xref: /openbmc/linux/tools/lib/bpf/btf.c (revision b96c0546)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 
25 #define BTF_MAX_NR_TYPES 0x7fffffffU
26 #define BTF_MAX_STR_OFFSET 0x7fffffffU
27 
28 static struct btf_type btf_void;
29 
30 struct btf {
31 	/* raw BTF data in native endianness */
32 	void *raw_data;
33 	/* raw BTF data in non-native endianness */
34 	void *raw_data_swapped;
35 	__u32 raw_size;
36 	/* whether target endianness differs from the native one */
37 	bool swapped_endian;
38 
39 	/*
40 	 * When BTF is loaded from an ELF or raw memory it is stored
41 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
42 	 * point inside that memory region to their respective parts of BTF
43 	 * representation:
44 	 *
45 	 * +--------------------------------+
46 	 * |  Header  |  Types  |  Strings  |
47 	 * +--------------------------------+
48 	 * ^          ^         ^
49 	 * |          |         |
50 	 * hdr        |         |
51 	 * types_data-+         |
52 	 * strs_data------------+
53 	 *
54 	 * If BTF data is later modified, e.g., due to types added or
55 	 * removed, BTF deduplication performed, etc, this contiguous
56 	 * representation is broken up into three independently allocated
57 	 * memory regions to be able to modify them independently.
58 	 * raw_data is nulled out at that point, but can be later allocated
59 	 * and cached again if user calls btf__get_raw_data(), at which point
60 	 * raw_data will contain a contiguous copy of header, types, and
61 	 * strings:
62 	 *
63 	 * +----------+  +---------+  +-----------+
64 	 * |  Header  |  |  Types  |  |  Strings  |
65 	 * +----------+  +---------+  +-----------+
66 	 * ^             ^            ^
67 	 * |             |            |
68 	 * hdr           |            |
69 	 * types_data----+            |
70 	 * strs_data------------------+
71 	 *
72 	 *               +----------+---------+-----------+
73 	 *               |  Header  |  Types  |  Strings  |
74 	 * raw_data----->+----------+---------+-----------+
75 	 */
76 	struct btf_header *hdr;
77 
78 	void *types_data;
79 	size_t types_data_cap; /* used size stored in hdr->type_len */
80 
81 	/* type ID to `struct btf_type *` lookup index */
82 	__u32 *type_offs;
83 	size_t type_offs_cap;
84 	__u32 nr_types;
85 
86 	void *strs_data;
87 	size_t strs_data_cap; /* used size stored in hdr->str_len */
88 
89 	/* lookup index for each unique string in strings section */
90 	struct hashmap *strs_hash;
91 	/* whether strings are already deduplicated */
92 	bool strs_deduped;
93 	/* BTF object FD, if loaded into kernel */
94 	int fd;
95 
96 	/* Pointer size (in bytes) for a target architecture of this BTF */
97 	int ptr_sz;
98 };
99 
100 static inline __u64 ptr_to_u64(const void *ptr)
101 {
102 	return (__u64) (unsigned long) ptr;
103 }
104 
105 /* Ensure given dynamically allocated memory region pointed to by *data* with
106  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
107  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
108  * are already used. At most *max_cnt* elements can be ever allocated.
109  * If necessary, memory is reallocated and all existing data is copied over,
110  * new pointer to the memory region is stored at *data, new memory region
111  * capacity (in number of elements) is stored in *cap.
112  * On success, memory pointer to the beginning of unused memory is returned.
113  * On error, NULL is returned.
114  */
115 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
116 		  size_t cur_cnt, size_t max_cnt, size_t add_cnt)
117 {
118 	size_t new_cnt;
119 	void *new_data;
120 
121 	if (cur_cnt + add_cnt <= *cap_cnt)
122 		return *data + cur_cnt * elem_sz;
123 
124 	/* requested more than the set limit */
125 	if (cur_cnt + add_cnt > max_cnt)
126 		return NULL;
127 
128 	new_cnt = *cap_cnt;
129 	new_cnt += new_cnt / 4;		  /* expand by 25% */
130 	if (new_cnt < 16)		  /* but at least 16 elements */
131 		new_cnt = 16;
132 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
133 		new_cnt = max_cnt;
134 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
135 		new_cnt = cur_cnt + add_cnt;
136 
137 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
138 	if (!new_data)
139 		return NULL;
140 
141 	/* zero out newly allocated portion of memory */
142 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
143 
144 	*data = new_data;
145 	*cap_cnt = new_cnt;
146 	return new_data + cur_cnt * elem_sz;
147 }
148 
149 /* Ensure given dynamically allocated memory region has enough allocated space
150  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
151  */
152 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
153 {
154 	void *p;
155 
156 	if (need_cnt <= *cap_cnt)
157 		return 0;
158 
159 	p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
160 	if (!p)
161 		return -ENOMEM;
162 
163 	return 0;
164 }
165 
166 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
167 {
168 	__u32 *p;
169 
170 	p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
171 			btf->nr_types + 1, BTF_MAX_NR_TYPES, 1);
172 	if (!p)
173 		return -ENOMEM;
174 
175 	*p = type_off;
176 	return 0;
177 }
178 
179 static void btf_bswap_hdr(struct btf_header *h)
180 {
181 	h->magic = bswap_16(h->magic);
182 	h->hdr_len = bswap_32(h->hdr_len);
183 	h->type_off = bswap_32(h->type_off);
184 	h->type_len = bswap_32(h->type_len);
185 	h->str_off = bswap_32(h->str_off);
186 	h->str_len = bswap_32(h->str_len);
187 }
188 
189 static int btf_parse_hdr(struct btf *btf)
190 {
191 	struct btf_header *hdr = btf->hdr;
192 	__u32 meta_left;
193 
194 	if (btf->raw_size < sizeof(struct btf_header)) {
195 		pr_debug("BTF header not found\n");
196 		return -EINVAL;
197 	}
198 
199 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
200 		btf->swapped_endian = true;
201 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
202 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
203 				bswap_32(hdr->hdr_len));
204 			return -ENOTSUP;
205 		}
206 		btf_bswap_hdr(hdr);
207 	} else if (hdr->magic != BTF_MAGIC) {
208 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
209 		return -EINVAL;
210 	}
211 
212 	meta_left = btf->raw_size - sizeof(*hdr);
213 	if (!meta_left) {
214 		pr_debug("BTF has no data\n");
215 		return -EINVAL;
216 	}
217 
218 	if (meta_left < hdr->type_off) {
219 		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
220 		return -EINVAL;
221 	}
222 
223 	if (meta_left < hdr->str_off) {
224 		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
225 		return -EINVAL;
226 	}
227 
228 	if (hdr->type_off >= hdr->str_off) {
229 		pr_debug("BTF type section offset >= string section offset. No type?\n");
230 		return -EINVAL;
231 	}
232 
233 	if (hdr->type_off & 0x02) {
234 		pr_debug("BTF type section is not aligned to 4 bytes\n");
235 		return -EINVAL;
236 	}
237 
238 	return 0;
239 }
240 
241 static int btf_parse_str_sec(struct btf *btf)
242 {
243 	const struct btf_header *hdr = btf->hdr;
244 	const char *start = btf->strs_data;
245 	const char *end = start + btf->hdr->str_len;
246 
247 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
248 	    start[0] || end[-1]) {
249 		pr_debug("Invalid BTF string section\n");
250 		return -EINVAL;
251 	}
252 
253 	return 0;
254 }
255 
256 static int btf_type_size(const struct btf_type *t)
257 {
258 	const int base_size = sizeof(struct btf_type);
259 	__u16 vlen = btf_vlen(t);
260 
261 	switch (btf_kind(t)) {
262 	case BTF_KIND_FWD:
263 	case BTF_KIND_CONST:
264 	case BTF_KIND_VOLATILE:
265 	case BTF_KIND_RESTRICT:
266 	case BTF_KIND_PTR:
267 	case BTF_KIND_TYPEDEF:
268 	case BTF_KIND_FUNC:
269 		return base_size;
270 	case BTF_KIND_INT:
271 		return base_size + sizeof(__u32);
272 	case BTF_KIND_ENUM:
273 		return base_size + vlen * sizeof(struct btf_enum);
274 	case BTF_KIND_ARRAY:
275 		return base_size + sizeof(struct btf_array);
276 	case BTF_KIND_STRUCT:
277 	case BTF_KIND_UNION:
278 		return base_size + vlen * sizeof(struct btf_member);
279 	case BTF_KIND_FUNC_PROTO:
280 		return base_size + vlen * sizeof(struct btf_param);
281 	case BTF_KIND_VAR:
282 		return base_size + sizeof(struct btf_var);
283 	case BTF_KIND_DATASEC:
284 		return base_size + vlen * sizeof(struct btf_var_secinfo);
285 	default:
286 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
287 		return -EINVAL;
288 	}
289 }
290 
291 static void btf_bswap_type_base(struct btf_type *t)
292 {
293 	t->name_off = bswap_32(t->name_off);
294 	t->info = bswap_32(t->info);
295 	t->type = bswap_32(t->type);
296 }
297 
298 static int btf_bswap_type_rest(struct btf_type *t)
299 {
300 	struct btf_var_secinfo *v;
301 	struct btf_member *m;
302 	struct btf_array *a;
303 	struct btf_param *p;
304 	struct btf_enum *e;
305 	__u16 vlen = btf_vlen(t);
306 	int i;
307 
308 	switch (btf_kind(t)) {
309 	case BTF_KIND_FWD:
310 	case BTF_KIND_CONST:
311 	case BTF_KIND_VOLATILE:
312 	case BTF_KIND_RESTRICT:
313 	case BTF_KIND_PTR:
314 	case BTF_KIND_TYPEDEF:
315 	case BTF_KIND_FUNC:
316 		return 0;
317 	case BTF_KIND_INT:
318 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
319 		return 0;
320 	case BTF_KIND_ENUM:
321 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
322 			e->name_off = bswap_32(e->name_off);
323 			e->val = bswap_32(e->val);
324 		}
325 		return 0;
326 	case BTF_KIND_ARRAY:
327 		a = btf_array(t);
328 		a->type = bswap_32(a->type);
329 		a->index_type = bswap_32(a->index_type);
330 		a->nelems = bswap_32(a->nelems);
331 		return 0;
332 	case BTF_KIND_STRUCT:
333 	case BTF_KIND_UNION:
334 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
335 			m->name_off = bswap_32(m->name_off);
336 			m->type = bswap_32(m->type);
337 			m->offset = bswap_32(m->offset);
338 		}
339 		return 0;
340 	case BTF_KIND_FUNC_PROTO:
341 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
342 			p->name_off = bswap_32(p->name_off);
343 			p->type = bswap_32(p->type);
344 		}
345 		return 0;
346 	case BTF_KIND_VAR:
347 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
348 		return 0;
349 	case BTF_KIND_DATASEC:
350 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
351 			v->type = bswap_32(v->type);
352 			v->offset = bswap_32(v->offset);
353 			v->size = bswap_32(v->size);
354 		}
355 		return 0;
356 	default:
357 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
358 		return -EINVAL;
359 	}
360 }
361 
362 static int btf_parse_type_sec(struct btf *btf)
363 {
364 	struct btf_header *hdr = btf->hdr;
365 	void *next_type = btf->types_data;
366 	void *end_type = next_type + hdr->type_len;
367 	int err, i = 0, type_size;
368 
369 	/* VOID (type_id == 0) is specially handled by btf__get_type_by_id(),
370 	 * so ensure we can never properly use its offset from index by
371 	 * setting it to a large value
372 	 */
373 	err = btf_add_type_idx_entry(btf, UINT_MAX);
374 	if (err)
375 		return err;
376 
377 	while (next_type + sizeof(struct btf_type) <= end_type) {
378 		i++;
379 
380 		if (btf->swapped_endian)
381 			btf_bswap_type_base(next_type);
382 
383 		type_size = btf_type_size(next_type);
384 		if (type_size < 0)
385 			return type_size;
386 		if (next_type + type_size > end_type) {
387 			pr_warn("BTF type [%d] is malformed\n", i);
388 			return -EINVAL;
389 		}
390 
391 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
392 			return -EINVAL;
393 
394 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
395 		if (err)
396 			return err;
397 
398 		next_type += type_size;
399 		btf->nr_types++;
400 	}
401 
402 	if (next_type != end_type) {
403 		pr_warn("BTF types data is malformed\n");
404 		return -EINVAL;
405 	}
406 
407 	return 0;
408 }
409 
410 __u32 btf__get_nr_types(const struct btf *btf)
411 {
412 	return btf->nr_types;
413 }
414 
415 /* internal helper returning non-const pointer to a type */
416 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
417 {
418 	if (type_id == 0)
419 		return &btf_void;
420 
421 	return btf->types_data + btf->type_offs[type_id];
422 }
423 
424 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
425 {
426 	if (type_id > btf->nr_types)
427 		return NULL;
428 	return btf_type_by_id((struct btf *)btf, type_id);
429 }
430 
431 static int determine_ptr_size(const struct btf *btf)
432 {
433 	const struct btf_type *t;
434 	const char *name;
435 	int i;
436 
437 	for (i = 1; i <= btf->nr_types; i++) {
438 		t = btf__type_by_id(btf, i);
439 		if (!btf_is_int(t))
440 			continue;
441 
442 		name = btf__name_by_offset(btf, t->name_off);
443 		if (!name)
444 			continue;
445 
446 		if (strcmp(name, "long int") == 0 ||
447 		    strcmp(name, "long unsigned int") == 0) {
448 			if (t->size != 4 && t->size != 8)
449 				continue;
450 			return t->size;
451 		}
452 	}
453 
454 	return -1;
455 }
456 
457 static size_t btf_ptr_sz(const struct btf *btf)
458 {
459 	if (!btf->ptr_sz)
460 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
461 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
462 }
463 
464 /* Return pointer size this BTF instance assumes. The size is heuristically
465  * determined by looking for 'long' or 'unsigned long' integer type and
466  * recording its size in bytes. If BTF type information doesn't have any such
467  * type, this function returns 0. In the latter case, native architecture's
468  * pointer size is assumed, so will be either 4 or 8, depending on
469  * architecture that libbpf was compiled for. It's possible to override
470  * guessed value by using btf__set_pointer_size() API.
471  */
472 size_t btf__pointer_size(const struct btf *btf)
473 {
474 	if (!btf->ptr_sz)
475 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
476 
477 	if (btf->ptr_sz < 0)
478 		/* not enough BTF type info to guess */
479 		return 0;
480 
481 	return btf->ptr_sz;
482 }
483 
484 /* Override or set pointer size in bytes. Only values of 4 and 8 are
485  * supported.
486  */
487 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
488 {
489 	if (ptr_sz != 4 && ptr_sz != 8)
490 		return -EINVAL;
491 	btf->ptr_sz = ptr_sz;
492 	return 0;
493 }
494 
495 static bool is_host_big_endian(void)
496 {
497 #if __BYTE_ORDER == __LITTLE_ENDIAN
498 	return false;
499 #elif __BYTE_ORDER == __BIG_ENDIAN
500 	return true;
501 #else
502 # error "Unrecognized __BYTE_ORDER__"
503 #endif
504 }
505 
506 enum btf_endianness btf__endianness(const struct btf *btf)
507 {
508 	if (is_host_big_endian())
509 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
510 	else
511 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
512 }
513 
514 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
515 {
516 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
517 		return -EINVAL;
518 
519 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
520 	if (!btf->swapped_endian) {
521 		free(btf->raw_data_swapped);
522 		btf->raw_data_swapped = NULL;
523 	}
524 	return 0;
525 }
526 
527 static bool btf_type_is_void(const struct btf_type *t)
528 {
529 	return t == &btf_void || btf_is_fwd(t);
530 }
531 
532 static bool btf_type_is_void_or_null(const struct btf_type *t)
533 {
534 	return !t || btf_type_is_void(t);
535 }
536 
537 #define MAX_RESOLVE_DEPTH 32
538 
539 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
540 {
541 	const struct btf_array *array;
542 	const struct btf_type *t;
543 	__u32 nelems = 1;
544 	__s64 size = -1;
545 	int i;
546 
547 	t = btf__type_by_id(btf, type_id);
548 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
549 	     i++) {
550 		switch (btf_kind(t)) {
551 		case BTF_KIND_INT:
552 		case BTF_KIND_STRUCT:
553 		case BTF_KIND_UNION:
554 		case BTF_KIND_ENUM:
555 		case BTF_KIND_DATASEC:
556 			size = t->size;
557 			goto done;
558 		case BTF_KIND_PTR:
559 			size = btf_ptr_sz(btf);
560 			goto done;
561 		case BTF_KIND_TYPEDEF:
562 		case BTF_KIND_VOLATILE:
563 		case BTF_KIND_CONST:
564 		case BTF_KIND_RESTRICT:
565 		case BTF_KIND_VAR:
566 			type_id = t->type;
567 			break;
568 		case BTF_KIND_ARRAY:
569 			array = btf_array(t);
570 			if (nelems && array->nelems > UINT32_MAX / nelems)
571 				return -E2BIG;
572 			nelems *= array->nelems;
573 			type_id = array->type;
574 			break;
575 		default:
576 			return -EINVAL;
577 		}
578 
579 		t = btf__type_by_id(btf, type_id);
580 	}
581 
582 done:
583 	if (size < 0)
584 		return -EINVAL;
585 	if (nelems && size > UINT32_MAX / nelems)
586 		return -E2BIG;
587 
588 	return nelems * size;
589 }
590 
591 int btf__align_of(const struct btf *btf, __u32 id)
592 {
593 	const struct btf_type *t = btf__type_by_id(btf, id);
594 	__u16 kind = btf_kind(t);
595 
596 	switch (kind) {
597 	case BTF_KIND_INT:
598 	case BTF_KIND_ENUM:
599 		return min(btf_ptr_sz(btf), (size_t)t->size);
600 	case BTF_KIND_PTR:
601 		return btf_ptr_sz(btf);
602 	case BTF_KIND_TYPEDEF:
603 	case BTF_KIND_VOLATILE:
604 	case BTF_KIND_CONST:
605 	case BTF_KIND_RESTRICT:
606 		return btf__align_of(btf, t->type);
607 	case BTF_KIND_ARRAY:
608 		return btf__align_of(btf, btf_array(t)->type);
609 	case BTF_KIND_STRUCT:
610 	case BTF_KIND_UNION: {
611 		const struct btf_member *m = btf_members(t);
612 		__u16 vlen = btf_vlen(t);
613 		int i, max_align = 1, align;
614 
615 		for (i = 0; i < vlen; i++, m++) {
616 			align = btf__align_of(btf, m->type);
617 			if (align <= 0)
618 				return align;
619 			max_align = max(max_align, align);
620 		}
621 
622 		return max_align;
623 	}
624 	default:
625 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
626 		return 0;
627 	}
628 }
629 
630 int btf__resolve_type(const struct btf *btf, __u32 type_id)
631 {
632 	const struct btf_type *t;
633 	int depth = 0;
634 
635 	t = btf__type_by_id(btf, type_id);
636 	while (depth < MAX_RESOLVE_DEPTH &&
637 	       !btf_type_is_void_or_null(t) &&
638 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
639 		type_id = t->type;
640 		t = btf__type_by_id(btf, type_id);
641 		depth++;
642 	}
643 
644 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
645 		return -EINVAL;
646 
647 	return type_id;
648 }
649 
650 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
651 {
652 	__u32 i;
653 
654 	if (!strcmp(type_name, "void"))
655 		return 0;
656 
657 	for (i = 1; i <= btf->nr_types; i++) {
658 		const struct btf_type *t = btf__type_by_id(btf, i);
659 		const char *name = btf__name_by_offset(btf, t->name_off);
660 
661 		if (name && !strcmp(type_name, name))
662 			return i;
663 	}
664 
665 	return -ENOENT;
666 }
667 
668 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
669 			     __u32 kind)
670 {
671 	__u32 i;
672 
673 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
674 		return 0;
675 
676 	for (i = 1; i <= btf->nr_types; i++) {
677 		const struct btf_type *t = btf__type_by_id(btf, i);
678 		const char *name;
679 
680 		if (btf_kind(t) != kind)
681 			continue;
682 		name = btf__name_by_offset(btf, t->name_off);
683 		if (name && !strcmp(type_name, name))
684 			return i;
685 	}
686 
687 	return -ENOENT;
688 }
689 
690 static bool btf_is_modifiable(const struct btf *btf)
691 {
692 	return (void *)btf->hdr != btf->raw_data;
693 }
694 
695 void btf__free(struct btf *btf)
696 {
697 	if (IS_ERR_OR_NULL(btf))
698 		return;
699 
700 	if (btf->fd >= 0)
701 		close(btf->fd);
702 
703 	if (btf_is_modifiable(btf)) {
704 		/* if BTF was modified after loading, it will have a split
705 		 * in-memory representation for header, types, and strings
706 		 * sections, so we need to free all of them individually. It
707 		 * might still have a cached contiguous raw data present,
708 		 * which will be unconditionally freed below.
709 		 */
710 		free(btf->hdr);
711 		free(btf->types_data);
712 		free(btf->strs_data);
713 	}
714 	free(btf->raw_data);
715 	free(btf->raw_data_swapped);
716 	free(btf->type_offs);
717 	free(btf);
718 }
719 
720 struct btf *btf__new_empty(void)
721 {
722 	struct btf *btf;
723 
724 	btf = calloc(1, sizeof(*btf));
725 	if (!btf)
726 		return ERR_PTR(-ENOMEM);
727 
728 	btf->fd = -1;
729 	btf->ptr_sz = sizeof(void *);
730 	btf->swapped_endian = false;
731 
732 	/* +1 for empty string at offset 0 */
733 	btf->raw_size = sizeof(struct btf_header) + 1;
734 	btf->raw_data = calloc(1, btf->raw_size);
735 	if (!btf->raw_data) {
736 		free(btf);
737 		return ERR_PTR(-ENOMEM);
738 	}
739 
740 	btf->hdr = btf->raw_data;
741 	btf->hdr->hdr_len = sizeof(struct btf_header);
742 	btf->hdr->magic = BTF_MAGIC;
743 	btf->hdr->version = BTF_VERSION;
744 
745 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
746 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
747 	btf->hdr->str_len = 1; /* empty string at offset 0 */
748 
749 	return btf;
750 }
751 
752 struct btf *btf__new(const void *data, __u32 size)
753 {
754 	struct btf *btf;
755 	int err;
756 
757 	btf = calloc(1, sizeof(struct btf));
758 	if (!btf)
759 		return ERR_PTR(-ENOMEM);
760 
761 	btf->raw_data = malloc(size);
762 	if (!btf->raw_data) {
763 		err = -ENOMEM;
764 		goto done;
765 	}
766 	memcpy(btf->raw_data, data, size);
767 	btf->raw_size = size;
768 
769 	btf->hdr = btf->raw_data;
770 	err = btf_parse_hdr(btf);
771 	if (err)
772 		goto done;
773 
774 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
775 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
776 
777 	err = btf_parse_str_sec(btf);
778 	err = err ?: btf_parse_type_sec(btf);
779 	if (err)
780 		goto done;
781 
782 	btf->fd = -1;
783 
784 done:
785 	if (err) {
786 		btf__free(btf);
787 		return ERR_PTR(err);
788 	}
789 
790 	return btf;
791 }
792 
793 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
794 {
795 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
796 	int err = 0, fd = -1, idx = 0;
797 	struct btf *btf = NULL;
798 	Elf_Scn *scn = NULL;
799 	Elf *elf = NULL;
800 	GElf_Ehdr ehdr;
801 
802 	if (elf_version(EV_CURRENT) == EV_NONE) {
803 		pr_warn("failed to init libelf for %s\n", path);
804 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
805 	}
806 
807 	fd = open(path, O_RDONLY);
808 	if (fd < 0) {
809 		err = -errno;
810 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
811 		return ERR_PTR(err);
812 	}
813 
814 	err = -LIBBPF_ERRNO__FORMAT;
815 
816 	elf = elf_begin(fd, ELF_C_READ, NULL);
817 	if (!elf) {
818 		pr_warn("failed to open %s as ELF file\n", path);
819 		goto done;
820 	}
821 	if (!gelf_getehdr(elf, &ehdr)) {
822 		pr_warn("failed to get EHDR from %s\n", path);
823 		goto done;
824 	}
825 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
826 		pr_warn("failed to get e_shstrndx from %s\n", path);
827 		goto done;
828 	}
829 
830 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
831 		GElf_Shdr sh;
832 		char *name;
833 
834 		idx++;
835 		if (gelf_getshdr(scn, &sh) != &sh) {
836 			pr_warn("failed to get section(%d) header from %s\n",
837 				idx, path);
838 			goto done;
839 		}
840 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
841 		if (!name) {
842 			pr_warn("failed to get section(%d) name from %s\n",
843 				idx, path);
844 			goto done;
845 		}
846 		if (strcmp(name, BTF_ELF_SEC) == 0) {
847 			btf_data = elf_getdata(scn, 0);
848 			if (!btf_data) {
849 				pr_warn("failed to get section(%d, %s) data from %s\n",
850 					idx, name, path);
851 				goto done;
852 			}
853 			continue;
854 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
855 			btf_ext_data = elf_getdata(scn, 0);
856 			if (!btf_ext_data) {
857 				pr_warn("failed to get section(%d, %s) data from %s\n",
858 					idx, name, path);
859 				goto done;
860 			}
861 			continue;
862 		}
863 	}
864 
865 	err = 0;
866 
867 	if (!btf_data) {
868 		err = -ENOENT;
869 		goto done;
870 	}
871 	btf = btf__new(btf_data->d_buf, btf_data->d_size);
872 	if (IS_ERR(btf))
873 		goto done;
874 
875 	switch (gelf_getclass(elf)) {
876 	case ELFCLASS32:
877 		btf__set_pointer_size(btf, 4);
878 		break;
879 	case ELFCLASS64:
880 		btf__set_pointer_size(btf, 8);
881 		break;
882 	default:
883 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
884 		break;
885 	}
886 
887 	if (btf_ext && btf_ext_data) {
888 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
889 					btf_ext_data->d_size);
890 		if (IS_ERR(*btf_ext))
891 			goto done;
892 	} else if (btf_ext) {
893 		*btf_ext = NULL;
894 	}
895 done:
896 	if (elf)
897 		elf_end(elf);
898 	close(fd);
899 
900 	if (err)
901 		return ERR_PTR(err);
902 	/*
903 	 * btf is always parsed before btf_ext, so no need to clean up
904 	 * btf_ext, if btf loading failed
905 	 */
906 	if (IS_ERR(btf))
907 		return btf;
908 	if (btf_ext && IS_ERR(*btf_ext)) {
909 		btf__free(btf);
910 		err = PTR_ERR(*btf_ext);
911 		return ERR_PTR(err);
912 	}
913 	return btf;
914 }
915 
916 struct btf *btf__parse_raw(const char *path)
917 {
918 	struct btf *btf = NULL;
919 	void *data = NULL;
920 	FILE *f = NULL;
921 	__u16 magic;
922 	int err = 0;
923 	long sz;
924 
925 	f = fopen(path, "rb");
926 	if (!f) {
927 		err = -errno;
928 		goto err_out;
929 	}
930 
931 	/* check BTF magic */
932 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
933 		err = -EIO;
934 		goto err_out;
935 	}
936 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
937 		/* definitely not a raw BTF */
938 		err = -EPROTO;
939 		goto err_out;
940 	}
941 
942 	/* get file size */
943 	if (fseek(f, 0, SEEK_END)) {
944 		err = -errno;
945 		goto err_out;
946 	}
947 	sz = ftell(f);
948 	if (sz < 0) {
949 		err = -errno;
950 		goto err_out;
951 	}
952 	/* rewind to the start */
953 	if (fseek(f, 0, SEEK_SET)) {
954 		err = -errno;
955 		goto err_out;
956 	}
957 
958 	/* pre-alloc memory and read all of BTF data */
959 	data = malloc(sz);
960 	if (!data) {
961 		err = -ENOMEM;
962 		goto err_out;
963 	}
964 	if (fread(data, 1, sz, f) < sz) {
965 		err = -EIO;
966 		goto err_out;
967 	}
968 
969 	/* finally parse BTF data */
970 	btf = btf__new(data, sz);
971 
972 err_out:
973 	free(data);
974 	if (f)
975 		fclose(f);
976 	return err ? ERR_PTR(err) : btf;
977 }
978 
979 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
980 {
981 	struct btf *btf;
982 
983 	if (btf_ext)
984 		*btf_ext = NULL;
985 
986 	btf = btf__parse_raw(path);
987 	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
988 		return btf;
989 
990 	return btf__parse_elf(path, btf_ext);
991 }
992 
993 static int compare_vsi_off(const void *_a, const void *_b)
994 {
995 	const struct btf_var_secinfo *a = _a;
996 	const struct btf_var_secinfo *b = _b;
997 
998 	return a->offset - b->offset;
999 }
1000 
1001 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1002 			     struct btf_type *t)
1003 {
1004 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1005 	const char *name = btf__name_by_offset(btf, t->name_off);
1006 	const struct btf_type *t_var;
1007 	struct btf_var_secinfo *vsi;
1008 	const struct btf_var *var;
1009 	int ret;
1010 
1011 	if (!name) {
1012 		pr_debug("No name found in string section for DATASEC kind.\n");
1013 		return -ENOENT;
1014 	}
1015 
1016 	/* .extern datasec size and var offsets were set correctly during
1017 	 * extern collection step, so just skip straight to sorting variables
1018 	 */
1019 	if (t->size)
1020 		goto sort_vars;
1021 
1022 	ret = bpf_object__section_size(obj, name, &size);
1023 	if (ret || !size || (t->size && t->size != size)) {
1024 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1025 		return -ENOENT;
1026 	}
1027 
1028 	t->size = size;
1029 
1030 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1031 		t_var = btf__type_by_id(btf, vsi->type);
1032 		var = btf_var(t_var);
1033 
1034 		if (!btf_is_var(t_var)) {
1035 			pr_debug("Non-VAR type seen in section %s\n", name);
1036 			return -EINVAL;
1037 		}
1038 
1039 		if (var->linkage == BTF_VAR_STATIC)
1040 			continue;
1041 
1042 		name = btf__name_by_offset(btf, t_var->name_off);
1043 		if (!name) {
1044 			pr_debug("No name found in string section for VAR kind\n");
1045 			return -ENOENT;
1046 		}
1047 
1048 		ret = bpf_object__variable_offset(obj, name, &off);
1049 		if (ret) {
1050 			pr_debug("No offset found in symbol table for VAR %s\n",
1051 				 name);
1052 			return -ENOENT;
1053 		}
1054 
1055 		vsi->offset = off;
1056 	}
1057 
1058 sort_vars:
1059 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1060 	return 0;
1061 }
1062 
1063 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1064 {
1065 	int err = 0;
1066 	__u32 i;
1067 
1068 	for (i = 1; i <= btf->nr_types; i++) {
1069 		struct btf_type *t = btf_type_by_id(btf, i);
1070 
1071 		/* Loader needs to fix up some of the things compiler
1072 		 * couldn't get its hands on while emitting BTF. This
1073 		 * is section size and global variable offset. We use
1074 		 * the info from the ELF itself for this purpose.
1075 		 */
1076 		if (btf_is_datasec(t)) {
1077 			err = btf_fixup_datasec(obj, btf, t);
1078 			if (err)
1079 				break;
1080 		}
1081 	}
1082 
1083 	return err;
1084 }
1085 
1086 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1087 
1088 int btf__load(struct btf *btf)
1089 {
1090 	__u32 log_buf_size = 0, raw_size;
1091 	char *log_buf = NULL;
1092 	void *raw_data;
1093 	int err = 0;
1094 
1095 	if (btf->fd >= 0)
1096 		return -EEXIST;
1097 
1098 retry_load:
1099 	if (log_buf_size) {
1100 		log_buf = malloc(log_buf_size);
1101 		if (!log_buf)
1102 			return -ENOMEM;
1103 
1104 		*log_buf = 0;
1105 	}
1106 
1107 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1108 	if (!raw_data) {
1109 		err = -ENOMEM;
1110 		goto done;
1111 	}
1112 	/* cache native raw data representation */
1113 	btf->raw_size = raw_size;
1114 	btf->raw_data = raw_data;
1115 
1116 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1117 	if (btf->fd < 0) {
1118 		if (!log_buf || errno == ENOSPC) {
1119 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1120 					   log_buf_size << 1);
1121 			free(log_buf);
1122 			goto retry_load;
1123 		}
1124 
1125 		err = -errno;
1126 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1127 		if (*log_buf)
1128 			pr_warn("%s\n", log_buf);
1129 		goto done;
1130 	}
1131 
1132 done:
1133 	free(log_buf);
1134 	return err;
1135 }
1136 
1137 int btf__fd(const struct btf *btf)
1138 {
1139 	return btf->fd;
1140 }
1141 
1142 void btf__set_fd(struct btf *btf, int fd)
1143 {
1144 	btf->fd = fd;
1145 }
1146 
1147 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1148 {
1149 	struct btf_header *hdr = btf->hdr;
1150 	struct btf_type *t;
1151 	void *data, *p;
1152 	__u32 data_sz;
1153 	int i;
1154 
1155 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1156 	if (data) {
1157 		*size = btf->raw_size;
1158 		return data;
1159 	}
1160 
1161 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1162 	data = calloc(1, data_sz);
1163 	if (!data)
1164 		return NULL;
1165 	p = data;
1166 
1167 	memcpy(p, hdr, hdr->hdr_len);
1168 	if (swap_endian)
1169 		btf_bswap_hdr(p);
1170 	p += hdr->hdr_len;
1171 
1172 	memcpy(p, btf->types_data, hdr->type_len);
1173 	if (swap_endian) {
1174 		for (i = 1; i <= btf->nr_types; i++) {
1175 			t = p  + btf->type_offs[i];
1176 			/* btf_bswap_type_rest() relies on native t->info, so
1177 			 * we swap base type info after we swapped all the
1178 			 * additional information
1179 			 */
1180 			if (btf_bswap_type_rest(t))
1181 				goto err_out;
1182 			btf_bswap_type_base(t);
1183 		}
1184 	}
1185 	p += hdr->type_len;
1186 
1187 	memcpy(p, btf->strs_data, hdr->str_len);
1188 	p += hdr->str_len;
1189 
1190 	*size = data_sz;
1191 	return data;
1192 err_out:
1193 	free(data);
1194 	return NULL;
1195 }
1196 
1197 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1198 {
1199 	struct btf *btf = (struct btf *)btf_ro;
1200 	__u32 data_sz;
1201 	void *data;
1202 
1203 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1204 	if (!data)
1205 		return NULL;
1206 
1207 	btf->raw_size = data_sz;
1208 	if (btf->swapped_endian)
1209 		btf->raw_data_swapped = data;
1210 	else
1211 		btf->raw_data = data;
1212 	*size = data_sz;
1213 	return data;
1214 }
1215 
1216 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1217 {
1218 	if (offset < btf->hdr->str_len)
1219 		return btf->strs_data + offset;
1220 	else
1221 		return NULL;
1222 }
1223 
1224 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1225 {
1226 	return btf__str_by_offset(btf, offset);
1227 }
1228 
1229 int btf__get_from_id(__u32 id, struct btf **btf)
1230 {
1231 	struct bpf_btf_info btf_info = { 0 };
1232 	__u32 len = sizeof(btf_info);
1233 	__u32 last_size;
1234 	int btf_fd;
1235 	void *ptr;
1236 	int err;
1237 
1238 	err = 0;
1239 	*btf = NULL;
1240 	btf_fd = bpf_btf_get_fd_by_id(id);
1241 	if (btf_fd < 0)
1242 		return 0;
1243 
1244 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1245 	 * let's start with a sane default - 4KiB here - and resize it only if
1246 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1247 	 */
1248 	btf_info.btf_size = 4096;
1249 	last_size = btf_info.btf_size;
1250 	ptr = malloc(last_size);
1251 	if (!ptr) {
1252 		err = -ENOMEM;
1253 		goto exit_free;
1254 	}
1255 
1256 	memset(ptr, 0, last_size);
1257 	btf_info.btf = ptr_to_u64(ptr);
1258 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1259 
1260 	if (!err && btf_info.btf_size > last_size) {
1261 		void *temp_ptr;
1262 
1263 		last_size = btf_info.btf_size;
1264 		temp_ptr = realloc(ptr, last_size);
1265 		if (!temp_ptr) {
1266 			err = -ENOMEM;
1267 			goto exit_free;
1268 		}
1269 		ptr = temp_ptr;
1270 		memset(ptr, 0, last_size);
1271 		btf_info.btf = ptr_to_u64(ptr);
1272 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1273 	}
1274 
1275 	if (err || btf_info.btf_size > last_size) {
1276 		err = errno;
1277 		goto exit_free;
1278 	}
1279 
1280 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
1281 	if (IS_ERR(*btf)) {
1282 		err = PTR_ERR(*btf);
1283 		*btf = NULL;
1284 	}
1285 
1286 exit_free:
1287 	close(btf_fd);
1288 	free(ptr);
1289 
1290 	return err;
1291 }
1292 
1293 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1294 			 __u32 expected_key_size, __u32 expected_value_size,
1295 			 __u32 *key_type_id, __u32 *value_type_id)
1296 {
1297 	const struct btf_type *container_type;
1298 	const struct btf_member *key, *value;
1299 	const size_t max_name = 256;
1300 	char container_name[max_name];
1301 	__s64 key_size, value_size;
1302 	__s32 container_id;
1303 
1304 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1305 	    max_name) {
1306 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1307 			map_name, map_name);
1308 		return -EINVAL;
1309 	}
1310 
1311 	container_id = btf__find_by_name(btf, container_name);
1312 	if (container_id < 0) {
1313 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1314 			 map_name, container_name);
1315 		return container_id;
1316 	}
1317 
1318 	container_type = btf__type_by_id(btf, container_id);
1319 	if (!container_type) {
1320 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1321 			map_name, container_id);
1322 		return -EINVAL;
1323 	}
1324 
1325 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1326 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1327 			map_name, container_name);
1328 		return -EINVAL;
1329 	}
1330 
1331 	key = btf_members(container_type);
1332 	value = key + 1;
1333 
1334 	key_size = btf__resolve_size(btf, key->type);
1335 	if (key_size < 0) {
1336 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1337 		return key_size;
1338 	}
1339 
1340 	if (expected_key_size != key_size) {
1341 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1342 			map_name, (__u32)key_size, expected_key_size);
1343 		return -EINVAL;
1344 	}
1345 
1346 	value_size = btf__resolve_size(btf, value->type);
1347 	if (value_size < 0) {
1348 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1349 		return value_size;
1350 	}
1351 
1352 	if (expected_value_size != value_size) {
1353 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1354 			map_name, (__u32)value_size, expected_value_size);
1355 		return -EINVAL;
1356 	}
1357 
1358 	*key_type_id = key->type;
1359 	*value_type_id = value->type;
1360 
1361 	return 0;
1362 }
1363 
1364 static size_t strs_hash_fn(const void *key, void *ctx)
1365 {
1366 	struct btf *btf = ctx;
1367 	const char *str = btf->strs_data + (long)key;
1368 
1369 	return str_hash(str);
1370 }
1371 
1372 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx)
1373 {
1374 	struct btf *btf = ctx;
1375 	const char *str1 = btf->strs_data + (long)key1;
1376 	const char *str2 = btf->strs_data + (long)key2;
1377 
1378 	return strcmp(str1, str2) == 0;
1379 }
1380 
1381 static void btf_invalidate_raw_data(struct btf *btf)
1382 {
1383 	if (btf->raw_data) {
1384 		free(btf->raw_data);
1385 		btf->raw_data = NULL;
1386 	}
1387 	if (btf->raw_data_swapped) {
1388 		free(btf->raw_data_swapped);
1389 		btf->raw_data_swapped = NULL;
1390 	}
1391 }
1392 
1393 /* Ensure BTF is ready to be modified (by splitting into a three memory
1394  * regions for header, types, and strings). Also invalidate cached
1395  * raw_data, if any.
1396  */
1397 static int btf_ensure_modifiable(struct btf *btf)
1398 {
1399 	void *hdr, *types, *strs, *strs_end, *s;
1400 	struct hashmap *hash = NULL;
1401 	long off;
1402 	int err;
1403 
1404 	if (btf_is_modifiable(btf)) {
1405 		/* any BTF modification invalidates raw_data */
1406 		btf_invalidate_raw_data(btf);
1407 		return 0;
1408 	}
1409 
1410 	/* split raw data into three memory regions */
1411 	hdr = malloc(btf->hdr->hdr_len);
1412 	types = malloc(btf->hdr->type_len);
1413 	strs = malloc(btf->hdr->str_len);
1414 	if (!hdr || !types || !strs)
1415 		goto err_out;
1416 
1417 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1418 	memcpy(types, btf->types_data, btf->hdr->type_len);
1419 	memcpy(strs, btf->strs_data, btf->hdr->str_len);
1420 
1421 	/* build lookup index for all strings */
1422 	hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf);
1423 	if (IS_ERR(hash)) {
1424 		err = PTR_ERR(hash);
1425 		hash = NULL;
1426 		goto err_out;
1427 	}
1428 
1429 	strs_end = strs + btf->hdr->str_len;
1430 	for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) {
1431 		/* hashmap__add() returns EEXIST if string with the same
1432 		 * content already is in the hash map
1433 		 */
1434 		err = hashmap__add(hash, (void *)off, (void *)off);
1435 		if (err == -EEXIST)
1436 			continue; /* duplicate */
1437 		if (err)
1438 			goto err_out;
1439 	}
1440 
1441 	/* only when everything was successful, update internal state */
1442 	btf->hdr = hdr;
1443 	btf->types_data = types;
1444 	btf->types_data_cap = btf->hdr->type_len;
1445 	btf->strs_data = strs;
1446 	btf->strs_data_cap = btf->hdr->str_len;
1447 	btf->strs_hash = hash;
1448 	/* if BTF was created from scratch, all strings are guaranteed to be
1449 	 * unique and deduplicated
1450 	 */
1451 	btf->strs_deduped = btf->hdr->str_len <= 1;
1452 
1453 	/* invalidate raw_data representation */
1454 	btf_invalidate_raw_data(btf);
1455 
1456 	return 0;
1457 
1458 err_out:
1459 	hashmap__free(hash);
1460 	free(hdr);
1461 	free(types);
1462 	free(strs);
1463 	return -ENOMEM;
1464 }
1465 
1466 static void *btf_add_str_mem(struct btf *btf, size_t add_sz)
1467 {
1468 	return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1,
1469 			   btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz);
1470 }
1471 
1472 /* Find an offset in BTF string section that corresponds to a given string *s*.
1473  * Returns:
1474  *   - >0 offset into string section, if string is found;
1475  *   - -ENOENT, if string is not in the string section;
1476  *   - <0, on any other error.
1477  */
1478 int btf__find_str(struct btf *btf, const char *s)
1479 {
1480 	long old_off, new_off, len;
1481 	void *p;
1482 
1483 	/* BTF needs to be in a modifiable state to build string lookup index */
1484 	if (btf_ensure_modifiable(btf))
1485 		return -ENOMEM;
1486 
1487 	/* see btf__add_str() for why we do this */
1488 	len = strlen(s) + 1;
1489 	p = btf_add_str_mem(btf, len);
1490 	if (!p)
1491 		return -ENOMEM;
1492 
1493 	new_off = btf->hdr->str_len;
1494 	memcpy(p, s, len);
1495 
1496 	if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off))
1497 		return old_off;
1498 
1499 	return -ENOENT;
1500 }
1501 
1502 /* Add a string s to the BTF string section.
1503  * Returns:
1504  *   - > 0 offset into string section, on success;
1505  *   - < 0, on error.
1506  */
1507 int btf__add_str(struct btf *btf, const char *s)
1508 {
1509 	long old_off, new_off, len;
1510 	void *p;
1511 	int err;
1512 
1513 	if (btf_ensure_modifiable(btf))
1514 		return -ENOMEM;
1515 
1516 	/* Hashmap keys are always offsets within btf->strs_data, so to even
1517 	 * look up some string from the "outside", we need to first append it
1518 	 * at the end, so that it can be addressed with an offset. Luckily,
1519 	 * until btf->hdr->str_len is incremented, that string is just a piece
1520 	 * of garbage for the rest of BTF code, so no harm, no foul. On the
1521 	 * other hand, if the string is unique, it's already appended and
1522 	 * ready to be used, only a simple btf->hdr->str_len increment away.
1523 	 */
1524 	len = strlen(s) + 1;
1525 	p = btf_add_str_mem(btf, len);
1526 	if (!p)
1527 		return -ENOMEM;
1528 
1529 	new_off = btf->hdr->str_len;
1530 	memcpy(p, s, len);
1531 
1532 	/* Now attempt to add the string, but only if the string with the same
1533 	 * contents doesn't exist already (HASHMAP_ADD strategy). If such
1534 	 * string exists, we'll get its offset in old_off (that's old_key).
1535 	 */
1536 	err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off,
1537 			      HASHMAP_ADD, (const void **)&old_off, NULL);
1538 	if (err == -EEXIST)
1539 		return old_off; /* duplicated string, return existing offset */
1540 	if (err)
1541 		return err;
1542 
1543 	btf->hdr->str_len += len; /* new unique string, adjust data length */
1544 	return new_off;
1545 }
1546 
1547 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1548 {
1549 	return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1550 			   btf->hdr->type_len, UINT_MAX, add_sz);
1551 }
1552 
1553 static __u32 btf_type_info(int kind, int vlen, int kflag)
1554 {
1555 	return (kflag << 31) | (kind << 24) | vlen;
1556 }
1557 
1558 static void btf_type_inc_vlen(struct btf_type *t)
1559 {
1560 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1561 }
1562 
1563 /*
1564  * Append new BTF_KIND_INT type with:
1565  *   - *name* - non-empty, non-NULL type name;
1566  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1567  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1568  * Returns:
1569  *   - >0, type ID of newly added BTF type;
1570  *   - <0, on error.
1571  */
1572 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1573 {
1574 	struct btf_type *t;
1575 	int sz, err, name_off;
1576 
1577 	/* non-empty name */
1578 	if (!name || !name[0])
1579 		return -EINVAL;
1580 	/* byte_sz must be power of 2 */
1581 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1582 		return -EINVAL;
1583 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1584 		return -EINVAL;
1585 
1586 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1587 	if (btf_ensure_modifiable(btf))
1588 		return -ENOMEM;
1589 
1590 	sz = sizeof(struct btf_type) + sizeof(int);
1591 	t = btf_add_type_mem(btf, sz);
1592 	if (!t)
1593 		return -ENOMEM;
1594 
1595 	/* if something goes wrong later, we might end up with an extra string,
1596 	 * but that shouldn't be a problem, because BTF can't be constructed
1597 	 * completely anyway and will most probably be just discarded
1598 	 */
1599 	name_off = btf__add_str(btf, name);
1600 	if (name_off < 0)
1601 		return name_off;
1602 
1603 	t->name_off = name_off;
1604 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1605 	t->size = byte_sz;
1606 	/* set INT info, we don't allow setting legacy bit offset/size */
1607 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1608 
1609 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1610 	if (err)
1611 		return err;
1612 
1613 	btf->hdr->type_len += sz;
1614 	btf->hdr->str_off += sz;
1615 	btf->nr_types++;
1616 	return btf->nr_types;
1617 }
1618 
1619 /* it's completely legal to append BTF types with type IDs pointing forward to
1620  * types that haven't been appended yet, so we only make sure that id looks
1621  * sane, we can't guarantee that ID will always be valid
1622  */
1623 static int validate_type_id(int id)
1624 {
1625 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1626 		return -EINVAL;
1627 	return 0;
1628 }
1629 
1630 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1631 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1632 {
1633 	struct btf_type *t;
1634 	int sz, name_off = 0, err;
1635 
1636 	if (validate_type_id(ref_type_id))
1637 		return -EINVAL;
1638 
1639 	if (btf_ensure_modifiable(btf))
1640 		return -ENOMEM;
1641 
1642 	sz = sizeof(struct btf_type);
1643 	t = btf_add_type_mem(btf, sz);
1644 	if (!t)
1645 		return -ENOMEM;
1646 
1647 	if (name && name[0]) {
1648 		name_off = btf__add_str(btf, name);
1649 		if (name_off < 0)
1650 			return name_off;
1651 	}
1652 
1653 	t->name_off = name_off;
1654 	t->info = btf_type_info(kind, 0, 0);
1655 	t->type = ref_type_id;
1656 
1657 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1658 	if (err)
1659 		return err;
1660 
1661 	btf->hdr->type_len += sz;
1662 	btf->hdr->str_off += sz;
1663 	btf->nr_types++;
1664 	return btf->nr_types;
1665 }
1666 
1667 /*
1668  * Append new BTF_KIND_PTR type with:
1669  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1670  * Returns:
1671  *   - >0, type ID of newly added BTF type;
1672  *   - <0, on error.
1673  */
1674 int btf__add_ptr(struct btf *btf, int ref_type_id)
1675 {
1676 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1677 }
1678 
1679 /*
1680  * Append new BTF_KIND_ARRAY type with:
1681  *   - *index_type_id* - type ID of the type describing array index;
1682  *   - *elem_type_id* - type ID of the type describing array element;
1683  *   - *nr_elems* - the size of the array;
1684  * Returns:
1685  *   - >0, type ID of newly added BTF type;
1686  *   - <0, on error.
1687  */
1688 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1689 {
1690 	struct btf_type *t;
1691 	struct btf_array *a;
1692 	int sz, err;
1693 
1694 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1695 		return -EINVAL;
1696 
1697 	if (btf_ensure_modifiable(btf))
1698 		return -ENOMEM;
1699 
1700 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1701 	t = btf_add_type_mem(btf, sz);
1702 	if (!t)
1703 		return -ENOMEM;
1704 
1705 	t->name_off = 0;
1706 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1707 	t->size = 0;
1708 
1709 	a = btf_array(t);
1710 	a->type = elem_type_id;
1711 	a->index_type = index_type_id;
1712 	a->nelems = nr_elems;
1713 
1714 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1715 	if (err)
1716 		return err;
1717 
1718 	btf->hdr->type_len += sz;
1719 	btf->hdr->str_off += sz;
1720 	btf->nr_types++;
1721 	return btf->nr_types;
1722 }
1723 
1724 /* generic STRUCT/UNION append function */
1725 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1726 {
1727 	struct btf_type *t;
1728 	int sz, err, name_off = 0;
1729 
1730 	if (btf_ensure_modifiable(btf))
1731 		return -ENOMEM;
1732 
1733 	sz = sizeof(struct btf_type);
1734 	t = btf_add_type_mem(btf, sz);
1735 	if (!t)
1736 		return -ENOMEM;
1737 
1738 	if (name && name[0]) {
1739 		name_off = btf__add_str(btf, name);
1740 		if (name_off < 0)
1741 			return name_off;
1742 	}
1743 
1744 	/* start out with vlen=0 and no kflag; this will be adjusted when
1745 	 * adding each member
1746 	 */
1747 	t->name_off = name_off;
1748 	t->info = btf_type_info(kind, 0, 0);
1749 	t->size = bytes_sz;
1750 
1751 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1752 	if (err)
1753 		return err;
1754 
1755 	btf->hdr->type_len += sz;
1756 	btf->hdr->str_off += sz;
1757 	btf->nr_types++;
1758 	return btf->nr_types;
1759 }
1760 
1761 /*
1762  * Append new BTF_KIND_STRUCT type with:
1763  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1764  *   - *byte_sz* - size of the struct, in bytes;
1765  *
1766  * Struct initially has no fields in it. Fields can be added by
1767  * btf__add_field() right after btf__add_struct() succeeds.
1768  *
1769  * Returns:
1770  *   - >0, type ID of newly added BTF type;
1771  *   - <0, on error.
1772  */
1773 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1774 {
1775 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1776 }
1777 
1778 /*
1779  * Append new BTF_KIND_UNION type with:
1780  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1781  *   - *byte_sz* - size of the union, in bytes;
1782  *
1783  * Union initially has no fields in it. Fields can be added by
1784  * btf__add_field() right after btf__add_union() succeeds. All fields
1785  * should have *bit_offset* of 0.
1786  *
1787  * Returns:
1788  *   - >0, type ID of newly added BTF type;
1789  *   - <0, on error.
1790  */
1791 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1792 {
1793 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1794 }
1795 
1796 /*
1797  * Append new field for the current STRUCT/UNION type with:
1798  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1799  *   - *type_id* - type ID for the type describing field type;
1800  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1801  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1802  * Returns:
1803  *   -  0, on success;
1804  *   - <0, on error.
1805  */
1806 int btf__add_field(struct btf *btf, const char *name, int type_id,
1807 		   __u32 bit_offset, __u32 bit_size)
1808 {
1809 	struct btf_type *t;
1810 	struct btf_member *m;
1811 	bool is_bitfield;
1812 	int sz, name_off = 0;
1813 
1814 	/* last type should be union/struct */
1815 	if (btf->nr_types == 0)
1816 		return -EINVAL;
1817 	t = btf_type_by_id(btf, btf->nr_types);
1818 	if (!btf_is_composite(t))
1819 		return -EINVAL;
1820 
1821 	if (validate_type_id(type_id))
1822 		return -EINVAL;
1823 	/* best-effort bit field offset/size enforcement */
1824 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1825 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1826 		return -EINVAL;
1827 
1828 	/* only offset 0 is allowed for unions */
1829 	if (btf_is_union(t) && bit_offset)
1830 		return -EINVAL;
1831 
1832 	/* decompose and invalidate raw data */
1833 	if (btf_ensure_modifiable(btf))
1834 		return -ENOMEM;
1835 
1836 	sz = sizeof(struct btf_member);
1837 	m = btf_add_type_mem(btf, sz);
1838 	if (!m)
1839 		return -ENOMEM;
1840 
1841 	if (name && name[0]) {
1842 		name_off = btf__add_str(btf, name);
1843 		if (name_off < 0)
1844 			return name_off;
1845 	}
1846 
1847 	m->name_off = name_off;
1848 	m->type = type_id;
1849 	m->offset = bit_offset | (bit_size << 24);
1850 
1851 	/* btf_add_type_mem can invalidate t pointer */
1852 	t = btf_type_by_id(btf, btf->nr_types);
1853 	/* update parent type's vlen and kflag */
1854 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1855 
1856 	btf->hdr->type_len += sz;
1857 	btf->hdr->str_off += sz;
1858 	return 0;
1859 }
1860 
1861 /*
1862  * Append new BTF_KIND_ENUM type with:
1863  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1864  *   - *byte_sz* - size of the enum, in bytes.
1865  *
1866  * Enum initially has no enum values in it (and corresponds to enum forward
1867  * declaration). Enumerator values can be added by btf__add_enum_value()
1868  * immediately after btf__add_enum() succeeds.
1869  *
1870  * Returns:
1871  *   - >0, type ID of newly added BTF type;
1872  *   - <0, on error.
1873  */
1874 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
1875 {
1876 	struct btf_type *t;
1877 	int sz, err, name_off = 0;
1878 
1879 	/* byte_sz must be power of 2 */
1880 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
1881 		return -EINVAL;
1882 
1883 	if (btf_ensure_modifiable(btf))
1884 		return -ENOMEM;
1885 
1886 	sz = sizeof(struct btf_type);
1887 	t = btf_add_type_mem(btf, sz);
1888 	if (!t)
1889 		return -ENOMEM;
1890 
1891 	if (name && name[0]) {
1892 		name_off = btf__add_str(btf, name);
1893 		if (name_off < 0)
1894 			return name_off;
1895 	}
1896 
1897 	/* start out with vlen=0; it will be adjusted when adding enum values */
1898 	t->name_off = name_off;
1899 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
1900 	t->size = byte_sz;
1901 
1902 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1903 	if (err)
1904 		return err;
1905 
1906 	btf->hdr->type_len += sz;
1907 	btf->hdr->str_off += sz;
1908 	btf->nr_types++;
1909 	return btf->nr_types;
1910 }
1911 
1912 /*
1913  * Append new enum value for the current ENUM type with:
1914  *   - *name* - name of the enumerator value, can't be NULL or empty;
1915  *   - *value* - integer value corresponding to enum value *name*;
1916  * Returns:
1917  *   -  0, on success;
1918  *   - <0, on error.
1919  */
1920 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
1921 {
1922 	struct btf_type *t;
1923 	struct btf_enum *v;
1924 	int sz, name_off;
1925 
1926 	/* last type should be BTF_KIND_ENUM */
1927 	if (btf->nr_types == 0)
1928 		return -EINVAL;
1929 	t = btf_type_by_id(btf, btf->nr_types);
1930 	if (!btf_is_enum(t))
1931 		return -EINVAL;
1932 
1933 	/* non-empty name */
1934 	if (!name || !name[0])
1935 		return -EINVAL;
1936 	if (value < INT_MIN || value > UINT_MAX)
1937 		return -E2BIG;
1938 
1939 	/* decompose and invalidate raw data */
1940 	if (btf_ensure_modifiable(btf))
1941 		return -ENOMEM;
1942 
1943 	sz = sizeof(struct btf_enum);
1944 	v = btf_add_type_mem(btf, sz);
1945 	if (!v)
1946 		return -ENOMEM;
1947 
1948 	name_off = btf__add_str(btf, name);
1949 	if (name_off < 0)
1950 		return name_off;
1951 
1952 	v->name_off = name_off;
1953 	v->val = value;
1954 
1955 	/* update parent type's vlen */
1956 	t = btf_type_by_id(btf, btf->nr_types);
1957 	btf_type_inc_vlen(t);
1958 
1959 	btf->hdr->type_len += sz;
1960 	btf->hdr->str_off += sz;
1961 	return 0;
1962 }
1963 
1964 /*
1965  * Append new BTF_KIND_FWD type with:
1966  *   - *name*, non-empty/non-NULL name;
1967  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
1968  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
1969  * Returns:
1970  *   - >0, type ID of newly added BTF type;
1971  *   - <0, on error.
1972  */
1973 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
1974 {
1975 	if (!name || !name[0])
1976 		return -EINVAL;
1977 
1978 	switch (fwd_kind) {
1979 	case BTF_FWD_STRUCT:
1980 	case BTF_FWD_UNION: {
1981 		struct btf_type *t;
1982 		int id;
1983 
1984 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
1985 		if (id <= 0)
1986 			return id;
1987 		t = btf_type_by_id(btf, id);
1988 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
1989 		return id;
1990 	}
1991 	case BTF_FWD_ENUM:
1992 		/* enum forward in BTF currently is just an enum with no enum
1993 		 * values; we also assume a standard 4-byte size for it
1994 		 */
1995 		return btf__add_enum(btf, name, sizeof(int));
1996 	default:
1997 		return -EINVAL;
1998 	}
1999 }
2000 
2001 /*
2002  * Append new BTF_KING_TYPEDEF type with:
2003  *   - *name*, non-empty/non-NULL name;
2004  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2005  * Returns:
2006  *   - >0, type ID of newly added BTF type;
2007  *   - <0, on error.
2008  */
2009 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2010 {
2011 	if (!name || !name[0])
2012 		return -EINVAL;
2013 
2014 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2015 }
2016 
2017 /*
2018  * Append new BTF_KIND_VOLATILE type with:
2019  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2020  * Returns:
2021  *   - >0, type ID of newly added BTF type;
2022  *   - <0, on error.
2023  */
2024 int btf__add_volatile(struct btf *btf, int ref_type_id)
2025 {
2026 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2027 }
2028 
2029 /*
2030  * Append new BTF_KIND_CONST type with:
2031  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2032  * Returns:
2033  *   - >0, type ID of newly added BTF type;
2034  *   - <0, on error.
2035  */
2036 int btf__add_const(struct btf *btf, int ref_type_id)
2037 {
2038 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2039 }
2040 
2041 /*
2042  * Append new BTF_KIND_RESTRICT type with:
2043  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2044  * Returns:
2045  *   - >0, type ID of newly added BTF type;
2046  *   - <0, on error.
2047  */
2048 int btf__add_restrict(struct btf *btf, int ref_type_id)
2049 {
2050 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2051 }
2052 
2053 /*
2054  * Append new BTF_KIND_FUNC type with:
2055  *   - *name*, non-empty/non-NULL name;
2056  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2057  * Returns:
2058  *   - >0, type ID of newly added BTF type;
2059  *   - <0, on error.
2060  */
2061 int btf__add_func(struct btf *btf, const char *name,
2062 		  enum btf_func_linkage linkage, int proto_type_id)
2063 {
2064 	int id;
2065 
2066 	if (!name || !name[0])
2067 		return -EINVAL;
2068 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2069 	    linkage != BTF_FUNC_EXTERN)
2070 		return -EINVAL;
2071 
2072 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2073 	if (id > 0) {
2074 		struct btf_type *t = btf_type_by_id(btf, id);
2075 
2076 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2077 	}
2078 	return id;
2079 }
2080 
2081 /*
2082  * Append new BTF_KIND_FUNC_PROTO with:
2083  *   - *ret_type_id* - type ID for return result of a function.
2084  *
2085  * Function prototype initially has no arguments, but they can be added by
2086  * btf__add_func_param() one by one, immediately after
2087  * btf__add_func_proto() succeeded.
2088  *
2089  * Returns:
2090  *   - >0, type ID of newly added BTF type;
2091  *   - <0, on error.
2092  */
2093 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2094 {
2095 	struct btf_type *t;
2096 	int sz, err;
2097 
2098 	if (validate_type_id(ret_type_id))
2099 		return -EINVAL;
2100 
2101 	if (btf_ensure_modifiable(btf))
2102 		return -ENOMEM;
2103 
2104 	sz = sizeof(struct btf_type);
2105 	t = btf_add_type_mem(btf, sz);
2106 	if (!t)
2107 		return -ENOMEM;
2108 
2109 	/* start out with vlen=0; this will be adjusted when adding enum
2110 	 * values, if necessary
2111 	 */
2112 	t->name_off = 0;
2113 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2114 	t->type = ret_type_id;
2115 
2116 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
2117 	if (err)
2118 		return err;
2119 
2120 	btf->hdr->type_len += sz;
2121 	btf->hdr->str_off += sz;
2122 	btf->nr_types++;
2123 	return btf->nr_types;
2124 }
2125 
2126 /*
2127  * Append new function parameter for current FUNC_PROTO type with:
2128  *   - *name* - parameter name, can be NULL or empty;
2129  *   - *type_id* - type ID describing the type of the parameter.
2130  * Returns:
2131  *   -  0, on success;
2132  *   - <0, on error.
2133  */
2134 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2135 {
2136 	struct btf_type *t;
2137 	struct btf_param *p;
2138 	int sz, name_off = 0;
2139 
2140 	if (validate_type_id(type_id))
2141 		return -EINVAL;
2142 
2143 	/* last type should be BTF_KIND_FUNC_PROTO */
2144 	if (btf->nr_types == 0)
2145 		return -EINVAL;
2146 	t = btf_type_by_id(btf, btf->nr_types);
2147 	if (!btf_is_func_proto(t))
2148 		return -EINVAL;
2149 
2150 	/* decompose and invalidate raw data */
2151 	if (btf_ensure_modifiable(btf))
2152 		return -ENOMEM;
2153 
2154 	sz = sizeof(struct btf_param);
2155 	p = btf_add_type_mem(btf, sz);
2156 	if (!p)
2157 		return -ENOMEM;
2158 
2159 	if (name && name[0]) {
2160 		name_off = btf__add_str(btf, name);
2161 		if (name_off < 0)
2162 			return name_off;
2163 	}
2164 
2165 	p->name_off = name_off;
2166 	p->type = type_id;
2167 
2168 	/* update parent type's vlen */
2169 	t = btf_type_by_id(btf, btf->nr_types);
2170 	btf_type_inc_vlen(t);
2171 
2172 	btf->hdr->type_len += sz;
2173 	btf->hdr->str_off += sz;
2174 	return 0;
2175 }
2176 
2177 /*
2178  * Append new BTF_KIND_VAR type with:
2179  *   - *name* - non-empty/non-NULL name;
2180  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2181  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2182  *   - *type_id* - type ID of the type describing the type of the variable.
2183  * Returns:
2184  *   - >0, type ID of newly added BTF type;
2185  *   - <0, on error.
2186  */
2187 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2188 {
2189 	struct btf_type *t;
2190 	struct btf_var *v;
2191 	int sz, err, name_off;
2192 
2193 	/* non-empty name */
2194 	if (!name || !name[0])
2195 		return -EINVAL;
2196 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2197 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2198 		return -EINVAL;
2199 	if (validate_type_id(type_id))
2200 		return -EINVAL;
2201 
2202 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2203 	if (btf_ensure_modifiable(btf))
2204 		return -ENOMEM;
2205 
2206 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2207 	t = btf_add_type_mem(btf, sz);
2208 	if (!t)
2209 		return -ENOMEM;
2210 
2211 	name_off = btf__add_str(btf, name);
2212 	if (name_off < 0)
2213 		return name_off;
2214 
2215 	t->name_off = name_off;
2216 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2217 	t->type = type_id;
2218 
2219 	v = btf_var(t);
2220 	v->linkage = linkage;
2221 
2222 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
2223 	if (err)
2224 		return err;
2225 
2226 	btf->hdr->type_len += sz;
2227 	btf->hdr->str_off += sz;
2228 	btf->nr_types++;
2229 	return btf->nr_types;
2230 }
2231 
2232 /*
2233  * Append new BTF_KIND_DATASEC type with:
2234  *   - *name* - non-empty/non-NULL name;
2235  *   - *byte_sz* - data section size, in bytes.
2236  *
2237  * Data section is initially empty. Variables info can be added with
2238  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2239  *
2240  * Returns:
2241  *   - >0, type ID of newly added BTF type;
2242  *   - <0, on error.
2243  */
2244 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2245 {
2246 	struct btf_type *t;
2247 	int sz, err, name_off;
2248 
2249 	/* non-empty name */
2250 	if (!name || !name[0])
2251 		return -EINVAL;
2252 
2253 	if (btf_ensure_modifiable(btf))
2254 		return -ENOMEM;
2255 
2256 	sz = sizeof(struct btf_type);
2257 	t = btf_add_type_mem(btf, sz);
2258 	if (!t)
2259 		return -ENOMEM;
2260 
2261 	name_off = btf__add_str(btf, name);
2262 	if (name_off < 0)
2263 		return name_off;
2264 
2265 	/* start with vlen=0, which will be update as var_secinfos are added */
2266 	t->name_off = name_off;
2267 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2268 	t->size = byte_sz;
2269 
2270 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
2271 	if (err)
2272 		return err;
2273 
2274 	btf->hdr->type_len += sz;
2275 	btf->hdr->str_off += sz;
2276 	btf->nr_types++;
2277 	return btf->nr_types;
2278 }
2279 
2280 /*
2281  * Append new data section variable information entry for current DATASEC type:
2282  *   - *var_type_id* - type ID, describing type of the variable;
2283  *   - *offset* - variable offset within data section, in bytes;
2284  *   - *byte_sz* - variable size, in bytes.
2285  *
2286  * Returns:
2287  *   -  0, on success;
2288  *   - <0, on error.
2289  */
2290 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2291 {
2292 	struct btf_type *t;
2293 	struct btf_var_secinfo *v;
2294 	int sz;
2295 
2296 	/* last type should be BTF_KIND_DATASEC */
2297 	if (btf->nr_types == 0)
2298 		return -EINVAL;
2299 	t = btf_type_by_id(btf, btf->nr_types);
2300 	if (!btf_is_datasec(t))
2301 		return -EINVAL;
2302 
2303 	if (validate_type_id(var_type_id))
2304 		return -EINVAL;
2305 
2306 	/* decompose and invalidate raw data */
2307 	if (btf_ensure_modifiable(btf))
2308 		return -ENOMEM;
2309 
2310 	sz = sizeof(struct btf_var_secinfo);
2311 	v = btf_add_type_mem(btf, sz);
2312 	if (!v)
2313 		return -ENOMEM;
2314 
2315 	v->type = var_type_id;
2316 	v->offset = offset;
2317 	v->size = byte_sz;
2318 
2319 	/* update parent type's vlen */
2320 	t = btf_type_by_id(btf, btf->nr_types);
2321 	btf_type_inc_vlen(t);
2322 
2323 	btf->hdr->type_len += sz;
2324 	btf->hdr->str_off += sz;
2325 	return 0;
2326 }
2327 
2328 struct btf_ext_sec_setup_param {
2329 	__u32 off;
2330 	__u32 len;
2331 	__u32 min_rec_size;
2332 	struct btf_ext_info *ext_info;
2333 	const char *desc;
2334 };
2335 
2336 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2337 			      struct btf_ext_sec_setup_param *ext_sec)
2338 {
2339 	const struct btf_ext_info_sec *sinfo;
2340 	struct btf_ext_info *ext_info;
2341 	__u32 info_left, record_size;
2342 	/* The start of the info sec (including the __u32 record_size). */
2343 	void *info;
2344 
2345 	if (ext_sec->len == 0)
2346 		return 0;
2347 
2348 	if (ext_sec->off & 0x03) {
2349 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2350 		     ext_sec->desc);
2351 		return -EINVAL;
2352 	}
2353 
2354 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2355 	info_left = ext_sec->len;
2356 
2357 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2358 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2359 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2360 		return -EINVAL;
2361 	}
2362 
2363 	/* At least a record size */
2364 	if (info_left < sizeof(__u32)) {
2365 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2366 		return -EINVAL;
2367 	}
2368 
2369 	/* The record size needs to meet the minimum standard */
2370 	record_size = *(__u32 *)info;
2371 	if (record_size < ext_sec->min_rec_size ||
2372 	    record_size & 0x03) {
2373 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2374 			 ext_sec->desc, record_size);
2375 		return -EINVAL;
2376 	}
2377 
2378 	sinfo = info + sizeof(__u32);
2379 	info_left -= sizeof(__u32);
2380 
2381 	/* If no records, return failure now so .BTF.ext won't be used. */
2382 	if (!info_left) {
2383 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2384 		return -EINVAL;
2385 	}
2386 
2387 	while (info_left) {
2388 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2389 		__u64 total_record_size;
2390 		__u32 num_records;
2391 
2392 		if (info_left < sec_hdrlen) {
2393 			pr_debug("%s section header is not found in .BTF.ext\n",
2394 			     ext_sec->desc);
2395 			return -EINVAL;
2396 		}
2397 
2398 		num_records = sinfo->num_info;
2399 		if (num_records == 0) {
2400 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2401 			     ext_sec->desc);
2402 			return -EINVAL;
2403 		}
2404 
2405 		total_record_size = sec_hdrlen +
2406 				    (__u64)num_records * record_size;
2407 		if (info_left < total_record_size) {
2408 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2409 			     ext_sec->desc);
2410 			return -EINVAL;
2411 		}
2412 
2413 		info_left -= total_record_size;
2414 		sinfo = (void *)sinfo + total_record_size;
2415 	}
2416 
2417 	ext_info = ext_sec->ext_info;
2418 	ext_info->len = ext_sec->len - sizeof(__u32);
2419 	ext_info->rec_size = record_size;
2420 	ext_info->info = info + sizeof(__u32);
2421 
2422 	return 0;
2423 }
2424 
2425 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2426 {
2427 	struct btf_ext_sec_setup_param param = {
2428 		.off = btf_ext->hdr->func_info_off,
2429 		.len = btf_ext->hdr->func_info_len,
2430 		.min_rec_size = sizeof(struct bpf_func_info_min),
2431 		.ext_info = &btf_ext->func_info,
2432 		.desc = "func_info"
2433 	};
2434 
2435 	return btf_ext_setup_info(btf_ext, &param);
2436 }
2437 
2438 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2439 {
2440 	struct btf_ext_sec_setup_param param = {
2441 		.off = btf_ext->hdr->line_info_off,
2442 		.len = btf_ext->hdr->line_info_len,
2443 		.min_rec_size = sizeof(struct bpf_line_info_min),
2444 		.ext_info = &btf_ext->line_info,
2445 		.desc = "line_info",
2446 	};
2447 
2448 	return btf_ext_setup_info(btf_ext, &param);
2449 }
2450 
2451 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2452 {
2453 	struct btf_ext_sec_setup_param param = {
2454 		.off = btf_ext->hdr->core_relo_off,
2455 		.len = btf_ext->hdr->core_relo_len,
2456 		.min_rec_size = sizeof(struct bpf_core_relo),
2457 		.ext_info = &btf_ext->core_relo_info,
2458 		.desc = "core_relo",
2459 	};
2460 
2461 	return btf_ext_setup_info(btf_ext, &param);
2462 }
2463 
2464 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2465 {
2466 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2467 
2468 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2469 	    data_size < hdr->hdr_len) {
2470 		pr_debug("BTF.ext header not found");
2471 		return -EINVAL;
2472 	}
2473 
2474 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2475 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2476 		return -ENOTSUP;
2477 	} else if (hdr->magic != BTF_MAGIC) {
2478 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2479 		return -EINVAL;
2480 	}
2481 
2482 	if (hdr->version != BTF_VERSION) {
2483 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2484 		return -ENOTSUP;
2485 	}
2486 
2487 	if (hdr->flags) {
2488 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2489 		return -ENOTSUP;
2490 	}
2491 
2492 	if (data_size == hdr->hdr_len) {
2493 		pr_debug("BTF.ext has no data\n");
2494 		return -EINVAL;
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 void btf_ext__free(struct btf_ext *btf_ext)
2501 {
2502 	if (IS_ERR_OR_NULL(btf_ext))
2503 		return;
2504 	free(btf_ext->data);
2505 	free(btf_ext);
2506 }
2507 
2508 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2509 {
2510 	struct btf_ext *btf_ext;
2511 	int err;
2512 
2513 	err = btf_ext_parse_hdr(data, size);
2514 	if (err)
2515 		return ERR_PTR(err);
2516 
2517 	btf_ext = calloc(1, sizeof(struct btf_ext));
2518 	if (!btf_ext)
2519 		return ERR_PTR(-ENOMEM);
2520 
2521 	btf_ext->data_size = size;
2522 	btf_ext->data = malloc(size);
2523 	if (!btf_ext->data) {
2524 		err = -ENOMEM;
2525 		goto done;
2526 	}
2527 	memcpy(btf_ext->data, data, size);
2528 
2529 	if (btf_ext->hdr->hdr_len <
2530 	    offsetofend(struct btf_ext_header, line_info_len))
2531 		goto done;
2532 	err = btf_ext_setup_func_info(btf_ext);
2533 	if (err)
2534 		goto done;
2535 
2536 	err = btf_ext_setup_line_info(btf_ext);
2537 	if (err)
2538 		goto done;
2539 
2540 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2541 		goto done;
2542 	err = btf_ext_setup_core_relos(btf_ext);
2543 	if (err)
2544 		goto done;
2545 
2546 done:
2547 	if (err) {
2548 		btf_ext__free(btf_ext);
2549 		return ERR_PTR(err);
2550 	}
2551 
2552 	return btf_ext;
2553 }
2554 
2555 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2556 {
2557 	*size = btf_ext->data_size;
2558 	return btf_ext->data;
2559 }
2560 
2561 static int btf_ext_reloc_info(const struct btf *btf,
2562 			      const struct btf_ext_info *ext_info,
2563 			      const char *sec_name, __u32 insns_cnt,
2564 			      void **info, __u32 *cnt)
2565 {
2566 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2567 	__u32 i, record_size, existing_len, records_len;
2568 	struct btf_ext_info_sec *sinfo;
2569 	const char *info_sec_name;
2570 	__u64 remain_len;
2571 	void *data;
2572 
2573 	record_size = ext_info->rec_size;
2574 	sinfo = ext_info->info;
2575 	remain_len = ext_info->len;
2576 	while (remain_len > 0) {
2577 		records_len = sinfo->num_info * record_size;
2578 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2579 		if (strcmp(info_sec_name, sec_name)) {
2580 			remain_len -= sec_hdrlen + records_len;
2581 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2582 			continue;
2583 		}
2584 
2585 		existing_len = (*cnt) * record_size;
2586 		data = realloc(*info, existing_len + records_len);
2587 		if (!data)
2588 			return -ENOMEM;
2589 
2590 		memcpy(data + existing_len, sinfo->data, records_len);
2591 		/* adjust insn_off only, the rest data will be passed
2592 		 * to the kernel.
2593 		 */
2594 		for (i = 0; i < sinfo->num_info; i++) {
2595 			__u32 *insn_off;
2596 
2597 			insn_off = data + existing_len + (i * record_size);
2598 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
2599 				insns_cnt;
2600 		}
2601 		*info = data;
2602 		*cnt += sinfo->num_info;
2603 		return 0;
2604 	}
2605 
2606 	return -ENOENT;
2607 }
2608 
2609 int btf_ext__reloc_func_info(const struct btf *btf,
2610 			     const struct btf_ext *btf_ext,
2611 			     const char *sec_name, __u32 insns_cnt,
2612 			     void **func_info, __u32 *cnt)
2613 {
2614 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2615 				  insns_cnt, func_info, cnt);
2616 }
2617 
2618 int btf_ext__reloc_line_info(const struct btf *btf,
2619 			     const struct btf_ext *btf_ext,
2620 			     const char *sec_name, __u32 insns_cnt,
2621 			     void **line_info, __u32 *cnt)
2622 {
2623 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2624 				  insns_cnt, line_info, cnt);
2625 }
2626 
2627 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2628 {
2629 	return btf_ext->func_info.rec_size;
2630 }
2631 
2632 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2633 {
2634 	return btf_ext->line_info.rec_size;
2635 }
2636 
2637 struct btf_dedup;
2638 
2639 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2640 				       const struct btf_dedup_opts *opts);
2641 static void btf_dedup_free(struct btf_dedup *d);
2642 static int btf_dedup_strings(struct btf_dedup *d);
2643 static int btf_dedup_prim_types(struct btf_dedup *d);
2644 static int btf_dedup_struct_types(struct btf_dedup *d);
2645 static int btf_dedup_ref_types(struct btf_dedup *d);
2646 static int btf_dedup_compact_types(struct btf_dedup *d);
2647 static int btf_dedup_remap_types(struct btf_dedup *d);
2648 
2649 /*
2650  * Deduplicate BTF types and strings.
2651  *
2652  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2653  * section with all BTF type descriptors and string data. It overwrites that
2654  * memory in-place with deduplicated types and strings without any loss of
2655  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2656  * is provided, all the strings referenced from .BTF.ext section are honored
2657  * and updated to point to the right offsets after deduplication.
2658  *
2659  * If function returns with error, type/string data might be garbled and should
2660  * be discarded.
2661  *
2662  * More verbose and detailed description of both problem btf_dedup is solving,
2663  * as well as solution could be found at:
2664  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2665  *
2666  * Problem description and justification
2667  * =====================================
2668  *
2669  * BTF type information is typically emitted either as a result of conversion
2670  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2671  * unit contains information about a subset of all the types that are used
2672  * in an application. These subsets are frequently overlapping and contain a lot
2673  * of duplicated information when later concatenated together into a single
2674  * binary. This algorithm ensures that each unique type is represented by single
2675  * BTF type descriptor, greatly reducing resulting size of BTF data.
2676  *
2677  * Compilation unit isolation and subsequent duplication of data is not the only
2678  * problem. The same type hierarchy (e.g., struct and all the type that struct
2679  * references) in different compilation units can be represented in BTF to
2680  * various degrees of completeness (or, rather, incompleteness) due to
2681  * struct/union forward declarations.
2682  *
2683  * Let's take a look at an example, that we'll use to better understand the
2684  * problem (and solution). Suppose we have two compilation units, each using
2685  * same `struct S`, but each of them having incomplete type information about
2686  * struct's fields:
2687  *
2688  * // CU #1:
2689  * struct S;
2690  * struct A {
2691  *	int a;
2692  *	struct A* self;
2693  *	struct S* parent;
2694  * };
2695  * struct B;
2696  * struct S {
2697  *	struct A* a_ptr;
2698  *	struct B* b_ptr;
2699  * };
2700  *
2701  * // CU #2:
2702  * struct S;
2703  * struct A;
2704  * struct B {
2705  *	int b;
2706  *	struct B* self;
2707  *	struct S* parent;
2708  * };
2709  * struct S {
2710  *	struct A* a_ptr;
2711  *	struct B* b_ptr;
2712  * };
2713  *
2714  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2715  * more), but will know the complete type information about `struct A`. While
2716  * for CU #2, it will know full type information about `struct B`, but will
2717  * only know about forward declaration of `struct A` (in BTF terms, it will
2718  * have `BTF_KIND_FWD` type descriptor with name `B`).
2719  *
2720  * This compilation unit isolation means that it's possible that there is no
2721  * single CU with complete type information describing structs `S`, `A`, and
2722  * `B`. Also, we might get tons of duplicated and redundant type information.
2723  *
2724  * Additional complication we need to keep in mind comes from the fact that
2725  * types, in general, can form graphs containing cycles, not just DAGs.
2726  *
2727  * While algorithm does deduplication, it also merges and resolves type
2728  * information (unless disabled throught `struct btf_opts`), whenever possible.
2729  * E.g., in the example above with two compilation units having partial type
2730  * information for structs `A` and `B`, the output of algorithm will emit
2731  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2732  * (as well as type information for `int` and pointers), as if they were defined
2733  * in a single compilation unit as:
2734  *
2735  * struct A {
2736  *	int a;
2737  *	struct A* self;
2738  *	struct S* parent;
2739  * };
2740  * struct B {
2741  *	int b;
2742  *	struct B* self;
2743  *	struct S* parent;
2744  * };
2745  * struct S {
2746  *	struct A* a_ptr;
2747  *	struct B* b_ptr;
2748  * };
2749  *
2750  * Algorithm summary
2751  * =================
2752  *
2753  * Algorithm completes its work in 6 separate passes:
2754  *
2755  * 1. Strings deduplication.
2756  * 2. Primitive types deduplication (int, enum, fwd).
2757  * 3. Struct/union types deduplication.
2758  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2759  *    protos, and const/volatile/restrict modifiers).
2760  * 5. Types compaction.
2761  * 6. Types remapping.
2762  *
2763  * Algorithm determines canonical type descriptor, which is a single
2764  * representative type for each truly unique type. This canonical type is the
2765  * one that will go into final deduplicated BTF type information. For
2766  * struct/unions, it is also the type that algorithm will merge additional type
2767  * information into (while resolving FWDs), as it discovers it from data in
2768  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2769  * that type is canonical, or to some other type, if that type is equivalent
2770  * and was chosen as canonical representative. This mapping is stored in
2771  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2772  * FWD type got resolved to.
2773  *
2774  * To facilitate fast discovery of canonical types, we also maintain canonical
2775  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2776  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2777  * that match that signature. With sufficiently good choice of type signature
2778  * hashing function, we can limit number of canonical types for each unique type
2779  * signature to a very small number, allowing to find canonical type for any
2780  * duplicated type very quickly.
2781  *
2782  * Struct/union deduplication is the most critical part and algorithm for
2783  * deduplicating structs/unions is described in greater details in comments for
2784  * `btf_dedup_is_equiv` function.
2785  */
2786 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2787 	       const struct btf_dedup_opts *opts)
2788 {
2789 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2790 	int err;
2791 
2792 	if (IS_ERR(d)) {
2793 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2794 		return -EINVAL;
2795 	}
2796 
2797 	if (btf_ensure_modifiable(btf))
2798 		return -ENOMEM;
2799 
2800 	err = btf_dedup_strings(d);
2801 	if (err < 0) {
2802 		pr_debug("btf_dedup_strings failed:%d\n", err);
2803 		goto done;
2804 	}
2805 	err = btf_dedup_prim_types(d);
2806 	if (err < 0) {
2807 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2808 		goto done;
2809 	}
2810 	err = btf_dedup_struct_types(d);
2811 	if (err < 0) {
2812 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2813 		goto done;
2814 	}
2815 	err = btf_dedup_ref_types(d);
2816 	if (err < 0) {
2817 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2818 		goto done;
2819 	}
2820 	err = btf_dedup_compact_types(d);
2821 	if (err < 0) {
2822 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2823 		goto done;
2824 	}
2825 	err = btf_dedup_remap_types(d);
2826 	if (err < 0) {
2827 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2828 		goto done;
2829 	}
2830 
2831 done:
2832 	btf_dedup_free(d);
2833 	return err;
2834 }
2835 
2836 #define BTF_UNPROCESSED_ID ((__u32)-1)
2837 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2838 
2839 struct btf_dedup {
2840 	/* .BTF section to be deduped in-place */
2841 	struct btf *btf;
2842 	/*
2843 	 * Optional .BTF.ext section. When provided, any strings referenced
2844 	 * from it will be taken into account when deduping strings
2845 	 */
2846 	struct btf_ext *btf_ext;
2847 	/*
2848 	 * This is a map from any type's signature hash to a list of possible
2849 	 * canonical representative type candidates. Hash collisions are
2850 	 * ignored, so even types of various kinds can share same list of
2851 	 * candidates, which is fine because we rely on subsequent
2852 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2853 	 */
2854 	struct hashmap *dedup_table;
2855 	/* Canonical types map */
2856 	__u32 *map;
2857 	/* Hypothetical mapping, used during type graph equivalence checks */
2858 	__u32 *hypot_map;
2859 	__u32 *hypot_list;
2860 	size_t hypot_cnt;
2861 	size_t hypot_cap;
2862 	/* Various option modifying behavior of algorithm */
2863 	struct btf_dedup_opts opts;
2864 };
2865 
2866 struct btf_str_ptr {
2867 	const char *str;
2868 	__u32 new_off;
2869 	bool used;
2870 };
2871 
2872 struct btf_str_ptrs {
2873 	struct btf_str_ptr *ptrs;
2874 	const char *data;
2875 	__u32 cnt;
2876 	__u32 cap;
2877 };
2878 
2879 static long hash_combine(long h, long value)
2880 {
2881 	return h * 31 + value;
2882 }
2883 
2884 #define for_each_dedup_cand(d, node, hash) \
2885 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2886 
2887 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2888 {
2889 	return hashmap__append(d->dedup_table,
2890 			       (void *)hash, (void *)(long)type_id);
2891 }
2892 
2893 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
2894 				   __u32 from_id, __u32 to_id)
2895 {
2896 	if (d->hypot_cnt == d->hypot_cap) {
2897 		__u32 *new_list;
2898 
2899 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
2900 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
2901 		if (!new_list)
2902 			return -ENOMEM;
2903 		d->hypot_list = new_list;
2904 	}
2905 	d->hypot_list[d->hypot_cnt++] = from_id;
2906 	d->hypot_map[from_id] = to_id;
2907 	return 0;
2908 }
2909 
2910 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
2911 {
2912 	int i;
2913 
2914 	for (i = 0; i < d->hypot_cnt; i++)
2915 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
2916 	d->hypot_cnt = 0;
2917 }
2918 
2919 static void btf_dedup_free(struct btf_dedup *d)
2920 {
2921 	hashmap__free(d->dedup_table);
2922 	d->dedup_table = NULL;
2923 
2924 	free(d->map);
2925 	d->map = NULL;
2926 
2927 	free(d->hypot_map);
2928 	d->hypot_map = NULL;
2929 
2930 	free(d->hypot_list);
2931 	d->hypot_list = NULL;
2932 
2933 	free(d);
2934 }
2935 
2936 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
2937 {
2938 	return (size_t)key;
2939 }
2940 
2941 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
2942 {
2943 	return 0;
2944 }
2945 
2946 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
2947 {
2948 	return k1 == k2;
2949 }
2950 
2951 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2952 				       const struct btf_dedup_opts *opts)
2953 {
2954 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
2955 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
2956 	int i, err = 0;
2957 
2958 	if (!d)
2959 		return ERR_PTR(-ENOMEM);
2960 
2961 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
2962 	/* dedup_table_size is now used only to force collisions in tests */
2963 	if (opts && opts->dedup_table_size == 1)
2964 		hash_fn = btf_dedup_collision_hash_fn;
2965 
2966 	d->btf = btf;
2967 	d->btf_ext = btf_ext;
2968 
2969 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
2970 	if (IS_ERR(d->dedup_table)) {
2971 		err = PTR_ERR(d->dedup_table);
2972 		d->dedup_table = NULL;
2973 		goto done;
2974 	}
2975 
2976 	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
2977 	if (!d->map) {
2978 		err = -ENOMEM;
2979 		goto done;
2980 	}
2981 	/* special BTF "void" type is made canonical immediately */
2982 	d->map[0] = 0;
2983 	for (i = 1; i <= btf->nr_types; i++) {
2984 		struct btf_type *t = btf_type_by_id(d->btf, i);
2985 
2986 		/* VAR and DATASEC are never deduped and are self-canonical */
2987 		if (btf_is_var(t) || btf_is_datasec(t))
2988 			d->map[i] = i;
2989 		else
2990 			d->map[i] = BTF_UNPROCESSED_ID;
2991 	}
2992 
2993 	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
2994 	if (!d->hypot_map) {
2995 		err = -ENOMEM;
2996 		goto done;
2997 	}
2998 	for (i = 0; i <= btf->nr_types; i++)
2999 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3000 
3001 done:
3002 	if (err) {
3003 		btf_dedup_free(d);
3004 		return ERR_PTR(err);
3005 	}
3006 
3007 	return d;
3008 }
3009 
3010 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
3011 
3012 /*
3013  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3014  * string and pass pointer to it to a provided callback `fn`.
3015  */
3016 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
3017 {
3018 	void *line_data_cur, *line_data_end;
3019 	int i, j, r, rec_size;
3020 	struct btf_type *t;
3021 
3022 	for (i = 1; i <= d->btf->nr_types; i++) {
3023 		t = btf_type_by_id(d->btf, i);
3024 		r = fn(&t->name_off, ctx);
3025 		if (r)
3026 			return r;
3027 
3028 		switch (btf_kind(t)) {
3029 		case BTF_KIND_STRUCT:
3030 		case BTF_KIND_UNION: {
3031 			struct btf_member *m = btf_members(t);
3032 			__u16 vlen = btf_vlen(t);
3033 
3034 			for (j = 0; j < vlen; j++) {
3035 				r = fn(&m->name_off, ctx);
3036 				if (r)
3037 					return r;
3038 				m++;
3039 			}
3040 			break;
3041 		}
3042 		case BTF_KIND_ENUM: {
3043 			struct btf_enum *m = btf_enum(t);
3044 			__u16 vlen = btf_vlen(t);
3045 
3046 			for (j = 0; j < vlen; j++) {
3047 				r = fn(&m->name_off, ctx);
3048 				if (r)
3049 					return r;
3050 				m++;
3051 			}
3052 			break;
3053 		}
3054 		case BTF_KIND_FUNC_PROTO: {
3055 			struct btf_param *m = btf_params(t);
3056 			__u16 vlen = btf_vlen(t);
3057 
3058 			for (j = 0; j < vlen; j++) {
3059 				r = fn(&m->name_off, ctx);
3060 				if (r)
3061 					return r;
3062 				m++;
3063 			}
3064 			break;
3065 		}
3066 		default:
3067 			break;
3068 		}
3069 	}
3070 
3071 	if (!d->btf_ext)
3072 		return 0;
3073 
3074 	line_data_cur = d->btf_ext->line_info.info;
3075 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
3076 	rec_size = d->btf_ext->line_info.rec_size;
3077 
3078 	while (line_data_cur < line_data_end) {
3079 		struct btf_ext_info_sec *sec = line_data_cur;
3080 		struct bpf_line_info_min *line_info;
3081 		__u32 num_info = sec->num_info;
3082 
3083 		r = fn(&sec->sec_name_off, ctx);
3084 		if (r)
3085 			return r;
3086 
3087 		line_data_cur += sizeof(struct btf_ext_info_sec);
3088 		for (i = 0; i < num_info; i++) {
3089 			line_info = line_data_cur;
3090 			r = fn(&line_info->file_name_off, ctx);
3091 			if (r)
3092 				return r;
3093 			r = fn(&line_info->line_off, ctx);
3094 			if (r)
3095 				return r;
3096 			line_data_cur += rec_size;
3097 		}
3098 	}
3099 
3100 	return 0;
3101 }
3102 
3103 static int str_sort_by_content(const void *a1, const void *a2)
3104 {
3105 	const struct btf_str_ptr *p1 = a1;
3106 	const struct btf_str_ptr *p2 = a2;
3107 
3108 	return strcmp(p1->str, p2->str);
3109 }
3110 
3111 static int str_sort_by_offset(const void *a1, const void *a2)
3112 {
3113 	const struct btf_str_ptr *p1 = a1;
3114 	const struct btf_str_ptr *p2 = a2;
3115 
3116 	if (p1->str != p2->str)
3117 		return p1->str < p2->str ? -1 : 1;
3118 	return 0;
3119 }
3120 
3121 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
3122 {
3123 	const struct btf_str_ptr *p = pelem;
3124 
3125 	if (str_ptr != p->str)
3126 		return (const char *)str_ptr < p->str ? -1 : 1;
3127 	return 0;
3128 }
3129 
3130 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
3131 {
3132 	struct btf_str_ptrs *strs;
3133 	struct btf_str_ptr *s;
3134 
3135 	if (*str_off_ptr == 0)
3136 		return 0;
3137 
3138 	strs = ctx;
3139 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
3140 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
3141 	if (!s)
3142 		return -EINVAL;
3143 	s->used = true;
3144 	return 0;
3145 }
3146 
3147 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
3148 {
3149 	struct btf_str_ptrs *strs;
3150 	struct btf_str_ptr *s;
3151 
3152 	if (*str_off_ptr == 0)
3153 		return 0;
3154 
3155 	strs = ctx;
3156 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
3157 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
3158 	if (!s)
3159 		return -EINVAL;
3160 	*str_off_ptr = s->new_off;
3161 	return 0;
3162 }
3163 
3164 /*
3165  * Dedup string and filter out those that are not referenced from either .BTF
3166  * or .BTF.ext (if provided) sections.
3167  *
3168  * This is done by building index of all strings in BTF's string section,
3169  * then iterating over all entities that can reference strings (e.g., type
3170  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3171  * strings as used. After that all used strings are deduped and compacted into
3172  * sequential blob of memory and new offsets are calculated. Then all the string
3173  * references are iterated again and rewritten using new offsets.
3174  */
3175 static int btf_dedup_strings(struct btf_dedup *d)
3176 {
3177 	char *start = d->btf->strs_data;
3178 	char *end = start + d->btf->hdr->str_len;
3179 	char *p = start, *tmp_strs = NULL;
3180 	struct btf_str_ptrs strs = {
3181 		.cnt = 0,
3182 		.cap = 0,
3183 		.ptrs = NULL,
3184 		.data = start,
3185 	};
3186 	int i, j, err = 0, grp_idx;
3187 	bool grp_used;
3188 
3189 	if (d->btf->strs_deduped)
3190 		return 0;
3191 
3192 	/* build index of all strings */
3193 	while (p < end) {
3194 		if (strs.cnt + 1 > strs.cap) {
3195 			struct btf_str_ptr *new_ptrs;
3196 
3197 			strs.cap += max(strs.cnt / 2, 16U);
3198 			new_ptrs = libbpf_reallocarray(strs.ptrs, strs.cap, sizeof(strs.ptrs[0]));
3199 			if (!new_ptrs) {
3200 				err = -ENOMEM;
3201 				goto done;
3202 			}
3203 			strs.ptrs = new_ptrs;
3204 		}
3205 
3206 		strs.ptrs[strs.cnt].str = p;
3207 		strs.ptrs[strs.cnt].used = false;
3208 
3209 		p += strlen(p) + 1;
3210 		strs.cnt++;
3211 	}
3212 
3213 	/* temporary storage for deduplicated strings */
3214 	tmp_strs = malloc(d->btf->hdr->str_len);
3215 	if (!tmp_strs) {
3216 		err = -ENOMEM;
3217 		goto done;
3218 	}
3219 
3220 	/* mark all used strings */
3221 	strs.ptrs[0].used = true;
3222 	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
3223 	if (err)
3224 		goto done;
3225 
3226 	/* sort strings by context, so that we can identify duplicates */
3227 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
3228 
3229 	/*
3230 	 * iterate groups of equal strings and if any instance in a group was
3231 	 * referenced, emit single instance and remember new offset
3232 	 */
3233 	p = tmp_strs;
3234 	grp_idx = 0;
3235 	grp_used = strs.ptrs[0].used;
3236 	/* iterate past end to avoid code duplication after loop */
3237 	for (i = 1; i <= strs.cnt; i++) {
3238 		/*
3239 		 * when i == strs.cnt, we want to skip string comparison and go
3240 		 * straight to handling last group of strings (otherwise we'd
3241 		 * need to handle last group after the loop w/ duplicated code)
3242 		 */
3243 		if (i < strs.cnt &&
3244 		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
3245 			grp_used = grp_used || strs.ptrs[i].used;
3246 			continue;
3247 		}
3248 
3249 		/*
3250 		 * this check would have been required after the loop to handle
3251 		 * last group of strings, but due to <= condition in a loop
3252 		 * we avoid that duplication
3253 		 */
3254 		if (grp_used) {
3255 			int new_off = p - tmp_strs;
3256 			__u32 len = strlen(strs.ptrs[grp_idx].str);
3257 
3258 			memmove(p, strs.ptrs[grp_idx].str, len + 1);
3259 			for (j = grp_idx; j < i; j++)
3260 				strs.ptrs[j].new_off = new_off;
3261 			p += len + 1;
3262 		}
3263 
3264 		if (i < strs.cnt) {
3265 			grp_idx = i;
3266 			grp_used = strs.ptrs[i].used;
3267 		}
3268 	}
3269 
3270 	/* replace original strings with deduped ones */
3271 	d->btf->hdr->str_len = p - tmp_strs;
3272 	memmove(start, tmp_strs, d->btf->hdr->str_len);
3273 	end = start + d->btf->hdr->str_len;
3274 
3275 	/* restore original order for further binary search lookups */
3276 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
3277 
3278 	/* remap string offsets */
3279 	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
3280 	if (err)
3281 		goto done;
3282 
3283 	d->btf->hdr->str_len = end - start;
3284 	d->btf->strs_deduped = true;
3285 
3286 done:
3287 	free(tmp_strs);
3288 	free(strs.ptrs);
3289 	return err;
3290 }
3291 
3292 static long btf_hash_common(struct btf_type *t)
3293 {
3294 	long h;
3295 
3296 	h = hash_combine(0, t->name_off);
3297 	h = hash_combine(h, t->info);
3298 	h = hash_combine(h, t->size);
3299 	return h;
3300 }
3301 
3302 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3303 {
3304 	return t1->name_off == t2->name_off &&
3305 	       t1->info == t2->info &&
3306 	       t1->size == t2->size;
3307 }
3308 
3309 /* Calculate type signature hash of INT. */
3310 static long btf_hash_int(struct btf_type *t)
3311 {
3312 	__u32 info = *(__u32 *)(t + 1);
3313 	long h;
3314 
3315 	h = btf_hash_common(t);
3316 	h = hash_combine(h, info);
3317 	return h;
3318 }
3319 
3320 /* Check structural equality of two INTs. */
3321 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3322 {
3323 	__u32 info1, info2;
3324 
3325 	if (!btf_equal_common(t1, t2))
3326 		return false;
3327 	info1 = *(__u32 *)(t1 + 1);
3328 	info2 = *(__u32 *)(t2 + 1);
3329 	return info1 == info2;
3330 }
3331 
3332 /* Calculate type signature hash of ENUM. */
3333 static long btf_hash_enum(struct btf_type *t)
3334 {
3335 	long h;
3336 
3337 	/* don't hash vlen and enum members to support enum fwd resolving */
3338 	h = hash_combine(0, t->name_off);
3339 	h = hash_combine(h, t->info & ~0xffff);
3340 	h = hash_combine(h, t->size);
3341 	return h;
3342 }
3343 
3344 /* Check structural equality of two ENUMs. */
3345 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3346 {
3347 	const struct btf_enum *m1, *m2;
3348 	__u16 vlen;
3349 	int i;
3350 
3351 	if (!btf_equal_common(t1, t2))
3352 		return false;
3353 
3354 	vlen = btf_vlen(t1);
3355 	m1 = btf_enum(t1);
3356 	m2 = btf_enum(t2);
3357 	for (i = 0; i < vlen; i++) {
3358 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3359 			return false;
3360 		m1++;
3361 		m2++;
3362 	}
3363 	return true;
3364 }
3365 
3366 static inline bool btf_is_enum_fwd(struct btf_type *t)
3367 {
3368 	return btf_is_enum(t) && btf_vlen(t) == 0;
3369 }
3370 
3371 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3372 {
3373 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3374 		return btf_equal_enum(t1, t2);
3375 	/* ignore vlen when comparing */
3376 	return t1->name_off == t2->name_off &&
3377 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3378 	       t1->size == t2->size;
3379 }
3380 
3381 /*
3382  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3383  * as referenced type IDs equivalence is established separately during type
3384  * graph equivalence check algorithm.
3385  */
3386 static long btf_hash_struct(struct btf_type *t)
3387 {
3388 	const struct btf_member *member = btf_members(t);
3389 	__u32 vlen = btf_vlen(t);
3390 	long h = btf_hash_common(t);
3391 	int i;
3392 
3393 	for (i = 0; i < vlen; i++) {
3394 		h = hash_combine(h, member->name_off);
3395 		h = hash_combine(h, member->offset);
3396 		/* no hashing of referenced type ID, it can be unresolved yet */
3397 		member++;
3398 	}
3399 	return h;
3400 }
3401 
3402 /*
3403  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3404  * IDs. This check is performed during type graph equivalence check and
3405  * referenced types equivalence is checked separately.
3406  */
3407 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3408 {
3409 	const struct btf_member *m1, *m2;
3410 	__u16 vlen;
3411 	int i;
3412 
3413 	if (!btf_equal_common(t1, t2))
3414 		return false;
3415 
3416 	vlen = btf_vlen(t1);
3417 	m1 = btf_members(t1);
3418 	m2 = btf_members(t2);
3419 	for (i = 0; i < vlen; i++) {
3420 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3421 			return false;
3422 		m1++;
3423 		m2++;
3424 	}
3425 	return true;
3426 }
3427 
3428 /*
3429  * Calculate type signature hash of ARRAY, including referenced type IDs,
3430  * under assumption that they were already resolved to canonical type IDs and
3431  * are not going to change.
3432  */
3433 static long btf_hash_array(struct btf_type *t)
3434 {
3435 	const struct btf_array *info = btf_array(t);
3436 	long h = btf_hash_common(t);
3437 
3438 	h = hash_combine(h, info->type);
3439 	h = hash_combine(h, info->index_type);
3440 	h = hash_combine(h, info->nelems);
3441 	return h;
3442 }
3443 
3444 /*
3445  * Check exact equality of two ARRAYs, taking into account referenced
3446  * type IDs, under assumption that they were already resolved to canonical
3447  * type IDs and are not going to change.
3448  * This function is called during reference types deduplication to compare
3449  * ARRAY to potential canonical representative.
3450  */
3451 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3452 {
3453 	const struct btf_array *info1, *info2;
3454 
3455 	if (!btf_equal_common(t1, t2))
3456 		return false;
3457 
3458 	info1 = btf_array(t1);
3459 	info2 = btf_array(t2);
3460 	return info1->type == info2->type &&
3461 	       info1->index_type == info2->index_type &&
3462 	       info1->nelems == info2->nelems;
3463 }
3464 
3465 /*
3466  * Check structural compatibility of two ARRAYs, ignoring referenced type
3467  * IDs. This check is performed during type graph equivalence check and
3468  * referenced types equivalence is checked separately.
3469  */
3470 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3471 {
3472 	if (!btf_equal_common(t1, t2))
3473 		return false;
3474 
3475 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3476 }
3477 
3478 /*
3479  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3480  * under assumption that they were already resolved to canonical type IDs and
3481  * are not going to change.
3482  */
3483 static long btf_hash_fnproto(struct btf_type *t)
3484 {
3485 	const struct btf_param *member = btf_params(t);
3486 	__u16 vlen = btf_vlen(t);
3487 	long h = btf_hash_common(t);
3488 	int i;
3489 
3490 	for (i = 0; i < vlen; i++) {
3491 		h = hash_combine(h, member->name_off);
3492 		h = hash_combine(h, member->type);
3493 		member++;
3494 	}
3495 	return h;
3496 }
3497 
3498 /*
3499  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3500  * type IDs, under assumption that they were already resolved to canonical
3501  * type IDs and are not going to change.
3502  * This function is called during reference types deduplication to compare
3503  * FUNC_PROTO to potential canonical representative.
3504  */
3505 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3506 {
3507 	const struct btf_param *m1, *m2;
3508 	__u16 vlen;
3509 	int i;
3510 
3511 	if (!btf_equal_common(t1, t2))
3512 		return false;
3513 
3514 	vlen = btf_vlen(t1);
3515 	m1 = btf_params(t1);
3516 	m2 = btf_params(t2);
3517 	for (i = 0; i < vlen; i++) {
3518 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3519 			return false;
3520 		m1++;
3521 		m2++;
3522 	}
3523 	return true;
3524 }
3525 
3526 /*
3527  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3528  * IDs. This check is performed during type graph equivalence check and
3529  * referenced types equivalence is checked separately.
3530  */
3531 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3532 {
3533 	const struct btf_param *m1, *m2;
3534 	__u16 vlen;
3535 	int i;
3536 
3537 	/* skip return type ID */
3538 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3539 		return false;
3540 
3541 	vlen = btf_vlen(t1);
3542 	m1 = btf_params(t1);
3543 	m2 = btf_params(t2);
3544 	for (i = 0; i < vlen; i++) {
3545 		if (m1->name_off != m2->name_off)
3546 			return false;
3547 		m1++;
3548 		m2++;
3549 	}
3550 	return true;
3551 }
3552 
3553 /*
3554  * Deduplicate primitive types, that can't reference other types, by calculating
3555  * their type signature hash and comparing them with any possible canonical
3556  * candidate. If no canonical candidate matches, type itself is marked as
3557  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3558  */
3559 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3560 {
3561 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3562 	struct hashmap_entry *hash_entry;
3563 	struct btf_type *cand;
3564 	/* if we don't find equivalent type, then we are canonical */
3565 	__u32 new_id = type_id;
3566 	__u32 cand_id;
3567 	long h;
3568 
3569 	switch (btf_kind(t)) {
3570 	case BTF_KIND_CONST:
3571 	case BTF_KIND_VOLATILE:
3572 	case BTF_KIND_RESTRICT:
3573 	case BTF_KIND_PTR:
3574 	case BTF_KIND_TYPEDEF:
3575 	case BTF_KIND_ARRAY:
3576 	case BTF_KIND_STRUCT:
3577 	case BTF_KIND_UNION:
3578 	case BTF_KIND_FUNC:
3579 	case BTF_KIND_FUNC_PROTO:
3580 	case BTF_KIND_VAR:
3581 	case BTF_KIND_DATASEC:
3582 		return 0;
3583 
3584 	case BTF_KIND_INT:
3585 		h = btf_hash_int(t);
3586 		for_each_dedup_cand(d, hash_entry, h) {
3587 			cand_id = (__u32)(long)hash_entry->value;
3588 			cand = btf_type_by_id(d->btf, cand_id);
3589 			if (btf_equal_int(t, cand)) {
3590 				new_id = cand_id;
3591 				break;
3592 			}
3593 		}
3594 		break;
3595 
3596 	case BTF_KIND_ENUM:
3597 		h = btf_hash_enum(t);
3598 		for_each_dedup_cand(d, hash_entry, h) {
3599 			cand_id = (__u32)(long)hash_entry->value;
3600 			cand = btf_type_by_id(d->btf, cand_id);
3601 			if (btf_equal_enum(t, cand)) {
3602 				new_id = cand_id;
3603 				break;
3604 			}
3605 			if (d->opts.dont_resolve_fwds)
3606 				continue;
3607 			if (btf_compat_enum(t, cand)) {
3608 				if (btf_is_enum_fwd(t)) {
3609 					/* resolve fwd to full enum */
3610 					new_id = cand_id;
3611 					break;
3612 				}
3613 				/* resolve canonical enum fwd to full enum */
3614 				d->map[cand_id] = type_id;
3615 			}
3616 		}
3617 		break;
3618 
3619 	case BTF_KIND_FWD:
3620 		h = btf_hash_common(t);
3621 		for_each_dedup_cand(d, hash_entry, h) {
3622 			cand_id = (__u32)(long)hash_entry->value;
3623 			cand = btf_type_by_id(d->btf, cand_id);
3624 			if (btf_equal_common(t, cand)) {
3625 				new_id = cand_id;
3626 				break;
3627 			}
3628 		}
3629 		break;
3630 
3631 	default:
3632 		return -EINVAL;
3633 	}
3634 
3635 	d->map[type_id] = new_id;
3636 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3637 		return -ENOMEM;
3638 
3639 	return 0;
3640 }
3641 
3642 static int btf_dedup_prim_types(struct btf_dedup *d)
3643 {
3644 	int i, err;
3645 
3646 	for (i = 1; i <= d->btf->nr_types; i++) {
3647 		err = btf_dedup_prim_type(d, i);
3648 		if (err)
3649 			return err;
3650 	}
3651 	return 0;
3652 }
3653 
3654 /*
3655  * Check whether type is already mapped into canonical one (could be to itself).
3656  */
3657 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3658 {
3659 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3660 }
3661 
3662 /*
3663  * Resolve type ID into its canonical type ID, if any; otherwise return original
3664  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3665  * STRUCT/UNION link and resolve it into canonical type ID as well.
3666  */
3667 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3668 {
3669 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3670 		type_id = d->map[type_id];
3671 	return type_id;
3672 }
3673 
3674 /*
3675  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3676  * type ID.
3677  */
3678 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3679 {
3680 	__u32 orig_type_id = type_id;
3681 
3682 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3683 		return type_id;
3684 
3685 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3686 		type_id = d->map[type_id];
3687 
3688 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3689 		return type_id;
3690 
3691 	return orig_type_id;
3692 }
3693 
3694 
3695 static inline __u16 btf_fwd_kind(struct btf_type *t)
3696 {
3697 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3698 }
3699 
3700 /*
3701  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3702  * call it "candidate graph" in this description for brevity) to a type graph
3703  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3704  * here, though keep in mind that not all types in canonical graph are
3705  * necessarily canonical representatives themselves, some of them might be
3706  * duplicates or its uniqueness might not have been established yet).
3707  * Returns:
3708  *  - >0, if type graphs are equivalent;
3709  *  -  0, if not equivalent;
3710  *  - <0, on error.
3711  *
3712  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3713  * equivalence of BTF types at each step. If at any point BTF types in candidate
3714  * and canonical graphs are not compatible structurally, whole graphs are
3715  * incompatible. If types are structurally equivalent (i.e., all information
3716  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3717  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3718  * If a type references other types, then those referenced types are checked
3719  * for equivalence recursively.
3720  *
3721  * During DFS traversal, if we find that for current `canon_id` type we
3722  * already have some mapping in hypothetical map, we check for two possible
3723  * situations:
3724  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3725  *     happen when type graphs have cycles. In this case we assume those two
3726  *     types are equivalent.
3727  *   - `canon_id` is mapped to different type. This is contradiction in our
3728  *     hypothetical mapping, because same graph in canonical graph corresponds
3729  *     to two different types in candidate graph, which for equivalent type
3730  *     graphs shouldn't happen. This condition terminates equivalence check
3731  *     with negative result.
3732  *
3733  * If type graphs traversal exhausts types to check and find no contradiction,
3734  * then type graphs are equivalent.
3735  *
3736  * When checking types for equivalence, there is one special case: FWD types.
3737  * If FWD type resolution is allowed and one of the types (either from canonical
3738  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3739  * flag) and their names match, hypothetical mapping is updated to point from
3740  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3741  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3742  *
3743  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3744  * if there are two exactly named (or anonymous) structs/unions that are
3745  * compatible structurally, one of which has FWD field, while other is concrete
3746  * STRUCT/UNION, but according to C sources they are different structs/unions
3747  * that are referencing different types with the same name. This is extremely
3748  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3749  * this logic is causing problems.
3750  *
3751  * Doing FWD resolution means that both candidate and/or canonical graphs can
3752  * consists of portions of the graph that come from multiple compilation units.
3753  * This is due to the fact that types within single compilation unit are always
3754  * deduplicated and FWDs are already resolved, if referenced struct/union
3755  * definiton is available. So, if we had unresolved FWD and found corresponding
3756  * STRUCT/UNION, they will be from different compilation units. This
3757  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3758  * type graph will likely have at least two different BTF types that describe
3759  * same type (e.g., most probably there will be two different BTF types for the
3760  * same 'int' primitive type) and could even have "overlapping" parts of type
3761  * graph that describe same subset of types.
3762  *
3763  * This in turn means that our assumption that each type in canonical graph
3764  * must correspond to exactly one type in candidate graph might not hold
3765  * anymore and will make it harder to detect contradictions using hypothetical
3766  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3767  * resolution only in canonical graph. FWDs in candidate graphs are never
3768  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3769  * that can occur:
3770  *   - Both types in canonical and candidate graphs are FWDs. If they are
3771  *     structurally equivalent, then they can either be both resolved to the
3772  *     same STRUCT/UNION or not resolved at all. In both cases they are
3773  *     equivalent and there is no need to resolve FWD on candidate side.
3774  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3775  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3776  *   - Type in canonical graph is FWD, while type in candidate is concrete
3777  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3778  *     unit, so there is exactly one BTF type for each unique C type. After
3779  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3780  *     in canonical graph mapping to single BTF type in candidate graph, but
3781  *     because hypothetical mapping maps from canonical to candidate types, it's
3782  *     alright, and we still maintain the property of having single `canon_id`
3783  *     mapping to single `cand_id` (there could be two different `canon_id`
3784  *     mapped to the same `cand_id`, but it's not contradictory).
3785  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3786  *     graph is FWD. In this case we are just going to check compatibility of
3787  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3788  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3789  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3790  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3791  *     canonical graph.
3792  */
3793 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3794 			      __u32 canon_id)
3795 {
3796 	struct btf_type *cand_type;
3797 	struct btf_type *canon_type;
3798 	__u32 hypot_type_id;
3799 	__u16 cand_kind;
3800 	__u16 canon_kind;
3801 	int i, eq;
3802 
3803 	/* if both resolve to the same canonical, they must be equivalent */
3804 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3805 		return 1;
3806 
3807 	canon_id = resolve_fwd_id(d, canon_id);
3808 
3809 	hypot_type_id = d->hypot_map[canon_id];
3810 	if (hypot_type_id <= BTF_MAX_NR_TYPES)
3811 		return hypot_type_id == cand_id;
3812 
3813 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3814 		return -ENOMEM;
3815 
3816 	cand_type = btf_type_by_id(d->btf, cand_id);
3817 	canon_type = btf_type_by_id(d->btf, canon_id);
3818 	cand_kind = btf_kind(cand_type);
3819 	canon_kind = btf_kind(canon_type);
3820 
3821 	if (cand_type->name_off != canon_type->name_off)
3822 		return 0;
3823 
3824 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3825 	if (!d->opts.dont_resolve_fwds
3826 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3827 	    && cand_kind != canon_kind) {
3828 		__u16 real_kind;
3829 		__u16 fwd_kind;
3830 
3831 		if (cand_kind == BTF_KIND_FWD) {
3832 			real_kind = canon_kind;
3833 			fwd_kind = btf_fwd_kind(cand_type);
3834 		} else {
3835 			real_kind = cand_kind;
3836 			fwd_kind = btf_fwd_kind(canon_type);
3837 		}
3838 		return fwd_kind == real_kind;
3839 	}
3840 
3841 	if (cand_kind != canon_kind)
3842 		return 0;
3843 
3844 	switch (cand_kind) {
3845 	case BTF_KIND_INT:
3846 		return btf_equal_int(cand_type, canon_type);
3847 
3848 	case BTF_KIND_ENUM:
3849 		if (d->opts.dont_resolve_fwds)
3850 			return btf_equal_enum(cand_type, canon_type);
3851 		else
3852 			return btf_compat_enum(cand_type, canon_type);
3853 
3854 	case BTF_KIND_FWD:
3855 		return btf_equal_common(cand_type, canon_type);
3856 
3857 	case BTF_KIND_CONST:
3858 	case BTF_KIND_VOLATILE:
3859 	case BTF_KIND_RESTRICT:
3860 	case BTF_KIND_PTR:
3861 	case BTF_KIND_TYPEDEF:
3862 	case BTF_KIND_FUNC:
3863 		if (cand_type->info != canon_type->info)
3864 			return 0;
3865 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3866 
3867 	case BTF_KIND_ARRAY: {
3868 		const struct btf_array *cand_arr, *canon_arr;
3869 
3870 		if (!btf_compat_array(cand_type, canon_type))
3871 			return 0;
3872 		cand_arr = btf_array(cand_type);
3873 		canon_arr = btf_array(canon_type);
3874 		eq = btf_dedup_is_equiv(d,
3875 			cand_arr->index_type, canon_arr->index_type);
3876 		if (eq <= 0)
3877 			return eq;
3878 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3879 	}
3880 
3881 	case BTF_KIND_STRUCT:
3882 	case BTF_KIND_UNION: {
3883 		const struct btf_member *cand_m, *canon_m;
3884 		__u16 vlen;
3885 
3886 		if (!btf_shallow_equal_struct(cand_type, canon_type))
3887 			return 0;
3888 		vlen = btf_vlen(cand_type);
3889 		cand_m = btf_members(cand_type);
3890 		canon_m = btf_members(canon_type);
3891 		for (i = 0; i < vlen; i++) {
3892 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3893 			if (eq <= 0)
3894 				return eq;
3895 			cand_m++;
3896 			canon_m++;
3897 		}
3898 
3899 		return 1;
3900 	}
3901 
3902 	case BTF_KIND_FUNC_PROTO: {
3903 		const struct btf_param *cand_p, *canon_p;
3904 		__u16 vlen;
3905 
3906 		if (!btf_compat_fnproto(cand_type, canon_type))
3907 			return 0;
3908 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3909 		if (eq <= 0)
3910 			return eq;
3911 		vlen = btf_vlen(cand_type);
3912 		cand_p = btf_params(cand_type);
3913 		canon_p = btf_params(canon_type);
3914 		for (i = 0; i < vlen; i++) {
3915 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3916 			if (eq <= 0)
3917 				return eq;
3918 			cand_p++;
3919 			canon_p++;
3920 		}
3921 		return 1;
3922 	}
3923 
3924 	default:
3925 		return -EINVAL;
3926 	}
3927 	return 0;
3928 }
3929 
3930 /*
3931  * Use hypothetical mapping, produced by successful type graph equivalence
3932  * check, to augment existing struct/union canonical mapping, where possible.
3933  *
3934  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3935  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3936  * it doesn't matter if FWD type was part of canonical graph or candidate one,
3937  * we are recording the mapping anyway. As opposed to carefulness required
3938  * for struct/union correspondence mapping (described below), for FWD resolution
3939  * it's not important, as by the time that FWD type (reference type) will be
3940  * deduplicated all structs/unions will be deduped already anyway.
3941  *
3942  * Recording STRUCT/UNION mapping is purely a performance optimization and is
3943  * not required for correctness. It needs to be done carefully to ensure that
3944  * struct/union from candidate's type graph is not mapped into corresponding
3945  * struct/union from canonical type graph that itself hasn't been resolved into
3946  * canonical representative. The only guarantee we have is that canonical
3947  * struct/union was determined as canonical and that won't change. But any
3948  * types referenced through that struct/union fields could have been not yet
3949  * resolved, so in case like that it's too early to establish any kind of
3950  * correspondence between structs/unions.
3951  *
3952  * No canonical correspondence is derived for primitive types (they are already
3953  * deduplicated completely already anyway) or reference types (they rely on
3954  * stability of struct/union canonical relationship for equivalence checks).
3955  */
3956 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3957 {
3958 	__u32 cand_type_id, targ_type_id;
3959 	__u16 t_kind, c_kind;
3960 	__u32 t_id, c_id;
3961 	int i;
3962 
3963 	for (i = 0; i < d->hypot_cnt; i++) {
3964 		cand_type_id = d->hypot_list[i];
3965 		targ_type_id = d->hypot_map[cand_type_id];
3966 		t_id = resolve_type_id(d, targ_type_id);
3967 		c_id = resolve_type_id(d, cand_type_id);
3968 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3969 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3970 		/*
3971 		 * Resolve FWD into STRUCT/UNION.
3972 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3973 		 * mapped to canonical representative (as opposed to
3974 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3975 		 * eventually that struct is going to be mapped and all resolved
3976 		 * FWDs will automatically resolve to correct canonical
3977 		 * representative. This will happen before ref type deduping,
3978 		 * which critically depends on stability of these mapping. This
3979 		 * stability is not a requirement for STRUCT/UNION equivalence
3980 		 * checks, though.
3981 		 */
3982 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
3983 			d->map[c_id] = t_id;
3984 		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
3985 			d->map[t_id] = c_id;
3986 
3987 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
3988 		    c_kind != BTF_KIND_FWD &&
3989 		    is_type_mapped(d, c_id) &&
3990 		    !is_type_mapped(d, t_id)) {
3991 			/*
3992 			 * as a perf optimization, we can map struct/union
3993 			 * that's part of type graph we just verified for
3994 			 * equivalence. We can do that for struct/union that has
3995 			 * canonical representative only, though.
3996 			 */
3997 			d->map[t_id] = c_id;
3998 		}
3999 	}
4000 }
4001 
4002 /*
4003  * Deduplicate struct/union types.
4004  *
4005  * For each struct/union type its type signature hash is calculated, taking
4006  * into account type's name, size, number, order and names of fields, but
4007  * ignoring type ID's referenced from fields, because they might not be deduped
4008  * completely until after reference types deduplication phase. This type hash
4009  * is used to iterate over all potential canonical types, sharing same hash.
4010  * For each canonical candidate we check whether type graphs that they form
4011  * (through referenced types in fields and so on) are equivalent using algorithm
4012  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4013  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4014  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4015  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4016  * potentially map other structs/unions to their canonical representatives,
4017  * if such relationship hasn't yet been established. This speeds up algorithm
4018  * by eliminating some of the duplicate work.
4019  *
4020  * If no matching canonical representative was found, struct/union is marked
4021  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4022  * for further look ups.
4023  */
4024 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4025 {
4026 	struct btf_type *cand_type, *t;
4027 	struct hashmap_entry *hash_entry;
4028 	/* if we don't find equivalent type, then we are canonical */
4029 	__u32 new_id = type_id;
4030 	__u16 kind;
4031 	long h;
4032 
4033 	/* already deduped or is in process of deduping (loop detected) */
4034 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4035 		return 0;
4036 
4037 	t = btf_type_by_id(d->btf, type_id);
4038 	kind = btf_kind(t);
4039 
4040 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4041 		return 0;
4042 
4043 	h = btf_hash_struct(t);
4044 	for_each_dedup_cand(d, hash_entry, h) {
4045 		__u32 cand_id = (__u32)(long)hash_entry->value;
4046 		int eq;
4047 
4048 		/*
4049 		 * Even though btf_dedup_is_equiv() checks for
4050 		 * btf_shallow_equal_struct() internally when checking two
4051 		 * structs (unions) for equivalence, we need to guard here
4052 		 * from picking matching FWD type as a dedup candidate.
4053 		 * This can happen due to hash collision. In such case just
4054 		 * relying on btf_dedup_is_equiv() would lead to potentially
4055 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4056 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4057 		 */
4058 		cand_type = btf_type_by_id(d->btf, cand_id);
4059 		if (!btf_shallow_equal_struct(t, cand_type))
4060 			continue;
4061 
4062 		btf_dedup_clear_hypot_map(d);
4063 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4064 		if (eq < 0)
4065 			return eq;
4066 		if (!eq)
4067 			continue;
4068 		new_id = cand_id;
4069 		btf_dedup_merge_hypot_map(d);
4070 		break;
4071 	}
4072 
4073 	d->map[type_id] = new_id;
4074 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4075 		return -ENOMEM;
4076 
4077 	return 0;
4078 }
4079 
4080 static int btf_dedup_struct_types(struct btf_dedup *d)
4081 {
4082 	int i, err;
4083 
4084 	for (i = 1; i <= d->btf->nr_types; i++) {
4085 		err = btf_dedup_struct_type(d, i);
4086 		if (err)
4087 			return err;
4088 	}
4089 	return 0;
4090 }
4091 
4092 /*
4093  * Deduplicate reference type.
4094  *
4095  * Once all primitive and struct/union types got deduplicated, we can easily
4096  * deduplicate all other (reference) BTF types. This is done in two steps:
4097  *
4098  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4099  * resolution can be done either immediately for primitive or struct/union types
4100  * (because they were deduped in previous two phases) or recursively for
4101  * reference types. Recursion will always terminate at either primitive or
4102  * struct/union type, at which point we can "unwind" chain of reference types
4103  * one by one. There is no danger of encountering cycles because in C type
4104  * system the only way to form type cycle is through struct/union, so any chain
4105  * of reference types, even those taking part in a type cycle, will inevitably
4106  * reach struct/union at some point.
4107  *
4108  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4109  * becomes "stable", in the sense that no further deduplication will cause
4110  * any changes to it. With that, it's now possible to calculate type's signature
4111  * hash (this time taking into account referenced type IDs) and loop over all
4112  * potential canonical representatives. If no match was found, current type
4113  * will become canonical representative of itself and will be added into
4114  * btf_dedup->dedup_table as another possible canonical representative.
4115  */
4116 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4117 {
4118 	struct hashmap_entry *hash_entry;
4119 	__u32 new_id = type_id, cand_id;
4120 	struct btf_type *t, *cand;
4121 	/* if we don't find equivalent type, then we are representative type */
4122 	int ref_type_id;
4123 	long h;
4124 
4125 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4126 		return -ELOOP;
4127 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4128 		return resolve_type_id(d, type_id);
4129 
4130 	t = btf_type_by_id(d->btf, type_id);
4131 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4132 
4133 	switch (btf_kind(t)) {
4134 	case BTF_KIND_CONST:
4135 	case BTF_KIND_VOLATILE:
4136 	case BTF_KIND_RESTRICT:
4137 	case BTF_KIND_PTR:
4138 	case BTF_KIND_TYPEDEF:
4139 	case BTF_KIND_FUNC:
4140 		ref_type_id = btf_dedup_ref_type(d, t->type);
4141 		if (ref_type_id < 0)
4142 			return ref_type_id;
4143 		t->type = ref_type_id;
4144 
4145 		h = btf_hash_common(t);
4146 		for_each_dedup_cand(d, hash_entry, h) {
4147 			cand_id = (__u32)(long)hash_entry->value;
4148 			cand = btf_type_by_id(d->btf, cand_id);
4149 			if (btf_equal_common(t, cand)) {
4150 				new_id = cand_id;
4151 				break;
4152 			}
4153 		}
4154 		break;
4155 
4156 	case BTF_KIND_ARRAY: {
4157 		struct btf_array *info = btf_array(t);
4158 
4159 		ref_type_id = btf_dedup_ref_type(d, info->type);
4160 		if (ref_type_id < 0)
4161 			return ref_type_id;
4162 		info->type = ref_type_id;
4163 
4164 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4165 		if (ref_type_id < 0)
4166 			return ref_type_id;
4167 		info->index_type = ref_type_id;
4168 
4169 		h = btf_hash_array(t);
4170 		for_each_dedup_cand(d, hash_entry, h) {
4171 			cand_id = (__u32)(long)hash_entry->value;
4172 			cand = btf_type_by_id(d->btf, cand_id);
4173 			if (btf_equal_array(t, cand)) {
4174 				new_id = cand_id;
4175 				break;
4176 			}
4177 		}
4178 		break;
4179 	}
4180 
4181 	case BTF_KIND_FUNC_PROTO: {
4182 		struct btf_param *param;
4183 		__u16 vlen;
4184 		int i;
4185 
4186 		ref_type_id = btf_dedup_ref_type(d, t->type);
4187 		if (ref_type_id < 0)
4188 			return ref_type_id;
4189 		t->type = ref_type_id;
4190 
4191 		vlen = btf_vlen(t);
4192 		param = btf_params(t);
4193 		for (i = 0; i < vlen; i++) {
4194 			ref_type_id = btf_dedup_ref_type(d, param->type);
4195 			if (ref_type_id < 0)
4196 				return ref_type_id;
4197 			param->type = ref_type_id;
4198 			param++;
4199 		}
4200 
4201 		h = btf_hash_fnproto(t);
4202 		for_each_dedup_cand(d, hash_entry, h) {
4203 			cand_id = (__u32)(long)hash_entry->value;
4204 			cand = btf_type_by_id(d->btf, cand_id);
4205 			if (btf_equal_fnproto(t, cand)) {
4206 				new_id = cand_id;
4207 				break;
4208 			}
4209 		}
4210 		break;
4211 	}
4212 
4213 	default:
4214 		return -EINVAL;
4215 	}
4216 
4217 	d->map[type_id] = new_id;
4218 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4219 		return -ENOMEM;
4220 
4221 	return new_id;
4222 }
4223 
4224 static int btf_dedup_ref_types(struct btf_dedup *d)
4225 {
4226 	int i, err;
4227 
4228 	for (i = 1; i <= d->btf->nr_types; i++) {
4229 		err = btf_dedup_ref_type(d, i);
4230 		if (err < 0)
4231 			return err;
4232 	}
4233 	/* we won't need d->dedup_table anymore */
4234 	hashmap__free(d->dedup_table);
4235 	d->dedup_table = NULL;
4236 	return 0;
4237 }
4238 
4239 /*
4240  * Compact types.
4241  *
4242  * After we established for each type its corresponding canonical representative
4243  * type, we now can eliminate types that are not canonical and leave only
4244  * canonical ones layed out sequentially in memory by copying them over
4245  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4246  * a map from original type ID to a new compacted type ID, which will be used
4247  * during next phase to "fix up" type IDs, referenced from struct/union and
4248  * reference types.
4249  */
4250 static int btf_dedup_compact_types(struct btf_dedup *d)
4251 {
4252 	__u32 *new_offs;
4253 	__u32 next_type_id = 1;
4254 	void *p;
4255 	int i, len;
4256 
4257 	/* we are going to reuse hypot_map to store compaction remapping */
4258 	d->hypot_map[0] = 0;
4259 	for (i = 1; i <= d->btf->nr_types; i++)
4260 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
4261 
4262 	p = d->btf->types_data;
4263 
4264 	for (i = 1; i <= d->btf->nr_types; i++) {
4265 		if (d->map[i] != i)
4266 			continue;
4267 
4268 		len = btf_type_size(btf__type_by_id(d->btf, i));
4269 		if (len < 0)
4270 			return len;
4271 
4272 		memmove(p, btf__type_by_id(d->btf, i), len);
4273 		d->hypot_map[i] = next_type_id;
4274 		d->btf->type_offs[next_type_id] = p - d->btf->types_data;
4275 		p += len;
4276 		next_type_id++;
4277 	}
4278 
4279 	/* shrink struct btf's internal types index and update btf_header */
4280 	d->btf->nr_types = next_type_id - 1;
4281 	d->btf->type_offs_cap = d->btf->nr_types + 1;
4282 	d->btf->hdr->type_len = p - d->btf->types_data;
4283 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4284 				       sizeof(*new_offs));
4285 	if (!new_offs)
4286 		return -ENOMEM;
4287 	d->btf->type_offs = new_offs;
4288 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4289 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4290 	return 0;
4291 }
4292 
4293 /*
4294  * Figure out final (deduplicated and compacted) type ID for provided original
4295  * `type_id` by first resolving it into corresponding canonical type ID and
4296  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4297  * which is populated during compaction phase.
4298  */
4299 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
4300 {
4301 	__u32 resolved_type_id, new_type_id;
4302 
4303 	resolved_type_id = resolve_type_id(d, type_id);
4304 	new_type_id = d->hypot_map[resolved_type_id];
4305 	if (new_type_id > BTF_MAX_NR_TYPES)
4306 		return -EINVAL;
4307 	return new_type_id;
4308 }
4309 
4310 /*
4311  * Remap referenced type IDs into deduped type IDs.
4312  *
4313  * After BTF types are deduplicated and compacted, their final type IDs may
4314  * differ from original ones. The map from original to a corresponding
4315  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4316  * compaction phase. During remapping phase we are rewriting all type IDs
4317  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4318  * their final deduped type IDs.
4319  */
4320 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
4321 {
4322 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4323 	int i, r;
4324 
4325 	switch (btf_kind(t)) {
4326 	case BTF_KIND_INT:
4327 	case BTF_KIND_ENUM:
4328 		break;
4329 
4330 	case BTF_KIND_FWD:
4331 	case BTF_KIND_CONST:
4332 	case BTF_KIND_VOLATILE:
4333 	case BTF_KIND_RESTRICT:
4334 	case BTF_KIND_PTR:
4335 	case BTF_KIND_TYPEDEF:
4336 	case BTF_KIND_FUNC:
4337 	case BTF_KIND_VAR:
4338 		r = btf_dedup_remap_type_id(d, t->type);
4339 		if (r < 0)
4340 			return r;
4341 		t->type = r;
4342 		break;
4343 
4344 	case BTF_KIND_ARRAY: {
4345 		struct btf_array *arr_info = btf_array(t);
4346 
4347 		r = btf_dedup_remap_type_id(d, arr_info->type);
4348 		if (r < 0)
4349 			return r;
4350 		arr_info->type = r;
4351 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
4352 		if (r < 0)
4353 			return r;
4354 		arr_info->index_type = r;
4355 		break;
4356 	}
4357 
4358 	case BTF_KIND_STRUCT:
4359 	case BTF_KIND_UNION: {
4360 		struct btf_member *member = btf_members(t);
4361 		__u16 vlen = btf_vlen(t);
4362 
4363 		for (i = 0; i < vlen; i++) {
4364 			r = btf_dedup_remap_type_id(d, member->type);
4365 			if (r < 0)
4366 				return r;
4367 			member->type = r;
4368 			member++;
4369 		}
4370 		break;
4371 	}
4372 
4373 	case BTF_KIND_FUNC_PROTO: {
4374 		struct btf_param *param = btf_params(t);
4375 		__u16 vlen = btf_vlen(t);
4376 
4377 		r = btf_dedup_remap_type_id(d, t->type);
4378 		if (r < 0)
4379 			return r;
4380 		t->type = r;
4381 
4382 		for (i = 0; i < vlen; i++) {
4383 			r = btf_dedup_remap_type_id(d, param->type);
4384 			if (r < 0)
4385 				return r;
4386 			param->type = r;
4387 			param++;
4388 		}
4389 		break;
4390 	}
4391 
4392 	case BTF_KIND_DATASEC: {
4393 		struct btf_var_secinfo *var = btf_var_secinfos(t);
4394 		__u16 vlen = btf_vlen(t);
4395 
4396 		for (i = 0; i < vlen; i++) {
4397 			r = btf_dedup_remap_type_id(d, var->type);
4398 			if (r < 0)
4399 				return r;
4400 			var->type = r;
4401 			var++;
4402 		}
4403 		break;
4404 	}
4405 
4406 	default:
4407 		return -EINVAL;
4408 	}
4409 
4410 	return 0;
4411 }
4412 
4413 static int btf_dedup_remap_types(struct btf_dedup *d)
4414 {
4415 	int i, r;
4416 
4417 	for (i = 1; i <= d->btf->nr_types; i++) {
4418 		r = btf_dedup_remap_type(d, i);
4419 		if (r < 0)
4420 			return r;
4421 	}
4422 	return 0;
4423 }
4424 
4425 /*
4426  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4427  * data out of it to use for target BTF.
4428  */
4429 struct btf *libbpf_find_kernel_btf(void)
4430 {
4431 	struct {
4432 		const char *path_fmt;
4433 		bool raw_btf;
4434 	} locations[] = {
4435 		/* try canonical vmlinux BTF through sysfs first */
4436 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4437 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4438 		{ "/boot/vmlinux-%1$s" },
4439 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4440 		{ "/lib/modules/%1$s/build/vmlinux" },
4441 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4442 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4443 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4444 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4445 	};
4446 	char path[PATH_MAX + 1];
4447 	struct utsname buf;
4448 	struct btf *btf;
4449 	int i;
4450 
4451 	uname(&buf);
4452 
4453 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4454 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4455 
4456 		if (access(path, R_OK))
4457 			continue;
4458 
4459 		if (locations[i].raw_btf)
4460 			btf = btf__parse_raw(path);
4461 		else
4462 			btf = btf__parse_elf(path, NULL);
4463 
4464 		pr_debug("loading kernel BTF '%s': %ld\n",
4465 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4466 		if (IS_ERR(btf))
4467 			continue;
4468 
4469 		return btf;
4470 	}
4471 
4472 	pr_warn("failed to find valid kernel BTF\n");
4473 	return ERR_PTR(-ESRCH);
4474 }
4475