xref: /openbmc/linux/tools/lib/bpf/btf.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <endian.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <fcntl.h>
9 #include <unistd.h>
10 #include <errno.h>
11 #include <linux/err.h>
12 #include <linux/btf.h>
13 #include <gelf.h>
14 #include "btf.h"
15 #include "bpf.h"
16 #include "libbpf.h"
17 #include "libbpf_internal.h"
18 #include "hashmap.h"
19 
20 #define BTF_MAX_NR_TYPES 0x7fffffff
21 #define BTF_MAX_STR_OFFSET 0x7fffffff
22 
23 static struct btf_type btf_void;
24 
25 struct btf {
26 	union {
27 		struct btf_header *hdr;
28 		void *data;
29 	};
30 	struct btf_type **types;
31 	const char *strings;
32 	void *nohdr_data;
33 	__u32 nr_types;
34 	__u32 types_size;
35 	__u32 data_size;
36 	int fd;
37 };
38 
39 static inline __u64 ptr_to_u64(const void *ptr)
40 {
41 	return (__u64) (unsigned long) ptr;
42 }
43 
44 static int btf_add_type(struct btf *btf, struct btf_type *t)
45 {
46 	if (btf->types_size - btf->nr_types < 2) {
47 		struct btf_type **new_types;
48 		__u32 expand_by, new_size;
49 
50 		if (btf->types_size == BTF_MAX_NR_TYPES)
51 			return -E2BIG;
52 
53 		expand_by = max(btf->types_size >> 2, 16);
54 		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
55 
56 		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
57 		if (!new_types)
58 			return -ENOMEM;
59 
60 		if (btf->nr_types == 0)
61 			new_types[0] = &btf_void;
62 
63 		btf->types = new_types;
64 		btf->types_size = new_size;
65 	}
66 
67 	btf->types[++(btf->nr_types)] = t;
68 
69 	return 0;
70 }
71 
72 static int btf_parse_hdr(struct btf *btf)
73 {
74 	const struct btf_header *hdr = btf->hdr;
75 	__u32 meta_left;
76 
77 	if (btf->data_size < sizeof(struct btf_header)) {
78 		pr_debug("BTF header not found\n");
79 		return -EINVAL;
80 	}
81 
82 	if (hdr->magic != BTF_MAGIC) {
83 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
84 		return -EINVAL;
85 	}
86 
87 	if (hdr->version != BTF_VERSION) {
88 		pr_debug("Unsupported BTF version:%u\n", hdr->version);
89 		return -ENOTSUP;
90 	}
91 
92 	if (hdr->flags) {
93 		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
94 		return -ENOTSUP;
95 	}
96 
97 	meta_left = btf->data_size - sizeof(*hdr);
98 	if (!meta_left) {
99 		pr_debug("BTF has no data\n");
100 		return -EINVAL;
101 	}
102 
103 	if (meta_left < hdr->type_off) {
104 		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
105 		return -EINVAL;
106 	}
107 
108 	if (meta_left < hdr->str_off) {
109 		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
110 		return -EINVAL;
111 	}
112 
113 	if (hdr->type_off >= hdr->str_off) {
114 		pr_debug("BTF type section offset >= string section offset. No type?\n");
115 		return -EINVAL;
116 	}
117 
118 	if (hdr->type_off & 0x02) {
119 		pr_debug("BTF type section is not aligned to 4 bytes\n");
120 		return -EINVAL;
121 	}
122 
123 	btf->nohdr_data = btf->hdr + 1;
124 
125 	return 0;
126 }
127 
128 static int btf_parse_str_sec(struct btf *btf)
129 {
130 	const struct btf_header *hdr = btf->hdr;
131 	const char *start = btf->nohdr_data + hdr->str_off;
132 	const char *end = start + btf->hdr->str_len;
133 
134 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
135 	    start[0] || end[-1]) {
136 		pr_debug("Invalid BTF string section\n");
137 		return -EINVAL;
138 	}
139 
140 	btf->strings = start;
141 
142 	return 0;
143 }
144 
145 static int btf_type_size(struct btf_type *t)
146 {
147 	int base_size = sizeof(struct btf_type);
148 	__u16 vlen = btf_vlen(t);
149 
150 	switch (btf_kind(t)) {
151 	case BTF_KIND_FWD:
152 	case BTF_KIND_CONST:
153 	case BTF_KIND_VOLATILE:
154 	case BTF_KIND_RESTRICT:
155 	case BTF_KIND_PTR:
156 	case BTF_KIND_TYPEDEF:
157 	case BTF_KIND_FUNC:
158 		return base_size;
159 	case BTF_KIND_INT:
160 		return base_size + sizeof(__u32);
161 	case BTF_KIND_ENUM:
162 		return base_size + vlen * sizeof(struct btf_enum);
163 	case BTF_KIND_ARRAY:
164 		return base_size + sizeof(struct btf_array);
165 	case BTF_KIND_STRUCT:
166 	case BTF_KIND_UNION:
167 		return base_size + vlen * sizeof(struct btf_member);
168 	case BTF_KIND_FUNC_PROTO:
169 		return base_size + vlen * sizeof(struct btf_param);
170 	case BTF_KIND_VAR:
171 		return base_size + sizeof(struct btf_var);
172 	case BTF_KIND_DATASEC:
173 		return base_size + vlen * sizeof(struct btf_var_secinfo);
174 	default:
175 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
176 		return -EINVAL;
177 	}
178 }
179 
180 static int btf_parse_type_sec(struct btf *btf)
181 {
182 	struct btf_header *hdr = btf->hdr;
183 	void *nohdr_data = btf->nohdr_data;
184 	void *next_type = nohdr_data + hdr->type_off;
185 	void *end_type = nohdr_data + hdr->str_off;
186 
187 	while (next_type < end_type) {
188 		struct btf_type *t = next_type;
189 		int type_size;
190 		int err;
191 
192 		type_size = btf_type_size(t);
193 		if (type_size < 0)
194 			return type_size;
195 		next_type += type_size;
196 		err = btf_add_type(btf, t);
197 		if (err)
198 			return err;
199 	}
200 
201 	return 0;
202 }
203 
204 __u32 btf__get_nr_types(const struct btf *btf)
205 {
206 	return btf->nr_types;
207 }
208 
209 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
210 {
211 	if (type_id > btf->nr_types)
212 		return NULL;
213 
214 	return btf->types[type_id];
215 }
216 
217 static bool btf_type_is_void(const struct btf_type *t)
218 {
219 	return t == &btf_void || btf_is_fwd(t);
220 }
221 
222 static bool btf_type_is_void_or_null(const struct btf_type *t)
223 {
224 	return !t || btf_type_is_void(t);
225 }
226 
227 #define MAX_RESOLVE_DEPTH 32
228 
229 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
230 {
231 	const struct btf_array *array;
232 	const struct btf_type *t;
233 	__u32 nelems = 1;
234 	__s64 size = -1;
235 	int i;
236 
237 	t = btf__type_by_id(btf, type_id);
238 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
239 	     i++) {
240 		switch (btf_kind(t)) {
241 		case BTF_KIND_INT:
242 		case BTF_KIND_STRUCT:
243 		case BTF_KIND_UNION:
244 		case BTF_KIND_ENUM:
245 		case BTF_KIND_DATASEC:
246 			size = t->size;
247 			goto done;
248 		case BTF_KIND_PTR:
249 			size = sizeof(void *);
250 			goto done;
251 		case BTF_KIND_TYPEDEF:
252 		case BTF_KIND_VOLATILE:
253 		case BTF_KIND_CONST:
254 		case BTF_KIND_RESTRICT:
255 		case BTF_KIND_VAR:
256 			type_id = t->type;
257 			break;
258 		case BTF_KIND_ARRAY:
259 			array = btf_array(t);
260 			if (nelems && array->nelems > UINT32_MAX / nelems)
261 				return -E2BIG;
262 			nelems *= array->nelems;
263 			type_id = array->type;
264 			break;
265 		default:
266 			return -EINVAL;
267 		}
268 
269 		t = btf__type_by_id(btf, type_id);
270 	}
271 
272 done:
273 	if (size < 0)
274 		return -EINVAL;
275 	if (nelems && size > UINT32_MAX / nelems)
276 		return -E2BIG;
277 
278 	return nelems * size;
279 }
280 
281 int btf__resolve_type(const struct btf *btf, __u32 type_id)
282 {
283 	const struct btf_type *t;
284 	int depth = 0;
285 
286 	t = btf__type_by_id(btf, type_id);
287 	while (depth < MAX_RESOLVE_DEPTH &&
288 	       !btf_type_is_void_or_null(t) &&
289 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
290 		type_id = t->type;
291 		t = btf__type_by_id(btf, type_id);
292 		depth++;
293 	}
294 
295 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
296 		return -EINVAL;
297 
298 	return type_id;
299 }
300 
301 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
302 {
303 	__u32 i;
304 
305 	if (!strcmp(type_name, "void"))
306 		return 0;
307 
308 	for (i = 1; i <= btf->nr_types; i++) {
309 		const struct btf_type *t = btf->types[i];
310 		const char *name = btf__name_by_offset(btf, t->name_off);
311 
312 		if (name && !strcmp(type_name, name))
313 			return i;
314 	}
315 
316 	return -ENOENT;
317 }
318 
319 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
320 			     __u32 kind)
321 {
322 	__u32 i;
323 
324 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
325 		return 0;
326 
327 	for (i = 1; i <= btf->nr_types; i++) {
328 		const struct btf_type *t = btf->types[i];
329 		const char *name;
330 
331 		if (btf_kind(t) != kind)
332 			continue;
333 		name = btf__name_by_offset(btf, t->name_off);
334 		if (name && !strcmp(type_name, name))
335 			return i;
336 	}
337 
338 	return -ENOENT;
339 }
340 
341 void btf__free(struct btf *btf)
342 {
343 	if (!btf)
344 		return;
345 
346 	if (btf->fd != -1)
347 		close(btf->fd);
348 
349 	free(btf->data);
350 	free(btf->types);
351 	free(btf);
352 }
353 
354 struct btf *btf__new(__u8 *data, __u32 size)
355 {
356 	struct btf *btf;
357 	int err;
358 
359 	btf = calloc(1, sizeof(struct btf));
360 	if (!btf)
361 		return ERR_PTR(-ENOMEM);
362 
363 	btf->fd = -1;
364 
365 	btf->data = malloc(size);
366 	if (!btf->data) {
367 		err = -ENOMEM;
368 		goto done;
369 	}
370 
371 	memcpy(btf->data, data, size);
372 	btf->data_size = size;
373 
374 	err = btf_parse_hdr(btf);
375 	if (err)
376 		goto done;
377 
378 	err = btf_parse_str_sec(btf);
379 	if (err)
380 		goto done;
381 
382 	err = btf_parse_type_sec(btf);
383 
384 done:
385 	if (err) {
386 		btf__free(btf);
387 		return ERR_PTR(err);
388 	}
389 
390 	return btf;
391 }
392 
393 static bool btf_check_endianness(const GElf_Ehdr *ehdr)
394 {
395 #if __BYTE_ORDER == __LITTLE_ENDIAN
396 	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
397 #elif __BYTE_ORDER == __BIG_ENDIAN
398 	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
399 #else
400 # error "Unrecognized __BYTE_ORDER__"
401 #endif
402 }
403 
404 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
405 {
406 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
407 	int err = 0, fd = -1, idx = 0;
408 	struct btf *btf = NULL;
409 	Elf_Scn *scn = NULL;
410 	Elf *elf = NULL;
411 	GElf_Ehdr ehdr;
412 
413 	if (elf_version(EV_CURRENT) == EV_NONE) {
414 		pr_warn("failed to init libelf for %s\n", path);
415 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
416 	}
417 
418 	fd = open(path, O_RDONLY);
419 	if (fd < 0) {
420 		err = -errno;
421 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
422 		return ERR_PTR(err);
423 	}
424 
425 	err = -LIBBPF_ERRNO__FORMAT;
426 
427 	elf = elf_begin(fd, ELF_C_READ, NULL);
428 	if (!elf) {
429 		pr_warn("failed to open %s as ELF file\n", path);
430 		goto done;
431 	}
432 	if (!gelf_getehdr(elf, &ehdr)) {
433 		pr_warn("failed to get EHDR from %s\n", path);
434 		goto done;
435 	}
436 	if (!btf_check_endianness(&ehdr)) {
437 		pr_warn("non-native ELF endianness is not supported\n");
438 		goto done;
439 	}
440 	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
441 		pr_warn("failed to get e_shstrndx from %s\n", path);
442 		goto done;
443 	}
444 
445 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
446 		GElf_Shdr sh;
447 		char *name;
448 
449 		idx++;
450 		if (gelf_getshdr(scn, &sh) != &sh) {
451 			pr_warn("failed to get section(%d) header from %s\n",
452 				idx, path);
453 			goto done;
454 		}
455 		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
456 		if (!name) {
457 			pr_warn("failed to get section(%d) name from %s\n",
458 				idx, path);
459 			goto done;
460 		}
461 		if (strcmp(name, BTF_ELF_SEC) == 0) {
462 			btf_data = elf_getdata(scn, 0);
463 			if (!btf_data) {
464 				pr_warn("failed to get section(%d, %s) data from %s\n",
465 					idx, name, path);
466 				goto done;
467 			}
468 			continue;
469 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
470 			btf_ext_data = elf_getdata(scn, 0);
471 			if (!btf_ext_data) {
472 				pr_warn("failed to get section(%d, %s) data from %s\n",
473 					idx, name, path);
474 				goto done;
475 			}
476 			continue;
477 		}
478 	}
479 
480 	err = 0;
481 
482 	if (!btf_data) {
483 		err = -ENOENT;
484 		goto done;
485 	}
486 	btf = btf__new(btf_data->d_buf, btf_data->d_size);
487 	if (IS_ERR(btf))
488 		goto done;
489 
490 	if (btf_ext && btf_ext_data) {
491 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
492 					btf_ext_data->d_size);
493 		if (IS_ERR(*btf_ext))
494 			goto done;
495 	} else if (btf_ext) {
496 		*btf_ext = NULL;
497 	}
498 done:
499 	if (elf)
500 		elf_end(elf);
501 	close(fd);
502 
503 	if (err)
504 		return ERR_PTR(err);
505 	/*
506 	 * btf is always parsed before btf_ext, so no need to clean up
507 	 * btf_ext, if btf loading failed
508 	 */
509 	if (IS_ERR(btf))
510 		return btf;
511 	if (btf_ext && IS_ERR(*btf_ext)) {
512 		btf__free(btf);
513 		err = PTR_ERR(*btf_ext);
514 		return ERR_PTR(err);
515 	}
516 	return btf;
517 }
518 
519 static int compare_vsi_off(const void *_a, const void *_b)
520 {
521 	const struct btf_var_secinfo *a = _a;
522 	const struct btf_var_secinfo *b = _b;
523 
524 	return a->offset - b->offset;
525 }
526 
527 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
528 			     struct btf_type *t)
529 {
530 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
531 	const char *name = btf__name_by_offset(btf, t->name_off);
532 	const struct btf_type *t_var;
533 	struct btf_var_secinfo *vsi;
534 	const struct btf_var *var;
535 	int ret;
536 
537 	if (!name) {
538 		pr_debug("No name found in string section for DATASEC kind.\n");
539 		return -ENOENT;
540 	}
541 
542 	ret = bpf_object__section_size(obj, name, &size);
543 	if (ret || !size || (t->size && t->size != size)) {
544 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
545 		return -ENOENT;
546 	}
547 
548 	t->size = size;
549 
550 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
551 		t_var = btf__type_by_id(btf, vsi->type);
552 		var = btf_var(t_var);
553 
554 		if (!btf_is_var(t_var)) {
555 			pr_debug("Non-VAR type seen in section %s\n", name);
556 			return -EINVAL;
557 		}
558 
559 		if (var->linkage == BTF_VAR_STATIC)
560 			continue;
561 
562 		name = btf__name_by_offset(btf, t_var->name_off);
563 		if (!name) {
564 			pr_debug("No name found in string section for VAR kind\n");
565 			return -ENOENT;
566 		}
567 
568 		ret = bpf_object__variable_offset(obj, name, &off);
569 		if (ret) {
570 			pr_debug("No offset found in symbol table for VAR %s\n",
571 				 name);
572 			return -ENOENT;
573 		}
574 
575 		vsi->offset = off;
576 	}
577 
578 	qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off);
579 	return 0;
580 }
581 
582 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
583 {
584 	int err = 0;
585 	__u32 i;
586 
587 	for (i = 1; i <= btf->nr_types; i++) {
588 		struct btf_type *t = btf->types[i];
589 
590 		/* Loader needs to fix up some of the things compiler
591 		 * couldn't get its hands on while emitting BTF. This
592 		 * is section size and global variable offset. We use
593 		 * the info from the ELF itself for this purpose.
594 		 */
595 		if (btf_is_datasec(t)) {
596 			err = btf_fixup_datasec(obj, btf, t);
597 			if (err)
598 				break;
599 		}
600 	}
601 
602 	return err;
603 }
604 
605 int btf__load(struct btf *btf)
606 {
607 	__u32 log_buf_size = BPF_LOG_BUF_SIZE;
608 	char *log_buf = NULL;
609 	int err = 0;
610 
611 	if (btf->fd >= 0)
612 		return -EEXIST;
613 
614 	log_buf = malloc(log_buf_size);
615 	if (!log_buf)
616 		return -ENOMEM;
617 
618 	*log_buf = 0;
619 
620 	btf->fd = bpf_load_btf(btf->data, btf->data_size,
621 			       log_buf, log_buf_size, false);
622 	if (btf->fd < 0) {
623 		err = -errno;
624 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
625 		if (*log_buf)
626 			pr_warn("%s\n", log_buf);
627 		goto done;
628 	}
629 
630 done:
631 	free(log_buf);
632 	return err;
633 }
634 
635 int btf__fd(const struct btf *btf)
636 {
637 	return btf->fd;
638 }
639 
640 const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
641 {
642 	*size = btf->data_size;
643 	return btf->data;
644 }
645 
646 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
647 {
648 	if (offset < btf->hdr->str_len)
649 		return &btf->strings[offset];
650 	else
651 		return NULL;
652 }
653 
654 int btf__get_from_id(__u32 id, struct btf **btf)
655 {
656 	struct bpf_btf_info btf_info = { 0 };
657 	__u32 len = sizeof(btf_info);
658 	__u32 last_size;
659 	int btf_fd;
660 	void *ptr;
661 	int err;
662 
663 	err = 0;
664 	*btf = NULL;
665 	btf_fd = bpf_btf_get_fd_by_id(id);
666 	if (btf_fd < 0)
667 		return 0;
668 
669 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
670 	 * let's start with a sane default - 4KiB here - and resize it only if
671 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
672 	 */
673 	btf_info.btf_size = 4096;
674 	last_size = btf_info.btf_size;
675 	ptr = malloc(last_size);
676 	if (!ptr) {
677 		err = -ENOMEM;
678 		goto exit_free;
679 	}
680 
681 	memset(ptr, 0, last_size);
682 	btf_info.btf = ptr_to_u64(ptr);
683 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
684 
685 	if (!err && btf_info.btf_size > last_size) {
686 		void *temp_ptr;
687 
688 		last_size = btf_info.btf_size;
689 		temp_ptr = realloc(ptr, last_size);
690 		if (!temp_ptr) {
691 			err = -ENOMEM;
692 			goto exit_free;
693 		}
694 		ptr = temp_ptr;
695 		memset(ptr, 0, last_size);
696 		btf_info.btf = ptr_to_u64(ptr);
697 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
698 	}
699 
700 	if (err || btf_info.btf_size > last_size) {
701 		err = errno;
702 		goto exit_free;
703 	}
704 
705 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
706 	if (IS_ERR(*btf)) {
707 		err = PTR_ERR(*btf);
708 		*btf = NULL;
709 	}
710 
711 exit_free:
712 	close(btf_fd);
713 	free(ptr);
714 
715 	return err;
716 }
717 
718 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
719 			 __u32 expected_key_size, __u32 expected_value_size,
720 			 __u32 *key_type_id, __u32 *value_type_id)
721 {
722 	const struct btf_type *container_type;
723 	const struct btf_member *key, *value;
724 	const size_t max_name = 256;
725 	char container_name[max_name];
726 	__s64 key_size, value_size;
727 	__s32 container_id;
728 
729 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
730 	    max_name) {
731 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
732 			map_name, map_name);
733 		return -EINVAL;
734 	}
735 
736 	container_id = btf__find_by_name(btf, container_name);
737 	if (container_id < 0) {
738 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
739 			 map_name, container_name);
740 		return container_id;
741 	}
742 
743 	container_type = btf__type_by_id(btf, container_id);
744 	if (!container_type) {
745 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
746 			map_name, container_id);
747 		return -EINVAL;
748 	}
749 
750 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
751 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
752 			map_name, container_name);
753 		return -EINVAL;
754 	}
755 
756 	key = btf_members(container_type);
757 	value = key + 1;
758 
759 	key_size = btf__resolve_size(btf, key->type);
760 	if (key_size < 0) {
761 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
762 		return key_size;
763 	}
764 
765 	if (expected_key_size != key_size) {
766 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
767 			map_name, (__u32)key_size, expected_key_size);
768 		return -EINVAL;
769 	}
770 
771 	value_size = btf__resolve_size(btf, value->type);
772 	if (value_size < 0) {
773 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
774 		return value_size;
775 	}
776 
777 	if (expected_value_size != value_size) {
778 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
779 			map_name, (__u32)value_size, expected_value_size);
780 		return -EINVAL;
781 	}
782 
783 	*key_type_id = key->type;
784 	*value_type_id = value->type;
785 
786 	return 0;
787 }
788 
789 struct btf_ext_sec_setup_param {
790 	__u32 off;
791 	__u32 len;
792 	__u32 min_rec_size;
793 	struct btf_ext_info *ext_info;
794 	const char *desc;
795 };
796 
797 static int btf_ext_setup_info(struct btf_ext *btf_ext,
798 			      struct btf_ext_sec_setup_param *ext_sec)
799 {
800 	const struct btf_ext_info_sec *sinfo;
801 	struct btf_ext_info *ext_info;
802 	__u32 info_left, record_size;
803 	/* The start of the info sec (including the __u32 record_size). */
804 	void *info;
805 
806 	if (ext_sec->len == 0)
807 		return 0;
808 
809 	if (ext_sec->off & 0x03) {
810 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
811 		     ext_sec->desc);
812 		return -EINVAL;
813 	}
814 
815 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
816 	info_left = ext_sec->len;
817 
818 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
819 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
820 			 ext_sec->desc, ext_sec->off, ext_sec->len);
821 		return -EINVAL;
822 	}
823 
824 	/* At least a record size */
825 	if (info_left < sizeof(__u32)) {
826 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
827 		return -EINVAL;
828 	}
829 
830 	/* The record size needs to meet the minimum standard */
831 	record_size = *(__u32 *)info;
832 	if (record_size < ext_sec->min_rec_size ||
833 	    record_size & 0x03) {
834 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
835 			 ext_sec->desc, record_size);
836 		return -EINVAL;
837 	}
838 
839 	sinfo = info + sizeof(__u32);
840 	info_left -= sizeof(__u32);
841 
842 	/* If no records, return failure now so .BTF.ext won't be used. */
843 	if (!info_left) {
844 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
845 		return -EINVAL;
846 	}
847 
848 	while (info_left) {
849 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
850 		__u64 total_record_size;
851 		__u32 num_records;
852 
853 		if (info_left < sec_hdrlen) {
854 			pr_debug("%s section header is not found in .BTF.ext\n",
855 			     ext_sec->desc);
856 			return -EINVAL;
857 		}
858 
859 		num_records = sinfo->num_info;
860 		if (num_records == 0) {
861 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
862 			     ext_sec->desc);
863 			return -EINVAL;
864 		}
865 
866 		total_record_size = sec_hdrlen +
867 				    (__u64)num_records * record_size;
868 		if (info_left < total_record_size) {
869 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
870 			     ext_sec->desc);
871 			return -EINVAL;
872 		}
873 
874 		info_left -= total_record_size;
875 		sinfo = (void *)sinfo + total_record_size;
876 	}
877 
878 	ext_info = ext_sec->ext_info;
879 	ext_info->len = ext_sec->len - sizeof(__u32);
880 	ext_info->rec_size = record_size;
881 	ext_info->info = info + sizeof(__u32);
882 
883 	return 0;
884 }
885 
886 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
887 {
888 	struct btf_ext_sec_setup_param param = {
889 		.off = btf_ext->hdr->func_info_off,
890 		.len = btf_ext->hdr->func_info_len,
891 		.min_rec_size = sizeof(struct bpf_func_info_min),
892 		.ext_info = &btf_ext->func_info,
893 		.desc = "func_info"
894 	};
895 
896 	return btf_ext_setup_info(btf_ext, &param);
897 }
898 
899 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
900 {
901 	struct btf_ext_sec_setup_param param = {
902 		.off = btf_ext->hdr->line_info_off,
903 		.len = btf_ext->hdr->line_info_len,
904 		.min_rec_size = sizeof(struct bpf_line_info_min),
905 		.ext_info = &btf_ext->line_info,
906 		.desc = "line_info",
907 	};
908 
909 	return btf_ext_setup_info(btf_ext, &param);
910 }
911 
912 static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext)
913 {
914 	struct btf_ext_sec_setup_param param = {
915 		.off = btf_ext->hdr->field_reloc_off,
916 		.len = btf_ext->hdr->field_reloc_len,
917 		.min_rec_size = sizeof(struct bpf_field_reloc),
918 		.ext_info = &btf_ext->field_reloc_info,
919 		.desc = "field_reloc",
920 	};
921 
922 	return btf_ext_setup_info(btf_ext, &param);
923 }
924 
925 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
926 {
927 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
928 
929 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
930 	    data_size < hdr->hdr_len) {
931 		pr_debug("BTF.ext header not found");
932 		return -EINVAL;
933 	}
934 
935 	if (hdr->magic != BTF_MAGIC) {
936 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
937 		return -EINVAL;
938 	}
939 
940 	if (hdr->version != BTF_VERSION) {
941 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
942 		return -ENOTSUP;
943 	}
944 
945 	if (hdr->flags) {
946 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
947 		return -ENOTSUP;
948 	}
949 
950 	if (data_size == hdr->hdr_len) {
951 		pr_debug("BTF.ext has no data\n");
952 		return -EINVAL;
953 	}
954 
955 	return 0;
956 }
957 
958 void btf_ext__free(struct btf_ext *btf_ext)
959 {
960 	if (!btf_ext)
961 		return;
962 	free(btf_ext->data);
963 	free(btf_ext);
964 }
965 
966 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
967 {
968 	struct btf_ext *btf_ext;
969 	int err;
970 
971 	err = btf_ext_parse_hdr(data, size);
972 	if (err)
973 		return ERR_PTR(err);
974 
975 	btf_ext = calloc(1, sizeof(struct btf_ext));
976 	if (!btf_ext)
977 		return ERR_PTR(-ENOMEM);
978 
979 	btf_ext->data_size = size;
980 	btf_ext->data = malloc(size);
981 	if (!btf_ext->data) {
982 		err = -ENOMEM;
983 		goto done;
984 	}
985 	memcpy(btf_ext->data, data, size);
986 
987 	if (btf_ext->hdr->hdr_len <
988 	    offsetofend(struct btf_ext_header, line_info_len))
989 		goto done;
990 	err = btf_ext_setup_func_info(btf_ext);
991 	if (err)
992 		goto done;
993 
994 	err = btf_ext_setup_line_info(btf_ext);
995 	if (err)
996 		goto done;
997 
998 	if (btf_ext->hdr->hdr_len <
999 	    offsetofend(struct btf_ext_header, field_reloc_len))
1000 		goto done;
1001 	err = btf_ext_setup_field_reloc(btf_ext);
1002 	if (err)
1003 		goto done;
1004 
1005 done:
1006 	if (err) {
1007 		btf_ext__free(btf_ext);
1008 		return ERR_PTR(err);
1009 	}
1010 
1011 	return btf_ext;
1012 }
1013 
1014 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
1015 {
1016 	*size = btf_ext->data_size;
1017 	return btf_ext->data;
1018 }
1019 
1020 static int btf_ext_reloc_info(const struct btf *btf,
1021 			      const struct btf_ext_info *ext_info,
1022 			      const char *sec_name, __u32 insns_cnt,
1023 			      void **info, __u32 *cnt)
1024 {
1025 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1026 	__u32 i, record_size, existing_len, records_len;
1027 	struct btf_ext_info_sec *sinfo;
1028 	const char *info_sec_name;
1029 	__u64 remain_len;
1030 	void *data;
1031 
1032 	record_size = ext_info->rec_size;
1033 	sinfo = ext_info->info;
1034 	remain_len = ext_info->len;
1035 	while (remain_len > 0) {
1036 		records_len = sinfo->num_info * record_size;
1037 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1038 		if (strcmp(info_sec_name, sec_name)) {
1039 			remain_len -= sec_hdrlen + records_len;
1040 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1041 			continue;
1042 		}
1043 
1044 		existing_len = (*cnt) * record_size;
1045 		data = realloc(*info, existing_len + records_len);
1046 		if (!data)
1047 			return -ENOMEM;
1048 
1049 		memcpy(data + existing_len, sinfo->data, records_len);
1050 		/* adjust insn_off only, the rest data will be passed
1051 		 * to the kernel.
1052 		 */
1053 		for (i = 0; i < sinfo->num_info; i++) {
1054 			__u32 *insn_off;
1055 
1056 			insn_off = data + existing_len + (i * record_size);
1057 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1058 				insns_cnt;
1059 		}
1060 		*info = data;
1061 		*cnt += sinfo->num_info;
1062 		return 0;
1063 	}
1064 
1065 	return -ENOENT;
1066 }
1067 
1068 int btf_ext__reloc_func_info(const struct btf *btf,
1069 			     const struct btf_ext *btf_ext,
1070 			     const char *sec_name, __u32 insns_cnt,
1071 			     void **func_info, __u32 *cnt)
1072 {
1073 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1074 				  insns_cnt, func_info, cnt);
1075 }
1076 
1077 int btf_ext__reloc_line_info(const struct btf *btf,
1078 			     const struct btf_ext *btf_ext,
1079 			     const char *sec_name, __u32 insns_cnt,
1080 			     void **line_info, __u32 *cnt)
1081 {
1082 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1083 				  insns_cnt, line_info, cnt);
1084 }
1085 
1086 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1087 {
1088 	return btf_ext->func_info.rec_size;
1089 }
1090 
1091 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1092 {
1093 	return btf_ext->line_info.rec_size;
1094 }
1095 
1096 struct btf_dedup;
1097 
1098 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1099 				       const struct btf_dedup_opts *opts);
1100 static void btf_dedup_free(struct btf_dedup *d);
1101 static int btf_dedup_strings(struct btf_dedup *d);
1102 static int btf_dedup_prim_types(struct btf_dedup *d);
1103 static int btf_dedup_struct_types(struct btf_dedup *d);
1104 static int btf_dedup_ref_types(struct btf_dedup *d);
1105 static int btf_dedup_compact_types(struct btf_dedup *d);
1106 static int btf_dedup_remap_types(struct btf_dedup *d);
1107 
1108 /*
1109  * Deduplicate BTF types and strings.
1110  *
1111  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1112  * section with all BTF type descriptors and string data. It overwrites that
1113  * memory in-place with deduplicated types and strings without any loss of
1114  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1115  * is provided, all the strings referenced from .BTF.ext section are honored
1116  * and updated to point to the right offsets after deduplication.
1117  *
1118  * If function returns with error, type/string data might be garbled and should
1119  * be discarded.
1120  *
1121  * More verbose and detailed description of both problem btf_dedup is solving,
1122  * as well as solution could be found at:
1123  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1124  *
1125  * Problem description and justification
1126  * =====================================
1127  *
1128  * BTF type information is typically emitted either as a result of conversion
1129  * from DWARF to BTF or directly by compiler. In both cases, each compilation
1130  * unit contains information about a subset of all the types that are used
1131  * in an application. These subsets are frequently overlapping and contain a lot
1132  * of duplicated information when later concatenated together into a single
1133  * binary. This algorithm ensures that each unique type is represented by single
1134  * BTF type descriptor, greatly reducing resulting size of BTF data.
1135  *
1136  * Compilation unit isolation and subsequent duplication of data is not the only
1137  * problem. The same type hierarchy (e.g., struct and all the type that struct
1138  * references) in different compilation units can be represented in BTF to
1139  * various degrees of completeness (or, rather, incompleteness) due to
1140  * struct/union forward declarations.
1141  *
1142  * Let's take a look at an example, that we'll use to better understand the
1143  * problem (and solution). Suppose we have two compilation units, each using
1144  * same `struct S`, but each of them having incomplete type information about
1145  * struct's fields:
1146  *
1147  * // CU #1:
1148  * struct S;
1149  * struct A {
1150  *	int a;
1151  *	struct A* self;
1152  *	struct S* parent;
1153  * };
1154  * struct B;
1155  * struct S {
1156  *	struct A* a_ptr;
1157  *	struct B* b_ptr;
1158  * };
1159  *
1160  * // CU #2:
1161  * struct S;
1162  * struct A;
1163  * struct B {
1164  *	int b;
1165  *	struct B* self;
1166  *	struct S* parent;
1167  * };
1168  * struct S {
1169  *	struct A* a_ptr;
1170  *	struct B* b_ptr;
1171  * };
1172  *
1173  * In case of CU #1, BTF data will know only that `struct B` exist (but no
1174  * more), but will know the complete type information about `struct A`. While
1175  * for CU #2, it will know full type information about `struct B`, but will
1176  * only know about forward declaration of `struct A` (in BTF terms, it will
1177  * have `BTF_KIND_FWD` type descriptor with name `B`).
1178  *
1179  * This compilation unit isolation means that it's possible that there is no
1180  * single CU with complete type information describing structs `S`, `A`, and
1181  * `B`. Also, we might get tons of duplicated and redundant type information.
1182  *
1183  * Additional complication we need to keep in mind comes from the fact that
1184  * types, in general, can form graphs containing cycles, not just DAGs.
1185  *
1186  * While algorithm does deduplication, it also merges and resolves type
1187  * information (unless disabled throught `struct btf_opts`), whenever possible.
1188  * E.g., in the example above with two compilation units having partial type
1189  * information for structs `A` and `B`, the output of algorithm will emit
1190  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1191  * (as well as type information for `int` and pointers), as if they were defined
1192  * in a single compilation unit as:
1193  *
1194  * struct A {
1195  *	int a;
1196  *	struct A* self;
1197  *	struct S* parent;
1198  * };
1199  * struct B {
1200  *	int b;
1201  *	struct B* self;
1202  *	struct S* parent;
1203  * };
1204  * struct S {
1205  *	struct A* a_ptr;
1206  *	struct B* b_ptr;
1207  * };
1208  *
1209  * Algorithm summary
1210  * =================
1211  *
1212  * Algorithm completes its work in 6 separate passes:
1213  *
1214  * 1. Strings deduplication.
1215  * 2. Primitive types deduplication (int, enum, fwd).
1216  * 3. Struct/union types deduplication.
1217  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1218  *    protos, and const/volatile/restrict modifiers).
1219  * 5. Types compaction.
1220  * 6. Types remapping.
1221  *
1222  * Algorithm determines canonical type descriptor, which is a single
1223  * representative type for each truly unique type. This canonical type is the
1224  * one that will go into final deduplicated BTF type information. For
1225  * struct/unions, it is also the type that algorithm will merge additional type
1226  * information into (while resolving FWDs), as it discovers it from data in
1227  * other CUs. Each input BTF type eventually gets either mapped to itself, if
1228  * that type is canonical, or to some other type, if that type is equivalent
1229  * and was chosen as canonical representative. This mapping is stored in
1230  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1231  * FWD type got resolved to.
1232  *
1233  * To facilitate fast discovery of canonical types, we also maintain canonical
1234  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1235  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1236  * that match that signature. With sufficiently good choice of type signature
1237  * hashing function, we can limit number of canonical types for each unique type
1238  * signature to a very small number, allowing to find canonical type for any
1239  * duplicated type very quickly.
1240  *
1241  * Struct/union deduplication is the most critical part and algorithm for
1242  * deduplicating structs/unions is described in greater details in comments for
1243  * `btf_dedup_is_equiv` function.
1244  */
1245 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1246 	       const struct btf_dedup_opts *opts)
1247 {
1248 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1249 	int err;
1250 
1251 	if (IS_ERR(d)) {
1252 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1253 		return -EINVAL;
1254 	}
1255 
1256 	err = btf_dedup_strings(d);
1257 	if (err < 0) {
1258 		pr_debug("btf_dedup_strings failed:%d\n", err);
1259 		goto done;
1260 	}
1261 	err = btf_dedup_prim_types(d);
1262 	if (err < 0) {
1263 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1264 		goto done;
1265 	}
1266 	err = btf_dedup_struct_types(d);
1267 	if (err < 0) {
1268 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1269 		goto done;
1270 	}
1271 	err = btf_dedup_ref_types(d);
1272 	if (err < 0) {
1273 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1274 		goto done;
1275 	}
1276 	err = btf_dedup_compact_types(d);
1277 	if (err < 0) {
1278 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1279 		goto done;
1280 	}
1281 	err = btf_dedup_remap_types(d);
1282 	if (err < 0) {
1283 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1284 		goto done;
1285 	}
1286 
1287 done:
1288 	btf_dedup_free(d);
1289 	return err;
1290 }
1291 
1292 #define BTF_UNPROCESSED_ID ((__u32)-1)
1293 #define BTF_IN_PROGRESS_ID ((__u32)-2)
1294 
1295 struct btf_dedup {
1296 	/* .BTF section to be deduped in-place */
1297 	struct btf *btf;
1298 	/*
1299 	 * Optional .BTF.ext section. When provided, any strings referenced
1300 	 * from it will be taken into account when deduping strings
1301 	 */
1302 	struct btf_ext *btf_ext;
1303 	/*
1304 	 * This is a map from any type's signature hash to a list of possible
1305 	 * canonical representative type candidates. Hash collisions are
1306 	 * ignored, so even types of various kinds can share same list of
1307 	 * candidates, which is fine because we rely on subsequent
1308 	 * btf_xxx_equal() checks to authoritatively verify type equality.
1309 	 */
1310 	struct hashmap *dedup_table;
1311 	/* Canonical types map */
1312 	__u32 *map;
1313 	/* Hypothetical mapping, used during type graph equivalence checks */
1314 	__u32 *hypot_map;
1315 	__u32 *hypot_list;
1316 	size_t hypot_cnt;
1317 	size_t hypot_cap;
1318 	/* Various option modifying behavior of algorithm */
1319 	struct btf_dedup_opts opts;
1320 };
1321 
1322 struct btf_str_ptr {
1323 	const char *str;
1324 	__u32 new_off;
1325 	bool used;
1326 };
1327 
1328 struct btf_str_ptrs {
1329 	struct btf_str_ptr *ptrs;
1330 	const char *data;
1331 	__u32 cnt;
1332 	__u32 cap;
1333 };
1334 
1335 static long hash_combine(long h, long value)
1336 {
1337 	return h * 31 + value;
1338 }
1339 
1340 #define for_each_dedup_cand(d, node, hash) \
1341 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1342 
1343 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1344 {
1345 	return hashmap__append(d->dedup_table,
1346 			       (void *)hash, (void *)(long)type_id);
1347 }
1348 
1349 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1350 				   __u32 from_id, __u32 to_id)
1351 {
1352 	if (d->hypot_cnt == d->hypot_cap) {
1353 		__u32 *new_list;
1354 
1355 		d->hypot_cap += max(16, d->hypot_cap / 2);
1356 		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1357 		if (!new_list)
1358 			return -ENOMEM;
1359 		d->hypot_list = new_list;
1360 	}
1361 	d->hypot_list[d->hypot_cnt++] = from_id;
1362 	d->hypot_map[from_id] = to_id;
1363 	return 0;
1364 }
1365 
1366 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1367 {
1368 	int i;
1369 
1370 	for (i = 0; i < d->hypot_cnt; i++)
1371 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1372 	d->hypot_cnt = 0;
1373 }
1374 
1375 static void btf_dedup_free(struct btf_dedup *d)
1376 {
1377 	hashmap__free(d->dedup_table);
1378 	d->dedup_table = NULL;
1379 
1380 	free(d->map);
1381 	d->map = NULL;
1382 
1383 	free(d->hypot_map);
1384 	d->hypot_map = NULL;
1385 
1386 	free(d->hypot_list);
1387 	d->hypot_list = NULL;
1388 
1389 	free(d);
1390 }
1391 
1392 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1393 {
1394 	return (size_t)key;
1395 }
1396 
1397 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1398 {
1399 	return 0;
1400 }
1401 
1402 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1403 {
1404 	return k1 == k2;
1405 }
1406 
1407 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1408 				       const struct btf_dedup_opts *opts)
1409 {
1410 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1411 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1412 	int i, err = 0;
1413 
1414 	if (!d)
1415 		return ERR_PTR(-ENOMEM);
1416 
1417 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1418 	/* dedup_table_size is now used only to force collisions in tests */
1419 	if (opts && opts->dedup_table_size == 1)
1420 		hash_fn = btf_dedup_collision_hash_fn;
1421 
1422 	d->btf = btf;
1423 	d->btf_ext = btf_ext;
1424 
1425 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1426 	if (IS_ERR(d->dedup_table)) {
1427 		err = PTR_ERR(d->dedup_table);
1428 		d->dedup_table = NULL;
1429 		goto done;
1430 	}
1431 
1432 	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1433 	if (!d->map) {
1434 		err = -ENOMEM;
1435 		goto done;
1436 	}
1437 	/* special BTF "void" type is made canonical immediately */
1438 	d->map[0] = 0;
1439 	for (i = 1; i <= btf->nr_types; i++) {
1440 		struct btf_type *t = d->btf->types[i];
1441 
1442 		/* VAR and DATASEC are never deduped and are self-canonical */
1443 		if (btf_is_var(t) || btf_is_datasec(t))
1444 			d->map[i] = i;
1445 		else
1446 			d->map[i] = BTF_UNPROCESSED_ID;
1447 	}
1448 
1449 	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1450 	if (!d->hypot_map) {
1451 		err = -ENOMEM;
1452 		goto done;
1453 	}
1454 	for (i = 0; i <= btf->nr_types; i++)
1455 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1456 
1457 done:
1458 	if (err) {
1459 		btf_dedup_free(d);
1460 		return ERR_PTR(err);
1461 	}
1462 
1463 	return d;
1464 }
1465 
1466 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1467 
1468 /*
1469  * Iterate over all possible places in .BTF and .BTF.ext that can reference
1470  * string and pass pointer to it to a provided callback `fn`.
1471  */
1472 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1473 {
1474 	void *line_data_cur, *line_data_end;
1475 	int i, j, r, rec_size;
1476 	struct btf_type *t;
1477 
1478 	for (i = 1; i <= d->btf->nr_types; i++) {
1479 		t = d->btf->types[i];
1480 		r = fn(&t->name_off, ctx);
1481 		if (r)
1482 			return r;
1483 
1484 		switch (btf_kind(t)) {
1485 		case BTF_KIND_STRUCT:
1486 		case BTF_KIND_UNION: {
1487 			struct btf_member *m = btf_members(t);
1488 			__u16 vlen = btf_vlen(t);
1489 
1490 			for (j = 0; j < vlen; j++) {
1491 				r = fn(&m->name_off, ctx);
1492 				if (r)
1493 					return r;
1494 				m++;
1495 			}
1496 			break;
1497 		}
1498 		case BTF_KIND_ENUM: {
1499 			struct btf_enum *m = btf_enum(t);
1500 			__u16 vlen = btf_vlen(t);
1501 
1502 			for (j = 0; j < vlen; j++) {
1503 				r = fn(&m->name_off, ctx);
1504 				if (r)
1505 					return r;
1506 				m++;
1507 			}
1508 			break;
1509 		}
1510 		case BTF_KIND_FUNC_PROTO: {
1511 			struct btf_param *m = btf_params(t);
1512 			__u16 vlen = btf_vlen(t);
1513 
1514 			for (j = 0; j < vlen; j++) {
1515 				r = fn(&m->name_off, ctx);
1516 				if (r)
1517 					return r;
1518 				m++;
1519 			}
1520 			break;
1521 		}
1522 		default:
1523 			break;
1524 		}
1525 	}
1526 
1527 	if (!d->btf_ext)
1528 		return 0;
1529 
1530 	line_data_cur = d->btf_ext->line_info.info;
1531 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1532 	rec_size = d->btf_ext->line_info.rec_size;
1533 
1534 	while (line_data_cur < line_data_end) {
1535 		struct btf_ext_info_sec *sec = line_data_cur;
1536 		struct bpf_line_info_min *line_info;
1537 		__u32 num_info = sec->num_info;
1538 
1539 		r = fn(&sec->sec_name_off, ctx);
1540 		if (r)
1541 			return r;
1542 
1543 		line_data_cur += sizeof(struct btf_ext_info_sec);
1544 		for (i = 0; i < num_info; i++) {
1545 			line_info = line_data_cur;
1546 			r = fn(&line_info->file_name_off, ctx);
1547 			if (r)
1548 				return r;
1549 			r = fn(&line_info->line_off, ctx);
1550 			if (r)
1551 				return r;
1552 			line_data_cur += rec_size;
1553 		}
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 static int str_sort_by_content(const void *a1, const void *a2)
1560 {
1561 	const struct btf_str_ptr *p1 = a1;
1562 	const struct btf_str_ptr *p2 = a2;
1563 
1564 	return strcmp(p1->str, p2->str);
1565 }
1566 
1567 static int str_sort_by_offset(const void *a1, const void *a2)
1568 {
1569 	const struct btf_str_ptr *p1 = a1;
1570 	const struct btf_str_ptr *p2 = a2;
1571 
1572 	if (p1->str != p2->str)
1573 		return p1->str < p2->str ? -1 : 1;
1574 	return 0;
1575 }
1576 
1577 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1578 {
1579 	const struct btf_str_ptr *p = pelem;
1580 
1581 	if (str_ptr != p->str)
1582 		return (const char *)str_ptr < p->str ? -1 : 1;
1583 	return 0;
1584 }
1585 
1586 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1587 {
1588 	struct btf_str_ptrs *strs;
1589 	struct btf_str_ptr *s;
1590 
1591 	if (*str_off_ptr == 0)
1592 		return 0;
1593 
1594 	strs = ctx;
1595 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1596 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1597 	if (!s)
1598 		return -EINVAL;
1599 	s->used = true;
1600 	return 0;
1601 }
1602 
1603 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1604 {
1605 	struct btf_str_ptrs *strs;
1606 	struct btf_str_ptr *s;
1607 
1608 	if (*str_off_ptr == 0)
1609 		return 0;
1610 
1611 	strs = ctx;
1612 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1613 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1614 	if (!s)
1615 		return -EINVAL;
1616 	*str_off_ptr = s->new_off;
1617 	return 0;
1618 }
1619 
1620 /*
1621  * Dedup string and filter out those that are not referenced from either .BTF
1622  * or .BTF.ext (if provided) sections.
1623  *
1624  * This is done by building index of all strings in BTF's string section,
1625  * then iterating over all entities that can reference strings (e.g., type
1626  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1627  * strings as used. After that all used strings are deduped and compacted into
1628  * sequential blob of memory and new offsets are calculated. Then all the string
1629  * references are iterated again and rewritten using new offsets.
1630  */
1631 static int btf_dedup_strings(struct btf_dedup *d)
1632 {
1633 	const struct btf_header *hdr = d->btf->hdr;
1634 	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1635 	char *end = start + d->btf->hdr->str_len;
1636 	char *p = start, *tmp_strs = NULL;
1637 	struct btf_str_ptrs strs = {
1638 		.cnt = 0,
1639 		.cap = 0,
1640 		.ptrs = NULL,
1641 		.data = start,
1642 	};
1643 	int i, j, err = 0, grp_idx;
1644 	bool grp_used;
1645 
1646 	/* build index of all strings */
1647 	while (p < end) {
1648 		if (strs.cnt + 1 > strs.cap) {
1649 			struct btf_str_ptr *new_ptrs;
1650 
1651 			strs.cap += max(strs.cnt / 2, 16);
1652 			new_ptrs = realloc(strs.ptrs,
1653 					   sizeof(strs.ptrs[0]) * strs.cap);
1654 			if (!new_ptrs) {
1655 				err = -ENOMEM;
1656 				goto done;
1657 			}
1658 			strs.ptrs = new_ptrs;
1659 		}
1660 
1661 		strs.ptrs[strs.cnt].str = p;
1662 		strs.ptrs[strs.cnt].used = false;
1663 
1664 		p += strlen(p) + 1;
1665 		strs.cnt++;
1666 	}
1667 
1668 	/* temporary storage for deduplicated strings */
1669 	tmp_strs = malloc(d->btf->hdr->str_len);
1670 	if (!tmp_strs) {
1671 		err = -ENOMEM;
1672 		goto done;
1673 	}
1674 
1675 	/* mark all used strings */
1676 	strs.ptrs[0].used = true;
1677 	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1678 	if (err)
1679 		goto done;
1680 
1681 	/* sort strings by context, so that we can identify duplicates */
1682 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1683 
1684 	/*
1685 	 * iterate groups of equal strings and if any instance in a group was
1686 	 * referenced, emit single instance and remember new offset
1687 	 */
1688 	p = tmp_strs;
1689 	grp_idx = 0;
1690 	grp_used = strs.ptrs[0].used;
1691 	/* iterate past end to avoid code duplication after loop */
1692 	for (i = 1; i <= strs.cnt; i++) {
1693 		/*
1694 		 * when i == strs.cnt, we want to skip string comparison and go
1695 		 * straight to handling last group of strings (otherwise we'd
1696 		 * need to handle last group after the loop w/ duplicated code)
1697 		 */
1698 		if (i < strs.cnt &&
1699 		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1700 			grp_used = grp_used || strs.ptrs[i].used;
1701 			continue;
1702 		}
1703 
1704 		/*
1705 		 * this check would have been required after the loop to handle
1706 		 * last group of strings, but due to <= condition in a loop
1707 		 * we avoid that duplication
1708 		 */
1709 		if (grp_used) {
1710 			int new_off = p - tmp_strs;
1711 			__u32 len = strlen(strs.ptrs[grp_idx].str);
1712 
1713 			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1714 			for (j = grp_idx; j < i; j++)
1715 				strs.ptrs[j].new_off = new_off;
1716 			p += len + 1;
1717 		}
1718 
1719 		if (i < strs.cnt) {
1720 			grp_idx = i;
1721 			grp_used = strs.ptrs[i].used;
1722 		}
1723 	}
1724 
1725 	/* replace original strings with deduped ones */
1726 	d->btf->hdr->str_len = p - tmp_strs;
1727 	memmove(start, tmp_strs, d->btf->hdr->str_len);
1728 	end = start + d->btf->hdr->str_len;
1729 
1730 	/* restore original order for further binary search lookups */
1731 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1732 
1733 	/* remap string offsets */
1734 	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1735 	if (err)
1736 		goto done;
1737 
1738 	d->btf->hdr->str_len = end - start;
1739 
1740 done:
1741 	free(tmp_strs);
1742 	free(strs.ptrs);
1743 	return err;
1744 }
1745 
1746 static long btf_hash_common(struct btf_type *t)
1747 {
1748 	long h;
1749 
1750 	h = hash_combine(0, t->name_off);
1751 	h = hash_combine(h, t->info);
1752 	h = hash_combine(h, t->size);
1753 	return h;
1754 }
1755 
1756 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1757 {
1758 	return t1->name_off == t2->name_off &&
1759 	       t1->info == t2->info &&
1760 	       t1->size == t2->size;
1761 }
1762 
1763 /* Calculate type signature hash of INT. */
1764 static long btf_hash_int(struct btf_type *t)
1765 {
1766 	__u32 info = *(__u32 *)(t + 1);
1767 	long h;
1768 
1769 	h = btf_hash_common(t);
1770 	h = hash_combine(h, info);
1771 	return h;
1772 }
1773 
1774 /* Check structural equality of two INTs. */
1775 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1776 {
1777 	__u32 info1, info2;
1778 
1779 	if (!btf_equal_common(t1, t2))
1780 		return false;
1781 	info1 = *(__u32 *)(t1 + 1);
1782 	info2 = *(__u32 *)(t2 + 1);
1783 	return info1 == info2;
1784 }
1785 
1786 /* Calculate type signature hash of ENUM. */
1787 static long btf_hash_enum(struct btf_type *t)
1788 {
1789 	long h;
1790 
1791 	/* don't hash vlen and enum members to support enum fwd resolving */
1792 	h = hash_combine(0, t->name_off);
1793 	h = hash_combine(h, t->info & ~0xffff);
1794 	h = hash_combine(h, t->size);
1795 	return h;
1796 }
1797 
1798 /* Check structural equality of two ENUMs. */
1799 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1800 {
1801 	const struct btf_enum *m1, *m2;
1802 	__u16 vlen;
1803 	int i;
1804 
1805 	if (!btf_equal_common(t1, t2))
1806 		return false;
1807 
1808 	vlen = btf_vlen(t1);
1809 	m1 = btf_enum(t1);
1810 	m2 = btf_enum(t2);
1811 	for (i = 0; i < vlen; i++) {
1812 		if (m1->name_off != m2->name_off || m1->val != m2->val)
1813 			return false;
1814 		m1++;
1815 		m2++;
1816 	}
1817 	return true;
1818 }
1819 
1820 static inline bool btf_is_enum_fwd(struct btf_type *t)
1821 {
1822 	return btf_is_enum(t) && btf_vlen(t) == 0;
1823 }
1824 
1825 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1826 {
1827 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1828 		return btf_equal_enum(t1, t2);
1829 	/* ignore vlen when comparing */
1830 	return t1->name_off == t2->name_off &&
1831 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1832 	       t1->size == t2->size;
1833 }
1834 
1835 /*
1836  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1837  * as referenced type IDs equivalence is established separately during type
1838  * graph equivalence check algorithm.
1839  */
1840 static long btf_hash_struct(struct btf_type *t)
1841 {
1842 	const struct btf_member *member = btf_members(t);
1843 	__u32 vlen = btf_vlen(t);
1844 	long h = btf_hash_common(t);
1845 	int i;
1846 
1847 	for (i = 0; i < vlen; i++) {
1848 		h = hash_combine(h, member->name_off);
1849 		h = hash_combine(h, member->offset);
1850 		/* no hashing of referenced type ID, it can be unresolved yet */
1851 		member++;
1852 	}
1853 	return h;
1854 }
1855 
1856 /*
1857  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1858  * IDs. This check is performed during type graph equivalence check and
1859  * referenced types equivalence is checked separately.
1860  */
1861 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1862 {
1863 	const struct btf_member *m1, *m2;
1864 	__u16 vlen;
1865 	int i;
1866 
1867 	if (!btf_equal_common(t1, t2))
1868 		return false;
1869 
1870 	vlen = btf_vlen(t1);
1871 	m1 = btf_members(t1);
1872 	m2 = btf_members(t2);
1873 	for (i = 0; i < vlen; i++) {
1874 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1875 			return false;
1876 		m1++;
1877 		m2++;
1878 	}
1879 	return true;
1880 }
1881 
1882 /*
1883  * Calculate type signature hash of ARRAY, including referenced type IDs,
1884  * under assumption that they were already resolved to canonical type IDs and
1885  * are not going to change.
1886  */
1887 static long btf_hash_array(struct btf_type *t)
1888 {
1889 	const struct btf_array *info = btf_array(t);
1890 	long h = btf_hash_common(t);
1891 
1892 	h = hash_combine(h, info->type);
1893 	h = hash_combine(h, info->index_type);
1894 	h = hash_combine(h, info->nelems);
1895 	return h;
1896 }
1897 
1898 /*
1899  * Check exact equality of two ARRAYs, taking into account referenced
1900  * type IDs, under assumption that they were already resolved to canonical
1901  * type IDs and are not going to change.
1902  * This function is called during reference types deduplication to compare
1903  * ARRAY to potential canonical representative.
1904  */
1905 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1906 {
1907 	const struct btf_array *info1, *info2;
1908 
1909 	if (!btf_equal_common(t1, t2))
1910 		return false;
1911 
1912 	info1 = btf_array(t1);
1913 	info2 = btf_array(t2);
1914 	return info1->type == info2->type &&
1915 	       info1->index_type == info2->index_type &&
1916 	       info1->nelems == info2->nelems;
1917 }
1918 
1919 /*
1920  * Check structural compatibility of two ARRAYs, ignoring referenced type
1921  * IDs. This check is performed during type graph equivalence check and
1922  * referenced types equivalence is checked separately.
1923  */
1924 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1925 {
1926 	if (!btf_equal_common(t1, t2))
1927 		return false;
1928 
1929 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
1930 }
1931 
1932 /*
1933  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1934  * under assumption that they were already resolved to canonical type IDs and
1935  * are not going to change.
1936  */
1937 static long btf_hash_fnproto(struct btf_type *t)
1938 {
1939 	const struct btf_param *member = btf_params(t);
1940 	__u16 vlen = btf_vlen(t);
1941 	long h = btf_hash_common(t);
1942 	int i;
1943 
1944 	for (i = 0; i < vlen; i++) {
1945 		h = hash_combine(h, member->name_off);
1946 		h = hash_combine(h, member->type);
1947 		member++;
1948 	}
1949 	return h;
1950 }
1951 
1952 /*
1953  * Check exact equality of two FUNC_PROTOs, taking into account referenced
1954  * type IDs, under assumption that they were already resolved to canonical
1955  * type IDs and are not going to change.
1956  * This function is called during reference types deduplication to compare
1957  * FUNC_PROTO to potential canonical representative.
1958  */
1959 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
1960 {
1961 	const struct btf_param *m1, *m2;
1962 	__u16 vlen;
1963 	int i;
1964 
1965 	if (!btf_equal_common(t1, t2))
1966 		return false;
1967 
1968 	vlen = btf_vlen(t1);
1969 	m1 = btf_params(t1);
1970 	m2 = btf_params(t2);
1971 	for (i = 0; i < vlen; i++) {
1972 		if (m1->name_off != m2->name_off || m1->type != m2->type)
1973 			return false;
1974 		m1++;
1975 		m2++;
1976 	}
1977 	return true;
1978 }
1979 
1980 /*
1981  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1982  * IDs. This check is performed during type graph equivalence check and
1983  * referenced types equivalence is checked separately.
1984  */
1985 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
1986 {
1987 	const struct btf_param *m1, *m2;
1988 	__u16 vlen;
1989 	int i;
1990 
1991 	/* skip return type ID */
1992 	if (t1->name_off != t2->name_off || t1->info != t2->info)
1993 		return false;
1994 
1995 	vlen = btf_vlen(t1);
1996 	m1 = btf_params(t1);
1997 	m2 = btf_params(t2);
1998 	for (i = 0; i < vlen; i++) {
1999 		if (m1->name_off != m2->name_off)
2000 			return false;
2001 		m1++;
2002 		m2++;
2003 	}
2004 	return true;
2005 }
2006 
2007 /*
2008  * Deduplicate primitive types, that can't reference other types, by calculating
2009  * their type signature hash and comparing them with any possible canonical
2010  * candidate. If no canonical candidate matches, type itself is marked as
2011  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
2012  */
2013 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
2014 {
2015 	struct btf_type *t = d->btf->types[type_id];
2016 	struct hashmap_entry *hash_entry;
2017 	struct btf_type *cand;
2018 	/* if we don't find equivalent type, then we are canonical */
2019 	__u32 new_id = type_id;
2020 	__u32 cand_id;
2021 	long h;
2022 
2023 	switch (btf_kind(t)) {
2024 	case BTF_KIND_CONST:
2025 	case BTF_KIND_VOLATILE:
2026 	case BTF_KIND_RESTRICT:
2027 	case BTF_KIND_PTR:
2028 	case BTF_KIND_TYPEDEF:
2029 	case BTF_KIND_ARRAY:
2030 	case BTF_KIND_STRUCT:
2031 	case BTF_KIND_UNION:
2032 	case BTF_KIND_FUNC:
2033 	case BTF_KIND_FUNC_PROTO:
2034 	case BTF_KIND_VAR:
2035 	case BTF_KIND_DATASEC:
2036 		return 0;
2037 
2038 	case BTF_KIND_INT:
2039 		h = btf_hash_int(t);
2040 		for_each_dedup_cand(d, hash_entry, h) {
2041 			cand_id = (__u32)(long)hash_entry->value;
2042 			cand = d->btf->types[cand_id];
2043 			if (btf_equal_int(t, cand)) {
2044 				new_id = cand_id;
2045 				break;
2046 			}
2047 		}
2048 		break;
2049 
2050 	case BTF_KIND_ENUM:
2051 		h = btf_hash_enum(t);
2052 		for_each_dedup_cand(d, hash_entry, h) {
2053 			cand_id = (__u32)(long)hash_entry->value;
2054 			cand = d->btf->types[cand_id];
2055 			if (btf_equal_enum(t, cand)) {
2056 				new_id = cand_id;
2057 				break;
2058 			}
2059 			if (d->opts.dont_resolve_fwds)
2060 				continue;
2061 			if (btf_compat_enum(t, cand)) {
2062 				if (btf_is_enum_fwd(t)) {
2063 					/* resolve fwd to full enum */
2064 					new_id = cand_id;
2065 					break;
2066 				}
2067 				/* resolve canonical enum fwd to full enum */
2068 				d->map[cand_id] = type_id;
2069 			}
2070 		}
2071 		break;
2072 
2073 	case BTF_KIND_FWD:
2074 		h = btf_hash_common(t);
2075 		for_each_dedup_cand(d, hash_entry, h) {
2076 			cand_id = (__u32)(long)hash_entry->value;
2077 			cand = d->btf->types[cand_id];
2078 			if (btf_equal_common(t, cand)) {
2079 				new_id = cand_id;
2080 				break;
2081 			}
2082 		}
2083 		break;
2084 
2085 	default:
2086 		return -EINVAL;
2087 	}
2088 
2089 	d->map[type_id] = new_id;
2090 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2091 		return -ENOMEM;
2092 
2093 	return 0;
2094 }
2095 
2096 static int btf_dedup_prim_types(struct btf_dedup *d)
2097 {
2098 	int i, err;
2099 
2100 	for (i = 1; i <= d->btf->nr_types; i++) {
2101 		err = btf_dedup_prim_type(d, i);
2102 		if (err)
2103 			return err;
2104 	}
2105 	return 0;
2106 }
2107 
2108 /*
2109  * Check whether type is already mapped into canonical one (could be to itself).
2110  */
2111 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2112 {
2113 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2114 }
2115 
2116 /*
2117  * Resolve type ID into its canonical type ID, if any; otherwise return original
2118  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2119  * STRUCT/UNION link and resolve it into canonical type ID as well.
2120  */
2121 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2122 {
2123 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2124 		type_id = d->map[type_id];
2125 	return type_id;
2126 }
2127 
2128 /*
2129  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2130  * type ID.
2131  */
2132 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2133 {
2134 	__u32 orig_type_id = type_id;
2135 
2136 	if (!btf_is_fwd(d->btf->types[type_id]))
2137 		return type_id;
2138 
2139 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2140 		type_id = d->map[type_id];
2141 
2142 	if (!btf_is_fwd(d->btf->types[type_id]))
2143 		return type_id;
2144 
2145 	return orig_type_id;
2146 }
2147 
2148 
2149 static inline __u16 btf_fwd_kind(struct btf_type *t)
2150 {
2151 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2152 }
2153 
2154 /*
2155  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2156  * call it "candidate graph" in this description for brevity) to a type graph
2157  * formed by (potential) canonical struct/union ("canonical graph" for brevity
2158  * here, though keep in mind that not all types in canonical graph are
2159  * necessarily canonical representatives themselves, some of them might be
2160  * duplicates or its uniqueness might not have been established yet).
2161  * Returns:
2162  *  - >0, if type graphs are equivalent;
2163  *  -  0, if not equivalent;
2164  *  - <0, on error.
2165  *
2166  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2167  * equivalence of BTF types at each step. If at any point BTF types in candidate
2168  * and canonical graphs are not compatible structurally, whole graphs are
2169  * incompatible. If types are structurally equivalent (i.e., all information
2170  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2171  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2172  * If a type references other types, then those referenced types are checked
2173  * for equivalence recursively.
2174  *
2175  * During DFS traversal, if we find that for current `canon_id` type we
2176  * already have some mapping in hypothetical map, we check for two possible
2177  * situations:
2178  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2179  *     happen when type graphs have cycles. In this case we assume those two
2180  *     types are equivalent.
2181  *   - `canon_id` is mapped to different type. This is contradiction in our
2182  *     hypothetical mapping, because same graph in canonical graph corresponds
2183  *     to two different types in candidate graph, which for equivalent type
2184  *     graphs shouldn't happen. This condition terminates equivalence check
2185  *     with negative result.
2186  *
2187  * If type graphs traversal exhausts types to check and find no contradiction,
2188  * then type graphs are equivalent.
2189  *
2190  * When checking types for equivalence, there is one special case: FWD types.
2191  * If FWD type resolution is allowed and one of the types (either from canonical
2192  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2193  * flag) and their names match, hypothetical mapping is updated to point from
2194  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2195  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2196  *
2197  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2198  * if there are two exactly named (or anonymous) structs/unions that are
2199  * compatible structurally, one of which has FWD field, while other is concrete
2200  * STRUCT/UNION, but according to C sources they are different structs/unions
2201  * that are referencing different types with the same name. This is extremely
2202  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2203  * this logic is causing problems.
2204  *
2205  * Doing FWD resolution means that both candidate and/or canonical graphs can
2206  * consists of portions of the graph that come from multiple compilation units.
2207  * This is due to the fact that types within single compilation unit are always
2208  * deduplicated and FWDs are already resolved, if referenced struct/union
2209  * definiton is available. So, if we had unresolved FWD and found corresponding
2210  * STRUCT/UNION, they will be from different compilation units. This
2211  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2212  * type graph will likely have at least two different BTF types that describe
2213  * same type (e.g., most probably there will be two different BTF types for the
2214  * same 'int' primitive type) and could even have "overlapping" parts of type
2215  * graph that describe same subset of types.
2216  *
2217  * This in turn means that our assumption that each type in canonical graph
2218  * must correspond to exactly one type in candidate graph might not hold
2219  * anymore and will make it harder to detect contradictions using hypothetical
2220  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2221  * resolution only in canonical graph. FWDs in candidate graphs are never
2222  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2223  * that can occur:
2224  *   - Both types in canonical and candidate graphs are FWDs. If they are
2225  *     structurally equivalent, then they can either be both resolved to the
2226  *     same STRUCT/UNION or not resolved at all. In both cases they are
2227  *     equivalent and there is no need to resolve FWD on candidate side.
2228  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2229  *     so nothing to resolve as well, algorithm will check equivalence anyway.
2230  *   - Type in canonical graph is FWD, while type in candidate is concrete
2231  *     STRUCT/UNION. In this case candidate graph comes from single compilation
2232  *     unit, so there is exactly one BTF type for each unique C type. After
2233  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2234  *     in canonical graph mapping to single BTF type in candidate graph, but
2235  *     because hypothetical mapping maps from canonical to candidate types, it's
2236  *     alright, and we still maintain the property of having single `canon_id`
2237  *     mapping to single `cand_id` (there could be two different `canon_id`
2238  *     mapped to the same `cand_id`, but it's not contradictory).
2239  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2240  *     graph is FWD. In this case we are just going to check compatibility of
2241  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2242  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2243  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2244  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2245  *     canonical graph.
2246  */
2247 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2248 			      __u32 canon_id)
2249 {
2250 	struct btf_type *cand_type;
2251 	struct btf_type *canon_type;
2252 	__u32 hypot_type_id;
2253 	__u16 cand_kind;
2254 	__u16 canon_kind;
2255 	int i, eq;
2256 
2257 	/* if both resolve to the same canonical, they must be equivalent */
2258 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2259 		return 1;
2260 
2261 	canon_id = resolve_fwd_id(d, canon_id);
2262 
2263 	hypot_type_id = d->hypot_map[canon_id];
2264 	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2265 		return hypot_type_id == cand_id;
2266 
2267 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2268 		return -ENOMEM;
2269 
2270 	cand_type = d->btf->types[cand_id];
2271 	canon_type = d->btf->types[canon_id];
2272 	cand_kind = btf_kind(cand_type);
2273 	canon_kind = btf_kind(canon_type);
2274 
2275 	if (cand_type->name_off != canon_type->name_off)
2276 		return 0;
2277 
2278 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2279 	if (!d->opts.dont_resolve_fwds
2280 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2281 	    && cand_kind != canon_kind) {
2282 		__u16 real_kind;
2283 		__u16 fwd_kind;
2284 
2285 		if (cand_kind == BTF_KIND_FWD) {
2286 			real_kind = canon_kind;
2287 			fwd_kind = btf_fwd_kind(cand_type);
2288 		} else {
2289 			real_kind = cand_kind;
2290 			fwd_kind = btf_fwd_kind(canon_type);
2291 		}
2292 		return fwd_kind == real_kind;
2293 	}
2294 
2295 	if (cand_kind != canon_kind)
2296 		return 0;
2297 
2298 	switch (cand_kind) {
2299 	case BTF_KIND_INT:
2300 		return btf_equal_int(cand_type, canon_type);
2301 
2302 	case BTF_KIND_ENUM:
2303 		if (d->opts.dont_resolve_fwds)
2304 			return btf_equal_enum(cand_type, canon_type);
2305 		else
2306 			return btf_compat_enum(cand_type, canon_type);
2307 
2308 	case BTF_KIND_FWD:
2309 		return btf_equal_common(cand_type, canon_type);
2310 
2311 	case BTF_KIND_CONST:
2312 	case BTF_KIND_VOLATILE:
2313 	case BTF_KIND_RESTRICT:
2314 	case BTF_KIND_PTR:
2315 	case BTF_KIND_TYPEDEF:
2316 	case BTF_KIND_FUNC:
2317 		if (cand_type->info != canon_type->info)
2318 			return 0;
2319 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2320 
2321 	case BTF_KIND_ARRAY: {
2322 		const struct btf_array *cand_arr, *canon_arr;
2323 
2324 		if (!btf_compat_array(cand_type, canon_type))
2325 			return 0;
2326 		cand_arr = btf_array(cand_type);
2327 		canon_arr = btf_array(canon_type);
2328 		eq = btf_dedup_is_equiv(d,
2329 			cand_arr->index_type, canon_arr->index_type);
2330 		if (eq <= 0)
2331 			return eq;
2332 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2333 	}
2334 
2335 	case BTF_KIND_STRUCT:
2336 	case BTF_KIND_UNION: {
2337 		const struct btf_member *cand_m, *canon_m;
2338 		__u16 vlen;
2339 
2340 		if (!btf_shallow_equal_struct(cand_type, canon_type))
2341 			return 0;
2342 		vlen = btf_vlen(cand_type);
2343 		cand_m = btf_members(cand_type);
2344 		canon_m = btf_members(canon_type);
2345 		for (i = 0; i < vlen; i++) {
2346 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2347 			if (eq <= 0)
2348 				return eq;
2349 			cand_m++;
2350 			canon_m++;
2351 		}
2352 
2353 		return 1;
2354 	}
2355 
2356 	case BTF_KIND_FUNC_PROTO: {
2357 		const struct btf_param *cand_p, *canon_p;
2358 		__u16 vlen;
2359 
2360 		if (!btf_compat_fnproto(cand_type, canon_type))
2361 			return 0;
2362 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2363 		if (eq <= 0)
2364 			return eq;
2365 		vlen = btf_vlen(cand_type);
2366 		cand_p = btf_params(cand_type);
2367 		canon_p = btf_params(canon_type);
2368 		for (i = 0; i < vlen; i++) {
2369 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2370 			if (eq <= 0)
2371 				return eq;
2372 			cand_p++;
2373 			canon_p++;
2374 		}
2375 		return 1;
2376 	}
2377 
2378 	default:
2379 		return -EINVAL;
2380 	}
2381 	return 0;
2382 }
2383 
2384 /*
2385  * Use hypothetical mapping, produced by successful type graph equivalence
2386  * check, to augment existing struct/union canonical mapping, where possible.
2387  *
2388  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2389  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2390  * it doesn't matter if FWD type was part of canonical graph or candidate one,
2391  * we are recording the mapping anyway. As opposed to carefulness required
2392  * for struct/union correspondence mapping (described below), for FWD resolution
2393  * it's not important, as by the time that FWD type (reference type) will be
2394  * deduplicated all structs/unions will be deduped already anyway.
2395  *
2396  * Recording STRUCT/UNION mapping is purely a performance optimization and is
2397  * not required for correctness. It needs to be done carefully to ensure that
2398  * struct/union from candidate's type graph is not mapped into corresponding
2399  * struct/union from canonical type graph that itself hasn't been resolved into
2400  * canonical representative. The only guarantee we have is that canonical
2401  * struct/union was determined as canonical and that won't change. But any
2402  * types referenced through that struct/union fields could have been not yet
2403  * resolved, so in case like that it's too early to establish any kind of
2404  * correspondence between structs/unions.
2405  *
2406  * No canonical correspondence is derived for primitive types (they are already
2407  * deduplicated completely already anyway) or reference types (they rely on
2408  * stability of struct/union canonical relationship for equivalence checks).
2409  */
2410 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2411 {
2412 	__u32 cand_type_id, targ_type_id;
2413 	__u16 t_kind, c_kind;
2414 	__u32 t_id, c_id;
2415 	int i;
2416 
2417 	for (i = 0; i < d->hypot_cnt; i++) {
2418 		cand_type_id = d->hypot_list[i];
2419 		targ_type_id = d->hypot_map[cand_type_id];
2420 		t_id = resolve_type_id(d, targ_type_id);
2421 		c_id = resolve_type_id(d, cand_type_id);
2422 		t_kind = btf_kind(d->btf->types[t_id]);
2423 		c_kind = btf_kind(d->btf->types[c_id]);
2424 		/*
2425 		 * Resolve FWD into STRUCT/UNION.
2426 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2427 		 * mapped to canonical representative (as opposed to
2428 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2429 		 * eventually that struct is going to be mapped and all resolved
2430 		 * FWDs will automatically resolve to correct canonical
2431 		 * representative. This will happen before ref type deduping,
2432 		 * which critically depends on stability of these mapping. This
2433 		 * stability is not a requirement for STRUCT/UNION equivalence
2434 		 * checks, though.
2435 		 */
2436 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2437 			d->map[c_id] = t_id;
2438 		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2439 			d->map[t_id] = c_id;
2440 
2441 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2442 		    c_kind != BTF_KIND_FWD &&
2443 		    is_type_mapped(d, c_id) &&
2444 		    !is_type_mapped(d, t_id)) {
2445 			/*
2446 			 * as a perf optimization, we can map struct/union
2447 			 * that's part of type graph we just verified for
2448 			 * equivalence. We can do that for struct/union that has
2449 			 * canonical representative only, though.
2450 			 */
2451 			d->map[t_id] = c_id;
2452 		}
2453 	}
2454 }
2455 
2456 /*
2457  * Deduplicate struct/union types.
2458  *
2459  * For each struct/union type its type signature hash is calculated, taking
2460  * into account type's name, size, number, order and names of fields, but
2461  * ignoring type ID's referenced from fields, because they might not be deduped
2462  * completely until after reference types deduplication phase. This type hash
2463  * is used to iterate over all potential canonical types, sharing same hash.
2464  * For each canonical candidate we check whether type graphs that they form
2465  * (through referenced types in fields and so on) are equivalent using algorithm
2466  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2467  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2468  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2469  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2470  * potentially map other structs/unions to their canonical representatives,
2471  * if such relationship hasn't yet been established. This speeds up algorithm
2472  * by eliminating some of the duplicate work.
2473  *
2474  * If no matching canonical representative was found, struct/union is marked
2475  * as canonical for itself and is added into btf_dedup->dedup_table hash map
2476  * for further look ups.
2477  */
2478 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2479 {
2480 	struct btf_type *cand_type, *t;
2481 	struct hashmap_entry *hash_entry;
2482 	/* if we don't find equivalent type, then we are canonical */
2483 	__u32 new_id = type_id;
2484 	__u16 kind;
2485 	long h;
2486 
2487 	/* already deduped or is in process of deduping (loop detected) */
2488 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2489 		return 0;
2490 
2491 	t = d->btf->types[type_id];
2492 	kind = btf_kind(t);
2493 
2494 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2495 		return 0;
2496 
2497 	h = btf_hash_struct(t);
2498 	for_each_dedup_cand(d, hash_entry, h) {
2499 		__u32 cand_id = (__u32)(long)hash_entry->value;
2500 		int eq;
2501 
2502 		/*
2503 		 * Even though btf_dedup_is_equiv() checks for
2504 		 * btf_shallow_equal_struct() internally when checking two
2505 		 * structs (unions) for equivalence, we need to guard here
2506 		 * from picking matching FWD type as a dedup candidate.
2507 		 * This can happen due to hash collision. In such case just
2508 		 * relying on btf_dedup_is_equiv() would lead to potentially
2509 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2510 		 * FWD and compatible STRUCT/UNION are considered equivalent.
2511 		 */
2512 		cand_type = d->btf->types[cand_id];
2513 		if (!btf_shallow_equal_struct(t, cand_type))
2514 			continue;
2515 
2516 		btf_dedup_clear_hypot_map(d);
2517 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2518 		if (eq < 0)
2519 			return eq;
2520 		if (!eq)
2521 			continue;
2522 		new_id = cand_id;
2523 		btf_dedup_merge_hypot_map(d);
2524 		break;
2525 	}
2526 
2527 	d->map[type_id] = new_id;
2528 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2529 		return -ENOMEM;
2530 
2531 	return 0;
2532 }
2533 
2534 static int btf_dedup_struct_types(struct btf_dedup *d)
2535 {
2536 	int i, err;
2537 
2538 	for (i = 1; i <= d->btf->nr_types; i++) {
2539 		err = btf_dedup_struct_type(d, i);
2540 		if (err)
2541 			return err;
2542 	}
2543 	return 0;
2544 }
2545 
2546 /*
2547  * Deduplicate reference type.
2548  *
2549  * Once all primitive and struct/union types got deduplicated, we can easily
2550  * deduplicate all other (reference) BTF types. This is done in two steps:
2551  *
2552  * 1. Resolve all referenced type IDs into their canonical type IDs. This
2553  * resolution can be done either immediately for primitive or struct/union types
2554  * (because they were deduped in previous two phases) or recursively for
2555  * reference types. Recursion will always terminate at either primitive or
2556  * struct/union type, at which point we can "unwind" chain of reference types
2557  * one by one. There is no danger of encountering cycles because in C type
2558  * system the only way to form type cycle is through struct/union, so any chain
2559  * of reference types, even those taking part in a type cycle, will inevitably
2560  * reach struct/union at some point.
2561  *
2562  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2563  * becomes "stable", in the sense that no further deduplication will cause
2564  * any changes to it. With that, it's now possible to calculate type's signature
2565  * hash (this time taking into account referenced type IDs) and loop over all
2566  * potential canonical representatives. If no match was found, current type
2567  * will become canonical representative of itself and will be added into
2568  * btf_dedup->dedup_table as another possible canonical representative.
2569  */
2570 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2571 {
2572 	struct hashmap_entry *hash_entry;
2573 	__u32 new_id = type_id, cand_id;
2574 	struct btf_type *t, *cand;
2575 	/* if we don't find equivalent type, then we are representative type */
2576 	int ref_type_id;
2577 	long h;
2578 
2579 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2580 		return -ELOOP;
2581 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2582 		return resolve_type_id(d, type_id);
2583 
2584 	t = d->btf->types[type_id];
2585 	d->map[type_id] = BTF_IN_PROGRESS_ID;
2586 
2587 	switch (btf_kind(t)) {
2588 	case BTF_KIND_CONST:
2589 	case BTF_KIND_VOLATILE:
2590 	case BTF_KIND_RESTRICT:
2591 	case BTF_KIND_PTR:
2592 	case BTF_KIND_TYPEDEF:
2593 	case BTF_KIND_FUNC:
2594 		ref_type_id = btf_dedup_ref_type(d, t->type);
2595 		if (ref_type_id < 0)
2596 			return ref_type_id;
2597 		t->type = ref_type_id;
2598 
2599 		h = btf_hash_common(t);
2600 		for_each_dedup_cand(d, hash_entry, h) {
2601 			cand_id = (__u32)(long)hash_entry->value;
2602 			cand = d->btf->types[cand_id];
2603 			if (btf_equal_common(t, cand)) {
2604 				new_id = cand_id;
2605 				break;
2606 			}
2607 		}
2608 		break;
2609 
2610 	case BTF_KIND_ARRAY: {
2611 		struct btf_array *info = btf_array(t);
2612 
2613 		ref_type_id = btf_dedup_ref_type(d, info->type);
2614 		if (ref_type_id < 0)
2615 			return ref_type_id;
2616 		info->type = ref_type_id;
2617 
2618 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2619 		if (ref_type_id < 0)
2620 			return ref_type_id;
2621 		info->index_type = ref_type_id;
2622 
2623 		h = btf_hash_array(t);
2624 		for_each_dedup_cand(d, hash_entry, h) {
2625 			cand_id = (__u32)(long)hash_entry->value;
2626 			cand = d->btf->types[cand_id];
2627 			if (btf_equal_array(t, cand)) {
2628 				new_id = cand_id;
2629 				break;
2630 			}
2631 		}
2632 		break;
2633 	}
2634 
2635 	case BTF_KIND_FUNC_PROTO: {
2636 		struct btf_param *param;
2637 		__u16 vlen;
2638 		int i;
2639 
2640 		ref_type_id = btf_dedup_ref_type(d, t->type);
2641 		if (ref_type_id < 0)
2642 			return ref_type_id;
2643 		t->type = ref_type_id;
2644 
2645 		vlen = btf_vlen(t);
2646 		param = btf_params(t);
2647 		for (i = 0; i < vlen; i++) {
2648 			ref_type_id = btf_dedup_ref_type(d, param->type);
2649 			if (ref_type_id < 0)
2650 				return ref_type_id;
2651 			param->type = ref_type_id;
2652 			param++;
2653 		}
2654 
2655 		h = btf_hash_fnproto(t);
2656 		for_each_dedup_cand(d, hash_entry, h) {
2657 			cand_id = (__u32)(long)hash_entry->value;
2658 			cand = d->btf->types[cand_id];
2659 			if (btf_equal_fnproto(t, cand)) {
2660 				new_id = cand_id;
2661 				break;
2662 			}
2663 		}
2664 		break;
2665 	}
2666 
2667 	default:
2668 		return -EINVAL;
2669 	}
2670 
2671 	d->map[type_id] = new_id;
2672 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2673 		return -ENOMEM;
2674 
2675 	return new_id;
2676 }
2677 
2678 static int btf_dedup_ref_types(struct btf_dedup *d)
2679 {
2680 	int i, err;
2681 
2682 	for (i = 1; i <= d->btf->nr_types; i++) {
2683 		err = btf_dedup_ref_type(d, i);
2684 		if (err < 0)
2685 			return err;
2686 	}
2687 	/* we won't need d->dedup_table anymore */
2688 	hashmap__free(d->dedup_table);
2689 	d->dedup_table = NULL;
2690 	return 0;
2691 }
2692 
2693 /*
2694  * Compact types.
2695  *
2696  * After we established for each type its corresponding canonical representative
2697  * type, we now can eliminate types that are not canonical and leave only
2698  * canonical ones layed out sequentially in memory by copying them over
2699  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2700  * a map from original type ID to a new compacted type ID, which will be used
2701  * during next phase to "fix up" type IDs, referenced from struct/union and
2702  * reference types.
2703  */
2704 static int btf_dedup_compact_types(struct btf_dedup *d)
2705 {
2706 	struct btf_type **new_types;
2707 	__u32 next_type_id = 1;
2708 	char *types_start, *p;
2709 	int i, len;
2710 
2711 	/* we are going to reuse hypot_map to store compaction remapping */
2712 	d->hypot_map[0] = 0;
2713 	for (i = 1; i <= d->btf->nr_types; i++)
2714 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
2715 
2716 	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2717 	p = types_start;
2718 
2719 	for (i = 1; i <= d->btf->nr_types; i++) {
2720 		if (d->map[i] != i)
2721 			continue;
2722 
2723 		len = btf_type_size(d->btf->types[i]);
2724 		if (len < 0)
2725 			return len;
2726 
2727 		memmove(p, d->btf->types[i], len);
2728 		d->hypot_map[i] = next_type_id;
2729 		d->btf->types[next_type_id] = (struct btf_type *)p;
2730 		p += len;
2731 		next_type_id++;
2732 	}
2733 
2734 	/* shrink struct btf's internal types index and update btf_header */
2735 	d->btf->nr_types = next_type_id - 1;
2736 	d->btf->types_size = d->btf->nr_types;
2737 	d->btf->hdr->type_len = p - types_start;
2738 	new_types = realloc(d->btf->types,
2739 			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2740 	if (!new_types)
2741 		return -ENOMEM;
2742 	d->btf->types = new_types;
2743 
2744 	/* make sure string section follows type information without gaps */
2745 	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2746 	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2747 	d->btf->strings = p;
2748 	p += d->btf->hdr->str_len;
2749 
2750 	d->btf->data_size = p - (char *)d->btf->data;
2751 	return 0;
2752 }
2753 
2754 /*
2755  * Figure out final (deduplicated and compacted) type ID for provided original
2756  * `type_id` by first resolving it into corresponding canonical type ID and
2757  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2758  * which is populated during compaction phase.
2759  */
2760 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2761 {
2762 	__u32 resolved_type_id, new_type_id;
2763 
2764 	resolved_type_id = resolve_type_id(d, type_id);
2765 	new_type_id = d->hypot_map[resolved_type_id];
2766 	if (new_type_id > BTF_MAX_NR_TYPES)
2767 		return -EINVAL;
2768 	return new_type_id;
2769 }
2770 
2771 /*
2772  * Remap referenced type IDs into deduped type IDs.
2773  *
2774  * After BTF types are deduplicated and compacted, their final type IDs may
2775  * differ from original ones. The map from original to a corresponding
2776  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2777  * compaction phase. During remapping phase we are rewriting all type IDs
2778  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2779  * their final deduped type IDs.
2780  */
2781 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2782 {
2783 	struct btf_type *t = d->btf->types[type_id];
2784 	int i, r;
2785 
2786 	switch (btf_kind(t)) {
2787 	case BTF_KIND_INT:
2788 	case BTF_KIND_ENUM:
2789 		break;
2790 
2791 	case BTF_KIND_FWD:
2792 	case BTF_KIND_CONST:
2793 	case BTF_KIND_VOLATILE:
2794 	case BTF_KIND_RESTRICT:
2795 	case BTF_KIND_PTR:
2796 	case BTF_KIND_TYPEDEF:
2797 	case BTF_KIND_FUNC:
2798 	case BTF_KIND_VAR:
2799 		r = btf_dedup_remap_type_id(d, t->type);
2800 		if (r < 0)
2801 			return r;
2802 		t->type = r;
2803 		break;
2804 
2805 	case BTF_KIND_ARRAY: {
2806 		struct btf_array *arr_info = btf_array(t);
2807 
2808 		r = btf_dedup_remap_type_id(d, arr_info->type);
2809 		if (r < 0)
2810 			return r;
2811 		arr_info->type = r;
2812 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
2813 		if (r < 0)
2814 			return r;
2815 		arr_info->index_type = r;
2816 		break;
2817 	}
2818 
2819 	case BTF_KIND_STRUCT:
2820 	case BTF_KIND_UNION: {
2821 		struct btf_member *member = btf_members(t);
2822 		__u16 vlen = btf_vlen(t);
2823 
2824 		for (i = 0; i < vlen; i++) {
2825 			r = btf_dedup_remap_type_id(d, member->type);
2826 			if (r < 0)
2827 				return r;
2828 			member->type = r;
2829 			member++;
2830 		}
2831 		break;
2832 	}
2833 
2834 	case BTF_KIND_FUNC_PROTO: {
2835 		struct btf_param *param = btf_params(t);
2836 		__u16 vlen = btf_vlen(t);
2837 
2838 		r = btf_dedup_remap_type_id(d, t->type);
2839 		if (r < 0)
2840 			return r;
2841 		t->type = r;
2842 
2843 		for (i = 0; i < vlen; i++) {
2844 			r = btf_dedup_remap_type_id(d, param->type);
2845 			if (r < 0)
2846 				return r;
2847 			param->type = r;
2848 			param++;
2849 		}
2850 		break;
2851 	}
2852 
2853 	case BTF_KIND_DATASEC: {
2854 		struct btf_var_secinfo *var = btf_var_secinfos(t);
2855 		__u16 vlen = btf_vlen(t);
2856 
2857 		for (i = 0; i < vlen; i++) {
2858 			r = btf_dedup_remap_type_id(d, var->type);
2859 			if (r < 0)
2860 				return r;
2861 			var->type = r;
2862 			var++;
2863 		}
2864 		break;
2865 	}
2866 
2867 	default:
2868 		return -EINVAL;
2869 	}
2870 
2871 	return 0;
2872 }
2873 
2874 static int btf_dedup_remap_types(struct btf_dedup *d)
2875 {
2876 	int i, r;
2877 
2878 	for (i = 1; i <= d->btf->nr_types; i++) {
2879 		r = btf_dedup_remap_type(d, i);
2880 		if (r < 0)
2881 			return r;
2882 	}
2883 	return 0;
2884 }
2885