xref: /openbmc/linux/tools/lib/bpf/btf.c (revision c6fbbf1e)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
193 {
194 	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
195 			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
196 }
197 
198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
199 {
200 	__u32 *p;
201 
202 	p = btf_add_type_offs_mem(btf, 1);
203 	if (!p)
204 		return -ENOMEM;
205 
206 	*p = type_off;
207 	return 0;
208 }
209 
210 static void btf_bswap_hdr(struct btf_header *h)
211 {
212 	h->magic = bswap_16(h->magic);
213 	h->hdr_len = bswap_32(h->hdr_len);
214 	h->type_off = bswap_32(h->type_off);
215 	h->type_len = bswap_32(h->type_len);
216 	h->str_off = bswap_32(h->str_off);
217 	h->str_len = bswap_32(h->str_len);
218 }
219 
220 static int btf_parse_hdr(struct btf *btf)
221 {
222 	struct btf_header *hdr = btf->hdr;
223 	__u32 meta_left;
224 
225 	if (btf->raw_size < sizeof(struct btf_header)) {
226 		pr_debug("BTF header not found\n");
227 		return -EINVAL;
228 	}
229 
230 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
231 		btf->swapped_endian = true;
232 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
233 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
234 				bswap_32(hdr->hdr_len));
235 			return -ENOTSUP;
236 		}
237 		btf_bswap_hdr(hdr);
238 	} else if (hdr->magic != BTF_MAGIC) {
239 		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
240 		return -EINVAL;
241 	}
242 
243 	if (btf->raw_size < hdr->hdr_len) {
244 		pr_debug("BTF header len %u larger than data size %u\n",
245 			 hdr->hdr_len, btf->raw_size);
246 		return -EINVAL;
247 	}
248 
249 	meta_left = btf->raw_size - hdr->hdr_len;
250 	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
251 		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
252 		return -EINVAL;
253 	}
254 
255 	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
256 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
257 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
258 		return -EINVAL;
259 	}
260 
261 	if (hdr->type_off % 4) {
262 		pr_debug("BTF type section is not aligned to 4 bytes\n");
263 		return -EINVAL;
264 	}
265 
266 	return 0;
267 }
268 
269 static int btf_parse_str_sec(struct btf *btf)
270 {
271 	const struct btf_header *hdr = btf->hdr;
272 	const char *start = btf->strs_data;
273 	const char *end = start + btf->hdr->str_len;
274 
275 	if (btf->base_btf && hdr->str_len == 0)
276 		return 0;
277 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
278 		pr_debug("Invalid BTF string section\n");
279 		return -EINVAL;
280 	}
281 	if (!btf->base_btf && start[0]) {
282 		pr_debug("Invalid BTF string section\n");
283 		return -EINVAL;
284 	}
285 	return 0;
286 }
287 
288 static int btf_type_size(const struct btf_type *t)
289 {
290 	const int base_size = sizeof(struct btf_type);
291 	__u16 vlen = btf_vlen(t);
292 
293 	switch (btf_kind(t)) {
294 	case BTF_KIND_FWD:
295 	case BTF_KIND_CONST:
296 	case BTF_KIND_VOLATILE:
297 	case BTF_KIND_RESTRICT:
298 	case BTF_KIND_PTR:
299 	case BTF_KIND_TYPEDEF:
300 	case BTF_KIND_FUNC:
301 	case BTF_KIND_FLOAT:
302 	case BTF_KIND_TYPE_TAG:
303 		return base_size;
304 	case BTF_KIND_INT:
305 		return base_size + sizeof(__u32);
306 	case BTF_KIND_ENUM:
307 		return base_size + vlen * sizeof(struct btf_enum);
308 	case BTF_KIND_ARRAY:
309 		return base_size + sizeof(struct btf_array);
310 	case BTF_KIND_STRUCT:
311 	case BTF_KIND_UNION:
312 		return base_size + vlen * sizeof(struct btf_member);
313 	case BTF_KIND_FUNC_PROTO:
314 		return base_size + vlen * sizeof(struct btf_param);
315 	case BTF_KIND_VAR:
316 		return base_size + sizeof(struct btf_var);
317 	case BTF_KIND_DATASEC:
318 		return base_size + vlen * sizeof(struct btf_var_secinfo);
319 	case BTF_KIND_DECL_TAG:
320 		return base_size + sizeof(struct btf_decl_tag);
321 	default:
322 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
323 		return -EINVAL;
324 	}
325 }
326 
327 static void btf_bswap_type_base(struct btf_type *t)
328 {
329 	t->name_off = bswap_32(t->name_off);
330 	t->info = bswap_32(t->info);
331 	t->type = bswap_32(t->type);
332 }
333 
334 static int btf_bswap_type_rest(struct btf_type *t)
335 {
336 	struct btf_var_secinfo *v;
337 	struct btf_member *m;
338 	struct btf_array *a;
339 	struct btf_param *p;
340 	struct btf_enum *e;
341 	__u16 vlen = btf_vlen(t);
342 	int i;
343 
344 	switch (btf_kind(t)) {
345 	case BTF_KIND_FWD:
346 	case BTF_KIND_CONST:
347 	case BTF_KIND_VOLATILE:
348 	case BTF_KIND_RESTRICT:
349 	case BTF_KIND_PTR:
350 	case BTF_KIND_TYPEDEF:
351 	case BTF_KIND_FUNC:
352 	case BTF_KIND_FLOAT:
353 	case BTF_KIND_TYPE_TAG:
354 		return 0;
355 	case BTF_KIND_INT:
356 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
357 		return 0;
358 	case BTF_KIND_ENUM:
359 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
360 			e->name_off = bswap_32(e->name_off);
361 			e->val = bswap_32(e->val);
362 		}
363 		return 0;
364 	case BTF_KIND_ARRAY:
365 		a = btf_array(t);
366 		a->type = bswap_32(a->type);
367 		a->index_type = bswap_32(a->index_type);
368 		a->nelems = bswap_32(a->nelems);
369 		return 0;
370 	case BTF_KIND_STRUCT:
371 	case BTF_KIND_UNION:
372 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
373 			m->name_off = bswap_32(m->name_off);
374 			m->type = bswap_32(m->type);
375 			m->offset = bswap_32(m->offset);
376 		}
377 		return 0;
378 	case BTF_KIND_FUNC_PROTO:
379 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
380 			p->name_off = bswap_32(p->name_off);
381 			p->type = bswap_32(p->type);
382 		}
383 		return 0;
384 	case BTF_KIND_VAR:
385 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
386 		return 0;
387 	case BTF_KIND_DATASEC:
388 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
389 			v->type = bswap_32(v->type);
390 			v->offset = bswap_32(v->offset);
391 			v->size = bswap_32(v->size);
392 		}
393 		return 0;
394 	case BTF_KIND_DECL_TAG:
395 		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
396 		return 0;
397 	default:
398 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
399 		return -EINVAL;
400 	}
401 }
402 
403 static int btf_parse_type_sec(struct btf *btf)
404 {
405 	struct btf_header *hdr = btf->hdr;
406 	void *next_type = btf->types_data;
407 	void *end_type = next_type + hdr->type_len;
408 	int err, type_size;
409 
410 	while (next_type + sizeof(struct btf_type) <= end_type) {
411 		if (btf->swapped_endian)
412 			btf_bswap_type_base(next_type);
413 
414 		type_size = btf_type_size(next_type);
415 		if (type_size < 0)
416 			return type_size;
417 		if (next_type + type_size > end_type) {
418 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
419 			return -EINVAL;
420 		}
421 
422 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
423 			return -EINVAL;
424 
425 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
426 		if (err)
427 			return err;
428 
429 		next_type += type_size;
430 		btf->nr_types++;
431 	}
432 
433 	if (next_type != end_type) {
434 		pr_warn("BTF types data is malformed\n");
435 		return -EINVAL;
436 	}
437 
438 	return 0;
439 }
440 
441 __u32 btf__get_nr_types(const struct btf *btf)
442 {
443 	return btf->start_id + btf->nr_types - 1;
444 }
445 
446 __u32 btf__type_cnt(const struct btf *btf)
447 {
448 	return btf->start_id + btf->nr_types;
449 }
450 
451 const struct btf *btf__base_btf(const struct btf *btf)
452 {
453 	return btf->base_btf;
454 }
455 
456 /* internal helper returning non-const pointer to a type */
457 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
458 {
459 	if (type_id == 0)
460 		return &btf_void;
461 	if (type_id < btf->start_id)
462 		return btf_type_by_id(btf->base_btf, type_id);
463 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
464 }
465 
466 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
467 {
468 	if (type_id >= btf->start_id + btf->nr_types)
469 		return errno = EINVAL, NULL;
470 	return btf_type_by_id((struct btf *)btf, type_id);
471 }
472 
473 static int determine_ptr_size(const struct btf *btf)
474 {
475 	const struct btf_type *t;
476 	const char *name;
477 	int i, n;
478 
479 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
480 		return btf->base_btf->ptr_sz;
481 
482 	n = btf__type_cnt(btf);
483 	for (i = 1; i < n; i++) {
484 		t = btf__type_by_id(btf, i);
485 		if (!btf_is_int(t))
486 			continue;
487 
488 		name = btf__name_by_offset(btf, t->name_off);
489 		if (!name)
490 			continue;
491 
492 		if (strcmp(name, "long int") == 0 ||
493 		    strcmp(name, "long unsigned int") == 0) {
494 			if (t->size != 4 && t->size != 8)
495 				continue;
496 			return t->size;
497 		}
498 	}
499 
500 	return -1;
501 }
502 
503 static size_t btf_ptr_sz(const struct btf *btf)
504 {
505 	if (!btf->ptr_sz)
506 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
507 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
508 }
509 
510 /* Return pointer size this BTF instance assumes. The size is heuristically
511  * determined by looking for 'long' or 'unsigned long' integer type and
512  * recording its size in bytes. If BTF type information doesn't have any such
513  * type, this function returns 0. In the latter case, native architecture's
514  * pointer size is assumed, so will be either 4 or 8, depending on
515  * architecture that libbpf was compiled for. It's possible to override
516  * guessed value by using btf__set_pointer_size() API.
517  */
518 size_t btf__pointer_size(const struct btf *btf)
519 {
520 	if (!btf->ptr_sz)
521 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
522 
523 	if (btf->ptr_sz < 0)
524 		/* not enough BTF type info to guess */
525 		return 0;
526 
527 	return btf->ptr_sz;
528 }
529 
530 /* Override or set pointer size in bytes. Only values of 4 and 8 are
531  * supported.
532  */
533 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
534 {
535 	if (ptr_sz != 4 && ptr_sz != 8)
536 		return libbpf_err(-EINVAL);
537 	btf->ptr_sz = ptr_sz;
538 	return 0;
539 }
540 
541 static bool is_host_big_endian(void)
542 {
543 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
544 	return false;
545 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
546 	return true;
547 #else
548 # error "Unrecognized __BYTE_ORDER__"
549 #endif
550 }
551 
552 enum btf_endianness btf__endianness(const struct btf *btf)
553 {
554 	if (is_host_big_endian())
555 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
556 	else
557 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
558 }
559 
560 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
561 {
562 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
563 		return libbpf_err(-EINVAL);
564 
565 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
566 	if (!btf->swapped_endian) {
567 		free(btf->raw_data_swapped);
568 		btf->raw_data_swapped = NULL;
569 	}
570 	return 0;
571 }
572 
573 static bool btf_type_is_void(const struct btf_type *t)
574 {
575 	return t == &btf_void || btf_is_fwd(t);
576 }
577 
578 static bool btf_type_is_void_or_null(const struct btf_type *t)
579 {
580 	return !t || btf_type_is_void(t);
581 }
582 
583 #define MAX_RESOLVE_DEPTH 32
584 
585 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
586 {
587 	const struct btf_array *array;
588 	const struct btf_type *t;
589 	__u32 nelems = 1;
590 	__s64 size = -1;
591 	int i;
592 
593 	t = btf__type_by_id(btf, type_id);
594 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
595 		switch (btf_kind(t)) {
596 		case BTF_KIND_INT:
597 		case BTF_KIND_STRUCT:
598 		case BTF_KIND_UNION:
599 		case BTF_KIND_ENUM:
600 		case BTF_KIND_DATASEC:
601 		case BTF_KIND_FLOAT:
602 			size = t->size;
603 			goto done;
604 		case BTF_KIND_PTR:
605 			size = btf_ptr_sz(btf);
606 			goto done;
607 		case BTF_KIND_TYPEDEF:
608 		case BTF_KIND_VOLATILE:
609 		case BTF_KIND_CONST:
610 		case BTF_KIND_RESTRICT:
611 		case BTF_KIND_VAR:
612 		case BTF_KIND_DECL_TAG:
613 		case BTF_KIND_TYPE_TAG:
614 			type_id = t->type;
615 			break;
616 		case BTF_KIND_ARRAY:
617 			array = btf_array(t);
618 			if (nelems && array->nelems > UINT32_MAX / nelems)
619 				return libbpf_err(-E2BIG);
620 			nelems *= array->nelems;
621 			type_id = array->type;
622 			break;
623 		default:
624 			return libbpf_err(-EINVAL);
625 		}
626 
627 		t = btf__type_by_id(btf, type_id);
628 	}
629 
630 done:
631 	if (size < 0)
632 		return libbpf_err(-EINVAL);
633 	if (nelems && size > UINT32_MAX / nelems)
634 		return libbpf_err(-E2BIG);
635 
636 	return nelems * size;
637 }
638 
639 int btf__align_of(const struct btf *btf, __u32 id)
640 {
641 	const struct btf_type *t = btf__type_by_id(btf, id);
642 	__u16 kind = btf_kind(t);
643 
644 	switch (kind) {
645 	case BTF_KIND_INT:
646 	case BTF_KIND_ENUM:
647 	case BTF_KIND_FLOAT:
648 		return min(btf_ptr_sz(btf), (size_t)t->size);
649 	case BTF_KIND_PTR:
650 		return btf_ptr_sz(btf);
651 	case BTF_KIND_TYPEDEF:
652 	case BTF_KIND_VOLATILE:
653 	case BTF_KIND_CONST:
654 	case BTF_KIND_RESTRICT:
655 	case BTF_KIND_TYPE_TAG:
656 		return btf__align_of(btf, t->type);
657 	case BTF_KIND_ARRAY:
658 		return btf__align_of(btf, btf_array(t)->type);
659 	case BTF_KIND_STRUCT:
660 	case BTF_KIND_UNION: {
661 		const struct btf_member *m = btf_members(t);
662 		__u16 vlen = btf_vlen(t);
663 		int i, max_align = 1, align;
664 
665 		for (i = 0; i < vlen; i++, m++) {
666 			align = btf__align_of(btf, m->type);
667 			if (align <= 0)
668 				return libbpf_err(align);
669 			max_align = max(max_align, align);
670 		}
671 
672 		return max_align;
673 	}
674 	default:
675 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
676 		return errno = EINVAL, 0;
677 	}
678 }
679 
680 int btf__resolve_type(const struct btf *btf, __u32 type_id)
681 {
682 	const struct btf_type *t;
683 	int depth = 0;
684 
685 	t = btf__type_by_id(btf, type_id);
686 	while (depth < MAX_RESOLVE_DEPTH &&
687 	       !btf_type_is_void_or_null(t) &&
688 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
689 		type_id = t->type;
690 		t = btf__type_by_id(btf, type_id);
691 		depth++;
692 	}
693 
694 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
695 		return libbpf_err(-EINVAL);
696 
697 	return type_id;
698 }
699 
700 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
701 {
702 	__u32 i, nr_types = btf__type_cnt(btf);
703 
704 	if (!strcmp(type_name, "void"))
705 		return 0;
706 
707 	for (i = 1; i < nr_types; i++) {
708 		const struct btf_type *t = btf__type_by_id(btf, i);
709 		const char *name = btf__name_by_offset(btf, t->name_off);
710 
711 		if (name && !strcmp(type_name, name))
712 			return i;
713 	}
714 
715 	return libbpf_err(-ENOENT);
716 }
717 
718 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
719 				   const char *type_name, __u32 kind)
720 {
721 	__u32 i, nr_types = btf__type_cnt(btf);
722 
723 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
724 		return 0;
725 
726 	for (i = start_id; i < nr_types; i++) {
727 		const struct btf_type *t = btf__type_by_id(btf, i);
728 		const char *name;
729 
730 		if (btf_kind(t) != kind)
731 			continue;
732 		name = btf__name_by_offset(btf, t->name_off);
733 		if (name && !strcmp(type_name, name))
734 			return i;
735 	}
736 
737 	return libbpf_err(-ENOENT);
738 }
739 
740 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
741 				 __u32 kind)
742 {
743 	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
744 }
745 
746 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
747 			     __u32 kind)
748 {
749 	return btf_find_by_name_kind(btf, 1, type_name, kind);
750 }
751 
752 static bool btf_is_modifiable(const struct btf *btf)
753 {
754 	return (void *)btf->hdr != btf->raw_data;
755 }
756 
757 void btf__free(struct btf *btf)
758 {
759 	if (IS_ERR_OR_NULL(btf))
760 		return;
761 
762 	if (btf->fd >= 0)
763 		close(btf->fd);
764 
765 	if (btf_is_modifiable(btf)) {
766 		/* if BTF was modified after loading, it will have a split
767 		 * in-memory representation for header, types, and strings
768 		 * sections, so we need to free all of them individually. It
769 		 * might still have a cached contiguous raw data present,
770 		 * which will be unconditionally freed below.
771 		 */
772 		free(btf->hdr);
773 		free(btf->types_data);
774 		strset__free(btf->strs_set);
775 	}
776 	free(btf->raw_data);
777 	free(btf->raw_data_swapped);
778 	free(btf->type_offs);
779 	free(btf);
780 }
781 
782 static struct btf *btf_new_empty(struct btf *base_btf)
783 {
784 	struct btf *btf;
785 
786 	btf = calloc(1, sizeof(*btf));
787 	if (!btf)
788 		return ERR_PTR(-ENOMEM);
789 
790 	btf->nr_types = 0;
791 	btf->start_id = 1;
792 	btf->start_str_off = 0;
793 	btf->fd = -1;
794 	btf->ptr_sz = sizeof(void *);
795 	btf->swapped_endian = false;
796 
797 	if (base_btf) {
798 		btf->base_btf = base_btf;
799 		btf->start_id = btf__type_cnt(base_btf);
800 		btf->start_str_off = base_btf->hdr->str_len;
801 	}
802 
803 	/* +1 for empty string at offset 0 */
804 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
805 	btf->raw_data = calloc(1, btf->raw_size);
806 	if (!btf->raw_data) {
807 		free(btf);
808 		return ERR_PTR(-ENOMEM);
809 	}
810 
811 	btf->hdr = btf->raw_data;
812 	btf->hdr->hdr_len = sizeof(struct btf_header);
813 	btf->hdr->magic = BTF_MAGIC;
814 	btf->hdr->version = BTF_VERSION;
815 
816 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
817 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
818 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
819 
820 	return btf;
821 }
822 
823 struct btf *btf__new_empty(void)
824 {
825 	return libbpf_ptr(btf_new_empty(NULL));
826 }
827 
828 struct btf *btf__new_empty_split(struct btf *base_btf)
829 {
830 	return libbpf_ptr(btf_new_empty(base_btf));
831 }
832 
833 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
834 {
835 	struct btf *btf;
836 	int err;
837 
838 	btf = calloc(1, sizeof(struct btf));
839 	if (!btf)
840 		return ERR_PTR(-ENOMEM);
841 
842 	btf->nr_types = 0;
843 	btf->start_id = 1;
844 	btf->start_str_off = 0;
845 	btf->fd = -1;
846 
847 	if (base_btf) {
848 		btf->base_btf = base_btf;
849 		btf->start_id = btf__type_cnt(base_btf);
850 		btf->start_str_off = base_btf->hdr->str_len;
851 	}
852 
853 	btf->raw_data = malloc(size);
854 	if (!btf->raw_data) {
855 		err = -ENOMEM;
856 		goto done;
857 	}
858 	memcpy(btf->raw_data, data, size);
859 	btf->raw_size = size;
860 
861 	btf->hdr = btf->raw_data;
862 	err = btf_parse_hdr(btf);
863 	if (err)
864 		goto done;
865 
866 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
867 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
868 
869 	err = btf_parse_str_sec(btf);
870 	err = err ?: btf_parse_type_sec(btf);
871 	if (err)
872 		goto done;
873 
874 done:
875 	if (err) {
876 		btf__free(btf);
877 		return ERR_PTR(err);
878 	}
879 
880 	return btf;
881 }
882 
883 struct btf *btf__new(const void *data, __u32 size)
884 {
885 	return libbpf_ptr(btf_new(data, size, NULL));
886 }
887 
888 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
889 				 struct btf_ext **btf_ext)
890 {
891 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
892 	int err = 0, fd = -1, idx = 0;
893 	struct btf *btf = NULL;
894 	Elf_Scn *scn = NULL;
895 	Elf *elf = NULL;
896 	GElf_Ehdr ehdr;
897 	size_t shstrndx;
898 
899 	if (elf_version(EV_CURRENT) == EV_NONE) {
900 		pr_warn("failed to init libelf for %s\n", path);
901 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
902 	}
903 
904 	fd = open(path, O_RDONLY | O_CLOEXEC);
905 	if (fd < 0) {
906 		err = -errno;
907 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
908 		return ERR_PTR(err);
909 	}
910 
911 	err = -LIBBPF_ERRNO__FORMAT;
912 
913 	elf = elf_begin(fd, ELF_C_READ, NULL);
914 	if (!elf) {
915 		pr_warn("failed to open %s as ELF file\n", path);
916 		goto done;
917 	}
918 	if (!gelf_getehdr(elf, &ehdr)) {
919 		pr_warn("failed to get EHDR from %s\n", path);
920 		goto done;
921 	}
922 
923 	if (elf_getshdrstrndx(elf, &shstrndx)) {
924 		pr_warn("failed to get section names section index for %s\n",
925 			path);
926 		goto done;
927 	}
928 
929 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
930 		pr_warn("failed to get e_shstrndx from %s\n", path);
931 		goto done;
932 	}
933 
934 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
935 		GElf_Shdr sh;
936 		char *name;
937 
938 		idx++;
939 		if (gelf_getshdr(scn, &sh) != &sh) {
940 			pr_warn("failed to get section(%d) header from %s\n",
941 				idx, path);
942 			goto done;
943 		}
944 		name = elf_strptr(elf, shstrndx, sh.sh_name);
945 		if (!name) {
946 			pr_warn("failed to get section(%d) name from %s\n",
947 				idx, path);
948 			goto done;
949 		}
950 		if (strcmp(name, BTF_ELF_SEC) == 0) {
951 			btf_data = elf_getdata(scn, 0);
952 			if (!btf_data) {
953 				pr_warn("failed to get section(%d, %s) data from %s\n",
954 					idx, name, path);
955 				goto done;
956 			}
957 			continue;
958 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
959 			btf_ext_data = elf_getdata(scn, 0);
960 			if (!btf_ext_data) {
961 				pr_warn("failed to get section(%d, %s) data from %s\n",
962 					idx, name, path);
963 				goto done;
964 			}
965 			continue;
966 		}
967 	}
968 
969 	err = 0;
970 
971 	if (!btf_data) {
972 		err = -ENOENT;
973 		goto done;
974 	}
975 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
976 	err = libbpf_get_error(btf);
977 	if (err)
978 		goto done;
979 
980 	switch (gelf_getclass(elf)) {
981 	case ELFCLASS32:
982 		btf__set_pointer_size(btf, 4);
983 		break;
984 	case ELFCLASS64:
985 		btf__set_pointer_size(btf, 8);
986 		break;
987 	default:
988 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
989 		break;
990 	}
991 
992 	if (btf_ext && btf_ext_data) {
993 		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
994 		err = libbpf_get_error(*btf_ext);
995 		if (err)
996 			goto done;
997 	} else if (btf_ext) {
998 		*btf_ext = NULL;
999 	}
1000 done:
1001 	if (elf)
1002 		elf_end(elf);
1003 	close(fd);
1004 
1005 	if (!err)
1006 		return btf;
1007 
1008 	if (btf_ext)
1009 		btf_ext__free(*btf_ext);
1010 	btf__free(btf);
1011 
1012 	return ERR_PTR(err);
1013 }
1014 
1015 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1016 {
1017 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1018 }
1019 
1020 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1021 {
1022 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1023 }
1024 
1025 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1026 {
1027 	struct btf *btf = NULL;
1028 	void *data = NULL;
1029 	FILE *f = NULL;
1030 	__u16 magic;
1031 	int err = 0;
1032 	long sz;
1033 
1034 	f = fopen(path, "rb");
1035 	if (!f) {
1036 		err = -errno;
1037 		goto err_out;
1038 	}
1039 
1040 	/* check BTF magic */
1041 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1042 		err = -EIO;
1043 		goto err_out;
1044 	}
1045 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1046 		/* definitely not a raw BTF */
1047 		err = -EPROTO;
1048 		goto err_out;
1049 	}
1050 
1051 	/* get file size */
1052 	if (fseek(f, 0, SEEK_END)) {
1053 		err = -errno;
1054 		goto err_out;
1055 	}
1056 	sz = ftell(f);
1057 	if (sz < 0) {
1058 		err = -errno;
1059 		goto err_out;
1060 	}
1061 	/* rewind to the start */
1062 	if (fseek(f, 0, SEEK_SET)) {
1063 		err = -errno;
1064 		goto err_out;
1065 	}
1066 
1067 	/* pre-alloc memory and read all of BTF data */
1068 	data = malloc(sz);
1069 	if (!data) {
1070 		err = -ENOMEM;
1071 		goto err_out;
1072 	}
1073 	if (fread(data, 1, sz, f) < sz) {
1074 		err = -EIO;
1075 		goto err_out;
1076 	}
1077 
1078 	/* finally parse BTF data */
1079 	btf = btf_new(data, sz, base_btf);
1080 
1081 err_out:
1082 	free(data);
1083 	if (f)
1084 		fclose(f);
1085 	return err ? ERR_PTR(err) : btf;
1086 }
1087 
1088 struct btf *btf__parse_raw(const char *path)
1089 {
1090 	return libbpf_ptr(btf_parse_raw(path, NULL));
1091 }
1092 
1093 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1094 {
1095 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1096 }
1097 
1098 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1099 {
1100 	struct btf *btf;
1101 	int err;
1102 
1103 	if (btf_ext)
1104 		*btf_ext = NULL;
1105 
1106 	btf = btf_parse_raw(path, base_btf);
1107 	err = libbpf_get_error(btf);
1108 	if (!err)
1109 		return btf;
1110 	if (err != -EPROTO)
1111 		return ERR_PTR(err);
1112 	return btf_parse_elf(path, base_btf, btf_ext);
1113 }
1114 
1115 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1116 {
1117 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1118 }
1119 
1120 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1121 {
1122 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1123 }
1124 
1125 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1126 
1127 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1128 {
1129 	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1130 	__u32 buf_sz = 0, raw_size;
1131 	char *buf = NULL, *tmp;
1132 	void *raw_data;
1133 	int err = 0;
1134 
1135 	if (btf->fd >= 0)
1136 		return libbpf_err(-EEXIST);
1137 	if (log_sz && !log_buf)
1138 		return libbpf_err(-EINVAL);
1139 
1140 	/* cache native raw data representation */
1141 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1142 	if (!raw_data) {
1143 		err = -ENOMEM;
1144 		goto done;
1145 	}
1146 	btf->raw_size = raw_size;
1147 	btf->raw_data = raw_data;
1148 
1149 retry_load:
1150 	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1151 	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1152 	 * retry, using either auto-allocated or custom log_buf. This way
1153 	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1154 	 * for successful load and no need for log_buf.
1155 	 */
1156 	if (log_level) {
1157 		/* if caller didn't provide custom log_buf, we'll keep
1158 		 * allocating our own progressively bigger buffers for BTF
1159 		 * verification log
1160 		 */
1161 		if (!log_buf) {
1162 			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1163 			tmp = realloc(buf, buf_sz);
1164 			if (!tmp) {
1165 				err = -ENOMEM;
1166 				goto done;
1167 			}
1168 			buf = tmp;
1169 			buf[0] = '\0';
1170 		}
1171 
1172 		opts.log_buf = log_buf ? log_buf : buf;
1173 		opts.log_size = log_buf ? log_sz : buf_sz;
1174 		opts.log_level = log_level;
1175 	}
1176 
1177 	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1178 	if (btf->fd < 0) {
1179 		/* time to turn on verbose mode and try again */
1180 		if (log_level == 0) {
1181 			log_level = 1;
1182 			goto retry_load;
1183 		}
1184 		/* only retry if caller didn't provide custom log_buf, but
1185 		 * make sure we can never overflow buf_sz
1186 		 */
1187 		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1188 			goto retry_load;
1189 
1190 		err = -errno;
1191 		pr_warn("BTF loading error: %d\n", err);
1192 		/* don't print out contents of custom log_buf */
1193 		if (!log_buf && buf[0])
1194 			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1195 	}
1196 
1197 done:
1198 	free(buf);
1199 	return libbpf_err(err);
1200 }
1201 
1202 int btf__load_into_kernel(struct btf *btf)
1203 {
1204 	return btf_load_into_kernel(btf, NULL, 0, 0);
1205 }
1206 
1207 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1208 
1209 int btf__fd(const struct btf *btf)
1210 {
1211 	return btf->fd;
1212 }
1213 
1214 void btf__set_fd(struct btf *btf, int fd)
1215 {
1216 	btf->fd = fd;
1217 }
1218 
1219 static const void *btf_strs_data(const struct btf *btf)
1220 {
1221 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1222 }
1223 
1224 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1225 {
1226 	struct btf_header *hdr = btf->hdr;
1227 	struct btf_type *t;
1228 	void *data, *p;
1229 	__u32 data_sz;
1230 	int i;
1231 
1232 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1233 	if (data) {
1234 		*size = btf->raw_size;
1235 		return data;
1236 	}
1237 
1238 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1239 	data = calloc(1, data_sz);
1240 	if (!data)
1241 		return NULL;
1242 	p = data;
1243 
1244 	memcpy(p, hdr, hdr->hdr_len);
1245 	if (swap_endian)
1246 		btf_bswap_hdr(p);
1247 	p += hdr->hdr_len;
1248 
1249 	memcpy(p, btf->types_data, hdr->type_len);
1250 	if (swap_endian) {
1251 		for (i = 0; i < btf->nr_types; i++) {
1252 			t = p + btf->type_offs[i];
1253 			/* btf_bswap_type_rest() relies on native t->info, so
1254 			 * we swap base type info after we swapped all the
1255 			 * additional information
1256 			 */
1257 			if (btf_bswap_type_rest(t))
1258 				goto err_out;
1259 			btf_bswap_type_base(t);
1260 		}
1261 	}
1262 	p += hdr->type_len;
1263 
1264 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1265 	p += hdr->str_len;
1266 
1267 	*size = data_sz;
1268 	return data;
1269 err_out:
1270 	free(data);
1271 	return NULL;
1272 }
1273 
1274 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1275 {
1276 	struct btf *btf = (struct btf *)btf_ro;
1277 	__u32 data_sz;
1278 	void *data;
1279 
1280 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1281 	if (!data)
1282 		return errno = ENOMEM, NULL;
1283 
1284 	btf->raw_size = data_sz;
1285 	if (btf->swapped_endian)
1286 		btf->raw_data_swapped = data;
1287 	else
1288 		btf->raw_data = data;
1289 	*size = data_sz;
1290 	return data;
1291 }
1292 
1293 __attribute__((alias("btf__raw_data")))
1294 const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1295 
1296 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1297 {
1298 	if (offset < btf->start_str_off)
1299 		return btf__str_by_offset(btf->base_btf, offset);
1300 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1301 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1302 	else
1303 		return errno = EINVAL, NULL;
1304 }
1305 
1306 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1307 {
1308 	return btf__str_by_offset(btf, offset);
1309 }
1310 
1311 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1312 {
1313 	struct bpf_btf_info btf_info;
1314 	__u32 len = sizeof(btf_info);
1315 	__u32 last_size;
1316 	struct btf *btf;
1317 	void *ptr;
1318 	int err;
1319 
1320 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1321 	 * let's start with a sane default - 4KiB here - and resize it only if
1322 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1323 	 */
1324 	last_size = 4096;
1325 	ptr = malloc(last_size);
1326 	if (!ptr)
1327 		return ERR_PTR(-ENOMEM);
1328 
1329 	memset(&btf_info, 0, sizeof(btf_info));
1330 	btf_info.btf = ptr_to_u64(ptr);
1331 	btf_info.btf_size = last_size;
1332 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1333 
1334 	if (!err && btf_info.btf_size > last_size) {
1335 		void *temp_ptr;
1336 
1337 		last_size = btf_info.btf_size;
1338 		temp_ptr = realloc(ptr, last_size);
1339 		if (!temp_ptr) {
1340 			btf = ERR_PTR(-ENOMEM);
1341 			goto exit_free;
1342 		}
1343 		ptr = temp_ptr;
1344 
1345 		len = sizeof(btf_info);
1346 		memset(&btf_info, 0, sizeof(btf_info));
1347 		btf_info.btf = ptr_to_u64(ptr);
1348 		btf_info.btf_size = last_size;
1349 
1350 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1351 	}
1352 
1353 	if (err || btf_info.btf_size > last_size) {
1354 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1355 		goto exit_free;
1356 	}
1357 
1358 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1359 
1360 exit_free:
1361 	free(ptr);
1362 	return btf;
1363 }
1364 
1365 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1366 {
1367 	struct btf *btf;
1368 	int btf_fd;
1369 
1370 	btf_fd = bpf_btf_get_fd_by_id(id);
1371 	if (btf_fd < 0)
1372 		return libbpf_err_ptr(-errno);
1373 
1374 	btf = btf_get_from_fd(btf_fd, base_btf);
1375 	close(btf_fd);
1376 
1377 	return libbpf_ptr(btf);
1378 }
1379 
1380 struct btf *btf__load_from_kernel_by_id(__u32 id)
1381 {
1382 	return btf__load_from_kernel_by_id_split(id, NULL);
1383 }
1384 
1385 int btf__get_from_id(__u32 id, struct btf **btf)
1386 {
1387 	struct btf *res;
1388 	int err;
1389 
1390 	*btf = NULL;
1391 	res = btf__load_from_kernel_by_id(id);
1392 	err = libbpf_get_error(res);
1393 
1394 	if (err)
1395 		return libbpf_err(err);
1396 
1397 	*btf = res;
1398 	return 0;
1399 }
1400 
1401 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1402 			 __u32 expected_key_size, __u32 expected_value_size,
1403 			 __u32 *key_type_id, __u32 *value_type_id)
1404 {
1405 	const struct btf_type *container_type;
1406 	const struct btf_member *key, *value;
1407 	const size_t max_name = 256;
1408 	char container_name[max_name];
1409 	__s64 key_size, value_size;
1410 	__s32 container_id;
1411 
1412 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1413 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1414 			map_name, map_name);
1415 		return libbpf_err(-EINVAL);
1416 	}
1417 
1418 	container_id = btf__find_by_name(btf, container_name);
1419 	if (container_id < 0) {
1420 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1421 			 map_name, container_name);
1422 		return libbpf_err(container_id);
1423 	}
1424 
1425 	container_type = btf__type_by_id(btf, container_id);
1426 	if (!container_type) {
1427 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1428 			map_name, container_id);
1429 		return libbpf_err(-EINVAL);
1430 	}
1431 
1432 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1433 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1434 			map_name, container_name);
1435 		return libbpf_err(-EINVAL);
1436 	}
1437 
1438 	key = btf_members(container_type);
1439 	value = key + 1;
1440 
1441 	key_size = btf__resolve_size(btf, key->type);
1442 	if (key_size < 0) {
1443 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1444 		return libbpf_err(key_size);
1445 	}
1446 
1447 	if (expected_key_size != key_size) {
1448 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1449 			map_name, (__u32)key_size, expected_key_size);
1450 		return libbpf_err(-EINVAL);
1451 	}
1452 
1453 	value_size = btf__resolve_size(btf, value->type);
1454 	if (value_size < 0) {
1455 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1456 		return libbpf_err(value_size);
1457 	}
1458 
1459 	if (expected_value_size != value_size) {
1460 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1461 			map_name, (__u32)value_size, expected_value_size);
1462 		return libbpf_err(-EINVAL);
1463 	}
1464 
1465 	*key_type_id = key->type;
1466 	*value_type_id = value->type;
1467 
1468 	return 0;
1469 }
1470 
1471 static void btf_invalidate_raw_data(struct btf *btf)
1472 {
1473 	if (btf->raw_data) {
1474 		free(btf->raw_data);
1475 		btf->raw_data = NULL;
1476 	}
1477 	if (btf->raw_data_swapped) {
1478 		free(btf->raw_data_swapped);
1479 		btf->raw_data_swapped = NULL;
1480 	}
1481 }
1482 
1483 /* Ensure BTF is ready to be modified (by splitting into a three memory
1484  * regions for header, types, and strings). Also invalidate cached
1485  * raw_data, if any.
1486  */
1487 static int btf_ensure_modifiable(struct btf *btf)
1488 {
1489 	void *hdr, *types;
1490 	struct strset *set = NULL;
1491 	int err = -ENOMEM;
1492 
1493 	if (btf_is_modifiable(btf)) {
1494 		/* any BTF modification invalidates raw_data */
1495 		btf_invalidate_raw_data(btf);
1496 		return 0;
1497 	}
1498 
1499 	/* split raw data into three memory regions */
1500 	hdr = malloc(btf->hdr->hdr_len);
1501 	types = malloc(btf->hdr->type_len);
1502 	if (!hdr || !types)
1503 		goto err_out;
1504 
1505 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1506 	memcpy(types, btf->types_data, btf->hdr->type_len);
1507 
1508 	/* build lookup index for all strings */
1509 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1510 	if (IS_ERR(set)) {
1511 		err = PTR_ERR(set);
1512 		goto err_out;
1513 	}
1514 
1515 	/* only when everything was successful, update internal state */
1516 	btf->hdr = hdr;
1517 	btf->types_data = types;
1518 	btf->types_data_cap = btf->hdr->type_len;
1519 	btf->strs_data = NULL;
1520 	btf->strs_set = set;
1521 	/* if BTF was created from scratch, all strings are guaranteed to be
1522 	 * unique and deduplicated
1523 	 */
1524 	if (btf->hdr->str_len == 0)
1525 		btf->strs_deduped = true;
1526 	if (!btf->base_btf && btf->hdr->str_len == 1)
1527 		btf->strs_deduped = true;
1528 
1529 	/* invalidate raw_data representation */
1530 	btf_invalidate_raw_data(btf);
1531 
1532 	return 0;
1533 
1534 err_out:
1535 	strset__free(set);
1536 	free(hdr);
1537 	free(types);
1538 	return err;
1539 }
1540 
1541 /* Find an offset in BTF string section that corresponds to a given string *s*.
1542  * Returns:
1543  *   - >0 offset into string section, if string is found;
1544  *   - -ENOENT, if string is not in the string section;
1545  *   - <0, on any other error.
1546  */
1547 int btf__find_str(struct btf *btf, const char *s)
1548 {
1549 	int off;
1550 
1551 	if (btf->base_btf) {
1552 		off = btf__find_str(btf->base_btf, s);
1553 		if (off != -ENOENT)
1554 			return off;
1555 	}
1556 
1557 	/* BTF needs to be in a modifiable state to build string lookup index */
1558 	if (btf_ensure_modifiable(btf))
1559 		return libbpf_err(-ENOMEM);
1560 
1561 	off = strset__find_str(btf->strs_set, s);
1562 	if (off < 0)
1563 		return libbpf_err(off);
1564 
1565 	return btf->start_str_off + off;
1566 }
1567 
1568 /* Add a string s to the BTF string section.
1569  * Returns:
1570  *   - > 0 offset into string section, on success;
1571  *   - < 0, on error.
1572  */
1573 int btf__add_str(struct btf *btf, const char *s)
1574 {
1575 	int off;
1576 
1577 	if (btf->base_btf) {
1578 		off = btf__find_str(btf->base_btf, s);
1579 		if (off != -ENOENT)
1580 			return off;
1581 	}
1582 
1583 	if (btf_ensure_modifiable(btf))
1584 		return libbpf_err(-ENOMEM);
1585 
1586 	off = strset__add_str(btf->strs_set, s);
1587 	if (off < 0)
1588 		return libbpf_err(off);
1589 
1590 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1591 
1592 	return btf->start_str_off + off;
1593 }
1594 
1595 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1596 {
1597 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1598 			      btf->hdr->type_len, UINT_MAX, add_sz);
1599 }
1600 
1601 static void btf_type_inc_vlen(struct btf_type *t)
1602 {
1603 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1604 }
1605 
1606 static int btf_commit_type(struct btf *btf, int data_sz)
1607 {
1608 	int err;
1609 
1610 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1611 	if (err)
1612 		return libbpf_err(err);
1613 
1614 	btf->hdr->type_len += data_sz;
1615 	btf->hdr->str_off += data_sz;
1616 	btf->nr_types++;
1617 	return btf->start_id + btf->nr_types - 1;
1618 }
1619 
1620 struct btf_pipe {
1621 	const struct btf *src;
1622 	struct btf *dst;
1623 	struct hashmap *str_off_map; /* map string offsets from src to dst */
1624 };
1625 
1626 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1627 {
1628 	struct btf_pipe *p = ctx;
1629 	void *mapped_off;
1630 	int off, err;
1631 
1632 	if (!*str_off) /* nothing to do for empty strings */
1633 		return 0;
1634 
1635 	if (p->str_off_map &&
1636 	    hashmap__find(p->str_off_map, (void *)(long)*str_off, &mapped_off)) {
1637 		*str_off = (__u32)(long)mapped_off;
1638 		return 0;
1639 	}
1640 
1641 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1642 	if (off < 0)
1643 		return off;
1644 
1645 	/* Remember string mapping from src to dst.  It avoids
1646 	 * performing expensive string comparisons.
1647 	 */
1648 	if (p->str_off_map) {
1649 		err = hashmap__append(p->str_off_map, (void *)(long)*str_off, (void *)(long)off);
1650 		if (err)
1651 			return err;
1652 	}
1653 
1654 	*str_off = off;
1655 	return 0;
1656 }
1657 
1658 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1659 {
1660 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1661 	struct btf_type *t;
1662 	int sz, err;
1663 
1664 	sz = btf_type_size(src_type);
1665 	if (sz < 0)
1666 		return libbpf_err(sz);
1667 
1668 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1669 	if (btf_ensure_modifiable(btf))
1670 		return libbpf_err(-ENOMEM);
1671 
1672 	t = btf_add_type_mem(btf, sz);
1673 	if (!t)
1674 		return libbpf_err(-ENOMEM);
1675 
1676 	memcpy(t, src_type, sz);
1677 
1678 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1679 	if (err)
1680 		return libbpf_err(err);
1681 
1682 	return btf_commit_type(btf, sz);
1683 }
1684 
1685 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1686 {
1687 	struct btf *btf = ctx;
1688 
1689 	if (!*type_id) /* nothing to do for VOID references */
1690 		return 0;
1691 
1692 	/* we haven't updated btf's type count yet, so
1693 	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1694 	 * add to all newly added BTF types
1695 	 */
1696 	*type_id += btf->start_id + btf->nr_types - 1;
1697 	return 0;
1698 }
1699 
1700 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx);
1701 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx);
1702 
1703 int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1704 {
1705 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1706 	int data_sz, sz, cnt, i, err, old_strs_len;
1707 	__u32 *off;
1708 	void *t;
1709 
1710 	/* appending split BTF isn't supported yet */
1711 	if (src_btf->base_btf)
1712 		return libbpf_err(-ENOTSUP);
1713 
1714 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1715 	if (btf_ensure_modifiable(btf))
1716 		return libbpf_err(-ENOMEM);
1717 
1718 	/* remember original strings section size if we have to roll back
1719 	 * partial strings section changes
1720 	 */
1721 	old_strs_len = btf->hdr->str_len;
1722 
1723 	data_sz = src_btf->hdr->type_len;
1724 	cnt = btf__type_cnt(src_btf) - 1;
1725 
1726 	/* pre-allocate enough memory for new types */
1727 	t = btf_add_type_mem(btf, data_sz);
1728 	if (!t)
1729 		return libbpf_err(-ENOMEM);
1730 
1731 	/* pre-allocate enough memory for type offset index for new types */
1732 	off = btf_add_type_offs_mem(btf, cnt);
1733 	if (!off)
1734 		return libbpf_err(-ENOMEM);
1735 
1736 	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1737 	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1738 	if (IS_ERR(p.str_off_map))
1739 		return libbpf_err(-ENOMEM);
1740 
1741 	/* bulk copy types data for all types from src_btf */
1742 	memcpy(t, src_btf->types_data, data_sz);
1743 
1744 	for (i = 0; i < cnt; i++) {
1745 		sz = btf_type_size(t);
1746 		if (sz < 0) {
1747 			/* unlikely, has to be corrupted src_btf */
1748 			err = sz;
1749 			goto err_out;
1750 		}
1751 
1752 		/* fill out type ID to type offset mapping for lookups by type ID */
1753 		*off = t - btf->types_data;
1754 
1755 		/* add, dedup, and remap strings referenced by this BTF type */
1756 		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1757 		if (err)
1758 			goto err_out;
1759 
1760 		/* remap all type IDs referenced from this BTF type */
1761 		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1762 		if (err)
1763 			goto err_out;
1764 
1765 		/* go to next type data and type offset index entry */
1766 		t += sz;
1767 		off++;
1768 	}
1769 
1770 	/* Up until now any of the copied type data was effectively invisible,
1771 	 * so if we exited early before this point due to error, BTF would be
1772 	 * effectively unmodified. There would be extra internal memory
1773 	 * pre-allocated, but it would not be available for querying.  But now
1774 	 * that we've copied and rewritten all the data successfully, we can
1775 	 * update type count and various internal offsets and sizes to
1776 	 * "commit" the changes and made them visible to the outside world.
1777 	 */
1778 	btf->hdr->type_len += data_sz;
1779 	btf->hdr->str_off += data_sz;
1780 	btf->nr_types += cnt;
1781 
1782 	hashmap__free(p.str_off_map);
1783 
1784 	/* return type ID of the first added BTF type */
1785 	return btf->start_id + btf->nr_types - cnt;
1786 err_out:
1787 	/* zero out preallocated memory as if it was just allocated with
1788 	 * libbpf_add_mem()
1789 	 */
1790 	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1791 	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1792 
1793 	/* and now restore original strings section size; types data size
1794 	 * wasn't modified, so doesn't need restoring, see big comment above */
1795 	btf->hdr->str_len = old_strs_len;
1796 
1797 	hashmap__free(p.str_off_map);
1798 
1799 	return libbpf_err(err);
1800 }
1801 
1802 /*
1803  * Append new BTF_KIND_INT type with:
1804  *   - *name* - non-empty, non-NULL type name;
1805  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1806  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1807  * Returns:
1808  *   - >0, type ID of newly added BTF type;
1809  *   - <0, on error.
1810  */
1811 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1812 {
1813 	struct btf_type *t;
1814 	int sz, name_off;
1815 
1816 	/* non-empty name */
1817 	if (!name || !name[0])
1818 		return libbpf_err(-EINVAL);
1819 	/* byte_sz must be power of 2 */
1820 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1821 		return libbpf_err(-EINVAL);
1822 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1823 		return libbpf_err(-EINVAL);
1824 
1825 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1826 	if (btf_ensure_modifiable(btf))
1827 		return libbpf_err(-ENOMEM);
1828 
1829 	sz = sizeof(struct btf_type) + sizeof(int);
1830 	t = btf_add_type_mem(btf, sz);
1831 	if (!t)
1832 		return libbpf_err(-ENOMEM);
1833 
1834 	/* if something goes wrong later, we might end up with an extra string,
1835 	 * but that shouldn't be a problem, because BTF can't be constructed
1836 	 * completely anyway and will most probably be just discarded
1837 	 */
1838 	name_off = btf__add_str(btf, name);
1839 	if (name_off < 0)
1840 		return name_off;
1841 
1842 	t->name_off = name_off;
1843 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1844 	t->size = byte_sz;
1845 	/* set INT info, we don't allow setting legacy bit offset/size */
1846 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1847 
1848 	return btf_commit_type(btf, sz);
1849 }
1850 
1851 /*
1852  * Append new BTF_KIND_FLOAT type with:
1853  *   - *name* - non-empty, non-NULL type name;
1854  *   - *sz* - size of the type, in bytes;
1855  * Returns:
1856  *   - >0, type ID of newly added BTF type;
1857  *   - <0, on error.
1858  */
1859 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1860 {
1861 	struct btf_type *t;
1862 	int sz, name_off;
1863 
1864 	/* non-empty name */
1865 	if (!name || !name[0])
1866 		return libbpf_err(-EINVAL);
1867 
1868 	/* byte_sz must be one of the explicitly allowed values */
1869 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1870 	    byte_sz != 16)
1871 		return libbpf_err(-EINVAL);
1872 
1873 	if (btf_ensure_modifiable(btf))
1874 		return libbpf_err(-ENOMEM);
1875 
1876 	sz = sizeof(struct btf_type);
1877 	t = btf_add_type_mem(btf, sz);
1878 	if (!t)
1879 		return libbpf_err(-ENOMEM);
1880 
1881 	name_off = btf__add_str(btf, name);
1882 	if (name_off < 0)
1883 		return name_off;
1884 
1885 	t->name_off = name_off;
1886 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1887 	t->size = byte_sz;
1888 
1889 	return btf_commit_type(btf, sz);
1890 }
1891 
1892 /* it's completely legal to append BTF types with type IDs pointing forward to
1893  * types that haven't been appended yet, so we only make sure that id looks
1894  * sane, we can't guarantee that ID will always be valid
1895  */
1896 static int validate_type_id(int id)
1897 {
1898 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1899 		return -EINVAL;
1900 	return 0;
1901 }
1902 
1903 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1904 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1905 {
1906 	struct btf_type *t;
1907 	int sz, name_off = 0;
1908 
1909 	if (validate_type_id(ref_type_id))
1910 		return libbpf_err(-EINVAL);
1911 
1912 	if (btf_ensure_modifiable(btf))
1913 		return libbpf_err(-ENOMEM);
1914 
1915 	sz = sizeof(struct btf_type);
1916 	t = btf_add_type_mem(btf, sz);
1917 	if (!t)
1918 		return libbpf_err(-ENOMEM);
1919 
1920 	if (name && name[0]) {
1921 		name_off = btf__add_str(btf, name);
1922 		if (name_off < 0)
1923 			return name_off;
1924 	}
1925 
1926 	t->name_off = name_off;
1927 	t->info = btf_type_info(kind, 0, 0);
1928 	t->type = ref_type_id;
1929 
1930 	return btf_commit_type(btf, sz);
1931 }
1932 
1933 /*
1934  * Append new BTF_KIND_PTR type with:
1935  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1936  * Returns:
1937  *   - >0, type ID of newly added BTF type;
1938  *   - <0, on error.
1939  */
1940 int btf__add_ptr(struct btf *btf, int ref_type_id)
1941 {
1942 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1943 }
1944 
1945 /*
1946  * Append new BTF_KIND_ARRAY type with:
1947  *   - *index_type_id* - type ID of the type describing array index;
1948  *   - *elem_type_id* - type ID of the type describing array element;
1949  *   - *nr_elems* - the size of the array;
1950  * Returns:
1951  *   - >0, type ID of newly added BTF type;
1952  *   - <0, on error.
1953  */
1954 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1955 {
1956 	struct btf_type *t;
1957 	struct btf_array *a;
1958 	int sz;
1959 
1960 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1961 		return libbpf_err(-EINVAL);
1962 
1963 	if (btf_ensure_modifiable(btf))
1964 		return libbpf_err(-ENOMEM);
1965 
1966 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1967 	t = btf_add_type_mem(btf, sz);
1968 	if (!t)
1969 		return libbpf_err(-ENOMEM);
1970 
1971 	t->name_off = 0;
1972 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1973 	t->size = 0;
1974 
1975 	a = btf_array(t);
1976 	a->type = elem_type_id;
1977 	a->index_type = index_type_id;
1978 	a->nelems = nr_elems;
1979 
1980 	return btf_commit_type(btf, sz);
1981 }
1982 
1983 /* generic STRUCT/UNION append function */
1984 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1985 {
1986 	struct btf_type *t;
1987 	int sz, name_off = 0;
1988 
1989 	if (btf_ensure_modifiable(btf))
1990 		return libbpf_err(-ENOMEM);
1991 
1992 	sz = sizeof(struct btf_type);
1993 	t = btf_add_type_mem(btf, sz);
1994 	if (!t)
1995 		return libbpf_err(-ENOMEM);
1996 
1997 	if (name && name[0]) {
1998 		name_off = btf__add_str(btf, name);
1999 		if (name_off < 0)
2000 			return name_off;
2001 	}
2002 
2003 	/* start out with vlen=0 and no kflag; this will be adjusted when
2004 	 * adding each member
2005 	 */
2006 	t->name_off = name_off;
2007 	t->info = btf_type_info(kind, 0, 0);
2008 	t->size = bytes_sz;
2009 
2010 	return btf_commit_type(btf, sz);
2011 }
2012 
2013 /*
2014  * Append new BTF_KIND_STRUCT type with:
2015  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
2016  *   - *byte_sz* - size of the struct, in bytes;
2017  *
2018  * Struct initially has no fields in it. Fields can be added by
2019  * btf__add_field() right after btf__add_struct() succeeds.
2020  *
2021  * Returns:
2022  *   - >0, type ID of newly added BTF type;
2023  *   - <0, on error.
2024  */
2025 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
2026 {
2027 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
2028 }
2029 
2030 /*
2031  * Append new BTF_KIND_UNION type with:
2032  *   - *name* - name of the union, can be NULL or empty for anonymous union;
2033  *   - *byte_sz* - size of the union, in bytes;
2034  *
2035  * Union initially has no fields in it. Fields can be added by
2036  * btf__add_field() right after btf__add_union() succeeds. All fields
2037  * should have *bit_offset* of 0.
2038  *
2039  * Returns:
2040  *   - >0, type ID of newly added BTF type;
2041  *   - <0, on error.
2042  */
2043 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
2044 {
2045 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
2046 }
2047 
2048 static struct btf_type *btf_last_type(struct btf *btf)
2049 {
2050 	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
2051 }
2052 
2053 /*
2054  * Append new field for the current STRUCT/UNION type with:
2055  *   - *name* - name of the field, can be NULL or empty for anonymous field;
2056  *   - *type_id* - type ID for the type describing field type;
2057  *   - *bit_offset* - bit offset of the start of the field within struct/union;
2058  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2059  * Returns:
2060  *   -  0, on success;
2061  *   - <0, on error.
2062  */
2063 int btf__add_field(struct btf *btf, const char *name, int type_id,
2064 		   __u32 bit_offset, __u32 bit_size)
2065 {
2066 	struct btf_type *t;
2067 	struct btf_member *m;
2068 	bool is_bitfield;
2069 	int sz, name_off = 0;
2070 
2071 	/* last type should be union/struct */
2072 	if (btf->nr_types == 0)
2073 		return libbpf_err(-EINVAL);
2074 	t = btf_last_type(btf);
2075 	if (!btf_is_composite(t))
2076 		return libbpf_err(-EINVAL);
2077 
2078 	if (validate_type_id(type_id))
2079 		return libbpf_err(-EINVAL);
2080 	/* best-effort bit field offset/size enforcement */
2081 	is_bitfield = bit_size || (bit_offset % 8 != 0);
2082 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2083 		return libbpf_err(-EINVAL);
2084 
2085 	/* only offset 0 is allowed for unions */
2086 	if (btf_is_union(t) && bit_offset)
2087 		return libbpf_err(-EINVAL);
2088 
2089 	/* decompose and invalidate raw data */
2090 	if (btf_ensure_modifiable(btf))
2091 		return libbpf_err(-ENOMEM);
2092 
2093 	sz = sizeof(struct btf_member);
2094 	m = btf_add_type_mem(btf, sz);
2095 	if (!m)
2096 		return libbpf_err(-ENOMEM);
2097 
2098 	if (name && name[0]) {
2099 		name_off = btf__add_str(btf, name);
2100 		if (name_off < 0)
2101 			return name_off;
2102 	}
2103 
2104 	m->name_off = name_off;
2105 	m->type = type_id;
2106 	m->offset = bit_offset | (bit_size << 24);
2107 
2108 	/* btf_add_type_mem can invalidate t pointer */
2109 	t = btf_last_type(btf);
2110 	/* update parent type's vlen and kflag */
2111 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2112 
2113 	btf->hdr->type_len += sz;
2114 	btf->hdr->str_off += sz;
2115 	return 0;
2116 }
2117 
2118 /*
2119  * Append new BTF_KIND_ENUM type with:
2120  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2121  *   - *byte_sz* - size of the enum, in bytes.
2122  *
2123  * Enum initially has no enum values in it (and corresponds to enum forward
2124  * declaration). Enumerator values can be added by btf__add_enum_value()
2125  * immediately after btf__add_enum() succeeds.
2126  *
2127  * Returns:
2128  *   - >0, type ID of newly added BTF type;
2129  *   - <0, on error.
2130  */
2131 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2132 {
2133 	struct btf_type *t;
2134 	int sz, name_off = 0;
2135 
2136 	/* byte_sz must be power of 2 */
2137 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2138 		return libbpf_err(-EINVAL);
2139 
2140 	if (btf_ensure_modifiable(btf))
2141 		return libbpf_err(-ENOMEM);
2142 
2143 	sz = sizeof(struct btf_type);
2144 	t = btf_add_type_mem(btf, sz);
2145 	if (!t)
2146 		return libbpf_err(-ENOMEM);
2147 
2148 	if (name && name[0]) {
2149 		name_off = btf__add_str(btf, name);
2150 		if (name_off < 0)
2151 			return name_off;
2152 	}
2153 
2154 	/* start out with vlen=0; it will be adjusted when adding enum values */
2155 	t->name_off = name_off;
2156 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2157 	t->size = byte_sz;
2158 
2159 	return btf_commit_type(btf, sz);
2160 }
2161 
2162 /*
2163  * Append new enum value for the current ENUM type with:
2164  *   - *name* - name of the enumerator value, can't be NULL or empty;
2165  *   - *value* - integer value corresponding to enum value *name*;
2166  * Returns:
2167  *   -  0, on success;
2168  *   - <0, on error.
2169  */
2170 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2171 {
2172 	struct btf_type *t;
2173 	struct btf_enum *v;
2174 	int sz, name_off;
2175 
2176 	/* last type should be BTF_KIND_ENUM */
2177 	if (btf->nr_types == 0)
2178 		return libbpf_err(-EINVAL);
2179 	t = btf_last_type(btf);
2180 	if (!btf_is_enum(t))
2181 		return libbpf_err(-EINVAL);
2182 
2183 	/* non-empty name */
2184 	if (!name || !name[0])
2185 		return libbpf_err(-EINVAL);
2186 	if (value < INT_MIN || value > UINT_MAX)
2187 		return libbpf_err(-E2BIG);
2188 
2189 	/* decompose and invalidate raw data */
2190 	if (btf_ensure_modifiable(btf))
2191 		return libbpf_err(-ENOMEM);
2192 
2193 	sz = sizeof(struct btf_enum);
2194 	v = btf_add_type_mem(btf, sz);
2195 	if (!v)
2196 		return libbpf_err(-ENOMEM);
2197 
2198 	name_off = btf__add_str(btf, name);
2199 	if (name_off < 0)
2200 		return name_off;
2201 
2202 	v->name_off = name_off;
2203 	v->val = value;
2204 
2205 	/* update parent type's vlen */
2206 	t = btf_last_type(btf);
2207 	btf_type_inc_vlen(t);
2208 
2209 	btf->hdr->type_len += sz;
2210 	btf->hdr->str_off += sz;
2211 	return 0;
2212 }
2213 
2214 /*
2215  * Append new BTF_KIND_FWD type with:
2216  *   - *name*, non-empty/non-NULL name;
2217  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2218  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2219  * Returns:
2220  *   - >0, type ID of newly added BTF type;
2221  *   - <0, on error.
2222  */
2223 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2224 {
2225 	if (!name || !name[0])
2226 		return libbpf_err(-EINVAL);
2227 
2228 	switch (fwd_kind) {
2229 	case BTF_FWD_STRUCT:
2230 	case BTF_FWD_UNION: {
2231 		struct btf_type *t;
2232 		int id;
2233 
2234 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2235 		if (id <= 0)
2236 			return id;
2237 		t = btf_type_by_id(btf, id);
2238 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2239 		return id;
2240 	}
2241 	case BTF_FWD_ENUM:
2242 		/* enum forward in BTF currently is just an enum with no enum
2243 		 * values; we also assume a standard 4-byte size for it
2244 		 */
2245 		return btf__add_enum(btf, name, sizeof(int));
2246 	default:
2247 		return libbpf_err(-EINVAL);
2248 	}
2249 }
2250 
2251 /*
2252  * Append new BTF_KING_TYPEDEF type with:
2253  *   - *name*, non-empty/non-NULL name;
2254  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2255  * Returns:
2256  *   - >0, type ID of newly added BTF type;
2257  *   - <0, on error.
2258  */
2259 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2260 {
2261 	if (!name || !name[0])
2262 		return libbpf_err(-EINVAL);
2263 
2264 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2265 }
2266 
2267 /*
2268  * Append new BTF_KIND_VOLATILE type with:
2269  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2270  * Returns:
2271  *   - >0, type ID of newly added BTF type;
2272  *   - <0, on error.
2273  */
2274 int btf__add_volatile(struct btf *btf, int ref_type_id)
2275 {
2276 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2277 }
2278 
2279 /*
2280  * Append new BTF_KIND_CONST type with:
2281  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2282  * Returns:
2283  *   - >0, type ID of newly added BTF type;
2284  *   - <0, on error.
2285  */
2286 int btf__add_const(struct btf *btf, int ref_type_id)
2287 {
2288 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2289 }
2290 
2291 /*
2292  * Append new BTF_KIND_RESTRICT type with:
2293  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2294  * Returns:
2295  *   - >0, type ID of newly added BTF type;
2296  *   - <0, on error.
2297  */
2298 int btf__add_restrict(struct btf *btf, int ref_type_id)
2299 {
2300 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2301 }
2302 
2303 /*
2304  * Append new BTF_KIND_TYPE_TAG type with:
2305  *   - *value*, non-empty/non-NULL tag value;
2306  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2307  * Returns:
2308  *   - >0, type ID of newly added BTF type;
2309  *   - <0, on error.
2310  */
2311 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2312 {
2313 	if (!value|| !value[0])
2314 		return libbpf_err(-EINVAL);
2315 
2316 	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2317 }
2318 
2319 /*
2320  * Append new BTF_KIND_FUNC type with:
2321  *   - *name*, non-empty/non-NULL name;
2322  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2323  * Returns:
2324  *   - >0, type ID of newly added BTF type;
2325  *   - <0, on error.
2326  */
2327 int btf__add_func(struct btf *btf, const char *name,
2328 		  enum btf_func_linkage linkage, int proto_type_id)
2329 {
2330 	int id;
2331 
2332 	if (!name || !name[0])
2333 		return libbpf_err(-EINVAL);
2334 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2335 	    linkage != BTF_FUNC_EXTERN)
2336 		return libbpf_err(-EINVAL);
2337 
2338 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2339 	if (id > 0) {
2340 		struct btf_type *t = btf_type_by_id(btf, id);
2341 
2342 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2343 	}
2344 	return libbpf_err(id);
2345 }
2346 
2347 /*
2348  * Append new BTF_KIND_FUNC_PROTO with:
2349  *   - *ret_type_id* - type ID for return result of a function.
2350  *
2351  * Function prototype initially has no arguments, but they can be added by
2352  * btf__add_func_param() one by one, immediately after
2353  * btf__add_func_proto() succeeded.
2354  *
2355  * Returns:
2356  *   - >0, type ID of newly added BTF type;
2357  *   - <0, on error.
2358  */
2359 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2360 {
2361 	struct btf_type *t;
2362 	int sz;
2363 
2364 	if (validate_type_id(ret_type_id))
2365 		return libbpf_err(-EINVAL);
2366 
2367 	if (btf_ensure_modifiable(btf))
2368 		return libbpf_err(-ENOMEM);
2369 
2370 	sz = sizeof(struct btf_type);
2371 	t = btf_add_type_mem(btf, sz);
2372 	if (!t)
2373 		return libbpf_err(-ENOMEM);
2374 
2375 	/* start out with vlen=0; this will be adjusted when adding enum
2376 	 * values, if necessary
2377 	 */
2378 	t->name_off = 0;
2379 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2380 	t->type = ret_type_id;
2381 
2382 	return btf_commit_type(btf, sz);
2383 }
2384 
2385 /*
2386  * Append new function parameter for current FUNC_PROTO type with:
2387  *   - *name* - parameter name, can be NULL or empty;
2388  *   - *type_id* - type ID describing the type of the parameter.
2389  * Returns:
2390  *   -  0, on success;
2391  *   - <0, on error.
2392  */
2393 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2394 {
2395 	struct btf_type *t;
2396 	struct btf_param *p;
2397 	int sz, name_off = 0;
2398 
2399 	if (validate_type_id(type_id))
2400 		return libbpf_err(-EINVAL);
2401 
2402 	/* last type should be BTF_KIND_FUNC_PROTO */
2403 	if (btf->nr_types == 0)
2404 		return libbpf_err(-EINVAL);
2405 	t = btf_last_type(btf);
2406 	if (!btf_is_func_proto(t))
2407 		return libbpf_err(-EINVAL);
2408 
2409 	/* decompose and invalidate raw data */
2410 	if (btf_ensure_modifiable(btf))
2411 		return libbpf_err(-ENOMEM);
2412 
2413 	sz = sizeof(struct btf_param);
2414 	p = btf_add_type_mem(btf, sz);
2415 	if (!p)
2416 		return libbpf_err(-ENOMEM);
2417 
2418 	if (name && name[0]) {
2419 		name_off = btf__add_str(btf, name);
2420 		if (name_off < 0)
2421 			return name_off;
2422 	}
2423 
2424 	p->name_off = name_off;
2425 	p->type = type_id;
2426 
2427 	/* update parent type's vlen */
2428 	t = btf_last_type(btf);
2429 	btf_type_inc_vlen(t);
2430 
2431 	btf->hdr->type_len += sz;
2432 	btf->hdr->str_off += sz;
2433 	return 0;
2434 }
2435 
2436 /*
2437  * Append new BTF_KIND_VAR type with:
2438  *   - *name* - non-empty/non-NULL name;
2439  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2440  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2441  *   - *type_id* - type ID of the type describing the type of the variable.
2442  * Returns:
2443  *   - >0, type ID of newly added BTF type;
2444  *   - <0, on error.
2445  */
2446 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2447 {
2448 	struct btf_type *t;
2449 	struct btf_var *v;
2450 	int sz, name_off;
2451 
2452 	/* non-empty name */
2453 	if (!name || !name[0])
2454 		return libbpf_err(-EINVAL);
2455 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2456 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2457 		return libbpf_err(-EINVAL);
2458 	if (validate_type_id(type_id))
2459 		return libbpf_err(-EINVAL);
2460 
2461 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2462 	if (btf_ensure_modifiable(btf))
2463 		return libbpf_err(-ENOMEM);
2464 
2465 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2466 	t = btf_add_type_mem(btf, sz);
2467 	if (!t)
2468 		return libbpf_err(-ENOMEM);
2469 
2470 	name_off = btf__add_str(btf, name);
2471 	if (name_off < 0)
2472 		return name_off;
2473 
2474 	t->name_off = name_off;
2475 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2476 	t->type = type_id;
2477 
2478 	v = btf_var(t);
2479 	v->linkage = linkage;
2480 
2481 	return btf_commit_type(btf, sz);
2482 }
2483 
2484 /*
2485  * Append new BTF_KIND_DATASEC type with:
2486  *   - *name* - non-empty/non-NULL name;
2487  *   - *byte_sz* - data section size, in bytes.
2488  *
2489  * Data section is initially empty. Variables info can be added with
2490  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2491  *
2492  * Returns:
2493  *   - >0, type ID of newly added BTF type;
2494  *   - <0, on error.
2495  */
2496 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2497 {
2498 	struct btf_type *t;
2499 	int sz, name_off;
2500 
2501 	/* non-empty name */
2502 	if (!name || !name[0])
2503 		return libbpf_err(-EINVAL);
2504 
2505 	if (btf_ensure_modifiable(btf))
2506 		return libbpf_err(-ENOMEM);
2507 
2508 	sz = sizeof(struct btf_type);
2509 	t = btf_add_type_mem(btf, sz);
2510 	if (!t)
2511 		return libbpf_err(-ENOMEM);
2512 
2513 	name_off = btf__add_str(btf, name);
2514 	if (name_off < 0)
2515 		return name_off;
2516 
2517 	/* start with vlen=0, which will be update as var_secinfos are added */
2518 	t->name_off = name_off;
2519 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2520 	t->size = byte_sz;
2521 
2522 	return btf_commit_type(btf, sz);
2523 }
2524 
2525 /*
2526  * Append new data section variable information entry for current DATASEC type:
2527  *   - *var_type_id* - type ID, describing type of the variable;
2528  *   - *offset* - variable offset within data section, in bytes;
2529  *   - *byte_sz* - variable size, in bytes.
2530  *
2531  * Returns:
2532  *   -  0, on success;
2533  *   - <0, on error.
2534  */
2535 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2536 {
2537 	struct btf_type *t;
2538 	struct btf_var_secinfo *v;
2539 	int sz;
2540 
2541 	/* last type should be BTF_KIND_DATASEC */
2542 	if (btf->nr_types == 0)
2543 		return libbpf_err(-EINVAL);
2544 	t = btf_last_type(btf);
2545 	if (!btf_is_datasec(t))
2546 		return libbpf_err(-EINVAL);
2547 
2548 	if (validate_type_id(var_type_id))
2549 		return libbpf_err(-EINVAL);
2550 
2551 	/* decompose and invalidate raw data */
2552 	if (btf_ensure_modifiable(btf))
2553 		return libbpf_err(-ENOMEM);
2554 
2555 	sz = sizeof(struct btf_var_secinfo);
2556 	v = btf_add_type_mem(btf, sz);
2557 	if (!v)
2558 		return libbpf_err(-ENOMEM);
2559 
2560 	v->type = var_type_id;
2561 	v->offset = offset;
2562 	v->size = byte_sz;
2563 
2564 	/* update parent type's vlen */
2565 	t = btf_last_type(btf);
2566 	btf_type_inc_vlen(t);
2567 
2568 	btf->hdr->type_len += sz;
2569 	btf->hdr->str_off += sz;
2570 	return 0;
2571 }
2572 
2573 /*
2574  * Append new BTF_KIND_DECL_TAG type with:
2575  *   - *value* - non-empty/non-NULL string;
2576  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2577  *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2578  *     member or function argument index;
2579  * Returns:
2580  *   - >0, type ID of newly added BTF type;
2581  *   - <0, on error.
2582  */
2583 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2584 		 int component_idx)
2585 {
2586 	struct btf_type *t;
2587 	int sz, value_off;
2588 
2589 	if (!value || !value[0] || component_idx < -1)
2590 		return libbpf_err(-EINVAL);
2591 
2592 	if (validate_type_id(ref_type_id))
2593 		return libbpf_err(-EINVAL);
2594 
2595 	if (btf_ensure_modifiable(btf))
2596 		return libbpf_err(-ENOMEM);
2597 
2598 	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2599 	t = btf_add_type_mem(btf, sz);
2600 	if (!t)
2601 		return libbpf_err(-ENOMEM);
2602 
2603 	value_off = btf__add_str(btf, value);
2604 	if (value_off < 0)
2605 		return value_off;
2606 
2607 	t->name_off = value_off;
2608 	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2609 	t->type = ref_type_id;
2610 	btf_decl_tag(t)->component_idx = component_idx;
2611 
2612 	return btf_commit_type(btf, sz);
2613 }
2614 
2615 struct btf_ext_sec_setup_param {
2616 	__u32 off;
2617 	__u32 len;
2618 	__u32 min_rec_size;
2619 	struct btf_ext_info *ext_info;
2620 	const char *desc;
2621 };
2622 
2623 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2624 			      struct btf_ext_sec_setup_param *ext_sec)
2625 {
2626 	const struct btf_ext_info_sec *sinfo;
2627 	struct btf_ext_info *ext_info;
2628 	__u32 info_left, record_size;
2629 	size_t sec_cnt = 0;
2630 	/* The start of the info sec (including the __u32 record_size). */
2631 	void *info;
2632 
2633 	if (ext_sec->len == 0)
2634 		return 0;
2635 
2636 	if (ext_sec->off & 0x03) {
2637 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2638 		     ext_sec->desc);
2639 		return -EINVAL;
2640 	}
2641 
2642 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2643 	info_left = ext_sec->len;
2644 
2645 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2646 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2647 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2648 		return -EINVAL;
2649 	}
2650 
2651 	/* At least a record size */
2652 	if (info_left < sizeof(__u32)) {
2653 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2654 		return -EINVAL;
2655 	}
2656 
2657 	/* The record size needs to meet the minimum standard */
2658 	record_size = *(__u32 *)info;
2659 	if (record_size < ext_sec->min_rec_size ||
2660 	    record_size & 0x03) {
2661 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2662 			 ext_sec->desc, record_size);
2663 		return -EINVAL;
2664 	}
2665 
2666 	sinfo = info + sizeof(__u32);
2667 	info_left -= sizeof(__u32);
2668 
2669 	/* If no records, return failure now so .BTF.ext won't be used. */
2670 	if (!info_left) {
2671 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2672 		return -EINVAL;
2673 	}
2674 
2675 	while (info_left) {
2676 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2677 		__u64 total_record_size;
2678 		__u32 num_records;
2679 
2680 		if (info_left < sec_hdrlen) {
2681 			pr_debug("%s section header is not found in .BTF.ext\n",
2682 			     ext_sec->desc);
2683 			return -EINVAL;
2684 		}
2685 
2686 		num_records = sinfo->num_info;
2687 		if (num_records == 0) {
2688 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2689 			     ext_sec->desc);
2690 			return -EINVAL;
2691 		}
2692 
2693 		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2694 		if (info_left < total_record_size) {
2695 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2696 			     ext_sec->desc);
2697 			return -EINVAL;
2698 		}
2699 
2700 		info_left -= total_record_size;
2701 		sinfo = (void *)sinfo + total_record_size;
2702 		sec_cnt++;
2703 	}
2704 
2705 	ext_info = ext_sec->ext_info;
2706 	ext_info->len = ext_sec->len - sizeof(__u32);
2707 	ext_info->rec_size = record_size;
2708 	ext_info->info = info + sizeof(__u32);
2709 	ext_info->sec_cnt = sec_cnt;
2710 
2711 	return 0;
2712 }
2713 
2714 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2715 {
2716 	struct btf_ext_sec_setup_param param = {
2717 		.off = btf_ext->hdr->func_info_off,
2718 		.len = btf_ext->hdr->func_info_len,
2719 		.min_rec_size = sizeof(struct bpf_func_info_min),
2720 		.ext_info = &btf_ext->func_info,
2721 		.desc = "func_info"
2722 	};
2723 
2724 	return btf_ext_setup_info(btf_ext, &param);
2725 }
2726 
2727 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2728 {
2729 	struct btf_ext_sec_setup_param param = {
2730 		.off = btf_ext->hdr->line_info_off,
2731 		.len = btf_ext->hdr->line_info_len,
2732 		.min_rec_size = sizeof(struct bpf_line_info_min),
2733 		.ext_info = &btf_ext->line_info,
2734 		.desc = "line_info",
2735 	};
2736 
2737 	return btf_ext_setup_info(btf_ext, &param);
2738 }
2739 
2740 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2741 {
2742 	struct btf_ext_sec_setup_param param = {
2743 		.off = btf_ext->hdr->core_relo_off,
2744 		.len = btf_ext->hdr->core_relo_len,
2745 		.min_rec_size = sizeof(struct bpf_core_relo),
2746 		.ext_info = &btf_ext->core_relo_info,
2747 		.desc = "core_relo",
2748 	};
2749 
2750 	return btf_ext_setup_info(btf_ext, &param);
2751 }
2752 
2753 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2754 {
2755 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2756 
2757 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2758 	    data_size < hdr->hdr_len) {
2759 		pr_debug("BTF.ext header not found");
2760 		return -EINVAL;
2761 	}
2762 
2763 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2764 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2765 		return -ENOTSUP;
2766 	} else if (hdr->magic != BTF_MAGIC) {
2767 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2768 		return -EINVAL;
2769 	}
2770 
2771 	if (hdr->version != BTF_VERSION) {
2772 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2773 		return -ENOTSUP;
2774 	}
2775 
2776 	if (hdr->flags) {
2777 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2778 		return -ENOTSUP;
2779 	}
2780 
2781 	if (data_size == hdr->hdr_len) {
2782 		pr_debug("BTF.ext has no data\n");
2783 		return -EINVAL;
2784 	}
2785 
2786 	return 0;
2787 }
2788 
2789 void btf_ext__free(struct btf_ext *btf_ext)
2790 {
2791 	if (IS_ERR_OR_NULL(btf_ext))
2792 		return;
2793 	free(btf_ext->func_info.sec_idxs);
2794 	free(btf_ext->line_info.sec_idxs);
2795 	free(btf_ext->core_relo_info.sec_idxs);
2796 	free(btf_ext->data);
2797 	free(btf_ext);
2798 }
2799 
2800 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2801 {
2802 	struct btf_ext *btf_ext;
2803 	int err;
2804 
2805 	btf_ext = calloc(1, sizeof(struct btf_ext));
2806 	if (!btf_ext)
2807 		return libbpf_err_ptr(-ENOMEM);
2808 
2809 	btf_ext->data_size = size;
2810 	btf_ext->data = malloc(size);
2811 	if (!btf_ext->data) {
2812 		err = -ENOMEM;
2813 		goto done;
2814 	}
2815 	memcpy(btf_ext->data, data, size);
2816 
2817 	err = btf_ext_parse_hdr(btf_ext->data, size);
2818 	if (err)
2819 		goto done;
2820 
2821 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2822 		err = -EINVAL;
2823 		goto done;
2824 	}
2825 
2826 	err = btf_ext_setup_func_info(btf_ext);
2827 	if (err)
2828 		goto done;
2829 
2830 	err = btf_ext_setup_line_info(btf_ext);
2831 	if (err)
2832 		goto done;
2833 
2834 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2835 		goto done; /* skip core relos parsing */
2836 
2837 	err = btf_ext_setup_core_relos(btf_ext);
2838 	if (err)
2839 		goto done;
2840 
2841 done:
2842 	if (err) {
2843 		btf_ext__free(btf_ext);
2844 		return libbpf_err_ptr(err);
2845 	}
2846 
2847 	return btf_ext;
2848 }
2849 
2850 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2851 {
2852 	*size = btf_ext->data_size;
2853 	return btf_ext->data;
2854 }
2855 
2856 static int btf_ext_reloc_info(const struct btf *btf,
2857 			      const struct btf_ext_info *ext_info,
2858 			      const char *sec_name, __u32 insns_cnt,
2859 			      void **info, __u32 *cnt)
2860 {
2861 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2862 	__u32 i, record_size, existing_len, records_len;
2863 	struct btf_ext_info_sec *sinfo;
2864 	const char *info_sec_name;
2865 	__u64 remain_len;
2866 	void *data;
2867 
2868 	record_size = ext_info->rec_size;
2869 	sinfo = ext_info->info;
2870 	remain_len = ext_info->len;
2871 	while (remain_len > 0) {
2872 		records_len = sinfo->num_info * record_size;
2873 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2874 		if (strcmp(info_sec_name, sec_name)) {
2875 			remain_len -= sec_hdrlen + records_len;
2876 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2877 			continue;
2878 		}
2879 
2880 		existing_len = (*cnt) * record_size;
2881 		data = realloc(*info, existing_len + records_len);
2882 		if (!data)
2883 			return libbpf_err(-ENOMEM);
2884 
2885 		memcpy(data + existing_len, sinfo->data, records_len);
2886 		/* adjust insn_off only, the rest data will be passed
2887 		 * to the kernel.
2888 		 */
2889 		for (i = 0; i < sinfo->num_info; i++) {
2890 			__u32 *insn_off;
2891 
2892 			insn_off = data + existing_len + (i * record_size);
2893 			*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2894 		}
2895 		*info = data;
2896 		*cnt += sinfo->num_info;
2897 		return 0;
2898 	}
2899 
2900 	return libbpf_err(-ENOENT);
2901 }
2902 
2903 int btf_ext__reloc_func_info(const struct btf *btf,
2904 			     const struct btf_ext *btf_ext,
2905 			     const char *sec_name, __u32 insns_cnt,
2906 			     void **func_info, __u32 *cnt)
2907 {
2908 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2909 				  insns_cnt, func_info, cnt);
2910 }
2911 
2912 int btf_ext__reloc_line_info(const struct btf *btf,
2913 			     const struct btf_ext *btf_ext,
2914 			     const char *sec_name, __u32 insns_cnt,
2915 			     void **line_info, __u32 *cnt)
2916 {
2917 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2918 				  insns_cnt, line_info, cnt);
2919 }
2920 
2921 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2922 {
2923 	return btf_ext->func_info.rec_size;
2924 }
2925 
2926 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2927 {
2928 	return btf_ext->line_info.rec_size;
2929 }
2930 
2931 struct btf_dedup;
2932 
2933 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2934 static void btf_dedup_free(struct btf_dedup *d);
2935 static int btf_dedup_prep(struct btf_dedup *d);
2936 static int btf_dedup_strings(struct btf_dedup *d);
2937 static int btf_dedup_prim_types(struct btf_dedup *d);
2938 static int btf_dedup_struct_types(struct btf_dedup *d);
2939 static int btf_dedup_ref_types(struct btf_dedup *d);
2940 static int btf_dedup_compact_types(struct btf_dedup *d);
2941 static int btf_dedup_remap_types(struct btf_dedup *d);
2942 
2943 /*
2944  * Deduplicate BTF types and strings.
2945  *
2946  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2947  * section with all BTF type descriptors and string data. It overwrites that
2948  * memory in-place with deduplicated types and strings without any loss of
2949  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2950  * is provided, all the strings referenced from .BTF.ext section are honored
2951  * and updated to point to the right offsets after deduplication.
2952  *
2953  * If function returns with error, type/string data might be garbled and should
2954  * be discarded.
2955  *
2956  * More verbose and detailed description of both problem btf_dedup is solving,
2957  * as well as solution could be found at:
2958  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2959  *
2960  * Problem description and justification
2961  * =====================================
2962  *
2963  * BTF type information is typically emitted either as a result of conversion
2964  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2965  * unit contains information about a subset of all the types that are used
2966  * in an application. These subsets are frequently overlapping and contain a lot
2967  * of duplicated information when later concatenated together into a single
2968  * binary. This algorithm ensures that each unique type is represented by single
2969  * BTF type descriptor, greatly reducing resulting size of BTF data.
2970  *
2971  * Compilation unit isolation and subsequent duplication of data is not the only
2972  * problem. The same type hierarchy (e.g., struct and all the type that struct
2973  * references) in different compilation units can be represented in BTF to
2974  * various degrees of completeness (or, rather, incompleteness) due to
2975  * struct/union forward declarations.
2976  *
2977  * Let's take a look at an example, that we'll use to better understand the
2978  * problem (and solution). Suppose we have two compilation units, each using
2979  * same `struct S`, but each of them having incomplete type information about
2980  * struct's fields:
2981  *
2982  * // CU #1:
2983  * struct S;
2984  * struct A {
2985  *	int a;
2986  *	struct A* self;
2987  *	struct S* parent;
2988  * };
2989  * struct B;
2990  * struct S {
2991  *	struct A* a_ptr;
2992  *	struct B* b_ptr;
2993  * };
2994  *
2995  * // CU #2:
2996  * struct S;
2997  * struct A;
2998  * struct B {
2999  *	int b;
3000  *	struct B* self;
3001  *	struct S* parent;
3002  * };
3003  * struct S {
3004  *	struct A* a_ptr;
3005  *	struct B* b_ptr;
3006  * };
3007  *
3008  * In case of CU #1, BTF data will know only that `struct B` exist (but no
3009  * more), but will know the complete type information about `struct A`. While
3010  * for CU #2, it will know full type information about `struct B`, but will
3011  * only know about forward declaration of `struct A` (in BTF terms, it will
3012  * have `BTF_KIND_FWD` type descriptor with name `B`).
3013  *
3014  * This compilation unit isolation means that it's possible that there is no
3015  * single CU with complete type information describing structs `S`, `A`, and
3016  * `B`. Also, we might get tons of duplicated and redundant type information.
3017  *
3018  * Additional complication we need to keep in mind comes from the fact that
3019  * types, in general, can form graphs containing cycles, not just DAGs.
3020  *
3021  * While algorithm does deduplication, it also merges and resolves type
3022  * information (unless disabled throught `struct btf_opts`), whenever possible.
3023  * E.g., in the example above with two compilation units having partial type
3024  * information for structs `A` and `B`, the output of algorithm will emit
3025  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
3026  * (as well as type information for `int` and pointers), as if they were defined
3027  * in a single compilation unit as:
3028  *
3029  * struct A {
3030  *	int a;
3031  *	struct A* self;
3032  *	struct S* parent;
3033  * };
3034  * struct B {
3035  *	int b;
3036  *	struct B* self;
3037  *	struct S* parent;
3038  * };
3039  * struct S {
3040  *	struct A* a_ptr;
3041  *	struct B* b_ptr;
3042  * };
3043  *
3044  * Algorithm summary
3045  * =================
3046  *
3047  * Algorithm completes its work in 6 separate passes:
3048  *
3049  * 1. Strings deduplication.
3050  * 2. Primitive types deduplication (int, enum, fwd).
3051  * 3. Struct/union types deduplication.
3052  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3053  *    protos, and const/volatile/restrict modifiers).
3054  * 5. Types compaction.
3055  * 6. Types remapping.
3056  *
3057  * Algorithm determines canonical type descriptor, which is a single
3058  * representative type for each truly unique type. This canonical type is the
3059  * one that will go into final deduplicated BTF type information. For
3060  * struct/unions, it is also the type that algorithm will merge additional type
3061  * information into (while resolving FWDs), as it discovers it from data in
3062  * other CUs. Each input BTF type eventually gets either mapped to itself, if
3063  * that type is canonical, or to some other type, if that type is equivalent
3064  * and was chosen as canonical representative. This mapping is stored in
3065  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3066  * FWD type got resolved to.
3067  *
3068  * To facilitate fast discovery of canonical types, we also maintain canonical
3069  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3070  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3071  * that match that signature. With sufficiently good choice of type signature
3072  * hashing function, we can limit number of canonical types for each unique type
3073  * signature to a very small number, allowing to find canonical type for any
3074  * duplicated type very quickly.
3075  *
3076  * Struct/union deduplication is the most critical part and algorithm for
3077  * deduplicating structs/unions is described in greater details in comments for
3078  * `btf_dedup_is_equiv` function.
3079  */
3080 
3081 DEFAULT_VERSION(btf__dedup_v0_6_0, btf__dedup, LIBBPF_0.6.0)
3082 int btf__dedup_v0_6_0(struct btf *btf, const struct btf_dedup_opts *opts)
3083 {
3084 	struct btf_dedup *d;
3085 	int err;
3086 
3087 	if (!OPTS_VALID(opts, btf_dedup_opts))
3088 		return libbpf_err(-EINVAL);
3089 
3090 	d = btf_dedup_new(btf, opts);
3091 	if (IS_ERR(d)) {
3092 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3093 		return libbpf_err(-EINVAL);
3094 	}
3095 
3096 	if (btf_ensure_modifiable(btf)) {
3097 		err = -ENOMEM;
3098 		goto done;
3099 	}
3100 
3101 	err = btf_dedup_prep(d);
3102 	if (err) {
3103 		pr_debug("btf_dedup_prep failed:%d\n", err);
3104 		goto done;
3105 	}
3106 	err = btf_dedup_strings(d);
3107 	if (err < 0) {
3108 		pr_debug("btf_dedup_strings failed:%d\n", err);
3109 		goto done;
3110 	}
3111 	err = btf_dedup_prim_types(d);
3112 	if (err < 0) {
3113 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3114 		goto done;
3115 	}
3116 	err = btf_dedup_struct_types(d);
3117 	if (err < 0) {
3118 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3119 		goto done;
3120 	}
3121 	err = btf_dedup_ref_types(d);
3122 	if (err < 0) {
3123 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3124 		goto done;
3125 	}
3126 	err = btf_dedup_compact_types(d);
3127 	if (err < 0) {
3128 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3129 		goto done;
3130 	}
3131 	err = btf_dedup_remap_types(d);
3132 	if (err < 0) {
3133 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3134 		goto done;
3135 	}
3136 
3137 done:
3138 	btf_dedup_free(d);
3139 	return libbpf_err(err);
3140 }
3141 
3142 COMPAT_VERSION(btf__dedup_deprecated, btf__dedup, LIBBPF_0.0.2)
3143 int btf__dedup_deprecated(struct btf *btf, struct btf_ext *btf_ext, const void *unused_opts)
3144 {
3145 	LIBBPF_OPTS(btf_dedup_opts, opts, .btf_ext = btf_ext);
3146 
3147 	if (unused_opts) {
3148 		pr_warn("please use new version of btf__dedup() that supports options\n");
3149 		return libbpf_err(-ENOTSUP);
3150 	}
3151 
3152 	return btf__dedup(btf, &opts);
3153 }
3154 
3155 #define BTF_UNPROCESSED_ID ((__u32)-1)
3156 #define BTF_IN_PROGRESS_ID ((__u32)-2)
3157 
3158 struct btf_dedup {
3159 	/* .BTF section to be deduped in-place */
3160 	struct btf *btf;
3161 	/*
3162 	 * Optional .BTF.ext section. When provided, any strings referenced
3163 	 * from it will be taken into account when deduping strings
3164 	 */
3165 	struct btf_ext *btf_ext;
3166 	/*
3167 	 * This is a map from any type's signature hash to a list of possible
3168 	 * canonical representative type candidates. Hash collisions are
3169 	 * ignored, so even types of various kinds can share same list of
3170 	 * candidates, which is fine because we rely on subsequent
3171 	 * btf_xxx_equal() checks to authoritatively verify type equality.
3172 	 */
3173 	struct hashmap *dedup_table;
3174 	/* Canonical types map */
3175 	__u32 *map;
3176 	/* Hypothetical mapping, used during type graph equivalence checks */
3177 	__u32 *hypot_map;
3178 	__u32 *hypot_list;
3179 	size_t hypot_cnt;
3180 	size_t hypot_cap;
3181 	/* Whether hypothetical mapping, if successful, would need to adjust
3182 	 * already canonicalized types (due to a new forward declaration to
3183 	 * concrete type resolution). In such case, during split BTF dedup
3184 	 * candidate type would still be considered as different, because base
3185 	 * BTF is considered to be immutable.
3186 	 */
3187 	bool hypot_adjust_canon;
3188 	/* Various option modifying behavior of algorithm */
3189 	struct btf_dedup_opts opts;
3190 	/* temporary strings deduplication state */
3191 	struct strset *strs_set;
3192 };
3193 
3194 static long hash_combine(long h, long value)
3195 {
3196 	return h * 31 + value;
3197 }
3198 
3199 #define for_each_dedup_cand(d, node, hash) \
3200 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3201 
3202 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3203 {
3204 	return hashmap__append(d->dedup_table,
3205 			       (void *)hash, (void *)(long)type_id);
3206 }
3207 
3208 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3209 				   __u32 from_id, __u32 to_id)
3210 {
3211 	if (d->hypot_cnt == d->hypot_cap) {
3212 		__u32 *new_list;
3213 
3214 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3215 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3216 		if (!new_list)
3217 			return -ENOMEM;
3218 		d->hypot_list = new_list;
3219 	}
3220 	d->hypot_list[d->hypot_cnt++] = from_id;
3221 	d->hypot_map[from_id] = to_id;
3222 	return 0;
3223 }
3224 
3225 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3226 {
3227 	int i;
3228 
3229 	for (i = 0; i < d->hypot_cnt; i++)
3230 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3231 	d->hypot_cnt = 0;
3232 	d->hypot_adjust_canon = false;
3233 }
3234 
3235 static void btf_dedup_free(struct btf_dedup *d)
3236 {
3237 	hashmap__free(d->dedup_table);
3238 	d->dedup_table = NULL;
3239 
3240 	free(d->map);
3241 	d->map = NULL;
3242 
3243 	free(d->hypot_map);
3244 	d->hypot_map = NULL;
3245 
3246 	free(d->hypot_list);
3247 	d->hypot_list = NULL;
3248 
3249 	free(d);
3250 }
3251 
3252 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3253 {
3254 	return (size_t)key;
3255 }
3256 
3257 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3258 {
3259 	return 0;
3260 }
3261 
3262 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3263 {
3264 	return k1 == k2;
3265 }
3266 
3267 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3268 {
3269 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3270 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3271 	int i, err = 0, type_cnt;
3272 
3273 	if (!d)
3274 		return ERR_PTR(-ENOMEM);
3275 
3276 	if (OPTS_GET(opts, force_collisions, false))
3277 		hash_fn = btf_dedup_collision_hash_fn;
3278 
3279 	d->btf = btf;
3280 	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3281 
3282 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3283 	if (IS_ERR(d->dedup_table)) {
3284 		err = PTR_ERR(d->dedup_table);
3285 		d->dedup_table = NULL;
3286 		goto done;
3287 	}
3288 
3289 	type_cnt = btf__type_cnt(btf);
3290 	d->map = malloc(sizeof(__u32) * type_cnt);
3291 	if (!d->map) {
3292 		err = -ENOMEM;
3293 		goto done;
3294 	}
3295 	/* special BTF "void" type is made canonical immediately */
3296 	d->map[0] = 0;
3297 	for (i = 1; i < type_cnt; i++) {
3298 		struct btf_type *t = btf_type_by_id(d->btf, i);
3299 
3300 		/* VAR and DATASEC are never deduped and are self-canonical */
3301 		if (btf_is_var(t) || btf_is_datasec(t))
3302 			d->map[i] = i;
3303 		else
3304 			d->map[i] = BTF_UNPROCESSED_ID;
3305 	}
3306 
3307 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3308 	if (!d->hypot_map) {
3309 		err = -ENOMEM;
3310 		goto done;
3311 	}
3312 	for (i = 0; i < type_cnt; i++)
3313 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3314 
3315 done:
3316 	if (err) {
3317 		btf_dedup_free(d);
3318 		return ERR_PTR(err);
3319 	}
3320 
3321 	return d;
3322 }
3323 
3324 /*
3325  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3326  * string and pass pointer to it to a provided callback `fn`.
3327  */
3328 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3329 {
3330 	int i, r;
3331 
3332 	for (i = 0; i < d->btf->nr_types; i++) {
3333 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3334 
3335 		r = btf_type_visit_str_offs(t, fn, ctx);
3336 		if (r)
3337 			return r;
3338 	}
3339 
3340 	if (!d->btf_ext)
3341 		return 0;
3342 
3343 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3344 	if (r)
3345 		return r;
3346 
3347 	return 0;
3348 }
3349 
3350 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3351 {
3352 	struct btf_dedup *d = ctx;
3353 	__u32 str_off = *str_off_ptr;
3354 	const char *s;
3355 	int off, err;
3356 
3357 	/* don't touch empty string or string in main BTF */
3358 	if (str_off == 0 || str_off < d->btf->start_str_off)
3359 		return 0;
3360 
3361 	s = btf__str_by_offset(d->btf, str_off);
3362 	if (d->btf->base_btf) {
3363 		err = btf__find_str(d->btf->base_btf, s);
3364 		if (err >= 0) {
3365 			*str_off_ptr = err;
3366 			return 0;
3367 		}
3368 		if (err != -ENOENT)
3369 			return err;
3370 	}
3371 
3372 	off = strset__add_str(d->strs_set, s);
3373 	if (off < 0)
3374 		return off;
3375 
3376 	*str_off_ptr = d->btf->start_str_off + off;
3377 	return 0;
3378 }
3379 
3380 /*
3381  * Dedup string and filter out those that are not referenced from either .BTF
3382  * or .BTF.ext (if provided) sections.
3383  *
3384  * This is done by building index of all strings in BTF's string section,
3385  * then iterating over all entities that can reference strings (e.g., type
3386  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3387  * strings as used. After that all used strings are deduped and compacted into
3388  * sequential blob of memory and new offsets are calculated. Then all the string
3389  * references are iterated again and rewritten using new offsets.
3390  */
3391 static int btf_dedup_strings(struct btf_dedup *d)
3392 {
3393 	int err;
3394 
3395 	if (d->btf->strs_deduped)
3396 		return 0;
3397 
3398 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3399 	if (IS_ERR(d->strs_set)) {
3400 		err = PTR_ERR(d->strs_set);
3401 		goto err_out;
3402 	}
3403 
3404 	if (!d->btf->base_btf) {
3405 		/* insert empty string; we won't be looking it up during strings
3406 		 * dedup, but it's good to have it for generic BTF string lookups
3407 		 */
3408 		err = strset__add_str(d->strs_set, "");
3409 		if (err < 0)
3410 			goto err_out;
3411 	}
3412 
3413 	/* remap string offsets */
3414 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3415 	if (err)
3416 		goto err_out;
3417 
3418 	/* replace BTF string data and hash with deduped ones */
3419 	strset__free(d->btf->strs_set);
3420 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3421 	d->btf->strs_set = d->strs_set;
3422 	d->strs_set = NULL;
3423 	d->btf->strs_deduped = true;
3424 	return 0;
3425 
3426 err_out:
3427 	strset__free(d->strs_set);
3428 	d->strs_set = NULL;
3429 
3430 	return err;
3431 }
3432 
3433 static long btf_hash_common(struct btf_type *t)
3434 {
3435 	long h;
3436 
3437 	h = hash_combine(0, t->name_off);
3438 	h = hash_combine(h, t->info);
3439 	h = hash_combine(h, t->size);
3440 	return h;
3441 }
3442 
3443 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3444 {
3445 	return t1->name_off == t2->name_off &&
3446 	       t1->info == t2->info &&
3447 	       t1->size == t2->size;
3448 }
3449 
3450 /* Calculate type signature hash of INT or TAG. */
3451 static long btf_hash_int_decl_tag(struct btf_type *t)
3452 {
3453 	__u32 info = *(__u32 *)(t + 1);
3454 	long h;
3455 
3456 	h = btf_hash_common(t);
3457 	h = hash_combine(h, info);
3458 	return h;
3459 }
3460 
3461 /* Check structural equality of two INTs or TAGs. */
3462 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3463 {
3464 	__u32 info1, info2;
3465 
3466 	if (!btf_equal_common(t1, t2))
3467 		return false;
3468 	info1 = *(__u32 *)(t1 + 1);
3469 	info2 = *(__u32 *)(t2 + 1);
3470 	return info1 == info2;
3471 }
3472 
3473 /* Calculate type signature hash of ENUM. */
3474 static long btf_hash_enum(struct btf_type *t)
3475 {
3476 	long h;
3477 
3478 	/* don't hash vlen and enum members to support enum fwd resolving */
3479 	h = hash_combine(0, t->name_off);
3480 	h = hash_combine(h, t->info & ~0xffff);
3481 	h = hash_combine(h, t->size);
3482 	return h;
3483 }
3484 
3485 /* Check structural equality of two ENUMs. */
3486 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3487 {
3488 	const struct btf_enum *m1, *m2;
3489 	__u16 vlen;
3490 	int i;
3491 
3492 	if (!btf_equal_common(t1, t2))
3493 		return false;
3494 
3495 	vlen = btf_vlen(t1);
3496 	m1 = btf_enum(t1);
3497 	m2 = btf_enum(t2);
3498 	for (i = 0; i < vlen; i++) {
3499 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3500 			return false;
3501 		m1++;
3502 		m2++;
3503 	}
3504 	return true;
3505 }
3506 
3507 static inline bool btf_is_enum_fwd(struct btf_type *t)
3508 {
3509 	return btf_is_enum(t) && btf_vlen(t) == 0;
3510 }
3511 
3512 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3513 {
3514 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3515 		return btf_equal_enum(t1, t2);
3516 	/* ignore vlen when comparing */
3517 	return t1->name_off == t2->name_off &&
3518 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3519 	       t1->size == t2->size;
3520 }
3521 
3522 /*
3523  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3524  * as referenced type IDs equivalence is established separately during type
3525  * graph equivalence check algorithm.
3526  */
3527 static long btf_hash_struct(struct btf_type *t)
3528 {
3529 	const struct btf_member *member = btf_members(t);
3530 	__u32 vlen = btf_vlen(t);
3531 	long h = btf_hash_common(t);
3532 	int i;
3533 
3534 	for (i = 0; i < vlen; i++) {
3535 		h = hash_combine(h, member->name_off);
3536 		h = hash_combine(h, member->offset);
3537 		/* no hashing of referenced type ID, it can be unresolved yet */
3538 		member++;
3539 	}
3540 	return h;
3541 }
3542 
3543 /*
3544  * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3545  * type IDs. This check is performed during type graph equivalence check and
3546  * referenced types equivalence is checked separately.
3547  */
3548 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3549 {
3550 	const struct btf_member *m1, *m2;
3551 	__u16 vlen;
3552 	int i;
3553 
3554 	if (!btf_equal_common(t1, t2))
3555 		return false;
3556 
3557 	vlen = btf_vlen(t1);
3558 	m1 = btf_members(t1);
3559 	m2 = btf_members(t2);
3560 	for (i = 0; i < vlen; i++) {
3561 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3562 			return false;
3563 		m1++;
3564 		m2++;
3565 	}
3566 	return true;
3567 }
3568 
3569 /*
3570  * Calculate type signature hash of ARRAY, including referenced type IDs,
3571  * under assumption that they were already resolved to canonical type IDs and
3572  * are not going to change.
3573  */
3574 static long btf_hash_array(struct btf_type *t)
3575 {
3576 	const struct btf_array *info = btf_array(t);
3577 	long h = btf_hash_common(t);
3578 
3579 	h = hash_combine(h, info->type);
3580 	h = hash_combine(h, info->index_type);
3581 	h = hash_combine(h, info->nelems);
3582 	return h;
3583 }
3584 
3585 /*
3586  * Check exact equality of two ARRAYs, taking into account referenced
3587  * type IDs, under assumption that they were already resolved to canonical
3588  * type IDs and are not going to change.
3589  * This function is called during reference types deduplication to compare
3590  * ARRAY to potential canonical representative.
3591  */
3592 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3593 {
3594 	const struct btf_array *info1, *info2;
3595 
3596 	if (!btf_equal_common(t1, t2))
3597 		return false;
3598 
3599 	info1 = btf_array(t1);
3600 	info2 = btf_array(t2);
3601 	return info1->type == info2->type &&
3602 	       info1->index_type == info2->index_type &&
3603 	       info1->nelems == info2->nelems;
3604 }
3605 
3606 /*
3607  * Check structural compatibility of two ARRAYs, ignoring referenced type
3608  * IDs. This check is performed during type graph equivalence check and
3609  * referenced types equivalence is checked separately.
3610  */
3611 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3612 {
3613 	if (!btf_equal_common(t1, t2))
3614 		return false;
3615 
3616 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3617 }
3618 
3619 /*
3620  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3621  * under assumption that they were already resolved to canonical type IDs and
3622  * are not going to change.
3623  */
3624 static long btf_hash_fnproto(struct btf_type *t)
3625 {
3626 	const struct btf_param *member = btf_params(t);
3627 	__u16 vlen = btf_vlen(t);
3628 	long h = btf_hash_common(t);
3629 	int i;
3630 
3631 	for (i = 0; i < vlen; i++) {
3632 		h = hash_combine(h, member->name_off);
3633 		h = hash_combine(h, member->type);
3634 		member++;
3635 	}
3636 	return h;
3637 }
3638 
3639 /*
3640  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3641  * type IDs, under assumption that they were already resolved to canonical
3642  * type IDs and are not going to change.
3643  * This function is called during reference types deduplication to compare
3644  * FUNC_PROTO to potential canonical representative.
3645  */
3646 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3647 {
3648 	const struct btf_param *m1, *m2;
3649 	__u16 vlen;
3650 	int i;
3651 
3652 	if (!btf_equal_common(t1, t2))
3653 		return false;
3654 
3655 	vlen = btf_vlen(t1);
3656 	m1 = btf_params(t1);
3657 	m2 = btf_params(t2);
3658 	for (i = 0; i < vlen; i++) {
3659 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3660 			return false;
3661 		m1++;
3662 		m2++;
3663 	}
3664 	return true;
3665 }
3666 
3667 /*
3668  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3669  * IDs. This check is performed during type graph equivalence check and
3670  * referenced types equivalence is checked separately.
3671  */
3672 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3673 {
3674 	const struct btf_param *m1, *m2;
3675 	__u16 vlen;
3676 	int i;
3677 
3678 	/* skip return type ID */
3679 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3680 		return false;
3681 
3682 	vlen = btf_vlen(t1);
3683 	m1 = btf_params(t1);
3684 	m2 = btf_params(t2);
3685 	for (i = 0; i < vlen; i++) {
3686 		if (m1->name_off != m2->name_off)
3687 			return false;
3688 		m1++;
3689 		m2++;
3690 	}
3691 	return true;
3692 }
3693 
3694 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3695  * types and initializing the rest of the state (canonical type mapping) for
3696  * the fixed base BTF part.
3697  */
3698 static int btf_dedup_prep(struct btf_dedup *d)
3699 {
3700 	struct btf_type *t;
3701 	int type_id;
3702 	long h;
3703 
3704 	if (!d->btf->base_btf)
3705 		return 0;
3706 
3707 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3708 		t = btf_type_by_id(d->btf, type_id);
3709 
3710 		/* all base BTF types are self-canonical by definition */
3711 		d->map[type_id] = type_id;
3712 
3713 		switch (btf_kind(t)) {
3714 		case BTF_KIND_VAR:
3715 		case BTF_KIND_DATASEC:
3716 			/* VAR and DATASEC are never hash/deduplicated */
3717 			continue;
3718 		case BTF_KIND_CONST:
3719 		case BTF_KIND_VOLATILE:
3720 		case BTF_KIND_RESTRICT:
3721 		case BTF_KIND_PTR:
3722 		case BTF_KIND_FWD:
3723 		case BTF_KIND_TYPEDEF:
3724 		case BTF_KIND_FUNC:
3725 		case BTF_KIND_FLOAT:
3726 		case BTF_KIND_TYPE_TAG:
3727 			h = btf_hash_common(t);
3728 			break;
3729 		case BTF_KIND_INT:
3730 		case BTF_KIND_DECL_TAG:
3731 			h = btf_hash_int_decl_tag(t);
3732 			break;
3733 		case BTF_KIND_ENUM:
3734 			h = btf_hash_enum(t);
3735 			break;
3736 		case BTF_KIND_STRUCT:
3737 		case BTF_KIND_UNION:
3738 			h = btf_hash_struct(t);
3739 			break;
3740 		case BTF_KIND_ARRAY:
3741 			h = btf_hash_array(t);
3742 			break;
3743 		case BTF_KIND_FUNC_PROTO:
3744 			h = btf_hash_fnproto(t);
3745 			break;
3746 		default:
3747 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3748 			return -EINVAL;
3749 		}
3750 		if (btf_dedup_table_add(d, h, type_id))
3751 			return -ENOMEM;
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 /*
3758  * Deduplicate primitive types, that can't reference other types, by calculating
3759  * their type signature hash and comparing them with any possible canonical
3760  * candidate. If no canonical candidate matches, type itself is marked as
3761  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3762  */
3763 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3764 {
3765 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3766 	struct hashmap_entry *hash_entry;
3767 	struct btf_type *cand;
3768 	/* if we don't find equivalent type, then we are canonical */
3769 	__u32 new_id = type_id;
3770 	__u32 cand_id;
3771 	long h;
3772 
3773 	switch (btf_kind(t)) {
3774 	case BTF_KIND_CONST:
3775 	case BTF_KIND_VOLATILE:
3776 	case BTF_KIND_RESTRICT:
3777 	case BTF_KIND_PTR:
3778 	case BTF_KIND_TYPEDEF:
3779 	case BTF_KIND_ARRAY:
3780 	case BTF_KIND_STRUCT:
3781 	case BTF_KIND_UNION:
3782 	case BTF_KIND_FUNC:
3783 	case BTF_KIND_FUNC_PROTO:
3784 	case BTF_KIND_VAR:
3785 	case BTF_KIND_DATASEC:
3786 	case BTF_KIND_DECL_TAG:
3787 	case BTF_KIND_TYPE_TAG:
3788 		return 0;
3789 
3790 	case BTF_KIND_INT:
3791 		h = btf_hash_int_decl_tag(t);
3792 		for_each_dedup_cand(d, hash_entry, h) {
3793 			cand_id = (__u32)(long)hash_entry->value;
3794 			cand = btf_type_by_id(d->btf, cand_id);
3795 			if (btf_equal_int_tag(t, cand)) {
3796 				new_id = cand_id;
3797 				break;
3798 			}
3799 		}
3800 		break;
3801 
3802 	case BTF_KIND_ENUM:
3803 		h = btf_hash_enum(t);
3804 		for_each_dedup_cand(d, hash_entry, h) {
3805 			cand_id = (__u32)(long)hash_entry->value;
3806 			cand = btf_type_by_id(d->btf, cand_id);
3807 			if (btf_equal_enum(t, cand)) {
3808 				new_id = cand_id;
3809 				break;
3810 			}
3811 			if (btf_compat_enum(t, cand)) {
3812 				if (btf_is_enum_fwd(t)) {
3813 					/* resolve fwd to full enum */
3814 					new_id = cand_id;
3815 					break;
3816 				}
3817 				/* resolve canonical enum fwd to full enum */
3818 				d->map[cand_id] = type_id;
3819 			}
3820 		}
3821 		break;
3822 
3823 	case BTF_KIND_FWD:
3824 	case BTF_KIND_FLOAT:
3825 		h = btf_hash_common(t);
3826 		for_each_dedup_cand(d, hash_entry, h) {
3827 			cand_id = (__u32)(long)hash_entry->value;
3828 			cand = btf_type_by_id(d->btf, cand_id);
3829 			if (btf_equal_common(t, cand)) {
3830 				new_id = cand_id;
3831 				break;
3832 			}
3833 		}
3834 		break;
3835 
3836 	default:
3837 		return -EINVAL;
3838 	}
3839 
3840 	d->map[type_id] = new_id;
3841 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3842 		return -ENOMEM;
3843 
3844 	return 0;
3845 }
3846 
3847 static int btf_dedup_prim_types(struct btf_dedup *d)
3848 {
3849 	int i, err;
3850 
3851 	for (i = 0; i < d->btf->nr_types; i++) {
3852 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3853 		if (err)
3854 			return err;
3855 	}
3856 	return 0;
3857 }
3858 
3859 /*
3860  * Check whether type is already mapped into canonical one (could be to itself).
3861  */
3862 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3863 {
3864 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3865 }
3866 
3867 /*
3868  * Resolve type ID into its canonical type ID, if any; otherwise return original
3869  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3870  * STRUCT/UNION link and resolve it into canonical type ID as well.
3871  */
3872 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3873 {
3874 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3875 		type_id = d->map[type_id];
3876 	return type_id;
3877 }
3878 
3879 /*
3880  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3881  * type ID.
3882  */
3883 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3884 {
3885 	__u32 orig_type_id = type_id;
3886 
3887 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3888 		return type_id;
3889 
3890 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3891 		type_id = d->map[type_id];
3892 
3893 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3894 		return type_id;
3895 
3896 	return orig_type_id;
3897 }
3898 
3899 
3900 static inline __u16 btf_fwd_kind(struct btf_type *t)
3901 {
3902 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3903 }
3904 
3905 /* Check if given two types are identical ARRAY definitions */
3906 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3907 {
3908 	struct btf_type *t1, *t2;
3909 
3910 	t1 = btf_type_by_id(d->btf, id1);
3911 	t2 = btf_type_by_id(d->btf, id2);
3912 	if (!btf_is_array(t1) || !btf_is_array(t2))
3913 		return 0;
3914 
3915 	return btf_equal_array(t1, t2);
3916 }
3917 
3918 /* Check if given two types are identical STRUCT/UNION definitions */
3919 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3920 {
3921 	const struct btf_member *m1, *m2;
3922 	struct btf_type *t1, *t2;
3923 	int n, i;
3924 
3925 	t1 = btf_type_by_id(d->btf, id1);
3926 	t2 = btf_type_by_id(d->btf, id2);
3927 
3928 	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3929 		return false;
3930 
3931 	if (!btf_shallow_equal_struct(t1, t2))
3932 		return false;
3933 
3934 	m1 = btf_members(t1);
3935 	m2 = btf_members(t2);
3936 	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3937 		if (m1->type != m2->type)
3938 			return false;
3939 	}
3940 	return true;
3941 }
3942 
3943 /*
3944  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3945  * call it "candidate graph" in this description for brevity) to a type graph
3946  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3947  * here, though keep in mind that not all types in canonical graph are
3948  * necessarily canonical representatives themselves, some of them might be
3949  * duplicates or its uniqueness might not have been established yet).
3950  * Returns:
3951  *  - >0, if type graphs are equivalent;
3952  *  -  0, if not equivalent;
3953  *  - <0, on error.
3954  *
3955  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3956  * equivalence of BTF types at each step. If at any point BTF types in candidate
3957  * and canonical graphs are not compatible structurally, whole graphs are
3958  * incompatible. If types are structurally equivalent (i.e., all information
3959  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3960  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3961  * If a type references other types, then those referenced types are checked
3962  * for equivalence recursively.
3963  *
3964  * During DFS traversal, if we find that for current `canon_id` type we
3965  * already have some mapping in hypothetical map, we check for two possible
3966  * situations:
3967  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3968  *     happen when type graphs have cycles. In this case we assume those two
3969  *     types are equivalent.
3970  *   - `canon_id` is mapped to different type. This is contradiction in our
3971  *     hypothetical mapping, because same graph in canonical graph corresponds
3972  *     to two different types in candidate graph, which for equivalent type
3973  *     graphs shouldn't happen. This condition terminates equivalence check
3974  *     with negative result.
3975  *
3976  * If type graphs traversal exhausts types to check and find no contradiction,
3977  * then type graphs are equivalent.
3978  *
3979  * When checking types for equivalence, there is one special case: FWD types.
3980  * If FWD type resolution is allowed and one of the types (either from canonical
3981  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3982  * flag) and their names match, hypothetical mapping is updated to point from
3983  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3984  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3985  *
3986  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3987  * if there are two exactly named (or anonymous) structs/unions that are
3988  * compatible structurally, one of which has FWD field, while other is concrete
3989  * STRUCT/UNION, but according to C sources they are different structs/unions
3990  * that are referencing different types with the same name. This is extremely
3991  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3992  * this logic is causing problems.
3993  *
3994  * Doing FWD resolution means that both candidate and/or canonical graphs can
3995  * consists of portions of the graph that come from multiple compilation units.
3996  * This is due to the fact that types within single compilation unit are always
3997  * deduplicated and FWDs are already resolved, if referenced struct/union
3998  * definiton is available. So, if we had unresolved FWD and found corresponding
3999  * STRUCT/UNION, they will be from different compilation units. This
4000  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
4001  * type graph will likely have at least two different BTF types that describe
4002  * same type (e.g., most probably there will be two different BTF types for the
4003  * same 'int' primitive type) and could even have "overlapping" parts of type
4004  * graph that describe same subset of types.
4005  *
4006  * This in turn means that our assumption that each type in canonical graph
4007  * must correspond to exactly one type in candidate graph might not hold
4008  * anymore and will make it harder to detect contradictions using hypothetical
4009  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
4010  * resolution only in canonical graph. FWDs in candidate graphs are never
4011  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
4012  * that can occur:
4013  *   - Both types in canonical and candidate graphs are FWDs. If they are
4014  *     structurally equivalent, then they can either be both resolved to the
4015  *     same STRUCT/UNION or not resolved at all. In both cases they are
4016  *     equivalent and there is no need to resolve FWD on candidate side.
4017  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4018  *     so nothing to resolve as well, algorithm will check equivalence anyway.
4019  *   - Type in canonical graph is FWD, while type in candidate is concrete
4020  *     STRUCT/UNION. In this case candidate graph comes from single compilation
4021  *     unit, so there is exactly one BTF type for each unique C type. After
4022  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4023  *     in canonical graph mapping to single BTF type in candidate graph, but
4024  *     because hypothetical mapping maps from canonical to candidate types, it's
4025  *     alright, and we still maintain the property of having single `canon_id`
4026  *     mapping to single `cand_id` (there could be two different `canon_id`
4027  *     mapped to the same `cand_id`, but it's not contradictory).
4028  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4029  *     graph is FWD. In this case we are just going to check compatibility of
4030  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4031  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4032  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4033  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4034  *     canonical graph.
4035  */
4036 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4037 			      __u32 canon_id)
4038 {
4039 	struct btf_type *cand_type;
4040 	struct btf_type *canon_type;
4041 	__u32 hypot_type_id;
4042 	__u16 cand_kind;
4043 	__u16 canon_kind;
4044 	int i, eq;
4045 
4046 	/* if both resolve to the same canonical, they must be equivalent */
4047 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4048 		return 1;
4049 
4050 	canon_id = resolve_fwd_id(d, canon_id);
4051 
4052 	hypot_type_id = d->hypot_map[canon_id];
4053 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4054 		if (hypot_type_id == cand_id)
4055 			return 1;
4056 		/* In some cases compiler will generate different DWARF types
4057 		 * for *identical* array type definitions and use them for
4058 		 * different fields within the *same* struct. This breaks type
4059 		 * equivalence check, which makes an assumption that candidate
4060 		 * types sub-graph has a consistent and deduped-by-compiler
4061 		 * types within a single CU. So work around that by explicitly
4062 		 * allowing identical array types here.
4063 		 */
4064 		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4065 			return 1;
4066 		/* It turns out that similar situation can happen with
4067 		 * struct/union sometimes, sigh... Handle the case where
4068 		 * structs/unions are exactly the same, down to the referenced
4069 		 * type IDs. Anything more complicated (e.g., if referenced
4070 		 * types are different, but equivalent) is *way more*
4071 		 * complicated and requires a many-to-many equivalence mapping.
4072 		 */
4073 		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4074 			return 1;
4075 		return 0;
4076 	}
4077 
4078 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4079 		return -ENOMEM;
4080 
4081 	cand_type = btf_type_by_id(d->btf, cand_id);
4082 	canon_type = btf_type_by_id(d->btf, canon_id);
4083 	cand_kind = btf_kind(cand_type);
4084 	canon_kind = btf_kind(canon_type);
4085 
4086 	if (cand_type->name_off != canon_type->name_off)
4087 		return 0;
4088 
4089 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4090 	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4091 	    && cand_kind != canon_kind) {
4092 		__u16 real_kind;
4093 		__u16 fwd_kind;
4094 
4095 		if (cand_kind == BTF_KIND_FWD) {
4096 			real_kind = canon_kind;
4097 			fwd_kind = btf_fwd_kind(cand_type);
4098 		} else {
4099 			real_kind = cand_kind;
4100 			fwd_kind = btf_fwd_kind(canon_type);
4101 			/* we'd need to resolve base FWD to STRUCT/UNION */
4102 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4103 				d->hypot_adjust_canon = true;
4104 		}
4105 		return fwd_kind == real_kind;
4106 	}
4107 
4108 	if (cand_kind != canon_kind)
4109 		return 0;
4110 
4111 	switch (cand_kind) {
4112 	case BTF_KIND_INT:
4113 		return btf_equal_int_tag(cand_type, canon_type);
4114 
4115 	case BTF_KIND_ENUM:
4116 		return btf_compat_enum(cand_type, canon_type);
4117 
4118 	case BTF_KIND_FWD:
4119 	case BTF_KIND_FLOAT:
4120 		return btf_equal_common(cand_type, canon_type);
4121 
4122 	case BTF_KIND_CONST:
4123 	case BTF_KIND_VOLATILE:
4124 	case BTF_KIND_RESTRICT:
4125 	case BTF_KIND_PTR:
4126 	case BTF_KIND_TYPEDEF:
4127 	case BTF_KIND_FUNC:
4128 	case BTF_KIND_TYPE_TAG:
4129 		if (cand_type->info != canon_type->info)
4130 			return 0;
4131 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4132 
4133 	case BTF_KIND_ARRAY: {
4134 		const struct btf_array *cand_arr, *canon_arr;
4135 
4136 		if (!btf_compat_array(cand_type, canon_type))
4137 			return 0;
4138 		cand_arr = btf_array(cand_type);
4139 		canon_arr = btf_array(canon_type);
4140 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4141 		if (eq <= 0)
4142 			return eq;
4143 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4144 	}
4145 
4146 	case BTF_KIND_STRUCT:
4147 	case BTF_KIND_UNION: {
4148 		const struct btf_member *cand_m, *canon_m;
4149 		__u16 vlen;
4150 
4151 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4152 			return 0;
4153 		vlen = btf_vlen(cand_type);
4154 		cand_m = btf_members(cand_type);
4155 		canon_m = btf_members(canon_type);
4156 		for (i = 0; i < vlen; i++) {
4157 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4158 			if (eq <= 0)
4159 				return eq;
4160 			cand_m++;
4161 			canon_m++;
4162 		}
4163 
4164 		return 1;
4165 	}
4166 
4167 	case BTF_KIND_FUNC_PROTO: {
4168 		const struct btf_param *cand_p, *canon_p;
4169 		__u16 vlen;
4170 
4171 		if (!btf_compat_fnproto(cand_type, canon_type))
4172 			return 0;
4173 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4174 		if (eq <= 0)
4175 			return eq;
4176 		vlen = btf_vlen(cand_type);
4177 		cand_p = btf_params(cand_type);
4178 		canon_p = btf_params(canon_type);
4179 		for (i = 0; i < vlen; i++) {
4180 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4181 			if (eq <= 0)
4182 				return eq;
4183 			cand_p++;
4184 			canon_p++;
4185 		}
4186 		return 1;
4187 	}
4188 
4189 	default:
4190 		return -EINVAL;
4191 	}
4192 	return 0;
4193 }
4194 
4195 /*
4196  * Use hypothetical mapping, produced by successful type graph equivalence
4197  * check, to augment existing struct/union canonical mapping, where possible.
4198  *
4199  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4200  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4201  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4202  * we are recording the mapping anyway. As opposed to carefulness required
4203  * for struct/union correspondence mapping (described below), for FWD resolution
4204  * it's not important, as by the time that FWD type (reference type) will be
4205  * deduplicated all structs/unions will be deduped already anyway.
4206  *
4207  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4208  * not required for correctness. It needs to be done carefully to ensure that
4209  * struct/union from candidate's type graph is not mapped into corresponding
4210  * struct/union from canonical type graph that itself hasn't been resolved into
4211  * canonical representative. The only guarantee we have is that canonical
4212  * struct/union was determined as canonical and that won't change. But any
4213  * types referenced through that struct/union fields could have been not yet
4214  * resolved, so in case like that it's too early to establish any kind of
4215  * correspondence between structs/unions.
4216  *
4217  * No canonical correspondence is derived for primitive types (they are already
4218  * deduplicated completely already anyway) or reference types (they rely on
4219  * stability of struct/union canonical relationship for equivalence checks).
4220  */
4221 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4222 {
4223 	__u32 canon_type_id, targ_type_id;
4224 	__u16 t_kind, c_kind;
4225 	__u32 t_id, c_id;
4226 	int i;
4227 
4228 	for (i = 0; i < d->hypot_cnt; i++) {
4229 		canon_type_id = d->hypot_list[i];
4230 		targ_type_id = d->hypot_map[canon_type_id];
4231 		t_id = resolve_type_id(d, targ_type_id);
4232 		c_id = resolve_type_id(d, canon_type_id);
4233 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4234 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4235 		/*
4236 		 * Resolve FWD into STRUCT/UNION.
4237 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4238 		 * mapped to canonical representative (as opposed to
4239 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4240 		 * eventually that struct is going to be mapped and all resolved
4241 		 * FWDs will automatically resolve to correct canonical
4242 		 * representative. This will happen before ref type deduping,
4243 		 * which critically depends on stability of these mapping. This
4244 		 * stability is not a requirement for STRUCT/UNION equivalence
4245 		 * checks, though.
4246 		 */
4247 
4248 		/* if it's the split BTF case, we still need to point base FWD
4249 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4250 		 * will be resolved against base FWD. If we don't point base
4251 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4252 		 * FWDs in split BTF won't be correctly resolved to a proper
4253 		 * STRUCT/UNION.
4254 		 */
4255 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4256 			d->map[c_id] = t_id;
4257 
4258 		/* if graph equivalence determined that we'd need to adjust
4259 		 * base canonical types, then we need to only point base FWDs
4260 		 * to STRUCTs/UNIONs and do no more modifications. For all
4261 		 * other purposes the type graphs were not equivalent.
4262 		 */
4263 		if (d->hypot_adjust_canon)
4264 			continue;
4265 
4266 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4267 			d->map[t_id] = c_id;
4268 
4269 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4270 		    c_kind != BTF_KIND_FWD &&
4271 		    is_type_mapped(d, c_id) &&
4272 		    !is_type_mapped(d, t_id)) {
4273 			/*
4274 			 * as a perf optimization, we can map struct/union
4275 			 * that's part of type graph we just verified for
4276 			 * equivalence. We can do that for struct/union that has
4277 			 * canonical representative only, though.
4278 			 */
4279 			d->map[t_id] = c_id;
4280 		}
4281 	}
4282 }
4283 
4284 /*
4285  * Deduplicate struct/union types.
4286  *
4287  * For each struct/union type its type signature hash is calculated, taking
4288  * into account type's name, size, number, order and names of fields, but
4289  * ignoring type ID's referenced from fields, because they might not be deduped
4290  * completely until after reference types deduplication phase. This type hash
4291  * is used to iterate over all potential canonical types, sharing same hash.
4292  * For each canonical candidate we check whether type graphs that they form
4293  * (through referenced types in fields and so on) are equivalent using algorithm
4294  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4295  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4296  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4297  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4298  * potentially map other structs/unions to their canonical representatives,
4299  * if such relationship hasn't yet been established. This speeds up algorithm
4300  * by eliminating some of the duplicate work.
4301  *
4302  * If no matching canonical representative was found, struct/union is marked
4303  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4304  * for further look ups.
4305  */
4306 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4307 {
4308 	struct btf_type *cand_type, *t;
4309 	struct hashmap_entry *hash_entry;
4310 	/* if we don't find equivalent type, then we are canonical */
4311 	__u32 new_id = type_id;
4312 	__u16 kind;
4313 	long h;
4314 
4315 	/* already deduped or is in process of deduping (loop detected) */
4316 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4317 		return 0;
4318 
4319 	t = btf_type_by_id(d->btf, type_id);
4320 	kind = btf_kind(t);
4321 
4322 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4323 		return 0;
4324 
4325 	h = btf_hash_struct(t);
4326 	for_each_dedup_cand(d, hash_entry, h) {
4327 		__u32 cand_id = (__u32)(long)hash_entry->value;
4328 		int eq;
4329 
4330 		/*
4331 		 * Even though btf_dedup_is_equiv() checks for
4332 		 * btf_shallow_equal_struct() internally when checking two
4333 		 * structs (unions) for equivalence, we need to guard here
4334 		 * from picking matching FWD type as a dedup candidate.
4335 		 * This can happen due to hash collision. In such case just
4336 		 * relying on btf_dedup_is_equiv() would lead to potentially
4337 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4338 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4339 		 */
4340 		cand_type = btf_type_by_id(d->btf, cand_id);
4341 		if (!btf_shallow_equal_struct(t, cand_type))
4342 			continue;
4343 
4344 		btf_dedup_clear_hypot_map(d);
4345 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4346 		if (eq < 0)
4347 			return eq;
4348 		if (!eq)
4349 			continue;
4350 		btf_dedup_merge_hypot_map(d);
4351 		if (d->hypot_adjust_canon) /* not really equivalent */
4352 			continue;
4353 		new_id = cand_id;
4354 		break;
4355 	}
4356 
4357 	d->map[type_id] = new_id;
4358 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4359 		return -ENOMEM;
4360 
4361 	return 0;
4362 }
4363 
4364 static int btf_dedup_struct_types(struct btf_dedup *d)
4365 {
4366 	int i, err;
4367 
4368 	for (i = 0; i < d->btf->nr_types; i++) {
4369 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4370 		if (err)
4371 			return err;
4372 	}
4373 	return 0;
4374 }
4375 
4376 /*
4377  * Deduplicate reference type.
4378  *
4379  * Once all primitive and struct/union types got deduplicated, we can easily
4380  * deduplicate all other (reference) BTF types. This is done in two steps:
4381  *
4382  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4383  * resolution can be done either immediately for primitive or struct/union types
4384  * (because they were deduped in previous two phases) or recursively for
4385  * reference types. Recursion will always terminate at either primitive or
4386  * struct/union type, at which point we can "unwind" chain of reference types
4387  * one by one. There is no danger of encountering cycles because in C type
4388  * system the only way to form type cycle is through struct/union, so any chain
4389  * of reference types, even those taking part in a type cycle, will inevitably
4390  * reach struct/union at some point.
4391  *
4392  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4393  * becomes "stable", in the sense that no further deduplication will cause
4394  * any changes to it. With that, it's now possible to calculate type's signature
4395  * hash (this time taking into account referenced type IDs) and loop over all
4396  * potential canonical representatives. If no match was found, current type
4397  * will become canonical representative of itself and will be added into
4398  * btf_dedup->dedup_table as another possible canonical representative.
4399  */
4400 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4401 {
4402 	struct hashmap_entry *hash_entry;
4403 	__u32 new_id = type_id, cand_id;
4404 	struct btf_type *t, *cand;
4405 	/* if we don't find equivalent type, then we are representative type */
4406 	int ref_type_id;
4407 	long h;
4408 
4409 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4410 		return -ELOOP;
4411 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4412 		return resolve_type_id(d, type_id);
4413 
4414 	t = btf_type_by_id(d->btf, type_id);
4415 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4416 
4417 	switch (btf_kind(t)) {
4418 	case BTF_KIND_CONST:
4419 	case BTF_KIND_VOLATILE:
4420 	case BTF_KIND_RESTRICT:
4421 	case BTF_KIND_PTR:
4422 	case BTF_KIND_TYPEDEF:
4423 	case BTF_KIND_FUNC:
4424 	case BTF_KIND_TYPE_TAG:
4425 		ref_type_id = btf_dedup_ref_type(d, t->type);
4426 		if (ref_type_id < 0)
4427 			return ref_type_id;
4428 		t->type = ref_type_id;
4429 
4430 		h = btf_hash_common(t);
4431 		for_each_dedup_cand(d, hash_entry, h) {
4432 			cand_id = (__u32)(long)hash_entry->value;
4433 			cand = btf_type_by_id(d->btf, cand_id);
4434 			if (btf_equal_common(t, cand)) {
4435 				new_id = cand_id;
4436 				break;
4437 			}
4438 		}
4439 		break;
4440 
4441 	case BTF_KIND_DECL_TAG:
4442 		ref_type_id = btf_dedup_ref_type(d, t->type);
4443 		if (ref_type_id < 0)
4444 			return ref_type_id;
4445 		t->type = ref_type_id;
4446 
4447 		h = btf_hash_int_decl_tag(t);
4448 		for_each_dedup_cand(d, hash_entry, h) {
4449 			cand_id = (__u32)(long)hash_entry->value;
4450 			cand = btf_type_by_id(d->btf, cand_id);
4451 			if (btf_equal_int_tag(t, cand)) {
4452 				new_id = cand_id;
4453 				break;
4454 			}
4455 		}
4456 		break;
4457 
4458 	case BTF_KIND_ARRAY: {
4459 		struct btf_array *info = btf_array(t);
4460 
4461 		ref_type_id = btf_dedup_ref_type(d, info->type);
4462 		if (ref_type_id < 0)
4463 			return ref_type_id;
4464 		info->type = ref_type_id;
4465 
4466 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4467 		if (ref_type_id < 0)
4468 			return ref_type_id;
4469 		info->index_type = ref_type_id;
4470 
4471 		h = btf_hash_array(t);
4472 		for_each_dedup_cand(d, hash_entry, h) {
4473 			cand_id = (__u32)(long)hash_entry->value;
4474 			cand = btf_type_by_id(d->btf, cand_id);
4475 			if (btf_equal_array(t, cand)) {
4476 				new_id = cand_id;
4477 				break;
4478 			}
4479 		}
4480 		break;
4481 	}
4482 
4483 	case BTF_KIND_FUNC_PROTO: {
4484 		struct btf_param *param;
4485 		__u16 vlen;
4486 		int i;
4487 
4488 		ref_type_id = btf_dedup_ref_type(d, t->type);
4489 		if (ref_type_id < 0)
4490 			return ref_type_id;
4491 		t->type = ref_type_id;
4492 
4493 		vlen = btf_vlen(t);
4494 		param = btf_params(t);
4495 		for (i = 0; i < vlen; i++) {
4496 			ref_type_id = btf_dedup_ref_type(d, param->type);
4497 			if (ref_type_id < 0)
4498 				return ref_type_id;
4499 			param->type = ref_type_id;
4500 			param++;
4501 		}
4502 
4503 		h = btf_hash_fnproto(t);
4504 		for_each_dedup_cand(d, hash_entry, h) {
4505 			cand_id = (__u32)(long)hash_entry->value;
4506 			cand = btf_type_by_id(d->btf, cand_id);
4507 			if (btf_equal_fnproto(t, cand)) {
4508 				new_id = cand_id;
4509 				break;
4510 			}
4511 		}
4512 		break;
4513 	}
4514 
4515 	default:
4516 		return -EINVAL;
4517 	}
4518 
4519 	d->map[type_id] = new_id;
4520 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4521 		return -ENOMEM;
4522 
4523 	return new_id;
4524 }
4525 
4526 static int btf_dedup_ref_types(struct btf_dedup *d)
4527 {
4528 	int i, err;
4529 
4530 	for (i = 0; i < d->btf->nr_types; i++) {
4531 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4532 		if (err < 0)
4533 			return err;
4534 	}
4535 	/* we won't need d->dedup_table anymore */
4536 	hashmap__free(d->dedup_table);
4537 	d->dedup_table = NULL;
4538 	return 0;
4539 }
4540 
4541 /*
4542  * Compact types.
4543  *
4544  * After we established for each type its corresponding canonical representative
4545  * type, we now can eliminate types that are not canonical and leave only
4546  * canonical ones layed out sequentially in memory by copying them over
4547  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4548  * a map from original type ID to a new compacted type ID, which will be used
4549  * during next phase to "fix up" type IDs, referenced from struct/union and
4550  * reference types.
4551  */
4552 static int btf_dedup_compact_types(struct btf_dedup *d)
4553 {
4554 	__u32 *new_offs;
4555 	__u32 next_type_id = d->btf->start_id;
4556 	const struct btf_type *t;
4557 	void *p;
4558 	int i, id, len;
4559 
4560 	/* we are going to reuse hypot_map to store compaction remapping */
4561 	d->hypot_map[0] = 0;
4562 	/* base BTF types are not renumbered */
4563 	for (id = 1; id < d->btf->start_id; id++)
4564 		d->hypot_map[id] = id;
4565 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4566 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4567 
4568 	p = d->btf->types_data;
4569 
4570 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4571 		if (d->map[id] != id)
4572 			continue;
4573 
4574 		t = btf__type_by_id(d->btf, id);
4575 		len = btf_type_size(t);
4576 		if (len < 0)
4577 			return len;
4578 
4579 		memmove(p, t, len);
4580 		d->hypot_map[id] = next_type_id;
4581 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4582 		p += len;
4583 		next_type_id++;
4584 	}
4585 
4586 	/* shrink struct btf's internal types index and update btf_header */
4587 	d->btf->nr_types = next_type_id - d->btf->start_id;
4588 	d->btf->type_offs_cap = d->btf->nr_types;
4589 	d->btf->hdr->type_len = p - d->btf->types_data;
4590 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4591 				       sizeof(*new_offs));
4592 	if (d->btf->type_offs_cap && !new_offs)
4593 		return -ENOMEM;
4594 	d->btf->type_offs = new_offs;
4595 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4596 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4597 	return 0;
4598 }
4599 
4600 /*
4601  * Figure out final (deduplicated and compacted) type ID for provided original
4602  * `type_id` by first resolving it into corresponding canonical type ID and
4603  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4604  * which is populated during compaction phase.
4605  */
4606 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4607 {
4608 	struct btf_dedup *d = ctx;
4609 	__u32 resolved_type_id, new_type_id;
4610 
4611 	resolved_type_id = resolve_type_id(d, *type_id);
4612 	new_type_id = d->hypot_map[resolved_type_id];
4613 	if (new_type_id > BTF_MAX_NR_TYPES)
4614 		return -EINVAL;
4615 
4616 	*type_id = new_type_id;
4617 	return 0;
4618 }
4619 
4620 /*
4621  * Remap referenced type IDs into deduped type IDs.
4622  *
4623  * After BTF types are deduplicated and compacted, their final type IDs may
4624  * differ from original ones. The map from original to a corresponding
4625  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4626  * compaction phase. During remapping phase we are rewriting all type IDs
4627  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4628  * their final deduped type IDs.
4629  */
4630 static int btf_dedup_remap_types(struct btf_dedup *d)
4631 {
4632 	int i, r;
4633 
4634 	for (i = 0; i < d->btf->nr_types; i++) {
4635 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4636 
4637 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4638 		if (r)
4639 			return r;
4640 	}
4641 
4642 	if (!d->btf_ext)
4643 		return 0;
4644 
4645 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4646 	if (r)
4647 		return r;
4648 
4649 	return 0;
4650 }
4651 
4652 /*
4653  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4654  * data out of it to use for target BTF.
4655  */
4656 struct btf *btf__load_vmlinux_btf(void)
4657 {
4658 	struct {
4659 		const char *path_fmt;
4660 		bool raw_btf;
4661 	} locations[] = {
4662 		/* try canonical vmlinux BTF through sysfs first */
4663 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4664 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4665 		{ "/boot/vmlinux-%1$s" },
4666 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4667 		{ "/lib/modules/%1$s/build/vmlinux" },
4668 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4669 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4670 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4671 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4672 	};
4673 	char path[PATH_MAX + 1];
4674 	struct utsname buf;
4675 	struct btf *btf;
4676 	int i, err;
4677 
4678 	uname(&buf);
4679 
4680 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4681 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4682 
4683 		if (access(path, R_OK))
4684 			continue;
4685 
4686 		if (locations[i].raw_btf)
4687 			btf = btf__parse_raw(path);
4688 		else
4689 			btf = btf__parse_elf(path, NULL);
4690 		err = libbpf_get_error(btf);
4691 		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4692 		if (err)
4693 			continue;
4694 
4695 		return btf;
4696 	}
4697 
4698 	pr_warn("failed to find valid kernel BTF\n");
4699 	return libbpf_err_ptr(-ESRCH);
4700 }
4701 
4702 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4703 
4704 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4705 {
4706 	char path[80];
4707 
4708 	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4709 	return btf__parse_split(path, vmlinux_btf);
4710 }
4711 
4712 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4713 {
4714 	int i, n, err;
4715 
4716 	switch (btf_kind(t)) {
4717 	case BTF_KIND_INT:
4718 	case BTF_KIND_FLOAT:
4719 	case BTF_KIND_ENUM:
4720 		return 0;
4721 
4722 	case BTF_KIND_FWD:
4723 	case BTF_KIND_CONST:
4724 	case BTF_KIND_VOLATILE:
4725 	case BTF_KIND_RESTRICT:
4726 	case BTF_KIND_PTR:
4727 	case BTF_KIND_TYPEDEF:
4728 	case BTF_KIND_FUNC:
4729 	case BTF_KIND_VAR:
4730 	case BTF_KIND_DECL_TAG:
4731 	case BTF_KIND_TYPE_TAG:
4732 		return visit(&t->type, ctx);
4733 
4734 	case BTF_KIND_ARRAY: {
4735 		struct btf_array *a = btf_array(t);
4736 
4737 		err = visit(&a->type, ctx);
4738 		err = err ?: visit(&a->index_type, ctx);
4739 		return err;
4740 	}
4741 
4742 	case BTF_KIND_STRUCT:
4743 	case BTF_KIND_UNION: {
4744 		struct btf_member *m = btf_members(t);
4745 
4746 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4747 			err = visit(&m->type, ctx);
4748 			if (err)
4749 				return err;
4750 		}
4751 		return 0;
4752 	}
4753 
4754 	case BTF_KIND_FUNC_PROTO: {
4755 		struct btf_param *m = btf_params(t);
4756 
4757 		err = visit(&t->type, ctx);
4758 		if (err)
4759 			return err;
4760 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4761 			err = visit(&m->type, ctx);
4762 			if (err)
4763 				return err;
4764 		}
4765 		return 0;
4766 	}
4767 
4768 	case BTF_KIND_DATASEC: {
4769 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4770 
4771 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4772 			err = visit(&m->type, ctx);
4773 			if (err)
4774 				return err;
4775 		}
4776 		return 0;
4777 	}
4778 
4779 	default:
4780 		return -EINVAL;
4781 	}
4782 }
4783 
4784 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4785 {
4786 	int i, n, err;
4787 
4788 	err = visit(&t->name_off, ctx);
4789 	if (err)
4790 		return err;
4791 
4792 	switch (btf_kind(t)) {
4793 	case BTF_KIND_STRUCT:
4794 	case BTF_KIND_UNION: {
4795 		struct btf_member *m = btf_members(t);
4796 
4797 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4798 			err = visit(&m->name_off, ctx);
4799 			if (err)
4800 				return err;
4801 		}
4802 		break;
4803 	}
4804 	case BTF_KIND_ENUM: {
4805 		struct btf_enum *m = btf_enum(t);
4806 
4807 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4808 			err = visit(&m->name_off, ctx);
4809 			if (err)
4810 				return err;
4811 		}
4812 		break;
4813 	}
4814 	case BTF_KIND_FUNC_PROTO: {
4815 		struct btf_param *m = btf_params(t);
4816 
4817 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4818 			err = visit(&m->name_off, ctx);
4819 			if (err)
4820 				return err;
4821 		}
4822 		break;
4823 	}
4824 	default:
4825 		break;
4826 	}
4827 
4828 	return 0;
4829 }
4830 
4831 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4832 {
4833 	const struct btf_ext_info *seg;
4834 	struct btf_ext_info_sec *sec;
4835 	int i, err;
4836 
4837 	seg = &btf_ext->func_info;
4838 	for_each_btf_ext_sec(seg, sec) {
4839 		struct bpf_func_info_min *rec;
4840 
4841 		for_each_btf_ext_rec(seg, sec, i, rec) {
4842 			err = visit(&rec->type_id, ctx);
4843 			if (err < 0)
4844 				return err;
4845 		}
4846 	}
4847 
4848 	seg = &btf_ext->core_relo_info;
4849 	for_each_btf_ext_sec(seg, sec) {
4850 		struct bpf_core_relo *rec;
4851 
4852 		for_each_btf_ext_rec(seg, sec, i, rec) {
4853 			err = visit(&rec->type_id, ctx);
4854 			if (err < 0)
4855 				return err;
4856 		}
4857 	}
4858 
4859 	return 0;
4860 }
4861 
4862 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4863 {
4864 	const struct btf_ext_info *seg;
4865 	struct btf_ext_info_sec *sec;
4866 	int i, err;
4867 
4868 	seg = &btf_ext->func_info;
4869 	for_each_btf_ext_sec(seg, sec) {
4870 		err = visit(&sec->sec_name_off, ctx);
4871 		if (err)
4872 			return err;
4873 	}
4874 
4875 	seg = &btf_ext->line_info;
4876 	for_each_btf_ext_sec(seg, sec) {
4877 		struct bpf_line_info_min *rec;
4878 
4879 		err = visit(&sec->sec_name_off, ctx);
4880 		if (err)
4881 			return err;
4882 
4883 		for_each_btf_ext_rec(seg, sec, i, rec) {
4884 			err = visit(&rec->file_name_off, ctx);
4885 			if (err)
4886 				return err;
4887 			err = visit(&rec->line_off, ctx);
4888 			if (err)
4889 				return err;
4890 		}
4891 	}
4892 
4893 	seg = &btf_ext->core_relo_info;
4894 	for_each_btf_ext_sec(seg, sec) {
4895 		struct bpf_core_relo *rec;
4896 
4897 		err = visit(&sec->sec_name_off, ctx);
4898 		if (err)
4899 			return err;
4900 
4901 		for_each_btf_ext_rec(seg, sec, i, rec) {
4902 			err = visit(&rec->access_str_off, ctx);
4903 			if (err)
4904 				return err;
4905 		}
4906 	}
4907 
4908 	return 0;
4909 }
4910