xref: /openbmc/linux/tools/lib/bpf/btf_dump.c (revision 25b892b5)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
14 #include <endian.h>
15 #include <errno.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <linux/kernel.h>
19 #include "btf.h"
20 #include "hashmap.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 
24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
26 
27 static const char *pfx(int lvl)
28 {
29 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
30 }
31 
32 enum btf_dump_type_order_state {
33 	NOT_ORDERED,
34 	ORDERING,
35 	ORDERED,
36 };
37 
38 enum btf_dump_type_emit_state {
39 	NOT_EMITTED,
40 	EMITTING,
41 	EMITTED,
42 };
43 
44 /* per-type auxiliary state */
45 struct btf_dump_type_aux_state {
46 	/* topological sorting state */
47 	enum btf_dump_type_order_state order_state: 2;
48 	/* emitting state used to determine the need for forward declaration */
49 	enum btf_dump_type_emit_state emit_state: 2;
50 	/* whether forward declaration was already emitted */
51 	__u8 fwd_emitted: 1;
52 	/* whether unique non-duplicate name was already assigned */
53 	__u8 name_resolved: 1;
54 	/* whether type is referenced from any other type */
55 	__u8 referenced: 1;
56 };
57 
58 /* indent string length; one indent string is added for each indent level */
59 #define BTF_DATA_INDENT_STR_LEN			32
60 
61 /*
62  * Common internal data for BTF type data dump operations.
63  */
64 struct btf_dump_data {
65 	const void *data_end;		/* end of valid data to show */
66 	bool compact;
67 	bool skip_names;
68 	bool emit_zeroes;
69 	__u8 indent_lvl;	/* base indent level */
70 	char indent_str[BTF_DATA_INDENT_STR_LEN];
71 	/* below are used during iteration */
72 	int depth;
73 	bool is_array_member;
74 	bool is_array_terminated;
75 	bool is_array_char;
76 };
77 
78 struct btf_dump {
79 	const struct btf *btf;
80 	const struct btf_ext *btf_ext;
81 	btf_dump_printf_fn_t printf_fn;
82 	struct btf_dump_opts opts;
83 	int ptr_sz;
84 	bool strip_mods;
85 	bool skip_anon_defs;
86 	int last_id;
87 
88 	/* per-type auxiliary state */
89 	struct btf_dump_type_aux_state *type_states;
90 	size_t type_states_cap;
91 	/* per-type optional cached unique name, must be freed, if present */
92 	const char **cached_names;
93 	size_t cached_names_cap;
94 
95 	/* topo-sorted list of dependent type definitions */
96 	__u32 *emit_queue;
97 	int emit_queue_cap;
98 	int emit_queue_cnt;
99 
100 	/*
101 	 * stack of type declarations (e.g., chain of modifiers, arrays,
102 	 * funcs, etc)
103 	 */
104 	__u32 *decl_stack;
105 	int decl_stack_cap;
106 	int decl_stack_cnt;
107 
108 	/* maps struct/union/enum name to a number of name occurrences */
109 	struct hashmap *type_names;
110 	/*
111 	 * maps typedef identifiers and enum value names to a number of such
112 	 * name occurrences
113 	 */
114 	struct hashmap *ident_names;
115 	/*
116 	 * data for typed display; allocated if needed.
117 	 */
118 	struct btf_dump_data *typed_dump;
119 };
120 
121 static size_t str_hash_fn(const void *key, void *ctx)
122 {
123 	return str_hash(key);
124 }
125 
126 static bool str_equal_fn(const void *a, const void *b, void *ctx)
127 {
128 	return strcmp(a, b) == 0;
129 }
130 
131 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
132 {
133 	return btf__name_by_offset(d->btf, name_off);
134 }
135 
136 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
137 {
138 	va_list args;
139 
140 	va_start(args, fmt);
141 	d->printf_fn(d->opts.ctx, fmt, args);
142 	va_end(args);
143 }
144 
145 static int btf_dump_mark_referenced(struct btf_dump *d);
146 static int btf_dump_resize(struct btf_dump *d);
147 
148 struct btf_dump *btf_dump__new(const struct btf *btf,
149 			       const struct btf_ext *btf_ext,
150 			       const struct btf_dump_opts *opts,
151 			       btf_dump_printf_fn_t printf_fn)
152 {
153 	struct btf_dump *d;
154 	int err;
155 
156 	d = calloc(1, sizeof(struct btf_dump));
157 	if (!d)
158 		return libbpf_err_ptr(-ENOMEM);
159 
160 	d->btf = btf;
161 	d->btf_ext = btf_ext;
162 	d->printf_fn = printf_fn;
163 	d->opts.ctx = opts ? opts->ctx : NULL;
164 	d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
165 
166 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
167 	if (IS_ERR(d->type_names)) {
168 		err = PTR_ERR(d->type_names);
169 		d->type_names = NULL;
170 		goto err;
171 	}
172 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
173 	if (IS_ERR(d->ident_names)) {
174 		err = PTR_ERR(d->ident_names);
175 		d->ident_names = NULL;
176 		goto err;
177 	}
178 
179 	err = btf_dump_resize(d);
180 	if (err)
181 		goto err;
182 
183 	return d;
184 err:
185 	btf_dump__free(d);
186 	return libbpf_err_ptr(err);
187 }
188 
189 static int btf_dump_resize(struct btf_dump *d)
190 {
191 	int err, last_id = btf__get_nr_types(d->btf);
192 
193 	if (last_id <= d->last_id)
194 		return 0;
195 
196 	if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
197 			      sizeof(*d->type_states), last_id + 1))
198 		return -ENOMEM;
199 	if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
200 			      sizeof(*d->cached_names), last_id + 1))
201 		return -ENOMEM;
202 
203 	if (d->last_id == 0) {
204 		/* VOID is special */
205 		d->type_states[0].order_state = ORDERED;
206 		d->type_states[0].emit_state = EMITTED;
207 	}
208 
209 	/* eagerly determine referenced types for anon enums */
210 	err = btf_dump_mark_referenced(d);
211 	if (err)
212 		return err;
213 
214 	d->last_id = last_id;
215 	return 0;
216 }
217 
218 void btf_dump__free(struct btf_dump *d)
219 {
220 	int i;
221 
222 	if (IS_ERR_OR_NULL(d))
223 		return;
224 
225 	free(d->type_states);
226 	if (d->cached_names) {
227 		/* any set cached name is owned by us and should be freed */
228 		for (i = 0; i <= d->last_id; i++) {
229 			if (d->cached_names[i])
230 				free((void *)d->cached_names[i]);
231 		}
232 	}
233 	free(d->cached_names);
234 	free(d->emit_queue);
235 	free(d->decl_stack);
236 	hashmap__free(d->type_names);
237 	hashmap__free(d->ident_names);
238 
239 	free(d);
240 }
241 
242 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
243 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
244 
245 /*
246  * Dump BTF type in a compilable C syntax, including all the necessary
247  * dependent types, necessary for compilation. If some of the dependent types
248  * were already emitted as part of previous btf_dump__dump_type() invocation
249  * for another type, they won't be emitted again. This API allows callers to
250  * filter out BTF types according to user-defined criterias and emitted only
251  * minimal subset of types, necessary to compile everything. Full struct/union
252  * definitions will still be emitted, even if the only usage is through
253  * pointer and could be satisfied with just a forward declaration.
254  *
255  * Dumping is done in two high-level passes:
256  *   1. Topologically sort type definitions to satisfy C rules of compilation.
257  *   2. Emit type definitions in C syntax.
258  *
259  * Returns 0 on success; <0, otherwise.
260  */
261 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
262 {
263 	int err, i;
264 
265 	if (id > btf__get_nr_types(d->btf))
266 		return libbpf_err(-EINVAL);
267 
268 	err = btf_dump_resize(d);
269 	if (err)
270 		return libbpf_err(err);
271 
272 	d->emit_queue_cnt = 0;
273 	err = btf_dump_order_type(d, id, false);
274 	if (err < 0)
275 		return libbpf_err(err);
276 
277 	for (i = 0; i < d->emit_queue_cnt; i++)
278 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
279 
280 	return 0;
281 }
282 
283 /*
284  * Mark all types that are referenced from any other type. This is used to
285  * determine top-level anonymous enums that need to be emitted as an
286  * independent type declarations.
287  * Anonymous enums come in two flavors: either embedded in a struct's field
288  * definition, in which case they have to be declared inline as part of field
289  * type declaration; or as a top-level anonymous enum, typically used for
290  * declaring global constants. It's impossible to distinguish between two
291  * without knowning whether given enum type was referenced from other type:
292  * top-level anonymous enum won't be referenced by anything, while embedded
293  * one will.
294  */
295 static int btf_dump_mark_referenced(struct btf_dump *d)
296 {
297 	int i, j, n = btf__get_nr_types(d->btf);
298 	const struct btf_type *t;
299 	__u16 vlen;
300 
301 	for (i = d->last_id + 1; i <= n; i++) {
302 		t = btf__type_by_id(d->btf, i);
303 		vlen = btf_vlen(t);
304 
305 		switch (btf_kind(t)) {
306 		case BTF_KIND_INT:
307 		case BTF_KIND_ENUM:
308 		case BTF_KIND_FWD:
309 		case BTF_KIND_FLOAT:
310 			break;
311 
312 		case BTF_KIND_VOLATILE:
313 		case BTF_KIND_CONST:
314 		case BTF_KIND_RESTRICT:
315 		case BTF_KIND_PTR:
316 		case BTF_KIND_TYPEDEF:
317 		case BTF_KIND_FUNC:
318 		case BTF_KIND_VAR:
319 			d->type_states[t->type].referenced = 1;
320 			break;
321 
322 		case BTF_KIND_ARRAY: {
323 			const struct btf_array *a = btf_array(t);
324 
325 			d->type_states[a->index_type].referenced = 1;
326 			d->type_states[a->type].referenced = 1;
327 			break;
328 		}
329 		case BTF_KIND_STRUCT:
330 		case BTF_KIND_UNION: {
331 			const struct btf_member *m = btf_members(t);
332 
333 			for (j = 0; j < vlen; j++, m++)
334 				d->type_states[m->type].referenced = 1;
335 			break;
336 		}
337 		case BTF_KIND_FUNC_PROTO: {
338 			const struct btf_param *p = btf_params(t);
339 
340 			for (j = 0; j < vlen; j++, p++)
341 				d->type_states[p->type].referenced = 1;
342 			break;
343 		}
344 		case BTF_KIND_DATASEC: {
345 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
346 
347 			for (j = 0; j < vlen; j++, v++)
348 				d->type_states[v->type].referenced = 1;
349 			break;
350 		}
351 		default:
352 			return -EINVAL;
353 		}
354 	}
355 	return 0;
356 }
357 
358 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
359 {
360 	__u32 *new_queue;
361 	size_t new_cap;
362 
363 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
364 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
365 		new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
366 		if (!new_queue)
367 			return -ENOMEM;
368 		d->emit_queue = new_queue;
369 		d->emit_queue_cap = new_cap;
370 	}
371 
372 	d->emit_queue[d->emit_queue_cnt++] = id;
373 	return 0;
374 }
375 
376 /*
377  * Determine order of emitting dependent types and specified type to satisfy
378  * C compilation rules.  This is done through topological sorting with an
379  * additional complication which comes from C rules. The main idea for C is
380  * that if some type is "embedded" into a struct/union, it's size needs to be
381  * known at the time of definition of containing type. E.g., for:
382  *
383  *	struct A {};
384  *	struct B { struct A x; }
385  *
386  * struct A *HAS* to be defined before struct B, because it's "embedded",
387  * i.e., it is part of struct B layout. But in the following case:
388  *
389  *	struct A;
390  *	struct B { struct A *x; }
391  *	struct A {};
392  *
393  * it's enough to just have a forward declaration of struct A at the time of
394  * struct B definition, as struct B has a pointer to struct A, so the size of
395  * field x is known without knowing struct A size: it's sizeof(void *).
396  *
397  * Unfortunately, there are some trickier cases we need to handle, e.g.:
398  *
399  *	struct A {}; // if this was forward-declaration: compilation error
400  *	struct B {
401  *		struct { // anonymous struct
402  *			struct A y;
403  *		} *x;
404  *	};
405  *
406  * In this case, struct B's field x is a pointer, so it's size is known
407  * regardless of the size of (anonymous) struct it points to. But because this
408  * struct is anonymous and thus defined inline inside struct B, *and* it
409  * embeds struct A, compiler requires full definition of struct A to be known
410  * before struct B can be defined. This creates a transitive dependency
411  * between struct A and struct B. If struct A was forward-declared before
412  * struct B definition and fully defined after struct B definition, that would
413  * trigger compilation error.
414  *
415  * All this means that while we are doing topological sorting on BTF type
416  * graph, we need to determine relationships between different types (graph
417  * nodes):
418  *   - weak link (relationship) between X and Y, if Y *CAN* be
419  *   forward-declared at the point of X definition;
420  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
421  *
422  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
423  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
424  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
425  * Weak/strong relationship is determined recursively during DFS traversal and
426  * is returned as a result from btf_dump_order_type().
427  *
428  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
429  * but it is not guaranteeing that no extraneous forward declarations will be
430  * emitted.
431  *
432  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
433  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
434  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
435  * entire graph path, so depending where from one came to that BTF type, it
436  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
437  * once they are processed, there is no need to do it again, so they are
438  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
439  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
440  * in any case, once those are processed, no need to do it again, as the
441  * result won't change.
442  *
443  * Returns:
444  *   - 1, if type is part of strong link (so there is strong topological
445  *   ordering requirements);
446  *   - 0, if type is part of weak link (so can be satisfied through forward
447  *   declaration);
448  *   - <0, on error (e.g., unsatisfiable type loop detected).
449  */
450 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
451 {
452 	/*
453 	 * Order state is used to detect strong link cycles, but only for BTF
454 	 * kinds that are or could be an independent definition (i.e.,
455 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
456 	 * func_protos, modifiers are just means to get to these definitions.
457 	 * Int/void don't need definitions, they are assumed to be always
458 	 * properly defined.  We also ignore datasec, var, and funcs for now.
459 	 * So for all non-defining kinds, we never even set ordering state,
460 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
461 	 * forms a strong link.
462 	 */
463 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
464 	const struct btf_type *t;
465 	__u16 vlen;
466 	int err, i;
467 
468 	/* return true, letting typedefs know that it's ok to be emitted */
469 	if (tstate->order_state == ORDERED)
470 		return 1;
471 
472 	t = btf__type_by_id(d->btf, id);
473 
474 	if (tstate->order_state == ORDERING) {
475 		/* type loop, but resolvable through fwd declaration */
476 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
477 			return 0;
478 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
479 		return -ELOOP;
480 	}
481 
482 	switch (btf_kind(t)) {
483 	case BTF_KIND_INT:
484 	case BTF_KIND_FLOAT:
485 		tstate->order_state = ORDERED;
486 		return 0;
487 
488 	case BTF_KIND_PTR:
489 		err = btf_dump_order_type(d, t->type, true);
490 		tstate->order_state = ORDERED;
491 		return err;
492 
493 	case BTF_KIND_ARRAY:
494 		return btf_dump_order_type(d, btf_array(t)->type, false);
495 
496 	case BTF_KIND_STRUCT:
497 	case BTF_KIND_UNION: {
498 		const struct btf_member *m = btf_members(t);
499 		/*
500 		 * struct/union is part of strong link, only if it's embedded
501 		 * (so no ptr in a path) or it's anonymous (so has to be
502 		 * defined inline, even if declared through ptr)
503 		 */
504 		if (through_ptr && t->name_off != 0)
505 			return 0;
506 
507 		tstate->order_state = ORDERING;
508 
509 		vlen = btf_vlen(t);
510 		for (i = 0; i < vlen; i++, m++) {
511 			err = btf_dump_order_type(d, m->type, false);
512 			if (err < 0)
513 				return err;
514 		}
515 
516 		if (t->name_off != 0) {
517 			err = btf_dump_add_emit_queue_id(d, id);
518 			if (err < 0)
519 				return err;
520 		}
521 
522 		tstate->order_state = ORDERED;
523 		return 1;
524 	}
525 	case BTF_KIND_ENUM:
526 	case BTF_KIND_FWD:
527 		/*
528 		 * non-anonymous or non-referenced enums are top-level
529 		 * declarations and should be emitted. Same logic can be
530 		 * applied to FWDs, it won't hurt anyways.
531 		 */
532 		if (t->name_off != 0 || !tstate->referenced) {
533 			err = btf_dump_add_emit_queue_id(d, id);
534 			if (err)
535 				return err;
536 		}
537 		tstate->order_state = ORDERED;
538 		return 1;
539 
540 	case BTF_KIND_TYPEDEF: {
541 		int is_strong;
542 
543 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
544 		if (is_strong < 0)
545 			return is_strong;
546 
547 		/* typedef is similar to struct/union w.r.t. fwd-decls */
548 		if (through_ptr && !is_strong)
549 			return 0;
550 
551 		/* typedef is always a named definition */
552 		err = btf_dump_add_emit_queue_id(d, id);
553 		if (err)
554 			return err;
555 
556 		d->type_states[id].order_state = ORDERED;
557 		return 1;
558 	}
559 	case BTF_KIND_VOLATILE:
560 	case BTF_KIND_CONST:
561 	case BTF_KIND_RESTRICT:
562 		return btf_dump_order_type(d, t->type, through_ptr);
563 
564 	case BTF_KIND_FUNC_PROTO: {
565 		const struct btf_param *p = btf_params(t);
566 		bool is_strong;
567 
568 		err = btf_dump_order_type(d, t->type, through_ptr);
569 		if (err < 0)
570 			return err;
571 		is_strong = err > 0;
572 
573 		vlen = btf_vlen(t);
574 		for (i = 0; i < vlen; i++, p++) {
575 			err = btf_dump_order_type(d, p->type, through_ptr);
576 			if (err < 0)
577 				return err;
578 			if (err > 0)
579 				is_strong = true;
580 		}
581 		return is_strong;
582 	}
583 	case BTF_KIND_FUNC:
584 	case BTF_KIND_VAR:
585 	case BTF_KIND_DATASEC:
586 		d->type_states[id].order_state = ORDERED;
587 		return 0;
588 
589 	default:
590 		return -EINVAL;
591 	}
592 }
593 
594 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
595 					  const struct btf_type *t);
596 
597 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
598 				     const struct btf_type *t);
599 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
600 				     const struct btf_type *t, int lvl);
601 
602 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
603 				   const struct btf_type *t);
604 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
605 				   const struct btf_type *t, int lvl);
606 
607 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
608 				  const struct btf_type *t);
609 
610 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
611 				      const struct btf_type *t, int lvl);
612 
613 /* a local view into a shared stack */
614 struct id_stack {
615 	const __u32 *ids;
616 	int cnt;
617 };
618 
619 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
620 				    const char *fname, int lvl);
621 static void btf_dump_emit_type_chain(struct btf_dump *d,
622 				     struct id_stack *decl_stack,
623 				     const char *fname, int lvl);
624 
625 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
626 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
627 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
628 				 const char *orig_name);
629 
630 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
631 {
632 	const struct btf_type *t = btf__type_by_id(d->btf, id);
633 
634 	/* __builtin_va_list is a compiler built-in, which causes compilation
635 	 * errors, when compiling w/ different compiler, then used to compile
636 	 * original code (e.g., GCC to compile kernel, Clang to use generated
637 	 * C header from BTF). As it is built-in, it should be already defined
638 	 * properly internally in compiler.
639 	 */
640 	if (t->name_off == 0)
641 		return false;
642 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
643 }
644 
645 /*
646  * Emit C-syntax definitions of types from chains of BTF types.
647  *
648  * High-level handling of determining necessary forward declarations are handled
649  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
650  * declarations/definitions in C syntax  are handled by a combo of
651  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
652  * corresponding btf_dump_emit_*_{def,fwd}() functions.
653  *
654  * We also keep track of "containing struct/union type ID" to determine when
655  * we reference it from inside and thus can avoid emitting unnecessary forward
656  * declaration.
657  *
658  * This algorithm is designed in such a way, that even if some error occurs
659  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
660  * that doesn't comply to C rules completely), algorithm will try to proceed
661  * and produce as much meaningful output as possible.
662  */
663 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
664 {
665 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
666 	bool top_level_def = cont_id == 0;
667 	const struct btf_type *t;
668 	__u16 kind;
669 
670 	if (tstate->emit_state == EMITTED)
671 		return;
672 
673 	t = btf__type_by_id(d->btf, id);
674 	kind = btf_kind(t);
675 
676 	if (tstate->emit_state == EMITTING) {
677 		if (tstate->fwd_emitted)
678 			return;
679 
680 		switch (kind) {
681 		case BTF_KIND_STRUCT:
682 		case BTF_KIND_UNION:
683 			/*
684 			 * if we are referencing a struct/union that we are
685 			 * part of - then no need for fwd declaration
686 			 */
687 			if (id == cont_id)
688 				return;
689 			if (t->name_off == 0) {
690 				pr_warn("anonymous struct/union loop, id:[%u]\n",
691 					id);
692 				return;
693 			}
694 			btf_dump_emit_struct_fwd(d, id, t);
695 			btf_dump_printf(d, ";\n\n");
696 			tstate->fwd_emitted = 1;
697 			break;
698 		case BTF_KIND_TYPEDEF:
699 			/*
700 			 * for typedef fwd_emitted means typedef definition
701 			 * was emitted, but it can be used only for "weak"
702 			 * references through pointer only, not for embedding
703 			 */
704 			if (!btf_dump_is_blacklisted(d, id)) {
705 				btf_dump_emit_typedef_def(d, id, t, 0);
706 				btf_dump_printf(d, ";\n\n");
707 			}
708 			tstate->fwd_emitted = 1;
709 			break;
710 		default:
711 			break;
712 		}
713 
714 		return;
715 	}
716 
717 	switch (kind) {
718 	case BTF_KIND_INT:
719 		/* Emit type alias definitions if necessary */
720 		btf_dump_emit_missing_aliases(d, id, t);
721 
722 		tstate->emit_state = EMITTED;
723 		break;
724 	case BTF_KIND_ENUM:
725 		if (top_level_def) {
726 			btf_dump_emit_enum_def(d, id, t, 0);
727 			btf_dump_printf(d, ";\n\n");
728 		}
729 		tstate->emit_state = EMITTED;
730 		break;
731 	case BTF_KIND_PTR:
732 	case BTF_KIND_VOLATILE:
733 	case BTF_KIND_CONST:
734 	case BTF_KIND_RESTRICT:
735 		btf_dump_emit_type(d, t->type, cont_id);
736 		break;
737 	case BTF_KIND_ARRAY:
738 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
739 		break;
740 	case BTF_KIND_FWD:
741 		btf_dump_emit_fwd_def(d, id, t);
742 		btf_dump_printf(d, ";\n\n");
743 		tstate->emit_state = EMITTED;
744 		break;
745 	case BTF_KIND_TYPEDEF:
746 		tstate->emit_state = EMITTING;
747 		btf_dump_emit_type(d, t->type, id);
748 		/*
749 		 * typedef can server as both definition and forward
750 		 * declaration; at this stage someone depends on
751 		 * typedef as a forward declaration (refers to it
752 		 * through pointer), so unless we already did it,
753 		 * emit typedef as a forward declaration
754 		 */
755 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
756 			btf_dump_emit_typedef_def(d, id, t, 0);
757 			btf_dump_printf(d, ";\n\n");
758 		}
759 		tstate->emit_state = EMITTED;
760 		break;
761 	case BTF_KIND_STRUCT:
762 	case BTF_KIND_UNION:
763 		tstate->emit_state = EMITTING;
764 		/* if it's a top-level struct/union definition or struct/union
765 		 * is anonymous, then in C we'll be emitting all fields and
766 		 * their types (as opposed to just `struct X`), so we need to
767 		 * make sure that all types, referenced from struct/union
768 		 * members have necessary forward-declarations, where
769 		 * applicable
770 		 */
771 		if (top_level_def || t->name_off == 0) {
772 			const struct btf_member *m = btf_members(t);
773 			__u16 vlen = btf_vlen(t);
774 			int i, new_cont_id;
775 
776 			new_cont_id = t->name_off == 0 ? cont_id : id;
777 			for (i = 0; i < vlen; i++, m++)
778 				btf_dump_emit_type(d, m->type, new_cont_id);
779 		} else if (!tstate->fwd_emitted && id != cont_id) {
780 			btf_dump_emit_struct_fwd(d, id, t);
781 			btf_dump_printf(d, ";\n\n");
782 			tstate->fwd_emitted = 1;
783 		}
784 
785 		if (top_level_def) {
786 			btf_dump_emit_struct_def(d, id, t, 0);
787 			btf_dump_printf(d, ";\n\n");
788 			tstate->emit_state = EMITTED;
789 		} else {
790 			tstate->emit_state = NOT_EMITTED;
791 		}
792 		break;
793 	case BTF_KIND_FUNC_PROTO: {
794 		const struct btf_param *p = btf_params(t);
795 		__u16 n = btf_vlen(t);
796 		int i;
797 
798 		btf_dump_emit_type(d, t->type, cont_id);
799 		for (i = 0; i < n; i++, p++)
800 			btf_dump_emit_type(d, p->type, cont_id);
801 
802 		break;
803 	}
804 	default:
805 		break;
806 	}
807 }
808 
809 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
810 				 const struct btf_type *t)
811 {
812 	const struct btf_member *m;
813 	int align, i, bit_sz;
814 	__u16 vlen;
815 
816 	align = btf__align_of(btf, id);
817 	/* size of a non-packed struct has to be a multiple of its alignment*/
818 	if (align && t->size % align)
819 		return true;
820 
821 	m = btf_members(t);
822 	vlen = btf_vlen(t);
823 	/* all non-bitfield fields have to be naturally aligned */
824 	for (i = 0; i < vlen; i++, m++) {
825 		align = btf__align_of(btf, m->type);
826 		bit_sz = btf_member_bitfield_size(t, i);
827 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
828 			return true;
829 	}
830 
831 	/*
832 	 * if original struct was marked as packed, but its layout is
833 	 * naturally aligned, we'll detect that it's not packed
834 	 */
835 	return false;
836 }
837 
838 static int chip_away_bits(int total, int at_most)
839 {
840 	return total % at_most ? : at_most;
841 }
842 
843 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
844 				      int cur_off, int m_off, int m_bit_sz,
845 				      int align, int lvl)
846 {
847 	int off_diff = m_off - cur_off;
848 	int ptr_bits = d->ptr_sz * 8;
849 
850 	if (off_diff <= 0)
851 		/* no gap */
852 		return;
853 	if (m_bit_sz == 0 && off_diff < align * 8)
854 		/* natural padding will take care of a gap */
855 		return;
856 
857 	while (off_diff > 0) {
858 		const char *pad_type;
859 		int pad_bits;
860 
861 		if (ptr_bits > 32 && off_diff > 32) {
862 			pad_type = "long";
863 			pad_bits = chip_away_bits(off_diff, ptr_bits);
864 		} else if (off_diff > 16) {
865 			pad_type = "int";
866 			pad_bits = chip_away_bits(off_diff, 32);
867 		} else if (off_diff > 8) {
868 			pad_type = "short";
869 			pad_bits = chip_away_bits(off_diff, 16);
870 		} else {
871 			pad_type = "char";
872 			pad_bits = chip_away_bits(off_diff, 8);
873 		}
874 		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
875 		off_diff -= pad_bits;
876 	}
877 }
878 
879 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
880 				     const struct btf_type *t)
881 {
882 	btf_dump_printf(d, "%s%s%s",
883 			btf_is_struct(t) ? "struct" : "union",
884 			t->name_off ? " " : "",
885 			btf_dump_type_name(d, id));
886 }
887 
888 static void btf_dump_emit_struct_def(struct btf_dump *d,
889 				     __u32 id,
890 				     const struct btf_type *t,
891 				     int lvl)
892 {
893 	const struct btf_member *m = btf_members(t);
894 	bool is_struct = btf_is_struct(t);
895 	int align, i, packed, off = 0;
896 	__u16 vlen = btf_vlen(t);
897 
898 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
899 
900 	btf_dump_printf(d, "%s%s%s {",
901 			is_struct ? "struct" : "union",
902 			t->name_off ? " " : "",
903 			btf_dump_type_name(d, id));
904 
905 	for (i = 0; i < vlen; i++, m++) {
906 		const char *fname;
907 		int m_off, m_sz;
908 
909 		fname = btf_name_of(d, m->name_off);
910 		m_sz = btf_member_bitfield_size(t, i);
911 		m_off = btf_member_bit_offset(t, i);
912 		align = packed ? 1 : btf__align_of(d->btf, m->type);
913 
914 		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
915 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
916 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
917 
918 		if (m_sz) {
919 			btf_dump_printf(d, ": %d", m_sz);
920 			off = m_off + m_sz;
921 		} else {
922 			m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
923 			off = m_off + m_sz * 8;
924 		}
925 		btf_dump_printf(d, ";");
926 	}
927 
928 	/* pad at the end, if necessary */
929 	if (is_struct) {
930 		align = packed ? 1 : btf__align_of(d->btf, id);
931 		btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
932 					  lvl + 1);
933 	}
934 
935 	if (vlen)
936 		btf_dump_printf(d, "\n");
937 	btf_dump_printf(d, "%s}", pfx(lvl));
938 	if (packed)
939 		btf_dump_printf(d, " __attribute__((packed))");
940 }
941 
942 static const char *missing_base_types[][2] = {
943 	/*
944 	 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
945 	 * SIMD intrinsics. Alias them to standard base types.
946 	 */
947 	{ "__Poly8_t",		"unsigned char" },
948 	{ "__Poly16_t",		"unsigned short" },
949 	{ "__Poly64_t",		"unsigned long long" },
950 	{ "__Poly128_t",	"unsigned __int128" },
951 };
952 
953 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
954 					  const struct btf_type *t)
955 {
956 	const char *name = btf_dump_type_name(d, id);
957 	int i;
958 
959 	for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
960 		if (strcmp(name, missing_base_types[i][0]) == 0) {
961 			btf_dump_printf(d, "typedef %s %s;\n\n",
962 					missing_base_types[i][1], name);
963 			break;
964 		}
965 	}
966 }
967 
968 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
969 				   const struct btf_type *t)
970 {
971 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
972 }
973 
974 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
975 				   const struct btf_type *t,
976 				   int lvl)
977 {
978 	const struct btf_enum *v = btf_enum(t);
979 	__u16 vlen = btf_vlen(t);
980 	const char *name;
981 	size_t dup_cnt;
982 	int i;
983 
984 	btf_dump_printf(d, "enum%s%s",
985 			t->name_off ? " " : "",
986 			btf_dump_type_name(d, id));
987 
988 	if (vlen) {
989 		btf_dump_printf(d, " {");
990 		for (i = 0; i < vlen; i++, v++) {
991 			name = btf_name_of(d, v->name_off);
992 			/* enumerators share namespace with typedef idents */
993 			dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
994 			if (dup_cnt > 1) {
995 				btf_dump_printf(d, "\n%s%s___%zu = %u,",
996 						pfx(lvl + 1), name, dup_cnt,
997 						(__u32)v->val);
998 			} else {
999 				btf_dump_printf(d, "\n%s%s = %u,",
1000 						pfx(lvl + 1), name,
1001 						(__u32)v->val);
1002 			}
1003 		}
1004 		btf_dump_printf(d, "\n%s}", pfx(lvl));
1005 	}
1006 }
1007 
1008 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1009 				  const struct btf_type *t)
1010 {
1011 	const char *name = btf_dump_type_name(d, id);
1012 
1013 	if (btf_kflag(t))
1014 		btf_dump_printf(d, "union %s", name);
1015 	else
1016 		btf_dump_printf(d, "struct %s", name);
1017 }
1018 
1019 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1020 				     const struct btf_type *t, int lvl)
1021 {
1022 	const char *name = btf_dump_ident_name(d, id);
1023 
1024 	/*
1025 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
1026 	 * pointing to VOID. This generates warnings from btf_dump() and
1027 	 * results in uncompilable header file, so we are fixing it up here
1028 	 * with valid typedef into __builtin_va_list.
1029 	 */
1030 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1031 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1032 		return;
1033 	}
1034 
1035 	btf_dump_printf(d, "typedef ");
1036 	btf_dump_emit_type_decl(d, t->type, name, lvl);
1037 }
1038 
1039 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1040 {
1041 	__u32 *new_stack;
1042 	size_t new_cap;
1043 
1044 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
1045 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
1046 		new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1047 		if (!new_stack)
1048 			return -ENOMEM;
1049 		d->decl_stack = new_stack;
1050 		d->decl_stack_cap = new_cap;
1051 	}
1052 
1053 	d->decl_stack[d->decl_stack_cnt++] = id;
1054 
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Emit type declaration (e.g., field type declaration in a struct or argument
1060  * declaration in function prototype) in correct C syntax.
1061  *
1062  * For most types it's trivial, but there are few quirky type declaration
1063  * cases worth mentioning:
1064  *   - function prototypes (especially nesting of function prototypes);
1065  *   - arrays;
1066  *   - const/volatile/restrict for pointers vs other types.
1067  *
1068  * For a good discussion of *PARSING* C syntax (as a human), see
1069  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1070  * Ch.3 "Unscrambling Declarations in C".
1071  *
1072  * It won't help with BTF to C conversion much, though, as it's an opposite
1073  * problem. So we came up with this algorithm in reverse to van der Linden's
1074  * parsing algorithm. It goes from structured BTF representation of type
1075  * declaration to a valid compilable C syntax.
1076  *
1077  * For instance, consider this C typedef:
1078  *	typedef const int * const * arr[10] arr_t;
1079  * It will be represented in BTF with this chain of BTF types:
1080  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1081  *
1082  * Notice how [const] modifier always goes before type it modifies in BTF type
1083  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1084  * the right of pointers, but to the left of other types. There are also other
1085  * quirks, like function pointers, arrays of them, functions returning other
1086  * functions, etc.
1087  *
1088  * We handle that by pushing all the types to a stack, until we hit "terminal"
1089  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1090  * top of a stack, modifiers are handled differently. Array/function pointers
1091  * have also wildly different syntax and how nesting of them are done. See
1092  * code for authoritative definition.
1093  *
1094  * To avoid allocating new stack for each independent chain of BTF types, we
1095  * share one bigger stack, with each chain working only on its own local view
1096  * of a stack frame. Some care is required to "pop" stack frames after
1097  * processing type declaration chain.
1098  */
1099 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1100 			     const struct btf_dump_emit_type_decl_opts *opts)
1101 {
1102 	const char *fname;
1103 	int lvl, err;
1104 
1105 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1106 		return libbpf_err(-EINVAL);
1107 
1108 	err = btf_dump_resize(d);
1109 	if (err)
1110 		return libbpf_err(err);
1111 
1112 	fname = OPTS_GET(opts, field_name, "");
1113 	lvl = OPTS_GET(opts, indent_level, 0);
1114 	d->strip_mods = OPTS_GET(opts, strip_mods, false);
1115 	btf_dump_emit_type_decl(d, id, fname, lvl);
1116 	d->strip_mods = false;
1117 	return 0;
1118 }
1119 
1120 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1121 				    const char *fname, int lvl)
1122 {
1123 	struct id_stack decl_stack;
1124 	const struct btf_type *t;
1125 	int err, stack_start;
1126 
1127 	stack_start = d->decl_stack_cnt;
1128 	for (;;) {
1129 		t = btf__type_by_id(d->btf, id);
1130 		if (d->strip_mods && btf_is_mod(t))
1131 			goto skip_mod;
1132 
1133 		err = btf_dump_push_decl_stack_id(d, id);
1134 		if (err < 0) {
1135 			/*
1136 			 * if we don't have enough memory for entire type decl
1137 			 * chain, restore stack, emit warning, and try to
1138 			 * proceed nevertheless
1139 			 */
1140 			pr_warn("not enough memory for decl stack:%d", err);
1141 			d->decl_stack_cnt = stack_start;
1142 			return;
1143 		}
1144 skip_mod:
1145 		/* VOID */
1146 		if (id == 0)
1147 			break;
1148 
1149 		switch (btf_kind(t)) {
1150 		case BTF_KIND_PTR:
1151 		case BTF_KIND_VOLATILE:
1152 		case BTF_KIND_CONST:
1153 		case BTF_KIND_RESTRICT:
1154 		case BTF_KIND_FUNC_PROTO:
1155 			id = t->type;
1156 			break;
1157 		case BTF_KIND_ARRAY:
1158 			id = btf_array(t)->type;
1159 			break;
1160 		case BTF_KIND_INT:
1161 		case BTF_KIND_ENUM:
1162 		case BTF_KIND_FWD:
1163 		case BTF_KIND_STRUCT:
1164 		case BTF_KIND_UNION:
1165 		case BTF_KIND_TYPEDEF:
1166 		case BTF_KIND_FLOAT:
1167 			goto done;
1168 		default:
1169 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1170 				btf_kind(t), id);
1171 			goto done;
1172 		}
1173 	}
1174 done:
1175 	/*
1176 	 * We might be inside a chain of declarations (e.g., array of function
1177 	 * pointers returning anonymous (so inlined) structs, having another
1178 	 * array field). Each of those needs its own "stack frame" to handle
1179 	 * emitting of declarations. Those stack frames are non-overlapping
1180 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1181 	 * handle this set of nested stacks, we create a view corresponding to
1182 	 * our own "stack frame" and work with it as an independent stack.
1183 	 * We'll need to clean up after emit_type_chain() returns, though.
1184 	 */
1185 	decl_stack.ids = d->decl_stack + stack_start;
1186 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1187 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1188 	/*
1189 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1190 	 * frame before returning. But it works with a read-only view into
1191 	 * decl_stack, so it doesn't actually pop anything from the
1192 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1193 	 * reset decl_stack state to how it was before us to avoid it growing
1194 	 * all the time.
1195 	 */
1196 	d->decl_stack_cnt = stack_start;
1197 }
1198 
1199 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1200 {
1201 	const struct btf_type *t;
1202 	__u32 id;
1203 
1204 	while (decl_stack->cnt) {
1205 		id = decl_stack->ids[decl_stack->cnt - 1];
1206 		t = btf__type_by_id(d->btf, id);
1207 
1208 		switch (btf_kind(t)) {
1209 		case BTF_KIND_VOLATILE:
1210 			btf_dump_printf(d, "volatile ");
1211 			break;
1212 		case BTF_KIND_CONST:
1213 			btf_dump_printf(d, "const ");
1214 			break;
1215 		case BTF_KIND_RESTRICT:
1216 			btf_dump_printf(d, "restrict ");
1217 			break;
1218 		default:
1219 			return;
1220 		}
1221 		decl_stack->cnt--;
1222 	}
1223 }
1224 
1225 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1226 {
1227 	const struct btf_type *t;
1228 	__u32 id;
1229 
1230 	while (decl_stack->cnt) {
1231 		id = decl_stack->ids[decl_stack->cnt - 1];
1232 		t = btf__type_by_id(d->btf, id);
1233 		if (!btf_is_mod(t))
1234 			return;
1235 		decl_stack->cnt--;
1236 	}
1237 }
1238 
1239 static void btf_dump_emit_name(const struct btf_dump *d,
1240 			       const char *name, bool last_was_ptr)
1241 {
1242 	bool separate = name[0] && !last_was_ptr;
1243 
1244 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1245 }
1246 
1247 static void btf_dump_emit_type_chain(struct btf_dump *d,
1248 				     struct id_stack *decls,
1249 				     const char *fname, int lvl)
1250 {
1251 	/*
1252 	 * last_was_ptr is used to determine if we need to separate pointer
1253 	 * asterisk (*) from previous part of type signature with space, so
1254 	 * that we get `int ***`, instead of `int * * *`. We default to true
1255 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1256 	 * func_proto case. func_proto will start a new emit_type_chain call
1257 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1258 	 * don't want to prepend space for that last pointer.
1259 	 */
1260 	bool last_was_ptr = true;
1261 	const struct btf_type *t;
1262 	const char *name;
1263 	__u16 kind;
1264 	__u32 id;
1265 
1266 	while (decls->cnt) {
1267 		id = decls->ids[--decls->cnt];
1268 		if (id == 0) {
1269 			/* VOID is a special snowflake */
1270 			btf_dump_emit_mods(d, decls);
1271 			btf_dump_printf(d, "void");
1272 			last_was_ptr = false;
1273 			continue;
1274 		}
1275 
1276 		t = btf__type_by_id(d->btf, id);
1277 		kind = btf_kind(t);
1278 
1279 		switch (kind) {
1280 		case BTF_KIND_INT:
1281 		case BTF_KIND_FLOAT:
1282 			btf_dump_emit_mods(d, decls);
1283 			name = btf_name_of(d, t->name_off);
1284 			btf_dump_printf(d, "%s", name);
1285 			break;
1286 		case BTF_KIND_STRUCT:
1287 		case BTF_KIND_UNION:
1288 			btf_dump_emit_mods(d, decls);
1289 			/* inline anonymous struct/union */
1290 			if (t->name_off == 0 && !d->skip_anon_defs)
1291 				btf_dump_emit_struct_def(d, id, t, lvl);
1292 			else
1293 				btf_dump_emit_struct_fwd(d, id, t);
1294 			break;
1295 		case BTF_KIND_ENUM:
1296 			btf_dump_emit_mods(d, decls);
1297 			/* inline anonymous enum */
1298 			if (t->name_off == 0 && !d->skip_anon_defs)
1299 				btf_dump_emit_enum_def(d, id, t, lvl);
1300 			else
1301 				btf_dump_emit_enum_fwd(d, id, t);
1302 			break;
1303 		case BTF_KIND_FWD:
1304 			btf_dump_emit_mods(d, decls);
1305 			btf_dump_emit_fwd_def(d, id, t);
1306 			break;
1307 		case BTF_KIND_TYPEDEF:
1308 			btf_dump_emit_mods(d, decls);
1309 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1310 			break;
1311 		case BTF_KIND_PTR:
1312 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1313 			break;
1314 		case BTF_KIND_VOLATILE:
1315 			btf_dump_printf(d, " volatile");
1316 			break;
1317 		case BTF_KIND_CONST:
1318 			btf_dump_printf(d, " const");
1319 			break;
1320 		case BTF_KIND_RESTRICT:
1321 			btf_dump_printf(d, " restrict");
1322 			break;
1323 		case BTF_KIND_ARRAY: {
1324 			const struct btf_array *a = btf_array(t);
1325 			const struct btf_type *next_t;
1326 			__u32 next_id;
1327 			bool multidim;
1328 			/*
1329 			 * GCC has a bug
1330 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1331 			 * which causes it to emit extra const/volatile
1332 			 * modifiers for an array, if array's element type has
1333 			 * const/volatile modifiers. Clang doesn't do that.
1334 			 * In general, it doesn't seem very meaningful to have
1335 			 * a const/volatile modifier for array, so we are
1336 			 * going to silently skip them here.
1337 			 */
1338 			btf_dump_drop_mods(d, decls);
1339 
1340 			if (decls->cnt == 0) {
1341 				btf_dump_emit_name(d, fname, last_was_ptr);
1342 				btf_dump_printf(d, "[%u]", a->nelems);
1343 				return;
1344 			}
1345 
1346 			next_id = decls->ids[decls->cnt - 1];
1347 			next_t = btf__type_by_id(d->btf, next_id);
1348 			multidim = btf_is_array(next_t);
1349 			/* we need space if we have named non-pointer */
1350 			if (fname[0] && !last_was_ptr)
1351 				btf_dump_printf(d, " ");
1352 			/* no parentheses for multi-dimensional array */
1353 			if (!multidim)
1354 				btf_dump_printf(d, "(");
1355 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1356 			if (!multidim)
1357 				btf_dump_printf(d, ")");
1358 			btf_dump_printf(d, "[%u]", a->nelems);
1359 			return;
1360 		}
1361 		case BTF_KIND_FUNC_PROTO: {
1362 			const struct btf_param *p = btf_params(t);
1363 			__u16 vlen = btf_vlen(t);
1364 			int i;
1365 
1366 			/*
1367 			 * GCC emits extra volatile qualifier for
1368 			 * __attribute__((noreturn)) function pointers. Clang
1369 			 * doesn't do it. It's a GCC quirk for backwards
1370 			 * compatibility with code written for GCC <2.5. So,
1371 			 * similarly to extra qualifiers for array, just drop
1372 			 * them, instead of handling them.
1373 			 */
1374 			btf_dump_drop_mods(d, decls);
1375 			if (decls->cnt) {
1376 				btf_dump_printf(d, " (");
1377 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1378 				btf_dump_printf(d, ")");
1379 			} else {
1380 				btf_dump_emit_name(d, fname, last_was_ptr);
1381 			}
1382 			btf_dump_printf(d, "(");
1383 			/*
1384 			 * Clang for BPF target generates func_proto with no
1385 			 * args as a func_proto with a single void arg (e.g.,
1386 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1387 			 * going to pretend there are no args for such case.
1388 			 */
1389 			if (vlen == 1 && p->type == 0) {
1390 				btf_dump_printf(d, ")");
1391 				return;
1392 			}
1393 
1394 			for (i = 0; i < vlen; i++, p++) {
1395 				if (i > 0)
1396 					btf_dump_printf(d, ", ");
1397 
1398 				/* last arg of type void is vararg */
1399 				if (i == vlen - 1 && p->type == 0) {
1400 					btf_dump_printf(d, "...");
1401 					break;
1402 				}
1403 
1404 				name = btf_name_of(d, p->name_off);
1405 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1406 			}
1407 
1408 			btf_dump_printf(d, ")");
1409 			return;
1410 		}
1411 		default:
1412 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1413 				kind, id);
1414 			return;
1415 		}
1416 
1417 		last_was_ptr = kind == BTF_KIND_PTR;
1418 	}
1419 
1420 	btf_dump_emit_name(d, fname, last_was_ptr);
1421 }
1422 
1423 /* show type name as (type_name) */
1424 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1425 				    bool top_level)
1426 {
1427 	const struct btf_type *t;
1428 
1429 	/* for array members, we don't bother emitting type name for each
1430 	 * member to avoid the redundancy of
1431 	 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1432 	 */
1433 	if (d->typed_dump->is_array_member)
1434 		return;
1435 
1436 	/* avoid type name specification for variable/section; it will be done
1437 	 * for the associated variable value(s).
1438 	 */
1439 	t = btf__type_by_id(d->btf, id);
1440 	if (btf_is_var(t) || btf_is_datasec(t))
1441 		return;
1442 
1443 	if (top_level)
1444 		btf_dump_printf(d, "(");
1445 
1446 	d->skip_anon_defs = true;
1447 	d->strip_mods = true;
1448 	btf_dump_emit_type_decl(d, id, "", 0);
1449 	d->strip_mods = false;
1450 	d->skip_anon_defs = false;
1451 
1452 	if (top_level)
1453 		btf_dump_printf(d, ")");
1454 }
1455 
1456 /* return number of duplicates (occurrences) of a given name */
1457 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1458 				 const char *orig_name)
1459 {
1460 	size_t dup_cnt = 0;
1461 
1462 	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1463 	dup_cnt++;
1464 	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1465 
1466 	return dup_cnt;
1467 }
1468 
1469 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1470 					 struct hashmap *name_map)
1471 {
1472 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1473 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1474 	const char *orig_name = btf_name_of(d, t->name_off);
1475 	const char **cached_name = &d->cached_names[id];
1476 	size_t dup_cnt;
1477 
1478 	if (t->name_off == 0)
1479 		return "";
1480 
1481 	if (s->name_resolved)
1482 		return *cached_name ? *cached_name : orig_name;
1483 
1484 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1485 	if (dup_cnt > 1) {
1486 		const size_t max_len = 256;
1487 		char new_name[max_len];
1488 
1489 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1490 		*cached_name = strdup(new_name);
1491 	}
1492 
1493 	s->name_resolved = 1;
1494 	return *cached_name ? *cached_name : orig_name;
1495 }
1496 
1497 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1498 {
1499 	return btf_dump_resolve_name(d, id, d->type_names);
1500 }
1501 
1502 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1503 {
1504 	return btf_dump_resolve_name(d, id, d->ident_names);
1505 }
1506 
1507 static int btf_dump_dump_type_data(struct btf_dump *d,
1508 				   const char *fname,
1509 				   const struct btf_type *t,
1510 				   __u32 id,
1511 				   const void *data,
1512 				   __u8 bits_offset,
1513 				   __u8 bit_sz);
1514 
1515 static const char *btf_dump_data_newline(struct btf_dump *d)
1516 {
1517 	return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1518 }
1519 
1520 static const char *btf_dump_data_delim(struct btf_dump *d)
1521 {
1522 	return d->typed_dump->depth == 0 ? "" : ",";
1523 }
1524 
1525 static void btf_dump_data_pfx(struct btf_dump *d)
1526 {
1527 	int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1528 
1529 	if (d->typed_dump->compact)
1530 		return;
1531 
1532 	for (i = 0; i < lvl; i++)
1533 		btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1534 }
1535 
1536 /* A macro is used here as btf_type_value[s]() appends format specifiers
1537  * to the format specifier passed in; these do the work of appending
1538  * delimiters etc while the caller simply has to specify the type values
1539  * in the format specifier + value(s).
1540  */
1541 #define btf_dump_type_values(d, fmt, ...)				\
1542 	btf_dump_printf(d, fmt "%s%s",					\
1543 			##__VA_ARGS__,					\
1544 			btf_dump_data_delim(d),				\
1545 			btf_dump_data_newline(d))
1546 
1547 static int btf_dump_unsupported_data(struct btf_dump *d,
1548 				     const struct btf_type *t,
1549 				     __u32 id)
1550 {
1551 	btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1552 	return -ENOTSUP;
1553 }
1554 
1555 static int btf_dump_get_bitfield_value(struct btf_dump *d,
1556 				       const struct btf_type *t,
1557 				       const void *data,
1558 				       __u8 bits_offset,
1559 				       __u8 bit_sz,
1560 				       __u64 *value)
1561 {
1562 	__u16 left_shift_bits, right_shift_bits;
1563 	__u8 nr_copy_bits, nr_copy_bytes;
1564 	const __u8 *bytes = data;
1565 	int sz = t->size;
1566 	__u64 num = 0;
1567 	int i;
1568 
1569 	/* Maximum supported bitfield size is 64 bits */
1570 	if (sz > 8) {
1571 		pr_warn("unexpected bitfield size %d\n", sz);
1572 		return -EINVAL;
1573 	}
1574 
1575 	/* Bitfield value retrieval is done in two steps; first relevant bytes are
1576 	 * stored in num, then we left/right shift num to eliminate irrelevant bits.
1577 	 */
1578 	nr_copy_bits = bit_sz + bits_offset;
1579 	nr_copy_bytes = t->size;
1580 #if __BYTE_ORDER == __LITTLE_ENDIAN
1581 	for (i = nr_copy_bytes - 1; i >= 0; i--)
1582 		num = num * 256 + bytes[i];
1583 #elif __BYTE_ORDER == __BIG_ENDIAN
1584 	for (i = 0; i < nr_copy_bytes; i++)
1585 		num = num * 256 + bytes[i];
1586 #else
1587 # error "Unrecognized __BYTE_ORDER__"
1588 #endif
1589 	left_shift_bits = 64 - nr_copy_bits;
1590 	right_shift_bits = 64 - bit_sz;
1591 
1592 	*value = (num << left_shift_bits) >> right_shift_bits;
1593 
1594 	return 0;
1595 }
1596 
1597 static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1598 					const struct btf_type *t,
1599 					const void *data,
1600 					__u8 bits_offset,
1601 					__u8 bit_sz)
1602 {
1603 	__u64 check_num;
1604 	int err;
1605 
1606 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1607 	if (err)
1608 		return err;
1609 	if (check_num == 0)
1610 		return -ENODATA;
1611 	return 0;
1612 }
1613 
1614 static int btf_dump_bitfield_data(struct btf_dump *d,
1615 				  const struct btf_type *t,
1616 				  const void *data,
1617 				  __u8 bits_offset,
1618 				  __u8 bit_sz)
1619 {
1620 	__u64 print_num;
1621 	int err;
1622 
1623 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1624 	if (err)
1625 		return err;
1626 
1627 	btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1628 
1629 	return 0;
1630 }
1631 
1632 /* ints, floats and ptrs */
1633 static int btf_dump_base_type_check_zero(struct btf_dump *d,
1634 					 const struct btf_type *t,
1635 					 __u32 id,
1636 					 const void *data)
1637 {
1638 	static __u8 bytecmp[16] = {};
1639 	int nr_bytes;
1640 
1641 	/* For pointer types, pointer size is not defined on a per-type basis.
1642 	 * On dump creation however, we store the pointer size.
1643 	 */
1644 	if (btf_kind(t) == BTF_KIND_PTR)
1645 		nr_bytes = d->ptr_sz;
1646 	else
1647 		nr_bytes = t->size;
1648 
1649 	if (nr_bytes < 1 || nr_bytes > 16) {
1650 		pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1651 		return -EINVAL;
1652 	}
1653 
1654 	if (memcmp(data, bytecmp, nr_bytes) == 0)
1655 		return -ENODATA;
1656 	return 0;
1657 }
1658 
1659 static bool ptr_is_aligned(const void *data, int data_sz)
1660 {
1661 	return ((uintptr_t)data) % data_sz == 0;
1662 }
1663 
1664 static int btf_dump_int_data(struct btf_dump *d,
1665 			     const struct btf_type *t,
1666 			     __u32 type_id,
1667 			     const void *data,
1668 			     __u8 bits_offset)
1669 {
1670 	__u8 encoding = btf_int_encoding(t);
1671 	bool sign = encoding & BTF_INT_SIGNED;
1672 	int sz = t->size;
1673 
1674 	if (sz == 0) {
1675 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1676 		return -EINVAL;
1677 	}
1678 
1679 	/* handle packed int data - accesses of integers not aligned on
1680 	 * int boundaries can cause problems on some platforms.
1681 	 */
1682 	if (!ptr_is_aligned(data, sz))
1683 		return btf_dump_bitfield_data(d, t, data, 0, 0);
1684 
1685 	switch (sz) {
1686 	case 16: {
1687 		const __u64 *ints = data;
1688 		__u64 lsi, msi;
1689 
1690 		/* avoid use of __int128 as some 32-bit platforms do not
1691 		 * support it.
1692 		 */
1693 #if __BYTE_ORDER == __LITTLE_ENDIAN
1694 		lsi = ints[0];
1695 		msi = ints[1];
1696 #elif __BYTE_ORDER == __BIG_ENDIAN
1697 		lsi = ints[1];
1698 		msi = ints[0];
1699 #else
1700 # error "Unrecognized __BYTE_ORDER__"
1701 #endif
1702 		if (msi == 0)
1703 			btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1704 		else
1705 			btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1706 					     (unsigned long long)lsi);
1707 		break;
1708 	}
1709 	case 8:
1710 		if (sign)
1711 			btf_dump_type_values(d, "%lld", *(long long *)data);
1712 		else
1713 			btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1714 		break;
1715 	case 4:
1716 		if (sign)
1717 			btf_dump_type_values(d, "%d", *(__s32 *)data);
1718 		else
1719 			btf_dump_type_values(d, "%u", *(__u32 *)data);
1720 		break;
1721 	case 2:
1722 		if (sign)
1723 			btf_dump_type_values(d, "%d", *(__s16 *)data);
1724 		else
1725 			btf_dump_type_values(d, "%u", *(__u16 *)data);
1726 		break;
1727 	case 1:
1728 		if (d->typed_dump->is_array_char) {
1729 			/* check for null terminator */
1730 			if (d->typed_dump->is_array_terminated)
1731 				break;
1732 			if (*(char *)data == '\0') {
1733 				d->typed_dump->is_array_terminated = true;
1734 				break;
1735 			}
1736 			if (isprint(*(char *)data)) {
1737 				btf_dump_type_values(d, "'%c'", *(char *)data);
1738 				break;
1739 			}
1740 		}
1741 		if (sign)
1742 			btf_dump_type_values(d, "%d", *(__s8 *)data);
1743 		else
1744 			btf_dump_type_values(d, "%u", *(__u8 *)data);
1745 		break;
1746 	default:
1747 		pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1748 		return -EINVAL;
1749 	}
1750 	return 0;
1751 }
1752 
1753 union float_data {
1754 	long double ld;
1755 	double d;
1756 	float f;
1757 };
1758 
1759 static int btf_dump_float_data(struct btf_dump *d,
1760 			       const struct btf_type *t,
1761 			       __u32 type_id,
1762 			       const void *data)
1763 {
1764 	const union float_data *flp = data;
1765 	union float_data fl;
1766 	int sz = t->size;
1767 
1768 	/* handle unaligned data; copy to local union */
1769 	if (!ptr_is_aligned(data, sz)) {
1770 		memcpy(&fl, data, sz);
1771 		flp = &fl;
1772 	}
1773 
1774 	switch (sz) {
1775 	case 16:
1776 		btf_dump_type_values(d, "%Lf", flp->ld);
1777 		break;
1778 	case 8:
1779 		btf_dump_type_values(d, "%lf", flp->d);
1780 		break;
1781 	case 4:
1782 		btf_dump_type_values(d, "%f", flp->f);
1783 		break;
1784 	default:
1785 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1786 		return -EINVAL;
1787 	}
1788 	return 0;
1789 }
1790 
1791 static int btf_dump_var_data(struct btf_dump *d,
1792 			     const struct btf_type *v,
1793 			     __u32 id,
1794 			     const void *data)
1795 {
1796 	enum btf_func_linkage linkage = btf_var(v)->linkage;
1797 	const struct btf_type *t;
1798 	const char *l;
1799 	__u32 type_id;
1800 
1801 	switch (linkage) {
1802 	case BTF_FUNC_STATIC:
1803 		l = "static ";
1804 		break;
1805 	case BTF_FUNC_EXTERN:
1806 		l = "extern ";
1807 		break;
1808 	case BTF_FUNC_GLOBAL:
1809 	default:
1810 		l = "";
1811 		break;
1812 	}
1813 
1814 	/* format of output here is [linkage] [type] [varname] = (type)value,
1815 	 * for example "static int cpu_profile_flip = (int)1"
1816 	 */
1817 	btf_dump_printf(d, "%s", l);
1818 	type_id = v->type;
1819 	t = btf__type_by_id(d->btf, type_id);
1820 	btf_dump_emit_type_cast(d, type_id, false);
1821 	btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
1822 	return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
1823 }
1824 
1825 static int btf_dump_array_data(struct btf_dump *d,
1826 			       const struct btf_type *t,
1827 			       __u32 id,
1828 			       const void *data)
1829 {
1830 	const struct btf_array *array = btf_array(t);
1831 	const struct btf_type *elem_type;
1832 	__u32 i, elem_size = 0, elem_type_id;
1833 	bool is_array_member;
1834 
1835 	elem_type_id = array->type;
1836 	elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
1837 	elem_size = btf__resolve_size(d->btf, elem_type_id);
1838 	if (elem_size <= 0) {
1839 		pr_warn("unexpected elem size %d for array type [%u]\n", elem_size, id);
1840 		return -EINVAL;
1841 	}
1842 
1843 	if (btf_is_int(elem_type)) {
1844 		/*
1845 		 * BTF_INT_CHAR encoding never seems to be set for
1846 		 * char arrays, so if size is 1 and element is
1847 		 * printable as a char, we'll do that.
1848 		 */
1849 		if (elem_size == 1)
1850 			d->typed_dump->is_array_char = true;
1851 	}
1852 
1853 	/* note that we increment depth before calling btf_dump_print() below;
1854 	 * this is intentional.  btf_dump_data_newline() will not print a
1855 	 * newline for depth 0 (since this leaves us with trailing newlines
1856 	 * at the end of typed display), so depth is incremented first.
1857 	 * For similar reasons, we decrement depth before showing the closing
1858 	 * parenthesis.
1859 	 */
1860 	d->typed_dump->depth++;
1861 	btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
1862 
1863 	/* may be a multidimensional array, so store current "is array member"
1864 	 * status so we can restore it correctly later.
1865 	 */
1866 	is_array_member = d->typed_dump->is_array_member;
1867 	d->typed_dump->is_array_member = true;
1868 	for (i = 0; i < array->nelems; i++, data += elem_size) {
1869 		if (d->typed_dump->is_array_terminated)
1870 			break;
1871 		btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
1872 	}
1873 	d->typed_dump->is_array_member = is_array_member;
1874 	d->typed_dump->depth--;
1875 	btf_dump_data_pfx(d);
1876 	btf_dump_type_values(d, "]");
1877 
1878 	return 0;
1879 }
1880 
1881 static int btf_dump_struct_data(struct btf_dump *d,
1882 				const struct btf_type *t,
1883 				__u32 id,
1884 				const void *data)
1885 {
1886 	const struct btf_member *m = btf_members(t);
1887 	__u16 n = btf_vlen(t);
1888 	int i, err;
1889 
1890 	/* note that we increment depth before calling btf_dump_print() below;
1891 	 * this is intentional.  btf_dump_data_newline() will not print a
1892 	 * newline for depth 0 (since this leaves us with trailing newlines
1893 	 * at the end of typed display), so depth is incremented first.
1894 	 * For similar reasons, we decrement depth before showing the closing
1895 	 * parenthesis.
1896 	 */
1897 	d->typed_dump->depth++;
1898 	btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
1899 
1900 	for (i = 0; i < n; i++, m++) {
1901 		const struct btf_type *mtype;
1902 		const char *mname;
1903 		__u32 moffset;
1904 		__u8 bit_sz;
1905 
1906 		mtype = btf__type_by_id(d->btf, m->type);
1907 		mname = btf_name_of(d, m->name_off);
1908 		moffset = btf_member_bit_offset(t, i);
1909 
1910 		bit_sz = btf_member_bitfield_size(t, i);
1911 		err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
1912 					      moffset % 8, bit_sz);
1913 		if (err < 0)
1914 			return err;
1915 	}
1916 	d->typed_dump->depth--;
1917 	btf_dump_data_pfx(d);
1918 	btf_dump_type_values(d, "}");
1919 	return err;
1920 }
1921 
1922 union ptr_data {
1923 	unsigned int p;
1924 	unsigned long long lp;
1925 };
1926 
1927 static int btf_dump_ptr_data(struct btf_dump *d,
1928 			      const struct btf_type *t,
1929 			      __u32 id,
1930 			      const void *data)
1931 {
1932 	if (ptr_is_aligned(data, d->ptr_sz) && d->ptr_sz == sizeof(void *)) {
1933 		btf_dump_type_values(d, "%p", *(void **)data);
1934 	} else {
1935 		union ptr_data pt;
1936 
1937 		memcpy(&pt, data, d->ptr_sz);
1938 		if (d->ptr_sz == 4)
1939 			btf_dump_type_values(d, "0x%x", pt.p);
1940 		else
1941 			btf_dump_type_values(d, "0x%llx", pt.lp);
1942 	}
1943 	return 0;
1944 }
1945 
1946 static int btf_dump_get_enum_value(struct btf_dump *d,
1947 				   const struct btf_type *t,
1948 				   const void *data,
1949 				   __u32 id,
1950 				   __s64 *value)
1951 {
1952 	int sz = t->size;
1953 
1954 	/* handle unaligned enum value */
1955 	if (!ptr_is_aligned(data, sz)) {
1956 		__u64 val;
1957 		int err;
1958 
1959 		err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
1960 		if (err)
1961 			return err;
1962 		*value = (__s64)val;
1963 		return 0;
1964 	}
1965 
1966 	switch (t->size) {
1967 	case 8:
1968 		*value = *(__s64 *)data;
1969 		return 0;
1970 	case 4:
1971 		*value = *(__s32 *)data;
1972 		return 0;
1973 	case 2:
1974 		*value = *(__s16 *)data;
1975 		return 0;
1976 	case 1:
1977 		*value = *(__s8 *)data;
1978 		return 0;
1979 	default:
1980 		pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
1981 		return -EINVAL;
1982 	}
1983 }
1984 
1985 static int btf_dump_enum_data(struct btf_dump *d,
1986 			      const struct btf_type *t,
1987 			      __u32 id,
1988 			      const void *data)
1989 {
1990 	const struct btf_enum *e;
1991 	__s64 value;
1992 	int i, err;
1993 
1994 	err = btf_dump_get_enum_value(d, t, data, id, &value);
1995 	if (err)
1996 		return err;
1997 
1998 	for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
1999 		if (value != e->val)
2000 			continue;
2001 		btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2002 		return 0;
2003 	}
2004 
2005 	btf_dump_type_values(d, "%d", value);
2006 	return 0;
2007 }
2008 
2009 static int btf_dump_datasec_data(struct btf_dump *d,
2010 				 const struct btf_type *t,
2011 				 __u32 id,
2012 				 const void *data)
2013 {
2014 	const struct btf_var_secinfo *vsi;
2015 	const struct btf_type *var;
2016 	__u32 i;
2017 	int err;
2018 
2019 	btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2020 
2021 	for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2022 		var = btf__type_by_id(d->btf, vsi->type);
2023 		err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2024 		if (err < 0)
2025 			return err;
2026 		btf_dump_printf(d, ";");
2027 	}
2028 	return 0;
2029 }
2030 
2031 /* return size of type, or if base type overflows, return -E2BIG. */
2032 static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2033 					     const struct btf_type *t,
2034 					     __u32 id,
2035 					     const void *data,
2036 					     __u8 bits_offset)
2037 {
2038 	__s64 size = btf__resolve_size(d->btf, id);
2039 
2040 	if (size < 0 || size >= INT_MAX) {
2041 		pr_warn("unexpected size [%zu] for id [%u]\n",
2042 			(size_t)size, id);
2043 		return -EINVAL;
2044 	}
2045 
2046 	/* Only do overflow checking for base types; we do not want to
2047 	 * avoid showing part of a struct, union or array, even if we
2048 	 * do not have enough data to show the full object.  By
2049 	 * restricting overflow checking to base types we can ensure
2050 	 * that partial display succeeds, while avoiding overflowing
2051 	 * and using bogus data for display.
2052 	 */
2053 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2054 	if (!t) {
2055 		pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2056 			id);
2057 		return -EINVAL;
2058 	}
2059 
2060 	switch (btf_kind(t)) {
2061 	case BTF_KIND_INT:
2062 	case BTF_KIND_FLOAT:
2063 	case BTF_KIND_PTR:
2064 	case BTF_KIND_ENUM:
2065 		if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2066 			return -E2BIG;
2067 		break;
2068 	default:
2069 		break;
2070 	}
2071 	return (int)size;
2072 }
2073 
2074 static int btf_dump_type_data_check_zero(struct btf_dump *d,
2075 					 const struct btf_type *t,
2076 					 __u32 id,
2077 					 const void *data,
2078 					 __u8 bits_offset,
2079 					 __u8 bit_sz)
2080 {
2081 	__s64 value;
2082 	int i, err;
2083 
2084 	/* toplevel exceptions; we show zero values if
2085 	 * - we ask for them (emit_zeros)
2086 	 * - if we are at top-level so we see "struct empty { }"
2087 	 * - or if we are an array member and the array is non-empty and
2088 	 *   not a char array; we don't want to be in a situation where we
2089 	 *   have an integer array 0, 1, 0, 1 and only show non-zero values.
2090 	 *   If the array contains zeroes only, or is a char array starting
2091 	 *   with a '\0', the array-level check_zero() will prevent showing it;
2092 	 *   we are concerned with determining zero value at the array member
2093 	 *   level here.
2094 	 */
2095 	if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2096 	    (d->typed_dump->is_array_member &&
2097 	     !d->typed_dump->is_array_char))
2098 		return 0;
2099 
2100 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2101 
2102 	switch (btf_kind(t)) {
2103 	case BTF_KIND_INT:
2104 		if (bit_sz)
2105 			return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2106 		return btf_dump_base_type_check_zero(d, t, id, data);
2107 	case BTF_KIND_FLOAT:
2108 	case BTF_KIND_PTR:
2109 		return btf_dump_base_type_check_zero(d, t, id, data);
2110 	case BTF_KIND_ARRAY: {
2111 		const struct btf_array *array = btf_array(t);
2112 		const struct btf_type *elem_type;
2113 		__u32 elem_type_id, elem_size;
2114 		bool ischar;
2115 
2116 		elem_type_id = array->type;
2117 		elem_size = btf__resolve_size(d->btf, elem_type_id);
2118 		elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2119 
2120 		ischar = btf_is_int(elem_type) && elem_size == 1;
2121 
2122 		/* check all elements; if _any_ element is nonzero, all
2123 		 * of array is displayed.  We make an exception however
2124 		 * for char arrays where the first element is 0; these
2125 		 * are considered zeroed also, even if later elements are
2126 		 * non-zero because the string is terminated.
2127 		 */
2128 		for (i = 0; i < array->nelems; i++) {
2129 			if (i == 0 && ischar && *(char *)data == 0)
2130 				return -ENODATA;
2131 			err = btf_dump_type_data_check_zero(d, elem_type,
2132 							    elem_type_id,
2133 							    data +
2134 							    (i * elem_size),
2135 							    bits_offset, 0);
2136 			if (err != -ENODATA)
2137 				return err;
2138 		}
2139 		return -ENODATA;
2140 	}
2141 	case BTF_KIND_STRUCT:
2142 	case BTF_KIND_UNION: {
2143 		const struct btf_member *m = btf_members(t);
2144 		__u16 n = btf_vlen(t);
2145 
2146 		/* if any struct/union member is non-zero, the struct/union
2147 		 * is considered non-zero and dumped.
2148 		 */
2149 		for (i = 0; i < n; i++, m++) {
2150 			const struct btf_type *mtype;
2151 			__u32 moffset;
2152 
2153 			mtype = btf__type_by_id(d->btf, m->type);
2154 			moffset = btf_member_bit_offset(t, i);
2155 
2156 			/* btf_int_bits() does not store member bitfield size;
2157 			 * bitfield size needs to be stored here so int display
2158 			 * of member can retrieve it.
2159 			 */
2160 			bit_sz = btf_member_bitfield_size(t, i);
2161 			err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2162 							    moffset % 8, bit_sz);
2163 			if (err != ENODATA)
2164 				return err;
2165 		}
2166 		return -ENODATA;
2167 	}
2168 	case BTF_KIND_ENUM:
2169 		err = btf_dump_get_enum_value(d, t, data, id, &value);
2170 		if (err)
2171 			return err;
2172 		if (value == 0)
2173 			return -ENODATA;
2174 		return 0;
2175 	default:
2176 		return 0;
2177 	}
2178 }
2179 
2180 /* returns size of data dumped, or error. */
2181 static int btf_dump_dump_type_data(struct btf_dump *d,
2182 				   const char *fname,
2183 				   const struct btf_type *t,
2184 				   __u32 id,
2185 				   const void *data,
2186 				   __u8 bits_offset,
2187 				   __u8 bit_sz)
2188 {
2189 	int size, err;
2190 
2191 	size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset);
2192 	if (size < 0)
2193 		return size;
2194 	err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2195 	if (err) {
2196 		/* zeroed data is expected and not an error, so simply skip
2197 		 * dumping such data.  Record other errors however.
2198 		 */
2199 		if (err == -ENODATA)
2200 			return size;
2201 		return err;
2202 	}
2203 	btf_dump_data_pfx(d);
2204 
2205 	if (!d->typed_dump->skip_names) {
2206 		if (fname && strlen(fname) > 0)
2207 			btf_dump_printf(d, ".%s = ", fname);
2208 		btf_dump_emit_type_cast(d, id, true);
2209 	}
2210 
2211 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2212 
2213 	switch (btf_kind(t)) {
2214 	case BTF_KIND_UNKN:
2215 	case BTF_KIND_FWD:
2216 	case BTF_KIND_FUNC:
2217 	case BTF_KIND_FUNC_PROTO:
2218 		err = btf_dump_unsupported_data(d, t, id);
2219 		break;
2220 	case BTF_KIND_INT:
2221 		if (bit_sz)
2222 			err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2223 		else
2224 			err = btf_dump_int_data(d, t, id, data, bits_offset);
2225 		break;
2226 	case BTF_KIND_FLOAT:
2227 		err = btf_dump_float_data(d, t, id, data);
2228 		break;
2229 	case BTF_KIND_PTR:
2230 		err = btf_dump_ptr_data(d, t, id, data);
2231 		break;
2232 	case BTF_KIND_ARRAY:
2233 		err = btf_dump_array_data(d, t, id, data);
2234 		break;
2235 	case BTF_KIND_STRUCT:
2236 	case BTF_KIND_UNION:
2237 		err = btf_dump_struct_data(d, t, id, data);
2238 		break;
2239 	case BTF_KIND_ENUM:
2240 		/* handle bitfield and int enum values */
2241 		if (bit_sz) {
2242 			__u64 print_num;
2243 			__s64 enum_val;
2244 
2245 			err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2246 							  &print_num);
2247 			if (err)
2248 				break;
2249 			enum_val = (__s64)print_num;
2250 			err = btf_dump_enum_data(d, t, id, &enum_val);
2251 		} else
2252 			err = btf_dump_enum_data(d, t, id, data);
2253 		break;
2254 	case BTF_KIND_VAR:
2255 		err = btf_dump_var_data(d, t, id, data);
2256 		break;
2257 	case BTF_KIND_DATASEC:
2258 		err = btf_dump_datasec_data(d, t, id, data);
2259 		break;
2260 	default:
2261 		pr_warn("unexpected kind [%u] for id [%u]\n",
2262 			BTF_INFO_KIND(t->info), id);
2263 		return -EINVAL;
2264 	}
2265 	if (err < 0)
2266 		return err;
2267 	return size;
2268 }
2269 
2270 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2271 			     const void *data, size_t data_sz,
2272 			     const struct btf_dump_type_data_opts *opts)
2273 {
2274 	struct btf_dump_data typed_dump = {};
2275 	const struct btf_type *t;
2276 	int ret;
2277 
2278 	if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2279 		return libbpf_err(-EINVAL);
2280 
2281 	t = btf__type_by_id(d->btf, id);
2282 	if (!t)
2283 		return libbpf_err(-ENOENT);
2284 
2285 	d->typed_dump = &typed_dump;
2286 	d->typed_dump->data_end = data + data_sz;
2287 	d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2288 
2289 	/* default indent string is a tab */
2290 	if (!opts->indent_str)
2291 		d->typed_dump->indent_str[0] = '\t';
2292 	else
2293 		strncat(d->typed_dump->indent_str, opts->indent_str,
2294 			sizeof(d->typed_dump->indent_str) - 1);
2295 
2296 	d->typed_dump->compact = OPTS_GET(opts, compact, false);
2297 	d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2298 	d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2299 
2300 	ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2301 
2302 	d->typed_dump = NULL;
2303 
2304 	return libbpf_err(ret);
2305 }
2306