1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <errno.h> 14 #include <linux/err.h> 15 #include <linux/btf.h> 16 #include <linux/kernel.h> 17 #include "btf.h" 18 #include "hashmap.h" 19 #include "libbpf.h" 20 #include "libbpf_internal.h" 21 22 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 23 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 24 25 static const char *pfx(int lvl) 26 { 27 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 28 } 29 30 enum btf_dump_type_order_state { 31 NOT_ORDERED, 32 ORDERING, 33 ORDERED, 34 }; 35 36 enum btf_dump_type_emit_state { 37 NOT_EMITTED, 38 EMITTING, 39 EMITTED, 40 }; 41 42 /* per-type auxiliary state */ 43 struct btf_dump_type_aux_state { 44 /* topological sorting state */ 45 enum btf_dump_type_order_state order_state: 2; 46 /* emitting state used to determine the need for forward declaration */ 47 enum btf_dump_type_emit_state emit_state: 2; 48 /* whether forward declaration was already emitted */ 49 __u8 fwd_emitted: 1; 50 /* whether unique non-duplicate name was already assigned */ 51 __u8 name_resolved: 1; 52 /* whether type is referenced from any other type */ 53 __u8 referenced: 1; 54 }; 55 56 struct btf_dump { 57 const struct btf *btf; 58 const struct btf_ext *btf_ext; 59 btf_dump_printf_fn_t printf_fn; 60 struct btf_dump_opts opts; 61 int ptr_sz; 62 bool strip_mods; 63 64 /* per-type auxiliary state */ 65 struct btf_dump_type_aux_state *type_states; 66 /* per-type optional cached unique name, must be freed, if present */ 67 const char **cached_names; 68 69 /* topo-sorted list of dependent type definitions */ 70 __u32 *emit_queue; 71 int emit_queue_cap; 72 int emit_queue_cnt; 73 74 /* 75 * stack of type declarations (e.g., chain of modifiers, arrays, 76 * funcs, etc) 77 */ 78 __u32 *decl_stack; 79 int decl_stack_cap; 80 int decl_stack_cnt; 81 82 /* maps struct/union/enum name to a number of name occurrences */ 83 struct hashmap *type_names; 84 /* 85 * maps typedef identifiers and enum value names to a number of such 86 * name occurrences 87 */ 88 struct hashmap *ident_names; 89 }; 90 91 static size_t str_hash_fn(const void *key, void *ctx) 92 { 93 const char *s = key; 94 size_t h = 0; 95 96 while (*s) { 97 h = h * 31 + *s; 98 s++; 99 } 100 return h; 101 } 102 103 static bool str_equal_fn(const void *a, const void *b, void *ctx) 104 { 105 return strcmp(a, b) == 0; 106 } 107 108 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 109 { 110 return btf__name_by_offset(d->btf, name_off); 111 } 112 113 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 114 { 115 va_list args; 116 117 va_start(args, fmt); 118 d->printf_fn(d->opts.ctx, fmt, args); 119 va_end(args); 120 } 121 122 static int btf_dump_mark_referenced(struct btf_dump *d); 123 124 struct btf_dump *btf_dump__new(const struct btf *btf, 125 const struct btf_ext *btf_ext, 126 const struct btf_dump_opts *opts, 127 btf_dump_printf_fn_t printf_fn) 128 { 129 struct btf_dump *d; 130 int err; 131 132 d = calloc(1, sizeof(struct btf_dump)); 133 if (!d) 134 return ERR_PTR(-ENOMEM); 135 136 d->btf = btf; 137 d->btf_ext = btf_ext; 138 d->printf_fn = printf_fn; 139 d->opts.ctx = opts ? opts->ctx : NULL; 140 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 141 142 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 143 if (IS_ERR(d->type_names)) { 144 err = PTR_ERR(d->type_names); 145 d->type_names = NULL; 146 goto err; 147 } 148 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 149 if (IS_ERR(d->ident_names)) { 150 err = PTR_ERR(d->ident_names); 151 d->ident_names = NULL; 152 goto err; 153 } 154 d->type_states = calloc(1 + btf__get_nr_types(d->btf), 155 sizeof(d->type_states[0])); 156 if (!d->type_states) { 157 err = -ENOMEM; 158 goto err; 159 } 160 d->cached_names = calloc(1 + btf__get_nr_types(d->btf), 161 sizeof(d->cached_names[0])); 162 if (!d->cached_names) { 163 err = -ENOMEM; 164 goto err; 165 } 166 167 /* VOID is special */ 168 d->type_states[0].order_state = ORDERED; 169 d->type_states[0].emit_state = EMITTED; 170 171 /* eagerly determine referenced types for anon enums */ 172 err = btf_dump_mark_referenced(d); 173 if (err) 174 goto err; 175 176 return d; 177 err: 178 btf_dump__free(d); 179 return ERR_PTR(err); 180 } 181 182 void btf_dump__free(struct btf_dump *d) 183 { 184 int i, cnt; 185 186 if (IS_ERR_OR_NULL(d)) 187 return; 188 189 free(d->type_states); 190 if (d->cached_names) { 191 /* any set cached name is owned by us and should be freed */ 192 for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) { 193 if (d->cached_names[i]) 194 free((void *)d->cached_names[i]); 195 } 196 } 197 free(d->cached_names); 198 free(d->emit_queue); 199 free(d->decl_stack); 200 hashmap__free(d->type_names); 201 hashmap__free(d->ident_names); 202 203 free(d); 204 } 205 206 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 207 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 208 209 /* 210 * Dump BTF type in a compilable C syntax, including all the necessary 211 * dependent types, necessary for compilation. If some of the dependent types 212 * were already emitted as part of previous btf_dump__dump_type() invocation 213 * for another type, they won't be emitted again. This API allows callers to 214 * filter out BTF types according to user-defined criterias and emitted only 215 * minimal subset of types, necessary to compile everything. Full struct/union 216 * definitions will still be emitted, even if the only usage is through 217 * pointer and could be satisfied with just a forward declaration. 218 * 219 * Dumping is done in two high-level passes: 220 * 1. Topologically sort type definitions to satisfy C rules of compilation. 221 * 2. Emit type definitions in C syntax. 222 * 223 * Returns 0 on success; <0, otherwise. 224 */ 225 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 226 { 227 int err, i; 228 229 if (id > btf__get_nr_types(d->btf)) 230 return -EINVAL; 231 232 d->emit_queue_cnt = 0; 233 err = btf_dump_order_type(d, id, false); 234 if (err < 0) 235 return err; 236 237 for (i = 0; i < d->emit_queue_cnt; i++) 238 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 239 240 return 0; 241 } 242 243 /* 244 * Mark all types that are referenced from any other type. This is used to 245 * determine top-level anonymous enums that need to be emitted as an 246 * independent type declarations. 247 * Anonymous enums come in two flavors: either embedded in a struct's field 248 * definition, in which case they have to be declared inline as part of field 249 * type declaration; or as a top-level anonymous enum, typically used for 250 * declaring global constants. It's impossible to distinguish between two 251 * without knowning whether given enum type was referenced from other type: 252 * top-level anonymous enum won't be referenced by anything, while embedded 253 * one will. 254 */ 255 static int btf_dump_mark_referenced(struct btf_dump *d) 256 { 257 int i, j, n = btf__get_nr_types(d->btf); 258 const struct btf_type *t; 259 __u16 vlen; 260 261 for (i = 1; i <= n; i++) { 262 t = btf__type_by_id(d->btf, i); 263 vlen = btf_vlen(t); 264 265 switch (btf_kind(t)) { 266 case BTF_KIND_INT: 267 case BTF_KIND_ENUM: 268 case BTF_KIND_FWD: 269 break; 270 271 case BTF_KIND_VOLATILE: 272 case BTF_KIND_CONST: 273 case BTF_KIND_RESTRICT: 274 case BTF_KIND_PTR: 275 case BTF_KIND_TYPEDEF: 276 case BTF_KIND_FUNC: 277 case BTF_KIND_VAR: 278 d->type_states[t->type].referenced = 1; 279 break; 280 281 case BTF_KIND_ARRAY: { 282 const struct btf_array *a = btf_array(t); 283 284 d->type_states[a->index_type].referenced = 1; 285 d->type_states[a->type].referenced = 1; 286 break; 287 } 288 case BTF_KIND_STRUCT: 289 case BTF_KIND_UNION: { 290 const struct btf_member *m = btf_members(t); 291 292 for (j = 0; j < vlen; j++, m++) 293 d->type_states[m->type].referenced = 1; 294 break; 295 } 296 case BTF_KIND_FUNC_PROTO: { 297 const struct btf_param *p = btf_params(t); 298 299 for (j = 0; j < vlen; j++, p++) 300 d->type_states[p->type].referenced = 1; 301 break; 302 } 303 case BTF_KIND_DATASEC: { 304 const struct btf_var_secinfo *v = btf_var_secinfos(t); 305 306 for (j = 0; j < vlen; j++, v++) 307 d->type_states[v->type].referenced = 1; 308 break; 309 } 310 default: 311 return -EINVAL; 312 } 313 } 314 return 0; 315 } 316 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 317 { 318 __u32 *new_queue; 319 size_t new_cap; 320 321 if (d->emit_queue_cnt >= d->emit_queue_cap) { 322 new_cap = max(16, d->emit_queue_cap * 3 / 2); 323 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 324 if (!new_queue) 325 return -ENOMEM; 326 d->emit_queue = new_queue; 327 d->emit_queue_cap = new_cap; 328 } 329 330 d->emit_queue[d->emit_queue_cnt++] = id; 331 return 0; 332 } 333 334 /* 335 * Determine order of emitting dependent types and specified type to satisfy 336 * C compilation rules. This is done through topological sorting with an 337 * additional complication which comes from C rules. The main idea for C is 338 * that if some type is "embedded" into a struct/union, it's size needs to be 339 * known at the time of definition of containing type. E.g., for: 340 * 341 * struct A {}; 342 * struct B { struct A x; } 343 * 344 * struct A *HAS* to be defined before struct B, because it's "embedded", 345 * i.e., it is part of struct B layout. But in the following case: 346 * 347 * struct A; 348 * struct B { struct A *x; } 349 * struct A {}; 350 * 351 * it's enough to just have a forward declaration of struct A at the time of 352 * struct B definition, as struct B has a pointer to struct A, so the size of 353 * field x is known without knowing struct A size: it's sizeof(void *). 354 * 355 * Unfortunately, there are some trickier cases we need to handle, e.g.: 356 * 357 * struct A {}; // if this was forward-declaration: compilation error 358 * struct B { 359 * struct { // anonymous struct 360 * struct A y; 361 * } *x; 362 * }; 363 * 364 * In this case, struct B's field x is a pointer, so it's size is known 365 * regardless of the size of (anonymous) struct it points to. But because this 366 * struct is anonymous and thus defined inline inside struct B, *and* it 367 * embeds struct A, compiler requires full definition of struct A to be known 368 * before struct B can be defined. This creates a transitive dependency 369 * between struct A and struct B. If struct A was forward-declared before 370 * struct B definition and fully defined after struct B definition, that would 371 * trigger compilation error. 372 * 373 * All this means that while we are doing topological sorting on BTF type 374 * graph, we need to determine relationships between different types (graph 375 * nodes): 376 * - weak link (relationship) between X and Y, if Y *CAN* be 377 * forward-declared at the point of X definition; 378 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 379 * 380 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 381 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 382 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 383 * Weak/strong relationship is determined recursively during DFS traversal and 384 * is returned as a result from btf_dump_order_type(). 385 * 386 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 387 * but it is not guaranteeing that no extraneous forward declarations will be 388 * emitted. 389 * 390 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 391 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 392 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 393 * entire graph path, so depending where from one came to that BTF type, it 394 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 395 * once they are processed, there is no need to do it again, so they are 396 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 397 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 398 * in any case, once those are processed, no need to do it again, as the 399 * result won't change. 400 * 401 * Returns: 402 * - 1, if type is part of strong link (so there is strong topological 403 * ordering requirements); 404 * - 0, if type is part of weak link (so can be satisfied through forward 405 * declaration); 406 * - <0, on error (e.g., unsatisfiable type loop detected). 407 */ 408 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 409 { 410 /* 411 * Order state is used to detect strong link cycles, but only for BTF 412 * kinds that are or could be an independent definition (i.e., 413 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 414 * func_protos, modifiers are just means to get to these definitions. 415 * Int/void don't need definitions, they are assumed to be always 416 * properly defined. We also ignore datasec, var, and funcs for now. 417 * So for all non-defining kinds, we never even set ordering state, 418 * for defining kinds we set ORDERING and subsequently ORDERED if it 419 * forms a strong link. 420 */ 421 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 422 const struct btf_type *t; 423 __u16 vlen; 424 int err, i; 425 426 /* return true, letting typedefs know that it's ok to be emitted */ 427 if (tstate->order_state == ORDERED) 428 return 1; 429 430 t = btf__type_by_id(d->btf, id); 431 432 if (tstate->order_state == ORDERING) { 433 /* type loop, but resolvable through fwd declaration */ 434 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 435 return 0; 436 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 437 return -ELOOP; 438 } 439 440 switch (btf_kind(t)) { 441 case BTF_KIND_INT: 442 tstate->order_state = ORDERED; 443 return 0; 444 445 case BTF_KIND_PTR: 446 err = btf_dump_order_type(d, t->type, true); 447 tstate->order_state = ORDERED; 448 return err; 449 450 case BTF_KIND_ARRAY: 451 return btf_dump_order_type(d, btf_array(t)->type, through_ptr); 452 453 case BTF_KIND_STRUCT: 454 case BTF_KIND_UNION: { 455 const struct btf_member *m = btf_members(t); 456 /* 457 * struct/union is part of strong link, only if it's embedded 458 * (so no ptr in a path) or it's anonymous (so has to be 459 * defined inline, even if declared through ptr) 460 */ 461 if (through_ptr && t->name_off != 0) 462 return 0; 463 464 tstate->order_state = ORDERING; 465 466 vlen = btf_vlen(t); 467 for (i = 0; i < vlen; i++, m++) { 468 err = btf_dump_order_type(d, m->type, false); 469 if (err < 0) 470 return err; 471 } 472 473 if (t->name_off != 0) { 474 err = btf_dump_add_emit_queue_id(d, id); 475 if (err < 0) 476 return err; 477 } 478 479 tstate->order_state = ORDERED; 480 return 1; 481 } 482 case BTF_KIND_ENUM: 483 case BTF_KIND_FWD: 484 /* 485 * non-anonymous or non-referenced enums are top-level 486 * declarations and should be emitted. Same logic can be 487 * applied to FWDs, it won't hurt anyways. 488 */ 489 if (t->name_off != 0 || !tstate->referenced) { 490 err = btf_dump_add_emit_queue_id(d, id); 491 if (err) 492 return err; 493 } 494 tstate->order_state = ORDERED; 495 return 1; 496 497 case BTF_KIND_TYPEDEF: { 498 int is_strong; 499 500 is_strong = btf_dump_order_type(d, t->type, through_ptr); 501 if (is_strong < 0) 502 return is_strong; 503 504 /* typedef is similar to struct/union w.r.t. fwd-decls */ 505 if (through_ptr && !is_strong) 506 return 0; 507 508 /* typedef is always a named definition */ 509 err = btf_dump_add_emit_queue_id(d, id); 510 if (err) 511 return err; 512 513 d->type_states[id].order_state = ORDERED; 514 return 1; 515 } 516 case BTF_KIND_VOLATILE: 517 case BTF_KIND_CONST: 518 case BTF_KIND_RESTRICT: 519 return btf_dump_order_type(d, t->type, through_ptr); 520 521 case BTF_KIND_FUNC_PROTO: { 522 const struct btf_param *p = btf_params(t); 523 bool is_strong; 524 525 err = btf_dump_order_type(d, t->type, through_ptr); 526 if (err < 0) 527 return err; 528 is_strong = err > 0; 529 530 vlen = btf_vlen(t); 531 for (i = 0; i < vlen; i++, p++) { 532 err = btf_dump_order_type(d, p->type, through_ptr); 533 if (err < 0) 534 return err; 535 if (err > 0) 536 is_strong = true; 537 } 538 return is_strong; 539 } 540 case BTF_KIND_FUNC: 541 case BTF_KIND_VAR: 542 case BTF_KIND_DATASEC: 543 d->type_states[id].order_state = ORDERED; 544 return 0; 545 546 default: 547 return -EINVAL; 548 } 549 } 550 551 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 552 const struct btf_type *t); 553 554 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 555 const struct btf_type *t); 556 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 557 const struct btf_type *t, int lvl); 558 559 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 560 const struct btf_type *t); 561 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 562 const struct btf_type *t, int lvl); 563 564 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 565 const struct btf_type *t); 566 567 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 568 const struct btf_type *t, int lvl); 569 570 /* a local view into a shared stack */ 571 struct id_stack { 572 const __u32 *ids; 573 int cnt; 574 }; 575 576 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 577 const char *fname, int lvl); 578 static void btf_dump_emit_type_chain(struct btf_dump *d, 579 struct id_stack *decl_stack, 580 const char *fname, int lvl); 581 582 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 583 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 584 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 585 const char *orig_name); 586 587 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 588 { 589 const struct btf_type *t = btf__type_by_id(d->btf, id); 590 591 /* __builtin_va_list is a compiler built-in, which causes compilation 592 * errors, when compiling w/ different compiler, then used to compile 593 * original code (e.g., GCC to compile kernel, Clang to use generated 594 * C header from BTF). As it is built-in, it should be already defined 595 * properly internally in compiler. 596 */ 597 if (t->name_off == 0) 598 return false; 599 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 600 } 601 602 /* 603 * Emit C-syntax definitions of types from chains of BTF types. 604 * 605 * High-level handling of determining necessary forward declarations are handled 606 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 607 * declarations/definitions in C syntax are handled by a combo of 608 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 609 * corresponding btf_dump_emit_*_{def,fwd}() functions. 610 * 611 * We also keep track of "containing struct/union type ID" to determine when 612 * we reference it from inside and thus can avoid emitting unnecessary forward 613 * declaration. 614 * 615 * This algorithm is designed in such a way, that even if some error occurs 616 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 617 * that doesn't comply to C rules completely), algorithm will try to proceed 618 * and produce as much meaningful output as possible. 619 */ 620 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 621 { 622 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 623 bool top_level_def = cont_id == 0; 624 const struct btf_type *t; 625 __u16 kind; 626 627 if (tstate->emit_state == EMITTED) 628 return; 629 630 t = btf__type_by_id(d->btf, id); 631 kind = btf_kind(t); 632 633 if (tstate->emit_state == EMITTING) { 634 if (tstate->fwd_emitted) 635 return; 636 637 switch (kind) { 638 case BTF_KIND_STRUCT: 639 case BTF_KIND_UNION: 640 /* 641 * if we are referencing a struct/union that we are 642 * part of - then no need for fwd declaration 643 */ 644 if (id == cont_id) 645 return; 646 if (t->name_off == 0) { 647 pr_warn("anonymous struct/union loop, id:[%u]\n", 648 id); 649 return; 650 } 651 btf_dump_emit_struct_fwd(d, id, t); 652 btf_dump_printf(d, ";\n\n"); 653 tstate->fwd_emitted = 1; 654 break; 655 case BTF_KIND_TYPEDEF: 656 /* 657 * for typedef fwd_emitted means typedef definition 658 * was emitted, but it can be used only for "weak" 659 * references through pointer only, not for embedding 660 */ 661 if (!btf_dump_is_blacklisted(d, id)) { 662 btf_dump_emit_typedef_def(d, id, t, 0); 663 btf_dump_printf(d, ";\n\n"); 664 } 665 tstate->fwd_emitted = 1; 666 break; 667 default: 668 break; 669 } 670 671 return; 672 } 673 674 switch (kind) { 675 case BTF_KIND_INT: 676 /* Emit type alias definitions if necessary */ 677 btf_dump_emit_missing_aliases(d, id, t); 678 679 tstate->emit_state = EMITTED; 680 break; 681 case BTF_KIND_ENUM: 682 if (top_level_def) { 683 btf_dump_emit_enum_def(d, id, t, 0); 684 btf_dump_printf(d, ";\n\n"); 685 } 686 tstate->emit_state = EMITTED; 687 break; 688 case BTF_KIND_PTR: 689 case BTF_KIND_VOLATILE: 690 case BTF_KIND_CONST: 691 case BTF_KIND_RESTRICT: 692 btf_dump_emit_type(d, t->type, cont_id); 693 break; 694 case BTF_KIND_ARRAY: 695 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 696 break; 697 case BTF_KIND_FWD: 698 btf_dump_emit_fwd_def(d, id, t); 699 btf_dump_printf(d, ";\n\n"); 700 tstate->emit_state = EMITTED; 701 break; 702 case BTF_KIND_TYPEDEF: 703 tstate->emit_state = EMITTING; 704 btf_dump_emit_type(d, t->type, id); 705 /* 706 * typedef can server as both definition and forward 707 * declaration; at this stage someone depends on 708 * typedef as a forward declaration (refers to it 709 * through pointer), so unless we already did it, 710 * emit typedef as a forward declaration 711 */ 712 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 713 btf_dump_emit_typedef_def(d, id, t, 0); 714 btf_dump_printf(d, ";\n\n"); 715 } 716 tstate->emit_state = EMITTED; 717 break; 718 case BTF_KIND_STRUCT: 719 case BTF_KIND_UNION: 720 tstate->emit_state = EMITTING; 721 /* if it's a top-level struct/union definition or struct/union 722 * is anonymous, then in C we'll be emitting all fields and 723 * their types (as opposed to just `struct X`), so we need to 724 * make sure that all types, referenced from struct/union 725 * members have necessary forward-declarations, where 726 * applicable 727 */ 728 if (top_level_def || t->name_off == 0) { 729 const struct btf_member *m = btf_members(t); 730 __u16 vlen = btf_vlen(t); 731 int i, new_cont_id; 732 733 new_cont_id = t->name_off == 0 ? cont_id : id; 734 for (i = 0; i < vlen; i++, m++) 735 btf_dump_emit_type(d, m->type, new_cont_id); 736 } else if (!tstate->fwd_emitted && id != cont_id) { 737 btf_dump_emit_struct_fwd(d, id, t); 738 btf_dump_printf(d, ";\n\n"); 739 tstate->fwd_emitted = 1; 740 } 741 742 if (top_level_def) { 743 btf_dump_emit_struct_def(d, id, t, 0); 744 btf_dump_printf(d, ";\n\n"); 745 tstate->emit_state = EMITTED; 746 } else { 747 tstate->emit_state = NOT_EMITTED; 748 } 749 break; 750 case BTF_KIND_FUNC_PROTO: { 751 const struct btf_param *p = btf_params(t); 752 __u16 vlen = btf_vlen(t); 753 int i; 754 755 btf_dump_emit_type(d, t->type, cont_id); 756 for (i = 0; i < vlen; i++, p++) 757 btf_dump_emit_type(d, p->type, cont_id); 758 759 break; 760 } 761 default: 762 break; 763 } 764 } 765 766 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 767 const struct btf_type *t) 768 { 769 const struct btf_member *m; 770 int align, i, bit_sz; 771 __u16 vlen; 772 773 align = btf__align_of(btf, id); 774 /* size of a non-packed struct has to be a multiple of its alignment*/ 775 if (align && t->size % align) 776 return true; 777 778 m = btf_members(t); 779 vlen = btf_vlen(t); 780 /* all non-bitfield fields have to be naturally aligned */ 781 for (i = 0; i < vlen; i++, m++) { 782 align = btf__align_of(btf, m->type); 783 bit_sz = btf_member_bitfield_size(t, i); 784 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 785 return true; 786 } 787 788 /* 789 * if original struct was marked as packed, but its layout is 790 * naturally aligned, we'll detect that it's not packed 791 */ 792 return false; 793 } 794 795 static int chip_away_bits(int total, int at_most) 796 { 797 return total % at_most ? : at_most; 798 } 799 800 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 801 int cur_off, int m_off, int m_bit_sz, 802 int align, int lvl) 803 { 804 int off_diff = m_off - cur_off; 805 int ptr_bits = d->ptr_sz * 8; 806 807 if (off_diff <= 0) 808 /* no gap */ 809 return; 810 if (m_bit_sz == 0 && off_diff < align * 8) 811 /* natural padding will take care of a gap */ 812 return; 813 814 while (off_diff > 0) { 815 const char *pad_type; 816 int pad_bits; 817 818 if (ptr_bits > 32 && off_diff > 32) { 819 pad_type = "long"; 820 pad_bits = chip_away_bits(off_diff, ptr_bits); 821 } else if (off_diff > 16) { 822 pad_type = "int"; 823 pad_bits = chip_away_bits(off_diff, 32); 824 } else if (off_diff > 8) { 825 pad_type = "short"; 826 pad_bits = chip_away_bits(off_diff, 16); 827 } else { 828 pad_type = "char"; 829 pad_bits = chip_away_bits(off_diff, 8); 830 } 831 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 832 off_diff -= pad_bits; 833 } 834 } 835 836 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 837 const struct btf_type *t) 838 { 839 btf_dump_printf(d, "%s %s", 840 btf_is_struct(t) ? "struct" : "union", 841 btf_dump_type_name(d, id)); 842 } 843 844 static void btf_dump_emit_struct_def(struct btf_dump *d, 845 __u32 id, 846 const struct btf_type *t, 847 int lvl) 848 { 849 const struct btf_member *m = btf_members(t); 850 bool is_struct = btf_is_struct(t); 851 int align, i, packed, off = 0; 852 __u16 vlen = btf_vlen(t); 853 854 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 855 856 btf_dump_printf(d, "%s%s%s {", 857 is_struct ? "struct" : "union", 858 t->name_off ? " " : "", 859 btf_dump_type_name(d, id)); 860 861 for (i = 0; i < vlen; i++, m++) { 862 const char *fname; 863 int m_off, m_sz; 864 865 fname = btf_name_of(d, m->name_off); 866 m_sz = btf_member_bitfield_size(t, i); 867 m_off = btf_member_bit_offset(t, i); 868 align = packed ? 1 : btf__align_of(d->btf, m->type); 869 870 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); 871 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 872 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 873 874 if (m_sz) { 875 btf_dump_printf(d, ": %d", m_sz); 876 off = m_off + m_sz; 877 } else { 878 m_sz = max(0LL, btf__resolve_size(d->btf, m->type)); 879 off = m_off + m_sz * 8; 880 } 881 btf_dump_printf(d, ";"); 882 } 883 884 /* pad at the end, if necessary */ 885 if (is_struct) { 886 align = packed ? 1 : btf__align_of(d->btf, id); 887 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, 888 lvl + 1); 889 } 890 891 if (vlen) 892 btf_dump_printf(d, "\n"); 893 btf_dump_printf(d, "%s}", pfx(lvl)); 894 if (packed) 895 btf_dump_printf(d, " __attribute__((packed))"); 896 } 897 898 static const char *missing_base_types[][2] = { 899 /* 900 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 901 * SIMD intrinsics. Alias them to standard base types. 902 */ 903 { "__Poly8_t", "unsigned char" }, 904 { "__Poly16_t", "unsigned short" }, 905 { "__Poly64_t", "unsigned long long" }, 906 { "__Poly128_t", "unsigned __int128" }, 907 }; 908 909 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 910 const struct btf_type *t) 911 { 912 const char *name = btf_dump_type_name(d, id); 913 int i; 914 915 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 916 if (strcmp(name, missing_base_types[i][0]) == 0) { 917 btf_dump_printf(d, "typedef %s %s;\n\n", 918 missing_base_types[i][1], name); 919 break; 920 } 921 } 922 } 923 924 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 925 const struct btf_type *t) 926 { 927 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 928 } 929 930 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 931 const struct btf_type *t, 932 int lvl) 933 { 934 const struct btf_enum *v = btf_enum(t); 935 __u16 vlen = btf_vlen(t); 936 const char *name; 937 size_t dup_cnt; 938 int i; 939 940 btf_dump_printf(d, "enum%s%s", 941 t->name_off ? " " : "", 942 btf_dump_type_name(d, id)); 943 944 if (vlen) { 945 btf_dump_printf(d, " {"); 946 for (i = 0; i < vlen; i++, v++) { 947 name = btf_name_of(d, v->name_off); 948 /* enumerators share namespace with typedef idents */ 949 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 950 if (dup_cnt > 1) { 951 btf_dump_printf(d, "\n%s%s___%zu = %u,", 952 pfx(lvl + 1), name, dup_cnt, 953 (__u32)v->val); 954 } else { 955 btf_dump_printf(d, "\n%s%s = %u,", 956 pfx(lvl + 1), name, 957 (__u32)v->val); 958 } 959 } 960 btf_dump_printf(d, "\n%s}", pfx(lvl)); 961 } 962 } 963 964 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 965 const struct btf_type *t) 966 { 967 const char *name = btf_dump_type_name(d, id); 968 969 if (btf_kflag(t)) 970 btf_dump_printf(d, "union %s", name); 971 else 972 btf_dump_printf(d, "struct %s", name); 973 } 974 975 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 976 const struct btf_type *t, int lvl) 977 { 978 const char *name = btf_dump_ident_name(d, id); 979 980 /* 981 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 982 * pointing to VOID. This generates warnings from btf_dump() and 983 * results in uncompilable header file, so we are fixing it up here 984 * with valid typedef into __builtin_va_list. 985 */ 986 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 987 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 988 return; 989 } 990 991 btf_dump_printf(d, "typedef "); 992 btf_dump_emit_type_decl(d, t->type, name, lvl); 993 } 994 995 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 996 { 997 __u32 *new_stack; 998 size_t new_cap; 999 1000 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1001 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1002 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1003 if (!new_stack) 1004 return -ENOMEM; 1005 d->decl_stack = new_stack; 1006 d->decl_stack_cap = new_cap; 1007 } 1008 1009 d->decl_stack[d->decl_stack_cnt++] = id; 1010 1011 return 0; 1012 } 1013 1014 /* 1015 * Emit type declaration (e.g., field type declaration in a struct or argument 1016 * declaration in function prototype) in correct C syntax. 1017 * 1018 * For most types it's trivial, but there are few quirky type declaration 1019 * cases worth mentioning: 1020 * - function prototypes (especially nesting of function prototypes); 1021 * - arrays; 1022 * - const/volatile/restrict for pointers vs other types. 1023 * 1024 * For a good discussion of *PARSING* C syntax (as a human), see 1025 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1026 * Ch.3 "Unscrambling Declarations in C". 1027 * 1028 * It won't help with BTF to C conversion much, though, as it's an opposite 1029 * problem. So we came up with this algorithm in reverse to van der Linden's 1030 * parsing algorithm. It goes from structured BTF representation of type 1031 * declaration to a valid compilable C syntax. 1032 * 1033 * For instance, consider this C typedef: 1034 * typedef const int * const * arr[10] arr_t; 1035 * It will be represented in BTF with this chain of BTF types: 1036 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1037 * 1038 * Notice how [const] modifier always goes before type it modifies in BTF type 1039 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1040 * the right of pointers, but to the left of other types. There are also other 1041 * quirks, like function pointers, arrays of them, functions returning other 1042 * functions, etc. 1043 * 1044 * We handle that by pushing all the types to a stack, until we hit "terminal" 1045 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1046 * top of a stack, modifiers are handled differently. Array/function pointers 1047 * have also wildly different syntax and how nesting of them are done. See 1048 * code for authoritative definition. 1049 * 1050 * To avoid allocating new stack for each independent chain of BTF types, we 1051 * share one bigger stack, with each chain working only on its own local view 1052 * of a stack frame. Some care is required to "pop" stack frames after 1053 * processing type declaration chain. 1054 */ 1055 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1056 const struct btf_dump_emit_type_decl_opts *opts) 1057 { 1058 const char *fname; 1059 int lvl; 1060 1061 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1062 return -EINVAL; 1063 1064 fname = OPTS_GET(opts, field_name, ""); 1065 lvl = OPTS_GET(opts, indent_level, 0); 1066 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1067 btf_dump_emit_type_decl(d, id, fname, lvl); 1068 d->strip_mods = false; 1069 return 0; 1070 } 1071 1072 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1073 const char *fname, int lvl) 1074 { 1075 struct id_stack decl_stack; 1076 const struct btf_type *t; 1077 int err, stack_start; 1078 1079 stack_start = d->decl_stack_cnt; 1080 for (;;) { 1081 t = btf__type_by_id(d->btf, id); 1082 if (d->strip_mods && btf_is_mod(t)) 1083 goto skip_mod; 1084 1085 err = btf_dump_push_decl_stack_id(d, id); 1086 if (err < 0) { 1087 /* 1088 * if we don't have enough memory for entire type decl 1089 * chain, restore stack, emit warning, and try to 1090 * proceed nevertheless 1091 */ 1092 pr_warn("not enough memory for decl stack:%d", err); 1093 d->decl_stack_cnt = stack_start; 1094 return; 1095 } 1096 skip_mod: 1097 /* VOID */ 1098 if (id == 0) 1099 break; 1100 1101 switch (btf_kind(t)) { 1102 case BTF_KIND_PTR: 1103 case BTF_KIND_VOLATILE: 1104 case BTF_KIND_CONST: 1105 case BTF_KIND_RESTRICT: 1106 case BTF_KIND_FUNC_PROTO: 1107 id = t->type; 1108 break; 1109 case BTF_KIND_ARRAY: 1110 id = btf_array(t)->type; 1111 break; 1112 case BTF_KIND_INT: 1113 case BTF_KIND_ENUM: 1114 case BTF_KIND_FWD: 1115 case BTF_KIND_STRUCT: 1116 case BTF_KIND_UNION: 1117 case BTF_KIND_TYPEDEF: 1118 goto done; 1119 default: 1120 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1121 btf_kind(t), id); 1122 goto done; 1123 } 1124 } 1125 done: 1126 /* 1127 * We might be inside a chain of declarations (e.g., array of function 1128 * pointers returning anonymous (so inlined) structs, having another 1129 * array field). Each of those needs its own "stack frame" to handle 1130 * emitting of declarations. Those stack frames are non-overlapping 1131 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1132 * handle this set of nested stacks, we create a view corresponding to 1133 * our own "stack frame" and work with it as an independent stack. 1134 * We'll need to clean up after emit_type_chain() returns, though. 1135 */ 1136 decl_stack.ids = d->decl_stack + stack_start; 1137 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1138 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1139 /* 1140 * emit_type_chain() guarantees that it will pop its entire decl_stack 1141 * frame before returning. But it works with a read-only view into 1142 * decl_stack, so it doesn't actually pop anything from the 1143 * perspective of shared btf_dump->decl_stack, per se. We need to 1144 * reset decl_stack state to how it was before us to avoid it growing 1145 * all the time. 1146 */ 1147 d->decl_stack_cnt = stack_start; 1148 } 1149 1150 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1151 { 1152 const struct btf_type *t; 1153 __u32 id; 1154 1155 while (decl_stack->cnt) { 1156 id = decl_stack->ids[decl_stack->cnt - 1]; 1157 t = btf__type_by_id(d->btf, id); 1158 1159 switch (btf_kind(t)) { 1160 case BTF_KIND_VOLATILE: 1161 btf_dump_printf(d, "volatile "); 1162 break; 1163 case BTF_KIND_CONST: 1164 btf_dump_printf(d, "const "); 1165 break; 1166 case BTF_KIND_RESTRICT: 1167 btf_dump_printf(d, "restrict "); 1168 break; 1169 default: 1170 return; 1171 } 1172 decl_stack->cnt--; 1173 } 1174 } 1175 1176 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1177 { 1178 const struct btf_type *t; 1179 __u32 id; 1180 1181 while (decl_stack->cnt) { 1182 id = decl_stack->ids[decl_stack->cnt - 1]; 1183 t = btf__type_by_id(d->btf, id); 1184 if (!btf_is_mod(t)) 1185 return; 1186 decl_stack->cnt--; 1187 } 1188 } 1189 1190 static void btf_dump_emit_name(const struct btf_dump *d, 1191 const char *name, bool last_was_ptr) 1192 { 1193 bool separate = name[0] && !last_was_ptr; 1194 1195 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1196 } 1197 1198 static void btf_dump_emit_type_chain(struct btf_dump *d, 1199 struct id_stack *decls, 1200 const char *fname, int lvl) 1201 { 1202 /* 1203 * last_was_ptr is used to determine if we need to separate pointer 1204 * asterisk (*) from previous part of type signature with space, so 1205 * that we get `int ***`, instead of `int * * *`. We default to true 1206 * for cases where we have single pointer in a chain. E.g., in ptr -> 1207 * func_proto case. func_proto will start a new emit_type_chain call 1208 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1209 * don't want to prepend space for that last pointer. 1210 */ 1211 bool last_was_ptr = true; 1212 const struct btf_type *t; 1213 const char *name; 1214 __u16 kind; 1215 __u32 id; 1216 1217 while (decls->cnt) { 1218 id = decls->ids[--decls->cnt]; 1219 if (id == 0) { 1220 /* VOID is a special snowflake */ 1221 btf_dump_emit_mods(d, decls); 1222 btf_dump_printf(d, "void"); 1223 last_was_ptr = false; 1224 continue; 1225 } 1226 1227 t = btf__type_by_id(d->btf, id); 1228 kind = btf_kind(t); 1229 1230 switch (kind) { 1231 case BTF_KIND_INT: 1232 btf_dump_emit_mods(d, decls); 1233 name = btf_name_of(d, t->name_off); 1234 btf_dump_printf(d, "%s", name); 1235 break; 1236 case BTF_KIND_STRUCT: 1237 case BTF_KIND_UNION: 1238 btf_dump_emit_mods(d, decls); 1239 /* inline anonymous struct/union */ 1240 if (t->name_off == 0) 1241 btf_dump_emit_struct_def(d, id, t, lvl); 1242 else 1243 btf_dump_emit_struct_fwd(d, id, t); 1244 break; 1245 case BTF_KIND_ENUM: 1246 btf_dump_emit_mods(d, decls); 1247 /* inline anonymous enum */ 1248 if (t->name_off == 0) 1249 btf_dump_emit_enum_def(d, id, t, lvl); 1250 else 1251 btf_dump_emit_enum_fwd(d, id, t); 1252 break; 1253 case BTF_KIND_FWD: 1254 btf_dump_emit_mods(d, decls); 1255 btf_dump_emit_fwd_def(d, id, t); 1256 break; 1257 case BTF_KIND_TYPEDEF: 1258 btf_dump_emit_mods(d, decls); 1259 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1260 break; 1261 case BTF_KIND_PTR: 1262 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1263 break; 1264 case BTF_KIND_VOLATILE: 1265 btf_dump_printf(d, " volatile"); 1266 break; 1267 case BTF_KIND_CONST: 1268 btf_dump_printf(d, " const"); 1269 break; 1270 case BTF_KIND_RESTRICT: 1271 btf_dump_printf(d, " restrict"); 1272 break; 1273 case BTF_KIND_ARRAY: { 1274 const struct btf_array *a = btf_array(t); 1275 const struct btf_type *next_t; 1276 __u32 next_id; 1277 bool multidim; 1278 /* 1279 * GCC has a bug 1280 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1281 * which causes it to emit extra const/volatile 1282 * modifiers for an array, if array's element type has 1283 * const/volatile modifiers. Clang doesn't do that. 1284 * In general, it doesn't seem very meaningful to have 1285 * a const/volatile modifier for array, so we are 1286 * going to silently skip them here. 1287 */ 1288 btf_dump_drop_mods(d, decls); 1289 1290 if (decls->cnt == 0) { 1291 btf_dump_emit_name(d, fname, last_was_ptr); 1292 btf_dump_printf(d, "[%u]", a->nelems); 1293 return; 1294 } 1295 1296 next_id = decls->ids[decls->cnt - 1]; 1297 next_t = btf__type_by_id(d->btf, next_id); 1298 multidim = btf_is_array(next_t); 1299 /* we need space if we have named non-pointer */ 1300 if (fname[0] && !last_was_ptr) 1301 btf_dump_printf(d, " "); 1302 /* no parentheses for multi-dimensional array */ 1303 if (!multidim) 1304 btf_dump_printf(d, "("); 1305 btf_dump_emit_type_chain(d, decls, fname, lvl); 1306 if (!multidim) 1307 btf_dump_printf(d, ")"); 1308 btf_dump_printf(d, "[%u]", a->nelems); 1309 return; 1310 } 1311 case BTF_KIND_FUNC_PROTO: { 1312 const struct btf_param *p = btf_params(t); 1313 __u16 vlen = btf_vlen(t); 1314 int i; 1315 1316 /* 1317 * GCC emits extra volatile qualifier for 1318 * __attribute__((noreturn)) function pointers. Clang 1319 * doesn't do it. It's a GCC quirk for backwards 1320 * compatibility with code written for GCC <2.5. So, 1321 * similarly to extra qualifiers for array, just drop 1322 * them, instead of handling them. 1323 */ 1324 btf_dump_drop_mods(d, decls); 1325 if (decls->cnt) { 1326 btf_dump_printf(d, " ("); 1327 btf_dump_emit_type_chain(d, decls, fname, lvl); 1328 btf_dump_printf(d, ")"); 1329 } else { 1330 btf_dump_emit_name(d, fname, last_was_ptr); 1331 } 1332 btf_dump_printf(d, "("); 1333 /* 1334 * Clang for BPF target generates func_proto with no 1335 * args as a func_proto with a single void arg (e.g., 1336 * `int (*f)(void)` vs just `int (*f)()`). We are 1337 * going to pretend there are no args for such case. 1338 */ 1339 if (vlen == 1 && p->type == 0) { 1340 btf_dump_printf(d, ")"); 1341 return; 1342 } 1343 1344 for (i = 0; i < vlen; i++, p++) { 1345 if (i > 0) 1346 btf_dump_printf(d, ", "); 1347 1348 /* last arg of type void is vararg */ 1349 if (i == vlen - 1 && p->type == 0) { 1350 btf_dump_printf(d, "..."); 1351 break; 1352 } 1353 1354 name = btf_name_of(d, p->name_off); 1355 btf_dump_emit_type_decl(d, p->type, name, lvl); 1356 } 1357 1358 btf_dump_printf(d, ")"); 1359 return; 1360 } 1361 default: 1362 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1363 kind, id); 1364 return; 1365 } 1366 1367 last_was_ptr = kind == BTF_KIND_PTR; 1368 } 1369 1370 btf_dump_emit_name(d, fname, last_was_ptr); 1371 } 1372 1373 /* return number of duplicates (occurrences) of a given name */ 1374 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1375 const char *orig_name) 1376 { 1377 size_t dup_cnt = 0; 1378 1379 hashmap__find(name_map, orig_name, (void **)&dup_cnt); 1380 dup_cnt++; 1381 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); 1382 1383 return dup_cnt; 1384 } 1385 1386 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1387 struct hashmap *name_map) 1388 { 1389 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1390 const struct btf_type *t = btf__type_by_id(d->btf, id); 1391 const char *orig_name = btf_name_of(d, t->name_off); 1392 const char **cached_name = &d->cached_names[id]; 1393 size_t dup_cnt; 1394 1395 if (t->name_off == 0) 1396 return ""; 1397 1398 if (s->name_resolved) 1399 return *cached_name ? *cached_name : orig_name; 1400 1401 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1402 if (dup_cnt > 1) { 1403 const size_t max_len = 256; 1404 char new_name[max_len]; 1405 1406 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1407 *cached_name = strdup(new_name); 1408 } 1409 1410 s->name_resolved = 1; 1411 return *cached_name ? *cached_name : orig_name; 1412 } 1413 1414 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1415 { 1416 return btf_dump_resolve_name(d, id, d->type_names); 1417 } 1418 1419 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1420 { 1421 return btf_dump_resolve_name(d, id, d->ident_names); 1422 } 1423