1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__get_raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 193 { 194 __u32 *p; 195 196 p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 197 btf->nr_types, BTF_MAX_NR_TYPES, 1); 198 if (!p) 199 return -ENOMEM; 200 201 *p = type_off; 202 return 0; 203 } 204 205 static void btf_bswap_hdr(struct btf_header *h) 206 { 207 h->magic = bswap_16(h->magic); 208 h->hdr_len = bswap_32(h->hdr_len); 209 h->type_off = bswap_32(h->type_off); 210 h->type_len = bswap_32(h->type_len); 211 h->str_off = bswap_32(h->str_off); 212 h->str_len = bswap_32(h->str_len); 213 } 214 215 static int btf_parse_hdr(struct btf *btf) 216 { 217 struct btf_header *hdr = btf->hdr; 218 __u32 meta_left; 219 220 if (btf->raw_size < sizeof(struct btf_header)) { 221 pr_debug("BTF header not found\n"); 222 return -EINVAL; 223 } 224 225 if (hdr->magic == bswap_16(BTF_MAGIC)) { 226 btf->swapped_endian = true; 227 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 228 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 229 bswap_32(hdr->hdr_len)); 230 return -ENOTSUP; 231 } 232 btf_bswap_hdr(hdr); 233 } else if (hdr->magic != BTF_MAGIC) { 234 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 235 return -EINVAL; 236 } 237 238 meta_left = btf->raw_size - sizeof(*hdr); 239 if (meta_left < hdr->str_off + hdr->str_len) { 240 pr_debug("Invalid BTF total size:%u\n", btf->raw_size); 241 return -EINVAL; 242 } 243 244 if (hdr->type_off + hdr->type_len > hdr->str_off) { 245 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 246 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 247 return -EINVAL; 248 } 249 250 if (hdr->type_off % 4) { 251 pr_debug("BTF type section is not aligned to 4 bytes\n"); 252 return -EINVAL; 253 } 254 255 return 0; 256 } 257 258 static int btf_parse_str_sec(struct btf *btf) 259 { 260 const struct btf_header *hdr = btf->hdr; 261 const char *start = btf->strs_data; 262 const char *end = start + btf->hdr->str_len; 263 264 if (btf->base_btf && hdr->str_len == 0) 265 return 0; 266 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 267 pr_debug("Invalid BTF string section\n"); 268 return -EINVAL; 269 } 270 if (!btf->base_btf && start[0]) { 271 pr_debug("Invalid BTF string section\n"); 272 return -EINVAL; 273 } 274 return 0; 275 } 276 277 static int btf_type_size(const struct btf_type *t) 278 { 279 const int base_size = sizeof(struct btf_type); 280 __u16 vlen = btf_vlen(t); 281 282 switch (btf_kind(t)) { 283 case BTF_KIND_FWD: 284 case BTF_KIND_CONST: 285 case BTF_KIND_VOLATILE: 286 case BTF_KIND_RESTRICT: 287 case BTF_KIND_PTR: 288 case BTF_KIND_TYPEDEF: 289 case BTF_KIND_FUNC: 290 case BTF_KIND_FLOAT: 291 return base_size; 292 case BTF_KIND_INT: 293 return base_size + sizeof(__u32); 294 case BTF_KIND_ENUM: 295 return base_size + vlen * sizeof(struct btf_enum); 296 case BTF_KIND_ARRAY: 297 return base_size + sizeof(struct btf_array); 298 case BTF_KIND_STRUCT: 299 case BTF_KIND_UNION: 300 return base_size + vlen * sizeof(struct btf_member); 301 case BTF_KIND_FUNC_PROTO: 302 return base_size + vlen * sizeof(struct btf_param); 303 case BTF_KIND_VAR: 304 return base_size + sizeof(struct btf_var); 305 case BTF_KIND_DATASEC: 306 return base_size + vlen * sizeof(struct btf_var_secinfo); 307 case BTF_KIND_TAG: 308 return base_size + sizeof(struct btf_tag); 309 default: 310 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 311 return -EINVAL; 312 } 313 } 314 315 static void btf_bswap_type_base(struct btf_type *t) 316 { 317 t->name_off = bswap_32(t->name_off); 318 t->info = bswap_32(t->info); 319 t->type = bswap_32(t->type); 320 } 321 322 static int btf_bswap_type_rest(struct btf_type *t) 323 { 324 struct btf_var_secinfo *v; 325 struct btf_member *m; 326 struct btf_array *a; 327 struct btf_param *p; 328 struct btf_enum *e; 329 __u16 vlen = btf_vlen(t); 330 int i; 331 332 switch (btf_kind(t)) { 333 case BTF_KIND_FWD: 334 case BTF_KIND_CONST: 335 case BTF_KIND_VOLATILE: 336 case BTF_KIND_RESTRICT: 337 case BTF_KIND_PTR: 338 case BTF_KIND_TYPEDEF: 339 case BTF_KIND_FUNC: 340 case BTF_KIND_FLOAT: 341 return 0; 342 case BTF_KIND_INT: 343 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 344 return 0; 345 case BTF_KIND_ENUM: 346 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 347 e->name_off = bswap_32(e->name_off); 348 e->val = bswap_32(e->val); 349 } 350 return 0; 351 case BTF_KIND_ARRAY: 352 a = btf_array(t); 353 a->type = bswap_32(a->type); 354 a->index_type = bswap_32(a->index_type); 355 a->nelems = bswap_32(a->nelems); 356 return 0; 357 case BTF_KIND_STRUCT: 358 case BTF_KIND_UNION: 359 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 360 m->name_off = bswap_32(m->name_off); 361 m->type = bswap_32(m->type); 362 m->offset = bswap_32(m->offset); 363 } 364 return 0; 365 case BTF_KIND_FUNC_PROTO: 366 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 367 p->name_off = bswap_32(p->name_off); 368 p->type = bswap_32(p->type); 369 } 370 return 0; 371 case BTF_KIND_VAR: 372 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 373 return 0; 374 case BTF_KIND_DATASEC: 375 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 376 v->type = bswap_32(v->type); 377 v->offset = bswap_32(v->offset); 378 v->size = bswap_32(v->size); 379 } 380 return 0; 381 case BTF_KIND_TAG: 382 btf_tag(t)->component_idx = bswap_32(btf_tag(t)->component_idx); 383 return 0; 384 default: 385 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 386 return -EINVAL; 387 } 388 } 389 390 static int btf_parse_type_sec(struct btf *btf) 391 { 392 struct btf_header *hdr = btf->hdr; 393 void *next_type = btf->types_data; 394 void *end_type = next_type + hdr->type_len; 395 int err, type_size; 396 397 while (next_type + sizeof(struct btf_type) <= end_type) { 398 if (btf->swapped_endian) 399 btf_bswap_type_base(next_type); 400 401 type_size = btf_type_size(next_type); 402 if (type_size < 0) 403 return type_size; 404 if (next_type + type_size > end_type) { 405 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 406 return -EINVAL; 407 } 408 409 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 410 return -EINVAL; 411 412 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 413 if (err) 414 return err; 415 416 next_type += type_size; 417 btf->nr_types++; 418 } 419 420 if (next_type != end_type) { 421 pr_warn("BTF types data is malformed\n"); 422 return -EINVAL; 423 } 424 425 return 0; 426 } 427 428 __u32 btf__get_nr_types(const struct btf *btf) 429 { 430 return btf->start_id + btf->nr_types - 1; 431 } 432 433 const struct btf *btf__base_btf(const struct btf *btf) 434 { 435 return btf->base_btf; 436 } 437 438 /* internal helper returning non-const pointer to a type */ 439 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 440 { 441 if (type_id == 0) 442 return &btf_void; 443 if (type_id < btf->start_id) 444 return btf_type_by_id(btf->base_btf, type_id); 445 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 446 } 447 448 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 449 { 450 if (type_id >= btf->start_id + btf->nr_types) 451 return errno = EINVAL, NULL; 452 return btf_type_by_id((struct btf *)btf, type_id); 453 } 454 455 static int determine_ptr_size(const struct btf *btf) 456 { 457 const struct btf_type *t; 458 const char *name; 459 int i, n; 460 461 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 462 return btf->base_btf->ptr_sz; 463 464 n = btf__get_nr_types(btf); 465 for (i = 1; i <= n; i++) { 466 t = btf__type_by_id(btf, i); 467 if (!btf_is_int(t)) 468 continue; 469 470 name = btf__name_by_offset(btf, t->name_off); 471 if (!name) 472 continue; 473 474 if (strcmp(name, "long int") == 0 || 475 strcmp(name, "long unsigned int") == 0) { 476 if (t->size != 4 && t->size != 8) 477 continue; 478 return t->size; 479 } 480 } 481 482 return -1; 483 } 484 485 static size_t btf_ptr_sz(const struct btf *btf) 486 { 487 if (!btf->ptr_sz) 488 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 489 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 490 } 491 492 /* Return pointer size this BTF instance assumes. The size is heuristically 493 * determined by looking for 'long' or 'unsigned long' integer type and 494 * recording its size in bytes. If BTF type information doesn't have any such 495 * type, this function returns 0. In the latter case, native architecture's 496 * pointer size is assumed, so will be either 4 or 8, depending on 497 * architecture that libbpf was compiled for. It's possible to override 498 * guessed value by using btf__set_pointer_size() API. 499 */ 500 size_t btf__pointer_size(const struct btf *btf) 501 { 502 if (!btf->ptr_sz) 503 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 504 505 if (btf->ptr_sz < 0) 506 /* not enough BTF type info to guess */ 507 return 0; 508 509 return btf->ptr_sz; 510 } 511 512 /* Override or set pointer size in bytes. Only values of 4 and 8 are 513 * supported. 514 */ 515 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 516 { 517 if (ptr_sz != 4 && ptr_sz != 8) 518 return libbpf_err(-EINVAL); 519 btf->ptr_sz = ptr_sz; 520 return 0; 521 } 522 523 static bool is_host_big_endian(void) 524 { 525 #if __BYTE_ORDER == __LITTLE_ENDIAN 526 return false; 527 #elif __BYTE_ORDER == __BIG_ENDIAN 528 return true; 529 #else 530 # error "Unrecognized __BYTE_ORDER__" 531 #endif 532 } 533 534 enum btf_endianness btf__endianness(const struct btf *btf) 535 { 536 if (is_host_big_endian()) 537 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 538 else 539 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 540 } 541 542 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 543 { 544 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 545 return libbpf_err(-EINVAL); 546 547 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 548 if (!btf->swapped_endian) { 549 free(btf->raw_data_swapped); 550 btf->raw_data_swapped = NULL; 551 } 552 return 0; 553 } 554 555 static bool btf_type_is_void(const struct btf_type *t) 556 { 557 return t == &btf_void || btf_is_fwd(t); 558 } 559 560 static bool btf_type_is_void_or_null(const struct btf_type *t) 561 { 562 return !t || btf_type_is_void(t); 563 } 564 565 #define MAX_RESOLVE_DEPTH 32 566 567 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 568 { 569 const struct btf_array *array; 570 const struct btf_type *t; 571 __u32 nelems = 1; 572 __s64 size = -1; 573 int i; 574 575 t = btf__type_by_id(btf, type_id); 576 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 577 switch (btf_kind(t)) { 578 case BTF_KIND_INT: 579 case BTF_KIND_STRUCT: 580 case BTF_KIND_UNION: 581 case BTF_KIND_ENUM: 582 case BTF_KIND_DATASEC: 583 case BTF_KIND_FLOAT: 584 size = t->size; 585 goto done; 586 case BTF_KIND_PTR: 587 size = btf_ptr_sz(btf); 588 goto done; 589 case BTF_KIND_TYPEDEF: 590 case BTF_KIND_VOLATILE: 591 case BTF_KIND_CONST: 592 case BTF_KIND_RESTRICT: 593 case BTF_KIND_VAR: 594 case BTF_KIND_TAG: 595 type_id = t->type; 596 break; 597 case BTF_KIND_ARRAY: 598 array = btf_array(t); 599 if (nelems && array->nelems > UINT32_MAX / nelems) 600 return libbpf_err(-E2BIG); 601 nelems *= array->nelems; 602 type_id = array->type; 603 break; 604 default: 605 return libbpf_err(-EINVAL); 606 } 607 608 t = btf__type_by_id(btf, type_id); 609 } 610 611 done: 612 if (size < 0) 613 return libbpf_err(-EINVAL); 614 if (nelems && size > UINT32_MAX / nelems) 615 return libbpf_err(-E2BIG); 616 617 return nelems * size; 618 } 619 620 int btf__align_of(const struct btf *btf, __u32 id) 621 { 622 const struct btf_type *t = btf__type_by_id(btf, id); 623 __u16 kind = btf_kind(t); 624 625 switch (kind) { 626 case BTF_KIND_INT: 627 case BTF_KIND_ENUM: 628 case BTF_KIND_FLOAT: 629 return min(btf_ptr_sz(btf), (size_t)t->size); 630 case BTF_KIND_PTR: 631 return btf_ptr_sz(btf); 632 case BTF_KIND_TYPEDEF: 633 case BTF_KIND_VOLATILE: 634 case BTF_KIND_CONST: 635 case BTF_KIND_RESTRICT: 636 return btf__align_of(btf, t->type); 637 case BTF_KIND_ARRAY: 638 return btf__align_of(btf, btf_array(t)->type); 639 case BTF_KIND_STRUCT: 640 case BTF_KIND_UNION: { 641 const struct btf_member *m = btf_members(t); 642 __u16 vlen = btf_vlen(t); 643 int i, max_align = 1, align; 644 645 for (i = 0; i < vlen; i++, m++) { 646 align = btf__align_of(btf, m->type); 647 if (align <= 0) 648 return libbpf_err(align); 649 max_align = max(max_align, align); 650 } 651 652 return max_align; 653 } 654 default: 655 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 656 return errno = EINVAL, 0; 657 } 658 } 659 660 int btf__resolve_type(const struct btf *btf, __u32 type_id) 661 { 662 const struct btf_type *t; 663 int depth = 0; 664 665 t = btf__type_by_id(btf, type_id); 666 while (depth < MAX_RESOLVE_DEPTH && 667 !btf_type_is_void_or_null(t) && 668 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 669 type_id = t->type; 670 t = btf__type_by_id(btf, type_id); 671 depth++; 672 } 673 674 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 675 return libbpf_err(-EINVAL); 676 677 return type_id; 678 } 679 680 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 681 { 682 __u32 i, nr_types = btf__get_nr_types(btf); 683 684 if (!strcmp(type_name, "void")) 685 return 0; 686 687 for (i = 1; i <= nr_types; i++) { 688 const struct btf_type *t = btf__type_by_id(btf, i); 689 const char *name = btf__name_by_offset(btf, t->name_off); 690 691 if (name && !strcmp(type_name, name)) 692 return i; 693 } 694 695 return libbpf_err(-ENOENT); 696 } 697 698 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 699 __u32 kind) 700 { 701 __u32 i, nr_types = btf__get_nr_types(btf); 702 703 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 704 return 0; 705 706 for (i = 1; i <= nr_types; i++) { 707 const struct btf_type *t = btf__type_by_id(btf, i); 708 const char *name; 709 710 if (btf_kind(t) != kind) 711 continue; 712 name = btf__name_by_offset(btf, t->name_off); 713 if (name && !strcmp(type_name, name)) 714 return i; 715 } 716 717 return libbpf_err(-ENOENT); 718 } 719 720 static bool btf_is_modifiable(const struct btf *btf) 721 { 722 return (void *)btf->hdr != btf->raw_data; 723 } 724 725 void btf__free(struct btf *btf) 726 { 727 if (IS_ERR_OR_NULL(btf)) 728 return; 729 730 if (btf->fd >= 0) 731 close(btf->fd); 732 733 if (btf_is_modifiable(btf)) { 734 /* if BTF was modified after loading, it will have a split 735 * in-memory representation for header, types, and strings 736 * sections, so we need to free all of them individually. It 737 * might still have a cached contiguous raw data present, 738 * which will be unconditionally freed below. 739 */ 740 free(btf->hdr); 741 free(btf->types_data); 742 strset__free(btf->strs_set); 743 } 744 free(btf->raw_data); 745 free(btf->raw_data_swapped); 746 free(btf->type_offs); 747 free(btf); 748 } 749 750 static struct btf *btf_new_empty(struct btf *base_btf) 751 { 752 struct btf *btf; 753 754 btf = calloc(1, sizeof(*btf)); 755 if (!btf) 756 return ERR_PTR(-ENOMEM); 757 758 btf->nr_types = 0; 759 btf->start_id = 1; 760 btf->start_str_off = 0; 761 btf->fd = -1; 762 btf->ptr_sz = sizeof(void *); 763 btf->swapped_endian = false; 764 765 if (base_btf) { 766 btf->base_btf = base_btf; 767 btf->start_id = btf__get_nr_types(base_btf) + 1; 768 btf->start_str_off = base_btf->hdr->str_len; 769 } 770 771 /* +1 for empty string at offset 0 */ 772 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 773 btf->raw_data = calloc(1, btf->raw_size); 774 if (!btf->raw_data) { 775 free(btf); 776 return ERR_PTR(-ENOMEM); 777 } 778 779 btf->hdr = btf->raw_data; 780 btf->hdr->hdr_len = sizeof(struct btf_header); 781 btf->hdr->magic = BTF_MAGIC; 782 btf->hdr->version = BTF_VERSION; 783 784 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 785 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 786 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 787 788 return btf; 789 } 790 791 struct btf *btf__new_empty(void) 792 { 793 return libbpf_ptr(btf_new_empty(NULL)); 794 } 795 796 struct btf *btf__new_empty_split(struct btf *base_btf) 797 { 798 return libbpf_ptr(btf_new_empty(base_btf)); 799 } 800 801 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 802 { 803 struct btf *btf; 804 int err; 805 806 btf = calloc(1, sizeof(struct btf)); 807 if (!btf) 808 return ERR_PTR(-ENOMEM); 809 810 btf->nr_types = 0; 811 btf->start_id = 1; 812 btf->start_str_off = 0; 813 btf->fd = -1; 814 815 if (base_btf) { 816 btf->base_btf = base_btf; 817 btf->start_id = btf__get_nr_types(base_btf) + 1; 818 btf->start_str_off = base_btf->hdr->str_len; 819 } 820 821 btf->raw_data = malloc(size); 822 if (!btf->raw_data) { 823 err = -ENOMEM; 824 goto done; 825 } 826 memcpy(btf->raw_data, data, size); 827 btf->raw_size = size; 828 829 btf->hdr = btf->raw_data; 830 err = btf_parse_hdr(btf); 831 if (err) 832 goto done; 833 834 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 835 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 836 837 err = btf_parse_str_sec(btf); 838 err = err ?: btf_parse_type_sec(btf); 839 if (err) 840 goto done; 841 842 done: 843 if (err) { 844 btf__free(btf); 845 return ERR_PTR(err); 846 } 847 848 return btf; 849 } 850 851 struct btf *btf__new(const void *data, __u32 size) 852 { 853 return libbpf_ptr(btf_new(data, size, NULL)); 854 } 855 856 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 857 struct btf_ext **btf_ext) 858 { 859 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 860 int err = 0, fd = -1, idx = 0; 861 struct btf *btf = NULL; 862 Elf_Scn *scn = NULL; 863 Elf *elf = NULL; 864 GElf_Ehdr ehdr; 865 size_t shstrndx; 866 867 if (elf_version(EV_CURRENT) == EV_NONE) { 868 pr_warn("failed to init libelf for %s\n", path); 869 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 870 } 871 872 fd = open(path, O_RDONLY); 873 if (fd < 0) { 874 err = -errno; 875 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 876 return ERR_PTR(err); 877 } 878 879 err = -LIBBPF_ERRNO__FORMAT; 880 881 elf = elf_begin(fd, ELF_C_READ, NULL); 882 if (!elf) { 883 pr_warn("failed to open %s as ELF file\n", path); 884 goto done; 885 } 886 if (!gelf_getehdr(elf, &ehdr)) { 887 pr_warn("failed to get EHDR from %s\n", path); 888 goto done; 889 } 890 891 if (elf_getshdrstrndx(elf, &shstrndx)) { 892 pr_warn("failed to get section names section index for %s\n", 893 path); 894 goto done; 895 } 896 897 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 898 pr_warn("failed to get e_shstrndx from %s\n", path); 899 goto done; 900 } 901 902 while ((scn = elf_nextscn(elf, scn)) != NULL) { 903 GElf_Shdr sh; 904 char *name; 905 906 idx++; 907 if (gelf_getshdr(scn, &sh) != &sh) { 908 pr_warn("failed to get section(%d) header from %s\n", 909 idx, path); 910 goto done; 911 } 912 name = elf_strptr(elf, shstrndx, sh.sh_name); 913 if (!name) { 914 pr_warn("failed to get section(%d) name from %s\n", 915 idx, path); 916 goto done; 917 } 918 if (strcmp(name, BTF_ELF_SEC) == 0) { 919 btf_data = elf_getdata(scn, 0); 920 if (!btf_data) { 921 pr_warn("failed to get section(%d, %s) data from %s\n", 922 idx, name, path); 923 goto done; 924 } 925 continue; 926 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 927 btf_ext_data = elf_getdata(scn, 0); 928 if (!btf_ext_data) { 929 pr_warn("failed to get section(%d, %s) data from %s\n", 930 idx, name, path); 931 goto done; 932 } 933 continue; 934 } 935 } 936 937 err = 0; 938 939 if (!btf_data) { 940 err = -ENOENT; 941 goto done; 942 } 943 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 944 err = libbpf_get_error(btf); 945 if (err) 946 goto done; 947 948 switch (gelf_getclass(elf)) { 949 case ELFCLASS32: 950 btf__set_pointer_size(btf, 4); 951 break; 952 case ELFCLASS64: 953 btf__set_pointer_size(btf, 8); 954 break; 955 default: 956 pr_warn("failed to get ELF class (bitness) for %s\n", path); 957 break; 958 } 959 960 if (btf_ext && btf_ext_data) { 961 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 962 err = libbpf_get_error(*btf_ext); 963 if (err) 964 goto done; 965 } else if (btf_ext) { 966 *btf_ext = NULL; 967 } 968 done: 969 if (elf) 970 elf_end(elf); 971 close(fd); 972 973 if (!err) 974 return btf; 975 976 if (btf_ext) 977 btf_ext__free(*btf_ext); 978 btf__free(btf); 979 980 return ERR_PTR(err); 981 } 982 983 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 984 { 985 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 986 } 987 988 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 989 { 990 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 991 } 992 993 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 994 { 995 struct btf *btf = NULL; 996 void *data = NULL; 997 FILE *f = NULL; 998 __u16 magic; 999 int err = 0; 1000 long sz; 1001 1002 f = fopen(path, "rb"); 1003 if (!f) { 1004 err = -errno; 1005 goto err_out; 1006 } 1007 1008 /* check BTF magic */ 1009 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1010 err = -EIO; 1011 goto err_out; 1012 } 1013 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1014 /* definitely not a raw BTF */ 1015 err = -EPROTO; 1016 goto err_out; 1017 } 1018 1019 /* get file size */ 1020 if (fseek(f, 0, SEEK_END)) { 1021 err = -errno; 1022 goto err_out; 1023 } 1024 sz = ftell(f); 1025 if (sz < 0) { 1026 err = -errno; 1027 goto err_out; 1028 } 1029 /* rewind to the start */ 1030 if (fseek(f, 0, SEEK_SET)) { 1031 err = -errno; 1032 goto err_out; 1033 } 1034 1035 /* pre-alloc memory and read all of BTF data */ 1036 data = malloc(sz); 1037 if (!data) { 1038 err = -ENOMEM; 1039 goto err_out; 1040 } 1041 if (fread(data, 1, sz, f) < sz) { 1042 err = -EIO; 1043 goto err_out; 1044 } 1045 1046 /* finally parse BTF data */ 1047 btf = btf_new(data, sz, base_btf); 1048 1049 err_out: 1050 free(data); 1051 if (f) 1052 fclose(f); 1053 return err ? ERR_PTR(err) : btf; 1054 } 1055 1056 struct btf *btf__parse_raw(const char *path) 1057 { 1058 return libbpf_ptr(btf_parse_raw(path, NULL)); 1059 } 1060 1061 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1062 { 1063 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1064 } 1065 1066 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1067 { 1068 struct btf *btf; 1069 int err; 1070 1071 if (btf_ext) 1072 *btf_ext = NULL; 1073 1074 btf = btf_parse_raw(path, base_btf); 1075 err = libbpf_get_error(btf); 1076 if (!err) 1077 return btf; 1078 if (err != -EPROTO) 1079 return ERR_PTR(err); 1080 return btf_parse_elf(path, base_btf, btf_ext); 1081 } 1082 1083 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1084 { 1085 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1086 } 1087 1088 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1089 { 1090 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1091 } 1092 1093 static int compare_vsi_off(const void *_a, const void *_b) 1094 { 1095 const struct btf_var_secinfo *a = _a; 1096 const struct btf_var_secinfo *b = _b; 1097 1098 return a->offset - b->offset; 1099 } 1100 1101 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1102 struct btf_type *t) 1103 { 1104 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1105 const char *name = btf__name_by_offset(btf, t->name_off); 1106 const struct btf_type *t_var; 1107 struct btf_var_secinfo *vsi; 1108 const struct btf_var *var; 1109 int ret; 1110 1111 if (!name) { 1112 pr_debug("No name found in string section for DATASEC kind.\n"); 1113 return -ENOENT; 1114 } 1115 1116 /* .extern datasec size and var offsets were set correctly during 1117 * extern collection step, so just skip straight to sorting variables 1118 */ 1119 if (t->size) 1120 goto sort_vars; 1121 1122 ret = bpf_object__section_size(obj, name, &size); 1123 if (ret || !size || (t->size && t->size != size)) { 1124 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1125 return -ENOENT; 1126 } 1127 1128 t->size = size; 1129 1130 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1131 t_var = btf__type_by_id(btf, vsi->type); 1132 var = btf_var(t_var); 1133 1134 if (!btf_is_var(t_var)) { 1135 pr_debug("Non-VAR type seen in section %s\n", name); 1136 return -EINVAL; 1137 } 1138 1139 if (var->linkage == BTF_VAR_STATIC) 1140 continue; 1141 1142 name = btf__name_by_offset(btf, t_var->name_off); 1143 if (!name) { 1144 pr_debug("No name found in string section for VAR kind\n"); 1145 return -ENOENT; 1146 } 1147 1148 ret = bpf_object__variable_offset(obj, name, &off); 1149 if (ret) { 1150 pr_debug("No offset found in symbol table for VAR %s\n", 1151 name); 1152 return -ENOENT; 1153 } 1154 1155 vsi->offset = off; 1156 } 1157 1158 sort_vars: 1159 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1160 return 0; 1161 } 1162 1163 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1164 { 1165 int err = 0; 1166 __u32 i; 1167 1168 for (i = 1; i <= btf->nr_types; i++) { 1169 struct btf_type *t = btf_type_by_id(btf, i); 1170 1171 /* Loader needs to fix up some of the things compiler 1172 * couldn't get its hands on while emitting BTF. This 1173 * is section size and global variable offset. We use 1174 * the info from the ELF itself for this purpose. 1175 */ 1176 if (btf_is_datasec(t)) { 1177 err = btf_fixup_datasec(obj, btf, t); 1178 if (err) 1179 break; 1180 } 1181 } 1182 1183 return libbpf_err(err); 1184 } 1185 1186 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1187 1188 int btf__load_into_kernel(struct btf *btf) 1189 { 1190 __u32 log_buf_size = 0, raw_size; 1191 char *log_buf = NULL; 1192 void *raw_data; 1193 int err = 0; 1194 1195 if (btf->fd >= 0) 1196 return libbpf_err(-EEXIST); 1197 1198 retry_load: 1199 if (log_buf_size) { 1200 log_buf = malloc(log_buf_size); 1201 if (!log_buf) 1202 return libbpf_err(-ENOMEM); 1203 1204 *log_buf = 0; 1205 } 1206 1207 raw_data = btf_get_raw_data(btf, &raw_size, false); 1208 if (!raw_data) { 1209 err = -ENOMEM; 1210 goto done; 1211 } 1212 /* cache native raw data representation */ 1213 btf->raw_size = raw_size; 1214 btf->raw_data = raw_data; 1215 1216 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1217 if (btf->fd < 0) { 1218 if (!log_buf || errno == ENOSPC) { 1219 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1220 log_buf_size << 1); 1221 free(log_buf); 1222 goto retry_load; 1223 } 1224 1225 err = -errno; 1226 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1227 if (*log_buf) 1228 pr_warn("%s\n", log_buf); 1229 goto done; 1230 } 1231 1232 done: 1233 free(log_buf); 1234 return libbpf_err(err); 1235 } 1236 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel"))); 1237 1238 int btf__fd(const struct btf *btf) 1239 { 1240 return btf->fd; 1241 } 1242 1243 void btf__set_fd(struct btf *btf, int fd) 1244 { 1245 btf->fd = fd; 1246 } 1247 1248 static const void *btf_strs_data(const struct btf *btf) 1249 { 1250 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1251 } 1252 1253 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1254 { 1255 struct btf_header *hdr = btf->hdr; 1256 struct btf_type *t; 1257 void *data, *p; 1258 __u32 data_sz; 1259 int i; 1260 1261 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1262 if (data) { 1263 *size = btf->raw_size; 1264 return data; 1265 } 1266 1267 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1268 data = calloc(1, data_sz); 1269 if (!data) 1270 return NULL; 1271 p = data; 1272 1273 memcpy(p, hdr, hdr->hdr_len); 1274 if (swap_endian) 1275 btf_bswap_hdr(p); 1276 p += hdr->hdr_len; 1277 1278 memcpy(p, btf->types_data, hdr->type_len); 1279 if (swap_endian) { 1280 for (i = 0; i < btf->nr_types; i++) { 1281 t = p + btf->type_offs[i]; 1282 /* btf_bswap_type_rest() relies on native t->info, so 1283 * we swap base type info after we swapped all the 1284 * additional information 1285 */ 1286 if (btf_bswap_type_rest(t)) 1287 goto err_out; 1288 btf_bswap_type_base(t); 1289 } 1290 } 1291 p += hdr->type_len; 1292 1293 memcpy(p, btf_strs_data(btf), hdr->str_len); 1294 p += hdr->str_len; 1295 1296 *size = data_sz; 1297 return data; 1298 err_out: 1299 free(data); 1300 return NULL; 1301 } 1302 1303 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1304 { 1305 struct btf *btf = (struct btf *)btf_ro; 1306 __u32 data_sz; 1307 void *data; 1308 1309 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1310 if (!data) 1311 return errno = -ENOMEM, NULL; 1312 1313 btf->raw_size = data_sz; 1314 if (btf->swapped_endian) 1315 btf->raw_data_swapped = data; 1316 else 1317 btf->raw_data = data; 1318 *size = data_sz; 1319 return data; 1320 } 1321 1322 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1323 { 1324 if (offset < btf->start_str_off) 1325 return btf__str_by_offset(btf->base_btf, offset); 1326 else if (offset - btf->start_str_off < btf->hdr->str_len) 1327 return btf_strs_data(btf) + (offset - btf->start_str_off); 1328 else 1329 return errno = EINVAL, NULL; 1330 } 1331 1332 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1333 { 1334 return btf__str_by_offset(btf, offset); 1335 } 1336 1337 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1338 { 1339 struct bpf_btf_info btf_info; 1340 __u32 len = sizeof(btf_info); 1341 __u32 last_size; 1342 struct btf *btf; 1343 void *ptr; 1344 int err; 1345 1346 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1347 * let's start with a sane default - 4KiB here - and resize it only if 1348 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1349 */ 1350 last_size = 4096; 1351 ptr = malloc(last_size); 1352 if (!ptr) 1353 return ERR_PTR(-ENOMEM); 1354 1355 memset(&btf_info, 0, sizeof(btf_info)); 1356 btf_info.btf = ptr_to_u64(ptr); 1357 btf_info.btf_size = last_size; 1358 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1359 1360 if (!err && btf_info.btf_size > last_size) { 1361 void *temp_ptr; 1362 1363 last_size = btf_info.btf_size; 1364 temp_ptr = realloc(ptr, last_size); 1365 if (!temp_ptr) { 1366 btf = ERR_PTR(-ENOMEM); 1367 goto exit_free; 1368 } 1369 ptr = temp_ptr; 1370 1371 len = sizeof(btf_info); 1372 memset(&btf_info, 0, sizeof(btf_info)); 1373 btf_info.btf = ptr_to_u64(ptr); 1374 btf_info.btf_size = last_size; 1375 1376 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1377 } 1378 1379 if (err || btf_info.btf_size > last_size) { 1380 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1381 goto exit_free; 1382 } 1383 1384 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1385 1386 exit_free: 1387 free(ptr); 1388 return btf; 1389 } 1390 1391 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1392 { 1393 struct btf *btf; 1394 int btf_fd; 1395 1396 btf_fd = bpf_btf_get_fd_by_id(id); 1397 if (btf_fd < 0) 1398 return libbpf_err_ptr(-errno); 1399 1400 btf = btf_get_from_fd(btf_fd, base_btf); 1401 close(btf_fd); 1402 1403 return libbpf_ptr(btf); 1404 } 1405 1406 struct btf *btf__load_from_kernel_by_id(__u32 id) 1407 { 1408 return btf__load_from_kernel_by_id_split(id, NULL); 1409 } 1410 1411 int btf__get_from_id(__u32 id, struct btf **btf) 1412 { 1413 struct btf *res; 1414 int err; 1415 1416 *btf = NULL; 1417 res = btf__load_from_kernel_by_id(id); 1418 err = libbpf_get_error(res); 1419 1420 if (err) 1421 return libbpf_err(err); 1422 1423 *btf = res; 1424 return 0; 1425 } 1426 1427 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1428 __u32 expected_key_size, __u32 expected_value_size, 1429 __u32 *key_type_id, __u32 *value_type_id) 1430 { 1431 const struct btf_type *container_type; 1432 const struct btf_member *key, *value; 1433 const size_t max_name = 256; 1434 char container_name[max_name]; 1435 __s64 key_size, value_size; 1436 __s32 container_id; 1437 1438 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { 1439 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1440 map_name, map_name); 1441 return libbpf_err(-EINVAL); 1442 } 1443 1444 container_id = btf__find_by_name(btf, container_name); 1445 if (container_id < 0) { 1446 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1447 map_name, container_name); 1448 return libbpf_err(container_id); 1449 } 1450 1451 container_type = btf__type_by_id(btf, container_id); 1452 if (!container_type) { 1453 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1454 map_name, container_id); 1455 return libbpf_err(-EINVAL); 1456 } 1457 1458 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1459 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1460 map_name, container_name); 1461 return libbpf_err(-EINVAL); 1462 } 1463 1464 key = btf_members(container_type); 1465 value = key + 1; 1466 1467 key_size = btf__resolve_size(btf, key->type); 1468 if (key_size < 0) { 1469 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1470 return libbpf_err(key_size); 1471 } 1472 1473 if (expected_key_size != key_size) { 1474 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1475 map_name, (__u32)key_size, expected_key_size); 1476 return libbpf_err(-EINVAL); 1477 } 1478 1479 value_size = btf__resolve_size(btf, value->type); 1480 if (value_size < 0) { 1481 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1482 return libbpf_err(value_size); 1483 } 1484 1485 if (expected_value_size != value_size) { 1486 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1487 map_name, (__u32)value_size, expected_value_size); 1488 return libbpf_err(-EINVAL); 1489 } 1490 1491 *key_type_id = key->type; 1492 *value_type_id = value->type; 1493 1494 return 0; 1495 } 1496 1497 static void btf_invalidate_raw_data(struct btf *btf) 1498 { 1499 if (btf->raw_data) { 1500 free(btf->raw_data); 1501 btf->raw_data = NULL; 1502 } 1503 if (btf->raw_data_swapped) { 1504 free(btf->raw_data_swapped); 1505 btf->raw_data_swapped = NULL; 1506 } 1507 } 1508 1509 /* Ensure BTF is ready to be modified (by splitting into a three memory 1510 * regions for header, types, and strings). Also invalidate cached 1511 * raw_data, if any. 1512 */ 1513 static int btf_ensure_modifiable(struct btf *btf) 1514 { 1515 void *hdr, *types; 1516 struct strset *set = NULL; 1517 int err = -ENOMEM; 1518 1519 if (btf_is_modifiable(btf)) { 1520 /* any BTF modification invalidates raw_data */ 1521 btf_invalidate_raw_data(btf); 1522 return 0; 1523 } 1524 1525 /* split raw data into three memory regions */ 1526 hdr = malloc(btf->hdr->hdr_len); 1527 types = malloc(btf->hdr->type_len); 1528 if (!hdr || !types) 1529 goto err_out; 1530 1531 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1532 memcpy(types, btf->types_data, btf->hdr->type_len); 1533 1534 /* build lookup index for all strings */ 1535 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1536 if (IS_ERR(set)) { 1537 err = PTR_ERR(set); 1538 goto err_out; 1539 } 1540 1541 /* only when everything was successful, update internal state */ 1542 btf->hdr = hdr; 1543 btf->types_data = types; 1544 btf->types_data_cap = btf->hdr->type_len; 1545 btf->strs_data = NULL; 1546 btf->strs_set = set; 1547 /* if BTF was created from scratch, all strings are guaranteed to be 1548 * unique and deduplicated 1549 */ 1550 if (btf->hdr->str_len == 0) 1551 btf->strs_deduped = true; 1552 if (!btf->base_btf && btf->hdr->str_len == 1) 1553 btf->strs_deduped = true; 1554 1555 /* invalidate raw_data representation */ 1556 btf_invalidate_raw_data(btf); 1557 1558 return 0; 1559 1560 err_out: 1561 strset__free(set); 1562 free(hdr); 1563 free(types); 1564 return err; 1565 } 1566 1567 /* Find an offset in BTF string section that corresponds to a given string *s*. 1568 * Returns: 1569 * - >0 offset into string section, if string is found; 1570 * - -ENOENT, if string is not in the string section; 1571 * - <0, on any other error. 1572 */ 1573 int btf__find_str(struct btf *btf, const char *s) 1574 { 1575 int off; 1576 1577 if (btf->base_btf) { 1578 off = btf__find_str(btf->base_btf, s); 1579 if (off != -ENOENT) 1580 return off; 1581 } 1582 1583 /* BTF needs to be in a modifiable state to build string lookup index */ 1584 if (btf_ensure_modifiable(btf)) 1585 return libbpf_err(-ENOMEM); 1586 1587 off = strset__find_str(btf->strs_set, s); 1588 if (off < 0) 1589 return libbpf_err(off); 1590 1591 return btf->start_str_off + off; 1592 } 1593 1594 /* Add a string s to the BTF string section. 1595 * Returns: 1596 * - > 0 offset into string section, on success; 1597 * - < 0, on error. 1598 */ 1599 int btf__add_str(struct btf *btf, const char *s) 1600 { 1601 int off; 1602 1603 if (btf->base_btf) { 1604 off = btf__find_str(btf->base_btf, s); 1605 if (off != -ENOENT) 1606 return off; 1607 } 1608 1609 if (btf_ensure_modifiable(btf)) 1610 return libbpf_err(-ENOMEM); 1611 1612 off = strset__add_str(btf->strs_set, s); 1613 if (off < 0) 1614 return libbpf_err(off); 1615 1616 btf->hdr->str_len = strset__data_size(btf->strs_set); 1617 1618 return btf->start_str_off + off; 1619 } 1620 1621 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1622 { 1623 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1624 btf->hdr->type_len, UINT_MAX, add_sz); 1625 } 1626 1627 static void btf_type_inc_vlen(struct btf_type *t) 1628 { 1629 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1630 } 1631 1632 static int btf_commit_type(struct btf *btf, int data_sz) 1633 { 1634 int err; 1635 1636 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1637 if (err) 1638 return libbpf_err(err); 1639 1640 btf->hdr->type_len += data_sz; 1641 btf->hdr->str_off += data_sz; 1642 btf->nr_types++; 1643 return btf->start_id + btf->nr_types - 1; 1644 } 1645 1646 struct btf_pipe { 1647 const struct btf *src; 1648 struct btf *dst; 1649 }; 1650 1651 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1652 { 1653 struct btf_pipe *p = ctx; 1654 int off; 1655 1656 if (!*str_off) /* nothing to do for empty strings */ 1657 return 0; 1658 1659 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1660 if (off < 0) 1661 return off; 1662 1663 *str_off = off; 1664 return 0; 1665 } 1666 1667 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1668 { 1669 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1670 struct btf_type *t; 1671 int sz, err; 1672 1673 sz = btf_type_size(src_type); 1674 if (sz < 0) 1675 return libbpf_err(sz); 1676 1677 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1678 if (btf_ensure_modifiable(btf)) 1679 return libbpf_err(-ENOMEM); 1680 1681 t = btf_add_type_mem(btf, sz); 1682 if (!t) 1683 return libbpf_err(-ENOMEM); 1684 1685 memcpy(t, src_type, sz); 1686 1687 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1688 if (err) 1689 return libbpf_err(err); 1690 1691 return btf_commit_type(btf, sz); 1692 } 1693 1694 /* 1695 * Append new BTF_KIND_INT type with: 1696 * - *name* - non-empty, non-NULL type name; 1697 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1698 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1699 * Returns: 1700 * - >0, type ID of newly added BTF type; 1701 * - <0, on error. 1702 */ 1703 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1704 { 1705 struct btf_type *t; 1706 int sz, name_off; 1707 1708 /* non-empty name */ 1709 if (!name || !name[0]) 1710 return libbpf_err(-EINVAL); 1711 /* byte_sz must be power of 2 */ 1712 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1713 return libbpf_err(-EINVAL); 1714 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1715 return libbpf_err(-EINVAL); 1716 1717 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1718 if (btf_ensure_modifiable(btf)) 1719 return libbpf_err(-ENOMEM); 1720 1721 sz = sizeof(struct btf_type) + sizeof(int); 1722 t = btf_add_type_mem(btf, sz); 1723 if (!t) 1724 return libbpf_err(-ENOMEM); 1725 1726 /* if something goes wrong later, we might end up with an extra string, 1727 * but that shouldn't be a problem, because BTF can't be constructed 1728 * completely anyway and will most probably be just discarded 1729 */ 1730 name_off = btf__add_str(btf, name); 1731 if (name_off < 0) 1732 return name_off; 1733 1734 t->name_off = name_off; 1735 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1736 t->size = byte_sz; 1737 /* set INT info, we don't allow setting legacy bit offset/size */ 1738 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1739 1740 return btf_commit_type(btf, sz); 1741 } 1742 1743 /* 1744 * Append new BTF_KIND_FLOAT type with: 1745 * - *name* - non-empty, non-NULL type name; 1746 * - *sz* - size of the type, in bytes; 1747 * Returns: 1748 * - >0, type ID of newly added BTF type; 1749 * - <0, on error. 1750 */ 1751 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1752 { 1753 struct btf_type *t; 1754 int sz, name_off; 1755 1756 /* non-empty name */ 1757 if (!name || !name[0]) 1758 return libbpf_err(-EINVAL); 1759 1760 /* byte_sz must be one of the explicitly allowed values */ 1761 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1762 byte_sz != 16) 1763 return libbpf_err(-EINVAL); 1764 1765 if (btf_ensure_modifiable(btf)) 1766 return libbpf_err(-ENOMEM); 1767 1768 sz = sizeof(struct btf_type); 1769 t = btf_add_type_mem(btf, sz); 1770 if (!t) 1771 return libbpf_err(-ENOMEM); 1772 1773 name_off = btf__add_str(btf, name); 1774 if (name_off < 0) 1775 return name_off; 1776 1777 t->name_off = name_off; 1778 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1779 t->size = byte_sz; 1780 1781 return btf_commit_type(btf, sz); 1782 } 1783 1784 /* it's completely legal to append BTF types with type IDs pointing forward to 1785 * types that haven't been appended yet, so we only make sure that id looks 1786 * sane, we can't guarantee that ID will always be valid 1787 */ 1788 static int validate_type_id(int id) 1789 { 1790 if (id < 0 || id > BTF_MAX_NR_TYPES) 1791 return -EINVAL; 1792 return 0; 1793 } 1794 1795 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1796 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1797 { 1798 struct btf_type *t; 1799 int sz, name_off = 0; 1800 1801 if (validate_type_id(ref_type_id)) 1802 return libbpf_err(-EINVAL); 1803 1804 if (btf_ensure_modifiable(btf)) 1805 return libbpf_err(-ENOMEM); 1806 1807 sz = sizeof(struct btf_type); 1808 t = btf_add_type_mem(btf, sz); 1809 if (!t) 1810 return libbpf_err(-ENOMEM); 1811 1812 if (name && name[0]) { 1813 name_off = btf__add_str(btf, name); 1814 if (name_off < 0) 1815 return name_off; 1816 } 1817 1818 t->name_off = name_off; 1819 t->info = btf_type_info(kind, 0, 0); 1820 t->type = ref_type_id; 1821 1822 return btf_commit_type(btf, sz); 1823 } 1824 1825 /* 1826 * Append new BTF_KIND_PTR type with: 1827 * - *ref_type_id* - referenced type ID, it might not exist yet; 1828 * Returns: 1829 * - >0, type ID of newly added BTF type; 1830 * - <0, on error. 1831 */ 1832 int btf__add_ptr(struct btf *btf, int ref_type_id) 1833 { 1834 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1835 } 1836 1837 /* 1838 * Append new BTF_KIND_ARRAY type with: 1839 * - *index_type_id* - type ID of the type describing array index; 1840 * - *elem_type_id* - type ID of the type describing array element; 1841 * - *nr_elems* - the size of the array; 1842 * Returns: 1843 * - >0, type ID of newly added BTF type; 1844 * - <0, on error. 1845 */ 1846 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1847 { 1848 struct btf_type *t; 1849 struct btf_array *a; 1850 int sz; 1851 1852 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1853 return libbpf_err(-EINVAL); 1854 1855 if (btf_ensure_modifiable(btf)) 1856 return libbpf_err(-ENOMEM); 1857 1858 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1859 t = btf_add_type_mem(btf, sz); 1860 if (!t) 1861 return libbpf_err(-ENOMEM); 1862 1863 t->name_off = 0; 1864 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1865 t->size = 0; 1866 1867 a = btf_array(t); 1868 a->type = elem_type_id; 1869 a->index_type = index_type_id; 1870 a->nelems = nr_elems; 1871 1872 return btf_commit_type(btf, sz); 1873 } 1874 1875 /* generic STRUCT/UNION append function */ 1876 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1877 { 1878 struct btf_type *t; 1879 int sz, name_off = 0; 1880 1881 if (btf_ensure_modifiable(btf)) 1882 return libbpf_err(-ENOMEM); 1883 1884 sz = sizeof(struct btf_type); 1885 t = btf_add_type_mem(btf, sz); 1886 if (!t) 1887 return libbpf_err(-ENOMEM); 1888 1889 if (name && name[0]) { 1890 name_off = btf__add_str(btf, name); 1891 if (name_off < 0) 1892 return name_off; 1893 } 1894 1895 /* start out with vlen=0 and no kflag; this will be adjusted when 1896 * adding each member 1897 */ 1898 t->name_off = name_off; 1899 t->info = btf_type_info(kind, 0, 0); 1900 t->size = bytes_sz; 1901 1902 return btf_commit_type(btf, sz); 1903 } 1904 1905 /* 1906 * Append new BTF_KIND_STRUCT type with: 1907 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1908 * - *byte_sz* - size of the struct, in bytes; 1909 * 1910 * Struct initially has no fields in it. Fields can be added by 1911 * btf__add_field() right after btf__add_struct() succeeds. 1912 * 1913 * Returns: 1914 * - >0, type ID of newly added BTF type; 1915 * - <0, on error. 1916 */ 1917 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1918 { 1919 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1920 } 1921 1922 /* 1923 * Append new BTF_KIND_UNION type with: 1924 * - *name* - name of the union, can be NULL or empty for anonymous union; 1925 * - *byte_sz* - size of the union, in bytes; 1926 * 1927 * Union initially has no fields in it. Fields can be added by 1928 * btf__add_field() right after btf__add_union() succeeds. All fields 1929 * should have *bit_offset* of 0. 1930 * 1931 * Returns: 1932 * - >0, type ID of newly added BTF type; 1933 * - <0, on error. 1934 */ 1935 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1936 { 1937 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1938 } 1939 1940 static struct btf_type *btf_last_type(struct btf *btf) 1941 { 1942 return btf_type_by_id(btf, btf__get_nr_types(btf)); 1943 } 1944 1945 /* 1946 * Append new field for the current STRUCT/UNION type with: 1947 * - *name* - name of the field, can be NULL or empty for anonymous field; 1948 * - *type_id* - type ID for the type describing field type; 1949 * - *bit_offset* - bit offset of the start of the field within struct/union; 1950 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1951 * Returns: 1952 * - 0, on success; 1953 * - <0, on error. 1954 */ 1955 int btf__add_field(struct btf *btf, const char *name, int type_id, 1956 __u32 bit_offset, __u32 bit_size) 1957 { 1958 struct btf_type *t; 1959 struct btf_member *m; 1960 bool is_bitfield; 1961 int sz, name_off = 0; 1962 1963 /* last type should be union/struct */ 1964 if (btf->nr_types == 0) 1965 return libbpf_err(-EINVAL); 1966 t = btf_last_type(btf); 1967 if (!btf_is_composite(t)) 1968 return libbpf_err(-EINVAL); 1969 1970 if (validate_type_id(type_id)) 1971 return libbpf_err(-EINVAL); 1972 /* best-effort bit field offset/size enforcement */ 1973 is_bitfield = bit_size || (bit_offset % 8 != 0); 1974 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1975 return libbpf_err(-EINVAL); 1976 1977 /* only offset 0 is allowed for unions */ 1978 if (btf_is_union(t) && bit_offset) 1979 return libbpf_err(-EINVAL); 1980 1981 /* decompose and invalidate raw data */ 1982 if (btf_ensure_modifiable(btf)) 1983 return libbpf_err(-ENOMEM); 1984 1985 sz = sizeof(struct btf_member); 1986 m = btf_add_type_mem(btf, sz); 1987 if (!m) 1988 return libbpf_err(-ENOMEM); 1989 1990 if (name && name[0]) { 1991 name_off = btf__add_str(btf, name); 1992 if (name_off < 0) 1993 return name_off; 1994 } 1995 1996 m->name_off = name_off; 1997 m->type = type_id; 1998 m->offset = bit_offset | (bit_size << 24); 1999 2000 /* btf_add_type_mem can invalidate t pointer */ 2001 t = btf_last_type(btf); 2002 /* update parent type's vlen and kflag */ 2003 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2004 2005 btf->hdr->type_len += sz; 2006 btf->hdr->str_off += sz; 2007 return 0; 2008 } 2009 2010 /* 2011 * Append new BTF_KIND_ENUM type with: 2012 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2013 * - *byte_sz* - size of the enum, in bytes. 2014 * 2015 * Enum initially has no enum values in it (and corresponds to enum forward 2016 * declaration). Enumerator values can be added by btf__add_enum_value() 2017 * immediately after btf__add_enum() succeeds. 2018 * 2019 * Returns: 2020 * - >0, type ID of newly added BTF type; 2021 * - <0, on error. 2022 */ 2023 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2024 { 2025 struct btf_type *t; 2026 int sz, name_off = 0; 2027 2028 /* byte_sz must be power of 2 */ 2029 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2030 return libbpf_err(-EINVAL); 2031 2032 if (btf_ensure_modifiable(btf)) 2033 return libbpf_err(-ENOMEM); 2034 2035 sz = sizeof(struct btf_type); 2036 t = btf_add_type_mem(btf, sz); 2037 if (!t) 2038 return libbpf_err(-ENOMEM); 2039 2040 if (name && name[0]) { 2041 name_off = btf__add_str(btf, name); 2042 if (name_off < 0) 2043 return name_off; 2044 } 2045 2046 /* start out with vlen=0; it will be adjusted when adding enum values */ 2047 t->name_off = name_off; 2048 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2049 t->size = byte_sz; 2050 2051 return btf_commit_type(btf, sz); 2052 } 2053 2054 /* 2055 * Append new enum value for the current ENUM type with: 2056 * - *name* - name of the enumerator value, can't be NULL or empty; 2057 * - *value* - integer value corresponding to enum value *name*; 2058 * Returns: 2059 * - 0, on success; 2060 * - <0, on error. 2061 */ 2062 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2063 { 2064 struct btf_type *t; 2065 struct btf_enum *v; 2066 int sz, name_off; 2067 2068 /* last type should be BTF_KIND_ENUM */ 2069 if (btf->nr_types == 0) 2070 return libbpf_err(-EINVAL); 2071 t = btf_last_type(btf); 2072 if (!btf_is_enum(t)) 2073 return libbpf_err(-EINVAL); 2074 2075 /* non-empty name */ 2076 if (!name || !name[0]) 2077 return libbpf_err(-EINVAL); 2078 if (value < INT_MIN || value > UINT_MAX) 2079 return libbpf_err(-E2BIG); 2080 2081 /* decompose and invalidate raw data */ 2082 if (btf_ensure_modifiable(btf)) 2083 return libbpf_err(-ENOMEM); 2084 2085 sz = sizeof(struct btf_enum); 2086 v = btf_add_type_mem(btf, sz); 2087 if (!v) 2088 return libbpf_err(-ENOMEM); 2089 2090 name_off = btf__add_str(btf, name); 2091 if (name_off < 0) 2092 return name_off; 2093 2094 v->name_off = name_off; 2095 v->val = value; 2096 2097 /* update parent type's vlen */ 2098 t = btf_last_type(btf); 2099 btf_type_inc_vlen(t); 2100 2101 btf->hdr->type_len += sz; 2102 btf->hdr->str_off += sz; 2103 return 0; 2104 } 2105 2106 /* 2107 * Append new BTF_KIND_FWD type with: 2108 * - *name*, non-empty/non-NULL name; 2109 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2110 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2111 * Returns: 2112 * - >0, type ID of newly added BTF type; 2113 * - <0, on error. 2114 */ 2115 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2116 { 2117 if (!name || !name[0]) 2118 return libbpf_err(-EINVAL); 2119 2120 switch (fwd_kind) { 2121 case BTF_FWD_STRUCT: 2122 case BTF_FWD_UNION: { 2123 struct btf_type *t; 2124 int id; 2125 2126 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2127 if (id <= 0) 2128 return id; 2129 t = btf_type_by_id(btf, id); 2130 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2131 return id; 2132 } 2133 case BTF_FWD_ENUM: 2134 /* enum forward in BTF currently is just an enum with no enum 2135 * values; we also assume a standard 4-byte size for it 2136 */ 2137 return btf__add_enum(btf, name, sizeof(int)); 2138 default: 2139 return libbpf_err(-EINVAL); 2140 } 2141 } 2142 2143 /* 2144 * Append new BTF_KING_TYPEDEF type with: 2145 * - *name*, non-empty/non-NULL name; 2146 * - *ref_type_id* - referenced type ID, it might not exist yet; 2147 * Returns: 2148 * - >0, type ID of newly added BTF type; 2149 * - <0, on error. 2150 */ 2151 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2152 { 2153 if (!name || !name[0]) 2154 return libbpf_err(-EINVAL); 2155 2156 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2157 } 2158 2159 /* 2160 * Append new BTF_KIND_VOLATILE type with: 2161 * - *ref_type_id* - referenced type ID, it might not exist yet; 2162 * Returns: 2163 * - >0, type ID of newly added BTF type; 2164 * - <0, on error. 2165 */ 2166 int btf__add_volatile(struct btf *btf, int ref_type_id) 2167 { 2168 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2169 } 2170 2171 /* 2172 * Append new BTF_KIND_CONST type with: 2173 * - *ref_type_id* - referenced type ID, it might not exist yet; 2174 * Returns: 2175 * - >0, type ID of newly added BTF type; 2176 * - <0, on error. 2177 */ 2178 int btf__add_const(struct btf *btf, int ref_type_id) 2179 { 2180 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2181 } 2182 2183 /* 2184 * Append new BTF_KIND_RESTRICT type with: 2185 * - *ref_type_id* - referenced type ID, it might not exist yet; 2186 * Returns: 2187 * - >0, type ID of newly added BTF type; 2188 * - <0, on error. 2189 */ 2190 int btf__add_restrict(struct btf *btf, int ref_type_id) 2191 { 2192 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2193 } 2194 2195 /* 2196 * Append new BTF_KIND_FUNC type with: 2197 * - *name*, non-empty/non-NULL name; 2198 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2199 * Returns: 2200 * - >0, type ID of newly added BTF type; 2201 * - <0, on error. 2202 */ 2203 int btf__add_func(struct btf *btf, const char *name, 2204 enum btf_func_linkage linkage, int proto_type_id) 2205 { 2206 int id; 2207 2208 if (!name || !name[0]) 2209 return libbpf_err(-EINVAL); 2210 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2211 linkage != BTF_FUNC_EXTERN) 2212 return libbpf_err(-EINVAL); 2213 2214 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2215 if (id > 0) { 2216 struct btf_type *t = btf_type_by_id(btf, id); 2217 2218 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2219 } 2220 return libbpf_err(id); 2221 } 2222 2223 /* 2224 * Append new BTF_KIND_FUNC_PROTO with: 2225 * - *ret_type_id* - type ID for return result of a function. 2226 * 2227 * Function prototype initially has no arguments, but they can be added by 2228 * btf__add_func_param() one by one, immediately after 2229 * btf__add_func_proto() succeeded. 2230 * 2231 * Returns: 2232 * - >0, type ID of newly added BTF type; 2233 * - <0, on error. 2234 */ 2235 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2236 { 2237 struct btf_type *t; 2238 int sz; 2239 2240 if (validate_type_id(ret_type_id)) 2241 return libbpf_err(-EINVAL); 2242 2243 if (btf_ensure_modifiable(btf)) 2244 return libbpf_err(-ENOMEM); 2245 2246 sz = sizeof(struct btf_type); 2247 t = btf_add_type_mem(btf, sz); 2248 if (!t) 2249 return libbpf_err(-ENOMEM); 2250 2251 /* start out with vlen=0; this will be adjusted when adding enum 2252 * values, if necessary 2253 */ 2254 t->name_off = 0; 2255 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2256 t->type = ret_type_id; 2257 2258 return btf_commit_type(btf, sz); 2259 } 2260 2261 /* 2262 * Append new function parameter for current FUNC_PROTO type with: 2263 * - *name* - parameter name, can be NULL or empty; 2264 * - *type_id* - type ID describing the type of the parameter. 2265 * Returns: 2266 * - 0, on success; 2267 * - <0, on error. 2268 */ 2269 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2270 { 2271 struct btf_type *t; 2272 struct btf_param *p; 2273 int sz, name_off = 0; 2274 2275 if (validate_type_id(type_id)) 2276 return libbpf_err(-EINVAL); 2277 2278 /* last type should be BTF_KIND_FUNC_PROTO */ 2279 if (btf->nr_types == 0) 2280 return libbpf_err(-EINVAL); 2281 t = btf_last_type(btf); 2282 if (!btf_is_func_proto(t)) 2283 return libbpf_err(-EINVAL); 2284 2285 /* decompose and invalidate raw data */ 2286 if (btf_ensure_modifiable(btf)) 2287 return libbpf_err(-ENOMEM); 2288 2289 sz = sizeof(struct btf_param); 2290 p = btf_add_type_mem(btf, sz); 2291 if (!p) 2292 return libbpf_err(-ENOMEM); 2293 2294 if (name && name[0]) { 2295 name_off = btf__add_str(btf, name); 2296 if (name_off < 0) 2297 return name_off; 2298 } 2299 2300 p->name_off = name_off; 2301 p->type = type_id; 2302 2303 /* update parent type's vlen */ 2304 t = btf_last_type(btf); 2305 btf_type_inc_vlen(t); 2306 2307 btf->hdr->type_len += sz; 2308 btf->hdr->str_off += sz; 2309 return 0; 2310 } 2311 2312 /* 2313 * Append new BTF_KIND_VAR type with: 2314 * - *name* - non-empty/non-NULL name; 2315 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2316 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2317 * - *type_id* - type ID of the type describing the type of the variable. 2318 * Returns: 2319 * - >0, type ID of newly added BTF type; 2320 * - <0, on error. 2321 */ 2322 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2323 { 2324 struct btf_type *t; 2325 struct btf_var *v; 2326 int sz, name_off; 2327 2328 /* non-empty name */ 2329 if (!name || !name[0]) 2330 return libbpf_err(-EINVAL); 2331 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2332 linkage != BTF_VAR_GLOBAL_EXTERN) 2333 return libbpf_err(-EINVAL); 2334 if (validate_type_id(type_id)) 2335 return libbpf_err(-EINVAL); 2336 2337 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2338 if (btf_ensure_modifiable(btf)) 2339 return libbpf_err(-ENOMEM); 2340 2341 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2342 t = btf_add_type_mem(btf, sz); 2343 if (!t) 2344 return libbpf_err(-ENOMEM); 2345 2346 name_off = btf__add_str(btf, name); 2347 if (name_off < 0) 2348 return name_off; 2349 2350 t->name_off = name_off; 2351 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2352 t->type = type_id; 2353 2354 v = btf_var(t); 2355 v->linkage = linkage; 2356 2357 return btf_commit_type(btf, sz); 2358 } 2359 2360 /* 2361 * Append new BTF_KIND_DATASEC type with: 2362 * - *name* - non-empty/non-NULL name; 2363 * - *byte_sz* - data section size, in bytes. 2364 * 2365 * Data section is initially empty. Variables info can be added with 2366 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2367 * 2368 * Returns: 2369 * - >0, type ID of newly added BTF type; 2370 * - <0, on error. 2371 */ 2372 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2373 { 2374 struct btf_type *t; 2375 int sz, name_off; 2376 2377 /* non-empty name */ 2378 if (!name || !name[0]) 2379 return libbpf_err(-EINVAL); 2380 2381 if (btf_ensure_modifiable(btf)) 2382 return libbpf_err(-ENOMEM); 2383 2384 sz = sizeof(struct btf_type); 2385 t = btf_add_type_mem(btf, sz); 2386 if (!t) 2387 return libbpf_err(-ENOMEM); 2388 2389 name_off = btf__add_str(btf, name); 2390 if (name_off < 0) 2391 return name_off; 2392 2393 /* start with vlen=0, which will be update as var_secinfos are added */ 2394 t->name_off = name_off; 2395 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2396 t->size = byte_sz; 2397 2398 return btf_commit_type(btf, sz); 2399 } 2400 2401 /* 2402 * Append new data section variable information entry for current DATASEC type: 2403 * - *var_type_id* - type ID, describing type of the variable; 2404 * - *offset* - variable offset within data section, in bytes; 2405 * - *byte_sz* - variable size, in bytes. 2406 * 2407 * Returns: 2408 * - 0, on success; 2409 * - <0, on error. 2410 */ 2411 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2412 { 2413 struct btf_type *t; 2414 struct btf_var_secinfo *v; 2415 int sz; 2416 2417 /* last type should be BTF_KIND_DATASEC */ 2418 if (btf->nr_types == 0) 2419 return libbpf_err(-EINVAL); 2420 t = btf_last_type(btf); 2421 if (!btf_is_datasec(t)) 2422 return libbpf_err(-EINVAL); 2423 2424 if (validate_type_id(var_type_id)) 2425 return libbpf_err(-EINVAL); 2426 2427 /* decompose and invalidate raw data */ 2428 if (btf_ensure_modifiable(btf)) 2429 return libbpf_err(-ENOMEM); 2430 2431 sz = sizeof(struct btf_var_secinfo); 2432 v = btf_add_type_mem(btf, sz); 2433 if (!v) 2434 return libbpf_err(-ENOMEM); 2435 2436 v->type = var_type_id; 2437 v->offset = offset; 2438 v->size = byte_sz; 2439 2440 /* update parent type's vlen */ 2441 t = btf_last_type(btf); 2442 btf_type_inc_vlen(t); 2443 2444 btf->hdr->type_len += sz; 2445 btf->hdr->str_off += sz; 2446 return 0; 2447 } 2448 2449 /* 2450 * Append new BTF_KIND_TAG type with: 2451 * - *value* - non-empty/non-NULL string; 2452 * - *ref_type_id* - referenced type ID, it might not exist yet; 2453 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2454 * member or function argument index; 2455 * Returns: 2456 * - >0, type ID of newly added BTF type; 2457 * - <0, on error. 2458 */ 2459 int btf__add_tag(struct btf *btf, const char *value, int ref_type_id, 2460 int component_idx) 2461 { 2462 struct btf_type *t; 2463 int sz, value_off; 2464 2465 if (!value || !value[0] || component_idx < -1) 2466 return libbpf_err(-EINVAL); 2467 2468 if (validate_type_id(ref_type_id)) 2469 return libbpf_err(-EINVAL); 2470 2471 if (btf_ensure_modifiable(btf)) 2472 return libbpf_err(-ENOMEM); 2473 2474 sz = sizeof(struct btf_type) + sizeof(struct btf_tag); 2475 t = btf_add_type_mem(btf, sz); 2476 if (!t) 2477 return libbpf_err(-ENOMEM); 2478 2479 value_off = btf__add_str(btf, value); 2480 if (value_off < 0) 2481 return value_off; 2482 2483 t->name_off = value_off; 2484 t->info = btf_type_info(BTF_KIND_TAG, 0, false); 2485 t->type = ref_type_id; 2486 btf_tag(t)->component_idx = component_idx; 2487 2488 return btf_commit_type(btf, sz); 2489 } 2490 2491 struct btf_ext_sec_setup_param { 2492 __u32 off; 2493 __u32 len; 2494 __u32 min_rec_size; 2495 struct btf_ext_info *ext_info; 2496 const char *desc; 2497 }; 2498 2499 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2500 struct btf_ext_sec_setup_param *ext_sec) 2501 { 2502 const struct btf_ext_info_sec *sinfo; 2503 struct btf_ext_info *ext_info; 2504 __u32 info_left, record_size; 2505 /* The start of the info sec (including the __u32 record_size). */ 2506 void *info; 2507 2508 if (ext_sec->len == 0) 2509 return 0; 2510 2511 if (ext_sec->off & 0x03) { 2512 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2513 ext_sec->desc); 2514 return -EINVAL; 2515 } 2516 2517 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2518 info_left = ext_sec->len; 2519 2520 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2521 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2522 ext_sec->desc, ext_sec->off, ext_sec->len); 2523 return -EINVAL; 2524 } 2525 2526 /* At least a record size */ 2527 if (info_left < sizeof(__u32)) { 2528 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2529 return -EINVAL; 2530 } 2531 2532 /* The record size needs to meet the minimum standard */ 2533 record_size = *(__u32 *)info; 2534 if (record_size < ext_sec->min_rec_size || 2535 record_size & 0x03) { 2536 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2537 ext_sec->desc, record_size); 2538 return -EINVAL; 2539 } 2540 2541 sinfo = info + sizeof(__u32); 2542 info_left -= sizeof(__u32); 2543 2544 /* If no records, return failure now so .BTF.ext won't be used. */ 2545 if (!info_left) { 2546 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2547 return -EINVAL; 2548 } 2549 2550 while (info_left) { 2551 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2552 __u64 total_record_size; 2553 __u32 num_records; 2554 2555 if (info_left < sec_hdrlen) { 2556 pr_debug("%s section header is not found in .BTF.ext\n", 2557 ext_sec->desc); 2558 return -EINVAL; 2559 } 2560 2561 num_records = sinfo->num_info; 2562 if (num_records == 0) { 2563 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2564 ext_sec->desc); 2565 return -EINVAL; 2566 } 2567 2568 total_record_size = sec_hdrlen + 2569 (__u64)num_records * record_size; 2570 if (info_left < total_record_size) { 2571 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2572 ext_sec->desc); 2573 return -EINVAL; 2574 } 2575 2576 info_left -= total_record_size; 2577 sinfo = (void *)sinfo + total_record_size; 2578 } 2579 2580 ext_info = ext_sec->ext_info; 2581 ext_info->len = ext_sec->len - sizeof(__u32); 2582 ext_info->rec_size = record_size; 2583 ext_info->info = info + sizeof(__u32); 2584 2585 return 0; 2586 } 2587 2588 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2589 { 2590 struct btf_ext_sec_setup_param param = { 2591 .off = btf_ext->hdr->func_info_off, 2592 .len = btf_ext->hdr->func_info_len, 2593 .min_rec_size = sizeof(struct bpf_func_info_min), 2594 .ext_info = &btf_ext->func_info, 2595 .desc = "func_info" 2596 }; 2597 2598 return btf_ext_setup_info(btf_ext, ¶m); 2599 } 2600 2601 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2602 { 2603 struct btf_ext_sec_setup_param param = { 2604 .off = btf_ext->hdr->line_info_off, 2605 .len = btf_ext->hdr->line_info_len, 2606 .min_rec_size = sizeof(struct bpf_line_info_min), 2607 .ext_info = &btf_ext->line_info, 2608 .desc = "line_info", 2609 }; 2610 2611 return btf_ext_setup_info(btf_ext, ¶m); 2612 } 2613 2614 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2615 { 2616 struct btf_ext_sec_setup_param param = { 2617 .off = btf_ext->hdr->core_relo_off, 2618 .len = btf_ext->hdr->core_relo_len, 2619 .min_rec_size = sizeof(struct bpf_core_relo), 2620 .ext_info = &btf_ext->core_relo_info, 2621 .desc = "core_relo", 2622 }; 2623 2624 return btf_ext_setup_info(btf_ext, ¶m); 2625 } 2626 2627 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2628 { 2629 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2630 2631 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2632 data_size < hdr->hdr_len) { 2633 pr_debug("BTF.ext header not found"); 2634 return -EINVAL; 2635 } 2636 2637 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2638 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2639 return -ENOTSUP; 2640 } else if (hdr->magic != BTF_MAGIC) { 2641 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2642 return -EINVAL; 2643 } 2644 2645 if (hdr->version != BTF_VERSION) { 2646 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2647 return -ENOTSUP; 2648 } 2649 2650 if (hdr->flags) { 2651 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2652 return -ENOTSUP; 2653 } 2654 2655 if (data_size == hdr->hdr_len) { 2656 pr_debug("BTF.ext has no data\n"); 2657 return -EINVAL; 2658 } 2659 2660 return 0; 2661 } 2662 2663 void btf_ext__free(struct btf_ext *btf_ext) 2664 { 2665 if (IS_ERR_OR_NULL(btf_ext)) 2666 return; 2667 free(btf_ext->data); 2668 free(btf_ext); 2669 } 2670 2671 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2672 { 2673 struct btf_ext *btf_ext; 2674 int err; 2675 2676 err = btf_ext_parse_hdr(data, size); 2677 if (err) 2678 return libbpf_err_ptr(err); 2679 2680 btf_ext = calloc(1, sizeof(struct btf_ext)); 2681 if (!btf_ext) 2682 return libbpf_err_ptr(-ENOMEM); 2683 2684 btf_ext->data_size = size; 2685 btf_ext->data = malloc(size); 2686 if (!btf_ext->data) { 2687 err = -ENOMEM; 2688 goto done; 2689 } 2690 memcpy(btf_ext->data, data, size); 2691 2692 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2693 err = -EINVAL; 2694 goto done; 2695 } 2696 2697 err = btf_ext_setup_func_info(btf_ext); 2698 if (err) 2699 goto done; 2700 2701 err = btf_ext_setup_line_info(btf_ext); 2702 if (err) 2703 goto done; 2704 2705 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) { 2706 err = -EINVAL; 2707 goto done; 2708 } 2709 2710 err = btf_ext_setup_core_relos(btf_ext); 2711 if (err) 2712 goto done; 2713 2714 done: 2715 if (err) { 2716 btf_ext__free(btf_ext); 2717 return libbpf_err_ptr(err); 2718 } 2719 2720 return btf_ext; 2721 } 2722 2723 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2724 { 2725 *size = btf_ext->data_size; 2726 return btf_ext->data; 2727 } 2728 2729 static int btf_ext_reloc_info(const struct btf *btf, 2730 const struct btf_ext_info *ext_info, 2731 const char *sec_name, __u32 insns_cnt, 2732 void **info, __u32 *cnt) 2733 { 2734 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2735 __u32 i, record_size, existing_len, records_len; 2736 struct btf_ext_info_sec *sinfo; 2737 const char *info_sec_name; 2738 __u64 remain_len; 2739 void *data; 2740 2741 record_size = ext_info->rec_size; 2742 sinfo = ext_info->info; 2743 remain_len = ext_info->len; 2744 while (remain_len > 0) { 2745 records_len = sinfo->num_info * record_size; 2746 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2747 if (strcmp(info_sec_name, sec_name)) { 2748 remain_len -= sec_hdrlen + records_len; 2749 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2750 continue; 2751 } 2752 2753 existing_len = (*cnt) * record_size; 2754 data = realloc(*info, existing_len + records_len); 2755 if (!data) 2756 return libbpf_err(-ENOMEM); 2757 2758 memcpy(data + existing_len, sinfo->data, records_len); 2759 /* adjust insn_off only, the rest data will be passed 2760 * to the kernel. 2761 */ 2762 for (i = 0; i < sinfo->num_info; i++) { 2763 __u32 *insn_off; 2764 2765 insn_off = data + existing_len + (i * record_size); 2766 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; 2767 } 2768 *info = data; 2769 *cnt += sinfo->num_info; 2770 return 0; 2771 } 2772 2773 return libbpf_err(-ENOENT); 2774 } 2775 2776 int btf_ext__reloc_func_info(const struct btf *btf, 2777 const struct btf_ext *btf_ext, 2778 const char *sec_name, __u32 insns_cnt, 2779 void **func_info, __u32 *cnt) 2780 { 2781 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2782 insns_cnt, func_info, cnt); 2783 } 2784 2785 int btf_ext__reloc_line_info(const struct btf *btf, 2786 const struct btf_ext *btf_ext, 2787 const char *sec_name, __u32 insns_cnt, 2788 void **line_info, __u32 *cnt) 2789 { 2790 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2791 insns_cnt, line_info, cnt); 2792 } 2793 2794 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2795 { 2796 return btf_ext->func_info.rec_size; 2797 } 2798 2799 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2800 { 2801 return btf_ext->line_info.rec_size; 2802 } 2803 2804 struct btf_dedup; 2805 2806 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2807 const struct btf_dedup_opts *opts); 2808 static void btf_dedup_free(struct btf_dedup *d); 2809 static int btf_dedup_prep(struct btf_dedup *d); 2810 static int btf_dedup_strings(struct btf_dedup *d); 2811 static int btf_dedup_prim_types(struct btf_dedup *d); 2812 static int btf_dedup_struct_types(struct btf_dedup *d); 2813 static int btf_dedup_ref_types(struct btf_dedup *d); 2814 static int btf_dedup_compact_types(struct btf_dedup *d); 2815 static int btf_dedup_remap_types(struct btf_dedup *d); 2816 2817 /* 2818 * Deduplicate BTF types and strings. 2819 * 2820 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2821 * section with all BTF type descriptors and string data. It overwrites that 2822 * memory in-place with deduplicated types and strings without any loss of 2823 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2824 * is provided, all the strings referenced from .BTF.ext section are honored 2825 * and updated to point to the right offsets after deduplication. 2826 * 2827 * If function returns with error, type/string data might be garbled and should 2828 * be discarded. 2829 * 2830 * More verbose and detailed description of both problem btf_dedup is solving, 2831 * as well as solution could be found at: 2832 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2833 * 2834 * Problem description and justification 2835 * ===================================== 2836 * 2837 * BTF type information is typically emitted either as a result of conversion 2838 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2839 * unit contains information about a subset of all the types that are used 2840 * in an application. These subsets are frequently overlapping and contain a lot 2841 * of duplicated information when later concatenated together into a single 2842 * binary. This algorithm ensures that each unique type is represented by single 2843 * BTF type descriptor, greatly reducing resulting size of BTF data. 2844 * 2845 * Compilation unit isolation and subsequent duplication of data is not the only 2846 * problem. The same type hierarchy (e.g., struct and all the type that struct 2847 * references) in different compilation units can be represented in BTF to 2848 * various degrees of completeness (or, rather, incompleteness) due to 2849 * struct/union forward declarations. 2850 * 2851 * Let's take a look at an example, that we'll use to better understand the 2852 * problem (and solution). Suppose we have two compilation units, each using 2853 * same `struct S`, but each of them having incomplete type information about 2854 * struct's fields: 2855 * 2856 * // CU #1: 2857 * struct S; 2858 * struct A { 2859 * int a; 2860 * struct A* self; 2861 * struct S* parent; 2862 * }; 2863 * struct B; 2864 * struct S { 2865 * struct A* a_ptr; 2866 * struct B* b_ptr; 2867 * }; 2868 * 2869 * // CU #2: 2870 * struct S; 2871 * struct A; 2872 * struct B { 2873 * int b; 2874 * struct B* self; 2875 * struct S* parent; 2876 * }; 2877 * struct S { 2878 * struct A* a_ptr; 2879 * struct B* b_ptr; 2880 * }; 2881 * 2882 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2883 * more), but will know the complete type information about `struct A`. While 2884 * for CU #2, it will know full type information about `struct B`, but will 2885 * only know about forward declaration of `struct A` (in BTF terms, it will 2886 * have `BTF_KIND_FWD` type descriptor with name `B`). 2887 * 2888 * This compilation unit isolation means that it's possible that there is no 2889 * single CU with complete type information describing structs `S`, `A`, and 2890 * `B`. Also, we might get tons of duplicated and redundant type information. 2891 * 2892 * Additional complication we need to keep in mind comes from the fact that 2893 * types, in general, can form graphs containing cycles, not just DAGs. 2894 * 2895 * While algorithm does deduplication, it also merges and resolves type 2896 * information (unless disabled throught `struct btf_opts`), whenever possible. 2897 * E.g., in the example above with two compilation units having partial type 2898 * information for structs `A` and `B`, the output of algorithm will emit 2899 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2900 * (as well as type information for `int` and pointers), as if they were defined 2901 * in a single compilation unit as: 2902 * 2903 * struct A { 2904 * int a; 2905 * struct A* self; 2906 * struct S* parent; 2907 * }; 2908 * struct B { 2909 * int b; 2910 * struct B* self; 2911 * struct S* parent; 2912 * }; 2913 * struct S { 2914 * struct A* a_ptr; 2915 * struct B* b_ptr; 2916 * }; 2917 * 2918 * Algorithm summary 2919 * ================= 2920 * 2921 * Algorithm completes its work in 6 separate passes: 2922 * 2923 * 1. Strings deduplication. 2924 * 2. Primitive types deduplication (int, enum, fwd). 2925 * 3. Struct/union types deduplication. 2926 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2927 * protos, and const/volatile/restrict modifiers). 2928 * 5. Types compaction. 2929 * 6. Types remapping. 2930 * 2931 * Algorithm determines canonical type descriptor, which is a single 2932 * representative type for each truly unique type. This canonical type is the 2933 * one that will go into final deduplicated BTF type information. For 2934 * struct/unions, it is also the type that algorithm will merge additional type 2935 * information into (while resolving FWDs), as it discovers it from data in 2936 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2937 * that type is canonical, or to some other type, if that type is equivalent 2938 * and was chosen as canonical representative. This mapping is stored in 2939 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2940 * FWD type got resolved to. 2941 * 2942 * To facilitate fast discovery of canonical types, we also maintain canonical 2943 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2944 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2945 * that match that signature. With sufficiently good choice of type signature 2946 * hashing function, we can limit number of canonical types for each unique type 2947 * signature to a very small number, allowing to find canonical type for any 2948 * duplicated type very quickly. 2949 * 2950 * Struct/union deduplication is the most critical part and algorithm for 2951 * deduplicating structs/unions is described in greater details in comments for 2952 * `btf_dedup_is_equiv` function. 2953 */ 2954 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2955 const struct btf_dedup_opts *opts) 2956 { 2957 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2958 int err; 2959 2960 if (IS_ERR(d)) { 2961 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2962 return libbpf_err(-EINVAL); 2963 } 2964 2965 if (btf_ensure_modifiable(btf)) 2966 return libbpf_err(-ENOMEM); 2967 2968 err = btf_dedup_prep(d); 2969 if (err) { 2970 pr_debug("btf_dedup_prep failed:%d\n", err); 2971 goto done; 2972 } 2973 err = btf_dedup_strings(d); 2974 if (err < 0) { 2975 pr_debug("btf_dedup_strings failed:%d\n", err); 2976 goto done; 2977 } 2978 err = btf_dedup_prim_types(d); 2979 if (err < 0) { 2980 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2981 goto done; 2982 } 2983 err = btf_dedup_struct_types(d); 2984 if (err < 0) { 2985 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2986 goto done; 2987 } 2988 err = btf_dedup_ref_types(d); 2989 if (err < 0) { 2990 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2991 goto done; 2992 } 2993 err = btf_dedup_compact_types(d); 2994 if (err < 0) { 2995 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2996 goto done; 2997 } 2998 err = btf_dedup_remap_types(d); 2999 if (err < 0) { 3000 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3001 goto done; 3002 } 3003 3004 done: 3005 btf_dedup_free(d); 3006 return libbpf_err(err); 3007 } 3008 3009 #define BTF_UNPROCESSED_ID ((__u32)-1) 3010 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3011 3012 struct btf_dedup { 3013 /* .BTF section to be deduped in-place */ 3014 struct btf *btf; 3015 /* 3016 * Optional .BTF.ext section. When provided, any strings referenced 3017 * from it will be taken into account when deduping strings 3018 */ 3019 struct btf_ext *btf_ext; 3020 /* 3021 * This is a map from any type's signature hash to a list of possible 3022 * canonical representative type candidates. Hash collisions are 3023 * ignored, so even types of various kinds can share same list of 3024 * candidates, which is fine because we rely on subsequent 3025 * btf_xxx_equal() checks to authoritatively verify type equality. 3026 */ 3027 struct hashmap *dedup_table; 3028 /* Canonical types map */ 3029 __u32 *map; 3030 /* Hypothetical mapping, used during type graph equivalence checks */ 3031 __u32 *hypot_map; 3032 __u32 *hypot_list; 3033 size_t hypot_cnt; 3034 size_t hypot_cap; 3035 /* Whether hypothetical mapping, if successful, would need to adjust 3036 * already canonicalized types (due to a new forward declaration to 3037 * concrete type resolution). In such case, during split BTF dedup 3038 * candidate type would still be considered as different, because base 3039 * BTF is considered to be immutable. 3040 */ 3041 bool hypot_adjust_canon; 3042 /* Various option modifying behavior of algorithm */ 3043 struct btf_dedup_opts opts; 3044 /* temporary strings deduplication state */ 3045 struct strset *strs_set; 3046 }; 3047 3048 static long hash_combine(long h, long value) 3049 { 3050 return h * 31 + value; 3051 } 3052 3053 #define for_each_dedup_cand(d, node, hash) \ 3054 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 3055 3056 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3057 { 3058 return hashmap__append(d->dedup_table, 3059 (void *)hash, (void *)(long)type_id); 3060 } 3061 3062 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3063 __u32 from_id, __u32 to_id) 3064 { 3065 if (d->hypot_cnt == d->hypot_cap) { 3066 __u32 *new_list; 3067 3068 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3069 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3070 if (!new_list) 3071 return -ENOMEM; 3072 d->hypot_list = new_list; 3073 } 3074 d->hypot_list[d->hypot_cnt++] = from_id; 3075 d->hypot_map[from_id] = to_id; 3076 return 0; 3077 } 3078 3079 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3080 { 3081 int i; 3082 3083 for (i = 0; i < d->hypot_cnt; i++) 3084 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3085 d->hypot_cnt = 0; 3086 d->hypot_adjust_canon = false; 3087 } 3088 3089 static void btf_dedup_free(struct btf_dedup *d) 3090 { 3091 hashmap__free(d->dedup_table); 3092 d->dedup_table = NULL; 3093 3094 free(d->map); 3095 d->map = NULL; 3096 3097 free(d->hypot_map); 3098 d->hypot_map = NULL; 3099 3100 free(d->hypot_list); 3101 d->hypot_list = NULL; 3102 3103 free(d); 3104 } 3105 3106 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3107 { 3108 return (size_t)key; 3109 } 3110 3111 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3112 { 3113 return 0; 3114 } 3115 3116 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3117 { 3118 return k1 == k2; 3119 } 3120 3121 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3122 const struct btf_dedup_opts *opts) 3123 { 3124 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3125 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3126 int i, err = 0, type_cnt; 3127 3128 if (!d) 3129 return ERR_PTR(-ENOMEM); 3130 3131 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3132 /* dedup_table_size is now used only to force collisions in tests */ 3133 if (opts && opts->dedup_table_size == 1) 3134 hash_fn = btf_dedup_collision_hash_fn; 3135 3136 d->btf = btf; 3137 d->btf_ext = btf_ext; 3138 3139 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3140 if (IS_ERR(d->dedup_table)) { 3141 err = PTR_ERR(d->dedup_table); 3142 d->dedup_table = NULL; 3143 goto done; 3144 } 3145 3146 type_cnt = btf__get_nr_types(btf) + 1; 3147 d->map = malloc(sizeof(__u32) * type_cnt); 3148 if (!d->map) { 3149 err = -ENOMEM; 3150 goto done; 3151 } 3152 /* special BTF "void" type is made canonical immediately */ 3153 d->map[0] = 0; 3154 for (i = 1; i < type_cnt; i++) { 3155 struct btf_type *t = btf_type_by_id(d->btf, i); 3156 3157 /* VAR and DATASEC are never deduped and are self-canonical */ 3158 if (btf_is_var(t) || btf_is_datasec(t)) 3159 d->map[i] = i; 3160 else 3161 d->map[i] = BTF_UNPROCESSED_ID; 3162 } 3163 3164 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3165 if (!d->hypot_map) { 3166 err = -ENOMEM; 3167 goto done; 3168 } 3169 for (i = 0; i < type_cnt; i++) 3170 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3171 3172 done: 3173 if (err) { 3174 btf_dedup_free(d); 3175 return ERR_PTR(err); 3176 } 3177 3178 return d; 3179 } 3180 3181 /* 3182 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3183 * string and pass pointer to it to a provided callback `fn`. 3184 */ 3185 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3186 { 3187 int i, r; 3188 3189 for (i = 0; i < d->btf->nr_types; i++) { 3190 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3191 3192 r = btf_type_visit_str_offs(t, fn, ctx); 3193 if (r) 3194 return r; 3195 } 3196 3197 if (!d->btf_ext) 3198 return 0; 3199 3200 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3201 if (r) 3202 return r; 3203 3204 return 0; 3205 } 3206 3207 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3208 { 3209 struct btf_dedup *d = ctx; 3210 __u32 str_off = *str_off_ptr; 3211 const char *s; 3212 int off, err; 3213 3214 /* don't touch empty string or string in main BTF */ 3215 if (str_off == 0 || str_off < d->btf->start_str_off) 3216 return 0; 3217 3218 s = btf__str_by_offset(d->btf, str_off); 3219 if (d->btf->base_btf) { 3220 err = btf__find_str(d->btf->base_btf, s); 3221 if (err >= 0) { 3222 *str_off_ptr = err; 3223 return 0; 3224 } 3225 if (err != -ENOENT) 3226 return err; 3227 } 3228 3229 off = strset__add_str(d->strs_set, s); 3230 if (off < 0) 3231 return off; 3232 3233 *str_off_ptr = d->btf->start_str_off + off; 3234 return 0; 3235 } 3236 3237 /* 3238 * Dedup string and filter out those that are not referenced from either .BTF 3239 * or .BTF.ext (if provided) sections. 3240 * 3241 * This is done by building index of all strings in BTF's string section, 3242 * then iterating over all entities that can reference strings (e.g., type 3243 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3244 * strings as used. After that all used strings are deduped and compacted into 3245 * sequential blob of memory and new offsets are calculated. Then all the string 3246 * references are iterated again and rewritten using new offsets. 3247 */ 3248 static int btf_dedup_strings(struct btf_dedup *d) 3249 { 3250 int err; 3251 3252 if (d->btf->strs_deduped) 3253 return 0; 3254 3255 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3256 if (IS_ERR(d->strs_set)) { 3257 err = PTR_ERR(d->strs_set); 3258 goto err_out; 3259 } 3260 3261 if (!d->btf->base_btf) { 3262 /* insert empty string; we won't be looking it up during strings 3263 * dedup, but it's good to have it for generic BTF string lookups 3264 */ 3265 err = strset__add_str(d->strs_set, ""); 3266 if (err < 0) 3267 goto err_out; 3268 } 3269 3270 /* remap string offsets */ 3271 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3272 if (err) 3273 goto err_out; 3274 3275 /* replace BTF string data and hash with deduped ones */ 3276 strset__free(d->btf->strs_set); 3277 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3278 d->btf->strs_set = d->strs_set; 3279 d->strs_set = NULL; 3280 d->btf->strs_deduped = true; 3281 return 0; 3282 3283 err_out: 3284 strset__free(d->strs_set); 3285 d->strs_set = NULL; 3286 3287 return err; 3288 } 3289 3290 static long btf_hash_common(struct btf_type *t) 3291 { 3292 long h; 3293 3294 h = hash_combine(0, t->name_off); 3295 h = hash_combine(h, t->info); 3296 h = hash_combine(h, t->size); 3297 return h; 3298 } 3299 3300 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3301 { 3302 return t1->name_off == t2->name_off && 3303 t1->info == t2->info && 3304 t1->size == t2->size; 3305 } 3306 3307 /* Calculate type signature hash of INT or TAG. */ 3308 static long btf_hash_int_tag(struct btf_type *t) 3309 { 3310 __u32 info = *(__u32 *)(t + 1); 3311 long h; 3312 3313 h = btf_hash_common(t); 3314 h = hash_combine(h, info); 3315 return h; 3316 } 3317 3318 /* Check structural equality of two INTs or TAGs. */ 3319 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3320 { 3321 __u32 info1, info2; 3322 3323 if (!btf_equal_common(t1, t2)) 3324 return false; 3325 info1 = *(__u32 *)(t1 + 1); 3326 info2 = *(__u32 *)(t2 + 1); 3327 return info1 == info2; 3328 } 3329 3330 /* Calculate type signature hash of ENUM. */ 3331 static long btf_hash_enum(struct btf_type *t) 3332 { 3333 long h; 3334 3335 /* don't hash vlen and enum members to support enum fwd resolving */ 3336 h = hash_combine(0, t->name_off); 3337 h = hash_combine(h, t->info & ~0xffff); 3338 h = hash_combine(h, t->size); 3339 return h; 3340 } 3341 3342 /* Check structural equality of two ENUMs. */ 3343 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3344 { 3345 const struct btf_enum *m1, *m2; 3346 __u16 vlen; 3347 int i; 3348 3349 if (!btf_equal_common(t1, t2)) 3350 return false; 3351 3352 vlen = btf_vlen(t1); 3353 m1 = btf_enum(t1); 3354 m2 = btf_enum(t2); 3355 for (i = 0; i < vlen; i++) { 3356 if (m1->name_off != m2->name_off || m1->val != m2->val) 3357 return false; 3358 m1++; 3359 m2++; 3360 } 3361 return true; 3362 } 3363 3364 static inline bool btf_is_enum_fwd(struct btf_type *t) 3365 { 3366 return btf_is_enum(t) && btf_vlen(t) == 0; 3367 } 3368 3369 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3370 { 3371 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3372 return btf_equal_enum(t1, t2); 3373 /* ignore vlen when comparing */ 3374 return t1->name_off == t2->name_off && 3375 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3376 t1->size == t2->size; 3377 } 3378 3379 /* 3380 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3381 * as referenced type IDs equivalence is established separately during type 3382 * graph equivalence check algorithm. 3383 */ 3384 static long btf_hash_struct(struct btf_type *t) 3385 { 3386 const struct btf_member *member = btf_members(t); 3387 __u32 vlen = btf_vlen(t); 3388 long h = btf_hash_common(t); 3389 int i; 3390 3391 for (i = 0; i < vlen; i++) { 3392 h = hash_combine(h, member->name_off); 3393 h = hash_combine(h, member->offset); 3394 /* no hashing of referenced type ID, it can be unresolved yet */ 3395 member++; 3396 } 3397 return h; 3398 } 3399 3400 /* 3401 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3402 * IDs. This check is performed during type graph equivalence check and 3403 * referenced types equivalence is checked separately. 3404 */ 3405 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3406 { 3407 const struct btf_member *m1, *m2; 3408 __u16 vlen; 3409 int i; 3410 3411 if (!btf_equal_common(t1, t2)) 3412 return false; 3413 3414 vlen = btf_vlen(t1); 3415 m1 = btf_members(t1); 3416 m2 = btf_members(t2); 3417 for (i = 0; i < vlen; i++) { 3418 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3419 return false; 3420 m1++; 3421 m2++; 3422 } 3423 return true; 3424 } 3425 3426 /* 3427 * Calculate type signature hash of ARRAY, including referenced type IDs, 3428 * under assumption that they were already resolved to canonical type IDs and 3429 * are not going to change. 3430 */ 3431 static long btf_hash_array(struct btf_type *t) 3432 { 3433 const struct btf_array *info = btf_array(t); 3434 long h = btf_hash_common(t); 3435 3436 h = hash_combine(h, info->type); 3437 h = hash_combine(h, info->index_type); 3438 h = hash_combine(h, info->nelems); 3439 return h; 3440 } 3441 3442 /* 3443 * Check exact equality of two ARRAYs, taking into account referenced 3444 * type IDs, under assumption that they were already resolved to canonical 3445 * type IDs and are not going to change. 3446 * This function is called during reference types deduplication to compare 3447 * ARRAY to potential canonical representative. 3448 */ 3449 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3450 { 3451 const struct btf_array *info1, *info2; 3452 3453 if (!btf_equal_common(t1, t2)) 3454 return false; 3455 3456 info1 = btf_array(t1); 3457 info2 = btf_array(t2); 3458 return info1->type == info2->type && 3459 info1->index_type == info2->index_type && 3460 info1->nelems == info2->nelems; 3461 } 3462 3463 /* 3464 * Check structural compatibility of two ARRAYs, ignoring referenced type 3465 * IDs. This check is performed during type graph equivalence check and 3466 * referenced types equivalence is checked separately. 3467 */ 3468 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3469 { 3470 if (!btf_equal_common(t1, t2)) 3471 return false; 3472 3473 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3474 } 3475 3476 /* 3477 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3478 * under assumption that they were already resolved to canonical type IDs and 3479 * are not going to change. 3480 */ 3481 static long btf_hash_fnproto(struct btf_type *t) 3482 { 3483 const struct btf_param *member = btf_params(t); 3484 __u16 vlen = btf_vlen(t); 3485 long h = btf_hash_common(t); 3486 int i; 3487 3488 for (i = 0; i < vlen; i++) { 3489 h = hash_combine(h, member->name_off); 3490 h = hash_combine(h, member->type); 3491 member++; 3492 } 3493 return h; 3494 } 3495 3496 /* 3497 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3498 * type IDs, under assumption that they were already resolved to canonical 3499 * type IDs and are not going to change. 3500 * This function is called during reference types deduplication to compare 3501 * FUNC_PROTO to potential canonical representative. 3502 */ 3503 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3504 { 3505 const struct btf_param *m1, *m2; 3506 __u16 vlen; 3507 int i; 3508 3509 if (!btf_equal_common(t1, t2)) 3510 return false; 3511 3512 vlen = btf_vlen(t1); 3513 m1 = btf_params(t1); 3514 m2 = btf_params(t2); 3515 for (i = 0; i < vlen; i++) { 3516 if (m1->name_off != m2->name_off || m1->type != m2->type) 3517 return false; 3518 m1++; 3519 m2++; 3520 } 3521 return true; 3522 } 3523 3524 /* 3525 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3526 * IDs. This check is performed during type graph equivalence check and 3527 * referenced types equivalence is checked separately. 3528 */ 3529 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3530 { 3531 const struct btf_param *m1, *m2; 3532 __u16 vlen; 3533 int i; 3534 3535 /* skip return type ID */ 3536 if (t1->name_off != t2->name_off || t1->info != t2->info) 3537 return false; 3538 3539 vlen = btf_vlen(t1); 3540 m1 = btf_params(t1); 3541 m2 = btf_params(t2); 3542 for (i = 0; i < vlen; i++) { 3543 if (m1->name_off != m2->name_off) 3544 return false; 3545 m1++; 3546 m2++; 3547 } 3548 return true; 3549 } 3550 3551 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3552 * types and initializing the rest of the state (canonical type mapping) for 3553 * the fixed base BTF part. 3554 */ 3555 static int btf_dedup_prep(struct btf_dedup *d) 3556 { 3557 struct btf_type *t; 3558 int type_id; 3559 long h; 3560 3561 if (!d->btf->base_btf) 3562 return 0; 3563 3564 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3565 t = btf_type_by_id(d->btf, type_id); 3566 3567 /* all base BTF types are self-canonical by definition */ 3568 d->map[type_id] = type_id; 3569 3570 switch (btf_kind(t)) { 3571 case BTF_KIND_VAR: 3572 case BTF_KIND_DATASEC: 3573 /* VAR and DATASEC are never hash/deduplicated */ 3574 continue; 3575 case BTF_KIND_CONST: 3576 case BTF_KIND_VOLATILE: 3577 case BTF_KIND_RESTRICT: 3578 case BTF_KIND_PTR: 3579 case BTF_KIND_FWD: 3580 case BTF_KIND_TYPEDEF: 3581 case BTF_KIND_FUNC: 3582 case BTF_KIND_FLOAT: 3583 h = btf_hash_common(t); 3584 break; 3585 case BTF_KIND_INT: 3586 case BTF_KIND_TAG: 3587 h = btf_hash_int_tag(t); 3588 break; 3589 case BTF_KIND_ENUM: 3590 h = btf_hash_enum(t); 3591 break; 3592 case BTF_KIND_STRUCT: 3593 case BTF_KIND_UNION: 3594 h = btf_hash_struct(t); 3595 break; 3596 case BTF_KIND_ARRAY: 3597 h = btf_hash_array(t); 3598 break; 3599 case BTF_KIND_FUNC_PROTO: 3600 h = btf_hash_fnproto(t); 3601 break; 3602 default: 3603 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3604 return -EINVAL; 3605 } 3606 if (btf_dedup_table_add(d, h, type_id)) 3607 return -ENOMEM; 3608 } 3609 3610 return 0; 3611 } 3612 3613 /* 3614 * Deduplicate primitive types, that can't reference other types, by calculating 3615 * their type signature hash and comparing them with any possible canonical 3616 * candidate. If no canonical candidate matches, type itself is marked as 3617 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3618 */ 3619 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3620 { 3621 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3622 struct hashmap_entry *hash_entry; 3623 struct btf_type *cand; 3624 /* if we don't find equivalent type, then we are canonical */ 3625 __u32 new_id = type_id; 3626 __u32 cand_id; 3627 long h; 3628 3629 switch (btf_kind(t)) { 3630 case BTF_KIND_CONST: 3631 case BTF_KIND_VOLATILE: 3632 case BTF_KIND_RESTRICT: 3633 case BTF_KIND_PTR: 3634 case BTF_KIND_TYPEDEF: 3635 case BTF_KIND_ARRAY: 3636 case BTF_KIND_STRUCT: 3637 case BTF_KIND_UNION: 3638 case BTF_KIND_FUNC: 3639 case BTF_KIND_FUNC_PROTO: 3640 case BTF_KIND_VAR: 3641 case BTF_KIND_DATASEC: 3642 case BTF_KIND_TAG: 3643 return 0; 3644 3645 case BTF_KIND_INT: 3646 h = btf_hash_int_tag(t); 3647 for_each_dedup_cand(d, hash_entry, h) { 3648 cand_id = (__u32)(long)hash_entry->value; 3649 cand = btf_type_by_id(d->btf, cand_id); 3650 if (btf_equal_int_tag(t, cand)) { 3651 new_id = cand_id; 3652 break; 3653 } 3654 } 3655 break; 3656 3657 case BTF_KIND_ENUM: 3658 h = btf_hash_enum(t); 3659 for_each_dedup_cand(d, hash_entry, h) { 3660 cand_id = (__u32)(long)hash_entry->value; 3661 cand = btf_type_by_id(d->btf, cand_id); 3662 if (btf_equal_enum(t, cand)) { 3663 new_id = cand_id; 3664 break; 3665 } 3666 if (d->opts.dont_resolve_fwds) 3667 continue; 3668 if (btf_compat_enum(t, cand)) { 3669 if (btf_is_enum_fwd(t)) { 3670 /* resolve fwd to full enum */ 3671 new_id = cand_id; 3672 break; 3673 } 3674 /* resolve canonical enum fwd to full enum */ 3675 d->map[cand_id] = type_id; 3676 } 3677 } 3678 break; 3679 3680 case BTF_KIND_FWD: 3681 case BTF_KIND_FLOAT: 3682 h = btf_hash_common(t); 3683 for_each_dedup_cand(d, hash_entry, h) { 3684 cand_id = (__u32)(long)hash_entry->value; 3685 cand = btf_type_by_id(d->btf, cand_id); 3686 if (btf_equal_common(t, cand)) { 3687 new_id = cand_id; 3688 break; 3689 } 3690 } 3691 break; 3692 3693 default: 3694 return -EINVAL; 3695 } 3696 3697 d->map[type_id] = new_id; 3698 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3699 return -ENOMEM; 3700 3701 return 0; 3702 } 3703 3704 static int btf_dedup_prim_types(struct btf_dedup *d) 3705 { 3706 int i, err; 3707 3708 for (i = 0; i < d->btf->nr_types; i++) { 3709 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3710 if (err) 3711 return err; 3712 } 3713 return 0; 3714 } 3715 3716 /* 3717 * Check whether type is already mapped into canonical one (could be to itself). 3718 */ 3719 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3720 { 3721 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3722 } 3723 3724 /* 3725 * Resolve type ID into its canonical type ID, if any; otherwise return original 3726 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3727 * STRUCT/UNION link and resolve it into canonical type ID as well. 3728 */ 3729 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3730 { 3731 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3732 type_id = d->map[type_id]; 3733 return type_id; 3734 } 3735 3736 /* 3737 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3738 * type ID. 3739 */ 3740 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3741 { 3742 __u32 orig_type_id = type_id; 3743 3744 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3745 return type_id; 3746 3747 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3748 type_id = d->map[type_id]; 3749 3750 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3751 return type_id; 3752 3753 return orig_type_id; 3754 } 3755 3756 3757 static inline __u16 btf_fwd_kind(struct btf_type *t) 3758 { 3759 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3760 } 3761 3762 /* Check if given two types are identical ARRAY definitions */ 3763 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3764 { 3765 struct btf_type *t1, *t2; 3766 3767 t1 = btf_type_by_id(d->btf, id1); 3768 t2 = btf_type_by_id(d->btf, id2); 3769 if (!btf_is_array(t1) || !btf_is_array(t2)) 3770 return 0; 3771 3772 return btf_equal_array(t1, t2); 3773 } 3774 3775 /* 3776 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3777 * call it "candidate graph" in this description for brevity) to a type graph 3778 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3779 * here, though keep in mind that not all types in canonical graph are 3780 * necessarily canonical representatives themselves, some of them might be 3781 * duplicates or its uniqueness might not have been established yet). 3782 * Returns: 3783 * - >0, if type graphs are equivalent; 3784 * - 0, if not equivalent; 3785 * - <0, on error. 3786 * 3787 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3788 * equivalence of BTF types at each step. If at any point BTF types in candidate 3789 * and canonical graphs are not compatible structurally, whole graphs are 3790 * incompatible. If types are structurally equivalent (i.e., all information 3791 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3792 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3793 * If a type references other types, then those referenced types are checked 3794 * for equivalence recursively. 3795 * 3796 * During DFS traversal, if we find that for current `canon_id` type we 3797 * already have some mapping in hypothetical map, we check for two possible 3798 * situations: 3799 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3800 * happen when type graphs have cycles. In this case we assume those two 3801 * types are equivalent. 3802 * - `canon_id` is mapped to different type. This is contradiction in our 3803 * hypothetical mapping, because same graph in canonical graph corresponds 3804 * to two different types in candidate graph, which for equivalent type 3805 * graphs shouldn't happen. This condition terminates equivalence check 3806 * with negative result. 3807 * 3808 * If type graphs traversal exhausts types to check and find no contradiction, 3809 * then type graphs are equivalent. 3810 * 3811 * When checking types for equivalence, there is one special case: FWD types. 3812 * If FWD type resolution is allowed and one of the types (either from canonical 3813 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3814 * flag) and their names match, hypothetical mapping is updated to point from 3815 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3816 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3817 * 3818 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3819 * if there are two exactly named (or anonymous) structs/unions that are 3820 * compatible structurally, one of which has FWD field, while other is concrete 3821 * STRUCT/UNION, but according to C sources they are different structs/unions 3822 * that are referencing different types with the same name. This is extremely 3823 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3824 * this logic is causing problems. 3825 * 3826 * Doing FWD resolution means that both candidate and/or canonical graphs can 3827 * consists of portions of the graph that come from multiple compilation units. 3828 * This is due to the fact that types within single compilation unit are always 3829 * deduplicated and FWDs are already resolved, if referenced struct/union 3830 * definiton is available. So, if we had unresolved FWD and found corresponding 3831 * STRUCT/UNION, they will be from different compilation units. This 3832 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3833 * type graph will likely have at least two different BTF types that describe 3834 * same type (e.g., most probably there will be two different BTF types for the 3835 * same 'int' primitive type) and could even have "overlapping" parts of type 3836 * graph that describe same subset of types. 3837 * 3838 * This in turn means that our assumption that each type in canonical graph 3839 * must correspond to exactly one type in candidate graph might not hold 3840 * anymore and will make it harder to detect contradictions using hypothetical 3841 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3842 * resolution only in canonical graph. FWDs in candidate graphs are never 3843 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3844 * that can occur: 3845 * - Both types in canonical and candidate graphs are FWDs. If they are 3846 * structurally equivalent, then they can either be both resolved to the 3847 * same STRUCT/UNION or not resolved at all. In both cases they are 3848 * equivalent and there is no need to resolve FWD on candidate side. 3849 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3850 * so nothing to resolve as well, algorithm will check equivalence anyway. 3851 * - Type in canonical graph is FWD, while type in candidate is concrete 3852 * STRUCT/UNION. In this case candidate graph comes from single compilation 3853 * unit, so there is exactly one BTF type for each unique C type. After 3854 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3855 * in canonical graph mapping to single BTF type in candidate graph, but 3856 * because hypothetical mapping maps from canonical to candidate types, it's 3857 * alright, and we still maintain the property of having single `canon_id` 3858 * mapping to single `cand_id` (there could be two different `canon_id` 3859 * mapped to the same `cand_id`, but it's not contradictory). 3860 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3861 * graph is FWD. In this case we are just going to check compatibility of 3862 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3863 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3864 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3865 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3866 * canonical graph. 3867 */ 3868 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3869 __u32 canon_id) 3870 { 3871 struct btf_type *cand_type; 3872 struct btf_type *canon_type; 3873 __u32 hypot_type_id; 3874 __u16 cand_kind; 3875 __u16 canon_kind; 3876 int i, eq; 3877 3878 /* if both resolve to the same canonical, they must be equivalent */ 3879 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3880 return 1; 3881 3882 canon_id = resolve_fwd_id(d, canon_id); 3883 3884 hypot_type_id = d->hypot_map[canon_id]; 3885 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3886 /* In some cases compiler will generate different DWARF types 3887 * for *identical* array type definitions and use them for 3888 * different fields within the *same* struct. This breaks type 3889 * equivalence check, which makes an assumption that candidate 3890 * types sub-graph has a consistent and deduped-by-compiler 3891 * types within a single CU. So work around that by explicitly 3892 * allowing identical array types here. 3893 */ 3894 return hypot_type_id == cand_id || 3895 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3896 } 3897 3898 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3899 return -ENOMEM; 3900 3901 cand_type = btf_type_by_id(d->btf, cand_id); 3902 canon_type = btf_type_by_id(d->btf, canon_id); 3903 cand_kind = btf_kind(cand_type); 3904 canon_kind = btf_kind(canon_type); 3905 3906 if (cand_type->name_off != canon_type->name_off) 3907 return 0; 3908 3909 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3910 if (!d->opts.dont_resolve_fwds 3911 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3912 && cand_kind != canon_kind) { 3913 __u16 real_kind; 3914 __u16 fwd_kind; 3915 3916 if (cand_kind == BTF_KIND_FWD) { 3917 real_kind = canon_kind; 3918 fwd_kind = btf_fwd_kind(cand_type); 3919 } else { 3920 real_kind = cand_kind; 3921 fwd_kind = btf_fwd_kind(canon_type); 3922 /* we'd need to resolve base FWD to STRUCT/UNION */ 3923 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3924 d->hypot_adjust_canon = true; 3925 } 3926 return fwd_kind == real_kind; 3927 } 3928 3929 if (cand_kind != canon_kind) 3930 return 0; 3931 3932 switch (cand_kind) { 3933 case BTF_KIND_INT: 3934 return btf_equal_int_tag(cand_type, canon_type); 3935 3936 case BTF_KIND_ENUM: 3937 if (d->opts.dont_resolve_fwds) 3938 return btf_equal_enum(cand_type, canon_type); 3939 else 3940 return btf_compat_enum(cand_type, canon_type); 3941 3942 case BTF_KIND_FWD: 3943 case BTF_KIND_FLOAT: 3944 return btf_equal_common(cand_type, canon_type); 3945 3946 case BTF_KIND_CONST: 3947 case BTF_KIND_VOLATILE: 3948 case BTF_KIND_RESTRICT: 3949 case BTF_KIND_PTR: 3950 case BTF_KIND_TYPEDEF: 3951 case BTF_KIND_FUNC: 3952 if (cand_type->info != canon_type->info) 3953 return 0; 3954 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3955 3956 case BTF_KIND_ARRAY: { 3957 const struct btf_array *cand_arr, *canon_arr; 3958 3959 if (!btf_compat_array(cand_type, canon_type)) 3960 return 0; 3961 cand_arr = btf_array(cand_type); 3962 canon_arr = btf_array(canon_type); 3963 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 3964 if (eq <= 0) 3965 return eq; 3966 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 3967 } 3968 3969 case BTF_KIND_STRUCT: 3970 case BTF_KIND_UNION: { 3971 const struct btf_member *cand_m, *canon_m; 3972 __u16 vlen; 3973 3974 if (!btf_shallow_equal_struct(cand_type, canon_type)) 3975 return 0; 3976 vlen = btf_vlen(cand_type); 3977 cand_m = btf_members(cand_type); 3978 canon_m = btf_members(canon_type); 3979 for (i = 0; i < vlen; i++) { 3980 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 3981 if (eq <= 0) 3982 return eq; 3983 cand_m++; 3984 canon_m++; 3985 } 3986 3987 return 1; 3988 } 3989 3990 case BTF_KIND_FUNC_PROTO: { 3991 const struct btf_param *cand_p, *canon_p; 3992 __u16 vlen; 3993 3994 if (!btf_compat_fnproto(cand_type, canon_type)) 3995 return 0; 3996 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3997 if (eq <= 0) 3998 return eq; 3999 vlen = btf_vlen(cand_type); 4000 cand_p = btf_params(cand_type); 4001 canon_p = btf_params(canon_type); 4002 for (i = 0; i < vlen; i++) { 4003 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4004 if (eq <= 0) 4005 return eq; 4006 cand_p++; 4007 canon_p++; 4008 } 4009 return 1; 4010 } 4011 4012 default: 4013 return -EINVAL; 4014 } 4015 return 0; 4016 } 4017 4018 /* 4019 * Use hypothetical mapping, produced by successful type graph equivalence 4020 * check, to augment existing struct/union canonical mapping, where possible. 4021 * 4022 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4023 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4024 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4025 * we are recording the mapping anyway. As opposed to carefulness required 4026 * for struct/union correspondence mapping (described below), for FWD resolution 4027 * it's not important, as by the time that FWD type (reference type) will be 4028 * deduplicated all structs/unions will be deduped already anyway. 4029 * 4030 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4031 * not required for correctness. It needs to be done carefully to ensure that 4032 * struct/union from candidate's type graph is not mapped into corresponding 4033 * struct/union from canonical type graph that itself hasn't been resolved into 4034 * canonical representative. The only guarantee we have is that canonical 4035 * struct/union was determined as canonical and that won't change. But any 4036 * types referenced through that struct/union fields could have been not yet 4037 * resolved, so in case like that it's too early to establish any kind of 4038 * correspondence between structs/unions. 4039 * 4040 * No canonical correspondence is derived for primitive types (they are already 4041 * deduplicated completely already anyway) or reference types (they rely on 4042 * stability of struct/union canonical relationship for equivalence checks). 4043 */ 4044 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4045 { 4046 __u32 canon_type_id, targ_type_id; 4047 __u16 t_kind, c_kind; 4048 __u32 t_id, c_id; 4049 int i; 4050 4051 for (i = 0; i < d->hypot_cnt; i++) { 4052 canon_type_id = d->hypot_list[i]; 4053 targ_type_id = d->hypot_map[canon_type_id]; 4054 t_id = resolve_type_id(d, targ_type_id); 4055 c_id = resolve_type_id(d, canon_type_id); 4056 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4057 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4058 /* 4059 * Resolve FWD into STRUCT/UNION. 4060 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4061 * mapped to canonical representative (as opposed to 4062 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4063 * eventually that struct is going to be mapped and all resolved 4064 * FWDs will automatically resolve to correct canonical 4065 * representative. This will happen before ref type deduping, 4066 * which critically depends on stability of these mapping. This 4067 * stability is not a requirement for STRUCT/UNION equivalence 4068 * checks, though. 4069 */ 4070 4071 /* if it's the split BTF case, we still need to point base FWD 4072 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4073 * will be resolved against base FWD. If we don't point base 4074 * canonical FWD to the resolved STRUCT/UNION, then all the 4075 * FWDs in split BTF won't be correctly resolved to a proper 4076 * STRUCT/UNION. 4077 */ 4078 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4079 d->map[c_id] = t_id; 4080 4081 /* if graph equivalence determined that we'd need to adjust 4082 * base canonical types, then we need to only point base FWDs 4083 * to STRUCTs/UNIONs and do no more modifications. For all 4084 * other purposes the type graphs were not equivalent. 4085 */ 4086 if (d->hypot_adjust_canon) 4087 continue; 4088 4089 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4090 d->map[t_id] = c_id; 4091 4092 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4093 c_kind != BTF_KIND_FWD && 4094 is_type_mapped(d, c_id) && 4095 !is_type_mapped(d, t_id)) { 4096 /* 4097 * as a perf optimization, we can map struct/union 4098 * that's part of type graph we just verified for 4099 * equivalence. We can do that for struct/union that has 4100 * canonical representative only, though. 4101 */ 4102 d->map[t_id] = c_id; 4103 } 4104 } 4105 } 4106 4107 /* 4108 * Deduplicate struct/union types. 4109 * 4110 * For each struct/union type its type signature hash is calculated, taking 4111 * into account type's name, size, number, order and names of fields, but 4112 * ignoring type ID's referenced from fields, because they might not be deduped 4113 * completely until after reference types deduplication phase. This type hash 4114 * is used to iterate over all potential canonical types, sharing same hash. 4115 * For each canonical candidate we check whether type graphs that they form 4116 * (through referenced types in fields and so on) are equivalent using algorithm 4117 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4118 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4119 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4120 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4121 * potentially map other structs/unions to their canonical representatives, 4122 * if such relationship hasn't yet been established. This speeds up algorithm 4123 * by eliminating some of the duplicate work. 4124 * 4125 * If no matching canonical representative was found, struct/union is marked 4126 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4127 * for further look ups. 4128 */ 4129 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4130 { 4131 struct btf_type *cand_type, *t; 4132 struct hashmap_entry *hash_entry; 4133 /* if we don't find equivalent type, then we are canonical */ 4134 __u32 new_id = type_id; 4135 __u16 kind; 4136 long h; 4137 4138 /* already deduped or is in process of deduping (loop detected) */ 4139 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4140 return 0; 4141 4142 t = btf_type_by_id(d->btf, type_id); 4143 kind = btf_kind(t); 4144 4145 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4146 return 0; 4147 4148 h = btf_hash_struct(t); 4149 for_each_dedup_cand(d, hash_entry, h) { 4150 __u32 cand_id = (__u32)(long)hash_entry->value; 4151 int eq; 4152 4153 /* 4154 * Even though btf_dedup_is_equiv() checks for 4155 * btf_shallow_equal_struct() internally when checking two 4156 * structs (unions) for equivalence, we need to guard here 4157 * from picking matching FWD type as a dedup candidate. 4158 * This can happen due to hash collision. In such case just 4159 * relying on btf_dedup_is_equiv() would lead to potentially 4160 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4161 * FWD and compatible STRUCT/UNION are considered equivalent. 4162 */ 4163 cand_type = btf_type_by_id(d->btf, cand_id); 4164 if (!btf_shallow_equal_struct(t, cand_type)) 4165 continue; 4166 4167 btf_dedup_clear_hypot_map(d); 4168 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4169 if (eq < 0) 4170 return eq; 4171 if (!eq) 4172 continue; 4173 btf_dedup_merge_hypot_map(d); 4174 if (d->hypot_adjust_canon) /* not really equivalent */ 4175 continue; 4176 new_id = cand_id; 4177 break; 4178 } 4179 4180 d->map[type_id] = new_id; 4181 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4182 return -ENOMEM; 4183 4184 return 0; 4185 } 4186 4187 static int btf_dedup_struct_types(struct btf_dedup *d) 4188 { 4189 int i, err; 4190 4191 for (i = 0; i < d->btf->nr_types; i++) { 4192 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4193 if (err) 4194 return err; 4195 } 4196 return 0; 4197 } 4198 4199 /* 4200 * Deduplicate reference type. 4201 * 4202 * Once all primitive and struct/union types got deduplicated, we can easily 4203 * deduplicate all other (reference) BTF types. This is done in two steps: 4204 * 4205 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4206 * resolution can be done either immediately for primitive or struct/union types 4207 * (because they were deduped in previous two phases) or recursively for 4208 * reference types. Recursion will always terminate at either primitive or 4209 * struct/union type, at which point we can "unwind" chain of reference types 4210 * one by one. There is no danger of encountering cycles because in C type 4211 * system the only way to form type cycle is through struct/union, so any chain 4212 * of reference types, even those taking part in a type cycle, will inevitably 4213 * reach struct/union at some point. 4214 * 4215 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4216 * becomes "stable", in the sense that no further deduplication will cause 4217 * any changes to it. With that, it's now possible to calculate type's signature 4218 * hash (this time taking into account referenced type IDs) and loop over all 4219 * potential canonical representatives. If no match was found, current type 4220 * will become canonical representative of itself and will be added into 4221 * btf_dedup->dedup_table as another possible canonical representative. 4222 */ 4223 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4224 { 4225 struct hashmap_entry *hash_entry; 4226 __u32 new_id = type_id, cand_id; 4227 struct btf_type *t, *cand; 4228 /* if we don't find equivalent type, then we are representative type */ 4229 int ref_type_id; 4230 long h; 4231 4232 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4233 return -ELOOP; 4234 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4235 return resolve_type_id(d, type_id); 4236 4237 t = btf_type_by_id(d->btf, type_id); 4238 d->map[type_id] = BTF_IN_PROGRESS_ID; 4239 4240 switch (btf_kind(t)) { 4241 case BTF_KIND_CONST: 4242 case BTF_KIND_VOLATILE: 4243 case BTF_KIND_RESTRICT: 4244 case BTF_KIND_PTR: 4245 case BTF_KIND_TYPEDEF: 4246 case BTF_KIND_FUNC: 4247 ref_type_id = btf_dedup_ref_type(d, t->type); 4248 if (ref_type_id < 0) 4249 return ref_type_id; 4250 t->type = ref_type_id; 4251 4252 h = btf_hash_common(t); 4253 for_each_dedup_cand(d, hash_entry, h) { 4254 cand_id = (__u32)(long)hash_entry->value; 4255 cand = btf_type_by_id(d->btf, cand_id); 4256 if (btf_equal_common(t, cand)) { 4257 new_id = cand_id; 4258 break; 4259 } 4260 } 4261 break; 4262 4263 case BTF_KIND_TAG: 4264 ref_type_id = btf_dedup_ref_type(d, t->type); 4265 if (ref_type_id < 0) 4266 return ref_type_id; 4267 t->type = ref_type_id; 4268 4269 h = btf_hash_int_tag(t); 4270 for_each_dedup_cand(d, hash_entry, h) { 4271 cand_id = (__u32)(long)hash_entry->value; 4272 cand = btf_type_by_id(d->btf, cand_id); 4273 if (btf_equal_int_tag(t, cand)) { 4274 new_id = cand_id; 4275 break; 4276 } 4277 } 4278 break; 4279 4280 case BTF_KIND_ARRAY: { 4281 struct btf_array *info = btf_array(t); 4282 4283 ref_type_id = btf_dedup_ref_type(d, info->type); 4284 if (ref_type_id < 0) 4285 return ref_type_id; 4286 info->type = ref_type_id; 4287 4288 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4289 if (ref_type_id < 0) 4290 return ref_type_id; 4291 info->index_type = ref_type_id; 4292 4293 h = btf_hash_array(t); 4294 for_each_dedup_cand(d, hash_entry, h) { 4295 cand_id = (__u32)(long)hash_entry->value; 4296 cand = btf_type_by_id(d->btf, cand_id); 4297 if (btf_equal_array(t, cand)) { 4298 new_id = cand_id; 4299 break; 4300 } 4301 } 4302 break; 4303 } 4304 4305 case BTF_KIND_FUNC_PROTO: { 4306 struct btf_param *param; 4307 __u16 vlen; 4308 int i; 4309 4310 ref_type_id = btf_dedup_ref_type(d, t->type); 4311 if (ref_type_id < 0) 4312 return ref_type_id; 4313 t->type = ref_type_id; 4314 4315 vlen = btf_vlen(t); 4316 param = btf_params(t); 4317 for (i = 0; i < vlen; i++) { 4318 ref_type_id = btf_dedup_ref_type(d, param->type); 4319 if (ref_type_id < 0) 4320 return ref_type_id; 4321 param->type = ref_type_id; 4322 param++; 4323 } 4324 4325 h = btf_hash_fnproto(t); 4326 for_each_dedup_cand(d, hash_entry, h) { 4327 cand_id = (__u32)(long)hash_entry->value; 4328 cand = btf_type_by_id(d->btf, cand_id); 4329 if (btf_equal_fnproto(t, cand)) { 4330 new_id = cand_id; 4331 break; 4332 } 4333 } 4334 break; 4335 } 4336 4337 default: 4338 return -EINVAL; 4339 } 4340 4341 d->map[type_id] = new_id; 4342 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4343 return -ENOMEM; 4344 4345 return new_id; 4346 } 4347 4348 static int btf_dedup_ref_types(struct btf_dedup *d) 4349 { 4350 int i, err; 4351 4352 for (i = 0; i < d->btf->nr_types; i++) { 4353 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4354 if (err < 0) 4355 return err; 4356 } 4357 /* we won't need d->dedup_table anymore */ 4358 hashmap__free(d->dedup_table); 4359 d->dedup_table = NULL; 4360 return 0; 4361 } 4362 4363 /* 4364 * Compact types. 4365 * 4366 * After we established for each type its corresponding canonical representative 4367 * type, we now can eliminate types that are not canonical and leave only 4368 * canonical ones layed out sequentially in memory by copying them over 4369 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4370 * a map from original type ID to a new compacted type ID, which will be used 4371 * during next phase to "fix up" type IDs, referenced from struct/union and 4372 * reference types. 4373 */ 4374 static int btf_dedup_compact_types(struct btf_dedup *d) 4375 { 4376 __u32 *new_offs; 4377 __u32 next_type_id = d->btf->start_id; 4378 const struct btf_type *t; 4379 void *p; 4380 int i, id, len; 4381 4382 /* we are going to reuse hypot_map to store compaction remapping */ 4383 d->hypot_map[0] = 0; 4384 /* base BTF types are not renumbered */ 4385 for (id = 1; id < d->btf->start_id; id++) 4386 d->hypot_map[id] = id; 4387 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4388 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4389 4390 p = d->btf->types_data; 4391 4392 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4393 if (d->map[id] != id) 4394 continue; 4395 4396 t = btf__type_by_id(d->btf, id); 4397 len = btf_type_size(t); 4398 if (len < 0) 4399 return len; 4400 4401 memmove(p, t, len); 4402 d->hypot_map[id] = next_type_id; 4403 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4404 p += len; 4405 next_type_id++; 4406 } 4407 4408 /* shrink struct btf's internal types index and update btf_header */ 4409 d->btf->nr_types = next_type_id - d->btf->start_id; 4410 d->btf->type_offs_cap = d->btf->nr_types; 4411 d->btf->hdr->type_len = p - d->btf->types_data; 4412 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4413 sizeof(*new_offs)); 4414 if (d->btf->type_offs_cap && !new_offs) 4415 return -ENOMEM; 4416 d->btf->type_offs = new_offs; 4417 d->btf->hdr->str_off = d->btf->hdr->type_len; 4418 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4419 return 0; 4420 } 4421 4422 /* 4423 * Figure out final (deduplicated and compacted) type ID for provided original 4424 * `type_id` by first resolving it into corresponding canonical type ID and 4425 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4426 * which is populated during compaction phase. 4427 */ 4428 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4429 { 4430 struct btf_dedup *d = ctx; 4431 __u32 resolved_type_id, new_type_id; 4432 4433 resolved_type_id = resolve_type_id(d, *type_id); 4434 new_type_id = d->hypot_map[resolved_type_id]; 4435 if (new_type_id > BTF_MAX_NR_TYPES) 4436 return -EINVAL; 4437 4438 *type_id = new_type_id; 4439 return 0; 4440 } 4441 4442 /* 4443 * Remap referenced type IDs into deduped type IDs. 4444 * 4445 * After BTF types are deduplicated and compacted, their final type IDs may 4446 * differ from original ones. The map from original to a corresponding 4447 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4448 * compaction phase. During remapping phase we are rewriting all type IDs 4449 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4450 * their final deduped type IDs. 4451 */ 4452 static int btf_dedup_remap_types(struct btf_dedup *d) 4453 { 4454 int i, r; 4455 4456 for (i = 0; i < d->btf->nr_types; i++) { 4457 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4458 4459 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4460 if (r) 4461 return r; 4462 } 4463 4464 if (!d->btf_ext) 4465 return 0; 4466 4467 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4468 if (r) 4469 return r; 4470 4471 return 0; 4472 } 4473 4474 /* 4475 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4476 * data out of it to use for target BTF. 4477 */ 4478 struct btf *btf__load_vmlinux_btf(void) 4479 { 4480 struct { 4481 const char *path_fmt; 4482 bool raw_btf; 4483 } locations[] = { 4484 /* try canonical vmlinux BTF through sysfs first */ 4485 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4486 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4487 { "/boot/vmlinux-%1$s" }, 4488 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4489 { "/lib/modules/%1$s/build/vmlinux" }, 4490 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4491 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4492 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4493 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4494 }; 4495 char path[PATH_MAX + 1]; 4496 struct utsname buf; 4497 struct btf *btf; 4498 int i, err; 4499 4500 uname(&buf); 4501 4502 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4503 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4504 4505 if (access(path, R_OK)) 4506 continue; 4507 4508 if (locations[i].raw_btf) 4509 btf = btf__parse_raw(path); 4510 else 4511 btf = btf__parse_elf(path, NULL); 4512 err = libbpf_get_error(btf); 4513 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4514 if (err) 4515 continue; 4516 4517 return btf; 4518 } 4519 4520 pr_warn("failed to find valid kernel BTF\n"); 4521 return libbpf_err_ptr(-ESRCH); 4522 } 4523 4524 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4525 4526 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4527 { 4528 char path[80]; 4529 4530 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4531 return btf__parse_split(path, vmlinux_btf); 4532 } 4533 4534 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4535 { 4536 int i, n, err; 4537 4538 switch (btf_kind(t)) { 4539 case BTF_KIND_INT: 4540 case BTF_KIND_FLOAT: 4541 case BTF_KIND_ENUM: 4542 return 0; 4543 4544 case BTF_KIND_FWD: 4545 case BTF_KIND_CONST: 4546 case BTF_KIND_VOLATILE: 4547 case BTF_KIND_RESTRICT: 4548 case BTF_KIND_PTR: 4549 case BTF_KIND_TYPEDEF: 4550 case BTF_KIND_FUNC: 4551 case BTF_KIND_VAR: 4552 case BTF_KIND_TAG: 4553 return visit(&t->type, ctx); 4554 4555 case BTF_KIND_ARRAY: { 4556 struct btf_array *a = btf_array(t); 4557 4558 err = visit(&a->type, ctx); 4559 err = err ?: visit(&a->index_type, ctx); 4560 return err; 4561 } 4562 4563 case BTF_KIND_STRUCT: 4564 case BTF_KIND_UNION: { 4565 struct btf_member *m = btf_members(t); 4566 4567 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4568 err = visit(&m->type, ctx); 4569 if (err) 4570 return err; 4571 } 4572 return 0; 4573 } 4574 4575 case BTF_KIND_FUNC_PROTO: { 4576 struct btf_param *m = btf_params(t); 4577 4578 err = visit(&t->type, ctx); 4579 if (err) 4580 return err; 4581 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4582 err = visit(&m->type, ctx); 4583 if (err) 4584 return err; 4585 } 4586 return 0; 4587 } 4588 4589 case BTF_KIND_DATASEC: { 4590 struct btf_var_secinfo *m = btf_var_secinfos(t); 4591 4592 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4593 err = visit(&m->type, ctx); 4594 if (err) 4595 return err; 4596 } 4597 return 0; 4598 } 4599 4600 default: 4601 return -EINVAL; 4602 } 4603 } 4604 4605 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4606 { 4607 int i, n, err; 4608 4609 err = visit(&t->name_off, ctx); 4610 if (err) 4611 return err; 4612 4613 switch (btf_kind(t)) { 4614 case BTF_KIND_STRUCT: 4615 case BTF_KIND_UNION: { 4616 struct btf_member *m = btf_members(t); 4617 4618 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4619 err = visit(&m->name_off, ctx); 4620 if (err) 4621 return err; 4622 } 4623 break; 4624 } 4625 case BTF_KIND_ENUM: { 4626 struct btf_enum *m = btf_enum(t); 4627 4628 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4629 err = visit(&m->name_off, ctx); 4630 if (err) 4631 return err; 4632 } 4633 break; 4634 } 4635 case BTF_KIND_FUNC_PROTO: { 4636 struct btf_param *m = btf_params(t); 4637 4638 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4639 err = visit(&m->name_off, ctx); 4640 if (err) 4641 return err; 4642 } 4643 break; 4644 } 4645 default: 4646 break; 4647 } 4648 4649 return 0; 4650 } 4651 4652 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4653 { 4654 const struct btf_ext_info *seg; 4655 struct btf_ext_info_sec *sec; 4656 int i, err; 4657 4658 seg = &btf_ext->func_info; 4659 for_each_btf_ext_sec(seg, sec) { 4660 struct bpf_func_info_min *rec; 4661 4662 for_each_btf_ext_rec(seg, sec, i, rec) { 4663 err = visit(&rec->type_id, ctx); 4664 if (err < 0) 4665 return err; 4666 } 4667 } 4668 4669 seg = &btf_ext->core_relo_info; 4670 for_each_btf_ext_sec(seg, sec) { 4671 struct bpf_core_relo *rec; 4672 4673 for_each_btf_ext_rec(seg, sec, i, rec) { 4674 err = visit(&rec->type_id, ctx); 4675 if (err < 0) 4676 return err; 4677 } 4678 } 4679 4680 return 0; 4681 } 4682 4683 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4684 { 4685 const struct btf_ext_info *seg; 4686 struct btf_ext_info_sec *sec; 4687 int i, err; 4688 4689 seg = &btf_ext->func_info; 4690 for_each_btf_ext_sec(seg, sec) { 4691 err = visit(&sec->sec_name_off, ctx); 4692 if (err) 4693 return err; 4694 } 4695 4696 seg = &btf_ext->line_info; 4697 for_each_btf_ext_sec(seg, sec) { 4698 struct bpf_line_info_min *rec; 4699 4700 err = visit(&sec->sec_name_off, ctx); 4701 if (err) 4702 return err; 4703 4704 for_each_btf_ext_rec(seg, sec, i, rec) { 4705 err = visit(&rec->file_name_off, ctx); 4706 if (err) 4707 return err; 4708 err = visit(&rec->line_off, ctx); 4709 if (err) 4710 return err; 4711 } 4712 } 4713 4714 seg = &btf_ext->core_relo_info; 4715 for_each_btf_ext_sec(seg, sec) { 4716 struct bpf_core_relo *rec; 4717 4718 err = visit(&sec->sec_name_off, ctx); 4719 if (err) 4720 return err; 4721 4722 for_each_btf_ext_rec(seg, sec, i, rec) { 4723 err = visit(&rec->access_str_off, ctx); 4724 if (err) 4725 return err; 4726 } 4727 } 4728 4729 return 0; 4730 } 4731