xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 99b75a4e)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <errno.h>
9 #include <linux/err.h>
10 #include <linux/btf.h>
11 #include "btf.h"
12 #include "bpf.h"
13 #include "libbpf.h"
14 #include "libbpf_util.h"
15 
16 #define max(a, b) ((a) > (b) ? (a) : (b))
17 #define min(a, b) ((a) < (b) ? (a) : (b))
18 
19 #define BTF_MAX_NR_TYPES 0x7fffffff
20 #define BTF_MAX_STR_OFFSET 0x7fffffff
21 
22 #define IS_MODIFIER(k) (((k) == BTF_KIND_TYPEDEF) || \
23 		((k) == BTF_KIND_VOLATILE) || \
24 		((k) == BTF_KIND_CONST) || \
25 		((k) == BTF_KIND_RESTRICT))
26 
27 static struct btf_type btf_void;
28 
29 struct btf {
30 	union {
31 		struct btf_header *hdr;
32 		void *data;
33 	};
34 	struct btf_type **types;
35 	const char *strings;
36 	void *nohdr_data;
37 	__u32 nr_types;
38 	__u32 types_size;
39 	__u32 data_size;
40 	int fd;
41 };
42 
43 struct btf_ext_info {
44 	/*
45 	 * info points to the individual info section (e.g. func_info and
46 	 * line_info) from the .BTF.ext. It does not include the __u32 rec_size.
47 	 */
48 	void *info;
49 	__u32 rec_size;
50 	__u32 len;
51 };
52 
53 struct btf_ext {
54 	union {
55 		struct btf_ext_header *hdr;
56 		void *data;
57 	};
58 	struct btf_ext_info func_info;
59 	struct btf_ext_info line_info;
60 	__u32 data_size;
61 };
62 
63 struct btf_ext_info_sec {
64 	__u32	sec_name_off;
65 	__u32	num_info;
66 	/* Followed by num_info * record_size number of bytes */
67 	__u8	data[0];
68 };
69 
70 /* The minimum bpf_func_info checked by the loader */
71 struct bpf_func_info_min {
72 	__u32   insn_off;
73 	__u32   type_id;
74 };
75 
76 /* The minimum bpf_line_info checked by the loader */
77 struct bpf_line_info_min {
78 	__u32	insn_off;
79 	__u32	file_name_off;
80 	__u32	line_off;
81 	__u32	line_col;
82 };
83 
84 static inline __u64 ptr_to_u64(const void *ptr)
85 {
86 	return (__u64) (unsigned long) ptr;
87 }
88 
89 static int btf_add_type(struct btf *btf, struct btf_type *t)
90 {
91 	if (btf->types_size - btf->nr_types < 2) {
92 		struct btf_type **new_types;
93 		__u32 expand_by, new_size;
94 
95 		if (btf->types_size == BTF_MAX_NR_TYPES)
96 			return -E2BIG;
97 
98 		expand_by = max(btf->types_size >> 2, 16);
99 		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
100 
101 		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
102 		if (!new_types)
103 			return -ENOMEM;
104 
105 		if (btf->nr_types == 0)
106 			new_types[0] = &btf_void;
107 
108 		btf->types = new_types;
109 		btf->types_size = new_size;
110 	}
111 
112 	btf->types[++(btf->nr_types)] = t;
113 
114 	return 0;
115 }
116 
117 static int btf_parse_hdr(struct btf *btf)
118 {
119 	const struct btf_header *hdr = btf->hdr;
120 	__u32 meta_left;
121 
122 	if (btf->data_size < sizeof(struct btf_header)) {
123 		pr_debug("BTF header not found\n");
124 		return -EINVAL;
125 	}
126 
127 	if (hdr->magic != BTF_MAGIC) {
128 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
129 		return -EINVAL;
130 	}
131 
132 	if (hdr->version != BTF_VERSION) {
133 		pr_debug("Unsupported BTF version:%u\n", hdr->version);
134 		return -ENOTSUP;
135 	}
136 
137 	if (hdr->flags) {
138 		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
139 		return -ENOTSUP;
140 	}
141 
142 	meta_left = btf->data_size - sizeof(*hdr);
143 	if (!meta_left) {
144 		pr_debug("BTF has no data\n");
145 		return -EINVAL;
146 	}
147 
148 	if (meta_left < hdr->type_off) {
149 		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
150 		return -EINVAL;
151 	}
152 
153 	if (meta_left < hdr->str_off) {
154 		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
155 		return -EINVAL;
156 	}
157 
158 	if (hdr->type_off >= hdr->str_off) {
159 		pr_debug("BTF type section offset >= string section offset. No type?\n");
160 		return -EINVAL;
161 	}
162 
163 	if (hdr->type_off & 0x02) {
164 		pr_debug("BTF type section is not aligned to 4 bytes\n");
165 		return -EINVAL;
166 	}
167 
168 	btf->nohdr_data = btf->hdr + 1;
169 
170 	return 0;
171 }
172 
173 static int btf_parse_str_sec(struct btf *btf)
174 {
175 	const struct btf_header *hdr = btf->hdr;
176 	const char *start = btf->nohdr_data + hdr->str_off;
177 	const char *end = start + btf->hdr->str_len;
178 
179 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
180 	    start[0] || end[-1]) {
181 		pr_debug("Invalid BTF string section\n");
182 		return -EINVAL;
183 	}
184 
185 	btf->strings = start;
186 
187 	return 0;
188 }
189 
190 static int btf_type_size(struct btf_type *t)
191 {
192 	int base_size = sizeof(struct btf_type);
193 	__u16 vlen = BTF_INFO_VLEN(t->info);
194 
195 	switch (BTF_INFO_KIND(t->info)) {
196 	case BTF_KIND_FWD:
197 	case BTF_KIND_CONST:
198 	case BTF_KIND_VOLATILE:
199 	case BTF_KIND_RESTRICT:
200 	case BTF_KIND_PTR:
201 	case BTF_KIND_TYPEDEF:
202 	case BTF_KIND_FUNC:
203 		return base_size;
204 	case BTF_KIND_INT:
205 		return base_size + sizeof(__u32);
206 	case BTF_KIND_ENUM:
207 		return base_size + vlen * sizeof(struct btf_enum);
208 	case BTF_KIND_ARRAY:
209 		return base_size + sizeof(struct btf_array);
210 	case BTF_KIND_STRUCT:
211 	case BTF_KIND_UNION:
212 		return base_size + vlen * sizeof(struct btf_member);
213 	case BTF_KIND_FUNC_PROTO:
214 		return base_size + vlen * sizeof(struct btf_param);
215 	default:
216 		pr_debug("Unsupported BTF_KIND:%u\n", BTF_INFO_KIND(t->info));
217 		return -EINVAL;
218 	}
219 }
220 
221 static int btf_parse_type_sec(struct btf *btf)
222 {
223 	struct btf_header *hdr = btf->hdr;
224 	void *nohdr_data = btf->nohdr_data;
225 	void *next_type = nohdr_data + hdr->type_off;
226 	void *end_type = nohdr_data + hdr->str_off;
227 
228 	while (next_type < end_type) {
229 		struct btf_type *t = next_type;
230 		int type_size;
231 		int err;
232 
233 		type_size = btf_type_size(t);
234 		if (type_size < 0)
235 			return type_size;
236 		next_type += type_size;
237 		err = btf_add_type(btf, t);
238 		if (err)
239 			return err;
240 	}
241 
242 	return 0;
243 }
244 
245 __u32 btf__get_nr_types(const struct btf *btf)
246 {
247 	return btf->nr_types;
248 }
249 
250 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
251 {
252 	if (type_id > btf->nr_types)
253 		return NULL;
254 
255 	return btf->types[type_id];
256 }
257 
258 static bool btf_type_is_void(const struct btf_type *t)
259 {
260 	return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
261 }
262 
263 static bool btf_type_is_void_or_null(const struct btf_type *t)
264 {
265 	return !t || btf_type_is_void(t);
266 }
267 
268 #define MAX_RESOLVE_DEPTH 32
269 
270 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
271 {
272 	const struct btf_array *array;
273 	const struct btf_type *t;
274 	__u32 nelems = 1;
275 	__s64 size = -1;
276 	int i;
277 
278 	t = btf__type_by_id(btf, type_id);
279 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
280 	     i++) {
281 		switch (BTF_INFO_KIND(t->info)) {
282 		case BTF_KIND_INT:
283 		case BTF_KIND_STRUCT:
284 		case BTF_KIND_UNION:
285 		case BTF_KIND_ENUM:
286 			size = t->size;
287 			goto done;
288 		case BTF_KIND_PTR:
289 			size = sizeof(void *);
290 			goto done;
291 		case BTF_KIND_TYPEDEF:
292 		case BTF_KIND_VOLATILE:
293 		case BTF_KIND_CONST:
294 		case BTF_KIND_RESTRICT:
295 			type_id = t->type;
296 			break;
297 		case BTF_KIND_ARRAY:
298 			array = (const struct btf_array *)(t + 1);
299 			if (nelems && array->nelems > UINT32_MAX / nelems)
300 				return -E2BIG;
301 			nelems *= array->nelems;
302 			type_id = array->type;
303 			break;
304 		default:
305 			return -EINVAL;
306 		}
307 
308 		t = btf__type_by_id(btf, type_id);
309 	}
310 
311 	if (size < 0)
312 		return -EINVAL;
313 
314 done:
315 	if (nelems && size > UINT32_MAX / nelems)
316 		return -E2BIG;
317 
318 	return nelems * size;
319 }
320 
321 int btf__resolve_type(const struct btf *btf, __u32 type_id)
322 {
323 	const struct btf_type *t;
324 	int depth = 0;
325 
326 	t = btf__type_by_id(btf, type_id);
327 	while (depth < MAX_RESOLVE_DEPTH &&
328 	       !btf_type_is_void_or_null(t) &&
329 	       IS_MODIFIER(BTF_INFO_KIND(t->info))) {
330 		type_id = t->type;
331 		t = btf__type_by_id(btf, type_id);
332 		depth++;
333 	}
334 
335 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
336 		return -EINVAL;
337 
338 	return type_id;
339 }
340 
341 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
342 {
343 	__u32 i;
344 
345 	if (!strcmp(type_name, "void"))
346 		return 0;
347 
348 	for (i = 1; i <= btf->nr_types; i++) {
349 		const struct btf_type *t = btf->types[i];
350 		const char *name = btf__name_by_offset(btf, t->name_off);
351 
352 		if (name && !strcmp(type_name, name))
353 			return i;
354 	}
355 
356 	return -ENOENT;
357 }
358 
359 void btf__free(struct btf *btf)
360 {
361 	if (!btf)
362 		return;
363 
364 	if (btf->fd != -1)
365 		close(btf->fd);
366 
367 	free(btf->data);
368 	free(btf->types);
369 	free(btf);
370 }
371 
372 struct btf *btf__new(__u8 *data, __u32 size)
373 {
374 	struct btf *btf;
375 	int err;
376 
377 	btf = calloc(1, sizeof(struct btf));
378 	if (!btf)
379 		return ERR_PTR(-ENOMEM);
380 
381 	btf->fd = -1;
382 
383 	btf->data = malloc(size);
384 	if (!btf->data) {
385 		err = -ENOMEM;
386 		goto done;
387 	}
388 
389 	memcpy(btf->data, data, size);
390 	btf->data_size = size;
391 
392 	err = btf_parse_hdr(btf);
393 	if (err)
394 		goto done;
395 
396 	err = btf_parse_str_sec(btf);
397 	if (err)
398 		goto done;
399 
400 	err = btf_parse_type_sec(btf);
401 
402 done:
403 	if (err) {
404 		btf__free(btf);
405 		return ERR_PTR(err);
406 	}
407 
408 	return btf;
409 }
410 
411 int btf__load(struct btf *btf)
412 {
413 	__u32 log_buf_size = BPF_LOG_BUF_SIZE;
414 	char *log_buf = NULL;
415 	int err = 0;
416 
417 	if (btf->fd >= 0)
418 		return -EEXIST;
419 
420 	log_buf = malloc(log_buf_size);
421 	if (!log_buf)
422 		return -ENOMEM;
423 
424 	*log_buf = 0;
425 
426 	btf->fd = bpf_load_btf(btf->data, btf->data_size,
427 			       log_buf, log_buf_size, false);
428 	if (btf->fd < 0) {
429 		err = -errno;
430 		pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno);
431 		if (*log_buf)
432 			pr_warning("%s\n", log_buf);
433 		goto done;
434 	}
435 
436 done:
437 	free(log_buf);
438 	return err;
439 }
440 
441 int btf__fd(const struct btf *btf)
442 {
443 	return btf->fd;
444 }
445 
446 const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
447 {
448 	*size = btf->data_size;
449 	return btf->data;
450 }
451 
452 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
453 {
454 	if (offset < btf->hdr->str_len)
455 		return &btf->strings[offset];
456 	else
457 		return NULL;
458 }
459 
460 int btf__get_from_id(__u32 id, struct btf **btf)
461 {
462 	struct bpf_btf_info btf_info = { 0 };
463 	__u32 len = sizeof(btf_info);
464 	__u32 last_size;
465 	int btf_fd;
466 	void *ptr;
467 	int err;
468 
469 	err = 0;
470 	*btf = NULL;
471 	btf_fd = bpf_btf_get_fd_by_id(id);
472 	if (btf_fd < 0)
473 		return 0;
474 
475 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
476 	 * let's start with a sane default - 4KiB here - and resize it only if
477 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
478 	 */
479 	btf_info.btf_size = 4096;
480 	last_size = btf_info.btf_size;
481 	ptr = malloc(last_size);
482 	if (!ptr) {
483 		err = -ENOMEM;
484 		goto exit_free;
485 	}
486 
487 	memset(ptr, 0, last_size);
488 	btf_info.btf = ptr_to_u64(ptr);
489 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
490 
491 	if (!err && btf_info.btf_size > last_size) {
492 		void *temp_ptr;
493 
494 		last_size = btf_info.btf_size;
495 		temp_ptr = realloc(ptr, last_size);
496 		if (!temp_ptr) {
497 			err = -ENOMEM;
498 			goto exit_free;
499 		}
500 		ptr = temp_ptr;
501 		memset(ptr, 0, last_size);
502 		btf_info.btf = ptr_to_u64(ptr);
503 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
504 	}
505 
506 	if (err || btf_info.btf_size > last_size) {
507 		err = errno;
508 		goto exit_free;
509 	}
510 
511 	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
512 	if (IS_ERR(*btf)) {
513 		err = PTR_ERR(*btf);
514 		*btf = NULL;
515 	}
516 
517 exit_free:
518 	close(btf_fd);
519 	free(ptr);
520 
521 	return err;
522 }
523 
524 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
525 			 __u32 expected_key_size, __u32 expected_value_size,
526 			 __u32 *key_type_id, __u32 *value_type_id)
527 {
528 	const struct btf_type *container_type;
529 	const struct btf_member *key, *value;
530 	const size_t max_name = 256;
531 	char container_name[max_name];
532 	__s64 key_size, value_size;
533 	__s32 container_id;
534 
535 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
536 	    max_name) {
537 		pr_warning("map:%s length of '____btf_map_%s' is too long\n",
538 			   map_name, map_name);
539 		return -EINVAL;
540 	}
541 
542 	container_id = btf__find_by_name(btf, container_name);
543 	if (container_id < 0) {
544 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
545 			 map_name, container_name);
546 		return container_id;
547 	}
548 
549 	container_type = btf__type_by_id(btf, container_id);
550 	if (!container_type) {
551 		pr_warning("map:%s cannot find BTF type for container_id:%u\n",
552 			   map_name, container_id);
553 		return -EINVAL;
554 	}
555 
556 	if (BTF_INFO_KIND(container_type->info) != BTF_KIND_STRUCT ||
557 	    BTF_INFO_VLEN(container_type->info) < 2) {
558 		pr_warning("map:%s container_name:%s is an invalid container struct\n",
559 			   map_name, container_name);
560 		return -EINVAL;
561 	}
562 
563 	key = (struct btf_member *)(container_type + 1);
564 	value = key + 1;
565 
566 	key_size = btf__resolve_size(btf, key->type);
567 	if (key_size < 0) {
568 		pr_warning("map:%s invalid BTF key_type_size\n", map_name);
569 		return key_size;
570 	}
571 
572 	if (expected_key_size != key_size) {
573 		pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
574 			   map_name, (__u32)key_size, expected_key_size);
575 		return -EINVAL;
576 	}
577 
578 	value_size = btf__resolve_size(btf, value->type);
579 	if (value_size < 0) {
580 		pr_warning("map:%s invalid BTF value_type_size\n", map_name);
581 		return value_size;
582 	}
583 
584 	if (expected_value_size != value_size) {
585 		pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
586 			   map_name, (__u32)value_size, expected_value_size);
587 		return -EINVAL;
588 	}
589 
590 	*key_type_id = key->type;
591 	*value_type_id = value->type;
592 
593 	return 0;
594 }
595 
596 struct btf_ext_sec_setup_param {
597 	__u32 off;
598 	__u32 len;
599 	__u32 min_rec_size;
600 	struct btf_ext_info *ext_info;
601 	const char *desc;
602 };
603 
604 static int btf_ext_setup_info(struct btf_ext *btf_ext,
605 			      struct btf_ext_sec_setup_param *ext_sec)
606 {
607 	const struct btf_ext_info_sec *sinfo;
608 	struct btf_ext_info *ext_info;
609 	__u32 info_left, record_size;
610 	/* The start of the info sec (including the __u32 record_size). */
611 	void *info;
612 
613 	if (ext_sec->off & 0x03) {
614 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
615 		     ext_sec->desc);
616 		return -EINVAL;
617 	}
618 
619 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
620 	info_left = ext_sec->len;
621 
622 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
623 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
624 			 ext_sec->desc, ext_sec->off, ext_sec->len);
625 		return -EINVAL;
626 	}
627 
628 	/* At least a record size */
629 	if (info_left < sizeof(__u32)) {
630 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
631 		return -EINVAL;
632 	}
633 
634 	/* The record size needs to meet the minimum standard */
635 	record_size = *(__u32 *)info;
636 	if (record_size < ext_sec->min_rec_size ||
637 	    record_size & 0x03) {
638 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
639 			 ext_sec->desc, record_size);
640 		return -EINVAL;
641 	}
642 
643 	sinfo = info + sizeof(__u32);
644 	info_left -= sizeof(__u32);
645 
646 	/* If no records, return failure now so .BTF.ext won't be used. */
647 	if (!info_left) {
648 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
649 		return -EINVAL;
650 	}
651 
652 	while (info_left) {
653 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
654 		__u64 total_record_size;
655 		__u32 num_records;
656 
657 		if (info_left < sec_hdrlen) {
658 			pr_debug("%s section header is not found in .BTF.ext\n",
659 			     ext_sec->desc);
660 			return -EINVAL;
661 		}
662 
663 		num_records = sinfo->num_info;
664 		if (num_records == 0) {
665 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
666 			     ext_sec->desc);
667 			return -EINVAL;
668 		}
669 
670 		total_record_size = sec_hdrlen +
671 				    (__u64)num_records * record_size;
672 		if (info_left < total_record_size) {
673 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
674 			     ext_sec->desc);
675 			return -EINVAL;
676 		}
677 
678 		info_left -= total_record_size;
679 		sinfo = (void *)sinfo + total_record_size;
680 	}
681 
682 	ext_info = ext_sec->ext_info;
683 	ext_info->len = ext_sec->len - sizeof(__u32);
684 	ext_info->rec_size = record_size;
685 	ext_info->info = info + sizeof(__u32);
686 
687 	return 0;
688 }
689 
690 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
691 {
692 	struct btf_ext_sec_setup_param param = {
693 		.off = btf_ext->hdr->func_info_off,
694 		.len = btf_ext->hdr->func_info_len,
695 		.min_rec_size = sizeof(struct bpf_func_info_min),
696 		.ext_info = &btf_ext->func_info,
697 		.desc = "func_info"
698 	};
699 
700 	return btf_ext_setup_info(btf_ext, &param);
701 }
702 
703 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
704 {
705 	struct btf_ext_sec_setup_param param = {
706 		.off = btf_ext->hdr->line_info_off,
707 		.len = btf_ext->hdr->line_info_len,
708 		.min_rec_size = sizeof(struct bpf_line_info_min),
709 		.ext_info = &btf_ext->line_info,
710 		.desc = "line_info",
711 	};
712 
713 	return btf_ext_setup_info(btf_ext, &param);
714 }
715 
716 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
717 {
718 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
719 
720 	if (data_size < offsetof(struct btf_ext_header, func_info_off) ||
721 	    data_size < hdr->hdr_len) {
722 		pr_debug("BTF.ext header not found");
723 		return -EINVAL;
724 	}
725 
726 	if (hdr->magic != BTF_MAGIC) {
727 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
728 		return -EINVAL;
729 	}
730 
731 	if (hdr->version != BTF_VERSION) {
732 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
733 		return -ENOTSUP;
734 	}
735 
736 	if (hdr->flags) {
737 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
738 		return -ENOTSUP;
739 	}
740 
741 	if (data_size == hdr->hdr_len) {
742 		pr_debug("BTF.ext has no data\n");
743 		return -EINVAL;
744 	}
745 
746 	return 0;
747 }
748 
749 void btf_ext__free(struct btf_ext *btf_ext)
750 {
751 	if (!btf_ext)
752 		return;
753 	free(btf_ext->data);
754 	free(btf_ext);
755 }
756 
757 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
758 {
759 	struct btf_ext *btf_ext;
760 	int err;
761 
762 	err = btf_ext_parse_hdr(data, size);
763 	if (err)
764 		return ERR_PTR(err);
765 
766 	btf_ext = calloc(1, sizeof(struct btf_ext));
767 	if (!btf_ext)
768 		return ERR_PTR(-ENOMEM);
769 
770 	btf_ext->data_size = size;
771 	btf_ext->data = malloc(size);
772 	if (!btf_ext->data) {
773 		err = -ENOMEM;
774 		goto done;
775 	}
776 	memcpy(btf_ext->data, data, size);
777 
778 	err = btf_ext_setup_func_info(btf_ext);
779 	if (err)
780 		goto done;
781 
782 	err = btf_ext_setup_line_info(btf_ext);
783 	if (err)
784 		goto done;
785 
786 done:
787 	if (err) {
788 		btf_ext__free(btf_ext);
789 		return ERR_PTR(err);
790 	}
791 
792 	return btf_ext;
793 }
794 
795 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
796 {
797 	*size = btf_ext->data_size;
798 	return btf_ext->data;
799 }
800 
801 static int btf_ext_reloc_info(const struct btf *btf,
802 			      const struct btf_ext_info *ext_info,
803 			      const char *sec_name, __u32 insns_cnt,
804 			      void **info, __u32 *cnt)
805 {
806 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
807 	__u32 i, record_size, existing_len, records_len;
808 	struct btf_ext_info_sec *sinfo;
809 	const char *info_sec_name;
810 	__u64 remain_len;
811 	void *data;
812 
813 	record_size = ext_info->rec_size;
814 	sinfo = ext_info->info;
815 	remain_len = ext_info->len;
816 	while (remain_len > 0) {
817 		records_len = sinfo->num_info * record_size;
818 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
819 		if (strcmp(info_sec_name, sec_name)) {
820 			remain_len -= sec_hdrlen + records_len;
821 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
822 			continue;
823 		}
824 
825 		existing_len = (*cnt) * record_size;
826 		data = realloc(*info, existing_len + records_len);
827 		if (!data)
828 			return -ENOMEM;
829 
830 		memcpy(data + existing_len, sinfo->data, records_len);
831 		/* adjust insn_off only, the rest data will be passed
832 		 * to the kernel.
833 		 */
834 		for (i = 0; i < sinfo->num_info; i++) {
835 			__u32 *insn_off;
836 
837 			insn_off = data + existing_len + (i * record_size);
838 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
839 				insns_cnt;
840 		}
841 		*info = data;
842 		*cnt += sinfo->num_info;
843 		return 0;
844 	}
845 
846 	return -ENOENT;
847 }
848 
849 int btf_ext__reloc_func_info(const struct btf *btf,
850 			     const struct btf_ext *btf_ext,
851 			     const char *sec_name, __u32 insns_cnt,
852 			     void **func_info, __u32 *cnt)
853 {
854 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
855 				  insns_cnt, func_info, cnt);
856 }
857 
858 int btf_ext__reloc_line_info(const struct btf *btf,
859 			     const struct btf_ext *btf_ext,
860 			     const char *sec_name, __u32 insns_cnt,
861 			     void **line_info, __u32 *cnt)
862 {
863 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
864 				  insns_cnt, line_info, cnt);
865 }
866 
867 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
868 {
869 	return btf_ext->func_info.rec_size;
870 }
871 
872 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
873 {
874 	return btf_ext->line_info.rec_size;
875 }
876 
877 struct btf_dedup;
878 
879 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
880 				       const struct btf_dedup_opts *opts);
881 static void btf_dedup_free(struct btf_dedup *d);
882 static int btf_dedup_strings(struct btf_dedup *d);
883 static int btf_dedup_prim_types(struct btf_dedup *d);
884 static int btf_dedup_struct_types(struct btf_dedup *d);
885 static int btf_dedup_ref_types(struct btf_dedup *d);
886 static int btf_dedup_compact_types(struct btf_dedup *d);
887 static int btf_dedup_remap_types(struct btf_dedup *d);
888 
889 /*
890  * Deduplicate BTF types and strings.
891  *
892  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
893  * section with all BTF type descriptors and string data. It overwrites that
894  * memory in-place with deduplicated types and strings without any loss of
895  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
896  * is provided, all the strings referenced from .BTF.ext section are honored
897  * and updated to point to the right offsets after deduplication.
898  *
899  * If function returns with error, type/string data might be garbled and should
900  * be discarded.
901  *
902  * More verbose and detailed description of both problem btf_dedup is solving,
903  * as well as solution could be found at:
904  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
905  *
906  * Problem description and justification
907  * =====================================
908  *
909  * BTF type information is typically emitted either as a result of conversion
910  * from DWARF to BTF or directly by compiler. In both cases, each compilation
911  * unit contains information about a subset of all the types that are used
912  * in an application. These subsets are frequently overlapping and contain a lot
913  * of duplicated information when later concatenated together into a single
914  * binary. This algorithm ensures that each unique type is represented by single
915  * BTF type descriptor, greatly reducing resulting size of BTF data.
916  *
917  * Compilation unit isolation and subsequent duplication of data is not the only
918  * problem. The same type hierarchy (e.g., struct and all the type that struct
919  * references) in different compilation units can be represented in BTF to
920  * various degrees of completeness (or, rather, incompleteness) due to
921  * struct/union forward declarations.
922  *
923  * Let's take a look at an example, that we'll use to better understand the
924  * problem (and solution). Suppose we have two compilation units, each using
925  * same `struct S`, but each of them having incomplete type information about
926  * struct's fields:
927  *
928  * // CU #1:
929  * struct S;
930  * struct A {
931  *	int a;
932  *	struct A* self;
933  *	struct S* parent;
934  * };
935  * struct B;
936  * struct S {
937  *	struct A* a_ptr;
938  *	struct B* b_ptr;
939  * };
940  *
941  * // CU #2:
942  * struct S;
943  * struct A;
944  * struct B {
945  *	int b;
946  *	struct B* self;
947  *	struct S* parent;
948  * };
949  * struct S {
950  *	struct A* a_ptr;
951  *	struct B* b_ptr;
952  * };
953  *
954  * In case of CU #1, BTF data will know only that `struct B` exist (but no
955  * more), but will know the complete type information about `struct A`. While
956  * for CU #2, it will know full type information about `struct B`, but will
957  * only know about forward declaration of `struct A` (in BTF terms, it will
958  * have `BTF_KIND_FWD` type descriptor with name `B`).
959  *
960  * This compilation unit isolation means that it's possible that there is no
961  * single CU with complete type information describing structs `S`, `A`, and
962  * `B`. Also, we might get tons of duplicated and redundant type information.
963  *
964  * Additional complication we need to keep in mind comes from the fact that
965  * types, in general, can form graphs containing cycles, not just DAGs.
966  *
967  * While algorithm does deduplication, it also merges and resolves type
968  * information (unless disabled throught `struct btf_opts`), whenever possible.
969  * E.g., in the example above with two compilation units having partial type
970  * information for structs `A` and `B`, the output of algorithm will emit
971  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
972  * (as well as type information for `int` and pointers), as if they were defined
973  * in a single compilation unit as:
974  *
975  * struct A {
976  *	int a;
977  *	struct A* self;
978  *	struct S* parent;
979  * };
980  * struct B {
981  *	int b;
982  *	struct B* self;
983  *	struct S* parent;
984  * };
985  * struct S {
986  *	struct A* a_ptr;
987  *	struct B* b_ptr;
988  * };
989  *
990  * Algorithm summary
991  * =================
992  *
993  * Algorithm completes its work in 6 separate passes:
994  *
995  * 1. Strings deduplication.
996  * 2. Primitive types deduplication (int, enum, fwd).
997  * 3. Struct/union types deduplication.
998  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
999  *    protos, and const/volatile/restrict modifiers).
1000  * 5. Types compaction.
1001  * 6. Types remapping.
1002  *
1003  * Algorithm determines canonical type descriptor, which is a single
1004  * representative type for each truly unique type. This canonical type is the
1005  * one that will go into final deduplicated BTF type information. For
1006  * struct/unions, it is also the type that algorithm will merge additional type
1007  * information into (while resolving FWDs), as it discovers it from data in
1008  * other CUs. Each input BTF type eventually gets either mapped to itself, if
1009  * that type is canonical, or to some other type, if that type is equivalent
1010  * and was chosen as canonical representative. This mapping is stored in
1011  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1012  * FWD type got resolved to.
1013  *
1014  * To facilitate fast discovery of canonical types, we also maintain canonical
1015  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1016  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1017  * that match that signature. With sufficiently good choice of type signature
1018  * hashing function, we can limit number of canonical types for each unique type
1019  * signature to a very small number, allowing to find canonical type for any
1020  * duplicated type very quickly.
1021  *
1022  * Struct/union deduplication is the most critical part and algorithm for
1023  * deduplicating structs/unions is described in greater details in comments for
1024  * `btf_dedup_is_equiv` function.
1025  */
1026 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1027 	       const struct btf_dedup_opts *opts)
1028 {
1029 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1030 	int err;
1031 
1032 	if (IS_ERR(d)) {
1033 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1034 		return -EINVAL;
1035 	}
1036 
1037 	err = btf_dedup_strings(d);
1038 	if (err < 0) {
1039 		pr_debug("btf_dedup_strings failed:%d\n", err);
1040 		goto done;
1041 	}
1042 	err = btf_dedup_prim_types(d);
1043 	if (err < 0) {
1044 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1045 		goto done;
1046 	}
1047 	err = btf_dedup_struct_types(d);
1048 	if (err < 0) {
1049 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1050 		goto done;
1051 	}
1052 	err = btf_dedup_ref_types(d);
1053 	if (err < 0) {
1054 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1055 		goto done;
1056 	}
1057 	err = btf_dedup_compact_types(d);
1058 	if (err < 0) {
1059 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1060 		goto done;
1061 	}
1062 	err = btf_dedup_remap_types(d);
1063 	if (err < 0) {
1064 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1065 		goto done;
1066 	}
1067 
1068 done:
1069 	btf_dedup_free(d);
1070 	return err;
1071 }
1072 
1073 #define BTF_DEDUP_TABLE_DEFAULT_SIZE (1 << 14)
1074 #define BTF_DEDUP_TABLE_MAX_SIZE_LOG 31
1075 #define BTF_UNPROCESSED_ID ((__u32)-1)
1076 #define BTF_IN_PROGRESS_ID ((__u32)-2)
1077 
1078 struct btf_dedup_node {
1079 	struct btf_dedup_node *next;
1080 	__u32 type_id;
1081 };
1082 
1083 struct btf_dedup {
1084 	/* .BTF section to be deduped in-place */
1085 	struct btf *btf;
1086 	/*
1087 	 * Optional .BTF.ext section. When provided, any strings referenced
1088 	 * from it will be taken into account when deduping strings
1089 	 */
1090 	struct btf_ext *btf_ext;
1091 	/*
1092 	 * This is a map from any type's signature hash to a list of possible
1093 	 * canonical representative type candidates. Hash collisions are
1094 	 * ignored, so even types of various kinds can share same list of
1095 	 * candidates, which is fine because we rely on subsequent
1096 	 * btf_xxx_equal() checks to authoritatively verify type equality.
1097 	 */
1098 	struct btf_dedup_node **dedup_table;
1099 	/* Canonical types map */
1100 	__u32 *map;
1101 	/* Hypothetical mapping, used during type graph equivalence checks */
1102 	__u32 *hypot_map;
1103 	__u32 *hypot_list;
1104 	size_t hypot_cnt;
1105 	size_t hypot_cap;
1106 	/* Various option modifying behavior of algorithm */
1107 	struct btf_dedup_opts opts;
1108 };
1109 
1110 struct btf_str_ptr {
1111 	const char *str;
1112 	__u32 new_off;
1113 	bool used;
1114 };
1115 
1116 struct btf_str_ptrs {
1117 	struct btf_str_ptr *ptrs;
1118 	const char *data;
1119 	__u32 cnt;
1120 	__u32 cap;
1121 };
1122 
1123 static inline __u32 hash_combine(__u32 h, __u32 value)
1124 {
1125 /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
1126 #define GOLDEN_RATIO_PRIME 0x9e370001UL
1127 	return h * 37 + value * GOLDEN_RATIO_PRIME;
1128 #undef GOLDEN_RATIO_PRIME
1129 }
1130 
1131 #define for_each_dedup_cand(d, hash, node) \
1132 	for (node = d->dedup_table[hash & (d->opts.dedup_table_size - 1)]; \
1133 	     node;							   \
1134 	     node = node->next)
1135 
1136 static int btf_dedup_table_add(struct btf_dedup *d, __u32 hash, __u32 type_id)
1137 {
1138 	struct btf_dedup_node *node = malloc(sizeof(struct btf_dedup_node));
1139 	int bucket = hash & (d->opts.dedup_table_size - 1);
1140 
1141 	if (!node)
1142 		return -ENOMEM;
1143 	node->type_id = type_id;
1144 	node->next = d->dedup_table[bucket];
1145 	d->dedup_table[bucket] = node;
1146 	return 0;
1147 }
1148 
1149 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1150 				   __u32 from_id, __u32 to_id)
1151 {
1152 	if (d->hypot_cnt == d->hypot_cap) {
1153 		__u32 *new_list;
1154 
1155 		d->hypot_cap += max(16, d->hypot_cap / 2);
1156 		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1157 		if (!new_list)
1158 			return -ENOMEM;
1159 		d->hypot_list = new_list;
1160 	}
1161 	d->hypot_list[d->hypot_cnt++] = from_id;
1162 	d->hypot_map[from_id] = to_id;
1163 	return 0;
1164 }
1165 
1166 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1167 {
1168 	int i;
1169 
1170 	for (i = 0; i < d->hypot_cnt; i++)
1171 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1172 	d->hypot_cnt = 0;
1173 }
1174 
1175 static void btf_dedup_table_free(struct btf_dedup *d)
1176 {
1177 	struct btf_dedup_node *head, *tmp;
1178 	int i;
1179 
1180 	if (!d->dedup_table)
1181 		return;
1182 
1183 	for (i = 0; i < d->opts.dedup_table_size; i++) {
1184 		while (d->dedup_table[i]) {
1185 			tmp = d->dedup_table[i];
1186 			d->dedup_table[i] = tmp->next;
1187 			free(tmp);
1188 		}
1189 
1190 		head = d->dedup_table[i];
1191 		while (head) {
1192 			tmp = head;
1193 			head = head->next;
1194 			free(tmp);
1195 		}
1196 	}
1197 
1198 	free(d->dedup_table);
1199 	d->dedup_table = NULL;
1200 }
1201 
1202 static void btf_dedup_free(struct btf_dedup *d)
1203 {
1204 	btf_dedup_table_free(d);
1205 
1206 	free(d->map);
1207 	d->map = NULL;
1208 
1209 	free(d->hypot_map);
1210 	d->hypot_map = NULL;
1211 
1212 	free(d->hypot_list);
1213 	d->hypot_list = NULL;
1214 
1215 	free(d);
1216 }
1217 
1218 /* Find closest power of two >= to size, capped at 2^max_size_log */
1219 static __u32 roundup_pow2_max(__u32 size, int max_size_log)
1220 {
1221 	int i;
1222 
1223 	for (i = 0; i < max_size_log  && (1U << i) < size;  i++)
1224 		;
1225 	return 1U << i;
1226 }
1227 
1228 
1229 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1230 				       const struct btf_dedup_opts *opts)
1231 {
1232 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1233 	int i, err = 0;
1234 	__u32 sz;
1235 
1236 	if (!d)
1237 		return ERR_PTR(-ENOMEM);
1238 
1239 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1240 	sz = opts && opts->dedup_table_size ? opts->dedup_table_size
1241 					    : BTF_DEDUP_TABLE_DEFAULT_SIZE;
1242 	sz = roundup_pow2_max(sz, BTF_DEDUP_TABLE_MAX_SIZE_LOG);
1243 	d->opts.dedup_table_size = sz;
1244 
1245 	d->btf = btf;
1246 	d->btf_ext = btf_ext;
1247 
1248 	d->dedup_table = calloc(d->opts.dedup_table_size,
1249 				sizeof(struct btf_dedup_node *));
1250 	if (!d->dedup_table) {
1251 		err = -ENOMEM;
1252 		goto done;
1253 	}
1254 
1255 	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1256 	if (!d->map) {
1257 		err = -ENOMEM;
1258 		goto done;
1259 	}
1260 	/* special BTF "void" type is made canonical immediately */
1261 	d->map[0] = 0;
1262 	for (i = 1; i <= btf->nr_types; i++)
1263 		d->map[i] = BTF_UNPROCESSED_ID;
1264 
1265 	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1266 	if (!d->hypot_map) {
1267 		err = -ENOMEM;
1268 		goto done;
1269 	}
1270 	for (i = 0; i <= btf->nr_types; i++)
1271 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1272 
1273 done:
1274 	if (err) {
1275 		btf_dedup_free(d);
1276 		return ERR_PTR(err);
1277 	}
1278 
1279 	return d;
1280 }
1281 
1282 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1283 
1284 /*
1285  * Iterate over all possible places in .BTF and .BTF.ext that can reference
1286  * string and pass pointer to it to a provided callback `fn`.
1287  */
1288 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1289 {
1290 	void *line_data_cur, *line_data_end;
1291 	int i, j, r, rec_size;
1292 	struct btf_type *t;
1293 
1294 	for (i = 1; i <= d->btf->nr_types; i++) {
1295 		t = d->btf->types[i];
1296 		r = fn(&t->name_off, ctx);
1297 		if (r)
1298 			return r;
1299 
1300 		switch (BTF_INFO_KIND(t->info)) {
1301 		case BTF_KIND_STRUCT:
1302 		case BTF_KIND_UNION: {
1303 			struct btf_member *m = (struct btf_member *)(t + 1);
1304 			__u16 vlen = BTF_INFO_VLEN(t->info);
1305 
1306 			for (j = 0; j < vlen; j++) {
1307 				r = fn(&m->name_off, ctx);
1308 				if (r)
1309 					return r;
1310 				m++;
1311 			}
1312 			break;
1313 		}
1314 		case BTF_KIND_ENUM: {
1315 			struct btf_enum *m = (struct btf_enum *)(t + 1);
1316 			__u16 vlen = BTF_INFO_VLEN(t->info);
1317 
1318 			for (j = 0; j < vlen; j++) {
1319 				r = fn(&m->name_off, ctx);
1320 				if (r)
1321 					return r;
1322 				m++;
1323 			}
1324 			break;
1325 		}
1326 		case BTF_KIND_FUNC_PROTO: {
1327 			struct btf_param *m = (struct btf_param *)(t + 1);
1328 			__u16 vlen = BTF_INFO_VLEN(t->info);
1329 
1330 			for (j = 0; j < vlen; j++) {
1331 				r = fn(&m->name_off, ctx);
1332 				if (r)
1333 					return r;
1334 				m++;
1335 			}
1336 			break;
1337 		}
1338 		default:
1339 			break;
1340 		}
1341 	}
1342 
1343 	if (!d->btf_ext)
1344 		return 0;
1345 
1346 	line_data_cur = d->btf_ext->line_info.info;
1347 	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1348 	rec_size = d->btf_ext->line_info.rec_size;
1349 
1350 	while (line_data_cur < line_data_end) {
1351 		struct btf_ext_info_sec *sec = line_data_cur;
1352 		struct bpf_line_info_min *line_info;
1353 		__u32 num_info = sec->num_info;
1354 
1355 		r = fn(&sec->sec_name_off, ctx);
1356 		if (r)
1357 			return r;
1358 
1359 		line_data_cur += sizeof(struct btf_ext_info_sec);
1360 		for (i = 0; i < num_info; i++) {
1361 			line_info = line_data_cur;
1362 			r = fn(&line_info->file_name_off, ctx);
1363 			if (r)
1364 				return r;
1365 			r = fn(&line_info->line_off, ctx);
1366 			if (r)
1367 				return r;
1368 			line_data_cur += rec_size;
1369 		}
1370 	}
1371 
1372 	return 0;
1373 }
1374 
1375 static int str_sort_by_content(const void *a1, const void *a2)
1376 {
1377 	const struct btf_str_ptr *p1 = a1;
1378 	const struct btf_str_ptr *p2 = a2;
1379 
1380 	return strcmp(p1->str, p2->str);
1381 }
1382 
1383 static int str_sort_by_offset(const void *a1, const void *a2)
1384 {
1385 	const struct btf_str_ptr *p1 = a1;
1386 	const struct btf_str_ptr *p2 = a2;
1387 
1388 	if (p1->str != p2->str)
1389 		return p1->str < p2->str ? -1 : 1;
1390 	return 0;
1391 }
1392 
1393 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1394 {
1395 	const struct btf_str_ptr *p = pelem;
1396 
1397 	if (str_ptr != p->str)
1398 		return (const char *)str_ptr < p->str ? -1 : 1;
1399 	return 0;
1400 }
1401 
1402 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1403 {
1404 	struct btf_str_ptrs *strs;
1405 	struct btf_str_ptr *s;
1406 
1407 	if (*str_off_ptr == 0)
1408 		return 0;
1409 
1410 	strs = ctx;
1411 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1412 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1413 	if (!s)
1414 		return -EINVAL;
1415 	s->used = true;
1416 	return 0;
1417 }
1418 
1419 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1420 {
1421 	struct btf_str_ptrs *strs;
1422 	struct btf_str_ptr *s;
1423 
1424 	if (*str_off_ptr == 0)
1425 		return 0;
1426 
1427 	strs = ctx;
1428 	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1429 		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1430 	if (!s)
1431 		return -EINVAL;
1432 	*str_off_ptr = s->new_off;
1433 	return 0;
1434 }
1435 
1436 /*
1437  * Dedup string and filter out those that are not referenced from either .BTF
1438  * or .BTF.ext (if provided) sections.
1439  *
1440  * This is done by building index of all strings in BTF's string section,
1441  * then iterating over all entities that can reference strings (e.g., type
1442  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1443  * strings as used. After that all used strings are deduped and compacted into
1444  * sequential blob of memory and new offsets are calculated. Then all the string
1445  * references are iterated again and rewritten using new offsets.
1446  */
1447 static int btf_dedup_strings(struct btf_dedup *d)
1448 {
1449 	const struct btf_header *hdr = d->btf->hdr;
1450 	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1451 	char *end = start + d->btf->hdr->str_len;
1452 	char *p = start, *tmp_strs = NULL;
1453 	struct btf_str_ptrs strs = {
1454 		.cnt = 0,
1455 		.cap = 0,
1456 		.ptrs = NULL,
1457 		.data = start,
1458 	};
1459 	int i, j, err = 0, grp_idx;
1460 	bool grp_used;
1461 
1462 	/* build index of all strings */
1463 	while (p < end) {
1464 		if (strs.cnt + 1 > strs.cap) {
1465 			struct btf_str_ptr *new_ptrs;
1466 
1467 			strs.cap += max(strs.cnt / 2, 16);
1468 			new_ptrs = realloc(strs.ptrs,
1469 					   sizeof(strs.ptrs[0]) * strs.cap);
1470 			if (!new_ptrs) {
1471 				err = -ENOMEM;
1472 				goto done;
1473 			}
1474 			strs.ptrs = new_ptrs;
1475 		}
1476 
1477 		strs.ptrs[strs.cnt].str = p;
1478 		strs.ptrs[strs.cnt].used = false;
1479 
1480 		p += strlen(p) + 1;
1481 		strs.cnt++;
1482 	}
1483 
1484 	/* temporary storage for deduplicated strings */
1485 	tmp_strs = malloc(d->btf->hdr->str_len);
1486 	if (!tmp_strs) {
1487 		err = -ENOMEM;
1488 		goto done;
1489 	}
1490 
1491 	/* mark all used strings */
1492 	strs.ptrs[0].used = true;
1493 	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1494 	if (err)
1495 		goto done;
1496 
1497 	/* sort strings by context, so that we can identify duplicates */
1498 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1499 
1500 	/*
1501 	 * iterate groups of equal strings and if any instance in a group was
1502 	 * referenced, emit single instance and remember new offset
1503 	 */
1504 	p = tmp_strs;
1505 	grp_idx = 0;
1506 	grp_used = strs.ptrs[0].used;
1507 	/* iterate past end to avoid code duplication after loop */
1508 	for (i = 1; i <= strs.cnt; i++) {
1509 		/*
1510 		 * when i == strs.cnt, we want to skip string comparison and go
1511 		 * straight to handling last group of strings (otherwise we'd
1512 		 * need to handle last group after the loop w/ duplicated code)
1513 		 */
1514 		if (i < strs.cnt &&
1515 		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1516 			grp_used = grp_used || strs.ptrs[i].used;
1517 			continue;
1518 		}
1519 
1520 		/*
1521 		 * this check would have been required after the loop to handle
1522 		 * last group of strings, but due to <= condition in a loop
1523 		 * we avoid that duplication
1524 		 */
1525 		if (grp_used) {
1526 			int new_off = p - tmp_strs;
1527 			__u32 len = strlen(strs.ptrs[grp_idx].str);
1528 
1529 			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1530 			for (j = grp_idx; j < i; j++)
1531 				strs.ptrs[j].new_off = new_off;
1532 			p += len + 1;
1533 		}
1534 
1535 		if (i < strs.cnt) {
1536 			grp_idx = i;
1537 			grp_used = strs.ptrs[i].used;
1538 		}
1539 	}
1540 
1541 	/* replace original strings with deduped ones */
1542 	d->btf->hdr->str_len = p - tmp_strs;
1543 	memmove(start, tmp_strs, d->btf->hdr->str_len);
1544 	end = start + d->btf->hdr->str_len;
1545 
1546 	/* restore original order for further binary search lookups */
1547 	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1548 
1549 	/* remap string offsets */
1550 	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1551 	if (err)
1552 		goto done;
1553 
1554 	d->btf->hdr->str_len = end - start;
1555 
1556 done:
1557 	free(tmp_strs);
1558 	free(strs.ptrs);
1559 	return err;
1560 }
1561 
1562 static __u32 btf_hash_common(struct btf_type *t)
1563 {
1564 	__u32 h;
1565 
1566 	h = hash_combine(0, t->name_off);
1567 	h = hash_combine(h, t->info);
1568 	h = hash_combine(h, t->size);
1569 	return h;
1570 }
1571 
1572 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1573 {
1574 	return t1->name_off == t2->name_off &&
1575 	       t1->info == t2->info &&
1576 	       t1->size == t2->size;
1577 }
1578 
1579 /* Calculate type signature hash of INT. */
1580 static __u32 btf_hash_int(struct btf_type *t)
1581 {
1582 	__u32 info = *(__u32 *)(t + 1);
1583 	__u32 h;
1584 
1585 	h = btf_hash_common(t);
1586 	h = hash_combine(h, info);
1587 	return h;
1588 }
1589 
1590 /* Check structural equality of two INTs. */
1591 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1592 {
1593 	__u32 info1, info2;
1594 
1595 	if (!btf_equal_common(t1, t2))
1596 		return false;
1597 	info1 = *(__u32 *)(t1 + 1);
1598 	info2 = *(__u32 *)(t2 + 1);
1599 	return info1 == info2;
1600 }
1601 
1602 /* Calculate type signature hash of ENUM. */
1603 static __u32 btf_hash_enum(struct btf_type *t)
1604 {
1605 	__u32 h;
1606 
1607 	/* don't hash vlen and enum members to support enum fwd resolving */
1608 	h = hash_combine(0, t->name_off);
1609 	h = hash_combine(h, t->info & ~0xffff);
1610 	h = hash_combine(h, t->size);
1611 	return h;
1612 }
1613 
1614 /* Check structural equality of two ENUMs. */
1615 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1616 {
1617 	struct btf_enum *m1, *m2;
1618 	__u16 vlen;
1619 	int i;
1620 
1621 	if (!btf_equal_common(t1, t2))
1622 		return false;
1623 
1624 	vlen = BTF_INFO_VLEN(t1->info);
1625 	m1 = (struct btf_enum *)(t1 + 1);
1626 	m2 = (struct btf_enum *)(t2 + 1);
1627 	for (i = 0; i < vlen; i++) {
1628 		if (m1->name_off != m2->name_off || m1->val != m2->val)
1629 			return false;
1630 		m1++;
1631 		m2++;
1632 	}
1633 	return true;
1634 }
1635 
1636 static inline bool btf_is_enum_fwd(struct btf_type *t)
1637 {
1638 	return BTF_INFO_KIND(t->info) == BTF_KIND_ENUM &&
1639 	       BTF_INFO_VLEN(t->info) == 0;
1640 }
1641 
1642 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1643 {
1644 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1645 		return btf_equal_enum(t1, t2);
1646 	/* ignore vlen when comparing */
1647 	return t1->name_off == t2->name_off &&
1648 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1649 	       t1->size == t2->size;
1650 }
1651 
1652 /*
1653  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1654  * as referenced type IDs equivalence is established separately during type
1655  * graph equivalence check algorithm.
1656  */
1657 static __u32 btf_hash_struct(struct btf_type *t)
1658 {
1659 	struct btf_member *member = (struct btf_member *)(t + 1);
1660 	__u32 vlen = BTF_INFO_VLEN(t->info);
1661 	__u32 h = btf_hash_common(t);
1662 	int i;
1663 
1664 	for (i = 0; i < vlen; i++) {
1665 		h = hash_combine(h, member->name_off);
1666 		h = hash_combine(h, member->offset);
1667 		/* no hashing of referenced type ID, it can be unresolved yet */
1668 		member++;
1669 	}
1670 	return h;
1671 }
1672 
1673 /*
1674  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1675  * IDs. This check is performed during type graph equivalence check and
1676  * referenced types equivalence is checked separately.
1677  */
1678 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1679 {
1680 	struct btf_member *m1, *m2;
1681 	__u16 vlen;
1682 	int i;
1683 
1684 	if (!btf_equal_common(t1, t2))
1685 		return false;
1686 
1687 	vlen = BTF_INFO_VLEN(t1->info);
1688 	m1 = (struct btf_member *)(t1 + 1);
1689 	m2 = (struct btf_member *)(t2 + 1);
1690 	for (i = 0; i < vlen; i++) {
1691 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1692 			return false;
1693 		m1++;
1694 		m2++;
1695 	}
1696 	return true;
1697 }
1698 
1699 /*
1700  * Calculate type signature hash of ARRAY, including referenced type IDs,
1701  * under assumption that they were already resolved to canonical type IDs and
1702  * are not going to change.
1703  */
1704 static __u32 btf_hash_array(struct btf_type *t)
1705 {
1706 	struct btf_array *info = (struct btf_array *)(t + 1);
1707 	__u32 h = btf_hash_common(t);
1708 
1709 	h = hash_combine(h, info->type);
1710 	h = hash_combine(h, info->index_type);
1711 	h = hash_combine(h, info->nelems);
1712 	return h;
1713 }
1714 
1715 /*
1716  * Check exact equality of two ARRAYs, taking into account referenced
1717  * type IDs, under assumption that they were already resolved to canonical
1718  * type IDs and are not going to change.
1719  * This function is called during reference types deduplication to compare
1720  * ARRAY to potential canonical representative.
1721  */
1722 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1723 {
1724 	struct btf_array *info1, *info2;
1725 
1726 	if (!btf_equal_common(t1, t2))
1727 		return false;
1728 
1729 	info1 = (struct btf_array *)(t1 + 1);
1730 	info2 = (struct btf_array *)(t2 + 1);
1731 	return info1->type == info2->type &&
1732 	       info1->index_type == info2->index_type &&
1733 	       info1->nelems == info2->nelems;
1734 }
1735 
1736 /*
1737  * Check structural compatibility of two ARRAYs, ignoring referenced type
1738  * IDs. This check is performed during type graph equivalence check and
1739  * referenced types equivalence is checked separately.
1740  */
1741 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1742 {
1743 	struct btf_array *info1, *info2;
1744 
1745 	if (!btf_equal_common(t1, t2))
1746 		return false;
1747 
1748 	info1 = (struct btf_array *)(t1 + 1);
1749 	info2 = (struct btf_array *)(t2 + 1);
1750 	return info1->nelems == info2->nelems;
1751 }
1752 
1753 /*
1754  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1755  * under assumption that they were already resolved to canonical type IDs and
1756  * are not going to change.
1757  */
1758 static inline __u32 btf_hash_fnproto(struct btf_type *t)
1759 {
1760 	struct btf_param *member = (struct btf_param *)(t + 1);
1761 	__u16 vlen = BTF_INFO_VLEN(t->info);
1762 	__u32 h = btf_hash_common(t);
1763 	int i;
1764 
1765 	for (i = 0; i < vlen; i++) {
1766 		h = hash_combine(h, member->name_off);
1767 		h = hash_combine(h, member->type);
1768 		member++;
1769 	}
1770 	return h;
1771 }
1772 
1773 /*
1774  * Check exact equality of two FUNC_PROTOs, taking into account referenced
1775  * type IDs, under assumption that they were already resolved to canonical
1776  * type IDs and are not going to change.
1777  * This function is called during reference types deduplication to compare
1778  * FUNC_PROTO to potential canonical representative.
1779  */
1780 static inline bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
1781 {
1782 	struct btf_param *m1, *m2;
1783 	__u16 vlen;
1784 	int i;
1785 
1786 	if (!btf_equal_common(t1, t2))
1787 		return false;
1788 
1789 	vlen = BTF_INFO_VLEN(t1->info);
1790 	m1 = (struct btf_param *)(t1 + 1);
1791 	m2 = (struct btf_param *)(t2 + 1);
1792 	for (i = 0; i < vlen; i++) {
1793 		if (m1->name_off != m2->name_off || m1->type != m2->type)
1794 			return false;
1795 		m1++;
1796 		m2++;
1797 	}
1798 	return true;
1799 }
1800 
1801 /*
1802  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1803  * IDs. This check is performed during type graph equivalence check and
1804  * referenced types equivalence is checked separately.
1805  */
1806 static inline bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
1807 {
1808 	struct btf_param *m1, *m2;
1809 	__u16 vlen;
1810 	int i;
1811 
1812 	/* skip return type ID */
1813 	if (t1->name_off != t2->name_off || t1->info != t2->info)
1814 		return false;
1815 
1816 	vlen = BTF_INFO_VLEN(t1->info);
1817 	m1 = (struct btf_param *)(t1 + 1);
1818 	m2 = (struct btf_param *)(t2 + 1);
1819 	for (i = 0; i < vlen; i++) {
1820 		if (m1->name_off != m2->name_off)
1821 			return false;
1822 		m1++;
1823 		m2++;
1824 	}
1825 	return true;
1826 }
1827 
1828 /*
1829  * Deduplicate primitive types, that can't reference other types, by calculating
1830  * their type signature hash and comparing them with any possible canonical
1831  * candidate. If no canonical candidate matches, type itself is marked as
1832  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
1833  */
1834 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
1835 {
1836 	struct btf_type *t = d->btf->types[type_id];
1837 	struct btf_type *cand;
1838 	struct btf_dedup_node *cand_node;
1839 	/* if we don't find equivalent type, then we are canonical */
1840 	__u32 new_id = type_id;
1841 	__u32 h;
1842 
1843 	switch (BTF_INFO_KIND(t->info)) {
1844 	case BTF_KIND_CONST:
1845 	case BTF_KIND_VOLATILE:
1846 	case BTF_KIND_RESTRICT:
1847 	case BTF_KIND_PTR:
1848 	case BTF_KIND_TYPEDEF:
1849 	case BTF_KIND_ARRAY:
1850 	case BTF_KIND_STRUCT:
1851 	case BTF_KIND_UNION:
1852 	case BTF_KIND_FUNC:
1853 	case BTF_KIND_FUNC_PROTO:
1854 		return 0;
1855 
1856 	case BTF_KIND_INT:
1857 		h = btf_hash_int(t);
1858 		for_each_dedup_cand(d, h, cand_node) {
1859 			cand = d->btf->types[cand_node->type_id];
1860 			if (btf_equal_int(t, cand)) {
1861 				new_id = cand_node->type_id;
1862 				break;
1863 			}
1864 		}
1865 		break;
1866 
1867 	case BTF_KIND_ENUM:
1868 		h = btf_hash_enum(t);
1869 		for_each_dedup_cand(d, h, cand_node) {
1870 			cand = d->btf->types[cand_node->type_id];
1871 			if (btf_equal_enum(t, cand)) {
1872 				new_id = cand_node->type_id;
1873 				break;
1874 			}
1875 			if (d->opts.dont_resolve_fwds)
1876 				continue;
1877 			if (btf_compat_enum(t, cand)) {
1878 				if (btf_is_enum_fwd(t)) {
1879 					/* resolve fwd to full enum */
1880 					new_id = cand_node->type_id;
1881 					break;
1882 				}
1883 				/* resolve canonical enum fwd to full enum */
1884 				d->map[cand_node->type_id] = type_id;
1885 			}
1886 		}
1887 		break;
1888 
1889 	case BTF_KIND_FWD:
1890 		h = btf_hash_common(t);
1891 		for_each_dedup_cand(d, h, cand_node) {
1892 			cand = d->btf->types[cand_node->type_id];
1893 			if (btf_equal_common(t, cand)) {
1894 				new_id = cand_node->type_id;
1895 				break;
1896 			}
1897 		}
1898 		break;
1899 
1900 	default:
1901 		return -EINVAL;
1902 	}
1903 
1904 	d->map[type_id] = new_id;
1905 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
1906 		return -ENOMEM;
1907 
1908 	return 0;
1909 }
1910 
1911 static int btf_dedup_prim_types(struct btf_dedup *d)
1912 {
1913 	int i, err;
1914 
1915 	for (i = 1; i <= d->btf->nr_types; i++) {
1916 		err = btf_dedup_prim_type(d, i);
1917 		if (err)
1918 			return err;
1919 	}
1920 	return 0;
1921 }
1922 
1923 /*
1924  * Check whether type is already mapped into canonical one (could be to itself).
1925  */
1926 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
1927 {
1928 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
1929 }
1930 
1931 /*
1932  * Resolve type ID into its canonical type ID, if any; otherwise return original
1933  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
1934  * STRUCT/UNION link and resolve it into canonical type ID as well.
1935  */
1936 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
1937 {
1938 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
1939 		type_id = d->map[type_id];
1940 	return type_id;
1941 }
1942 
1943 /*
1944  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
1945  * type ID.
1946  */
1947 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
1948 {
1949 	__u32 orig_type_id = type_id;
1950 
1951 	if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
1952 		return type_id;
1953 
1954 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
1955 		type_id = d->map[type_id];
1956 
1957 	if (BTF_INFO_KIND(d->btf->types[type_id]->info) != BTF_KIND_FWD)
1958 		return type_id;
1959 
1960 	return orig_type_id;
1961 }
1962 
1963 
1964 static inline __u16 btf_fwd_kind(struct btf_type *t)
1965 {
1966 	return BTF_INFO_KFLAG(t->info) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
1967 }
1968 
1969 /*
1970  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
1971  * call it "candidate graph" in this description for brevity) to a type graph
1972  * formed by (potential) canonical struct/union ("canonical graph" for brevity
1973  * here, though keep in mind that not all types in canonical graph are
1974  * necessarily canonical representatives themselves, some of them might be
1975  * duplicates or its uniqueness might not have been established yet).
1976  * Returns:
1977  *  - >0, if type graphs are equivalent;
1978  *  -  0, if not equivalent;
1979  *  - <0, on error.
1980  *
1981  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
1982  * equivalence of BTF types at each step. If at any point BTF types in candidate
1983  * and canonical graphs are not compatible structurally, whole graphs are
1984  * incompatible. If types are structurally equivalent (i.e., all information
1985  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
1986  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
1987  * If a type references other types, then those referenced types are checked
1988  * for equivalence recursively.
1989  *
1990  * During DFS traversal, if we find that for current `canon_id` type we
1991  * already have some mapping in hypothetical map, we check for two possible
1992  * situations:
1993  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
1994  *     happen when type graphs have cycles. In this case we assume those two
1995  *     types are equivalent.
1996  *   - `canon_id` is mapped to different type. This is contradiction in our
1997  *     hypothetical mapping, because same graph in canonical graph corresponds
1998  *     to two different types in candidate graph, which for equivalent type
1999  *     graphs shouldn't happen. This condition terminates equivalence check
2000  *     with negative result.
2001  *
2002  * If type graphs traversal exhausts types to check and find no contradiction,
2003  * then type graphs are equivalent.
2004  *
2005  * When checking types for equivalence, there is one special case: FWD types.
2006  * If FWD type resolution is allowed and one of the types (either from canonical
2007  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2008  * flag) and their names match, hypothetical mapping is updated to point from
2009  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2010  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2011  *
2012  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2013  * if there are two exactly named (or anonymous) structs/unions that are
2014  * compatible structurally, one of which has FWD field, while other is concrete
2015  * STRUCT/UNION, but according to C sources they are different structs/unions
2016  * that are referencing different types with the same name. This is extremely
2017  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2018  * this logic is causing problems.
2019  *
2020  * Doing FWD resolution means that both candidate and/or canonical graphs can
2021  * consists of portions of the graph that come from multiple compilation units.
2022  * This is due to the fact that types within single compilation unit are always
2023  * deduplicated and FWDs are already resolved, if referenced struct/union
2024  * definiton is available. So, if we had unresolved FWD and found corresponding
2025  * STRUCT/UNION, they will be from different compilation units. This
2026  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2027  * type graph will likely have at least two different BTF types that describe
2028  * same type (e.g., most probably there will be two different BTF types for the
2029  * same 'int' primitive type) and could even have "overlapping" parts of type
2030  * graph that describe same subset of types.
2031  *
2032  * This in turn means that our assumption that each type in canonical graph
2033  * must correspond to exactly one type in candidate graph might not hold
2034  * anymore and will make it harder to detect contradictions using hypothetical
2035  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2036  * resolution only in canonical graph. FWDs in candidate graphs are never
2037  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2038  * that can occur:
2039  *   - Both types in canonical and candidate graphs are FWDs. If they are
2040  *     structurally equivalent, then they can either be both resolved to the
2041  *     same STRUCT/UNION or not resolved at all. In both cases they are
2042  *     equivalent and there is no need to resolve FWD on candidate side.
2043  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2044  *     so nothing to resolve as well, algorithm will check equivalence anyway.
2045  *   - Type in canonical graph is FWD, while type in candidate is concrete
2046  *     STRUCT/UNION. In this case candidate graph comes from single compilation
2047  *     unit, so there is exactly one BTF type for each unique C type. After
2048  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2049  *     in canonical graph mapping to single BTF type in candidate graph, but
2050  *     because hypothetical mapping maps from canonical to candidate types, it's
2051  *     alright, and we still maintain the property of having single `canon_id`
2052  *     mapping to single `cand_id` (there could be two different `canon_id`
2053  *     mapped to the same `cand_id`, but it's not contradictory).
2054  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2055  *     graph is FWD. In this case we are just going to check compatibility of
2056  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2057  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2058  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2059  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2060  *     canonical graph.
2061  */
2062 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2063 			      __u32 canon_id)
2064 {
2065 	struct btf_type *cand_type;
2066 	struct btf_type *canon_type;
2067 	__u32 hypot_type_id;
2068 	__u16 cand_kind;
2069 	__u16 canon_kind;
2070 	int i, eq;
2071 
2072 	/* if both resolve to the same canonical, they must be equivalent */
2073 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2074 		return 1;
2075 
2076 	canon_id = resolve_fwd_id(d, canon_id);
2077 
2078 	hypot_type_id = d->hypot_map[canon_id];
2079 	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2080 		return hypot_type_id == cand_id;
2081 
2082 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2083 		return -ENOMEM;
2084 
2085 	cand_type = d->btf->types[cand_id];
2086 	canon_type = d->btf->types[canon_id];
2087 	cand_kind = BTF_INFO_KIND(cand_type->info);
2088 	canon_kind = BTF_INFO_KIND(canon_type->info);
2089 
2090 	if (cand_type->name_off != canon_type->name_off)
2091 		return 0;
2092 
2093 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2094 	if (!d->opts.dont_resolve_fwds
2095 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2096 	    && cand_kind != canon_kind) {
2097 		__u16 real_kind;
2098 		__u16 fwd_kind;
2099 
2100 		if (cand_kind == BTF_KIND_FWD) {
2101 			real_kind = canon_kind;
2102 			fwd_kind = btf_fwd_kind(cand_type);
2103 		} else {
2104 			real_kind = cand_kind;
2105 			fwd_kind = btf_fwd_kind(canon_type);
2106 		}
2107 		return fwd_kind == real_kind;
2108 	}
2109 
2110 	switch (cand_kind) {
2111 	case BTF_KIND_INT:
2112 		return btf_equal_int(cand_type, canon_type);
2113 
2114 	case BTF_KIND_ENUM:
2115 		if (d->opts.dont_resolve_fwds)
2116 			return btf_equal_enum(cand_type, canon_type);
2117 		else
2118 			return btf_compat_enum(cand_type, canon_type);
2119 
2120 	case BTF_KIND_FWD:
2121 		return btf_equal_common(cand_type, canon_type);
2122 
2123 	case BTF_KIND_CONST:
2124 	case BTF_KIND_VOLATILE:
2125 	case BTF_KIND_RESTRICT:
2126 	case BTF_KIND_PTR:
2127 	case BTF_KIND_TYPEDEF:
2128 	case BTF_KIND_FUNC:
2129 		if (cand_type->info != canon_type->info)
2130 			return 0;
2131 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2132 
2133 	case BTF_KIND_ARRAY: {
2134 		struct btf_array *cand_arr, *canon_arr;
2135 
2136 		if (!btf_compat_array(cand_type, canon_type))
2137 			return 0;
2138 		cand_arr = (struct btf_array *)(cand_type + 1);
2139 		canon_arr = (struct btf_array *)(canon_type + 1);
2140 		eq = btf_dedup_is_equiv(d,
2141 			cand_arr->index_type, canon_arr->index_type);
2142 		if (eq <= 0)
2143 			return eq;
2144 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2145 	}
2146 
2147 	case BTF_KIND_STRUCT:
2148 	case BTF_KIND_UNION: {
2149 		struct btf_member *cand_m, *canon_m;
2150 		__u16 vlen;
2151 
2152 		if (!btf_shallow_equal_struct(cand_type, canon_type))
2153 			return 0;
2154 		vlen = BTF_INFO_VLEN(cand_type->info);
2155 		cand_m = (struct btf_member *)(cand_type + 1);
2156 		canon_m = (struct btf_member *)(canon_type + 1);
2157 		for (i = 0; i < vlen; i++) {
2158 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2159 			if (eq <= 0)
2160 				return eq;
2161 			cand_m++;
2162 			canon_m++;
2163 		}
2164 
2165 		return 1;
2166 	}
2167 
2168 	case BTF_KIND_FUNC_PROTO: {
2169 		struct btf_param *cand_p, *canon_p;
2170 		__u16 vlen;
2171 
2172 		if (!btf_compat_fnproto(cand_type, canon_type))
2173 			return 0;
2174 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2175 		if (eq <= 0)
2176 			return eq;
2177 		vlen = BTF_INFO_VLEN(cand_type->info);
2178 		cand_p = (struct btf_param *)(cand_type + 1);
2179 		canon_p = (struct btf_param *)(canon_type + 1);
2180 		for (i = 0; i < vlen; i++) {
2181 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2182 			if (eq <= 0)
2183 				return eq;
2184 			cand_p++;
2185 			canon_p++;
2186 		}
2187 		return 1;
2188 	}
2189 
2190 	default:
2191 		return -EINVAL;
2192 	}
2193 	return 0;
2194 }
2195 
2196 /*
2197  * Use hypothetical mapping, produced by successful type graph equivalence
2198  * check, to augment existing struct/union canonical mapping, where possible.
2199  *
2200  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2201  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2202  * it doesn't matter if FWD type was part of canonical graph or candidate one,
2203  * we are recording the mapping anyway. As opposed to carefulness required
2204  * for struct/union correspondence mapping (described below), for FWD resolution
2205  * it's not important, as by the time that FWD type (reference type) will be
2206  * deduplicated all structs/unions will be deduped already anyway.
2207  *
2208  * Recording STRUCT/UNION mapping is purely a performance optimization and is
2209  * not required for correctness. It needs to be done carefully to ensure that
2210  * struct/union from candidate's type graph is not mapped into corresponding
2211  * struct/union from canonical type graph that itself hasn't been resolved into
2212  * canonical representative. The only guarantee we have is that canonical
2213  * struct/union was determined as canonical and that won't change. But any
2214  * types referenced through that struct/union fields could have been not yet
2215  * resolved, so in case like that it's too early to establish any kind of
2216  * correspondence between structs/unions.
2217  *
2218  * No canonical correspondence is derived for primitive types (they are already
2219  * deduplicated completely already anyway) or reference types (they rely on
2220  * stability of struct/union canonical relationship for equivalence checks).
2221  */
2222 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2223 {
2224 	__u32 cand_type_id, targ_type_id;
2225 	__u16 t_kind, c_kind;
2226 	__u32 t_id, c_id;
2227 	int i;
2228 
2229 	for (i = 0; i < d->hypot_cnt; i++) {
2230 		cand_type_id = d->hypot_list[i];
2231 		targ_type_id = d->hypot_map[cand_type_id];
2232 		t_id = resolve_type_id(d, targ_type_id);
2233 		c_id = resolve_type_id(d, cand_type_id);
2234 		t_kind = BTF_INFO_KIND(d->btf->types[t_id]->info);
2235 		c_kind = BTF_INFO_KIND(d->btf->types[c_id]->info);
2236 		/*
2237 		 * Resolve FWD into STRUCT/UNION.
2238 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2239 		 * mapped to canonical representative (as opposed to
2240 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2241 		 * eventually that struct is going to be mapped and all resolved
2242 		 * FWDs will automatically resolve to correct canonical
2243 		 * representative. This will happen before ref type deduping,
2244 		 * which critically depends on stability of these mapping. This
2245 		 * stability is not a requirement for STRUCT/UNION equivalence
2246 		 * checks, though.
2247 		 */
2248 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2249 			d->map[c_id] = t_id;
2250 		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2251 			d->map[t_id] = c_id;
2252 
2253 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2254 		    c_kind != BTF_KIND_FWD &&
2255 		    is_type_mapped(d, c_id) &&
2256 		    !is_type_mapped(d, t_id)) {
2257 			/*
2258 			 * as a perf optimization, we can map struct/union
2259 			 * that's part of type graph we just verified for
2260 			 * equivalence. We can do that for struct/union that has
2261 			 * canonical representative only, though.
2262 			 */
2263 			d->map[t_id] = c_id;
2264 		}
2265 	}
2266 }
2267 
2268 /*
2269  * Deduplicate struct/union types.
2270  *
2271  * For each struct/union type its type signature hash is calculated, taking
2272  * into account type's name, size, number, order and names of fields, but
2273  * ignoring type ID's referenced from fields, because they might not be deduped
2274  * completely until after reference types deduplication phase. This type hash
2275  * is used to iterate over all potential canonical types, sharing same hash.
2276  * For each canonical candidate we check whether type graphs that they form
2277  * (through referenced types in fields and so on) are equivalent using algorithm
2278  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2279  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2280  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2281  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2282  * potentially map other structs/unions to their canonical representatives,
2283  * if such relationship hasn't yet been established. This speeds up algorithm
2284  * by eliminating some of the duplicate work.
2285  *
2286  * If no matching canonical representative was found, struct/union is marked
2287  * as canonical for itself and is added into btf_dedup->dedup_table hash map
2288  * for further look ups.
2289  */
2290 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2291 {
2292 	struct btf_dedup_node *cand_node;
2293 	struct btf_type *cand_type, *t;
2294 	/* if we don't find equivalent type, then we are canonical */
2295 	__u32 new_id = type_id;
2296 	__u16 kind;
2297 	__u32 h;
2298 
2299 	/* already deduped or is in process of deduping (loop detected) */
2300 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2301 		return 0;
2302 
2303 	t = d->btf->types[type_id];
2304 	kind = BTF_INFO_KIND(t->info);
2305 
2306 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2307 		return 0;
2308 
2309 	h = btf_hash_struct(t);
2310 	for_each_dedup_cand(d, h, cand_node) {
2311 		int eq;
2312 
2313 		/*
2314 		 * Even though btf_dedup_is_equiv() checks for
2315 		 * btf_shallow_equal_struct() internally when checking two
2316 		 * structs (unions) for equivalence, we need to guard here
2317 		 * from picking matching FWD type as a dedup candidate.
2318 		 * This can happen due to hash collision. In such case just
2319 		 * relying on btf_dedup_is_equiv() would lead to potentially
2320 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2321 		 * FWD and compatible STRUCT/UNION are considered equivalent.
2322 		 */
2323 		cand_type = d->btf->types[cand_node->type_id];
2324 		if (!btf_shallow_equal_struct(t, cand_type))
2325 			continue;
2326 
2327 		btf_dedup_clear_hypot_map(d);
2328 		eq = btf_dedup_is_equiv(d, type_id, cand_node->type_id);
2329 		if (eq < 0)
2330 			return eq;
2331 		if (!eq)
2332 			continue;
2333 		new_id = cand_node->type_id;
2334 		btf_dedup_merge_hypot_map(d);
2335 		break;
2336 	}
2337 
2338 	d->map[type_id] = new_id;
2339 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2340 		return -ENOMEM;
2341 
2342 	return 0;
2343 }
2344 
2345 static int btf_dedup_struct_types(struct btf_dedup *d)
2346 {
2347 	int i, err;
2348 
2349 	for (i = 1; i <= d->btf->nr_types; i++) {
2350 		err = btf_dedup_struct_type(d, i);
2351 		if (err)
2352 			return err;
2353 	}
2354 	return 0;
2355 }
2356 
2357 /*
2358  * Deduplicate reference type.
2359  *
2360  * Once all primitive and struct/union types got deduplicated, we can easily
2361  * deduplicate all other (reference) BTF types. This is done in two steps:
2362  *
2363  * 1. Resolve all referenced type IDs into their canonical type IDs. This
2364  * resolution can be done either immediately for primitive or struct/union types
2365  * (because they were deduped in previous two phases) or recursively for
2366  * reference types. Recursion will always terminate at either primitive or
2367  * struct/union type, at which point we can "unwind" chain of reference types
2368  * one by one. There is no danger of encountering cycles because in C type
2369  * system the only way to form type cycle is through struct/union, so any chain
2370  * of reference types, even those taking part in a type cycle, will inevitably
2371  * reach struct/union at some point.
2372  *
2373  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2374  * becomes "stable", in the sense that no further deduplication will cause
2375  * any changes to it. With that, it's now possible to calculate type's signature
2376  * hash (this time taking into account referenced type IDs) and loop over all
2377  * potential canonical representatives. If no match was found, current type
2378  * will become canonical representative of itself and will be added into
2379  * btf_dedup->dedup_table as another possible canonical representative.
2380  */
2381 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2382 {
2383 	struct btf_dedup_node *cand_node;
2384 	struct btf_type *t, *cand;
2385 	/* if we don't find equivalent type, then we are representative type */
2386 	__u32 new_id = type_id;
2387 	int ref_type_id;
2388 	__u32 h;
2389 
2390 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2391 		return -ELOOP;
2392 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2393 		return resolve_type_id(d, type_id);
2394 
2395 	t = d->btf->types[type_id];
2396 	d->map[type_id] = BTF_IN_PROGRESS_ID;
2397 
2398 	switch (BTF_INFO_KIND(t->info)) {
2399 	case BTF_KIND_CONST:
2400 	case BTF_KIND_VOLATILE:
2401 	case BTF_KIND_RESTRICT:
2402 	case BTF_KIND_PTR:
2403 	case BTF_KIND_TYPEDEF:
2404 	case BTF_KIND_FUNC:
2405 		ref_type_id = btf_dedup_ref_type(d, t->type);
2406 		if (ref_type_id < 0)
2407 			return ref_type_id;
2408 		t->type = ref_type_id;
2409 
2410 		h = btf_hash_common(t);
2411 		for_each_dedup_cand(d, h, cand_node) {
2412 			cand = d->btf->types[cand_node->type_id];
2413 			if (btf_equal_common(t, cand)) {
2414 				new_id = cand_node->type_id;
2415 				break;
2416 			}
2417 		}
2418 		break;
2419 
2420 	case BTF_KIND_ARRAY: {
2421 		struct btf_array *info = (struct btf_array *)(t + 1);
2422 
2423 		ref_type_id = btf_dedup_ref_type(d, info->type);
2424 		if (ref_type_id < 0)
2425 			return ref_type_id;
2426 		info->type = ref_type_id;
2427 
2428 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2429 		if (ref_type_id < 0)
2430 			return ref_type_id;
2431 		info->index_type = ref_type_id;
2432 
2433 		h = btf_hash_array(t);
2434 		for_each_dedup_cand(d, h, cand_node) {
2435 			cand = d->btf->types[cand_node->type_id];
2436 			if (btf_equal_array(t, cand)) {
2437 				new_id = cand_node->type_id;
2438 				break;
2439 			}
2440 		}
2441 		break;
2442 	}
2443 
2444 	case BTF_KIND_FUNC_PROTO: {
2445 		struct btf_param *param;
2446 		__u16 vlen;
2447 		int i;
2448 
2449 		ref_type_id = btf_dedup_ref_type(d, t->type);
2450 		if (ref_type_id < 0)
2451 			return ref_type_id;
2452 		t->type = ref_type_id;
2453 
2454 		vlen = BTF_INFO_VLEN(t->info);
2455 		param = (struct btf_param *)(t + 1);
2456 		for (i = 0; i < vlen; i++) {
2457 			ref_type_id = btf_dedup_ref_type(d, param->type);
2458 			if (ref_type_id < 0)
2459 				return ref_type_id;
2460 			param->type = ref_type_id;
2461 			param++;
2462 		}
2463 
2464 		h = btf_hash_fnproto(t);
2465 		for_each_dedup_cand(d, h, cand_node) {
2466 			cand = d->btf->types[cand_node->type_id];
2467 			if (btf_equal_fnproto(t, cand)) {
2468 				new_id = cand_node->type_id;
2469 				break;
2470 			}
2471 		}
2472 		break;
2473 	}
2474 
2475 	default:
2476 		return -EINVAL;
2477 	}
2478 
2479 	d->map[type_id] = new_id;
2480 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2481 		return -ENOMEM;
2482 
2483 	return new_id;
2484 }
2485 
2486 static int btf_dedup_ref_types(struct btf_dedup *d)
2487 {
2488 	int i, err;
2489 
2490 	for (i = 1; i <= d->btf->nr_types; i++) {
2491 		err = btf_dedup_ref_type(d, i);
2492 		if (err < 0)
2493 			return err;
2494 	}
2495 	btf_dedup_table_free(d);
2496 	return 0;
2497 }
2498 
2499 /*
2500  * Compact types.
2501  *
2502  * After we established for each type its corresponding canonical representative
2503  * type, we now can eliminate types that are not canonical and leave only
2504  * canonical ones layed out sequentially in memory by copying them over
2505  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2506  * a map from original type ID to a new compacted type ID, which will be used
2507  * during next phase to "fix up" type IDs, referenced from struct/union and
2508  * reference types.
2509  */
2510 static int btf_dedup_compact_types(struct btf_dedup *d)
2511 {
2512 	struct btf_type **new_types;
2513 	__u32 next_type_id = 1;
2514 	char *types_start, *p;
2515 	int i, len;
2516 
2517 	/* we are going to reuse hypot_map to store compaction remapping */
2518 	d->hypot_map[0] = 0;
2519 	for (i = 1; i <= d->btf->nr_types; i++)
2520 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
2521 
2522 	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2523 	p = types_start;
2524 
2525 	for (i = 1; i <= d->btf->nr_types; i++) {
2526 		if (d->map[i] != i)
2527 			continue;
2528 
2529 		len = btf_type_size(d->btf->types[i]);
2530 		if (len < 0)
2531 			return len;
2532 
2533 		memmove(p, d->btf->types[i], len);
2534 		d->hypot_map[i] = next_type_id;
2535 		d->btf->types[next_type_id] = (struct btf_type *)p;
2536 		p += len;
2537 		next_type_id++;
2538 	}
2539 
2540 	/* shrink struct btf's internal types index and update btf_header */
2541 	d->btf->nr_types = next_type_id - 1;
2542 	d->btf->types_size = d->btf->nr_types;
2543 	d->btf->hdr->type_len = p - types_start;
2544 	new_types = realloc(d->btf->types,
2545 			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2546 	if (!new_types)
2547 		return -ENOMEM;
2548 	d->btf->types = new_types;
2549 
2550 	/* make sure string section follows type information without gaps */
2551 	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2552 	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2553 	d->btf->strings = p;
2554 	p += d->btf->hdr->str_len;
2555 
2556 	d->btf->data_size = p - (char *)d->btf->data;
2557 	return 0;
2558 }
2559 
2560 /*
2561  * Figure out final (deduplicated and compacted) type ID for provided original
2562  * `type_id` by first resolving it into corresponding canonical type ID and
2563  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2564  * which is populated during compaction phase.
2565  */
2566 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2567 {
2568 	__u32 resolved_type_id, new_type_id;
2569 
2570 	resolved_type_id = resolve_type_id(d, type_id);
2571 	new_type_id = d->hypot_map[resolved_type_id];
2572 	if (new_type_id > BTF_MAX_NR_TYPES)
2573 		return -EINVAL;
2574 	return new_type_id;
2575 }
2576 
2577 /*
2578  * Remap referenced type IDs into deduped type IDs.
2579  *
2580  * After BTF types are deduplicated and compacted, their final type IDs may
2581  * differ from original ones. The map from original to a corresponding
2582  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2583  * compaction phase. During remapping phase we are rewriting all type IDs
2584  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2585  * their final deduped type IDs.
2586  */
2587 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2588 {
2589 	struct btf_type *t = d->btf->types[type_id];
2590 	int i, r;
2591 
2592 	switch (BTF_INFO_KIND(t->info)) {
2593 	case BTF_KIND_INT:
2594 	case BTF_KIND_ENUM:
2595 		break;
2596 
2597 	case BTF_KIND_FWD:
2598 	case BTF_KIND_CONST:
2599 	case BTF_KIND_VOLATILE:
2600 	case BTF_KIND_RESTRICT:
2601 	case BTF_KIND_PTR:
2602 	case BTF_KIND_TYPEDEF:
2603 	case BTF_KIND_FUNC:
2604 		r = btf_dedup_remap_type_id(d, t->type);
2605 		if (r < 0)
2606 			return r;
2607 		t->type = r;
2608 		break;
2609 
2610 	case BTF_KIND_ARRAY: {
2611 		struct btf_array *arr_info = (struct btf_array *)(t + 1);
2612 
2613 		r = btf_dedup_remap_type_id(d, arr_info->type);
2614 		if (r < 0)
2615 			return r;
2616 		arr_info->type = r;
2617 		r = btf_dedup_remap_type_id(d, arr_info->index_type);
2618 		if (r < 0)
2619 			return r;
2620 		arr_info->index_type = r;
2621 		break;
2622 	}
2623 
2624 	case BTF_KIND_STRUCT:
2625 	case BTF_KIND_UNION: {
2626 		struct btf_member *member = (struct btf_member *)(t + 1);
2627 		__u16 vlen = BTF_INFO_VLEN(t->info);
2628 
2629 		for (i = 0; i < vlen; i++) {
2630 			r = btf_dedup_remap_type_id(d, member->type);
2631 			if (r < 0)
2632 				return r;
2633 			member->type = r;
2634 			member++;
2635 		}
2636 		break;
2637 	}
2638 
2639 	case BTF_KIND_FUNC_PROTO: {
2640 		struct btf_param *param = (struct btf_param *)(t + 1);
2641 		__u16 vlen = BTF_INFO_VLEN(t->info);
2642 
2643 		r = btf_dedup_remap_type_id(d, t->type);
2644 		if (r < 0)
2645 			return r;
2646 		t->type = r;
2647 
2648 		for (i = 0; i < vlen; i++) {
2649 			r = btf_dedup_remap_type_id(d, param->type);
2650 			if (r < 0)
2651 				return r;
2652 			param->type = r;
2653 			param++;
2654 		}
2655 		break;
2656 	}
2657 
2658 	default:
2659 		return -EINVAL;
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 static int btf_dedup_remap_types(struct btf_dedup *d)
2666 {
2667 	int i, r;
2668 
2669 	for (i = 1; i <= d->btf->nr_types; i++) {
2670 		r = btf_dedup_remap_type(d, i);
2671 		if (r < 0)
2672 			return r;
2673 	}
2674 	return 0;
2675 }
2676