xref: /openbmc/linux/tools/lib/bpf/btf_dump.c (revision 5fa1f768)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <errno.h>
14 #include <linux/err.h>
15 #include <linux/btf.h>
16 #include "btf.h"
17 #include "hashmap.h"
18 #include "libbpf.h"
19 #include "libbpf_internal.h"
20 
21 /* make sure libbpf doesn't use kernel-only integer typedefs */
22 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
23 
24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
26 
27 static const char *pfx(int lvl)
28 {
29 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
30 }
31 
32 enum btf_dump_type_order_state {
33 	NOT_ORDERED,
34 	ORDERING,
35 	ORDERED,
36 };
37 
38 enum btf_dump_type_emit_state {
39 	NOT_EMITTED,
40 	EMITTING,
41 	EMITTED,
42 };
43 
44 /* per-type auxiliary state */
45 struct btf_dump_type_aux_state {
46 	/* topological sorting state */
47 	enum btf_dump_type_order_state order_state: 2;
48 	/* emitting state used to determine the need for forward declaration */
49 	enum btf_dump_type_emit_state emit_state: 2;
50 	/* whether forward declaration was already emitted */
51 	__u8 fwd_emitted: 1;
52 	/* whether unique non-duplicate name was already assigned */
53 	__u8 name_resolved: 1;
54 	/* whether type is referenced from any other type */
55 	__u8 referenced: 1;
56 };
57 
58 struct btf_dump {
59 	const struct btf *btf;
60 	const struct btf_ext *btf_ext;
61 	btf_dump_printf_fn_t printf_fn;
62 	struct btf_dump_opts opts;
63 	bool strip_mods;
64 
65 	/* per-type auxiliary state */
66 	struct btf_dump_type_aux_state *type_states;
67 	/* per-type optional cached unique name, must be freed, if present */
68 	const char **cached_names;
69 
70 	/* topo-sorted list of dependent type definitions */
71 	__u32 *emit_queue;
72 	int emit_queue_cap;
73 	int emit_queue_cnt;
74 
75 	/*
76 	 * stack of type declarations (e.g., chain of modifiers, arrays,
77 	 * funcs, etc)
78 	 */
79 	__u32 *decl_stack;
80 	int decl_stack_cap;
81 	int decl_stack_cnt;
82 
83 	/* maps struct/union/enum name to a number of name occurrences */
84 	struct hashmap *type_names;
85 	/*
86 	 * maps typedef identifiers and enum value names to a number of such
87 	 * name occurrences
88 	 */
89 	struct hashmap *ident_names;
90 };
91 
92 static size_t str_hash_fn(const void *key, void *ctx)
93 {
94 	const char *s = key;
95 	size_t h = 0;
96 
97 	while (*s) {
98 		h = h * 31 + *s;
99 		s++;
100 	}
101 	return h;
102 }
103 
104 static bool str_equal_fn(const void *a, const void *b, void *ctx)
105 {
106 	return strcmp(a, b) == 0;
107 }
108 
109 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
110 {
111 	return btf__name_by_offset(d->btf, name_off);
112 }
113 
114 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
115 {
116 	va_list args;
117 
118 	va_start(args, fmt);
119 	d->printf_fn(d->opts.ctx, fmt, args);
120 	va_end(args);
121 }
122 
123 static int btf_dump_mark_referenced(struct btf_dump *d);
124 
125 struct btf_dump *btf_dump__new(const struct btf *btf,
126 			       const struct btf_ext *btf_ext,
127 			       const struct btf_dump_opts *opts,
128 			       btf_dump_printf_fn_t printf_fn)
129 {
130 	struct btf_dump *d;
131 	int err;
132 
133 	d = calloc(1, sizeof(struct btf_dump));
134 	if (!d)
135 		return ERR_PTR(-ENOMEM);
136 
137 	d->btf = btf;
138 	d->btf_ext = btf_ext;
139 	d->printf_fn = printf_fn;
140 	d->opts.ctx = opts ? opts->ctx : NULL;
141 
142 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
143 	if (IS_ERR(d->type_names)) {
144 		err = PTR_ERR(d->type_names);
145 		d->type_names = NULL;
146 		goto err;
147 	}
148 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
149 	if (IS_ERR(d->ident_names)) {
150 		err = PTR_ERR(d->ident_names);
151 		d->ident_names = NULL;
152 		goto err;
153 	}
154 	d->type_states = calloc(1 + btf__get_nr_types(d->btf),
155 				sizeof(d->type_states[0]));
156 	if (!d->type_states) {
157 		err = -ENOMEM;
158 		goto err;
159 	}
160 	d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
161 				 sizeof(d->cached_names[0]));
162 	if (!d->cached_names) {
163 		err = -ENOMEM;
164 		goto err;
165 	}
166 
167 	/* VOID is special */
168 	d->type_states[0].order_state = ORDERED;
169 	d->type_states[0].emit_state = EMITTED;
170 
171 	/* eagerly determine referenced types for anon enums */
172 	err = btf_dump_mark_referenced(d);
173 	if (err)
174 		goto err;
175 
176 	return d;
177 err:
178 	btf_dump__free(d);
179 	return ERR_PTR(err);
180 }
181 
182 void btf_dump__free(struct btf_dump *d)
183 {
184 	int i, cnt;
185 
186 	if (IS_ERR_OR_NULL(d))
187 		return;
188 
189 	free(d->type_states);
190 	if (d->cached_names) {
191 		/* any set cached name is owned by us and should be freed */
192 		for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
193 			if (d->cached_names[i])
194 				free((void *)d->cached_names[i]);
195 		}
196 	}
197 	free(d->cached_names);
198 	free(d->emit_queue);
199 	free(d->decl_stack);
200 	hashmap__free(d->type_names);
201 	hashmap__free(d->ident_names);
202 
203 	free(d);
204 }
205 
206 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
207 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
208 
209 /*
210  * Dump BTF type in a compilable C syntax, including all the necessary
211  * dependent types, necessary for compilation. If some of the dependent types
212  * were already emitted as part of previous btf_dump__dump_type() invocation
213  * for another type, they won't be emitted again. This API allows callers to
214  * filter out BTF types according to user-defined criterias and emitted only
215  * minimal subset of types, necessary to compile everything. Full struct/union
216  * definitions will still be emitted, even if the only usage is through
217  * pointer and could be satisfied with just a forward declaration.
218  *
219  * Dumping is done in two high-level passes:
220  *   1. Topologically sort type definitions to satisfy C rules of compilation.
221  *   2. Emit type definitions in C syntax.
222  *
223  * Returns 0 on success; <0, otherwise.
224  */
225 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
226 {
227 	int err, i;
228 
229 	if (id > btf__get_nr_types(d->btf))
230 		return -EINVAL;
231 
232 	d->emit_queue_cnt = 0;
233 	err = btf_dump_order_type(d, id, false);
234 	if (err < 0)
235 		return err;
236 
237 	for (i = 0; i < d->emit_queue_cnt; i++)
238 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
239 
240 	return 0;
241 }
242 
243 /*
244  * Mark all types that are referenced from any other type. This is used to
245  * determine top-level anonymous enums that need to be emitted as an
246  * independent type declarations.
247  * Anonymous enums come in two flavors: either embedded in a struct's field
248  * definition, in which case they have to be declared inline as part of field
249  * type declaration; or as a top-level anonymous enum, typically used for
250  * declaring global constants. It's impossible to distinguish between two
251  * without knowning whether given enum type was referenced from other type:
252  * top-level anonymous enum won't be referenced by anything, while embedded
253  * one will.
254  */
255 static int btf_dump_mark_referenced(struct btf_dump *d)
256 {
257 	int i, j, n = btf__get_nr_types(d->btf);
258 	const struct btf_type *t;
259 	__u16 vlen;
260 
261 	for (i = 1; i <= n; i++) {
262 		t = btf__type_by_id(d->btf, i);
263 		vlen = btf_vlen(t);
264 
265 		switch (btf_kind(t)) {
266 		case BTF_KIND_INT:
267 		case BTF_KIND_ENUM:
268 		case BTF_KIND_FWD:
269 			break;
270 
271 		case BTF_KIND_VOLATILE:
272 		case BTF_KIND_CONST:
273 		case BTF_KIND_RESTRICT:
274 		case BTF_KIND_PTR:
275 		case BTF_KIND_TYPEDEF:
276 		case BTF_KIND_FUNC:
277 		case BTF_KIND_VAR:
278 			d->type_states[t->type].referenced = 1;
279 			break;
280 
281 		case BTF_KIND_ARRAY: {
282 			const struct btf_array *a = btf_array(t);
283 
284 			d->type_states[a->index_type].referenced = 1;
285 			d->type_states[a->type].referenced = 1;
286 			break;
287 		}
288 		case BTF_KIND_STRUCT:
289 		case BTF_KIND_UNION: {
290 			const struct btf_member *m = btf_members(t);
291 
292 			for (j = 0; j < vlen; j++, m++)
293 				d->type_states[m->type].referenced = 1;
294 			break;
295 		}
296 		case BTF_KIND_FUNC_PROTO: {
297 			const struct btf_param *p = btf_params(t);
298 
299 			for (j = 0; j < vlen; j++, p++)
300 				d->type_states[p->type].referenced = 1;
301 			break;
302 		}
303 		case BTF_KIND_DATASEC: {
304 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
305 
306 			for (j = 0; j < vlen; j++, v++)
307 				d->type_states[v->type].referenced = 1;
308 			break;
309 		}
310 		default:
311 			return -EINVAL;
312 		}
313 	}
314 	return 0;
315 }
316 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
317 {
318 	__u32 *new_queue;
319 	size_t new_cap;
320 
321 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
322 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
323 		new_queue = realloc(d->emit_queue,
324 				    new_cap * sizeof(new_queue[0]));
325 		if (!new_queue)
326 			return -ENOMEM;
327 		d->emit_queue = new_queue;
328 		d->emit_queue_cap = new_cap;
329 	}
330 
331 	d->emit_queue[d->emit_queue_cnt++] = id;
332 	return 0;
333 }
334 
335 /*
336  * Determine order of emitting dependent types and specified type to satisfy
337  * C compilation rules.  This is done through topological sorting with an
338  * additional complication which comes from C rules. The main idea for C is
339  * that if some type is "embedded" into a struct/union, it's size needs to be
340  * known at the time of definition of containing type. E.g., for:
341  *
342  *	struct A {};
343  *	struct B { struct A x; }
344  *
345  * struct A *HAS* to be defined before struct B, because it's "embedded",
346  * i.e., it is part of struct B layout. But in the following case:
347  *
348  *	struct A;
349  *	struct B { struct A *x; }
350  *	struct A {};
351  *
352  * it's enough to just have a forward declaration of struct A at the time of
353  * struct B definition, as struct B has a pointer to struct A, so the size of
354  * field x is known without knowing struct A size: it's sizeof(void *).
355  *
356  * Unfortunately, there are some trickier cases we need to handle, e.g.:
357  *
358  *	struct A {}; // if this was forward-declaration: compilation error
359  *	struct B {
360  *		struct { // anonymous struct
361  *			struct A y;
362  *		} *x;
363  *	};
364  *
365  * In this case, struct B's field x is a pointer, so it's size is known
366  * regardless of the size of (anonymous) struct it points to. But because this
367  * struct is anonymous and thus defined inline inside struct B, *and* it
368  * embeds struct A, compiler requires full definition of struct A to be known
369  * before struct B can be defined. This creates a transitive dependency
370  * between struct A and struct B. If struct A was forward-declared before
371  * struct B definition and fully defined after struct B definition, that would
372  * trigger compilation error.
373  *
374  * All this means that while we are doing topological sorting on BTF type
375  * graph, we need to determine relationships between different types (graph
376  * nodes):
377  *   - weak link (relationship) between X and Y, if Y *CAN* be
378  *   forward-declared at the point of X definition;
379  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
380  *
381  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
382  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
383  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
384  * Weak/strong relationship is determined recursively during DFS traversal and
385  * is returned as a result from btf_dump_order_type().
386  *
387  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
388  * but it is not guaranteeing that no extraneous forward declarations will be
389  * emitted.
390  *
391  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
392  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
393  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
394  * entire graph path, so depending where from one came to that BTF type, it
395  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
396  * once they are processed, there is no need to do it again, so they are
397  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
398  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
399  * in any case, once those are processed, no need to do it again, as the
400  * result won't change.
401  *
402  * Returns:
403  *   - 1, if type is part of strong link (so there is strong topological
404  *   ordering requirements);
405  *   - 0, if type is part of weak link (so can be satisfied through forward
406  *   declaration);
407  *   - <0, on error (e.g., unsatisfiable type loop detected).
408  */
409 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
410 {
411 	/*
412 	 * Order state is used to detect strong link cycles, but only for BTF
413 	 * kinds that are or could be an independent definition (i.e.,
414 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
415 	 * func_protos, modifiers are just means to get to these definitions.
416 	 * Int/void don't need definitions, they are assumed to be always
417 	 * properly defined.  We also ignore datasec, var, and funcs for now.
418 	 * So for all non-defining kinds, we never even set ordering state,
419 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
420 	 * forms a strong link.
421 	 */
422 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
423 	const struct btf_type *t;
424 	__u16 vlen;
425 	int err, i;
426 
427 	/* return true, letting typedefs know that it's ok to be emitted */
428 	if (tstate->order_state == ORDERED)
429 		return 1;
430 
431 	t = btf__type_by_id(d->btf, id);
432 
433 	if (tstate->order_state == ORDERING) {
434 		/* type loop, but resolvable through fwd declaration */
435 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
436 			return 0;
437 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
438 		return -ELOOP;
439 	}
440 
441 	switch (btf_kind(t)) {
442 	case BTF_KIND_INT:
443 		tstate->order_state = ORDERED;
444 		return 0;
445 
446 	case BTF_KIND_PTR:
447 		err = btf_dump_order_type(d, t->type, true);
448 		tstate->order_state = ORDERED;
449 		return err;
450 
451 	case BTF_KIND_ARRAY:
452 		return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
453 
454 	case BTF_KIND_STRUCT:
455 	case BTF_KIND_UNION: {
456 		const struct btf_member *m = btf_members(t);
457 		/*
458 		 * struct/union is part of strong link, only if it's embedded
459 		 * (so no ptr in a path) or it's anonymous (so has to be
460 		 * defined inline, even if declared through ptr)
461 		 */
462 		if (through_ptr && t->name_off != 0)
463 			return 0;
464 
465 		tstate->order_state = ORDERING;
466 
467 		vlen = btf_vlen(t);
468 		for (i = 0; i < vlen; i++, m++) {
469 			err = btf_dump_order_type(d, m->type, false);
470 			if (err < 0)
471 				return err;
472 		}
473 
474 		if (t->name_off != 0) {
475 			err = btf_dump_add_emit_queue_id(d, id);
476 			if (err < 0)
477 				return err;
478 		}
479 
480 		tstate->order_state = ORDERED;
481 		return 1;
482 	}
483 	case BTF_KIND_ENUM:
484 	case BTF_KIND_FWD:
485 		/*
486 		 * non-anonymous or non-referenced enums are top-level
487 		 * declarations and should be emitted. Same logic can be
488 		 * applied to FWDs, it won't hurt anyways.
489 		 */
490 		if (t->name_off != 0 || !tstate->referenced) {
491 			err = btf_dump_add_emit_queue_id(d, id);
492 			if (err)
493 				return err;
494 		}
495 		tstate->order_state = ORDERED;
496 		return 1;
497 
498 	case BTF_KIND_TYPEDEF: {
499 		int is_strong;
500 
501 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
502 		if (is_strong < 0)
503 			return is_strong;
504 
505 		/* typedef is similar to struct/union w.r.t. fwd-decls */
506 		if (through_ptr && !is_strong)
507 			return 0;
508 
509 		/* typedef is always a named definition */
510 		err = btf_dump_add_emit_queue_id(d, id);
511 		if (err)
512 			return err;
513 
514 		d->type_states[id].order_state = ORDERED;
515 		return 1;
516 	}
517 	case BTF_KIND_VOLATILE:
518 	case BTF_KIND_CONST:
519 	case BTF_KIND_RESTRICT:
520 		return btf_dump_order_type(d, t->type, through_ptr);
521 
522 	case BTF_KIND_FUNC_PROTO: {
523 		const struct btf_param *p = btf_params(t);
524 		bool is_strong;
525 
526 		err = btf_dump_order_type(d, t->type, through_ptr);
527 		if (err < 0)
528 			return err;
529 		is_strong = err > 0;
530 
531 		vlen = btf_vlen(t);
532 		for (i = 0; i < vlen; i++, p++) {
533 			err = btf_dump_order_type(d, p->type, through_ptr);
534 			if (err < 0)
535 				return err;
536 			if (err > 0)
537 				is_strong = true;
538 		}
539 		return is_strong;
540 	}
541 	case BTF_KIND_FUNC:
542 	case BTF_KIND_VAR:
543 	case BTF_KIND_DATASEC:
544 		d->type_states[id].order_state = ORDERED;
545 		return 0;
546 
547 	default:
548 		return -EINVAL;
549 	}
550 }
551 
552 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
553 				     const struct btf_type *t);
554 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
555 				     const struct btf_type *t, int lvl);
556 
557 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
558 				   const struct btf_type *t);
559 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
560 				   const struct btf_type *t, int lvl);
561 
562 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
563 				  const struct btf_type *t);
564 
565 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
566 				      const struct btf_type *t, int lvl);
567 
568 /* a local view into a shared stack */
569 struct id_stack {
570 	const __u32 *ids;
571 	int cnt;
572 };
573 
574 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
575 				    const char *fname, int lvl);
576 static void btf_dump_emit_type_chain(struct btf_dump *d,
577 				     struct id_stack *decl_stack,
578 				     const char *fname, int lvl);
579 
580 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
581 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
582 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
583 				 const char *orig_name);
584 
585 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
586 {
587 	const struct btf_type *t = btf__type_by_id(d->btf, id);
588 
589 	/* __builtin_va_list is a compiler built-in, which causes compilation
590 	 * errors, when compiling w/ different compiler, then used to compile
591 	 * original code (e.g., GCC to compile kernel, Clang to use generated
592 	 * C header from BTF). As it is built-in, it should be already defined
593 	 * properly internally in compiler.
594 	 */
595 	if (t->name_off == 0)
596 		return false;
597 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
598 }
599 
600 /*
601  * Emit C-syntax definitions of types from chains of BTF types.
602  *
603  * High-level handling of determining necessary forward declarations are handled
604  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
605  * declarations/definitions in C syntax  are handled by a combo of
606  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
607  * corresponding btf_dump_emit_*_{def,fwd}() functions.
608  *
609  * We also keep track of "containing struct/union type ID" to determine when
610  * we reference it from inside and thus can avoid emitting unnecessary forward
611  * declaration.
612  *
613  * This algorithm is designed in such a way, that even if some error occurs
614  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
615  * that doesn't comply to C rules completely), algorithm will try to proceed
616  * and produce as much meaningful output as possible.
617  */
618 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
619 {
620 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
621 	bool top_level_def = cont_id == 0;
622 	const struct btf_type *t;
623 	__u16 kind;
624 
625 	if (tstate->emit_state == EMITTED)
626 		return;
627 
628 	t = btf__type_by_id(d->btf, id);
629 	kind = btf_kind(t);
630 
631 	if (tstate->emit_state == EMITTING) {
632 		if (tstate->fwd_emitted)
633 			return;
634 
635 		switch (kind) {
636 		case BTF_KIND_STRUCT:
637 		case BTF_KIND_UNION:
638 			/*
639 			 * if we are referencing a struct/union that we are
640 			 * part of - then no need for fwd declaration
641 			 */
642 			if (id == cont_id)
643 				return;
644 			if (t->name_off == 0) {
645 				pr_warn("anonymous struct/union loop, id:[%u]\n",
646 					id);
647 				return;
648 			}
649 			btf_dump_emit_struct_fwd(d, id, t);
650 			btf_dump_printf(d, ";\n\n");
651 			tstate->fwd_emitted = 1;
652 			break;
653 		case BTF_KIND_TYPEDEF:
654 			/*
655 			 * for typedef fwd_emitted means typedef definition
656 			 * was emitted, but it can be used only for "weak"
657 			 * references through pointer only, not for embedding
658 			 */
659 			if (!btf_dump_is_blacklisted(d, id)) {
660 				btf_dump_emit_typedef_def(d, id, t, 0);
661 				btf_dump_printf(d, ";\n\n");
662 			}
663 			tstate->fwd_emitted = 1;
664 			break;
665 		default:
666 			break;
667 		}
668 
669 		return;
670 	}
671 
672 	switch (kind) {
673 	case BTF_KIND_INT:
674 		tstate->emit_state = EMITTED;
675 		break;
676 	case BTF_KIND_ENUM:
677 		if (top_level_def) {
678 			btf_dump_emit_enum_def(d, id, t, 0);
679 			btf_dump_printf(d, ";\n\n");
680 		}
681 		tstate->emit_state = EMITTED;
682 		break;
683 	case BTF_KIND_PTR:
684 	case BTF_KIND_VOLATILE:
685 	case BTF_KIND_CONST:
686 	case BTF_KIND_RESTRICT:
687 		btf_dump_emit_type(d, t->type, cont_id);
688 		break;
689 	case BTF_KIND_ARRAY:
690 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
691 		break;
692 	case BTF_KIND_FWD:
693 		btf_dump_emit_fwd_def(d, id, t);
694 		btf_dump_printf(d, ";\n\n");
695 		tstate->emit_state = EMITTED;
696 		break;
697 	case BTF_KIND_TYPEDEF:
698 		tstate->emit_state = EMITTING;
699 		btf_dump_emit_type(d, t->type, id);
700 		/*
701 		 * typedef can server as both definition and forward
702 		 * declaration; at this stage someone depends on
703 		 * typedef as a forward declaration (refers to it
704 		 * through pointer), so unless we already did it,
705 		 * emit typedef as a forward declaration
706 		 */
707 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
708 			btf_dump_emit_typedef_def(d, id, t, 0);
709 			btf_dump_printf(d, ";\n\n");
710 		}
711 		tstate->emit_state = EMITTED;
712 		break;
713 	case BTF_KIND_STRUCT:
714 	case BTF_KIND_UNION:
715 		tstate->emit_state = EMITTING;
716 		/* if it's a top-level struct/union definition or struct/union
717 		 * is anonymous, then in C we'll be emitting all fields and
718 		 * their types (as opposed to just `struct X`), so we need to
719 		 * make sure that all types, referenced from struct/union
720 		 * members have necessary forward-declarations, where
721 		 * applicable
722 		 */
723 		if (top_level_def || t->name_off == 0) {
724 			const struct btf_member *m = btf_members(t);
725 			__u16 vlen = btf_vlen(t);
726 			int i, new_cont_id;
727 
728 			new_cont_id = t->name_off == 0 ? cont_id : id;
729 			for (i = 0; i < vlen; i++, m++)
730 				btf_dump_emit_type(d, m->type, new_cont_id);
731 		} else if (!tstate->fwd_emitted && id != cont_id) {
732 			btf_dump_emit_struct_fwd(d, id, t);
733 			btf_dump_printf(d, ";\n\n");
734 			tstate->fwd_emitted = 1;
735 		}
736 
737 		if (top_level_def) {
738 			btf_dump_emit_struct_def(d, id, t, 0);
739 			btf_dump_printf(d, ";\n\n");
740 			tstate->emit_state = EMITTED;
741 		} else {
742 			tstate->emit_state = NOT_EMITTED;
743 		}
744 		break;
745 	case BTF_KIND_FUNC_PROTO: {
746 		const struct btf_param *p = btf_params(t);
747 		__u16 vlen = btf_vlen(t);
748 		int i;
749 
750 		btf_dump_emit_type(d, t->type, cont_id);
751 		for (i = 0; i < vlen; i++, p++)
752 			btf_dump_emit_type(d, p->type, cont_id);
753 
754 		break;
755 	}
756 	default:
757 		break;
758 	}
759 }
760 
761 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
762 				 const struct btf_type *t)
763 {
764 	const struct btf_member *m;
765 	int align, i, bit_sz;
766 	__u16 vlen;
767 
768 	align = btf__align_of(btf, id);
769 	/* size of a non-packed struct has to be a multiple of its alignment*/
770 	if (align && t->size % align)
771 		return true;
772 
773 	m = btf_members(t);
774 	vlen = btf_vlen(t);
775 	/* all non-bitfield fields have to be naturally aligned */
776 	for (i = 0; i < vlen; i++, m++) {
777 		align = btf__align_of(btf, m->type);
778 		bit_sz = btf_member_bitfield_size(t, i);
779 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
780 			return true;
781 	}
782 
783 	/*
784 	 * if original struct was marked as packed, but its layout is
785 	 * naturally aligned, we'll detect that it's not packed
786 	 */
787 	return false;
788 }
789 
790 static int chip_away_bits(int total, int at_most)
791 {
792 	return total % at_most ? : at_most;
793 }
794 
795 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
796 				      int cur_off, int m_off, int m_bit_sz,
797 				      int align, int lvl)
798 {
799 	int off_diff = m_off - cur_off;
800 	int ptr_bits = sizeof(void *) * 8;
801 
802 	if (off_diff <= 0)
803 		/* no gap */
804 		return;
805 	if (m_bit_sz == 0 && off_diff < align * 8)
806 		/* natural padding will take care of a gap */
807 		return;
808 
809 	while (off_diff > 0) {
810 		const char *pad_type;
811 		int pad_bits;
812 
813 		if (ptr_bits > 32 && off_diff > 32) {
814 			pad_type = "long";
815 			pad_bits = chip_away_bits(off_diff, ptr_bits);
816 		} else if (off_diff > 16) {
817 			pad_type = "int";
818 			pad_bits = chip_away_bits(off_diff, 32);
819 		} else if (off_diff > 8) {
820 			pad_type = "short";
821 			pad_bits = chip_away_bits(off_diff, 16);
822 		} else {
823 			pad_type = "char";
824 			pad_bits = chip_away_bits(off_diff, 8);
825 		}
826 		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
827 		off_diff -= pad_bits;
828 	}
829 }
830 
831 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
832 				     const struct btf_type *t)
833 {
834 	btf_dump_printf(d, "%s %s",
835 			btf_is_struct(t) ? "struct" : "union",
836 			btf_dump_type_name(d, id));
837 }
838 
839 static void btf_dump_emit_struct_def(struct btf_dump *d,
840 				     __u32 id,
841 				     const struct btf_type *t,
842 				     int lvl)
843 {
844 	const struct btf_member *m = btf_members(t);
845 	bool is_struct = btf_is_struct(t);
846 	int align, i, packed, off = 0;
847 	__u16 vlen = btf_vlen(t);
848 
849 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
850 
851 	btf_dump_printf(d, "%s%s%s {",
852 			is_struct ? "struct" : "union",
853 			t->name_off ? " " : "",
854 			btf_dump_type_name(d, id));
855 
856 	for (i = 0; i < vlen; i++, m++) {
857 		const char *fname;
858 		int m_off, m_sz;
859 
860 		fname = btf_name_of(d, m->name_off);
861 		m_sz = btf_member_bitfield_size(t, i);
862 		m_off = btf_member_bit_offset(t, i);
863 		align = packed ? 1 : btf__align_of(d->btf, m->type);
864 
865 		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
866 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
867 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
868 
869 		if (m_sz) {
870 			btf_dump_printf(d, ": %d", m_sz);
871 			off = m_off + m_sz;
872 		} else {
873 			m_sz = max(0, btf__resolve_size(d->btf, m->type));
874 			off = m_off + m_sz * 8;
875 		}
876 		btf_dump_printf(d, ";");
877 	}
878 
879 	/* pad at the end, if necessary */
880 	if (is_struct) {
881 		align = packed ? 1 : btf__align_of(d->btf, id);
882 		btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
883 					  lvl + 1);
884 	}
885 
886 	if (vlen)
887 		btf_dump_printf(d, "\n");
888 	btf_dump_printf(d, "%s}", pfx(lvl));
889 	if (packed)
890 		btf_dump_printf(d, " __attribute__((packed))");
891 }
892 
893 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
894 				   const struct btf_type *t)
895 {
896 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
897 }
898 
899 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
900 				   const struct btf_type *t,
901 				   int lvl)
902 {
903 	const struct btf_enum *v = btf_enum(t);
904 	__u16 vlen = btf_vlen(t);
905 	const char *name;
906 	size_t dup_cnt;
907 	int i;
908 
909 	btf_dump_printf(d, "enum%s%s",
910 			t->name_off ? " " : "",
911 			btf_dump_type_name(d, id));
912 
913 	if (vlen) {
914 		btf_dump_printf(d, " {");
915 		for (i = 0; i < vlen; i++, v++) {
916 			name = btf_name_of(d, v->name_off);
917 			/* enumerators share namespace with typedef idents */
918 			dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
919 			if (dup_cnt > 1) {
920 				btf_dump_printf(d, "\n%s%s___%zu = %u,",
921 						pfx(lvl + 1), name, dup_cnt,
922 						(__u32)v->val);
923 			} else {
924 				btf_dump_printf(d, "\n%s%s = %u,",
925 						pfx(lvl + 1), name,
926 						(__u32)v->val);
927 			}
928 		}
929 		btf_dump_printf(d, "\n%s}", pfx(lvl));
930 	}
931 }
932 
933 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
934 				  const struct btf_type *t)
935 {
936 	const char *name = btf_dump_type_name(d, id);
937 
938 	if (btf_kflag(t))
939 		btf_dump_printf(d, "union %s", name);
940 	else
941 		btf_dump_printf(d, "struct %s", name);
942 }
943 
944 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
945 				     const struct btf_type *t, int lvl)
946 {
947 	const char *name = btf_dump_ident_name(d, id);
948 
949 	/*
950 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
951 	 * pointing to VOID. This generates warnings from btf_dump() and
952 	 * results in uncompilable header file, so we are fixing it up here
953 	 * with valid typedef into __builtin_va_list.
954 	 */
955 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
956 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
957 		return;
958 	}
959 
960 	btf_dump_printf(d, "typedef ");
961 	btf_dump_emit_type_decl(d, t->type, name, lvl);
962 }
963 
964 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
965 {
966 	__u32 *new_stack;
967 	size_t new_cap;
968 
969 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
970 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
971 		new_stack = realloc(d->decl_stack,
972 				    new_cap * sizeof(new_stack[0]));
973 		if (!new_stack)
974 			return -ENOMEM;
975 		d->decl_stack = new_stack;
976 		d->decl_stack_cap = new_cap;
977 	}
978 
979 	d->decl_stack[d->decl_stack_cnt++] = id;
980 
981 	return 0;
982 }
983 
984 /*
985  * Emit type declaration (e.g., field type declaration in a struct or argument
986  * declaration in function prototype) in correct C syntax.
987  *
988  * For most types it's trivial, but there are few quirky type declaration
989  * cases worth mentioning:
990  *   - function prototypes (especially nesting of function prototypes);
991  *   - arrays;
992  *   - const/volatile/restrict for pointers vs other types.
993  *
994  * For a good discussion of *PARSING* C syntax (as a human), see
995  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
996  * Ch.3 "Unscrambling Declarations in C".
997  *
998  * It won't help with BTF to C conversion much, though, as it's an opposite
999  * problem. So we came up with this algorithm in reverse to van der Linden's
1000  * parsing algorithm. It goes from structured BTF representation of type
1001  * declaration to a valid compilable C syntax.
1002  *
1003  * For instance, consider this C typedef:
1004  *	typedef const int * const * arr[10] arr_t;
1005  * It will be represented in BTF with this chain of BTF types:
1006  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1007  *
1008  * Notice how [const] modifier always goes before type it modifies in BTF type
1009  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1010  * the right of pointers, but to the left of other types. There are also other
1011  * quirks, like function pointers, arrays of them, functions returning other
1012  * functions, etc.
1013  *
1014  * We handle that by pushing all the types to a stack, until we hit "terminal"
1015  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1016  * top of a stack, modifiers are handled differently. Array/function pointers
1017  * have also wildly different syntax and how nesting of them are done. See
1018  * code for authoritative definition.
1019  *
1020  * To avoid allocating new stack for each independent chain of BTF types, we
1021  * share one bigger stack, with each chain working only on its own local view
1022  * of a stack frame. Some care is required to "pop" stack frames after
1023  * processing type declaration chain.
1024  */
1025 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1026 			     const struct btf_dump_emit_type_decl_opts *opts)
1027 {
1028 	const char *fname;
1029 	int lvl;
1030 
1031 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1032 		return -EINVAL;
1033 
1034 	fname = OPTS_GET(opts, field_name, "");
1035 	lvl = OPTS_GET(opts, indent_level, 0);
1036 	d->strip_mods = OPTS_GET(opts, strip_mods, false);
1037 	btf_dump_emit_type_decl(d, id, fname, lvl);
1038 	d->strip_mods = false;
1039 	return 0;
1040 }
1041 
1042 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1043 				    const char *fname, int lvl)
1044 {
1045 	struct id_stack decl_stack;
1046 	const struct btf_type *t;
1047 	int err, stack_start;
1048 
1049 	stack_start = d->decl_stack_cnt;
1050 	for (;;) {
1051 		t = btf__type_by_id(d->btf, id);
1052 		if (d->strip_mods && btf_is_mod(t))
1053 			goto skip_mod;
1054 
1055 		err = btf_dump_push_decl_stack_id(d, id);
1056 		if (err < 0) {
1057 			/*
1058 			 * if we don't have enough memory for entire type decl
1059 			 * chain, restore stack, emit warning, and try to
1060 			 * proceed nevertheless
1061 			 */
1062 			pr_warn("not enough memory for decl stack:%d", err);
1063 			d->decl_stack_cnt = stack_start;
1064 			return;
1065 		}
1066 skip_mod:
1067 		/* VOID */
1068 		if (id == 0)
1069 			break;
1070 
1071 		switch (btf_kind(t)) {
1072 		case BTF_KIND_PTR:
1073 		case BTF_KIND_VOLATILE:
1074 		case BTF_KIND_CONST:
1075 		case BTF_KIND_RESTRICT:
1076 		case BTF_KIND_FUNC_PROTO:
1077 			id = t->type;
1078 			break;
1079 		case BTF_KIND_ARRAY:
1080 			id = btf_array(t)->type;
1081 			break;
1082 		case BTF_KIND_INT:
1083 		case BTF_KIND_ENUM:
1084 		case BTF_KIND_FWD:
1085 		case BTF_KIND_STRUCT:
1086 		case BTF_KIND_UNION:
1087 		case BTF_KIND_TYPEDEF:
1088 			goto done;
1089 		default:
1090 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1091 				btf_kind(t), id);
1092 			goto done;
1093 		}
1094 	}
1095 done:
1096 	/*
1097 	 * We might be inside a chain of declarations (e.g., array of function
1098 	 * pointers returning anonymous (so inlined) structs, having another
1099 	 * array field). Each of those needs its own "stack frame" to handle
1100 	 * emitting of declarations. Those stack frames are non-overlapping
1101 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1102 	 * handle this set of nested stacks, we create a view corresponding to
1103 	 * our own "stack frame" and work with it as an independent stack.
1104 	 * We'll need to clean up after emit_type_chain() returns, though.
1105 	 */
1106 	decl_stack.ids = d->decl_stack + stack_start;
1107 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1108 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1109 	/*
1110 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1111 	 * frame before returning. But it works with a read-only view into
1112 	 * decl_stack, so it doesn't actually pop anything from the
1113 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1114 	 * reset decl_stack state to how it was before us to avoid it growing
1115 	 * all the time.
1116 	 */
1117 	d->decl_stack_cnt = stack_start;
1118 }
1119 
1120 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1121 {
1122 	const struct btf_type *t;
1123 	__u32 id;
1124 
1125 	while (decl_stack->cnt) {
1126 		id = decl_stack->ids[decl_stack->cnt - 1];
1127 		t = btf__type_by_id(d->btf, id);
1128 
1129 		switch (btf_kind(t)) {
1130 		case BTF_KIND_VOLATILE:
1131 			btf_dump_printf(d, "volatile ");
1132 			break;
1133 		case BTF_KIND_CONST:
1134 			btf_dump_printf(d, "const ");
1135 			break;
1136 		case BTF_KIND_RESTRICT:
1137 			btf_dump_printf(d, "restrict ");
1138 			break;
1139 		default:
1140 			return;
1141 		}
1142 		decl_stack->cnt--;
1143 	}
1144 }
1145 
1146 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1147 {
1148 	const struct btf_type *t;
1149 	__u32 id;
1150 
1151 	while (decl_stack->cnt) {
1152 		id = decl_stack->ids[decl_stack->cnt - 1];
1153 		t = btf__type_by_id(d->btf, id);
1154 		if (!btf_is_mod(t))
1155 			return;
1156 		decl_stack->cnt--;
1157 	}
1158 }
1159 
1160 static void btf_dump_emit_name(const struct btf_dump *d,
1161 			       const char *name, bool last_was_ptr)
1162 {
1163 	bool separate = name[0] && !last_was_ptr;
1164 
1165 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1166 }
1167 
1168 static void btf_dump_emit_type_chain(struct btf_dump *d,
1169 				     struct id_stack *decls,
1170 				     const char *fname, int lvl)
1171 {
1172 	/*
1173 	 * last_was_ptr is used to determine if we need to separate pointer
1174 	 * asterisk (*) from previous part of type signature with space, so
1175 	 * that we get `int ***`, instead of `int * * *`. We default to true
1176 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1177 	 * func_proto case. func_proto will start a new emit_type_chain call
1178 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1179 	 * don't want to prepend space for that last pointer.
1180 	 */
1181 	bool last_was_ptr = true;
1182 	const struct btf_type *t;
1183 	const char *name;
1184 	__u16 kind;
1185 	__u32 id;
1186 
1187 	while (decls->cnt) {
1188 		id = decls->ids[--decls->cnt];
1189 		if (id == 0) {
1190 			/* VOID is a special snowflake */
1191 			btf_dump_emit_mods(d, decls);
1192 			btf_dump_printf(d, "void");
1193 			last_was_ptr = false;
1194 			continue;
1195 		}
1196 
1197 		t = btf__type_by_id(d->btf, id);
1198 		kind = btf_kind(t);
1199 
1200 		switch (kind) {
1201 		case BTF_KIND_INT:
1202 			btf_dump_emit_mods(d, decls);
1203 			name = btf_name_of(d, t->name_off);
1204 			btf_dump_printf(d, "%s", name);
1205 			break;
1206 		case BTF_KIND_STRUCT:
1207 		case BTF_KIND_UNION:
1208 			btf_dump_emit_mods(d, decls);
1209 			/* inline anonymous struct/union */
1210 			if (t->name_off == 0)
1211 				btf_dump_emit_struct_def(d, id, t, lvl);
1212 			else
1213 				btf_dump_emit_struct_fwd(d, id, t);
1214 			break;
1215 		case BTF_KIND_ENUM:
1216 			btf_dump_emit_mods(d, decls);
1217 			/* inline anonymous enum */
1218 			if (t->name_off == 0)
1219 				btf_dump_emit_enum_def(d, id, t, lvl);
1220 			else
1221 				btf_dump_emit_enum_fwd(d, id, t);
1222 			break;
1223 		case BTF_KIND_FWD:
1224 			btf_dump_emit_mods(d, decls);
1225 			btf_dump_emit_fwd_def(d, id, t);
1226 			break;
1227 		case BTF_KIND_TYPEDEF:
1228 			btf_dump_emit_mods(d, decls);
1229 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1230 			break;
1231 		case BTF_KIND_PTR:
1232 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1233 			break;
1234 		case BTF_KIND_VOLATILE:
1235 			btf_dump_printf(d, " volatile");
1236 			break;
1237 		case BTF_KIND_CONST:
1238 			btf_dump_printf(d, " const");
1239 			break;
1240 		case BTF_KIND_RESTRICT:
1241 			btf_dump_printf(d, " restrict");
1242 			break;
1243 		case BTF_KIND_ARRAY: {
1244 			const struct btf_array *a = btf_array(t);
1245 			const struct btf_type *next_t;
1246 			__u32 next_id;
1247 			bool multidim;
1248 			/*
1249 			 * GCC has a bug
1250 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1251 			 * which causes it to emit extra const/volatile
1252 			 * modifiers for an array, if array's element type has
1253 			 * const/volatile modifiers. Clang doesn't do that.
1254 			 * In general, it doesn't seem very meaningful to have
1255 			 * a const/volatile modifier for array, so we are
1256 			 * going to silently skip them here.
1257 			 */
1258 			btf_dump_drop_mods(d, decls);
1259 
1260 			if (decls->cnt == 0) {
1261 				btf_dump_emit_name(d, fname, last_was_ptr);
1262 				btf_dump_printf(d, "[%u]", a->nelems);
1263 				return;
1264 			}
1265 
1266 			next_id = decls->ids[decls->cnt - 1];
1267 			next_t = btf__type_by_id(d->btf, next_id);
1268 			multidim = btf_is_array(next_t);
1269 			/* we need space if we have named non-pointer */
1270 			if (fname[0] && !last_was_ptr)
1271 				btf_dump_printf(d, " ");
1272 			/* no parentheses for multi-dimensional array */
1273 			if (!multidim)
1274 				btf_dump_printf(d, "(");
1275 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1276 			if (!multidim)
1277 				btf_dump_printf(d, ")");
1278 			btf_dump_printf(d, "[%u]", a->nelems);
1279 			return;
1280 		}
1281 		case BTF_KIND_FUNC_PROTO: {
1282 			const struct btf_param *p = btf_params(t);
1283 			__u16 vlen = btf_vlen(t);
1284 			int i;
1285 
1286 			/*
1287 			 * GCC emits extra volatile qualifier for
1288 			 * __attribute__((noreturn)) function pointers. Clang
1289 			 * doesn't do it. It's a GCC quirk for backwards
1290 			 * compatibility with code written for GCC <2.5. So,
1291 			 * similarly to extra qualifiers for array, just drop
1292 			 * them, instead of handling them.
1293 			 */
1294 			btf_dump_drop_mods(d, decls);
1295 			if (decls->cnt) {
1296 				btf_dump_printf(d, " (");
1297 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1298 				btf_dump_printf(d, ")");
1299 			} else {
1300 				btf_dump_emit_name(d, fname, last_was_ptr);
1301 			}
1302 			btf_dump_printf(d, "(");
1303 			/*
1304 			 * Clang for BPF target generates func_proto with no
1305 			 * args as a func_proto with a single void arg (e.g.,
1306 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1307 			 * going to pretend there are no args for such case.
1308 			 */
1309 			if (vlen == 1 && p->type == 0) {
1310 				btf_dump_printf(d, ")");
1311 				return;
1312 			}
1313 
1314 			for (i = 0; i < vlen; i++, p++) {
1315 				if (i > 0)
1316 					btf_dump_printf(d, ", ");
1317 
1318 				/* last arg of type void is vararg */
1319 				if (i == vlen - 1 && p->type == 0) {
1320 					btf_dump_printf(d, "...");
1321 					break;
1322 				}
1323 
1324 				name = btf_name_of(d, p->name_off);
1325 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1326 			}
1327 
1328 			btf_dump_printf(d, ")");
1329 			return;
1330 		}
1331 		default:
1332 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1333 				kind, id);
1334 			return;
1335 		}
1336 
1337 		last_was_ptr = kind == BTF_KIND_PTR;
1338 	}
1339 
1340 	btf_dump_emit_name(d, fname, last_was_ptr);
1341 }
1342 
1343 /* return number of duplicates (occurrences) of a given name */
1344 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1345 				 const char *orig_name)
1346 {
1347 	size_t dup_cnt = 0;
1348 
1349 	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1350 	dup_cnt++;
1351 	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1352 
1353 	return dup_cnt;
1354 }
1355 
1356 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1357 					 struct hashmap *name_map)
1358 {
1359 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1360 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1361 	const char *orig_name = btf_name_of(d, t->name_off);
1362 	const char **cached_name = &d->cached_names[id];
1363 	size_t dup_cnt;
1364 
1365 	if (t->name_off == 0)
1366 		return "";
1367 
1368 	if (s->name_resolved)
1369 		return *cached_name ? *cached_name : orig_name;
1370 
1371 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1372 	if (dup_cnt > 1) {
1373 		const size_t max_len = 256;
1374 		char new_name[max_len];
1375 
1376 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1377 		*cached_name = strdup(new_name);
1378 	}
1379 
1380 	s->name_resolved = 1;
1381 	return *cached_name ? *cached_name : orig_name;
1382 }
1383 
1384 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1385 {
1386 	return btf_dump_resolve_name(d, id, d->type_names);
1387 }
1388 
1389 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1390 {
1391 	return btf_dump_resolve_name(d, id, d->ident_names);
1392 }
1393