1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 case BTF_KIND_TYPE_TAG: 303 return base_size; 304 case BTF_KIND_INT: 305 return base_size + sizeof(__u32); 306 case BTF_KIND_ENUM: 307 return base_size + vlen * sizeof(struct btf_enum); 308 case BTF_KIND_ENUM64: 309 return base_size + vlen * sizeof(struct btf_enum64); 310 case BTF_KIND_ARRAY: 311 return base_size + sizeof(struct btf_array); 312 case BTF_KIND_STRUCT: 313 case BTF_KIND_UNION: 314 return base_size + vlen * sizeof(struct btf_member); 315 case BTF_KIND_FUNC_PROTO: 316 return base_size + vlen * sizeof(struct btf_param); 317 case BTF_KIND_VAR: 318 return base_size + sizeof(struct btf_var); 319 case BTF_KIND_DATASEC: 320 return base_size + vlen * sizeof(struct btf_var_secinfo); 321 case BTF_KIND_DECL_TAG: 322 return base_size + sizeof(struct btf_decl_tag); 323 default: 324 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 325 return -EINVAL; 326 } 327 } 328 329 static void btf_bswap_type_base(struct btf_type *t) 330 { 331 t->name_off = bswap_32(t->name_off); 332 t->info = bswap_32(t->info); 333 t->type = bswap_32(t->type); 334 } 335 336 static int btf_bswap_type_rest(struct btf_type *t) 337 { 338 struct btf_var_secinfo *v; 339 struct btf_enum64 *e64; 340 struct btf_member *m; 341 struct btf_array *a; 342 struct btf_param *p; 343 struct btf_enum *e; 344 __u16 vlen = btf_vlen(t); 345 int i; 346 347 switch (btf_kind(t)) { 348 case BTF_KIND_FWD: 349 case BTF_KIND_CONST: 350 case BTF_KIND_VOLATILE: 351 case BTF_KIND_RESTRICT: 352 case BTF_KIND_PTR: 353 case BTF_KIND_TYPEDEF: 354 case BTF_KIND_FUNC: 355 case BTF_KIND_FLOAT: 356 case BTF_KIND_TYPE_TAG: 357 return 0; 358 case BTF_KIND_INT: 359 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 360 return 0; 361 case BTF_KIND_ENUM: 362 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 363 e->name_off = bswap_32(e->name_off); 364 e->val = bswap_32(e->val); 365 } 366 return 0; 367 case BTF_KIND_ENUM64: 368 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { 369 e64->name_off = bswap_32(e64->name_off); 370 e64->val_lo32 = bswap_32(e64->val_lo32); 371 e64->val_hi32 = bswap_32(e64->val_hi32); 372 } 373 return 0; 374 case BTF_KIND_ARRAY: 375 a = btf_array(t); 376 a->type = bswap_32(a->type); 377 a->index_type = bswap_32(a->index_type); 378 a->nelems = bswap_32(a->nelems); 379 return 0; 380 case BTF_KIND_STRUCT: 381 case BTF_KIND_UNION: 382 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 383 m->name_off = bswap_32(m->name_off); 384 m->type = bswap_32(m->type); 385 m->offset = bswap_32(m->offset); 386 } 387 return 0; 388 case BTF_KIND_FUNC_PROTO: 389 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 390 p->name_off = bswap_32(p->name_off); 391 p->type = bswap_32(p->type); 392 } 393 return 0; 394 case BTF_KIND_VAR: 395 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 396 return 0; 397 case BTF_KIND_DATASEC: 398 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 399 v->type = bswap_32(v->type); 400 v->offset = bswap_32(v->offset); 401 v->size = bswap_32(v->size); 402 } 403 return 0; 404 case BTF_KIND_DECL_TAG: 405 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 406 return 0; 407 default: 408 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 409 return -EINVAL; 410 } 411 } 412 413 static int btf_parse_type_sec(struct btf *btf) 414 { 415 struct btf_header *hdr = btf->hdr; 416 void *next_type = btf->types_data; 417 void *end_type = next_type + hdr->type_len; 418 int err, type_size; 419 420 while (next_type + sizeof(struct btf_type) <= end_type) { 421 if (btf->swapped_endian) 422 btf_bswap_type_base(next_type); 423 424 type_size = btf_type_size(next_type); 425 if (type_size < 0) 426 return type_size; 427 if (next_type + type_size > end_type) { 428 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 429 return -EINVAL; 430 } 431 432 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 433 return -EINVAL; 434 435 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 436 if (err) 437 return err; 438 439 next_type += type_size; 440 btf->nr_types++; 441 } 442 443 if (next_type != end_type) { 444 pr_warn("BTF types data is malformed\n"); 445 return -EINVAL; 446 } 447 448 return 0; 449 } 450 451 __u32 btf__type_cnt(const struct btf *btf) 452 { 453 return btf->start_id + btf->nr_types; 454 } 455 456 const struct btf *btf__base_btf(const struct btf *btf) 457 { 458 return btf->base_btf; 459 } 460 461 /* internal helper returning non-const pointer to a type */ 462 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 463 { 464 if (type_id == 0) 465 return &btf_void; 466 if (type_id < btf->start_id) 467 return btf_type_by_id(btf->base_btf, type_id); 468 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 469 } 470 471 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 472 { 473 if (type_id >= btf->start_id + btf->nr_types) 474 return errno = EINVAL, NULL; 475 return btf_type_by_id((struct btf *)btf, type_id); 476 } 477 478 static int determine_ptr_size(const struct btf *btf) 479 { 480 static const char * const long_aliases[] = { 481 "long", 482 "long int", 483 "int long", 484 "unsigned long", 485 "long unsigned", 486 "unsigned long int", 487 "unsigned int long", 488 "long unsigned int", 489 "long int unsigned", 490 "int unsigned long", 491 "int long unsigned", 492 }; 493 const struct btf_type *t; 494 const char *name; 495 int i, j, n; 496 497 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 498 return btf->base_btf->ptr_sz; 499 500 n = btf__type_cnt(btf); 501 for (i = 1; i < n; i++) { 502 t = btf__type_by_id(btf, i); 503 if (!btf_is_int(t)) 504 continue; 505 506 if (t->size != 4 && t->size != 8) 507 continue; 508 509 name = btf__name_by_offset(btf, t->name_off); 510 if (!name) 511 continue; 512 513 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { 514 if (strcmp(name, long_aliases[j]) == 0) 515 return t->size; 516 } 517 } 518 519 return -1; 520 } 521 522 static size_t btf_ptr_sz(const struct btf *btf) 523 { 524 if (!btf->ptr_sz) 525 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 526 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 527 } 528 529 /* Return pointer size this BTF instance assumes. The size is heuristically 530 * determined by looking for 'long' or 'unsigned long' integer type and 531 * recording its size in bytes. If BTF type information doesn't have any such 532 * type, this function returns 0. In the latter case, native architecture's 533 * pointer size is assumed, so will be either 4 or 8, depending on 534 * architecture that libbpf was compiled for. It's possible to override 535 * guessed value by using btf__set_pointer_size() API. 536 */ 537 size_t btf__pointer_size(const struct btf *btf) 538 { 539 if (!btf->ptr_sz) 540 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 541 542 if (btf->ptr_sz < 0) 543 /* not enough BTF type info to guess */ 544 return 0; 545 546 return btf->ptr_sz; 547 } 548 549 /* Override or set pointer size in bytes. Only values of 4 and 8 are 550 * supported. 551 */ 552 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 553 { 554 if (ptr_sz != 4 && ptr_sz != 8) 555 return libbpf_err(-EINVAL); 556 btf->ptr_sz = ptr_sz; 557 return 0; 558 } 559 560 static bool is_host_big_endian(void) 561 { 562 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 563 return false; 564 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 565 return true; 566 #else 567 # error "Unrecognized __BYTE_ORDER__" 568 #endif 569 } 570 571 enum btf_endianness btf__endianness(const struct btf *btf) 572 { 573 if (is_host_big_endian()) 574 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 575 else 576 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 577 } 578 579 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 580 { 581 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 582 return libbpf_err(-EINVAL); 583 584 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 585 if (!btf->swapped_endian) { 586 free(btf->raw_data_swapped); 587 btf->raw_data_swapped = NULL; 588 } 589 return 0; 590 } 591 592 static bool btf_type_is_void(const struct btf_type *t) 593 { 594 return t == &btf_void || btf_is_fwd(t); 595 } 596 597 static bool btf_type_is_void_or_null(const struct btf_type *t) 598 { 599 return !t || btf_type_is_void(t); 600 } 601 602 #define MAX_RESOLVE_DEPTH 32 603 604 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 605 { 606 const struct btf_array *array; 607 const struct btf_type *t; 608 __u32 nelems = 1; 609 __s64 size = -1; 610 int i; 611 612 t = btf__type_by_id(btf, type_id); 613 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 614 switch (btf_kind(t)) { 615 case BTF_KIND_INT: 616 case BTF_KIND_STRUCT: 617 case BTF_KIND_UNION: 618 case BTF_KIND_ENUM: 619 case BTF_KIND_ENUM64: 620 case BTF_KIND_DATASEC: 621 case BTF_KIND_FLOAT: 622 size = t->size; 623 goto done; 624 case BTF_KIND_PTR: 625 size = btf_ptr_sz(btf); 626 goto done; 627 case BTF_KIND_TYPEDEF: 628 case BTF_KIND_VOLATILE: 629 case BTF_KIND_CONST: 630 case BTF_KIND_RESTRICT: 631 case BTF_KIND_VAR: 632 case BTF_KIND_DECL_TAG: 633 case BTF_KIND_TYPE_TAG: 634 type_id = t->type; 635 break; 636 case BTF_KIND_ARRAY: 637 array = btf_array(t); 638 if (nelems && array->nelems > UINT32_MAX / nelems) 639 return libbpf_err(-E2BIG); 640 nelems *= array->nelems; 641 type_id = array->type; 642 break; 643 default: 644 return libbpf_err(-EINVAL); 645 } 646 647 t = btf__type_by_id(btf, type_id); 648 } 649 650 done: 651 if (size < 0) 652 return libbpf_err(-EINVAL); 653 if (nelems && size > UINT32_MAX / nelems) 654 return libbpf_err(-E2BIG); 655 656 return nelems * size; 657 } 658 659 int btf__align_of(const struct btf *btf, __u32 id) 660 { 661 const struct btf_type *t = btf__type_by_id(btf, id); 662 __u16 kind = btf_kind(t); 663 664 switch (kind) { 665 case BTF_KIND_INT: 666 case BTF_KIND_ENUM: 667 case BTF_KIND_ENUM64: 668 case BTF_KIND_FLOAT: 669 return min(btf_ptr_sz(btf), (size_t)t->size); 670 case BTF_KIND_PTR: 671 return btf_ptr_sz(btf); 672 case BTF_KIND_TYPEDEF: 673 case BTF_KIND_VOLATILE: 674 case BTF_KIND_CONST: 675 case BTF_KIND_RESTRICT: 676 case BTF_KIND_TYPE_TAG: 677 return btf__align_of(btf, t->type); 678 case BTF_KIND_ARRAY: 679 return btf__align_of(btf, btf_array(t)->type); 680 case BTF_KIND_STRUCT: 681 case BTF_KIND_UNION: { 682 const struct btf_member *m = btf_members(t); 683 __u16 vlen = btf_vlen(t); 684 int i, max_align = 1, align; 685 686 for (i = 0; i < vlen; i++, m++) { 687 align = btf__align_of(btf, m->type); 688 if (align <= 0) 689 return libbpf_err(align); 690 max_align = max(max_align, align); 691 } 692 693 return max_align; 694 } 695 default: 696 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 697 return errno = EINVAL, 0; 698 } 699 } 700 701 int btf__resolve_type(const struct btf *btf, __u32 type_id) 702 { 703 const struct btf_type *t; 704 int depth = 0; 705 706 t = btf__type_by_id(btf, type_id); 707 while (depth < MAX_RESOLVE_DEPTH && 708 !btf_type_is_void_or_null(t) && 709 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 710 type_id = t->type; 711 t = btf__type_by_id(btf, type_id); 712 depth++; 713 } 714 715 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 716 return libbpf_err(-EINVAL); 717 718 return type_id; 719 } 720 721 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 722 { 723 __u32 i, nr_types = btf__type_cnt(btf); 724 725 if (!strcmp(type_name, "void")) 726 return 0; 727 728 for (i = 1; i < nr_types; i++) { 729 const struct btf_type *t = btf__type_by_id(btf, i); 730 const char *name = btf__name_by_offset(btf, t->name_off); 731 732 if (name && !strcmp(type_name, name)) 733 return i; 734 } 735 736 return libbpf_err(-ENOENT); 737 } 738 739 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 740 const char *type_name, __u32 kind) 741 { 742 __u32 i, nr_types = btf__type_cnt(btf); 743 744 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 745 return 0; 746 747 for (i = start_id; i < nr_types; i++) { 748 const struct btf_type *t = btf__type_by_id(btf, i); 749 const char *name; 750 751 if (btf_kind(t) != kind) 752 continue; 753 name = btf__name_by_offset(btf, t->name_off); 754 if (name && !strcmp(type_name, name)) 755 return i; 756 } 757 758 return libbpf_err(-ENOENT); 759 } 760 761 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 762 __u32 kind) 763 { 764 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 765 } 766 767 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 768 __u32 kind) 769 { 770 return btf_find_by_name_kind(btf, 1, type_name, kind); 771 } 772 773 static bool btf_is_modifiable(const struct btf *btf) 774 { 775 return (void *)btf->hdr != btf->raw_data; 776 } 777 778 void btf__free(struct btf *btf) 779 { 780 if (IS_ERR_OR_NULL(btf)) 781 return; 782 783 if (btf->fd >= 0) 784 close(btf->fd); 785 786 if (btf_is_modifiable(btf)) { 787 /* if BTF was modified after loading, it will have a split 788 * in-memory representation for header, types, and strings 789 * sections, so we need to free all of them individually. It 790 * might still have a cached contiguous raw data present, 791 * which will be unconditionally freed below. 792 */ 793 free(btf->hdr); 794 free(btf->types_data); 795 strset__free(btf->strs_set); 796 } 797 free(btf->raw_data); 798 free(btf->raw_data_swapped); 799 free(btf->type_offs); 800 free(btf); 801 } 802 803 static struct btf *btf_new_empty(struct btf *base_btf) 804 { 805 struct btf *btf; 806 807 btf = calloc(1, sizeof(*btf)); 808 if (!btf) 809 return ERR_PTR(-ENOMEM); 810 811 btf->nr_types = 0; 812 btf->start_id = 1; 813 btf->start_str_off = 0; 814 btf->fd = -1; 815 btf->ptr_sz = sizeof(void *); 816 btf->swapped_endian = false; 817 818 if (base_btf) { 819 btf->base_btf = base_btf; 820 btf->start_id = btf__type_cnt(base_btf); 821 btf->start_str_off = base_btf->hdr->str_len; 822 } 823 824 /* +1 for empty string at offset 0 */ 825 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 826 btf->raw_data = calloc(1, btf->raw_size); 827 if (!btf->raw_data) { 828 free(btf); 829 return ERR_PTR(-ENOMEM); 830 } 831 832 btf->hdr = btf->raw_data; 833 btf->hdr->hdr_len = sizeof(struct btf_header); 834 btf->hdr->magic = BTF_MAGIC; 835 btf->hdr->version = BTF_VERSION; 836 837 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 838 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 839 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 840 841 return btf; 842 } 843 844 struct btf *btf__new_empty(void) 845 { 846 return libbpf_ptr(btf_new_empty(NULL)); 847 } 848 849 struct btf *btf__new_empty_split(struct btf *base_btf) 850 { 851 return libbpf_ptr(btf_new_empty(base_btf)); 852 } 853 854 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 855 { 856 struct btf *btf; 857 int err; 858 859 btf = calloc(1, sizeof(struct btf)); 860 if (!btf) 861 return ERR_PTR(-ENOMEM); 862 863 btf->nr_types = 0; 864 btf->start_id = 1; 865 btf->start_str_off = 0; 866 btf->fd = -1; 867 868 if (base_btf) { 869 btf->base_btf = base_btf; 870 btf->start_id = btf__type_cnt(base_btf); 871 btf->start_str_off = base_btf->hdr->str_len; 872 } 873 874 btf->raw_data = malloc(size); 875 if (!btf->raw_data) { 876 err = -ENOMEM; 877 goto done; 878 } 879 memcpy(btf->raw_data, data, size); 880 btf->raw_size = size; 881 882 btf->hdr = btf->raw_data; 883 err = btf_parse_hdr(btf); 884 if (err) 885 goto done; 886 887 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 888 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 889 890 err = btf_parse_str_sec(btf); 891 err = err ?: btf_parse_type_sec(btf); 892 if (err) 893 goto done; 894 895 done: 896 if (err) { 897 btf__free(btf); 898 return ERR_PTR(err); 899 } 900 901 return btf; 902 } 903 904 struct btf *btf__new(const void *data, __u32 size) 905 { 906 return libbpf_ptr(btf_new(data, size, NULL)); 907 } 908 909 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 910 struct btf_ext **btf_ext) 911 { 912 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 913 int err = 0, fd = -1, idx = 0; 914 struct btf *btf = NULL; 915 Elf_Scn *scn = NULL; 916 Elf *elf = NULL; 917 GElf_Ehdr ehdr; 918 size_t shstrndx; 919 920 if (elf_version(EV_CURRENT) == EV_NONE) { 921 pr_warn("failed to init libelf for %s\n", path); 922 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 923 } 924 925 fd = open(path, O_RDONLY | O_CLOEXEC); 926 if (fd < 0) { 927 err = -errno; 928 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 929 return ERR_PTR(err); 930 } 931 932 err = -LIBBPF_ERRNO__FORMAT; 933 934 elf = elf_begin(fd, ELF_C_READ, NULL); 935 if (!elf) { 936 pr_warn("failed to open %s as ELF file\n", path); 937 goto done; 938 } 939 if (!gelf_getehdr(elf, &ehdr)) { 940 pr_warn("failed to get EHDR from %s\n", path); 941 goto done; 942 } 943 944 if (elf_getshdrstrndx(elf, &shstrndx)) { 945 pr_warn("failed to get section names section index for %s\n", 946 path); 947 goto done; 948 } 949 950 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 951 pr_warn("failed to get e_shstrndx from %s\n", path); 952 goto done; 953 } 954 955 while ((scn = elf_nextscn(elf, scn)) != NULL) { 956 GElf_Shdr sh; 957 char *name; 958 959 idx++; 960 if (gelf_getshdr(scn, &sh) != &sh) { 961 pr_warn("failed to get section(%d) header from %s\n", 962 idx, path); 963 goto done; 964 } 965 name = elf_strptr(elf, shstrndx, sh.sh_name); 966 if (!name) { 967 pr_warn("failed to get section(%d) name from %s\n", 968 idx, path); 969 goto done; 970 } 971 if (strcmp(name, BTF_ELF_SEC) == 0) { 972 btf_data = elf_getdata(scn, 0); 973 if (!btf_data) { 974 pr_warn("failed to get section(%d, %s) data from %s\n", 975 idx, name, path); 976 goto done; 977 } 978 continue; 979 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 980 btf_ext_data = elf_getdata(scn, 0); 981 if (!btf_ext_data) { 982 pr_warn("failed to get section(%d, %s) data from %s\n", 983 idx, name, path); 984 goto done; 985 } 986 continue; 987 } 988 } 989 990 err = 0; 991 992 if (!btf_data) { 993 err = -ENOENT; 994 goto done; 995 } 996 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 997 err = libbpf_get_error(btf); 998 if (err) 999 goto done; 1000 1001 switch (gelf_getclass(elf)) { 1002 case ELFCLASS32: 1003 btf__set_pointer_size(btf, 4); 1004 break; 1005 case ELFCLASS64: 1006 btf__set_pointer_size(btf, 8); 1007 break; 1008 default: 1009 pr_warn("failed to get ELF class (bitness) for %s\n", path); 1010 break; 1011 } 1012 1013 if (btf_ext && btf_ext_data) { 1014 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 1015 err = libbpf_get_error(*btf_ext); 1016 if (err) 1017 goto done; 1018 } else if (btf_ext) { 1019 *btf_ext = NULL; 1020 } 1021 done: 1022 if (elf) 1023 elf_end(elf); 1024 close(fd); 1025 1026 if (!err) 1027 return btf; 1028 1029 if (btf_ext) 1030 btf_ext__free(*btf_ext); 1031 btf__free(btf); 1032 1033 return ERR_PTR(err); 1034 } 1035 1036 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1037 { 1038 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1039 } 1040 1041 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1042 { 1043 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1044 } 1045 1046 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1047 { 1048 struct btf *btf = NULL; 1049 void *data = NULL; 1050 FILE *f = NULL; 1051 __u16 magic; 1052 int err = 0; 1053 long sz; 1054 1055 f = fopen(path, "rb"); 1056 if (!f) { 1057 err = -errno; 1058 goto err_out; 1059 } 1060 1061 /* check BTF magic */ 1062 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1063 err = -EIO; 1064 goto err_out; 1065 } 1066 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1067 /* definitely not a raw BTF */ 1068 err = -EPROTO; 1069 goto err_out; 1070 } 1071 1072 /* get file size */ 1073 if (fseek(f, 0, SEEK_END)) { 1074 err = -errno; 1075 goto err_out; 1076 } 1077 sz = ftell(f); 1078 if (sz < 0) { 1079 err = -errno; 1080 goto err_out; 1081 } 1082 /* rewind to the start */ 1083 if (fseek(f, 0, SEEK_SET)) { 1084 err = -errno; 1085 goto err_out; 1086 } 1087 1088 /* pre-alloc memory and read all of BTF data */ 1089 data = malloc(sz); 1090 if (!data) { 1091 err = -ENOMEM; 1092 goto err_out; 1093 } 1094 if (fread(data, 1, sz, f) < sz) { 1095 err = -EIO; 1096 goto err_out; 1097 } 1098 1099 /* finally parse BTF data */ 1100 btf = btf_new(data, sz, base_btf); 1101 1102 err_out: 1103 free(data); 1104 if (f) 1105 fclose(f); 1106 return err ? ERR_PTR(err) : btf; 1107 } 1108 1109 struct btf *btf__parse_raw(const char *path) 1110 { 1111 return libbpf_ptr(btf_parse_raw(path, NULL)); 1112 } 1113 1114 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1115 { 1116 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1117 } 1118 1119 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1120 { 1121 struct btf *btf; 1122 int err; 1123 1124 if (btf_ext) 1125 *btf_ext = NULL; 1126 1127 btf = btf_parse_raw(path, base_btf); 1128 err = libbpf_get_error(btf); 1129 if (!err) 1130 return btf; 1131 if (err != -EPROTO) 1132 return ERR_PTR(err); 1133 return btf_parse_elf(path, base_btf, btf_ext); 1134 } 1135 1136 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1137 { 1138 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1139 } 1140 1141 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1142 { 1143 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1144 } 1145 1146 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1147 1148 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level) 1149 { 1150 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1151 __u32 buf_sz = 0, raw_size; 1152 char *buf = NULL, *tmp; 1153 void *raw_data; 1154 int err = 0; 1155 1156 if (btf->fd >= 0) 1157 return libbpf_err(-EEXIST); 1158 if (log_sz && !log_buf) 1159 return libbpf_err(-EINVAL); 1160 1161 /* cache native raw data representation */ 1162 raw_data = btf_get_raw_data(btf, &raw_size, false); 1163 if (!raw_data) { 1164 err = -ENOMEM; 1165 goto done; 1166 } 1167 btf->raw_size = raw_size; 1168 btf->raw_data = raw_data; 1169 1170 retry_load: 1171 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1172 * initially. Only if BTF loading fails, we bump log_level to 1 and 1173 * retry, using either auto-allocated or custom log_buf. This way 1174 * non-NULL custom log_buf provides a buffer just in case, but hopes 1175 * for successful load and no need for log_buf. 1176 */ 1177 if (log_level) { 1178 /* if caller didn't provide custom log_buf, we'll keep 1179 * allocating our own progressively bigger buffers for BTF 1180 * verification log 1181 */ 1182 if (!log_buf) { 1183 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1184 tmp = realloc(buf, buf_sz); 1185 if (!tmp) { 1186 err = -ENOMEM; 1187 goto done; 1188 } 1189 buf = tmp; 1190 buf[0] = '\0'; 1191 } 1192 1193 opts.log_buf = log_buf ? log_buf : buf; 1194 opts.log_size = log_buf ? log_sz : buf_sz; 1195 opts.log_level = log_level; 1196 } 1197 1198 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1199 if (btf->fd < 0) { 1200 /* time to turn on verbose mode and try again */ 1201 if (log_level == 0) { 1202 log_level = 1; 1203 goto retry_load; 1204 } 1205 /* only retry if caller didn't provide custom log_buf, but 1206 * make sure we can never overflow buf_sz 1207 */ 1208 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1209 goto retry_load; 1210 1211 err = -errno; 1212 pr_warn("BTF loading error: %d\n", err); 1213 /* don't print out contents of custom log_buf */ 1214 if (!log_buf && buf[0]) 1215 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1216 } 1217 1218 done: 1219 free(buf); 1220 return libbpf_err(err); 1221 } 1222 1223 int btf__load_into_kernel(struct btf *btf) 1224 { 1225 return btf_load_into_kernel(btf, NULL, 0, 0); 1226 } 1227 1228 int btf__fd(const struct btf *btf) 1229 { 1230 return btf->fd; 1231 } 1232 1233 void btf__set_fd(struct btf *btf, int fd) 1234 { 1235 btf->fd = fd; 1236 } 1237 1238 static const void *btf_strs_data(const struct btf *btf) 1239 { 1240 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1241 } 1242 1243 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1244 { 1245 struct btf_header *hdr = btf->hdr; 1246 struct btf_type *t; 1247 void *data, *p; 1248 __u32 data_sz; 1249 int i; 1250 1251 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1252 if (data) { 1253 *size = btf->raw_size; 1254 return data; 1255 } 1256 1257 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1258 data = calloc(1, data_sz); 1259 if (!data) 1260 return NULL; 1261 p = data; 1262 1263 memcpy(p, hdr, hdr->hdr_len); 1264 if (swap_endian) 1265 btf_bswap_hdr(p); 1266 p += hdr->hdr_len; 1267 1268 memcpy(p, btf->types_data, hdr->type_len); 1269 if (swap_endian) { 1270 for (i = 0; i < btf->nr_types; i++) { 1271 t = p + btf->type_offs[i]; 1272 /* btf_bswap_type_rest() relies on native t->info, so 1273 * we swap base type info after we swapped all the 1274 * additional information 1275 */ 1276 if (btf_bswap_type_rest(t)) 1277 goto err_out; 1278 btf_bswap_type_base(t); 1279 } 1280 } 1281 p += hdr->type_len; 1282 1283 memcpy(p, btf_strs_data(btf), hdr->str_len); 1284 p += hdr->str_len; 1285 1286 *size = data_sz; 1287 return data; 1288 err_out: 1289 free(data); 1290 return NULL; 1291 } 1292 1293 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1294 { 1295 struct btf *btf = (struct btf *)btf_ro; 1296 __u32 data_sz; 1297 void *data; 1298 1299 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1300 if (!data) 1301 return errno = ENOMEM, NULL; 1302 1303 btf->raw_size = data_sz; 1304 if (btf->swapped_endian) 1305 btf->raw_data_swapped = data; 1306 else 1307 btf->raw_data = data; 1308 *size = data_sz; 1309 return data; 1310 } 1311 1312 __attribute__((alias("btf__raw_data"))) 1313 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1314 1315 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1316 { 1317 if (offset < btf->start_str_off) 1318 return btf__str_by_offset(btf->base_btf, offset); 1319 else if (offset - btf->start_str_off < btf->hdr->str_len) 1320 return btf_strs_data(btf) + (offset - btf->start_str_off); 1321 else 1322 return errno = EINVAL, NULL; 1323 } 1324 1325 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1326 { 1327 return btf__str_by_offset(btf, offset); 1328 } 1329 1330 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1331 { 1332 struct bpf_btf_info btf_info; 1333 __u32 len = sizeof(btf_info); 1334 __u32 last_size; 1335 struct btf *btf; 1336 void *ptr; 1337 int err; 1338 1339 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1340 * let's start with a sane default - 4KiB here - and resize it only if 1341 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1342 */ 1343 last_size = 4096; 1344 ptr = malloc(last_size); 1345 if (!ptr) 1346 return ERR_PTR(-ENOMEM); 1347 1348 memset(&btf_info, 0, sizeof(btf_info)); 1349 btf_info.btf = ptr_to_u64(ptr); 1350 btf_info.btf_size = last_size; 1351 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1352 1353 if (!err && btf_info.btf_size > last_size) { 1354 void *temp_ptr; 1355 1356 last_size = btf_info.btf_size; 1357 temp_ptr = realloc(ptr, last_size); 1358 if (!temp_ptr) { 1359 btf = ERR_PTR(-ENOMEM); 1360 goto exit_free; 1361 } 1362 ptr = temp_ptr; 1363 1364 len = sizeof(btf_info); 1365 memset(&btf_info, 0, sizeof(btf_info)); 1366 btf_info.btf = ptr_to_u64(ptr); 1367 btf_info.btf_size = last_size; 1368 1369 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1370 } 1371 1372 if (err || btf_info.btf_size > last_size) { 1373 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1374 goto exit_free; 1375 } 1376 1377 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1378 1379 exit_free: 1380 free(ptr); 1381 return btf; 1382 } 1383 1384 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1385 { 1386 struct btf *btf; 1387 int btf_fd; 1388 1389 btf_fd = bpf_btf_get_fd_by_id(id); 1390 if (btf_fd < 0) 1391 return libbpf_err_ptr(-errno); 1392 1393 btf = btf_get_from_fd(btf_fd, base_btf); 1394 close(btf_fd); 1395 1396 return libbpf_ptr(btf); 1397 } 1398 1399 struct btf *btf__load_from_kernel_by_id(__u32 id) 1400 { 1401 return btf__load_from_kernel_by_id_split(id, NULL); 1402 } 1403 1404 static void btf_invalidate_raw_data(struct btf *btf) 1405 { 1406 if (btf->raw_data) { 1407 free(btf->raw_data); 1408 btf->raw_data = NULL; 1409 } 1410 if (btf->raw_data_swapped) { 1411 free(btf->raw_data_swapped); 1412 btf->raw_data_swapped = NULL; 1413 } 1414 } 1415 1416 /* Ensure BTF is ready to be modified (by splitting into a three memory 1417 * regions for header, types, and strings). Also invalidate cached 1418 * raw_data, if any. 1419 */ 1420 static int btf_ensure_modifiable(struct btf *btf) 1421 { 1422 void *hdr, *types; 1423 struct strset *set = NULL; 1424 int err = -ENOMEM; 1425 1426 if (btf_is_modifiable(btf)) { 1427 /* any BTF modification invalidates raw_data */ 1428 btf_invalidate_raw_data(btf); 1429 return 0; 1430 } 1431 1432 /* split raw data into three memory regions */ 1433 hdr = malloc(btf->hdr->hdr_len); 1434 types = malloc(btf->hdr->type_len); 1435 if (!hdr || !types) 1436 goto err_out; 1437 1438 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1439 memcpy(types, btf->types_data, btf->hdr->type_len); 1440 1441 /* build lookup index for all strings */ 1442 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1443 if (IS_ERR(set)) { 1444 err = PTR_ERR(set); 1445 goto err_out; 1446 } 1447 1448 /* only when everything was successful, update internal state */ 1449 btf->hdr = hdr; 1450 btf->types_data = types; 1451 btf->types_data_cap = btf->hdr->type_len; 1452 btf->strs_data = NULL; 1453 btf->strs_set = set; 1454 /* if BTF was created from scratch, all strings are guaranteed to be 1455 * unique and deduplicated 1456 */ 1457 if (btf->hdr->str_len == 0) 1458 btf->strs_deduped = true; 1459 if (!btf->base_btf && btf->hdr->str_len == 1) 1460 btf->strs_deduped = true; 1461 1462 /* invalidate raw_data representation */ 1463 btf_invalidate_raw_data(btf); 1464 1465 return 0; 1466 1467 err_out: 1468 strset__free(set); 1469 free(hdr); 1470 free(types); 1471 return err; 1472 } 1473 1474 /* Find an offset in BTF string section that corresponds to a given string *s*. 1475 * Returns: 1476 * - >0 offset into string section, if string is found; 1477 * - -ENOENT, if string is not in the string section; 1478 * - <0, on any other error. 1479 */ 1480 int btf__find_str(struct btf *btf, const char *s) 1481 { 1482 int off; 1483 1484 if (btf->base_btf) { 1485 off = btf__find_str(btf->base_btf, s); 1486 if (off != -ENOENT) 1487 return off; 1488 } 1489 1490 /* BTF needs to be in a modifiable state to build string lookup index */ 1491 if (btf_ensure_modifiable(btf)) 1492 return libbpf_err(-ENOMEM); 1493 1494 off = strset__find_str(btf->strs_set, s); 1495 if (off < 0) 1496 return libbpf_err(off); 1497 1498 return btf->start_str_off + off; 1499 } 1500 1501 /* Add a string s to the BTF string section. 1502 * Returns: 1503 * - > 0 offset into string section, on success; 1504 * - < 0, on error. 1505 */ 1506 int btf__add_str(struct btf *btf, const char *s) 1507 { 1508 int off; 1509 1510 if (btf->base_btf) { 1511 off = btf__find_str(btf->base_btf, s); 1512 if (off != -ENOENT) 1513 return off; 1514 } 1515 1516 if (btf_ensure_modifiable(btf)) 1517 return libbpf_err(-ENOMEM); 1518 1519 off = strset__add_str(btf->strs_set, s); 1520 if (off < 0) 1521 return libbpf_err(off); 1522 1523 btf->hdr->str_len = strset__data_size(btf->strs_set); 1524 1525 return btf->start_str_off + off; 1526 } 1527 1528 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1529 { 1530 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1531 btf->hdr->type_len, UINT_MAX, add_sz); 1532 } 1533 1534 static void btf_type_inc_vlen(struct btf_type *t) 1535 { 1536 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1537 } 1538 1539 static int btf_commit_type(struct btf *btf, int data_sz) 1540 { 1541 int err; 1542 1543 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1544 if (err) 1545 return libbpf_err(err); 1546 1547 btf->hdr->type_len += data_sz; 1548 btf->hdr->str_off += data_sz; 1549 btf->nr_types++; 1550 return btf->start_id + btf->nr_types - 1; 1551 } 1552 1553 struct btf_pipe { 1554 const struct btf *src; 1555 struct btf *dst; 1556 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1557 }; 1558 1559 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1560 { 1561 struct btf_pipe *p = ctx; 1562 long mapped_off; 1563 int off, err; 1564 1565 if (!*str_off) /* nothing to do for empty strings */ 1566 return 0; 1567 1568 if (p->str_off_map && 1569 hashmap__find(p->str_off_map, *str_off, &mapped_off)) { 1570 *str_off = mapped_off; 1571 return 0; 1572 } 1573 1574 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1575 if (off < 0) 1576 return off; 1577 1578 /* Remember string mapping from src to dst. It avoids 1579 * performing expensive string comparisons. 1580 */ 1581 if (p->str_off_map) { 1582 err = hashmap__append(p->str_off_map, *str_off, off); 1583 if (err) 1584 return err; 1585 } 1586 1587 *str_off = off; 1588 return 0; 1589 } 1590 1591 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1592 { 1593 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1594 struct btf_type *t; 1595 int sz, err; 1596 1597 sz = btf_type_size(src_type); 1598 if (sz < 0) 1599 return libbpf_err(sz); 1600 1601 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1602 if (btf_ensure_modifiable(btf)) 1603 return libbpf_err(-ENOMEM); 1604 1605 t = btf_add_type_mem(btf, sz); 1606 if (!t) 1607 return libbpf_err(-ENOMEM); 1608 1609 memcpy(t, src_type, sz); 1610 1611 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1612 if (err) 1613 return libbpf_err(err); 1614 1615 return btf_commit_type(btf, sz); 1616 } 1617 1618 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1619 { 1620 struct btf *btf = ctx; 1621 1622 if (!*type_id) /* nothing to do for VOID references */ 1623 return 0; 1624 1625 /* we haven't updated btf's type count yet, so 1626 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1627 * add to all newly added BTF types 1628 */ 1629 *type_id += btf->start_id + btf->nr_types - 1; 1630 return 0; 1631 } 1632 1633 static size_t btf_dedup_identity_hash_fn(long key, void *ctx); 1634 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx); 1635 1636 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1637 { 1638 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1639 int data_sz, sz, cnt, i, err, old_strs_len; 1640 __u32 *off; 1641 void *t; 1642 1643 /* appending split BTF isn't supported yet */ 1644 if (src_btf->base_btf) 1645 return libbpf_err(-ENOTSUP); 1646 1647 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1648 if (btf_ensure_modifiable(btf)) 1649 return libbpf_err(-ENOMEM); 1650 1651 /* remember original strings section size if we have to roll back 1652 * partial strings section changes 1653 */ 1654 old_strs_len = btf->hdr->str_len; 1655 1656 data_sz = src_btf->hdr->type_len; 1657 cnt = btf__type_cnt(src_btf) - 1; 1658 1659 /* pre-allocate enough memory for new types */ 1660 t = btf_add_type_mem(btf, data_sz); 1661 if (!t) 1662 return libbpf_err(-ENOMEM); 1663 1664 /* pre-allocate enough memory for type offset index for new types */ 1665 off = btf_add_type_offs_mem(btf, cnt); 1666 if (!off) 1667 return libbpf_err(-ENOMEM); 1668 1669 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1670 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1671 if (IS_ERR(p.str_off_map)) 1672 return libbpf_err(-ENOMEM); 1673 1674 /* bulk copy types data for all types from src_btf */ 1675 memcpy(t, src_btf->types_data, data_sz); 1676 1677 for (i = 0; i < cnt; i++) { 1678 sz = btf_type_size(t); 1679 if (sz < 0) { 1680 /* unlikely, has to be corrupted src_btf */ 1681 err = sz; 1682 goto err_out; 1683 } 1684 1685 /* fill out type ID to type offset mapping for lookups by type ID */ 1686 *off = t - btf->types_data; 1687 1688 /* add, dedup, and remap strings referenced by this BTF type */ 1689 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1690 if (err) 1691 goto err_out; 1692 1693 /* remap all type IDs referenced from this BTF type */ 1694 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1695 if (err) 1696 goto err_out; 1697 1698 /* go to next type data and type offset index entry */ 1699 t += sz; 1700 off++; 1701 } 1702 1703 /* Up until now any of the copied type data was effectively invisible, 1704 * so if we exited early before this point due to error, BTF would be 1705 * effectively unmodified. There would be extra internal memory 1706 * pre-allocated, but it would not be available for querying. But now 1707 * that we've copied and rewritten all the data successfully, we can 1708 * update type count and various internal offsets and sizes to 1709 * "commit" the changes and made them visible to the outside world. 1710 */ 1711 btf->hdr->type_len += data_sz; 1712 btf->hdr->str_off += data_sz; 1713 btf->nr_types += cnt; 1714 1715 hashmap__free(p.str_off_map); 1716 1717 /* return type ID of the first added BTF type */ 1718 return btf->start_id + btf->nr_types - cnt; 1719 err_out: 1720 /* zero out preallocated memory as if it was just allocated with 1721 * libbpf_add_mem() 1722 */ 1723 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1724 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1725 1726 /* and now restore original strings section size; types data size 1727 * wasn't modified, so doesn't need restoring, see big comment above 1728 */ 1729 btf->hdr->str_len = old_strs_len; 1730 1731 hashmap__free(p.str_off_map); 1732 1733 return libbpf_err(err); 1734 } 1735 1736 /* 1737 * Append new BTF_KIND_INT type with: 1738 * - *name* - non-empty, non-NULL type name; 1739 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1740 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1741 * Returns: 1742 * - >0, type ID of newly added BTF type; 1743 * - <0, on error. 1744 */ 1745 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1746 { 1747 struct btf_type *t; 1748 int sz, name_off; 1749 1750 /* non-empty name */ 1751 if (!name || !name[0]) 1752 return libbpf_err(-EINVAL); 1753 /* byte_sz must be power of 2 */ 1754 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1755 return libbpf_err(-EINVAL); 1756 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1757 return libbpf_err(-EINVAL); 1758 1759 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1760 if (btf_ensure_modifiable(btf)) 1761 return libbpf_err(-ENOMEM); 1762 1763 sz = sizeof(struct btf_type) + sizeof(int); 1764 t = btf_add_type_mem(btf, sz); 1765 if (!t) 1766 return libbpf_err(-ENOMEM); 1767 1768 /* if something goes wrong later, we might end up with an extra string, 1769 * but that shouldn't be a problem, because BTF can't be constructed 1770 * completely anyway and will most probably be just discarded 1771 */ 1772 name_off = btf__add_str(btf, name); 1773 if (name_off < 0) 1774 return name_off; 1775 1776 t->name_off = name_off; 1777 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1778 t->size = byte_sz; 1779 /* set INT info, we don't allow setting legacy bit offset/size */ 1780 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1781 1782 return btf_commit_type(btf, sz); 1783 } 1784 1785 /* 1786 * Append new BTF_KIND_FLOAT type with: 1787 * - *name* - non-empty, non-NULL type name; 1788 * - *sz* - size of the type, in bytes; 1789 * Returns: 1790 * - >0, type ID of newly added BTF type; 1791 * - <0, on error. 1792 */ 1793 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1794 { 1795 struct btf_type *t; 1796 int sz, name_off; 1797 1798 /* non-empty name */ 1799 if (!name || !name[0]) 1800 return libbpf_err(-EINVAL); 1801 1802 /* byte_sz must be one of the explicitly allowed values */ 1803 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1804 byte_sz != 16) 1805 return libbpf_err(-EINVAL); 1806 1807 if (btf_ensure_modifiable(btf)) 1808 return libbpf_err(-ENOMEM); 1809 1810 sz = sizeof(struct btf_type); 1811 t = btf_add_type_mem(btf, sz); 1812 if (!t) 1813 return libbpf_err(-ENOMEM); 1814 1815 name_off = btf__add_str(btf, name); 1816 if (name_off < 0) 1817 return name_off; 1818 1819 t->name_off = name_off; 1820 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1821 t->size = byte_sz; 1822 1823 return btf_commit_type(btf, sz); 1824 } 1825 1826 /* it's completely legal to append BTF types with type IDs pointing forward to 1827 * types that haven't been appended yet, so we only make sure that id looks 1828 * sane, we can't guarantee that ID will always be valid 1829 */ 1830 static int validate_type_id(int id) 1831 { 1832 if (id < 0 || id > BTF_MAX_NR_TYPES) 1833 return -EINVAL; 1834 return 0; 1835 } 1836 1837 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1838 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1839 { 1840 struct btf_type *t; 1841 int sz, name_off = 0; 1842 1843 if (validate_type_id(ref_type_id)) 1844 return libbpf_err(-EINVAL); 1845 1846 if (btf_ensure_modifiable(btf)) 1847 return libbpf_err(-ENOMEM); 1848 1849 sz = sizeof(struct btf_type); 1850 t = btf_add_type_mem(btf, sz); 1851 if (!t) 1852 return libbpf_err(-ENOMEM); 1853 1854 if (name && name[0]) { 1855 name_off = btf__add_str(btf, name); 1856 if (name_off < 0) 1857 return name_off; 1858 } 1859 1860 t->name_off = name_off; 1861 t->info = btf_type_info(kind, 0, 0); 1862 t->type = ref_type_id; 1863 1864 return btf_commit_type(btf, sz); 1865 } 1866 1867 /* 1868 * Append new BTF_KIND_PTR type with: 1869 * - *ref_type_id* - referenced type ID, it might not exist yet; 1870 * Returns: 1871 * - >0, type ID of newly added BTF type; 1872 * - <0, on error. 1873 */ 1874 int btf__add_ptr(struct btf *btf, int ref_type_id) 1875 { 1876 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1877 } 1878 1879 /* 1880 * Append new BTF_KIND_ARRAY type with: 1881 * - *index_type_id* - type ID of the type describing array index; 1882 * - *elem_type_id* - type ID of the type describing array element; 1883 * - *nr_elems* - the size of the array; 1884 * Returns: 1885 * - >0, type ID of newly added BTF type; 1886 * - <0, on error. 1887 */ 1888 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1889 { 1890 struct btf_type *t; 1891 struct btf_array *a; 1892 int sz; 1893 1894 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1895 return libbpf_err(-EINVAL); 1896 1897 if (btf_ensure_modifiable(btf)) 1898 return libbpf_err(-ENOMEM); 1899 1900 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1901 t = btf_add_type_mem(btf, sz); 1902 if (!t) 1903 return libbpf_err(-ENOMEM); 1904 1905 t->name_off = 0; 1906 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1907 t->size = 0; 1908 1909 a = btf_array(t); 1910 a->type = elem_type_id; 1911 a->index_type = index_type_id; 1912 a->nelems = nr_elems; 1913 1914 return btf_commit_type(btf, sz); 1915 } 1916 1917 /* generic STRUCT/UNION append function */ 1918 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1919 { 1920 struct btf_type *t; 1921 int sz, name_off = 0; 1922 1923 if (btf_ensure_modifiable(btf)) 1924 return libbpf_err(-ENOMEM); 1925 1926 sz = sizeof(struct btf_type); 1927 t = btf_add_type_mem(btf, sz); 1928 if (!t) 1929 return libbpf_err(-ENOMEM); 1930 1931 if (name && name[0]) { 1932 name_off = btf__add_str(btf, name); 1933 if (name_off < 0) 1934 return name_off; 1935 } 1936 1937 /* start out with vlen=0 and no kflag; this will be adjusted when 1938 * adding each member 1939 */ 1940 t->name_off = name_off; 1941 t->info = btf_type_info(kind, 0, 0); 1942 t->size = bytes_sz; 1943 1944 return btf_commit_type(btf, sz); 1945 } 1946 1947 /* 1948 * Append new BTF_KIND_STRUCT type with: 1949 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1950 * - *byte_sz* - size of the struct, in bytes; 1951 * 1952 * Struct initially has no fields in it. Fields can be added by 1953 * btf__add_field() right after btf__add_struct() succeeds. 1954 * 1955 * Returns: 1956 * - >0, type ID of newly added BTF type; 1957 * - <0, on error. 1958 */ 1959 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1960 { 1961 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1962 } 1963 1964 /* 1965 * Append new BTF_KIND_UNION type with: 1966 * - *name* - name of the union, can be NULL or empty for anonymous union; 1967 * - *byte_sz* - size of the union, in bytes; 1968 * 1969 * Union initially has no fields in it. Fields can be added by 1970 * btf__add_field() right after btf__add_union() succeeds. All fields 1971 * should have *bit_offset* of 0. 1972 * 1973 * Returns: 1974 * - >0, type ID of newly added BTF type; 1975 * - <0, on error. 1976 */ 1977 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1978 { 1979 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1980 } 1981 1982 static struct btf_type *btf_last_type(struct btf *btf) 1983 { 1984 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 1985 } 1986 1987 /* 1988 * Append new field for the current STRUCT/UNION type with: 1989 * - *name* - name of the field, can be NULL or empty for anonymous field; 1990 * - *type_id* - type ID for the type describing field type; 1991 * - *bit_offset* - bit offset of the start of the field within struct/union; 1992 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1993 * Returns: 1994 * - 0, on success; 1995 * - <0, on error. 1996 */ 1997 int btf__add_field(struct btf *btf, const char *name, int type_id, 1998 __u32 bit_offset, __u32 bit_size) 1999 { 2000 struct btf_type *t; 2001 struct btf_member *m; 2002 bool is_bitfield; 2003 int sz, name_off = 0; 2004 2005 /* last type should be union/struct */ 2006 if (btf->nr_types == 0) 2007 return libbpf_err(-EINVAL); 2008 t = btf_last_type(btf); 2009 if (!btf_is_composite(t)) 2010 return libbpf_err(-EINVAL); 2011 2012 if (validate_type_id(type_id)) 2013 return libbpf_err(-EINVAL); 2014 /* best-effort bit field offset/size enforcement */ 2015 is_bitfield = bit_size || (bit_offset % 8 != 0); 2016 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2017 return libbpf_err(-EINVAL); 2018 2019 /* only offset 0 is allowed for unions */ 2020 if (btf_is_union(t) && bit_offset) 2021 return libbpf_err(-EINVAL); 2022 2023 /* decompose and invalidate raw data */ 2024 if (btf_ensure_modifiable(btf)) 2025 return libbpf_err(-ENOMEM); 2026 2027 sz = sizeof(struct btf_member); 2028 m = btf_add_type_mem(btf, sz); 2029 if (!m) 2030 return libbpf_err(-ENOMEM); 2031 2032 if (name && name[0]) { 2033 name_off = btf__add_str(btf, name); 2034 if (name_off < 0) 2035 return name_off; 2036 } 2037 2038 m->name_off = name_off; 2039 m->type = type_id; 2040 m->offset = bit_offset | (bit_size << 24); 2041 2042 /* btf_add_type_mem can invalidate t pointer */ 2043 t = btf_last_type(btf); 2044 /* update parent type's vlen and kflag */ 2045 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2046 2047 btf->hdr->type_len += sz; 2048 btf->hdr->str_off += sz; 2049 return 0; 2050 } 2051 2052 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, 2053 bool is_signed, __u8 kind) 2054 { 2055 struct btf_type *t; 2056 int sz, name_off = 0; 2057 2058 /* byte_sz must be power of 2 */ 2059 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2060 return libbpf_err(-EINVAL); 2061 2062 if (btf_ensure_modifiable(btf)) 2063 return libbpf_err(-ENOMEM); 2064 2065 sz = sizeof(struct btf_type); 2066 t = btf_add_type_mem(btf, sz); 2067 if (!t) 2068 return libbpf_err(-ENOMEM); 2069 2070 if (name && name[0]) { 2071 name_off = btf__add_str(btf, name); 2072 if (name_off < 0) 2073 return name_off; 2074 } 2075 2076 /* start out with vlen=0; it will be adjusted when adding enum values */ 2077 t->name_off = name_off; 2078 t->info = btf_type_info(kind, 0, is_signed); 2079 t->size = byte_sz; 2080 2081 return btf_commit_type(btf, sz); 2082 } 2083 2084 /* 2085 * Append new BTF_KIND_ENUM type with: 2086 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2087 * - *byte_sz* - size of the enum, in bytes. 2088 * 2089 * Enum initially has no enum values in it (and corresponds to enum forward 2090 * declaration). Enumerator values can be added by btf__add_enum_value() 2091 * immediately after btf__add_enum() succeeds. 2092 * 2093 * Returns: 2094 * - >0, type ID of newly added BTF type; 2095 * - <0, on error. 2096 */ 2097 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2098 { 2099 /* 2100 * set the signedness to be unsigned, it will change to signed 2101 * if any later enumerator is negative. 2102 */ 2103 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); 2104 } 2105 2106 /* 2107 * Append new enum value for the current ENUM type with: 2108 * - *name* - name of the enumerator value, can't be NULL or empty; 2109 * - *value* - integer value corresponding to enum value *name*; 2110 * Returns: 2111 * - 0, on success; 2112 * - <0, on error. 2113 */ 2114 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2115 { 2116 struct btf_type *t; 2117 struct btf_enum *v; 2118 int sz, name_off; 2119 2120 /* last type should be BTF_KIND_ENUM */ 2121 if (btf->nr_types == 0) 2122 return libbpf_err(-EINVAL); 2123 t = btf_last_type(btf); 2124 if (!btf_is_enum(t)) 2125 return libbpf_err(-EINVAL); 2126 2127 /* non-empty name */ 2128 if (!name || !name[0]) 2129 return libbpf_err(-EINVAL); 2130 if (value < INT_MIN || value > UINT_MAX) 2131 return libbpf_err(-E2BIG); 2132 2133 /* decompose and invalidate raw data */ 2134 if (btf_ensure_modifiable(btf)) 2135 return libbpf_err(-ENOMEM); 2136 2137 sz = sizeof(struct btf_enum); 2138 v = btf_add_type_mem(btf, sz); 2139 if (!v) 2140 return libbpf_err(-ENOMEM); 2141 2142 name_off = btf__add_str(btf, name); 2143 if (name_off < 0) 2144 return name_off; 2145 2146 v->name_off = name_off; 2147 v->val = value; 2148 2149 /* update parent type's vlen */ 2150 t = btf_last_type(btf); 2151 btf_type_inc_vlen(t); 2152 2153 /* if negative value, set signedness to signed */ 2154 if (value < 0) 2155 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); 2156 2157 btf->hdr->type_len += sz; 2158 btf->hdr->str_off += sz; 2159 return 0; 2160 } 2161 2162 /* 2163 * Append new BTF_KIND_ENUM64 type with: 2164 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2165 * - *byte_sz* - size of the enum, in bytes. 2166 * - *is_signed* - whether the enum values are signed or not; 2167 * 2168 * Enum initially has no enum values in it (and corresponds to enum forward 2169 * declaration). Enumerator values can be added by btf__add_enum64_value() 2170 * immediately after btf__add_enum64() succeeds. 2171 * 2172 * Returns: 2173 * - >0, type ID of newly added BTF type; 2174 * - <0, on error. 2175 */ 2176 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, 2177 bool is_signed) 2178 { 2179 return btf_add_enum_common(btf, name, byte_sz, is_signed, 2180 BTF_KIND_ENUM64); 2181 } 2182 2183 /* 2184 * Append new enum value for the current ENUM64 type with: 2185 * - *name* - name of the enumerator value, can't be NULL or empty; 2186 * - *value* - integer value corresponding to enum value *name*; 2187 * Returns: 2188 * - 0, on success; 2189 * - <0, on error. 2190 */ 2191 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) 2192 { 2193 struct btf_enum64 *v; 2194 struct btf_type *t; 2195 int sz, name_off; 2196 2197 /* last type should be BTF_KIND_ENUM64 */ 2198 if (btf->nr_types == 0) 2199 return libbpf_err(-EINVAL); 2200 t = btf_last_type(btf); 2201 if (!btf_is_enum64(t)) 2202 return libbpf_err(-EINVAL); 2203 2204 /* non-empty name */ 2205 if (!name || !name[0]) 2206 return libbpf_err(-EINVAL); 2207 2208 /* decompose and invalidate raw data */ 2209 if (btf_ensure_modifiable(btf)) 2210 return libbpf_err(-ENOMEM); 2211 2212 sz = sizeof(struct btf_enum64); 2213 v = btf_add_type_mem(btf, sz); 2214 if (!v) 2215 return libbpf_err(-ENOMEM); 2216 2217 name_off = btf__add_str(btf, name); 2218 if (name_off < 0) 2219 return name_off; 2220 2221 v->name_off = name_off; 2222 v->val_lo32 = (__u32)value; 2223 v->val_hi32 = value >> 32; 2224 2225 /* update parent type's vlen */ 2226 t = btf_last_type(btf); 2227 btf_type_inc_vlen(t); 2228 2229 btf->hdr->type_len += sz; 2230 btf->hdr->str_off += sz; 2231 return 0; 2232 } 2233 2234 /* 2235 * Append new BTF_KIND_FWD type with: 2236 * - *name*, non-empty/non-NULL name; 2237 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2238 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2239 * Returns: 2240 * - >0, type ID of newly added BTF type; 2241 * - <0, on error. 2242 */ 2243 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2244 { 2245 if (!name || !name[0]) 2246 return libbpf_err(-EINVAL); 2247 2248 switch (fwd_kind) { 2249 case BTF_FWD_STRUCT: 2250 case BTF_FWD_UNION: { 2251 struct btf_type *t; 2252 int id; 2253 2254 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2255 if (id <= 0) 2256 return id; 2257 t = btf_type_by_id(btf, id); 2258 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2259 return id; 2260 } 2261 case BTF_FWD_ENUM: 2262 /* enum forward in BTF currently is just an enum with no enum 2263 * values; we also assume a standard 4-byte size for it 2264 */ 2265 return btf__add_enum(btf, name, sizeof(int)); 2266 default: 2267 return libbpf_err(-EINVAL); 2268 } 2269 } 2270 2271 /* 2272 * Append new BTF_KING_TYPEDEF type with: 2273 * - *name*, non-empty/non-NULL name; 2274 * - *ref_type_id* - referenced type ID, it might not exist yet; 2275 * Returns: 2276 * - >0, type ID of newly added BTF type; 2277 * - <0, on error. 2278 */ 2279 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2280 { 2281 if (!name || !name[0]) 2282 return libbpf_err(-EINVAL); 2283 2284 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2285 } 2286 2287 /* 2288 * Append new BTF_KIND_VOLATILE type with: 2289 * - *ref_type_id* - referenced type ID, it might not exist yet; 2290 * Returns: 2291 * - >0, type ID of newly added BTF type; 2292 * - <0, on error. 2293 */ 2294 int btf__add_volatile(struct btf *btf, int ref_type_id) 2295 { 2296 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2297 } 2298 2299 /* 2300 * Append new BTF_KIND_CONST type with: 2301 * - *ref_type_id* - referenced type ID, it might not exist yet; 2302 * Returns: 2303 * - >0, type ID of newly added BTF type; 2304 * - <0, on error. 2305 */ 2306 int btf__add_const(struct btf *btf, int ref_type_id) 2307 { 2308 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2309 } 2310 2311 /* 2312 * Append new BTF_KIND_RESTRICT type with: 2313 * - *ref_type_id* - referenced type ID, it might not exist yet; 2314 * Returns: 2315 * - >0, type ID of newly added BTF type; 2316 * - <0, on error. 2317 */ 2318 int btf__add_restrict(struct btf *btf, int ref_type_id) 2319 { 2320 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2321 } 2322 2323 /* 2324 * Append new BTF_KIND_TYPE_TAG type with: 2325 * - *value*, non-empty/non-NULL tag value; 2326 * - *ref_type_id* - referenced type ID, it might not exist yet; 2327 * Returns: 2328 * - >0, type ID of newly added BTF type; 2329 * - <0, on error. 2330 */ 2331 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2332 { 2333 if (!value || !value[0]) 2334 return libbpf_err(-EINVAL); 2335 2336 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2337 } 2338 2339 /* 2340 * Append new BTF_KIND_FUNC type with: 2341 * - *name*, non-empty/non-NULL name; 2342 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2343 * Returns: 2344 * - >0, type ID of newly added BTF type; 2345 * - <0, on error. 2346 */ 2347 int btf__add_func(struct btf *btf, const char *name, 2348 enum btf_func_linkage linkage, int proto_type_id) 2349 { 2350 int id; 2351 2352 if (!name || !name[0]) 2353 return libbpf_err(-EINVAL); 2354 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2355 linkage != BTF_FUNC_EXTERN) 2356 return libbpf_err(-EINVAL); 2357 2358 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2359 if (id > 0) { 2360 struct btf_type *t = btf_type_by_id(btf, id); 2361 2362 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2363 } 2364 return libbpf_err(id); 2365 } 2366 2367 /* 2368 * Append new BTF_KIND_FUNC_PROTO with: 2369 * - *ret_type_id* - type ID for return result of a function. 2370 * 2371 * Function prototype initially has no arguments, but they can be added by 2372 * btf__add_func_param() one by one, immediately after 2373 * btf__add_func_proto() succeeded. 2374 * 2375 * Returns: 2376 * - >0, type ID of newly added BTF type; 2377 * - <0, on error. 2378 */ 2379 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2380 { 2381 struct btf_type *t; 2382 int sz; 2383 2384 if (validate_type_id(ret_type_id)) 2385 return libbpf_err(-EINVAL); 2386 2387 if (btf_ensure_modifiable(btf)) 2388 return libbpf_err(-ENOMEM); 2389 2390 sz = sizeof(struct btf_type); 2391 t = btf_add_type_mem(btf, sz); 2392 if (!t) 2393 return libbpf_err(-ENOMEM); 2394 2395 /* start out with vlen=0; this will be adjusted when adding enum 2396 * values, if necessary 2397 */ 2398 t->name_off = 0; 2399 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2400 t->type = ret_type_id; 2401 2402 return btf_commit_type(btf, sz); 2403 } 2404 2405 /* 2406 * Append new function parameter for current FUNC_PROTO type with: 2407 * - *name* - parameter name, can be NULL or empty; 2408 * - *type_id* - type ID describing the type of the parameter. 2409 * Returns: 2410 * - 0, on success; 2411 * - <0, on error. 2412 */ 2413 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2414 { 2415 struct btf_type *t; 2416 struct btf_param *p; 2417 int sz, name_off = 0; 2418 2419 if (validate_type_id(type_id)) 2420 return libbpf_err(-EINVAL); 2421 2422 /* last type should be BTF_KIND_FUNC_PROTO */ 2423 if (btf->nr_types == 0) 2424 return libbpf_err(-EINVAL); 2425 t = btf_last_type(btf); 2426 if (!btf_is_func_proto(t)) 2427 return libbpf_err(-EINVAL); 2428 2429 /* decompose and invalidate raw data */ 2430 if (btf_ensure_modifiable(btf)) 2431 return libbpf_err(-ENOMEM); 2432 2433 sz = sizeof(struct btf_param); 2434 p = btf_add_type_mem(btf, sz); 2435 if (!p) 2436 return libbpf_err(-ENOMEM); 2437 2438 if (name && name[0]) { 2439 name_off = btf__add_str(btf, name); 2440 if (name_off < 0) 2441 return name_off; 2442 } 2443 2444 p->name_off = name_off; 2445 p->type = type_id; 2446 2447 /* update parent type's vlen */ 2448 t = btf_last_type(btf); 2449 btf_type_inc_vlen(t); 2450 2451 btf->hdr->type_len += sz; 2452 btf->hdr->str_off += sz; 2453 return 0; 2454 } 2455 2456 /* 2457 * Append new BTF_KIND_VAR type with: 2458 * - *name* - non-empty/non-NULL name; 2459 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2460 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2461 * - *type_id* - type ID of the type describing the type of the variable. 2462 * Returns: 2463 * - >0, type ID of newly added BTF type; 2464 * - <0, on error. 2465 */ 2466 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2467 { 2468 struct btf_type *t; 2469 struct btf_var *v; 2470 int sz, name_off; 2471 2472 /* non-empty name */ 2473 if (!name || !name[0]) 2474 return libbpf_err(-EINVAL); 2475 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2476 linkage != BTF_VAR_GLOBAL_EXTERN) 2477 return libbpf_err(-EINVAL); 2478 if (validate_type_id(type_id)) 2479 return libbpf_err(-EINVAL); 2480 2481 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2482 if (btf_ensure_modifiable(btf)) 2483 return libbpf_err(-ENOMEM); 2484 2485 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2486 t = btf_add_type_mem(btf, sz); 2487 if (!t) 2488 return libbpf_err(-ENOMEM); 2489 2490 name_off = btf__add_str(btf, name); 2491 if (name_off < 0) 2492 return name_off; 2493 2494 t->name_off = name_off; 2495 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2496 t->type = type_id; 2497 2498 v = btf_var(t); 2499 v->linkage = linkage; 2500 2501 return btf_commit_type(btf, sz); 2502 } 2503 2504 /* 2505 * Append new BTF_KIND_DATASEC type with: 2506 * - *name* - non-empty/non-NULL name; 2507 * - *byte_sz* - data section size, in bytes. 2508 * 2509 * Data section is initially empty. Variables info can be added with 2510 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2511 * 2512 * Returns: 2513 * - >0, type ID of newly added BTF type; 2514 * - <0, on error. 2515 */ 2516 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2517 { 2518 struct btf_type *t; 2519 int sz, name_off; 2520 2521 /* non-empty name */ 2522 if (!name || !name[0]) 2523 return libbpf_err(-EINVAL); 2524 2525 if (btf_ensure_modifiable(btf)) 2526 return libbpf_err(-ENOMEM); 2527 2528 sz = sizeof(struct btf_type); 2529 t = btf_add_type_mem(btf, sz); 2530 if (!t) 2531 return libbpf_err(-ENOMEM); 2532 2533 name_off = btf__add_str(btf, name); 2534 if (name_off < 0) 2535 return name_off; 2536 2537 /* start with vlen=0, which will be update as var_secinfos are added */ 2538 t->name_off = name_off; 2539 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2540 t->size = byte_sz; 2541 2542 return btf_commit_type(btf, sz); 2543 } 2544 2545 /* 2546 * Append new data section variable information entry for current DATASEC type: 2547 * - *var_type_id* - type ID, describing type of the variable; 2548 * - *offset* - variable offset within data section, in bytes; 2549 * - *byte_sz* - variable size, in bytes. 2550 * 2551 * Returns: 2552 * - 0, on success; 2553 * - <0, on error. 2554 */ 2555 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2556 { 2557 struct btf_type *t; 2558 struct btf_var_secinfo *v; 2559 int sz; 2560 2561 /* last type should be BTF_KIND_DATASEC */ 2562 if (btf->nr_types == 0) 2563 return libbpf_err(-EINVAL); 2564 t = btf_last_type(btf); 2565 if (!btf_is_datasec(t)) 2566 return libbpf_err(-EINVAL); 2567 2568 if (validate_type_id(var_type_id)) 2569 return libbpf_err(-EINVAL); 2570 2571 /* decompose and invalidate raw data */ 2572 if (btf_ensure_modifiable(btf)) 2573 return libbpf_err(-ENOMEM); 2574 2575 sz = sizeof(struct btf_var_secinfo); 2576 v = btf_add_type_mem(btf, sz); 2577 if (!v) 2578 return libbpf_err(-ENOMEM); 2579 2580 v->type = var_type_id; 2581 v->offset = offset; 2582 v->size = byte_sz; 2583 2584 /* update parent type's vlen */ 2585 t = btf_last_type(btf); 2586 btf_type_inc_vlen(t); 2587 2588 btf->hdr->type_len += sz; 2589 btf->hdr->str_off += sz; 2590 return 0; 2591 } 2592 2593 /* 2594 * Append new BTF_KIND_DECL_TAG type with: 2595 * - *value* - non-empty/non-NULL string; 2596 * - *ref_type_id* - referenced type ID, it might not exist yet; 2597 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2598 * member or function argument index; 2599 * Returns: 2600 * - >0, type ID of newly added BTF type; 2601 * - <0, on error. 2602 */ 2603 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2604 int component_idx) 2605 { 2606 struct btf_type *t; 2607 int sz, value_off; 2608 2609 if (!value || !value[0] || component_idx < -1) 2610 return libbpf_err(-EINVAL); 2611 2612 if (validate_type_id(ref_type_id)) 2613 return libbpf_err(-EINVAL); 2614 2615 if (btf_ensure_modifiable(btf)) 2616 return libbpf_err(-ENOMEM); 2617 2618 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2619 t = btf_add_type_mem(btf, sz); 2620 if (!t) 2621 return libbpf_err(-ENOMEM); 2622 2623 value_off = btf__add_str(btf, value); 2624 if (value_off < 0) 2625 return value_off; 2626 2627 t->name_off = value_off; 2628 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2629 t->type = ref_type_id; 2630 btf_decl_tag(t)->component_idx = component_idx; 2631 2632 return btf_commit_type(btf, sz); 2633 } 2634 2635 struct btf_ext_sec_setup_param { 2636 __u32 off; 2637 __u32 len; 2638 __u32 min_rec_size; 2639 struct btf_ext_info *ext_info; 2640 const char *desc; 2641 }; 2642 2643 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2644 struct btf_ext_sec_setup_param *ext_sec) 2645 { 2646 const struct btf_ext_info_sec *sinfo; 2647 struct btf_ext_info *ext_info; 2648 __u32 info_left, record_size; 2649 size_t sec_cnt = 0; 2650 /* The start of the info sec (including the __u32 record_size). */ 2651 void *info; 2652 2653 if (ext_sec->len == 0) 2654 return 0; 2655 2656 if (ext_sec->off & 0x03) { 2657 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2658 ext_sec->desc); 2659 return -EINVAL; 2660 } 2661 2662 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2663 info_left = ext_sec->len; 2664 2665 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2666 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2667 ext_sec->desc, ext_sec->off, ext_sec->len); 2668 return -EINVAL; 2669 } 2670 2671 /* At least a record size */ 2672 if (info_left < sizeof(__u32)) { 2673 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2674 return -EINVAL; 2675 } 2676 2677 /* The record size needs to meet the minimum standard */ 2678 record_size = *(__u32 *)info; 2679 if (record_size < ext_sec->min_rec_size || 2680 record_size & 0x03) { 2681 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2682 ext_sec->desc, record_size); 2683 return -EINVAL; 2684 } 2685 2686 sinfo = info + sizeof(__u32); 2687 info_left -= sizeof(__u32); 2688 2689 /* If no records, return failure now so .BTF.ext won't be used. */ 2690 if (!info_left) { 2691 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2692 return -EINVAL; 2693 } 2694 2695 while (info_left) { 2696 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2697 __u64 total_record_size; 2698 __u32 num_records; 2699 2700 if (info_left < sec_hdrlen) { 2701 pr_debug("%s section header is not found in .BTF.ext\n", 2702 ext_sec->desc); 2703 return -EINVAL; 2704 } 2705 2706 num_records = sinfo->num_info; 2707 if (num_records == 0) { 2708 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2709 ext_sec->desc); 2710 return -EINVAL; 2711 } 2712 2713 total_record_size = sec_hdrlen + (__u64)num_records * record_size; 2714 if (info_left < total_record_size) { 2715 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2716 ext_sec->desc); 2717 return -EINVAL; 2718 } 2719 2720 info_left -= total_record_size; 2721 sinfo = (void *)sinfo + total_record_size; 2722 sec_cnt++; 2723 } 2724 2725 ext_info = ext_sec->ext_info; 2726 ext_info->len = ext_sec->len - sizeof(__u32); 2727 ext_info->rec_size = record_size; 2728 ext_info->info = info + sizeof(__u32); 2729 ext_info->sec_cnt = sec_cnt; 2730 2731 return 0; 2732 } 2733 2734 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2735 { 2736 struct btf_ext_sec_setup_param param = { 2737 .off = btf_ext->hdr->func_info_off, 2738 .len = btf_ext->hdr->func_info_len, 2739 .min_rec_size = sizeof(struct bpf_func_info_min), 2740 .ext_info = &btf_ext->func_info, 2741 .desc = "func_info" 2742 }; 2743 2744 return btf_ext_setup_info(btf_ext, ¶m); 2745 } 2746 2747 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2748 { 2749 struct btf_ext_sec_setup_param param = { 2750 .off = btf_ext->hdr->line_info_off, 2751 .len = btf_ext->hdr->line_info_len, 2752 .min_rec_size = sizeof(struct bpf_line_info_min), 2753 .ext_info = &btf_ext->line_info, 2754 .desc = "line_info", 2755 }; 2756 2757 return btf_ext_setup_info(btf_ext, ¶m); 2758 } 2759 2760 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2761 { 2762 struct btf_ext_sec_setup_param param = { 2763 .off = btf_ext->hdr->core_relo_off, 2764 .len = btf_ext->hdr->core_relo_len, 2765 .min_rec_size = sizeof(struct bpf_core_relo), 2766 .ext_info = &btf_ext->core_relo_info, 2767 .desc = "core_relo", 2768 }; 2769 2770 return btf_ext_setup_info(btf_ext, ¶m); 2771 } 2772 2773 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2774 { 2775 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2776 2777 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2778 data_size < hdr->hdr_len) { 2779 pr_debug("BTF.ext header not found"); 2780 return -EINVAL; 2781 } 2782 2783 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2784 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2785 return -ENOTSUP; 2786 } else if (hdr->magic != BTF_MAGIC) { 2787 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2788 return -EINVAL; 2789 } 2790 2791 if (hdr->version != BTF_VERSION) { 2792 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2793 return -ENOTSUP; 2794 } 2795 2796 if (hdr->flags) { 2797 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2798 return -ENOTSUP; 2799 } 2800 2801 if (data_size == hdr->hdr_len) { 2802 pr_debug("BTF.ext has no data\n"); 2803 return -EINVAL; 2804 } 2805 2806 return 0; 2807 } 2808 2809 void btf_ext__free(struct btf_ext *btf_ext) 2810 { 2811 if (IS_ERR_OR_NULL(btf_ext)) 2812 return; 2813 free(btf_ext->func_info.sec_idxs); 2814 free(btf_ext->line_info.sec_idxs); 2815 free(btf_ext->core_relo_info.sec_idxs); 2816 free(btf_ext->data); 2817 free(btf_ext); 2818 } 2819 2820 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 2821 { 2822 struct btf_ext *btf_ext; 2823 int err; 2824 2825 btf_ext = calloc(1, sizeof(struct btf_ext)); 2826 if (!btf_ext) 2827 return libbpf_err_ptr(-ENOMEM); 2828 2829 btf_ext->data_size = size; 2830 btf_ext->data = malloc(size); 2831 if (!btf_ext->data) { 2832 err = -ENOMEM; 2833 goto done; 2834 } 2835 memcpy(btf_ext->data, data, size); 2836 2837 err = btf_ext_parse_hdr(btf_ext->data, size); 2838 if (err) 2839 goto done; 2840 2841 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2842 err = -EINVAL; 2843 goto done; 2844 } 2845 2846 err = btf_ext_setup_func_info(btf_ext); 2847 if (err) 2848 goto done; 2849 2850 err = btf_ext_setup_line_info(btf_ext); 2851 if (err) 2852 goto done; 2853 2854 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 2855 goto done; /* skip core relos parsing */ 2856 2857 err = btf_ext_setup_core_relos(btf_ext); 2858 if (err) 2859 goto done; 2860 2861 done: 2862 if (err) { 2863 btf_ext__free(btf_ext); 2864 return libbpf_err_ptr(err); 2865 } 2866 2867 return btf_ext; 2868 } 2869 2870 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2871 { 2872 *size = btf_ext->data_size; 2873 return btf_ext->data; 2874 } 2875 2876 struct btf_dedup; 2877 2878 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 2879 static void btf_dedup_free(struct btf_dedup *d); 2880 static int btf_dedup_prep(struct btf_dedup *d); 2881 static int btf_dedup_strings(struct btf_dedup *d); 2882 static int btf_dedup_prim_types(struct btf_dedup *d); 2883 static int btf_dedup_struct_types(struct btf_dedup *d); 2884 static int btf_dedup_ref_types(struct btf_dedup *d); 2885 static int btf_dedup_resolve_fwds(struct btf_dedup *d); 2886 static int btf_dedup_compact_types(struct btf_dedup *d); 2887 static int btf_dedup_remap_types(struct btf_dedup *d); 2888 2889 /* 2890 * Deduplicate BTF types and strings. 2891 * 2892 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2893 * section with all BTF type descriptors and string data. It overwrites that 2894 * memory in-place with deduplicated types and strings without any loss of 2895 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2896 * is provided, all the strings referenced from .BTF.ext section are honored 2897 * and updated to point to the right offsets after deduplication. 2898 * 2899 * If function returns with error, type/string data might be garbled and should 2900 * be discarded. 2901 * 2902 * More verbose and detailed description of both problem btf_dedup is solving, 2903 * as well as solution could be found at: 2904 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2905 * 2906 * Problem description and justification 2907 * ===================================== 2908 * 2909 * BTF type information is typically emitted either as a result of conversion 2910 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2911 * unit contains information about a subset of all the types that are used 2912 * in an application. These subsets are frequently overlapping and contain a lot 2913 * of duplicated information when later concatenated together into a single 2914 * binary. This algorithm ensures that each unique type is represented by single 2915 * BTF type descriptor, greatly reducing resulting size of BTF data. 2916 * 2917 * Compilation unit isolation and subsequent duplication of data is not the only 2918 * problem. The same type hierarchy (e.g., struct and all the type that struct 2919 * references) in different compilation units can be represented in BTF to 2920 * various degrees of completeness (or, rather, incompleteness) due to 2921 * struct/union forward declarations. 2922 * 2923 * Let's take a look at an example, that we'll use to better understand the 2924 * problem (and solution). Suppose we have two compilation units, each using 2925 * same `struct S`, but each of them having incomplete type information about 2926 * struct's fields: 2927 * 2928 * // CU #1: 2929 * struct S; 2930 * struct A { 2931 * int a; 2932 * struct A* self; 2933 * struct S* parent; 2934 * }; 2935 * struct B; 2936 * struct S { 2937 * struct A* a_ptr; 2938 * struct B* b_ptr; 2939 * }; 2940 * 2941 * // CU #2: 2942 * struct S; 2943 * struct A; 2944 * struct B { 2945 * int b; 2946 * struct B* self; 2947 * struct S* parent; 2948 * }; 2949 * struct S { 2950 * struct A* a_ptr; 2951 * struct B* b_ptr; 2952 * }; 2953 * 2954 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2955 * more), but will know the complete type information about `struct A`. While 2956 * for CU #2, it will know full type information about `struct B`, but will 2957 * only know about forward declaration of `struct A` (in BTF terms, it will 2958 * have `BTF_KIND_FWD` type descriptor with name `B`). 2959 * 2960 * This compilation unit isolation means that it's possible that there is no 2961 * single CU with complete type information describing structs `S`, `A`, and 2962 * `B`. Also, we might get tons of duplicated and redundant type information. 2963 * 2964 * Additional complication we need to keep in mind comes from the fact that 2965 * types, in general, can form graphs containing cycles, not just DAGs. 2966 * 2967 * While algorithm does deduplication, it also merges and resolves type 2968 * information (unless disabled throught `struct btf_opts`), whenever possible. 2969 * E.g., in the example above with two compilation units having partial type 2970 * information for structs `A` and `B`, the output of algorithm will emit 2971 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2972 * (as well as type information for `int` and pointers), as if they were defined 2973 * in a single compilation unit as: 2974 * 2975 * struct A { 2976 * int a; 2977 * struct A* self; 2978 * struct S* parent; 2979 * }; 2980 * struct B { 2981 * int b; 2982 * struct B* self; 2983 * struct S* parent; 2984 * }; 2985 * struct S { 2986 * struct A* a_ptr; 2987 * struct B* b_ptr; 2988 * }; 2989 * 2990 * Algorithm summary 2991 * ================= 2992 * 2993 * Algorithm completes its work in 7 separate passes: 2994 * 2995 * 1. Strings deduplication. 2996 * 2. Primitive types deduplication (int, enum, fwd). 2997 * 3. Struct/union types deduplication. 2998 * 4. Resolve unambiguous forward declarations. 2999 * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func 3000 * protos, and const/volatile/restrict modifiers). 3001 * 6. Types compaction. 3002 * 7. Types remapping. 3003 * 3004 * Algorithm determines canonical type descriptor, which is a single 3005 * representative type for each truly unique type. This canonical type is the 3006 * one that will go into final deduplicated BTF type information. For 3007 * struct/unions, it is also the type that algorithm will merge additional type 3008 * information into (while resolving FWDs), as it discovers it from data in 3009 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3010 * that type is canonical, or to some other type, if that type is equivalent 3011 * and was chosen as canonical representative. This mapping is stored in 3012 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3013 * FWD type got resolved to. 3014 * 3015 * To facilitate fast discovery of canonical types, we also maintain canonical 3016 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3017 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3018 * that match that signature. With sufficiently good choice of type signature 3019 * hashing function, we can limit number of canonical types for each unique type 3020 * signature to a very small number, allowing to find canonical type for any 3021 * duplicated type very quickly. 3022 * 3023 * Struct/union deduplication is the most critical part and algorithm for 3024 * deduplicating structs/unions is described in greater details in comments for 3025 * `btf_dedup_is_equiv` function. 3026 */ 3027 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) 3028 { 3029 struct btf_dedup *d; 3030 int err; 3031 3032 if (!OPTS_VALID(opts, btf_dedup_opts)) 3033 return libbpf_err(-EINVAL); 3034 3035 d = btf_dedup_new(btf, opts); 3036 if (IS_ERR(d)) { 3037 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3038 return libbpf_err(-EINVAL); 3039 } 3040 3041 if (btf_ensure_modifiable(btf)) { 3042 err = -ENOMEM; 3043 goto done; 3044 } 3045 3046 err = btf_dedup_prep(d); 3047 if (err) { 3048 pr_debug("btf_dedup_prep failed:%d\n", err); 3049 goto done; 3050 } 3051 err = btf_dedup_strings(d); 3052 if (err < 0) { 3053 pr_debug("btf_dedup_strings failed:%d\n", err); 3054 goto done; 3055 } 3056 err = btf_dedup_prim_types(d); 3057 if (err < 0) { 3058 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3059 goto done; 3060 } 3061 err = btf_dedup_struct_types(d); 3062 if (err < 0) { 3063 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3064 goto done; 3065 } 3066 err = btf_dedup_resolve_fwds(d); 3067 if (err < 0) { 3068 pr_debug("btf_dedup_resolve_fwds failed:%d\n", err); 3069 goto done; 3070 } 3071 err = btf_dedup_ref_types(d); 3072 if (err < 0) { 3073 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3074 goto done; 3075 } 3076 err = btf_dedup_compact_types(d); 3077 if (err < 0) { 3078 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3079 goto done; 3080 } 3081 err = btf_dedup_remap_types(d); 3082 if (err < 0) { 3083 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3084 goto done; 3085 } 3086 3087 done: 3088 btf_dedup_free(d); 3089 return libbpf_err(err); 3090 } 3091 3092 #define BTF_UNPROCESSED_ID ((__u32)-1) 3093 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3094 3095 struct btf_dedup { 3096 /* .BTF section to be deduped in-place */ 3097 struct btf *btf; 3098 /* 3099 * Optional .BTF.ext section. When provided, any strings referenced 3100 * from it will be taken into account when deduping strings 3101 */ 3102 struct btf_ext *btf_ext; 3103 /* 3104 * This is a map from any type's signature hash to a list of possible 3105 * canonical representative type candidates. Hash collisions are 3106 * ignored, so even types of various kinds can share same list of 3107 * candidates, which is fine because we rely on subsequent 3108 * btf_xxx_equal() checks to authoritatively verify type equality. 3109 */ 3110 struct hashmap *dedup_table; 3111 /* Canonical types map */ 3112 __u32 *map; 3113 /* Hypothetical mapping, used during type graph equivalence checks */ 3114 __u32 *hypot_map; 3115 __u32 *hypot_list; 3116 size_t hypot_cnt; 3117 size_t hypot_cap; 3118 /* Whether hypothetical mapping, if successful, would need to adjust 3119 * already canonicalized types (due to a new forward declaration to 3120 * concrete type resolution). In such case, during split BTF dedup 3121 * candidate type would still be considered as different, because base 3122 * BTF is considered to be immutable. 3123 */ 3124 bool hypot_adjust_canon; 3125 /* Various option modifying behavior of algorithm */ 3126 struct btf_dedup_opts opts; 3127 /* temporary strings deduplication state */ 3128 struct strset *strs_set; 3129 }; 3130 3131 static long hash_combine(long h, long value) 3132 { 3133 return h * 31 + value; 3134 } 3135 3136 #define for_each_dedup_cand(d, node, hash) \ 3137 hashmap__for_each_key_entry(d->dedup_table, node, hash) 3138 3139 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3140 { 3141 return hashmap__append(d->dedup_table, hash, type_id); 3142 } 3143 3144 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3145 __u32 from_id, __u32 to_id) 3146 { 3147 if (d->hypot_cnt == d->hypot_cap) { 3148 __u32 *new_list; 3149 3150 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3151 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3152 if (!new_list) 3153 return -ENOMEM; 3154 d->hypot_list = new_list; 3155 } 3156 d->hypot_list[d->hypot_cnt++] = from_id; 3157 d->hypot_map[from_id] = to_id; 3158 return 0; 3159 } 3160 3161 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3162 { 3163 int i; 3164 3165 for (i = 0; i < d->hypot_cnt; i++) 3166 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3167 d->hypot_cnt = 0; 3168 d->hypot_adjust_canon = false; 3169 } 3170 3171 static void btf_dedup_free(struct btf_dedup *d) 3172 { 3173 hashmap__free(d->dedup_table); 3174 d->dedup_table = NULL; 3175 3176 free(d->map); 3177 d->map = NULL; 3178 3179 free(d->hypot_map); 3180 d->hypot_map = NULL; 3181 3182 free(d->hypot_list); 3183 d->hypot_list = NULL; 3184 3185 free(d); 3186 } 3187 3188 static size_t btf_dedup_identity_hash_fn(long key, void *ctx) 3189 { 3190 return key; 3191 } 3192 3193 static size_t btf_dedup_collision_hash_fn(long key, void *ctx) 3194 { 3195 return 0; 3196 } 3197 3198 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx) 3199 { 3200 return k1 == k2; 3201 } 3202 3203 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3204 { 3205 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3206 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3207 int i, err = 0, type_cnt; 3208 3209 if (!d) 3210 return ERR_PTR(-ENOMEM); 3211 3212 if (OPTS_GET(opts, force_collisions, false)) 3213 hash_fn = btf_dedup_collision_hash_fn; 3214 3215 d->btf = btf; 3216 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3217 3218 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3219 if (IS_ERR(d->dedup_table)) { 3220 err = PTR_ERR(d->dedup_table); 3221 d->dedup_table = NULL; 3222 goto done; 3223 } 3224 3225 type_cnt = btf__type_cnt(btf); 3226 d->map = malloc(sizeof(__u32) * type_cnt); 3227 if (!d->map) { 3228 err = -ENOMEM; 3229 goto done; 3230 } 3231 /* special BTF "void" type is made canonical immediately */ 3232 d->map[0] = 0; 3233 for (i = 1; i < type_cnt; i++) { 3234 struct btf_type *t = btf_type_by_id(d->btf, i); 3235 3236 /* VAR and DATASEC are never deduped and are self-canonical */ 3237 if (btf_is_var(t) || btf_is_datasec(t)) 3238 d->map[i] = i; 3239 else 3240 d->map[i] = BTF_UNPROCESSED_ID; 3241 } 3242 3243 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3244 if (!d->hypot_map) { 3245 err = -ENOMEM; 3246 goto done; 3247 } 3248 for (i = 0; i < type_cnt; i++) 3249 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3250 3251 done: 3252 if (err) { 3253 btf_dedup_free(d); 3254 return ERR_PTR(err); 3255 } 3256 3257 return d; 3258 } 3259 3260 /* 3261 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3262 * string and pass pointer to it to a provided callback `fn`. 3263 */ 3264 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3265 { 3266 int i, r; 3267 3268 for (i = 0; i < d->btf->nr_types; i++) { 3269 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3270 3271 r = btf_type_visit_str_offs(t, fn, ctx); 3272 if (r) 3273 return r; 3274 } 3275 3276 if (!d->btf_ext) 3277 return 0; 3278 3279 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3280 if (r) 3281 return r; 3282 3283 return 0; 3284 } 3285 3286 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3287 { 3288 struct btf_dedup *d = ctx; 3289 __u32 str_off = *str_off_ptr; 3290 const char *s; 3291 int off, err; 3292 3293 /* don't touch empty string or string in main BTF */ 3294 if (str_off == 0 || str_off < d->btf->start_str_off) 3295 return 0; 3296 3297 s = btf__str_by_offset(d->btf, str_off); 3298 if (d->btf->base_btf) { 3299 err = btf__find_str(d->btf->base_btf, s); 3300 if (err >= 0) { 3301 *str_off_ptr = err; 3302 return 0; 3303 } 3304 if (err != -ENOENT) 3305 return err; 3306 } 3307 3308 off = strset__add_str(d->strs_set, s); 3309 if (off < 0) 3310 return off; 3311 3312 *str_off_ptr = d->btf->start_str_off + off; 3313 return 0; 3314 } 3315 3316 /* 3317 * Dedup string and filter out those that are not referenced from either .BTF 3318 * or .BTF.ext (if provided) sections. 3319 * 3320 * This is done by building index of all strings in BTF's string section, 3321 * then iterating over all entities that can reference strings (e.g., type 3322 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3323 * strings as used. After that all used strings are deduped and compacted into 3324 * sequential blob of memory and new offsets are calculated. Then all the string 3325 * references are iterated again and rewritten using new offsets. 3326 */ 3327 static int btf_dedup_strings(struct btf_dedup *d) 3328 { 3329 int err; 3330 3331 if (d->btf->strs_deduped) 3332 return 0; 3333 3334 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3335 if (IS_ERR(d->strs_set)) { 3336 err = PTR_ERR(d->strs_set); 3337 goto err_out; 3338 } 3339 3340 if (!d->btf->base_btf) { 3341 /* insert empty string; we won't be looking it up during strings 3342 * dedup, but it's good to have it for generic BTF string lookups 3343 */ 3344 err = strset__add_str(d->strs_set, ""); 3345 if (err < 0) 3346 goto err_out; 3347 } 3348 3349 /* remap string offsets */ 3350 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3351 if (err) 3352 goto err_out; 3353 3354 /* replace BTF string data and hash with deduped ones */ 3355 strset__free(d->btf->strs_set); 3356 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3357 d->btf->strs_set = d->strs_set; 3358 d->strs_set = NULL; 3359 d->btf->strs_deduped = true; 3360 return 0; 3361 3362 err_out: 3363 strset__free(d->strs_set); 3364 d->strs_set = NULL; 3365 3366 return err; 3367 } 3368 3369 static long btf_hash_common(struct btf_type *t) 3370 { 3371 long h; 3372 3373 h = hash_combine(0, t->name_off); 3374 h = hash_combine(h, t->info); 3375 h = hash_combine(h, t->size); 3376 return h; 3377 } 3378 3379 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3380 { 3381 return t1->name_off == t2->name_off && 3382 t1->info == t2->info && 3383 t1->size == t2->size; 3384 } 3385 3386 /* Calculate type signature hash of INT or TAG. */ 3387 static long btf_hash_int_decl_tag(struct btf_type *t) 3388 { 3389 __u32 info = *(__u32 *)(t + 1); 3390 long h; 3391 3392 h = btf_hash_common(t); 3393 h = hash_combine(h, info); 3394 return h; 3395 } 3396 3397 /* Check structural equality of two INTs or TAGs. */ 3398 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3399 { 3400 __u32 info1, info2; 3401 3402 if (!btf_equal_common(t1, t2)) 3403 return false; 3404 info1 = *(__u32 *)(t1 + 1); 3405 info2 = *(__u32 *)(t2 + 1); 3406 return info1 == info2; 3407 } 3408 3409 /* Calculate type signature hash of ENUM/ENUM64. */ 3410 static long btf_hash_enum(struct btf_type *t) 3411 { 3412 long h; 3413 3414 /* don't hash vlen, enum members and size to support enum fwd resolving */ 3415 h = hash_combine(0, t->name_off); 3416 return h; 3417 } 3418 3419 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2) 3420 { 3421 const struct btf_enum *m1, *m2; 3422 __u16 vlen; 3423 int i; 3424 3425 vlen = btf_vlen(t1); 3426 m1 = btf_enum(t1); 3427 m2 = btf_enum(t2); 3428 for (i = 0; i < vlen; i++) { 3429 if (m1->name_off != m2->name_off || m1->val != m2->val) 3430 return false; 3431 m1++; 3432 m2++; 3433 } 3434 return true; 3435 } 3436 3437 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2) 3438 { 3439 const struct btf_enum64 *m1, *m2; 3440 __u16 vlen; 3441 int i; 3442 3443 vlen = btf_vlen(t1); 3444 m1 = btf_enum64(t1); 3445 m2 = btf_enum64(t2); 3446 for (i = 0; i < vlen; i++) { 3447 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || 3448 m1->val_hi32 != m2->val_hi32) 3449 return false; 3450 m1++; 3451 m2++; 3452 } 3453 return true; 3454 } 3455 3456 /* Check structural equality of two ENUMs or ENUM64s. */ 3457 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3458 { 3459 if (!btf_equal_common(t1, t2)) 3460 return false; 3461 3462 /* t1 & t2 kinds are identical because of btf_equal_common */ 3463 if (btf_kind(t1) == BTF_KIND_ENUM) 3464 return btf_equal_enum_members(t1, t2); 3465 else 3466 return btf_equal_enum64_members(t1, t2); 3467 } 3468 3469 static inline bool btf_is_enum_fwd(struct btf_type *t) 3470 { 3471 return btf_is_any_enum(t) && btf_vlen(t) == 0; 3472 } 3473 3474 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3475 { 3476 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3477 return btf_equal_enum(t1, t2); 3478 /* At this point either t1 or t2 or both are forward declarations, thus: 3479 * - skip comparing vlen because it is zero for forward declarations; 3480 * - skip comparing size to allow enum forward declarations 3481 * to be compatible with enum64 full declarations; 3482 * - skip comparing kind for the same reason. 3483 */ 3484 return t1->name_off == t2->name_off && 3485 btf_is_any_enum(t1) && btf_is_any_enum(t2); 3486 } 3487 3488 /* 3489 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3490 * as referenced type IDs equivalence is established separately during type 3491 * graph equivalence check algorithm. 3492 */ 3493 static long btf_hash_struct(struct btf_type *t) 3494 { 3495 const struct btf_member *member = btf_members(t); 3496 __u32 vlen = btf_vlen(t); 3497 long h = btf_hash_common(t); 3498 int i; 3499 3500 for (i = 0; i < vlen; i++) { 3501 h = hash_combine(h, member->name_off); 3502 h = hash_combine(h, member->offset); 3503 /* no hashing of referenced type ID, it can be unresolved yet */ 3504 member++; 3505 } 3506 return h; 3507 } 3508 3509 /* 3510 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3511 * type IDs. This check is performed during type graph equivalence check and 3512 * referenced types equivalence is checked separately. 3513 */ 3514 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3515 { 3516 const struct btf_member *m1, *m2; 3517 __u16 vlen; 3518 int i; 3519 3520 if (!btf_equal_common(t1, t2)) 3521 return false; 3522 3523 vlen = btf_vlen(t1); 3524 m1 = btf_members(t1); 3525 m2 = btf_members(t2); 3526 for (i = 0; i < vlen; i++) { 3527 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3528 return false; 3529 m1++; 3530 m2++; 3531 } 3532 return true; 3533 } 3534 3535 /* 3536 * Calculate type signature hash of ARRAY, including referenced type IDs, 3537 * under assumption that they were already resolved to canonical type IDs and 3538 * are not going to change. 3539 */ 3540 static long btf_hash_array(struct btf_type *t) 3541 { 3542 const struct btf_array *info = btf_array(t); 3543 long h = btf_hash_common(t); 3544 3545 h = hash_combine(h, info->type); 3546 h = hash_combine(h, info->index_type); 3547 h = hash_combine(h, info->nelems); 3548 return h; 3549 } 3550 3551 /* 3552 * Check exact equality of two ARRAYs, taking into account referenced 3553 * type IDs, under assumption that they were already resolved to canonical 3554 * type IDs and are not going to change. 3555 * This function is called during reference types deduplication to compare 3556 * ARRAY to potential canonical representative. 3557 */ 3558 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3559 { 3560 const struct btf_array *info1, *info2; 3561 3562 if (!btf_equal_common(t1, t2)) 3563 return false; 3564 3565 info1 = btf_array(t1); 3566 info2 = btf_array(t2); 3567 return info1->type == info2->type && 3568 info1->index_type == info2->index_type && 3569 info1->nelems == info2->nelems; 3570 } 3571 3572 /* 3573 * Check structural compatibility of two ARRAYs, ignoring referenced type 3574 * IDs. This check is performed during type graph equivalence check and 3575 * referenced types equivalence is checked separately. 3576 */ 3577 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3578 { 3579 if (!btf_equal_common(t1, t2)) 3580 return false; 3581 3582 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3583 } 3584 3585 /* 3586 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3587 * under assumption that they were already resolved to canonical type IDs and 3588 * are not going to change. 3589 */ 3590 static long btf_hash_fnproto(struct btf_type *t) 3591 { 3592 const struct btf_param *member = btf_params(t); 3593 __u16 vlen = btf_vlen(t); 3594 long h = btf_hash_common(t); 3595 int i; 3596 3597 for (i = 0; i < vlen; i++) { 3598 h = hash_combine(h, member->name_off); 3599 h = hash_combine(h, member->type); 3600 member++; 3601 } 3602 return h; 3603 } 3604 3605 /* 3606 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3607 * type IDs, under assumption that they were already resolved to canonical 3608 * type IDs and are not going to change. 3609 * This function is called during reference types deduplication to compare 3610 * FUNC_PROTO to potential canonical representative. 3611 */ 3612 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3613 { 3614 const struct btf_param *m1, *m2; 3615 __u16 vlen; 3616 int i; 3617 3618 if (!btf_equal_common(t1, t2)) 3619 return false; 3620 3621 vlen = btf_vlen(t1); 3622 m1 = btf_params(t1); 3623 m2 = btf_params(t2); 3624 for (i = 0; i < vlen; i++) { 3625 if (m1->name_off != m2->name_off || m1->type != m2->type) 3626 return false; 3627 m1++; 3628 m2++; 3629 } 3630 return true; 3631 } 3632 3633 /* 3634 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3635 * IDs. This check is performed during type graph equivalence check and 3636 * referenced types equivalence is checked separately. 3637 */ 3638 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3639 { 3640 const struct btf_param *m1, *m2; 3641 __u16 vlen; 3642 int i; 3643 3644 /* skip return type ID */ 3645 if (t1->name_off != t2->name_off || t1->info != t2->info) 3646 return false; 3647 3648 vlen = btf_vlen(t1); 3649 m1 = btf_params(t1); 3650 m2 = btf_params(t2); 3651 for (i = 0; i < vlen; i++) { 3652 if (m1->name_off != m2->name_off) 3653 return false; 3654 m1++; 3655 m2++; 3656 } 3657 return true; 3658 } 3659 3660 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3661 * types and initializing the rest of the state (canonical type mapping) for 3662 * the fixed base BTF part. 3663 */ 3664 static int btf_dedup_prep(struct btf_dedup *d) 3665 { 3666 struct btf_type *t; 3667 int type_id; 3668 long h; 3669 3670 if (!d->btf->base_btf) 3671 return 0; 3672 3673 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3674 t = btf_type_by_id(d->btf, type_id); 3675 3676 /* all base BTF types are self-canonical by definition */ 3677 d->map[type_id] = type_id; 3678 3679 switch (btf_kind(t)) { 3680 case BTF_KIND_VAR: 3681 case BTF_KIND_DATASEC: 3682 /* VAR and DATASEC are never hash/deduplicated */ 3683 continue; 3684 case BTF_KIND_CONST: 3685 case BTF_KIND_VOLATILE: 3686 case BTF_KIND_RESTRICT: 3687 case BTF_KIND_PTR: 3688 case BTF_KIND_FWD: 3689 case BTF_KIND_TYPEDEF: 3690 case BTF_KIND_FUNC: 3691 case BTF_KIND_FLOAT: 3692 case BTF_KIND_TYPE_TAG: 3693 h = btf_hash_common(t); 3694 break; 3695 case BTF_KIND_INT: 3696 case BTF_KIND_DECL_TAG: 3697 h = btf_hash_int_decl_tag(t); 3698 break; 3699 case BTF_KIND_ENUM: 3700 case BTF_KIND_ENUM64: 3701 h = btf_hash_enum(t); 3702 break; 3703 case BTF_KIND_STRUCT: 3704 case BTF_KIND_UNION: 3705 h = btf_hash_struct(t); 3706 break; 3707 case BTF_KIND_ARRAY: 3708 h = btf_hash_array(t); 3709 break; 3710 case BTF_KIND_FUNC_PROTO: 3711 h = btf_hash_fnproto(t); 3712 break; 3713 default: 3714 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3715 return -EINVAL; 3716 } 3717 if (btf_dedup_table_add(d, h, type_id)) 3718 return -ENOMEM; 3719 } 3720 3721 return 0; 3722 } 3723 3724 /* 3725 * Deduplicate primitive types, that can't reference other types, by calculating 3726 * their type signature hash and comparing them with any possible canonical 3727 * candidate. If no canonical candidate matches, type itself is marked as 3728 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3729 */ 3730 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3731 { 3732 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3733 struct hashmap_entry *hash_entry; 3734 struct btf_type *cand; 3735 /* if we don't find equivalent type, then we are canonical */ 3736 __u32 new_id = type_id; 3737 __u32 cand_id; 3738 long h; 3739 3740 switch (btf_kind(t)) { 3741 case BTF_KIND_CONST: 3742 case BTF_KIND_VOLATILE: 3743 case BTF_KIND_RESTRICT: 3744 case BTF_KIND_PTR: 3745 case BTF_KIND_TYPEDEF: 3746 case BTF_KIND_ARRAY: 3747 case BTF_KIND_STRUCT: 3748 case BTF_KIND_UNION: 3749 case BTF_KIND_FUNC: 3750 case BTF_KIND_FUNC_PROTO: 3751 case BTF_KIND_VAR: 3752 case BTF_KIND_DATASEC: 3753 case BTF_KIND_DECL_TAG: 3754 case BTF_KIND_TYPE_TAG: 3755 return 0; 3756 3757 case BTF_KIND_INT: 3758 h = btf_hash_int_decl_tag(t); 3759 for_each_dedup_cand(d, hash_entry, h) { 3760 cand_id = hash_entry->value; 3761 cand = btf_type_by_id(d->btf, cand_id); 3762 if (btf_equal_int_tag(t, cand)) { 3763 new_id = cand_id; 3764 break; 3765 } 3766 } 3767 break; 3768 3769 case BTF_KIND_ENUM: 3770 case BTF_KIND_ENUM64: 3771 h = btf_hash_enum(t); 3772 for_each_dedup_cand(d, hash_entry, h) { 3773 cand_id = hash_entry->value; 3774 cand = btf_type_by_id(d->btf, cand_id); 3775 if (btf_equal_enum(t, cand)) { 3776 new_id = cand_id; 3777 break; 3778 } 3779 if (btf_compat_enum(t, cand)) { 3780 if (btf_is_enum_fwd(t)) { 3781 /* resolve fwd to full enum */ 3782 new_id = cand_id; 3783 break; 3784 } 3785 /* resolve canonical enum fwd to full enum */ 3786 d->map[cand_id] = type_id; 3787 } 3788 } 3789 break; 3790 3791 case BTF_KIND_FWD: 3792 case BTF_KIND_FLOAT: 3793 h = btf_hash_common(t); 3794 for_each_dedup_cand(d, hash_entry, h) { 3795 cand_id = hash_entry->value; 3796 cand = btf_type_by_id(d->btf, cand_id); 3797 if (btf_equal_common(t, cand)) { 3798 new_id = cand_id; 3799 break; 3800 } 3801 } 3802 break; 3803 3804 default: 3805 return -EINVAL; 3806 } 3807 3808 d->map[type_id] = new_id; 3809 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3810 return -ENOMEM; 3811 3812 return 0; 3813 } 3814 3815 static int btf_dedup_prim_types(struct btf_dedup *d) 3816 { 3817 int i, err; 3818 3819 for (i = 0; i < d->btf->nr_types; i++) { 3820 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3821 if (err) 3822 return err; 3823 } 3824 return 0; 3825 } 3826 3827 /* 3828 * Check whether type is already mapped into canonical one (could be to itself). 3829 */ 3830 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3831 { 3832 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3833 } 3834 3835 /* 3836 * Resolve type ID into its canonical type ID, if any; otherwise return original 3837 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3838 * STRUCT/UNION link and resolve it into canonical type ID as well. 3839 */ 3840 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3841 { 3842 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3843 type_id = d->map[type_id]; 3844 return type_id; 3845 } 3846 3847 /* 3848 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3849 * type ID. 3850 */ 3851 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3852 { 3853 __u32 orig_type_id = type_id; 3854 3855 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3856 return type_id; 3857 3858 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3859 type_id = d->map[type_id]; 3860 3861 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3862 return type_id; 3863 3864 return orig_type_id; 3865 } 3866 3867 3868 static inline __u16 btf_fwd_kind(struct btf_type *t) 3869 { 3870 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3871 } 3872 3873 /* Check if given two types are identical ARRAY definitions */ 3874 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3875 { 3876 struct btf_type *t1, *t2; 3877 3878 t1 = btf_type_by_id(d->btf, id1); 3879 t2 = btf_type_by_id(d->btf, id2); 3880 if (!btf_is_array(t1) || !btf_is_array(t2)) 3881 return false; 3882 3883 return btf_equal_array(t1, t2); 3884 } 3885 3886 /* Check if given two types are identical STRUCT/UNION definitions */ 3887 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 3888 { 3889 const struct btf_member *m1, *m2; 3890 struct btf_type *t1, *t2; 3891 int n, i; 3892 3893 t1 = btf_type_by_id(d->btf, id1); 3894 t2 = btf_type_by_id(d->btf, id2); 3895 3896 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 3897 return false; 3898 3899 if (!btf_shallow_equal_struct(t1, t2)) 3900 return false; 3901 3902 m1 = btf_members(t1); 3903 m2 = btf_members(t2); 3904 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 3905 if (m1->type != m2->type && 3906 !btf_dedup_identical_arrays(d, m1->type, m2->type) && 3907 !btf_dedup_identical_structs(d, m1->type, m2->type)) 3908 return false; 3909 } 3910 return true; 3911 } 3912 3913 /* 3914 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3915 * call it "candidate graph" in this description for brevity) to a type graph 3916 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3917 * here, though keep in mind that not all types in canonical graph are 3918 * necessarily canonical representatives themselves, some of them might be 3919 * duplicates or its uniqueness might not have been established yet). 3920 * Returns: 3921 * - >0, if type graphs are equivalent; 3922 * - 0, if not equivalent; 3923 * - <0, on error. 3924 * 3925 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3926 * equivalence of BTF types at each step. If at any point BTF types in candidate 3927 * and canonical graphs are not compatible structurally, whole graphs are 3928 * incompatible. If types are structurally equivalent (i.e., all information 3929 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3930 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3931 * If a type references other types, then those referenced types are checked 3932 * for equivalence recursively. 3933 * 3934 * During DFS traversal, if we find that for current `canon_id` type we 3935 * already have some mapping in hypothetical map, we check for two possible 3936 * situations: 3937 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3938 * happen when type graphs have cycles. In this case we assume those two 3939 * types are equivalent. 3940 * - `canon_id` is mapped to different type. This is contradiction in our 3941 * hypothetical mapping, because same graph in canonical graph corresponds 3942 * to two different types in candidate graph, which for equivalent type 3943 * graphs shouldn't happen. This condition terminates equivalence check 3944 * with negative result. 3945 * 3946 * If type graphs traversal exhausts types to check and find no contradiction, 3947 * then type graphs are equivalent. 3948 * 3949 * When checking types for equivalence, there is one special case: FWD types. 3950 * If FWD type resolution is allowed and one of the types (either from canonical 3951 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3952 * flag) and their names match, hypothetical mapping is updated to point from 3953 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3954 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3955 * 3956 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3957 * if there are two exactly named (or anonymous) structs/unions that are 3958 * compatible structurally, one of which has FWD field, while other is concrete 3959 * STRUCT/UNION, but according to C sources they are different structs/unions 3960 * that are referencing different types with the same name. This is extremely 3961 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3962 * this logic is causing problems. 3963 * 3964 * Doing FWD resolution means that both candidate and/or canonical graphs can 3965 * consists of portions of the graph that come from multiple compilation units. 3966 * This is due to the fact that types within single compilation unit are always 3967 * deduplicated and FWDs are already resolved, if referenced struct/union 3968 * definiton is available. So, if we had unresolved FWD and found corresponding 3969 * STRUCT/UNION, they will be from different compilation units. This 3970 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3971 * type graph will likely have at least two different BTF types that describe 3972 * same type (e.g., most probably there will be two different BTF types for the 3973 * same 'int' primitive type) and could even have "overlapping" parts of type 3974 * graph that describe same subset of types. 3975 * 3976 * This in turn means that our assumption that each type in canonical graph 3977 * must correspond to exactly one type in candidate graph might not hold 3978 * anymore and will make it harder to detect contradictions using hypothetical 3979 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3980 * resolution only in canonical graph. FWDs in candidate graphs are never 3981 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3982 * that can occur: 3983 * - Both types in canonical and candidate graphs are FWDs. If they are 3984 * structurally equivalent, then they can either be both resolved to the 3985 * same STRUCT/UNION or not resolved at all. In both cases they are 3986 * equivalent and there is no need to resolve FWD on candidate side. 3987 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3988 * so nothing to resolve as well, algorithm will check equivalence anyway. 3989 * - Type in canonical graph is FWD, while type in candidate is concrete 3990 * STRUCT/UNION. In this case candidate graph comes from single compilation 3991 * unit, so there is exactly one BTF type for each unique C type. After 3992 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3993 * in canonical graph mapping to single BTF type in candidate graph, but 3994 * because hypothetical mapping maps from canonical to candidate types, it's 3995 * alright, and we still maintain the property of having single `canon_id` 3996 * mapping to single `cand_id` (there could be two different `canon_id` 3997 * mapped to the same `cand_id`, but it's not contradictory). 3998 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3999 * graph is FWD. In this case we are just going to check compatibility of 4000 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4001 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4002 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4003 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4004 * canonical graph. 4005 */ 4006 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4007 __u32 canon_id) 4008 { 4009 struct btf_type *cand_type; 4010 struct btf_type *canon_type; 4011 __u32 hypot_type_id; 4012 __u16 cand_kind; 4013 __u16 canon_kind; 4014 int i, eq; 4015 4016 /* if both resolve to the same canonical, they must be equivalent */ 4017 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4018 return 1; 4019 4020 canon_id = resolve_fwd_id(d, canon_id); 4021 4022 hypot_type_id = d->hypot_map[canon_id]; 4023 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4024 if (hypot_type_id == cand_id) 4025 return 1; 4026 /* In some cases compiler will generate different DWARF types 4027 * for *identical* array type definitions and use them for 4028 * different fields within the *same* struct. This breaks type 4029 * equivalence check, which makes an assumption that candidate 4030 * types sub-graph has a consistent and deduped-by-compiler 4031 * types within a single CU. So work around that by explicitly 4032 * allowing identical array types here. 4033 */ 4034 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4035 return 1; 4036 /* It turns out that similar situation can happen with 4037 * struct/union sometimes, sigh... Handle the case where 4038 * structs/unions are exactly the same, down to the referenced 4039 * type IDs. Anything more complicated (e.g., if referenced 4040 * types are different, but equivalent) is *way more* 4041 * complicated and requires a many-to-many equivalence mapping. 4042 */ 4043 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4044 return 1; 4045 return 0; 4046 } 4047 4048 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4049 return -ENOMEM; 4050 4051 cand_type = btf_type_by_id(d->btf, cand_id); 4052 canon_type = btf_type_by_id(d->btf, canon_id); 4053 cand_kind = btf_kind(cand_type); 4054 canon_kind = btf_kind(canon_type); 4055 4056 if (cand_type->name_off != canon_type->name_off) 4057 return 0; 4058 4059 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4060 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4061 && cand_kind != canon_kind) { 4062 __u16 real_kind; 4063 __u16 fwd_kind; 4064 4065 if (cand_kind == BTF_KIND_FWD) { 4066 real_kind = canon_kind; 4067 fwd_kind = btf_fwd_kind(cand_type); 4068 } else { 4069 real_kind = cand_kind; 4070 fwd_kind = btf_fwd_kind(canon_type); 4071 /* we'd need to resolve base FWD to STRUCT/UNION */ 4072 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4073 d->hypot_adjust_canon = true; 4074 } 4075 return fwd_kind == real_kind; 4076 } 4077 4078 if (cand_kind != canon_kind) 4079 return 0; 4080 4081 switch (cand_kind) { 4082 case BTF_KIND_INT: 4083 return btf_equal_int_tag(cand_type, canon_type); 4084 4085 case BTF_KIND_ENUM: 4086 case BTF_KIND_ENUM64: 4087 return btf_compat_enum(cand_type, canon_type); 4088 4089 case BTF_KIND_FWD: 4090 case BTF_KIND_FLOAT: 4091 return btf_equal_common(cand_type, canon_type); 4092 4093 case BTF_KIND_CONST: 4094 case BTF_KIND_VOLATILE: 4095 case BTF_KIND_RESTRICT: 4096 case BTF_KIND_PTR: 4097 case BTF_KIND_TYPEDEF: 4098 case BTF_KIND_FUNC: 4099 case BTF_KIND_TYPE_TAG: 4100 if (cand_type->info != canon_type->info) 4101 return 0; 4102 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4103 4104 case BTF_KIND_ARRAY: { 4105 const struct btf_array *cand_arr, *canon_arr; 4106 4107 if (!btf_compat_array(cand_type, canon_type)) 4108 return 0; 4109 cand_arr = btf_array(cand_type); 4110 canon_arr = btf_array(canon_type); 4111 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4112 if (eq <= 0) 4113 return eq; 4114 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4115 } 4116 4117 case BTF_KIND_STRUCT: 4118 case BTF_KIND_UNION: { 4119 const struct btf_member *cand_m, *canon_m; 4120 __u16 vlen; 4121 4122 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4123 return 0; 4124 vlen = btf_vlen(cand_type); 4125 cand_m = btf_members(cand_type); 4126 canon_m = btf_members(canon_type); 4127 for (i = 0; i < vlen; i++) { 4128 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4129 if (eq <= 0) 4130 return eq; 4131 cand_m++; 4132 canon_m++; 4133 } 4134 4135 return 1; 4136 } 4137 4138 case BTF_KIND_FUNC_PROTO: { 4139 const struct btf_param *cand_p, *canon_p; 4140 __u16 vlen; 4141 4142 if (!btf_compat_fnproto(cand_type, canon_type)) 4143 return 0; 4144 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4145 if (eq <= 0) 4146 return eq; 4147 vlen = btf_vlen(cand_type); 4148 cand_p = btf_params(cand_type); 4149 canon_p = btf_params(canon_type); 4150 for (i = 0; i < vlen; i++) { 4151 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4152 if (eq <= 0) 4153 return eq; 4154 cand_p++; 4155 canon_p++; 4156 } 4157 return 1; 4158 } 4159 4160 default: 4161 return -EINVAL; 4162 } 4163 return 0; 4164 } 4165 4166 /* 4167 * Use hypothetical mapping, produced by successful type graph equivalence 4168 * check, to augment existing struct/union canonical mapping, where possible. 4169 * 4170 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4171 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4172 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4173 * we are recording the mapping anyway. As opposed to carefulness required 4174 * for struct/union correspondence mapping (described below), for FWD resolution 4175 * it's not important, as by the time that FWD type (reference type) will be 4176 * deduplicated all structs/unions will be deduped already anyway. 4177 * 4178 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4179 * not required for correctness. It needs to be done carefully to ensure that 4180 * struct/union from candidate's type graph is not mapped into corresponding 4181 * struct/union from canonical type graph that itself hasn't been resolved into 4182 * canonical representative. The only guarantee we have is that canonical 4183 * struct/union was determined as canonical and that won't change. But any 4184 * types referenced through that struct/union fields could have been not yet 4185 * resolved, so in case like that it's too early to establish any kind of 4186 * correspondence between structs/unions. 4187 * 4188 * No canonical correspondence is derived for primitive types (they are already 4189 * deduplicated completely already anyway) or reference types (they rely on 4190 * stability of struct/union canonical relationship for equivalence checks). 4191 */ 4192 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4193 { 4194 __u32 canon_type_id, targ_type_id; 4195 __u16 t_kind, c_kind; 4196 __u32 t_id, c_id; 4197 int i; 4198 4199 for (i = 0; i < d->hypot_cnt; i++) { 4200 canon_type_id = d->hypot_list[i]; 4201 targ_type_id = d->hypot_map[canon_type_id]; 4202 t_id = resolve_type_id(d, targ_type_id); 4203 c_id = resolve_type_id(d, canon_type_id); 4204 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4205 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4206 /* 4207 * Resolve FWD into STRUCT/UNION. 4208 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4209 * mapped to canonical representative (as opposed to 4210 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4211 * eventually that struct is going to be mapped and all resolved 4212 * FWDs will automatically resolve to correct canonical 4213 * representative. This will happen before ref type deduping, 4214 * which critically depends on stability of these mapping. This 4215 * stability is not a requirement for STRUCT/UNION equivalence 4216 * checks, though. 4217 */ 4218 4219 /* if it's the split BTF case, we still need to point base FWD 4220 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4221 * will be resolved against base FWD. If we don't point base 4222 * canonical FWD to the resolved STRUCT/UNION, then all the 4223 * FWDs in split BTF won't be correctly resolved to a proper 4224 * STRUCT/UNION. 4225 */ 4226 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4227 d->map[c_id] = t_id; 4228 4229 /* if graph equivalence determined that we'd need to adjust 4230 * base canonical types, then we need to only point base FWDs 4231 * to STRUCTs/UNIONs and do no more modifications. For all 4232 * other purposes the type graphs were not equivalent. 4233 */ 4234 if (d->hypot_adjust_canon) 4235 continue; 4236 4237 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4238 d->map[t_id] = c_id; 4239 4240 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4241 c_kind != BTF_KIND_FWD && 4242 is_type_mapped(d, c_id) && 4243 !is_type_mapped(d, t_id)) { 4244 /* 4245 * as a perf optimization, we can map struct/union 4246 * that's part of type graph we just verified for 4247 * equivalence. We can do that for struct/union that has 4248 * canonical representative only, though. 4249 */ 4250 d->map[t_id] = c_id; 4251 } 4252 } 4253 } 4254 4255 /* 4256 * Deduplicate struct/union types. 4257 * 4258 * For each struct/union type its type signature hash is calculated, taking 4259 * into account type's name, size, number, order and names of fields, but 4260 * ignoring type ID's referenced from fields, because they might not be deduped 4261 * completely until after reference types deduplication phase. This type hash 4262 * is used to iterate over all potential canonical types, sharing same hash. 4263 * For each canonical candidate we check whether type graphs that they form 4264 * (through referenced types in fields and so on) are equivalent using algorithm 4265 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4266 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4267 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4268 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4269 * potentially map other structs/unions to their canonical representatives, 4270 * if such relationship hasn't yet been established. This speeds up algorithm 4271 * by eliminating some of the duplicate work. 4272 * 4273 * If no matching canonical representative was found, struct/union is marked 4274 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4275 * for further look ups. 4276 */ 4277 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4278 { 4279 struct btf_type *cand_type, *t; 4280 struct hashmap_entry *hash_entry; 4281 /* if we don't find equivalent type, then we are canonical */ 4282 __u32 new_id = type_id; 4283 __u16 kind; 4284 long h; 4285 4286 /* already deduped or is in process of deduping (loop detected) */ 4287 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4288 return 0; 4289 4290 t = btf_type_by_id(d->btf, type_id); 4291 kind = btf_kind(t); 4292 4293 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4294 return 0; 4295 4296 h = btf_hash_struct(t); 4297 for_each_dedup_cand(d, hash_entry, h) { 4298 __u32 cand_id = hash_entry->value; 4299 int eq; 4300 4301 /* 4302 * Even though btf_dedup_is_equiv() checks for 4303 * btf_shallow_equal_struct() internally when checking two 4304 * structs (unions) for equivalence, we need to guard here 4305 * from picking matching FWD type as a dedup candidate. 4306 * This can happen due to hash collision. In such case just 4307 * relying on btf_dedup_is_equiv() would lead to potentially 4308 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4309 * FWD and compatible STRUCT/UNION are considered equivalent. 4310 */ 4311 cand_type = btf_type_by_id(d->btf, cand_id); 4312 if (!btf_shallow_equal_struct(t, cand_type)) 4313 continue; 4314 4315 btf_dedup_clear_hypot_map(d); 4316 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4317 if (eq < 0) 4318 return eq; 4319 if (!eq) 4320 continue; 4321 btf_dedup_merge_hypot_map(d); 4322 if (d->hypot_adjust_canon) /* not really equivalent */ 4323 continue; 4324 new_id = cand_id; 4325 break; 4326 } 4327 4328 d->map[type_id] = new_id; 4329 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4330 return -ENOMEM; 4331 4332 return 0; 4333 } 4334 4335 static int btf_dedup_struct_types(struct btf_dedup *d) 4336 { 4337 int i, err; 4338 4339 for (i = 0; i < d->btf->nr_types; i++) { 4340 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4341 if (err) 4342 return err; 4343 } 4344 return 0; 4345 } 4346 4347 /* 4348 * Deduplicate reference type. 4349 * 4350 * Once all primitive and struct/union types got deduplicated, we can easily 4351 * deduplicate all other (reference) BTF types. This is done in two steps: 4352 * 4353 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4354 * resolution can be done either immediately for primitive or struct/union types 4355 * (because they were deduped in previous two phases) or recursively for 4356 * reference types. Recursion will always terminate at either primitive or 4357 * struct/union type, at which point we can "unwind" chain of reference types 4358 * one by one. There is no danger of encountering cycles because in C type 4359 * system the only way to form type cycle is through struct/union, so any chain 4360 * of reference types, even those taking part in a type cycle, will inevitably 4361 * reach struct/union at some point. 4362 * 4363 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4364 * becomes "stable", in the sense that no further deduplication will cause 4365 * any changes to it. With that, it's now possible to calculate type's signature 4366 * hash (this time taking into account referenced type IDs) and loop over all 4367 * potential canonical representatives. If no match was found, current type 4368 * will become canonical representative of itself and will be added into 4369 * btf_dedup->dedup_table as another possible canonical representative. 4370 */ 4371 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4372 { 4373 struct hashmap_entry *hash_entry; 4374 __u32 new_id = type_id, cand_id; 4375 struct btf_type *t, *cand; 4376 /* if we don't find equivalent type, then we are representative type */ 4377 int ref_type_id; 4378 long h; 4379 4380 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4381 return -ELOOP; 4382 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4383 return resolve_type_id(d, type_id); 4384 4385 t = btf_type_by_id(d->btf, type_id); 4386 d->map[type_id] = BTF_IN_PROGRESS_ID; 4387 4388 switch (btf_kind(t)) { 4389 case BTF_KIND_CONST: 4390 case BTF_KIND_VOLATILE: 4391 case BTF_KIND_RESTRICT: 4392 case BTF_KIND_PTR: 4393 case BTF_KIND_TYPEDEF: 4394 case BTF_KIND_FUNC: 4395 case BTF_KIND_TYPE_TAG: 4396 ref_type_id = btf_dedup_ref_type(d, t->type); 4397 if (ref_type_id < 0) 4398 return ref_type_id; 4399 t->type = ref_type_id; 4400 4401 h = btf_hash_common(t); 4402 for_each_dedup_cand(d, hash_entry, h) { 4403 cand_id = hash_entry->value; 4404 cand = btf_type_by_id(d->btf, cand_id); 4405 if (btf_equal_common(t, cand)) { 4406 new_id = cand_id; 4407 break; 4408 } 4409 } 4410 break; 4411 4412 case BTF_KIND_DECL_TAG: 4413 ref_type_id = btf_dedup_ref_type(d, t->type); 4414 if (ref_type_id < 0) 4415 return ref_type_id; 4416 t->type = ref_type_id; 4417 4418 h = btf_hash_int_decl_tag(t); 4419 for_each_dedup_cand(d, hash_entry, h) { 4420 cand_id = hash_entry->value; 4421 cand = btf_type_by_id(d->btf, cand_id); 4422 if (btf_equal_int_tag(t, cand)) { 4423 new_id = cand_id; 4424 break; 4425 } 4426 } 4427 break; 4428 4429 case BTF_KIND_ARRAY: { 4430 struct btf_array *info = btf_array(t); 4431 4432 ref_type_id = btf_dedup_ref_type(d, info->type); 4433 if (ref_type_id < 0) 4434 return ref_type_id; 4435 info->type = ref_type_id; 4436 4437 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4438 if (ref_type_id < 0) 4439 return ref_type_id; 4440 info->index_type = ref_type_id; 4441 4442 h = btf_hash_array(t); 4443 for_each_dedup_cand(d, hash_entry, h) { 4444 cand_id = hash_entry->value; 4445 cand = btf_type_by_id(d->btf, cand_id); 4446 if (btf_equal_array(t, cand)) { 4447 new_id = cand_id; 4448 break; 4449 } 4450 } 4451 break; 4452 } 4453 4454 case BTF_KIND_FUNC_PROTO: { 4455 struct btf_param *param; 4456 __u16 vlen; 4457 int i; 4458 4459 ref_type_id = btf_dedup_ref_type(d, t->type); 4460 if (ref_type_id < 0) 4461 return ref_type_id; 4462 t->type = ref_type_id; 4463 4464 vlen = btf_vlen(t); 4465 param = btf_params(t); 4466 for (i = 0; i < vlen; i++) { 4467 ref_type_id = btf_dedup_ref_type(d, param->type); 4468 if (ref_type_id < 0) 4469 return ref_type_id; 4470 param->type = ref_type_id; 4471 param++; 4472 } 4473 4474 h = btf_hash_fnproto(t); 4475 for_each_dedup_cand(d, hash_entry, h) { 4476 cand_id = hash_entry->value; 4477 cand = btf_type_by_id(d->btf, cand_id); 4478 if (btf_equal_fnproto(t, cand)) { 4479 new_id = cand_id; 4480 break; 4481 } 4482 } 4483 break; 4484 } 4485 4486 default: 4487 return -EINVAL; 4488 } 4489 4490 d->map[type_id] = new_id; 4491 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4492 return -ENOMEM; 4493 4494 return new_id; 4495 } 4496 4497 static int btf_dedup_ref_types(struct btf_dedup *d) 4498 { 4499 int i, err; 4500 4501 for (i = 0; i < d->btf->nr_types; i++) { 4502 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4503 if (err < 0) 4504 return err; 4505 } 4506 /* we won't need d->dedup_table anymore */ 4507 hashmap__free(d->dedup_table); 4508 d->dedup_table = NULL; 4509 return 0; 4510 } 4511 4512 /* 4513 * Collect a map from type names to type ids for all canonical structs 4514 * and unions. If the same name is shared by several canonical types 4515 * use a special value 0 to indicate this fact. 4516 */ 4517 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map) 4518 { 4519 __u32 nr_types = btf__type_cnt(d->btf); 4520 struct btf_type *t; 4521 __u32 type_id; 4522 __u16 kind; 4523 int err; 4524 4525 /* 4526 * Iterate over base and split module ids in order to get all 4527 * available structs in the map. 4528 */ 4529 for (type_id = 1; type_id < nr_types; ++type_id) { 4530 t = btf_type_by_id(d->btf, type_id); 4531 kind = btf_kind(t); 4532 4533 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4534 continue; 4535 4536 /* Skip non-canonical types */ 4537 if (type_id != d->map[type_id]) 4538 continue; 4539 4540 err = hashmap__add(names_map, t->name_off, type_id); 4541 if (err == -EEXIST) 4542 err = hashmap__set(names_map, t->name_off, 0, NULL, NULL); 4543 4544 if (err) 4545 return err; 4546 } 4547 4548 return 0; 4549 } 4550 4551 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id) 4552 { 4553 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4554 enum btf_fwd_kind fwd_kind = btf_kflag(t); 4555 __u16 cand_kind, kind = btf_kind(t); 4556 struct btf_type *cand_t; 4557 uintptr_t cand_id; 4558 4559 if (kind != BTF_KIND_FWD) 4560 return 0; 4561 4562 /* Skip if this FWD already has a mapping */ 4563 if (type_id != d->map[type_id]) 4564 return 0; 4565 4566 if (!hashmap__find(names_map, t->name_off, &cand_id)) 4567 return 0; 4568 4569 /* Zero is a special value indicating that name is not unique */ 4570 if (!cand_id) 4571 return 0; 4572 4573 cand_t = btf_type_by_id(d->btf, cand_id); 4574 cand_kind = btf_kind(cand_t); 4575 if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) || 4576 (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION)) 4577 return 0; 4578 4579 d->map[type_id] = cand_id; 4580 4581 return 0; 4582 } 4583 4584 /* 4585 * Resolve unambiguous forward declarations. 4586 * 4587 * The lion's share of all FWD declarations is resolved during 4588 * `btf_dedup_struct_types` phase when different type graphs are 4589 * compared against each other. However, if in some compilation unit a 4590 * FWD declaration is not a part of a type graph compared against 4591 * another type graph that declaration's canonical type would not be 4592 * changed. Example: 4593 * 4594 * CU #1: 4595 * 4596 * struct foo; 4597 * struct foo *some_global; 4598 * 4599 * CU #2: 4600 * 4601 * struct foo { int u; }; 4602 * struct foo *another_global; 4603 * 4604 * After `btf_dedup_struct_types` the BTF looks as follows: 4605 * 4606 * [1] STRUCT 'foo' size=4 vlen=1 ... 4607 * [2] INT 'int' size=4 ... 4608 * [3] PTR '(anon)' type_id=1 4609 * [4] FWD 'foo' fwd_kind=struct 4610 * [5] PTR '(anon)' type_id=4 4611 * 4612 * This pass assumes that such FWD declarations should be mapped to 4613 * structs or unions with identical name in case if the name is not 4614 * ambiguous. 4615 */ 4616 static int btf_dedup_resolve_fwds(struct btf_dedup *d) 4617 { 4618 int i, err; 4619 struct hashmap *names_map; 4620 4621 names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 4622 if (IS_ERR(names_map)) 4623 return PTR_ERR(names_map); 4624 4625 err = btf_dedup_fill_unique_names_map(d, names_map); 4626 if (err < 0) 4627 goto exit; 4628 4629 for (i = 0; i < d->btf->nr_types; i++) { 4630 err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i); 4631 if (err < 0) 4632 break; 4633 } 4634 4635 exit: 4636 hashmap__free(names_map); 4637 return err; 4638 } 4639 4640 /* 4641 * Compact types. 4642 * 4643 * After we established for each type its corresponding canonical representative 4644 * type, we now can eliminate types that are not canonical and leave only 4645 * canonical ones layed out sequentially in memory by copying them over 4646 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4647 * a map from original type ID to a new compacted type ID, which will be used 4648 * during next phase to "fix up" type IDs, referenced from struct/union and 4649 * reference types. 4650 */ 4651 static int btf_dedup_compact_types(struct btf_dedup *d) 4652 { 4653 __u32 *new_offs; 4654 __u32 next_type_id = d->btf->start_id; 4655 const struct btf_type *t; 4656 void *p; 4657 int i, id, len; 4658 4659 /* we are going to reuse hypot_map to store compaction remapping */ 4660 d->hypot_map[0] = 0; 4661 /* base BTF types are not renumbered */ 4662 for (id = 1; id < d->btf->start_id; id++) 4663 d->hypot_map[id] = id; 4664 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4665 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4666 4667 p = d->btf->types_data; 4668 4669 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4670 if (d->map[id] != id) 4671 continue; 4672 4673 t = btf__type_by_id(d->btf, id); 4674 len = btf_type_size(t); 4675 if (len < 0) 4676 return len; 4677 4678 memmove(p, t, len); 4679 d->hypot_map[id] = next_type_id; 4680 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4681 p += len; 4682 next_type_id++; 4683 } 4684 4685 /* shrink struct btf's internal types index and update btf_header */ 4686 d->btf->nr_types = next_type_id - d->btf->start_id; 4687 d->btf->type_offs_cap = d->btf->nr_types; 4688 d->btf->hdr->type_len = p - d->btf->types_data; 4689 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4690 sizeof(*new_offs)); 4691 if (d->btf->type_offs_cap && !new_offs) 4692 return -ENOMEM; 4693 d->btf->type_offs = new_offs; 4694 d->btf->hdr->str_off = d->btf->hdr->type_len; 4695 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4696 return 0; 4697 } 4698 4699 /* 4700 * Figure out final (deduplicated and compacted) type ID for provided original 4701 * `type_id` by first resolving it into corresponding canonical type ID and 4702 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4703 * which is populated during compaction phase. 4704 */ 4705 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4706 { 4707 struct btf_dedup *d = ctx; 4708 __u32 resolved_type_id, new_type_id; 4709 4710 resolved_type_id = resolve_type_id(d, *type_id); 4711 new_type_id = d->hypot_map[resolved_type_id]; 4712 if (new_type_id > BTF_MAX_NR_TYPES) 4713 return -EINVAL; 4714 4715 *type_id = new_type_id; 4716 return 0; 4717 } 4718 4719 /* 4720 * Remap referenced type IDs into deduped type IDs. 4721 * 4722 * After BTF types are deduplicated and compacted, their final type IDs may 4723 * differ from original ones. The map from original to a corresponding 4724 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4725 * compaction phase. During remapping phase we are rewriting all type IDs 4726 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4727 * their final deduped type IDs. 4728 */ 4729 static int btf_dedup_remap_types(struct btf_dedup *d) 4730 { 4731 int i, r; 4732 4733 for (i = 0; i < d->btf->nr_types; i++) { 4734 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4735 4736 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4737 if (r) 4738 return r; 4739 } 4740 4741 if (!d->btf_ext) 4742 return 0; 4743 4744 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4745 if (r) 4746 return r; 4747 4748 return 0; 4749 } 4750 4751 /* 4752 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4753 * data out of it to use for target BTF. 4754 */ 4755 struct btf *btf__load_vmlinux_btf(void) 4756 { 4757 const char *locations[] = { 4758 /* try canonical vmlinux BTF through sysfs first */ 4759 "/sys/kernel/btf/vmlinux", 4760 /* fall back to trying to find vmlinux on disk otherwise */ 4761 "/boot/vmlinux-%1$s", 4762 "/lib/modules/%1$s/vmlinux-%1$s", 4763 "/lib/modules/%1$s/build/vmlinux", 4764 "/usr/lib/modules/%1$s/kernel/vmlinux", 4765 "/usr/lib/debug/boot/vmlinux-%1$s", 4766 "/usr/lib/debug/boot/vmlinux-%1$s.debug", 4767 "/usr/lib/debug/lib/modules/%1$s/vmlinux", 4768 }; 4769 char path[PATH_MAX + 1]; 4770 struct utsname buf; 4771 struct btf *btf; 4772 int i, err; 4773 4774 uname(&buf); 4775 4776 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4777 snprintf(path, PATH_MAX, locations[i], buf.release); 4778 4779 if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS)) 4780 continue; 4781 4782 btf = btf__parse(path, NULL); 4783 err = libbpf_get_error(btf); 4784 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4785 if (err) 4786 continue; 4787 4788 return btf; 4789 } 4790 4791 pr_warn("failed to find valid kernel BTF\n"); 4792 return libbpf_err_ptr(-ESRCH); 4793 } 4794 4795 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4796 4797 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4798 { 4799 char path[80]; 4800 4801 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4802 return btf__parse_split(path, vmlinux_btf); 4803 } 4804 4805 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4806 { 4807 int i, n, err; 4808 4809 switch (btf_kind(t)) { 4810 case BTF_KIND_INT: 4811 case BTF_KIND_FLOAT: 4812 case BTF_KIND_ENUM: 4813 case BTF_KIND_ENUM64: 4814 return 0; 4815 4816 case BTF_KIND_FWD: 4817 case BTF_KIND_CONST: 4818 case BTF_KIND_VOLATILE: 4819 case BTF_KIND_RESTRICT: 4820 case BTF_KIND_PTR: 4821 case BTF_KIND_TYPEDEF: 4822 case BTF_KIND_FUNC: 4823 case BTF_KIND_VAR: 4824 case BTF_KIND_DECL_TAG: 4825 case BTF_KIND_TYPE_TAG: 4826 return visit(&t->type, ctx); 4827 4828 case BTF_KIND_ARRAY: { 4829 struct btf_array *a = btf_array(t); 4830 4831 err = visit(&a->type, ctx); 4832 err = err ?: visit(&a->index_type, ctx); 4833 return err; 4834 } 4835 4836 case BTF_KIND_STRUCT: 4837 case BTF_KIND_UNION: { 4838 struct btf_member *m = btf_members(t); 4839 4840 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4841 err = visit(&m->type, ctx); 4842 if (err) 4843 return err; 4844 } 4845 return 0; 4846 } 4847 4848 case BTF_KIND_FUNC_PROTO: { 4849 struct btf_param *m = btf_params(t); 4850 4851 err = visit(&t->type, ctx); 4852 if (err) 4853 return err; 4854 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4855 err = visit(&m->type, ctx); 4856 if (err) 4857 return err; 4858 } 4859 return 0; 4860 } 4861 4862 case BTF_KIND_DATASEC: { 4863 struct btf_var_secinfo *m = btf_var_secinfos(t); 4864 4865 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4866 err = visit(&m->type, ctx); 4867 if (err) 4868 return err; 4869 } 4870 return 0; 4871 } 4872 4873 default: 4874 return -EINVAL; 4875 } 4876 } 4877 4878 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4879 { 4880 int i, n, err; 4881 4882 err = visit(&t->name_off, ctx); 4883 if (err) 4884 return err; 4885 4886 switch (btf_kind(t)) { 4887 case BTF_KIND_STRUCT: 4888 case BTF_KIND_UNION: { 4889 struct btf_member *m = btf_members(t); 4890 4891 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4892 err = visit(&m->name_off, ctx); 4893 if (err) 4894 return err; 4895 } 4896 break; 4897 } 4898 case BTF_KIND_ENUM: { 4899 struct btf_enum *m = btf_enum(t); 4900 4901 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4902 err = visit(&m->name_off, ctx); 4903 if (err) 4904 return err; 4905 } 4906 break; 4907 } 4908 case BTF_KIND_ENUM64: { 4909 struct btf_enum64 *m = btf_enum64(t); 4910 4911 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4912 err = visit(&m->name_off, ctx); 4913 if (err) 4914 return err; 4915 } 4916 break; 4917 } 4918 case BTF_KIND_FUNC_PROTO: { 4919 struct btf_param *m = btf_params(t); 4920 4921 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4922 err = visit(&m->name_off, ctx); 4923 if (err) 4924 return err; 4925 } 4926 break; 4927 } 4928 default: 4929 break; 4930 } 4931 4932 return 0; 4933 } 4934 4935 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4936 { 4937 const struct btf_ext_info *seg; 4938 struct btf_ext_info_sec *sec; 4939 int i, err; 4940 4941 seg = &btf_ext->func_info; 4942 for_each_btf_ext_sec(seg, sec) { 4943 struct bpf_func_info_min *rec; 4944 4945 for_each_btf_ext_rec(seg, sec, i, rec) { 4946 err = visit(&rec->type_id, ctx); 4947 if (err < 0) 4948 return err; 4949 } 4950 } 4951 4952 seg = &btf_ext->core_relo_info; 4953 for_each_btf_ext_sec(seg, sec) { 4954 struct bpf_core_relo *rec; 4955 4956 for_each_btf_ext_rec(seg, sec, i, rec) { 4957 err = visit(&rec->type_id, ctx); 4958 if (err < 0) 4959 return err; 4960 } 4961 } 4962 4963 return 0; 4964 } 4965 4966 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4967 { 4968 const struct btf_ext_info *seg; 4969 struct btf_ext_info_sec *sec; 4970 int i, err; 4971 4972 seg = &btf_ext->func_info; 4973 for_each_btf_ext_sec(seg, sec) { 4974 err = visit(&sec->sec_name_off, ctx); 4975 if (err) 4976 return err; 4977 } 4978 4979 seg = &btf_ext->line_info; 4980 for_each_btf_ext_sec(seg, sec) { 4981 struct bpf_line_info_min *rec; 4982 4983 err = visit(&sec->sec_name_off, ctx); 4984 if (err) 4985 return err; 4986 4987 for_each_btf_ext_rec(seg, sec, i, rec) { 4988 err = visit(&rec->file_name_off, ctx); 4989 if (err) 4990 return err; 4991 err = visit(&rec->line_off, ctx); 4992 if (err) 4993 return err; 4994 } 4995 } 4996 4997 seg = &btf_ext->core_relo_info; 4998 for_each_btf_ext_sec(seg, sec) { 4999 struct bpf_core_relo *rec; 5000 5001 err = visit(&sec->sec_name_off, ctx); 5002 if (err) 5003 return err; 5004 5005 for_each_btf_ext_rec(seg, sec, i, rec) { 5006 err = visit(&rec->access_str_off, ctx); 5007 if (err) 5008 return err; 5009 } 5010 } 5011 5012 return 0; 5013 } 5014