xref: /openbmc/linux/tools/lib/bpf/btf.c (revision bef7a78d)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 
25 #define BTF_MAX_NR_TYPES 0x7fffffffU
26 #define BTF_MAX_STR_OFFSET 0x7fffffffU
27 
28 static struct btf_type btf_void;
29 
30 struct btf {
31 	/* raw BTF data in native endianness */
32 	void *raw_data;
33 	/* raw BTF data in non-native endianness */
34 	void *raw_data_swapped;
35 	__u32 raw_size;
36 	/* whether target endianness differs from the native one */
37 	bool swapped_endian;
38 
39 	/*
40 	 * When BTF is loaded from an ELF or raw memory it is stored
41 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
42 	 * point inside that memory region to their respective parts of BTF
43 	 * representation:
44 	 *
45 	 * +--------------------------------+
46 	 * |  Header  |  Types  |  Strings  |
47 	 * +--------------------------------+
48 	 * ^          ^         ^
49 	 * |          |         |
50 	 * hdr        |         |
51 	 * types_data-+         |
52 	 * strs_data------------+
53 	 *
54 	 * If BTF data is later modified, e.g., due to types added or
55 	 * removed, BTF deduplication performed, etc, this contiguous
56 	 * representation is broken up into three independently allocated
57 	 * memory regions to be able to modify them independently.
58 	 * raw_data is nulled out at that point, but can be later allocated
59 	 * and cached again if user calls btf__get_raw_data(), at which point
60 	 * raw_data will contain a contiguous copy of header, types, and
61 	 * strings:
62 	 *
63 	 * +----------+  +---------+  +-----------+
64 	 * |  Header  |  |  Types  |  |  Strings  |
65 	 * +----------+  +---------+  +-----------+
66 	 * ^             ^            ^
67 	 * |             |            |
68 	 * hdr           |            |
69 	 * types_data----+            |
70 	 * strs_data------------------+
71 	 *
72 	 *               +----------+---------+-----------+
73 	 *               |  Header  |  Types  |  Strings  |
74 	 * raw_data----->+----------+---------+-----------+
75 	 */
76 	struct btf_header *hdr;
77 
78 	void *types_data;
79 	size_t types_data_cap; /* used size stored in hdr->type_len */
80 
81 	/* type ID to `struct btf_type *` lookup index
82 	 * type_offs[0] corresponds to the first non-VOID type:
83 	 *   - for base BTF it's type [1];
84 	 *   - for split BTF it's the first non-base BTF type.
85 	 */
86 	__u32 *type_offs;
87 	size_t type_offs_cap;
88 	/* number of types in this BTF instance:
89 	 *   - doesn't include special [0] void type;
90 	 *   - for split BTF counts number of types added on top of base BTF.
91 	 */
92 	__u32 nr_types;
93 	/* if not NULL, points to the base BTF on top of which the current
94 	 * split BTF is based
95 	 */
96 	struct btf *base_btf;
97 	/* BTF type ID of the first type in this BTF instance:
98 	 *   - for base BTF it's equal to 1;
99 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
100 	 */
101 	int start_id;
102 	/* logical string offset of this BTF instance:
103 	 *   - for base BTF it's equal to 0;
104 	 *   - for split BTF it's equal to total size of base BTF's string section size.
105 	 */
106 	int start_str_off;
107 
108 	void *strs_data;
109 	size_t strs_data_cap; /* used size stored in hdr->str_len */
110 
111 	/* lookup index for each unique string in strings section */
112 	struct hashmap *strs_hash;
113 	/* whether strings are already deduplicated */
114 	bool strs_deduped;
115 	/* extra indirection layer to make strings hashmap work with stable
116 	 * string offsets and ability to transparently choose between
117 	 * btf->strs_data or btf_dedup->strs_data as a source of strings.
118 	 * This is used for BTF strings dedup to transfer deduplicated strings
119 	 * data back to struct btf without re-building strings index.
120 	 */
121 	void **strs_data_ptr;
122 
123 	/* BTF object FD, if loaded into kernel */
124 	int fd;
125 
126 	/* Pointer size (in bytes) for a target architecture of this BTF */
127 	int ptr_sz;
128 };
129 
130 static inline __u64 ptr_to_u64(const void *ptr)
131 {
132 	return (__u64) (unsigned long) ptr;
133 }
134 
135 /* Ensure given dynamically allocated memory region pointed to by *data* with
136  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
137  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
138  * are already used. At most *max_cnt* elements can be ever allocated.
139  * If necessary, memory is reallocated and all existing data is copied over,
140  * new pointer to the memory region is stored at *data, new memory region
141  * capacity (in number of elements) is stored in *cap.
142  * On success, memory pointer to the beginning of unused memory is returned.
143  * On error, NULL is returned.
144  */
145 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
146 		  size_t cur_cnt, size_t max_cnt, size_t add_cnt)
147 {
148 	size_t new_cnt;
149 	void *new_data;
150 
151 	if (cur_cnt + add_cnt <= *cap_cnt)
152 		return *data + cur_cnt * elem_sz;
153 
154 	/* requested more than the set limit */
155 	if (cur_cnt + add_cnt > max_cnt)
156 		return NULL;
157 
158 	new_cnt = *cap_cnt;
159 	new_cnt += new_cnt / 4;		  /* expand by 25% */
160 	if (new_cnt < 16)		  /* but at least 16 elements */
161 		new_cnt = 16;
162 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
163 		new_cnt = max_cnt;
164 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
165 		new_cnt = cur_cnt + add_cnt;
166 
167 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
168 	if (!new_data)
169 		return NULL;
170 
171 	/* zero out newly allocated portion of memory */
172 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
173 
174 	*data = new_data;
175 	*cap_cnt = new_cnt;
176 	return new_data + cur_cnt * elem_sz;
177 }
178 
179 /* Ensure given dynamically allocated memory region has enough allocated space
180  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
181  */
182 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
183 {
184 	void *p;
185 
186 	if (need_cnt <= *cap_cnt)
187 		return 0;
188 
189 	p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
190 	if (!p)
191 		return -ENOMEM;
192 
193 	return 0;
194 }
195 
196 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
197 {
198 	__u32 *p;
199 
200 	p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
201 			btf->nr_types, BTF_MAX_NR_TYPES, 1);
202 	if (!p)
203 		return -ENOMEM;
204 
205 	*p = type_off;
206 	return 0;
207 }
208 
209 static void btf_bswap_hdr(struct btf_header *h)
210 {
211 	h->magic = bswap_16(h->magic);
212 	h->hdr_len = bswap_32(h->hdr_len);
213 	h->type_off = bswap_32(h->type_off);
214 	h->type_len = bswap_32(h->type_len);
215 	h->str_off = bswap_32(h->str_off);
216 	h->str_len = bswap_32(h->str_len);
217 }
218 
219 static int btf_parse_hdr(struct btf *btf)
220 {
221 	struct btf_header *hdr = btf->hdr;
222 	__u32 meta_left;
223 
224 	if (btf->raw_size < sizeof(struct btf_header)) {
225 		pr_debug("BTF header not found\n");
226 		return -EINVAL;
227 	}
228 
229 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
230 		btf->swapped_endian = true;
231 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
232 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
233 				bswap_32(hdr->hdr_len));
234 			return -ENOTSUP;
235 		}
236 		btf_bswap_hdr(hdr);
237 	} else if (hdr->magic != BTF_MAGIC) {
238 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
239 		return -EINVAL;
240 	}
241 
242 	meta_left = btf->raw_size - sizeof(*hdr);
243 	if (!meta_left) {
244 		pr_debug("BTF has no data\n");
245 		return -EINVAL;
246 	}
247 
248 	if (meta_left < hdr->str_off + hdr->str_len) {
249 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
250 		return -EINVAL;
251 	}
252 
253 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
254 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
255 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
256 		return -EINVAL;
257 	}
258 
259 	if (hdr->type_off % 4) {
260 		pr_debug("BTF type section is not aligned to 4 bytes\n");
261 		return -EINVAL;
262 	}
263 
264 	return 0;
265 }
266 
267 static int btf_parse_str_sec(struct btf *btf)
268 {
269 	const struct btf_header *hdr = btf->hdr;
270 	const char *start = btf->strs_data;
271 	const char *end = start + btf->hdr->str_len;
272 
273 	if (btf->base_btf && hdr->str_len == 0)
274 		return 0;
275 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
276 		pr_debug("Invalid BTF string section\n");
277 		return -EINVAL;
278 	}
279 	if (!btf->base_btf && start[0]) {
280 		pr_debug("Invalid BTF string section\n");
281 		return -EINVAL;
282 	}
283 	return 0;
284 }
285 
286 static int btf_type_size(const struct btf_type *t)
287 {
288 	const int base_size = sizeof(struct btf_type);
289 	__u16 vlen = btf_vlen(t);
290 
291 	switch (btf_kind(t)) {
292 	case BTF_KIND_FWD:
293 	case BTF_KIND_CONST:
294 	case BTF_KIND_VOLATILE:
295 	case BTF_KIND_RESTRICT:
296 	case BTF_KIND_PTR:
297 	case BTF_KIND_TYPEDEF:
298 	case BTF_KIND_FUNC:
299 		return base_size;
300 	case BTF_KIND_INT:
301 		return base_size + sizeof(__u32);
302 	case BTF_KIND_ENUM:
303 		return base_size + vlen * sizeof(struct btf_enum);
304 	case BTF_KIND_ARRAY:
305 		return base_size + sizeof(struct btf_array);
306 	case BTF_KIND_STRUCT:
307 	case BTF_KIND_UNION:
308 		return base_size + vlen * sizeof(struct btf_member);
309 	case BTF_KIND_FUNC_PROTO:
310 		return base_size + vlen * sizeof(struct btf_param);
311 	case BTF_KIND_VAR:
312 		return base_size + sizeof(struct btf_var);
313 	case BTF_KIND_DATASEC:
314 		return base_size + vlen * sizeof(struct btf_var_secinfo);
315 	default:
316 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
317 		return -EINVAL;
318 	}
319 }
320 
321 static void btf_bswap_type_base(struct btf_type *t)
322 {
323 	t->name_off = bswap_32(t->name_off);
324 	t->info = bswap_32(t->info);
325 	t->type = bswap_32(t->type);
326 }
327 
328 static int btf_bswap_type_rest(struct btf_type *t)
329 {
330 	struct btf_var_secinfo *v;
331 	struct btf_member *m;
332 	struct btf_array *a;
333 	struct btf_param *p;
334 	struct btf_enum *e;
335 	__u16 vlen = btf_vlen(t);
336 	int i;
337 
338 	switch (btf_kind(t)) {
339 	case BTF_KIND_FWD:
340 	case BTF_KIND_CONST:
341 	case BTF_KIND_VOLATILE:
342 	case BTF_KIND_RESTRICT:
343 	case BTF_KIND_PTR:
344 	case BTF_KIND_TYPEDEF:
345 	case BTF_KIND_FUNC:
346 		return 0;
347 	case BTF_KIND_INT:
348 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
349 		return 0;
350 	case BTF_KIND_ENUM:
351 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
352 			e->name_off = bswap_32(e->name_off);
353 			e->val = bswap_32(e->val);
354 		}
355 		return 0;
356 	case BTF_KIND_ARRAY:
357 		a = btf_array(t);
358 		a->type = bswap_32(a->type);
359 		a->index_type = bswap_32(a->index_type);
360 		a->nelems = bswap_32(a->nelems);
361 		return 0;
362 	case BTF_KIND_STRUCT:
363 	case BTF_KIND_UNION:
364 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
365 			m->name_off = bswap_32(m->name_off);
366 			m->type = bswap_32(m->type);
367 			m->offset = bswap_32(m->offset);
368 		}
369 		return 0;
370 	case BTF_KIND_FUNC_PROTO:
371 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
372 			p->name_off = bswap_32(p->name_off);
373 			p->type = bswap_32(p->type);
374 		}
375 		return 0;
376 	case BTF_KIND_VAR:
377 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
378 		return 0;
379 	case BTF_KIND_DATASEC:
380 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
381 			v->type = bswap_32(v->type);
382 			v->offset = bswap_32(v->offset);
383 			v->size = bswap_32(v->size);
384 		}
385 		return 0;
386 	default:
387 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
388 		return -EINVAL;
389 	}
390 }
391 
392 static int btf_parse_type_sec(struct btf *btf)
393 {
394 	struct btf_header *hdr = btf->hdr;
395 	void *next_type = btf->types_data;
396 	void *end_type = next_type + hdr->type_len;
397 	int err, type_size;
398 
399 	while (next_type + sizeof(struct btf_type) <= end_type) {
400 		if (btf->swapped_endian)
401 			btf_bswap_type_base(next_type);
402 
403 		type_size = btf_type_size(next_type);
404 		if (type_size < 0)
405 			return type_size;
406 		if (next_type + type_size > end_type) {
407 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
408 			return -EINVAL;
409 		}
410 
411 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
412 			return -EINVAL;
413 
414 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
415 		if (err)
416 			return err;
417 
418 		next_type += type_size;
419 		btf->nr_types++;
420 	}
421 
422 	if (next_type != end_type) {
423 		pr_warn("BTF types data is malformed\n");
424 		return -EINVAL;
425 	}
426 
427 	return 0;
428 }
429 
430 __u32 btf__get_nr_types(const struct btf *btf)
431 {
432 	return btf->start_id + btf->nr_types - 1;
433 }
434 
435 const struct btf *btf__base_btf(const struct btf *btf)
436 {
437 	return btf->base_btf;
438 }
439 
440 /* internal helper returning non-const pointer to a type */
441 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
442 {
443 	if (type_id == 0)
444 		return &btf_void;
445 	if (type_id < btf->start_id)
446 		return btf_type_by_id(btf->base_btf, type_id);
447 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
448 }
449 
450 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
451 {
452 	if (type_id >= btf->start_id + btf->nr_types)
453 		return NULL;
454 	return btf_type_by_id((struct btf *)btf, type_id);
455 }
456 
457 static int determine_ptr_size(const struct btf *btf)
458 {
459 	const struct btf_type *t;
460 	const char *name;
461 	int i, n;
462 
463 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
464 		return btf->base_btf->ptr_sz;
465 
466 	n = btf__get_nr_types(btf);
467 	for (i = 1; i <= n; i++) {
468 		t = btf__type_by_id(btf, i);
469 		if (!btf_is_int(t))
470 			continue;
471 
472 		name = btf__name_by_offset(btf, t->name_off);
473 		if (!name)
474 			continue;
475 
476 		if (strcmp(name, "long int") == 0 ||
477 		    strcmp(name, "long unsigned int") == 0) {
478 			if (t->size != 4 && t->size != 8)
479 				continue;
480 			return t->size;
481 		}
482 	}
483 
484 	return -1;
485 }
486 
487 static size_t btf_ptr_sz(const struct btf *btf)
488 {
489 	if (!btf->ptr_sz)
490 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
491 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
492 }
493 
494 /* Return pointer size this BTF instance assumes. The size is heuristically
495  * determined by looking for 'long' or 'unsigned long' integer type and
496  * recording its size in bytes. If BTF type information doesn't have any such
497  * type, this function returns 0. In the latter case, native architecture's
498  * pointer size is assumed, so will be either 4 or 8, depending on
499  * architecture that libbpf was compiled for. It's possible to override
500  * guessed value by using btf__set_pointer_size() API.
501  */
502 size_t btf__pointer_size(const struct btf *btf)
503 {
504 	if (!btf->ptr_sz)
505 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
506 
507 	if (btf->ptr_sz < 0)
508 		/* not enough BTF type info to guess */
509 		return 0;
510 
511 	return btf->ptr_sz;
512 }
513 
514 /* Override or set pointer size in bytes. Only values of 4 and 8 are
515  * supported.
516  */
517 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
518 {
519 	if (ptr_sz != 4 && ptr_sz != 8)
520 		return -EINVAL;
521 	btf->ptr_sz = ptr_sz;
522 	return 0;
523 }
524 
525 static bool is_host_big_endian(void)
526 {
527 #if __BYTE_ORDER == __LITTLE_ENDIAN
528 	return false;
529 #elif __BYTE_ORDER == __BIG_ENDIAN
530 	return true;
531 #else
532 # error "Unrecognized __BYTE_ORDER__"
533 #endif
534 }
535 
536 enum btf_endianness btf__endianness(const struct btf *btf)
537 {
538 	if (is_host_big_endian())
539 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
540 	else
541 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
542 }
543 
544 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
545 {
546 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
547 		return -EINVAL;
548 
549 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
550 	if (!btf->swapped_endian) {
551 		free(btf->raw_data_swapped);
552 		btf->raw_data_swapped = NULL;
553 	}
554 	return 0;
555 }
556 
557 static bool btf_type_is_void(const struct btf_type *t)
558 {
559 	return t == &btf_void || btf_is_fwd(t);
560 }
561 
562 static bool btf_type_is_void_or_null(const struct btf_type *t)
563 {
564 	return !t || btf_type_is_void(t);
565 }
566 
567 #define MAX_RESOLVE_DEPTH 32
568 
569 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
570 {
571 	const struct btf_array *array;
572 	const struct btf_type *t;
573 	__u32 nelems = 1;
574 	__s64 size = -1;
575 	int i;
576 
577 	t = btf__type_by_id(btf, type_id);
578 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
579 	     i++) {
580 		switch (btf_kind(t)) {
581 		case BTF_KIND_INT:
582 		case BTF_KIND_STRUCT:
583 		case BTF_KIND_UNION:
584 		case BTF_KIND_ENUM:
585 		case BTF_KIND_DATASEC:
586 			size = t->size;
587 			goto done;
588 		case BTF_KIND_PTR:
589 			size = btf_ptr_sz(btf);
590 			goto done;
591 		case BTF_KIND_TYPEDEF:
592 		case BTF_KIND_VOLATILE:
593 		case BTF_KIND_CONST:
594 		case BTF_KIND_RESTRICT:
595 		case BTF_KIND_VAR:
596 			type_id = t->type;
597 			break;
598 		case BTF_KIND_ARRAY:
599 			array = btf_array(t);
600 			if (nelems && array->nelems > UINT32_MAX / nelems)
601 				return -E2BIG;
602 			nelems *= array->nelems;
603 			type_id = array->type;
604 			break;
605 		default:
606 			return -EINVAL;
607 		}
608 
609 		t = btf__type_by_id(btf, type_id);
610 	}
611 
612 done:
613 	if (size < 0)
614 		return -EINVAL;
615 	if (nelems && size > UINT32_MAX / nelems)
616 		return -E2BIG;
617 
618 	return nelems * size;
619 }
620 
621 int btf__align_of(const struct btf *btf, __u32 id)
622 {
623 	const struct btf_type *t = btf__type_by_id(btf, id);
624 	__u16 kind = btf_kind(t);
625 
626 	switch (kind) {
627 	case BTF_KIND_INT:
628 	case BTF_KIND_ENUM:
629 		return min(btf_ptr_sz(btf), (size_t)t->size);
630 	case BTF_KIND_PTR:
631 		return btf_ptr_sz(btf);
632 	case BTF_KIND_TYPEDEF:
633 	case BTF_KIND_VOLATILE:
634 	case BTF_KIND_CONST:
635 	case BTF_KIND_RESTRICT:
636 		return btf__align_of(btf, t->type);
637 	case BTF_KIND_ARRAY:
638 		return btf__align_of(btf, btf_array(t)->type);
639 	case BTF_KIND_STRUCT:
640 	case BTF_KIND_UNION: {
641 		const struct btf_member *m = btf_members(t);
642 		__u16 vlen = btf_vlen(t);
643 		int i, max_align = 1, align;
644 
645 		for (i = 0; i < vlen; i++, m++) {
646 			align = btf__align_of(btf, m->type);
647 			if (align <= 0)
648 				return align;
649 			max_align = max(max_align, align);
650 		}
651 
652 		return max_align;
653 	}
654 	default:
655 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
656 		return 0;
657 	}
658 }
659 
660 int btf__resolve_type(const struct btf *btf, __u32 type_id)
661 {
662 	const struct btf_type *t;
663 	int depth = 0;
664 
665 	t = btf__type_by_id(btf, type_id);
666 	while (depth < MAX_RESOLVE_DEPTH &&
667 	       !btf_type_is_void_or_null(t) &&
668 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
669 		type_id = t->type;
670 		t = btf__type_by_id(btf, type_id);
671 		depth++;
672 	}
673 
674 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
675 		return -EINVAL;
676 
677 	return type_id;
678 }
679 
680 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
681 {
682 	__u32 i, nr_types = btf__get_nr_types(btf);
683 
684 	if (!strcmp(type_name, "void"))
685 		return 0;
686 
687 	for (i = 1; i <= nr_types; i++) {
688 		const struct btf_type *t = btf__type_by_id(btf, i);
689 		const char *name = btf__name_by_offset(btf, t->name_off);
690 
691 		if (name && !strcmp(type_name, name))
692 			return i;
693 	}
694 
695 	return -ENOENT;
696 }
697 
698 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
699 			     __u32 kind)
700 {
701 	__u32 i, nr_types = btf__get_nr_types(btf);
702 
703 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
704 		return 0;
705 
706 	for (i = 1; i <= nr_types; i++) {
707 		const struct btf_type *t = btf__type_by_id(btf, i);
708 		const char *name;
709 
710 		if (btf_kind(t) != kind)
711 			continue;
712 		name = btf__name_by_offset(btf, t->name_off);
713 		if (name && !strcmp(type_name, name))
714 			return i;
715 	}
716 
717 	return -ENOENT;
718 }
719 
720 static bool btf_is_modifiable(const struct btf *btf)
721 {
722 	return (void *)btf->hdr != btf->raw_data;
723 }
724 
725 void btf__free(struct btf *btf)
726 {
727 	if (IS_ERR_OR_NULL(btf))
728 		return;
729 
730 	if (btf->fd >= 0)
731 		close(btf->fd);
732 
733 	if (btf_is_modifiable(btf)) {
734 		/* if BTF was modified after loading, it will have a split
735 		 * in-memory representation for header, types, and strings
736 		 * sections, so we need to free all of them individually. It
737 		 * might still have a cached contiguous raw data present,
738 		 * which will be unconditionally freed below.
739 		 */
740 		free(btf->hdr);
741 		free(btf->types_data);
742 		free(btf->strs_data);
743 	}
744 	free(btf->raw_data);
745 	free(btf->raw_data_swapped);
746 	free(btf->type_offs);
747 	free(btf);
748 }
749 
750 static struct btf *btf_new_empty(struct btf *base_btf)
751 {
752 	struct btf *btf;
753 
754 	btf = calloc(1, sizeof(*btf));
755 	if (!btf)
756 		return ERR_PTR(-ENOMEM);
757 
758 	btf->nr_types = 0;
759 	btf->start_id = 1;
760 	btf->start_str_off = 0;
761 	btf->fd = -1;
762 	btf->ptr_sz = sizeof(void *);
763 	btf->swapped_endian = false;
764 
765 	if (base_btf) {
766 		btf->base_btf = base_btf;
767 		btf->start_id = btf__get_nr_types(base_btf) + 1;
768 		btf->start_str_off = base_btf->hdr->str_len;
769 	}
770 
771 	/* +1 for empty string at offset 0 */
772 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
773 	btf->raw_data = calloc(1, btf->raw_size);
774 	if (!btf->raw_data) {
775 		free(btf);
776 		return ERR_PTR(-ENOMEM);
777 	}
778 
779 	btf->hdr = btf->raw_data;
780 	btf->hdr->hdr_len = sizeof(struct btf_header);
781 	btf->hdr->magic = BTF_MAGIC;
782 	btf->hdr->version = BTF_VERSION;
783 
784 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
785 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
786 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
787 
788 	return btf;
789 }
790 
791 struct btf *btf__new_empty(void)
792 {
793 	return btf_new_empty(NULL);
794 }
795 
796 struct btf *btf__new_empty_split(struct btf *base_btf)
797 {
798 	return btf_new_empty(base_btf);
799 }
800 
801 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
802 {
803 	struct btf *btf;
804 	int err;
805 
806 	btf = calloc(1, sizeof(struct btf));
807 	if (!btf)
808 		return ERR_PTR(-ENOMEM);
809 
810 	btf->nr_types = 0;
811 	btf->start_id = 1;
812 	btf->start_str_off = 0;
813 
814 	if (base_btf) {
815 		btf->base_btf = base_btf;
816 		btf->start_id = btf__get_nr_types(base_btf) + 1;
817 		btf->start_str_off = base_btf->hdr->str_len;
818 	}
819 
820 	btf->raw_data = malloc(size);
821 	if (!btf->raw_data) {
822 		err = -ENOMEM;
823 		goto done;
824 	}
825 	memcpy(btf->raw_data, data, size);
826 	btf->raw_size = size;
827 
828 	btf->hdr = btf->raw_data;
829 	err = btf_parse_hdr(btf);
830 	if (err)
831 		goto done;
832 
833 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
834 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
835 
836 	err = btf_parse_str_sec(btf);
837 	err = err ?: btf_parse_type_sec(btf);
838 	if (err)
839 		goto done;
840 
841 	btf->fd = -1;
842 
843 done:
844 	if (err) {
845 		btf__free(btf);
846 		return ERR_PTR(err);
847 	}
848 
849 	return btf;
850 }
851 
852 struct btf *btf__new(const void *data, __u32 size)
853 {
854 	return btf_new(data, size, NULL);
855 }
856 
857 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
858 				 struct btf_ext **btf_ext)
859 {
860 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
861 	int err = 0, fd = -1, idx = 0;
862 	struct btf *btf = NULL;
863 	Elf_Scn *scn = NULL;
864 	Elf *elf = NULL;
865 	GElf_Ehdr ehdr;
866 
867 	if (elf_version(EV_CURRENT) == EV_NONE) {
868 		pr_warn("failed to init libelf for %s\n", path);
869 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
870 	}
871 
872 	fd = open(path, O_RDONLY);
873 	if (fd < 0) {
874 		err = -errno;
875 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
876 		return ERR_PTR(err);
877 	}
878 
879 	err = -LIBBPF_ERRNO__FORMAT;
880 
881 	elf = elf_begin(fd, ELF_C_READ, NULL);
882 	if (!elf) {
883 		pr_warn("failed to open %s as ELF file\n", path);
884 		goto done;
885 	}
886 	if (!gelf_getehdr(elf, &ehdr)) {
887 		pr_warn("failed to get EHDR from %s\n", path);
888 		goto done;
889 	}
890 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
891 		pr_warn("failed to get e_shstrndx from %s\n", path);
892 		goto done;
893 	}
894 
895 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
896 		GElf_Shdr sh;
897 		char *name;
898 
899 		idx++;
900 		if (gelf_getshdr(scn, &sh) != &sh) {
901 			pr_warn("failed to get section(%d) header from %s\n",
902 				idx, path);
903 			goto done;
904 		}
905 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
906 		if (!name) {
907 			pr_warn("failed to get section(%d) name from %s\n",
908 				idx, path);
909 			goto done;
910 		}
911 		if (strcmp(name, BTF_ELF_SEC) == 0) {
912 			btf_data = elf_getdata(scn, 0);
913 			if (!btf_data) {
914 				pr_warn("failed to get section(%d, %s) data from %s\n",
915 					idx, name, path);
916 				goto done;
917 			}
918 			continue;
919 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
920 			btf_ext_data = elf_getdata(scn, 0);
921 			if (!btf_ext_data) {
922 				pr_warn("failed to get section(%d, %s) data from %s\n",
923 					idx, name, path);
924 				goto done;
925 			}
926 			continue;
927 		}
928 	}
929 
930 	err = 0;
931 
932 	if (!btf_data) {
933 		err = -ENOENT;
934 		goto done;
935 	}
936 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
937 	if (IS_ERR(btf))
938 		goto done;
939 
940 	switch (gelf_getclass(elf)) {
941 	case ELFCLASS32:
942 		btf__set_pointer_size(btf, 4);
943 		break;
944 	case ELFCLASS64:
945 		btf__set_pointer_size(btf, 8);
946 		break;
947 	default:
948 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
949 		break;
950 	}
951 
952 	if (btf_ext && btf_ext_data) {
953 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
954 					btf_ext_data->d_size);
955 		if (IS_ERR(*btf_ext))
956 			goto done;
957 	} else if (btf_ext) {
958 		*btf_ext = NULL;
959 	}
960 done:
961 	if (elf)
962 		elf_end(elf);
963 	close(fd);
964 
965 	if (err)
966 		return ERR_PTR(err);
967 	/*
968 	 * btf is always parsed before btf_ext, so no need to clean up
969 	 * btf_ext, if btf loading failed
970 	 */
971 	if (IS_ERR(btf))
972 		return btf;
973 	if (btf_ext && IS_ERR(*btf_ext)) {
974 		btf__free(btf);
975 		err = PTR_ERR(*btf_ext);
976 		return ERR_PTR(err);
977 	}
978 	return btf;
979 }
980 
981 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
982 {
983 	return btf_parse_elf(path, NULL, btf_ext);
984 }
985 
986 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
987 {
988 	return btf_parse_elf(path, base_btf, NULL);
989 }
990 
991 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
992 {
993 	struct btf *btf = NULL;
994 	void *data = NULL;
995 	FILE *f = NULL;
996 	__u16 magic;
997 	int err = 0;
998 	long sz;
999 
1000 	f = fopen(path, "rb");
1001 	if (!f) {
1002 		err = -errno;
1003 		goto err_out;
1004 	}
1005 
1006 	/* check BTF magic */
1007 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1008 		err = -EIO;
1009 		goto err_out;
1010 	}
1011 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1012 		/* definitely not a raw BTF */
1013 		err = -EPROTO;
1014 		goto err_out;
1015 	}
1016 
1017 	/* get file size */
1018 	if (fseek(f, 0, SEEK_END)) {
1019 		err = -errno;
1020 		goto err_out;
1021 	}
1022 	sz = ftell(f);
1023 	if (sz < 0) {
1024 		err = -errno;
1025 		goto err_out;
1026 	}
1027 	/* rewind to the start */
1028 	if (fseek(f, 0, SEEK_SET)) {
1029 		err = -errno;
1030 		goto err_out;
1031 	}
1032 
1033 	/* pre-alloc memory and read all of BTF data */
1034 	data = malloc(sz);
1035 	if (!data) {
1036 		err = -ENOMEM;
1037 		goto err_out;
1038 	}
1039 	if (fread(data, 1, sz, f) < sz) {
1040 		err = -EIO;
1041 		goto err_out;
1042 	}
1043 
1044 	/* finally parse BTF data */
1045 	btf = btf_new(data, sz, base_btf);
1046 
1047 err_out:
1048 	free(data);
1049 	if (f)
1050 		fclose(f);
1051 	return err ? ERR_PTR(err) : btf;
1052 }
1053 
1054 struct btf *btf__parse_raw(const char *path)
1055 {
1056 	return btf_parse_raw(path, NULL);
1057 }
1058 
1059 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1060 {
1061 	return btf_parse_raw(path, base_btf);
1062 }
1063 
1064 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1065 {
1066 	struct btf *btf;
1067 
1068 	if (btf_ext)
1069 		*btf_ext = NULL;
1070 
1071 	btf = btf_parse_raw(path, base_btf);
1072 	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
1073 		return btf;
1074 
1075 	return btf_parse_elf(path, base_btf, btf_ext);
1076 }
1077 
1078 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1079 {
1080 	return btf_parse(path, NULL, btf_ext);
1081 }
1082 
1083 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1084 {
1085 	return btf_parse(path, base_btf, NULL);
1086 }
1087 
1088 static int compare_vsi_off(const void *_a, const void *_b)
1089 {
1090 	const struct btf_var_secinfo *a = _a;
1091 	const struct btf_var_secinfo *b = _b;
1092 
1093 	return a->offset - b->offset;
1094 }
1095 
1096 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1097 			     struct btf_type *t)
1098 {
1099 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1100 	const char *name = btf__name_by_offset(btf, t->name_off);
1101 	const struct btf_type *t_var;
1102 	struct btf_var_secinfo *vsi;
1103 	const struct btf_var *var;
1104 	int ret;
1105 
1106 	if (!name) {
1107 		pr_debug("No name found in string section for DATASEC kind.\n");
1108 		return -ENOENT;
1109 	}
1110 
1111 	/* .extern datasec size and var offsets were set correctly during
1112 	 * extern collection step, so just skip straight to sorting variables
1113 	 */
1114 	if (t->size)
1115 		goto sort_vars;
1116 
1117 	ret = bpf_object__section_size(obj, name, &size);
1118 	if (ret || !size || (t->size && t->size != size)) {
1119 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1120 		return -ENOENT;
1121 	}
1122 
1123 	t->size = size;
1124 
1125 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1126 		t_var = btf__type_by_id(btf, vsi->type);
1127 		var = btf_var(t_var);
1128 
1129 		if (!btf_is_var(t_var)) {
1130 			pr_debug("Non-VAR type seen in section %s\n", name);
1131 			return -EINVAL;
1132 		}
1133 
1134 		if (var->linkage == BTF_VAR_STATIC)
1135 			continue;
1136 
1137 		name = btf__name_by_offset(btf, t_var->name_off);
1138 		if (!name) {
1139 			pr_debug("No name found in string section for VAR kind\n");
1140 			return -ENOENT;
1141 		}
1142 
1143 		ret = bpf_object__variable_offset(obj, name, &off);
1144 		if (ret) {
1145 			pr_debug("No offset found in symbol table for VAR %s\n",
1146 				 name);
1147 			return -ENOENT;
1148 		}
1149 
1150 		vsi->offset = off;
1151 	}
1152 
1153 sort_vars:
1154 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1155 	return 0;
1156 }
1157 
1158 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1159 {
1160 	int err = 0;
1161 	__u32 i;
1162 
1163 	for (i = 1; i <= btf->nr_types; i++) {
1164 		struct btf_type *t = btf_type_by_id(btf, i);
1165 
1166 		/* Loader needs to fix up some of the things compiler
1167 		 * couldn't get its hands on while emitting BTF. This
1168 		 * is section size and global variable offset. We use
1169 		 * the info from the ELF itself for this purpose.
1170 		 */
1171 		if (btf_is_datasec(t)) {
1172 			err = btf_fixup_datasec(obj, btf, t);
1173 			if (err)
1174 				break;
1175 		}
1176 	}
1177 
1178 	return err;
1179 }
1180 
1181 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1182 
1183 int btf__load(struct btf *btf)
1184 {
1185 	__u32 log_buf_size = 0, raw_size;
1186 	char *log_buf = NULL;
1187 	void *raw_data;
1188 	int err = 0;
1189 
1190 	if (btf->fd >= 0)
1191 		return -EEXIST;
1192 
1193 retry_load:
1194 	if (log_buf_size) {
1195 		log_buf = malloc(log_buf_size);
1196 		if (!log_buf)
1197 			return -ENOMEM;
1198 
1199 		*log_buf = 0;
1200 	}
1201 
1202 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1203 	if (!raw_data) {
1204 		err = -ENOMEM;
1205 		goto done;
1206 	}
1207 	/* cache native raw data representation */
1208 	btf->raw_size = raw_size;
1209 	btf->raw_data = raw_data;
1210 
1211 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1212 	if (btf->fd < 0) {
1213 		if (!log_buf || errno == ENOSPC) {
1214 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1215 					   log_buf_size << 1);
1216 			free(log_buf);
1217 			goto retry_load;
1218 		}
1219 
1220 		err = -errno;
1221 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1222 		if (*log_buf)
1223 			pr_warn("%s\n", log_buf);
1224 		goto done;
1225 	}
1226 
1227 done:
1228 	free(log_buf);
1229 	return err;
1230 }
1231 
1232 int btf__fd(const struct btf *btf)
1233 {
1234 	return btf->fd;
1235 }
1236 
1237 void btf__set_fd(struct btf *btf, int fd)
1238 {
1239 	btf->fd = fd;
1240 }
1241 
1242 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1243 {
1244 	struct btf_header *hdr = btf->hdr;
1245 	struct btf_type *t;
1246 	void *data, *p;
1247 	__u32 data_sz;
1248 	int i;
1249 
1250 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1251 	if (data) {
1252 		*size = btf->raw_size;
1253 		return data;
1254 	}
1255 
1256 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1257 	data = calloc(1, data_sz);
1258 	if (!data)
1259 		return NULL;
1260 	p = data;
1261 
1262 	memcpy(p, hdr, hdr->hdr_len);
1263 	if (swap_endian)
1264 		btf_bswap_hdr(p);
1265 	p += hdr->hdr_len;
1266 
1267 	memcpy(p, btf->types_data, hdr->type_len);
1268 	if (swap_endian) {
1269 		for (i = 0; i < btf->nr_types; i++) {
1270 			t = p + btf->type_offs[i];
1271 			/* btf_bswap_type_rest() relies on native t->info, so
1272 			 * we swap base type info after we swapped all the
1273 			 * additional information
1274 			 */
1275 			if (btf_bswap_type_rest(t))
1276 				goto err_out;
1277 			btf_bswap_type_base(t);
1278 		}
1279 	}
1280 	p += hdr->type_len;
1281 
1282 	memcpy(p, btf->strs_data, hdr->str_len);
1283 	p += hdr->str_len;
1284 
1285 	*size = data_sz;
1286 	return data;
1287 err_out:
1288 	free(data);
1289 	return NULL;
1290 }
1291 
1292 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1293 {
1294 	struct btf *btf = (struct btf *)btf_ro;
1295 	__u32 data_sz;
1296 	void *data;
1297 
1298 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1299 	if (!data)
1300 		return NULL;
1301 
1302 	btf->raw_size = data_sz;
1303 	if (btf->swapped_endian)
1304 		btf->raw_data_swapped = data;
1305 	else
1306 		btf->raw_data = data;
1307 	*size = data_sz;
1308 	return data;
1309 }
1310 
1311 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1312 {
1313 	if (offset < btf->start_str_off)
1314 		return btf__str_by_offset(btf->base_btf, offset);
1315 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1316 		return btf->strs_data + (offset - btf->start_str_off);
1317 	else
1318 		return NULL;
1319 }
1320 
1321 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1322 {
1323 	return btf__str_by_offset(btf, offset);
1324 }
1325 
1326 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1327 {
1328 	struct bpf_btf_info btf_info;
1329 	__u32 len = sizeof(btf_info);
1330 	__u32 last_size;
1331 	struct btf *btf;
1332 	void *ptr;
1333 	int err;
1334 
1335 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1336 	 * let's start with a sane default - 4KiB here - and resize it only if
1337 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1338 	 */
1339 	last_size = 4096;
1340 	ptr = malloc(last_size);
1341 	if (!ptr)
1342 		return ERR_PTR(-ENOMEM);
1343 
1344 	memset(&btf_info, 0, sizeof(btf_info));
1345 	btf_info.btf = ptr_to_u64(ptr);
1346 	btf_info.btf_size = last_size;
1347 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1348 
1349 	if (!err && btf_info.btf_size > last_size) {
1350 		void *temp_ptr;
1351 
1352 		last_size = btf_info.btf_size;
1353 		temp_ptr = realloc(ptr, last_size);
1354 		if (!temp_ptr) {
1355 			btf = ERR_PTR(-ENOMEM);
1356 			goto exit_free;
1357 		}
1358 		ptr = temp_ptr;
1359 
1360 		len = sizeof(btf_info);
1361 		memset(&btf_info, 0, sizeof(btf_info));
1362 		btf_info.btf = ptr_to_u64(ptr);
1363 		btf_info.btf_size = last_size;
1364 
1365 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1366 	}
1367 
1368 	if (err || btf_info.btf_size > last_size) {
1369 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1370 		goto exit_free;
1371 	}
1372 
1373 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1374 
1375 exit_free:
1376 	free(ptr);
1377 	return btf;
1378 }
1379 
1380 int btf__get_from_id(__u32 id, struct btf **btf)
1381 {
1382 	struct btf *res;
1383 	int btf_fd;
1384 
1385 	*btf = NULL;
1386 	btf_fd = bpf_btf_get_fd_by_id(id);
1387 	if (btf_fd < 0)
1388 		return -errno;
1389 
1390 	res = btf_get_from_fd(btf_fd, NULL);
1391 	close(btf_fd);
1392 	if (IS_ERR(res))
1393 		return PTR_ERR(res);
1394 
1395 	*btf = res;
1396 	return 0;
1397 }
1398 
1399 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1400 			 __u32 expected_key_size, __u32 expected_value_size,
1401 			 __u32 *key_type_id, __u32 *value_type_id)
1402 {
1403 	const struct btf_type *container_type;
1404 	const struct btf_member *key, *value;
1405 	const size_t max_name = 256;
1406 	char container_name[max_name];
1407 	__s64 key_size, value_size;
1408 	__s32 container_id;
1409 
1410 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1411 	    max_name) {
1412 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1413 			map_name, map_name);
1414 		return -EINVAL;
1415 	}
1416 
1417 	container_id = btf__find_by_name(btf, container_name);
1418 	if (container_id < 0) {
1419 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1420 			 map_name, container_name);
1421 		return container_id;
1422 	}
1423 
1424 	container_type = btf__type_by_id(btf, container_id);
1425 	if (!container_type) {
1426 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1427 			map_name, container_id);
1428 		return -EINVAL;
1429 	}
1430 
1431 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1432 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1433 			map_name, container_name);
1434 		return -EINVAL;
1435 	}
1436 
1437 	key = btf_members(container_type);
1438 	value = key + 1;
1439 
1440 	key_size = btf__resolve_size(btf, key->type);
1441 	if (key_size < 0) {
1442 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1443 		return key_size;
1444 	}
1445 
1446 	if (expected_key_size != key_size) {
1447 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1448 			map_name, (__u32)key_size, expected_key_size);
1449 		return -EINVAL;
1450 	}
1451 
1452 	value_size = btf__resolve_size(btf, value->type);
1453 	if (value_size < 0) {
1454 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1455 		return value_size;
1456 	}
1457 
1458 	if (expected_value_size != value_size) {
1459 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1460 			map_name, (__u32)value_size, expected_value_size);
1461 		return -EINVAL;
1462 	}
1463 
1464 	*key_type_id = key->type;
1465 	*value_type_id = value->type;
1466 
1467 	return 0;
1468 }
1469 
1470 static size_t strs_hash_fn(const void *key, void *ctx)
1471 {
1472 	const struct btf *btf = ctx;
1473 	const char *strs = *btf->strs_data_ptr;
1474 	const char *str = strs + (long)key;
1475 
1476 	return str_hash(str);
1477 }
1478 
1479 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx)
1480 {
1481 	const struct btf *btf = ctx;
1482 	const char *strs = *btf->strs_data_ptr;
1483 	const char *str1 = strs + (long)key1;
1484 	const char *str2 = strs + (long)key2;
1485 
1486 	return strcmp(str1, str2) == 0;
1487 }
1488 
1489 static void btf_invalidate_raw_data(struct btf *btf)
1490 {
1491 	if (btf->raw_data) {
1492 		free(btf->raw_data);
1493 		btf->raw_data = NULL;
1494 	}
1495 	if (btf->raw_data_swapped) {
1496 		free(btf->raw_data_swapped);
1497 		btf->raw_data_swapped = NULL;
1498 	}
1499 }
1500 
1501 /* Ensure BTF is ready to be modified (by splitting into a three memory
1502  * regions for header, types, and strings). Also invalidate cached
1503  * raw_data, if any.
1504  */
1505 static int btf_ensure_modifiable(struct btf *btf)
1506 {
1507 	void *hdr, *types, *strs, *strs_end, *s;
1508 	struct hashmap *hash = NULL;
1509 	long off;
1510 	int err;
1511 
1512 	if (btf_is_modifiable(btf)) {
1513 		/* any BTF modification invalidates raw_data */
1514 		btf_invalidate_raw_data(btf);
1515 		return 0;
1516 	}
1517 
1518 	/* split raw data into three memory regions */
1519 	hdr = malloc(btf->hdr->hdr_len);
1520 	types = malloc(btf->hdr->type_len);
1521 	strs = malloc(btf->hdr->str_len);
1522 	if (!hdr || !types || !strs)
1523 		goto err_out;
1524 
1525 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1526 	memcpy(types, btf->types_data, btf->hdr->type_len);
1527 	memcpy(strs, btf->strs_data, btf->hdr->str_len);
1528 
1529 	/* make hashmap below use btf->strs_data as a source of strings */
1530 	btf->strs_data_ptr = &btf->strs_data;
1531 
1532 	/* build lookup index for all strings */
1533 	hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf);
1534 	if (IS_ERR(hash)) {
1535 		err = PTR_ERR(hash);
1536 		hash = NULL;
1537 		goto err_out;
1538 	}
1539 
1540 	strs_end = strs + btf->hdr->str_len;
1541 	for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) {
1542 		/* hashmap__add() returns EEXIST if string with the same
1543 		 * content already is in the hash map
1544 		 */
1545 		err = hashmap__add(hash, (void *)off, (void *)off);
1546 		if (err == -EEXIST)
1547 			continue; /* duplicate */
1548 		if (err)
1549 			goto err_out;
1550 	}
1551 
1552 	/* only when everything was successful, update internal state */
1553 	btf->hdr = hdr;
1554 	btf->types_data = types;
1555 	btf->types_data_cap = btf->hdr->type_len;
1556 	btf->strs_data = strs;
1557 	btf->strs_data_cap = btf->hdr->str_len;
1558 	btf->strs_hash = hash;
1559 	/* if BTF was created from scratch, all strings are guaranteed to be
1560 	 * unique and deduplicated
1561 	 */
1562 	if (btf->hdr->str_len == 0)
1563 		btf->strs_deduped = true;
1564 	if (!btf->base_btf && btf->hdr->str_len == 1)
1565 		btf->strs_deduped = true;
1566 
1567 	/* invalidate raw_data representation */
1568 	btf_invalidate_raw_data(btf);
1569 
1570 	return 0;
1571 
1572 err_out:
1573 	hashmap__free(hash);
1574 	free(hdr);
1575 	free(types);
1576 	free(strs);
1577 	return -ENOMEM;
1578 }
1579 
1580 static void *btf_add_str_mem(struct btf *btf, size_t add_sz)
1581 {
1582 	return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1,
1583 			   btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz);
1584 }
1585 
1586 /* Find an offset in BTF string section that corresponds to a given string *s*.
1587  * Returns:
1588  *   - >0 offset into string section, if string is found;
1589  *   - -ENOENT, if string is not in the string section;
1590  *   - <0, on any other error.
1591  */
1592 int btf__find_str(struct btf *btf, const char *s)
1593 {
1594 	long old_off, new_off, len;
1595 	void *p;
1596 
1597 	if (btf->base_btf) {
1598 		int ret;
1599 
1600 		ret = btf__find_str(btf->base_btf, s);
1601 		if (ret != -ENOENT)
1602 			return ret;
1603 	}
1604 
1605 	/* BTF needs to be in a modifiable state to build string lookup index */
1606 	if (btf_ensure_modifiable(btf))
1607 		return -ENOMEM;
1608 
1609 	/* see btf__add_str() for why we do this */
1610 	len = strlen(s) + 1;
1611 	p = btf_add_str_mem(btf, len);
1612 	if (!p)
1613 		return -ENOMEM;
1614 
1615 	new_off = btf->hdr->str_len;
1616 	memcpy(p, s, len);
1617 
1618 	if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off))
1619 		return btf->start_str_off + old_off;
1620 
1621 	return -ENOENT;
1622 }
1623 
1624 /* Add a string s to the BTF string section.
1625  * Returns:
1626  *   - > 0 offset into string section, on success;
1627  *   - < 0, on error.
1628  */
1629 int btf__add_str(struct btf *btf, const char *s)
1630 {
1631 	long old_off, new_off, len;
1632 	void *p;
1633 	int err;
1634 
1635 	if (btf->base_btf) {
1636 		int ret;
1637 
1638 		ret = btf__find_str(btf->base_btf, s);
1639 		if (ret != -ENOENT)
1640 			return ret;
1641 	}
1642 
1643 	if (btf_ensure_modifiable(btf))
1644 		return -ENOMEM;
1645 
1646 	/* Hashmap keys are always offsets within btf->strs_data, so to even
1647 	 * look up some string from the "outside", we need to first append it
1648 	 * at the end, so that it can be addressed with an offset. Luckily,
1649 	 * until btf->hdr->str_len is incremented, that string is just a piece
1650 	 * of garbage for the rest of BTF code, so no harm, no foul. On the
1651 	 * other hand, if the string is unique, it's already appended and
1652 	 * ready to be used, only a simple btf->hdr->str_len increment away.
1653 	 */
1654 	len = strlen(s) + 1;
1655 	p = btf_add_str_mem(btf, len);
1656 	if (!p)
1657 		return -ENOMEM;
1658 
1659 	new_off = btf->hdr->str_len;
1660 	memcpy(p, s, len);
1661 
1662 	/* Now attempt to add the string, but only if the string with the same
1663 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
1664 	 * string exists, we'll get its offset in old_off (that's old_key).
1665 	 */
1666 	err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off,
1667 			      HASHMAP_ADD, (const void **)&old_off, NULL);
1668 	if (err == -EEXIST)
1669 		return btf->start_str_off + old_off; /* duplicated string, return existing offset */
1670 	if (err)
1671 		return err;
1672 
1673 	btf->hdr->str_len += len; /* new unique string, adjust data length */
1674 	return btf->start_str_off + new_off;
1675 }
1676 
1677 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1678 {
1679 	return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1680 			   btf->hdr->type_len, UINT_MAX, add_sz);
1681 }
1682 
1683 static __u32 btf_type_info(int kind, int vlen, int kflag)
1684 {
1685 	return (kflag << 31) | (kind << 24) | vlen;
1686 }
1687 
1688 static void btf_type_inc_vlen(struct btf_type *t)
1689 {
1690 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1691 }
1692 
1693 static int btf_commit_type(struct btf *btf, int data_sz)
1694 {
1695 	int err;
1696 
1697 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1698 	if (err)
1699 		return err;
1700 
1701 	btf->hdr->type_len += data_sz;
1702 	btf->hdr->str_off += data_sz;
1703 	btf->nr_types++;
1704 	return btf->start_id + btf->nr_types - 1;
1705 }
1706 
1707 /*
1708  * Append new BTF_KIND_INT type with:
1709  *   - *name* - non-empty, non-NULL type name;
1710  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1711  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1712  * Returns:
1713  *   - >0, type ID of newly added BTF type;
1714  *   - <0, on error.
1715  */
1716 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1717 {
1718 	struct btf_type *t;
1719 	int sz, name_off;
1720 
1721 	/* non-empty name */
1722 	if (!name || !name[0])
1723 		return -EINVAL;
1724 	/* byte_sz must be power of 2 */
1725 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1726 		return -EINVAL;
1727 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1728 		return -EINVAL;
1729 
1730 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1731 	if (btf_ensure_modifiable(btf))
1732 		return -ENOMEM;
1733 
1734 	sz = sizeof(struct btf_type) + sizeof(int);
1735 	t = btf_add_type_mem(btf, sz);
1736 	if (!t)
1737 		return -ENOMEM;
1738 
1739 	/* if something goes wrong later, we might end up with an extra string,
1740 	 * but that shouldn't be a problem, because BTF can't be constructed
1741 	 * completely anyway and will most probably be just discarded
1742 	 */
1743 	name_off = btf__add_str(btf, name);
1744 	if (name_off < 0)
1745 		return name_off;
1746 
1747 	t->name_off = name_off;
1748 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1749 	t->size = byte_sz;
1750 	/* set INT info, we don't allow setting legacy bit offset/size */
1751 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1752 
1753 	return btf_commit_type(btf, sz);
1754 }
1755 
1756 /* it's completely legal to append BTF types with type IDs pointing forward to
1757  * types that haven't been appended yet, so we only make sure that id looks
1758  * sane, we can't guarantee that ID will always be valid
1759  */
1760 static int validate_type_id(int id)
1761 {
1762 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1763 		return -EINVAL;
1764 	return 0;
1765 }
1766 
1767 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1768 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1769 {
1770 	struct btf_type *t;
1771 	int sz, name_off = 0;
1772 
1773 	if (validate_type_id(ref_type_id))
1774 		return -EINVAL;
1775 
1776 	if (btf_ensure_modifiable(btf))
1777 		return -ENOMEM;
1778 
1779 	sz = sizeof(struct btf_type);
1780 	t = btf_add_type_mem(btf, sz);
1781 	if (!t)
1782 		return -ENOMEM;
1783 
1784 	if (name && name[0]) {
1785 		name_off = btf__add_str(btf, name);
1786 		if (name_off < 0)
1787 			return name_off;
1788 	}
1789 
1790 	t->name_off = name_off;
1791 	t->info = btf_type_info(kind, 0, 0);
1792 	t->type = ref_type_id;
1793 
1794 	return btf_commit_type(btf, sz);
1795 }
1796 
1797 /*
1798  * Append new BTF_KIND_PTR type with:
1799  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1800  * Returns:
1801  *   - >0, type ID of newly added BTF type;
1802  *   - <0, on error.
1803  */
1804 int btf__add_ptr(struct btf *btf, int ref_type_id)
1805 {
1806 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1807 }
1808 
1809 /*
1810  * Append new BTF_KIND_ARRAY type with:
1811  *   - *index_type_id* - type ID of the type describing array index;
1812  *   - *elem_type_id* - type ID of the type describing array element;
1813  *   - *nr_elems* - the size of the array;
1814  * Returns:
1815  *   - >0, type ID of newly added BTF type;
1816  *   - <0, on error.
1817  */
1818 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1819 {
1820 	struct btf_type *t;
1821 	struct btf_array *a;
1822 	int sz;
1823 
1824 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1825 		return -EINVAL;
1826 
1827 	if (btf_ensure_modifiable(btf))
1828 		return -ENOMEM;
1829 
1830 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1831 	t = btf_add_type_mem(btf, sz);
1832 	if (!t)
1833 		return -ENOMEM;
1834 
1835 	t->name_off = 0;
1836 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1837 	t->size = 0;
1838 
1839 	a = btf_array(t);
1840 	a->type = elem_type_id;
1841 	a->index_type = index_type_id;
1842 	a->nelems = nr_elems;
1843 
1844 	return btf_commit_type(btf, sz);
1845 }
1846 
1847 /* generic STRUCT/UNION append function */
1848 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1849 {
1850 	struct btf_type *t;
1851 	int sz, name_off = 0;
1852 
1853 	if (btf_ensure_modifiable(btf))
1854 		return -ENOMEM;
1855 
1856 	sz = sizeof(struct btf_type);
1857 	t = btf_add_type_mem(btf, sz);
1858 	if (!t)
1859 		return -ENOMEM;
1860 
1861 	if (name && name[0]) {
1862 		name_off = btf__add_str(btf, name);
1863 		if (name_off < 0)
1864 			return name_off;
1865 	}
1866 
1867 	/* start out with vlen=0 and no kflag; this will be adjusted when
1868 	 * adding each member
1869 	 */
1870 	t->name_off = name_off;
1871 	t->info = btf_type_info(kind, 0, 0);
1872 	t->size = bytes_sz;
1873 
1874 	return btf_commit_type(btf, sz);
1875 }
1876 
1877 /*
1878  * Append new BTF_KIND_STRUCT type with:
1879  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1880  *   - *byte_sz* - size of the struct, in bytes;
1881  *
1882  * Struct initially has no fields in it. Fields can be added by
1883  * btf__add_field() right after btf__add_struct() succeeds.
1884  *
1885  * Returns:
1886  *   - >0, type ID of newly added BTF type;
1887  *   - <0, on error.
1888  */
1889 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1890 {
1891 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1892 }
1893 
1894 /*
1895  * Append new BTF_KIND_UNION type with:
1896  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1897  *   - *byte_sz* - size of the union, in bytes;
1898  *
1899  * Union initially has no fields in it. Fields can be added by
1900  * btf__add_field() right after btf__add_union() succeeds. All fields
1901  * should have *bit_offset* of 0.
1902  *
1903  * Returns:
1904  *   - >0, type ID of newly added BTF type;
1905  *   - <0, on error.
1906  */
1907 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1908 {
1909 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1910 }
1911 
1912 static struct btf_type *btf_last_type(struct btf *btf)
1913 {
1914 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1915 }
1916 
1917 /*
1918  * Append new field for the current STRUCT/UNION type with:
1919  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1920  *   - *type_id* - type ID for the type describing field type;
1921  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1922  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1923  * Returns:
1924  *   -  0, on success;
1925  *   - <0, on error.
1926  */
1927 int btf__add_field(struct btf *btf, const char *name, int type_id,
1928 		   __u32 bit_offset, __u32 bit_size)
1929 {
1930 	struct btf_type *t;
1931 	struct btf_member *m;
1932 	bool is_bitfield;
1933 	int sz, name_off = 0;
1934 
1935 	/* last type should be union/struct */
1936 	if (btf->nr_types == 0)
1937 		return -EINVAL;
1938 	t = btf_last_type(btf);
1939 	if (!btf_is_composite(t))
1940 		return -EINVAL;
1941 
1942 	if (validate_type_id(type_id))
1943 		return -EINVAL;
1944 	/* best-effort bit field offset/size enforcement */
1945 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1946 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1947 		return -EINVAL;
1948 
1949 	/* only offset 0 is allowed for unions */
1950 	if (btf_is_union(t) && bit_offset)
1951 		return -EINVAL;
1952 
1953 	/* decompose and invalidate raw data */
1954 	if (btf_ensure_modifiable(btf))
1955 		return -ENOMEM;
1956 
1957 	sz = sizeof(struct btf_member);
1958 	m = btf_add_type_mem(btf, sz);
1959 	if (!m)
1960 		return -ENOMEM;
1961 
1962 	if (name && name[0]) {
1963 		name_off = btf__add_str(btf, name);
1964 		if (name_off < 0)
1965 			return name_off;
1966 	}
1967 
1968 	m->name_off = name_off;
1969 	m->type = type_id;
1970 	m->offset = bit_offset | (bit_size << 24);
1971 
1972 	/* btf_add_type_mem can invalidate t pointer */
1973 	t = btf_last_type(btf);
1974 	/* update parent type's vlen and kflag */
1975 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1976 
1977 	btf->hdr->type_len += sz;
1978 	btf->hdr->str_off += sz;
1979 	return 0;
1980 }
1981 
1982 /*
1983  * Append new BTF_KIND_ENUM type with:
1984  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1985  *   - *byte_sz* - size of the enum, in bytes.
1986  *
1987  * Enum initially has no enum values in it (and corresponds to enum forward
1988  * declaration). Enumerator values can be added by btf__add_enum_value()
1989  * immediately after btf__add_enum() succeeds.
1990  *
1991  * Returns:
1992  *   - >0, type ID of newly added BTF type;
1993  *   - <0, on error.
1994  */
1995 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
1996 {
1997 	struct btf_type *t;
1998 	int sz, name_off = 0;
1999 
2000 	/* byte_sz must be power of 2 */
2001 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2002 		return -EINVAL;
2003 
2004 	if (btf_ensure_modifiable(btf))
2005 		return -ENOMEM;
2006 
2007 	sz = sizeof(struct btf_type);
2008 	t = btf_add_type_mem(btf, sz);
2009 	if (!t)
2010 		return -ENOMEM;
2011 
2012 	if (name && name[0]) {
2013 		name_off = btf__add_str(btf, name);
2014 		if (name_off < 0)
2015 			return name_off;
2016 	}
2017 
2018 	/* start out with vlen=0; it will be adjusted when adding enum values */
2019 	t->name_off = name_off;
2020 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2021 	t->size = byte_sz;
2022 
2023 	return btf_commit_type(btf, sz);
2024 }
2025 
2026 /*
2027  * Append new enum value for the current ENUM type with:
2028  *   - *name* - name of the enumerator value, can't be NULL or empty;
2029  *   - *value* - integer value corresponding to enum value *name*;
2030  * Returns:
2031  *   -  0, on success;
2032  *   - <0, on error.
2033  */
2034 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2035 {
2036 	struct btf_type *t;
2037 	struct btf_enum *v;
2038 	int sz, name_off;
2039 
2040 	/* last type should be BTF_KIND_ENUM */
2041 	if (btf->nr_types == 0)
2042 		return -EINVAL;
2043 	t = btf_last_type(btf);
2044 	if (!btf_is_enum(t))
2045 		return -EINVAL;
2046 
2047 	/* non-empty name */
2048 	if (!name || !name[0])
2049 		return -EINVAL;
2050 	if (value < INT_MIN || value > UINT_MAX)
2051 		return -E2BIG;
2052 
2053 	/* decompose and invalidate raw data */
2054 	if (btf_ensure_modifiable(btf))
2055 		return -ENOMEM;
2056 
2057 	sz = sizeof(struct btf_enum);
2058 	v = btf_add_type_mem(btf, sz);
2059 	if (!v)
2060 		return -ENOMEM;
2061 
2062 	name_off = btf__add_str(btf, name);
2063 	if (name_off < 0)
2064 		return name_off;
2065 
2066 	v->name_off = name_off;
2067 	v->val = value;
2068 
2069 	/* update parent type's vlen */
2070 	t = btf_last_type(btf);
2071 	btf_type_inc_vlen(t);
2072 
2073 	btf->hdr->type_len += sz;
2074 	btf->hdr->str_off += sz;
2075 	return 0;
2076 }
2077 
2078 /*
2079  * Append new BTF_KIND_FWD type with:
2080  *   - *name*, non-empty/non-NULL name;
2081  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2082  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2083  * Returns:
2084  *   - >0, type ID of newly added BTF type;
2085  *   - <0, on error.
2086  */
2087 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2088 {
2089 	if (!name || !name[0])
2090 		return -EINVAL;
2091 
2092 	switch (fwd_kind) {
2093 	case BTF_FWD_STRUCT:
2094 	case BTF_FWD_UNION: {
2095 		struct btf_type *t;
2096 		int id;
2097 
2098 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2099 		if (id <= 0)
2100 			return id;
2101 		t = btf_type_by_id(btf, id);
2102 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2103 		return id;
2104 	}
2105 	case BTF_FWD_ENUM:
2106 		/* enum forward in BTF currently is just an enum with no enum
2107 		 * values; we also assume a standard 4-byte size for it
2108 		 */
2109 		return btf__add_enum(btf, name, sizeof(int));
2110 	default:
2111 		return -EINVAL;
2112 	}
2113 }
2114 
2115 /*
2116  * Append new BTF_KING_TYPEDEF type with:
2117  *   - *name*, non-empty/non-NULL name;
2118  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2119  * Returns:
2120  *   - >0, type ID of newly added BTF type;
2121  *   - <0, on error.
2122  */
2123 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2124 {
2125 	if (!name || !name[0])
2126 		return -EINVAL;
2127 
2128 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2129 }
2130 
2131 /*
2132  * Append new BTF_KIND_VOLATILE type with:
2133  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2134  * Returns:
2135  *   - >0, type ID of newly added BTF type;
2136  *   - <0, on error.
2137  */
2138 int btf__add_volatile(struct btf *btf, int ref_type_id)
2139 {
2140 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2141 }
2142 
2143 /*
2144  * Append new BTF_KIND_CONST type with:
2145  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2146  * Returns:
2147  *   - >0, type ID of newly added BTF type;
2148  *   - <0, on error.
2149  */
2150 int btf__add_const(struct btf *btf, int ref_type_id)
2151 {
2152 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2153 }
2154 
2155 /*
2156  * Append new BTF_KIND_RESTRICT type with:
2157  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2158  * Returns:
2159  *   - >0, type ID of newly added BTF type;
2160  *   - <0, on error.
2161  */
2162 int btf__add_restrict(struct btf *btf, int ref_type_id)
2163 {
2164 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2165 }
2166 
2167 /*
2168  * Append new BTF_KIND_FUNC type with:
2169  *   - *name*, non-empty/non-NULL name;
2170  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2171  * Returns:
2172  *   - >0, type ID of newly added BTF type;
2173  *   - <0, on error.
2174  */
2175 int btf__add_func(struct btf *btf, const char *name,
2176 		  enum btf_func_linkage linkage, int proto_type_id)
2177 {
2178 	int id;
2179 
2180 	if (!name || !name[0])
2181 		return -EINVAL;
2182 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2183 	    linkage != BTF_FUNC_EXTERN)
2184 		return -EINVAL;
2185 
2186 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2187 	if (id > 0) {
2188 		struct btf_type *t = btf_type_by_id(btf, id);
2189 
2190 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2191 	}
2192 	return id;
2193 }
2194 
2195 /*
2196  * Append new BTF_KIND_FUNC_PROTO with:
2197  *   - *ret_type_id* - type ID for return result of a function.
2198  *
2199  * Function prototype initially has no arguments, but they can be added by
2200  * btf__add_func_param() one by one, immediately after
2201  * btf__add_func_proto() succeeded.
2202  *
2203  * Returns:
2204  *   - >0, type ID of newly added BTF type;
2205  *   - <0, on error.
2206  */
2207 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2208 {
2209 	struct btf_type *t;
2210 	int sz;
2211 
2212 	if (validate_type_id(ret_type_id))
2213 		return -EINVAL;
2214 
2215 	if (btf_ensure_modifiable(btf))
2216 		return -ENOMEM;
2217 
2218 	sz = sizeof(struct btf_type);
2219 	t = btf_add_type_mem(btf, sz);
2220 	if (!t)
2221 		return -ENOMEM;
2222 
2223 	/* start out with vlen=0; this will be adjusted when adding enum
2224 	 * values, if necessary
2225 	 */
2226 	t->name_off = 0;
2227 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2228 	t->type = ret_type_id;
2229 
2230 	return btf_commit_type(btf, sz);
2231 }
2232 
2233 /*
2234  * Append new function parameter for current FUNC_PROTO type with:
2235  *   - *name* - parameter name, can be NULL or empty;
2236  *   - *type_id* - type ID describing the type of the parameter.
2237  * Returns:
2238  *   -  0, on success;
2239  *   - <0, on error.
2240  */
2241 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2242 {
2243 	struct btf_type *t;
2244 	struct btf_param *p;
2245 	int sz, name_off = 0;
2246 
2247 	if (validate_type_id(type_id))
2248 		return -EINVAL;
2249 
2250 	/* last type should be BTF_KIND_FUNC_PROTO */
2251 	if (btf->nr_types == 0)
2252 		return -EINVAL;
2253 	t = btf_last_type(btf);
2254 	if (!btf_is_func_proto(t))
2255 		return -EINVAL;
2256 
2257 	/* decompose and invalidate raw data */
2258 	if (btf_ensure_modifiable(btf))
2259 		return -ENOMEM;
2260 
2261 	sz = sizeof(struct btf_param);
2262 	p = btf_add_type_mem(btf, sz);
2263 	if (!p)
2264 		return -ENOMEM;
2265 
2266 	if (name && name[0]) {
2267 		name_off = btf__add_str(btf, name);
2268 		if (name_off < 0)
2269 			return name_off;
2270 	}
2271 
2272 	p->name_off = name_off;
2273 	p->type = type_id;
2274 
2275 	/* update parent type's vlen */
2276 	t = btf_last_type(btf);
2277 	btf_type_inc_vlen(t);
2278 
2279 	btf->hdr->type_len += sz;
2280 	btf->hdr->str_off += sz;
2281 	return 0;
2282 }
2283 
2284 /*
2285  * Append new BTF_KIND_VAR type with:
2286  *   - *name* - non-empty/non-NULL name;
2287  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2288  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2289  *   - *type_id* - type ID of the type describing the type of the variable.
2290  * Returns:
2291  *   - >0, type ID of newly added BTF type;
2292  *   - <0, on error.
2293  */
2294 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2295 {
2296 	struct btf_type *t;
2297 	struct btf_var *v;
2298 	int sz, name_off;
2299 
2300 	/* non-empty name */
2301 	if (!name || !name[0])
2302 		return -EINVAL;
2303 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2304 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2305 		return -EINVAL;
2306 	if (validate_type_id(type_id))
2307 		return -EINVAL;
2308 
2309 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2310 	if (btf_ensure_modifiable(btf))
2311 		return -ENOMEM;
2312 
2313 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2314 	t = btf_add_type_mem(btf, sz);
2315 	if (!t)
2316 		return -ENOMEM;
2317 
2318 	name_off = btf__add_str(btf, name);
2319 	if (name_off < 0)
2320 		return name_off;
2321 
2322 	t->name_off = name_off;
2323 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2324 	t->type = type_id;
2325 
2326 	v = btf_var(t);
2327 	v->linkage = linkage;
2328 
2329 	return btf_commit_type(btf, sz);
2330 }
2331 
2332 /*
2333  * Append new BTF_KIND_DATASEC type with:
2334  *   - *name* - non-empty/non-NULL name;
2335  *   - *byte_sz* - data section size, in bytes.
2336  *
2337  * Data section is initially empty. Variables info can be added with
2338  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2339  *
2340  * Returns:
2341  *   - >0, type ID of newly added BTF type;
2342  *   - <0, on error.
2343  */
2344 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2345 {
2346 	struct btf_type *t;
2347 	int sz, name_off;
2348 
2349 	/* non-empty name */
2350 	if (!name || !name[0])
2351 		return -EINVAL;
2352 
2353 	if (btf_ensure_modifiable(btf))
2354 		return -ENOMEM;
2355 
2356 	sz = sizeof(struct btf_type);
2357 	t = btf_add_type_mem(btf, sz);
2358 	if (!t)
2359 		return -ENOMEM;
2360 
2361 	name_off = btf__add_str(btf, name);
2362 	if (name_off < 0)
2363 		return name_off;
2364 
2365 	/* start with vlen=0, which will be update as var_secinfos are added */
2366 	t->name_off = name_off;
2367 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2368 	t->size = byte_sz;
2369 
2370 	return btf_commit_type(btf, sz);
2371 }
2372 
2373 /*
2374  * Append new data section variable information entry for current DATASEC type:
2375  *   - *var_type_id* - type ID, describing type of the variable;
2376  *   - *offset* - variable offset within data section, in bytes;
2377  *   - *byte_sz* - variable size, in bytes.
2378  *
2379  * Returns:
2380  *   -  0, on success;
2381  *   - <0, on error.
2382  */
2383 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2384 {
2385 	struct btf_type *t;
2386 	struct btf_var_secinfo *v;
2387 	int sz;
2388 
2389 	/* last type should be BTF_KIND_DATASEC */
2390 	if (btf->nr_types == 0)
2391 		return -EINVAL;
2392 	t = btf_last_type(btf);
2393 	if (!btf_is_datasec(t))
2394 		return -EINVAL;
2395 
2396 	if (validate_type_id(var_type_id))
2397 		return -EINVAL;
2398 
2399 	/* decompose and invalidate raw data */
2400 	if (btf_ensure_modifiable(btf))
2401 		return -ENOMEM;
2402 
2403 	sz = sizeof(struct btf_var_secinfo);
2404 	v = btf_add_type_mem(btf, sz);
2405 	if (!v)
2406 		return -ENOMEM;
2407 
2408 	v->type = var_type_id;
2409 	v->offset = offset;
2410 	v->size = byte_sz;
2411 
2412 	/* update parent type's vlen */
2413 	t = btf_last_type(btf);
2414 	btf_type_inc_vlen(t);
2415 
2416 	btf->hdr->type_len += sz;
2417 	btf->hdr->str_off += sz;
2418 	return 0;
2419 }
2420 
2421 struct btf_ext_sec_setup_param {
2422 	__u32 off;
2423 	__u32 len;
2424 	__u32 min_rec_size;
2425 	struct btf_ext_info *ext_info;
2426 	const char *desc;
2427 };
2428 
2429 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2430 			      struct btf_ext_sec_setup_param *ext_sec)
2431 {
2432 	const struct btf_ext_info_sec *sinfo;
2433 	struct btf_ext_info *ext_info;
2434 	__u32 info_left, record_size;
2435 	/* The start of the info sec (including the __u32 record_size). */
2436 	void *info;
2437 
2438 	if (ext_sec->len == 0)
2439 		return 0;
2440 
2441 	if (ext_sec->off & 0x03) {
2442 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2443 		     ext_sec->desc);
2444 		return -EINVAL;
2445 	}
2446 
2447 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2448 	info_left = ext_sec->len;
2449 
2450 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2451 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2452 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2453 		return -EINVAL;
2454 	}
2455 
2456 	/* At least a record size */
2457 	if (info_left < sizeof(__u32)) {
2458 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2459 		return -EINVAL;
2460 	}
2461 
2462 	/* The record size needs to meet the minimum standard */
2463 	record_size = *(__u32 *)info;
2464 	if (record_size < ext_sec->min_rec_size ||
2465 	    record_size & 0x03) {
2466 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2467 			 ext_sec->desc, record_size);
2468 		return -EINVAL;
2469 	}
2470 
2471 	sinfo = info + sizeof(__u32);
2472 	info_left -= sizeof(__u32);
2473 
2474 	/* If no records, return failure now so .BTF.ext won't be used. */
2475 	if (!info_left) {
2476 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2477 		return -EINVAL;
2478 	}
2479 
2480 	while (info_left) {
2481 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2482 		__u64 total_record_size;
2483 		__u32 num_records;
2484 
2485 		if (info_left < sec_hdrlen) {
2486 			pr_debug("%s section header is not found in .BTF.ext\n",
2487 			     ext_sec->desc);
2488 			return -EINVAL;
2489 		}
2490 
2491 		num_records = sinfo->num_info;
2492 		if (num_records == 0) {
2493 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2494 			     ext_sec->desc);
2495 			return -EINVAL;
2496 		}
2497 
2498 		total_record_size = sec_hdrlen +
2499 				    (__u64)num_records * record_size;
2500 		if (info_left < total_record_size) {
2501 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2502 			     ext_sec->desc);
2503 			return -EINVAL;
2504 		}
2505 
2506 		info_left -= total_record_size;
2507 		sinfo = (void *)sinfo + total_record_size;
2508 	}
2509 
2510 	ext_info = ext_sec->ext_info;
2511 	ext_info->len = ext_sec->len - sizeof(__u32);
2512 	ext_info->rec_size = record_size;
2513 	ext_info->info = info + sizeof(__u32);
2514 
2515 	return 0;
2516 }
2517 
2518 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2519 {
2520 	struct btf_ext_sec_setup_param param = {
2521 		.off = btf_ext->hdr->func_info_off,
2522 		.len = btf_ext->hdr->func_info_len,
2523 		.min_rec_size = sizeof(struct bpf_func_info_min),
2524 		.ext_info = &btf_ext->func_info,
2525 		.desc = "func_info"
2526 	};
2527 
2528 	return btf_ext_setup_info(btf_ext, &param);
2529 }
2530 
2531 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2532 {
2533 	struct btf_ext_sec_setup_param param = {
2534 		.off = btf_ext->hdr->line_info_off,
2535 		.len = btf_ext->hdr->line_info_len,
2536 		.min_rec_size = sizeof(struct bpf_line_info_min),
2537 		.ext_info = &btf_ext->line_info,
2538 		.desc = "line_info",
2539 	};
2540 
2541 	return btf_ext_setup_info(btf_ext, &param);
2542 }
2543 
2544 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2545 {
2546 	struct btf_ext_sec_setup_param param = {
2547 		.off = btf_ext->hdr->core_relo_off,
2548 		.len = btf_ext->hdr->core_relo_len,
2549 		.min_rec_size = sizeof(struct bpf_core_relo),
2550 		.ext_info = &btf_ext->core_relo_info,
2551 		.desc = "core_relo",
2552 	};
2553 
2554 	return btf_ext_setup_info(btf_ext, &param);
2555 }
2556 
2557 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2558 {
2559 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2560 
2561 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2562 	    data_size < hdr->hdr_len) {
2563 		pr_debug("BTF.ext header not found");
2564 		return -EINVAL;
2565 	}
2566 
2567 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2568 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2569 		return -ENOTSUP;
2570 	} else if (hdr->magic != BTF_MAGIC) {
2571 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2572 		return -EINVAL;
2573 	}
2574 
2575 	if (hdr->version != BTF_VERSION) {
2576 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2577 		return -ENOTSUP;
2578 	}
2579 
2580 	if (hdr->flags) {
2581 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2582 		return -ENOTSUP;
2583 	}
2584 
2585 	if (data_size == hdr->hdr_len) {
2586 		pr_debug("BTF.ext has no data\n");
2587 		return -EINVAL;
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 void btf_ext__free(struct btf_ext *btf_ext)
2594 {
2595 	if (IS_ERR_OR_NULL(btf_ext))
2596 		return;
2597 	free(btf_ext->data);
2598 	free(btf_ext);
2599 }
2600 
2601 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2602 {
2603 	struct btf_ext *btf_ext;
2604 	int err;
2605 
2606 	err = btf_ext_parse_hdr(data, size);
2607 	if (err)
2608 		return ERR_PTR(err);
2609 
2610 	btf_ext = calloc(1, sizeof(struct btf_ext));
2611 	if (!btf_ext)
2612 		return ERR_PTR(-ENOMEM);
2613 
2614 	btf_ext->data_size = size;
2615 	btf_ext->data = malloc(size);
2616 	if (!btf_ext->data) {
2617 		err = -ENOMEM;
2618 		goto done;
2619 	}
2620 	memcpy(btf_ext->data, data, size);
2621 
2622 	if (btf_ext->hdr->hdr_len <
2623 	    offsetofend(struct btf_ext_header, line_info_len))
2624 		goto done;
2625 	err = btf_ext_setup_func_info(btf_ext);
2626 	if (err)
2627 		goto done;
2628 
2629 	err = btf_ext_setup_line_info(btf_ext);
2630 	if (err)
2631 		goto done;
2632 
2633 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2634 		goto done;
2635 	err = btf_ext_setup_core_relos(btf_ext);
2636 	if (err)
2637 		goto done;
2638 
2639 done:
2640 	if (err) {
2641 		btf_ext__free(btf_ext);
2642 		return ERR_PTR(err);
2643 	}
2644 
2645 	return btf_ext;
2646 }
2647 
2648 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2649 {
2650 	*size = btf_ext->data_size;
2651 	return btf_ext->data;
2652 }
2653 
2654 static int btf_ext_reloc_info(const struct btf *btf,
2655 			      const struct btf_ext_info *ext_info,
2656 			      const char *sec_name, __u32 insns_cnt,
2657 			      void **info, __u32 *cnt)
2658 {
2659 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2660 	__u32 i, record_size, existing_len, records_len;
2661 	struct btf_ext_info_sec *sinfo;
2662 	const char *info_sec_name;
2663 	__u64 remain_len;
2664 	void *data;
2665 
2666 	record_size = ext_info->rec_size;
2667 	sinfo = ext_info->info;
2668 	remain_len = ext_info->len;
2669 	while (remain_len > 0) {
2670 		records_len = sinfo->num_info * record_size;
2671 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2672 		if (strcmp(info_sec_name, sec_name)) {
2673 			remain_len -= sec_hdrlen + records_len;
2674 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2675 			continue;
2676 		}
2677 
2678 		existing_len = (*cnt) * record_size;
2679 		data = realloc(*info, existing_len + records_len);
2680 		if (!data)
2681 			return -ENOMEM;
2682 
2683 		memcpy(data + existing_len, sinfo->data, records_len);
2684 		/* adjust insn_off only, the rest data will be passed
2685 		 * to the kernel.
2686 		 */
2687 		for (i = 0; i < sinfo->num_info; i++) {
2688 			__u32 *insn_off;
2689 
2690 			insn_off = data + existing_len + (i * record_size);
2691 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
2692 				insns_cnt;
2693 		}
2694 		*info = data;
2695 		*cnt += sinfo->num_info;
2696 		return 0;
2697 	}
2698 
2699 	return -ENOENT;
2700 }
2701 
2702 int btf_ext__reloc_func_info(const struct btf *btf,
2703 			     const struct btf_ext *btf_ext,
2704 			     const char *sec_name, __u32 insns_cnt,
2705 			     void **func_info, __u32 *cnt)
2706 {
2707 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2708 				  insns_cnt, func_info, cnt);
2709 }
2710 
2711 int btf_ext__reloc_line_info(const struct btf *btf,
2712 			     const struct btf_ext *btf_ext,
2713 			     const char *sec_name, __u32 insns_cnt,
2714 			     void **line_info, __u32 *cnt)
2715 {
2716 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2717 				  insns_cnt, line_info, cnt);
2718 }
2719 
2720 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2721 {
2722 	return btf_ext->func_info.rec_size;
2723 }
2724 
2725 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2726 {
2727 	return btf_ext->line_info.rec_size;
2728 }
2729 
2730 struct btf_dedup;
2731 
2732 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2733 				       const struct btf_dedup_opts *opts);
2734 static void btf_dedup_free(struct btf_dedup *d);
2735 static int btf_dedup_prep(struct btf_dedup *d);
2736 static int btf_dedup_strings(struct btf_dedup *d);
2737 static int btf_dedup_prim_types(struct btf_dedup *d);
2738 static int btf_dedup_struct_types(struct btf_dedup *d);
2739 static int btf_dedup_ref_types(struct btf_dedup *d);
2740 static int btf_dedup_compact_types(struct btf_dedup *d);
2741 static int btf_dedup_remap_types(struct btf_dedup *d);
2742 
2743 /*
2744  * Deduplicate BTF types and strings.
2745  *
2746  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2747  * section with all BTF type descriptors and string data. It overwrites that
2748  * memory in-place with deduplicated types and strings without any loss of
2749  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2750  * is provided, all the strings referenced from .BTF.ext section are honored
2751  * and updated to point to the right offsets after deduplication.
2752  *
2753  * If function returns with error, type/string data might be garbled and should
2754  * be discarded.
2755  *
2756  * More verbose and detailed description of both problem btf_dedup is solving,
2757  * as well as solution could be found at:
2758  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2759  *
2760  * Problem description and justification
2761  * =====================================
2762  *
2763  * BTF type information is typically emitted either as a result of conversion
2764  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2765  * unit contains information about a subset of all the types that are used
2766  * in an application. These subsets are frequently overlapping and contain a lot
2767  * of duplicated information when later concatenated together into a single
2768  * binary. This algorithm ensures that each unique type is represented by single
2769  * BTF type descriptor, greatly reducing resulting size of BTF data.
2770  *
2771  * Compilation unit isolation and subsequent duplication of data is not the only
2772  * problem. The same type hierarchy (e.g., struct and all the type that struct
2773  * references) in different compilation units can be represented in BTF to
2774  * various degrees of completeness (or, rather, incompleteness) due to
2775  * struct/union forward declarations.
2776  *
2777  * Let's take a look at an example, that we'll use to better understand the
2778  * problem (and solution). Suppose we have two compilation units, each using
2779  * same `struct S`, but each of them having incomplete type information about
2780  * struct's fields:
2781  *
2782  * // CU #1:
2783  * struct S;
2784  * struct A {
2785  *	int a;
2786  *	struct A* self;
2787  *	struct S* parent;
2788  * };
2789  * struct B;
2790  * struct S {
2791  *	struct A* a_ptr;
2792  *	struct B* b_ptr;
2793  * };
2794  *
2795  * // CU #2:
2796  * struct S;
2797  * struct A;
2798  * struct B {
2799  *	int b;
2800  *	struct B* self;
2801  *	struct S* parent;
2802  * };
2803  * struct S {
2804  *	struct A* a_ptr;
2805  *	struct B* b_ptr;
2806  * };
2807  *
2808  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2809  * more), but will know the complete type information about `struct A`. While
2810  * for CU #2, it will know full type information about `struct B`, but will
2811  * only know about forward declaration of `struct A` (in BTF terms, it will
2812  * have `BTF_KIND_FWD` type descriptor with name `B`).
2813  *
2814  * This compilation unit isolation means that it's possible that there is no
2815  * single CU with complete type information describing structs `S`, `A`, and
2816  * `B`. Also, we might get tons of duplicated and redundant type information.
2817  *
2818  * Additional complication we need to keep in mind comes from the fact that
2819  * types, in general, can form graphs containing cycles, not just DAGs.
2820  *
2821  * While algorithm does deduplication, it also merges and resolves type
2822  * information (unless disabled throught `struct btf_opts`), whenever possible.
2823  * E.g., in the example above with two compilation units having partial type
2824  * information for structs `A` and `B`, the output of algorithm will emit
2825  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2826  * (as well as type information for `int` and pointers), as if they were defined
2827  * in a single compilation unit as:
2828  *
2829  * struct A {
2830  *	int a;
2831  *	struct A* self;
2832  *	struct S* parent;
2833  * };
2834  * struct B {
2835  *	int b;
2836  *	struct B* self;
2837  *	struct S* parent;
2838  * };
2839  * struct S {
2840  *	struct A* a_ptr;
2841  *	struct B* b_ptr;
2842  * };
2843  *
2844  * Algorithm summary
2845  * =================
2846  *
2847  * Algorithm completes its work in 6 separate passes:
2848  *
2849  * 1. Strings deduplication.
2850  * 2. Primitive types deduplication (int, enum, fwd).
2851  * 3. Struct/union types deduplication.
2852  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2853  *    protos, and const/volatile/restrict modifiers).
2854  * 5. Types compaction.
2855  * 6. Types remapping.
2856  *
2857  * Algorithm determines canonical type descriptor, which is a single
2858  * representative type for each truly unique type. This canonical type is the
2859  * one that will go into final deduplicated BTF type information. For
2860  * struct/unions, it is also the type that algorithm will merge additional type
2861  * information into (while resolving FWDs), as it discovers it from data in
2862  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2863  * that type is canonical, or to some other type, if that type is equivalent
2864  * and was chosen as canonical representative. This mapping is stored in
2865  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2866  * FWD type got resolved to.
2867  *
2868  * To facilitate fast discovery of canonical types, we also maintain canonical
2869  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2870  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2871  * that match that signature. With sufficiently good choice of type signature
2872  * hashing function, we can limit number of canonical types for each unique type
2873  * signature to a very small number, allowing to find canonical type for any
2874  * duplicated type very quickly.
2875  *
2876  * Struct/union deduplication is the most critical part and algorithm for
2877  * deduplicating structs/unions is described in greater details in comments for
2878  * `btf_dedup_is_equiv` function.
2879  */
2880 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2881 	       const struct btf_dedup_opts *opts)
2882 {
2883 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2884 	int err;
2885 
2886 	if (IS_ERR(d)) {
2887 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2888 		return -EINVAL;
2889 	}
2890 
2891 	if (btf_ensure_modifiable(btf))
2892 		return -ENOMEM;
2893 
2894 	err = btf_dedup_prep(d);
2895 	if (err) {
2896 		pr_debug("btf_dedup_prep failed:%d\n", err);
2897 		goto done;
2898 	}
2899 	err = btf_dedup_strings(d);
2900 	if (err < 0) {
2901 		pr_debug("btf_dedup_strings failed:%d\n", err);
2902 		goto done;
2903 	}
2904 	err = btf_dedup_prim_types(d);
2905 	if (err < 0) {
2906 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2907 		goto done;
2908 	}
2909 	err = btf_dedup_struct_types(d);
2910 	if (err < 0) {
2911 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2912 		goto done;
2913 	}
2914 	err = btf_dedup_ref_types(d);
2915 	if (err < 0) {
2916 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2917 		goto done;
2918 	}
2919 	err = btf_dedup_compact_types(d);
2920 	if (err < 0) {
2921 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2922 		goto done;
2923 	}
2924 	err = btf_dedup_remap_types(d);
2925 	if (err < 0) {
2926 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2927 		goto done;
2928 	}
2929 
2930 done:
2931 	btf_dedup_free(d);
2932 	return err;
2933 }
2934 
2935 #define BTF_UNPROCESSED_ID ((__u32)-1)
2936 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2937 
2938 struct btf_dedup {
2939 	/* .BTF section to be deduped in-place */
2940 	struct btf *btf;
2941 	/*
2942 	 * Optional .BTF.ext section. When provided, any strings referenced
2943 	 * from it will be taken into account when deduping strings
2944 	 */
2945 	struct btf_ext *btf_ext;
2946 	/*
2947 	 * This is a map from any type's signature hash to a list of possible
2948 	 * canonical representative type candidates. Hash collisions are
2949 	 * ignored, so even types of various kinds can share same list of
2950 	 * candidates, which is fine because we rely on subsequent
2951 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2952 	 */
2953 	struct hashmap *dedup_table;
2954 	/* Canonical types map */
2955 	__u32 *map;
2956 	/* Hypothetical mapping, used during type graph equivalence checks */
2957 	__u32 *hypot_map;
2958 	__u32 *hypot_list;
2959 	size_t hypot_cnt;
2960 	size_t hypot_cap;
2961 	/* Whether hypothetical mapping, if successful, would need to adjust
2962 	 * already canonicalized types (due to a new forward declaration to
2963 	 * concrete type resolution). In such case, during split BTF dedup
2964 	 * candidate type would still be considered as different, because base
2965 	 * BTF is considered to be immutable.
2966 	 */
2967 	bool hypot_adjust_canon;
2968 	/* Various option modifying behavior of algorithm */
2969 	struct btf_dedup_opts opts;
2970 	/* temporary strings deduplication state */
2971 	void *strs_data;
2972 	size_t strs_cap;
2973 	size_t strs_len;
2974 	struct hashmap* strs_hash;
2975 };
2976 
2977 static long hash_combine(long h, long value)
2978 {
2979 	return h * 31 + value;
2980 }
2981 
2982 #define for_each_dedup_cand(d, node, hash) \
2983 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2984 
2985 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2986 {
2987 	return hashmap__append(d->dedup_table,
2988 			       (void *)hash, (void *)(long)type_id);
2989 }
2990 
2991 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
2992 				   __u32 from_id, __u32 to_id)
2993 {
2994 	if (d->hypot_cnt == d->hypot_cap) {
2995 		__u32 *new_list;
2996 
2997 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
2998 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
2999 		if (!new_list)
3000 			return -ENOMEM;
3001 		d->hypot_list = new_list;
3002 	}
3003 	d->hypot_list[d->hypot_cnt++] = from_id;
3004 	d->hypot_map[from_id] = to_id;
3005 	return 0;
3006 }
3007 
3008 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3009 {
3010 	int i;
3011 
3012 	for (i = 0; i < d->hypot_cnt; i++)
3013 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3014 	d->hypot_cnt = 0;
3015 	d->hypot_adjust_canon = false;
3016 }
3017 
3018 static void btf_dedup_free(struct btf_dedup *d)
3019 {
3020 	hashmap__free(d->dedup_table);
3021 	d->dedup_table = NULL;
3022 
3023 	free(d->map);
3024 	d->map = NULL;
3025 
3026 	free(d->hypot_map);
3027 	d->hypot_map = NULL;
3028 
3029 	free(d->hypot_list);
3030 	d->hypot_list = NULL;
3031 
3032 	free(d);
3033 }
3034 
3035 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3036 {
3037 	return (size_t)key;
3038 }
3039 
3040 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3041 {
3042 	return 0;
3043 }
3044 
3045 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3046 {
3047 	return k1 == k2;
3048 }
3049 
3050 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3051 				       const struct btf_dedup_opts *opts)
3052 {
3053 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3054 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3055 	int i, err = 0, type_cnt;
3056 
3057 	if (!d)
3058 		return ERR_PTR(-ENOMEM);
3059 
3060 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3061 	/* dedup_table_size is now used only to force collisions in tests */
3062 	if (opts && opts->dedup_table_size == 1)
3063 		hash_fn = btf_dedup_collision_hash_fn;
3064 
3065 	d->btf = btf;
3066 	d->btf_ext = btf_ext;
3067 
3068 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3069 	if (IS_ERR(d->dedup_table)) {
3070 		err = PTR_ERR(d->dedup_table);
3071 		d->dedup_table = NULL;
3072 		goto done;
3073 	}
3074 
3075 	type_cnt = btf__get_nr_types(btf) + 1;
3076 	d->map = malloc(sizeof(__u32) * type_cnt);
3077 	if (!d->map) {
3078 		err = -ENOMEM;
3079 		goto done;
3080 	}
3081 	/* special BTF "void" type is made canonical immediately */
3082 	d->map[0] = 0;
3083 	for (i = 1; i < type_cnt; i++) {
3084 		struct btf_type *t = btf_type_by_id(d->btf, i);
3085 
3086 		/* VAR and DATASEC are never deduped and are self-canonical */
3087 		if (btf_is_var(t) || btf_is_datasec(t))
3088 			d->map[i] = i;
3089 		else
3090 			d->map[i] = BTF_UNPROCESSED_ID;
3091 	}
3092 
3093 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3094 	if (!d->hypot_map) {
3095 		err = -ENOMEM;
3096 		goto done;
3097 	}
3098 	for (i = 0; i < type_cnt; i++)
3099 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3100 
3101 done:
3102 	if (err) {
3103 		btf_dedup_free(d);
3104 		return ERR_PTR(err);
3105 	}
3106 
3107 	return d;
3108 }
3109 
3110 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
3111 
3112 /*
3113  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3114  * string and pass pointer to it to a provided callback `fn`.
3115  */
3116 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
3117 {
3118 	void *line_data_cur, *line_data_end;
3119 	int i, j, r, rec_size;
3120 	struct btf_type *t;
3121 
3122 	for (i = 0; i < d->btf->nr_types; i++) {
3123 		t = btf_type_by_id(d->btf, d->btf->start_id + i);
3124 		r = fn(&t->name_off, ctx);
3125 		if (r)
3126 			return r;
3127 
3128 		switch (btf_kind(t)) {
3129 		case BTF_KIND_STRUCT:
3130 		case BTF_KIND_UNION: {
3131 			struct btf_member *m = btf_members(t);
3132 			__u16 vlen = btf_vlen(t);
3133 
3134 			for (j = 0; j < vlen; j++) {
3135 				r = fn(&m->name_off, ctx);
3136 				if (r)
3137 					return r;
3138 				m++;
3139 			}
3140 			break;
3141 		}
3142 		case BTF_KIND_ENUM: {
3143 			struct btf_enum *m = btf_enum(t);
3144 			__u16 vlen = btf_vlen(t);
3145 
3146 			for (j = 0; j < vlen; j++) {
3147 				r = fn(&m->name_off, ctx);
3148 				if (r)
3149 					return r;
3150 				m++;
3151 			}
3152 			break;
3153 		}
3154 		case BTF_KIND_FUNC_PROTO: {
3155 			struct btf_param *m = btf_params(t);
3156 			__u16 vlen = btf_vlen(t);
3157 
3158 			for (j = 0; j < vlen; j++) {
3159 				r = fn(&m->name_off, ctx);
3160 				if (r)
3161 					return r;
3162 				m++;
3163 			}
3164 			break;
3165 		}
3166 		default:
3167 			break;
3168 		}
3169 	}
3170 
3171 	if (!d->btf_ext)
3172 		return 0;
3173 
3174 	line_data_cur = d->btf_ext->line_info.info;
3175 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
3176 	rec_size = d->btf_ext->line_info.rec_size;
3177 
3178 	while (line_data_cur < line_data_end) {
3179 		struct btf_ext_info_sec *sec = line_data_cur;
3180 		struct bpf_line_info_min *line_info;
3181 		__u32 num_info = sec->num_info;
3182 
3183 		r = fn(&sec->sec_name_off, ctx);
3184 		if (r)
3185 			return r;
3186 
3187 		line_data_cur += sizeof(struct btf_ext_info_sec);
3188 		for (i = 0; i < num_info; i++) {
3189 			line_info = line_data_cur;
3190 			r = fn(&line_info->file_name_off, ctx);
3191 			if (r)
3192 				return r;
3193 			r = fn(&line_info->line_off, ctx);
3194 			if (r)
3195 				return r;
3196 			line_data_cur += rec_size;
3197 		}
3198 	}
3199 
3200 	return 0;
3201 }
3202 
3203 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3204 {
3205 	struct btf_dedup *d = ctx;
3206 	__u32 str_off = *str_off_ptr;
3207 	long old_off, new_off, len;
3208 	const char *s;
3209 	void *p;
3210 	int err;
3211 
3212 	/* don't touch empty string or string in main BTF */
3213 	if (str_off == 0 || str_off < d->btf->start_str_off)
3214 		return 0;
3215 
3216 	s = btf__str_by_offset(d->btf, str_off);
3217 	if (d->btf->base_btf) {
3218 		err = btf__find_str(d->btf->base_btf, s);
3219 		if (err >= 0) {
3220 			*str_off_ptr = err;
3221 			return 0;
3222 		}
3223 		if (err != -ENOENT)
3224 			return err;
3225 	}
3226 
3227 	len = strlen(s) + 1;
3228 
3229 	new_off = d->strs_len;
3230 	p = btf_add_mem(&d->strs_data, &d->strs_cap, 1, new_off, BTF_MAX_STR_OFFSET, len);
3231 	if (!p)
3232 		return -ENOMEM;
3233 
3234 	memcpy(p, s, len);
3235 
3236 	/* Now attempt to add the string, but only if the string with the same
3237 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
3238 	 * string exists, we'll get its offset in old_off (that's old_key).
3239 	 */
3240 	err = hashmap__insert(d->strs_hash, (void *)new_off, (void *)new_off,
3241 			      HASHMAP_ADD, (const void **)&old_off, NULL);
3242 	if (err == -EEXIST) {
3243 		*str_off_ptr = d->btf->start_str_off + old_off;
3244 	} else if (err) {
3245 		return err;
3246 	} else {
3247 		*str_off_ptr = d->btf->start_str_off + new_off;
3248 		d->strs_len += len;
3249 	}
3250 	return 0;
3251 }
3252 
3253 /*
3254  * Dedup string and filter out those that are not referenced from either .BTF
3255  * or .BTF.ext (if provided) sections.
3256  *
3257  * This is done by building index of all strings in BTF's string section,
3258  * then iterating over all entities that can reference strings (e.g., type
3259  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3260  * strings as used. After that all used strings are deduped and compacted into
3261  * sequential blob of memory and new offsets are calculated. Then all the string
3262  * references are iterated again and rewritten using new offsets.
3263  */
3264 static int btf_dedup_strings(struct btf_dedup *d)
3265 {
3266 	char *s;
3267 	int err;
3268 
3269 	if (d->btf->strs_deduped)
3270 		return 0;
3271 
3272 	/* temporarily switch to use btf_dedup's strs_data for strings for hash
3273 	 * functions; later we'll just transfer hashmap to struct btf as is,
3274 	 * along the strs_data
3275 	 */
3276 	d->btf->strs_data_ptr = &d->strs_data;
3277 
3278 	d->strs_hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, d->btf);
3279 	if (IS_ERR(d->strs_hash)) {
3280 		err = PTR_ERR(d->strs_hash);
3281 		d->strs_hash = NULL;
3282 		goto err_out;
3283 	}
3284 
3285 	if (!d->btf->base_btf) {
3286 		s = btf_add_mem(&d->strs_data, &d->strs_cap, 1, d->strs_len, BTF_MAX_STR_OFFSET, 1);
3287 		if (!s)
3288 			return -ENOMEM;
3289 		/* initial empty string */
3290 		s[0] = 0;
3291 		d->strs_len = 1;
3292 
3293 		/* insert empty string; we won't be looking it up during strings
3294 		 * dedup, but it's good to have it for generic BTF string lookups
3295 		 */
3296 		err = hashmap__insert(d->strs_hash, (void *)0, (void *)0,
3297 				      HASHMAP_ADD, NULL, NULL);
3298 		if (err)
3299 			goto err_out;
3300 	}
3301 
3302 	/* remap string offsets */
3303 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3304 	if (err)
3305 		goto err_out;
3306 
3307 	/* replace BTF string data and hash with deduped ones */
3308 	free(d->btf->strs_data);
3309 	hashmap__free(d->btf->strs_hash);
3310 	d->btf->strs_data = d->strs_data;
3311 	d->btf->strs_data_cap = d->strs_cap;
3312 	d->btf->hdr->str_len = d->strs_len;
3313 	d->btf->strs_hash = d->strs_hash;
3314 	/* now point strs_data_ptr back to btf->strs_data */
3315 	d->btf->strs_data_ptr = &d->btf->strs_data;
3316 
3317 	d->strs_data = d->strs_hash = NULL;
3318 	d->strs_len = d->strs_cap = 0;
3319 	d->btf->strs_deduped = true;
3320 	return 0;
3321 
3322 err_out:
3323 	free(d->strs_data);
3324 	hashmap__free(d->strs_hash);
3325 	d->strs_data = d->strs_hash = NULL;
3326 	d->strs_len = d->strs_cap = 0;
3327 
3328 	/* restore strings pointer for existing d->btf->strs_hash back */
3329 	d->btf->strs_data_ptr = &d->strs_data;
3330 
3331 	return err;
3332 }
3333 
3334 static long btf_hash_common(struct btf_type *t)
3335 {
3336 	long h;
3337 
3338 	h = hash_combine(0, t->name_off);
3339 	h = hash_combine(h, t->info);
3340 	h = hash_combine(h, t->size);
3341 	return h;
3342 }
3343 
3344 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3345 {
3346 	return t1->name_off == t2->name_off &&
3347 	       t1->info == t2->info &&
3348 	       t1->size == t2->size;
3349 }
3350 
3351 /* Calculate type signature hash of INT. */
3352 static long btf_hash_int(struct btf_type *t)
3353 {
3354 	__u32 info = *(__u32 *)(t + 1);
3355 	long h;
3356 
3357 	h = btf_hash_common(t);
3358 	h = hash_combine(h, info);
3359 	return h;
3360 }
3361 
3362 /* Check structural equality of two INTs. */
3363 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3364 {
3365 	__u32 info1, info2;
3366 
3367 	if (!btf_equal_common(t1, t2))
3368 		return false;
3369 	info1 = *(__u32 *)(t1 + 1);
3370 	info2 = *(__u32 *)(t2 + 1);
3371 	return info1 == info2;
3372 }
3373 
3374 /* Calculate type signature hash of ENUM. */
3375 static long btf_hash_enum(struct btf_type *t)
3376 {
3377 	long h;
3378 
3379 	/* don't hash vlen and enum members to support enum fwd resolving */
3380 	h = hash_combine(0, t->name_off);
3381 	h = hash_combine(h, t->info & ~0xffff);
3382 	h = hash_combine(h, t->size);
3383 	return h;
3384 }
3385 
3386 /* Check structural equality of two ENUMs. */
3387 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3388 {
3389 	const struct btf_enum *m1, *m2;
3390 	__u16 vlen;
3391 	int i;
3392 
3393 	if (!btf_equal_common(t1, t2))
3394 		return false;
3395 
3396 	vlen = btf_vlen(t1);
3397 	m1 = btf_enum(t1);
3398 	m2 = btf_enum(t2);
3399 	for (i = 0; i < vlen; i++) {
3400 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3401 			return false;
3402 		m1++;
3403 		m2++;
3404 	}
3405 	return true;
3406 }
3407 
3408 static inline bool btf_is_enum_fwd(struct btf_type *t)
3409 {
3410 	return btf_is_enum(t) && btf_vlen(t) == 0;
3411 }
3412 
3413 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3414 {
3415 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3416 		return btf_equal_enum(t1, t2);
3417 	/* ignore vlen when comparing */
3418 	return t1->name_off == t2->name_off &&
3419 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3420 	       t1->size == t2->size;
3421 }
3422 
3423 /*
3424  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3425  * as referenced type IDs equivalence is established separately during type
3426  * graph equivalence check algorithm.
3427  */
3428 static long btf_hash_struct(struct btf_type *t)
3429 {
3430 	const struct btf_member *member = btf_members(t);
3431 	__u32 vlen = btf_vlen(t);
3432 	long h = btf_hash_common(t);
3433 	int i;
3434 
3435 	for (i = 0; i < vlen; i++) {
3436 		h = hash_combine(h, member->name_off);
3437 		h = hash_combine(h, member->offset);
3438 		/* no hashing of referenced type ID, it can be unresolved yet */
3439 		member++;
3440 	}
3441 	return h;
3442 }
3443 
3444 /*
3445  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3446  * IDs. This check is performed during type graph equivalence check and
3447  * referenced types equivalence is checked separately.
3448  */
3449 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3450 {
3451 	const struct btf_member *m1, *m2;
3452 	__u16 vlen;
3453 	int i;
3454 
3455 	if (!btf_equal_common(t1, t2))
3456 		return false;
3457 
3458 	vlen = btf_vlen(t1);
3459 	m1 = btf_members(t1);
3460 	m2 = btf_members(t2);
3461 	for (i = 0; i < vlen; i++) {
3462 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3463 			return false;
3464 		m1++;
3465 		m2++;
3466 	}
3467 	return true;
3468 }
3469 
3470 /*
3471  * Calculate type signature hash of ARRAY, including referenced type IDs,
3472  * under assumption that they were already resolved to canonical type IDs and
3473  * are not going to change.
3474  */
3475 static long btf_hash_array(struct btf_type *t)
3476 {
3477 	const struct btf_array *info = btf_array(t);
3478 	long h = btf_hash_common(t);
3479 
3480 	h = hash_combine(h, info->type);
3481 	h = hash_combine(h, info->index_type);
3482 	h = hash_combine(h, info->nelems);
3483 	return h;
3484 }
3485 
3486 /*
3487  * Check exact equality of two ARRAYs, taking into account referenced
3488  * type IDs, under assumption that they were already resolved to canonical
3489  * type IDs and are not going to change.
3490  * This function is called during reference types deduplication to compare
3491  * ARRAY to potential canonical representative.
3492  */
3493 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3494 {
3495 	const struct btf_array *info1, *info2;
3496 
3497 	if (!btf_equal_common(t1, t2))
3498 		return false;
3499 
3500 	info1 = btf_array(t1);
3501 	info2 = btf_array(t2);
3502 	return info1->type == info2->type &&
3503 	       info1->index_type == info2->index_type &&
3504 	       info1->nelems == info2->nelems;
3505 }
3506 
3507 /*
3508  * Check structural compatibility of two ARRAYs, ignoring referenced type
3509  * IDs. This check is performed during type graph equivalence check and
3510  * referenced types equivalence is checked separately.
3511  */
3512 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3513 {
3514 	if (!btf_equal_common(t1, t2))
3515 		return false;
3516 
3517 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3518 }
3519 
3520 /*
3521  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3522  * under assumption that they were already resolved to canonical type IDs and
3523  * are not going to change.
3524  */
3525 static long btf_hash_fnproto(struct btf_type *t)
3526 {
3527 	const struct btf_param *member = btf_params(t);
3528 	__u16 vlen = btf_vlen(t);
3529 	long h = btf_hash_common(t);
3530 	int i;
3531 
3532 	for (i = 0; i < vlen; i++) {
3533 		h = hash_combine(h, member->name_off);
3534 		h = hash_combine(h, member->type);
3535 		member++;
3536 	}
3537 	return h;
3538 }
3539 
3540 /*
3541  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3542  * type IDs, under assumption that they were already resolved to canonical
3543  * type IDs and are not going to change.
3544  * This function is called during reference types deduplication to compare
3545  * FUNC_PROTO to potential canonical representative.
3546  */
3547 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3548 {
3549 	const struct btf_param *m1, *m2;
3550 	__u16 vlen;
3551 	int i;
3552 
3553 	if (!btf_equal_common(t1, t2))
3554 		return false;
3555 
3556 	vlen = btf_vlen(t1);
3557 	m1 = btf_params(t1);
3558 	m2 = btf_params(t2);
3559 	for (i = 0; i < vlen; i++) {
3560 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3561 			return false;
3562 		m1++;
3563 		m2++;
3564 	}
3565 	return true;
3566 }
3567 
3568 /*
3569  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3570  * IDs. This check is performed during type graph equivalence check and
3571  * referenced types equivalence is checked separately.
3572  */
3573 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3574 {
3575 	const struct btf_param *m1, *m2;
3576 	__u16 vlen;
3577 	int i;
3578 
3579 	/* skip return type ID */
3580 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3581 		return false;
3582 
3583 	vlen = btf_vlen(t1);
3584 	m1 = btf_params(t1);
3585 	m2 = btf_params(t2);
3586 	for (i = 0; i < vlen; i++) {
3587 		if (m1->name_off != m2->name_off)
3588 			return false;
3589 		m1++;
3590 		m2++;
3591 	}
3592 	return true;
3593 }
3594 
3595 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3596  * types and initializing the rest of the state (canonical type mapping) for
3597  * the fixed base BTF part.
3598  */
3599 static int btf_dedup_prep(struct btf_dedup *d)
3600 {
3601 	struct btf_type *t;
3602 	int type_id;
3603 	long h;
3604 
3605 	if (!d->btf->base_btf)
3606 		return 0;
3607 
3608 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3609 		t = btf_type_by_id(d->btf, type_id);
3610 
3611 		/* all base BTF types are self-canonical by definition */
3612 		d->map[type_id] = type_id;
3613 
3614 		switch (btf_kind(t)) {
3615 		case BTF_KIND_VAR:
3616 		case BTF_KIND_DATASEC:
3617 			/* VAR and DATASEC are never hash/deduplicated */
3618 			continue;
3619 		case BTF_KIND_CONST:
3620 		case BTF_KIND_VOLATILE:
3621 		case BTF_KIND_RESTRICT:
3622 		case BTF_KIND_PTR:
3623 		case BTF_KIND_FWD:
3624 		case BTF_KIND_TYPEDEF:
3625 		case BTF_KIND_FUNC:
3626 			h = btf_hash_common(t);
3627 			break;
3628 		case BTF_KIND_INT:
3629 			h = btf_hash_int(t);
3630 			break;
3631 		case BTF_KIND_ENUM:
3632 			h = btf_hash_enum(t);
3633 			break;
3634 		case BTF_KIND_STRUCT:
3635 		case BTF_KIND_UNION:
3636 			h = btf_hash_struct(t);
3637 			break;
3638 		case BTF_KIND_ARRAY:
3639 			h = btf_hash_array(t);
3640 			break;
3641 		case BTF_KIND_FUNC_PROTO:
3642 			h = btf_hash_fnproto(t);
3643 			break;
3644 		default:
3645 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3646 			return -EINVAL;
3647 		}
3648 		if (btf_dedup_table_add(d, h, type_id))
3649 			return -ENOMEM;
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 /*
3656  * Deduplicate primitive types, that can't reference other types, by calculating
3657  * their type signature hash and comparing them with any possible canonical
3658  * candidate. If no canonical candidate matches, type itself is marked as
3659  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3660  */
3661 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3662 {
3663 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3664 	struct hashmap_entry *hash_entry;
3665 	struct btf_type *cand;
3666 	/* if we don't find equivalent type, then we are canonical */
3667 	__u32 new_id = type_id;
3668 	__u32 cand_id;
3669 	long h;
3670 
3671 	switch (btf_kind(t)) {
3672 	case BTF_KIND_CONST:
3673 	case BTF_KIND_VOLATILE:
3674 	case BTF_KIND_RESTRICT:
3675 	case BTF_KIND_PTR:
3676 	case BTF_KIND_TYPEDEF:
3677 	case BTF_KIND_ARRAY:
3678 	case BTF_KIND_STRUCT:
3679 	case BTF_KIND_UNION:
3680 	case BTF_KIND_FUNC:
3681 	case BTF_KIND_FUNC_PROTO:
3682 	case BTF_KIND_VAR:
3683 	case BTF_KIND_DATASEC:
3684 		return 0;
3685 
3686 	case BTF_KIND_INT:
3687 		h = btf_hash_int(t);
3688 		for_each_dedup_cand(d, hash_entry, h) {
3689 			cand_id = (__u32)(long)hash_entry->value;
3690 			cand = btf_type_by_id(d->btf, cand_id);
3691 			if (btf_equal_int(t, cand)) {
3692 				new_id = cand_id;
3693 				break;
3694 			}
3695 		}
3696 		break;
3697 
3698 	case BTF_KIND_ENUM:
3699 		h = btf_hash_enum(t);
3700 		for_each_dedup_cand(d, hash_entry, h) {
3701 			cand_id = (__u32)(long)hash_entry->value;
3702 			cand = btf_type_by_id(d->btf, cand_id);
3703 			if (btf_equal_enum(t, cand)) {
3704 				new_id = cand_id;
3705 				break;
3706 			}
3707 			if (d->opts.dont_resolve_fwds)
3708 				continue;
3709 			if (btf_compat_enum(t, cand)) {
3710 				if (btf_is_enum_fwd(t)) {
3711 					/* resolve fwd to full enum */
3712 					new_id = cand_id;
3713 					break;
3714 				}
3715 				/* resolve canonical enum fwd to full enum */
3716 				d->map[cand_id] = type_id;
3717 			}
3718 		}
3719 		break;
3720 
3721 	case BTF_KIND_FWD:
3722 		h = btf_hash_common(t);
3723 		for_each_dedup_cand(d, hash_entry, h) {
3724 			cand_id = (__u32)(long)hash_entry->value;
3725 			cand = btf_type_by_id(d->btf, cand_id);
3726 			if (btf_equal_common(t, cand)) {
3727 				new_id = cand_id;
3728 				break;
3729 			}
3730 		}
3731 		break;
3732 
3733 	default:
3734 		return -EINVAL;
3735 	}
3736 
3737 	d->map[type_id] = new_id;
3738 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3739 		return -ENOMEM;
3740 
3741 	return 0;
3742 }
3743 
3744 static int btf_dedup_prim_types(struct btf_dedup *d)
3745 {
3746 	int i, err;
3747 
3748 	for (i = 0; i < d->btf->nr_types; i++) {
3749 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3750 		if (err)
3751 			return err;
3752 	}
3753 	return 0;
3754 }
3755 
3756 /*
3757  * Check whether type is already mapped into canonical one (could be to itself).
3758  */
3759 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3760 {
3761 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3762 }
3763 
3764 /*
3765  * Resolve type ID into its canonical type ID, if any; otherwise return original
3766  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3767  * STRUCT/UNION link and resolve it into canonical type ID as well.
3768  */
3769 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3770 {
3771 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3772 		type_id = d->map[type_id];
3773 	return type_id;
3774 }
3775 
3776 /*
3777  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3778  * type ID.
3779  */
3780 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3781 {
3782 	__u32 orig_type_id = type_id;
3783 
3784 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3785 		return type_id;
3786 
3787 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3788 		type_id = d->map[type_id];
3789 
3790 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3791 		return type_id;
3792 
3793 	return orig_type_id;
3794 }
3795 
3796 
3797 static inline __u16 btf_fwd_kind(struct btf_type *t)
3798 {
3799 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3800 }
3801 
3802 /* Check if given two types are identical ARRAY definitions */
3803 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3804 {
3805 	struct btf_type *t1, *t2;
3806 
3807 	t1 = btf_type_by_id(d->btf, id1);
3808 	t2 = btf_type_by_id(d->btf, id2);
3809 	if (!btf_is_array(t1) || !btf_is_array(t2))
3810 		return 0;
3811 
3812 	return btf_equal_array(t1, t2);
3813 }
3814 
3815 /*
3816  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3817  * call it "candidate graph" in this description for brevity) to a type graph
3818  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3819  * here, though keep in mind that not all types in canonical graph are
3820  * necessarily canonical representatives themselves, some of them might be
3821  * duplicates or its uniqueness might not have been established yet).
3822  * Returns:
3823  *  - >0, if type graphs are equivalent;
3824  *  -  0, if not equivalent;
3825  *  - <0, on error.
3826  *
3827  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3828  * equivalence of BTF types at each step. If at any point BTF types in candidate
3829  * and canonical graphs are not compatible structurally, whole graphs are
3830  * incompatible. If types are structurally equivalent (i.e., all information
3831  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3832  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3833  * If a type references other types, then those referenced types are checked
3834  * for equivalence recursively.
3835  *
3836  * During DFS traversal, if we find that for current `canon_id` type we
3837  * already have some mapping in hypothetical map, we check for two possible
3838  * situations:
3839  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3840  *     happen when type graphs have cycles. In this case we assume those two
3841  *     types are equivalent.
3842  *   - `canon_id` is mapped to different type. This is contradiction in our
3843  *     hypothetical mapping, because same graph in canonical graph corresponds
3844  *     to two different types in candidate graph, which for equivalent type
3845  *     graphs shouldn't happen. This condition terminates equivalence check
3846  *     with negative result.
3847  *
3848  * If type graphs traversal exhausts types to check and find no contradiction,
3849  * then type graphs are equivalent.
3850  *
3851  * When checking types for equivalence, there is one special case: FWD types.
3852  * If FWD type resolution is allowed and one of the types (either from canonical
3853  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3854  * flag) and their names match, hypothetical mapping is updated to point from
3855  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3856  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3857  *
3858  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3859  * if there are two exactly named (or anonymous) structs/unions that are
3860  * compatible structurally, one of which has FWD field, while other is concrete
3861  * STRUCT/UNION, but according to C sources they are different structs/unions
3862  * that are referencing different types with the same name. This is extremely
3863  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3864  * this logic is causing problems.
3865  *
3866  * Doing FWD resolution means that both candidate and/or canonical graphs can
3867  * consists of portions of the graph that come from multiple compilation units.
3868  * This is due to the fact that types within single compilation unit are always
3869  * deduplicated and FWDs are already resolved, if referenced struct/union
3870  * definiton is available. So, if we had unresolved FWD and found corresponding
3871  * STRUCT/UNION, they will be from different compilation units. This
3872  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3873  * type graph will likely have at least two different BTF types that describe
3874  * same type (e.g., most probably there will be two different BTF types for the
3875  * same 'int' primitive type) and could even have "overlapping" parts of type
3876  * graph that describe same subset of types.
3877  *
3878  * This in turn means that our assumption that each type in canonical graph
3879  * must correspond to exactly one type in candidate graph might not hold
3880  * anymore and will make it harder to detect contradictions using hypothetical
3881  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3882  * resolution only in canonical graph. FWDs in candidate graphs are never
3883  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3884  * that can occur:
3885  *   - Both types in canonical and candidate graphs are FWDs. If they are
3886  *     structurally equivalent, then they can either be both resolved to the
3887  *     same STRUCT/UNION or not resolved at all. In both cases they are
3888  *     equivalent and there is no need to resolve FWD on candidate side.
3889  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3890  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3891  *   - Type in canonical graph is FWD, while type in candidate is concrete
3892  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3893  *     unit, so there is exactly one BTF type for each unique C type. After
3894  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3895  *     in canonical graph mapping to single BTF type in candidate graph, but
3896  *     because hypothetical mapping maps from canonical to candidate types, it's
3897  *     alright, and we still maintain the property of having single `canon_id`
3898  *     mapping to single `cand_id` (there could be two different `canon_id`
3899  *     mapped to the same `cand_id`, but it's not contradictory).
3900  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3901  *     graph is FWD. In this case we are just going to check compatibility of
3902  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3903  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3904  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3905  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3906  *     canonical graph.
3907  */
3908 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3909 			      __u32 canon_id)
3910 {
3911 	struct btf_type *cand_type;
3912 	struct btf_type *canon_type;
3913 	__u32 hypot_type_id;
3914 	__u16 cand_kind;
3915 	__u16 canon_kind;
3916 	int i, eq;
3917 
3918 	/* if both resolve to the same canonical, they must be equivalent */
3919 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3920 		return 1;
3921 
3922 	canon_id = resolve_fwd_id(d, canon_id);
3923 
3924 	hypot_type_id = d->hypot_map[canon_id];
3925 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3926 		/* In some cases compiler will generate different DWARF types
3927 		 * for *identical* array type definitions and use them for
3928 		 * different fields within the *same* struct. This breaks type
3929 		 * equivalence check, which makes an assumption that candidate
3930 		 * types sub-graph has a consistent and deduped-by-compiler
3931 		 * types within a single CU. So work around that by explicitly
3932 		 * allowing identical array types here.
3933 		 */
3934 		return hypot_type_id == cand_id ||
3935 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3936 	}
3937 
3938 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3939 		return -ENOMEM;
3940 
3941 	cand_type = btf_type_by_id(d->btf, cand_id);
3942 	canon_type = btf_type_by_id(d->btf, canon_id);
3943 	cand_kind = btf_kind(cand_type);
3944 	canon_kind = btf_kind(canon_type);
3945 
3946 	if (cand_type->name_off != canon_type->name_off)
3947 		return 0;
3948 
3949 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3950 	if (!d->opts.dont_resolve_fwds
3951 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3952 	    && cand_kind != canon_kind) {
3953 		__u16 real_kind;
3954 		__u16 fwd_kind;
3955 
3956 		if (cand_kind == BTF_KIND_FWD) {
3957 			real_kind = canon_kind;
3958 			fwd_kind = btf_fwd_kind(cand_type);
3959 		} else {
3960 			real_kind = cand_kind;
3961 			fwd_kind = btf_fwd_kind(canon_type);
3962 			/* we'd need to resolve base FWD to STRUCT/UNION */
3963 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3964 				d->hypot_adjust_canon = true;
3965 		}
3966 		return fwd_kind == real_kind;
3967 	}
3968 
3969 	if (cand_kind != canon_kind)
3970 		return 0;
3971 
3972 	switch (cand_kind) {
3973 	case BTF_KIND_INT:
3974 		return btf_equal_int(cand_type, canon_type);
3975 
3976 	case BTF_KIND_ENUM:
3977 		if (d->opts.dont_resolve_fwds)
3978 			return btf_equal_enum(cand_type, canon_type);
3979 		else
3980 			return btf_compat_enum(cand_type, canon_type);
3981 
3982 	case BTF_KIND_FWD:
3983 		return btf_equal_common(cand_type, canon_type);
3984 
3985 	case BTF_KIND_CONST:
3986 	case BTF_KIND_VOLATILE:
3987 	case BTF_KIND_RESTRICT:
3988 	case BTF_KIND_PTR:
3989 	case BTF_KIND_TYPEDEF:
3990 	case BTF_KIND_FUNC:
3991 		if (cand_type->info != canon_type->info)
3992 			return 0;
3993 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3994 
3995 	case BTF_KIND_ARRAY: {
3996 		const struct btf_array *cand_arr, *canon_arr;
3997 
3998 		if (!btf_compat_array(cand_type, canon_type))
3999 			return 0;
4000 		cand_arr = btf_array(cand_type);
4001 		canon_arr = btf_array(canon_type);
4002 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4003 		if (eq <= 0)
4004 			return eq;
4005 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4006 	}
4007 
4008 	case BTF_KIND_STRUCT:
4009 	case BTF_KIND_UNION: {
4010 		const struct btf_member *cand_m, *canon_m;
4011 		__u16 vlen;
4012 
4013 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4014 			return 0;
4015 		vlen = btf_vlen(cand_type);
4016 		cand_m = btf_members(cand_type);
4017 		canon_m = btf_members(canon_type);
4018 		for (i = 0; i < vlen; i++) {
4019 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4020 			if (eq <= 0)
4021 				return eq;
4022 			cand_m++;
4023 			canon_m++;
4024 		}
4025 
4026 		return 1;
4027 	}
4028 
4029 	case BTF_KIND_FUNC_PROTO: {
4030 		const struct btf_param *cand_p, *canon_p;
4031 		__u16 vlen;
4032 
4033 		if (!btf_compat_fnproto(cand_type, canon_type))
4034 			return 0;
4035 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4036 		if (eq <= 0)
4037 			return eq;
4038 		vlen = btf_vlen(cand_type);
4039 		cand_p = btf_params(cand_type);
4040 		canon_p = btf_params(canon_type);
4041 		for (i = 0; i < vlen; i++) {
4042 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4043 			if (eq <= 0)
4044 				return eq;
4045 			cand_p++;
4046 			canon_p++;
4047 		}
4048 		return 1;
4049 	}
4050 
4051 	default:
4052 		return -EINVAL;
4053 	}
4054 	return 0;
4055 }
4056 
4057 /*
4058  * Use hypothetical mapping, produced by successful type graph equivalence
4059  * check, to augment existing struct/union canonical mapping, where possible.
4060  *
4061  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4062  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4063  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4064  * we are recording the mapping anyway. As opposed to carefulness required
4065  * for struct/union correspondence mapping (described below), for FWD resolution
4066  * it's not important, as by the time that FWD type (reference type) will be
4067  * deduplicated all structs/unions will be deduped already anyway.
4068  *
4069  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4070  * not required for correctness. It needs to be done carefully to ensure that
4071  * struct/union from candidate's type graph is not mapped into corresponding
4072  * struct/union from canonical type graph that itself hasn't been resolved into
4073  * canonical representative. The only guarantee we have is that canonical
4074  * struct/union was determined as canonical and that won't change. But any
4075  * types referenced through that struct/union fields could have been not yet
4076  * resolved, so in case like that it's too early to establish any kind of
4077  * correspondence between structs/unions.
4078  *
4079  * No canonical correspondence is derived for primitive types (they are already
4080  * deduplicated completely already anyway) or reference types (they rely on
4081  * stability of struct/union canonical relationship for equivalence checks).
4082  */
4083 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4084 {
4085 	__u32 canon_type_id, targ_type_id;
4086 	__u16 t_kind, c_kind;
4087 	__u32 t_id, c_id;
4088 	int i;
4089 
4090 	for (i = 0; i < d->hypot_cnt; i++) {
4091 		canon_type_id = d->hypot_list[i];
4092 		targ_type_id = d->hypot_map[canon_type_id];
4093 		t_id = resolve_type_id(d, targ_type_id);
4094 		c_id = resolve_type_id(d, canon_type_id);
4095 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4096 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4097 		/*
4098 		 * Resolve FWD into STRUCT/UNION.
4099 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4100 		 * mapped to canonical representative (as opposed to
4101 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4102 		 * eventually that struct is going to be mapped and all resolved
4103 		 * FWDs will automatically resolve to correct canonical
4104 		 * representative. This will happen before ref type deduping,
4105 		 * which critically depends on stability of these mapping. This
4106 		 * stability is not a requirement for STRUCT/UNION equivalence
4107 		 * checks, though.
4108 		 */
4109 
4110 		/* if it's the split BTF case, we still need to point base FWD
4111 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4112 		 * will be resolved against base FWD. If we don't point base
4113 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4114 		 * FWDs in split BTF won't be correctly resolved to a proper
4115 		 * STRUCT/UNION.
4116 		 */
4117 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4118 			d->map[c_id] = t_id;
4119 
4120 		/* if graph equivalence determined that we'd need to adjust
4121 		 * base canonical types, then we need to only point base FWDs
4122 		 * to STRUCTs/UNIONs and do no more modifications. For all
4123 		 * other purposes the type graphs were not equivalent.
4124 		 */
4125 		if (d->hypot_adjust_canon)
4126 			continue;
4127 
4128 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4129 			d->map[t_id] = c_id;
4130 
4131 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4132 		    c_kind != BTF_KIND_FWD &&
4133 		    is_type_mapped(d, c_id) &&
4134 		    !is_type_mapped(d, t_id)) {
4135 			/*
4136 			 * as a perf optimization, we can map struct/union
4137 			 * that's part of type graph we just verified for
4138 			 * equivalence. We can do that for struct/union that has
4139 			 * canonical representative only, though.
4140 			 */
4141 			d->map[t_id] = c_id;
4142 		}
4143 	}
4144 }
4145 
4146 /*
4147  * Deduplicate struct/union types.
4148  *
4149  * For each struct/union type its type signature hash is calculated, taking
4150  * into account type's name, size, number, order and names of fields, but
4151  * ignoring type ID's referenced from fields, because they might not be deduped
4152  * completely until after reference types deduplication phase. This type hash
4153  * is used to iterate over all potential canonical types, sharing same hash.
4154  * For each canonical candidate we check whether type graphs that they form
4155  * (through referenced types in fields and so on) are equivalent using algorithm
4156  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4157  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4158  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4159  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4160  * potentially map other structs/unions to their canonical representatives,
4161  * if such relationship hasn't yet been established. This speeds up algorithm
4162  * by eliminating some of the duplicate work.
4163  *
4164  * If no matching canonical representative was found, struct/union is marked
4165  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4166  * for further look ups.
4167  */
4168 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4169 {
4170 	struct btf_type *cand_type, *t;
4171 	struct hashmap_entry *hash_entry;
4172 	/* if we don't find equivalent type, then we are canonical */
4173 	__u32 new_id = type_id;
4174 	__u16 kind;
4175 	long h;
4176 
4177 	/* already deduped or is in process of deduping (loop detected) */
4178 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4179 		return 0;
4180 
4181 	t = btf_type_by_id(d->btf, type_id);
4182 	kind = btf_kind(t);
4183 
4184 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4185 		return 0;
4186 
4187 	h = btf_hash_struct(t);
4188 	for_each_dedup_cand(d, hash_entry, h) {
4189 		__u32 cand_id = (__u32)(long)hash_entry->value;
4190 		int eq;
4191 
4192 		/*
4193 		 * Even though btf_dedup_is_equiv() checks for
4194 		 * btf_shallow_equal_struct() internally when checking two
4195 		 * structs (unions) for equivalence, we need to guard here
4196 		 * from picking matching FWD type as a dedup candidate.
4197 		 * This can happen due to hash collision. In such case just
4198 		 * relying on btf_dedup_is_equiv() would lead to potentially
4199 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4200 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4201 		 */
4202 		cand_type = btf_type_by_id(d->btf, cand_id);
4203 		if (!btf_shallow_equal_struct(t, cand_type))
4204 			continue;
4205 
4206 		btf_dedup_clear_hypot_map(d);
4207 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4208 		if (eq < 0)
4209 			return eq;
4210 		if (!eq)
4211 			continue;
4212 		btf_dedup_merge_hypot_map(d);
4213 		if (d->hypot_adjust_canon) /* not really equivalent */
4214 			continue;
4215 		new_id = cand_id;
4216 		break;
4217 	}
4218 
4219 	d->map[type_id] = new_id;
4220 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4221 		return -ENOMEM;
4222 
4223 	return 0;
4224 }
4225 
4226 static int btf_dedup_struct_types(struct btf_dedup *d)
4227 {
4228 	int i, err;
4229 
4230 	for (i = 0; i < d->btf->nr_types; i++) {
4231 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4232 		if (err)
4233 			return err;
4234 	}
4235 	return 0;
4236 }
4237 
4238 /*
4239  * Deduplicate reference type.
4240  *
4241  * Once all primitive and struct/union types got deduplicated, we can easily
4242  * deduplicate all other (reference) BTF types. This is done in two steps:
4243  *
4244  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4245  * resolution can be done either immediately for primitive or struct/union types
4246  * (because they were deduped in previous two phases) or recursively for
4247  * reference types. Recursion will always terminate at either primitive or
4248  * struct/union type, at which point we can "unwind" chain of reference types
4249  * one by one. There is no danger of encountering cycles because in C type
4250  * system the only way to form type cycle is through struct/union, so any chain
4251  * of reference types, even those taking part in a type cycle, will inevitably
4252  * reach struct/union at some point.
4253  *
4254  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4255  * becomes "stable", in the sense that no further deduplication will cause
4256  * any changes to it. With that, it's now possible to calculate type's signature
4257  * hash (this time taking into account referenced type IDs) and loop over all
4258  * potential canonical representatives. If no match was found, current type
4259  * will become canonical representative of itself and will be added into
4260  * btf_dedup->dedup_table as another possible canonical representative.
4261  */
4262 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4263 {
4264 	struct hashmap_entry *hash_entry;
4265 	__u32 new_id = type_id, cand_id;
4266 	struct btf_type *t, *cand;
4267 	/* if we don't find equivalent type, then we are representative type */
4268 	int ref_type_id;
4269 	long h;
4270 
4271 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4272 		return -ELOOP;
4273 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4274 		return resolve_type_id(d, type_id);
4275 
4276 	t = btf_type_by_id(d->btf, type_id);
4277 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4278 
4279 	switch (btf_kind(t)) {
4280 	case BTF_KIND_CONST:
4281 	case BTF_KIND_VOLATILE:
4282 	case BTF_KIND_RESTRICT:
4283 	case BTF_KIND_PTR:
4284 	case BTF_KIND_TYPEDEF:
4285 	case BTF_KIND_FUNC:
4286 		ref_type_id = btf_dedup_ref_type(d, t->type);
4287 		if (ref_type_id < 0)
4288 			return ref_type_id;
4289 		t->type = ref_type_id;
4290 
4291 		h = btf_hash_common(t);
4292 		for_each_dedup_cand(d, hash_entry, h) {
4293 			cand_id = (__u32)(long)hash_entry->value;
4294 			cand = btf_type_by_id(d->btf, cand_id);
4295 			if (btf_equal_common(t, cand)) {
4296 				new_id = cand_id;
4297 				break;
4298 			}
4299 		}
4300 		break;
4301 
4302 	case BTF_KIND_ARRAY: {
4303 		struct btf_array *info = btf_array(t);
4304 
4305 		ref_type_id = btf_dedup_ref_type(d, info->type);
4306 		if (ref_type_id < 0)
4307 			return ref_type_id;
4308 		info->type = ref_type_id;
4309 
4310 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4311 		if (ref_type_id < 0)
4312 			return ref_type_id;
4313 		info->index_type = ref_type_id;
4314 
4315 		h = btf_hash_array(t);
4316 		for_each_dedup_cand(d, hash_entry, h) {
4317 			cand_id = (__u32)(long)hash_entry->value;
4318 			cand = btf_type_by_id(d->btf, cand_id);
4319 			if (btf_equal_array(t, cand)) {
4320 				new_id = cand_id;
4321 				break;
4322 			}
4323 		}
4324 		break;
4325 	}
4326 
4327 	case BTF_KIND_FUNC_PROTO: {
4328 		struct btf_param *param;
4329 		__u16 vlen;
4330 		int i;
4331 
4332 		ref_type_id = btf_dedup_ref_type(d, t->type);
4333 		if (ref_type_id < 0)
4334 			return ref_type_id;
4335 		t->type = ref_type_id;
4336 
4337 		vlen = btf_vlen(t);
4338 		param = btf_params(t);
4339 		for (i = 0; i < vlen; i++) {
4340 			ref_type_id = btf_dedup_ref_type(d, param->type);
4341 			if (ref_type_id < 0)
4342 				return ref_type_id;
4343 			param->type = ref_type_id;
4344 			param++;
4345 		}
4346 
4347 		h = btf_hash_fnproto(t);
4348 		for_each_dedup_cand(d, hash_entry, h) {
4349 			cand_id = (__u32)(long)hash_entry->value;
4350 			cand = btf_type_by_id(d->btf, cand_id);
4351 			if (btf_equal_fnproto(t, cand)) {
4352 				new_id = cand_id;
4353 				break;
4354 			}
4355 		}
4356 		break;
4357 	}
4358 
4359 	default:
4360 		return -EINVAL;
4361 	}
4362 
4363 	d->map[type_id] = new_id;
4364 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4365 		return -ENOMEM;
4366 
4367 	return new_id;
4368 }
4369 
4370 static int btf_dedup_ref_types(struct btf_dedup *d)
4371 {
4372 	int i, err;
4373 
4374 	for (i = 0; i < d->btf->nr_types; i++) {
4375 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4376 		if (err < 0)
4377 			return err;
4378 	}
4379 	/* we won't need d->dedup_table anymore */
4380 	hashmap__free(d->dedup_table);
4381 	d->dedup_table = NULL;
4382 	return 0;
4383 }
4384 
4385 /*
4386  * Compact types.
4387  *
4388  * After we established for each type its corresponding canonical representative
4389  * type, we now can eliminate types that are not canonical and leave only
4390  * canonical ones layed out sequentially in memory by copying them over
4391  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4392  * a map from original type ID to a new compacted type ID, which will be used
4393  * during next phase to "fix up" type IDs, referenced from struct/union and
4394  * reference types.
4395  */
4396 static int btf_dedup_compact_types(struct btf_dedup *d)
4397 {
4398 	__u32 *new_offs;
4399 	__u32 next_type_id = d->btf->start_id;
4400 	const struct btf_type *t;
4401 	void *p;
4402 	int i, id, len;
4403 
4404 	/* we are going to reuse hypot_map to store compaction remapping */
4405 	d->hypot_map[0] = 0;
4406 	/* base BTF types are not renumbered */
4407 	for (id = 1; id < d->btf->start_id; id++)
4408 		d->hypot_map[id] = id;
4409 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4410 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4411 
4412 	p = d->btf->types_data;
4413 
4414 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4415 		if (d->map[id] != id)
4416 			continue;
4417 
4418 		t = btf__type_by_id(d->btf, id);
4419 		len = btf_type_size(t);
4420 		if (len < 0)
4421 			return len;
4422 
4423 		memmove(p, t, len);
4424 		d->hypot_map[id] = next_type_id;
4425 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4426 		p += len;
4427 		next_type_id++;
4428 	}
4429 
4430 	/* shrink struct btf's internal types index and update btf_header */
4431 	d->btf->nr_types = next_type_id - d->btf->start_id;
4432 	d->btf->type_offs_cap = d->btf->nr_types;
4433 	d->btf->hdr->type_len = p - d->btf->types_data;
4434 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4435 				       sizeof(*new_offs));
4436 	if (d->btf->type_offs_cap && !new_offs)
4437 		return -ENOMEM;
4438 	d->btf->type_offs = new_offs;
4439 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4440 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4441 	return 0;
4442 }
4443 
4444 /*
4445  * Figure out final (deduplicated and compacted) type ID for provided original
4446  * `type_id` by first resolving it into corresponding canonical type ID and
4447  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4448  * which is populated during compaction phase.
4449  */
4450 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
4451 {
4452 	__u32 resolved_type_id, new_type_id;
4453 
4454 	resolved_type_id = resolve_type_id(d, type_id);
4455 	new_type_id = d->hypot_map[resolved_type_id];
4456 	if (new_type_id > BTF_MAX_NR_TYPES)
4457 		return -EINVAL;
4458 	return new_type_id;
4459 }
4460 
4461 /*
4462  * Remap referenced type IDs into deduped type IDs.
4463  *
4464  * After BTF types are deduplicated and compacted, their final type IDs may
4465  * differ from original ones. The map from original to a corresponding
4466  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4467  * compaction phase. During remapping phase we are rewriting all type IDs
4468  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4469  * their final deduped type IDs.
4470  */
4471 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
4472 {
4473 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4474 	int i, r;
4475 
4476 	switch (btf_kind(t)) {
4477 	case BTF_KIND_INT:
4478 	case BTF_KIND_ENUM:
4479 		break;
4480 
4481 	case BTF_KIND_FWD:
4482 	case BTF_KIND_CONST:
4483 	case BTF_KIND_VOLATILE:
4484 	case BTF_KIND_RESTRICT:
4485 	case BTF_KIND_PTR:
4486 	case BTF_KIND_TYPEDEF:
4487 	case BTF_KIND_FUNC:
4488 	case BTF_KIND_VAR:
4489 		r = btf_dedup_remap_type_id(d, t->type);
4490 		if (r < 0)
4491 			return r;
4492 		t->type = r;
4493 		break;
4494 
4495 	case BTF_KIND_ARRAY: {
4496 		struct btf_array *arr_info = btf_array(t);
4497 
4498 		r = btf_dedup_remap_type_id(d, arr_info->type);
4499 		if (r < 0)
4500 			return r;
4501 		arr_info->type = r;
4502 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
4503 		if (r < 0)
4504 			return r;
4505 		arr_info->index_type = r;
4506 		break;
4507 	}
4508 
4509 	case BTF_KIND_STRUCT:
4510 	case BTF_KIND_UNION: {
4511 		struct btf_member *member = btf_members(t);
4512 		__u16 vlen = btf_vlen(t);
4513 
4514 		for (i = 0; i < vlen; i++) {
4515 			r = btf_dedup_remap_type_id(d, member->type);
4516 			if (r < 0)
4517 				return r;
4518 			member->type = r;
4519 			member++;
4520 		}
4521 		break;
4522 	}
4523 
4524 	case BTF_KIND_FUNC_PROTO: {
4525 		struct btf_param *param = btf_params(t);
4526 		__u16 vlen = btf_vlen(t);
4527 
4528 		r = btf_dedup_remap_type_id(d, t->type);
4529 		if (r < 0)
4530 			return r;
4531 		t->type = r;
4532 
4533 		for (i = 0; i < vlen; i++) {
4534 			r = btf_dedup_remap_type_id(d, param->type);
4535 			if (r < 0)
4536 				return r;
4537 			param->type = r;
4538 			param++;
4539 		}
4540 		break;
4541 	}
4542 
4543 	case BTF_KIND_DATASEC: {
4544 		struct btf_var_secinfo *var = btf_var_secinfos(t);
4545 		__u16 vlen = btf_vlen(t);
4546 
4547 		for (i = 0; i < vlen; i++) {
4548 			r = btf_dedup_remap_type_id(d, var->type);
4549 			if (r < 0)
4550 				return r;
4551 			var->type = r;
4552 			var++;
4553 		}
4554 		break;
4555 	}
4556 
4557 	default:
4558 		return -EINVAL;
4559 	}
4560 
4561 	return 0;
4562 }
4563 
4564 static int btf_dedup_remap_types(struct btf_dedup *d)
4565 {
4566 	int i, r;
4567 
4568 	for (i = 0; i < d->btf->nr_types; i++) {
4569 		r = btf_dedup_remap_type(d, d->btf->start_id + i);
4570 		if (r < 0)
4571 			return r;
4572 	}
4573 	return 0;
4574 }
4575 
4576 /*
4577  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4578  * data out of it to use for target BTF.
4579  */
4580 struct btf *libbpf_find_kernel_btf(void)
4581 {
4582 	struct {
4583 		const char *path_fmt;
4584 		bool raw_btf;
4585 	} locations[] = {
4586 		/* try canonical vmlinux BTF through sysfs first */
4587 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4588 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4589 		{ "/boot/vmlinux-%1$s" },
4590 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4591 		{ "/lib/modules/%1$s/build/vmlinux" },
4592 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4593 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4594 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4595 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4596 	};
4597 	char path[PATH_MAX + 1];
4598 	struct utsname buf;
4599 	struct btf *btf;
4600 	int i;
4601 
4602 	uname(&buf);
4603 
4604 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4605 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4606 
4607 		if (access(path, R_OK))
4608 			continue;
4609 
4610 		if (locations[i].raw_btf)
4611 			btf = btf__parse_raw(path);
4612 		else
4613 			btf = btf__parse_elf(path, NULL);
4614 
4615 		pr_debug("loading kernel BTF '%s': %ld\n",
4616 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4617 		if (IS_ERR(btf))
4618 			continue;
4619 
4620 		return btf;
4621 	}
4622 
4623 	pr_warn("failed to find valid kernel BTF\n");
4624 	return ERR_PTR(-ESRCH);
4625 }
4626