1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <errno.h> 14 #include <linux/err.h> 15 #include <linux/btf.h> 16 #include "btf.h" 17 #include "hashmap.h" 18 #include "libbpf.h" 19 #include "libbpf_internal.h" 20 21 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 22 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 23 24 static const char *pfx(int lvl) 25 { 26 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 27 } 28 29 enum btf_dump_type_order_state { 30 NOT_ORDERED, 31 ORDERING, 32 ORDERED, 33 }; 34 35 enum btf_dump_type_emit_state { 36 NOT_EMITTED, 37 EMITTING, 38 EMITTED, 39 }; 40 41 /* per-type auxiliary state */ 42 struct btf_dump_type_aux_state { 43 /* topological sorting state */ 44 enum btf_dump_type_order_state order_state: 2; 45 /* emitting state used to determine the need for forward declaration */ 46 enum btf_dump_type_emit_state emit_state: 2; 47 /* whether forward declaration was already emitted */ 48 __u8 fwd_emitted: 1; 49 /* whether unique non-duplicate name was already assigned */ 50 __u8 name_resolved: 1; 51 /* whether type is referenced from any other type */ 52 __u8 referenced: 1; 53 }; 54 55 struct btf_dump { 56 const struct btf *btf; 57 const struct btf_ext *btf_ext; 58 btf_dump_printf_fn_t printf_fn; 59 struct btf_dump_opts opts; 60 61 /* per-type auxiliary state */ 62 struct btf_dump_type_aux_state *type_states; 63 /* per-type optional cached unique name, must be freed, if present */ 64 const char **cached_names; 65 66 /* topo-sorted list of dependent type definitions */ 67 __u32 *emit_queue; 68 int emit_queue_cap; 69 int emit_queue_cnt; 70 71 /* 72 * stack of type declarations (e.g., chain of modifiers, arrays, 73 * funcs, etc) 74 */ 75 __u32 *decl_stack; 76 int decl_stack_cap; 77 int decl_stack_cnt; 78 79 /* maps struct/union/enum name to a number of name occurrences */ 80 struct hashmap *type_names; 81 /* 82 * maps typedef identifiers and enum value names to a number of such 83 * name occurrences 84 */ 85 struct hashmap *ident_names; 86 }; 87 88 static size_t str_hash_fn(const void *key, void *ctx) 89 { 90 const char *s = key; 91 size_t h = 0; 92 93 while (*s) { 94 h = h * 31 + *s; 95 s++; 96 } 97 return h; 98 } 99 100 static bool str_equal_fn(const void *a, const void *b, void *ctx) 101 { 102 return strcmp(a, b) == 0; 103 } 104 105 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 106 { 107 return btf__name_by_offset(d->btf, name_off); 108 } 109 110 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 111 { 112 va_list args; 113 114 va_start(args, fmt); 115 d->printf_fn(d->opts.ctx, fmt, args); 116 va_end(args); 117 } 118 119 struct btf_dump *btf_dump__new(const struct btf *btf, 120 const struct btf_ext *btf_ext, 121 const struct btf_dump_opts *opts, 122 btf_dump_printf_fn_t printf_fn) 123 { 124 struct btf_dump *d; 125 int err; 126 127 d = calloc(1, sizeof(struct btf_dump)); 128 if (!d) 129 return ERR_PTR(-ENOMEM); 130 131 d->btf = btf; 132 d->btf_ext = btf_ext; 133 d->printf_fn = printf_fn; 134 d->opts.ctx = opts ? opts->ctx : NULL; 135 136 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 137 if (IS_ERR(d->type_names)) { 138 err = PTR_ERR(d->type_names); 139 d->type_names = NULL; 140 btf_dump__free(d); 141 return ERR_PTR(err); 142 } 143 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 144 if (IS_ERR(d->ident_names)) { 145 err = PTR_ERR(d->ident_names); 146 d->ident_names = NULL; 147 btf_dump__free(d); 148 return ERR_PTR(err); 149 } 150 151 return d; 152 } 153 154 void btf_dump__free(struct btf_dump *d) 155 { 156 int i, cnt; 157 158 if (!d) 159 return; 160 161 free(d->type_states); 162 if (d->cached_names) { 163 /* any set cached name is owned by us and should be freed */ 164 for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) { 165 if (d->cached_names[i]) 166 free((void *)d->cached_names[i]); 167 } 168 } 169 free(d->cached_names); 170 free(d->emit_queue); 171 free(d->decl_stack); 172 hashmap__free(d->type_names); 173 hashmap__free(d->ident_names); 174 175 free(d); 176 } 177 178 static int btf_dump_mark_referenced(struct btf_dump *d); 179 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 180 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 181 182 /* 183 * Dump BTF type in a compilable C syntax, including all the necessary 184 * dependent types, necessary for compilation. If some of the dependent types 185 * were already emitted as part of previous btf_dump__dump_type() invocation 186 * for another type, they won't be emitted again. This API allows callers to 187 * filter out BTF types according to user-defined criterias and emitted only 188 * minimal subset of types, necessary to compile everything. Full struct/union 189 * definitions will still be emitted, even if the only usage is through 190 * pointer and could be satisfied with just a forward declaration. 191 * 192 * Dumping is done in two high-level passes: 193 * 1. Topologically sort type definitions to satisfy C rules of compilation. 194 * 2. Emit type definitions in C syntax. 195 * 196 * Returns 0 on success; <0, otherwise. 197 */ 198 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 199 { 200 int err, i; 201 202 if (id > btf__get_nr_types(d->btf)) 203 return -EINVAL; 204 205 /* type states are lazily allocated, as they might not be needed */ 206 if (!d->type_states) { 207 d->type_states = calloc(1 + btf__get_nr_types(d->btf), 208 sizeof(d->type_states[0])); 209 if (!d->type_states) 210 return -ENOMEM; 211 d->cached_names = calloc(1 + btf__get_nr_types(d->btf), 212 sizeof(d->cached_names[0])); 213 if (!d->cached_names) 214 return -ENOMEM; 215 216 /* VOID is special */ 217 d->type_states[0].order_state = ORDERED; 218 d->type_states[0].emit_state = EMITTED; 219 220 /* eagerly determine referenced types for anon enums */ 221 err = btf_dump_mark_referenced(d); 222 if (err) 223 return err; 224 } 225 226 d->emit_queue_cnt = 0; 227 err = btf_dump_order_type(d, id, false); 228 if (err < 0) 229 return err; 230 231 for (i = 0; i < d->emit_queue_cnt; i++) 232 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 233 234 return 0; 235 } 236 237 /* 238 * Mark all types that are referenced from any other type. This is used to 239 * determine top-level anonymous enums that need to be emitted as an 240 * independent type declarations. 241 * Anonymous enums come in two flavors: either embedded in a struct's field 242 * definition, in which case they have to be declared inline as part of field 243 * type declaration; or as a top-level anonymous enum, typically used for 244 * declaring global constants. It's impossible to distinguish between two 245 * without knowning whether given enum type was referenced from other type: 246 * top-level anonymous enum won't be referenced by anything, while embedded 247 * one will. 248 */ 249 static int btf_dump_mark_referenced(struct btf_dump *d) 250 { 251 int i, j, n = btf__get_nr_types(d->btf); 252 const struct btf_type *t; 253 __u16 vlen; 254 255 for (i = 1; i <= n; i++) { 256 t = btf__type_by_id(d->btf, i); 257 vlen = btf_vlen(t); 258 259 switch (btf_kind(t)) { 260 case BTF_KIND_INT: 261 case BTF_KIND_ENUM: 262 case BTF_KIND_FWD: 263 break; 264 265 case BTF_KIND_VOLATILE: 266 case BTF_KIND_CONST: 267 case BTF_KIND_RESTRICT: 268 case BTF_KIND_PTR: 269 case BTF_KIND_TYPEDEF: 270 case BTF_KIND_FUNC: 271 case BTF_KIND_VAR: 272 d->type_states[t->type].referenced = 1; 273 break; 274 275 case BTF_KIND_ARRAY: { 276 const struct btf_array *a = btf_array(t); 277 278 d->type_states[a->index_type].referenced = 1; 279 d->type_states[a->type].referenced = 1; 280 break; 281 } 282 case BTF_KIND_STRUCT: 283 case BTF_KIND_UNION: { 284 const struct btf_member *m = btf_members(t); 285 286 for (j = 0; j < vlen; j++, m++) 287 d->type_states[m->type].referenced = 1; 288 break; 289 } 290 case BTF_KIND_FUNC_PROTO: { 291 const struct btf_param *p = btf_params(t); 292 293 for (j = 0; j < vlen; j++, p++) 294 d->type_states[p->type].referenced = 1; 295 break; 296 } 297 case BTF_KIND_DATASEC: { 298 const struct btf_var_secinfo *v = btf_var_secinfos(t); 299 300 for (j = 0; j < vlen; j++, v++) 301 d->type_states[v->type].referenced = 1; 302 break; 303 } 304 default: 305 return -EINVAL; 306 } 307 } 308 return 0; 309 } 310 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 311 { 312 __u32 *new_queue; 313 size_t new_cap; 314 315 if (d->emit_queue_cnt >= d->emit_queue_cap) { 316 new_cap = max(16, d->emit_queue_cap * 3 / 2); 317 new_queue = realloc(d->emit_queue, 318 new_cap * sizeof(new_queue[0])); 319 if (!new_queue) 320 return -ENOMEM; 321 d->emit_queue = new_queue; 322 d->emit_queue_cap = new_cap; 323 } 324 325 d->emit_queue[d->emit_queue_cnt++] = id; 326 return 0; 327 } 328 329 /* 330 * Determine order of emitting dependent types and specified type to satisfy 331 * C compilation rules. This is done through topological sorting with an 332 * additional complication which comes from C rules. The main idea for C is 333 * that if some type is "embedded" into a struct/union, it's size needs to be 334 * known at the time of definition of containing type. E.g., for: 335 * 336 * struct A {}; 337 * struct B { struct A x; } 338 * 339 * struct A *HAS* to be defined before struct B, because it's "embedded", 340 * i.e., it is part of struct B layout. But in the following case: 341 * 342 * struct A; 343 * struct B { struct A *x; } 344 * struct A {}; 345 * 346 * it's enough to just have a forward declaration of struct A at the time of 347 * struct B definition, as struct B has a pointer to struct A, so the size of 348 * field x is known without knowing struct A size: it's sizeof(void *). 349 * 350 * Unfortunately, there are some trickier cases we need to handle, e.g.: 351 * 352 * struct A {}; // if this was forward-declaration: compilation error 353 * struct B { 354 * struct { // anonymous struct 355 * struct A y; 356 * } *x; 357 * }; 358 * 359 * In this case, struct B's field x is a pointer, so it's size is known 360 * regardless of the size of (anonymous) struct it points to. But because this 361 * struct is anonymous and thus defined inline inside struct B, *and* it 362 * embeds struct A, compiler requires full definition of struct A to be known 363 * before struct B can be defined. This creates a transitive dependency 364 * between struct A and struct B. If struct A was forward-declared before 365 * struct B definition and fully defined after struct B definition, that would 366 * trigger compilation error. 367 * 368 * All this means that while we are doing topological sorting on BTF type 369 * graph, we need to determine relationships between different types (graph 370 * nodes): 371 * - weak link (relationship) between X and Y, if Y *CAN* be 372 * forward-declared at the point of X definition; 373 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 374 * 375 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 376 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 377 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 378 * Weak/strong relationship is determined recursively during DFS traversal and 379 * is returned as a result from btf_dump_order_type(). 380 * 381 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 382 * but it is not guaranteeing that no extraneous forward declarations will be 383 * emitted. 384 * 385 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 386 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 387 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 388 * entire graph path, so depending where from one came to that BTF type, it 389 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 390 * once they are processed, there is no need to do it again, so they are 391 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 392 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 393 * in any case, once those are processed, no need to do it again, as the 394 * result won't change. 395 * 396 * Returns: 397 * - 1, if type is part of strong link (so there is strong topological 398 * ordering requirements); 399 * - 0, if type is part of weak link (so can be satisfied through forward 400 * declaration); 401 * - <0, on error (e.g., unsatisfiable type loop detected). 402 */ 403 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 404 { 405 /* 406 * Order state is used to detect strong link cycles, but only for BTF 407 * kinds that are or could be an independent definition (i.e., 408 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 409 * func_protos, modifiers are just means to get to these definitions. 410 * Int/void don't need definitions, they are assumed to be always 411 * properly defined. We also ignore datasec, var, and funcs for now. 412 * So for all non-defining kinds, we never even set ordering state, 413 * for defining kinds we set ORDERING and subsequently ORDERED if it 414 * forms a strong link. 415 */ 416 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 417 const struct btf_type *t; 418 __u16 vlen; 419 int err, i; 420 421 /* return true, letting typedefs know that it's ok to be emitted */ 422 if (tstate->order_state == ORDERED) 423 return 1; 424 425 t = btf__type_by_id(d->btf, id); 426 427 if (tstate->order_state == ORDERING) { 428 /* type loop, but resolvable through fwd declaration */ 429 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 430 return 0; 431 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 432 return -ELOOP; 433 } 434 435 switch (btf_kind(t)) { 436 case BTF_KIND_INT: 437 tstate->order_state = ORDERED; 438 return 0; 439 440 case BTF_KIND_PTR: 441 err = btf_dump_order_type(d, t->type, true); 442 tstate->order_state = ORDERED; 443 return err; 444 445 case BTF_KIND_ARRAY: 446 return btf_dump_order_type(d, btf_array(t)->type, through_ptr); 447 448 case BTF_KIND_STRUCT: 449 case BTF_KIND_UNION: { 450 const struct btf_member *m = btf_members(t); 451 /* 452 * struct/union is part of strong link, only if it's embedded 453 * (so no ptr in a path) or it's anonymous (so has to be 454 * defined inline, even if declared through ptr) 455 */ 456 if (through_ptr && t->name_off != 0) 457 return 0; 458 459 tstate->order_state = ORDERING; 460 461 vlen = btf_vlen(t); 462 for (i = 0; i < vlen; i++, m++) { 463 err = btf_dump_order_type(d, m->type, false); 464 if (err < 0) 465 return err; 466 } 467 468 if (t->name_off != 0) { 469 err = btf_dump_add_emit_queue_id(d, id); 470 if (err < 0) 471 return err; 472 } 473 474 tstate->order_state = ORDERED; 475 return 1; 476 } 477 case BTF_KIND_ENUM: 478 case BTF_KIND_FWD: 479 /* 480 * non-anonymous or non-referenced enums are top-level 481 * declarations and should be emitted. Same logic can be 482 * applied to FWDs, it won't hurt anyways. 483 */ 484 if (t->name_off != 0 || !tstate->referenced) { 485 err = btf_dump_add_emit_queue_id(d, id); 486 if (err) 487 return err; 488 } 489 tstate->order_state = ORDERED; 490 return 1; 491 492 case BTF_KIND_TYPEDEF: { 493 int is_strong; 494 495 is_strong = btf_dump_order_type(d, t->type, through_ptr); 496 if (is_strong < 0) 497 return is_strong; 498 499 /* typedef is similar to struct/union w.r.t. fwd-decls */ 500 if (through_ptr && !is_strong) 501 return 0; 502 503 /* typedef is always a named definition */ 504 err = btf_dump_add_emit_queue_id(d, id); 505 if (err) 506 return err; 507 508 d->type_states[id].order_state = ORDERED; 509 return 1; 510 } 511 case BTF_KIND_VOLATILE: 512 case BTF_KIND_CONST: 513 case BTF_KIND_RESTRICT: 514 return btf_dump_order_type(d, t->type, through_ptr); 515 516 case BTF_KIND_FUNC_PROTO: { 517 const struct btf_param *p = btf_params(t); 518 bool is_strong; 519 520 err = btf_dump_order_type(d, t->type, through_ptr); 521 if (err < 0) 522 return err; 523 is_strong = err > 0; 524 525 vlen = btf_vlen(t); 526 for (i = 0; i < vlen; i++, p++) { 527 err = btf_dump_order_type(d, p->type, through_ptr); 528 if (err < 0) 529 return err; 530 if (err > 0) 531 is_strong = true; 532 } 533 return is_strong; 534 } 535 case BTF_KIND_FUNC: 536 case BTF_KIND_VAR: 537 case BTF_KIND_DATASEC: 538 d->type_states[id].order_state = ORDERED; 539 return 0; 540 541 default: 542 return -EINVAL; 543 } 544 } 545 546 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 547 const struct btf_type *t); 548 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 549 const struct btf_type *t, int lvl); 550 551 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 552 const struct btf_type *t); 553 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 554 const struct btf_type *t, int lvl); 555 556 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 557 const struct btf_type *t); 558 559 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 560 const struct btf_type *t, int lvl); 561 562 /* a local view into a shared stack */ 563 struct id_stack { 564 const __u32 *ids; 565 int cnt; 566 }; 567 568 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 569 const char *fname, int lvl); 570 static void btf_dump_emit_type_chain(struct btf_dump *d, 571 struct id_stack *decl_stack, 572 const char *fname, int lvl); 573 574 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 575 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 576 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 577 const char *orig_name); 578 579 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 580 { 581 const struct btf_type *t = btf__type_by_id(d->btf, id); 582 583 /* __builtin_va_list is a compiler built-in, which causes compilation 584 * errors, when compiling w/ different compiler, then used to compile 585 * original code (e.g., GCC to compile kernel, Clang to use generated 586 * C header from BTF). As it is built-in, it should be already defined 587 * properly internally in compiler. 588 */ 589 if (t->name_off == 0) 590 return false; 591 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 592 } 593 594 /* 595 * Emit C-syntax definitions of types from chains of BTF types. 596 * 597 * High-level handling of determining necessary forward declarations are handled 598 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 599 * declarations/definitions in C syntax are handled by a combo of 600 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 601 * corresponding btf_dump_emit_*_{def,fwd}() functions. 602 * 603 * We also keep track of "containing struct/union type ID" to determine when 604 * we reference it from inside and thus can avoid emitting unnecessary forward 605 * declaration. 606 * 607 * This algorithm is designed in such a way, that even if some error occurs 608 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 609 * that doesn't comply to C rules completely), algorithm will try to proceed 610 * and produce as much meaningful output as possible. 611 */ 612 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 613 { 614 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 615 bool top_level_def = cont_id == 0; 616 const struct btf_type *t; 617 __u16 kind; 618 619 if (tstate->emit_state == EMITTED) 620 return; 621 622 t = btf__type_by_id(d->btf, id); 623 kind = btf_kind(t); 624 625 if (tstate->emit_state == EMITTING) { 626 if (tstate->fwd_emitted) 627 return; 628 629 switch (kind) { 630 case BTF_KIND_STRUCT: 631 case BTF_KIND_UNION: 632 /* 633 * if we are referencing a struct/union that we are 634 * part of - then no need for fwd declaration 635 */ 636 if (id == cont_id) 637 return; 638 if (t->name_off == 0) { 639 pr_warn("anonymous struct/union loop, id:[%u]\n", 640 id); 641 return; 642 } 643 btf_dump_emit_struct_fwd(d, id, t); 644 btf_dump_printf(d, ";\n\n"); 645 tstate->fwd_emitted = 1; 646 break; 647 case BTF_KIND_TYPEDEF: 648 /* 649 * for typedef fwd_emitted means typedef definition 650 * was emitted, but it can be used only for "weak" 651 * references through pointer only, not for embedding 652 */ 653 if (!btf_dump_is_blacklisted(d, id)) { 654 btf_dump_emit_typedef_def(d, id, t, 0); 655 btf_dump_printf(d, ";\n\n"); 656 }; 657 tstate->fwd_emitted = 1; 658 break; 659 default: 660 break; 661 } 662 663 return; 664 } 665 666 switch (kind) { 667 case BTF_KIND_INT: 668 tstate->emit_state = EMITTED; 669 break; 670 case BTF_KIND_ENUM: 671 if (top_level_def) { 672 btf_dump_emit_enum_def(d, id, t, 0); 673 btf_dump_printf(d, ";\n\n"); 674 } 675 tstate->emit_state = EMITTED; 676 break; 677 case BTF_KIND_PTR: 678 case BTF_KIND_VOLATILE: 679 case BTF_KIND_CONST: 680 case BTF_KIND_RESTRICT: 681 btf_dump_emit_type(d, t->type, cont_id); 682 break; 683 case BTF_KIND_ARRAY: 684 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 685 break; 686 case BTF_KIND_FWD: 687 btf_dump_emit_fwd_def(d, id, t); 688 btf_dump_printf(d, ";\n\n"); 689 tstate->emit_state = EMITTED; 690 break; 691 case BTF_KIND_TYPEDEF: 692 tstate->emit_state = EMITTING; 693 btf_dump_emit_type(d, t->type, id); 694 /* 695 * typedef can server as both definition and forward 696 * declaration; at this stage someone depends on 697 * typedef as a forward declaration (refers to it 698 * through pointer), so unless we already did it, 699 * emit typedef as a forward declaration 700 */ 701 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 702 btf_dump_emit_typedef_def(d, id, t, 0); 703 btf_dump_printf(d, ";\n\n"); 704 } 705 tstate->emit_state = EMITTED; 706 break; 707 case BTF_KIND_STRUCT: 708 case BTF_KIND_UNION: 709 tstate->emit_state = EMITTING; 710 /* if it's a top-level struct/union definition or struct/union 711 * is anonymous, then in C we'll be emitting all fields and 712 * their types (as opposed to just `struct X`), so we need to 713 * make sure that all types, referenced from struct/union 714 * members have necessary forward-declarations, where 715 * applicable 716 */ 717 if (top_level_def || t->name_off == 0) { 718 const struct btf_member *m = btf_members(t); 719 __u16 vlen = btf_vlen(t); 720 int i, new_cont_id; 721 722 new_cont_id = t->name_off == 0 ? cont_id : id; 723 for (i = 0; i < vlen; i++, m++) 724 btf_dump_emit_type(d, m->type, new_cont_id); 725 } else if (!tstate->fwd_emitted && id != cont_id) { 726 btf_dump_emit_struct_fwd(d, id, t); 727 btf_dump_printf(d, ";\n\n"); 728 tstate->fwd_emitted = 1; 729 } 730 731 if (top_level_def) { 732 btf_dump_emit_struct_def(d, id, t, 0); 733 btf_dump_printf(d, ";\n\n"); 734 tstate->emit_state = EMITTED; 735 } else { 736 tstate->emit_state = NOT_EMITTED; 737 } 738 break; 739 case BTF_KIND_FUNC_PROTO: { 740 const struct btf_param *p = btf_params(t); 741 __u16 vlen = btf_vlen(t); 742 int i; 743 744 btf_dump_emit_type(d, t->type, cont_id); 745 for (i = 0; i < vlen; i++, p++) 746 btf_dump_emit_type(d, p->type, cont_id); 747 748 break; 749 } 750 default: 751 break; 752 } 753 } 754 755 static int btf_align_of(const struct btf *btf, __u32 id) 756 { 757 const struct btf_type *t = btf__type_by_id(btf, id); 758 __u16 kind = btf_kind(t); 759 760 switch (kind) { 761 case BTF_KIND_INT: 762 case BTF_KIND_ENUM: 763 return min(sizeof(void *), t->size); 764 case BTF_KIND_PTR: 765 return sizeof(void *); 766 case BTF_KIND_TYPEDEF: 767 case BTF_KIND_VOLATILE: 768 case BTF_KIND_CONST: 769 case BTF_KIND_RESTRICT: 770 return btf_align_of(btf, t->type); 771 case BTF_KIND_ARRAY: 772 return btf_align_of(btf, btf_array(t)->type); 773 case BTF_KIND_STRUCT: 774 case BTF_KIND_UNION: { 775 const struct btf_member *m = btf_members(t); 776 __u16 vlen = btf_vlen(t); 777 int i, align = 1; 778 779 for (i = 0; i < vlen; i++, m++) 780 align = max(align, btf_align_of(btf, m->type)); 781 782 return align; 783 } 784 default: 785 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 786 return 1; 787 } 788 } 789 790 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 791 const struct btf_type *t) 792 { 793 const struct btf_member *m; 794 int align, i, bit_sz; 795 __u16 vlen; 796 797 align = btf_align_of(btf, id); 798 /* size of a non-packed struct has to be a multiple of its alignment*/ 799 if (t->size % align) 800 return true; 801 802 m = btf_members(t); 803 vlen = btf_vlen(t); 804 /* all non-bitfield fields have to be naturally aligned */ 805 for (i = 0; i < vlen; i++, m++) { 806 align = btf_align_of(btf, m->type); 807 bit_sz = btf_member_bitfield_size(t, i); 808 if (bit_sz == 0 && m->offset % (8 * align) != 0) 809 return true; 810 } 811 812 /* 813 * if original struct was marked as packed, but its layout is 814 * naturally aligned, we'll detect that it's not packed 815 */ 816 return false; 817 } 818 819 static int chip_away_bits(int total, int at_most) 820 { 821 return total % at_most ? : at_most; 822 } 823 824 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 825 int cur_off, int m_off, int m_bit_sz, 826 int align, int lvl) 827 { 828 int off_diff = m_off - cur_off; 829 int ptr_bits = sizeof(void *) * 8; 830 831 if (off_diff <= 0) 832 /* no gap */ 833 return; 834 if (m_bit_sz == 0 && off_diff < align * 8) 835 /* natural padding will take care of a gap */ 836 return; 837 838 while (off_diff > 0) { 839 const char *pad_type; 840 int pad_bits; 841 842 if (ptr_bits > 32 && off_diff > 32) { 843 pad_type = "long"; 844 pad_bits = chip_away_bits(off_diff, ptr_bits); 845 } else if (off_diff > 16) { 846 pad_type = "int"; 847 pad_bits = chip_away_bits(off_diff, 32); 848 } else if (off_diff > 8) { 849 pad_type = "short"; 850 pad_bits = chip_away_bits(off_diff, 16); 851 } else { 852 pad_type = "char"; 853 pad_bits = chip_away_bits(off_diff, 8); 854 } 855 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 856 off_diff -= pad_bits; 857 } 858 } 859 860 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 861 const struct btf_type *t) 862 { 863 btf_dump_printf(d, "%s %s", 864 btf_is_struct(t) ? "struct" : "union", 865 btf_dump_type_name(d, id)); 866 } 867 868 static void btf_dump_emit_struct_def(struct btf_dump *d, 869 __u32 id, 870 const struct btf_type *t, 871 int lvl) 872 { 873 const struct btf_member *m = btf_members(t); 874 bool is_struct = btf_is_struct(t); 875 int align, i, packed, off = 0; 876 __u16 vlen = btf_vlen(t); 877 878 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 879 880 btf_dump_printf(d, "%s%s%s {", 881 is_struct ? "struct" : "union", 882 t->name_off ? " " : "", 883 btf_dump_type_name(d, id)); 884 885 for (i = 0; i < vlen; i++, m++) { 886 const char *fname; 887 int m_off, m_sz; 888 889 fname = btf_name_of(d, m->name_off); 890 m_sz = btf_member_bitfield_size(t, i); 891 m_off = btf_member_bit_offset(t, i); 892 align = packed ? 1 : btf_align_of(d->btf, m->type); 893 894 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); 895 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 896 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 897 898 if (m_sz) { 899 btf_dump_printf(d, ": %d", m_sz); 900 off = m_off + m_sz; 901 } else { 902 m_sz = max(0, btf__resolve_size(d->btf, m->type)); 903 off = m_off + m_sz * 8; 904 } 905 btf_dump_printf(d, ";"); 906 } 907 908 /* pad at the end, if necessary */ 909 if (is_struct) { 910 align = packed ? 1 : btf_align_of(d->btf, id); 911 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, 912 lvl + 1); 913 } 914 915 if (vlen) 916 btf_dump_printf(d, "\n"); 917 btf_dump_printf(d, "%s}", pfx(lvl)); 918 if (packed) 919 btf_dump_printf(d, " __attribute__((packed))"); 920 } 921 922 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 923 const struct btf_type *t) 924 { 925 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 926 } 927 928 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 929 const struct btf_type *t, 930 int lvl) 931 { 932 const struct btf_enum *v = btf_enum(t); 933 __u16 vlen = btf_vlen(t); 934 const char *name; 935 size_t dup_cnt; 936 int i; 937 938 btf_dump_printf(d, "enum%s%s", 939 t->name_off ? " " : "", 940 btf_dump_type_name(d, id)); 941 942 if (vlen) { 943 btf_dump_printf(d, " {"); 944 for (i = 0; i < vlen; i++, v++) { 945 name = btf_name_of(d, v->name_off); 946 /* enumerators share namespace with typedef idents */ 947 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 948 if (dup_cnt > 1) { 949 btf_dump_printf(d, "\n%s%s___%zu = %d,", 950 pfx(lvl + 1), name, dup_cnt, 951 (__s32)v->val); 952 } else { 953 btf_dump_printf(d, "\n%s%s = %d,", 954 pfx(lvl + 1), name, 955 (__s32)v->val); 956 } 957 } 958 btf_dump_printf(d, "\n%s}", pfx(lvl)); 959 } 960 } 961 962 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 963 const struct btf_type *t) 964 { 965 const char *name = btf_dump_type_name(d, id); 966 967 if (btf_kflag(t)) 968 btf_dump_printf(d, "union %s", name); 969 else 970 btf_dump_printf(d, "struct %s", name); 971 } 972 973 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 974 const struct btf_type *t, int lvl) 975 { 976 const char *name = btf_dump_ident_name(d, id); 977 978 /* 979 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 980 * pointing to VOID. This generates warnings from btf_dump() and 981 * results in uncompilable header file, so we are fixing it up here 982 * with valid typedef into __builtin_va_list. 983 */ 984 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 985 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 986 return; 987 } 988 989 btf_dump_printf(d, "typedef "); 990 btf_dump_emit_type_decl(d, t->type, name, lvl); 991 } 992 993 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 994 { 995 __u32 *new_stack; 996 size_t new_cap; 997 998 if (d->decl_stack_cnt >= d->decl_stack_cap) { 999 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1000 new_stack = realloc(d->decl_stack, 1001 new_cap * sizeof(new_stack[0])); 1002 if (!new_stack) 1003 return -ENOMEM; 1004 d->decl_stack = new_stack; 1005 d->decl_stack_cap = new_cap; 1006 } 1007 1008 d->decl_stack[d->decl_stack_cnt++] = id; 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * Emit type declaration (e.g., field type declaration in a struct or argument 1015 * declaration in function prototype) in correct C syntax. 1016 * 1017 * For most types it's trivial, but there are few quirky type declaration 1018 * cases worth mentioning: 1019 * - function prototypes (especially nesting of function prototypes); 1020 * - arrays; 1021 * - const/volatile/restrict for pointers vs other types. 1022 * 1023 * For a good discussion of *PARSING* C syntax (as a human), see 1024 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1025 * Ch.3 "Unscrambling Declarations in C". 1026 * 1027 * It won't help with BTF to C conversion much, though, as it's an opposite 1028 * problem. So we came up with this algorithm in reverse to van der Linden's 1029 * parsing algorithm. It goes from structured BTF representation of type 1030 * declaration to a valid compilable C syntax. 1031 * 1032 * For instance, consider this C typedef: 1033 * typedef const int * const * arr[10] arr_t; 1034 * It will be represented in BTF with this chain of BTF types: 1035 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1036 * 1037 * Notice how [const] modifier always goes before type it modifies in BTF type 1038 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1039 * the right of pointers, but to the left of other types. There are also other 1040 * quirks, like function pointers, arrays of them, functions returning other 1041 * functions, etc. 1042 * 1043 * We handle that by pushing all the types to a stack, until we hit "terminal" 1044 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1045 * top of a stack, modifiers are handled differently. Array/function pointers 1046 * have also wildly different syntax and how nesting of them are done. See 1047 * code for authoritative definition. 1048 * 1049 * To avoid allocating new stack for each independent chain of BTF types, we 1050 * share one bigger stack, with each chain working only on its own local view 1051 * of a stack frame. Some care is required to "pop" stack frames after 1052 * processing type declaration chain. 1053 */ 1054 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1055 const char *fname, int lvl) 1056 { 1057 struct id_stack decl_stack; 1058 const struct btf_type *t; 1059 int err, stack_start; 1060 1061 stack_start = d->decl_stack_cnt; 1062 for (;;) { 1063 err = btf_dump_push_decl_stack_id(d, id); 1064 if (err < 0) { 1065 /* 1066 * if we don't have enough memory for entire type decl 1067 * chain, restore stack, emit warning, and try to 1068 * proceed nevertheless 1069 */ 1070 pr_warn("not enough memory for decl stack:%d", err); 1071 d->decl_stack_cnt = stack_start; 1072 return; 1073 } 1074 1075 /* VOID */ 1076 if (id == 0) 1077 break; 1078 1079 t = btf__type_by_id(d->btf, id); 1080 switch (btf_kind(t)) { 1081 case BTF_KIND_PTR: 1082 case BTF_KIND_VOLATILE: 1083 case BTF_KIND_CONST: 1084 case BTF_KIND_RESTRICT: 1085 case BTF_KIND_FUNC_PROTO: 1086 id = t->type; 1087 break; 1088 case BTF_KIND_ARRAY: 1089 id = btf_array(t)->type; 1090 break; 1091 case BTF_KIND_INT: 1092 case BTF_KIND_ENUM: 1093 case BTF_KIND_FWD: 1094 case BTF_KIND_STRUCT: 1095 case BTF_KIND_UNION: 1096 case BTF_KIND_TYPEDEF: 1097 goto done; 1098 default: 1099 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1100 btf_kind(t), id); 1101 goto done; 1102 } 1103 } 1104 done: 1105 /* 1106 * We might be inside a chain of declarations (e.g., array of function 1107 * pointers returning anonymous (so inlined) structs, having another 1108 * array field). Each of those needs its own "stack frame" to handle 1109 * emitting of declarations. Those stack frames are non-overlapping 1110 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1111 * handle this set of nested stacks, we create a view corresponding to 1112 * our own "stack frame" and work with it as an independent stack. 1113 * We'll need to clean up after emit_type_chain() returns, though. 1114 */ 1115 decl_stack.ids = d->decl_stack + stack_start; 1116 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1117 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1118 /* 1119 * emit_type_chain() guarantees that it will pop its entire decl_stack 1120 * frame before returning. But it works with a read-only view into 1121 * decl_stack, so it doesn't actually pop anything from the 1122 * perspective of shared btf_dump->decl_stack, per se. We need to 1123 * reset decl_stack state to how it was before us to avoid it growing 1124 * all the time. 1125 */ 1126 d->decl_stack_cnt = stack_start; 1127 } 1128 1129 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1130 { 1131 const struct btf_type *t; 1132 __u32 id; 1133 1134 while (decl_stack->cnt) { 1135 id = decl_stack->ids[decl_stack->cnt - 1]; 1136 t = btf__type_by_id(d->btf, id); 1137 1138 switch (btf_kind(t)) { 1139 case BTF_KIND_VOLATILE: 1140 btf_dump_printf(d, "volatile "); 1141 break; 1142 case BTF_KIND_CONST: 1143 btf_dump_printf(d, "const "); 1144 break; 1145 case BTF_KIND_RESTRICT: 1146 btf_dump_printf(d, "restrict "); 1147 break; 1148 default: 1149 return; 1150 } 1151 decl_stack->cnt--; 1152 } 1153 } 1154 1155 static void btf_dump_emit_name(const struct btf_dump *d, 1156 const char *name, bool last_was_ptr) 1157 { 1158 bool separate = name[0] && !last_was_ptr; 1159 1160 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1161 } 1162 1163 static void btf_dump_emit_type_chain(struct btf_dump *d, 1164 struct id_stack *decls, 1165 const char *fname, int lvl) 1166 { 1167 /* 1168 * last_was_ptr is used to determine if we need to separate pointer 1169 * asterisk (*) from previous part of type signature with space, so 1170 * that we get `int ***`, instead of `int * * *`. We default to true 1171 * for cases where we have single pointer in a chain. E.g., in ptr -> 1172 * func_proto case. func_proto will start a new emit_type_chain call 1173 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1174 * don't want to prepend space for that last pointer. 1175 */ 1176 bool last_was_ptr = true; 1177 const struct btf_type *t; 1178 const char *name; 1179 __u16 kind; 1180 __u32 id; 1181 1182 while (decls->cnt) { 1183 id = decls->ids[--decls->cnt]; 1184 if (id == 0) { 1185 /* VOID is a special snowflake */ 1186 btf_dump_emit_mods(d, decls); 1187 btf_dump_printf(d, "void"); 1188 last_was_ptr = false; 1189 continue; 1190 } 1191 1192 t = btf__type_by_id(d->btf, id); 1193 kind = btf_kind(t); 1194 1195 switch (kind) { 1196 case BTF_KIND_INT: 1197 btf_dump_emit_mods(d, decls); 1198 name = btf_name_of(d, t->name_off); 1199 btf_dump_printf(d, "%s", name); 1200 break; 1201 case BTF_KIND_STRUCT: 1202 case BTF_KIND_UNION: 1203 btf_dump_emit_mods(d, decls); 1204 /* inline anonymous struct/union */ 1205 if (t->name_off == 0) 1206 btf_dump_emit_struct_def(d, id, t, lvl); 1207 else 1208 btf_dump_emit_struct_fwd(d, id, t); 1209 break; 1210 case BTF_KIND_ENUM: 1211 btf_dump_emit_mods(d, decls); 1212 /* inline anonymous enum */ 1213 if (t->name_off == 0) 1214 btf_dump_emit_enum_def(d, id, t, lvl); 1215 else 1216 btf_dump_emit_enum_fwd(d, id, t); 1217 break; 1218 case BTF_KIND_FWD: 1219 btf_dump_emit_mods(d, decls); 1220 btf_dump_emit_fwd_def(d, id, t); 1221 break; 1222 case BTF_KIND_TYPEDEF: 1223 btf_dump_emit_mods(d, decls); 1224 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1225 break; 1226 case BTF_KIND_PTR: 1227 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1228 break; 1229 case BTF_KIND_VOLATILE: 1230 btf_dump_printf(d, " volatile"); 1231 break; 1232 case BTF_KIND_CONST: 1233 btf_dump_printf(d, " const"); 1234 break; 1235 case BTF_KIND_RESTRICT: 1236 btf_dump_printf(d, " restrict"); 1237 break; 1238 case BTF_KIND_ARRAY: { 1239 const struct btf_array *a = btf_array(t); 1240 const struct btf_type *next_t; 1241 __u32 next_id; 1242 bool multidim; 1243 /* 1244 * GCC has a bug 1245 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1246 * which causes it to emit extra const/volatile 1247 * modifiers for an array, if array's element type has 1248 * const/volatile modifiers. Clang doesn't do that. 1249 * In general, it doesn't seem very meaningful to have 1250 * a const/volatile modifier for array, so we are 1251 * going to silently skip them here. 1252 */ 1253 while (decls->cnt) { 1254 next_id = decls->ids[decls->cnt - 1]; 1255 next_t = btf__type_by_id(d->btf, next_id); 1256 if (btf_is_mod(next_t)) 1257 decls->cnt--; 1258 else 1259 break; 1260 } 1261 1262 if (decls->cnt == 0) { 1263 btf_dump_emit_name(d, fname, last_was_ptr); 1264 btf_dump_printf(d, "[%u]", a->nelems); 1265 return; 1266 } 1267 1268 next_id = decls->ids[decls->cnt - 1]; 1269 next_t = btf__type_by_id(d->btf, next_id); 1270 multidim = btf_is_array(next_t); 1271 /* we need space if we have named non-pointer */ 1272 if (fname[0] && !last_was_ptr) 1273 btf_dump_printf(d, " "); 1274 /* no parentheses for multi-dimensional array */ 1275 if (!multidim) 1276 btf_dump_printf(d, "("); 1277 btf_dump_emit_type_chain(d, decls, fname, lvl); 1278 if (!multidim) 1279 btf_dump_printf(d, ")"); 1280 btf_dump_printf(d, "[%u]", a->nelems); 1281 return; 1282 } 1283 case BTF_KIND_FUNC_PROTO: { 1284 const struct btf_param *p = btf_params(t); 1285 __u16 vlen = btf_vlen(t); 1286 int i; 1287 1288 btf_dump_emit_mods(d, decls); 1289 if (decls->cnt) { 1290 btf_dump_printf(d, " ("); 1291 btf_dump_emit_type_chain(d, decls, fname, lvl); 1292 btf_dump_printf(d, ")"); 1293 } else { 1294 btf_dump_emit_name(d, fname, last_was_ptr); 1295 } 1296 btf_dump_printf(d, "("); 1297 /* 1298 * Clang for BPF target generates func_proto with no 1299 * args as a func_proto with a single void arg (e.g., 1300 * `int (*f)(void)` vs just `int (*f)()`). We are 1301 * going to pretend there are no args for such case. 1302 */ 1303 if (vlen == 1 && p->type == 0) { 1304 btf_dump_printf(d, ")"); 1305 return; 1306 } 1307 1308 for (i = 0; i < vlen; i++, p++) { 1309 if (i > 0) 1310 btf_dump_printf(d, ", "); 1311 1312 /* last arg of type void is vararg */ 1313 if (i == vlen - 1 && p->type == 0) { 1314 btf_dump_printf(d, "..."); 1315 break; 1316 } 1317 1318 name = btf_name_of(d, p->name_off); 1319 btf_dump_emit_type_decl(d, p->type, name, lvl); 1320 } 1321 1322 btf_dump_printf(d, ")"); 1323 return; 1324 } 1325 default: 1326 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1327 kind, id); 1328 return; 1329 } 1330 1331 last_was_ptr = kind == BTF_KIND_PTR; 1332 } 1333 1334 btf_dump_emit_name(d, fname, last_was_ptr); 1335 } 1336 1337 /* return number of duplicates (occurrences) of a given name */ 1338 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1339 const char *orig_name) 1340 { 1341 size_t dup_cnt = 0; 1342 1343 hashmap__find(name_map, orig_name, (void **)&dup_cnt); 1344 dup_cnt++; 1345 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); 1346 1347 return dup_cnt; 1348 } 1349 1350 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1351 struct hashmap *name_map) 1352 { 1353 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1354 const struct btf_type *t = btf__type_by_id(d->btf, id); 1355 const char *orig_name = btf_name_of(d, t->name_off); 1356 const char **cached_name = &d->cached_names[id]; 1357 size_t dup_cnt; 1358 1359 if (t->name_off == 0) 1360 return ""; 1361 1362 if (s->name_resolved) 1363 return *cached_name ? *cached_name : orig_name; 1364 1365 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1366 if (dup_cnt > 1) { 1367 const size_t max_len = 256; 1368 char new_name[max_len]; 1369 1370 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1371 *cached_name = strdup(new_name); 1372 } 1373 1374 s->name_resolved = 1; 1375 return *cached_name ? *cached_name : orig_name; 1376 } 1377 1378 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1379 { 1380 return btf_dump_resolve_name(d, id, d->type_names); 1381 } 1382 1383 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1384 { 1385 return btf_dump_resolve_name(d, id, d->ident_names); 1386 } 1387