xref: /openbmc/linux/tools/lib/bpf/btf_dump.c (revision 2634682f)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <errno.h>
14 #include <linux/err.h>
15 #include <linux/btf.h>
16 #include <linux/kernel.h>
17 #include "btf.h"
18 #include "hashmap.h"
19 #include "libbpf.h"
20 #include "libbpf_internal.h"
21 
22 /* make sure libbpf doesn't use kernel-only integer typedefs */
23 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64
24 
25 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
26 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
27 
28 static const char *pfx(int lvl)
29 {
30 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
31 }
32 
33 enum btf_dump_type_order_state {
34 	NOT_ORDERED,
35 	ORDERING,
36 	ORDERED,
37 };
38 
39 enum btf_dump_type_emit_state {
40 	NOT_EMITTED,
41 	EMITTING,
42 	EMITTED,
43 };
44 
45 /* per-type auxiliary state */
46 struct btf_dump_type_aux_state {
47 	/* topological sorting state */
48 	enum btf_dump_type_order_state order_state: 2;
49 	/* emitting state used to determine the need for forward declaration */
50 	enum btf_dump_type_emit_state emit_state: 2;
51 	/* whether forward declaration was already emitted */
52 	__u8 fwd_emitted: 1;
53 	/* whether unique non-duplicate name was already assigned */
54 	__u8 name_resolved: 1;
55 	/* whether type is referenced from any other type */
56 	__u8 referenced: 1;
57 };
58 
59 struct btf_dump {
60 	const struct btf *btf;
61 	const struct btf_ext *btf_ext;
62 	btf_dump_printf_fn_t printf_fn;
63 	struct btf_dump_opts opts;
64 	int ptr_sz;
65 	bool strip_mods;
66 
67 	/* per-type auxiliary state */
68 	struct btf_dump_type_aux_state *type_states;
69 	/* per-type optional cached unique name, must be freed, if present */
70 	const char **cached_names;
71 
72 	/* topo-sorted list of dependent type definitions */
73 	__u32 *emit_queue;
74 	int emit_queue_cap;
75 	int emit_queue_cnt;
76 
77 	/*
78 	 * stack of type declarations (e.g., chain of modifiers, arrays,
79 	 * funcs, etc)
80 	 */
81 	__u32 *decl_stack;
82 	int decl_stack_cap;
83 	int decl_stack_cnt;
84 
85 	/* maps struct/union/enum name to a number of name occurrences */
86 	struct hashmap *type_names;
87 	/*
88 	 * maps typedef identifiers and enum value names to a number of such
89 	 * name occurrences
90 	 */
91 	struct hashmap *ident_names;
92 };
93 
94 static size_t str_hash_fn(const void *key, void *ctx)
95 {
96 	const char *s = key;
97 	size_t h = 0;
98 
99 	while (*s) {
100 		h = h * 31 + *s;
101 		s++;
102 	}
103 	return h;
104 }
105 
106 static bool str_equal_fn(const void *a, const void *b, void *ctx)
107 {
108 	return strcmp(a, b) == 0;
109 }
110 
111 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
112 {
113 	return btf__name_by_offset(d->btf, name_off);
114 }
115 
116 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
117 {
118 	va_list args;
119 
120 	va_start(args, fmt);
121 	d->printf_fn(d->opts.ctx, fmt, args);
122 	va_end(args);
123 }
124 
125 static int btf_dump_mark_referenced(struct btf_dump *d);
126 
127 struct btf_dump *btf_dump__new(const struct btf *btf,
128 			       const struct btf_ext *btf_ext,
129 			       const struct btf_dump_opts *opts,
130 			       btf_dump_printf_fn_t printf_fn)
131 {
132 	struct btf_dump *d;
133 	int err;
134 
135 	d = calloc(1, sizeof(struct btf_dump));
136 	if (!d)
137 		return ERR_PTR(-ENOMEM);
138 
139 	d->btf = btf;
140 	d->btf_ext = btf_ext;
141 	d->printf_fn = printf_fn;
142 	d->opts.ctx = opts ? opts->ctx : NULL;
143 	d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
144 
145 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
146 	if (IS_ERR(d->type_names)) {
147 		err = PTR_ERR(d->type_names);
148 		d->type_names = NULL;
149 		goto err;
150 	}
151 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
152 	if (IS_ERR(d->ident_names)) {
153 		err = PTR_ERR(d->ident_names);
154 		d->ident_names = NULL;
155 		goto err;
156 	}
157 	d->type_states = calloc(1 + btf__get_nr_types(d->btf),
158 				sizeof(d->type_states[0]));
159 	if (!d->type_states) {
160 		err = -ENOMEM;
161 		goto err;
162 	}
163 	d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
164 				 sizeof(d->cached_names[0]));
165 	if (!d->cached_names) {
166 		err = -ENOMEM;
167 		goto err;
168 	}
169 
170 	/* VOID is special */
171 	d->type_states[0].order_state = ORDERED;
172 	d->type_states[0].emit_state = EMITTED;
173 
174 	/* eagerly determine referenced types for anon enums */
175 	err = btf_dump_mark_referenced(d);
176 	if (err)
177 		goto err;
178 
179 	return d;
180 err:
181 	btf_dump__free(d);
182 	return ERR_PTR(err);
183 }
184 
185 void btf_dump__free(struct btf_dump *d)
186 {
187 	int i, cnt;
188 
189 	if (IS_ERR_OR_NULL(d))
190 		return;
191 
192 	free(d->type_states);
193 	if (d->cached_names) {
194 		/* any set cached name is owned by us and should be freed */
195 		for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
196 			if (d->cached_names[i])
197 				free((void *)d->cached_names[i]);
198 		}
199 	}
200 	free(d->cached_names);
201 	free(d->emit_queue);
202 	free(d->decl_stack);
203 	hashmap__free(d->type_names);
204 	hashmap__free(d->ident_names);
205 
206 	free(d);
207 }
208 
209 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
210 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
211 
212 /*
213  * Dump BTF type in a compilable C syntax, including all the necessary
214  * dependent types, necessary for compilation. If some of the dependent types
215  * were already emitted as part of previous btf_dump__dump_type() invocation
216  * for another type, they won't be emitted again. This API allows callers to
217  * filter out BTF types according to user-defined criterias and emitted only
218  * minimal subset of types, necessary to compile everything. Full struct/union
219  * definitions will still be emitted, even if the only usage is through
220  * pointer and could be satisfied with just a forward declaration.
221  *
222  * Dumping is done in two high-level passes:
223  *   1. Topologically sort type definitions to satisfy C rules of compilation.
224  *   2. Emit type definitions in C syntax.
225  *
226  * Returns 0 on success; <0, otherwise.
227  */
228 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
229 {
230 	int err, i;
231 
232 	if (id > btf__get_nr_types(d->btf))
233 		return -EINVAL;
234 
235 	d->emit_queue_cnt = 0;
236 	err = btf_dump_order_type(d, id, false);
237 	if (err < 0)
238 		return err;
239 
240 	for (i = 0; i < d->emit_queue_cnt; i++)
241 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
242 
243 	return 0;
244 }
245 
246 /*
247  * Mark all types that are referenced from any other type. This is used to
248  * determine top-level anonymous enums that need to be emitted as an
249  * independent type declarations.
250  * Anonymous enums come in two flavors: either embedded in a struct's field
251  * definition, in which case they have to be declared inline as part of field
252  * type declaration; or as a top-level anonymous enum, typically used for
253  * declaring global constants. It's impossible to distinguish between two
254  * without knowning whether given enum type was referenced from other type:
255  * top-level anonymous enum won't be referenced by anything, while embedded
256  * one will.
257  */
258 static int btf_dump_mark_referenced(struct btf_dump *d)
259 {
260 	int i, j, n = btf__get_nr_types(d->btf);
261 	const struct btf_type *t;
262 	__u16 vlen;
263 
264 	for (i = 1; i <= n; i++) {
265 		t = btf__type_by_id(d->btf, i);
266 		vlen = btf_vlen(t);
267 
268 		switch (btf_kind(t)) {
269 		case BTF_KIND_INT:
270 		case BTF_KIND_ENUM:
271 		case BTF_KIND_FWD:
272 			break;
273 
274 		case BTF_KIND_VOLATILE:
275 		case BTF_KIND_CONST:
276 		case BTF_KIND_RESTRICT:
277 		case BTF_KIND_PTR:
278 		case BTF_KIND_TYPEDEF:
279 		case BTF_KIND_FUNC:
280 		case BTF_KIND_VAR:
281 			d->type_states[t->type].referenced = 1;
282 			break;
283 
284 		case BTF_KIND_ARRAY: {
285 			const struct btf_array *a = btf_array(t);
286 
287 			d->type_states[a->index_type].referenced = 1;
288 			d->type_states[a->type].referenced = 1;
289 			break;
290 		}
291 		case BTF_KIND_STRUCT:
292 		case BTF_KIND_UNION: {
293 			const struct btf_member *m = btf_members(t);
294 
295 			for (j = 0; j < vlen; j++, m++)
296 				d->type_states[m->type].referenced = 1;
297 			break;
298 		}
299 		case BTF_KIND_FUNC_PROTO: {
300 			const struct btf_param *p = btf_params(t);
301 
302 			for (j = 0; j < vlen; j++, p++)
303 				d->type_states[p->type].referenced = 1;
304 			break;
305 		}
306 		case BTF_KIND_DATASEC: {
307 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
308 
309 			for (j = 0; j < vlen; j++, v++)
310 				d->type_states[v->type].referenced = 1;
311 			break;
312 		}
313 		default:
314 			return -EINVAL;
315 		}
316 	}
317 	return 0;
318 }
319 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
320 {
321 	__u32 *new_queue;
322 	size_t new_cap;
323 
324 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
325 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
326 		new_queue = realloc(d->emit_queue,
327 				    new_cap * sizeof(new_queue[0]));
328 		if (!new_queue)
329 			return -ENOMEM;
330 		d->emit_queue = new_queue;
331 		d->emit_queue_cap = new_cap;
332 	}
333 
334 	d->emit_queue[d->emit_queue_cnt++] = id;
335 	return 0;
336 }
337 
338 /*
339  * Determine order of emitting dependent types and specified type to satisfy
340  * C compilation rules.  This is done through topological sorting with an
341  * additional complication which comes from C rules. The main idea for C is
342  * that if some type is "embedded" into a struct/union, it's size needs to be
343  * known at the time of definition of containing type. E.g., for:
344  *
345  *	struct A {};
346  *	struct B { struct A x; }
347  *
348  * struct A *HAS* to be defined before struct B, because it's "embedded",
349  * i.e., it is part of struct B layout. But in the following case:
350  *
351  *	struct A;
352  *	struct B { struct A *x; }
353  *	struct A {};
354  *
355  * it's enough to just have a forward declaration of struct A at the time of
356  * struct B definition, as struct B has a pointer to struct A, so the size of
357  * field x is known without knowing struct A size: it's sizeof(void *).
358  *
359  * Unfortunately, there are some trickier cases we need to handle, e.g.:
360  *
361  *	struct A {}; // if this was forward-declaration: compilation error
362  *	struct B {
363  *		struct { // anonymous struct
364  *			struct A y;
365  *		} *x;
366  *	};
367  *
368  * In this case, struct B's field x is a pointer, so it's size is known
369  * regardless of the size of (anonymous) struct it points to. But because this
370  * struct is anonymous and thus defined inline inside struct B, *and* it
371  * embeds struct A, compiler requires full definition of struct A to be known
372  * before struct B can be defined. This creates a transitive dependency
373  * between struct A and struct B. If struct A was forward-declared before
374  * struct B definition and fully defined after struct B definition, that would
375  * trigger compilation error.
376  *
377  * All this means that while we are doing topological sorting on BTF type
378  * graph, we need to determine relationships between different types (graph
379  * nodes):
380  *   - weak link (relationship) between X and Y, if Y *CAN* be
381  *   forward-declared at the point of X definition;
382  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
383  *
384  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
385  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
386  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
387  * Weak/strong relationship is determined recursively during DFS traversal and
388  * is returned as a result from btf_dump_order_type().
389  *
390  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
391  * but it is not guaranteeing that no extraneous forward declarations will be
392  * emitted.
393  *
394  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
395  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
396  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
397  * entire graph path, so depending where from one came to that BTF type, it
398  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
399  * once they are processed, there is no need to do it again, so they are
400  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
401  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
402  * in any case, once those are processed, no need to do it again, as the
403  * result won't change.
404  *
405  * Returns:
406  *   - 1, if type is part of strong link (so there is strong topological
407  *   ordering requirements);
408  *   - 0, if type is part of weak link (so can be satisfied through forward
409  *   declaration);
410  *   - <0, on error (e.g., unsatisfiable type loop detected).
411  */
412 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
413 {
414 	/*
415 	 * Order state is used to detect strong link cycles, but only for BTF
416 	 * kinds that are or could be an independent definition (i.e.,
417 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
418 	 * func_protos, modifiers are just means to get to these definitions.
419 	 * Int/void don't need definitions, they are assumed to be always
420 	 * properly defined.  We also ignore datasec, var, and funcs for now.
421 	 * So for all non-defining kinds, we never even set ordering state,
422 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
423 	 * forms a strong link.
424 	 */
425 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
426 	const struct btf_type *t;
427 	__u16 vlen;
428 	int err, i;
429 
430 	/* return true, letting typedefs know that it's ok to be emitted */
431 	if (tstate->order_state == ORDERED)
432 		return 1;
433 
434 	t = btf__type_by_id(d->btf, id);
435 
436 	if (tstate->order_state == ORDERING) {
437 		/* type loop, but resolvable through fwd declaration */
438 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
439 			return 0;
440 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
441 		return -ELOOP;
442 	}
443 
444 	switch (btf_kind(t)) {
445 	case BTF_KIND_INT:
446 		tstate->order_state = ORDERED;
447 		return 0;
448 
449 	case BTF_KIND_PTR:
450 		err = btf_dump_order_type(d, t->type, true);
451 		tstate->order_state = ORDERED;
452 		return err;
453 
454 	case BTF_KIND_ARRAY:
455 		return btf_dump_order_type(d, btf_array(t)->type, through_ptr);
456 
457 	case BTF_KIND_STRUCT:
458 	case BTF_KIND_UNION: {
459 		const struct btf_member *m = btf_members(t);
460 		/*
461 		 * struct/union is part of strong link, only if it's embedded
462 		 * (so no ptr in a path) or it's anonymous (so has to be
463 		 * defined inline, even if declared through ptr)
464 		 */
465 		if (through_ptr && t->name_off != 0)
466 			return 0;
467 
468 		tstate->order_state = ORDERING;
469 
470 		vlen = btf_vlen(t);
471 		for (i = 0; i < vlen; i++, m++) {
472 			err = btf_dump_order_type(d, m->type, false);
473 			if (err < 0)
474 				return err;
475 		}
476 
477 		if (t->name_off != 0) {
478 			err = btf_dump_add_emit_queue_id(d, id);
479 			if (err < 0)
480 				return err;
481 		}
482 
483 		tstate->order_state = ORDERED;
484 		return 1;
485 	}
486 	case BTF_KIND_ENUM:
487 	case BTF_KIND_FWD:
488 		/*
489 		 * non-anonymous or non-referenced enums are top-level
490 		 * declarations and should be emitted. Same logic can be
491 		 * applied to FWDs, it won't hurt anyways.
492 		 */
493 		if (t->name_off != 0 || !tstate->referenced) {
494 			err = btf_dump_add_emit_queue_id(d, id);
495 			if (err)
496 				return err;
497 		}
498 		tstate->order_state = ORDERED;
499 		return 1;
500 
501 	case BTF_KIND_TYPEDEF: {
502 		int is_strong;
503 
504 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
505 		if (is_strong < 0)
506 			return is_strong;
507 
508 		/* typedef is similar to struct/union w.r.t. fwd-decls */
509 		if (through_ptr && !is_strong)
510 			return 0;
511 
512 		/* typedef is always a named definition */
513 		err = btf_dump_add_emit_queue_id(d, id);
514 		if (err)
515 			return err;
516 
517 		d->type_states[id].order_state = ORDERED;
518 		return 1;
519 	}
520 	case BTF_KIND_VOLATILE:
521 	case BTF_KIND_CONST:
522 	case BTF_KIND_RESTRICT:
523 		return btf_dump_order_type(d, t->type, through_ptr);
524 
525 	case BTF_KIND_FUNC_PROTO: {
526 		const struct btf_param *p = btf_params(t);
527 		bool is_strong;
528 
529 		err = btf_dump_order_type(d, t->type, through_ptr);
530 		if (err < 0)
531 			return err;
532 		is_strong = err > 0;
533 
534 		vlen = btf_vlen(t);
535 		for (i = 0; i < vlen; i++, p++) {
536 			err = btf_dump_order_type(d, p->type, through_ptr);
537 			if (err < 0)
538 				return err;
539 			if (err > 0)
540 				is_strong = true;
541 		}
542 		return is_strong;
543 	}
544 	case BTF_KIND_FUNC:
545 	case BTF_KIND_VAR:
546 	case BTF_KIND_DATASEC:
547 		d->type_states[id].order_state = ORDERED;
548 		return 0;
549 
550 	default:
551 		return -EINVAL;
552 	}
553 }
554 
555 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
556 					  const struct btf_type *t);
557 
558 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
559 				     const struct btf_type *t);
560 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
561 				     const struct btf_type *t, int lvl);
562 
563 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
564 				   const struct btf_type *t);
565 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
566 				   const struct btf_type *t, int lvl);
567 
568 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
569 				  const struct btf_type *t);
570 
571 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
572 				      const struct btf_type *t, int lvl);
573 
574 /* a local view into a shared stack */
575 struct id_stack {
576 	const __u32 *ids;
577 	int cnt;
578 };
579 
580 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
581 				    const char *fname, int lvl);
582 static void btf_dump_emit_type_chain(struct btf_dump *d,
583 				     struct id_stack *decl_stack,
584 				     const char *fname, int lvl);
585 
586 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
587 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
588 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
589 				 const char *orig_name);
590 
591 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
592 {
593 	const struct btf_type *t = btf__type_by_id(d->btf, id);
594 
595 	/* __builtin_va_list is a compiler built-in, which causes compilation
596 	 * errors, when compiling w/ different compiler, then used to compile
597 	 * original code (e.g., GCC to compile kernel, Clang to use generated
598 	 * C header from BTF). As it is built-in, it should be already defined
599 	 * properly internally in compiler.
600 	 */
601 	if (t->name_off == 0)
602 		return false;
603 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
604 }
605 
606 /*
607  * Emit C-syntax definitions of types from chains of BTF types.
608  *
609  * High-level handling of determining necessary forward declarations are handled
610  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
611  * declarations/definitions in C syntax  are handled by a combo of
612  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
613  * corresponding btf_dump_emit_*_{def,fwd}() functions.
614  *
615  * We also keep track of "containing struct/union type ID" to determine when
616  * we reference it from inside and thus can avoid emitting unnecessary forward
617  * declaration.
618  *
619  * This algorithm is designed in such a way, that even if some error occurs
620  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
621  * that doesn't comply to C rules completely), algorithm will try to proceed
622  * and produce as much meaningful output as possible.
623  */
624 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
625 {
626 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
627 	bool top_level_def = cont_id == 0;
628 	const struct btf_type *t;
629 	__u16 kind;
630 
631 	if (tstate->emit_state == EMITTED)
632 		return;
633 
634 	t = btf__type_by_id(d->btf, id);
635 	kind = btf_kind(t);
636 
637 	if (tstate->emit_state == EMITTING) {
638 		if (tstate->fwd_emitted)
639 			return;
640 
641 		switch (kind) {
642 		case BTF_KIND_STRUCT:
643 		case BTF_KIND_UNION:
644 			/*
645 			 * if we are referencing a struct/union that we are
646 			 * part of - then no need for fwd declaration
647 			 */
648 			if (id == cont_id)
649 				return;
650 			if (t->name_off == 0) {
651 				pr_warn("anonymous struct/union loop, id:[%u]\n",
652 					id);
653 				return;
654 			}
655 			btf_dump_emit_struct_fwd(d, id, t);
656 			btf_dump_printf(d, ";\n\n");
657 			tstate->fwd_emitted = 1;
658 			break;
659 		case BTF_KIND_TYPEDEF:
660 			/*
661 			 * for typedef fwd_emitted means typedef definition
662 			 * was emitted, but it can be used only for "weak"
663 			 * references through pointer only, not for embedding
664 			 */
665 			if (!btf_dump_is_blacklisted(d, id)) {
666 				btf_dump_emit_typedef_def(d, id, t, 0);
667 				btf_dump_printf(d, ";\n\n");
668 			}
669 			tstate->fwd_emitted = 1;
670 			break;
671 		default:
672 			break;
673 		}
674 
675 		return;
676 	}
677 
678 	switch (kind) {
679 	case BTF_KIND_INT:
680 		/* Emit type alias definitions if necessary */
681 		btf_dump_emit_missing_aliases(d, id, t);
682 
683 		tstate->emit_state = EMITTED;
684 		break;
685 	case BTF_KIND_ENUM:
686 		if (top_level_def) {
687 			btf_dump_emit_enum_def(d, id, t, 0);
688 			btf_dump_printf(d, ";\n\n");
689 		}
690 		tstate->emit_state = EMITTED;
691 		break;
692 	case BTF_KIND_PTR:
693 	case BTF_KIND_VOLATILE:
694 	case BTF_KIND_CONST:
695 	case BTF_KIND_RESTRICT:
696 		btf_dump_emit_type(d, t->type, cont_id);
697 		break;
698 	case BTF_KIND_ARRAY:
699 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
700 		break;
701 	case BTF_KIND_FWD:
702 		btf_dump_emit_fwd_def(d, id, t);
703 		btf_dump_printf(d, ";\n\n");
704 		tstate->emit_state = EMITTED;
705 		break;
706 	case BTF_KIND_TYPEDEF:
707 		tstate->emit_state = EMITTING;
708 		btf_dump_emit_type(d, t->type, id);
709 		/*
710 		 * typedef can server as both definition and forward
711 		 * declaration; at this stage someone depends on
712 		 * typedef as a forward declaration (refers to it
713 		 * through pointer), so unless we already did it,
714 		 * emit typedef as a forward declaration
715 		 */
716 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
717 			btf_dump_emit_typedef_def(d, id, t, 0);
718 			btf_dump_printf(d, ";\n\n");
719 		}
720 		tstate->emit_state = EMITTED;
721 		break;
722 	case BTF_KIND_STRUCT:
723 	case BTF_KIND_UNION:
724 		tstate->emit_state = EMITTING;
725 		/* if it's a top-level struct/union definition or struct/union
726 		 * is anonymous, then in C we'll be emitting all fields and
727 		 * their types (as opposed to just `struct X`), so we need to
728 		 * make sure that all types, referenced from struct/union
729 		 * members have necessary forward-declarations, where
730 		 * applicable
731 		 */
732 		if (top_level_def || t->name_off == 0) {
733 			const struct btf_member *m = btf_members(t);
734 			__u16 vlen = btf_vlen(t);
735 			int i, new_cont_id;
736 
737 			new_cont_id = t->name_off == 0 ? cont_id : id;
738 			for (i = 0; i < vlen; i++, m++)
739 				btf_dump_emit_type(d, m->type, new_cont_id);
740 		} else if (!tstate->fwd_emitted && id != cont_id) {
741 			btf_dump_emit_struct_fwd(d, id, t);
742 			btf_dump_printf(d, ";\n\n");
743 			tstate->fwd_emitted = 1;
744 		}
745 
746 		if (top_level_def) {
747 			btf_dump_emit_struct_def(d, id, t, 0);
748 			btf_dump_printf(d, ";\n\n");
749 			tstate->emit_state = EMITTED;
750 		} else {
751 			tstate->emit_state = NOT_EMITTED;
752 		}
753 		break;
754 	case BTF_KIND_FUNC_PROTO: {
755 		const struct btf_param *p = btf_params(t);
756 		__u16 vlen = btf_vlen(t);
757 		int i;
758 
759 		btf_dump_emit_type(d, t->type, cont_id);
760 		for (i = 0; i < vlen; i++, p++)
761 			btf_dump_emit_type(d, p->type, cont_id);
762 
763 		break;
764 	}
765 	default:
766 		break;
767 	}
768 }
769 
770 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
771 				 const struct btf_type *t)
772 {
773 	const struct btf_member *m;
774 	int align, i, bit_sz;
775 	__u16 vlen;
776 
777 	align = btf__align_of(btf, id);
778 	/* size of a non-packed struct has to be a multiple of its alignment*/
779 	if (align && t->size % align)
780 		return true;
781 
782 	m = btf_members(t);
783 	vlen = btf_vlen(t);
784 	/* all non-bitfield fields have to be naturally aligned */
785 	for (i = 0; i < vlen; i++, m++) {
786 		align = btf__align_of(btf, m->type);
787 		bit_sz = btf_member_bitfield_size(t, i);
788 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
789 			return true;
790 	}
791 
792 	/*
793 	 * if original struct was marked as packed, but its layout is
794 	 * naturally aligned, we'll detect that it's not packed
795 	 */
796 	return false;
797 }
798 
799 static int chip_away_bits(int total, int at_most)
800 {
801 	return total % at_most ? : at_most;
802 }
803 
804 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
805 				      int cur_off, int m_off, int m_bit_sz,
806 				      int align, int lvl)
807 {
808 	int off_diff = m_off - cur_off;
809 	int ptr_bits = d->ptr_sz * 8;
810 
811 	if (off_diff <= 0)
812 		/* no gap */
813 		return;
814 	if (m_bit_sz == 0 && off_diff < align * 8)
815 		/* natural padding will take care of a gap */
816 		return;
817 
818 	while (off_diff > 0) {
819 		const char *pad_type;
820 		int pad_bits;
821 
822 		if (ptr_bits > 32 && off_diff > 32) {
823 			pad_type = "long";
824 			pad_bits = chip_away_bits(off_diff, ptr_bits);
825 		} else if (off_diff > 16) {
826 			pad_type = "int";
827 			pad_bits = chip_away_bits(off_diff, 32);
828 		} else if (off_diff > 8) {
829 			pad_type = "short";
830 			pad_bits = chip_away_bits(off_diff, 16);
831 		} else {
832 			pad_type = "char";
833 			pad_bits = chip_away_bits(off_diff, 8);
834 		}
835 		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
836 		off_diff -= pad_bits;
837 	}
838 }
839 
840 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
841 				     const struct btf_type *t)
842 {
843 	btf_dump_printf(d, "%s %s",
844 			btf_is_struct(t) ? "struct" : "union",
845 			btf_dump_type_name(d, id));
846 }
847 
848 static void btf_dump_emit_struct_def(struct btf_dump *d,
849 				     __u32 id,
850 				     const struct btf_type *t,
851 				     int lvl)
852 {
853 	const struct btf_member *m = btf_members(t);
854 	bool is_struct = btf_is_struct(t);
855 	int align, i, packed, off = 0;
856 	__u16 vlen = btf_vlen(t);
857 
858 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
859 
860 	btf_dump_printf(d, "%s%s%s {",
861 			is_struct ? "struct" : "union",
862 			t->name_off ? " " : "",
863 			btf_dump_type_name(d, id));
864 
865 	for (i = 0; i < vlen; i++, m++) {
866 		const char *fname;
867 		int m_off, m_sz;
868 
869 		fname = btf_name_of(d, m->name_off);
870 		m_sz = btf_member_bitfield_size(t, i);
871 		m_off = btf_member_bit_offset(t, i);
872 		align = packed ? 1 : btf__align_of(d->btf, m->type);
873 
874 		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
875 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
876 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
877 
878 		if (m_sz) {
879 			btf_dump_printf(d, ": %d", m_sz);
880 			off = m_off + m_sz;
881 		} else {
882 			m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
883 			off = m_off + m_sz * 8;
884 		}
885 		btf_dump_printf(d, ";");
886 	}
887 
888 	/* pad at the end, if necessary */
889 	if (is_struct) {
890 		align = packed ? 1 : btf__align_of(d->btf, id);
891 		btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
892 					  lvl + 1);
893 	}
894 
895 	if (vlen)
896 		btf_dump_printf(d, "\n");
897 	btf_dump_printf(d, "%s}", pfx(lvl));
898 	if (packed)
899 		btf_dump_printf(d, " __attribute__((packed))");
900 }
901 
902 static const char *missing_base_types[][2] = {
903 	/*
904 	 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
905 	 * SIMD intrinsics. Alias them to standard base types.
906 	 */
907 	{ "__Poly8_t",		"unsigned char" },
908 	{ "__Poly16_t",		"unsigned short" },
909 	{ "__Poly64_t",		"unsigned long long" },
910 	{ "__Poly128_t",	"unsigned __int128" },
911 };
912 
913 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
914 					  const struct btf_type *t)
915 {
916 	const char *name = btf_dump_type_name(d, id);
917 	int i;
918 
919 	for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
920 		if (strcmp(name, missing_base_types[i][0]) == 0) {
921 			btf_dump_printf(d, "typedef %s %s;\n\n",
922 					missing_base_types[i][1], name);
923 			break;
924 		}
925 	}
926 }
927 
928 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
929 				   const struct btf_type *t)
930 {
931 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
932 }
933 
934 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
935 				   const struct btf_type *t,
936 				   int lvl)
937 {
938 	const struct btf_enum *v = btf_enum(t);
939 	__u16 vlen = btf_vlen(t);
940 	const char *name;
941 	size_t dup_cnt;
942 	int i;
943 
944 	btf_dump_printf(d, "enum%s%s",
945 			t->name_off ? " " : "",
946 			btf_dump_type_name(d, id));
947 
948 	if (vlen) {
949 		btf_dump_printf(d, " {");
950 		for (i = 0; i < vlen; i++, v++) {
951 			name = btf_name_of(d, v->name_off);
952 			/* enumerators share namespace with typedef idents */
953 			dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
954 			if (dup_cnt > 1) {
955 				btf_dump_printf(d, "\n%s%s___%zu = %u,",
956 						pfx(lvl + 1), name, dup_cnt,
957 						(__u32)v->val);
958 			} else {
959 				btf_dump_printf(d, "\n%s%s = %u,",
960 						pfx(lvl + 1), name,
961 						(__u32)v->val);
962 			}
963 		}
964 		btf_dump_printf(d, "\n%s}", pfx(lvl));
965 	}
966 }
967 
968 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
969 				  const struct btf_type *t)
970 {
971 	const char *name = btf_dump_type_name(d, id);
972 
973 	if (btf_kflag(t))
974 		btf_dump_printf(d, "union %s", name);
975 	else
976 		btf_dump_printf(d, "struct %s", name);
977 }
978 
979 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
980 				     const struct btf_type *t, int lvl)
981 {
982 	const char *name = btf_dump_ident_name(d, id);
983 
984 	/*
985 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
986 	 * pointing to VOID. This generates warnings from btf_dump() and
987 	 * results in uncompilable header file, so we are fixing it up here
988 	 * with valid typedef into __builtin_va_list.
989 	 */
990 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
991 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
992 		return;
993 	}
994 
995 	btf_dump_printf(d, "typedef ");
996 	btf_dump_emit_type_decl(d, t->type, name, lvl);
997 }
998 
999 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1000 {
1001 	__u32 *new_stack;
1002 	size_t new_cap;
1003 
1004 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
1005 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
1006 		new_stack = realloc(d->decl_stack,
1007 				    new_cap * sizeof(new_stack[0]));
1008 		if (!new_stack)
1009 			return -ENOMEM;
1010 		d->decl_stack = new_stack;
1011 		d->decl_stack_cap = new_cap;
1012 	}
1013 
1014 	d->decl_stack[d->decl_stack_cnt++] = id;
1015 
1016 	return 0;
1017 }
1018 
1019 /*
1020  * Emit type declaration (e.g., field type declaration in a struct or argument
1021  * declaration in function prototype) in correct C syntax.
1022  *
1023  * For most types it's trivial, but there are few quirky type declaration
1024  * cases worth mentioning:
1025  *   - function prototypes (especially nesting of function prototypes);
1026  *   - arrays;
1027  *   - const/volatile/restrict for pointers vs other types.
1028  *
1029  * For a good discussion of *PARSING* C syntax (as a human), see
1030  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1031  * Ch.3 "Unscrambling Declarations in C".
1032  *
1033  * It won't help with BTF to C conversion much, though, as it's an opposite
1034  * problem. So we came up with this algorithm in reverse to van der Linden's
1035  * parsing algorithm. It goes from structured BTF representation of type
1036  * declaration to a valid compilable C syntax.
1037  *
1038  * For instance, consider this C typedef:
1039  *	typedef const int * const * arr[10] arr_t;
1040  * It will be represented in BTF with this chain of BTF types:
1041  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1042  *
1043  * Notice how [const] modifier always goes before type it modifies in BTF type
1044  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1045  * the right of pointers, but to the left of other types. There are also other
1046  * quirks, like function pointers, arrays of them, functions returning other
1047  * functions, etc.
1048  *
1049  * We handle that by pushing all the types to a stack, until we hit "terminal"
1050  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1051  * top of a stack, modifiers are handled differently. Array/function pointers
1052  * have also wildly different syntax and how nesting of them are done. See
1053  * code for authoritative definition.
1054  *
1055  * To avoid allocating new stack for each independent chain of BTF types, we
1056  * share one bigger stack, with each chain working only on its own local view
1057  * of a stack frame. Some care is required to "pop" stack frames after
1058  * processing type declaration chain.
1059  */
1060 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1061 			     const struct btf_dump_emit_type_decl_opts *opts)
1062 {
1063 	const char *fname;
1064 	int lvl;
1065 
1066 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1067 		return -EINVAL;
1068 
1069 	fname = OPTS_GET(opts, field_name, "");
1070 	lvl = OPTS_GET(opts, indent_level, 0);
1071 	d->strip_mods = OPTS_GET(opts, strip_mods, false);
1072 	btf_dump_emit_type_decl(d, id, fname, lvl);
1073 	d->strip_mods = false;
1074 	return 0;
1075 }
1076 
1077 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1078 				    const char *fname, int lvl)
1079 {
1080 	struct id_stack decl_stack;
1081 	const struct btf_type *t;
1082 	int err, stack_start;
1083 
1084 	stack_start = d->decl_stack_cnt;
1085 	for (;;) {
1086 		t = btf__type_by_id(d->btf, id);
1087 		if (d->strip_mods && btf_is_mod(t))
1088 			goto skip_mod;
1089 
1090 		err = btf_dump_push_decl_stack_id(d, id);
1091 		if (err < 0) {
1092 			/*
1093 			 * if we don't have enough memory for entire type decl
1094 			 * chain, restore stack, emit warning, and try to
1095 			 * proceed nevertheless
1096 			 */
1097 			pr_warn("not enough memory for decl stack:%d", err);
1098 			d->decl_stack_cnt = stack_start;
1099 			return;
1100 		}
1101 skip_mod:
1102 		/* VOID */
1103 		if (id == 0)
1104 			break;
1105 
1106 		switch (btf_kind(t)) {
1107 		case BTF_KIND_PTR:
1108 		case BTF_KIND_VOLATILE:
1109 		case BTF_KIND_CONST:
1110 		case BTF_KIND_RESTRICT:
1111 		case BTF_KIND_FUNC_PROTO:
1112 			id = t->type;
1113 			break;
1114 		case BTF_KIND_ARRAY:
1115 			id = btf_array(t)->type;
1116 			break;
1117 		case BTF_KIND_INT:
1118 		case BTF_KIND_ENUM:
1119 		case BTF_KIND_FWD:
1120 		case BTF_KIND_STRUCT:
1121 		case BTF_KIND_UNION:
1122 		case BTF_KIND_TYPEDEF:
1123 			goto done;
1124 		default:
1125 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1126 				btf_kind(t), id);
1127 			goto done;
1128 		}
1129 	}
1130 done:
1131 	/*
1132 	 * We might be inside a chain of declarations (e.g., array of function
1133 	 * pointers returning anonymous (so inlined) structs, having another
1134 	 * array field). Each of those needs its own "stack frame" to handle
1135 	 * emitting of declarations. Those stack frames are non-overlapping
1136 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1137 	 * handle this set of nested stacks, we create a view corresponding to
1138 	 * our own "stack frame" and work with it as an independent stack.
1139 	 * We'll need to clean up after emit_type_chain() returns, though.
1140 	 */
1141 	decl_stack.ids = d->decl_stack + stack_start;
1142 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1143 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1144 	/*
1145 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1146 	 * frame before returning. But it works with a read-only view into
1147 	 * decl_stack, so it doesn't actually pop anything from the
1148 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1149 	 * reset decl_stack state to how it was before us to avoid it growing
1150 	 * all the time.
1151 	 */
1152 	d->decl_stack_cnt = stack_start;
1153 }
1154 
1155 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1156 {
1157 	const struct btf_type *t;
1158 	__u32 id;
1159 
1160 	while (decl_stack->cnt) {
1161 		id = decl_stack->ids[decl_stack->cnt - 1];
1162 		t = btf__type_by_id(d->btf, id);
1163 
1164 		switch (btf_kind(t)) {
1165 		case BTF_KIND_VOLATILE:
1166 			btf_dump_printf(d, "volatile ");
1167 			break;
1168 		case BTF_KIND_CONST:
1169 			btf_dump_printf(d, "const ");
1170 			break;
1171 		case BTF_KIND_RESTRICT:
1172 			btf_dump_printf(d, "restrict ");
1173 			break;
1174 		default:
1175 			return;
1176 		}
1177 		decl_stack->cnt--;
1178 	}
1179 }
1180 
1181 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1182 {
1183 	const struct btf_type *t;
1184 	__u32 id;
1185 
1186 	while (decl_stack->cnt) {
1187 		id = decl_stack->ids[decl_stack->cnt - 1];
1188 		t = btf__type_by_id(d->btf, id);
1189 		if (!btf_is_mod(t))
1190 			return;
1191 		decl_stack->cnt--;
1192 	}
1193 }
1194 
1195 static void btf_dump_emit_name(const struct btf_dump *d,
1196 			       const char *name, bool last_was_ptr)
1197 {
1198 	bool separate = name[0] && !last_was_ptr;
1199 
1200 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1201 }
1202 
1203 static void btf_dump_emit_type_chain(struct btf_dump *d,
1204 				     struct id_stack *decls,
1205 				     const char *fname, int lvl)
1206 {
1207 	/*
1208 	 * last_was_ptr is used to determine if we need to separate pointer
1209 	 * asterisk (*) from previous part of type signature with space, so
1210 	 * that we get `int ***`, instead of `int * * *`. We default to true
1211 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1212 	 * func_proto case. func_proto will start a new emit_type_chain call
1213 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1214 	 * don't want to prepend space for that last pointer.
1215 	 */
1216 	bool last_was_ptr = true;
1217 	const struct btf_type *t;
1218 	const char *name;
1219 	__u16 kind;
1220 	__u32 id;
1221 
1222 	while (decls->cnt) {
1223 		id = decls->ids[--decls->cnt];
1224 		if (id == 0) {
1225 			/* VOID is a special snowflake */
1226 			btf_dump_emit_mods(d, decls);
1227 			btf_dump_printf(d, "void");
1228 			last_was_ptr = false;
1229 			continue;
1230 		}
1231 
1232 		t = btf__type_by_id(d->btf, id);
1233 		kind = btf_kind(t);
1234 
1235 		switch (kind) {
1236 		case BTF_KIND_INT:
1237 			btf_dump_emit_mods(d, decls);
1238 			name = btf_name_of(d, t->name_off);
1239 			btf_dump_printf(d, "%s", name);
1240 			break;
1241 		case BTF_KIND_STRUCT:
1242 		case BTF_KIND_UNION:
1243 			btf_dump_emit_mods(d, decls);
1244 			/* inline anonymous struct/union */
1245 			if (t->name_off == 0)
1246 				btf_dump_emit_struct_def(d, id, t, lvl);
1247 			else
1248 				btf_dump_emit_struct_fwd(d, id, t);
1249 			break;
1250 		case BTF_KIND_ENUM:
1251 			btf_dump_emit_mods(d, decls);
1252 			/* inline anonymous enum */
1253 			if (t->name_off == 0)
1254 				btf_dump_emit_enum_def(d, id, t, lvl);
1255 			else
1256 				btf_dump_emit_enum_fwd(d, id, t);
1257 			break;
1258 		case BTF_KIND_FWD:
1259 			btf_dump_emit_mods(d, decls);
1260 			btf_dump_emit_fwd_def(d, id, t);
1261 			break;
1262 		case BTF_KIND_TYPEDEF:
1263 			btf_dump_emit_mods(d, decls);
1264 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1265 			break;
1266 		case BTF_KIND_PTR:
1267 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1268 			break;
1269 		case BTF_KIND_VOLATILE:
1270 			btf_dump_printf(d, " volatile");
1271 			break;
1272 		case BTF_KIND_CONST:
1273 			btf_dump_printf(d, " const");
1274 			break;
1275 		case BTF_KIND_RESTRICT:
1276 			btf_dump_printf(d, " restrict");
1277 			break;
1278 		case BTF_KIND_ARRAY: {
1279 			const struct btf_array *a = btf_array(t);
1280 			const struct btf_type *next_t;
1281 			__u32 next_id;
1282 			bool multidim;
1283 			/*
1284 			 * GCC has a bug
1285 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1286 			 * which causes it to emit extra const/volatile
1287 			 * modifiers for an array, if array's element type has
1288 			 * const/volatile modifiers. Clang doesn't do that.
1289 			 * In general, it doesn't seem very meaningful to have
1290 			 * a const/volatile modifier for array, so we are
1291 			 * going to silently skip them here.
1292 			 */
1293 			btf_dump_drop_mods(d, decls);
1294 
1295 			if (decls->cnt == 0) {
1296 				btf_dump_emit_name(d, fname, last_was_ptr);
1297 				btf_dump_printf(d, "[%u]", a->nelems);
1298 				return;
1299 			}
1300 
1301 			next_id = decls->ids[decls->cnt - 1];
1302 			next_t = btf__type_by_id(d->btf, next_id);
1303 			multidim = btf_is_array(next_t);
1304 			/* we need space if we have named non-pointer */
1305 			if (fname[0] && !last_was_ptr)
1306 				btf_dump_printf(d, " ");
1307 			/* no parentheses for multi-dimensional array */
1308 			if (!multidim)
1309 				btf_dump_printf(d, "(");
1310 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1311 			if (!multidim)
1312 				btf_dump_printf(d, ")");
1313 			btf_dump_printf(d, "[%u]", a->nelems);
1314 			return;
1315 		}
1316 		case BTF_KIND_FUNC_PROTO: {
1317 			const struct btf_param *p = btf_params(t);
1318 			__u16 vlen = btf_vlen(t);
1319 			int i;
1320 
1321 			/*
1322 			 * GCC emits extra volatile qualifier for
1323 			 * __attribute__((noreturn)) function pointers. Clang
1324 			 * doesn't do it. It's a GCC quirk for backwards
1325 			 * compatibility with code written for GCC <2.5. So,
1326 			 * similarly to extra qualifiers for array, just drop
1327 			 * them, instead of handling them.
1328 			 */
1329 			btf_dump_drop_mods(d, decls);
1330 			if (decls->cnt) {
1331 				btf_dump_printf(d, " (");
1332 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1333 				btf_dump_printf(d, ")");
1334 			} else {
1335 				btf_dump_emit_name(d, fname, last_was_ptr);
1336 			}
1337 			btf_dump_printf(d, "(");
1338 			/*
1339 			 * Clang for BPF target generates func_proto with no
1340 			 * args as a func_proto with a single void arg (e.g.,
1341 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1342 			 * going to pretend there are no args for such case.
1343 			 */
1344 			if (vlen == 1 && p->type == 0) {
1345 				btf_dump_printf(d, ")");
1346 				return;
1347 			}
1348 
1349 			for (i = 0; i < vlen; i++, p++) {
1350 				if (i > 0)
1351 					btf_dump_printf(d, ", ");
1352 
1353 				/* last arg of type void is vararg */
1354 				if (i == vlen - 1 && p->type == 0) {
1355 					btf_dump_printf(d, "...");
1356 					break;
1357 				}
1358 
1359 				name = btf_name_of(d, p->name_off);
1360 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1361 			}
1362 
1363 			btf_dump_printf(d, ")");
1364 			return;
1365 		}
1366 		default:
1367 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1368 				kind, id);
1369 			return;
1370 		}
1371 
1372 		last_was_ptr = kind == BTF_KIND_PTR;
1373 	}
1374 
1375 	btf_dump_emit_name(d, fname, last_was_ptr);
1376 }
1377 
1378 /* return number of duplicates (occurrences) of a given name */
1379 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1380 				 const char *orig_name)
1381 {
1382 	size_t dup_cnt = 0;
1383 
1384 	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1385 	dup_cnt++;
1386 	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1387 
1388 	return dup_cnt;
1389 }
1390 
1391 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1392 					 struct hashmap *name_map)
1393 {
1394 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1395 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1396 	const char *orig_name = btf_name_of(d, t->name_off);
1397 	const char **cached_name = &d->cached_names[id];
1398 	size_t dup_cnt;
1399 
1400 	if (t->name_off == 0)
1401 		return "";
1402 
1403 	if (s->name_resolved)
1404 		return *cached_name ? *cached_name : orig_name;
1405 
1406 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1407 	if (dup_cnt > 1) {
1408 		const size_t max_len = 256;
1409 		char new_name[max_len];
1410 
1411 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1412 		*cached_name = strdup(new_name);
1413 	}
1414 
1415 	s->name_resolved = 1;
1416 	return *cached_name ? *cached_name : orig_name;
1417 }
1418 
1419 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1420 {
1421 	return btf_dump_resolve_name(d, id, d->type_names);
1422 }
1423 
1424 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1425 {
1426 	return btf_dump_resolve_name(d, id, d->ident_names);
1427 }
1428