1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__get_raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 193 { 194 __u32 *p; 195 196 p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 197 btf->nr_types, BTF_MAX_NR_TYPES, 1); 198 if (!p) 199 return -ENOMEM; 200 201 *p = type_off; 202 return 0; 203 } 204 205 static void btf_bswap_hdr(struct btf_header *h) 206 { 207 h->magic = bswap_16(h->magic); 208 h->hdr_len = bswap_32(h->hdr_len); 209 h->type_off = bswap_32(h->type_off); 210 h->type_len = bswap_32(h->type_len); 211 h->str_off = bswap_32(h->str_off); 212 h->str_len = bswap_32(h->str_len); 213 } 214 215 static int btf_parse_hdr(struct btf *btf) 216 { 217 struct btf_header *hdr = btf->hdr; 218 __u32 meta_left; 219 220 if (btf->raw_size < sizeof(struct btf_header)) { 221 pr_debug("BTF header not found\n"); 222 return -EINVAL; 223 } 224 225 if (hdr->magic == bswap_16(BTF_MAGIC)) { 226 btf->swapped_endian = true; 227 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 228 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 229 bswap_32(hdr->hdr_len)); 230 return -ENOTSUP; 231 } 232 btf_bswap_hdr(hdr); 233 } else if (hdr->magic != BTF_MAGIC) { 234 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 235 return -EINVAL; 236 } 237 238 meta_left = btf->raw_size - sizeof(*hdr); 239 if (meta_left < hdr->str_off + hdr->str_len) { 240 pr_debug("Invalid BTF total size:%u\n", btf->raw_size); 241 return -EINVAL; 242 } 243 244 if (hdr->type_off + hdr->type_len > hdr->str_off) { 245 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 246 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 247 return -EINVAL; 248 } 249 250 if (hdr->type_off % 4) { 251 pr_debug("BTF type section is not aligned to 4 bytes\n"); 252 return -EINVAL; 253 } 254 255 return 0; 256 } 257 258 static int btf_parse_str_sec(struct btf *btf) 259 { 260 const struct btf_header *hdr = btf->hdr; 261 const char *start = btf->strs_data; 262 const char *end = start + btf->hdr->str_len; 263 264 if (btf->base_btf && hdr->str_len == 0) 265 return 0; 266 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 267 pr_debug("Invalid BTF string section\n"); 268 return -EINVAL; 269 } 270 if (!btf->base_btf && start[0]) { 271 pr_debug("Invalid BTF string section\n"); 272 return -EINVAL; 273 } 274 return 0; 275 } 276 277 static int btf_type_size(const struct btf_type *t) 278 { 279 const int base_size = sizeof(struct btf_type); 280 __u16 vlen = btf_vlen(t); 281 282 switch (btf_kind(t)) { 283 case BTF_KIND_FWD: 284 case BTF_KIND_CONST: 285 case BTF_KIND_VOLATILE: 286 case BTF_KIND_RESTRICT: 287 case BTF_KIND_PTR: 288 case BTF_KIND_TYPEDEF: 289 case BTF_KIND_FUNC: 290 case BTF_KIND_FLOAT: 291 return base_size; 292 case BTF_KIND_INT: 293 return base_size + sizeof(__u32); 294 case BTF_KIND_ENUM: 295 return base_size + vlen * sizeof(struct btf_enum); 296 case BTF_KIND_ARRAY: 297 return base_size + sizeof(struct btf_array); 298 case BTF_KIND_STRUCT: 299 case BTF_KIND_UNION: 300 return base_size + vlen * sizeof(struct btf_member); 301 case BTF_KIND_FUNC_PROTO: 302 return base_size + vlen * sizeof(struct btf_param); 303 case BTF_KIND_VAR: 304 return base_size + sizeof(struct btf_var); 305 case BTF_KIND_DATASEC: 306 return base_size + vlen * sizeof(struct btf_var_secinfo); 307 default: 308 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 309 return -EINVAL; 310 } 311 } 312 313 static void btf_bswap_type_base(struct btf_type *t) 314 { 315 t->name_off = bswap_32(t->name_off); 316 t->info = bswap_32(t->info); 317 t->type = bswap_32(t->type); 318 } 319 320 static int btf_bswap_type_rest(struct btf_type *t) 321 { 322 struct btf_var_secinfo *v; 323 struct btf_member *m; 324 struct btf_array *a; 325 struct btf_param *p; 326 struct btf_enum *e; 327 __u16 vlen = btf_vlen(t); 328 int i; 329 330 switch (btf_kind(t)) { 331 case BTF_KIND_FWD: 332 case BTF_KIND_CONST: 333 case BTF_KIND_VOLATILE: 334 case BTF_KIND_RESTRICT: 335 case BTF_KIND_PTR: 336 case BTF_KIND_TYPEDEF: 337 case BTF_KIND_FUNC: 338 case BTF_KIND_FLOAT: 339 return 0; 340 case BTF_KIND_INT: 341 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 342 return 0; 343 case BTF_KIND_ENUM: 344 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 345 e->name_off = bswap_32(e->name_off); 346 e->val = bswap_32(e->val); 347 } 348 return 0; 349 case BTF_KIND_ARRAY: 350 a = btf_array(t); 351 a->type = bswap_32(a->type); 352 a->index_type = bswap_32(a->index_type); 353 a->nelems = bswap_32(a->nelems); 354 return 0; 355 case BTF_KIND_STRUCT: 356 case BTF_KIND_UNION: 357 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 358 m->name_off = bswap_32(m->name_off); 359 m->type = bswap_32(m->type); 360 m->offset = bswap_32(m->offset); 361 } 362 return 0; 363 case BTF_KIND_FUNC_PROTO: 364 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 365 p->name_off = bswap_32(p->name_off); 366 p->type = bswap_32(p->type); 367 } 368 return 0; 369 case BTF_KIND_VAR: 370 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 371 return 0; 372 case BTF_KIND_DATASEC: 373 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 374 v->type = bswap_32(v->type); 375 v->offset = bswap_32(v->offset); 376 v->size = bswap_32(v->size); 377 } 378 return 0; 379 default: 380 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 381 return -EINVAL; 382 } 383 } 384 385 static int btf_parse_type_sec(struct btf *btf) 386 { 387 struct btf_header *hdr = btf->hdr; 388 void *next_type = btf->types_data; 389 void *end_type = next_type + hdr->type_len; 390 int err, type_size; 391 392 while (next_type + sizeof(struct btf_type) <= end_type) { 393 if (btf->swapped_endian) 394 btf_bswap_type_base(next_type); 395 396 type_size = btf_type_size(next_type); 397 if (type_size < 0) 398 return type_size; 399 if (next_type + type_size > end_type) { 400 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 401 return -EINVAL; 402 } 403 404 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 405 return -EINVAL; 406 407 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 408 if (err) 409 return err; 410 411 next_type += type_size; 412 btf->nr_types++; 413 } 414 415 if (next_type != end_type) { 416 pr_warn("BTF types data is malformed\n"); 417 return -EINVAL; 418 } 419 420 return 0; 421 } 422 423 __u32 btf__get_nr_types(const struct btf *btf) 424 { 425 return btf->start_id + btf->nr_types - 1; 426 } 427 428 const struct btf *btf__base_btf(const struct btf *btf) 429 { 430 return btf->base_btf; 431 } 432 433 /* internal helper returning non-const pointer to a type */ 434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 435 { 436 if (type_id == 0) 437 return &btf_void; 438 if (type_id < btf->start_id) 439 return btf_type_by_id(btf->base_btf, type_id); 440 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 441 } 442 443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 444 { 445 if (type_id >= btf->start_id + btf->nr_types) 446 return errno = EINVAL, NULL; 447 return btf_type_by_id((struct btf *)btf, type_id); 448 } 449 450 static int determine_ptr_size(const struct btf *btf) 451 { 452 const struct btf_type *t; 453 const char *name; 454 int i, n; 455 456 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 457 return btf->base_btf->ptr_sz; 458 459 n = btf__get_nr_types(btf); 460 for (i = 1; i <= n; i++) { 461 t = btf__type_by_id(btf, i); 462 if (!btf_is_int(t)) 463 continue; 464 465 name = btf__name_by_offset(btf, t->name_off); 466 if (!name) 467 continue; 468 469 if (strcmp(name, "long int") == 0 || 470 strcmp(name, "long unsigned int") == 0) { 471 if (t->size != 4 && t->size != 8) 472 continue; 473 return t->size; 474 } 475 } 476 477 return -1; 478 } 479 480 static size_t btf_ptr_sz(const struct btf *btf) 481 { 482 if (!btf->ptr_sz) 483 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 484 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 485 } 486 487 /* Return pointer size this BTF instance assumes. The size is heuristically 488 * determined by looking for 'long' or 'unsigned long' integer type and 489 * recording its size in bytes. If BTF type information doesn't have any such 490 * type, this function returns 0. In the latter case, native architecture's 491 * pointer size is assumed, so will be either 4 or 8, depending on 492 * architecture that libbpf was compiled for. It's possible to override 493 * guessed value by using btf__set_pointer_size() API. 494 */ 495 size_t btf__pointer_size(const struct btf *btf) 496 { 497 if (!btf->ptr_sz) 498 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 499 500 if (btf->ptr_sz < 0) 501 /* not enough BTF type info to guess */ 502 return 0; 503 504 return btf->ptr_sz; 505 } 506 507 /* Override or set pointer size in bytes. Only values of 4 and 8 are 508 * supported. 509 */ 510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 511 { 512 if (ptr_sz != 4 && ptr_sz != 8) 513 return libbpf_err(-EINVAL); 514 btf->ptr_sz = ptr_sz; 515 return 0; 516 } 517 518 static bool is_host_big_endian(void) 519 { 520 #if __BYTE_ORDER == __LITTLE_ENDIAN 521 return false; 522 #elif __BYTE_ORDER == __BIG_ENDIAN 523 return true; 524 #else 525 # error "Unrecognized __BYTE_ORDER__" 526 #endif 527 } 528 529 enum btf_endianness btf__endianness(const struct btf *btf) 530 { 531 if (is_host_big_endian()) 532 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 533 else 534 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 535 } 536 537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 538 { 539 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 540 return libbpf_err(-EINVAL); 541 542 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 543 if (!btf->swapped_endian) { 544 free(btf->raw_data_swapped); 545 btf->raw_data_swapped = NULL; 546 } 547 return 0; 548 } 549 550 static bool btf_type_is_void(const struct btf_type *t) 551 { 552 return t == &btf_void || btf_is_fwd(t); 553 } 554 555 static bool btf_type_is_void_or_null(const struct btf_type *t) 556 { 557 return !t || btf_type_is_void(t); 558 } 559 560 #define MAX_RESOLVE_DEPTH 32 561 562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 563 { 564 const struct btf_array *array; 565 const struct btf_type *t; 566 __u32 nelems = 1; 567 __s64 size = -1; 568 int i; 569 570 t = btf__type_by_id(btf, type_id); 571 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 572 switch (btf_kind(t)) { 573 case BTF_KIND_INT: 574 case BTF_KIND_STRUCT: 575 case BTF_KIND_UNION: 576 case BTF_KIND_ENUM: 577 case BTF_KIND_DATASEC: 578 case BTF_KIND_FLOAT: 579 size = t->size; 580 goto done; 581 case BTF_KIND_PTR: 582 size = btf_ptr_sz(btf); 583 goto done; 584 case BTF_KIND_TYPEDEF: 585 case BTF_KIND_VOLATILE: 586 case BTF_KIND_CONST: 587 case BTF_KIND_RESTRICT: 588 case BTF_KIND_VAR: 589 type_id = t->type; 590 break; 591 case BTF_KIND_ARRAY: 592 array = btf_array(t); 593 if (nelems && array->nelems > UINT32_MAX / nelems) 594 return libbpf_err(-E2BIG); 595 nelems *= array->nelems; 596 type_id = array->type; 597 break; 598 default: 599 return libbpf_err(-EINVAL); 600 } 601 602 t = btf__type_by_id(btf, type_id); 603 } 604 605 done: 606 if (size < 0) 607 return libbpf_err(-EINVAL); 608 if (nelems && size > UINT32_MAX / nelems) 609 return libbpf_err(-E2BIG); 610 611 return nelems * size; 612 } 613 614 int btf__align_of(const struct btf *btf, __u32 id) 615 { 616 const struct btf_type *t = btf__type_by_id(btf, id); 617 __u16 kind = btf_kind(t); 618 619 switch (kind) { 620 case BTF_KIND_INT: 621 case BTF_KIND_ENUM: 622 case BTF_KIND_FLOAT: 623 return min(btf_ptr_sz(btf), (size_t)t->size); 624 case BTF_KIND_PTR: 625 return btf_ptr_sz(btf); 626 case BTF_KIND_TYPEDEF: 627 case BTF_KIND_VOLATILE: 628 case BTF_KIND_CONST: 629 case BTF_KIND_RESTRICT: 630 return btf__align_of(btf, t->type); 631 case BTF_KIND_ARRAY: 632 return btf__align_of(btf, btf_array(t)->type); 633 case BTF_KIND_STRUCT: 634 case BTF_KIND_UNION: { 635 const struct btf_member *m = btf_members(t); 636 __u16 vlen = btf_vlen(t); 637 int i, max_align = 1, align; 638 639 for (i = 0; i < vlen; i++, m++) { 640 align = btf__align_of(btf, m->type); 641 if (align <= 0) 642 return libbpf_err(align); 643 max_align = max(max_align, align); 644 } 645 646 return max_align; 647 } 648 default: 649 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 650 return errno = EINVAL, 0; 651 } 652 } 653 654 int btf__resolve_type(const struct btf *btf, __u32 type_id) 655 { 656 const struct btf_type *t; 657 int depth = 0; 658 659 t = btf__type_by_id(btf, type_id); 660 while (depth < MAX_RESOLVE_DEPTH && 661 !btf_type_is_void_or_null(t) && 662 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 663 type_id = t->type; 664 t = btf__type_by_id(btf, type_id); 665 depth++; 666 } 667 668 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 669 return libbpf_err(-EINVAL); 670 671 return type_id; 672 } 673 674 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 675 { 676 __u32 i, nr_types = btf__get_nr_types(btf); 677 678 if (!strcmp(type_name, "void")) 679 return 0; 680 681 for (i = 1; i <= nr_types; i++) { 682 const struct btf_type *t = btf__type_by_id(btf, i); 683 const char *name = btf__name_by_offset(btf, t->name_off); 684 685 if (name && !strcmp(type_name, name)) 686 return i; 687 } 688 689 return libbpf_err(-ENOENT); 690 } 691 692 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 693 __u32 kind) 694 { 695 __u32 i, nr_types = btf__get_nr_types(btf); 696 697 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 698 return 0; 699 700 for (i = 1; i <= nr_types; i++) { 701 const struct btf_type *t = btf__type_by_id(btf, i); 702 const char *name; 703 704 if (btf_kind(t) != kind) 705 continue; 706 name = btf__name_by_offset(btf, t->name_off); 707 if (name && !strcmp(type_name, name)) 708 return i; 709 } 710 711 return libbpf_err(-ENOENT); 712 } 713 714 static bool btf_is_modifiable(const struct btf *btf) 715 { 716 return (void *)btf->hdr != btf->raw_data; 717 } 718 719 void btf__free(struct btf *btf) 720 { 721 if (IS_ERR_OR_NULL(btf)) 722 return; 723 724 if (btf->fd >= 0) 725 close(btf->fd); 726 727 if (btf_is_modifiable(btf)) { 728 /* if BTF was modified after loading, it will have a split 729 * in-memory representation for header, types, and strings 730 * sections, so we need to free all of them individually. It 731 * might still have a cached contiguous raw data present, 732 * which will be unconditionally freed below. 733 */ 734 free(btf->hdr); 735 free(btf->types_data); 736 strset__free(btf->strs_set); 737 } 738 free(btf->raw_data); 739 free(btf->raw_data_swapped); 740 free(btf->type_offs); 741 free(btf); 742 } 743 744 static struct btf *btf_new_empty(struct btf *base_btf) 745 { 746 struct btf *btf; 747 748 btf = calloc(1, sizeof(*btf)); 749 if (!btf) 750 return ERR_PTR(-ENOMEM); 751 752 btf->nr_types = 0; 753 btf->start_id = 1; 754 btf->start_str_off = 0; 755 btf->fd = -1; 756 btf->ptr_sz = sizeof(void *); 757 btf->swapped_endian = false; 758 759 if (base_btf) { 760 btf->base_btf = base_btf; 761 btf->start_id = btf__get_nr_types(base_btf) + 1; 762 btf->start_str_off = base_btf->hdr->str_len; 763 } 764 765 /* +1 for empty string at offset 0 */ 766 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 767 btf->raw_data = calloc(1, btf->raw_size); 768 if (!btf->raw_data) { 769 free(btf); 770 return ERR_PTR(-ENOMEM); 771 } 772 773 btf->hdr = btf->raw_data; 774 btf->hdr->hdr_len = sizeof(struct btf_header); 775 btf->hdr->magic = BTF_MAGIC; 776 btf->hdr->version = BTF_VERSION; 777 778 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 779 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 780 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 781 782 return btf; 783 } 784 785 struct btf *btf__new_empty(void) 786 { 787 return libbpf_ptr(btf_new_empty(NULL)); 788 } 789 790 struct btf *btf__new_empty_split(struct btf *base_btf) 791 { 792 return libbpf_ptr(btf_new_empty(base_btf)); 793 } 794 795 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 796 { 797 struct btf *btf; 798 int err; 799 800 btf = calloc(1, sizeof(struct btf)); 801 if (!btf) 802 return ERR_PTR(-ENOMEM); 803 804 btf->nr_types = 0; 805 btf->start_id = 1; 806 btf->start_str_off = 0; 807 btf->fd = -1; 808 809 if (base_btf) { 810 btf->base_btf = base_btf; 811 btf->start_id = btf__get_nr_types(base_btf) + 1; 812 btf->start_str_off = base_btf->hdr->str_len; 813 } 814 815 btf->raw_data = malloc(size); 816 if (!btf->raw_data) { 817 err = -ENOMEM; 818 goto done; 819 } 820 memcpy(btf->raw_data, data, size); 821 btf->raw_size = size; 822 823 btf->hdr = btf->raw_data; 824 err = btf_parse_hdr(btf); 825 if (err) 826 goto done; 827 828 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 829 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 830 831 err = btf_parse_str_sec(btf); 832 err = err ?: btf_parse_type_sec(btf); 833 if (err) 834 goto done; 835 836 done: 837 if (err) { 838 btf__free(btf); 839 return ERR_PTR(err); 840 } 841 842 return btf; 843 } 844 845 struct btf *btf__new(const void *data, __u32 size) 846 { 847 return libbpf_ptr(btf_new(data, size, NULL)); 848 } 849 850 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 851 struct btf_ext **btf_ext) 852 { 853 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 854 int err = 0, fd = -1, idx = 0; 855 struct btf *btf = NULL; 856 Elf_Scn *scn = NULL; 857 Elf *elf = NULL; 858 GElf_Ehdr ehdr; 859 size_t shstrndx; 860 861 if (elf_version(EV_CURRENT) == EV_NONE) { 862 pr_warn("failed to init libelf for %s\n", path); 863 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 864 } 865 866 fd = open(path, O_RDONLY); 867 if (fd < 0) { 868 err = -errno; 869 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 870 return ERR_PTR(err); 871 } 872 873 err = -LIBBPF_ERRNO__FORMAT; 874 875 elf = elf_begin(fd, ELF_C_READ, NULL); 876 if (!elf) { 877 pr_warn("failed to open %s as ELF file\n", path); 878 goto done; 879 } 880 if (!gelf_getehdr(elf, &ehdr)) { 881 pr_warn("failed to get EHDR from %s\n", path); 882 goto done; 883 } 884 885 if (elf_getshdrstrndx(elf, &shstrndx)) { 886 pr_warn("failed to get section names section index for %s\n", 887 path); 888 goto done; 889 } 890 891 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 892 pr_warn("failed to get e_shstrndx from %s\n", path); 893 goto done; 894 } 895 896 while ((scn = elf_nextscn(elf, scn)) != NULL) { 897 GElf_Shdr sh; 898 char *name; 899 900 idx++; 901 if (gelf_getshdr(scn, &sh) != &sh) { 902 pr_warn("failed to get section(%d) header from %s\n", 903 idx, path); 904 goto done; 905 } 906 name = elf_strptr(elf, shstrndx, sh.sh_name); 907 if (!name) { 908 pr_warn("failed to get section(%d) name from %s\n", 909 idx, path); 910 goto done; 911 } 912 if (strcmp(name, BTF_ELF_SEC) == 0) { 913 btf_data = elf_getdata(scn, 0); 914 if (!btf_data) { 915 pr_warn("failed to get section(%d, %s) data from %s\n", 916 idx, name, path); 917 goto done; 918 } 919 continue; 920 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 921 btf_ext_data = elf_getdata(scn, 0); 922 if (!btf_ext_data) { 923 pr_warn("failed to get section(%d, %s) data from %s\n", 924 idx, name, path); 925 goto done; 926 } 927 continue; 928 } 929 } 930 931 err = 0; 932 933 if (!btf_data) { 934 err = -ENOENT; 935 goto done; 936 } 937 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 938 err = libbpf_get_error(btf); 939 if (err) 940 goto done; 941 942 switch (gelf_getclass(elf)) { 943 case ELFCLASS32: 944 btf__set_pointer_size(btf, 4); 945 break; 946 case ELFCLASS64: 947 btf__set_pointer_size(btf, 8); 948 break; 949 default: 950 pr_warn("failed to get ELF class (bitness) for %s\n", path); 951 break; 952 } 953 954 if (btf_ext && btf_ext_data) { 955 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 956 err = libbpf_get_error(*btf_ext); 957 if (err) 958 goto done; 959 } else if (btf_ext) { 960 *btf_ext = NULL; 961 } 962 done: 963 if (elf) 964 elf_end(elf); 965 close(fd); 966 967 if (!err) 968 return btf; 969 970 if (btf_ext) 971 btf_ext__free(*btf_ext); 972 btf__free(btf); 973 974 return ERR_PTR(err); 975 } 976 977 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 978 { 979 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 980 } 981 982 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 983 { 984 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 985 } 986 987 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 988 { 989 struct btf *btf = NULL; 990 void *data = NULL; 991 FILE *f = NULL; 992 __u16 magic; 993 int err = 0; 994 long sz; 995 996 f = fopen(path, "rb"); 997 if (!f) { 998 err = -errno; 999 goto err_out; 1000 } 1001 1002 /* check BTF magic */ 1003 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1004 err = -EIO; 1005 goto err_out; 1006 } 1007 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1008 /* definitely not a raw BTF */ 1009 err = -EPROTO; 1010 goto err_out; 1011 } 1012 1013 /* get file size */ 1014 if (fseek(f, 0, SEEK_END)) { 1015 err = -errno; 1016 goto err_out; 1017 } 1018 sz = ftell(f); 1019 if (sz < 0) { 1020 err = -errno; 1021 goto err_out; 1022 } 1023 /* rewind to the start */ 1024 if (fseek(f, 0, SEEK_SET)) { 1025 err = -errno; 1026 goto err_out; 1027 } 1028 1029 /* pre-alloc memory and read all of BTF data */ 1030 data = malloc(sz); 1031 if (!data) { 1032 err = -ENOMEM; 1033 goto err_out; 1034 } 1035 if (fread(data, 1, sz, f) < sz) { 1036 err = -EIO; 1037 goto err_out; 1038 } 1039 1040 /* finally parse BTF data */ 1041 btf = btf_new(data, sz, base_btf); 1042 1043 err_out: 1044 free(data); 1045 if (f) 1046 fclose(f); 1047 return err ? ERR_PTR(err) : btf; 1048 } 1049 1050 struct btf *btf__parse_raw(const char *path) 1051 { 1052 return libbpf_ptr(btf_parse_raw(path, NULL)); 1053 } 1054 1055 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1056 { 1057 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1058 } 1059 1060 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1061 { 1062 struct btf *btf; 1063 int err; 1064 1065 if (btf_ext) 1066 *btf_ext = NULL; 1067 1068 btf = btf_parse_raw(path, base_btf); 1069 err = libbpf_get_error(btf); 1070 if (!err) 1071 return btf; 1072 if (err != -EPROTO) 1073 return ERR_PTR(err); 1074 return btf_parse_elf(path, base_btf, btf_ext); 1075 } 1076 1077 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1078 { 1079 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1080 } 1081 1082 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1083 { 1084 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1085 } 1086 1087 static int compare_vsi_off(const void *_a, const void *_b) 1088 { 1089 const struct btf_var_secinfo *a = _a; 1090 const struct btf_var_secinfo *b = _b; 1091 1092 return a->offset - b->offset; 1093 } 1094 1095 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1096 struct btf_type *t) 1097 { 1098 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1099 const char *name = btf__name_by_offset(btf, t->name_off); 1100 const struct btf_type *t_var; 1101 struct btf_var_secinfo *vsi; 1102 const struct btf_var *var; 1103 int ret; 1104 1105 if (!name) { 1106 pr_debug("No name found in string section for DATASEC kind.\n"); 1107 return -ENOENT; 1108 } 1109 1110 /* .extern datasec size and var offsets were set correctly during 1111 * extern collection step, so just skip straight to sorting variables 1112 */ 1113 if (t->size) 1114 goto sort_vars; 1115 1116 ret = bpf_object__section_size(obj, name, &size); 1117 if (ret || !size || (t->size && t->size != size)) { 1118 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1119 return -ENOENT; 1120 } 1121 1122 t->size = size; 1123 1124 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1125 t_var = btf__type_by_id(btf, vsi->type); 1126 var = btf_var(t_var); 1127 1128 if (!btf_is_var(t_var)) { 1129 pr_debug("Non-VAR type seen in section %s\n", name); 1130 return -EINVAL; 1131 } 1132 1133 if (var->linkage == BTF_VAR_STATIC) 1134 continue; 1135 1136 name = btf__name_by_offset(btf, t_var->name_off); 1137 if (!name) { 1138 pr_debug("No name found in string section for VAR kind\n"); 1139 return -ENOENT; 1140 } 1141 1142 ret = bpf_object__variable_offset(obj, name, &off); 1143 if (ret) { 1144 pr_debug("No offset found in symbol table for VAR %s\n", 1145 name); 1146 return -ENOENT; 1147 } 1148 1149 vsi->offset = off; 1150 } 1151 1152 sort_vars: 1153 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1154 return 0; 1155 } 1156 1157 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1158 { 1159 int err = 0; 1160 __u32 i; 1161 1162 for (i = 1; i <= btf->nr_types; i++) { 1163 struct btf_type *t = btf_type_by_id(btf, i); 1164 1165 /* Loader needs to fix up some of the things compiler 1166 * couldn't get its hands on while emitting BTF. This 1167 * is section size and global variable offset. We use 1168 * the info from the ELF itself for this purpose. 1169 */ 1170 if (btf_is_datasec(t)) { 1171 err = btf_fixup_datasec(obj, btf, t); 1172 if (err) 1173 break; 1174 } 1175 } 1176 1177 return libbpf_err(err); 1178 } 1179 1180 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1181 1182 int btf__load(struct btf *btf) 1183 { 1184 __u32 log_buf_size = 0, raw_size; 1185 char *log_buf = NULL; 1186 void *raw_data; 1187 int err = 0; 1188 1189 if (btf->fd >= 0) 1190 return libbpf_err(-EEXIST); 1191 1192 retry_load: 1193 if (log_buf_size) { 1194 log_buf = malloc(log_buf_size); 1195 if (!log_buf) 1196 return libbpf_err(-ENOMEM); 1197 1198 *log_buf = 0; 1199 } 1200 1201 raw_data = btf_get_raw_data(btf, &raw_size, false); 1202 if (!raw_data) { 1203 err = -ENOMEM; 1204 goto done; 1205 } 1206 /* cache native raw data representation */ 1207 btf->raw_size = raw_size; 1208 btf->raw_data = raw_data; 1209 1210 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1211 if (btf->fd < 0) { 1212 if (!log_buf || errno == ENOSPC) { 1213 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1214 log_buf_size << 1); 1215 free(log_buf); 1216 goto retry_load; 1217 } 1218 1219 err = -errno; 1220 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1221 if (*log_buf) 1222 pr_warn("%s\n", log_buf); 1223 goto done; 1224 } 1225 1226 done: 1227 free(log_buf); 1228 return libbpf_err(err); 1229 } 1230 1231 int btf__fd(const struct btf *btf) 1232 { 1233 return btf->fd; 1234 } 1235 1236 void btf__set_fd(struct btf *btf, int fd) 1237 { 1238 btf->fd = fd; 1239 } 1240 1241 static const void *btf_strs_data(const struct btf *btf) 1242 { 1243 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1244 } 1245 1246 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1247 { 1248 struct btf_header *hdr = btf->hdr; 1249 struct btf_type *t; 1250 void *data, *p; 1251 __u32 data_sz; 1252 int i; 1253 1254 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1255 if (data) { 1256 *size = btf->raw_size; 1257 return data; 1258 } 1259 1260 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1261 data = calloc(1, data_sz); 1262 if (!data) 1263 return NULL; 1264 p = data; 1265 1266 memcpy(p, hdr, hdr->hdr_len); 1267 if (swap_endian) 1268 btf_bswap_hdr(p); 1269 p += hdr->hdr_len; 1270 1271 memcpy(p, btf->types_data, hdr->type_len); 1272 if (swap_endian) { 1273 for (i = 0; i < btf->nr_types; i++) { 1274 t = p + btf->type_offs[i]; 1275 /* btf_bswap_type_rest() relies on native t->info, so 1276 * we swap base type info after we swapped all the 1277 * additional information 1278 */ 1279 if (btf_bswap_type_rest(t)) 1280 goto err_out; 1281 btf_bswap_type_base(t); 1282 } 1283 } 1284 p += hdr->type_len; 1285 1286 memcpy(p, btf_strs_data(btf), hdr->str_len); 1287 p += hdr->str_len; 1288 1289 *size = data_sz; 1290 return data; 1291 err_out: 1292 free(data); 1293 return NULL; 1294 } 1295 1296 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1297 { 1298 struct btf *btf = (struct btf *)btf_ro; 1299 __u32 data_sz; 1300 void *data; 1301 1302 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1303 if (!data) 1304 return errno = -ENOMEM, NULL; 1305 1306 btf->raw_size = data_sz; 1307 if (btf->swapped_endian) 1308 btf->raw_data_swapped = data; 1309 else 1310 btf->raw_data = data; 1311 *size = data_sz; 1312 return data; 1313 } 1314 1315 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1316 { 1317 if (offset < btf->start_str_off) 1318 return btf__str_by_offset(btf->base_btf, offset); 1319 else if (offset - btf->start_str_off < btf->hdr->str_len) 1320 return btf_strs_data(btf) + (offset - btf->start_str_off); 1321 else 1322 return errno = EINVAL, NULL; 1323 } 1324 1325 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1326 { 1327 return btf__str_by_offset(btf, offset); 1328 } 1329 1330 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1331 { 1332 struct bpf_btf_info btf_info; 1333 __u32 len = sizeof(btf_info); 1334 __u32 last_size; 1335 struct btf *btf; 1336 void *ptr; 1337 int err; 1338 1339 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1340 * let's start with a sane default - 4KiB here - and resize it only if 1341 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1342 */ 1343 last_size = 4096; 1344 ptr = malloc(last_size); 1345 if (!ptr) 1346 return ERR_PTR(-ENOMEM); 1347 1348 memset(&btf_info, 0, sizeof(btf_info)); 1349 btf_info.btf = ptr_to_u64(ptr); 1350 btf_info.btf_size = last_size; 1351 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1352 1353 if (!err && btf_info.btf_size > last_size) { 1354 void *temp_ptr; 1355 1356 last_size = btf_info.btf_size; 1357 temp_ptr = realloc(ptr, last_size); 1358 if (!temp_ptr) { 1359 btf = ERR_PTR(-ENOMEM); 1360 goto exit_free; 1361 } 1362 ptr = temp_ptr; 1363 1364 len = sizeof(btf_info); 1365 memset(&btf_info, 0, sizeof(btf_info)); 1366 btf_info.btf = ptr_to_u64(ptr); 1367 btf_info.btf_size = last_size; 1368 1369 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1370 } 1371 1372 if (err || btf_info.btf_size > last_size) { 1373 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1374 goto exit_free; 1375 } 1376 1377 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1378 1379 exit_free: 1380 free(ptr); 1381 return btf; 1382 } 1383 1384 int btf__get_from_id(__u32 id, struct btf **btf) 1385 { 1386 struct btf *res; 1387 int err, btf_fd; 1388 1389 *btf = NULL; 1390 btf_fd = bpf_btf_get_fd_by_id(id); 1391 if (btf_fd < 0) 1392 return libbpf_err(-errno); 1393 1394 res = btf_get_from_fd(btf_fd, NULL); 1395 err = libbpf_get_error(res); 1396 1397 close(btf_fd); 1398 1399 if (err) 1400 return libbpf_err(err); 1401 1402 *btf = res; 1403 return 0; 1404 } 1405 1406 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1407 __u32 expected_key_size, __u32 expected_value_size, 1408 __u32 *key_type_id, __u32 *value_type_id) 1409 { 1410 const struct btf_type *container_type; 1411 const struct btf_member *key, *value; 1412 const size_t max_name = 256; 1413 char container_name[max_name]; 1414 __s64 key_size, value_size; 1415 __s32 container_id; 1416 1417 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { 1418 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1419 map_name, map_name); 1420 return libbpf_err(-EINVAL); 1421 } 1422 1423 container_id = btf__find_by_name(btf, container_name); 1424 if (container_id < 0) { 1425 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1426 map_name, container_name); 1427 return libbpf_err(container_id); 1428 } 1429 1430 container_type = btf__type_by_id(btf, container_id); 1431 if (!container_type) { 1432 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1433 map_name, container_id); 1434 return libbpf_err(-EINVAL); 1435 } 1436 1437 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1438 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1439 map_name, container_name); 1440 return libbpf_err(-EINVAL); 1441 } 1442 1443 key = btf_members(container_type); 1444 value = key + 1; 1445 1446 key_size = btf__resolve_size(btf, key->type); 1447 if (key_size < 0) { 1448 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1449 return libbpf_err(key_size); 1450 } 1451 1452 if (expected_key_size != key_size) { 1453 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1454 map_name, (__u32)key_size, expected_key_size); 1455 return libbpf_err(-EINVAL); 1456 } 1457 1458 value_size = btf__resolve_size(btf, value->type); 1459 if (value_size < 0) { 1460 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1461 return libbpf_err(value_size); 1462 } 1463 1464 if (expected_value_size != value_size) { 1465 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1466 map_name, (__u32)value_size, expected_value_size); 1467 return libbpf_err(-EINVAL); 1468 } 1469 1470 *key_type_id = key->type; 1471 *value_type_id = value->type; 1472 1473 return 0; 1474 } 1475 1476 static void btf_invalidate_raw_data(struct btf *btf) 1477 { 1478 if (btf->raw_data) { 1479 free(btf->raw_data); 1480 btf->raw_data = NULL; 1481 } 1482 if (btf->raw_data_swapped) { 1483 free(btf->raw_data_swapped); 1484 btf->raw_data_swapped = NULL; 1485 } 1486 } 1487 1488 /* Ensure BTF is ready to be modified (by splitting into a three memory 1489 * regions for header, types, and strings). Also invalidate cached 1490 * raw_data, if any. 1491 */ 1492 static int btf_ensure_modifiable(struct btf *btf) 1493 { 1494 void *hdr, *types; 1495 struct strset *set = NULL; 1496 int err = -ENOMEM; 1497 1498 if (btf_is_modifiable(btf)) { 1499 /* any BTF modification invalidates raw_data */ 1500 btf_invalidate_raw_data(btf); 1501 return 0; 1502 } 1503 1504 /* split raw data into three memory regions */ 1505 hdr = malloc(btf->hdr->hdr_len); 1506 types = malloc(btf->hdr->type_len); 1507 if (!hdr || !types) 1508 goto err_out; 1509 1510 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1511 memcpy(types, btf->types_data, btf->hdr->type_len); 1512 1513 /* build lookup index for all strings */ 1514 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1515 if (IS_ERR(set)) { 1516 err = PTR_ERR(set); 1517 goto err_out; 1518 } 1519 1520 /* only when everything was successful, update internal state */ 1521 btf->hdr = hdr; 1522 btf->types_data = types; 1523 btf->types_data_cap = btf->hdr->type_len; 1524 btf->strs_data = NULL; 1525 btf->strs_set = set; 1526 /* if BTF was created from scratch, all strings are guaranteed to be 1527 * unique and deduplicated 1528 */ 1529 if (btf->hdr->str_len == 0) 1530 btf->strs_deduped = true; 1531 if (!btf->base_btf && btf->hdr->str_len == 1) 1532 btf->strs_deduped = true; 1533 1534 /* invalidate raw_data representation */ 1535 btf_invalidate_raw_data(btf); 1536 1537 return 0; 1538 1539 err_out: 1540 strset__free(set); 1541 free(hdr); 1542 free(types); 1543 return err; 1544 } 1545 1546 /* Find an offset in BTF string section that corresponds to a given string *s*. 1547 * Returns: 1548 * - >0 offset into string section, if string is found; 1549 * - -ENOENT, if string is not in the string section; 1550 * - <0, on any other error. 1551 */ 1552 int btf__find_str(struct btf *btf, const char *s) 1553 { 1554 int off; 1555 1556 if (btf->base_btf) { 1557 off = btf__find_str(btf->base_btf, s); 1558 if (off != -ENOENT) 1559 return off; 1560 } 1561 1562 /* BTF needs to be in a modifiable state to build string lookup index */ 1563 if (btf_ensure_modifiable(btf)) 1564 return libbpf_err(-ENOMEM); 1565 1566 off = strset__find_str(btf->strs_set, s); 1567 if (off < 0) 1568 return libbpf_err(off); 1569 1570 return btf->start_str_off + off; 1571 } 1572 1573 /* Add a string s to the BTF string section. 1574 * Returns: 1575 * - > 0 offset into string section, on success; 1576 * - < 0, on error. 1577 */ 1578 int btf__add_str(struct btf *btf, const char *s) 1579 { 1580 int off; 1581 1582 if (btf->base_btf) { 1583 off = btf__find_str(btf->base_btf, s); 1584 if (off != -ENOENT) 1585 return off; 1586 } 1587 1588 if (btf_ensure_modifiable(btf)) 1589 return libbpf_err(-ENOMEM); 1590 1591 off = strset__add_str(btf->strs_set, s); 1592 if (off < 0) 1593 return libbpf_err(off); 1594 1595 btf->hdr->str_len = strset__data_size(btf->strs_set); 1596 1597 return btf->start_str_off + off; 1598 } 1599 1600 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1601 { 1602 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1603 btf->hdr->type_len, UINT_MAX, add_sz); 1604 } 1605 1606 static void btf_type_inc_vlen(struct btf_type *t) 1607 { 1608 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1609 } 1610 1611 static int btf_commit_type(struct btf *btf, int data_sz) 1612 { 1613 int err; 1614 1615 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1616 if (err) 1617 return libbpf_err(err); 1618 1619 btf->hdr->type_len += data_sz; 1620 btf->hdr->str_off += data_sz; 1621 btf->nr_types++; 1622 return btf->start_id + btf->nr_types - 1; 1623 } 1624 1625 struct btf_pipe { 1626 const struct btf *src; 1627 struct btf *dst; 1628 }; 1629 1630 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1631 { 1632 struct btf_pipe *p = ctx; 1633 int off; 1634 1635 if (!*str_off) /* nothing to do for empty strings */ 1636 return 0; 1637 1638 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1639 if (off < 0) 1640 return off; 1641 1642 *str_off = off; 1643 return 0; 1644 } 1645 1646 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1647 { 1648 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1649 struct btf_type *t; 1650 int sz, err; 1651 1652 sz = btf_type_size(src_type); 1653 if (sz < 0) 1654 return libbpf_err(sz); 1655 1656 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1657 if (btf_ensure_modifiable(btf)) 1658 return libbpf_err(-ENOMEM); 1659 1660 t = btf_add_type_mem(btf, sz); 1661 if (!t) 1662 return libbpf_err(-ENOMEM); 1663 1664 memcpy(t, src_type, sz); 1665 1666 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1667 if (err) 1668 return libbpf_err(err); 1669 1670 return btf_commit_type(btf, sz); 1671 } 1672 1673 /* 1674 * Append new BTF_KIND_INT type with: 1675 * - *name* - non-empty, non-NULL type name; 1676 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1677 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1678 * Returns: 1679 * - >0, type ID of newly added BTF type; 1680 * - <0, on error. 1681 */ 1682 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1683 { 1684 struct btf_type *t; 1685 int sz, name_off; 1686 1687 /* non-empty name */ 1688 if (!name || !name[0]) 1689 return libbpf_err(-EINVAL); 1690 /* byte_sz must be power of 2 */ 1691 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1692 return libbpf_err(-EINVAL); 1693 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1694 return libbpf_err(-EINVAL); 1695 1696 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1697 if (btf_ensure_modifiable(btf)) 1698 return libbpf_err(-ENOMEM); 1699 1700 sz = sizeof(struct btf_type) + sizeof(int); 1701 t = btf_add_type_mem(btf, sz); 1702 if (!t) 1703 return libbpf_err(-ENOMEM); 1704 1705 /* if something goes wrong later, we might end up with an extra string, 1706 * but that shouldn't be a problem, because BTF can't be constructed 1707 * completely anyway and will most probably be just discarded 1708 */ 1709 name_off = btf__add_str(btf, name); 1710 if (name_off < 0) 1711 return name_off; 1712 1713 t->name_off = name_off; 1714 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1715 t->size = byte_sz; 1716 /* set INT info, we don't allow setting legacy bit offset/size */ 1717 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1718 1719 return btf_commit_type(btf, sz); 1720 } 1721 1722 /* 1723 * Append new BTF_KIND_FLOAT type with: 1724 * - *name* - non-empty, non-NULL type name; 1725 * - *sz* - size of the type, in bytes; 1726 * Returns: 1727 * - >0, type ID of newly added BTF type; 1728 * - <0, on error. 1729 */ 1730 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1731 { 1732 struct btf_type *t; 1733 int sz, name_off; 1734 1735 /* non-empty name */ 1736 if (!name || !name[0]) 1737 return libbpf_err(-EINVAL); 1738 1739 /* byte_sz must be one of the explicitly allowed values */ 1740 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1741 byte_sz != 16) 1742 return libbpf_err(-EINVAL); 1743 1744 if (btf_ensure_modifiable(btf)) 1745 return libbpf_err(-ENOMEM); 1746 1747 sz = sizeof(struct btf_type); 1748 t = btf_add_type_mem(btf, sz); 1749 if (!t) 1750 return libbpf_err(-ENOMEM); 1751 1752 name_off = btf__add_str(btf, name); 1753 if (name_off < 0) 1754 return name_off; 1755 1756 t->name_off = name_off; 1757 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1758 t->size = byte_sz; 1759 1760 return btf_commit_type(btf, sz); 1761 } 1762 1763 /* it's completely legal to append BTF types with type IDs pointing forward to 1764 * types that haven't been appended yet, so we only make sure that id looks 1765 * sane, we can't guarantee that ID will always be valid 1766 */ 1767 static int validate_type_id(int id) 1768 { 1769 if (id < 0 || id > BTF_MAX_NR_TYPES) 1770 return -EINVAL; 1771 return 0; 1772 } 1773 1774 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1775 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1776 { 1777 struct btf_type *t; 1778 int sz, name_off = 0; 1779 1780 if (validate_type_id(ref_type_id)) 1781 return libbpf_err(-EINVAL); 1782 1783 if (btf_ensure_modifiable(btf)) 1784 return libbpf_err(-ENOMEM); 1785 1786 sz = sizeof(struct btf_type); 1787 t = btf_add_type_mem(btf, sz); 1788 if (!t) 1789 return libbpf_err(-ENOMEM); 1790 1791 if (name && name[0]) { 1792 name_off = btf__add_str(btf, name); 1793 if (name_off < 0) 1794 return name_off; 1795 } 1796 1797 t->name_off = name_off; 1798 t->info = btf_type_info(kind, 0, 0); 1799 t->type = ref_type_id; 1800 1801 return btf_commit_type(btf, sz); 1802 } 1803 1804 /* 1805 * Append new BTF_KIND_PTR type with: 1806 * - *ref_type_id* - referenced type ID, it might not exist yet; 1807 * Returns: 1808 * - >0, type ID of newly added BTF type; 1809 * - <0, on error. 1810 */ 1811 int btf__add_ptr(struct btf *btf, int ref_type_id) 1812 { 1813 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1814 } 1815 1816 /* 1817 * Append new BTF_KIND_ARRAY type with: 1818 * - *index_type_id* - type ID of the type describing array index; 1819 * - *elem_type_id* - type ID of the type describing array element; 1820 * - *nr_elems* - the size of the array; 1821 * Returns: 1822 * - >0, type ID of newly added BTF type; 1823 * - <0, on error. 1824 */ 1825 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1826 { 1827 struct btf_type *t; 1828 struct btf_array *a; 1829 int sz; 1830 1831 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1832 return libbpf_err(-EINVAL); 1833 1834 if (btf_ensure_modifiable(btf)) 1835 return libbpf_err(-ENOMEM); 1836 1837 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1838 t = btf_add_type_mem(btf, sz); 1839 if (!t) 1840 return libbpf_err(-ENOMEM); 1841 1842 t->name_off = 0; 1843 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1844 t->size = 0; 1845 1846 a = btf_array(t); 1847 a->type = elem_type_id; 1848 a->index_type = index_type_id; 1849 a->nelems = nr_elems; 1850 1851 return btf_commit_type(btf, sz); 1852 } 1853 1854 /* generic STRUCT/UNION append function */ 1855 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1856 { 1857 struct btf_type *t; 1858 int sz, name_off = 0; 1859 1860 if (btf_ensure_modifiable(btf)) 1861 return libbpf_err(-ENOMEM); 1862 1863 sz = sizeof(struct btf_type); 1864 t = btf_add_type_mem(btf, sz); 1865 if (!t) 1866 return libbpf_err(-ENOMEM); 1867 1868 if (name && name[0]) { 1869 name_off = btf__add_str(btf, name); 1870 if (name_off < 0) 1871 return name_off; 1872 } 1873 1874 /* start out with vlen=0 and no kflag; this will be adjusted when 1875 * adding each member 1876 */ 1877 t->name_off = name_off; 1878 t->info = btf_type_info(kind, 0, 0); 1879 t->size = bytes_sz; 1880 1881 return btf_commit_type(btf, sz); 1882 } 1883 1884 /* 1885 * Append new BTF_KIND_STRUCT type with: 1886 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1887 * - *byte_sz* - size of the struct, in bytes; 1888 * 1889 * Struct initially has no fields in it. Fields can be added by 1890 * btf__add_field() right after btf__add_struct() succeeds. 1891 * 1892 * Returns: 1893 * - >0, type ID of newly added BTF type; 1894 * - <0, on error. 1895 */ 1896 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1897 { 1898 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1899 } 1900 1901 /* 1902 * Append new BTF_KIND_UNION type with: 1903 * - *name* - name of the union, can be NULL or empty for anonymous union; 1904 * - *byte_sz* - size of the union, in bytes; 1905 * 1906 * Union initially has no fields in it. Fields can be added by 1907 * btf__add_field() right after btf__add_union() succeeds. All fields 1908 * should have *bit_offset* of 0. 1909 * 1910 * Returns: 1911 * - >0, type ID of newly added BTF type; 1912 * - <0, on error. 1913 */ 1914 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1915 { 1916 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1917 } 1918 1919 static struct btf_type *btf_last_type(struct btf *btf) 1920 { 1921 return btf_type_by_id(btf, btf__get_nr_types(btf)); 1922 } 1923 1924 /* 1925 * Append new field for the current STRUCT/UNION type with: 1926 * - *name* - name of the field, can be NULL or empty for anonymous field; 1927 * - *type_id* - type ID for the type describing field type; 1928 * - *bit_offset* - bit offset of the start of the field within struct/union; 1929 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1930 * Returns: 1931 * - 0, on success; 1932 * - <0, on error. 1933 */ 1934 int btf__add_field(struct btf *btf, const char *name, int type_id, 1935 __u32 bit_offset, __u32 bit_size) 1936 { 1937 struct btf_type *t; 1938 struct btf_member *m; 1939 bool is_bitfield; 1940 int sz, name_off = 0; 1941 1942 /* last type should be union/struct */ 1943 if (btf->nr_types == 0) 1944 return libbpf_err(-EINVAL); 1945 t = btf_last_type(btf); 1946 if (!btf_is_composite(t)) 1947 return libbpf_err(-EINVAL); 1948 1949 if (validate_type_id(type_id)) 1950 return libbpf_err(-EINVAL); 1951 /* best-effort bit field offset/size enforcement */ 1952 is_bitfield = bit_size || (bit_offset % 8 != 0); 1953 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1954 return libbpf_err(-EINVAL); 1955 1956 /* only offset 0 is allowed for unions */ 1957 if (btf_is_union(t) && bit_offset) 1958 return libbpf_err(-EINVAL); 1959 1960 /* decompose and invalidate raw data */ 1961 if (btf_ensure_modifiable(btf)) 1962 return libbpf_err(-ENOMEM); 1963 1964 sz = sizeof(struct btf_member); 1965 m = btf_add_type_mem(btf, sz); 1966 if (!m) 1967 return libbpf_err(-ENOMEM); 1968 1969 if (name && name[0]) { 1970 name_off = btf__add_str(btf, name); 1971 if (name_off < 0) 1972 return name_off; 1973 } 1974 1975 m->name_off = name_off; 1976 m->type = type_id; 1977 m->offset = bit_offset | (bit_size << 24); 1978 1979 /* btf_add_type_mem can invalidate t pointer */ 1980 t = btf_last_type(btf); 1981 /* update parent type's vlen and kflag */ 1982 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 1983 1984 btf->hdr->type_len += sz; 1985 btf->hdr->str_off += sz; 1986 return 0; 1987 } 1988 1989 /* 1990 * Append new BTF_KIND_ENUM type with: 1991 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 1992 * - *byte_sz* - size of the enum, in bytes. 1993 * 1994 * Enum initially has no enum values in it (and corresponds to enum forward 1995 * declaration). Enumerator values can be added by btf__add_enum_value() 1996 * immediately after btf__add_enum() succeeds. 1997 * 1998 * Returns: 1999 * - >0, type ID of newly added BTF type; 2000 * - <0, on error. 2001 */ 2002 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2003 { 2004 struct btf_type *t; 2005 int sz, name_off = 0; 2006 2007 /* byte_sz must be power of 2 */ 2008 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2009 return libbpf_err(-EINVAL); 2010 2011 if (btf_ensure_modifiable(btf)) 2012 return libbpf_err(-ENOMEM); 2013 2014 sz = sizeof(struct btf_type); 2015 t = btf_add_type_mem(btf, sz); 2016 if (!t) 2017 return libbpf_err(-ENOMEM); 2018 2019 if (name && name[0]) { 2020 name_off = btf__add_str(btf, name); 2021 if (name_off < 0) 2022 return name_off; 2023 } 2024 2025 /* start out with vlen=0; it will be adjusted when adding enum values */ 2026 t->name_off = name_off; 2027 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2028 t->size = byte_sz; 2029 2030 return btf_commit_type(btf, sz); 2031 } 2032 2033 /* 2034 * Append new enum value for the current ENUM type with: 2035 * - *name* - name of the enumerator value, can't be NULL or empty; 2036 * - *value* - integer value corresponding to enum value *name*; 2037 * Returns: 2038 * - 0, on success; 2039 * - <0, on error. 2040 */ 2041 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2042 { 2043 struct btf_type *t; 2044 struct btf_enum *v; 2045 int sz, name_off; 2046 2047 /* last type should be BTF_KIND_ENUM */ 2048 if (btf->nr_types == 0) 2049 return libbpf_err(-EINVAL); 2050 t = btf_last_type(btf); 2051 if (!btf_is_enum(t)) 2052 return libbpf_err(-EINVAL); 2053 2054 /* non-empty name */ 2055 if (!name || !name[0]) 2056 return libbpf_err(-EINVAL); 2057 if (value < INT_MIN || value > UINT_MAX) 2058 return libbpf_err(-E2BIG); 2059 2060 /* decompose and invalidate raw data */ 2061 if (btf_ensure_modifiable(btf)) 2062 return libbpf_err(-ENOMEM); 2063 2064 sz = sizeof(struct btf_enum); 2065 v = btf_add_type_mem(btf, sz); 2066 if (!v) 2067 return libbpf_err(-ENOMEM); 2068 2069 name_off = btf__add_str(btf, name); 2070 if (name_off < 0) 2071 return name_off; 2072 2073 v->name_off = name_off; 2074 v->val = value; 2075 2076 /* update parent type's vlen */ 2077 t = btf_last_type(btf); 2078 btf_type_inc_vlen(t); 2079 2080 btf->hdr->type_len += sz; 2081 btf->hdr->str_off += sz; 2082 return 0; 2083 } 2084 2085 /* 2086 * Append new BTF_KIND_FWD type with: 2087 * - *name*, non-empty/non-NULL name; 2088 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2089 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2090 * Returns: 2091 * - >0, type ID of newly added BTF type; 2092 * - <0, on error. 2093 */ 2094 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2095 { 2096 if (!name || !name[0]) 2097 return libbpf_err(-EINVAL); 2098 2099 switch (fwd_kind) { 2100 case BTF_FWD_STRUCT: 2101 case BTF_FWD_UNION: { 2102 struct btf_type *t; 2103 int id; 2104 2105 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2106 if (id <= 0) 2107 return id; 2108 t = btf_type_by_id(btf, id); 2109 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2110 return id; 2111 } 2112 case BTF_FWD_ENUM: 2113 /* enum forward in BTF currently is just an enum with no enum 2114 * values; we also assume a standard 4-byte size for it 2115 */ 2116 return btf__add_enum(btf, name, sizeof(int)); 2117 default: 2118 return libbpf_err(-EINVAL); 2119 } 2120 } 2121 2122 /* 2123 * Append new BTF_KING_TYPEDEF type with: 2124 * - *name*, non-empty/non-NULL name; 2125 * - *ref_type_id* - referenced type ID, it might not exist yet; 2126 * Returns: 2127 * - >0, type ID of newly added BTF type; 2128 * - <0, on error. 2129 */ 2130 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2131 { 2132 if (!name || !name[0]) 2133 return libbpf_err(-EINVAL); 2134 2135 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2136 } 2137 2138 /* 2139 * Append new BTF_KIND_VOLATILE type with: 2140 * - *ref_type_id* - referenced type ID, it might not exist yet; 2141 * Returns: 2142 * - >0, type ID of newly added BTF type; 2143 * - <0, on error. 2144 */ 2145 int btf__add_volatile(struct btf *btf, int ref_type_id) 2146 { 2147 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2148 } 2149 2150 /* 2151 * Append new BTF_KIND_CONST type with: 2152 * - *ref_type_id* - referenced type ID, it might not exist yet; 2153 * Returns: 2154 * - >0, type ID of newly added BTF type; 2155 * - <0, on error. 2156 */ 2157 int btf__add_const(struct btf *btf, int ref_type_id) 2158 { 2159 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2160 } 2161 2162 /* 2163 * Append new BTF_KIND_RESTRICT type with: 2164 * - *ref_type_id* - referenced type ID, it might not exist yet; 2165 * Returns: 2166 * - >0, type ID of newly added BTF type; 2167 * - <0, on error. 2168 */ 2169 int btf__add_restrict(struct btf *btf, int ref_type_id) 2170 { 2171 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2172 } 2173 2174 /* 2175 * Append new BTF_KIND_FUNC type with: 2176 * - *name*, non-empty/non-NULL name; 2177 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2178 * Returns: 2179 * - >0, type ID of newly added BTF type; 2180 * - <0, on error. 2181 */ 2182 int btf__add_func(struct btf *btf, const char *name, 2183 enum btf_func_linkage linkage, int proto_type_id) 2184 { 2185 int id; 2186 2187 if (!name || !name[0]) 2188 return libbpf_err(-EINVAL); 2189 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2190 linkage != BTF_FUNC_EXTERN) 2191 return libbpf_err(-EINVAL); 2192 2193 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2194 if (id > 0) { 2195 struct btf_type *t = btf_type_by_id(btf, id); 2196 2197 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2198 } 2199 return libbpf_err(id); 2200 } 2201 2202 /* 2203 * Append new BTF_KIND_FUNC_PROTO with: 2204 * - *ret_type_id* - type ID for return result of a function. 2205 * 2206 * Function prototype initially has no arguments, but they can be added by 2207 * btf__add_func_param() one by one, immediately after 2208 * btf__add_func_proto() succeeded. 2209 * 2210 * Returns: 2211 * - >0, type ID of newly added BTF type; 2212 * - <0, on error. 2213 */ 2214 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2215 { 2216 struct btf_type *t; 2217 int sz; 2218 2219 if (validate_type_id(ret_type_id)) 2220 return libbpf_err(-EINVAL); 2221 2222 if (btf_ensure_modifiable(btf)) 2223 return libbpf_err(-ENOMEM); 2224 2225 sz = sizeof(struct btf_type); 2226 t = btf_add_type_mem(btf, sz); 2227 if (!t) 2228 return libbpf_err(-ENOMEM); 2229 2230 /* start out with vlen=0; this will be adjusted when adding enum 2231 * values, if necessary 2232 */ 2233 t->name_off = 0; 2234 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2235 t->type = ret_type_id; 2236 2237 return btf_commit_type(btf, sz); 2238 } 2239 2240 /* 2241 * Append new function parameter for current FUNC_PROTO type with: 2242 * - *name* - parameter name, can be NULL or empty; 2243 * - *type_id* - type ID describing the type of the parameter. 2244 * Returns: 2245 * - 0, on success; 2246 * - <0, on error. 2247 */ 2248 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2249 { 2250 struct btf_type *t; 2251 struct btf_param *p; 2252 int sz, name_off = 0; 2253 2254 if (validate_type_id(type_id)) 2255 return libbpf_err(-EINVAL); 2256 2257 /* last type should be BTF_KIND_FUNC_PROTO */ 2258 if (btf->nr_types == 0) 2259 return libbpf_err(-EINVAL); 2260 t = btf_last_type(btf); 2261 if (!btf_is_func_proto(t)) 2262 return libbpf_err(-EINVAL); 2263 2264 /* decompose and invalidate raw data */ 2265 if (btf_ensure_modifiable(btf)) 2266 return libbpf_err(-ENOMEM); 2267 2268 sz = sizeof(struct btf_param); 2269 p = btf_add_type_mem(btf, sz); 2270 if (!p) 2271 return libbpf_err(-ENOMEM); 2272 2273 if (name && name[0]) { 2274 name_off = btf__add_str(btf, name); 2275 if (name_off < 0) 2276 return name_off; 2277 } 2278 2279 p->name_off = name_off; 2280 p->type = type_id; 2281 2282 /* update parent type's vlen */ 2283 t = btf_last_type(btf); 2284 btf_type_inc_vlen(t); 2285 2286 btf->hdr->type_len += sz; 2287 btf->hdr->str_off += sz; 2288 return 0; 2289 } 2290 2291 /* 2292 * Append new BTF_KIND_VAR type with: 2293 * - *name* - non-empty/non-NULL name; 2294 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2295 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2296 * - *type_id* - type ID of the type describing the type of the variable. 2297 * Returns: 2298 * - >0, type ID of newly added BTF type; 2299 * - <0, on error. 2300 */ 2301 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2302 { 2303 struct btf_type *t; 2304 struct btf_var *v; 2305 int sz, name_off; 2306 2307 /* non-empty name */ 2308 if (!name || !name[0]) 2309 return libbpf_err(-EINVAL); 2310 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2311 linkage != BTF_VAR_GLOBAL_EXTERN) 2312 return libbpf_err(-EINVAL); 2313 if (validate_type_id(type_id)) 2314 return libbpf_err(-EINVAL); 2315 2316 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2317 if (btf_ensure_modifiable(btf)) 2318 return libbpf_err(-ENOMEM); 2319 2320 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2321 t = btf_add_type_mem(btf, sz); 2322 if (!t) 2323 return libbpf_err(-ENOMEM); 2324 2325 name_off = btf__add_str(btf, name); 2326 if (name_off < 0) 2327 return name_off; 2328 2329 t->name_off = name_off; 2330 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2331 t->type = type_id; 2332 2333 v = btf_var(t); 2334 v->linkage = linkage; 2335 2336 return btf_commit_type(btf, sz); 2337 } 2338 2339 /* 2340 * Append new BTF_KIND_DATASEC type with: 2341 * - *name* - non-empty/non-NULL name; 2342 * - *byte_sz* - data section size, in bytes. 2343 * 2344 * Data section is initially empty. Variables info can be added with 2345 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2346 * 2347 * Returns: 2348 * - >0, type ID of newly added BTF type; 2349 * - <0, on error. 2350 */ 2351 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2352 { 2353 struct btf_type *t; 2354 int sz, name_off; 2355 2356 /* non-empty name */ 2357 if (!name || !name[0]) 2358 return libbpf_err(-EINVAL); 2359 2360 if (btf_ensure_modifiable(btf)) 2361 return libbpf_err(-ENOMEM); 2362 2363 sz = sizeof(struct btf_type); 2364 t = btf_add_type_mem(btf, sz); 2365 if (!t) 2366 return libbpf_err(-ENOMEM); 2367 2368 name_off = btf__add_str(btf, name); 2369 if (name_off < 0) 2370 return name_off; 2371 2372 /* start with vlen=0, which will be update as var_secinfos are added */ 2373 t->name_off = name_off; 2374 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2375 t->size = byte_sz; 2376 2377 return btf_commit_type(btf, sz); 2378 } 2379 2380 /* 2381 * Append new data section variable information entry for current DATASEC type: 2382 * - *var_type_id* - type ID, describing type of the variable; 2383 * - *offset* - variable offset within data section, in bytes; 2384 * - *byte_sz* - variable size, in bytes. 2385 * 2386 * Returns: 2387 * - 0, on success; 2388 * - <0, on error. 2389 */ 2390 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2391 { 2392 struct btf_type *t; 2393 struct btf_var_secinfo *v; 2394 int sz; 2395 2396 /* last type should be BTF_KIND_DATASEC */ 2397 if (btf->nr_types == 0) 2398 return libbpf_err(-EINVAL); 2399 t = btf_last_type(btf); 2400 if (!btf_is_datasec(t)) 2401 return libbpf_err(-EINVAL); 2402 2403 if (validate_type_id(var_type_id)) 2404 return libbpf_err(-EINVAL); 2405 2406 /* decompose and invalidate raw data */ 2407 if (btf_ensure_modifiable(btf)) 2408 return libbpf_err(-ENOMEM); 2409 2410 sz = sizeof(struct btf_var_secinfo); 2411 v = btf_add_type_mem(btf, sz); 2412 if (!v) 2413 return libbpf_err(-ENOMEM); 2414 2415 v->type = var_type_id; 2416 v->offset = offset; 2417 v->size = byte_sz; 2418 2419 /* update parent type's vlen */ 2420 t = btf_last_type(btf); 2421 btf_type_inc_vlen(t); 2422 2423 btf->hdr->type_len += sz; 2424 btf->hdr->str_off += sz; 2425 return 0; 2426 } 2427 2428 struct btf_ext_sec_setup_param { 2429 __u32 off; 2430 __u32 len; 2431 __u32 min_rec_size; 2432 struct btf_ext_info *ext_info; 2433 const char *desc; 2434 }; 2435 2436 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2437 struct btf_ext_sec_setup_param *ext_sec) 2438 { 2439 const struct btf_ext_info_sec *sinfo; 2440 struct btf_ext_info *ext_info; 2441 __u32 info_left, record_size; 2442 /* The start of the info sec (including the __u32 record_size). */ 2443 void *info; 2444 2445 if (ext_sec->len == 0) 2446 return 0; 2447 2448 if (ext_sec->off & 0x03) { 2449 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2450 ext_sec->desc); 2451 return -EINVAL; 2452 } 2453 2454 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2455 info_left = ext_sec->len; 2456 2457 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2458 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2459 ext_sec->desc, ext_sec->off, ext_sec->len); 2460 return -EINVAL; 2461 } 2462 2463 /* At least a record size */ 2464 if (info_left < sizeof(__u32)) { 2465 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2466 return -EINVAL; 2467 } 2468 2469 /* The record size needs to meet the minimum standard */ 2470 record_size = *(__u32 *)info; 2471 if (record_size < ext_sec->min_rec_size || 2472 record_size & 0x03) { 2473 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2474 ext_sec->desc, record_size); 2475 return -EINVAL; 2476 } 2477 2478 sinfo = info + sizeof(__u32); 2479 info_left -= sizeof(__u32); 2480 2481 /* If no records, return failure now so .BTF.ext won't be used. */ 2482 if (!info_left) { 2483 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2484 return -EINVAL; 2485 } 2486 2487 while (info_left) { 2488 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2489 __u64 total_record_size; 2490 __u32 num_records; 2491 2492 if (info_left < sec_hdrlen) { 2493 pr_debug("%s section header is not found in .BTF.ext\n", 2494 ext_sec->desc); 2495 return -EINVAL; 2496 } 2497 2498 num_records = sinfo->num_info; 2499 if (num_records == 0) { 2500 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2501 ext_sec->desc); 2502 return -EINVAL; 2503 } 2504 2505 total_record_size = sec_hdrlen + 2506 (__u64)num_records * record_size; 2507 if (info_left < total_record_size) { 2508 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2509 ext_sec->desc); 2510 return -EINVAL; 2511 } 2512 2513 info_left -= total_record_size; 2514 sinfo = (void *)sinfo + total_record_size; 2515 } 2516 2517 ext_info = ext_sec->ext_info; 2518 ext_info->len = ext_sec->len - sizeof(__u32); 2519 ext_info->rec_size = record_size; 2520 ext_info->info = info + sizeof(__u32); 2521 2522 return 0; 2523 } 2524 2525 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2526 { 2527 struct btf_ext_sec_setup_param param = { 2528 .off = btf_ext->hdr->func_info_off, 2529 .len = btf_ext->hdr->func_info_len, 2530 .min_rec_size = sizeof(struct bpf_func_info_min), 2531 .ext_info = &btf_ext->func_info, 2532 .desc = "func_info" 2533 }; 2534 2535 return btf_ext_setup_info(btf_ext, ¶m); 2536 } 2537 2538 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2539 { 2540 struct btf_ext_sec_setup_param param = { 2541 .off = btf_ext->hdr->line_info_off, 2542 .len = btf_ext->hdr->line_info_len, 2543 .min_rec_size = sizeof(struct bpf_line_info_min), 2544 .ext_info = &btf_ext->line_info, 2545 .desc = "line_info", 2546 }; 2547 2548 return btf_ext_setup_info(btf_ext, ¶m); 2549 } 2550 2551 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2552 { 2553 struct btf_ext_sec_setup_param param = { 2554 .off = btf_ext->hdr->core_relo_off, 2555 .len = btf_ext->hdr->core_relo_len, 2556 .min_rec_size = sizeof(struct bpf_core_relo), 2557 .ext_info = &btf_ext->core_relo_info, 2558 .desc = "core_relo", 2559 }; 2560 2561 return btf_ext_setup_info(btf_ext, ¶m); 2562 } 2563 2564 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2565 { 2566 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2567 2568 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2569 data_size < hdr->hdr_len) { 2570 pr_debug("BTF.ext header not found"); 2571 return -EINVAL; 2572 } 2573 2574 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2575 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2576 return -ENOTSUP; 2577 } else if (hdr->magic != BTF_MAGIC) { 2578 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2579 return -EINVAL; 2580 } 2581 2582 if (hdr->version != BTF_VERSION) { 2583 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2584 return -ENOTSUP; 2585 } 2586 2587 if (hdr->flags) { 2588 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2589 return -ENOTSUP; 2590 } 2591 2592 if (data_size == hdr->hdr_len) { 2593 pr_debug("BTF.ext has no data\n"); 2594 return -EINVAL; 2595 } 2596 2597 return 0; 2598 } 2599 2600 void btf_ext__free(struct btf_ext *btf_ext) 2601 { 2602 if (IS_ERR_OR_NULL(btf_ext)) 2603 return; 2604 free(btf_ext->data); 2605 free(btf_ext); 2606 } 2607 2608 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2609 { 2610 struct btf_ext *btf_ext; 2611 int err; 2612 2613 err = btf_ext_parse_hdr(data, size); 2614 if (err) 2615 return libbpf_err_ptr(err); 2616 2617 btf_ext = calloc(1, sizeof(struct btf_ext)); 2618 if (!btf_ext) 2619 return libbpf_err_ptr(-ENOMEM); 2620 2621 btf_ext->data_size = size; 2622 btf_ext->data = malloc(size); 2623 if (!btf_ext->data) { 2624 err = -ENOMEM; 2625 goto done; 2626 } 2627 memcpy(btf_ext->data, data, size); 2628 2629 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2630 err = -EINVAL; 2631 goto done; 2632 } 2633 2634 err = btf_ext_setup_func_info(btf_ext); 2635 if (err) 2636 goto done; 2637 2638 err = btf_ext_setup_line_info(btf_ext); 2639 if (err) 2640 goto done; 2641 2642 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) { 2643 err = -EINVAL; 2644 goto done; 2645 } 2646 2647 err = btf_ext_setup_core_relos(btf_ext); 2648 if (err) 2649 goto done; 2650 2651 done: 2652 if (err) { 2653 btf_ext__free(btf_ext); 2654 return libbpf_err_ptr(err); 2655 } 2656 2657 return btf_ext; 2658 } 2659 2660 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2661 { 2662 *size = btf_ext->data_size; 2663 return btf_ext->data; 2664 } 2665 2666 static int btf_ext_reloc_info(const struct btf *btf, 2667 const struct btf_ext_info *ext_info, 2668 const char *sec_name, __u32 insns_cnt, 2669 void **info, __u32 *cnt) 2670 { 2671 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2672 __u32 i, record_size, existing_len, records_len; 2673 struct btf_ext_info_sec *sinfo; 2674 const char *info_sec_name; 2675 __u64 remain_len; 2676 void *data; 2677 2678 record_size = ext_info->rec_size; 2679 sinfo = ext_info->info; 2680 remain_len = ext_info->len; 2681 while (remain_len > 0) { 2682 records_len = sinfo->num_info * record_size; 2683 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2684 if (strcmp(info_sec_name, sec_name)) { 2685 remain_len -= sec_hdrlen + records_len; 2686 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2687 continue; 2688 } 2689 2690 existing_len = (*cnt) * record_size; 2691 data = realloc(*info, existing_len + records_len); 2692 if (!data) 2693 return libbpf_err(-ENOMEM); 2694 2695 memcpy(data + existing_len, sinfo->data, records_len); 2696 /* adjust insn_off only, the rest data will be passed 2697 * to the kernel. 2698 */ 2699 for (i = 0; i < sinfo->num_info; i++) { 2700 __u32 *insn_off; 2701 2702 insn_off = data + existing_len + (i * record_size); 2703 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; 2704 } 2705 *info = data; 2706 *cnt += sinfo->num_info; 2707 return 0; 2708 } 2709 2710 return libbpf_err(-ENOENT); 2711 } 2712 2713 int btf_ext__reloc_func_info(const struct btf *btf, 2714 const struct btf_ext *btf_ext, 2715 const char *sec_name, __u32 insns_cnt, 2716 void **func_info, __u32 *cnt) 2717 { 2718 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2719 insns_cnt, func_info, cnt); 2720 } 2721 2722 int btf_ext__reloc_line_info(const struct btf *btf, 2723 const struct btf_ext *btf_ext, 2724 const char *sec_name, __u32 insns_cnt, 2725 void **line_info, __u32 *cnt) 2726 { 2727 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2728 insns_cnt, line_info, cnt); 2729 } 2730 2731 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2732 { 2733 return btf_ext->func_info.rec_size; 2734 } 2735 2736 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2737 { 2738 return btf_ext->line_info.rec_size; 2739 } 2740 2741 struct btf_dedup; 2742 2743 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2744 const struct btf_dedup_opts *opts); 2745 static void btf_dedup_free(struct btf_dedup *d); 2746 static int btf_dedup_prep(struct btf_dedup *d); 2747 static int btf_dedup_strings(struct btf_dedup *d); 2748 static int btf_dedup_prim_types(struct btf_dedup *d); 2749 static int btf_dedup_struct_types(struct btf_dedup *d); 2750 static int btf_dedup_ref_types(struct btf_dedup *d); 2751 static int btf_dedup_compact_types(struct btf_dedup *d); 2752 static int btf_dedup_remap_types(struct btf_dedup *d); 2753 2754 /* 2755 * Deduplicate BTF types and strings. 2756 * 2757 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2758 * section with all BTF type descriptors and string data. It overwrites that 2759 * memory in-place with deduplicated types and strings without any loss of 2760 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2761 * is provided, all the strings referenced from .BTF.ext section are honored 2762 * and updated to point to the right offsets after deduplication. 2763 * 2764 * If function returns with error, type/string data might be garbled and should 2765 * be discarded. 2766 * 2767 * More verbose and detailed description of both problem btf_dedup is solving, 2768 * as well as solution could be found at: 2769 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2770 * 2771 * Problem description and justification 2772 * ===================================== 2773 * 2774 * BTF type information is typically emitted either as a result of conversion 2775 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2776 * unit contains information about a subset of all the types that are used 2777 * in an application. These subsets are frequently overlapping and contain a lot 2778 * of duplicated information when later concatenated together into a single 2779 * binary. This algorithm ensures that each unique type is represented by single 2780 * BTF type descriptor, greatly reducing resulting size of BTF data. 2781 * 2782 * Compilation unit isolation and subsequent duplication of data is not the only 2783 * problem. The same type hierarchy (e.g., struct and all the type that struct 2784 * references) in different compilation units can be represented in BTF to 2785 * various degrees of completeness (or, rather, incompleteness) due to 2786 * struct/union forward declarations. 2787 * 2788 * Let's take a look at an example, that we'll use to better understand the 2789 * problem (and solution). Suppose we have two compilation units, each using 2790 * same `struct S`, but each of them having incomplete type information about 2791 * struct's fields: 2792 * 2793 * // CU #1: 2794 * struct S; 2795 * struct A { 2796 * int a; 2797 * struct A* self; 2798 * struct S* parent; 2799 * }; 2800 * struct B; 2801 * struct S { 2802 * struct A* a_ptr; 2803 * struct B* b_ptr; 2804 * }; 2805 * 2806 * // CU #2: 2807 * struct S; 2808 * struct A; 2809 * struct B { 2810 * int b; 2811 * struct B* self; 2812 * struct S* parent; 2813 * }; 2814 * struct S { 2815 * struct A* a_ptr; 2816 * struct B* b_ptr; 2817 * }; 2818 * 2819 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2820 * more), but will know the complete type information about `struct A`. While 2821 * for CU #2, it will know full type information about `struct B`, but will 2822 * only know about forward declaration of `struct A` (in BTF terms, it will 2823 * have `BTF_KIND_FWD` type descriptor with name `B`). 2824 * 2825 * This compilation unit isolation means that it's possible that there is no 2826 * single CU with complete type information describing structs `S`, `A`, and 2827 * `B`. Also, we might get tons of duplicated and redundant type information. 2828 * 2829 * Additional complication we need to keep in mind comes from the fact that 2830 * types, in general, can form graphs containing cycles, not just DAGs. 2831 * 2832 * While algorithm does deduplication, it also merges and resolves type 2833 * information (unless disabled throught `struct btf_opts`), whenever possible. 2834 * E.g., in the example above with two compilation units having partial type 2835 * information for structs `A` and `B`, the output of algorithm will emit 2836 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2837 * (as well as type information for `int` and pointers), as if they were defined 2838 * in a single compilation unit as: 2839 * 2840 * struct A { 2841 * int a; 2842 * struct A* self; 2843 * struct S* parent; 2844 * }; 2845 * struct B { 2846 * int b; 2847 * struct B* self; 2848 * struct S* parent; 2849 * }; 2850 * struct S { 2851 * struct A* a_ptr; 2852 * struct B* b_ptr; 2853 * }; 2854 * 2855 * Algorithm summary 2856 * ================= 2857 * 2858 * Algorithm completes its work in 6 separate passes: 2859 * 2860 * 1. Strings deduplication. 2861 * 2. Primitive types deduplication (int, enum, fwd). 2862 * 3. Struct/union types deduplication. 2863 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2864 * protos, and const/volatile/restrict modifiers). 2865 * 5. Types compaction. 2866 * 6. Types remapping. 2867 * 2868 * Algorithm determines canonical type descriptor, which is a single 2869 * representative type for each truly unique type. This canonical type is the 2870 * one that will go into final deduplicated BTF type information. For 2871 * struct/unions, it is also the type that algorithm will merge additional type 2872 * information into (while resolving FWDs), as it discovers it from data in 2873 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2874 * that type is canonical, or to some other type, if that type is equivalent 2875 * and was chosen as canonical representative. This mapping is stored in 2876 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2877 * FWD type got resolved to. 2878 * 2879 * To facilitate fast discovery of canonical types, we also maintain canonical 2880 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2881 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2882 * that match that signature. With sufficiently good choice of type signature 2883 * hashing function, we can limit number of canonical types for each unique type 2884 * signature to a very small number, allowing to find canonical type for any 2885 * duplicated type very quickly. 2886 * 2887 * Struct/union deduplication is the most critical part and algorithm for 2888 * deduplicating structs/unions is described in greater details in comments for 2889 * `btf_dedup_is_equiv` function. 2890 */ 2891 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2892 const struct btf_dedup_opts *opts) 2893 { 2894 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2895 int err; 2896 2897 if (IS_ERR(d)) { 2898 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2899 return libbpf_err(-EINVAL); 2900 } 2901 2902 if (btf_ensure_modifiable(btf)) 2903 return libbpf_err(-ENOMEM); 2904 2905 err = btf_dedup_prep(d); 2906 if (err) { 2907 pr_debug("btf_dedup_prep failed:%d\n", err); 2908 goto done; 2909 } 2910 err = btf_dedup_strings(d); 2911 if (err < 0) { 2912 pr_debug("btf_dedup_strings failed:%d\n", err); 2913 goto done; 2914 } 2915 err = btf_dedup_prim_types(d); 2916 if (err < 0) { 2917 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2918 goto done; 2919 } 2920 err = btf_dedup_struct_types(d); 2921 if (err < 0) { 2922 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2923 goto done; 2924 } 2925 err = btf_dedup_ref_types(d); 2926 if (err < 0) { 2927 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2928 goto done; 2929 } 2930 err = btf_dedup_compact_types(d); 2931 if (err < 0) { 2932 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2933 goto done; 2934 } 2935 err = btf_dedup_remap_types(d); 2936 if (err < 0) { 2937 pr_debug("btf_dedup_remap_types failed:%d\n", err); 2938 goto done; 2939 } 2940 2941 done: 2942 btf_dedup_free(d); 2943 return libbpf_err(err); 2944 } 2945 2946 #define BTF_UNPROCESSED_ID ((__u32)-1) 2947 #define BTF_IN_PROGRESS_ID ((__u32)-2) 2948 2949 struct btf_dedup { 2950 /* .BTF section to be deduped in-place */ 2951 struct btf *btf; 2952 /* 2953 * Optional .BTF.ext section. When provided, any strings referenced 2954 * from it will be taken into account when deduping strings 2955 */ 2956 struct btf_ext *btf_ext; 2957 /* 2958 * This is a map from any type's signature hash to a list of possible 2959 * canonical representative type candidates. Hash collisions are 2960 * ignored, so even types of various kinds can share same list of 2961 * candidates, which is fine because we rely on subsequent 2962 * btf_xxx_equal() checks to authoritatively verify type equality. 2963 */ 2964 struct hashmap *dedup_table; 2965 /* Canonical types map */ 2966 __u32 *map; 2967 /* Hypothetical mapping, used during type graph equivalence checks */ 2968 __u32 *hypot_map; 2969 __u32 *hypot_list; 2970 size_t hypot_cnt; 2971 size_t hypot_cap; 2972 /* Whether hypothetical mapping, if successful, would need to adjust 2973 * already canonicalized types (due to a new forward declaration to 2974 * concrete type resolution). In such case, during split BTF dedup 2975 * candidate type would still be considered as different, because base 2976 * BTF is considered to be immutable. 2977 */ 2978 bool hypot_adjust_canon; 2979 /* Various option modifying behavior of algorithm */ 2980 struct btf_dedup_opts opts; 2981 /* temporary strings deduplication state */ 2982 struct strset *strs_set; 2983 }; 2984 2985 static long hash_combine(long h, long value) 2986 { 2987 return h * 31 + value; 2988 } 2989 2990 #define for_each_dedup_cand(d, node, hash) \ 2991 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 2992 2993 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 2994 { 2995 return hashmap__append(d->dedup_table, 2996 (void *)hash, (void *)(long)type_id); 2997 } 2998 2999 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3000 __u32 from_id, __u32 to_id) 3001 { 3002 if (d->hypot_cnt == d->hypot_cap) { 3003 __u32 *new_list; 3004 3005 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3006 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3007 if (!new_list) 3008 return -ENOMEM; 3009 d->hypot_list = new_list; 3010 } 3011 d->hypot_list[d->hypot_cnt++] = from_id; 3012 d->hypot_map[from_id] = to_id; 3013 return 0; 3014 } 3015 3016 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3017 { 3018 int i; 3019 3020 for (i = 0; i < d->hypot_cnt; i++) 3021 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3022 d->hypot_cnt = 0; 3023 d->hypot_adjust_canon = false; 3024 } 3025 3026 static void btf_dedup_free(struct btf_dedup *d) 3027 { 3028 hashmap__free(d->dedup_table); 3029 d->dedup_table = NULL; 3030 3031 free(d->map); 3032 d->map = NULL; 3033 3034 free(d->hypot_map); 3035 d->hypot_map = NULL; 3036 3037 free(d->hypot_list); 3038 d->hypot_list = NULL; 3039 3040 free(d); 3041 } 3042 3043 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3044 { 3045 return (size_t)key; 3046 } 3047 3048 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3049 { 3050 return 0; 3051 } 3052 3053 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3054 { 3055 return k1 == k2; 3056 } 3057 3058 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3059 const struct btf_dedup_opts *opts) 3060 { 3061 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3062 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3063 int i, err = 0, type_cnt; 3064 3065 if (!d) 3066 return ERR_PTR(-ENOMEM); 3067 3068 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3069 /* dedup_table_size is now used only to force collisions in tests */ 3070 if (opts && opts->dedup_table_size == 1) 3071 hash_fn = btf_dedup_collision_hash_fn; 3072 3073 d->btf = btf; 3074 d->btf_ext = btf_ext; 3075 3076 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3077 if (IS_ERR(d->dedup_table)) { 3078 err = PTR_ERR(d->dedup_table); 3079 d->dedup_table = NULL; 3080 goto done; 3081 } 3082 3083 type_cnt = btf__get_nr_types(btf) + 1; 3084 d->map = malloc(sizeof(__u32) * type_cnt); 3085 if (!d->map) { 3086 err = -ENOMEM; 3087 goto done; 3088 } 3089 /* special BTF "void" type is made canonical immediately */ 3090 d->map[0] = 0; 3091 for (i = 1; i < type_cnt; i++) { 3092 struct btf_type *t = btf_type_by_id(d->btf, i); 3093 3094 /* VAR and DATASEC are never deduped and are self-canonical */ 3095 if (btf_is_var(t) || btf_is_datasec(t)) 3096 d->map[i] = i; 3097 else 3098 d->map[i] = BTF_UNPROCESSED_ID; 3099 } 3100 3101 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3102 if (!d->hypot_map) { 3103 err = -ENOMEM; 3104 goto done; 3105 } 3106 for (i = 0; i < type_cnt; i++) 3107 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3108 3109 done: 3110 if (err) { 3111 btf_dedup_free(d); 3112 return ERR_PTR(err); 3113 } 3114 3115 return d; 3116 } 3117 3118 /* 3119 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3120 * string and pass pointer to it to a provided callback `fn`. 3121 */ 3122 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3123 { 3124 int i, r; 3125 3126 for (i = 0; i < d->btf->nr_types; i++) { 3127 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3128 3129 r = btf_type_visit_str_offs(t, fn, ctx); 3130 if (r) 3131 return r; 3132 } 3133 3134 if (!d->btf_ext) 3135 return 0; 3136 3137 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3138 if (r) 3139 return r; 3140 3141 return 0; 3142 } 3143 3144 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3145 { 3146 struct btf_dedup *d = ctx; 3147 __u32 str_off = *str_off_ptr; 3148 const char *s; 3149 int off, err; 3150 3151 /* don't touch empty string or string in main BTF */ 3152 if (str_off == 0 || str_off < d->btf->start_str_off) 3153 return 0; 3154 3155 s = btf__str_by_offset(d->btf, str_off); 3156 if (d->btf->base_btf) { 3157 err = btf__find_str(d->btf->base_btf, s); 3158 if (err >= 0) { 3159 *str_off_ptr = err; 3160 return 0; 3161 } 3162 if (err != -ENOENT) 3163 return err; 3164 } 3165 3166 off = strset__add_str(d->strs_set, s); 3167 if (off < 0) 3168 return off; 3169 3170 *str_off_ptr = d->btf->start_str_off + off; 3171 return 0; 3172 } 3173 3174 /* 3175 * Dedup string and filter out those that are not referenced from either .BTF 3176 * or .BTF.ext (if provided) sections. 3177 * 3178 * This is done by building index of all strings in BTF's string section, 3179 * then iterating over all entities that can reference strings (e.g., type 3180 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3181 * strings as used. After that all used strings are deduped and compacted into 3182 * sequential blob of memory and new offsets are calculated. Then all the string 3183 * references are iterated again and rewritten using new offsets. 3184 */ 3185 static int btf_dedup_strings(struct btf_dedup *d) 3186 { 3187 int err; 3188 3189 if (d->btf->strs_deduped) 3190 return 0; 3191 3192 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3193 if (IS_ERR(d->strs_set)) { 3194 err = PTR_ERR(d->strs_set); 3195 goto err_out; 3196 } 3197 3198 if (!d->btf->base_btf) { 3199 /* insert empty string; we won't be looking it up during strings 3200 * dedup, but it's good to have it for generic BTF string lookups 3201 */ 3202 err = strset__add_str(d->strs_set, ""); 3203 if (err < 0) 3204 goto err_out; 3205 } 3206 3207 /* remap string offsets */ 3208 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3209 if (err) 3210 goto err_out; 3211 3212 /* replace BTF string data and hash with deduped ones */ 3213 strset__free(d->btf->strs_set); 3214 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3215 d->btf->strs_set = d->strs_set; 3216 d->strs_set = NULL; 3217 d->btf->strs_deduped = true; 3218 return 0; 3219 3220 err_out: 3221 strset__free(d->strs_set); 3222 d->strs_set = NULL; 3223 3224 return err; 3225 } 3226 3227 static long btf_hash_common(struct btf_type *t) 3228 { 3229 long h; 3230 3231 h = hash_combine(0, t->name_off); 3232 h = hash_combine(h, t->info); 3233 h = hash_combine(h, t->size); 3234 return h; 3235 } 3236 3237 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3238 { 3239 return t1->name_off == t2->name_off && 3240 t1->info == t2->info && 3241 t1->size == t2->size; 3242 } 3243 3244 /* Calculate type signature hash of INT. */ 3245 static long btf_hash_int(struct btf_type *t) 3246 { 3247 __u32 info = *(__u32 *)(t + 1); 3248 long h; 3249 3250 h = btf_hash_common(t); 3251 h = hash_combine(h, info); 3252 return h; 3253 } 3254 3255 /* Check structural equality of two INTs. */ 3256 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 3257 { 3258 __u32 info1, info2; 3259 3260 if (!btf_equal_common(t1, t2)) 3261 return false; 3262 info1 = *(__u32 *)(t1 + 1); 3263 info2 = *(__u32 *)(t2 + 1); 3264 return info1 == info2; 3265 } 3266 3267 /* Calculate type signature hash of ENUM. */ 3268 static long btf_hash_enum(struct btf_type *t) 3269 { 3270 long h; 3271 3272 /* don't hash vlen and enum members to support enum fwd resolving */ 3273 h = hash_combine(0, t->name_off); 3274 h = hash_combine(h, t->info & ~0xffff); 3275 h = hash_combine(h, t->size); 3276 return h; 3277 } 3278 3279 /* Check structural equality of two ENUMs. */ 3280 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3281 { 3282 const struct btf_enum *m1, *m2; 3283 __u16 vlen; 3284 int i; 3285 3286 if (!btf_equal_common(t1, t2)) 3287 return false; 3288 3289 vlen = btf_vlen(t1); 3290 m1 = btf_enum(t1); 3291 m2 = btf_enum(t2); 3292 for (i = 0; i < vlen; i++) { 3293 if (m1->name_off != m2->name_off || m1->val != m2->val) 3294 return false; 3295 m1++; 3296 m2++; 3297 } 3298 return true; 3299 } 3300 3301 static inline bool btf_is_enum_fwd(struct btf_type *t) 3302 { 3303 return btf_is_enum(t) && btf_vlen(t) == 0; 3304 } 3305 3306 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3307 { 3308 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3309 return btf_equal_enum(t1, t2); 3310 /* ignore vlen when comparing */ 3311 return t1->name_off == t2->name_off && 3312 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3313 t1->size == t2->size; 3314 } 3315 3316 /* 3317 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3318 * as referenced type IDs equivalence is established separately during type 3319 * graph equivalence check algorithm. 3320 */ 3321 static long btf_hash_struct(struct btf_type *t) 3322 { 3323 const struct btf_member *member = btf_members(t); 3324 __u32 vlen = btf_vlen(t); 3325 long h = btf_hash_common(t); 3326 int i; 3327 3328 for (i = 0; i < vlen; i++) { 3329 h = hash_combine(h, member->name_off); 3330 h = hash_combine(h, member->offset); 3331 /* no hashing of referenced type ID, it can be unresolved yet */ 3332 member++; 3333 } 3334 return h; 3335 } 3336 3337 /* 3338 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3339 * IDs. This check is performed during type graph equivalence check and 3340 * referenced types equivalence is checked separately. 3341 */ 3342 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3343 { 3344 const struct btf_member *m1, *m2; 3345 __u16 vlen; 3346 int i; 3347 3348 if (!btf_equal_common(t1, t2)) 3349 return false; 3350 3351 vlen = btf_vlen(t1); 3352 m1 = btf_members(t1); 3353 m2 = btf_members(t2); 3354 for (i = 0; i < vlen; i++) { 3355 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3356 return false; 3357 m1++; 3358 m2++; 3359 } 3360 return true; 3361 } 3362 3363 /* 3364 * Calculate type signature hash of ARRAY, including referenced type IDs, 3365 * under assumption that they were already resolved to canonical type IDs and 3366 * are not going to change. 3367 */ 3368 static long btf_hash_array(struct btf_type *t) 3369 { 3370 const struct btf_array *info = btf_array(t); 3371 long h = btf_hash_common(t); 3372 3373 h = hash_combine(h, info->type); 3374 h = hash_combine(h, info->index_type); 3375 h = hash_combine(h, info->nelems); 3376 return h; 3377 } 3378 3379 /* 3380 * Check exact equality of two ARRAYs, taking into account referenced 3381 * type IDs, under assumption that they were already resolved to canonical 3382 * type IDs and are not going to change. 3383 * This function is called during reference types deduplication to compare 3384 * ARRAY to potential canonical representative. 3385 */ 3386 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3387 { 3388 const struct btf_array *info1, *info2; 3389 3390 if (!btf_equal_common(t1, t2)) 3391 return false; 3392 3393 info1 = btf_array(t1); 3394 info2 = btf_array(t2); 3395 return info1->type == info2->type && 3396 info1->index_type == info2->index_type && 3397 info1->nelems == info2->nelems; 3398 } 3399 3400 /* 3401 * Check structural compatibility of two ARRAYs, ignoring referenced type 3402 * IDs. This check is performed during type graph equivalence check and 3403 * referenced types equivalence is checked separately. 3404 */ 3405 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3406 { 3407 if (!btf_equal_common(t1, t2)) 3408 return false; 3409 3410 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3411 } 3412 3413 /* 3414 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3415 * under assumption that they were already resolved to canonical type IDs and 3416 * are not going to change. 3417 */ 3418 static long btf_hash_fnproto(struct btf_type *t) 3419 { 3420 const struct btf_param *member = btf_params(t); 3421 __u16 vlen = btf_vlen(t); 3422 long h = btf_hash_common(t); 3423 int i; 3424 3425 for (i = 0; i < vlen; i++) { 3426 h = hash_combine(h, member->name_off); 3427 h = hash_combine(h, member->type); 3428 member++; 3429 } 3430 return h; 3431 } 3432 3433 /* 3434 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3435 * type IDs, under assumption that they were already resolved to canonical 3436 * type IDs and are not going to change. 3437 * This function is called during reference types deduplication to compare 3438 * FUNC_PROTO to potential canonical representative. 3439 */ 3440 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3441 { 3442 const struct btf_param *m1, *m2; 3443 __u16 vlen; 3444 int i; 3445 3446 if (!btf_equal_common(t1, t2)) 3447 return false; 3448 3449 vlen = btf_vlen(t1); 3450 m1 = btf_params(t1); 3451 m2 = btf_params(t2); 3452 for (i = 0; i < vlen; i++) { 3453 if (m1->name_off != m2->name_off || m1->type != m2->type) 3454 return false; 3455 m1++; 3456 m2++; 3457 } 3458 return true; 3459 } 3460 3461 /* 3462 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3463 * IDs. This check is performed during type graph equivalence check and 3464 * referenced types equivalence is checked separately. 3465 */ 3466 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3467 { 3468 const struct btf_param *m1, *m2; 3469 __u16 vlen; 3470 int i; 3471 3472 /* skip return type ID */ 3473 if (t1->name_off != t2->name_off || t1->info != t2->info) 3474 return false; 3475 3476 vlen = btf_vlen(t1); 3477 m1 = btf_params(t1); 3478 m2 = btf_params(t2); 3479 for (i = 0; i < vlen; i++) { 3480 if (m1->name_off != m2->name_off) 3481 return false; 3482 m1++; 3483 m2++; 3484 } 3485 return true; 3486 } 3487 3488 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3489 * types and initializing the rest of the state (canonical type mapping) for 3490 * the fixed base BTF part. 3491 */ 3492 static int btf_dedup_prep(struct btf_dedup *d) 3493 { 3494 struct btf_type *t; 3495 int type_id; 3496 long h; 3497 3498 if (!d->btf->base_btf) 3499 return 0; 3500 3501 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3502 t = btf_type_by_id(d->btf, type_id); 3503 3504 /* all base BTF types are self-canonical by definition */ 3505 d->map[type_id] = type_id; 3506 3507 switch (btf_kind(t)) { 3508 case BTF_KIND_VAR: 3509 case BTF_KIND_DATASEC: 3510 /* VAR and DATASEC are never hash/deduplicated */ 3511 continue; 3512 case BTF_KIND_CONST: 3513 case BTF_KIND_VOLATILE: 3514 case BTF_KIND_RESTRICT: 3515 case BTF_KIND_PTR: 3516 case BTF_KIND_FWD: 3517 case BTF_KIND_TYPEDEF: 3518 case BTF_KIND_FUNC: 3519 case BTF_KIND_FLOAT: 3520 h = btf_hash_common(t); 3521 break; 3522 case BTF_KIND_INT: 3523 h = btf_hash_int(t); 3524 break; 3525 case BTF_KIND_ENUM: 3526 h = btf_hash_enum(t); 3527 break; 3528 case BTF_KIND_STRUCT: 3529 case BTF_KIND_UNION: 3530 h = btf_hash_struct(t); 3531 break; 3532 case BTF_KIND_ARRAY: 3533 h = btf_hash_array(t); 3534 break; 3535 case BTF_KIND_FUNC_PROTO: 3536 h = btf_hash_fnproto(t); 3537 break; 3538 default: 3539 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3540 return -EINVAL; 3541 } 3542 if (btf_dedup_table_add(d, h, type_id)) 3543 return -ENOMEM; 3544 } 3545 3546 return 0; 3547 } 3548 3549 /* 3550 * Deduplicate primitive types, that can't reference other types, by calculating 3551 * their type signature hash and comparing them with any possible canonical 3552 * candidate. If no canonical candidate matches, type itself is marked as 3553 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3554 */ 3555 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3556 { 3557 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3558 struct hashmap_entry *hash_entry; 3559 struct btf_type *cand; 3560 /* if we don't find equivalent type, then we are canonical */ 3561 __u32 new_id = type_id; 3562 __u32 cand_id; 3563 long h; 3564 3565 switch (btf_kind(t)) { 3566 case BTF_KIND_CONST: 3567 case BTF_KIND_VOLATILE: 3568 case BTF_KIND_RESTRICT: 3569 case BTF_KIND_PTR: 3570 case BTF_KIND_TYPEDEF: 3571 case BTF_KIND_ARRAY: 3572 case BTF_KIND_STRUCT: 3573 case BTF_KIND_UNION: 3574 case BTF_KIND_FUNC: 3575 case BTF_KIND_FUNC_PROTO: 3576 case BTF_KIND_VAR: 3577 case BTF_KIND_DATASEC: 3578 return 0; 3579 3580 case BTF_KIND_INT: 3581 h = btf_hash_int(t); 3582 for_each_dedup_cand(d, hash_entry, h) { 3583 cand_id = (__u32)(long)hash_entry->value; 3584 cand = btf_type_by_id(d->btf, cand_id); 3585 if (btf_equal_int(t, cand)) { 3586 new_id = cand_id; 3587 break; 3588 } 3589 } 3590 break; 3591 3592 case BTF_KIND_ENUM: 3593 h = btf_hash_enum(t); 3594 for_each_dedup_cand(d, hash_entry, h) { 3595 cand_id = (__u32)(long)hash_entry->value; 3596 cand = btf_type_by_id(d->btf, cand_id); 3597 if (btf_equal_enum(t, cand)) { 3598 new_id = cand_id; 3599 break; 3600 } 3601 if (d->opts.dont_resolve_fwds) 3602 continue; 3603 if (btf_compat_enum(t, cand)) { 3604 if (btf_is_enum_fwd(t)) { 3605 /* resolve fwd to full enum */ 3606 new_id = cand_id; 3607 break; 3608 } 3609 /* resolve canonical enum fwd to full enum */ 3610 d->map[cand_id] = type_id; 3611 } 3612 } 3613 break; 3614 3615 case BTF_KIND_FWD: 3616 case BTF_KIND_FLOAT: 3617 h = btf_hash_common(t); 3618 for_each_dedup_cand(d, hash_entry, h) { 3619 cand_id = (__u32)(long)hash_entry->value; 3620 cand = btf_type_by_id(d->btf, cand_id); 3621 if (btf_equal_common(t, cand)) { 3622 new_id = cand_id; 3623 break; 3624 } 3625 } 3626 break; 3627 3628 default: 3629 return -EINVAL; 3630 } 3631 3632 d->map[type_id] = new_id; 3633 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3634 return -ENOMEM; 3635 3636 return 0; 3637 } 3638 3639 static int btf_dedup_prim_types(struct btf_dedup *d) 3640 { 3641 int i, err; 3642 3643 for (i = 0; i < d->btf->nr_types; i++) { 3644 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3645 if (err) 3646 return err; 3647 } 3648 return 0; 3649 } 3650 3651 /* 3652 * Check whether type is already mapped into canonical one (could be to itself). 3653 */ 3654 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3655 { 3656 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3657 } 3658 3659 /* 3660 * Resolve type ID into its canonical type ID, if any; otherwise return original 3661 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3662 * STRUCT/UNION link and resolve it into canonical type ID as well. 3663 */ 3664 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3665 { 3666 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3667 type_id = d->map[type_id]; 3668 return type_id; 3669 } 3670 3671 /* 3672 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3673 * type ID. 3674 */ 3675 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3676 { 3677 __u32 orig_type_id = type_id; 3678 3679 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3680 return type_id; 3681 3682 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3683 type_id = d->map[type_id]; 3684 3685 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3686 return type_id; 3687 3688 return orig_type_id; 3689 } 3690 3691 3692 static inline __u16 btf_fwd_kind(struct btf_type *t) 3693 { 3694 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3695 } 3696 3697 /* Check if given two types are identical ARRAY definitions */ 3698 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3699 { 3700 struct btf_type *t1, *t2; 3701 3702 t1 = btf_type_by_id(d->btf, id1); 3703 t2 = btf_type_by_id(d->btf, id2); 3704 if (!btf_is_array(t1) || !btf_is_array(t2)) 3705 return 0; 3706 3707 return btf_equal_array(t1, t2); 3708 } 3709 3710 /* 3711 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3712 * call it "candidate graph" in this description for brevity) to a type graph 3713 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3714 * here, though keep in mind that not all types in canonical graph are 3715 * necessarily canonical representatives themselves, some of them might be 3716 * duplicates or its uniqueness might not have been established yet). 3717 * Returns: 3718 * - >0, if type graphs are equivalent; 3719 * - 0, if not equivalent; 3720 * - <0, on error. 3721 * 3722 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3723 * equivalence of BTF types at each step. If at any point BTF types in candidate 3724 * and canonical graphs are not compatible structurally, whole graphs are 3725 * incompatible. If types are structurally equivalent (i.e., all information 3726 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3727 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3728 * If a type references other types, then those referenced types are checked 3729 * for equivalence recursively. 3730 * 3731 * During DFS traversal, if we find that for current `canon_id` type we 3732 * already have some mapping in hypothetical map, we check for two possible 3733 * situations: 3734 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3735 * happen when type graphs have cycles. In this case we assume those two 3736 * types are equivalent. 3737 * - `canon_id` is mapped to different type. This is contradiction in our 3738 * hypothetical mapping, because same graph in canonical graph corresponds 3739 * to two different types in candidate graph, which for equivalent type 3740 * graphs shouldn't happen. This condition terminates equivalence check 3741 * with negative result. 3742 * 3743 * If type graphs traversal exhausts types to check and find no contradiction, 3744 * then type graphs are equivalent. 3745 * 3746 * When checking types for equivalence, there is one special case: FWD types. 3747 * If FWD type resolution is allowed and one of the types (either from canonical 3748 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3749 * flag) and their names match, hypothetical mapping is updated to point from 3750 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3751 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3752 * 3753 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3754 * if there are two exactly named (or anonymous) structs/unions that are 3755 * compatible structurally, one of which has FWD field, while other is concrete 3756 * STRUCT/UNION, but according to C sources they are different structs/unions 3757 * that are referencing different types with the same name. This is extremely 3758 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3759 * this logic is causing problems. 3760 * 3761 * Doing FWD resolution means that both candidate and/or canonical graphs can 3762 * consists of portions of the graph that come from multiple compilation units. 3763 * This is due to the fact that types within single compilation unit are always 3764 * deduplicated and FWDs are already resolved, if referenced struct/union 3765 * definiton is available. So, if we had unresolved FWD and found corresponding 3766 * STRUCT/UNION, they will be from different compilation units. This 3767 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3768 * type graph will likely have at least two different BTF types that describe 3769 * same type (e.g., most probably there will be two different BTF types for the 3770 * same 'int' primitive type) and could even have "overlapping" parts of type 3771 * graph that describe same subset of types. 3772 * 3773 * This in turn means that our assumption that each type in canonical graph 3774 * must correspond to exactly one type in candidate graph might not hold 3775 * anymore and will make it harder to detect contradictions using hypothetical 3776 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3777 * resolution only in canonical graph. FWDs in candidate graphs are never 3778 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3779 * that can occur: 3780 * - Both types in canonical and candidate graphs are FWDs. If they are 3781 * structurally equivalent, then they can either be both resolved to the 3782 * same STRUCT/UNION or not resolved at all. In both cases they are 3783 * equivalent and there is no need to resolve FWD on candidate side. 3784 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3785 * so nothing to resolve as well, algorithm will check equivalence anyway. 3786 * - Type in canonical graph is FWD, while type in candidate is concrete 3787 * STRUCT/UNION. In this case candidate graph comes from single compilation 3788 * unit, so there is exactly one BTF type for each unique C type. After 3789 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3790 * in canonical graph mapping to single BTF type in candidate graph, but 3791 * because hypothetical mapping maps from canonical to candidate types, it's 3792 * alright, and we still maintain the property of having single `canon_id` 3793 * mapping to single `cand_id` (there could be two different `canon_id` 3794 * mapped to the same `cand_id`, but it's not contradictory). 3795 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3796 * graph is FWD. In this case we are just going to check compatibility of 3797 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3798 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3799 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3800 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3801 * canonical graph. 3802 */ 3803 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3804 __u32 canon_id) 3805 { 3806 struct btf_type *cand_type; 3807 struct btf_type *canon_type; 3808 __u32 hypot_type_id; 3809 __u16 cand_kind; 3810 __u16 canon_kind; 3811 int i, eq; 3812 3813 /* if both resolve to the same canonical, they must be equivalent */ 3814 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3815 return 1; 3816 3817 canon_id = resolve_fwd_id(d, canon_id); 3818 3819 hypot_type_id = d->hypot_map[canon_id]; 3820 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3821 /* In some cases compiler will generate different DWARF types 3822 * for *identical* array type definitions and use them for 3823 * different fields within the *same* struct. This breaks type 3824 * equivalence check, which makes an assumption that candidate 3825 * types sub-graph has a consistent and deduped-by-compiler 3826 * types within a single CU. So work around that by explicitly 3827 * allowing identical array types here. 3828 */ 3829 return hypot_type_id == cand_id || 3830 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3831 } 3832 3833 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3834 return -ENOMEM; 3835 3836 cand_type = btf_type_by_id(d->btf, cand_id); 3837 canon_type = btf_type_by_id(d->btf, canon_id); 3838 cand_kind = btf_kind(cand_type); 3839 canon_kind = btf_kind(canon_type); 3840 3841 if (cand_type->name_off != canon_type->name_off) 3842 return 0; 3843 3844 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3845 if (!d->opts.dont_resolve_fwds 3846 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3847 && cand_kind != canon_kind) { 3848 __u16 real_kind; 3849 __u16 fwd_kind; 3850 3851 if (cand_kind == BTF_KIND_FWD) { 3852 real_kind = canon_kind; 3853 fwd_kind = btf_fwd_kind(cand_type); 3854 } else { 3855 real_kind = cand_kind; 3856 fwd_kind = btf_fwd_kind(canon_type); 3857 /* we'd need to resolve base FWD to STRUCT/UNION */ 3858 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3859 d->hypot_adjust_canon = true; 3860 } 3861 return fwd_kind == real_kind; 3862 } 3863 3864 if (cand_kind != canon_kind) 3865 return 0; 3866 3867 switch (cand_kind) { 3868 case BTF_KIND_INT: 3869 return btf_equal_int(cand_type, canon_type); 3870 3871 case BTF_KIND_ENUM: 3872 if (d->opts.dont_resolve_fwds) 3873 return btf_equal_enum(cand_type, canon_type); 3874 else 3875 return btf_compat_enum(cand_type, canon_type); 3876 3877 case BTF_KIND_FWD: 3878 case BTF_KIND_FLOAT: 3879 return btf_equal_common(cand_type, canon_type); 3880 3881 case BTF_KIND_CONST: 3882 case BTF_KIND_VOLATILE: 3883 case BTF_KIND_RESTRICT: 3884 case BTF_KIND_PTR: 3885 case BTF_KIND_TYPEDEF: 3886 case BTF_KIND_FUNC: 3887 if (cand_type->info != canon_type->info) 3888 return 0; 3889 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3890 3891 case BTF_KIND_ARRAY: { 3892 const struct btf_array *cand_arr, *canon_arr; 3893 3894 if (!btf_compat_array(cand_type, canon_type)) 3895 return 0; 3896 cand_arr = btf_array(cand_type); 3897 canon_arr = btf_array(canon_type); 3898 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 3899 if (eq <= 0) 3900 return eq; 3901 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 3902 } 3903 3904 case BTF_KIND_STRUCT: 3905 case BTF_KIND_UNION: { 3906 const struct btf_member *cand_m, *canon_m; 3907 __u16 vlen; 3908 3909 if (!btf_shallow_equal_struct(cand_type, canon_type)) 3910 return 0; 3911 vlen = btf_vlen(cand_type); 3912 cand_m = btf_members(cand_type); 3913 canon_m = btf_members(canon_type); 3914 for (i = 0; i < vlen; i++) { 3915 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 3916 if (eq <= 0) 3917 return eq; 3918 cand_m++; 3919 canon_m++; 3920 } 3921 3922 return 1; 3923 } 3924 3925 case BTF_KIND_FUNC_PROTO: { 3926 const struct btf_param *cand_p, *canon_p; 3927 __u16 vlen; 3928 3929 if (!btf_compat_fnproto(cand_type, canon_type)) 3930 return 0; 3931 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3932 if (eq <= 0) 3933 return eq; 3934 vlen = btf_vlen(cand_type); 3935 cand_p = btf_params(cand_type); 3936 canon_p = btf_params(canon_type); 3937 for (i = 0; i < vlen; i++) { 3938 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 3939 if (eq <= 0) 3940 return eq; 3941 cand_p++; 3942 canon_p++; 3943 } 3944 return 1; 3945 } 3946 3947 default: 3948 return -EINVAL; 3949 } 3950 return 0; 3951 } 3952 3953 /* 3954 * Use hypothetical mapping, produced by successful type graph equivalence 3955 * check, to augment existing struct/union canonical mapping, where possible. 3956 * 3957 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 3958 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 3959 * it doesn't matter if FWD type was part of canonical graph or candidate one, 3960 * we are recording the mapping anyway. As opposed to carefulness required 3961 * for struct/union correspondence mapping (described below), for FWD resolution 3962 * it's not important, as by the time that FWD type (reference type) will be 3963 * deduplicated all structs/unions will be deduped already anyway. 3964 * 3965 * Recording STRUCT/UNION mapping is purely a performance optimization and is 3966 * not required for correctness. It needs to be done carefully to ensure that 3967 * struct/union from candidate's type graph is not mapped into corresponding 3968 * struct/union from canonical type graph that itself hasn't been resolved into 3969 * canonical representative. The only guarantee we have is that canonical 3970 * struct/union was determined as canonical and that won't change. But any 3971 * types referenced through that struct/union fields could have been not yet 3972 * resolved, so in case like that it's too early to establish any kind of 3973 * correspondence between structs/unions. 3974 * 3975 * No canonical correspondence is derived for primitive types (they are already 3976 * deduplicated completely already anyway) or reference types (they rely on 3977 * stability of struct/union canonical relationship for equivalence checks). 3978 */ 3979 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 3980 { 3981 __u32 canon_type_id, targ_type_id; 3982 __u16 t_kind, c_kind; 3983 __u32 t_id, c_id; 3984 int i; 3985 3986 for (i = 0; i < d->hypot_cnt; i++) { 3987 canon_type_id = d->hypot_list[i]; 3988 targ_type_id = d->hypot_map[canon_type_id]; 3989 t_id = resolve_type_id(d, targ_type_id); 3990 c_id = resolve_type_id(d, canon_type_id); 3991 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 3992 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 3993 /* 3994 * Resolve FWD into STRUCT/UNION. 3995 * It's ok to resolve FWD into STRUCT/UNION that's not yet 3996 * mapped to canonical representative (as opposed to 3997 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 3998 * eventually that struct is going to be mapped and all resolved 3999 * FWDs will automatically resolve to correct canonical 4000 * representative. This will happen before ref type deduping, 4001 * which critically depends on stability of these mapping. This 4002 * stability is not a requirement for STRUCT/UNION equivalence 4003 * checks, though. 4004 */ 4005 4006 /* if it's the split BTF case, we still need to point base FWD 4007 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4008 * will be resolved against base FWD. If we don't point base 4009 * canonical FWD to the resolved STRUCT/UNION, then all the 4010 * FWDs in split BTF won't be correctly resolved to a proper 4011 * STRUCT/UNION. 4012 */ 4013 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4014 d->map[c_id] = t_id; 4015 4016 /* if graph equivalence determined that we'd need to adjust 4017 * base canonical types, then we need to only point base FWDs 4018 * to STRUCTs/UNIONs and do no more modifications. For all 4019 * other purposes the type graphs were not equivalent. 4020 */ 4021 if (d->hypot_adjust_canon) 4022 continue; 4023 4024 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4025 d->map[t_id] = c_id; 4026 4027 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4028 c_kind != BTF_KIND_FWD && 4029 is_type_mapped(d, c_id) && 4030 !is_type_mapped(d, t_id)) { 4031 /* 4032 * as a perf optimization, we can map struct/union 4033 * that's part of type graph we just verified for 4034 * equivalence. We can do that for struct/union that has 4035 * canonical representative only, though. 4036 */ 4037 d->map[t_id] = c_id; 4038 } 4039 } 4040 } 4041 4042 /* 4043 * Deduplicate struct/union types. 4044 * 4045 * For each struct/union type its type signature hash is calculated, taking 4046 * into account type's name, size, number, order and names of fields, but 4047 * ignoring type ID's referenced from fields, because they might not be deduped 4048 * completely until after reference types deduplication phase. This type hash 4049 * is used to iterate over all potential canonical types, sharing same hash. 4050 * For each canonical candidate we check whether type graphs that they form 4051 * (through referenced types in fields and so on) are equivalent using algorithm 4052 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4053 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4054 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4055 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4056 * potentially map other structs/unions to their canonical representatives, 4057 * if such relationship hasn't yet been established. This speeds up algorithm 4058 * by eliminating some of the duplicate work. 4059 * 4060 * If no matching canonical representative was found, struct/union is marked 4061 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4062 * for further look ups. 4063 */ 4064 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4065 { 4066 struct btf_type *cand_type, *t; 4067 struct hashmap_entry *hash_entry; 4068 /* if we don't find equivalent type, then we are canonical */ 4069 __u32 new_id = type_id; 4070 __u16 kind; 4071 long h; 4072 4073 /* already deduped or is in process of deduping (loop detected) */ 4074 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4075 return 0; 4076 4077 t = btf_type_by_id(d->btf, type_id); 4078 kind = btf_kind(t); 4079 4080 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4081 return 0; 4082 4083 h = btf_hash_struct(t); 4084 for_each_dedup_cand(d, hash_entry, h) { 4085 __u32 cand_id = (__u32)(long)hash_entry->value; 4086 int eq; 4087 4088 /* 4089 * Even though btf_dedup_is_equiv() checks for 4090 * btf_shallow_equal_struct() internally when checking two 4091 * structs (unions) for equivalence, we need to guard here 4092 * from picking matching FWD type as a dedup candidate. 4093 * This can happen due to hash collision. In such case just 4094 * relying on btf_dedup_is_equiv() would lead to potentially 4095 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4096 * FWD and compatible STRUCT/UNION are considered equivalent. 4097 */ 4098 cand_type = btf_type_by_id(d->btf, cand_id); 4099 if (!btf_shallow_equal_struct(t, cand_type)) 4100 continue; 4101 4102 btf_dedup_clear_hypot_map(d); 4103 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4104 if (eq < 0) 4105 return eq; 4106 if (!eq) 4107 continue; 4108 btf_dedup_merge_hypot_map(d); 4109 if (d->hypot_adjust_canon) /* not really equivalent */ 4110 continue; 4111 new_id = cand_id; 4112 break; 4113 } 4114 4115 d->map[type_id] = new_id; 4116 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4117 return -ENOMEM; 4118 4119 return 0; 4120 } 4121 4122 static int btf_dedup_struct_types(struct btf_dedup *d) 4123 { 4124 int i, err; 4125 4126 for (i = 0; i < d->btf->nr_types; i++) { 4127 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4128 if (err) 4129 return err; 4130 } 4131 return 0; 4132 } 4133 4134 /* 4135 * Deduplicate reference type. 4136 * 4137 * Once all primitive and struct/union types got deduplicated, we can easily 4138 * deduplicate all other (reference) BTF types. This is done in two steps: 4139 * 4140 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4141 * resolution can be done either immediately for primitive or struct/union types 4142 * (because they were deduped in previous two phases) or recursively for 4143 * reference types. Recursion will always terminate at either primitive or 4144 * struct/union type, at which point we can "unwind" chain of reference types 4145 * one by one. There is no danger of encountering cycles because in C type 4146 * system the only way to form type cycle is through struct/union, so any chain 4147 * of reference types, even those taking part in a type cycle, will inevitably 4148 * reach struct/union at some point. 4149 * 4150 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4151 * becomes "stable", in the sense that no further deduplication will cause 4152 * any changes to it. With that, it's now possible to calculate type's signature 4153 * hash (this time taking into account referenced type IDs) and loop over all 4154 * potential canonical representatives. If no match was found, current type 4155 * will become canonical representative of itself and will be added into 4156 * btf_dedup->dedup_table as another possible canonical representative. 4157 */ 4158 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4159 { 4160 struct hashmap_entry *hash_entry; 4161 __u32 new_id = type_id, cand_id; 4162 struct btf_type *t, *cand; 4163 /* if we don't find equivalent type, then we are representative type */ 4164 int ref_type_id; 4165 long h; 4166 4167 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4168 return -ELOOP; 4169 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4170 return resolve_type_id(d, type_id); 4171 4172 t = btf_type_by_id(d->btf, type_id); 4173 d->map[type_id] = BTF_IN_PROGRESS_ID; 4174 4175 switch (btf_kind(t)) { 4176 case BTF_KIND_CONST: 4177 case BTF_KIND_VOLATILE: 4178 case BTF_KIND_RESTRICT: 4179 case BTF_KIND_PTR: 4180 case BTF_KIND_TYPEDEF: 4181 case BTF_KIND_FUNC: 4182 ref_type_id = btf_dedup_ref_type(d, t->type); 4183 if (ref_type_id < 0) 4184 return ref_type_id; 4185 t->type = ref_type_id; 4186 4187 h = btf_hash_common(t); 4188 for_each_dedup_cand(d, hash_entry, h) { 4189 cand_id = (__u32)(long)hash_entry->value; 4190 cand = btf_type_by_id(d->btf, cand_id); 4191 if (btf_equal_common(t, cand)) { 4192 new_id = cand_id; 4193 break; 4194 } 4195 } 4196 break; 4197 4198 case BTF_KIND_ARRAY: { 4199 struct btf_array *info = btf_array(t); 4200 4201 ref_type_id = btf_dedup_ref_type(d, info->type); 4202 if (ref_type_id < 0) 4203 return ref_type_id; 4204 info->type = ref_type_id; 4205 4206 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4207 if (ref_type_id < 0) 4208 return ref_type_id; 4209 info->index_type = ref_type_id; 4210 4211 h = btf_hash_array(t); 4212 for_each_dedup_cand(d, hash_entry, h) { 4213 cand_id = (__u32)(long)hash_entry->value; 4214 cand = btf_type_by_id(d->btf, cand_id); 4215 if (btf_equal_array(t, cand)) { 4216 new_id = cand_id; 4217 break; 4218 } 4219 } 4220 break; 4221 } 4222 4223 case BTF_KIND_FUNC_PROTO: { 4224 struct btf_param *param; 4225 __u16 vlen; 4226 int i; 4227 4228 ref_type_id = btf_dedup_ref_type(d, t->type); 4229 if (ref_type_id < 0) 4230 return ref_type_id; 4231 t->type = ref_type_id; 4232 4233 vlen = btf_vlen(t); 4234 param = btf_params(t); 4235 for (i = 0; i < vlen; i++) { 4236 ref_type_id = btf_dedup_ref_type(d, param->type); 4237 if (ref_type_id < 0) 4238 return ref_type_id; 4239 param->type = ref_type_id; 4240 param++; 4241 } 4242 4243 h = btf_hash_fnproto(t); 4244 for_each_dedup_cand(d, hash_entry, h) { 4245 cand_id = (__u32)(long)hash_entry->value; 4246 cand = btf_type_by_id(d->btf, cand_id); 4247 if (btf_equal_fnproto(t, cand)) { 4248 new_id = cand_id; 4249 break; 4250 } 4251 } 4252 break; 4253 } 4254 4255 default: 4256 return -EINVAL; 4257 } 4258 4259 d->map[type_id] = new_id; 4260 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4261 return -ENOMEM; 4262 4263 return new_id; 4264 } 4265 4266 static int btf_dedup_ref_types(struct btf_dedup *d) 4267 { 4268 int i, err; 4269 4270 for (i = 0; i < d->btf->nr_types; i++) { 4271 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4272 if (err < 0) 4273 return err; 4274 } 4275 /* we won't need d->dedup_table anymore */ 4276 hashmap__free(d->dedup_table); 4277 d->dedup_table = NULL; 4278 return 0; 4279 } 4280 4281 /* 4282 * Compact types. 4283 * 4284 * After we established for each type its corresponding canonical representative 4285 * type, we now can eliminate types that are not canonical and leave only 4286 * canonical ones layed out sequentially in memory by copying them over 4287 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4288 * a map from original type ID to a new compacted type ID, which will be used 4289 * during next phase to "fix up" type IDs, referenced from struct/union and 4290 * reference types. 4291 */ 4292 static int btf_dedup_compact_types(struct btf_dedup *d) 4293 { 4294 __u32 *new_offs; 4295 __u32 next_type_id = d->btf->start_id; 4296 const struct btf_type *t; 4297 void *p; 4298 int i, id, len; 4299 4300 /* we are going to reuse hypot_map to store compaction remapping */ 4301 d->hypot_map[0] = 0; 4302 /* base BTF types are not renumbered */ 4303 for (id = 1; id < d->btf->start_id; id++) 4304 d->hypot_map[id] = id; 4305 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4306 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4307 4308 p = d->btf->types_data; 4309 4310 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4311 if (d->map[id] != id) 4312 continue; 4313 4314 t = btf__type_by_id(d->btf, id); 4315 len = btf_type_size(t); 4316 if (len < 0) 4317 return len; 4318 4319 memmove(p, t, len); 4320 d->hypot_map[id] = next_type_id; 4321 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4322 p += len; 4323 next_type_id++; 4324 } 4325 4326 /* shrink struct btf's internal types index and update btf_header */ 4327 d->btf->nr_types = next_type_id - d->btf->start_id; 4328 d->btf->type_offs_cap = d->btf->nr_types; 4329 d->btf->hdr->type_len = p - d->btf->types_data; 4330 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4331 sizeof(*new_offs)); 4332 if (d->btf->type_offs_cap && !new_offs) 4333 return -ENOMEM; 4334 d->btf->type_offs = new_offs; 4335 d->btf->hdr->str_off = d->btf->hdr->type_len; 4336 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4337 return 0; 4338 } 4339 4340 /* 4341 * Figure out final (deduplicated and compacted) type ID for provided original 4342 * `type_id` by first resolving it into corresponding canonical type ID and 4343 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4344 * which is populated during compaction phase. 4345 */ 4346 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4347 { 4348 struct btf_dedup *d = ctx; 4349 __u32 resolved_type_id, new_type_id; 4350 4351 resolved_type_id = resolve_type_id(d, *type_id); 4352 new_type_id = d->hypot_map[resolved_type_id]; 4353 if (new_type_id > BTF_MAX_NR_TYPES) 4354 return -EINVAL; 4355 4356 *type_id = new_type_id; 4357 return 0; 4358 } 4359 4360 /* 4361 * Remap referenced type IDs into deduped type IDs. 4362 * 4363 * After BTF types are deduplicated and compacted, their final type IDs may 4364 * differ from original ones. The map from original to a corresponding 4365 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4366 * compaction phase. During remapping phase we are rewriting all type IDs 4367 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4368 * their final deduped type IDs. 4369 */ 4370 static int btf_dedup_remap_types(struct btf_dedup *d) 4371 { 4372 int i, r; 4373 4374 for (i = 0; i < d->btf->nr_types; i++) { 4375 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4376 4377 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4378 if (r) 4379 return r; 4380 } 4381 4382 if (!d->btf_ext) 4383 return 0; 4384 4385 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4386 if (r) 4387 return r; 4388 4389 return 0; 4390 } 4391 4392 /* 4393 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4394 * data out of it to use for target BTF. 4395 */ 4396 struct btf *libbpf_find_kernel_btf(void) 4397 { 4398 struct { 4399 const char *path_fmt; 4400 bool raw_btf; 4401 } locations[] = { 4402 /* try canonical vmlinux BTF through sysfs first */ 4403 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4404 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4405 { "/boot/vmlinux-%1$s" }, 4406 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4407 { "/lib/modules/%1$s/build/vmlinux" }, 4408 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4409 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4410 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4411 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4412 }; 4413 char path[PATH_MAX + 1]; 4414 struct utsname buf; 4415 struct btf *btf; 4416 int i, err; 4417 4418 uname(&buf); 4419 4420 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4421 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4422 4423 if (access(path, R_OK)) 4424 continue; 4425 4426 if (locations[i].raw_btf) 4427 btf = btf__parse_raw(path); 4428 else 4429 btf = btf__parse_elf(path, NULL); 4430 err = libbpf_get_error(btf); 4431 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4432 if (err) 4433 continue; 4434 4435 return btf; 4436 } 4437 4438 pr_warn("failed to find valid kernel BTF\n"); 4439 return libbpf_err_ptr(-ESRCH); 4440 } 4441 4442 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4443 { 4444 int i, n, err; 4445 4446 switch (btf_kind(t)) { 4447 case BTF_KIND_INT: 4448 case BTF_KIND_FLOAT: 4449 case BTF_KIND_ENUM: 4450 return 0; 4451 4452 case BTF_KIND_FWD: 4453 case BTF_KIND_CONST: 4454 case BTF_KIND_VOLATILE: 4455 case BTF_KIND_RESTRICT: 4456 case BTF_KIND_PTR: 4457 case BTF_KIND_TYPEDEF: 4458 case BTF_KIND_FUNC: 4459 case BTF_KIND_VAR: 4460 return visit(&t->type, ctx); 4461 4462 case BTF_KIND_ARRAY: { 4463 struct btf_array *a = btf_array(t); 4464 4465 err = visit(&a->type, ctx); 4466 err = err ?: visit(&a->index_type, ctx); 4467 return err; 4468 } 4469 4470 case BTF_KIND_STRUCT: 4471 case BTF_KIND_UNION: { 4472 struct btf_member *m = btf_members(t); 4473 4474 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4475 err = visit(&m->type, ctx); 4476 if (err) 4477 return err; 4478 } 4479 return 0; 4480 } 4481 4482 case BTF_KIND_FUNC_PROTO: { 4483 struct btf_param *m = btf_params(t); 4484 4485 err = visit(&t->type, ctx); 4486 if (err) 4487 return err; 4488 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4489 err = visit(&m->type, ctx); 4490 if (err) 4491 return err; 4492 } 4493 return 0; 4494 } 4495 4496 case BTF_KIND_DATASEC: { 4497 struct btf_var_secinfo *m = btf_var_secinfos(t); 4498 4499 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4500 err = visit(&m->type, ctx); 4501 if (err) 4502 return err; 4503 } 4504 return 0; 4505 } 4506 4507 default: 4508 return -EINVAL; 4509 } 4510 } 4511 4512 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4513 { 4514 int i, n, err; 4515 4516 err = visit(&t->name_off, ctx); 4517 if (err) 4518 return err; 4519 4520 switch (btf_kind(t)) { 4521 case BTF_KIND_STRUCT: 4522 case BTF_KIND_UNION: { 4523 struct btf_member *m = btf_members(t); 4524 4525 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4526 err = visit(&m->name_off, ctx); 4527 if (err) 4528 return err; 4529 } 4530 break; 4531 } 4532 case BTF_KIND_ENUM: { 4533 struct btf_enum *m = btf_enum(t); 4534 4535 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4536 err = visit(&m->name_off, ctx); 4537 if (err) 4538 return err; 4539 } 4540 break; 4541 } 4542 case BTF_KIND_FUNC_PROTO: { 4543 struct btf_param *m = btf_params(t); 4544 4545 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4546 err = visit(&m->name_off, ctx); 4547 if (err) 4548 return err; 4549 } 4550 break; 4551 } 4552 default: 4553 break; 4554 } 4555 4556 return 0; 4557 } 4558 4559 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4560 { 4561 const struct btf_ext_info *seg; 4562 struct btf_ext_info_sec *sec; 4563 int i, err; 4564 4565 seg = &btf_ext->func_info; 4566 for_each_btf_ext_sec(seg, sec) { 4567 struct bpf_func_info_min *rec; 4568 4569 for_each_btf_ext_rec(seg, sec, i, rec) { 4570 err = visit(&rec->type_id, ctx); 4571 if (err < 0) 4572 return err; 4573 } 4574 } 4575 4576 seg = &btf_ext->core_relo_info; 4577 for_each_btf_ext_sec(seg, sec) { 4578 struct bpf_core_relo *rec; 4579 4580 for_each_btf_ext_rec(seg, sec, i, rec) { 4581 err = visit(&rec->type_id, ctx); 4582 if (err < 0) 4583 return err; 4584 } 4585 } 4586 4587 return 0; 4588 } 4589 4590 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4591 { 4592 const struct btf_ext_info *seg; 4593 struct btf_ext_info_sec *sec; 4594 int i, err; 4595 4596 seg = &btf_ext->func_info; 4597 for_each_btf_ext_sec(seg, sec) { 4598 err = visit(&sec->sec_name_off, ctx); 4599 if (err) 4600 return err; 4601 } 4602 4603 seg = &btf_ext->line_info; 4604 for_each_btf_ext_sec(seg, sec) { 4605 struct bpf_line_info_min *rec; 4606 4607 err = visit(&sec->sec_name_off, ctx); 4608 if (err) 4609 return err; 4610 4611 for_each_btf_ext_rec(seg, sec, i, rec) { 4612 err = visit(&rec->file_name_off, ctx); 4613 if (err) 4614 return err; 4615 err = visit(&rec->line_off, ctx); 4616 if (err) 4617 return err; 4618 } 4619 } 4620 4621 seg = &btf_ext->core_relo_info; 4622 for_each_btf_ext_sec(seg, sec) { 4623 struct bpf_core_relo *rec; 4624 4625 err = visit(&sec->sec_name_off, ctx); 4626 if (err) 4627 return err; 4628 4629 for_each_btf_ext_rec(seg, sec, i, rec) { 4630 err = visit(&rec->access_str_off, ctx); 4631 if (err) 4632 return err; 4633 } 4634 } 4635 4636 return 0; 4637 } 4638