1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <endian.h> 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <string.h> 8 #include <fcntl.h> 9 #include <unistd.h> 10 #include <errno.h> 11 #include <sys/utsname.h> 12 #include <sys/param.h> 13 #include <sys/stat.h> 14 #include <linux/kernel.h> 15 #include <linux/err.h> 16 #include <linux/btf.h> 17 #include <gelf.h> 18 #include "btf.h" 19 #include "bpf.h" 20 #include "libbpf.h" 21 #include "libbpf_internal.h" 22 #include "hashmap.h" 23 24 /* make sure libbpf doesn't use kernel-only integer typedefs */ 25 #pragma GCC poison u8 u16 u32 u64 s8 s16 s32 s64 26 27 #define BTF_MAX_NR_TYPES 0x7fffffffU 28 #define BTF_MAX_STR_OFFSET 0x7fffffffU 29 30 static struct btf_type btf_void; 31 32 struct btf { 33 union { 34 struct btf_header *hdr; 35 void *data; 36 }; 37 struct btf_type **types; 38 const char *strings; 39 void *nohdr_data; 40 __u32 nr_types; 41 __u32 types_size; 42 __u32 data_size; 43 int fd; 44 }; 45 46 static inline __u64 ptr_to_u64(const void *ptr) 47 { 48 return (__u64) (unsigned long) ptr; 49 } 50 51 static int btf_add_type(struct btf *btf, struct btf_type *t) 52 { 53 if (btf->types_size - btf->nr_types < 2) { 54 struct btf_type **new_types; 55 __u32 expand_by, new_size; 56 57 if (btf->types_size == BTF_MAX_NR_TYPES) 58 return -E2BIG; 59 60 expand_by = max(btf->types_size >> 2, 16U); 61 new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by); 62 63 new_types = realloc(btf->types, sizeof(*new_types) * new_size); 64 if (!new_types) 65 return -ENOMEM; 66 67 if (btf->nr_types == 0) 68 new_types[0] = &btf_void; 69 70 btf->types = new_types; 71 btf->types_size = new_size; 72 } 73 74 btf->types[++(btf->nr_types)] = t; 75 76 return 0; 77 } 78 79 static int btf_parse_hdr(struct btf *btf) 80 { 81 const struct btf_header *hdr = btf->hdr; 82 __u32 meta_left; 83 84 if (btf->data_size < sizeof(struct btf_header)) { 85 pr_debug("BTF header not found\n"); 86 return -EINVAL; 87 } 88 89 if (hdr->magic != BTF_MAGIC) { 90 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 91 return -EINVAL; 92 } 93 94 if (hdr->version != BTF_VERSION) { 95 pr_debug("Unsupported BTF version:%u\n", hdr->version); 96 return -ENOTSUP; 97 } 98 99 if (hdr->flags) { 100 pr_debug("Unsupported BTF flags:%x\n", hdr->flags); 101 return -ENOTSUP; 102 } 103 104 meta_left = btf->data_size - sizeof(*hdr); 105 if (!meta_left) { 106 pr_debug("BTF has no data\n"); 107 return -EINVAL; 108 } 109 110 if (meta_left < hdr->type_off) { 111 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off); 112 return -EINVAL; 113 } 114 115 if (meta_left < hdr->str_off) { 116 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off); 117 return -EINVAL; 118 } 119 120 if (hdr->type_off >= hdr->str_off) { 121 pr_debug("BTF type section offset >= string section offset. No type?\n"); 122 return -EINVAL; 123 } 124 125 if (hdr->type_off & 0x02) { 126 pr_debug("BTF type section is not aligned to 4 bytes\n"); 127 return -EINVAL; 128 } 129 130 btf->nohdr_data = btf->hdr + 1; 131 132 return 0; 133 } 134 135 static int btf_parse_str_sec(struct btf *btf) 136 { 137 const struct btf_header *hdr = btf->hdr; 138 const char *start = btf->nohdr_data + hdr->str_off; 139 const char *end = start + btf->hdr->str_len; 140 141 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || 142 start[0] || end[-1]) { 143 pr_debug("Invalid BTF string section\n"); 144 return -EINVAL; 145 } 146 147 btf->strings = start; 148 149 return 0; 150 } 151 152 static int btf_type_size(struct btf_type *t) 153 { 154 int base_size = sizeof(struct btf_type); 155 __u16 vlen = btf_vlen(t); 156 157 switch (btf_kind(t)) { 158 case BTF_KIND_FWD: 159 case BTF_KIND_CONST: 160 case BTF_KIND_VOLATILE: 161 case BTF_KIND_RESTRICT: 162 case BTF_KIND_PTR: 163 case BTF_KIND_TYPEDEF: 164 case BTF_KIND_FUNC: 165 return base_size; 166 case BTF_KIND_INT: 167 return base_size + sizeof(__u32); 168 case BTF_KIND_ENUM: 169 return base_size + vlen * sizeof(struct btf_enum); 170 case BTF_KIND_ARRAY: 171 return base_size + sizeof(struct btf_array); 172 case BTF_KIND_STRUCT: 173 case BTF_KIND_UNION: 174 return base_size + vlen * sizeof(struct btf_member); 175 case BTF_KIND_FUNC_PROTO: 176 return base_size + vlen * sizeof(struct btf_param); 177 case BTF_KIND_VAR: 178 return base_size + sizeof(struct btf_var); 179 case BTF_KIND_DATASEC: 180 return base_size + vlen * sizeof(struct btf_var_secinfo); 181 default: 182 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 183 return -EINVAL; 184 } 185 } 186 187 static int btf_parse_type_sec(struct btf *btf) 188 { 189 struct btf_header *hdr = btf->hdr; 190 void *nohdr_data = btf->nohdr_data; 191 void *next_type = nohdr_data + hdr->type_off; 192 void *end_type = nohdr_data + hdr->str_off; 193 194 while (next_type < end_type) { 195 struct btf_type *t = next_type; 196 int type_size; 197 int err; 198 199 type_size = btf_type_size(t); 200 if (type_size < 0) 201 return type_size; 202 next_type += type_size; 203 err = btf_add_type(btf, t); 204 if (err) 205 return err; 206 } 207 208 return 0; 209 } 210 211 __u32 btf__get_nr_types(const struct btf *btf) 212 { 213 return btf->nr_types; 214 } 215 216 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 217 { 218 if (type_id > btf->nr_types) 219 return NULL; 220 221 return btf->types[type_id]; 222 } 223 224 static bool btf_type_is_void(const struct btf_type *t) 225 { 226 return t == &btf_void || btf_is_fwd(t); 227 } 228 229 static bool btf_type_is_void_or_null(const struct btf_type *t) 230 { 231 return !t || btf_type_is_void(t); 232 } 233 234 #define MAX_RESOLVE_DEPTH 32 235 236 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 237 { 238 const struct btf_array *array; 239 const struct btf_type *t; 240 __u32 nelems = 1; 241 __s64 size = -1; 242 int i; 243 244 t = btf__type_by_id(btf, type_id); 245 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 246 i++) { 247 switch (btf_kind(t)) { 248 case BTF_KIND_INT: 249 case BTF_KIND_STRUCT: 250 case BTF_KIND_UNION: 251 case BTF_KIND_ENUM: 252 case BTF_KIND_DATASEC: 253 size = t->size; 254 goto done; 255 case BTF_KIND_PTR: 256 size = sizeof(void *); 257 goto done; 258 case BTF_KIND_TYPEDEF: 259 case BTF_KIND_VOLATILE: 260 case BTF_KIND_CONST: 261 case BTF_KIND_RESTRICT: 262 case BTF_KIND_VAR: 263 type_id = t->type; 264 break; 265 case BTF_KIND_ARRAY: 266 array = btf_array(t); 267 if (nelems && array->nelems > UINT32_MAX / nelems) 268 return -E2BIG; 269 nelems *= array->nelems; 270 type_id = array->type; 271 break; 272 default: 273 return -EINVAL; 274 } 275 276 t = btf__type_by_id(btf, type_id); 277 } 278 279 done: 280 if (size < 0) 281 return -EINVAL; 282 if (nelems && size > UINT32_MAX / nelems) 283 return -E2BIG; 284 285 return nelems * size; 286 } 287 288 int btf__align_of(const struct btf *btf, __u32 id) 289 { 290 const struct btf_type *t = btf__type_by_id(btf, id); 291 __u16 kind = btf_kind(t); 292 293 switch (kind) { 294 case BTF_KIND_INT: 295 case BTF_KIND_ENUM: 296 return min(sizeof(void *), (size_t)t->size); 297 case BTF_KIND_PTR: 298 return sizeof(void *); 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_VOLATILE: 301 case BTF_KIND_CONST: 302 case BTF_KIND_RESTRICT: 303 return btf__align_of(btf, t->type); 304 case BTF_KIND_ARRAY: 305 return btf__align_of(btf, btf_array(t)->type); 306 case BTF_KIND_STRUCT: 307 case BTF_KIND_UNION: { 308 const struct btf_member *m = btf_members(t); 309 __u16 vlen = btf_vlen(t); 310 int i, max_align = 1, align; 311 312 for (i = 0; i < vlen; i++, m++) { 313 align = btf__align_of(btf, m->type); 314 if (align <= 0) 315 return align; 316 max_align = max(max_align, align); 317 } 318 319 return max_align; 320 } 321 default: 322 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 323 return 0; 324 } 325 } 326 327 int btf__resolve_type(const struct btf *btf, __u32 type_id) 328 { 329 const struct btf_type *t; 330 int depth = 0; 331 332 t = btf__type_by_id(btf, type_id); 333 while (depth < MAX_RESOLVE_DEPTH && 334 !btf_type_is_void_or_null(t) && 335 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 336 type_id = t->type; 337 t = btf__type_by_id(btf, type_id); 338 depth++; 339 } 340 341 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 342 return -EINVAL; 343 344 return type_id; 345 } 346 347 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 348 { 349 __u32 i; 350 351 if (!strcmp(type_name, "void")) 352 return 0; 353 354 for (i = 1; i <= btf->nr_types; i++) { 355 const struct btf_type *t = btf->types[i]; 356 const char *name = btf__name_by_offset(btf, t->name_off); 357 358 if (name && !strcmp(type_name, name)) 359 return i; 360 } 361 362 return -ENOENT; 363 } 364 365 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 366 __u32 kind) 367 { 368 __u32 i; 369 370 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 371 return 0; 372 373 for (i = 1; i <= btf->nr_types; i++) { 374 const struct btf_type *t = btf->types[i]; 375 const char *name; 376 377 if (btf_kind(t) != kind) 378 continue; 379 name = btf__name_by_offset(btf, t->name_off); 380 if (name && !strcmp(type_name, name)) 381 return i; 382 } 383 384 return -ENOENT; 385 } 386 387 void btf__free(struct btf *btf) 388 { 389 if (!btf) 390 return; 391 392 if (btf->fd >= 0) 393 close(btf->fd); 394 395 free(btf->data); 396 free(btf->types); 397 free(btf); 398 } 399 400 struct btf *btf__new(const void *data, __u32 size) 401 { 402 struct btf *btf; 403 int err; 404 405 btf = calloc(1, sizeof(struct btf)); 406 if (!btf) 407 return ERR_PTR(-ENOMEM); 408 409 btf->fd = -1; 410 411 btf->data = malloc(size); 412 if (!btf->data) { 413 err = -ENOMEM; 414 goto done; 415 } 416 417 memcpy(btf->data, data, size); 418 btf->data_size = size; 419 420 err = btf_parse_hdr(btf); 421 if (err) 422 goto done; 423 424 err = btf_parse_str_sec(btf); 425 if (err) 426 goto done; 427 428 err = btf_parse_type_sec(btf); 429 430 done: 431 if (err) { 432 btf__free(btf); 433 return ERR_PTR(err); 434 } 435 436 return btf; 437 } 438 439 static bool btf_check_endianness(const GElf_Ehdr *ehdr) 440 { 441 #if __BYTE_ORDER == __LITTLE_ENDIAN 442 return ehdr->e_ident[EI_DATA] == ELFDATA2LSB; 443 #elif __BYTE_ORDER == __BIG_ENDIAN 444 return ehdr->e_ident[EI_DATA] == ELFDATA2MSB; 445 #else 446 # error "Unrecognized __BYTE_ORDER__" 447 #endif 448 } 449 450 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 451 { 452 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 453 int err = 0, fd = -1, idx = 0; 454 struct btf *btf = NULL; 455 Elf_Scn *scn = NULL; 456 Elf *elf = NULL; 457 GElf_Ehdr ehdr; 458 459 if (elf_version(EV_CURRENT) == EV_NONE) { 460 pr_warn("failed to init libelf for %s\n", path); 461 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 462 } 463 464 fd = open(path, O_RDONLY); 465 if (fd < 0) { 466 err = -errno; 467 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 468 return ERR_PTR(err); 469 } 470 471 err = -LIBBPF_ERRNO__FORMAT; 472 473 elf = elf_begin(fd, ELF_C_READ, NULL); 474 if (!elf) { 475 pr_warn("failed to open %s as ELF file\n", path); 476 goto done; 477 } 478 if (!gelf_getehdr(elf, &ehdr)) { 479 pr_warn("failed to get EHDR from %s\n", path); 480 goto done; 481 } 482 if (!btf_check_endianness(&ehdr)) { 483 pr_warn("non-native ELF endianness is not supported\n"); 484 goto done; 485 } 486 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { 487 pr_warn("failed to get e_shstrndx from %s\n", path); 488 goto done; 489 } 490 491 while ((scn = elf_nextscn(elf, scn)) != NULL) { 492 GElf_Shdr sh; 493 char *name; 494 495 idx++; 496 if (gelf_getshdr(scn, &sh) != &sh) { 497 pr_warn("failed to get section(%d) header from %s\n", 498 idx, path); 499 goto done; 500 } 501 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); 502 if (!name) { 503 pr_warn("failed to get section(%d) name from %s\n", 504 idx, path); 505 goto done; 506 } 507 if (strcmp(name, BTF_ELF_SEC) == 0) { 508 btf_data = elf_getdata(scn, 0); 509 if (!btf_data) { 510 pr_warn("failed to get section(%d, %s) data from %s\n", 511 idx, name, path); 512 goto done; 513 } 514 continue; 515 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 516 btf_ext_data = elf_getdata(scn, 0); 517 if (!btf_ext_data) { 518 pr_warn("failed to get section(%d, %s) data from %s\n", 519 idx, name, path); 520 goto done; 521 } 522 continue; 523 } 524 } 525 526 err = 0; 527 528 if (!btf_data) { 529 err = -ENOENT; 530 goto done; 531 } 532 btf = btf__new(btf_data->d_buf, btf_data->d_size); 533 if (IS_ERR(btf)) 534 goto done; 535 536 if (btf_ext && btf_ext_data) { 537 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 538 btf_ext_data->d_size); 539 if (IS_ERR(*btf_ext)) 540 goto done; 541 } else if (btf_ext) { 542 *btf_ext = NULL; 543 } 544 done: 545 if (elf) 546 elf_end(elf); 547 close(fd); 548 549 if (err) 550 return ERR_PTR(err); 551 /* 552 * btf is always parsed before btf_ext, so no need to clean up 553 * btf_ext, if btf loading failed 554 */ 555 if (IS_ERR(btf)) 556 return btf; 557 if (btf_ext && IS_ERR(*btf_ext)) { 558 btf__free(btf); 559 err = PTR_ERR(*btf_ext); 560 return ERR_PTR(err); 561 } 562 return btf; 563 } 564 565 static int compare_vsi_off(const void *_a, const void *_b) 566 { 567 const struct btf_var_secinfo *a = _a; 568 const struct btf_var_secinfo *b = _b; 569 570 return a->offset - b->offset; 571 } 572 573 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 574 struct btf_type *t) 575 { 576 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 577 const char *name = btf__name_by_offset(btf, t->name_off); 578 const struct btf_type *t_var; 579 struct btf_var_secinfo *vsi; 580 const struct btf_var *var; 581 int ret; 582 583 if (!name) { 584 pr_debug("No name found in string section for DATASEC kind.\n"); 585 return -ENOENT; 586 } 587 588 /* .extern datasec size and var offsets were set correctly during 589 * extern collection step, so just skip straight to sorting variables 590 */ 591 if (t->size) 592 goto sort_vars; 593 594 ret = bpf_object__section_size(obj, name, &size); 595 if (ret || !size || (t->size && t->size != size)) { 596 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 597 return -ENOENT; 598 } 599 600 t->size = size; 601 602 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 603 t_var = btf__type_by_id(btf, vsi->type); 604 var = btf_var(t_var); 605 606 if (!btf_is_var(t_var)) { 607 pr_debug("Non-VAR type seen in section %s\n", name); 608 return -EINVAL; 609 } 610 611 if (var->linkage == BTF_VAR_STATIC) 612 continue; 613 614 name = btf__name_by_offset(btf, t_var->name_off); 615 if (!name) { 616 pr_debug("No name found in string section for VAR kind\n"); 617 return -ENOENT; 618 } 619 620 ret = bpf_object__variable_offset(obj, name, &off); 621 if (ret) { 622 pr_debug("No offset found in symbol table for VAR %s\n", 623 name); 624 return -ENOENT; 625 } 626 627 vsi->offset = off; 628 } 629 630 sort_vars: 631 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 632 return 0; 633 } 634 635 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 636 { 637 int err = 0; 638 __u32 i; 639 640 for (i = 1; i <= btf->nr_types; i++) { 641 struct btf_type *t = btf->types[i]; 642 643 /* Loader needs to fix up some of the things compiler 644 * couldn't get its hands on while emitting BTF. This 645 * is section size and global variable offset. We use 646 * the info from the ELF itself for this purpose. 647 */ 648 if (btf_is_datasec(t)) { 649 err = btf_fixup_datasec(obj, btf, t); 650 if (err) 651 break; 652 } 653 } 654 655 return err; 656 } 657 658 int btf__load(struct btf *btf) 659 { 660 __u32 log_buf_size = 0; 661 char *log_buf = NULL; 662 int err = 0; 663 664 if (btf->fd >= 0) 665 return -EEXIST; 666 667 retry_load: 668 if (log_buf_size) { 669 log_buf = malloc(log_buf_size); 670 if (!log_buf) 671 return -ENOMEM; 672 673 *log_buf = 0; 674 } 675 676 btf->fd = bpf_load_btf(btf->data, btf->data_size, 677 log_buf, log_buf_size, false); 678 if (btf->fd < 0) { 679 if (!log_buf || errno == ENOSPC) { 680 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 681 log_buf_size << 1); 682 free(log_buf); 683 goto retry_load; 684 } 685 686 err = -errno; 687 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 688 if (*log_buf) 689 pr_warn("%s\n", log_buf); 690 goto done; 691 } 692 693 done: 694 free(log_buf); 695 return err; 696 } 697 698 int btf__fd(const struct btf *btf) 699 { 700 return btf->fd; 701 } 702 703 void btf__set_fd(struct btf *btf, int fd) 704 { 705 btf->fd = fd; 706 } 707 708 const void *btf__get_raw_data(const struct btf *btf, __u32 *size) 709 { 710 *size = btf->data_size; 711 return btf->data; 712 } 713 714 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 715 { 716 if (offset < btf->hdr->str_len) 717 return &btf->strings[offset]; 718 else 719 return NULL; 720 } 721 722 int btf__get_from_id(__u32 id, struct btf **btf) 723 { 724 struct bpf_btf_info btf_info = { 0 }; 725 __u32 len = sizeof(btf_info); 726 __u32 last_size; 727 int btf_fd; 728 void *ptr; 729 int err; 730 731 err = 0; 732 *btf = NULL; 733 btf_fd = bpf_btf_get_fd_by_id(id); 734 if (btf_fd < 0) 735 return 0; 736 737 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 738 * let's start with a sane default - 4KiB here - and resize it only if 739 * bpf_obj_get_info_by_fd() needs a bigger buffer. 740 */ 741 btf_info.btf_size = 4096; 742 last_size = btf_info.btf_size; 743 ptr = malloc(last_size); 744 if (!ptr) { 745 err = -ENOMEM; 746 goto exit_free; 747 } 748 749 memset(ptr, 0, last_size); 750 btf_info.btf = ptr_to_u64(ptr); 751 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 752 753 if (!err && btf_info.btf_size > last_size) { 754 void *temp_ptr; 755 756 last_size = btf_info.btf_size; 757 temp_ptr = realloc(ptr, last_size); 758 if (!temp_ptr) { 759 err = -ENOMEM; 760 goto exit_free; 761 } 762 ptr = temp_ptr; 763 memset(ptr, 0, last_size); 764 btf_info.btf = ptr_to_u64(ptr); 765 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 766 } 767 768 if (err || btf_info.btf_size > last_size) { 769 err = errno; 770 goto exit_free; 771 } 772 773 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); 774 if (IS_ERR(*btf)) { 775 err = PTR_ERR(*btf); 776 *btf = NULL; 777 } 778 779 exit_free: 780 close(btf_fd); 781 free(ptr); 782 783 return err; 784 } 785 786 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 787 __u32 expected_key_size, __u32 expected_value_size, 788 __u32 *key_type_id, __u32 *value_type_id) 789 { 790 const struct btf_type *container_type; 791 const struct btf_member *key, *value; 792 const size_t max_name = 256; 793 char container_name[max_name]; 794 __s64 key_size, value_size; 795 __s32 container_id; 796 797 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 798 max_name) { 799 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 800 map_name, map_name); 801 return -EINVAL; 802 } 803 804 container_id = btf__find_by_name(btf, container_name); 805 if (container_id < 0) { 806 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 807 map_name, container_name); 808 return container_id; 809 } 810 811 container_type = btf__type_by_id(btf, container_id); 812 if (!container_type) { 813 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 814 map_name, container_id); 815 return -EINVAL; 816 } 817 818 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 819 pr_warn("map:%s container_name:%s is an invalid container struct\n", 820 map_name, container_name); 821 return -EINVAL; 822 } 823 824 key = btf_members(container_type); 825 value = key + 1; 826 827 key_size = btf__resolve_size(btf, key->type); 828 if (key_size < 0) { 829 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 830 return key_size; 831 } 832 833 if (expected_key_size != key_size) { 834 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 835 map_name, (__u32)key_size, expected_key_size); 836 return -EINVAL; 837 } 838 839 value_size = btf__resolve_size(btf, value->type); 840 if (value_size < 0) { 841 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 842 return value_size; 843 } 844 845 if (expected_value_size != value_size) { 846 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 847 map_name, (__u32)value_size, expected_value_size); 848 return -EINVAL; 849 } 850 851 *key_type_id = key->type; 852 *value_type_id = value->type; 853 854 return 0; 855 } 856 857 struct btf_ext_sec_setup_param { 858 __u32 off; 859 __u32 len; 860 __u32 min_rec_size; 861 struct btf_ext_info *ext_info; 862 const char *desc; 863 }; 864 865 static int btf_ext_setup_info(struct btf_ext *btf_ext, 866 struct btf_ext_sec_setup_param *ext_sec) 867 { 868 const struct btf_ext_info_sec *sinfo; 869 struct btf_ext_info *ext_info; 870 __u32 info_left, record_size; 871 /* The start of the info sec (including the __u32 record_size). */ 872 void *info; 873 874 if (ext_sec->len == 0) 875 return 0; 876 877 if (ext_sec->off & 0x03) { 878 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 879 ext_sec->desc); 880 return -EINVAL; 881 } 882 883 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 884 info_left = ext_sec->len; 885 886 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 887 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 888 ext_sec->desc, ext_sec->off, ext_sec->len); 889 return -EINVAL; 890 } 891 892 /* At least a record size */ 893 if (info_left < sizeof(__u32)) { 894 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 895 return -EINVAL; 896 } 897 898 /* The record size needs to meet the minimum standard */ 899 record_size = *(__u32 *)info; 900 if (record_size < ext_sec->min_rec_size || 901 record_size & 0x03) { 902 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 903 ext_sec->desc, record_size); 904 return -EINVAL; 905 } 906 907 sinfo = info + sizeof(__u32); 908 info_left -= sizeof(__u32); 909 910 /* If no records, return failure now so .BTF.ext won't be used. */ 911 if (!info_left) { 912 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 913 return -EINVAL; 914 } 915 916 while (info_left) { 917 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 918 __u64 total_record_size; 919 __u32 num_records; 920 921 if (info_left < sec_hdrlen) { 922 pr_debug("%s section header is not found in .BTF.ext\n", 923 ext_sec->desc); 924 return -EINVAL; 925 } 926 927 num_records = sinfo->num_info; 928 if (num_records == 0) { 929 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 930 ext_sec->desc); 931 return -EINVAL; 932 } 933 934 total_record_size = sec_hdrlen + 935 (__u64)num_records * record_size; 936 if (info_left < total_record_size) { 937 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 938 ext_sec->desc); 939 return -EINVAL; 940 } 941 942 info_left -= total_record_size; 943 sinfo = (void *)sinfo + total_record_size; 944 } 945 946 ext_info = ext_sec->ext_info; 947 ext_info->len = ext_sec->len - sizeof(__u32); 948 ext_info->rec_size = record_size; 949 ext_info->info = info + sizeof(__u32); 950 951 return 0; 952 } 953 954 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 955 { 956 struct btf_ext_sec_setup_param param = { 957 .off = btf_ext->hdr->func_info_off, 958 .len = btf_ext->hdr->func_info_len, 959 .min_rec_size = sizeof(struct bpf_func_info_min), 960 .ext_info = &btf_ext->func_info, 961 .desc = "func_info" 962 }; 963 964 return btf_ext_setup_info(btf_ext, ¶m); 965 } 966 967 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 968 { 969 struct btf_ext_sec_setup_param param = { 970 .off = btf_ext->hdr->line_info_off, 971 .len = btf_ext->hdr->line_info_len, 972 .min_rec_size = sizeof(struct bpf_line_info_min), 973 .ext_info = &btf_ext->line_info, 974 .desc = "line_info", 975 }; 976 977 return btf_ext_setup_info(btf_ext, ¶m); 978 } 979 980 static int btf_ext_setup_field_reloc(struct btf_ext *btf_ext) 981 { 982 struct btf_ext_sec_setup_param param = { 983 .off = btf_ext->hdr->field_reloc_off, 984 .len = btf_ext->hdr->field_reloc_len, 985 .min_rec_size = sizeof(struct bpf_field_reloc), 986 .ext_info = &btf_ext->field_reloc_info, 987 .desc = "field_reloc", 988 }; 989 990 return btf_ext_setup_info(btf_ext, ¶m); 991 } 992 993 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 994 { 995 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 996 997 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 998 data_size < hdr->hdr_len) { 999 pr_debug("BTF.ext header not found"); 1000 return -EINVAL; 1001 } 1002 1003 if (hdr->magic != BTF_MAGIC) { 1004 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 1005 return -EINVAL; 1006 } 1007 1008 if (hdr->version != BTF_VERSION) { 1009 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 1010 return -ENOTSUP; 1011 } 1012 1013 if (hdr->flags) { 1014 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 1015 return -ENOTSUP; 1016 } 1017 1018 if (data_size == hdr->hdr_len) { 1019 pr_debug("BTF.ext has no data\n"); 1020 return -EINVAL; 1021 } 1022 1023 return 0; 1024 } 1025 1026 void btf_ext__free(struct btf_ext *btf_ext) 1027 { 1028 if (!btf_ext) 1029 return; 1030 free(btf_ext->data); 1031 free(btf_ext); 1032 } 1033 1034 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 1035 { 1036 struct btf_ext *btf_ext; 1037 int err; 1038 1039 err = btf_ext_parse_hdr(data, size); 1040 if (err) 1041 return ERR_PTR(err); 1042 1043 btf_ext = calloc(1, sizeof(struct btf_ext)); 1044 if (!btf_ext) 1045 return ERR_PTR(-ENOMEM); 1046 1047 btf_ext->data_size = size; 1048 btf_ext->data = malloc(size); 1049 if (!btf_ext->data) { 1050 err = -ENOMEM; 1051 goto done; 1052 } 1053 memcpy(btf_ext->data, data, size); 1054 1055 if (btf_ext->hdr->hdr_len < 1056 offsetofend(struct btf_ext_header, line_info_len)) 1057 goto done; 1058 err = btf_ext_setup_func_info(btf_ext); 1059 if (err) 1060 goto done; 1061 1062 err = btf_ext_setup_line_info(btf_ext); 1063 if (err) 1064 goto done; 1065 1066 if (btf_ext->hdr->hdr_len < 1067 offsetofend(struct btf_ext_header, field_reloc_len)) 1068 goto done; 1069 err = btf_ext_setup_field_reloc(btf_ext); 1070 if (err) 1071 goto done; 1072 1073 done: 1074 if (err) { 1075 btf_ext__free(btf_ext); 1076 return ERR_PTR(err); 1077 } 1078 1079 return btf_ext; 1080 } 1081 1082 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 1083 { 1084 *size = btf_ext->data_size; 1085 return btf_ext->data; 1086 } 1087 1088 static int btf_ext_reloc_info(const struct btf *btf, 1089 const struct btf_ext_info *ext_info, 1090 const char *sec_name, __u32 insns_cnt, 1091 void **info, __u32 *cnt) 1092 { 1093 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 1094 __u32 i, record_size, existing_len, records_len; 1095 struct btf_ext_info_sec *sinfo; 1096 const char *info_sec_name; 1097 __u64 remain_len; 1098 void *data; 1099 1100 record_size = ext_info->rec_size; 1101 sinfo = ext_info->info; 1102 remain_len = ext_info->len; 1103 while (remain_len > 0) { 1104 records_len = sinfo->num_info * record_size; 1105 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 1106 if (strcmp(info_sec_name, sec_name)) { 1107 remain_len -= sec_hdrlen + records_len; 1108 sinfo = (void *)sinfo + sec_hdrlen + records_len; 1109 continue; 1110 } 1111 1112 existing_len = (*cnt) * record_size; 1113 data = realloc(*info, existing_len + records_len); 1114 if (!data) 1115 return -ENOMEM; 1116 1117 memcpy(data + existing_len, sinfo->data, records_len); 1118 /* adjust insn_off only, the rest data will be passed 1119 * to the kernel. 1120 */ 1121 for (i = 0; i < sinfo->num_info; i++) { 1122 __u32 *insn_off; 1123 1124 insn_off = data + existing_len + (i * record_size); 1125 *insn_off = *insn_off / sizeof(struct bpf_insn) + 1126 insns_cnt; 1127 } 1128 *info = data; 1129 *cnt += sinfo->num_info; 1130 return 0; 1131 } 1132 1133 return -ENOENT; 1134 } 1135 1136 int btf_ext__reloc_func_info(const struct btf *btf, 1137 const struct btf_ext *btf_ext, 1138 const char *sec_name, __u32 insns_cnt, 1139 void **func_info, __u32 *cnt) 1140 { 1141 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 1142 insns_cnt, func_info, cnt); 1143 } 1144 1145 int btf_ext__reloc_line_info(const struct btf *btf, 1146 const struct btf_ext *btf_ext, 1147 const char *sec_name, __u32 insns_cnt, 1148 void **line_info, __u32 *cnt) 1149 { 1150 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 1151 insns_cnt, line_info, cnt); 1152 } 1153 1154 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 1155 { 1156 return btf_ext->func_info.rec_size; 1157 } 1158 1159 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 1160 { 1161 return btf_ext->line_info.rec_size; 1162 } 1163 1164 struct btf_dedup; 1165 1166 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1167 const struct btf_dedup_opts *opts); 1168 static void btf_dedup_free(struct btf_dedup *d); 1169 static int btf_dedup_strings(struct btf_dedup *d); 1170 static int btf_dedup_prim_types(struct btf_dedup *d); 1171 static int btf_dedup_struct_types(struct btf_dedup *d); 1172 static int btf_dedup_ref_types(struct btf_dedup *d); 1173 static int btf_dedup_compact_types(struct btf_dedup *d); 1174 static int btf_dedup_remap_types(struct btf_dedup *d); 1175 1176 /* 1177 * Deduplicate BTF types and strings. 1178 * 1179 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 1180 * section with all BTF type descriptors and string data. It overwrites that 1181 * memory in-place with deduplicated types and strings without any loss of 1182 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 1183 * is provided, all the strings referenced from .BTF.ext section are honored 1184 * and updated to point to the right offsets after deduplication. 1185 * 1186 * If function returns with error, type/string data might be garbled and should 1187 * be discarded. 1188 * 1189 * More verbose and detailed description of both problem btf_dedup is solving, 1190 * as well as solution could be found at: 1191 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 1192 * 1193 * Problem description and justification 1194 * ===================================== 1195 * 1196 * BTF type information is typically emitted either as a result of conversion 1197 * from DWARF to BTF or directly by compiler. In both cases, each compilation 1198 * unit contains information about a subset of all the types that are used 1199 * in an application. These subsets are frequently overlapping and contain a lot 1200 * of duplicated information when later concatenated together into a single 1201 * binary. This algorithm ensures that each unique type is represented by single 1202 * BTF type descriptor, greatly reducing resulting size of BTF data. 1203 * 1204 * Compilation unit isolation and subsequent duplication of data is not the only 1205 * problem. The same type hierarchy (e.g., struct and all the type that struct 1206 * references) in different compilation units can be represented in BTF to 1207 * various degrees of completeness (or, rather, incompleteness) due to 1208 * struct/union forward declarations. 1209 * 1210 * Let's take a look at an example, that we'll use to better understand the 1211 * problem (and solution). Suppose we have two compilation units, each using 1212 * same `struct S`, but each of them having incomplete type information about 1213 * struct's fields: 1214 * 1215 * // CU #1: 1216 * struct S; 1217 * struct A { 1218 * int a; 1219 * struct A* self; 1220 * struct S* parent; 1221 * }; 1222 * struct B; 1223 * struct S { 1224 * struct A* a_ptr; 1225 * struct B* b_ptr; 1226 * }; 1227 * 1228 * // CU #2: 1229 * struct S; 1230 * struct A; 1231 * struct B { 1232 * int b; 1233 * struct B* self; 1234 * struct S* parent; 1235 * }; 1236 * struct S { 1237 * struct A* a_ptr; 1238 * struct B* b_ptr; 1239 * }; 1240 * 1241 * In case of CU #1, BTF data will know only that `struct B` exist (but no 1242 * more), but will know the complete type information about `struct A`. While 1243 * for CU #2, it will know full type information about `struct B`, but will 1244 * only know about forward declaration of `struct A` (in BTF terms, it will 1245 * have `BTF_KIND_FWD` type descriptor with name `B`). 1246 * 1247 * This compilation unit isolation means that it's possible that there is no 1248 * single CU with complete type information describing structs `S`, `A`, and 1249 * `B`. Also, we might get tons of duplicated and redundant type information. 1250 * 1251 * Additional complication we need to keep in mind comes from the fact that 1252 * types, in general, can form graphs containing cycles, not just DAGs. 1253 * 1254 * While algorithm does deduplication, it also merges and resolves type 1255 * information (unless disabled throught `struct btf_opts`), whenever possible. 1256 * E.g., in the example above with two compilation units having partial type 1257 * information for structs `A` and `B`, the output of algorithm will emit 1258 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 1259 * (as well as type information for `int` and pointers), as if they were defined 1260 * in a single compilation unit as: 1261 * 1262 * struct A { 1263 * int a; 1264 * struct A* self; 1265 * struct S* parent; 1266 * }; 1267 * struct B { 1268 * int b; 1269 * struct B* self; 1270 * struct S* parent; 1271 * }; 1272 * struct S { 1273 * struct A* a_ptr; 1274 * struct B* b_ptr; 1275 * }; 1276 * 1277 * Algorithm summary 1278 * ================= 1279 * 1280 * Algorithm completes its work in 6 separate passes: 1281 * 1282 * 1. Strings deduplication. 1283 * 2. Primitive types deduplication (int, enum, fwd). 1284 * 3. Struct/union types deduplication. 1285 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 1286 * protos, and const/volatile/restrict modifiers). 1287 * 5. Types compaction. 1288 * 6. Types remapping. 1289 * 1290 * Algorithm determines canonical type descriptor, which is a single 1291 * representative type for each truly unique type. This canonical type is the 1292 * one that will go into final deduplicated BTF type information. For 1293 * struct/unions, it is also the type that algorithm will merge additional type 1294 * information into (while resolving FWDs), as it discovers it from data in 1295 * other CUs. Each input BTF type eventually gets either mapped to itself, if 1296 * that type is canonical, or to some other type, if that type is equivalent 1297 * and was chosen as canonical representative. This mapping is stored in 1298 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 1299 * FWD type got resolved to. 1300 * 1301 * To facilitate fast discovery of canonical types, we also maintain canonical 1302 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 1303 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 1304 * that match that signature. With sufficiently good choice of type signature 1305 * hashing function, we can limit number of canonical types for each unique type 1306 * signature to a very small number, allowing to find canonical type for any 1307 * duplicated type very quickly. 1308 * 1309 * Struct/union deduplication is the most critical part and algorithm for 1310 * deduplicating structs/unions is described in greater details in comments for 1311 * `btf_dedup_is_equiv` function. 1312 */ 1313 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 1314 const struct btf_dedup_opts *opts) 1315 { 1316 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 1317 int err; 1318 1319 if (IS_ERR(d)) { 1320 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 1321 return -EINVAL; 1322 } 1323 1324 err = btf_dedup_strings(d); 1325 if (err < 0) { 1326 pr_debug("btf_dedup_strings failed:%d\n", err); 1327 goto done; 1328 } 1329 err = btf_dedup_prim_types(d); 1330 if (err < 0) { 1331 pr_debug("btf_dedup_prim_types failed:%d\n", err); 1332 goto done; 1333 } 1334 err = btf_dedup_struct_types(d); 1335 if (err < 0) { 1336 pr_debug("btf_dedup_struct_types failed:%d\n", err); 1337 goto done; 1338 } 1339 err = btf_dedup_ref_types(d); 1340 if (err < 0) { 1341 pr_debug("btf_dedup_ref_types failed:%d\n", err); 1342 goto done; 1343 } 1344 err = btf_dedup_compact_types(d); 1345 if (err < 0) { 1346 pr_debug("btf_dedup_compact_types failed:%d\n", err); 1347 goto done; 1348 } 1349 err = btf_dedup_remap_types(d); 1350 if (err < 0) { 1351 pr_debug("btf_dedup_remap_types failed:%d\n", err); 1352 goto done; 1353 } 1354 1355 done: 1356 btf_dedup_free(d); 1357 return err; 1358 } 1359 1360 #define BTF_UNPROCESSED_ID ((__u32)-1) 1361 #define BTF_IN_PROGRESS_ID ((__u32)-2) 1362 1363 struct btf_dedup { 1364 /* .BTF section to be deduped in-place */ 1365 struct btf *btf; 1366 /* 1367 * Optional .BTF.ext section. When provided, any strings referenced 1368 * from it will be taken into account when deduping strings 1369 */ 1370 struct btf_ext *btf_ext; 1371 /* 1372 * This is a map from any type's signature hash to a list of possible 1373 * canonical representative type candidates. Hash collisions are 1374 * ignored, so even types of various kinds can share same list of 1375 * candidates, which is fine because we rely on subsequent 1376 * btf_xxx_equal() checks to authoritatively verify type equality. 1377 */ 1378 struct hashmap *dedup_table; 1379 /* Canonical types map */ 1380 __u32 *map; 1381 /* Hypothetical mapping, used during type graph equivalence checks */ 1382 __u32 *hypot_map; 1383 __u32 *hypot_list; 1384 size_t hypot_cnt; 1385 size_t hypot_cap; 1386 /* Various option modifying behavior of algorithm */ 1387 struct btf_dedup_opts opts; 1388 }; 1389 1390 struct btf_str_ptr { 1391 const char *str; 1392 __u32 new_off; 1393 bool used; 1394 }; 1395 1396 struct btf_str_ptrs { 1397 struct btf_str_ptr *ptrs; 1398 const char *data; 1399 __u32 cnt; 1400 __u32 cap; 1401 }; 1402 1403 static long hash_combine(long h, long value) 1404 { 1405 return h * 31 + value; 1406 } 1407 1408 #define for_each_dedup_cand(d, node, hash) \ 1409 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 1410 1411 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 1412 { 1413 return hashmap__append(d->dedup_table, 1414 (void *)hash, (void *)(long)type_id); 1415 } 1416 1417 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 1418 __u32 from_id, __u32 to_id) 1419 { 1420 if (d->hypot_cnt == d->hypot_cap) { 1421 __u32 *new_list; 1422 1423 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 1424 new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap); 1425 if (!new_list) 1426 return -ENOMEM; 1427 d->hypot_list = new_list; 1428 } 1429 d->hypot_list[d->hypot_cnt++] = from_id; 1430 d->hypot_map[from_id] = to_id; 1431 return 0; 1432 } 1433 1434 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 1435 { 1436 int i; 1437 1438 for (i = 0; i < d->hypot_cnt; i++) 1439 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 1440 d->hypot_cnt = 0; 1441 } 1442 1443 static void btf_dedup_free(struct btf_dedup *d) 1444 { 1445 hashmap__free(d->dedup_table); 1446 d->dedup_table = NULL; 1447 1448 free(d->map); 1449 d->map = NULL; 1450 1451 free(d->hypot_map); 1452 d->hypot_map = NULL; 1453 1454 free(d->hypot_list); 1455 d->hypot_list = NULL; 1456 1457 free(d); 1458 } 1459 1460 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 1461 { 1462 return (size_t)key; 1463 } 1464 1465 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 1466 { 1467 return 0; 1468 } 1469 1470 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 1471 { 1472 return k1 == k2; 1473 } 1474 1475 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1476 const struct btf_dedup_opts *opts) 1477 { 1478 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 1479 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 1480 int i, err = 0; 1481 1482 if (!d) 1483 return ERR_PTR(-ENOMEM); 1484 1485 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 1486 /* dedup_table_size is now used only to force collisions in tests */ 1487 if (opts && opts->dedup_table_size == 1) 1488 hash_fn = btf_dedup_collision_hash_fn; 1489 1490 d->btf = btf; 1491 d->btf_ext = btf_ext; 1492 1493 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 1494 if (IS_ERR(d->dedup_table)) { 1495 err = PTR_ERR(d->dedup_table); 1496 d->dedup_table = NULL; 1497 goto done; 1498 } 1499 1500 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1501 if (!d->map) { 1502 err = -ENOMEM; 1503 goto done; 1504 } 1505 /* special BTF "void" type is made canonical immediately */ 1506 d->map[0] = 0; 1507 for (i = 1; i <= btf->nr_types; i++) { 1508 struct btf_type *t = d->btf->types[i]; 1509 1510 /* VAR and DATASEC are never deduped and are self-canonical */ 1511 if (btf_is_var(t) || btf_is_datasec(t)) 1512 d->map[i] = i; 1513 else 1514 d->map[i] = BTF_UNPROCESSED_ID; 1515 } 1516 1517 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1518 if (!d->hypot_map) { 1519 err = -ENOMEM; 1520 goto done; 1521 } 1522 for (i = 0; i <= btf->nr_types; i++) 1523 d->hypot_map[i] = BTF_UNPROCESSED_ID; 1524 1525 done: 1526 if (err) { 1527 btf_dedup_free(d); 1528 return ERR_PTR(err); 1529 } 1530 1531 return d; 1532 } 1533 1534 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 1535 1536 /* 1537 * Iterate over all possible places in .BTF and .BTF.ext that can reference 1538 * string and pass pointer to it to a provided callback `fn`. 1539 */ 1540 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 1541 { 1542 void *line_data_cur, *line_data_end; 1543 int i, j, r, rec_size; 1544 struct btf_type *t; 1545 1546 for (i = 1; i <= d->btf->nr_types; i++) { 1547 t = d->btf->types[i]; 1548 r = fn(&t->name_off, ctx); 1549 if (r) 1550 return r; 1551 1552 switch (btf_kind(t)) { 1553 case BTF_KIND_STRUCT: 1554 case BTF_KIND_UNION: { 1555 struct btf_member *m = btf_members(t); 1556 __u16 vlen = btf_vlen(t); 1557 1558 for (j = 0; j < vlen; j++) { 1559 r = fn(&m->name_off, ctx); 1560 if (r) 1561 return r; 1562 m++; 1563 } 1564 break; 1565 } 1566 case BTF_KIND_ENUM: { 1567 struct btf_enum *m = btf_enum(t); 1568 __u16 vlen = btf_vlen(t); 1569 1570 for (j = 0; j < vlen; j++) { 1571 r = fn(&m->name_off, ctx); 1572 if (r) 1573 return r; 1574 m++; 1575 } 1576 break; 1577 } 1578 case BTF_KIND_FUNC_PROTO: { 1579 struct btf_param *m = btf_params(t); 1580 __u16 vlen = btf_vlen(t); 1581 1582 for (j = 0; j < vlen; j++) { 1583 r = fn(&m->name_off, ctx); 1584 if (r) 1585 return r; 1586 m++; 1587 } 1588 break; 1589 } 1590 default: 1591 break; 1592 } 1593 } 1594 1595 if (!d->btf_ext) 1596 return 0; 1597 1598 line_data_cur = d->btf_ext->line_info.info; 1599 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 1600 rec_size = d->btf_ext->line_info.rec_size; 1601 1602 while (line_data_cur < line_data_end) { 1603 struct btf_ext_info_sec *sec = line_data_cur; 1604 struct bpf_line_info_min *line_info; 1605 __u32 num_info = sec->num_info; 1606 1607 r = fn(&sec->sec_name_off, ctx); 1608 if (r) 1609 return r; 1610 1611 line_data_cur += sizeof(struct btf_ext_info_sec); 1612 for (i = 0; i < num_info; i++) { 1613 line_info = line_data_cur; 1614 r = fn(&line_info->file_name_off, ctx); 1615 if (r) 1616 return r; 1617 r = fn(&line_info->line_off, ctx); 1618 if (r) 1619 return r; 1620 line_data_cur += rec_size; 1621 } 1622 } 1623 1624 return 0; 1625 } 1626 1627 static int str_sort_by_content(const void *a1, const void *a2) 1628 { 1629 const struct btf_str_ptr *p1 = a1; 1630 const struct btf_str_ptr *p2 = a2; 1631 1632 return strcmp(p1->str, p2->str); 1633 } 1634 1635 static int str_sort_by_offset(const void *a1, const void *a2) 1636 { 1637 const struct btf_str_ptr *p1 = a1; 1638 const struct btf_str_ptr *p2 = a2; 1639 1640 if (p1->str != p2->str) 1641 return p1->str < p2->str ? -1 : 1; 1642 return 0; 1643 } 1644 1645 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) 1646 { 1647 const struct btf_str_ptr *p = pelem; 1648 1649 if (str_ptr != p->str) 1650 return (const char *)str_ptr < p->str ? -1 : 1; 1651 return 0; 1652 } 1653 1654 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) 1655 { 1656 struct btf_str_ptrs *strs; 1657 struct btf_str_ptr *s; 1658 1659 if (*str_off_ptr == 0) 1660 return 0; 1661 1662 strs = ctx; 1663 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1664 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1665 if (!s) 1666 return -EINVAL; 1667 s->used = true; 1668 return 0; 1669 } 1670 1671 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) 1672 { 1673 struct btf_str_ptrs *strs; 1674 struct btf_str_ptr *s; 1675 1676 if (*str_off_ptr == 0) 1677 return 0; 1678 1679 strs = ctx; 1680 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1681 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1682 if (!s) 1683 return -EINVAL; 1684 *str_off_ptr = s->new_off; 1685 return 0; 1686 } 1687 1688 /* 1689 * Dedup string and filter out those that are not referenced from either .BTF 1690 * or .BTF.ext (if provided) sections. 1691 * 1692 * This is done by building index of all strings in BTF's string section, 1693 * then iterating over all entities that can reference strings (e.g., type 1694 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 1695 * strings as used. After that all used strings are deduped and compacted into 1696 * sequential blob of memory and new offsets are calculated. Then all the string 1697 * references are iterated again and rewritten using new offsets. 1698 */ 1699 static int btf_dedup_strings(struct btf_dedup *d) 1700 { 1701 const struct btf_header *hdr = d->btf->hdr; 1702 char *start = (char *)d->btf->nohdr_data + hdr->str_off; 1703 char *end = start + d->btf->hdr->str_len; 1704 char *p = start, *tmp_strs = NULL; 1705 struct btf_str_ptrs strs = { 1706 .cnt = 0, 1707 .cap = 0, 1708 .ptrs = NULL, 1709 .data = start, 1710 }; 1711 int i, j, err = 0, grp_idx; 1712 bool grp_used; 1713 1714 /* build index of all strings */ 1715 while (p < end) { 1716 if (strs.cnt + 1 > strs.cap) { 1717 struct btf_str_ptr *new_ptrs; 1718 1719 strs.cap += max(strs.cnt / 2, 16U); 1720 new_ptrs = realloc(strs.ptrs, 1721 sizeof(strs.ptrs[0]) * strs.cap); 1722 if (!new_ptrs) { 1723 err = -ENOMEM; 1724 goto done; 1725 } 1726 strs.ptrs = new_ptrs; 1727 } 1728 1729 strs.ptrs[strs.cnt].str = p; 1730 strs.ptrs[strs.cnt].used = false; 1731 1732 p += strlen(p) + 1; 1733 strs.cnt++; 1734 } 1735 1736 /* temporary storage for deduplicated strings */ 1737 tmp_strs = malloc(d->btf->hdr->str_len); 1738 if (!tmp_strs) { 1739 err = -ENOMEM; 1740 goto done; 1741 } 1742 1743 /* mark all used strings */ 1744 strs.ptrs[0].used = true; 1745 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); 1746 if (err) 1747 goto done; 1748 1749 /* sort strings by context, so that we can identify duplicates */ 1750 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); 1751 1752 /* 1753 * iterate groups of equal strings and if any instance in a group was 1754 * referenced, emit single instance and remember new offset 1755 */ 1756 p = tmp_strs; 1757 grp_idx = 0; 1758 grp_used = strs.ptrs[0].used; 1759 /* iterate past end to avoid code duplication after loop */ 1760 for (i = 1; i <= strs.cnt; i++) { 1761 /* 1762 * when i == strs.cnt, we want to skip string comparison and go 1763 * straight to handling last group of strings (otherwise we'd 1764 * need to handle last group after the loop w/ duplicated code) 1765 */ 1766 if (i < strs.cnt && 1767 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { 1768 grp_used = grp_used || strs.ptrs[i].used; 1769 continue; 1770 } 1771 1772 /* 1773 * this check would have been required after the loop to handle 1774 * last group of strings, but due to <= condition in a loop 1775 * we avoid that duplication 1776 */ 1777 if (grp_used) { 1778 int new_off = p - tmp_strs; 1779 __u32 len = strlen(strs.ptrs[grp_idx].str); 1780 1781 memmove(p, strs.ptrs[grp_idx].str, len + 1); 1782 for (j = grp_idx; j < i; j++) 1783 strs.ptrs[j].new_off = new_off; 1784 p += len + 1; 1785 } 1786 1787 if (i < strs.cnt) { 1788 grp_idx = i; 1789 grp_used = strs.ptrs[i].used; 1790 } 1791 } 1792 1793 /* replace original strings with deduped ones */ 1794 d->btf->hdr->str_len = p - tmp_strs; 1795 memmove(start, tmp_strs, d->btf->hdr->str_len); 1796 end = start + d->btf->hdr->str_len; 1797 1798 /* restore original order for further binary search lookups */ 1799 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); 1800 1801 /* remap string offsets */ 1802 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); 1803 if (err) 1804 goto done; 1805 1806 d->btf->hdr->str_len = end - start; 1807 1808 done: 1809 free(tmp_strs); 1810 free(strs.ptrs); 1811 return err; 1812 } 1813 1814 static long btf_hash_common(struct btf_type *t) 1815 { 1816 long h; 1817 1818 h = hash_combine(0, t->name_off); 1819 h = hash_combine(h, t->info); 1820 h = hash_combine(h, t->size); 1821 return h; 1822 } 1823 1824 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 1825 { 1826 return t1->name_off == t2->name_off && 1827 t1->info == t2->info && 1828 t1->size == t2->size; 1829 } 1830 1831 /* Calculate type signature hash of INT. */ 1832 static long btf_hash_int(struct btf_type *t) 1833 { 1834 __u32 info = *(__u32 *)(t + 1); 1835 long h; 1836 1837 h = btf_hash_common(t); 1838 h = hash_combine(h, info); 1839 return h; 1840 } 1841 1842 /* Check structural equality of two INTs. */ 1843 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 1844 { 1845 __u32 info1, info2; 1846 1847 if (!btf_equal_common(t1, t2)) 1848 return false; 1849 info1 = *(__u32 *)(t1 + 1); 1850 info2 = *(__u32 *)(t2 + 1); 1851 return info1 == info2; 1852 } 1853 1854 /* Calculate type signature hash of ENUM. */ 1855 static long btf_hash_enum(struct btf_type *t) 1856 { 1857 long h; 1858 1859 /* don't hash vlen and enum members to support enum fwd resolving */ 1860 h = hash_combine(0, t->name_off); 1861 h = hash_combine(h, t->info & ~0xffff); 1862 h = hash_combine(h, t->size); 1863 return h; 1864 } 1865 1866 /* Check structural equality of two ENUMs. */ 1867 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 1868 { 1869 const struct btf_enum *m1, *m2; 1870 __u16 vlen; 1871 int i; 1872 1873 if (!btf_equal_common(t1, t2)) 1874 return false; 1875 1876 vlen = btf_vlen(t1); 1877 m1 = btf_enum(t1); 1878 m2 = btf_enum(t2); 1879 for (i = 0; i < vlen; i++) { 1880 if (m1->name_off != m2->name_off || m1->val != m2->val) 1881 return false; 1882 m1++; 1883 m2++; 1884 } 1885 return true; 1886 } 1887 1888 static inline bool btf_is_enum_fwd(struct btf_type *t) 1889 { 1890 return btf_is_enum(t) && btf_vlen(t) == 0; 1891 } 1892 1893 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 1894 { 1895 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 1896 return btf_equal_enum(t1, t2); 1897 /* ignore vlen when comparing */ 1898 return t1->name_off == t2->name_off && 1899 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 1900 t1->size == t2->size; 1901 } 1902 1903 /* 1904 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 1905 * as referenced type IDs equivalence is established separately during type 1906 * graph equivalence check algorithm. 1907 */ 1908 static long btf_hash_struct(struct btf_type *t) 1909 { 1910 const struct btf_member *member = btf_members(t); 1911 __u32 vlen = btf_vlen(t); 1912 long h = btf_hash_common(t); 1913 int i; 1914 1915 for (i = 0; i < vlen; i++) { 1916 h = hash_combine(h, member->name_off); 1917 h = hash_combine(h, member->offset); 1918 /* no hashing of referenced type ID, it can be unresolved yet */ 1919 member++; 1920 } 1921 return h; 1922 } 1923 1924 /* 1925 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 1926 * IDs. This check is performed during type graph equivalence check and 1927 * referenced types equivalence is checked separately. 1928 */ 1929 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 1930 { 1931 const struct btf_member *m1, *m2; 1932 __u16 vlen; 1933 int i; 1934 1935 if (!btf_equal_common(t1, t2)) 1936 return false; 1937 1938 vlen = btf_vlen(t1); 1939 m1 = btf_members(t1); 1940 m2 = btf_members(t2); 1941 for (i = 0; i < vlen; i++) { 1942 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 1943 return false; 1944 m1++; 1945 m2++; 1946 } 1947 return true; 1948 } 1949 1950 /* 1951 * Calculate type signature hash of ARRAY, including referenced type IDs, 1952 * under assumption that they were already resolved to canonical type IDs and 1953 * are not going to change. 1954 */ 1955 static long btf_hash_array(struct btf_type *t) 1956 { 1957 const struct btf_array *info = btf_array(t); 1958 long h = btf_hash_common(t); 1959 1960 h = hash_combine(h, info->type); 1961 h = hash_combine(h, info->index_type); 1962 h = hash_combine(h, info->nelems); 1963 return h; 1964 } 1965 1966 /* 1967 * Check exact equality of two ARRAYs, taking into account referenced 1968 * type IDs, under assumption that they were already resolved to canonical 1969 * type IDs and are not going to change. 1970 * This function is called during reference types deduplication to compare 1971 * ARRAY to potential canonical representative. 1972 */ 1973 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 1974 { 1975 const struct btf_array *info1, *info2; 1976 1977 if (!btf_equal_common(t1, t2)) 1978 return false; 1979 1980 info1 = btf_array(t1); 1981 info2 = btf_array(t2); 1982 return info1->type == info2->type && 1983 info1->index_type == info2->index_type && 1984 info1->nelems == info2->nelems; 1985 } 1986 1987 /* 1988 * Check structural compatibility of two ARRAYs, ignoring referenced type 1989 * IDs. This check is performed during type graph equivalence check and 1990 * referenced types equivalence is checked separately. 1991 */ 1992 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 1993 { 1994 if (!btf_equal_common(t1, t2)) 1995 return false; 1996 1997 return btf_array(t1)->nelems == btf_array(t2)->nelems; 1998 } 1999 2000 /* 2001 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 2002 * under assumption that they were already resolved to canonical type IDs and 2003 * are not going to change. 2004 */ 2005 static long btf_hash_fnproto(struct btf_type *t) 2006 { 2007 const struct btf_param *member = btf_params(t); 2008 __u16 vlen = btf_vlen(t); 2009 long h = btf_hash_common(t); 2010 int i; 2011 2012 for (i = 0; i < vlen; i++) { 2013 h = hash_combine(h, member->name_off); 2014 h = hash_combine(h, member->type); 2015 member++; 2016 } 2017 return h; 2018 } 2019 2020 /* 2021 * Check exact equality of two FUNC_PROTOs, taking into account referenced 2022 * type IDs, under assumption that they were already resolved to canonical 2023 * type IDs and are not going to change. 2024 * This function is called during reference types deduplication to compare 2025 * FUNC_PROTO to potential canonical representative. 2026 */ 2027 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 2028 { 2029 const struct btf_param *m1, *m2; 2030 __u16 vlen; 2031 int i; 2032 2033 if (!btf_equal_common(t1, t2)) 2034 return false; 2035 2036 vlen = btf_vlen(t1); 2037 m1 = btf_params(t1); 2038 m2 = btf_params(t2); 2039 for (i = 0; i < vlen; i++) { 2040 if (m1->name_off != m2->name_off || m1->type != m2->type) 2041 return false; 2042 m1++; 2043 m2++; 2044 } 2045 return true; 2046 } 2047 2048 /* 2049 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 2050 * IDs. This check is performed during type graph equivalence check and 2051 * referenced types equivalence is checked separately. 2052 */ 2053 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 2054 { 2055 const struct btf_param *m1, *m2; 2056 __u16 vlen; 2057 int i; 2058 2059 /* skip return type ID */ 2060 if (t1->name_off != t2->name_off || t1->info != t2->info) 2061 return false; 2062 2063 vlen = btf_vlen(t1); 2064 m1 = btf_params(t1); 2065 m2 = btf_params(t2); 2066 for (i = 0; i < vlen; i++) { 2067 if (m1->name_off != m2->name_off) 2068 return false; 2069 m1++; 2070 m2++; 2071 } 2072 return true; 2073 } 2074 2075 /* 2076 * Deduplicate primitive types, that can't reference other types, by calculating 2077 * their type signature hash and comparing them with any possible canonical 2078 * candidate. If no canonical candidate matches, type itself is marked as 2079 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 2080 */ 2081 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 2082 { 2083 struct btf_type *t = d->btf->types[type_id]; 2084 struct hashmap_entry *hash_entry; 2085 struct btf_type *cand; 2086 /* if we don't find equivalent type, then we are canonical */ 2087 __u32 new_id = type_id; 2088 __u32 cand_id; 2089 long h; 2090 2091 switch (btf_kind(t)) { 2092 case BTF_KIND_CONST: 2093 case BTF_KIND_VOLATILE: 2094 case BTF_KIND_RESTRICT: 2095 case BTF_KIND_PTR: 2096 case BTF_KIND_TYPEDEF: 2097 case BTF_KIND_ARRAY: 2098 case BTF_KIND_STRUCT: 2099 case BTF_KIND_UNION: 2100 case BTF_KIND_FUNC: 2101 case BTF_KIND_FUNC_PROTO: 2102 case BTF_KIND_VAR: 2103 case BTF_KIND_DATASEC: 2104 return 0; 2105 2106 case BTF_KIND_INT: 2107 h = btf_hash_int(t); 2108 for_each_dedup_cand(d, hash_entry, h) { 2109 cand_id = (__u32)(long)hash_entry->value; 2110 cand = d->btf->types[cand_id]; 2111 if (btf_equal_int(t, cand)) { 2112 new_id = cand_id; 2113 break; 2114 } 2115 } 2116 break; 2117 2118 case BTF_KIND_ENUM: 2119 h = btf_hash_enum(t); 2120 for_each_dedup_cand(d, hash_entry, h) { 2121 cand_id = (__u32)(long)hash_entry->value; 2122 cand = d->btf->types[cand_id]; 2123 if (btf_equal_enum(t, cand)) { 2124 new_id = cand_id; 2125 break; 2126 } 2127 if (d->opts.dont_resolve_fwds) 2128 continue; 2129 if (btf_compat_enum(t, cand)) { 2130 if (btf_is_enum_fwd(t)) { 2131 /* resolve fwd to full enum */ 2132 new_id = cand_id; 2133 break; 2134 } 2135 /* resolve canonical enum fwd to full enum */ 2136 d->map[cand_id] = type_id; 2137 } 2138 } 2139 break; 2140 2141 case BTF_KIND_FWD: 2142 h = btf_hash_common(t); 2143 for_each_dedup_cand(d, hash_entry, h) { 2144 cand_id = (__u32)(long)hash_entry->value; 2145 cand = d->btf->types[cand_id]; 2146 if (btf_equal_common(t, cand)) { 2147 new_id = cand_id; 2148 break; 2149 } 2150 } 2151 break; 2152 2153 default: 2154 return -EINVAL; 2155 } 2156 2157 d->map[type_id] = new_id; 2158 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2159 return -ENOMEM; 2160 2161 return 0; 2162 } 2163 2164 static int btf_dedup_prim_types(struct btf_dedup *d) 2165 { 2166 int i, err; 2167 2168 for (i = 1; i <= d->btf->nr_types; i++) { 2169 err = btf_dedup_prim_type(d, i); 2170 if (err) 2171 return err; 2172 } 2173 return 0; 2174 } 2175 2176 /* 2177 * Check whether type is already mapped into canonical one (could be to itself). 2178 */ 2179 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 2180 { 2181 return d->map[type_id] <= BTF_MAX_NR_TYPES; 2182 } 2183 2184 /* 2185 * Resolve type ID into its canonical type ID, if any; otherwise return original 2186 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 2187 * STRUCT/UNION link and resolve it into canonical type ID as well. 2188 */ 2189 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 2190 { 2191 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2192 type_id = d->map[type_id]; 2193 return type_id; 2194 } 2195 2196 /* 2197 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 2198 * type ID. 2199 */ 2200 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 2201 { 2202 __u32 orig_type_id = type_id; 2203 2204 if (!btf_is_fwd(d->btf->types[type_id])) 2205 return type_id; 2206 2207 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2208 type_id = d->map[type_id]; 2209 2210 if (!btf_is_fwd(d->btf->types[type_id])) 2211 return type_id; 2212 2213 return orig_type_id; 2214 } 2215 2216 2217 static inline __u16 btf_fwd_kind(struct btf_type *t) 2218 { 2219 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 2220 } 2221 2222 /* 2223 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 2224 * call it "candidate graph" in this description for brevity) to a type graph 2225 * formed by (potential) canonical struct/union ("canonical graph" for brevity 2226 * here, though keep in mind that not all types in canonical graph are 2227 * necessarily canonical representatives themselves, some of them might be 2228 * duplicates or its uniqueness might not have been established yet). 2229 * Returns: 2230 * - >0, if type graphs are equivalent; 2231 * - 0, if not equivalent; 2232 * - <0, on error. 2233 * 2234 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 2235 * equivalence of BTF types at each step. If at any point BTF types in candidate 2236 * and canonical graphs are not compatible structurally, whole graphs are 2237 * incompatible. If types are structurally equivalent (i.e., all information 2238 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 2239 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 2240 * If a type references other types, then those referenced types are checked 2241 * for equivalence recursively. 2242 * 2243 * During DFS traversal, if we find that for current `canon_id` type we 2244 * already have some mapping in hypothetical map, we check for two possible 2245 * situations: 2246 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 2247 * happen when type graphs have cycles. In this case we assume those two 2248 * types are equivalent. 2249 * - `canon_id` is mapped to different type. This is contradiction in our 2250 * hypothetical mapping, because same graph in canonical graph corresponds 2251 * to two different types in candidate graph, which for equivalent type 2252 * graphs shouldn't happen. This condition terminates equivalence check 2253 * with negative result. 2254 * 2255 * If type graphs traversal exhausts types to check and find no contradiction, 2256 * then type graphs are equivalent. 2257 * 2258 * When checking types for equivalence, there is one special case: FWD types. 2259 * If FWD type resolution is allowed and one of the types (either from canonical 2260 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 2261 * flag) and their names match, hypothetical mapping is updated to point from 2262 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 2263 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 2264 * 2265 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 2266 * if there are two exactly named (or anonymous) structs/unions that are 2267 * compatible structurally, one of which has FWD field, while other is concrete 2268 * STRUCT/UNION, but according to C sources they are different structs/unions 2269 * that are referencing different types with the same name. This is extremely 2270 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 2271 * this logic is causing problems. 2272 * 2273 * Doing FWD resolution means that both candidate and/or canonical graphs can 2274 * consists of portions of the graph that come from multiple compilation units. 2275 * This is due to the fact that types within single compilation unit are always 2276 * deduplicated and FWDs are already resolved, if referenced struct/union 2277 * definiton is available. So, if we had unresolved FWD and found corresponding 2278 * STRUCT/UNION, they will be from different compilation units. This 2279 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 2280 * type graph will likely have at least two different BTF types that describe 2281 * same type (e.g., most probably there will be two different BTF types for the 2282 * same 'int' primitive type) and could even have "overlapping" parts of type 2283 * graph that describe same subset of types. 2284 * 2285 * This in turn means that our assumption that each type in canonical graph 2286 * must correspond to exactly one type in candidate graph might not hold 2287 * anymore and will make it harder to detect contradictions using hypothetical 2288 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 2289 * resolution only in canonical graph. FWDs in candidate graphs are never 2290 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 2291 * that can occur: 2292 * - Both types in canonical and candidate graphs are FWDs. If they are 2293 * structurally equivalent, then they can either be both resolved to the 2294 * same STRUCT/UNION or not resolved at all. In both cases they are 2295 * equivalent and there is no need to resolve FWD on candidate side. 2296 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 2297 * so nothing to resolve as well, algorithm will check equivalence anyway. 2298 * - Type in canonical graph is FWD, while type in candidate is concrete 2299 * STRUCT/UNION. In this case candidate graph comes from single compilation 2300 * unit, so there is exactly one BTF type for each unique C type. After 2301 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 2302 * in canonical graph mapping to single BTF type in candidate graph, but 2303 * because hypothetical mapping maps from canonical to candidate types, it's 2304 * alright, and we still maintain the property of having single `canon_id` 2305 * mapping to single `cand_id` (there could be two different `canon_id` 2306 * mapped to the same `cand_id`, but it's not contradictory). 2307 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 2308 * graph is FWD. In this case we are just going to check compatibility of 2309 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 2310 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 2311 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 2312 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 2313 * canonical graph. 2314 */ 2315 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 2316 __u32 canon_id) 2317 { 2318 struct btf_type *cand_type; 2319 struct btf_type *canon_type; 2320 __u32 hypot_type_id; 2321 __u16 cand_kind; 2322 __u16 canon_kind; 2323 int i, eq; 2324 2325 /* if both resolve to the same canonical, they must be equivalent */ 2326 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 2327 return 1; 2328 2329 canon_id = resolve_fwd_id(d, canon_id); 2330 2331 hypot_type_id = d->hypot_map[canon_id]; 2332 if (hypot_type_id <= BTF_MAX_NR_TYPES) 2333 return hypot_type_id == cand_id; 2334 2335 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 2336 return -ENOMEM; 2337 2338 cand_type = d->btf->types[cand_id]; 2339 canon_type = d->btf->types[canon_id]; 2340 cand_kind = btf_kind(cand_type); 2341 canon_kind = btf_kind(canon_type); 2342 2343 if (cand_type->name_off != canon_type->name_off) 2344 return 0; 2345 2346 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 2347 if (!d->opts.dont_resolve_fwds 2348 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 2349 && cand_kind != canon_kind) { 2350 __u16 real_kind; 2351 __u16 fwd_kind; 2352 2353 if (cand_kind == BTF_KIND_FWD) { 2354 real_kind = canon_kind; 2355 fwd_kind = btf_fwd_kind(cand_type); 2356 } else { 2357 real_kind = cand_kind; 2358 fwd_kind = btf_fwd_kind(canon_type); 2359 } 2360 return fwd_kind == real_kind; 2361 } 2362 2363 if (cand_kind != canon_kind) 2364 return 0; 2365 2366 switch (cand_kind) { 2367 case BTF_KIND_INT: 2368 return btf_equal_int(cand_type, canon_type); 2369 2370 case BTF_KIND_ENUM: 2371 if (d->opts.dont_resolve_fwds) 2372 return btf_equal_enum(cand_type, canon_type); 2373 else 2374 return btf_compat_enum(cand_type, canon_type); 2375 2376 case BTF_KIND_FWD: 2377 return btf_equal_common(cand_type, canon_type); 2378 2379 case BTF_KIND_CONST: 2380 case BTF_KIND_VOLATILE: 2381 case BTF_KIND_RESTRICT: 2382 case BTF_KIND_PTR: 2383 case BTF_KIND_TYPEDEF: 2384 case BTF_KIND_FUNC: 2385 if (cand_type->info != canon_type->info) 2386 return 0; 2387 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2388 2389 case BTF_KIND_ARRAY: { 2390 const struct btf_array *cand_arr, *canon_arr; 2391 2392 if (!btf_compat_array(cand_type, canon_type)) 2393 return 0; 2394 cand_arr = btf_array(cand_type); 2395 canon_arr = btf_array(canon_type); 2396 eq = btf_dedup_is_equiv(d, 2397 cand_arr->index_type, canon_arr->index_type); 2398 if (eq <= 0) 2399 return eq; 2400 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 2401 } 2402 2403 case BTF_KIND_STRUCT: 2404 case BTF_KIND_UNION: { 2405 const struct btf_member *cand_m, *canon_m; 2406 __u16 vlen; 2407 2408 if (!btf_shallow_equal_struct(cand_type, canon_type)) 2409 return 0; 2410 vlen = btf_vlen(cand_type); 2411 cand_m = btf_members(cand_type); 2412 canon_m = btf_members(canon_type); 2413 for (i = 0; i < vlen; i++) { 2414 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 2415 if (eq <= 0) 2416 return eq; 2417 cand_m++; 2418 canon_m++; 2419 } 2420 2421 return 1; 2422 } 2423 2424 case BTF_KIND_FUNC_PROTO: { 2425 const struct btf_param *cand_p, *canon_p; 2426 __u16 vlen; 2427 2428 if (!btf_compat_fnproto(cand_type, canon_type)) 2429 return 0; 2430 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2431 if (eq <= 0) 2432 return eq; 2433 vlen = btf_vlen(cand_type); 2434 cand_p = btf_params(cand_type); 2435 canon_p = btf_params(canon_type); 2436 for (i = 0; i < vlen; i++) { 2437 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 2438 if (eq <= 0) 2439 return eq; 2440 cand_p++; 2441 canon_p++; 2442 } 2443 return 1; 2444 } 2445 2446 default: 2447 return -EINVAL; 2448 } 2449 return 0; 2450 } 2451 2452 /* 2453 * Use hypothetical mapping, produced by successful type graph equivalence 2454 * check, to augment existing struct/union canonical mapping, where possible. 2455 * 2456 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 2457 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 2458 * it doesn't matter if FWD type was part of canonical graph or candidate one, 2459 * we are recording the mapping anyway. As opposed to carefulness required 2460 * for struct/union correspondence mapping (described below), for FWD resolution 2461 * it's not important, as by the time that FWD type (reference type) will be 2462 * deduplicated all structs/unions will be deduped already anyway. 2463 * 2464 * Recording STRUCT/UNION mapping is purely a performance optimization and is 2465 * not required for correctness. It needs to be done carefully to ensure that 2466 * struct/union from candidate's type graph is not mapped into corresponding 2467 * struct/union from canonical type graph that itself hasn't been resolved into 2468 * canonical representative. The only guarantee we have is that canonical 2469 * struct/union was determined as canonical and that won't change. But any 2470 * types referenced through that struct/union fields could have been not yet 2471 * resolved, so in case like that it's too early to establish any kind of 2472 * correspondence between structs/unions. 2473 * 2474 * No canonical correspondence is derived for primitive types (they are already 2475 * deduplicated completely already anyway) or reference types (they rely on 2476 * stability of struct/union canonical relationship for equivalence checks). 2477 */ 2478 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 2479 { 2480 __u32 cand_type_id, targ_type_id; 2481 __u16 t_kind, c_kind; 2482 __u32 t_id, c_id; 2483 int i; 2484 2485 for (i = 0; i < d->hypot_cnt; i++) { 2486 cand_type_id = d->hypot_list[i]; 2487 targ_type_id = d->hypot_map[cand_type_id]; 2488 t_id = resolve_type_id(d, targ_type_id); 2489 c_id = resolve_type_id(d, cand_type_id); 2490 t_kind = btf_kind(d->btf->types[t_id]); 2491 c_kind = btf_kind(d->btf->types[c_id]); 2492 /* 2493 * Resolve FWD into STRUCT/UNION. 2494 * It's ok to resolve FWD into STRUCT/UNION that's not yet 2495 * mapped to canonical representative (as opposed to 2496 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 2497 * eventually that struct is going to be mapped and all resolved 2498 * FWDs will automatically resolve to correct canonical 2499 * representative. This will happen before ref type deduping, 2500 * which critically depends on stability of these mapping. This 2501 * stability is not a requirement for STRUCT/UNION equivalence 2502 * checks, though. 2503 */ 2504 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 2505 d->map[c_id] = t_id; 2506 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 2507 d->map[t_id] = c_id; 2508 2509 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 2510 c_kind != BTF_KIND_FWD && 2511 is_type_mapped(d, c_id) && 2512 !is_type_mapped(d, t_id)) { 2513 /* 2514 * as a perf optimization, we can map struct/union 2515 * that's part of type graph we just verified for 2516 * equivalence. We can do that for struct/union that has 2517 * canonical representative only, though. 2518 */ 2519 d->map[t_id] = c_id; 2520 } 2521 } 2522 } 2523 2524 /* 2525 * Deduplicate struct/union types. 2526 * 2527 * For each struct/union type its type signature hash is calculated, taking 2528 * into account type's name, size, number, order and names of fields, but 2529 * ignoring type ID's referenced from fields, because they might not be deduped 2530 * completely until after reference types deduplication phase. This type hash 2531 * is used to iterate over all potential canonical types, sharing same hash. 2532 * For each canonical candidate we check whether type graphs that they form 2533 * (through referenced types in fields and so on) are equivalent using algorithm 2534 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 2535 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 2536 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 2537 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 2538 * potentially map other structs/unions to their canonical representatives, 2539 * if such relationship hasn't yet been established. This speeds up algorithm 2540 * by eliminating some of the duplicate work. 2541 * 2542 * If no matching canonical representative was found, struct/union is marked 2543 * as canonical for itself and is added into btf_dedup->dedup_table hash map 2544 * for further look ups. 2545 */ 2546 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 2547 { 2548 struct btf_type *cand_type, *t; 2549 struct hashmap_entry *hash_entry; 2550 /* if we don't find equivalent type, then we are canonical */ 2551 __u32 new_id = type_id; 2552 __u16 kind; 2553 long h; 2554 2555 /* already deduped or is in process of deduping (loop detected) */ 2556 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2557 return 0; 2558 2559 t = d->btf->types[type_id]; 2560 kind = btf_kind(t); 2561 2562 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 2563 return 0; 2564 2565 h = btf_hash_struct(t); 2566 for_each_dedup_cand(d, hash_entry, h) { 2567 __u32 cand_id = (__u32)(long)hash_entry->value; 2568 int eq; 2569 2570 /* 2571 * Even though btf_dedup_is_equiv() checks for 2572 * btf_shallow_equal_struct() internally when checking two 2573 * structs (unions) for equivalence, we need to guard here 2574 * from picking matching FWD type as a dedup candidate. 2575 * This can happen due to hash collision. In such case just 2576 * relying on btf_dedup_is_equiv() would lead to potentially 2577 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 2578 * FWD and compatible STRUCT/UNION are considered equivalent. 2579 */ 2580 cand_type = d->btf->types[cand_id]; 2581 if (!btf_shallow_equal_struct(t, cand_type)) 2582 continue; 2583 2584 btf_dedup_clear_hypot_map(d); 2585 eq = btf_dedup_is_equiv(d, type_id, cand_id); 2586 if (eq < 0) 2587 return eq; 2588 if (!eq) 2589 continue; 2590 new_id = cand_id; 2591 btf_dedup_merge_hypot_map(d); 2592 break; 2593 } 2594 2595 d->map[type_id] = new_id; 2596 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2597 return -ENOMEM; 2598 2599 return 0; 2600 } 2601 2602 static int btf_dedup_struct_types(struct btf_dedup *d) 2603 { 2604 int i, err; 2605 2606 for (i = 1; i <= d->btf->nr_types; i++) { 2607 err = btf_dedup_struct_type(d, i); 2608 if (err) 2609 return err; 2610 } 2611 return 0; 2612 } 2613 2614 /* 2615 * Deduplicate reference type. 2616 * 2617 * Once all primitive and struct/union types got deduplicated, we can easily 2618 * deduplicate all other (reference) BTF types. This is done in two steps: 2619 * 2620 * 1. Resolve all referenced type IDs into their canonical type IDs. This 2621 * resolution can be done either immediately for primitive or struct/union types 2622 * (because they were deduped in previous two phases) or recursively for 2623 * reference types. Recursion will always terminate at either primitive or 2624 * struct/union type, at which point we can "unwind" chain of reference types 2625 * one by one. There is no danger of encountering cycles because in C type 2626 * system the only way to form type cycle is through struct/union, so any chain 2627 * of reference types, even those taking part in a type cycle, will inevitably 2628 * reach struct/union at some point. 2629 * 2630 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 2631 * becomes "stable", in the sense that no further deduplication will cause 2632 * any changes to it. With that, it's now possible to calculate type's signature 2633 * hash (this time taking into account referenced type IDs) and loop over all 2634 * potential canonical representatives. If no match was found, current type 2635 * will become canonical representative of itself and will be added into 2636 * btf_dedup->dedup_table as another possible canonical representative. 2637 */ 2638 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 2639 { 2640 struct hashmap_entry *hash_entry; 2641 __u32 new_id = type_id, cand_id; 2642 struct btf_type *t, *cand; 2643 /* if we don't find equivalent type, then we are representative type */ 2644 int ref_type_id; 2645 long h; 2646 2647 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 2648 return -ELOOP; 2649 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2650 return resolve_type_id(d, type_id); 2651 2652 t = d->btf->types[type_id]; 2653 d->map[type_id] = BTF_IN_PROGRESS_ID; 2654 2655 switch (btf_kind(t)) { 2656 case BTF_KIND_CONST: 2657 case BTF_KIND_VOLATILE: 2658 case BTF_KIND_RESTRICT: 2659 case BTF_KIND_PTR: 2660 case BTF_KIND_TYPEDEF: 2661 case BTF_KIND_FUNC: 2662 ref_type_id = btf_dedup_ref_type(d, t->type); 2663 if (ref_type_id < 0) 2664 return ref_type_id; 2665 t->type = ref_type_id; 2666 2667 h = btf_hash_common(t); 2668 for_each_dedup_cand(d, hash_entry, h) { 2669 cand_id = (__u32)(long)hash_entry->value; 2670 cand = d->btf->types[cand_id]; 2671 if (btf_equal_common(t, cand)) { 2672 new_id = cand_id; 2673 break; 2674 } 2675 } 2676 break; 2677 2678 case BTF_KIND_ARRAY: { 2679 struct btf_array *info = btf_array(t); 2680 2681 ref_type_id = btf_dedup_ref_type(d, info->type); 2682 if (ref_type_id < 0) 2683 return ref_type_id; 2684 info->type = ref_type_id; 2685 2686 ref_type_id = btf_dedup_ref_type(d, info->index_type); 2687 if (ref_type_id < 0) 2688 return ref_type_id; 2689 info->index_type = ref_type_id; 2690 2691 h = btf_hash_array(t); 2692 for_each_dedup_cand(d, hash_entry, h) { 2693 cand_id = (__u32)(long)hash_entry->value; 2694 cand = d->btf->types[cand_id]; 2695 if (btf_equal_array(t, cand)) { 2696 new_id = cand_id; 2697 break; 2698 } 2699 } 2700 break; 2701 } 2702 2703 case BTF_KIND_FUNC_PROTO: { 2704 struct btf_param *param; 2705 __u16 vlen; 2706 int i; 2707 2708 ref_type_id = btf_dedup_ref_type(d, t->type); 2709 if (ref_type_id < 0) 2710 return ref_type_id; 2711 t->type = ref_type_id; 2712 2713 vlen = btf_vlen(t); 2714 param = btf_params(t); 2715 for (i = 0; i < vlen; i++) { 2716 ref_type_id = btf_dedup_ref_type(d, param->type); 2717 if (ref_type_id < 0) 2718 return ref_type_id; 2719 param->type = ref_type_id; 2720 param++; 2721 } 2722 2723 h = btf_hash_fnproto(t); 2724 for_each_dedup_cand(d, hash_entry, h) { 2725 cand_id = (__u32)(long)hash_entry->value; 2726 cand = d->btf->types[cand_id]; 2727 if (btf_equal_fnproto(t, cand)) { 2728 new_id = cand_id; 2729 break; 2730 } 2731 } 2732 break; 2733 } 2734 2735 default: 2736 return -EINVAL; 2737 } 2738 2739 d->map[type_id] = new_id; 2740 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2741 return -ENOMEM; 2742 2743 return new_id; 2744 } 2745 2746 static int btf_dedup_ref_types(struct btf_dedup *d) 2747 { 2748 int i, err; 2749 2750 for (i = 1; i <= d->btf->nr_types; i++) { 2751 err = btf_dedup_ref_type(d, i); 2752 if (err < 0) 2753 return err; 2754 } 2755 /* we won't need d->dedup_table anymore */ 2756 hashmap__free(d->dedup_table); 2757 d->dedup_table = NULL; 2758 return 0; 2759 } 2760 2761 /* 2762 * Compact types. 2763 * 2764 * After we established for each type its corresponding canonical representative 2765 * type, we now can eliminate types that are not canonical and leave only 2766 * canonical ones layed out sequentially in memory by copying them over 2767 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 2768 * a map from original type ID to a new compacted type ID, which will be used 2769 * during next phase to "fix up" type IDs, referenced from struct/union and 2770 * reference types. 2771 */ 2772 static int btf_dedup_compact_types(struct btf_dedup *d) 2773 { 2774 struct btf_type **new_types; 2775 __u32 next_type_id = 1; 2776 char *types_start, *p; 2777 int i, len; 2778 2779 /* we are going to reuse hypot_map to store compaction remapping */ 2780 d->hypot_map[0] = 0; 2781 for (i = 1; i <= d->btf->nr_types; i++) 2782 d->hypot_map[i] = BTF_UNPROCESSED_ID; 2783 2784 types_start = d->btf->nohdr_data + d->btf->hdr->type_off; 2785 p = types_start; 2786 2787 for (i = 1; i <= d->btf->nr_types; i++) { 2788 if (d->map[i] != i) 2789 continue; 2790 2791 len = btf_type_size(d->btf->types[i]); 2792 if (len < 0) 2793 return len; 2794 2795 memmove(p, d->btf->types[i], len); 2796 d->hypot_map[i] = next_type_id; 2797 d->btf->types[next_type_id] = (struct btf_type *)p; 2798 p += len; 2799 next_type_id++; 2800 } 2801 2802 /* shrink struct btf's internal types index and update btf_header */ 2803 d->btf->nr_types = next_type_id - 1; 2804 d->btf->types_size = d->btf->nr_types; 2805 d->btf->hdr->type_len = p - types_start; 2806 new_types = realloc(d->btf->types, 2807 (1 + d->btf->nr_types) * sizeof(struct btf_type *)); 2808 if (!new_types) 2809 return -ENOMEM; 2810 d->btf->types = new_types; 2811 2812 /* make sure string section follows type information without gaps */ 2813 d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data; 2814 memmove(p, d->btf->strings, d->btf->hdr->str_len); 2815 d->btf->strings = p; 2816 p += d->btf->hdr->str_len; 2817 2818 d->btf->data_size = p - (char *)d->btf->data; 2819 return 0; 2820 } 2821 2822 /* 2823 * Figure out final (deduplicated and compacted) type ID for provided original 2824 * `type_id` by first resolving it into corresponding canonical type ID and 2825 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 2826 * which is populated during compaction phase. 2827 */ 2828 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 2829 { 2830 __u32 resolved_type_id, new_type_id; 2831 2832 resolved_type_id = resolve_type_id(d, type_id); 2833 new_type_id = d->hypot_map[resolved_type_id]; 2834 if (new_type_id > BTF_MAX_NR_TYPES) 2835 return -EINVAL; 2836 return new_type_id; 2837 } 2838 2839 /* 2840 * Remap referenced type IDs into deduped type IDs. 2841 * 2842 * After BTF types are deduplicated and compacted, their final type IDs may 2843 * differ from original ones. The map from original to a corresponding 2844 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 2845 * compaction phase. During remapping phase we are rewriting all type IDs 2846 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 2847 * their final deduped type IDs. 2848 */ 2849 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 2850 { 2851 struct btf_type *t = d->btf->types[type_id]; 2852 int i, r; 2853 2854 switch (btf_kind(t)) { 2855 case BTF_KIND_INT: 2856 case BTF_KIND_ENUM: 2857 break; 2858 2859 case BTF_KIND_FWD: 2860 case BTF_KIND_CONST: 2861 case BTF_KIND_VOLATILE: 2862 case BTF_KIND_RESTRICT: 2863 case BTF_KIND_PTR: 2864 case BTF_KIND_TYPEDEF: 2865 case BTF_KIND_FUNC: 2866 case BTF_KIND_VAR: 2867 r = btf_dedup_remap_type_id(d, t->type); 2868 if (r < 0) 2869 return r; 2870 t->type = r; 2871 break; 2872 2873 case BTF_KIND_ARRAY: { 2874 struct btf_array *arr_info = btf_array(t); 2875 2876 r = btf_dedup_remap_type_id(d, arr_info->type); 2877 if (r < 0) 2878 return r; 2879 arr_info->type = r; 2880 r = btf_dedup_remap_type_id(d, arr_info->index_type); 2881 if (r < 0) 2882 return r; 2883 arr_info->index_type = r; 2884 break; 2885 } 2886 2887 case BTF_KIND_STRUCT: 2888 case BTF_KIND_UNION: { 2889 struct btf_member *member = btf_members(t); 2890 __u16 vlen = btf_vlen(t); 2891 2892 for (i = 0; i < vlen; i++) { 2893 r = btf_dedup_remap_type_id(d, member->type); 2894 if (r < 0) 2895 return r; 2896 member->type = r; 2897 member++; 2898 } 2899 break; 2900 } 2901 2902 case BTF_KIND_FUNC_PROTO: { 2903 struct btf_param *param = btf_params(t); 2904 __u16 vlen = btf_vlen(t); 2905 2906 r = btf_dedup_remap_type_id(d, t->type); 2907 if (r < 0) 2908 return r; 2909 t->type = r; 2910 2911 for (i = 0; i < vlen; i++) { 2912 r = btf_dedup_remap_type_id(d, param->type); 2913 if (r < 0) 2914 return r; 2915 param->type = r; 2916 param++; 2917 } 2918 break; 2919 } 2920 2921 case BTF_KIND_DATASEC: { 2922 struct btf_var_secinfo *var = btf_var_secinfos(t); 2923 __u16 vlen = btf_vlen(t); 2924 2925 for (i = 0; i < vlen; i++) { 2926 r = btf_dedup_remap_type_id(d, var->type); 2927 if (r < 0) 2928 return r; 2929 var->type = r; 2930 var++; 2931 } 2932 break; 2933 } 2934 2935 default: 2936 return -EINVAL; 2937 } 2938 2939 return 0; 2940 } 2941 2942 static int btf_dedup_remap_types(struct btf_dedup *d) 2943 { 2944 int i, r; 2945 2946 for (i = 1; i <= d->btf->nr_types; i++) { 2947 r = btf_dedup_remap_type(d, i); 2948 if (r < 0) 2949 return r; 2950 } 2951 return 0; 2952 } 2953 2954 static struct btf *btf_load_raw(const char *path) 2955 { 2956 struct btf *btf; 2957 size_t read_cnt; 2958 struct stat st; 2959 void *data; 2960 FILE *f; 2961 2962 if (stat(path, &st)) 2963 return ERR_PTR(-errno); 2964 2965 data = malloc(st.st_size); 2966 if (!data) 2967 return ERR_PTR(-ENOMEM); 2968 2969 f = fopen(path, "rb"); 2970 if (!f) { 2971 btf = ERR_PTR(-errno); 2972 goto cleanup; 2973 } 2974 2975 read_cnt = fread(data, 1, st.st_size, f); 2976 fclose(f); 2977 if (read_cnt < st.st_size) { 2978 btf = ERR_PTR(-EBADF); 2979 goto cleanup; 2980 } 2981 2982 btf = btf__new(data, read_cnt); 2983 2984 cleanup: 2985 free(data); 2986 return btf; 2987 } 2988 2989 /* 2990 * Probe few well-known locations for vmlinux kernel image and try to load BTF 2991 * data out of it to use for target BTF. 2992 */ 2993 struct btf *libbpf_find_kernel_btf(void) 2994 { 2995 struct { 2996 const char *path_fmt; 2997 bool raw_btf; 2998 } locations[] = { 2999 /* try canonical vmlinux BTF through sysfs first */ 3000 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 3001 /* fall back to trying to find vmlinux ELF on disk otherwise */ 3002 { "/boot/vmlinux-%1$s" }, 3003 { "/lib/modules/%1$s/vmlinux-%1$s" }, 3004 { "/lib/modules/%1$s/build/vmlinux" }, 3005 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 3006 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 3007 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 3008 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 3009 }; 3010 char path[PATH_MAX + 1]; 3011 struct utsname buf; 3012 struct btf *btf; 3013 int i; 3014 3015 uname(&buf); 3016 3017 for (i = 0; i < ARRAY_SIZE(locations); i++) { 3018 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 3019 3020 if (access(path, R_OK)) 3021 continue; 3022 3023 if (locations[i].raw_btf) 3024 btf = btf_load_raw(path); 3025 else 3026 btf = btf__parse_elf(path, NULL); 3027 3028 pr_debug("loading kernel BTF '%s': %ld\n", 3029 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 3030 if (IS_ERR(btf)) 3031 continue; 3032 3033 return btf; 3034 } 3035 3036 pr_warn("failed to find valid kernel BTF\n"); 3037 return ERR_PTR(-ESRCH); 3038 } 3039