xref: /openbmc/linux/tools/lib/bpf/btf.c (revision fd88d2e5)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__get_raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
193 {
194 	__u32 *p;
195 
196 	p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
197 			   btf->nr_types, BTF_MAX_NR_TYPES, 1);
198 	if (!p)
199 		return -ENOMEM;
200 
201 	*p = type_off;
202 	return 0;
203 }
204 
205 static void btf_bswap_hdr(struct btf_header *h)
206 {
207 	h->magic = bswap_16(h->magic);
208 	h->hdr_len = bswap_32(h->hdr_len);
209 	h->type_off = bswap_32(h->type_off);
210 	h->type_len = bswap_32(h->type_len);
211 	h->str_off = bswap_32(h->str_off);
212 	h->str_len = bswap_32(h->str_len);
213 }
214 
215 static int btf_parse_hdr(struct btf *btf)
216 {
217 	struct btf_header *hdr = btf->hdr;
218 	__u32 meta_left;
219 
220 	if (btf->raw_size < sizeof(struct btf_header)) {
221 		pr_debug("BTF header not found\n");
222 		return -EINVAL;
223 	}
224 
225 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
226 		btf->swapped_endian = true;
227 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
228 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
229 				bswap_32(hdr->hdr_len));
230 			return -ENOTSUP;
231 		}
232 		btf_bswap_hdr(hdr);
233 	} else if (hdr->magic != BTF_MAGIC) {
234 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
235 		return -EINVAL;
236 	}
237 
238 	meta_left = btf->raw_size - sizeof(*hdr);
239 	if (meta_left < hdr->str_off + hdr->str_len) {
240 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
241 		return -EINVAL;
242 	}
243 
244 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
245 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
246 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
247 		return -EINVAL;
248 	}
249 
250 	if (hdr->type_off % 4) {
251 		pr_debug("BTF type section is not aligned to 4 bytes\n");
252 		return -EINVAL;
253 	}
254 
255 	return 0;
256 }
257 
258 static int btf_parse_str_sec(struct btf *btf)
259 {
260 	const struct btf_header *hdr = btf->hdr;
261 	const char *start = btf->strs_data;
262 	const char *end = start + btf->hdr->str_len;
263 
264 	if (btf->base_btf && hdr->str_len == 0)
265 		return 0;
266 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
267 		pr_debug("Invalid BTF string section\n");
268 		return -EINVAL;
269 	}
270 	if (!btf->base_btf && start[0]) {
271 		pr_debug("Invalid BTF string section\n");
272 		return -EINVAL;
273 	}
274 	return 0;
275 }
276 
277 static int btf_type_size(const struct btf_type *t)
278 {
279 	const int base_size = sizeof(struct btf_type);
280 	__u16 vlen = btf_vlen(t);
281 
282 	switch (btf_kind(t)) {
283 	case BTF_KIND_FWD:
284 	case BTF_KIND_CONST:
285 	case BTF_KIND_VOLATILE:
286 	case BTF_KIND_RESTRICT:
287 	case BTF_KIND_PTR:
288 	case BTF_KIND_TYPEDEF:
289 	case BTF_KIND_FUNC:
290 	case BTF_KIND_FLOAT:
291 		return base_size;
292 	case BTF_KIND_INT:
293 		return base_size + sizeof(__u32);
294 	case BTF_KIND_ENUM:
295 		return base_size + vlen * sizeof(struct btf_enum);
296 	case BTF_KIND_ARRAY:
297 		return base_size + sizeof(struct btf_array);
298 	case BTF_KIND_STRUCT:
299 	case BTF_KIND_UNION:
300 		return base_size + vlen * sizeof(struct btf_member);
301 	case BTF_KIND_FUNC_PROTO:
302 		return base_size + vlen * sizeof(struct btf_param);
303 	case BTF_KIND_VAR:
304 		return base_size + sizeof(struct btf_var);
305 	case BTF_KIND_DATASEC:
306 		return base_size + vlen * sizeof(struct btf_var_secinfo);
307 	default:
308 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
309 		return -EINVAL;
310 	}
311 }
312 
313 static void btf_bswap_type_base(struct btf_type *t)
314 {
315 	t->name_off = bswap_32(t->name_off);
316 	t->info = bswap_32(t->info);
317 	t->type = bswap_32(t->type);
318 }
319 
320 static int btf_bswap_type_rest(struct btf_type *t)
321 {
322 	struct btf_var_secinfo *v;
323 	struct btf_member *m;
324 	struct btf_array *a;
325 	struct btf_param *p;
326 	struct btf_enum *e;
327 	__u16 vlen = btf_vlen(t);
328 	int i;
329 
330 	switch (btf_kind(t)) {
331 	case BTF_KIND_FWD:
332 	case BTF_KIND_CONST:
333 	case BTF_KIND_VOLATILE:
334 	case BTF_KIND_RESTRICT:
335 	case BTF_KIND_PTR:
336 	case BTF_KIND_TYPEDEF:
337 	case BTF_KIND_FUNC:
338 	case BTF_KIND_FLOAT:
339 		return 0;
340 	case BTF_KIND_INT:
341 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
342 		return 0;
343 	case BTF_KIND_ENUM:
344 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
345 			e->name_off = bswap_32(e->name_off);
346 			e->val = bswap_32(e->val);
347 		}
348 		return 0;
349 	case BTF_KIND_ARRAY:
350 		a = btf_array(t);
351 		a->type = bswap_32(a->type);
352 		a->index_type = bswap_32(a->index_type);
353 		a->nelems = bswap_32(a->nelems);
354 		return 0;
355 	case BTF_KIND_STRUCT:
356 	case BTF_KIND_UNION:
357 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
358 			m->name_off = bswap_32(m->name_off);
359 			m->type = bswap_32(m->type);
360 			m->offset = bswap_32(m->offset);
361 		}
362 		return 0;
363 	case BTF_KIND_FUNC_PROTO:
364 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
365 			p->name_off = bswap_32(p->name_off);
366 			p->type = bswap_32(p->type);
367 		}
368 		return 0;
369 	case BTF_KIND_VAR:
370 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
371 		return 0;
372 	case BTF_KIND_DATASEC:
373 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
374 			v->type = bswap_32(v->type);
375 			v->offset = bswap_32(v->offset);
376 			v->size = bswap_32(v->size);
377 		}
378 		return 0;
379 	default:
380 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
381 		return -EINVAL;
382 	}
383 }
384 
385 static int btf_parse_type_sec(struct btf *btf)
386 {
387 	struct btf_header *hdr = btf->hdr;
388 	void *next_type = btf->types_data;
389 	void *end_type = next_type + hdr->type_len;
390 	int err, type_size;
391 
392 	while (next_type + sizeof(struct btf_type) <= end_type) {
393 		if (btf->swapped_endian)
394 			btf_bswap_type_base(next_type);
395 
396 		type_size = btf_type_size(next_type);
397 		if (type_size < 0)
398 			return type_size;
399 		if (next_type + type_size > end_type) {
400 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
401 			return -EINVAL;
402 		}
403 
404 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
405 			return -EINVAL;
406 
407 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
408 		if (err)
409 			return err;
410 
411 		next_type += type_size;
412 		btf->nr_types++;
413 	}
414 
415 	if (next_type != end_type) {
416 		pr_warn("BTF types data is malformed\n");
417 		return -EINVAL;
418 	}
419 
420 	return 0;
421 }
422 
423 __u32 btf__get_nr_types(const struct btf *btf)
424 {
425 	return btf->start_id + btf->nr_types - 1;
426 }
427 
428 const struct btf *btf__base_btf(const struct btf *btf)
429 {
430 	return btf->base_btf;
431 }
432 
433 /* internal helper returning non-const pointer to a type */
434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
435 {
436 	if (type_id == 0)
437 		return &btf_void;
438 	if (type_id < btf->start_id)
439 		return btf_type_by_id(btf->base_btf, type_id);
440 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
441 }
442 
443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
444 {
445 	if (type_id >= btf->start_id + btf->nr_types)
446 		return NULL;
447 	return btf_type_by_id((struct btf *)btf, type_id);
448 }
449 
450 static int determine_ptr_size(const struct btf *btf)
451 {
452 	const struct btf_type *t;
453 	const char *name;
454 	int i, n;
455 
456 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
457 		return btf->base_btf->ptr_sz;
458 
459 	n = btf__get_nr_types(btf);
460 	for (i = 1; i <= n; i++) {
461 		t = btf__type_by_id(btf, i);
462 		if (!btf_is_int(t))
463 			continue;
464 
465 		name = btf__name_by_offset(btf, t->name_off);
466 		if (!name)
467 			continue;
468 
469 		if (strcmp(name, "long int") == 0 ||
470 		    strcmp(name, "long unsigned int") == 0) {
471 			if (t->size != 4 && t->size != 8)
472 				continue;
473 			return t->size;
474 		}
475 	}
476 
477 	return -1;
478 }
479 
480 static size_t btf_ptr_sz(const struct btf *btf)
481 {
482 	if (!btf->ptr_sz)
483 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
484 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
485 }
486 
487 /* Return pointer size this BTF instance assumes. The size is heuristically
488  * determined by looking for 'long' or 'unsigned long' integer type and
489  * recording its size in bytes. If BTF type information doesn't have any such
490  * type, this function returns 0. In the latter case, native architecture's
491  * pointer size is assumed, so will be either 4 or 8, depending on
492  * architecture that libbpf was compiled for. It's possible to override
493  * guessed value by using btf__set_pointer_size() API.
494  */
495 size_t btf__pointer_size(const struct btf *btf)
496 {
497 	if (!btf->ptr_sz)
498 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
499 
500 	if (btf->ptr_sz < 0)
501 		/* not enough BTF type info to guess */
502 		return 0;
503 
504 	return btf->ptr_sz;
505 }
506 
507 /* Override or set pointer size in bytes. Only values of 4 and 8 are
508  * supported.
509  */
510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
511 {
512 	if (ptr_sz != 4 && ptr_sz != 8)
513 		return -EINVAL;
514 	btf->ptr_sz = ptr_sz;
515 	return 0;
516 }
517 
518 static bool is_host_big_endian(void)
519 {
520 #if __BYTE_ORDER == __LITTLE_ENDIAN
521 	return false;
522 #elif __BYTE_ORDER == __BIG_ENDIAN
523 	return true;
524 #else
525 # error "Unrecognized __BYTE_ORDER__"
526 #endif
527 }
528 
529 enum btf_endianness btf__endianness(const struct btf *btf)
530 {
531 	if (is_host_big_endian())
532 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
533 	else
534 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
535 }
536 
537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
538 {
539 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
540 		return -EINVAL;
541 
542 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
543 	if (!btf->swapped_endian) {
544 		free(btf->raw_data_swapped);
545 		btf->raw_data_swapped = NULL;
546 	}
547 	return 0;
548 }
549 
550 static bool btf_type_is_void(const struct btf_type *t)
551 {
552 	return t == &btf_void || btf_is_fwd(t);
553 }
554 
555 static bool btf_type_is_void_or_null(const struct btf_type *t)
556 {
557 	return !t || btf_type_is_void(t);
558 }
559 
560 #define MAX_RESOLVE_DEPTH 32
561 
562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
563 {
564 	const struct btf_array *array;
565 	const struct btf_type *t;
566 	__u32 nelems = 1;
567 	__s64 size = -1;
568 	int i;
569 
570 	t = btf__type_by_id(btf, type_id);
571 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
572 	     i++) {
573 		switch (btf_kind(t)) {
574 		case BTF_KIND_INT:
575 		case BTF_KIND_STRUCT:
576 		case BTF_KIND_UNION:
577 		case BTF_KIND_ENUM:
578 		case BTF_KIND_DATASEC:
579 		case BTF_KIND_FLOAT:
580 			size = t->size;
581 			goto done;
582 		case BTF_KIND_PTR:
583 			size = btf_ptr_sz(btf);
584 			goto done;
585 		case BTF_KIND_TYPEDEF:
586 		case BTF_KIND_VOLATILE:
587 		case BTF_KIND_CONST:
588 		case BTF_KIND_RESTRICT:
589 		case BTF_KIND_VAR:
590 			type_id = t->type;
591 			break;
592 		case BTF_KIND_ARRAY:
593 			array = btf_array(t);
594 			if (nelems && array->nelems > UINT32_MAX / nelems)
595 				return -E2BIG;
596 			nelems *= array->nelems;
597 			type_id = array->type;
598 			break;
599 		default:
600 			return -EINVAL;
601 		}
602 
603 		t = btf__type_by_id(btf, type_id);
604 	}
605 
606 done:
607 	if (size < 0)
608 		return -EINVAL;
609 	if (nelems && size > UINT32_MAX / nelems)
610 		return -E2BIG;
611 
612 	return nelems * size;
613 }
614 
615 int btf__align_of(const struct btf *btf, __u32 id)
616 {
617 	const struct btf_type *t = btf__type_by_id(btf, id);
618 	__u16 kind = btf_kind(t);
619 
620 	switch (kind) {
621 	case BTF_KIND_INT:
622 	case BTF_KIND_ENUM:
623 	case BTF_KIND_FLOAT:
624 		return min(btf_ptr_sz(btf), (size_t)t->size);
625 	case BTF_KIND_PTR:
626 		return btf_ptr_sz(btf);
627 	case BTF_KIND_TYPEDEF:
628 	case BTF_KIND_VOLATILE:
629 	case BTF_KIND_CONST:
630 	case BTF_KIND_RESTRICT:
631 		return btf__align_of(btf, t->type);
632 	case BTF_KIND_ARRAY:
633 		return btf__align_of(btf, btf_array(t)->type);
634 	case BTF_KIND_STRUCT:
635 	case BTF_KIND_UNION: {
636 		const struct btf_member *m = btf_members(t);
637 		__u16 vlen = btf_vlen(t);
638 		int i, max_align = 1, align;
639 
640 		for (i = 0; i < vlen; i++, m++) {
641 			align = btf__align_of(btf, m->type);
642 			if (align <= 0)
643 				return align;
644 			max_align = max(max_align, align);
645 		}
646 
647 		return max_align;
648 	}
649 	default:
650 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
651 		return 0;
652 	}
653 }
654 
655 int btf__resolve_type(const struct btf *btf, __u32 type_id)
656 {
657 	const struct btf_type *t;
658 	int depth = 0;
659 
660 	t = btf__type_by_id(btf, type_id);
661 	while (depth < MAX_RESOLVE_DEPTH &&
662 	       !btf_type_is_void_or_null(t) &&
663 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
664 		type_id = t->type;
665 		t = btf__type_by_id(btf, type_id);
666 		depth++;
667 	}
668 
669 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
670 		return -EINVAL;
671 
672 	return type_id;
673 }
674 
675 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
676 {
677 	__u32 i, nr_types = btf__get_nr_types(btf);
678 
679 	if (!strcmp(type_name, "void"))
680 		return 0;
681 
682 	for (i = 1; i <= nr_types; i++) {
683 		const struct btf_type *t = btf__type_by_id(btf, i);
684 		const char *name = btf__name_by_offset(btf, t->name_off);
685 
686 		if (name && !strcmp(type_name, name))
687 			return i;
688 	}
689 
690 	return -ENOENT;
691 }
692 
693 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
694 			     __u32 kind)
695 {
696 	__u32 i, nr_types = btf__get_nr_types(btf);
697 
698 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
699 		return 0;
700 
701 	for (i = 1; i <= nr_types; i++) {
702 		const struct btf_type *t = btf__type_by_id(btf, i);
703 		const char *name;
704 
705 		if (btf_kind(t) != kind)
706 			continue;
707 		name = btf__name_by_offset(btf, t->name_off);
708 		if (name && !strcmp(type_name, name))
709 			return i;
710 	}
711 
712 	return -ENOENT;
713 }
714 
715 static bool btf_is_modifiable(const struct btf *btf)
716 {
717 	return (void *)btf->hdr != btf->raw_data;
718 }
719 
720 void btf__free(struct btf *btf)
721 {
722 	if (IS_ERR_OR_NULL(btf))
723 		return;
724 
725 	if (btf->fd >= 0)
726 		close(btf->fd);
727 
728 	if (btf_is_modifiable(btf)) {
729 		/* if BTF was modified after loading, it will have a split
730 		 * in-memory representation for header, types, and strings
731 		 * sections, so we need to free all of them individually. It
732 		 * might still have a cached contiguous raw data present,
733 		 * which will be unconditionally freed below.
734 		 */
735 		free(btf->hdr);
736 		free(btf->types_data);
737 		strset__free(btf->strs_set);
738 	}
739 	free(btf->raw_data);
740 	free(btf->raw_data_swapped);
741 	free(btf->type_offs);
742 	free(btf);
743 }
744 
745 static struct btf *btf_new_empty(struct btf *base_btf)
746 {
747 	struct btf *btf;
748 
749 	btf = calloc(1, sizeof(*btf));
750 	if (!btf)
751 		return ERR_PTR(-ENOMEM);
752 
753 	btf->nr_types = 0;
754 	btf->start_id = 1;
755 	btf->start_str_off = 0;
756 	btf->fd = -1;
757 	btf->ptr_sz = sizeof(void *);
758 	btf->swapped_endian = false;
759 
760 	if (base_btf) {
761 		btf->base_btf = base_btf;
762 		btf->start_id = btf__get_nr_types(base_btf) + 1;
763 		btf->start_str_off = base_btf->hdr->str_len;
764 	}
765 
766 	/* +1 for empty string at offset 0 */
767 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
768 	btf->raw_data = calloc(1, btf->raw_size);
769 	if (!btf->raw_data) {
770 		free(btf);
771 		return ERR_PTR(-ENOMEM);
772 	}
773 
774 	btf->hdr = btf->raw_data;
775 	btf->hdr->hdr_len = sizeof(struct btf_header);
776 	btf->hdr->magic = BTF_MAGIC;
777 	btf->hdr->version = BTF_VERSION;
778 
779 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
780 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
781 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
782 
783 	return btf;
784 }
785 
786 struct btf *btf__new_empty(void)
787 {
788 	return btf_new_empty(NULL);
789 }
790 
791 struct btf *btf__new_empty_split(struct btf *base_btf)
792 {
793 	return btf_new_empty(base_btf);
794 }
795 
796 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
797 {
798 	struct btf *btf;
799 	int err;
800 
801 	btf = calloc(1, sizeof(struct btf));
802 	if (!btf)
803 		return ERR_PTR(-ENOMEM);
804 
805 	btf->nr_types = 0;
806 	btf->start_id = 1;
807 	btf->start_str_off = 0;
808 
809 	if (base_btf) {
810 		btf->base_btf = base_btf;
811 		btf->start_id = btf__get_nr_types(base_btf) + 1;
812 		btf->start_str_off = base_btf->hdr->str_len;
813 	}
814 
815 	btf->raw_data = malloc(size);
816 	if (!btf->raw_data) {
817 		err = -ENOMEM;
818 		goto done;
819 	}
820 	memcpy(btf->raw_data, data, size);
821 	btf->raw_size = size;
822 
823 	btf->hdr = btf->raw_data;
824 	err = btf_parse_hdr(btf);
825 	if (err)
826 		goto done;
827 
828 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
829 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
830 
831 	err = btf_parse_str_sec(btf);
832 	err = err ?: btf_parse_type_sec(btf);
833 	if (err)
834 		goto done;
835 
836 	btf->fd = -1;
837 
838 done:
839 	if (err) {
840 		btf__free(btf);
841 		return ERR_PTR(err);
842 	}
843 
844 	return btf;
845 }
846 
847 struct btf *btf__new(const void *data, __u32 size)
848 {
849 	return btf_new(data, size, NULL);
850 }
851 
852 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
853 				 struct btf_ext **btf_ext)
854 {
855 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
856 	int err = 0, fd = -1, idx = 0;
857 	struct btf *btf = NULL;
858 	Elf_Scn *scn = NULL;
859 	Elf *elf = NULL;
860 	GElf_Ehdr ehdr;
861 	size_t shstrndx;
862 
863 	if (elf_version(EV_CURRENT) == EV_NONE) {
864 		pr_warn("failed to init libelf for %s\n", path);
865 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
866 	}
867 
868 	fd = open(path, O_RDONLY);
869 	if (fd < 0) {
870 		err = -errno;
871 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
872 		return ERR_PTR(err);
873 	}
874 
875 	err = -LIBBPF_ERRNO__FORMAT;
876 
877 	elf = elf_begin(fd, ELF_C_READ, NULL);
878 	if (!elf) {
879 		pr_warn("failed to open %s as ELF file\n", path);
880 		goto done;
881 	}
882 	if (!gelf_getehdr(elf, &ehdr)) {
883 		pr_warn("failed to get EHDR from %s\n", path);
884 		goto done;
885 	}
886 
887 	if (elf_getshdrstrndx(elf, &shstrndx)) {
888 		pr_warn("failed to get section names section index for %s\n",
889 			path);
890 		goto done;
891 	}
892 
893 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
894 		pr_warn("failed to get e_shstrndx from %s\n", path);
895 		goto done;
896 	}
897 
898 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
899 		GElf_Shdr sh;
900 		char *name;
901 
902 		idx++;
903 		if (gelf_getshdr(scn, &sh) != &sh) {
904 			pr_warn("failed to get section(%d) header from %s\n",
905 				idx, path);
906 			goto done;
907 		}
908 		name = elf_strptr(elf, shstrndx, sh.sh_name);
909 		if (!name) {
910 			pr_warn("failed to get section(%d) name from %s\n",
911 				idx, path);
912 			goto done;
913 		}
914 		if (strcmp(name, BTF_ELF_SEC) == 0) {
915 			btf_data = elf_getdata(scn, 0);
916 			if (!btf_data) {
917 				pr_warn("failed to get section(%d, %s) data from %s\n",
918 					idx, name, path);
919 				goto done;
920 			}
921 			continue;
922 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
923 			btf_ext_data = elf_getdata(scn, 0);
924 			if (!btf_ext_data) {
925 				pr_warn("failed to get section(%d, %s) data from %s\n",
926 					idx, name, path);
927 				goto done;
928 			}
929 			continue;
930 		}
931 	}
932 
933 	err = 0;
934 
935 	if (!btf_data) {
936 		err = -ENOENT;
937 		goto done;
938 	}
939 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
940 	if (IS_ERR(btf))
941 		goto done;
942 
943 	switch (gelf_getclass(elf)) {
944 	case ELFCLASS32:
945 		btf__set_pointer_size(btf, 4);
946 		break;
947 	case ELFCLASS64:
948 		btf__set_pointer_size(btf, 8);
949 		break;
950 	default:
951 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
952 		break;
953 	}
954 
955 	if (btf_ext && btf_ext_data) {
956 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
957 					btf_ext_data->d_size);
958 		if (IS_ERR(*btf_ext))
959 			goto done;
960 	} else if (btf_ext) {
961 		*btf_ext = NULL;
962 	}
963 done:
964 	if (elf)
965 		elf_end(elf);
966 	close(fd);
967 
968 	if (err)
969 		return ERR_PTR(err);
970 	/*
971 	 * btf is always parsed before btf_ext, so no need to clean up
972 	 * btf_ext, if btf loading failed
973 	 */
974 	if (IS_ERR(btf))
975 		return btf;
976 	if (btf_ext && IS_ERR(*btf_ext)) {
977 		btf__free(btf);
978 		err = PTR_ERR(*btf_ext);
979 		return ERR_PTR(err);
980 	}
981 	return btf;
982 }
983 
984 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
985 {
986 	return btf_parse_elf(path, NULL, btf_ext);
987 }
988 
989 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
990 {
991 	return btf_parse_elf(path, base_btf, NULL);
992 }
993 
994 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
995 {
996 	struct btf *btf = NULL;
997 	void *data = NULL;
998 	FILE *f = NULL;
999 	__u16 magic;
1000 	int err = 0;
1001 	long sz;
1002 
1003 	f = fopen(path, "rb");
1004 	if (!f) {
1005 		err = -errno;
1006 		goto err_out;
1007 	}
1008 
1009 	/* check BTF magic */
1010 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1011 		err = -EIO;
1012 		goto err_out;
1013 	}
1014 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1015 		/* definitely not a raw BTF */
1016 		err = -EPROTO;
1017 		goto err_out;
1018 	}
1019 
1020 	/* get file size */
1021 	if (fseek(f, 0, SEEK_END)) {
1022 		err = -errno;
1023 		goto err_out;
1024 	}
1025 	sz = ftell(f);
1026 	if (sz < 0) {
1027 		err = -errno;
1028 		goto err_out;
1029 	}
1030 	/* rewind to the start */
1031 	if (fseek(f, 0, SEEK_SET)) {
1032 		err = -errno;
1033 		goto err_out;
1034 	}
1035 
1036 	/* pre-alloc memory and read all of BTF data */
1037 	data = malloc(sz);
1038 	if (!data) {
1039 		err = -ENOMEM;
1040 		goto err_out;
1041 	}
1042 	if (fread(data, 1, sz, f) < sz) {
1043 		err = -EIO;
1044 		goto err_out;
1045 	}
1046 
1047 	/* finally parse BTF data */
1048 	btf = btf_new(data, sz, base_btf);
1049 
1050 err_out:
1051 	free(data);
1052 	if (f)
1053 		fclose(f);
1054 	return err ? ERR_PTR(err) : btf;
1055 }
1056 
1057 struct btf *btf__parse_raw(const char *path)
1058 {
1059 	return btf_parse_raw(path, NULL);
1060 }
1061 
1062 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1063 {
1064 	return btf_parse_raw(path, base_btf);
1065 }
1066 
1067 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1068 {
1069 	struct btf *btf;
1070 
1071 	if (btf_ext)
1072 		*btf_ext = NULL;
1073 
1074 	btf = btf_parse_raw(path, base_btf);
1075 	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
1076 		return btf;
1077 
1078 	return btf_parse_elf(path, base_btf, btf_ext);
1079 }
1080 
1081 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1082 {
1083 	return btf_parse(path, NULL, btf_ext);
1084 }
1085 
1086 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1087 {
1088 	return btf_parse(path, base_btf, NULL);
1089 }
1090 
1091 static int compare_vsi_off(const void *_a, const void *_b)
1092 {
1093 	const struct btf_var_secinfo *a = _a;
1094 	const struct btf_var_secinfo *b = _b;
1095 
1096 	return a->offset - b->offset;
1097 }
1098 
1099 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1100 			     struct btf_type *t)
1101 {
1102 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1103 	const char *name = btf__name_by_offset(btf, t->name_off);
1104 	const struct btf_type *t_var;
1105 	struct btf_var_secinfo *vsi;
1106 	const struct btf_var *var;
1107 	int ret;
1108 
1109 	if (!name) {
1110 		pr_debug("No name found in string section for DATASEC kind.\n");
1111 		return -ENOENT;
1112 	}
1113 
1114 	/* .extern datasec size and var offsets were set correctly during
1115 	 * extern collection step, so just skip straight to sorting variables
1116 	 */
1117 	if (t->size)
1118 		goto sort_vars;
1119 
1120 	ret = bpf_object__section_size(obj, name, &size);
1121 	if (ret || !size || (t->size && t->size != size)) {
1122 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1123 		return -ENOENT;
1124 	}
1125 
1126 	t->size = size;
1127 
1128 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1129 		t_var = btf__type_by_id(btf, vsi->type);
1130 		var = btf_var(t_var);
1131 
1132 		if (!btf_is_var(t_var)) {
1133 			pr_debug("Non-VAR type seen in section %s\n", name);
1134 			return -EINVAL;
1135 		}
1136 
1137 		if (var->linkage == BTF_VAR_STATIC)
1138 			continue;
1139 
1140 		name = btf__name_by_offset(btf, t_var->name_off);
1141 		if (!name) {
1142 			pr_debug("No name found in string section for VAR kind\n");
1143 			return -ENOENT;
1144 		}
1145 
1146 		ret = bpf_object__variable_offset(obj, name, &off);
1147 		if (ret) {
1148 			pr_debug("No offset found in symbol table for VAR %s\n",
1149 				 name);
1150 			return -ENOENT;
1151 		}
1152 
1153 		vsi->offset = off;
1154 	}
1155 
1156 sort_vars:
1157 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1158 	return 0;
1159 }
1160 
1161 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1162 {
1163 	int err = 0;
1164 	__u32 i;
1165 
1166 	for (i = 1; i <= btf->nr_types; i++) {
1167 		struct btf_type *t = btf_type_by_id(btf, i);
1168 
1169 		/* Loader needs to fix up some of the things compiler
1170 		 * couldn't get its hands on while emitting BTF. This
1171 		 * is section size and global variable offset. We use
1172 		 * the info from the ELF itself for this purpose.
1173 		 */
1174 		if (btf_is_datasec(t)) {
1175 			err = btf_fixup_datasec(obj, btf, t);
1176 			if (err)
1177 				break;
1178 		}
1179 	}
1180 
1181 	return err;
1182 }
1183 
1184 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1185 
1186 int btf__load(struct btf *btf)
1187 {
1188 	__u32 log_buf_size = 0, raw_size;
1189 	char *log_buf = NULL;
1190 	void *raw_data;
1191 	int err = 0;
1192 
1193 	if (btf->fd >= 0)
1194 		return -EEXIST;
1195 
1196 retry_load:
1197 	if (log_buf_size) {
1198 		log_buf = malloc(log_buf_size);
1199 		if (!log_buf)
1200 			return -ENOMEM;
1201 
1202 		*log_buf = 0;
1203 	}
1204 
1205 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1206 	if (!raw_data) {
1207 		err = -ENOMEM;
1208 		goto done;
1209 	}
1210 	/* cache native raw data representation */
1211 	btf->raw_size = raw_size;
1212 	btf->raw_data = raw_data;
1213 
1214 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1215 	if (btf->fd < 0) {
1216 		if (!log_buf || errno == ENOSPC) {
1217 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1218 					   log_buf_size << 1);
1219 			free(log_buf);
1220 			goto retry_load;
1221 		}
1222 
1223 		err = -errno;
1224 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1225 		if (*log_buf)
1226 			pr_warn("%s\n", log_buf);
1227 		goto done;
1228 	}
1229 
1230 done:
1231 	free(log_buf);
1232 	return err;
1233 }
1234 
1235 int btf__fd(const struct btf *btf)
1236 {
1237 	return btf->fd;
1238 }
1239 
1240 void btf__set_fd(struct btf *btf, int fd)
1241 {
1242 	btf->fd = fd;
1243 }
1244 
1245 static const void *btf_strs_data(const struct btf *btf)
1246 {
1247 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1248 }
1249 
1250 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1251 {
1252 	struct btf_header *hdr = btf->hdr;
1253 	struct btf_type *t;
1254 	void *data, *p;
1255 	__u32 data_sz;
1256 	int i;
1257 
1258 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1259 	if (data) {
1260 		*size = btf->raw_size;
1261 		return data;
1262 	}
1263 
1264 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1265 	data = calloc(1, data_sz);
1266 	if (!data)
1267 		return NULL;
1268 	p = data;
1269 
1270 	memcpy(p, hdr, hdr->hdr_len);
1271 	if (swap_endian)
1272 		btf_bswap_hdr(p);
1273 	p += hdr->hdr_len;
1274 
1275 	memcpy(p, btf->types_data, hdr->type_len);
1276 	if (swap_endian) {
1277 		for (i = 0; i < btf->nr_types; i++) {
1278 			t = p + btf->type_offs[i];
1279 			/* btf_bswap_type_rest() relies on native t->info, so
1280 			 * we swap base type info after we swapped all the
1281 			 * additional information
1282 			 */
1283 			if (btf_bswap_type_rest(t))
1284 				goto err_out;
1285 			btf_bswap_type_base(t);
1286 		}
1287 	}
1288 	p += hdr->type_len;
1289 
1290 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1291 	p += hdr->str_len;
1292 
1293 	*size = data_sz;
1294 	return data;
1295 err_out:
1296 	free(data);
1297 	return NULL;
1298 }
1299 
1300 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1301 {
1302 	struct btf *btf = (struct btf *)btf_ro;
1303 	__u32 data_sz;
1304 	void *data;
1305 
1306 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1307 	if (!data)
1308 		return NULL;
1309 
1310 	btf->raw_size = data_sz;
1311 	if (btf->swapped_endian)
1312 		btf->raw_data_swapped = data;
1313 	else
1314 		btf->raw_data = data;
1315 	*size = data_sz;
1316 	return data;
1317 }
1318 
1319 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1320 {
1321 	if (offset < btf->start_str_off)
1322 		return btf__str_by_offset(btf->base_btf, offset);
1323 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1324 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1325 	else
1326 		return NULL;
1327 }
1328 
1329 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1330 {
1331 	return btf__str_by_offset(btf, offset);
1332 }
1333 
1334 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1335 {
1336 	struct bpf_btf_info btf_info;
1337 	__u32 len = sizeof(btf_info);
1338 	__u32 last_size;
1339 	struct btf *btf;
1340 	void *ptr;
1341 	int err;
1342 
1343 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1344 	 * let's start with a sane default - 4KiB here - and resize it only if
1345 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1346 	 */
1347 	last_size = 4096;
1348 	ptr = malloc(last_size);
1349 	if (!ptr)
1350 		return ERR_PTR(-ENOMEM);
1351 
1352 	memset(&btf_info, 0, sizeof(btf_info));
1353 	btf_info.btf = ptr_to_u64(ptr);
1354 	btf_info.btf_size = last_size;
1355 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1356 
1357 	if (!err && btf_info.btf_size > last_size) {
1358 		void *temp_ptr;
1359 
1360 		last_size = btf_info.btf_size;
1361 		temp_ptr = realloc(ptr, last_size);
1362 		if (!temp_ptr) {
1363 			btf = ERR_PTR(-ENOMEM);
1364 			goto exit_free;
1365 		}
1366 		ptr = temp_ptr;
1367 
1368 		len = sizeof(btf_info);
1369 		memset(&btf_info, 0, sizeof(btf_info));
1370 		btf_info.btf = ptr_to_u64(ptr);
1371 		btf_info.btf_size = last_size;
1372 
1373 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1374 	}
1375 
1376 	if (err || btf_info.btf_size > last_size) {
1377 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1378 		goto exit_free;
1379 	}
1380 
1381 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1382 
1383 exit_free:
1384 	free(ptr);
1385 	return btf;
1386 }
1387 
1388 int btf__get_from_id(__u32 id, struct btf **btf)
1389 {
1390 	struct btf *res;
1391 	int btf_fd;
1392 
1393 	*btf = NULL;
1394 	btf_fd = bpf_btf_get_fd_by_id(id);
1395 	if (btf_fd < 0)
1396 		return -errno;
1397 
1398 	res = btf_get_from_fd(btf_fd, NULL);
1399 	close(btf_fd);
1400 	if (IS_ERR(res))
1401 		return PTR_ERR(res);
1402 
1403 	*btf = res;
1404 	return 0;
1405 }
1406 
1407 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1408 			 __u32 expected_key_size, __u32 expected_value_size,
1409 			 __u32 *key_type_id, __u32 *value_type_id)
1410 {
1411 	const struct btf_type *container_type;
1412 	const struct btf_member *key, *value;
1413 	const size_t max_name = 256;
1414 	char container_name[max_name];
1415 	__s64 key_size, value_size;
1416 	__s32 container_id;
1417 
1418 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1419 	    max_name) {
1420 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1421 			map_name, map_name);
1422 		return -EINVAL;
1423 	}
1424 
1425 	container_id = btf__find_by_name(btf, container_name);
1426 	if (container_id < 0) {
1427 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1428 			 map_name, container_name);
1429 		return container_id;
1430 	}
1431 
1432 	container_type = btf__type_by_id(btf, container_id);
1433 	if (!container_type) {
1434 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1435 			map_name, container_id);
1436 		return -EINVAL;
1437 	}
1438 
1439 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1440 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1441 			map_name, container_name);
1442 		return -EINVAL;
1443 	}
1444 
1445 	key = btf_members(container_type);
1446 	value = key + 1;
1447 
1448 	key_size = btf__resolve_size(btf, key->type);
1449 	if (key_size < 0) {
1450 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1451 		return key_size;
1452 	}
1453 
1454 	if (expected_key_size != key_size) {
1455 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1456 			map_name, (__u32)key_size, expected_key_size);
1457 		return -EINVAL;
1458 	}
1459 
1460 	value_size = btf__resolve_size(btf, value->type);
1461 	if (value_size < 0) {
1462 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1463 		return value_size;
1464 	}
1465 
1466 	if (expected_value_size != value_size) {
1467 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1468 			map_name, (__u32)value_size, expected_value_size);
1469 		return -EINVAL;
1470 	}
1471 
1472 	*key_type_id = key->type;
1473 	*value_type_id = value->type;
1474 
1475 	return 0;
1476 }
1477 
1478 static void btf_invalidate_raw_data(struct btf *btf)
1479 {
1480 	if (btf->raw_data) {
1481 		free(btf->raw_data);
1482 		btf->raw_data = NULL;
1483 	}
1484 	if (btf->raw_data_swapped) {
1485 		free(btf->raw_data_swapped);
1486 		btf->raw_data_swapped = NULL;
1487 	}
1488 }
1489 
1490 /* Ensure BTF is ready to be modified (by splitting into a three memory
1491  * regions for header, types, and strings). Also invalidate cached
1492  * raw_data, if any.
1493  */
1494 static int btf_ensure_modifiable(struct btf *btf)
1495 {
1496 	void *hdr, *types;
1497 	struct strset *set = NULL;
1498 	int err = -ENOMEM;
1499 
1500 	if (btf_is_modifiable(btf)) {
1501 		/* any BTF modification invalidates raw_data */
1502 		btf_invalidate_raw_data(btf);
1503 		return 0;
1504 	}
1505 
1506 	/* split raw data into three memory regions */
1507 	hdr = malloc(btf->hdr->hdr_len);
1508 	types = malloc(btf->hdr->type_len);
1509 	if (!hdr || !types)
1510 		goto err_out;
1511 
1512 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1513 	memcpy(types, btf->types_data, btf->hdr->type_len);
1514 
1515 	/* build lookup index for all strings */
1516 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1517 	if (IS_ERR(set)) {
1518 		err = PTR_ERR(set);
1519 		goto err_out;
1520 	}
1521 
1522 	/* only when everything was successful, update internal state */
1523 	btf->hdr = hdr;
1524 	btf->types_data = types;
1525 	btf->types_data_cap = btf->hdr->type_len;
1526 	btf->strs_data = NULL;
1527 	btf->strs_set = set;
1528 	/* if BTF was created from scratch, all strings are guaranteed to be
1529 	 * unique and deduplicated
1530 	 */
1531 	if (btf->hdr->str_len == 0)
1532 		btf->strs_deduped = true;
1533 	if (!btf->base_btf && btf->hdr->str_len == 1)
1534 		btf->strs_deduped = true;
1535 
1536 	/* invalidate raw_data representation */
1537 	btf_invalidate_raw_data(btf);
1538 
1539 	return 0;
1540 
1541 err_out:
1542 	strset__free(set);
1543 	free(hdr);
1544 	free(types);
1545 	return err;
1546 }
1547 
1548 /* Find an offset in BTF string section that corresponds to a given string *s*.
1549  * Returns:
1550  *   - >0 offset into string section, if string is found;
1551  *   - -ENOENT, if string is not in the string section;
1552  *   - <0, on any other error.
1553  */
1554 int btf__find_str(struct btf *btf, const char *s)
1555 {
1556 	int off;
1557 
1558 	if (btf->base_btf) {
1559 		off = btf__find_str(btf->base_btf, s);
1560 		if (off != -ENOENT)
1561 			return off;
1562 	}
1563 
1564 	/* BTF needs to be in a modifiable state to build string lookup index */
1565 	if (btf_ensure_modifiable(btf))
1566 		return -ENOMEM;
1567 
1568 	off = strset__find_str(btf->strs_set, s);
1569 	if (off < 0)
1570 		return off;
1571 
1572 	return btf->start_str_off + off;
1573 }
1574 
1575 /* Add a string s to the BTF string section.
1576  * Returns:
1577  *   - > 0 offset into string section, on success;
1578  *   - < 0, on error.
1579  */
1580 int btf__add_str(struct btf *btf, const char *s)
1581 {
1582 	int off;
1583 
1584 	if (btf->base_btf) {
1585 		off = btf__find_str(btf->base_btf, s);
1586 		if (off != -ENOENT)
1587 			return off;
1588 	}
1589 
1590 	if (btf_ensure_modifiable(btf))
1591 		return -ENOMEM;
1592 
1593 	off = strset__add_str(btf->strs_set, s);
1594 	if (off < 0)
1595 		return off;
1596 
1597 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1598 
1599 	return btf->start_str_off + off;
1600 }
1601 
1602 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1603 {
1604 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1605 			      btf->hdr->type_len, UINT_MAX, add_sz);
1606 }
1607 
1608 static void btf_type_inc_vlen(struct btf_type *t)
1609 {
1610 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1611 }
1612 
1613 static int btf_commit_type(struct btf *btf, int data_sz)
1614 {
1615 	int err;
1616 
1617 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1618 	if (err)
1619 		return err;
1620 
1621 	btf->hdr->type_len += data_sz;
1622 	btf->hdr->str_off += data_sz;
1623 	btf->nr_types++;
1624 	return btf->start_id + btf->nr_types - 1;
1625 }
1626 
1627 struct btf_pipe {
1628 	const struct btf *src;
1629 	struct btf *dst;
1630 };
1631 
1632 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1633 {
1634 	struct btf_pipe *p = ctx;
1635 	int off;
1636 
1637 	if (!*str_off) /* nothing to do for empty strings */
1638 		return 0;
1639 
1640 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1641 	if (off < 0)
1642 		return off;
1643 
1644 	*str_off = off;
1645 	return 0;
1646 }
1647 
1648 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1649 {
1650 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1651 	struct btf_type *t;
1652 	int sz, err;
1653 
1654 	sz = btf_type_size(src_type);
1655 	if (sz < 0)
1656 		return sz;
1657 
1658 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1659 	if (btf_ensure_modifiable(btf))
1660 		return -ENOMEM;
1661 
1662 	t = btf_add_type_mem(btf, sz);
1663 	if (!t)
1664 		return -ENOMEM;
1665 
1666 	memcpy(t, src_type, sz);
1667 
1668 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1669 	if (err)
1670 		return err;
1671 
1672 	return btf_commit_type(btf, sz);
1673 }
1674 
1675 /*
1676  * Append new BTF_KIND_INT type with:
1677  *   - *name* - non-empty, non-NULL type name;
1678  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1679  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1680  * Returns:
1681  *   - >0, type ID of newly added BTF type;
1682  *   - <0, on error.
1683  */
1684 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1685 {
1686 	struct btf_type *t;
1687 	int sz, name_off;
1688 
1689 	/* non-empty name */
1690 	if (!name || !name[0])
1691 		return -EINVAL;
1692 	/* byte_sz must be power of 2 */
1693 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1694 		return -EINVAL;
1695 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1696 		return -EINVAL;
1697 
1698 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1699 	if (btf_ensure_modifiable(btf))
1700 		return -ENOMEM;
1701 
1702 	sz = sizeof(struct btf_type) + sizeof(int);
1703 	t = btf_add_type_mem(btf, sz);
1704 	if (!t)
1705 		return -ENOMEM;
1706 
1707 	/* if something goes wrong later, we might end up with an extra string,
1708 	 * but that shouldn't be a problem, because BTF can't be constructed
1709 	 * completely anyway and will most probably be just discarded
1710 	 */
1711 	name_off = btf__add_str(btf, name);
1712 	if (name_off < 0)
1713 		return name_off;
1714 
1715 	t->name_off = name_off;
1716 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1717 	t->size = byte_sz;
1718 	/* set INT info, we don't allow setting legacy bit offset/size */
1719 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1720 
1721 	return btf_commit_type(btf, sz);
1722 }
1723 
1724 /*
1725  * Append new BTF_KIND_FLOAT type with:
1726  *   - *name* - non-empty, non-NULL type name;
1727  *   - *sz* - size of the type, in bytes;
1728  * Returns:
1729  *   - >0, type ID of newly added BTF type;
1730  *   - <0, on error.
1731  */
1732 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1733 {
1734 	struct btf_type *t;
1735 	int sz, name_off;
1736 
1737 	/* non-empty name */
1738 	if (!name || !name[0])
1739 		return -EINVAL;
1740 
1741 	/* byte_sz must be one of the explicitly allowed values */
1742 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1743 	    byte_sz != 16)
1744 		return -EINVAL;
1745 
1746 	if (btf_ensure_modifiable(btf))
1747 		return -ENOMEM;
1748 
1749 	sz = sizeof(struct btf_type);
1750 	t = btf_add_type_mem(btf, sz);
1751 	if (!t)
1752 		return -ENOMEM;
1753 
1754 	name_off = btf__add_str(btf, name);
1755 	if (name_off < 0)
1756 		return name_off;
1757 
1758 	t->name_off = name_off;
1759 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1760 	t->size = byte_sz;
1761 
1762 	return btf_commit_type(btf, sz);
1763 }
1764 
1765 /* it's completely legal to append BTF types with type IDs pointing forward to
1766  * types that haven't been appended yet, so we only make sure that id looks
1767  * sane, we can't guarantee that ID will always be valid
1768  */
1769 static int validate_type_id(int id)
1770 {
1771 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1772 		return -EINVAL;
1773 	return 0;
1774 }
1775 
1776 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1777 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1778 {
1779 	struct btf_type *t;
1780 	int sz, name_off = 0;
1781 
1782 	if (validate_type_id(ref_type_id))
1783 		return -EINVAL;
1784 
1785 	if (btf_ensure_modifiable(btf))
1786 		return -ENOMEM;
1787 
1788 	sz = sizeof(struct btf_type);
1789 	t = btf_add_type_mem(btf, sz);
1790 	if (!t)
1791 		return -ENOMEM;
1792 
1793 	if (name && name[0]) {
1794 		name_off = btf__add_str(btf, name);
1795 		if (name_off < 0)
1796 			return name_off;
1797 	}
1798 
1799 	t->name_off = name_off;
1800 	t->info = btf_type_info(kind, 0, 0);
1801 	t->type = ref_type_id;
1802 
1803 	return btf_commit_type(btf, sz);
1804 }
1805 
1806 /*
1807  * Append new BTF_KIND_PTR type with:
1808  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1809  * Returns:
1810  *   - >0, type ID of newly added BTF type;
1811  *   - <0, on error.
1812  */
1813 int btf__add_ptr(struct btf *btf, int ref_type_id)
1814 {
1815 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1816 }
1817 
1818 /*
1819  * Append new BTF_KIND_ARRAY type with:
1820  *   - *index_type_id* - type ID of the type describing array index;
1821  *   - *elem_type_id* - type ID of the type describing array element;
1822  *   - *nr_elems* - the size of the array;
1823  * Returns:
1824  *   - >0, type ID of newly added BTF type;
1825  *   - <0, on error.
1826  */
1827 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1828 {
1829 	struct btf_type *t;
1830 	struct btf_array *a;
1831 	int sz;
1832 
1833 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1834 		return -EINVAL;
1835 
1836 	if (btf_ensure_modifiable(btf))
1837 		return -ENOMEM;
1838 
1839 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1840 	t = btf_add_type_mem(btf, sz);
1841 	if (!t)
1842 		return -ENOMEM;
1843 
1844 	t->name_off = 0;
1845 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1846 	t->size = 0;
1847 
1848 	a = btf_array(t);
1849 	a->type = elem_type_id;
1850 	a->index_type = index_type_id;
1851 	a->nelems = nr_elems;
1852 
1853 	return btf_commit_type(btf, sz);
1854 }
1855 
1856 /* generic STRUCT/UNION append function */
1857 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1858 {
1859 	struct btf_type *t;
1860 	int sz, name_off = 0;
1861 
1862 	if (btf_ensure_modifiable(btf))
1863 		return -ENOMEM;
1864 
1865 	sz = sizeof(struct btf_type);
1866 	t = btf_add_type_mem(btf, sz);
1867 	if (!t)
1868 		return -ENOMEM;
1869 
1870 	if (name && name[0]) {
1871 		name_off = btf__add_str(btf, name);
1872 		if (name_off < 0)
1873 			return name_off;
1874 	}
1875 
1876 	/* start out with vlen=0 and no kflag; this will be adjusted when
1877 	 * adding each member
1878 	 */
1879 	t->name_off = name_off;
1880 	t->info = btf_type_info(kind, 0, 0);
1881 	t->size = bytes_sz;
1882 
1883 	return btf_commit_type(btf, sz);
1884 }
1885 
1886 /*
1887  * Append new BTF_KIND_STRUCT type with:
1888  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1889  *   - *byte_sz* - size of the struct, in bytes;
1890  *
1891  * Struct initially has no fields in it. Fields can be added by
1892  * btf__add_field() right after btf__add_struct() succeeds.
1893  *
1894  * Returns:
1895  *   - >0, type ID of newly added BTF type;
1896  *   - <0, on error.
1897  */
1898 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1899 {
1900 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1901 }
1902 
1903 /*
1904  * Append new BTF_KIND_UNION type with:
1905  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1906  *   - *byte_sz* - size of the union, in bytes;
1907  *
1908  * Union initially has no fields in it. Fields can be added by
1909  * btf__add_field() right after btf__add_union() succeeds. All fields
1910  * should have *bit_offset* of 0.
1911  *
1912  * Returns:
1913  *   - >0, type ID of newly added BTF type;
1914  *   - <0, on error.
1915  */
1916 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1917 {
1918 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1919 }
1920 
1921 static struct btf_type *btf_last_type(struct btf *btf)
1922 {
1923 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1924 }
1925 
1926 /*
1927  * Append new field for the current STRUCT/UNION type with:
1928  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1929  *   - *type_id* - type ID for the type describing field type;
1930  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1931  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1932  * Returns:
1933  *   -  0, on success;
1934  *   - <0, on error.
1935  */
1936 int btf__add_field(struct btf *btf, const char *name, int type_id,
1937 		   __u32 bit_offset, __u32 bit_size)
1938 {
1939 	struct btf_type *t;
1940 	struct btf_member *m;
1941 	bool is_bitfield;
1942 	int sz, name_off = 0;
1943 
1944 	/* last type should be union/struct */
1945 	if (btf->nr_types == 0)
1946 		return -EINVAL;
1947 	t = btf_last_type(btf);
1948 	if (!btf_is_composite(t))
1949 		return -EINVAL;
1950 
1951 	if (validate_type_id(type_id))
1952 		return -EINVAL;
1953 	/* best-effort bit field offset/size enforcement */
1954 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1955 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1956 		return -EINVAL;
1957 
1958 	/* only offset 0 is allowed for unions */
1959 	if (btf_is_union(t) && bit_offset)
1960 		return -EINVAL;
1961 
1962 	/* decompose and invalidate raw data */
1963 	if (btf_ensure_modifiable(btf))
1964 		return -ENOMEM;
1965 
1966 	sz = sizeof(struct btf_member);
1967 	m = btf_add_type_mem(btf, sz);
1968 	if (!m)
1969 		return -ENOMEM;
1970 
1971 	if (name && name[0]) {
1972 		name_off = btf__add_str(btf, name);
1973 		if (name_off < 0)
1974 			return name_off;
1975 	}
1976 
1977 	m->name_off = name_off;
1978 	m->type = type_id;
1979 	m->offset = bit_offset | (bit_size << 24);
1980 
1981 	/* btf_add_type_mem can invalidate t pointer */
1982 	t = btf_last_type(btf);
1983 	/* update parent type's vlen and kflag */
1984 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1985 
1986 	btf->hdr->type_len += sz;
1987 	btf->hdr->str_off += sz;
1988 	return 0;
1989 }
1990 
1991 /*
1992  * Append new BTF_KIND_ENUM type with:
1993  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1994  *   - *byte_sz* - size of the enum, in bytes.
1995  *
1996  * Enum initially has no enum values in it (and corresponds to enum forward
1997  * declaration). Enumerator values can be added by btf__add_enum_value()
1998  * immediately after btf__add_enum() succeeds.
1999  *
2000  * Returns:
2001  *   - >0, type ID of newly added BTF type;
2002  *   - <0, on error.
2003  */
2004 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2005 {
2006 	struct btf_type *t;
2007 	int sz, name_off = 0;
2008 
2009 	/* byte_sz must be power of 2 */
2010 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2011 		return -EINVAL;
2012 
2013 	if (btf_ensure_modifiable(btf))
2014 		return -ENOMEM;
2015 
2016 	sz = sizeof(struct btf_type);
2017 	t = btf_add_type_mem(btf, sz);
2018 	if (!t)
2019 		return -ENOMEM;
2020 
2021 	if (name && name[0]) {
2022 		name_off = btf__add_str(btf, name);
2023 		if (name_off < 0)
2024 			return name_off;
2025 	}
2026 
2027 	/* start out with vlen=0; it will be adjusted when adding enum values */
2028 	t->name_off = name_off;
2029 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2030 	t->size = byte_sz;
2031 
2032 	return btf_commit_type(btf, sz);
2033 }
2034 
2035 /*
2036  * Append new enum value for the current ENUM type with:
2037  *   - *name* - name of the enumerator value, can't be NULL or empty;
2038  *   - *value* - integer value corresponding to enum value *name*;
2039  * Returns:
2040  *   -  0, on success;
2041  *   - <0, on error.
2042  */
2043 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2044 {
2045 	struct btf_type *t;
2046 	struct btf_enum *v;
2047 	int sz, name_off;
2048 
2049 	/* last type should be BTF_KIND_ENUM */
2050 	if (btf->nr_types == 0)
2051 		return -EINVAL;
2052 	t = btf_last_type(btf);
2053 	if (!btf_is_enum(t))
2054 		return -EINVAL;
2055 
2056 	/* non-empty name */
2057 	if (!name || !name[0])
2058 		return -EINVAL;
2059 	if (value < INT_MIN || value > UINT_MAX)
2060 		return -E2BIG;
2061 
2062 	/* decompose and invalidate raw data */
2063 	if (btf_ensure_modifiable(btf))
2064 		return -ENOMEM;
2065 
2066 	sz = sizeof(struct btf_enum);
2067 	v = btf_add_type_mem(btf, sz);
2068 	if (!v)
2069 		return -ENOMEM;
2070 
2071 	name_off = btf__add_str(btf, name);
2072 	if (name_off < 0)
2073 		return name_off;
2074 
2075 	v->name_off = name_off;
2076 	v->val = value;
2077 
2078 	/* update parent type's vlen */
2079 	t = btf_last_type(btf);
2080 	btf_type_inc_vlen(t);
2081 
2082 	btf->hdr->type_len += sz;
2083 	btf->hdr->str_off += sz;
2084 	return 0;
2085 }
2086 
2087 /*
2088  * Append new BTF_KIND_FWD type with:
2089  *   - *name*, non-empty/non-NULL name;
2090  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2091  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2092  * Returns:
2093  *   - >0, type ID of newly added BTF type;
2094  *   - <0, on error.
2095  */
2096 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2097 {
2098 	if (!name || !name[0])
2099 		return -EINVAL;
2100 
2101 	switch (fwd_kind) {
2102 	case BTF_FWD_STRUCT:
2103 	case BTF_FWD_UNION: {
2104 		struct btf_type *t;
2105 		int id;
2106 
2107 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2108 		if (id <= 0)
2109 			return id;
2110 		t = btf_type_by_id(btf, id);
2111 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2112 		return id;
2113 	}
2114 	case BTF_FWD_ENUM:
2115 		/* enum forward in BTF currently is just an enum with no enum
2116 		 * values; we also assume a standard 4-byte size for it
2117 		 */
2118 		return btf__add_enum(btf, name, sizeof(int));
2119 	default:
2120 		return -EINVAL;
2121 	}
2122 }
2123 
2124 /*
2125  * Append new BTF_KING_TYPEDEF type with:
2126  *   - *name*, non-empty/non-NULL name;
2127  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2128  * Returns:
2129  *   - >0, type ID of newly added BTF type;
2130  *   - <0, on error.
2131  */
2132 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2133 {
2134 	if (!name || !name[0])
2135 		return -EINVAL;
2136 
2137 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2138 }
2139 
2140 /*
2141  * Append new BTF_KIND_VOLATILE type with:
2142  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2143  * Returns:
2144  *   - >0, type ID of newly added BTF type;
2145  *   - <0, on error.
2146  */
2147 int btf__add_volatile(struct btf *btf, int ref_type_id)
2148 {
2149 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2150 }
2151 
2152 /*
2153  * Append new BTF_KIND_CONST type with:
2154  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2155  * Returns:
2156  *   - >0, type ID of newly added BTF type;
2157  *   - <0, on error.
2158  */
2159 int btf__add_const(struct btf *btf, int ref_type_id)
2160 {
2161 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2162 }
2163 
2164 /*
2165  * Append new BTF_KIND_RESTRICT type with:
2166  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2167  * Returns:
2168  *   - >0, type ID of newly added BTF type;
2169  *   - <0, on error.
2170  */
2171 int btf__add_restrict(struct btf *btf, int ref_type_id)
2172 {
2173 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2174 }
2175 
2176 /*
2177  * Append new BTF_KIND_FUNC type with:
2178  *   - *name*, non-empty/non-NULL name;
2179  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2180  * Returns:
2181  *   - >0, type ID of newly added BTF type;
2182  *   - <0, on error.
2183  */
2184 int btf__add_func(struct btf *btf, const char *name,
2185 		  enum btf_func_linkage linkage, int proto_type_id)
2186 {
2187 	int id;
2188 
2189 	if (!name || !name[0])
2190 		return -EINVAL;
2191 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2192 	    linkage != BTF_FUNC_EXTERN)
2193 		return -EINVAL;
2194 
2195 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2196 	if (id > 0) {
2197 		struct btf_type *t = btf_type_by_id(btf, id);
2198 
2199 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2200 	}
2201 	return id;
2202 }
2203 
2204 /*
2205  * Append new BTF_KIND_FUNC_PROTO with:
2206  *   - *ret_type_id* - type ID for return result of a function.
2207  *
2208  * Function prototype initially has no arguments, but they can be added by
2209  * btf__add_func_param() one by one, immediately after
2210  * btf__add_func_proto() succeeded.
2211  *
2212  * Returns:
2213  *   - >0, type ID of newly added BTF type;
2214  *   - <0, on error.
2215  */
2216 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2217 {
2218 	struct btf_type *t;
2219 	int sz;
2220 
2221 	if (validate_type_id(ret_type_id))
2222 		return -EINVAL;
2223 
2224 	if (btf_ensure_modifiable(btf))
2225 		return -ENOMEM;
2226 
2227 	sz = sizeof(struct btf_type);
2228 	t = btf_add_type_mem(btf, sz);
2229 	if (!t)
2230 		return -ENOMEM;
2231 
2232 	/* start out with vlen=0; this will be adjusted when adding enum
2233 	 * values, if necessary
2234 	 */
2235 	t->name_off = 0;
2236 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2237 	t->type = ret_type_id;
2238 
2239 	return btf_commit_type(btf, sz);
2240 }
2241 
2242 /*
2243  * Append new function parameter for current FUNC_PROTO type with:
2244  *   - *name* - parameter name, can be NULL or empty;
2245  *   - *type_id* - type ID describing the type of the parameter.
2246  * Returns:
2247  *   -  0, on success;
2248  *   - <0, on error.
2249  */
2250 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2251 {
2252 	struct btf_type *t;
2253 	struct btf_param *p;
2254 	int sz, name_off = 0;
2255 
2256 	if (validate_type_id(type_id))
2257 		return -EINVAL;
2258 
2259 	/* last type should be BTF_KIND_FUNC_PROTO */
2260 	if (btf->nr_types == 0)
2261 		return -EINVAL;
2262 	t = btf_last_type(btf);
2263 	if (!btf_is_func_proto(t))
2264 		return -EINVAL;
2265 
2266 	/* decompose and invalidate raw data */
2267 	if (btf_ensure_modifiable(btf))
2268 		return -ENOMEM;
2269 
2270 	sz = sizeof(struct btf_param);
2271 	p = btf_add_type_mem(btf, sz);
2272 	if (!p)
2273 		return -ENOMEM;
2274 
2275 	if (name && name[0]) {
2276 		name_off = btf__add_str(btf, name);
2277 		if (name_off < 0)
2278 			return name_off;
2279 	}
2280 
2281 	p->name_off = name_off;
2282 	p->type = type_id;
2283 
2284 	/* update parent type's vlen */
2285 	t = btf_last_type(btf);
2286 	btf_type_inc_vlen(t);
2287 
2288 	btf->hdr->type_len += sz;
2289 	btf->hdr->str_off += sz;
2290 	return 0;
2291 }
2292 
2293 /*
2294  * Append new BTF_KIND_VAR type with:
2295  *   - *name* - non-empty/non-NULL name;
2296  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2297  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2298  *   - *type_id* - type ID of the type describing the type of the variable.
2299  * Returns:
2300  *   - >0, type ID of newly added BTF type;
2301  *   - <0, on error.
2302  */
2303 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2304 {
2305 	struct btf_type *t;
2306 	struct btf_var *v;
2307 	int sz, name_off;
2308 
2309 	/* non-empty name */
2310 	if (!name || !name[0])
2311 		return -EINVAL;
2312 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2313 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2314 		return -EINVAL;
2315 	if (validate_type_id(type_id))
2316 		return -EINVAL;
2317 
2318 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2319 	if (btf_ensure_modifiable(btf))
2320 		return -ENOMEM;
2321 
2322 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2323 	t = btf_add_type_mem(btf, sz);
2324 	if (!t)
2325 		return -ENOMEM;
2326 
2327 	name_off = btf__add_str(btf, name);
2328 	if (name_off < 0)
2329 		return name_off;
2330 
2331 	t->name_off = name_off;
2332 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2333 	t->type = type_id;
2334 
2335 	v = btf_var(t);
2336 	v->linkage = linkage;
2337 
2338 	return btf_commit_type(btf, sz);
2339 }
2340 
2341 /*
2342  * Append new BTF_KIND_DATASEC type with:
2343  *   - *name* - non-empty/non-NULL name;
2344  *   - *byte_sz* - data section size, in bytes.
2345  *
2346  * Data section is initially empty. Variables info can be added with
2347  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2348  *
2349  * Returns:
2350  *   - >0, type ID of newly added BTF type;
2351  *   - <0, on error.
2352  */
2353 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2354 {
2355 	struct btf_type *t;
2356 	int sz, name_off;
2357 
2358 	/* non-empty name */
2359 	if (!name || !name[0])
2360 		return -EINVAL;
2361 
2362 	if (btf_ensure_modifiable(btf))
2363 		return -ENOMEM;
2364 
2365 	sz = sizeof(struct btf_type);
2366 	t = btf_add_type_mem(btf, sz);
2367 	if (!t)
2368 		return -ENOMEM;
2369 
2370 	name_off = btf__add_str(btf, name);
2371 	if (name_off < 0)
2372 		return name_off;
2373 
2374 	/* start with vlen=0, which will be update as var_secinfos are added */
2375 	t->name_off = name_off;
2376 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2377 	t->size = byte_sz;
2378 
2379 	return btf_commit_type(btf, sz);
2380 }
2381 
2382 /*
2383  * Append new data section variable information entry for current DATASEC type:
2384  *   - *var_type_id* - type ID, describing type of the variable;
2385  *   - *offset* - variable offset within data section, in bytes;
2386  *   - *byte_sz* - variable size, in bytes.
2387  *
2388  * Returns:
2389  *   -  0, on success;
2390  *   - <0, on error.
2391  */
2392 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2393 {
2394 	struct btf_type *t;
2395 	struct btf_var_secinfo *v;
2396 	int sz;
2397 
2398 	/* last type should be BTF_KIND_DATASEC */
2399 	if (btf->nr_types == 0)
2400 		return -EINVAL;
2401 	t = btf_last_type(btf);
2402 	if (!btf_is_datasec(t))
2403 		return -EINVAL;
2404 
2405 	if (validate_type_id(var_type_id))
2406 		return -EINVAL;
2407 
2408 	/* decompose and invalidate raw data */
2409 	if (btf_ensure_modifiable(btf))
2410 		return -ENOMEM;
2411 
2412 	sz = sizeof(struct btf_var_secinfo);
2413 	v = btf_add_type_mem(btf, sz);
2414 	if (!v)
2415 		return -ENOMEM;
2416 
2417 	v->type = var_type_id;
2418 	v->offset = offset;
2419 	v->size = byte_sz;
2420 
2421 	/* update parent type's vlen */
2422 	t = btf_last_type(btf);
2423 	btf_type_inc_vlen(t);
2424 
2425 	btf->hdr->type_len += sz;
2426 	btf->hdr->str_off += sz;
2427 	return 0;
2428 }
2429 
2430 struct btf_ext_sec_setup_param {
2431 	__u32 off;
2432 	__u32 len;
2433 	__u32 min_rec_size;
2434 	struct btf_ext_info *ext_info;
2435 	const char *desc;
2436 };
2437 
2438 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2439 			      struct btf_ext_sec_setup_param *ext_sec)
2440 {
2441 	const struct btf_ext_info_sec *sinfo;
2442 	struct btf_ext_info *ext_info;
2443 	__u32 info_left, record_size;
2444 	/* The start of the info sec (including the __u32 record_size). */
2445 	void *info;
2446 
2447 	if (ext_sec->len == 0)
2448 		return 0;
2449 
2450 	if (ext_sec->off & 0x03) {
2451 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2452 		     ext_sec->desc);
2453 		return -EINVAL;
2454 	}
2455 
2456 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2457 	info_left = ext_sec->len;
2458 
2459 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2460 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2461 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2462 		return -EINVAL;
2463 	}
2464 
2465 	/* At least a record size */
2466 	if (info_left < sizeof(__u32)) {
2467 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2468 		return -EINVAL;
2469 	}
2470 
2471 	/* The record size needs to meet the minimum standard */
2472 	record_size = *(__u32 *)info;
2473 	if (record_size < ext_sec->min_rec_size ||
2474 	    record_size & 0x03) {
2475 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2476 			 ext_sec->desc, record_size);
2477 		return -EINVAL;
2478 	}
2479 
2480 	sinfo = info + sizeof(__u32);
2481 	info_left -= sizeof(__u32);
2482 
2483 	/* If no records, return failure now so .BTF.ext won't be used. */
2484 	if (!info_left) {
2485 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2486 		return -EINVAL;
2487 	}
2488 
2489 	while (info_left) {
2490 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2491 		__u64 total_record_size;
2492 		__u32 num_records;
2493 
2494 		if (info_left < sec_hdrlen) {
2495 			pr_debug("%s section header is not found in .BTF.ext\n",
2496 			     ext_sec->desc);
2497 			return -EINVAL;
2498 		}
2499 
2500 		num_records = sinfo->num_info;
2501 		if (num_records == 0) {
2502 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2503 			     ext_sec->desc);
2504 			return -EINVAL;
2505 		}
2506 
2507 		total_record_size = sec_hdrlen +
2508 				    (__u64)num_records * record_size;
2509 		if (info_left < total_record_size) {
2510 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2511 			     ext_sec->desc);
2512 			return -EINVAL;
2513 		}
2514 
2515 		info_left -= total_record_size;
2516 		sinfo = (void *)sinfo + total_record_size;
2517 	}
2518 
2519 	ext_info = ext_sec->ext_info;
2520 	ext_info->len = ext_sec->len - sizeof(__u32);
2521 	ext_info->rec_size = record_size;
2522 	ext_info->info = info + sizeof(__u32);
2523 
2524 	return 0;
2525 }
2526 
2527 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2528 {
2529 	struct btf_ext_sec_setup_param param = {
2530 		.off = btf_ext->hdr->func_info_off,
2531 		.len = btf_ext->hdr->func_info_len,
2532 		.min_rec_size = sizeof(struct bpf_func_info_min),
2533 		.ext_info = &btf_ext->func_info,
2534 		.desc = "func_info"
2535 	};
2536 
2537 	return btf_ext_setup_info(btf_ext, &param);
2538 }
2539 
2540 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2541 {
2542 	struct btf_ext_sec_setup_param param = {
2543 		.off = btf_ext->hdr->line_info_off,
2544 		.len = btf_ext->hdr->line_info_len,
2545 		.min_rec_size = sizeof(struct bpf_line_info_min),
2546 		.ext_info = &btf_ext->line_info,
2547 		.desc = "line_info",
2548 	};
2549 
2550 	return btf_ext_setup_info(btf_ext, &param);
2551 }
2552 
2553 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2554 {
2555 	struct btf_ext_sec_setup_param param = {
2556 		.off = btf_ext->hdr->core_relo_off,
2557 		.len = btf_ext->hdr->core_relo_len,
2558 		.min_rec_size = sizeof(struct bpf_core_relo),
2559 		.ext_info = &btf_ext->core_relo_info,
2560 		.desc = "core_relo",
2561 	};
2562 
2563 	return btf_ext_setup_info(btf_ext, &param);
2564 }
2565 
2566 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2567 {
2568 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2569 
2570 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2571 	    data_size < hdr->hdr_len) {
2572 		pr_debug("BTF.ext header not found");
2573 		return -EINVAL;
2574 	}
2575 
2576 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2577 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2578 		return -ENOTSUP;
2579 	} else if (hdr->magic != BTF_MAGIC) {
2580 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2581 		return -EINVAL;
2582 	}
2583 
2584 	if (hdr->version != BTF_VERSION) {
2585 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2586 		return -ENOTSUP;
2587 	}
2588 
2589 	if (hdr->flags) {
2590 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2591 		return -ENOTSUP;
2592 	}
2593 
2594 	if (data_size == hdr->hdr_len) {
2595 		pr_debug("BTF.ext has no data\n");
2596 		return -EINVAL;
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 void btf_ext__free(struct btf_ext *btf_ext)
2603 {
2604 	if (IS_ERR_OR_NULL(btf_ext))
2605 		return;
2606 	free(btf_ext->data);
2607 	free(btf_ext);
2608 }
2609 
2610 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2611 {
2612 	struct btf_ext *btf_ext;
2613 	int err;
2614 
2615 	err = btf_ext_parse_hdr(data, size);
2616 	if (err)
2617 		return ERR_PTR(err);
2618 
2619 	btf_ext = calloc(1, sizeof(struct btf_ext));
2620 	if (!btf_ext)
2621 		return ERR_PTR(-ENOMEM);
2622 
2623 	btf_ext->data_size = size;
2624 	btf_ext->data = malloc(size);
2625 	if (!btf_ext->data) {
2626 		err = -ENOMEM;
2627 		goto done;
2628 	}
2629 	memcpy(btf_ext->data, data, size);
2630 
2631 	if (btf_ext->hdr->hdr_len <
2632 	    offsetofend(struct btf_ext_header, line_info_len))
2633 		goto done;
2634 	err = btf_ext_setup_func_info(btf_ext);
2635 	if (err)
2636 		goto done;
2637 
2638 	err = btf_ext_setup_line_info(btf_ext);
2639 	if (err)
2640 		goto done;
2641 
2642 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2643 		goto done;
2644 	err = btf_ext_setup_core_relos(btf_ext);
2645 	if (err)
2646 		goto done;
2647 
2648 done:
2649 	if (err) {
2650 		btf_ext__free(btf_ext);
2651 		return ERR_PTR(err);
2652 	}
2653 
2654 	return btf_ext;
2655 }
2656 
2657 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2658 {
2659 	*size = btf_ext->data_size;
2660 	return btf_ext->data;
2661 }
2662 
2663 static int btf_ext_reloc_info(const struct btf *btf,
2664 			      const struct btf_ext_info *ext_info,
2665 			      const char *sec_name, __u32 insns_cnt,
2666 			      void **info, __u32 *cnt)
2667 {
2668 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2669 	__u32 i, record_size, existing_len, records_len;
2670 	struct btf_ext_info_sec *sinfo;
2671 	const char *info_sec_name;
2672 	__u64 remain_len;
2673 	void *data;
2674 
2675 	record_size = ext_info->rec_size;
2676 	sinfo = ext_info->info;
2677 	remain_len = ext_info->len;
2678 	while (remain_len > 0) {
2679 		records_len = sinfo->num_info * record_size;
2680 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2681 		if (strcmp(info_sec_name, sec_name)) {
2682 			remain_len -= sec_hdrlen + records_len;
2683 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2684 			continue;
2685 		}
2686 
2687 		existing_len = (*cnt) * record_size;
2688 		data = realloc(*info, existing_len + records_len);
2689 		if (!data)
2690 			return -ENOMEM;
2691 
2692 		memcpy(data + existing_len, sinfo->data, records_len);
2693 		/* adjust insn_off only, the rest data will be passed
2694 		 * to the kernel.
2695 		 */
2696 		for (i = 0; i < sinfo->num_info; i++) {
2697 			__u32 *insn_off;
2698 
2699 			insn_off = data + existing_len + (i * record_size);
2700 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
2701 				insns_cnt;
2702 		}
2703 		*info = data;
2704 		*cnt += sinfo->num_info;
2705 		return 0;
2706 	}
2707 
2708 	return -ENOENT;
2709 }
2710 
2711 int btf_ext__reloc_func_info(const struct btf *btf,
2712 			     const struct btf_ext *btf_ext,
2713 			     const char *sec_name, __u32 insns_cnt,
2714 			     void **func_info, __u32 *cnt)
2715 {
2716 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2717 				  insns_cnt, func_info, cnt);
2718 }
2719 
2720 int btf_ext__reloc_line_info(const struct btf *btf,
2721 			     const struct btf_ext *btf_ext,
2722 			     const char *sec_name, __u32 insns_cnt,
2723 			     void **line_info, __u32 *cnt)
2724 {
2725 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2726 				  insns_cnt, line_info, cnt);
2727 }
2728 
2729 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2730 {
2731 	return btf_ext->func_info.rec_size;
2732 }
2733 
2734 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2735 {
2736 	return btf_ext->line_info.rec_size;
2737 }
2738 
2739 struct btf_dedup;
2740 
2741 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2742 				       const struct btf_dedup_opts *opts);
2743 static void btf_dedup_free(struct btf_dedup *d);
2744 static int btf_dedup_prep(struct btf_dedup *d);
2745 static int btf_dedup_strings(struct btf_dedup *d);
2746 static int btf_dedup_prim_types(struct btf_dedup *d);
2747 static int btf_dedup_struct_types(struct btf_dedup *d);
2748 static int btf_dedup_ref_types(struct btf_dedup *d);
2749 static int btf_dedup_compact_types(struct btf_dedup *d);
2750 static int btf_dedup_remap_types(struct btf_dedup *d);
2751 
2752 /*
2753  * Deduplicate BTF types and strings.
2754  *
2755  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2756  * section with all BTF type descriptors and string data. It overwrites that
2757  * memory in-place with deduplicated types and strings without any loss of
2758  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2759  * is provided, all the strings referenced from .BTF.ext section are honored
2760  * and updated to point to the right offsets after deduplication.
2761  *
2762  * If function returns with error, type/string data might be garbled and should
2763  * be discarded.
2764  *
2765  * More verbose and detailed description of both problem btf_dedup is solving,
2766  * as well as solution could be found at:
2767  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2768  *
2769  * Problem description and justification
2770  * =====================================
2771  *
2772  * BTF type information is typically emitted either as a result of conversion
2773  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2774  * unit contains information about a subset of all the types that are used
2775  * in an application. These subsets are frequently overlapping and contain a lot
2776  * of duplicated information when later concatenated together into a single
2777  * binary. This algorithm ensures that each unique type is represented by single
2778  * BTF type descriptor, greatly reducing resulting size of BTF data.
2779  *
2780  * Compilation unit isolation and subsequent duplication of data is not the only
2781  * problem. The same type hierarchy (e.g., struct and all the type that struct
2782  * references) in different compilation units can be represented in BTF to
2783  * various degrees of completeness (or, rather, incompleteness) due to
2784  * struct/union forward declarations.
2785  *
2786  * Let's take a look at an example, that we'll use to better understand the
2787  * problem (and solution). Suppose we have two compilation units, each using
2788  * same `struct S`, but each of them having incomplete type information about
2789  * struct's fields:
2790  *
2791  * // CU #1:
2792  * struct S;
2793  * struct A {
2794  *	int a;
2795  *	struct A* self;
2796  *	struct S* parent;
2797  * };
2798  * struct B;
2799  * struct S {
2800  *	struct A* a_ptr;
2801  *	struct B* b_ptr;
2802  * };
2803  *
2804  * // CU #2:
2805  * struct S;
2806  * struct A;
2807  * struct B {
2808  *	int b;
2809  *	struct B* self;
2810  *	struct S* parent;
2811  * };
2812  * struct S {
2813  *	struct A* a_ptr;
2814  *	struct B* b_ptr;
2815  * };
2816  *
2817  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2818  * more), but will know the complete type information about `struct A`. While
2819  * for CU #2, it will know full type information about `struct B`, but will
2820  * only know about forward declaration of `struct A` (in BTF terms, it will
2821  * have `BTF_KIND_FWD` type descriptor with name `B`).
2822  *
2823  * This compilation unit isolation means that it's possible that there is no
2824  * single CU with complete type information describing structs `S`, `A`, and
2825  * `B`. Also, we might get tons of duplicated and redundant type information.
2826  *
2827  * Additional complication we need to keep in mind comes from the fact that
2828  * types, in general, can form graphs containing cycles, not just DAGs.
2829  *
2830  * While algorithm does deduplication, it also merges and resolves type
2831  * information (unless disabled throught `struct btf_opts`), whenever possible.
2832  * E.g., in the example above with two compilation units having partial type
2833  * information for structs `A` and `B`, the output of algorithm will emit
2834  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2835  * (as well as type information for `int` and pointers), as if they were defined
2836  * in a single compilation unit as:
2837  *
2838  * struct A {
2839  *	int a;
2840  *	struct A* self;
2841  *	struct S* parent;
2842  * };
2843  * struct B {
2844  *	int b;
2845  *	struct B* self;
2846  *	struct S* parent;
2847  * };
2848  * struct S {
2849  *	struct A* a_ptr;
2850  *	struct B* b_ptr;
2851  * };
2852  *
2853  * Algorithm summary
2854  * =================
2855  *
2856  * Algorithm completes its work in 6 separate passes:
2857  *
2858  * 1. Strings deduplication.
2859  * 2. Primitive types deduplication (int, enum, fwd).
2860  * 3. Struct/union types deduplication.
2861  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2862  *    protos, and const/volatile/restrict modifiers).
2863  * 5. Types compaction.
2864  * 6. Types remapping.
2865  *
2866  * Algorithm determines canonical type descriptor, which is a single
2867  * representative type for each truly unique type. This canonical type is the
2868  * one that will go into final deduplicated BTF type information. For
2869  * struct/unions, it is also the type that algorithm will merge additional type
2870  * information into (while resolving FWDs), as it discovers it from data in
2871  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2872  * that type is canonical, or to some other type, if that type is equivalent
2873  * and was chosen as canonical representative. This mapping is stored in
2874  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2875  * FWD type got resolved to.
2876  *
2877  * To facilitate fast discovery of canonical types, we also maintain canonical
2878  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2879  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2880  * that match that signature. With sufficiently good choice of type signature
2881  * hashing function, we can limit number of canonical types for each unique type
2882  * signature to a very small number, allowing to find canonical type for any
2883  * duplicated type very quickly.
2884  *
2885  * Struct/union deduplication is the most critical part and algorithm for
2886  * deduplicating structs/unions is described in greater details in comments for
2887  * `btf_dedup_is_equiv` function.
2888  */
2889 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2890 	       const struct btf_dedup_opts *opts)
2891 {
2892 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2893 	int err;
2894 
2895 	if (IS_ERR(d)) {
2896 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (btf_ensure_modifiable(btf))
2901 		return -ENOMEM;
2902 
2903 	err = btf_dedup_prep(d);
2904 	if (err) {
2905 		pr_debug("btf_dedup_prep failed:%d\n", err);
2906 		goto done;
2907 	}
2908 	err = btf_dedup_strings(d);
2909 	if (err < 0) {
2910 		pr_debug("btf_dedup_strings failed:%d\n", err);
2911 		goto done;
2912 	}
2913 	err = btf_dedup_prim_types(d);
2914 	if (err < 0) {
2915 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2916 		goto done;
2917 	}
2918 	err = btf_dedup_struct_types(d);
2919 	if (err < 0) {
2920 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2921 		goto done;
2922 	}
2923 	err = btf_dedup_ref_types(d);
2924 	if (err < 0) {
2925 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2926 		goto done;
2927 	}
2928 	err = btf_dedup_compact_types(d);
2929 	if (err < 0) {
2930 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2931 		goto done;
2932 	}
2933 	err = btf_dedup_remap_types(d);
2934 	if (err < 0) {
2935 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2936 		goto done;
2937 	}
2938 
2939 done:
2940 	btf_dedup_free(d);
2941 	return err;
2942 }
2943 
2944 #define BTF_UNPROCESSED_ID ((__u32)-1)
2945 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2946 
2947 struct btf_dedup {
2948 	/* .BTF section to be deduped in-place */
2949 	struct btf *btf;
2950 	/*
2951 	 * Optional .BTF.ext section. When provided, any strings referenced
2952 	 * from it will be taken into account when deduping strings
2953 	 */
2954 	struct btf_ext *btf_ext;
2955 	/*
2956 	 * This is a map from any type's signature hash to a list of possible
2957 	 * canonical representative type candidates. Hash collisions are
2958 	 * ignored, so even types of various kinds can share same list of
2959 	 * candidates, which is fine because we rely on subsequent
2960 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2961 	 */
2962 	struct hashmap *dedup_table;
2963 	/* Canonical types map */
2964 	__u32 *map;
2965 	/* Hypothetical mapping, used during type graph equivalence checks */
2966 	__u32 *hypot_map;
2967 	__u32 *hypot_list;
2968 	size_t hypot_cnt;
2969 	size_t hypot_cap;
2970 	/* Whether hypothetical mapping, if successful, would need to adjust
2971 	 * already canonicalized types (due to a new forward declaration to
2972 	 * concrete type resolution). In such case, during split BTF dedup
2973 	 * candidate type would still be considered as different, because base
2974 	 * BTF is considered to be immutable.
2975 	 */
2976 	bool hypot_adjust_canon;
2977 	/* Various option modifying behavior of algorithm */
2978 	struct btf_dedup_opts opts;
2979 	/* temporary strings deduplication state */
2980 	struct strset *strs_set;
2981 };
2982 
2983 static long hash_combine(long h, long value)
2984 {
2985 	return h * 31 + value;
2986 }
2987 
2988 #define for_each_dedup_cand(d, node, hash) \
2989 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2990 
2991 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2992 {
2993 	return hashmap__append(d->dedup_table,
2994 			       (void *)hash, (void *)(long)type_id);
2995 }
2996 
2997 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
2998 				   __u32 from_id, __u32 to_id)
2999 {
3000 	if (d->hypot_cnt == d->hypot_cap) {
3001 		__u32 *new_list;
3002 
3003 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3004 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3005 		if (!new_list)
3006 			return -ENOMEM;
3007 		d->hypot_list = new_list;
3008 	}
3009 	d->hypot_list[d->hypot_cnt++] = from_id;
3010 	d->hypot_map[from_id] = to_id;
3011 	return 0;
3012 }
3013 
3014 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3015 {
3016 	int i;
3017 
3018 	for (i = 0; i < d->hypot_cnt; i++)
3019 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3020 	d->hypot_cnt = 0;
3021 	d->hypot_adjust_canon = false;
3022 }
3023 
3024 static void btf_dedup_free(struct btf_dedup *d)
3025 {
3026 	hashmap__free(d->dedup_table);
3027 	d->dedup_table = NULL;
3028 
3029 	free(d->map);
3030 	d->map = NULL;
3031 
3032 	free(d->hypot_map);
3033 	d->hypot_map = NULL;
3034 
3035 	free(d->hypot_list);
3036 	d->hypot_list = NULL;
3037 
3038 	free(d);
3039 }
3040 
3041 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3042 {
3043 	return (size_t)key;
3044 }
3045 
3046 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3047 {
3048 	return 0;
3049 }
3050 
3051 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3052 {
3053 	return k1 == k2;
3054 }
3055 
3056 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3057 				       const struct btf_dedup_opts *opts)
3058 {
3059 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3060 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3061 	int i, err = 0, type_cnt;
3062 
3063 	if (!d)
3064 		return ERR_PTR(-ENOMEM);
3065 
3066 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3067 	/* dedup_table_size is now used only to force collisions in tests */
3068 	if (opts && opts->dedup_table_size == 1)
3069 		hash_fn = btf_dedup_collision_hash_fn;
3070 
3071 	d->btf = btf;
3072 	d->btf_ext = btf_ext;
3073 
3074 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3075 	if (IS_ERR(d->dedup_table)) {
3076 		err = PTR_ERR(d->dedup_table);
3077 		d->dedup_table = NULL;
3078 		goto done;
3079 	}
3080 
3081 	type_cnt = btf__get_nr_types(btf) + 1;
3082 	d->map = malloc(sizeof(__u32) * type_cnt);
3083 	if (!d->map) {
3084 		err = -ENOMEM;
3085 		goto done;
3086 	}
3087 	/* special BTF "void" type is made canonical immediately */
3088 	d->map[0] = 0;
3089 	for (i = 1; i < type_cnt; i++) {
3090 		struct btf_type *t = btf_type_by_id(d->btf, i);
3091 
3092 		/* VAR and DATASEC are never deduped and are self-canonical */
3093 		if (btf_is_var(t) || btf_is_datasec(t))
3094 			d->map[i] = i;
3095 		else
3096 			d->map[i] = BTF_UNPROCESSED_ID;
3097 	}
3098 
3099 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3100 	if (!d->hypot_map) {
3101 		err = -ENOMEM;
3102 		goto done;
3103 	}
3104 	for (i = 0; i < type_cnt; i++)
3105 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3106 
3107 done:
3108 	if (err) {
3109 		btf_dedup_free(d);
3110 		return ERR_PTR(err);
3111 	}
3112 
3113 	return d;
3114 }
3115 
3116 /*
3117  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3118  * string and pass pointer to it to a provided callback `fn`.
3119  */
3120 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3121 {
3122 	int i, r;
3123 
3124 	for (i = 0; i < d->btf->nr_types; i++) {
3125 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3126 
3127 		r = btf_type_visit_str_offs(t, fn, ctx);
3128 		if (r)
3129 			return r;
3130 	}
3131 
3132 	if (!d->btf_ext)
3133 		return 0;
3134 
3135 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3136 	if (r)
3137 		return r;
3138 
3139 	return 0;
3140 }
3141 
3142 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3143 {
3144 	struct btf_dedup *d = ctx;
3145 	__u32 str_off = *str_off_ptr;
3146 	const char *s;
3147 	int off, err;
3148 
3149 	/* don't touch empty string or string in main BTF */
3150 	if (str_off == 0 || str_off < d->btf->start_str_off)
3151 		return 0;
3152 
3153 	s = btf__str_by_offset(d->btf, str_off);
3154 	if (d->btf->base_btf) {
3155 		err = btf__find_str(d->btf->base_btf, s);
3156 		if (err >= 0) {
3157 			*str_off_ptr = err;
3158 			return 0;
3159 		}
3160 		if (err != -ENOENT)
3161 			return err;
3162 	}
3163 
3164 	off = strset__add_str(d->strs_set, s);
3165 	if (off < 0)
3166 		return off;
3167 
3168 	*str_off_ptr = d->btf->start_str_off + off;
3169 	return 0;
3170 }
3171 
3172 /*
3173  * Dedup string and filter out those that are not referenced from either .BTF
3174  * or .BTF.ext (if provided) sections.
3175  *
3176  * This is done by building index of all strings in BTF's string section,
3177  * then iterating over all entities that can reference strings (e.g., type
3178  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3179  * strings as used. After that all used strings are deduped and compacted into
3180  * sequential blob of memory and new offsets are calculated. Then all the string
3181  * references are iterated again and rewritten using new offsets.
3182  */
3183 static int btf_dedup_strings(struct btf_dedup *d)
3184 {
3185 	int err;
3186 
3187 	if (d->btf->strs_deduped)
3188 		return 0;
3189 
3190 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3191 	if (IS_ERR(d->strs_set)) {
3192 		err = PTR_ERR(d->strs_set);
3193 		goto err_out;
3194 	}
3195 
3196 	if (!d->btf->base_btf) {
3197 		/* insert empty string; we won't be looking it up during strings
3198 		 * dedup, but it's good to have it for generic BTF string lookups
3199 		 */
3200 		err = strset__add_str(d->strs_set, "");
3201 		if (err < 0)
3202 			goto err_out;
3203 	}
3204 
3205 	/* remap string offsets */
3206 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3207 	if (err)
3208 		goto err_out;
3209 
3210 	/* replace BTF string data and hash with deduped ones */
3211 	strset__free(d->btf->strs_set);
3212 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3213 	d->btf->strs_set = d->strs_set;
3214 	d->strs_set = NULL;
3215 	d->btf->strs_deduped = true;
3216 	return 0;
3217 
3218 err_out:
3219 	strset__free(d->strs_set);
3220 	d->strs_set = NULL;
3221 
3222 	return err;
3223 }
3224 
3225 static long btf_hash_common(struct btf_type *t)
3226 {
3227 	long h;
3228 
3229 	h = hash_combine(0, t->name_off);
3230 	h = hash_combine(h, t->info);
3231 	h = hash_combine(h, t->size);
3232 	return h;
3233 }
3234 
3235 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3236 {
3237 	return t1->name_off == t2->name_off &&
3238 	       t1->info == t2->info &&
3239 	       t1->size == t2->size;
3240 }
3241 
3242 /* Calculate type signature hash of INT. */
3243 static long btf_hash_int(struct btf_type *t)
3244 {
3245 	__u32 info = *(__u32 *)(t + 1);
3246 	long h;
3247 
3248 	h = btf_hash_common(t);
3249 	h = hash_combine(h, info);
3250 	return h;
3251 }
3252 
3253 /* Check structural equality of two INTs. */
3254 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3255 {
3256 	__u32 info1, info2;
3257 
3258 	if (!btf_equal_common(t1, t2))
3259 		return false;
3260 	info1 = *(__u32 *)(t1 + 1);
3261 	info2 = *(__u32 *)(t2 + 1);
3262 	return info1 == info2;
3263 }
3264 
3265 /* Calculate type signature hash of ENUM. */
3266 static long btf_hash_enum(struct btf_type *t)
3267 {
3268 	long h;
3269 
3270 	/* don't hash vlen and enum members to support enum fwd resolving */
3271 	h = hash_combine(0, t->name_off);
3272 	h = hash_combine(h, t->info & ~0xffff);
3273 	h = hash_combine(h, t->size);
3274 	return h;
3275 }
3276 
3277 /* Check structural equality of two ENUMs. */
3278 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3279 {
3280 	const struct btf_enum *m1, *m2;
3281 	__u16 vlen;
3282 	int i;
3283 
3284 	if (!btf_equal_common(t1, t2))
3285 		return false;
3286 
3287 	vlen = btf_vlen(t1);
3288 	m1 = btf_enum(t1);
3289 	m2 = btf_enum(t2);
3290 	for (i = 0; i < vlen; i++) {
3291 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3292 			return false;
3293 		m1++;
3294 		m2++;
3295 	}
3296 	return true;
3297 }
3298 
3299 static inline bool btf_is_enum_fwd(struct btf_type *t)
3300 {
3301 	return btf_is_enum(t) && btf_vlen(t) == 0;
3302 }
3303 
3304 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3305 {
3306 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3307 		return btf_equal_enum(t1, t2);
3308 	/* ignore vlen when comparing */
3309 	return t1->name_off == t2->name_off &&
3310 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3311 	       t1->size == t2->size;
3312 }
3313 
3314 /*
3315  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3316  * as referenced type IDs equivalence is established separately during type
3317  * graph equivalence check algorithm.
3318  */
3319 static long btf_hash_struct(struct btf_type *t)
3320 {
3321 	const struct btf_member *member = btf_members(t);
3322 	__u32 vlen = btf_vlen(t);
3323 	long h = btf_hash_common(t);
3324 	int i;
3325 
3326 	for (i = 0; i < vlen; i++) {
3327 		h = hash_combine(h, member->name_off);
3328 		h = hash_combine(h, member->offset);
3329 		/* no hashing of referenced type ID, it can be unresolved yet */
3330 		member++;
3331 	}
3332 	return h;
3333 }
3334 
3335 /*
3336  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3337  * IDs. This check is performed during type graph equivalence check and
3338  * referenced types equivalence is checked separately.
3339  */
3340 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3341 {
3342 	const struct btf_member *m1, *m2;
3343 	__u16 vlen;
3344 	int i;
3345 
3346 	if (!btf_equal_common(t1, t2))
3347 		return false;
3348 
3349 	vlen = btf_vlen(t1);
3350 	m1 = btf_members(t1);
3351 	m2 = btf_members(t2);
3352 	for (i = 0; i < vlen; i++) {
3353 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3354 			return false;
3355 		m1++;
3356 		m2++;
3357 	}
3358 	return true;
3359 }
3360 
3361 /*
3362  * Calculate type signature hash of ARRAY, including referenced type IDs,
3363  * under assumption that they were already resolved to canonical type IDs and
3364  * are not going to change.
3365  */
3366 static long btf_hash_array(struct btf_type *t)
3367 {
3368 	const struct btf_array *info = btf_array(t);
3369 	long h = btf_hash_common(t);
3370 
3371 	h = hash_combine(h, info->type);
3372 	h = hash_combine(h, info->index_type);
3373 	h = hash_combine(h, info->nelems);
3374 	return h;
3375 }
3376 
3377 /*
3378  * Check exact equality of two ARRAYs, taking into account referenced
3379  * type IDs, under assumption that they were already resolved to canonical
3380  * type IDs and are not going to change.
3381  * This function is called during reference types deduplication to compare
3382  * ARRAY to potential canonical representative.
3383  */
3384 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3385 {
3386 	const struct btf_array *info1, *info2;
3387 
3388 	if (!btf_equal_common(t1, t2))
3389 		return false;
3390 
3391 	info1 = btf_array(t1);
3392 	info2 = btf_array(t2);
3393 	return info1->type == info2->type &&
3394 	       info1->index_type == info2->index_type &&
3395 	       info1->nelems == info2->nelems;
3396 }
3397 
3398 /*
3399  * Check structural compatibility of two ARRAYs, ignoring referenced type
3400  * IDs. This check is performed during type graph equivalence check and
3401  * referenced types equivalence is checked separately.
3402  */
3403 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3404 {
3405 	if (!btf_equal_common(t1, t2))
3406 		return false;
3407 
3408 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3409 }
3410 
3411 /*
3412  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3413  * under assumption that they were already resolved to canonical type IDs and
3414  * are not going to change.
3415  */
3416 static long btf_hash_fnproto(struct btf_type *t)
3417 {
3418 	const struct btf_param *member = btf_params(t);
3419 	__u16 vlen = btf_vlen(t);
3420 	long h = btf_hash_common(t);
3421 	int i;
3422 
3423 	for (i = 0; i < vlen; i++) {
3424 		h = hash_combine(h, member->name_off);
3425 		h = hash_combine(h, member->type);
3426 		member++;
3427 	}
3428 	return h;
3429 }
3430 
3431 /*
3432  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3433  * type IDs, under assumption that they were already resolved to canonical
3434  * type IDs and are not going to change.
3435  * This function is called during reference types deduplication to compare
3436  * FUNC_PROTO to potential canonical representative.
3437  */
3438 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3439 {
3440 	const struct btf_param *m1, *m2;
3441 	__u16 vlen;
3442 	int i;
3443 
3444 	if (!btf_equal_common(t1, t2))
3445 		return false;
3446 
3447 	vlen = btf_vlen(t1);
3448 	m1 = btf_params(t1);
3449 	m2 = btf_params(t2);
3450 	for (i = 0; i < vlen; i++) {
3451 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3452 			return false;
3453 		m1++;
3454 		m2++;
3455 	}
3456 	return true;
3457 }
3458 
3459 /*
3460  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3461  * IDs. This check is performed during type graph equivalence check and
3462  * referenced types equivalence is checked separately.
3463  */
3464 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3465 {
3466 	const struct btf_param *m1, *m2;
3467 	__u16 vlen;
3468 	int i;
3469 
3470 	/* skip return type ID */
3471 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3472 		return false;
3473 
3474 	vlen = btf_vlen(t1);
3475 	m1 = btf_params(t1);
3476 	m2 = btf_params(t2);
3477 	for (i = 0; i < vlen; i++) {
3478 		if (m1->name_off != m2->name_off)
3479 			return false;
3480 		m1++;
3481 		m2++;
3482 	}
3483 	return true;
3484 }
3485 
3486 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3487  * types and initializing the rest of the state (canonical type mapping) for
3488  * the fixed base BTF part.
3489  */
3490 static int btf_dedup_prep(struct btf_dedup *d)
3491 {
3492 	struct btf_type *t;
3493 	int type_id;
3494 	long h;
3495 
3496 	if (!d->btf->base_btf)
3497 		return 0;
3498 
3499 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3500 		t = btf_type_by_id(d->btf, type_id);
3501 
3502 		/* all base BTF types are self-canonical by definition */
3503 		d->map[type_id] = type_id;
3504 
3505 		switch (btf_kind(t)) {
3506 		case BTF_KIND_VAR:
3507 		case BTF_KIND_DATASEC:
3508 			/* VAR and DATASEC are never hash/deduplicated */
3509 			continue;
3510 		case BTF_KIND_CONST:
3511 		case BTF_KIND_VOLATILE:
3512 		case BTF_KIND_RESTRICT:
3513 		case BTF_KIND_PTR:
3514 		case BTF_KIND_FWD:
3515 		case BTF_KIND_TYPEDEF:
3516 		case BTF_KIND_FUNC:
3517 		case BTF_KIND_FLOAT:
3518 			h = btf_hash_common(t);
3519 			break;
3520 		case BTF_KIND_INT:
3521 			h = btf_hash_int(t);
3522 			break;
3523 		case BTF_KIND_ENUM:
3524 			h = btf_hash_enum(t);
3525 			break;
3526 		case BTF_KIND_STRUCT:
3527 		case BTF_KIND_UNION:
3528 			h = btf_hash_struct(t);
3529 			break;
3530 		case BTF_KIND_ARRAY:
3531 			h = btf_hash_array(t);
3532 			break;
3533 		case BTF_KIND_FUNC_PROTO:
3534 			h = btf_hash_fnproto(t);
3535 			break;
3536 		default:
3537 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3538 			return -EINVAL;
3539 		}
3540 		if (btf_dedup_table_add(d, h, type_id))
3541 			return -ENOMEM;
3542 	}
3543 
3544 	return 0;
3545 }
3546 
3547 /*
3548  * Deduplicate primitive types, that can't reference other types, by calculating
3549  * their type signature hash and comparing them with any possible canonical
3550  * candidate. If no canonical candidate matches, type itself is marked as
3551  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3552  */
3553 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3554 {
3555 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3556 	struct hashmap_entry *hash_entry;
3557 	struct btf_type *cand;
3558 	/* if we don't find equivalent type, then we are canonical */
3559 	__u32 new_id = type_id;
3560 	__u32 cand_id;
3561 	long h;
3562 
3563 	switch (btf_kind(t)) {
3564 	case BTF_KIND_CONST:
3565 	case BTF_KIND_VOLATILE:
3566 	case BTF_KIND_RESTRICT:
3567 	case BTF_KIND_PTR:
3568 	case BTF_KIND_TYPEDEF:
3569 	case BTF_KIND_ARRAY:
3570 	case BTF_KIND_STRUCT:
3571 	case BTF_KIND_UNION:
3572 	case BTF_KIND_FUNC:
3573 	case BTF_KIND_FUNC_PROTO:
3574 	case BTF_KIND_VAR:
3575 	case BTF_KIND_DATASEC:
3576 		return 0;
3577 
3578 	case BTF_KIND_INT:
3579 		h = btf_hash_int(t);
3580 		for_each_dedup_cand(d, hash_entry, h) {
3581 			cand_id = (__u32)(long)hash_entry->value;
3582 			cand = btf_type_by_id(d->btf, cand_id);
3583 			if (btf_equal_int(t, cand)) {
3584 				new_id = cand_id;
3585 				break;
3586 			}
3587 		}
3588 		break;
3589 
3590 	case BTF_KIND_ENUM:
3591 		h = btf_hash_enum(t);
3592 		for_each_dedup_cand(d, hash_entry, h) {
3593 			cand_id = (__u32)(long)hash_entry->value;
3594 			cand = btf_type_by_id(d->btf, cand_id);
3595 			if (btf_equal_enum(t, cand)) {
3596 				new_id = cand_id;
3597 				break;
3598 			}
3599 			if (d->opts.dont_resolve_fwds)
3600 				continue;
3601 			if (btf_compat_enum(t, cand)) {
3602 				if (btf_is_enum_fwd(t)) {
3603 					/* resolve fwd to full enum */
3604 					new_id = cand_id;
3605 					break;
3606 				}
3607 				/* resolve canonical enum fwd to full enum */
3608 				d->map[cand_id] = type_id;
3609 			}
3610 		}
3611 		break;
3612 
3613 	case BTF_KIND_FWD:
3614 	case BTF_KIND_FLOAT:
3615 		h = btf_hash_common(t);
3616 		for_each_dedup_cand(d, hash_entry, h) {
3617 			cand_id = (__u32)(long)hash_entry->value;
3618 			cand = btf_type_by_id(d->btf, cand_id);
3619 			if (btf_equal_common(t, cand)) {
3620 				new_id = cand_id;
3621 				break;
3622 			}
3623 		}
3624 		break;
3625 
3626 	default:
3627 		return -EINVAL;
3628 	}
3629 
3630 	d->map[type_id] = new_id;
3631 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3632 		return -ENOMEM;
3633 
3634 	return 0;
3635 }
3636 
3637 static int btf_dedup_prim_types(struct btf_dedup *d)
3638 {
3639 	int i, err;
3640 
3641 	for (i = 0; i < d->btf->nr_types; i++) {
3642 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3643 		if (err)
3644 			return err;
3645 	}
3646 	return 0;
3647 }
3648 
3649 /*
3650  * Check whether type is already mapped into canonical one (could be to itself).
3651  */
3652 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3653 {
3654 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3655 }
3656 
3657 /*
3658  * Resolve type ID into its canonical type ID, if any; otherwise return original
3659  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3660  * STRUCT/UNION link and resolve it into canonical type ID as well.
3661  */
3662 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3663 {
3664 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3665 		type_id = d->map[type_id];
3666 	return type_id;
3667 }
3668 
3669 /*
3670  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3671  * type ID.
3672  */
3673 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3674 {
3675 	__u32 orig_type_id = type_id;
3676 
3677 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3678 		return type_id;
3679 
3680 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3681 		type_id = d->map[type_id];
3682 
3683 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3684 		return type_id;
3685 
3686 	return orig_type_id;
3687 }
3688 
3689 
3690 static inline __u16 btf_fwd_kind(struct btf_type *t)
3691 {
3692 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3693 }
3694 
3695 /* Check if given two types are identical ARRAY definitions */
3696 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3697 {
3698 	struct btf_type *t1, *t2;
3699 
3700 	t1 = btf_type_by_id(d->btf, id1);
3701 	t2 = btf_type_by_id(d->btf, id2);
3702 	if (!btf_is_array(t1) || !btf_is_array(t2))
3703 		return 0;
3704 
3705 	return btf_equal_array(t1, t2);
3706 }
3707 
3708 /*
3709  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3710  * call it "candidate graph" in this description for brevity) to a type graph
3711  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3712  * here, though keep in mind that not all types in canonical graph are
3713  * necessarily canonical representatives themselves, some of them might be
3714  * duplicates or its uniqueness might not have been established yet).
3715  * Returns:
3716  *  - >0, if type graphs are equivalent;
3717  *  -  0, if not equivalent;
3718  *  - <0, on error.
3719  *
3720  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3721  * equivalence of BTF types at each step. If at any point BTF types in candidate
3722  * and canonical graphs are not compatible structurally, whole graphs are
3723  * incompatible. If types are structurally equivalent (i.e., all information
3724  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3725  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3726  * If a type references other types, then those referenced types are checked
3727  * for equivalence recursively.
3728  *
3729  * During DFS traversal, if we find that for current `canon_id` type we
3730  * already have some mapping in hypothetical map, we check for two possible
3731  * situations:
3732  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3733  *     happen when type graphs have cycles. In this case we assume those two
3734  *     types are equivalent.
3735  *   - `canon_id` is mapped to different type. This is contradiction in our
3736  *     hypothetical mapping, because same graph in canonical graph corresponds
3737  *     to two different types in candidate graph, which for equivalent type
3738  *     graphs shouldn't happen. This condition terminates equivalence check
3739  *     with negative result.
3740  *
3741  * If type graphs traversal exhausts types to check and find no contradiction,
3742  * then type graphs are equivalent.
3743  *
3744  * When checking types for equivalence, there is one special case: FWD types.
3745  * If FWD type resolution is allowed and one of the types (either from canonical
3746  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3747  * flag) and their names match, hypothetical mapping is updated to point from
3748  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3749  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3750  *
3751  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3752  * if there are two exactly named (or anonymous) structs/unions that are
3753  * compatible structurally, one of which has FWD field, while other is concrete
3754  * STRUCT/UNION, but according to C sources they are different structs/unions
3755  * that are referencing different types with the same name. This is extremely
3756  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3757  * this logic is causing problems.
3758  *
3759  * Doing FWD resolution means that both candidate and/or canonical graphs can
3760  * consists of portions of the graph that come from multiple compilation units.
3761  * This is due to the fact that types within single compilation unit are always
3762  * deduplicated and FWDs are already resolved, if referenced struct/union
3763  * definiton is available. So, if we had unresolved FWD and found corresponding
3764  * STRUCT/UNION, they will be from different compilation units. This
3765  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3766  * type graph will likely have at least two different BTF types that describe
3767  * same type (e.g., most probably there will be two different BTF types for the
3768  * same 'int' primitive type) and could even have "overlapping" parts of type
3769  * graph that describe same subset of types.
3770  *
3771  * This in turn means that our assumption that each type in canonical graph
3772  * must correspond to exactly one type in candidate graph might not hold
3773  * anymore and will make it harder to detect contradictions using hypothetical
3774  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3775  * resolution only in canonical graph. FWDs in candidate graphs are never
3776  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3777  * that can occur:
3778  *   - Both types in canonical and candidate graphs are FWDs. If they are
3779  *     structurally equivalent, then they can either be both resolved to the
3780  *     same STRUCT/UNION or not resolved at all. In both cases they are
3781  *     equivalent and there is no need to resolve FWD on candidate side.
3782  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3783  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3784  *   - Type in canonical graph is FWD, while type in candidate is concrete
3785  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3786  *     unit, so there is exactly one BTF type for each unique C type. After
3787  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3788  *     in canonical graph mapping to single BTF type in candidate graph, but
3789  *     because hypothetical mapping maps from canonical to candidate types, it's
3790  *     alright, and we still maintain the property of having single `canon_id`
3791  *     mapping to single `cand_id` (there could be two different `canon_id`
3792  *     mapped to the same `cand_id`, but it's not contradictory).
3793  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3794  *     graph is FWD. In this case we are just going to check compatibility of
3795  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3796  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3797  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3798  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3799  *     canonical graph.
3800  */
3801 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3802 			      __u32 canon_id)
3803 {
3804 	struct btf_type *cand_type;
3805 	struct btf_type *canon_type;
3806 	__u32 hypot_type_id;
3807 	__u16 cand_kind;
3808 	__u16 canon_kind;
3809 	int i, eq;
3810 
3811 	/* if both resolve to the same canonical, they must be equivalent */
3812 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3813 		return 1;
3814 
3815 	canon_id = resolve_fwd_id(d, canon_id);
3816 
3817 	hypot_type_id = d->hypot_map[canon_id];
3818 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3819 		/* In some cases compiler will generate different DWARF types
3820 		 * for *identical* array type definitions and use them for
3821 		 * different fields within the *same* struct. This breaks type
3822 		 * equivalence check, which makes an assumption that candidate
3823 		 * types sub-graph has a consistent and deduped-by-compiler
3824 		 * types within a single CU. So work around that by explicitly
3825 		 * allowing identical array types here.
3826 		 */
3827 		return hypot_type_id == cand_id ||
3828 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3829 	}
3830 
3831 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3832 		return -ENOMEM;
3833 
3834 	cand_type = btf_type_by_id(d->btf, cand_id);
3835 	canon_type = btf_type_by_id(d->btf, canon_id);
3836 	cand_kind = btf_kind(cand_type);
3837 	canon_kind = btf_kind(canon_type);
3838 
3839 	if (cand_type->name_off != canon_type->name_off)
3840 		return 0;
3841 
3842 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3843 	if (!d->opts.dont_resolve_fwds
3844 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3845 	    && cand_kind != canon_kind) {
3846 		__u16 real_kind;
3847 		__u16 fwd_kind;
3848 
3849 		if (cand_kind == BTF_KIND_FWD) {
3850 			real_kind = canon_kind;
3851 			fwd_kind = btf_fwd_kind(cand_type);
3852 		} else {
3853 			real_kind = cand_kind;
3854 			fwd_kind = btf_fwd_kind(canon_type);
3855 			/* we'd need to resolve base FWD to STRUCT/UNION */
3856 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3857 				d->hypot_adjust_canon = true;
3858 		}
3859 		return fwd_kind == real_kind;
3860 	}
3861 
3862 	if (cand_kind != canon_kind)
3863 		return 0;
3864 
3865 	switch (cand_kind) {
3866 	case BTF_KIND_INT:
3867 		return btf_equal_int(cand_type, canon_type);
3868 
3869 	case BTF_KIND_ENUM:
3870 		if (d->opts.dont_resolve_fwds)
3871 			return btf_equal_enum(cand_type, canon_type);
3872 		else
3873 			return btf_compat_enum(cand_type, canon_type);
3874 
3875 	case BTF_KIND_FWD:
3876 	case BTF_KIND_FLOAT:
3877 		return btf_equal_common(cand_type, canon_type);
3878 
3879 	case BTF_KIND_CONST:
3880 	case BTF_KIND_VOLATILE:
3881 	case BTF_KIND_RESTRICT:
3882 	case BTF_KIND_PTR:
3883 	case BTF_KIND_TYPEDEF:
3884 	case BTF_KIND_FUNC:
3885 		if (cand_type->info != canon_type->info)
3886 			return 0;
3887 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3888 
3889 	case BTF_KIND_ARRAY: {
3890 		const struct btf_array *cand_arr, *canon_arr;
3891 
3892 		if (!btf_compat_array(cand_type, canon_type))
3893 			return 0;
3894 		cand_arr = btf_array(cand_type);
3895 		canon_arr = btf_array(canon_type);
3896 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3897 		if (eq <= 0)
3898 			return eq;
3899 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3900 	}
3901 
3902 	case BTF_KIND_STRUCT:
3903 	case BTF_KIND_UNION: {
3904 		const struct btf_member *cand_m, *canon_m;
3905 		__u16 vlen;
3906 
3907 		if (!btf_shallow_equal_struct(cand_type, canon_type))
3908 			return 0;
3909 		vlen = btf_vlen(cand_type);
3910 		cand_m = btf_members(cand_type);
3911 		canon_m = btf_members(canon_type);
3912 		for (i = 0; i < vlen; i++) {
3913 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3914 			if (eq <= 0)
3915 				return eq;
3916 			cand_m++;
3917 			canon_m++;
3918 		}
3919 
3920 		return 1;
3921 	}
3922 
3923 	case BTF_KIND_FUNC_PROTO: {
3924 		const struct btf_param *cand_p, *canon_p;
3925 		__u16 vlen;
3926 
3927 		if (!btf_compat_fnproto(cand_type, canon_type))
3928 			return 0;
3929 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3930 		if (eq <= 0)
3931 			return eq;
3932 		vlen = btf_vlen(cand_type);
3933 		cand_p = btf_params(cand_type);
3934 		canon_p = btf_params(canon_type);
3935 		for (i = 0; i < vlen; i++) {
3936 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3937 			if (eq <= 0)
3938 				return eq;
3939 			cand_p++;
3940 			canon_p++;
3941 		}
3942 		return 1;
3943 	}
3944 
3945 	default:
3946 		return -EINVAL;
3947 	}
3948 	return 0;
3949 }
3950 
3951 /*
3952  * Use hypothetical mapping, produced by successful type graph equivalence
3953  * check, to augment existing struct/union canonical mapping, where possible.
3954  *
3955  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3956  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3957  * it doesn't matter if FWD type was part of canonical graph or candidate one,
3958  * we are recording the mapping anyway. As opposed to carefulness required
3959  * for struct/union correspondence mapping (described below), for FWD resolution
3960  * it's not important, as by the time that FWD type (reference type) will be
3961  * deduplicated all structs/unions will be deduped already anyway.
3962  *
3963  * Recording STRUCT/UNION mapping is purely a performance optimization and is
3964  * not required for correctness. It needs to be done carefully to ensure that
3965  * struct/union from candidate's type graph is not mapped into corresponding
3966  * struct/union from canonical type graph that itself hasn't been resolved into
3967  * canonical representative. The only guarantee we have is that canonical
3968  * struct/union was determined as canonical and that won't change. But any
3969  * types referenced through that struct/union fields could have been not yet
3970  * resolved, so in case like that it's too early to establish any kind of
3971  * correspondence between structs/unions.
3972  *
3973  * No canonical correspondence is derived for primitive types (they are already
3974  * deduplicated completely already anyway) or reference types (they rely on
3975  * stability of struct/union canonical relationship for equivalence checks).
3976  */
3977 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3978 {
3979 	__u32 canon_type_id, targ_type_id;
3980 	__u16 t_kind, c_kind;
3981 	__u32 t_id, c_id;
3982 	int i;
3983 
3984 	for (i = 0; i < d->hypot_cnt; i++) {
3985 		canon_type_id = d->hypot_list[i];
3986 		targ_type_id = d->hypot_map[canon_type_id];
3987 		t_id = resolve_type_id(d, targ_type_id);
3988 		c_id = resolve_type_id(d, canon_type_id);
3989 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3990 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3991 		/*
3992 		 * Resolve FWD into STRUCT/UNION.
3993 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3994 		 * mapped to canonical representative (as opposed to
3995 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3996 		 * eventually that struct is going to be mapped and all resolved
3997 		 * FWDs will automatically resolve to correct canonical
3998 		 * representative. This will happen before ref type deduping,
3999 		 * which critically depends on stability of these mapping. This
4000 		 * stability is not a requirement for STRUCT/UNION equivalence
4001 		 * checks, though.
4002 		 */
4003 
4004 		/* if it's the split BTF case, we still need to point base FWD
4005 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4006 		 * will be resolved against base FWD. If we don't point base
4007 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4008 		 * FWDs in split BTF won't be correctly resolved to a proper
4009 		 * STRUCT/UNION.
4010 		 */
4011 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4012 			d->map[c_id] = t_id;
4013 
4014 		/* if graph equivalence determined that we'd need to adjust
4015 		 * base canonical types, then we need to only point base FWDs
4016 		 * to STRUCTs/UNIONs and do no more modifications. For all
4017 		 * other purposes the type graphs were not equivalent.
4018 		 */
4019 		if (d->hypot_adjust_canon)
4020 			continue;
4021 
4022 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4023 			d->map[t_id] = c_id;
4024 
4025 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4026 		    c_kind != BTF_KIND_FWD &&
4027 		    is_type_mapped(d, c_id) &&
4028 		    !is_type_mapped(d, t_id)) {
4029 			/*
4030 			 * as a perf optimization, we can map struct/union
4031 			 * that's part of type graph we just verified for
4032 			 * equivalence. We can do that for struct/union that has
4033 			 * canonical representative only, though.
4034 			 */
4035 			d->map[t_id] = c_id;
4036 		}
4037 	}
4038 }
4039 
4040 /*
4041  * Deduplicate struct/union types.
4042  *
4043  * For each struct/union type its type signature hash is calculated, taking
4044  * into account type's name, size, number, order and names of fields, but
4045  * ignoring type ID's referenced from fields, because they might not be deduped
4046  * completely until after reference types deduplication phase. This type hash
4047  * is used to iterate over all potential canonical types, sharing same hash.
4048  * For each canonical candidate we check whether type graphs that they form
4049  * (through referenced types in fields and so on) are equivalent using algorithm
4050  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4051  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4052  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4053  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4054  * potentially map other structs/unions to their canonical representatives,
4055  * if such relationship hasn't yet been established. This speeds up algorithm
4056  * by eliminating some of the duplicate work.
4057  *
4058  * If no matching canonical representative was found, struct/union is marked
4059  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4060  * for further look ups.
4061  */
4062 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4063 {
4064 	struct btf_type *cand_type, *t;
4065 	struct hashmap_entry *hash_entry;
4066 	/* if we don't find equivalent type, then we are canonical */
4067 	__u32 new_id = type_id;
4068 	__u16 kind;
4069 	long h;
4070 
4071 	/* already deduped or is in process of deduping (loop detected) */
4072 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4073 		return 0;
4074 
4075 	t = btf_type_by_id(d->btf, type_id);
4076 	kind = btf_kind(t);
4077 
4078 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4079 		return 0;
4080 
4081 	h = btf_hash_struct(t);
4082 	for_each_dedup_cand(d, hash_entry, h) {
4083 		__u32 cand_id = (__u32)(long)hash_entry->value;
4084 		int eq;
4085 
4086 		/*
4087 		 * Even though btf_dedup_is_equiv() checks for
4088 		 * btf_shallow_equal_struct() internally when checking two
4089 		 * structs (unions) for equivalence, we need to guard here
4090 		 * from picking matching FWD type as a dedup candidate.
4091 		 * This can happen due to hash collision. In such case just
4092 		 * relying on btf_dedup_is_equiv() would lead to potentially
4093 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4094 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4095 		 */
4096 		cand_type = btf_type_by_id(d->btf, cand_id);
4097 		if (!btf_shallow_equal_struct(t, cand_type))
4098 			continue;
4099 
4100 		btf_dedup_clear_hypot_map(d);
4101 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4102 		if (eq < 0)
4103 			return eq;
4104 		if (!eq)
4105 			continue;
4106 		btf_dedup_merge_hypot_map(d);
4107 		if (d->hypot_adjust_canon) /* not really equivalent */
4108 			continue;
4109 		new_id = cand_id;
4110 		break;
4111 	}
4112 
4113 	d->map[type_id] = new_id;
4114 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4115 		return -ENOMEM;
4116 
4117 	return 0;
4118 }
4119 
4120 static int btf_dedup_struct_types(struct btf_dedup *d)
4121 {
4122 	int i, err;
4123 
4124 	for (i = 0; i < d->btf->nr_types; i++) {
4125 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4126 		if (err)
4127 			return err;
4128 	}
4129 	return 0;
4130 }
4131 
4132 /*
4133  * Deduplicate reference type.
4134  *
4135  * Once all primitive and struct/union types got deduplicated, we can easily
4136  * deduplicate all other (reference) BTF types. This is done in two steps:
4137  *
4138  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4139  * resolution can be done either immediately for primitive or struct/union types
4140  * (because they were deduped in previous two phases) or recursively for
4141  * reference types. Recursion will always terminate at either primitive or
4142  * struct/union type, at which point we can "unwind" chain of reference types
4143  * one by one. There is no danger of encountering cycles because in C type
4144  * system the only way to form type cycle is through struct/union, so any chain
4145  * of reference types, even those taking part in a type cycle, will inevitably
4146  * reach struct/union at some point.
4147  *
4148  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4149  * becomes "stable", in the sense that no further deduplication will cause
4150  * any changes to it. With that, it's now possible to calculate type's signature
4151  * hash (this time taking into account referenced type IDs) and loop over all
4152  * potential canonical representatives. If no match was found, current type
4153  * will become canonical representative of itself and will be added into
4154  * btf_dedup->dedup_table as another possible canonical representative.
4155  */
4156 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4157 {
4158 	struct hashmap_entry *hash_entry;
4159 	__u32 new_id = type_id, cand_id;
4160 	struct btf_type *t, *cand;
4161 	/* if we don't find equivalent type, then we are representative type */
4162 	int ref_type_id;
4163 	long h;
4164 
4165 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4166 		return -ELOOP;
4167 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4168 		return resolve_type_id(d, type_id);
4169 
4170 	t = btf_type_by_id(d->btf, type_id);
4171 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4172 
4173 	switch (btf_kind(t)) {
4174 	case BTF_KIND_CONST:
4175 	case BTF_KIND_VOLATILE:
4176 	case BTF_KIND_RESTRICT:
4177 	case BTF_KIND_PTR:
4178 	case BTF_KIND_TYPEDEF:
4179 	case BTF_KIND_FUNC:
4180 		ref_type_id = btf_dedup_ref_type(d, t->type);
4181 		if (ref_type_id < 0)
4182 			return ref_type_id;
4183 		t->type = ref_type_id;
4184 
4185 		h = btf_hash_common(t);
4186 		for_each_dedup_cand(d, hash_entry, h) {
4187 			cand_id = (__u32)(long)hash_entry->value;
4188 			cand = btf_type_by_id(d->btf, cand_id);
4189 			if (btf_equal_common(t, cand)) {
4190 				new_id = cand_id;
4191 				break;
4192 			}
4193 		}
4194 		break;
4195 
4196 	case BTF_KIND_ARRAY: {
4197 		struct btf_array *info = btf_array(t);
4198 
4199 		ref_type_id = btf_dedup_ref_type(d, info->type);
4200 		if (ref_type_id < 0)
4201 			return ref_type_id;
4202 		info->type = ref_type_id;
4203 
4204 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4205 		if (ref_type_id < 0)
4206 			return ref_type_id;
4207 		info->index_type = ref_type_id;
4208 
4209 		h = btf_hash_array(t);
4210 		for_each_dedup_cand(d, hash_entry, h) {
4211 			cand_id = (__u32)(long)hash_entry->value;
4212 			cand = btf_type_by_id(d->btf, cand_id);
4213 			if (btf_equal_array(t, cand)) {
4214 				new_id = cand_id;
4215 				break;
4216 			}
4217 		}
4218 		break;
4219 	}
4220 
4221 	case BTF_KIND_FUNC_PROTO: {
4222 		struct btf_param *param;
4223 		__u16 vlen;
4224 		int i;
4225 
4226 		ref_type_id = btf_dedup_ref_type(d, t->type);
4227 		if (ref_type_id < 0)
4228 			return ref_type_id;
4229 		t->type = ref_type_id;
4230 
4231 		vlen = btf_vlen(t);
4232 		param = btf_params(t);
4233 		for (i = 0; i < vlen; i++) {
4234 			ref_type_id = btf_dedup_ref_type(d, param->type);
4235 			if (ref_type_id < 0)
4236 				return ref_type_id;
4237 			param->type = ref_type_id;
4238 			param++;
4239 		}
4240 
4241 		h = btf_hash_fnproto(t);
4242 		for_each_dedup_cand(d, hash_entry, h) {
4243 			cand_id = (__u32)(long)hash_entry->value;
4244 			cand = btf_type_by_id(d->btf, cand_id);
4245 			if (btf_equal_fnproto(t, cand)) {
4246 				new_id = cand_id;
4247 				break;
4248 			}
4249 		}
4250 		break;
4251 	}
4252 
4253 	default:
4254 		return -EINVAL;
4255 	}
4256 
4257 	d->map[type_id] = new_id;
4258 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4259 		return -ENOMEM;
4260 
4261 	return new_id;
4262 }
4263 
4264 static int btf_dedup_ref_types(struct btf_dedup *d)
4265 {
4266 	int i, err;
4267 
4268 	for (i = 0; i < d->btf->nr_types; i++) {
4269 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4270 		if (err < 0)
4271 			return err;
4272 	}
4273 	/* we won't need d->dedup_table anymore */
4274 	hashmap__free(d->dedup_table);
4275 	d->dedup_table = NULL;
4276 	return 0;
4277 }
4278 
4279 /*
4280  * Compact types.
4281  *
4282  * After we established for each type its corresponding canonical representative
4283  * type, we now can eliminate types that are not canonical and leave only
4284  * canonical ones layed out sequentially in memory by copying them over
4285  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4286  * a map from original type ID to a new compacted type ID, which will be used
4287  * during next phase to "fix up" type IDs, referenced from struct/union and
4288  * reference types.
4289  */
4290 static int btf_dedup_compact_types(struct btf_dedup *d)
4291 {
4292 	__u32 *new_offs;
4293 	__u32 next_type_id = d->btf->start_id;
4294 	const struct btf_type *t;
4295 	void *p;
4296 	int i, id, len;
4297 
4298 	/* we are going to reuse hypot_map to store compaction remapping */
4299 	d->hypot_map[0] = 0;
4300 	/* base BTF types are not renumbered */
4301 	for (id = 1; id < d->btf->start_id; id++)
4302 		d->hypot_map[id] = id;
4303 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4304 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4305 
4306 	p = d->btf->types_data;
4307 
4308 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4309 		if (d->map[id] != id)
4310 			continue;
4311 
4312 		t = btf__type_by_id(d->btf, id);
4313 		len = btf_type_size(t);
4314 		if (len < 0)
4315 			return len;
4316 
4317 		memmove(p, t, len);
4318 		d->hypot_map[id] = next_type_id;
4319 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4320 		p += len;
4321 		next_type_id++;
4322 	}
4323 
4324 	/* shrink struct btf's internal types index and update btf_header */
4325 	d->btf->nr_types = next_type_id - d->btf->start_id;
4326 	d->btf->type_offs_cap = d->btf->nr_types;
4327 	d->btf->hdr->type_len = p - d->btf->types_data;
4328 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4329 				       sizeof(*new_offs));
4330 	if (d->btf->type_offs_cap && !new_offs)
4331 		return -ENOMEM;
4332 	d->btf->type_offs = new_offs;
4333 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4334 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4335 	return 0;
4336 }
4337 
4338 /*
4339  * Figure out final (deduplicated and compacted) type ID for provided original
4340  * `type_id` by first resolving it into corresponding canonical type ID and
4341  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4342  * which is populated during compaction phase.
4343  */
4344 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4345 {
4346 	struct btf_dedup *d = ctx;
4347 	__u32 resolved_type_id, new_type_id;
4348 
4349 	resolved_type_id = resolve_type_id(d, *type_id);
4350 	new_type_id = d->hypot_map[resolved_type_id];
4351 	if (new_type_id > BTF_MAX_NR_TYPES)
4352 		return -EINVAL;
4353 
4354 	*type_id = new_type_id;
4355 	return 0;
4356 }
4357 
4358 /*
4359  * Remap referenced type IDs into deduped type IDs.
4360  *
4361  * After BTF types are deduplicated and compacted, their final type IDs may
4362  * differ from original ones. The map from original to a corresponding
4363  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4364  * compaction phase. During remapping phase we are rewriting all type IDs
4365  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4366  * their final deduped type IDs.
4367  */
4368 static int btf_dedup_remap_types(struct btf_dedup *d)
4369 {
4370 	int i, r;
4371 
4372 	for (i = 0; i < d->btf->nr_types; i++) {
4373 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4374 
4375 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4376 		if (r)
4377 			return r;
4378 	}
4379 
4380 	if (!d->btf_ext)
4381 		return 0;
4382 
4383 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4384 	if (r)
4385 		return r;
4386 
4387 	return 0;
4388 }
4389 
4390 /*
4391  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4392  * data out of it to use for target BTF.
4393  */
4394 struct btf *libbpf_find_kernel_btf(void)
4395 {
4396 	struct {
4397 		const char *path_fmt;
4398 		bool raw_btf;
4399 	} locations[] = {
4400 		/* try canonical vmlinux BTF through sysfs first */
4401 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4402 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4403 		{ "/boot/vmlinux-%1$s" },
4404 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4405 		{ "/lib/modules/%1$s/build/vmlinux" },
4406 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4407 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4408 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4409 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4410 	};
4411 	char path[PATH_MAX + 1];
4412 	struct utsname buf;
4413 	struct btf *btf;
4414 	int i;
4415 
4416 	uname(&buf);
4417 
4418 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4419 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4420 
4421 		if (access(path, R_OK))
4422 			continue;
4423 
4424 		if (locations[i].raw_btf)
4425 			btf = btf__parse_raw(path);
4426 		else
4427 			btf = btf__parse_elf(path, NULL);
4428 
4429 		pr_debug("loading kernel BTF '%s': %ld\n",
4430 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4431 		if (IS_ERR(btf))
4432 			continue;
4433 
4434 		return btf;
4435 	}
4436 
4437 	pr_warn("failed to find valid kernel BTF\n");
4438 	return ERR_PTR(-ESRCH);
4439 }
4440 
4441 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4442 {
4443 	int i, n, err;
4444 
4445 	switch (btf_kind(t)) {
4446 	case BTF_KIND_INT:
4447 	case BTF_KIND_FLOAT:
4448 	case BTF_KIND_ENUM:
4449 		return 0;
4450 
4451 	case BTF_KIND_FWD:
4452 	case BTF_KIND_CONST:
4453 	case BTF_KIND_VOLATILE:
4454 	case BTF_KIND_RESTRICT:
4455 	case BTF_KIND_PTR:
4456 	case BTF_KIND_TYPEDEF:
4457 	case BTF_KIND_FUNC:
4458 	case BTF_KIND_VAR:
4459 		return visit(&t->type, ctx);
4460 
4461 	case BTF_KIND_ARRAY: {
4462 		struct btf_array *a = btf_array(t);
4463 
4464 		err = visit(&a->type, ctx);
4465 		err = err ?: visit(&a->index_type, ctx);
4466 		return err;
4467 	}
4468 
4469 	case BTF_KIND_STRUCT:
4470 	case BTF_KIND_UNION: {
4471 		struct btf_member *m = btf_members(t);
4472 
4473 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4474 			err = visit(&m->type, ctx);
4475 			if (err)
4476 				return err;
4477 		}
4478 		return 0;
4479 	}
4480 
4481 	case BTF_KIND_FUNC_PROTO: {
4482 		struct btf_param *m = btf_params(t);
4483 
4484 		err = visit(&t->type, ctx);
4485 		if (err)
4486 			return err;
4487 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4488 			err = visit(&m->type, ctx);
4489 			if (err)
4490 				return err;
4491 		}
4492 		return 0;
4493 	}
4494 
4495 	case BTF_KIND_DATASEC: {
4496 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4497 
4498 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4499 			err = visit(&m->type, ctx);
4500 			if (err)
4501 				return err;
4502 		}
4503 		return 0;
4504 	}
4505 
4506 	default:
4507 		return -EINVAL;
4508 	}
4509 }
4510 
4511 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4512 {
4513 	int i, n, err;
4514 
4515 	err = visit(&t->name_off, ctx);
4516 	if (err)
4517 		return err;
4518 
4519 	switch (btf_kind(t)) {
4520 	case BTF_KIND_STRUCT:
4521 	case BTF_KIND_UNION: {
4522 		struct btf_member *m = btf_members(t);
4523 
4524 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4525 			err = visit(&m->name_off, ctx);
4526 			if (err)
4527 				return err;
4528 		}
4529 		break;
4530 	}
4531 	case BTF_KIND_ENUM: {
4532 		struct btf_enum *m = btf_enum(t);
4533 
4534 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4535 			err = visit(&m->name_off, ctx);
4536 			if (err)
4537 				return err;
4538 		}
4539 		break;
4540 	}
4541 	case BTF_KIND_FUNC_PROTO: {
4542 		struct btf_param *m = btf_params(t);
4543 
4544 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4545 			err = visit(&m->name_off, ctx);
4546 			if (err)
4547 				return err;
4548 		}
4549 		break;
4550 	}
4551 	default:
4552 		break;
4553 	}
4554 
4555 	return 0;
4556 }
4557 
4558 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4559 {
4560 	const struct btf_ext_info *seg;
4561 	struct btf_ext_info_sec *sec;
4562 	int i, err;
4563 
4564 	seg = &btf_ext->func_info;
4565 	for_each_btf_ext_sec(seg, sec) {
4566 		struct bpf_func_info_min *rec;
4567 
4568 		for_each_btf_ext_rec(seg, sec, i, rec) {
4569 			err = visit(&rec->type_id, ctx);
4570 			if (err < 0)
4571 				return err;
4572 		}
4573 	}
4574 
4575 	seg = &btf_ext->core_relo_info;
4576 	for_each_btf_ext_sec(seg, sec) {
4577 		struct bpf_core_relo *rec;
4578 
4579 		for_each_btf_ext_rec(seg, sec, i, rec) {
4580 			err = visit(&rec->type_id, ctx);
4581 			if (err < 0)
4582 				return err;
4583 		}
4584 	}
4585 
4586 	return 0;
4587 }
4588 
4589 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4590 {
4591 	const struct btf_ext_info *seg;
4592 	struct btf_ext_info_sec *sec;
4593 	int i, err;
4594 
4595 	seg = &btf_ext->func_info;
4596 	for_each_btf_ext_sec(seg, sec) {
4597 		err = visit(&sec->sec_name_off, ctx);
4598 		if (err)
4599 			return err;
4600 	}
4601 
4602 	seg = &btf_ext->line_info;
4603 	for_each_btf_ext_sec(seg, sec) {
4604 		struct bpf_line_info_min *rec;
4605 
4606 		err = visit(&sec->sec_name_off, ctx);
4607 		if (err)
4608 			return err;
4609 
4610 		for_each_btf_ext_rec(seg, sec, i, rec) {
4611 			err = visit(&rec->file_name_off, ctx);
4612 			if (err)
4613 				return err;
4614 			err = visit(&rec->line_off, ctx);
4615 			if (err)
4616 				return err;
4617 		}
4618 	}
4619 
4620 	seg = &btf_ext->core_relo_info;
4621 	for_each_btf_ext_sec(seg, sec) {
4622 		struct bpf_core_relo *rec;
4623 
4624 		err = visit(&sec->sec_name_off, ctx);
4625 		if (err)
4626 			return err;
4627 
4628 		for_each_btf_ext_rec(seg, sec, i, rec) {
4629 			err = visit(&rec->access_str_off, ctx);
4630 			if (err)
4631 				return err;
4632 		}
4633 	}
4634 
4635 	return 0;
4636 }
4637