1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <endian.h> 5 #include <stdio.h> 6 #include <stdlib.h> 7 #include <string.h> 8 #include <fcntl.h> 9 #include <unistd.h> 10 #include <errno.h> 11 #include <sys/utsname.h> 12 #include <sys/param.h> 13 #include <sys/stat.h> 14 #include <linux/kernel.h> 15 #include <linux/err.h> 16 #include <linux/btf.h> 17 #include <gelf.h> 18 #include "btf.h" 19 #include "bpf.h" 20 #include "libbpf.h" 21 #include "libbpf_internal.h" 22 #include "hashmap.h" 23 24 #define BTF_MAX_NR_TYPES 0x7fffffffU 25 #define BTF_MAX_STR_OFFSET 0x7fffffffU 26 27 static struct btf_type btf_void; 28 29 struct btf { 30 union { 31 struct btf_header *hdr; 32 void *data; 33 }; 34 struct btf_type **types; 35 const char *strings; 36 void *nohdr_data; 37 __u32 nr_types; 38 __u32 types_size; 39 __u32 data_size; 40 int fd; 41 int ptr_sz; 42 }; 43 44 static inline __u64 ptr_to_u64(const void *ptr) 45 { 46 return (__u64) (unsigned long) ptr; 47 } 48 49 static int btf_add_type(struct btf *btf, struct btf_type *t) 50 { 51 if (btf->types_size - btf->nr_types < 2) { 52 struct btf_type **new_types; 53 __u32 expand_by, new_size; 54 55 if (btf->types_size == BTF_MAX_NR_TYPES) 56 return -E2BIG; 57 58 expand_by = max(btf->types_size >> 2, 16U); 59 new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by); 60 61 new_types = libbpf_reallocarray(btf->types, new_size, sizeof(*new_types)); 62 if (!new_types) 63 return -ENOMEM; 64 65 if (btf->nr_types == 0) 66 new_types[0] = &btf_void; 67 68 btf->types = new_types; 69 btf->types_size = new_size; 70 } 71 72 btf->types[++(btf->nr_types)] = t; 73 74 return 0; 75 } 76 77 static int btf_parse_hdr(struct btf *btf) 78 { 79 const struct btf_header *hdr = btf->hdr; 80 __u32 meta_left; 81 82 if (btf->data_size < sizeof(struct btf_header)) { 83 pr_debug("BTF header not found\n"); 84 return -EINVAL; 85 } 86 87 if (hdr->magic != BTF_MAGIC) { 88 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 89 return -EINVAL; 90 } 91 92 if (hdr->version != BTF_VERSION) { 93 pr_debug("Unsupported BTF version:%u\n", hdr->version); 94 return -ENOTSUP; 95 } 96 97 if (hdr->flags) { 98 pr_debug("Unsupported BTF flags:%x\n", hdr->flags); 99 return -ENOTSUP; 100 } 101 102 meta_left = btf->data_size - sizeof(*hdr); 103 if (!meta_left) { 104 pr_debug("BTF has no data\n"); 105 return -EINVAL; 106 } 107 108 if (meta_left < hdr->type_off) { 109 pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off); 110 return -EINVAL; 111 } 112 113 if (meta_left < hdr->str_off) { 114 pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off); 115 return -EINVAL; 116 } 117 118 if (hdr->type_off >= hdr->str_off) { 119 pr_debug("BTF type section offset >= string section offset. No type?\n"); 120 return -EINVAL; 121 } 122 123 if (hdr->type_off & 0x02) { 124 pr_debug("BTF type section is not aligned to 4 bytes\n"); 125 return -EINVAL; 126 } 127 128 btf->nohdr_data = btf->hdr + 1; 129 130 return 0; 131 } 132 133 static int btf_parse_str_sec(struct btf *btf) 134 { 135 const struct btf_header *hdr = btf->hdr; 136 const char *start = btf->nohdr_data + hdr->str_off; 137 const char *end = start + btf->hdr->str_len; 138 139 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || 140 start[0] || end[-1]) { 141 pr_debug("Invalid BTF string section\n"); 142 return -EINVAL; 143 } 144 145 btf->strings = start; 146 147 return 0; 148 } 149 150 static int btf_type_size(struct btf_type *t) 151 { 152 int base_size = sizeof(struct btf_type); 153 __u16 vlen = btf_vlen(t); 154 155 switch (btf_kind(t)) { 156 case BTF_KIND_FWD: 157 case BTF_KIND_CONST: 158 case BTF_KIND_VOLATILE: 159 case BTF_KIND_RESTRICT: 160 case BTF_KIND_PTR: 161 case BTF_KIND_TYPEDEF: 162 case BTF_KIND_FUNC: 163 return base_size; 164 case BTF_KIND_INT: 165 return base_size + sizeof(__u32); 166 case BTF_KIND_ENUM: 167 return base_size + vlen * sizeof(struct btf_enum); 168 case BTF_KIND_ARRAY: 169 return base_size + sizeof(struct btf_array); 170 case BTF_KIND_STRUCT: 171 case BTF_KIND_UNION: 172 return base_size + vlen * sizeof(struct btf_member); 173 case BTF_KIND_FUNC_PROTO: 174 return base_size + vlen * sizeof(struct btf_param); 175 case BTF_KIND_VAR: 176 return base_size + sizeof(struct btf_var); 177 case BTF_KIND_DATASEC: 178 return base_size + vlen * sizeof(struct btf_var_secinfo); 179 default: 180 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 181 return -EINVAL; 182 } 183 } 184 185 static int btf_parse_type_sec(struct btf *btf) 186 { 187 struct btf_header *hdr = btf->hdr; 188 void *nohdr_data = btf->nohdr_data; 189 void *next_type = nohdr_data + hdr->type_off; 190 void *end_type = nohdr_data + hdr->str_off; 191 192 while (next_type < end_type) { 193 struct btf_type *t = next_type; 194 int type_size; 195 int err; 196 197 type_size = btf_type_size(t); 198 if (type_size < 0) 199 return type_size; 200 next_type += type_size; 201 err = btf_add_type(btf, t); 202 if (err) 203 return err; 204 } 205 206 return 0; 207 } 208 209 __u32 btf__get_nr_types(const struct btf *btf) 210 { 211 return btf->nr_types; 212 } 213 214 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 215 { 216 if (type_id > btf->nr_types) 217 return NULL; 218 219 return btf->types[type_id]; 220 } 221 222 static int determine_ptr_size(const struct btf *btf) 223 { 224 const struct btf_type *t; 225 const char *name; 226 int i; 227 228 for (i = 1; i <= btf->nr_types; i++) { 229 t = btf__type_by_id(btf, i); 230 if (!btf_is_int(t)) 231 continue; 232 233 name = btf__name_by_offset(btf, t->name_off); 234 if (!name) 235 continue; 236 237 if (strcmp(name, "long int") == 0 || 238 strcmp(name, "long unsigned int") == 0) { 239 if (t->size != 4 && t->size != 8) 240 continue; 241 return t->size; 242 } 243 } 244 245 return -1; 246 } 247 248 static size_t btf_ptr_sz(const struct btf *btf) 249 { 250 if (!btf->ptr_sz) 251 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 252 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 253 } 254 255 /* Return pointer size this BTF instance assumes. The size is heuristically 256 * determined by looking for 'long' or 'unsigned long' integer type and 257 * recording its size in bytes. If BTF type information doesn't have any such 258 * type, this function returns 0. In the latter case, native architecture's 259 * pointer size is assumed, so will be either 4 or 8, depending on 260 * architecture that libbpf was compiled for. It's possible to override 261 * guessed value by using btf__set_pointer_size() API. 262 */ 263 size_t btf__pointer_size(const struct btf *btf) 264 { 265 if (!btf->ptr_sz) 266 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 267 268 if (btf->ptr_sz < 0) 269 /* not enough BTF type info to guess */ 270 return 0; 271 272 return btf->ptr_sz; 273 } 274 275 /* Override or set pointer size in bytes. Only values of 4 and 8 are 276 * supported. 277 */ 278 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 279 { 280 if (ptr_sz != 4 && ptr_sz != 8) 281 return -EINVAL; 282 btf->ptr_sz = ptr_sz; 283 return 0; 284 } 285 286 static bool btf_type_is_void(const struct btf_type *t) 287 { 288 return t == &btf_void || btf_is_fwd(t); 289 } 290 291 static bool btf_type_is_void_or_null(const struct btf_type *t) 292 { 293 return !t || btf_type_is_void(t); 294 } 295 296 #define MAX_RESOLVE_DEPTH 32 297 298 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 299 { 300 const struct btf_array *array; 301 const struct btf_type *t; 302 __u32 nelems = 1; 303 __s64 size = -1; 304 int i; 305 306 t = btf__type_by_id(btf, type_id); 307 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 308 i++) { 309 switch (btf_kind(t)) { 310 case BTF_KIND_INT: 311 case BTF_KIND_STRUCT: 312 case BTF_KIND_UNION: 313 case BTF_KIND_ENUM: 314 case BTF_KIND_DATASEC: 315 size = t->size; 316 goto done; 317 case BTF_KIND_PTR: 318 size = btf_ptr_sz(btf); 319 goto done; 320 case BTF_KIND_TYPEDEF: 321 case BTF_KIND_VOLATILE: 322 case BTF_KIND_CONST: 323 case BTF_KIND_RESTRICT: 324 case BTF_KIND_VAR: 325 type_id = t->type; 326 break; 327 case BTF_KIND_ARRAY: 328 array = btf_array(t); 329 if (nelems && array->nelems > UINT32_MAX / nelems) 330 return -E2BIG; 331 nelems *= array->nelems; 332 type_id = array->type; 333 break; 334 default: 335 return -EINVAL; 336 } 337 338 t = btf__type_by_id(btf, type_id); 339 } 340 341 done: 342 if (size < 0) 343 return -EINVAL; 344 if (nelems && size > UINT32_MAX / nelems) 345 return -E2BIG; 346 347 return nelems * size; 348 } 349 350 int btf__align_of(const struct btf *btf, __u32 id) 351 { 352 const struct btf_type *t = btf__type_by_id(btf, id); 353 __u16 kind = btf_kind(t); 354 355 switch (kind) { 356 case BTF_KIND_INT: 357 case BTF_KIND_ENUM: 358 return min(btf_ptr_sz(btf), (size_t)t->size); 359 case BTF_KIND_PTR: 360 return btf_ptr_sz(btf); 361 case BTF_KIND_TYPEDEF: 362 case BTF_KIND_VOLATILE: 363 case BTF_KIND_CONST: 364 case BTF_KIND_RESTRICT: 365 return btf__align_of(btf, t->type); 366 case BTF_KIND_ARRAY: 367 return btf__align_of(btf, btf_array(t)->type); 368 case BTF_KIND_STRUCT: 369 case BTF_KIND_UNION: { 370 const struct btf_member *m = btf_members(t); 371 __u16 vlen = btf_vlen(t); 372 int i, max_align = 1, align; 373 374 for (i = 0; i < vlen; i++, m++) { 375 align = btf__align_of(btf, m->type); 376 if (align <= 0) 377 return align; 378 max_align = max(max_align, align); 379 } 380 381 return max_align; 382 } 383 default: 384 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 385 return 0; 386 } 387 } 388 389 int btf__resolve_type(const struct btf *btf, __u32 type_id) 390 { 391 const struct btf_type *t; 392 int depth = 0; 393 394 t = btf__type_by_id(btf, type_id); 395 while (depth < MAX_RESOLVE_DEPTH && 396 !btf_type_is_void_or_null(t) && 397 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 398 type_id = t->type; 399 t = btf__type_by_id(btf, type_id); 400 depth++; 401 } 402 403 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 404 return -EINVAL; 405 406 return type_id; 407 } 408 409 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 410 { 411 __u32 i; 412 413 if (!strcmp(type_name, "void")) 414 return 0; 415 416 for (i = 1; i <= btf->nr_types; i++) { 417 const struct btf_type *t = btf->types[i]; 418 const char *name = btf__name_by_offset(btf, t->name_off); 419 420 if (name && !strcmp(type_name, name)) 421 return i; 422 } 423 424 return -ENOENT; 425 } 426 427 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 428 __u32 kind) 429 { 430 __u32 i; 431 432 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 433 return 0; 434 435 for (i = 1; i <= btf->nr_types; i++) { 436 const struct btf_type *t = btf->types[i]; 437 const char *name; 438 439 if (btf_kind(t) != kind) 440 continue; 441 name = btf__name_by_offset(btf, t->name_off); 442 if (name && !strcmp(type_name, name)) 443 return i; 444 } 445 446 return -ENOENT; 447 } 448 449 void btf__free(struct btf *btf) 450 { 451 if (IS_ERR_OR_NULL(btf)) 452 return; 453 454 if (btf->fd >= 0) 455 close(btf->fd); 456 457 free(btf->data); 458 free(btf->types); 459 free(btf); 460 } 461 462 struct btf *btf__new(const void *data, __u32 size) 463 { 464 struct btf *btf; 465 int err; 466 467 btf = calloc(1, sizeof(struct btf)); 468 if (!btf) 469 return ERR_PTR(-ENOMEM); 470 471 btf->fd = -1; 472 473 btf->data = malloc(size); 474 if (!btf->data) { 475 err = -ENOMEM; 476 goto done; 477 } 478 479 memcpy(btf->data, data, size); 480 btf->data_size = size; 481 482 err = btf_parse_hdr(btf); 483 if (err) 484 goto done; 485 486 err = btf_parse_str_sec(btf); 487 if (err) 488 goto done; 489 490 err = btf_parse_type_sec(btf); 491 492 done: 493 if (err) { 494 btf__free(btf); 495 return ERR_PTR(err); 496 } 497 498 return btf; 499 } 500 501 static bool btf_check_endianness(const GElf_Ehdr *ehdr) 502 { 503 #if __BYTE_ORDER == __LITTLE_ENDIAN 504 return ehdr->e_ident[EI_DATA] == ELFDATA2LSB; 505 #elif __BYTE_ORDER == __BIG_ENDIAN 506 return ehdr->e_ident[EI_DATA] == ELFDATA2MSB; 507 #else 508 # error "Unrecognized __BYTE_ORDER__" 509 #endif 510 } 511 512 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 513 { 514 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 515 int err = 0, fd = -1, idx = 0; 516 struct btf *btf = NULL; 517 Elf_Scn *scn = NULL; 518 Elf *elf = NULL; 519 GElf_Ehdr ehdr; 520 521 if (elf_version(EV_CURRENT) == EV_NONE) { 522 pr_warn("failed to init libelf for %s\n", path); 523 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 524 } 525 526 fd = open(path, O_RDONLY); 527 if (fd < 0) { 528 err = -errno; 529 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 530 return ERR_PTR(err); 531 } 532 533 err = -LIBBPF_ERRNO__FORMAT; 534 535 elf = elf_begin(fd, ELF_C_READ, NULL); 536 if (!elf) { 537 pr_warn("failed to open %s as ELF file\n", path); 538 goto done; 539 } 540 if (!gelf_getehdr(elf, &ehdr)) { 541 pr_warn("failed to get EHDR from %s\n", path); 542 goto done; 543 } 544 if (!btf_check_endianness(&ehdr)) { 545 pr_warn("non-native ELF endianness is not supported\n"); 546 goto done; 547 } 548 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { 549 pr_warn("failed to get e_shstrndx from %s\n", path); 550 goto done; 551 } 552 553 while ((scn = elf_nextscn(elf, scn)) != NULL) { 554 GElf_Shdr sh; 555 char *name; 556 557 idx++; 558 if (gelf_getshdr(scn, &sh) != &sh) { 559 pr_warn("failed to get section(%d) header from %s\n", 560 idx, path); 561 goto done; 562 } 563 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); 564 if (!name) { 565 pr_warn("failed to get section(%d) name from %s\n", 566 idx, path); 567 goto done; 568 } 569 if (strcmp(name, BTF_ELF_SEC) == 0) { 570 btf_data = elf_getdata(scn, 0); 571 if (!btf_data) { 572 pr_warn("failed to get section(%d, %s) data from %s\n", 573 idx, name, path); 574 goto done; 575 } 576 continue; 577 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 578 btf_ext_data = elf_getdata(scn, 0); 579 if (!btf_ext_data) { 580 pr_warn("failed to get section(%d, %s) data from %s\n", 581 idx, name, path); 582 goto done; 583 } 584 continue; 585 } 586 } 587 588 err = 0; 589 590 if (!btf_data) { 591 err = -ENOENT; 592 goto done; 593 } 594 btf = btf__new(btf_data->d_buf, btf_data->d_size); 595 if (IS_ERR(btf)) 596 goto done; 597 598 switch (gelf_getclass(elf)) { 599 case ELFCLASS32: 600 btf__set_pointer_size(btf, 4); 601 break; 602 case ELFCLASS64: 603 btf__set_pointer_size(btf, 8); 604 break; 605 default: 606 pr_warn("failed to get ELF class (bitness) for %s\n", path); 607 break; 608 } 609 610 if (btf_ext && btf_ext_data) { 611 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 612 btf_ext_data->d_size); 613 if (IS_ERR(*btf_ext)) 614 goto done; 615 } else if (btf_ext) { 616 *btf_ext = NULL; 617 } 618 done: 619 if (elf) 620 elf_end(elf); 621 close(fd); 622 623 if (err) 624 return ERR_PTR(err); 625 /* 626 * btf is always parsed before btf_ext, so no need to clean up 627 * btf_ext, if btf loading failed 628 */ 629 if (IS_ERR(btf)) 630 return btf; 631 if (btf_ext && IS_ERR(*btf_ext)) { 632 btf__free(btf); 633 err = PTR_ERR(*btf_ext); 634 return ERR_PTR(err); 635 } 636 return btf; 637 } 638 639 struct btf *btf__parse_raw(const char *path) 640 { 641 struct btf *btf = NULL; 642 void *data = NULL; 643 FILE *f = NULL; 644 __u16 magic; 645 int err = 0; 646 long sz; 647 648 f = fopen(path, "rb"); 649 if (!f) { 650 err = -errno; 651 goto err_out; 652 } 653 654 /* check BTF magic */ 655 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 656 err = -EIO; 657 goto err_out; 658 } 659 if (magic != BTF_MAGIC) { 660 /* definitely not a raw BTF */ 661 err = -EPROTO; 662 goto err_out; 663 } 664 665 /* get file size */ 666 if (fseek(f, 0, SEEK_END)) { 667 err = -errno; 668 goto err_out; 669 } 670 sz = ftell(f); 671 if (sz < 0) { 672 err = -errno; 673 goto err_out; 674 } 675 /* rewind to the start */ 676 if (fseek(f, 0, SEEK_SET)) { 677 err = -errno; 678 goto err_out; 679 } 680 681 /* pre-alloc memory and read all of BTF data */ 682 data = malloc(sz); 683 if (!data) { 684 err = -ENOMEM; 685 goto err_out; 686 } 687 if (fread(data, 1, sz, f) < sz) { 688 err = -EIO; 689 goto err_out; 690 } 691 692 /* finally parse BTF data */ 693 btf = btf__new(data, sz); 694 695 err_out: 696 free(data); 697 if (f) 698 fclose(f); 699 return err ? ERR_PTR(err) : btf; 700 } 701 702 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 703 { 704 struct btf *btf; 705 706 if (btf_ext) 707 *btf_ext = NULL; 708 709 btf = btf__parse_raw(path); 710 if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO) 711 return btf; 712 713 return btf__parse_elf(path, btf_ext); 714 } 715 716 static int compare_vsi_off(const void *_a, const void *_b) 717 { 718 const struct btf_var_secinfo *a = _a; 719 const struct btf_var_secinfo *b = _b; 720 721 return a->offset - b->offset; 722 } 723 724 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 725 struct btf_type *t) 726 { 727 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 728 const char *name = btf__name_by_offset(btf, t->name_off); 729 const struct btf_type *t_var; 730 struct btf_var_secinfo *vsi; 731 const struct btf_var *var; 732 int ret; 733 734 if (!name) { 735 pr_debug("No name found in string section for DATASEC kind.\n"); 736 return -ENOENT; 737 } 738 739 /* .extern datasec size and var offsets were set correctly during 740 * extern collection step, so just skip straight to sorting variables 741 */ 742 if (t->size) 743 goto sort_vars; 744 745 ret = bpf_object__section_size(obj, name, &size); 746 if (ret || !size || (t->size && t->size != size)) { 747 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 748 return -ENOENT; 749 } 750 751 t->size = size; 752 753 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 754 t_var = btf__type_by_id(btf, vsi->type); 755 var = btf_var(t_var); 756 757 if (!btf_is_var(t_var)) { 758 pr_debug("Non-VAR type seen in section %s\n", name); 759 return -EINVAL; 760 } 761 762 if (var->linkage == BTF_VAR_STATIC) 763 continue; 764 765 name = btf__name_by_offset(btf, t_var->name_off); 766 if (!name) { 767 pr_debug("No name found in string section for VAR kind\n"); 768 return -ENOENT; 769 } 770 771 ret = bpf_object__variable_offset(obj, name, &off); 772 if (ret) { 773 pr_debug("No offset found in symbol table for VAR %s\n", 774 name); 775 return -ENOENT; 776 } 777 778 vsi->offset = off; 779 } 780 781 sort_vars: 782 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 783 return 0; 784 } 785 786 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 787 { 788 int err = 0; 789 __u32 i; 790 791 for (i = 1; i <= btf->nr_types; i++) { 792 struct btf_type *t = btf->types[i]; 793 794 /* Loader needs to fix up some of the things compiler 795 * couldn't get its hands on while emitting BTF. This 796 * is section size and global variable offset. We use 797 * the info from the ELF itself for this purpose. 798 */ 799 if (btf_is_datasec(t)) { 800 err = btf_fixup_datasec(obj, btf, t); 801 if (err) 802 break; 803 } 804 } 805 806 return err; 807 } 808 809 int btf__load(struct btf *btf) 810 { 811 __u32 log_buf_size = 0; 812 char *log_buf = NULL; 813 int err = 0; 814 815 if (btf->fd >= 0) 816 return -EEXIST; 817 818 retry_load: 819 if (log_buf_size) { 820 log_buf = malloc(log_buf_size); 821 if (!log_buf) 822 return -ENOMEM; 823 824 *log_buf = 0; 825 } 826 827 btf->fd = bpf_load_btf(btf->data, btf->data_size, 828 log_buf, log_buf_size, false); 829 if (btf->fd < 0) { 830 if (!log_buf || errno == ENOSPC) { 831 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 832 log_buf_size << 1); 833 free(log_buf); 834 goto retry_load; 835 } 836 837 err = -errno; 838 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 839 if (*log_buf) 840 pr_warn("%s\n", log_buf); 841 goto done; 842 } 843 844 done: 845 free(log_buf); 846 return err; 847 } 848 849 int btf__fd(const struct btf *btf) 850 { 851 return btf->fd; 852 } 853 854 void btf__set_fd(struct btf *btf, int fd) 855 { 856 btf->fd = fd; 857 } 858 859 const void *btf__get_raw_data(const struct btf *btf, __u32 *size) 860 { 861 *size = btf->data_size; 862 return btf->data; 863 } 864 865 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 866 { 867 if (offset < btf->hdr->str_len) 868 return &btf->strings[offset]; 869 else 870 return NULL; 871 } 872 873 int btf__get_from_id(__u32 id, struct btf **btf) 874 { 875 struct bpf_btf_info btf_info = { 0 }; 876 __u32 len = sizeof(btf_info); 877 __u32 last_size; 878 int btf_fd; 879 void *ptr; 880 int err; 881 882 err = 0; 883 *btf = NULL; 884 btf_fd = bpf_btf_get_fd_by_id(id); 885 if (btf_fd < 0) 886 return 0; 887 888 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 889 * let's start with a sane default - 4KiB here - and resize it only if 890 * bpf_obj_get_info_by_fd() needs a bigger buffer. 891 */ 892 btf_info.btf_size = 4096; 893 last_size = btf_info.btf_size; 894 ptr = malloc(last_size); 895 if (!ptr) { 896 err = -ENOMEM; 897 goto exit_free; 898 } 899 900 memset(ptr, 0, last_size); 901 btf_info.btf = ptr_to_u64(ptr); 902 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 903 904 if (!err && btf_info.btf_size > last_size) { 905 void *temp_ptr; 906 907 last_size = btf_info.btf_size; 908 temp_ptr = realloc(ptr, last_size); 909 if (!temp_ptr) { 910 err = -ENOMEM; 911 goto exit_free; 912 } 913 ptr = temp_ptr; 914 memset(ptr, 0, last_size); 915 btf_info.btf = ptr_to_u64(ptr); 916 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 917 } 918 919 if (err || btf_info.btf_size > last_size) { 920 err = errno; 921 goto exit_free; 922 } 923 924 *btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size); 925 if (IS_ERR(*btf)) { 926 err = PTR_ERR(*btf); 927 *btf = NULL; 928 } 929 930 exit_free: 931 close(btf_fd); 932 free(ptr); 933 934 return err; 935 } 936 937 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 938 __u32 expected_key_size, __u32 expected_value_size, 939 __u32 *key_type_id, __u32 *value_type_id) 940 { 941 const struct btf_type *container_type; 942 const struct btf_member *key, *value; 943 const size_t max_name = 256; 944 char container_name[max_name]; 945 __s64 key_size, value_size; 946 __s32 container_id; 947 948 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 949 max_name) { 950 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 951 map_name, map_name); 952 return -EINVAL; 953 } 954 955 container_id = btf__find_by_name(btf, container_name); 956 if (container_id < 0) { 957 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 958 map_name, container_name); 959 return container_id; 960 } 961 962 container_type = btf__type_by_id(btf, container_id); 963 if (!container_type) { 964 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 965 map_name, container_id); 966 return -EINVAL; 967 } 968 969 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 970 pr_warn("map:%s container_name:%s is an invalid container struct\n", 971 map_name, container_name); 972 return -EINVAL; 973 } 974 975 key = btf_members(container_type); 976 value = key + 1; 977 978 key_size = btf__resolve_size(btf, key->type); 979 if (key_size < 0) { 980 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 981 return key_size; 982 } 983 984 if (expected_key_size != key_size) { 985 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 986 map_name, (__u32)key_size, expected_key_size); 987 return -EINVAL; 988 } 989 990 value_size = btf__resolve_size(btf, value->type); 991 if (value_size < 0) { 992 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 993 return value_size; 994 } 995 996 if (expected_value_size != value_size) { 997 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 998 map_name, (__u32)value_size, expected_value_size); 999 return -EINVAL; 1000 } 1001 1002 *key_type_id = key->type; 1003 *value_type_id = value->type; 1004 1005 return 0; 1006 } 1007 1008 struct btf_ext_sec_setup_param { 1009 __u32 off; 1010 __u32 len; 1011 __u32 min_rec_size; 1012 struct btf_ext_info *ext_info; 1013 const char *desc; 1014 }; 1015 1016 static int btf_ext_setup_info(struct btf_ext *btf_ext, 1017 struct btf_ext_sec_setup_param *ext_sec) 1018 { 1019 const struct btf_ext_info_sec *sinfo; 1020 struct btf_ext_info *ext_info; 1021 __u32 info_left, record_size; 1022 /* The start of the info sec (including the __u32 record_size). */ 1023 void *info; 1024 1025 if (ext_sec->len == 0) 1026 return 0; 1027 1028 if (ext_sec->off & 0x03) { 1029 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 1030 ext_sec->desc); 1031 return -EINVAL; 1032 } 1033 1034 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 1035 info_left = ext_sec->len; 1036 1037 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 1038 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 1039 ext_sec->desc, ext_sec->off, ext_sec->len); 1040 return -EINVAL; 1041 } 1042 1043 /* At least a record size */ 1044 if (info_left < sizeof(__u32)) { 1045 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 1046 return -EINVAL; 1047 } 1048 1049 /* The record size needs to meet the minimum standard */ 1050 record_size = *(__u32 *)info; 1051 if (record_size < ext_sec->min_rec_size || 1052 record_size & 0x03) { 1053 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 1054 ext_sec->desc, record_size); 1055 return -EINVAL; 1056 } 1057 1058 sinfo = info + sizeof(__u32); 1059 info_left -= sizeof(__u32); 1060 1061 /* If no records, return failure now so .BTF.ext won't be used. */ 1062 if (!info_left) { 1063 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 1064 return -EINVAL; 1065 } 1066 1067 while (info_left) { 1068 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 1069 __u64 total_record_size; 1070 __u32 num_records; 1071 1072 if (info_left < sec_hdrlen) { 1073 pr_debug("%s section header is not found in .BTF.ext\n", 1074 ext_sec->desc); 1075 return -EINVAL; 1076 } 1077 1078 num_records = sinfo->num_info; 1079 if (num_records == 0) { 1080 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 1081 ext_sec->desc); 1082 return -EINVAL; 1083 } 1084 1085 total_record_size = sec_hdrlen + 1086 (__u64)num_records * record_size; 1087 if (info_left < total_record_size) { 1088 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 1089 ext_sec->desc); 1090 return -EINVAL; 1091 } 1092 1093 info_left -= total_record_size; 1094 sinfo = (void *)sinfo + total_record_size; 1095 } 1096 1097 ext_info = ext_sec->ext_info; 1098 ext_info->len = ext_sec->len - sizeof(__u32); 1099 ext_info->rec_size = record_size; 1100 ext_info->info = info + sizeof(__u32); 1101 1102 return 0; 1103 } 1104 1105 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 1106 { 1107 struct btf_ext_sec_setup_param param = { 1108 .off = btf_ext->hdr->func_info_off, 1109 .len = btf_ext->hdr->func_info_len, 1110 .min_rec_size = sizeof(struct bpf_func_info_min), 1111 .ext_info = &btf_ext->func_info, 1112 .desc = "func_info" 1113 }; 1114 1115 return btf_ext_setup_info(btf_ext, ¶m); 1116 } 1117 1118 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 1119 { 1120 struct btf_ext_sec_setup_param param = { 1121 .off = btf_ext->hdr->line_info_off, 1122 .len = btf_ext->hdr->line_info_len, 1123 .min_rec_size = sizeof(struct bpf_line_info_min), 1124 .ext_info = &btf_ext->line_info, 1125 .desc = "line_info", 1126 }; 1127 1128 return btf_ext_setup_info(btf_ext, ¶m); 1129 } 1130 1131 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 1132 { 1133 struct btf_ext_sec_setup_param param = { 1134 .off = btf_ext->hdr->core_relo_off, 1135 .len = btf_ext->hdr->core_relo_len, 1136 .min_rec_size = sizeof(struct bpf_core_relo), 1137 .ext_info = &btf_ext->core_relo_info, 1138 .desc = "core_relo", 1139 }; 1140 1141 return btf_ext_setup_info(btf_ext, ¶m); 1142 } 1143 1144 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 1145 { 1146 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 1147 1148 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 1149 data_size < hdr->hdr_len) { 1150 pr_debug("BTF.ext header not found"); 1151 return -EINVAL; 1152 } 1153 1154 if (hdr->magic != BTF_MAGIC) { 1155 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 1156 return -EINVAL; 1157 } 1158 1159 if (hdr->version != BTF_VERSION) { 1160 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 1161 return -ENOTSUP; 1162 } 1163 1164 if (hdr->flags) { 1165 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 1166 return -ENOTSUP; 1167 } 1168 1169 if (data_size == hdr->hdr_len) { 1170 pr_debug("BTF.ext has no data\n"); 1171 return -EINVAL; 1172 } 1173 1174 return 0; 1175 } 1176 1177 void btf_ext__free(struct btf_ext *btf_ext) 1178 { 1179 if (IS_ERR_OR_NULL(btf_ext)) 1180 return; 1181 free(btf_ext->data); 1182 free(btf_ext); 1183 } 1184 1185 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 1186 { 1187 struct btf_ext *btf_ext; 1188 int err; 1189 1190 err = btf_ext_parse_hdr(data, size); 1191 if (err) 1192 return ERR_PTR(err); 1193 1194 btf_ext = calloc(1, sizeof(struct btf_ext)); 1195 if (!btf_ext) 1196 return ERR_PTR(-ENOMEM); 1197 1198 btf_ext->data_size = size; 1199 btf_ext->data = malloc(size); 1200 if (!btf_ext->data) { 1201 err = -ENOMEM; 1202 goto done; 1203 } 1204 memcpy(btf_ext->data, data, size); 1205 1206 if (btf_ext->hdr->hdr_len < 1207 offsetofend(struct btf_ext_header, line_info_len)) 1208 goto done; 1209 err = btf_ext_setup_func_info(btf_ext); 1210 if (err) 1211 goto done; 1212 1213 err = btf_ext_setup_line_info(btf_ext); 1214 if (err) 1215 goto done; 1216 1217 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 1218 goto done; 1219 err = btf_ext_setup_core_relos(btf_ext); 1220 if (err) 1221 goto done; 1222 1223 done: 1224 if (err) { 1225 btf_ext__free(btf_ext); 1226 return ERR_PTR(err); 1227 } 1228 1229 return btf_ext; 1230 } 1231 1232 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 1233 { 1234 *size = btf_ext->data_size; 1235 return btf_ext->data; 1236 } 1237 1238 static int btf_ext_reloc_info(const struct btf *btf, 1239 const struct btf_ext_info *ext_info, 1240 const char *sec_name, __u32 insns_cnt, 1241 void **info, __u32 *cnt) 1242 { 1243 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 1244 __u32 i, record_size, existing_len, records_len; 1245 struct btf_ext_info_sec *sinfo; 1246 const char *info_sec_name; 1247 __u64 remain_len; 1248 void *data; 1249 1250 record_size = ext_info->rec_size; 1251 sinfo = ext_info->info; 1252 remain_len = ext_info->len; 1253 while (remain_len > 0) { 1254 records_len = sinfo->num_info * record_size; 1255 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 1256 if (strcmp(info_sec_name, sec_name)) { 1257 remain_len -= sec_hdrlen + records_len; 1258 sinfo = (void *)sinfo + sec_hdrlen + records_len; 1259 continue; 1260 } 1261 1262 existing_len = (*cnt) * record_size; 1263 data = realloc(*info, existing_len + records_len); 1264 if (!data) 1265 return -ENOMEM; 1266 1267 memcpy(data + existing_len, sinfo->data, records_len); 1268 /* adjust insn_off only, the rest data will be passed 1269 * to the kernel. 1270 */ 1271 for (i = 0; i < sinfo->num_info; i++) { 1272 __u32 *insn_off; 1273 1274 insn_off = data + existing_len + (i * record_size); 1275 *insn_off = *insn_off / sizeof(struct bpf_insn) + 1276 insns_cnt; 1277 } 1278 *info = data; 1279 *cnt += sinfo->num_info; 1280 return 0; 1281 } 1282 1283 return -ENOENT; 1284 } 1285 1286 int btf_ext__reloc_func_info(const struct btf *btf, 1287 const struct btf_ext *btf_ext, 1288 const char *sec_name, __u32 insns_cnt, 1289 void **func_info, __u32 *cnt) 1290 { 1291 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 1292 insns_cnt, func_info, cnt); 1293 } 1294 1295 int btf_ext__reloc_line_info(const struct btf *btf, 1296 const struct btf_ext *btf_ext, 1297 const char *sec_name, __u32 insns_cnt, 1298 void **line_info, __u32 *cnt) 1299 { 1300 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 1301 insns_cnt, line_info, cnt); 1302 } 1303 1304 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 1305 { 1306 return btf_ext->func_info.rec_size; 1307 } 1308 1309 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 1310 { 1311 return btf_ext->line_info.rec_size; 1312 } 1313 1314 struct btf_dedup; 1315 1316 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1317 const struct btf_dedup_opts *opts); 1318 static void btf_dedup_free(struct btf_dedup *d); 1319 static int btf_dedup_strings(struct btf_dedup *d); 1320 static int btf_dedup_prim_types(struct btf_dedup *d); 1321 static int btf_dedup_struct_types(struct btf_dedup *d); 1322 static int btf_dedup_ref_types(struct btf_dedup *d); 1323 static int btf_dedup_compact_types(struct btf_dedup *d); 1324 static int btf_dedup_remap_types(struct btf_dedup *d); 1325 1326 /* 1327 * Deduplicate BTF types and strings. 1328 * 1329 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 1330 * section with all BTF type descriptors and string data. It overwrites that 1331 * memory in-place with deduplicated types and strings without any loss of 1332 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 1333 * is provided, all the strings referenced from .BTF.ext section are honored 1334 * and updated to point to the right offsets after deduplication. 1335 * 1336 * If function returns with error, type/string data might be garbled and should 1337 * be discarded. 1338 * 1339 * More verbose and detailed description of both problem btf_dedup is solving, 1340 * as well as solution could be found at: 1341 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 1342 * 1343 * Problem description and justification 1344 * ===================================== 1345 * 1346 * BTF type information is typically emitted either as a result of conversion 1347 * from DWARF to BTF or directly by compiler. In both cases, each compilation 1348 * unit contains information about a subset of all the types that are used 1349 * in an application. These subsets are frequently overlapping and contain a lot 1350 * of duplicated information when later concatenated together into a single 1351 * binary. This algorithm ensures that each unique type is represented by single 1352 * BTF type descriptor, greatly reducing resulting size of BTF data. 1353 * 1354 * Compilation unit isolation and subsequent duplication of data is not the only 1355 * problem. The same type hierarchy (e.g., struct and all the type that struct 1356 * references) in different compilation units can be represented in BTF to 1357 * various degrees of completeness (or, rather, incompleteness) due to 1358 * struct/union forward declarations. 1359 * 1360 * Let's take a look at an example, that we'll use to better understand the 1361 * problem (and solution). Suppose we have two compilation units, each using 1362 * same `struct S`, but each of them having incomplete type information about 1363 * struct's fields: 1364 * 1365 * // CU #1: 1366 * struct S; 1367 * struct A { 1368 * int a; 1369 * struct A* self; 1370 * struct S* parent; 1371 * }; 1372 * struct B; 1373 * struct S { 1374 * struct A* a_ptr; 1375 * struct B* b_ptr; 1376 * }; 1377 * 1378 * // CU #2: 1379 * struct S; 1380 * struct A; 1381 * struct B { 1382 * int b; 1383 * struct B* self; 1384 * struct S* parent; 1385 * }; 1386 * struct S { 1387 * struct A* a_ptr; 1388 * struct B* b_ptr; 1389 * }; 1390 * 1391 * In case of CU #1, BTF data will know only that `struct B` exist (but no 1392 * more), but will know the complete type information about `struct A`. While 1393 * for CU #2, it will know full type information about `struct B`, but will 1394 * only know about forward declaration of `struct A` (in BTF terms, it will 1395 * have `BTF_KIND_FWD` type descriptor with name `B`). 1396 * 1397 * This compilation unit isolation means that it's possible that there is no 1398 * single CU with complete type information describing structs `S`, `A`, and 1399 * `B`. Also, we might get tons of duplicated and redundant type information. 1400 * 1401 * Additional complication we need to keep in mind comes from the fact that 1402 * types, in general, can form graphs containing cycles, not just DAGs. 1403 * 1404 * While algorithm does deduplication, it also merges and resolves type 1405 * information (unless disabled throught `struct btf_opts`), whenever possible. 1406 * E.g., in the example above with two compilation units having partial type 1407 * information for structs `A` and `B`, the output of algorithm will emit 1408 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 1409 * (as well as type information for `int` and pointers), as if they were defined 1410 * in a single compilation unit as: 1411 * 1412 * struct A { 1413 * int a; 1414 * struct A* self; 1415 * struct S* parent; 1416 * }; 1417 * struct B { 1418 * int b; 1419 * struct B* self; 1420 * struct S* parent; 1421 * }; 1422 * struct S { 1423 * struct A* a_ptr; 1424 * struct B* b_ptr; 1425 * }; 1426 * 1427 * Algorithm summary 1428 * ================= 1429 * 1430 * Algorithm completes its work in 6 separate passes: 1431 * 1432 * 1. Strings deduplication. 1433 * 2. Primitive types deduplication (int, enum, fwd). 1434 * 3. Struct/union types deduplication. 1435 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 1436 * protos, and const/volatile/restrict modifiers). 1437 * 5. Types compaction. 1438 * 6. Types remapping. 1439 * 1440 * Algorithm determines canonical type descriptor, which is a single 1441 * representative type for each truly unique type. This canonical type is the 1442 * one that will go into final deduplicated BTF type information. For 1443 * struct/unions, it is also the type that algorithm will merge additional type 1444 * information into (while resolving FWDs), as it discovers it from data in 1445 * other CUs. Each input BTF type eventually gets either mapped to itself, if 1446 * that type is canonical, or to some other type, if that type is equivalent 1447 * and was chosen as canonical representative. This mapping is stored in 1448 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 1449 * FWD type got resolved to. 1450 * 1451 * To facilitate fast discovery of canonical types, we also maintain canonical 1452 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 1453 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 1454 * that match that signature. With sufficiently good choice of type signature 1455 * hashing function, we can limit number of canonical types for each unique type 1456 * signature to a very small number, allowing to find canonical type for any 1457 * duplicated type very quickly. 1458 * 1459 * Struct/union deduplication is the most critical part and algorithm for 1460 * deduplicating structs/unions is described in greater details in comments for 1461 * `btf_dedup_is_equiv` function. 1462 */ 1463 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 1464 const struct btf_dedup_opts *opts) 1465 { 1466 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 1467 int err; 1468 1469 if (IS_ERR(d)) { 1470 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 1471 return -EINVAL; 1472 } 1473 1474 err = btf_dedup_strings(d); 1475 if (err < 0) { 1476 pr_debug("btf_dedup_strings failed:%d\n", err); 1477 goto done; 1478 } 1479 err = btf_dedup_prim_types(d); 1480 if (err < 0) { 1481 pr_debug("btf_dedup_prim_types failed:%d\n", err); 1482 goto done; 1483 } 1484 err = btf_dedup_struct_types(d); 1485 if (err < 0) { 1486 pr_debug("btf_dedup_struct_types failed:%d\n", err); 1487 goto done; 1488 } 1489 err = btf_dedup_ref_types(d); 1490 if (err < 0) { 1491 pr_debug("btf_dedup_ref_types failed:%d\n", err); 1492 goto done; 1493 } 1494 err = btf_dedup_compact_types(d); 1495 if (err < 0) { 1496 pr_debug("btf_dedup_compact_types failed:%d\n", err); 1497 goto done; 1498 } 1499 err = btf_dedup_remap_types(d); 1500 if (err < 0) { 1501 pr_debug("btf_dedup_remap_types failed:%d\n", err); 1502 goto done; 1503 } 1504 1505 done: 1506 btf_dedup_free(d); 1507 return err; 1508 } 1509 1510 #define BTF_UNPROCESSED_ID ((__u32)-1) 1511 #define BTF_IN_PROGRESS_ID ((__u32)-2) 1512 1513 struct btf_dedup { 1514 /* .BTF section to be deduped in-place */ 1515 struct btf *btf; 1516 /* 1517 * Optional .BTF.ext section. When provided, any strings referenced 1518 * from it will be taken into account when deduping strings 1519 */ 1520 struct btf_ext *btf_ext; 1521 /* 1522 * This is a map from any type's signature hash to a list of possible 1523 * canonical representative type candidates. Hash collisions are 1524 * ignored, so even types of various kinds can share same list of 1525 * candidates, which is fine because we rely on subsequent 1526 * btf_xxx_equal() checks to authoritatively verify type equality. 1527 */ 1528 struct hashmap *dedup_table; 1529 /* Canonical types map */ 1530 __u32 *map; 1531 /* Hypothetical mapping, used during type graph equivalence checks */ 1532 __u32 *hypot_map; 1533 __u32 *hypot_list; 1534 size_t hypot_cnt; 1535 size_t hypot_cap; 1536 /* Various option modifying behavior of algorithm */ 1537 struct btf_dedup_opts opts; 1538 }; 1539 1540 struct btf_str_ptr { 1541 const char *str; 1542 __u32 new_off; 1543 bool used; 1544 }; 1545 1546 struct btf_str_ptrs { 1547 struct btf_str_ptr *ptrs; 1548 const char *data; 1549 __u32 cnt; 1550 __u32 cap; 1551 }; 1552 1553 static long hash_combine(long h, long value) 1554 { 1555 return h * 31 + value; 1556 } 1557 1558 #define for_each_dedup_cand(d, node, hash) \ 1559 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 1560 1561 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 1562 { 1563 return hashmap__append(d->dedup_table, 1564 (void *)hash, (void *)(long)type_id); 1565 } 1566 1567 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 1568 __u32 from_id, __u32 to_id) 1569 { 1570 if (d->hypot_cnt == d->hypot_cap) { 1571 __u32 *new_list; 1572 1573 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 1574 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 1575 if (!new_list) 1576 return -ENOMEM; 1577 d->hypot_list = new_list; 1578 } 1579 d->hypot_list[d->hypot_cnt++] = from_id; 1580 d->hypot_map[from_id] = to_id; 1581 return 0; 1582 } 1583 1584 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 1585 { 1586 int i; 1587 1588 for (i = 0; i < d->hypot_cnt; i++) 1589 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 1590 d->hypot_cnt = 0; 1591 } 1592 1593 static void btf_dedup_free(struct btf_dedup *d) 1594 { 1595 hashmap__free(d->dedup_table); 1596 d->dedup_table = NULL; 1597 1598 free(d->map); 1599 d->map = NULL; 1600 1601 free(d->hypot_map); 1602 d->hypot_map = NULL; 1603 1604 free(d->hypot_list); 1605 d->hypot_list = NULL; 1606 1607 free(d); 1608 } 1609 1610 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 1611 { 1612 return (size_t)key; 1613 } 1614 1615 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 1616 { 1617 return 0; 1618 } 1619 1620 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 1621 { 1622 return k1 == k2; 1623 } 1624 1625 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 1626 const struct btf_dedup_opts *opts) 1627 { 1628 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 1629 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 1630 int i, err = 0; 1631 1632 if (!d) 1633 return ERR_PTR(-ENOMEM); 1634 1635 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 1636 /* dedup_table_size is now used only to force collisions in tests */ 1637 if (opts && opts->dedup_table_size == 1) 1638 hash_fn = btf_dedup_collision_hash_fn; 1639 1640 d->btf = btf; 1641 d->btf_ext = btf_ext; 1642 1643 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 1644 if (IS_ERR(d->dedup_table)) { 1645 err = PTR_ERR(d->dedup_table); 1646 d->dedup_table = NULL; 1647 goto done; 1648 } 1649 1650 d->map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1651 if (!d->map) { 1652 err = -ENOMEM; 1653 goto done; 1654 } 1655 /* special BTF "void" type is made canonical immediately */ 1656 d->map[0] = 0; 1657 for (i = 1; i <= btf->nr_types; i++) { 1658 struct btf_type *t = d->btf->types[i]; 1659 1660 /* VAR and DATASEC are never deduped and are self-canonical */ 1661 if (btf_is_var(t) || btf_is_datasec(t)) 1662 d->map[i] = i; 1663 else 1664 d->map[i] = BTF_UNPROCESSED_ID; 1665 } 1666 1667 d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types)); 1668 if (!d->hypot_map) { 1669 err = -ENOMEM; 1670 goto done; 1671 } 1672 for (i = 0; i <= btf->nr_types; i++) 1673 d->hypot_map[i] = BTF_UNPROCESSED_ID; 1674 1675 done: 1676 if (err) { 1677 btf_dedup_free(d); 1678 return ERR_PTR(err); 1679 } 1680 1681 return d; 1682 } 1683 1684 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 1685 1686 /* 1687 * Iterate over all possible places in .BTF and .BTF.ext that can reference 1688 * string and pass pointer to it to a provided callback `fn`. 1689 */ 1690 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 1691 { 1692 void *line_data_cur, *line_data_end; 1693 int i, j, r, rec_size; 1694 struct btf_type *t; 1695 1696 for (i = 1; i <= d->btf->nr_types; i++) { 1697 t = d->btf->types[i]; 1698 r = fn(&t->name_off, ctx); 1699 if (r) 1700 return r; 1701 1702 switch (btf_kind(t)) { 1703 case BTF_KIND_STRUCT: 1704 case BTF_KIND_UNION: { 1705 struct btf_member *m = btf_members(t); 1706 __u16 vlen = btf_vlen(t); 1707 1708 for (j = 0; j < vlen; j++) { 1709 r = fn(&m->name_off, ctx); 1710 if (r) 1711 return r; 1712 m++; 1713 } 1714 break; 1715 } 1716 case BTF_KIND_ENUM: { 1717 struct btf_enum *m = btf_enum(t); 1718 __u16 vlen = btf_vlen(t); 1719 1720 for (j = 0; j < vlen; j++) { 1721 r = fn(&m->name_off, ctx); 1722 if (r) 1723 return r; 1724 m++; 1725 } 1726 break; 1727 } 1728 case BTF_KIND_FUNC_PROTO: { 1729 struct btf_param *m = btf_params(t); 1730 __u16 vlen = btf_vlen(t); 1731 1732 for (j = 0; j < vlen; j++) { 1733 r = fn(&m->name_off, ctx); 1734 if (r) 1735 return r; 1736 m++; 1737 } 1738 break; 1739 } 1740 default: 1741 break; 1742 } 1743 } 1744 1745 if (!d->btf_ext) 1746 return 0; 1747 1748 line_data_cur = d->btf_ext->line_info.info; 1749 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 1750 rec_size = d->btf_ext->line_info.rec_size; 1751 1752 while (line_data_cur < line_data_end) { 1753 struct btf_ext_info_sec *sec = line_data_cur; 1754 struct bpf_line_info_min *line_info; 1755 __u32 num_info = sec->num_info; 1756 1757 r = fn(&sec->sec_name_off, ctx); 1758 if (r) 1759 return r; 1760 1761 line_data_cur += sizeof(struct btf_ext_info_sec); 1762 for (i = 0; i < num_info; i++) { 1763 line_info = line_data_cur; 1764 r = fn(&line_info->file_name_off, ctx); 1765 if (r) 1766 return r; 1767 r = fn(&line_info->line_off, ctx); 1768 if (r) 1769 return r; 1770 line_data_cur += rec_size; 1771 } 1772 } 1773 1774 return 0; 1775 } 1776 1777 static int str_sort_by_content(const void *a1, const void *a2) 1778 { 1779 const struct btf_str_ptr *p1 = a1; 1780 const struct btf_str_ptr *p2 = a2; 1781 1782 return strcmp(p1->str, p2->str); 1783 } 1784 1785 static int str_sort_by_offset(const void *a1, const void *a2) 1786 { 1787 const struct btf_str_ptr *p1 = a1; 1788 const struct btf_str_ptr *p2 = a2; 1789 1790 if (p1->str != p2->str) 1791 return p1->str < p2->str ? -1 : 1; 1792 return 0; 1793 } 1794 1795 static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem) 1796 { 1797 const struct btf_str_ptr *p = pelem; 1798 1799 if (str_ptr != p->str) 1800 return (const char *)str_ptr < p->str ? -1 : 1; 1801 return 0; 1802 } 1803 1804 static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx) 1805 { 1806 struct btf_str_ptrs *strs; 1807 struct btf_str_ptr *s; 1808 1809 if (*str_off_ptr == 0) 1810 return 0; 1811 1812 strs = ctx; 1813 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1814 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1815 if (!s) 1816 return -EINVAL; 1817 s->used = true; 1818 return 0; 1819 } 1820 1821 static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx) 1822 { 1823 struct btf_str_ptrs *strs; 1824 struct btf_str_ptr *s; 1825 1826 if (*str_off_ptr == 0) 1827 return 0; 1828 1829 strs = ctx; 1830 s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt, 1831 sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp); 1832 if (!s) 1833 return -EINVAL; 1834 *str_off_ptr = s->new_off; 1835 return 0; 1836 } 1837 1838 /* 1839 * Dedup string and filter out those that are not referenced from either .BTF 1840 * or .BTF.ext (if provided) sections. 1841 * 1842 * This is done by building index of all strings in BTF's string section, 1843 * then iterating over all entities that can reference strings (e.g., type 1844 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 1845 * strings as used. After that all used strings are deduped and compacted into 1846 * sequential blob of memory and new offsets are calculated. Then all the string 1847 * references are iterated again and rewritten using new offsets. 1848 */ 1849 static int btf_dedup_strings(struct btf_dedup *d) 1850 { 1851 const struct btf_header *hdr = d->btf->hdr; 1852 char *start = (char *)d->btf->nohdr_data + hdr->str_off; 1853 char *end = start + d->btf->hdr->str_len; 1854 char *p = start, *tmp_strs = NULL; 1855 struct btf_str_ptrs strs = { 1856 .cnt = 0, 1857 .cap = 0, 1858 .ptrs = NULL, 1859 .data = start, 1860 }; 1861 int i, j, err = 0, grp_idx; 1862 bool grp_used; 1863 1864 /* build index of all strings */ 1865 while (p < end) { 1866 if (strs.cnt + 1 > strs.cap) { 1867 struct btf_str_ptr *new_ptrs; 1868 1869 strs.cap += max(strs.cnt / 2, 16U); 1870 new_ptrs = libbpf_reallocarray(strs.ptrs, strs.cap, sizeof(strs.ptrs[0])); 1871 if (!new_ptrs) { 1872 err = -ENOMEM; 1873 goto done; 1874 } 1875 strs.ptrs = new_ptrs; 1876 } 1877 1878 strs.ptrs[strs.cnt].str = p; 1879 strs.ptrs[strs.cnt].used = false; 1880 1881 p += strlen(p) + 1; 1882 strs.cnt++; 1883 } 1884 1885 /* temporary storage for deduplicated strings */ 1886 tmp_strs = malloc(d->btf->hdr->str_len); 1887 if (!tmp_strs) { 1888 err = -ENOMEM; 1889 goto done; 1890 } 1891 1892 /* mark all used strings */ 1893 strs.ptrs[0].used = true; 1894 err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs); 1895 if (err) 1896 goto done; 1897 1898 /* sort strings by context, so that we can identify duplicates */ 1899 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content); 1900 1901 /* 1902 * iterate groups of equal strings and if any instance in a group was 1903 * referenced, emit single instance and remember new offset 1904 */ 1905 p = tmp_strs; 1906 grp_idx = 0; 1907 grp_used = strs.ptrs[0].used; 1908 /* iterate past end to avoid code duplication after loop */ 1909 for (i = 1; i <= strs.cnt; i++) { 1910 /* 1911 * when i == strs.cnt, we want to skip string comparison and go 1912 * straight to handling last group of strings (otherwise we'd 1913 * need to handle last group after the loop w/ duplicated code) 1914 */ 1915 if (i < strs.cnt && 1916 !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) { 1917 grp_used = grp_used || strs.ptrs[i].used; 1918 continue; 1919 } 1920 1921 /* 1922 * this check would have been required after the loop to handle 1923 * last group of strings, but due to <= condition in a loop 1924 * we avoid that duplication 1925 */ 1926 if (grp_used) { 1927 int new_off = p - tmp_strs; 1928 __u32 len = strlen(strs.ptrs[grp_idx].str); 1929 1930 memmove(p, strs.ptrs[grp_idx].str, len + 1); 1931 for (j = grp_idx; j < i; j++) 1932 strs.ptrs[j].new_off = new_off; 1933 p += len + 1; 1934 } 1935 1936 if (i < strs.cnt) { 1937 grp_idx = i; 1938 grp_used = strs.ptrs[i].used; 1939 } 1940 } 1941 1942 /* replace original strings with deduped ones */ 1943 d->btf->hdr->str_len = p - tmp_strs; 1944 memmove(start, tmp_strs, d->btf->hdr->str_len); 1945 end = start + d->btf->hdr->str_len; 1946 1947 /* restore original order for further binary search lookups */ 1948 qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset); 1949 1950 /* remap string offsets */ 1951 err = btf_for_each_str_off(d, btf_str_remap_offset, &strs); 1952 if (err) 1953 goto done; 1954 1955 d->btf->hdr->str_len = end - start; 1956 1957 done: 1958 free(tmp_strs); 1959 free(strs.ptrs); 1960 return err; 1961 } 1962 1963 static long btf_hash_common(struct btf_type *t) 1964 { 1965 long h; 1966 1967 h = hash_combine(0, t->name_off); 1968 h = hash_combine(h, t->info); 1969 h = hash_combine(h, t->size); 1970 return h; 1971 } 1972 1973 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 1974 { 1975 return t1->name_off == t2->name_off && 1976 t1->info == t2->info && 1977 t1->size == t2->size; 1978 } 1979 1980 /* Calculate type signature hash of INT. */ 1981 static long btf_hash_int(struct btf_type *t) 1982 { 1983 __u32 info = *(__u32 *)(t + 1); 1984 long h; 1985 1986 h = btf_hash_common(t); 1987 h = hash_combine(h, info); 1988 return h; 1989 } 1990 1991 /* Check structural equality of two INTs. */ 1992 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 1993 { 1994 __u32 info1, info2; 1995 1996 if (!btf_equal_common(t1, t2)) 1997 return false; 1998 info1 = *(__u32 *)(t1 + 1); 1999 info2 = *(__u32 *)(t2 + 1); 2000 return info1 == info2; 2001 } 2002 2003 /* Calculate type signature hash of ENUM. */ 2004 static long btf_hash_enum(struct btf_type *t) 2005 { 2006 long h; 2007 2008 /* don't hash vlen and enum members to support enum fwd resolving */ 2009 h = hash_combine(0, t->name_off); 2010 h = hash_combine(h, t->info & ~0xffff); 2011 h = hash_combine(h, t->size); 2012 return h; 2013 } 2014 2015 /* Check structural equality of two ENUMs. */ 2016 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 2017 { 2018 const struct btf_enum *m1, *m2; 2019 __u16 vlen; 2020 int i; 2021 2022 if (!btf_equal_common(t1, t2)) 2023 return false; 2024 2025 vlen = btf_vlen(t1); 2026 m1 = btf_enum(t1); 2027 m2 = btf_enum(t2); 2028 for (i = 0; i < vlen; i++) { 2029 if (m1->name_off != m2->name_off || m1->val != m2->val) 2030 return false; 2031 m1++; 2032 m2++; 2033 } 2034 return true; 2035 } 2036 2037 static inline bool btf_is_enum_fwd(struct btf_type *t) 2038 { 2039 return btf_is_enum(t) && btf_vlen(t) == 0; 2040 } 2041 2042 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 2043 { 2044 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 2045 return btf_equal_enum(t1, t2); 2046 /* ignore vlen when comparing */ 2047 return t1->name_off == t2->name_off && 2048 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 2049 t1->size == t2->size; 2050 } 2051 2052 /* 2053 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 2054 * as referenced type IDs equivalence is established separately during type 2055 * graph equivalence check algorithm. 2056 */ 2057 static long btf_hash_struct(struct btf_type *t) 2058 { 2059 const struct btf_member *member = btf_members(t); 2060 __u32 vlen = btf_vlen(t); 2061 long h = btf_hash_common(t); 2062 int i; 2063 2064 for (i = 0; i < vlen; i++) { 2065 h = hash_combine(h, member->name_off); 2066 h = hash_combine(h, member->offset); 2067 /* no hashing of referenced type ID, it can be unresolved yet */ 2068 member++; 2069 } 2070 return h; 2071 } 2072 2073 /* 2074 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 2075 * IDs. This check is performed during type graph equivalence check and 2076 * referenced types equivalence is checked separately. 2077 */ 2078 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 2079 { 2080 const struct btf_member *m1, *m2; 2081 __u16 vlen; 2082 int i; 2083 2084 if (!btf_equal_common(t1, t2)) 2085 return false; 2086 2087 vlen = btf_vlen(t1); 2088 m1 = btf_members(t1); 2089 m2 = btf_members(t2); 2090 for (i = 0; i < vlen; i++) { 2091 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 2092 return false; 2093 m1++; 2094 m2++; 2095 } 2096 return true; 2097 } 2098 2099 /* 2100 * Calculate type signature hash of ARRAY, including referenced type IDs, 2101 * under assumption that they were already resolved to canonical type IDs and 2102 * are not going to change. 2103 */ 2104 static long btf_hash_array(struct btf_type *t) 2105 { 2106 const struct btf_array *info = btf_array(t); 2107 long h = btf_hash_common(t); 2108 2109 h = hash_combine(h, info->type); 2110 h = hash_combine(h, info->index_type); 2111 h = hash_combine(h, info->nelems); 2112 return h; 2113 } 2114 2115 /* 2116 * Check exact equality of two ARRAYs, taking into account referenced 2117 * type IDs, under assumption that they were already resolved to canonical 2118 * type IDs and are not going to change. 2119 * This function is called during reference types deduplication to compare 2120 * ARRAY to potential canonical representative. 2121 */ 2122 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 2123 { 2124 const struct btf_array *info1, *info2; 2125 2126 if (!btf_equal_common(t1, t2)) 2127 return false; 2128 2129 info1 = btf_array(t1); 2130 info2 = btf_array(t2); 2131 return info1->type == info2->type && 2132 info1->index_type == info2->index_type && 2133 info1->nelems == info2->nelems; 2134 } 2135 2136 /* 2137 * Check structural compatibility of two ARRAYs, ignoring referenced type 2138 * IDs. This check is performed during type graph equivalence check and 2139 * referenced types equivalence is checked separately. 2140 */ 2141 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 2142 { 2143 if (!btf_equal_common(t1, t2)) 2144 return false; 2145 2146 return btf_array(t1)->nelems == btf_array(t2)->nelems; 2147 } 2148 2149 /* 2150 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 2151 * under assumption that they were already resolved to canonical type IDs and 2152 * are not going to change. 2153 */ 2154 static long btf_hash_fnproto(struct btf_type *t) 2155 { 2156 const struct btf_param *member = btf_params(t); 2157 __u16 vlen = btf_vlen(t); 2158 long h = btf_hash_common(t); 2159 int i; 2160 2161 for (i = 0; i < vlen; i++) { 2162 h = hash_combine(h, member->name_off); 2163 h = hash_combine(h, member->type); 2164 member++; 2165 } 2166 return h; 2167 } 2168 2169 /* 2170 * Check exact equality of two FUNC_PROTOs, taking into account referenced 2171 * type IDs, under assumption that they were already resolved to canonical 2172 * type IDs and are not going to change. 2173 * This function is called during reference types deduplication to compare 2174 * FUNC_PROTO to potential canonical representative. 2175 */ 2176 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 2177 { 2178 const struct btf_param *m1, *m2; 2179 __u16 vlen; 2180 int i; 2181 2182 if (!btf_equal_common(t1, t2)) 2183 return false; 2184 2185 vlen = btf_vlen(t1); 2186 m1 = btf_params(t1); 2187 m2 = btf_params(t2); 2188 for (i = 0; i < vlen; i++) { 2189 if (m1->name_off != m2->name_off || m1->type != m2->type) 2190 return false; 2191 m1++; 2192 m2++; 2193 } 2194 return true; 2195 } 2196 2197 /* 2198 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 2199 * IDs. This check is performed during type graph equivalence check and 2200 * referenced types equivalence is checked separately. 2201 */ 2202 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 2203 { 2204 const struct btf_param *m1, *m2; 2205 __u16 vlen; 2206 int i; 2207 2208 /* skip return type ID */ 2209 if (t1->name_off != t2->name_off || t1->info != t2->info) 2210 return false; 2211 2212 vlen = btf_vlen(t1); 2213 m1 = btf_params(t1); 2214 m2 = btf_params(t2); 2215 for (i = 0; i < vlen; i++) { 2216 if (m1->name_off != m2->name_off) 2217 return false; 2218 m1++; 2219 m2++; 2220 } 2221 return true; 2222 } 2223 2224 /* 2225 * Deduplicate primitive types, that can't reference other types, by calculating 2226 * their type signature hash and comparing them with any possible canonical 2227 * candidate. If no canonical candidate matches, type itself is marked as 2228 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 2229 */ 2230 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 2231 { 2232 struct btf_type *t = d->btf->types[type_id]; 2233 struct hashmap_entry *hash_entry; 2234 struct btf_type *cand; 2235 /* if we don't find equivalent type, then we are canonical */ 2236 __u32 new_id = type_id; 2237 __u32 cand_id; 2238 long h; 2239 2240 switch (btf_kind(t)) { 2241 case BTF_KIND_CONST: 2242 case BTF_KIND_VOLATILE: 2243 case BTF_KIND_RESTRICT: 2244 case BTF_KIND_PTR: 2245 case BTF_KIND_TYPEDEF: 2246 case BTF_KIND_ARRAY: 2247 case BTF_KIND_STRUCT: 2248 case BTF_KIND_UNION: 2249 case BTF_KIND_FUNC: 2250 case BTF_KIND_FUNC_PROTO: 2251 case BTF_KIND_VAR: 2252 case BTF_KIND_DATASEC: 2253 return 0; 2254 2255 case BTF_KIND_INT: 2256 h = btf_hash_int(t); 2257 for_each_dedup_cand(d, hash_entry, h) { 2258 cand_id = (__u32)(long)hash_entry->value; 2259 cand = d->btf->types[cand_id]; 2260 if (btf_equal_int(t, cand)) { 2261 new_id = cand_id; 2262 break; 2263 } 2264 } 2265 break; 2266 2267 case BTF_KIND_ENUM: 2268 h = btf_hash_enum(t); 2269 for_each_dedup_cand(d, hash_entry, h) { 2270 cand_id = (__u32)(long)hash_entry->value; 2271 cand = d->btf->types[cand_id]; 2272 if (btf_equal_enum(t, cand)) { 2273 new_id = cand_id; 2274 break; 2275 } 2276 if (d->opts.dont_resolve_fwds) 2277 continue; 2278 if (btf_compat_enum(t, cand)) { 2279 if (btf_is_enum_fwd(t)) { 2280 /* resolve fwd to full enum */ 2281 new_id = cand_id; 2282 break; 2283 } 2284 /* resolve canonical enum fwd to full enum */ 2285 d->map[cand_id] = type_id; 2286 } 2287 } 2288 break; 2289 2290 case BTF_KIND_FWD: 2291 h = btf_hash_common(t); 2292 for_each_dedup_cand(d, hash_entry, h) { 2293 cand_id = (__u32)(long)hash_entry->value; 2294 cand = d->btf->types[cand_id]; 2295 if (btf_equal_common(t, cand)) { 2296 new_id = cand_id; 2297 break; 2298 } 2299 } 2300 break; 2301 2302 default: 2303 return -EINVAL; 2304 } 2305 2306 d->map[type_id] = new_id; 2307 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2308 return -ENOMEM; 2309 2310 return 0; 2311 } 2312 2313 static int btf_dedup_prim_types(struct btf_dedup *d) 2314 { 2315 int i, err; 2316 2317 for (i = 1; i <= d->btf->nr_types; i++) { 2318 err = btf_dedup_prim_type(d, i); 2319 if (err) 2320 return err; 2321 } 2322 return 0; 2323 } 2324 2325 /* 2326 * Check whether type is already mapped into canonical one (could be to itself). 2327 */ 2328 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 2329 { 2330 return d->map[type_id] <= BTF_MAX_NR_TYPES; 2331 } 2332 2333 /* 2334 * Resolve type ID into its canonical type ID, if any; otherwise return original 2335 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 2336 * STRUCT/UNION link and resolve it into canonical type ID as well. 2337 */ 2338 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 2339 { 2340 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2341 type_id = d->map[type_id]; 2342 return type_id; 2343 } 2344 2345 /* 2346 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 2347 * type ID. 2348 */ 2349 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 2350 { 2351 __u32 orig_type_id = type_id; 2352 2353 if (!btf_is_fwd(d->btf->types[type_id])) 2354 return type_id; 2355 2356 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 2357 type_id = d->map[type_id]; 2358 2359 if (!btf_is_fwd(d->btf->types[type_id])) 2360 return type_id; 2361 2362 return orig_type_id; 2363 } 2364 2365 2366 static inline __u16 btf_fwd_kind(struct btf_type *t) 2367 { 2368 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 2369 } 2370 2371 /* 2372 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 2373 * call it "candidate graph" in this description for brevity) to a type graph 2374 * formed by (potential) canonical struct/union ("canonical graph" for brevity 2375 * here, though keep in mind that not all types in canonical graph are 2376 * necessarily canonical representatives themselves, some of them might be 2377 * duplicates or its uniqueness might not have been established yet). 2378 * Returns: 2379 * - >0, if type graphs are equivalent; 2380 * - 0, if not equivalent; 2381 * - <0, on error. 2382 * 2383 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 2384 * equivalence of BTF types at each step. If at any point BTF types in candidate 2385 * and canonical graphs are not compatible structurally, whole graphs are 2386 * incompatible. If types are structurally equivalent (i.e., all information 2387 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 2388 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 2389 * If a type references other types, then those referenced types are checked 2390 * for equivalence recursively. 2391 * 2392 * During DFS traversal, if we find that for current `canon_id` type we 2393 * already have some mapping in hypothetical map, we check for two possible 2394 * situations: 2395 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 2396 * happen when type graphs have cycles. In this case we assume those two 2397 * types are equivalent. 2398 * - `canon_id` is mapped to different type. This is contradiction in our 2399 * hypothetical mapping, because same graph in canonical graph corresponds 2400 * to two different types in candidate graph, which for equivalent type 2401 * graphs shouldn't happen. This condition terminates equivalence check 2402 * with negative result. 2403 * 2404 * If type graphs traversal exhausts types to check and find no contradiction, 2405 * then type graphs are equivalent. 2406 * 2407 * When checking types for equivalence, there is one special case: FWD types. 2408 * If FWD type resolution is allowed and one of the types (either from canonical 2409 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 2410 * flag) and their names match, hypothetical mapping is updated to point from 2411 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 2412 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 2413 * 2414 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 2415 * if there are two exactly named (or anonymous) structs/unions that are 2416 * compatible structurally, one of which has FWD field, while other is concrete 2417 * STRUCT/UNION, but according to C sources they are different structs/unions 2418 * that are referencing different types with the same name. This is extremely 2419 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 2420 * this logic is causing problems. 2421 * 2422 * Doing FWD resolution means that both candidate and/or canonical graphs can 2423 * consists of portions of the graph that come from multiple compilation units. 2424 * This is due to the fact that types within single compilation unit are always 2425 * deduplicated and FWDs are already resolved, if referenced struct/union 2426 * definiton is available. So, if we had unresolved FWD and found corresponding 2427 * STRUCT/UNION, they will be from different compilation units. This 2428 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 2429 * type graph will likely have at least two different BTF types that describe 2430 * same type (e.g., most probably there will be two different BTF types for the 2431 * same 'int' primitive type) and could even have "overlapping" parts of type 2432 * graph that describe same subset of types. 2433 * 2434 * This in turn means that our assumption that each type in canonical graph 2435 * must correspond to exactly one type in candidate graph might not hold 2436 * anymore and will make it harder to detect contradictions using hypothetical 2437 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 2438 * resolution only in canonical graph. FWDs in candidate graphs are never 2439 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 2440 * that can occur: 2441 * - Both types in canonical and candidate graphs are FWDs. If they are 2442 * structurally equivalent, then they can either be both resolved to the 2443 * same STRUCT/UNION or not resolved at all. In both cases they are 2444 * equivalent and there is no need to resolve FWD on candidate side. 2445 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 2446 * so nothing to resolve as well, algorithm will check equivalence anyway. 2447 * - Type in canonical graph is FWD, while type in candidate is concrete 2448 * STRUCT/UNION. In this case candidate graph comes from single compilation 2449 * unit, so there is exactly one BTF type for each unique C type. After 2450 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 2451 * in canonical graph mapping to single BTF type in candidate graph, but 2452 * because hypothetical mapping maps from canonical to candidate types, it's 2453 * alright, and we still maintain the property of having single `canon_id` 2454 * mapping to single `cand_id` (there could be two different `canon_id` 2455 * mapped to the same `cand_id`, but it's not contradictory). 2456 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 2457 * graph is FWD. In this case we are just going to check compatibility of 2458 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 2459 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 2460 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 2461 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 2462 * canonical graph. 2463 */ 2464 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 2465 __u32 canon_id) 2466 { 2467 struct btf_type *cand_type; 2468 struct btf_type *canon_type; 2469 __u32 hypot_type_id; 2470 __u16 cand_kind; 2471 __u16 canon_kind; 2472 int i, eq; 2473 2474 /* if both resolve to the same canonical, they must be equivalent */ 2475 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 2476 return 1; 2477 2478 canon_id = resolve_fwd_id(d, canon_id); 2479 2480 hypot_type_id = d->hypot_map[canon_id]; 2481 if (hypot_type_id <= BTF_MAX_NR_TYPES) 2482 return hypot_type_id == cand_id; 2483 2484 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 2485 return -ENOMEM; 2486 2487 cand_type = d->btf->types[cand_id]; 2488 canon_type = d->btf->types[canon_id]; 2489 cand_kind = btf_kind(cand_type); 2490 canon_kind = btf_kind(canon_type); 2491 2492 if (cand_type->name_off != canon_type->name_off) 2493 return 0; 2494 2495 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 2496 if (!d->opts.dont_resolve_fwds 2497 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 2498 && cand_kind != canon_kind) { 2499 __u16 real_kind; 2500 __u16 fwd_kind; 2501 2502 if (cand_kind == BTF_KIND_FWD) { 2503 real_kind = canon_kind; 2504 fwd_kind = btf_fwd_kind(cand_type); 2505 } else { 2506 real_kind = cand_kind; 2507 fwd_kind = btf_fwd_kind(canon_type); 2508 } 2509 return fwd_kind == real_kind; 2510 } 2511 2512 if (cand_kind != canon_kind) 2513 return 0; 2514 2515 switch (cand_kind) { 2516 case BTF_KIND_INT: 2517 return btf_equal_int(cand_type, canon_type); 2518 2519 case BTF_KIND_ENUM: 2520 if (d->opts.dont_resolve_fwds) 2521 return btf_equal_enum(cand_type, canon_type); 2522 else 2523 return btf_compat_enum(cand_type, canon_type); 2524 2525 case BTF_KIND_FWD: 2526 return btf_equal_common(cand_type, canon_type); 2527 2528 case BTF_KIND_CONST: 2529 case BTF_KIND_VOLATILE: 2530 case BTF_KIND_RESTRICT: 2531 case BTF_KIND_PTR: 2532 case BTF_KIND_TYPEDEF: 2533 case BTF_KIND_FUNC: 2534 if (cand_type->info != canon_type->info) 2535 return 0; 2536 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2537 2538 case BTF_KIND_ARRAY: { 2539 const struct btf_array *cand_arr, *canon_arr; 2540 2541 if (!btf_compat_array(cand_type, canon_type)) 2542 return 0; 2543 cand_arr = btf_array(cand_type); 2544 canon_arr = btf_array(canon_type); 2545 eq = btf_dedup_is_equiv(d, 2546 cand_arr->index_type, canon_arr->index_type); 2547 if (eq <= 0) 2548 return eq; 2549 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 2550 } 2551 2552 case BTF_KIND_STRUCT: 2553 case BTF_KIND_UNION: { 2554 const struct btf_member *cand_m, *canon_m; 2555 __u16 vlen; 2556 2557 if (!btf_shallow_equal_struct(cand_type, canon_type)) 2558 return 0; 2559 vlen = btf_vlen(cand_type); 2560 cand_m = btf_members(cand_type); 2561 canon_m = btf_members(canon_type); 2562 for (i = 0; i < vlen; i++) { 2563 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 2564 if (eq <= 0) 2565 return eq; 2566 cand_m++; 2567 canon_m++; 2568 } 2569 2570 return 1; 2571 } 2572 2573 case BTF_KIND_FUNC_PROTO: { 2574 const struct btf_param *cand_p, *canon_p; 2575 __u16 vlen; 2576 2577 if (!btf_compat_fnproto(cand_type, canon_type)) 2578 return 0; 2579 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 2580 if (eq <= 0) 2581 return eq; 2582 vlen = btf_vlen(cand_type); 2583 cand_p = btf_params(cand_type); 2584 canon_p = btf_params(canon_type); 2585 for (i = 0; i < vlen; i++) { 2586 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 2587 if (eq <= 0) 2588 return eq; 2589 cand_p++; 2590 canon_p++; 2591 } 2592 return 1; 2593 } 2594 2595 default: 2596 return -EINVAL; 2597 } 2598 return 0; 2599 } 2600 2601 /* 2602 * Use hypothetical mapping, produced by successful type graph equivalence 2603 * check, to augment existing struct/union canonical mapping, where possible. 2604 * 2605 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 2606 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 2607 * it doesn't matter if FWD type was part of canonical graph or candidate one, 2608 * we are recording the mapping anyway. As opposed to carefulness required 2609 * for struct/union correspondence mapping (described below), for FWD resolution 2610 * it's not important, as by the time that FWD type (reference type) will be 2611 * deduplicated all structs/unions will be deduped already anyway. 2612 * 2613 * Recording STRUCT/UNION mapping is purely a performance optimization and is 2614 * not required for correctness. It needs to be done carefully to ensure that 2615 * struct/union from candidate's type graph is not mapped into corresponding 2616 * struct/union from canonical type graph that itself hasn't been resolved into 2617 * canonical representative. The only guarantee we have is that canonical 2618 * struct/union was determined as canonical and that won't change. But any 2619 * types referenced through that struct/union fields could have been not yet 2620 * resolved, so in case like that it's too early to establish any kind of 2621 * correspondence between structs/unions. 2622 * 2623 * No canonical correspondence is derived for primitive types (they are already 2624 * deduplicated completely already anyway) or reference types (they rely on 2625 * stability of struct/union canonical relationship for equivalence checks). 2626 */ 2627 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 2628 { 2629 __u32 cand_type_id, targ_type_id; 2630 __u16 t_kind, c_kind; 2631 __u32 t_id, c_id; 2632 int i; 2633 2634 for (i = 0; i < d->hypot_cnt; i++) { 2635 cand_type_id = d->hypot_list[i]; 2636 targ_type_id = d->hypot_map[cand_type_id]; 2637 t_id = resolve_type_id(d, targ_type_id); 2638 c_id = resolve_type_id(d, cand_type_id); 2639 t_kind = btf_kind(d->btf->types[t_id]); 2640 c_kind = btf_kind(d->btf->types[c_id]); 2641 /* 2642 * Resolve FWD into STRUCT/UNION. 2643 * It's ok to resolve FWD into STRUCT/UNION that's not yet 2644 * mapped to canonical representative (as opposed to 2645 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 2646 * eventually that struct is going to be mapped and all resolved 2647 * FWDs will automatically resolve to correct canonical 2648 * representative. This will happen before ref type deduping, 2649 * which critically depends on stability of these mapping. This 2650 * stability is not a requirement for STRUCT/UNION equivalence 2651 * checks, though. 2652 */ 2653 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 2654 d->map[c_id] = t_id; 2655 else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 2656 d->map[t_id] = c_id; 2657 2658 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 2659 c_kind != BTF_KIND_FWD && 2660 is_type_mapped(d, c_id) && 2661 !is_type_mapped(d, t_id)) { 2662 /* 2663 * as a perf optimization, we can map struct/union 2664 * that's part of type graph we just verified for 2665 * equivalence. We can do that for struct/union that has 2666 * canonical representative only, though. 2667 */ 2668 d->map[t_id] = c_id; 2669 } 2670 } 2671 } 2672 2673 /* 2674 * Deduplicate struct/union types. 2675 * 2676 * For each struct/union type its type signature hash is calculated, taking 2677 * into account type's name, size, number, order and names of fields, but 2678 * ignoring type ID's referenced from fields, because they might not be deduped 2679 * completely until after reference types deduplication phase. This type hash 2680 * is used to iterate over all potential canonical types, sharing same hash. 2681 * For each canonical candidate we check whether type graphs that they form 2682 * (through referenced types in fields and so on) are equivalent using algorithm 2683 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 2684 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 2685 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 2686 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 2687 * potentially map other structs/unions to their canonical representatives, 2688 * if such relationship hasn't yet been established. This speeds up algorithm 2689 * by eliminating some of the duplicate work. 2690 * 2691 * If no matching canonical representative was found, struct/union is marked 2692 * as canonical for itself and is added into btf_dedup->dedup_table hash map 2693 * for further look ups. 2694 */ 2695 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 2696 { 2697 struct btf_type *cand_type, *t; 2698 struct hashmap_entry *hash_entry; 2699 /* if we don't find equivalent type, then we are canonical */ 2700 __u32 new_id = type_id; 2701 __u16 kind; 2702 long h; 2703 2704 /* already deduped or is in process of deduping (loop detected) */ 2705 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2706 return 0; 2707 2708 t = d->btf->types[type_id]; 2709 kind = btf_kind(t); 2710 2711 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 2712 return 0; 2713 2714 h = btf_hash_struct(t); 2715 for_each_dedup_cand(d, hash_entry, h) { 2716 __u32 cand_id = (__u32)(long)hash_entry->value; 2717 int eq; 2718 2719 /* 2720 * Even though btf_dedup_is_equiv() checks for 2721 * btf_shallow_equal_struct() internally when checking two 2722 * structs (unions) for equivalence, we need to guard here 2723 * from picking matching FWD type as a dedup candidate. 2724 * This can happen due to hash collision. In such case just 2725 * relying on btf_dedup_is_equiv() would lead to potentially 2726 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 2727 * FWD and compatible STRUCT/UNION are considered equivalent. 2728 */ 2729 cand_type = d->btf->types[cand_id]; 2730 if (!btf_shallow_equal_struct(t, cand_type)) 2731 continue; 2732 2733 btf_dedup_clear_hypot_map(d); 2734 eq = btf_dedup_is_equiv(d, type_id, cand_id); 2735 if (eq < 0) 2736 return eq; 2737 if (!eq) 2738 continue; 2739 new_id = cand_id; 2740 btf_dedup_merge_hypot_map(d); 2741 break; 2742 } 2743 2744 d->map[type_id] = new_id; 2745 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2746 return -ENOMEM; 2747 2748 return 0; 2749 } 2750 2751 static int btf_dedup_struct_types(struct btf_dedup *d) 2752 { 2753 int i, err; 2754 2755 for (i = 1; i <= d->btf->nr_types; i++) { 2756 err = btf_dedup_struct_type(d, i); 2757 if (err) 2758 return err; 2759 } 2760 return 0; 2761 } 2762 2763 /* 2764 * Deduplicate reference type. 2765 * 2766 * Once all primitive and struct/union types got deduplicated, we can easily 2767 * deduplicate all other (reference) BTF types. This is done in two steps: 2768 * 2769 * 1. Resolve all referenced type IDs into their canonical type IDs. This 2770 * resolution can be done either immediately for primitive or struct/union types 2771 * (because they were deduped in previous two phases) or recursively for 2772 * reference types. Recursion will always terminate at either primitive or 2773 * struct/union type, at which point we can "unwind" chain of reference types 2774 * one by one. There is no danger of encountering cycles because in C type 2775 * system the only way to form type cycle is through struct/union, so any chain 2776 * of reference types, even those taking part in a type cycle, will inevitably 2777 * reach struct/union at some point. 2778 * 2779 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 2780 * becomes "stable", in the sense that no further deduplication will cause 2781 * any changes to it. With that, it's now possible to calculate type's signature 2782 * hash (this time taking into account referenced type IDs) and loop over all 2783 * potential canonical representatives. If no match was found, current type 2784 * will become canonical representative of itself and will be added into 2785 * btf_dedup->dedup_table as another possible canonical representative. 2786 */ 2787 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 2788 { 2789 struct hashmap_entry *hash_entry; 2790 __u32 new_id = type_id, cand_id; 2791 struct btf_type *t, *cand; 2792 /* if we don't find equivalent type, then we are representative type */ 2793 int ref_type_id; 2794 long h; 2795 2796 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 2797 return -ELOOP; 2798 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 2799 return resolve_type_id(d, type_id); 2800 2801 t = d->btf->types[type_id]; 2802 d->map[type_id] = BTF_IN_PROGRESS_ID; 2803 2804 switch (btf_kind(t)) { 2805 case BTF_KIND_CONST: 2806 case BTF_KIND_VOLATILE: 2807 case BTF_KIND_RESTRICT: 2808 case BTF_KIND_PTR: 2809 case BTF_KIND_TYPEDEF: 2810 case BTF_KIND_FUNC: 2811 ref_type_id = btf_dedup_ref_type(d, t->type); 2812 if (ref_type_id < 0) 2813 return ref_type_id; 2814 t->type = ref_type_id; 2815 2816 h = btf_hash_common(t); 2817 for_each_dedup_cand(d, hash_entry, h) { 2818 cand_id = (__u32)(long)hash_entry->value; 2819 cand = d->btf->types[cand_id]; 2820 if (btf_equal_common(t, cand)) { 2821 new_id = cand_id; 2822 break; 2823 } 2824 } 2825 break; 2826 2827 case BTF_KIND_ARRAY: { 2828 struct btf_array *info = btf_array(t); 2829 2830 ref_type_id = btf_dedup_ref_type(d, info->type); 2831 if (ref_type_id < 0) 2832 return ref_type_id; 2833 info->type = ref_type_id; 2834 2835 ref_type_id = btf_dedup_ref_type(d, info->index_type); 2836 if (ref_type_id < 0) 2837 return ref_type_id; 2838 info->index_type = ref_type_id; 2839 2840 h = btf_hash_array(t); 2841 for_each_dedup_cand(d, hash_entry, h) { 2842 cand_id = (__u32)(long)hash_entry->value; 2843 cand = d->btf->types[cand_id]; 2844 if (btf_equal_array(t, cand)) { 2845 new_id = cand_id; 2846 break; 2847 } 2848 } 2849 break; 2850 } 2851 2852 case BTF_KIND_FUNC_PROTO: { 2853 struct btf_param *param; 2854 __u16 vlen; 2855 int i; 2856 2857 ref_type_id = btf_dedup_ref_type(d, t->type); 2858 if (ref_type_id < 0) 2859 return ref_type_id; 2860 t->type = ref_type_id; 2861 2862 vlen = btf_vlen(t); 2863 param = btf_params(t); 2864 for (i = 0; i < vlen; i++) { 2865 ref_type_id = btf_dedup_ref_type(d, param->type); 2866 if (ref_type_id < 0) 2867 return ref_type_id; 2868 param->type = ref_type_id; 2869 param++; 2870 } 2871 2872 h = btf_hash_fnproto(t); 2873 for_each_dedup_cand(d, hash_entry, h) { 2874 cand_id = (__u32)(long)hash_entry->value; 2875 cand = d->btf->types[cand_id]; 2876 if (btf_equal_fnproto(t, cand)) { 2877 new_id = cand_id; 2878 break; 2879 } 2880 } 2881 break; 2882 } 2883 2884 default: 2885 return -EINVAL; 2886 } 2887 2888 d->map[type_id] = new_id; 2889 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 2890 return -ENOMEM; 2891 2892 return new_id; 2893 } 2894 2895 static int btf_dedup_ref_types(struct btf_dedup *d) 2896 { 2897 int i, err; 2898 2899 for (i = 1; i <= d->btf->nr_types; i++) { 2900 err = btf_dedup_ref_type(d, i); 2901 if (err < 0) 2902 return err; 2903 } 2904 /* we won't need d->dedup_table anymore */ 2905 hashmap__free(d->dedup_table); 2906 d->dedup_table = NULL; 2907 return 0; 2908 } 2909 2910 /* 2911 * Compact types. 2912 * 2913 * After we established for each type its corresponding canonical representative 2914 * type, we now can eliminate types that are not canonical and leave only 2915 * canonical ones layed out sequentially in memory by copying them over 2916 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 2917 * a map from original type ID to a new compacted type ID, which will be used 2918 * during next phase to "fix up" type IDs, referenced from struct/union and 2919 * reference types. 2920 */ 2921 static int btf_dedup_compact_types(struct btf_dedup *d) 2922 { 2923 struct btf_type **new_types; 2924 __u32 next_type_id = 1; 2925 char *types_start, *p; 2926 int i, len; 2927 2928 /* we are going to reuse hypot_map to store compaction remapping */ 2929 d->hypot_map[0] = 0; 2930 for (i = 1; i <= d->btf->nr_types; i++) 2931 d->hypot_map[i] = BTF_UNPROCESSED_ID; 2932 2933 types_start = d->btf->nohdr_data + d->btf->hdr->type_off; 2934 p = types_start; 2935 2936 for (i = 1; i <= d->btf->nr_types; i++) { 2937 if (d->map[i] != i) 2938 continue; 2939 2940 len = btf_type_size(d->btf->types[i]); 2941 if (len < 0) 2942 return len; 2943 2944 memmove(p, d->btf->types[i], len); 2945 d->hypot_map[i] = next_type_id; 2946 d->btf->types[next_type_id] = (struct btf_type *)p; 2947 p += len; 2948 next_type_id++; 2949 } 2950 2951 /* shrink struct btf's internal types index and update btf_header */ 2952 d->btf->nr_types = next_type_id - 1; 2953 d->btf->types_size = d->btf->nr_types; 2954 d->btf->hdr->type_len = p - types_start; 2955 new_types = libbpf_reallocarray(d->btf->types, (1 + d->btf->nr_types), 2956 sizeof(struct btf_type *)); 2957 if (!new_types) 2958 return -ENOMEM; 2959 d->btf->types = new_types; 2960 2961 /* make sure string section follows type information without gaps */ 2962 d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data; 2963 memmove(p, d->btf->strings, d->btf->hdr->str_len); 2964 d->btf->strings = p; 2965 p += d->btf->hdr->str_len; 2966 2967 d->btf->data_size = p - (char *)d->btf->data; 2968 return 0; 2969 } 2970 2971 /* 2972 * Figure out final (deduplicated and compacted) type ID for provided original 2973 * `type_id` by first resolving it into corresponding canonical type ID and 2974 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 2975 * which is populated during compaction phase. 2976 */ 2977 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 2978 { 2979 __u32 resolved_type_id, new_type_id; 2980 2981 resolved_type_id = resolve_type_id(d, type_id); 2982 new_type_id = d->hypot_map[resolved_type_id]; 2983 if (new_type_id > BTF_MAX_NR_TYPES) 2984 return -EINVAL; 2985 return new_type_id; 2986 } 2987 2988 /* 2989 * Remap referenced type IDs into deduped type IDs. 2990 * 2991 * After BTF types are deduplicated and compacted, their final type IDs may 2992 * differ from original ones. The map from original to a corresponding 2993 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 2994 * compaction phase. During remapping phase we are rewriting all type IDs 2995 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 2996 * their final deduped type IDs. 2997 */ 2998 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 2999 { 3000 struct btf_type *t = d->btf->types[type_id]; 3001 int i, r; 3002 3003 switch (btf_kind(t)) { 3004 case BTF_KIND_INT: 3005 case BTF_KIND_ENUM: 3006 break; 3007 3008 case BTF_KIND_FWD: 3009 case BTF_KIND_CONST: 3010 case BTF_KIND_VOLATILE: 3011 case BTF_KIND_RESTRICT: 3012 case BTF_KIND_PTR: 3013 case BTF_KIND_TYPEDEF: 3014 case BTF_KIND_FUNC: 3015 case BTF_KIND_VAR: 3016 r = btf_dedup_remap_type_id(d, t->type); 3017 if (r < 0) 3018 return r; 3019 t->type = r; 3020 break; 3021 3022 case BTF_KIND_ARRAY: { 3023 struct btf_array *arr_info = btf_array(t); 3024 3025 r = btf_dedup_remap_type_id(d, arr_info->type); 3026 if (r < 0) 3027 return r; 3028 arr_info->type = r; 3029 r = btf_dedup_remap_type_id(d, arr_info->index_type); 3030 if (r < 0) 3031 return r; 3032 arr_info->index_type = r; 3033 break; 3034 } 3035 3036 case BTF_KIND_STRUCT: 3037 case BTF_KIND_UNION: { 3038 struct btf_member *member = btf_members(t); 3039 __u16 vlen = btf_vlen(t); 3040 3041 for (i = 0; i < vlen; i++) { 3042 r = btf_dedup_remap_type_id(d, member->type); 3043 if (r < 0) 3044 return r; 3045 member->type = r; 3046 member++; 3047 } 3048 break; 3049 } 3050 3051 case BTF_KIND_FUNC_PROTO: { 3052 struct btf_param *param = btf_params(t); 3053 __u16 vlen = btf_vlen(t); 3054 3055 r = btf_dedup_remap_type_id(d, t->type); 3056 if (r < 0) 3057 return r; 3058 t->type = r; 3059 3060 for (i = 0; i < vlen; i++) { 3061 r = btf_dedup_remap_type_id(d, param->type); 3062 if (r < 0) 3063 return r; 3064 param->type = r; 3065 param++; 3066 } 3067 break; 3068 } 3069 3070 case BTF_KIND_DATASEC: { 3071 struct btf_var_secinfo *var = btf_var_secinfos(t); 3072 __u16 vlen = btf_vlen(t); 3073 3074 for (i = 0; i < vlen; i++) { 3075 r = btf_dedup_remap_type_id(d, var->type); 3076 if (r < 0) 3077 return r; 3078 var->type = r; 3079 var++; 3080 } 3081 break; 3082 } 3083 3084 default: 3085 return -EINVAL; 3086 } 3087 3088 return 0; 3089 } 3090 3091 static int btf_dedup_remap_types(struct btf_dedup *d) 3092 { 3093 int i, r; 3094 3095 for (i = 1; i <= d->btf->nr_types; i++) { 3096 r = btf_dedup_remap_type(d, i); 3097 if (r < 0) 3098 return r; 3099 } 3100 return 0; 3101 } 3102 3103 /* 3104 * Probe few well-known locations for vmlinux kernel image and try to load BTF 3105 * data out of it to use for target BTF. 3106 */ 3107 struct btf *libbpf_find_kernel_btf(void) 3108 { 3109 struct { 3110 const char *path_fmt; 3111 bool raw_btf; 3112 } locations[] = { 3113 /* try canonical vmlinux BTF through sysfs first */ 3114 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 3115 /* fall back to trying to find vmlinux ELF on disk otherwise */ 3116 { "/boot/vmlinux-%1$s" }, 3117 { "/lib/modules/%1$s/vmlinux-%1$s" }, 3118 { "/lib/modules/%1$s/build/vmlinux" }, 3119 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 3120 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 3121 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 3122 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 3123 }; 3124 char path[PATH_MAX + 1]; 3125 struct utsname buf; 3126 struct btf *btf; 3127 int i; 3128 3129 uname(&buf); 3130 3131 for (i = 0; i < ARRAY_SIZE(locations); i++) { 3132 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 3133 3134 if (access(path, R_OK)) 3135 continue; 3136 3137 if (locations[i].raw_btf) 3138 btf = btf__parse_raw(path); 3139 else 3140 btf = btf__parse_elf(path, NULL); 3141 3142 pr_debug("loading kernel BTF '%s': %ld\n", 3143 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 3144 if (IS_ERR(btf)) 3145 continue; 3146 3147 return btf; 3148 } 3149 3150 pr_warn("failed to find valid kernel BTF\n"); 3151 return ERR_PTR(-ESRCH); 3152 } 3153