xref: /openbmc/linux/tools/lib/bpf/btf.c (revision bcda5fd3)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__get_raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
193 {
194 	__u32 *p;
195 
196 	p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
197 			   btf->nr_types, BTF_MAX_NR_TYPES, 1);
198 	if (!p)
199 		return -ENOMEM;
200 
201 	*p = type_off;
202 	return 0;
203 }
204 
205 static void btf_bswap_hdr(struct btf_header *h)
206 {
207 	h->magic = bswap_16(h->magic);
208 	h->hdr_len = bswap_32(h->hdr_len);
209 	h->type_off = bswap_32(h->type_off);
210 	h->type_len = bswap_32(h->type_len);
211 	h->str_off = bswap_32(h->str_off);
212 	h->str_len = bswap_32(h->str_len);
213 }
214 
215 static int btf_parse_hdr(struct btf *btf)
216 {
217 	struct btf_header *hdr = btf->hdr;
218 	__u32 meta_left;
219 
220 	if (btf->raw_size < sizeof(struct btf_header)) {
221 		pr_debug("BTF header not found\n");
222 		return -EINVAL;
223 	}
224 
225 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
226 		btf->swapped_endian = true;
227 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
228 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
229 				bswap_32(hdr->hdr_len));
230 			return -ENOTSUP;
231 		}
232 		btf_bswap_hdr(hdr);
233 	} else if (hdr->magic != BTF_MAGIC) {
234 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
235 		return -EINVAL;
236 	}
237 
238 	meta_left = btf->raw_size - sizeof(*hdr);
239 	if (meta_left < hdr->str_off + hdr->str_len) {
240 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
241 		return -EINVAL;
242 	}
243 
244 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
245 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
246 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
247 		return -EINVAL;
248 	}
249 
250 	if (hdr->type_off % 4) {
251 		pr_debug("BTF type section is not aligned to 4 bytes\n");
252 		return -EINVAL;
253 	}
254 
255 	return 0;
256 }
257 
258 static int btf_parse_str_sec(struct btf *btf)
259 {
260 	const struct btf_header *hdr = btf->hdr;
261 	const char *start = btf->strs_data;
262 	const char *end = start + btf->hdr->str_len;
263 
264 	if (btf->base_btf && hdr->str_len == 0)
265 		return 0;
266 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
267 		pr_debug("Invalid BTF string section\n");
268 		return -EINVAL;
269 	}
270 	if (!btf->base_btf && start[0]) {
271 		pr_debug("Invalid BTF string section\n");
272 		return -EINVAL;
273 	}
274 	return 0;
275 }
276 
277 static int btf_type_size(const struct btf_type *t)
278 {
279 	const int base_size = sizeof(struct btf_type);
280 	__u16 vlen = btf_vlen(t);
281 
282 	switch (btf_kind(t)) {
283 	case BTF_KIND_FWD:
284 	case BTF_KIND_CONST:
285 	case BTF_KIND_VOLATILE:
286 	case BTF_KIND_RESTRICT:
287 	case BTF_KIND_PTR:
288 	case BTF_KIND_TYPEDEF:
289 	case BTF_KIND_FUNC:
290 	case BTF_KIND_FLOAT:
291 		return base_size;
292 	case BTF_KIND_INT:
293 		return base_size + sizeof(__u32);
294 	case BTF_KIND_ENUM:
295 		return base_size + vlen * sizeof(struct btf_enum);
296 	case BTF_KIND_ARRAY:
297 		return base_size + sizeof(struct btf_array);
298 	case BTF_KIND_STRUCT:
299 	case BTF_KIND_UNION:
300 		return base_size + vlen * sizeof(struct btf_member);
301 	case BTF_KIND_FUNC_PROTO:
302 		return base_size + vlen * sizeof(struct btf_param);
303 	case BTF_KIND_VAR:
304 		return base_size + sizeof(struct btf_var);
305 	case BTF_KIND_DATASEC:
306 		return base_size + vlen * sizeof(struct btf_var_secinfo);
307 	default:
308 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
309 		return -EINVAL;
310 	}
311 }
312 
313 static void btf_bswap_type_base(struct btf_type *t)
314 {
315 	t->name_off = bswap_32(t->name_off);
316 	t->info = bswap_32(t->info);
317 	t->type = bswap_32(t->type);
318 }
319 
320 static int btf_bswap_type_rest(struct btf_type *t)
321 {
322 	struct btf_var_secinfo *v;
323 	struct btf_member *m;
324 	struct btf_array *a;
325 	struct btf_param *p;
326 	struct btf_enum *e;
327 	__u16 vlen = btf_vlen(t);
328 	int i;
329 
330 	switch (btf_kind(t)) {
331 	case BTF_KIND_FWD:
332 	case BTF_KIND_CONST:
333 	case BTF_KIND_VOLATILE:
334 	case BTF_KIND_RESTRICT:
335 	case BTF_KIND_PTR:
336 	case BTF_KIND_TYPEDEF:
337 	case BTF_KIND_FUNC:
338 	case BTF_KIND_FLOAT:
339 		return 0;
340 	case BTF_KIND_INT:
341 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
342 		return 0;
343 	case BTF_KIND_ENUM:
344 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
345 			e->name_off = bswap_32(e->name_off);
346 			e->val = bswap_32(e->val);
347 		}
348 		return 0;
349 	case BTF_KIND_ARRAY:
350 		a = btf_array(t);
351 		a->type = bswap_32(a->type);
352 		a->index_type = bswap_32(a->index_type);
353 		a->nelems = bswap_32(a->nelems);
354 		return 0;
355 	case BTF_KIND_STRUCT:
356 	case BTF_KIND_UNION:
357 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
358 			m->name_off = bswap_32(m->name_off);
359 			m->type = bswap_32(m->type);
360 			m->offset = bswap_32(m->offset);
361 		}
362 		return 0;
363 	case BTF_KIND_FUNC_PROTO:
364 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
365 			p->name_off = bswap_32(p->name_off);
366 			p->type = bswap_32(p->type);
367 		}
368 		return 0;
369 	case BTF_KIND_VAR:
370 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
371 		return 0;
372 	case BTF_KIND_DATASEC:
373 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
374 			v->type = bswap_32(v->type);
375 			v->offset = bswap_32(v->offset);
376 			v->size = bswap_32(v->size);
377 		}
378 		return 0;
379 	default:
380 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
381 		return -EINVAL;
382 	}
383 }
384 
385 static int btf_parse_type_sec(struct btf *btf)
386 {
387 	struct btf_header *hdr = btf->hdr;
388 	void *next_type = btf->types_data;
389 	void *end_type = next_type + hdr->type_len;
390 	int err, type_size;
391 
392 	while (next_type + sizeof(struct btf_type) <= end_type) {
393 		if (btf->swapped_endian)
394 			btf_bswap_type_base(next_type);
395 
396 		type_size = btf_type_size(next_type);
397 		if (type_size < 0)
398 			return type_size;
399 		if (next_type + type_size > end_type) {
400 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
401 			return -EINVAL;
402 		}
403 
404 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
405 			return -EINVAL;
406 
407 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
408 		if (err)
409 			return err;
410 
411 		next_type += type_size;
412 		btf->nr_types++;
413 	}
414 
415 	if (next_type != end_type) {
416 		pr_warn("BTF types data is malformed\n");
417 		return -EINVAL;
418 	}
419 
420 	return 0;
421 }
422 
423 __u32 btf__get_nr_types(const struct btf *btf)
424 {
425 	return btf->start_id + btf->nr_types - 1;
426 }
427 
428 const struct btf *btf__base_btf(const struct btf *btf)
429 {
430 	return btf->base_btf;
431 }
432 
433 /* internal helper returning non-const pointer to a type */
434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
435 {
436 	if (type_id == 0)
437 		return &btf_void;
438 	if (type_id < btf->start_id)
439 		return btf_type_by_id(btf->base_btf, type_id);
440 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
441 }
442 
443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
444 {
445 	if (type_id >= btf->start_id + btf->nr_types)
446 		return errno = EINVAL, NULL;
447 	return btf_type_by_id((struct btf *)btf, type_id);
448 }
449 
450 static int determine_ptr_size(const struct btf *btf)
451 {
452 	const struct btf_type *t;
453 	const char *name;
454 	int i, n;
455 
456 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
457 		return btf->base_btf->ptr_sz;
458 
459 	n = btf__get_nr_types(btf);
460 	for (i = 1; i <= n; i++) {
461 		t = btf__type_by_id(btf, i);
462 		if (!btf_is_int(t))
463 			continue;
464 
465 		name = btf__name_by_offset(btf, t->name_off);
466 		if (!name)
467 			continue;
468 
469 		if (strcmp(name, "long int") == 0 ||
470 		    strcmp(name, "long unsigned int") == 0) {
471 			if (t->size != 4 && t->size != 8)
472 				continue;
473 			return t->size;
474 		}
475 	}
476 
477 	return -1;
478 }
479 
480 static size_t btf_ptr_sz(const struct btf *btf)
481 {
482 	if (!btf->ptr_sz)
483 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
484 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
485 }
486 
487 /* Return pointer size this BTF instance assumes. The size is heuristically
488  * determined by looking for 'long' or 'unsigned long' integer type and
489  * recording its size in bytes. If BTF type information doesn't have any such
490  * type, this function returns 0. In the latter case, native architecture's
491  * pointer size is assumed, so will be either 4 or 8, depending on
492  * architecture that libbpf was compiled for. It's possible to override
493  * guessed value by using btf__set_pointer_size() API.
494  */
495 size_t btf__pointer_size(const struct btf *btf)
496 {
497 	if (!btf->ptr_sz)
498 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
499 
500 	if (btf->ptr_sz < 0)
501 		/* not enough BTF type info to guess */
502 		return 0;
503 
504 	return btf->ptr_sz;
505 }
506 
507 /* Override or set pointer size in bytes. Only values of 4 and 8 are
508  * supported.
509  */
510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
511 {
512 	if (ptr_sz != 4 && ptr_sz != 8)
513 		return libbpf_err(-EINVAL);
514 	btf->ptr_sz = ptr_sz;
515 	return 0;
516 }
517 
518 static bool is_host_big_endian(void)
519 {
520 #if __BYTE_ORDER == __LITTLE_ENDIAN
521 	return false;
522 #elif __BYTE_ORDER == __BIG_ENDIAN
523 	return true;
524 #else
525 # error "Unrecognized __BYTE_ORDER__"
526 #endif
527 }
528 
529 enum btf_endianness btf__endianness(const struct btf *btf)
530 {
531 	if (is_host_big_endian())
532 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
533 	else
534 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
535 }
536 
537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
538 {
539 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
540 		return libbpf_err(-EINVAL);
541 
542 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
543 	if (!btf->swapped_endian) {
544 		free(btf->raw_data_swapped);
545 		btf->raw_data_swapped = NULL;
546 	}
547 	return 0;
548 }
549 
550 static bool btf_type_is_void(const struct btf_type *t)
551 {
552 	return t == &btf_void || btf_is_fwd(t);
553 }
554 
555 static bool btf_type_is_void_or_null(const struct btf_type *t)
556 {
557 	return !t || btf_type_is_void(t);
558 }
559 
560 #define MAX_RESOLVE_DEPTH 32
561 
562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
563 {
564 	const struct btf_array *array;
565 	const struct btf_type *t;
566 	__u32 nelems = 1;
567 	__s64 size = -1;
568 	int i;
569 
570 	t = btf__type_by_id(btf, type_id);
571 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
572 		switch (btf_kind(t)) {
573 		case BTF_KIND_INT:
574 		case BTF_KIND_STRUCT:
575 		case BTF_KIND_UNION:
576 		case BTF_KIND_ENUM:
577 		case BTF_KIND_DATASEC:
578 		case BTF_KIND_FLOAT:
579 			size = t->size;
580 			goto done;
581 		case BTF_KIND_PTR:
582 			size = btf_ptr_sz(btf);
583 			goto done;
584 		case BTF_KIND_TYPEDEF:
585 		case BTF_KIND_VOLATILE:
586 		case BTF_KIND_CONST:
587 		case BTF_KIND_RESTRICT:
588 		case BTF_KIND_VAR:
589 			type_id = t->type;
590 			break;
591 		case BTF_KIND_ARRAY:
592 			array = btf_array(t);
593 			if (nelems && array->nelems > UINT32_MAX / nelems)
594 				return libbpf_err(-E2BIG);
595 			nelems *= array->nelems;
596 			type_id = array->type;
597 			break;
598 		default:
599 			return libbpf_err(-EINVAL);
600 		}
601 
602 		t = btf__type_by_id(btf, type_id);
603 	}
604 
605 done:
606 	if (size < 0)
607 		return libbpf_err(-EINVAL);
608 	if (nelems && size > UINT32_MAX / nelems)
609 		return libbpf_err(-E2BIG);
610 
611 	return nelems * size;
612 }
613 
614 int btf__align_of(const struct btf *btf, __u32 id)
615 {
616 	const struct btf_type *t = btf__type_by_id(btf, id);
617 	__u16 kind = btf_kind(t);
618 
619 	switch (kind) {
620 	case BTF_KIND_INT:
621 	case BTF_KIND_ENUM:
622 	case BTF_KIND_FLOAT:
623 		return min(btf_ptr_sz(btf), (size_t)t->size);
624 	case BTF_KIND_PTR:
625 		return btf_ptr_sz(btf);
626 	case BTF_KIND_TYPEDEF:
627 	case BTF_KIND_VOLATILE:
628 	case BTF_KIND_CONST:
629 	case BTF_KIND_RESTRICT:
630 		return btf__align_of(btf, t->type);
631 	case BTF_KIND_ARRAY:
632 		return btf__align_of(btf, btf_array(t)->type);
633 	case BTF_KIND_STRUCT:
634 	case BTF_KIND_UNION: {
635 		const struct btf_member *m = btf_members(t);
636 		__u16 vlen = btf_vlen(t);
637 		int i, max_align = 1, align;
638 
639 		for (i = 0; i < vlen; i++, m++) {
640 			align = btf__align_of(btf, m->type);
641 			if (align <= 0)
642 				return libbpf_err(align);
643 			max_align = max(max_align, align);
644 		}
645 
646 		return max_align;
647 	}
648 	default:
649 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
650 		return errno = EINVAL, 0;
651 	}
652 }
653 
654 int btf__resolve_type(const struct btf *btf, __u32 type_id)
655 {
656 	const struct btf_type *t;
657 	int depth = 0;
658 
659 	t = btf__type_by_id(btf, type_id);
660 	while (depth < MAX_RESOLVE_DEPTH &&
661 	       !btf_type_is_void_or_null(t) &&
662 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
663 		type_id = t->type;
664 		t = btf__type_by_id(btf, type_id);
665 		depth++;
666 	}
667 
668 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
669 		return libbpf_err(-EINVAL);
670 
671 	return type_id;
672 }
673 
674 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
675 {
676 	__u32 i, nr_types = btf__get_nr_types(btf);
677 
678 	if (!strcmp(type_name, "void"))
679 		return 0;
680 
681 	for (i = 1; i <= nr_types; i++) {
682 		const struct btf_type *t = btf__type_by_id(btf, i);
683 		const char *name = btf__name_by_offset(btf, t->name_off);
684 
685 		if (name && !strcmp(type_name, name))
686 			return i;
687 	}
688 
689 	return libbpf_err(-ENOENT);
690 }
691 
692 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
693 			     __u32 kind)
694 {
695 	__u32 i, nr_types = btf__get_nr_types(btf);
696 
697 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
698 		return 0;
699 
700 	for (i = 1; i <= nr_types; i++) {
701 		const struct btf_type *t = btf__type_by_id(btf, i);
702 		const char *name;
703 
704 		if (btf_kind(t) != kind)
705 			continue;
706 		name = btf__name_by_offset(btf, t->name_off);
707 		if (name && !strcmp(type_name, name))
708 			return i;
709 	}
710 
711 	return libbpf_err(-ENOENT);
712 }
713 
714 static bool btf_is_modifiable(const struct btf *btf)
715 {
716 	return (void *)btf->hdr != btf->raw_data;
717 }
718 
719 void btf__free(struct btf *btf)
720 {
721 	if (IS_ERR_OR_NULL(btf))
722 		return;
723 
724 	if (btf->fd >= 0)
725 		close(btf->fd);
726 
727 	if (btf_is_modifiable(btf)) {
728 		/* if BTF was modified after loading, it will have a split
729 		 * in-memory representation for header, types, and strings
730 		 * sections, so we need to free all of them individually. It
731 		 * might still have a cached contiguous raw data present,
732 		 * which will be unconditionally freed below.
733 		 */
734 		free(btf->hdr);
735 		free(btf->types_data);
736 		strset__free(btf->strs_set);
737 	}
738 	free(btf->raw_data);
739 	free(btf->raw_data_swapped);
740 	free(btf->type_offs);
741 	free(btf);
742 }
743 
744 static struct btf *btf_new_empty(struct btf *base_btf)
745 {
746 	struct btf *btf;
747 
748 	btf = calloc(1, sizeof(*btf));
749 	if (!btf)
750 		return ERR_PTR(-ENOMEM);
751 
752 	btf->nr_types = 0;
753 	btf->start_id = 1;
754 	btf->start_str_off = 0;
755 	btf->fd = -1;
756 	btf->ptr_sz = sizeof(void *);
757 	btf->swapped_endian = false;
758 
759 	if (base_btf) {
760 		btf->base_btf = base_btf;
761 		btf->start_id = btf__get_nr_types(base_btf) + 1;
762 		btf->start_str_off = base_btf->hdr->str_len;
763 	}
764 
765 	/* +1 for empty string at offset 0 */
766 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
767 	btf->raw_data = calloc(1, btf->raw_size);
768 	if (!btf->raw_data) {
769 		free(btf);
770 		return ERR_PTR(-ENOMEM);
771 	}
772 
773 	btf->hdr = btf->raw_data;
774 	btf->hdr->hdr_len = sizeof(struct btf_header);
775 	btf->hdr->magic = BTF_MAGIC;
776 	btf->hdr->version = BTF_VERSION;
777 
778 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
779 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
780 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
781 
782 	return btf;
783 }
784 
785 struct btf *btf__new_empty(void)
786 {
787 	return libbpf_ptr(btf_new_empty(NULL));
788 }
789 
790 struct btf *btf__new_empty_split(struct btf *base_btf)
791 {
792 	return libbpf_ptr(btf_new_empty(base_btf));
793 }
794 
795 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
796 {
797 	struct btf *btf;
798 	int err;
799 
800 	btf = calloc(1, sizeof(struct btf));
801 	if (!btf)
802 		return ERR_PTR(-ENOMEM);
803 
804 	btf->nr_types = 0;
805 	btf->start_id = 1;
806 	btf->start_str_off = 0;
807 	btf->fd = -1;
808 
809 	if (base_btf) {
810 		btf->base_btf = base_btf;
811 		btf->start_id = btf__get_nr_types(base_btf) + 1;
812 		btf->start_str_off = base_btf->hdr->str_len;
813 	}
814 
815 	btf->raw_data = malloc(size);
816 	if (!btf->raw_data) {
817 		err = -ENOMEM;
818 		goto done;
819 	}
820 	memcpy(btf->raw_data, data, size);
821 	btf->raw_size = size;
822 
823 	btf->hdr = btf->raw_data;
824 	err = btf_parse_hdr(btf);
825 	if (err)
826 		goto done;
827 
828 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
829 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
830 
831 	err = btf_parse_str_sec(btf);
832 	err = err ?: btf_parse_type_sec(btf);
833 	if (err)
834 		goto done;
835 
836 done:
837 	if (err) {
838 		btf__free(btf);
839 		return ERR_PTR(err);
840 	}
841 
842 	return btf;
843 }
844 
845 struct btf *btf__new(const void *data, __u32 size)
846 {
847 	return libbpf_ptr(btf_new(data, size, NULL));
848 }
849 
850 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
851 				 struct btf_ext **btf_ext)
852 {
853 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
854 	int err = 0, fd = -1, idx = 0;
855 	struct btf *btf = NULL;
856 	Elf_Scn *scn = NULL;
857 	Elf *elf = NULL;
858 	GElf_Ehdr ehdr;
859 	size_t shstrndx;
860 
861 	if (elf_version(EV_CURRENT) == EV_NONE) {
862 		pr_warn("failed to init libelf for %s\n", path);
863 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
864 	}
865 
866 	fd = open(path, O_RDONLY);
867 	if (fd < 0) {
868 		err = -errno;
869 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
870 		return ERR_PTR(err);
871 	}
872 
873 	err = -LIBBPF_ERRNO__FORMAT;
874 
875 	elf = elf_begin(fd, ELF_C_READ, NULL);
876 	if (!elf) {
877 		pr_warn("failed to open %s as ELF file\n", path);
878 		goto done;
879 	}
880 	if (!gelf_getehdr(elf, &ehdr)) {
881 		pr_warn("failed to get EHDR from %s\n", path);
882 		goto done;
883 	}
884 
885 	if (elf_getshdrstrndx(elf, &shstrndx)) {
886 		pr_warn("failed to get section names section index for %s\n",
887 			path);
888 		goto done;
889 	}
890 
891 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
892 		pr_warn("failed to get e_shstrndx from %s\n", path);
893 		goto done;
894 	}
895 
896 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
897 		GElf_Shdr sh;
898 		char *name;
899 
900 		idx++;
901 		if (gelf_getshdr(scn, &sh) != &sh) {
902 			pr_warn("failed to get section(%d) header from %s\n",
903 				idx, path);
904 			goto done;
905 		}
906 		name = elf_strptr(elf, shstrndx, sh.sh_name);
907 		if (!name) {
908 			pr_warn("failed to get section(%d) name from %s\n",
909 				idx, path);
910 			goto done;
911 		}
912 		if (strcmp(name, BTF_ELF_SEC) == 0) {
913 			btf_data = elf_getdata(scn, 0);
914 			if (!btf_data) {
915 				pr_warn("failed to get section(%d, %s) data from %s\n",
916 					idx, name, path);
917 				goto done;
918 			}
919 			continue;
920 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
921 			btf_ext_data = elf_getdata(scn, 0);
922 			if (!btf_ext_data) {
923 				pr_warn("failed to get section(%d, %s) data from %s\n",
924 					idx, name, path);
925 				goto done;
926 			}
927 			continue;
928 		}
929 	}
930 
931 	err = 0;
932 
933 	if (!btf_data) {
934 		err = -ENOENT;
935 		goto done;
936 	}
937 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
938 	err = libbpf_get_error(btf);
939 	if (err)
940 		goto done;
941 
942 	switch (gelf_getclass(elf)) {
943 	case ELFCLASS32:
944 		btf__set_pointer_size(btf, 4);
945 		break;
946 	case ELFCLASS64:
947 		btf__set_pointer_size(btf, 8);
948 		break;
949 	default:
950 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
951 		break;
952 	}
953 
954 	if (btf_ext && btf_ext_data) {
955 		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
956 		err = libbpf_get_error(*btf_ext);
957 		if (err)
958 			goto done;
959 	} else if (btf_ext) {
960 		*btf_ext = NULL;
961 	}
962 done:
963 	if (elf)
964 		elf_end(elf);
965 	close(fd);
966 
967 	if (!err)
968 		return btf;
969 
970 	if (btf_ext)
971 		btf_ext__free(*btf_ext);
972 	btf__free(btf);
973 
974 	return ERR_PTR(err);
975 }
976 
977 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
978 {
979 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
980 }
981 
982 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
983 {
984 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
985 }
986 
987 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
988 {
989 	struct btf *btf = NULL;
990 	void *data = NULL;
991 	FILE *f = NULL;
992 	__u16 magic;
993 	int err = 0;
994 	long sz;
995 
996 	f = fopen(path, "rb");
997 	if (!f) {
998 		err = -errno;
999 		goto err_out;
1000 	}
1001 
1002 	/* check BTF magic */
1003 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1004 		err = -EIO;
1005 		goto err_out;
1006 	}
1007 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1008 		/* definitely not a raw BTF */
1009 		err = -EPROTO;
1010 		goto err_out;
1011 	}
1012 
1013 	/* get file size */
1014 	if (fseek(f, 0, SEEK_END)) {
1015 		err = -errno;
1016 		goto err_out;
1017 	}
1018 	sz = ftell(f);
1019 	if (sz < 0) {
1020 		err = -errno;
1021 		goto err_out;
1022 	}
1023 	/* rewind to the start */
1024 	if (fseek(f, 0, SEEK_SET)) {
1025 		err = -errno;
1026 		goto err_out;
1027 	}
1028 
1029 	/* pre-alloc memory and read all of BTF data */
1030 	data = malloc(sz);
1031 	if (!data) {
1032 		err = -ENOMEM;
1033 		goto err_out;
1034 	}
1035 	if (fread(data, 1, sz, f) < sz) {
1036 		err = -EIO;
1037 		goto err_out;
1038 	}
1039 
1040 	/* finally parse BTF data */
1041 	btf = btf_new(data, sz, base_btf);
1042 
1043 err_out:
1044 	free(data);
1045 	if (f)
1046 		fclose(f);
1047 	return err ? ERR_PTR(err) : btf;
1048 }
1049 
1050 struct btf *btf__parse_raw(const char *path)
1051 {
1052 	return libbpf_ptr(btf_parse_raw(path, NULL));
1053 }
1054 
1055 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1056 {
1057 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1058 }
1059 
1060 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1061 {
1062 	struct btf *btf;
1063 	int err;
1064 
1065 	if (btf_ext)
1066 		*btf_ext = NULL;
1067 
1068 	btf = btf_parse_raw(path, base_btf);
1069 	err = libbpf_get_error(btf);
1070 	if (!err)
1071 		return btf;
1072 	if (err != -EPROTO)
1073 		return ERR_PTR(err);
1074 	return btf_parse_elf(path, base_btf, btf_ext);
1075 }
1076 
1077 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1078 {
1079 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1080 }
1081 
1082 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1083 {
1084 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1085 }
1086 
1087 static int compare_vsi_off(const void *_a, const void *_b)
1088 {
1089 	const struct btf_var_secinfo *a = _a;
1090 	const struct btf_var_secinfo *b = _b;
1091 
1092 	return a->offset - b->offset;
1093 }
1094 
1095 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1096 			     struct btf_type *t)
1097 {
1098 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1099 	const char *name = btf__name_by_offset(btf, t->name_off);
1100 	const struct btf_type *t_var;
1101 	struct btf_var_secinfo *vsi;
1102 	const struct btf_var *var;
1103 	int ret;
1104 
1105 	if (!name) {
1106 		pr_debug("No name found in string section for DATASEC kind.\n");
1107 		return -ENOENT;
1108 	}
1109 
1110 	/* .extern datasec size and var offsets were set correctly during
1111 	 * extern collection step, so just skip straight to sorting variables
1112 	 */
1113 	if (t->size)
1114 		goto sort_vars;
1115 
1116 	ret = bpf_object__section_size(obj, name, &size);
1117 	if (ret || !size || (t->size && t->size != size)) {
1118 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1119 		return -ENOENT;
1120 	}
1121 
1122 	t->size = size;
1123 
1124 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1125 		t_var = btf__type_by_id(btf, vsi->type);
1126 		var = btf_var(t_var);
1127 
1128 		if (!btf_is_var(t_var)) {
1129 			pr_debug("Non-VAR type seen in section %s\n", name);
1130 			return -EINVAL;
1131 		}
1132 
1133 		if (var->linkage == BTF_VAR_STATIC)
1134 			continue;
1135 
1136 		name = btf__name_by_offset(btf, t_var->name_off);
1137 		if (!name) {
1138 			pr_debug("No name found in string section for VAR kind\n");
1139 			return -ENOENT;
1140 		}
1141 
1142 		ret = bpf_object__variable_offset(obj, name, &off);
1143 		if (ret) {
1144 			pr_debug("No offset found in symbol table for VAR %s\n",
1145 				 name);
1146 			return -ENOENT;
1147 		}
1148 
1149 		vsi->offset = off;
1150 	}
1151 
1152 sort_vars:
1153 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1154 	return 0;
1155 }
1156 
1157 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1158 {
1159 	int err = 0;
1160 	__u32 i;
1161 
1162 	for (i = 1; i <= btf->nr_types; i++) {
1163 		struct btf_type *t = btf_type_by_id(btf, i);
1164 
1165 		/* Loader needs to fix up some of the things compiler
1166 		 * couldn't get its hands on while emitting BTF. This
1167 		 * is section size and global variable offset. We use
1168 		 * the info from the ELF itself for this purpose.
1169 		 */
1170 		if (btf_is_datasec(t)) {
1171 			err = btf_fixup_datasec(obj, btf, t);
1172 			if (err)
1173 				break;
1174 		}
1175 	}
1176 
1177 	return libbpf_err(err);
1178 }
1179 
1180 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1181 
1182 int btf__load(struct btf *btf)
1183 {
1184 	__u32 log_buf_size = 0, raw_size;
1185 	char *log_buf = NULL;
1186 	void *raw_data;
1187 	int err = 0;
1188 
1189 	if (btf->fd >= 0)
1190 		return libbpf_err(-EEXIST);
1191 
1192 retry_load:
1193 	if (log_buf_size) {
1194 		log_buf = malloc(log_buf_size);
1195 		if (!log_buf)
1196 			return libbpf_err(-ENOMEM);
1197 
1198 		*log_buf = 0;
1199 	}
1200 
1201 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1202 	if (!raw_data) {
1203 		err = -ENOMEM;
1204 		goto done;
1205 	}
1206 	/* cache native raw data representation */
1207 	btf->raw_size = raw_size;
1208 	btf->raw_data = raw_data;
1209 
1210 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1211 	if (btf->fd < 0) {
1212 		if (!log_buf || errno == ENOSPC) {
1213 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1214 					   log_buf_size << 1);
1215 			free(log_buf);
1216 			goto retry_load;
1217 		}
1218 
1219 		err = -errno;
1220 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1221 		if (*log_buf)
1222 			pr_warn("%s\n", log_buf);
1223 		goto done;
1224 	}
1225 
1226 done:
1227 	free(log_buf);
1228 	return libbpf_err(err);
1229 }
1230 
1231 int btf__fd(const struct btf *btf)
1232 {
1233 	return btf->fd;
1234 }
1235 
1236 void btf__set_fd(struct btf *btf, int fd)
1237 {
1238 	btf->fd = fd;
1239 }
1240 
1241 static const void *btf_strs_data(const struct btf *btf)
1242 {
1243 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1244 }
1245 
1246 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1247 {
1248 	struct btf_header *hdr = btf->hdr;
1249 	struct btf_type *t;
1250 	void *data, *p;
1251 	__u32 data_sz;
1252 	int i;
1253 
1254 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1255 	if (data) {
1256 		*size = btf->raw_size;
1257 		return data;
1258 	}
1259 
1260 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1261 	data = calloc(1, data_sz);
1262 	if (!data)
1263 		return NULL;
1264 	p = data;
1265 
1266 	memcpy(p, hdr, hdr->hdr_len);
1267 	if (swap_endian)
1268 		btf_bswap_hdr(p);
1269 	p += hdr->hdr_len;
1270 
1271 	memcpy(p, btf->types_data, hdr->type_len);
1272 	if (swap_endian) {
1273 		for (i = 0; i < btf->nr_types; i++) {
1274 			t = p + btf->type_offs[i];
1275 			/* btf_bswap_type_rest() relies on native t->info, so
1276 			 * we swap base type info after we swapped all the
1277 			 * additional information
1278 			 */
1279 			if (btf_bswap_type_rest(t))
1280 				goto err_out;
1281 			btf_bswap_type_base(t);
1282 		}
1283 	}
1284 	p += hdr->type_len;
1285 
1286 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1287 	p += hdr->str_len;
1288 
1289 	*size = data_sz;
1290 	return data;
1291 err_out:
1292 	free(data);
1293 	return NULL;
1294 }
1295 
1296 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1297 {
1298 	struct btf *btf = (struct btf *)btf_ro;
1299 	__u32 data_sz;
1300 	void *data;
1301 
1302 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1303 	if (!data)
1304 		return errno = -ENOMEM, NULL;
1305 
1306 	btf->raw_size = data_sz;
1307 	if (btf->swapped_endian)
1308 		btf->raw_data_swapped = data;
1309 	else
1310 		btf->raw_data = data;
1311 	*size = data_sz;
1312 	return data;
1313 }
1314 
1315 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1316 {
1317 	if (offset < btf->start_str_off)
1318 		return btf__str_by_offset(btf->base_btf, offset);
1319 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1320 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1321 	else
1322 		return errno = EINVAL, NULL;
1323 }
1324 
1325 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1326 {
1327 	return btf__str_by_offset(btf, offset);
1328 }
1329 
1330 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1331 {
1332 	struct bpf_btf_info btf_info;
1333 	__u32 len = sizeof(btf_info);
1334 	__u32 last_size;
1335 	struct btf *btf;
1336 	void *ptr;
1337 	int err;
1338 
1339 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1340 	 * let's start with a sane default - 4KiB here - and resize it only if
1341 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1342 	 */
1343 	last_size = 4096;
1344 	ptr = malloc(last_size);
1345 	if (!ptr)
1346 		return ERR_PTR(-ENOMEM);
1347 
1348 	memset(&btf_info, 0, sizeof(btf_info));
1349 	btf_info.btf = ptr_to_u64(ptr);
1350 	btf_info.btf_size = last_size;
1351 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1352 
1353 	if (!err && btf_info.btf_size > last_size) {
1354 		void *temp_ptr;
1355 
1356 		last_size = btf_info.btf_size;
1357 		temp_ptr = realloc(ptr, last_size);
1358 		if (!temp_ptr) {
1359 			btf = ERR_PTR(-ENOMEM);
1360 			goto exit_free;
1361 		}
1362 		ptr = temp_ptr;
1363 
1364 		len = sizeof(btf_info);
1365 		memset(&btf_info, 0, sizeof(btf_info));
1366 		btf_info.btf = ptr_to_u64(ptr);
1367 		btf_info.btf_size = last_size;
1368 
1369 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1370 	}
1371 
1372 	if (err || btf_info.btf_size > last_size) {
1373 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1374 		goto exit_free;
1375 	}
1376 
1377 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1378 
1379 exit_free:
1380 	free(ptr);
1381 	return btf;
1382 }
1383 
1384 int btf__get_from_id(__u32 id, struct btf **btf)
1385 {
1386 	struct btf *res;
1387 	int err, btf_fd;
1388 
1389 	*btf = NULL;
1390 	btf_fd = bpf_btf_get_fd_by_id(id);
1391 	if (btf_fd < 0)
1392 		return libbpf_err(-errno);
1393 
1394 	res = btf_get_from_fd(btf_fd, NULL);
1395 	err = libbpf_get_error(res);
1396 
1397 	close(btf_fd);
1398 
1399 	if (err)
1400 		return libbpf_err(err);
1401 
1402 	*btf = res;
1403 	return 0;
1404 }
1405 
1406 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1407 			 __u32 expected_key_size, __u32 expected_value_size,
1408 			 __u32 *key_type_id, __u32 *value_type_id)
1409 {
1410 	const struct btf_type *container_type;
1411 	const struct btf_member *key, *value;
1412 	const size_t max_name = 256;
1413 	char container_name[max_name];
1414 	__s64 key_size, value_size;
1415 	__s32 container_id;
1416 
1417 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1418 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1419 			map_name, map_name);
1420 		return libbpf_err(-EINVAL);
1421 	}
1422 
1423 	container_id = btf__find_by_name(btf, container_name);
1424 	if (container_id < 0) {
1425 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1426 			 map_name, container_name);
1427 		return libbpf_err(container_id);
1428 	}
1429 
1430 	container_type = btf__type_by_id(btf, container_id);
1431 	if (!container_type) {
1432 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1433 			map_name, container_id);
1434 		return libbpf_err(-EINVAL);
1435 	}
1436 
1437 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1438 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1439 			map_name, container_name);
1440 		return libbpf_err(-EINVAL);
1441 	}
1442 
1443 	key = btf_members(container_type);
1444 	value = key + 1;
1445 
1446 	key_size = btf__resolve_size(btf, key->type);
1447 	if (key_size < 0) {
1448 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1449 		return libbpf_err(key_size);
1450 	}
1451 
1452 	if (expected_key_size != key_size) {
1453 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1454 			map_name, (__u32)key_size, expected_key_size);
1455 		return libbpf_err(-EINVAL);
1456 	}
1457 
1458 	value_size = btf__resolve_size(btf, value->type);
1459 	if (value_size < 0) {
1460 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1461 		return libbpf_err(value_size);
1462 	}
1463 
1464 	if (expected_value_size != value_size) {
1465 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1466 			map_name, (__u32)value_size, expected_value_size);
1467 		return libbpf_err(-EINVAL);
1468 	}
1469 
1470 	*key_type_id = key->type;
1471 	*value_type_id = value->type;
1472 
1473 	return 0;
1474 }
1475 
1476 static void btf_invalidate_raw_data(struct btf *btf)
1477 {
1478 	if (btf->raw_data) {
1479 		free(btf->raw_data);
1480 		btf->raw_data = NULL;
1481 	}
1482 	if (btf->raw_data_swapped) {
1483 		free(btf->raw_data_swapped);
1484 		btf->raw_data_swapped = NULL;
1485 	}
1486 }
1487 
1488 /* Ensure BTF is ready to be modified (by splitting into a three memory
1489  * regions for header, types, and strings). Also invalidate cached
1490  * raw_data, if any.
1491  */
1492 static int btf_ensure_modifiable(struct btf *btf)
1493 {
1494 	void *hdr, *types;
1495 	struct strset *set = NULL;
1496 	int err = -ENOMEM;
1497 
1498 	if (btf_is_modifiable(btf)) {
1499 		/* any BTF modification invalidates raw_data */
1500 		btf_invalidate_raw_data(btf);
1501 		return 0;
1502 	}
1503 
1504 	/* split raw data into three memory regions */
1505 	hdr = malloc(btf->hdr->hdr_len);
1506 	types = malloc(btf->hdr->type_len);
1507 	if (!hdr || !types)
1508 		goto err_out;
1509 
1510 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1511 	memcpy(types, btf->types_data, btf->hdr->type_len);
1512 
1513 	/* build lookup index for all strings */
1514 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1515 	if (IS_ERR(set)) {
1516 		err = PTR_ERR(set);
1517 		goto err_out;
1518 	}
1519 
1520 	/* only when everything was successful, update internal state */
1521 	btf->hdr = hdr;
1522 	btf->types_data = types;
1523 	btf->types_data_cap = btf->hdr->type_len;
1524 	btf->strs_data = NULL;
1525 	btf->strs_set = set;
1526 	/* if BTF was created from scratch, all strings are guaranteed to be
1527 	 * unique and deduplicated
1528 	 */
1529 	if (btf->hdr->str_len == 0)
1530 		btf->strs_deduped = true;
1531 	if (!btf->base_btf && btf->hdr->str_len == 1)
1532 		btf->strs_deduped = true;
1533 
1534 	/* invalidate raw_data representation */
1535 	btf_invalidate_raw_data(btf);
1536 
1537 	return 0;
1538 
1539 err_out:
1540 	strset__free(set);
1541 	free(hdr);
1542 	free(types);
1543 	return err;
1544 }
1545 
1546 /* Find an offset in BTF string section that corresponds to a given string *s*.
1547  * Returns:
1548  *   - >0 offset into string section, if string is found;
1549  *   - -ENOENT, if string is not in the string section;
1550  *   - <0, on any other error.
1551  */
1552 int btf__find_str(struct btf *btf, const char *s)
1553 {
1554 	int off;
1555 
1556 	if (btf->base_btf) {
1557 		off = btf__find_str(btf->base_btf, s);
1558 		if (off != -ENOENT)
1559 			return off;
1560 	}
1561 
1562 	/* BTF needs to be in a modifiable state to build string lookup index */
1563 	if (btf_ensure_modifiable(btf))
1564 		return libbpf_err(-ENOMEM);
1565 
1566 	off = strset__find_str(btf->strs_set, s);
1567 	if (off < 0)
1568 		return libbpf_err(off);
1569 
1570 	return btf->start_str_off + off;
1571 }
1572 
1573 /* Add a string s to the BTF string section.
1574  * Returns:
1575  *   - > 0 offset into string section, on success;
1576  *   - < 0, on error.
1577  */
1578 int btf__add_str(struct btf *btf, const char *s)
1579 {
1580 	int off;
1581 
1582 	if (btf->base_btf) {
1583 		off = btf__find_str(btf->base_btf, s);
1584 		if (off != -ENOENT)
1585 			return off;
1586 	}
1587 
1588 	if (btf_ensure_modifiable(btf))
1589 		return libbpf_err(-ENOMEM);
1590 
1591 	off = strset__add_str(btf->strs_set, s);
1592 	if (off < 0)
1593 		return libbpf_err(off);
1594 
1595 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1596 
1597 	return btf->start_str_off + off;
1598 }
1599 
1600 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1601 {
1602 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1603 			      btf->hdr->type_len, UINT_MAX, add_sz);
1604 }
1605 
1606 static void btf_type_inc_vlen(struct btf_type *t)
1607 {
1608 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1609 }
1610 
1611 static int btf_commit_type(struct btf *btf, int data_sz)
1612 {
1613 	int err;
1614 
1615 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1616 	if (err)
1617 		return libbpf_err(err);
1618 
1619 	btf->hdr->type_len += data_sz;
1620 	btf->hdr->str_off += data_sz;
1621 	btf->nr_types++;
1622 	return btf->start_id + btf->nr_types - 1;
1623 }
1624 
1625 struct btf_pipe {
1626 	const struct btf *src;
1627 	struct btf *dst;
1628 };
1629 
1630 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1631 {
1632 	struct btf_pipe *p = ctx;
1633 	int off;
1634 
1635 	if (!*str_off) /* nothing to do for empty strings */
1636 		return 0;
1637 
1638 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1639 	if (off < 0)
1640 		return off;
1641 
1642 	*str_off = off;
1643 	return 0;
1644 }
1645 
1646 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1647 {
1648 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1649 	struct btf_type *t;
1650 	int sz, err;
1651 
1652 	sz = btf_type_size(src_type);
1653 	if (sz < 0)
1654 		return libbpf_err(sz);
1655 
1656 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1657 	if (btf_ensure_modifiable(btf))
1658 		return libbpf_err(-ENOMEM);
1659 
1660 	t = btf_add_type_mem(btf, sz);
1661 	if (!t)
1662 		return libbpf_err(-ENOMEM);
1663 
1664 	memcpy(t, src_type, sz);
1665 
1666 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1667 	if (err)
1668 		return libbpf_err(err);
1669 
1670 	return btf_commit_type(btf, sz);
1671 }
1672 
1673 /*
1674  * Append new BTF_KIND_INT type with:
1675  *   - *name* - non-empty, non-NULL type name;
1676  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1677  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1678  * Returns:
1679  *   - >0, type ID of newly added BTF type;
1680  *   - <0, on error.
1681  */
1682 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1683 {
1684 	struct btf_type *t;
1685 	int sz, name_off;
1686 
1687 	/* non-empty name */
1688 	if (!name || !name[0])
1689 		return libbpf_err(-EINVAL);
1690 	/* byte_sz must be power of 2 */
1691 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1692 		return libbpf_err(-EINVAL);
1693 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1694 		return libbpf_err(-EINVAL);
1695 
1696 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1697 	if (btf_ensure_modifiable(btf))
1698 		return libbpf_err(-ENOMEM);
1699 
1700 	sz = sizeof(struct btf_type) + sizeof(int);
1701 	t = btf_add_type_mem(btf, sz);
1702 	if (!t)
1703 		return libbpf_err(-ENOMEM);
1704 
1705 	/* if something goes wrong later, we might end up with an extra string,
1706 	 * but that shouldn't be a problem, because BTF can't be constructed
1707 	 * completely anyway and will most probably be just discarded
1708 	 */
1709 	name_off = btf__add_str(btf, name);
1710 	if (name_off < 0)
1711 		return name_off;
1712 
1713 	t->name_off = name_off;
1714 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1715 	t->size = byte_sz;
1716 	/* set INT info, we don't allow setting legacy bit offset/size */
1717 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1718 
1719 	return btf_commit_type(btf, sz);
1720 }
1721 
1722 /*
1723  * Append new BTF_KIND_FLOAT type with:
1724  *   - *name* - non-empty, non-NULL type name;
1725  *   - *sz* - size of the type, in bytes;
1726  * Returns:
1727  *   - >0, type ID of newly added BTF type;
1728  *   - <0, on error.
1729  */
1730 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1731 {
1732 	struct btf_type *t;
1733 	int sz, name_off;
1734 
1735 	/* non-empty name */
1736 	if (!name || !name[0])
1737 		return libbpf_err(-EINVAL);
1738 
1739 	/* byte_sz must be one of the explicitly allowed values */
1740 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1741 	    byte_sz != 16)
1742 		return libbpf_err(-EINVAL);
1743 
1744 	if (btf_ensure_modifiable(btf))
1745 		return libbpf_err(-ENOMEM);
1746 
1747 	sz = sizeof(struct btf_type);
1748 	t = btf_add_type_mem(btf, sz);
1749 	if (!t)
1750 		return libbpf_err(-ENOMEM);
1751 
1752 	name_off = btf__add_str(btf, name);
1753 	if (name_off < 0)
1754 		return name_off;
1755 
1756 	t->name_off = name_off;
1757 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1758 	t->size = byte_sz;
1759 
1760 	return btf_commit_type(btf, sz);
1761 }
1762 
1763 /* it's completely legal to append BTF types with type IDs pointing forward to
1764  * types that haven't been appended yet, so we only make sure that id looks
1765  * sane, we can't guarantee that ID will always be valid
1766  */
1767 static int validate_type_id(int id)
1768 {
1769 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1770 		return -EINVAL;
1771 	return 0;
1772 }
1773 
1774 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1775 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1776 {
1777 	struct btf_type *t;
1778 	int sz, name_off = 0;
1779 
1780 	if (validate_type_id(ref_type_id))
1781 		return libbpf_err(-EINVAL);
1782 
1783 	if (btf_ensure_modifiable(btf))
1784 		return libbpf_err(-ENOMEM);
1785 
1786 	sz = sizeof(struct btf_type);
1787 	t = btf_add_type_mem(btf, sz);
1788 	if (!t)
1789 		return libbpf_err(-ENOMEM);
1790 
1791 	if (name && name[0]) {
1792 		name_off = btf__add_str(btf, name);
1793 		if (name_off < 0)
1794 			return name_off;
1795 	}
1796 
1797 	t->name_off = name_off;
1798 	t->info = btf_type_info(kind, 0, 0);
1799 	t->type = ref_type_id;
1800 
1801 	return btf_commit_type(btf, sz);
1802 }
1803 
1804 /*
1805  * Append new BTF_KIND_PTR type with:
1806  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1807  * Returns:
1808  *   - >0, type ID of newly added BTF type;
1809  *   - <0, on error.
1810  */
1811 int btf__add_ptr(struct btf *btf, int ref_type_id)
1812 {
1813 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1814 }
1815 
1816 /*
1817  * Append new BTF_KIND_ARRAY type with:
1818  *   - *index_type_id* - type ID of the type describing array index;
1819  *   - *elem_type_id* - type ID of the type describing array element;
1820  *   - *nr_elems* - the size of the array;
1821  * Returns:
1822  *   - >0, type ID of newly added BTF type;
1823  *   - <0, on error.
1824  */
1825 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1826 {
1827 	struct btf_type *t;
1828 	struct btf_array *a;
1829 	int sz;
1830 
1831 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1832 		return libbpf_err(-EINVAL);
1833 
1834 	if (btf_ensure_modifiable(btf))
1835 		return libbpf_err(-ENOMEM);
1836 
1837 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1838 	t = btf_add_type_mem(btf, sz);
1839 	if (!t)
1840 		return libbpf_err(-ENOMEM);
1841 
1842 	t->name_off = 0;
1843 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1844 	t->size = 0;
1845 
1846 	a = btf_array(t);
1847 	a->type = elem_type_id;
1848 	a->index_type = index_type_id;
1849 	a->nelems = nr_elems;
1850 
1851 	return btf_commit_type(btf, sz);
1852 }
1853 
1854 /* generic STRUCT/UNION append function */
1855 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1856 {
1857 	struct btf_type *t;
1858 	int sz, name_off = 0;
1859 
1860 	if (btf_ensure_modifiable(btf))
1861 		return libbpf_err(-ENOMEM);
1862 
1863 	sz = sizeof(struct btf_type);
1864 	t = btf_add_type_mem(btf, sz);
1865 	if (!t)
1866 		return libbpf_err(-ENOMEM);
1867 
1868 	if (name && name[0]) {
1869 		name_off = btf__add_str(btf, name);
1870 		if (name_off < 0)
1871 			return name_off;
1872 	}
1873 
1874 	/* start out with vlen=0 and no kflag; this will be adjusted when
1875 	 * adding each member
1876 	 */
1877 	t->name_off = name_off;
1878 	t->info = btf_type_info(kind, 0, 0);
1879 	t->size = bytes_sz;
1880 
1881 	return btf_commit_type(btf, sz);
1882 }
1883 
1884 /*
1885  * Append new BTF_KIND_STRUCT type with:
1886  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1887  *   - *byte_sz* - size of the struct, in bytes;
1888  *
1889  * Struct initially has no fields in it. Fields can be added by
1890  * btf__add_field() right after btf__add_struct() succeeds.
1891  *
1892  * Returns:
1893  *   - >0, type ID of newly added BTF type;
1894  *   - <0, on error.
1895  */
1896 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1897 {
1898 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1899 }
1900 
1901 /*
1902  * Append new BTF_KIND_UNION type with:
1903  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1904  *   - *byte_sz* - size of the union, in bytes;
1905  *
1906  * Union initially has no fields in it. Fields can be added by
1907  * btf__add_field() right after btf__add_union() succeeds. All fields
1908  * should have *bit_offset* of 0.
1909  *
1910  * Returns:
1911  *   - >0, type ID of newly added BTF type;
1912  *   - <0, on error.
1913  */
1914 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1915 {
1916 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1917 }
1918 
1919 static struct btf_type *btf_last_type(struct btf *btf)
1920 {
1921 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1922 }
1923 
1924 /*
1925  * Append new field for the current STRUCT/UNION type with:
1926  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1927  *   - *type_id* - type ID for the type describing field type;
1928  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1929  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1930  * Returns:
1931  *   -  0, on success;
1932  *   - <0, on error.
1933  */
1934 int btf__add_field(struct btf *btf, const char *name, int type_id,
1935 		   __u32 bit_offset, __u32 bit_size)
1936 {
1937 	struct btf_type *t;
1938 	struct btf_member *m;
1939 	bool is_bitfield;
1940 	int sz, name_off = 0;
1941 
1942 	/* last type should be union/struct */
1943 	if (btf->nr_types == 0)
1944 		return libbpf_err(-EINVAL);
1945 	t = btf_last_type(btf);
1946 	if (!btf_is_composite(t))
1947 		return libbpf_err(-EINVAL);
1948 
1949 	if (validate_type_id(type_id))
1950 		return libbpf_err(-EINVAL);
1951 	/* best-effort bit field offset/size enforcement */
1952 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1953 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1954 		return libbpf_err(-EINVAL);
1955 
1956 	/* only offset 0 is allowed for unions */
1957 	if (btf_is_union(t) && bit_offset)
1958 		return libbpf_err(-EINVAL);
1959 
1960 	/* decompose and invalidate raw data */
1961 	if (btf_ensure_modifiable(btf))
1962 		return libbpf_err(-ENOMEM);
1963 
1964 	sz = sizeof(struct btf_member);
1965 	m = btf_add_type_mem(btf, sz);
1966 	if (!m)
1967 		return libbpf_err(-ENOMEM);
1968 
1969 	if (name && name[0]) {
1970 		name_off = btf__add_str(btf, name);
1971 		if (name_off < 0)
1972 			return name_off;
1973 	}
1974 
1975 	m->name_off = name_off;
1976 	m->type = type_id;
1977 	m->offset = bit_offset | (bit_size << 24);
1978 
1979 	/* btf_add_type_mem can invalidate t pointer */
1980 	t = btf_last_type(btf);
1981 	/* update parent type's vlen and kflag */
1982 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1983 
1984 	btf->hdr->type_len += sz;
1985 	btf->hdr->str_off += sz;
1986 	return 0;
1987 }
1988 
1989 /*
1990  * Append new BTF_KIND_ENUM type with:
1991  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1992  *   - *byte_sz* - size of the enum, in bytes.
1993  *
1994  * Enum initially has no enum values in it (and corresponds to enum forward
1995  * declaration). Enumerator values can be added by btf__add_enum_value()
1996  * immediately after btf__add_enum() succeeds.
1997  *
1998  * Returns:
1999  *   - >0, type ID of newly added BTF type;
2000  *   - <0, on error.
2001  */
2002 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2003 {
2004 	struct btf_type *t;
2005 	int sz, name_off = 0;
2006 
2007 	/* byte_sz must be power of 2 */
2008 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2009 		return libbpf_err(-EINVAL);
2010 
2011 	if (btf_ensure_modifiable(btf))
2012 		return libbpf_err(-ENOMEM);
2013 
2014 	sz = sizeof(struct btf_type);
2015 	t = btf_add_type_mem(btf, sz);
2016 	if (!t)
2017 		return libbpf_err(-ENOMEM);
2018 
2019 	if (name && name[0]) {
2020 		name_off = btf__add_str(btf, name);
2021 		if (name_off < 0)
2022 			return name_off;
2023 	}
2024 
2025 	/* start out with vlen=0; it will be adjusted when adding enum values */
2026 	t->name_off = name_off;
2027 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2028 	t->size = byte_sz;
2029 
2030 	return btf_commit_type(btf, sz);
2031 }
2032 
2033 /*
2034  * Append new enum value for the current ENUM type with:
2035  *   - *name* - name of the enumerator value, can't be NULL or empty;
2036  *   - *value* - integer value corresponding to enum value *name*;
2037  * Returns:
2038  *   -  0, on success;
2039  *   - <0, on error.
2040  */
2041 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2042 {
2043 	struct btf_type *t;
2044 	struct btf_enum *v;
2045 	int sz, name_off;
2046 
2047 	/* last type should be BTF_KIND_ENUM */
2048 	if (btf->nr_types == 0)
2049 		return libbpf_err(-EINVAL);
2050 	t = btf_last_type(btf);
2051 	if (!btf_is_enum(t))
2052 		return libbpf_err(-EINVAL);
2053 
2054 	/* non-empty name */
2055 	if (!name || !name[0])
2056 		return libbpf_err(-EINVAL);
2057 	if (value < INT_MIN || value > UINT_MAX)
2058 		return libbpf_err(-E2BIG);
2059 
2060 	/* decompose and invalidate raw data */
2061 	if (btf_ensure_modifiable(btf))
2062 		return libbpf_err(-ENOMEM);
2063 
2064 	sz = sizeof(struct btf_enum);
2065 	v = btf_add_type_mem(btf, sz);
2066 	if (!v)
2067 		return libbpf_err(-ENOMEM);
2068 
2069 	name_off = btf__add_str(btf, name);
2070 	if (name_off < 0)
2071 		return name_off;
2072 
2073 	v->name_off = name_off;
2074 	v->val = value;
2075 
2076 	/* update parent type's vlen */
2077 	t = btf_last_type(btf);
2078 	btf_type_inc_vlen(t);
2079 
2080 	btf->hdr->type_len += sz;
2081 	btf->hdr->str_off += sz;
2082 	return 0;
2083 }
2084 
2085 /*
2086  * Append new BTF_KIND_FWD type with:
2087  *   - *name*, non-empty/non-NULL name;
2088  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2089  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2090  * Returns:
2091  *   - >0, type ID of newly added BTF type;
2092  *   - <0, on error.
2093  */
2094 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2095 {
2096 	if (!name || !name[0])
2097 		return libbpf_err(-EINVAL);
2098 
2099 	switch (fwd_kind) {
2100 	case BTF_FWD_STRUCT:
2101 	case BTF_FWD_UNION: {
2102 		struct btf_type *t;
2103 		int id;
2104 
2105 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2106 		if (id <= 0)
2107 			return id;
2108 		t = btf_type_by_id(btf, id);
2109 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2110 		return id;
2111 	}
2112 	case BTF_FWD_ENUM:
2113 		/* enum forward in BTF currently is just an enum with no enum
2114 		 * values; we also assume a standard 4-byte size for it
2115 		 */
2116 		return btf__add_enum(btf, name, sizeof(int));
2117 	default:
2118 		return libbpf_err(-EINVAL);
2119 	}
2120 }
2121 
2122 /*
2123  * Append new BTF_KING_TYPEDEF type with:
2124  *   - *name*, non-empty/non-NULL name;
2125  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2126  * Returns:
2127  *   - >0, type ID of newly added BTF type;
2128  *   - <0, on error.
2129  */
2130 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2131 {
2132 	if (!name || !name[0])
2133 		return libbpf_err(-EINVAL);
2134 
2135 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2136 }
2137 
2138 /*
2139  * Append new BTF_KIND_VOLATILE type with:
2140  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2141  * Returns:
2142  *   - >0, type ID of newly added BTF type;
2143  *   - <0, on error.
2144  */
2145 int btf__add_volatile(struct btf *btf, int ref_type_id)
2146 {
2147 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2148 }
2149 
2150 /*
2151  * Append new BTF_KIND_CONST type with:
2152  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2153  * Returns:
2154  *   - >0, type ID of newly added BTF type;
2155  *   - <0, on error.
2156  */
2157 int btf__add_const(struct btf *btf, int ref_type_id)
2158 {
2159 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2160 }
2161 
2162 /*
2163  * Append new BTF_KIND_RESTRICT type with:
2164  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2165  * Returns:
2166  *   - >0, type ID of newly added BTF type;
2167  *   - <0, on error.
2168  */
2169 int btf__add_restrict(struct btf *btf, int ref_type_id)
2170 {
2171 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2172 }
2173 
2174 /*
2175  * Append new BTF_KIND_FUNC type with:
2176  *   - *name*, non-empty/non-NULL name;
2177  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2178  * Returns:
2179  *   - >0, type ID of newly added BTF type;
2180  *   - <0, on error.
2181  */
2182 int btf__add_func(struct btf *btf, const char *name,
2183 		  enum btf_func_linkage linkage, int proto_type_id)
2184 {
2185 	int id;
2186 
2187 	if (!name || !name[0])
2188 		return libbpf_err(-EINVAL);
2189 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2190 	    linkage != BTF_FUNC_EXTERN)
2191 		return libbpf_err(-EINVAL);
2192 
2193 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2194 	if (id > 0) {
2195 		struct btf_type *t = btf_type_by_id(btf, id);
2196 
2197 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2198 	}
2199 	return libbpf_err(id);
2200 }
2201 
2202 /*
2203  * Append new BTF_KIND_FUNC_PROTO with:
2204  *   - *ret_type_id* - type ID for return result of a function.
2205  *
2206  * Function prototype initially has no arguments, but they can be added by
2207  * btf__add_func_param() one by one, immediately after
2208  * btf__add_func_proto() succeeded.
2209  *
2210  * Returns:
2211  *   - >0, type ID of newly added BTF type;
2212  *   - <0, on error.
2213  */
2214 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2215 {
2216 	struct btf_type *t;
2217 	int sz;
2218 
2219 	if (validate_type_id(ret_type_id))
2220 		return libbpf_err(-EINVAL);
2221 
2222 	if (btf_ensure_modifiable(btf))
2223 		return libbpf_err(-ENOMEM);
2224 
2225 	sz = sizeof(struct btf_type);
2226 	t = btf_add_type_mem(btf, sz);
2227 	if (!t)
2228 		return libbpf_err(-ENOMEM);
2229 
2230 	/* start out with vlen=0; this will be adjusted when adding enum
2231 	 * values, if necessary
2232 	 */
2233 	t->name_off = 0;
2234 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2235 	t->type = ret_type_id;
2236 
2237 	return btf_commit_type(btf, sz);
2238 }
2239 
2240 /*
2241  * Append new function parameter for current FUNC_PROTO type with:
2242  *   - *name* - parameter name, can be NULL or empty;
2243  *   - *type_id* - type ID describing the type of the parameter.
2244  * Returns:
2245  *   -  0, on success;
2246  *   - <0, on error.
2247  */
2248 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2249 {
2250 	struct btf_type *t;
2251 	struct btf_param *p;
2252 	int sz, name_off = 0;
2253 
2254 	if (validate_type_id(type_id))
2255 		return libbpf_err(-EINVAL);
2256 
2257 	/* last type should be BTF_KIND_FUNC_PROTO */
2258 	if (btf->nr_types == 0)
2259 		return libbpf_err(-EINVAL);
2260 	t = btf_last_type(btf);
2261 	if (!btf_is_func_proto(t))
2262 		return libbpf_err(-EINVAL);
2263 
2264 	/* decompose and invalidate raw data */
2265 	if (btf_ensure_modifiable(btf))
2266 		return libbpf_err(-ENOMEM);
2267 
2268 	sz = sizeof(struct btf_param);
2269 	p = btf_add_type_mem(btf, sz);
2270 	if (!p)
2271 		return libbpf_err(-ENOMEM);
2272 
2273 	if (name && name[0]) {
2274 		name_off = btf__add_str(btf, name);
2275 		if (name_off < 0)
2276 			return name_off;
2277 	}
2278 
2279 	p->name_off = name_off;
2280 	p->type = type_id;
2281 
2282 	/* update parent type's vlen */
2283 	t = btf_last_type(btf);
2284 	btf_type_inc_vlen(t);
2285 
2286 	btf->hdr->type_len += sz;
2287 	btf->hdr->str_off += sz;
2288 	return 0;
2289 }
2290 
2291 /*
2292  * Append new BTF_KIND_VAR type with:
2293  *   - *name* - non-empty/non-NULL name;
2294  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2295  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2296  *   - *type_id* - type ID of the type describing the type of the variable.
2297  * Returns:
2298  *   - >0, type ID of newly added BTF type;
2299  *   - <0, on error.
2300  */
2301 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2302 {
2303 	struct btf_type *t;
2304 	struct btf_var *v;
2305 	int sz, name_off;
2306 
2307 	/* non-empty name */
2308 	if (!name || !name[0])
2309 		return libbpf_err(-EINVAL);
2310 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2311 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2312 		return libbpf_err(-EINVAL);
2313 	if (validate_type_id(type_id))
2314 		return libbpf_err(-EINVAL);
2315 
2316 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2317 	if (btf_ensure_modifiable(btf))
2318 		return libbpf_err(-ENOMEM);
2319 
2320 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2321 	t = btf_add_type_mem(btf, sz);
2322 	if (!t)
2323 		return libbpf_err(-ENOMEM);
2324 
2325 	name_off = btf__add_str(btf, name);
2326 	if (name_off < 0)
2327 		return name_off;
2328 
2329 	t->name_off = name_off;
2330 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2331 	t->type = type_id;
2332 
2333 	v = btf_var(t);
2334 	v->linkage = linkage;
2335 
2336 	return btf_commit_type(btf, sz);
2337 }
2338 
2339 /*
2340  * Append new BTF_KIND_DATASEC type with:
2341  *   - *name* - non-empty/non-NULL name;
2342  *   - *byte_sz* - data section size, in bytes.
2343  *
2344  * Data section is initially empty. Variables info can be added with
2345  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2346  *
2347  * Returns:
2348  *   - >0, type ID of newly added BTF type;
2349  *   - <0, on error.
2350  */
2351 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2352 {
2353 	struct btf_type *t;
2354 	int sz, name_off;
2355 
2356 	/* non-empty name */
2357 	if (!name || !name[0])
2358 		return libbpf_err(-EINVAL);
2359 
2360 	if (btf_ensure_modifiable(btf))
2361 		return libbpf_err(-ENOMEM);
2362 
2363 	sz = sizeof(struct btf_type);
2364 	t = btf_add_type_mem(btf, sz);
2365 	if (!t)
2366 		return libbpf_err(-ENOMEM);
2367 
2368 	name_off = btf__add_str(btf, name);
2369 	if (name_off < 0)
2370 		return name_off;
2371 
2372 	/* start with vlen=0, which will be update as var_secinfos are added */
2373 	t->name_off = name_off;
2374 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2375 	t->size = byte_sz;
2376 
2377 	return btf_commit_type(btf, sz);
2378 }
2379 
2380 /*
2381  * Append new data section variable information entry for current DATASEC type:
2382  *   - *var_type_id* - type ID, describing type of the variable;
2383  *   - *offset* - variable offset within data section, in bytes;
2384  *   - *byte_sz* - variable size, in bytes.
2385  *
2386  * Returns:
2387  *   -  0, on success;
2388  *   - <0, on error.
2389  */
2390 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2391 {
2392 	struct btf_type *t;
2393 	struct btf_var_secinfo *v;
2394 	int sz;
2395 
2396 	/* last type should be BTF_KIND_DATASEC */
2397 	if (btf->nr_types == 0)
2398 		return libbpf_err(-EINVAL);
2399 	t = btf_last_type(btf);
2400 	if (!btf_is_datasec(t))
2401 		return libbpf_err(-EINVAL);
2402 
2403 	if (validate_type_id(var_type_id))
2404 		return libbpf_err(-EINVAL);
2405 
2406 	/* decompose and invalidate raw data */
2407 	if (btf_ensure_modifiable(btf))
2408 		return libbpf_err(-ENOMEM);
2409 
2410 	sz = sizeof(struct btf_var_secinfo);
2411 	v = btf_add_type_mem(btf, sz);
2412 	if (!v)
2413 		return libbpf_err(-ENOMEM);
2414 
2415 	v->type = var_type_id;
2416 	v->offset = offset;
2417 	v->size = byte_sz;
2418 
2419 	/* update parent type's vlen */
2420 	t = btf_last_type(btf);
2421 	btf_type_inc_vlen(t);
2422 
2423 	btf->hdr->type_len += sz;
2424 	btf->hdr->str_off += sz;
2425 	return 0;
2426 }
2427 
2428 struct btf_ext_sec_setup_param {
2429 	__u32 off;
2430 	__u32 len;
2431 	__u32 min_rec_size;
2432 	struct btf_ext_info *ext_info;
2433 	const char *desc;
2434 };
2435 
2436 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2437 			      struct btf_ext_sec_setup_param *ext_sec)
2438 {
2439 	const struct btf_ext_info_sec *sinfo;
2440 	struct btf_ext_info *ext_info;
2441 	__u32 info_left, record_size;
2442 	/* The start of the info sec (including the __u32 record_size). */
2443 	void *info;
2444 
2445 	if (ext_sec->len == 0)
2446 		return 0;
2447 
2448 	if (ext_sec->off & 0x03) {
2449 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2450 		     ext_sec->desc);
2451 		return -EINVAL;
2452 	}
2453 
2454 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2455 	info_left = ext_sec->len;
2456 
2457 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2458 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2459 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2460 		return -EINVAL;
2461 	}
2462 
2463 	/* At least a record size */
2464 	if (info_left < sizeof(__u32)) {
2465 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2466 		return -EINVAL;
2467 	}
2468 
2469 	/* The record size needs to meet the minimum standard */
2470 	record_size = *(__u32 *)info;
2471 	if (record_size < ext_sec->min_rec_size ||
2472 	    record_size & 0x03) {
2473 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2474 			 ext_sec->desc, record_size);
2475 		return -EINVAL;
2476 	}
2477 
2478 	sinfo = info + sizeof(__u32);
2479 	info_left -= sizeof(__u32);
2480 
2481 	/* If no records, return failure now so .BTF.ext won't be used. */
2482 	if (!info_left) {
2483 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2484 		return -EINVAL;
2485 	}
2486 
2487 	while (info_left) {
2488 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2489 		__u64 total_record_size;
2490 		__u32 num_records;
2491 
2492 		if (info_left < sec_hdrlen) {
2493 			pr_debug("%s section header is not found in .BTF.ext\n",
2494 			     ext_sec->desc);
2495 			return -EINVAL;
2496 		}
2497 
2498 		num_records = sinfo->num_info;
2499 		if (num_records == 0) {
2500 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2501 			     ext_sec->desc);
2502 			return -EINVAL;
2503 		}
2504 
2505 		total_record_size = sec_hdrlen +
2506 				    (__u64)num_records * record_size;
2507 		if (info_left < total_record_size) {
2508 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2509 			     ext_sec->desc);
2510 			return -EINVAL;
2511 		}
2512 
2513 		info_left -= total_record_size;
2514 		sinfo = (void *)sinfo + total_record_size;
2515 	}
2516 
2517 	ext_info = ext_sec->ext_info;
2518 	ext_info->len = ext_sec->len - sizeof(__u32);
2519 	ext_info->rec_size = record_size;
2520 	ext_info->info = info + sizeof(__u32);
2521 
2522 	return 0;
2523 }
2524 
2525 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2526 {
2527 	struct btf_ext_sec_setup_param param = {
2528 		.off = btf_ext->hdr->func_info_off,
2529 		.len = btf_ext->hdr->func_info_len,
2530 		.min_rec_size = sizeof(struct bpf_func_info_min),
2531 		.ext_info = &btf_ext->func_info,
2532 		.desc = "func_info"
2533 	};
2534 
2535 	return btf_ext_setup_info(btf_ext, &param);
2536 }
2537 
2538 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2539 {
2540 	struct btf_ext_sec_setup_param param = {
2541 		.off = btf_ext->hdr->line_info_off,
2542 		.len = btf_ext->hdr->line_info_len,
2543 		.min_rec_size = sizeof(struct bpf_line_info_min),
2544 		.ext_info = &btf_ext->line_info,
2545 		.desc = "line_info",
2546 	};
2547 
2548 	return btf_ext_setup_info(btf_ext, &param);
2549 }
2550 
2551 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2552 {
2553 	struct btf_ext_sec_setup_param param = {
2554 		.off = btf_ext->hdr->core_relo_off,
2555 		.len = btf_ext->hdr->core_relo_len,
2556 		.min_rec_size = sizeof(struct bpf_core_relo),
2557 		.ext_info = &btf_ext->core_relo_info,
2558 		.desc = "core_relo",
2559 	};
2560 
2561 	return btf_ext_setup_info(btf_ext, &param);
2562 }
2563 
2564 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2565 {
2566 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2567 
2568 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2569 	    data_size < hdr->hdr_len) {
2570 		pr_debug("BTF.ext header not found");
2571 		return -EINVAL;
2572 	}
2573 
2574 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2575 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2576 		return -ENOTSUP;
2577 	} else if (hdr->magic != BTF_MAGIC) {
2578 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2579 		return -EINVAL;
2580 	}
2581 
2582 	if (hdr->version != BTF_VERSION) {
2583 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2584 		return -ENOTSUP;
2585 	}
2586 
2587 	if (hdr->flags) {
2588 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2589 		return -ENOTSUP;
2590 	}
2591 
2592 	if (data_size == hdr->hdr_len) {
2593 		pr_debug("BTF.ext has no data\n");
2594 		return -EINVAL;
2595 	}
2596 
2597 	return 0;
2598 }
2599 
2600 void btf_ext__free(struct btf_ext *btf_ext)
2601 {
2602 	if (IS_ERR_OR_NULL(btf_ext))
2603 		return;
2604 	free(btf_ext->data);
2605 	free(btf_ext);
2606 }
2607 
2608 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2609 {
2610 	struct btf_ext *btf_ext;
2611 	int err;
2612 
2613 	err = btf_ext_parse_hdr(data, size);
2614 	if (err)
2615 		return libbpf_err_ptr(err);
2616 
2617 	btf_ext = calloc(1, sizeof(struct btf_ext));
2618 	if (!btf_ext)
2619 		return libbpf_err_ptr(-ENOMEM);
2620 
2621 	btf_ext->data_size = size;
2622 	btf_ext->data = malloc(size);
2623 	if (!btf_ext->data) {
2624 		err = -ENOMEM;
2625 		goto done;
2626 	}
2627 	memcpy(btf_ext->data, data, size);
2628 
2629 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2630 		err = -EINVAL;
2631 		goto done;
2632 	}
2633 
2634 	err = btf_ext_setup_func_info(btf_ext);
2635 	if (err)
2636 		goto done;
2637 
2638 	err = btf_ext_setup_line_info(btf_ext);
2639 	if (err)
2640 		goto done;
2641 
2642 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2643 		err = -EINVAL;
2644 		goto done;
2645 	}
2646 
2647 	err = btf_ext_setup_core_relos(btf_ext);
2648 	if (err)
2649 		goto done;
2650 
2651 done:
2652 	if (err) {
2653 		btf_ext__free(btf_ext);
2654 		return libbpf_err_ptr(err);
2655 	}
2656 
2657 	return btf_ext;
2658 }
2659 
2660 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2661 {
2662 	*size = btf_ext->data_size;
2663 	return btf_ext->data;
2664 }
2665 
2666 static int btf_ext_reloc_info(const struct btf *btf,
2667 			      const struct btf_ext_info *ext_info,
2668 			      const char *sec_name, __u32 insns_cnt,
2669 			      void **info, __u32 *cnt)
2670 {
2671 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2672 	__u32 i, record_size, existing_len, records_len;
2673 	struct btf_ext_info_sec *sinfo;
2674 	const char *info_sec_name;
2675 	__u64 remain_len;
2676 	void *data;
2677 
2678 	record_size = ext_info->rec_size;
2679 	sinfo = ext_info->info;
2680 	remain_len = ext_info->len;
2681 	while (remain_len > 0) {
2682 		records_len = sinfo->num_info * record_size;
2683 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2684 		if (strcmp(info_sec_name, sec_name)) {
2685 			remain_len -= sec_hdrlen + records_len;
2686 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2687 			continue;
2688 		}
2689 
2690 		existing_len = (*cnt) * record_size;
2691 		data = realloc(*info, existing_len + records_len);
2692 		if (!data)
2693 			return libbpf_err(-ENOMEM);
2694 
2695 		memcpy(data + existing_len, sinfo->data, records_len);
2696 		/* adjust insn_off only, the rest data will be passed
2697 		 * to the kernel.
2698 		 */
2699 		for (i = 0; i < sinfo->num_info; i++) {
2700 			__u32 *insn_off;
2701 
2702 			insn_off = data + existing_len + (i * record_size);
2703 			*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2704 		}
2705 		*info = data;
2706 		*cnt += sinfo->num_info;
2707 		return 0;
2708 	}
2709 
2710 	return libbpf_err(-ENOENT);
2711 }
2712 
2713 int btf_ext__reloc_func_info(const struct btf *btf,
2714 			     const struct btf_ext *btf_ext,
2715 			     const char *sec_name, __u32 insns_cnt,
2716 			     void **func_info, __u32 *cnt)
2717 {
2718 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2719 				  insns_cnt, func_info, cnt);
2720 }
2721 
2722 int btf_ext__reloc_line_info(const struct btf *btf,
2723 			     const struct btf_ext *btf_ext,
2724 			     const char *sec_name, __u32 insns_cnt,
2725 			     void **line_info, __u32 *cnt)
2726 {
2727 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2728 				  insns_cnt, line_info, cnt);
2729 }
2730 
2731 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2732 {
2733 	return btf_ext->func_info.rec_size;
2734 }
2735 
2736 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2737 {
2738 	return btf_ext->line_info.rec_size;
2739 }
2740 
2741 struct btf_dedup;
2742 
2743 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2744 				       const struct btf_dedup_opts *opts);
2745 static void btf_dedup_free(struct btf_dedup *d);
2746 static int btf_dedup_prep(struct btf_dedup *d);
2747 static int btf_dedup_strings(struct btf_dedup *d);
2748 static int btf_dedup_prim_types(struct btf_dedup *d);
2749 static int btf_dedup_struct_types(struct btf_dedup *d);
2750 static int btf_dedup_ref_types(struct btf_dedup *d);
2751 static int btf_dedup_compact_types(struct btf_dedup *d);
2752 static int btf_dedup_remap_types(struct btf_dedup *d);
2753 
2754 /*
2755  * Deduplicate BTF types and strings.
2756  *
2757  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2758  * section with all BTF type descriptors and string data. It overwrites that
2759  * memory in-place with deduplicated types and strings without any loss of
2760  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2761  * is provided, all the strings referenced from .BTF.ext section are honored
2762  * and updated to point to the right offsets after deduplication.
2763  *
2764  * If function returns with error, type/string data might be garbled and should
2765  * be discarded.
2766  *
2767  * More verbose and detailed description of both problem btf_dedup is solving,
2768  * as well as solution could be found at:
2769  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2770  *
2771  * Problem description and justification
2772  * =====================================
2773  *
2774  * BTF type information is typically emitted either as a result of conversion
2775  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2776  * unit contains information about a subset of all the types that are used
2777  * in an application. These subsets are frequently overlapping and contain a lot
2778  * of duplicated information when later concatenated together into a single
2779  * binary. This algorithm ensures that each unique type is represented by single
2780  * BTF type descriptor, greatly reducing resulting size of BTF data.
2781  *
2782  * Compilation unit isolation and subsequent duplication of data is not the only
2783  * problem. The same type hierarchy (e.g., struct and all the type that struct
2784  * references) in different compilation units can be represented in BTF to
2785  * various degrees of completeness (or, rather, incompleteness) due to
2786  * struct/union forward declarations.
2787  *
2788  * Let's take a look at an example, that we'll use to better understand the
2789  * problem (and solution). Suppose we have two compilation units, each using
2790  * same `struct S`, but each of them having incomplete type information about
2791  * struct's fields:
2792  *
2793  * // CU #1:
2794  * struct S;
2795  * struct A {
2796  *	int a;
2797  *	struct A* self;
2798  *	struct S* parent;
2799  * };
2800  * struct B;
2801  * struct S {
2802  *	struct A* a_ptr;
2803  *	struct B* b_ptr;
2804  * };
2805  *
2806  * // CU #2:
2807  * struct S;
2808  * struct A;
2809  * struct B {
2810  *	int b;
2811  *	struct B* self;
2812  *	struct S* parent;
2813  * };
2814  * struct S {
2815  *	struct A* a_ptr;
2816  *	struct B* b_ptr;
2817  * };
2818  *
2819  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2820  * more), but will know the complete type information about `struct A`. While
2821  * for CU #2, it will know full type information about `struct B`, but will
2822  * only know about forward declaration of `struct A` (in BTF terms, it will
2823  * have `BTF_KIND_FWD` type descriptor with name `B`).
2824  *
2825  * This compilation unit isolation means that it's possible that there is no
2826  * single CU with complete type information describing structs `S`, `A`, and
2827  * `B`. Also, we might get tons of duplicated and redundant type information.
2828  *
2829  * Additional complication we need to keep in mind comes from the fact that
2830  * types, in general, can form graphs containing cycles, not just DAGs.
2831  *
2832  * While algorithm does deduplication, it also merges and resolves type
2833  * information (unless disabled throught `struct btf_opts`), whenever possible.
2834  * E.g., in the example above with two compilation units having partial type
2835  * information for structs `A` and `B`, the output of algorithm will emit
2836  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2837  * (as well as type information for `int` and pointers), as if they were defined
2838  * in a single compilation unit as:
2839  *
2840  * struct A {
2841  *	int a;
2842  *	struct A* self;
2843  *	struct S* parent;
2844  * };
2845  * struct B {
2846  *	int b;
2847  *	struct B* self;
2848  *	struct S* parent;
2849  * };
2850  * struct S {
2851  *	struct A* a_ptr;
2852  *	struct B* b_ptr;
2853  * };
2854  *
2855  * Algorithm summary
2856  * =================
2857  *
2858  * Algorithm completes its work in 6 separate passes:
2859  *
2860  * 1. Strings deduplication.
2861  * 2. Primitive types deduplication (int, enum, fwd).
2862  * 3. Struct/union types deduplication.
2863  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2864  *    protos, and const/volatile/restrict modifiers).
2865  * 5. Types compaction.
2866  * 6. Types remapping.
2867  *
2868  * Algorithm determines canonical type descriptor, which is a single
2869  * representative type for each truly unique type. This canonical type is the
2870  * one that will go into final deduplicated BTF type information. For
2871  * struct/unions, it is also the type that algorithm will merge additional type
2872  * information into (while resolving FWDs), as it discovers it from data in
2873  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2874  * that type is canonical, or to some other type, if that type is equivalent
2875  * and was chosen as canonical representative. This mapping is stored in
2876  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2877  * FWD type got resolved to.
2878  *
2879  * To facilitate fast discovery of canonical types, we also maintain canonical
2880  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2881  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2882  * that match that signature. With sufficiently good choice of type signature
2883  * hashing function, we can limit number of canonical types for each unique type
2884  * signature to a very small number, allowing to find canonical type for any
2885  * duplicated type very quickly.
2886  *
2887  * Struct/union deduplication is the most critical part and algorithm for
2888  * deduplicating structs/unions is described in greater details in comments for
2889  * `btf_dedup_is_equiv` function.
2890  */
2891 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2892 	       const struct btf_dedup_opts *opts)
2893 {
2894 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2895 	int err;
2896 
2897 	if (IS_ERR(d)) {
2898 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2899 		return libbpf_err(-EINVAL);
2900 	}
2901 
2902 	if (btf_ensure_modifiable(btf))
2903 		return libbpf_err(-ENOMEM);
2904 
2905 	err = btf_dedup_prep(d);
2906 	if (err) {
2907 		pr_debug("btf_dedup_prep failed:%d\n", err);
2908 		goto done;
2909 	}
2910 	err = btf_dedup_strings(d);
2911 	if (err < 0) {
2912 		pr_debug("btf_dedup_strings failed:%d\n", err);
2913 		goto done;
2914 	}
2915 	err = btf_dedup_prim_types(d);
2916 	if (err < 0) {
2917 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2918 		goto done;
2919 	}
2920 	err = btf_dedup_struct_types(d);
2921 	if (err < 0) {
2922 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2923 		goto done;
2924 	}
2925 	err = btf_dedup_ref_types(d);
2926 	if (err < 0) {
2927 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2928 		goto done;
2929 	}
2930 	err = btf_dedup_compact_types(d);
2931 	if (err < 0) {
2932 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2933 		goto done;
2934 	}
2935 	err = btf_dedup_remap_types(d);
2936 	if (err < 0) {
2937 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2938 		goto done;
2939 	}
2940 
2941 done:
2942 	btf_dedup_free(d);
2943 	return libbpf_err(err);
2944 }
2945 
2946 #define BTF_UNPROCESSED_ID ((__u32)-1)
2947 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2948 
2949 struct btf_dedup {
2950 	/* .BTF section to be deduped in-place */
2951 	struct btf *btf;
2952 	/*
2953 	 * Optional .BTF.ext section. When provided, any strings referenced
2954 	 * from it will be taken into account when deduping strings
2955 	 */
2956 	struct btf_ext *btf_ext;
2957 	/*
2958 	 * This is a map from any type's signature hash to a list of possible
2959 	 * canonical representative type candidates. Hash collisions are
2960 	 * ignored, so even types of various kinds can share same list of
2961 	 * candidates, which is fine because we rely on subsequent
2962 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2963 	 */
2964 	struct hashmap *dedup_table;
2965 	/* Canonical types map */
2966 	__u32 *map;
2967 	/* Hypothetical mapping, used during type graph equivalence checks */
2968 	__u32 *hypot_map;
2969 	__u32 *hypot_list;
2970 	size_t hypot_cnt;
2971 	size_t hypot_cap;
2972 	/* Whether hypothetical mapping, if successful, would need to adjust
2973 	 * already canonicalized types (due to a new forward declaration to
2974 	 * concrete type resolution). In such case, during split BTF dedup
2975 	 * candidate type would still be considered as different, because base
2976 	 * BTF is considered to be immutable.
2977 	 */
2978 	bool hypot_adjust_canon;
2979 	/* Various option modifying behavior of algorithm */
2980 	struct btf_dedup_opts opts;
2981 	/* temporary strings deduplication state */
2982 	struct strset *strs_set;
2983 };
2984 
2985 static long hash_combine(long h, long value)
2986 {
2987 	return h * 31 + value;
2988 }
2989 
2990 #define for_each_dedup_cand(d, node, hash) \
2991 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2992 
2993 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2994 {
2995 	return hashmap__append(d->dedup_table,
2996 			       (void *)hash, (void *)(long)type_id);
2997 }
2998 
2999 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3000 				   __u32 from_id, __u32 to_id)
3001 {
3002 	if (d->hypot_cnt == d->hypot_cap) {
3003 		__u32 *new_list;
3004 
3005 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3006 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3007 		if (!new_list)
3008 			return -ENOMEM;
3009 		d->hypot_list = new_list;
3010 	}
3011 	d->hypot_list[d->hypot_cnt++] = from_id;
3012 	d->hypot_map[from_id] = to_id;
3013 	return 0;
3014 }
3015 
3016 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3017 {
3018 	int i;
3019 
3020 	for (i = 0; i < d->hypot_cnt; i++)
3021 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3022 	d->hypot_cnt = 0;
3023 	d->hypot_adjust_canon = false;
3024 }
3025 
3026 static void btf_dedup_free(struct btf_dedup *d)
3027 {
3028 	hashmap__free(d->dedup_table);
3029 	d->dedup_table = NULL;
3030 
3031 	free(d->map);
3032 	d->map = NULL;
3033 
3034 	free(d->hypot_map);
3035 	d->hypot_map = NULL;
3036 
3037 	free(d->hypot_list);
3038 	d->hypot_list = NULL;
3039 
3040 	free(d);
3041 }
3042 
3043 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3044 {
3045 	return (size_t)key;
3046 }
3047 
3048 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3049 {
3050 	return 0;
3051 }
3052 
3053 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3054 {
3055 	return k1 == k2;
3056 }
3057 
3058 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3059 				       const struct btf_dedup_opts *opts)
3060 {
3061 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3062 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3063 	int i, err = 0, type_cnt;
3064 
3065 	if (!d)
3066 		return ERR_PTR(-ENOMEM);
3067 
3068 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3069 	/* dedup_table_size is now used only to force collisions in tests */
3070 	if (opts && opts->dedup_table_size == 1)
3071 		hash_fn = btf_dedup_collision_hash_fn;
3072 
3073 	d->btf = btf;
3074 	d->btf_ext = btf_ext;
3075 
3076 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3077 	if (IS_ERR(d->dedup_table)) {
3078 		err = PTR_ERR(d->dedup_table);
3079 		d->dedup_table = NULL;
3080 		goto done;
3081 	}
3082 
3083 	type_cnt = btf__get_nr_types(btf) + 1;
3084 	d->map = malloc(sizeof(__u32) * type_cnt);
3085 	if (!d->map) {
3086 		err = -ENOMEM;
3087 		goto done;
3088 	}
3089 	/* special BTF "void" type is made canonical immediately */
3090 	d->map[0] = 0;
3091 	for (i = 1; i < type_cnt; i++) {
3092 		struct btf_type *t = btf_type_by_id(d->btf, i);
3093 
3094 		/* VAR and DATASEC are never deduped and are self-canonical */
3095 		if (btf_is_var(t) || btf_is_datasec(t))
3096 			d->map[i] = i;
3097 		else
3098 			d->map[i] = BTF_UNPROCESSED_ID;
3099 	}
3100 
3101 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3102 	if (!d->hypot_map) {
3103 		err = -ENOMEM;
3104 		goto done;
3105 	}
3106 	for (i = 0; i < type_cnt; i++)
3107 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3108 
3109 done:
3110 	if (err) {
3111 		btf_dedup_free(d);
3112 		return ERR_PTR(err);
3113 	}
3114 
3115 	return d;
3116 }
3117 
3118 /*
3119  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3120  * string and pass pointer to it to a provided callback `fn`.
3121  */
3122 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3123 {
3124 	int i, r;
3125 
3126 	for (i = 0; i < d->btf->nr_types; i++) {
3127 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3128 
3129 		r = btf_type_visit_str_offs(t, fn, ctx);
3130 		if (r)
3131 			return r;
3132 	}
3133 
3134 	if (!d->btf_ext)
3135 		return 0;
3136 
3137 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3138 	if (r)
3139 		return r;
3140 
3141 	return 0;
3142 }
3143 
3144 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3145 {
3146 	struct btf_dedup *d = ctx;
3147 	__u32 str_off = *str_off_ptr;
3148 	const char *s;
3149 	int off, err;
3150 
3151 	/* don't touch empty string or string in main BTF */
3152 	if (str_off == 0 || str_off < d->btf->start_str_off)
3153 		return 0;
3154 
3155 	s = btf__str_by_offset(d->btf, str_off);
3156 	if (d->btf->base_btf) {
3157 		err = btf__find_str(d->btf->base_btf, s);
3158 		if (err >= 0) {
3159 			*str_off_ptr = err;
3160 			return 0;
3161 		}
3162 		if (err != -ENOENT)
3163 			return err;
3164 	}
3165 
3166 	off = strset__add_str(d->strs_set, s);
3167 	if (off < 0)
3168 		return off;
3169 
3170 	*str_off_ptr = d->btf->start_str_off + off;
3171 	return 0;
3172 }
3173 
3174 /*
3175  * Dedup string and filter out those that are not referenced from either .BTF
3176  * or .BTF.ext (if provided) sections.
3177  *
3178  * This is done by building index of all strings in BTF's string section,
3179  * then iterating over all entities that can reference strings (e.g., type
3180  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3181  * strings as used. After that all used strings are deduped and compacted into
3182  * sequential blob of memory and new offsets are calculated. Then all the string
3183  * references are iterated again and rewritten using new offsets.
3184  */
3185 static int btf_dedup_strings(struct btf_dedup *d)
3186 {
3187 	int err;
3188 
3189 	if (d->btf->strs_deduped)
3190 		return 0;
3191 
3192 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3193 	if (IS_ERR(d->strs_set)) {
3194 		err = PTR_ERR(d->strs_set);
3195 		goto err_out;
3196 	}
3197 
3198 	if (!d->btf->base_btf) {
3199 		/* insert empty string; we won't be looking it up during strings
3200 		 * dedup, but it's good to have it for generic BTF string lookups
3201 		 */
3202 		err = strset__add_str(d->strs_set, "");
3203 		if (err < 0)
3204 			goto err_out;
3205 	}
3206 
3207 	/* remap string offsets */
3208 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3209 	if (err)
3210 		goto err_out;
3211 
3212 	/* replace BTF string data and hash with deduped ones */
3213 	strset__free(d->btf->strs_set);
3214 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3215 	d->btf->strs_set = d->strs_set;
3216 	d->strs_set = NULL;
3217 	d->btf->strs_deduped = true;
3218 	return 0;
3219 
3220 err_out:
3221 	strset__free(d->strs_set);
3222 	d->strs_set = NULL;
3223 
3224 	return err;
3225 }
3226 
3227 static long btf_hash_common(struct btf_type *t)
3228 {
3229 	long h;
3230 
3231 	h = hash_combine(0, t->name_off);
3232 	h = hash_combine(h, t->info);
3233 	h = hash_combine(h, t->size);
3234 	return h;
3235 }
3236 
3237 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3238 {
3239 	return t1->name_off == t2->name_off &&
3240 	       t1->info == t2->info &&
3241 	       t1->size == t2->size;
3242 }
3243 
3244 /* Calculate type signature hash of INT. */
3245 static long btf_hash_int(struct btf_type *t)
3246 {
3247 	__u32 info = *(__u32 *)(t + 1);
3248 	long h;
3249 
3250 	h = btf_hash_common(t);
3251 	h = hash_combine(h, info);
3252 	return h;
3253 }
3254 
3255 /* Check structural equality of two INTs. */
3256 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3257 {
3258 	__u32 info1, info2;
3259 
3260 	if (!btf_equal_common(t1, t2))
3261 		return false;
3262 	info1 = *(__u32 *)(t1 + 1);
3263 	info2 = *(__u32 *)(t2 + 1);
3264 	return info1 == info2;
3265 }
3266 
3267 /* Calculate type signature hash of ENUM. */
3268 static long btf_hash_enum(struct btf_type *t)
3269 {
3270 	long h;
3271 
3272 	/* don't hash vlen and enum members to support enum fwd resolving */
3273 	h = hash_combine(0, t->name_off);
3274 	h = hash_combine(h, t->info & ~0xffff);
3275 	h = hash_combine(h, t->size);
3276 	return h;
3277 }
3278 
3279 /* Check structural equality of two ENUMs. */
3280 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3281 {
3282 	const struct btf_enum *m1, *m2;
3283 	__u16 vlen;
3284 	int i;
3285 
3286 	if (!btf_equal_common(t1, t2))
3287 		return false;
3288 
3289 	vlen = btf_vlen(t1);
3290 	m1 = btf_enum(t1);
3291 	m2 = btf_enum(t2);
3292 	for (i = 0; i < vlen; i++) {
3293 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3294 			return false;
3295 		m1++;
3296 		m2++;
3297 	}
3298 	return true;
3299 }
3300 
3301 static inline bool btf_is_enum_fwd(struct btf_type *t)
3302 {
3303 	return btf_is_enum(t) && btf_vlen(t) == 0;
3304 }
3305 
3306 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3307 {
3308 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3309 		return btf_equal_enum(t1, t2);
3310 	/* ignore vlen when comparing */
3311 	return t1->name_off == t2->name_off &&
3312 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3313 	       t1->size == t2->size;
3314 }
3315 
3316 /*
3317  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3318  * as referenced type IDs equivalence is established separately during type
3319  * graph equivalence check algorithm.
3320  */
3321 static long btf_hash_struct(struct btf_type *t)
3322 {
3323 	const struct btf_member *member = btf_members(t);
3324 	__u32 vlen = btf_vlen(t);
3325 	long h = btf_hash_common(t);
3326 	int i;
3327 
3328 	for (i = 0; i < vlen; i++) {
3329 		h = hash_combine(h, member->name_off);
3330 		h = hash_combine(h, member->offset);
3331 		/* no hashing of referenced type ID, it can be unresolved yet */
3332 		member++;
3333 	}
3334 	return h;
3335 }
3336 
3337 /*
3338  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3339  * IDs. This check is performed during type graph equivalence check and
3340  * referenced types equivalence is checked separately.
3341  */
3342 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3343 {
3344 	const struct btf_member *m1, *m2;
3345 	__u16 vlen;
3346 	int i;
3347 
3348 	if (!btf_equal_common(t1, t2))
3349 		return false;
3350 
3351 	vlen = btf_vlen(t1);
3352 	m1 = btf_members(t1);
3353 	m2 = btf_members(t2);
3354 	for (i = 0; i < vlen; i++) {
3355 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3356 			return false;
3357 		m1++;
3358 		m2++;
3359 	}
3360 	return true;
3361 }
3362 
3363 /*
3364  * Calculate type signature hash of ARRAY, including referenced type IDs,
3365  * under assumption that they were already resolved to canonical type IDs and
3366  * are not going to change.
3367  */
3368 static long btf_hash_array(struct btf_type *t)
3369 {
3370 	const struct btf_array *info = btf_array(t);
3371 	long h = btf_hash_common(t);
3372 
3373 	h = hash_combine(h, info->type);
3374 	h = hash_combine(h, info->index_type);
3375 	h = hash_combine(h, info->nelems);
3376 	return h;
3377 }
3378 
3379 /*
3380  * Check exact equality of two ARRAYs, taking into account referenced
3381  * type IDs, under assumption that they were already resolved to canonical
3382  * type IDs and are not going to change.
3383  * This function is called during reference types deduplication to compare
3384  * ARRAY to potential canonical representative.
3385  */
3386 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3387 {
3388 	const struct btf_array *info1, *info2;
3389 
3390 	if (!btf_equal_common(t1, t2))
3391 		return false;
3392 
3393 	info1 = btf_array(t1);
3394 	info2 = btf_array(t2);
3395 	return info1->type == info2->type &&
3396 	       info1->index_type == info2->index_type &&
3397 	       info1->nelems == info2->nelems;
3398 }
3399 
3400 /*
3401  * Check structural compatibility of two ARRAYs, ignoring referenced type
3402  * IDs. This check is performed during type graph equivalence check and
3403  * referenced types equivalence is checked separately.
3404  */
3405 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3406 {
3407 	if (!btf_equal_common(t1, t2))
3408 		return false;
3409 
3410 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3411 }
3412 
3413 /*
3414  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3415  * under assumption that they were already resolved to canonical type IDs and
3416  * are not going to change.
3417  */
3418 static long btf_hash_fnproto(struct btf_type *t)
3419 {
3420 	const struct btf_param *member = btf_params(t);
3421 	__u16 vlen = btf_vlen(t);
3422 	long h = btf_hash_common(t);
3423 	int i;
3424 
3425 	for (i = 0; i < vlen; i++) {
3426 		h = hash_combine(h, member->name_off);
3427 		h = hash_combine(h, member->type);
3428 		member++;
3429 	}
3430 	return h;
3431 }
3432 
3433 /*
3434  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3435  * type IDs, under assumption that they were already resolved to canonical
3436  * type IDs and are not going to change.
3437  * This function is called during reference types deduplication to compare
3438  * FUNC_PROTO to potential canonical representative.
3439  */
3440 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3441 {
3442 	const struct btf_param *m1, *m2;
3443 	__u16 vlen;
3444 	int i;
3445 
3446 	if (!btf_equal_common(t1, t2))
3447 		return false;
3448 
3449 	vlen = btf_vlen(t1);
3450 	m1 = btf_params(t1);
3451 	m2 = btf_params(t2);
3452 	for (i = 0; i < vlen; i++) {
3453 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3454 			return false;
3455 		m1++;
3456 		m2++;
3457 	}
3458 	return true;
3459 }
3460 
3461 /*
3462  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3463  * IDs. This check is performed during type graph equivalence check and
3464  * referenced types equivalence is checked separately.
3465  */
3466 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3467 {
3468 	const struct btf_param *m1, *m2;
3469 	__u16 vlen;
3470 	int i;
3471 
3472 	/* skip return type ID */
3473 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3474 		return false;
3475 
3476 	vlen = btf_vlen(t1);
3477 	m1 = btf_params(t1);
3478 	m2 = btf_params(t2);
3479 	for (i = 0; i < vlen; i++) {
3480 		if (m1->name_off != m2->name_off)
3481 			return false;
3482 		m1++;
3483 		m2++;
3484 	}
3485 	return true;
3486 }
3487 
3488 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3489  * types and initializing the rest of the state (canonical type mapping) for
3490  * the fixed base BTF part.
3491  */
3492 static int btf_dedup_prep(struct btf_dedup *d)
3493 {
3494 	struct btf_type *t;
3495 	int type_id;
3496 	long h;
3497 
3498 	if (!d->btf->base_btf)
3499 		return 0;
3500 
3501 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3502 		t = btf_type_by_id(d->btf, type_id);
3503 
3504 		/* all base BTF types are self-canonical by definition */
3505 		d->map[type_id] = type_id;
3506 
3507 		switch (btf_kind(t)) {
3508 		case BTF_KIND_VAR:
3509 		case BTF_KIND_DATASEC:
3510 			/* VAR and DATASEC are never hash/deduplicated */
3511 			continue;
3512 		case BTF_KIND_CONST:
3513 		case BTF_KIND_VOLATILE:
3514 		case BTF_KIND_RESTRICT:
3515 		case BTF_KIND_PTR:
3516 		case BTF_KIND_FWD:
3517 		case BTF_KIND_TYPEDEF:
3518 		case BTF_KIND_FUNC:
3519 		case BTF_KIND_FLOAT:
3520 			h = btf_hash_common(t);
3521 			break;
3522 		case BTF_KIND_INT:
3523 			h = btf_hash_int(t);
3524 			break;
3525 		case BTF_KIND_ENUM:
3526 			h = btf_hash_enum(t);
3527 			break;
3528 		case BTF_KIND_STRUCT:
3529 		case BTF_KIND_UNION:
3530 			h = btf_hash_struct(t);
3531 			break;
3532 		case BTF_KIND_ARRAY:
3533 			h = btf_hash_array(t);
3534 			break;
3535 		case BTF_KIND_FUNC_PROTO:
3536 			h = btf_hash_fnproto(t);
3537 			break;
3538 		default:
3539 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3540 			return -EINVAL;
3541 		}
3542 		if (btf_dedup_table_add(d, h, type_id))
3543 			return -ENOMEM;
3544 	}
3545 
3546 	return 0;
3547 }
3548 
3549 /*
3550  * Deduplicate primitive types, that can't reference other types, by calculating
3551  * their type signature hash and comparing them with any possible canonical
3552  * candidate. If no canonical candidate matches, type itself is marked as
3553  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3554  */
3555 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3556 {
3557 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3558 	struct hashmap_entry *hash_entry;
3559 	struct btf_type *cand;
3560 	/* if we don't find equivalent type, then we are canonical */
3561 	__u32 new_id = type_id;
3562 	__u32 cand_id;
3563 	long h;
3564 
3565 	switch (btf_kind(t)) {
3566 	case BTF_KIND_CONST:
3567 	case BTF_KIND_VOLATILE:
3568 	case BTF_KIND_RESTRICT:
3569 	case BTF_KIND_PTR:
3570 	case BTF_KIND_TYPEDEF:
3571 	case BTF_KIND_ARRAY:
3572 	case BTF_KIND_STRUCT:
3573 	case BTF_KIND_UNION:
3574 	case BTF_KIND_FUNC:
3575 	case BTF_KIND_FUNC_PROTO:
3576 	case BTF_KIND_VAR:
3577 	case BTF_KIND_DATASEC:
3578 		return 0;
3579 
3580 	case BTF_KIND_INT:
3581 		h = btf_hash_int(t);
3582 		for_each_dedup_cand(d, hash_entry, h) {
3583 			cand_id = (__u32)(long)hash_entry->value;
3584 			cand = btf_type_by_id(d->btf, cand_id);
3585 			if (btf_equal_int(t, cand)) {
3586 				new_id = cand_id;
3587 				break;
3588 			}
3589 		}
3590 		break;
3591 
3592 	case BTF_KIND_ENUM:
3593 		h = btf_hash_enum(t);
3594 		for_each_dedup_cand(d, hash_entry, h) {
3595 			cand_id = (__u32)(long)hash_entry->value;
3596 			cand = btf_type_by_id(d->btf, cand_id);
3597 			if (btf_equal_enum(t, cand)) {
3598 				new_id = cand_id;
3599 				break;
3600 			}
3601 			if (d->opts.dont_resolve_fwds)
3602 				continue;
3603 			if (btf_compat_enum(t, cand)) {
3604 				if (btf_is_enum_fwd(t)) {
3605 					/* resolve fwd to full enum */
3606 					new_id = cand_id;
3607 					break;
3608 				}
3609 				/* resolve canonical enum fwd to full enum */
3610 				d->map[cand_id] = type_id;
3611 			}
3612 		}
3613 		break;
3614 
3615 	case BTF_KIND_FWD:
3616 	case BTF_KIND_FLOAT:
3617 		h = btf_hash_common(t);
3618 		for_each_dedup_cand(d, hash_entry, h) {
3619 			cand_id = (__u32)(long)hash_entry->value;
3620 			cand = btf_type_by_id(d->btf, cand_id);
3621 			if (btf_equal_common(t, cand)) {
3622 				new_id = cand_id;
3623 				break;
3624 			}
3625 		}
3626 		break;
3627 
3628 	default:
3629 		return -EINVAL;
3630 	}
3631 
3632 	d->map[type_id] = new_id;
3633 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3634 		return -ENOMEM;
3635 
3636 	return 0;
3637 }
3638 
3639 static int btf_dedup_prim_types(struct btf_dedup *d)
3640 {
3641 	int i, err;
3642 
3643 	for (i = 0; i < d->btf->nr_types; i++) {
3644 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3645 		if (err)
3646 			return err;
3647 	}
3648 	return 0;
3649 }
3650 
3651 /*
3652  * Check whether type is already mapped into canonical one (could be to itself).
3653  */
3654 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3655 {
3656 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3657 }
3658 
3659 /*
3660  * Resolve type ID into its canonical type ID, if any; otherwise return original
3661  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3662  * STRUCT/UNION link and resolve it into canonical type ID as well.
3663  */
3664 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3665 {
3666 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3667 		type_id = d->map[type_id];
3668 	return type_id;
3669 }
3670 
3671 /*
3672  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3673  * type ID.
3674  */
3675 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3676 {
3677 	__u32 orig_type_id = type_id;
3678 
3679 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3680 		return type_id;
3681 
3682 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3683 		type_id = d->map[type_id];
3684 
3685 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3686 		return type_id;
3687 
3688 	return orig_type_id;
3689 }
3690 
3691 
3692 static inline __u16 btf_fwd_kind(struct btf_type *t)
3693 {
3694 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3695 }
3696 
3697 /* Check if given two types are identical ARRAY definitions */
3698 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3699 {
3700 	struct btf_type *t1, *t2;
3701 
3702 	t1 = btf_type_by_id(d->btf, id1);
3703 	t2 = btf_type_by_id(d->btf, id2);
3704 	if (!btf_is_array(t1) || !btf_is_array(t2))
3705 		return 0;
3706 
3707 	return btf_equal_array(t1, t2);
3708 }
3709 
3710 /*
3711  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3712  * call it "candidate graph" in this description for brevity) to a type graph
3713  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3714  * here, though keep in mind that not all types in canonical graph are
3715  * necessarily canonical representatives themselves, some of them might be
3716  * duplicates or its uniqueness might not have been established yet).
3717  * Returns:
3718  *  - >0, if type graphs are equivalent;
3719  *  -  0, if not equivalent;
3720  *  - <0, on error.
3721  *
3722  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3723  * equivalence of BTF types at each step. If at any point BTF types in candidate
3724  * and canonical graphs are not compatible structurally, whole graphs are
3725  * incompatible. If types are structurally equivalent (i.e., all information
3726  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3727  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3728  * If a type references other types, then those referenced types are checked
3729  * for equivalence recursively.
3730  *
3731  * During DFS traversal, if we find that for current `canon_id` type we
3732  * already have some mapping in hypothetical map, we check for two possible
3733  * situations:
3734  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3735  *     happen when type graphs have cycles. In this case we assume those two
3736  *     types are equivalent.
3737  *   - `canon_id` is mapped to different type. This is contradiction in our
3738  *     hypothetical mapping, because same graph in canonical graph corresponds
3739  *     to two different types in candidate graph, which for equivalent type
3740  *     graphs shouldn't happen. This condition terminates equivalence check
3741  *     with negative result.
3742  *
3743  * If type graphs traversal exhausts types to check and find no contradiction,
3744  * then type graphs are equivalent.
3745  *
3746  * When checking types for equivalence, there is one special case: FWD types.
3747  * If FWD type resolution is allowed and one of the types (either from canonical
3748  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3749  * flag) and their names match, hypothetical mapping is updated to point from
3750  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3751  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3752  *
3753  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3754  * if there are two exactly named (or anonymous) structs/unions that are
3755  * compatible structurally, one of which has FWD field, while other is concrete
3756  * STRUCT/UNION, but according to C sources they are different structs/unions
3757  * that are referencing different types with the same name. This is extremely
3758  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3759  * this logic is causing problems.
3760  *
3761  * Doing FWD resolution means that both candidate and/or canonical graphs can
3762  * consists of portions of the graph that come from multiple compilation units.
3763  * This is due to the fact that types within single compilation unit are always
3764  * deduplicated and FWDs are already resolved, if referenced struct/union
3765  * definiton is available. So, if we had unresolved FWD and found corresponding
3766  * STRUCT/UNION, they will be from different compilation units. This
3767  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3768  * type graph will likely have at least two different BTF types that describe
3769  * same type (e.g., most probably there will be two different BTF types for the
3770  * same 'int' primitive type) and could even have "overlapping" parts of type
3771  * graph that describe same subset of types.
3772  *
3773  * This in turn means that our assumption that each type in canonical graph
3774  * must correspond to exactly one type in candidate graph might not hold
3775  * anymore and will make it harder to detect contradictions using hypothetical
3776  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3777  * resolution only in canonical graph. FWDs in candidate graphs are never
3778  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3779  * that can occur:
3780  *   - Both types in canonical and candidate graphs are FWDs. If they are
3781  *     structurally equivalent, then they can either be both resolved to the
3782  *     same STRUCT/UNION or not resolved at all. In both cases they are
3783  *     equivalent and there is no need to resolve FWD on candidate side.
3784  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3785  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3786  *   - Type in canonical graph is FWD, while type in candidate is concrete
3787  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3788  *     unit, so there is exactly one BTF type for each unique C type. After
3789  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3790  *     in canonical graph mapping to single BTF type in candidate graph, but
3791  *     because hypothetical mapping maps from canonical to candidate types, it's
3792  *     alright, and we still maintain the property of having single `canon_id`
3793  *     mapping to single `cand_id` (there could be two different `canon_id`
3794  *     mapped to the same `cand_id`, but it's not contradictory).
3795  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3796  *     graph is FWD. In this case we are just going to check compatibility of
3797  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3798  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3799  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3800  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3801  *     canonical graph.
3802  */
3803 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3804 			      __u32 canon_id)
3805 {
3806 	struct btf_type *cand_type;
3807 	struct btf_type *canon_type;
3808 	__u32 hypot_type_id;
3809 	__u16 cand_kind;
3810 	__u16 canon_kind;
3811 	int i, eq;
3812 
3813 	/* if both resolve to the same canonical, they must be equivalent */
3814 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3815 		return 1;
3816 
3817 	canon_id = resolve_fwd_id(d, canon_id);
3818 
3819 	hypot_type_id = d->hypot_map[canon_id];
3820 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3821 		/* In some cases compiler will generate different DWARF types
3822 		 * for *identical* array type definitions and use them for
3823 		 * different fields within the *same* struct. This breaks type
3824 		 * equivalence check, which makes an assumption that candidate
3825 		 * types sub-graph has a consistent and deduped-by-compiler
3826 		 * types within a single CU. So work around that by explicitly
3827 		 * allowing identical array types here.
3828 		 */
3829 		return hypot_type_id == cand_id ||
3830 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3831 	}
3832 
3833 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3834 		return -ENOMEM;
3835 
3836 	cand_type = btf_type_by_id(d->btf, cand_id);
3837 	canon_type = btf_type_by_id(d->btf, canon_id);
3838 	cand_kind = btf_kind(cand_type);
3839 	canon_kind = btf_kind(canon_type);
3840 
3841 	if (cand_type->name_off != canon_type->name_off)
3842 		return 0;
3843 
3844 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3845 	if (!d->opts.dont_resolve_fwds
3846 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3847 	    && cand_kind != canon_kind) {
3848 		__u16 real_kind;
3849 		__u16 fwd_kind;
3850 
3851 		if (cand_kind == BTF_KIND_FWD) {
3852 			real_kind = canon_kind;
3853 			fwd_kind = btf_fwd_kind(cand_type);
3854 		} else {
3855 			real_kind = cand_kind;
3856 			fwd_kind = btf_fwd_kind(canon_type);
3857 			/* we'd need to resolve base FWD to STRUCT/UNION */
3858 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3859 				d->hypot_adjust_canon = true;
3860 		}
3861 		return fwd_kind == real_kind;
3862 	}
3863 
3864 	if (cand_kind != canon_kind)
3865 		return 0;
3866 
3867 	switch (cand_kind) {
3868 	case BTF_KIND_INT:
3869 		return btf_equal_int(cand_type, canon_type);
3870 
3871 	case BTF_KIND_ENUM:
3872 		if (d->opts.dont_resolve_fwds)
3873 			return btf_equal_enum(cand_type, canon_type);
3874 		else
3875 			return btf_compat_enum(cand_type, canon_type);
3876 
3877 	case BTF_KIND_FWD:
3878 	case BTF_KIND_FLOAT:
3879 		return btf_equal_common(cand_type, canon_type);
3880 
3881 	case BTF_KIND_CONST:
3882 	case BTF_KIND_VOLATILE:
3883 	case BTF_KIND_RESTRICT:
3884 	case BTF_KIND_PTR:
3885 	case BTF_KIND_TYPEDEF:
3886 	case BTF_KIND_FUNC:
3887 		if (cand_type->info != canon_type->info)
3888 			return 0;
3889 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3890 
3891 	case BTF_KIND_ARRAY: {
3892 		const struct btf_array *cand_arr, *canon_arr;
3893 
3894 		if (!btf_compat_array(cand_type, canon_type))
3895 			return 0;
3896 		cand_arr = btf_array(cand_type);
3897 		canon_arr = btf_array(canon_type);
3898 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3899 		if (eq <= 0)
3900 			return eq;
3901 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3902 	}
3903 
3904 	case BTF_KIND_STRUCT:
3905 	case BTF_KIND_UNION: {
3906 		const struct btf_member *cand_m, *canon_m;
3907 		__u16 vlen;
3908 
3909 		if (!btf_shallow_equal_struct(cand_type, canon_type))
3910 			return 0;
3911 		vlen = btf_vlen(cand_type);
3912 		cand_m = btf_members(cand_type);
3913 		canon_m = btf_members(canon_type);
3914 		for (i = 0; i < vlen; i++) {
3915 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3916 			if (eq <= 0)
3917 				return eq;
3918 			cand_m++;
3919 			canon_m++;
3920 		}
3921 
3922 		return 1;
3923 	}
3924 
3925 	case BTF_KIND_FUNC_PROTO: {
3926 		const struct btf_param *cand_p, *canon_p;
3927 		__u16 vlen;
3928 
3929 		if (!btf_compat_fnproto(cand_type, canon_type))
3930 			return 0;
3931 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3932 		if (eq <= 0)
3933 			return eq;
3934 		vlen = btf_vlen(cand_type);
3935 		cand_p = btf_params(cand_type);
3936 		canon_p = btf_params(canon_type);
3937 		for (i = 0; i < vlen; i++) {
3938 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3939 			if (eq <= 0)
3940 				return eq;
3941 			cand_p++;
3942 			canon_p++;
3943 		}
3944 		return 1;
3945 	}
3946 
3947 	default:
3948 		return -EINVAL;
3949 	}
3950 	return 0;
3951 }
3952 
3953 /*
3954  * Use hypothetical mapping, produced by successful type graph equivalence
3955  * check, to augment existing struct/union canonical mapping, where possible.
3956  *
3957  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3958  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3959  * it doesn't matter if FWD type was part of canonical graph or candidate one,
3960  * we are recording the mapping anyway. As opposed to carefulness required
3961  * for struct/union correspondence mapping (described below), for FWD resolution
3962  * it's not important, as by the time that FWD type (reference type) will be
3963  * deduplicated all structs/unions will be deduped already anyway.
3964  *
3965  * Recording STRUCT/UNION mapping is purely a performance optimization and is
3966  * not required for correctness. It needs to be done carefully to ensure that
3967  * struct/union from candidate's type graph is not mapped into corresponding
3968  * struct/union from canonical type graph that itself hasn't been resolved into
3969  * canonical representative. The only guarantee we have is that canonical
3970  * struct/union was determined as canonical and that won't change. But any
3971  * types referenced through that struct/union fields could have been not yet
3972  * resolved, so in case like that it's too early to establish any kind of
3973  * correspondence between structs/unions.
3974  *
3975  * No canonical correspondence is derived for primitive types (they are already
3976  * deduplicated completely already anyway) or reference types (they rely on
3977  * stability of struct/union canonical relationship for equivalence checks).
3978  */
3979 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3980 {
3981 	__u32 canon_type_id, targ_type_id;
3982 	__u16 t_kind, c_kind;
3983 	__u32 t_id, c_id;
3984 	int i;
3985 
3986 	for (i = 0; i < d->hypot_cnt; i++) {
3987 		canon_type_id = d->hypot_list[i];
3988 		targ_type_id = d->hypot_map[canon_type_id];
3989 		t_id = resolve_type_id(d, targ_type_id);
3990 		c_id = resolve_type_id(d, canon_type_id);
3991 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3992 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3993 		/*
3994 		 * Resolve FWD into STRUCT/UNION.
3995 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3996 		 * mapped to canonical representative (as opposed to
3997 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3998 		 * eventually that struct is going to be mapped and all resolved
3999 		 * FWDs will automatically resolve to correct canonical
4000 		 * representative. This will happen before ref type deduping,
4001 		 * which critically depends on stability of these mapping. This
4002 		 * stability is not a requirement for STRUCT/UNION equivalence
4003 		 * checks, though.
4004 		 */
4005 
4006 		/* if it's the split BTF case, we still need to point base FWD
4007 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4008 		 * will be resolved against base FWD. If we don't point base
4009 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4010 		 * FWDs in split BTF won't be correctly resolved to a proper
4011 		 * STRUCT/UNION.
4012 		 */
4013 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4014 			d->map[c_id] = t_id;
4015 
4016 		/* if graph equivalence determined that we'd need to adjust
4017 		 * base canonical types, then we need to only point base FWDs
4018 		 * to STRUCTs/UNIONs and do no more modifications. For all
4019 		 * other purposes the type graphs were not equivalent.
4020 		 */
4021 		if (d->hypot_adjust_canon)
4022 			continue;
4023 
4024 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4025 			d->map[t_id] = c_id;
4026 
4027 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4028 		    c_kind != BTF_KIND_FWD &&
4029 		    is_type_mapped(d, c_id) &&
4030 		    !is_type_mapped(d, t_id)) {
4031 			/*
4032 			 * as a perf optimization, we can map struct/union
4033 			 * that's part of type graph we just verified for
4034 			 * equivalence. We can do that for struct/union that has
4035 			 * canonical representative only, though.
4036 			 */
4037 			d->map[t_id] = c_id;
4038 		}
4039 	}
4040 }
4041 
4042 /*
4043  * Deduplicate struct/union types.
4044  *
4045  * For each struct/union type its type signature hash is calculated, taking
4046  * into account type's name, size, number, order and names of fields, but
4047  * ignoring type ID's referenced from fields, because they might not be deduped
4048  * completely until after reference types deduplication phase. This type hash
4049  * is used to iterate over all potential canonical types, sharing same hash.
4050  * For each canonical candidate we check whether type graphs that they form
4051  * (through referenced types in fields and so on) are equivalent using algorithm
4052  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4053  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4054  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4055  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4056  * potentially map other structs/unions to their canonical representatives,
4057  * if such relationship hasn't yet been established. This speeds up algorithm
4058  * by eliminating some of the duplicate work.
4059  *
4060  * If no matching canonical representative was found, struct/union is marked
4061  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4062  * for further look ups.
4063  */
4064 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4065 {
4066 	struct btf_type *cand_type, *t;
4067 	struct hashmap_entry *hash_entry;
4068 	/* if we don't find equivalent type, then we are canonical */
4069 	__u32 new_id = type_id;
4070 	__u16 kind;
4071 	long h;
4072 
4073 	/* already deduped or is in process of deduping (loop detected) */
4074 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4075 		return 0;
4076 
4077 	t = btf_type_by_id(d->btf, type_id);
4078 	kind = btf_kind(t);
4079 
4080 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4081 		return 0;
4082 
4083 	h = btf_hash_struct(t);
4084 	for_each_dedup_cand(d, hash_entry, h) {
4085 		__u32 cand_id = (__u32)(long)hash_entry->value;
4086 		int eq;
4087 
4088 		/*
4089 		 * Even though btf_dedup_is_equiv() checks for
4090 		 * btf_shallow_equal_struct() internally when checking two
4091 		 * structs (unions) for equivalence, we need to guard here
4092 		 * from picking matching FWD type as a dedup candidate.
4093 		 * This can happen due to hash collision. In such case just
4094 		 * relying on btf_dedup_is_equiv() would lead to potentially
4095 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4096 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4097 		 */
4098 		cand_type = btf_type_by_id(d->btf, cand_id);
4099 		if (!btf_shallow_equal_struct(t, cand_type))
4100 			continue;
4101 
4102 		btf_dedup_clear_hypot_map(d);
4103 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4104 		if (eq < 0)
4105 			return eq;
4106 		if (!eq)
4107 			continue;
4108 		btf_dedup_merge_hypot_map(d);
4109 		if (d->hypot_adjust_canon) /* not really equivalent */
4110 			continue;
4111 		new_id = cand_id;
4112 		break;
4113 	}
4114 
4115 	d->map[type_id] = new_id;
4116 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4117 		return -ENOMEM;
4118 
4119 	return 0;
4120 }
4121 
4122 static int btf_dedup_struct_types(struct btf_dedup *d)
4123 {
4124 	int i, err;
4125 
4126 	for (i = 0; i < d->btf->nr_types; i++) {
4127 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4128 		if (err)
4129 			return err;
4130 	}
4131 	return 0;
4132 }
4133 
4134 /*
4135  * Deduplicate reference type.
4136  *
4137  * Once all primitive and struct/union types got deduplicated, we can easily
4138  * deduplicate all other (reference) BTF types. This is done in two steps:
4139  *
4140  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4141  * resolution can be done either immediately for primitive or struct/union types
4142  * (because they were deduped in previous two phases) or recursively for
4143  * reference types. Recursion will always terminate at either primitive or
4144  * struct/union type, at which point we can "unwind" chain of reference types
4145  * one by one. There is no danger of encountering cycles because in C type
4146  * system the only way to form type cycle is through struct/union, so any chain
4147  * of reference types, even those taking part in a type cycle, will inevitably
4148  * reach struct/union at some point.
4149  *
4150  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4151  * becomes "stable", in the sense that no further deduplication will cause
4152  * any changes to it. With that, it's now possible to calculate type's signature
4153  * hash (this time taking into account referenced type IDs) and loop over all
4154  * potential canonical representatives. If no match was found, current type
4155  * will become canonical representative of itself and will be added into
4156  * btf_dedup->dedup_table as another possible canonical representative.
4157  */
4158 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4159 {
4160 	struct hashmap_entry *hash_entry;
4161 	__u32 new_id = type_id, cand_id;
4162 	struct btf_type *t, *cand;
4163 	/* if we don't find equivalent type, then we are representative type */
4164 	int ref_type_id;
4165 	long h;
4166 
4167 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4168 		return -ELOOP;
4169 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4170 		return resolve_type_id(d, type_id);
4171 
4172 	t = btf_type_by_id(d->btf, type_id);
4173 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4174 
4175 	switch (btf_kind(t)) {
4176 	case BTF_KIND_CONST:
4177 	case BTF_KIND_VOLATILE:
4178 	case BTF_KIND_RESTRICT:
4179 	case BTF_KIND_PTR:
4180 	case BTF_KIND_TYPEDEF:
4181 	case BTF_KIND_FUNC:
4182 		ref_type_id = btf_dedup_ref_type(d, t->type);
4183 		if (ref_type_id < 0)
4184 			return ref_type_id;
4185 		t->type = ref_type_id;
4186 
4187 		h = btf_hash_common(t);
4188 		for_each_dedup_cand(d, hash_entry, h) {
4189 			cand_id = (__u32)(long)hash_entry->value;
4190 			cand = btf_type_by_id(d->btf, cand_id);
4191 			if (btf_equal_common(t, cand)) {
4192 				new_id = cand_id;
4193 				break;
4194 			}
4195 		}
4196 		break;
4197 
4198 	case BTF_KIND_ARRAY: {
4199 		struct btf_array *info = btf_array(t);
4200 
4201 		ref_type_id = btf_dedup_ref_type(d, info->type);
4202 		if (ref_type_id < 0)
4203 			return ref_type_id;
4204 		info->type = ref_type_id;
4205 
4206 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4207 		if (ref_type_id < 0)
4208 			return ref_type_id;
4209 		info->index_type = ref_type_id;
4210 
4211 		h = btf_hash_array(t);
4212 		for_each_dedup_cand(d, hash_entry, h) {
4213 			cand_id = (__u32)(long)hash_entry->value;
4214 			cand = btf_type_by_id(d->btf, cand_id);
4215 			if (btf_equal_array(t, cand)) {
4216 				new_id = cand_id;
4217 				break;
4218 			}
4219 		}
4220 		break;
4221 	}
4222 
4223 	case BTF_KIND_FUNC_PROTO: {
4224 		struct btf_param *param;
4225 		__u16 vlen;
4226 		int i;
4227 
4228 		ref_type_id = btf_dedup_ref_type(d, t->type);
4229 		if (ref_type_id < 0)
4230 			return ref_type_id;
4231 		t->type = ref_type_id;
4232 
4233 		vlen = btf_vlen(t);
4234 		param = btf_params(t);
4235 		for (i = 0; i < vlen; i++) {
4236 			ref_type_id = btf_dedup_ref_type(d, param->type);
4237 			if (ref_type_id < 0)
4238 				return ref_type_id;
4239 			param->type = ref_type_id;
4240 			param++;
4241 		}
4242 
4243 		h = btf_hash_fnproto(t);
4244 		for_each_dedup_cand(d, hash_entry, h) {
4245 			cand_id = (__u32)(long)hash_entry->value;
4246 			cand = btf_type_by_id(d->btf, cand_id);
4247 			if (btf_equal_fnproto(t, cand)) {
4248 				new_id = cand_id;
4249 				break;
4250 			}
4251 		}
4252 		break;
4253 	}
4254 
4255 	default:
4256 		return -EINVAL;
4257 	}
4258 
4259 	d->map[type_id] = new_id;
4260 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4261 		return -ENOMEM;
4262 
4263 	return new_id;
4264 }
4265 
4266 static int btf_dedup_ref_types(struct btf_dedup *d)
4267 {
4268 	int i, err;
4269 
4270 	for (i = 0; i < d->btf->nr_types; i++) {
4271 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4272 		if (err < 0)
4273 			return err;
4274 	}
4275 	/* we won't need d->dedup_table anymore */
4276 	hashmap__free(d->dedup_table);
4277 	d->dedup_table = NULL;
4278 	return 0;
4279 }
4280 
4281 /*
4282  * Compact types.
4283  *
4284  * After we established for each type its corresponding canonical representative
4285  * type, we now can eliminate types that are not canonical and leave only
4286  * canonical ones layed out sequentially in memory by copying them over
4287  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4288  * a map from original type ID to a new compacted type ID, which will be used
4289  * during next phase to "fix up" type IDs, referenced from struct/union and
4290  * reference types.
4291  */
4292 static int btf_dedup_compact_types(struct btf_dedup *d)
4293 {
4294 	__u32 *new_offs;
4295 	__u32 next_type_id = d->btf->start_id;
4296 	const struct btf_type *t;
4297 	void *p;
4298 	int i, id, len;
4299 
4300 	/* we are going to reuse hypot_map to store compaction remapping */
4301 	d->hypot_map[0] = 0;
4302 	/* base BTF types are not renumbered */
4303 	for (id = 1; id < d->btf->start_id; id++)
4304 		d->hypot_map[id] = id;
4305 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4306 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4307 
4308 	p = d->btf->types_data;
4309 
4310 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4311 		if (d->map[id] != id)
4312 			continue;
4313 
4314 		t = btf__type_by_id(d->btf, id);
4315 		len = btf_type_size(t);
4316 		if (len < 0)
4317 			return len;
4318 
4319 		memmove(p, t, len);
4320 		d->hypot_map[id] = next_type_id;
4321 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4322 		p += len;
4323 		next_type_id++;
4324 	}
4325 
4326 	/* shrink struct btf's internal types index and update btf_header */
4327 	d->btf->nr_types = next_type_id - d->btf->start_id;
4328 	d->btf->type_offs_cap = d->btf->nr_types;
4329 	d->btf->hdr->type_len = p - d->btf->types_data;
4330 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4331 				       sizeof(*new_offs));
4332 	if (d->btf->type_offs_cap && !new_offs)
4333 		return -ENOMEM;
4334 	d->btf->type_offs = new_offs;
4335 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4336 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4337 	return 0;
4338 }
4339 
4340 /*
4341  * Figure out final (deduplicated and compacted) type ID for provided original
4342  * `type_id` by first resolving it into corresponding canonical type ID and
4343  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4344  * which is populated during compaction phase.
4345  */
4346 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4347 {
4348 	struct btf_dedup *d = ctx;
4349 	__u32 resolved_type_id, new_type_id;
4350 
4351 	resolved_type_id = resolve_type_id(d, *type_id);
4352 	new_type_id = d->hypot_map[resolved_type_id];
4353 	if (new_type_id > BTF_MAX_NR_TYPES)
4354 		return -EINVAL;
4355 
4356 	*type_id = new_type_id;
4357 	return 0;
4358 }
4359 
4360 /*
4361  * Remap referenced type IDs into deduped type IDs.
4362  *
4363  * After BTF types are deduplicated and compacted, their final type IDs may
4364  * differ from original ones. The map from original to a corresponding
4365  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4366  * compaction phase. During remapping phase we are rewriting all type IDs
4367  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4368  * their final deduped type IDs.
4369  */
4370 static int btf_dedup_remap_types(struct btf_dedup *d)
4371 {
4372 	int i, r;
4373 
4374 	for (i = 0; i < d->btf->nr_types; i++) {
4375 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4376 
4377 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4378 		if (r)
4379 			return r;
4380 	}
4381 
4382 	if (!d->btf_ext)
4383 		return 0;
4384 
4385 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4386 	if (r)
4387 		return r;
4388 
4389 	return 0;
4390 }
4391 
4392 /*
4393  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4394  * data out of it to use for target BTF.
4395  */
4396 struct btf *libbpf_find_kernel_btf(void)
4397 {
4398 	struct {
4399 		const char *path_fmt;
4400 		bool raw_btf;
4401 	} locations[] = {
4402 		/* try canonical vmlinux BTF through sysfs first */
4403 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4404 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4405 		{ "/boot/vmlinux-%1$s" },
4406 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4407 		{ "/lib/modules/%1$s/build/vmlinux" },
4408 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4409 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4410 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4411 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4412 	};
4413 	char path[PATH_MAX + 1];
4414 	struct utsname buf;
4415 	struct btf *btf;
4416 	int i, err;
4417 
4418 	uname(&buf);
4419 
4420 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4421 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4422 
4423 		if (access(path, R_OK))
4424 			continue;
4425 
4426 		if (locations[i].raw_btf)
4427 			btf = btf__parse_raw(path);
4428 		else
4429 			btf = btf__parse_elf(path, NULL);
4430 		err = libbpf_get_error(btf);
4431 		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4432 		if (err)
4433 			continue;
4434 
4435 		return btf;
4436 	}
4437 
4438 	pr_warn("failed to find valid kernel BTF\n");
4439 	return libbpf_err_ptr(-ESRCH);
4440 }
4441 
4442 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4443 {
4444 	int i, n, err;
4445 
4446 	switch (btf_kind(t)) {
4447 	case BTF_KIND_INT:
4448 	case BTF_KIND_FLOAT:
4449 	case BTF_KIND_ENUM:
4450 		return 0;
4451 
4452 	case BTF_KIND_FWD:
4453 	case BTF_KIND_CONST:
4454 	case BTF_KIND_VOLATILE:
4455 	case BTF_KIND_RESTRICT:
4456 	case BTF_KIND_PTR:
4457 	case BTF_KIND_TYPEDEF:
4458 	case BTF_KIND_FUNC:
4459 	case BTF_KIND_VAR:
4460 		return visit(&t->type, ctx);
4461 
4462 	case BTF_KIND_ARRAY: {
4463 		struct btf_array *a = btf_array(t);
4464 
4465 		err = visit(&a->type, ctx);
4466 		err = err ?: visit(&a->index_type, ctx);
4467 		return err;
4468 	}
4469 
4470 	case BTF_KIND_STRUCT:
4471 	case BTF_KIND_UNION: {
4472 		struct btf_member *m = btf_members(t);
4473 
4474 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4475 			err = visit(&m->type, ctx);
4476 			if (err)
4477 				return err;
4478 		}
4479 		return 0;
4480 	}
4481 
4482 	case BTF_KIND_FUNC_PROTO: {
4483 		struct btf_param *m = btf_params(t);
4484 
4485 		err = visit(&t->type, ctx);
4486 		if (err)
4487 			return err;
4488 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4489 			err = visit(&m->type, ctx);
4490 			if (err)
4491 				return err;
4492 		}
4493 		return 0;
4494 	}
4495 
4496 	case BTF_KIND_DATASEC: {
4497 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4498 
4499 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4500 			err = visit(&m->type, ctx);
4501 			if (err)
4502 				return err;
4503 		}
4504 		return 0;
4505 	}
4506 
4507 	default:
4508 		return -EINVAL;
4509 	}
4510 }
4511 
4512 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4513 {
4514 	int i, n, err;
4515 
4516 	err = visit(&t->name_off, ctx);
4517 	if (err)
4518 		return err;
4519 
4520 	switch (btf_kind(t)) {
4521 	case BTF_KIND_STRUCT:
4522 	case BTF_KIND_UNION: {
4523 		struct btf_member *m = btf_members(t);
4524 
4525 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4526 			err = visit(&m->name_off, ctx);
4527 			if (err)
4528 				return err;
4529 		}
4530 		break;
4531 	}
4532 	case BTF_KIND_ENUM: {
4533 		struct btf_enum *m = btf_enum(t);
4534 
4535 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4536 			err = visit(&m->name_off, ctx);
4537 			if (err)
4538 				return err;
4539 		}
4540 		break;
4541 	}
4542 	case BTF_KIND_FUNC_PROTO: {
4543 		struct btf_param *m = btf_params(t);
4544 
4545 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4546 			err = visit(&m->name_off, ctx);
4547 			if (err)
4548 				return err;
4549 		}
4550 		break;
4551 	}
4552 	default:
4553 		break;
4554 	}
4555 
4556 	return 0;
4557 }
4558 
4559 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4560 {
4561 	const struct btf_ext_info *seg;
4562 	struct btf_ext_info_sec *sec;
4563 	int i, err;
4564 
4565 	seg = &btf_ext->func_info;
4566 	for_each_btf_ext_sec(seg, sec) {
4567 		struct bpf_func_info_min *rec;
4568 
4569 		for_each_btf_ext_rec(seg, sec, i, rec) {
4570 			err = visit(&rec->type_id, ctx);
4571 			if (err < 0)
4572 				return err;
4573 		}
4574 	}
4575 
4576 	seg = &btf_ext->core_relo_info;
4577 	for_each_btf_ext_sec(seg, sec) {
4578 		struct bpf_core_relo *rec;
4579 
4580 		for_each_btf_ext_rec(seg, sec, i, rec) {
4581 			err = visit(&rec->type_id, ctx);
4582 			if (err < 0)
4583 				return err;
4584 		}
4585 	}
4586 
4587 	return 0;
4588 }
4589 
4590 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4591 {
4592 	const struct btf_ext_info *seg;
4593 	struct btf_ext_info_sec *sec;
4594 	int i, err;
4595 
4596 	seg = &btf_ext->func_info;
4597 	for_each_btf_ext_sec(seg, sec) {
4598 		err = visit(&sec->sec_name_off, ctx);
4599 		if (err)
4600 			return err;
4601 	}
4602 
4603 	seg = &btf_ext->line_info;
4604 	for_each_btf_ext_sec(seg, sec) {
4605 		struct bpf_line_info_min *rec;
4606 
4607 		err = visit(&sec->sec_name_off, ctx);
4608 		if (err)
4609 			return err;
4610 
4611 		for_each_btf_ext_rec(seg, sec, i, rec) {
4612 			err = visit(&rec->file_name_off, ctx);
4613 			if (err)
4614 				return err;
4615 			err = visit(&rec->line_off, ctx);
4616 			if (err)
4617 				return err;
4618 		}
4619 	}
4620 
4621 	seg = &btf_ext->core_relo_info;
4622 	for_each_btf_ext_sec(seg, sec) {
4623 		struct bpf_core_relo *rec;
4624 
4625 		err = visit(&sec->sec_name_off, ctx);
4626 		if (err)
4627 			return err;
4628 
4629 		for_each_btf_ext_rec(seg, sec, i, rec) {
4630 			err = visit(&rec->access_str_off, ctx);
4631 			if (err)
4632 				return err;
4633 		}
4634 	}
4635 
4636 	return 0;
4637 }
4638