1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 case BTF_KIND_TYPE_TAG: 303 return base_size; 304 case BTF_KIND_INT: 305 return base_size + sizeof(__u32); 306 case BTF_KIND_ENUM: 307 return base_size + vlen * sizeof(struct btf_enum); 308 case BTF_KIND_ARRAY: 309 return base_size + sizeof(struct btf_array); 310 case BTF_KIND_STRUCT: 311 case BTF_KIND_UNION: 312 return base_size + vlen * sizeof(struct btf_member); 313 case BTF_KIND_FUNC_PROTO: 314 return base_size + vlen * sizeof(struct btf_param); 315 case BTF_KIND_VAR: 316 return base_size + sizeof(struct btf_var); 317 case BTF_KIND_DATASEC: 318 return base_size + vlen * sizeof(struct btf_var_secinfo); 319 case BTF_KIND_DECL_TAG: 320 return base_size + sizeof(struct btf_decl_tag); 321 default: 322 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 323 return -EINVAL; 324 } 325 } 326 327 static void btf_bswap_type_base(struct btf_type *t) 328 { 329 t->name_off = bswap_32(t->name_off); 330 t->info = bswap_32(t->info); 331 t->type = bswap_32(t->type); 332 } 333 334 static int btf_bswap_type_rest(struct btf_type *t) 335 { 336 struct btf_var_secinfo *v; 337 struct btf_member *m; 338 struct btf_array *a; 339 struct btf_param *p; 340 struct btf_enum *e; 341 __u16 vlen = btf_vlen(t); 342 int i; 343 344 switch (btf_kind(t)) { 345 case BTF_KIND_FWD: 346 case BTF_KIND_CONST: 347 case BTF_KIND_VOLATILE: 348 case BTF_KIND_RESTRICT: 349 case BTF_KIND_PTR: 350 case BTF_KIND_TYPEDEF: 351 case BTF_KIND_FUNC: 352 case BTF_KIND_FLOAT: 353 case BTF_KIND_TYPE_TAG: 354 return 0; 355 case BTF_KIND_INT: 356 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 357 return 0; 358 case BTF_KIND_ENUM: 359 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 360 e->name_off = bswap_32(e->name_off); 361 e->val = bswap_32(e->val); 362 } 363 return 0; 364 case BTF_KIND_ARRAY: 365 a = btf_array(t); 366 a->type = bswap_32(a->type); 367 a->index_type = bswap_32(a->index_type); 368 a->nelems = bswap_32(a->nelems); 369 return 0; 370 case BTF_KIND_STRUCT: 371 case BTF_KIND_UNION: 372 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 373 m->name_off = bswap_32(m->name_off); 374 m->type = bswap_32(m->type); 375 m->offset = bswap_32(m->offset); 376 } 377 return 0; 378 case BTF_KIND_FUNC_PROTO: 379 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 380 p->name_off = bswap_32(p->name_off); 381 p->type = bswap_32(p->type); 382 } 383 return 0; 384 case BTF_KIND_VAR: 385 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 386 return 0; 387 case BTF_KIND_DATASEC: 388 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 389 v->type = bswap_32(v->type); 390 v->offset = bswap_32(v->offset); 391 v->size = bswap_32(v->size); 392 } 393 return 0; 394 case BTF_KIND_DECL_TAG: 395 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 396 return 0; 397 default: 398 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 399 return -EINVAL; 400 } 401 } 402 403 static int btf_parse_type_sec(struct btf *btf) 404 { 405 struct btf_header *hdr = btf->hdr; 406 void *next_type = btf->types_data; 407 void *end_type = next_type + hdr->type_len; 408 int err, type_size; 409 410 while (next_type + sizeof(struct btf_type) <= end_type) { 411 if (btf->swapped_endian) 412 btf_bswap_type_base(next_type); 413 414 type_size = btf_type_size(next_type); 415 if (type_size < 0) 416 return type_size; 417 if (next_type + type_size > end_type) { 418 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 419 return -EINVAL; 420 } 421 422 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 423 return -EINVAL; 424 425 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 426 if (err) 427 return err; 428 429 next_type += type_size; 430 btf->nr_types++; 431 } 432 433 if (next_type != end_type) { 434 pr_warn("BTF types data is malformed\n"); 435 return -EINVAL; 436 } 437 438 return 0; 439 } 440 441 __u32 btf__get_nr_types(const struct btf *btf) 442 { 443 return btf->start_id + btf->nr_types - 1; 444 } 445 446 __u32 btf__type_cnt(const struct btf *btf) 447 { 448 return btf->start_id + btf->nr_types; 449 } 450 451 const struct btf *btf__base_btf(const struct btf *btf) 452 { 453 return btf->base_btf; 454 } 455 456 /* internal helper returning non-const pointer to a type */ 457 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 458 { 459 if (type_id == 0) 460 return &btf_void; 461 if (type_id < btf->start_id) 462 return btf_type_by_id(btf->base_btf, type_id); 463 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 464 } 465 466 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 467 { 468 if (type_id >= btf->start_id + btf->nr_types) 469 return errno = EINVAL, NULL; 470 return btf_type_by_id((struct btf *)btf, type_id); 471 } 472 473 static int determine_ptr_size(const struct btf *btf) 474 { 475 const struct btf_type *t; 476 const char *name; 477 int i, n; 478 479 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 480 return btf->base_btf->ptr_sz; 481 482 n = btf__type_cnt(btf); 483 for (i = 1; i < n; i++) { 484 t = btf__type_by_id(btf, i); 485 if (!btf_is_int(t)) 486 continue; 487 488 name = btf__name_by_offset(btf, t->name_off); 489 if (!name) 490 continue; 491 492 if (strcmp(name, "long int") == 0 || 493 strcmp(name, "long unsigned int") == 0) { 494 if (t->size != 4 && t->size != 8) 495 continue; 496 return t->size; 497 } 498 } 499 500 return -1; 501 } 502 503 static size_t btf_ptr_sz(const struct btf *btf) 504 { 505 if (!btf->ptr_sz) 506 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 507 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 508 } 509 510 /* Return pointer size this BTF instance assumes. The size is heuristically 511 * determined by looking for 'long' or 'unsigned long' integer type and 512 * recording its size in bytes. If BTF type information doesn't have any such 513 * type, this function returns 0. In the latter case, native architecture's 514 * pointer size is assumed, so will be either 4 or 8, depending on 515 * architecture that libbpf was compiled for. It's possible to override 516 * guessed value by using btf__set_pointer_size() API. 517 */ 518 size_t btf__pointer_size(const struct btf *btf) 519 { 520 if (!btf->ptr_sz) 521 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 522 523 if (btf->ptr_sz < 0) 524 /* not enough BTF type info to guess */ 525 return 0; 526 527 return btf->ptr_sz; 528 } 529 530 /* Override or set pointer size in bytes. Only values of 4 and 8 are 531 * supported. 532 */ 533 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 534 { 535 if (ptr_sz != 4 && ptr_sz != 8) 536 return libbpf_err(-EINVAL); 537 btf->ptr_sz = ptr_sz; 538 return 0; 539 } 540 541 static bool is_host_big_endian(void) 542 { 543 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 544 return false; 545 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 546 return true; 547 #else 548 # error "Unrecognized __BYTE_ORDER__" 549 #endif 550 } 551 552 enum btf_endianness btf__endianness(const struct btf *btf) 553 { 554 if (is_host_big_endian()) 555 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 556 else 557 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 558 } 559 560 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 561 { 562 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 563 return libbpf_err(-EINVAL); 564 565 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 566 if (!btf->swapped_endian) { 567 free(btf->raw_data_swapped); 568 btf->raw_data_swapped = NULL; 569 } 570 return 0; 571 } 572 573 static bool btf_type_is_void(const struct btf_type *t) 574 { 575 return t == &btf_void || btf_is_fwd(t); 576 } 577 578 static bool btf_type_is_void_or_null(const struct btf_type *t) 579 { 580 return !t || btf_type_is_void(t); 581 } 582 583 #define MAX_RESOLVE_DEPTH 32 584 585 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 586 { 587 const struct btf_array *array; 588 const struct btf_type *t; 589 __u32 nelems = 1; 590 __s64 size = -1; 591 int i; 592 593 t = btf__type_by_id(btf, type_id); 594 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 595 switch (btf_kind(t)) { 596 case BTF_KIND_INT: 597 case BTF_KIND_STRUCT: 598 case BTF_KIND_UNION: 599 case BTF_KIND_ENUM: 600 case BTF_KIND_DATASEC: 601 case BTF_KIND_FLOAT: 602 size = t->size; 603 goto done; 604 case BTF_KIND_PTR: 605 size = btf_ptr_sz(btf); 606 goto done; 607 case BTF_KIND_TYPEDEF: 608 case BTF_KIND_VOLATILE: 609 case BTF_KIND_CONST: 610 case BTF_KIND_RESTRICT: 611 case BTF_KIND_VAR: 612 case BTF_KIND_DECL_TAG: 613 type_id = t->type; 614 break; 615 case BTF_KIND_ARRAY: 616 array = btf_array(t); 617 if (nelems && array->nelems > UINT32_MAX / nelems) 618 return libbpf_err(-E2BIG); 619 nelems *= array->nelems; 620 type_id = array->type; 621 break; 622 default: 623 return libbpf_err(-EINVAL); 624 } 625 626 t = btf__type_by_id(btf, type_id); 627 } 628 629 done: 630 if (size < 0) 631 return libbpf_err(-EINVAL); 632 if (nelems && size > UINT32_MAX / nelems) 633 return libbpf_err(-E2BIG); 634 635 return nelems * size; 636 } 637 638 int btf__align_of(const struct btf *btf, __u32 id) 639 { 640 const struct btf_type *t = btf__type_by_id(btf, id); 641 __u16 kind = btf_kind(t); 642 643 switch (kind) { 644 case BTF_KIND_INT: 645 case BTF_KIND_ENUM: 646 case BTF_KIND_FLOAT: 647 return min(btf_ptr_sz(btf), (size_t)t->size); 648 case BTF_KIND_PTR: 649 return btf_ptr_sz(btf); 650 case BTF_KIND_TYPEDEF: 651 case BTF_KIND_VOLATILE: 652 case BTF_KIND_CONST: 653 case BTF_KIND_RESTRICT: 654 case BTF_KIND_TYPE_TAG: 655 return btf__align_of(btf, t->type); 656 case BTF_KIND_ARRAY: 657 return btf__align_of(btf, btf_array(t)->type); 658 case BTF_KIND_STRUCT: 659 case BTF_KIND_UNION: { 660 const struct btf_member *m = btf_members(t); 661 __u16 vlen = btf_vlen(t); 662 int i, max_align = 1, align; 663 664 for (i = 0; i < vlen; i++, m++) { 665 align = btf__align_of(btf, m->type); 666 if (align <= 0) 667 return libbpf_err(align); 668 max_align = max(max_align, align); 669 } 670 671 return max_align; 672 } 673 default: 674 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 675 return errno = EINVAL, 0; 676 } 677 } 678 679 int btf__resolve_type(const struct btf *btf, __u32 type_id) 680 { 681 const struct btf_type *t; 682 int depth = 0; 683 684 t = btf__type_by_id(btf, type_id); 685 while (depth < MAX_RESOLVE_DEPTH && 686 !btf_type_is_void_or_null(t) && 687 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 688 type_id = t->type; 689 t = btf__type_by_id(btf, type_id); 690 depth++; 691 } 692 693 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 694 return libbpf_err(-EINVAL); 695 696 return type_id; 697 } 698 699 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 700 { 701 __u32 i, nr_types = btf__type_cnt(btf); 702 703 if (!strcmp(type_name, "void")) 704 return 0; 705 706 for (i = 1; i < nr_types; i++) { 707 const struct btf_type *t = btf__type_by_id(btf, i); 708 const char *name = btf__name_by_offset(btf, t->name_off); 709 710 if (name && !strcmp(type_name, name)) 711 return i; 712 } 713 714 return libbpf_err(-ENOENT); 715 } 716 717 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 718 const char *type_name, __u32 kind) 719 { 720 __u32 i, nr_types = btf__type_cnt(btf); 721 722 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 723 return 0; 724 725 for (i = start_id; i < nr_types; i++) { 726 const struct btf_type *t = btf__type_by_id(btf, i); 727 const char *name; 728 729 if (btf_kind(t) != kind) 730 continue; 731 name = btf__name_by_offset(btf, t->name_off); 732 if (name && !strcmp(type_name, name)) 733 return i; 734 } 735 736 return libbpf_err(-ENOENT); 737 } 738 739 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 740 __u32 kind) 741 { 742 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 743 } 744 745 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 746 __u32 kind) 747 { 748 return btf_find_by_name_kind(btf, 1, type_name, kind); 749 } 750 751 static bool btf_is_modifiable(const struct btf *btf) 752 { 753 return (void *)btf->hdr != btf->raw_data; 754 } 755 756 void btf__free(struct btf *btf) 757 { 758 if (IS_ERR_OR_NULL(btf)) 759 return; 760 761 if (btf->fd >= 0) 762 close(btf->fd); 763 764 if (btf_is_modifiable(btf)) { 765 /* if BTF was modified after loading, it will have a split 766 * in-memory representation for header, types, and strings 767 * sections, so we need to free all of them individually. It 768 * might still have a cached contiguous raw data present, 769 * which will be unconditionally freed below. 770 */ 771 free(btf->hdr); 772 free(btf->types_data); 773 strset__free(btf->strs_set); 774 } 775 free(btf->raw_data); 776 free(btf->raw_data_swapped); 777 free(btf->type_offs); 778 free(btf); 779 } 780 781 static struct btf *btf_new_empty(struct btf *base_btf) 782 { 783 struct btf *btf; 784 785 btf = calloc(1, sizeof(*btf)); 786 if (!btf) 787 return ERR_PTR(-ENOMEM); 788 789 btf->nr_types = 0; 790 btf->start_id = 1; 791 btf->start_str_off = 0; 792 btf->fd = -1; 793 btf->ptr_sz = sizeof(void *); 794 btf->swapped_endian = false; 795 796 if (base_btf) { 797 btf->base_btf = base_btf; 798 btf->start_id = btf__type_cnt(base_btf); 799 btf->start_str_off = base_btf->hdr->str_len; 800 } 801 802 /* +1 for empty string at offset 0 */ 803 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 804 btf->raw_data = calloc(1, btf->raw_size); 805 if (!btf->raw_data) { 806 free(btf); 807 return ERR_PTR(-ENOMEM); 808 } 809 810 btf->hdr = btf->raw_data; 811 btf->hdr->hdr_len = sizeof(struct btf_header); 812 btf->hdr->magic = BTF_MAGIC; 813 btf->hdr->version = BTF_VERSION; 814 815 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 816 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 817 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 818 819 return btf; 820 } 821 822 struct btf *btf__new_empty(void) 823 { 824 return libbpf_ptr(btf_new_empty(NULL)); 825 } 826 827 struct btf *btf__new_empty_split(struct btf *base_btf) 828 { 829 return libbpf_ptr(btf_new_empty(base_btf)); 830 } 831 832 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 833 { 834 struct btf *btf; 835 int err; 836 837 btf = calloc(1, sizeof(struct btf)); 838 if (!btf) 839 return ERR_PTR(-ENOMEM); 840 841 btf->nr_types = 0; 842 btf->start_id = 1; 843 btf->start_str_off = 0; 844 btf->fd = -1; 845 846 if (base_btf) { 847 btf->base_btf = base_btf; 848 btf->start_id = btf__type_cnt(base_btf); 849 btf->start_str_off = base_btf->hdr->str_len; 850 } 851 852 btf->raw_data = malloc(size); 853 if (!btf->raw_data) { 854 err = -ENOMEM; 855 goto done; 856 } 857 memcpy(btf->raw_data, data, size); 858 btf->raw_size = size; 859 860 btf->hdr = btf->raw_data; 861 err = btf_parse_hdr(btf); 862 if (err) 863 goto done; 864 865 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 866 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 867 868 err = btf_parse_str_sec(btf); 869 err = err ?: btf_parse_type_sec(btf); 870 if (err) 871 goto done; 872 873 done: 874 if (err) { 875 btf__free(btf); 876 return ERR_PTR(err); 877 } 878 879 return btf; 880 } 881 882 struct btf *btf__new(const void *data, __u32 size) 883 { 884 return libbpf_ptr(btf_new(data, size, NULL)); 885 } 886 887 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 888 struct btf_ext **btf_ext) 889 { 890 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 891 int err = 0, fd = -1, idx = 0; 892 struct btf *btf = NULL; 893 Elf_Scn *scn = NULL; 894 Elf *elf = NULL; 895 GElf_Ehdr ehdr; 896 size_t shstrndx; 897 898 if (elf_version(EV_CURRENT) == EV_NONE) { 899 pr_warn("failed to init libelf for %s\n", path); 900 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 901 } 902 903 fd = open(path, O_RDONLY | O_CLOEXEC); 904 if (fd < 0) { 905 err = -errno; 906 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 907 return ERR_PTR(err); 908 } 909 910 err = -LIBBPF_ERRNO__FORMAT; 911 912 elf = elf_begin(fd, ELF_C_READ, NULL); 913 if (!elf) { 914 pr_warn("failed to open %s as ELF file\n", path); 915 goto done; 916 } 917 if (!gelf_getehdr(elf, &ehdr)) { 918 pr_warn("failed to get EHDR from %s\n", path); 919 goto done; 920 } 921 922 if (elf_getshdrstrndx(elf, &shstrndx)) { 923 pr_warn("failed to get section names section index for %s\n", 924 path); 925 goto done; 926 } 927 928 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 929 pr_warn("failed to get e_shstrndx from %s\n", path); 930 goto done; 931 } 932 933 while ((scn = elf_nextscn(elf, scn)) != NULL) { 934 GElf_Shdr sh; 935 char *name; 936 937 idx++; 938 if (gelf_getshdr(scn, &sh) != &sh) { 939 pr_warn("failed to get section(%d) header from %s\n", 940 idx, path); 941 goto done; 942 } 943 name = elf_strptr(elf, shstrndx, sh.sh_name); 944 if (!name) { 945 pr_warn("failed to get section(%d) name from %s\n", 946 idx, path); 947 goto done; 948 } 949 if (strcmp(name, BTF_ELF_SEC) == 0) { 950 btf_data = elf_getdata(scn, 0); 951 if (!btf_data) { 952 pr_warn("failed to get section(%d, %s) data from %s\n", 953 idx, name, path); 954 goto done; 955 } 956 continue; 957 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 958 btf_ext_data = elf_getdata(scn, 0); 959 if (!btf_ext_data) { 960 pr_warn("failed to get section(%d, %s) data from %s\n", 961 idx, name, path); 962 goto done; 963 } 964 continue; 965 } 966 } 967 968 err = 0; 969 970 if (!btf_data) { 971 err = -ENOENT; 972 goto done; 973 } 974 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 975 err = libbpf_get_error(btf); 976 if (err) 977 goto done; 978 979 switch (gelf_getclass(elf)) { 980 case ELFCLASS32: 981 btf__set_pointer_size(btf, 4); 982 break; 983 case ELFCLASS64: 984 btf__set_pointer_size(btf, 8); 985 break; 986 default: 987 pr_warn("failed to get ELF class (bitness) for %s\n", path); 988 break; 989 } 990 991 if (btf_ext && btf_ext_data) { 992 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 993 err = libbpf_get_error(*btf_ext); 994 if (err) 995 goto done; 996 } else if (btf_ext) { 997 *btf_ext = NULL; 998 } 999 done: 1000 if (elf) 1001 elf_end(elf); 1002 close(fd); 1003 1004 if (!err) 1005 return btf; 1006 1007 if (btf_ext) 1008 btf_ext__free(*btf_ext); 1009 btf__free(btf); 1010 1011 return ERR_PTR(err); 1012 } 1013 1014 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1015 { 1016 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1017 } 1018 1019 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1020 { 1021 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1022 } 1023 1024 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1025 { 1026 struct btf *btf = NULL; 1027 void *data = NULL; 1028 FILE *f = NULL; 1029 __u16 magic; 1030 int err = 0; 1031 long sz; 1032 1033 f = fopen(path, "rb"); 1034 if (!f) { 1035 err = -errno; 1036 goto err_out; 1037 } 1038 1039 /* check BTF magic */ 1040 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1041 err = -EIO; 1042 goto err_out; 1043 } 1044 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1045 /* definitely not a raw BTF */ 1046 err = -EPROTO; 1047 goto err_out; 1048 } 1049 1050 /* get file size */ 1051 if (fseek(f, 0, SEEK_END)) { 1052 err = -errno; 1053 goto err_out; 1054 } 1055 sz = ftell(f); 1056 if (sz < 0) { 1057 err = -errno; 1058 goto err_out; 1059 } 1060 /* rewind to the start */ 1061 if (fseek(f, 0, SEEK_SET)) { 1062 err = -errno; 1063 goto err_out; 1064 } 1065 1066 /* pre-alloc memory and read all of BTF data */ 1067 data = malloc(sz); 1068 if (!data) { 1069 err = -ENOMEM; 1070 goto err_out; 1071 } 1072 if (fread(data, 1, sz, f) < sz) { 1073 err = -EIO; 1074 goto err_out; 1075 } 1076 1077 /* finally parse BTF data */ 1078 btf = btf_new(data, sz, base_btf); 1079 1080 err_out: 1081 free(data); 1082 if (f) 1083 fclose(f); 1084 return err ? ERR_PTR(err) : btf; 1085 } 1086 1087 struct btf *btf__parse_raw(const char *path) 1088 { 1089 return libbpf_ptr(btf_parse_raw(path, NULL)); 1090 } 1091 1092 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1093 { 1094 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1095 } 1096 1097 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1098 { 1099 struct btf *btf; 1100 int err; 1101 1102 if (btf_ext) 1103 *btf_ext = NULL; 1104 1105 btf = btf_parse_raw(path, base_btf); 1106 err = libbpf_get_error(btf); 1107 if (!err) 1108 return btf; 1109 if (err != -EPROTO) 1110 return ERR_PTR(err); 1111 return btf_parse_elf(path, base_btf, btf_ext); 1112 } 1113 1114 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1115 { 1116 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1117 } 1118 1119 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1120 { 1121 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1122 } 1123 1124 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1125 1126 int btf__load_into_kernel(struct btf *btf) 1127 { 1128 __u32 log_buf_size = 0, raw_size; 1129 char *log_buf = NULL; 1130 void *raw_data; 1131 int err = 0; 1132 1133 if (btf->fd >= 0) 1134 return libbpf_err(-EEXIST); 1135 1136 retry_load: 1137 if (log_buf_size) { 1138 log_buf = malloc(log_buf_size); 1139 if (!log_buf) 1140 return libbpf_err(-ENOMEM); 1141 1142 *log_buf = 0; 1143 } 1144 1145 raw_data = btf_get_raw_data(btf, &raw_size, false); 1146 if (!raw_data) { 1147 err = -ENOMEM; 1148 goto done; 1149 } 1150 /* cache native raw data representation */ 1151 btf->raw_size = raw_size; 1152 btf->raw_data = raw_data; 1153 1154 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1155 if (btf->fd < 0) { 1156 if (!log_buf || errno == ENOSPC) { 1157 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1158 log_buf_size << 1); 1159 free(log_buf); 1160 goto retry_load; 1161 } 1162 1163 err = -errno; 1164 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1165 if (*log_buf) 1166 pr_warn("%s\n", log_buf); 1167 goto done; 1168 } 1169 1170 done: 1171 free(log_buf); 1172 return libbpf_err(err); 1173 } 1174 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel"))); 1175 1176 int btf__fd(const struct btf *btf) 1177 { 1178 return btf->fd; 1179 } 1180 1181 void btf__set_fd(struct btf *btf, int fd) 1182 { 1183 btf->fd = fd; 1184 } 1185 1186 static const void *btf_strs_data(const struct btf *btf) 1187 { 1188 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1189 } 1190 1191 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1192 { 1193 struct btf_header *hdr = btf->hdr; 1194 struct btf_type *t; 1195 void *data, *p; 1196 __u32 data_sz; 1197 int i; 1198 1199 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1200 if (data) { 1201 *size = btf->raw_size; 1202 return data; 1203 } 1204 1205 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1206 data = calloc(1, data_sz); 1207 if (!data) 1208 return NULL; 1209 p = data; 1210 1211 memcpy(p, hdr, hdr->hdr_len); 1212 if (swap_endian) 1213 btf_bswap_hdr(p); 1214 p += hdr->hdr_len; 1215 1216 memcpy(p, btf->types_data, hdr->type_len); 1217 if (swap_endian) { 1218 for (i = 0; i < btf->nr_types; i++) { 1219 t = p + btf->type_offs[i]; 1220 /* btf_bswap_type_rest() relies on native t->info, so 1221 * we swap base type info after we swapped all the 1222 * additional information 1223 */ 1224 if (btf_bswap_type_rest(t)) 1225 goto err_out; 1226 btf_bswap_type_base(t); 1227 } 1228 } 1229 p += hdr->type_len; 1230 1231 memcpy(p, btf_strs_data(btf), hdr->str_len); 1232 p += hdr->str_len; 1233 1234 *size = data_sz; 1235 return data; 1236 err_out: 1237 free(data); 1238 return NULL; 1239 } 1240 1241 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1242 { 1243 struct btf *btf = (struct btf *)btf_ro; 1244 __u32 data_sz; 1245 void *data; 1246 1247 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1248 if (!data) 1249 return errno = ENOMEM, NULL; 1250 1251 btf->raw_size = data_sz; 1252 if (btf->swapped_endian) 1253 btf->raw_data_swapped = data; 1254 else 1255 btf->raw_data = data; 1256 *size = data_sz; 1257 return data; 1258 } 1259 1260 __attribute__((alias("btf__raw_data"))) 1261 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1262 1263 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1264 { 1265 if (offset < btf->start_str_off) 1266 return btf__str_by_offset(btf->base_btf, offset); 1267 else if (offset - btf->start_str_off < btf->hdr->str_len) 1268 return btf_strs_data(btf) + (offset - btf->start_str_off); 1269 else 1270 return errno = EINVAL, NULL; 1271 } 1272 1273 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1274 { 1275 return btf__str_by_offset(btf, offset); 1276 } 1277 1278 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1279 { 1280 struct bpf_btf_info btf_info; 1281 __u32 len = sizeof(btf_info); 1282 __u32 last_size; 1283 struct btf *btf; 1284 void *ptr; 1285 int err; 1286 1287 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1288 * let's start with a sane default - 4KiB here - and resize it only if 1289 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1290 */ 1291 last_size = 4096; 1292 ptr = malloc(last_size); 1293 if (!ptr) 1294 return ERR_PTR(-ENOMEM); 1295 1296 memset(&btf_info, 0, sizeof(btf_info)); 1297 btf_info.btf = ptr_to_u64(ptr); 1298 btf_info.btf_size = last_size; 1299 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1300 1301 if (!err && btf_info.btf_size > last_size) { 1302 void *temp_ptr; 1303 1304 last_size = btf_info.btf_size; 1305 temp_ptr = realloc(ptr, last_size); 1306 if (!temp_ptr) { 1307 btf = ERR_PTR(-ENOMEM); 1308 goto exit_free; 1309 } 1310 ptr = temp_ptr; 1311 1312 len = sizeof(btf_info); 1313 memset(&btf_info, 0, sizeof(btf_info)); 1314 btf_info.btf = ptr_to_u64(ptr); 1315 btf_info.btf_size = last_size; 1316 1317 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1318 } 1319 1320 if (err || btf_info.btf_size > last_size) { 1321 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1322 goto exit_free; 1323 } 1324 1325 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1326 1327 exit_free: 1328 free(ptr); 1329 return btf; 1330 } 1331 1332 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1333 { 1334 struct btf *btf; 1335 int btf_fd; 1336 1337 btf_fd = bpf_btf_get_fd_by_id(id); 1338 if (btf_fd < 0) 1339 return libbpf_err_ptr(-errno); 1340 1341 btf = btf_get_from_fd(btf_fd, base_btf); 1342 close(btf_fd); 1343 1344 return libbpf_ptr(btf); 1345 } 1346 1347 struct btf *btf__load_from_kernel_by_id(__u32 id) 1348 { 1349 return btf__load_from_kernel_by_id_split(id, NULL); 1350 } 1351 1352 int btf__get_from_id(__u32 id, struct btf **btf) 1353 { 1354 struct btf *res; 1355 int err; 1356 1357 *btf = NULL; 1358 res = btf__load_from_kernel_by_id(id); 1359 err = libbpf_get_error(res); 1360 1361 if (err) 1362 return libbpf_err(err); 1363 1364 *btf = res; 1365 return 0; 1366 } 1367 1368 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1369 __u32 expected_key_size, __u32 expected_value_size, 1370 __u32 *key_type_id, __u32 *value_type_id) 1371 { 1372 const struct btf_type *container_type; 1373 const struct btf_member *key, *value; 1374 const size_t max_name = 256; 1375 char container_name[max_name]; 1376 __s64 key_size, value_size; 1377 __s32 container_id; 1378 1379 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { 1380 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1381 map_name, map_name); 1382 return libbpf_err(-EINVAL); 1383 } 1384 1385 container_id = btf__find_by_name(btf, container_name); 1386 if (container_id < 0) { 1387 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1388 map_name, container_name); 1389 return libbpf_err(container_id); 1390 } 1391 1392 container_type = btf__type_by_id(btf, container_id); 1393 if (!container_type) { 1394 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1395 map_name, container_id); 1396 return libbpf_err(-EINVAL); 1397 } 1398 1399 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1400 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1401 map_name, container_name); 1402 return libbpf_err(-EINVAL); 1403 } 1404 1405 key = btf_members(container_type); 1406 value = key + 1; 1407 1408 key_size = btf__resolve_size(btf, key->type); 1409 if (key_size < 0) { 1410 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1411 return libbpf_err(key_size); 1412 } 1413 1414 if (expected_key_size != key_size) { 1415 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1416 map_name, (__u32)key_size, expected_key_size); 1417 return libbpf_err(-EINVAL); 1418 } 1419 1420 value_size = btf__resolve_size(btf, value->type); 1421 if (value_size < 0) { 1422 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1423 return libbpf_err(value_size); 1424 } 1425 1426 if (expected_value_size != value_size) { 1427 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1428 map_name, (__u32)value_size, expected_value_size); 1429 return libbpf_err(-EINVAL); 1430 } 1431 1432 *key_type_id = key->type; 1433 *value_type_id = value->type; 1434 1435 return 0; 1436 } 1437 1438 static void btf_invalidate_raw_data(struct btf *btf) 1439 { 1440 if (btf->raw_data) { 1441 free(btf->raw_data); 1442 btf->raw_data = NULL; 1443 } 1444 if (btf->raw_data_swapped) { 1445 free(btf->raw_data_swapped); 1446 btf->raw_data_swapped = NULL; 1447 } 1448 } 1449 1450 /* Ensure BTF is ready to be modified (by splitting into a three memory 1451 * regions for header, types, and strings). Also invalidate cached 1452 * raw_data, if any. 1453 */ 1454 static int btf_ensure_modifiable(struct btf *btf) 1455 { 1456 void *hdr, *types; 1457 struct strset *set = NULL; 1458 int err = -ENOMEM; 1459 1460 if (btf_is_modifiable(btf)) { 1461 /* any BTF modification invalidates raw_data */ 1462 btf_invalidate_raw_data(btf); 1463 return 0; 1464 } 1465 1466 /* split raw data into three memory regions */ 1467 hdr = malloc(btf->hdr->hdr_len); 1468 types = malloc(btf->hdr->type_len); 1469 if (!hdr || !types) 1470 goto err_out; 1471 1472 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1473 memcpy(types, btf->types_data, btf->hdr->type_len); 1474 1475 /* build lookup index for all strings */ 1476 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1477 if (IS_ERR(set)) { 1478 err = PTR_ERR(set); 1479 goto err_out; 1480 } 1481 1482 /* only when everything was successful, update internal state */ 1483 btf->hdr = hdr; 1484 btf->types_data = types; 1485 btf->types_data_cap = btf->hdr->type_len; 1486 btf->strs_data = NULL; 1487 btf->strs_set = set; 1488 /* if BTF was created from scratch, all strings are guaranteed to be 1489 * unique and deduplicated 1490 */ 1491 if (btf->hdr->str_len == 0) 1492 btf->strs_deduped = true; 1493 if (!btf->base_btf && btf->hdr->str_len == 1) 1494 btf->strs_deduped = true; 1495 1496 /* invalidate raw_data representation */ 1497 btf_invalidate_raw_data(btf); 1498 1499 return 0; 1500 1501 err_out: 1502 strset__free(set); 1503 free(hdr); 1504 free(types); 1505 return err; 1506 } 1507 1508 /* Find an offset in BTF string section that corresponds to a given string *s*. 1509 * Returns: 1510 * - >0 offset into string section, if string is found; 1511 * - -ENOENT, if string is not in the string section; 1512 * - <0, on any other error. 1513 */ 1514 int btf__find_str(struct btf *btf, const char *s) 1515 { 1516 int off; 1517 1518 if (btf->base_btf) { 1519 off = btf__find_str(btf->base_btf, s); 1520 if (off != -ENOENT) 1521 return off; 1522 } 1523 1524 /* BTF needs to be in a modifiable state to build string lookup index */ 1525 if (btf_ensure_modifiable(btf)) 1526 return libbpf_err(-ENOMEM); 1527 1528 off = strset__find_str(btf->strs_set, s); 1529 if (off < 0) 1530 return libbpf_err(off); 1531 1532 return btf->start_str_off + off; 1533 } 1534 1535 /* Add a string s to the BTF string section. 1536 * Returns: 1537 * - > 0 offset into string section, on success; 1538 * - < 0, on error. 1539 */ 1540 int btf__add_str(struct btf *btf, const char *s) 1541 { 1542 int off; 1543 1544 if (btf->base_btf) { 1545 off = btf__find_str(btf->base_btf, s); 1546 if (off != -ENOENT) 1547 return off; 1548 } 1549 1550 if (btf_ensure_modifiable(btf)) 1551 return libbpf_err(-ENOMEM); 1552 1553 off = strset__add_str(btf->strs_set, s); 1554 if (off < 0) 1555 return libbpf_err(off); 1556 1557 btf->hdr->str_len = strset__data_size(btf->strs_set); 1558 1559 return btf->start_str_off + off; 1560 } 1561 1562 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1563 { 1564 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1565 btf->hdr->type_len, UINT_MAX, add_sz); 1566 } 1567 1568 static void btf_type_inc_vlen(struct btf_type *t) 1569 { 1570 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1571 } 1572 1573 static int btf_commit_type(struct btf *btf, int data_sz) 1574 { 1575 int err; 1576 1577 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1578 if (err) 1579 return libbpf_err(err); 1580 1581 btf->hdr->type_len += data_sz; 1582 btf->hdr->str_off += data_sz; 1583 btf->nr_types++; 1584 return btf->start_id + btf->nr_types - 1; 1585 } 1586 1587 struct btf_pipe { 1588 const struct btf *src; 1589 struct btf *dst; 1590 }; 1591 1592 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1593 { 1594 struct btf_pipe *p = ctx; 1595 int off; 1596 1597 if (!*str_off) /* nothing to do for empty strings */ 1598 return 0; 1599 1600 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1601 if (off < 0) 1602 return off; 1603 1604 *str_off = off; 1605 return 0; 1606 } 1607 1608 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1609 { 1610 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1611 struct btf_type *t; 1612 int sz, err; 1613 1614 sz = btf_type_size(src_type); 1615 if (sz < 0) 1616 return libbpf_err(sz); 1617 1618 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1619 if (btf_ensure_modifiable(btf)) 1620 return libbpf_err(-ENOMEM); 1621 1622 t = btf_add_type_mem(btf, sz); 1623 if (!t) 1624 return libbpf_err(-ENOMEM); 1625 1626 memcpy(t, src_type, sz); 1627 1628 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1629 if (err) 1630 return libbpf_err(err); 1631 1632 return btf_commit_type(btf, sz); 1633 } 1634 1635 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1636 { 1637 struct btf *btf = ctx; 1638 1639 if (!*type_id) /* nothing to do for VOID references */ 1640 return 0; 1641 1642 /* we haven't updated btf's type count yet, so 1643 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1644 * add to all newly added BTF types 1645 */ 1646 *type_id += btf->start_id + btf->nr_types - 1; 1647 return 0; 1648 } 1649 1650 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1651 { 1652 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1653 int data_sz, sz, cnt, i, err, old_strs_len; 1654 __u32 *off; 1655 void *t; 1656 1657 /* appending split BTF isn't supported yet */ 1658 if (src_btf->base_btf) 1659 return libbpf_err(-ENOTSUP); 1660 1661 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1662 if (btf_ensure_modifiable(btf)) 1663 return libbpf_err(-ENOMEM); 1664 1665 /* remember original strings section size if we have to roll back 1666 * partial strings section changes 1667 */ 1668 old_strs_len = btf->hdr->str_len; 1669 1670 data_sz = src_btf->hdr->type_len; 1671 cnt = btf__type_cnt(src_btf) - 1; 1672 1673 /* pre-allocate enough memory for new types */ 1674 t = btf_add_type_mem(btf, data_sz); 1675 if (!t) 1676 return libbpf_err(-ENOMEM); 1677 1678 /* pre-allocate enough memory for type offset index for new types */ 1679 off = btf_add_type_offs_mem(btf, cnt); 1680 if (!off) 1681 return libbpf_err(-ENOMEM); 1682 1683 /* bulk copy types data for all types from src_btf */ 1684 memcpy(t, src_btf->types_data, data_sz); 1685 1686 for (i = 0; i < cnt; i++) { 1687 sz = btf_type_size(t); 1688 if (sz < 0) { 1689 /* unlikely, has to be corrupted src_btf */ 1690 err = sz; 1691 goto err_out; 1692 } 1693 1694 /* fill out type ID to type offset mapping for lookups by type ID */ 1695 *off = t - btf->types_data; 1696 1697 /* add, dedup, and remap strings referenced by this BTF type */ 1698 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1699 if (err) 1700 goto err_out; 1701 1702 /* remap all type IDs referenced from this BTF type */ 1703 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1704 if (err) 1705 goto err_out; 1706 1707 /* go to next type data and type offset index entry */ 1708 t += sz; 1709 off++; 1710 } 1711 1712 /* Up until now any of the copied type data was effectively invisible, 1713 * so if we exited early before this point due to error, BTF would be 1714 * effectively unmodified. There would be extra internal memory 1715 * pre-allocated, but it would not be available for querying. But now 1716 * that we've copied and rewritten all the data successfully, we can 1717 * update type count and various internal offsets and sizes to 1718 * "commit" the changes and made them visible to the outside world. 1719 */ 1720 btf->hdr->type_len += data_sz; 1721 btf->hdr->str_off += data_sz; 1722 btf->nr_types += cnt; 1723 1724 /* return type ID of the first added BTF type */ 1725 return btf->start_id + btf->nr_types - cnt; 1726 err_out: 1727 /* zero out preallocated memory as if it was just allocated with 1728 * libbpf_add_mem() 1729 */ 1730 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1731 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1732 1733 /* and now restore original strings section size; types data size 1734 * wasn't modified, so doesn't need restoring, see big comment above */ 1735 btf->hdr->str_len = old_strs_len; 1736 1737 return libbpf_err(err); 1738 } 1739 1740 /* 1741 * Append new BTF_KIND_INT type with: 1742 * - *name* - non-empty, non-NULL type name; 1743 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1744 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1745 * Returns: 1746 * - >0, type ID of newly added BTF type; 1747 * - <0, on error. 1748 */ 1749 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1750 { 1751 struct btf_type *t; 1752 int sz, name_off; 1753 1754 /* non-empty name */ 1755 if (!name || !name[0]) 1756 return libbpf_err(-EINVAL); 1757 /* byte_sz must be power of 2 */ 1758 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1759 return libbpf_err(-EINVAL); 1760 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1761 return libbpf_err(-EINVAL); 1762 1763 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1764 if (btf_ensure_modifiable(btf)) 1765 return libbpf_err(-ENOMEM); 1766 1767 sz = sizeof(struct btf_type) + sizeof(int); 1768 t = btf_add_type_mem(btf, sz); 1769 if (!t) 1770 return libbpf_err(-ENOMEM); 1771 1772 /* if something goes wrong later, we might end up with an extra string, 1773 * but that shouldn't be a problem, because BTF can't be constructed 1774 * completely anyway and will most probably be just discarded 1775 */ 1776 name_off = btf__add_str(btf, name); 1777 if (name_off < 0) 1778 return name_off; 1779 1780 t->name_off = name_off; 1781 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1782 t->size = byte_sz; 1783 /* set INT info, we don't allow setting legacy bit offset/size */ 1784 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1785 1786 return btf_commit_type(btf, sz); 1787 } 1788 1789 /* 1790 * Append new BTF_KIND_FLOAT type with: 1791 * - *name* - non-empty, non-NULL type name; 1792 * - *sz* - size of the type, in bytes; 1793 * Returns: 1794 * - >0, type ID of newly added BTF type; 1795 * - <0, on error. 1796 */ 1797 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1798 { 1799 struct btf_type *t; 1800 int sz, name_off; 1801 1802 /* non-empty name */ 1803 if (!name || !name[0]) 1804 return libbpf_err(-EINVAL); 1805 1806 /* byte_sz must be one of the explicitly allowed values */ 1807 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1808 byte_sz != 16) 1809 return libbpf_err(-EINVAL); 1810 1811 if (btf_ensure_modifiable(btf)) 1812 return libbpf_err(-ENOMEM); 1813 1814 sz = sizeof(struct btf_type); 1815 t = btf_add_type_mem(btf, sz); 1816 if (!t) 1817 return libbpf_err(-ENOMEM); 1818 1819 name_off = btf__add_str(btf, name); 1820 if (name_off < 0) 1821 return name_off; 1822 1823 t->name_off = name_off; 1824 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1825 t->size = byte_sz; 1826 1827 return btf_commit_type(btf, sz); 1828 } 1829 1830 /* it's completely legal to append BTF types with type IDs pointing forward to 1831 * types that haven't been appended yet, so we only make sure that id looks 1832 * sane, we can't guarantee that ID will always be valid 1833 */ 1834 static int validate_type_id(int id) 1835 { 1836 if (id < 0 || id > BTF_MAX_NR_TYPES) 1837 return -EINVAL; 1838 return 0; 1839 } 1840 1841 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1842 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1843 { 1844 struct btf_type *t; 1845 int sz, name_off = 0; 1846 1847 if (validate_type_id(ref_type_id)) 1848 return libbpf_err(-EINVAL); 1849 1850 if (btf_ensure_modifiable(btf)) 1851 return libbpf_err(-ENOMEM); 1852 1853 sz = sizeof(struct btf_type); 1854 t = btf_add_type_mem(btf, sz); 1855 if (!t) 1856 return libbpf_err(-ENOMEM); 1857 1858 if (name && name[0]) { 1859 name_off = btf__add_str(btf, name); 1860 if (name_off < 0) 1861 return name_off; 1862 } 1863 1864 t->name_off = name_off; 1865 t->info = btf_type_info(kind, 0, 0); 1866 t->type = ref_type_id; 1867 1868 return btf_commit_type(btf, sz); 1869 } 1870 1871 /* 1872 * Append new BTF_KIND_PTR type with: 1873 * - *ref_type_id* - referenced type ID, it might not exist yet; 1874 * Returns: 1875 * - >0, type ID of newly added BTF type; 1876 * - <0, on error. 1877 */ 1878 int btf__add_ptr(struct btf *btf, int ref_type_id) 1879 { 1880 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1881 } 1882 1883 /* 1884 * Append new BTF_KIND_ARRAY type with: 1885 * - *index_type_id* - type ID of the type describing array index; 1886 * - *elem_type_id* - type ID of the type describing array element; 1887 * - *nr_elems* - the size of the array; 1888 * Returns: 1889 * - >0, type ID of newly added BTF type; 1890 * - <0, on error. 1891 */ 1892 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1893 { 1894 struct btf_type *t; 1895 struct btf_array *a; 1896 int sz; 1897 1898 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1899 return libbpf_err(-EINVAL); 1900 1901 if (btf_ensure_modifiable(btf)) 1902 return libbpf_err(-ENOMEM); 1903 1904 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1905 t = btf_add_type_mem(btf, sz); 1906 if (!t) 1907 return libbpf_err(-ENOMEM); 1908 1909 t->name_off = 0; 1910 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1911 t->size = 0; 1912 1913 a = btf_array(t); 1914 a->type = elem_type_id; 1915 a->index_type = index_type_id; 1916 a->nelems = nr_elems; 1917 1918 return btf_commit_type(btf, sz); 1919 } 1920 1921 /* generic STRUCT/UNION append function */ 1922 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1923 { 1924 struct btf_type *t; 1925 int sz, name_off = 0; 1926 1927 if (btf_ensure_modifiable(btf)) 1928 return libbpf_err(-ENOMEM); 1929 1930 sz = sizeof(struct btf_type); 1931 t = btf_add_type_mem(btf, sz); 1932 if (!t) 1933 return libbpf_err(-ENOMEM); 1934 1935 if (name && name[0]) { 1936 name_off = btf__add_str(btf, name); 1937 if (name_off < 0) 1938 return name_off; 1939 } 1940 1941 /* start out with vlen=0 and no kflag; this will be adjusted when 1942 * adding each member 1943 */ 1944 t->name_off = name_off; 1945 t->info = btf_type_info(kind, 0, 0); 1946 t->size = bytes_sz; 1947 1948 return btf_commit_type(btf, sz); 1949 } 1950 1951 /* 1952 * Append new BTF_KIND_STRUCT type with: 1953 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1954 * - *byte_sz* - size of the struct, in bytes; 1955 * 1956 * Struct initially has no fields in it. Fields can be added by 1957 * btf__add_field() right after btf__add_struct() succeeds. 1958 * 1959 * Returns: 1960 * - >0, type ID of newly added BTF type; 1961 * - <0, on error. 1962 */ 1963 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1964 { 1965 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1966 } 1967 1968 /* 1969 * Append new BTF_KIND_UNION type with: 1970 * - *name* - name of the union, can be NULL or empty for anonymous union; 1971 * - *byte_sz* - size of the union, in bytes; 1972 * 1973 * Union initially has no fields in it. Fields can be added by 1974 * btf__add_field() right after btf__add_union() succeeds. All fields 1975 * should have *bit_offset* of 0. 1976 * 1977 * Returns: 1978 * - >0, type ID of newly added BTF type; 1979 * - <0, on error. 1980 */ 1981 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1982 { 1983 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1984 } 1985 1986 static struct btf_type *btf_last_type(struct btf *btf) 1987 { 1988 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 1989 } 1990 1991 /* 1992 * Append new field for the current STRUCT/UNION type with: 1993 * - *name* - name of the field, can be NULL or empty for anonymous field; 1994 * - *type_id* - type ID for the type describing field type; 1995 * - *bit_offset* - bit offset of the start of the field within struct/union; 1996 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1997 * Returns: 1998 * - 0, on success; 1999 * - <0, on error. 2000 */ 2001 int btf__add_field(struct btf *btf, const char *name, int type_id, 2002 __u32 bit_offset, __u32 bit_size) 2003 { 2004 struct btf_type *t; 2005 struct btf_member *m; 2006 bool is_bitfield; 2007 int sz, name_off = 0; 2008 2009 /* last type should be union/struct */ 2010 if (btf->nr_types == 0) 2011 return libbpf_err(-EINVAL); 2012 t = btf_last_type(btf); 2013 if (!btf_is_composite(t)) 2014 return libbpf_err(-EINVAL); 2015 2016 if (validate_type_id(type_id)) 2017 return libbpf_err(-EINVAL); 2018 /* best-effort bit field offset/size enforcement */ 2019 is_bitfield = bit_size || (bit_offset % 8 != 0); 2020 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2021 return libbpf_err(-EINVAL); 2022 2023 /* only offset 0 is allowed for unions */ 2024 if (btf_is_union(t) && bit_offset) 2025 return libbpf_err(-EINVAL); 2026 2027 /* decompose and invalidate raw data */ 2028 if (btf_ensure_modifiable(btf)) 2029 return libbpf_err(-ENOMEM); 2030 2031 sz = sizeof(struct btf_member); 2032 m = btf_add_type_mem(btf, sz); 2033 if (!m) 2034 return libbpf_err(-ENOMEM); 2035 2036 if (name && name[0]) { 2037 name_off = btf__add_str(btf, name); 2038 if (name_off < 0) 2039 return name_off; 2040 } 2041 2042 m->name_off = name_off; 2043 m->type = type_id; 2044 m->offset = bit_offset | (bit_size << 24); 2045 2046 /* btf_add_type_mem can invalidate t pointer */ 2047 t = btf_last_type(btf); 2048 /* update parent type's vlen and kflag */ 2049 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2050 2051 btf->hdr->type_len += sz; 2052 btf->hdr->str_off += sz; 2053 return 0; 2054 } 2055 2056 /* 2057 * Append new BTF_KIND_ENUM type with: 2058 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2059 * - *byte_sz* - size of the enum, in bytes. 2060 * 2061 * Enum initially has no enum values in it (and corresponds to enum forward 2062 * declaration). Enumerator values can be added by btf__add_enum_value() 2063 * immediately after btf__add_enum() succeeds. 2064 * 2065 * Returns: 2066 * - >0, type ID of newly added BTF type; 2067 * - <0, on error. 2068 */ 2069 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2070 { 2071 struct btf_type *t; 2072 int sz, name_off = 0; 2073 2074 /* byte_sz must be power of 2 */ 2075 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2076 return libbpf_err(-EINVAL); 2077 2078 if (btf_ensure_modifiable(btf)) 2079 return libbpf_err(-ENOMEM); 2080 2081 sz = sizeof(struct btf_type); 2082 t = btf_add_type_mem(btf, sz); 2083 if (!t) 2084 return libbpf_err(-ENOMEM); 2085 2086 if (name && name[0]) { 2087 name_off = btf__add_str(btf, name); 2088 if (name_off < 0) 2089 return name_off; 2090 } 2091 2092 /* start out with vlen=0; it will be adjusted when adding enum values */ 2093 t->name_off = name_off; 2094 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2095 t->size = byte_sz; 2096 2097 return btf_commit_type(btf, sz); 2098 } 2099 2100 /* 2101 * Append new enum value for the current ENUM type with: 2102 * - *name* - name of the enumerator value, can't be NULL or empty; 2103 * - *value* - integer value corresponding to enum value *name*; 2104 * Returns: 2105 * - 0, on success; 2106 * - <0, on error. 2107 */ 2108 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2109 { 2110 struct btf_type *t; 2111 struct btf_enum *v; 2112 int sz, name_off; 2113 2114 /* last type should be BTF_KIND_ENUM */ 2115 if (btf->nr_types == 0) 2116 return libbpf_err(-EINVAL); 2117 t = btf_last_type(btf); 2118 if (!btf_is_enum(t)) 2119 return libbpf_err(-EINVAL); 2120 2121 /* non-empty name */ 2122 if (!name || !name[0]) 2123 return libbpf_err(-EINVAL); 2124 if (value < INT_MIN || value > UINT_MAX) 2125 return libbpf_err(-E2BIG); 2126 2127 /* decompose and invalidate raw data */ 2128 if (btf_ensure_modifiable(btf)) 2129 return libbpf_err(-ENOMEM); 2130 2131 sz = sizeof(struct btf_enum); 2132 v = btf_add_type_mem(btf, sz); 2133 if (!v) 2134 return libbpf_err(-ENOMEM); 2135 2136 name_off = btf__add_str(btf, name); 2137 if (name_off < 0) 2138 return name_off; 2139 2140 v->name_off = name_off; 2141 v->val = value; 2142 2143 /* update parent type's vlen */ 2144 t = btf_last_type(btf); 2145 btf_type_inc_vlen(t); 2146 2147 btf->hdr->type_len += sz; 2148 btf->hdr->str_off += sz; 2149 return 0; 2150 } 2151 2152 /* 2153 * Append new BTF_KIND_FWD type with: 2154 * - *name*, non-empty/non-NULL name; 2155 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2156 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2157 * Returns: 2158 * - >0, type ID of newly added BTF type; 2159 * - <0, on error. 2160 */ 2161 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2162 { 2163 if (!name || !name[0]) 2164 return libbpf_err(-EINVAL); 2165 2166 switch (fwd_kind) { 2167 case BTF_FWD_STRUCT: 2168 case BTF_FWD_UNION: { 2169 struct btf_type *t; 2170 int id; 2171 2172 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2173 if (id <= 0) 2174 return id; 2175 t = btf_type_by_id(btf, id); 2176 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2177 return id; 2178 } 2179 case BTF_FWD_ENUM: 2180 /* enum forward in BTF currently is just an enum with no enum 2181 * values; we also assume a standard 4-byte size for it 2182 */ 2183 return btf__add_enum(btf, name, sizeof(int)); 2184 default: 2185 return libbpf_err(-EINVAL); 2186 } 2187 } 2188 2189 /* 2190 * Append new BTF_KING_TYPEDEF type with: 2191 * - *name*, non-empty/non-NULL name; 2192 * - *ref_type_id* - referenced type ID, it might not exist yet; 2193 * Returns: 2194 * - >0, type ID of newly added BTF type; 2195 * - <0, on error. 2196 */ 2197 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2198 { 2199 if (!name || !name[0]) 2200 return libbpf_err(-EINVAL); 2201 2202 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2203 } 2204 2205 /* 2206 * Append new BTF_KIND_VOLATILE type with: 2207 * - *ref_type_id* - referenced type ID, it might not exist yet; 2208 * Returns: 2209 * - >0, type ID of newly added BTF type; 2210 * - <0, on error. 2211 */ 2212 int btf__add_volatile(struct btf *btf, int ref_type_id) 2213 { 2214 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2215 } 2216 2217 /* 2218 * Append new BTF_KIND_CONST type with: 2219 * - *ref_type_id* - referenced type ID, it might not exist yet; 2220 * Returns: 2221 * - >0, type ID of newly added BTF type; 2222 * - <0, on error. 2223 */ 2224 int btf__add_const(struct btf *btf, int ref_type_id) 2225 { 2226 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2227 } 2228 2229 /* 2230 * Append new BTF_KIND_RESTRICT type with: 2231 * - *ref_type_id* - referenced type ID, it might not exist yet; 2232 * Returns: 2233 * - >0, type ID of newly added BTF type; 2234 * - <0, on error. 2235 */ 2236 int btf__add_restrict(struct btf *btf, int ref_type_id) 2237 { 2238 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2239 } 2240 2241 /* 2242 * Append new BTF_KIND_TYPE_TAG type with: 2243 * - *value*, non-empty/non-NULL tag value; 2244 * - *ref_type_id* - referenced type ID, it might not exist yet; 2245 * Returns: 2246 * - >0, type ID of newly added BTF type; 2247 * - <0, on error. 2248 */ 2249 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2250 { 2251 if (!value|| !value[0]) 2252 return libbpf_err(-EINVAL); 2253 2254 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2255 } 2256 2257 /* 2258 * Append new BTF_KIND_FUNC type with: 2259 * - *name*, non-empty/non-NULL name; 2260 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2261 * Returns: 2262 * - >0, type ID of newly added BTF type; 2263 * - <0, on error. 2264 */ 2265 int btf__add_func(struct btf *btf, const char *name, 2266 enum btf_func_linkage linkage, int proto_type_id) 2267 { 2268 int id; 2269 2270 if (!name || !name[0]) 2271 return libbpf_err(-EINVAL); 2272 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2273 linkage != BTF_FUNC_EXTERN) 2274 return libbpf_err(-EINVAL); 2275 2276 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2277 if (id > 0) { 2278 struct btf_type *t = btf_type_by_id(btf, id); 2279 2280 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2281 } 2282 return libbpf_err(id); 2283 } 2284 2285 /* 2286 * Append new BTF_KIND_FUNC_PROTO with: 2287 * - *ret_type_id* - type ID for return result of a function. 2288 * 2289 * Function prototype initially has no arguments, but they can be added by 2290 * btf__add_func_param() one by one, immediately after 2291 * btf__add_func_proto() succeeded. 2292 * 2293 * Returns: 2294 * - >0, type ID of newly added BTF type; 2295 * - <0, on error. 2296 */ 2297 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2298 { 2299 struct btf_type *t; 2300 int sz; 2301 2302 if (validate_type_id(ret_type_id)) 2303 return libbpf_err(-EINVAL); 2304 2305 if (btf_ensure_modifiable(btf)) 2306 return libbpf_err(-ENOMEM); 2307 2308 sz = sizeof(struct btf_type); 2309 t = btf_add_type_mem(btf, sz); 2310 if (!t) 2311 return libbpf_err(-ENOMEM); 2312 2313 /* start out with vlen=0; this will be adjusted when adding enum 2314 * values, if necessary 2315 */ 2316 t->name_off = 0; 2317 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2318 t->type = ret_type_id; 2319 2320 return btf_commit_type(btf, sz); 2321 } 2322 2323 /* 2324 * Append new function parameter for current FUNC_PROTO type with: 2325 * - *name* - parameter name, can be NULL or empty; 2326 * - *type_id* - type ID describing the type of the parameter. 2327 * Returns: 2328 * - 0, on success; 2329 * - <0, on error. 2330 */ 2331 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2332 { 2333 struct btf_type *t; 2334 struct btf_param *p; 2335 int sz, name_off = 0; 2336 2337 if (validate_type_id(type_id)) 2338 return libbpf_err(-EINVAL); 2339 2340 /* last type should be BTF_KIND_FUNC_PROTO */ 2341 if (btf->nr_types == 0) 2342 return libbpf_err(-EINVAL); 2343 t = btf_last_type(btf); 2344 if (!btf_is_func_proto(t)) 2345 return libbpf_err(-EINVAL); 2346 2347 /* decompose and invalidate raw data */ 2348 if (btf_ensure_modifiable(btf)) 2349 return libbpf_err(-ENOMEM); 2350 2351 sz = sizeof(struct btf_param); 2352 p = btf_add_type_mem(btf, sz); 2353 if (!p) 2354 return libbpf_err(-ENOMEM); 2355 2356 if (name && name[0]) { 2357 name_off = btf__add_str(btf, name); 2358 if (name_off < 0) 2359 return name_off; 2360 } 2361 2362 p->name_off = name_off; 2363 p->type = type_id; 2364 2365 /* update parent type's vlen */ 2366 t = btf_last_type(btf); 2367 btf_type_inc_vlen(t); 2368 2369 btf->hdr->type_len += sz; 2370 btf->hdr->str_off += sz; 2371 return 0; 2372 } 2373 2374 /* 2375 * Append new BTF_KIND_VAR type with: 2376 * - *name* - non-empty/non-NULL name; 2377 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2378 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2379 * - *type_id* - type ID of the type describing the type of the variable. 2380 * Returns: 2381 * - >0, type ID of newly added BTF type; 2382 * - <0, on error. 2383 */ 2384 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2385 { 2386 struct btf_type *t; 2387 struct btf_var *v; 2388 int sz, name_off; 2389 2390 /* non-empty name */ 2391 if (!name || !name[0]) 2392 return libbpf_err(-EINVAL); 2393 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2394 linkage != BTF_VAR_GLOBAL_EXTERN) 2395 return libbpf_err(-EINVAL); 2396 if (validate_type_id(type_id)) 2397 return libbpf_err(-EINVAL); 2398 2399 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2400 if (btf_ensure_modifiable(btf)) 2401 return libbpf_err(-ENOMEM); 2402 2403 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2404 t = btf_add_type_mem(btf, sz); 2405 if (!t) 2406 return libbpf_err(-ENOMEM); 2407 2408 name_off = btf__add_str(btf, name); 2409 if (name_off < 0) 2410 return name_off; 2411 2412 t->name_off = name_off; 2413 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2414 t->type = type_id; 2415 2416 v = btf_var(t); 2417 v->linkage = linkage; 2418 2419 return btf_commit_type(btf, sz); 2420 } 2421 2422 /* 2423 * Append new BTF_KIND_DATASEC type with: 2424 * - *name* - non-empty/non-NULL name; 2425 * - *byte_sz* - data section size, in bytes. 2426 * 2427 * Data section is initially empty. Variables info can be added with 2428 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2429 * 2430 * Returns: 2431 * - >0, type ID of newly added BTF type; 2432 * - <0, on error. 2433 */ 2434 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2435 { 2436 struct btf_type *t; 2437 int sz, name_off; 2438 2439 /* non-empty name */ 2440 if (!name || !name[0]) 2441 return libbpf_err(-EINVAL); 2442 2443 if (btf_ensure_modifiable(btf)) 2444 return libbpf_err(-ENOMEM); 2445 2446 sz = sizeof(struct btf_type); 2447 t = btf_add_type_mem(btf, sz); 2448 if (!t) 2449 return libbpf_err(-ENOMEM); 2450 2451 name_off = btf__add_str(btf, name); 2452 if (name_off < 0) 2453 return name_off; 2454 2455 /* start with vlen=0, which will be update as var_secinfos are added */ 2456 t->name_off = name_off; 2457 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2458 t->size = byte_sz; 2459 2460 return btf_commit_type(btf, sz); 2461 } 2462 2463 /* 2464 * Append new data section variable information entry for current DATASEC type: 2465 * - *var_type_id* - type ID, describing type of the variable; 2466 * - *offset* - variable offset within data section, in bytes; 2467 * - *byte_sz* - variable size, in bytes. 2468 * 2469 * Returns: 2470 * - 0, on success; 2471 * - <0, on error. 2472 */ 2473 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2474 { 2475 struct btf_type *t; 2476 struct btf_var_secinfo *v; 2477 int sz; 2478 2479 /* last type should be BTF_KIND_DATASEC */ 2480 if (btf->nr_types == 0) 2481 return libbpf_err(-EINVAL); 2482 t = btf_last_type(btf); 2483 if (!btf_is_datasec(t)) 2484 return libbpf_err(-EINVAL); 2485 2486 if (validate_type_id(var_type_id)) 2487 return libbpf_err(-EINVAL); 2488 2489 /* decompose and invalidate raw data */ 2490 if (btf_ensure_modifiable(btf)) 2491 return libbpf_err(-ENOMEM); 2492 2493 sz = sizeof(struct btf_var_secinfo); 2494 v = btf_add_type_mem(btf, sz); 2495 if (!v) 2496 return libbpf_err(-ENOMEM); 2497 2498 v->type = var_type_id; 2499 v->offset = offset; 2500 v->size = byte_sz; 2501 2502 /* update parent type's vlen */ 2503 t = btf_last_type(btf); 2504 btf_type_inc_vlen(t); 2505 2506 btf->hdr->type_len += sz; 2507 btf->hdr->str_off += sz; 2508 return 0; 2509 } 2510 2511 /* 2512 * Append new BTF_KIND_DECL_TAG type with: 2513 * - *value* - non-empty/non-NULL string; 2514 * - *ref_type_id* - referenced type ID, it might not exist yet; 2515 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2516 * member or function argument index; 2517 * Returns: 2518 * - >0, type ID of newly added BTF type; 2519 * - <0, on error. 2520 */ 2521 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2522 int component_idx) 2523 { 2524 struct btf_type *t; 2525 int sz, value_off; 2526 2527 if (!value || !value[0] || component_idx < -1) 2528 return libbpf_err(-EINVAL); 2529 2530 if (validate_type_id(ref_type_id)) 2531 return libbpf_err(-EINVAL); 2532 2533 if (btf_ensure_modifiable(btf)) 2534 return libbpf_err(-ENOMEM); 2535 2536 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2537 t = btf_add_type_mem(btf, sz); 2538 if (!t) 2539 return libbpf_err(-ENOMEM); 2540 2541 value_off = btf__add_str(btf, value); 2542 if (value_off < 0) 2543 return value_off; 2544 2545 t->name_off = value_off; 2546 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2547 t->type = ref_type_id; 2548 btf_decl_tag(t)->component_idx = component_idx; 2549 2550 return btf_commit_type(btf, sz); 2551 } 2552 2553 struct btf_ext_sec_setup_param { 2554 __u32 off; 2555 __u32 len; 2556 __u32 min_rec_size; 2557 struct btf_ext_info *ext_info; 2558 const char *desc; 2559 }; 2560 2561 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2562 struct btf_ext_sec_setup_param *ext_sec) 2563 { 2564 const struct btf_ext_info_sec *sinfo; 2565 struct btf_ext_info *ext_info; 2566 __u32 info_left, record_size; 2567 /* The start of the info sec (including the __u32 record_size). */ 2568 void *info; 2569 2570 if (ext_sec->len == 0) 2571 return 0; 2572 2573 if (ext_sec->off & 0x03) { 2574 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2575 ext_sec->desc); 2576 return -EINVAL; 2577 } 2578 2579 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2580 info_left = ext_sec->len; 2581 2582 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2583 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2584 ext_sec->desc, ext_sec->off, ext_sec->len); 2585 return -EINVAL; 2586 } 2587 2588 /* At least a record size */ 2589 if (info_left < sizeof(__u32)) { 2590 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2591 return -EINVAL; 2592 } 2593 2594 /* The record size needs to meet the minimum standard */ 2595 record_size = *(__u32 *)info; 2596 if (record_size < ext_sec->min_rec_size || 2597 record_size & 0x03) { 2598 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2599 ext_sec->desc, record_size); 2600 return -EINVAL; 2601 } 2602 2603 sinfo = info + sizeof(__u32); 2604 info_left -= sizeof(__u32); 2605 2606 /* If no records, return failure now so .BTF.ext won't be used. */ 2607 if (!info_left) { 2608 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2609 return -EINVAL; 2610 } 2611 2612 while (info_left) { 2613 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2614 __u64 total_record_size; 2615 __u32 num_records; 2616 2617 if (info_left < sec_hdrlen) { 2618 pr_debug("%s section header is not found in .BTF.ext\n", 2619 ext_sec->desc); 2620 return -EINVAL; 2621 } 2622 2623 num_records = sinfo->num_info; 2624 if (num_records == 0) { 2625 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2626 ext_sec->desc); 2627 return -EINVAL; 2628 } 2629 2630 total_record_size = sec_hdrlen + 2631 (__u64)num_records * record_size; 2632 if (info_left < total_record_size) { 2633 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2634 ext_sec->desc); 2635 return -EINVAL; 2636 } 2637 2638 info_left -= total_record_size; 2639 sinfo = (void *)sinfo + total_record_size; 2640 } 2641 2642 ext_info = ext_sec->ext_info; 2643 ext_info->len = ext_sec->len - sizeof(__u32); 2644 ext_info->rec_size = record_size; 2645 ext_info->info = info + sizeof(__u32); 2646 2647 return 0; 2648 } 2649 2650 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2651 { 2652 struct btf_ext_sec_setup_param param = { 2653 .off = btf_ext->hdr->func_info_off, 2654 .len = btf_ext->hdr->func_info_len, 2655 .min_rec_size = sizeof(struct bpf_func_info_min), 2656 .ext_info = &btf_ext->func_info, 2657 .desc = "func_info" 2658 }; 2659 2660 return btf_ext_setup_info(btf_ext, ¶m); 2661 } 2662 2663 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2664 { 2665 struct btf_ext_sec_setup_param param = { 2666 .off = btf_ext->hdr->line_info_off, 2667 .len = btf_ext->hdr->line_info_len, 2668 .min_rec_size = sizeof(struct bpf_line_info_min), 2669 .ext_info = &btf_ext->line_info, 2670 .desc = "line_info", 2671 }; 2672 2673 return btf_ext_setup_info(btf_ext, ¶m); 2674 } 2675 2676 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2677 { 2678 struct btf_ext_sec_setup_param param = { 2679 .off = btf_ext->hdr->core_relo_off, 2680 .len = btf_ext->hdr->core_relo_len, 2681 .min_rec_size = sizeof(struct bpf_core_relo), 2682 .ext_info = &btf_ext->core_relo_info, 2683 .desc = "core_relo", 2684 }; 2685 2686 return btf_ext_setup_info(btf_ext, ¶m); 2687 } 2688 2689 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2690 { 2691 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2692 2693 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2694 data_size < hdr->hdr_len) { 2695 pr_debug("BTF.ext header not found"); 2696 return -EINVAL; 2697 } 2698 2699 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2700 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2701 return -ENOTSUP; 2702 } else if (hdr->magic != BTF_MAGIC) { 2703 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2704 return -EINVAL; 2705 } 2706 2707 if (hdr->version != BTF_VERSION) { 2708 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2709 return -ENOTSUP; 2710 } 2711 2712 if (hdr->flags) { 2713 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2714 return -ENOTSUP; 2715 } 2716 2717 if (data_size == hdr->hdr_len) { 2718 pr_debug("BTF.ext has no data\n"); 2719 return -EINVAL; 2720 } 2721 2722 return 0; 2723 } 2724 2725 void btf_ext__free(struct btf_ext *btf_ext) 2726 { 2727 if (IS_ERR_OR_NULL(btf_ext)) 2728 return; 2729 free(btf_ext->data); 2730 free(btf_ext); 2731 } 2732 2733 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2734 { 2735 struct btf_ext *btf_ext; 2736 int err; 2737 2738 err = btf_ext_parse_hdr(data, size); 2739 if (err) 2740 return libbpf_err_ptr(err); 2741 2742 btf_ext = calloc(1, sizeof(struct btf_ext)); 2743 if (!btf_ext) 2744 return libbpf_err_ptr(-ENOMEM); 2745 2746 btf_ext->data_size = size; 2747 btf_ext->data = malloc(size); 2748 if (!btf_ext->data) { 2749 err = -ENOMEM; 2750 goto done; 2751 } 2752 memcpy(btf_ext->data, data, size); 2753 2754 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2755 err = -EINVAL; 2756 goto done; 2757 } 2758 2759 err = btf_ext_setup_func_info(btf_ext); 2760 if (err) 2761 goto done; 2762 2763 err = btf_ext_setup_line_info(btf_ext); 2764 if (err) 2765 goto done; 2766 2767 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) { 2768 err = -EINVAL; 2769 goto done; 2770 } 2771 2772 err = btf_ext_setup_core_relos(btf_ext); 2773 if (err) 2774 goto done; 2775 2776 done: 2777 if (err) { 2778 btf_ext__free(btf_ext); 2779 return libbpf_err_ptr(err); 2780 } 2781 2782 return btf_ext; 2783 } 2784 2785 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2786 { 2787 *size = btf_ext->data_size; 2788 return btf_ext->data; 2789 } 2790 2791 static int btf_ext_reloc_info(const struct btf *btf, 2792 const struct btf_ext_info *ext_info, 2793 const char *sec_name, __u32 insns_cnt, 2794 void **info, __u32 *cnt) 2795 { 2796 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2797 __u32 i, record_size, existing_len, records_len; 2798 struct btf_ext_info_sec *sinfo; 2799 const char *info_sec_name; 2800 __u64 remain_len; 2801 void *data; 2802 2803 record_size = ext_info->rec_size; 2804 sinfo = ext_info->info; 2805 remain_len = ext_info->len; 2806 while (remain_len > 0) { 2807 records_len = sinfo->num_info * record_size; 2808 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2809 if (strcmp(info_sec_name, sec_name)) { 2810 remain_len -= sec_hdrlen + records_len; 2811 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2812 continue; 2813 } 2814 2815 existing_len = (*cnt) * record_size; 2816 data = realloc(*info, existing_len + records_len); 2817 if (!data) 2818 return libbpf_err(-ENOMEM); 2819 2820 memcpy(data + existing_len, sinfo->data, records_len); 2821 /* adjust insn_off only, the rest data will be passed 2822 * to the kernel. 2823 */ 2824 for (i = 0; i < sinfo->num_info; i++) { 2825 __u32 *insn_off; 2826 2827 insn_off = data + existing_len + (i * record_size); 2828 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; 2829 } 2830 *info = data; 2831 *cnt += sinfo->num_info; 2832 return 0; 2833 } 2834 2835 return libbpf_err(-ENOENT); 2836 } 2837 2838 int btf_ext__reloc_func_info(const struct btf *btf, 2839 const struct btf_ext *btf_ext, 2840 const char *sec_name, __u32 insns_cnt, 2841 void **func_info, __u32 *cnt) 2842 { 2843 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2844 insns_cnt, func_info, cnt); 2845 } 2846 2847 int btf_ext__reloc_line_info(const struct btf *btf, 2848 const struct btf_ext *btf_ext, 2849 const char *sec_name, __u32 insns_cnt, 2850 void **line_info, __u32 *cnt) 2851 { 2852 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2853 insns_cnt, line_info, cnt); 2854 } 2855 2856 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2857 { 2858 return btf_ext->func_info.rec_size; 2859 } 2860 2861 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2862 { 2863 return btf_ext->line_info.rec_size; 2864 } 2865 2866 struct btf_dedup; 2867 2868 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 2869 static void btf_dedup_free(struct btf_dedup *d); 2870 static int btf_dedup_prep(struct btf_dedup *d); 2871 static int btf_dedup_strings(struct btf_dedup *d); 2872 static int btf_dedup_prim_types(struct btf_dedup *d); 2873 static int btf_dedup_struct_types(struct btf_dedup *d); 2874 static int btf_dedup_ref_types(struct btf_dedup *d); 2875 static int btf_dedup_compact_types(struct btf_dedup *d); 2876 static int btf_dedup_remap_types(struct btf_dedup *d); 2877 2878 /* 2879 * Deduplicate BTF types and strings. 2880 * 2881 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2882 * section with all BTF type descriptors and string data. It overwrites that 2883 * memory in-place with deduplicated types and strings without any loss of 2884 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2885 * is provided, all the strings referenced from .BTF.ext section are honored 2886 * and updated to point to the right offsets after deduplication. 2887 * 2888 * If function returns with error, type/string data might be garbled and should 2889 * be discarded. 2890 * 2891 * More verbose and detailed description of both problem btf_dedup is solving, 2892 * as well as solution could be found at: 2893 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2894 * 2895 * Problem description and justification 2896 * ===================================== 2897 * 2898 * BTF type information is typically emitted either as a result of conversion 2899 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2900 * unit contains information about a subset of all the types that are used 2901 * in an application. These subsets are frequently overlapping and contain a lot 2902 * of duplicated information when later concatenated together into a single 2903 * binary. This algorithm ensures that each unique type is represented by single 2904 * BTF type descriptor, greatly reducing resulting size of BTF data. 2905 * 2906 * Compilation unit isolation and subsequent duplication of data is not the only 2907 * problem. The same type hierarchy (e.g., struct and all the type that struct 2908 * references) in different compilation units can be represented in BTF to 2909 * various degrees of completeness (or, rather, incompleteness) due to 2910 * struct/union forward declarations. 2911 * 2912 * Let's take a look at an example, that we'll use to better understand the 2913 * problem (and solution). Suppose we have two compilation units, each using 2914 * same `struct S`, but each of them having incomplete type information about 2915 * struct's fields: 2916 * 2917 * // CU #1: 2918 * struct S; 2919 * struct A { 2920 * int a; 2921 * struct A* self; 2922 * struct S* parent; 2923 * }; 2924 * struct B; 2925 * struct S { 2926 * struct A* a_ptr; 2927 * struct B* b_ptr; 2928 * }; 2929 * 2930 * // CU #2: 2931 * struct S; 2932 * struct A; 2933 * struct B { 2934 * int b; 2935 * struct B* self; 2936 * struct S* parent; 2937 * }; 2938 * struct S { 2939 * struct A* a_ptr; 2940 * struct B* b_ptr; 2941 * }; 2942 * 2943 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2944 * more), but will know the complete type information about `struct A`. While 2945 * for CU #2, it will know full type information about `struct B`, but will 2946 * only know about forward declaration of `struct A` (in BTF terms, it will 2947 * have `BTF_KIND_FWD` type descriptor with name `B`). 2948 * 2949 * This compilation unit isolation means that it's possible that there is no 2950 * single CU with complete type information describing structs `S`, `A`, and 2951 * `B`. Also, we might get tons of duplicated and redundant type information. 2952 * 2953 * Additional complication we need to keep in mind comes from the fact that 2954 * types, in general, can form graphs containing cycles, not just DAGs. 2955 * 2956 * While algorithm does deduplication, it also merges and resolves type 2957 * information (unless disabled throught `struct btf_opts`), whenever possible. 2958 * E.g., in the example above with two compilation units having partial type 2959 * information for structs `A` and `B`, the output of algorithm will emit 2960 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2961 * (as well as type information for `int` and pointers), as if they were defined 2962 * in a single compilation unit as: 2963 * 2964 * struct A { 2965 * int a; 2966 * struct A* self; 2967 * struct S* parent; 2968 * }; 2969 * struct B { 2970 * int b; 2971 * struct B* self; 2972 * struct S* parent; 2973 * }; 2974 * struct S { 2975 * struct A* a_ptr; 2976 * struct B* b_ptr; 2977 * }; 2978 * 2979 * Algorithm summary 2980 * ================= 2981 * 2982 * Algorithm completes its work in 6 separate passes: 2983 * 2984 * 1. Strings deduplication. 2985 * 2. Primitive types deduplication (int, enum, fwd). 2986 * 3. Struct/union types deduplication. 2987 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2988 * protos, and const/volatile/restrict modifiers). 2989 * 5. Types compaction. 2990 * 6. Types remapping. 2991 * 2992 * Algorithm determines canonical type descriptor, which is a single 2993 * representative type for each truly unique type. This canonical type is the 2994 * one that will go into final deduplicated BTF type information. For 2995 * struct/unions, it is also the type that algorithm will merge additional type 2996 * information into (while resolving FWDs), as it discovers it from data in 2997 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2998 * that type is canonical, or to some other type, if that type is equivalent 2999 * and was chosen as canonical representative. This mapping is stored in 3000 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3001 * FWD type got resolved to. 3002 * 3003 * To facilitate fast discovery of canonical types, we also maintain canonical 3004 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3005 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3006 * that match that signature. With sufficiently good choice of type signature 3007 * hashing function, we can limit number of canonical types for each unique type 3008 * signature to a very small number, allowing to find canonical type for any 3009 * duplicated type very quickly. 3010 * 3011 * Struct/union deduplication is the most critical part and algorithm for 3012 * deduplicating structs/unions is described in greater details in comments for 3013 * `btf_dedup_is_equiv` function. 3014 */ 3015 3016 DEFAULT_VERSION(btf__dedup_v0_6_0, btf__dedup, LIBBPF_0.6.0) 3017 int btf__dedup_v0_6_0(struct btf *btf, const struct btf_dedup_opts *opts) 3018 { 3019 struct btf_dedup *d; 3020 int err; 3021 3022 if (!OPTS_VALID(opts, btf_dedup_opts)) 3023 return libbpf_err(-EINVAL); 3024 3025 d = btf_dedup_new(btf, opts); 3026 if (IS_ERR(d)) { 3027 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3028 return libbpf_err(-EINVAL); 3029 } 3030 3031 if (btf_ensure_modifiable(btf)) { 3032 err = -ENOMEM; 3033 goto done; 3034 } 3035 3036 err = btf_dedup_prep(d); 3037 if (err) { 3038 pr_debug("btf_dedup_prep failed:%d\n", err); 3039 goto done; 3040 } 3041 err = btf_dedup_strings(d); 3042 if (err < 0) { 3043 pr_debug("btf_dedup_strings failed:%d\n", err); 3044 goto done; 3045 } 3046 err = btf_dedup_prim_types(d); 3047 if (err < 0) { 3048 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3049 goto done; 3050 } 3051 err = btf_dedup_struct_types(d); 3052 if (err < 0) { 3053 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3054 goto done; 3055 } 3056 err = btf_dedup_ref_types(d); 3057 if (err < 0) { 3058 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3059 goto done; 3060 } 3061 err = btf_dedup_compact_types(d); 3062 if (err < 0) { 3063 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3064 goto done; 3065 } 3066 err = btf_dedup_remap_types(d); 3067 if (err < 0) { 3068 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3069 goto done; 3070 } 3071 3072 done: 3073 btf_dedup_free(d); 3074 return libbpf_err(err); 3075 } 3076 3077 COMPAT_VERSION(bpf__dedup_deprecated, btf__dedup, LIBBPF_0.0.2) 3078 int btf__dedup_deprecated(struct btf *btf, struct btf_ext *btf_ext, const void *unused_opts) 3079 { 3080 LIBBPF_OPTS(btf_dedup_opts, opts, .btf_ext = btf_ext); 3081 3082 if (unused_opts) { 3083 pr_warn("please use new version of btf__dedup() that supports options\n"); 3084 return libbpf_err(-ENOTSUP); 3085 } 3086 3087 return btf__dedup(btf, &opts); 3088 } 3089 3090 #define BTF_UNPROCESSED_ID ((__u32)-1) 3091 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3092 3093 struct btf_dedup { 3094 /* .BTF section to be deduped in-place */ 3095 struct btf *btf; 3096 /* 3097 * Optional .BTF.ext section. When provided, any strings referenced 3098 * from it will be taken into account when deduping strings 3099 */ 3100 struct btf_ext *btf_ext; 3101 /* 3102 * This is a map from any type's signature hash to a list of possible 3103 * canonical representative type candidates. Hash collisions are 3104 * ignored, so even types of various kinds can share same list of 3105 * candidates, which is fine because we rely on subsequent 3106 * btf_xxx_equal() checks to authoritatively verify type equality. 3107 */ 3108 struct hashmap *dedup_table; 3109 /* Canonical types map */ 3110 __u32 *map; 3111 /* Hypothetical mapping, used during type graph equivalence checks */ 3112 __u32 *hypot_map; 3113 __u32 *hypot_list; 3114 size_t hypot_cnt; 3115 size_t hypot_cap; 3116 /* Whether hypothetical mapping, if successful, would need to adjust 3117 * already canonicalized types (due to a new forward declaration to 3118 * concrete type resolution). In such case, during split BTF dedup 3119 * candidate type would still be considered as different, because base 3120 * BTF is considered to be immutable. 3121 */ 3122 bool hypot_adjust_canon; 3123 /* Various option modifying behavior of algorithm */ 3124 struct btf_dedup_opts opts; 3125 /* temporary strings deduplication state */ 3126 struct strset *strs_set; 3127 }; 3128 3129 static long hash_combine(long h, long value) 3130 { 3131 return h * 31 + value; 3132 } 3133 3134 #define for_each_dedup_cand(d, node, hash) \ 3135 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 3136 3137 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3138 { 3139 return hashmap__append(d->dedup_table, 3140 (void *)hash, (void *)(long)type_id); 3141 } 3142 3143 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3144 __u32 from_id, __u32 to_id) 3145 { 3146 if (d->hypot_cnt == d->hypot_cap) { 3147 __u32 *new_list; 3148 3149 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3150 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3151 if (!new_list) 3152 return -ENOMEM; 3153 d->hypot_list = new_list; 3154 } 3155 d->hypot_list[d->hypot_cnt++] = from_id; 3156 d->hypot_map[from_id] = to_id; 3157 return 0; 3158 } 3159 3160 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3161 { 3162 int i; 3163 3164 for (i = 0; i < d->hypot_cnt; i++) 3165 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3166 d->hypot_cnt = 0; 3167 d->hypot_adjust_canon = false; 3168 } 3169 3170 static void btf_dedup_free(struct btf_dedup *d) 3171 { 3172 hashmap__free(d->dedup_table); 3173 d->dedup_table = NULL; 3174 3175 free(d->map); 3176 d->map = NULL; 3177 3178 free(d->hypot_map); 3179 d->hypot_map = NULL; 3180 3181 free(d->hypot_list); 3182 d->hypot_list = NULL; 3183 3184 free(d); 3185 } 3186 3187 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3188 { 3189 return (size_t)key; 3190 } 3191 3192 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3193 { 3194 return 0; 3195 } 3196 3197 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3198 { 3199 return k1 == k2; 3200 } 3201 3202 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3203 { 3204 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3205 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3206 int i, err = 0, type_cnt; 3207 3208 if (!d) 3209 return ERR_PTR(-ENOMEM); 3210 3211 if (OPTS_GET(opts, force_collisions, false)) 3212 hash_fn = btf_dedup_collision_hash_fn; 3213 3214 d->btf = btf; 3215 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3216 3217 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3218 if (IS_ERR(d->dedup_table)) { 3219 err = PTR_ERR(d->dedup_table); 3220 d->dedup_table = NULL; 3221 goto done; 3222 } 3223 3224 type_cnt = btf__type_cnt(btf); 3225 d->map = malloc(sizeof(__u32) * type_cnt); 3226 if (!d->map) { 3227 err = -ENOMEM; 3228 goto done; 3229 } 3230 /* special BTF "void" type is made canonical immediately */ 3231 d->map[0] = 0; 3232 for (i = 1; i < type_cnt; i++) { 3233 struct btf_type *t = btf_type_by_id(d->btf, i); 3234 3235 /* VAR and DATASEC are never deduped and are self-canonical */ 3236 if (btf_is_var(t) || btf_is_datasec(t)) 3237 d->map[i] = i; 3238 else 3239 d->map[i] = BTF_UNPROCESSED_ID; 3240 } 3241 3242 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3243 if (!d->hypot_map) { 3244 err = -ENOMEM; 3245 goto done; 3246 } 3247 for (i = 0; i < type_cnt; i++) 3248 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3249 3250 done: 3251 if (err) { 3252 btf_dedup_free(d); 3253 return ERR_PTR(err); 3254 } 3255 3256 return d; 3257 } 3258 3259 /* 3260 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3261 * string and pass pointer to it to a provided callback `fn`. 3262 */ 3263 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3264 { 3265 int i, r; 3266 3267 for (i = 0; i < d->btf->nr_types; i++) { 3268 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3269 3270 r = btf_type_visit_str_offs(t, fn, ctx); 3271 if (r) 3272 return r; 3273 } 3274 3275 if (!d->btf_ext) 3276 return 0; 3277 3278 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3279 if (r) 3280 return r; 3281 3282 return 0; 3283 } 3284 3285 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3286 { 3287 struct btf_dedup *d = ctx; 3288 __u32 str_off = *str_off_ptr; 3289 const char *s; 3290 int off, err; 3291 3292 /* don't touch empty string or string in main BTF */ 3293 if (str_off == 0 || str_off < d->btf->start_str_off) 3294 return 0; 3295 3296 s = btf__str_by_offset(d->btf, str_off); 3297 if (d->btf->base_btf) { 3298 err = btf__find_str(d->btf->base_btf, s); 3299 if (err >= 0) { 3300 *str_off_ptr = err; 3301 return 0; 3302 } 3303 if (err != -ENOENT) 3304 return err; 3305 } 3306 3307 off = strset__add_str(d->strs_set, s); 3308 if (off < 0) 3309 return off; 3310 3311 *str_off_ptr = d->btf->start_str_off + off; 3312 return 0; 3313 } 3314 3315 /* 3316 * Dedup string and filter out those that are not referenced from either .BTF 3317 * or .BTF.ext (if provided) sections. 3318 * 3319 * This is done by building index of all strings in BTF's string section, 3320 * then iterating over all entities that can reference strings (e.g., type 3321 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3322 * strings as used. After that all used strings are deduped and compacted into 3323 * sequential blob of memory and new offsets are calculated. Then all the string 3324 * references are iterated again and rewritten using new offsets. 3325 */ 3326 static int btf_dedup_strings(struct btf_dedup *d) 3327 { 3328 int err; 3329 3330 if (d->btf->strs_deduped) 3331 return 0; 3332 3333 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3334 if (IS_ERR(d->strs_set)) { 3335 err = PTR_ERR(d->strs_set); 3336 goto err_out; 3337 } 3338 3339 if (!d->btf->base_btf) { 3340 /* insert empty string; we won't be looking it up during strings 3341 * dedup, but it's good to have it for generic BTF string lookups 3342 */ 3343 err = strset__add_str(d->strs_set, ""); 3344 if (err < 0) 3345 goto err_out; 3346 } 3347 3348 /* remap string offsets */ 3349 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3350 if (err) 3351 goto err_out; 3352 3353 /* replace BTF string data and hash with deduped ones */ 3354 strset__free(d->btf->strs_set); 3355 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3356 d->btf->strs_set = d->strs_set; 3357 d->strs_set = NULL; 3358 d->btf->strs_deduped = true; 3359 return 0; 3360 3361 err_out: 3362 strset__free(d->strs_set); 3363 d->strs_set = NULL; 3364 3365 return err; 3366 } 3367 3368 static long btf_hash_common(struct btf_type *t) 3369 { 3370 long h; 3371 3372 h = hash_combine(0, t->name_off); 3373 h = hash_combine(h, t->info); 3374 h = hash_combine(h, t->size); 3375 return h; 3376 } 3377 3378 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3379 { 3380 return t1->name_off == t2->name_off && 3381 t1->info == t2->info && 3382 t1->size == t2->size; 3383 } 3384 3385 /* Calculate type signature hash of INT or TAG. */ 3386 static long btf_hash_int_decl_tag(struct btf_type *t) 3387 { 3388 __u32 info = *(__u32 *)(t + 1); 3389 long h; 3390 3391 h = btf_hash_common(t); 3392 h = hash_combine(h, info); 3393 return h; 3394 } 3395 3396 /* Check structural equality of two INTs or TAGs. */ 3397 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3398 { 3399 __u32 info1, info2; 3400 3401 if (!btf_equal_common(t1, t2)) 3402 return false; 3403 info1 = *(__u32 *)(t1 + 1); 3404 info2 = *(__u32 *)(t2 + 1); 3405 return info1 == info2; 3406 } 3407 3408 /* Calculate type signature hash of ENUM. */ 3409 static long btf_hash_enum(struct btf_type *t) 3410 { 3411 long h; 3412 3413 /* don't hash vlen and enum members to support enum fwd resolving */ 3414 h = hash_combine(0, t->name_off); 3415 h = hash_combine(h, t->info & ~0xffff); 3416 h = hash_combine(h, t->size); 3417 return h; 3418 } 3419 3420 /* Check structural equality of two ENUMs. */ 3421 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3422 { 3423 const struct btf_enum *m1, *m2; 3424 __u16 vlen; 3425 int i; 3426 3427 if (!btf_equal_common(t1, t2)) 3428 return false; 3429 3430 vlen = btf_vlen(t1); 3431 m1 = btf_enum(t1); 3432 m2 = btf_enum(t2); 3433 for (i = 0; i < vlen; i++) { 3434 if (m1->name_off != m2->name_off || m1->val != m2->val) 3435 return false; 3436 m1++; 3437 m2++; 3438 } 3439 return true; 3440 } 3441 3442 static inline bool btf_is_enum_fwd(struct btf_type *t) 3443 { 3444 return btf_is_enum(t) && btf_vlen(t) == 0; 3445 } 3446 3447 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3448 { 3449 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3450 return btf_equal_enum(t1, t2); 3451 /* ignore vlen when comparing */ 3452 return t1->name_off == t2->name_off && 3453 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3454 t1->size == t2->size; 3455 } 3456 3457 /* 3458 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3459 * as referenced type IDs equivalence is established separately during type 3460 * graph equivalence check algorithm. 3461 */ 3462 static long btf_hash_struct(struct btf_type *t) 3463 { 3464 const struct btf_member *member = btf_members(t); 3465 __u32 vlen = btf_vlen(t); 3466 long h = btf_hash_common(t); 3467 int i; 3468 3469 for (i = 0; i < vlen; i++) { 3470 h = hash_combine(h, member->name_off); 3471 h = hash_combine(h, member->offset); 3472 /* no hashing of referenced type ID, it can be unresolved yet */ 3473 member++; 3474 } 3475 return h; 3476 } 3477 3478 /* 3479 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3480 * IDs. This check is performed during type graph equivalence check and 3481 * referenced types equivalence is checked separately. 3482 */ 3483 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3484 { 3485 const struct btf_member *m1, *m2; 3486 __u16 vlen; 3487 int i; 3488 3489 if (!btf_equal_common(t1, t2)) 3490 return false; 3491 3492 vlen = btf_vlen(t1); 3493 m1 = btf_members(t1); 3494 m2 = btf_members(t2); 3495 for (i = 0; i < vlen; i++) { 3496 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3497 return false; 3498 m1++; 3499 m2++; 3500 } 3501 return true; 3502 } 3503 3504 /* 3505 * Calculate type signature hash of ARRAY, including referenced type IDs, 3506 * under assumption that they were already resolved to canonical type IDs and 3507 * are not going to change. 3508 */ 3509 static long btf_hash_array(struct btf_type *t) 3510 { 3511 const struct btf_array *info = btf_array(t); 3512 long h = btf_hash_common(t); 3513 3514 h = hash_combine(h, info->type); 3515 h = hash_combine(h, info->index_type); 3516 h = hash_combine(h, info->nelems); 3517 return h; 3518 } 3519 3520 /* 3521 * Check exact equality of two ARRAYs, taking into account referenced 3522 * type IDs, under assumption that they were already resolved to canonical 3523 * type IDs and are not going to change. 3524 * This function is called during reference types deduplication to compare 3525 * ARRAY to potential canonical representative. 3526 */ 3527 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3528 { 3529 const struct btf_array *info1, *info2; 3530 3531 if (!btf_equal_common(t1, t2)) 3532 return false; 3533 3534 info1 = btf_array(t1); 3535 info2 = btf_array(t2); 3536 return info1->type == info2->type && 3537 info1->index_type == info2->index_type && 3538 info1->nelems == info2->nelems; 3539 } 3540 3541 /* 3542 * Check structural compatibility of two ARRAYs, ignoring referenced type 3543 * IDs. This check is performed during type graph equivalence check and 3544 * referenced types equivalence is checked separately. 3545 */ 3546 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3547 { 3548 if (!btf_equal_common(t1, t2)) 3549 return false; 3550 3551 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3552 } 3553 3554 /* 3555 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3556 * under assumption that they were already resolved to canonical type IDs and 3557 * are not going to change. 3558 */ 3559 static long btf_hash_fnproto(struct btf_type *t) 3560 { 3561 const struct btf_param *member = btf_params(t); 3562 __u16 vlen = btf_vlen(t); 3563 long h = btf_hash_common(t); 3564 int i; 3565 3566 for (i = 0; i < vlen; i++) { 3567 h = hash_combine(h, member->name_off); 3568 h = hash_combine(h, member->type); 3569 member++; 3570 } 3571 return h; 3572 } 3573 3574 /* 3575 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3576 * type IDs, under assumption that they were already resolved to canonical 3577 * type IDs and are not going to change. 3578 * This function is called during reference types deduplication to compare 3579 * FUNC_PROTO to potential canonical representative. 3580 */ 3581 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3582 { 3583 const struct btf_param *m1, *m2; 3584 __u16 vlen; 3585 int i; 3586 3587 if (!btf_equal_common(t1, t2)) 3588 return false; 3589 3590 vlen = btf_vlen(t1); 3591 m1 = btf_params(t1); 3592 m2 = btf_params(t2); 3593 for (i = 0; i < vlen; i++) { 3594 if (m1->name_off != m2->name_off || m1->type != m2->type) 3595 return false; 3596 m1++; 3597 m2++; 3598 } 3599 return true; 3600 } 3601 3602 /* 3603 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3604 * IDs. This check is performed during type graph equivalence check and 3605 * referenced types equivalence is checked separately. 3606 */ 3607 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3608 { 3609 const struct btf_param *m1, *m2; 3610 __u16 vlen; 3611 int i; 3612 3613 /* skip return type ID */ 3614 if (t1->name_off != t2->name_off || t1->info != t2->info) 3615 return false; 3616 3617 vlen = btf_vlen(t1); 3618 m1 = btf_params(t1); 3619 m2 = btf_params(t2); 3620 for (i = 0; i < vlen; i++) { 3621 if (m1->name_off != m2->name_off) 3622 return false; 3623 m1++; 3624 m2++; 3625 } 3626 return true; 3627 } 3628 3629 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3630 * types and initializing the rest of the state (canonical type mapping) for 3631 * the fixed base BTF part. 3632 */ 3633 static int btf_dedup_prep(struct btf_dedup *d) 3634 { 3635 struct btf_type *t; 3636 int type_id; 3637 long h; 3638 3639 if (!d->btf->base_btf) 3640 return 0; 3641 3642 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3643 t = btf_type_by_id(d->btf, type_id); 3644 3645 /* all base BTF types are self-canonical by definition */ 3646 d->map[type_id] = type_id; 3647 3648 switch (btf_kind(t)) { 3649 case BTF_KIND_VAR: 3650 case BTF_KIND_DATASEC: 3651 /* VAR and DATASEC are never hash/deduplicated */ 3652 continue; 3653 case BTF_KIND_CONST: 3654 case BTF_KIND_VOLATILE: 3655 case BTF_KIND_RESTRICT: 3656 case BTF_KIND_PTR: 3657 case BTF_KIND_FWD: 3658 case BTF_KIND_TYPEDEF: 3659 case BTF_KIND_FUNC: 3660 case BTF_KIND_FLOAT: 3661 case BTF_KIND_TYPE_TAG: 3662 h = btf_hash_common(t); 3663 break; 3664 case BTF_KIND_INT: 3665 case BTF_KIND_DECL_TAG: 3666 h = btf_hash_int_decl_tag(t); 3667 break; 3668 case BTF_KIND_ENUM: 3669 h = btf_hash_enum(t); 3670 break; 3671 case BTF_KIND_STRUCT: 3672 case BTF_KIND_UNION: 3673 h = btf_hash_struct(t); 3674 break; 3675 case BTF_KIND_ARRAY: 3676 h = btf_hash_array(t); 3677 break; 3678 case BTF_KIND_FUNC_PROTO: 3679 h = btf_hash_fnproto(t); 3680 break; 3681 default: 3682 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3683 return -EINVAL; 3684 } 3685 if (btf_dedup_table_add(d, h, type_id)) 3686 return -ENOMEM; 3687 } 3688 3689 return 0; 3690 } 3691 3692 /* 3693 * Deduplicate primitive types, that can't reference other types, by calculating 3694 * their type signature hash and comparing them with any possible canonical 3695 * candidate. If no canonical candidate matches, type itself is marked as 3696 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3697 */ 3698 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3699 { 3700 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3701 struct hashmap_entry *hash_entry; 3702 struct btf_type *cand; 3703 /* if we don't find equivalent type, then we are canonical */ 3704 __u32 new_id = type_id; 3705 __u32 cand_id; 3706 long h; 3707 3708 switch (btf_kind(t)) { 3709 case BTF_KIND_CONST: 3710 case BTF_KIND_VOLATILE: 3711 case BTF_KIND_RESTRICT: 3712 case BTF_KIND_PTR: 3713 case BTF_KIND_TYPEDEF: 3714 case BTF_KIND_ARRAY: 3715 case BTF_KIND_STRUCT: 3716 case BTF_KIND_UNION: 3717 case BTF_KIND_FUNC: 3718 case BTF_KIND_FUNC_PROTO: 3719 case BTF_KIND_VAR: 3720 case BTF_KIND_DATASEC: 3721 case BTF_KIND_DECL_TAG: 3722 case BTF_KIND_TYPE_TAG: 3723 return 0; 3724 3725 case BTF_KIND_INT: 3726 h = btf_hash_int_decl_tag(t); 3727 for_each_dedup_cand(d, hash_entry, h) { 3728 cand_id = (__u32)(long)hash_entry->value; 3729 cand = btf_type_by_id(d->btf, cand_id); 3730 if (btf_equal_int_tag(t, cand)) { 3731 new_id = cand_id; 3732 break; 3733 } 3734 } 3735 break; 3736 3737 case BTF_KIND_ENUM: 3738 h = btf_hash_enum(t); 3739 for_each_dedup_cand(d, hash_entry, h) { 3740 cand_id = (__u32)(long)hash_entry->value; 3741 cand = btf_type_by_id(d->btf, cand_id); 3742 if (btf_equal_enum(t, cand)) { 3743 new_id = cand_id; 3744 break; 3745 } 3746 if (btf_compat_enum(t, cand)) { 3747 if (btf_is_enum_fwd(t)) { 3748 /* resolve fwd to full enum */ 3749 new_id = cand_id; 3750 break; 3751 } 3752 /* resolve canonical enum fwd to full enum */ 3753 d->map[cand_id] = type_id; 3754 } 3755 } 3756 break; 3757 3758 case BTF_KIND_FWD: 3759 case BTF_KIND_FLOAT: 3760 h = btf_hash_common(t); 3761 for_each_dedup_cand(d, hash_entry, h) { 3762 cand_id = (__u32)(long)hash_entry->value; 3763 cand = btf_type_by_id(d->btf, cand_id); 3764 if (btf_equal_common(t, cand)) { 3765 new_id = cand_id; 3766 break; 3767 } 3768 } 3769 break; 3770 3771 default: 3772 return -EINVAL; 3773 } 3774 3775 d->map[type_id] = new_id; 3776 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3777 return -ENOMEM; 3778 3779 return 0; 3780 } 3781 3782 static int btf_dedup_prim_types(struct btf_dedup *d) 3783 { 3784 int i, err; 3785 3786 for (i = 0; i < d->btf->nr_types; i++) { 3787 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3788 if (err) 3789 return err; 3790 } 3791 return 0; 3792 } 3793 3794 /* 3795 * Check whether type is already mapped into canonical one (could be to itself). 3796 */ 3797 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3798 { 3799 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3800 } 3801 3802 /* 3803 * Resolve type ID into its canonical type ID, if any; otherwise return original 3804 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3805 * STRUCT/UNION link and resolve it into canonical type ID as well. 3806 */ 3807 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3808 { 3809 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3810 type_id = d->map[type_id]; 3811 return type_id; 3812 } 3813 3814 /* 3815 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3816 * type ID. 3817 */ 3818 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3819 { 3820 __u32 orig_type_id = type_id; 3821 3822 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3823 return type_id; 3824 3825 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3826 type_id = d->map[type_id]; 3827 3828 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3829 return type_id; 3830 3831 return orig_type_id; 3832 } 3833 3834 3835 static inline __u16 btf_fwd_kind(struct btf_type *t) 3836 { 3837 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3838 } 3839 3840 /* Check if given two types are identical ARRAY definitions */ 3841 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3842 { 3843 struct btf_type *t1, *t2; 3844 3845 t1 = btf_type_by_id(d->btf, id1); 3846 t2 = btf_type_by_id(d->btf, id2); 3847 if (!btf_is_array(t1) || !btf_is_array(t2)) 3848 return 0; 3849 3850 return btf_equal_array(t1, t2); 3851 } 3852 3853 /* 3854 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3855 * call it "candidate graph" in this description for brevity) to a type graph 3856 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3857 * here, though keep in mind that not all types in canonical graph are 3858 * necessarily canonical representatives themselves, some of them might be 3859 * duplicates or its uniqueness might not have been established yet). 3860 * Returns: 3861 * - >0, if type graphs are equivalent; 3862 * - 0, if not equivalent; 3863 * - <0, on error. 3864 * 3865 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3866 * equivalence of BTF types at each step. If at any point BTF types in candidate 3867 * and canonical graphs are not compatible structurally, whole graphs are 3868 * incompatible. If types are structurally equivalent (i.e., all information 3869 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3870 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3871 * If a type references other types, then those referenced types are checked 3872 * for equivalence recursively. 3873 * 3874 * During DFS traversal, if we find that for current `canon_id` type we 3875 * already have some mapping in hypothetical map, we check for two possible 3876 * situations: 3877 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3878 * happen when type graphs have cycles. In this case we assume those two 3879 * types are equivalent. 3880 * - `canon_id` is mapped to different type. This is contradiction in our 3881 * hypothetical mapping, because same graph in canonical graph corresponds 3882 * to two different types in candidate graph, which for equivalent type 3883 * graphs shouldn't happen. This condition terminates equivalence check 3884 * with negative result. 3885 * 3886 * If type graphs traversal exhausts types to check and find no contradiction, 3887 * then type graphs are equivalent. 3888 * 3889 * When checking types for equivalence, there is one special case: FWD types. 3890 * If FWD type resolution is allowed and one of the types (either from canonical 3891 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3892 * flag) and their names match, hypothetical mapping is updated to point from 3893 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3894 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3895 * 3896 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3897 * if there are two exactly named (or anonymous) structs/unions that are 3898 * compatible structurally, one of which has FWD field, while other is concrete 3899 * STRUCT/UNION, but according to C sources they are different structs/unions 3900 * that are referencing different types with the same name. This is extremely 3901 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3902 * this logic is causing problems. 3903 * 3904 * Doing FWD resolution means that both candidate and/or canonical graphs can 3905 * consists of portions of the graph that come from multiple compilation units. 3906 * This is due to the fact that types within single compilation unit are always 3907 * deduplicated and FWDs are already resolved, if referenced struct/union 3908 * definiton is available. So, if we had unresolved FWD and found corresponding 3909 * STRUCT/UNION, they will be from different compilation units. This 3910 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3911 * type graph will likely have at least two different BTF types that describe 3912 * same type (e.g., most probably there will be two different BTF types for the 3913 * same 'int' primitive type) and could even have "overlapping" parts of type 3914 * graph that describe same subset of types. 3915 * 3916 * This in turn means that our assumption that each type in canonical graph 3917 * must correspond to exactly one type in candidate graph might not hold 3918 * anymore and will make it harder to detect contradictions using hypothetical 3919 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3920 * resolution only in canonical graph. FWDs in candidate graphs are never 3921 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3922 * that can occur: 3923 * - Both types in canonical and candidate graphs are FWDs. If they are 3924 * structurally equivalent, then they can either be both resolved to the 3925 * same STRUCT/UNION or not resolved at all. In both cases they are 3926 * equivalent and there is no need to resolve FWD on candidate side. 3927 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3928 * so nothing to resolve as well, algorithm will check equivalence anyway. 3929 * - Type in canonical graph is FWD, while type in candidate is concrete 3930 * STRUCT/UNION. In this case candidate graph comes from single compilation 3931 * unit, so there is exactly one BTF type for each unique C type. After 3932 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3933 * in canonical graph mapping to single BTF type in candidate graph, but 3934 * because hypothetical mapping maps from canonical to candidate types, it's 3935 * alright, and we still maintain the property of having single `canon_id` 3936 * mapping to single `cand_id` (there could be two different `canon_id` 3937 * mapped to the same `cand_id`, but it's not contradictory). 3938 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3939 * graph is FWD. In this case we are just going to check compatibility of 3940 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3941 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3942 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3943 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3944 * canonical graph. 3945 */ 3946 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3947 __u32 canon_id) 3948 { 3949 struct btf_type *cand_type; 3950 struct btf_type *canon_type; 3951 __u32 hypot_type_id; 3952 __u16 cand_kind; 3953 __u16 canon_kind; 3954 int i, eq; 3955 3956 /* if both resolve to the same canonical, they must be equivalent */ 3957 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3958 return 1; 3959 3960 canon_id = resolve_fwd_id(d, canon_id); 3961 3962 hypot_type_id = d->hypot_map[canon_id]; 3963 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3964 /* In some cases compiler will generate different DWARF types 3965 * for *identical* array type definitions and use them for 3966 * different fields within the *same* struct. This breaks type 3967 * equivalence check, which makes an assumption that candidate 3968 * types sub-graph has a consistent and deduped-by-compiler 3969 * types within a single CU. So work around that by explicitly 3970 * allowing identical array types here. 3971 */ 3972 return hypot_type_id == cand_id || 3973 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3974 } 3975 3976 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3977 return -ENOMEM; 3978 3979 cand_type = btf_type_by_id(d->btf, cand_id); 3980 canon_type = btf_type_by_id(d->btf, canon_id); 3981 cand_kind = btf_kind(cand_type); 3982 canon_kind = btf_kind(canon_type); 3983 3984 if (cand_type->name_off != canon_type->name_off) 3985 return 0; 3986 3987 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3988 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3989 && cand_kind != canon_kind) { 3990 __u16 real_kind; 3991 __u16 fwd_kind; 3992 3993 if (cand_kind == BTF_KIND_FWD) { 3994 real_kind = canon_kind; 3995 fwd_kind = btf_fwd_kind(cand_type); 3996 } else { 3997 real_kind = cand_kind; 3998 fwd_kind = btf_fwd_kind(canon_type); 3999 /* we'd need to resolve base FWD to STRUCT/UNION */ 4000 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4001 d->hypot_adjust_canon = true; 4002 } 4003 return fwd_kind == real_kind; 4004 } 4005 4006 if (cand_kind != canon_kind) 4007 return 0; 4008 4009 switch (cand_kind) { 4010 case BTF_KIND_INT: 4011 return btf_equal_int_tag(cand_type, canon_type); 4012 4013 case BTF_KIND_ENUM: 4014 return btf_compat_enum(cand_type, canon_type); 4015 4016 case BTF_KIND_FWD: 4017 case BTF_KIND_FLOAT: 4018 return btf_equal_common(cand_type, canon_type); 4019 4020 case BTF_KIND_CONST: 4021 case BTF_KIND_VOLATILE: 4022 case BTF_KIND_RESTRICT: 4023 case BTF_KIND_PTR: 4024 case BTF_KIND_TYPEDEF: 4025 case BTF_KIND_FUNC: 4026 if (cand_type->info != canon_type->info) 4027 return 0; 4028 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4029 4030 case BTF_KIND_ARRAY: { 4031 const struct btf_array *cand_arr, *canon_arr; 4032 4033 if (!btf_compat_array(cand_type, canon_type)) 4034 return 0; 4035 cand_arr = btf_array(cand_type); 4036 canon_arr = btf_array(canon_type); 4037 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4038 if (eq <= 0) 4039 return eq; 4040 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4041 } 4042 4043 case BTF_KIND_STRUCT: 4044 case BTF_KIND_UNION: { 4045 const struct btf_member *cand_m, *canon_m; 4046 __u16 vlen; 4047 4048 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4049 return 0; 4050 vlen = btf_vlen(cand_type); 4051 cand_m = btf_members(cand_type); 4052 canon_m = btf_members(canon_type); 4053 for (i = 0; i < vlen; i++) { 4054 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4055 if (eq <= 0) 4056 return eq; 4057 cand_m++; 4058 canon_m++; 4059 } 4060 4061 return 1; 4062 } 4063 4064 case BTF_KIND_FUNC_PROTO: { 4065 const struct btf_param *cand_p, *canon_p; 4066 __u16 vlen; 4067 4068 if (!btf_compat_fnproto(cand_type, canon_type)) 4069 return 0; 4070 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4071 if (eq <= 0) 4072 return eq; 4073 vlen = btf_vlen(cand_type); 4074 cand_p = btf_params(cand_type); 4075 canon_p = btf_params(canon_type); 4076 for (i = 0; i < vlen; i++) { 4077 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4078 if (eq <= 0) 4079 return eq; 4080 cand_p++; 4081 canon_p++; 4082 } 4083 return 1; 4084 } 4085 4086 default: 4087 return -EINVAL; 4088 } 4089 return 0; 4090 } 4091 4092 /* 4093 * Use hypothetical mapping, produced by successful type graph equivalence 4094 * check, to augment existing struct/union canonical mapping, where possible. 4095 * 4096 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4097 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4098 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4099 * we are recording the mapping anyway. As opposed to carefulness required 4100 * for struct/union correspondence mapping (described below), for FWD resolution 4101 * it's not important, as by the time that FWD type (reference type) will be 4102 * deduplicated all structs/unions will be deduped already anyway. 4103 * 4104 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4105 * not required for correctness. It needs to be done carefully to ensure that 4106 * struct/union from candidate's type graph is not mapped into corresponding 4107 * struct/union from canonical type graph that itself hasn't been resolved into 4108 * canonical representative. The only guarantee we have is that canonical 4109 * struct/union was determined as canonical and that won't change. But any 4110 * types referenced through that struct/union fields could have been not yet 4111 * resolved, so in case like that it's too early to establish any kind of 4112 * correspondence between structs/unions. 4113 * 4114 * No canonical correspondence is derived for primitive types (they are already 4115 * deduplicated completely already anyway) or reference types (they rely on 4116 * stability of struct/union canonical relationship for equivalence checks). 4117 */ 4118 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4119 { 4120 __u32 canon_type_id, targ_type_id; 4121 __u16 t_kind, c_kind; 4122 __u32 t_id, c_id; 4123 int i; 4124 4125 for (i = 0; i < d->hypot_cnt; i++) { 4126 canon_type_id = d->hypot_list[i]; 4127 targ_type_id = d->hypot_map[canon_type_id]; 4128 t_id = resolve_type_id(d, targ_type_id); 4129 c_id = resolve_type_id(d, canon_type_id); 4130 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4131 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4132 /* 4133 * Resolve FWD into STRUCT/UNION. 4134 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4135 * mapped to canonical representative (as opposed to 4136 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4137 * eventually that struct is going to be mapped and all resolved 4138 * FWDs will automatically resolve to correct canonical 4139 * representative. This will happen before ref type deduping, 4140 * which critically depends on stability of these mapping. This 4141 * stability is not a requirement for STRUCT/UNION equivalence 4142 * checks, though. 4143 */ 4144 4145 /* if it's the split BTF case, we still need to point base FWD 4146 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4147 * will be resolved against base FWD. If we don't point base 4148 * canonical FWD to the resolved STRUCT/UNION, then all the 4149 * FWDs in split BTF won't be correctly resolved to a proper 4150 * STRUCT/UNION. 4151 */ 4152 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4153 d->map[c_id] = t_id; 4154 4155 /* if graph equivalence determined that we'd need to adjust 4156 * base canonical types, then we need to only point base FWDs 4157 * to STRUCTs/UNIONs and do no more modifications. For all 4158 * other purposes the type graphs were not equivalent. 4159 */ 4160 if (d->hypot_adjust_canon) 4161 continue; 4162 4163 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4164 d->map[t_id] = c_id; 4165 4166 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4167 c_kind != BTF_KIND_FWD && 4168 is_type_mapped(d, c_id) && 4169 !is_type_mapped(d, t_id)) { 4170 /* 4171 * as a perf optimization, we can map struct/union 4172 * that's part of type graph we just verified for 4173 * equivalence. We can do that for struct/union that has 4174 * canonical representative only, though. 4175 */ 4176 d->map[t_id] = c_id; 4177 } 4178 } 4179 } 4180 4181 /* 4182 * Deduplicate struct/union types. 4183 * 4184 * For each struct/union type its type signature hash is calculated, taking 4185 * into account type's name, size, number, order and names of fields, but 4186 * ignoring type ID's referenced from fields, because they might not be deduped 4187 * completely until after reference types deduplication phase. This type hash 4188 * is used to iterate over all potential canonical types, sharing same hash. 4189 * For each canonical candidate we check whether type graphs that they form 4190 * (through referenced types in fields and so on) are equivalent using algorithm 4191 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4192 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4193 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4194 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4195 * potentially map other structs/unions to their canonical representatives, 4196 * if such relationship hasn't yet been established. This speeds up algorithm 4197 * by eliminating some of the duplicate work. 4198 * 4199 * If no matching canonical representative was found, struct/union is marked 4200 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4201 * for further look ups. 4202 */ 4203 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4204 { 4205 struct btf_type *cand_type, *t; 4206 struct hashmap_entry *hash_entry; 4207 /* if we don't find equivalent type, then we are canonical */ 4208 __u32 new_id = type_id; 4209 __u16 kind; 4210 long h; 4211 4212 /* already deduped or is in process of deduping (loop detected) */ 4213 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4214 return 0; 4215 4216 t = btf_type_by_id(d->btf, type_id); 4217 kind = btf_kind(t); 4218 4219 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4220 return 0; 4221 4222 h = btf_hash_struct(t); 4223 for_each_dedup_cand(d, hash_entry, h) { 4224 __u32 cand_id = (__u32)(long)hash_entry->value; 4225 int eq; 4226 4227 /* 4228 * Even though btf_dedup_is_equiv() checks for 4229 * btf_shallow_equal_struct() internally when checking two 4230 * structs (unions) for equivalence, we need to guard here 4231 * from picking matching FWD type as a dedup candidate. 4232 * This can happen due to hash collision. In such case just 4233 * relying on btf_dedup_is_equiv() would lead to potentially 4234 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4235 * FWD and compatible STRUCT/UNION are considered equivalent. 4236 */ 4237 cand_type = btf_type_by_id(d->btf, cand_id); 4238 if (!btf_shallow_equal_struct(t, cand_type)) 4239 continue; 4240 4241 btf_dedup_clear_hypot_map(d); 4242 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4243 if (eq < 0) 4244 return eq; 4245 if (!eq) 4246 continue; 4247 btf_dedup_merge_hypot_map(d); 4248 if (d->hypot_adjust_canon) /* not really equivalent */ 4249 continue; 4250 new_id = cand_id; 4251 break; 4252 } 4253 4254 d->map[type_id] = new_id; 4255 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4256 return -ENOMEM; 4257 4258 return 0; 4259 } 4260 4261 static int btf_dedup_struct_types(struct btf_dedup *d) 4262 { 4263 int i, err; 4264 4265 for (i = 0; i < d->btf->nr_types; i++) { 4266 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4267 if (err) 4268 return err; 4269 } 4270 return 0; 4271 } 4272 4273 /* 4274 * Deduplicate reference type. 4275 * 4276 * Once all primitive and struct/union types got deduplicated, we can easily 4277 * deduplicate all other (reference) BTF types. This is done in two steps: 4278 * 4279 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4280 * resolution can be done either immediately for primitive or struct/union types 4281 * (because they were deduped in previous two phases) or recursively for 4282 * reference types. Recursion will always terminate at either primitive or 4283 * struct/union type, at which point we can "unwind" chain of reference types 4284 * one by one. There is no danger of encountering cycles because in C type 4285 * system the only way to form type cycle is through struct/union, so any chain 4286 * of reference types, even those taking part in a type cycle, will inevitably 4287 * reach struct/union at some point. 4288 * 4289 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4290 * becomes "stable", in the sense that no further deduplication will cause 4291 * any changes to it. With that, it's now possible to calculate type's signature 4292 * hash (this time taking into account referenced type IDs) and loop over all 4293 * potential canonical representatives. If no match was found, current type 4294 * will become canonical representative of itself and will be added into 4295 * btf_dedup->dedup_table as another possible canonical representative. 4296 */ 4297 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4298 { 4299 struct hashmap_entry *hash_entry; 4300 __u32 new_id = type_id, cand_id; 4301 struct btf_type *t, *cand; 4302 /* if we don't find equivalent type, then we are representative type */ 4303 int ref_type_id; 4304 long h; 4305 4306 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4307 return -ELOOP; 4308 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4309 return resolve_type_id(d, type_id); 4310 4311 t = btf_type_by_id(d->btf, type_id); 4312 d->map[type_id] = BTF_IN_PROGRESS_ID; 4313 4314 switch (btf_kind(t)) { 4315 case BTF_KIND_CONST: 4316 case BTF_KIND_VOLATILE: 4317 case BTF_KIND_RESTRICT: 4318 case BTF_KIND_PTR: 4319 case BTF_KIND_TYPEDEF: 4320 case BTF_KIND_FUNC: 4321 case BTF_KIND_TYPE_TAG: 4322 ref_type_id = btf_dedup_ref_type(d, t->type); 4323 if (ref_type_id < 0) 4324 return ref_type_id; 4325 t->type = ref_type_id; 4326 4327 h = btf_hash_common(t); 4328 for_each_dedup_cand(d, hash_entry, h) { 4329 cand_id = (__u32)(long)hash_entry->value; 4330 cand = btf_type_by_id(d->btf, cand_id); 4331 if (btf_equal_common(t, cand)) { 4332 new_id = cand_id; 4333 break; 4334 } 4335 } 4336 break; 4337 4338 case BTF_KIND_DECL_TAG: 4339 ref_type_id = btf_dedup_ref_type(d, t->type); 4340 if (ref_type_id < 0) 4341 return ref_type_id; 4342 t->type = ref_type_id; 4343 4344 h = btf_hash_int_decl_tag(t); 4345 for_each_dedup_cand(d, hash_entry, h) { 4346 cand_id = (__u32)(long)hash_entry->value; 4347 cand = btf_type_by_id(d->btf, cand_id); 4348 if (btf_equal_int_tag(t, cand)) { 4349 new_id = cand_id; 4350 break; 4351 } 4352 } 4353 break; 4354 4355 case BTF_KIND_ARRAY: { 4356 struct btf_array *info = btf_array(t); 4357 4358 ref_type_id = btf_dedup_ref_type(d, info->type); 4359 if (ref_type_id < 0) 4360 return ref_type_id; 4361 info->type = ref_type_id; 4362 4363 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4364 if (ref_type_id < 0) 4365 return ref_type_id; 4366 info->index_type = ref_type_id; 4367 4368 h = btf_hash_array(t); 4369 for_each_dedup_cand(d, hash_entry, h) { 4370 cand_id = (__u32)(long)hash_entry->value; 4371 cand = btf_type_by_id(d->btf, cand_id); 4372 if (btf_equal_array(t, cand)) { 4373 new_id = cand_id; 4374 break; 4375 } 4376 } 4377 break; 4378 } 4379 4380 case BTF_KIND_FUNC_PROTO: { 4381 struct btf_param *param; 4382 __u16 vlen; 4383 int i; 4384 4385 ref_type_id = btf_dedup_ref_type(d, t->type); 4386 if (ref_type_id < 0) 4387 return ref_type_id; 4388 t->type = ref_type_id; 4389 4390 vlen = btf_vlen(t); 4391 param = btf_params(t); 4392 for (i = 0; i < vlen; i++) { 4393 ref_type_id = btf_dedup_ref_type(d, param->type); 4394 if (ref_type_id < 0) 4395 return ref_type_id; 4396 param->type = ref_type_id; 4397 param++; 4398 } 4399 4400 h = btf_hash_fnproto(t); 4401 for_each_dedup_cand(d, hash_entry, h) { 4402 cand_id = (__u32)(long)hash_entry->value; 4403 cand = btf_type_by_id(d->btf, cand_id); 4404 if (btf_equal_fnproto(t, cand)) { 4405 new_id = cand_id; 4406 break; 4407 } 4408 } 4409 break; 4410 } 4411 4412 default: 4413 return -EINVAL; 4414 } 4415 4416 d->map[type_id] = new_id; 4417 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4418 return -ENOMEM; 4419 4420 return new_id; 4421 } 4422 4423 static int btf_dedup_ref_types(struct btf_dedup *d) 4424 { 4425 int i, err; 4426 4427 for (i = 0; i < d->btf->nr_types; i++) { 4428 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4429 if (err < 0) 4430 return err; 4431 } 4432 /* we won't need d->dedup_table anymore */ 4433 hashmap__free(d->dedup_table); 4434 d->dedup_table = NULL; 4435 return 0; 4436 } 4437 4438 /* 4439 * Compact types. 4440 * 4441 * After we established for each type its corresponding canonical representative 4442 * type, we now can eliminate types that are not canonical and leave only 4443 * canonical ones layed out sequentially in memory by copying them over 4444 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4445 * a map from original type ID to a new compacted type ID, which will be used 4446 * during next phase to "fix up" type IDs, referenced from struct/union and 4447 * reference types. 4448 */ 4449 static int btf_dedup_compact_types(struct btf_dedup *d) 4450 { 4451 __u32 *new_offs; 4452 __u32 next_type_id = d->btf->start_id; 4453 const struct btf_type *t; 4454 void *p; 4455 int i, id, len; 4456 4457 /* we are going to reuse hypot_map to store compaction remapping */ 4458 d->hypot_map[0] = 0; 4459 /* base BTF types are not renumbered */ 4460 for (id = 1; id < d->btf->start_id; id++) 4461 d->hypot_map[id] = id; 4462 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4463 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4464 4465 p = d->btf->types_data; 4466 4467 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4468 if (d->map[id] != id) 4469 continue; 4470 4471 t = btf__type_by_id(d->btf, id); 4472 len = btf_type_size(t); 4473 if (len < 0) 4474 return len; 4475 4476 memmove(p, t, len); 4477 d->hypot_map[id] = next_type_id; 4478 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4479 p += len; 4480 next_type_id++; 4481 } 4482 4483 /* shrink struct btf's internal types index and update btf_header */ 4484 d->btf->nr_types = next_type_id - d->btf->start_id; 4485 d->btf->type_offs_cap = d->btf->nr_types; 4486 d->btf->hdr->type_len = p - d->btf->types_data; 4487 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4488 sizeof(*new_offs)); 4489 if (d->btf->type_offs_cap && !new_offs) 4490 return -ENOMEM; 4491 d->btf->type_offs = new_offs; 4492 d->btf->hdr->str_off = d->btf->hdr->type_len; 4493 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4494 return 0; 4495 } 4496 4497 /* 4498 * Figure out final (deduplicated and compacted) type ID for provided original 4499 * `type_id` by first resolving it into corresponding canonical type ID and 4500 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4501 * which is populated during compaction phase. 4502 */ 4503 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4504 { 4505 struct btf_dedup *d = ctx; 4506 __u32 resolved_type_id, new_type_id; 4507 4508 resolved_type_id = resolve_type_id(d, *type_id); 4509 new_type_id = d->hypot_map[resolved_type_id]; 4510 if (new_type_id > BTF_MAX_NR_TYPES) 4511 return -EINVAL; 4512 4513 *type_id = new_type_id; 4514 return 0; 4515 } 4516 4517 /* 4518 * Remap referenced type IDs into deduped type IDs. 4519 * 4520 * After BTF types are deduplicated and compacted, their final type IDs may 4521 * differ from original ones. The map from original to a corresponding 4522 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4523 * compaction phase. During remapping phase we are rewriting all type IDs 4524 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4525 * their final deduped type IDs. 4526 */ 4527 static int btf_dedup_remap_types(struct btf_dedup *d) 4528 { 4529 int i, r; 4530 4531 for (i = 0; i < d->btf->nr_types; i++) { 4532 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4533 4534 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4535 if (r) 4536 return r; 4537 } 4538 4539 if (!d->btf_ext) 4540 return 0; 4541 4542 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4543 if (r) 4544 return r; 4545 4546 return 0; 4547 } 4548 4549 /* 4550 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4551 * data out of it to use for target BTF. 4552 */ 4553 struct btf *btf__load_vmlinux_btf(void) 4554 { 4555 struct { 4556 const char *path_fmt; 4557 bool raw_btf; 4558 } locations[] = { 4559 /* try canonical vmlinux BTF through sysfs first */ 4560 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4561 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4562 { "/boot/vmlinux-%1$s" }, 4563 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4564 { "/lib/modules/%1$s/build/vmlinux" }, 4565 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4566 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4567 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4568 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4569 }; 4570 char path[PATH_MAX + 1]; 4571 struct utsname buf; 4572 struct btf *btf; 4573 int i, err; 4574 4575 uname(&buf); 4576 4577 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4578 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4579 4580 if (access(path, R_OK)) 4581 continue; 4582 4583 if (locations[i].raw_btf) 4584 btf = btf__parse_raw(path); 4585 else 4586 btf = btf__parse_elf(path, NULL); 4587 err = libbpf_get_error(btf); 4588 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4589 if (err) 4590 continue; 4591 4592 return btf; 4593 } 4594 4595 pr_warn("failed to find valid kernel BTF\n"); 4596 return libbpf_err_ptr(-ESRCH); 4597 } 4598 4599 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4600 4601 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4602 { 4603 char path[80]; 4604 4605 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4606 return btf__parse_split(path, vmlinux_btf); 4607 } 4608 4609 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4610 { 4611 int i, n, err; 4612 4613 switch (btf_kind(t)) { 4614 case BTF_KIND_INT: 4615 case BTF_KIND_FLOAT: 4616 case BTF_KIND_ENUM: 4617 return 0; 4618 4619 case BTF_KIND_FWD: 4620 case BTF_KIND_CONST: 4621 case BTF_KIND_VOLATILE: 4622 case BTF_KIND_RESTRICT: 4623 case BTF_KIND_PTR: 4624 case BTF_KIND_TYPEDEF: 4625 case BTF_KIND_FUNC: 4626 case BTF_KIND_VAR: 4627 case BTF_KIND_DECL_TAG: 4628 case BTF_KIND_TYPE_TAG: 4629 return visit(&t->type, ctx); 4630 4631 case BTF_KIND_ARRAY: { 4632 struct btf_array *a = btf_array(t); 4633 4634 err = visit(&a->type, ctx); 4635 err = err ?: visit(&a->index_type, ctx); 4636 return err; 4637 } 4638 4639 case BTF_KIND_STRUCT: 4640 case BTF_KIND_UNION: { 4641 struct btf_member *m = btf_members(t); 4642 4643 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4644 err = visit(&m->type, ctx); 4645 if (err) 4646 return err; 4647 } 4648 return 0; 4649 } 4650 4651 case BTF_KIND_FUNC_PROTO: { 4652 struct btf_param *m = btf_params(t); 4653 4654 err = visit(&t->type, ctx); 4655 if (err) 4656 return err; 4657 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4658 err = visit(&m->type, ctx); 4659 if (err) 4660 return err; 4661 } 4662 return 0; 4663 } 4664 4665 case BTF_KIND_DATASEC: { 4666 struct btf_var_secinfo *m = btf_var_secinfos(t); 4667 4668 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4669 err = visit(&m->type, ctx); 4670 if (err) 4671 return err; 4672 } 4673 return 0; 4674 } 4675 4676 default: 4677 return -EINVAL; 4678 } 4679 } 4680 4681 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4682 { 4683 int i, n, err; 4684 4685 err = visit(&t->name_off, ctx); 4686 if (err) 4687 return err; 4688 4689 switch (btf_kind(t)) { 4690 case BTF_KIND_STRUCT: 4691 case BTF_KIND_UNION: { 4692 struct btf_member *m = btf_members(t); 4693 4694 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4695 err = visit(&m->name_off, ctx); 4696 if (err) 4697 return err; 4698 } 4699 break; 4700 } 4701 case BTF_KIND_ENUM: { 4702 struct btf_enum *m = btf_enum(t); 4703 4704 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4705 err = visit(&m->name_off, ctx); 4706 if (err) 4707 return err; 4708 } 4709 break; 4710 } 4711 case BTF_KIND_FUNC_PROTO: { 4712 struct btf_param *m = btf_params(t); 4713 4714 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4715 err = visit(&m->name_off, ctx); 4716 if (err) 4717 return err; 4718 } 4719 break; 4720 } 4721 default: 4722 break; 4723 } 4724 4725 return 0; 4726 } 4727 4728 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4729 { 4730 const struct btf_ext_info *seg; 4731 struct btf_ext_info_sec *sec; 4732 int i, err; 4733 4734 seg = &btf_ext->func_info; 4735 for_each_btf_ext_sec(seg, sec) { 4736 struct bpf_func_info_min *rec; 4737 4738 for_each_btf_ext_rec(seg, sec, i, rec) { 4739 err = visit(&rec->type_id, ctx); 4740 if (err < 0) 4741 return err; 4742 } 4743 } 4744 4745 seg = &btf_ext->core_relo_info; 4746 for_each_btf_ext_sec(seg, sec) { 4747 struct bpf_core_relo *rec; 4748 4749 for_each_btf_ext_rec(seg, sec, i, rec) { 4750 err = visit(&rec->type_id, ctx); 4751 if (err < 0) 4752 return err; 4753 } 4754 } 4755 4756 return 0; 4757 } 4758 4759 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4760 { 4761 const struct btf_ext_info *seg; 4762 struct btf_ext_info_sec *sec; 4763 int i, err; 4764 4765 seg = &btf_ext->func_info; 4766 for_each_btf_ext_sec(seg, sec) { 4767 err = visit(&sec->sec_name_off, ctx); 4768 if (err) 4769 return err; 4770 } 4771 4772 seg = &btf_ext->line_info; 4773 for_each_btf_ext_sec(seg, sec) { 4774 struct bpf_line_info_min *rec; 4775 4776 err = visit(&sec->sec_name_off, ctx); 4777 if (err) 4778 return err; 4779 4780 for_each_btf_ext_rec(seg, sec, i, rec) { 4781 err = visit(&rec->file_name_off, ctx); 4782 if (err) 4783 return err; 4784 err = visit(&rec->line_off, ctx); 4785 if (err) 4786 return err; 4787 } 4788 } 4789 4790 seg = &btf_ext->core_relo_info; 4791 for_each_btf_ext_sec(seg, sec) { 4792 struct bpf_core_relo *rec; 4793 4794 err = visit(&sec->sec_name_off, ctx); 4795 if (err) 4796 return err; 4797 4798 for_each_btf_ext_rec(seg, sec, i, rec) { 4799 err = visit(&rec->access_str_off, ctx); 4800 if (err) 4801 return err; 4802 } 4803 } 4804 4805 return 0; 4806 } 4807