xref: /openbmc/linux/tools/lib/bpf/btf.c (revision ec2da07c)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <endian.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <fcntl.h>
9 #include <unistd.h>
10 #include <errno.h>
11 #include <linux/err.h>
12 #include <linux/btf.h>
13 #include <gelf.h>
14 #include "btf.h"
15 #include "bpf.h"
16 #include "libbpf.h"
17 #include "libbpf_internal.h"
18 #include "hashmap.h"
19 
20 #define BTF_MAX_NR_TYPES 0x7fffffff
21 #define BTF_MAX_STR_OFFSET 0x7fffffff
22 
23 #define IS_MODIFIER(k) (((k) == BTF_KIND_TYPEDEF) || \
24 		((k) == BTF_KIND_VOLATILE) || \
25 		((k) == BTF_KIND_CONST) || \
26 		((k) == BTF_KIND_RESTRICT))
27 
28 #define IS_VAR(k) ((k) == BTF_KIND_VAR)
29 
30 static struct btf_type btf_void;
31 
32 struct btf {
33 	union {
34 		struct btf_header *hdr;
35 		void *data;
36 	};
37 	struct btf_type **types;
38 	const char *strings;
39 	void *nohdr_data;
40 	__u32 nr_types;
41 	__u32 types_size;
42 	__u32 data_size;
43 	int fd;
44 };
45 
46 struct btf_ext_info {
47 	/*
48 	 * info points to the individual info section (e.g. func_info and
49 	 * line_info) from the .BTF.ext. It does not include the __u32 rec_size.
50 	 */
51 	void *info;
52 	__u32 rec_size;
53 	__u32 len;
54 };
55 
56 struct btf_ext {
57 	union {
58 		struct btf_ext_header *hdr;
59 		void *data;
60 	};
61 	struct btf_ext_info func_info;
62 	struct btf_ext_info line_info;
63 	__u32 data_size;
64 };
65 
66 struct btf_ext_info_sec {
67 	__u32	sec_name_off;
68 	__u32	num_info;
69 	/* Followed by num_info * record_size number of bytes */
70 	__u8	data[0];
71 };
72 
73 /* The minimum bpf_func_info checked by the loader */
74 struct bpf_func_info_min {
75 	__u32   insn_off;
76 	__u32   type_id;
77 };
78 
79 /* The minimum bpf_line_info checked by the loader */
80 struct bpf_line_info_min {
81 	__u32	insn_off;
82 	__u32	file_name_off;
83 	__u32	line_off;
84 	__u32	line_col;
85 };
86 
87 static inline __u64 ptr_to_u64(const void *ptr)
88 {
89 	return (__u64) (unsigned long) ptr;
90 }
91 
92 static int btf_add_type(struct btf *btf, struct btf_type *t)
93 {
94 	if (btf->types_size - btf->nr_types < 2) {
95 		struct btf_type **new_types;
96 		__u32 expand_by, new_size;
97 
98 		if (btf->types_size == BTF_MAX_NR_TYPES)
99 			return -E2BIG;
100 
101 		expand_by = max(btf->types_size >> 2, 16);
102 		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
103 
104 		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
105 		if (!new_types)
106 			return -ENOMEM;
107 
108 		if (btf->nr_types == 0)
109 			new_types[0] = &btf_void;
110 
111 		btf->types = new_types;
112 		btf->types_size = new_size;
113 	}
114 
115 	btf->types[++(btf->nr_types)] = t;
116 
117 	return 0;
118 }
119 
120 static int btf_parse_hdr(struct btf *btf)
121 {
122 	const struct btf_header *hdr = btf->hdr;
123 	__u32 meta_left;
124 
125 	if (btf->data_size < sizeof(struct btf_header)) {
126 		pr_debug("BTF header not found\n");
127 		return -EINVAL;
128 	}
129 
130 	if (hdr->magic != BTF_MAGIC) {
131 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
132 		return -EINVAL;
133 	}
134 
135 	if (hdr->version != BTF_VERSION) {
136 		pr_debug("Unsupported BTF version:%u\n", hdr->version);
137 		return -ENOTSUP;
138 	}
139 
140 	if (hdr->flags) {
141 		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
142 		return -ENOTSUP;
143 	}
144 
145 	meta_left = btf->data_size - sizeof(*hdr);
146 	if (!meta_left) {
147 		pr_debug("BTF has no data\n");
148 		return -EINVAL;
149 	}
150 
151 	if (meta_left < hdr->type_off) {
152 		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
153 		return -EINVAL;
154 	}
155 
156 	if (meta_left < hdr->str_off) {
157 		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
158 		return -EINVAL;
159 	}
160 
161 	if (hdr->type_off >= hdr->str_off) {
162 		pr_debug("BTF type section offset >= string section offset. No type?\n");
163 		return -EINVAL;
164 	}
165 
166 	if (hdr->type_off & 0x02) {
167 		pr_debug("BTF type section is not aligned to 4 bytes\n");
168 		return -EINVAL;
169 	}
170 
171 	btf->nohdr_data = btf->hdr + 1;
172 
173 	return 0;
174 }
175 
176 static int btf_parse_str_sec(struct btf *btf)
177 {
178 	const struct btf_header *hdr = btf->hdr;
179 	const char *start = btf->nohdr_data + hdr->str_off;
180 	const char *end = start + btf->hdr->str_len;
181 
182 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
183 	    start[0] || end[-1]) {
184 		pr_debug("Invalid BTF string section\n");
185 		return -EINVAL;
186 	}
187 
188 	btf->strings = start;
189 
190 	return 0;
191 }
192 
193 static int btf_type_size(struct btf_type *t)
194 {
195 	int base_size = sizeof(struct btf_type);
196 	__u16 vlen = BTF_INFO_VLEN(t->info);
197 
198 	switch (BTF_INFO_KIND(t->info)) {
199 	case BTF_KIND_FWD:
200 	case BTF_KIND_CONST:
201 	case BTF_KIND_VOLATILE:
202 	case BTF_KIND_RESTRICT:
203 	case BTF_KIND_PTR:
204 	case BTF_KIND_TYPEDEF:
205 	case BTF_KIND_FUNC:
206 		return base_size;
207 	case BTF_KIND_INT:
208 		return base_size + sizeof(__u32);
209 	case BTF_KIND_ENUM:
210 		return base_size + vlen * sizeof(struct btf_enum);
211 	case BTF_KIND_ARRAY:
212 		return base_size + sizeof(struct btf_array);
213 	case BTF_KIND_STRUCT:
214 	case BTF_KIND_UNION:
215 		return base_size + vlen * sizeof(struct btf_member);
216 	case BTF_KIND_FUNC_PROTO:
217 		return base_size + vlen * sizeof(struct btf_param);
218 	case BTF_KIND_VAR:
219 		return base_size + sizeof(struct btf_var);
220 	case BTF_KIND_DATASEC:
221 		return base_size + vlen * sizeof(struct btf_var_secinfo);
222 	default:
223 		pr_debug("Unsupported BTF_KIND:%u\n", BTF_INFO_KIND(t->info));
224 		return -EINVAL;
225 	}
226 }
227 
228 static int btf_parse_type_sec(struct btf *btf)
229 {
230 	struct btf_header *hdr = btf->hdr;
231 	void *nohdr_data = btf->nohdr_data;
232 	void *next_type = nohdr_data + hdr->type_off;
233 	void *end_type = nohdr_data + hdr->str_off;
234 
235 	while (next_type < end_type) {
236 		struct btf_type *t = next_type;
237 		int type_size;
238 		int err;
239 
240 		type_size = btf_type_size(t);
241 		if (type_size < 0)
242 			return type_size;
243 		next_type += type_size;
244 		err = btf_add_type(btf, t);
245 		if (err)
246 			return err;
247 	}
248 
249 	return 0;
250 }
251 
252 __u32 btf__get_nr_types(const struct btf *btf)
253 {
254 	return btf->nr_types;
255 }
256 
257 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
258 {
259 	if (type_id > btf->nr_types)
260 		return NULL;
261 
262 	return btf->types[type_id];
263 }
264 
265 static bool btf_type_is_void(const struct btf_type *t)
266 {
267 	return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
268 }
269 
270 static bool btf_type_is_void_or_null(const struct btf_type *t)
271 {
272 	return !t || btf_type_is_void(t);
273 }
274 
275 #define MAX_RESOLVE_DEPTH 32
276 
277 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
278 {
279 	const struct btf_array *array;
280 	const struct btf_type *t;
281 	__u32 nelems = 1;
282 	__s64 size = -1;
283 	int i;
284 
285 	t = btf__type_by_id(btf, type_id);
286 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
287 	     i++) {
288 		switch (BTF_INFO_KIND(t->info)) {
289 		case BTF_KIND_INT:
290 		case BTF_KIND_STRUCT:
291 		case BTF_KIND_UNION:
292 		case BTF_KIND_ENUM:
293 		case BTF_KIND_DATASEC:
294 			size = t->size;
295 			goto done;
296 		case BTF_KIND_PTR:
297 			size = sizeof(void *);
298 			goto done;
299 		case BTF_KIND_TYPEDEF:
300 		case BTF_KIND_VOLATILE:
301 		case BTF_KIND_CONST:
302 		case BTF_KIND_RESTRICT:
303 		case BTF_KIND_VAR:
304 			type_id = t->type;
305 			break;
306 		case BTF_KIND_ARRAY:
307 			array = (const struct btf_array *)(t + 1);
308 			if (nelems && array->nelems > UINT32_MAX / nelems)
309 				return -E2BIG;
310 			nelems *= array->nelems;
311 			type_id = array->type;
312 			break;
313 		default:
314 			return -EINVAL;
315 		}
316 
317 		t = btf__type_by_id(btf, type_id);
318 	}
319 
320 	if (size < 0)
321 		return -EINVAL;
322 
323 done:
324 	if (nelems && size > UINT32_MAX / nelems)
325 		return -E2BIG;
326 
327 	return nelems * size;
328 }
329 
330 int btf__resolve_type(const struct btf *btf, __u32 type_id)
331 {
332 	const struct btf_type *t;
333 	int depth = 0;
334 
335 	t = btf__type_by_id(btf, type_id);
336 	while (depth < MAX_RESOLVE_DEPTH &&
337 	       !btf_type_is_void_or_null(t) &&
338 	       (IS_MODIFIER(BTF_INFO_KIND(t->info)) ||
339 		IS_VAR(BTF_INFO_KIND(t->info)))) {
340 		type_id = t->type;
341 		t = btf__type_by_id(btf, type_id);
342 		depth++;
343 	}
344 
345 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
346 		return -EINVAL;
347 
348 	return type_id;
349 }
350 
351 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
352 {
353 	__u32 i;
354 
355 	if (!strcmp(type_name, "void"))
356 		return 0;
357 
358 	for (i = 1; i <= btf->nr_types; i++) {
359 		const struct btf_type *t = btf->types[i];
360 		const char *name = btf__name_by_offset(btf, t->name_off);
361 
362 		if (name && !strcmp(type_name, name))
363 			return i;
364 	}
365 
366 	return -ENOENT;
367 }
368 
369 void btf__free(struct btf *btf)
370 {
371 	if (!btf)
372 		return;
373 
374 	if (btf->fd != -1)
375 		close(btf->fd);
376 
377 	free(btf->data);
378 	free(btf->types);
379 	free(btf);
380 }
381 
382 struct btf *btf__new(__u8 *data, __u32 size)
383 {
384 	struct btf *btf;
385 	int err;
386 
387 	btf = calloc(1, sizeof(struct btf));
388 	if (!btf)
389 		return ERR_PTR(-ENOMEM);
390 
391 	btf->fd = -1;
392 
393 	btf->data = malloc(size);
394 	if (!btf->data) {
395 		err = -ENOMEM;
396 		goto done;
397 	}
398 
399 	memcpy(btf->data, data, size);
400 	btf->data_size = size;
401 
402 	err = btf_parse_hdr(btf);
403 	if (err)
404 		goto done;
405 
406 	err = btf_parse_str_sec(btf);
407 	if (err)
408 		goto done;
409 
410 	err = btf_parse_type_sec(btf);
411 
412 done:
413 	if (err) {
414 		btf__free(btf);
415 		return ERR_PTR(err);
416 	}
417 
418 	return btf;
419 }
420 
421 static bool btf_check_endianness(const GElf_Ehdr *ehdr)
422 {
423 #if __BYTE_ORDER == __LITTLE_ENDIAN
424 	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
425 #elif __BYTE_ORDER == __BIG_ENDIAN
426 	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
427 #else
428 # error "Unrecognized __BYTE_ORDER__"
429 #endif
430 }
431 
432 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
433 {
434 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
435 	int err = 0, fd = -1, idx = 0;
436 	struct btf *btf = NULL;
437 	Elf_Scn *scn = NULL;
438 	Elf *elf = NULL;
439 	GElf_Ehdr ehdr;
440 
441 	if (elf_version(EV_CURRENT) == EV_NONE) {
442 		pr_warning("failed to init libelf for %s\n", path);
443 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
444 	}
445 
446 	fd = open(path, O_RDONLY);
447 	if (fd < 0) {
448 		err = -errno;
449 		pr_warning("failed to open %s: %s\n", path, strerror(errno));
450 		return ERR_PTR(err);
451 	}
452 
453 	err = -LIBBPF_ERRNO__FORMAT;
454 
455 	elf = elf_begin(fd, ELF_C_READ, NULL);
456 	if (!elf) {
457 		pr_warning("failed to open %s as ELF file\n", path);
458 		goto done;
459 	}
460 	if (!gelf_getehdr(elf, &ehdr)) {
461 		pr_warning("failed to get EHDR from %s\n", path);
462 		goto done;
463 	}
464 	if (!btf_check_endianness(&ehdr)) {
465 		pr_warning("non-native ELF endianness is not supported\n");
466 		goto done;
467 	}
468 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
469 		pr_warning("failed to get e_shstrndx from %s\n", path);
470 		goto done;
471 	}
472 
473 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
474 		GElf_Shdr sh;
475 		char *name;
476 
477 		idx++;
478 		if (gelf_getshdr(scn, &sh) != &sh) {
479 			pr_warning("failed to get section(%d) header from %s\n",
480 				   idx, path);
481 			goto done;
482 		}
483 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
484 		if (!name) {
485 			pr_warning("failed to get section(%d) name from %s\n",
486 				   idx, path);
487 			goto done;
488 		}
489 		if (strcmp(name, BTF_ELF_SEC) == 0) {
490 			btf_data = elf_getdata(scn, 0);
491 			if (!btf_data) {
492 				pr_warning("failed to get section(%d, %s) data from %s\n",
493 					   idx, name, path);
494 				goto done;
495 			}
496 			continue;
497 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
498 			btf_ext_data = elf_getdata(scn, 0);
499 			if (!btf_ext_data) {
500 				pr_warning("failed to get section(%d, %s) data from %s\n",
501 					   idx, name, path);
502 				goto done;
503 			}
504 			continue;
505 		}
506 	}
507 
508 	err = 0;
509 
510 	if (!btf_data) {
511 		err = -ENOENT;
512 		goto done;
513 	}
514 	btf = btf__new(btf_data->d_buf, btf_data->d_size);
515 	if (IS_ERR(btf))
516 		goto done;
517 
518 	if (btf_ext && btf_ext_data) {
519 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
520 					btf_ext_data->d_size);
521 		if (IS_ERR(*btf_ext))
522 			goto done;
523 	} else if (btf_ext) {
524 		*btf_ext = NULL;
525 	}
526 done:
527 	if (elf)
528 		elf_end(elf);
529 	close(fd);
530 
531 	if (err)
532 		return ERR_PTR(err);
533 	/*
534 	 * btf is always parsed before btf_ext, so no need to clean up
535 	 * btf_ext, if btf loading failed
536 	 */
537 	if (IS_ERR(btf))
538 		return btf;
539 	if (btf_ext && IS_ERR(*btf_ext)) {
540 		btf__free(btf);
541 		err = PTR_ERR(*btf_ext);
542 		return ERR_PTR(err);
543 	}
544 	return btf;
545 }
546 
547 static int compare_vsi_off(const void *_a, const void *_b)
548 {
549 	const struct btf_var_secinfo *a = _a;
550 	const struct btf_var_secinfo *b = _b;
551 
552 	return a->offset - b->offset;
553 }
554 
555 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
556 			     struct btf_type *t)
557 {
558 	__u32 size = 0, off = 0, i, vars = BTF_INFO_VLEN(t->info);
559 	const char *name = btf__name_by_offset(btf, t->name_off);
560 	const struct btf_type *t_var;
561 	struct btf_var_secinfo *vsi;
562 	struct btf_var *var;
563 	int ret;
564 
565 	if (!name) {
566 		pr_debug("No name found in string section for DATASEC kind.\n");
567 		return -ENOENT;
568 	}
569 
570 	ret = bpf_object__section_size(obj, name, &size);
571 	if (ret || !size || (t->size && t->size != size)) {
572 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
573 		return -ENOENT;
574 	}
575 
576 	t->size = size;
577 
578 	for (i = 0, vsi = (struct btf_var_secinfo *)(t + 1);
579 	     i < vars; i++, vsi++) {
580 		t_var = btf__type_by_id(btf, vsi->type);
581 		var = (struct btf_var *)(t_var + 1);
582 
583 		if (BTF_INFO_KIND(t_var->info) != BTF_KIND_VAR) {
584 			pr_debug("Non-VAR type seen in section %s\n", name);
585 			return -EINVAL;
586 		}
587 
588 		if (var->linkage == BTF_VAR_STATIC)
589 			continue;
590 
591 		name = btf__name_by_offset(btf, t_var->name_off);
592 		if (!name) {
593 			pr_debug("No name found in string section for VAR kind\n");
594 			return -ENOENT;
595 		}
596 
597 		ret = bpf_object__variable_offset(obj, name, &off);
598 		if (ret) {
599 			pr_debug("No offset found in symbol table for VAR %s\n", name);
600 			return -ENOENT;
601 		}
602 
603 		vsi->offset = off;
604 	}
605 
606 	qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off);
607 	return 0;
608 }
609 
610 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
611 {
612 	int err = 0;
613 	__u32 i;
614 
615 	for (i = 1; i <= btf->nr_types; i++) {
616 		struct btf_type *t = btf->types[i];
617 
618 		/* Loader needs to fix up some of the things compiler
619 		 * couldn't get its hands on while emitting BTF. This
620 		 * is section size and global variable offset. We use
621 		 * the info from the ELF itself for this purpose.
622 		 */
623 		if (BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC) {
624 			err = btf_fixup_datasec(obj, btf, t);
625 			if (err)
626 				break;
627 		}
628 	}
629 
630 	return err;
631 }
632 
633 int btf__load(struct btf *btf)
634 {
635 	__u32 log_buf_size = BPF_LOG_BUF_SIZE;
636 	char *log_buf = NULL;
637 	int err = 0;
638 
639 	if (btf->fd >= 0)
640 		return -EEXIST;
641 
642 	log_buf = malloc(log_buf_size);
643 	if (!log_buf)
644 		return -ENOMEM;
645 
646 	*log_buf = 0;
647 
648 	btf->fd = bpf_load_btf(btf->data, btf->data_size,
649 			       log_buf, log_buf_size, false);
650 	if (btf->fd < 0) {
651 		err = -errno;
652 		pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno);
653 		if (*log_buf)
654 			pr_warning("%s\n", log_buf);
655 		goto done;
656 	}
657 
658 done:
659 	free(log_buf);
660 	return err;
661 }
662 
663 int btf__fd(const struct btf *btf)
664 {
665 	return btf->fd;
666 }
667 
668 const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
669 {
670 	*size = btf->data_size;
671 	return btf->data;
672 }
673 
674 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
675 {
676 	if (offset < btf->hdr->str_len)
677 		return &btf->strings[offset];
678 	else
679 		return NULL;
680 }
681 
682 int btf__get_from_id(__u32 id, struct btf **btf)
683 {
684 	struct bpf_btf_info btf_info = { 0 };
685 	__u32 len = sizeof(btf_info);
686 	__u32 last_size;
687 	int btf_fd;
688 	void *ptr;
689 	int err;
690 
691 	err = 0;
692 	*btf = NULL;
693 	btf_fd = bpf_btf_get_fd_by_id(id);
694 	if (btf_fd < 0)
695 		return 0;
696 
697 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
698 	 * let's start with a sane default - 4KiB here - and resize it only if
699 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
700 	 */
701 	btf_info.btf_size = 4096;
702 	last_size = btf_info.btf_size;
703 	ptr = malloc(last_size);
704 	if (!ptr) {
705 		err = -ENOMEM;
706 		goto exit_free;
707 	}
708 
709 	memset(ptr, 0, last_size);
710 	btf_info.btf = ptr_to_u64(ptr);
711 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
712 
713 	if (!err && btf_info.btf_size > last_size) {
714 		void *temp_ptr;
715 
716 		last_size = btf_info.btf_size;
717 		temp_ptr = realloc(ptr, last_size);
718 		if (!temp_ptr) {
719 			err = -ENOMEM;
720 			goto exit_free;
721 		}
722 		ptr = temp_ptr;
723 		memset(ptr, 0, last_size);
724 		btf_info.btf = ptr_to_u64(ptr);
725 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
726 	}
727 
728 	if (err || btf_info.btf_size > last_size) {
729 		err = errno;
730 		goto exit_free;
731 	}
732 
733 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
734 	if (IS_ERR(*btf)) {
735 		err = PTR_ERR(*btf);
736 		*btf = NULL;
737 	}
738 
739 exit_free:
740 	close(btf_fd);
741 	free(ptr);
742 
743 	return err;
744 }
745 
746 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
747 			 __u32 expected_key_size, __u32 expected_value_size,
748 			 __u32 *key_type_id, __u32 *value_type_id)
749 {
750 	const struct btf_type *container_type;
751 	const struct btf_member *key, *value;
752 	const size_t max_name = 256;
753 	char container_name[max_name];
754 	__s64 key_size, value_size;
755 	__s32 container_id;
756 
757 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
758 	    max_name) {
759 		pr_warning("map:%s length of '____btf_map_%s' is too long\n",
760 			   map_name, map_name);
761 		return -EINVAL;
762 	}
763 
764 	container_id = btf__find_by_name(btf, container_name);
765 	if (container_id < 0) {
766 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
767 			 map_name, container_name);
768 		return container_id;
769 	}
770 
771 	container_type = btf__type_by_id(btf, container_id);
772 	if (!container_type) {
773 		pr_warning("map:%s cannot find BTF type for container_id:%u\n",
774 			   map_name, container_id);
775 		return -EINVAL;
776 	}
777 
778 	if (BTF_INFO_KIND(container_type->info) != BTF_KIND_STRUCT ||
779 	    BTF_INFO_VLEN(container_type->info) < 2) {
780 		pr_warning("map:%s container_name:%s is an invalid container struct\n",
781 			   map_name, container_name);
782 		return -EINVAL;
783 	}
784 
785 	key = (struct btf_member *)(container_type + 1);
786 	value = key + 1;
787 
788 	key_size = btf__resolve_size(btf, key->type);
789 	if (key_size < 0) {
790 		pr_warning("map:%s invalid BTF key_type_size\n", map_name);
791 		return key_size;
792 	}
793 
794 	if (expected_key_size != key_size) {
795 		pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
796 			   map_name, (__u32)key_size, expected_key_size);
797 		return -EINVAL;
798 	}
799 
800 	value_size = btf__resolve_size(btf, value->type);
801 	if (value_size < 0) {
802 		pr_warning("map:%s invalid BTF value_type_size\n", map_name);
803 		return value_size;
804 	}
805 
806 	if (expected_value_size != value_size) {
807 		pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
808 			   map_name, (__u32)value_size, expected_value_size);
809 		return -EINVAL;
810 	}
811 
812 	*key_type_id = key->type;
813 	*value_type_id = value->type;
814 
815 	return 0;
816 }
817 
818 struct btf_ext_sec_setup_param {
819 	__u32 off;
820 	__u32 len;
821 	__u32 min_rec_size;
822 	struct btf_ext_info *ext_info;
823 	const char *desc;
824 };
825 
826 static int btf_ext_setup_info(struct btf_ext *btf_ext,
827 			      struct btf_ext_sec_setup_param *ext_sec)
828 {
829 	const struct btf_ext_info_sec *sinfo;
830 	struct btf_ext_info *ext_info;
831 	__u32 info_left, record_size;
832 	/* The start of the info sec (including the __u32 record_size). */
833 	void *info;
834 
835 	if (ext_sec->off & 0x03) {
836 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
837 		     ext_sec->desc);
838 		return -EINVAL;
839 	}
840 
841 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
842 	info_left = ext_sec->len;
843 
844 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
845 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
846 			 ext_sec->desc, ext_sec->off, ext_sec->len);
847 		return -EINVAL;
848 	}
849 
850 	/* At least a record size */
851 	if (info_left < sizeof(__u32)) {
852 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
853 		return -EINVAL;
854 	}
855 
856 	/* The record size needs to meet the minimum standard */
857 	record_size = *(__u32 *)info;
858 	if (record_size < ext_sec->min_rec_size ||
859 	    record_size & 0x03) {
860 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
861 			 ext_sec->desc, record_size);
862 		return -EINVAL;
863 	}
864 
865 	sinfo = info + sizeof(__u32);
866 	info_left -= sizeof(__u32);
867 
868 	/* If no records, return failure now so .BTF.ext won't be used. */
869 	if (!info_left) {
870 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
871 		return -EINVAL;
872 	}
873 
874 	while (info_left) {
875 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
876 		__u64 total_record_size;
877 		__u32 num_records;
878 
879 		if (info_left < sec_hdrlen) {
880 			pr_debug("%s section header is not found in .BTF.ext\n",
881 			     ext_sec->desc);
882 			return -EINVAL;
883 		}
884 
885 		num_records = sinfo->num_info;
886 		if (num_records == 0) {
887 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
888 			     ext_sec->desc);
889 			return -EINVAL;
890 		}
891 
892 		total_record_size = sec_hdrlen +
893 				    (__u64)num_records * record_size;
894 		if (info_left < total_record_size) {
895 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
896 			     ext_sec->desc);
897 			return -EINVAL;
898 		}
899 
900 		info_left -= total_record_size;
901 		sinfo = (void *)sinfo + total_record_size;
902 	}
903 
904 	ext_info = ext_sec->ext_info;
905 	ext_info->len = ext_sec->len - sizeof(__u32);
906 	ext_info->rec_size = record_size;
907 	ext_info->info = info + sizeof(__u32);
908 
909 	return 0;
910 }
911 
912 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
913 {
914 	struct btf_ext_sec_setup_param param = {
915 		.off = btf_ext->hdr->func_info_off,
916 		.len = btf_ext->hdr->func_info_len,
917 		.min_rec_size = sizeof(struct bpf_func_info_min),
918 		.ext_info = &btf_ext->func_info,
919 		.desc = "func_info"
920 	};
921 
922 	return btf_ext_setup_info(btf_ext, &param);
923 }
924 
925 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
926 {
927 	struct btf_ext_sec_setup_param param = {
928 		.off = btf_ext->hdr->line_info_off,
929 		.len = btf_ext->hdr->line_info_len,
930 		.min_rec_size = sizeof(struct bpf_line_info_min),
931 		.ext_info = &btf_ext->line_info,
932 		.desc = "line_info",
933 	};
934 
935 	return btf_ext_setup_info(btf_ext, &param);
936 }
937 
938 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
939 {
940 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
941 
942 	if (data_size < offsetof(struct btf_ext_header, func_info_off) ||
943 	    data_size < hdr->hdr_len) {
944 		pr_debug("BTF.ext header not found");
945 		return -EINVAL;
946 	}
947 
948 	if (hdr->magic != BTF_MAGIC) {
949 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
950 		return -EINVAL;
951 	}
952 
953 	if (hdr->version != BTF_VERSION) {
954 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
955 		return -ENOTSUP;
956 	}
957 
958 	if (hdr->flags) {
959 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
960 		return -ENOTSUP;
961 	}
962 
963 	if (data_size == hdr->hdr_len) {
964 		pr_debug("BTF.ext has no data\n");
965 		return -EINVAL;
966 	}
967 
968 	return 0;
969 }
970 
971 void btf_ext__free(struct btf_ext *btf_ext)
972 {
973 	if (!btf_ext)
974 		return;
975 	free(btf_ext->data);
976 	free(btf_ext);
977 }
978 
979 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
980 {
981 	struct btf_ext *btf_ext;
982 	int err;
983 
984 	err = btf_ext_parse_hdr(data, size);
985 	if (err)
986 		return ERR_PTR(err);
987 
988 	btf_ext = calloc(1, sizeof(struct btf_ext));
989 	if (!btf_ext)
990 		return ERR_PTR(-ENOMEM);
991 
992 	btf_ext->data_size = size;
993 	btf_ext->data = malloc(size);
994 	if (!btf_ext->data) {
995 		err = -ENOMEM;
996 		goto done;
997 	}
998 	memcpy(btf_ext->data, data, size);
999 
1000 	err = btf_ext_setup_func_info(btf_ext);
1001 	if (err)
1002 		goto done;
1003 
1004 	err = btf_ext_setup_line_info(btf_ext);
1005 	if (err)
1006 		goto done;
1007 
1008 done:
1009 	if (err) {
1010 		btf_ext__free(btf_ext);
1011 		return ERR_PTR(err);
1012 	}
1013 
1014 	return btf_ext;
1015 }
1016 
1017 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1018 {
1019 	*size = btf_ext->data_size;
1020 	return btf_ext->data;
1021 }
1022 
1023 static int btf_ext_reloc_info(const struct btf *btf,
1024 			      const struct btf_ext_info *ext_info,
1025 			      const char *sec_name, __u32 insns_cnt,
1026 			      void **info, __u32 *cnt)
1027 {
1028 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1029 	__u32 i, record_size, existing_len, records_len;
1030 	struct btf_ext_info_sec *sinfo;
1031 	const char *info_sec_name;
1032 	__u64 remain_len;
1033 	void *data;
1034 
1035 	record_size = ext_info->rec_size;
1036 	sinfo = ext_info->info;
1037 	remain_len = ext_info->len;
1038 	while (remain_len > 0) {
1039 		records_len = sinfo->num_info * record_size;
1040 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1041 		if (strcmp(info_sec_name, sec_name)) {
1042 			remain_len -= sec_hdrlen + records_len;
1043 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1044 			continue;
1045 		}
1046 
1047 		existing_len = (*cnt) * record_size;
1048 		data = realloc(*info, existing_len + records_len);
1049 		if (!data)
1050 			return -ENOMEM;
1051 
1052 		memcpy(data + existing_len, sinfo->data, records_len);
1053 		/* adjust insn_off only, the rest data will be passed
1054 		 * to the kernel.
1055 		 */
1056 		for (i = 0; i < sinfo->num_info; i++) {
1057 			__u32 *insn_off;
1058 
1059 			insn_off = data + existing_len + (i * record_size);
1060 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1061 				insns_cnt;
1062 		}
1063 		*info = data;
1064 		*cnt += sinfo->num_info;
1065 		return 0;
1066 	}
1067 
1068 	return -ENOENT;
1069 }
1070 
1071 int btf_ext__reloc_func_info(const struct btf *btf,
1072 			     const struct btf_ext *btf_ext,
1073 			     const char *sec_name, __u32 insns_cnt,
1074 			     void **func_info, __u32 *cnt)
1075 {
1076 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1077 				  insns_cnt, func_info, cnt);
1078 }
1079 
1080 int btf_ext__reloc_line_info(const struct btf *btf,
1081 			     const struct btf_ext *btf_ext,
1082 			     const char *sec_name, __u32 insns_cnt,
1083 			     void **line_info, __u32 *cnt)
1084 {
1085 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1086 				  insns_cnt, line_info, cnt);
1087 }
1088 
1089 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1090 {
1091 	return btf_ext->func_info.rec_size;
1092 }
1093 
1094 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1095 {
1096 	return btf_ext->line_info.rec_size;
1097 }
1098 
1099 struct btf_dedup;
1100 
1101 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1102 				       const struct btf_dedup_opts *opts);
1103 static void btf_dedup_free(struct btf_dedup *d);
1104 static int btf_dedup_strings(struct btf_dedup *d);
1105 static int btf_dedup_prim_types(struct btf_dedup *d);
1106 static int btf_dedup_struct_types(struct btf_dedup *d);
1107 static int btf_dedup_ref_types(struct btf_dedup *d);
1108 static int btf_dedup_compact_types(struct btf_dedup *d);
1109 static int btf_dedup_remap_types(struct btf_dedup *d);
1110 
1111 /*
1112  * Deduplicate BTF types and strings.
1113  *
1114  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1115  * section with all BTF type descriptors and string data. It overwrites that
1116  * memory in-place with deduplicated types and strings without any loss of
1117  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1118  * is provided, all the strings referenced from .BTF.ext section are honored
1119  * and updated to point to the right offsets after deduplication.
1120  *
1121  * If function returns with error, type/string data might be garbled and should
1122  * be discarded.
1123  *
1124  * More verbose and detailed description of both problem btf_dedup is solving,
1125  * as well as solution could be found at:
1126  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1127  *
1128  * Problem description and justification
1129  * =====================================
1130  *
1131  * BTF type information is typically emitted either as a result of conversion
1132  * from DWARF to BTF or directly by compiler. In both cases, each compilation
1133  * unit contains information about a subset of all the types that are used
1134  * in an application. These subsets are frequently overlapping and contain a lot
1135  * of duplicated information when later concatenated together into a single
1136  * binary. This algorithm ensures that each unique type is represented by single
1137  * BTF type descriptor, greatly reducing resulting size of BTF data.
1138  *
1139  * Compilation unit isolation and subsequent duplication of data is not the only
1140  * problem. The same type hierarchy (e.g., struct and all the type that struct
1141  * references) in different compilation units can be represented in BTF to
1142  * various degrees of completeness (or, rather, incompleteness) due to
1143  * struct/union forward declarations.
1144  *
1145  * Let's take a look at an example, that we'll use to better understand the
1146  * problem (and solution). Suppose we have two compilation units, each using
1147  * same `struct S`, but each of them having incomplete type information about
1148  * struct's fields:
1149  *
1150  * // CU #1:
1151  * struct S;
1152  * struct A {
1153  *	int a;
1154  *	struct A* self;
1155  *	struct S* parent;
1156  * };
1157  * struct B;
1158  * struct S {
1159  *	struct A* a_ptr;
1160  *	struct B* b_ptr;
1161  * };
1162  *
1163  * // CU #2:
1164  * struct S;
1165  * struct A;
1166  * struct B {
1167  *	int b;
1168  *	struct B* self;
1169  *	struct S* parent;
1170  * };
1171  * struct S {
1172  *	struct A* a_ptr;
1173  *	struct B* b_ptr;
1174  * };
1175  *
1176  * In case of CU #1, BTF data will know only that `struct B` exist (but no
1177  * more), but will know the complete type information about `struct A`. While
1178  * for CU #2, it will know full type information about `struct B`, but will
1179  * only know about forward declaration of `struct A` (in BTF terms, it will
1180  * have `BTF_KIND_FWD` type descriptor with name `B`).
1181  *
1182  * This compilation unit isolation means that it's possible that there is no
1183  * single CU with complete type information describing structs `S`, `A`, and
1184  * `B`. Also, we might get tons of duplicated and redundant type information.
1185  *
1186  * Additional complication we need to keep in mind comes from the fact that
1187  * types, in general, can form graphs containing cycles, not just DAGs.
1188  *
1189  * While algorithm does deduplication, it also merges and resolves type
1190  * information (unless disabled throught `struct btf_opts`), whenever possible.
1191  * E.g., in the example above with two compilation units having partial type
1192  * information for structs `A` and `B`, the output of algorithm will emit
1193  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1194  * (as well as type information for `int` and pointers), as if they were defined
1195  * in a single compilation unit as:
1196  *
1197  * struct A {
1198  *	int a;
1199  *	struct A* self;
1200  *	struct S* parent;
1201  * };
1202  * struct B {
1203  *	int b;
1204  *	struct B* self;
1205  *	struct S* parent;
1206  * };
1207  * struct S {
1208  *	struct A* a_ptr;
1209  *	struct B* b_ptr;
1210  * };
1211  *
1212  * Algorithm summary
1213  * =================
1214  *
1215  * Algorithm completes its work in 6 separate passes:
1216  *
1217  * 1. Strings deduplication.
1218  * 2. Primitive types deduplication (int, enum, fwd).
1219  * 3. Struct/union types deduplication.
1220  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1221  *    protos, and const/volatile/restrict modifiers).
1222  * 5. Types compaction.
1223  * 6. Types remapping.
1224  *
1225  * Algorithm determines canonical type descriptor, which is a single
1226  * representative type for each truly unique type. This canonical type is the
1227  * one that will go into final deduplicated BTF type information. For
1228  * struct/unions, it is also the type that algorithm will merge additional type
1229  * information into (while resolving FWDs), as it discovers it from data in
1230  * other CUs. Each input BTF type eventually gets either mapped to itself, if
1231  * that type is canonical, or to some other type, if that type is equivalent
1232  * and was chosen as canonical representative. This mapping is stored in
1233  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1234  * FWD type got resolved to.
1235  *
1236  * To facilitate fast discovery of canonical types, we also maintain canonical
1237  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1238  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1239  * that match that signature. With sufficiently good choice of type signature
1240  * hashing function, we can limit number of canonical types for each unique type
1241  * signature to a very small number, allowing to find canonical type for any
1242  * duplicated type very quickly.
1243  *
1244  * Struct/union deduplication is the most critical part and algorithm for
1245  * deduplicating structs/unions is described in greater details in comments for
1246  * `btf_dedup_is_equiv` function.
1247  */
1248 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1249 	       const struct btf_dedup_opts *opts)
1250 {
1251 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1252 	int err;
1253 
1254 	if (IS_ERR(d)) {
1255 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1256 		return -EINVAL;
1257 	}
1258 
1259 	err = btf_dedup_strings(d);
1260 	if (err < 0) {
1261 		pr_debug("btf_dedup_strings failed:%d\n", err);
1262 		goto done;
1263 	}
1264 	err = btf_dedup_prim_types(d);
1265 	if (err < 0) {
1266 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1267 		goto done;
1268 	}
1269 	err = btf_dedup_struct_types(d);
1270 	if (err < 0) {
1271 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1272 		goto done;
1273 	}
1274 	err = btf_dedup_ref_types(d);
1275 	if (err < 0) {
1276 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1277 		goto done;
1278 	}
1279 	err = btf_dedup_compact_types(d);
1280 	if (err < 0) {
1281 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1282 		goto done;
1283 	}
1284 	err = btf_dedup_remap_types(d);
1285 	if (err < 0) {
1286 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1287 		goto done;
1288 	}
1289 
1290 done:
1291 	btf_dedup_free(d);
1292 	return err;
1293 }
1294 
1295 #define BTF_UNPROCESSED_ID ((__u32)-1)
1296 #define BTF_IN_PROGRESS_ID ((__u32)-2)
1297 
1298 struct btf_dedup {
1299 	/* .BTF section to be deduped in-place */
1300 	struct btf *btf;
1301 	/*
1302 	 * Optional .BTF.ext section. When provided, any strings referenced
1303 	 * from it will be taken into account when deduping strings
1304 	 */
1305 	struct btf_ext *btf_ext;
1306 	/*
1307 	 * This is a map from any type's signature hash to a list of possible
1308 	 * canonical representative type candidates. Hash collisions are
1309 	 * ignored, so even types of various kinds can share same list of
1310 	 * candidates, which is fine because we rely on subsequent
1311 	 * btf_xxx_equal() checks to authoritatively verify type equality.
1312 	 */
1313 	struct hashmap *dedup_table;
1314 	/* Canonical types map */
1315 	__u32 *map;
1316 	/* Hypothetical mapping, used during type graph equivalence checks */
1317 	__u32 *hypot_map;
1318 	__u32 *hypot_list;
1319 	size_t hypot_cnt;
1320 	size_t hypot_cap;
1321 	/* Various option modifying behavior of algorithm */
1322 	struct btf_dedup_opts opts;
1323 };
1324 
1325 struct btf_str_ptr {
1326 	const char *str;
1327 	__u32 new_off;
1328 	bool used;
1329 };
1330 
1331 struct btf_str_ptrs {
1332 	struct btf_str_ptr *ptrs;
1333 	const char *data;
1334 	__u32 cnt;
1335 	__u32 cap;
1336 };
1337 
1338 static long hash_combine(long h, long value)
1339 {
1340 	return h * 31 + value;
1341 }
1342 
1343 #define for_each_dedup_cand(d, node, hash) \
1344 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1345 
1346 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1347 {
1348 	return hashmap__append(d->dedup_table,
1349 			       (void *)hash, (void *)(long)type_id);
1350 }
1351 
1352 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1353 				   __u32 from_id, __u32 to_id)
1354 {
1355 	if (d->hypot_cnt == d->hypot_cap) {
1356 		__u32 *new_list;
1357 
1358 		d->hypot_cap += max(16, d->hypot_cap / 2);
1359 		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1360 		if (!new_list)
1361 			return -ENOMEM;
1362 		d->hypot_list = new_list;
1363 	}
1364 	d->hypot_list[d->hypot_cnt++] = from_id;
1365 	d->hypot_map[from_id] = to_id;
1366 	return 0;
1367 }
1368 
1369 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1370 {
1371 	int i;
1372 
1373 	for (i = 0; i < d->hypot_cnt; i++)
1374 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1375 	d->hypot_cnt = 0;
1376 }
1377 
1378 static void btf_dedup_free(struct btf_dedup *d)
1379 {
1380 	hashmap__free(d->dedup_table);
1381 	d->dedup_table = NULL;
1382 
1383 	free(d->map);
1384 	d->map = NULL;
1385 
1386 	free(d->hypot_map);
1387 	d->hypot_map = NULL;
1388 
1389 	free(d->hypot_list);
1390 	d->hypot_list = NULL;
1391 
1392 	free(d);
1393 }
1394 
1395 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1396 {
1397 	return (size_t)key;
1398 }
1399 
1400 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1401 {
1402 	return 0;
1403 }
1404 
1405 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1406 {
1407 	return k1 == k2;
1408 }
1409 
1410 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1411 				       const struct btf_dedup_opts *opts)
1412 {
1413 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1414 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1415 	int i, err = 0;
1416 
1417 	if (!d)
1418 		return ERR_PTR(-ENOMEM);
1419 
1420 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1421 	/* dedup_table_size is now used only to force collisions in tests */
1422 	if (opts && opts->dedup_table_size == 1)
1423 		hash_fn = btf_dedup_collision_hash_fn;
1424 
1425 	d->btf = btf;
1426 	d->btf_ext = btf_ext;
1427 
1428 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1429 	if (IS_ERR(d->dedup_table)) {
1430 		err = PTR_ERR(d->dedup_table);
1431 		d->dedup_table = NULL;
1432 		goto done;
1433 	}
1434 
1435 	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1436 	if (!d->map) {
1437 		err = -ENOMEM;
1438 		goto done;
1439 	}
1440 	/* special BTF "void" type is made canonical immediately */
1441 	d->map[0] = 0;
1442 	for (i = 1; i <= btf->nr_types; i++) {
1443 		struct btf_type *t = d->btf->types[i];
1444 		__u16 kind = BTF_INFO_KIND(t->info);
1445 
1446 		/* VAR and DATASEC are never deduped and are self-canonical */
1447 		if (kind == BTF_KIND_VAR || kind == BTF_KIND_DATASEC)
1448 			d->map[i] = i;
1449 		else
1450 			d->map[i] = BTF_UNPROCESSED_ID;
1451 	}
1452 
1453 	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1454 	if (!d->hypot_map) {
1455 		err = -ENOMEM;
1456 		goto done;
1457 	}
1458 	for (i = 0; i <= btf->nr_types; i++)
1459 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1460 
1461 done:
1462 	if (err) {
1463 		btf_dedup_free(d);
1464 		return ERR_PTR(err);
1465 	}
1466 
1467 	return d;
1468 }
1469 
1470 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1471 
1472 /*
1473  * Iterate over all possible places in .BTF and .BTF.ext that can reference
1474  * string and pass pointer to it to a provided callback `fn`.
1475  */
1476 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1477 {
1478 	void *line_data_cur, *line_data_end;
1479 	int i, j, r, rec_size;
1480 	struct btf_type *t;
1481 
1482 	for (i = 1; i <= d->btf->nr_types; i++) {
1483 		t = d->btf->types[i];
1484 		r = fn(&t->name_off, ctx);
1485 		if (r)
1486 			return r;
1487 
1488 		switch (BTF_INFO_KIND(t->info)) {
1489 		case BTF_KIND_STRUCT:
1490 		case BTF_KIND_UNION: {
1491 			struct btf_member *m = (struct btf_member *)(t + 1);
1492 			__u16 vlen = BTF_INFO_VLEN(t->info);
1493 
1494 			for (j = 0; j < vlen; j++) {
1495 				r = fn(&m->name_off, ctx);
1496 				if (r)
1497 					return r;
1498 				m++;
1499 			}
1500 			break;
1501 		}
1502 		case BTF_KIND_ENUM: {
1503 			struct btf_enum *m = (struct btf_enum *)(t + 1);
1504 			__u16 vlen = BTF_INFO_VLEN(t->info);
1505 
1506 			for (j = 0; j < vlen; j++) {
1507 				r = fn(&m->name_off, ctx);
1508 				if (r)
1509 					return r;
1510 				m++;
1511 			}
1512 			break;
1513 		}
1514 		case BTF_KIND_FUNC_PROTO: {
1515 			struct btf_param *m = (struct btf_param *)(t + 1);
1516 			__u16 vlen = BTF_INFO_VLEN(t->info);
1517 
1518 			for (j = 0; j < vlen; j++) {
1519 				r = fn(&m->name_off, ctx);
1520 				if (r)
1521 					return r;
1522 				m++;
1523 			}
1524 			break;
1525 		}
1526 		default:
1527 			break;
1528 		}
1529 	}
1530 
1531 	if (!d->btf_ext)
1532 		return 0;
1533 
1534 	line_data_cur = d->btf_ext->line_info.info;
1535 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1536 	rec_size = d->btf_ext->line_info.rec_size;
1537 
1538 	while (line_data_cur < line_data_end) {
1539 		struct btf_ext_info_sec *sec = line_data_cur;
1540 		struct bpf_line_info_min *line_info;
1541 		__u32 num_info = sec->num_info;
1542 
1543 		r = fn(&sec->sec_name_off, ctx);
1544 		if (r)
1545 			return r;
1546 
1547 		line_data_cur += sizeof(struct btf_ext_info_sec);
1548 		for (i = 0; i < num_info; i++) {
1549 			line_info = line_data_cur;
1550 			r = fn(&line_info->file_name_off, ctx);
1551 			if (r)
1552 				return r;
1553 			r = fn(&line_info->line_off, ctx);
1554 			if (r)
1555 				return r;
1556 			line_data_cur += rec_size;
1557 		}
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 static int str_sort_by_content(const void *a1, const void *a2)
1564 {
1565 	const struct btf_str_ptr *p1 = a1;
1566 	const struct btf_str_ptr *p2 = a2;
1567 
1568 	return strcmp(p1->str, p2->str);
1569 }
1570 
1571 static int str_sort_by_offset(const void *a1, const void *a2)
1572 {
1573 	const struct btf_str_ptr *p1 = a1;
1574 	const struct btf_str_ptr *p2 = a2;
1575 
1576 	if (p1->str != p2->str)
1577 		return p1->str < p2->str ? -1 : 1;
1578 	return 0;
1579 }
1580 
1581 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1582 {
1583 	const struct btf_str_ptr *p = pelem;
1584 
1585 	if (str_ptr != p->str)
1586 		return (const char *)str_ptr < p->str ? -1 : 1;
1587 	return 0;
1588 }
1589 
1590 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1591 {
1592 	struct btf_str_ptrs *strs;
1593 	struct btf_str_ptr *s;
1594 
1595 	if (*str_off_ptr == 0)
1596 		return 0;
1597 
1598 	strs = ctx;
1599 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1600 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1601 	if (!s)
1602 		return -EINVAL;
1603 	s->used = true;
1604 	return 0;
1605 }
1606 
1607 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1608 {
1609 	struct btf_str_ptrs *strs;
1610 	struct btf_str_ptr *s;
1611 
1612 	if (*str_off_ptr == 0)
1613 		return 0;
1614 
1615 	strs = ctx;
1616 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1617 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1618 	if (!s)
1619 		return -EINVAL;
1620 	*str_off_ptr = s->new_off;
1621 	return 0;
1622 }
1623 
1624 /*
1625  * Dedup string and filter out those that are not referenced from either .BTF
1626  * or .BTF.ext (if provided) sections.
1627  *
1628  * This is done by building index of all strings in BTF's string section,
1629  * then iterating over all entities that can reference strings (e.g., type
1630  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1631  * strings as used. After that all used strings are deduped and compacted into
1632  * sequential blob of memory and new offsets are calculated. Then all the string
1633  * references are iterated again and rewritten using new offsets.
1634  */
1635 static int btf_dedup_strings(struct btf_dedup *d)
1636 {
1637 	const struct btf_header *hdr = d->btf->hdr;
1638 	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1639 	char *end = start + d->btf->hdr->str_len;
1640 	char *p = start, *tmp_strs = NULL;
1641 	struct btf_str_ptrs strs = {
1642 		.cnt = 0,
1643 		.cap = 0,
1644 		.ptrs = NULL,
1645 		.data = start,
1646 	};
1647 	int i, j, err = 0, grp_idx;
1648 	bool grp_used;
1649 
1650 	/* build index of all strings */
1651 	while (p < end) {
1652 		if (strs.cnt + 1 > strs.cap) {
1653 			struct btf_str_ptr *new_ptrs;
1654 
1655 			strs.cap += max(strs.cnt / 2, 16);
1656 			new_ptrs = realloc(strs.ptrs,
1657 					   sizeof(strs.ptrs[0]) * strs.cap);
1658 			if (!new_ptrs) {
1659 				err = -ENOMEM;
1660 				goto done;
1661 			}
1662 			strs.ptrs = new_ptrs;
1663 		}
1664 
1665 		strs.ptrs[strs.cnt].str = p;
1666 		strs.ptrs[strs.cnt].used = false;
1667 
1668 		p += strlen(p) + 1;
1669 		strs.cnt++;
1670 	}
1671 
1672 	/* temporary storage for deduplicated strings */
1673 	tmp_strs = malloc(d->btf->hdr->str_len);
1674 	if (!tmp_strs) {
1675 		err = -ENOMEM;
1676 		goto done;
1677 	}
1678 
1679 	/* mark all used strings */
1680 	strs.ptrs[0].used = true;
1681 	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1682 	if (err)
1683 		goto done;
1684 
1685 	/* sort strings by context, so that we can identify duplicates */
1686 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1687 
1688 	/*
1689 	 * iterate groups of equal strings and if any instance in a group was
1690 	 * referenced, emit single instance and remember new offset
1691 	 */
1692 	p = tmp_strs;
1693 	grp_idx = 0;
1694 	grp_used = strs.ptrs[0].used;
1695 	/* iterate past end to avoid code duplication after loop */
1696 	for (i = 1; i <= strs.cnt; i++) {
1697 		/*
1698 		 * when i == strs.cnt, we want to skip string comparison and go
1699 		 * straight to handling last group of strings (otherwise we'd
1700 		 * need to handle last group after the loop w/ duplicated code)
1701 		 */
1702 		if (i < strs.cnt &&
1703 		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1704 			grp_used = grp_used || strs.ptrs[i].used;
1705 			continue;
1706 		}
1707 
1708 		/*
1709 		 * this check would have been required after the loop to handle
1710 		 * last group of strings, but due to <= condition in a loop
1711 		 * we avoid that duplication
1712 		 */
1713 		if (grp_used) {
1714 			int new_off = p - tmp_strs;
1715 			__u32 len = strlen(strs.ptrs[grp_idx].str);
1716 
1717 			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1718 			for (j = grp_idx; j < i; j++)
1719 				strs.ptrs[j].new_off = new_off;
1720 			p += len + 1;
1721 		}
1722 
1723 		if (i < strs.cnt) {
1724 			grp_idx = i;
1725 			grp_used = strs.ptrs[i].used;
1726 		}
1727 	}
1728 
1729 	/* replace original strings with deduped ones */
1730 	d->btf->hdr->str_len = p - tmp_strs;
1731 	memmove(start, tmp_strs, d->btf->hdr->str_len);
1732 	end = start + d->btf->hdr->str_len;
1733 
1734 	/* restore original order for further binary search lookups */
1735 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1736 
1737 	/* remap string offsets */
1738 	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1739 	if (err)
1740 		goto done;
1741 
1742 	d->btf->hdr->str_len = end - start;
1743 
1744 done:
1745 	free(tmp_strs);
1746 	free(strs.ptrs);
1747 	return err;
1748 }
1749 
1750 static long btf_hash_common(struct btf_type *t)
1751 {
1752 	long h;
1753 
1754 	h = hash_combine(0, t->name_off);
1755 	h = hash_combine(h, t->info);
1756 	h = hash_combine(h, t->size);
1757 	return h;
1758 }
1759 
1760 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1761 {
1762 	return t1->name_off == t2->name_off &&
1763 	       t1->info == t2->info &&
1764 	       t1->size == t2->size;
1765 }
1766 
1767 /* Calculate type signature hash of INT. */
1768 static long btf_hash_int(struct btf_type *t)
1769 {
1770 	__u32 info = *(__u32 *)(t + 1);
1771 	long h;
1772 
1773 	h = btf_hash_common(t);
1774 	h = hash_combine(h, info);
1775 	return h;
1776 }
1777 
1778 /* Check structural equality of two INTs. */
1779 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1780 {
1781 	__u32 info1, info2;
1782 
1783 	if (!btf_equal_common(t1, t2))
1784 		return false;
1785 	info1 = *(__u32 *)(t1 + 1);
1786 	info2 = *(__u32 *)(t2 + 1);
1787 	return info1 == info2;
1788 }
1789 
1790 /* Calculate type signature hash of ENUM. */
1791 static long btf_hash_enum(struct btf_type *t)
1792 {
1793 	long h;
1794 
1795 	/* don't hash vlen and enum members to support enum fwd resolving */
1796 	h = hash_combine(0, t->name_off);
1797 	h = hash_combine(h, t->info & ~0xffff);
1798 	h = hash_combine(h, t->size);
1799 	return h;
1800 }
1801 
1802 /* Check structural equality of two ENUMs. */
1803 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1804 {
1805 	struct btf_enum *m1, *m2;
1806 	__u16 vlen;
1807 	int i;
1808 
1809 	if (!btf_equal_common(t1, t2))
1810 		return false;
1811 
1812 	vlen = BTF_INFO_VLEN(t1->info);
1813 	m1 = (struct btf_enum *)(t1 + 1);
1814 	m2 = (struct btf_enum *)(t2 + 1);
1815 	for (i = 0; i < vlen; i++) {
1816 		if (m1->name_off != m2->name_off || m1->val != m2->val)
1817 			return false;
1818 		m1++;
1819 		m2++;
1820 	}
1821 	return true;
1822 }
1823 
1824 static inline bool btf_is_enum_fwd(struct btf_type *t)
1825 {
1826 	return BTF_INFO_KIND(t->info) == BTF_KIND_ENUM &&
1827 	       BTF_INFO_VLEN(t->info) == 0;
1828 }
1829 
1830 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1831 {
1832 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1833 		return btf_equal_enum(t1, t2);
1834 	/* ignore vlen when comparing */
1835 	return t1->name_off == t2->name_off &&
1836 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1837 	       t1->size == t2->size;
1838 }
1839 
1840 /*
1841  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1842  * as referenced type IDs equivalence is established separately during type
1843  * graph equivalence check algorithm.
1844  */
1845 static long btf_hash_struct(struct btf_type *t)
1846 {
1847 	struct btf_member *member = (struct btf_member *)(t + 1);
1848 	__u32 vlen = BTF_INFO_VLEN(t->info);
1849 	long h = btf_hash_common(t);
1850 	int i;
1851 
1852 	for (i = 0; i < vlen; i++) {
1853 		h = hash_combine(h, member->name_off);
1854 		h = hash_combine(h, member->offset);
1855 		/* no hashing of referenced type ID, it can be unresolved yet */
1856 		member++;
1857 	}
1858 	return h;
1859 }
1860 
1861 /*
1862  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1863  * IDs. This check is performed during type graph equivalence check and
1864  * referenced types equivalence is checked separately.
1865  */
1866 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1867 {
1868 	struct btf_member *m1, *m2;
1869 	__u16 vlen;
1870 	int i;
1871 
1872 	if (!btf_equal_common(t1, t2))
1873 		return false;
1874 
1875 	vlen = BTF_INFO_VLEN(t1->info);
1876 	m1 = (struct btf_member *)(t1 + 1);
1877 	m2 = (struct btf_member *)(t2 + 1);
1878 	for (i = 0; i < vlen; i++) {
1879 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1880 			return false;
1881 		m1++;
1882 		m2++;
1883 	}
1884 	return true;
1885 }
1886 
1887 /*
1888  * Calculate type signature hash of ARRAY, including referenced type IDs,
1889  * under assumption that they were already resolved to canonical type IDs and
1890  * are not going to change.
1891  */
1892 static long btf_hash_array(struct btf_type *t)
1893 {
1894 	struct btf_array *info = (struct btf_array *)(t + 1);
1895 	long h = btf_hash_common(t);
1896 
1897 	h = hash_combine(h, info->type);
1898 	h = hash_combine(h, info->index_type);
1899 	h = hash_combine(h, info->nelems);
1900 	return h;
1901 }
1902 
1903 /*
1904  * Check exact equality of two ARRAYs, taking into account referenced
1905  * type IDs, under assumption that they were already resolved to canonical
1906  * type IDs and are not going to change.
1907  * This function is called during reference types deduplication to compare
1908  * ARRAY to potential canonical representative.
1909  */
1910 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1911 {
1912 	struct btf_array *info1, *info2;
1913 
1914 	if (!btf_equal_common(t1, t2))
1915 		return false;
1916 
1917 	info1 = (struct btf_array *)(t1 + 1);
1918 	info2 = (struct btf_array *)(t2 + 1);
1919 	return info1->type == info2->type &&
1920 	       info1->index_type == info2->index_type &&
1921 	       info1->nelems == info2->nelems;
1922 }
1923 
1924 /*
1925  * Check structural compatibility of two ARRAYs, ignoring referenced type
1926  * IDs. This check is performed during type graph equivalence check and
1927  * referenced types equivalence is checked separately.
1928  */
1929 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1930 {
1931 	struct btf_array *info1, *info2;
1932 
1933 	if (!btf_equal_common(t1, t2))
1934 		return false;
1935 
1936 	info1 = (struct btf_array *)(t1 + 1);
1937 	info2 = (struct btf_array *)(t2 + 1);
1938 	return info1->nelems == info2->nelems;
1939 }
1940 
1941 /*
1942  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1943  * under assumption that they were already resolved to canonical type IDs and
1944  * are not going to change.
1945  */
1946 static long btf_hash_fnproto(struct btf_type *t)
1947 {
1948 	struct btf_param *member = (struct btf_param *)(t + 1);
1949 	__u16 vlen = BTF_INFO_VLEN(t->info);
1950 	long h = btf_hash_common(t);
1951 	int i;
1952 
1953 	for (i = 0; i < vlen; i++) {
1954 		h = hash_combine(h, member->name_off);
1955 		h = hash_combine(h, member->type);
1956 		member++;
1957 	}
1958 	return h;
1959 }
1960 
1961 /*
1962  * Check exact equality of two FUNC_PROTOs, taking into account referenced
1963  * type IDs, under assumption that they were already resolved to canonical
1964  * type IDs and are not going to change.
1965  * This function is called during reference types deduplication to compare
1966  * FUNC_PROTO to potential canonical representative.
1967  */
1968 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
1969 {
1970 	struct btf_param *m1, *m2;
1971 	__u16 vlen;
1972 	int i;
1973 
1974 	if (!btf_equal_common(t1, t2))
1975 		return false;
1976 
1977 	vlen = BTF_INFO_VLEN(t1->info);
1978 	m1 = (struct btf_param *)(t1 + 1);
1979 	m2 = (struct btf_param *)(t2 + 1);
1980 	for (i = 0; i < vlen; i++) {
1981 		if (m1->name_off != m2->name_off || m1->type != m2->type)
1982 			return false;
1983 		m1++;
1984 		m2++;
1985 	}
1986 	return true;
1987 }
1988 
1989 /*
1990  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1991  * IDs. This check is performed during type graph equivalence check and
1992  * referenced types equivalence is checked separately.
1993  */
1994 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
1995 {
1996 	struct btf_param *m1, *m2;
1997 	__u16 vlen;
1998 	int i;
1999 
2000 	/* skip return type ID */
2001 	if (t1->name_off != t2->name_off || t1->info != t2->info)
2002 		return false;
2003 
2004 	vlen = BTF_INFO_VLEN(t1->info);
2005 	m1 = (struct btf_param *)(t1 + 1);
2006 	m2 = (struct btf_param *)(t2 + 1);
2007 	for (i = 0; i < vlen; i++) {
2008 		if (m1->name_off != m2->name_off)
2009 			return false;
2010 		m1++;
2011 		m2++;
2012 	}
2013 	return true;
2014 }
2015 
2016 /*
2017  * Deduplicate primitive types, that can't reference other types, by calculating
2018  * their type signature hash and comparing them with any possible canonical
2019  * candidate. If no canonical candidate matches, type itself is marked as
2020  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2021  */
2022 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2023 {
2024 	struct btf_type *t = d->btf->types[type_id];
2025 	struct hashmap_entry *hash_entry;
2026 	struct btf_type *cand;
2027 	/* if we don't find equivalent type, then we are canonical */
2028 	__u32 new_id = type_id;
2029 	__u32 cand_id;
2030 	long h;
2031 
2032 	switch (BTF_INFO_KIND(t->info)) {
2033 	case BTF_KIND_CONST:
2034 	case BTF_KIND_VOLATILE:
2035 	case BTF_KIND_RESTRICT:
2036 	case BTF_KIND_PTR:
2037 	case BTF_KIND_TYPEDEF:
2038 	case BTF_KIND_ARRAY:
2039 	case BTF_KIND_STRUCT:
2040 	case BTF_KIND_UNION:
2041 	case BTF_KIND_FUNC:
2042 	case BTF_KIND_FUNC_PROTO:
2043 	case BTF_KIND_VAR:
2044 	case BTF_KIND_DATASEC:
2045 		return 0;
2046 
2047 	case BTF_KIND_INT:
2048 		h = btf_hash_int(t);
2049 		for_each_dedup_cand(d, hash_entry, h) {
2050 			cand_id = (__u32)(long)hash_entry->value;
2051 			cand = d->btf->types[cand_id];
2052 			if (btf_equal_int(t, cand)) {
2053 				new_id = cand_id;
2054 				break;
2055 			}
2056 		}
2057 		break;
2058 
2059 	case BTF_KIND_ENUM:
2060 		h = btf_hash_enum(t);
2061 		for_each_dedup_cand(d, hash_entry, h) {
2062 			cand_id = (__u32)(long)hash_entry->value;
2063 			cand = d->btf->types[cand_id];
2064 			if (btf_equal_enum(t, cand)) {
2065 				new_id = cand_id;
2066 				break;
2067 			}
2068 			if (d->opts.dont_resolve_fwds)
2069 				continue;
2070 			if (btf_compat_enum(t, cand)) {
2071 				if (btf_is_enum_fwd(t)) {
2072 					/* resolve fwd to full enum */
2073 					new_id = cand_id;
2074 					break;
2075 				}
2076 				/* resolve canonical enum fwd to full enum */
2077 				d->map[cand_id] = type_id;
2078 			}
2079 		}
2080 		break;
2081 
2082 	case BTF_KIND_FWD:
2083 		h = btf_hash_common(t);
2084 		for_each_dedup_cand(d, hash_entry, h) {
2085 			cand_id = (__u32)(long)hash_entry->value;
2086 			cand = d->btf->types[cand_id];
2087 			if (btf_equal_common(t, cand)) {
2088 				new_id = cand_id;
2089 				break;
2090 			}
2091 		}
2092 		break;
2093 
2094 	default:
2095 		return -EINVAL;
2096 	}
2097 
2098 	d->map[type_id] = new_id;
2099 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2100 		return -ENOMEM;
2101 
2102 	return 0;
2103 }
2104 
2105 static int btf_dedup_prim_types(struct btf_dedup *d)
2106 {
2107 	int i, err;
2108 
2109 	for (i = 1; i <= d->btf->nr_types; i++) {
2110 		err = btf_dedup_prim_type(d, i);
2111 		if (err)
2112 			return err;
2113 	}
2114 	return 0;
2115 }
2116 
2117 /*
2118  * Check whether type is already mapped into canonical one (could be to itself).
2119  */
2120 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2121 {
2122 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2123 }
2124 
2125 /*
2126  * Resolve type ID into its canonical type ID, if any; otherwise return original
2127  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2128  * STRUCT/UNION link and resolve it into canonical type ID as well.
2129  */
2130 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2131 {
2132 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2133 		type_id = d->map[type_id];
2134 	return type_id;
2135 }
2136 
2137 /*
2138  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2139  * type ID.
2140  */
2141 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2142 {
2143 	__u32 orig_type_id = type_id;
2144 
2145 	if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
2146 		return type_id;
2147 
2148 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2149 		type_id = d->map[type_id];
2150 
2151 	if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
2152 		return type_id;
2153 
2154 	return orig_type_id;
2155 }
2156 
2157 
2158 static inline __u16 btf_fwd_kind(struct btf_type *t)
2159 {
2160 	return BTF_INFO_KFLAG(t->info) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2161 }
2162 
2163 /*
2164  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2165  * call it "candidate graph" in this description for brevity) to a type graph
2166  * formed by (potential) canonical struct/union ("canonical graph" for brevity
2167  * here, though keep in mind that not all types in canonical graph are
2168  * necessarily canonical representatives themselves, some of them might be
2169  * duplicates or its uniqueness might not have been established yet).
2170  * Returns:
2171  *  - >0, if type graphs are equivalent;
2172  *  -  0, if not equivalent;
2173  *  - <0, on error.
2174  *
2175  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2176  * equivalence of BTF types at each step. If at any point BTF types in candidate
2177  * and canonical graphs are not compatible structurally, whole graphs are
2178  * incompatible. If types are structurally equivalent (i.e., all information
2179  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2180  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2181  * If a type references other types, then those referenced types are checked
2182  * for equivalence recursively.
2183  *
2184  * During DFS traversal, if we find that for current `canon_id` type we
2185  * already have some mapping in hypothetical map, we check for two possible
2186  * situations:
2187  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2188  *     happen when type graphs have cycles. In this case we assume those two
2189  *     types are equivalent.
2190  *   - `canon_id` is mapped to different type. This is contradiction in our
2191  *     hypothetical mapping, because same graph in canonical graph corresponds
2192  *     to two different types in candidate graph, which for equivalent type
2193  *     graphs shouldn't happen. This condition terminates equivalence check
2194  *     with negative result.
2195  *
2196  * If type graphs traversal exhausts types to check and find no contradiction,
2197  * then type graphs are equivalent.
2198  *
2199  * When checking types for equivalence, there is one special case: FWD types.
2200  * If FWD type resolution is allowed and one of the types (either from canonical
2201  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2202  * flag) and their names match, hypothetical mapping is updated to point from
2203  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2204  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2205  *
2206  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2207  * if there are two exactly named (or anonymous) structs/unions that are
2208  * compatible structurally, one of which has FWD field, while other is concrete
2209  * STRUCT/UNION, but according to C sources they are different structs/unions
2210  * that are referencing different types with the same name. This is extremely
2211  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2212  * this logic is causing problems.
2213  *
2214  * Doing FWD resolution means that both candidate and/or canonical graphs can
2215  * consists of portions of the graph that come from multiple compilation units.
2216  * This is due to the fact that types within single compilation unit are always
2217  * deduplicated and FWDs are already resolved, if referenced struct/union
2218  * definiton is available. So, if we had unresolved FWD and found corresponding
2219  * STRUCT/UNION, they will be from different compilation units. This
2220  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2221  * type graph will likely have at least two different BTF types that describe
2222  * same type (e.g., most probably there will be two different BTF types for the
2223  * same 'int' primitive type) and could even have "overlapping" parts of type
2224  * graph that describe same subset of types.
2225  *
2226  * This in turn means that our assumption that each type in canonical graph
2227  * must correspond to exactly one type in candidate graph might not hold
2228  * anymore and will make it harder to detect contradictions using hypothetical
2229  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2230  * resolution only in canonical graph. FWDs in candidate graphs are never
2231  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2232  * that can occur:
2233  *   - Both types in canonical and candidate graphs are FWDs. If they are
2234  *     structurally equivalent, then they can either be both resolved to the
2235  *     same STRUCT/UNION or not resolved at all. In both cases they are
2236  *     equivalent and there is no need to resolve FWD on candidate side.
2237  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2238  *     so nothing to resolve as well, algorithm will check equivalence anyway.
2239  *   - Type in canonical graph is FWD, while type in candidate is concrete
2240  *     STRUCT/UNION. In this case candidate graph comes from single compilation
2241  *     unit, so there is exactly one BTF type for each unique C type. After
2242  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2243  *     in canonical graph mapping to single BTF type in candidate graph, but
2244  *     because hypothetical mapping maps from canonical to candidate types, it's
2245  *     alright, and we still maintain the property of having single `canon_id`
2246  *     mapping to single `cand_id` (there could be two different `canon_id`
2247  *     mapped to the same `cand_id`, but it's not contradictory).
2248  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2249  *     graph is FWD. In this case we are just going to check compatibility of
2250  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2251  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2252  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2253  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2254  *     canonical graph.
2255  */
2256 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2257 			      __u32 canon_id)
2258 {
2259 	struct btf_type *cand_type;
2260 	struct btf_type *canon_type;
2261 	__u32 hypot_type_id;
2262 	__u16 cand_kind;
2263 	__u16 canon_kind;
2264 	int i, eq;
2265 
2266 	/* if both resolve to the same canonical, they must be equivalent */
2267 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2268 		return 1;
2269 
2270 	canon_id = resolve_fwd_id(d, canon_id);
2271 
2272 	hypot_type_id = d->hypot_map[canon_id];
2273 	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2274 		return hypot_type_id == cand_id;
2275 
2276 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2277 		return -ENOMEM;
2278 
2279 	cand_type = d->btf->types[cand_id];
2280 	canon_type = d->btf->types[canon_id];
2281 	cand_kind = BTF_INFO_KIND(cand_type->info);
2282 	canon_kind = BTF_INFO_KIND(canon_type->info);
2283 
2284 	if (cand_type->name_off != canon_type->name_off)
2285 		return 0;
2286 
2287 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2288 	if (!d->opts.dont_resolve_fwds
2289 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2290 	    && cand_kind != canon_kind) {
2291 		__u16 real_kind;
2292 		__u16 fwd_kind;
2293 
2294 		if (cand_kind == BTF_KIND_FWD) {
2295 			real_kind = canon_kind;
2296 			fwd_kind = btf_fwd_kind(cand_type);
2297 		} else {
2298 			real_kind = cand_kind;
2299 			fwd_kind = btf_fwd_kind(canon_type);
2300 		}
2301 		return fwd_kind == real_kind;
2302 	}
2303 
2304 	if (cand_kind != canon_kind)
2305 		return 0;
2306 
2307 	switch (cand_kind) {
2308 	case BTF_KIND_INT:
2309 		return btf_equal_int(cand_type, canon_type);
2310 
2311 	case BTF_KIND_ENUM:
2312 		if (d->opts.dont_resolve_fwds)
2313 			return btf_equal_enum(cand_type, canon_type);
2314 		else
2315 			return btf_compat_enum(cand_type, canon_type);
2316 
2317 	case BTF_KIND_FWD:
2318 		return btf_equal_common(cand_type, canon_type);
2319 
2320 	case BTF_KIND_CONST:
2321 	case BTF_KIND_VOLATILE:
2322 	case BTF_KIND_RESTRICT:
2323 	case BTF_KIND_PTR:
2324 	case BTF_KIND_TYPEDEF:
2325 	case BTF_KIND_FUNC:
2326 		if (cand_type->info != canon_type->info)
2327 			return 0;
2328 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2329 
2330 	case BTF_KIND_ARRAY: {
2331 		struct btf_array *cand_arr, *canon_arr;
2332 
2333 		if (!btf_compat_array(cand_type, canon_type))
2334 			return 0;
2335 		cand_arr = (struct btf_array *)(cand_type + 1);
2336 		canon_arr = (struct btf_array *)(canon_type + 1);
2337 		eq = btf_dedup_is_equiv(d,
2338 			cand_arr->index_type, canon_arr->index_type);
2339 		if (eq <= 0)
2340 			return eq;
2341 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2342 	}
2343 
2344 	case BTF_KIND_STRUCT:
2345 	case BTF_KIND_UNION: {
2346 		struct btf_member *cand_m, *canon_m;
2347 		__u16 vlen;
2348 
2349 		if (!btf_shallow_equal_struct(cand_type, canon_type))
2350 			return 0;
2351 		vlen = BTF_INFO_VLEN(cand_type->info);
2352 		cand_m = (struct btf_member *)(cand_type + 1);
2353 		canon_m = (struct btf_member *)(canon_type + 1);
2354 		for (i = 0; i < vlen; i++) {
2355 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2356 			if (eq <= 0)
2357 				return eq;
2358 			cand_m++;
2359 			canon_m++;
2360 		}
2361 
2362 		return 1;
2363 	}
2364 
2365 	case BTF_KIND_FUNC_PROTO: {
2366 		struct btf_param *cand_p, *canon_p;
2367 		__u16 vlen;
2368 
2369 		if (!btf_compat_fnproto(cand_type, canon_type))
2370 			return 0;
2371 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2372 		if (eq <= 0)
2373 			return eq;
2374 		vlen = BTF_INFO_VLEN(cand_type->info);
2375 		cand_p = (struct btf_param *)(cand_type + 1);
2376 		canon_p = (struct btf_param *)(canon_type + 1);
2377 		for (i = 0; i < vlen; i++) {
2378 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2379 			if (eq <= 0)
2380 				return eq;
2381 			cand_p++;
2382 			canon_p++;
2383 		}
2384 		return 1;
2385 	}
2386 
2387 	default:
2388 		return -EINVAL;
2389 	}
2390 	return 0;
2391 }
2392 
2393 /*
2394  * Use hypothetical mapping, produced by successful type graph equivalence
2395  * check, to augment existing struct/union canonical mapping, where possible.
2396  *
2397  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2398  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2399  * it doesn't matter if FWD type was part of canonical graph or candidate one,
2400  * we are recording the mapping anyway. As opposed to carefulness required
2401  * for struct/union correspondence mapping (described below), for FWD resolution
2402  * it's not important, as by the time that FWD type (reference type) will be
2403  * deduplicated all structs/unions will be deduped already anyway.
2404  *
2405  * Recording STRUCT/UNION mapping is purely a performance optimization and is
2406  * not required for correctness. It needs to be done carefully to ensure that
2407  * struct/union from candidate's type graph is not mapped into corresponding
2408  * struct/union from canonical type graph that itself hasn't been resolved into
2409  * canonical representative. The only guarantee we have is that canonical
2410  * struct/union was determined as canonical and that won't change. But any
2411  * types referenced through that struct/union fields could have been not yet
2412  * resolved, so in case like that it's too early to establish any kind of
2413  * correspondence between structs/unions.
2414  *
2415  * No canonical correspondence is derived for primitive types (they are already
2416  * deduplicated completely already anyway) or reference types (they rely on
2417  * stability of struct/union canonical relationship for equivalence checks).
2418  */
2419 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2420 {
2421 	__u32 cand_type_id, targ_type_id;
2422 	__u16 t_kind, c_kind;
2423 	__u32 t_id, c_id;
2424 	int i;
2425 
2426 	for (i = 0; i < d->hypot_cnt; i++) {
2427 		cand_type_id = d->hypot_list[i];
2428 		targ_type_id = d->hypot_map[cand_type_id];
2429 		t_id = resolve_type_id(d, targ_type_id);
2430 		c_id = resolve_type_id(d, cand_type_id);
2431 		t_kind = BTF_INFO_KIND(d->btf->types[t_id]->info);
2432 		c_kind = BTF_INFO_KIND(d->btf->types[c_id]->info);
2433 		/*
2434 		 * Resolve FWD into STRUCT/UNION.
2435 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2436 		 * mapped to canonical representative (as opposed to
2437 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2438 		 * eventually that struct is going to be mapped and all resolved
2439 		 * FWDs will automatically resolve to correct canonical
2440 		 * representative. This will happen before ref type deduping,
2441 		 * which critically depends on stability of these mapping. This
2442 		 * stability is not a requirement for STRUCT/UNION equivalence
2443 		 * checks, though.
2444 		 */
2445 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2446 			d->map[c_id] = t_id;
2447 		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2448 			d->map[t_id] = c_id;
2449 
2450 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2451 		    c_kind != BTF_KIND_FWD &&
2452 		    is_type_mapped(d, c_id) &&
2453 		    !is_type_mapped(d, t_id)) {
2454 			/*
2455 			 * as a perf optimization, we can map struct/union
2456 			 * that's part of type graph we just verified for
2457 			 * equivalence. We can do that for struct/union that has
2458 			 * canonical representative only, though.
2459 			 */
2460 			d->map[t_id] = c_id;
2461 		}
2462 	}
2463 }
2464 
2465 /*
2466  * Deduplicate struct/union types.
2467  *
2468  * For each struct/union type its type signature hash is calculated, taking
2469  * into account type's name, size, number, order and names of fields, but
2470  * ignoring type ID's referenced from fields, because they might not be deduped
2471  * completely until after reference types deduplication phase. This type hash
2472  * is used to iterate over all potential canonical types, sharing same hash.
2473  * For each canonical candidate we check whether type graphs that they form
2474  * (through referenced types in fields and so on) are equivalent using algorithm
2475  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2476  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2477  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2478  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2479  * potentially map other structs/unions to their canonical representatives,
2480  * if such relationship hasn't yet been established. This speeds up algorithm
2481  * by eliminating some of the duplicate work.
2482  *
2483  * If no matching canonical representative was found, struct/union is marked
2484  * as canonical for itself and is added into btf_dedup->dedup_table hash map
2485  * for further look ups.
2486  */
2487 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2488 {
2489 	struct btf_type *cand_type, *t;
2490 	struct hashmap_entry *hash_entry;
2491 	/* if we don't find equivalent type, then we are canonical */
2492 	__u32 new_id = type_id;
2493 	__u16 kind;
2494 	long h;
2495 
2496 	/* already deduped or is in process of deduping (loop detected) */
2497 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2498 		return 0;
2499 
2500 	t = d->btf->types[type_id];
2501 	kind = BTF_INFO_KIND(t->info);
2502 
2503 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2504 		return 0;
2505 
2506 	h = btf_hash_struct(t);
2507 	for_each_dedup_cand(d, hash_entry, h) {
2508 		__u32 cand_id = (__u32)(long)hash_entry->value;
2509 		int eq;
2510 
2511 		/*
2512 		 * Even though btf_dedup_is_equiv() checks for
2513 		 * btf_shallow_equal_struct() internally when checking two
2514 		 * structs (unions) for equivalence, we need to guard here
2515 		 * from picking matching FWD type as a dedup candidate.
2516 		 * This can happen due to hash collision. In such case just
2517 		 * relying on btf_dedup_is_equiv() would lead to potentially
2518 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2519 		 * FWD and compatible STRUCT/UNION are considered equivalent.
2520 		 */
2521 		cand_type = d->btf->types[cand_id];
2522 		if (!btf_shallow_equal_struct(t, cand_type))
2523 			continue;
2524 
2525 		btf_dedup_clear_hypot_map(d);
2526 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2527 		if (eq < 0)
2528 			return eq;
2529 		if (!eq)
2530 			continue;
2531 		new_id = cand_id;
2532 		btf_dedup_merge_hypot_map(d);
2533 		break;
2534 	}
2535 
2536 	d->map[type_id] = new_id;
2537 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2538 		return -ENOMEM;
2539 
2540 	return 0;
2541 }
2542 
2543 static int btf_dedup_struct_types(struct btf_dedup *d)
2544 {
2545 	int i, err;
2546 
2547 	for (i = 1; i <= d->btf->nr_types; i++) {
2548 		err = btf_dedup_struct_type(d, i);
2549 		if (err)
2550 			return err;
2551 	}
2552 	return 0;
2553 }
2554 
2555 /*
2556  * Deduplicate reference type.
2557  *
2558  * Once all primitive and struct/union types got deduplicated, we can easily
2559  * deduplicate all other (reference) BTF types. This is done in two steps:
2560  *
2561  * 1. Resolve all referenced type IDs into their canonical type IDs. This
2562  * resolution can be done either immediately for primitive or struct/union types
2563  * (because they were deduped in previous two phases) or recursively for
2564  * reference types. Recursion will always terminate at either primitive or
2565  * struct/union type, at which point we can "unwind" chain of reference types
2566  * one by one. There is no danger of encountering cycles because in C type
2567  * system the only way to form type cycle is through struct/union, so any chain
2568  * of reference types, even those taking part in a type cycle, will inevitably
2569  * reach struct/union at some point.
2570  *
2571  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2572  * becomes "stable", in the sense that no further deduplication will cause
2573  * any changes to it. With that, it's now possible to calculate type's signature
2574  * hash (this time taking into account referenced type IDs) and loop over all
2575  * potential canonical representatives. If no match was found, current type
2576  * will become canonical representative of itself and will be added into
2577  * btf_dedup->dedup_table as another possible canonical representative.
2578  */
2579 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2580 {
2581 	struct hashmap_entry *hash_entry;
2582 	__u32 new_id = type_id, cand_id;
2583 	struct btf_type *t, *cand;
2584 	/* if we don't find equivalent type, then we are representative type */
2585 	int ref_type_id;
2586 	long h;
2587 
2588 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2589 		return -ELOOP;
2590 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2591 		return resolve_type_id(d, type_id);
2592 
2593 	t = d->btf->types[type_id];
2594 	d->map[type_id] = BTF_IN_PROGRESS_ID;
2595 
2596 	switch (BTF_INFO_KIND(t->info)) {
2597 	case BTF_KIND_CONST:
2598 	case BTF_KIND_VOLATILE:
2599 	case BTF_KIND_RESTRICT:
2600 	case BTF_KIND_PTR:
2601 	case BTF_KIND_TYPEDEF:
2602 	case BTF_KIND_FUNC:
2603 		ref_type_id = btf_dedup_ref_type(d, t->type);
2604 		if (ref_type_id < 0)
2605 			return ref_type_id;
2606 		t->type = ref_type_id;
2607 
2608 		h = btf_hash_common(t);
2609 		for_each_dedup_cand(d, hash_entry, h) {
2610 			cand_id = (__u32)(long)hash_entry->value;
2611 			cand = d->btf->types[cand_id];
2612 			if (btf_equal_common(t, cand)) {
2613 				new_id = cand_id;
2614 				break;
2615 			}
2616 		}
2617 		break;
2618 
2619 	case BTF_KIND_ARRAY: {
2620 		struct btf_array *info = (struct btf_array *)(t + 1);
2621 
2622 		ref_type_id = btf_dedup_ref_type(d, info->type);
2623 		if (ref_type_id < 0)
2624 			return ref_type_id;
2625 		info->type = ref_type_id;
2626 
2627 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2628 		if (ref_type_id < 0)
2629 			return ref_type_id;
2630 		info->index_type = ref_type_id;
2631 
2632 		h = btf_hash_array(t);
2633 		for_each_dedup_cand(d, hash_entry, h) {
2634 			cand_id = (__u32)(long)hash_entry->value;
2635 			cand = d->btf->types[cand_id];
2636 			if (btf_equal_array(t, cand)) {
2637 				new_id = cand_id;
2638 				break;
2639 			}
2640 		}
2641 		break;
2642 	}
2643 
2644 	case BTF_KIND_FUNC_PROTO: {
2645 		struct btf_param *param;
2646 		__u16 vlen;
2647 		int i;
2648 
2649 		ref_type_id = btf_dedup_ref_type(d, t->type);
2650 		if (ref_type_id < 0)
2651 			return ref_type_id;
2652 		t->type = ref_type_id;
2653 
2654 		vlen = BTF_INFO_VLEN(t->info);
2655 		param = (struct btf_param *)(t + 1);
2656 		for (i = 0; i < vlen; i++) {
2657 			ref_type_id = btf_dedup_ref_type(d, param->type);
2658 			if (ref_type_id < 0)
2659 				return ref_type_id;
2660 			param->type = ref_type_id;
2661 			param++;
2662 		}
2663 
2664 		h = btf_hash_fnproto(t);
2665 		for_each_dedup_cand(d, hash_entry, h) {
2666 			cand_id = (__u32)(long)hash_entry->value;
2667 			cand = d->btf->types[cand_id];
2668 			if (btf_equal_fnproto(t, cand)) {
2669 				new_id = cand_id;
2670 				break;
2671 			}
2672 		}
2673 		break;
2674 	}
2675 
2676 	default:
2677 		return -EINVAL;
2678 	}
2679 
2680 	d->map[type_id] = new_id;
2681 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2682 		return -ENOMEM;
2683 
2684 	return new_id;
2685 }
2686 
2687 static int btf_dedup_ref_types(struct btf_dedup *d)
2688 {
2689 	int i, err;
2690 
2691 	for (i = 1; i <= d->btf->nr_types; i++) {
2692 		err = btf_dedup_ref_type(d, i);
2693 		if (err < 0)
2694 			return err;
2695 	}
2696 	/* we won't need d->dedup_table anymore */
2697 	hashmap__free(d->dedup_table);
2698 	d->dedup_table = NULL;
2699 	return 0;
2700 }
2701 
2702 /*
2703  * Compact types.
2704  *
2705  * After we established for each type its corresponding canonical representative
2706  * type, we now can eliminate types that are not canonical and leave only
2707  * canonical ones layed out sequentially in memory by copying them over
2708  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2709  * a map from original type ID to a new compacted type ID, which will be used
2710  * during next phase to "fix up" type IDs, referenced from struct/union and
2711  * reference types.
2712  */
2713 static int btf_dedup_compact_types(struct btf_dedup *d)
2714 {
2715 	struct btf_type **new_types;
2716 	__u32 next_type_id = 1;
2717 	char *types_start, *p;
2718 	int i, len;
2719 
2720 	/* we are going to reuse hypot_map to store compaction remapping */
2721 	d->hypot_map[0] = 0;
2722 	for (i = 1; i <= d->btf->nr_types; i++)
2723 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
2724 
2725 	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2726 	p = types_start;
2727 
2728 	for (i = 1; i <= d->btf->nr_types; i++) {
2729 		if (d->map[i] != i)
2730 			continue;
2731 
2732 		len = btf_type_size(d->btf->types[i]);
2733 		if (len < 0)
2734 			return len;
2735 
2736 		memmove(p, d->btf->types[i], len);
2737 		d->hypot_map[i] = next_type_id;
2738 		d->btf->types[next_type_id] = (struct btf_type *)p;
2739 		p += len;
2740 		next_type_id++;
2741 	}
2742 
2743 	/* shrink struct btf's internal types index and update btf_header */
2744 	d->btf->nr_types = next_type_id - 1;
2745 	d->btf->types_size = d->btf->nr_types;
2746 	d->btf->hdr->type_len = p - types_start;
2747 	new_types = realloc(d->btf->types,
2748 			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2749 	if (!new_types)
2750 		return -ENOMEM;
2751 	d->btf->types = new_types;
2752 
2753 	/* make sure string section follows type information without gaps */
2754 	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2755 	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2756 	d->btf->strings = p;
2757 	p += d->btf->hdr->str_len;
2758 
2759 	d->btf->data_size = p - (char *)d->btf->data;
2760 	return 0;
2761 }
2762 
2763 /*
2764  * Figure out final (deduplicated and compacted) type ID for provided original
2765  * `type_id` by first resolving it into corresponding canonical type ID and
2766  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2767  * which is populated during compaction phase.
2768  */
2769 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2770 {
2771 	__u32 resolved_type_id, new_type_id;
2772 
2773 	resolved_type_id = resolve_type_id(d, type_id);
2774 	new_type_id = d->hypot_map[resolved_type_id];
2775 	if (new_type_id > BTF_MAX_NR_TYPES)
2776 		return -EINVAL;
2777 	return new_type_id;
2778 }
2779 
2780 /*
2781  * Remap referenced type IDs into deduped type IDs.
2782  *
2783  * After BTF types are deduplicated and compacted, their final type IDs may
2784  * differ from original ones. The map from original to a corresponding
2785  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2786  * compaction phase. During remapping phase we are rewriting all type IDs
2787  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2788  * their final deduped type IDs.
2789  */
2790 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2791 {
2792 	struct btf_type *t = d->btf->types[type_id];
2793 	int i, r;
2794 
2795 	switch (BTF_INFO_KIND(t->info)) {
2796 	case BTF_KIND_INT:
2797 	case BTF_KIND_ENUM:
2798 		break;
2799 
2800 	case BTF_KIND_FWD:
2801 	case BTF_KIND_CONST:
2802 	case BTF_KIND_VOLATILE:
2803 	case BTF_KIND_RESTRICT:
2804 	case BTF_KIND_PTR:
2805 	case BTF_KIND_TYPEDEF:
2806 	case BTF_KIND_FUNC:
2807 	case BTF_KIND_VAR:
2808 		r = btf_dedup_remap_type_id(d, t->type);
2809 		if (r < 0)
2810 			return r;
2811 		t->type = r;
2812 		break;
2813 
2814 	case BTF_KIND_ARRAY: {
2815 		struct btf_array *arr_info = (struct btf_array *)(t + 1);
2816 
2817 		r = btf_dedup_remap_type_id(d, arr_info->type);
2818 		if (r < 0)
2819 			return r;
2820 		arr_info->type = r;
2821 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
2822 		if (r < 0)
2823 			return r;
2824 		arr_info->index_type = r;
2825 		break;
2826 	}
2827 
2828 	case BTF_KIND_STRUCT:
2829 	case BTF_KIND_UNION: {
2830 		struct btf_member *member = (struct btf_member *)(t + 1);
2831 		__u16 vlen = BTF_INFO_VLEN(t->info);
2832 
2833 		for (i = 0; i < vlen; i++) {
2834 			r = btf_dedup_remap_type_id(d, member->type);
2835 			if (r < 0)
2836 				return r;
2837 			member->type = r;
2838 			member++;
2839 		}
2840 		break;
2841 	}
2842 
2843 	case BTF_KIND_FUNC_PROTO: {
2844 		struct btf_param *param = (struct btf_param *)(t + 1);
2845 		__u16 vlen = BTF_INFO_VLEN(t->info);
2846 
2847 		r = btf_dedup_remap_type_id(d, t->type);
2848 		if (r < 0)
2849 			return r;
2850 		t->type = r;
2851 
2852 		for (i = 0; i < vlen; i++) {
2853 			r = btf_dedup_remap_type_id(d, param->type);
2854 			if (r < 0)
2855 				return r;
2856 			param->type = r;
2857 			param++;
2858 		}
2859 		break;
2860 	}
2861 
2862 	case BTF_KIND_DATASEC: {
2863 		struct btf_var_secinfo *var = (struct btf_var_secinfo *)(t + 1);
2864 		__u16 vlen = BTF_INFO_VLEN(t->info);
2865 
2866 		for (i = 0; i < vlen; i++) {
2867 			r = btf_dedup_remap_type_id(d, var->type);
2868 			if (r < 0)
2869 				return r;
2870 			var->type = r;
2871 			var++;
2872 		}
2873 		break;
2874 	}
2875 
2876 	default:
2877 		return -EINVAL;
2878 	}
2879 
2880 	return 0;
2881 }
2882 
2883 static int btf_dedup_remap_types(struct btf_dedup *d)
2884 {
2885 	int i, r;
2886 
2887 	for (i = 1; i <= d->btf->nr_types; i++) {
2888 		r = btf_dedup_remap_type(d, i);
2889 		if (r < 0)
2890 			return r;
2891 	}
2892 	return 0;
2893 }
2894