1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <linux/kernel.h> 19 #include "btf.h" 20 #include "hashmap.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 26 27 static const char *pfx(int lvl) 28 { 29 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 30 } 31 32 enum btf_dump_type_order_state { 33 NOT_ORDERED, 34 ORDERING, 35 ORDERED, 36 }; 37 38 enum btf_dump_type_emit_state { 39 NOT_EMITTED, 40 EMITTING, 41 EMITTED, 42 }; 43 44 /* per-type auxiliary state */ 45 struct btf_dump_type_aux_state { 46 /* topological sorting state */ 47 enum btf_dump_type_order_state order_state: 2; 48 /* emitting state used to determine the need for forward declaration */ 49 enum btf_dump_type_emit_state emit_state: 2; 50 /* whether forward declaration was already emitted */ 51 __u8 fwd_emitted: 1; 52 /* whether unique non-duplicate name was already assigned */ 53 __u8 name_resolved: 1; 54 /* whether type is referenced from any other type */ 55 __u8 referenced: 1; 56 }; 57 58 /* indent string length; one indent string is added for each indent level */ 59 #define BTF_DATA_INDENT_STR_LEN 32 60 61 /* 62 * Common internal data for BTF type data dump operations. 63 */ 64 struct btf_dump_data { 65 const void *data_end; /* end of valid data to show */ 66 bool compact; 67 bool skip_names; 68 bool emit_zeroes; 69 __u8 indent_lvl; /* base indent level */ 70 char indent_str[BTF_DATA_INDENT_STR_LEN]; 71 /* below are used during iteration */ 72 int depth; 73 bool is_array_member; 74 bool is_array_terminated; 75 bool is_array_char; 76 }; 77 78 struct btf_dump { 79 const struct btf *btf; 80 const struct btf_ext *btf_ext; 81 btf_dump_printf_fn_t printf_fn; 82 struct btf_dump_opts opts; 83 int ptr_sz; 84 bool strip_mods; 85 bool skip_anon_defs; 86 int last_id; 87 88 /* per-type auxiliary state */ 89 struct btf_dump_type_aux_state *type_states; 90 size_t type_states_cap; 91 /* per-type optional cached unique name, must be freed, if present */ 92 const char **cached_names; 93 size_t cached_names_cap; 94 95 /* topo-sorted list of dependent type definitions */ 96 __u32 *emit_queue; 97 int emit_queue_cap; 98 int emit_queue_cnt; 99 100 /* 101 * stack of type declarations (e.g., chain of modifiers, arrays, 102 * funcs, etc) 103 */ 104 __u32 *decl_stack; 105 int decl_stack_cap; 106 int decl_stack_cnt; 107 108 /* maps struct/union/enum name to a number of name occurrences */ 109 struct hashmap *type_names; 110 /* 111 * maps typedef identifiers and enum value names to a number of such 112 * name occurrences 113 */ 114 struct hashmap *ident_names; 115 /* 116 * data for typed display; allocated if needed. 117 */ 118 struct btf_dump_data *typed_dump; 119 }; 120 121 static size_t str_hash_fn(const void *key, void *ctx) 122 { 123 return str_hash(key); 124 } 125 126 static bool str_equal_fn(const void *a, const void *b, void *ctx) 127 { 128 return strcmp(a, b) == 0; 129 } 130 131 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 132 { 133 return btf__name_by_offset(d->btf, name_off); 134 } 135 136 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 137 { 138 va_list args; 139 140 va_start(args, fmt); 141 d->printf_fn(d->opts.ctx, fmt, args); 142 va_end(args); 143 } 144 145 static int btf_dump_mark_referenced(struct btf_dump *d); 146 static int btf_dump_resize(struct btf_dump *d); 147 148 struct btf_dump *btf_dump__new(const struct btf *btf, 149 const struct btf_ext *btf_ext, 150 const struct btf_dump_opts *opts, 151 btf_dump_printf_fn_t printf_fn) 152 { 153 struct btf_dump *d; 154 int err; 155 156 d = calloc(1, sizeof(struct btf_dump)); 157 if (!d) 158 return libbpf_err_ptr(-ENOMEM); 159 160 d->btf = btf; 161 d->btf_ext = btf_ext; 162 d->printf_fn = printf_fn; 163 d->opts.ctx = opts ? opts->ctx : NULL; 164 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 165 166 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 167 if (IS_ERR(d->type_names)) { 168 err = PTR_ERR(d->type_names); 169 d->type_names = NULL; 170 goto err; 171 } 172 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 173 if (IS_ERR(d->ident_names)) { 174 err = PTR_ERR(d->ident_names); 175 d->ident_names = NULL; 176 goto err; 177 } 178 179 err = btf_dump_resize(d); 180 if (err) 181 goto err; 182 183 return d; 184 err: 185 btf_dump__free(d); 186 return libbpf_err_ptr(err); 187 } 188 189 static int btf_dump_resize(struct btf_dump *d) 190 { 191 int err, last_id = btf__type_cnt(d->btf) - 1; 192 193 if (last_id <= d->last_id) 194 return 0; 195 196 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 197 sizeof(*d->type_states), last_id + 1)) 198 return -ENOMEM; 199 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 200 sizeof(*d->cached_names), last_id + 1)) 201 return -ENOMEM; 202 203 if (d->last_id == 0) { 204 /* VOID is special */ 205 d->type_states[0].order_state = ORDERED; 206 d->type_states[0].emit_state = EMITTED; 207 } 208 209 /* eagerly determine referenced types for anon enums */ 210 err = btf_dump_mark_referenced(d); 211 if (err) 212 return err; 213 214 d->last_id = last_id; 215 return 0; 216 } 217 218 void btf_dump__free(struct btf_dump *d) 219 { 220 int i; 221 222 if (IS_ERR_OR_NULL(d)) 223 return; 224 225 free(d->type_states); 226 if (d->cached_names) { 227 /* any set cached name is owned by us and should be freed */ 228 for (i = 0; i <= d->last_id; i++) { 229 if (d->cached_names[i]) 230 free((void *)d->cached_names[i]); 231 } 232 } 233 free(d->cached_names); 234 free(d->emit_queue); 235 free(d->decl_stack); 236 hashmap__free(d->type_names); 237 hashmap__free(d->ident_names); 238 239 free(d); 240 } 241 242 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 243 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 244 245 /* 246 * Dump BTF type in a compilable C syntax, including all the necessary 247 * dependent types, necessary for compilation. If some of the dependent types 248 * were already emitted as part of previous btf_dump__dump_type() invocation 249 * for another type, they won't be emitted again. This API allows callers to 250 * filter out BTF types according to user-defined criterias and emitted only 251 * minimal subset of types, necessary to compile everything. Full struct/union 252 * definitions will still be emitted, even if the only usage is through 253 * pointer and could be satisfied with just a forward declaration. 254 * 255 * Dumping is done in two high-level passes: 256 * 1. Topologically sort type definitions to satisfy C rules of compilation. 257 * 2. Emit type definitions in C syntax. 258 * 259 * Returns 0 on success; <0, otherwise. 260 */ 261 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 262 { 263 int err, i; 264 265 if (id >= btf__type_cnt(d->btf)) 266 return libbpf_err(-EINVAL); 267 268 err = btf_dump_resize(d); 269 if (err) 270 return libbpf_err(err); 271 272 d->emit_queue_cnt = 0; 273 err = btf_dump_order_type(d, id, false); 274 if (err < 0) 275 return libbpf_err(err); 276 277 for (i = 0; i < d->emit_queue_cnt; i++) 278 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 279 280 return 0; 281 } 282 283 /* 284 * Mark all types that are referenced from any other type. This is used to 285 * determine top-level anonymous enums that need to be emitted as an 286 * independent type declarations. 287 * Anonymous enums come in two flavors: either embedded in a struct's field 288 * definition, in which case they have to be declared inline as part of field 289 * type declaration; or as a top-level anonymous enum, typically used for 290 * declaring global constants. It's impossible to distinguish between two 291 * without knowning whether given enum type was referenced from other type: 292 * top-level anonymous enum won't be referenced by anything, while embedded 293 * one will. 294 */ 295 static int btf_dump_mark_referenced(struct btf_dump *d) 296 { 297 int i, j, n = btf__type_cnt(d->btf); 298 const struct btf_type *t; 299 __u16 vlen; 300 301 for (i = d->last_id + 1; i < n; i++) { 302 t = btf__type_by_id(d->btf, i); 303 vlen = btf_vlen(t); 304 305 switch (btf_kind(t)) { 306 case BTF_KIND_INT: 307 case BTF_KIND_ENUM: 308 case BTF_KIND_FWD: 309 case BTF_KIND_FLOAT: 310 break; 311 312 case BTF_KIND_VOLATILE: 313 case BTF_KIND_CONST: 314 case BTF_KIND_RESTRICT: 315 case BTF_KIND_PTR: 316 case BTF_KIND_TYPEDEF: 317 case BTF_KIND_FUNC: 318 case BTF_KIND_VAR: 319 case BTF_KIND_DECL_TAG: 320 d->type_states[t->type].referenced = 1; 321 break; 322 323 case BTF_KIND_ARRAY: { 324 const struct btf_array *a = btf_array(t); 325 326 d->type_states[a->index_type].referenced = 1; 327 d->type_states[a->type].referenced = 1; 328 break; 329 } 330 case BTF_KIND_STRUCT: 331 case BTF_KIND_UNION: { 332 const struct btf_member *m = btf_members(t); 333 334 for (j = 0; j < vlen; j++, m++) 335 d->type_states[m->type].referenced = 1; 336 break; 337 } 338 case BTF_KIND_FUNC_PROTO: { 339 const struct btf_param *p = btf_params(t); 340 341 for (j = 0; j < vlen; j++, p++) 342 d->type_states[p->type].referenced = 1; 343 break; 344 } 345 case BTF_KIND_DATASEC: { 346 const struct btf_var_secinfo *v = btf_var_secinfos(t); 347 348 for (j = 0; j < vlen; j++, v++) 349 d->type_states[v->type].referenced = 1; 350 break; 351 } 352 default: 353 return -EINVAL; 354 } 355 } 356 return 0; 357 } 358 359 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 360 { 361 __u32 *new_queue; 362 size_t new_cap; 363 364 if (d->emit_queue_cnt >= d->emit_queue_cap) { 365 new_cap = max(16, d->emit_queue_cap * 3 / 2); 366 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 367 if (!new_queue) 368 return -ENOMEM; 369 d->emit_queue = new_queue; 370 d->emit_queue_cap = new_cap; 371 } 372 373 d->emit_queue[d->emit_queue_cnt++] = id; 374 return 0; 375 } 376 377 /* 378 * Determine order of emitting dependent types and specified type to satisfy 379 * C compilation rules. This is done through topological sorting with an 380 * additional complication which comes from C rules. The main idea for C is 381 * that if some type is "embedded" into a struct/union, it's size needs to be 382 * known at the time of definition of containing type. E.g., for: 383 * 384 * struct A {}; 385 * struct B { struct A x; } 386 * 387 * struct A *HAS* to be defined before struct B, because it's "embedded", 388 * i.e., it is part of struct B layout. But in the following case: 389 * 390 * struct A; 391 * struct B { struct A *x; } 392 * struct A {}; 393 * 394 * it's enough to just have a forward declaration of struct A at the time of 395 * struct B definition, as struct B has a pointer to struct A, so the size of 396 * field x is known without knowing struct A size: it's sizeof(void *). 397 * 398 * Unfortunately, there are some trickier cases we need to handle, e.g.: 399 * 400 * struct A {}; // if this was forward-declaration: compilation error 401 * struct B { 402 * struct { // anonymous struct 403 * struct A y; 404 * } *x; 405 * }; 406 * 407 * In this case, struct B's field x is a pointer, so it's size is known 408 * regardless of the size of (anonymous) struct it points to. But because this 409 * struct is anonymous and thus defined inline inside struct B, *and* it 410 * embeds struct A, compiler requires full definition of struct A to be known 411 * before struct B can be defined. This creates a transitive dependency 412 * between struct A and struct B. If struct A was forward-declared before 413 * struct B definition and fully defined after struct B definition, that would 414 * trigger compilation error. 415 * 416 * All this means that while we are doing topological sorting on BTF type 417 * graph, we need to determine relationships between different types (graph 418 * nodes): 419 * - weak link (relationship) between X and Y, if Y *CAN* be 420 * forward-declared at the point of X definition; 421 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 422 * 423 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 424 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 425 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 426 * Weak/strong relationship is determined recursively during DFS traversal and 427 * is returned as a result from btf_dump_order_type(). 428 * 429 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 430 * but it is not guaranteeing that no extraneous forward declarations will be 431 * emitted. 432 * 433 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 434 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 435 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 436 * entire graph path, so depending where from one came to that BTF type, it 437 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 438 * once they are processed, there is no need to do it again, so they are 439 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 440 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 441 * in any case, once those are processed, no need to do it again, as the 442 * result won't change. 443 * 444 * Returns: 445 * - 1, if type is part of strong link (so there is strong topological 446 * ordering requirements); 447 * - 0, if type is part of weak link (so can be satisfied through forward 448 * declaration); 449 * - <0, on error (e.g., unsatisfiable type loop detected). 450 */ 451 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 452 { 453 /* 454 * Order state is used to detect strong link cycles, but only for BTF 455 * kinds that are or could be an independent definition (i.e., 456 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 457 * func_protos, modifiers are just means to get to these definitions. 458 * Int/void don't need definitions, they are assumed to be always 459 * properly defined. We also ignore datasec, var, and funcs for now. 460 * So for all non-defining kinds, we never even set ordering state, 461 * for defining kinds we set ORDERING and subsequently ORDERED if it 462 * forms a strong link. 463 */ 464 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 465 const struct btf_type *t; 466 __u16 vlen; 467 int err, i; 468 469 /* return true, letting typedefs know that it's ok to be emitted */ 470 if (tstate->order_state == ORDERED) 471 return 1; 472 473 t = btf__type_by_id(d->btf, id); 474 475 if (tstate->order_state == ORDERING) { 476 /* type loop, but resolvable through fwd declaration */ 477 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 478 return 0; 479 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 480 return -ELOOP; 481 } 482 483 switch (btf_kind(t)) { 484 case BTF_KIND_INT: 485 case BTF_KIND_FLOAT: 486 tstate->order_state = ORDERED; 487 return 0; 488 489 case BTF_KIND_PTR: 490 err = btf_dump_order_type(d, t->type, true); 491 tstate->order_state = ORDERED; 492 return err; 493 494 case BTF_KIND_ARRAY: 495 return btf_dump_order_type(d, btf_array(t)->type, false); 496 497 case BTF_KIND_STRUCT: 498 case BTF_KIND_UNION: { 499 const struct btf_member *m = btf_members(t); 500 /* 501 * struct/union is part of strong link, only if it's embedded 502 * (so no ptr in a path) or it's anonymous (so has to be 503 * defined inline, even if declared through ptr) 504 */ 505 if (through_ptr && t->name_off != 0) 506 return 0; 507 508 tstate->order_state = ORDERING; 509 510 vlen = btf_vlen(t); 511 for (i = 0; i < vlen; i++, m++) { 512 err = btf_dump_order_type(d, m->type, false); 513 if (err < 0) 514 return err; 515 } 516 517 if (t->name_off != 0) { 518 err = btf_dump_add_emit_queue_id(d, id); 519 if (err < 0) 520 return err; 521 } 522 523 tstate->order_state = ORDERED; 524 return 1; 525 } 526 case BTF_KIND_ENUM: 527 case BTF_KIND_FWD: 528 /* 529 * non-anonymous or non-referenced enums are top-level 530 * declarations and should be emitted. Same logic can be 531 * applied to FWDs, it won't hurt anyways. 532 */ 533 if (t->name_off != 0 || !tstate->referenced) { 534 err = btf_dump_add_emit_queue_id(d, id); 535 if (err) 536 return err; 537 } 538 tstate->order_state = ORDERED; 539 return 1; 540 541 case BTF_KIND_TYPEDEF: { 542 int is_strong; 543 544 is_strong = btf_dump_order_type(d, t->type, through_ptr); 545 if (is_strong < 0) 546 return is_strong; 547 548 /* typedef is similar to struct/union w.r.t. fwd-decls */ 549 if (through_ptr && !is_strong) 550 return 0; 551 552 /* typedef is always a named definition */ 553 err = btf_dump_add_emit_queue_id(d, id); 554 if (err) 555 return err; 556 557 d->type_states[id].order_state = ORDERED; 558 return 1; 559 } 560 case BTF_KIND_VOLATILE: 561 case BTF_KIND_CONST: 562 case BTF_KIND_RESTRICT: 563 return btf_dump_order_type(d, t->type, through_ptr); 564 565 case BTF_KIND_FUNC_PROTO: { 566 const struct btf_param *p = btf_params(t); 567 bool is_strong; 568 569 err = btf_dump_order_type(d, t->type, through_ptr); 570 if (err < 0) 571 return err; 572 is_strong = err > 0; 573 574 vlen = btf_vlen(t); 575 for (i = 0; i < vlen; i++, p++) { 576 err = btf_dump_order_type(d, p->type, through_ptr); 577 if (err < 0) 578 return err; 579 if (err > 0) 580 is_strong = true; 581 } 582 return is_strong; 583 } 584 case BTF_KIND_FUNC: 585 case BTF_KIND_VAR: 586 case BTF_KIND_DATASEC: 587 case BTF_KIND_DECL_TAG: 588 d->type_states[id].order_state = ORDERED; 589 return 0; 590 591 default: 592 return -EINVAL; 593 } 594 } 595 596 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 597 const struct btf_type *t); 598 599 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 600 const struct btf_type *t); 601 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 602 const struct btf_type *t, int lvl); 603 604 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 605 const struct btf_type *t); 606 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 607 const struct btf_type *t, int lvl); 608 609 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 610 const struct btf_type *t); 611 612 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 613 const struct btf_type *t, int lvl); 614 615 /* a local view into a shared stack */ 616 struct id_stack { 617 const __u32 *ids; 618 int cnt; 619 }; 620 621 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 622 const char *fname, int lvl); 623 static void btf_dump_emit_type_chain(struct btf_dump *d, 624 struct id_stack *decl_stack, 625 const char *fname, int lvl); 626 627 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 628 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 629 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 630 const char *orig_name); 631 632 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 633 { 634 const struct btf_type *t = btf__type_by_id(d->btf, id); 635 636 /* __builtin_va_list is a compiler built-in, which causes compilation 637 * errors, when compiling w/ different compiler, then used to compile 638 * original code (e.g., GCC to compile kernel, Clang to use generated 639 * C header from BTF). As it is built-in, it should be already defined 640 * properly internally in compiler. 641 */ 642 if (t->name_off == 0) 643 return false; 644 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 645 } 646 647 /* 648 * Emit C-syntax definitions of types from chains of BTF types. 649 * 650 * High-level handling of determining necessary forward declarations are handled 651 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 652 * declarations/definitions in C syntax are handled by a combo of 653 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 654 * corresponding btf_dump_emit_*_{def,fwd}() functions. 655 * 656 * We also keep track of "containing struct/union type ID" to determine when 657 * we reference it from inside and thus can avoid emitting unnecessary forward 658 * declaration. 659 * 660 * This algorithm is designed in such a way, that even if some error occurs 661 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 662 * that doesn't comply to C rules completely), algorithm will try to proceed 663 * and produce as much meaningful output as possible. 664 */ 665 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 666 { 667 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 668 bool top_level_def = cont_id == 0; 669 const struct btf_type *t; 670 __u16 kind; 671 672 if (tstate->emit_state == EMITTED) 673 return; 674 675 t = btf__type_by_id(d->btf, id); 676 kind = btf_kind(t); 677 678 if (tstate->emit_state == EMITTING) { 679 if (tstate->fwd_emitted) 680 return; 681 682 switch (kind) { 683 case BTF_KIND_STRUCT: 684 case BTF_KIND_UNION: 685 /* 686 * if we are referencing a struct/union that we are 687 * part of - then no need for fwd declaration 688 */ 689 if (id == cont_id) 690 return; 691 if (t->name_off == 0) { 692 pr_warn("anonymous struct/union loop, id:[%u]\n", 693 id); 694 return; 695 } 696 btf_dump_emit_struct_fwd(d, id, t); 697 btf_dump_printf(d, ";\n\n"); 698 tstate->fwd_emitted = 1; 699 break; 700 case BTF_KIND_TYPEDEF: 701 /* 702 * for typedef fwd_emitted means typedef definition 703 * was emitted, but it can be used only for "weak" 704 * references through pointer only, not for embedding 705 */ 706 if (!btf_dump_is_blacklisted(d, id)) { 707 btf_dump_emit_typedef_def(d, id, t, 0); 708 btf_dump_printf(d, ";\n\n"); 709 } 710 tstate->fwd_emitted = 1; 711 break; 712 default: 713 break; 714 } 715 716 return; 717 } 718 719 switch (kind) { 720 case BTF_KIND_INT: 721 /* Emit type alias definitions if necessary */ 722 btf_dump_emit_missing_aliases(d, id, t); 723 724 tstate->emit_state = EMITTED; 725 break; 726 case BTF_KIND_ENUM: 727 if (top_level_def) { 728 btf_dump_emit_enum_def(d, id, t, 0); 729 btf_dump_printf(d, ";\n\n"); 730 } 731 tstate->emit_state = EMITTED; 732 break; 733 case BTF_KIND_PTR: 734 case BTF_KIND_VOLATILE: 735 case BTF_KIND_CONST: 736 case BTF_KIND_RESTRICT: 737 btf_dump_emit_type(d, t->type, cont_id); 738 break; 739 case BTF_KIND_ARRAY: 740 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 741 break; 742 case BTF_KIND_FWD: 743 btf_dump_emit_fwd_def(d, id, t); 744 btf_dump_printf(d, ";\n\n"); 745 tstate->emit_state = EMITTED; 746 break; 747 case BTF_KIND_TYPEDEF: 748 tstate->emit_state = EMITTING; 749 btf_dump_emit_type(d, t->type, id); 750 /* 751 * typedef can server as both definition and forward 752 * declaration; at this stage someone depends on 753 * typedef as a forward declaration (refers to it 754 * through pointer), so unless we already did it, 755 * emit typedef as a forward declaration 756 */ 757 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 758 btf_dump_emit_typedef_def(d, id, t, 0); 759 btf_dump_printf(d, ";\n\n"); 760 } 761 tstate->emit_state = EMITTED; 762 break; 763 case BTF_KIND_STRUCT: 764 case BTF_KIND_UNION: 765 tstate->emit_state = EMITTING; 766 /* if it's a top-level struct/union definition or struct/union 767 * is anonymous, then in C we'll be emitting all fields and 768 * their types (as opposed to just `struct X`), so we need to 769 * make sure that all types, referenced from struct/union 770 * members have necessary forward-declarations, where 771 * applicable 772 */ 773 if (top_level_def || t->name_off == 0) { 774 const struct btf_member *m = btf_members(t); 775 __u16 vlen = btf_vlen(t); 776 int i, new_cont_id; 777 778 new_cont_id = t->name_off == 0 ? cont_id : id; 779 for (i = 0; i < vlen; i++, m++) 780 btf_dump_emit_type(d, m->type, new_cont_id); 781 } else if (!tstate->fwd_emitted && id != cont_id) { 782 btf_dump_emit_struct_fwd(d, id, t); 783 btf_dump_printf(d, ";\n\n"); 784 tstate->fwd_emitted = 1; 785 } 786 787 if (top_level_def) { 788 btf_dump_emit_struct_def(d, id, t, 0); 789 btf_dump_printf(d, ";\n\n"); 790 tstate->emit_state = EMITTED; 791 } else { 792 tstate->emit_state = NOT_EMITTED; 793 } 794 break; 795 case BTF_KIND_FUNC_PROTO: { 796 const struct btf_param *p = btf_params(t); 797 __u16 n = btf_vlen(t); 798 int i; 799 800 btf_dump_emit_type(d, t->type, cont_id); 801 for (i = 0; i < n; i++, p++) 802 btf_dump_emit_type(d, p->type, cont_id); 803 804 break; 805 } 806 default: 807 break; 808 } 809 } 810 811 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 812 const struct btf_type *t) 813 { 814 const struct btf_member *m; 815 int align, i, bit_sz; 816 __u16 vlen; 817 818 align = btf__align_of(btf, id); 819 /* size of a non-packed struct has to be a multiple of its alignment*/ 820 if (align && t->size % align) 821 return true; 822 823 m = btf_members(t); 824 vlen = btf_vlen(t); 825 /* all non-bitfield fields have to be naturally aligned */ 826 for (i = 0; i < vlen; i++, m++) { 827 align = btf__align_of(btf, m->type); 828 bit_sz = btf_member_bitfield_size(t, i); 829 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 830 return true; 831 } 832 833 /* 834 * if original struct was marked as packed, but its layout is 835 * naturally aligned, we'll detect that it's not packed 836 */ 837 return false; 838 } 839 840 static int chip_away_bits(int total, int at_most) 841 { 842 return total % at_most ? : at_most; 843 } 844 845 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 846 int cur_off, int m_off, int m_bit_sz, 847 int align, int lvl) 848 { 849 int off_diff = m_off - cur_off; 850 int ptr_bits = d->ptr_sz * 8; 851 852 if (off_diff <= 0) 853 /* no gap */ 854 return; 855 if (m_bit_sz == 0 && off_diff < align * 8) 856 /* natural padding will take care of a gap */ 857 return; 858 859 while (off_diff > 0) { 860 const char *pad_type; 861 int pad_bits; 862 863 if (ptr_bits > 32 && off_diff > 32) { 864 pad_type = "long"; 865 pad_bits = chip_away_bits(off_diff, ptr_bits); 866 } else if (off_diff > 16) { 867 pad_type = "int"; 868 pad_bits = chip_away_bits(off_diff, 32); 869 } else if (off_diff > 8) { 870 pad_type = "short"; 871 pad_bits = chip_away_bits(off_diff, 16); 872 } else { 873 pad_type = "char"; 874 pad_bits = chip_away_bits(off_diff, 8); 875 } 876 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 877 off_diff -= pad_bits; 878 } 879 } 880 881 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 882 const struct btf_type *t) 883 { 884 btf_dump_printf(d, "%s%s%s", 885 btf_is_struct(t) ? "struct" : "union", 886 t->name_off ? " " : "", 887 btf_dump_type_name(d, id)); 888 } 889 890 static void btf_dump_emit_struct_def(struct btf_dump *d, 891 __u32 id, 892 const struct btf_type *t, 893 int lvl) 894 { 895 const struct btf_member *m = btf_members(t); 896 bool is_struct = btf_is_struct(t); 897 int align, i, packed, off = 0; 898 __u16 vlen = btf_vlen(t); 899 900 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 901 902 btf_dump_printf(d, "%s%s%s {", 903 is_struct ? "struct" : "union", 904 t->name_off ? " " : "", 905 btf_dump_type_name(d, id)); 906 907 for (i = 0; i < vlen; i++, m++) { 908 const char *fname; 909 int m_off, m_sz; 910 911 fname = btf_name_of(d, m->name_off); 912 m_sz = btf_member_bitfield_size(t, i); 913 m_off = btf_member_bit_offset(t, i); 914 align = packed ? 1 : btf__align_of(d->btf, m->type); 915 916 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); 917 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 918 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 919 920 if (m_sz) { 921 btf_dump_printf(d, ": %d", m_sz); 922 off = m_off + m_sz; 923 } else { 924 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 925 off = m_off + m_sz * 8; 926 } 927 btf_dump_printf(d, ";"); 928 } 929 930 /* pad at the end, if necessary */ 931 if (is_struct) { 932 align = packed ? 1 : btf__align_of(d->btf, id); 933 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, 934 lvl + 1); 935 } 936 937 if (vlen) 938 btf_dump_printf(d, "\n"); 939 btf_dump_printf(d, "%s}", pfx(lvl)); 940 if (packed) 941 btf_dump_printf(d, " __attribute__((packed))"); 942 } 943 944 static const char *missing_base_types[][2] = { 945 /* 946 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 947 * SIMD intrinsics. Alias them to standard base types. 948 */ 949 { "__Poly8_t", "unsigned char" }, 950 { "__Poly16_t", "unsigned short" }, 951 { "__Poly64_t", "unsigned long long" }, 952 { "__Poly128_t", "unsigned __int128" }, 953 }; 954 955 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 956 const struct btf_type *t) 957 { 958 const char *name = btf_dump_type_name(d, id); 959 int i; 960 961 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 962 if (strcmp(name, missing_base_types[i][0]) == 0) { 963 btf_dump_printf(d, "typedef %s %s;\n\n", 964 missing_base_types[i][1], name); 965 break; 966 } 967 } 968 } 969 970 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 971 const struct btf_type *t) 972 { 973 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 974 } 975 976 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 977 const struct btf_type *t, 978 int lvl) 979 { 980 const struct btf_enum *v = btf_enum(t); 981 __u16 vlen = btf_vlen(t); 982 const char *name; 983 size_t dup_cnt; 984 int i; 985 986 btf_dump_printf(d, "enum%s%s", 987 t->name_off ? " " : "", 988 btf_dump_type_name(d, id)); 989 990 if (vlen) { 991 btf_dump_printf(d, " {"); 992 for (i = 0; i < vlen; i++, v++) { 993 name = btf_name_of(d, v->name_off); 994 /* enumerators share namespace with typedef idents */ 995 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 996 if (dup_cnt > 1) { 997 btf_dump_printf(d, "\n%s%s___%zu = %u,", 998 pfx(lvl + 1), name, dup_cnt, 999 (__u32)v->val); 1000 } else { 1001 btf_dump_printf(d, "\n%s%s = %u,", 1002 pfx(lvl + 1), name, 1003 (__u32)v->val); 1004 } 1005 } 1006 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1007 } 1008 } 1009 1010 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1011 const struct btf_type *t) 1012 { 1013 const char *name = btf_dump_type_name(d, id); 1014 1015 if (btf_kflag(t)) 1016 btf_dump_printf(d, "union %s", name); 1017 else 1018 btf_dump_printf(d, "struct %s", name); 1019 } 1020 1021 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1022 const struct btf_type *t, int lvl) 1023 { 1024 const char *name = btf_dump_ident_name(d, id); 1025 1026 /* 1027 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1028 * pointing to VOID. This generates warnings from btf_dump() and 1029 * results in uncompilable header file, so we are fixing it up here 1030 * with valid typedef into __builtin_va_list. 1031 */ 1032 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1033 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1034 return; 1035 } 1036 1037 btf_dump_printf(d, "typedef "); 1038 btf_dump_emit_type_decl(d, t->type, name, lvl); 1039 } 1040 1041 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1042 { 1043 __u32 *new_stack; 1044 size_t new_cap; 1045 1046 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1047 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1048 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1049 if (!new_stack) 1050 return -ENOMEM; 1051 d->decl_stack = new_stack; 1052 d->decl_stack_cap = new_cap; 1053 } 1054 1055 d->decl_stack[d->decl_stack_cnt++] = id; 1056 1057 return 0; 1058 } 1059 1060 /* 1061 * Emit type declaration (e.g., field type declaration in a struct or argument 1062 * declaration in function prototype) in correct C syntax. 1063 * 1064 * For most types it's trivial, but there are few quirky type declaration 1065 * cases worth mentioning: 1066 * - function prototypes (especially nesting of function prototypes); 1067 * - arrays; 1068 * - const/volatile/restrict for pointers vs other types. 1069 * 1070 * For a good discussion of *PARSING* C syntax (as a human), see 1071 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1072 * Ch.3 "Unscrambling Declarations in C". 1073 * 1074 * It won't help with BTF to C conversion much, though, as it's an opposite 1075 * problem. So we came up with this algorithm in reverse to van der Linden's 1076 * parsing algorithm. It goes from structured BTF representation of type 1077 * declaration to a valid compilable C syntax. 1078 * 1079 * For instance, consider this C typedef: 1080 * typedef const int * const * arr[10] arr_t; 1081 * It will be represented in BTF with this chain of BTF types: 1082 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1083 * 1084 * Notice how [const] modifier always goes before type it modifies in BTF type 1085 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1086 * the right of pointers, but to the left of other types. There are also other 1087 * quirks, like function pointers, arrays of them, functions returning other 1088 * functions, etc. 1089 * 1090 * We handle that by pushing all the types to a stack, until we hit "terminal" 1091 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1092 * top of a stack, modifiers are handled differently. Array/function pointers 1093 * have also wildly different syntax and how nesting of them are done. See 1094 * code for authoritative definition. 1095 * 1096 * To avoid allocating new stack for each independent chain of BTF types, we 1097 * share one bigger stack, with each chain working only on its own local view 1098 * of a stack frame. Some care is required to "pop" stack frames after 1099 * processing type declaration chain. 1100 */ 1101 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1102 const struct btf_dump_emit_type_decl_opts *opts) 1103 { 1104 const char *fname; 1105 int lvl, err; 1106 1107 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1108 return libbpf_err(-EINVAL); 1109 1110 err = btf_dump_resize(d); 1111 if (err) 1112 return libbpf_err(err); 1113 1114 fname = OPTS_GET(opts, field_name, ""); 1115 lvl = OPTS_GET(opts, indent_level, 0); 1116 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1117 btf_dump_emit_type_decl(d, id, fname, lvl); 1118 d->strip_mods = false; 1119 return 0; 1120 } 1121 1122 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1123 const char *fname, int lvl) 1124 { 1125 struct id_stack decl_stack; 1126 const struct btf_type *t; 1127 int err, stack_start; 1128 1129 stack_start = d->decl_stack_cnt; 1130 for (;;) { 1131 t = btf__type_by_id(d->btf, id); 1132 if (d->strip_mods && btf_is_mod(t)) 1133 goto skip_mod; 1134 1135 err = btf_dump_push_decl_stack_id(d, id); 1136 if (err < 0) { 1137 /* 1138 * if we don't have enough memory for entire type decl 1139 * chain, restore stack, emit warning, and try to 1140 * proceed nevertheless 1141 */ 1142 pr_warn("not enough memory for decl stack:%d", err); 1143 d->decl_stack_cnt = stack_start; 1144 return; 1145 } 1146 skip_mod: 1147 /* VOID */ 1148 if (id == 0) 1149 break; 1150 1151 switch (btf_kind(t)) { 1152 case BTF_KIND_PTR: 1153 case BTF_KIND_VOLATILE: 1154 case BTF_KIND_CONST: 1155 case BTF_KIND_RESTRICT: 1156 case BTF_KIND_FUNC_PROTO: 1157 id = t->type; 1158 break; 1159 case BTF_KIND_ARRAY: 1160 id = btf_array(t)->type; 1161 break; 1162 case BTF_KIND_INT: 1163 case BTF_KIND_ENUM: 1164 case BTF_KIND_FWD: 1165 case BTF_KIND_STRUCT: 1166 case BTF_KIND_UNION: 1167 case BTF_KIND_TYPEDEF: 1168 case BTF_KIND_FLOAT: 1169 goto done; 1170 default: 1171 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1172 btf_kind(t), id); 1173 goto done; 1174 } 1175 } 1176 done: 1177 /* 1178 * We might be inside a chain of declarations (e.g., array of function 1179 * pointers returning anonymous (so inlined) structs, having another 1180 * array field). Each of those needs its own "stack frame" to handle 1181 * emitting of declarations. Those stack frames are non-overlapping 1182 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1183 * handle this set of nested stacks, we create a view corresponding to 1184 * our own "stack frame" and work with it as an independent stack. 1185 * We'll need to clean up after emit_type_chain() returns, though. 1186 */ 1187 decl_stack.ids = d->decl_stack + stack_start; 1188 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1189 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1190 /* 1191 * emit_type_chain() guarantees that it will pop its entire decl_stack 1192 * frame before returning. But it works with a read-only view into 1193 * decl_stack, so it doesn't actually pop anything from the 1194 * perspective of shared btf_dump->decl_stack, per se. We need to 1195 * reset decl_stack state to how it was before us to avoid it growing 1196 * all the time. 1197 */ 1198 d->decl_stack_cnt = stack_start; 1199 } 1200 1201 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1202 { 1203 const struct btf_type *t; 1204 __u32 id; 1205 1206 while (decl_stack->cnt) { 1207 id = decl_stack->ids[decl_stack->cnt - 1]; 1208 t = btf__type_by_id(d->btf, id); 1209 1210 switch (btf_kind(t)) { 1211 case BTF_KIND_VOLATILE: 1212 btf_dump_printf(d, "volatile "); 1213 break; 1214 case BTF_KIND_CONST: 1215 btf_dump_printf(d, "const "); 1216 break; 1217 case BTF_KIND_RESTRICT: 1218 btf_dump_printf(d, "restrict "); 1219 break; 1220 default: 1221 return; 1222 } 1223 decl_stack->cnt--; 1224 } 1225 } 1226 1227 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1228 { 1229 const struct btf_type *t; 1230 __u32 id; 1231 1232 while (decl_stack->cnt) { 1233 id = decl_stack->ids[decl_stack->cnt - 1]; 1234 t = btf__type_by_id(d->btf, id); 1235 if (!btf_is_mod(t)) 1236 return; 1237 decl_stack->cnt--; 1238 } 1239 } 1240 1241 static void btf_dump_emit_name(const struct btf_dump *d, 1242 const char *name, bool last_was_ptr) 1243 { 1244 bool separate = name[0] && !last_was_ptr; 1245 1246 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1247 } 1248 1249 static void btf_dump_emit_type_chain(struct btf_dump *d, 1250 struct id_stack *decls, 1251 const char *fname, int lvl) 1252 { 1253 /* 1254 * last_was_ptr is used to determine if we need to separate pointer 1255 * asterisk (*) from previous part of type signature with space, so 1256 * that we get `int ***`, instead of `int * * *`. We default to true 1257 * for cases where we have single pointer in a chain. E.g., in ptr -> 1258 * func_proto case. func_proto will start a new emit_type_chain call 1259 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1260 * don't want to prepend space for that last pointer. 1261 */ 1262 bool last_was_ptr = true; 1263 const struct btf_type *t; 1264 const char *name; 1265 __u16 kind; 1266 __u32 id; 1267 1268 while (decls->cnt) { 1269 id = decls->ids[--decls->cnt]; 1270 if (id == 0) { 1271 /* VOID is a special snowflake */ 1272 btf_dump_emit_mods(d, decls); 1273 btf_dump_printf(d, "void"); 1274 last_was_ptr = false; 1275 continue; 1276 } 1277 1278 t = btf__type_by_id(d->btf, id); 1279 kind = btf_kind(t); 1280 1281 switch (kind) { 1282 case BTF_KIND_INT: 1283 case BTF_KIND_FLOAT: 1284 btf_dump_emit_mods(d, decls); 1285 name = btf_name_of(d, t->name_off); 1286 btf_dump_printf(d, "%s", name); 1287 break; 1288 case BTF_KIND_STRUCT: 1289 case BTF_KIND_UNION: 1290 btf_dump_emit_mods(d, decls); 1291 /* inline anonymous struct/union */ 1292 if (t->name_off == 0 && !d->skip_anon_defs) 1293 btf_dump_emit_struct_def(d, id, t, lvl); 1294 else 1295 btf_dump_emit_struct_fwd(d, id, t); 1296 break; 1297 case BTF_KIND_ENUM: 1298 btf_dump_emit_mods(d, decls); 1299 /* inline anonymous enum */ 1300 if (t->name_off == 0 && !d->skip_anon_defs) 1301 btf_dump_emit_enum_def(d, id, t, lvl); 1302 else 1303 btf_dump_emit_enum_fwd(d, id, t); 1304 break; 1305 case BTF_KIND_FWD: 1306 btf_dump_emit_mods(d, decls); 1307 btf_dump_emit_fwd_def(d, id, t); 1308 break; 1309 case BTF_KIND_TYPEDEF: 1310 btf_dump_emit_mods(d, decls); 1311 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1312 break; 1313 case BTF_KIND_PTR: 1314 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1315 break; 1316 case BTF_KIND_VOLATILE: 1317 btf_dump_printf(d, " volatile"); 1318 break; 1319 case BTF_KIND_CONST: 1320 btf_dump_printf(d, " const"); 1321 break; 1322 case BTF_KIND_RESTRICT: 1323 btf_dump_printf(d, " restrict"); 1324 break; 1325 case BTF_KIND_ARRAY: { 1326 const struct btf_array *a = btf_array(t); 1327 const struct btf_type *next_t; 1328 __u32 next_id; 1329 bool multidim; 1330 /* 1331 * GCC has a bug 1332 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1333 * which causes it to emit extra const/volatile 1334 * modifiers for an array, if array's element type has 1335 * const/volatile modifiers. Clang doesn't do that. 1336 * In general, it doesn't seem very meaningful to have 1337 * a const/volatile modifier for array, so we are 1338 * going to silently skip them here. 1339 */ 1340 btf_dump_drop_mods(d, decls); 1341 1342 if (decls->cnt == 0) { 1343 btf_dump_emit_name(d, fname, last_was_ptr); 1344 btf_dump_printf(d, "[%u]", a->nelems); 1345 return; 1346 } 1347 1348 next_id = decls->ids[decls->cnt - 1]; 1349 next_t = btf__type_by_id(d->btf, next_id); 1350 multidim = btf_is_array(next_t); 1351 /* we need space if we have named non-pointer */ 1352 if (fname[0] && !last_was_ptr) 1353 btf_dump_printf(d, " "); 1354 /* no parentheses for multi-dimensional array */ 1355 if (!multidim) 1356 btf_dump_printf(d, "("); 1357 btf_dump_emit_type_chain(d, decls, fname, lvl); 1358 if (!multidim) 1359 btf_dump_printf(d, ")"); 1360 btf_dump_printf(d, "[%u]", a->nelems); 1361 return; 1362 } 1363 case BTF_KIND_FUNC_PROTO: { 1364 const struct btf_param *p = btf_params(t); 1365 __u16 vlen = btf_vlen(t); 1366 int i; 1367 1368 /* 1369 * GCC emits extra volatile qualifier for 1370 * __attribute__((noreturn)) function pointers. Clang 1371 * doesn't do it. It's a GCC quirk for backwards 1372 * compatibility with code written for GCC <2.5. So, 1373 * similarly to extra qualifiers for array, just drop 1374 * them, instead of handling them. 1375 */ 1376 btf_dump_drop_mods(d, decls); 1377 if (decls->cnt) { 1378 btf_dump_printf(d, " ("); 1379 btf_dump_emit_type_chain(d, decls, fname, lvl); 1380 btf_dump_printf(d, ")"); 1381 } else { 1382 btf_dump_emit_name(d, fname, last_was_ptr); 1383 } 1384 btf_dump_printf(d, "("); 1385 /* 1386 * Clang for BPF target generates func_proto with no 1387 * args as a func_proto with a single void arg (e.g., 1388 * `int (*f)(void)` vs just `int (*f)()`). We are 1389 * going to pretend there are no args for such case. 1390 */ 1391 if (vlen == 1 && p->type == 0) { 1392 btf_dump_printf(d, ")"); 1393 return; 1394 } 1395 1396 for (i = 0; i < vlen; i++, p++) { 1397 if (i > 0) 1398 btf_dump_printf(d, ", "); 1399 1400 /* last arg of type void is vararg */ 1401 if (i == vlen - 1 && p->type == 0) { 1402 btf_dump_printf(d, "..."); 1403 break; 1404 } 1405 1406 name = btf_name_of(d, p->name_off); 1407 btf_dump_emit_type_decl(d, p->type, name, lvl); 1408 } 1409 1410 btf_dump_printf(d, ")"); 1411 return; 1412 } 1413 default: 1414 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1415 kind, id); 1416 return; 1417 } 1418 1419 last_was_ptr = kind == BTF_KIND_PTR; 1420 } 1421 1422 btf_dump_emit_name(d, fname, last_was_ptr); 1423 } 1424 1425 /* show type name as (type_name) */ 1426 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1427 bool top_level) 1428 { 1429 const struct btf_type *t; 1430 1431 /* for array members, we don't bother emitting type name for each 1432 * member to avoid the redundancy of 1433 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1434 */ 1435 if (d->typed_dump->is_array_member) 1436 return; 1437 1438 /* avoid type name specification for variable/section; it will be done 1439 * for the associated variable value(s). 1440 */ 1441 t = btf__type_by_id(d->btf, id); 1442 if (btf_is_var(t) || btf_is_datasec(t)) 1443 return; 1444 1445 if (top_level) 1446 btf_dump_printf(d, "("); 1447 1448 d->skip_anon_defs = true; 1449 d->strip_mods = true; 1450 btf_dump_emit_type_decl(d, id, "", 0); 1451 d->strip_mods = false; 1452 d->skip_anon_defs = false; 1453 1454 if (top_level) 1455 btf_dump_printf(d, ")"); 1456 } 1457 1458 /* return number of duplicates (occurrences) of a given name */ 1459 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1460 const char *orig_name) 1461 { 1462 size_t dup_cnt = 0; 1463 1464 hashmap__find(name_map, orig_name, (void **)&dup_cnt); 1465 dup_cnt++; 1466 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); 1467 1468 return dup_cnt; 1469 } 1470 1471 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1472 struct hashmap *name_map) 1473 { 1474 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1475 const struct btf_type *t = btf__type_by_id(d->btf, id); 1476 const char *orig_name = btf_name_of(d, t->name_off); 1477 const char **cached_name = &d->cached_names[id]; 1478 size_t dup_cnt; 1479 1480 if (t->name_off == 0) 1481 return ""; 1482 1483 if (s->name_resolved) 1484 return *cached_name ? *cached_name : orig_name; 1485 1486 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1487 if (dup_cnt > 1) { 1488 const size_t max_len = 256; 1489 char new_name[max_len]; 1490 1491 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1492 *cached_name = strdup(new_name); 1493 } 1494 1495 s->name_resolved = 1; 1496 return *cached_name ? *cached_name : orig_name; 1497 } 1498 1499 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1500 { 1501 return btf_dump_resolve_name(d, id, d->type_names); 1502 } 1503 1504 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1505 { 1506 return btf_dump_resolve_name(d, id, d->ident_names); 1507 } 1508 1509 static int btf_dump_dump_type_data(struct btf_dump *d, 1510 const char *fname, 1511 const struct btf_type *t, 1512 __u32 id, 1513 const void *data, 1514 __u8 bits_offset, 1515 __u8 bit_sz); 1516 1517 static const char *btf_dump_data_newline(struct btf_dump *d) 1518 { 1519 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1520 } 1521 1522 static const char *btf_dump_data_delim(struct btf_dump *d) 1523 { 1524 return d->typed_dump->depth == 0 ? "" : ","; 1525 } 1526 1527 static void btf_dump_data_pfx(struct btf_dump *d) 1528 { 1529 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1530 1531 if (d->typed_dump->compact) 1532 return; 1533 1534 for (i = 0; i < lvl; i++) 1535 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1536 } 1537 1538 /* A macro is used here as btf_type_value[s]() appends format specifiers 1539 * to the format specifier passed in; these do the work of appending 1540 * delimiters etc while the caller simply has to specify the type values 1541 * in the format specifier + value(s). 1542 */ 1543 #define btf_dump_type_values(d, fmt, ...) \ 1544 btf_dump_printf(d, fmt "%s%s", \ 1545 ##__VA_ARGS__, \ 1546 btf_dump_data_delim(d), \ 1547 btf_dump_data_newline(d)) 1548 1549 static int btf_dump_unsupported_data(struct btf_dump *d, 1550 const struct btf_type *t, 1551 __u32 id) 1552 { 1553 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1554 return -ENOTSUP; 1555 } 1556 1557 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1558 const struct btf_type *t, 1559 const void *data, 1560 __u8 bits_offset, 1561 __u8 bit_sz, 1562 __u64 *value) 1563 { 1564 __u16 left_shift_bits, right_shift_bits; 1565 const __u8 *bytes = data; 1566 __u8 nr_copy_bits; 1567 __u64 num = 0; 1568 int i; 1569 1570 /* Maximum supported bitfield size is 64 bits */ 1571 if (t->size > 8) { 1572 pr_warn("unexpected bitfield size %d\n", t->size); 1573 return -EINVAL; 1574 } 1575 1576 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1577 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1578 */ 1579 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1580 for (i = t->size - 1; i >= 0; i--) 1581 num = num * 256 + bytes[i]; 1582 nr_copy_bits = bit_sz + bits_offset; 1583 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1584 for (i = 0; i < t->size; i++) 1585 num = num * 256 + bytes[i]; 1586 nr_copy_bits = t->size * 8 - bits_offset; 1587 #else 1588 # error "Unrecognized __BYTE_ORDER__" 1589 #endif 1590 left_shift_bits = 64 - nr_copy_bits; 1591 right_shift_bits = 64 - bit_sz; 1592 1593 *value = (num << left_shift_bits) >> right_shift_bits; 1594 1595 return 0; 1596 } 1597 1598 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1599 const struct btf_type *t, 1600 const void *data, 1601 __u8 bits_offset, 1602 __u8 bit_sz) 1603 { 1604 __u64 check_num; 1605 int err; 1606 1607 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1608 if (err) 1609 return err; 1610 if (check_num == 0) 1611 return -ENODATA; 1612 return 0; 1613 } 1614 1615 static int btf_dump_bitfield_data(struct btf_dump *d, 1616 const struct btf_type *t, 1617 const void *data, 1618 __u8 bits_offset, 1619 __u8 bit_sz) 1620 { 1621 __u64 print_num; 1622 int err; 1623 1624 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1625 if (err) 1626 return err; 1627 1628 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1629 1630 return 0; 1631 } 1632 1633 /* ints, floats and ptrs */ 1634 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1635 const struct btf_type *t, 1636 __u32 id, 1637 const void *data) 1638 { 1639 static __u8 bytecmp[16] = {}; 1640 int nr_bytes; 1641 1642 /* For pointer types, pointer size is not defined on a per-type basis. 1643 * On dump creation however, we store the pointer size. 1644 */ 1645 if (btf_kind(t) == BTF_KIND_PTR) 1646 nr_bytes = d->ptr_sz; 1647 else 1648 nr_bytes = t->size; 1649 1650 if (nr_bytes < 1 || nr_bytes > 16) { 1651 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1652 return -EINVAL; 1653 } 1654 1655 if (memcmp(data, bytecmp, nr_bytes) == 0) 1656 return -ENODATA; 1657 return 0; 1658 } 1659 1660 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id, 1661 const void *data) 1662 { 1663 int alignment = btf__align_of(btf, type_id); 1664 1665 if (alignment == 0) 1666 return false; 1667 1668 return ((uintptr_t)data) % alignment == 0; 1669 } 1670 1671 static int btf_dump_int_data(struct btf_dump *d, 1672 const struct btf_type *t, 1673 __u32 type_id, 1674 const void *data, 1675 __u8 bits_offset) 1676 { 1677 __u8 encoding = btf_int_encoding(t); 1678 bool sign = encoding & BTF_INT_SIGNED; 1679 char buf[16] __attribute__((aligned(16))); 1680 int sz = t->size; 1681 1682 if (sz == 0 || sz > sizeof(buf)) { 1683 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1684 return -EINVAL; 1685 } 1686 1687 /* handle packed int data - accesses of integers not aligned on 1688 * int boundaries can cause problems on some platforms. 1689 */ 1690 if (!ptr_is_aligned(d->btf, type_id, data)) { 1691 memcpy(buf, data, sz); 1692 data = buf; 1693 } 1694 1695 switch (sz) { 1696 case 16: { 1697 const __u64 *ints = data; 1698 __u64 lsi, msi; 1699 1700 /* avoid use of __int128 as some 32-bit platforms do not 1701 * support it. 1702 */ 1703 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1704 lsi = ints[0]; 1705 msi = ints[1]; 1706 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1707 lsi = ints[1]; 1708 msi = ints[0]; 1709 #else 1710 # error "Unrecognized __BYTE_ORDER__" 1711 #endif 1712 if (msi == 0) 1713 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1714 else 1715 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1716 (unsigned long long)lsi); 1717 break; 1718 } 1719 case 8: 1720 if (sign) 1721 btf_dump_type_values(d, "%lld", *(long long *)data); 1722 else 1723 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1724 break; 1725 case 4: 1726 if (sign) 1727 btf_dump_type_values(d, "%d", *(__s32 *)data); 1728 else 1729 btf_dump_type_values(d, "%u", *(__u32 *)data); 1730 break; 1731 case 2: 1732 if (sign) 1733 btf_dump_type_values(d, "%d", *(__s16 *)data); 1734 else 1735 btf_dump_type_values(d, "%u", *(__u16 *)data); 1736 break; 1737 case 1: 1738 if (d->typed_dump->is_array_char) { 1739 /* check for null terminator */ 1740 if (d->typed_dump->is_array_terminated) 1741 break; 1742 if (*(char *)data == '\0') { 1743 d->typed_dump->is_array_terminated = true; 1744 break; 1745 } 1746 if (isprint(*(char *)data)) { 1747 btf_dump_type_values(d, "'%c'", *(char *)data); 1748 break; 1749 } 1750 } 1751 if (sign) 1752 btf_dump_type_values(d, "%d", *(__s8 *)data); 1753 else 1754 btf_dump_type_values(d, "%u", *(__u8 *)data); 1755 break; 1756 default: 1757 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1758 return -EINVAL; 1759 } 1760 return 0; 1761 } 1762 1763 union float_data { 1764 long double ld; 1765 double d; 1766 float f; 1767 }; 1768 1769 static int btf_dump_float_data(struct btf_dump *d, 1770 const struct btf_type *t, 1771 __u32 type_id, 1772 const void *data) 1773 { 1774 const union float_data *flp = data; 1775 union float_data fl; 1776 int sz = t->size; 1777 1778 /* handle unaligned data; copy to local union */ 1779 if (!ptr_is_aligned(d->btf, type_id, data)) { 1780 memcpy(&fl, data, sz); 1781 flp = &fl; 1782 } 1783 1784 switch (sz) { 1785 case 16: 1786 btf_dump_type_values(d, "%Lf", flp->ld); 1787 break; 1788 case 8: 1789 btf_dump_type_values(d, "%lf", flp->d); 1790 break; 1791 case 4: 1792 btf_dump_type_values(d, "%f", flp->f); 1793 break; 1794 default: 1795 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1796 return -EINVAL; 1797 } 1798 return 0; 1799 } 1800 1801 static int btf_dump_var_data(struct btf_dump *d, 1802 const struct btf_type *v, 1803 __u32 id, 1804 const void *data) 1805 { 1806 enum btf_func_linkage linkage = btf_var(v)->linkage; 1807 const struct btf_type *t; 1808 const char *l; 1809 __u32 type_id; 1810 1811 switch (linkage) { 1812 case BTF_FUNC_STATIC: 1813 l = "static "; 1814 break; 1815 case BTF_FUNC_EXTERN: 1816 l = "extern "; 1817 break; 1818 case BTF_FUNC_GLOBAL: 1819 default: 1820 l = ""; 1821 break; 1822 } 1823 1824 /* format of output here is [linkage] [type] [varname] = (type)value, 1825 * for example "static int cpu_profile_flip = (int)1" 1826 */ 1827 btf_dump_printf(d, "%s", l); 1828 type_id = v->type; 1829 t = btf__type_by_id(d->btf, type_id); 1830 btf_dump_emit_type_cast(d, type_id, false); 1831 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 1832 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 1833 } 1834 1835 static int btf_dump_array_data(struct btf_dump *d, 1836 const struct btf_type *t, 1837 __u32 id, 1838 const void *data) 1839 { 1840 const struct btf_array *array = btf_array(t); 1841 const struct btf_type *elem_type; 1842 __u32 i, elem_size = 0, elem_type_id; 1843 bool is_array_member; 1844 1845 elem_type_id = array->type; 1846 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 1847 elem_size = btf__resolve_size(d->btf, elem_type_id); 1848 if (elem_size <= 0) { 1849 pr_warn("unexpected elem size %d for array type [%u]\n", elem_size, id); 1850 return -EINVAL; 1851 } 1852 1853 if (btf_is_int(elem_type)) { 1854 /* 1855 * BTF_INT_CHAR encoding never seems to be set for 1856 * char arrays, so if size is 1 and element is 1857 * printable as a char, we'll do that. 1858 */ 1859 if (elem_size == 1) 1860 d->typed_dump->is_array_char = true; 1861 } 1862 1863 /* note that we increment depth before calling btf_dump_print() below; 1864 * this is intentional. btf_dump_data_newline() will not print a 1865 * newline for depth 0 (since this leaves us with trailing newlines 1866 * at the end of typed display), so depth is incremented first. 1867 * For similar reasons, we decrement depth before showing the closing 1868 * parenthesis. 1869 */ 1870 d->typed_dump->depth++; 1871 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 1872 1873 /* may be a multidimensional array, so store current "is array member" 1874 * status so we can restore it correctly later. 1875 */ 1876 is_array_member = d->typed_dump->is_array_member; 1877 d->typed_dump->is_array_member = true; 1878 for (i = 0; i < array->nelems; i++, data += elem_size) { 1879 if (d->typed_dump->is_array_terminated) 1880 break; 1881 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 1882 } 1883 d->typed_dump->is_array_member = is_array_member; 1884 d->typed_dump->depth--; 1885 btf_dump_data_pfx(d); 1886 btf_dump_type_values(d, "]"); 1887 1888 return 0; 1889 } 1890 1891 static int btf_dump_struct_data(struct btf_dump *d, 1892 const struct btf_type *t, 1893 __u32 id, 1894 const void *data) 1895 { 1896 const struct btf_member *m = btf_members(t); 1897 __u16 n = btf_vlen(t); 1898 int i, err; 1899 1900 /* note that we increment depth before calling btf_dump_print() below; 1901 * this is intentional. btf_dump_data_newline() will not print a 1902 * newline for depth 0 (since this leaves us with trailing newlines 1903 * at the end of typed display), so depth is incremented first. 1904 * For similar reasons, we decrement depth before showing the closing 1905 * parenthesis. 1906 */ 1907 d->typed_dump->depth++; 1908 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 1909 1910 for (i = 0; i < n; i++, m++) { 1911 const struct btf_type *mtype; 1912 const char *mname; 1913 __u32 moffset; 1914 __u8 bit_sz; 1915 1916 mtype = btf__type_by_id(d->btf, m->type); 1917 mname = btf_name_of(d, m->name_off); 1918 moffset = btf_member_bit_offset(t, i); 1919 1920 bit_sz = btf_member_bitfield_size(t, i); 1921 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 1922 moffset % 8, bit_sz); 1923 if (err < 0) 1924 return err; 1925 } 1926 d->typed_dump->depth--; 1927 btf_dump_data_pfx(d); 1928 btf_dump_type_values(d, "}"); 1929 return err; 1930 } 1931 1932 union ptr_data { 1933 unsigned int p; 1934 unsigned long long lp; 1935 }; 1936 1937 static int btf_dump_ptr_data(struct btf_dump *d, 1938 const struct btf_type *t, 1939 __u32 id, 1940 const void *data) 1941 { 1942 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) { 1943 btf_dump_type_values(d, "%p", *(void **)data); 1944 } else { 1945 union ptr_data pt; 1946 1947 memcpy(&pt, data, d->ptr_sz); 1948 if (d->ptr_sz == 4) 1949 btf_dump_type_values(d, "0x%x", pt.p); 1950 else 1951 btf_dump_type_values(d, "0x%llx", pt.lp); 1952 } 1953 return 0; 1954 } 1955 1956 static int btf_dump_get_enum_value(struct btf_dump *d, 1957 const struct btf_type *t, 1958 const void *data, 1959 __u32 id, 1960 __s64 *value) 1961 { 1962 /* handle unaligned enum value */ 1963 if (!ptr_is_aligned(d->btf, id, data)) { 1964 __u64 val; 1965 int err; 1966 1967 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 1968 if (err) 1969 return err; 1970 *value = (__s64)val; 1971 return 0; 1972 } 1973 1974 switch (t->size) { 1975 case 8: 1976 *value = *(__s64 *)data; 1977 return 0; 1978 case 4: 1979 *value = *(__s32 *)data; 1980 return 0; 1981 case 2: 1982 *value = *(__s16 *)data; 1983 return 0; 1984 case 1: 1985 *value = *(__s8 *)data; 1986 return 0; 1987 default: 1988 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 1989 return -EINVAL; 1990 } 1991 } 1992 1993 static int btf_dump_enum_data(struct btf_dump *d, 1994 const struct btf_type *t, 1995 __u32 id, 1996 const void *data) 1997 { 1998 const struct btf_enum *e; 1999 __s64 value; 2000 int i, err; 2001 2002 err = btf_dump_get_enum_value(d, t, data, id, &value); 2003 if (err) 2004 return err; 2005 2006 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 2007 if (value != e->val) 2008 continue; 2009 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2010 return 0; 2011 } 2012 2013 btf_dump_type_values(d, "%d", value); 2014 return 0; 2015 } 2016 2017 static int btf_dump_datasec_data(struct btf_dump *d, 2018 const struct btf_type *t, 2019 __u32 id, 2020 const void *data) 2021 { 2022 const struct btf_var_secinfo *vsi; 2023 const struct btf_type *var; 2024 __u32 i; 2025 int err; 2026 2027 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2028 2029 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2030 var = btf__type_by_id(d->btf, vsi->type); 2031 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2032 if (err < 0) 2033 return err; 2034 btf_dump_printf(d, ";"); 2035 } 2036 return 0; 2037 } 2038 2039 /* return size of type, or if base type overflows, return -E2BIG. */ 2040 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2041 const struct btf_type *t, 2042 __u32 id, 2043 const void *data, 2044 __u8 bits_offset) 2045 { 2046 __s64 size = btf__resolve_size(d->btf, id); 2047 2048 if (size < 0 || size >= INT_MAX) { 2049 pr_warn("unexpected size [%zu] for id [%u]\n", 2050 (size_t)size, id); 2051 return -EINVAL; 2052 } 2053 2054 /* Only do overflow checking for base types; we do not want to 2055 * avoid showing part of a struct, union or array, even if we 2056 * do not have enough data to show the full object. By 2057 * restricting overflow checking to base types we can ensure 2058 * that partial display succeeds, while avoiding overflowing 2059 * and using bogus data for display. 2060 */ 2061 t = skip_mods_and_typedefs(d->btf, id, NULL); 2062 if (!t) { 2063 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2064 id); 2065 return -EINVAL; 2066 } 2067 2068 switch (btf_kind(t)) { 2069 case BTF_KIND_INT: 2070 case BTF_KIND_FLOAT: 2071 case BTF_KIND_PTR: 2072 case BTF_KIND_ENUM: 2073 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2074 return -E2BIG; 2075 break; 2076 default: 2077 break; 2078 } 2079 return (int)size; 2080 } 2081 2082 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2083 const struct btf_type *t, 2084 __u32 id, 2085 const void *data, 2086 __u8 bits_offset, 2087 __u8 bit_sz) 2088 { 2089 __s64 value; 2090 int i, err; 2091 2092 /* toplevel exceptions; we show zero values if 2093 * - we ask for them (emit_zeros) 2094 * - if we are at top-level so we see "struct empty { }" 2095 * - or if we are an array member and the array is non-empty and 2096 * not a char array; we don't want to be in a situation where we 2097 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2098 * If the array contains zeroes only, or is a char array starting 2099 * with a '\0', the array-level check_zero() will prevent showing it; 2100 * we are concerned with determining zero value at the array member 2101 * level here. 2102 */ 2103 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2104 (d->typed_dump->is_array_member && 2105 !d->typed_dump->is_array_char)) 2106 return 0; 2107 2108 t = skip_mods_and_typedefs(d->btf, id, NULL); 2109 2110 switch (btf_kind(t)) { 2111 case BTF_KIND_INT: 2112 if (bit_sz) 2113 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2114 return btf_dump_base_type_check_zero(d, t, id, data); 2115 case BTF_KIND_FLOAT: 2116 case BTF_KIND_PTR: 2117 return btf_dump_base_type_check_zero(d, t, id, data); 2118 case BTF_KIND_ARRAY: { 2119 const struct btf_array *array = btf_array(t); 2120 const struct btf_type *elem_type; 2121 __u32 elem_type_id, elem_size; 2122 bool ischar; 2123 2124 elem_type_id = array->type; 2125 elem_size = btf__resolve_size(d->btf, elem_type_id); 2126 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2127 2128 ischar = btf_is_int(elem_type) && elem_size == 1; 2129 2130 /* check all elements; if _any_ element is nonzero, all 2131 * of array is displayed. We make an exception however 2132 * for char arrays where the first element is 0; these 2133 * are considered zeroed also, even if later elements are 2134 * non-zero because the string is terminated. 2135 */ 2136 for (i = 0; i < array->nelems; i++) { 2137 if (i == 0 && ischar && *(char *)data == 0) 2138 return -ENODATA; 2139 err = btf_dump_type_data_check_zero(d, elem_type, 2140 elem_type_id, 2141 data + 2142 (i * elem_size), 2143 bits_offset, 0); 2144 if (err != -ENODATA) 2145 return err; 2146 } 2147 return -ENODATA; 2148 } 2149 case BTF_KIND_STRUCT: 2150 case BTF_KIND_UNION: { 2151 const struct btf_member *m = btf_members(t); 2152 __u16 n = btf_vlen(t); 2153 2154 /* if any struct/union member is non-zero, the struct/union 2155 * is considered non-zero and dumped. 2156 */ 2157 for (i = 0; i < n; i++, m++) { 2158 const struct btf_type *mtype; 2159 __u32 moffset; 2160 2161 mtype = btf__type_by_id(d->btf, m->type); 2162 moffset = btf_member_bit_offset(t, i); 2163 2164 /* btf_int_bits() does not store member bitfield size; 2165 * bitfield size needs to be stored here so int display 2166 * of member can retrieve it. 2167 */ 2168 bit_sz = btf_member_bitfield_size(t, i); 2169 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2170 moffset % 8, bit_sz); 2171 if (err != ENODATA) 2172 return err; 2173 } 2174 return -ENODATA; 2175 } 2176 case BTF_KIND_ENUM: 2177 err = btf_dump_get_enum_value(d, t, data, id, &value); 2178 if (err) 2179 return err; 2180 if (value == 0) 2181 return -ENODATA; 2182 return 0; 2183 default: 2184 return 0; 2185 } 2186 } 2187 2188 /* returns size of data dumped, or error. */ 2189 static int btf_dump_dump_type_data(struct btf_dump *d, 2190 const char *fname, 2191 const struct btf_type *t, 2192 __u32 id, 2193 const void *data, 2194 __u8 bits_offset, 2195 __u8 bit_sz) 2196 { 2197 int size, err; 2198 2199 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset); 2200 if (size < 0) 2201 return size; 2202 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2203 if (err) { 2204 /* zeroed data is expected and not an error, so simply skip 2205 * dumping such data. Record other errors however. 2206 */ 2207 if (err == -ENODATA) 2208 return size; 2209 return err; 2210 } 2211 btf_dump_data_pfx(d); 2212 2213 if (!d->typed_dump->skip_names) { 2214 if (fname && strlen(fname) > 0) 2215 btf_dump_printf(d, ".%s = ", fname); 2216 btf_dump_emit_type_cast(d, id, true); 2217 } 2218 2219 t = skip_mods_and_typedefs(d->btf, id, NULL); 2220 2221 switch (btf_kind(t)) { 2222 case BTF_KIND_UNKN: 2223 case BTF_KIND_FWD: 2224 case BTF_KIND_FUNC: 2225 case BTF_KIND_FUNC_PROTO: 2226 case BTF_KIND_DECL_TAG: 2227 err = btf_dump_unsupported_data(d, t, id); 2228 break; 2229 case BTF_KIND_INT: 2230 if (bit_sz) 2231 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2232 else 2233 err = btf_dump_int_data(d, t, id, data, bits_offset); 2234 break; 2235 case BTF_KIND_FLOAT: 2236 err = btf_dump_float_data(d, t, id, data); 2237 break; 2238 case BTF_KIND_PTR: 2239 err = btf_dump_ptr_data(d, t, id, data); 2240 break; 2241 case BTF_KIND_ARRAY: 2242 err = btf_dump_array_data(d, t, id, data); 2243 break; 2244 case BTF_KIND_STRUCT: 2245 case BTF_KIND_UNION: 2246 err = btf_dump_struct_data(d, t, id, data); 2247 break; 2248 case BTF_KIND_ENUM: 2249 /* handle bitfield and int enum values */ 2250 if (bit_sz) { 2251 __u64 print_num; 2252 __s64 enum_val; 2253 2254 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2255 &print_num); 2256 if (err) 2257 break; 2258 enum_val = (__s64)print_num; 2259 err = btf_dump_enum_data(d, t, id, &enum_val); 2260 } else 2261 err = btf_dump_enum_data(d, t, id, data); 2262 break; 2263 case BTF_KIND_VAR: 2264 err = btf_dump_var_data(d, t, id, data); 2265 break; 2266 case BTF_KIND_DATASEC: 2267 err = btf_dump_datasec_data(d, t, id, data); 2268 break; 2269 default: 2270 pr_warn("unexpected kind [%u] for id [%u]\n", 2271 BTF_INFO_KIND(t->info), id); 2272 return -EINVAL; 2273 } 2274 if (err < 0) 2275 return err; 2276 return size; 2277 } 2278 2279 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2280 const void *data, size_t data_sz, 2281 const struct btf_dump_type_data_opts *opts) 2282 { 2283 struct btf_dump_data typed_dump = {}; 2284 const struct btf_type *t; 2285 int ret; 2286 2287 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2288 return libbpf_err(-EINVAL); 2289 2290 t = btf__type_by_id(d->btf, id); 2291 if (!t) 2292 return libbpf_err(-ENOENT); 2293 2294 d->typed_dump = &typed_dump; 2295 d->typed_dump->data_end = data + data_sz; 2296 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2297 2298 /* default indent string is a tab */ 2299 if (!opts->indent_str) 2300 d->typed_dump->indent_str[0] = '\t'; 2301 else 2302 strncat(d->typed_dump->indent_str, opts->indent_str, 2303 sizeof(d->typed_dump->indent_str) - 1); 2304 2305 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2306 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2307 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2308 2309 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2310 2311 d->typed_dump = NULL; 2312 2313 return libbpf_err(ret); 2314 } 2315