xref: /openbmc/linux/tools/lib/bpf/btf.c (revision eef4e616)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
193 {
194 	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
195 			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
196 }
197 
198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
199 {
200 	__u32 *p;
201 
202 	p = btf_add_type_offs_mem(btf, 1);
203 	if (!p)
204 		return -ENOMEM;
205 
206 	*p = type_off;
207 	return 0;
208 }
209 
210 static void btf_bswap_hdr(struct btf_header *h)
211 {
212 	h->magic = bswap_16(h->magic);
213 	h->hdr_len = bswap_32(h->hdr_len);
214 	h->type_off = bswap_32(h->type_off);
215 	h->type_len = bswap_32(h->type_len);
216 	h->str_off = bswap_32(h->str_off);
217 	h->str_len = bswap_32(h->str_len);
218 }
219 
220 static int btf_parse_hdr(struct btf *btf)
221 {
222 	struct btf_header *hdr = btf->hdr;
223 	__u32 meta_left;
224 
225 	if (btf->raw_size < sizeof(struct btf_header)) {
226 		pr_debug("BTF header not found\n");
227 		return -EINVAL;
228 	}
229 
230 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
231 		btf->swapped_endian = true;
232 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
233 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
234 				bswap_32(hdr->hdr_len));
235 			return -ENOTSUP;
236 		}
237 		btf_bswap_hdr(hdr);
238 	} else if (hdr->magic != BTF_MAGIC) {
239 		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
240 		return -EINVAL;
241 	}
242 
243 	if (btf->raw_size < hdr->hdr_len) {
244 		pr_debug("BTF header len %u larger than data size %u\n",
245 			 hdr->hdr_len, btf->raw_size);
246 		return -EINVAL;
247 	}
248 
249 	meta_left = btf->raw_size - hdr->hdr_len;
250 	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
251 		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
252 		return -EINVAL;
253 	}
254 
255 	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
256 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
257 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
258 		return -EINVAL;
259 	}
260 
261 	if (hdr->type_off % 4) {
262 		pr_debug("BTF type section is not aligned to 4 bytes\n");
263 		return -EINVAL;
264 	}
265 
266 	return 0;
267 }
268 
269 static int btf_parse_str_sec(struct btf *btf)
270 {
271 	const struct btf_header *hdr = btf->hdr;
272 	const char *start = btf->strs_data;
273 	const char *end = start + btf->hdr->str_len;
274 
275 	if (btf->base_btf && hdr->str_len == 0)
276 		return 0;
277 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
278 		pr_debug("Invalid BTF string section\n");
279 		return -EINVAL;
280 	}
281 	if (!btf->base_btf && start[0]) {
282 		pr_debug("Invalid BTF string section\n");
283 		return -EINVAL;
284 	}
285 	return 0;
286 }
287 
288 static int btf_type_size(const struct btf_type *t)
289 {
290 	const int base_size = sizeof(struct btf_type);
291 	__u16 vlen = btf_vlen(t);
292 
293 	switch (btf_kind(t)) {
294 	case BTF_KIND_FWD:
295 	case BTF_KIND_CONST:
296 	case BTF_KIND_VOLATILE:
297 	case BTF_KIND_RESTRICT:
298 	case BTF_KIND_PTR:
299 	case BTF_KIND_TYPEDEF:
300 	case BTF_KIND_FUNC:
301 	case BTF_KIND_FLOAT:
302 	case BTF_KIND_TYPE_TAG:
303 		return base_size;
304 	case BTF_KIND_INT:
305 		return base_size + sizeof(__u32);
306 	case BTF_KIND_ENUM:
307 		return base_size + vlen * sizeof(struct btf_enum);
308 	case BTF_KIND_ENUM64:
309 		return base_size + vlen * sizeof(struct btf_enum64);
310 	case BTF_KIND_ARRAY:
311 		return base_size + sizeof(struct btf_array);
312 	case BTF_KIND_STRUCT:
313 	case BTF_KIND_UNION:
314 		return base_size + vlen * sizeof(struct btf_member);
315 	case BTF_KIND_FUNC_PROTO:
316 		return base_size + vlen * sizeof(struct btf_param);
317 	case BTF_KIND_VAR:
318 		return base_size + sizeof(struct btf_var);
319 	case BTF_KIND_DATASEC:
320 		return base_size + vlen * sizeof(struct btf_var_secinfo);
321 	case BTF_KIND_DECL_TAG:
322 		return base_size + sizeof(struct btf_decl_tag);
323 	default:
324 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
325 		return -EINVAL;
326 	}
327 }
328 
329 static void btf_bswap_type_base(struct btf_type *t)
330 {
331 	t->name_off = bswap_32(t->name_off);
332 	t->info = bswap_32(t->info);
333 	t->type = bswap_32(t->type);
334 }
335 
336 static int btf_bswap_type_rest(struct btf_type *t)
337 {
338 	struct btf_var_secinfo *v;
339 	struct btf_enum64 *e64;
340 	struct btf_member *m;
341 	struct btf_array *a;
342 	struct btf_param *p;
343 	struct btf_enum *e;
344 	__u16 vlen = btf_vlen(t);
345 	int i;
346 
347 	switch (btf_kind(t)) {
348 	case BTF_KIND_FWD:
349 	case BTF_KIND_CONST:
350 	case BTF_KIND_VOLATILE:
351 	case BTF_KIND_RESTRICT:
352 	case BTF_KIND_PTR:
353 	case BTF_KIND_TYPEDEF:
354 	case BTF_KIND_FUNC:
355 	case BTF_KIND_FLOAT:
356 	case BTF_KIND_TYPE_TAG:
357 		return 0;
358 	case BTF_KIND_INT:
359 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
360 		return 0;
361 	case BTF_KIND_ENUM:
362 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
363 			e->name_off = bswap_32(e->name_off);
364 			e->val = bswap_32(e->val);
365 		}
366 		return 0;
367 	case BTF_KIND_ENUM64:
368 		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
369 			e64->name_off = bswap_32(e64->name_off);
370 			e64->val_lo32 = bswap_32(e64->val_lo32);
371 			e64->val_hi32 = bswap_32(e64->val_hi32);
372 		}
373 		return 0;
374 	case BTF_KIND_ARRAY:
375 		a = btf_array(t);
376 		a->type = bswap_32(a->type);
377 		a->index_type = bswap_32(a->index_type);
378 		a->nelems = bswap_32(a->nelems);
379 		return 0;
380 	case BTF_KIND_STRUCT:
381 	case BTF_KIND_UNION:
382 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
383 			m->name_off = bswap_32(m->name_off);
384 			m->type = bswap_32(m->type);
385 			m->offset = bswap_32(m->offset);
386 		}
387 		return 0;
388 	case BTF_KIND_FUNC_PROTO:
389 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
390 			p->name_off = bswap_32(p->name_off);
391 			p->type = bswap_32(p->type);
392 		}
393 		return 0;
394 	case BTF_KIND_VAR:
395 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
396 		return 0;
397 	case BTF_KIND_DATASEC:
398 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
399 			v->type = bswap_32(v->type);
400 			v->offset = bswap_32(v->offset);
401 			v->size = bswap_32(v->size);
402 		}
403 		return 0;
404 	case BTF_KIND_DECL_TAG:
405 		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
406 		return 0;
407 	default:
408 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
409 		return -EINVAL;
410 	}
411 }
412 
413 static int btf_parse_type_sec(struct btf *btf)
414 {
415 	struct btf_header *hdr = btf->hdr;
416 	void *next_type = btf->types_data;
417 	void *end_type = next_type + hdr->type_len;
418 	int err, type_size;
419 
420 	while (next_type + sizeof(struct btf_type) <= end_type) {
421 		if (btf->swapped_endian)
422 			btf_bswap_type_base(next_type);
423 
424 		type_size = btf_type_size(next_type);
425 		if (type_size < 0)
426 			return type_size;
427 		if (next_type + type_size > end_type) {
428 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
429 			return -EINVAL;
430 		}
431 
432 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
433 			return -EINVAL;
434 
435 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
436 		if (err)
437 			return err;
438 
439 		next_type += type_size;
440 		btf->nr_types++;
441 	}
442 
443 	if (next_type != end_type) {
444 		pr_warn("BTF types data is malformed\n");
445 		return -EINVAL;
446 	}
447 
448 	return 0;
449 }
450 
451 __u32 btf__type_cnt(const struct btf *btf)
452 {
453 	return btf->start_id + btf->nr_types;
454 }
455 
456 const struct btf *btf__base_btf(const struct btf *btf)
457 {
458 	return btf->base_btf;
459 }
460 
461 /* internal helper returning non-const pointer to a type */
462 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
463 {
464 	if (type_id == 0)
465 		return &btf_void;
466 	if (type_id < btf->start_id)
467 		return btf_type_by_id(btf->base_btf, type_id);
468 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
469 }
470 
471 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
472 {
473 	if (type_id >= btf->start_id + btf->nr_types)
474 		return errno = EINVAL, NULL;
475 	return btf_type_by_id((struct btf *)btf, type_id);
476 }
477 
478 static int determine_ptr_size(const struct btf *btf)
479 {
480 	static const char * const long_aliases[] = {
481 		"long",
482 		"long int",
483 		"int long",
484 		"unsigned long",
485 		"long unsigned",
486 		"unsigned long int",
487 		"unsigned int long",
488 		"long unsigned int",
489 		"long int unsigned",
490 		"int unsigned long",
491 		"int long unsigned",
492 	};
493 	const struct btf_type *t;
494 	const char *name;
495 	int i, j, n;
496 
497 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
498 		return btf->base_btf->ptr_sz;
499 
500 	n = btf__type_cnt(btf);
501 	for (i = 1; i < n; i++) {
502 		t = btf__type_by_id(btf, i);
503 		if (!btf_is_int(t))
504 			continue;
505 
506 		if (t->size != 4 && t->size != 8)
507 			continue;
508 
509 		name = btf__name_by_offset(btf, t->name_off);
510 		if (!name)
511 			continue;
512 
513 		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
514 			if (strcmp(name, long_aliases[j]) == 0)
515 				return t->size;
516 		}
517 	}
518 
519 	return -1;
520 }
521 
522 static size_t btf_ptr_sz(const struct btf *btf)
523 {
524 	if (!btf->ptr_sz)
525 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
526 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
527 }
528 
529 /* Return pointer size this BTF instance assumes. The size is heuristically
530  * determined by looking for 'long' or 'unsigned long' integer type and
531  * recording its size in bytes. If BTF type information doesn't have any such
532  * type, this function returns 0. In the latter case, native architecture's
533  * pointer size is assumed, so will be either 4 or 8, depending on
534  * architecture that libbpf was compiled for. It's possible to override
535  * guessed value by using btf__set_pointer_size() API.
536  */
537 size_t btf__pointer_size(const struct btf *btf)
538 {
539 	if (!btf->ptr_sz)
540 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
541 
542 	if (btf->ptr_sz < 0)
543 		/* not enough BTF type info to guess */
544 		return 0;
545 
546 	return btf->ptr_sz;
547 }
548 
549 /* Override or set pointer size in bytes. Only values of 4 and 8 are
550  * supported.
551  */
552 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
553 {
554 	if (ptr_sz != 4 && ptr_sz != 8)
555 		return libbpf_err(-EINVAL);
556 	btf->ptr_sz = ptr_sz;
557 	return 0;
558 }
559 
560 static bool is_host_big_endian(void)
561 {
562 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
563 	return false;
564 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
565 	return true;
566 #else
567 # error "Unrecognized __BYTE_ORDER__"
568 #endif
569 }
570 
571 enum btf_endianness btf__endianness(const struct btf *btf)
572 {
573 	if (is_host_big_endian())
574 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
575 	else
576 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
577 }
578 
579 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
580 {
581 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
582 		return libbpf_err(-EINVAL);
583 
584 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
585 	if (!btf->swapped_endian) {
586 		free(btf->raw_data_swapped);
587 		btf->raw_data_swapped = NULL;
588 	}
589 	return 0;
590 }
591 
592 static bool btf_type_is_void(const struct btf_type *t)
593 {
594 	return t == &btf_void || btf_is_fwd(t);
595 }
596 
597 static bool btf_type_is_void_or_null(const struct btf_type *t)
598 {
599 	return !t || btf_type_is_void(t);
600 }
601 
602 #define MAX_RESOLVE_DEPTH 32
603 
604 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
605 {
606 	const struct btf_array *array;
607 	const struct btf_type *t;
608 	__u32 nelems = 1;
609 	__s64 size = -1;
610 	int i;
611 
612 	t = btf__type_by_id(btf, type_id);
613 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
614 		switch (btf_kind(t)) {
615 		case BTF_KIND_INT:
616 		case BTF_KIND_STRUCT:
617 		case BTF_KIND_UNION:
618 		case BTF_KIND_ENUM:
619 		case BTF_KIND_ENUM64:
620 		case BTF_KIND_DATASEC:
621 		case BTF_KIND_FLOAT:
622 			size = t->size;
623 			goto done;
624 		case BTF_KIND_PTR:
625 			size = btf_ptr_sz(btf);
626 			goto done;
627 		case BTF_KIND_TYPEDEF:
628 		case BTF_KIND_VOLATILE:
629 		case BTF_KIND_CONST:
630 		case BTF_KIND_RESTRICT:
631 		case BTF_KIND_VAR:
632 		case BTF_KIND_DECL_TAG:
633 		case BTF_KIND_TYPE_TAG:
634 			type_id = t->type;
635 			break;
636 		case BTF_KIND_ARRAY:
637 			array = btf_array(t);
638 			if (nelems && array->nelems > UINT32_MAX / nelems)
639 				return libbpf_err(-E2BIG);
640 			nelems *= array->nelems;
641 			type_id = array->type;
642 			break;
643 		default:
644 			return libbpf_err(-EINVAL);
645 		}
646 
647 		t = btf__type_by_id(btf, type_id);
648 	}
649 
650 done:
651 	if (size < 0)
652 		return libbpf_err(-EINVAL);
653 	if (nelems && size > UINT32_MAX / nelems)
654 		return libbpf_err(-E2BIG);
655 
656 	return nelems * size;
657 }
658 
659 int btf__align_of(const struct btf *btf, __u32 id)
660 {
661 	const struct btf_type *t = btf__type_by_id(btf, id);
662 	__u16 kind = btf_kind(t);
663 
664 	switch (kind) {
665 	case BTF_KIND_INT:
666 	case BTF_KIND_ENUM:
667 	case BTF_KIND_ENUM64:
668 	case BTF_KIND_FLOAT:
669 		return min(btf_ptr_sz(btf), (size_t)t->size);
670 	case BTF_KIND_PTR:
671 		return btf_ptr_sz(btf);
672 	case BTF_KIND_TYPEDEF:
673 	case BTF_KIND_VOLATILE:
674 	case BTF_KIND_CONST:
675 	case BTF_KIND_RESTRICT:
676 	case BTF_KIND_TYPE_TAG:
677 		return btf__align_of(btf, t->type);
678 	case BTF_KIND_ARRAY:
679 		return btf__align_of(btf, btf_array(t)->type);
680 	case BTF_KIND_STRUCT:
681 	case BTF_KIND_UNION: {
682 		const struct btf_member *m = btf_members(t);
683 		__u16 vlen = btf_vlen(t);
684 		int i, max_align = 1, align;
685 
686 		for (i = 0; i < vlen; i++, m++) {
687 			align = btf__align_of(btf, m->type);
688 			if (align <= 0)
689 				return libbpf_err(align);
690 			max_align = max(max_align, align);
691 		}
692 
693 		return max_align;
694 	}
695 	default:
696 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
697 		return errno = EINVAL, 0;
698 	}
699 }
700 
701 int btf__resolve_type(const struct btf *btf, __u32 type_id)
702 {
703 	const struct btf_type *t;
704 	int depth = 0;
705 
706 	t = btf__type_by_id(btf, type_id);
707 	while (depth < MAX_RESOLVE_DEPTH &&
708 	       !btf_type_is_void_or_null(t) &&
709 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
710 		type_id = t->type;
711 		t = btf__type_by_id(btf, type_id);
712 		depth++;
713 	}
714 
715 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
716 		return libbpf_err(-EINVAL);
717 
718 	return type_id;
719 }
720 
721 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
722 {
723 	__u32 i, nr_types = btf__type_cnt(btf);
724 
725 	if (!strcmp(type_name, "void"))
726 		return 0;
727 
728 	for (i = 1; i < nr_types; i++) {
729 		const struct btf_type *t = btf__type_by_id(btf, i);
730 		const char *name = btf__name_by_offset(btf, t->name_off);
731 
732 		if (name && !strcmp(type_name, name))
733 			return i;
734 	}
735 
736 	return libbpf_err(-ENOENT);
737 }
738 
739 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
740 				   const char *type_name, __u32 kind)
741 {
742 	__u32 i, nr_types = btf__type_cnt(btf);
743 
744 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
745 		return 0;
746 
747 	for (i = start_id; i < nr_types; i++) {
748 		const struct btf_type *t = btf__type_by_id(btf, i);
749 		const char *name;
750 
751 		if (btf_kind(t) != kind)
752 			continue;
753 		name = btf__name_by_offset(btf, t->name_off);
754 		if (name && !strcmp(type_name, name))
755 			return i;
756 	}
757 
758 	return libbpf_err(-ENOENT);
759 }
760 
761 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
762 				 __u32 kind)
763 {
764 	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
765 }
766 
767 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
768 			     __u32 kind)
769 {
770 	return btf_find_by_name_kind(btf, 1, type_name, kind);
771 }
772 
773 static bool btf_is_modifiable(const struct btf *btf)
774 {
775 	return (void *)btf->hdr != btf->raw_data;
776 }
777 
778 void btf__free(struct btf *btf)
779 {
780 	if (IS_ERR_OR_NULL(btf))
781 		return;
782 
783 	if (btf->fd >= 0)
784 		close(btf->fd);
785 
786 	if (btf_is_modifiable(btf)) {
787 		/* if BTF was modified after loading, it will have a split
788 		 * in-memory representation for header, types, and strings
789 		 * sections, so we need to free all of them individually. It
790 		 * might still have a cached contiguous raw data present,
791 		 * which will be unconditionally freed below.
792 		 */
793 		free(btf->hdr);
794 		free(btf->types_data);
795 		strset__free(btf->strs_set);
796 	}
797 	free(btf->raw_data);
798 	free(btf->raw_data_swapped);
799 	free(btf->type_offs);
800 	free(btf);
801 }
802 
803 static struct btf *btf_new_empty(struct btf *base_btf)
804 {
805 	struct btf *btf;
806 
807 	btf = calloc(1, sizeof(*btf));
808 	if (!btf)
809 		return ERR_PTR(-ENOMEM);
810 
811 	btf->nr_types = 0;
812 	btf->start_id = 1;
813 	btf->start_str_off = 0;
814 	btf->fd = -1;
815 	btf->ptr_sz = sizeof(void *);
816 	btf->swapped_endian = false;
817 
818 	if (base_btf) {
819 		btf->base_btf = base_btf;
820 		btf->start_id = btf__type_cnt(base_btf);
821 		btf->start_str_off = base_btf->hdr->str_len;
822 	}
823 
824 	/* +1 for empty string at offset 0 */
825 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
826 	btf->raw_data = calloc(1, btf->raw_size);
827 	if (!btf->raw_data) {
828 		free(btf);
829 		return ERR_PTR(-ENOMEM);
830 	}
831 
832 	btf->hdr = btf->raw_data;
833 	btf->hdr->hdr_len = sizeof(struct btf_header);
834 	btf->hdr->magic = BTF_MAGIC;
835 	btf->hdr->version = BTF_VERSION;
836 
837 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
838 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
839 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
840 
841 	return btf;
842 }
843 
844 struct btf *btf__new_empty(void)
845 {
846 	return libbpf_ptr(btf_new_empty(NULL));
847 }
848 
849 struct btf *btf__new_empty_split(struct btf *base_btf)
850 {
851 	return libbpf_ptr(btf_new_empty(base_btf));
852 }
853 
854 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
855 {
856 	struct btf *btf;
857 	int err;
858 
859 	btf = calloc(1, sizeof(struct btf));
860 	if (!btf)
861 		return ERR_PTR(-ENOMEM);
862 
863 	btf->nr_types = 0;
864 	btf->start_id = 1;
865 	btf->start_str_off = 0;
866 	btf->fd = -1;
867 
868 	if (base_btf) {
869 		btf->base_btf = base_btf;
870 		btf->start_id = btf__type_cnt(base_btf);
871 		btf->start_str_off = base_btf->hdr->str_len;
872 	}
873 
874 	btf->raw_data = malloc(size);
875 	if (!btf->raw_data) {
876 		err = -ENOMEM;
877 		goto done;
878 	}
879 	memcpy(btf->raw_data, data, size);
880 	btf->raw_size = size;
881 
882 	btf->hdr = btf->raw_data;
883 	err = btf_parse_hdr(btf);
884 	if (err)
885 		goto done;
886 
887 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
888 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
889 
890 	err = btf_parse_str_sec(btf);
891 	err = err ?: btf_parse_type_sec(btf);
892 	if (err)
893 		goto done;
894 
895 done:
896 	if (err) {
897 		btf__free(btf);
898 		return ERR_PTR(err);
899 	}
900 
901 	return btf;
902 }
903 
904 struct btf *btf__new(const void *data, __u32 size)
905 {
906 	return libbpf_ptr(btf_new(data, size, NULL));
907 }
908 
909 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
910 				 struct btf_ext **btf_ext)
911 {
912 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
913 	int err = 0, fd = -1, idx = 0;
914 	struct btf *btf = NULL;
915 	Elf_Scn *scn = NULL;
916 	Elf *elf = NULL;
917 	GElf_Ehdr ehdr;
918 	size_t shstrndx;
919 
920 	if (elf_version(EV_CURRENT) == EV_NONE) {
921 		pr_warn("failed to init libelf for %s\n", path);
922 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
923 	}
924 
925 	fd = open(path, O_RDONLY | O_CLOEXEC);
926 	if (fd < 0) {
927 		err = -errno;
928 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
929 		return ERR_PTR(err);
930 	}
931 
932 	err = -LIBBPF_ERRNO__FORMAT;
933 
934 	elf = elf_begin(fd, ELF_C_READ, NULL);
935 	if (!elf) {
936 		pr_warn("failed to open %s as ELF file\n", path);
937 		goto done;
938 	}
939 	if (!gelf_getehdr(elf, &ehdr)) {
940 		pr_warn("failed to get EHDR from %s\n", path);
941 		goto done;
942 	}
943 
944 	if (elf_getshdrstrndx(elf, &shstrndx)) {
945 		pr_warn("failed to get section names section index for %s\n",
946 			path);
947 		goto done;
948 	}
949 
950 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
951 		pr_warn("failed to get e_shstrndx from %s\n", path);
952 		goto done;
953 	}
954 
955 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
956 		GElf_Shdr sh;
957 		char *name;
958 
959 		idx++;
960 		if (gelf_getshdr(scn, &sh) != &sh) {
961 			pr_warn("failed to get section(%d) header from %s\n",
962 				idx, path);
963 			goto done;
964 		}
965 		name = elf_strptr(elf, shstrndx, sh.sh_name);
966 		if (!name) {
967 			pr_warn("failed to get section(%d) name from %s\n",
968 				idx, path);
969 			goto done;
970 		}
971 		if (strcmp(name, BTF_ELF_SEC) == 0) {
972 			btf_data = elf_getdata(scn, 0);
973 			if (!btf_data) {
974 				pr_warn("failed to get section(%d, %s) data from %s\n",
975 					idx, name, path);
976 				goto done;
977 			}
978 			continue;
979 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
980 			btf_ext_data = elf_getdata(scn, 0);
981 			if (!btf_ext_data) {
982 				pr_warn("failed to get section(%d, %s) data from %s\n",
983 					idx, name, path);
984 				goto done;
985 			}
986 			continue;
987 		}
988 	}
989 
990 	err = 0;
991 
992 	if (!btf_data) {
993 		err = -ENOENT;
994 		goto done;
995 	}
996 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
997 	err = libbpf_get_error(btf);
998 	if (err)
999 		goto done;
1000 
1001 	switch (gelf_getclass(elf)) {
1002 	case ELFCLASS32:
1003 		btf__set_pointer_size(btf, 4);
1004 		break;
1005 	case ELFCLASS64:
1006 		btf__set_pointer_size(btf, 8);
1007 		break;
1008 	default:
1009 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1010 		break;
1011 	}
1012 
1013 	if (btf_ext && btf_ext_data) {
1014 		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1015 		err = libbpf_get_error(*btf_ext);
1016 		if (err)
1017 			goto done;
1018 	} else if (btf_ext) {
1019 		*btf_ext = NULL;
1020 	}
1021 done:
1022 	if (elf)
1023 		elf_end(elf);
1024 	close(fd);
1025 
1026 	if (!err)
1027 		return btf;
1028 
1029 	if (btf_ext)
1030 		btf_ext__free(*btf_ext);
1031 	btf__free(btf);
1032 
1033 	return ERR_PTR(err);
1034 }
1035 
1036 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1037 {
1038 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1039 }
1040 
1041 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1042 {
1043 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1044 }
1045 
1046 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1047 {
1048 	struct btf *btf = NULL;
1049 	void *data = NULL;
1050 	FILE *f = NULL;
1051 	__u16 magic;
1052 	int err = 0;
1053 	long sz;
1054 
1055 	f = fopen(path, "rb");
1056 	if (!f) {
1057 		err = -errno;
1058 		goto err_out;
1059 	}
1060 
1061 	/* check BTF magic */
1062 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1063 		err = -EIO;
1064 		goto err_out;
1065 	}
1066 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1067 		/* definitely not a raw BTF */
1068 		err = -EPROTO;
1069 		goto err_out;
1070 	}
1071 
1072 	/* get file size */
1073 	if (fseek(f, 0, SEEK_END)) {
1074 		err = -errno;
1075 		goto err_out;
1076 	}
1077 	sz = ftell(f);
1078 	if (sz < 0) {
1079 		err = -errno;
1080 		goto err_out;
1081 	}
1082 	/* rewind to the start */
1083 	if (fseek(f, 0, SEEK_SET)) {
1084 		err = -errno;
1085 		goto err_out;
1086 	}
1087 
1088 	/* pre-alloc memory and read all of BTF data */
1089 	data = malloc(sz);
1090 	if (!data) {
1091 		err = -ENOMEM;
1092 		goto err_out;
1093 	}
1094 	if (fread(data, 1, sz, f) < sz) {
1095 		err = -EIO;
1096 		goto err_out;
1097 	}
1098 
1099 	/* finally parse BTF data */
1100 	btf = btf_new(data, sz, base_btf);
1101 
1102 err_out:
1103 	free(data);
1104 	if (f)
1105 		fclose(f);
1106 	return err ? ERR_PTR(err) : btf;
1107 }
1108 
1109 struct btf *btf__parse_raw(const char *path)
1110 {
1111 	return libbpf_ptr(btf_parse_raw(path, NULL));
1112 }
1113 
1114 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1115 {
1116 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1117 }
1118 
1119 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1120 {
1121 	struct btf *btf;
1122 	int err;
1123 
1124 	if (btf_ext)
1125 		*btf_ext = NULL;
1126 
1127 	btf = btf_parse_raw(path, base_btf);
1128 	err = libbpf_get_error(btf);
1129 	if (!err)
1130 		return btf;
1131 	if (err != -EPROTO)
1132 		return ERR_PTR(err);
1133 	return btf_parse_elf(path, base_btf, btf_ext);
1134 }
1135 
1136 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1137 {
1138 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1139 }
1140 
1141 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1142 {
1143 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1144 }
1145 
1146 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1147 
1148 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1149 {
1150 	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1151 	__u32 buf_sz = 0, raw_size;
1152 	char *buf = NULL, *tmp;
1153 	void *raw_data;
1154 	int err = 0;
1155 
1156 	if (btf->fd >= 0)
1157 		return libbpf_err(-EEXIST);
1158 	if (log_sz && !log_buf)
1159 		return libbpf_err(-EINVAL);
1160 
1161 	/* cache native raw data representation */
1162 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1163 	if (!raw_data) {
1164 		err = -ENOMEM;
1165 		goto done;
1166 	}
1167 	btf->raw_size = raw_size;
1168 	btf->raw_data = raw_data;
1169 
1170 retry_load:
1171 	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1172 	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1173 	 * retry, using either auto-allocated or custom log_buf. This way
1174 	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1175 	 * for successful load and no need for log_buf.
1176 	 */
1177 	if (log_level) {
1178 		/* if caller didn't provide custom log_buf, we'll keep
1179 		 * allocating our own progressively bigger buffers for BTF
1180 		 * verification log
1181 		 */
1182 		if (!log_buf) {
1183 			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1184 			tmp = realloc(buf, buf_sz);
1185 			if (!tmp) {
1186 				err = -ENOMEM;
1187 				goto done;
1188 			}
1189 			buf = tmp;
1190 			buf[0] = '\0';
1191 		}
1192 
1193 		opts.log_buf = log_buf ? log_buf : buf;
1194 		opts.log_size = log_buf ? log_sz : buf_sz;
1195 		opts.log_level = log_level;
1196 	}
1197 
1198 	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1199 	if (btf->fd < 0) {
1200 		/* time to turn on verbose mode and try again */
1201 		if (log_level == 0) {
1202 			log_level = 1;
1203 			goto retry_load;
1204 		}
1205 		/* only retry if caller didn't provide custom log_buf, but
1206 		 * make sure we can never overflow buf_sz
1207 		 */
1208 		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1209 			goto retry_load;
1210 
1211 		err = -errno;
1212 		pr_warn("BTF loading error: %d\n", err);
1213 		/* don't print out contents of custom log_buf */
1214 		if (!log_buf && buf[0])
1215 			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1216 	}
1217 
1218 done:
1219 	free(buf);
1220 	return libbpf_err(err);
1221 }
1222 
1223 int btf__load_into_kernel(struct btf *btf)
1224 {
1225 	return btf_load_into_kernel(btf, NULL, 0, 0);
1226 }
1227 
1228 int btf__fd(const struct btf *btf)
1229 {
1230 	return btf->fd;
1231 }
1232 
1233 void btf__set_fd(struct btf *btf, int fd)
1234 {
1235 	btf->fd = fd;
1236 }
1237 
1238 static const void *btf_strs_data(const struct btf *btf)
1239 {
1240 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1241 }
1242 
1243 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1244 {
1245 	struct btf_header *hdr = btf->hdr;
1246 	struct btf_type *t;
1247 	void *data, *p;
1248 	__u32 data_sz;
1249 	int i;
1250 
1251 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1252 	if (data) {
1253 		*size = btf->raw_size;
1254 		return data;
1255 	}
1256 
1257 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1258 	data = calloc(1, data_sz);
1259 	if (!data)
1260 		return NULL;
1261 	p = data;
1262 
1263 	memcpy(p, hdr, hdr->hdr_len);
1264 	if (swap_endian)
1265 		btf_bswap_hdr(p);
1266 	p += hdr->hdr_len;
1267 
1268 	memcpy(p, btf->types_data, hdr->type_len);
1269 	if (swap_endian) {
1270 		for (i = 0; i < btf->nr_types; i++) {
1271 			t = p + btf->type_offs[i];
1272 			/* btf_bswap_type_rest() relies on native t->info, so
1273 			 * we swap base type info after we swapped all the
1274 			 * additional information
1275 			 */
1276 			if (btf_bswap_type_rest(t))
1277 				goto err_out;
1278 			btf_bswap_type_base(t);
1279 		}
1280 	}
1281 	p += hdr->type_len;
1282 
1283 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1284 	p += hdr->str_len;
1285 
1286 	*size = data_sz;
1287 	return data;
1288 err_out:
1289 	free(data);
1290 	return NULL;
1291 }
1292 
1293 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1294 {
1295 	struct btf *btf = (struct btf *)btf_ro;
1296 	__u32 data_sz;
1297 	void *data;
1298 
1299 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1300 	if (!data)
1301 		return errno = ENOMEM, NULL;
1302 
1303 	btf->raw_size = data_sz;
1304 	if (btf->swapped_endian)
1305 		btf->raw_data_swapped = data;
1306 	else
1307 		btf->raw_data = data;
1308 	*size = data_sz;
1309 	return data;
1310 }
1311 
1312 __attribute__((alias("btf__raw_data")))
1313 const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1314 
1315 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1316 {
1317 	if (offset < btf->start_str_off)
1318 		return btf__str_by_offset(btf->base_btf, offset);
1319 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1320 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1321 	else
1322 		return errno = EINVAL, NULL;
1323 }
1324 
1325 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1326 {
1327 	return btf__str_by_offset(btf, offset);
1328 }
1329 
1330 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1331 {
1332 	struct bpf_btf_info btf_info;
1333 	__u32 len = sizeof(btf_info);
1334 	__u32 last_size;
1335 	struct btf *btf;
1336 	void *ptr;
1337 	int err;
1338 
1339 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1340 	 * let's start with a sane default - 4KiB here - and resize it only if
1341 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1342 	 */
1343 	last_size = 4096;
1344 	ptr = malloc(last_size);
1345 	if (!ptr)
1346 		return ERR_PTR(-ENOMEM);
1347 
1348 	memset(&btf_info, 0, sizeof(btf_info));
1349 	btf_info.btf = ptr_to_u64(ptr);
1350 	btf_info.btf_size = last_size;
1351 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1352 
1353 	if (!err && btf_info.btf_size > last_size) {
1354 		void *temp_ptr;
1355 
1356 		last_size = btf_info.btf_size;
1357 		temp_ptr = realloc(ptr, last_size);
1358 		if (!temp_ptr) {
1359 			btf = ERR_PTR(-ENOMEM);
1360 			goto exit_free;
1361 		}
1362 		ptr = temp_ptr;
1363 
1364 		len = sizeof(btf_info);
1365 		memset(&btf_info, 0, sizeof(btf_info));
1366 		btf_info.btf = ptr_to_u64(ptr);
1367 		btf_info.btf_size = last_size;
1368 
1369 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1370 	}
1371 
1372 	if (err || btf_info.btf_size > last_size) {
1373 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1374 		goto exit_free;
1375 	}
1376 
1377 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1378 
1379 exit_free:
1380 	free(ptr);
1381 	return btf;
1382 }
1383 
1384 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1385 {
1386 	struct btf *btf;
1387 	int btf_fd;
1388 
1389 	btf_fd = bpf_btf_get_fd_by_id(id);
1390 	if (btf_fd < 0)
1391 		return libbpf_err_ptr(-errno);
1392 
1393 	btf = btf_get_from_fd(btf_fd, base_btf);
1394 	close(btf_fd);
1395 
1396 	return libbpf_ptr(btf);
1397 }
1398 
1399 struct btf *btf__load_from_kernel_by_id(__u32 id)
1400 {
1401 	return btf__load_from_kernel_by_id_split(id, NULL);
1402 }
1403 
1404 static void btf_invalidate_raw_data(struct btf *btf)
1405 {
1406 	if (btf->raw_data) {
1407 		free(btf->raw_data);
1408 		btf->raw_data = NULL;
1409 	}
1410 	if (btf->raw_data_swapped) {
1411 		free(btf->raw_data_swapped);
1412 		btf->raw_data_swapped = NULL;
1413 	}
1414 }
1415 
1416 /* Ensure BTF is ready to be modified (by splitting into a three memory
1417  * regions for header, types, and strings). Also invalidate cached
1418  * raw_data, if any.
1419  */
1420 static int btf_ensure_modifiable(struct btf *btf)
1421 {
1422 	void *hdr, *types;
1423 	struct strset *set = NULL;
1424 	int err = -ENOMEM;
1425 
1426 	if (btf_is_modifiable(btf)) {
1427 		/* any BTF modification invalidates raw_data */
1428 		btf_invalidate_raw_data(btf);
1429 		return 0;
1430 	}
1431 
1432 	/* split raw data into three memory regions */
1433 	hdr = malloc(btf->hdr->hdr_len);
1434 	types = malloc(btf->hdr->type_len);
1435 	if (!hdr || !types)
1436 		goto err_out;
1437 
1438 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1439 	memcpy(types, btf->types_data, btf->hdr->type_len);
1440 
1441 	/* build lookup index for all strings */
1442 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1443 	if (IS_ERR(set)) {
1444 		err = PTR_ERR(set);
1445 		goto err_out;
1446 	}
1447 
1448 	/* only when everything was successful, update internal state */
1449 	btf->hdr = hdr;
1450 	btf->types_data = types;
1451 	btf->types_data_cap = btf->hdr->type_len;
1452 	btf->strs_data = NULL;
1453 	btf->strs_set = set;
1454 	/* if BTF was created from scratch, all strings are guaranteed to be
1455 	 * unique and deduplicated
1456 	 */
1457 	if (btf->hdr->str_len == 0)
1458 		btf->strs_deduped = true;
1459 	if (!btf->base_btf && btf->hdr->str_len == 1)
1460 		btf->strs_deduped = true;
1461 
1462 	/* invalidate raw_data representation */
1463 	btf_invalidate_raw_data(btf);
1464 
1465 	return 0;
1466 
1467 err_out:
1468 	strset__free(set);
1469 	free(hdr);
1470 	free(types);
1471 	return err;
1472 }
1473 
1474 /* Find an offset in BTF string section that corresponds to a given string *s*.
1475  * Returns:
1476  *   - >0 offset into string section, if string is found;
1477  *   - -ENOENT, if string is not in the string section;
1478  *   - <0, on any other error.
1479  */
1480 int btf__find_str(struct btf *btf, const char *s)
1481 {
1482 	int off;
1483 
1484 	if (btf->base_btf) {
1485 		off = btf__find_str(btf->base_btf, s);
1486 		if (off != -ENOENT)
1487 			return off;
1488 	}
1489 
1490 	/* BTF needs to be in a modifiable state to build string lookup index */
1491 	if (btf_ensure_modifiable(btf))
1492 		return libbpf_err(-ENOMEM);
1493 
1494 	off = strset__find_str(btf->strs_set, s);
1495 	if (off < 0)
1496 		return libbpf_err(off);
1497 
1498 	return btf->start_str_off + off;
1499 }
1500 
1501 /* Add a string s to the BTF string section.
1502  * Returns:
1503  *   - > 0 offset into string section, on success;
1504  *   - < 0, on error.
1505  */
1506 int btf__add_str(struct btf *btf, const char *s)
1507 {
1508 	int off;
1509 
1510 	if (btf->base_btf) {
1511 		off = btf__find_str(btf->base_btf, s);
1512 		if (off != -ENOENT)
1513 			return off;
1514 	}
1515 
1516 	if (btf_ensure_modifiable(btf))
1517 		return libbpf_err(-ENOMEM);
1518 
1519 	off = strset__add_str(btf->strs_set, s);
1520 	if (off < 0)
1521 		return libbpf_err(off);
1522 
1523 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1524 
1525 	return btf->start_str_off + off;
1526 }
1527 
1528 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1529 {
1530 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1531 			      btf->hdr->type_len, UINT_MAX, add_sz);
1532 }
1533 
1534 static void btf_type_inc_vlen(struct btf_type *t)
1535 {
1536 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1537 }
1538 
1539 static int btf_commit_type(struct btf *btf, int data_sz)
1540 {
1541 	int err;
1542 
1543 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1544 	if (err)
1545 		return libbpf_err(err);
1546 
1547 	btf->hdr->type_len += data_sz;
1548 	btf->hdr->str_off += data_sz;
1549 	btf->nr_types++;
1550 	return btf->start_id + btf->nr_types - 1;
1551 }
1552 
1553 struct btf_pipe {
1554 	const struct btf *src;
1555 	struct btf *dst;
1556 	struct hashmap *str_off_map; /* map string offsets from src to dst */
1557 };
1558 
1559 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1560 {
1561 	struct btf_pipe *p = ctx;
1562 	long mapped_off;
1563 	int off, err;
1564 
1565 	if (!*str_off) /* nothing to do for empty strings */
1566 		return 0;
1567 
1568 	if (p->str_off_map &&
1569 	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1570 		*str_off = mapped_off;
1571 		return 0;
1572 	}
1573 
1574 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1575 	if (off < 0)
1576 		return off;
1577 
1578 	/* Remember string mapping from src to dst.  It avoids
1579 	 * performing expensive string comparisons.
1580 	 */
1581 	if (p->str_off_map) {
1582 		err = hashmap__append(p->str_off_map, *str_off, off);
1583 		if (err)
1584 			return err;
1585 	}
1586 
1587 	*str_off = off;
1588 	return 0;
1589 }
1590 
1591 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1592 {
1593 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1594 	struct btf_type *t;
1595 	int sz, err;
1596 
1597 	sz = btf_type_size(src_type);
1598 	if (sz < 0)
1599 		return libbpf_err(sz);
1600 
1601 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1602 	if (btf_ensure_modifiable(btf))
1603 		return libbpf_err(-ENOMEM);
1604 
1605 	t = btf_add_type_mem(btf, sz);
1606 	if (!t)
1607 		return libbpf_err(-ENOMEM);
1608 
1609 	memcpy(t, src_type, sz);
1610 
1611 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1612 	if (err)
1613 		return libbpf_err(err);
1614 
1615 	return btf_commit_type(btf, sz);
1616 }
1617 
1618 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1619 {
1620 	struct btf *btf = ctx;
1621 
1622 	if (!*type_id) /* nothing to do for VOID references */
1623 		return 0;
1624 
1625 	/* we haven't updated btf's type count yet, so
1626 	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1627 	 * add to all newly added BTF types
1628 	 */
1629 	*type_id += btf->start_id + btf->nr_types - 1;
1630 	return 0;
1631 }
1632 
1633 static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1634 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1635 
1636 int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1637 {
1638 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1639 	int data_sz, sz, cnt, i, err, old_strs_len;
1640 	__u32 *off;
1641 	void *t;
1642 
1643 	/* appending split BTF isn't supported yet */
1644 	if (src_btf->base_btf)
1645 		return libbpf_err(-ENOTSUP);
1646 
1647 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1648 	if (btf_ensure_modifiable(btf))
1649 		return libbpf_err(-ENOMEM);
1650 
1651 	/* remember original strings section size if we have to roll back
1652 	 * partial strings section changes
1653 	 */
1654 	old_strs_len = btf->hdr->str_len;
1655 
1656 	data_sz = src_btf->hdr->type_len;
1657 	cnt = btf__type_cnt(src_btf) - 1;
1658 
1659 	/* pre-allocate enough memory for new types */
1660 	t = btf_add_type_mem(btf, data_sz);
1661 	if (!t)
1662 		return libbpf_err(-ENOMEM);
1663 
1664 	/* pre-allocate enough memory for type offset index for new types */
1665 	off = btf_add_type_offs_mem(btf, cnt);
1666 	if (!off)
1667 		return libbpf_err(-ENOMEM);
1668 
1669 	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1670 	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1671 	if (IS_ERR(p.str_off_map))
1672 		return libbpf_err(-ENOMEM);
1673 
1674 	/* bulk copy types data for all types from src_btf */
1675 	memcpy(t, src_btf->types_data, data_sz);
1676 
1677 	for (i = 0; i < cnt; i++) {
1678 		sz = btf_type_size(t);
1679 		if (sz < 0) {
1680 			/* unlikely, has to be corrupted src_btf */
1681 			err = sz;
1682 			goto err_out;
1683 		}
1684 
1685 		/* fill out type ID to type offset mapping for lookups by type ID */
1686 		*off = t - btf->types_data;
1687 
1688 		/* add, dedup, and remap strings referenced by this BTF type */
1689 		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1690 		if (err)
1691 			goto err_out;
1692 
1693 		/* remap all type IDs referenced from this BTF type */
1694 		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1695 		if (err)
1696 			goto err_out;
1697 
1698 		/* go to next type data and type offset index entry */
1699 		t += sz;
1700 		off++;
1701 	}
1702 
1703 	/* Up until now any of the copied type data was effectively invisible,
1704 	 * so if we exited early before this point due to error, BTF would be
1705 	 * effectively unmodified. There would be extra internal memory
1706 	 * pre-allocated, but it would not be available for querying.  But now
1707 	 * that we've copied and rewritten all the data successfully, we can
1708 	 * update type count and various internal offsets and sizes to
1709 	 * "commit" the changes and made them visible to the outside world.
1710 	 */
1711 	btf->hdr->type_len += data_sz;
1712 	btf->hdr->str_off += data_sz;
1713 	btf->nr_types += cnt;
1714 
1715 	hashmap__free(p.str_off_map);
1716 
1717 	/* return type ID of the first added BTF type */
1718 	return btf->start_id + btf->nr_types - cnt;
1719 err_out:
1720 	/* zero out preallocated memory as if it was just allocated with
1721 	 * libbpf_add_mem()
1722 	 */
1723 	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1724 	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1725 
1726 	/* and now restore original strings section size; types data size
1727 	 * wasn't modified, so doesn't need restoring, see big comment above
1728 	 */
1729 	btf->hdr->str_len = old_strs_len;
1730 
1731 	hashmap__free(p.str_off_map);
1732 
1733 	return libbpf_err(err);
1734 }
1735 
1736 /*
1737  * Append new BTF_KIND_INT type with:
1738  *   - *name* - non-empty, non-NULL type name;
1739  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1740  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1741  * Returns:
1742  *   - >0, type ID of newly added BTF type;
1743  *   - <0, on error.
1744  */
1745 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1746 {
1747 	struct btf_type *t;
1748 	int sz, name_off;
1749 
1750 	/* non-empty name */
1751 	if (!name || !name[0])
1752 		return libbpf_err(-EINVAL);
1753 	/* byte_sz must be power of 2 */
1754 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1755 		return libbpf_err(-EINVAL);
1756 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1757 		return libbpf_err(-EINVAL);
1758 
1759 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1760 	if (btf_ensure_modifiable(btf))
1761 		return libbpf_err(-ENOMEM);
1762 
1763 	sz = sizeof(struct btf_type) + sizeof(int);
1764 	t = btf_add_type_mem(btf, sz);
1765 	if (!t)
1766 		return libbpf_err(-ENOMEM);
1767 
1768 	/* if something goes wrong later, we might end up with an extra string,
1769 	 * but that shouldn't be a problem, because BTF can't be constructed
1770 	 * completely anyway and will most probably be just discarded
1771 	 */
1772 	name_off = btf__add_str(btf, name);
1773 	if (name_off < 0)
1774 		return name_off;
1775 
1776 	t->name_off = name_off;
1777 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1778 	t->size = byte_sz;
1779 	/* set INT info, we don't allow setting legacy bit offset/size */
1780 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1781 
1782 	return btf_commit_type(btf, sz);
1783 }
1784 
1785 /*
1786  * Append new BTF_KIND_FLOAT type with:
1787  *   - *name* - non-empty, non-NULL type name;
1788  *   - *sz* - size of the type, in bytes;
1789  * Returns:
1790  *   - >0, type ID of newly added BTF type;
1791  *   - <0, on error.
1792  */
1793 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1794 {
1795 	struct btf_type *t;
1796 	int sz, name_off;
1797 
1798 	/* non-empty name */
1799 	if (!name || !name[0])
1800 		return libbpf_err(-EINVAL);
1801 
1802 	/* byte_sz must be one of the explicitly allowed values */
1803 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1804 	    byte_sz != 16)
1805 		return libbpf_err(-EINVAL);
1806 
1807 	if (btf_ensure_modifiable(btf))
1808 		return libbpf_err(-ENOMEM);
1809 
1810 	sz = sizeof(struct btf_type);
1811 	t = btf_add_type_mem(btf, sz);
1812 	if (!t)
1813 		return libbpf_err(-ENOMEM);
1814 
1815 	name_off = btf__add_str(btf, name);
1816 	if (name_off < 0)
1817 		return name_off;
1818 
1819 	t->name_off = name_off;
1820 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1821 	t->size = byte_sz;
1822 
1823 	return btf_commit_type(btf, sz);
1824 }
1825 
1826 /* it's completely legal to append BTF types with type IDs pointing forward to
1827  * types that haven't been appended yet, so we only make sure that id looks
1828  * sane, we can't guarantee that ID will always be valid
1829  */
1830 static int validate_type_id(int id)
1831 {
1832 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1833 		return -EINVAL;
1834 	return 0;
1835 }
1836 
1837 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1838 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1839 {
1840 	struct btf_type *t;
1841 	int sz, name_off = 0;
1842 
1843 	if (validate_type_id(ref_type_id))
1844 		return libbpf_err(-EINVAL);
1845 
1846 	if (btf_ensure_modifiable(btf))
1847 		return libbpf_err(-ENOMEM);
1848 
1849 	sz = sizeof(struct btf_type);
1850 	t = btf_add_type_mem(btf, sz);
1851 	if (!t)
1852 		return libbpf_err(-ENOMEM);
1853 
1854 	if (name && name[0]) {
1855 		name_off = btf__add_str(btf, name);
1856 		if (name_off < 0)
1857 			return name_off;
1858 	}
1859 
1860 	t->name_off = name_off;
1861 	t->info = btf_type_info(kind, 0, 0);
1862 	t->type = ref_type_id;
1863 
1864 	return btf_commit_type(btf, sz);
1865 }
1866 
1867 /*
1868  * Append new BTF_KIND_PTR type with:
1869  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1870  * Returns:
1871  *   - >0, type ID of newly added BTF type;
1872  *   - <0, on error.
1873  */
1874 int btf__add_ptr(struct btf *btf, int ref_type_id)
1875 {
1876 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1877 }
1878 
1879 /*
1880  * Append new BTF_KIND_ARRAY type with:
1881  *   - *index_type_id* - type ID of the type describing array index;
1882  *   - *elem_type_id* - type ID of the type describing array element;
1883  *   - *nr_elems* - the size of the array;
1884  * Returns:
1885  *   - >0, type ID of newly added BTF type;
1886  *   - <0, on error.
1887  */
1888 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1889 {
1890 	struct btf_type *t;
1891 	struct btf_array *a;
1892 	int sz;
1893 
1894 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1895 		return libbpf_err(-EINVAL);
1896 
1897 	if (btf_ensure_modifiable(btf))
1898 		return libbpf_err(-ENOMEM);
1899 
1900 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1901 	t = btf_add_type_mem(btf, sz);
1902 	if (!t)
1903 		return libbpf_err(-ENOMEM);
1904 
1905 	t->name_off = 0;
1906 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1907 	t->size = 0;
1908 
1909 	a = btf_array(t);
1910 	a->type = elem_type_id;
1911 	a->index_type = index_type_id;
1912 	a->nelems = nr_elems;
1913 
1914 	return btf_commit_type(btf, sz);
1915 }
1916 
1917 /* generic STRUCT/UNION append function */
1918 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1919 {
1920 	struct btf_type *t;
1921 	int sz, name_off = 0;
1922 
1923 	if (btf_ensure_modifiable(btf))
1924 		return libbpf_err(-ENOMEM);
1925 
1926 	sz = sizeof(struct btf_type);
1927 	t = btf_add_type_mem(btf, sz);
1928 	if (!t)
1929 		return libbpf_err(-ENOMEM);
1930 
1931 	if (name && name[0]) {
1932 		name_off = btf__add_str(btf, name);
1933 		if (name_off < 0)
1934 			return name_off;
1935 	}
1936 
1937 	/* start out with vlen=0 and no kflag; this will be adjusted when
1938 	 * adding each member
1939 	 */
1940 	t->name_off = name_off;
1941 	t->info = btf_type_info(kind, 0, 0);
1942 	t->size = bytes_sz;
1943 
1944 	return btf_commit_type(btf, sz);
1945 }
1946 
1947 /*
1948  * Append new BTF_KIND_STRUCT type with:
1949  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1950  *   - *byte_sz* - size of the struct, in bytes;
1951  *
1952  * Struct initially has no fields in it. Fields can be added by
1953  * btf__add_field() right after btf__add_struct() succeeds.
1954  *
1955  * Returns:
1956  *   - >0, type ID of newly added BTF type;
1957  *   - <0, on error.
1958  */
1959 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1960 {
1961 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1962 }
1963 
1964 /*
1965  * Append new BTF_KIND_UNION type with:
1966  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1967  *   - *byte_sz* - size of the union, in bytes;
1968  *
1969  * Union initially has no fields in it. Fields can be added by
1970  * btf__add_field() right after btf__add_union() succeeds. All fields
1971  * should have *bit_offset* of 0.
1972  *
1973  * Returns:
1974  *   - >0, type ID of newly added BTF type;
1975  *   - <0, on error.
1976  */
1977 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1978 {
1979 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1980 }
1981 
1982 static struct btf_type *btf_last_type(struct btf *btf)
1983 {
1984 	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
1985 }
1986 
1987 /*
1988  * Append new field for the current STRUCT/UNION type with:
1989  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1990  *   - *type_id* - type ID for the type describing field type;
1991  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1992  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1993  * Returns:
1994  *   -  0, on success;
1995  *   - <0, on error.
1996  */
1997 int btf__add_field(struct btf *btf, const char *name, int type_id,
1998 		   __u32 bit_offset, __u32 bit_size)
1999 {
2000 	struct btf_type *t;
2001 	struct btf_member *m;
2002 	bool is_bitfield;
2003 	int sz, name_off = 0;
2004 
2005 	/* last type should be union/struct */
2006 	if (btf->nr_types == 0)
2007 		return libbpf_err(-EINVAL);
2008 	t = btf_last_type(btf);
2009 	if (!btf_is_composite(t))
2010 		return libbpf_err(-EINVAL);
2011 
2012 	if (validate_type_id(type_id))
2013 		return libbpf_err(-EINVAL);
2014 	/* best-effort bit field offset/size enforcement */
2015 	is_bitfield = bit_size || (bit_offset % 8 != 0);
2016 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2017 		return libbpf_err(-EINVAL);
2018 
2019 	/* only offset 0 is allowed for unions */
2020 	if (btf_is_union(t) && bit_offset)
2021 		return libbpf_err(-EINVAL);
2022 
2023 	/* decompose and invalidate raw data */
2024 	if (btf_ensure_modifiable(btf))
2025 		return libbpf_err(-ENOMEM);
2026 
2027 	sz = sizeof(struct btf_member);
2028 	m = btf_add_type_mem(btf, sz);
2029 	if (!m)
2030 		return libbpf_err(-ENOMEM);
2031 
2032 	if (name && name[0]) {
2033 		name_off = btf__add_str(btf, name);
2034 		if (name_off < 0)
2035 			return name_off;
2036 	}
2037 
2038 	m->name_off = name_off;
2039 	m->type = type_id;
2040 	m->offset = bit_offset | (bit_size << 24);
2041 
2042 	/* btf_add_type_mem can invalidate t pointer */
2043 	t = btf_last_type(btf);
2044 	/* update parent type's vlen and kflag */
2045 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2046 
2047 	btf->hdr->type_len += sz;
2048 	btf->hdr->str_off += sz;
2049 	return 0;
2050 }
2051 
2052 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2053 			       bool is_signed, __u8 kind)
2054 {
2055 	struct btf_type *t;
2056 	int sz, name_off = 0;
2057 
2058 	/* byte_sz must be power of 2 */
2059 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2060 		return libbpf_err(-EINVAL);
2061 
2062 	if (btf_ensure_modifiable(btf))
2063 		return libbpf_err(-ENOMEM);
2064 
2065 	sz = sizeof(struct btf_type);
2066 	t = btf_add_type_mem(btf, sz);
2067 	if (!t)
2068 		return libbpf_err(-ENOMEM);
2069 
2070 	if (name && name[0]) {
2071 		name_off = btf__add_str(btf, name);
2072 		if (name_off < 0)
2073 			return name_off;
2074 	}
2075 
2076 	/* start out with vlen=0; it will be adjusted when adding enum values */
2077 	t->name_off = name_off;
2078 	t->info = btf_type_info(kind, 0, is_signed);
2079 	t->size = byte_sz;
2080 
2081 	return btf_commit_type(btf, sz);
2082 }
2083 
2084 /*
2085  * Append new BTF_KIND_ENUM type with:
2086  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2087  *   - *byte_sz* - size of the enum, in bytes.
2088  *
2089  * Enum initially has no enum values in it (and corresponds to enum forward
2090  * declaration). Enumerator values can be added by btf__add_enum_value()
2091  * immediately after btf__add_enum() succeeds.
2092  *
2093  * Returns:
2094  *   - >0, type ID of newly added BTF type;
2095  *   - <0, on error.
2096  */
2097 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2098 {
2099 	/*
2100 	 * set the signedness to be unsigned, it will change to signed
2101 	 * if any later enumerator is negative.
2102 	 */
2103 	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2104 }
2105 
2106 /*
2107  * Append new enum value for the current ENUM type with:
2108  *   - *name* - name of the enumerator value, can't be NULL or empty;
2109  *   - *value* - integer value corresponding to enum value *name*;
2110  * Returns:
2111  *   -  0, on success;
2112  *   - <0, on error.
2113  */
2114 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2115 {
2116 	struct btf_type *t;
2117 	struct btf_enum *v;
2118 	int sz, name_off;
2119 
2120 	/* last type should be BTF_KIND_ENUM */
2121 	if (btf->nr_types == 0)
2122 		return libbpf_err(-EINVAL);
2123 	t = btf_last_type(btf);
2124 	if (!btf_is_enum(t))
2125 		return libbpf_err(-EINVAL);
2126 
2127 	/* non-empty name */
2128 	if (!name || !name[0])
2129 		return libbpf_err(-EINVAL);
2130 	if (value < INT_MIN || value > UINT_MAX)
2131 		return libbpf_err(-E2BIG);
2132 
2133 	/* decompose and invalidate raw data */
2134 	if (btf_ensure_modifiable(btf))
2135 		return libbpf_err(-ENOMEM);
2136 
2137 	sz = sizeof(struct btf_enum);
2138 	v = btf_add_type_mem(btf, sz);
2139 	if (!v)
2140 		return libbpf_err(-ENOMEM);
2141 
2142 	name_off = btf__add_str(btf, name);
2143 	if (name_off < 0)
2144 		return name_off;
2145 
2146 	v->name_off = name_off;
2147 	v->val = value;
2148 
2149 	/* update parent type's vlen */
2150 	t = btf_last_type(btf);
2151 	btf_type_inc_vlen(t);
2152 
2153 	/* if negative value, set signedness to signed */
2154 	if (value < 0)
2155 		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2156 
2157 	btf->hdr->type_len += sz;
2158 	btf->hdr->str_off += sz;
2159 	return 0;
2160 }
2161 
2162 /*
2163  * Append new BTF_KIND_ENUM64 type with:
2164  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2165  *   - *byte_sz* - size of the enum, in bytes.
2166  *   - *is_signed* - whether the enum values are signed or not;
2167  *
2168  * Enum initially has no enum values in it (and corresponds to enum forward
2169  * declaration). Enumerator values can be added by btf__add_enum64_value()
2170  * immediately after btf__add_enum64() succeeds.
2171  *
2172  * Returns:
2173  *   - >0, type ID of newly added BTF type;
2174  *   - <0, on error.
2175  */
2176 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2177 		    bool is_signed)
2178 {
2179 	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2180 				   BTF_KIND_ENUM64);
2181 }
2182 
2183 /*
2184  * Append new enum value for the current ENUM64 type with:
2185  *   - *name* - name of the enumerator value, can't be NULL or empty;
2186  *   - *value* - integer value corresponding to enum value *name*;
2187  * Returns:
2188  *   -  0, on success;
2189  *   - <0, on error.
2190  */
2191 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2192 {
2193 	struct btf_enum64 *v;
2194 	struct btf_type *t;
2195 	int sz, name_off;
2196 
2197 	/* last type should be BTF_KIND_ENUM64 */
2198 	if (btf->nr_types == 0)
2199 		return libbpf_err(-EINVAL);
2200 	t = btf_last_type(btf);
2201 	if (!btf_is_enum64(t))
2202 		return libbpf_err(-EINVAL);
2203 
2204 	/* non-empty name */
2205 	if (!name || !name[0])
2206 		return libbpf_err(-EINVAL);
2207 
2208 	/* decompose and invalidate raw data */
2209 	if (btf_ensure_modifiable(btf))
2210 		return libbpf_err(-ENOMEM);
2211 
2212 	sz = sizeof(struct btf_enum64);
2213 	v = btf_add_type_mem(btf, sz);
2214 	if (!v)
2215 		return libbpf_err(-ENOMEM);
2216 
2217 	name_off = btf__add_str(btf, name);
2218 	if (name_off < 0)
2219 		return name_off;
2220 
2221 	v->name_off = name_off;
2222 	v->val_lo32 = (__u32)value;
2223 	v->val_hi32 = value >> 32;
2224 
2225 	/* update parent type's vlen */
2226 	t = btf_last_type(btf);
2227 	btf_type_inc_vlen(t);
2228 
2229 	btf->hdr->type_len += sz;
2230 	btf->hdr->str_off += sz;
2231 	return 0;
2232 }
2233 
2234 /*
2235  * Append new BTF_KIND_FWD type with:
2236  *   - *name*, non-empty/non-NULL name;
2237  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2238  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2239  * Returns:
2240  *   - >0, type ID of newly added BTF type;
2241  *   - <0, on error.
2242  */
2243 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2244 {
2245 	if (!name || !name[0])
2246 		return libbpf_err(-EINVAL);
2247 
2248 	switch (fwd_kind) {
2249 	case BTF_FWD_STRUCT:
2250 	case BTF_FWD_UNION: {
2251 		struct btf_type *t;
2252 		int id;
2253 
2254 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2255 		if (id <= 0)
2256 			return id;
2257 		t = btf_type_by_id(btf, id);
2258 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2259 		return id;
2260 	}
2261 	case BTF_FWD_ENUM:
2262 		/* enum forward in BTF currently is just an enum with no enum
2263 		 * values; we also assume a standard 4-byte size for it
2264 		 */
2265 		return btf__add_enum(btf, name, sizeof(int));
2266 	default:
2267 		return libbpf_err(-EINVAL);
2268 	}
2269 }
2270 
2271 /*
2272  * Append new BTF_KING_TYPEDEF type with:
2273  *   - *name*, non-empty/non-NULL name;
2274  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2275  * Returns:
2276  *   - >0, type ID of newly added BTF type;
2277  *   - <0, on error.
2278  */
2279 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2280 {
2281 	if (!name || !name[0])
2282 		return libbpf_err(-EINVAL);
2283 
2284 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2285 }
2286 
2287 /*
2288  * Append new BTF_KIND_VOLATILE type with:
2289  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2290  * Returns:
2291  *   - >0, type ID of newly added BTF type;
2292  *   - <0, on error.
2293  */
2294 int btf__add_volatile(struct btf *btf, int ref_type_id)
2295 {
2296 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2297 }
2298 
2299 /*
2300  * Append new BTF_KIND_CONST type with:
2301  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2302  * Returns:
2303  *   - >0, type ID of newly added BTF type;
2304  *   - <0, on error.
2305  */
2306 int btf__add_const(struct btf *btf, int ref_type_id)
2307 {
2308 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2309 }
2310 
2311 /*
2312  * Append new BTF_KIND_RESTRICT type with:
2313  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2314  * Returns:
2315  *   - >0, type ID of newly added BTF type;
2316  *   - <0, on error.
2317  */
2318 int btf__add_restrict(struct btf *btf, int ref_type_id)
2319 {
2320 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2321 }
2322 
2323 /*
2324  * Append new BTF_KIND_TYPE_TAG type with:
2325  *   - *value*, non-empty/non-NULL tag value;
2326  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2327  * Returns:
2328  *   - >0, type ID of newly added BTF type;
2329  *   - <0, on error.
2330  */
2331 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2332 {
2333 	if (!value || !value[0])
2334 		return libbpf_err(-EINVAL);
2335 
2336 	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2337 }
2338 
2339 /*
2340  * Append new BTF_KIND_FUNC type with:
2341  *   - *name*, non-empty/non-NULL name;
2342  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2343  * Returns:
2344  *   - >0, type ID of newly added BTF type;
2345  *   - <0, on error.
2346  */
2347 int btf__add_func(struct btf *btf, const char *name,
2348 		  enum btf_func_linkage linkage, int proto_type_id)
2349 {
2350 	int id;
2351 
2352 	if (!name || !name[0])
2353 		return libbpf_err(-EINVAL);
2354 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2355 	    linkage != BTF_FUNC_EXTERN)
2356 		return libbpf_err(-EINVAL);
2357 
2358 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2359 	if (id > 0) {
2360 		struct btf_type *t = btf_type_by_id(btf, id);
2361 
2362 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2363 	}
2364 	return libbpf_err(id);
2365 }
2366 
2367 /*
2368  * Append new BTF_KIND_FUNC_PROTO with:
2369  *   - *ret_type_id* - type ID for return result of a function.
2370  *
2371  * Function prototype initially has no arguments, but they can be added by
2372  * btf__add_func_param() one by one, immediately after
2373  * btf__add_func_proto() succeeded.
2374  *
2375  * Returns:
2376  *   - >0, type ID of newly added BTF type;
2377  *   - <0, on error.
2378  */
2379 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2380 {
2381 	struct btf_type *t;
2382 	int sz;
2383 
2384 	if (validate_type_id(ret_type_id))
2385 		return libbpf_err(-EINVAL);
2386 
2387 	if (btf_ensure_modifiable(btf))
2388 		return libbpf_err(-ENOMEM);
2389 
2390 	sz = sizeof(struct btf_type);
2391 	t = btf_add_type_mem(btf, sz);
2392 	if (!t)
2393 		return libbpf_err(-ENOMEM);
2394 
2395 	/* start out with vlen=0; this will be adjusted when adding enum
2396 	 * values, if necessary
2397 	 */
2398 	t->name_off = 0;
2399 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2400 	t->type = ret_type_id;
2401 
2402 	return btf_commit_type(btf, sz);
2403 }
2404 
2405 /*
2406  * Append new function parameter for current FUNC_PROTO type with:
2407  *   - *name* - parameter name, can be NULL or empty;
2408  *   - *type_id* - type ID describing the type of the parameter.
2409  * Returns:
2410  *   -  0, on success;
2411  *   - <0, on error.
2412  */
2413 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2414 {
2415 	struct btf_type *t;
2416 	struct btf_param *p;
2417 	int sz, name_off = 0;
2418 
2419 	if (validate_type_id(type_id))
2420 		return libbpf_err(-EINVAL);
2421 
2422 	/* last type should be BTF_KIND_FUNC_PROTO */
2423 	if (btf->nr_types == 0)
2424 		return libbpf_err(-EINVAL);
2425 	t = btf_last_type(btf);
2426 	if (!btf_is_func_proto(t))
2427 		return libbpf_err(-EINVAL);
2428 
2429 	/* decompose and invalidate raw data */
2430 	if (btf_ensure_modifiable(btf))
2431 		return libbpf_err(-ENOMEM);
2432 
2433 	sz = sizeof(struct btf_param);
2434 	p = btf_add_type_mem(btf, sz);
2435 	if (!p)
2436 		return libbpf_err(-ENOMEM);
2437 
2438 	if (name && name[0]) {
2439 		name_off = btf__add_str(btf, name);
2440 		if (name_off < 0)
2441 			return name_off;
2442 	}
2443 
2444 	p->name_off = name_off;
2445 	p->type = type_id;
2446 
2447 	/* update parent type's vlen */
2448 	t = btf_last_type(btf);
2449 	btf_type_inc_vlen(t);
2450 
2451 	btf->hdr->type_len += sz;
2452 	btf->hdr->str_off += sz;
2453 	return 0;
2454 }
2455 
2456 /*
2457  * Append new BTF_KIND_VAR type with:
2458  *   - *name* - non-empty/non-NULL name;
2459  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2460  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2461  *   - *type_id* - type ID of the type describing the type of the variable.
2462  * Returns:
2463  *   - >0, type ID of newly added BTF type;
2464  *   - <0, on error.
2465  */
2466 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2467 {
2468 	struct btf_type *t;
2469 	struct btf_var *v;
2470 	int sz, name_off;
2471 
2472 	/* non-empty name */
2473 	if (!name || !name[0])
2474 		return libbpf_err(-EINVAL);
2475 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2476 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2477 		return libbpf_err(-EINVAL);
2478 	if (validate_type_id(type_id))
2479 		return libbpf_err(-EINVAL);
2480 
2481 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2482 	if (btf_ensure_modifiable(btf))
2483 		return libbpf_err(-ENOMEM);
2484 
2485 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2486 	t = btf_add_type_mem(btf, sz);
2487 	if (!t)
2488 		return libbpf_err(-ENOMEM);
2489 
2490 	name_off = btf__add_str(btf, name);
2491 	if (name_off < 0)
2492 		return name_off;
2493 
2494 	t->name_off = name_off;
2495 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2496 	t->type = type_id;
2497 
2498 	v = btf_var(t);
2499 	v->linkage = linkage;
2500 
2501 	return btf_commit_type(btf, sz);
2502 }
2503 
2504 /*
2505  * Append new BTF_KIND_DATASEC type with:
2506  *   - *name* - non-empty/non-NULL name;
2507  *   - *byte_sz* - data section size, in bytes.
2508  *
2509  * Data section is initially empty. Variables info can be added with
2510  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2511  *
2512  * Returns:
2513  *   - >0, type ID of newly added BTF type;
2514  *   - <0, on error.
2515  */
2516 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2517 {
2518 	struct btf_type *t;
2519 	int sz, name_off;
2520 
2521 	/* non-empty name */
2522 	if (!name || !name[0])
2523 		return libbpf_err(-EINVAL);
2524 
2525 	if (btf_ensure_modifiable(btf))
2526 		return libbpf_err(-ENOMEM);
2527 
2528 	sz = sizeof(struct btf_type);
2529 	t = btf_add_type_mem(btf, sz);
2530 	if (!t)
2531 		return libbpf_err(-ENOMEM);
2532 
2533 	name_off = btf__add_str(btf, name);
2534 	if (name_off < 0)
2535 		return name_off;
2536 
2537 	/* start with vlen=0, which will be update as var_secinfos are added */
2538 	t->name_off = name_off;
2539 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2540 	t->size = byte_sz;
2541 
2542 	return btf_commit_type(btf, sz);
2543 }
2544 
2545 /*
2546  * Append new data section variable information entry for current DATASEC type:
2547  *   - *var_type_id* - type ID, describing type of the variable;
2548  *   - *offset* - variable offset within data section, in bytes;
2549  *   - *byte_sz* - variable size, in bytes.
2550  *
2551  * Returns:
2552  *   -  0, on success;
2553  *   - <0, on error.
2554  */
2555 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2556 {
2557 	struct btf_type *t;
2558 	struct btf_var_secinfo *v;
2559 	int sz;
2560 
2561 	/* last type should be BTF_KIND_DATASEC */
2562 	if (btf->nr_types == 0)
2563 		return libbpf_err(-EINVAL);
2564 	t = btf_last_type(btf);
2565 	if (!btf_is_datasec(t))
2566 		return libbpf_err(-EINVAL);
2567 
2568 	if (validate_type_id(var_type_id))
2569 		return libbpf_err(-EINVAL);
2570 
2571 	/* decompose and invalidate raw data */
2572 	if (btf_ensure_modifiable(btf))
2573 		return libbpf_err(-ENOMEM);
2574 
2575 	sz = sizeof(struct btf_var_secinfo);
2576 	v = btf_add_type_mem(btf, sz);
2577 	if (!v)
2578 		return libbpf_err(-ENOMEM);
2579 
2580 	v->type = var_type_id;
2581 	v->offset = offset;
2582 	v->size = byte_sz;
2583 
2584 	/* update parent type's vlen */
2585 	t = btf_last_type(btf);
2586 	btf_type_inc_vlen(t);
2587 
2588 	btf->hdr->type_len += sz;
2589 	btf->hdr->str_off += sz;
2590 	return 0;
2591 }
2592 
2593 /*
2594  * Append new BTF_KIND_DECL_TAG type with:
2595  *   - *value* - non-empty/non-NULL string;
2596  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2597  *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2598  *     member or function argument index;
2599  * Returns:
2600  *   - >0, type ID of newly added BTF type;
2601  *   - <0, on error.
2602  */
2603 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2604 		 int component_idx)
2605 {
2606 	struct btf_type *t;
2607 	int sz, value_off;
2608 
2609 	if (!value || !value[0] || component_idx < -1)
2610 		return libbpf_err(-EINVAL);
2611 
2612 	if (validate_type_id(ref_type_id))
2613 		return libbpf_err(-EINVAL);
2614 
2615 	if (btf_ensure_modifiable(btf))
2616 		return libbpf_err(-ENOMEM);
2617 
2618 	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2619 	t = btf_add_type_mem(btf, sz);
2620 	if (!t)
2621 		return libbpf_err(-ENOMEM);
2622 
2623 	value_off = btf__add_str(btf, value);
2624 	if (value_off < 0)
2625 		return value_off;
2626 
2627 	t->name_off = value_off;
2628 	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2629 	t->type = ref_type_id;
2630 	btf_decl_tag(t)->component_idx = component_idx;
2631 
2632 	return btf_commit_type(btf, sz);
2633 }
2634 
2635 struct btf_ext_sec_setup_param {
2636 	__u32 off;
2637 	__u32 len;
2638 	__u32 min_rec_size;
2639 	struct btf_ext_info *ext_info;
2640 	const char *desc;
2641 };
2642 
2643 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2644 			      struct btf_ext_sec_setup_param *ext_sec)
2645 {
2646 	const struct btf_ext_info_sec *sinfo;
2647 	struct btf_ext_info *ext_info;
2648 	__u32 info_left, record_size;
2649 	size_t sec_cnt = 0;
2650 	/* The start of the info sec (including the __u32 record_size). */
2651 	void *info;
2652 
2653 	if (ext_sec->len == 0)
2654 		return 0;
2655 
2656 	if (ext_sec->off & 0x03) {
2657 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2658 		     ext_sec->desc);
2659 		return -EINVAL;
2660 	}
2661 
2662 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2663 	info_left = ext_sec->len;
2664 
2665 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2666 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2667 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2668 		return -EINVAL;
2669 	}
2670 
2671 	/* At least a record size */
2672 	if (info_left < sizeof(__u32)) {
2673 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2674 		return -EINVAL;
2675 	}
2676 
2677 	/* The record size needs to meet the minimum standard */
2678 	record_size = *(__u32 *)info;
2679 	if (record_size < ext_sec->min_rec_size ||
2680 	    record_size & 0x03) {
2681 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2682 			 ext_sec->desc, record_size);
2683 		return -EINVAL;
2684 	}
2685 
2686 	sinfo = info + sizeof(__u32);
2687 	info_left -= sizeof(__u32);
2688 
2689 	/* If no records, return failure now so .BTF.ext won't be used. */
2690 	if (!info_left) {
2691 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2692 		return -EINVAL;
2693 	}
2694 
2695 	while (info_left) {
2696 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2697 		__u64 total_record_size;
2698 		__u32 num_records;
2699 
2700 		if (info_left < sec_hdrlen) {
2701 			pr_debug("%s section header is not found in .BTF.ext\n",
2702 			     ext_sec->desc);
2703 			return -EINVAL;
2704 		}
2705 
2706 		num_records = sinfo->num_info;
2707 		if (num_records == 0) {
2708 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2709 			     ext_sec->desc);
2710 			return -EINVAL;
2711 		}
2712 
2713 		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2714 		if (info_left < total_record_size) {
2715 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2716 			     ext_sec->desc);
2717 			return -EINVAL;
2718 		}
2719 
2720 		info_left -= total_record_size;
2721 		sinfo = (void *)sinfo + total_record_size;
2722 		sec_cnt++;
2723 	}
2724 
2725 	ext_info = ext_sec->ext_info;
2726 	ext_info->len = ext_sec->len - sizeof(__u32);
2727 	ext_info->rec_size = record_size;
2728 	ext_info->info = info + sizeof(__u32);
2729 	ext_info->sec_cnt = sec_cnt;
2730 
2731 	return 0;
2732 }
2733 
2734 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2735 {
2736 	struct btf_ext_sec_setup_param param = {
2737 		.off = btf_ext->hdr->func_info_off,
2738 		.len = btf_ext->hdr->func_info_len,
2739 		.min_rec_size = sizeof(struct bpf_func_info_min),
2740 		.ext_info = &btf_ext->func_info,
2741 		.desc = "func_info"
2742 	};
2743 
2744 	return btf_ext_setup_info(btf_ext, &param);
2745 }
2746 
2747 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2748 {
2749 	struct btf_ext_sec_setup_param param = {
2750 		.off = btf_ext->hdr->line_info_off,
2751 		.len = btf_ext->hdr->line_info_len,
2752 		.min_rec_size = sizeof(struct bpf_line_info_min),
2753 		.ext_info = &btf_ext->line_info,
2754 		.desc = "line_info",
2755 	};
2756 
2757 	return btf_ext_setup_info(btf_ext, &param);
2758 }
2759 
2760 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2761 {
2762 	struct btf_ext_sec_setup_param param = {
2763 		.off = btf_ext->hdr->core_relo_off,
2764 		.len = btf_ext->hdr->core_relo_len,
2765 		.min_rec_size = sizeof(struct bpf_core_relo),
2766 		.ext_info = &btf_ext->core_relo_info,
2767 		.desc = "core_relo",
2768 	};
2769 
2770 	return btf_ext_setup_info(btf_ext, &param);
2771 }
2772 
2773 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2774 {
2775 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2776 
2777 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2778 	    data_size < hdr->hdr_len) {
2779 		pr_debug("BTF.ext header not found");
2780 		return -EINVAL;
2781 	}
2782 
2783 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2784 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2785 		return -ENOTSUP;
2786 	} else if (hdr->magic != BTF_MAGIC) {
2787 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2788 		return -EINVAL;
2789 	}
2790 
2791 	if (hdr->version != BTF_VERSION) {
2792 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2793 		return -ENOTSUP;
2794 	}
2795 
2796 	if (hdr->flags) {
2797 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2798 		return -ENOTSUP;
2799 	}
2800 
2801 	if (data_size == hdr->hdr_len) {
2802 		pr_debug("BTF.ext has no data\n");
2803 		return -EINVAL;
2804 	}
2805 
2806 	return 0;
2807 }
2808 
2809 void btf_ext__free(struct btf_ext *btf_ext)
2810 {
2811 	if (IS_ERR_OR_NULL(btf_ext))
2812 		return;
2813 	free(btf_ext->func_info.sec_idxs);
2814 	free(btf_ext->line_info.sec_idxs);
2815 	free(btf_ext->core_relo_info.sec_idxs);
2816 	free(btf_ext->data);
2817 	free(btf_ext);
2818 }
2819 
2820 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2821 {
2822 	struct btf_ext *btf_ext;
2823 	int err;
2824 
2825 	btf_ext = calloc(1, sizeof(struct btf_ext));
2826 	if (!btf_ext)
2827 		return libbpf_err_ptr(-ENOMEM);
2828 
2829 	btf_ext->data_size = size;
2830 	btf_ext->data = malloc(size);
2831 	if (!btf_ext->data) {
2832 		err = -ENOMEM;
2833 		goto done;
2834 	}
2835 	memcpy(btf_ext->data, data, size);
2836 
2837 	err = btf_ext_parse_hdr(btf_ext->data, size);
2838 	if (err)
2839 		goto done;
2840 
2841 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2842 		err = -EINVAL;
2843 		goto done;
2844 	}
2845 
2846 	err = btf_ext_setup_func_info(btf_ext);
2847 	if (err)
2848 		goto done;
2849 
2850 	err = btf_ext_setup_line_info(btf_ext);
2851 	if (err)
2852 		goto done;
2853 
2854 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2855 		goto done; /* skip core relos parsing */
2856 
2857 	err = btf_ext_setup_core_relos(btf_ext);
2858 	if (err)
2859 		goto done;
2860 
2861 done:
2862 	if (err) {
2863 		btf_ext__free(btf_ext);
2864 		return libbpf_err_ptr(err);
2865 	}
2866 
2867 	return btf_ext;
2868 }
2869 
2870 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2871 {
2872 	*size = btf_ext->data_size;
2873 	return btf_ext->data;
2874 }
2875 
2876 struct btf_dedup;
2877 
2878 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2879 static void btf_dedup_free(struct btf_dedup *d);
2880 static int btf_dedup_prep(struct btf_dedup *d);
2881 static int btf_dedup_strings(struct btf_dedup *d);
2882 static int btf_dedup_prim_types(struct btf_dedup *d);
2883 static int btf_dedup_struct_types(struct btf_dedup *d);
2884 static int btf_dedup_ref_types(struct btf_dedup *d);
2885 static int btf_dedup_resolve_fwds(struct btf_dedup *d);
2886 static int btf_dedup_compact_types(struct btf_dedup *d);
2887 static int btf_dedup_remap_types(struct btf_dedup *d);
2888 
2889 /*
2890  * Deduplicate BTF types and strings.
2891  *
2892  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2893  * section with all BTF type descriptors and string data. It overwrites that
2894  * memory in-place with deduplicated types and strings without any loss of
2895  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2896  * is provided, all the strings referenced from .BTF.ext section are honored
2897  * and updated to point to the right offsets after deduplication.
2898  *
2899  * If function returns with error, type/string data might be garbled and should
2900  * be discarded.
2901  *
2902  * More verbose and detailed description of both problem btf_dedup is solving,
2903  * as well as solution could be found at:
2904  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2905  *
2906  * Problem description and justification
2907  * =====================================
2908  *
2909  * BTF type information is typically emitted either as a result of conversion
2910  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2911  * unit contains information about a subset of all the types that are used
2912  * in an application. These subsets are frequently overlapping and contain a lot
2913  * of duplicated information when later concatenated together into a single
2914  * binary. This algorithm ensures that each unique type is represented by single
2915  * BTF type descriptor, greatly reducing resulting size of BTF data.
2916  *
2917  * Compilation unit isolation and subsequent duplication of data is not the only
2918  * problem. The same type hierarchy (e.g., struct and all the type that struct
2919  * references) in different compilation units can be represented in BTF to
2920  * various degrees of completeness (or, rather, incompleteness) due to
2921  * struct/union forward declarations.
2922  *
2923  * Let's take a look at an example, that we'll use to better understand the
2924  * problem (and solution). Suppose we have two compilation units, each using
2925  * same `struct S`, but each of them having incomplete type information about
2926  * struct's fields:
2927  *
2928  * // CU #1:
2929  * struct S;
2930  * struct A {
2931  *	int a;
2932  *	struct A* self;
2933  *	struct S* parent;
2934  * };
2935  * struct B;
2936  * struct S {
2937  *	struct A* a_ptr;
2938  *	struct B* b_ptr;
2939  * };
2940  *
2941  * // CU #2:
2942  * struct S;
2943  * struct A;
2944  * struct B {
2945  *	int b;
2946  *	struct B* self;
2947  *	struct S* parent;
2948  * };
2949  * struct S {
2950  *	struct A* a_ptr;
2951  *	struct B* b_ptr;
2952  * };
2953  *
2954  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2955  * more), but will know the complete type information about `struct A`. While
2956  * for CU #2, it will know full type information about `struct B`, but will
2957  * only know about forward declaration of `struct A` (in BTF terms, it will
2958  * have `BTF_KIND_FWD` type descriptor with name `B`).
2959  *
2960  * This compilation unit isolation means that it's possible that there is no
2961  * single CU with complete type information describing structs `S`, `A`, and
2962  * `B`. Also, we might get tons of duplicated and redundant type information.
2963  *
2964  * Additional complication we need to keep in mind comes from the fact that
2965  * types, in general, can form graphs containing cycles, not just DAGs.
2966  *
2967  * While algorithm does deduplication, it also merges and resolves type
2968  * information (unless disabled throught `struct btf_opts`), whenever possible.
2969  * E.g., in the example above with two compilation units having partial type
2970  * information for structs `A` and `B`, the output of algorithm will emit
2971  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2972  * (as well as type information for `int` and pointers), as if they were defined
2973  * in a single compilation unit as:
2974  *
2975  * struct A {
2976  *	int a;
2977  *	struct A* self;
2978  *	struct S* parent;
2979  * };
2980  * struct B {
2981  *	int b;
2982  *	struct B* self;
2983  *	struct S* parent;
2984  * };
2985  * struct S {
2986  *	struct A* a_ptr;
2987  *	struct B* b_ptr;
2988  * };
2989  *
2990  * Algorithm summary
2991  * =================
2992  *
2993  * Algorithm completes its work in 7 separate passes:
2994  *
2995  * 1. Strings deduplication.
2996  * 2. Primitive types deduplication (int, enum, fwd).
2997  * 3. Struct/union types deduplication.
2998  * 4. Resolve unambiguous forward declarations.
2999  * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3000  *    protos, and const/volatile/restrict modifiers).
3001  * 6. Types compaction.
3002  * 7. Types remapping.
3003  *
3004  * Algorithm determines canonical type descriptor, which is a single
3005  * representative type for each truly unique type. This canonical type is the
3006  * one that will go into final deduplicated BTF type information. For
3007  * struct/unions, it is also the type that algorithm will merge additional type
3008  * information into (while resolving FWDs), as it discovers it from data in
3009  * other CUs. Each input BTF type eventually gets either mapped to itself, if
3010  * that type is canonical, or to some other type, if that type is equivalent
3011  * and was chosen as canonical representative. This mapping is stored in
3012  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3013  * FWD type got resolved to.
3014  *
3015  * To facilitate fast discovery of canonical types, we also maintain canonical
3016  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3017  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3018  * that match that signature. With sufficiently good choice of type signature
3019  * hashing function, we can limit number of canonical types for each unique type
3020  * signature to a very small number, allowing to find canonical type for any
3021  * duplicated type very quickly.
3022  *
3023  * Struct/union deduplication is the most critical part and algorithm for
3024  * deduplicating structs/unions is described in greater details in comments for
3025  * `btf_dedup_is_equiv` function.
3026  */
3027 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3028 {
3029 	struct btf_dedup *d;
3030 	int err;
3031 
3032 	if (!OPTS_VALID(opts, btf_dedup_opts))
3033 		return libbpf_err(-EINVAL);
3034 
3035 	d = btf_dedup_new(btf, opts);
3036 	if (IS_ERR(d)) {
3037 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3038 		return libbpf_err(-EINVAL);
3039 	}
3040 
3041 	if (btf_ensure_modifiable(btf)) {
3042 		err = -ENOMEM;
3043 		goto done;
3044 	}
3045 
3046 	err = btf_dedup_prep(d);
3047 	if (err) {
3048 		pr_debug("btf_dedup_prep failed:%d\n", err);
3049 		goto done;
3050 	}
3051 	err = btf_dedup_strings(d);
3052 	if (err < 0) {
3053 		pr_debug("btf_dedup_strings failed:%d\n", err);
3054 		goto done;
3055 	}
3056 	err = btf_dedup_prim_types(d);
3057 	if (err < 0) {
3058 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3059 		goto done;
3060 	}
3061 	err = btf_dedup_struct_types(d);
3062 	if (err < 0) {
3063 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3064 		goto done;
3065 	}
3066 	err = btf_dedup_resolve_fwds(d);
3067 	if (err < 0) {
3068 		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3069 		goto done;
3070 	}
3071 	err = btf_dedup_ref_types(d);
3072 	if (err < 0) {
3073 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3074 		goto done;
3075 	}
3076 	err = btf_dedup_compact_types(d);
3077 	if (err < 0) {
3078 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3079 		goto done;
3080 	}
3081 	err = btf_dedup_remap_types(d);
3082 	if (err < 0) {
3083 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3084 		goto done;
3085 	}
3086 
3087 done:
3088 	btf_dedup_free(d);
3089 	return libbpf_err(err);
3090 }
3091 
3092 #define BTF_UNPROCESSED_ID ((__u32)-1)
3093 #define BTF_IN_PROGRESS_ID ((__u32)-2)
3094 
3095 struct btf_dedup {
3096 	/* .BTF section to be deduped in-place */
3097 	struct btf *btf;
3098 	/*
3099 	 * Optional .BTF.ext section. When provided, any strings referenced
3100 	 * from it will be taken into account when deduping strings
3101 	 */
3102 	struct btf_ext *btf_ext;
3103 	/*
3104 	 * This is a map from any type's signature hash to a list of possible
3105 	 * canonical representative type candidates. Hash collisions are
3106 	 * ignored, so even types of various kinds can share same list of
3107 	 * candidates, which is fine because we rely on subsequent
3108 	 * btf_xxx_equal() checks to authoritatively verify type equality.
3109 	 */
3110 	struct hashmap *dedup_table;
3111 	/* Canonical types map */
3112 	__u32 *map;
3113 	/* Hypothetical mapping, used during type graph equivalence checks */
3114 	__u32 *hypot_map;
3115 	__u32 *hypot_list;
3116 	size_t hypot_cnt;
3117 	size_t hypot_cap;
3118 	/* Whether hypothetical mapping, if successful, would need to adjust
3119 	 * already canonicalized types (due to a new forward declaration to
3120 	 * concrete type resolution). In such case, during split BTF dedup
3121 	 * candidate type would still be considered as different, because base
3122 	 * BTF is considered to be immutable.
3123 	 */
3124 	bool hypot_adjust_canon;
3125 	/* Various option modifying behavior of algorithm */
3126 	struct btf_dedup_opts opts;
3127 	/* temporary strings deduplication state */
3128 	struct strset *strs_set;
3129 };
3130 
3131 static long hash_combine(long h, long value)
3132 {
3133 	return h * 31 + value;
3134 }
3135 
3136 #define for_each_dedup_cand(d, node, hash) \
3137 	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3138 
3139 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3140 {
3141 	return hashmap__append(d->dedup_table, hash, type_id);
3142 }
3143 
3144 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3145 				   __u32 from_id, __u32 to_id)
3146 {
3147 	if (d->hypot_cnt == d->hypot_cap) {
3148 		__u32 *new_list;
3149 
3150 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3151 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3152 		if (!new_list)
3153 			return -ENOMEM;
3154 		d->hypot_list = new_list;
3155 	}
3156 	d->hypot_list[d->hypot_cnt++] = from_id;
3157 	d->hypot_map[from_id] = to_id;
3158 	return 0;
3159 }
3160 
3161 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3162 {
3163 	int i;
3164 
3165 	for (i = 0; i < d->hypot_cnt; i++)
3166 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3167 	d->hypot_cnt = 0;
3168 	d->hypot_adjust_canon = false;
3169 }
3170 
3171 static void btf_dedup_free(struct btf_dedup *d)
3172 {
3173 	hashmap__free(d->dedup_table);
3174 	d->dedup_table = NULL;
3175 
3176 	free(d->map);
3177 	d->map = NULL;
3178 
3179 	free(d->hypot_map);
3180 	d->hypot_map = NULL;
3181 
3182 	free(d->hypot_list);
3183 	d->hypot_list = NULL;
3184 
3185 	free(d);
3186 }
3187 
3188 static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3189 {
3190 	return key;
3191 }
3192 
3193 static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3194 {
3195 	return 0;
3196 }
3197 
3198 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3199 {
3200 	return k1 == k2;
3201 }
3202 
3203 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3204 {
3205 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3206 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3207 	int i, err = 0, type_cnt;
3208 
3209 	if (!d)
3210 		return ERR_PTR(-ENOMEM);
3211 
3212 	if (OPTS_GET(opts, force_collisions, false))
3213 		hash_fn = btf_dedup_collision_hash_fn;
3214 
3215 	d->btf = btf;
3216 	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3217 
3218 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3219 	if (IS_ERR(d->dedup_table)) {
3220 		err = PTR_ERR(d->dedup_table);
3221 		d->dedup_table = NULL;
3222 		goto done;
3223 	}
3224 
3225 	type_cnt = btf__type_cnt(btf);
3226 	d->map = malloc(sizeof(__u32) * type_cnt);
3227 	if (!d->map) {
3228 		err = -ENOMEM;
3229 		goto done;
3230 	}
3231 	/* special BTF "void" type is made canonical immediately */
3232 	d->map[0] = 0;
3233 	for (i = 1; i < type_cnt; i++) {
3234 		struct btf_type *t = btf_type_by_id(d->btf, i);
3235 
3236 		/* VAR and DATASEC are never deduped and are self-canonical */
3237 		if (btf_is_var(t) || btf_is_datasec(t))
3238 			d->map[i] = i;
3239 		else
3240 			d->map[i] = BTF_UNPROCESSED_ID;
3241 	}
3242 
3243 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3244 	if (!d->hypot_map) {
3245 		err = -ENOMEM;
3246 		goto done;
3247 	}
3248 	for (i = 0; i < type_cnt; i++)
3249 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3250 
3251 done:
3252 	if (err) {
3253 		btf_dedup_free(d);
3254 		return ERR_PTR(err);
3255 	}
3256 
3257 	return d;
3258 }
3259 
3260 /*
3261  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3262  * string and pass pointer to it to a provided callback `fn`.
3263  */
3264 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3265 {
3266 	int i, r;
3267 
3268 	for (i = 0; i < d->btf->nr_types; i++) {
3269 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3270 
3271 		r = btf_type_visit_str_offs(t, fn, ctx);
3272 		if (r)
3273 			return r;
3274 	}
3275 
3276 	if (!d->btf_ext)
3277 		return 0;
3278 
3279 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3280 	if (r)
3281 		return r;
3282 
3283 	return 0;
3284 }
3285 
3286 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3287 {
3288 	struct btf_dedup *d = ctx;
3289 	__u32 str_off = *str_off_ptr;
3290 	const char *s;
3291 	int off, err;
3292 
3293 	/* don't touch empty string or string in main BTF */
3294 	if (str_off == 0 || str_off < d->btf->start_str_off)
3295 		return 0;
3296 
3297 	s = btf__str_by_offset(d->btf, str_off);
3298 	if (d->btf->base_btf) {
3299 		err = btf__find_str(d->btf->base_btf, s);
3300 		if (err >= 0) {
3301 			*str_off_ptr = err;
3302 			return 0;
3303 		}
3304 		if (err != -ENOENT)
3305 			return err;
3306 	}
3307 
3308 	off = strset__add_str(d->strs_set, s);
3309 	if (off < 0)
3310 		return off;
3311 
3312 	*str_off_ptr = d->btf->start_str_off + off;
3313 	return 0;
3314 }
3315 
3316 /*
3317  * Dedup string and filter out those that are not referenced from either .BTF
3318  * or .BTF.ext (if provided) sections.
3319  *
3320  * This is done by building index of all strings in BTF's string section,
3321  * then iterating over all entities that can reference strings (e.g., type
3322  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3323  * strings as used. After that all used strings are deduped and compacted into
3324  * sequential blob of memory and new offsets are calculated. Then all the string
3325  * references are iterated again and rewritten using new offsets.
3326  */
3327 static int btf_dedup_strings(struct btf_dedup *d)
3328 {
3329 	int err;
3330 
3331 	if (d->btf->strs_deduped)
3332 		return 0;
3333 
3334 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3335 	if (IS_ERR(d->strs_set)) {
3336 		err = PTR_ERR(d->strs_set);
3337 		goto err_out;
3338 	}
3339 
3340 	if (!d->btf->base_btf) {
3341 		/* insert empty string; we won't be looking it up during strings
3342 		 * dedup, but it's good to have it for generic BTF string lookups
3343 		 */
3344 		err = strset__add_str(d->strs_set, "");
3345 		if (err < 0)
3346 			goto err_out;
3347 	}
3348 
3349 	/* remap string offsets */
3350 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3351 	if (err)
3352 		goto err_out;
3353 
3354 	/* replace BTF string data and hash with deduped ones */
3355 	strset__free(d->btf->strs_set);
3356 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3357 	d->btf->strs_set = d->strs_set;
3358 	d->strs_set = NULL;
3359 	d->btf->strs_deduped = true;
3360 	return 0;
3361 
3362 err_out:
3363 	strset__free(d->strs_set);
3364 	d->strs_set = NULL;
3365 
3366 	return err;
3367 }
3368 
3369 static long btf_hash_common(struct btf_type *t)
3370 {
3371 	long h;
3372 
3373 	h = hash_combine(0, t->name_off);
3374 	h = hash_combine(h, t->info);
3375 	h = hash_combine(h, t->size);
3376 	return h;
3377 }
3378 
3379 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3380 {
3381 	return t1->name_off == t2->name_off &&
3382 	       t1->info == t2->info &&
3383 	       t1->size == t2->size;
3384 }
3385 
3386 /* Calculate type signature hash of INT or TAG. */
3387 static long btf_hash_int_decl_tag(struct btf_type *t)
3388 {
3389 	__u32 info = *(__u32 *)(t + 1);
3390 	long h;
3391 
3392 	h = btf_hash_common(t);
3393 	h = hash_combine(h, info);
3394 	return h;
3395 }
3396 
3397 /* Check structural equality of two INTs or TAGs. */
3398 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3399 {
3400 	__u32 info1, info2;
3401 
3402 	if (!btf_equal_common(t1, t2))
3403 		return false;
3404 	info1 = *(__u32 *)(t1 + 1);
3405 	info2 = *(__u32 *)(t2 + 1);
3406 	return info1 == info2;
3407 }
3408 
3409 /* Calculate type signature hash of ENUM/ENUM64. */
3410 static long btf_hash_enum(struct btf_type *t)
3411 {
3412 	long h;
3413 
3414 	/* don't hash vlen, enum members and size to support enum fwd resolving */
3415 	h = hash_combine(0, t->name_off);
3416 	return h;
3417 }
3418 
3419 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3420 {
3421 	const struct btf_enum *m1, *m2;
3422 	__u16 vlen;
3423 	int i;
3424 
3425 	vlen = btf_vlen(t1);
3426 	m1 = btf_enum(t1);
3427 	m2 = btf_enum(t2);
3428 	for (i = 0; i < vlen; i++) {
3429 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3430 			return false;
3431 		m1++;
3432 		m2++;
3433 	}
3434 	return true;
3435 }
3436 
3437 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3438 {
3439 	const struct btf_enum64 *m1, *m2;
3440 	__u16 vlen;
3441 	int i;
3442 
3443 	vlen = btf_vlen(t1);
3444 	m1 = btf_enum64(t1);
3445 	m2 = btf_enum64(t2);
3446 	for (i = 0; i < vlen; i++) {
3447 		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3448 		    m1->val_hi32 != m2->val_hi32)
3449 			return false;
3450 		m1++;
3451 		m2++;
3452 	}
3453 	return true;
3454 }
3455 
3456 /* Check structural equality of two ENUMs or ENUM64s. */
3457 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3458 {
3459 	if (!btf_equal_common(t1, t2))
3460 		return false;
3461 
3462 	/* t1 & t2 kinds are identical because of btf_equal_common */
3463 	if (btf_kind(t1) == BTF_KIND_ENUM)
3464 		return btf_equal_enum_members(t1, t2);
3465 	else
3466 		return btf_equal_enum64_members(t1, t2);
3467 }
3468 
3469 static inline bool btf_is_enum_fwd(struct btf_type *t)
3470 {
3471 	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3472 }
3473 
3474 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3475 {
3476 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3477 		return btf_equal_enum(t1, t2);
3478 	/* At this point either t1 or t2 or both are forward declarations, thus:
3479 	 * - skip comparing vlen because it is zero for forward declarations;
3480 	 * - skip comparing size to allow enum forward declarations
3481 	 *   to be compatible with enum64 full declarations;
3482 	 * - skip comparing kind for the same reason.
3483 	 */
3484 	return t1->name_off == t2->name_off &&
3485 	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
3486 }
3487 
3488 /*
3489  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3490  * as referenced type IDs equivalence is established separately during type
3491  * graph equivalence check algorithm.
3492  */
3493 static long btf_hash_struct(struct btf_type *t)
3494 {
3495 	const struct btf_member *member = btf_members(t);
3496 	__u32 vlen = btf_vlen(t);
3497 	long h = btf_hash_common(t);
3498 	int i;
3499 
3500 	for (i = 0; i < vlen; i++) {
3501 		h = hash_combine(h, member->name_off);
3502 		h = hash_combine(h, member->offset);
3503 		/* no hashing of referenced type ID, it can be unresolved yet */
3504 		member++;
3505 	}
3506 	return h;
3507 }
3508 
3509 /*
3510  * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3511  * type IDs. This check is performed during type graph equivalence check and
3512  * referenced types equivalence is checked separately.
3513  */
3514 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3515 {
3516 	const struct btf_member *m1, *m2;
3517 	__u16 vlen;
3518 	int i;
3519 
3520 	if (!btf_equal_common(t1, t2))
3521 		return false;
3522 
3523 	vlen = btf_vlen(t1);
3524 	m1 = btf_members(t1);
3525 	m2 = btf_members(t2);
3526 	for (i = 0; i < vlen; i++) {
3527 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3528 			return false;
3529 		m1++;
3530 		m2++;
3531 	}
3532 	return true;
3533 }
3534 
3535 /*
3536  * Calculate type signature hash of ARRAY, including referenced type IDs,
3537  * under assumption that they were already resolved to canonical type IDs and
3538  * are not going to change.
3539  */
3540 static long btf_hash_array(struct btf_type *t)
3541 {
3542 	const struct btf_array *info = btf_array(t);
3543 	long h = btf_hash_common(t);
3544 
3545 	h = hash_combine(h, info->type);
3546 	h = hash_combine(h, info->index_type);
3547 	h = hash_combine(h, info->nelems);
3548 	return h;
3549 }
3550 
3551 /*
3552  * Check exact equality of two ARRAYs, taking into account referenced
3553  * type IDs, under assumption that they were already resolved to canonical
3554  * type IDs and are not going to change.
3555  * This function is called during reference types deduplication to compare
3556  * ARRAY to potential canonical representative.
3557  */
3558 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3559 {
3560 	const struct btf_array *info1, *info2;
3561 
3562 	if (!btf_equal_common(t1, t2))
3563 		return false;
3564 
3565 	info1 = btf_array(t1);
3566 	info2 = btf_array(t2);
3567 	return info1->type == info2->type &&
3568 	       info1->index_type == info2->index_type &&
3569 	       info1->nelems == info2->nelems;
3570 }
3571 
3572 /*
3573  * Check structural compatibility of two ARRAYs, ignoring referenced type
3574  * IDs. This check is performed during type graph equivalence check and
3575  * referenced types equivalence is checked separately.
3576  */
3577 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3578 {
3579 	if (!btf_equal_common(t1, t2))
3580 		return false;
3581 
3582 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3583 }
3584 
3585 /*
3586  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3587  * under assumption that they were already resolved to canonical type IDs and
3588  * are not going to change.
3589  */
3590 static long btf_hash_fnproto(struct btf_type *t)
3591 {
3592 	const struct btf_param *member = btf_params(t);
3593 	__u16 vlen = btf_vlen(t);
3594 	long h = btf_hash_common(t);
3595 	int i;
3596 
3597 	for (i = 0; i < vlen; i++) {
3598 		h = hash_combine(h, member->name_off);
3599 		h = hash_combine(h, member->type);
3600 		member++;
3601 	}
3602 	return h;
3603 }
3604 
3605 /*
3606  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3607  * type IDs, under assumption that they were already resolved to canonical
3608  * type IDs and are not going to change.
3609  * This function is called during reference types deduplication to compare
3610  * FUNC_PROTO to potential canonical representative.
3611  */
3612 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3613 {
3614 	const struct btf_param *m1, *m2;
3615 	__u16 vlen;
3616 	int i;
3617 
3618 	if (!btf_equal_common(t1, t2))
3619 		return false;
3620 
3621 	vlen = btf_vlen(t1);
3622 	m1 = btf_params(t1);
3623 	m2 = btf_params(t2);
3624 	for (i = 0; i < vlen; i++) {
3625 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3626 			return false;
3627 		m1++;
3628 		m2++;
3629 	}
3630 	return true;
3631 }
3632 
3633 /*
3634  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3635  * IDs. This check is performed during type graph equivalence check and
3636  * referenced types equivalence is checked separately.
3637  */
3638 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3639 {
3640 	const struct btf_param *m1, *m2;
3641 	__u16 vlen;
3642 	int i;
3643 
3644 	/* skip return type ID */
3645 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3646 		return false;
3647 
3648 	vlen = btf_vlen(t1);
3649 	m1 = btf_params(t1);
3650 	m2 = btf_params(t2);
3651 	for (i = 0; i < vlen; i++) {
3652 		if (m1->name_off != m2->name_off)
3653 			return false;
3654 		m1++;
3655 		m2++;
3656 	}
3657 	return true;
3658 }
3659 
3660 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3661  * types and initializing the rest of the state (canonical type mapping) for
3662  * the fixed base BTF part.
3663  */
3664 static int btf_dedup_prep(struct btf_dedup *d)
3665 {
3666 	struct btf_type *t;
3667 	int type_id;
3668 	long h;
3669 
3670 	if (!d->btf->base_btf)
3671 		return 0;
3672 
3673 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3674 		t = btf_type_by_id(d->btf, type_id);
3675 
3676 		/* all base BTF types are self-canonical by definition */
3677 		d->map[type_id] = type_id;
3678 
3679 		switch (btf_kind(t)) {
3680 		case BTF_KIND_VAR:
3681 		case BTF_KIND_DATASEC:
3682 			/* VAR and DATASEC are never hash/deduplicated */
3683 			continue;
3684 		case BTF_KIND_CONST:
3685 		case BTF_KIND_VOLATILE:
3686 		case BTF_KIND_RESTRICT:
3687 		case BTF_KIND_PTR:
3688 		case BTF_KIND_FWD:
3689 		case BTF_KIND_TYPEDEF:
3690 		case BTF_KIND_FUNC:
3691 		case BTF_KIND_FLOAT:
3692 		case BTF_KIND_TYPE_TAG:
3693 			h = btf_hash_common(t);
3694 			break;
3695 		case BTF_KIND_INT:
3696 		case BTF_KIND_DECL_TAG:
3697 			h = btf_hash_int_decl_tag(t);
3698 			break;
3699 		case BTF_KIND_ENUM:
3700 		case BTF_KIND_ENUM64:
3701 			h = btf_hash_enum(t);
3702 			break;
3703 		case BTF_KIND_STRUCT:
3704 		case BTF_KIND_UNION:
3705 			h = btf_hash_struct(t);
3706 			break;
3707 		case BTF_KIND_ARRAY:
3708 			h = btf_hash_array(t);
3709 			break;
3710 		case BTF_KIND_FUNC_PROTO:
3711 			h = btf_hash_fnproto(t);
3712 			break;
3713 		default:
3714 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3715 			return -EINVAL;
3716 		}
3717 		if (btf_dedup_table_add(d, h, type_id))
3718 			return -ENOMEM;
3719 	}
3720 
3721 	return 0;
3722 }
3723 
3724 /*
3725  * Deduplicate primitive types, that can't reference other types, by calculating
3726  * their type signature hash and comparing them with any possible canonical
3727  * candidate. If no canonical candidate matches, type itself is marked as
3728  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3729  */
3730 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3731 {
3732 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3733 	struct hashmap_entry *hash_entry;
3734 	struct btf_type *cand;
3735 	/* if we don't find equivalent type, then we are canonical */
3736 	__u32 new_id = type_id;
3737 	__u32 cand_id;
3738 	long h;
3739 
3740 	switch (btf_kind(t)) {
3741 	case BTF_KIND_CONST:
3742 	case BTF_KIND_VOLATILE:
3743 	case BTF_KIND_RESTRICT:
3744 	case BTF_KIND_PTR:
3745 	case BTF_KIND_TYPEDEF:
3746 	case BTF_KIND_ARRAY:
3747 	case BTF_KIND_STRUCT:
3748 	case BTF_KIND_UNION:
3749 	case BTF_KIND_FUNC:
3750 	case BTF_KIND_FUNC_PROTO:
3751 	case BTF_KIND_VAR:
3752 	case BTF_KIND_DATASEC:
3753 	case BTF_KIND_DECL_TAG:
3754 	case BTF_KIND_TYPE_TAG:
3755 		return 0;
3756 
3757 	case BTF_KIND_INT:
3758 		h = btf_hash_int_decl_tag(t);
3759 		for_each_dedup_cand(d, hash_entry, h) {
3760 			cand_id = hash_entry->value;
3761 			cand = btf_type_by_id(d->btf, cand_id);
3762 			if (btf_equal_int_tag(t, cand)) {
3763 				new_id = cand_id;
3764 				break;
3765 			}
3766 		}
3767 		break;
3768 
3769 	case BTF_KIND_ENUM:
3770 	case BTF_KIND_ENUM64:
3771 		h = btf_hash_enum(t);
3772 		for_each_dedup_cand(d, hash_entry, h) {
3773 			cand_id = hash_entry->value;
3774 			cand = btf_type_by_id(d->btf, cand_id);
3775 			if (btf_equal_enum(t, cand)) {
3776 				new_id = cand_id;
3777 				break;
3778 			}
3779 			if (btf_compat_enum(t, cand)) {
3780 				if (btf_is_enum_fwd(t)) {
3781 					/* resolve fwd to full enum */
3782 					new_id = cand_id;
3783 					break;
3784 				}
3785 				/* resolve canonical enum fwd to full enum */
3786 				d->map[cand_id] = type_id;
3787 			}
3788 		}
3789 		break;
3790 
3791 	case BTF_KIND_FWD:
3792 	case BTF_KIND_FLOAT:
3793 		h = btf_hash_common(t);
3794 		for_each_dedup_cand(d, hash_entry, h) {
3795 			cand_id = hash_entry->value;
3796 			cand = btf_type_by_id(d->btf, cand_id);
3797 			if (btf_equal_common(t, cand)) {
3798 				new_id = cand_id;
3799 				break;
3800 			}
3801 		}
3802 		break;
3803 
3804 	default:
3805 		return -EINVAL;
3806 	}
3807 
3808 	d->map[type_id] = new_id;
3809 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3810 		return -ENOMEM;
3811 
3812 	return 0;
3813 }
3814 
3815 static int btf_dedup_prim_types(struct btf_dedup *d)
3816 {
3817 	int i, err;
3818 
3819 	for (i = 0; i < d->btf->nr_types; i++) {
3820 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3821 		if (err)
3822 			return err;
3823 	}
3824 	return 0;
3825 }
3826 
3827 /*
3828  * Check whether type is already mapped into canonical one (could be to itself).
3829  */
3830 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3831 {
3832 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3833 }
3834 
3835 /*
3836  * Resolve type ID into its canonical type ID, if any; otherwise return original
3837  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3838  * STRUCT/UNION link and resolve it into canonical type ID as well.
3839  */
3840 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3841 {
3842 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3843 		type_id = d->map[type_id];
3844 	return type_id;
3845 }
3846 
3847 /*
3848  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3849  * type ID.
3850  */
3851 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3852 {
3853 	__u32 orig_type_id = type_id;
3854 
3855 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3856 		return type_id;
3857 
3858 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3859 		type_id = d->map[type_id];
3860 
3861 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3862 		return type_id;
3863 
3864 	return orig_type_id;
3865 }
3866 
3867 
3868 static inline __u16 btf_fwd_kind(struct btf_type *t)
3869 {
3870 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3871 }
3872 
3873 /* Check if given two types are identical ARRAY definitions */
3874 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3875 {
3876 	struct btf_type *t1, *t2;
3877 
3878 	t1 = btf_type_by_id(d->btf, id1);
3879 	t2 = btf_type_by_id(d->btf, id2);
3880 	if (!btf_is_array(t1) || !btf_is_array(t2))
3881 		return false;
3882 
3883 	return btf_equal_array(t1, t2);
3884 }
3885 
3886 /* Check if given two types are identical STRUCT/UNION definitions */
3887 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3888 {
3889 	const struct btf_member *m1, *m2;
3890 	struct btf_type *t1, *t2;
3891 	int n, i;
3892 
3893 	t1 = btf_type_by_id(d->btf, id1);
3894 	t2 = btf_type_by_id(d->btf, id2);
3895 
3896 	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3897 		return false;
3898 
3899 	if (!btf_shallow_equal_struct(t1, t2))
3900 		return false;
3901 
3902 	m1 = btf_members(t1);
3903 	m2 = btf_members(t2);
3904 	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3905 		if (m1->type != m2->type &&
3906 		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
3907 		    !btf_dedup_identical_structs(d, m1->type, m2->type))
3908 			return false;
3909 	}
3910 	return true;
3911 }
3912 
3913 /*
3914  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3915  * call it "candidate graph" in this description for brevity) to a type graph
3916  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3917  * here, though keep in mind that not all types in canonical graph are
3918  * necessarily canonical representatives themselves, some of them might be
3919  * duplicates or its uniqueness might not have been established yet).
3920  * Returns:
3921  *  - >0, if type graphs are equivalent;
3922  *  -  0, if not equivalent;
3923  *  - <0, on error.
3924  *
3925  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3926  * equivalence of BTF types at each step. If at any point BTF types in candidate
3927  * and canonical graphs are not compatible structurally, whole graphs are
3928  * incompatible. If types are structurally equivalent (i.e., all information
3929  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3930  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3931  * If a type references other types, then those referenced types are checked
3932  * for equivalence recursively.
3933  *
3934  * During DFS traversal, if we find that for current `canon_id` type we
3935  * already have some mapping in hypothetical map, we check for two possible
3936  * situations:
3937  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3938  *     happen when type graphs have cycles. In this case we assume those two
3939  *     types are equivalent.
3940  *   - `canon_id` is mapped to different type. This is contradiction in our
3941  *     hypothetical mapping, because same graph in canonical graph corresponds
3942  *     to two different types in candidate graph, which for equivalent type
3943  *     graphs shouldn't happen. This condition terminates equivalence check
3944  *     with negative result.
3945  *
3946  * If type graphs traversal exhausts types to check and find no contradiction,
3947  * then type graphs are equivalent.
3948  *
3949  * When checking types for equivalence, there is one special case: FWD types.
3950  * If FWD type resolution is allowed and one of the types (either from canonical
3951  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3952  * flag) and their names match, hypothetical mapping is updated to point from
3953  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3954  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3955  *
3956  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3957  * if there are two exactly named (or anonymous) structs/unions that are
3958  * compatible structurally, one of which has FWD field, while other is concrete
3959  * STRUCT/UNION, but according to C sources they are different structs/unions
3960  * that are referencing different types with the same name. This is extremely
3961  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3962  * this logic is causing problems.
3963  *
3964  * Doing FWD resolution means that both candidate and/or canonical graphs can
3965  * consists of portions of the graph that come from multiple compilation units.
3966  * This is due to the fact that types within single compilation unit are always
3967  * deduplicated and FWDs are already resolved, if referenced struct/union
3968  * definiton is available. So, if we had unresolved FWD and found corresponding
3969  * STRUCT/UNION, they will be from different compilation units. This
3970  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3971  * type graph will likely have at least two different BTF types that describe
3972  * same type (e.g., most probably there will be two different BTF types for the
3973  * same 'int' primitive type) and could even have "overlapping" parts of type
3974  * graph that describe same subset of types.
3975  *
3976  * This in turn means that our assumption that each type in canonical graph
3977  * must correspond to exactly one type in candidate graph might not hold
3978  * anymore and will make it harder to detect contradictions using hypothetical
3979  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3980  * resolution only in canonical graph. FWDs in candidate graphs are never
3981  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3982  * that can occur:
3983  *   - Both types in canonical and candidate graphs are FWDs. If they are
3984  *     structurally equivalent, then they can either be both resolved to the
3985  *     same STRUCT/UNION or not resolved at all. In both cases they are
3986  *     equivalent and there is no need to resolve FWD on candidate side.
3987  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3988  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3989  *   - Type in canonical graph is FWD, while type in candidate is concrete
3990  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3991  *     unit, so there is exactly one BTF type for each unique C type. After
3992  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3993  *     in canonical graph mapping to single BTF type in candidate graph, but
3994  *     because hypothetical mapping maps from canonical to candidate types, it's
3995  *     alright, and we still maintain the property of having single `canon_id`
3996  *     mapping to single `cand_id` (there could be two different `canon_id`
3997  *     mapped to the same `cand_id`, but it's not contradictory).
3998  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3999  *     graph is FWD. In this case we are just going to check compatibility of
4000  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4001  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4002  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4003  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4004  *     canonical graph.
4005  */
4006 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4007 			      __u32 canon_id)
4008 {
4009 	struct btf_type *cand_type;
4010 	struct btf_type *canon_type;
4011 	__u32 hypot_type_id;
4012 	__u16 cand_kind;
4013 	__u16 canon_kind;
4014 	int i, eq;
4015 
4016 	/* if both resolve to the same canonical, they must be equivalent */
4017 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4018 		return 1;
4019 
4020 	canon_id = resolve_fwd_id(d, canon_id);
4021 
4022 	hypot_type_id = d->hypot_map[canon_id];
4023 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4024 		if (hypot_type_id == cand_id)
4025 			return 1;
4026 		/* In some cases compiler will generate different DWARF types
4027 		 * for *identical* array type definitions and use them for
4028 		 * different fields within the *same* struct. This breaks type
4029 		 * equivalence check, which makes an assumption that candidate
4030 		 * types sub-graph has a consistent and deduped-by-compiler
4031 		 * types within a single CU. So work around that by explicitly
4032 		 * allowing identical array types here.
4033 		 */
4034 		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4035 			return 1;
4036 		/* It turns out that similar situation can happen with
4037 		 * struct/union sometimes, sigh... Handle the case where
4038 		 * structs/unions are exactly the same, down to the referenced
4039 		 * type IDs. Anything more complicated (e.g., if referenced
4040 		 * types are different, but equivalent) is *way more*
4041 		 * complicated and requires a many-to-many equivalence mapping.
4042 		 */
4043 		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4044 			return 1;
4045 		return 0;
4046 	}
4047 
4048 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4049 		return -ENOMEM;
4050 
4051 	cand_type = btf_type_by_id(d->btf, cand_id);
4052 	canon_type = btf_type_by_id(d->btf, canon_id);
4053 	cand_kind = btf_kind(cand_type);
4054 	canon_kind = btf_kind(canon_type);
4055 
4056 	if (cand_type->name_off != canon_type->name_off)
4057 		return 0;
4058 
4059 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4060 	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4061 	    && cand_kind != canon_kind) {
4062 		__u16 real_kind;
4063 		__u16 fwd_kind;
4064 
4065 		if (cand_kind == BTF_KIND_FWD) {
4066 			real_kind = canon_kind;
4067 			fwd_kind = btf_fwd_kind(cand_type);
4068 		} else {
4069 			real_kind = cand_kind;
4070 			fwd_kind = btf_fwd_kind(canon_type);
4071 			/* we'd need to resolve base FWD to STRUCT/UNION */
4072 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4073 				d->hypot_adjust_canon = true;
4074 		}
4075 		return fwd_kind == real_kind;
4076 	}
4077 
4078 	if (cand_kind != canon_kind)
4079 		return 0;
4080 
4081 	switch (cand_kind) {
4082 	case BTF_KIND_INT:
4083 		return btf_equal_int_tag(cand_type, canon_type);
4084 
4085 	case BTF_KIND_ENUM:
4086 	case BTF_KIND_ENUM64:
4087 		return btf_compat_enum(cand_type, canon_type);
4088 
4089 	case BTF_KIND_FWD:
4090 	case BTF_KIND_FLOAT:
4091 		return btf_equal_common(cand_type, canon_type);
4092 
4093 	case BTF_KIND_CONST:
4094 	case BTF_KIND_VOLATILE:
4095 	case BTF_KIND_RESTRICT:
4096 	case BTF_KIND_PTR:
4097 	case BTF_KIND_TYPEDEF:
4098 	case BTF_KIND_FUNC:
4099 	case BTF_KIND_TYPE_TAG:
4100 		if (cand_type->info != canon_type->info)
4101 			return 0;
4102 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4103 
4104 	case BTF_KIND_ARRAY: {
4105 		const struct btf_array *cand_arr, *canon_arr;
4106 
4107 		if (!btf_compat_array(cand_type, canon_type))
4108 			return 0;
4109 		cand_arr = btf_array(cand_type);
4110 		canon_arr = btf_array(canon_type);
4111 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4112 		if (eq <= 0)
4113 			return eq;
4114 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4115 	}
4116 
4117 	case BTF_KIND_STRUCT:
4118 	case BTF_KIND_UNION: {
4119 		const struct btf_member *cand_m, *canon_m;
4120 		__u16 vlen;
4121 
4122 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4123 			return 0;
4124 		vlen = btf_vlen(cand_type);
4125 		cand_m = btf_members(cand_type);
4126 		canon_m = btf_members(canon_type);
4127 		for (i = 0; i < vlen; i++) {
4128 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4129 			if (eq <= 0)
4130 				return eq;
4131 			cand_m++;
4132 			canon_m++;
4133 		}
4134 
4135 		return 1;
4136 	}
4137 
4138 	case BTF_KIND_FUNC_PROTO: {
4139 		const struct btf_param *cand_p, *canon_p;
4140 		__u16 vlen;
4141 
4142 		if (!btf_compat_fnproto(cand_type, canon_type))
4143 			return 0;
4144 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4145 		if (eq <= 0)
4146 			return eq;
4147 		vlen = btf_vlen(cand_type);
4148 		cand_p = btf_params(cand_type);
4149 		canon_p = btf_params(canon_type);
4150 		for (i = 0; i < vlen; i++) {
4151 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4152 			if (eq <= 0)
4153 				return eq;
4154 			cand_p++;
4155 			canon_p++;
4156 		}
4157 		return 1;
4158 	}
4159 
4160 	default:
4161 		return -EINVAL;
4162 	}
4163 	return 0;
4164 }
4165 
4166 /*
4167  * Use hypothetical mapping, produced by successful type graph equivalence
4168  * check, to augment existing struct/union canonical mapping, where possible.
4169  *
4170  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4171  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4172  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4173  * we are recording the mapping anyway. As opposed to carefulness required
4174  * for struct/union correspondence mapping (described below), for FWD resolution
4175  * it's not important, as by the time that FWD type (reference type) will be
4176  * deduplicated all structs/unions will be deduped already anyway.
4177  *
4178  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4179  * not required for correctness. It needs to be done carefully to ensure that
4180  * struct/union from candidate's type graph is not mapped into corresponding
4181  * struct/union from canonical type graph that itself hasn't been resolved into
4182  * canonical representative. The only guarantee we have is that canonical
4183  * struct/union was determined as canonical and that won't change. But any
4184  * types referenced through that struct/union fields could have been not yet
4185  * resolved, so in case like that it's too early to establish any kind of
4186  * correspondence between structs/unions.
4187  *
4188  * No canonical correspondence is derived for primitive types (they are already
4189  * deduplicated completely already anyway) or reference types (they rely on
4190  * stability of struct/union canonical relationship for equivalence checks).
4191  */
4192 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4193 {
4194 	__u32 canon_type_id, targ_type_id;
4195 	__u16 t_kind, c_kind;
4196 	__u32 t_id, c_id;
4197 	int i;
4198 
4199 	for (i = 0; i < d->hypot_cnt; i++) {
4200 		canon_type_id = d->hypot_list[i];
4201 		targ_type_id = d->hypot_map[canon_type_id];
4202 		t_id = resolve_type_id(d, targ_type_id);
4203 		c_id = resolve_type_id(d, canon_type_id);
4204 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4205 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4206 		/*
4207 		 * Resolve FWD into STRUCT/UNION.
4208 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4209 		 * mapped to canonical representative (as opposed to
4210 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4211 		 * eventually that struct is going to be mapped and all resolved
4212 		 * FWDs will automatically resolve to correct canonical
4213 		 * representative. This will happen before ref type deduping,
4214 		 * which critically depends on stability of these mapping. This
4215 		 * stability is not a requirement for STRUCT/UNION equivalence
4216 		 * checks, though.
4217 		 */
4218 
4219 		/* if it's the split BTF case, we still need to point base FWD
4220 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4221 		 * will be resolved against base FWD. If we don't point base
4222 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4223 		 * FWDs in split BTF won't be correctly resolved to a proper
4224 		 * STRUCT/UNION.
4225 		 */
4226 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4227 			d->map[c_id] = t_id;
4228 
4229 		/* if graph equivalence determined that we'd need to adjust
4230 		 * base canonical types, then we need to only point base FWDs
4231 		 * to STRUCTs/UNIONs and do no more modifications. For all
4232 		 * other purposes the type graphs were not equivalent.
4233 		 */
4234 		if (d->hypot_adjust_canon)
4235 			continue;
4236 
4237 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4238 			d->map[t_id] = c_id;
4239 
4240 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4241 		    c_kind != BTF_KIND_FWD &&
4242 		    is_type_mapped(d, c_id) &&
4243 		    !is_type_mapped(d, t_id)) {
4244 			/*
4245 			 * as a perf optimization, we can map struct/union
4246 			 * that's part of type graph we just verified for
4247 			 * equivalence. We can do that for struct/union that has
4248 			 * canonical representative only, though.
4249 			 */
4250 			d->map[t_id] = c_id;
4251 		}
4252 	}
4253 }
4254 
4255 /*
4256  * Deduplicate struct/union types.
4257  *
4258  * For each struct/union type its type signature hash is calculated, taking
4259  * into account type's name, size, number, order and names of fields, but
4260  * ignoring type ID's referenced from fields, because they might not be deduped
4261  * completely until after reference types deduplication phase. This type hash
4262  * is used to iterate over all potential canonical types, sharing same hash.
4263  * For each canonical candidate we check whether type graphs that they form
4264  * (through referenced types in fields and so on) are equivalent using algorithm
4265  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4266  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4267  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4268  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4269  * potentially map other structs/unions to their canonical representatives,
4270  * if such relationship hasn't yet been established. This speeds up algorithm
4271  * by eliminating some of the duplicate work.
4272  *
4273  * If no matching canonical representative was found, struct/union is marked
4274  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4275  * for further look ups.
4276  */
4277 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4278 {
4279 	struct btf_type *cand_type, *t;
4280 	struct hashmap_entry *hash_entry;
4281 	/* if we don't find equivalent type, then we are canonical */
4282 	__u32 new_id = type_id;
4283 	__u16 kind;
4284 	long h;
4285 
4286 	/* already deduped or is in process of deduping (loop detected) */
4287 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4288 		return 0;
4289 
4290 	t = btf_type_by_id(d->btf, type_id);
4291 	kind = btf_kind(t);
4292 
4293 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4294 		return 0;
4295 
4296 	h = btf_hash_struct(t);
4297 	for_each_dedup_cand(d, hash_entry, h) {
4298 		__u32 cand_id = hash_entry->value;
4299 		int eq;
4300 
4301 		/*
4302 		 * Even though btf_dedup_is_equiv() checks for
4303 		 * btf_shallow_equal_struct() internally when checking two
4304 		 * structs (unions) for equivalence, we need to guard here
4305 		 * from picking matching FWD type as a dedup candidate.
4306 		 * This can happen due to hash collision. In such case just
4307 		 * relying on btf_dedup_is_equiv() would lead to potentially
4308 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4309 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4310 		 */
4311 		cand_type = btf_type_by_id(d->btf, cand_id);
4312 		if (!btf_shallow_equal_struct(t, cand_type))
4313 			continue;
4314 
4315 		btf_dedup_clear_hypot_map(d);
4316 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4317 		if (eq < 0)
4318 			return eq;
4319 		if (!eq)
4320 			continue;
4321 		btf_dedup_merge_hypot_map(d);
4322 		if (d->hypot_adjust_canon) /* not really equivalent */
4323 			continue;
4324 		new_id = cand_id;
4325 		break;
4326 	}
4327 
4328 	d->map[type_id] = new_id;
4329 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4330 		return -ENOMEM;
4331 
4332 	return 0;
4333 }
4334 
4335 static int btf_dedup_struct_types(struct btf_dedup *d)
4336 {
4337 	int i, err;
4338 
4339 	for (i = 0; i < d->btf->nr_types; i++) {
4340 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4341 		if (err)
4342 			return err;
4343 	}
4344 	return 0;
4345 }
4346 
4347 /*
4348  * Deduplicate reference type.
4349  *
4350  * Once all primitive and struct/union types got deduplicated, we can easily
4351  * deduplicate all other (reference) BTF types. This is done in two steps:
4352  *
4353  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4354  * resolution can be done either immediately for primitive or struct/union types
4355  * (because they were deduped in previous two phases) or recursively for
4356  * reference types. Recursion will always terminate at either primitive or
4357  * struct/union type, at which point we can "unwind" chain of reference types
4358  * one by one. There is no danger of encountering cycles because in C type
4359  * system the only way to form type cycle is through struct/union, so any chain
4360  * of reference types, even those taking part in a type cycle, will inevitably
4361  * reach struct/union at some point.
4362  *
4363  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4364  * becomes "stable", in the sense that no further deduplication will cause
4365  * any changes to it. With that, it's now possible to calculate type's signature
4366  * hash (this time taking into account referenced type IDs) and loop over all
4367  * potential canonical representatives. If no match was found, current type
4368  * will become canonical representative of itself and will be added into
4369  * btf_dedup->dedup_table as another possible canonical representative.
4370  */
4371 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4372 {
4373 	struct hashmap_entry *hash_entry;
4374 	__u32 new_id = type_id, cand_id;
4375 	struct btf_type *t, *cand;
4376 	/* if we don't find equivalent type, then we are representative type */
4377 	int ref_type_id;
4378 	long h;
4379 
4380 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4381 		return -ELOOP;
4382 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4383 		return resolve_type_id(d, type_id);
4384 
4385 	t = btf_type_by_id(d->btf, type_id);
4386 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4387 
4388 	switch (btf_kind(t)) {
4389 	case BTF_KIND_CONST:
4390 	case BTF_KIND_VOLATILE:
4391 	case BTF_KIND_RESTRICT:
4392 	case BTF_KIND_PTR:
4393 	case BTF_KIND_TYPEDEF:
4394 	case BTF_KIND_FUNC:
4395 	case BTF_KIND_TYPE_TAG:
4396 		ref_type_id = btf_dedup_ref_type(d, t->type);
4397 		if (ref_type_id < 0)
4398 			return ref_type_id;
4399 		t->type = ref_type_id;
4400 
4401 		h = btf_hash_common(t);
4402 		for_each_dedup_cand(d, hash_entry, h) {
4403 			cand_id = hash_entry->value;
4404 			cand = btf_type_by_id(d->btf, cand_id);
4405 			if (btf_equal_common(t, cand)) {
4406 				new_id = cand_id;
4407 				break;
4408 			}
4409 		}
4410 		break;
4411 
4412 	case BTF_KIND_DECL_TAG:
4413 		ref_type_id = btf_dedup_ref_type(d, t->type);
4414 		if (ref_type_id < 0)
4415 			return ref_type_id;
4416 		t->type = ref_type_id;
4417 
4418 		h = btf_hash_int_decl_tag(t);
4419 		for_each_dedup_cand(d, hash_entry, h) {
4420 			cand_id = hash_entry->value;
4421 			cand = btf_type_by_id(d->btf, cand_id);
4422 			if (btf_equal_int_tag(t, cand)) {
4423 				new_id = cand_id;
4424 				break;
4425 			}
4426 		}
4427 		break;
4428 
4429 	case BTF_KIND_ARRAY: {
4430 		struct btf_array *info = btf_array(t);
4431 
4432 		ref_type_id = btf_dedup_ref_type(d, info->type);
4433 		if (ref_type_id < 0)
4434 			return ref_type_id;
4435 		info->type = ref_type_id;
4436 
4437 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4438 		if (ref_type_id < 0)
4439 			return ref_type_id;
4440 		info->index_type = ref_type_id;
4441 
4442 		h = btf_hash_array(t);
4443 		for_each_dedup_cand(d, hash_entry, h) {
4444 			cand_id = hash_entry->value;
4445 			cand = btf_type_by_id(d->btf, cand_id);
4446 			if (btf_equal_array(t, cand)) {
4447 				new_id = cand_id;
4448 				break;
4449 			}
4450 		}
4451 		break;
4452 	}
4453 
4454 	case BTF_KIND_FUNC_PROTO: {
4455 		struct btf_param *param;
4456 		__u16 vlen;
4457 		int i;
4458 
4459 		ref_type_id = btf_dedup_ref_type(d, t->type);
4460 		if (ref_type_id < 0)
4461 			return ref_type_id;
4462 		t->type = ref_type_id;
4463 
4464 		vlen = btf_vlen(t);
4465 		param = btf_params(t);
4466 		for (i = 0; i < vlen; i++) {
4467 			ref_type_id = btf_dedup_ref_type(d, param->type);
4468 			if (ref_type_id < 0)
4469 				return ref_type_id;
4470 			param->type = ref_type_id;
4471 			param++;
4472 		}
4473 
4474 		h = btf_hash_fnproto(t);
4475 		for_each_dedup_cand(d, hash_entry, h) {
4476 			cand_id = hash_entry->value;
4477 			cand = btf_type_by_id(d->btf, cand_id);
4478 			if (btf_equal_fnproto(t, cand)) {
4479 				new_id = cand_id;
4480 				break;
4481 			}
4482 		}
4483 		break;
4484 	}
4485 
4486 	default:
4487 		return -EINVAL;
4488 	}
4489 
4490 	d->map[type_id] = new_id;
4491 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4492 		return -ENOMEM;
4493 
4494 	return new_id;
4495 }
4496 
4497 static int btf_dedup_ref_types(struct btf_dedup *d)
4498 {
4499 	int i, err;
4500 
4501 	for (i = 0; i < d->btf->nr_types; i++) {
4502 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4503 		if (err < 0)
4504 			return err;
4505 	}
4506 	/* we won't need d->dedup_table anymore */
4507 	hashmap__free(d->dedup_table);
4508 	d->dedup_table = NULL;
4509 	return 0;
4510 }
4511 
4512 /*
4513  * Collect a map from type names to type ids for all canonical structs
4514  * and unions. If the same name is shared by several canonical types
4515  * use a special value 0 to indicate this fact.
4516  */
4517 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4518 {
4519 	__u32 nr_types = btf__type_cnt(d->btf);
4520 	struct btf_type *t;
4521 	__u32 type_id;
4522 	__u16 kind;
4523 	int err;
4524 
4525 	/*
4526 	 * Iterate over base and split module ids in order to get all
4527 	 * available structs in the map.
4528 	 */
4529 	for (type_id = 1; type_id < nr_types; ++type_id) {
4530 		t = btf_type_by_id(d->btf, type_id);
4531 		kind = btf_kind(t);
4532 
4533 		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4534 			continue;
4535 
4536 		/* Skip non-canonical types */
4537 		if (type_id != d->map[type_id])
4538 			continue;
4539 
4540 		err = hashmap__add(names_map, t->name_off, type_id);
4541 		if (err == -EEXIST)
4542 			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4543 
4544 		if (err)
4545 			return err;
4546 	}
4547 
4548 	return 0;
4549 }
4550 
4551 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4552 {
4553 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4554 	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4555 	__u16 cand_kind, kind = btf_kind(t);
4556 	struct btf_type *cand_t;
4557 	uintptr_t cand_id;
4558 
4559 	if (kind != BTF_KIND_FWD)
4560 		return 0;
4561 
4562 	/* Skip if this FWD already has a mapping */
4563 	if (type_id != d->map[type_id])
4564 		return 0;
4565 
4566 	if (!hashmap__find(names_map, t->name_off, &cand_id))
4567 		return 0;
4568 
4569 	/* Zero is a special value indicating that name is not unique */
4570 	if (!cand_id)
4571 		return 0;
4572 
4573 	cand_t = btf_type_by_id(d->btf, cand_id);
4574 	cand_kind = btf_kind(cand_t);
4575 	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4576 	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4577 		return 0;
4578 
4579 	d->map[type_id] = cand_id;
4580 
4581 	return 0;
4582 }
4583 
4584 /*
4585  * Resolve unambiguous forward declarations.
4586  *
4587  * The lion's share of all FWD declarations is resolved during
4588  * `btf_dedup_struct_types` phase when different type graphs are
4589  * compared against each other. However, if in some compilation unit a
4590  * FWD declaration is not a part of a type graph compared against
4591  * another type graph that declaration's canonical type would not be
4592  * changed. Example:
4593  *
4594  * CU #1:
4595  *
4596  * struct foo;
4597  * struct foo *some_global;
4598  *
4599  * CU #2:
4600  *
4601  * struct foo { int u; };
4602  * struct foo *another_global;
4603  *
4604  * After `btf_dedup_struct_types` the BTF looks as follows:
4605  *
4606  * [1] STRUCT 'foo' size=4 vlen=1 ...
4607  * [2] INT 'int' size=4 ...
4608  * [3] PTR '(anon)' type_id=1
4609  * [4] FWD 'foo' fwd_kind=struct
4610  * [5] PTR '(anon)' type_id=4
4611  *
4612  * This pass assumes that such FWD declarations should be mapped to
4613  * structs or unions with identical name in case if the name is not
4614  * ambiguous.
4615  */
4616 static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4617 {
4618 	int i, err;
4619 	struct hashmap *names_map;
4620 
4621 	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4622 	if (IS_ERR(names_map))
4623 		return PTR_ERR(names_map);
4624 
4625 	err = btf_dedup_fill_unique_names_map(d, names_map);
4626 	if (err < 0)
4627 		goto exit;
4628 
4629 	for (i = 0; i < d->btf->nr_types; i++) {
4630 		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4631 		if (err < 0)
4632 			break;
4633 	}
4634 
4635 exit:
4636 	hashmap__free(names_map);
4637 	return err;
4638 }
4639 
4640 /*
4641  * Compact types.
4642  *
4643  * After we established for each type its corresponding canonical representative
4644  * type, we now can eliminate types that are not canonical and leave only
4645  * canonical ones layed out sequentially in memory by copying them over
4646  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4647  * a map from original type ID to a new compacted type ID, which will be used
4648  * during next phase to "fix up" type IDs, referenced from struct/union and
4649  * reference types.
4650  */
4651 static int btf_dedup_compact_types(struct btf_dedup *d)
4652 {
4653 	__u32 *new_offs;
4654 	__u32 next_type_id = d->btf->start_id;
4655 	const struct btf_type *t;
4656 	void *p;
4657 	int i, id, len;
4658 
4659 	/* we are going to reuse hypot_map to store compaction remapping */
4660 	d->hypot_map[0] = 0;
4661 	/* base BTF types are not renumbered */
4662 	for (id = 1; id < d->btf->start_id; id++)
4663 		d->hypot_map[id] = id;
4664 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4665 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4666 
4667 	p = d->btf->types_data;
4668 
4669 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4670 		if (d->map[id] != id)
4671 			continue;
4672 
4673 		t = btf__type_by_id(d->btf, id);
4674 		len = btf_type_size(t);
4675 		if (len < 0)
4676 			return len;
4677 
4678 		memmove(p, t, len);
4679 		d->hypot_map[id] = next_type_id;
4680 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4681 		p += len;
4682 		next_type_id++;
4683 	}
4684 
4685 	/* shrink struct btf's internal types index and update btf_header */
4686 	d->btf->nr_types = next_type_id - d->btf->start_id;
4687 	d->btf->type_offs_cap = d->btf->nr_types;
4688 	d->btf->hdr->type_len = p - d->btf->types_data;
4689 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4690 				       sizeof(*new_offs));
4691 	if (d->btf->type_offs_cap && !new_offs)
4692 		return -ENOMEM;
4693 	d->btf->type_offs = new_offs;
4694 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4695 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4696 	return 0;
4697 }
4698 
4699 /*
4700  * Figure out final (deduplicated and compacted) type ID for provided original
4701  * `type_id` by first resolving it into corresponding canonical type ID and
4702  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4703  * which is populated during compaction phase.
4704  */
4705 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4706 {
4707 	struct btf_dedup *d = ctx;
4708 	__u32 resolved_type_id, new_type_id;
4709 
4710 	resolved_type_id = resolve_type_id(d, *type_id);
4711 	new_type_id = d->hypot_map[resolved_type_id];
4712 	if (new_type_id > BTF_MAX_NR_TYPES)
4713 		return -EINVAL;
4714 
4715 	*type_id = new_type_id;
4716 	return 0;
4717 }
4718 
4719 /*
4720  * Remap referenced type IDs into deduped type IDs.
4721  *
4722  * After BTF types are deduplicated and compacted, their final type IDs may
4723  * differ from original ones. The map from original to a corresponding
4724  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4725  * compaction phase. During remapping phase we are rewriting all type IDs
4726  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4727  * their final deduped type IDs.
4728  */
4729 static int btf_dedup_remap_types(struct btf_dedup *d)
4730 {
4731 	int i, r;
4732 
4733 	for (i = 0; i < d->btf->nr_types; i++) {
4734 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4735 
4736 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4737 		if (r)
4738 			return r;
4739 	}
4740 
4741 	if (!d->btf_ext)
4742 		return 0;
4743 
4744 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4745 	if (r)
4746 		return r;
4747 
4748 	return 0;
4749 }
4750 
4751 /*
4752  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4753  * data out of it to use for target BTF.
4754  */
4755 struct btf *btf__load_vmlinux_btf(void)
4756 {
4757 	const char *locations[] = {
4758 		/* try canonical vmlinux BTF through sysfs first */
4759 		"/sys/kernel/btf/vmlinux",
4760 		/* fall back to trying to find vmlinux on disk otherwise */
4761 		"/boot/vmlinux-%1$s",
4762 		"/lib/modules/%1$s/vmlinux-%1$s",
4763 		"/lib/modules/%1$s/build/vmlinux",
4764 		"/usr/lib/modules/%1$s/kernel/vmlinux",
4765 		"/usr/lib/debug/boot/vmlinux-%1$s",
4766 		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4767 		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4768 	};
4769 	char path[PATH_MAX + 1];
4770 	struct utsname buf;
4771 	struct btf *btf;
4772 	int i, err;
4773 
4774 	uname(&buf);
4775 
4776 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4777 		snprintf(path, PATH_MAX, locations[i], buf.release);
4778 
4779 		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4780 			continue;
4781 
4782 		btf = btf__parse(path, NULL);
4783 		err = libbpf_get_error(btf);
4784 		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4785 		if (err)
4786 			continue;
4787 
4788 		return btf;
4789 	}
4790 
4791 	pr_warn("failed to find valid kernel BTF\n");
4792 	return libbpf_err_ptr(-ESRCH);
4793 }
4794 
4795 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4796 
4797 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4798 {
4799 	char path[80];
4800 
4801 	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4802 	return btf__parse_split(path, vmlinux_btf);
4803 }
4804 
4805 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4806 {
4807 	int i, n, err;
4808 
4809 	switch (btf_kind(t)) {
4810 	case BTF_KIND_INT:
4811 	case BTF_KIND_FLOAT:
4812 	case BTF_KIND_ENUM:
4813 	case BTF_KIND_ENUM64:
4814 		return 0;
4815 
4816 	case BTF_KIND_FWD:
4817 	case BTF_KIND_CONST:
4818 	case BTF_KIND_VOLATILE:
4819 	case BTF_KIND_RESTRICT:
4820 	case BTF_KIND_PTR:
4821 	case BTF_KIND_TYPEDEF:
4822 	case BTF_KIND_FUNC:
4823 	case BTF_KIND_VAR:
4824 	case BTF_KIND_DECL_TAG:
4825 	case BTF_KIND_TYPE_TAG:
4826 		return visit(&t->type, ctx);
4827 
4828 	case BTF_KIND_ARRAY: {
4829 		struct btf_array *a = btf_array(t);
4830 
4831 		err = visit(&a->type, ctx);
4832 		err = err ?: visit(&a->index_type, ctx);
4833 		return err;
4834 	}
4835 
4836 	case BTF_KIND_STRUCT:
4837 	case BTF_KIND_UNION: {
4838 		struct btf_member *m = btf_members(t);
4839 
4840 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4841 			err = visit(&m->type, ctx);
4842 			if (err)
4843 				return err;
4844 		}
4845 		return 0;
4846 	}
4847 
4848 	case BTF_KIND_FUNC_PROTO: {
4849 		struct btf_param *m = btf_params(t);
4850 
4851 		err = visit(&t->type, ctx);
4852 		if (err)
4853 			return err;
4854 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4855 			err = visit(&m->type, ctx);
4856 			if (err)
4857 				return err;
4858 		}
4859 		return 0;
4860 	}
4861 
4862 	case BTF_KIND_DATASEC: {
4863 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4864 
4865 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4866 			err = visit(&m->type, ctx);
4867 			if (err)
4868 				return err;
4869 		}
4870 		return 0;
4871 	}
4872 
4873 	default:
4874 		return -EINVAL;
4875 	}
4876 }
4877 
4878 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4879 {
4880 	int i, n, err;
4881 
4882 	err = visit(&t->name_off, ctx);
4883 	if (err)
4884 		return err;
4885 
4886 	switch (btf_kind(t)) {
4887 	case BTF_KIND_STRUCT:
4888 	case BTF_KIND_UNION: {
4889 		struct btf_member *m = btf_members(t);
4890 
4891 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4892 			err = visit(&m->name_off, ctx);
4893 			if (err)
4894 				return err;
4895 		}
4896 		break;
4897 	}
4898 	case BTF_KIND_ENUM: {
4899 		struct btf_enum *m = btf_enum(t);
4900 
4901 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4902 			err = visit(&m->name_off, ctx);
4903 			if (err)
4904 				return err;
4905 		}
4906 		break;
4907 	}
4908 	case BTF_KIND_ENUM64: {
4909 		struct btf_enum64 *m = btf_enum64(t);
4910 
4911 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4912 			err = visit(&m->name_off, ctx);
4913 			if (err)
4914 				return err;
4915 		}
4916 		break;
4917 	}
4918 	case BTF_KIND_FUNC_PROTO: {
4919 		struct btf_param *m = btf_params(t);
4920 
4921 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4922 			err = visit(&m->name_off, ctx);
4923 			if (err)
4924 				return err;
4925 		}
4926 		break;
4927 	}
4928 	default:
4929 		break;
4930 	}
4931 
4932 	return 0;
4933 }
4934 
4935 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4936 {
4937 	const struct btf_ext_info *seg;
4938 	struct btf_ext_info_sec *sec;
4939 	int i, err;
4940 
4941 	seg = &btf_ext->func_info;
4942 	for_each_btf_ext_sec(seg, sec) {
4943 		struct bpf_func_info_min *rec;
4944 
4945 		for_each_btf_ext_rec(seg, sec, i, rec) {
4946 			err = visit(&rec->type_id, ctx);
4947 			if (err < 0)
4948 				return err;
4949 		}
4950 	}
4951 
4952 	seg = &btf_ext->core_relo_info;
4953 	for_each_btf_ext_sec(seg, sec) {
4954 		struct bpf_core_relo *rec;
4955 
4956 		for_each_btf_ext_rec(seg, sec, i, rec) {
4957 			err = visit(&rec->type_id, ctx);
4958 			if (err < 0)
4959 				return err;
4960 		}
4961 	}
4962 
4963 	return 0;
4964 }
4965 
4966 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4967 {
4968 	const struct btf_ext_info *seg;
4969 	struct btf_ext_info_sec *sec;
4970 	int i, err;
4971 
4972 	seg = &btf_ext->func_info;
4973 	for_each_btf_ext_sec(seg, sec) {
4974 		err = visit(&sec->sec_name_off, ctx);
4975 		if (err)
4976 			return err;
4977 	}
4978 
4979 	seg = &btf_ext->line_info;
4980 	for_each_btf_ext_sec(seg, sec) {
4981 		struct bpf_line_info_min *rec;
4982 
4983 		err = visit(&sec->sec_name_off, ctx);
4984 		if (err)
4985 			return err;
4986 
4987 		for_each_btf_ext_rec(seg, sec, i, rec) {
4988 			err = visit(&rec->file_name_off, ctx);
4989 			if (err)
4990 				return err;
4991 			err = visit(&rec->line_off, ctx);
4992 			if (err)
4993 				return err;
4994 		}
4995 	}
4996 
4997 	seg = &btf_ext->core_relo_info;
4998 	for_each_btf_ext_sec(seg, sec) {
4999 		struct bpf_core_relo *rec;
5000 
5001 		err = visit(&sec->sec_name_off, ctx);
5002 		if (err)
5003 			return err;
5004 
5005 		for_each_btf_ext_rec(seg, sec, i, rec) {
5006 			err = visit(&rec->access_str_off, ctx);
5007 			if (err)
5008 				return err;
5009 		}
5010 	}
5011 
5012 	return 0;
5013 }
5014