1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 case BTF_KIND_TYPE_TAG: 303 return base_size; 304 case BTF_KIND_INT: 305 return base_size + sizeof(__u32); 306 case BTF_KIND_ENUM: 307 return base_size + vlen * sizeof(struct btf_enum); 308 case BTF_KIND_ARRAY: 309 return base_size + sizeof(struct btf_array); 310 case BTF_KIND_STRUCT: 311 case BTF_KIND_UNION: 312 return base_size + vlen * sizeof(struct btf_member); 313 case BTF_KIND_FUNC_PROTO: 314 return base_size + vlen * sizeof(struct btf_param); 315 case BTF_KIND_VAR: 316 return base_size + sizeof(struct btf_var); 317 case BTF_KIND_DATASEC: 318 return base_size + vlen * sizeof(struct btf_var_secinfo); 319 case BTF_KIND_DECL_TAG: 320 return base_size + sizeof(struct btf_decl_tag); 321 default: 322 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 323 return -EINVAL; 324 } 325 } 326 327 static void btf_bswap_type_base(struct btf_type *t) 328 { 329 t->name_off = bswap_32(t->name_off); 330 t->info = bswap_32(t->info); 331 t->type = bswap_32(t->type); 332 } 333 334 static int btf_bswap_type_rest(struct btf_type *t) 335 { 336 struct btf_var_secinfo *v; 337 struct btf_member *m; 338 struct btf_array *a; 339 struct btf_param *p; 340 struct btf_enum *e; 341 __u16 vlen = btf_vlen(t); 342 int i; 343 344 switch (btf_kind(t)) { 345 case BTF_KIND_FWD: 346 case BTF_KIND_CONST: 347 case BTF_KIND_VOLATILE: 348 case BTF_KIND_RESTRICT: 349 case BTF_KIND_PTR: 350 case BTF_KIND_TYPEDEF: 351 case BTF_KIND_FUNC: 352 case BTF_KIND_FLOAT: 353 case BTF_KIND_TYPE_TAG: 354 return 0; 355 case BTF_KIND_INT: 356 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 357 return 0; 358 case BTF_KIND_ENUM: 359 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 360 e->name_off = bswap_32(e->name_off); 361 e->val = bswap_32(e->val); 362 } 363 return 0; 364 case BTF_KIND_ARRAY: 365 a = btf_array(t); 366 a->type = bswap_32(a->type); 367 a->index_type = bswap_32(a->index_type); 368 a->nelems = bswap_32(a->nelems); 369 return 0; 370 case BTF_KIND_STRUCT: 371 case BTF_KIND_UNION: 372 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 373 m->name_off = bswap_32(m->name_off); 374 m->type = bswap_32(m->type); 375 m->offset = bswap_32(m->offset); 376 } 377 return 0; 378 case BTF_KIND_FUNC_PROTO: 379 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 380 p->name_off = bswap_32(p->name_off); 381 p->type = bswap_32(p->type); 382 } 383 return 0; 384 case BTF_KIND_VAR: 385 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 386 return 0; 387 case BTF_KIND_DATASEC: 388 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 389 v->type = bswap_32(v->type); 390 v->offset = bswap_32(v->offset); 391 v->size = bswap_32(v->size); 392 } 393 return 0; 394 case BTF_KIND_DECL_TAG: 395 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 396 return 0; 397 default: 398 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 399 return -EINVAL; 400 } 401 } 402 403 static int btf_parse_type_sec(struct btf *btf) 404 { 405 struct btf_header *hdr = btf->hdr; 406 void *next_type = btf->types_data; 407 void *end_type = next_type + hdr->type_len; 408 int err, type_size; 409 410 while (next_type + sizeof(struct btf_type) <= end_type) { 411 if (btf->swapped_endian) 412 btf_bswap_type_base(next_type); 413 414 type_size = btf_type_size(next_type); 415 if (type_size < 0) 416 return type_size; 417 if (next_type + type_size > end_type) { 418 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 419 return -EINVAL; 420 } 421 422 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 423 return -EINVAL; 424 425 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 426 if (err) 427 return err; 428 429 next_type += type_size; 430 btf->nr_types++; 431 } 432 433 if (next_type != end_type) { 434 pr_warn("BTF types data is malformed\n"); 435 return -EINVAL; 436 } 437 438 return 0; 439 } 440 441 __u32 btf__get_nr_types(const struct btf *btf) 442 { 443 return btf->start_id + btf->nr_types - 1; 444 } 445 446 __u32 btf__type_cnt(const struct btf *btf) 447 { 448 return btf->start_id + btf->nr_types; 449 } 450 451 const struct btf *btf__base_btf(const struct btf *btf) 452 { 453 return btf->base_btf; 454 } 455 456 /* internal helper returning non-const pointer to a type */ 457 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 458 { 459 if (type_id == 0) 460 return &btf_void; 461 if (type_id < btf->start_id) 462 return btf_type_by_id(btf->base_btf, type_id); 463 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 464 } 465 466 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 467 { 468 if (type_id >= btf->start_id + btf->nr_types) 469 return errno = EINVAL, NULL; 470 return btf_type_by_id((struct btf *)btf, type_id); 471 } 472 473 static int determine_ptr_size(const struct btf *btf) 474 { 475 const struct btf_type *t; 476 const char *name; 477 int i, n; 478 479 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 480 return btf->base_btf->ptr_sz; 481 482 n = btf__type_cnt(btf); 483 for (i = 1; i < n; i++) { 484 t = btf__type_by_id(btf, i); 485 if (!btf_is_int(t)) 486 continue; 487 488 name = btf__name_by_offset(btf, t->name_off); 489 if (!name) 490 continue; 491 492 if (strcmp(name, "long int") == 0 || 493 strcmp(name, "long unsigned int") == 0) { 494 if (t->size != 4 && t->size != 8) 495 continue; 496 return t->size; 497 } 498 } 499 500 return -1; 501 } 502 503 static size_t btf_ptr_sz(const struct btf *btf) 504 { 505 if (!btf->ptr_sz) 506 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 507 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 508 } 509 510 /* Return pointer size this BTF instance assumes. The size is heuristically 511 * determined by looking for 'long' or 'unsigned long' integer type and 512 * recording its size in bytes. If BTF type information doesn't have any such 513 * type, this function returns 0. In the latter case, native architecture's 514 * pointer size is assumed, so will be either 4 or 8, depending on 515 * architecture that libbpf was compiled for. It's possible to override 516 * guessed value by using btf__set_pointer_size() API. 517 */ 518 size_t btf__pointer_size(const struct btf *btf) 519 { 520 if (!btf->ptr_sz) 521 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 522 523 if (btf->ptr_sz < 0) 524 /* not enough BTF type info to guess */ 525 return 0; 526 527 return btf->ptr_sz; 528 } 529 530 /* Override or set pointer size in bytes. Only values of 4 and 8 are 531 * supported. 532 */ 533 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 534 { 535 if (ptr_sz != 4 && ptr_sz != 8) 536 return libbpf_err(-EINVAL); 537 btf->ptr_sz = ptr_sz; 538 return 0; 539 } 540 541 static bool is_host_big_endian(void) 542 { 543 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 544 return false; 545 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 546 return true; 547 #else 548 # error "Unrecognized __BYTE_ORDER__" 549 #endif 550 } 551 552 enum btf_endianness btf__endianness(const struct btf *btf) 553 { 554 if (is_host_big_endian()) 555 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 556 else 557 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 558 } 559 560 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 561 { 562 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 563 return libbpf_err(-EINVAL); 564 565 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 566 if (!btf->swapped_endian) { 567 free(btf->raw_data_swapped); 568 btf->raw_data_swapped = NULL; 569 } 570 return 0; 571 } 572 573 static bool btf_type_is_void(const struct btf_type *t) 574 { 575 return t == &btf_void || btf_is_fwd(t); 576 } 577 578 static bool btf_type_is_void_or_null(const struct btf_type *t) 579 { 580 return !t || btf_type_is_void(t); 581 } 582 583 #define MAX_RESOLVE_DEPTH 32 584 585 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 586 { 587 const struct btf_array *array; 588 const struct btf_type *t; 589 __u32 nelems = 1; 590 __s64 size = -1; 591 int i; 592 593 t = btf__type_by_id(btf, type_id); 594 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 595 switch (btf_kind(t)) { 596 case BTF_KIND_INT: 597 case BTF_KIND_STRUCT: 598 case BTF_KIND_UNION: 599 case BTF_KIND_ENUM: 600 case BTF_KIND_DATASEC: 601 case BTF_KIND_FLOAT: 602 size = t->size; 603 goto done; 604 case BTF_KIND_PTR: 605 size = btf_ptr_sz(btf); 606 goto done; 607 case BTF_KIND_TYPEDEF: 608 case BTF_KIND_VOLATILE: 609 case BTF_KIND_CONST: 610 case BTF_KIND_RESTRICT: 611 case BTF_KIND_VAR: 612 case BTF_KIND_DECL_TAG: 613 case BTF_KIND_TYPE_TAG: 614 type_id = t->type; 615 break; 616 case BTF_KIND_ARRAY: 617 array = btf_array(t); 618 if (nelems && array->nelems > UINT32_MAX / nelems) 619 return libbpf_err(-E2BIG); 620 nelems *= array->nelems; 621 type_id = array->type; 622 break; 623 default: 624 return libbpf_err(-EINVAL); 625 } 626 627 t = btf__type_by_id(btf, type_id); 628 } 629 630 done: 631 if (size < 0) 632 return libbpf_err(-EINVAL); 633 if (nelems && size > UINT32_MAX / nelems) 634 return libbpf_err(-E2BIG); 635 636 return nelems * size; 637 } 638 639 int btf__align_of(const struct btf *btf, __u32 id) 640 { 641 const struct btf_type *t = btf__type_by_id(btf, id); 642 __u16 kind = btf_kind(t); 643 644 switch (kind) { 645 case BTF_KIND_INT: 646 case BTF_KIND_ENUM: 647 case BTF_KIND_FLOAT: 648 return min(btf_ptr_sz(btf), (size_t)t->size); 649 case BTF_KIND_PTR: 650 return btf_ptr_sz(btf); 651 case BTF_KIND_TYPEDEF: 652 case BTF_KIND_VOLATILE: 653 case BTF_KIND_CONST: 654 case BTF_KIND_RESTRICT: 655 case BTF_KIND_TYPE_TAG: 656 return btf__align_of(btf, t->type); 657 case BTF_KIND_ARRAY: 658 return btf__align_of(btf, btf_array(t)->type); 659 case BTF_KIND_STRUCT: 660 case BTF_KIND_UNION: { 661 const struct btf_member *m = btf_members(t); 662 __u16 vlen = btf_vlen(t); 663 int i, max_align = 1, align; 664 665 for (i = 0; i < vlen; i++, m++) { 666 align = btf__align_of(btf, m->type); 667 if (align <= 0) 668 return libbpf_err(align); 669 max_align = max(max_align, align); 670 } 671 672 return max_align; 673 } 674 default: 675 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 676 return errno = EINVAL, 0; 677 } 678 } 679 680 int btf__resolve_type(const struct btf *btf, __u32 type_id) 681 { 682 const struct btf_type *t; 683 int depth = 0; 684 685 t = btf__type_by_id(btf, type_id); 686 while (depth < MAX_RESOLVE_DEPTH && 687 !btf_type_is_void_or_null(t) && 688 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 689 type_id = t->type; 690 t = btf__type_by_id(btf, type_id); 691 depth++; 692 } 693 694 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 695 return libbpf_err(-EINVAL); 696 697 return type_id; 698 } 699 700 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 701 { 702 __u32 i, nr_types = btf__type_cnt(btf); 703 704 if (!strcmp(type_name, "void")) 705 return 0; 706 707 for (i = 1; i < nr_types; i++) { 708 const struct btf_type *t = btf__type_by_id(btf, i); 709 const char *name = btf__name_by_offset(btf, t->name_off); 710 711 if (name && !strcmp(type_name, name)) 712 return i; 713 } 714 715 return libbpf_err(-ENOENT); 716 } 717 718 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 719 const char *type_name, __u32 kind) 720 { 721 __u32 i, nr_types = btf__type_cnt(btf); 722 723 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 724 return 0; 725 726 for (i = start_id; i < nr_types; i++) { 727 const struct btf_type *t = btf__type_by_id(btf, i); 728 const char *name; 729 730 if (btf_kind(t) != kind) 731 continue; 732 name = btf__name_by_offset(btf, t->name_off); 733 if (name && !strcmp(type_name, name)) 734 return i; 735 } 736 737 return libbpf_err(-ENOENT); 738 } 739 740 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 741 __u32 kind) 742 { 743 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 744 } 745 746 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 747 __u32 kind) 748 { 749 return btf_find_by_name_kind(btf, 1, type_name, kind); 750 } 751 752 static bool btf_is_modifiable(const struct btf *btf) 753 { 754 return (void *)btf->hdr != btf->raw_data; 755 } 756 757 void btf__free(struct btf *btf) 758 { 759 if (IS_ERR_OR_NULL(btf)) 760 return; 761 762 if (btf->fd >= 0) 763 close(btf->fd); 764 765 if (btf_is_modifiable(btf)) { 766 /* if BTF was modified after loading, it will have a split 767 * in-memory representation for header, types, and strings 768 * sections, so we need to free all of them individually. It 769 * might still have a cached contiguous raw data present, 770 * which will be unconditionally freed below. 771 */ 772 free(btf->hdr); 773 free(btf->types_data); 774 strset__free(btf->strs_set); 775 } 776 free(btf->raw_data); 777 free(btf->raw_data_swapped); 778 free(btf->type_offs); 779 free(btf); 780 } 781 782 static struct btf *btf_new_empty(struct btf *base_btf) 783 { 784 struct btf *btf; 785 786 btf = calloc(1, sizeof(*btf)); 787 if (!btf) 788 return ERR_PTR(-ENOMEM); 789 790 btf->nr_types = 0; 791 btf->start_id = 1; 792 btf->start_str_off = 0; 793 btf->fd = -1; 794 btf->ptr_sz = sizeof(void *); 795 btf->swapped_endian = false; 796 797 if (base_btf) { 798 btf->base_btf = base_btf; 799 btf->start_id = btf__type_cnt(base_btf); 800 btf->start_str_off = base_btf->hdr->str_len; 801 } 802 803 /* +1 for empty string at offset 0 */ 804 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 805 btf->raw_data = calloc(1, btf->raw_size); 806 if (!btf->raw_data) { 807 free(btf); 808 return ERR_PTR(-ENOMEM); 809 } 810 811 btf->hdr = btf->raw_data; 812 btf->hdr->hdr_len = sizeof(struct btf_header); 813 btf->hdr->magic = BTF_MAGIC; 814 btf->hdr->version = BTF_VERSION; 815 816 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 817 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 818 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 819 820 return btf; 821 } 822 823 struct btf *btf__new_empty(void) 824 { 825 return libbpf_ptr(btf_new_empty(NULL)); 826 } 827 828 struct btf *btf__new_empty_split(struct btf *base_btf) 829 { 830 return libbpf_ptr(btf_new_empty(base_btf)); 831 } 832 833 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 834 { 835 struct btf *btf; 836 int err; 837 838 btf = calloc(1, sizeof(struct btf)); 839 if (!btf) 840 return ERR_PTR(-ENOMEM); 841 842 btf->nr_types = 0; 843 btf->start_id = 1; 844 btf->start_str_off = 0; 845 btf->fd = -1; 846 847 if (base_btf) { 848 btf->base_btf = base_btf; 849 btf->start_id = btf__type_cnt(base_btf); 850 btf->start_str_off = base_btf->hdr->str_len; 851 } 852 853 btf->raw_data = malloc(size); 854 if (!btf->raw_data) { 855 err = -ENOMEM; 856 goto done; 857 } 858 memcpy(btf->raw_data, data, size); 859 btf->raw_size = size; 860 861 btf->hdr = btf->raw_data; 862 err = btf_parse_hdr(btf); 863 if (err) 864 goto done; 865 866 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 867 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 868 869 err = btf_parse_str_sec(btf); 870 err = err ?: btf_parse_type_sec(btf); 871 if (err) 872 goto done; 873 874 done: 875 if (err) { 876 btf__free(btf); 877 return ERR_PTR(err); 878 } 879 880 return btf; 881 } 882 883 struct btf *btf__new(const void *data, __u32 size) 884 { 885 return libbpf_ptr(btf_new(data, size, NULL)); 886 } 887 888 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 889 struct btf_ext **btf_ext) 890 { 891 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 892 int err = 0, fd = -1, idx = 0; 893 struct btf *btf = NULL; 894 Elf_Scn *scn = NULL; 895 Elf *elf = NULL; 896 GElf_Ehdr ehdr; 897 size_t shstrndx; 898 899 if (elf_version(EV_CURRENT) == EV_NONE) { 900 pr_warn("failed to init libelf for %s\n", path); 901 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 902 } 903 904 fd = open(path, O_RDONLY | O_CLOEXEC); 905 if (fd < 0) { 906 err = -errno; 907 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 908 return ERR_PTR(err); 909 } 910 911 err = -LIBBPF_ERRNO__FORMAT; 912 913 elf = elf_begin(fd, ELF_C_READ, NULL); 914 if (!elf) { 915 pr_warn("failed to open %s as ELF file\n", path); 916 goto done; 917 } 918 if (!gelf_getehdr(elf, &ehdr)) { 919 pr_warn("failed to get EHDR from %s\n", path); 920 goto done; 921 } 922 923 if (elf_getshdrstrndx(elf, &shstrndx)) { 924 pr_warn("failed to get section names section index for %s\n", 925 path); 926 goto done; 927 } 928 929 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 930 pr_warn("failed to get e_shstrndx from %s\n", path); 931 goto done; 932 } 933 934 while ((scn = elf_nextscn(elf, scn)) != NULL) { 935 GElf_Shdr sh; 936 char *name; 937 938 idx++; 939 if (gelf_getshdr(scn, &sh) != &sh) { 940 pr_warn("failed to get section(%d) header from %s\n", 941 idx, path); 942 goto done; 943 } 944 name = elf_strptr(elf, shstrndx, sh.sh_name); 945 if (!name) { 946 pr_warn("failed to get section(%d) name from %s\n", 947 idx, path); 948 goto done; 949 } 950 if (strcmp(name, BTF_ELF_SEC) == 0) { 951 btf_data = elf_getdata(scn, 0); 952 if (!btf_data) { 953 pr_warn("failed to get section(%d, %s) data from %s\n", 954 idx, name, path); 955 goto done; 956 } 957 continue; 958 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 959 btf_ext_data = elf_getdata(scn, 0); 960 if (!btf_ext_data) { 961 pr_warn("failed to get section(%d, %s) data from %s\n", 962 idx, name, path); 963 goto done; 964 } 965 continue; 966 } 967 } 968 969 err = 0; 970 971 if (!btf_data) { 972 err = -ENOENT; 973 goto done; 974 } 975 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 976 err = libbpf_get_error(btf); 977 if (err) 978 goto done; 979 980 switch (gelf_getclass(elf)) { 981 case ELFCLASS32: 982 btf__set_pointer_size(btf, 4); 983 break; 984 case ELFCLASS64: 985 btf__set_pointer_size(btf, 8); 986 break; 987 default: 988 pr_warn("failed to get ELF class (bitness) for %s\n", path); 989 break; 990 } 991 992 if (btf_ext && btf_ext_data) { 993 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 994 err = libbpf_get_error(*btf_ext); 995 if (err) 996 goto done; 997 } else if (btf_ext) { 998 *btf_ext = NULL; 999 } 1000 done: 1001 if (elf) 1002 elf_end(elf); 1003 close(fd); 1004 1005 if (!err) 1006 return btf; 1007 1008 if (btf_ext) 1009 btf_ext__free(*btf_ext); 1010 btf__free(btf); 1011 1012 return ERR_PTR(err); 1013 } 1014 1015 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1016 { 1017 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1018 } 1019 1020 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1021 { 1022 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1023 } 1024 1025 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1026 { 1027 struct btf *btf = NULL; 1028 void *data = NULL; 1029 FILE *f = NULL; 1030 __u16 magic; 1031 int err = 0; 1032 long sz; 1033 1034 f = fopen(path, "rb"); 1035 if (!f) { 1036 err = -errno; 1037 goto err_out; 1038 } 1039 1040 /* check BTF magic */ 1041 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1042 err = -EIO; 1043 goto err_out; 1044 } 1045 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1046 /* definitely not a raw BTF */ 1047 err = -EPROTO; 1048 goto err_out; 1049 } 1050 1051 /* get file size */ 1052 if (fseek(f, 0, SEEK_END)) { 1053 err = -errno; 1054 goto err_out; 1055 } 1056 sz = ftell(f); 1057 if (sz < 0) { 1058 err = -errno; 1059 goto err_out; 1060 } 1061 /* rewind to the start */ 1062 if (fseek(f, 0, SEEK_SET)) { 1063 err = -errno; 1064 goto err_out; 1065 } 1066 1067 /* pre-alloc memory and read all of BTF data */ 1068 data = malloc(sz); 1069 if (!data) { 1070 err = -ENOMEM; 1071 goto err_out; 1072 } 1073 if (fread(data, 1, sz, f) < sz) { 1074 err = -EIO; 1075 goto err_out; 1076 } 1077 1078 /* finally parse BTF data */ 1079 btf = btf_new(data, sz, base_btf); 1080 1081 err_out: 1082 free(data); 1083 if (f) 1084 fclose(f); 1085 return err ? ERR_PTR(err) : btf; 1086 } 1087 1088 struct btf *btf__parse_raw(const char *path) 1089 { 1090 return libbpf_ptr(btf_parse_raw(path, NULL)); 1091 } 1092 1093 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1094 { 1095 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1096 } 1097 1098 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1099 { 1100 struct btf *btf; 1101 int err; 1102 1103 if (btf_ext) 1104 *btf_ext = NULL; 1105 1106 btf = btf_parse_raw(path, base_btf); 1107 err = libbpf_get_error(btf); 1108 if (!err) 1109 return btf; 1110 if (err != -EPROTO) 1111 return ERR_PTR(err); 1112 return btf_parse_elf(path, base_btf, btf_ext); 1113 } 1114 1115 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1116 { 1117 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1118 } 1119 1120 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1121 { 1122 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1123 } 1124 1125 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1126 1127 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level) 1128 { 1129 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1130 __u32 buf_sz = 0, raw_size; 1131 char *buf = NULL, *tmp; 1132 void *raw_data; 1133 int err = 0; 1134 1135 if (btf->fd >= 0) 1136 return libbpf_err(-EEXIST); 1137 if (log_sz && !log_buf) 1138 return libbpf_err(-EINVAL); 1139 1140 /* cache native raw data representation */ 1141 raw_data = btf_get_raw_data(btf, &raw_size, false); 1142 if (!raw_data) { 1143 err = -ENOMEM; 1144 goto done; 1145 } 1146 btf->raw_size = raw_size; 1147 btf->raw_data = raw_data; 1148 1149 retry_load: 1150 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1151 * initially. Only if BTF loading fails, we bump log_level to 1 and 1152 * retry, using either auto-allocated or custom log_buf. This way 1153 * non-NULL custom log_buf provides a buffer just in case, but hopes 1154 * for successful load and no need for log_buf. 1155 */ 1156 if (log_level) { 1157 /* if caller didn't provide custom log_buf, we'll keep 1158 * allocating our own progressively bigger buffers for BTF 1159 * verification log 1160 */ 1161 if (!log_buf) { 1162 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1163 tmp = realloc(buf, buf_sz); 1164 if (!tmp) { 1165 err = -ENOMEM; 1166 goto done; 1167 } 1168 buf = tmp; 1169 buf[0] = '\0'; 1170 } 1171 1172 opts.log_buf = log_buf ? log_buf : buf; 1173 opts.log_size = log_buf ? log_sz : buf_sz; 1174 opts.log_level = log_level; 1175 } 1176 1177 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1178 if (btf->fd < 0) { 1179 /* time to turn on verbose mode and try again */ 1180 if (log_level == 0) { 1181 log_level = 1; 1182 goto retry_load; 1183 } 1184 /* only retry if caller didn't provide custom log_buf, but 1185 * make sure we can never overflow buf_sz 1186 */ 1187 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1188 goto retry_load; 1189 1190 err = -errno; 1191 pr_warn("BTF loading error: %d\n", err); 1192 /* don't print out contents of custom log_buf */ 1193 if (!log_buf && buf[0]) 1194 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1195 } 1196 1197 done: 1198 free(buf); 1199 return libbpf_err(err); 1200 } 1201 1202 int btf__load_into_kernel(struct btf *btf) 1203 { 1204 return btf_load_into_kernel(btf, NULL, 0, 0); 1205 } 1206 1207 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel"))); 1208 1209 int btf__fd(const struct btf *btf) 1210 { 1211 return btf->fd; 1212 } 1213 1214 void btf__set_fd(struct btf *btf, int fd) 1215 { 1216 btf->fd = fd; 1217 } 1218 1219 static const void *btf_strs_data(const struct btf *btf) 1220 { 1221 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1222 } 1223 1224 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1225 { 1226 struct btf_header *hdr = btf->hdr; 1227 struct btf_type *t; 1228 void *data, *p; 1229 __u32 data_sz; 1230 int i; 1231 1232 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1233 if (data) { 1234 *size = btf->raw_size; 1235 return data; 1236 } 1237 1238 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1239 data = calloc(1, data_sz); 1240 if (!data) 1241 return NULL; 1242 p = data; 1243 1244 memcpy(p, hdr, hdr->hdr_len); 1245 if (swap_endian) 1246 btf_bswap_hdr(p); 1247 p += hdr->hdr_len; 1248 1249 memcpy(p, btf->types_data, hdr->type_len); 1250 if (swap_endian) { 1251 for (i = 0; i < btf->nr_types; i++) { 1252 t = p + btf->type_offs[i]; 1253 /* btf_bswap_type_rest() relies on native t->info, so 1254 * we swap base type info after we swapped all the 1255 * additional information 1256 */ 1257 if (btf_bswap_type_rest(t)) 1258 goto err_out; 1259 btf_bswap_type_base(t); 1260 } 1261 } 1262 p += hdr->type_len; 1263 1264 memcpy(p, btf_strs_data(btf), hdr->str_len); 1265 p += hdr->str_len; 1266 1267 *size = data_sz; 1268 return data; 1269 err_out: 1270 free(data); 1271 return NULL; 1272 } 1273 1274 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1275 { 1276 struct btf *btf = (struct btf *)btf_ro; 1277 __u32 data_sz; 1278 void *data; 1279 1280 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1281 if (!data) 1282 return errno = ENOMEM, NULL; 1283 1284 btf->raw_size = data_sz; 1285 if (btf->swapped_endian) 1286 btf->raw_data_swapped = data; 1287 else 1288 btf->raw_data = data; 1289 *size = data_sz; 1290 return data; 1291 } 1292 1293 __attribute__((alias("btf__raw_data"))) 1294 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1295 1296 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1297 { 1298 if (offset < btf->start_str_off) 1299 return btf__str_by_offset(btf->base_btf, offset); 1300 else if (offset - btf->start_str_off < btf->hdr->str_len) 1301 return btf_strs_data(btf) + (offset - btf->start_str_off); 1302 else 1303 return errno = EINVAL, NULL; 1304 } 1305 1306 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1307 { 1308 return btf__str_by_offset(btf, offset); 1309 } 1310 1311 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1312 { 1313 struct bpf_btf_info btf_info; 1314 __u32 len = sizeof(btf_info); 1315 __u32 last_size; 1316 struct btf *btf; 1317 void *ptr; 1318 int err; 1319 1320 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1321 * let's start with a sane default - 4KiB here - and resize it only if 1322 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1323 */ 1324 last_size = 4096; 1325 ptr = malloc(last_size); 1326 if (!ptr) 1327 return ERR_PTR(-ENOMEM); 1328 1329 memset(&btf_info, 0, sizeof(btf_info)); 1330 btf_info.btf = ptr_to_u64(ptr); 1331 btf_info.btf_size = last_size; 1332 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1333 1334 if (!err && btf_info.btf_size > last_size) { 1335 void *temp_ptr; 1336 1337 last_size = btf_info.btf_size; 1338 temp_ptr = realloc(ptr, last_size); 1339 if (!temp_ptr) { 1340 btf = ERR_PTR(-ENOMEM); 1341 goto exit_free; 1342 } 1343 ptr = temp_ptr; 1344 1345 len = sizeof(btf_info); 1346 memset(&btf_info, 0, sizeof(btf_info)); 1347 btf_info.btf = ptr_to_u64(ptr); 1348 btf_info.btf_size = last_size; 1349 1350 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1351 } 1352 1353 if (err || btf_info.btf_size > last_size) { 1354 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1355 goto exit_free; 1356 } 1357 1358 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1359 1360 exit_free: 1361 free(ptr); 1362 return btf; 1363 } 1364 1365 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1366 { 1367 struct btf *btf; 1368 int btf_fd; 1369 1370 btf_fd = bpf_btf_get_fd_by_id(id); 1371 if (btf_fd < 0) 1372 return libbpf_err_ptr(-errno); 1373 1374 btf = btf_get_from_fd(btf_fd, base_btf); 1375 close(btf_fd); 1376 1377 return libbpf_ptr(btf); 1378 } 1379 1380 struct btf *btf__load_from_kernel_by_id(__u32 id) 1381 { 1382 return btf__load_from_kernel_by_id_split(id, NULL); 1383 } 1384 1385 int btf__get_from_id(__u32 id, struct btf **btf) 1386 { 1387 struct btf *res; 1388 int err; 1389 1390 *btf = NULL; 1391 res = btf__load_from_kernel_by_id(id); 1392 err = libbpf_get_error(res); 1393 1394 if (err) 1395 return libbpf_err(err); 1396 1397 *btf = res; 1398 return 0; 1399 } 1400 1401 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1402 __u32 expected_key_size, __u32 expected_value_size, 1403 __u32 *key_type_id, __u32 *value_type_id) 1404 { 1405 const struct btf_type *container_type; 1406 const struct btf_member *key, *value; 1407 const size_t max_name = 256; 1408 char container_name[max_name]; 1409 __s64 key_size, value_size; 1410 __s32 container_id; 1411 1412 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { 1413 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1414 map_name, map_name); 1415 return libbpf_err(-EINVAL); 1416 } 1417 1418 container_id = btf__find_by_name(btf, container_name); 1419 if (container_id < 0) { 1420 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1421 map_name, container_name); 1422 return libbpf_err(container_id); 1423 } 1424 1425 container_type = btf__type_by_id(btf, container_id); 1426 if (!container_type) { 1427 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1428 map_name, container_id); 1429 return libbpf_err(-EINVAL); 1430 } 1431 1432 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1433 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1434 map_name, container_name); 1435 return libbpf_err(-EINVAL); 1436 } 1437 1438 key = btf_members(container_type); 1439 value = key + 1; 1440 1441 key_size = btf__resolve_size(btf, key->type); 1442 if (key_size < 0) { 1443 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1444 return libbpf_err(key_size); 1445 } 1446 1447 if (expected_key_size != key_size) { 1448 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1449 map_name, (__u32)key_size, expected_key_size); 1450 return libbpf_err(-EINVAL); 1451 } 1452 1453 value_size = btf__resolve_size(btf, value->type); 1454 if (value_size < 0) { 1455 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1456 return libbpf_err(value_size); 1457 } 1458 1459 if (expected_value_size != value_size) { 1460 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1461 map_name, (__u32)value_size, expected_value_size); 1462 return libbpf_err(-EINVAL); 1463 } 1464 1465 *key_type_id = key->type; 1466 *value_type_id = value->type; 1467 1468 return 0; 1469 } 1470 1471 static void btf_invalidate_raw_data(struct btf *btf) 1472 { 1473 if (btf->raw_data) { 1474 free(btf->raw_data); 1475 btf->raw_data = NULL; 1476 } 1477 if (btf->raw_data_swapped) { 1478 free(btf->raw_data_swapped); 1479 btf->raw_data_swapped = NULL; 1480 } 1481 } 1482 1483 /* Ensure BTF is ready to be modified (by splitting into a three memory 1484 * regions for header, types, and strings). Also invalidate cached 1485 * raw_data, if any. 1486 */ 1487 static int btf_ensure_modifiable(struct btf *btf) 1488 { 1489 void *hdr, *types; 1490 struct strset *set = NULL; 1491 int err = -ENOMEM; 1492 1493 if (btf_is_modifiable(btf)) { 1494 /* any BTF modification invalidates raw_data */ 1495 btf_invalidate_raw_data(btf); 1496 return 0; 1497 } 1498 1499 /* split raw data into three memory regions */ 1500 hdr = malloc(btf->hdr->hdr_len); 1501 types = malloc(btf->hdr->type_len); 1502 if (!hdr || !types) 1503 goto err_out; 1504 1505 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1506 memcpy(types, btf->types_data, btf->hdr->type_len); 1507 1508 /* build lookup index for all strings */ 1509 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1510 if (IS_ERR(set)) { 1511 err = PTR_ERR(set); 1512 goto err_out; 1513 } 1514 1515 /* only when everything was successful, update internal state */ 1516 btf->hdr = hdr; 1517 btf->types_data = types; 1518 btf->types_data_cap = btf->hdr->type_len; 1519 btf->strs_data = NULL; 1520 btf->strs_set = set; 1521 /* if BTF was created from scratch, all strings are guaranteed to be 1522 * unique and deduplicated 1523 */ 1524 if (btf->hdr->str_len == 0) 1525 btf->strs_deduped = true; 1526 if (!btf->base_btf && btf->hdr->str_len == 1) 1527 btf->strs_deduped = true; 1528 1529 /* invalidate raw_data representation */ 1530 btf_invalidate_raw_data(btf); 1531 1532 return 0; 1533 1534 err_out: 1535 strset__free(set); 1536 free(hdr); 1537 free(types); 1538 return err; 1539 } 1540 1541 /* Find an offset in BTF string section that corresponds to a given string *s*. 1542 * Returns: 1543 * - >0 offset into string section, if string is found; 1544 * - -ENOENT, if string is not in the string section; 1545 * - <0, on any other error. 1546 */ 1547 int btf__find_str(struct btf *btf, const char *s) 1548 { 1549 int off; 1550 1551 if (btf->base_btf) { 1552 off = btf__find_str(btf->base_btf, s); 1553 if (off != -ENOENT) 1554 return off; 1555 } 1556 1557 /* BTF needs to be in a modifiable state to build string lookup index */ 1558 if (btf_ensure_modifiable(btf)) 1559 return libbpf_err(-ENOMEM); 1560 1561 off = strset__find_str(btf->strs_set, s); 1562 if (off < 0) 1563 return libbpf_err(off); 1564 1565 return btf->start_str_off + off; 1566 } 1567 1568 /* Add a string s to the BTF string section. 1569 * Returns: 1570 * - > 0 offset into string section, on success; 1571 * - < 0, on error. 1572 */ 1573 int btf__add_str(struct btf *btf, const char *s) 1574 { 1575 int off; 1576 1577 if (btf->base_btf) { 1578 off = btf__find_str(btf->base_btf, s); 1579 if (off != -ENOENT) 1580 return off; 1581 } 1582 1583 if (btf_ensure_modifiable(btf)) 1584 return libbpf_err(-ENOMEM); 1585 1586 off = strset__add_str(btf->strs_set, s); 1587 if (off < 0) 1588 return libbpf_err(off); 1589 1590 btf->hdr->str_len = strset__data_size(btf->strs_set); 1591 1592 return btf->start_str_off + off; 1593 } 1594 1595 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1596 { 1597 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1598 btf->hdr->type_len, UINT_MAX, add_sz); 1599 } 1600 1601 static void btf_type_inc_vlen(struct btf_type *t) 1602 { 1603 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1604 } 1605 1606 static int btf_commit_type(struct btf *btf, int data_sz) 1607 { 1608 int err; 1609 1610 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1611 if (err) 1612 return libbpf_err(err); 1613 1614 btf->hdr->type_len += data_sz; 1615 btf->hdr->str_off += data_sz; 1616 btf->nr_types++; 1617 return btf->start_id + btf->nr_types - 1; 1618 } 1619 1620 struct btf_pipe { 1621 const struct btf *src; 1622 struct btf *dst; 1623 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1624 }; 1625 1626 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1627 { 1628 struct btf_pipe *p = ctx; 1629 void *mapped_off; 1630 int off, err; 1631 1632 if (!*str_off) /* nothing to do for empty strings */ 1633 return 0; 1634 1635 if (p->str_off_map && 1636 hashmap__find(p->str_off_map, (void *)(long)*str_off, &mapped_off)) { 1637 *str_off = (__u32)(long)mapped_off; 1638 return 0; 1639 } 1640 1641 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1642 if (off < 0) 1643 return off; 1644 1645 /* Remember string mapping from src to dst. It avoids 1646 * performing expensive string comparisons. 1647 */ 1648 if (p->str_off_map) { 1649 err = hashmap__append(p->str_off_map, (void *)(long)*str_off, (void *)(long)off); 1650 if (err) 1651 return err; 1652 } 1653 1654 *str_off = off; 1655 return 0; 1656 } 1657 1658 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1659 { 1660 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1661 struct btf_type *t; 1662 int sz, err; 1663 1664 sz = btf_type_size(src_type); 1665 if (sz < 0) 1666 return libbpf_err(sz); 1667 1668 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1669 if (btf_ensure_modifiable(btf)) 1670 return libbpf_err(-ENOMEM); 1671 1672 t = btf_add_type_mem(btf, sz); 1673 if (!t) 1674 return libbpf_err(-ENOMEM); 1675 1676 memcpy(t, src_type, sz); 1677 1678 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1679 if (err) 1680 return libbpf_err(err); 1681 1682 return btf_commit_type(btf, sz); 1683 } 1684 1685 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1686 { 1687 struct btf *btf = ctx; 1688 1689 if (!*type_id) /* nothing to do for VOID references */ 1690 return 0; 1691 1692 /* we haven't updated btf's type count yet, so 1693 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1694 * add to all newly added BTF types 1695 */ 1696 *type_id += btf->start_id + btf->nr_types - 1; 1697 return 0; 1698 } 1699 1700 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx); 1701 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx); 1702 1703 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1704 { 1705 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1706 int data_sz, sz, cnt, i, err, old_strs_len; 1707 __u32 *off; 1708 void *t; 1709 1710 /* appending split BTF isn't supported yet */ 1711 if (src_btf->base_btf) 1712 return libbpf_err(-ENOTSUP); 1713 1714 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1715 if (btf_ensure_modifiable(btf)) 1716 return libbpf_err(-ENOMEM); 1717 1718 /* remember original strings section size if we have to roll back 1719 * partial strings section changes 1720 */ 1721 old_strs_len = btf->hdr->str_len; 1722 1723 data_sz = src_btf->hdr->type_len; 1724 cnt = btf__type_cnt(src_btf) - 1; 1725 1726 /* pre-allocate enough memory for new types */ 1727 t = btf_add_type_mem(btf, data_sz); 1728 if (!t) 1729 return libbpf_err(-ENOMEM); 1730 1731 /* pre-allocate enough memory for type offset index for new types */ 1732 off = btf_add_type_offs_mem(btf, cnt); 1733 if (!off) 1734 return libbpf_err(-ENOMEM); 1735 1736 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1737 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1738 if (IS_ERR(p.str_off_map)) 1739 return libbpf_err(-ENOMEM); 1740 1741 /* bulk copy types data for all types from src_btf */ 1742 memcpy(t, src_btf->types_data, data_sz); 1743 1744 for (i = 0; i < cnt; i++) { 1745 sz = btf_type_size(t); 1746 if (sz < 0) { 1747 /* unlikely, has to be corrupted src_btf */ 1748 err = sz; 1749 goto err_out; 1750 } 1751 1752 /* fill out type ID to type offset mapping for lookups by type ID */ 1753 *off = t - btf->types_data; 1754 1755 /* add, dedup, and remap strings referenced by this BTF type */ 1756 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1757 if (err) 1758 goto err_out; 1759 1760 /* remap all type IDs referenced from this BTF type */ 1761 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1762 if (err) 1763 goto err_out; 1764 1765 /* go to next type data and type offset index entry */ 1766 t += sz; 1767 off++; 1768 } 1769 1770 /* Up until now any of the copied type data was effectively invisible, 1771 * so if we exited early before this point due to error, BTF would be 1772 * effectively unmodified. There would be extra internal memory 1773 * pre-allocated, but it would not be available for querying. But now 1774 * that we've copied and rewritten all the data successfully, we can 1775 * update type count and various internal offsets and sizes to 1776 * "commit" the changes and made them visible to the outside world. 1777 */ 1778 btf->hdr->type_len += data_sz; 1779 btf->hdr->str_off += data_sz; 1780 btf->nr_types += cnt; 1781 1782 hashmap__free(p.str_off_map); 1783 1784 /* return type ID of the first added BTF type */ 1785 return btf->start_id + btf->nr_types - cnt; 1786 err_out: 1787 /* zero out preallocated memory as if it was just allocated with 1788 * libbpf_add_mem() 1789 */ 1790 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1791 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1792 1793 /* and now restore original strings section size; types data size 1794 * wasn't modified, so doesn't need restoring, see big comment above */ 1795 btf->hdr->str_len = old_strs_len; 1796 1797 hashmap__free(p.str_off_map); 1798 1799 return libbpf_err(err); 1800 } 1801 1802 /* 1803 * Append new BTF_KIND_INT type with: 1804 * - *name* - non-empty, non-NULL type name; 1805 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1806 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1807 * Returns: 1808 * - >0, type ID of newly added BTF type; 1809 * - <0, on error. 1810 */ 1811 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1812 { 1813 struct btf_type *t; 1814 int sz, name_off; 1815 1816 /* non-empty name */ 1817 if (!name || !name[0]) 1818 return libbpf_err(-EINVAL); 1819 /* byte_sz must be power of 2 */ 1820 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1821 return libbpf_err(-EINVAL); 1822 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1823 return libbpf_err(-EINVAL); 1824 1825 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1826 if (btf_ensure_modifiable(btf)) 1827 return libbpf_err(-ENOMEM); 1828 1829 sz = sizeof(struct btf_type) + sizeof(int); 1830 t = btf_add_type_mem(btf, sz); 1831 if (!t) 1832 return libbpf_err(-ENOMEM); 1833 1834 /* if something goes wrong later, we might end up with an extra string, 1835 * but that shouldn't be a problem, because BTF can't be constructed 1836 * completely anyway and will most probably be just discarded 1837 */ 1838 name_off = btf__add_str(btf, name); 1839 if (name_off < 0) 1840 return name_off; 1841 1842 t->name_off = name_off; 1843 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1844 t->size = byte_sz; 1845 /* set INT info, we don't allow setting legacy bit offset/size */ 1846 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1847 1848 return btf_commit_type(btf, sz); 1849 } 1850 1851 /* 1852 * Append new BTF_KIND_FLOAT type with: 1853 * - *name* - non-empty, non-NULL type name; 1854 * - *sz* - size of the type, in bytes; 1855 * Returns: 1856 * - >0, type ID of newly added BTF type; 1857 * - <0, on error. 1858 */ 1859 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1860 { 1861 struct btf_type *t; 1862 int sz, name_off; 1863 1864 /* non-empty name */ 1865 if (!name || !name[0]) 1866 return libbpf_err(-EINVAL); 1867 1868 /* byte_sz must be one of the explicitly allowed values */ 1869 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1870 byte_sz != 16) 1871 return libbpf_err(-EINVAL); 1872 1873 if (btf_ensure_modifiable(btf)) 1874 return libbpf_err(-ENOMEM); 1875 1876 sz = sizeof(struct btf_type); 1877 t = btf_add_type_mem(btf, sz); 1878 if (!t) 1879 return libbpf_err(-ENOMEM); 1880 1881 name_off = btf__add_str(btf, name); 1882 if (name_off < 0) 1883 return name_off; 1884 1885 t->name_off = name_off; 1886 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1887 t->size = byte_sz; 1888 1889 return btf_commit_type(btf, sz); 1890 } 1891 1892 /* it's completely legal to append BTF types with type IDs pointing forward to 1893 * types that haven't been appended yet, so we only make sure that id looks 1894 * sane, we can't guarantee that ID will always be valid 1895 */ 1896 static int validate_type_id(int id) 1897 { 1898 if (id < 0 || id > BTF_MAX_NR_TYPES) 1899 return -EINVAL; 1900 return 0; 1901 } 1902 1903 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1904 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1905 { 1906 struct btf_type *t; 1907 int sz, name_off = 0; 1908 1909 if (validate_type_id(ref_type_id)) 1910 return libbpf_err(-EINVAL); 1911 1912 if (btf_ensure_modifiable(btf)) 1913 return libbpf_err(-ENOMEM); 1914 1915 sz = sizeof(struct btf_type); 1916 t = btf_add_type_mem(btf, sz); 1917 if (!t) 1918 return libbpf_err(-ENOMEM); 1919 1920 if (name && name[0]) { 1921 name_off = btf__add_str(btf, name); 1922 if (name_off < 0) 1923 return name_off; 1924 } 1925 1926 t->name_off = name_off; 1927 t->info = btf_type_info(kind, 0, 0); 1928 t->type = ref_type_id; 1929 1930 return btf_commit_type(btf, sz); 1931 } 1932 1933 /* 1934 * Append new BTF_KIND_PTR type with: 1935 * - *ref_type_id* - referenced type ID, it might not exist yet; 1936 * Returns: 1937 * - >0, type ID of newly added BTF type; 1938 * - <0, on error. 1939 */ 1940 int btf__add_ptr(struct btf *btf, int ref_type_id) 1941 { 1942 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1943 } 1944 1945 /* 1946 * Append new BTF_KIND_ARRAY type with: 1947 * - *index_type_id* - type ID of the type describing array index; 1948 * - *elem_type_id* - type ID of the type describing array element; 1949 * - *nr_elems* - the size of the array; 1950 * Returns: 1951 * - >0, type ID of newly added BTF type; 1952 * - <0, on error. 1953 */ 1954 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1955 { 1956 struct btf_type *t; 1957 struct btf_array *a; 1958 int sz; 1959 1960 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1961 return libbpf_err(-EINVAL); 1962 1963 if (btf_ensure_modifiable(btf)) 1964 return libbpf_err(-ENOMEM); 1965 1966 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1967 t = btf_add_type_mem(btf, sz); 1968 if (!t) 1969 return libbpf_err(-ENOMEM); 1970 1971 t->name_off = 0; 1972 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1973 t->size = 0; 1974 1975 a = btf_array(t); 1976 a->type = elem_type_id; 1977 a->index_type = index_type_id; 1978 a->nelems = nr_elems; 1979 1980 return btf_commit_type(btf, sz); 1981 } 1982 1983 /* generic STRUCT/UNION append function */ 1984 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1985 { 1986 struct btf_type *t; 1987 int sz, name_off = 0; 1988 1989 if (btf_ensure_modifiable(btf)) 1990 return libbpf_err(-ENOMEM); 1991 1992 sz = sizeof(struct btf_type); 1993 t = btf_add_type_mem(btf, sz); 1994 if (!t) 1995 return libbpf_err(-ENOMEM); 1996 1997 if (name && name[0]) { 1998 name_off = btf__add_str(btf, name); 1999 if (name_off < 0) 2000 return name_off; 2001 } 2002 2003 /* start out with vlen=0 and no kflag; this will be adjusted when 2004 * adding each member 2005 */ 2006 t->name_off = name_off; 2007 t->info = btf_type_info(kind, 0, 0); 2008 t->size = bytes_sz; 2009 2010 return btf_commit_type(btf, sz); 2011 } 2012 2013 /* 2014 * Append new BTF_KIND_STRUCT type with: 2015 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 2016 * - *byte_sz* - size of the struct, in bytes; 2017 * 2018 * Struct initially has no fields in it. Fields can be added by 2019 * btf__add_field() right after btf__add_struct() succeeds. 2020 * 2021 * Returns: 2022 * - >0, type ID of newly added BTF type; 2023 * - <0, on error. 2024 */ 2025 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 2026 { 2027 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 2028 } 2029 2030 /* 2031 * Append new BTF_KIND_UNION type with: 2032 * - *name* - name of the union, can be NULL or empty for anonymous union; 2033 * - *byte_sz* - size of the union, in bytes; 2034 * 2035 * Union initially has no fields in it. Fields can be added by 2036 * btf__add_field() right after btf__add_union() succeeds. All fields 2037 * should have *bit_offset* of 0. 2038 * 2039 * Returns: 2040 * - >0, type ID of newly added BTF type; 2041 * - <0, on error. 2042 */ 2043 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 2044 { 2045 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 2046 } 2047 2048 static struct btf_type *btf_last_type(struct btf *btf) 2049 { 2050 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 2051 } 2052 2053 /* 2054 * Append new field for the current STRUCT/UNION type with: 2055 * - *name* - name of the field, can be NULL or empty for anonymous field; 2056 * - *type_id* - type ID for the type describing field type; 2057 * - *bit_offset* - bit offset of the start of the field within struct/union; 2058 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 2059 * Returns: 2060 * - 0, on success; 2061 * - <0, on error. 2062 */ 2063 int btf__add_field(struct btf *btf, const char *name, int type_id, 2064 __u32 bit_offset, __u32 bit_size) 2065 { 2066 struct btf_type *t; 2067 struct btf_member *m; 2068 bool is_bitfield; 2069 int sz, name_off = 0; 2070 2071 /* last type should be union/struct */ 2072 if (btf->nr_types == 0) 2073 return libbpf_err(-EINVAL); 2074 t = btf_last_type(btf); 2075 if (!btf_is_composite(t)) 2076 return libbpf_err(-EINVAL); 2077 2078 if (validate_type_id(type_id)) 2079 return libbpf_err(-EINVAL); 2080 /* best-effort bit field offset/size enforcement */ 2081 is_bitfield = bit_size || (bit_offset % 8 != 0); 2082 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2083 return libbpf_err(-EINVAL); 2084 2085 /* only offset 0 is allowed for unions */ 2086 if (btf_is_union(t) && bit_offset) 2087 return libbpf_err(-EINVAL); 2088 2089 /* decompose and invalidate raw data */ 2090 if (btf_ensure_modifiable(btf)) 2091 return libbpf_err(-ENOMEM); 2092 2093 sz = sizeof(struct btf_member); 2094 m = btf_add_type_mem(btf, sz); 2095 if (!m) 2096 return libbpf_err(-ENOMEM); 2097 2098 if (name && name[0]) { 2099 name_off = btf__add_str(btf, name); 2100 if (name_off < 0) 2101 return name_off; 2102 } 2103 2104 m->name_off = name_off; 2105 m->type = type_id; 2106 m->offset = bit_offset | (bit_size << 24); 2107 2108 /* btf_add_type_mem can invalidate t pointer */ 2109 t = btf_last_type(btf); 2110 /* update parent type's vlen and kflag */ 2111 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2112 2113 btf->hdr->type_len += sz; 2114 btf->hdr->str_off += sz; 2115 return 0; 2116 } 2117 2118 /* 2119 * Append new BTF_KIND_ENUM type with: 2120 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2121 * - *byte_sz* - size of the enum, in bytes. 2122 * 2123 * Enum initially has no enum values in it (and corresponds to enum forward 2124 * declaration). Enumerator values can be added by btf__add_enum_value() 2125 * immediately after btf__add_enum() succeeds. 2126 * 2127 * Returns: 2128 * - >0, type ID of newly added BTF type; 2129 * - <0, on error. 2130 */ 2131 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2132 { 2133 struct btf_type *t; 2134 int sz, name_off = 0; 2135 2136 /* byte_sz must be power of 2 */ 2137 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2138 return libbpf_err(-EINVAL); 2139 2140 if (btf_ensure_modifiable(btf)) 2141 return libbpf_err(-ENOMEM); 2142 2143 sz = sizeof(struct btf_type); 2144 t = btf_add_type_mem(btf, sz); 2145 if (!t) 2146 return libbpf_err(-ENOMEM); 2147 2148 if (name && name[0]) { 2149 name_off = btf__add_str(btf, name); 2150 if (name_off < 0) 2151 return name_off; 2152 } 2153 2154 /* start out with vlen=0; it will be adjusted when adding enum values */ 2155 t->name_off = name_off; 2156 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2157 t->size = byte_sz; 2158 2159 return btf_commit_type(btf, sz); 2160 } 2161 2162 /* 2163 * Append new enum value for the current ENUM type with: 2164 * - *name* - name of the enumerator value, can't be NULL or empty; 2165 * - *value* - integer value corresponding to enum value *name*; 2166 * Returns: 2167 * - 0, on success; 2168 * - <0, on error. 2169 */ 2170 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2171 { 2172 struct btf_type *t; 2173 struct btf_enum *v; 2174 int sz, name_off; 2175 2176 /* last type should be BTF_KIND_ENUM */ 2177 if (btf->nr_types == 0) 2178 return libbpf_err(-EINVAL); 2179 t = btf_last_type(btf); 2180 if (!btf_is_enum(t)) 2181 return libbpf_err(-EINVAL); 2182 2183 /* non-empty name */ 2184 if (!name || !name[0]) 2185 return libbpf_err(-EINVAL); 2186 if (value < INT_MIN || value > UINT_MAX) 2187 return libbpf_err(-E2BIG); 2188 2189 /* decompose and invalidate raw data */ 2190 if (btf_ensure_modifiable(btf)) 2191 return libbpf_err(-ENOMEM); 2192 2193 sz = sizeof(struct btf_enum); 2194 v = btf_add_type_mem(btf, sz); 2195 if (!v) 2196 return libbpf_err(-ENOMEM); 2197 2198 name_off = btf__add_str(btf, name); 2199 if (name_off < 0) 2200 return name_off; 2201 2202 v->name_off = name_off; 2203 v->val = value; 2204 2205 /* update parent type's vlen */ 2206 t = btf_last_type(btf); 2207 btf_type_inc_vlen(t); 2208 2209 btf->hdr->type_len += sz; 2210 btf->hdr->str_off += sz; 2211 return 0; 2212 } 2213 2214 /* 2215 * Append new BTF_KIND_FWD type with: 2216 * - *name*, non-empty/non-NULL name; 2217 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2218 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2219 * Returns: 2220 * - >0, type ID of newly added BTF type; 2221 * - <0, on error. 2222 */ 2223 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2224 { 2225 if (!name || !name[0]) 2226 return libbpf_err(-EINVAL); 2227 2228 switch (fwd_kind) { 2229 case BTF_FWD_STRUCT: 2230 case BTF_FWD_UNION: { 2231 struct btf_type *t; 2232 int id; 2233 2234 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2235 if (id <= 0) 2236 return id; 2237 t = btf_type_by_id(btf, id); 2238 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2239 return id; 2240 } 2241 case BTF_FWD_ENUM: 2242 /* enum forward in BTF currently is just an enum with no enum 2243 * values; we also assume a standard 4-byte size for it 2244 */ 2245 return btf__add_enum(btf, name, sizeof(int)); 2246 default: 2247 return libbpf_err(-EINVAL); 2248 } 2249 } 2250 2251 /* 2252 * Append new BTF_KING_TYPEDEF type with: 2253 * - *name*, non-empty/non-NULL name; 2254 * - *ref_type_id* - referenced type ID, it might not exist yet; 2255 * Returns: 2256 * - >0, type ID of newly added BTF type; 2257 * - <0, on error. 2258 */ 2259 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2260 { 2261 if (!name || !name[0]) 2262 return libbpf_err(-EINVAL); 2263 2264 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2265 } 2266 2267 /* 2268 * Append new BTF_KIND_VOLATILE type with: 2269 * - *ref_type_id* - referenced type ID, it might not exist yet; 2270 * Returns: 2271 * - >0, type ID of newly added BTF type; 2272 * - <0, on error. 2273 */ 2274 int btf__add_volatile(struct btf *btf, int ref_type_id) 2275 { 2276 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2277 } 2278 2279 /* 2280 * Append new BTF_KIND_CONST type with: 2281 * - *ref_type_id* - referenced type ID, it might not exist yet; 2282 * Returns: 2283 * - >0, type ID of newly added BTF type; 2284 * - <0, on error. 2285 */ 2286 int btf__add_const(struct btf *btf, int ref_type_id) 2287 { 2288 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2289 } 2290 2291 /* 2292 * Append new BTF_KIND_RESTRICT type with: 2293 * - *ref_type_id* - referenced type ID, it might not exist yet; 2294 * Returns: 2295 * - >0, type ID of newly added BTF type; 2296 * - <0, on error. 2297 */ 2298 int btf__add_restrict(struct btf *btf, int ref_type_id) 2299 { 2300 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2301 } 2302 2303 /* 2304 * Append new BTF_KIND_TYPE_TAG type with: 2305 * - *value*, non-empty/non-NULL tag value; 2306 * - *ref_type_id* - referenced type ID, it might not exist yet; 2307 * Returns: 2308 * - >0, type ID of newly added BTF type; 2309 * - <0, on error. 2310 */ 2311 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2312 { 2313 if (!value|| !value[0]) 2314 return libbpf_err(-EINVAL); 2315 2316 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2317 } 2318 2319 /* 2320 * Append new BTF_KIND_FUNC type with: 2321 * - *name*, non-empty/non-NULL name; 2322 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2323 * Returns: 2324 * - >0, type ID of newly added BTF type; 2325 * - <0, on error. 2326 */ 2327 int btf__add_func(struct btf *btf, const char *name, 2328 enum btf_func_linkage linkage, int proto_type_id) 2329 { 2330 int id; 2331 2332 if (!name || !name[0]) 2333 return libbpf_err(-EINVAL); 2334 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2335 linkage != BTF_FUNC_EXTERN) 2336 return libbpf_err(-EINVAL); 2337 2338 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2339 if (id > 0) { 2340 struct btf_type *t = btf_type_by_id(btf, id); 2341 2342 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2343 } 2344 return libbpf_err(id); 2345 } 2346 2347 /* 2348 * Append new BTF_KIND_FUNC_PROTO with: 2349 * - *ret_type_id* - type ID for return result of a function. 2350 * 2351 * Function prototype initially has no arguments, but they can be added by 2352 * btf__add_func_param() one by one, immediately after 2353 * btf__add_func_proto() succeeded. 2354 * 2355 * Returns: 2356 * - >0, type ID of newly added BTF type; 2357 * - <0, on error. 2358 */ 2359 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2360 { 2361 struct btf_type *t; 2362 int sz; 2363 2364 if (validate_type_id(ret_type_id)) 2365 return libbpf_err(-EINVAL); 2366 2367 if (btf_ensure_modifiable(btf)) 2368 return libbpf_err(-ENOMEM); 2369 2370 sz = sizeof(struct btf_type); 2371 t = btf_add_type_mem(btf, sz); 2372 if (!t) 2373 return libbpf_err(-ENOMEM); 2374 2375 /* start out with vlen=0; this will be adjusted when adding enum 2376 * values, if necessary 2377 */ 2378 t->name_off = 0; 2379 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2380 t->type = ret_type_id; 2381 2382 return btf_commit_type(btf, sz); 2383 } 2384 2385 /* 2386 * Append new function parameter for current FUNC_PROTO type with: 2387 * - *name* - parameter name, can be NULL or empty; 2388 * - *type_id* - type ID describing the type of the parameter. 2389 * Returns: 2390 * - 0, on success; 2391 * - <0, on error. 2392 */ 2393 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2394 { 2395 struct btf_type *t; 2396 struct btf_param *p; 2397 int sz, name_off = 0; 2398 2399 if (validate_type_id(type_id)) 2400 return libbpf_err(-EINVAL); 2401 2402 /* last type should be BTF_KIND_FUNC_PROTO */ 2403 if (btf->nr_types == 0) 2404 return libbpf_err(-EINVAL); 2405 t = btf_last_type(btf); 2406 if (!btf_is_func_proto(t)) 2407 return libbpf_err(-EINVAL); 2408 2409 /* decompose and invalidate raw data */ 2410 if (btf_ensure_modifiable(btf)) 2411 return libbpf_err(-ENOMEM); 2412 2413 sz = sizeof(struct btf_param); 2414 p = btf_add_type_mem(btf, sz); 2415 if (!p) 2416 return libbpf_err(-ENOMEM); 2417 2418 if (name && name[0]) { 2419 name_off = btf__add_str(btf, name); 2420 if (name_off < 0) 2421 return name_off; 2422 } 2423 2424 p->name_off = name_off; 2425 p->type = type_id; 2426 2427 /* update parent type's vlen */ 2428 t = btf_last_type(btf); 2429 btf_type_inc_vlen(t); 2430 2431 btf->hdr->type_len += sz; 2432 btf->hdr->str_off += sz; 2433 return 0; 2434 } 2435 2436 /* 2437 * Append new BTF_KIND_VAR type with: 2438 * - *name* - non-empty/non-NULL name; 2439 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2440 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2441 * - *type_id* - type ID of the type describing the type of the variable. 2442 * Returns: 2443 * - >0, type ID of newly added BTF type; 2444 * - <0, on error. 2445 */ 2446 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2447 { 2448 struct btf_type *t; 2449 struct btf_var *v; 2450 int sz, name_off; 2451 2452 /* non-empty name */ 2453 if (!name || !name[0]) 2454 return libbpf_err(-EINVAL); 2455 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2456 linkage != BTF_VAR_GLOBAL_EXTERN) 2457 return libbpf_err(-EINVAL); 2458 if (validate_type_id(type_id)) 2459 return libbpf_err(-EINVAL); 2460 2461 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2462 if (btf_ensure_modifiable(btf)) 2463 return libbpf_err(-ENOMEM); 2464 2465 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2466 t = btf_add_type_mem(btf, sz); 2467 if (!t) 2468 return libbpf_err(-ENOMEM); 2469 2470 name_off = btf__add_str(btf, name); 2471 if (name_off < 0) 2472 return name_off; 2473 2474 t->name_off = name_off; 2475 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2476 t->type = type_id; 2477 2478 v = btf_var(t); 2479 v->linkage = linkage; 2480 2481 return btf_commit_type(btf, sz); 2482 } 2483 2484 /* 2485 * Append new BTF_KIND_DATASEC type with: 2486 * - *name* - non-empty/non-NULL name; 2487 * - *byte_sz* - data section size, in bytes. 2488 * 2489 * Data section is initially empty. Variables info can be added with 2490 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2491 * 2492 * Returns: 2493 * - >0, type ID of newly added BTF type; 2494 * - <0, on error. 2495 */ 2496 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2497 { 2498 struct btf_type *t; 2499 int sz, name_off; 2500 2501 /* non-empty name */ 2502 if (!name || !name[0]) 2503 return libbpf_err(-EINVAL); 2504 2505 if (btf_ensure_modifiable(btf)) 2506 return libbpf_err(-ENOMEM); 2507 2508 sz = sizeof(struct btf_type); 2509 t = btf_add_type_mem(btf, sz); 2510 if (!t) 2511 return libbpf_err(-ENOMEM); 2512 2513 name_off = btf__add_str(btf, name); 2514 if (name_off < 0) 2515 return name_off; 2516 2517 /* start with vlen=0, which will be update as var_secinfos are added */ 2518 t->name_off = name_off; 2519 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2520 t->size = byte_sz; 2521 2522 return btf_commit_type(btf, sz); 2523 } 2524 2525 /* 2526 * Append new data section variable information entry for current DATASEC type: 2527 * - *var_type_id* - type ID, describing type of the variable; 2528 * - *offset* - variable offset within data section, in bytes; 2529 * - *byte_sz* - variable size, in bytes. 2530 * 2531 * Returns: 2532 * - 0, on success; 2533 * - <0, on error. 2534 */ 2535 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2536 { 2537 struct btf_type *t; 2538 struct btf_var_secinfo *v; 2539 int sz; 2540 2541 /* last type should be BTF_KIND_DATASEC */ 2542 if (btf->nr_types == 0) 2543 return libbpf_err(-EINVAL); 2544 t = btf_last_type(btf); 2545 if (!btf_is_datasec(t)) 2546 return libbpf_err(-EINVAL); 2547 2548 if (validate_type_id(var_type_id)) 2549 return libbpf_err(-EINVAL); 2550 2551 /* decompose and invalidate raw data */ 2552 if (btf_ensure_modifiable(btf)) 2553 return libbpf_err(-ENOMEM); 2554 2555 sz = sizeof(struct btf_var_secinfo); 2556 v = btf_add_type_mem(btf, sz); 2557 if (!v) 2558 return libbpf_err(-ENOMEM); 2559 2560 v->type = var_type_id; 2561 v->offset = offset; 2562 v->size = byte_sz; 2563 2564 /* update parent type's vlen */ 2565 t = btf_last_type(btf); 2566 btf_type_inc_vlen(t); 2567 2568 btf->hdr->type_len += sz; 2569 btf->hdr->str_off += sz; 2570 return 0; 2571 } 2572 2573 /* 2574 * Append new BTF_KIND_DECL_TAG type with: 2575 * - *value* - non-empty/non-NULL string; 2576 * - *ref_type_id* - referenced type ID, it might not exist yet; 2577 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2578 * member or function argument index; 2579 * Returns: 2580 * - >0, type ID of newly added BTF type; 2581 * - <0, on error. 2582 */ 2583 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2584 int component_idx) 2585 { 2586 struct btf_type *t; 2587 int sz, value_off; 2588 2589 if (!value || !value[0] || component_idx < -1) 2590 return libbpf_err(-EINVAL); 2591 2592 if (validate_type_id(ref_type_id)) 2593 return libbpf_err(-EINVAL); 2594 2595 if (btf_ensure_modifiable(btf)) 2596 return libbpf_err(-ENOMEM); 2597 2598 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2599 t = btf_add_type_mem(btf, sz); 2600 if (!t) 2601 return libbpf_err(-ENOMEM); 2602 2603 value_off = btf__add_str(btf, value); 2604 if (value_off < 0) 2605 return value_off; 2606 2607 t->name_off = value_off; 2608 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2609 t->type = ref_type_id; 2610 btf_decl_tag(t)->component_idx = component_idx; 2611 2612 return btf_commit_type(btf, sz); 2613 } 2614 2615 struct btf_ext_sec_setup_param { 2616 __u32 off; 2617 __u32 len; 2618 __u32 min_rec_size; 2619 struct btf_ext_info *ext_info; 2620 const char *desc; 2621 }; 2622 2623 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2624 struct btf_ext_sec_setup_param *ext_sec) 2625 { 2626 const struct btf_ext_info_sec *sinfo; 2627 struct btf_ext_info *ext_info; 2628 __u32 info_left, record_size; 2629 /* The start of the info sec (including the __u32 record_size). */ 2630 void *info; 2631 2632 if (ext_sec->len == 0) 2633 return 0; 2634 2635 if (ext_sec->off & 0x03) { 2636 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2637 ext_sec->desc); 2638 return -EINVAL; 2639 } 2640 2641 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2642 info_left = ext_sec->len; 2643 2644 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2645 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2646 ext_sec->desc, ext_sec->off, ext_sec->len); 2647 return -EINVAL; 2648 } 2649 2650 /* At least a record size */ 2651 if (info_left < sizeof(__u32)) { 2652 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2653 return -EINVAL; 2654 } 2655 2656 /* The record size needs to meet the minimum standard */ 2657 record_size = *(__u32 *)info; 2658 if (record_size < ext_sec->min_rec_size || 2659 record_size & 0x03) { 2660 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2661 ext_sec->desc, record_size); 2662 return -EINVAL; 2663 } 2664 2665 sinfo = info + sizeof(__u32); 2666 info_left -= sizeof(__u32); 2667 2668 /* If no records, return failure now so .BTF.ext won't be used. */ 2669 if (!info_left) { 2670 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2671 return -EINVAL; 2672 } 2673 2674 while (info_left) { 2675 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2676 __u64 total_record_size; 2677 __u32 num_records; 2678 2679 if (info_left < sec_hdrlen) { 2680 pr_debug("%s section header is not found in .BTF.ext\n", 2681 ext_sec->desc); 2682 return -EINVAL; 2683 } 2684 2685 num_records = sinfo->num_info; 2686 if (num_records == 0) { 2687 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2688 ext_sec->desc); 2689 return -EINVAL; 2690 } 2691 2692 total_record_size = sec_hdrlen + 2693 (__u64)num_records * record_size; 2694 if (info_left < total_record_size) { 2695 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2696 ext_sec->desc); 2697 return -EINVAL; 2698 } 2699 2700 info_left -= total_record_size; 2701 sinfo = (void *)sinfo + total_record_size; 2702 } 2703 2704 ext_info = ext_sec->ext_info; 2705 ext_info->len = ext_sec->len - sizeof(__u32); 2706 ext_info->rec_size = record_size; 2707 ext_info->info = info + sizeof(__u32); 2708 2709 return 0; 2710 } 2711 2712 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2713 { 2714 struct btf_ext_sec_setup_param param = { 2715 .off = btf_ext->hdr->func_info_off, 2716 .len = btf_ext->hdr->func_info_len, 2717 .min_rec_size = sizeof(struct bpf_func_info_min), 2718 .ext_info = &btf_ext->func_info, 2719 .desc = "func_info" 2720 }; 2721 2722 return btf_ext_setup_info(btf_ext, ¶m); 2723 } 2724 2725 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2726 { 2727 struct btf_ext_sec_setup_param param = { 2728 .off = btf_ext->hdr->line_info_off, 2729 .len = btf_ext->hdr->line_info_len, 2730 .min_rec_size = sizeof(struct bpf_line_info_min), 2731 .ext_info = &btf_ext->line_info, 2732 .desc = "line_info", 2733 }; 2734 2735 return btf_ext_setup_info(btf_ext, ¶m); 2736 } 2737 2738 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2739 { 2740 struct btf_ext_sec_setup_param param = { 2741 .off = btf_ext->hdr->core_relo_off, 2742 .len = btf_ext->hdr->core_relo_len, 2743 .min_rec_size = sizeof(struct bpf_core_relo), 2744 .ext_info = &btf_ext->core_relo_info, 2745 .desc = "core_relo", 2746 }; 2747 2748 return btf_ext_setup_info(btf_ext, ¶m); 2749 } 2750 2751 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2752 { 2753 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2754 2755 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2756 data_size < hdr->hdr_len) { 2757 pr_debug("BTF.ext header not found"); 2758 return -EINVAL; 2759 } 2760 2761 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2762 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2763 return -ENOTSUP; 2764 } else if (hdr->magic != BTF_MAGIC) { 2765 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2766 return -EINVAL; 2767 } 2768 2769 if (hdr->version != BTF_VERSION) { 2770 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2771 return -ENOTSUP; 2772 } 2773 2774 if (hdr->flags) { 2775 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2776 return -ENOTSUP; 2777 } 2778 2779 if (data_size == hdr->hdr_len) { 2780 pr_debug("BTF.ext has no data\n"); 2781 return -EINVAL; 2782 } 2783 2784 return 0; 2785 } 2786 2787 void btf_ext__free(struct btf_ext *btf_ext) 2788 { 2789 if (IS_ERR_OR_NULL(btf_ext)) 2790 return; 2791 free(btf_ext->data); 2792 free(btf_ext); 2793 } 2794 2795 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 2796 { 2797 struct btf_ext *btf_ext; 2798 int err; 2799 2800 btf_ext = calloc(1, sizeof(struct btf_ext)); 2801 if (!btf_ext) 2802 return libbpf_err_ptr(-ENOMEM); 2803 2804 btf_ext->data_size = size; 2805 btf_ext->data = malloc(size); 2806 if (!btf_ext->data) { 2807 err = -ENOMEM; 2808 goto done; 2809 } 2810 memcpy(btf_ext->data, data, size); 2811 2812 err = btf_ext_parse_hdr(btf_ext->data, size); 2813 if (err) 2814 goto done; 2815 2816 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2817 err = -EINVAL; 2818 goto done; 2819 } 2820 2821 err = btf_ext_setup_func_info(btf_ext); 2822 if (err) 2823 goto done; 2824 2825 err = btf_ext_setup_line_info(btf_ext); 2826 if (err) 2827 goto done; 2828 2829 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) { 2830 err = -EINVAL; 2831 goto done; 2832 } 2833 2834 err = btf_ext_setup_core_relos(btf_ext); 2835 if (err) 2836 goto done; 2837 2838 done: 2839 if (err) { 2840 btf_ext__free(btf_ext); 2841 return libbpf_err_ptr(err); 2842 } 2843 2844 return btf_ext; 2845 } 2846 2847 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2848 { 2849 *size = btf_ext->data_size; 2850 return btf_ext->data; 2851 } 2852 2853 static int btf_ext_reloc_info(const struct btf *btf, 2854 const struct btf_ext_info *ext_info, 2855 const char *sec_name, __u32 insns_cnt, 2856 void **info, __u32 *cnt) 2857 { 2858 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2859 __u32 i, record_size, existing_len, records_len; 2860 struct btf_ext_info_sec *sinfo; 2861 const char *info_sec_name; 2862 __u64 remain_len; 2863 void *data; 2864 2865 record_size = ext_info->rec_size; 2866 sinfo = ext_info->info; 2867 remain_len = ext_info->len; 2868 while (remain_len > 0) { 2869 records_len = sinfo->num_info * record_size; 2870 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2871 if (strcmp(info_sec_name, sec_name)) { 2872 remain_len -= sec_hdrlen + records_len; 2873 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2874 continue; 2875 } 2876 2877 existing_len = (*cnt) * record_size; 2878 data = realloc(*info, existing_len + records_len); 2879 if (!data) 2880 return libbpf_err(-ENOMEM); 2881 2882 memcpy(data + existing_len, sinfo->data, records_len); 2883 /* adjust insn_off only, the rest data will be passed 2884 * to the kernel. 2885 */ 2886 for (i = 0; i < sinfo->num_info; i++) { 2887 __u32 *insn_off; 2888 2889 insn_off = data + existing_len + (i * record_size); 2890 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; 2891 } 2892 *info = data; 2893 *cnt += sinfo->num_info; 2894 return 0; 2895 } 2896 2897 return libbpf_err(-ENOENT); 2898 } 2899 2900 int btf_ext__reloc_func_info(const struct btf *btf, 2901 const struct btf_ext *btf_ext, 2902 const char *sec_name, __u32 insns_cnt, 2903 void **func_info, __u32 *cnt) 2904 { 2905 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2906 insns_cnt, func_info, cnt); 2907 } 2908 2909 int btf_ext__reloc_line_info(const struct btf *btf, 2910 const struct btf_ext *btf_ext, 2911 const char *sec_name, __u32 insns_cnt, 2912 void **line_info, __u32 *cnt) 2913 { 2914 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2915 insns_cnt, line_info, cnt); 2916 } 2917 2918 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2919 { 2920 return btf_ext->func_info.rec_size; 2921 } 2922 2923 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2924 { 2925 return btf_ext->line_info.rec_size; 2926 } 2927 2928 struct btf_dedup; 2929 2930 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 2931 static void btf_dedup_free(struct btf_dedup *d); 2932 static int btf_dedup_prep(struct btf_dedup *d); 2933 static int btf_dedup_strings(struct btf_dedup *d); 2934 static int btf_dedup_prim_types(struct btf_dedup *d); 2935 static int btf_dedup_struct_types(struct btf_dedup *d); 2936 static int btf_dedup_ref_types(struct btf_dedup *d); 2937 static int btf_dedup_compact_types(struct btf_dedup *d); 2938 static int btf_dedup_remap_types(struct btf_dedup *d); 2939 2940 /* 2941 * Deduplicate BTF types and strings. 2942 * 2943 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2944 * section with all BTF type descriptors and string data. It overwrites that 2945 * memory in-place with deduplicated types and strings without any loss of 2946 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2947 * is provided, all the strings referenced from .BTF.ext section are honored 2948 * and updated to point to the right offsets after deduplication. 2949 * 2950 * If function returns with error, type/string data might be garbled and should 2951 * be discarded. 2952 * 2953 * More verbose and detailed description of both problem btf_dedup is solving, 2954 * as well as solution could be found at: 2955 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2956 * 2957 * Problem description and justification 2958 * ===================================== 2959 * 2960 * BTF type information is typically emitted either as a result of conversion 2961 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2962 * unit contains information about a subset of all the types that are used 2963 * in an application. These subsets are frequently overlapping and contain a lot 2964 * of duplicated information when later concatenated together into a single 2965 * binary. This algorithm ensures that each unique type is represented by single 2966 * BTF type descriptor, greatly reducing resulting size of BTF data. 2967 * 2968 * Compilation unit isolation and subsequent duplication of data is not the only 2969 * problem. The same type hierarchy (e.g., struct and all the type that struct 2970 * references) in different compilation units can be represented in BTF to 2971 * various degrees of completeness (or, rather, incompleteness) due to 2972 * struct/union forward declarations. 2973 * 2974 * Let's take a look at an example, that we'll use to better understand the 2975 * problem (and solution). Suppose we have two compilation units, each using 2976 * same `struct S`, but each of them having incomplete type information about 2977 * struct's fields: 2978 * 2979 * // CU #1: 2980 * struct S; 2981 * struct A { 2982 * int a; 2983 * struct A* self; 2984 * struct S* parent; 2985 * }; 2986 * struct B; 2987 * struct S { 2988 * struct A* a_ptr; 2989 * struct B* b_ptr; 2990 * }; 2991 * 2992 * // CU #2: 2993 * struct S; 2994 * struct A; 2995 * struct B { 2996 * int b; 2997 * struct B* self; 2998 * struct S* parent; 2999 * }; 3000 * struct S { 3001 * struct A* a_ptr; 3002 * struct B* b_ptr; 3003 * }; 3004 * 3005 * In case of CU #1, BTF data will know only that `struct B` exist (but no 3006 * more), but will know the complete type information about `struct A`. While 3007 * for CU #2, it will know full type information about `struct B`, but will 3008 * only know about forward declaration of `struct A` (in BTF terms, it will 3009 * have `BTF_KIND_FWD` type descriptor with name `B`). 3010 * 3011 * This compilation unit isolation means that it's possible that there is no 3012 * single CU with complete type information describing structs `S`, `A`, and 3013 * `B`. Also, we might get tons of duplicated and redundant type information. 3014 * 3015 * Additional complication we need to keep in mind comes from the fact that 3016 * types, in general, can form graphs containing cycles, not just DAGs. 3017 * 3018 * While algorithm does deduplication, it also merges and resolves type 3019 * information (unless disabled throught `struct btf_opts`), whenever possible. 3020 * E.g., in the example above with two compilation units having partial type 3021 * information for structs `A` and `B`, the output of algorithm will emit 3022 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 3023 * (as well as type information for `int` and pointers), as if they were defined 3024 * in a single compilation unit as: 3025 * 3026 * struct A { 3027 * int a; 3028 * struct A* self; 3029 * struct S* parent; 3030 * }; 3031 * struct B { 3032 * int b; 3033 * struct B* self; 3034 * struct S* parent; 3035 * }; 3036 * struct S { 3037 * struct A* a_ptr; 3038 * struct B* b_ptr; 3039 * }; 3040 * 3041 * Algorithm summary 3042 * ================= 3043 * 3044 * Algorithm completes its work in 6 separate passes: 3045 * 3046 * 1. Strings deduplication. 3047 * 2. Primitive types deduplication (int, enum, fwd). 3048 * 3. Struct/union types deduplication. 3049 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 3050 * protos, and const/volatile/restrict modifiers). 3051 * 5. Types compaction. 3052 * 6. Types remapping. 3053 * 3054 * Algorithm determines canonical type descriptor, which is a single 3055 * representative type for each truly unique type. This canonical type is the 3056 * one that will go into final deduplicated BTF type information. For 3057 * struct/unions, it is also the type that algorithm will merge additional type 3058 * information into (while resolving FWDs), as it discovers it from data in 3059 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3060 * that type is canonical, or to some other type, if that type is equivalent 3061 * and was chosen as canonical representative. This mapping is stored in 3062 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3063 * FWD type got resolved to. 3064 * 3065 * To facilitate fast discovery of canonical types, we also maintain canonical 3066 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3067 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3068 * that match that signature. With sufficiently good choice of type signature 3069 * hashing function, we can limit number of canonical types for each unique type 3070 * signature to a very small number, allowing to find canonical type for any 3071 * duplicated type very quickly. 3072 * 3073 * Struct/union deduplication is the most critical part and algorithm for 3074 * deduplicating structs/unions is described in greater details in comments for 3075 * `btf_dedup_is_equiv` function. 3076 */ 3077 3078 DEFAULT_VERSION(btf__dedup_v0_6_0, btf__dedup, LIBBPF_0.6.0) 3079 int btf__dedup_v0_6_0(struct btf *btf, const struct btf_dedup_opts *opts) 3080 { 3081 struct btf_dedup *d; 3082 int err; 3083 3084 if (!OPTS_VALID(opts, btf_dedup_opts)) 3085 return libbpf_err(-EINVAL); 3086 3087 d = btf_dedup_new(btf, opts); 3088 if (IS_ERR(d)) { 3089 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3090 return libbpf_err(-EINVAL); 3091 } 3092 3093 if (btf_ensure_modifiable(btf)) { 3094 err = -ENOMEM; 3095 goto done; 3096 } 3097 3098 err = btf_dedup_prep(d); 3099 if (err) { 3100 pr_debug("btf_dedup_prep failed:%d\n", err); 3101 goto done; 3102 } 3103 err = btf_dedup_strings(d); 3104 if (err < 0) { 3105 pr_debug("btf_dedup_strings failed:%d\n", err); 3106 goto done; 3107 } 3108 err = btf_dedup_prim_types(d); 3109 if (err < 0) { 3110 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3111 goto done; 3112 } 3113 err = btf_dedup_struct_types(d); 3114 if (err < 0) { 3115 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3116 goto done; 3117 } 3118 err = btf_dedup_ref_types(d); 3119 if (err < 0) { 3120 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3121 goto done; 3122 } 3123 err = btf_dedup_compact_types(d); 3124 if (err < 0) { 3125 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3126 goto done; 3127 } 3128 err = btf_dedup_remap_types(d); 3129 if (err < 0) { 3130 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3131 goto done; 3132 } 3133 3134 done: 3135 btf_dedup_free(d); 3136 return libbpf_err(err); 3137 } 3138 3139 COMPAT_VERSION(btf__dedup_deprecated, btf__dedup, LIBBPF_0.0.2) 3140 int btf__dedup_deprecated(struct btf *btf, struct btf_ext *btf_ext, const void *unused_opts) 3141 { 3142 LIBBPF_OPTS(btf_dedup_opts, opts, .btf_ext = btf_ext); 3143 3144 if (unused_opts) { 3145 pr_warn("please use new version of btf__dedup() that supports options\n"); 3146 return libbpf_err(-ENOTSUP); 3147 } 3148 3149 return btf__dedup(btf, &opts); 3150 } 3151 3152 #define BTF_UNPROCESSED_ID ((__u32)-1) 3153 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3154 3155 struct btf_dedup { 3156 /* .BTF section to be deduped in-place */ 3157 struct btf *btf; 3158 /* 3159 * Optional .BTF.ext section. When provided, any strings referenced 3160 * from it will be taken into account when deduping strings 3161 */ 3162 struct btf_ext *btf_ext; 3163 /* 3164 * This is a map from any type's signature hash to a list of possible 3165 * canonical representative type candidates. Hash collisions are 3166 * ignored, so even types of various kinds can share same list of 3167 * candidates, which is fine because we rely on subsequent 3168 * btf_xxx_equal() checks to authoritatively verify type equality. 3169 */ 3170 struct hashmap *dedup_table; 3171 /* Canonical types map */ 3172 __u32 *map; 3173 /* Hypothetical mapping, used during type graph equivalence checks */ 3174 __u32 *hypot_map; 3175 __u32 *hypot_list; 3176 size_t hypot_cnt; 3177 size_t hypot_cap; 3178 /* Whether hypothetical mapping, if successful, would need to adjust 3179 * already canonicalized types (due to a new forward declaration to 3180 * concrete type resolution). In such case, during split BTF dedup 3181 * candidate type would still be considered as different, because base 3182 * BTF is considered to be immutable. 3183 */ 3184 bool hypot_adjust_canon; 3185 /* Various option modifying behavior of algorithm */ 3186 struct btf_dedup_opts opts; 3187 /* temporary strings deduplication state */ 3188 struct strset *strs_set; 3189 }; 3190 3191 static long hash_combine(long h, long value) 3192 { 3193 return h * 31 + value; 3194 } 3195 3196 #define for_each_dedup_cand(d, node, hash) \ 3197 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 3198 3199 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3200 { 3201 return hashmap__append(d->dedup_table, 3202 (void *)hash, (void *)(long)type_id); 3203 } 3204 3205 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3206 __u32 from_id, __u32 to_id) 3207 { 3208 if (d->hypot_cnt == d->hypot_cap) { 3209 __u32 *new_list; 3210 3211 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3212 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3213 if (!new_list) 3214 return -ENOMEM; 3215 d->hypot_list = new_list; 3216 } 3217 d->hypot_list[d->hypot_cnt++] = from_id; 3218 d->hypot_map[from_id] = to_id; 3219 return 0; 3220 } 3221 3222 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3223 { 3224 int i; 3225 3226 for (i = 0; i < d->hypot_cnt; i++) 3227 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3228 d->hypot_cnt = 0; 3229 d->hypot_adjust_canon = false; 3230 } 3231 3232 static void btf_dedup_free(struct btf_dedup *d) 3233 { 3234 hashmap__free(d->dedup_table); 3235 d->dedup_table = NULL; 3236 3237 free(d->map); 3238 d->map = NULL; 3239 3240 free(d->hypot_map); 3241 d->hypot_map = NULL; 3242 3243 free(d->hypot_list); 3244 d->hypot_list = NULL; 3245 3246 free(d); 3247 } 3248 3249 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3250 { 3251 return (size_t)key; 3252 } 3253 3254 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3255 { 3256 return 0; 3257 } 3258 3259 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3260 { 3261 return k1 == k2; 3262 } 3263 3264 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3265 { 3266 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3267 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3268 int i, err = 0, type_cnt; 3269 3270 if (!d) 3271 return ERR_PTR(-ENOMEM); 3272 3273 if (OPTS_GET(opts, force_collisions, false)) 3274 hash_fn = btf_dedup_collision_hash_fn; 3275 3276 d->btf = btf; 3277 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3278 3279 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3280 if (IS_ERR(d->dedup_table)) { 3281 err = PTR_ERR(d->dedup_table); 3282 d->dedup_table = NULL; 3283 goto done; 3284 } 3285 3286 type_cnt = btf__type_cnt(btf); 3287 d->map = malloc(sizeof(__u32) * type_cnt); 3288 if (!d->map) { 3289 err = -ENOMEM; 3290 goto done; 3291 } 3292 /* special BTF "void" type is made canonical immediately */ 3293 d->map[0] = 0; 3294 for (i = 1; i < type_cnt; i++) { 3295 struct btf_type *t = btf_type_by_id(d->btf, i); 3296 3297 /* VAR and DATASEC are never deduped and are self-canonical */ 3298 if (btf_is_var(t) || btf_is_datasec(t)) 3299 d->map[i] = i; 3300 else 3301 d->map[i] = BTF_UNPROCESSED_ID; 3302 } 3303 3304 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3305 if (!d->hypot_map) { 3306 err = -ENOMEM; 3307 goto done; 3308 } 3309 for (i = 0; i < type_cnt; i++) 3310 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3311 3312 done: 3313 if (err) { 3314 btf_dedup_free(d); 3315 return ERR_PTR(err); 3316 } 3317 3318 return d; 3319 } 3320 3321 /* 3322 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3323 * string and pass pointer to it to a provided callback `fn`. 3324 */ 3325 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3326 { 3327 int i, r; 3328 3329 for (i = 0; i < d->btf->nr_types; i++) { 3330 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3331 3332 r = btf_type_visit_str_offs(t, fn, ctx); 3333 if (r) 3334 return r; 3335 } 3336 3337 if (!d->btf_ext) 3338 return 0; 3339 3340 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3341 if (r) 3342 return r; 3343 3344 return 0; 3345 } 3346 3347 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3348 { 3349 struct btf_dedup *d = ctx; 3350 __u32 str_off = *str_off_ptr; 3351 const char *s; 3352 int off, err; 3353 3354 /* don't touch empty string or string in main BTF */ 3355 if (str_off == 0 || str_off < d->btf->start_str_off) 3356 return 0; 3357 3358 s = btf__str_by_offset(d->btf, str_off); 3359 if (d->btf->base_btf) { 3360 err = btf__find_str(d->btf->base_btf, s); 3361 if (err >= 0) { 3362 *str_off_ptr = err; 3363 return 0; 3364 } 3365 if (err != -ENOENT) 3366 return err; 3367 } 3368 3369 off = strset__add_str(d->strs_set, s); 3370 if (off < 0) 3371 return off; 3372 3373 *str_off_ptr = d->btf->start_str_off + off; 3374 return 0; 3375 } 3376 3377 /* 3378 * Dedup string and filter out those that are not referenced from either .BTF 3379 * or .BTF.ext (if provided) sections. 3380 * 3381 * This is done by building index of all strings in BTF's string section, 3382 * then iterating over all entities that can reference strings (e.g., type 3383 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3384 * strings as used. After that all used strings are deduped and compacted into 3385 * sequential blob of memory and new offsets are calculated. Then all the string 3386 * references are iterated again and rewritten using new offsets. 3387 */ 3388 static int btf_dedup_strings(struct btf_dedup *d) 3389 { 3390 int err; 3391 3392 if (d->btf->strs_deduped) 3393 return 0; 3394 3395 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3396 if (IS_ERR(d->strs_set)) { 3397 err = PTR_ERR(d->strs_set); 3398 goto err_out; 3399 } 3400 3401 if (!d->btf->base_btf) { 3402 /* insert empty string; we won't be looking it up during strings 3403 * dedup, but it's good to have it for generic BTF string lookups 3404 */ 3405 err = strset__add_str(d->strs_set, ""); 3406 if (err < 0) 3407 goto err_out; 3408 } 3409 3410 /* remap string offsets */ 3411 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3412 if (err) 3413 goto err_out; 3414 3415 /* replace BTF string data and hash with deduped ones */ 3416 strset__free(d->btf->strs_set); 3417 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3418 d->btf->strs_set = d->strs_set; 3419 d->strs_set = NULL; 3420 d->btf->strs_deduped = true; 3421 return 0; 3422 3423 err_out: 3424 strset__free(d->strs_set); 3425 d->strs_set = NULL; 3426 3427 return err; 3428 } 3429 3430 static long btf_hash_common(struct btf_type *t) 3431 { 3432 long h; 3433 3434 h = hash_combine(0, t->name_off); 3435 h = hash_combine(h, t->info); 3436 h = hash_combine(h, t->size); 3437 return h; 3438 } 3439 3440 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3441 { 3442 return t1->name_off == t2->name_off && 3443 t1->info == t2->info && 3444 t1->size == t2->size; 3445 } 3446 3447 /* Calculate type signature hash of INT or TAG. */ 3448 static long btf_hash_int_decl_tag(struct btf_type *t) 3449 { 3450 __u32 info = *(__u32 *)(t + 1); 3451 long h; 3452 3453 h = btf_hash_common(t); 3454 h = hash_combine(h, info); 3455 return h; 3456 } 3457 3458 /* Check structural equality of two INTs or TAGs. */ 3459 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3460 { 3461 __u32 info1, info2; 3462 3463 if (!btf_equal_common(t1, t2)) 3464 return false; 3465 info1 = *(__u32 *)(t1 + 1); 3466 info2 = *(__u32 *)(t2 + 1); 3467 return info1 == info2; 3468 } 3469 3470 /* Calculate type signature hash of ENUM. */ 3471 static long btf_hash_enum(struct btf_type *t) 3472 { 3473 long h; 3474 3475 /* don't hash vlen and enum members to support enum fwd resolving */ 3476 h = hash_combine(0, t->name_off); 3477 h = hash_combine(h, t->info & ~0xffff); 3478 h = hash_combine(h, t->size); 3479 return h; 3480 } 3481 3482 /* Check structural equality of two ENUMs. */ 3483 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3484 { 3485 const struct btf_enum *m1, *m2; 3486 __u16 vlen; 3487 int i; 3488 3489 if (!btf_equal_common(t1, t2)) 3490 return false; 3491 3492 vlen = btf_vlen(t1); 3493 m1 = btf_enum(t1); 3494 m2 = btf_enum(t2); 3495 for (i = 0; i < vlen; i++) { 3496 if (m1->name_off != m2->name_off || m1->val != m2->val) 3497 return false; 3498 m1++; 3499 m2++; 3500 } 3501 return true; 3502 } 3503 3504 static inline bool btf_is_enum_fwd(struct btf_type *t) 3505 { 3506 return btf_is_enum(t) && btf_vlen(t) == 0; 3507 } 3508 3509 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3510 { 3511 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3512 return btf_equal_enum(t1, t2); 3513 /* ignore vlen when comparing */ 3514 return t1->name_off == t2->name_off && 3515 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3516 t1->size == t2->size; 3517 } 3518 3519 /* 3520 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3521 * as referenced type IDs equivalence is established separately during type 3522 * graph equivalence check algorithm. 3523 */ 3524 static long btf_hash_struct(struct btf_type *t) 3525 { 3526 const struct btf_member *member = btf_members(t); 3527 __u32 vlen = btf_vlen(t); 3528 long h = btf_hash_common(t); 3529 int i; 3530 3531 for (i = 0; i < vlen; i++) { 3532 h = hash_combine(h, member->name_off); 3533 h = hash_combine(h, member->offset); 3534 /* no hashing of referenced type ID, it can be unresolved yet */ 3535 member++; 3536 } 3537 return h; 3538 } 3539 3540 /* 3541 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3542 * type IDs. This check is performed during type graph equivalence check and 3543 * referenced types equivalence is checked separately. 3544 */ 3545 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3546 { 3547 const struct btf_member *m1, *m2; 3548 __u16 vlen; 3549 int i; 3550 3551 if (!btf_equal_common(t1, t2)) 3552 return false; 3553 3554 vlen = btf_vlen(t1); 3555 m1 = btf_members(t1); 3556 m2 = btf_members(t2); 3557 for (i = 0; i < vlen; i++) { 3558 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3559 return false; 3560 m1++; 3561 m2++; 3562 } 3563 return true; 3564 } 3565 3566 /* 3567 * Calculate type signature hash of ARRAY, including referenced type IDs, 3568 * under assumption that they were already resolved to canonical type IDs and 3569 * are not going to change. 3570 */ 3571 static long btf_hash_array(struct btf_type *t) 3572 { 3573 const struct btf_array *info = btf_array(t); 3574 long h = btf_hash_common(t); 3575 3576 h = hash_combine(h, info->type); 3577 h = hash_combine(h, info->index_type); 3578 h = hash_combine(h, info->nelems); 3579 return h; 3580 } 3581 3582 /* 3583 * Check exact equality of two ARRAYs, taking into account referenced 3584 * type IDs, under assumption that they were already resolved to canonical 3585 * type IDs and are not going to change. 3586 * This function is called during reference types deduplication to compare 3587 * ARRAY to potential canonical representative. 3588 */ 3589 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3590 { 3591 const struct btf_array *info1, *info2; 3592 3593 if (!btf_equal_common(t1, t2)) 3594 return false; 3595 3596 info1 = btf_array(t1); 3597 info2 = btf_array(t2); 3598 return info1->type == info2->type && 3599 info1->index_type == info2->index_type && 3600 info1->nelems == info2->nelems; 3601 } 3602 3603 /* 3604 * Check structural compatibility of two ARRAYs, ignoring referenced type 3605 * IDs. This check is performed during type graph equivalence check and 3606 * referenced types equivalence is checked separately. 3607 */ 3608 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3609 { 3610 if (!btf_equal_common(t1, t2)) 3611 return false; 3612 3613 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3614 } 3615 3616 /* 3617 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3618 * under assumption that they were already resolved to canonical type IDs and 3619 * are not going to change. 3620 */ 3621 static long btf_hash_fnproto(struct btf_type *t) 3622 { 3623 const struct btf_param *member = btf_params(t); 3624 __u16 vlen = btf_vlen(t); 3625 long h = btf_hash_common(t); 3626 int i; 3627 3628 for (i = 0; i < vlen; i++) { 3629 h = hash_combine(h, member->name_off); 3630 h = hash_combine(h, member->type); 3631 member++; 3632 } 3633 return h; 3634 } 3635 3636 /* 3637 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3638 * type IDs, under assumption that they were already resolved to canonical 3639 * type IDs and are not going to change. 3640 * This function is called during reference types deduplication to compare 3641 * FUNC_PROTO to potential canonical representative. 3642 */ 3643 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3644 { 3645 const struct btf_param *m1, *m2; 3646 __u16 vlen; 3647 int i; 3648 3649 if (!btf_equal_common(t1, t2)) 3650 return false; 3651 3652 vlen = btf_vlen(t1); 3653 m1 = btf_params(t1); 3654 m2 = btf_params(t2); 3655 for (i = 0; i < vlen; i++) { 3656 if (m1->name_off != m2->name_off || m1->type != m2->type) 3657 return false; 3658 m1++; 3659 m2++; 3660 } 3661 return true; 3662 } 3663 3664 /* 3665 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3666 * IDs. This check is performed during type graph equivalence check and 3667 * referenced types equivalence is checked separately. 3668 */ 3669 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3670 { 3671 const struct btf_param *m1, *m2; 3672 __u16 vlen; 3673 int i; 3674 3675 /* skip return type ID */ 3676 if (t1->name_off != t2->name_off || t1->info != t2->info) 3677 return false; 3678 3679 vlen = btf_vlen(t1); 3680 m1 = btf_params(t1); 3681 m2 = btf_params(t2); 3682 for (i = 0; i < vlen; i++) { 3683 if (m1->name_off != m2->name_off) 3684 return false; 3685 m1++; 3686 m2++; 3687 } 3688 return true; 3689 } 3690 3691 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3692 * types and initializing the rest of the state (canonical type mapping) for 3693 * the fixed base BTF part. 3694 */ 3695 static int btf_dedup_prep(struct btf_dedup *d) 3696 { 3697 struct btf_type *t; 3698 int type_id; 3699 long h; 3700 3701 if (!d->btf->base_btf) 3702 return 0; 3703 3704 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3705 t = btf_type_by_id(d->btf, type_id); 3706 3707 /* all base BTF types are self-canonical by definition */ 3708 d->map[type_id] = type_id; 3709 3710 switch (btf_kind(t)) { 3711 case BTF_KIND_VAR: 3712 case BTF_KIND_DATASEC: 3713 /* VAR and DATASEC are never hash/deduplicated */ 3714 continue; 3715 case BTF_KIND_CONST: 3716 case BTF_KIND_VOLATILE: 3717 case BTF_KIND_RESTRICT: 3718 case BTF_KIND_PTR: 3719 case BTF_KIND_FWD: 3720 case BTF_KIND_TYPEDEF: 3721 case BTF_KIND_FUNC: 3722 case BTF_KIND_FLOAT: 3723 case BTF_KIND_TYPE_TAG: 3724 h = btf_hash_common(t); 3725 break; 3726 case BTF_KIND_INT: 3727 case BTF_KIND_DECL_TAG: 3728 h = btf_hash_int_decl_tag(t); 3729 break; 3730 case BTF_KIND_ENUM: 3731 h = btf_hash_enum(t); 3732 break; 3733 case BTF_KIND_STRUCT: 3734 case BTF_KIND_UNION: 3735 h = btf_hash_struct(t); 3736 break; 3737 case BTF_KIND_ARRAY: 3738 h = btf_hash_array(t); 3739 break; 3740 case BTF_KIND_FUNC_PROTO: 3741 h = btf_hash_fnproto(t); 3742 break; 3743 default: 3744 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3745 return -EINVAL; 3746 } 3747 if (btf_dedup_table_add(d, h, type_id)) 3748 return -ENOMEM; 3749 } 3750 3751 return 0; 3752 } 3753 3754 /* 3755 * Deduplicate primitive types, that can't reference other types, by calculating 3756 * their type signature hash and comparing them with any possible canonical 3757 * candidate. If no canonical candidate matches, type itself is marked as 3758 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3759 */ 3760 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3761 { 3762 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3763 struct hashmap_entry *hash_entry; 3764 struct btf_type *cand; 3765 /* if we don't find equivalent type, then we are canonical */ 3766 __u32 new_id = type_id; 3767 __u32 cand_id; 3768 long h; 3769 3770 switch (btf_kind(t)) { 3771 case BTF_KIND_CONST: 3772 case BTF_KIND_VOLATILE: 3773 case BTF_KIND_RESTRICT: 3774 case BTF_KIND_PTR: 3775 case BTF_KIND_TYPEDEF: 3776 case BTF_KIND_ARRAY: 3777 case BTF_KIND_STRUCT: 3778 case BTF_KIND_UNION: 3779 case BTF_KIND_FUNC: 3780 case BTF_KIND_FUNC_PROTO: 3781 case BTF_KIND_VAR: 3782 case BTF_KIND_DATASEC: 3783 case BTF_KIND_DECL_TAG: 3784 case BTF_KIND_TYPE_TAG: 3785 return 0; 3786 3787 case BTF_KIND_INT: 3788 h = btf_hash_int_decl_tag(t); 3789 for_each_dedup_cand(d, hash_entry, h) { 3790 cand_id = (__u32)(long)hash_entry->value; 3791 cand = btf_type_by_id(d->btf, cand_id); 3792 if (btf_equal_int_tag(t, cand)) { 3793 new_id = cand_id; 3794 break; 3795 } 3796 } 3797 break; 3798 3799 case BTF_KIND_ENUM: 3800 h = btf_hash_enum(t); 3801 for_each_dedup_cand(d, hash_entry, h) { 3802 cand_id = (__u32)(long)hash_entry->value; 3803 cand = btf_type_by_id(d->btf, cand_id); 3804 if (btf_equal_enum(t, cand)) { 3805 new_id = cand_id; 3806 break; 3807 } 3808 if (btf_compat_enum(t, cand)) { 3809 if (btf_is_enum_fwd(t)) { 3810 /* resolve fwd to full enum */ 3811 new_id = cand_id; 3812 break; 3813 } 3814 /* resolve canonical enum fwd to full enum */ 3815 d->map[cand_id] = type_id; 3816 } 3817 } 3818 break; 3819 3820 case BTF_KIND_FWD: 3821 case BTF_KIND_FLOAT: 3822 h = btf_hash_common(t); 3823 for_each_dedup_cand(d, hash_entry, h) { 3824 cand_id = (__u32)(long)hash_entry->value; 3825 cand = btf_type_by_id(d->btf, cand_id); 3826 if (btf_equal_common(t, cand)) { 3827 new_id = cand_id; 3828 break; 3829 } 3830 } 3831 break; 3832 3833 default: 3834 return -EINVAL; 3835 } 3836 3837 d->map[type_id] = new_id; 3838 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3839 return -ENOMEM; 3840 3841 return 0; 3842 } 3843 3844 static int btf_dedup_prim_types(struct btf_dedup *d) 3845 { 3846 int i, err; 3847 3848 for (i = 0; i < d->btf->nr_types; i++) { 3849 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3850 if (err) 3851 return err; 3852 } 3853 return 0; 3854 } 3855 3856 /* 3857 * Check whether type is already mapped into canonical one (could be to itself). 3858 */ 3859 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3860 { 3861 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3862 } 3863 3864 /* 3865 * Resolve type ID into its canonical type ID, if any; otherwise return original 3866 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3867 * STRUCT/UNION link and resolve it into canonical type ID as well. 3868 */ 3869 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3870 { 3871 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3872 type_id = d->map[type_id]; 3873 return type_id; 3874 } 3875 3876 /* 3877 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3878 * type ID. 3879 */ 3880 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3881 { 3882 __u32 orig_type_id = type_id; 3883 3884 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3885 return type_id; 3886 3887 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3888 type_id = d->map[type_id]; 3889 3890 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3891 return type_id; 3892 3893 return orig_type_id; 3894 } 3895 3896 3897 static inline __u16 btf_fwd_kind(struct btf_type *t) 3898 { 3899 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3900 } 3901 3902 /* Check if given two types are identical ARRAY definitions */ 3903 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3904 { 3905 struct btf_type *t1, *t2; 3906 3907 t1 = btf_type_by_id(d->btf, id1); 3908 t2 = btf_type_by_id(d->btf, id2); 3909 if (!btf_is_array(t1) || !btf_is_array(t2)) 3910 return 0; 3911 3912 return btf_equal_array(t1, t2); 3913 } 3914 3915 /* Check if given two types are identical STRUCT/UNION definitions */ 3916 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 3917 { 3918 const struct btf_member *m1, *m2; 3919 struct btf_type *t1, *t2; 3920 int n, i; 3921 3922 t1 = btf_type_by_id(d->btf, id1); 3923 t2 = btf_type_by_id(d->btf, id2); 3924 3925 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 3926 return false; 3927 3928 if (!btf_shallow_equal_struct(t1, t2)) 3929 return false; 3930 3931 m1 = btf_members(t1); 3932 m2 = btf_members(t2); 3933 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 3934 if (m1->type != m2->type) 3935 return false; 3936 } 3937 return true; 3938 } 3939 3940 /* 3941 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3942 * call it "candidate graph" in this description for brevity) to a type graph 3943 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3944 * here, though keep in mind that not all types in canonical graph are 3945 * necessarily canonical representatives themselves, some of them might be 3946 * duplicates or its uniqueness might not have been established yet). 3947 * Returns: 3948 * - >0, if type graphs are equivalent; 3949 * - 0, if not equivalent; 3950 * - <0, on error. 3951 * 3952 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3953 * equivalence of BTF types at each step. If at any point BTF types in candidate 3954 * and canonical graphs are not compatible structurally, whole graphs are 3955 * incompatible. If types are structurally equivalent (i.e., all information 3956 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3957 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3958 * If a type references other types, then those referenced types are checked 3959 * for equivalence recursively. 3960 * 3961 * During DFS traversal, if we find that for current `canon_id` type we 3962 * already have some mapping in hypothetical map, we check for two possible 3963 * situations: 3964 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3965 * happen when type graphs have cycles. In this case we assume those two 3966 * types are equivalent. 3967 * - `canon_id` is mapped to different type. This is contradiction in our 3968 * hypothetical mapping, because same graph in canonical graph corresponds 3969 * to two different types in candidate graph, which for equivalent type 3970 * graphs shouldn't happen. This condition terminates equivalence check 3971 * with negative result. 3972 * 3973 * If type graphs traversal exhausts types to check and find no contradiction, 3974 * then type graphs are equivalent. 3975 * 3976 * When checking types for equivalence, there is one special case: FWD types. 3977 * If FWD type resolution is allowed and one of the types (either from canonical 3978 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3979 * flag) and their names match, hypothetical mapping is updated to point from 3980 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3981 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3982 * 3983 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3984 * if there are two exactly named (or anonymous) structs/unions that are 3985 * compatible structurally, one of which has FWD field, while other is concrete 3986 * STRUCT/UNION, but according to C sources they are different structs/unions 3987 * that are referencing different types with the same name. This is extremely 3988 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3989 * this logic is causing problems. 3990 * 3991 * Doing FWD resolution means that both candidate and/or canonical graphs can 3992 * consists of portions of the graph that come from multiple compilation units. 3993 * This is due to the fact that types within single compilation unit are always 3994 * deduplicated and FWDs are already resolved, if referenced struct/union 3995 * definiton is available. So, if we had unresolved FWD and found corresponding 3996 * STRUCT/UNION, they will be from different compilation units. This 3997 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3998 * type graph will likely have at least two different BTF types that describe 3999 * same type (e.g., most probably there will be two different BTF types for the 4000 * same 'int' primitive type) and could even have "overlapping" parts of type 4001 * graph that describe same subset of types. 4002 * 4003 * This in turn means that our assumption that each type in canonical graph 4004 * must correspond to exactly one type in candidate graph might not hold 4005 * anymore and will make it harder to detect contradictions using hypothetical 4006 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 4007 * resolution only in canonical graph. FWDs in candidate graphs are never 4008 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 4009 * that can occur: 4010 * - Both types in canonical and candidate graphs are FWDs. If they are 4011 * structurally equivalent, then they can either be both resolved to the 4012 * same STRUCT/UNION or not resolved at all. In both cases they are 4013 * equivalent and there is no need to resolve FWD on candidate side. 4014 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 4015 * so nothing to resolve as well, algorithm will check equivalence anyway. 4016 * - Type in canonical graph is FWD, while type in candidate is concrete 4017 * STRUCT/UNION. In this case candidate graph comes from single compilation 4018 * unit, so there is exactly one BTF type for each unique C type. After 4019 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 4020 * in canonical graph mapping to single BTF type in candidate graph, but 4021 * because hypothetical mapping maps from canonical to candidate types, it's 4022 * alright, and we still maintain the property of having single `canon_id` 4023 * mapping to single `cand_id` (there could be two different `canon_id` 4024 * mapped to the same `cand_id`, but it's not contradictory). 4025 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 4026 * graph is FWD. In this case we are just going to check compatibility of 4027 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4028 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4029 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4030 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4031 * canonical graph. 4032 */ 4033 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4034 __u32 canon_id) 4035 { 4036 struct btf_type *cand_type; 4037 struct btf_type *canon_type; 4038 __u32 hypot_type_id; 4039 __u16 cand_kind; 4040 __u16 canon_kind; 4041 int i, eq; 4042 4043 /* if both resolve to the same canonical, they must be equivalent */ 4044 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4045 return 1; 4046 4047 canon_id = resolve_fwd_id(d, canon_id); 4048 4049 hypot_type_id = d->hypot_map[canon_id]; 4050 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4051 if (hypot_type_id == cand_id) 4052 return 1; 4053 /* In some cases compiler will generate different DWARF types 4054 * for *identical* array type definitions and use them for 4055 * different fields within the *same* struct. This breaks type 4056 * equivalence check, which makes an assumption that candidate 4057 * types sub-graph has a consistent and deduped-by-compiler 4058 * types within a single CU. So work around that by explicitly 4059 * allowing identical array types here. 4060 */ 4061 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4062 return 1; 4063 /* It turns out that similar situation can happen with 4064 * struct/union sometimes, sigh... Handle the case where 4065 * structs/unions are exactly the same, down to the referenced 4066 * type IDs. Anything more complicated (e.g., if referenced 4067 * types are different, but equivalent) is *way more* 4068 * complicated and requires a many-to-many equivalence mapping. 4069 */ 4070 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4071 return 1; 4072 return 0; 4073 } 4074 4075 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4076 return -ENOMEM; 4077 4078 cand_type = btf_type_by_id(d->btf, cand_id); 4079 canon_type = btf_type_by_id(d->btf, canon_id); 4080 cand_kind = btf_kind(cand_type); 4081 canon_kind = btf_kind(canon_type); 4082 4083 if (cand_type->name_off != canon_type->name_off) 4084 return 0; 4085 4086 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4087 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4088 && cand_kind != canon_kind) { 4089 __u16 real_kind; 4090 __u16 fwd_kind; 4091 4092 if (cand_kind == BTF_KIND_FWD) { 4093 real_kind = canon_kind; 4094 fwd_kind = btf_fwd_kind(cand_type); 4095 } else { 4096 real_kind = cand_kind; 4097 fwd_kind = btf_fwd_kind(canon_type); 4098 /* we'd need to resolve base FWD to STRUCT/UNION */ 4099 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4100 d->hypot_adjust_canon = true; 4101 } 4102 return fwd_kind == real_kind; 4103 } 4104 4105 if (cand_kind != canon_kind) 4106 return 0; 4107 4108 switch (cand_kind) { 4109 case BTF_KIND_INT: 4110 return btf_equal_int_tag(cand_type, canon_type); 4111 4112 case BTF_KIND_ENUM: 4113 return btf_compat_enum(cand_type, canon_type); 4114 4115 case BTF_KIND_FWD: 4116 case BTF_KIND_FLOAT: 4117 return btf_equal_common(cand_type, canon_type); 4118 4119 case BTF_KIND_CONST: 4120 case BTF_KIND_VOLATILE: 4121 case BTF_KIND_RESTRICT: 4122 case BTF_KIND_PTR: 4123 case BTF_KIND_TYPEDEF: 4124 case BTF_KIND_FUNC: 4125 case BTF_KIND_TYPE_TAG: 4126 if (cand_type->info != canon_type->info) 4127 return 0; 4128 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4129 4130 case BTF_KIND_ARRAY: { 4131 const struct btf_array *cand_arr, *canon_arr; 4132 4133 if (!btf_compat_array(cand_type, canon_type)) 4134 return 0; 4135 cand_arr = btf_array(cand_type); 4136 canon_arr = btf_array(canon_type); 4137 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4138 if (eq <= 0) 4139 return eq; 4140 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4141 } 4142 4143 case BTF_KIND_STRUCT: 4144 case BTF_KIND_UNION: { 4145 const struct btf_member *cand_m, *canon_m; 4146 __u16 vlen; 4147 4148 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4149 return 0; 4150 vlen = btf_vlen(cand_type); 4151 cand_m = btf_members(cand_type); 4152 canon_m = btf_members(canon_type); 4153 for (i = 0; i < vlen; i++) { 4154 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4155 if (eq <= 0) 4156 return eq; 4157 cand_m++; 4158 canon_m++; 4159 } 4160 4161 return 1; 4162 } 4163 4164 case BTF_KIND_FUNC_PROTO: { 4165 const struct btf_param *cand_p, *canon_p; 4166 __u16 vlen; 4167 4168 if (!btf_compat_fnproto(cand_type, canon_type)) 4169 return 0; 4170 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4171 if (eq <= 0) 4172 return eq; 4173 vlen = btf_vlen(cand_type); 4174 cand_p = btf_params(cand_type); 4175 canon_p = btf_params(canon_type); 4176 for (i = 0; i < vlen; i++) { 4177 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4178 if (eq <= 0) 4179 return eq; 4180 cand_p++; 4181 canon_p++; 4182 } 4183 return 1; 4184 } 4185 4186 default: 4187 return -EINVAL; 4188 } 4189 return 0; 4190 } 4191 4192 /* 4193 * Use hypothetical mapping, produced by successful type graph equivalence 4194 * check, to augment existing struct/union canonical mapping, where possible. 4195 * 4196 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4197 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4198 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4199 * we are recording the mapping anyway. As opposed to carefulness required 4200 * for struct/union correspondence mapping (described below), for FWD resolution 4201 * it's not important, as by the time that FWD type (reference type) will be 4202 * deduplicated all structs/unions will be deduped already anyway. 4203 * 4204 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4205 * not required for correctness. It needs to be done carefully to ensure that 4206 * struct/union from candidate's type graph is not mapped into corresponding 4207 * struct/union from canonical type graph that itself hasn't been resolved into 4208 * canonical representative. The only guarantee we have is that canonical 4209 * struct/union was determined as canonical and that won't change. But any 4210 * types referenced through that struct/union fields could have been not yet 4211 * resolved, so in case like that it's too early to establish any kind of 4212 * correspondence between structs/unions. 4213 * 4214 * No canonical correspondence is derived for primitive types (they are already 4215 * deduplicated completely already anyway) or reference types (they rely on 4216 * stability of struct/union canonical relationship for equivalence checks). 4217 */ 4218 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4219 { 4220 __u32 canon_type_id, targ_type_id; 4221 __u16 t_kind, c_kind; 4222 __u32 t_id, c_id; 4223 int i; 4224 4225 for (i = 0; i < d->hypot_cnt; i++) { 4226 canon_type_id = d->hypot_list[i]; 4227 targ_type_id = d->hypot_map[canon_type_id]; 4228 t_id = resolve_type_id(d, targ_type_id); 4229 c_id = resolve_type_id(d, canon_type_id); 4230 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4231 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4232 /* 4233 * Resolve FWD into STRUCT/UNION. 4234 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4235 * mapped to canonical representative (as opposed to 4236 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4237 * eventually that struct is going to be mapped and all resolved 4238 * FWDs will automatically resolve to correct canonical 4239 * representative. This will happen before ref type deduping, 4240 * which critically depends on stability of these mapping. This 4241 * stability is not a requirement for STRUCT/UNION equivalence 4242 * checks, though. 4243 */ 4244 4245 /* if it's the split BTF case, we still need to point base FWD 4246 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4247 * will be resolved against base FWD. If we don't point base 4248 * canonical FWD to the resolved STRUCT/UNION, then all the 4249 * FWDs in split BTF won't be correctly resolved to a proper 4250 * STRUCT/UNION. 4251 */ 4252 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4253 d->map[c_id] = t_id; 4254 4255 /* if graph equivalence determined that we'd need to adjust 4256 * base canonical types, then we need to only point base FWDs 4257 * to STRUCTs/UNIONs and do no more modifications. For all 4258 * other purposes the type graphs were not equivalent. 4259 */ 4260 if (d->hypot_adjust_canon) 4261 continue; 4262 4263 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4264 d->map[t_id] = c_id; 4265 4266 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4267 c_kind != BTF_KIND_FWD && 4268 is_type_mapped(d, c_id) && 4269 !is_type_mapped(d, t_id)) { 4270 /* 4271 * as a perf optimization, we can map struct/union 4272 * that's part of type graph we just verified for 4273 * equivalence. We can do that for struct/union that has 4274 * canonical representative only, though. 4275 */ 4276 d->map[t_id] = c_id; 4277 } 4278 } 4279 } 4280 4281 /* 4282 * Deduplicate struct/union types. 4283 * 4284 * For each struct/union type its type signature hash is calculated, taking 4285 * into account type's name, size, number, order and names of fields, but 4286 * ignoring type ID's referenced from fields, because they might not be deduped 4287 * completely until after reference types deduplication phase. This type hash 4288 * is used to iterate over all potential canonical types, sharing same hash. 4289 * For each canonical candidate we check whether type graphs that they form 4290 * (through referenced types in fields and so on) are equivalent using algorithm 4291 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4292 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4293 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4294 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4295 * potentially map other structs/unions to their canonical representatives, 4296 * if such relationship hasn't yet been established. This speeds up algorithm 4297 * by eliminating some of the duplicate work. 4298 * 4299 * If no matching canonical representative was found, struct/union is marked 4300 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4301 * for further look ups. 4302 */ 4303 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4304 { 4305 struct btf_type *cand_type, *t; 4306 struct hashmap_entry *hash_entry; 4307 /* if we don't find equivalent type, then we are canonical */ 4308 __u32 new_id = type_id; 4309 __u16 kind; 4310 long h; 4311 4312 /* already deduped or is in process of deduping (loop detected) */ 4313 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4314 return 0; 4315 4316 t = btf_type_by_id(d->btf, type_id); 4317 kind = btf_kind(t); 4318 4319 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4320 return 0; 4321 4322 h = btf_hash_struct(t); 4323 for_each_dedup_cand(d, hash_entry, h) { 4324 __u32 cand_id = (__u32)(long)hash_entry->value; 4325 int eq; 4326 4327 /* 4328 * Even though btf_dedup_is_equiv() checks for 4329 * btf_shallow_equal_struct() internally when checking two 4330 * structs (unions) for equivalence, we need to guard here 4331 * from picking matching FWD type as a dedup candidate. 4332 * This can happen due to hash collision. In such case just 4333 * relying on btf_dedup_is_equiv() would lead to potentially 4334 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4335 * FWD and compatible STRUCT/UNION are considered equivalent. 4336 */ 4337 cand_type = btf_type_by_id(d->btf, cand_id); 4338 if (!btf_shallow_equal_struct(t, cand_type)) 4339 continue; 4340 4341 btf_dedup_clear_hypot_map(d); 4342 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4343 if (eq < 0) 4344 return eq; 4345 if (!eq) 4346 continue; 4347 btf_dedup_merge_hypot_map(d); 4348 if (d->hypot_adjust_canon) /* not really equivalent */ 4349 continue; 4350 new_id = cand_id; 4351 break; 4352 } 4353 4354 d->map[type_id] = new_id; 4355 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4356 return -ENOMEM; 4357 4358 return 0; 4359 } 4360 4361 static int btf_dedup_struct_types(struct btf_dedup *d) 4362 { 4363 int i, err; 4364 4365 for (i = 0; i < d->btf->nr_types; i++) { 4366 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4367 if (err) 4368 return err; 4369 } 4370 return 0; 4371 } 4372 4373 /* 4374 * Deduplicate reference type. 4375 * 4376 * Once all primitive and struct/union types got deduplicated, we can easily 4377 * deduplicate all other (reference) BTF types. This is done in two steps: 4378 * 4379 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4380 * resolution can be done either immediately for primitive or struct/union types 4381 * (because they were deduped in previous two phases) or recursively for 4382 * reference types. Recursion will always terminate at either primitive or 4383 * struct/union type, at which point we can "unwind" chain of reference types 4384 * one by one. There is no danger of encountering cycles because in C type 4385 * system the only way to form type cycle is through struct/union, so any chain 4386 * of reference types, even those taking part in a type cycle, will inevitably 4387 * reach struct/union at some point. 4388 * 4389 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4390 * becomes "stable", in the sense that no further deduplication will cause 4391 * any changes to it. With that, it's now possible to calculate type's signature 4392 * hash (this time taking into account referenced type IDs) and loop over all 4393 * potential canonical representatives. If no match was found, current type 4394 * will become canonical representative of itself and will be added into 4395 * btf_dedup->dedup_table as another possible canonical representative. 4396 */ 4397 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4398 { 4399 struct hashmap_entry *hash_entry; 4400 __u32 new_id = type_id, cand_id; 4401 struct btf_type *t, *cand; 4402 /* if we don't find equivalent type, then we are representative type */ 4403 int ref_type_id; 4404 long h; 4405 4406 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4407 return -ELOOP; 4408 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4409 return resolve_type_id(d, type_id); 4410 4411 t = btf_type_by_id(d->btf, type_id); 4412 d->map[type_id] = BTF_IN_PROGRESS_ID; 4413 4414 switch (btf_kind(t)) { 4415 case BTF_KIND_CONST: 4416 case BTF_KIND_VOLATILE: 4417 case BTF_KIND_RESTRICT: 4418 case BTF_KIND_PTR: 4419 case BTF_KIND_TYPEDEF: 4420 case BTF_KIND_FUNC: 4421 case BTF_KIND_TYPE_TAG: 4422 ref_type_id = btf_dedup_ref_type(d, t->type); 4423 if (ref_type_id < 0) 4424 return ref_type_id; 4425 t->type = ref_type_id; 4426 4427 h = btf_hash_common(t); 4428 for_each_dedup_cand(d, hash_entry, h) { 4429 cand_id = (__u32)(long)hash_entry->value; 4430 cand = btf_type_by_id(d->btf, cand_id); 4431 if (btf_equal_common(t, cand)) { 4432 new_id = cand_id; 4433 break; 4434 } 4435 } 4436 break; 4437 4438 case BTF_KIND_DECL_TAG: 4439 ref_type_id = btf_dedup_ref_type(d, t->type); 4440 if (ref_type_id < 0) 4441 return ref_type_id; 4442 t->type = ref_type_id; 4443 4444 h = btf_hash_int_decl_tag(t); 4445 for_each_dedup_cand(d, hash_entry, h) { 4446 cand_id = (__u32)(long)hash_entry->value; 4447 cand = btf_type_by_id(d->btf, cand_id); 4448 if (btf_equal_int_tag(t, cand)) { 4449 new_id = cand_id; 4450 break; 4451 } 4452 } 4453 break; 4454 4455 case BTF_KIND_ARRAY: { 4456 struct btf_array *info = btf_array(t); 4457 4458 ref_type_id = btf_dedup_ref_type(d, info->type); 4459 if (ref_type_id < 0) 4460 return ref_type_id; 4461 info->type = ref_type_id; 4462 4463 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4464 if (ref_type_id < 0) 4465 return ref_type_id; 4466 info->index_type = ref_type_id; 4467 4468 h = btf_hash_array(t); 4469 for_each_dedup_cand(d, hash_entry, h) { 4470 cand_id = (__u32)(long)hash_entry->value; 4471 cand = btf_type_by_id(d->btf, cand_id); 4472 if (btf_equal_array(t, cand)) { 4473 new_id = cand_id; 4474 break; 4475 } 4476 } 4477 break; 4478 } 4479 4480 case BTF_KIND_FUNC_PROTO: { 4481 struct btf_param *param; 4482 __u16 vlen; 4483 int i; 4484 4485 ref_type_id = btf_dedup_ref_type(d, t->type); 4486 if (ref_type_id < 0) 4487 return ref_type_id; 4488 t->type = ref_type_id; 4489 4490 vlen = btf_vlen(t); 4491 param = btf_params(t); 4492 for (i = 0; i < vlen; i++) { 4493 ref_type_id = btf_dedup_ref_type(d, param->type); 4494 if (ref_type_id < 0) 4495 return ref_type_id; 4496 param->type = ref_type_id; 4497 param++; 4498 } 4499 4500 h = btf_hash_fnproto(t); 4501 for_each_dedup_cand(d, hash_entry, h) { 4502 cand_id = (__u32)(long)hash_entry->value; 4503 cand = btf_type_by_id(d->btf, cand_id); 4504 if (btf_equal_fnproto(t, cand)) { 4505 new_id = cand_id; 4506 break; 4507 } 4508 } 4509 break; 4510 } 4511 4512 default: 4513 return -EINVAL; 4514 } 4515 4516 d->map[type_id] = new_id; 4517 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4518 return -ENOMEM; 4519 4520 return new_id; 4521 } 4522 4523 static int btf_dedup_ref_types(struct btf_dedup *d) 4524 { 4525 int i, err; 4526 4527 for (i = 0; i < d->btf->nr_types; i++) { 4528 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4529 if (err < 0) 4530 return err; 4531 } 4532 /* we won't need d->dedup_table anymore */ 4533 hashmap__free(d->dedup_table); 4534 d->dedup_table = NULL; 4535 return 0; 4536 } 4537 4538 /* 4539 * Compact types. 4540 * 4541 * After we established for each type its corresponding canonical representative 4542 * type, we now can eliminate types that are not canonical and leave only 4543 * canonical ones layed out sequentially in memory by copying them over 4544 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4545 * a map from original type ID to a new compacted type ID, which will be used 4546 * during next phase to "fix up" type IDs, referenced from struct/union and 4547 * reference types. 4548 */ 4549 static int btf_dedup_compact_types(struct btf_dedup *d) 4550 { 4551 __u32 *new_offs; 4552 __u32 next_type_id = d->btf->start_id; 4553 const struct btf_type *t; 4554 void *p; 4555 int i, id, len; 4556 4557 /* we are going to reuse hypot_map to store compaction remapping */ 4558 d->hypot_map[0] = 0; 4559 /* base BTF types are not renumbered */ 4560 for (id = 1; id < d->btf->start_id; id++) 4561 d->hypot_map[id] = id; 4562 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4563 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4564 4565 p = d->btf->types_data; 4566 4567 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4568 if (d->map[id] != id) 4569 continue; 4570 4571 t = btf__type_by_id(d->btf, id); 4572 len = btf_type_size(t); 4573 if (len < 0) 4574 return len; 4575 4576 memmove(p, t, len); 4577 d->hypot_map[id] = next_type_id; 4578 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4579 p += len; 4580 next_type_id++; 4581 } 4582 4583 /* shrink struct btf's internal types index and update btf_header */ 4584 d->btf->nr_types = next_type_id - d->btf->start_id; 4585 d->btf->type_offs_cap = d->btf->nr_types; 4586 d->btf->hdr->type_len = p - d->btf->types_data; 4587 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4588 sizeof(*new_offs)); 4589 if (d->btf->type_offs_cap && !new_offs) 4590 return -ENOMEM; 4591 d->btf->type_offs = new_offs; 4592 d->btf->hdr->str_off = d->btf->hdr->type_len; 4593 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4594 return 0; 4595 } 4596 4597 /* 4598 * Figure out final (deduplicated and compacted) type ID for provided original 4599 * `type_id` by first resolving it into corresponding canonical type ID and 4600 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4601 * which is populated during compaction phase. 4602 */ 4603 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4604 { 4605 struct btf_dedup *d = ctx; 4606 __u32 resolved_type_id, new_type_id; 4607 4608 resolved_type_id = resolve_type_id(d, *type_id); 4609 new_type_id = d->hypot_map[resolved_type_id]; 4610 if (new_type_id > BTF_MAX_NR_TYPES) 4611 return -EINVAL; 4612 4613 *type_id = new_type_id; 4614 return 0; 4615 } 4616 4617 /* 4618 * Remap referenced type IDs into deduped type IDs. 4619 * 4620 * After BTF types are deduplicated and compacted, their final type IDs may 4621 * differ from original ones. The map from original to a corresponding 4622 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4623 * compaction phase. During remapping phase we are rewriting all type IDs 4624 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4625 * their final deduped type IDs. 4626 */ 4627 static int btf_dedup_remap_types(struct btf_dedup *d) 4628 { 4629 int i, r; 4630 4631 for (i = 0; i < d->btf->nr_types; i++) { 4632 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4633 4634 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4635 if (r) 4636 return r; 4637 } 4638 4639 if (!d->btf_ext) 4640 return 0; 4641 4642 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4643 if (r) 4644 return r; 4645 4646 return 0; 4647 } 4648 4649 /* 4650 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4651 * data out of it to use for target BTF. 4652 */ 4653 struct btf *btf__load_vmlinux_btf(void) 4654 { 4655 struct { 4656 const char *path_fmt; 4657 bool raw_btf; 4658 } locations[] = { 4659 /* try canonical vmlinux BTF through sysfs first */ 4660 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4661 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4662 { "/boot/vmlinux-%1$s" }, 4663 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4664 { "/lib/modules/%1$s/build/vmlinux" }, 4665 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4666 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4667 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4668 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4669 }; 4670 char path[PATH_MAX + 1]; 4671 struct utsname buf; 4672 struct btf *btf; 4673 int i, err; 4674 4675 uname(&buf); 4676 4677 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4678 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4679 4680 if (access(path, R_OK)) 4681 continue; 4682 4683 if (locations[i].raw_btf) 4684 btf = btf__parse_raw(path); 4685 else 4686 btf = btf__parse_elf(path, NULL); 4687 err = libbpf_get_error(btf); 4688 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4689 if (err) 4690 continue; 4691 4692 return btf; 4693 } 4694 4695 pr_warn("failed to find valid kernel BTF\n"); 4696 return libbpf_err_ptr(-ESRCH); 4697 } 4698 4699 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4700 4701 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4702 { 4703 char path[80]; 4704 4705 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4706 return btf__parse_split(path, vmlinux_btf); 4707 } 4708 4709 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4710 { 4711 int i, n, err; 4712 4713 switch (btf_kind(t)) { 4714 case BTF_KIND_INT: 4715 case BTF_KIND_FLOAT: 4716 case BTF_KIND_ENUM: 4717 return 0; 4718 4719 case BTF_KIND_FWD: 4720 case BTF_KIND_CONST: 4721 case BTF_KIND_VOLATILE: 4722 case BTF_KIND_RESTRICT: 4723 case BTF_KIND_PTR: 4724 case BTF_KIND_TYPEDEF: 4725 case BTF_KIND_FUNC: 4726 case BTF_KIND_VAR: 4727 case BTF_KIND_DECL_TAG: 4728 case BTF_KIND_TYPE_TAG: 4729 return visit(&t->type, ctx); 4730 4731 case BTF_KIND_ARRAY: { 4732 struct btf_array *a = btf_array(t); 4733 4734 err = visit(&a->type, ctx); 4735 err = err ?: visit(&a->index_type, ctx); 4736 return err; 4737 } 4738 4739 case BTF_KIND_STRUCT: 4740 case BTF_KIND_UNION: { 4741 struct btf_member *m = btf_members(t); 4742 4743 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4744 err = visit(&m->type, ctx); 4745 if (err) 4746 return err; 4747 } 4748 return 0; 4749 } 4750 4751 case BTF_KIND_FUNC_PROTO: { 4752 struct btf_param *m = btf_params(t); 4753 4754 err = visit(&t->type, ctx); 4755 if (err) 4756 return err; 4757 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4758 err = visit(&m->type, ctx); 4759 if (err) 4760 return err; 4761 } 4762 return 0; 4763 } 4764 4765 case BTF_KIND_DATASEC: { 4766 struct btf_var_secinfo *m = btf_var_secinfos(t); 4767 4768 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4769 err = visit(&m->type, ctx); 4770 if (err) 4771 return err; 4772 } 4773 return 0; 4774 } 4775 4776 default: 4777 return -EINVAL; 4778 } 4779 } 4780 4781 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4782 { 4783 int i, n, err; 4784 4785 err = visit(&t->name_off, ctx); 4786 if (err) 4787 return err; 4788 4789 switch (btf_kind(t)) { 4790 case BTF_KIND_STRUCT: 4791 case BTF_KIND_UNION: { 4792 struct btf_member *m = btf_members(t); 4793 4794 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4795 err = visit(&m->name_off, ctx); 4796 if (err) 4797 return err; 4798 } 4799 break; 4800 } 4801 case BTF_KIND_ENUM: { 4802 struct btf_enum *m = btf_enum(t); 4803 4804 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4805 err = visit(&m->name_off, ctx); 4806 if (err) 4807 return err; 4808 } 4809 break; 4810 } 4811 case BTF_KIND_FUNC_PROTO: { 4812 struct btf_param *m = btf_params(t); 4813 4814 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4815 err = visit(&m->name_off, ctx); 4816 if (err) 4817 return err; 4818 } 4819 break; 4820 } 4821 default: 4822 break; 4823 } 4824 4825 return 0; 4826 } 4827 4828 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4829 { 4830 const struct btf_ext_info *seg; 4831 struct btf_ext_info_sec *sec; 4832 int i, err; 4833 4834 seg = &btf_ext->func_info; 4835 for_each_btf_ext_sec(seg, sec) { 4836 struct bpf_func_info_min *rec; 4837 4838 for_each_btf_ext_rec(seg, sec, i, rec) { 4839 err = visit(&rec->type_id, ctx); 4840 if (err < 0) 4841 return err; 4842 } 4843 } 4844 4845 seg = &btf_ext->core_relo_info; 4846 for_each_btf_ext_sec(seg, sec) { 4847 struct bpf_core_relo *rec; 4848 4849 for_each_btf_ext_rec(seg, sec, i, rec) { 4850 err = visit(&rec->type_id, ctx); 4851 if (err < 0) 4852 return err; 4853 } 4854 } 4855 4856 return 0; 4857 } 4858 4859 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4860 { 4861 const struct btf_ext_info *seg; 4862 struct btf_ext_info_sec *sec; 4863 int i, err; 4864 4865 seg = &btf_ext->func_info; 4866 for_each_btf_ext_sec(seg, sec) { 4867 err = visit(&sec->sec_name_off, ctx); 4868 if (err) 4869 return err; 4870 } 4871 4872 seg = &btf_ext->line_info; 4873 for_each_btf_ext_sec(seg, sec) { 4874 struct bpf_line_info_min *rec; 4875 4876 err = visit(&sec->sec_name_off, ctx); 4877 if (err) 4878 return err; 4879 4880 for_each_btf_ext_rec(seg, sec, i, rec) { 4881 err = visit(&rec->file_name_off, ctx); 4882 if (err) 4883 return err; 4884 err = visit(&rec->line_off, ctx); 4885 if (err) 4886 return err; 4887 } 4888 } 4889 4890 seg = &btf_ext->core_relo_info; 4891 for_each_btf_ext_sec(seg, sec) { 4892 struct bpf_core_relo *rec; 4893 4894 err = visit(&sec->sec_name_off, ctx); 4895 if (err) 4896 return err; 4897 4898 for_each_btf_ext_rec(seg, sec, i, rec) { 4899 err = visit(&rec->access_str_off, ctx); 4900 if (err) 4901 return err; 4902 } 4903 } 4904 4905 return 0; 4906 } 4907