1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__get_raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 193 { 194 __u32 *p; 195 196 p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 197 btf->nr_types, BTF_MAX_NR_TYPES, 1); 198 if (!p) 199 return -ENOMEM; 200 201 *p = type_off; 202 return 0; 203 } 204 205 static void btf_bswap_hdr(struct btf_header *h) 206 { 207 h->magic = bswap_16(h->magic); 208 h->hdr_len = bswap_32(h->hdr_len); 209 h->type_off = bswap_32(h->type_off); 210 h->type_len = bswap_32(h->type_len); 211 h->str_off = bswap_32(h->str_off); 212 h->str_len = bswap_32(h->str_len); 213 } 214 215 static int btf_parse_hdr(struct btf *btf) 216 { 217 struct btf_header *hdr = btf->hdr; 218 __u32 meta_left; 219 220 if (btf->raw_size < sizeof(struct btf_header)) { 221 pr_debug("BTF header not found\n"); 222 return -EINVAL; 223 } 224 225 if (hdr->magic == bswap_16(BTF_MAGIC)) { 226 btf->swapped_endian = true; 227 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 228 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 229 bswap_32(hdr->hdr_len)); 230 return -ENOTSUP; 231 } 232 btf_bswap_hdr(hdr); 233 } else if (hdr->magic != BTF_MAGIC) { 234 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 235 return -EINVAL; 236 } 237 238 meta_left = btf->raw_size - sizeof(*hdr); 239 if (meta_left < hdr->str_off + hdr->str_len) { 240 pr_debug("Invalid BTF total size:%u\n", btf->raw_size); 241 return -EINVAL; 242 } 243 244 if (hdr->type_off + hdr->type_len > hdr->str_off) { 245 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 246 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 247 return -EINVAL; 248 } 249 250 if (hdr->type_off % 4) { 251 pr_debug("BTF type section is not aligned to 4 bytes\n"); 252 return -EINVAL; 253 } 254 255 return 0; 256 } 257 258 static int btf_parse_str_sec(struct btf *btf) 259 { 260 const struct btf_header *hdr = btf->hdr; 261 const char *start = btf->strs_data; 262 const char *end = start + btf->hdr->str_len; 263 264 if (btf->base_btf && hdr->str_len == 0) 265 return 0; 266 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 267 pr_debug("Invalid BTF string section\n"); 268 return -EINVAL; 269 } 270 if (!btf->base_btf && start[0]) { 271 pr_debug("Invalid BTF string section\n"); 272 return -EINVAL; 273 } 274 return 0; 275 } 276 277 static int btf_type_size(const struct btf_type *t) 278 { 279 const int base_size = sizeof(struct btf_type); 280 __u16 vlen = btf_vlen(t); 281 282 switch (btf_kind(t)) { 283 case BTF_KIND_FWD: 284 case BTF_KIND_CONST: 285 case BTF_KIND_VOLATILE: 286 case BTF_KIND_RESTRICT: 287 case BTF_KIND_PTR: 288 case BTF_KIND_TYPEDEF: 289 case BTF_KIND_FUNC: 290 case BTF_KIND_FLOAT: 291 return base_size; 292 case BTF_KIND_INT: 293 return base_size + sizeof(__u32); 294 case BTF_KIND_ENUM: 295 return base_size + vlen * sizeof(struct btf_enum); 296 case BTF_KIND_ARRAY: 297 return base_size + sizeof(struct btf_array); 298 case BTF_KIND_STRUCT: 299 case BTF_KIND_UNION: 300 return base_size + vlen * sizeof(struct btf_member); 301 case BTF_KIND_FUNC_PROTO: 302 return base_size + vlen * sizeof(struct btf_param); 303 case BTF_KIND_VAR: 304 return base_size + sizeof(struct btf_var); 305 case BTF_KIND_DATASEC: 306 return base_size + vlen * sizeof(struct btf_var_secinfo); 307 default: 308 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 309 return -EINVAL; 310 } 311 } 312 313 static void btf_bswap_type_base(struct btf_type *t) 314 { 315 t->name_off = bswap_32(t->name_off); 316 t->info = bswap_32(t->info); 317 t->type = bswap_32(t->type); 318 } 319 320 static int btf_bswap_type_rest(struct btf_type *t) 321 { 322 struct btf_var_secinfo *v; 323 struct btf_member *m; 324 struct btf_array *a; 325 struct btf_param *p; 326 struct btf_enum *e; 327 __u16 vlen = btf_vlen(t); 328 int i; 329 330 switch (btf_kind(t)) { 331 case BTF_KIND_FWD: 332 case BTF_KIND_CONST: 333 case BTF_KIND_VOLATILE: 334 case BTF_KIND_RESTRICT: 335 case BTF_KIND_PTR: 336 case BTF_KIND_TYPEDEF: 337 case BTF_KIND_FUNC: 338 case BTF_KIND_FLOAT: 339 return 0; 340 case BTF_KIND_INT: 341 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 342 return 0; 343 case BTF_KIND_ENUM: 344 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 345 e->name_off = bswap_32(e->name_off); 346 e->val = bswap_32(e->val); 347 } 348 return 0; 349 case BTF_KIND_ARRAY: 350 a = btf_array(t); 351 a->type = bswap_32(a->type); 352 a->index_type = bswap_32(a->index_type); 353 a->nelems = bswap_32(a->nelems); 354 return 0; 355 case BTF_KIND_STRUCT: 356 case BTF_KIND_UNION: 357 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 358 m->name_off = bswap_32(m->name_off); 359 m->type = bswap_32(m->type); 360 m->offset = bswap_32(m->offset); 361 } 362 return 0; 363 case BTF_KIND_FUNC_PROTO: 364 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 365 p->name_off = bswap_32(p->name_off); 366 p->type = bswap_32(p->type); 367 } 368 return 0; 369 case BTF_KIND_VAR: 370 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 371 return 0; 372 case BTF_KIND_DATASEC: 373 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 374 v->type = bswap_32(v->type); 375 v->offset = bswap_32(v->offset); 376 v->size = bswap_32(v->size); 377 } 378 return 0; 379 default: 380 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 381 return -EINVAL; 382 } 383 } 384 385 static int btf_parse_type_sec(struct btf *btf) 386 { 387 struct btf_header *hdr = btf->hdr; 388 void *next_type = btf->types_data; 389 void *end_type = next_type + hdr->type_len; 390 int err, type_size; 391 392 while (next_type + sizeof(struct btf_type) <= end_type) { 393 if (btf->swapped_endian) 394 btf_bswap_type_base(next_type); 395 396 type_size = btf_type_size(next_type); 397 if (type_size < 0) 398 return type_size; 399 if (next_type + type_size > end_type) { 400 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 401 return -EINVAL; 402 } 403 404 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 405 return -EINVAL; 406 407 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 408 if (err) 409 return err; 410 411 next_type += type_size; 412 btf->nr_types++; 413 } 414 415 if (next_type != end_type) { 416 pr_warn("BTF types data is malformed\n"); 417 return -EINVAL; 418 } 419 420 return 0; 421 } 422 423 __u32 btf__get_nr_types(const struct btf *btf) 424 { 425 return btf->start_id + btf->nr_types - 1; 426 } 427 428 const struct btf *btf__base_btf(const struct btf *btf) 429 { 430 return btf->base_btf; 431 } 432 433 /* internal helper returning non-const pointer to a type */ 434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 435 { 436 if (type_id == 0) 437 return &btf_void; 438 if (type_id < btf->start_id) 439 return btf_type_by_id(btf->base_btf, type_id); 440 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 441 } 442 443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 444 { 445 if (type_id >= btf->start_id + btf->nr_types) 446 return errno = EINVAL, NULL; 447 return btf_type_by_id((struct btf *)btf, type_id); 448 } 449 450 static int determine_ptr_size(const struct btf *btf) 451 { 452 const struct btf_type *t; 453 const char *name; 454 int i, n; 455 456 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 457 return btf->base_btf->ptr_sz; 458 459 n = btf__get_nr_types(btf); 460 for (i = 1; i <= n; i++) { 461 t = btf__type_by_id(btf, i); 462 if (!btf_is_int(t)) 463 continue; 464 465 name = btf__name_by_offset(btf, t->name_off); 466 if (!name) 467 continue; 468 469 if (strcmp(name, "long int") == 0 || 470 strcmp(name, "long unsigned int") == 0) { 471 if (t->size != 4 && t->size != 8) 472 continue; 473 return t->size; 474 } 475 } 476 477 return -1; 478 } 479 480 static size_t btf_ptr_sz(const struct btf *btf) 481 { 482 if (!btf->ptr_sz) 483 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 484 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 485 } 486 487 /* Return pointer size this BTF instance assumes. The size is heuristically 488 * determined by looking for 'long' or 'unsigned long' integer type and 489 * recording its size in bytes. If BTF type information doesn't have any such 490 * type, this function returns 0. In the latter case, native architecture's 491 * pointer size is assumed, so will be either 4 or 8, depending on 492 * architecture that libbpf was compiled for. It's possible to override 493 * guessed value by using btf__set_pointer_size() API. 494 */ 495 size_t btf__pointer_size(const struct btf *btf) 496 { 497 if (!btf->ptr_sz) 498 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 499 500 if (btf->ptr_sz < 0) 501 /* not enough BTF type info to guess */ 502 return 0; 503 504 return btf->ptr_sz; 505 } 506 507 /* Override or set pointer size in bytes. Only values of 4 and 8 are 508 * supported. 509 */ 510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 511 { 512 if (ptr_sz != 4 && ptr_sz != 8) 513 return libbpf_err(-EINVAL); 514 btf->ptr_sz = ptr_sz; 515 return 0; 516 } 517 518 static bool is_host_big_endian(void) 519 { 520 #if __BYTE_ORDER == __LITTLE_ENDIAN 521 return false; 522 #elif __BYTE_ORDER == __BIG_ENDIAN 523 return true; 524 #else 525 # error "Unrecognized __BYTE_ORDER__" 526 #endif 527 } 528 529 enum btf_endianness btf__endianness(const struct btf *btf) 530 { 531 if (is_host_big_endian()) 532 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 533 else 534 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 535 } 536 537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 538 { 539 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 540 return libbpf_err(-EINVAL); 541 542 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 543 if (!btf->swapped_endian) { 544 free(btf->raw_data_swapped); 545 btf->raw_data_swapped = NULL; 546 } 547 return 0; 548 } 549 550 static bool btf_type_is_void(const struct btf_type *t) 551 { 552 return t == &btf_void || btf_is_fwd(t); 553 } 554 555 static bool btf_type_is_void_or_null(const struct btf_type *t) 556 { 557 return !t || btf_type_is_void(t); 558 } 559 560 #define MAX_RESOLVE_DEPTH 32 561 562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 563 { 564 const struct btf_array *array; 565 const struct btf_type *t; 566 __u32 nelems = 1; 567 __s64 size = -1; 568 int i; 569 570 t = btf__type_by_id(btf, type_id); 571 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 572 switch (btf_kind(t)) { 573 case BTF_KIND_INT: 574 case BTF_KIND_STRUCT: 575 case BTF_KIND_UNION: 576 case BTF_KIND_ENUM: 577 case BTF_KIND_DATASEC: 578 case BTF_KIND_FLOAT: 579 size = t->size; 580 goto done; 581 case BTF_KIND_PTR: 582 size = btf_ptr_sz(btf); 583 goto done; 584 case BTF_KIND_TYPEDEF: 585 case BTF_KIND_VOLATILE: 586 case BTF_KIND_CONST: 587 case BTF_KIND_RESTRICT: 588 case BTF_KIND_VAR: 589 type_id = t->type; 590 break; 591 case BTF_KIND_ARRAY: 592 array = btf_array(t); 593 if (nelems && array->nelems > UINT32_MAX / nelems) 594 return libbpf_err(-E2BIG); 595 nelems *= array->nelems; 596 type_id = array->type; 597 break; 598 default: 599 return libbpf_err(-EINVAL); 600 } 601 602 t = btf__type_by_id(btf, type_id); 603 } 604 605 done: 606 if (size < 0) 607 return libbpf_err(-EINVAL); 608 if (nelems && size > UINT32_MAX / nelems) 609 return libbpf_err(-E2BIG); 610 611 return nelems * size; 612 } 613 614 int btf__align_of(const struct btf *btf, __u32 id) 615 { 616 const struct btf_type *t = btf__type_by_id(btf, id); 617 __u16 kind = btf_kind(t); 618 619 switch (kind) { 620 case BTF_KIND_INT: 621 case BTF_KIND_ENUM: 622 case BTF_KIND_FLOAT: 623 return min(btf_ptr_sz(btf), (size_t)t->size); 624 case BTF_KIND_PTR: 625 return btf_ptr_sz(btf); 626 case BTF_KIND_TYPEDEF: 627 case BTF_KIND_VOLATILE: 628 case BTF_KIND_CONST: 629 case BTF_KIND_RESTRICT: 630 return btf__align_of(btf, t->type); 631 case BTF_KIND_ARRAY: 632 return btf__align_of(btf, btf_array(t)->type); 633 case BTF_KIND_STRUCT: 634 case BTF_KIND_UNION: { 635 const struct btf_member *m = btf_members(t); 636 __u16 vlen = btf_vlen(t); 637 int i, max_align = 1, align; 638 639 for (i = 0; i < vlen; i++, m++) { 640 align = btf__align_of(btf, m->type); 641 if (align <= 0) 642 return libbpf_err(align); 643 max_align = max(max_align, align); 644 } 645 646 return max_align; 647 } 648 default: 649 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 650 return errno = EINVAL, 0; 651 } 652 } 653 654 int btf__resolve_type(const struct btf *btf, __u32 type_id) 655 { 656 const struct btf_type *t; 657 int depth = 0; 658 659 t = btf__type_by_id(btf, type_id); 660 while (depth < MAX_RESOLVE_DEPTH && 661 !btf_type_is_void_or_null(t) && 662 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 663 type_id = t->type; 664 t = btf__type_by_id(btf, type_id); 665 depth++; 666 } 667 668 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 669 return libbpf_err(-EINVAL); 670 671 return type_id; 672 } 673 674 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 675 { 676 __u32 i, nr_types = btf__get_nr_types(btf); 677 678 if (!strcmp(type_name, "void")) 679 return 0; 680 681 for (i = 1; i <= nr_types; i++) { 682 const struct btf_type *t = btf__type_by_id(btf, i); 683 const char *name = btf__name_by_offset(btf, t->name_off); 684 685 if (name && !strcmp(type_name, name)) 686 return i; 687 } 688 689 return libbpf_err(-ENOENT); 690 } 691 692 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 693 __u32 kind) 694 { 695 __u32 i, nr_types = btf__get_nr_types(btf); 696 697 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 698 return 0; 699 700 for (i = 1; i <= nr_types; i++) { 701 const struct btf_type *t = btf__type_by_id(btf, i); 702 const char *name; 703 704 if (btf_kind(t) != kind) 705 continue; 706 name = btf__name_by_offset(btf, t->name_off); 707 if (name && !strcmp(type_name, name)) 708 return i; 709 } 710 711 return libbpf_err(-ENOENT); 712 } 713 714 static bool btf_is_modifiable(const struct btf *btf) 715 { 716 return (void *)btf->hdr != btf->raw_data; 717 } 718 719 void btf__free(struct btf *btf) 720 { 721 if (IS_ERR_OR_NULL(btf)) 722 return; 723 724 if (btf->fd >= 0) 725 close(btf->fd); 726 727 if (btf_is_modifiable(btf)) { 728 /* if BTF was modified after loading, it will have a split 729 * in-memory representation for header, types, and strings 730 * sections, so we need to free all of them individually. It 731 * might still have a cached contiguous raw data present, 732 * which will be unconditionally freed below. 733 */ 734 free(btf->hdr); 735 free(btf->types_data); 736 strset__free(btf->strs_set); 737 } 738 free(btf->raw_data); 739 free(btf->raw_data_swapped); 740 free(btf->type_offs); 741 free(btf); 742 } 743 744 static struct btf *btf_new_empty(struct btf *base_btf) 745 { 746 struct btf *btf; 747 748 btf = calloc(1, sizeof(*btf)); 749 if (!btf) 750 return ERR_PTR(-ENOMEM); 751 752 btf->nr_types = 0; 753 btf->start_id = 1; 754 btf->start_str_off = 0; 755 btf->fd = -1; 756 btf->ptr_sz = sizeof(void *); 757 btf->swapped_endian = false; 758 759 if (base_btf) { 760 btf->base_btf = base_btf; 761 btf->start_id = btf__get_nr_types(base_btf) + 1; 762 btf->start_str_off = base_btf->hdr->str_len; 763 } 764 765 /* +1 for empty string at offset 0 */ 766 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 767 btf->raw_data = calloc(1, btf->raw_size); 768 if (!btf->raw_data) { 769 free(btf); 770 return ERR_PTR(-ENOMEM); 771 } 772 773 btf->hdr = btf->raw_data; 774 btf->hdr->hdr_len = sizeof(struct btf_header); 775 btf->hdr->magic = BTF_MAGIC; 776 btf->hdr->version = BTF_VERSION; 777 778 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 779 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 780 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 781 782 return btf; 783 } 784 785 struct btf *btf__new_empty(void) 786 { 787 return libbpf_ptr(btf_new_empty(NULL)); 788 } 789 790 struct btf *btf__new_empty_split(struct btf *base_btf) 791 { 792 return libbpf_ptr(btf_new_empty(base_btf)); 793 } 794 795 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 796 { 797 struct btf *btf; 798 int err; 799 800 btf = calloc(1, sizeof(struct btf)); 801 if (!btf) 802 return ERR_PTR(-ENOMEM); 803 804 btf->nr_types = 0; 805 btf->start_id = 1; 806 btf->start_str_off = 0; 807 808 if (base_btf) { 809 btf->base_btf = base_btf; 810 btf->start_id = btf__get_nr_types(base_btf) + 1; 811 btf->start_str_off = base_btf->hdr->str_len; 812 } 813 814 btf->raw_data = malloc(size); 815 if (!btf->raw_data) { 816 err = -ENOMEM; 817 goto done; 818 } 819 memcpy(btf->raw_data, data, size); 820 btf->raw_size = size; 821 822 btf->hdr = btf->raw_data; 823 err = btf_parse_hdr(btf); 824 if (err) 825 goto done; 826 827 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 828 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 829 830 err = btf_parse_str_sec(btf); 831 err = err ?: btf_parse_type_sec(btf); 832 if (err) 833 goto done; 834 835 btf->fd = -1; 836 837 done: 838 if (err) { 839 btf__free(btf); 840 return ERR_PTR(err); 841 } 842 843 return btf; 844 } 845 846 struct btf *btf__new(const void *data, __u32 size) 847 { 848 return libbpf_ptr(btf_new(data, size, NULL)); 849 } 850 851 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 852 struct btf_ext **btf_ext) 853 { 854 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 855 int err = 0, fd = -1, idx = 0; 856 struct btf *btf = NULL; 857 Elf_Scn *scn = NULL; 858 Elf *elf = NULL; 859 GElf_Ehdr ehdr; 860 size_t shstrndx; 861 862 if (elf_version(EV_CURRENT) == EV_NONE) { 863 pr_warn("failed to init libelf for %s\n", path); 864 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 865 } 866 867 fd = open(path, O_RDONLY); 868 if (fd < 0) { 869 err = -errno; 870 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 871 return ERR_PTR(err); 872 } 873 874 err = -LIBBPF_ERRNO__FORMAT; 875 876 elf = elf_begin(fd, ELF_C_READ, NULL); 877 if (!elf) { 878 pr_warn("failed to open %s as ELF file\n", path); 879 goto done; 880 } 881 if (!gelf_getehdr(elf, &ehdr)) { 882 pr_warn("failed to get EHDR from %s\n", path); 883 goto done; 884 } 885 886 if (elf_getshdrstrndx(elf, &shstrndx)) { 887 pr_warn("failed to get section names section index for %s\n", 888 path); 889 goto done; 890 } 891 892 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 893 pr_warn("failed to get e_shstrndx from %s\n", path); 894 goto done; 895 } 896 897 while ((scn = elf_nextscn(elf, scn)) != NULL) { 898 GElf_Shdr sh; 899 char *name; 900 901 idx++; 902 if (gelf_getshdr(scn, &sh) != &sh) { 903 pr_warn("failed to get section(%d) header from %s\n", 904 idx, path); 905 goto done; 906 } 907 name = elf_strptr(elf, shstrndx, sh.sh_name); 908 if (!name) { 909 pr_warn("failed to get section(%d) name from %s\n", 910 idx, path); 911 goto done; 912 } 913 if (strcmp(name, BTF_ELF_SEC) == 0) { 914 btf_data = elf_getdata(scn, 0); 915 if (!btf_data) { 916 pr_warn("failed to get section(%d, %s) data from %s\n", 917 idx, name, path); 918 goto done; 919 } 920 continue; 921 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 922 btf_ext_data = elf_getdata(scn, 0); 923 if (!btf_ext_data) { 924 pr_warn("failed to get section(%d, %s) data from %s\n", 925 idx, name, path); 926 goto done; 927 } 928 continue; 929 } 930 } 931 932 err = 0; 933 934 if (!btf_data) { 935 err = -ENOENT; 936 goto done; 937 } 938 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 939 err = libbpf_get_error(btf); 940 if (err) 941 goto done; 942 943 switch (gelf_getclass(elf)) { 944 case ELFCLASS32: 945 btf__set_pointer_size(btf, 4); 946 break; 947 case ELFCLASS64: 948 btf__set_pointer_size(btf, 8); 949 break; 950 default: 951 pr_warn("failed to get ELF class (bitness) for %s\n", path); 952 break; 953 } 954 955 if (btf_ext && btf_ext_data) { 956 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 957 err = libbpf_get_error(*btf_ext); 958 if (err) 959 goto done; 960 } else if (btf_ext) { 961 *btf_ext = NULL; 962 } 963 done: 964 if (elf) 965 elf_end(elf); 966 close(fd); 967 968 if (!err) 969 return btf; 970 971 if (btf_ext) 972 btf_ext__free(*btf_ext); 973 btf__free(btf); 974 975 return ERR_PTR(err); 976 } 977 978 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 979 { 980 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 981 } 982 983 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 984 { 985 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 986 } 987 988 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 989 { 990 struct btf *btf = NULL; 991 void *data = NULL; 992 FILE *f = NULL; 993 __u16 magic; 994 int err = 0; 995 long sz; 996 997 f = fopen(path, "rb"); 998 if (!f) { 999 err = -errno; 1000 goto err_out; 1001 } 1002 1003 /* check BTF magic */ 1004 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1005 err = -EIO; 1006 goto err_out; 1007 } 1008 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1009 /* definitely not a raw BTF */ 1010 err = -EPROTO; 1011 goto err_out; 1012 } 1013 1014 /* get file size */ 1015 if (fseek(f, 0, SEEK_END)) { 1016 err = -errno; 1017 goto err_out; 1018 } 1019 sz = ftell(f); 1020 if (sz < 0) { 1021 err = -errno; 1022 goto err_out; 1023 } 1024 /* rewind to the start */ 1025 if (fseek(f, 0, SEEK_SET)) { 1026 err = -errno; 1027 goto err_out; 1028 } 1029 1030 /* pre-alloc memory and read all of BTF data */ 1031 data = malloc(sz); 1032 if (!data) { 1033 err = -ENOMEM; 1034 goto err_out; 1035 } 1036 if (fread(data, 1, sz, f) < sz) { 1037 err = -EIO; 1038 goto err_out; 1039 } 1040 1041 /* finally parse BTF data */ 1042 btf = btf_new(data, sz, base_btf); 1043 1044 err_out: 1045 free(data); 1046 if (f) 1047 fclose(f); 1048 return err ? ERR_PTR(err) : btf; 1049 } 1050 1051 struct btf *btf__parse_raw(const char *path) 1052 { 1053 return libbpf_ptr(btf_parse_raw(path, NULL)); 1054 } 1055 1056 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1057 { 1058 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1059 } 1060 1061 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1062 { 1063 struct btf *btf; 1064 int err; 1065 1066 if (btf_ext) 1067 *btf_ext = NULL; 1068 1069 btf = btf_parse_raw(path, base_btf); 1070 err = libbpf_get_error(btf); 1071 if (!err) 1072 return btf; 1073 if (err != -EPROTO) 1074 return ERR_PTR(err); 1075 return btf_parse_elf(path, base_btf, btf_ext); 1076 } 1077 1078 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1079 { 1080 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1081 } 1082 1083 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1084 { 1085 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1086 } 1087 1088 static int compare_vsi_off(const void *_a, const void *_b) 1089 { 1090 const struct btf_var_secinfo *a = _a; 1091 const struct btf_var_secinfo *b = _b; 1092 1093 return a->offset - b->offset; 1094 } 1095 1096 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1097 struct btf_type *t) 1098 { 1099 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1100 const char *name = btf__name_by_offset(btf, t->name_off); 1101 const struct btf_type *t_var; 1102 struct btf_var_secinfo *vsi; 1103 const struct btf_var *var; 1104 int ret; 1105 1106 if (!name) { 1107 pr_debug("No name found in string section for DATASEC kind.\n"); 1108 return -ENOENT; 1109 } 1110 1111 /* .extern datasec size and var offsets were set correctly during 1112 * extern collection step, so just skip straight to sorting variables 1113 */ 1114 if (t->size) 1115 goto sort_vars; 1116 1117 ret = bpf_object__section_size(obj, name, &size); 1118 if (ret || !size || (t->size && t->size != size)) { 1119 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1120 return -ENOENT; 1121 } 1122 1123 t->size = size; 1124 1125 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1126 t_var = btf__type_by_id(btf, vsi->type); 1127 var = btf_var(t_var); 1128 1129 if (!btf_is_var(t_var)) { 1130 pr_debug("Non-VAR type seen in section %s\n", name); 1131 return -EINVAL; 1132 } 1133 1134 if (var->linkage == BTF_VAR_STATIC) 1135 continue; 1136 1137 name = btf__name_by_offset(btf, t_var->name_off); 1138 if (!name) { 1139 pr_debug("No name found in string section for VAR kind\n"); 1140 return -ENOENT; 1141 } 1142 1143 ret = bpf_object__variable_offset(obj, name, &off); 1144 if (ret) { 1145 pr_debug("No offset found in symbol table for VAR %s\n", 1146 name); 1147 return -ENOENT; 1148 } 1149 1150 vsi->offset = off; 1151 } 1152 1153 sort_vars: 1154 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1155 return 0; 1156 } 1157 1158 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1159 { 1160 int err = 0; 1161 __u32 i; 1162 1163 for (i = 1; i <= btf->nr_types; i++) { 1164 struct btf_type *t = btf_type_by_id(btf, i); 1165 1166 /* Loader needs to fix up some of the things compiler 1167 * couldn't get its hands on while emitting BTF. This 1168 * is section size and global variable offset. We use 1169 * the info from the ELF itself for this purpose. 1170 */ 1171 if (btf_is_datasec(t)) { 1172 err = btf_fixup_datasec(obj, btf, t); 1173 if (err) 1174 break; 1175 } 1176 } 1177 1178 return libbpf_err(err); 1179 } 1180 1181 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1182 1183 int btf__load(struct btf *btf) 1184 { 1185 __u32 log_buf_size = 0, raw_size; 1186 char *log_buf = NULL; 1187 void *raw_data; 1188 int err = 0; 1189 1190 if (btf->fd >= 0) 1191 return libbpf_err(-EEXIST); 1192 1193 retry_load: 1194 if (log_buf_size) { 1195 log_buf = malloc(log_buf_size); 1196 if (!log_buf) 1197 return libbpf_err(-ENOMEM); 1198 1199 *log_buf = 0; 1200 } 1201 1202 raw_data = btf_get_raw_data(btf, &raw_size, false); 1203 if (!raw_data) { 1204 err = -ENOMEM; 1205 goto done; 1206 } 1207 /* cache native raw data representation */ 1208 btf->raw_size = raw_size; 1209 btf->raw_data = raw_data; 1210 1211 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1212 if (btf->fd < 0) { 1213 if (!log_buf || errno == ENOSPC) { 1214 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1215 log_buf_size << 1); 1216 free(log_buf); 1217 goto retry_load; 1218 } 1219 1220 err = -errno; 1221 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1222 if (*log_buf) 1223 pr_warn("%s\n", log_buf); 1224 goto done; 1225 } 1226 1227 done: 1228 free(log_buf); 1229 return libbpf_err(err); 1230 } 1231 1232 int btf__fd(const struct btf *btf) 1233 { 1234 return btf->fd; 1235 } 1236 1237 void btf__set_fd(struct btf *btf, int fd) 1238 { 1239 btf->fd = fd; 1240 } 1241 1242 static const void *btf_strs_data(const struct btf *btf) 1243 { 1244 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1245 } 1246 1247 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1248 { 1249 struct btf_header *hdr = btf->hdr; 1250 struct btf_type *t; 1251 void *data, *p; 1252 __u32 data_sz; 1253 int i; 1254 1255 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1256 if (data) { 1257 *size = btf->raw_size; 1258 return data; 1259 } 1260 1261 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1262 data = calloc(1, data_sz); 1263 if (!data) 1264 return NULL; 1265 p = data; 1266 1267 memcpy(p, hdr, hdr->hdr_len); 1268 if (swap_endian) 1269 btf_bswap_hdr(p); 1270 p += hdr->hdr_len; 1271 1272 memcpy(p, btf->types_data, hdr->type_len); 1273 if (swap_endian) { 1274 for (i = 0; i < btf->nr_types; i++) { 1275 t = p + btf->type_offs[i]; 1276 /* btf_bswap_type_rest() relies on native t->info, so 1277 * we swap base type info after we swapped all the 1278 * additional information 1279 */ 1280 if (btf_bswap_type_rest(t)) 1281 goto err_out; 1282 btf_bswap_type_base(t); 1283 } 1284 } 1285 p += hdr->type_len; 1286 1287 memcpy(p, btf_strs_data(btf), hdr->str_len); 1288 p += hdr->str_len; 1289 1290 *size = data_sz; 1291 return data; 1292 err_out: 1293 free(data); 1294 return NULL; 1295 } 1296 1297 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1298 { 1299 struct btf *btf = (struct btf *)btf_ro; 1300 __u32 data_sz; 1301 void *data; 1302 1303 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1304 if (!data) 1305 return errno = -ENOMEM, NULL; 1306 1307 btf->raw_size = data_sz; 1308 if (btf->swapped_endian) 1309 btf->raw_data_swapped = data; 1310 else 1311 btf->raw_data = data; 1312 *size = data_sz; 1313 return data; 1314 } 1315 1316 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1317 { 1318 if (offset < btf->start_str_off) 1319 return btf__str_by_offset(btf->base_btf, offset); 1320 else if (offset - btf->start_str_off < btf->hdr->str_len) 1321 return btf_strs_data(btf) + (offset - btf->start_str_off); 1322 else 1323 return errno = EINVAL, NULL; 1324 } 1325 1326 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1327 { 1328 return btf__str_by_offset(btf, offset); 1329 } 1330 1331 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1332 { 1333 struct bpf_btf_info btf_info; 1334 __u32 len = sizeof(btf_info); 1335 __u32 last_size; 1336 struct btf *btf; 1337 void *ptr; 1338 int err; 1339 1340 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1341 * let's start with a sane default - 4KiB here - and resize it only if 1342 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1343 */ 1344 last_size = 4096; 1345 ptr = malloc(last_size); 1346 if (!ptr) 1347 return ERR_PTR(-ENOMEM); 1348 1349 memset(&btf_info, 0, sizeof(btf_info)); 1350 btf_info.btf = ptr_to_u64(ptr); 1351 btf_info.btf_size = last_size; 1352 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1353 1354 if (!err && btf_info.btf_size > last_size) { 1355 void *temp_ptr; 1356 1357 last_size = btf_info.btf_size; 1358 temp_ptr = realloc(ptr, last_size); 1359 if (!temp_ptr) { 1360 btf = ERR_PTR(-ENOMEM); 1361 goto exit_free; 1362 } 1363 ptr = temp_ptr; 1364 1365 len = sizeof(btf_info); 1366 memset(&btf_info, 0, sizeof(btf_info)); 1367 btf_info.btf = ptr_to_u64(ptr); 1368 btf_info.btf_size = last_size; 1369 1370 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1371 } 1372 1373 if (err || btf_info.btf_size > last_size) { 1374 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1375 goto exit_free; 1376 } 1377 1378 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1379 1380 exit_free: 1381 free(ptr); 1382 return btf; 1383 } 1384 1385 int btf__get_from_id(__u32 id, struct btf **btf) 1386 { 1387 struct btf *res; 1388 int err, btf_fd; 1389 1390 *btf = NULL; 1391 btf_fd = bpf_btf_get_fd_by_id(id); 1392 if (btf_fd < 0) 1393 return libbpf_err(-errno); 1394 1395 res = btf_get_from_fd(btf_fd, NULL); 1396 err = libbpf_get_error(res); 1397 1398 close(btf_fd); 1399 1400 if (err) 1401 return libbpf_err(err); 1402 1403 *btf = res; 1404 return 0; 1405 } 1406 1407 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1408 __u32 expected_key_size, __u32 expected_value_size, 1409 __u32 *key_type_id, __u32 *value_type_id) 1410 { 1411 const struct btf_type *container_type; 1412 const struct btf_member *key, *value; 1413 const size_t max_name = 256; 1414 char container_name[max_name]; 1415 __s64 key_size, value_size; 1416 __s32 container_id; 1417 1418 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) { 1419 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1420 map_name, map_name); 1421 return libbpf_err(-EINVAL); 1422 } 1423 1424 container_id = btf__find_by_name(btf, container_name); 1425 if (container_id < 0) { 1426 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1427 map_name, container_name); 1428 return libbpf_err(container_id); 1429 } 1430 1431 container_type = btf__type_by_id(btf, container_id); 1432 if (!container_type) { 1433 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1434 map_name, container_id); 1435 return libbpf_err(-EINVAL); 1436 } 1437 1438 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1439 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1440 map_name, container_name); 1441 return libbpf_err(-EINVAL); 1442 } 1443 1444 key = btf_members(container_type); 1445 value = key + 1; 1446 1447 key_size = btf__resolve_size(btf, key->type); 1448 if (key_size < 0) { 1449 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1450 return libbpf_err(key_size); 1451 } 1452 1453 if (expected_key_size != key_size) { 1454 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1455 map_name, (__u32)key_size, expected_key_size); 1456 return libbpf_err(-EINVAL); 1457 } 1458 1459 value_size = btf__resolve_size(btf, value->type); 1460 if (value_size < 0) { 1461 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1462 return libbpf_err(value_size); 1463 } 1464 1465 if (expected_value_size != value_size) { 1466 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1467 map_name, (__u32)value_size, expected_value_size); 1468 return libbpf_err(-EINVAL); 1469 } 1470 1471 *key_type_id = key->type; 1472 *value_type_id = value->type; 1473 1474 return 0; 1475 } 1476 1477 static void btf_invalidate_raw_data(struct btf *btf) 1478 { 1479 if (btf->raw_data) { 1480 free(btf->raw_data); 1481 btf->raw_data = NULL; 1482 } 1483 if (btf->raw_data_swapped) { 1484 free(btf->raw_data_swapped); 1485 btf->raw_data_swapped = NULL; 1486 } 1487 } 1488 1489 /* Ensure BTF is ready to be modified (by splitting into a three memory 1490 * regions for header, types, and strings). Also invalidate cached 1491 * raw_data, if any. 1492 */ 1493 static int btf_ensure_modifiable(struct btf *btf) 1494 { 1495 void *hdr, *types; 1496 struct strset *set = NULL; 1497 int err = -ENOMEM; 1498 1499 if (btf_is_modifiable(btf)) { 1500 /* any BTF modification invalidates raw_data */ 1501 btf_invalidate_raw_data(btf); 1502 return 0; 1503 } 1504 1505 /* split raw data into three memory regions */ 1506 hdr = malloc(btf->hdr->hdr_len); 1507 types = malloc(btf->hdr->type_len); 1508 if (!hdr || !types) 1509 goto err_out; 1510 1511 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1512 memcpy(types, btf->types_data, btf->hdr->type_len); 1513 1514 /* build lookup index for all strings */ 1515 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1516 if (IS_ERR(set)) { 1517 err = PTR_ERR(set); 1518 goto err_out; 1519 } 1520 1521 /* only when everything was successful, update internal state */ 1522 btf->hdr = hdr; 1523 btf->types_data = types; 1524 btf->types_data_cap = btf->hdr->type_len; 1525 btf->strs_data = NULL; 1526 btf->strs_set = set; 1527 /* if BTF was created from scratch, all strings are guaranteed to be 1528 * unique and deduplicated 1529 */ 1530 if (btf->hdr->str_len == 0) 1531 btf->strs_deduped = true; 1532 if (!btf->base_btf && btf->hdr->str_len == 1) 1533 btf->strs_deduped = true; 1534 1535 /* invalidate raw_data representation */ 1536 btf_invalidate_raw_data(btf); 1537 1538 return 0; 1539 1540 err_out: 1541 strset__free(set); 1542 free(hdr); 1543 free(types); 1544 return err; 1545 } 1546 1547 /* Find an offset in BTF string section that corresponds to a given string *s*. 1548 * Returns: 1549 * - >0 offset into string section, if string is found; 1550 * - -ENOENT, if string is not in the string section; 1551 * - <0, on any other error. 1552 */ 1553 int btf__find_str(struct btf *btf, const char *s) 1554 { 1555 int off; 1556 1557 if (btf->base_btf) { 1558 off = btf__find_str(btf->base_btf, s); 1559 if (off != -ENOENT) 1560 return off; 1561 } 1562 1563 /* BTF needs to be in a modifiable state to build string lookup index */ 1564 if (btf_ensure_modifiable(btf)) 1565 return libbpf_err(-ENOMEM); 1566 1567 off = strset__find_str(btf->strs_set, s); 1568 if (off < 0) 1569 return libbpf_err(off); 1570 1571 return btf->start_str_off + off; 1572 } 1573 1574 /* Add a string s to the BTF string section. 1575 * Returns: 1576 * - > 0 offset into string section, on success; 1577 * - < 0, on error. 1578 */ 1579 int btf__add_str(struct btf *btf, const char *s) 1580 { 1581 int off; 1582 1583 if (btf->base_btf) { 1584 off = btf__find_str(btf->base_btf, s); 1585 if (off != -ENOENT) 1586 return off; 1587 } 1588 1589 if (btf_ensure_modifiable(btf)) 1590 return libbpf_err(-ENOMEM); 1591 1592 off = strset__add_str(btf->strs_set, s); 1593 if (off < 0) 1594 return libbpf_err(off); 1595 1596 btf->hdr->str_len = strset__data_size(btf->strs_set); 1597 1598 return btf->start_str_off + off; 1599 } 1600 1601 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1602 { 1603 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1604 btf->hdr->type_len, UINT_MAX, add_sz); 1605 } 1606 1607 static void btf_type_inc_vlen(struct btf_type *t) 1608 { 1609 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1610 } 1611 1612 static int btf_commit_type(struct btf *btf, int data_sz) 1613 { 1614 int err; 1615 1616 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1617 if (err) 1618 return libbpf_err(err); 1619 1620 btf->hdr->type_len += data_sz; 1621 btf->hdr->str_off += data_sz; 1622 btf->nr_types++; 1623 return btf->start_id + btf->nr_types - 1; 1624 } 1625 1626 struct btf_pipe { 1627 const struct btf *src; 1628 struct btf *dst; 1629 }; 1630 1631 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1632 { 1633 struct btf_pipe *p = ctx; 1634 int off; 1635 1636 if (!*str_off) /* nothing to do for empty strings */ 1637 return 0; 1638 1639 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1640 if (off < 0) 1641 return off; 1642 1643 *str_off = off; 1644 return 0; 1645 } 1646 1647 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1648 { 1649 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1650 struct btf_type *t; 1651 int sz, err; 1652 1653 sz = btf_type_size(src_type); 1654 if (sz < 0) 1655 return libbpf_err(sz); 1656 1657 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1658 if (btf_ensure_modifiable(btf)) 1659 return libbpf_err(-ENOMEM); 1660 1661 t = btf_add_type_mem(btf, sz); 1662 if (!t) 1663 return libbpf_err(-ENOMEM); 1664 1665 memcpy(t, src_type, sz); 1666 1667 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1668 if (err) 1669 return libbpf_err(err); 1670 1671 return btf_commit_type(btf, sz); 1672 } 1673 1674 /* 1675 * Append new BTF_KIND_INT type with: 1676 * - *name* - non-empty, non-NULL type name; 1677 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1678 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1679 * Returns: 1680 * - >0, type ID of newly added BTF type; 1681 * - <0, on error. 1682 */ 1683 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1684 { 1685 struct btf_type *t; 1686 int sz, name_off; 1687 1688 /* non-empty name */ 1689 if (!name || !name[0]) 1690 return libbpf_err(-EINVAL); 1691 /* byte_sz must be power of 2 */ 1692 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1693 return libbpf_err(-EINVAL); 1694 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1695 return libbpf_err(-EINVAL); 1696 1697 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1698 if (btf_ensure_modifiable(btf)) 1699 return libbpf_err(-ENOMEM); 1700 1701 sz = sizeof(struct btf_type) + sizeof(int); 1702 t = btf_add_type_mem(btf, sz); 1703 if (!t) 1704 return libbpf_err(-ENOMEM); 1705 1706 /* if something goes wrong later, we might end up with an extra string, 1707 * but that shouldn't be a problem, because BTF can't be constructed 1708 * completely anyway and will most probably be just discarded 1709 */ 1710 name_off = btf__add_str(btf, name); 1711 if (name_off < 0) 1712 return name_off; 1713 1714 t->name_off = name_off; 1715 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1716 t->size = byte_sz; 1717 /* set INT info, we don't allow setting legacy bit offset/size */ 1718 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1719 1720 return btf_commit_type(btf, sz); 1721 } 1722 1723 /* 1724 * Append new BTF_KIND_FLOAT type with: 1725 * - *name* - non-empty, non-NULL type name; 1726 * - *sz* - size of the type, in bytes; 1727 * Returns: 1728 * - >0, type ID of newly added BTF type; 1729 * - <0, on error. 1730 */ 1731 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1732 { 1733 struct btf_type *t; 1734 int sz, name_off; 1735 1736 /* non-empty name */ 1737 if (!name || !name[0]) 1738 return libbpf_err(-EINVAL); 1739 1740 /* byte_sz must be one of the explicitly allowed values */ 1741 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1742 byte_sz != 16) 1743 return libbpf_err(-EINVAL); 1744 1745 if (btf_ensure_modifiable(btf)) 1746 return libbpf_err(-ENOMEM); 1747 1748 sz = sizeof(struct btf_type); 1749 t = btf_add_type_mem(btf, sz); 1750 if (!t) 1751 return libbpf_err(-ENOMEM); 1752 1753 name_off = btf__add_str(btf, name); 1754 if (name_off < 0) 1755 return name_off; 1756 1757 t->name_off = name_off; 1758 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1759 t->size = byte_sz; 1760 1761 return btf_commit_type(btf, sz); 1762 } 1763 1764 /* it's completely legal to append BTF types with type IDs pointing forward to 1765 * types that haven't been appended yet, so we only make sure that id looks 1766 * sane, we can't guarantee that ID will always be valid 1767 */ 1768 static int validate_type_id(int id) 1769 { 1770 if (id < 0 || id > BTF_MAX_NR_TYPES) 1771 return -EINVAL; 1772 return 0; 1773 } 1774 1775 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1776 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1777 { 1778 struct btf_type *t; 1779 int sz, name_off = 0; 1780 1781 if (validate_type_id(ref_type_id)) 1782 return libbpf_err(-EINVAL); 1783 1784 if (btf_ensure_modifiable(btf)) 1785 return libbpf_err(-ENOMEM); 1786 1787 sz = sizeof(struct btf_type); 1788 t = btf_add_type_mem(btf, sz); 1789 if (!t) 1790 return libbpf_err(-ENOMEM); 1791 1792 if (name && name[0]) { 1793 name_off = btf__add_str(btf, name); 1794 if (name_off < 0) 1795 return name_off; 1796 } 1797 1798 t->name_off = name_off; 1799 t->info = btf_type_info(kind, 0, 0); 1800 t->type = ref_type_id; 1801 1802 return btf_commit_type(btf, sz); 1803 } 1804 1805 /* 1806 * Append new BTF_KIND_PTR type with: 1807 * - *ref_type_id* - referenced type ID, it might not exist yet; 1808 * Returns: 1809 * - >0, type ID of newly added BTF type; 1810 * - <0, on error. 1811 */ 1812 int btf__add_ptr(struct btf *btf, int ref_type_id) 1813 { 1814 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1815 } 1816 1817 /* 1818 * Append new BTF_KIND_ARRAY type with: 1819 * - *index_type_id* - type ID of the type describing array index; 1820 * - *elem_type_id* - type ID of the type describing array element; 1821 * - *nr_elems* - the size of the array; 1822 * Returns: 1823 * - >0, type ID of newly added BTF type; 1824 * - <0, on error. 1825 */ 1826 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1827 { 1828 struct btf_type *t; 1829 struct btf_array *a; 1830 int sz; 1831 1832 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1833 return libbpf_err(-EINVAL); 1834 1835 if (btf_ensure_modifiable(btf)) 1836 return libbpf_err(-ENOMEM); 1837 1838 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1839 t = btf_add_type_mem(btf, sz); 1840 if (!t) 1841 return libbpf_err(-ENOMEM); 1842 1843 t->name_off = 0; 1844 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1845 t->size = 0; 1846 1847 a = btf_array(t); 1848 a->type = elem_type_id; 1849 a->index_type = index_type_id; 1850 a->nelems = nr_elems; 1851 1852 return btf_commit_type(btf, sz); 1853 } 1854 1855 /* generic STRUCT/UNION append function */ 1856 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1857 { 1858 struct btf_type *t; 1859 int sz, name_off = 0; 1860 1861 if (btf_ensure_modifiable(btf)) 1862 return libbpf_err(-ENOMEM); 1863 1864 sz = sizeof(struct btf_type); 1865 t = btf_add_type_mem(btf, sz); 1866 if (!t) 1867 return libbpf_err(-ENOMEM); 1868 1869 if (name && name[0]) { 1870 name_off = btf__add_str(btf, name); 1871 if (name_off < 0) 1872 return name_off; 1873 } 1874 1875 /* start out with vlen=0 and no kflag; this will be adjusted when 1876 * adding each member 1877 */ 1878 t->name_off = name_off; 1879 t->info = btf_type_info(kind, 0, 0); 1880 t->size = bytes_sz; 1881 1882 return btf_commit_type(btf, sz); 1883 } 1884 1885 /* 1886 * Append new BTF_KIND_STRUCT type with: 1887 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1888 * - *byte_sz* - size of the struct, in bytes; 1889 * 1890 * Struct initially has no fields in it. Fields can be added by 1891 * btf__add_field() right after btf__add_struct() succeeds. 1892 * 1893 * Returns: 1894 * - >0, type ID of newly added BTF type; 1895 * - <0, on error. 1896 */ 1897 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1898 { 1899 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1900 } 1901 1902 /* 1903 * Append new BTF_KIND_UNION type with: 1904 * - *name* - name of the union, can be NULL or empty for anonymous union; 1905 * - *byte_sz* - size of the union, in bytes; 1906 * 1907 * Union initially has no fields in it. Fields can be added by 1908 * btf__add_field() right after btf__add_union() succeeds. All fields 1909 * should have *bit_offset* of 0. 1910 * 1911 * Returns: 1912 * - >0, type ID of newly added BTF type; 1913 * - <0, on error. 1914 */ 1915 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1916 { 1917 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1918 } 1919 1920 static struct btf_type *btf_last_type(struct btf *btf) 1921 { 1922 return btf_type_by_id(btf, btf__get_nr_types(btf)); 1923 } 1924 1925 /* 1926 * Append new field for the current STRUCT/UNION type with: 1927 * - *name* - name of the field, can be NULL or empty for anonymous field; 1928 * - *type_id* - type ID for the type describing field type; 1929 * - *bit_offset* - bit offset of the start of the field within struct/union; 1930 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1931 * Returns: 1932 * - 0, on success; 1933 * - <0, on error. 1934 */ 1935 int btf__add_field(struct btf *btf, const char *name, int type_id, 1936 __u32 bit_offset, __u32 bit_size) 1937 { 1938 struct btf_type *t; 1939 struct btf_member *m; 1940 bool is_bitfield; 1941 int sz, name_off = 0; 1942 1943 /* last type should be union/struct */ 1944 if (btf->nr_types == 0) 1945 return libbpf_err(-EINVAL); 1946 t = btf_last_type(btf); 1947 if (!btf_is_composite(t)) 1948 return libbpf_err(-EINVAL); 1949 1950 if (validate_type_id(type_id)) 1951 return libbpf_err(-EINVAL); 1952 /* best-effort bit field offset/size enforcement */ 1953 is_bitfield = bit_size || (bit_offset % 8 != 0); 1954 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1955 return libbpf_err(-EINVAL); 1956 1957 /* only offset 0 is allowed for unions */ 1958 if (btf_is_union(t) && bit_offset) 1959 return libbpf_err(-EINVAL); 1960 1961 /* decompose and invalidate raw data */ 1962 if (btf_ensure_modifiable(btf)) 1963 return libbpf_err(-ENOMEM); 1964 1965 sz = sizeof(struct btf_member); 1966 m = btf_add_type_mem(btf, sz); 1967 if (!m) 1968 return libbpf_err(-ENOMEM); 1969 1970 if (name && name[0]) { 1971 name_off = btf__add_str(btf, name); 1972 if (name_off < 0) 1973 return name_off; 1974 } 1975 1976 m->name_off = name_off; 1977 m->type = type_id; 1978 m->offset = bit_offset | (bit_size << 24); 1979 1980 /* btf_add_type_mem can invalidate t pointer */ 1981 t = btf_last_type(btf); 1982 /* update parent type's vlen and kflag */ 1983 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 1984 1985 btf->hdr->type_len += sz; 1986 btf->hdr->str_off += sz; 1987 return 0; 1988 } 1989 1990 /* 1991 * Append new BTF_KIND_ENUM type with: 1992 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 1993 * - *byte_sz* - size of the enum, in bytes. 1994 * 1995 * Enum initially has no enum values in it (and corresponds to enum forward 1996 * declaration). Enumerator values can be added by btf__add_enum_value() 1997 * immediately after btf__add_enum() succeeds. 1998 * 1999 * Returns: 2000 * - >0, type ID of newly added BTF type; 2001 * - <0, on error. 2002 */ 2003 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2004 { 2005 struct btf_type *t; 2006 int sz, name_off = 0; 2007 2008 /* byte_sz must be power of 2 */ 2009 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2010 return libbpf_err(-EINVAL); 2011 2012 if (btf_ensure_modifiable(btf)) 2013 return libbpf_err(-ENOMEM); 2014 2015 sz = sizeof(struct btf_type); 2016 t = btf_add_type_mem(btf, sz); 2017 if (!t) 2018 return libbpf_err(-ENOMEM); 2019 2020 if (name && name[0]) { 2021 name_off = btf__add_str(btf, name); 2022 if (name_off < 0) 2023 return name_off; 2024 } 2025 2026 /* start out with vlen=0; it will be adjusted when adding enum values */ 2027 t->name_off = name_off; 2028 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2029 t->size = byte_sz; 2030 2031 return btf_commit_type(btf, sz); 2032 } 2033 2034 /* 2035 * Append new enum value for the current ENUM type with: 2036 * - *name* - name of the enumerator value, can't be NULL or empty; 2037 * - *value* - integer value corresponding to enum value *name*; 2038 * Returns: 2039 * - 0, on success; 2040 * - <0, on error. 2041 */ 2042 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2043 { 2044 struct btf_type *t; 2045 struct btf_enum *v; 2046 int sz, name_off; 2047 2048 /* last type should be BTF_KIND_ENUM */ 2049 if (btf->nr_types == 0) 2050 return libbpf_err(-EINVAL); 2051 t = btf_last_type(btf); 2052 if (!btf_is_enum(t)) 2053 return libbpf_err(-EINVAL); 2054 2055 /* non-empty name */ 2056 if (!name || !name[0]) 2057 return libbpf_err(-EINVAL); 2058 if (value < INT_MIN || value > UINT_MAX) 2059 return libbpf_err(-E2BIG); 2060 2061 /* decompose and invalidate raw data */ 2062 if (btf_ensure_modifiable(btf)) 2063 return libbpf_err(-ENOMEM); 2064 2065 sz = sizeof(struct btf_enum); 2066 v = btf_add_type_mem(btf, sz); 2067 if (!v) 2068 return libbpf_err(-ENOMEM); 2069 2070 name_off = btf__add_str(btf, name); 2071 if (name_off < 0) 2072 return name_off; 2073 2074 v->name_off = name_off; 2075 v->val = value; 2076 2077 /* update parent type's vlen */ 2078 t = btf_last_type(btf); 2079 btf_type_inc_vlen(t); 2080 2081 btf->hdr->type_len += sz; 2082 btf->hdr->str_off += sz; 2083 return 0; 2084 } 2085 2086 /* 2087 * Append new BTF_KIND_FWD type with: 2088 * - *name*, non-empty/non-NULL name; 2089 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2090 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2091 * Returns: 2092 * - >0, type ID of newly added BTF type; 2093 * - <0, on error. 2094 */ 2095 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2096 { 2097 if (!name || !name[0]) 2098 return libbpf_err(-EINVAL); 2099 2100 switch (fwd_kind) { 2101 case BTF_FWD_STRUCT: 2102 case BTF_FWD_UNION: { 2103 struct btf_type *t; 2104 int id; 2105 2106 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2107 if (id <= 0) 2108 return id; 2109 t = btf_type_by_id(btf, id); 2110 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2111 return id; 2112 } 2113 case BTF_FWD_ENUM: 2114 /* enum forward in BTF currently is just an enum with no enum 2115 * values; we also assume a standard 4-byte size for it 2116 */ 2117 return btf__add_enum(btf, name, sizeof(int)); 2118 default: 2119 return libbpf_err(-EINVAL); 2120 } 2121 } 2122 2123 /* 2124 * Append new BTF_KING_TYPEDEF type with: 2125 * - *name*, non-empty/non-NULL name; 2126 * - *ref_type_id* - referenced type ID, it might not exist yet; 2127 * Returns: 2128 * - >0, type ID of newly added BTF type; 2129 * - <0, on error. 2130 */ 2131 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2132 { 2133 if (!name || !name[0]) 2134 return libbpf_err(-EINVAL); 2135 2136 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2137 } 2138 2139 /* 2140 * Append new BTF_KIND_VOLATILE type with: 2141 * - *ref_type_id* - referenced type ID, it might not exist yet; 2142 * Returns: 2143 * - >0, type ID of newly added BTF type; 2144 * - <0, on error. 2145 */ 2146 int btf__add_volatile(struct btf *btf, int ref_type_id) 2147 { 2148 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2149 } 2150 2151 /* 2152 * Append new BTF_KIND_CONST type with: 2153 * - *ref_type_id* - referenced type ID, it might not exist yet; 2154 * Returns: 2155 * - >0, type ID of newly added BTF type; 2156 * - <0, on error. 2157 */ 2158 int btf__add_const(struct btf *btf, int ref_type_id) 2159 { 2160 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2161 } 2162 2163 /* 2164 * Append new BTF_KIND_RESTRICT type with: 2165 * - *ref_type_id* - referenced type ID, it might not exist yet; 2166 * Returns: 2167 * - >0, type ID of newly added BTF type; 2168 * - <0, on error. 2169 */ 2170 int btf__add_restrict(struct btf *btf, int ref_type_id) 2171 { 2172 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2173 } 2174 2175 /* 2176 * Append new BTF_KIND_FUNC type with: 2177 * - *name*, non-empty/non-NULL name; 2178 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2179 * Returns: 2180 * - >0, type ID of newly added BTF type; 2181 * - <0, on error. 2182 */ 2183 int btf__add_func(struct btf *btf, const char *name, 2184 enum btf_func_linkage linkage, int proto_type_id) 2185 { 2186 int id; 2187 2188 if (!name || !name[0]) 2189 return libbpf_err(-EINVAL); 2190 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2191 linkage != BTF_FUNC_EXTERN) 2192 return libbpf_err(-EINVAL); 2193 2194 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2195 if (id > 0) { 2196 struct btf_type *t = btf_type_by_id(btf, id); 2197 2198 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2199 } 2200 return libbpf_err(id); 2201 } 2202 2203 /* 2204 * Append new BTF_KIND_FUNC_PROTO with: 2205 * - *ret_type_id* - type ID for return result of a function. 2206 * 2207 * Function prototype initially has no arguments, but they can be added by 2208 * btf__add_func_param() one by one, immediately after 2209 * btf__add_func_proto() succeeded. 2210 * 2211 * Returns: 2212 * - >0, type ID of newly added BTF type; 2213 * - <0, on error. 2214 */ 2215 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2216 { 2217 struct btf_type *t; 2218 int sz; 2219 2220 if (validate_type_id(ret_type_id)) 2221 return libbpf_err(-EINVAL); 2222 2223 if (btf_ensure_modifiable(btf)) 2224 return libbpf_err(-ENOMEM); 2225 2226 sz = sizeof(struct btf_type); 2227 t = btf_add_type_mem(btf, sz); 2228 if (!t) 2229 return libbpf_err(-ENOMEM); 2230 2231 /* start out with vlen=0; this will be adjusted when adding enum 2232 * values, if necessary 2233 */ 2234 t->name_off = 0; 2235 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2236 t->type = ret_type_id; 2237 2238 return btf_commit_type(btf, sz); 2239 } 2240 2241 /* 2242 * Append new function parameter for current FUNC_PROTO type with: 2243 * - *name* - parameter name, can be NULL or empty; 2244 * - *type_id* - type ID describing the type of the parameter. 2245 * Returns: 2246 * - 0, on success; 2247 * - <0, on error. 2248 */ 2249 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2250 { 2251 struct btf_type *t; 2252 struct btf_param *p; 2253 int sz, name_off = 0; 2254 2255 if (validate_type_id(type_id)) 2256 return libbpf_err(-EINVAL); 2257 2258 /* last type should be BTF_KIND_FUNC_PROTO */ 2259 if (btf->nr_types == 0) 2260 return libbpf_err(-EINVAL); 2261 t = btf_last_type(btf); 2262 if (!btf_is_func_proto(t)) 2263 return libbpf_err(-EINVAL); 2264 2265 /* decompose and invalidate raw data */ 2266 if (btf_ensure_modifiable(btf)) 2267 return libbpf_err(-ENOMEM); 2268 2269 sz = sizeof(struct btf_param); 2270 p = btf_add_type_mem(btf, sz); 2271 if (!p) 2272 return libbpf_err(-ENOMEM); 2273 2274 if (name && name[0]) { 2275 name_off = btf__add_str(btf, name); 2276 if (name_off < 0) 2277 return name_off; 2278 } 2279 2280 p->name_off = name_off; 2281 p->type = type_id; 2282 2283 /* update parent type's vlen */ 2284 t = btf_last_type(btf); 2285 btf_type_inc_vlen(t); 2286 2287 btf->hdr->type_len += sz; 2288 btf->hdr->str_off += sz; 2289 return 0; 2290 } 2291 2292 /* 2293 * Append new BTF_KIND_VAR type with: 2294 * - *name* - non-empty/non-NULL name; 2295 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2296 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2297 * - *type_id* - type ID of the type describing the type of the variable. 2298 * Returns: 2299 * - >0, type ID of newly added BTF type; 2300 * - <0, on error. 2301 */ 2302 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2303 { 2304 struct btf_type *t; 2305 struct btf_var *v; 2306 int sz, name_off; 2307 2308 /* non-empty name */ 2309 if (!name || !name[0]) 2310 return libbpf_err(-EINVAL); 2311 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2312 linkage != BTF_VAR_GLOBAL_EXTERN) 2313 return libbpf_err(-EINVAL); 2314 if (validate_type_id(type_id)) 2315 return libbpf_err(-EINVAL); 2316 2317 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2318 if (btf_ensure_modifiable(btf)) 2319 return libbpf_err(-ENOMEM); 2320 2321 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2322 t = btf_add_type_mem(btf, sz); 2323 if (!t) 2324 return libbpf_err(-ENOMEM); 2325 2326 name_off = btf__add_str(btf, name); 2327 if (name_off < 0) 2328 return name_off; 2329 2330 t->name_off = name_off; 2331 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2332 t->type = type_id; 2333 2334 v = btf_var(t); 2335 v->linkage = linkage; 2336 2337 return btf_commit_type(btf, sz); 2338 } 2339 2340 /* 2341 * Append new BTF_KIND_DATASEC type with: 2342 * - *name* - non-empty/non-NULL name; 2343 * - *byte_sz* - data section size, in bytes. 2344 * 2345 * Data section is initially empty. Variables info can be added with 2346 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2347 * 2348 * Returns: 2349 * - >0, type ID of newly added BTF type; 2350 * - <0, on error. 2351 */ 2352 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2353 { 2354 struct btf_type *t; 2355 int sz, name_off; 2356 2357 /* non-empty name */ 2358 if (!name || !name[0]) 2359 return libbpf_err(-EINVAL); 2360 2361 if (btf_ensure_modifiable(btf)) 2362 return libbpf_err(-ENOMEM); 2363 2364 sz = sizeof(struct btf_type); 2365 t = btf_add_type_mem(btf, sz); 2366 if (!t) 2367 return libbpf_err(-ENOMEM); 2368 2369 name_off = btf__add_str(btf, name); 2370 if (name_off < 0) 2371 return name_off; 2372 2373 /* start with vlen=0, which will be update as var_secinfos are added */ 2374 t->name_off = name_off; 2375 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2376 t->size = byte_sz; 2377 2378 return btf_commit_type(btf, sz); 2379 } 2380 2381 /* 2382 * Append new data section variable information entry for current DATASEC type: 2383 * - *var_type_id* - type ID, describing type of the variable; 2384 * - *offset* - variable offset within data section, in bytes; 2385 * - *byte_sz* - variable size, in bytes. 2386 * 2387 * Returns: 2388 * - 0, on success; 2389 * - <0, on error. 2390 */ 2391 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2392 { 2393 struct btf_type *t; 2394 struct btf_var_secinfo *v; 2395 int sz; 2396 2397 /* last type should be BTF_KIND_DATASEC */ 2398 if (btf->nr_types == 0) 2399 return libbpf_err(-EINVAL); 2400 t = btf_last_type(btf); 2401 if (!btf_is_datasec(t)) 2402 return libbpf_err(-EINVAL); 2403 2404 if (validate_type_id(var_type_id)) 2405 return libbpf_err(-EINVAL); 2406 2407 /* decompose and invalidate raw data */ 2408 if (btf_ensure_modifiable(btf)) 2409 return libbpf_err(-ENOMEM); 2410 2411 sz = sizeof(struct btf_var_secinfo); 2412 v = btf_add_type_mem(btf, sz); 2413 if (!v) 2414 return libbpf_err(-ENOMEM); 2415 2416 v->type = var_type_id; 2417 v->offset = offset; 2418 v->size = byte_sz; 2419 2420 /* update parent type's vlen */ 2421 t = btf_last_type(btf); 2422 btf_type_inc_vlen(t); 2423 2424 btf->hdr->type_len += sz; 2425 btf->hdr->str_off += sz; 2426 return 0; 2427 } 2428 2429 struct btf_ext_sec_setup_param { 2430 __u32 off; 2431 __u32 len; 2432 __u32 min_rec_size; 2433 struct btf_ext_info *ext_info; 2434 const char *desc; 2435 }; 2436 2437 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2438 struct btf_ext_sec_setup_param *ext_sec) 2439 { 2440 const struct btf_ext_info_sec *sinfo; 2441 struct btf_ext_info *ext_info; 2442 __u32 info_left, record_size; 2443 /* The start of the info sec (including the __u32 record_size). */ 2444 void *info; 2445 2446 if (ext_sec->len == 0) 2447 return 0; 2448 2449 if (ext_sec->off & 0x03) { 2450 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2451 ext_sec->desc); 2452 return -EINVAL; 2453 } 2454 2455 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2456 info_left = ext_sec->len; 2457 2458 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2459 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2460 ext_sec->desc, ext_sec->off, ext_sec->len); 2461 return -EINVAL; 2462 } 2463 2464 /* At least a record size */ 2465 if (info_left < sizeof(__u32)) { 2466 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2467 return -EINVAL; 2468 } 2469 2470 /* The record size needs to meet the minimum standard */ 2471 record_size = *(__u32 *)info; 2472 if (record_size < ext_sec->min_rec_size || 2473 record_size & 0x03) { 2474 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2475 ext_sec->desc, record_size); 2476 return -EINVAL; 2477 } 2478 2479 sinfo = info + sizeof(__u32); 2480 info_left -= sizeof(__u32); 2481 2482 /* If no records, return failure now so .BTF.ext won't be used. */ 2483 if (!info_left) { 2484 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2485 return -EINVAL; 2486 } 2487 2488 while (info_left) { 2489 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2490 __u64 total_record_size; 2491 __u32 num_records; 2492 2493 if (info_left < sec_hdrlen) { 2494 pr_debug("%s section header is not found in .BTF.ext\n", 2495 ext_sec->desc); 2496 return -EINVAL; 2497 } 2498 2499 num_records = sinfo->num_info; 2500 if (num_records == 0) { 2501 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2502 ext_sec->desc); 2503 return -EINVAL; 2504 } 2505 2506 total_record_size = sec_hdrlen + 2507 (__u64)num_records * record_size; 2508 if (info_left < total_record_size) { 2509 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2510 ext_sec->desc); 2511 return -EINVAL; 2512 } 2513 2514 info_left -= total_record_size; 2515 sinfo = (void *)sinfo + total_record_size; 2516 } 2517 2518 ext_info = ext_sec->ext_info; 2519 ext_info->len = ext_sec->len - sizeof(__u32); 2520 ext_info->rec_size = record_size; 2521 ext_info->info = info + sizeof(__u32); 2522 2523 return 0; 2524 } 2525 2526 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2527 { 2528 struct btf_ext_sec_setup_param param = { 2529 .off = btf_ext->hdr->func_info_off, 2530 .len = btf_ext->hdr->func_info_len, 2531 .min_rec_size = sizeof(struct bpf_func_info_min), 2532 .ext_info = &btf_ext->func_info, 2533 .desc = "func_info" 2534 }; 2535 2536 return btf_ext_setup_info(btf_ext, ¶m); 2537 } 2538 2539 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2540 { 2541 struct btf_ext_sec_setup_param param = { 2542 .off = btf_ext->hdr->line_info_off, 2543 .len = btf_ext->hdr->line_info_len, 2544 .min_rec_size = sizeof(struct bpf_line_info_min), 2545 .ext_info = &btf_ext->line_info, 2546 .desc = "line_info", 2547 }; 2548 2549 return btf_ext_setup_info(btf_ext, ¶m); 2550 } 2551 2552 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2553 { 2554 struct btf_ext_sec_setup_param param = { 2555 .off = btf_ext->hdr->core_relo_off, 2556 .len = btf_ext->hdr->core_relo_len, 2557 .min_rec_size = sizeof(struct bpf_core_relo), 2558 .ext_info = &btf_ext->core_relo_info, 2559 .desc = "core_relo", 2560 }; 2561 2562 return btf_ext_setup_info(btf_ext, ¶m); 2563 } 2564 2565 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2566 { 2567 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2568 2569 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2570 data_size < hdr->hdr_len) { 2571 pr_debug("BTF.ext header not found"); 2572 return -EINVAL; 2573 } 2574 2575 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2576 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2577 return -ENOTSUP; 2578 } else if (hdr->magic != BTF_MAGIC) { 2579 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2580 return -EINVAL; 2581 } 2582 2583 if (hdr->version != BTF_VERSION) { 2584 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2585 return -ENOTSUP; 2586 } 2587 2588 if (hdr->flags) { 2589 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2590 return -ENOTSUP; 2591 } 2592 2593 if (data_size == hdr->hdr_len) { 2594 pr_debug("BTF.ext has no data\n"); 2595 return -EINVAL; 2596 } 2597 2598 return 0; 2599 } 2600 2601 void btf_ext__free(struct btf_ext *btf_ext) 2602 { 2603 if (IS_ERR_OR_NULL(btf_ext)) 2604 return; 2605 free(btf_ext->data); 2606 free(btf_ext); 2607 } 2608 2609 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2610 { 2611 struct btf_ext *btf_ext; 2612 int err; 2613 2614 err = btf_ext_parse_hdr(data, size); 2615 if (err) 2616 return libbpf_err_ptr(err); 2617 2618 btf_ext = calloc(1, sizeof(struct btf_ext)); 2619 if (!btf_ext) 2620 return libbpf_err_ptr(-ENOMEM); 2621 2622 btf_ext->data_size = size; 2623 btf_ext->data = malloc(size); 2624 if (!btf_ext->data) { 2625 err = -ENOMEM; 2626 goto done; 2627 } 2628 memcpy(btf_ext->data, data, size); 2629 2630 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2631 err = -EINVAL; 2632 goto done; 2633 } 2634 2635 err = btf_ext_setup_func_info(btf_ext); 2636 if (err) 2637 goto done; 2638 2639 err = btf_ext_setup_line_info(btf_ext); 2640 if (err) 2641 goto done; 2642 2643 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) { 2644 err = -EINVAL; 2645 goto done; 2646 } 2647 2648 err = btf_ext_setup_core_relos(btf_ext); 2649 if (err) 2650 goto done; 2651 2652 done: 2653 if (err) { 2654 btf_ext__free(btf_ext); 2655 return libbpf_err_ptr(err); 2656 } 2657 2658 return btf_ext; 2659 } 2660 2661 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2662 { 2663 *size = btf_ext->data_size; 2664 return btf_ext->data; 2665 } 2666 2667 static int btf_ext_reloc_info(const struct btf *btf, 2668 const struct btf_ext_info *ext_info, 2669 const char *sec_name, __u32 insns_cnt, 2670 void **info, __u32 *cnt) 2671 { 2672 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2673 __u32 i, record_size, existing_len, records_len; 2674 struct btf_ext_info_sec *sinfo; 2675 const char *info_sec_name; 2676 __u64 remain_len; 2677 void *data; 2678 2679 record_size = ext_info->rec_size; 2680 sinfo = ext_info->info; 2681 remain_len = ext_info->len; 2682 while (remain_len > 0) { 2683 records_len = sinfo->num_info * record_size; 2684 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2685 if (strcmp(info_sec_name, sec_name)) { 2686 remain_len -= sec_hdrlen + records_len; 2687 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2688 continue; 2689 } 2690 2691 existing_len = (*cnt) * record_size; 2692 data = realloc(*info, existing_len + records_len); 2693 if (!data) 2694 return libbpf_err(-ENOMEM); 2695 2696 memcpy(data + existing_len, sinfo->data, records_len); 2697 /* adjust insn_off only, the rest data will be passed 2698 * to the kernel. 2699 */ 2700 for (i = 0; i < sinfo->num_info; i++) { 2701 __u32 *insn_off; 2702 2703 insn_off = data + existing_len + (i * record_size); 2704 *insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt; 2705 } 2706 *info = data; 2707 *cnt += sinfo->num_info; 2708 return 0; 2709 } 2710 2711 return libbpf_err(-ENOENT); 2712 } 2713 2714 int btf_ext__reloc_func_info(const struct btf *btf, 2715 const struct btf_ext *btf_ext, 2716 const char *sec_name, __u32 insns_cnt, 2717 void **func_info, __u32 *cnt) 2718 { 2719 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2720 insns_cnt, func_info, cnt); 2721 } 2722 2723 int btf_ext__reloc_line_info(const struct btf *btf, 2724 const struct btf_ext *btf_ext, 2725 const char *sec_name, __u32 insns_cnt, 2726 void **line_info, __u32 *cnt) 2727 { 2728 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2729 insns_cnt, line_info, cnt); 2730 } 2731 2732 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2733 { 2734 return btf_ext->func_info.rec_size; 2735 } 2736 2737 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2738 { 2739 return btf_ext->line_info.rec_size; 2740 } 2741 2742 struct btf_dedup; 2743 2744 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2745 const struct btf_dedup_opts *opts); 2746 static void btf_dedup_free(struct btf_dedup *d); 2747 static int btf_dedup_prep(struct btf_dedup *d); 2748 static int btf_dedup_strings(struct btf_dedup *d); 2749 static int btf_dedup_prim_types(struct btf_dedup *d); 2750 static int btf_dedup_struct_types(struct btf_dedup *d); 2751 static int btf_dedup_ref_types(struct btf_dedup *d); 2752 static int btf_dedup_compact_types(struct btf_dedup *d); 2753 static int btf_dedup_remap_types(struct btf_dedup *d); 2754 2755 /* 2756 * Deduplicate BTF types and strings. 2757 * 2758 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2759 * section with all BTF type descriptors and string data. It overwrites that 2760 * memory in-place with deduplicated types and strings without any loss of 2761 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2762 * is provided, all the strings referenced from .BTF.ext section are honored 2763 * and updated to point to the right offsets after deduplication. 2764 * 2765 * If function returns with error, type/string data might be garbled and should 2766 * be discarded. 2767 * 2768 * More verbose and detailed description of both problem btf_dedup is solving, 2769 * as well as solution could be found at: 2770 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2771 * 2772 * Problem description and justification 2773 * ===================================== 2774 * 2775 * BTF type information is typically emitted either as a result of conversion 2776 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2777 * unit contains information about a subset of all the types that are used 2778 * in an application. These subsets are frequently overlapping and contain a lot 2779 * of duplicated information when later concatenated together into a single 2780 * binary. This algorithm ensures that each unique type is represented by single 2781 * BTF type descriptor, greatly reducing resulting size of BTF data. 2782 * 2783 * Compilation unit isolation and subsequent duplication of data is not the only 2784 * problem. The same type hierarchy (e.g., struct and all the type that struct 2785 * references) in different compilation units can be represented in BTF to 2786 * various degrees of completeness (or, rather, incompleteness) due to 2787 * struct/union forward declarations. 2788 * 2789 * Let's take a look at an example, that we'll use to better understand the 2790 * problem (and solution). Suppose we have two compilation units, each using 2791 * same `struct S`, but each of them having incomplete type information about 2792 * struct's fields: 2793 * 2794 * // CU #1: 2795 * struct S; 2796 * struct A { 2797 * int a; 2798 * struct A* self; 2799 * struct S* parent; 2800 * }; 2801 * struct B; 2802 * struct S { 2803 * struct A* a_ptr; 2804 * struct B* b_ptr; 2805 * }; 2806 * 2807 * // CU #2: 2808 * struct S; 2809 * struct A; 2810 * struct B { 2811 * int b; 2812 * struct B* self; 2813 * struct S* parent; 2814 * }; 2815 * struct S { 2816 * struct A* a_ptr; 2817 * struct B* b_ptr; 2818 * }; 2819 * 2820 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2821 * more), but will know the complete type information about `struct A`. While 2822 * for CU #2, it will know full type information about `struct B`, but will 2823 * only know about forward declaration of `struct A` (in BTF terms, it will 2824 * have `BTF_KIND_FWD` type descriptor with name `B`). 2825 * 2826 * This compilation unit isolation means that it's possible that there is no 2827 * single CU with complete type information describing structs `S`, `A`, and 2828 * `B`. Also, we might get tons of duplicated and redundant type information. 2829 * 2830 * Additional complication we need to keep in mind comes from the fact that 2831 * types, in general, can form graphs containing cycles, not just DAGs. 2832 * 2833 * While algorithm does deduplication, it also merges and resolves type 2834 * information (unless disabled throught `struct btf_opts`), whenever possible. 2835 * E.g., in the example above with two compilation units having partial type 2836 * information for structs `A` and `B`, the output of algorithm will emit 2837 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2838 * (as well as type information for `int` and pointers), as if they were defined 2839 * in a single compilation unit as: 2840 * 2841 * struct A { 2842 * int a; 2843 * struct A* self; 2844 * struct S* parent; 2845 * }; 2846 * struct B { 2847 * int b; 2848 * struct B* self; 2849 * struct S* parent; 2850 * }; 2851 * struct S { 2852 * struct A* a_ptr; 2853 * struct B* b_ptr; 2854 * }; 2855 * 2856 * Algorithm summary 2857 * ================= 2858 * 2859 * Algorithm completes its work in 6 separate passes: 2860 * 2861 * 1. Strings deduplication. 2862 * 2. Primitive types deduplication (int, enum, fwd). 2863 * 3. Struct/union types deduplication. 2864 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2865 * protos, and const/volatile/restrict modifiers). 2866 * 5. Types compaction. 2867 * 6. Types remapping. 2868 * 2869 * Algorithm determines canonical type descriptor, which is a single 2870 * representative type for each truly unique type. This canonical type is the 2871 * one that will go into final deduplicated BTF type information. For 2872 * struct/unions, it is also the type that algorithm will merge additional type 2873 * information into (while resolving FWDs), as it discovers it from data in 2874 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2875 * that type is canonical, or to some other type, if that type is equivalent 2876 * and was chosen as canonical representative. This mapping is stored in 2877 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2878 * FWD type got resolved to. 2879 * 2880 * To facilitate fast discovery of canonical types, we also maintain canonical 2881 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2882 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2883 * that match that signature. With sufficiently good choice of type signature 2884 * hashing function, we can limit number of canonical types for each unique type 2885 * signature to a very small number, allowing to find canonical type for any 2886 * duplicated type very quickly. 2887 * 2888 * Struct/union deduplication is the most critical part and algorithm for 2889 * deduplicating structs/unions is described in greater details in comments for 2890 * `btf_dedup_is_equiv` function. 2891 */ 2892 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2893 const struct btf_dedup_opts *opts) 2894 { 2895 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2896 int err; 2897 2898 if (IS_ERR(d)) { 2899 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2900 return libbpf_err(-EINVAL); 2901 } 2902 2903 if (btf_ensure_modifiable(btf)) 2904 return libbpf_err(-ENOMEM); 2905 2906 err = btf_dedup_prep(d); 2907 if (err) { 2908 pr_debug("btf_dedup_prep failed:%d\n", err); 2909 goto done; 2910 } 2911 err = btf_dedup_strings(d); 2912 if (err < 0) { 2913 pr_debug("btf_dedup_strings failed:%d\n", err); 2914 goto done; 2915 } 2916 err = btf_dedup_prim_types(d); 2917 if (err < 0) { 2918 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2919 goto done; 2920 } 2921 err = btf_dedup_struct_types(d); 2922 if (err < 0) { 2923 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2924 goto done; 2925 } 2926 err = btf_dedup_ref_types(d); 2927 if (err < 0) { 2928 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2929 goto done; 2930 } 2931 err = btf_dedup_compact_types(d); 2932 if (err < 0) { 2933 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2934 goto done; 2935 } 2936 err = btf_dedup_remap_types(d); 2937 if (err < 0) { 2938 pr_debug("btf_dedup_remap_types failed:%d\n", err); 2939 goto done; 2940 } 2941 2942 done: 2943 btf_dedup_free(d); 2944 return libbpf_err(err); 2945 } 2946 2947 #define BTF_UNPROCESSED_ID ((__u32)-1) 2948 #define BTF_IN_PROGRESS_ID ((__u32)-2) 2949 2950 struct btf_dedup { 2951 /* .BTF section to be deduped in-place */ 2952 struct btf *btf; 2953 /* 2954 * Optional .BTF.ext section. When provided, any strings referenced 2955 * from it will be taken into account when deduping strings 2956 */ 2957 struct btf_ext *btf_ext; 2958 /* 2959 * This is a map from any type's signature hash to a list of possible 2960 * canonical representative type candidates. Hash collisions are 2961 * ignored, so even types of various kinds can share same list of 2962 * candidates, which is fine because we rely on subsequent 2963 * btf_xxx_equal() checks to authoritatively verify type equality. 2964 */ 2965 struct hashmap *dedup_table; 2966 /* Canonical types map */ 2967 __u32 *map; 2968 /* Hypothetical mapping, used during type graph equivalence checks */ 2969 __u32 *hypot_map; 2970 __u32 *hypot_list; 2971 size_t hypot_cnt; 2972 size_t hypot_cap; 2973 /* Whether hypothetical mapping, if successful, would need to adjust 2974 * already canonicalized types (due to a new forward declaration to 2975 * concrete type resolution). In such case, during split BTF dedup 2976 * candidate type would still be considered as different, because base 2977 * BTF is considered to be immutable. 2978 */ 2979 bool hypot_adjust_canon; 2980 /* Various option modifying behavior of algorithm */ 2981 struct btf_dedup_opts opts; 2982 /* temporary strings deduplication state */ 2983 struct strset *strs_set; 2984 }; 2985 2986 static long hash_combine(long h, long value) 2987 { 2988 return h * 31 + value; 2989 } 2990 2991 #define for_each_dedup_cand(d, node, hash) \ 2992 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 2993 2994 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 2995 { 2996 return hashmap__append(d->dedup_table, 2997 (void *)hash, (void *)(long)type_id); 2998 } 2999 3000 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3001 __u32 from_id, __u32 to_id) 3002 { 3003 if (d->hypot_cnt == d->hypot_cap) { 3004 __u32 *new_list; 3005 3006 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3007 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3008 if (!new_list) 3009 return -ENOMEM; 3010 d->hypot_list = new_list; 3011 } 3012 d->hypot_list[d->hypot_cnt++] = from_id; 3013 d->hypot_map[from_id] = to_id; 3014 return 0; 3015 } 3016 3017 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3018 { 3019 int i; 3020 3021 for (i = 0; i < d->hypot_cnt; i++) 3022 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3023 d->hypot_cnt = 0; 3024 d->hypot_adjust_canon = false; 3025 } 3026 3027 static void btf_dedup_free(struct btf_dedup *d) 3028 { 3029 hashmap__free(d->dedup_table); 3030 d->dedup_table = NULL; 3031 3032 free(d->map); 3033 d->map = NULL; 3034 3035 free(d->hypot_map); 3036 d->hypot_map = NULL; 3037 3038 free(d->hypot_list); 3039 d->hypot_list = NULL; 3040 3041 free(d); 3042 } 3043 3044 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3045 { 3046 return (size_t)key; 3047 } 3048 3049 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3050 { 3051 return 0; 3052 } 3053 3054 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3055 { 3056 return k1 == k2; 3057 } 3058 3059 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3060 const struct btf_dedup_opts *opts) 3061 { 3062 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3063 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3064 int i, err = 0, type_cnt; 3065 3066 if (!d) 3067 return ERR_PTR(-ENOMEM); 3068 3069 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3070 /* dedup_table_size is now used only to force collisions in tests */ 3071 if (opts && opts->dedup_table_size == 1) 3072 hash_fn = btf_dedup_collision_hash_fn; 3073 3074 d->btf = btf; 3075 d->btf_ext = btf_ext; 3076 3077 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3078 if (IS_ERR(d->dedup_table)) { 3079 err = PTR_ERR(d->dedup_table); 3080 d->dedup_table = NULL; 3081 goto done; 3082 } 3083 3084 type_cnt = btf__get_nr_types(btf) + 1; 3085 d->map = malloc(sizeof(__u32) * type_cnt); 3086 if (!d->map) { 3087 err = -ENOMEM; 3088 goto done; 3089 } 3090 /* special BTF "void" type is made canonical immediately */ 3091 d->map[0] = 0; 3092 for (i = 1; i < type_cnt; i++) { 3093 struct btf_type *t = btf_type_by_id(d->btf, i); 3094 3095 /* VAR and DATASEC are never deduped and are self-canonical */ 3096 if (btf_is_var(t) || btf_is_datasec(t)) 3097 d->map[i] = i; 3098 else 3099 d->map[i] = BTF_UNPROCESSED_ID; 3100 } 3101 3102 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3103 if (!d->hypot_map) { 3104 err = -ENOMEM; 3105 goto done; 3106 } 3107 for (i = 0; i < type_cnt; i++) 3108 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3109 3110 done: 3111 if (err) { 3112 btf_dedup_free(d); 3113 return ERR_PTR(err); 3114 } 3115 3116 return d; 3117 } 3118 3119 /* 3120 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3121 * string and pass pointer to it to a provided callback `fn`. 3122 */ 3123 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3124 { 3125 int i, r; 3126 3127 for (i = 0; i < d->btf->nr_types; i++) { 3128 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3129 3130 r = btf_type_visit_str_offs(t, fn, ctx); 3131 if (r) 3132 return r; 3133 } 3134 3135 if (!d->btf_ext) 3136 return 0; 3137 3138 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3139 if (r) 3140 return r; 3141 3142 return 0; 3143 } 3144 3145 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3146 { 3147 struct btf_dedup *d = ctx; 3148 __u32 str_off = *str_off_ptr; 3149 const char *s; 3150 int off, err; 3151 3152 /* don't touch empty string or string in main BTF */ 3153 if (str_off == 0 || str_off < d->btf->start_str_off) 3154 return 0; 3155 3156 s = btf__str_by_offset(d->btf, str_off); 3157 if (d->btf->base_btf) { 3158 err = btf__find_str(d->btf->base_btf, s); 3159 if (err >= 0) { 3160 *str_off_ptr = err; 3161 return 0; 3162 } 3163 if (err != -ENOENT) 3164 return err; 3165 } 3166 3167 off = strset__add_str(d->strs_set, s); 3168 if (off < 0) 3169 return off; 3170 3171 *str_off_ptr = d->btf->start_str_off + off; 3172 return 0; 3173 } 3174 3175 /* 3176 * Dedup string and filter out those that are not referenced from either .BTF 3177 * or .BTF.ext (if provided) sections. 3178 * 3179 * This is done by building index of all strings in BTF's string section, 3180 * then iterating over all entities that can reference strings (e.g., type 3181 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3182 * strings as used. After that all used strings are deduped and compacted into 3183 * sequential blob of memory and new offsets are calculated. Then all the string 3184 * references are iterated again and rewritten using new offsets. 3185 */ 3186 static int btf_dedup_strings(struct btf_dedup *d) 3187 { 3188 int err; 3189 3190 if (d->btf->strs_deduped) 3191 return 0; 3192 3193 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3194 if (IS_ERR(d->strs_set)) { 3195 err = PTR_ERR(d->strs_set); 3196 goto err_out; 3197 } 3198 3199 if (!d->btf->base_btf) { 3200 /* insert empty string; we won't be looking it up during strings 3201 * dedup, but it's good to have it for generic BTF string lookups 3202 */ 3203 err = strset__add_str(d->strs_set, ""); 3204 if (err < 0) 3205 goto err_out; 3206 } 3207 3208 /* remap string offsets */ 3209 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3210 if (err) 3211 goto err_out; 3212 3213 /* replace BTF string data and hash with deduped ones */ 3214 strset__free(d->btf->strs_set); 3215 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3216 d->btf->strs_set = d->strs_set; 3217 d->strs_set = NULL; 3218 d->btf->strs_deduped = true; 3219 return 0; 3220 3221 err_out: 3222 strset__free(d->strs_set); 3223 d->strs_set = NULL; 3224 3225 return err; 3226 } 3227 3228 static long btf_hash_common(struct btf_type *t) 3229 { 3230 long h; 3231 3232 h = hash_combine(0, t->name_off); 3233 h = hash_combine(h, t->info); 3234 h = hash_combine(h, t->size); 3235 return h; 3236 } 3237 3238 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3239 { 3240 return t1->name_off == t2->name_off && 3241 t1->info == t2->info && 3242 t1->size == t2->size; 3243 } 3244 3245 /* Calculate type signature hash of INT. */ 3246 static long btf_hash_int(struct btf_type *t) 3247 { 3248 __u32 info = *(__u32 *)(t + 1); 3249 long h; 3250 3251 h = btf_hash_common(t); 3252 h = hash_combine(h, info); 3253 return h; 3254 } 3255 3256 /* Check structural equality of two INTs. */ 3257 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 3258 { 3259 __u32 info1, info2; 3260 3261 if (!btf_equal_common(t1, t2)) 3262 return false; 3263 info1 = *(__u32 *)(t1 + 1); 3264 info2 = *(__u32 *)(t2 + 1); 3265 return info1 == info2; 3266 } 3267 3268 /* Calculate type signature hash of ENUM. */ 3269 static long btf_hash_enum(struct btf_type *t) 3270 { 3271 long h; 3272 3273 /* don't hash vlen and enum members to support enum fwd resolving */ 3274 h = hash_combine(0, t->name_off); 3275 h = hash_combine(h, t->info & ~0xffff); 3276 h = hash_combine(h, t->size); 3277 return h; 3278 } 3279 3280 /* Check structural equality of two ENUMs. */ 3281 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3282 { 3283 const struct btf_enum *m1, *m2; 3284 __u16 vlen; 3285 int i; 3286 3287 if (!btf_equal_common(t1, t2)) 3288 return false; 3289 3290 vlen = btf_vlen(t1); 3291 m1 = btf_enum(t1); 3292 m2 = btf_enum(t2); 3293 for (i = 0; i < vlen; i++) { 3294 if (m1->name_off != m2->name_off || m1->val != m2->val) 3295 return false; 3296 m1++; 3297 m2++; 3298 } 3299 return true; 3300 } 3301 3302 static inline bool btf_is_enum_fwd(struct btf_type *t) 3303 { 3304 return btf_is_enum(t) && btf_vlen(t) == 0; 3305 } 3306 3307 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3308 { 3309 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3310 return btf_equal_enum(t1, t2); 3311 /* ignore vlen when comparing */ 3312 return t1->name_off == t2->name_off && 3313 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3314 t1->size == t2->size; 3315 } 3316 3317 /* 3318 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3319 * as referenced type IDs equivalence is established separately during type 3320 * graph equivalence check algorithm. 3321 */ 3322 static long btf_hash_struct(struct btf_type *t) 3323 { 3324 const struct btf_member *member = btf_members(t); 3325 __u32 vlen = btf_vlen(t); 3326 long h = btf_hash_common(t); 3327 int i; 3328 3329 for (i = 0; i < vlen; i++) { 3330 h = hash_combine(h, member->name_off); 3331 h = hash_combine(h, member->offset); 3332 /* no hashing of referenced type ID, it can be unresolved yet */ 3333 member++; 3334 } 3335 return h; 3336 } 3337 3338 /* 3339 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3340 * IDs. This check is performed during type graph equivalence check and 3341 * referenced types equivalence is checked separately. 3342 */ 3343 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3344 { 3345 const struct btf_member *m1, *m2; 3346 __u16 vlen; 3347 int i; 3348 3349 if (!btf_equal_common(t1, t2)) 3350 return false; 3351 3352 vlen = btf_vlen(t1); 3353 m1 = btf_members(t1); 3354 m2 = btf_members(t2); 3355 for (i = 0; i < vlen; i++) { 3356 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3357 return false; 3358 m1++; 3359 m2++; 3360 } 3361 return true; 3362 } 3363 3364 /* 3365 * Calculate type signature hash of ARRAY, including referenced type IDs, 3366 * under assumption that they were already resolved to canonical type IDs and 3367 * are not going to change. 3368 */ 3369 static long btf_hash_array(struct btf_type *t) 3370 { 3371 const struct btf_array *info = btf_array(t); 3372 long h = btf_hash_common(t); 3373 3374 h = hash_combine(h, info->type); 3375 h = hash_combine(h, info->index_type); 3376 h = hash_combine(h, info->nelems); 3377 return h; 3378 } 3379 3380 /* 3381 * Check exact equality of two ARRAYs, taking into account referenced 3382 * type IDs, under assumption that they were already resolved to canonical 3383 * type IDs and are not going to change. 3384 * This function is called during reference types deduplication to compare 3385 * ARRAY to potential canonical representative. 3386 */ 3387 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3388 { 3389 const struct btf_array *info1, *info2; 3390 3391 if (!btf_equal_common(t1, t2)) 3392 return false; 3393 3394 info1 = btf_array(t1); 3395 info2 = btf_array(t2); 3396 return info1->type == info2->type && 3397 info1->index_type == info2->index_type && 3398 info1->nelems == info2->nelems; 3399 } 3400 3401 /* 3402 * Check structural compatibility of two ARRAYs, ignoring referenced type 3403 * IDs. This check is performed during type graph equivalence check and 3404 * referenced types equivalence is checked separately. 3405 */ 3406 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3407 { 3408 if (!btf_equal_common(t1, t2)) 3409 return false; 3410 3411 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3412 } 3413 3414 /* 3415 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3416 * under assumption that they were already resolved to canonical type IDs and 3417 * are not going to change. 3418 */ 3419 static long btf_hash_fnproto(struct btf_type *t) 3420 { 3421 const struct btf_param *member = btf_params(t); 3422 __u16 vlen = btf_vlen(t); 3423 long h = btf_hash_common(t); 3424 int i; 3425 3426 for (i = 0; i < vlen; i++) { 3427 h = hash_combine(h, member->name_off); 3428 h = hash_combine(h, member->type); 3429 member++; 3430 } 3431 return h; 3432 } 3433 3434 /* 3435 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3436 * type IDs, under assumption that they were already resolved to canonical 3437 * type IDs and are not going to change. 3438 * This function is called during reference types deduplication to compare 3439 * FUNC_PROTO to potential canonical representative. 3440 */ 3441 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3442 { 3443 const struct btf_param *m1, *m2; 3444 __u16 vlen; 3445 int i; 3446 3447 if (!btf_equal_common(t1, t2)) 3448 return false; 3449 3450 vlen = btf_vlen(t1); 3451 m1 = btf_params(t1); 3452 m2 = btf_params(t2); 3453 for (i = 0; i < vlen; i++) { 3454 if (m1->name_off != m2->name_off || m1->type != m2->type) 3455 return false; 3456 m1++; 3457 m2++; 3458 } 3459 return true; 3460 } 3461 3462 /* 3463 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3464 * IDs. This check is performed during type graph equivalence check and 3465 * referenced types equivalence is checked separately. 3466 */ 3467 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3468 { 3469 const struct btf_param *m1, *m2; 3470 __u16 vlen; 3471 int i; 3472 3473 /* skip return type ID */ 3474 if (t1->name_off != t2->name_off || t1->info != t2->info) 3475 return false; 3476 3477 vlen = btf_vlen(t1); 3478 m1 = btf_params(t1); 3479 m2 = btf_params(t2); 3480 for (i = 0; i < vlen; i++) { 3481 if (m1->name_off != m2->name_off) 3482 return false; 3483 m1++; 3484 m2++; 3485 } 3486 return true; 3487 } 3488 3489 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3490 * types and initializing the rest of the state (canonical type mapping) for 3491 * the fixed base BTF part. 3492 */ 3493 static int btf_dedup_prep(struct btf_dedup *d) 3494 { 3495 struct btf_type *t; 3496 int type_id; 3497 long h; 3498 3499 if (!d->btf->base_btf) 3500 return 0; 3501 3502 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3503 t = btf_type_by_id(d->btf, type_id); 3504 3505 /* all base BTF types are self-canonical by definition */ 3506 d->map[type_id] = type_id; 3507 3508 switch (btf_kind(t)) { 3509 case BTF_KIND_VAR: 3510 case BTF_KIND_DATASEC: 3511 /* VAR and DATASEC are never hash/deduplicated */ 3512 continue; 3513 case BTF_KIND_CONST: 3514 case BTF_KIND_VOLATILE: 3515 case BTF_KIND_RESTRICT: 3516 case BTF_KIND_PTR: 3517 case BTF_KIND_FWD: 3518 case BTF_KIND_TYPEDEF: 3519 case BTF_KIND_FUNC: 3520 case BTF_KIND_FLOAT: 3521 h = btf_hash_common(t); 3522 break; 3523 case BTF_KIND_INT: 3524 h = btf_hash_int(t); 3525 break; 3526 case BTF_KIND_ENUM: 3527 h = btf_hash_enum(t); 3528 break; 3529 case BTF_KIND_STRUCT: 3530 case BTF_KIND_UNION: 3531 h = btf_hash_struct(t); 3532 break; 3533 case BTF_KIND_ARRAY: 3534 h = btf_hash_array(t); 3535 break; 3536 case BTF_KIND_FUNC_PROTO: 3537 h = btf_hash_fnproto(t); 3538 break; 3539 default: 3540 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3541 return -EINVAL; 3542 } 3543 if (btf_dedup_table_add(d, h, type_id)) 3544 return -ENOMEM; 3545 } 3546 3547 return 0; 3548 } 3549 3550 /* 3551 * Deduplicate primitive types, that can't reference other types, by calculating 3552 * their type signature hash and comparing them with any possible canonical 3553 * candidate. If no canonical candidate matches, type itself is marked as 3554 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3555 */ 3556 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3557 { 3558 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3559 struct hashmap_entry *hash_entry; 3560 struct btf_type *cand; 3561 /* if we don't find equivalent type, then we are canonical */ 3562 __u32 new_id = type_id; 3563 __u32 cand_id; 3564 long h; 3565 3566 switch (btf_kind(t)) { 3567 case BTF_KIND_CONST: 3568 case BTF_KIND_VOLATILE: 3569 case BTF_KIND_RESTRICT: 3570 case BTF_KIND_PTR: 3571 case BTF_KIND_TYPEDEF: 3572 case BTF_KIND_ARRAY: 3573 case BTF_KIND_STRUCT: 3574 case BTF_KIND_UNION: 3575 case BTF_KIND_FUNC: 3576 case BTF_KIND_FUNC_PROTO: 3577 case BTF_KIND_VAR: 3578 case BTF_KIND_DATASEC: 3579 return 0; 3580 3581 case BTF_KIND_INT: 3582 h = btf_hash_int(t); 3583 for_each_dedup_cand(d, hash_entry, h) { 3584 cand_id = (__u32)(long)hash_entry->value; 3585 cand = btf_type_by_id(d->btf, cand_id); 3586 if (btf_equal_int(t, cand)) { 3587 new_id = cand_id; 3588 break; 3589 } 3590 } 3591 break; 3592 3593 case BTF_KIND_ENUM: 3594 h = btf_hash_enum(t); 3595 for_each_dedup_cand(d, hash_entry, h) { 3596 cand_id = (__u32)(long)hash_entry->value; 3597 cand = btf_type_by_id(d->btf, cand_id); 3598 if (btf_equal_enum(t, cand)) { 3599 new_id = cand_id; 3600 break; 3601 } 3602 if (d->opts.dont_resolve_fwds) 3603 continue; 3604 if (btf_compat_enum(t, cand)) { 3605 if (btf_is_enum_fwd(t)) { 3606 /* resolve fwd to full enum */ 3607 new_id = cand_id; 3608 break; 3609 } 3610 /* resolve canonical enum fwd to full enum */ 3611 d->map[cand_id] = type_id; 3612 } 3613 } 3614 break; 3615 3616 case BTF_KIND_FWD: 3617 case BTF_KIND_FLOAT: 3618 h = btf_hash_common(t); 3619 for_each_dedup_cand(d, hash_entry, h) { 3620 cand_id = (__u32)(long)hash_entry->value; 3621 cand = btf_type_by_id(d->btf, cand_id); 3622 if (btf_equal_common(t, cand)) { 3623 new_id = cand_id; 3624 break; 3625 } 3626 } 3627 break; 3628 3629 default: 3630 return -EINVAL; 3631 } 3632 3633 d->map[type_id] = new_id; 3634 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3635 return -ENOMEM; 3636 3637 return 0; 3638 } 3639 3640 static int btf_dedup_prim_types(struct btf_dedup *d) 3641 { 3642 int i, err; 3643 3644 for (i = 0; i < d->btf->nr_types; i++) { 3645 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3646 if (err) 3647 return err; 3648 } 3649 return 0; 3650 } 3651 3652 /* 3653 * Check whether type is already mapped into canonical one (could be to itself). 3654 */ 3655 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3656 { 3657 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3658 } 3659 3660 /* 3661 * Resolve type ID into its canonical type ID, if any; otherwise return original 3662 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3663 * STRUCT/UNION link and resolve it into canonical type ID as well. 3664 */ 3665 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3666 { 3667 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3668 type_id = d->map[type_id]; 3669 return type_id; 3670 } 3671 3672 /* 3673 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3674 * type ID. 3675 */ 3676 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3677 { 3678 __u32 orig_type_id = type_id; 3679 3680 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3681 return type_id; 3682 3683 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3684 type_id = d->map[type_id]; 3685 3686 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3687 return type_id; 3688 3689 return orig_type_id; 3690 } 3691 3692 3693 static inline __u16 btf_fwd_kind(struct btf_type *t) 3694 { 3695 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3696 } 3697 3698 /* Check if given two types are identical ARRAY definitions */ 3699 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3700 { 3701 struct btf_type *t1, *t2; 3702 3703 t1 = btf_type_by_id(d->btf, id1); 3704 t2 = btf_type_by_id(d->btf, id2); 3705 if (!btf_is_array(t1) || !btf_is_array(t2)) 3706 return 0; 3707 3708 return btf_equal_array(t1, t2); 3709 } 3710 3711 /* 3712 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3713 * call it "candidate graph" in this description for brevity) to a type graph 3714 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3715 * here, though keep in mind that not all types in canonical graph are 3716 * necessarily canonical representatives themselves, some of them might be 3717 * duplicates or its uniqueness might not have been established yet). 3718 * Returns: 3719 * - >0, if type graphs are equivalent; 3720 * - 0, if not equivalent; 3721 * - <0, on error. 3722 * 3723 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3724 * equivalence of BTF types at each step. If at any point BTF types in candidate 3725 * and canonical graphs are not compatible structurally, whole graphs are 3726 * incompatible. If types are structurally equivalent (i.e., all information 3727 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3728 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3729 * If a type references other types, then those referenced types are checked 3730 * for equivalence recursively. 3731 * 3732 * During DFS traversal, if we find that for current `canon_id` type we 3733 * already have some mapping in hypothetical map, we check for two possible 3734 * situations: 3735 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3736 * happen when type graphs have cycles. In this case we assume those two 3737 * types are equivalent. 3738 * - `canon_id` is mapped to different type. This is contradiction in our 3739 * hypothetical mapping, because same graph in canonical graph corresponds 3740 * to two different types in candidate graph, which for equivalent type 3741 * graphs shouldn't happen. This condition terminates equivalence check 3742 * with negative result. 3743 * 3744 * If type graphs traversal exhausts types to check and find no contradiction, 3745 * then type graphs are equivalent. 3746 * 3747 * When checking types for equivalence, there is one special case: FWD types. 3748 * If FWD type resolution is allowed and one of the types (either from canonical 3749 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3750 * flag) and their names match, hypothetical mapping is updated to point from 3751 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3752 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3753 * 3754 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3755 * if there are two exactly named (or anonymous) structs/unions that are 3756 * compatible structurally, one of which has FWD field, while other is concrete 3757 * STRUCT/UNION, but according to C sources they are different structs/unions 3758 * that are referencing different types with the same name. This is extremely 3759 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3760 * this logic is causing problems. 3761 * 3762 * Doing FWD resolution means that both candidate and/or canonical graphs can 3763 * consists of portions of the graph that come from multiple compilation units. 3764 * This is due to the fact that types within single compilation unit are always 3765 * deduplicated and FWDs are already resolved, if referenced struct/union 3766 * definiton is available. So, if we had unresolved FWD and found corresponding 3767 * STRUCT/UNION, they will be from different compilation units. This 3768 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3769 * type graph will likely have at least two different BTF types that describe 3770 * same type (e.g., most probably there will be two different BTF types for the 3771 * same 'int' primitive type) and could even have "overlapping" parts of type 3772 * graph that describe same subset of types. 3773 * 3774 * This in turn means that our assumption that each type in canonical graph 3775 * must correspond to exactly one type in candidate graph might not hold 3776 * anymore and will make it harder to detect contradictions using hypothetical 3777 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3778 * resolution only in canonical graph. FWDs in candidate graphs are never 3779 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3780 * that can occur: 3781 * - Both types in canonical and candidate graphs are FWDs. If they are 3782 * structurally equivalent, then they can either be both resolved to the 3783 * same STRUCT/UNION or not resolved at all. In both cases they are 3784 * equivalent and there is no need to resolve FWD on candidate side. 3785 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3786 * so nothing to resolve as well, algorithm will check equivalence anyway. 3787 * - Type in canonical graph is FWD, while type in candidate is concrete 3788 * STRUCT/UNION. In this case candidate graph comes from single compilation 3789 * unit, so there is exactly one BTF type for each unique C type. After 3790 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3791 * in canonical graph mapping to single BTF type in candidate graph, but 3792 * because hypothetical mapping maps from canonical to candidate types, it's 3793 * alright, and we still maintain the property of having single `canon_id` 3794 * mapping to single `cand_id` (there could be two different `canon_id` 3795 * mapped to the same `cand_id`, but it's not contradictory). 3796 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3797 * graph is FWD. In this case we are just going to check compatibility of 3798 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3799 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3800 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3801 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3802 * canonical graph. 3803 */ 3804 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3805 __u32 canon_id) 3806 { 3807 struct btf_type *cand_type; 3808 struct btf_type *canon_type; 3809 __u32 hypot_type_id; 3810 __u16 cand_kind; 3811 __u16 canon_kind; 3812 int i, eq; 3813 3814 /* if both resolve to the same canonical, they must be equivalent */ 3815 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3816 return 1; 3817 3818 canon_id = resolve_fwd_id(d, canon_id); 3819 3820 hypot_type_id = d->hypot_map[canon_id]; 3821 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3822 /* In some cases compiler will generate different DWARF types 3823 * for *identical* array type definitions and use them for 3824 * different fields within the *same* struct. This breaks type 3825 * equivalence check, which makes an assumption that candidate 3826 * types sub-graph has a consistent and deduped-by-compiler 3827 * types within a single CU. So work around that by explicitly 3828 * allowing identical array types here. 3829 */ 3830 return hypot_type_id == cand_id || 3831 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3832 } 3833 3834 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3835 return -ENOMEM; 3836 3837 cand_type = btf_type_by_id(d->btf, cand_id); 3838 canon_type = btf_type_by_id(d->btf, canon_id); 3839 cand_kind = btf_kind(cand_type); 3840 canon_kind = btf_kind(canon_type); 3841 3842 if (cand_type->name_off != canon_type->name_off) 3843 return 0; 3844 3845 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3846 if (!d->opts.dont_resolve_fwds 3847 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3848 && cand_kind != canon_kind) { 3849 __u16 real_kind; 3850 __u16 fwd_kind; 3851 3852 if (cand_kind == BTF_KIND_FWD) { 3853 real_kind = canon_kind; 3854 fwd_kind = btf_fwd_kind(cand_type); 3855 } else { 3856 real_kind = cand_kind; 3857 fwd_kind = btf_fwd_kind(canon_type); 3858 /* we'd need to resolve base FWD to STRUCT/UNION */ 3859 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3860 d->hypot_adjust_canon = true; 3861 } 3862 return fwd_kind == real_kind; 3863 } 3864 3865 if (cand_kind != canon_kind) 3866 return 0; 3867 3868 switch (cand_kind) { 3869 case BTF_KIND_INT: 3870 return btf_equal_int(cand_type, canon_type); 3871 3872 case BTF_KIND_ENUM: 3873 if (d->opts.dont_resolve_fwds) 3874 return btf_equal_enum(cand_type, canon_type); 3875 else 3876 return btf_compat_enum(cand_type, canon_type); 3877 3878 case BTF_KIND_FWD: 3879 case BTF_KIND_FLOAT: 3880 return btf_equal_common(cand_type, canon_type); 3881 3882 case BTF_KIND_CONST: 3883 case BTF_KIND_VOLATILE: 3884 case BTF_KIND_RESTRICT: 3885 case BTF_KIND_PTR: 3886 case BTF_KIND_TYPEDEF: 3887 case BTF_KIND_FUNC: 3888 if (cand_type->info != canon_type->info) 3889 return 0; 3890 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3891 3892 case BTF_KIND_ARRAY: { 3893 const struct btf_array *cand_arr, *canon_arr; 3894 3895 if (!btf_compat_array(cand_type, canon_type)) 3896 return 0; 3897 cand_arr = btf_array(cand_type); 3898 canon_arr = btf_array(canon_type); 3899 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 3900 if (eq <= 0) 3901 return eq; 3902 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 3903 } 3904 3905 case BTF_KIND_STRUCT: 3906 case BTF_KIND_UNION: { 3907 const struct btf_member *cand_m, *canon_m; 3908 __u16 vlen; 3909 3910 if (!btf_shallow_equal_struct(cand_type, canon_type)) 3911 return 0; 3912 vlen = btf_vlen(cand_type); 3913 cand_m = btf_members(cand_type); 3914 canon_m = btf_members(canon_type); 3915 for (i = 0; i < vlen; i++) { 3916 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 3917 if (eq <= 0) 3918 return eq; 3919 cand_m++; 3920 canon_m++; 3921 } 3922 3923 return 1; 3924 } 3925 3926 case BTF_KIND_FUNC_PROTO: { 3927 const struct btf_param *cand_p, *canon_p; 3928 __u16 vlen; 3929 3930 if (!btf_compat_fnproto(cand_type, canon_type)) 3931 return 0; 3932 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3933 if (eq <= 0) 3934 return eq; 3935 vlen = btf_vlen(cand_type); 3936 cand_p = btf_params(cand_type); 3937 canon_p = btf_params(canon_type); 3938 for (i = 0; i < vlen; i++) { 3939 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 3940 if (eq <= 0) 3941 return eq; 3942 cand_p++; 3943 canon_p++; 3944 } 3945 return 1; 3946 } 3947 3948 default: 3949 return -EINVAL; 3950 } 3951 return 0; 3952 } 3953 3954 /* 3955 * Use hypothetical mapping, produced by successful type graph equivalence 3956 * check, to augment existing struct/union canonical mapping, where possible. 3957 * 3958 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 3959 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 3960 * it doesn't matter if FWD type was part of canonical graph or candidate one, 3961 * we are recording the mapping anyway. As opposed to carefulness required 3962 * for struct/union correspondence mapping (described below), for FWD resolution 3963 * it's not important, as by the time that FWD type (reference type) will be 3964 * deduplicated all structs/unions will be deduped already anyway. 3965 * 3966 * Recording STRUCT/UNION mapping is purely a performance optimization and is 3967 * not required for correctness. It needs to be done carefully to ensure that 3968 * struct/union from candidate's type graph is not mapped into corresponding 3969 * struct/union from canonical type graph that itself hasn't been resolved into 3970 * canonical representative. The only guarantee we have is that canonical 3971 * struct/union was determined as canonical and that won't change. But any 3972 * types referenced through that struct/union fields could have been not yet 3973 * resolved, so in case like that it's too early to establish any kind of 3974 * correspondence between structs/unions. 3975 * 3976 * No canonical correspondence is derived for primitive types (they are already 3977 * deduplicated completely already anyway) or reference types (they rely on 3978 * stability of struct/union canonical relationship for equivalence checks). 3979 */ 3980 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 3981 { 3982 __u32 canon_type_id, targ_type_id; 3983 __u16 t_kind, c_kind; 3984 __u32 t_id, c_id; 3985 int i; 3986 3987 for (i = 0; i < d->hypot_cnt; i++) { 3988 canon_type_id = d->hypot_list[i]; 3989 targ_type_id = d->hypot_map[canon_type_id]; 3990 t_id = resolve_type_id(d, targ_type_id); 3991 c_id = resolve_type_id(d, canon_type_id); 3992 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 3993 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 3994 /* 3995 * Resolve FWD into STRUCT/UNION. 3996 * It's ok to resolve FWD into STRUCT/UNION that's not yet 3997 * mapped to canonical representative (as opposed to 3998 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 3999 * eventually that struct is going to be mapped and all resolved 4000 * FWDs will automatically resolve to correct canonical 4001 * representative. This will happen before ref type deduping, 4002 * which critically depends on stability of these mapping. This 4003 * stability is not a requirement for STRUCT/UNION equivalence 4004 * checks, though. 4005 */ 4006 4007 /* if it's the split BTF case, we still need to point base FWD 4008 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4009 * will be resolved against base FWD. If we don't point base 4010 * canonical FWD to the resolved STRUCT/UNION, then all the 4011 * FWDs in split BTF won't be correctly resolved to a proper 4012 * STRUCT/UNION. 4013 */ 4014 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4015 d->map[c_id] = t_id; 4016 4017 /* if graph equivalence determined that we'd need to adjust 4018 * base canonical types, then we need to only point base FWDs 4019 * to STRUCTs/UNIONs and do no more modifications. For all 4020 * other purposes the type graphs were not equivalent. 4021 */ 4022 if (d->hypot_adjust_canon) 4023 continue; 4024 4025 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4026 d->map[t_id] = c_id; 4027 4028 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4029 c_kind != BTF_KIND_FWD && 4030 is_type_mapped(d, c_id) && 4031 !is_type_mapped(d, t_id)) { 4032 /* 4033 * as a perf optimization, we can map struct/union 4034 * that's part of type graph we just verified for 4035 * equivalence. We can do that for struct/union that has 4036 * canonical representative only, though. 4037 */ 4038 d->map[t_id] = c_id; 4039 } 4040 } 4041 } 4042 4043 /* 4044 * Deduplicate struct/union types. 4045 * 4046 * For each struct/union type its type signature hash is calculated, taking 4047 * into account type's name, size, number, order and names of fields, but 4048 * ignoring type ID's referenced from fields, because they might not be deduped 4049 * completely until after reference types deduplication phase. This type hash 4050 * is used to iterate over all potential canonical types, sharing same hash. 4051 * For each canonical candidate we check whether type graphs that they form 4052 * (through referenced types in fields and so on) are equivalent using algorithm 4053 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4054 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4055 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4056 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4057 * potentially map other structs/unions to their canonical representatives, 4058 * if such relationship hasn't yet been established. This speeds up algorithm 4059 * by eliminating some of the duplicate work. 4060 * 4061 * If no matching canonical representative was found, struct/union is marked 4062 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4063 * for further look ups. 4064 */ 4065 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4066 { 4067 struct btf_type *cand_type, *t; 4068 struct hashmap_entry *hash_entry; 4069 /* if we don't find equivalent type, then we are canonical */ 4070 __u32 new_id = type_id; 4071 __u16 kind; 4072 long h; 4073 4074 /* already deduped or is in process of deduping (loop detected) */ 4075 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4076 return 0; 4077 4078 t = btf_type_by_id(d->btf, type_id); 4079 kind = btf_kind(t); 4080 4081 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4082 return 0; 4083 4084 h = btf_hash_struct(t); 4085 for_each_dedup_cand(d, hash_entry, h) { 4086 __u32 cand_id = (__u32)(long)hash_entry->value; 4087 int eq; 4088 4089 /* 4090 * Even though btf_dedup_is_equiv() checks for 4091 * btf_shallow_equal_struct() internally when checking two 4092 * structs (unions) for equivalence, we need to guard here 4093 * from picking matching FWD type as a dedup candidate. 4094 * This can happen due to hash collision. In such case just 4095 * relying on btf_dedup_is_equiv() would lead to potentially 4096 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4097 * FWD and compatible STRUCT/UNION are considered equivalent. 4098 */ 4099 cand_type = btf_type_by_id(d->btf, cand_id); 4100 if (!btf_shallow_equal_struct(t, cand_type)) 4101 continue; 4102 4103 btf_dedup_clear_hypot_map(d); 4104 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4105 if (eq < 0) 4106 return eq; 4107 if (!eq) 4108 continue; 4109 btf_dedup_merge_hypot_map(d); 4110 if (d->hypot_adjust_canon) /* not really equivalent */ 4111 continue; 4112 new_id = cand_id; 4113 break; 4114 } 4115 4116 d->map[type_id] = new_id; 4117 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4118 return -ENOMEM; 4119 4120 return 0; 4121 } 4122 4123 static int btf_dedup_struct_types(struct btf_dedup *d) 4124 { 4125 int i, err; 4126 4127 for (i = 0; i < d->btf->nr_types; i++) { 4128 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4129 if (err) 4130 return err; 4131 } 4132 return 0; 4133 } 4134 4135 /* 4136 * Deduplicate reference type. 4137 * 4138 * Once all primitive and struct/union types got deduplicated, we can easily 4139 * deduplicate all other (reference) BTF types. This is done in two steps: 4140 * 4141 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4142 * resolution can be done either immediately for primitive or struct/union types 4143 * (because they were deduped in previous two phases) or recursively for 4144 * reference types. Recursion will always terminate at either primitive or 4145 * struct/union type, at which point we can "unwind" chain of reference types 4146 * one by one. There is no danger of encountering cycles because in C type 4147 * system the only way to form type cycle is through struct/union, so any chain 4148 * of reference types, even those taking part in a type cycle, will inevitably 4149 * reach struct/union at some point. 4150 * 4151 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4152 * becomes "stable", in the sense that no further deduplication will cause 4153 * any changes to it. With that, it's now possible to calculate type's signature 4154 * hash (this time taking into account referenced type IDs) and loop over all 4155 * potential canonical representatives. If no match was found, current type 4156 * will become canonical representative of itself and will be added into 4157 * btf_dedup->dedup_table as another possible canonical representative. 4158 */ 4159 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4160 { 4161 struct hashmap_entry *hash_entry; 4162 __u32 new_id = type_id, cand_id; 4163 struct btf_type *t, *cand; 4164 /* if we don't find equivalent type, then we are representative type */ 4165 int ref_type_id; 4166 long h; 4167 4168 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4169 return -ELOOP; 4170 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4171 return resolve_type_id(d, type_id); 4172 4173 t = btf_type_by_id(d->btf, type_id); 4174 d->map[type_id] = BTF_IN_PROGRESS_ID; 4175 4176 switch (btf_kind(t)) { 4177 case BTF_KIND_CONST: 4178 case BTF_KIND_VOLATILE: 4179 case BTF_KIND_RESTRICT: 4180 case BTF_KIND_PTR: 4181 case BTF_KIND_TYPEDEF: 4182 case BTF_KIND_FUNC: 4183 ref_type_id = btf_dedup_ref_type(d, t->type); 4184 if (ref_type_id < 0) 4185 return ref_type_id; 4186 t->type = ref_type_id; 4187 4188 h = btf_hash_common(t); 4189 for_each_dedup_cand(d, hash_entry, h) { 4190 cand_id = (__u32)(long)hash_entry->value; 4191 cand = btf_type_by_id(d->btf, cand_id); 4192 if (btf_equal_common(t, cand)) { 4193 new_id = cand_id; 4194 break; 4195 } 4196 } 4197 break; 4198 4199 case BTF_KIND_ARRAY: { 4200 struct btf_array *info = btf_array(t); 4201 4202 ref_type_id = btf_dedup_ref_type(d, info->type); 4203 if (ref_type_id < 0) 4204 return ref_type_id; 4205 info->type = ref_type_id; 4206 4207 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4208 if (ref_type_id < 0) 4209 return ref_type_id; 4210 info->index_type = ref_type_id; 4211 4212 h = btf_hash_array(t); 4213 for_each_dedup_cand(d, hash_entry, h) { 4214 cand_id = (__u32)(long)hash_entry->value; 4215 cand = btf_type_by_id(d->btf, cand_id); 4216 if (btf_equal_array(t, cand)) { 4217 new_id = cand_id; 4218 break; 4219 } 4220 } 4221 break; 4222 } 4223 4224 case BTF_KIND_FUNC_PROTO: { 4225 struct btf_param *param; 4226 __u16 vlen; 4227 int i; 4228 4229 ref_type_id = btf_dedup_ref_type(d, t->type); 4230 if (ref_type_id < 0) 4231 return ref_type_id; 4232 t->type = ref_type_id; 4233 4234 vlen = btf_vlen(t); 4235 param = btf_params(t); 4236 for (i = 0; i < vlen; i++) { 4237 ref_type_id = btf_dedup_ref_type(d, param->type); 4238 if (ref_type_id < 0) 4239 return ref_type_id; 4240 param->type = ref_type_id; 4241 param++; 4242 } 4243 4244 h = btf_hash_fnproto(t); 4245 for_each_dedup_cand(d, hash_entry, h) { 4246 cand_id = (__u32)(long)hash_entry->value; 4247 cand = btf_type_by_id(d->btf, cand_id); 4248 if (btf_equal_fnproto(t, cand)) { 4249 new_id = cand_id; 4250 break; 4251 } 4252 } 4253 break; 4254 } 4255 4256 default: 4257 return -EINVAL; 4258 } 4259 4260 d->map[type_id] = new_id; 4261 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4262 return -ENOMEM; 4263 4264 return new_id; 4265 } 4266 4267 static int btf_dedup_ref_types(struct btf_dedup *d) 4268 { 4269 int i, err; 4270 4271 for (i = 0; i < d->btf->nr_types; i++) { 4272 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4273 if (err < 0) 4274 return err; 4275 } 4276 /* we won't need d->dedup_table anymore */ 4277 hashmap__free(d->dedup_table); 4278 d->dedup_table = NULL; 4279 return 0; 4280 } 4281 4282 /* 4283 * Compact types. 4284 * 4285 * After we established for each type its corresponding canonical representative 4286 * type, we now can eliminate types that are not canonical and leave only 4287 * canonical ones layed out sequentially in memory by copying them over 4288 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4289 * a map from original type ID to a new compacted type ID, which will be used 4290 * during next phase to "fix up" type IDs, referenced from struct/union and 4291 * reference types. 4292 */ 4293 static int btf_dedup_compact_types(struct btf_dedup *d) 4294 { 4295 __u32 *new_offs; 4296 __u32 next_type_id = d->btf->start_id; 4297 const struct btf_type *t; 4298 void *p; 4299 int i, id, len; 4300 4301 /* we are going to reuse hypot_map to store compaction remapping */ 4302 d->hypot_map[0] = 0; 4303 /* base BTF types are not renumbered */ 4304 for (id = 1; id < d->btf->start_id; id++) 4305 d->hypot_map[id] = id; 4306 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4307 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4308 4309 p = d->btf->types_data; 4310 4311 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4312 if (d->map[id] != id) 4313 continue; 4314 4315 t = btf__type_by_id(d->btf, id); 4316 len = btf_type_size(t); 4317 if (len < 0) 4318 return len; 4319 4320 memmove(p, t, len); 4321 d->hypot_map[id] = next_type_id; 4322 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4323 p += len; 4324 next_type_id++; 4325 } 4326 4327 /* shrink struct btf's internal types index and update btf_header */ 4328 d->btf->nr_types = next_type_id - d->btf->start_id; 4329 d->btf->type_offs_cap = d->btf->nr_types; 4330 d->btf->hdr->type_len = p - d->btf->types_data; 4331 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4332 sizeof(*new_offs)); 4333 if (d->btf->type_offs_cap && !new_offs) 4334 return -ENOMEM; 4335 d->btf->type_offs = new_offs; 4336 d->btf->hdr->str_off = d->btf->hdr->type_len; 4337 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4338 return 0; 4339 } 4340 4341 /* 4342 * Figure out final (deduplicated and compacted) type ID for provided original 4343 * `type_id` by first resolving it into corresponding canonical type ID and 4344 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4345 * which is populated during compaction phase. 4346 */ 4347 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4348 { 4349 struct btf_dedup *d = ctx; 4350 __u32 resolved_type_id, new_type_id; 4351 4352 resolved_type_id = resolve_type_id(d, *type_id); 4353 new_type_id = d->hypot_map[resolved_type_id]; 4354 if (new_type_id > BTF_MAX_NR_TYPES) 4355 return -EINVAL; 4356 4357 *type_id = new_type_id; 4358 return 0; 4359 } 4360 4361 /* 4362 * Remap referenced type IDs into deduped type IDs. 4363 * 4364 * After BTF types are deduplicated and compacted, their final type IDs may 4365 * differ from original ones. The map from original to a corresponding 4366 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4367 * compaction phase. During remapping phase we are rewriting all type IDs 4368 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4369 * their final deduped type IDs. 4370 */ 4371 static int btf_dedup_remap_types(struct btf_dedup *d) 4372 { 4373 int i, r; 4374 4375 for (i = 0; i < d->btf->nr_types; i++) { 4376 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4377 4378 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4379 if (r) 4380 return r; 4381 } 4382 4383 if (!d->btf_ext) 4384 return 0; 4385 4386 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4387 if (r) 4388 return r; 4389 4390 return 0; 4391 } 4392 4393 /* 4394 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4395 * data out of it to use for target BTF. 4396 */ 4397 struct btf *libbpf_find_kernel_btf(void) 4398 { 4399 struct { 4400 const char *path_fmt; 4401 bool raw_btf; 4402 } locations[] = { 4403 /* try canonical vmlinux BTF through sysfs first */ 4404 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4405 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4406 { "/boot/vmlinux-%1$s" }, 4407 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4408 { "/lib/modules/%1$s/build/vmlinux" }, 4409 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4410 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4411 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4412 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4413 }; 4414 char path[PATH_MAX + 1]; 4415 struct utsname buf; 4416 struct btf *btf; 4417 int i, err; 4418 4419 uname(&buf); 4420 4421 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4422 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4423 4424 if (access(path, R_OK)) 4425 continue; 4426 4427 if (locations[i].raw_btf) 4428 btf = btf__parse_raw(path); 4429 else 4430 btf = btf__parse_elf(path, NULL); 4431 err = libbpf_get_error(btf); 4432 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4433 if (err) 4434 continue; 4435 4436 return btf; 4437 } 4438 4439 pr_warn("failed to find valid kernel BTF\n"); 4440 return libbpf_err_ptr(-ESRCH); 4441 } 4442 4443 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4444 { 4445 int i, n, err; 4446 4447 switch (btf_kind(t)) { 4448 case BTF_KIND_INT: 4449 case BTF_KIND_FLOAT: 4450 case BTF_KIND_ENUM: 4451 return 0; 4452 4453 case BTF_KIND_FWD: 4454 case BTF_KIND_CONST: 4455 case BTF_KIND_VOLATILE: 4456 case BTF_KIND_RESTRICT: 4457 case BTF_KIND_PTR: 4458 case BTF_KIND_TYPEDEF: 4459 case BTF_KIND_FUNC: 4460 case BTF_KIND_VAR: 4461 return visit(&t->type, ctx); 4462 4463 case BTF_KIND_ARRAY: { 4464 struct btf_array *a = btf_array(t); 4465 4466 err = visit(&a->type, ctx); 4467 err = err ?: visit(&a->index_type, ctx); 4468 return err; 4469 } 4470 4471 case BTF_KIND_STRUCT: 4472 case BTF_KIND_UNION: { 4473 struct btf_member *m = btf_members(t); 4474 4475 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4476 err = visit(&m->type, ctx); 4477 if (err) 4478 return err; 4479 } 4480 return 0; 4481 } 4482 4483 case BTF_KIND_FUNC_PROTO: { 4484 struct btf_param *m = btf_params(t); 4485 4486 err = visit(&t->type, ctx); 4487 if (err) 4488 return err; 4489 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4490 err = visit(&m->type, ctx); 4491 if (err) 4492 return err; 4493 } 4494 return 0; 4495 } 4496 4497 case BTF_KIND_DATASEC: { 4498 struct btf_var_secinfo *m = btf_var_secinfos(t); 4499 4500 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4501 err = visit(&m->type, ctx); 4502 if (err) 4503 return err; 4504 } 4505 return 0; 4506 } 4507 4508 default: 4509 return -EINVAL; 4510 } 4511 } 4512 4513 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4514 { 4515 int i, n, err; 4516 4517 err = visit(&t->name_off, ctx); 4518 if (err) 4519 return err; 4520 4521 switch (btf_kind(t)) { 4522 case BTF_KIND_STRUCT: 4523 case BTF_KIND_UNION: { 4524 struct btf_member *m = btf_members(t); 4525 4526 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4527 err = visit(&m->name_off, ctx); 4528 if (err) 4529 return err; 4530 } 4531 break; 4532 } 4533 case BTF_KIND_ENUM: { 4534 struct btf_enum *m = btf_enum(t); 4535 4536 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4537 err = visit(&m->name_off, ctx); 4538 if (err) 4539 return err; 4540 } 4541 break; 4542 } 4543 case BTF_KIND_FUNC_PROTO: { 4544 struct btf_param *m = btf_params(t); 4545 4546 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4547 err = visit(&m->name_off, ctx); 4548 if (err) 4549 return err; 4550 } 4551 break; 4552 } 4553 default: 4554 break; 4555 } 4556 4557 return 0; 4558 } 4559 4560 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4561 { 4562 const struct btf_ext_info *seg; 4563 struct btf_ext_info_sec *sec; 4564 int i, err; 4565 4566 seg = &btf_ext->func_info; 4567 for_each_btf_ext_sec(seg, sec) { 4568 struct bpf_func_info_min *rec; 4569 4570 for_each_btf_ext_rec(seg, sec, i, rec) { 4571 err = visit(&rec->type_id, ctx); 4572 if (err < 0) 4573 return err; 4574 } 4575 } 4576 4577 seg = &btf_ext->core_relo_info; 4578 for_each_btf_ext_sec(seg, sec) { 4579 struct bpf_core_relo *rec; 4580 4581 for_each_btf_ext_rec(seg, sec, i, rec) { 4582 err = visit(&rec->type_id, ctx); 4583 if (err < 0) 4584 return err; 4585 } 4586 } 4587 4588 return 0; 4589 } 4590 4591 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4592 { 4593 const struct btf_ext_info *seg; 4594 struct btf_ext_info_sec *sec; 4595 int i, err; 4596 4597 seg = &btf_ext->func_info; 4598 for_each_btf_ext_sec(seg, sec) { 4599 err = visit(&sec->sec_name_off, ctx); 4600 if (err) 4601 return err; 4602 } 4603 4604 seg = &btf_ext->line_info; 4605 for_each_btf_ext_sec(seg, sec) { 4606 struct bpf_line_info_min *rec; 4607 4608 err = visit(&sec->sec_name_off, ctx); 4609 if (err) 4610 return err; 4611 4612 for_each_btf_ext_rec(seg, sec, i, rec) { 4613 err = visit(&rec->file_name_off, ctx); 4614 if (err) 4615 return err; 4616 err = visit(&rec->line_off, ctx); 4617 if (err) 4618 return err; 4619 } 4620 } 4621 4622 seg = &btf_ext->core_relo_info; 4623 for_each_btf_ext_sec(seg, sec) { 4624 struct bpf_core_relo *rec; 4625 4626 err = visit(&sec->sec_name_off, ctx); 4627 if (err) 4628 return err; 4629 4630 for_each_btf_ext_rec(seg, sec, i, rec) { 4631 err = visit(&rec->access_str_off, ctx); 4632 if (err) 4633 return err; 4634 } 4635 } 4636 4637 return 0; 4638 } 4639