xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 8b0adbe3e38dbe5aae9edf6f5159ffdca7cfbdf1)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__get_raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
193 {
194 	__u32 *p;
195 
196 	p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
197 			   btf->nr_types, BTF_MAX_NR_TYPES, 1);
198 	if (!p)
199 		return -ENOMEM;
200 
201 	*p = type_off;
202 	return 0;
203 }
204 
205 static void btf_bswap_hdr(struct btf_header *h)
206 {
207 	h->magic = bswap_16(h->magic);
208 	h->hdr_len = bswap_32(h->hdr_len);
209 	h->type_off = bswap_32(h->type_off);
210 	h->type_len = bswap_32(h->type_len);
211 	h->str_off = bswap_32(h->str_off);
212 	h->str_len = bswap_32(h->str_len);
213 }
214 
215 static int btf_parse_hdr(struct btf *btf)
216 {
217 	struct btf_header *hdr = btf->hdr;
218 	__u32 meta_left;
219 
220 	if (btf->raw_size < sizeof(struct btf_header)) {
221 		pr_debug("BTF header not found\n");
222 		return -EINVAL;
223 	}
224 
225 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
226 		btf->swapped_endian = true;
227 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
228 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
229 				bswap_32(hdr->hdr_len));
230 			return -ENOTSUP;
231 		}
232 		btf_bswap_hdr(hdr);
233 	} else if (hdr->magic != BTF_MAGIC) {
234 		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
235 		return -EINVAL;
236 	}
237 
238 	meta_left = btf->raw_size - sizeof(*hdr);
239 	if (meta_left < hdr->str_off + hdr->str_len) {
240 		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
241 		return -EINVAL;
242 	}
243 
244 	if (hdr->type_off + hdr->type_len > hdr->str_off) {
245 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
246 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
247 		return -EINVAL;
248 	}
249 
250 	if (hdr->type_off % 4) {
251 		pr_debug("BTF type section is not aligned to 4 bytes\n");
252 		return -EINVAL;
253 	}
254 
255 	return 0;
256 }
257 
258 static int btf_parse_str_sec(struct btf *btf)
259 {
260 	const struct btf_header *hdr = btf->hdr;
261 	const char *start = btf->strs_data;
262 	const char *end = start + btf->hdr->str_len;
263 
264 	if (btf->base_btf && hdr->str_len == 0)
265 		return 0;
266 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
267 		pr_debug("Invalid BTF string section\n");
268 		return -EINVAL;
269 	}
270 	if (!btf->base_btf && start[0]) {
271 		pr_debug("Invalid BTF string section\n");
272 		return -EINVAL;
273 	}
274 	return 0;
275 }
276 
277 static int btf_type_size(const struct btf_type *t)
278 {
279 	const int base_size = sizeof(struct btf_type);
280 	__u16 vlen = btf_vlen(t);
281 
282 	switch (btf_kind(t)) {
283 	case BTF_KIND_FWD:
284 	case BTF_KIND_CONST:
285 	case BTF_KIND_VOLATILE:
286 	case BTF_KIND_RESTRICT:
287 	case BTF_KIND_PTR:
288 	case BTF_KIND_TYPEDEF:
289 	case BTF_KIND_FUNC:
290 	case BTF_KIND_FLOAT:
291 		return base_size;
292 	case BTF_KIND_INT:
293 		return base_size + sizeof(__u32);
294 	case BTF_KIND_ENUM:
295 		return base_size + vlen * sizeof(struct btf_enum);
296 	case BTF_KIND_ARRAY:
297 		return base_size + sizeof(struct btf_array);
298 	case BTF_KIND_STRUCT:
299 	case BTF_KIND_UNION:
300 		return base_size + vlen * sizeof(struct btf_member);
301 	case BTF_KIND_FUNC_PROTO:
302 		return base_size + vlen * sizeof(struct btf_param);
303 	case BTF_KIND_VAR:
304 		return base_size + sizeof(struct btf_var);
305 	case BTF_KIND_DATASEC:
306 		return base_size + vlen * sizeof(struct btf_var_secinfo);
307 	default:
308 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
309 		return -EINVAL;
310 	}
311 }
312 
313 static void btf_bswap_type_base(struct btf_type *t)
314 {
315 	t->name_off = bswap_32(t->name_off);
316 	t->info = bswap_32(t->info);
317 	t->type = bswap_32(t->type);
318 }
319 
320 static int btf_bswap_type_rest(struct btf_type *t)
321 {
322 	struct btf_var_secinfo *v;
323 	struct btf_member *m;
324 	struct btf_array *a;
325 	struct btf_param *p;
326 	struct btf_enum *e;
327 	__u16 vlen = btf_vlen(t);
328 	int i;
329 
330 	switch (btf_kind(t)) {
331 	case BTF_KIND_FWD:
332 	case BTF_KIND_CONST:
333 	case BTF_KIND_VOLATILE:
334 	case BTF_KIND_RESTRICT:
335 	case BTF_KIND_PTR:
336 	case BTF_KIND_TYPEDEF:
337 	case BTF_KIND_FUNC:
338 	case BTF_KIND_FLOAT:
339 		return 0;
340 	case BTF_KIND_INT:
341 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
342 		return 0;
343 	case BTF_KIND_ENUM:
344 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
345 			e->name_off = bswap_32(e->name_off);
346 			e->val = bswap_32(e->val);
347 		}
348 		return 0;
349 	case BTF_KIND_ARRAY:
350 		a = btf_array(t);
351 		a->type = bswap_32(a->type);
352 		a->index_type = bswap_32(a->index_type);
353 		a->nelems = bswap_32(a->nelems);
354 		return 0;
355 	case BTF_KIND_STRUCT:
356 	case BTF_KIND_UNION:
357 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
358 			m->name_off = bswap_32(m->name_off);
359 			m->type = bswap_32(m->type);
360 			m->offset = bswap_32(m->offset);
361 		}
362 		return 0;
363 	case BTF_KIND_FUNC_PROTO:
364 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
365 			p->name_off = bswap_32(p->name_off);
366 			p->type = bswap_32(p->type);
367 		}
368 		return 0;
369 	case BTF_KIND_VAR:
370 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
371 		return 0;
372 	case BTF_KIND_DATASEC:
373 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
374 			v->type = bswap_32(v->type);
375 			v->offset = bswap_32(v->offset);
376 			v->size = bswap_32(v->size);
377 		}
378 		return 0;
379 	default:
380 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
381 		return -EINVAL;
382 	}
383 }
384 
385 static int btf_parse_type_sec(struct btf *btf)
386 {
387 	struct btf_header *hdr = btf->hdr;
388 	void *next_type = btf->types_data;
389 	void *end_type = next_type + hdr->type_len;
390 	int err, type_size;
391 
392 	while (next_type + sizeof(struct btf_type) <= end_type) {
393 		if (btf->swapped_endian)
394 			btf_bswap_type_base(next_type);
395 
396 		type_size = btf_type_size(next_type);
397 		if (type_size < 0)
398 			return type_size;
399 		if (next_type + type_size > end_type) {
400 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
401 			return -EINVAL;
402 		}
403 
404 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
405 			return -EINVAL;
406 
407 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
408 		if (err)
409 			return err;
410 
411 		next_type += type_size;
412 		btf->nr_types++;
413 	}
414 
415 	if (next_type != end_type) {
416 		pr_warn("BTF types data is malformed\n");
417 		return -EINVAL;
418 	}
419 
420 	return 0;
421 }
422 
423 __u32 btf__get_nr_types(const struct btf *btf)
424 {
425 	return btf->start_id + btf->nr_types - 1;
426 }
427 
428 const struct btf *btf__base_btf(const struct btf *btf)
429 {
430 	return btf->base_btf;
431 }
432 
433 /* internal helper returning non-const pointer to a type */
434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
435 {
436 	if (type_id == 0)
437 		return &btf_void;
438 	if (type_id < btf->start_id)
439 		return btf_type_by_id(btf->base_btf, type_id);
440 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
441 }
442 
443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
444 {
445 	if (type_id >= btf->start_id + btf->nr_types)
446 		return NULL;
447 	return btf_type_by_id((struct btf *)btf, type_id);
448 }
449 
450 static int determine_ptr_size(const struct btf *btf)
451 {
452 	const struct btf_type *t;
453 	const char *name;
454 	int i, n;
455 
456 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
457 		return btf->base_btf->ptr_sz;
458 
459 	n = btf__get_nr_types(btf);
460 	for (i = 1; i <= n; i++) {
461 		t = btf__type_by_id(btf, i);
462 		if (!btf_is_int(t))
463 			continue;
464 
465 		name = btf__name_by_offset(btf, t->name_off);
466 		if (!name)
467 			continue;
468 
469 		if (strcmp(name, "long int") == 0 ||
470 		    strcmp(name, "long unsigned int") == 0) {
471 			if (t->size != 4 && t->size != 8)
472 				continue;
473 			return t->size;
474 		}
475 	}
476 
477 	return -1;
478 }
479 
480 static size_t btf_ptr_sz(const struct btf *btf)
481 {
482 	if (!btf->ptr_sz)
483 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
484 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
485 }
486 
487 /* Return pointer size this BTF instance assumes. The size is heuristically
488  * determined by looking for 'long' or 'unsigned long' integer type and
489  * recording its size in bytes. If BTF type information doesn't have any such
490  * type, this function returns 0. In the latter case, native architecture's
491  * pointer size is assumed, so will be either 4 or 8, depending on
492  * architecture that libbpf was compiled for. It's possible to override
493  * guessed value by using btf__set_pointer_size() API.
494  */
495 size_t btf__pointer_size(const struct btf *btf)
496 {
497 	if (!btf->ptr_sz)
498 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
499 
500 	if (btf->ptr_sz < 0)
501 		/* not enough BTF type info to guess */
502 		return 0;
503 
504 	return btf->ptr_sz;
505 }
506 
507 /* Override or set pointer size in bytes. Only values of 4 and 8 are
508  * supported.
509  */
510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
511 {
512 	if (ptr_sz != 4 && ptr_sz != 8)
513 		return -EINVAL;
514 	btf->ptr_sz = ptr_sz;
515 	return 0;
516 }
517 
518 static bool is_host_big_endian(void)
519 {
520 #if __BYTE_ORDER == __LITTLE_ENDIAN
521 	return false;
522 #elif __BYTE_ORDER == __BIG_ENDIAN
523 	return true;
524 #else
525 # error "Unrecognized __BYTE_ORDER__"
526 #endif
527 }
528 
529 enum btf_endianness btf__endianness(const struct btf *btf)
530 {
531 	if (is_host_big_endian())
532 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
533 	else
534 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
535 }
536 
537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
538 {
539 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
540 		return -EINVAL;
541 
542 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
543 	if (!btf->swapped_endian) {
544 		free(btf->raw_data_swapped);
545 		btf->raw_data_swapped = NULL;
546 	}
547 	return 0;
548 }
549 
550 static bool btf_type_is_void(const struct btf_type *t)
551 {
552 	return t == &btf_void || btf_is_fwd(t);
553 }
554 
555 static bool btf_type_is_void_or_null(const struct btf_type *t)
556 {
557 	return !t || btf_type_is_void(t);
558 }
559 
560 #define MAX_RESOLVE_DEPTH 32
561 
562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
563 {
564 	const struct btf_array *array;
565 	const struct btf_type *t;
566 	__u32 nelems = 1;
567 	__s64 size = -1;
568 	int i;
569 
570 	t = btf__type_by_id(btf, type_id);
571 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
572 	     i++) {
573 		switch (btf_kind(t)) {
574 		case BTF_KIND_INT:
575 		case BTF_KIND_STRUCT:
576 		case BTF_KIND_UNION:
577 		case BTF_KIND_ENUM:
578 		case BTF_KIND_DATASEC:
579 		case BTF_KIND_FLOAT:
580 			size = t->size;
581 			goto done;
582 		case BTF_KIND_PTR:
583 			size = btf_ptr_sz(btf);
584 			goto done;
585 		case BTF_KIND_TYPEDEF:
586 		case BTF_KIND_VOLATILE:
587 		case BTF_KIND_CONST:
588 		case BTF_KIND_RESTRICT:
589 		case BTF_KIND_VAR:
590 			type_id = t->type;
591 			break;
592 		case BTF_KIND_ARRAY:
593 			array = btf_array(t);
594 			if (nelems && array->nelems > UINT32_MAX / nelems)
595 				return -E2BIG;
596 			nelems *= array->nelems;
597 			type_id = array->type;
598 			break;
599 		default:
600 			return -EINVAL;
601 		}
602 
603 		t = btf__type_by_id(btf, type_id);
604 	}
605 
606 done:
607 	if (size < 0)
608 		return -EINVAL;
609 	if (nelems && size > UINT32_MAX / nelems)
610 		return -E2BIG;
611 
612 	return nelems * size;
613 }
614 
615 int btf__align_of(const struct btf *btf, __u32 id)
616 {
617 	const struct btf_type *t = btf__type_by_id(btf, id);
618 	__u16 kind = btf_kind(t);
619 
620 	switch (kind) {
621 	case BTF_KIND_INT:
622 	case BTF_KIND_ENUM:
623 	case BTF_KIND_FLOAT:
624 		return min(btf_ptr_sz(btf), (size_t)t->size);
625 	case BTF_KIND_PTR:
626 		return btf_ptr_sz(btf);
627 	case BTF_KIND_TYPEDEF:
628 	case BTF_KIND_VOLATILE:
629 	case BTF_KIND_CONST:
630 	case BTF_KIND_RESTRICT:
631 		return btf__align_of(btf, t->type);
632 	case BTF_KIND_ARRAY:
633 		return btf__align_of(btf, btf_array(t)->type);
634 	case BTF_KIND_STRUCT:
635 	case BTF_KIND_UNION: {
636 		const struct btf_member *m = btf_members(t);
637 		__u16 vlen = btf_vlen(t);
638 		int i, max_align = 1, align;
639 
640 		for (i = 0; i < vlen; i++, m++) {
641 			align = btf__align_of(btf, m->type);
642 			if (align <= 0)
643 				return align;
644 			max_align = max(max_align, align);
645 		}
646 
647 		return max_align;
648 	}
649 	default:
650 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
651 		return 0;
652 	}
653 }
654 
655 int btf__resolve_type(const struct btf *btf, __u32 type_id)
656 {
657 	const struct btf_type *t;
658 	int depth = 0;
659 
660 	t = btf__type_by_id(btf, type_id);
661 	while (depth < MAX_RESOLVE_DEPTH &&
662 	       !btf_type_is_void_or_null(t) &&
663 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
664 		type_id = t->type;
665 		t = btf__type_by_id(btf, type_id);
666 		depth++;
667 	}
668 
669 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
670 		return -EINVAL;
671 
672 	return type_id;
673 }
674 
675 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
676 {
677 	__u32 i, nr_types = btf__get_nr_types(btf);
678 
679 	if (!strcmp(type_name, "void"))
680 		return 0;
681 
682 	for (i = 1; i <= nr_types; i++) {
683 		const struct btf_type *t = btf__type_by_id(btf, i);
684 		const char *name = btf__name_by_offset(btf, t->name_off);
685 
686 		if (name && !strcmp(type_name, name))
687 			return i;
688 	}
689 
690 	return -ENOENT;
691 }
692 
693 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
694 			     __u32 kind)
695 {
696 	__u32 i, nr_types = btf__get_nr_types(btf);
697 
698 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
699 		return 0;
700 
701 	for (i = 1; i <= nr_types; i++) {
702 		const struct btf_type *t = btf__type_by_id(btf, i);
703 		const char *name;
704 
705 		if (btf_kind(t) != kind)
706 			continue;
707 		name = btf__name_by_offset(btf, t->name_off);
708 		if (name && !strcmp(type_name, name))
709 			return i;
710 	}
711 
712 	return -ENOENT;
713 }
714 
715 static bool btf_is_modifiable(const struct btf *btf)
716 {
717 	return (void *)btf->hdr != btf->raw_data;
718 }
719 
720 void btf__free(struct btf *btf)
721 {
722 	if (IS_ERR_OR_NULL(btf))
723 		return;
724 
725 	if (btf->fd >= 0)
726 		close(btf->fd);
727 
728 	if (btf_is_modifiable(btf)) {
729 		/* if BTF was modified after loading, it will have a split
730 		 * in-memory representation for header, types, and strings
731 		 * sections, so we need to free all of them individually. It
732 		 * might still have a cached contiguous raw data present,
733 		 * which will be unconditionally freed below.
734 		 */
735 		free(btf->hdr);
736 		free(btf->types_data);
737 		strset__free(btf->strs_set);
738 	}
739 	free(btf->raw_data);
740 	free(btf->raw_data_swapped);
741 	free(btf->type_offs);
742 	free(btf);
743 }
744 
745 static struct btf *btf_new_empty(struct btf *base_btf)
746 {
747 	struct btf *btf;
748 
749 	btf = calloc(1, sizeof(*btf));
750 	if (!btf)
751 		return ERR_PTR(-ENOMEM);
752 
753 	btf->nr_types = 0;
754 	btf->start_id = 1;
755 	btf->start_str_off = 0;
756 	btf->fd = -1;
757 	btf->ptr_sz = sizeof(void *);
758 	btf->swapped_endian = false;
759 
760 	if (base_btf) {
761 		btf->base_btf = base_btf;
762 		btf->start_id = btf__get_nr_types(base_btf) + 1;
763 		btf->start_str_off = base_btf->hdr->str_len;
764 	}
765 
766 	/* +1 for empty string at offset 0 */
767 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
768 	btf->raw_data = calloc(1, btf->raw_size);
769 	if (!btf->raw_data) {
770 		free(btf);
771 		return ERR_PTR(-ENOMEM);
772 	}
773 
774 	btf->hdr = btf->raw_data;
775 	btf->hdr->hdr_len = sizeof(struct btf_header);
776 	btf->hdr->magic = BTF_MAGIC;
777 	btf->hdr->version = BTF_VERSION;
778 
779 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
780 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
781 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
782 
783 	return btf;
784 }
785 
786 struct btf *btf__new_empty(void)
787 {
788 	return btf_new_empty(NULL);
789 }
790 
791 struct btf *btf__new_empty_split(struct btf *base_btf)
792 {
793 	return btf_new_empty(base_btf);
794 }
795 
796 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
797 {
798 	struct btf *btf;
799 	int err;
800 
801 	btf = calloc(1, sizeof(struct btf));
802 	if (!btf)
803 		return ERR_PTR(-ENOMEM);
804 
805 	btf->nr_types = 0;
806 	btf->start_id = 1;
807 	btf->start_str_off = 0;
808 
809 	if (base_btf) {
810 		btf->base_btf = base_btf;
811 		btf->start_id = btf__get_nr_types(base_btf) + 1;
812 		btf->start_str_off = base_btf->hdr->str_len;
813 	}
814 
815 	btf->raw_data = malloc(size);
816 	if (!btf->raw_data) {
817 		err = -ENOMEM;
818 		goto done;
819 	}
820 	memcpy(btf->raw_data, data, size);
821 	btf->raw_size = size;
822 
823 	btf->hdr = btf->raw_data;
824 	err = btf_parse_hdr(btf);
825 	if (err)
826 		goto done;
827 
828 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
829 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
830 
831 	err = btf_parse_str_sec(btf);
832 	err = err ?: btf_parse_type_sec(btf);
833 	if (err)
834 		goto done;
835 
836 	btf->fd = -1;
837 
838 done:
839 	if (err) {
840 		btf__free(btf);
841 		return ERR_PTR(err);
842 	}
843 
844 	return btf;
845 }
846 
847 struct btf *btf__new(const void *data, __u32 size)
848 {
849 	return btf_new(data, size, NULL);
850 }
851 
852 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
853 				 struct btf_ext **btf_ext)
854 {
855 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
856 	int err = 0, fd = -1, idx = 0;
857 	struct btf *btf = NULL;
858 	Elf_Scn *scn = NULL;
859 	Elf *elf = NULL;
860 	GElf_Ehdr ehdr;
861 	size_t shstrndx;
862 
863 	if (elf_version(EV_CURRENT) == EV_NONE) {
864 		pr_warn("failed to init libelf for %s\n", path);
865 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
866 	}
867 
868 	fd = open(path, O_RDONLY);
869 	if (fd < 0) {
870 		err = -errno;
871 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
872 		return ERR_PTR(err);
873 	}
874 
875 	err = -LIBBPF_ERRNO__FORMAT;
876 
877 	elf = elf_begin(fd, ELF_C_READ, NULL);
878 	if (!elf) {
879 		pr_warn("failed to open %s as ELF file\n", path);
880 		goto done;
881 	}
882 	if (!gelf_getehdr(elf, &ehdr)) {
883 		pr_warn("failed to get EHDR from %s\n", path);
884 		goto done;
885 	}
886 
887 	if (elf_getshdrstrndx(elf, &shstrndx)) {
888 		pr_warn("failed to get section names section index for %s\n",
889 			path);
890 		goto done;
891 	}
892 
893 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
894 		pr_warn("failed to get e_shstrndx from %s\n", path);
895 		goto done;
896 	}
897 
898 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
899 		GElf_Shdr sh;
900 		char *name;
901 
902 		idx++;
903 		if (gelf_getshdr(scn, &sh) != &sh) {
904 			pr_warn("failed to get section(%d) header from %s\n",
905 				idx, path);
906 			goto done;
907 		}
908 		name = elf_strptr(elf, shstrndx, sh.sh_name);
909 		if (!name) {
910 			pr_warn("failed to get section(%d) name from %s\n",
911 				idx, path);
912 			goto done;
913 		}
914 		if (strcmp(name, BTF_ELF_SEC) == 0) {
915 			btf_data = elf_getdata(scn, 0);
916 			if (!btf_data) {
917 				pr_warn("failed to get section(%d, %s) data from %s\n",
918 					idx, name, path);
919 				goto done;
920 			}
921 			continue;
922 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
923 			btf_ext_data = elf_getdata(scn, 0);
924 			if (!btf_ext_data) {
925 				pr_warn("failed to get section(%d, %s) data from %s\n",
926 					idx, name, path);
927 				goto done;
928 			}
929 			continue;
930 		}
931 	}
932 
933 	err = 0;
934 
935 	if (!btf_data) {
936 		err = -ENOENT;
937 		goto done;
938 	}
939 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
940 	if (IS_ERR(btf))
941 		goto done;
942 
943 	switch (gelf_getclass(elf)) {
944 	case ELFCLASS32:
945 		btf__set_pointer_size(btf, 4);
946 		break;
947 	case ELFCLASS64:
948 		btf__set_pointer_size(btf, 8);
949 		break;
950 	default:
951 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
952 		break;
953 	}
954 
955 	if (btf_ext && btf_ext_data) {
956 		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
957 					btf_ext_data->d_size);
958 		if (IS_ERR(*btf_ext))
959 			goto done;
960 	} else if (btf_ext) {
961 		*btf_ext = NULL;
962 	}
963 done:
964 	if (elf)
965 		elf_end(elf);
966 	close(fd);
967 
968 	if (err)
969 		return ERR_PTR(err);
970 	/*
971 	 * btf is always parsed before btf_ext, so no need to clean up
972 	 * btf_ext, if btf loading failed
973 	 */
974 	if (IS_ERR(btf))
975 		return btf;
976 	if (btf_ext && IS_ERR(*btf_ext)) {
977 		btf__free(btf);
978 		err = PTR_ERR(*btf_ext);
979 		return ERR_PTR(err);
980 	}
981 	return btf;
982 }
983 
984 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
985 {
986 	return btf_parse_elf(path, NULL, btf_ext);
987 }
988 
989 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
990 {
991 	return btf_parse_elf(path, base_btf, NULL);
992 }
993 
994 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
995 {
996 	struct btf *btf = NULL;
997 	void *data = NULL;
998 	FILE *f = NULL;
999 	__u16 magic;
1000 	int err = 0;
1001 	long sz;
1002 
1003 	f = fopen(path, "rb");
1004 	if (!f) {
1005 		err = -errno;
1006 		goto err_out;
1007 	}
1008 
1009 	/* check BTF magic */
1010 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1011 		err = -EIO;
1012 		goto err_out;
1013 	}
1014 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1015 		/* definitely not a raw BTF */
1016 		err = -EPROTO;
1017 		goto err_out;
1018 	}
1019 
1020 	/* get file size */
1021 	if (fseek(f, 0, SEEK_END)) {
1022 		err = -errno;
1023 		goto err_out;
1024 	}
1025 	sz = ftell(f);
1026 	if (sz < 0) {
1027 		err = -errno;
1028 		goto err_out;
1029 	}
1030 	/* rewind to the start */
1031 	if (fseek(f, 0, SEEK_SET)) {
1032 		err = -errno;
1033 		goto err_out;
1034 	}
1035 
1036 	/* pre-alloc memory and read all of BTF data */
1037 	data = malloc(sz);
1038 	if (!data) {
1039 		err = -ENOMEM;
1040 		goto err_out;
1041 	}
1042 	if (fread(data, 1, sz, f) < sz) {
1043 		err = -EIO;
1044 		goto err_out;
1045 	}
1046 
1047 	/* finally parse BTF data */
1048 	btf = btf_new(data, sz, base_btf);
1049 
1050 err_out:
1051 	free(data);
1052 	if (f)
1053 		fclose(f);
1054 	return err ? ERR_PTR(err) : btf;
1055 }
1056 
1057 struct btf *btf__parse_raw(const char *path)
1058 {
1059 	return btf_parse_raw(path, NULL);
1060 }
1061 
1062 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1063 {
1064 	return btf_parse_raw(path, base_btf);
1065 }
1066 
1067 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1068 {
1069 	struct btf *btf;
1070 
1071 	if (btf_ext)
1072 		*btf_ext = NULL;
1073 
1074 	btf = btf_parse_raw(path, base_btf);
1075 	if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO)
1076 		return btf;
1077 
1078 	return btf_parse_elf(path, base_btf, btf_ext);
1079 }
1080 
1081 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1082 {
1083 	return btf_parse(path, NULL, btf_ext);
1084 }
1085 
1086 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1087 {
1088 	return btf_parse(path, base_btf, NULL);
1089 }
1090 
1091 static int compare_vsi_off(const void *_a, const void *_b)
1092 {
1093 	const struct btf_var_secinfo *a = _a;
1094 	const struct btf_var_secinfo *b = _b;
1095 
1096 	return a->offset - b->offset;
1097 }
1098 
1099 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1100 			     struct btf_type *t)
1101 {
1102 	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1103 	const char *name = btf__name_by_offset(btf, t->name_off);
1104 	const struct btf_type *t_var;
1105 	struct btf_var_secinfo *vsi;
1106 	const struct btf_var *var;
1107 	int ret;
1108 
1109 	if (!name) {
1110 		pr_debug("No name found in string section for DATASEC kind.\n");
1111 		return -ENOENT;
1112 	}
1113 
1114 	/* .extern datasec size and var offsets were set correctly during
1115 	 * extern collection step, so just skip straight to sorting variables
1116 	 */
1117 	if (t->size)
1118 		goto sort_vars;
1119 
1120 	ret = bpf_object__section_size(obj, name, &size);
1121 	if (ret || !size || (t->size && t->size != size)) {
1122 		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1123 		return -ENOENT;
1124 	}
1125 
1126 	t->size = size;
1127 
1128 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1129 		t_var = btf__type_by_id(btf, vsi->type);
1130 		var = btf_var(t_var);
1131 
1132 		if (!btf_is_var(t_var)) {
1133 			pr_debug("Non-VAR type seen in section %s\n", name);
1134 			return -EINVAL;
1135 		}
1136 
1137 		if (var->linkage == BTF_VAR_STATIC)
1138 			continue;
1139 
1140 		name = btf__name_by_offset(btf, t_var->name_off);
1141 		if (!name) {
1142 			pr_debug("No name found in string section for VAR kind\n");
1143 			return -ENOENT;
1144 		}
1145 
1146 		ret = bpf_object__variable_offset(obj, name, &off);
1147 		if (ret) {
1148 			pr_debug("No offset found in symbol table for VAR %s\n",
1149 				 name);
1150 			return -ENOENT;
1151 		}
1152 
1153 		vsi->offset = off;
1154 	}
1155 
1156 sort_vars:
1157 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1158 	return 0;
1159 }
1160 
1161 int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1162 {
1163 	int err = 0;
1164 	__u32 i;
1165 
1166 	for (i = 1; i <= btf->nr_types; i++) {
1167 		struct btf_type *t = btf_type_by_id(btf, i);
1168 
1169 		/* Loader needs to fix up some of the things compiler
1170 		 * couldn't get its hands on while emitting BTF. This
1171 		 * is section size and global variable offset. We use
1172 		 * the info from the ELF itself for this purpose.
1173 		 */
1174 		if (btf_is_datasec(t)) {
1175 			err = btf_fixup_datasec(obj, btf, t);
1176 			if (err)
1177 				break;
1178 		}
1179 	}
1180 
1181 	return err;
1182 }
1183 
1184 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1185 
1186 int btf__load(struct btf *btf)
1187 {
1188 	__u32 log_buf_size = 0, raw_size;
1189 	char *log_buf = NULL;
1190 	void *raw_data;
1191 	int err = 0;
1192 
1193 	if (btf->fd >= 0)
1194 		return -EEXIST;
1195 
1196 retry_load:
1197 	if (log_buf_size) {
1198 		log_buf = malloc(log_buf_size);
1199 		if (!log_buf)
1200 			return -ENOMEM;
1201 
1202 		*log_buf = 0;
1203 	}
1204 
1205 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1206 	if (!raw_data) {
1207 		err = -ENOMEM;
1208 		goto done;
1209 	}
1210 	/* cache native raw data representation */
1211 	btf->raw_size = raw_size;
1212 	btf->raw_data = raw_data;
1213 
1214 	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1215 	if (btf->fd < 0) {
1216 		if (!log_buf || errno == ENOSPC) {
1217 			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1218 					   log_buf_size << 1);
1219 			free(log_buf);
1220 			goto retry_load;
1221 		}
1222 
1223 		err = -errno;
1224 		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1225 		if (*log_buf)
1226 			pr_warn("%s\n", log_buf);
1227 		goto done;
1228 	}
1229 
1230 done:
1231 	free(log_buf);
1232 	return err;
1233 }
1234 
1235 int btf__fd(const struct btf *btf)
1236 {
1237 	return btf->fd;
1238 }
1239 
1240 void btf__set_fd(struct btf *btf, int fd)
1241 {
1242 	btf->fd = fd;
1243 }
1244 
1245 static const void *btf_strs_data(const struct btf *btf)
1246 {
1247 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1248 }
1249 
1250 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1251 {
1252 	struct btf_header *hdr = btf->hdr;
1253 	struct btf_type *t;
1254 	void *data, *p;
1255 	__u32 data_sz;
1256 	int i;
1257 
1258 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1259 	if (data) {
1260 		*size = btf->raw_size;
1261 		return data;
1262 	}
1263 
1264 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1265 	data = calloc(1, data_sz);
1266 	if (!data)
1267 		return NULL;
1268 	p = data;
1269 
1270 	memcpy(p, hdr, hdr->hdr_len);
1271 	if (swap_endian)
1272 		btf_bswap_hdr(p);
1273 	p += hdr->hdr_len;
1274 
1275 	memcpy(p, btf->types_data, hdr->type_len);
1276 	if (swap_endian) {
1277 		for (i = 0; i < btf->nr_types; i++) {
1278 			t = p + btf->type_offs[i];
1279 			/* btf_bswap_type_rest() relies on native t->info, so
1280 			 * we swap base type info after we swapped all the
1281 			 * additional information
1282 			 */
1283 			if (btf_bswap_type_rest(t))
1284 				goto err_out;
1285 			btf_bswap_type_base(t);
1286 		}
1287 	}
1288 	p += hdr->type_len;
1289 
1290 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1291 	p += hdr->str_len;
1292 
1293 	*size = data_sz;
1294 	return data;
1295 err_out:
1296 	free(data);
1297 	return NULL;
1298 }
1299 
1300 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1301 {
1302 	struct btf *btf = (struct btf *)btf_ro;
1303 	__u32 data_sz;
1304 	void *data;
1305 
1306 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1307 	if (!data)
1308 		return NULL;
1309 
1310 	btf->raw_size = data_sz;
1311 	if (btf->swapped_endian)
1312 		btf->raw_data_swapped = data;
1313 	else
1314 		btf->raw_data = data;
1315 	*size = data_sz;
1316 	return data;
1317 }
1318 
1319 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1320 {
1321 	if (offset < btf->start_str_off)
1322 		return btf__str_by_offset(btf->base_btf, offset);
1323 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1324 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1325 	else
1326 		return NULL;
1327 }
1328 
1329 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1330 {
1331 	return btf__str_by_offset(btf, offset);
1332 }
1333 
1334 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1335 {
1336 	struct bpf_btf_info btf_info;
1337 	__u32 len = sizeof(btf_info);
1338 	__u32 last_size;
1339 	struct btf *btf;
1340 	void *ptr;
1341 	int err;
1342 
1343 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1344 	 * let's start with a sane default - 4KiB here - and resize it only if
1345 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1346 	 */
1347 	last_size = 4096;
1348 	ptr = malloc(last_size);
1349 	if (!ptr)
1350 		return ERR_PTR(-ENOMEM);
1351 
1352 	memset(&btf_info, 0, sizeof(btf_info));
1353 	btf_info.btf = ptr_to_u64(ptr);
1354 	btf_info.btf_size = last_size;
1355 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1356 
1357 	if (!err && btf_info.btf_size > last_size) {
1358 		void *temp_ptr;
1359 
1360 		last_size = btf_info.btf_size;
1361 		temp_ptr = realloc(ptr, last_size);
1362 		if (!temp_ptr) {
1363 			btf = ERR_PTR(-ENOMEM);
1364 			goto exit_free;
1365 		}
1366 		ptr = temp_ptr;
1367 
1368 		len = sizeof(btf_info);
1369 		memset(&btf_info, 0, sizeof(btf_info));
1370 		btf_info.btf = ptr_to_u64(ptr);
1371 		btf_info.btf_size = last_size;
1372 
1373 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1374 	}
1375 
1376 	if (err || btf_info.btf_size > last_size) {
1377 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1378 		goto exit_free;
1379 	}
1380 
1381 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1382 
1383 exit_free:
1384 	free(ptr);
1385 	return btf;
1386 }
1387 
1388 int btf__get_from_id(__u32 id, struct btf **btf)
1389 {
1390 	struct btf *res;
1391 	int btf_fd;
1392 
1393 	*btf = NULL;
1394 	btf_fd = bpf_btf_get_fd_by_id(id);
1395 	if (btf_fd < 0)
1396 		return -errno;
1397 
1398 	res = btf_get_from_fd(btf_fd, NULL);
1399 	close(btf_fd);
1400 	if (IS_ERR(res))
1401 		return PTR_ERR(res);
1402 
1403 	*btf = res;
1404 	return 0;
1405 }
1406 
1407 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1408 			 __u32 expected_key_size, __u32 expected_value_size,
1409 			 __u32 *key_type_id, __u32 *value_type_id)
1410 {
1411 	const struct btf_type *container_type;
1412 	const struct btf_member *key, *value;
1413 	const size_t max_name = 256;
1414 	char container_name[max_name];
1415 	__s64 key_size, value_size;
1416 	__s32 container_id;
1417 
1418 	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
1419 	    max_name) {
1420 		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1421 			map_name, map_name);
1422 		return -EINVAL;
1423 	}
1424 
1425 	container_id = btf__find_by_name(btf, container_name);
1426 	if (container_id < 0) {
1427 		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1428 			 map_name, container_name);
1429 		return container_id;
1430 	}
1431 
1432 	container_type = btf__type_by_id(btf, container_id);
1433 	if (!container_type) {
1434 		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1435 			map_name, container_id);
1436 		return -EINVAL;
1437 	}
1438 
1439 	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1440 		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1441 			map_name, container_name);
1442 		return -EINVAL;
1443 	}
1444 
1445 	key = btf_members(container_type);
1446 	value = key + 1;
1447 
1448 	key_size = btf__resolve_size(btf, key->type);
1449 	if (key_size < 0) {
1450 		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1451 		return key_size;
1452 	}
1453 
1454 	if (expected_key_size != key_size) {
1455 		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1456 			map_name, (__u32)key_size, expected_key_size);
1457 		return -EINVAL;
1458 	}
1459 
1460 	value_size = btf__resolve_size(btf, value->type);
1461 	if (value_size < 0) {
1462 		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1463 		return value_size;
1464 	}
1465 
1466 	if (expected_value_size != value_size) {
1467 		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1468 			map_name, (__u32)value_size, expected_value_size);
1469 		return -EINVAL;
1470 	}
1471 
1472 	*key_type_id = key->type;
1473 	*value_type_id = value->type;
1474 
1475 	return 0;
1476 }
1477 
1478 static void btf_invalidate_raw_data(struct btf *btf)
1479 {
1480 	if (btf->raw_data) {
1481 		free(btf->raw_data);
1482 		btf->raw_data = NULL;
1483 	}
1484 	if (btf->raw_data_swapped) {
1485 		free(btf->raw_data_swapped);
1486 		btf->raw_data_swapped = NULL;
1487 	}
1488 }
1489 
1490 /* Ensure BTF is ready to be modified (by splitting into a three memory
1491  * regions for header, types, and strings). Also invalidate cached
1492  * raw_data, if any.
1493  */
1494 static int btf_ensure_modifiable(struct btf *btf)
1495 {
1496 	void *hdr, *types;
1497 	struct strset *set = NULL;
1498 	int err = -ENOMEM;
1499 
1500 	if (btf_is_modifiable(btf)) {
1501 		/* any BTF modification invalidates raw_data */
1502 		btf_invalidate_raw_data(btf);
1503 		return 0;
1504 	}
1505 
1506 	/* split raw data into three memory regions */
1507 	hdr = malloc(btf->hdr->hdr_len);
1508 	types = malloc(btf->hdr->type_len);
1509 	if (!hdr || !types)
1510 		goto err_out;
1511 
1512 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1513 	memcpy(types, btf->types_data, btf->hdr->type_len);
1514 
1515 	/* build lookup index for all strings */
1516 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1517 	if (IS_ERR(set)) {
1518 		err = PTR_ERR(set);
1519 		goto err_out;
1520 	}
1521 
1522 	/* only when everything was successful, update internal state */
1523 	btf->hdr = hdr;
1524 	btf->types_data = types;
1525 	btf->types_data_cap = btf->hdr->type_len;
1526 	btf->strs_data = NULL;
1527 	btf->strs_set = set;
1528 	/* if BTF was created from scratch, all strings are guaranteed to be
1529 	 * unique and deduplicated
1530 	 */
1531 	if (btf->hdr->str_len == 0)
1532 		btf->strs_deduped = true;
1533 	if (!btf->base_btf && btf->hdr->str_len == 1)
1534 		btf->strs_deduped = true;
1535 
1536 	/* invalidate raw_data representation */
1537 	btf_invalidate_raw_data(btf);
1538 
1539 	return 0;
1540 
1541 err_out:
1542 	strset__free(set);
1543 	free(hdr);
1544 	free(types);
1545 	return err;
1546 }
1547 
1548 /* Find an offset in BTF string section that corresponds to a given string *s*.
1549  * Returns:
1550  *   - >0 offset into string section, if string is found;
1551  *   - -ENOENT, if string is not in the string section;
1552  *   - <0, on any other error.
1553  */
1554 int btf__find_str(struct btf *btf, const char *s)
1555 {
1556 	int off;
1557 
1558 	if (btf->base_btf) {
1559 		off = btf__find_str(btf->base_btf, s);
1560 		if (off != -ENOENT)
1561 			return off;
1562 	}
1563 
1564 	/* BTF needs to be in a modifiable state to build string lookup index */
1565 	if (btf_ensure_modifiable(btf))
1566 		return -ENOMEM;
1567 
1568 	off = strset__find_str(btf->strs_set, s);
1569 	if (off < 0)
1570 		return off;
1571 
1572 	return btf->start_str_off + off;
1573 }
1574 
1575 /* Add a string s to the BTF string section.
1576  * Returns:
1577  *   - > 0 offset into string section, on success;
1578  *   - < 0, on error.
1579  */
1580 int btf__add_str(struct btf *btf, const char *s)
1581 {
1582 	int off;
1583 
1584 	if (btf->base_btf) {
1585 		off = btf__find_str(btf->base_btf, s);
1586 		if (off != -ENOENT)
1587 			return off;
1588 	}
1589 
1590 	if (btf_ensure_modifiable(btf))
1591 		return -ENOMEM;
1592 
1593 	off = strset__add_str(btf->strs_set, s);
1594 	if (off < 0)
1595 		return off;
1596 
1597 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1598 
1599 	return btf->start_str_off + off;
1600 }
1601 
1602 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1603 {
1604 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1605 			      btf->hdr->type_len, UINT_MAX, add_sz);
1606 }
1607 
1608 static __u32 btf_type_info(int kind, int vlen, int kflag)
1609 {
1610 	return (kflag << 31) | (kind << 24) | vlen;
1611 }
1612 
1613 static void btf_type_inc_vlen(struct btf_type *t)
1614 {
1615 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1616 }
1617 
1618 static int btf_commit_type(struct btf *btf, int data_sz)
1619 {
1620 	int err;
1621 
1622 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1623 	if (err)
1624 		return err;
1625 
1626 	btf->hdr->type_len += data_sz;
1627 	btf->hdr->str_off += data_sz;
1628 	btf->nr_types++;
1629 	return btf->start_id + btf->nr_types - 1;
1630 }
1631 
1632 struct btf_pipe {
1633 	const struct btf *src;
1634 	struct btf *dst;
1635 };
1636 
1637 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1638 {
1639 	struct btf_pipe *p = ctx;
1640 	int off;
1641 
1642 	if (!*str_off) /* nothing to do for empty strings */
1643 		return 0;
1644 
1645 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1646 	if (off < 0)
1647 		return off;
1648 
1649 	*str_off = off;
1650 	return 0;
1651 }
1652 
1653 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1654 {
1655 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1656 	struct btf_type *t;
1657 	int sz, err;
1658 
1659 	sz = btf_type_size(src_type);
1660 	if (sz < 0)
1661 		return sz;
1662 
1663 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1664 	if (btf_ensure_modifiable(btf))
1665 		return -ENOMEM;
1666 
1667 	t = btf_add_type_mem(btf, sz);
1668 	if (!t)
1669 		return -ENOMEM;
1670 
1671 	memcpy(t, src_type, sz);
1672 
1673 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1674 	if (err)
1675 		return err;
1676 
1677 	return btf_commit_type(btf, sz);
1678 }
1679 
1680 /*
1681  * Append new BTF_KIND_INT type with:
1682  *   - *name* - non-empty, non-NULL type name;
1683  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1684  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1685  * Returns:
1686  *   - >0, type ID of newly added BTF type;
1687  *   - <0, on error.
1688  */
1689 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1690 {
1691 	struct btf_type *t;
1692 	int sz, name_off;
1693 
1694 	/* non-empty name */
1695 	if (!name || !name[0])
1696 		return -EINVAL;
1697 	/* byte_sz must be power of 2 */
1698 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1699 		return -EINVAL;
1700 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1701 		return -EINVAL;
1702 
1703 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1704 	if (btf_ensure_modifiable(btf))
1705 		return -ENOMEM;
1706 
1707 	sz = sizeof(struct btf_type) + sizeof(int);
1708 	t = btf_add_type_mem(btf, sz);
1709 	if (!t)
1710 		return -ENOMEM;
1711 
1712 	/* if something goes wrong later, we might end up with an extra string,
1713 	 * but that shouldn't be a problem, because BTF can't be constructed
1714 	 * completely anyway and will most probably be just discarded
1715 	 */
1716 	name_off = btf__add_str(btf, name);
1717 	if (name_off < 0)
1718 		return name_off;
1719 
1720 	t->name_off = name_off;
1721 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1722 	t->size = byte_sz;
1723 	/* set INT info, we don't allow setting legacy bit offset/size */
1724 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1725 
1726 	return btf_commit_type(btf, sz);
1727 }
1728 
1729 /*
1730  * Append new BTF_KIND_FLOAT type with:
1731  *   - *name* - non-empty, non-NULL type name;
1732  *   - *sz* - size of the type, in bytes;
1733  * Returns:
1734  *   - >0, type ID of newly added BTF type;
1735  *   - <0, on error.
1736  */
1737 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1738 {
1739 	struct btf_type *t;
1740 	int sz, name_off;
1741 
1742 	/* non-empty name */
1743 	if (!name || !name[0])
1744 		return -EINVAL;
1745 
1746 	/* byte_sz must be one of the explicitly allowed values */
1747 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1748 	    byte_sz != 16)
1749 		return -EINVAL;
1750 
1751 	if (btf_ensure_modifiable(btf))
1752 		return -ENOMEM;
1753 
1754 	sz = sizeof(struct btf_type);
1755 	t = btf_add_type_mem(btf, sz);
1756 	if (!t)
1757 		return -ENOMEM;
1758 
1759 	name_off = btf__add_str(btf, name);
1760 	if (name_off < 0)
1761 		return name_off;
1762 
1763 	t->name_off = name_off;
1764 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1765 	t->size = byte_sz;
1766 
1767 	return btf_commit_type(btf, sz);
1768 }
1769 
1770 /* it's completely legal to append BTF types with type IDs pointing forward to
1771  * types that haven't been appended yet, so we only make sure that id looks
1772  * sane, we can't guarantee that ID will always be valid
1773  */
1774 static int validate_type_id(int id)
1775 {
1776 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1777 		return -EINVAL;
1778 	return 0;
1779 }
1780 
1781 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1782 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1783 {
1784 	struct btf_type *t;
1785 	int sz, name_off = 0;
1786 
1787 	if (validate_type_id(ref_type_id))
1788 		return -EINVAL;
1789 
1790 	if (btf_ensure_modifiable(btf))
1791 		return -ENOMEM;
1792 
1793 	sz = sizeof(struct btf_type);
1794 	t = btf_add_type_mem(btf, sz);
1795 	if (!t)
1796 		return -ENOMEM;
1797 
1798 	if (name && name[0]) {
1799 		name_off = btf__add_str(btf, name);
1800 		if (name_off < 0)
1801 			return name_off;
1802 	}
1803 
1804 	t->name_off = name_off;
1805 	t->info = btf_type_info(kind, 0, 0);
1806 	t->type = ref_type_id;
1807 
1808 	return btf_commit_type(btf, sz);
1809 }
1810 
1811 /*
1812  * Append new BTF_KIND_PTR type with:
1813  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1814  * Returns:
1815  *   - >0, type ID of newly added BTF type;
1816  *   - <0, on error.
1817  */
1818 int btf__add_ptr(struct btf *btf, int ref_type_id)
1819 {
1820 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1821 }
1822 
1823 /*
1824  * Append new BTF_KIND_ARRAY type with:
1825  *   - *index_type_id* - type ID of the type describing array index;
1826  *   - *elem_type_id* - type ID of the type describing array element;
1827  *   - *nr_elems* - the size of the array;
1828  * Returns:
1829  *   - >0, type ID of newly added BTF type;
1830  *   - <0, on error.
1831  */
1832 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1833 {
1834 	struct btf_type *t;
1835 	struct btf_array *a;
1836 	int sz;
1837 
1838 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1839 		return -EINVAL;
1840 
1841 	if (btf_ensure_modifiable(btf))
1842 		return -ENOMEM;
1843 
1844 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1845 	t = btf_add_type_mem(btf, sz);
1846 	if (!t)
1847 		return -ENOMEM;
1848 
1849 	t->name_off = 0;
1850 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1851 	t->size = 0;
1852 
1853 	a = btf_array(t);
1854 	a->type = elem_type_id;
1855 	a->index_type = index_type_id;
1856 	a->nelems = nr_elems;
1857 
1858 	return btf_commit_type(btf, sz);
1859 }
1860 
1861 /* generic STRUCT/UNION append function */
1862 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1863 {
1864 	struct btf_type *t;
1865 	int sz, name_off = 0;
1866 
1867 	if (btf_ensure_modifiable(btf))
1868 		return -ENOMEM;
1869 
1870 	sz = sizeof(struct btf_type);
1871 	t = btf_add_type_mem(btf, sz);
1872 	if (!t)
1873 		return -ENOMEM;
1874 
1875 	if (name && name[0]) {
1876 		name_off = btf__add_str(btf, name);
1877 		if (name_off < 0)
1878 			return name_off;
1879 	}
1880 
1881 	/* start out with vlen=0 and no kflag; this will be adjusted when
1882 	 * adding each member
1883 	 */
1884 	t->name_off = name_off;
1885 	t->info = btf_type_info(kind, 0, 0);
1886 	t->size = bytes_sz;
1887 
1888 	return btf_commit_type(btf, sz);
1889 }
1890 
1891 /*
1892  * Append new BTF_KIND_STRUCT type with:
1893  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1894  *   - *byte_sz* - size of the struct, in bytes;
1895  *
1896  * Struct initially has no fields in it. Fields can be added by
1897  * btf__add_field() right after btf__add_struct() succeeds.
1898  *
1899  * Returns:
1900  *   - >0, type ID of newly added BTF type;
1901  *   - <0, on error.
1902  */
1903 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1904 {
1905 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1906 }
1907 
1908 /*
1909  * Append new BTF_KIND_UNION type with:
1910  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1911  *   - *byte_sz* - size of the union, in bytes;
1912  *
1913  * Union initially has no fields in it. Fields can be added by
1914  * btf__add_field() right after btf__add_union() succeeds. All fields
1915  * should have *bit_offset* of 0.
1916  *
1917  * Returns:
1918  *   - >0, type ID of newly added BTF type;
1919  *   - <0, on error.
1920  */
1921 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1922 {
1923 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1924 }
1925 
1926 static struct btf_type *btf_last_type(struct btf *btf)
1927 {
1928 	return btf_type_by_id(btf, btf__get_nr_types(btf));
1929 }
1930 
1931 /*
1932  * Append new field for the current STRUCT/UNION type with:
1933  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1934  *   - *type_id* - type ID for the type describing field type;
1935  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1936  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1937  * Returns:
1938  *   -  0, on success;
1939  *   - <0, on error.
1940  */
1941 int btf__add_field(struct btf *btf, const char *name, int type_id,
1942 		   __u32 bit_offset, __u32 bit_size)
1943 {
1944 	struct btf_type *t;
1945 	struct btf_member *m;
1946 	bool is_bitfield;
1947 	int sz, name_off = 0;
1948 
1949 	/* last type should be union/struct */
1950 	if (btf->nr_types == 0)
1951 		return -EINVAL;
1952 	t = btf_last_type(btf);
1953 	if (!btf_is_composite(t))
1954 		return -EINVAL;
1955 
1956 	if (validate_type_id(type_id))
1957 		return -EINVAL;
1958 	/* best-effort bit field offset/size enforcement */
1959 	is_bitfield = bit_size || (bit_offset % 8 != 0);
1960 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1961 		return -EINVAL;
1962 
1963 	/* only offset 0 is allowed for unions */
1964 	if (btf_is_union(t) && bit_offset)
1965 		return -EINVAL;
1966 
1967 	/* decompose and invalidate raw data */
1968 	if (btf_ensure_modifiable(btf))
1969 		return -ENOMEM;
1970 
1971 	sz = sizeof(struct btf_member);
1972 	m = btf_add_type_mem(btf, sz);
1973 	if (!m)
1974 		return -ENOMEM;
1975 
1976 	if (name && name[0]) {
1977 		name_off = btf__add_str(btf, name);
1978 		if (name_off < 0)
1979 			return name_off;
1980 	}
1981 
1982 	m->name_off = name_off;
1983 	m->type = type_id;
1984 	m->offset = bit_offset | (bit_size << 24);
1985 
1986 	/* btf_add_type_mem can invalidate t pointer */
1987 	t = btf_last_type(btf);
1988 	/* update parent type's vlen and kflag */
1989 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1990 
1991 	btf->hdr->type_len += sz;
1992 	btf->hdr->str_off += sz;
1993 	return 0;
1994 }
1995 
1996 /*
1997  * Append new BTF_KIND_ENUM type with:
1998  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1999  *   - *byte_sz* - size of the enum, in bytes.
2000  *
2001  * Enum initially has no enum values in it (and corresponds to enum forward
2002  * declaration). Enumerator values can be added by btf__add_enum_value()
2003  * immediately after btf__add_enum() succeeds.
2004  *
2005  * Returns:
2006  *   - >0, type ID of newly added BTF type;
2007  *   - <0, on error.
2008  */
2009 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2010 {
2011 	struct btf_type *t;
2012 	int sz, name_off = 0;
2013 
2014 	/* byte_sz must be power of 2 */
2015 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2016 		return -EINVAL;
2017 
2018 	if (btf_ensure_modifiable(btf))
2019 		return -ENOMEM;
2020 
2021 	sz = sizeof(struct btf_type);
2022 	t = btf_add_type_mem(btf, sz);
2023 	if (!t)
2024 		return -ENOMEM;
2025 
2026 	if (name && name[0]) {
2027 		name_off = btf__add_str(btf, name);
2028 		if (name_off < 0)
2029 			return name_off;
2030 	}
2031 
2032 	/* start out with vlen=0; it will be adjusted when adding enum values */
2033 	t->name_off = name_off;
2034 	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2035 	t->size = byte_sz;
2036 
2037 	return btf_commit_type(btf, sz);
2038 }
2039 
2040 /*
2041  * Append new enum value for the current ENUM type with:
2042  *   - *name* - name of the enumerator value, can't be NULL or empty;
2043  *   - *value* - integer value corresponding to enum value *name*;
2044  * Returns:
2045  *   -  0, on success;
2046  *   - <0, on error.
2047  */
2048 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2049 {
2050 	struct btf_type *t;
2051 	struct btf_enum *v;
2052 	int sz, name_off;
2053 
2054 	/* last type should be BTF_KIND_ENUM */
2055 	if (btf->nr_types == 0)
2056 		return -EINVAL;
2057 	t = btf_last_type(btf);
2058 	if (!btf_is_enum(t))
2059 		return -EINVAL;
2060 
2061 	/* non-empty name */
2062 	if (!name || !name[0])
2063 		return -EINVAL;
2064 	if (value < INT_MIN || value > UINT_MAX)
2065 		return -E2BIG;
2066 
2067 	/* decompose and invalidate raw data */
2068 	if (btf_ensure_modifiable(btf))
2069 		return -ENOMEM;
2070 
2071 	sz = sizeof(struct btf_enum);
2072 	v = btf_add_type_mem(btf, sz);
2073 	if (!v)
2074 		return -ENOMEM;
2075 
2076 	name_off = btf__add_str(btf, name);
2077 	if (name_off < 0)
2078 		return name_off;
2079 
2080 	v->name_off = name_off;
2081 	v->val = value;
2082 
2083 	/* update parent type's vlen */
2084 	t = btf_last_type(btf);
2085 	btf_type_inc_vlen(t);
2086 
2087 	btf->hdr->type_len += sz;
2088 	btf->hdr->str_off += sz;
2089 	return 0;
2090 }
2091 
2092 /*
2093  * Append new BTF_KIND_FWD type with:
2094  *   - *name*, non-empty/non-NULL name;
2095  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2096  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2097  * Returns:
2098  *   - >0, type ID of newly added BTF type;
2099  *   - <0, on error.
2100  */
2101 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2102 {
2103 	if (!name || !name[0])
2104 		return -EINVAL;
2105 
2106 	switch (fwd_kind) {
2107 	case BTF_FWD_STRUCT:
2108 	case BTF_FWD_UNION: {
2109 		struct btf_type *t;
2110 		int id;
2111 
2112 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2113 		if (id <= 0)
2114 			return id;
2115 		t = btf_type_by_id(btf, id);
2116 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2117 		return id;
2118 	}
2119 	case BTF_FWD_ENUM:
2120 		/* enum forward in BTF currently is just an enum with no enum
2121 		 * values; we also assume a standard 4-byte size for it
2122 		 */
2123 		return btf__add_enum(btf, name, sizeof(int));
2124 	default:
2125 		return -EINVAL;
2126 	}
2127 }
2128 
2129 /*
2130  * Append new BTF_KING_TYPEDEF type with:
2131  *   - *name*, non-empty/non-NULL name;
2132  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2133  * Returns:
2134  *   - >0, type ID of newly added BTF type;
2135  *   - <0, on error.
2136  */
2137 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2138 {
2139 	if (!name || !name[0])
2140 		return -EINVAL;
2141 
2142 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2143 }
2144 
2145 /*
2146  * Append new BTF_KIND_VOLATILE type with:
2147  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2148  * Returns:
2149  *   - >0, type ID of newly added BTF type;
2150  *   - <0, on error.
2151  */
2152 int btf__add_volatile(struct btf *btf, int ref_type_id)
2153 {
2154 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2155 }
2156 
2157 /*
2158  * Append new BTF_KIND_CONST type with:
2159  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2160  * Returns:
2161  *   - >0, type ID of newly added BTF type;
2162  *   - <0, on error.
2163  */
2164 int btf__add_const(struct btf *btf, int ref_type_id)
2165 {
2166 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2167 }
2168 
2169 /*
2170  * Append new BTF_KIND_RESTRICT type with:
2171  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2172  * Returns:
2173  *   - >0, type ID of newly added BTF type;
2174  *   - <0, on error.
2175  */
2176 int btf__add_restrict(struct btf *btf, int ref_type_id)
2177 {
2178 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2179 }
2180 
2181 /*
2182  * Append new BTF_KIND_FUNC type with:
2183  *   - *name*, non-empty/non-NULL name;
2184  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2185  * Returns:
2186  *   - >0, type ID of newly added BTF type;
2187  *   - <0, on error.
2188  */
2189 int btf__add_func(struct btf *btf, const char *name,
2190 		  enum btf_func_linkage linkage, int proto_type_id)
2191 {
2192 	int id;
2193 
2194 	if (!name || !name[0])
2195 		return -EINVAL;
2196 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2197 	    linkage != BTF_FUNC_EXTERN)
2198 		return -EINVAL;
2199 
2200 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2201 	if (id > 0) {
2202 		struct btf_type *t = btf_type_by_id(btf, id);
2203 
2204 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2205 	}
2206 	return id;
2207 }
2208 
2209 /*
2210  * Append new BTF_KIND_FUNC_PROTO with:
2211  *   - *ret_type_id* - type ID for return result of a function.
2212  *
2213  * Function prototype initially has no arguments, but they can be added by
2214  * btf__add_func_param() one by one, immediately after
2215  * btf__add_func_proto() succeeded.
2216  *
2217  * Returns:
2218  *   - >0, type ID of newly added BTF type;
2219  *   - <0, on error.
2220  */
2221 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2222 {
2223 	struct btf_type *t;
2224 	int sz;
2225 
2226 	if (validate_type_id(ret_type_id))
2227 		return -EINVAL;
2228 
2229 	if (btf_ensure_modifiable(btf))
2230 		return -ENOMEM;
2231 
2232 	sz = sizeof(struct btf_type);
2233 	t = btf_add_type_mem(btf, sz);
2234 	if (!t)
2235 		return -ENOMEM;
2236 
2237 	/* start out with vlen=0; this will be adjusted when adding enum
2238 	 * values, if necessary
2239 	 */
2240 	t->name_off = 0;
2241 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2242 	t->type = ret_type_id;
2243 
2244 	return btf_commit_type(btf, sz);
2245 }
2246 
2247 /*
2248  * Append new function parameter for current FUNC_PROTO type with:
2249  *   - *name* - parameter name, can be NULL or empty;
2250  *   - *type_id* - type ID describing the type of the parameter.
2251  * Returns:
2252  *   -  0, on success;
2253  *   - <0, on error.
2254  */
2255 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2256 {
2257 	struct btf_type *t;
2258 	struct btf_param *p;
2259 	int sz, name_off = 0;
2260 
2261 	if (validate_type_id(type_id))
2262 		return -EINVAL;
2263 
2264 	/* last type should be BTF_KIND_FUNC_PROTO */
2265 	if (btf->nr_types == 0)
2266 		return -EINVAL;
2267 	t = btf_last_type(btf);
2268 	if (!btf_is_func_proto(t))
2269 		return -EINVAL;
2270 
2271 	/* decompose and invalidate raw data */
2272 	if (btf_ensure_modifiable(btf))
2273 		return -ENOMEM;
2274 
2275 	sz = sizeof(struct btf_param);
2276 	p = btf_add_type_mem(btf, sz);
2277 	if (!p)
2278 		return -ENOMEM;
2279 
2280 	if (name && name[0]) {
2281 		name_off = btf__add_str(btf, name);
2282 		if (name_off < 0)
2283 			return name_off;
2284 	}
2285 
2286 	p->name_off = name_off;
2287 	p->type = type_id;
2288 
2289 	/* update parent type's vlen */
2290 	t = btf_last_type(btf);
2291 	btf_type_inc_vlen(t);
2292 
2293 	btf->hdr->type_len += sz;
2294 	btf->hdr->str_off += sz;
2295 	return 0;
2296 }
2297 
2298 /*
2299  * Append new BTF_KIND_VAR type with:
2300  *   - *name* - non-empty/non-NULL name;
2301  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2302  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2303  *   - *type_id* - type ID of the type describing the type of the variable.
2304  * Returns:
2305  *   - >0, type ID of newly added BTF type;
2306  *   - <0, on error.
2307  */
2308 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2309 {
2310 	struct btf_type *t;
2311 	struct btf_var *v;
2312 	int sz, name_off;
2313 
2314 	/* non-empty name */
2315 	if (!name || !name[0])
2316 		return -EINVAL;
2317 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2318 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2319 		return -EINVAL;
2320 	if (validate_type_id(type_id))
2321 		return -EINVAL;
2322 
2323 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2324 	if (btf_ensure_modifiable(btf))
2325 		return -ENOMEM;
2326 
2327 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2328 	t = btf_add_type_mem(btf, sz);
2329 	if (!t)
2330 		return -ENOMEM;
2331 
2332 	name_off = btf__add_str(btf, name);
2333 	if (name_off < 0)
2334 		return name_off;
2335 
2336 	t->name_off = name_off;
2337 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2338 	t->type = type_id;
2339 
2340 	v = btf_var(t);
2341 	v->linkage = linkage;
2342 
2343 	return btf_commit_type(btf, sz);
2344 }
2345 
2346 /*
2347  * Append new BTF_KIND_DATASEC type with:
2348  *   - *name* - non-empty/non-NULL name;
2349  *   - *byte_sz* - data section size, in bytes.
2350  *
2351  * Data section is initially empty. Variables info can be added with
2352  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2353  *
2354  * Returns:
2355  *   - >0, type ID of newly added BTF type;
2356  *   - <0, on error.
2357  */
2358 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2359 {
2360 	struct btf_type *t;
2361 	int sz, name_off;
2362 
2363 	/* non-empty name */
2364 	if (!name || !name[0])
2365 		return -EINVAL;
2366 
2367 	if (btf_ensure_modifiable(btf))
2368 		return -ENOMEM;
2369 
2370 	sz = sizeof(struct btf_type);
2371 	t = btf_add_type_mem(btf, sz);
2372 	if (!t)
2373 		return -ENOMEM;
2374 
2375 	name_off = btf__add_str(btf, name);
2376 	if (name_off < 0)
2377 		return name_off;
2378 
2379 	/* start with vlen=0, which will be update as var_secinfos are added */
2380 	t->name_off = name_off;
2381 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2382 	t->size = byte_sz;
2383 
2384 	return btf_commit_type(btf, sz);
2385 }
2386 
2387 /*
2388  * Append new data section variable information entry for current DATASEC type:
2389  *   - *var_type_id* - type ID, describing type of the variable;
2390  *   - *offset* - variable offset within data section, in bytes;
2391  *   - *byte_sz* - variable size, in bytes.
2392  *
2393  * Returns:
2394  *   -  0, on success;
2395  *   - <0, on error.
2396  */
2397 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2398 {
2399 	struct btf_type *t;
2400 	struct btf_var_secinfo *v;
2401 	int sz;
2402 
2403 	/* last type should be BTF_KIND_DATASEC */
2404 	if (btf->nr_types == 0)
2405 		return -EINVAL;
2406 	t = btf_last_type(btf);
2407 	if (!btf_is_datasec(t))
2408 		return -EINVAL;
2409 
2410 	if (validate_type_id(var_type_id))
2411 		return -EINVAL;
2412 
2413 	/* decompose and invalidate raw data */
2414 	if (btf_ensure_modifiable(btf))
2415 		return -ENOMEM;
2416 
2417 	sz = sizeof(struct btf_var_secinfo);
2418 	v = btf_add_type_mem(btf, sz);
2419 	if (!v)
2420 		return -ENOMEM;
2421 
2422 	v->type = var_type_id;
2423 	v->offset = offset;
2424 	v->size = byte_sz;
2425 
2426 	/* update parent type's vlen */
2427 	t = btf_last_type(btf);
2428 	btf_type_inc_vlen(t);
2429 
2430 	btf->hdr->type_len += sz;
2431 	btf->hdr->str_off += sz;
2432 	return 0;
2433 }
2434 
2435 struct btf_ext_sec_setup_param {
2436 	__u32 off;
2437 	__u32 len;
2438 	__u32 min_rec_size;
2439 	struct btf_ext_info *ext_info;
2440 	const char *desc;
2441 };
2442 
2443 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2444 			      struct btf_ext_sec_setup_param *ext_sec)
2445 {
2446 	const struct btf_ext_info_sec *sinfo;
2447 	struct btf_ext_info *ext_info;
2448 	__u32 info_left, record_size;
2449 	/* The start of the info sec (including the __u32 record_size). */
2450 	void *info;
2451 
2452 	if (ext_sec->len == 0)
2453 		return 0;
2454 
2455 	if (ext_sec->off & 0x03) {
2456 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2457 		     ext_sec->desc);
2458 		return -EINVAL;
2459 	}
2460 
2461 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2462 	info_left = ext_sec->len;
2463 
2464 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2465 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2466 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2467 		return -EINVAL;
2468 	}
2469 
2470 	/* At least a record size */
2471 	if (info_left < sizeof(__u32)) {
2472 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2473 		return -EINVAL;
2474 	}
2475 
2476 	/* The record size needs to meet the minimum standard */
2477 	record_size = *(__u32 *)info;
2478 	if (record_size < ext_sec->min_rec_size ||
2479 	    record_size & 0x03) {
2480 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2481 			 ext_sec->desc, record_size);
2482 		return -EINVAL;
2483 	}
2484 
2485 	sinfo = info + sizeof(__u32);
2486 	info_left -= sizeof(__u32);
2487 
2488 	/* If no records, return failure now so .BTF.ext won't be used. */
2489 	if (!info_left) {
2490 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2491 		return -EINVAL;
2492 	}
2493 
2494 	while (info_left) {
2495 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2496 		__u64 total_record_size;
2497 		__u32 num_records;
2498 
2499 		if (info_left < sec_hdrlen) {
2500 			pr_debug("%s section header is not found in .BTF.ext\n",
2501 			     ext_sec->desc);
2502 			return -EINVAL;
2503 		}
2504 
2505 		num_records = sinfo->num_info;
2506 		if (num_records == 0) {
2507 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2508 			     ext_sec->desc);
2509 			return -EINVAL;
2510 		}
2511 
2512 		total_record_size = sec_hdrlen +
2513 				    (__u64)num_records * record_size;
2514 		if (info_left < total_record_size) {
2515 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2516 			     ext_sec->desc);
2517 			return -EINVAL;
2518 		}
2519 
2520 		info_left -= total_record_size;
2521 		sinfo = (void *)sinfo + total_record_size;
2522 	}
2523 
2524 	ext_info = ext_sec->ext_info;
2525 	ext_info->len = ext_sec->len - sizeof(__u32);
2526 	ext_info->rec_size = record_size;
2527 	ext_info->info = info + sizeof(__u32);
2528 
2529 	return 0;
2530 }
2531 
2532 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2533 {
2534 	struct btf_ext_sec_setup_param param = {
2535 		.off = btf_ext->hdr->func_info_off,
2536 		.len = btf_ext->hdr->func_info_len,
2537 		.min_rec_size = sizeof(struct bpf_func_info_min),
2538 		.ext_info = &btf_ext->func_info,
2539 		.desc = "func_info"
2540 	};
2541 
2542 	return btf_ext_setup_info(btf_ext, &param);
2543 }
2544 
2545 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2546 {
2547 	struct btf_ext_sec_setup_param param = {
2548 		.off = btf_ext->hdr->line_info_off,
2549 		.len = btf_ext->hdr->line_info_len,
2550 		.min_rec_size = sizeof(struct bpf_line_info_min),
2551 		.ext_info = &btf_ext->line_info,
2552 		.desc = "line_info",
2553 	};
2554 
2555 	return btf_ext_setup_info(btf_ext, &param);
2556 }
2557 
2558 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2559 {
2560 	struct btf_ext_sec_setup_param param = {
2561 		.off = btf_ext->hdr->core_relo_off,
2562 		.len = btf_ext->hdr->core_relo_len,
2563 		.min_rec_size = sizeof(struct bpf_core_relo),
2564 		.ext_info = &btf_ext->core_relo_info,
2565 		.desc = "core_relo",
2566 	};
2567 
2568 	return btf_ext_setup_info(btf_ext, &param);
2569 }
2570 
2571 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2572 {
2573 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2574 
2575 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2576 	    data_size < hdr->hdr_len) {
2577 		pr_debug("BTF.ext header not found");
2578 		return -EINVAL;
2579 	}
2580 
2581 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2582 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2583 		return -ENOTSUP;
2584 	} else if (hdr->magic != BTF_MAGIC) {
2585 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2586 		return -EINVAL;
2587 	}
2588 
2589 	if (hdr->version != BTF_VERSION) {
2590 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2591 		return -ENOTSUP;
2592 	}
2593 
2594 	if (hdr->flags) {
2595 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2596 		return -ENOTSUP;
2597 	}
2598 
2599 	if (data_size == hdr->hdr_len) {
2600 		pr_debug("BTF.ext has no data\n");
2601 		return -EINVAL;
2602 	}
2603 
2604 	return 0;
2605 }
2606 
2607 void btf_ext__free(struct btf_ext *btf_ext)
2608 {
2609 	if (IS_ERR_OR_NULL(btf_ext))
2610 		return;
2611 	free(btf_ext->data);
2612 	free(btf_ext);
2613 }
2614 
2615 struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2616 {
2617 	struct btf_ext *btf_ext;
2618 	int err;
2619 
2620 	err = btf_ext_parse_hdr(data, size);
2621 	if (err)
2622 		return ERR_PTR(err);
2623 
2624 	btf_ext = calloc(1, sizeof(struct btf_ext));
2625 	if (!btf_ext)
2626 		return ERR_PTR(-ENOMEM);
2627 
2628 	btf_ext->data_size = size;
2629 	btf_ext->data = malloc(size);
2630 	if (!btf_ext->data) {
2631 		err = -ENOMEM;
2632 		goto done;
2633 	}
2634 	memcpy(btf_ext->data, data, size);
2635 
2636 	if (btf_ext->hdr->hdr_len <
2637 	    offsetofend(struct btf_ext_header, line_info_len))
2638 		goto done;
2639 	err = btf_ext_setup_func_info(btf_ext);
2640 	if (err)
2641 		goto done;
2642 
2643 	err = btf_ext_setup_line_info(btf_ext);
2644 	if (err)
2645 		goto done;
2646 
2647 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2648 		goto done;
2649 	err = btf_ext_setup_core_relos(btf_ext);
2650 	if (err)
2651 		goto done;
2652 
2653 done:
2654 	if (err) {
2655 		btf_ext__free(btf_ext);
2656 		return ERR_PTR(err);
2657 	}
2658 
2659 	return btf_ext;
2660 }
2661 
2662 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2663 {
2664 	*size = btf_ext->data_size;
2665 	return btf_ext->data;
2666 }
2667 
2668 static int btf_ext_reloc_info(const struct btf *btf,
2669 			      const struct btf_ext_info *ext_info,
2670 			      const char *sec_name, __u32 insns_cnt,
2671 			      void **info, __u32 *cnt)
2672 {
2673 	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2674 	__u32 i, record_size, existing_len, records_len;
2675 	struct btf_ext_info_sec *sinfo;
2676 	const char *info_sec_name;
2677 	__u64 remain_len;
2678 	void *data;
2679 
2680 	record_size = ext_info->rec_size;
2681 	sinfo = ext_info->info;
2682 	remain_len = ext_info->len;
2683 	while (remain_len > 0) {
2684 		records_len = sinfo->num_info * record_size;
2685 		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2686 		if (strcmp(info_sec_name, sec_name)) {
2687 			remain_len -= sec_hdrlen + records_len;
2688 			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2689 			continue;
2690 		}
2691 
2692 		existing_len = (*cnt) * record_size;
2693 		data = realloc(*info, existing_len + records_len);
2694 		if (!data)
2695 			return -ENOMEM;
2696 
2697 		memcpy(data + existing_len, sinfo->data, records_len);
2698 		/* adjust insn_off only, the rest data will be passed
2699 		 * to the kernel.
2700 		 */
2701 		for (i = 0; i < sinfo->num_info; i++) {
2702 			__u32 *insn_off;
2703 
2704 			insn_off = data + existing_len + (i * record_size);
2705 			*insn_off = *insn_off / sizeof(struct bpf_insn) +
2706 				insns_cnt;
2707 		}
2708 		*info = data;
2709 		*cnt += sinfo->num_info;
2710 		return 0;
2711 	}
2712 
2713 	return -ENOENT;
2714 }
2715 
2716 int btf_ext__reloc_func_info(const struct btf *btf,
2717 			     const struct btf_ext *btf_ext,
2718 			     const char *sec_name, __u32 insns_cnt,
2719 			     void **func_info, __u32 *cnt)
2720 {
2721 	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2722 				  insns_cnt, func_info, cnt);
2723 }
2724 
2725 int btf_ext__reloc_line_info(const struct btf *btf,
2726 			     const struct btf_ext *btf_ext,
2727 			     const char *sec_name, __u32 insns_cnt,
2728 			     void **line_info, __u32 *cnt)
2729 {
2730 	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2731 				  insns_cnt, line_info, cnt);
2732 }
2733 
2734 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2735 {
2736 	return btf_ext->func_info.rec_size;
2737 }
2738 
2739 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2740 {
2741 	return btf_ext->line_info.rec_size;
2742 }
2743 
2744 struct btf_dedup;
2745 
2746 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2747 				       const struct btf_dedup_opts *opts);
2748 static void btf_dedup_free(struct btf_dedup *d);
2749 static int btf_dedup_prep(struct btf_dedup *d);
2750 static int btf_dedup_strings(struct btf_dedup *d);
2751 static int btf_dedup_prim_types(struct btf_dedup *d);
2752 static int btf_dedup_struct_types(struct btf_dedup *d);
2753 static int btf_dedup_ref_types(struct btf_dedup *d);
2754 static int btf_dedup_compact_types(struct btf_dedup *d);
2755 static int btf_dedup_remap_types(struct btf_dedup *d);
2756 
2757 /*
2758  * Deduplicate BTF types and strings.
2759  *
2760  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2761  * section with all BTF type descriptors and string data. It overwrites that
2762  * memory in-place with deduplicated types and strings without any loss of
2763  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2764  * is provided, all the strings referenced from .BTF.ext section are honored
2765  * and updated to point to the right offsets after deduplication.
2766  *
2767  * If function returns with error, type/string data might be garbled and should
2768  * be discarded.
2769  *
2770  * More verbose and detailed description of both problem btf_dedup is solving,
2771  * as well as solution could be found at:
2772  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2773  *
2774  * Problem description and justification
2775  * =====================================
2776  *
2777  * BTF type information is typically emitted either as a result of conversion
2778  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2779  * unit contains information about a subset of all the types that are used
2780  * in an application. These subsets are frequently overlapping and contain a lot
2781  * of duplicated information when later concatenated together into a single
2782  * binary. This algorithm ensures that each unique type is represented by single
2783  * BTF type descriptor, greatly reducing resulting size of BTF data.
2784  *
2785  * Compilation unit isolation and subsequent duplication of data is not the only
2786  * problem. The same type hierarchy (e.g., struct and all the type that struct
2787  * references) in different compilation units can be represented in BTF to
2788  * various degrees of completeness (or, rather, incompleteness) due to
2789  * struct/union forward declarations.
2790  *
2791  * Let's take a look at an example, that we'll use to better understand the
2792  * problem (and solution). Suppose we have two compilation units, each using
2793  * same `struct S`, but each of them having incomplete type information about
2794  * struct's fields:
2795  *
2796  * // CU #1:
2797  * struct S;
2798  * struct A {
2799  *	int a;
2800  *	struct A* self;
2801  *	struct S* parent;
2802  * };
2803  * struct B;
2804  * struct S {
2805  *	struct A* a_ptr;
2806  *	struct B* b_ptr;
2807  * };
2808  *
2809  * // CU #2:
2810  * struct S;
2811  * struct A;
2812  * struct B {
2813  *	int b;
2814  *	struct B* self;
2815  *	struct S* parent;
2816  * };
2817  * struct S {
2818  *	struct A* a_ptr;
2819  *	struct B* b_ptr;
2820  * };
2821  *
2822  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2823  * more), but will know the complete type information about `struct A`. While
2824  * for CU #2, it will know full type information about `struct B`, but will
2825  * only know about forward declaration of `struct A` (in BTF terms, it will
2826  * have `BTF_KIND_FWD` type descriptor with name `B`).
2827  *
2828  * This compilation unit isolation means that it's possible that there is no
2829  * single CU with complete type information describing structs `S`, `A`, and
2830  * `B`. Also, we might get tons of duplicated and redundant type information.
2831  *
2832  * Additional complication we need to keep in mind comes from the fact that
2833  * types, in general, can form graphs containing cycles, not just DAGs.
2834  *
2835  * While algorithm does deduplication, it also merges and resolves type
2836  * information (unless disabled throught `struct btf_opts`), whenever possible.
2837  * E.g., in the example above with two compilation units having partial type
2838  * information for structs `A` and `B`, the output of algorithm will emit
2839  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2840  * (as well as type information for `int` and pointers), as if they were defined
2841  * in a single compilation unit as:
2842  *
2843  * struct A {
2844  *	int a;
2845  *	struct A* self;
2846  *	struct S* parent;
2847  * };
2848  * struct B {
2849  *	int b;
2850  *	struct B* self;
2851  *	struct S* parent;
2852  * };
2853  * struct S {
2854  *	struct A* a_ptr;
2855  *	struct B* b_ptr;
2856  * };
2857  *
2858  * Algorithm summary
2859  * =================
2860  *
2861  * Algorithm completes its work in 6 separate passes:
2862  *
2863  * 1. Strings deduplication.
2864  * 2. Primitive types deduplication (int, enum, fwd).
2865  * 3. Struct/union types deduplication.
2866  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2867  *    protos, and const/volatile/restrict modifiers).
2868  * 5. Types compaction.
2869  * 6. Types remapping.
2870  *
2871  * Algorithm determines canonical type descriptor, which is a single
2872  * representative type for each truly unique type. This canonical type is the
2873  * one that will go into final deduplicated BTF type information. For
2874  * struct/unions, it is also the type that algorithm will merge additional type
2875  * information into (while resolving FWDs), as it discovers it from data in
2876  * other CUs. Each input BTF type eventually gets either mapped to itself, if
2877  * that type is canonical, or to some other type, if that type is equivalent
2878  * and was chosen as canonical representative. This mapping is stored in
2879  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2880  * FWD type got resolved to.
2881  *
2882  * To facilitate fast discovery of canonical types, we also maintain canonical
2883  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2884  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2885  * that match that signature. With sufficiently good choice of type signature
2886  * hashing function, we can limit number of canonical types for each unique type
2887  * signature to a very small number, allowing to find canonical type for any
2888  * duplicated type very quickly.
2889  *
2890  * Struct/union deduplication is the most critical part and algorithm for
2891  * deduplicating structs/unions is described in greater details in comments for
2892  * `btf_dedup_is_equiv` function.
2893  */
2894 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2895 	       const struct btf_dedup_opts *opts)
2896 {
2897 	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2898 	int err;
2899 
2900 	if (IS_ERR(d)) {
2901 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2902 		return -EINVAL;
2903 	}
2904 
2905 	if (btf_ensure_modifiable(btf))
2906 		return -ENOMEM;
2907 
2908 	err = btf_dedup_prep(d);
2909 	if (err) {
2910 		pr_debug("btf_dedup_prep failed:%d\n", err);
2911 		goto done;
2912 	}
2913 	err = btf_dedup_strings(d);
2914 	if (err < 0) {
2915 		pr_debug("btf_dedup_strings failed:%d\n", err);
2916 		goto done;
2917 	}
2918 	err = btf_dedup_prim_types(d);
2919 	if (err < 0) {
2920 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2921 		goto done;
2922 	}
2923 	err = btf_dedup_struct_types(d);
2924 	if (err < 0) {
2925 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2926 		goto done;
2927 	}
2928 	err = btf_dedup_ref_types(d);
2929 	if (err < 0) {
2930 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2931 		goto done;
2932 	}
2933 	err = btf_dedup_compact_types(d);
2934 	if (err < 0) {
2935 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2936 		goto done;
2937 	}
2938 	err = btf_dedup_remap_types(d);
2939 	if (err < 0) {
2940 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2941 		goto done;
2942 	}
2943 
2944 done:
2945 	btf_dedup_free(d);
2946 	return err;
2947 }
2948 
2949 #define BTF_UNPROCESSED_ID ((__u32)-1)
2950 #define BTF_IN_PROGRESS_ID ((__u32)-2)
2951 
2952 struct btf_dedup {
2953 	/* .BTF section to be deduped in-place */
2954 	struct btf *btf;
2955 	/*
2956 	 * Optional .BTF.ext section. When provided, any strings referenced
2957 	 * from it will be taken into account when deduping strings
2958 	 */
2959 	struct btf_ext *btf_ext;
2960 	/*
2961 	 * This is a map from any type's signature hash to a list of possible
2962 	 * canonical representative type candidates. Hash collisions are
2963 	 * ignored, so even types of various kinds can share same list of
2964 	 * candidates, which is fine because we rely on subsequent
2965 	 * btf_xxx_equal() checks to authoritatively verify type equality.
2966 	 */
2967 	struct hashmap *dedup_table;
2968 	/* Canonical types map */
2969 	__u32 *map;
2970 	/* Hypothetical mapping, used during type graph equivalence checks */
2971 	__u32 *hypot_map;
2972 	__u32 *hypot_list;
2973 	size_t hypot_cnt;
2974 	size_t hypot_cap;
2975 	/* Whether hypothetical mapping, if successful, would need to adjust
2976 	 * already canonicalized types (due to a new forward declaration to
2977 	 * concrete type resolution). In such case, during split BTF dedup
2978 	 * candidate type would still be considered as different, because base
2979 	 * BTF is considered to be immutable.
2980 	 */
2981 	bool hypot_adjust_canon;
2982 	/* Various option modifying behavior of algorithm */
2983 	struct btf_dedup_opts opts;
2984 	/* temporary strings deduplication state */
2985 	struct strset *strs_set;
2986 };
2987 
2988 static long hash_combine(long h, long value)
2989 {
2990 	return h * 31 + value;
2991 }
2992 
2993 #define for_each_dedup_cand(d, node, hash) \
2994 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2995 
2996 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2997 {
2998 	return hashmap__append(d->dedup_table,
2999 			       (void *)hash, (void *)(long)type_id);
3000 }
3001 
3002 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3003 				   __u32 from_id, __u32 to_id)
3004 {
3005 	if (d->hypot_cnt == d->hypot_cap) {
3006 		__u32 *new_list;
3007 
3008 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3009 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3010 		if (!new_list)
3011 			return -ENOMEM;
3012 		d->hypot_list = new_list;
3013 	}
3014 	d->hypot_list[d->hypot_cnt++] = from_id;
3015 	d->hypot_map[from_id] = to_id;
3016 	return 0;
3017 }
3018 
3019 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3020 {
3021 	int i;
3022 
3023 	for (i = 0; i < d->hypot_cnt; i++)
3024 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3025 	d->hypot_cnt = 0;
3026 	d->hypot_adjust_canon = false;
3027 }
3028 
3029 static void btf_dedup_free(struct btf_dedup *d)
3030 {
3031 	hashmap__free(d->dedup_table);
3032 	d->dedup_table = NULL;
3033 
3034 	free(d->map);
3035 	d->map = NULL;
3036 
3037 	free(d->hypot_map);
3038 	d->hypot_map = NULL;
3039 
3040 	free(d->hypot_list);
3041 	d->hypot_list = NULL;
3042 
3043 	free(d);
3044 }
3045 
3046 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3047 {
3048 	return (size_t)key;
3049 }
3050 
3051 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3052 {
3053 	return 0;
3054 }
3055 
3056 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3057 {
3058 	return k1 == k2;
3059 }
3060 
3061 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3062 				       const struct btf_dedup_opts *opts)
3063 {
3064 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3065 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3066 	int i, err = 0, type_cnt;
3067 
3068 	if (!d)
3069 		return ERR_PTR(-ENOMEM);
3070 
3071 	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3072 	/* dedup_table_size is now used only to force collisions in tests */
3073 	if (opts && opts->dedup_table_size == 1)
3074 		hash_fn = btf_dedup_collision_hash_fn;
3075 
3076 	d->btf = btf;
3077 	d->btf_ext = btf_ext;
3078 
3079 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3080 	if (IS_ERR(d->dedup_table)) {
3081 		err = PTR_ERR(d->dedup_table);
3082 		d->dedup_table = NULL;
3083 		goto done;
3084 	}
3085 
3086 	type_cnt = btf__get_nr_types(btf) + 1;
3087 	d->map = malloc(sizeof(__u32) * type_cnt);
3088 	if (!d->map) {
3089 		err = -ENOMEM;
3090 		goto done;
3091 	}
3092 	/* special BTF "void" type is made canonical immediately */
3093 	d->map[0] = 0;
3094 	for (i = 1; i < type_cnt; i++) {
3095 		struct btf_type *t = btf_type_by_id(d->btf, i);
3096 
3097 		/* VAR and DATASEC are never deduped and are self-canonical */
3098 		if (btf_is_var(t) || btf_is_datasec(t))
3099 			d->map[i] = i;
3100 		else
3101 			d->map[i] = BTF_UNPROCESSED_ID;
3102 	}
3103 
3104 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3105 	if (!d->hypot_map) {
3106 		err = -ENOMEM;
3107 		goto done;
3108 	}
3109 	for (i = 0; i < type_cnt; i++)
3110 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3111 
3112 done:
3113 	if (err) {
3114 		btf_dedup_free(d);
3115 		return ERR_PTR(err);
3116 	}
3117 
3118 	return d;
3119 }
3120 
3121 /*
3122  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3123  * string and pass pointer to it to a provided callback `fn`.
3124  */
3125 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3126 {
3127 	int i, r;
3128 
3129 	for (i = 0; i < d->btf->nr_types; i++) {
3130 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3131 
3132 		r = btf_type_visit_str_offs(t, fn, ctx);
3133 		if (r)
3134 			return r;
3135 	}
3136 
3137 	if (!d->btf_ext)
3138 		return 0;
3139 
3140 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3141 	if (r)
3142 		return r;
3143 
3144 	return 0;
3145 }
3146 
3147 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3148 {
3149 	struct btf_dedup *d = ctx;
3150 	__u32 str_off = *str_off_ptr;
3151 	const char *s;
3152 	int off, err;
3153 
3154 	/* don't touch empty string or string in main BTF */
3155 	if (str_off == 0 || str_off < d->btf->start_str_off)
3156 		return 0;
3157 
3158 	s = btf__str_by_offset(d->btf, str_off);
3159 	if (d->btf->base_btf) {
3160 		err = btf__find_str(d->btf->base_btf, s);
3161 		if (err >= 0) {
3162 			*str_off_ptr = err;
3163 			return 0;
3164 		}
3165 		if (err != -ENOENT)
3166 			return err;
3167 	}
3168 
3169 	off = strset__add_str(d->strs_set, s);
3170 	if (off < 0)
3171 		return off;
3172 
3173 	*str_off_ptr = d->btf->start_str_off + off;
3174 	return 0;
3175 }
3176 
3177 /*
3178  * Dedup string and filter out those that are not referenced from either .BTF
3179  * or .BTF.ext (if provided) sections.
3180  *
3181  * This is done by building index of all strings in BTF's string section,
3182  * then iterating over all entities that can reference strings (e.g., type
3183  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3184  * strings as used. After that all used strings are deduped and compacted into
3185  * sequential blob of memory and new offsets are calculated. Then all the string
3186  * references are iterated again and rewritten using new offsets.
3187  */
3188 static int btf_dedup_strings(struct btf_dedup *d)
3189 {
3190 	int err;
3191 
3192 	if (d->btf->strs_deduped)
3193 		return 0;
3194 
3195 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3196 	if (IS_ERR(d->strs_set)) {
3197 		err = PTR_ERR(d->strs_set);
3198 		goto err_out;
3199 	}
3200 
3201 	if (!d->btf->base_btf) {
3202 		/* insert empty string; we won't be looking it up during strings
3203 		 * dedup, but it's good to have it for generic BTF string lookups
3204 		 */
3205 		err = strset__add_str(d->strs_set, "");
3206 		if (err < 0)
3207 			goto err_out;
3208 	}
3209 
3210 	/* remap string offsets */
3211 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3212 	if (err)
3213 		goto err_out;
3214 
3215 	/* replace BTF string data and hash with deduped ones */
3216 	strset__free(d->btf->strs_set);
3217 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3218 	d->btf->strs_set = d->strs_set;
3219 	d->strs_set = NULL;
3220 	d->btf->strs_deduped = true;
3221 	return 0;
3222 
3223 err_out:
3224 	strset__free(d->strs_set);
3225 	d->strs_set = NULL;
3226 
3227 	return err;
3228 }
3229 
3230 static long btf_hash_common(struct btf_type *t)
3231 {
3232 	long h;
3233 
3234 	h = hash_combine(0, t->name_off);
3235 	h = hash_combine(h, t->info);
3236 	h = hash_combine(h, t->size);
3237 	return h;
3238 }
3239 
3240 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3241 {
3242 	return t1->name_off == t2->name_off &&
3243 	       t1->info == t2->info &&
3244 	       t1->size == t2->size;
3245 }
3246 
3247 /* Calculate type signature hash of INT. */
3248 static long btf_hash_int(struct btf_type *t)
3249 {
3250 	__u32 info = *(__u32 *)(t + 1);
3251 	long h;
3252 
3253 	h = btf_hash_common(t);
3254 	h = hash_combine(h, info);
3255 	return h;
3256 }
3257 
3258 /* Check structural equality of two INTs. */
3259 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3260 {
3261 	__u32 info1, info2;
3262 
3263 	if (!btf_equal_common(t1, t2))
3264 		return false;
3265 	info1 = *(__u32 *)(t1 + 1);
3266 	info2 = *(__u32 *)(t2 + 1);
3267 	return info1 == info2;
3268 }
3269 
3270 /* Calculate type signature hash of ENUM. */
3271 static long btf_hash_enum(struct btf_type *t)
3272 {
3273 	long h;
3274 
3275 	/* don't hash vlen and enum members to support enum fwd resolving */
3276 	h = hash_combine(0, t->name_off);
3277 	h = hash_combine(h, t->info & ~0xffff);
3278 	h = hash_combine(h, t->size);
3279 	return h;
3280 }
3281 
3282 /* Check structural equality of two ENUMs. */
3283 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3284 {
3285 	const struct btf_enum *m1, *m2;
3286 	__u16 vlen;
3287 	int i;
3288 
3289 	if (!btf_equal_common(t1, t2))
3290 		return false;
3291 
3292 	vlen = btf_vlen(t1);
3293 	m1 = btf_enum(t1);
3294 	m2 = btf_enum(t2);
3295 	for (i = 0; i < vlen; i++) {
3296 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3297 			return false;
3298 		m1++;
3299 		m2++;
3300 	}
3301 	return true;
3302 }
3303 
3304 static inline bool btf_is_enum_fwd(struct btf_type *t)
3305 {
3306 	return btf_is_enum(t) && btf_vlen(t) == 0;
3307 }
3308 
3309 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3310 {
3311 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3312 		return btf_equal_enum(t1, t2);
3313 	/* ignore vlen when comparing */
3314 	return t1->name_off == t2->name_off &&
3315 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3316 	       t1->size == t2->size;
3317 }
3318 
3319 /*
3320  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3321  * as referenced type IDs equivalence is established separately during type
3322  * graph equivalence check algorithm.
3323  */
3324 static long btf_hash_struct(struct btf_type *t)
3325 {
3326 	const struct btf_member *member = btf_members(t);
3327 	__u32 vlen = btf_vlen(t);
3328 	long h = btf_hash_common(t);
3329 	int i;
3330 
3331 	for (i = 0; i < vlen; i++) {
3332 		h = hash_combine(h, member->name_off);
3333 		h = hash_combine(h, member->offset);
3334 		/* no hashing of referenced type ID, it can be unresolved yet */
3335 		member++;
3336 	}
3337 	return h;
3338 }
3339 
3340 /*
3341  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3342  * IDs. This check is performed during type graph equivalence check and
3343  * referenced types equivalence is checked separately.
3344  */
3345 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3346 {
3347 	const struct btf_member *m1, *m2;
3348 	__u16 vlen;
3349 	int i;
3350 
3351 	if (!btf_equal_common(t1, t2))
3352 		return false;
3353 
3354 	vlen = btf_vlen(t1);
3355 	m1 = btf_members(t1);
3356 	m2 = btf_members(t2);
3357 	for (i = 0; i < vlen; i++) {
3358 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3359 			return false;
3360 		m1++;
3361 		m2++;
3362 	}
3363 	return true;
3364 }
3365 
3366 /*
3367  * Calculate type signature hash of ARRAY, including referenced type IDs,
3368  * under assumption that they were already resolved to canonical type IDs and
3369  * are not going to change.
3370  */
3371 static long btf_hash_array(struct btf_type *t)
3372 {
3373 	const struct btf_array *info = btf_array(t);
3374 	long h = btf_hash_common(t);
3375 
3376 	h = hash_combine(h, info->type);
3377 	h = hash_combine(h, info->index_type);
3378 	h = hash_combine(h, info->nelems);
3379 	return h;
3380 }
3381 
3382 /*
3383  * Check exact equality of two ARRAYs, taking into account referenced
3384  * type IDs, under assumption that they were already resolved to canonical
3385  * type IDs and are not going to change.
3386  * This function is called during reference types deduplication to compare
3387  * ARRAY to potential canonical representative.
3388  */
3389 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3390 {
3391 	const struct btf_array *info1, *info2;
3392 
3393 	if (!btf_equal_common(t1, t2))
3394 		return false;
3395 
3396 	info1 = btf_array(t1);
3397 	info2 = btf_array(t2);
3398 	return info1->type == info2->type &&
3399 	       info1->index_type == info2->index_type &&
3400 	       info1->nelems == info2->nelems;
3401 }
3402 
3403 /*
3404  * Check structural compatibility of two ARRAYs, ignoring referenced type
3405  * IDs. This check is performed during type graph equivalence check and
3406  * referenced types equivalence is checked separately.
3407  */
3408 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3409 {
3410 	if (!btf_equal_common(t1, t2))
3411 		return false;
3412 
3413 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3414 }
3415 
3416 /*
3417  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3418  * under assumption that they were already resolved to canonical type IDs and
3419  * are not going to change.
3420  */
3421 static long btf_hash_fnproto(struct btf_type *t)
3422 {
3423 	const struct btf_param *member = btf_params(t);
3424 	__u16 vlen = btf_vlen(t);
3425 	long h = btf_hash_common(t);
3426 	int i;
3427 
3428 	for (i = 0; i < vlen; i++) {
3429 		h = hash_combine(h, member->name_off);
3430 		h = hash_combine(h, member->type);
3431 		member++;
3432 	}
3433 	return h;
3434 }
3435 
3436 /*
3437  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3438  * type IDs, under assumption that they were already resolved to canonical
3439  * type IDs and are not going to change.
3440  * This function is called during reference types deduplication to compare
3441  * FUNC_PROTO to potential canonical representative.
3442  */
3443 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3444 {
3445 	const struct btf_param *m1, *m2;
3446 	__u16 vlen;
3447 	int i;
3448 
3449 	if (!btf_equal_common(t1, t2))
3450 		return false;
3451 
3452 	vlen = btf_vlen(t1);
3453 	m1 = btf_params(t1);
3454 	m2 = btf_params(t2);
3455 	for (i = 0; i < vlen; i++) {
3456 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3457 			return false;
3458 		m1++;
3459 		m2++;
3460 	}
3461 	return true;
3462 }
3463 
3464 /*
3465  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3466  * IDs. This check is performed during type graph equivalence check and
3467  * referenced types equivalence is checked separately.
3468  */
3469 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3470 {
3471 	const struct btf_param *m1, *m2;
3472 	__u16 vlen;
3473 	int i;
3474 
3475 	/* skip return type ID */
3476 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3477 		return false;
3478 
3479 	vlen = btf_vlen(t1);
3480 	m1 = btf_params(t1);
3481 	m2 = btf_params(t2);
3482 	for (i = 0; i < vlen; i++) {
3483 		if (m1->name_off != m2->name_off)
3484 			return false;
3485 		m1++;
3486 		m2++;
3487 	}
3488 	return true;
3489 }
3490 
3491 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3492  * types and initializing the rest of the state (canonical type mapping) for
3493  * the fixed base BTF part.
3494  */
3495 static int btf_dedup_prep(struct btf_dedup *d)
3496 {
3497 	struct btf_type *t;
3498 	int type_id;
3499 	long h;
3500 
3501 	if (!d->btf->base_btf)
3502 		return 0;
3503 
3504 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3505 		t = btf_type_by_id(d->btf, type_id);
3506 
3507 		/* all base BTF types are self-canonical by definition */
3508 		d->map[type_id] = type_id;
3509 
3510 		switch (btf_kind(t)) {
3511 		case BTF_KIND_VAR:
3512 		case BTF_KIND_DATASEC:
3513 			/* VAR and DATASEC are never hash/deduplicated */
3514 			continue;
3515 		case BTF_KIND_CONST:
3516 		case BTF_KIND_VOLATILE:
3517 		case BTF_KIND_RESTRICT:
3518 		case BTF_KIND_PTR:
3519 		case BTF_KIND_FWD:
3520 		case BTF_KIND_TYPEDEF:
3521 		case BTF_KIND_FUNC:
3522 		case BTF_KIND_FLOAT:
3523 			h = btf_hash_common(t);
3524 			break;
3525 		case BTF_KIND_INT:
3526 			h = btf_hash_int(t);
3527 			break;
3528 		case BTF_KIND_ENUM:
3529 			h = btf_hash_enum(t);
3530 			break;
3531 		case BTF_KIND_STRUCT:
3532 		case BTF_KIND_UNION:
3533 			h = btf_hash_struct(t);
3534 			break;
3535 		case BTF_KIND_ARRAY:
3536 			h = btf_hash_array(t);
3537 			break;
3538 		case BTF_KIND_FUNC_PROTO:
3539 			h = btf_hash_fnproto(t);
3540 			break;
3541 		default:
3542 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3543 			return -EINVAL;
3544 		}
3545 		if (btf_dedup_table_add(d, h, type_id))
3546 			return -ENOMEM;
3547 	}
3548 
3549 	return 0;
3550 }
3551 
3552 /*
3553  * Deduplicate primitive types, that can't reference other types, by calculating
3554  * their type signature hash and comparing them with any possible canonical
3555  * candidate. If no canonical candidate matches, type itself is marked as
3556  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3557  */
3558 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3559 {
3560 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3561 	struct hashmap_entry *hash_entry;
3562 	struct btf_type *cand;
3563 	/* if we don't find equivalent type, then we are canonical */
3564 	__u32 new_id = type_id;
3565 	__u32 cand_id;
3566 	long h;
3567 
3568 	switch (btf_kind(t)) {
3569 	case BTF_KIND_CONST:
3570 	case BTF_KIND_VOLATILE:
3571 	case BTF_KIND_RESTRICT:
3572 	case BTF_KIND_PTR:
3573 	case BTF_KIND_TYPEDEF:
3574 	case BTF_KIND_ARRAY:
3575 	case BTF_KIND_STRUCT:
3576 	case BTF_KIND_UNION:
3577 	case BTF_KIND_FUNC:
3578 	case BTF_KIND_FUNC_PROTO:
3579 	case BTF_KIND_VAR:
3580 	case BTF_KIND_DATASEC:
3581 		return 0;
3582 
3583 	case BTF_KIND_INT:
3584 		h = btf_hash_int(t);
3585 		for_each_dedup_cand(d, hash_entry, h) {
3586 			cand_id = (__u32)(long)hash_entry->value;
3587 			cand = btf_type_by_id(d->btf, cand_id);
3588 			if (btf_equal_int(t, cand)) {
3589 				new_id = cand_id;
3590 				break;
3591 			}
3592 		}
3593 		break;
3594 
3595 	case BTF_KIND_ENUM:
3596 		h = btf_hash_enum(t);
3597 		for_each_dedup_cand(d, hash_entry, h) {
3598 			cand_id = (__u32)(long)hash_entry->value;
3599 			cand = btf_type_by_id(d->btf, cand_id);
3600 			if (btf_equal_enum(t, cand)) {
3601 				new_id = cand_id;
3602 				break;
3603 			}
3604 			if (d->opts.dont_resolve_fwds)
3605 				continue;
3606 			if (btf_compat_enum(t, cand)) {
3607 				if (btf_is_enum_fwd(t)) {
3608 					/* resolve fwd to full enum */
3609 					new_id = cand_id;
3610 					break;
3611 				}
3612 				/* resolve canonical enum fwd to full enum */
3613 				d->map[cand_id] = type_id;
3614 			}
3615 		}
3616 		break;
3617 
3618 	case BTF_KIND_FWD:
3619 	case BTF_KIND_FLOAT:
3620 		h = btf_hash_common(t);
3621 		for_each_dedup_cand(d, hash_entry, h) {
3622 			cand_id = (__u32)(long)hash_entry->value;
3623 			cand = btf_type_by_id(d->btf, cand_id);
3624 			if (btf_equal_common(t, cand)) {
3625 				new_id = cand_id;
3626 				break;
3627 			}
3628 		}
3629 		break;
3630 
3631 	default:
3632 		return -EINVAL;
3633 	}
3634 
3635 	d->map[type_id] = new_id;
3636 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3637 		return -ENOMEM;
3638 
3639 	return 0;
3640 }
3641 
3642 static int btf_dedup_prim_types(struct btf_dedup *d)
3643 {
3644 	int i, err;
3645 
3646 	for (i = 0; i < d->btf->nr_types; i++) {
3647 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3648 		if (err)
3649 			return err;
3650 	}
3651 	return 0;
3652 }
3653 
3654 /*
3655  * Check whether type is already mapped into canonical one (could be to itself).
3656  */
3657 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3658 {
3659 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3660 }
3661 
3662 /*
3663  * Resolve type ID into its canonical type ID, if any; otherwise return original
3664  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3665  * STRUCT/UNION link and resolve it into canonical type ID as well.
3666  */
3667 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3668 {
3669 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3670 		type_id = d->map[type_id];
3671 	return type_id;
3672 }
3673 
3674 /*
3675  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3676  * type ID.
3677  */
3678 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3679 {
3680 	__u32 orig_type_id = type_id;
3681 
3682 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3683 		return type_id;
3684 
3685 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3686 		type_id = d->map[type_id];
3687 
3688 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3689 		return type_id;
3690 
3691 	return orig_type_id;
3692 }
3693 
3694 
3695 static inline __u16 btf_fwd_kind(struct btf_type *t)
3696 {
3697 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3698 }
3699 
3700 /* Check if given two types are identical ARRAY definitions */
3701 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3702 {
3703 	struct btf_type *t1, *t2;
3704 
3705 	t1 = btf_type_by_id(d->btf, id1);
3706 	t2 = btf_type_by_id(d->btf, id2);
3707 	if (!btf_is_array(t1) || !btf_is_array(t2))
3708 		return 0;
3709 
3710 	return btf_equal_array(t1, t2);
3711 }
3712 
3713 /*
3714  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3715  * call it "candidate graph" in this description for brevity) to a type graph
3716  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3717  * here, though keep in mind that not all types in canonical graph are
3718  * necessarily canonical representatives themselves, some of them might be
3719  * duplicates or its uniqueness might not have been established yet).
3720  * Returns:
3721  *  - >0, if type graphs are equivalent;
3722  *  -  0, if not equivalent;
3723  *  - <0, on error.
3724  *
3725  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3726  * equivalence of BTF types at each step. If at any point BTF types in candidate
3727  * and canonical graphs are not compatible structurally, whole graphs are
3728  * incompatible. If types are structurally equivalent (i.e., all information
3729  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3730  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3731  * If a type references other types, then those referenced types are checked
3732  * for equivalence recursively.
3733  *
3734  * During DFS traversal, if we find that for current `canon_id` type we
3735  * already have some mapping in hypothetical map, we check for two possible
3736  * situations:
3737  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3738  *     happen when type graphs have cycles. In this case we assume those two
3739  *     types are equivalent.
3740  *   - `canon_id` is mapped to different type. This is contradiction in our
3741  *     hypothetical mapping, because same graph in canonical graph corresponds
3742  *     to two different types in candidate graph, which for equivalent type
3743  *     graphs shouldn't happen. This condition terminates equivalence check
3744  *     with negative result.
3745  *
3746  * If type graphs traversal exhausts types to check and find no contradiction,
3747  * then type graphs are equivalent.
3748  *
3749  * When checking types for equivalence, there is one special case: FWD types.
3750  * If FWD type resolution is allowed and one of the types (either from canonical
3751  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3752  * flag) and their names match, hypothetical mapping is updated to point from
3753  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3754  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3755  *
3756  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3757  * if there are two exactly named (or anonymous) structs/unions that are
3758  * compatible structurally, one of which has FWD field, while other is concrete
3759  * STRUCT/UNION, but according to C sources they are different structs/unions
3760  * that are referencing different types with the same name. This is extremely
3761  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3762  * this logic is causing problems.
3763  *
3764  * Doing FWD resolution means that both candidate and/or canonical graphs can
3765  * consists of portions of the graph that come from multiple compilation units.
3766  * This is due to the fact that types within single compilation unit are always
3767  * deduplicated and FWDs are already resolved, if referenced struct/union
3768  * definiton is available. So, if we had unresolved FWD and found corresponding
3769  * STRUCT/UNION, they will be from different compilation units. This
3770  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3771  * type graph will likely have at least two different BTF types that describe
3772  * same type (e.g., most probably there will be two different BTF types for the
3773  * same 'int' primitive type) and could even have "overlapping" parts of type
3774  * graph that describe same subset of types.
3775  *
3776  * This in turn means that our assumption that each type in canonical graph
3777  * must correspond to exactly one type in candidate graph might not hold
3778  * anymore and will make it harder to detect contradictions using hypothetical
3779  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3780  * resolution only in canonical graph. FWDs in candidate graphs are never
3781  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3782  * that can occur:
3783  *   - Both types in canonical and candidate graphs are FWDs. If they are
3784  *     structurally equivalent, then they can either be both resolved to the
3785  *     same STRUCT/UNION or not resolved at all. In both cases they are
3786  *     equivalent and there is no need to resolve FWD on candidate side.
3787  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3788  *     so nothing to resolve as well, algorithm will check equivalence anyway.
3789  *   - Type in canonical graph is FWD, while type in candidate is concrete
3790  *     STRUCT/UNION. In this case candidate graph comes from single compilation
3791  *     unit, so there is exactly one BTF type for each unique C type. After
3792  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3793  *     in canonical graph mapping to single BTF type in candidate graph, but
3794  *     because hypothetical mapping maps from canonical to candidate types, it's
3795  *     alright, and we still maintain the property of having single `canon_id`
3796  *     mapping to single `cand_id` (there could be two different `canon_id`
3797  *     mapped to the same `cand_id`, but it's not contradictory).
3798  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3799  *     graph is FWD. In this case we are just going to check compatibility of
3800  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3801  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3802  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3803  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3804  *     canonical graph.
3805  */
3806 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3807 			      __u32 canon_id)
3808 {
3809 	struct btf_type *cand_type;
3810 	struct btf_type *canon_type;
3811 	__u32 hypot_type_id;
3812 	__u16 cand_kind;
3813 	__u16 canon_kind;
3814 	int i, eq;
3815 
3816 	/* if both resolve to the same canonical, they must be equivalent */
3817 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3818 		return 1;
3819 
3820 	canon_id = resolve_fwd_id(d, canon_id);
3821 
3822 	hypot_type_id = d->hypot_map[canon_id];
3823 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3824 		/* In some cases compiler will generate different DWARF types
3825 		 * for *identical* array type definitions and use them for
3826 		 * different fields within the *same* struct. This breaks type
3827 		 * equivalence check, which makes an assumption that candidate
3828 		 * types sub-graph has a consistent and deduped-by-compiler
3829 		 * types within a single CU. So work around that by explicitly
3830 		 * allowing identical array types here.
3831 		 */
3832 		return hypot_type_id == cand_id ||
3833 		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3834 	}
3835 
3836 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3837 		return -ENOMEM;
3838 
3839 	cand_type = btf_type_by_id(d->btf, cand_id);
3840 	canon_type = btf_type_by_id(d->btf, canon_id);
3841 	cand_kind = btf_kind(cand_type);
3842 	canon_kind = btf_kind(canon_type);
3843 
3844 	if (cand_type->name_off != canon_type->name_off)
3845 		return 0;
3846 
3847 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3848 	if (!d->opts.dont_resolve_fwds
3849 	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3850 	    && cand_kind != canon_kind) {
3851 		__u16 real_kind;
3852 		__u16 fwd_kind;
3853 
3854 		if (cand_kind == BTF_KIND_FWD) {
3855 			real_kind = canon_kind;
3856 			fwd_kind = btf_fwd_kind(cand_type);
3857 		} else {
3858 			real_kind = cand_kind;
3859 			fwd_kind = btf_fwd_kind(canon_type);
3860 			/* we'd need to resolve base FWD to STRUCT/UNION */
3861 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3862 				d->hypot_adjust_canon = true;
3863 		}
3864 		return fwd_kind == real_kind;
3865 	}
3866 
3867 	if (cand_kind != canon_kind)
3868 		return 0;
3869 
3870 	switch (cand_kind) {
3871 	case BTF_KIND_INT:
3872 		return btf_equal_int(cand_type, canon_type);
3873 
3874 	case BTF_KIND_ENUM:
3875 		if (d->opts.dont_resolve_fwds)
3876 			return btf_equal_enum(cand_type, canon_type);
3877 		else
3878 			return btf_compat_enum(cand_type, canon_type);
3879 
3880 	case BTF_KIND_FWD:
3881 	case BTF_KIND_FLOAT:
3882 		return btf_equal_common(cand_type, canon_type);
3883 
3884 	case BTF_KIND_CONST:
3885 	case BTF_KIND_VOLATILE:
3886 	case BTF_KIND_RESTRICT:
3887 	case BTF_KIND_PTR:
3888 	case BTF_KIND_TYPEDEF:
3889 	case BTF_KIND_FUNC:
3890 		if (cand_type->info != canon_type->info)
3891 			return 0;
3892 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3893 
3894 	case BTF_KIND_ARRAY: {
3895 		const struct btf_array *cand_arr, *canon_arr;
3896 
3897 		if (!btf_compat_array(cand_type, canon_type))
3898 			return 0;
3899 		cand_arr = btf_array(cand_type);
3900 		canon_arr = btf_array(canon_type);
3901 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3902 		if (eq <= 0)
3903 			return eq;
3904 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3905 	}
3906 
3907 	case BTF_KIND_STRUCT:
3908 	case BTF_KIND_UNION: {
3909 		const struct btf_member *cand_m, *canon_m;
3910 		__u16 vlen;
3911 
3912 		if (!btf_shallow_equal_struct(cand_type, canon_type))
3913 			return 0;
3914 		vlen = btf_vlen(cand_type);
3915 		cand_m = btf_members(cand_type);
3916 		canon_m = btf_members(canon_type);
3917 		for (i = 0; i < vlen; i++) {
3918 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3919 			if (eq <= 0)
3920 				return eq;
3921 			cand_m++;
3922 			canon_m++;
3923 		}
3924 
3925 		return 1;
3926 	}
3927 
3928 	case BTF_KIND_FUNC_PROTO: {
3929 		const struct btf_param *cand_p, *canon_p;
3930 		__u16 vlen;
3931 
3932 		if (!btf_compat_fnproto(cand_type, canon_type))
3933 			return 0;
3934 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3935 		if (eq <= 0)
3936 			return eq;
3937 		vlen = btf_vlen(cand_type);
3938 		cand_p = btf_params(cand_type);
3939 		canon_p = btf_params(canon_type);
3940 		for (i = 0; i < vlen; i++) {
3941 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3942 			if (eq <= 0)
3943 				return eq;
3944 			cand_p++;
3945 			canon_p++;
3946 		}
3947 		return 1;
3948 	}
3949 
3950 	default:
3951 		return -EINVAL;
3952 	}
3953 	return 0;
3954 }
3955 
3956 /*
3957  * Use hypothetical mapping, produced by successful type graph equivalence
3958  * check, to augment existing struct/union canonical mapping, where possible.
3959  *
3960  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3961  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3962  * it doesn't matter if FWD type was part of canonical graph or candidate one,
3963  * we are recording the mapping anyway. As opposed to carefulness required
3964  * for struct/union correspondence mapping (described below), for FWD resolution
3965  * it's not important, as by the time that FWD type (reference type) will be
3966  * deduplicated all structs/unions will be deduped already anyway.
3967  *
3968  * Recording STRUCT/UNION mapping is purely a performance optimization and is
3969  * not required for correctness. It needs to be done carefully to ensure that
3970  * struct/union from candidate's type graph is not mapped into corresponding
3971  * struct/union from canonical type graph that itself hasn't been resolved into
3972  * canonical representative. The only guarantee we have is that canonical
3973  * struct/union was determined as canonical and that won't change. But any
3974  * types referenced through that struct/union fields could have been not yet
3975  * resolved, so in case like that it's too early to establish any kind of
3976  * correspondence between structs/unions.
3977  *
3978  * No canonical correspondence is derived for primitive types (they are already
3979  * deduplicated completely already anyway) or reference types (they rely on
3980  * stability of struct/union canonical relationship for equivalence checks).
3981  */
3982 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3983 {
3984 	__u32 canon_type_id, targ_type_id;
3985 	__u16 t_kind, c_kind;
3986 	__u32 t_id, c_id;
3987 	int i;
3988 
3989 	for (i = 0; i < d->hypot_cnt; i++) {
3990 		canon_type_id = d->hypot_list[i];
3991 		targ_type_id = d->hypot_map[canon_type_id];
3992 		t_id = resolve_type_id(d, targ_type_id);
3993 		c_id = resolve_type_id(d, canon_type_id);
3994 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3995 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3996 		/*
3997 		 * Resolve FWD into STRUCT/UNION.
3998 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3999 		 * mapped to canonical representative (as opposed to
4000 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4001 		 * eventually that struct is going to be mapped and all resolved
4002 		 * FWDs will automatically resolve to correct canonical
4003 		 * representative. This will happen before ref type deduping,
4004 		 * which critically depends on stability of these mapping. This
4005 		 * stability is not a requirement for STRUCT/UNION equivalence
4006 		 * checks, though.
4007 		 */
4008 
4009 		/* if it's the split BTF case, we still need to point base FWD
4010 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4011 		 * will be resolved against base FWD. If we don't point base
4012 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4013 		 * FWDs in split BTF won't be correctly resolved to a proper
4014 		 * STRUCT/UNION.
4015 		 */
4016 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4017 			d->map[c_id] = t_id;
4018 
4019 		/* if graph equivalence determined that we'd need to adjust
4020 		 * base canonical types, then we need to only point base FWDs
4021 		 * to STRUCTs/UNIONs and do no more modifications. For all
4022 		 * other purposes the type graphs were not equivalent.
4023 		 */
4024 		if (d->hypot_adjust_canon)
4025 			continue;
4026 
4027 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4028 			d->map[t_id] = c_id;
4029 
4030 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4031 		    c_kind != BTF_KIND_FWD &&
4032 		    is_type_mapped(d, c_id) &&
4033 		    !is_type_mapped(d, t_id)) {
4034 			/*
4035 			 * as a perf optimization, we can map struct/union
4036 			 * that's part of type graph we just verified for
4037 			 * equivalence. We can do that for struct/union that has
4038 			 * canonical representative only, though.
4039 			 */
4040 			d->map[t_id] = c_id;
4041 		}
4042 	}
4043 }
4044 
4045 /*
4046  * Deduplicate struct/union types.
4047  *
4048  * For each struct/union type its type signature hash is calculated, taking
4049  * into account type's name, size, number, order and names of fields, but
4050  * ignoring type ID's referenced from fields, because they might not be deduped
4051  * completely until after reference types deduplication phase. This type hash
4052  * is used to iterate over all potential canonical types, sharing same hash.
4053  * For each canonical candidate we check whether type graphs that they form
4054  * (through referenced types in fields and so on) are equivalent using algorithm
4055  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4056  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4057  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4058  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4059  * potentially map other structs/unions to their canonical representatives,
4060  * if such relationship hasn't yet been established. This speeds up algorithm
4061  * by eliminating some of the duplicate work.
4062  *
4063  * If no matching canonical representative was found, struct/union is marked
4064  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4065  * for further look ups.
4066  */
4067 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4068 {
4069 	struct btf_type *cand_type, *t;
4070 	struct hashmap_entry *hash_entry;
4071 	/* if we don't find equivalent type, then we are canonical */
4072 	__u32 new_id = type_id;
4073 	__u16 kind;
4074 	long h;
4075 
4076 	/* already deduped or is in process of deduping (loop detected) */
4077 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4078 		return 0;
4079 
4080 	t = btf_type_by_id(d->btf, type_id);
4081 	kind = btf_kind(t);
4082 
4083 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4084 		return 0;
4085 
4086 	h = btf_hash_struct(t);
4087 	for_each_dedup_cand(d, hash_entry, h) {
4088 		__u32 cand_id = (__u32)(long)hash_entry->value;
4089 		int eq;
4090 
4091 		/*
4092 		 * Even though btf_dedup_is_equiv() checks for
4093 		 * btf_shallow_equal_struct() internally when checking two
4094 		 * structs (unions) for equivalence, we need to guard here
4095 		 * from picking matching FWD type as a dedup candidate.
4096 		 * This can happen due to hash collision. In such case just
4097 		 * relying on btf_dedup_is_equiv() would lead to potentially
4098 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4099 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4100 		 */
4101 		cand_type = btf_type_by_id(d->btf, cand_id);
4102 		if (!btf_shallow_equal_struct(t, cand_type))
4103 			continue;
4104 
4105 		btf_dedup_clear_hypot_map(d);
4106 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4107 		if (eq < 0)
4108 			return eq;
4109 		if (!eq)
4110 			continue;
4111 		btf_dedup_merge_hypot_map(d);
4112 		if (d->hypot_adjust_canon) /* not really equivalent */
4113 			continue;
4114 		new_id = cand_id;
4115 		break;
4116 	}
4117 
4118 	d->map[type_id] = new_id;
4119 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4120 		return -ENOMEM;
4121 
4122 	return 0;
4123 }
4124 
4125 static int btf_dedup_struct_types(struct btf_dedup *d)
4126 {
4127 	int i, err;
4128 
4129 	for (i = 0; i < d->btf->nr_types; i++) {
4130 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4131 		if (err)
4132 			return err;
4133 	}
4134 	return 0;
4135 }
4136 
4137 /*
4138  * Deduplicate reference type.
4139  *
4140  * Once all primitive and struct/union types got deduplicated, we can easily
4141  * deduplicate all other (reference) BTF types. This is done in two steps:
4142  *
4143  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4144  * resolution can be done either immediately for primitive or struct/union types
4145  * (because they were deduped in previous two phases) or recursively for
4146  * reference types. Recursion will always terminate at either primitive or
4147  * struct/union type, at which point we can "unwind" chain of reference types
4148  * one by one. There is no danger of encountering cycles because in C type
4149  * system the only way to form type cycle is through struct/union, so any chain
4150  * of reference types, even those taking part in a type cycle, will inevitably
4151  * reach struct/union at some point.
4152  *
4153  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4154  * becomes "stable", in the sense that no further deduplication will cause
4155  * any changes to it. With that, it's now possible to calculate type's signature
4156  * hash (this time taking into account referenced type IDs) and loop over all
4157  * potential canonical representatives. If no match was found, current type
4158  * will become canonical representative of itself and will be added into
4159  * btf_dedup->dedup_table as another possible canonical representative.
4160  */
4161 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4162 {
4163 	struct hashmap_entry *hash_entry;
4164 	__u32 new_id = type_id, cand_id;
4165 	struct btf_type *t, *cand;
4166 	/* if we don't find equivalent type, then we are representative type */
4167 	int ref_type_id;
4168 	long h;
4169 
4170 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4171 		return -ELOOP;
4172 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4173 		return resolve_type_id(d, type_id);
4174 
4175 	t = btf_type_by_id(d->btf, type_id);
4176 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4177 
4178 	switch (btf_kind(t)) {
4179 	case BTF_KIND_CONST:
4180 	case BTF_KIND_VOLATILE:
4181 	case BTF_KIND_RESTRICT:
4182 	case BTF_KIND_PTR:
4183 	case BTF_KIND_TYPEDEF:
4184 	case BTF_KIND_FUNC:
4185 		ref_type_id = btf_dedup_ref_type(d, t->type);
4186 		if (ref_type_id < 0)
4187 			return ref_type_id;
4188 		t->type = ref_type_id;
4189 
4190 		h = btf_hash_common(t);
4191 		for_each_dedup_cand(d, hash_entry, h) {
4192 			cand_id = (__u32)(long)hash_entry->value;
4193 			cand = btf_type_by_id(d->btf, cand_id);
4194 			if (btf_equal_common(t, cand)) {
4195 				new_id = cand_id;
4196 				break;
4197 			}
4198 		}
4199 		break;
4200 
4201 	case BTF_KIND_ARRAY: {
4202 		struct btf_array *info = btf_array(t);
4203 
4204 		ref_type_id = btf_dedup_ref_type(d, info->type);
4205 		if (ref_type_id < 0)
4206 			return ref_type_id;
4207 		info->type = ref_type_id;
4208 
4209 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4210 		if (ref_type_id < 0)
4211 			return ref_type_id;
4212 		info->index_type = ref_type_id;
4213 
4214 		h = btf_hash_array(t);
4215 		for_each_dedup_cand(d, hash_entry, h) {
4216 			cand_id = (__u32)(long)hash_entry->value;
4217 			cand = btf_type_by_id(d->btf, cand_id);
4218 			if (btf_equal_array(t, cand)) {
4219 				new_id = cand_id;
4220 				break;
4221 			}
4222 		}
4223 		break;
4224 	}
4225 
4226 	case BTF_KIND_FUNC_PROTO: {
4227 		struct btf_param *param;
4228 		__u16 vlen;
4229 		int i;
4230 
4231 		ref_type_id = btf_dedup_ref_type(d, t->type);
4232 		if (ref_type_id < 0)
4233 			return ref_type_id;
4234 		t->type = ref_type_id;
4235 
4236 		vlen = btf_vlen(t);
4237 		param = btf_params(t);
4238 		for (i = 0; i < vlen; i++) {
4239 			ref_type_id = btf_dedup_ref_type(d, param->type);
4240 			if (ref_type_id < 0)
4241 				return ref_type_id;
4242 			param->type = ref_type_id;
4243 			param++;
4244 		}
4245 
4246 		h = btf_hash_fnproto(t);
4247 		for_each_dedup_cand(d, hash_entry, h) {
4248 			cand_id = (__u32)(long)hash_entry->value;
4249 			cand = btf_type_by_id(d->btf, cand_id);
4250 			if (btf_equal_fnproto(t, cand)) {
4251 				new_id = cand_id;
4252 				break;
4253 			}
4254 		}
4255 		break;
4256 	}
4257 
4258 	default:
4259 		return -EINVAL;
4260 	}
4261 
4262 	d->map[type_id] = new_id;
4263 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4264 		return -ENOMEM;
4265 
4266 	return new_id;
4267 }
4268 
4269 static int btf_dedup_ref_types(struct btf_dedup *d)
4270 {
4271 	int i, err;
4272 
4273 	for (i = 0; i < d->btf->nr_types; i++) {
4274 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4275 		if (err < 0)
4276 			return err;
4277 	}
4278 	/* we won't need d->dedup_table anymore */
4279 	hashmap__free(d->dedup_table);
4280 	d->dedup_table = NULL;
4281 	return 0;
4282 }
4283 
4284 /*
4285  * Compact types.
4286  *
4287  * After we established for each type its corresponding canonical representative
4288  * type, we now can eliminate types that are not canonical and leave only
4289  * canonical ones layed out sequentially in memory by copying them over
4290  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4291  * a map from original type ID to a new compacted type ID, which will be used
4292  * during next phase to "fix up" type IDs, referenced from struct/union and
4293  * reference types.
4294  */
4295 static int btf_dedup_compact_types(struct btf_dedup *d)
4296 {
4297 	__u32 *new_offs;
4298 	__u32 next_type_id = d->btf->start_id;
4299 	const struct btf_type *t;
4300 	void *p;
4301 	int i, id, len;
4302 
4303 	/* we are going to reuse hypot_map to store compaction remapping */
4304 	d->hypot_map[0] = 0;
4305 	/* base BTF types are not renumbered */
4306 	for (id = 1; id < d->btf->start_id; id++)
4307 		d->hypot_map[id] = id;
4308 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4309 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4310 
4311 	p = d->btf->types_data;
4312 
4313 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4314 		if (d->map[id] != id)
4315 			continue;
4316 
4317 		t = btf__type_by_id(d->btf, id);
4318 		len = btf_type_size(t);
4319 		if (len < 0)
4320 			return len;
4321 
4322 		memmove(p, t, len);
4323 		d->hypot_map[id] = next_type_id;
4324 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4325 		p += len;
4326 		next_type_id++;
4327 	}
4328 
4329 	/* shrink struct btf's internal types index and update btf_header */
4330 	d->btf->nr_types = next_type_id - d->btf->start_id;
4331 	d->btf->type_offs_cap = d->btf->nr_types;
4332 	d->btf->hdr->type_len = p - d->btf->types_data;
4333 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4334 				       sizeof(*new_offs));
4335 	if (d->btf->type_offs_cap && !new_offs)
4336 		return -ENOMEM;
4337 	d->btf->type_offs = new_offs;
4338 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4339 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4340 	return 0;
4341 }
4342 
4343 /*
4344  * Figure out final (deduplicated and compacted) type ID for provided original
4345  * `type_id` by first resolving it into corresponding canonical type ID and
4346  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4347  * which is populated during compaction phase.
4348  */
4349 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4350 {
4351 	struct btf_dedup *d = ctx;
4352 	__u32 resolved_type_id, new_type_id;
4353 
4354 	resolved_type_id = resolve_type_id(d, *type_id);
4355 	new_type_id = d->hypot_map[resolved_type_id];
4356 	if (new_type_id > BTF_MAX_NR_TYPES)
4357 		return -EINVAL;
4358 
4359 	*type_id = new_type_id;
4360 	return 0;
4361 }
4362 
4363 /*
4364  * Remap referenced type IDs into deduped type IDs.
4365  *
4366  * After BTF types are deduplicated and compacted, their final type IDs may
4367  * differ from original ones. The map from original to a corresponding
4368  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4369  * compaction phase. During remapping phase we are rewriting all type IDs
4370  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4371  * their final deduped type IDs.
4372  */
4373 static int btf_dedup_remap_types(struct btf_dedup *d)
4374 {
4375 	int i, r;
4376 
4377 	for (i = 0; i < d->btf->nr_types; i++) {
4378 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4379 
4380 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4381 		if (r)
4382 			return r;
4383 	}
4384 
4385 	if (!d->btf_ext)
4386 		return 0;
4387 
4388 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4389 	if (r)
4390 		return r;
4391 
4392 	return 0;
4393 }
4394 
4395 /*
4396  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4397  * data out of it to use for target BTF.
4398  */
4399 struct btf *libbpf_find_kernel_btf(void)
4400 {
4401 	struct {
4402 		const char *path_fmt;
4403 		bool raw_btf;
4404 	} locations[] = {
4405 		/* try canonical vmlinux BTF through sysfs first */
4406 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4407 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4408 		{ "/boot/vmlinux-%1$s" },
4409 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4410 		{ "/lib/modules/%1$s/build/vmlinux" },
4411 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4412 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4413 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4414 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4415 	};
4416 	char path[PATH_MAX + 1];
4417 	struct utsname buf;
4418 	struct btf *btf;
4419 	int i;
4420 
4421 	uname(&buf);
4422 
4423 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4424 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4425 
4426 		if (access(path, R_OK))
4427 			continue;
4428 
4429 		if (locations[i].raw_btf)
4430 			btf = btf__parse_raw(path);
4431 		else
4432 			btf = btf__parse_elf(path, NULL);
4433 
4434 		pr_debug("loading kernel BTF '%s': %ld\n",
4435 			 path, IS_ERR(btf) ? PTR_ERR(btf) : 0);
4436 		if (IS_ERR(btf))
4437 			continue;
4438 
4439 		return btf;
4440 	}
4441 
4442 	pr_warn("failed to find valid kernel BTF\n");
4443 	return ERR_PTR(-ESRCH);
4444 }
4445 
4446 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4447 {
4448 	int i, n, err;
4449 
4450 	switch (btf_kind(t)) {
4451 	case BTF_KIND_INT:
4452 	case BTF_KIND_FLOAT:
4453 	case BTF_KIND_ENUM:
4454 		return 0;
4455 
4456 	case BTF_KIND_FWD:
4457 	case BTF_KIND_CONST:
4458 	case BTF_KIND_VOLATILE:
4459 	case BTF_KIND_RESTRICT:
4460 	case BTF_KIND_PTR:
4461 	case BTF_KIND_TYPEDEF:
4462 	case BTF_KIND_FUNC:
4463 	case BTF_KIND_VAR:
4464 		return visit(&t->type, ctx);
4465 
4466 	case BTF_KIND_ARRAY: {
4467 		struct btf_array *a = btf_array(t);
4468 
4469 		err = visit(&a->type, ctx);
4470 		err = err ?: visit(&a->index_type, ctx);
4471 		return err;
4472 	}
4473 
4474 	case BTF_KIND_STRUCT:
4475 	case BTF_KIND_UNION: {
4476 		struct btf_member *m = btf_members(t);
4477 
4478 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4479 			err = visit(&m->type, ctx);
4480 			if (err)
4481 				return err;
4482 		}
4483 		return 0;
4484 	}
4485 
4486 	case BTF_KIND_FUNC_PROTO: {
4487 		struct btf_param *m = btf_params(t);
4488 
4489 		err = visit(&t->type, ctx);
4490 		if (err)
4491 			return err;
4492 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4493 			err = visit(&m->type, ctx);
4494 			if (err)
4495 				return err;
4496 		}
4497 		return 0;
4498 	}
4499 
4500 	case BTF_KIND_DATASEC: {
4501 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4502 
4503 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4504 			err = visit(&m->type, ctx);
4505 			if (err)
4506 				return err;
4507 		}
4508 		return 0;
4509 	}
4510 
4511 	default:
4512 		return -EINVAL;
4513 	}
4514 }
4515 
4516 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4517 {
4518 	int i, n, err;
4519 
4520 	err = visit(&t->name_off, ctx);
4521 	if (err)
4522 		return err;
4523 
4524 	switch (btf_kind(t)) {
4525 	case BTF_KIND_STRUCT:
4526 	case BTF_KIND_UNION: {
4527 		struct btf_member *m = btf_members(t);
4528 
4529 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4530 			err = visit(&m->name_off, ctx);
4531 			if (err)
4532 				return err;
4533 		}
4534 		break;
4535 	}
4536 	case BTF_KIND_ENUM: {
4537 		struct btf_enum *m = btf_enum(t);
4538 
4539 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4540 			err = visit(&m->name_off, ctx);
4541 			if (err)
4542 				return err;
4543 		}
4544 		break;
4545 	}
4546 	case BTF_KIND_FUNC_PROTO: {
4547 		struct btf_param *m = btf_params(t);
4548 
4549 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4550 			err = visit(&m->name_off, ctx);
4551 			if (err)
4552 				return err;
4553 		}
4554 		break;
4555 	}
4556 	default:
4557 		break;
4558 	}
4559 
4560 	return 0;
4561 }
4562 
4563 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4564 {
4565 	const struct btf_ext_info *seg;
4566 	struct btf_ext_info_sec *sec;
4567 	int i, err;
4568 
4569 	seg = &btf_ext->func_info;
4570 	for_each_btf_ext_sec(seg, sec) {
4571 		struct bpf_func_info_min *rec;
4572 
4573 		for_each_btf_ext_rec(seg, sec, i, rec) {
4574 			err = visit(&rec->type_id, ctx);
4575 			if (err < 0)
4576 				return err;
4577 		}
4578 	}
4579 
4580 	seg = &btf_ext->core_relo_info;
4581 	for_each_btf_ext_sec(seg, sec) {
4582 		struct bpf_core_relo *rec;
4583 
4584 		for_each_btf_ext_rec(seg, sec, i, rec) {
4585 			err = visit(&rec->type_id, ctx);
4586 			if (err < 0)
4587 				return err;
4588 		}
4589 	}
4590 
4591 	return 0;
4592 }
4593 
4594 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4595 {
4596 	const struct btf_ext_info *seg;
4597 	struct btf_ext_info_sec *sec;
4598 	int i, err;
4599 
4600 	seg = &btf_ext->func_info;
4601 	for_each_btf_ext_sec(seg, sec) {
4602 		err = visit(&sec->sec_name_off, ctx);
4603 		if (err)
4604 			return err;
4605 	}
4606 
4607 	seg = &btf_ext->line_info;
4608 	for_each_btf_ext_sec(seg, sec) {
4609 		struct bpf_line_info_min *rec;
4610 
4611 		err = visit(&sec->sec_name_off, ctx);
4612 		if (err)
4613 			return err;
4614 
4615 		for_each_btf_ext_rec(seg, sec, i, rec) {
4616 			err = visit(&rec->file_name_off, ctx);
4617 			if (err)
4618 				return err;
4619 			err = visit(&rec->line_off, ctx);
4620 			if (err)
4621 				return err;
4622 		}
4623 	}
4624 
4625 	seg = &btf_ext->core_relo_info;
4626 	for_each_btf_ext_sec(seg, sec) {
4627 		struct bpf_core_relo *rec;
4628 
4629 		err = visit(&sec->sec_name_off, ctx);
4630 		if (err)
4631 			return err;
4632 
4633 		for_each_btf_ext_rec(seg, sec, i, rec) {
4634 			err = visit(&rec->access_str_off, ctx);
4635 			if (err)
4636 				return err;
4637 		}
4638 	}
4639 
4640 	return 0;
4641 }
4642