xref: /openbmc/linux/tools/lib/bpf/btf_dump.c (revision 5ebfa90bdd3d78f4967dc0095daf755989a999e0)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
14 #include <endian.h>
15 #include <errno.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <linux/kernel.h>
19 #include "btf.h"
20 #include "hashmap.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 
24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
26 
27 static const char *pfx(int lvl)
28 {
29 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
30 }
31 
32 enum btf_dump_type_order_state {
33 	NOT_ORDERED,
34 	ORDERING,
35 	ORDERED,
36 };
37 
38 enum btf_dump_type_emit_state {
39 	NOT_EMITTED,
40 	EMITTING,
41 	EMITTED,
42 };
43 
44 /* per-type auxiliary state */
45 struct btf_dump_type_aux_state {
46 	/* topological sorting state */
47 	enum btf_dump_type_order_state order_state: 2;
48 	/* emitting state used to determine the need for forward declaration */
49 	enum btf_dump_type_emit_state emit_state: 2;
50 	/* whether forward declaration was already emitted */
51 	__u8 fwd_emitted: 1;
52 	/* whether unique non-duplicate name was already assigned */
53 	__u8 name_resolved: 1;
54 	/* whether type is referenced from any other type */
55 	__u8 referenced: 1;
56 };
57 
58 /* indent string length; one indent string is added for each indent level */
59 #define BTF_DATA_INDENT_STR_LEN			32
60 
61 /*
62  * Common internal data for BTF type data dump operations.
63  */
64 struct btf_dump_data {
65 	const void *data_end;		/* end of valid data to show */
66 	bool compact;
67 	bool skip_names;
68 	bool emit_zeroes;
69 	__u8 indent_lvl;	/* base indent level */
70 	char indent_str[BTF_DATA_INDENT_STR_LEN];
71 	/* below are used during iteration */
72 	int depth;
73 	bool is_array_member;
74 	bool is_array_terminated;
75 	bool is_array_char;
76 };
77 
78 struct btf_dump {
79 	const struct btf *btf;
80 	btf_dump_printf_fn_t printf_fn;
81 	void *cb_ctx;
82 	int ptr_sz;
83 	bool strip_mods;
84 	bool skip_anon_defs;
85 	int last_id;
86 
87 	/* per-type auxiliary state */
88 	struct btf_dump_type_aux_state *type_states;
89 	size_t type_states_cap;
90 	/* per-type optional cached unique name, must be freed, if present */
91 	const char **cached_names;
92 	size_t cached_names_cap;
93 
94 	/* topo-sorted list of dependent type definitions */
95 	__u32 *emit_queue;
96 	int emit_queue_cap;
97 	int emit_queue_cnt;
98 
99 	/*
100 	 * stack of type declarations (e.g., chain of modifiers, arrays,
101 	 * funcs, etc)
102 	 */
103 	__u32 *decl_stack;
104 	int decl_stack_cap;
105 	int decl_stack_cnt;
106 
107 	/* maps struct/union/enum name to a number of name occurrences */
108 	struct hashmap *type_names;
109 	/*
110 	 * maps typedef identifiers and enum value names to a number of such
111 	 * name occurrences
112 	 */
113 	struct hashmap *ident_names;
114 	/*
115 	 * data for typed display; allocated if needed.
116 	 */
117 	struct btf_dump_data *typed_dump;
118 };
119 
120 static size_t str_hash_fn(long key, void *ctx)
121 {
122 	return str_hash((void *)key);
123 }
124 
125 static bool str_equal_fn(long a, long b, void *ctx)
126 {
127 	return strcmp((void *)a, (void *)b) == 0;
128 }
129 
130 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
131 {
132 	return btf__name_by_offset(d->btf, name_off);
133 }
134 
135 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
136 {
137 	va_list args;
138 
139 	va_start(args, fmt);
140 	d->printf_fn(d->cb_ctx, fmt, args);
141 	va_end(args);
142 }
143 
144 static int btf_dump_mark_referenced(struct btf_dump *d);
145 static int btf_dump_resize(struct btf_dump *d);
146 
147 struct btf_dump *btf_dump__new(const struct btf *btf,
148 			       btf_dump_printf_fn_t printf_fn,
149 			       void *ctx,
150 			       const struct btf_dump_opts *opts)
151 {
152 	struct btf_dump *d;
153 	int err;
154 
155 	if (!OPTS_VALID(opts, btf_dump_opts))
156 		return libbpf_err_ptr(-EINVAL);
157 
158 	if (!printf_fn)
159 		return libbpf_err_ptr(-EINVAL);
160 
161 	d = calloc(1, sizeof(struct btf_dump));
162 	if (!d)
163 		return libbpf_err_ptr(-ENOMEM);
164 
165 	d->btf = btf;
166 	d->printf_fn = printf_fn;
167 	d->cb_ctx = ctx;
168 	d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
169 
170 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
171 	if (IS_ERR(d->type_names)) {
172 		err = PTR_ERR(d->type_names);
173 		d->type_names = NULL;
174 		goto err;
175 	}
176 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
177 	if (IS_ERR(d->ident_names)) {
178 		err = PTR_ERR(d->ident_names);
179 		d->ident_names = NULL;
180 		goto err;
181 	}
182 
183 	err = btf_dump_resize(d);
184 	if (err)
185 		goto err;
186 
187 	return d;
188 err:
189 	btf_dump__free(d);
190 	return libbpf_err_ptr(err);
191 }
192 
193 static int btf_dump_resize(struct btf_dump *d)
194 {
195 	int err, last_id = btf__type_cnt(d->btf) - 1;
196 
197 	if (last_id <= d->last_id)
198 		return 0;
199 
200 	if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
201 			      sizeof(*d->type_states), last_id + 1))
202 		return -ENOMEM;
203 	if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
204 			      sizeof(*d->cached_names), last_id + 1))
205 		return -ENOMEM;
206 
207 	if (d->last_id == 0) {
208 		/* VOID is special */
209 		d->type_states[0].order_state = ORDERED;
210 		d->type_states[0].emit_state = EMITTED;
211 	}
212 
213 	/* eagerly determine referenced types for anon enums */
214 	err = btf_dump_mark_referenced(d);
215 	if (err)
216 		return err;
217 
218 	d->last_id = last_id;
219 	return 0;
220 }
221 
222 static void btf_dump_free_names(struct hashmap *map)
223 {
224 	size_t bkt;
225 	struct hashmap_entry *cur;
226 
227 	hashmap__for_each_entry(map, cur, bkt)
228 		free((void *)cur->pkey);
229 
230 	hashmap__free(map);
231 }
232 
233 void btf_dump__free(struct btf_dump *d)
234 {
235 	int i;
236 
237 	if (IS_ERR_OR_NULL(d))
238 		return;
239 
240 	free(d->type_states);
241 	if (d->cached_names) {
242 		/* any set cached name is owned by us and should be freed */
243 		for (i = 0; i <= d->last_id; i++) {
244 			if (d->cached_names[i])
245 				free((void *)d->cached_names[i]);
246 		}
247 	}
248 	free(d->cached_names);
249 	free(d->emit_queue);
250 	free(d->decl_stack);
251 	btf_dump_free_names(d->type_names);
252 	btf_dump_free_names(d->ident_names);
253 
254 	free(d);
255 }
256 
257 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
258 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
259 
260 /*
261  * Dump BTF type in a compilable C syntax, including all the necessary
262  * dependent types, necessary for compilation. If some of the dependent types
263  * were already emitted as part of previous btf_dump__dump_type() invocation
264  * for another type, they won't be emitted again. This API allows callers to
265  * filter out BTF types according to user-defined criterias and emitted only
266  * minimal subset of types, necessary to compile everything. Full struct/union
267  * definitions will still be emitted, even if the only usage is through
268  * pointer and could be satisfied with just a forward declaration.
269  *
270  * Dumping is done in two high-level passes:
271  *   1. Topologically sort type definitions to satisfy C rules of compilation.
272  *   2. Emit type definitions in C syntax.
273  *
274  * Returns 0 on success; <0, otherwise.
275  */
276 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
277 {
278 	int err, i;
279 
280 	if (id >= btf__type_cnt(d->btf))
281 		return libbpf_err(-EINVAL);
282 
283 	err = btf_dump_resize(d);
284 	if (err)
285 		return libbpf_err(err);
286 
287 	d->emit_queue_cnt = 0;
288 	err = btf_dump_order_type(d, id, false);
289 	if (err < 0)
290 		return libbpf_err(err);
291 
292 	for (i = 0; i < d->emit_queue_cnt; i++)
293 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
294 
295 	return 0;
296 }
297 
298 /*
299  * Mark all types that are referenced from any other type. This is used to
300  * determine top-level anonymous enums that need to be emitted as an
301  * independent type declarations.
302  * Anonymous enums come in two flavors: either embedded in a struct's field
303  * definition, in which case they have to be declared inline as part of field
304  * type declaration; or as a top-level anonymous enum, typically used for
305  * declaring global constants. It's impossible to distinguish between two
306  * without knowning whether given enum type was referenced from other type:
307  * top-level anonymous enum won't be referenced by anything, while embedded
308  * one will.
309  */
310 static int btf_dump_mark_referenced(struct btf_dump *d)
311 {
312 	int i, j, n = btf__type_cnt(d->btf);
313 	const struct btf_type *t;
314 	__u16 vlen;
315 
316 	for (i = d->last_id + 1; i < n; i++) {
317 		t = btf__type_by_id(d->btf, i);
318 		vlen = btf_vlen(t);
319 
320 		switch (btf_kind(t)) {
321 		case BTF_KIND_INT:
322 		case BTF_KIND_ENUM:
323 		case BTF_KIND_ENUM64:
324 		case BTF_KIND_FWD:
325 		case BTF_KIND_FLOAT:
326 			break;
327 
328 		case BTF_KIND_VOLATILE:
329 		case BTF_KIND_CONST:
330 		case BTF_KIND_RESTRICT:
331 		case BTF_KIND_PTR:
332 		case BTF_KIND_TYPEDEF:
333 		case BTF_KIND_FUNC:
334 		case BTF_KIND_VAR:
335 		case BTF_KIND_DECL_TAG:
336 		case BTF_KIND_TYPE_TAG:
337 			d->type_states[t->type].referenced = 1;
338 			break;
339 
340 		case BTF_KIND_ARRAY: {
341 			const struct btf_array *a = btf_array(t);
342 
343 			d->type_states[a->index_type].referenced = 1;
344 			d->type_states[a->type].referenced = 1;
345 			break;
346 		}
347 		case BTF_KIND_STRUCT:
348 		case BTF_KIND_UNION: {
349 			const struct btf_member *m = btf_members(t);
350 
351 			for (j = 0; j < vlen; j++, m++)
352 				d->type_states[m->type].referenced = 1;
353 			break;
354 		}
355 		case BTF_KIND_FUNC_PROTO: {
356 			const struct btf_param *p = btf_params(t);
357 
358 			for (j = 0; j < vlen; j++, p++)
359 				d->type_states[p->type].referenced = 1;
360 			break;
361 		}
362 		case BTF_KIND_DATASEC: {
363 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
364 
365 			for (j = 0; j < vlen; j++, v++)
366 				d->type_states[v->type].referenced = 1;
367 			break;
368 		}
369 		default:
370 			return -EINVAL;
371 		}
372 	}
373 	return 0;
374 }
375 
376 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
377 {
378 	__u32 *new_queue;
379 	size_t new_cap;
380 
381 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
382 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
383 		new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
384 		if (!new_queue)
385 			return -ENOMEM;
386 		d->emit_queue = new_queue;
387 		d->emit_queue_cap = new_cap;
388 	}
389 
390 	d->emit_queue[d->emit_queue_cnt++] = id;
391 	return 0;
392 }
393 
394 /*
395  * Determine order of emitting dependent types and specified type to satisfy
396  * C compilation rules.  This is done through topological sorting with an
397  * additional complication which comes from C rules. The main idea for C is
398  * that if some type is "embedded" into a struct/union, it's size needs to be
399  * known at the time of definition of containing type. E.g., for:
400  *
401  *	struct A {};
402  *	struct B { struct A x; }
403  *
404  * struct A *HAS* to be defined before struct B, because it's "embedded",
405  * i.e., it is part of struct B layout. But in the following case:
406  *
407  *	struct A;
408  *	struct B { struct A *x; }
409  *	struct A {};
410  *
411  * it's enough to just have a forward declaration of struct A at the time of
412  * struct B definition, as struct B has a pointer to struct A, so the size of
413  * field x is known without knowing struct A size: it's sizeof(void *).
414  *
415  * Unfortunately, there are some trickier cases we need to handle, e.g.:
416  *
417  *	struct A {}; // if this was forward-declaration: compilation error
418  *	struct B {
419  *		struct { // anonymous struct
420  *			struct A y;
421  *		} *x;
422  *	};
423  *
424  * In this case, struct B's field x is a pointer, so it's size is known
425  * regardless of the size of (anonymous) struct it points to. But because this
426  * struct is anonymous and thus defined inline inside struct B, *and* it
427  * embeds struct A, compiler requires full definition of struct A to be known
428  * before struct B can be defined. This creates a transitive dependency
429  * between struct A and struct B. If struct A was forward-declared before
430  * struct B definition and fully defined after struct B definition, that would
431  * trigger compilation error.
432  *
433  * All this means that while we are doing topological sorting on BTF type
434  * graph, we need to determine relationships between different types (graph
435  * nodes):
436  *   - weak link (relationship) between X and Y, if Y *CAN* be
437  *   forward-declared at the point of X definition;
438  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
439  *
440  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
441  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
442  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
443  * Weak/strong relationship is determined recursively during DFS traversal and
444  * is returned as a result from btf_dump_order_type().
445  *
446  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
447  * but it is not guaranteeing that no extraneous forward declarations will be
448  * emitted.
449  *
450  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
451  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
452  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
453  * entire graph path, so depending where from one came to that BTF type, it
454  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
455  * once they are processed, there is no need to do it again, so they are
456  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
457  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
458  * in any case, once those are processed, no need to do it again, as the
459  * result won't change.
460  *
461  * Returns:
462  *   - 1, if type is part of strong link (so there is strong topological
463  *   ordering requirements);
464  *   - 0, if type is part of weak link (so can be satisfied through forward
465  *   declaration);
466  *   - <0, on error (e.g., unsatisfiable type loop detected).
467  */
468 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
469 {
470 	/*
471 	 * Order state is used to detect strong link cycles, but only for BTF
472 	 * kinds that are or could be an independent definition (i.e.,
473 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
474 	 * func_protos, modifiers are just means to get to these definitions.
475 	 * Int/void don't need definitions, they are assumed to be always
476 	 * properly defined.  We also ignore datasec, var, and funcs for now.
477 	 * So for all non-defining kinds, we never even set ordering state,
478 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
479 	 * forms a strong link.
480 	 */
481 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
482 	const struct btf_type *t;
483 	__u16 vlen;
484 	int err, i;
485 
486 	/* return true, letting typedefs know that it's ok to be emitted */
487 	if (tstate->order_state == ORDERED)
488 		return 1;
489 
490 	t = btf__type_by_id(d->btf, id);
491 
492 	if (tstate->order_state == ORDERING) {
493 		/* type loop, but resolvable through fwd declaration */
494 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
495 			return 0;
496 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
497 		return -ELOOP;
498 	}
499 
500 	switch (btf_kind(t)) {
501 	case BTF_KIND_INT:
502 	case BTF_KIND_FLOAT:
503 		tstate->order_state = ORDERED;
504 		return 0;
505 
506 	case BTF_KIND_PTR:
507 		err = btf_dump_order_type(d, t->type, true);
508 		tstate->order_state = ORDERED;
509 		return err;
510 
511 	case BTF_KIND_ARRAY:
512 		return btf_dump_order_type(d, btf_array(t)->type, false);
513 
514 	case BTF_KIND_STRUCT:
515 	case BTF_KIND_UNION: {
516 		const struct btf_member *m = btf_members(t);
517 		/*
518 		 * struct/union is part of strong link, only if it's embedded
519 		 * (so no ptr in a path) or it's anonymous (so has to be
520 		 * defined inline, even if declared through ptr)
521 		 */
522 		if (through_ptr && t->name_off != 0)
523 			return 0;
524 
525 		tstate->order_state = ORDERING;
526 
527 		vlen = btf_vlen(t);
528 		for (i = 0; i < vlen; i++, m++) {
529 			err = btf_dump_order_type(d, m->type, false);
530 			if (err < 0)
531 				return err;
532 		}
533 
534 		if (t->name_off != 0) {
535 			err = btf_dump_add_emit_queue_id(d, id);
536 			if (err < 0)
537 				return err;
538 		}
539 
540 		tstate->order_state = ORDERED;
541 		return 1;
542 	}
543 	case BTF_KIND_ENUM:
544 	case BTF_KIND_ENUM64:
545 	case BTF_KIND_FWD:
546 		/*
547 		 * non-anonymous or non-referenced enums are top-level
548 		 * declarations and should be emitted. Same logic can be
549 		 * applied to FWDs, it won't hurt anyways.
550 		 */
551 		if (t->name_off != 0 || !tstate->referenced) {
552 			err = btf_dump_add_emit_queue_id(d, id);
553 			if (err)
554 				return err;
555 		}
556 		tstate->order_state = ORDERED;
557 		return 1;
558 
559 	case BTF_KIND_TYPEDEF: {
560 		int is_strong;
561 
562 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
563 		if (is_strong < 0)
564 			return is_strong;
565 
566 		/* typedef is similar to struct/union w.r.t. fwd-decls */
567 		if (through_ptr && !is_strong)
568 			return 0;
569 
570 		/* typedef is always a named definition */
571 		err = btf_dump_add_emit_queue_id(d, id);
572 		if (err)
573 			return err;
574 
575 		d->type_states[id].order_state = ORDERED;
576 		return 1;
577 	}
578 	case BTF_KIND_VOLATILE:
579 	case BTF_KIND_CONST:
580 	case BTF_KIND_RESTRICT:
581 	case BTF_KIND_TYPE_TAG:
582 		return btf_dump_order_type(d, t->type, through_ptr);
583 
584 	case BTF_KIND_FUNC_PROTO: {
585 		const struct btf_param *p = btf_params(t);
586 		bool is_strong;
587 
588 		err = btf_dump_order_type(d, t->type, through_ptr);
589 		if (err < 0)
590 			return err;
591 		is_strong = err > 0;
592 
593 		vlen = btf_vlen(t);
594 		for (i = 0; i < vlen; i++, p++) {
595 			err = btf_dump_order_type(d, p->type, through_ptr);
596 			if (err < 0)
597 				return err;
598 			if (err > 0)
599 				is_strong = true;
600 		}
601 		return is_strong;
602 	}
603 	case BTF_KIND_FUNC:
604 	case BTF_KIND_VAR:
605 	case BTF_KIND_DATASEC:
606 	case BTF_KIND_DECL_TAG:
607 		d->type_states[id].order_state = ORDERED;
608 		return 0;
609 
610 	default:
611 		return -EINVAL;
612 	}
613 }
614 
615 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
616 					  const struct btf_type *t);
617 
618 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
619 				     const struct btf_type *t);
620 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
621 				     const struct btf_type *t, int lvl);
622 
623 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
624 				   const struct btf_type *t);
625 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
626 				   const struct btf_type *t, int lvl);
627 
628 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
629 				  const struct btf_type *t);
630 
631 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
632 				      const struct btf_type *t, int lvl);
633 
634 /* a local view into a shared stack */
635 struct id_stack {
636 	const __u32 *ids;
637 	int cnt;
638 };
639 
640 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
641 				    const char *fname, int lvl);
642 static void btf_dump_emit_type_chain(struct btf_dump *d,
643 				     struct id_stack *decl_stack,
644 				     const char *fname, int lvl);
645 
646 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
647 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
648 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
649 				 const char *orig_name);
650 
651 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
652 {
653 	const struct btf_type *t = btf__type_by_id(d->btf, id);
654 
655 	/* __builtin_va_list is a compiler built-in, which causes compilation
656 	 * errors, when compiling w/ different compiler, then used to compile
657 	 * original code (e.g., GCC to compile kernel, Clang to use generated
658 	 * C header from BTF). As it is built-in, it should be already defined
659 	 * properly internally in compiler.
660 	 */
661 	if (t->name_off == 0)
662 		return false;
663 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
664 }
665 
666 /*
667  * Emit C-syntax definitions of types from chains of BTF types.
668  *
669  * High-level handling of determining necessary forward declarations are handled
670  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
671  * declarations/definitions in C syntax  are handled by a combo of
672  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
673  * corresponding btf_dump_emit_*_{def,fwd}() functions.
674  *
675  * We also keep track of "containing struct/union type ID" to determine when
676  * we reference it from inside and thus can avoid emitting unnecessary forward
677  * declaration.
678  *
679  * This algorithm is designed in such a way, that even if some error occurs
680  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
681  * that doesn't comply to C rules completely), algorithm will try to proceed
682  * and produce as much meaningful output as possible.
683  */
684 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
685 {
686 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
687 	bool top_level_def = cont_id == 0;
688 	const struct btf_type *t;
689 	__u16 kind;
690 
691 	if (tstate->emit_state == EMITTED)
692 		return;
693 
694 	t = btf__type_by_id(d->btf, id);
695 	kind = btf_kind(t);
696 
697 	if (tstate->emit_state == EMITTING) {
698 		if (tstate->fwd_emitted)
699 			return;
700 
701 		switch (kind) {
702 		case BTF_KIND_STRUCT:
703 		case BTF_KIND_UNION:
704 			/*
705 			 * if we are referencing a struct/union that we are
706 			 * part of - then no need for fwd declaration
707 			 */
708 			if (id == cont_id)
709 				return;
710 			if (t->name_off == 0) {
711 				pr_warn("anonymous struct/union loop, id:[%u]\n",
712 					id);
713 				return;
714 			}
715 			btf_dump_emit_struct_fwd(d, id, t);
716 			btf_dump_printf(d, ";\n\n");
717 			tstate->fwd_emitted = 1;
718 			break;
719 		case BTF_KIND_TYPEDEF:
720 			/*
721 			 * for typedef fwd_emitted means typedef definition
722 			 * was emitted, but it can be used only for "weak"
723 			 * references through pointer only, not for embedding
724 			 */
725 			if (!btf_dump_is_blacklisted(d, id)) {
726 				btf_dump_emit_typedef_def(d, id, t, 0);
727 				btf_dump_printf(d, ";\n\n");
728 			}
729 			tstate->fwd_emitted = 1;
730 			break;
731 		default:
732 			break;
733 		}
734 
735 		return;
736 	}
737 
738 	switch (kind) {
739 	case BTF_KIND_INT:
740 		/* Emit type alias definitions if necessary */
741 		btf_dump_emit_missing_aliases(d, id, t);
742 
743 		tstate->emit_state = EMITTED;
744 		break;
745 	case BTF_KIND_ENUM:
746 	case BTF_KIND_ENUM64:
747 		if (top_level_def) {
748 			btf_dump_emit_enum_def(d, id, t, 0);
749 			btf_dump_printf(d, ";\n\n");
750 		}
751 		tstate->emit_state = EMITTED;
752 		break;
753 	case BTF_KIND_PTR:
754 	case BTF_KIND_VOLATILE:
755 	case BTF_KIND_CONST:
756 	case BTF_KIND_RESTRICT:
757 	case BTF_KIND_TYPE_TAG:
758 		btf_dump_emit_type(d, t->type, cont_id);
759 		break;
760 	case BTF_KIND_ARRAY:
761 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
762 		break;
763 	case BTF_KIND_FWD:
764 		btf_dump_emit_fwd_def(d, id, t);
765 		btf_dump_printf(d, ";\n\n");
766 		tstate->emit_state = EMITTED;
767 		break;
768 	case BTF_KIND_TYPEDEF:
769 		tstate->emit_state = EMITTING;
770 		btf_dump_emit_type(d, t->type, id);
771 		/*
772 		 * typedef can server as both definition and forward
773 		 * declaration; at this stage someone depends on
774 		 * typedef as a forward declaration (refers to it
775 		 * through pointer), so unless we already did it,
776 		 * emit typedef as a forward declaration
777 		 */
778 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
779 			btf_dump_emit_typedef_def(d, id, t, 0);
780 			btf_dump_printf(d, ";\n\n");
781 		}
782 		tstate->emit_state = EMITTED;
783 		break;
784 	case BTF_KIND_STRUCT:
785 	case BTF_KIND_UNION:
786 		tstate->emit_state = EMITTING;
787 		/* if it's a top-level struct/union definition or struct/union
788 		 * is anonymous, then in C we'll be emitting all fields and
789 		 * their types (as opposed to just `struct X`), so we need to
790 		 * make sure that all types, referenced from struct/union
791 		 * members have necessary forward-declarations, where
792 		 * applicable
793 		 */
794 		if (top_level_def || t->name_off == 0) {
795 			const struct btf_member *m = btf_members(t);
796 			__u16 vlen = btf_vlen(t);
797 			int i, new_cont_id;
798 
799 			new_cont_id = t->name_off == 0 ? cont_id : id;
800 			for (i = 0; i < vlen; i++, m++)
801 				btf_dump_emit_type(d, m->type, new_cont_id);
802 		} else if (!tstate->fwd_emitted && id != cont_id) {
803 			btf_dump_emit_struct_fwd(d, id, t);
804 			btf_dump_printf(d, ";\n\n");
805 			tstate->fwd_emitted = 1;
806 		}
807 
808 		if (top_level_def) {
809 			btf_dump_emit_struct_def(d, id, t, 0);
810 			btf_dump_printf(d, ";\n\n");
811 			tstate->emit_state = EMITTED;
812 		} else {
813 			tstate->emit_state = NOT_EMITTED;
814 		}
815 		break;
816 	case BTF_KIND_FUNC_PROTO: {
817 		const struct btf_param *p = btf_params(t);
818 		__u16 n = btf_vlen(t);
819 		int i;
820 
821 		btf_dump_emit_type(d, t->type, cont_id);
822 		for (i = 0; i < n; i++, p++)
823 			btf_dump_emit_type(d, p->type, cont_id);
824 
825 		break;
826 	}
827 	default:
828 		break;
829 	}
830 }
831 
832 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
833 				 const struct btf_type *t)
834 {
835 	const struct btf_member *m;
836 	int align, i, bit_sz;
837 	__u16 vlen;
838 
839 	align = btf__align_of(btf, id);
840 	/* size of a non-packed struct has to be a multiple of its alignment*/
841 	if (align && t->size % align)
842 		return true;
843 
844 	m = btf_members(t);
845 	vlen = btf_vlen(t);
846 	/* all non-bitfield fields have to be naturally aligned */
847 	for (i = 0; i < vlen; i++, m++) {
848 		align = btf__align_of(btf, m->type);
849 		bit_sz = btf_member_bitfield_size(t, i);
850 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
851 			return true;
852 	}
853 
854 	/*
855 	 * if original struct was marked as packed, but its layout is
856 	 * naturally aligned, we'll detect that it's not packed
857 	 */
858 	return false;
859 }
860 
861 static int chip_away_bits(int total, int at_most)
862 {
863 	return total % at_most ? : at_most;
864 }
865 
866 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
867 				      int cur_off, int m_off, int m_bit_sz,
868 				      int align, int lvl)
869 {
870 	int off_diff = m_off - cur_off;
871 	int ptr_bits = d->ptr_sz * 8;
872 
873 	if (off_diff <= 0)
874 		/* no gap */
875 		return;
876 	if (m_bit_sz == 0 && off_diff < align * 8)
877 		/* natural padding will take care of a gap */
878 		return;
879 
880 	while (off_diff > 0) {
881 		const char *pad_type;
882 		int pad_bits;
883 
884 		if (ptr_bits > 32 && off_diff > 32) {
885 			pad_type = "long";
886 			pad_bits = chip_away_bits(off_diff, ptr_bits);
887 		} else if (off_diff > 16) {
888 			pad_type = "int";
889 			pad_bits = chip_away_bits(off_diff, 32);
890 		} else if (off_diff > 8) {
891 			pad_type = "short";
892 			pad_bits = chip_away_bits(off_diff, 16);
893 		} else {
894 			pad_type = "char";
895 			pad_bits = chip_away_bits(off_diff, 8);
896 		}
897 		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
898 		off_diff -= pad_bits;
899 	}
900 }
901 
902 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
903 				     const struct btf_type *t)
904 {
905 	btf_dump_printf(d, "%s%s%s",
906 			btf_is_struct(t) ? "struct" : "union",
907 			t->name_off ? " " : "",
908 			btf_dump_type_name(d, id));
909 }
910 
911 static void btf_dump_emit_struct_def(struct btf_dump *d,
912 				     __u32 id,
913 				     const struct btf_type *t,
914 				     int lvl)
915 {
916 	const struct btf_member *m = btf_members(t);
917 	bool is_struct = btf_is_struct(t);
918 	int align, i, packed, off = 0;
919 	__u16 vlen = btf_vlen(t);
920 
921 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
922 
923 	btf_dump_printf(d, "%s%s%s {",
924 			is_struct ? "struct" : "union",
925 			t->name_off ? " " : "",
926 			btf_dump_type_name(d, id));
927 
928 	for (i = 0; i < vlen; i++, m++) {
929 		const char *fname;
930 		int m_off, m_sz;
931 
932 		fname = btf_name_of(d, m->name_off);
933 		m_sz = btf_member_bitfield_size(t, i);
934 		m_off = btf_member_bit_offset(t, i);
935 		align = packed ? 1 : btf__align_of(d->btf, m->type);
936 
937 		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
938 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
939 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
940 
941 		if (m_sz) {
942 			btf_dump_printf(d, ": %d", m_sz);
943 			off = m_off + m_sz;
944 		} else {
945 			m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
946 			off = m_off + m_sz * 8;
947 		}
948 		btf_dump_printf(d, ";");
949 	}
950 
951 	/* pad at the end, if necessary */
952 	if (is_struct) {
953 		align = packed ? 1 : btf__align_of(d->btf, id);
954 		btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
955 					  lvl + 1);
956 	}
957 
958 	/*
959 	 * Keep `struct empty {}` on a single line,
960 	 * only print newline when there are regular or padding fields.
961 	 */
962 	if (vlen || t->size)
963 		btf_dump_printf(d, "\n");
964 	btf_dump_printf(d, "%s}", pfx(lvl));
965 	if (packed)
966 		btf_dump_printf(d, " __attribute__((packed))");
967 }
968 
969 static const char *missing_base_types[][2] = {
970 	/*
971 	 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
972 	 * SIMD intrinsics. Alias them to standard base types.
973 	 */
974 	{ "__Poly8_t",		"unsigned char" },
975 	{ "__Poly16_t",		"unsigned short" },
976 	{ "__Poly64_t",		"unsigned long long" },
977 	{ "__Poly128_t",	"unsigned __int128" },
978 };
979 
980 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
981 					  const struct btf_type *t)
982 {
983 	const char *name = btf_dump_type_name(d, id);
984 	int i;
985 
986 	for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
987 		if (strcmp(name, missing_base_types[i][0]) == 0) {
988 			btf_dump_printf(d, "typedef %s %s;\n\n",
989 					missing_base_types[i][1], name);
990 			break;
991 		}
992 	}
993 }
994 
995 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
996 				   const struct btf_type *t)
997 {
998 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
999 }
1000 
1001 static void btf_dump_emit_enum32_val(struct btf_dump *d,
1002 				     const struct btf_type *t,
1003 				     int lvl, __u16 vlen)
1004 {
1005 	const struct btf_enum *v = btf_enum(t);
1006 	bool is_signed = btf_kflag(t);
1007 	const char *fmt_str;
1008 	const char *name;
1009 	size_t dup_cnt;
1010 	int i;
1011 
1012 	for (i = 0; i < vlen; i++, v++) {
1013 		name = btf_name_of(d, v->name_off);
1014 		/* enumerators share namespace with typedef idents */
1015 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1016 		if (dup_cnt > 1) {
1017 			fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,";
1018 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val);
1019 		} else {
1020 			fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,";
1021 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val);
1022 		}
1023 	}
1024 }
1025 
1026 static void btf_dump_emit_enum64_val(struct btf_dump *d,
1027 				     const struct btf_type *t,
1028 				     int lvl, __u16 vlen)
1029 {
1030 	const struct btf_enum64 *v = btf_enum64(t);
1031 	bool is_signed = btf_kflag(t);
1032 	const char *fmt_str;
1033 	const char *name;
1034 	size_t dup_cnt;
1035 	__u64 val;
1036 	int i;
1037 
1038 	for (i = 0; i < vlen; i++, v++) {
1039 		name = btf_name_of(d, v->name_off);
1040 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1041 		val = btf_enum64_value(v);
1042 		if (dup_cnt > 1) {
1043 			fmt_str = is_signed ? "\n%s%s___%zd = %lldLL,"
1044 					    : "\n%s%s___%zd = %lluULL,";
1045 			btf_dump_printf(d, fmt_str,
1046 					pfx(lvl + 1), name, dup_cnt,
1047 					(unsigned long long)val);
1048 		} else {
1049 			fmt_str = is_signed ? "\n%s%s = %lldLL,"
1050 					    : "\n%s%s = %lluULL,";
1051 			btf_dump_printf(d, fmt_str,
1052 					pfx(lvl + 1), name,
1053 					(unsigned long long)val);
1054 		}
1055 	}
1056 }
1057 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
1058 				   const struct btf_type *t,
1059 				   int lvl)
1060 {
1061 	__u16 vlen = btf_vlen(t);
1062 
1063 	btf_dump_printf(d, "enum%s%s",
1064 			t->name_off ? " " : "",
1065 			btf_dump_type_name(d, id));
1066 
1067 	if (!vlen)
1068 		return;
1069 
1070 	btf_dump_printf(d, " {");
1071 	if (btf_is_enum(t))
1072 		btf_dump_emit_enum32_val(d, t, lvl, vlen);
1073 	else
1074 		btf_dump_emit_enum64_val(d, t, lvl, vlen);
1075 	btf_dump_printf(d, "\n%s}", pfx(lvl));
1076 }
1077 
1078 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1079 				  const struct btf_type *t)
1080 {
1081 	const char *name = btf_dump_type_name(d, id);
1082 
1083 	if (btf_kflag(t))
1084 		btf_dump_printf(d, "union %s", name);
1085 	else
1086 		btf_dump_printf(d, "struct %s", name);
1087 }
1088 
1089 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1090 				     const struct btf_type *t, int lvl)
1091 {
1092 	const char *name = btf_dump_ident_name(d, id);
1093 
1094 	/*
1095 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
1096 	 * pointing to VOID. This generates warnings from btf_dump() and
1097 	 * results in uncompilable header file, so we are fixing it up here
1098 	 * with valid typedef into __builtin_va_list.
1099 	 */
1100 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1101 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1102 		return;
1103 	}
1104 
1105 	btf_dump_printf(d, "typedef ");
1106 	btf_dump_emit_type_decl(d, t->type, name, lvl);
1107 }
1108 
1109 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1110 {
1111 	__u32 *new_stack;
1112 	size_t new_cap;
1113 
1114 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
1115 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
1116 		new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1117 		if (!new_stack)
1118 			return -ENOMEM;
1119 		d->decl_stack = new_stack;
1120 		d->decl_stack_cap = new_cap;
1121 	}
1122 
1123 	d->decl_stack[d->decl_stack_cnt++] = id;
1124 
1125 	return 0;
1126 }
1127 
1128 /*
1129  * Emit type declaration (e.g., field type declaration in a struct or argument
1130  * declaration in function prototype) in correct C syntax.
1131  *
1132  * For most types it's trivial, but there are few quirky type declaration
1133  * cases worth mentioning:
1134  *   - function prototypes (especially nesting of function prototypes);
1135  *   - arrays;
1136  *   - const/volatile/restrict for pointers vs other types.
1137  *
1138  * For a good discussion of *PARSING* C syntax (as a human), see
1139  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1140  * Ch.3 "Unscrambling Declarations in C".
1141  *
1142  * It won't help with BTF to C conversion much, though, as it's an opposite
1143  * problem. So we came up with this algorithm in reverse to van der Linden's
1144  * parsing algorithm. It goes from structured BTF representation of type
1145  * declaration to a valid compilable C syntax.
1146  *
1147  * For instance, consider this C typedef:
1148  *	typedef const int * const * arr[10] arr_t;
1149  * It will be represented in BTF with this chain of BTF types:
1150  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1151  *
1152  * Notice how [const] modifier always goes before type it modifies in BTF type
1153  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1154  * the right of pointers, but to the left of other types. There are also other
1155  * quirks, like function pointers, arrays of them, functions returning other
1156  * functions, etc.
1157  *
1158  * We handle that by pushing all the types to a stack, until we hit "terminal"
1159  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1160  * top of a stack, modifiers are handled differently. Array/function pointers
1161  * have also wildly different syntax and how nesting of them are done. See
1162  * code for authoritative definition.
1163  *
1164  * To avoid allocating new stack for each independent chain of BTF types, we
1165  * share one bigger stack, with each chain working only on its own local view
1166  * of a stack frame. Some care is required to "pop" stack frames after
1167  * processing type declaration chain.
1168  */
1169 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1170 			     const struct btf_dump_emit_type_decl_opts *opts)
1171 {
1172 	const char *fname;
1173 	int lvl, err;
1174 
1175 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1176 		return libbpf_err(-EINVAL);
1177 
1178 	err = btf_dump_resize(d);
1179 	if (err)
1180 		return libbpf_err(err);
1181 
1182 	fname = OPTS_GET(opts, field_name, "");
1183 	lvl = OPTS_GET(opts, indent_level, 0);
1184 	d->strip_mods = OPTS_GET(opts, strip_mods, false);
1185 	btf_dump_emit_type_decl(d, id, fname, lvl);
1186 	d->strip_mods = false;
1187 	return 0;
1188 }
1189 
1190 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1191 				    const char *fname, int lvl)
1192 {
1193 	struct id_stack decl_stack;
1194 	const struct btf_type *t;
1195 	int err, stack_start;
1196 
1197 	stack_start = d->decl_stack_cnt;
1198 	for (;;) {
1199 		t = btf__type_by_id(d->btf, id);
1200 		if (d->strip_mods && btf_is_mod(t))
1201 			goto skip_mod;
1202 
1203 		err = btf_dump_push_decl_stack_id(d, id);
1204 		if (err < 0) {
1205 			/*
1206 			 * if we don't have enough memory for entire type decl
1207 			 * chain, restore stack, emit warning, and try to
1208 			 * proceed nevertheless
1209 			 */
1210 			pr_warn("not enough memory for decl stack:%d", err);
1211 			d->decl_stack_cnt = stack_start;
1212 			return;
1213 		}
1214 skip_mod:
1215 		/* VOID */
1216 		if (id == 0)
1217 			break;
1218 
1219 		switch (btf_kind(t)) {
1220 		case BTF_KIND_PTR:
1221 		case BTF_KIND_VOLATILE:
1222 		case BTF_KIND_CONST:
1223 		case BTF_KIND_RESTRICT:
1224 		case BTF_KIND_FUNC_PROTO:
1225 		case BTF_KIND_TYPE_TAG:
1226 			id = t->type;
1227 			break;
1228 		case BTF_KIND_ARRAY:
1229 			id = btf_array(t)->type;
1230 			break;
1231 		case BTF_KIND_INT:
1232 		case BTF_KIND_ENUM:
1233 		case BTF_KIND_ENUM64:
1234 		case BTF_KIND_FWD:
1235 		case BTF_KIND_STRUCT:
1236 		case BTF_KIND_UNION:
1237 		case BTF_KIND_TYPEDEF:
1238 		case BTF_KIND_FLOAT:
1239 			goto done;
1240 		default:
1241 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1242 				btf_kind(t), id);
1243 			goto done;
1244 		}
1245 	}
1246 done:
1247 	/*
1248 	 * We might be inside a chain of declarations (e.g., array of function
1249 	 * pointers returning anonymous (so inlined) structs, having another
1250 	 * array field). Each of those needs its own "stack frame" to handle
1251 	 * emitting of declarations. Those stack frames are non-overlapping
1252 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1253 	 * handle this set of nested stacks, we create a view corresponding to
1254 	 * our own "stack frame" and work with it as an independent stack.
1255 	 * We'll need to clean up after emit_type_chain() returns, though.
1256 	 */
1257 	decl_stack.ids = d->decl_stack + stack_start;
1258 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1259 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1260 	/*
1261 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1262 	 * frame before returning. But it works with a read-only view into
1263 	 * decl_stack, so it doesn't actually pop anything from the
1264 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1265 	 * reset decl_stack state to how it was before us to avoid it growing
1266 	 * all the time.
1267 	 */
1268 	d->decl_stack_cnt = stack_start;
1269 }
1270 
1271 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1272 {
1273 	const struct btf_type *t;
1274 	__u32 id;
1275 
1276 	while (decl_stack->cnt) {
1277 		id = decl_stack->ids[decl_stack->cnt - 1];
1278 		t = btf__type_by_id(d->btf, id);
1279 
1280 		switch (btf_kind(t)) {
1281 		case BTF_KIND_VOLATILE:
1282 			btf_dump_printf(d, "volatile ");
1283 			break;
1284 		case BTF_KIND_CONST:
1285 			btf_dump_printf(d, "const ");
1286 			break;
1287 		case BTF_KIND_RESTRICT:
1288 			btf_dump_printf(d, "restrict ");
1289 			break;
1290 		default:
1291 			return;
1292 		}
1293 		decl_stack->cnt--;
1294 	}
1295 }
1296 
1297 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1298 {
1299 	const struct btf_type *t;
1300 	__u32 id;
1301 
1302 	while (decl_stack->cnt) {
1303 		id = decl_stack->ids[decl_stack->cnt - 1];
1304 		t = btf__type_by_id(d->btf, id);
1305 		if (!btf_is_mod(t))
1306 			return;
1307 		decl_stack->cnt--;
1308 	}
1309 }
1310 
1311 static void btf_dump_emit_name(const struct btf_dump *d,
1312 			       const char *name, bool last_was_ptr)
1313 {
1314 	bool separate = name[0] && !last_was_ptr;
1315 
1316 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1317 }
1318 
1319 static void btf_dump_emit_type_chain(struct btf_dump *d,
1320 				     struct id_stack *decls,
1321 				     const char *fname, int lvl)
1322 {
1323 	/*
1324 	 * last_was_ptr is used to determine if we need to separate pointer
1325 	 * asterisk (*) from previous part of type signature with space, so
1326 	 * that we get `int ***`, instead of `int * * *`. We default to true
1327 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1328 	 * func_proto case. func_proto will start a new emit_type_chain call
1329 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1330 	 * don't want to prepend space for that last pointer.
1331 	 */
1332 	bool last_was_ptr = true;
1333 	const struct btf_type *t;
1334 	const char *name;
1335 	__u16 kind;
1336 	__u32 id;
1337 
1338 	while (decls->cnt) {
1339 		id = decls->ids[--decls->cnt];
1340 		if (id == 0) {
1341 			/* VOID is a special snowflake */
1342 			btf_dump_emit_mods(d, decls);
1343 			btf_dump_printf(d, "void");
1344 			last_was_ptr = false;
1345 			continue;
1346 		}
1347 
1348 		t = btf__type_by_id(d->btf, id);
1349 		kind = btf_kind(t);
1350 
1351 		switch (kind) {
1352 		case BTF_KIND_INT:
1353 		case BTF_KIND_FLOAT:
1354 			btf_dump_emit_mods(d, decls);
1355 			name = btf_name_of(d, t->name_off);
1356 			btf_dump_printf(d, "%s", name);
1357 			break;
1358 		case BTF_KIND_STRUCT:
1359 		case BTF_KIND_UNION:
1360 			btf_dump_emit_mods(d, decls);
1361 			/* inline anonymous struct/union */
1362 			if (t->name_off == 0 && !d->skip_anon_defs)
1363 				btf_dump_emit_struct_def(d, id, t, lvl);
1364 			else
1365 				btf_dump_emit_struct_fwd(d, id, t);
1366 			break;
1367 		case BTF_KIND_ENUM:
1368 		case BTF_KIND_ENUM64:
1369 			btf_dump_emit_mods(d, decls);
1370 			/* inline anonymous enum */
1371 			if (t->name_off == 0 && !d->skip_anon_defs)
1372 				btf_dump_emit_enum_def(d, id, t, lvl);
1373 			else
1374 				btf_dump_emit_enum_fwd(d, id, t);
1375 			break;
1376 		case BTF_KIND_FWD:
1377 			btf_dump_emit_mods(d, decls);
1378 			btf_dump_emit_fwd_def(d, id, t);
1379 			break;
1380 		case BTF_KIND_TYPEDEF:
1381 			btf_dump_emit_mods(d, decls);
1382 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1383 			break;
1384 		case BTF_KIND_PTR:
1385 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1386 			break;
1387 		case BTF_KIND_VOLATILE:
1388 			btf_dump_printf(d, " volatile");
1389 			break;
1390 		case BTF_KIND_CONST:
1391 			btf_dump_printf(d, " const");
1392 			break;
1393 		case BTF_KIND_RESTRICT:
1394 			btf_dump_printf(d, " restrict");
1395 			break;
1396 		case BTF_KIND_TYPE_TAG:
1397 			btf_dump_emit_mods(d, decls);
1398 			name = btf_name_of(d, t->name_off);
1399 			btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
1400 			break;
1401 		case BTF_KIND_ARRAY: {
1402 			const struct btf_array *a = btf_array(t);
1403 			const struct btf_type *next_t;
1404 			__u32 next_id;
1405 			bool multidim;
1406 			/*
1407 			 * GCC has a bug
1408 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1409 			 * which causes it to emit extra const/volatile
1410 			 * modifiers for an array, if array's element type has
1411 			 * const/volatile modifiers. Clang doesn't do that.
1412 			 * In general, it doesn't seem very meaningful to have
1413 			 * a const/volatile modifier for array, so we are
1414 			 * going to silently skip them here.
1415 			 */
1416 			btf_dump_drop_mods(d, decls);
1417 
1418 			if (decls->cnt == 0) {
1419 				btf_dump_emit_name(d, fname, last_was_ptr);
1420 				btf_dump_printf(d, "[%u]", a->nelems);
1421 				return;
1422 			}
1423 
1424 			next_id = decls->ids[decls->cnt - 1];
1425 			next_t = btf__type_by_id(d->btf, next_id);
1426 			multidim = btf_is_array(next_t);
1427 			/* we need space if we have named non-pointer */
1428 			if (fname[0] && !last_was_ptr)
1429 				btf_dump_printf(d, " ");
1430 			/* no parentheses for multi-dimensional array */
1431 			if (!multidim)
1432 				btf_dump_printf(d, "(");
1433 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1434 			if (!multidim)
1435 				btf_dump_printf(d, ")");
1436 			btf_dump_printf(d, "[%u]", a->nelems);
1437 			return;
1438 		}
1439 		case BTF_KIND_FUNC_PROTO: {
1440 			const struct btf_param *p = btf_params(t);
1441 			__u16 vlen = btf_vlen(t);
1442 			int i;
1443 
1444 			/*
1445 			 * GCC emits extra volatile qualifier for
1446 			 * __attribute__((noreturn)) function pointers. Clang
1447 			 * doesn't do it. It's a GCC quirk for backwards
1448 			 * compatibility with code written for GCC <2.5. So,
1449 			 * similarly to extra qualifiers for array, just drop
1450 			 * them, instead of handling them.
1451 			 */
1452 			btf_dump_drop_mods(d, decls);
1453 			if (decls->cnt) {
1454 				btf_dump_printf(d, " (");
1455 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1456 				btf_dump_printf(d, ")");
1457 			} else {
1458 				btf_dump_emit_name(d, fname, last_was_ptr);
1459 			}
1460 			btf_dump_printf(d, "(");
1461 			/*
1462 			 * Clang for BPF target generates func_proto with no
1463 			 * args as a func_proto with a single void arg (e.g.,
1464 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1465 			 * going to pretend there are no args for such case.
1466 			 */
1467 			if (vlen == 1 && p->type == 0) {
1468 				btf_dump_printf(d, ")");
1469 				return;
1470 			}
1471 
1472 			for (i = 0; i < vlen; i++, p++) {
1473 				if (i > 0)
1474 					btf_dump_printf(d, ", ");
1475 
1476 				/* last arg of type void is vararg */
1477 				if (i == vlen - 1 && p->type == 0) {
1478 					btf_dump_printf(d, "...");
1479 					break;
1480 				}
1481 
1482 				name = btf_name_of(d, p->name_off);
1483 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1484 			}
1485 
1486 			btf_dump_printf(d, ")");
1487 			return;
1488 		}
1489 		default:
1490 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1491 				kind, id);
1492 			return;
1493 		}
1494 
1495 		last_was_ptr = kind == BTF_KIND_PTR;
1496 	}
1497 
1498 	btf_dump_emit_name(d, fname, last_was_ptr);
1499 }
1500 
1501 /* show type name as (type_name) */
1502 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1503 				    bool top_level)
1504 {
1505 	const struct btf_type *t;
1506 
1507 	/* for array members, we don't bother emitting type name for each
1508 	 * member to avoid the redundancy of
1509 	 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1510 	 */
1511 	if (d->typed_dump->is_array_member)
1512 		return;
1513 
1514 	/* avoid type name specification for variable/section; it will be done
1515 	 * for the associated variable value(s).
1516 	 */
1517 	t = btf__type_by_id(d->btf, id);
1518 	if (btf_is_var(t) || btf_is_datasec(t))
1519 		return;
1520 
1521 	if (top_level)
1522 		btf_dump_printf(d, "(");
1523 
1524 	d->skip_anon_defs = true;
1525 	d->strip_mods = true;
1526 	btf_dump_emit_type_decl(d, id, "", 0);
1527 	d->strip_mods = false;
1528 	d->skip_anon_defs = false;
1529 
1530 	if (top_level)
1531 		btf_dump_printf(d, ")");
1532 }
1533 
1534 /* return number of duplicates (occurrences) of a given name */
1535 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1536 				 const char *orig_name)
1537 {
1538 	char *old_name, *new_name;
1539 	size_t dup_cnt = 0;
1540 	int err;
1541 
1542 	new_name = strdup(orig_name);
1543 	if (!new_name)
1544 		return 1;
1545 
1546 	(void)hashmap__find(name_map, orig_name, &dup_cnt);
1547 	dup_cnt++;
1548 
1549 	err = hashmap__set(name_map, new_name, dup_cnt, &old_name, NULL);
1550 	if (err)
1551 		free(new_name);
1552 
1553 	free(old_name);
1554 
1555 	return dup_cnt;
1556 }
1557 
1558 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1559 					 struct hashmap *name_map)
1560 {
1561 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1562 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1563 	const char *orig_name = btf_name_of(d, t->name_off);
1564 	const char **cached_name = &d->cached_names[id];
1565 	size_t dup_cnt;
1566 
1567 	if (t->name_off == 0)
1568 		return "";
1569 
1570 	if (s->name_resolved)
1571 		return *cached_name ? *cached_name : orig_name;
1572 
1573 	if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
1574 		s->name_resolved = 1;
1575 		return orig_name;
1576 	}
1577 
1578 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1579 	if (dup_cnt > 1) {
1580 		const size_t max_len = 256;
1581 		char new_name[max_len];
1582 
1583 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1584 		*cached_name = strdup(new_name);
1585 	}
1586 
1587 	s->name_resolved = 1;
1588 	return *cached_name ? *cached_name : orig_name;
1589 }
1590 
1591 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1592 {
1593 	return btf_dump_resolve_name(d, id, d->type_names);
1594 }
1595 
1596 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1597 {
1598 	return btf_dump_resolve_name(d, id, d->ident_names);
1599 }
1600 
1601 static int btf_dump_dump_type_data(struct btf_dump *d,
1602 				   const char *fname,
1603 				   const struct btf_type *t,
1604 				   __u32 id,
1605 				   const void *data,
1606 				   __u8 bits_offset,
1607 				   __u8 bit_sz);
1608 
1609 static const char *btf_dump_data_newline(struct btf_dump *d)
1610 {
1611 	return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1612 }
1613 
1614 static const char *btf_dump_data_delim(struct btf_dump *d)
1615 {
1616 	return d->typed_dump->depth == 0 ? "" : ",";
1617 }
1618 
1619 static void btf_dump_data_pfx(struct btf_dump *d)
1620 {
1621 	int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1622 
1623 	if (d->typed_dump->compact)
1624 		return;
1625 
1626 	for (i = 0; i < lvl; i++)
1627 		btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1628 }
1629 
1630 /* A macro is used here as btf_type_value[s]() appends format specifiers
1631  * to the format specifier passed in; these do the work of appending
1632  * delimiters etc while the caller simply has to specify the type values
1633  * in the format specifier + value(s).
1634  */
1635 #define btf_dump_type_values(d, fmt, ...)				\
1636 	btf_dump_printf(d, fmt "%s%s",					\
1637 			##__VA_ARGS__,					\
1638 			btf_dump_data_delim(d),				\
1639 			btf_dump_data_newline(d))
1640 
1641 static int btf_dump_unsupported_data(struct btf_dump *d,
1642 				     const struct btf_type *t,
1643 				     __u32 id)
1644 {
1645 	btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1646 	return -ENOTSUP;
1647 }
1648 
1649 static int btf_dump_get_bitfield_value(struct btf_dump *d,
1650 				       const struct btf_type *t,
1651 				       const void *data,
1652 				       __u8 bits_offset,
1653 				       __u8 bit_sz,
1654 				       __u64 *value)
1655 {
1656 	__u16 left_shift_bits, right_shift_bits;
1657 	const __u8 *bytes = data;
1658 	__u8 nr_copy_bits;
1659 	__u64 num = 0;
1660 	int i;
1661 
1662 	/* Maximum supported bitfield size is 64 bits */
1663 	if (t->size > 8) {
1664 		pr_warn("unexpected bitfield size %d\n", t->size);
1665 		return -EINVAL;
1666 	}
1667 
1668 	/* Bitfield value retrieval is done in two steps; first relevant bytes are
1669 	 * stored in num, then we left/right shift num to eliminate irrelevant bits.
1670 	 */
1671 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1672 	for (i = t->size - 1; i >= 0; i--)
1673 		num = num * 256 + bytes[i];
1674 	nr_copy_bits = bit_sz + bits_offset;
1675 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1676 	for (i = 0; i < t->size; i++)
1677 		num = num * 256 + bytes[i];
1678 	nr_copy_bits = t->size * 8 - bits_offset;
1679 #else
1680 # error "Unrecognized __BYTE_ORDER__"
1681 #endif
1682 	left_shift_bits = 64 - nr_copy_bits;
1683 	right_shift_bits = 64 - bit_sz;
1684 
1685 	*value = (num << left_shift_bits) >> right_shift_bits;
1686 
1687 	return 0;
1688 }
1689 
1690 static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1691 					const struct btf_type *t,
1692 					const void *data,
1693 					__u8 bits_offset,
1694 					__u8 bit_sz)
1695 {
1696 	__u64 check_num;
1697 	int err;
1698 
1699 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1700 	if (err)
1701 		return err;
1702 	if (check_num == 0)
1703 		return -ENODATA;
1704 	return 0;
1705 }
1706 
1707 static int btf_dump_bitfield_data(struct btf_dump *d,
1708 				  const struct btf_type *t,
1709 				  const void *data,
1710 				  __u8 bits_offset,
1711 				  __u8 bit_sz)
1712 {
1713 	__u64 print_num;
1714 	int err;
1715 
1716 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1717 	if (err)
1718 		return err;
1719 
1720 	btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1721 
1722 	return 0;
1723 }
1724 
1725 /* ints, floats and ptrs */
1726 static int btf_dump_base_type_check_zero(struct btf_dump *d,
1727 					 const struct btf_type *t,
1728 					 __u32 id,
1729 					 const void *data)
1730 {
1731 	static __u8 bytecmp[16] = {};
1732 	int nr_bytes;
1733 
1734 	/* For pointer types, pointer size is not defined on a per-type basis.
1735 	 * On dump creation however, we store the pointer size.
1736 	 */
1737 	if (btf_kind(t) == BTF_KIND_PTR)
1738 		nr_bytes = d->ptr_sz;
1739 	else
1740 		nr_bytes = t->size;
1741 
1742 	if (nr_bytes < 1 || nr_bytes > 16) {
1743 		pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1744 		return -EINVAL;
1745 	}
1746 
1747 	if (memcmp(data, bytecmp, nr_bytes) == 0)
1748 		return -ENODATA;
1749 	return 0;
1750 }
1751 
1752 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
1753 			   const void *data)
1754 {
1755 	int alignment = btf__align_of(btf, type_id);
1756 
1757 	if (alignment == 0)
1758 		return false;
1759 
1760 	return ((uintptr_t)data) % alignment == 0;
1761 }
1762 
1763 static int btf_dump_int_data(struct btf_dump *d,
1764 			     const struct btf_type *t,
1765 			     __u32 type_id,
1766 			     const void *data,
1767 			     __u8 bits_offset)
1768 {
1769 	__u8 encoding = btf_int_encoding(t);
1770 	bool sign = encoding & BTF_INT_SIGNED;
1771 	char buf[16] __attribute__((aligned(16)));
1772 	int sz = t->size;
1773 
1774 	if (sz == 0 || sz > sizeof(buf)) {
1775 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1776 		return -EINVAL;
1777 	}
1778 
1779 	/* handle packed int data - accesses of integers not aligned on
1780 	 * int boundaries can cause problems on some platforms.
1781 	 */
1782 	if (!ptr_is_aligned(d->btf, type_id, data)) {
1783 		memcpy(buf, data, sz);
1784 		data = buf;
1785 	}
1786 
1787 	switch (sz) {
1788 	case 16: {
1789 		const __u64 *ints = data;
1790 		__u64 lsi, msi;
1791 
1792 		/* avoid use of __int128 as some 32-bit platforms do not
1793 		 * support it.
1794 		 */
1795 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1796 		lsi = ints[0];
1797 		msi = ints[1];
1798 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1799 		lsi = ints[1];
1800 		msi = ints[0];
1801 #else
1802 # error "Unrecognized __BYTE_ORDER__"
1803 #endif
1804 		if (msi == 0)
1805 			btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1806 		else
1807 			btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1808 					     (unsigned long long)lsi);
1809 		break;
1810 	}
1811 	case 8:
1812 		if (sign)
1813 			btf_dump_type_values(d, "%lld", *(long long *)data);
1814 		else
1815 			btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1816 		break;
1817 	case 4:
1818 		if (sign)
1819 			btf_dump_type_values(d, "%d", *(__s32 *)data);
1820 		else
1821 			btf_dump_type_values(d, "%u", *(__u32 *)data);
1822 		break;
1823 	case 2:
1824 		if (sign)
1825 			btf_dump_type_values(d, "%d", *(__s16 *)data);
1826 		else
1827 			btf_dump_type_values(d, "%u", *(__u16 *)data);
1828 		break;
1829 	case 1:
1830 		if (d->typed_dump->is_array_char) {
1831 			/* check for null terminator */
1832 			if (d->typed_dump->is_array_terminated)
1833 				break;
1834 			if (*(char *)data == '\0') {
1835 				d->typed_dump->is_array_terminated = true;
1836 				break;
1837 			}
1838 			if (isprint(*(char *)data)) {
1839 				btf_dump_type_values(d, "'%c'", *(char *)data);
1840 				break;
1841 			}
1842 		}
1843 		if (sign)
1844 			btf_dump_type_values(d, "%d", *(__s8 *)data);
1845 		else
1846 			btf_dump_type_values(d, "%u", *(__u8 *)data);
1847 		break;
1848 	default:
1849 		pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1850 		return -EINVAL;
1851 	}
1852 	return 0;
1853 }
1854 
1855 union float_data {
1856 	long double ld;
1857 	double d;
1858 	float f;
1859 };
1860 
1861 static int btf_dump_float_data(struct btf_dump *d,
1862 			       const struct btf_type *t,
1863 			       __u32 type_id,
1864 			       const void *data)
1865 {
1866 	const union float_data *flp = data;
1867 	union float_data fl;
1868 	int sz = t->size;
1869 
1870 	/* handle unaligned data; copy to local union */
1871 	if (!ptr_is_aligned(d->btf, type_id, data)) {
1872 		memcpy(&fl, data, sz);
1873 		flp = &fl;
1874 	}
1875 
1876 	switch (sz) {
1877 	case 16:
1878 		btf_dump_type_values(d, "%Lf", flp->ld);
1879 		break;
1880 	case 8:
1881 		btf_dump_type_values(d, "%lf", flp->d);
1882 		break;
1883 	case 4:
1884 		btf_dump_type_values(d, "%f", flp->f);
1885 		break;
1886 	default:
1887 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1888 		return -EINVAL;
1889 	}
1890 	return 0;
1891 }
1892 
1893 static int btf_dump_var_data(struct btf_dump *d,
1894 			     const struct btf_type *v,
1895 			     __u32 id,
1896 			     const void *data)
1897 {
1898 	enum btf_func_linkage linkage = btf_var(v)->linkage;
1899 	const struct btf_type *t;
1900 	const char *l;
1901 	__u32 type_id;
1902 
1903 	switch (linkage) {
1904 	case BTF_FUNC_STATIC:
1905 		l = "static ";
1906 		break;
1907 	case BTF_FUNC_EXTERN:
1908 		l = "extern ";
1909 		break;
1910 	case BTF_FUNC_GLOBAL:
1911 	default:
1912 		l = "";
1913 		break;
1914 	}
1915 
1916 	/* format of output here is [linkage] [type] [varname] = (type)value,
1917 	 * for example "static int cpu_profile_flip = (int)1"
1918 	 */
1919 	btf_dump_printf(d, "%s", l);
1920 	type_id = v->type;
1921 	t = btf__type_by_id(d->btf, type_id);
1922 	btf_dump_emit_type_cast(d, type_id, false);
1923 	btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
1924 	return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
1925 }
1926 
1927 static int btf_dump_array_data(struct btf_dump *d,
1928 			       const struct btf_type *t,
1929 			       __u32 id,
1930 			       const void *data)
1931 {
1932 	const struct btf_array *array = btf_array(t);
1933 	const struct btf_type *elem_type;
1934 	__u32 i, elem_type_id;
1935 	__s64 elem_size;
1936 	bool is_array_member;
1937 
1938 	elem_type_id = array->type;
1939 	elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
1940 	elem_size = btf__resolve_size(d->btf, elem_type_id);
1941 	if (elem_size <= 0) {
1942 		pr_warn("unexpected elem size %zd for array type [%u]\n",
1943 			(ssize_t)elem_size, id);
1944 		return -EINVAL;
1945 	}
1946 
1947 	if (btf_is_int(elem_type)) {
1948 		/*
1949 		 * BTF_INT_CHAR encoding never seems to be set for
1950 		 * char arrays, so if size is 1 and element is
1951 		 * printable as a char, we'll do that.
1952 		 */
1953 		if (elem_size == 1)
1954 			d->typed_dump->is_array_char = true;
1955 	}
1956 
1957 	/* note that we increment depth before calling btf_dump_print() below;
1958 	 * this is intentional.  btf_dump_data_newline() will not print a
1959 	 * newline for depth 0 (since this leaves us with trailing newlines
1960 	 * at the end of typed display), so depth is incremented first.
1961 	 * For similar reasons, we decrement depth before showing the closing
1962 	 * parenthesis.
1963 	 */
1964 	d->typed_dump->depth++;
1965 	btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
1966 
1967 	/* may be a multidimensional array, so store current "is array member"
1968 	 * status so we can restore it correctly later.
1969 	 */
1970 	is_array_member = d->typed_dump->is_array_member;
1971 	d->typed_dump->is_array_member = true;
1972 	for (i = 0; i < array->nelems; i++, data += elem_size) {
1973 		if (d->typed_dump->is_array_terminated)
1974 			break;
1975 		btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
1976 	}
1977 	d->typed_dump->is_array_member = is_array_member;
1978 	d->typed_dump->depth--;
1979 	btf_dump_data_pfx(d);
1980 	btf_dump_type_values(d, "]");
1981 
1982 	return 0;
1983 }
1984 
1985 static int btf_dump_struct_data(struct btf_dump *d,
1986 				const struct btf_type *t,
1987 				__u32 id,
1988 				const void *data)
1989 {
1990 	const struct btf_member *m = btf_members(t);
1991 	__u16 n = btf_vlen(t);
1992 	int i, err = 0;
1993 
1994 	/* note that we increment depth before calling btf_dump_print() below;
1995 	 * this is intentional.  btf_dump_data_newline() will not print a
1996 	 * newline for depth 0 (since this leaves us with trailing newlines
1997 	 * at the end of typed display), so depth is incremented first.
1998 	 * For similar reasons, we decrement depth before showing the closing
1999 	 * parenthesis.
2000 	 */
2001 	d->typed_dump->depth++;
2002 	btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
2003 
2004 	for (i = 0; i < n; i++, m++) {
2005 		const struct btf_type *mtype;
2006 		const char *mname;
2007 		__u32 moffset;
2008 		__u8 bit_sz;
2009 
2010 		mtype = btf__type_by_id(d->btf, m->type);
2011 		mname = btf_name_of(d, m->name_off);
2012 		moffset = btf_member_bit_offset(t, i);
2013 
2014 		bit_sz = btf_member_bitfield_size(t, i);
2015 		err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
2016 					      moffset % 8, bit_sz);
2017 		if (err < 0)
2018 			return err;
2019 	}
2020 	d->typed_dump->depth--;
2021 	btf_dump_data_pfx(d);
2022 	btf_dump_type_values(d, "}");
2023 	return err;
2024 }
2025 
2026 union ptr_data {
2027 	unsigned int p;
2028 	unsigned long long lp;
2029 };
2030 
2031 static int btf_dump_ptr_data(struct btf_dump *d,
2032 			      const struct btf_type *t,
2033 			      __u32 id,
2034 			      const void *data)
2035 {
2036 	if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
2037 		btf_dump_type_values(d, "%p", *(void **)data);
2038 	} else {
2039 		union ptr_data pt;
2040 
2041 		memcpy(&pt, data, d->ptr_sz);
2042 		if (d->ptr_sz == 4)
2043 			btf_dump_type_values(d, "0x%x", pt.p);
2044 		else
2045 			btf_dump_type_values(d, "0x%llx", pt.lp);
2046 	}
2047 	return 0;
2048 }
2049 
2050 static int btf_dump_get_enum_value(struct btf_dump *d,
2051 				   const struct btf_type *t,
2052 				   const void *data,
2053 				   __u32 id,
2054 				   __s64 *value)
2055 {
2056 	bool is_signed = btf_kflag(t);
2057 
2058 	if (!ptr_is_aligned(d->btf, id, data)) {
2059 		__u64 val;
2060 		int err;
2061 
2062 		err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
2063 		if (err)
2064 			return err;
2065 		*value = (__s64)val;
2066 		return 0;
2067 	}
2068 
2069 	switch (t->size) {
2070 	case 8:
2071 		*value = *(__s64 *)data;
2072 		return 0;
2073 	case 4:
2074 		*value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data;
2075 		return 0;
2076 	case 2:
2077 		*value = is_signed ? *(__s16 *)data : *(__u16 *)data;
2078 		return 0;
2079 	case 1:
2080 		*value = is_signed ? *(__s8 *)data : *(__u8 *)data;
2081 		return 0;
2082 	default:
2083 		pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
2084 		return -EINVAL;
2085 	}
2086 }
2087 
2088 static int btf_dump_enum_data(struct btf_dump *d,
2089 			      const struct btf_type *t,
2090 			      __u32 id,
2091 			      const void *data)
2092 {
2093 	bool is_signed;
2094 	__s64 value;
2095 	int i, err;
2096 
2097 	err = btf_dump_get_enum_value(d, t, data, id, &value);
2098 	if (err)
2099 		return err;
2100 
2101 	is_signed = btf_kflag(t);
2102 	if (btf_is_enum(t)) {
2103 		const struct btf_enum *e;
2104 
2105 		for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
2106 			if (value != e->val)
2107 				continue;
2108 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2109 			return 0;
2110 		}
2111 
2112 		btf_dump_type_values(d, is_signed ? "%d" : "%u", value);
2113 	} else {
2114 		const struct btf_enum64 *e;
2115 
2116 		for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) {
2117 			if (value != btf_enum64_value(e))
2118 				continue;
2119 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2120 			return 0;
2121 		}
2122 
2123 		btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL",
2124 				     (unsigned long long)value);
2125 	}
2126 	return 0;
2127 }
2128 
2129 static int btf_dump_datasec_data(struct btf_dump *d,
2130 				 const struct btf_type *t,
2131 				 __u32 id,
2132 				 const void *data)
2133 {
2134 	const struct btf_var_secinfo *vsi;
2135 	const struct btf_type *var;
2136 	__u32 i;
2137 	int err;
2138 
2139 	btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2140 
2141 	for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2142 		var = btf__type_by_id(d->btf, vsi->type);
2143 		err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2144 		if (err < 0)
2145 			return err;
2146 		btf_dump_printf(d, ";");
2147 	}
2148 	return 0;
2149 }
2150 
2151 /* return size of type, or if base type overflows, return -E2BIG. */
2152 static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2153 					     const struct btf_type *t,
2154 					     __u32 id,
2155 					     const void *data,
2156 					     __u8 bits_offset)
2157 {
2158 	__s64 size = btf__resolve_size(d->btf, id);
2159 
2160 	if (size < 0 || size >= INT_MAX) {
2161 		pr_warn("unexpected size [%zu] for id [%u]\n",
2162 			(size_t)size, id);
2163 		return -EINVAL;
2164 	}
2165 
2166 	/* Only do overflow checking for base types; we do not want to
2167 	 * avoid showing part of a struct, union or array, even if we
2168 	 * do not have enough data to show the full object.  By
2169 	 * restricting overflow checking to base types we can ensure
2170 	 * that partial display succeeds, while avoiding overflowing
2171 	 * and using bogus data for display.
2172 	 */
2173 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2174 	if (!t) {
2175 		pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2176 			id);
2177 		return -EINVAL;
2178 	}
2179 
2180 	switch (btf_kind(t)) {
2181 	case BTF_KIND_INT:
2182 	case BTF_KIND_FLOAT:
2183 	case BTF_KIND_PTR:
2184 	case BTF_KIND_ENUM:
2185 	case BTF_KIND_ENUM64:
2186 		if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2187 			return -E2BIG;
2188 		break;
2189 	default:
2190 		break;
2191 	}
2192 	return (int)size;
2193 }
2194 
2195 static int btf_dump_type_data_check_zero(struct btf_dump *d,
2196 					 const struct btf_type *t,
2197 					 __u32 id,
2198 					 const void *data,
2199 					 __u8 bits_offset,
2200 					 __u8 bit_sz)
2201 {
2202 	__s64 value;
2203 	int i, err;
2204 
2205 	/* toplevel exceptions; we show zero values if
2206 	 * - we ask for them (emit_zeros)
2207 	 * - if we are at top-level so we see "struct empty { }"
2208 	 * - or if we are an array member and the array is non-empty and
2209 	 *   not a char array; we don't want to be in a situation where we
2210 	 *   have an integer array 0, 1, 0, 1 and only show non-zero values.
2211 	 *   If the array contains zeroes only, or is a char array starting
2212 	 *   with a '\0', the array-level check_zero() will prevent showing it;
2213 	 *   we are concerned with determining zero value at the array member
2214 	 *   level here.
2215 	 */
2216 	if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2217 	    (d->typed_dump->is_array_member &&
2218 	     !d->typed_dump->is_array_char))
2219 		return 0;
2220 
2221 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2222 
2223 	switch (btf_kind(t)) {
2224 	case BTF_KIND_INT:
2225 		if (bit_sz)
2226 			return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2227 		return btf_dump_base_type_check_zero(d, t, id, data);
2228 	case BTF_KIND_FLOAT:
2229 	case BTF_KIND_PTR:
2230 		return btf_dump_base_type_check_zero(d, t, id, data);
2231 	case BTF_KIND_ARRAY: {
2232 		const struct btf_array *array = btf_array(t);
2233 		const struct btf_type *elem_type;
2234 		__u32 elem_type_id, elem_size;
2235 		bool ischar;
2236 
2237 		elem_type_id = array->type;
2238 		elem_size = btf__resolve_size(d->btf, elem_type_id);
2239 		elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2240 
2241 		ischar = btf_is_int(elem_type) && elem_size == 1;
2242 
2243 		/* check all elements; if _any_ element is nonzero, all
2244 		 * of array is displayed.  We make an exception however
2245 		 * for char arrays where the first element is 0; these
2246 		 * are considered zeroed also, even if later elements are
2247 		 * non-zero because the string is terminated.
2248 		 */
2249 		for (i = 0; i < array->nelems; i++) {
2250 			if (i == 0 && ischar && *(char *)data == 0)
2251 				return -ENODATA;
2252 			err = btf_dump_type_data_check_zero(d, elem_type,
2253 							    elem_type_id,
2254 							    data +
2255 							    (i * elem_size),
2256 							    bits_offset, 0);
2257 			if (err != -ENODATA)
2258 				return err;
2259 		}
2260 		return -ENODATA;
2261 	}
2262 	case BTF_KIND_STRUCT:
2263 	case BTF_KIND_UNION: {
2264 		const struct btf_member *m = btf_members(t);
2265 		__u16 n = btf_vlen(t);
2266 
2267 		/* if any struct/union member is non-zero, the struct/union
2268 		 * is considered non-zero and dumped.
2269 		 */
2270 		for (i = 0; i < n; i++, m++) {
2271 			const struct btf_type *mtype;
2272 			__u32 moffset;
2273 
2274 			mtype = btf__type_by_id(d->btf, m->type);
2275 			moffset = btf_member_bit_offset(t, i);
2276 
2277 			/* btf_int_bits() does not store member bitfield size;
2278 			 * bitfield size needs to be stored here so int display
2279 			 * of member can retrieve it.
2280 			 */
2281 			bit_sz = btf_member_bitfield_size(t, i);
2282 			err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2283 							    moffset % 8, bit_sz);
2284 			if (err != ENODATA)
2285 				return err;
2286 		}
2287 		return -ENODATA;
2288 	}
2289 	case BTF_KIND_ENUM:
2290 	case BTF_KIND_ENUM64:
2291 		err = btf_dump_get_enum_value(d, t, data, id, &value);
2292 		if (err)
2293 			return err;
2294 		if (value == 0)
2295 			return -ENODATA;
2296 		return 0;
2297 	default:
2298 		return 0;
2299 	}
2300 }
2301 
2302 /* returns size of data dumped, or error. */
2303 static int btf_dump_dump_type_data(struct btf_dump *d,
2304 				   const char *fname,
2305 				   const struct btf_type *t,
2306 				   __u32 id,
2307 				   const void *data,
2308 				   __u8 bits_offset,
2309 				   __u8 bit_sz)
2310 {
2311 	int size, err = 0;
2312 
2313 	size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset);
2314 	if (size < 0)
2315 		return size;
2316 	err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2317 	if (err) {
2318 		/* zeroed data is expected and not an error, so simply skip
2319 		 * dumping such data.  Record other errors however.
2320 		 */
2321 		if (err == -ENODATA)
2322 			return size;
2323 		return err;
2324 	}
2325 	btf_dump_data_pfx(d);
2326 
2327 	if (!d->typed_dump->skip_names) {
2328 		if (fname && strlen(fname) > 0)
2329 			btf_dump_printf(d, ".%s = ", fname);
2330 		btf_dump_emit_type_cast(d, id, true);
2331 	}
2332 
2333 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2334 
2335 	switch (btf_kind(t)) {
2336 	case BTF_KIND_UNKN:
2337 	case BTF_KIND_FWD:
2338 	case BTF_KIND_FUNC:
2339 	case BTF_KIND_FUNC_PROTO:
2340 	case BTF_KIND_DECL_TAG:
2341 		err = btf_dump_unsupported_data(d, t, id);
2342 		break;
2343 	case BTF_KIND_INT:
2344 		if (bit_sz)
2345 			err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2346 		else
2347 			err = btf_dump_int_data(d, t, id, data, bits_offset);
2348 		break;
2349 	case BTF_KIND_FLOAT:
2350 		err = btf_dump_float_data(d, t, id, data);
2351 		break;
2352 	case BTF_KIND_PTR:
2353 		err = btf_dump_ptr_data(d, t, id, data);
2354 		break;
2355 	case BTF_KIND_ARRAY:
2356 		err = btf_dump_array_data(d, t, id, data);
2357 		break;
2358 	case BTF_KIND_STRUCT:
2359 	case BTF_KIND_UNION:
2360 		err = btf_dump_struct_data(d, t, id, data);
2361 		break;
2362 	case BTF_KIND_ENUM:
2363 	case BTF_KIND_ENUM64:
2364 		/* handle bitfield and int enum values */
2365 		if (bit_sz) {
2366 			__u64 print_num;
2367 			__s64 enum_val;
2368 
2369 			err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2370 							  &print_num);
2371 			if (err)
2372 				break;
2373 			enum_val = (__s64)print_num;
2374 			err = btf_dump_enum_data(d, t, id, &enum_val);
2375 		} else
2376 			err = btf_dump_enum_data(d, t, id, data);
2377 		break;
2378 	case BTF_KIND_VAR:
2379 		err = btf_dump_var_data(d, t, id, data);
2380 		break;
2381 	case BTF_KIND_DATASEC:
2382 		err = btf_dump_datasec_data(d, t, id, data);
2383 		break;
2384 	default:
2385 		pr_warn("unexpected kind [%u] for id [%u]\n",
2386 			BTF_INFO_KIND(t->info), id);
2387 		return -EINVAL;
2388 	}
2389 	if (err < 0)
2390 		return err;
2391 	return size;
2392 }
2393 
2394 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2395 			     const void *data, size_t data_sz,
2396 			     const struct btf_dump_type_data_opts *opts)
2397 {
2398 	struct btf_dump_data typed_dump = {};
2399 	const struct btf_type *t;
2400 	int ret;
2401 
2402 	if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2403 		return libbpf_err(-EINVAL);
2404 
2405 	t = btf__type_by_id(d->btf, id);
2406 	if (!t)
2407 		return libbpf_err(-ENOENT);
2408 
2409 	d->typed_dump = &typed_dump;
2410 	d->typed_dump->data_end = data + data_sz;
2411 	d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2412 
2413 	/* default indent string is a tab */
2414 	if (!OPTS_GET(opts, indent_str, NULL))
2415 		d->typed_dump->indent_str[0] = '\t';
2416 	else
2417 		libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
2418 			       sizeof(d->typed_dump->indent_str));
2419 
2420 	d->typed_dump->compact = OPTS_GET(opts, compact, false);
2421 	d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2422 	d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2423 
2424 	ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2425 
2426 	d->typed_dump = NULL;
2427 
2428 	return libbpf_err(ret);
2429 }
2430