that.
1198 			 * In general, it doesn't seem very meaningful to have
1199 			 * a const/volatile modifier for array, so we are
1200 			 * going to silently skip them here.
1201 			 */
1202 			while (decls->cnt) {
1203 				next_id = decls->ids[decls->cnt - 1];
1204 				if (btf_is_mod_kind(d->btf, next_id))
1205 					decls->cnt--;
1206 				else
1207 					break;
1208 			}
1209 
1210 			if (decls->cnt == 0) {
1211 				btf_dump_emit_name(d, fname, last_was_ptr);
1212 				btf_dump_printf(d, "[%u]", a->nelems);
1213 				return;
1214 			}
1215 
1216 			next_t = btf__type_by_id(d->btf, next_id);
1217 			multidim = btf_kind_of(next_t) == BTF_KIND_ARRAY;
1218 			/* we need space if we have named non-pointer */
1219 			if (fname[0] && !last_was_ptr)
1220 				btf_dump_printf(d, " ");
1221 			/* no parentheses for multi-dimensional array */
1222 			if (!multidim)
1223 				btf_dump_printf(d, "(");
1224 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1225 			if (!multidim)
1226 				btf_dump_printf(d, ")");
1227 			btf_dump_printf(d, "[%u]", a->nelems);
1228 			return;
1229 		}
1230 		case BTF_KIND_FUNC_PROTO: {
1231 			const struct btf_param *p = (void *)(t + 1);
1232 			__u16 vlen = btf_vlen_of(t);
1233 			int i;
1234 
1235 			btf_dump_emit_mods(d, decls);
1236 			if (decls->cnt) {
1237 				btf_dump_printf(d, " (");
1238 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1239 				btf_dump_printf(d, ")");
1240 			} else {
1241 				btf_dump_emit_name(d, fname, last_was_ptr);
1242 			}
1243 			btf_dump_printf(d, "(");
1244 			/*
1245 			 * Clang for BPF target generates func_proto with no
1246 			 * args as a func_proto with a single void arg (e.g.,
1247 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1248 			 * going to pretend there are no args for such case.
1249 			 */
1250 			if (vlen == 1 && p->type == 0) {
1251 				btf_dump_printf(d, ")");
1252 				return;
1253 			}
1254 
1255 			for (i = 0; i < vlen; i++, p++) {
1256 				if (i > 0)
1257 					btf_dump_printf(d, ", ");
1258 
1259 				/* last arg of type void is vararg */
1260 				if (i == vlen - 1 && p->type == 0) {
1261 					btf_dump_printf(d, "...");
1262 					break;
1263 				}
1264 
1265 				name = btf_name_of(d, p->name_off);
1266 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1267 			}
1268 
1269 			btf_dump_printf(d, ")");
1270 			return;
1271 		}
1272 		default:
1273 			pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1274 				   kind, id);
1275 			return;
1276 		}
1277 
1278 		last_was_ptr = kind == BTF_KIND_PTR;
1279 	}
1280 
1281 	btf_dump_emit_name(d, fname, last_was_ptr);
1282 }
1283 
1284 /* return number of duplicates (occurrences) of a given name */
1285 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1286 				 const char *orig_name)
1287 {
1288 	size_t dup_cnt = 0;
1289 
1290 	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1291 	dup_cnt++;
1292 	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1293 
1294 	return dup_cnt;
1295 }
1296 
1297 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1298 					 struct hashmap *name_map)
1299 {
1300 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1301 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1302 	const char *orig_name = btf_name_of(d, t->name_off);
1303 	const char **cached_name = &d->cached_names[id];
1304 	size_t dup_cnt;
1305 
1306 	if (t->name_off == 0)
1307 		return "";
1308 
1309 	if (s->name_resolved)
1310 		return *cached_name ? *cached_name : orig_name;
1311 
1312 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1313 	if (dup_cnt > 1) {
1314 		const size_t max_len = 256;
1315 		char new_name[max_len];
1316 
1317 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1318 		*cached_name = strdup(new_name);
1319 	}
1320 
1321 	s->name_resolved = 1;
1322 	return *cached_name ? *cached_name : orig_name;
1323 }
1324 
1325 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1326 {
1327 	return btf_dump_resolve_name(d, id, d->type_names);
1328 }
1329 
1330 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1331 {
1332 	return btf_dump_resolve_name(d, id, d->ident_names);
1333 }
1334