1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * BTF-to-C type converter. 5 * 6 * Copyright (c) 2019 Facebook 7 */ 8 9 #include <stdbool.h> 10 #include <stddef.h> 11 #include <stdlib.h> 12 #include <string.h> 13 #include <ctype.h> 14 #include <endian.h> 15 #include <errno.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <linux/kernel.h> 19 #include "btf.h" 20 #include "hashmap.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t"; 25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1; 26 27 static const char *pfx(int lvl) 28 { 29 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl]; 30 } 31 32 enum btf_dump_type_order_state { 33 NOT_ORDERED, 34 ORDERING, 35 ORDERED, 36 }; 37 38 enum btf_dump_type_emit_state { 39 NOT_EMITTED, 40 EMITTING, 41 EMITTED, 42 }; 43 44 /* per-type auxiliary state */ 45 struct btf_dump_type_aux_state { 46 /* topological sorting state */ 47 enum btf_dump_type_order_state order_state: 2; 48 /* emitting state used to determine the need for forward declaration */ 49 enum btf_dump_type_emit_state emit_state: 2; 50 /* whether forward declaration was already emitted */ 51 __u8 fwd_emitted: 1; 52 /* whether unique non-duplicate name was already assigned */ 53 __u8 name_resolved: 1; 54 /* whether type is referenced from any other type */ 55 __u8 referenced: 1; 56 }; 57 58 /* indent string length; one indent string is added for each indent level */ 59 #define BTF_DATA_INDENT_STR_LEN 32 60 61 /* 62 * Common internal data for BTF type data dump operations. 63 */ 64 struct btf_dump_data { 65 const void *data_end; /* end of valid data to show */ 66 bool compact; 67 bool skip_names; 68 bool emit_zeroes; 69 __u8 indent_lvl; /* base indent level */ 70 char indent_str[BTF_DATA_INDENT_STR_LEN]; 71 /* below are used during iteration */ 72 int depth; 73 bool is_array_member; 74 bool is_array_terminated; 75 bool is_array_char; 76 }; 77 78 struct btf_dump { 79 const struct btf *btf; 80 btf_dump_printf_fn_t printf_fn; 81 void *cb_ctx; 82 int ptr_sz; 83 bool strip_mods; 84 bool skip_anon_defs; 85 int last_id; 86 87 /* per-type auxiliary state */ 88 struct btf_dump_type_aux_state *type_states; 89 size_t type_states_cap; 90 /* per-type optional cached unique name, must be freed, if present */ 91 const char **cached_names; 92 size_t cached_names_cap; 93 94 /* topo-sorted list of dependent type definitions */ 95 __u32 *emit_queue; 96 int emit_queue_cap; 97 int emit_queue_cnt; 98 99 /* 100 * stack of type declarations (e.g., chain of modifiers, arrays, 101 * funcs, etc) 102 */ 103 __u32 *decl_stack; 104 int decl_stack_cap; 105 int decl_stack_cnt; 106 107 /* maps struct/union/enum name to a number of name occurrences */ 108 struct hashmap *type_names; 109 /* 110 * maps typedef identifiers and enum value names to a number of such 111 * name occurrences 112 */ 113 struct hashmap *ident_names; 114 /* 115 * data for typed display; allocated if needed. 116 */ 117 struct btf_dump_data *typed_dump; 118 }; 119 120 static size_t str_hash_fn(const void *key, void *ctx) 121 { 122 return str_hash(key); 123 } 124 125 static bool str_equal_fn(const void *a, const void *b, void *ctx) 126 { 127 return strcmp(a, b) == 0; 128 } 129 130 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off) 131 { 132 return btf__name_by_offset(d->btf, name_off); 133 } 134 135 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...) 136 { 137 va_list args; 138 139 va_start(args, fmt); 140 d->printf_fn(d->cb_ctx, fmt, args); 141 va_end(args); 142 } 143 144 static int btf_dump_mark_referenced(struct btf_dump *d); 145 static int btf_dump_resize(struct btf_dump *d); 146 147 DEFAULT_VERSION(btf_dump__new_v0_6_0, btf_dump__new, LIBBPF_0.6.0) 148 struct btf_dump *btf_dump__new_v0_6_0(const struct btf *btf, 149 btf_dump_printf_fn_t printf_fn, 150 void *ctx, 151 const struct btf_dump_opts *opts) 152 { 153 struct btf_dump *d; 154 int err; 155 156 if (!printf_fn) 157 return libbpf_err_ptr(-EINVAL); 158 159 d = calloc(1, sizeof(struct btf_dump)); 160 if (!d) 161 return libbpf_err_ptr(-ENOMEM); 162 163 d->btf = btf; 164 d->printf_fn = printf_fn; 165 d->cb_ctx = ctx; 166 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *); 167 168 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 169 if (IS_ERR(d->type_names)) { 170 err = PTR_ERR(d->type_names); 171 d->type_names = NULL; 172 goto err; 173 } 174 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL); 175 if (IS_ERR(d->ident_names)) { 176 err = PTR_ERR(d->ident_names); 177 d->ident_names = NULL; 178 goto err; 179 } 180 181 err = btf_dump_resize(d); 182 if (err) 183 goto err; 184 185 return d; 186 err: 187 btf_dump__free(d); 188 return libbpf_err_ptr(err); 189 } 190 191 COMPAT_VERSION(btf_dump__new_deprecated, btf_dump__new, LIBBPF_0.0.4) 192 struct btf_dump *btf_dump__new_deprecated(const struct btf *btf, 193 const struct btf_ext *btf_ext, 194 const struct btf_dump_opts *opts, 195 btf_dump_printf_fn_t printf_fn) 196 { 197 if (!printf_fn) 198 return libbpf_err_ptr(-EINVAL); 199 return btf_dump__new_v0_6_0(btf, printf_fn, opts ? opts->ctx : NULL, opts); 200 } 201 202 static int btf_dump_resize(struct btf_dump *d) 203 { 204 int err, last_id = btf__type_cnt(d->btf) - 1; 205 206 if (last_id <= d->last_id) 207 return 0; 208 209 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap, 210 sizeof(*d->type_states), last_id + 1)) 211 return -ENOMEM; 212 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap, 213 sizeof(*d->cached_names), last_id + 1)) 214 return -ENOMEM; 215 216 if (d->last_id == 0) { 217 /* VOID is special */ 218 d->type_states[0].order_state = ORDERED; 219 d->type_states[0].emit_state = EMITTED; 220 } 221 222 /* eagerly determine referenced types for anon enums */ 223 err = btf_dump_mark_referenced(d); 224 if (err) 225 return err; 226 227 d->last_id = last_id; 228 return 0; 229 } 230 231 void btf_dump__free(struct btf_dump *d) 232 { 233 int i; 234 235 if (IS_ERR_OR_NULL(d)) 236 return; 237 238 free(d->type_states); 239 if (d->cached_names) { 240 /* any set cached name is owned by us and should be freed */ 241 for (i = 0; i <= d->last_id; i++) { 242 if (d->cached_names[i]) 243 free((void *)d->cached_names[i]); 244 } 245 } 246 free(d->cached_names); 247 free(d->emit_queue); 248 free(d->decl_stack); 249 hashmap__free(d->type_names); 250 hashmap__free(d->ident_names); 251 252 free(d); 253 } 254 255 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr); 256 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id); 257 258 /* 259 * Dump BTF type in a compilable C syntax, including all the necessary 260 * dependent types, necessary for compilation. If some of the dependent types 261 * were already emitted as part of previous btf_dump__dump_type() invocation 262 * for another type, they won't be emitted again. This API allows callers to 263 * filter out BTF types according to user-defined criterias and emitted only 264 * minimal subset of types, necessary to compile everything. Full struct/union 265 * definitions will still be emitted, even if the only usage is through 266 * pointer and could be satisfied with just a forward declaration. 267 * 268 * Dumping is done in two high-level passes: 269 * 1. Topologically sort type definitions to satisfy C rules of compilation. 270 * 2. Emit type definitions in C syntax. 271 * 272 * Returns 0 on success; <0, otherwise. 273 */ 274 int btf_dump__dump_type(struct btf_dump *d, __u32 id) 275 { 276 int err, i; 277 278 if (id >= btf__type_cnt(d->btf)) 279 return libbpf_err(-EINVAL); 280 281 err = btf_dump_resize(d); 282 if (err) 283 return libbpf_err(err); 284 285 d->emit_queue_cnt = 0; 286 err = btf_dump_order_type(d, id, false); 287 if (err < 0) 288 return libbpf_err(err); 289 290 for (i = 0; i < d->emit_queue_cnt; i++) 291 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/); 292 293 return 0; 294 } 295 296 /* 297 * Mark all types that are referenced from any other type. This is used to 298 * determine top-level anonymous enums that need to be emitted as an 299 * independent type declarations. 300 * Anonymous enums come in two flavors: either embedded in a struct's field 301 * definition, in which case they have to be declared inline as part of field 302 * type declaration; or as a top-level anonymous enum, typically used for 303 * declaring global constants. It's impossible to distinguish between two 304 * without knowning whether given enum type was referenced from other type: 305 * top-level anonymous enum won't be referenced by anything, while embedded 306 * one will. 307 */ 308 static int btf_dump_mark_referenced(struct btf_dump *d) 309 { 310 int i, j, n = btf__type_cnt(d->btf); 311 const struct btf_type *t; 312 __u16 vlen; 313 314 for (i = d->last_id + 1; i < n; i++) { 315 t = btf__type_by_id(d->btf, i); 316 vlen = btf_vlen(t); 317 318 switch (btf_kind(t)) { 319 case BTF_KIND_INT: 320 case BTF_KIND_ENUM: 321 case BTF_KIND_ENUM64: 322 case BTF_KIND_FWD: 323 case BTF_KIND_FLOAT: 324 break; 325 326 case BTF_KIND_VOLATILE: 327 case BTF_KIND_CONST: 328 case BTF_KIND_RESTRICT: 329 case BTF_KIND_PTR: 330 case BTF_KIND_TYPEDEF: 331 case BTF_KIND_FUNC: 332 case BTF_KIND_VAR: 333 case BTF_KIND_DECL_TAG: 334 case BTF_KIND_TYPE_TAG: 335 d->type_states[t->type].referenced = 1; 336 break; 337 338 case BTF_KIND_ARRAY: { 339 const struct btf_array *a = btf_array(t); 340 341 d->type_states[a->index_type].referenced = 1; 342 d->type_states[a->type].referenced = 1; 343 break; 344 } 345 case BTF_KIND_STRUCT: 346 case BTF_KIND_UNION: { 347 const struct btf_member *m = btf_members(t); 348 349 for (j = 0; j < vlen; j++, m++) 350 d->type_states[m->type].referenced = 1; 351 break; 352 } 353 case BTF_KIND_FUNC_PROTO: { 354 const struct btf_param *p = btf_params(t); 355 356 for (j = 0; j < vlen; j++, p++) 357 d->type_states[p->type].referenced = 1; 358 break; 359 } 360 case BTF_KIND_DATASEC: { 361 const struct btf_var_secinfo *v = btf_var_secinfos(t); 362 363 for (j = 0; j < vlen; j++, v++) 364 d->type_states[v->type].referenced = 1; 365 break; 366 } 367 default: 368 return -EINVAL; 369 } 370 } 371 return 0; 372 } 373 374 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id) 375 { 376 __u32 *new_queue; 377 size_t new_cap; 378 379 if (d->emit_queue_cnt >= d->emit_queue_cap) { 380 new_cap = max(16, d->emit_queue_cap * 3 / 2); 381 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0])); 382 if (!new_queue) 383 return -ENOMEM; 384 d->emit_queue = new_queue; 385 d->emit_queue_cap = new_cap; 386 } 387 388 d->emit_queue[d->emit_queue_cnt++] = id; 389 return 0; 390 } 391 392 /* 393 * Determine order of emitting dependent types and specified type to satisfy 394 * C compilation rules. This is done through topological sorting with an 395 * additional complication which comes from C rules. The main idea for C is 396 * that if some type is "embedded" into a struct/union, it's size needs to be 397 * known at the time of definition of containing type. E.g., for: 398 * 399 * struct A {}; 400 * struct B { struct A x; } 401 * 402 * struct A *HAS* to be defined before struct B, because it's "embedded", 403 * i.e., it is part of struct B layout. But in the following case: 404 * 405 * struct A; 406 * struct B { struct A *x; } 407 * struct A {}; 408 * 409 * it's enough to just have a forward declaration of struct A at the time of 410 * struct B definition, as struct B has a pointer to struct A, so the size of 411 * field x is known without knowing struct A size: it's sizeof(void *). 412 * 413 * Unfortunately, there are some trickier cases we need to handle, e.g.: 414 * 415 * struct A {}; // if this was forward-declaration: compilation error 416 * struct B { 417 * struct { // anonymous struct 418 * struct A y; 419 * } *x; 420 * }; 421 * 422 * In this case, struct B's field x is a pointer, so it's size is known 423 * regardless of the size of (anonymous) struct it points to. But because this 424 * struct is anonymous and thus defined inline inside struct B, *and* it 425 * embeds struct A, compiler requires full definition of struct A to be known 426 * before struct B can be defined. This creates a transitive dependency 427 * between struct A and struct B. If struct A was forward-declared before 428 * struct B definition and fully defined after struct B definition, that would 429 * trigger compilation error. 430 * 431 * All this means that while we are doing topological sorting on BTF type 432 * graph, we need to determine relationships between different types (graph 433 * nodes): 434 * - weak link (relationship) between X and Y, if Y *CAN* be 435 * forward-declared at the point of X definition; 436 * - strong link, if Y *HAS* to be fully-defined before X can be defined. 437 * 438 * The rule is as follows. Given a chain of BTF types from X to Y, if there is 439 * BTF_KIND_PTR type in the chain and at least one non-anonymous type 440 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong. 441 * Weak/strong relationship is determined recursively during DFS traversal and 442 * is returned as a result from btf_dump_order_type(). 443 * 444 * btf_dump_order_type() is trying to avoid unnecessary forward declarations, 445 * but it is not guaranteeing that no extraneous forward declarations will be 446 * emitted. 447 * 448 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when 449 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT, 450 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the 451 * entire graph path, so depending where from one came to that BTF type, it 452 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM, 453 * once they are processed, there is no need to do it again, so they are 454 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces 455 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But 456 * in any case, once those are processed, no need to do it again, as the 457 * result won't change. 458 * 459 * Returns: 460 * - 1, if type is part of strong link (so there is strong topological 461 * ordering requirements); 462 * - 0, if type is part of weak link (so can be satisfied through forward 463 * declaration); 464 * - <0, on error (e.g., unsatisfiable type loop detected). 465 */ 466 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr) 467 { 468 /* 469 * Order state is used to detect strong link cycles, but only for BTF 470 * kinds that are or could be an independent definition (i.e., 471 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays, 472 * func_protos, modifiers are just means to get to these definitions. 473 * Int/void don't need definitions, they are assumed to be always 474 * properly defined. We also ignore datasec, var, and funcs for now. 475 * So for all non-defining kinds, we never even set ordering state, 476 * for defining kinds we set ORDERING and subsequently ORDERED if it 477 * forms a strong link. 478 */ 479 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 480 const struct btf_type *t; 481 __u16 vlen; 482 int err, i; 483 484 /* return true, letting typedefs know that it's ok to be emitted */ 485 if (tstate->order_state == ORDERED) 486 return 1; 487 488 t = btf__type_by_id(d->btf, id); 489 490 if (tstate->order_state == ORDERING) { 491 /* type loop, but resolvable through fwd declaration */ 492 if (btf_is_composite(t) && through_ptr && t->name_off != 0) 493 return 0; 494 pr_warn("unsatisfiable type cycle, id:[%u]\n", id); 495 return -ELOOP; 496 } 497 498 switch (btf_kind(t)) { 499 case BTF_KIND_INT: 500 case BTF_KIND_FLOAT: 501 tstate->order_state = ORDERED; 502 return 0; 503 504 case BTF_KIND_PTR: 505 err = btf_dump_order_type(d, t->type, true); 506 tstate->order_state = ORDERED; 507 return err; 508 509 case BTF_KIND_ARRAY: 510 return btf_dump_order_type(d, btf_array(t)->type, false); 511 512 case BTF_KIND_STRUCT: 513 case BTF_KIND_UNION: { 514 const struct btf_member *m = btf_members(t); 515 /* 516 * struct/union is part of strong link, only if it's embedded 517 * (so no ptr in a path) or it's anonymous (so has to be 518 * defined inline, even if declared through ptr) 519 */ 520 if (through_ptr && t->name_off != 0) 521 return 0; 522 523 tstate->order_state = ORDERING; 524 525 vlen = btf_vlen(t); 526 for (i = 0; i < vlen; i++, m++) { 527 err = btf_dump_order_type(d, m->type, false); 528 if (err < 0) 529 return err; 530 } 531 532 if (t->name_off != 0) { 533 err = btf_dump_add_emit_queue_id(d, id); 534 if (err < 0) 535 return err; 536 } 537 538 tstate->order_state = ORDERED; 539 return 1; 540 } 541 case BTF_KIND_ENUM: 542 case BTF_KIND_ENUM64: 543 case BTF_KIND_FWD: 544 /* 545 * non-anonymous or non-referenced enums are top-level 546 * declarations and should be emitted. Same logic can be 547 * applied to FWDs, it won't hurt anyways. 548 */ 549 if (t->name_off != 0 || !tstate->referenced) { 550 err = btf_dump_add_emit_queue_id(d, id); 551 if (err) 552 return err; 553 } 554 tstate->order_state = ORDERED; 555 return 1; 556 557 case BTF_KIND_TYPEDEF: { 558 int is_strong; 559 560 is_strong = btf_dump_order_type(d, t->type, through_ptr); 561 if (is_strong < 0) 562 return is_strong; 563 564 /* typedef is similar to struct/union w.r.t. fwd-decls */ 565 if (through_ptr && !is_strong) 566 return 0; 567 568 /* typedef is always a named definition */ 569 err = btf_dump_add_emit_queue_id(d, id); 570 if (err) 571 return err; 572 573 d->type_states[id].order_state = ORDERED; 574 return 1; 575 } 576 case BTF_KIND_VOLATILE: 577 case BTF_KIND_CONST: 578 case BTF_KIND_RESTRICT: 579 case BTF_KIND_TYPE_TAG: 580 return btf_dump_order_type(d, t->type, through_ptr); 581 582 case BTF_KIND_FUNC_PROTO: { 583 const struct btf_param *p = btf_params(t); 584 bool is_strong; 585 586 err = btf_dump_order_type(d, t->type, through_ptr); 587 if (err < 0) 588 return err; 589 is_strong = err > 0; 590 591 vlen = btf_vlen(t); 592 for (i = 0; i < vlen; i++, p++) { 593 err = btf_dump_order_type(d, p->type, through_ptr); 594 if (err < 0) 595 return err; 596 if (err > 0) 597 is_strong = true; 598 } 599 return is_strong; 600 } 601 case BTF_KIND_FUNC: 602 case BTF_KIND_VAR: 603 case BTF_KIND_DATASEC: 604 case BTF_KIND_DECL_TAG: 605 d->type_states[id].order_state = ORDERED; 606 return 0; 607 608 default: 609 return -EINVAL; 610 } 611 } 612 613 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 614 const struct btf_type *t); 615 616 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 617 const struct btf_type *t); 618 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id, 619 const struct btf_type *t, int lvl); 620 621 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 622 const struct btf_type *t); 623 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 624 const struct btf_type *t, int lvl); 625 626 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 627 const struct btf_type *t); 628 629 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 630 const struct btf_type *t, int lvl); 631 632 /* a local view into a shared stack */ 633 struct id_stack { 634 const __u32 *ids; 635 int cnt; 636 }; 637 638 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 639 const char *fname, int lvl); 640 static void btf_dump_emit_type_chain(struct btf_dump *d, 641 struct id_stack *decl_stack, 642 const char *fname, int lvl); 643 644 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id); 645 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id); 646 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 647 const char *orig_name); 648 649 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id) 650 { 651 const struct btf_type *t = btf__type_by_id(d->btf, id); 652 653 /* __builtin_va_list is a compiler built-in, which causes compilation 654 * errors, when compiling w/ different compiler, then used to compile 655 * original code (e.g., GCC to compile kernel, Clang to use generated 656 * C header from BTF). As it is built-in, it should be already defined 657 * properly internally in compiler. 658 */ 659 if (t->name_off == 0) 660 return false; 661 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0; 662 } 663 664 /* 665 * Emit C-syntax definitions of types from chains of BTF types. 666 * 667 * High-level handling of determining necessary forward declarations are handled 668 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type 669 * declarations/definitions in C syntax are handled by a combo of 670 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to 671 * corresponding btf_dump_emit_*_{def,fwd}() functions. 672 * 673 * We also keep track of "containing struct/union type ID" to determine when 674 * we reference it from inside and thus can avoid emitting unnecessary forward 675 * declaration. 676 * 677 * This algorithm is designed in such a way, that even if some error occurs 678 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF 679 * that doesn't comply to C rules completely), algorithm will try to proceed 680 * and produce as much meaningful output as possible. 681 */ 682 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id) 683 { 684 struct btf_dump_type_aux_state *tstate = &d->type_states[id]; 685 bool top_level_def = cont_id == 0; 686 const struct btf_type *t; 687 __u16 kind; 688 689 if (tstate->emit_state == EMITTED) 690 return; 691 692 t = btf__type_by_id(d->btf, id); 693 kind = btf_kind(t); 694 695 if (tstate->emit_state == EMITTING) { 696 if (tstate->fwd_emitted) 697 return; 698 699 switch (kind) { 700 case BTF_KIND_STRUCT: 701 case BTF_KIND_UNION: 702 /* 703 * if we are referencing a struct/union that we are 704 * part of - then no need for fwd declaration 705 */ 706 if (id == cont_id) 707 return; 708 if (t->name_off == 0) { 709 pr_warn("anonymous struct/union loop, id:[%u]\n", 710 id); 711 return; 712 } 713 btf_dump_emit_struct_fwd(d, id, t); 714 btf_dump_printf(d, ";\n\n"); 715 tstate->fwd_emitted = 1; 716 break; 717 case BTF_KIND_TYPEDEF: 718 /* 719 * for typedef fwd_emitted means typedef definition 720 * was emitted, but it can be used only for "weak" 721 * references through pointer only, not for embedding 722 */ 723 if (!btf_dump_is_blacklisted(d, id)) { 724 btf_dump_emit_typedef_def(d, id, t, 0); 725 btf_dump_printf(d, ";\n\n"); 726 } 727 tstate->fwd_emitted = 1; 728 break; 729 default: 730 break; 731 } 732 733 return; 734 } 735 736 switch (kind) { 737 case BTF_KIND_INT: 738 /* Emit type alias definitions if necessary */ 739 btf_dump_emit_missing_aliases(d, id, t); 740 741 tstate->emit_state = EMITTED; 742 break; 743 case BTF_KIND_ENUM: 744 case BTF_KIND_ENUM64: 745 if (top_level_def) { 746 btf_dump_emit_enum_def(d, id, t, 0); 747 btf_dump_printf(d, ";\n\n"); 748 } 749 tstate->emit_state = EMITTED; 750 break; 751 case BTF_KIND_PTR: 752 case BTF_KIND_VOLATILE: 753 case BTF_KIND_CONST: 754 case BTF_KIND_RESTRICT: 755 case BTF_KIND_TYPE_TAG: 756 btf_dump_emit_type(d, t->type, cont_id); 757 break; 758 case BTF_KIND_ARRAY: 759 btf_dump_emit_type(d, btf_array(t)->type, cont_id); 760 break; 761 case BTF_KIND_FWD: 762 btf_dump_emit_fwd_def(d, id, t); 763 btf_dump_printf(d, ";\n\n"); 764 tstate->emit_state = EMITTED; 765 break; 766 case BTF_KIND_TYPEDEF: 767 tstate->emit_state = EMITTING; 768 btf_dump_emit_type(d, t->type, id); 769 /* 770 * typedef can server as both definition and forward 771 * declaration; at this stage someone depends on 772 * typedef as a forward declaration (refers to it 773 * through pointer), so unless we already did it, 774 * emit typedef as a forward declaration 775 */ 776 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) { 777 btf_dump_emit_typedef_def(d, id, t, 0); 778 btf_dump_printf(d, ";\n\n"); 779 } 780 tstate->emit_state = EMITTED; 781 break; 782 case BTF_KIND_STRUCT: 783 case BTF_KIND_UNION: 784 tstate->emit_state = EMITTING; 785 /* if it's a top-level struct/union definition or struct/union 786 * is anonymous, then in C we'll be emitting all fields and 787 * their types (as opposed to just `struct X`), so we need to 788 * make sure that all types, referenced from struct/union 789 * members have necessary forward-declarations, where 790 * applicable 791 */ 792 if (top_level_def || t->name_off == 0) { 793 const struct btf_member *m = btf_members(t); 794 __u16 vlen = btf_vlen(t); 795 int i, new_cont_id; 796 797 new_cont_id = t->name_off == 0 ? cont_id : id; 798 for (i = 0; i < vlen; i++, m++) 799 btf_dump_emit_type(d, m->type, new_cont_id); 800 } else if (!tstate->fwd_emitted && id != cont_id) { 801 btf_dump_emit_struct_fwd(d, id, t); 802 btf_dump_printf(d, ";\n\n"); 803 tstate->fwd_emitted = 1; 804 } 805 806 if (top_level_def) { 807 btf_dump_emit_struct_def(d, id, t, 0); 808 btf_dump_printf(d, ";\n\n"); 809 tstate->emit_state = EMITTED; 810 } else { 811 tstate->emit_state = NOT_EMITTED; 812 } 813 break; 814 case BTF_KIND_FUNC_PROTO: { 815 const struct btf_param *p = btf_params(t); 816 __u16 n = btf_vlen(t); 817 int i; 818 819 btf_dump_emit_type(d, t->type, cont_id); 820 for (i = 0; i < n; i++, p++) 821 btf_dump_emit_type(d, p->type, cont_id); 822 823 break; 824 } 825 default: 826 break; 827 } 828 } 829 830 static bool btf_is_struct_packed(const struct btf *btf, __u32 id, 831 const struct btf_type *t) 832 { 833 const struct btf_member *m; 834 int align, i, bit_sz; 835 __u16 vlen; 836 837 align = btf__align_of(btf, id); 838 /* size of a non-packed struct has to be a multiple of its alignment*/ 839 if (align && t->size % align) 840 return true; 841 842 m = btf_members(t); 843 vlen = btf_vlen(t); 844 /* all non-bitfield fields have to be naturally aligned */ 845 for (i = 0; i < vlen; i++, m++) { 846 align = btf__align_of(btf, m->type); 847 bit_sz = btf_member_bitfield_size(t, i); 848 if (align && bit_sz == 0 && m->offset % (8 * align) != 0) 849 return true; 850 } 851 852 /* 853 * if original struct was marked as packed, but its layout is 854 * naturally aligned, we'll detect that it's not packed 855 */ 856 return false; 857 } 858 859 static int chip_away_bits(int total, int at_most) 860 { 861 return total % at_most ? : at_most; 862 } 863 864 static void btf_dump_emit_bit_padding(const struct btf_dump *d, 865 int cur_off, int m_off, int m_bit_sz, 866 int align, int lvl) 867 { 868 int off_diff = m_off - cur_off; 869 int ptr_bits = d->ptr_sz * 8; 870 871 if (off_diff <= 0) 872 /* no gap */ 873 return; 874 if (m_bit_sz == 0 && off_diff < align * 8) 875 /* natural padding will take care of a gap */ 876 return; 877 878 while (off_diff > 0) { 879 const char *pad_type; 880 int pad_bits; 881 882 if (ptr_bits > 32 && off_diff > 32) { 883 pad_type = "long"; 884 pad_bits = chip_away_bits(off_diff, ptr_bits); 885 } else if (off_diff > 16) { 886 pad_type = "int"; 887 pad_bits = chip_away_bits(off_diff, 32); 888 } else if (off_diff > 8) { 889 pad_type = "short"; 890 pad_bits = chip_away_bits(off_diff, 16); 891 } else { 892 pad_type = "char"; 893 pad_bits = chip_away_bits(off_diff, 8); 894 } 895 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits); 896 off_diff -= pad_bits; 897 } 898 } 899 900 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id, 901 const struct btf_type *t) 902 { 903 btf_dump_printf(d, "%s%s%s", 904 btf_is_struct(t) ? "struct" : "union", 905 t->name_off ? " " : "", 906 btf_dump_type_name(d, id)); 907 } 908 909 static void btf_dump_emit_struct_def(struct btf_dump *d, 910 __u32 id, 911 const struct btf_type *t, 912 int lvl) 913 { 914 const struct btf_member *m = btf_members(t); 915 bool is_struct = btf_is_struct(t); 916 int align, i, packed, off = 0; 917 __u16 vlen = btf_vlen(t); 918 919 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0; 920 921 btf_dump_printf(d, "%s%s%s {", 922 is_struct ? "struct" : "union", 923 t->name_off ? " " : "", 924 btf_dump_type_name(d, id)); 925 926 for (i = 0; i < vlen; i++, m++) { 927 const char *fname; 928 int m_off, m_sz; 929 930 fname = btf_name_of(d, m->name_off); 931 m_sz = btf_member_bitfield_size(t, i); 932 m_off = btf_member_bit_offset(t, i); 933 align = packed ? 1 : btf__align_of(d->btf, m->type); 934 935 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1); 936 btf_dump_printf(d, "\n%s", pfx(lvl + 1)); 937 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1); 938 939 if (m_sz) { 940 btf_dump_printf(d, ": %d", m_sz); 941 off = m_off + m_sz; 942 } else { 943 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type)); 944 off = m_off + m_sz * 8; 945 } 946 btf_dump_printf(d, ";"); 947 } 948 949 /* pad at the end, if necessary */ 950 if (is_struct) { 951 align = packed ? 1 : btf__align_of(d->btf, id); 952 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align, 953 lvl + 1); 954 } 955 956 if (vlen) 957 btf_dump_printf(d, "\n"); 958 btf_dump_printf(d, "%s}", pfx(lvl)); 959 if (packed) 960 btf_dump_printf(d, " __attribute__((packed))"); 961 } 962 963 static const char *missing_base_types[][2] = { 964 /* 965 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm 966 * SIMD intrinsics. Alias them to standard base types. 967 */ 968 { "__Poly8_t", "unsigned char" }, 969 { "__Poly16_t", "unsigned short" }, 970 { "__Poly64_t", "unsigned long long" }, 971 { "__Poly128_t", "unsigned __int128" }, 972 }; 973 974 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id, 975 const struct btf_type *t) 976 { 977 const char *name = btf_dump_type_name(d, id); 978 int i; 979 980 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) { 981 if (strcmp(name, missing_base_types[i][0]) == 0) { 982 btf_dump_printf(d, "typedef %s %s;\n\n", 983 missing_base_types[i][1], name); 984 break; 985 } 986 } 987 } 988 989 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id, 990 const struct btf_type *t) 991 { 992 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id)); 993 } 994 995 static void btf_dump_emit_enum32_val(struct btf_dump *d, 996 const struct btf_type *t, 997 int lvl, __u16 vlen) 998 { 999 const struct btf_enum *v = btf_enum(t); 1000 bool is_signed = btf_kflag(t); 1001 const char *fmt_str; 1002 const char *name; 1003 size_t dup_cnt; 1004 int i; 1005 1006 for (i = 0; i < vlen; i++, v++) { 1007 name = btf_name_of(d, v->name_off); 1008 /* enumerators share namespace with typedef idents */ 1009 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1010 if (dup_cnt > 1) { 1011 fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,"; 1012 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val); 1013 } else { 1014 fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,"; 1015 btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val); 1016 } 1017 } 1018 } 1019 1020 static void btf_dump_emit_enum64_val(struct btf_dump *d, 1021 const struct btf_type *t, 1022 int lvl, __u16 vlen) 1023 { 1024 const struct btf_enum64 *v = btf_enum64(t); 1025 bool is_signed = btf_kflag(t); 1026 const char *fmt_str; 1027 const char *name; 1028 size_t dup_cnt; 1029 __u64 val; 1030 int i; 1031 1032 for (i = 0; i < vlen; i++, v++) { 1033 name = btf_name_of(d, v->name_off); 1034 dup_cnt = btf_dump_name_dups(d, d->ident_names, name); 1035 val = btf_enum64_value(v); 1036 if (dup_cnt > 1) { 1037 fmt_str = is_signed ? "\n%s%s___%zd = %lldLL," 1038 : "\n%s%s___%zd = %lluULL,"; 1039 btf_dump_printf(d, fmt_str, 1040 pfx(lvl + 1), name, dup_cnt, 1041 (unsigned long long)val); 1042 } else { 1043 fmt_str = is_signed ? "\n%s%s = %lldLL," 1044 : "\n%s%s = %lluULL,"; 1045 btf_dump_printf(d, fmt_str, 1046 pfx(lvl + 1), name, 1047 (unsigned long long)val); 1048 } 1049 } 1050 } 1051 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id, 1052 const struct btf_type *t, 1053 int lvl) 1054 { 1055 __u16 vlen = btf_vlen(t); 1056 1057 btf_dump_printf(d, "enum%s%s", 1058 t->name_off ? " " : "", 1059 btf_dump_type_name(d, id)); 1060 1061 if (!vlen) 1062 return; 1063 1064 btf_dump_printf(d, " {"); 1065 if (btf_is_enum(t)) 1066 btf_dump_emit_enum32_val(d, t, lvl, vlen); 1067 else 1068 btf_dump_emit_enum64_val(d, t, lvl, vlen); 1069 btf_dump_printf(d, "\n%s}", pfx(lvl)); 1070 } 1071 1072 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id, 1073 const struct btf_type *t) 1074 { 1075 const char *name = btf_dump_type_name(d, id); 1076 1077 if (btf_kflag(t)) 1078 btf_dump_printf(d, "union %s", name); 1079 else 1080 btf_dump_printf(d, "struct %s", name); 1081 } 1082 1083 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id, 1084 const struct btf_type *t, int lvl) 1085 { 1086 const char *name = btf_dump_ident_name(d, id); 1087 1088 /* 1089 * Old GCC versions are emitting invalid typedef for __gnuc_va_list 1090 * pointing to VOID. This generates warnings from btf_dump() and 1091 * results in uncompilable header file, so we are fixing it up here 1092 * with valid typedef into __builtin_va_list. 1093 */ 1094 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) { 1095 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list"); 1096 return; 1097 } 1098 1099 btf_dump_printf(d, "typedef "); 1100 btf_dump_emit_type_decl(d, t->type, name, lvl); 1101 } 1102 1103 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id) 1104 { 1105 __u32 *new_stack; 1106 size_t new_cap; 1107 1108 if (d->decl_stack_cnt >= d->decl_stack_cap) { 1109 new_cap = max(16, d->decl_stack_cap * 3 / 2); 1110 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0])); 1111 if (!new_stack) 1112 return -ENOMEM; 1113 d->decl_stack = new_stack; 1114 d->decl_stack_cap = new_cap; 1115 } 1116 1117 d->decl_stack[d->decl_stack_cnt++] = id; 1118 1119 return 0; 1120 } 1121 1122 /* 1123 * Emit type declaration (e.g., field type declaration in a struct or argument 1124 * declaration in function prototype) in correct C syntax. 1125 * 1126 * For most types it's trivial, but there are few quirky type declaration 1127 * cases worth mentioning: 1128 * - function prototypes (especially nesting of function prototypes); 1129 * - arrays; 1130 * - const/volatile/restrict for pointers vs other types. 1131 * 1132 * For a good discussion of *PARSING* C syntax (as a human), see 1133 * Peter van der Linden's "Expert C Programming: Deep C Secrets", 1134 * Ch.3 "Unscrambling Declarations in C". 1135 * 1136 * It won't help with BTF to C conversion much, though, as it's an opposite 1137 * problem. So we came up with this algorithm in reverse to van der Linden's 1138 * parsing algorithm. It goes from structured BTF representation of type 1139 * declaration to a valid compilable C syntax. 1140 * 1141 * For instance, consider this C typedef: 1142 * typedef const int * const * arr[10] arr_t; 1143 * It will be represented in BTF with this chain of BTF types: 1144 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int] 1145 * 1146 * Notice how [const] modifier always goes before type it modifies in BTF type 1147 * graph, but in C syntax, const/volatile/restrict modifiers are written to 1148 * the right of pointers, but to the left of other types. There are also other 1149 * quirks, like function pointers, arrays of them, functions returning other 1150 * functions, etc. 1151 * 1152 * We handle that by pushing all the types to a stack, until we hit "terminal" 1153 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on 1154 * top of a stack, modifiers are handled differently. Array/function pointers 1155 * have also wildly different syntax and how nesting of them are done. See 1156 * code for authoritative definition. 1157 * 1158 * To avoid allocating new stack for each independent chain of BTF types, we 1159 * share one bigger stack, with each chain working only on its own local view 1160 * of a stack frame. Some care is required to "pop" stack frames after 1161 * processing type declaration chain. 1162 */ 1163 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id, 1164 const struct btf_dump_emit_type_decl_opts *opts) 1165 { 1166 const char *fname; 1167 int lvl, err; 1168 1169 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts)) 1170 return libbpf_err(-EINVAL); 1171 1172 err = btf_dump_resize(d); 1173 if (err) 1174 return libbpf_err(err); 1175 1176 fname = OPTS_GET(opts, field_name, ""); 1177 lvl = OPTS_GET(opts, indent_level, 0); 1178 d->strip_mods = OPTS_GET(opts, strip_mods, false); 1179 btf_dump_emit_type_decl(d, id, fname, lvl); 1180 d->strip_mods = false; 1181 return 0; 1182 } 1183 1184 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id, 1185 const char *fname, int lvl) 1186 { 1187 struct id_stack decl_stack; 1188 const struct btf_type *t; 1189 int err, stack_start; 1190 1191 stack_start = d->decl_stack_cnt; 1192 for (;;) { 1193 t = btf__type_by_id(d->btf, id); 1194 if (d->strip_mods && btf_is_mod(t)) 1195 goto skip_mod; 1196 1197 err = btf_dump_push_decl_stack_id(d, id); 1198 if (err < 0) { 1199 /* 1200 * if we don't have enough memory for entire type decl 1201 * chain, restore stack, emit warning, and try to 1202 * proceed nevertheless 1203 */ 1204 pr_warn("not enough memory for decl stack:%d", err); 1205 d->decl_stack_cnt = stack_start; 1206 return; 1207 } 1208 skip_mod: 1209 /* VOID */ 1210 if (id == 0) 1211 break; 1212 1213 switch (btf_kind(t)) { 1214 case BTF_KIND_PTR: 1215 case BTF_KIND_VOLATILE: 1216 case BTF_KIND_CONST: 1217 case BTF_KIND_RESTRICT: 1218 case BTF_KIND_FUNC_PROTO: 1219 case BTF_KIND_TYPE_TAG: 1220 id = t->type; 1221 break; 1222 case BTF_KIND_ARRAY: 1223 id = btf_array(t)->type; 1224 break; 1225 case BTF_KIND_INT: 1226 case BTF_KIND_ENUM: 1227 case BTF_KIND_ENUM64: 1228 case BTF_KIND_FWD: 1229 case BTF_KIND_STRUCT: 1230 case BTF_KIND_UNION: 1231 case BTF_KIND_TYPEDEF: 1232 case BTF_KIND_FLOAT: 1233 goto done; 1234 default: 1235 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1236 btf_kind(t), id); 1237 goto done; 1238 } 1239 } 1240 done: 1241 /* 1242 * We might be inside a chain of declarations (e.g., array of function 1243 * pointers returning anonymous (so inlined) structs, having another 1244 * array field). Each of those needs its own "stack frame" to handle 1245 * emitting of declarations. Those stack frames are non-overlapping 1246 * portions of shared btf_dump->decl_stack. To make it a bit nicer to 1247 * handle this set of nested stacks, we create a view corresponding to 1248 * our own "stack frame" and work with it as an independent stack. 1249 * We'll need to clean up after emit_type_chain() returns, though. 1250 */ 1251 decl_stack.ids = d->decl_stack + stack_start; 1252 decl_stack.cnt = d->decl_stack_cnt - stack_start; 1253 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl); 1254 /* 1255 * emit_type_chain() guarantees that it will pop its entire decl_stack 1256 * frame before returning. But it works with a read-only view into 1257 * decl_stack, so it doesn't actually pop anything from the 1258 * perspective of shared btf_dump->decl_stack, per se. We need to 1259 * reset decl_stack state to how it was before us to avoid it growing 1260 * all the time. 1261 */ 1262 d->decl_stack_cnt = stack_start; 1263 } 1264 1265 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack) 1266 { 1267 const struct btf_type *t; 1268 __u32 id; 1269 1270 while (decl_stack->cnt) { 1271 id = decl_stack->ids[decl_stack->cnt - 1]; 1272 t = btf__type_by_id(d->btf, id); 1273 1274 switch (btf_kind(t)) { 1275 case BTF_KIND_VOLATILE: 1276 btf_dump_printf(d, "volatile "); 1277 break; 1278 case BTF_KIND_CONST: 1279 btf_dump_printf(d, "const "); 1280 break; 1281 case BTF_KIND_RESTRICT: 1282 btf_dump_printf(d, "restrict "); 1283 break; 1284 default: 1285 return; 1286 } 1287 decl_stack->cnt--; 1288 } 1289 } 1290 1291 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack) 1292 { 1293 const struct btf_type *t; 1294 __u32 id; 1295 1296 while (decl_stack->cnt) { 1297 id = decl_stack->ids[decl_stack->cnt - 1]; 1298 t = btf__type_by_id(d->btf, id); 1299 if (!btf_is_mod(t)) 1300 return; 1301 decl_stack->cnt--; 1302 } 1303 } 1304 1305 static void btf_dump_emit_name(const struct btf_dump *d, 1306 const char *name, bool last_was_ptr) 1307 { 1308 bool separate = name[0] && !last_was_ptr; 1309 1310 btf_dump_printf(d, "%s%s", separate ? " " : "", name); 1311 } 1312 1313 static void btf_dump_emit_type_chain(struct btf_dump *d, 1314 struct id_stack *decls, 1315 const char *fname, int lvl) 1316 { 1317 /* 1318 * last_was_ptr is used to determine if we need to separate pointer 1319 * asterisk (*) from previous part of type signature with space, so 1320 * that we get `int ***`, instead of `int * * *`. We default to true 1321 * for cases where we have single pointer in a chain. E.g., in ptr -> 1322 * func_proto case. func_proto will start a new emit_type_chain call 1323 * with just ptr, which should be emitted as (*) or (*<fname>), so we 1324 * don't want to prepend space for that last pointer. 1325 */ 1326 bool last_was_ptr = true; 1327 const struct btf_type *t; 1328 const char *name; 1329 __u16 kind; 1330 __u32 id; 1331 1332 while (decls->cnt) { 1333 id = decls->ids[--decls->cnt]; 1334 if (id == 0) { 1335 /* VOID is a special snowflake */ 1336 btf_dump_emit_mods(d, decls); 1337 btf_dump_printf(d, "void"); 1338 last_was_ptr = false; 1339 continue; 1340 } 1341 1342 t = btf__type_by_id(d->btf, id); 1343 kind = btf_kind(t); 1344 1345 switch (kind) { 1346 case BTF_KIND_INT: 1347 case BTF_KIND_FLOAT: 1348 btf_dump_emit_mods(d, decls); 1349 name = btf_name_of(d, t->name_off); 1350 btf_dump_printf(d, "%s", name); 1351 break; 1352 case BTF_KIND_STRUCT: 1353 case BTF_KIND_UNION: 1354 btf_dump_emit_mods(d, decls); 1355 /* inline anonymous struct/union */ 1356 if (t->name_off == 0 && !d->skip_anon_defs) 1357 btf_dump_emit_struct_def(d, id, t, lvl); 1358 else 1359 btf_dump_emit_struct_fwd(d, id, t); 1360 break; 1361 case BTF_KIND_ENUM: 1362 case BTF_KIND_ENUM64: 1363 btf_dump_emit_mods(d, decls); 1364 /* inline anonymous enum */ 1365 if (t->name_off == 0 && !d->skip_anon_defs) 1366 btf_dump_emit_enum_def(d, id, t, lvl); 1367 else 1368 btf_dump_emit_enum_fwd(d, id, t); 1369 break; 1370 case BTF_KIND_FWD: 1371 btf_dump_emit_mods(d, decls); 1372 btf_dump_emit_fwd_def(d, id, t); 1373 break; 1374 case BTF_KIND_TYPEDEF: 1375 btf_dump_emit_mods(d, decls); 1376 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id)); 1377 break; 1378 case BTF_KIND_PTR: 1379 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *"); 1380 break; 1381 case BTF_KIND_VOLATILE: 1382 btf_dump_printf(d, " volatile"); 1383 break; 1384 case BTF_KIND_CONST: 1385 btf_dump_printf(d, " const"); 1386 break; 1387 case BTF_KIND_RESTRICT: 1388 btf_dump_printf(d, " restrict"); 1389 break; 1390 case BTF_KIND_TYPE_TAG: 1391 btf_dump_emit_mods(d, decls); 1392 name = btf_name_of(d, t->name_off); 1393 btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name); 1394 break; 1395 case BTF_KIND_ARRAY: { 1396 const struct btf_array *a = btf_array(t); 1397 const struct btf_type *next_t; 1398 __u32 next_id; 1399 bool multidim; 1400 /* 1401 * GCC has a bug 1402 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354) 1403 * which causes it to emit extra const/volatile 1404 * modifiers for an array, if array's element type has 1405 * const/volatile modifiers. Clang doesn't do that. 1406 * In general, it doesn't seem very meaningful to have 1407 * a const/volatile modifier for array, so we are 1408 * going to silently skip them here. 1409 */ 1410 btf_dump_drop_mods(d, decls); 1411 1412 if (decls->cnt == 0) { 1413 btf_dump_emit_name(d, fname, last_was_ptr); 1414 btf_dump_printf(d, "[%u]", a->nelems); 1415 return; 1416 } 1417 1418 next_id = decls->ids[decls->cnt - 1]; 1419 next_t = btf__type_by_id(d->btf, next_id); 1420 multidim = btf_is_array(next_t); 1421 /* we need space if we have named non-pointer */ 1422 if (fname[0] && !last_was_ptr) 1423 btf_dump_printf(d, " "); 1424 /* no parentheses for multi-dimensional array */ 1425 if (!multidim) 1426 btf_dump_printf(d, "("); 1427 btf_dump_emit_type_chain(d, decls, fname, lvl); 1428 if (!multidim) 1429 btf_dump_printf(d, ")"); 1430 btf_dump_printf(d, "[%u]", a->nelems); 1431 return; 1432 } 1433 case BTF_KIND_FUNC_PROTO: { 1434 const struct btf_param *p = btf_params(t); 1435 __u16 vlen = btf_vlen(t); 1436 int i; 1437 1438 /* 1439 * GCC emits extra volatile qualifier for 1440 * __attribute__((noreturn)) function pointers. Clang 1441 * doesn't do it. It's a GCC quirk for backwards 1442 * compatibility with code written for GCC <2.5. So, 1443 * similarly to extra qualifiers for array, just drop 1444 * them, instead of handling them. 1445 */ 1446 btf_dump_drop_mods(d, decls); 1447 if (decls->cnt) { 1448 btf_dump_printf(d, " ("); 1449 btf_dump_emit_type_chain(d, decls, fname, lvl); 1450 btf_dump_printf(d, ")"); 1451 } else { 1452 btf_dump_emit_name(d, fname, last_was_ptr); 1453 } 1454 btf_dump_printf(d, "("); 1455 /* 1456 * Clang for BPF target generates func_proto with no 1457 * args as a func_proto with a single void arg (e.g., 1458 * `int (*f)(void)` vs just `int (*f)()`). We are 1459 * going to pretend there are no args for such case. 1460 */ 1461 if (vlen == 1 && p->type == 0) { 1462 btf_dump_printf(d, ")"); 1463 return; 1464 } 1465 1466 for (i = 0; i < vlen; i++, p++) { 1467 if (i > 0) 1468 btf_dump_printf(d, ", "); 1469 1470 /* last arg of type void is vararg */ 1471 if (i == vlen - 1 && p->type == 0) { 1472 btf_dump_printf(d, "..."); 1473 break; 1474 } 1475 1476 name = btf_name_of(d, p->name_off); 1477 btf_dump_emit_type_decl(d, p->type, name, lvl); 1478 } 1479 1480 btf_dump_printf(d, ")"); 1481 return; 1482 } 1483 default: 1484 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n", 1485 kind, id); 1486 return; 1487 } 1488 1489 last_was_ptr = kind == BTF_KIND_PTR; 1490 } 1491 1492 btf_dump_emit_name(d, fname, last_was_ptr); 1493 } 1494 1495 /* show type name as (type_name) */ 1496 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id, 1497 bool top_level) 1498 { 1499 const struct btf_type *t; 1500 1501 /* for array members, we don't bother emitting type name for each 1502 * member to avoid the redundancy of 1503 * .name = (char[4])[(char)'f',(char)'o',(char)'o',] 1504 */ 1505 if (d->typed_dump->is_array_member) 1506 return; 1507 1508 /* avoid type name specification for variable/section; it will be done 1509 * for the associated variable value(s). 1510 */ 1511 t = btf__type_by_id(d->btf, id); 1512 if (btf_is_var(t) || btf_is_datasec(t)) 1513 return; 1514 1515 if (top_level) 1516 btf_dump_printf(d, "("); 1517 1518 d->skip_anon_defs = true; 1519 d->strip_mods = true; 1520 btf_dump_emit_type_decl(d, id, "", 0); 1521 d->strip_mods = false; 1522 d->skip_anon_defs = false; 1523 1524 if (top_level) 1525 btf_dump_printf(d, ")"); 1526 } 1527 1528 /* return number of duplicates (occurrences) of a given name */ 1529 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map, 1530 const char *orig_name) 1531 { 1532 size_t dup_cnt = 0; 1533 1534 hashmap__find(name_map, orig_name, (void **)&dup_cnt); 1535 dup_cnt++; 1536 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL); 1537 1538 return dup_cnt; 1539 } 1540 1541 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id, 1542 struct hashmap *name_map) 1543 { 1544 struct btf_dump_type_aux_state *s = &d->type_states[id]; 1545 const struct btf_type *t = btf__type_by_id(d->btf, id); 1546 const char *orig_name = btf_name_of(d, t->name_off); 1547 const char **cached_name = &d->cached_names[id]; 1548 size_t dup_cnt; 1549 1550 if (t->name_off == 0) 1551 return ""; 1552 1553 if (s->name_resolved) 1554 return *cached_name ? *cached_name : orig_name; 1555 1556 if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) { 1557 s->name_resolved = 1; 1558 return orig_name; 1559 } 1560 1561 dup_cnt = btf_dump_name_dups(d, name_map, orig_name); 1562 if (dup_cnt > 1) { 1563 const size_t max_len = 256; 1564 char new_name[max_len]; 1565 1566 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt); 1567 *cached_name = strdup(new_name); 1568 } 1569 1570 s->name_resolved = 1; 1571 return *cached_name ? *cached_name : orig_name; 1572 } 1573 1574 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id) 1575 { 1576 return btf_dump_resolve_name(d, id, d->type_names); 1577 } 1578 1579 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id) 1580 { 1581 return btf_dump_resolve_name(d, id, d->ident_names); 1582 } 1583 1584 static int btf_dump_dump_type_data(struct btf_dump *d, 1585 const char *fname, 1586 const struct btf_type *t, 1587 __u32 id, 1588 const void *data, 1589 __u8 bits_offset, 1590 __u8 bit_sz); 1591 1592 static const char *btf_dump_data_newline(struct btf_dump *d) 1593 { 1594 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n"; 1595 } 1596 1597 static const char *btf_dump_data_delim(struct btf_dump *d) 1598 { 1599 return d->typed_dump->depth == 0 ? "" : ","; 1600 } 1601 1602 static void btf_dump_data_pfx(struct btf_dump *d) 1603 { 1604 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth; 1605 1606 if (d->typed_dump->compact) 1607 return; 1608 1609 for (i = 0; i < lvl; i++) 1610 btf_dump_printf(d, "%s", d->typed_dump->indent_str); 1611 } 1612 1613 /* A macro is used here as btf_type_value[s]() appends format specifiers 1614 * to the format specifier passed in; these do the work of appending 1615 * delimiters etc while the caller simply has to specify the type values 1616 * in the format specifier + value(s). 1617 */ 1618 #define btf_dump_type_values(d, fmt, ...) \ 1619 btf_dump_printf(d, fmt "%s%s", \ 1620 ##__VA_ARGS__, \ 1621 btf_dump_data_delim(d), \ 1622 btf_dump_data_newline(d)) 1623 1624 static int btf_dump_unsupported_data(struct btf_dump *d, 1625 const struct btf_type *t, 1626 __u32 id) 1627 { 1628 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t)); 1629 return -ENOTSUP; 1630 } 1631 1632 static int btf_dump_get_bitfield_value(struct btf_dump *d, 1633 const struct btf_type *t, 1634 const void *data, 1635 __u8 bits_offset, 1636 __u8 bit_sz, 1637 __u64 *value) 1638 { 1639 __u16 left_shift_bits, right_shift_bits; 1640 const __u8 *bytes = data; 1641 __u8 nr_copy_bits; 1642 __u64 num = 0; 1643 int i; 1644 1645 /* Maximum supported bitfield size is 64 bits */ 1646 if (t->size > 8) { 1647 pr_warn("unexpected bitfield size %d\n", t->size); 1648 return -EINVAL; 1649 } 1650 1651 /* Bitfield value retrieval is done in two steps; first relevant bytes are 1652 * stored in num, then we left/right shift num to eliminate irrelevant bits. 1653 */ 1654 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1655 for (i = t->size - 1; i >= 0; i--) 1656 num = num * 256 + bytes[i]; 1657 nr_copy_bits = bit_sz + bits_offset; 1658 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1659 for (i = 0; i < t->size; i++) 1660 num = num * 256 + bytes[i]; 1661 nr_copy_bits = t->size * 8 - bits_offset; 1662 #else 1663 # error "Unrecognized __BYTE_ORDER__" 1664 #endif 1665 left_shift_bits = 64 - nr_copy_bits; 1666 right_shift_bits = 64 - bit_sz; 1667 1668 *value = (num << left_shift_bits) >> right_shift_bits; 1669 1670 return 0; 1671 } 1672 1673 static int btf_dump_bitfield_check_zero(struct btf_dump *d, 1674 const struct btf_type *t, 1675 const void *data, 1676 __u8 bits_offset, 1677 __u8 bit_sz) 1678 { 1679 __u64 check_num; 1680 int err; 1681 1682 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num); 1683 if (err) 1684 return err; 1685 if (check_num == 0) 1686 return -ENODATA; 1687 return 0; 1688 } 1689 1690 static int btf_dump_bitfield_data(struct btf_dump *d, 1691 const struct btf_type *t, 1692 const void *data, 1693 __u8 bits_offset, 1694 __u8 bit_sz) 1695 { 1696 __u64 print_num; 1697 int err; 1698 1699 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num); 1700 if (err) 1701 return err; 1702 1703 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num); 1704 1705 return 0; 1706 } 1707 1708 /* ints, floats and ptrs */ 1709 static int btf_dump_base_type_check_zero(struct btf_dump *d, 1710 const struct btf_type *t, 1711 __u32 id, 1712 const void *data) 1713 { 1714 static __u8 bytecmp[16] = {}; 1715 int nr_bytes; 1716 1717 /* For pointer types, pointer size is not defined on a per-type basis. 1718 * On dump creation however, we store the pointer size. 1719 */ 1720 if (btf_kind(t) == BTF_KIND_PTR) 1721 nr_bytes = d->ptr_sz; 1722 else 1723 nr_bytes = t->size; 1724 1725 if (nr_bytes < 1 || nr_bytes > 16) { 1726 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id); 1727 return -EINVAL; 1728 } 1729 1730 if (memcmp(data, bytecmp, nr_bytes) == 0) 1731 return -ENODATA; 1732 return 0; 1733 } 1734 1735 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id, 1736 const void *data) 1737 { 1738 int alignment = btf__align_of(btf, type_id); 1739 1740 if (alignment == 0) 1741 return false; 1742 1743 return ((uintptr_t)data) % alignment == 0; 1744 } 1745 1746 static int btf_dump_int_data(struct btf_dump *d, 1747 const struct btf_type *t, 1748 __u32 type_id, 1749 const void *data, 1750 __u8 bits_offset) 1751 { 1752 __u8 encoding = btf_int_encoding(t); 1753 bool sign = encoding & BTF_INT_SIGNED; 1754 char buf[16] __attribute__((aligned(16))); 1755 int sz = t->size; 1756 1757 if (sz == 0 || sz > sizeof(buf)) { 1758 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1759 return -EINVAL; 1760 } 1761 1762 /* handle packed int data - accesses of integers not aligned on 1763 * int boundaries can cause problems on some platforms. 1764 */ 1765 if (!ptr_is_aligned(d->btf, type_id, data)) { 1766 memcpy(buf, data, sz); 1767 data = buf; 1768 } 1769 1770 switch (sz) { 1771 case 16: { 1772 const __u64 *ints = data; 1773 __u64 lsi, msi; 1774 1775 /* avoid use of __int128 as some 32-bit platforms do not 1776 * support it. 1777 */ 1778 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1779 lsi = ints[0]; 1780 msi = ints[1]; 1781 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1782 lsi = ints[1]; 1783 msi = ints[0]; 1784 #else 1785 # error "Unrecognized __BYTE_ORDER__" 1786 #endif 1787 if (msi == 0) 1788 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi); 1789 else 1790 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi, 1791 (unsigned long long)lsi); 1792 break; 1793 } 1794 case 8: 1795 if (sign) 1796 btf_dump_type_values(d, "%lld", *(long long *)data); 1797 else 1798 btf_dump_type_values(d, "%llu", *(unsigned long long *)data); 1799 break; 1800 case 4: 1801 if (sign) 1802 btf_dump_type_values(d, "%d", *(__s32 *)data); 1803 else 1804 btf_dump_type_values(d, "%u", *(__u32 *)data); 1805 break; 1806 case 2: 1807 if (sign) 1808 btf_dump_type_values(d, "%d", *(__s16 *)data); 1809 else 1810 btf_dump_type_values(d, "%u", *(__u16 *)data); 1811 break; 1812 case 1: 1813 if (d->typed_dump->is_array_char) { 1814 /* check for null terminator */ 1815 if (d->typed_dump->is_array_terminated) 1816 break; 1817 if (*(char *)data == '\0') { 1818 d->typed_dump->is_array_terminated = true; 1819 break; 1820 } 1821 if (isprint(*(char *)data)) { 1822 btf_dump_type_values(d, "'%c'", *(char *)data); 1823 break; 1824 } 1825 } 1826 if (sign) 1827 btf_dump_type_values(d, "%d", *(__s8 *)data); 1828 else 1829 btf_dump_type_values(d, "%u", *(__u8 *)data); 1830 break; 1831 default: 1832 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id); 1833 return -EINVAL; 1834 } 1835 return 0; 1836 } 1837 1838 union float_data { 1839 long double ld; 1840 double d; 1841 float f; 1842 }; 1843 1844 static int btf_dump_float_data(struct btf_dump *d, 1845 const struct btf_type *t, 1846 __u32 type_id, 1847 const void *data) 1848 { 1849 const union float_data *flp = data; 1850 union float_data fl; 1851 int sz = t->size; 1852 1853 /* handle unaligned data; copy to local union */ 1854 if (!ptr_is_aligned(d->btf, type_id, data)) { 1855 memcpy(&fl, data, sz); 1856 flp = &fl; 1857 } 1858 1859 switch (sz) { 1860 case 16: 1861 btf_dump_type_values(d, "%Lf", flp->ld); 1862 break; 1863 case 8: 1864 btf_dump_type_values(d, "%lf", flp->d); 1865 break; 1866 case 4: 1867 btf_dump_type_values(d, "%f", flp->f); 1868 break; 1869 default: 1870 pr_warn("unexpected size %d for id [%u]\n", sz, type_id); 1871 return -EINVAL; 1872 } 1873 return 0; 1874 } 1875 1876 static int btf_dump_var_data(struct btf_dump *d, 1877 const struct btf_type *v, 1878 __u32 id, 1879 const void *data) 1880 { 1881 enum btf_func_linkage linkage = btf_var(v)->linkage; 1882 const struct btf_type *t; 1883 const char *l; 1884 __u32 type_id; 1885 1886 switch (linkage) { 1887 case BTF_FUNC_STATIC: 1888 l = "static "; 1889 break; 1890 case BTF_FUNC_EXTERN: 1891 l = "extern "; 1892 break; 1893 case BTF_FUNC_GLOBAL: 1894 default: 1895 l = ""; 1896 break; 1897 } 1898 1899 /* format of output here is [linkage] [type] [varname] = (type)value, 1900 * for example "static int cpu_profile_flip = (int)1" 1901 */ 1902 btf_dump_printf(d, "%s", l); 1903 type_id = v->type; 1904 t = btf__type_by_id(d->btf, type_id); 1905 btf_dump_emit_type_cast(d, type_id, false); 1906 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off)); 1907 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0); 1908 } 1909 1910 static int btf_dump_array_data(struct btf_dump *d, 1911 const struct btf_type *t, 1912 __u32 id, 1913 const void *data) 1914 { 1915 const struct btf_array *array = btf_array(t); 1916 const struct btf_type *elem_type; 1917 __u32 i, elem_type_id; 1918 __s64 elem_size; 1919 bool is_array_member; 1920 1921 elem_type_id = array->type; 1922 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 1923 elem_size = btf__resolve_size(d->btf, elem_type_id); 1924 if (elem_size <= 0) { 1925 pr_warn("unexpected elem size %zd for array type [%u]\n", 1926 (ssize_t)elem_size, id); 1927 return -EINVAL; 1928 } 1929 1930 if (btf_is_int(elem_type)) { 1931 /* 1932 * BTF_INT_CHAR encoding never seems to be set for 1933 * char arrays, so if size is 1 and element is 1934 * printable as a char, we'll do that. 1935 */ 1936 if (elem_size == 1) 1937 d->typed_dump->is_array_char = true; 1938 } 1939 1940 /* note that we increment depth before calling btf_dump_print() below; 1941 * this is intentional. btf_dump_data_newline() will not print a 1942 * newline for depth 0 (since this leaves us with trailing newlines 1943 * at the end of typed display), so depth is incremented first. 1944 * For similar reasons, we decrement depth before showing the closing 1945 * parenthesis. 1946 */ 1947 d->typed_dump->depth++; 1948 btf_dump_printf(d, "[%s", btf_dump_data_newline(d)); 1949 1950 /* may be a multidimensional array, so store current "is array member" 1951 * status so we can restore it correctly later. 1952 */ 1953 is_array_member = d->typed_dump->is_array_member; 1954 d->typed_dump->is_array_member = true; 1955 for (i = 0; i < array->nelems; i++, data += elem_size) { 1956 if (d->typed_dump->is_array_terminated) 1957 break; 1958 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0); 1959 } 1960 d->typed_dump->is_array_member = is_array_member; 1961 d->typed_dump->depth--; 1962 btf_dump_data_pfx(d); 1963 btf_dump_type_values(d, "]"); 1964 1965 return 0; 1966 } 1967 1968 static int btf_dump_struct_data(struct btf_dump *d, 1969 const struct btf_type *t, 1970 __u32 id, 1971 const void *data) 1972 { 1973 const struct btf_member *m = btf_members(t); 1974 __u16 n = btf_vlen(t); 1975 int i, err; 1976 1977 /* note that we increment depth before calling btf_dump_print() below; 1978 * this is intentional. btf_dump_data_newline() will not print a 1979 * newline for depth 0 (since this leaves us with trailing newlines 1980 * at the end of typed display), so depth is incremented first. 1981 * For similar reasons, we decrement depth before showing the closing 1982 * parenthesis. 1983 */ 1984 d->typed_dump->depth++; 1985 btf_dump_printf(d, "{%s", btf_dump_data_newline(d)); 1986 1987 for (i = 0; i < n; i++, m++) { 1988 const struct btf_type *mtype; 1989 const char *mname; 1990 __u32 moffset; 1991 __u8 bit_sz; 1992 1993 mtype = btf__type_by_id(d->btf, m->type); 1994 mname = btf_name_of(d, m->name_off); 1995 moffset = btf_member_bit_offset(t, i); 1996 1997 bit_sz = btf_member_bitfield_size(t, i); 1998 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8, 1999 moffset % 8, bit_sz); 2000 if (err < 0) 2001 return err; 2002 } 2003 d->typed_dump->depth--; 2004 btf_dump_data_pfx(d); 2005 btf_dump_type_values(d, "}"); 2006 return err; 2007 } 2008 2009 union ptr_data { 2010 unsigned int p; 2011 unsigned long long lp; 2012 }; 2013 2014 static int btf_dump_ptr_data(struct btf_dump *d, 2015 const struct btf_type *t, 2016 __u32 id, 2017 const void *data) 2018 { 2019 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) { 2020 btf_dump_type_values(d, "%p", *(void **)data); 2021 } else { 2022 union ptr_data pt; 2023 2024 memcpy(&pt, data, d->ptr_sz); 2025 if (d->ptr_sz == 4) 2026 btf_dump_type_values(d, "0x%x", pt.p); 2027 else 2028 btf_dump_type_values(d, "0x%llx", pt.lp); 2029 } 2030 return 0; 2031 } 2032 2033 static int btf_dump_get_enum_value(struct btf_dump *d, 2034 const struct btf_type *t, 2035 const void *data, 2036 __u32 id, 2037 __s64 *value) 2038 { 2039 bool is_signed = btf_kflag(t); 2040 2041 if (!ptr_is_aligned(d->btf, id, data)) { 2042 __u64 val; 2043 int err; 2044 2045 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val); 2046 if (err) 2047 return err; 2048 *value = (__s64)val; 2049 return 0; 2050 } 2051 2052 switch (t->size) { 2053 case 8: 2054 *value = *(__s64 *)data; 2055 return 0; 2056 case 4: 2057 *value = is_signed ? *(__s32 *)data : *(__u32 *)data; 2058 return 0; 2059 case 2: 2060 *value = is_signed ? *(__s16 *)data : *(__u16 *)data; 2061 return 0; 2062 case 1: 2063 *value = is_signed ? *(__s8 *)data : *(__u8 *)data; 2064 return 0; 2065 default: 2066 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id); 2067 return -EINVAL; 2068 } 2069 } 2070 2071 static int btf_dump_enum_data(struct btf_dump *d, 2072 const struct btf_type *t, 2073 __u32 id, 2074 const void *data) 2075 { 2076 bool is_signed; 2077 __s64 value; 2078 int i, err; 2079 2080 err = btf_dump_get_enum_value(d, t, data, id, &value); 2081 if (err) 2082 return err; 2083 2084 is_signed = btf_kflag(t); 2085 if (btf_is_enum(t)) { 2086 const struct btf_enum *e; 2087 2088 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) { 2089 if (value != e->val) 2090 continue; 2091 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2092 return 0; 2093 } 2094 2095 btf_dump_type_values(d, is_signed ? "%d" : "%u", value); 2096 } else { 2097 const struct btf_enum64 *e; 2098 2099 for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) { 2100 if (value != btf_enum64_value(e)) 2101 continue; 2102 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off)); 2103 return 0; 2104 } 2105 2106 btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL", 2107 (unsigned long long)value); 2108 } 2109 return 0; 2110 } 2111 2112 static int btf_dump_datasec_data(struct btf_dump *d, 2113 const struct btf_type *t, 2114 __u32 id, 2115 const void *data) 2116 { 2117 const struct btf_var_secinfo *vsi; 2118 const struct btf_type *var; 2119 __u32 i; 2120 int err; 2121 2122 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off)); 2123 2124 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) { 2125 var = btf__type_by_id(d->btf, vsi->type); 2126 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0); 2127 if (err < 0) 2128 return err; 2129 btf_dump_printf(d, ";"); 2130 } 2131 return 0; 2132 } 2133 2134 /* return size of type, or if base type overflows, return -E2BIG. */ 2135 static int btf_dump_type_data_check_overflow(struct btf_dump *d, 2136 const struct btf_type *t, 2137 __u32 id, 2138 const void *data, 2139 __u8 bits_offset) 2140 { 2141 __s64 size = btf__resolve_size(d->btf, id); 2142 2143 if (size < 0 || size >= INT_MAX) { 2144 pr_warn("unexpected size [%zu] for id [%u]\n", 2145 (size_t)size, id); 2146 return -EINVAL; 2147 } 2148 2149 /* Only do overflow checking for base types; we do not want to 2150 * avoid showing part of a struct, union or array, even if we 2151 * do not have enough data to show the full object. By 2152 * restricting overflow checking to base types we can ensure 2153 * that partial display succeeds, while avoiding overflowing 2154 * and using bogus data for display. 2155 */ 2156 t = skip_mods_and_typedefs(d->btf, id, NULL); 2157 if (!t) { 2158 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n", 2159 id); 2160 return -EINVAL; 2161 } 2162 2163 switch (btf_kind(t)) { 2164 case BTF_KIND_INT: 2165 case BTF_KIND_FLOAT: 2166 case BTF_KIND_PTR: 2167 case BTF_KIND_ENUM: 2168 case BTF_KIND_ENUM64: 2169 if (data + bits_offset / 8 + size > d->typed_dump->data_end) 2170 return -E2BIG; 2171 break; 2172 default: 2173 break; 2174 } 2175 return (int)size; 2176 } 2177 2178 static int btf_dump_type_data_check_zero(struct btf_dump *d, 2179 const struct btf_type *t, 2180 __u32 id, 2181 const void *data, 2182 __u8 bits_offset, 2183 __u8 bit_sz) 2184 { 2185 __s64 value; 2186 int i, err; 2187 2188 /* toplevel exceptions; we show zero values if 2189 * - we ask for them (emit_zeros) 2190 * - if we are at top-level so we see "struct empty { }" 2191 * - or if we are an array member and the array is non-empty and 2192 * not a char array; we don't want to be in a situation where we 2193 * have an integer array 0, 1, 0, 1 and only show non-zero values. 2194 * If the array contains zeroes only, or is a char array starting 2195 * with a '\0', the array-level check_zero() will prevent showing it; 2196 * we are concerned with determining zero value at the array member 2197 * level here. 2198 */ 2199 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 || 2200 (d->typed_dump->is_array_member && 2201 !d->typed_dump->is_array_char)) 2202 return 0; 2203 2204 t = skip_mods_and_typedefs(d->btf, id, NULL); 2205 2206 switch (btf_kind(t)) { 2207 case BTF_KIND_INT: 2208 if (bit_sz) 2209 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz); 2210 return btf_dump_base_type_check_zero(d, t, id, data); 2211 case BTF_KIND_FLOAT: 2212 case BTF_KIND_PTR: 2213 return btf_dump_base_type_check_zero(d, t, id, data); 2214 case BTF_KIND_ARRAY: { 2215 const struct btf_array *array = btf_array(t); 2216 const struct btf_type *elem_type; 2217 __u32 elem_type_id, elem_size; 2218 bool ischar; 2219 2220 elem_type_id = array->type; 2221 elem_size = btf__resolve_size(d->btf, elem_type_id); 2222 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL); 2223 2224 ischar = btf_is_int(elem_type) && elem_size == 1; 2225 2226 /* check all elements; if _any_ element is nonzero, all 2227 * of array is displayed. We make an exception however 2228 * for char arrays where the first element is 0; these 2229 * are considered zeroed also, even if later elements are 2230 * non-zero because the string is terminated. 2231 */ 2232 for (i = 0; i < array->nelems; i++) { 2233 if (i == 0 && ischar && *(char *)data == 0) 2234 return -ENODATA; 2235 err = btf_dump_type_data_check_zero(d, elem_type, 2236 elem_type_id, 2237 data + 2238 (i * elem_size), 2239 bits_offset, 0); 2240 if (err != -ENODATA) 2241 return err; 2242 } 2243 return -ENODATA; 2244 } 2245 case BTF_KIND_STRUCT: 2246 case BTF_KIND_UNION: { 2247 const struct btf_member *m = btf_members(t); 2248 __u16 n = btf_vlen(t); 2249 2250 /* if any struct/union member is non-zero, the struct/union 2251 * is considered non-zero and dumped. 2252 */ 2253 for (i = 0; i < n; i++, m++) { 2254 const struct btf_type *mtype; 2255 __u32 moffset; 2256 2257 mtype = btf__type_by_id(d->btf, m->type); 2258 moffset = btf_member_bit_offset(t, i); 2259 2260 /* btf_int_bits() does not store member bitfield size; 2261 * bitfield size needs to be stored here so int display 2262 * of member can retrieve it. 2263 */ 2264 bit_sz = btf_member_bitfield_size(t, i); 2265 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8, 2266 moffset % 8, bit_sz); 2267 if (err != ENODATA) 2268 return err; 2269 } 2270 return -ENODATA; 2271 } 2272 case BTF_KIND_ENUM: 2273 case BTF_KIND_ENUM64: 2274 err = btf_dump_get_enum_value(d, t, data, id, &value); 2275 if (err) 2276 return err; 2277 if (value == 0) 2278 return -ENODATA; 2279 return 0; 2280 default: 2281 return 0; 2282 } 2283 } 2284 2285 /* returns size of data dumped, or error. */ 2286 static int btf_dump_dump_type_data(struct btf_dump *d, 2287 const char *fname, 2288 const struct btf_type *t, 2289 __u32 id, 2290 const void *data, 2291 __u8 bits_offset, 2292 __u8 bit_sz) 2293 { 2294 int size, err = 0; 2295 2296 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset); 2297 if (size < 0) 2298 return size; 2299 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz); 2300 if (err) { 2301 /* zeroed data is expected and not an error, so simply skip 2302 * dumping such data. Record other errors however. 2303 */ 2304 if (err == -ENODATA) 2305 return size; 2306 return err; 2307 } 2308 btf_dump_data_pfx(d); 2309 2310 if (!d->typed_dump->skip_names) { 2311 if (fname && strlen(fname) > 0) 2312 btf_dump_printf(d, ".%s = ", fname); 2313 btf_dump_emit_type_cast(d, id, true); 2314 } 2315 2316 t = skip_mods_and_typedefs(d->btf, id, NULL); 2317 2318 switch (btf_kind(t)) { 2319 case BTF_KIND_UNKN: 2320 case BTF_KIND_FWD: 2321 case BTF_KIND_FUNC: 2322 case BTF_KIND_FUNC_PROTO: 2323 case BTF_KIND_DECL_TAG: 2324 err = btf_dump_unsupported_data(d, t, id); 2325 break; 2326 case BTF_KIND_INT: 2327 if (bit_sz) 2328 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz); 2329 else 2330 err = btf_dump_int_data(d, t, id, data, bits_offset); 2331 break; 2332 case BTF_KIND_FLOAT: 2333 err = btf_dump_float_data(d, t, id, data); 2334 break; 2335 case BTF_KIND_PTR: 2336 err = btf_dump_ptr_data(d, t, id, data); 2337 break; 2338 case BTF_KIND_ARRAY: 2339 err = btf_dump_array_data(d, t, id, data); 2340 break; 2341 case BTF_KIND_STRUCT: 2342 case BTF_KIND_UNION: 2343 err = btf_dump_struct_data(d, t, id, data); 2344 break; 2345 case BTF_KIND_ENUM: 2346 case BTF_KIND_ENUM64: 2347 /* handle bitfield and int enum values */ 2348 if (bit_sz) { 2349 __u64 print_num; 2350 __s64 enum_val; 2351 2352 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, 2353 &print_num); 2354 if (err) 2355 break; 2356 enum_val = (__s64)print_num; 2357 err = btf_dump_enum_data(d, t, id, &enum_val); 2358 } else 2359 err = btf_dump_enum_data(d, t, id, data); 2360 break; 2361 case BTF_KIND_VAR: 2362 err = btf_dump_var_data(d, t, id, data); 2363 break; 2364 case BTF_KIND_DATASEC: 2365 err = btf_dump_datasec_data(d, t, id, data); 2366 break; 2367 default: 2368 pr_warn("unexpected kind [%u] for id [%u]\n", 2369 BTF_INFO_KIND(t->info), id); 2370 return -EINVAL; 2371 } 2372 if (err < 0) 2373 return err; 2374 return size; 2375 } 2376 2377 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id, 2378 const void *data, size_t data_sz, 2379 const struct btf_dump_type_data_opts *opts) 2380 { 2381 struct btf_dump_data typed_dump = {}; 2382 const struct btf_type *t; 2383 int ret; 2384 2385 if (!OPTS_VALID(opts, btf_dump_type_data_opts)) 2386 return libbpf_err(-EINVAL); 2387 2388 t = btf__type_by_id(d->btf, id); 2389 if (!t) 2390 return libbpf_err(-ENOENT); 2391 2392 d->typed_dump = &typed_dump; 2393 d->typed_dump->data_end = data + data_sz; 2394 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0); 2395 2396 /* default indent string is a tab */ 2397 if (!opts->indent_str) 2398 d->typed_dump->indent_str[0] = '\t'; 2399 else 2400 libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str, 2401 sizeof(d->typed_dump->indent_str)); 2402 2403 d->typed_dump->compact = OPTS_GET(opts, compact, false); 2404 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false); 2405 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false); 2406 2407 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0); 2408 2409 d->typed_dump = NULL; 2410 2411 return libbpf_err(ret); 2412 } 2413