1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <linux/kernel.h> 19 #include "btf.h" 20 #include "hashmap.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 26 27 static const char *pfx(int lvl) 28 { 29 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 30 } 31 32 enum btf_dump_type_order_state { 33 NOT_ORDERED, 34 ORDERING, 35 ORDERED, 36 }; 37 38 enum btf_dump_type_emit_state { 39 NOT_EMITTED, 40 EMITTING, 41 EMITTED, 42 }; 43 44 /* per-type auxiliary state */ 45 struct btf_dump_type_aux_state { 46 /* topological sorting state */ 47 enum btf_dump_type_order_state order_state: 2; 48 /* emitting state used to determine the need for forward declaration */ 49 enum btf_dump_type_emit_state emit_state: 2; 50 /* whether forward declaration was already emitted */ 51 __u8 fwd_emitted: 1; 52 /* whether unique non-duplicate name was already assigned */ 53 __u8 name_resolved: 1; 54 /* whether type is referenced from any other type */ 55 __u8 referenced: 1; 56 }; 57 58 /* indent string length; one indent string is added for each indent level */ 59 #define BTF_DATA_INDENT_STR_LEN 32 60 61 /* 62 * Common internal data for BTF type data dump operations. 63 */ 64 struct btf_dump_data { 65 const void *data_end; /* end of valid data to show */ 66 bool compact; 67 bool skip_names; 68 bool emit_zeroes; 69 __u8 indent_lvl; /* base indent level */ 70 char indent_str[BTF_DATA_INDENT_STR_LEN]; 71 /* below are used during iteration */ 72 int depth; 73 bool is_array_member; 74 bool is_array_terminated; 75 bool is_array_char; 76 }; 77 78 struct btf_dump { 79 const struct btf *btf; 80 btf_dump_printf_fn_t printf_fn; 81 void *cb_ctx; 82 int ptr_sz; 83 bool strip_mods; 84 bool skip_anon_defs; 85 int last_id; 86 87 /* per-type auxiliary state */ 88 struct btf_dump_type_aux_state *type_states; 89 size_t type_states_cap; 90 /* per-type optional cached unique name, must be freed, if present */ 91 const char **cached_names; 92 size_t cached_names_cap; 93 94 /* topo-sorted list of dependent type definitions */ 95 __u32 *emit_queue; 96 int emit_queue_cap; 97 int emit_queue_cnt; 98 99 /* 100 * stack of type declarations (e.g., chain of modifiers, arrays, 101 * funcs, etc) 102 */ 103 __u32 *decl_stack; 104 int decl_stack_cap; 105 int decl_stack_cnt; 106 107 /* maps struct/union/enum name to a number of name occurrences */ 108 struct hashmap *type_names; 109 /* 110 * maps typedef identifiers and enum value names to a number of such 111 * name occurrences 112 */ 113 struct hashmap *ident_names; 114 /* 115 * data for typed display; allocated if needed. 116 */ 117 struct btf_dump_data *typed_dump; 118 }; 119 120 static size_t str_hash_fn(const void *key, void *ctx) 121 { 122 return str_hash(key); 123 } 124 125 static bool str_equal_fn(const void *a, const void *b, void *ctx) 126 { 127 return strcmp(a, b) == 0; 128 } 129 130 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 131 { 132 return btf__name_by_offset(d->btf, name_off); 133 } 134 135 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 136 { 137 va_list args; 138 139 va_start(args, fmt); 140 d->printf_fn(d->cb_ctx, fmt, args); 141 va_end(args); 142 } 143 144 static int btf_dump_mark_referenced(struct btf_dump *d); 145 static int btf_dump_resize(struct btf_dump *d); 146 147 struct btf_dump *btf_dump__new(const struct btf *btf, 148 btf_dump_printf_fn_t printf_fn, 149 void *ctx, 150 const struct btf_dump_opts *opts) 151 { 152 struct btf_dump *d; 153 int err; 154 155 if (!OPTS_VALID(opts, btf_dump_opts)) 156 return libbpf_err_ptr(-EINVAL); 157 158 if (!printf_fn) 159 return libbpf_err_ptr(-EINVAL); 160 161 d = calloc(1, sizeof(struct btf_dump)); 162 if (!d) 163 return libbpf_err_ptr(-ENOMEM); 164 165 d->btf = btf; 166 d->printf_fn = printf_fn; 167 d->cb_ctx = ctx; 168 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 169 170 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 171 if (IS_ERR(d->type_names)) { 172 err = PTR_ERR(d->type_names); 173 d->type_names = NULL; 174 goto err; 175 } 176 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 177 if (IS_ERR(d->ident_names)) { 178 err = PTR_ERR(d->ident_names); 179 d->ident_names = NULL; 180 goto err; 181 } 182 183 err = btf_dump_resize(d); 184 if (err) 185 goto err; 186 187 return d; 188 err: 189 btf_dump__free(d); 190 return libbpf_err_ptr(err); 191 } 192 193 static int btf_dump_resize(struct btf_dump *d) 194 { 195 int err, last_id = btf__type_cnt(d->btf) - 1; 196 197 if (last_id <= d->last_id) 198 return 0; 199 200 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 201 sizeof(*d->type_states), last_id + 1)) 202 return -ENOMEM; 203 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 204 sizeof(*d->cached_names), last_id + 1)) 205 return -ENOMEM; 206 207 if (d->last_id == 0) { 208 /* VOID is special */ 209 d->type_states[0].order_state = ORDERED; 210 d->type_states[0].emit_state = EMITTED; 211 } 212 213 /* eagerly determine referenced types for anon enums */ 214 err = btf_dump_mark_referenced(d); 215 if (err) 216 return err; 217 218 d->last_id = last_id; 219 return 0; 220 } 221 222 void btf_dump__free(struct btf_dump *d) 223 { 224 int i; 225 226 if (IS_ERR_OR_NULL(d)) 227 return; 228 229 free(d->type_states); 230 if (d->cached_names) { 231 /* any set cached name is owned by us and should be freed */ 232 for (i = 0; i <= d->last_id; i++) { 233 if (d->cached_names[i]) 234 free((void *)d->cached_names[i]); 235 } 236 } 237 free(d->cached_names); 238 free(d->emit_queue); 239 free(d->decl_stack); 240 hashmap__free(d->type_names); 241 hashmap__free(d->ident_names); 242 243 free(d); 244 } 245 246 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 247 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 248 249 /* 250 * Dump BTF type in a compilable C syntax, including all the necessary 251 * dependent types, necessary for compilation. If some of the dependent types 252 * were already emitted as part of previous btf_dump__dump_type() invocation 253 * for another type, they won't be emitted again. This API allows callers to 254 * filter out BTF types according to user-defined criterias and emitted only 255 * minimal subset of types, necessary to compile everything. Full struct/union 256 * definitions will still be emitted, even if the only usage is through 257 * pointer and could be satisfied with just a forward declaration. 258 * 259 * Dumping is done in two high-level passes: 260 * 1. Topologically sort type definitions to satisfy C rules of compilation. 261 * 2. Emit type definitions in C syntax. 262 * 263 * Returns 0 on success; <0, otherwise. 264 */ 265 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 266 { 267 int err, i; 268 269 if (id >= btf__type_cnt(d->btf)) 270 return libbpf_err(-EINVAL); 271 272 err = btf_dump_resize(d); 273 if (err) 274 return libbpf_err(err); 275 276 d->emit_queue_cnt = 0; 277 err = btf_dump_order_type(d, id, false); 278 if (err < 0) 279 return libbpf_err(err); 280 281 for (i = 0; i < d->emit_queue_cnt; i++) 282 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 283 284 return 0; 285 } 286 287 /* 288 * Mark all types that are referenced from any other type. This is used to 289 * determine top-level anonymous enums that need to be emitted as an 290 * independent type declarations. 291 * Anonymous enums come in two flavors: either embedded in a struct's field 292 * definition, in which case they have to be declared inline as part of field 293 * type declaration; or as a top-level anonymous enum, typically used for 294 * declaring global constants. It's impossible to distinguish between two 295 * without knowning whether given enum type was referenced from other type: 296 * top-level anonymous enum won't be referenced by anything, while embedded 297 * one will. 298 */ 299 static int btf_dump_mark_referenced(struct btf_dump *d) 300 { 301 int i, j, n = btf__type_cnt(d->btf); 302 const struct btf_type *t; 303 __u16 vlen; 304 305 for (i = d->last_id + 1; i < n; i++) { 306 t = btf__type_by_id(d->btf, i); 307 vlen = btf_vlen(t); 308 309 switch (btf_kind(t)) { 310 case BTF_KIND_INT: 311 case BTF_KIND_ENUM: 312 case BTF_KIND_ENUM64: 313 case BTF_KIND_FWD: 314 case BTF_KIND_FLOAT: 315 break; 316 317 case BTF_KIND_VOLATILE: 318 case BTF_KIND_CONST: 319 case BTF_KIND_RESTRICT: 320 case BTF_KIND_PTR: 321 case BTF_KIND_TYPEDEF: 322 case BTF_KIND_FUNC: 323 case BTF_KIND_VAR: 324 case BTF_KIND_DECL_TAG: 325 case BTF_KIND_TYPE_TAG: 326 d->type_states[t->type].referenced = 1; 327 break; 328 329 case BTF_KIND_ARRAY: { 330 const struct btf_array *a = btf_array(t); 331 332 d->type_states[a->index_type].referenced = 1; 333 d->type_states[a->type].referenced = 1; 334 break; 335 } 336 case BTF_KIND_STRUCT: 337 case BTF_KIND_UNION: { 338 const struct btf_member *m = btf_members(t); 339 340 for (j = 0; j < vlen; j++, m++) 341 d->type_states[m->type].referenced = 1; 342 break; 343 } 344 case BTF_KIND_FUNC_PROTO: { 345 const struct btf_param *p = btf_params(t); 346 347 for (j = 0; j < vlen; j++, p++) 348 d->type_states[p->type].referenced = 1; 349 break; 350 } 351 case BTF_KIND_DATASEC: { 352 const struct btf_var_secinfo *v = btf_var_secinfos(t); 353 354 for (j = 0; j < vlen; j++, v++) 355 d->type_states[v->type].referenced = 1; 356 break; 357 } 358 default: 359 return -EINVAL; 360 } 361 } 362 return 0; 363 } 364 365 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 366 { 367 __u32 *new_queue; 368 size_t new_cap; 369 370 if (d->emit_queue_cnt >= d->emit_queue_cap) { 371 new_cap = max(16, d->emit_queue_cap * 3 / 2); 372 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 373 if (!new_queue) 374 return -ENOMEM; 375 d->emit_queue = new_queue; 376 d->emit_queue_cap = new_cap; 377 } 378 379 d->emit_queue[d->emit_queue_cnt++] = id; 380 return 0; 381 } 382 383 /* 384 * Determine order of emitting dependent types and specified type to satisfy 385 * C compilation rules. This is done through topological sorting with an 386 * additional complication which comes from C rules. The main idea for C is 387 * that if some type is "embedded" into a struct/union, it's size needs to be 388 * known at the time of definition of containing type. E.g., for: 389 * 390 * struct A {}; 391 * struct B { struct A x; } 392 * 393 * struct A *HAS* to be defined before struct B, because it's "embedded", 394 * i.e., it is part of struct B layout. But in the following case: 395 * 396 * struct A; 397 * struct B { struct A *x; } 398 * struct A {}; 399 * 400 * it's enough to just have a forward declaration of struct A at the time of 401 * struct B definition, as struct B has a pointer to struct A, so the size of 402 * field x is known without knowing struct A size: it's sizeof(void *). 403 * 404 * Unfortunately, there are some trickier cases we need to handle, e.g.: 405 * 406 * struct A {}; // if this was forward-declaration: compilation error 407 * struct B { 408 * struct { // anonymous struct 409 * struct A y; 410 * } *x; 411 * }; 412 * 413 * In this case, struct B's field x is a pointer, so it's size is known 414 * regardless of the size of (anonymous) struct it points to. But because this 415 * struct is anonymous and thus defined inline inside struct B, *and* it 416 * embeds struct A, compiler requires full definition of struct A to be known 417 * before struct B can be defined. This creates a transitive dependency 418 * between struct A and struct B. If struct A was forward-declared before 419 * struct B definition and fully defined after struct B definition, that would 420 * trigger compilation error. 421 * 422 * All this means that while we are doing topological sorting on BTF type 423 * graph, we need to determine relationships between different types (graph 424 * nodes): 425 * - weak link (relationship) between X and Y, if Y *CAN* be 426 * forward-declared at the point of X definition; 427 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 428 * 429 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 430 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 431 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 432 * Weak/strong relationship is determined recursively during DFS traversal and 433 * is returned as a result from btf_dump_order_type(). 434 * 435 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 436 * but it is not guaranteeing that no extraneous forward declarations will be 437 * emitted. 438 * 439 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 440 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 441 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 442 * entire graph path, so depending where from one came to that BTF type, it 443 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 444 * once they are processed, there is no need to do it again, so they are 445 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 446 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 447 * in any case, once those are processed, no need to do it again, as the 448 * result won't change. 449 * 450 * Returns: 451 * - 1, if type is part of strong link (so there is strong topological 452 * ordering requirements); 453 * - 0, if type is part of weak link (so can be satisfied through forward 454 * declaration); 455 * - <0, on error (e.g., unsatisfiable type loop detected). 456 */ 457 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 458 { 459 /* 460 * Order state is used to detect strong link cycles, but only for BTF 461 * kinds that are or could be an independent definition (i.e., 462 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 463 * func_protos, modifiers are just means to get to these definitions. 464 * Int/void don't need definitions, they are assumed to be always 465 * properly defined. We also ignore datasec, var, and funcs for now. 466 * So for all non-defining kinds, we never even set ordering state, 467 * for defining kinds we set ORDERING and subsequently ORDERED if it 468 * forms a strong link. 469 */ 470 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 471 const struct btf_type *t; 472 __u16 vlen; 473 int err, i; 474 475 /* return true, letting typedefs know that it's ok to be emitted */ 476 if (tstate->order_state == ORDERED) 477 return 1; 478 479 t = btf__type_by_id(d->btf, id); 480 481 if (tstate->order_state == ORDERING) { 482 /* type loop, but resolvable through fwd declaration */ 483 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 484 return 0; 485 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 486 return -ELOOP; 487 } 488 489 switch (btf_kind(t)) { 490 case BTF_KIND_INT: 491 case BTF_KIND_FLOAT: 492 tstate->order_state = ORDERED; 493 return 0; 494 495 case BTF_KIND_PTR: 496 err = btf_dump_order_type(d, t->type, true); 497 tstate->order_state = ORDERED; 498 return err; 499 500 case BTF_KIND_ARRAY: 501 return btf_dump_order_type(d, btf_array(t)->type, false); 502 503 case BTF_KIND_STRUCT: 504 case BTF_KIND_UNION: { 505 const struct btf_member *m = btf_members(t); 506 /* 507 * struct/union is part of strong link, only if it's embedded 508 * (so no ptr in a path) or it's anonymous (so has to be 509 * defined inline, even if declared through ptr) 510 */ 511 if (through_ptr && t->name_off != 0) 512 return 0; 513 514 tstate->order_state = ORDERING; 515 516 vlen = btf_vlen(t); 517 for (i = 0; i < vlen; i++, m++) { 518 err = btf_dump_order_type(d, m->type, false); 519 if (err < 0) 520 return err; 521 } 522 523 if (t->name_off != 0) { 524 err = btf_dump_add_emit_queue_id(d, id); 525 if (err < 0) 526 return err; 527 } 528 529 tstate->order_state = ORDERED; 530 return 1; 531 } 532 case BTF_KIND_ENUM: 533 case BTF_KIND_ENUM64: 534 case BTF_KIND_FWD: 535 /* 536 * non-anonymous or non-referenced enums are top-level 537 * declarations and should be emitted. Same logic can be 538 * applied to FWDs, it won't hurt anyways. 539 */ 540 if (t->name_off != 0 || !tstate->referenced) { 541 err = btf_dump_add_emit_queue_id(d, id); 542 if (err) 543 return err; 544 } 545 tstate->order_state = ORDERED; 546 return 1; 547 548 case BTF_KIND_TYPEDEF: { 549 int is_strong; 550 551 is_strong = btf_dump_order_type(d, t->type, through_ptr); 552 if (is_strong < 0) 553 return is_strong; 554 555 /* typedef is similar to struct/union w.r.t. fwd-decls */ 556 if (through_ptr && !is_strong) 557 return 0; 558 559 /* typedef is always a named definition */ 560 err = btf_dump_add_emit_queue_id(d, id); 561 if (err) 562 return err; 563 564 d->type_states[id].order_state = ORDERED; 565 return 1; 566 } 567 case BTF_KIND_VOLATILE: 568 case BTF_KIND_CONST: 569 case BTF_KIND_RESTRICT: 570 case BTF_KIND_TYPE_TAG: 571 return btf_dump_order_type(d, t->type, through_ptr); 572 573 case BTF_KIND_FUNC_PROTO: { 574 const struct btf_param *p = btf_params(t); 575 bool is_strong; 576 577 err = btf_dump_order_type(d, t->type, through_ptr); 578 if (err < 0) 579 return err; 580 is_strong = err > 0; 581 582 vlen = btf_vlen(t); 583 for (i = 0; i < vlen; i++, p++) { 584 err = btf_dump_order_type(d, p->type, through_ptr); 585 if (err < 0) 586 return err; 587 if (err > 0) 588 is_strong = true; 589 } 590 return is_strong; 591 } 592 case BTF_KIND_FUNC: 593 case BTF_KIND_VAR: 594 case BTF_KIND_DATASEC: 595 case BTF_KIND_DECL_TAG: 596 d->type_states[id].order_state = ORDERED; 597 return 0; 598 599 default: 600 return -EINVAL; 601 } 602 } 603 604 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 605 const struct btf_type *t); 606 607 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 608 const struct btf_type *t); 609 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 610 const struct btf_type *t, int lvl); 611 612 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 613 const struct btf_type *t); 614 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 615 const struct btf_type *t, int lvl); 616 617 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 618 const struct btf_type *t); 619 620 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 621 const struct btf_type *t, int lvl); 622 623 /* a local view into a shared stack */ 624 struct id_stack { 625 const __u32 *ids; 626 int cnt; 627 }; 628 629 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 630 const char *fname, int lvl); 631 static void btf_dump_emit_type_chain(struct btf_dump *d, 632 struct id_stack *decl_stack, 633 const char *fname, int lvl); 634 635 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 636 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 637 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 638 const char *orig_name); 639 640 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 641 { 642 const struct btf_type *t = btf__type_by_id(d->btf, id); 643 644 /* __builtin_va_list is a compiler built-in, which causes compilation 645 * errors, when compiling w/ different compiler, then used to compile 646 * original code (e.g., GCC to compile kernel, Clang to use generated 647 * C header from BTF). As it is built-in, it should be already defined 648 * properly internally in compiler. 649 */ 650 if (t->name_off == 0) 651 return false; 652 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 653 } 654 655 /* 656 * Emit C-syntax definitions of types from chains of BTF types. 657 * 658 * High-level handling of determining necessary forward declarations are handled 659 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 660 * declarations/definitions in C syntax are handled by a combo of 661 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 662 * corresponding btf_dump_emit_*_{def,fwd}() functions. 663 * 664 * We also keep track of "containing struct/union type ID" to determine when 665 * we reference it from inside and thus can avoid emitting unnecessary forward 666 * declaration. 667 * 668 * This algorithm is designed in such a way, that even if some error occurs 669 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 670 * that doesn't comply to C rules completely), algorithm will try to proceed 671 * and produce as much meaningful output as possible. 672 */ 673 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 674 { 675 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 676 bool top_level_def = cont_id == 0; 677 const struct btf_type *t; 678 __u16 kind; 679 680 if (tstate->emit_state == EMITTED) 681 return; 682 683 t = btf__type_by_id(d->btf, id); 684 kind = btf_kind(t); 685 686 if (tstate->emit_state == EMITTING) { 687 if (tstate->fwd_emitted) 688 return; 689 690 switch (kind) { 691 case BTF_KIND_STRUCT: 692 case BTF_KIND_UNION: 693 /* 694 * if we are referencing a struct/union that we are 695 * part of - then no need for fwd declaration 696 */ 697 if (id == cont_id) 698 return; 699 if (t->name_off == 0) { 700 pr_warn("anonymous struct/union loop, id:[%u]\n", 701 id); 702 return; 703 } 704 btf_dump_emit_struct_fwd(d, id, t); 705 btf_dump_printf(d, ";\n\n"); 706 tstate->fwd_emitted = 1; 707 break; 708 case BTF_KIND_TYPEDEF: 709 /* 710 * for typedef fwd_emitted means typedef definition 711 * was emitted, but it can be used only for "weak" 712 * references through pointer only, not for embedding 713 */ 714 if (!btf_dump_is_blacklisted(d, id)) { 715 btf_dump_emit_typedef_def(d, id, t, 0); 716 btf_dump_printf(d, ";\n\n"); 717 } 718 tstate->fwd_emitted = 1; 719 break; 720 default: 721 break; 722 } 723 724 return; 725 } 726 727 switch (kind) { 728 case BTF_KIND_INT: 729 /* Emit type alias definitions if necessary */ 730 btf_dump_emit_missing_aliases(d, id, t); 731 732 tstate->emit_state = EMITTED; 733 break; 734 case BTF_KIND_ENUM: 735 case BTF_KIND_ENUM64: 736 if (top_level_def) { 737 btf_dump_emit_enum_def(d, id, t, 0); 738 btf_dump_printf(d, ";\n\n"); 739 } 740 tstate->emit_state = EMITTED; 741 break; 742 case BTF_KIND_PTR: 743 case BTF_KIND_VOLATILE: 744 case BTF_KIND_CONST: 745 case BTF_KIND_RESTRICT: 746 case BTF_KIND_TYPE_TAG: 747 btf_dump_emit_type(d, t->type, cont_id); 748 break; 749 case BTF_KIND_ARRAY: 750 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 751 break; 752 case BTF_KIND_FWD: 753 btf_dump_emit_fwd_def(d, id, t); 754 btf_dump_printf(d, ";\n\n"); 755 tstate->emit_state = EMITTED; 756 break; 757 case BTF_KIND_TYPEDEF: 758 tstate->emit_state = EMITTING; 759 btf_dump_emit_type(d, t->type, id); 760 /* 761 * typedef can server as both definition and forward 762 * declaration; at this stage someone depends on 763 * typedef as a forward declaration (refers to it 764 * through pointer), so unless we already did it, 765 * emit typedef as a forward declaration 766 */ 767 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 768 btf_dump_emit_typedef_def(d, id, t, 0); 769 btf_dump_printf(d, ";\n\n"); 770 } 771 tstate->emit_state = EMITTED; 772 break; 773 case BTF_KIND_STRUCT: 774 case BTF_KIND_UNION: 775 tstate->emit_state = EMITTING; 776 /* if it's a top-level struct/union definition or struct/union 777 * is anonymous, then in C we'll be emitting all fields and 778 * their types (as opposed to just `struct X`), so we need to 779 * make sure that all types, referenced from struct/union 780 * members have necessary forward-declarations, where 781 * applicable 782 */ 783 if (top_level_def || t->name_off == 0) { 784 const struct btf_member *m = btf_members(t); 785 __u16 vlen = btf_vlen(t); 786 int i, new_cont_id; 787 788 new_cont_id = t->name_off == 0 ? cont_id : id; 789 for (i = 0; i < vlen; i++, m++) 790 btf_dump_emit_type(d, m->type, new_cont_id); 791 } else if (!tstate->fwd_emitted && id != cont_id) { 792 btf_dump_emit_struct_fwd(d, id, t); 793 btf_dump_printf(d, ";\n\n"); 794 tstate->fwd_emitted = 1; 795 } 796 797 if (top_level_def) { 798 btf_dump_emit_struct_def(d, id, t, 0); 799 btf_dump_printf(d, ";\n\n"); 800 tstate->emit_state = EMITTED; 801 } else { 802 tstate->emit_state = NOT_EMITTED; 803 } 804 break; 805 case BTF_KIND_FUNC_PROTO: { 806 const struct btf_param *p = btf_params(t); 807 __u16 n = btf_vlen(t); 808 int i; 809 810 btf_dump_emit_type(d, t->type, cont_id); 811 for (i = 0; i < n; i++, p++) 812 btf_dump_emit_type(d, p->type, cont_id); 813 814 break; 815 } 816 default: 817 break; 818 } 819 } 820 821 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 822 const struct btf_type *t) 823 { 824 const struct btf_member *m; 825 int align, i, bit_sz; 826 __u16 vlen; 827 828 align = btf__align_of(btf, id); 829 /* size of a non-packed struct has to be a multiple of its alignment*/ 830 if (align && t->size % align) 831 return true; 832 833 m = btf_members(t); 834 vlen = btf_vlen(t); 835 /* all non-bitfield fields have to be naturally aligned */ 836 for (i = 0; i < vlen; i++, m++) { 837 align = btf__align_of(btf, m->type); 838 bit_sz = btf_member_bitfield_size(t, i); 839 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 840 return true; 841 } 842 843 /* 844 * if original struct was marked as packed, but its layout is 845 * naturally aligned, we'll detect that it's not packed 846 */ 847 return false; 848 } 849 850 static int chip_away_bits(int total, int at_most) 851 { 852 return total % at_most ? : at_most; 853 } 854 855 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 856 int cur_off, int m_off, int m_bit_sz, 857 int align, int lvl) 858 { 859 int off_diff = m_off - cur_off; 860 int ptr_bits = d->ptr_sz * 8; 861 862 if (off_diff <= 0) 863 /* no gap */ 864 return; 865 if (m_bit_sz == 0 && off_diff < align * 8) 866 /* natural padding will take care of a gap */ 867 return; 868 869 while (off_diff > 0) { 870 const char *pad_type; 871 int pad_bits; 872 873 if (ptr_bits > 32 && off_diff > 32) { 874 pad_type = "long"; 875 pad_bits = chip_away_bits(off_diff, ptr_bits); 876 } else if (off_diff > 16) { 877 pad_type = "int"; 878 pad_bits = chip_away_bits(off_diff, 32); 879 } else if (off_diff > 8) { 880 pad_type = "short"; 881 pad_bits = chip_away_bits(off_diff, 16); 882 } else { 883 pad_type = "char"; 884 pad_bits = chip_away_bits(off_diff, 8); 885 } 886 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 887 off_diff -= pad_bits; 888 } 889 } 890 891 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 892 const struct btf_type *t) 893 { 894 btf_dump_printf(d, "%s%s%s", 895 btf_is_struct(t) ? "struct" : "union", 896 t->name_off ? " " : "", 897 btf_dump_type_name(d, id)); 898 } 899 900 static void btf_dump_emit_struct_def(struct btf_dump *d, 901 __u32 id, 902 const struct btf_type *t, 903 int lvl) 904 { 905 const struct btf_member *m = btf_members(t); 906 bool is_struct = btf_is_struct(t); 907 int align, i, packed, off = 0; 908 __u16 vlen = btf_vlen(t); 909 910 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 911 912 btf_dump_printf(d, "%s%s%s {", 913 is_struct ? "struct" : "union", 914 t->name_off ? " " : "", 915 btf_dump_type_name(d, id)); 916 917 for (i = 0; i < vlen; i++, m++) { 918 const char *fname; 919 int m_off, m_sz; 920 921 fname = btf_name_of(d, m->name_off); 922 m_sz = btf_member_bitfield_size(t, i); 923 m_off = btf_member_bit_offset(t, i); 924 align = packed ? 1 : btf__align_of(d->btf, m->type); 925 926 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); 927 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 928 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 929 930 if (m_sz) { 931 btf_dump_printf(d, ": %d", m_sz); 932 off = m_off + m_sz; 933 } else { 934 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 935 off = m_off + m_sz * 8; 936 } 937 btf_dump_printf(d, ";"); 938 } 939 940 /* pad at the end, if necessary */ 941 if (is_struct) { 942 align = packed ? 1 : btf__align_of(d->btf, id); 943 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, 944 lvl + 1); 945 } 946 947 if (vlen) 948 btf_dump_printf(d, "\n"); 949 btf_dump_printf(d, "%s}", pfx(lvl)); 950 if (packed) 951 btf_dump_printf(d, " __attribute__((packed))"); 952 } 953 954 static const char *missing_base_types[][2] = { 955 /* 956 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 957 * SIMD intrinsics. Alias them to standard base types. 958 */ 959 { "__Poly8_t", "unsigned char" }, 960 { "__Poly16_t", "unsigned short" }, 961 { "__Poly64_t", "unsigned long long" }, 962 { "__Poly128_t", "unsigned __int128" }, 963 }; 964 965 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 966 const struct btf_type *t) 967 { 968 const char *name = btf_dump_type_name(d, id); 969 int i; 970 971 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 972 if (strcmp(name, missing_base_types[i][0]) == 0) { 973 btf_dump_printf(d, "typedef %s %s;\n\n", 974 missing_base_types[i][1], name); 975 break; 976 } 977 } 978 } 979 980 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 981 const struct btf_type *t) 982 { 983 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 984 } 985 986 static void btf_dump_emit_enum32_val(struct btf_dump *d, 987 const struct btf_type *t, 988 int lvl, __u16 vlen) 989 { 990 const struct btf_enum *v = btf_enum(t); 991 bool is_signed = btf_kflag(t); 992 const char *fmt_str; 993 const char *name; 994 size_t dup_cnt; 995 int i; 996 997 for (i = 0; i < vlen; i++, v++) { 998 name = btf_name_of(d, v->name_off); 999 /* enumerators share namespace with typedef idents */ 1000 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1001 if (dup_cnt > 1) { 1002 fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,"; 1003 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val); 1004 } else { 1005 fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,"; 1006 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val); 1007 } 1008 } 1009 } 1010 1011 static void btf_dump_emit_enum64_val(struct btf_dump *d, 1012 const struct btf_type *t, 1013 int lvl, __u16 vlen) 1014 { 1015 const struct btf_enum64 *v = btf_enum64(t); 1016 bool is_signed = btf_kflag(t); 1017 const char *fmt_str; 1018 const char *name; 1019 size_t dup_cnt; 1020 __u64 val; 1021 int i; 1022 1023 for (i = 0; i < vlen; i++, v++) { 1024 name = btf_name_of(d, v->name_off); 1025 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1026 val = btf_enum64_value(v); 1027 if (dup_cnt > 1) { 1028 fmt_str = is_signed ? "\n%s%s___%zd = %lldLL," 1029 : "\n%s%s___%zd = %lluULL,"; 1030 btf_dump_printf(d, fmt_str, 1031 pfx(lvl + 1), name, dup_cnt, 1032 (unsigned long long)val); 1033 } else { 1034 fmt_str = is_signed ? "\n%s%s = %lldLL," 1035 : "\n%s%s = %lluULL,"; 1036 btf_dump_printf(d, fmt_str, 1037 pfx(lvl + 1), name, 1038 (unsigned long long)val); 1039 } 1040 } 1041 } 1042 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 1043 const struct btf_type *t, 1044 int lvl) 1045 { 1046 __u16 vlen = btf_vlen(t); 1047 1048 btf_dump_printf(d, "enum%s%s", 1049 t->name_off ? " " : "", 1050 btf_dump_type_name(d, id)); 1051 1052 if (!vlen) 1053 return; 1054 1055 btf_dump_printf(d, " {"); 1056 if (btf_is_enum(t)) 1057 btf_dump_emit_enum32_val(d, t, lvl, vlen); 1058 else 1059 btf_dump_emit_enum64_val(d, t, lvl, vlen); 1060 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1061 } 1062 1063 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1064 const struct btf_type *t) 1065 { 1066 const char *name = btf_dump_type_name(d, id); 1067 1068 if (btf_kflag(t)) 1069 btf_dump_printf(d, "union %s", name); 1070 else 1071 btf_dump_printf(d, "struct %s", name); 1072 } 1073 1074 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1075 const struct btf_type *t, int lvl) 1076 { 1077 const char *name = btf_dump_ident_name(d, id); 1078 1079 /* 1080 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1081 * pointing to VOID. This generates warnings from btf_dump() and 1082 * results in uncompilable header file, so we are fixing it up here 1083 * with valid typedef into __builtin_va_list. 1084 */ 1085 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1086 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1087 return; 1088 } 1089 1090 btf_dump_printf(d, "typedef "); 1091 btf_dump_emit_type_decl(d, t->type, name, lvl); 1092 } 1093 1094 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1095 { 1096 __u32 *new_stack; 1097 size_t new_cap; 1098 1099 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1100 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1101 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1102 if (!new_stack) 1103 return -ENOMEM; 1104 d->decl_stack = new_stack; 1105 d->decl_stack_cap = new_cap; 1106 } 1107 1108 d->decl_stack[d->decl_stack_cnt++] = id; 1109 1110 return 0; 1111 } 1112 1113 /* 1114 * Emit type declaration (e.g., field type declaration in a struct or argument 1115 * declaration in function prototype) in correct C syntax. 1116 * 1117 * For most types it's trivial, but there are few quirky type declaration 1118 * cases worth mentioning: 1119 * - function prototypes (especially nesting of function prototypes); 1120 * - arrays; 1121 * - const/volatile/restrict for pointers vs other types. 1122 * 1123 * For a good discussion of *PARSING* C syntax (as a human), see 1124 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1125 * Ch.3 "Unscrambling Declarations in C". 1126 * 1127 * It won't help with BTF to C conversion much, though, as it's an opposite 1128 * problem. So we came up with this algorithm in reverse to van der Linden's 1129 * parsing algorithm. It goes from structured BTF representation of type 1130 * declaration to a valid compilable C syntax. 1131 * 1132 * For instance, consider this C typedef: 1133 * typedef const int * const * arr[10] arr_t; 1134 * It will be represented in BTF with this chain of BTF types: 1135 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1136 * 1137 * Notice how [const] modifier always goes before type it modifies in BTF type 1138 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1139 * the right of pointers, but to the left of other types. There are also other 1140 * quirks, like function pointers, arrays of them, functions returning other 1141 * functions, etc. 1142 * 1143 * We handle that by pushing all the types to a stack, until we hit "terminal" 1144 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1145 * top of a stack, modifiers are handled differently. Array/function pointers 1146 * have also wildly different syntax and how nesting of them are done. See 1147 * code for authoritative definition. 1148 * 1149 * To avoid allocating new stack for each independent chain of BTF types, we 1150 * share one bigger stack, with each chain working only on its own local view 1151 * of a stack frame. Some care is required to "pop" stack frames after 1152 * processing type declaration chain. 1153 */ 1154 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1155 const struct btf_dump_emit_type_decl_opts *opts) 1156 { 1157 const char *fname; 1158 int lvl, err; 1159 1160 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1161 return libbpf_err(-EINVAL); 1162 1163 err = btf_dump_resize(d); 1164 if (err) 1165 return libbpf_err(err); 1166 1167 fname = OPTS_GET(opts, field_name, ""); 1168 lvl = OPTS_GET(opts, indent_level, 0); 1169 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1170 btf_dump_emit_type_decl(d, id, fname, lvl); 1171 d->strip_mods = false; 1172 return 0; 1173 } 1174 1175 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1176 const char *fname, int lvl) 1177 { 1178 struct id_stack decl_stack; 1179 const struct btf_type *t; 1180 int err, stack_start; 1181 1182 stack_start = d->decl_stack_cnt; 1183 for (;;) { 1184 t = btf__type_by_id(d->btf, id); 1185 if (d->strip_mods && btf_is_mod(t)) 1186 goto skip_mod; 1187 1188 err = btf_dump_push_decl_stack_id(d, id); 1189 if (err < 0) { 1190 /* 1191 * if we don't have enough memory for entire type decl 1192 * chain, restore stack, emit warning, and try to 1193 * proceed nevertheless 1194 */ 1195 pr_warn("not enough memory for decl stack:%d", err); 1196 d->decl_stack_cnt = stack_start; 1197 return; 1198 } 1199 skip_mod: 1200 /* VOID */ 1201 if (id == 0) 1202 break; 1203 1204 switch (btf_kind(t)) { 1205 case BTF_KIND_PTR: 1206 case BTF_KIND_VOLATILE: 1207 case BTF_KIND_CONST: 1208 case BTF_KIND_RESTRICT: 1209 case BTF_KIND_FUNC_PROTO: 1210 case BTF_KIND_TYPE_TAG: 1211 id = t->type; 1212 break; 1213 case BTF_KIND_ARRAY: 1214 id = btf_array(t)->type; 1215 break; 1216 case BTF_KIND_INT: 1217 case BTF_KIND_ENUM: 1218 case BTF_KIND_ENUM64: 1219 case BTF_KIND_FWD: 1220 case BTF_KIND_STRUCT: 1221 case BTF_KIND_UNION: 1222 case BTF_KIND_TYPEDEF: 1223 case BTF_KIND_FLOAT: 1224 goto done; 1225 default: 1226 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1227 btf_kind(t), id); 1228 goto done; 1229 } 1230 } 1231 done: 1232 /* 1233 * We might be inside a chain of declarations (e.g., array of function 1234 * pointers returning anonymous (so inlined) structs, having another 1235 * array field). Each of those needs its own "stack frame" to handle 1236 * emitting of declarations. Those stack frames are non-overlapping 1237 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1238 * handle this set of nested stacks, we create a view corresponding to 1239 * our own "stack frame" and work with it as an independent stack. 1240 * We'll need to clean up after emit_type_chain() returns, though. 1241 */ 1242 decl_stack.ids = d->decl_stack + stack_start; 1243 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1244 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1245 /* 1246 * emit_type_chain() guarantees that it will pop its entire decl_stack 1247 * frame before returning. But it works with a read-only view into 1248 * decl_stack, so it doesn't actually pop anything from the 1249 * perspective of shared btf_dump->decl_stack, per se. We need to 1250 * reset decl_stack state to how it was before us to avoid it growing 1251 * all the time. 1252 */ 1253 d->decl_stack_cnt = stack_start; 1254 } 1255 1256 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1257 { 1258 const struct btf_type *t; 1259 __u32 id; 1260 1261 while (decl_stack->cnt) { 1262 id = decl_stack->ids[decl_stack->cnt - 1]; 1263 t = btf__type_by_id(d->btf, id); 1264 1265 switch (btf_kind(t)) { 1266 case BTF_KIND_VOLATILE: 1267 btf_dump_printf(d, "volatile "); 1268 break; 1269 case BTF_KIND_CONST: 1270 btf_dump_printf(d, "const "); 1271 break; 1272 case BTF_KIND_RESTRICT: 1273 btf_dump_printf(d, "restrict "); 1274 break; 1275 default: 1276 return; 1277 } 1278 decl_stack->cnt--; 1279 } 1280 } 1281 1282 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1283 { 1284 const struct btf_type *t; 1285 __u32 id; 1286 1287 while (decl_stack->cnt) { 1288 id = decl_stack->ids[decl_stack->cnt - 1]; 1289 t = btf__type_by_id(d->btf, id); 1290 if (!btf_is_mod(t)) 1291 return; 1292 decl_stack->cnt--; 1293 } 1294 } 1295 1296 static void btf_dump_emit_name(const struct btf_dump *d, 1297 const char *name, bool last_was_ptr) 1298 { 1299 bool separate = name[0] && !last_was_ptr; 1300 1301 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1302 } 1303 1304 static void btf_dump_emit_type_chain(struct btf_dump *d, 1305 struct id_stack *decls, 1306 const char *fname, int lvl) 1307 { 1308 /* 1309 * last_was_ptr is used to determine if we need to separate pointer 1310 * asterisk (*) from previous part of type signature with space, so 1311 * that we get `int ***`, instead of `int * * *`. We default to true 1312 * for cases where we have single pointer in a chain. E.g., in ptr -> 1313 * func_proto case. func_proto will start a new emit_type_chain call 1314 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1315 * don't want to prepend space for that last pointer. 1316 */ 1317 bool last_was_ptr = true; 1318 const struct btf_type *t; 1319 const char *name; 1320 __u16 kind; 1321 __u32 id; 1322 1323 while (decls->cnt) { 1324 id = decls->ids[--decls->cnt]; 1325 if (id == 0) { 1326 /* VOID is a special snowflake */ 1327 btf_dump_emit_mods(d, decls); 1328 btf_dump_printf(d, "void"); 1329 last_was_ptr = false; 1330 continue; 1331 } 1332 1333 t = btf__type_by_id(d->btf, id); 1334 kind = btf_kind(t); 1335 1336 switch (kind) { 1337 case BTF_KIND_INT: 1338 case BTF_KIND_FLOAT: 1339 btf_dump_emit_mods(d, decls); 1340 name = btf_name_of(d, t->name_off); 1341 btf_dump_printf(d, "%s", name); 1342 break; 1343 case BTF_KIND_STRUCT: 1344 case BTF_KIND_UNION: 1345 btf_dump_emit_mods(d, decls); 1346 /* inline anonymous struct/union */ 1347 if (t->name_off == 0 && !d->skip_anon_defs) 1348 btf_dump_emit_struct_def(d, id, t, lvl); 1349 else 1350 btf_dump_emit_struct_fwd(d, id, t); 1351 break; 1352 case BTF_KIND_ENUM: 1353 case BTF_KIND_ENUM64: 1354 btf_dump_emit_mods(d, decls); 1355 /* inline anonymous enum */ 1356 if (t->name_off == 0 && !d->skip_anon_defs) 1357 btf_dump_emit_enum_def(d, id, t, lvl); 1358 else 1359 btf_dump_emit_enum_fwd(d, id, t); 1360 break; 1361 case BTF_KIND_FWD: 1362 btf_dump_emit_mods(d, decls); 1363 btf_dump_emit_fwd_def(d, id, t); 1364 break; 1365 case BTF_KIND_TYPEDEF: 1366 btf_dump_emit_mods(d, decls); 1367 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1368 break; 1369 case BTF_KIND_PTR: 1370 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1371 break; 1372 case BTF_KIND_VOLATILE: 1373 btf_dump_printf(d, " volatile"); 1374 break; 1375 case BTF_KIND_CONST: 1376 btf_dump_printf(d, " const"); 1377 break; 1378 case BTF_KIND_RESTRICT: 1379 btf_dump_printf(d, " restrict"); 1380 break; 1381 case BTF_KIND_TYPE_TAG: 1382 btf_dump_emit_mods(d, decls); 1383 name = btf_name_of(d, t->name_off); 1384 btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name); 1385 break; 1386 case BTF_KIND_ARRAY: { 1387 const struct btf_array *a = btf_array(t); 1388 const struct btf_type *next_t; 1389 __u32 next_id; 1390 bool multidim; 1391 /* 1392 * GCC has a bug 1393 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1394 * which causes it to emit extra const/volatile 1395 * modifiers for an array, if array's element type has 1396 * const/volatile modifiers. Clang doesn't do that. 1397 * In general, it doesn't seem very meaningful to have 1398 * a const/volatile modifier for array, so we are 1399 * going to silently skip them here. 1400 */ 1401 btf_dump_drop_mods(d, decls); 1402 1403 if (decls->cnt == 0) { 1404 btf_dump_emit_name(d, fname, last_was_ptr); 1405 btf_dump_printf(d, "[%u]", a->nelems); 1406 return; 1407 } 1408 1409 next_id = decls->ids[decls->cnt - 1]; 1410 next_t = btf__type_by_id(d->btf, next_id); 1411 multidim = btf_is_array(next_t); 1412 /* we need space if we have named non-pointer */ 1413 if (fname[0] && !last_was_ptr) 1414 btf_dump_printf(d, " "); 1415 /* no parentheses for multi-dimensional array */ 1416 if (!multidim) 1417 btf_dump_printf(d, "("); 1418 btf_dump_emit_type_chain(d, decls, fname, lvl); 1419 if (!multidim) 1420 btf_dump_printf(d, ")"); 1421 btf_dump_printf(d, "[%u]", a->nelems); 1422 return; 1423 } 1424 case BTF_KIND_FUNC_PROTO: { 1425 const struct btf_param *p = btf_params(t); 1426 __u16 vlen = btf_vlen(t); 1427 int i; 1428 1429 /* 1430 * GCC emits extra volatile qualifier for 1431 * __attribute__((noreturn)) function pointers. Clang 1432 * doesn't do it. It's a GCC quirk for backwards 1433 * compatibility with code written for GCC <2.5. So, 1434 * similarly to extra qualifiers for array, just drop 1435 * them, instead of handling them. 1436 */ 1437 btf_dump_drop_mods(d, decls); 1438 if (decls->cnt) { 1439 btf_dump_printf(d, " ("); 1440 btf_dump_emit_type_chain(d, decls, fname, lvl); 1441 btf_dump_printf(d, ")"); 1442 } else { 1443 btf_dump_emit_name(d, fname, last_was_ptr); 1444 } 1445 btf_dump_printf(d, "("); 1446 /* 1447 * Clang for BPF target generates func_proto with no 1448 * args as a func_proto with a single void arg (e.g., 1449 * `int (*f)(void)` vs just `int (*f)()`). We are 1450 * going to pretend there are no args for such case. 1451 */ 1452 if (vlen == 1 && p->type == 0) { 1453 btf_dump_printf(d, ")"); 1454 return; 1455 } 1456 1457 for (i = 0; i < vlen; i++, p++) { 1458 if (i > 0) 1459 btf_dump_printf(d, ", "); 1460 1461 /* last arg of type void is vararg */ 1462 if (i == vlen - 1 && p->type == 0) { 1463 btf_dump_printf(d, "..."); 1464 break; 1465 } 1466 1467 name = btf_name_of(d, p->name_off); 1468 btf_dump_emit_type_decl(d, p->type, name, lvl); 1469 } 1470 1471 btf_dump_printf(d, ")"); 1472 return; 1473 } 1474 default: 1475 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1476 kind, id); 1477 return; 1478 } 1479 1480 last_was_ptr = kind == BTF_KIND_PTR; 1481 } 1482 1483 btf_dump_emit_name(d, fname, last_was_ptr); 1484 } 1485 1486 /* show type name as (type_name) */ 1487 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1488 bool top_level) 1489 { 1490 const struct btf_type *t; 1491 1492 /* for array members, we don't bother emitting type name for each 1493 * member to avoid the redundancy of 1494 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1495 */ 1496 if (d->typed_dump->is_array_member) 1497 return; 1498 1499 /* avoid type name specification for variable/section; it will be done 1500 * for the associated variable value(s). 1501 */ 1502 t = btf__type_by_id(d->btf, id); 1503 if (btf_is_var(t) || btf_is_datasec(t)) 1504 return; 1505 1506 if (top_level) 1507 btf_dump_printf(d, "("); 1508 1509 d->skip_anon_defs = true; 1510 d->strip_mods = true; 1511 btf_dump_emit_type_decl(d, id, "", 0); 1512 d->strip_mods = false; 1513 d->skip_anon_defs = false; 1514 1515 if (top_level) 1516 btf_dump_printf(d, ")"); 1517 } 1518 1519 /* return number of duplicates (occurrences) of a given name */ 1520 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1521 const char *orig_name) 1522 { 1523 size_t dup_cnt = 0; 1524 1525 hashmap__find(name_map, orig_name, (void **)&dup_cnt); 1526 dup_cnt++; 1527 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); 1528 1529 return dup_cnt; 1530 } 1531 1532 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1533 struct hashmap *name_map) 1534 { 1535 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1536 const struct btf_type *t = btf__type_by_id(d->btf, id); 1537 const char *orig_name = btf_name_of(d, t->name_off); 1538 const char **cached_name = &d->cached_names[id]; 1539 size_t dup_cnt; 1540 1541 if (t->name_off == 0) 1542 return ""; 1543 1544 if (s->name_resolved) 1545 return *cached_name ? *cached_name : orig_name; 1546 1547 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) { 1548 s->name_resolved = 1; 1549 return orig_name; 1550 } 1551 1552 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1553 if (dup_cnt > 1) { 1554 const size_t max_len = 256; 1555 char new_name[max_len]; 1556 1557 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1558 *cached_name = strdup(new_name); 1559 } 1560 1561 s->name_resolved = 1; 1562 return *cached_name ? *cached_name : orig_name; 1563 } 1564 1565 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1566 { 1567 return btf_dump_resolve_name(d, id, d->type_names); 1568 } 1569 1570 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1571 { 1572 return btf_dump_resolve_name(d, id, d->ident_names); 1573 } 1574 1575 static int btf_dump_dump_type_data(struct btf_dump *d, 1576 const char *fname, 1577 const struct btf_type *t, 1578 __u32 id, 1579 const void *data, 1580 __u8 bits_offset, 1581 __u8 bit_sz); 1582 1583 static const char *btf_dump_data_newline(struct btf_dump *d) 1584 { 1585 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1586 } 1587 1588 static const char *btf_dump_data_delim(struct btf_dump *d) 1589 { 1590 return d->typed_dump->depth == 0 ? "" : ","; 1591 } 1592 1593 static void btf_dump_data_pfx(struct btf_dump *d) 1594 { 1595 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1596 1597 if (d->typed_dump->compact) 1598 return; 1599 1600 for (i = 0; i < lvl; i++) 1601 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1602 } 1603 1604 /* A macro is used here as btf_type_value[s]() appends format specifiers 1605 * to the format specifier passed in; these do the work of appending 1606 * delimiters etc while the caller simply has to specify the type values 1607 * in the format specifier + value(s). 1608 */ 1609 #define btf_dump_type_values(d, fmt, ...) \ 1610 btf_dump_printf(d, fmt "%s%s", \ 1611 ##__VA_ARGS__, \ 1612 btf_dump_data_delim(d), \ 1613 btf_dump_data_newline(d)) 1614 1615 static int btf_dump_unsupported_data(struct btf_dump *d, 1616 const struct btf_type *t, 1617 __u32 id) 1618 { 1619 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1620 return -ENOTSUP; 1621 } 1622 1623 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1624 const struct btf_type *t, 1625 const void *data, 1626 __u8 bits_offset, 1627 __u8 bit_sz, 1628 __u64 *value) 1629 { 1630 __u16 left_shift_bits, right_shift_bits; 1631 const __u8 *bytes = data; 1632 __u8 nr_copy_bits; 1633 __u64 num = 0; 1634 int i; 1635 1636 /* Maximum supported bitfield size is 64 bits */ 1637 if (t->size > 8) { 1638 pr_warn("unexpected bitfield size %d\n", t->size); 1639 return -EINVAL; 1640 } 1641 1642 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1643 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1644 */ 1645 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1646 for (i = t->size - 1; i >= 0; i--) 1647 num = num * 256 + bytes[i]; 1648 nr_copy_bits = bit_sz + bits_offset; 1649 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1650 for (i = 0; i < t->size; i++) 1651 num = num * 256 + bytes[i]; 1652 nr_copy_bits = t->size * 8 - bits_offset; 1653 #else 1654 # error "Unrecognized __BYTE_ORDER__" 1655 #endif 1656 left_shift_bits = 64 - nr_copy_bits; 1657 right_shift_bits = 64 - bit_sz; 1658 1659 *value = (num << left_shift_bits) >> right_shift_bits; 1660 1661 return 0; 1662 } 1663 1664 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1665 const struct btf_type *t, 1666 const void *data, 1667 __u8 bits_offset, 1668 __u8 bit_sz) 1669 { 1670 __u64 check_num; 1671 int err; 1672 1673 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1674 if (err) 1675 return err; 1676 if (check_num == 0) 1677 return -ENODATA; 1678 return 0; 1679 } 1680 1681 static int btf_dump_bitfield_data(struct btf_dump *d, 1682 const struct btf_type *t, 1683 const void *data, 1684 __u8 bits_offset, 1685 __u8 bit_sz) 1686 { 1687 __u64 print_num; 1688 int err; 1689 1690 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1691 if (err) 1692 return err; 1693 1694 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1695 1696 return 0; 1697 } 1698 1699 /* ints, floats and ptrs */ 1700 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1701 const struct btf_type *t, 1702 __u32 id, 1703 const void *data) 1704 { 1705 static __u8 bytecmp[16] = {}; 1706 int nr_bytes; 1707 1708 /* For pointer types, pointer size is not defined on a per-type basis. 1709 * On dump creation however, we store the pointer size. 1710 */ 1711 if (btf_kind(t) == BTF_KIND_PTR) 1712 nr_bytes = d->ptr_sz; 1713 else 1714 nr_bytes = t->size; 1715 1716 if (nr_bytes < 1 || nr_bytes > 16) { 1717 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1718 return -EINVAL; 1719 } 1720 1721 if (memcmp(data, bytecmp, nr_bytes) == 0) 1722 return -ENODATA; 1723 return 0; 1724 } 1725 1726 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id, 1727 const void *data) 1728 { 1729 int alignment = btf__align_of(btf, type_id); 1730 1731 if (alignment == 0) 1732 return false; 1733 1734 return ((uintptr_t)data) % alignment == 0; 1735 } 1736 1737 static int btf_dump_int_data(struct btf_dump *d, 1738 const struct btf_type *t, 1739 __u32 type_id, 1740 const void *data, 1741 __u8 bits_offset) 1742 { 1743 __u8 encoding = btf_int_encoding(t); 1744 bool sign = encoding & BTF_INT_SIGNED; 1745 char buf[16] __attribute__((aligned(16))); 1746 int sz = t->size; 1747 1748 if (sz == 0 || sz > sizeof(buf)) { 1749 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1750 return -EINVAL; 1751 } 1752 1753 /* handle packed int data - accesses of integers not aligned on 1754 * int boundaries can cause problems on some platforms. 1755 */ 1756 if (!ptr_is_aligned(d->btf, type_id, data)) { 1757 memcpy(buf, data, sz); 1758 data = buf; 1759 } 1760 1761 switch (sz) { 1762 case 16: { 1763 const __u64 *ints = data; 1764 __u64 lsi, msi; 1765 1766 /* avoid use of __int128 as some 32-bit platforms do not 1767 * support it. 1768 */ 1769 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1770 lsi = ints[0]; 1771 msi = ints[1]; 1772 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1773 lsi = ints[1]; 1774 msi = ints[0]; 1775 #else 1776 # error "Unrecognized __BYTE_ORDER__" 1777 #endif 1778 if (msi == 0) 1779 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1780 else 1781 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1782 (unsigned long long)lsi); 1783 break; 1784 } 1785 case 8: 1786 if (sign) 1787 btf_dump_type_values(d, "%lld", *(long long *)data); 1788 else 1789 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1790 break; 1791 case 4: 1792 if (sign) 1793 btf_dump_type_values(d, "%d", *(__s32 *)data); 1794 else 1795 btf_dump_type_values(d, "%u", *(__u32 *)data); 1796 break; 1797 case 2: 1798 if (sign) 1799 btf_dump_type_values(d, "%d", *(__s16 *)data); 1800 else 1801 btf_dump_type_values(d, "%u", *(__u16 *)data); 1802 break; 1803 case 1: 1804 if (d->typed_dump->is_array_char) { 1805 /* check for null terminator */ 1806 if (d->typed_dump->is_array_terminated) 1807 break; 1808 if (*(char *)data == '\0') { 1809 d->typed_dump->is_array_terminated = true; 1810 break; 1811 } 1812 if (isprint(*(char *)data)) { 1813 btf_dump_type_values(d, "'%c'", *(char *)data); 1814 break; 1815 } 1816 } 1817 if (sign) 1818 btf_dump_type_values(d, "%d", *(__s8 *)data); 1819 else 1820 btf_dump_type_values(d, "%u", *(__u8 *)data); 1821 break; 1822 default: 1823 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1824 return -EINVAL; 1825 } 1826 return 0; 1827 } 1828 1829 union float_data { 1830 long double ld; 1831 double d; 1832 float f; 1833 }; 1834 1835 static int btf_dump_float_data(struct btf_dump *d, 1836 const struct btf_type *t, 1837 __u32 type_id, 1838 const void *data) 1839 { 1840 const union float_data *flp = data; 1841 union float_data fl; 1842 int sz = t->size; 1843 1844 /* handle unaligned data; copy to local union */ 1845 if (!ptr_is_aligned(d->btf, type_id, data)) { 1846 memcpy(&fl, data, sz); 1847 flp = &fl; 1848 } 1849 1850 switch (sz) { 1851 case 16: 1852 btf_dump_type_values(d, "%Lf", flp->ld); 1853 break; 1854 case 8: 1855 btf_dump_type_values(d, "%lf", flp->d); 1856 break; 1857 case 4: 1858 btf_dump_type_values(d, "%f", flp->f); 1859 break; 1860 default: 1861 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1862 return -EINVAL; 1863 } 1864 return 0; 1865 } 1866 1867 static int btf_dump_var_data(struct btf_dump *d, 1868 const struct btf_type *v, 1869 __u32 id, 1870 const void *data) 1871 { 1872 enum btf_func_linkage linkage = btf_var(v)->linkage; 1873 const struct btf_type *t; 1874 const char *l; 1875 __u32 type_id; 1876 1877 switch (linkage) { 1878 case BTF_FUNC_STATIC: 1879 l = "static "; 1880 break; 1881 case BTF_FUNC_EXTERN: 1882 l = "extern "; 1883 break; 1884 case BTF_FUNC_GLOBAL: 1885 default: 1886 l = ""; 1887 break; 1888 } 1889 1890 /* format of output here is [linkage] [type] [varname] = (type)value, 1891 * for example "static int cpu_profile_flip = (int)1" 1892 */ 1893 btf_dump_printf(d, "%s", l); 1894 type_id = v->type; 1895 t = btf__type_by_id(d->btf, type_id); 1896 btf_dump_emit_type_cast(d, type_id, false); 1897 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 1898 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 1899 } 1900 1901 static int btf_dump_array_data(struct btf_dump *d, 1902 const struct btf_type *t, 1903 __u32 id, 1904 const void *data) 1905 { 1906 const struct btf_array *array = btf_array(t); 1907 const struct btf_type *elem_type; 1908 __u32 i, elem_type_id; 1909 __s64 elem_size; 1910 bool is_array_member; 1911 1912 elem_type_id = array->type; 1913 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 1914 elem_size = btf__resolve_size(d->btf, elem_type_id); 1915 if (elem_size <= 0) { 1916 pr_warn("unexpected elem size %zd for array type [%u]\n", 1917 (ssize_t)elem_size, id); 1918 return -EINVAL; 1919 } 1920 1921 if (btf_is_int(elem_type)) { 1922 /* 1923 * BTF_INT_CHAR encoding never seems to be set for 1924 * char arrays, so if size is 1 and element is 1925 * printable as a char, we'll do that. 1926 */ 1927 if (elem_size == 1) 1928 d->typed_dump->is_array_char = true; 1929 } 1930 1931 /* note that we increment depth before calling btf_dump_print() below; 1932 * this is intentional. btf_dump_data_newline() will not print a 1933 * newline for depth 0 (since this leaves us with trailing newlines 1934 * at the end of typed display), so depth is incremented first. 1935 * For similar reasons, we decrement depth before showing the closing 1936 * parenthesis. 1937 */ 1938 d->typed_dump->depth++; 1939 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 1940 1941 /* may be a multidimensional array, so store current "is array member" 1942 * status so we can restore it correctly later. 1943 */ 1944 is_array_member = d->typed_dump->is_array_member; 1945 d->typed_dump->is_array_member = true; 1946 for (i = 0; i < array->nelems; i++, data += elem_size) { 1947 if (d->typed_dump->is_array_terminated) 1948 break; 1949 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 1950 } 1951 d->typed_dump->is_array_member = is_array_member; 1952 d->typed_dump->depth--; 1953 btf_dump_data_pfx(d); 1954 btf_dump_type_values(d, "]"); 1955 1956 return 0; 1957 } 1958 1959 static int btf_dump_struct_data(struct btf_dump *d, 1960 const struct btf_type *t, 1961 __u32 id, 1962 const void *data) 1963 { 1964 const struct btf_member *m = btf_members(t); 1965 __u16 n = btf_vlen(t); 1966 int i, err; 1967 1968 /* note that we increment depth before calling btf_dump_print() below; 1969 * this is intentional. btf_dump_data_newline() will not print a 1970 * newline for depth 0 (since this leaves us with trailing newlines 1971 * at the end of typed display), so depth is incremented first. 1972 * For similar reasons, we decrement depth before showing the closing 1973 * parenthesis. 1974 */ 1975 d->typed_dump->depth++; 1976 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 1977 1978 for (i = 0; i < n; i++, m++) { 1979 const struct btf_type *mtype; 1980 const char *mname; 1981 __u32 moffset; 1982 __u8 bit_sz; 1983 1984 mtype = btf__type_by_id(d->btf, m->type); 1985 mname = btf_name_of(d, m->name_off); 1986 moffset = btf_member_bit_offset(t, i); 1987 1988 bit_sz = btf_member_bitfield_size(t, i); 1989 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 1990 moffset % 8, bit_sz); 1991 if (err < 0) 1992 return err; 1993 } 1994 d->typed_dump->depth--; 1995 btf_dump_data_pfx(d); 1996 btf_dump_type_values(d, "}"); 1997 return err; 1998 } 1999 2000 union ptr_data { 2001 unsigned int p; 2002 unsigned long long lp; 2003 }; 2004 2005 static int btf_dump_ptr_data(struct btf_dump *d, 2006 const struct btf_type *t, 2007 __u32 id, 2008 const void *data) 2009 { 2010 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) { 2011 btf_dump_type_values(d, "%p", *(void **)data); 2012 } else { 2013 union ptr_data pt; 2014 2015 memcpy(&pt, data, d->ptr_sz); 2016 if (d->ptr_sz == 4) 2017 btf_dump_type_values(d, "0x%x", pt.p); 2018 else 2019 btf_dump_type_values(d, "0x%llx", pt.lp); 2020 } 2021 return 0; 2022 } 2023 2024 static int btf_dump_get_enum_value(struct btf_dump *d, 2025 const struct btf_type *t, 2026 const void *data, 2027 __u32 id, 2028 __s64 *value) 2029 { 2030 bool is_signed = btf_kflag(t); 2031 2032 if (!ptr_is_aligned(d->btf, id, data)) { 2033 __u64 val; 2034 int err; 2035 2036 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 2037 if (err) 2038 return err; 2039 *value = (__s64)val; 2040 return 0; 2041 } 2042 2043 switch (t->size) { 2044 case 8: 2045 *value = *(__s64 *)data; 2046 return 0; 2047 case 4: 2048 *value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data; 2049 return 0; 2050 case 2: 2051 *value = is_signed ? *(__s16 *)data : *(__u16 *)data; 2052 return 0; 2053 case 1: 2054 *value = is_signed ? *(__s8 *)data : *(__u8 *)data; 2055 return 0; 2056 default: 2057 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 2058 return -EINVAL; 2059 } 2060 } 2061 2062 static int btf_dump_enum_data(struct btf_dump *d, 2063 const struct btf_type *t, 2064 __u32 id, 2065 const void *data) 2066 { 2067 bool is_signed; 2068 __s64 value; 2069 int i, err; 2070 2071 err = btf_dump_get_enum_value(d, t, data, id, &value); 2072 if (err) 2073 return err; 2074 2075 is_signed = btf_kflag(t); 2076 if (btf_is_enum(t)) { 2077 const struct btf_enum *e; 2078 2079 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 2080 if (value != e->val) 2081 continue; 2082 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2083 return 0; 2084 } 2085 2086 btf_dump_type_values(d, is_signed ? "%d" : "%u", value); 2087 } else { 2088 const struct btf_enum64 *e; 2089 2090 for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) { 2091 if (value != btf_enum64_value(e)) 2092 continue; 2093 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2094 return 0; 2095 } 2096 2097 btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL", 2098 (unsigned long long)value); 2099 } 2100 return 0; 2101 } 2102 2103 static int btf_dump_datasec_data(struct btf_dump *d, 2104 const struct btf_type *t, 2105 __u32 id, 2106 const void *data) 2107 { 2108 const struct btf_var_secinfo *vsi; 2109 const struct btf_type *var; 2110 __u32 i; 2111 int err; 2112 2113 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2114 2115 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2116 var = btf__type_by_id(d->btf, vsi->type); 2117 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2118 if (err < 0) 2119 return err; 2120 btf_dump_printf(d, ";"); 2121 } 2122 return 0; 2123 } 2124 2125 /* return size of type, or if base type overflows, return -E2BIG. */ 2126 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2127 const struct btf_type *t, 2128 __u32 id, 2129 const void *data, 2130 __u8 bits_offset) 2131 { 2132 __s64 size = btf__resolve_size(d->btf, id); 2133 2134 if (size < 0 || size >= INT_MAX) { 2135 pr_warn("unexpected size [%zu] for id [%u]\n", 2136 (size_t)size, id); 2137 return -EINVAL; 2138 } 2139 2140 /* Only do overflow checking for base types; we do not want to 2141 * avoid showing part of a struct, union or array, even if we 2142 * do not have enough data to show the full object. By 2143 * restricting overflow checking to base types we can ensure 2144 * that partial display succeeds, while avoiding overflowing 2145 * and using bogus data for display. 2146 */ 2147 t = skip_mods_and_typedefs(d->btf, id, NULL); 2148 if (!t) { 2149 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2150 id); 2151 return -EINVAL; 2152 } 2153 2154 switch (btf_kind(t)) { 2155 case BTF_KIND_INT: 2156 case BTF_KIND_FLOAT: 2157 case BTF_KIND_PTR: 2158 case BTF_KIND_ENUM: 2159 case BTF_KIND_ENUM64: 2160 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2161 return -E2BIG; 2162 break; 2163 default: 2164 break; 2165 } 2166 return (int)size; 2167 } 2168 2169 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2170 const struct btf_type *t, 2171 __u32 id, 2172 const void *data, 2173 __u8 bits_offset, 2174 __u8 bit_sz) 2175 { 2176 __s64 value; 2177 int i, err; 2178 2179 /* toplevel exceptions; we show zero values if 2180 * - we ask for them (emit_zeros) 2181 * - if we are at top-level so we see "struct empty { }" 2182 * - or if we are an array member and the array is non-empty and 2183 * not a char array; we don't want to be in a situation where we 2184 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2185 * If the array contains zeroes only, or is a char array starting 2186 * with a '\0', the array-level check_zero() will prevent showing it; 2187 * we are concerned with determining zero value at the array member 2188 * level here. 2189 */ 2190 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2191 (d->typed_dump->is_array_member && 2192 !d->typed_dump->is_array_char)) 2193 return 0; 2194 2195 t = skip_mods_and_typedefs(d->btf, id, NULL); 2196 2197 switch (btf_kind(t)) { 2198 case BTF_KIND_INT: 2199 if (bit_sz) 2200 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2201 return btf_dump_base_type_check_zero(d, t, id, data); 2202 case BTF_KIND_FLOAT: 2203 case BTF_KIND_PTR: 2204 return btf_dump_base_type_check_zero(d, t, id, data); 2205 case BTF_KIND_ARRAY: { 2206 const struct btf_array *array = btf_array(t); 2207 const struct btf_type *elem_type; 2208 __u32 elem_type_id, elem_size; 2209 bool ischar; 2210 2211 elem_type_id = array->type; 2212 elem_size = btf__resolve_size(d->btf, elem_type_id); 2213 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2214 2215 ischar = btf_is_int(elem_type) && elem_size == 1; 2216 2217 /* check all elements; if _any_ element is nonzero, all 2218 * of array is displayed. We make an exception however 2219 * for char arrays where the first element is 0; these 2220 * are considered zeroed also, even if later elements are 2221 * non-zero because the string is terminated. 2222 */ 2223 for (i = 0; i < array->nelems; i++) { 2224 if (i == 0 && ischar && *(char *)data == 0) 2225 return -ENODATA; 2226 err = btf_dump_type_data_check_zero(d, elem_type, 2227 elem_type_id, 2228 data + 2229 (i * elem_size), 2230 bits_offset, 0); 2231 if (err != -ENODATA) 2232 return err; 2233 } 2234 return -ENODATA; 2235 } 2236 case BTF_KIND_STRUCT: 2237 case BTF_KIND_UNION: { 2238 const struct btf_member *m = btf_members(t); 2239 __u16 n = btf_vlen(t); 2240 2241 /* if any struct/union member is non-zero, the struct/union 2242 * is considered non-zero and dumped. 2243 */ 2244 for (i = 0; i < n; i++, m++) { 2245 const struct btf_type *mtype; 2246 __u32 moffset; 2247 2248 mtype = btf__type_by_id(d->btf, m->type); 2249 moffset = btf_member_bit_offset(t, i); 2250 2251 /* btf_int_bits() does not store member bitfield size; 2252 * bitfield size needs to be stored here so int display 2253 * of member can retrieve it. 2254 */ 2255 bit_sz = btf_member_bitfield_size(t, i); 2256 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2257 moffset % 8, bit_sz); 2258 if (err != ENODATA) 2259 return err; 2260 } 2261 return -ENODATA; 2262 } 2263 case BTF_KIND_ENUM: 2264 case BTF_KIND_ENUM64: 2265 err = btf_dump_get_enum_value(d, t, data, id, &value); 2266 if (err) 2267 return err; 2268 if (value == 0) 2269 return -ENODATA; 2270 return 0; 2271 default: 2272 return 0; 2273 } 2274 } 2275 2276 /* returns size of data dumped, or error. */ 2277 static int btf_dump_dump_type_data(struct btf_dump *d, 2278 const char *fname, 2279 const struct btf_type *t, 2280 __u32 id, 2281 const void *data, 2282 __u8 bits_offset, 2283 __u8 bit_sz) 2284 { 2285 int size, err = 0; 2286 2287 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset); 2288 if (size < 0) 2289 return size; 2290 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2291 if (err) { 2292 /* zeroed data is expected and not an error, so simply skip 2293 * dumping such data. Record other errors however. 2294 */ 2295 if (err == -ENODATA) 2296 return size; 2297 return err; 2298 } 2299 btf_dump_data_pfx(d); 2300 2301 if (!d->typed_dump->skip_names) { 2302 if (fname && strlen(fname) > 0) 2303 btf_dump_printf(d, ".%s = ", fname); 2304 btf_dump_emit_type_cast(d, id, true); 2305 } 2306 2307 t = skip_mods_and_typedefs(d->btf, id, NULL); 2308 2309 switch (btf_kind(t)) { 2310 case BTF_KIND_UNKN: 2311 case BTF_KIND_FWD: 2312 case BTF_KIND_FUNC: 2313 case BTF_KIND_FUNC_PROTO: 2314 case BTF_KIND_DECL_TAG: 2315 err = btf_dump_unsupported_data(d, t, id); 2316 break; 2317 case BTF_KIND_INT: 2318 if (bit_sz) 2319 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2320 else 2321 err = btf_dump_int_data(d, t, id, data, bits_offset); 2322 break; 2323 case BTF_KIND_FLOAT: 2324 err = btf_dump_float_data(d, t, id, data); 2325 break; 2326 case BTF_KIND_PTR: 2327 err = btf_dump_ptr_data(d, t, id, data); 2328 break; 2329 case BTF_KIND_ARRAY: 2330 err = btf_dump_array_data(d, t, id, data); 2331 break; 2332 case BTF_KIND_STRUCT: 2333 case BTF_KIND_UNION: 2334 err = btf_dump_struct_data(d, t, id, data); 2335 break; 2336 case BTF_KIND_ENUM: 2337 case BTF_KIND_ENUM64: 2338 /* handle bitfield and int enum values */ 2339 if (bit_sz) { 2340 __u64 print_num; 2341 __s64 enum_val; 2342 2343 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2344 &print_num); 2345 if (err) 2346 break; 2347 enum_val = (__s64)print_num; 2348 err = btf_dump_enum_data(d, t, id, &enum_val); 2349 } else 2350 err = btf_dump_enum_data(d, t, id, data); 2351 break; 2352 case BTF_KIND_VAR: 2353 err = btf_dump_var_data(d, t, id, data); 2354 break; 2355 case BTF_KIND_DATASEC: 2356 err = btf_dump_datasec_data(d, t, id, data); 2357 break; 2358 default: 2359 pr_warn("unexpected kind [%u] for id [%u]\n", 2360 BTF_INFO_KIND(t->info), id); 2361 return -EINVAL; 2362 } 2363 if (err < 0) 2364 return err; 2365 return size; 2366 } 2367 2368 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2369 const void *data, size_t data_sz, 2370 const struct btf_dump_type_data_opts *opts) 2371 { 2372 struct btf_dump_data typed_dump = {}; 2373 const struct btf_type *t; 2374 int ret; 2375 2376 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2377 return libbpf_err(-EINVAL); 2378 2379 t = btf__type_by_id(d->btf, id); 2380 if (!t) 2381 return libbpf_err(-ENOENT); 2382 2383 d->typed_dump = &typed_dump; 2384 d->typed_dump->data_end = data + data_sz; 2385 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2386 2387 /* default indent string is a tab */ 2388 if (!opts->indent_str) 2389 d->typed_dump->indent_str[0] = '\t'; 2390 else 2391 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str, 2392 sizeof(d->typed_dump->indent_str)); 2393 2394 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2395 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2396 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2397 2398 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2399 2400 d->typed_dump = NULL; 2401 2402 return libbpf_err(ret); 2403 } 2404