1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__get_raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 193 { 194 __u32 *p; 195 196 p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 197 btf->nr_types, BTF_MAX_NR_TYPES, 1); 198 if (!p) 199 return -ENOMEM; 200 201 *p = type_off; 202 return 0; 203 } 204 205 static void btf_bswap_hdr(struct btf_header *h) 206 { 207 h->magic = bswap_16(h->magic); 208 h->hdr_len = bswap_32(h->hdr_len); 209 h->type_off = bswap_32(h->type_off); 210 h->type_len = bswap_32(h->type_len); 211 h->str_off = bswap_32(h->str_off); 212 h->str_len = bswap_32(h->str_len); 213 } 214 215 static int btf_parse_hdr(struct btf *btf) 216 { 217 struct btf_header *hdr = btf->hdr; 218 __u32 meta_left; 219 220 if (btf->raw_size < sizeof(struct btf_header)) { 221 pr_debug("BTF header not found\n"); 222 return -EINVAL; 223 } 224 225 if (hdr->magic == bswap_16(BTF_MAGIC)) { 226 btf->swapped_endian = true; 227 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 228 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 229 bswap_32(hdr->hdr_len)); 230 return -ENOTSUP; 231 } 232 btf_bswap_hdr(hdr); 233 } else if (hdr->magic != BTF_MAGIC) { 234 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 235 return -EINVAL; 236 } 237 238 meta_left = btf->raw_size - sizeof(*hdr); 239 if (meta_left < hdr->str_off + hdr->str_len) { 240 pr_debug("Invalid BTF total size:%u\n", btf->raw_size); 241 return -EINVAL; 242 } 243 244 if (hdr->type_off + hdr->type_len > hdr->str_off) { 245 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 246 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 247 return -EINVAL; 248 } 249 250 if (hdr->type_off % 4) { 251 pr_debug("BTF type section is not aligned to 4 bytes\n"); 252 return -EINVAL; 253 } 254 255 return 0; 256 } 257 258 static int btf_parse_str_sec(struct btf *btf) 259 { 260 const struct btf_header *hdr = btf->hdr; 261 const char *start = btf->strs_data; 262 const char *end = start + btf->hdr->str_len; 263 264 if (btf->base_btf && hdr->str_len == 0) 265 return 0; 266 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 267 pr_debug("Invalid BTF string section\n"); 268 return -EINVAL; 269 } 270 if (!btf->base_btf && start[0]) { 271 pr_debug("Invalid BTF string section\n"); 272 return -EINVAL; 273 } 274 return 0; 275 } 276 277 static int btf_type_size(const struct btf_type *t) 278 { 279 const int base_size = sizeof(struct btf_type); 280 __u16 vlen = btf_vlen(t); 281 282 switch (btf_kind(t)) { 283 case BTF_KIND_FWD: 284 case BTF_KIND_CONST: 285 case BTF_KIND_VOLATILE: 286 case BTF_KIND_RESTRICT: 287 case BTF_KIND_PTR: 288 case BTF_KIND_TYPEDEF: 289 case BTF_KIND_FUNC: 290 case BTF_KIND_FLOAT: 291 return base_size; 292 case BTF_KIND_INT: 293 return base_size + sizeof(__u32); 294 case BTF_KIND_ENUM: 295 return base_size + vlen * sizeof(struct btf_enum); 296 case BTF_KIND_ARRAY: 297 return base_size + sizeof(struct btf_array); 298 case BTF_KIND_STRUCT: 299 case BTF_KIND_UNION: 300 return base_size + vlen * sizeof(struct btf_member); 301 case BTF_KIND_FUNC_PROTO: 302 return base_size + vlen * sizeof(struct btf_param); 303 case BTF_KIND_VAR: 304 return base_size + sizeof(struct btf_var); 305 case BTF_KIND_DATASEC: 306 return base_size + vlen * sizeof(struct btf_var_secinfo); 307 default: 308 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 309 return -EINVAL; 310 } 311 } 312 313 static void btf_bswap_type_base(struct btf_type *t) 314 { 315 t->name_off = bswap_32(t->name_off); 316 t->info = bswap_32(t->info); 317 t->type = bswap_32(t->type); 318 } 319 320 static int btf_bswap_type_rest(struct btf_type *t) 321 { 322 struct btf_var_secinfo *v; 323 struct btf_member *m; 324 struct btf_array *a; 325 struct btf_param *p; 326 struct btf_enum *e; 327 __u16 vlen = btf_vlen(t); 328 int i; 329 330 switch (btf_kind(t)) { 331 case BTF_KIND_FWD: 332 case BTF_KIND_CONST: 333 case BTF_KIND_VOLATILE: 334 case BTF_KIND_RESTRICT: 335 case BTF_KIND_PTR: 336 case BTF_KIND_TYPEDEF: 337 case BTF_KIND_FUNC: 338 case BTF_KIND_FLOAT: 339 return 0; 340 case BTF_KIND_INT: 341 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 342 return 0; 343 case BTF_KIND_ENUM: 344 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 345 e->name_off = bswap_32(e->name_off); 346 e->val = bswap_32(e->val); 347 } 348 return 0; 349 case BTF_KIND_ARRAY: 350 a = btf_array(t); 351 a->type = bswap_32(a->type); 352 a->index_type = bswap_32(a->index_type); 353 a->nelems = bswap_32(a->nelems); 354 return 0; 355 case BTF_KIND_STRUCT: 356 case BTF_KIND_UNION: 357 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 358 m->name_off = bswap_32(m->name_off); 359 m->type = bswap_32(m->type); 360 m->offset = bswap_32(m->offset); 361 } 362 return 0; 363 case BTF_KIND_FUNC_PROTO: 364 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 365 p->name_off = bswap_32(p->name_off); 366 p->type = bswap_32(p->type); 367 } 368 return 0; 369 case BTF_KIND_VAR: 370 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 371 return 0; 372 case BTF_KIND_DATASEC: 373 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 374 v->type = bswap_32(v->type); 375 v->offset = bswap_32(v->offset); 376 v->size = bswap_32(v->size); 377 } 378 return 0; 379 default: 380 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 381 return -EINVAL; 382 } 383 } 384 385 static int btf_parse_type_sec(struct btf *btf) 386 { 387 struct btf_header *hdr = btf->hdr; 388 void *next_type = btf->types_data; 389 void *end_type = next_type + hdr->type_len; 390 int err, type_size; 391 392 while (next_type + sizeof(struct btf_type) <= end_type) { 393 if (btf->swapped_endian) 394 btf_bswap_type_base(next_type); 395 396 type_size = btf_type_size(next_type); 397 if (type_size < 0) 398 return type_size; 399 if (next_type + type_size > end_type) { 400 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 401 return -EINVAL; 402 } 403 404 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 405 return -EINVAL; 406 407 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 408 if (err) 409 return err; 410 411 next_type += type_size; 412 btf->nr_types++; 413 } 414 415 if (next_type != end_type) { 416 pr_warn("BTF types data is malformed\n"); 417 return -EINVAL; 418 } 419 420 return 0; 421 } 422 423 __u32 btf__get_nr_types(const struct btf *btf) 424 { 425 return btf->start_id + btf->nr_types - 1; 426 } 427 428 const struct btf *btf__base_btf(const struct btf *btf) 429 { 430 return btf->base_btf; 431 } 432 433 /* internal helper returning non-const pointer to a type */ 434 struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 435 { 436 if (type_id == 0) 437 return &btf_void; 438 if (type_id < btf->start_id) 439 return btf_type_by_id(btf->base_btf, type_id); 440 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 441 } 442 443 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 444 { 445 if (type_id >= btf->start_id + btf->nr_types) 446 return NULL; 447 return btf_type_by_id((struct btf *)btf, type_id); 448 } 449 450 static int determine_ptr_size(const struct btf *btf) 451 { 452 const struct btf_type *t; 453 const char *name; 454 int i, n; 455 456 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 457 return btf->base_btf->ptr_sz; 458 459 n = btf__get_nr_types(btf); 460 for (i = 1; i <= n; i++) { 461 t = btf__type_by_id(btf, i); 462 if (!btf_is_int(t)) 463 continue; 464 465 name = btf__name_by_offset(btf, t->name_off); 466 if (!name) 467 continue; 468 469 if (strcmp(name, "long int") == 0 || 470 strcmp(name, "long unsigned int") == 0) { 471 if (t->size != 4 && t->size != 8) 472 continue; 473 return t->size; 474 } 475 } 476 477 return -1; 478 } 479 480 static size_t btf_ptr_sz(const struct btf *btf) 481 { 482 if (!btf->ptr_sz) 483 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 484 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 485 } 486 487 /* Return pointer size this BTF instance assumes. The size is heuristically 488 * determined by looking for 'long' or 'unsigned long' integer type and 489 * recording its size in bytes. If BTF type information doesn't have any such 490 * type, this function returns 0. In the latter case, native architecture's 491 * pointer size is assumed, so will be either 4 or 8, depending on 492 * architecture that libbpf was compiled for. It's possible to override 493 * guessed value by using btf__set_pointer_size() API. 494 */ 495 size_t btf__pointer_size(const struct btf *btf) 496 { 497 if (!btf->ptr_sz) 498 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 499 500 if (btf->ptr_sz < 0) 501 /* not enough BTF type info to guess */ 502 return 0; 503 504 return btf->ptr_sz; 505 } 506 507 /* Override or set pointer size in bytes. Only values of 4 and 8 are 508 * supported. 509 */ 510 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 511 { 512 if (ptr_sz != 4 && ptr_sz != 8) 513 return -EINVAL; 514 btf->ptr_sz = ptr_sz; 515 return 0; 516 } 517 518 static bool is_host_big_endian(void) 519 { 520 #if __BYTE_ORDER == __LITTLE_ENDIAN 521 return false; 522 #elif __BYTE_ORDER == __BIG_ENDIAN 523 return true; 524 #else 525 # error "Unrecognized __BYTE_ORDER__" 526 #endif 527 } 528 529 enum btf_endianness btf__endianness(const struct btf *btf) 530 { 531 if (is_host_big_endian()) 532 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 533 else 534 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 535 } 536 537 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 538 { 539 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 540 return -EINVAL; 541 542 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 543 if (!btf->swapped_endian) { 544 free(btf->raw_data_swapped); 545 btf->raw_data_swapped = NULL; 546 } 547 return 0; 548 } 549 550 static bool btf_type_is_void(const struct btf_type *t) 551 { 552 return t == &btf_void || btf_is_fwd(t); 553 } 554 555 static bool btf_type_is_void_or_null(const struct btf_type *t) 556 { 557 return !t || btf_type_is_void(t); 558 } 559 560 #define MAX_RESOLVE_DEPTH 32 561 562 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 563 { 564 const struct btf_array *array; 565 const struct btf_type *t; 566 __u32 nelems = 1; 567 __s64 size = -1; 568 int i; 569 570 t = btf__type_by_id(btf, type_id); 571 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 572 i++) { 573 switch (btf_kind(t)) { 574 case BTF_KIND_INT: 575 case BTF_KIND_STRUCT: 576 case BTF_KIND_UNION: 577 case BTF_KIND_ENUM: 578 case BTF_KIND_DATASEC: 579 case BTF_KIND_FLOAT: 580 size = t->size; 581 goto done; 582 case BTF_KIND_PTR: 583 size = btf_ptr_sz(btf); 584 goto done; 585 case BTF_KIND_TYPEDEF: 586 case BTF_KIND_VOLATILE: 587 case BTF_KIND_CONST: 588 case BTF_KIND_RESTRICT: 589 case BTF_KIND_VAR: 590 type_id = t->type; 591 break; 592 case BTF_KIND_ARRAY: 593 array = btf_array(t); 594 if (nelems && array->nelems > UINT32_MAX / nelems) 595 return -E2BIG; 596 nelems *= array->nelems; 597 type_id = array->type; 598 break; 599 default: 600 return -EINVAL; 601 } 602 603 t = btf__type_by_id(btf, type_id); 604 } 605 606 done: 607 if (size < 0) 608 return -EINVAL; 609 if (nelems && size > UINT32_MAX / nelems) 610 return -E2BIG; 611 612 return nelems * size; 613 } 614 615 int btf__align_of(const struct btf *btf, __u32 id) 616 { 617 const struct btf_type *t = btf__type_by_id(btf, id); 618 __u16 kind = btf_kind(t); 619 620 switch (kind) { 621 case BTF_KIND_INT: 622 case BTF_KIND_ENUM: 623 case BTF_KIND_FLOAT: 624 return min(btf_ptr_sz(btf), (size_t)t->size); 625 case BTF_KIND_PTR: 626 return btf_ptr_sz(btf); 627 case BTF_KIND_TYPEDEF: 628 case BTF_KIND_VOLATILE: 629 case BTF_KIND_CONST: 630 case BTF_KIND_RESTRICT: 631 return btf__align_of(btf, t->type); 632 case BTF_KIND_ARRAY: 633 return btf__align_of(btf, btf_array(t)->type); 634 case BTF_KIND_STRUCT: 635 case BTF_KIND_UNION: { 636 const struct btf_member *m = btf_members(t); 637 __u16 vlen = btf_vlen(t); 638 int i, max_align = 1, align; 639 640 for (i = 0; i < vlen; i++, m++) { 641 align = btf__align_of(btf, m->type); 642 if (align <= 0) 643 return align; 644 max_align = max(max_align, align); 645 } 646 647 return max_align; 648 } 649 default: 650 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 651 return 0; 652 } 653 } 654 655 int btf__resolve_type(const struct btf *btf, __u32 type_id) 656 { 657 const struct btf_type *t; 658 int depth = 0; 659 660 t = btf__type_by_id(btf, type_id); 661 while (depth < MAX_RESOLVE_DEPTH && 662 !btf_type_is_void_or_null(t) && 663 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 664 type_id = t->type; 665 t = btf__type_by_id(btf, type_id); 666 depth++; 667 } 668 669 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 670 return -EINVAL; 671 672 return type_id; 673 } 674 675 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 676 { 677 __u32 i, nr_types = btf__get_nr_types(btf); 678 679 if (!strcmp(type_name, "void")) 680 return 0; 681 682 for (i = 1; i <= nr_types; i++) { 683 const struct btf_type *t = btf__type_by_id(btf, i); 684 const char *name = btf__name_by_offset(btf, t->name_off); 685 686 if (name && !strcmp(type_name, name)) 687 return i; 688 } 689 690 return -ENOENT; 691 } 692 693 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 694 __u32 kind) 695 { 696 __u32 i, nr_types = btf__get_nr_types(btf); 697 698 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 699 return 0; 700 701 for (i = 1; i <= nr_types; i++) { 702 const struct btf_type *t = btf__type_by_id(btf, i); 703 const char *name; 704 705 if (btf_kind(t) != kind) 706 continue; 707 name = btf__name_by_offset(btf, t->name_off); 708 if (name && !strcmp(type_name, name)) 709 return i; 710 } 711 712 return -ENOENT; 713 } 714 715 static bool btf_is_modifiable(const struct btf *btf) 716 { 717 return (void *)btf->hdr != btf->raw_data; 718 } 719 720 void btf__free(struct btf *btf) 721 { 722 if (IS_ERR_OR_NULL(btf)) 723 return; 724 725 if (btf->fd >= 0) 726 close(btf->fd); 727 728 if (btf_is_modifiable(btf)) { 729 /* if BTF was modified after loading, it will have a split 730 * in-memory representation for header, types, and strings 731 * sections, so we need to free all of them individually. It 732 * might still have a cached contiguous raw data present, 733 * which will be unconditionally freed below. 734 */ 735 free(btf->hdr); 736 free(btf->types_data); 737 strset__free(btf->strs_set); 738 } 739 free(btf->raw_data); 740 free(btf->raw_data_swapped); 741 free(btf->type_offs); 742 free(btf); 743 } 744 745 static struct btf *btf_new_empty(struct btf *base_btf) 746 { 747 struct btf *btf; 748 749 btf = calloc(1, sizeof(*btf)); 750 if (!btf) 751 return ERR_PTR(-ENOMEM); 752 753 btf->nr_types = 0; 754 btf->start_id = 1; 755 btf->start_str_off = 0; 756 btf->fd = -1; 757 btf->ptr_sz = sizeof(void *); 758 btf->swapped_endian = false; 759 760 if (base_btf) { 761 btf->base_btf = base_btf; 762 btf->start_id = btf__get_nr_types(base_btf) + 1; 763 btf->start_str_off = base_btf->hdr->str_len; 764 } 765 766 /* +1 for empty string at offset 0 */ 767 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 768 btf->raw_data = calloc(1, btf->raw_size); 769 if (!btf->raw_data) { 770 free(btf); 771 return ERR_PTR(-ENOMEM); 772 } 773 774 btf->hdr = btf->raw_data; 775 btf->hdr->hdr_len = sizeof(struct btf_header); 776 btf->hdr->magic = BTF_MAGIC; 777 btf->hdr->version = BTF_VERSION; 778 779 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 780 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 781 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 782 783 return btf; 784 } 785 786 struct btf *btf__new_empty(void) 787 { 788 return btf_new_empty(NULL); 789 } 790 791 struct btf *btf__new_empty_split(struct btf *base_btf) 792 { 793 return btf_new_empty(base_btf); 794 } 795 796 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 797 { 798 struct btf *btf; 799 int err; 800 801 btf = calloc(1, sizeof(struct btf)); 802 if (!btf) 803 return ERR_PTR(-ENOMEM); 804 805 btf->nr_types = 0; 806 btf->start_id = 1; 807 btf->start_str_off = 0; 808 809 if (base_btf) { 810 btf->base_btf = base_btf; 811 btf->start_id = btf__get_nr_types(base_btf) + 1; 812 btf->start_str_off = base_btf->hdr->str_len; 813 } 814 815 btf->raw_data = malloc(size); 816 if (!btf->raw_data) { 817 err = -ENOMEM; 818 goto done; 819 } 820 memcpy(btf->raw_data, data, size); 821 btf->raw_size = size; 822 823 btf->hdr = btf->raw_data; 824 err = btf_parse_hdr(btf); 825 if (err) 826 goto done; 827 828 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 829 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 830 831 err = btf_parse_str_sec(btf); 832 err = err ?: btf_parse_type_sec(btf); 833 if (err) 834 goto done; 835 836 btf->fd = -1; 837 838 done: 839 if (err) { 840 btf__free(btf); 841 return ERR_PTR(err); 842 } 843 844 return btf; 845 } 846 847 struct btf *btf__new(const void *data, __u32 size) 848 { 849 return btf_new(data, size, NULL); 850 } 851 852 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 853 struct btf_ext **btf_ext) 854 { 855 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 856 int err = 0, fd = -1, idx = 0; 857 struct btf *btf = NULL; 858 Elf_Scn *scn = NULL; 859 Elf *elf = NULL; 860 GElf_Ehdr ehdr; 861 size_t shstrndx; 862 863 if (elf_version(EV_CURRENT) == EV_NONE) { 864 pr_warn("failed to init libelf for %s\n", path); 865 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 866 } 867 868 fd = open(path, O_RDONLY); 869 if (fd < 0) { 870 err = -errno; 871 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 872 return ERR_PTR(err); 873 } 874 875 err = -LIBBPF_ERRNO__FORMAT; 876 877 elf = elf_begin(fd, ELF_C_READ, NULL); 878 if (!elf) { 879 pr_warn("failed to open %s as ELF file\n", path); 880 goto done; 881 } 882 if (!gelf_getehdr(elf, &ehdr)) { 883 pr_warn("failed to get EHDR from %s\n", path); 884 goto done; 885 } 886 887 if (elf_getshdrstrndx(elf, &shstrndx)) { 888 pr_warn("failed to get section names section index for %s\n", 889 path); 890 goto done; 891 } 892 893 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 894 pr_warn("failed to get e_shstrndx from %s\n", path); 895 goto done; 896 } 897 898 while ((scn = elf_nextscn(elf, scn)) != NULL) { 899 GElf_Shdr sh; 900 char *name; 901 902 idx++; 903 if (gelf_getshdr(scn, &sh) != &sh) { 904 pr_warn("failed to get section(%d) header from %s\n", 905 idx, path); 906 goto done; 907 } 908 name = elf_strptr(elf, shstrndx, sh.sh_name); 909 if (!name) { 910 pr_warn("failed to get section(%d) name from %s\n", 911 idx, path); 912 goto done; 913 } 914 if (strcmp(name, BTF_ELF_SEC) == 0) { 915 btf_data = elf_getdata(scn, 0); 916 if (!btf_data) { 917 pr_warn("failed to get section(%d, %s) data from %s\n", 918 idx, name, path); 919 goto done; 920 } 921 continue; 922 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 923 btf_ext_data = elf_getdata(scn, 0); 924 if (!btf_ext_data) { 925 pr_warn("failed to get section(%d, %s) data from %s\n", 926 idx, name, path); 927 goto done; 928 } 929 continue; 930 } 931 } 932 933 err = 0; 934 935 if (!btf_data) { 936 err = -ENOENT; 937 goto done; 938 } 939 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 940 if (IS_ERR(btf)) 941 goto done; 942 943 switch (gelf_getclass(elf)) { 944 case ELFCLASS32: 945 btf__set_pointer_size(btf, 4); 946 break; 947 case ELFCLASS64: 948 btf__set_pointer_size(btf, 8); 949 break; 950 default: 951 pr_warn("failed to get ELF class (bitness) for %s\n", path); 952 break; 953 } 954 955 if (btf_ext && btf_ext_data) { 956 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 957 btf_ext_data->d_size); 958 if (IS_ERR(*btf_ext)) 959 goto done; 960 } else if (btf_ext) { 961 *btf_ext = NULL; 962 } 963 done: 964 if (elf) 965 elf_end(elf); 966 close(fd); 967 968 if (err) 969 return ERR_PTR(err); 970 /* 971 * btf is always parsed before btf_ext, so no need to clean up 972 * btf_ext, if btf loading failed 973 */ 974 if (IS_ERR(btf)) 975 return btf; 976 if (btf_ext && IS_ERR(*btf_ext)) { 977 btf__free(btf); 978 err = PTR_ERR(*btf_ext); 979 return ERR_PTR(err); 980 } 981 return btf; 982 } 983 984 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 985 { 986 return btf_parse_elf(path, NULL, btf_ext); 987 } 988 989 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 990 { 991 return btf_parse_elf(path, base_btf, NULL); 992 } 993 994 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 995 { 996 struct btf *btf = NULL; 997 void *data = NULL; 998 FILE *f = NULL; 999 __u16 magic; 1000 int err = 0; 1001 long sz; 1002 1003 f = fopen(path, "rb"); 1004 if (!f) { 1005 err = -errno; 1006 goto err_out; 1007 } 1008 1009 /* check BTF magic */ 1010 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1011 err = -EIO; 1012 goto err_out; 1013 } 1014 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1015 /* definitely not a raw BTF */ 1016 err = -EPROTO; 1017 goto err_out; 1018 } 1019 1020 /* get file size */ 1021 if (fseek(f, 0, SEEK_END)) { 1022 err = -errno; 1023 goto err_out; 1024 } 1025 sz = ftell(f); 1026 if (sz < 0) { 1027 err = -errno; 1028 goto err_out; 1029 } 1030 /* rewind to the start */ 1031 if (fseek(f, 0, SEEK_SET)) { 1032 err = -errno; 1033 goto err_out; 1034 } 1035 1036 /* pre-alloc memory and read all of BTF data */ 1037 data = malloc(sz); 1038 if (!data) { 1039 err = -ENOMEM; 1040 goto err_out; 1041 } 1042 if (fread(data, 1, sz, f) < sz) { 1043 err = -EIO; 1044 goto err_out; 1045 } 1046 1047 /* finally parse BTF data */ 1048 btf = btf_new(data, sz, base_btf); 1049 1050 err_out: 1051 free(data); 1052 if (f) 1053 fclose(f); 1054 return err ? ERR_PTR(err) : btf; 1055 } 1056 1057 struct btf *btf__parse_raw(const char *path) 1058 { 1059 return btf_parse_raw(path, NULL); 1060 } 1061 1062 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1063 { 1064 return btf_parse_raw(path, base_btf); 1065 } 1066 1067 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1068 { 1069 struct btf *btf; 1070 1071 if (btf_ext) 1072 *btf_ext = NULL; 1073 1074 btf = btf_parse_raw(path, base_btf); 1075 if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO) 1076 return btf; 1077 1078 return btf_parse_elf(path, base_btf, btf_ext); 1079 } 1080 1081 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1082 { 1083 return btf_parse(path, NULL, btf_ext); 1084 } 1085 1086 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1087 { 1088 return btf_parse(path, base_btf, NULL); 1089 } 1090 1091 static int compare_vsi_off(const void *_a, const void *_b) 1092 { 1093 const struct btf_var_secinfo *a = _a; 1094 const struct btf_var_secinfo *b = _b; 1095 1096 return a->offset - b->offset; 1097 } 1098 1099 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1100 struct btf_type *t) 1101 { 1102 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1103 const char *name = btf__name_by_offset(btf, t->name_off); 1104 const struct btf_type *t_var; 1105 struct btf_var_secinfo *vsi; 1106 const struct btf_var *var; 1107 int ret; 1108 1109 if (!name) { 1110 pr_debug("No name found in string section for DATASEC kind.\n"); 1111 return -ENOENT; 1112 } 1113 1114 /* .extern datasec size and var offsets were set correctly during 1115 * extern collection step, so just skip straight to sorting variables 1116 */ 1117 if (t->size) 1118 goto sort_vars; 1119 1120 ret = bpf_object__section_size(obj, name, &size); 1121 if (ret || !size || (t->size && t->size != size)) { 1122 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1123 return -ENOENT; 1124 } 1125 1126 t->size = size; 1127 1128 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1129 t_var = btf__type_by_id(btf, vsi->type); 1130 var = btf_var(t_var); 1131 1132 if (!btf_is_var(t_var)) { 1133 pr_debug("Non-VAR type seen in section %s\n", name); 1134 return -EINVAL; 1135 } 1136 1137 if (var->linkage == BTF_VAR_STATIC) 1138 continue; 1139 1140 name = btf__name_by_offset(btf, t_var->name_off); 1141 if (!name) { 1142 pr_debug("No name found in string section for VAR kind\n"); 1143 return -ENOENT; 1144 } 1145 1146 ret = bpf_object__variable_offset(obj, name, &off); 1147 if (ret) { 1148 pr_debug("No offset found in symbol table for VAR %s\n", 1149 name); 1150 return -ENOENT; 1151 } 1152 1153 vsi->offset = off; 1154 } 1155 1156 sort_vars: 1157 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1158 return 0; 1159 } 1160 1161 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1162 { 1163 int err = 0; 1164 __u32 i; 1165 1166 for (i = 1; i <= btf->nr_types; i++) { 1167 struct btf_type *t = btf_type_by_id(btf, i); 1168 1169 /* Loader needs to fix up some of the things compiler 1170 * couldn't get its hands on while emitting BTF. This 1171 * is section size and global variable offset. We use 1172 * the info from the ELF itself for this purpose. 1173 */ 1174 if (btf_is_datasec(t)) { 1175 err = btf_fixup_datasec(obj, btf, t); 1176 if (err) 1177 break; 1178 } 1179 } 1180 1181 return err; 1182 } 1183 1184 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1185 1186 int btf__load(struct btf *btf) 1187 { 1188 __u32 log_buf_size = 0, raw_size; 1189 char *log_buf = NULL; 1190 void *raw_data; 1191 int err = 0; 1192 1193 if (btf->fd >= 0) 1194 return -EEXIST; 1195 1196 retry_load: 1197 if (log_buf_size) { 1198 log_buf = malloc(log_buf_size); 1199 if (!log_buf) 1200 return -ENOMEM; 1201 1202 *log_buf = 0; 1203 } 1204 1205 raw_data = btf_get_raw_data(btf, &raw_size, false); 1206 if (!raw_data) { 1207 err = -ENOMEM; 1208 goto done; 1209 } 1210 /* cache native raw data representation */ 1211 btf->raw_size = raw_size; 1212 btf->raw_data = raw_data; 1213 1214 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1215 if (btf->fd < 0) { 1216 if (!log_buf || errno == ENOSPC) { 1217 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1218 log_buf_size << 1); 1219 free(log_buf); 1220 goto retry_load; 1221 } 1222 1223 err = -errno; 1224 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1225 if (*log_buf) 1226 pr_warn("%s\n", log_buf); 1227 goto done; 1228 } 1229 1230 done: 1231 free(log_buf); 1232 return err; 1233 } 1234 1235 int btf__fd(const struct btf *btf) 1236 { 1237 return btf->fd; 1238 } 1239 1240 void btf__set_fd(struct btf *btf, int fd) 1241 { 1242 btf->fd = fd; 1243 } 1244 1245 static const void *btf_strs_data(const struct btf *btf) 1246 { 1247 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1248 } 1249 1250 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1251 { 1252 struct btf_header *hdr = btf->hdr; 1253 struct btf_type *t; 1254 void *data, *p; 1255 __u32 data_sz; 1256 int i; 1257 1258 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1259 if (data) { 1260 *size = btf->raw_size; 1261 return data; 1262 } 1263 1264 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1265 data = calloc(1, data_sz); 1266 if (!data) 1267 return NULL; 1268 p = data; 1269 1270 memcpy(p, hdr, hdr->hdr_len); 1271 if (swap_endian) 1272 btf_bswap_hdr(p); 1273 p += hdr->hdr_len; 1274 1275 memcpy(p, btf->types_data, hdr->type_len); 1276 if (swap_endian) { 1277 for (i = 0; i < btf->nr_types; i++) { 1278 t = p + btf->type_offs[i]; 1279 /* btf_bswap_type_rest() relies on native t->info, so 1280 * we swap base type info after we swapped all the 1281 * additional information 1282 */ 1283 if (btf_bswap_type_rest(t)) 1284 goto err_out; 1285 btf_bswap_type_base(t); 1286 } 1287 } 1288 p += hdr->type_len; 1289 1290 memcpy(p, btf_strs_data(btf), hdr->str_len); 1291 p += hdr->str_len; 1292 1293 *size = data_sz; 1294 return data; 1295 err_out: 1296 free(data); 1297 return NULL; 1298 } 1299 1300 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1301 { 1302 struct btf *btf = (struct btf *)btf_ro; 1303 __u32 data_sz; 1304 void *data; 1305 1306 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1307 if (!data) 1308 return NULL; 1309 1310 btf->raw_size = data_sz; 1311 if (btf->swapped_endian) 1312 btf->raw_data_swapped = data; 1313 else 1314 btf->raw_data = data; 1315 *size = data_sz; 1316 return data; 1317 } 1318 1319 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1320 { 1321 if (offset < btf->start_str_off) 1322 return btf__str_by_offset(btf->base_btf, offset); 1323 else if (offset - btf->start_str_off < btf->hdr->str_len) 1324 return btf_strs_data(btf) + (offset - btf->start_str_off); 1325 else 1326 return NULL; 1327 } 1328 1329 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1330 { 1331 return btf__str_by_offset(btf, offset); 1332 } 1333 1334 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1335 { 1336 struct bpf_btf_info btf_info; 1337 __u32 len = sizeof(btf_info); 1338 __u32 last_size; 1339 struct btf *btf; 1340 void *ptr; 1341 int err; 1342 1343 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1344 * let's start with a sane default - 4KiB here - and resize it only if 1345 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1346 */ 1347 last_size = 4096; 1348 ptr = malloc(last_size); 1349 if (!ptr) 1350 return ERR_PTR(-ENOMEM); 1351 1352 memset(&btf_info, 0, sizeof(btf_info)); 1353 btf_info.btf = ptr_to_u64(ptr); 1354 btf_info.btf_size = last_size; 1355 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1356 1357 if (!err && btf_info.btf_size > last_size) { 1358 void *temp_ptr; 1359 1360 last_size = btf_info.btf_size; 1361 temp_ptr = realloc(ptr, last_size); 1362 if (!temp_ptr) { 1363 btf = ERR_PTR(-ENOMEM); 1364 goto exit_free; 1365 } 1366 ptr = temp_ptr; 1367 1368 len = sizeof(btf_info); 1369 memset(&btf_info, 0, sizeof(btf_info)); 1370 btf_info.btf = ptr_to_u64(ptr); 1371 btf_info.btf_size = last_size; 1372 1373 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1374 } 1375 1376 if (err || btf_info.btf_size > last_size) { 1377 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1378 goto exit_free; 1379 } 1380 1381 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1382 1383 exit_free: 1384 free(ptr); 1385 return btf; 1386 } 1387 1388 int btf__get_from_id(__u32 id, struct btf **btf) 1389 { 1390 struct btf *res; 1391 int btf_fd; 1392 1393 *btf = NULL; 1394 btf_fd = bpf_btf_get_fd_by_id(id); 1395 if (btf_fd < 0) 1396 return -errno; 1397 1398 res = btf_get_from_fd(btf_fd, NULL); 1399 close(btf_fd); 1400 if (IS_ERR(res)) 1401 return PTR_ERR(res); 1402 1403 *btf = res; 1404 return 0; 1405 } 1406 1407 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1408 __u32 expected_key_size, __u32 expected_value_size, 1409 __u32 *key_type_id, __u32 *value_type_id) 1410 { 1411 const struct btf_type *container_type; 1412 const struct btf_member *key, *value; 1413 const size_t max_name = 256; 1414 char container_name[max_name]; 1415 __s64 key_size, value_size; 1416 __s32 container_id; 1417 1418 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 1419 max_name) { 1420 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1421 map_name, map_name); 1422 return -EINVAL; 1423 } 1424 1425 container_id = btf__find_by_name(btf, container_name); 1426 if (container_id < 0) { 1427 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1428 map_name, container_name); 1429 return container_id; 1430 } 1431 1432 container_type = btf__type_by_id(btf, container_id); 1433 if (!container_type) { 1434 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1435 map_name, container_id); 1436 return -EINVAL; 1437 } 1438 1439 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1440 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1441 map_name, container_name); 1442 return -EINVAL; 1443 } 1444 1445 key = btf_members(container_type); 1446 value = key + 1; 1447 1448 key_size = btf__resolve_size(btf, key->type); 1449 if (key_size < 0) { 1450 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1451 return key_size; 1452 } 1453 1454 if (expected_key_size != key_size) { 1455 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1456 map_name, (__u32)key_size, expected_key_size); 1457 return -EINVAL; 1458 } 1459 1460 value_size = btf__resolve_size(btf, value->type); 1461 if (value_size < 0) { 1462 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1463 return value_size; 1464 } 1465 1466 if (expected_value_size != value_size) { 1467 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1468 map_name, (__u32)value_size, expected_value_size); 1469 return -EINVAL; 1470 } 1471 1472 *key_type_id = key->type; 1473 *value_type_id = value->type; 1474 1475 return 0; 1476 } 1477 1478 static void btf_invalidate_raw_data(struct btf *btf) 1479 { 1480 if (btf->raw_data) { 1481 free(btf->raw_data); 1482 btf->raw_data = NULL; 1483 } 1484 if (btf->raw_data_swapped) { 1485 free(btf->raw_data_swapped); 1486 btf->raw_data_swapped = NULL; 1487 } 1488 } 1489 1490 /* Ensure BTF is ready to be modified (by splitting into a three memory 1491 * regions for header, types, and strings). Also invalidate cached 1492 * raw_data, if any. 1493 */ 1494 static int btf_ensure_modifiable(struct btf *btf) 1495 { 1496 void *hdr, *types; 1497 struct strset *set = NULL; 1498 int err = -ENOMEM; 1499 1500 if (btf_is_modifiable(btf)) { 1501 /* any BTF modification invalidates raw_data */ 1502 btf_invalidate_raw_data(btf); 1503 return 0; 1504 } 1505 1506 /* split raw data into three memory regions */ 1507 hdr = malloc(btf->hdr->hdr_len); 1508 types = malloc(btf->hdr->type_len); 1509 if (!hdr || !types) 1510 goto err_out; 1511 1512 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1513 memcpy(types, btf->types_data, btf->hdr->type_len); 1514 1515 /* build lookup index for all strings */ 1516 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1517 if (IS_ERR(set)) { 1518 err = PTR_ERR(set); 1519 goto err_out; 1520 } 1521 1522 /* only when everything was successful, update internal state */ 1523 btf->hdr = hdr; 1524 btf->types_data = types; 1525 btf->types_data_cap = btf->hdr->type_len; 1526 btf->strs_data = NULL; 1527 btf->strs_set = set; 1528 /* if BTF was created from scratch, all strings are guaranteed to be 1529 * unique and deduplicated 1530 */ 1531 if (btf->hdr->str_len == 0) 1532 btf->strs_deduped = true; 1533 if (!btf->base_btf && btf->hdr->str_len == 1) 1534 btf->strs_deduped = true; 1535 1536 /* invalidate raw_data representation */ 1537 btf_invalidate_raw_data(btf); 1538 1539 return 0; 1540 1541 err_out: 1542 strset__free(set); 1543 free(hdr); 1544 free(types); 1545 return err; 1546 } 1547 1548 /* Find an offset in BTF string section that corresponds to a given string *s*. 1549 * Returns: 1550 * - >0 offset into string section, if string is found; 1551 * - -ENOENT, if string is not in the string section; 1552 * - <0, on any other error. 1553 */ 1554 int btf__find_str(struct btf *btf, const char *s) 1555 { 1556 int off; 1557 1558 if (btf->base_btf) { 1559 off = btf__find_str(btf->base_btf, s); 1560 if (off != -ENOENT) 1561 return off; 1562 } 1563 1564 /* BTF needs to be in a modifiable state to build string lookup index */ 1565 if (btf_ensure_modifiable(btf)) 1566 return -ENOMEM; 1567 1568 off = strset__find_str(btf->strs_set, s); 1569 if (off < 0) 1570 return off; 1571 1572 return btf->start_str_off + off; 1573 } 1574 1575 /* Add a string s to the BTF string section. 1576 * Returns: 1577 * - > 0 offset into string section, on success; 1578 * - < 0, on error. 1579 */ 1580 int btf__add_str(struct btf *btf, const char *s) 1581 { 1582 int off; 1583 1584 if (btf->base_btf) { 1585 off = btf__find_str(btf->base_btf, s); 1586 if (off != -ENOENT) 1587 return off; 1588 } 1589 1590 if (btf_ensure_modifiable(btf)) 1591 return -ENOMEM; 1592 1593 off = strset__add_str(btf->strs_set, s); 1594 if (off < 0) 1595 return off; 1596 1597 btf->hdr->str_len = strset__data_size(btf->strs_set); 1598 1599 return btf->start_str_off + off; 1600 } 1601 1602 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1603 { 1604 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1605 btf->hdr->type_len, UINT_MAX, add_sz); 1606 } 1607 1608 static __u32 btf_type_info(int kind, int vlen, int kflag) 1609 { 1610 return (kflag << 31) | (kind << 24) | vlen; 1611 } 1612 1613 static void btf_type_inc_vlen(struct btf_type *t) 1614 { 1615 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1616 } 1617 1618 static int btf_commit_type(struct btf *btf, int data_sz) 1619 { 1620 int err; 1621 1622 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1623 if (err) 1624 return err; 1625 1626 btf->hdr->type_len += data_sz; 1627 btf->hdr->str_off += data_sz; 1628 btf->nr_types++; 1629 return btf->start_id + btf->nr_types - 1; 1630 } 1631 1632 struct btf_pipe { 1633 const struct btf *src; 1634 struct btf *dst; 1635 }; 1636 1637 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1638 { 1639 struct btf_pipe *p = ctx; 1640 int off; 1641 1642 if (!*str_off) /* nothing to do for empty strings */ 1643 return 0; 1644 1645 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1646 if (off < 0) 1647 return off; 1648 1649 *str_off = off; 1650 return 0; 1651 } 1652 1653 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1654 { 1655 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1656 struct btf_type *t; 1657 int sz, err; 1658 1659 sz = btf_type_size(src_type); 1660 if (sz < 0) 1661 return sz; 1662 1663 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1664 if (btf_ensure_modifiable(btf)) 1665 return -ENOMEM; 1666 1667 t = btf_add_type_mem(btf, sz); 1668 if (!t) 1669 return -ENOMEM; 1670 1671 memcpy(t, src_type, sz); 1672 1673 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1674 if (err) 1675 return err; 1676 1677 return btf_commit_type(btf, sz); 1678 } 1679 1680 /* 1681 * Append new BTF_KIND_INT type with: 1682 * - *name* - non-empty, non-NULL type name; 1683 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1684 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1685 * Returns: 1686 * - >0, type ID of newly added BTF type; 1687 * - <0, on error. 1688 */ 1689 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1690 { 1691 struct btf_type *t; 1692 int sz, name_off; 1693 1694 /* non-empty name */ 1695 if (!name || !name[0]) 1696 return -EINVAL; 1697 /* byte_sz must be power of 2 */ 1698 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1699 return -EINVAL; 1700 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1701 return -EINVAL; 1702 1703 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1704 if (btf_ensure_modifiable(btf)) 1705 return -ENOMEM; 1706 1707 sz = sizeof(struct btf_type) + sizeof(int); 1708 t = btf_add_type_mem(btf, sz); 1709 if (!t) 1710 return -ENOMEM; 1711 1712 /* if something goes wrong later, we might end up with an extra string, 1713 * but that shouldn't be a problem, because BTF can't be constructed 1714 * completely anyway and will most probably be just discarded 1715 */ 1716 name_off = btf__add_str(btf, name); 1717 if (name_off < 0) 1718 return name_off; 1719 1720 t->name_off = name_off; 1721 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1722 t->size = byte_sz; 1723 /* set INT info, we don't allow setting legacy bit offset/size */ 1724 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1725 1726 return btf_commit_type(btf, sz); 1727 } 1728 1729 /* 1730 * Append new BTF_KIND_FLOAT type with: 1731 * - *name* - non-empty, non-NULL type name; 1732 * - *sz* - size of the type, in bytes; 1733 * Returns: 1734 * - >0, type ID of newly added BTF type; 1735 * - <0, on error. 1736 */ 1737 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1738 { 1739 struct btf_type *t; 1740 int sz, name_off; 1741 1742 /* non-empty name */ 1743 if (!name || !name[0]) 1744 return -EINVAL; 1745 1746 /* byte_sz must be one of the explicitly allowed values */ 1747 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1748 byte_sz != 16) 1749 return -EINVAL; 1750 1751 if (btf_ensure_modifiable(btf)) 1752 return -ENOMEM; 1753 1754 sz = sizeof(struct btf_type); 1755 t = btf_add_type_mem(btf, sz); 1756 if (!t) 1757 return -ENOMEM; 1758 1759 name_off = btf__add_str(btf, name); 1760 if (name_off < 0) 1761 return name_off; 1762 1763 t->name_off = name_off; 1764 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1765 t->size = byte_sz; 1766 1767 return btf_commit_type(btf, sz); 1768 } 1769 1770 /* it's completely legal to append BTF types with type IDs pointing forward to 1771 * types that haven't been appended yet, so we only make sure that id looks 1772 * sane, we can't guarantee that ID will always be valid 1773 */ 1774 static int validate_type_id(int id) 1775 { 1776 if (id < 0 || id > BTF_MAX_NR_TYPES) 1777 return -EINVAL; 1778 return 0; 1779 } 1780 1781 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1782 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1783 { 1784 struct btf_type *t; 1785 int sz, name_off = 0; 1786 1787 if (validate_type_id(ref_type_id)) 1788 return -EINVAL; 1789 1790 if (btf_ensure_modifiable(btf)) 1791 return -ENOMEM; 1792 1793 sz = sizeof(struct btf_type); 1794 t = btf_add_type_mem(btf, sz); 1795 if (!t) 1796 return -ENOMEM; 1797 1798 if (name && name[0]) { 1799 name_off = btf__add_str(btf, name); 1800 if (name_off < 0) 1801 return name_off; 1802 } 1803 1804 t->name_off = name_off; 1805 t->info = btf_type_info(kind, 0, 0); 1806 t->type = ref_type_id; 1807 1808 return btf_commit_type(btf, sz); 1809 } 1810 1811 /* 1812 * Append new BTF_KIND_PTR type with: 1813 * - *ref_type_id* - referenced type ID, it might not exist yet; 1814 * Returns: 1815 * - >0, type ID of newly added BTF type; 1816 * - <0, on error. 1817 */ 1818 int btf__add_ptr(struct btf *btf, int ref_type_id) 1819 { 1820 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1821 } 1822 1823 /* 1824 * Append new BTF_KIND_ARRAY type with: 1825 * - *index_type_id* - type ID of the type describing array index; 1826 * - *elem_type_id* - type ID of the type describing array element; 1827 * - *nr_elems* - the size of the array; 1828 * Returns: 1829 * - >0, type ID of newly added BTF type; 1830 * - <0, on error. 1831 */ 1832 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1833 { 1834 struct btf_type *t; 1835 struct btf_array *a; 1836 int sz; 1837 1838 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1839 return -EINVAL; 1840 1841 if (btf_ensure_modifiable(btf)) 1842 return -ENOMEM; 1843 1844 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1845 t = btf_add_type_mem(btf, sz); 1846 if (!t) 1847 return -ENOMEM; 1848 1849 t->name_off = 0; 1850 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1851 t->size = 0; 1852 1853 a = btf_array(t); 1854 a->type = elem_type_id; 1855 a->index_type = index_type_id; 1856 a->nelems = nr_elems; 1857 1858 return btf_commit_type(btf, sz); 1859 } 1860 1861 /* generic STRUCT/UNION append function */ 1862 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1863 { 1864 struct btf_type *t; 1865 int sz, name_off = 0; 1866 1867 if (btf_ensure_modifiable(btf)) 1868 return -ENOMEM; 1869 1870 sz = sizeof(struct btf_type); 1871 t = btf_add_type_mem(btf, sz); 1872 if (!t) 1873 return -ENOMEM; 1874 1875 if (name && name[0]) { 1876 name_off = btf__add_str(btf, name); 1877 if (name_off < 0) 1878 return name_off; 1879 } 1880 1881 /* start out with vlen=0 and no kflag; this will be adjusted when 1882 * adding each member 1883 */ 1884 t->name_off = name_off; 1885 t->info = btf_type_info(kind, 0, 0); 1886 t->size = bytes_sz; 1887 1888 return btf_commit_type(btf, sz); 1889 } 1890 1891 /* 1892 * Append new BTF_KIND_STRUCT type with: 1893 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1894 * - *byte_sz* - size of the struct, in bytes; 1895 * 1896 * Struct initially has no fields in it. Fields can be added by 1897 * btf__add_field() right after btf__add_struct() succeeds. 1898 * 1899 * Returns: 1900 * - >0, type ID of newly added BTF type; 1901 * - <0, on error. 1902 */ 1903 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1904 { 1905 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1906 } 1907 1908 /* 1909 * Append new BTF_KIND_UNION type with: 1910 * - *name* - name of the union, can be NULL or empty for anonymous union; 1911 * - *byte_sz* - size of the union, in bytes; 1912 * 1913 * Union initially has no fields in it. Fields can be added by 1914 * btf__add_field() right after btf__add_union() succeeds. All fields 1915 * should have *bit_offset* of 0. 1916 * 1917 * Returns: 1918 * - >0, type ID of newly added BTF type; 1919 * - <0, on error. 1920 */ 1921 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1922 { 1923 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1924 } 1925 1926 static struct btf_type *btf_last_type(struct btf *btf) 1927 { 1928 return btf_type_by_id(btf, btf__get_nr_types(btf)); 1929 } 1930 1931 /* 1932 * Append new field for the current STRUCT/UNION type with: 1933 * - *name* - name of the field, can be NULL or empty for anonymous field; 1934 * - *type_id* - type ID for the type describing field type; 1935 * - *bit_offset* - bit offset of the start of the field within struct/union; 1936 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1937 * Returns: 1938 * - 0, on success; 1939 * - <0, on error. 1940 */ 1941 int btf__add_field(struct btf *btf, const char *name, int type_id, 1942 __u32 bit_offset, __u32 bit_size) 1943 { 1944 struct btf_type *t; 1945 struct btf_member *m; 1946 bool is_bitfield; 1947 int sz, name_off = 0; 1948 1949 /* last type should be union/struct */ 1950 if (btf->nr_types == 0) 1951 return -EINVAL; 1952 t = btf_last_type(btf); 1953 if (!btf_is_composite(t)) 1954 return -EINVAL; 1955 1956 if (validate_type_id(type_id)) 1957 return -EINVAL; 1958 /* best-effort bit field offset/size enforcement */ 1959 is_bitfield = bit_size || (bit_offset % 8 != 0); 1960 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1961 return -EINVAL; 1962 1963 /* only offset 0 is allowed for unions */ 1964 if (btf_is_union(t) && bit_offset) 1965 return -EINVAL; 1966 1967 /* decompose and invalidate raw data */ 1968 if (btf_ensure_modifiable(btf)) 1969 return -ENOMEM; 1970 1971 sz = sizeof(struct btf_member); 1972 m = btf_add_type_mem(btf, sz); 1973 if (!m) 1974 return -ENOMEM; 1975 1976 if (name && name[0]) { 1977 name_off = btf__add_str(btf, name); 1978 if (name_off < 0) 1979 return name_off; 1980 } 1981 1982 m->name_off = name_off; 1983 m->type = type_id; 1984 m->offset = bit_offset | (bit_size << 24); 1985 1986 /* btf_add_type_mem can invalidate t pointer */ 1987 t = btf_last_type(btf); 1988 /* update parent type's vlen and kflag */ 1989 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 1990 1991 btf->hdr->type_len += sz; 1992 btf->hdr->str_off += sz; 1993 return 0; 1994 } 1995 1996 /* 1997 * Append new BTF_KIND_ENUM type with: 1998 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 1999 * - *byte_sz* - size of the enum, in bytes. 2000 * 2001 * Enum initially has no enum values in it (and corresponds to enum forward 2002 * declaration). Enumerator values can be added by btf__add_enum_value() 2003 * immediately after btf__add_enum() succeeds. 2004 * 2005 * Returns: 2006 * - >0, type ID of newly added BTF type; 2007 * - <0, on error. 2008 */ 2009 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2010 { 2011 struct btf_type *t; 2012 int sz, name_off = 0; 2013 2014 /* byte_sz must be power of 2 */ 2015 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2016 return -EINVAL; 2017 2018 if (btf_ensure_modifiable(btf)) 2019 return -ENOMEM; 2020 2021 sz = sizeof(struct btf_type); 2022 t = btf_add_type_mem(btf, sz); 2023 if (!t) 2024 return -ENOMEM; 2025 2026 if (name && name[0]) { 2027 name_off = btf__add_str(btf, name); 2028 if (name_off < 0) 2029 return name_off; 2030 } 2031 2032 /* start out with vlen=0; it will be adjusted when adding enum values */ 2033 t->name_off = name_off; 2034 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2035 t->size = byte_sz; 2036 2037 return btf_commit_type(btf, sz); 2038 } 2039 2040 /* 2041 * Append new enum value for the current ENUM type with: 2042 * - *name* - name of the enumerator value, can't be NULL or empty; 2043 * - *value* - integer value corresponding to enum value *name*; 2044 * Returns: 2045 * - 0, on success; 2046 * - <0, on error. 2047 */ 2048 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2049 { 2050 struct btf_type *t; 2051 struct btf_enum *v; 2052 int sz, name_off; 2053 2054 /* last type should be BTF_KIND_ENUM */ 2055 if (btf->nr_types == 0) 2056 return -EINVAL; 2057 t = btf_last_type(btf); 2058 if (!btf_is_enum(t)) 2059 return -EINVAL; 2060 2061 /* non-empty name */ 2062 if (!name || !name[0]) 2063 return -EINVAL; 2064 if (value < INT_MIN || value > UINT_MAX) 2065 return -E2BIG; 2066 2067 /* decompose and invalidate raw data */ 2068 if (btf_ensure_modifiable(btf)) 2069 return -ENOMEM; 2070 2071 sz = sizeof(struct btf_enum); 2072 v = btf_add_type_mem(btf, sz); 2073 if (!v) 2074 return -ENOMEM; 2075 2076 name_off = btf__add_str(btf, name); 2077 if (name_off < 0) 2078 return name_off; 2079 2080 v->name_off = name_off; 2081 v->val = value; 2082 2083 /* update parent type's vlen */ 2084 t = btf_last_type(btf); 2085 btf_type_inc_vlen(t); 2086 2087 btf->hdr->type_len += sz; 2088 btf->hdr->str_off += sz; 2089 return 0; 2090 } 2091 2092 /* 2093 * Append new BTF_KIND_FWD type with: 2094 * - *name*, non-empty/non-NULL name; 2095 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2096 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2097 * Returns: 2098 * - >0, type ID of newly added BTF type; 2099 * - <0, on error. 2100 */ 2101 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2102 { 2103 if (!name || !name[0]) 2104 return -EINVAL; 2105 2106 switch (fwd_kind) { 2107 case BTF_FWD_STRUCT: 2108 case BTF_FWD_UNION: { 2109 struct btf_type *t; 2110 int id; 2111 2112 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2113 if (id <= 0) 2114 return id; 2115 t = btf_type_by_id(btf, id); 2116 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2117 return id; 2118 } 2119 case BTF_FWD_ENUM: 2120 /* enum forward in BTF currently is just an enum with no enum 2121 * values; we also assume a standard 4-byte size for it 2122 */ 2123 return btf__add_enum(btf, name, sizeof(int)); 2124 default: 2125 return -EINVAL; 2126 } 2127 } 2128 2129 /* 2130 * Append new BTF_KING_TYPEDEF type with: 2131 * - *name*, non-empty/non-NULL name; 2132 * - *ref_type_id* - referenced type ID, it might not exist yet; 2133 * Returns: 2134 * - >0, type ID of newly added BTF type; 2135 * - <0, on error. 2136 */ 2137 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2138 { 2139 if (!name || !name[0]) 2140 return -EINVAL; 2141 2142 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2143 } 2144 2145 /* 2146 * Append new BTF_KIND_VOLATILE type with: 2147 * - *ref_type_id* - referenced type ID, it might not exist yet; 2148 * Returns: 2149 * - >0, type ID of newly added BTF type; 2150 * - <0, on error. 2151 */ 2152 int btf__add_volatile(struct btf *btf, int ref_type_id) 2153 { 2154 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2155 } 2156 2157 /* 2158 * Append new BTF_KIND_CONST type with: 2159 * - *ref_type_id* - referenced type ID, it might not exist yet; 2160 * Returns: 2161 * - >0, type ID of newly added BTF type; 2162 * - <0, on error. 2163 */ 2164 int btf__add_const(struct btf *btf, int ref_type_id) 2165 { 2166 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2167 } 2168 2169 /* 2170 * Append new BTF_KIND_RESTRICT type with: 2171 * - *ref_type_id* - referenced type ID, it might not exist yet; 2172 * Returns: 2173 * - >0, type ID of newly added BTF type; 2174 * - <0, on error. 2175 */ 2176 int btf__add_restrict(struct btf *btf, int ref_type_id) 2177 { 2178 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2179 } 2180 2181 /* 2182 * Append new BTF_KIND_FUNC type with: 2183 * - *name*, non-empty/non-NULL name; 2184 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2185 * Returns: 2186 * - >0, type ID of newly added BTF type; 2187 * - <0, on error. 2188 */ 2189 int btf__add_func(struct btf *btf, const char *name, 2190 enum btf_func_linkage linkage, int proto_type_id) 2191 { 2192 int id; 2193 2194 if (!name || !name[0]) 2195 return -EINVAL; 2196 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2197 linkage != BTF_FUNC_EXTERN) 2198 return -EINVAL; 2199 2200 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2201 if (id > 0) { 2202 struct btf_type *t = btf_type_by_id(btf, id); 2203 2204 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2205 } 2206 return id; 2207 } 2208 2209 /* 2210 * Append new BTF_KIND_FUNC_PROTO with: 2211 * - *ret_type_id* - type ID for return result of a function. 2212 * 2213 * Function prototype initially has no arguments, but they can be added by 2214 * btf__add_func_param() one by one, immediately after 2215 * btf__add_func_proto() succeeded. 2216 * 2217 * Returns: 2218 * - >0, type ID of newly added BTF type; 2219 * - <0, on error. 2220 */ 2221 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2222 { 2223 struct btf_type *t; 2224 int sz; 2225 2226 if (validate_type_id(ret_type_id)) 2227 return -EINVAL; 2228 2229 if (btf_ensure_modifiable(btf)) 2230 return -ENOMEM; 2231 2232 sz = sizeof(struct btf_type); 2233 t = btf_add_type_mem(btf, sz); 2234 if (!t) 2235 return -ENOMEM; 2236 2237 /* start out with vlen=0; this will be adjusted when adding enum 2238 * values, if necessary 2239 */ 2240 t->name_off = 0; 2241 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2242 t->type = ret_type_id; 2243 2244 return btf_commit_type(btf, sz); 2245 } 2246 2247 /* 2248 * Append new function parameter for current FUNC_PROTO type with: 2249 * - *name* - parameter name, can be NULL or empty; 2250 * - *type_id* - type ID describing the type of the parameter. 2251 * Returns: 2252 * - 0, on success; 2253 * - <0, on error. 2254 */ 2255 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2256 { 2257 struct btf_type *t; 2258 struct btf_param *p; 2259 int sz, name_off = 0; 2260 2261 if (validate_type_id(type_id)) 2262 return -EINVAL; 2263 2264 /* last type should be BTF_KIND_FUNC_PROTO */ 2265 if (btf->nr_types == 0) 2266 return -EINVAL; 2267 t = btf_last_type(btf); 2268 if (!btf_is_func_proto(t)) 2269 return -EINVAL; 2270 2271 /* decompose and invalidate raw data */ 2272 if (btf_ensure_modifiable(btf)) 2273 return -ENOMEM; 2274 2275 sz = sizeof(struct btf_param); 2276 p = btf_add_type_mem(btf, sz); 2277 if (!p) 2278 return -ENOMEM; 2279 2280 if (name && name[0]) { 2281 name_off = btf__add_str(btf, name); 2282 if (name_off < 0) 2283 return name_off; 2284 } 2285 2286 p->name_off = name_off; 2287 p->type = type_id; 2288 2289 /* update parent type's vlen */ 2290 t = btf_last_type(btf); 2291 btf_type_inc_vlen(t); 2292 2293 btf->hdr->type_len += sz; 2294 btf->hdr->str_off += sz; 2295 return 0; 2296 } 2297 2298 /* 2299 * Append new BTF_KIND_VAR type with: 2300 * - *name* - non-empty/non-NULL name; 2301 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2302 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2303 * - *type_id* - type ID of the type describing the type of the variable. 2304 * Returns: 2305 * - >0, type ID of newly added BTF type; 2306 * - <0, on error. 2307 */ 2308 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2309 { 2310 struct btf_type *t; 2311 struct btf_var *v; 2312 int sz, name_off; 2313 2314 /* non-empty name */ 2315 if (!name || !name[0]) 2316 return -EINVAL; 2317 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2318 linkage != BTF_VAR_GLOBAL_EXTERN) 2319 return -EINVAL; 2320 if (validate_type_id(type_id)) 2321 return -EINVAL; 2322 2323 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2324 if (btf_ensure_modifiable(btf)) 2325 return -ENOMEM; 2326 2327 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2328 t = btf_add_type_mem(btf, sz); 2329 if (!t) 2330 return -ENOMEM; 2331 2332 name_off = btf__add_str(btf, name); 2333 if (name_off < 0) 2334 return name_off; 2335 2336 t->name_off = name_off; 2337 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2338 t->type = type_id; 2339 2340 v = btf_var(t); 2341 v->linkage = linkage; 2342 2343 return btf_commit_type(btf, sz); 2344 } 2345 2346 /* 2347 * Append new BTF_KIND_DATASEC type with: 2348 * - *name* - non-empty/non-NULL name; 2349 * - *byte_sz* - data section size, in bytes. 2350 * 2351 * Data section is initially empty. Variables info can be added with 2352 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2353 * 2354 * Returns: 2355 * - >0, type ID of newly added BTF type; 2356 * - <0, on error. 2357 */ 2358 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2359 { 2360 struct btf_type *t; 2361 int sz, name_off; 2362 2363 /* non-empty name */ 2364 if (!name || !name[0]) 2365 return -EINVAL; 2366 2367 if (btf_ensure_modifiable(btf)) 2368 return -ENOMEM; 2369 2370 sz = sizeof(struct btf_type); 2371 t = btf_add_type_mem(btf, sz); 2372 if (!t) 2373 return -ENOMEM; 2374 2375 name_off = btf__add_str(btf, name); 2376 if (name_off < 0) 2377 return name_off; 2378 2379 /* start with vlen=0, which will be update as var_secinfos are added */ 2380 t->name_off = name_off; 2381 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2382 t->size = byte_sz; 2383 2384 return btf_commit_type(btf, sz); 2385 } 2386 2387 /* 2388 * Append new data section variable information entry for current DATASEC type: 2389 * - *var_type_id* - type ID, describing type of the variable; 2390 * - *offset* - variable offset within data section, in bytes; 2391 * - *byte_sz* - variable size, in bytes. 2392 * 2393 * Returns: 2394 * - 0, on success; 2395 * - <0, on error. 2396 */ 2397 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2398 { 2399 struct btf_type *t; 2400 struct btf_var_secinfo *v; 2401 int sz; 2402 2403 /* last type should be BTF_KIND_DATASEC */ 2404 if (btf->nr_types == 0) 2405 return -EINVAL; 2406 t = btf_last_type(btf); 2407 if (!btf_is_datasec(t)) 2408 return -EINVAL; 2409 2410 if (validate_type_id(var_type_id)) 2411 return -EINVAL; 2412 2413 /* decompose and invalidate raw data */ 2414 if (btf_ensure_modifiable(btf)) 2415 return -ENOMEM; 2416 2417 sz = sizeof(struct btf_var_secinfo); 2418 v = btf_add_type_mem(btf, sz); 2419 if (!v) 2420 return -ENOMEM; 2421 2422 v->type = var_type_id; 2423 v->offset = offset; 2424 v->size = byte_sz; 2425 2426 /* update parent type's vlen */ 2427 t = btf_last_type(btf); 2428 btf_type_inc_vlen(t); 2429 2430 btf->hdr->type_len += sz; 2431 btf->hdr->str_off += sz; 2432 return 0; 2433 } 2434 2435 struct btf_ext_sec_setup_param { 2436 __u32 off; 2437 __u32 len; 2438 __u32 min_rec_size; 2439 struct btf_ext_info *ext_info; 2440 const char *desc; 2441 }; 2442 2443 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2444 struct btf_ext_sec_setup_param *ext_sec) 2445 { 2446 const struct btf_ext_info_sec *sinfo; 2447 struct btf_ext_info *ext_info; 2448 __u32 info_left, record_size; 2449 /* The start of the info sec (including the __u32 record_size). */ 2450 void *info; 2451 2452 if (ext_sec->len == 0) 2453 return 0; 2454 2455 if (ext_sec->off & 0x03) { 2456 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2457 ext_sec->desc); 2458 return -EINVAL; 2459 } 2460 2461 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2462 info_left = ext_sec->len; 2463 2464 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2465 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2466 ext_sec->desc, ext_sec->off, ext_sec->len); 2467 return -EINVAL; 2468 } 2469 2470 /* At least a record size */ 2471 if (info_left < sizeof(__u32)) { 2472 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2473 return -EINVAL; 2474 } 2475 2476 /* The record size needs to meet the minimum standard */ 2477 record_size = *(__u32 *)info; 2478 if (record_size < ext_sec->min_rec_size || 2479 record_size & 0x03) { 2480 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2481 ext_sec->desc, record_size); 2482 return -EINVAL; 2483 } 2484 2485 sinfo = info + sizeof(__u32); 2486 info_left -= sizeof(__u32); 2487 2488 /* If no records, return failure now so .BTF.ext won't be used. */ 2489 if (!info_left) { 2490 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2491 return -EINVAL; 2492 } 2493 2494 while (info_left) { 2495 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2496 __u64 total_record_size; 2497 __u32 num_records; 2498 2499 if (info_left < sec_hdrlen) { 2500 pr_debug("%s section header is not found in .BTF.ext\n", 2501 ext_sec->desc); 2502 return -EINVAL; 2503 } 2504 2505 num_records = sinfo->num_info; 2506 if (num_records == 0) { 2507 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2508 ext_sec->desc); 2509 return -EINVAL; 2510 } 2511 2512 total_record_size = sec_hdrlen + 2513 (__u64)num_records * record_size; 2514 if (info_left < total_record_size) { 2515 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2516 ext_sec->desc); 2517 return -EINVAL; 2518 } 2519 2520 info_left -= total_record_size; 2521 sinfo = (void *)sinfo + total_record_size; 2522 } 2523 2524 ext_info = ext_sec->ext_info; 2525 ext_info->len = ext_sec->len - sizeof(__u32); 2526 ext_info->rec_size = record_size; 2527 ext_info->info = info + sizeof(__u32); 2528 2529 return 0; 2530 } 2531 2532 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2533 { 2534 struct btf_ext_sec_setup_param param = { 2535 .off = btf_ext->hdr->func_info_off, 2536 .len = btf_ext->hdr->func_info_len, 2537 .min_rec_size = sizeof(struct bpf_func_info_min), 2538 .ext_info = &btf_ext->func_info, 2539 .desc = "func_info" 2540 }; 2541 2542 return btf_ext_setup_info(btf_ext, ¶m); 2543 } 2544 2545 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2546 { 2547 struct btf_ext_sec_setup_param param = { 2548 .off = btf_ext->hdr->line_info_off, 2549 .len = btf_ext->hdr->line_info_len, 2550 .min_rec_size = sizeof(struct bpf_line_info_min), 2551 .ext_info = &btf_ext->line_info, 2552 .desc = "line_info", 2553 }; 2554 2555 return btf_ext_setup_info(btf_ext, ¶m); 2556 } 2557 2558 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2559 { 2560 struct btf_ext_sec_setup_param param = { 2561 .off = btf_ext->hdr->core_relo_off, 2562 .len = btf_ext->hdr->core_relo_len, 2563 .min_rec_size = sizeof(struct bpf_core_relo), 2564 .ext_info = &btf_ext->core_relo_info, 2565 .desc = "core_relo", 2566 }; 2567 2568 return btf_ext_setup_info(btf_ext, ¶m); 2569 } 2570 2571 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2572 { 2573 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2574 2575 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2576 data_size < hdr->hdr_len) { 2577 pr_debug("BTF.ext header not found"); 2578 return -EINVAL; 2579 } 2580 2581 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2582 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2583 return -ENOTSUP; 2584 } else if (hdr->magic != BTF_MAGIC) { 2585 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2586 return -EINVAL; 2587 } 2588 2589 if (hdr->version != BTF_VERSION) { 2590 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2591 return -ENOTSUP; 2592 } 2593 2594 if (hdr->flags) { 2595 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2596 return -ENOTSUP; 2597 } 2598 2599 if (data_size == hdr->hdr_len) { 2600 pr_debug("BTF.ext has no data\n"); 2601 return -EINVAL; 2602 } 2603 2604 return 0; 2605 } 2606 2607 void btf_ext__free(struct btf_ext *btf_ext) 2608 { 2609 if (IS_ERR_OR_NULL(btf_ext)) 2610 return; 2611 free(btf_ext->data); 2612 free(btf_ext); 2613 } 2614 2615 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2616 { 2617 struct btf_ext *btf_ext; 2618 int err; 2619 2620 err = btf_ext_parse_hdr(data, size); 2621 if (err) 2622 return ERR_PTR(err); 2623 2624 btf_ext = calloc(1, sizeof(struct btf_ext)); 2625 if (!btf_ext) 2626 return ERR_PTR(-ENOMEM); 2627 2628 btf_ext->data_size = size; 2629 btf_ext->data = malloc(size); 2630 if (!btf_ext->data) { 2631 err = -ENOMEM; 2632 goto done; 2633 } 2634 memcpy(btf_ext->data, data, size); 2635 2636 if (btf_ext->hdr->hdr_len < 2637 offsetofend(struct btf_ext_header, line_info_len)) 2638 goto done; 2639 err = btf_ext_setup_func_info(btf_ext); 2640 if (err) 2641 goto done; 2642 2643 err = btf_ext_setup_line_info(btf_ext); 2644 if (err) 2645 goto done; 2646 2647 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 2648 goto done; 2649 err = btf_ext_setup_core_relos(btf_ext); 2650 if (err) 2651 goto done; 2652 2653 done: 2654 if (err) { 2655 btf_ext__free(btf_ext); 2656 return ERR_PTR(err); 2657 } 2658 2659 return btf_ext; 2660 } 2661 2662 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2663 { 2664 *size = btf_ext->data_size; 2665 return btf_ext->data; 2666 } 2667 2668 static int btf_ext_reloc_info(const struct btf *btf, 2669 const struct btf_ext_info *ext_info, 2670 const char *sec_name, __u32 insns_cnt, 2671 void **info, __u32 *cnt) 2672 { 2673 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2674 __u32 i, record_size, existing_len, records_len; 2675 struct btf_ext_info_sec *sinfo; 2676 const char *info_sec_name; 2677 __u64 remain_len; 2678 void *data; 2679 2680 record_size = ext_info->rec_size; 2681 sinfo = ext_info->info; 2682 remain_len = ext_info->len; 2683 while (remain_len > 0) { 2684 records_len = sinfo->num_info * record_size; 2685 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2686 if (strcmp(info_sec_name, sec_name)) { 2687 remain_len -= sec_hdrlen + records_len; 2688 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2689 continue; 2690 } 2691 2692 existing_len = (*cnt) * record_size; 2693 data = realloc(*info, existing_len + records_len); 2694 if (!data) 2695 return -ENOMEM; 2696 2697 memcpy(data + existing_len, sinfo->data, records_len); 2698 /* adjust insn_off only, the rest data will be passed 2699 * to the kernel. 2700 */ 2701 for (i = 0; i < sinfo->num_info; i++) { 2702 __u32 *insn_off; 2703 2704 insn_off = data + existing_len + (i * record_size); 2705 *insn_off = *insn_off / sizeof(struct bpf_insn) + 2706 insns_cnt; 2707 } 2708 *info = data; 2709 *cnt += sinfo->num_info; 2710 return 0; 2711 } 2712 2713 return -ENOENT; 2714 } 2715 2716 int btf_ext__reloc_func_info(const struct btf *btf, 2717 const struct btf_ext *btf_ext, 2718 const char *sec_name, __u32 insns_cnt, 2719 void **func_info, __u32 *cnt) 2720 { 2721 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2722 insns_cnt, func_info, cnt); 2723 } 2724 2725 int btf_ext__reloc_line_info(const struct btf *btf, 2726 const struct btf_ext *btf_ext, 2727 const char *sec_name, __u32 insns_cnt, 2728 void **line_info, __u32 *cnt) 2729 { 2730 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2731 insns_cnt, line_info, cnt); 2732 } 2733 2734 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2735 { 2736 return btf_ext->func_info.rec_size; 2737 } 2738 2739 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2740 { 2741 return btf_ext->line_info.rec_size; 2742 } 2743 2744 struct btf_dedup; 2745 2746 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2747 const struct btf_dedup_opts *opts); 2748 static void btf_dedup_free(struct btf_dedup *d); 2749 static int btf_dedup_prep(struct btf_dedup *d); 2750 static int btf_dedup_strings(struct btf_dedup *d); 2751 static int btf_dedup_prim_types(struct btf_dedup *d); 2752 static int btf_dedup_struct_types(struct btf_dedup *d); 2753 static int btf_dedup_ref_types(struct btf_dedup *d); 2754 static int btf_dedup_compact_types(struct btf_dedup *d); 2755 static int btf_dedup_remap_types(struct btf_dedup *d); 2756 2757 /* 2758 * Deduplicate BTF types and strings. 2759 * 2760 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2761 * section with all BTF type descriptors and string data. It overwrites that 2762 * memory in-place with deduplicated types and strings without any loss of 2763 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2764 * is provided, all the strings referenced from .BTF.ext section are honored 2765 * and updated to point to the right offsets after deduplication. 2766 * 2767 * If function returns with error, type/string data might be garbled and should 2768 * be discarded. 2769 * 2770 * More verbose and detailed description of both problem btf_dedup is solving, 2771 * as well as solution could be found at: 2772 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2773 * 2774 * Problem description and justification 2775 * ===================================== 2776 * 2777 * BTF type information is typically emitted either as a result of conversion 2778 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2779 * unit contains information about a subset of all the types that are used 2780 * in an application. These subsets are frequently overlapping and contain a lot 2781 * of duplicated information when later concatenated together into a single 2782 * binary. This algorithm ensures that each unique type is represented by single 2783 * BTF type descriptor, greatly reducing resulting size of BTF data. 2784 * 2785 * Compilation unit isolation and subsequent duplication of data is not the only 2786 * problem. The same type hierarchy (e.g., struct and all the type that struct 2787 * references) in different compilation units can be represented in BTF to 2788 * various degrees of completeness (or, rather, incompleteness) due to 2789 * struct/union forward declarations. 2790 * 2791 * Let's take a look at an example, that we'll use to better understand the 2792 * problem (and solution). Suppose we have two compilation units, each using 2793 * same `struct S`, but each of them having incomplete type information about 2794 * struct's fields: 2795 * 2796 * // CU #1: 2797 * struct S; 2798 * struct A { 2799 * int a; 2800 * struct A* self; 2801 * struct S* parent; 2802 * }; 2803 * struct B; 2804 * struct S { 2805 * struct A* a_ptr; 2806 * struct B* b_ptr; 2807 * }; 2808 * 2809 * // CU #2: 2810 * struct S; 2811 * struct A; 2812 * struct B { 2813 * int b; 2814 * struct B* self; 2815 * struct S* parent; 2816 * }; 2817 * struct S { 2818 * struct A* a_ptr; 2819 * struct B* b_ptr; 2820 * }; 2821 * 2822 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2823 * more), but will know the complete type information about `struct A`. While 2824 * for CU #2, it will know full type information about `struct B`, but will 2825 * only know about forward declaration of `struct A` (in BTF terms, it will 2826 * have `BTF_KIND_FWD` type descriptor with name `B`). 2827 * 2828 * This compilation unit isolation means that it's possible that there is no 2829 * single CU with complete type information describing structs `S`, `A`, and 2830 * `B`. Also, we might get tons of duplicated and redundant type information. 2831 * 2832 * Additional complication we need to keep in mind comes from the fact that 2833 * types, in general, can form graphs containing cycles, not just DAGs. 2834 * 2835 * While algorithm does deduplication, it also merges and resolves type 2836 * information (unless disabled throught `struct btf_opts`), whenever possible. 2837 * E.g., in the example above with two compilation units having partial type 2838 * information for structs `A` and `B`, the output of algorithm will emit 2839 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2840 * (as well as type information for `int` and pointers), as if they were defined 2841 * in a single compilation unit as: 2842 * 2843 * struct A { 2844 * int a; 2845 * struct A* self; 2846 * struct S* parent; 2847 * }; 2848 * struct B { 2849 * int b; 2850 * struct B* self; 2851 * struct S* parent; 2852 * }; 2853 * struct S { 2854 * struct A* a_ptr; 2855 * struct B* b_ptr; 2856 * }; 2857 * 2858 * Algorithm summary 2859 * ================= 2860 * 2861 * Algorithm completes its work in 6 separate passes: 2862 * 2863 * 1. Strings deduplication. 2864 * 2. Primitive types deduplication (int, enum, fwd). 2865 * 3. Struct/union types deduplication. 2866 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2867 * protos, and const/volatile/restrict modifiers). 2868 * 5. Types compaction. 2869 * 6. Types remapping. 2870 * 2871 * Algorithm determines canonical type descriptor, which is a single 2872 * representative type for each truly unique type. This canonical type is the 2873 * one that will go into final deduplicated BTF type information. For 2874 * struct/unions, it is also the type that algorithm will merge additional type 2875 * information into (while resolving FWDs), as it discovers it from data in 2876 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2877 * that type is canonical, or to some other type, if that type is equivalent 2878 * and was chosen as canonical representative. This mapping is stored in 2879 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2880 * FWD type got resolved to. 2881 * 2882 * To facilitate fast discovery of canonical types, we also maintain canonical 2883 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2884 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2885 * that match that signature. With sufficiently good choice of type signature 2886 * hashing function, we can limit number of canonical types for each unique type 2887 * signature to a very small number, allowing to find canonical type for any 2888 * duplicated type very quickly. 2889 * 2890 * Struct/union deduplication is the most critical part and algorithm for 2891 * deduplicating structs/unions is described in greater details in comments for 2892 * `btf_dedup_is_equiv` function. 2893 */ 2894 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2895 const struct btf_dedup_opts *opts) 2896 { 2897 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2898 int err; 2899 2900 if (IS_ERR(d)) { 2901 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2902 return -EINVAL; 2903 } 2904 2905 if (btf_ensure_modifiable(btf)) 2906 return -ENOMEM; 2907 2908 err = btf_dedup_prep(d); 2909 if (err) { 2910 pr_debug("btf_dedup_prep failed:%d\n", err); 2911 goto done; 2912 } 2913 err = btf_dedup_strings(d); 2914 if (err < 0) { 2915 pr_debug("btf_dedup_strings failed:%d\n", err); 2916 goto done; 2917 } 2918 err = btf_dedup_prim_types(d); 2919 if (err < 0) { 2920 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2921 goto done; 2922 } 2923 err = btf_dedup_struct_types(d); 2924 if (err < 0) { 2925 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2926 goto done; 2927 } 2928 err = btf_dedup_ref_types(d); 2929 if (err < 0) { 2930 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2931 goto done; 2932 } 2933 err = btf_dedup_compact_types(d); 2934 if (err < 0) { 2935 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2936 goto done; 2937 } 2938 err = btf_dedup_remap_types(d); 2939 if (err < 0) { 2940 pr_debug("btf_dedup_remap_types failed:%d\n", err); 2941 goto done; 2942 } 2943 2944 done: 2945 btf_dedup_free(d); 2946 return err; 2947 } 2948 2949 #define BTF_UNPROCESSED_ID ((__u32)-1) 2950 #define BTF_IN_PROGRESS_ID ((__u32)-2) 2951 2952 struct btf_dedup { 2953 /* .BTF section to be deduped in-place */ 2954 struct btf *btf; 2955 /* 2956 * Optional .BTF.ext section. When provided, any strings referenced 2957 * from it will be taken into account when deduping strings 2958 */ 2959 struct btf_ext *btf_ext; 2960 /* 2961 * This is a map from any type's signature hash to a list of possible 2962 * canonical representative type candidates. Hash collisions are 2963 * ignored, so even types of various kinds can share same list of 2964 * candidates, which is fine because we rely on subsequent 2965 * btf_xxx_equal() checks to authoritatively verify type equality. 2966 */ 2967 struct hashmap *dedup_table; 2968 /* Canonical types map */ 2969 __u32 *map; 2970 /* Hypothetical mapping, used during type graph equivalence checks */ 2971 __u32 *hypot_map; 2972 __u32 *hypot_list; 2973 size_t hypot_cnt; 2974 size_t hypot_cap; 2975 /* Whether hypothetical mapping, if successful, would need to adjust 2976 * already canonicalized types (due to a new forward declaration to 2977 * concrete type resolution). In such case, during split BTF dedup 2978 * candidate type would still be considered as different, because base 2979 * BTF is considered to be immutable. 2980 */ 2981 bool hypot_adjust_canon; 2982 /* Various option modifying behavior of algorithm */ 2983 struct btf_dedup_opts opts; 2984 /* temporary strings deduplication state */ 2985 struct strset *strs_set; 2986 }; 2987 2988 static long hash_combine(long h, long value) 2989 { 2990 return h * 31 + value; 2991 } 2992 2993 #define for_each_dedup_cand(d, node, hash) \ 2994 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 2995 2996 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 2997 { 2998 return hashmap__append(d->dedup_table, 2999 (void *)hash, (void *)(long)type_id); 3000 } 3001 3002 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3003 __u32 from_id, __u32 to_id) 3004 { 3005 if (d->hypot_cnt == d->hypot_cap) { 3006 __u32 *new_list; 3007 3008 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3009 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3010 if (!new_list) 3011 return -ENOMEM; 3012 d->hypot_list = new_list; 3013 } 3014 d->hypot_list[d->hypot_cnt++] = from_id; 3015 d->hypot_map[from_id] = to_id; 3016 return 0; 3017 } 3018 3019 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3020 { 3021 int i; 3022 3023 for (i = 0; i < d->hypot_cnt; i++) 3024 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3025 d->hypot_cnt = 0; 3026 d->hypot_adjust_canon = false; 3027 } 3028 3029 static void btf_dedup_free(struct btf_dedup *d) 3030 { 3031 hashmap__free(d->dedup_table); 3032 d->dedup_table = NULL; 3033 3034 free(d->map); 3035 d->map = NULL; 3036 3037 free(d->hypot_map); 3038 d->hypot_map = NULL; 3039 3040 free(d->hypot_list); 3041 d->hypot_list = NULL; 3042 3043 free(d); 3044 } 3045 3046 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3047 { 3048 return (size_t)key; 3049 } 3050 3051 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3052 { 3053 return 0; 3054 } 3055 3056 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3057 { 3058 return k1 == k2; 3059 } 3060 3061 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3062 const struct btf_dedup_opts *opts) 3063 { 3064 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3065 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3066 int i, err = 0, type_cnt; 3067 3068 if (!d) 3069 return ERR_PTR(-ENOMEM); 3070 3071 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3072 /* dedup_table_size is now used only to force collisions in tests */ 3073 if (opts && opts->dedup_table_size == 1) 3074 hash_fn = btf_dedup_collision_hash_fn; 3075 3076 d->btf = btf; 3077 d->btf_ext = btf_ext; 3078 3079 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3080 if (IS_ERR(d->dedup_table)) { 3081 err = PTR_ERR(d->dedup_table); 3082 d->dedup_table = NULL; 3083 goto done; 3084 } 3085 3086 type_cnt = btf__get_nr_types(btf) + 1; 3087 d->map = malloc(sizeof(__u32) * type_cnt); 3088 if (!d->map) { 3089 err = -ENOMEM; 3090 goto done; 3091 } 3092 /* special BTF "void" type is made canonical immediately */ 3093 d->map[0] = 0; 3094 for (i = 1; i < type_cnt; i++) { 3095 struct btf_type *t = btf_type_by_id(d->btf, i); 3096 3097 /* VAR and DATASEC are never deduped and are self-canonical */ 3098 if (btf_is_var(t) || btf_is_datasec(t)) 3099 d->map[i] = i; 3100 else 3101 d->map[i] = BTF_UNPROCESSED_ID; 3102 } 3103 3104 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3105 if (!d->hypot_map) { 3106 err = -ENOMEM; 3107 goto done; 3108 } 3109 for (i = 0; i < type_cnt; i++) 3110 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3111 3112 done: 3113 if (err) { 3114 btf_dedup_free(d); 3115 return ERR_PTR(err); 3116 } 3117 3118 return d; 3119 } 3120 3121 /* 3122 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3123 * string and pass pointer to it to a provided callback `fn`. 3124 */ 3125 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3126 { 3127 int i, r; 3128 3129 for (i = 0; i < d->btf->nr_types; i++) { 3130 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3131 3132 r = btf_type_visit_str_offs(t, fn, ctx); 3133 if (r) 3134 return r; 3135 } 3136 3137 if (!d->btf_ext) 3138 return 0; 3139 3140 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3141 if (r) 3142 return r; 3143 3144 return 0; 3145 } 3146 3147 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3148 { 3149 struct btf_dedup *d = ctx; 3150 __u32 str_off = *str_off_ptr; 3151 const char *s; 3152 int off, err; 3153 3154 /* don't touch empty string or string in main BTF */ 3155 if (str_off == 0 || str_off < d->btf->start_str_off) 3156 return 0; 3157 3158 s = btf__str_by_offset(d->btf, str_off); 3159 if (d->btf->base_btf) { 3160 err = btf__find_str(d->btf->base_btf, s); 3161 if (err >= 0) { 3162 *str_off_ptr = err; 3163 return 0; 3164 } 3165 if (err != -ENOENT) 3166 return err; 3167 } 3168 3169 off = strset__add_str(d->strs_set, s); 3170 if (off < 0) 3171 return off; 3172 3173 *str_off_ptr = d->btf->start_str_off + off; 3174 return 0; 3175 } 3176 3177 /* 3178 * Dedup string and filter out those that are not referenced from either .BTF 3179 * or .BTF.ext (if provided) sections. 3180 * 3181 * This is done by building index of all strings in BTF's string section, 3182 * then iterating over all entities that can reference strings (e.g., type 3183 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3184 * strings as used. After that all used strings are deduped and compacted into 3185 * sequential blob of memory and new offsets are calculated. Then all the string 3186 * references are iterated again and rewritten using new offsets. 3187 */ 3188 static int btf_dedup_strings(struct btf_dedup *d) 3189 { 3190 int err; 3191 3192 if (d->btf->strs_deduped) 3193 return 0; 3194 3195 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3196 if (IS_ERR(d->strs_set)) { 3197 err = PTR_ERR(d->strs_set); 3198 goto err_out; 3199 } 3200 3201 if (!d->btf->base_btf) { 3202 /* insert empty string; we won't be looking it up during strings 3203 * dedup, but it's good to have it for generic BTF string lookups 3204 */ 3205 err = strset__add_str(d->strs_set, ""); 3206 if (err < 0) 3207 goto err_out; 3208 } 3209 3210 /* remap string offsets */ 3211 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3212 if (err) 3213 goto err_out; 3214 3215 /* replace BTF string data and hash with deduped ones */ 3216 strset__free(d->btf->strs_set); 3217 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3218 d->btf->strs_set = d->strs_set; 3219 d->strs_set = NULL; 3220 d->btf->strs_deduped = true; 3221 return 0; 3222 3223 err_out: 3224 strset__free(d->strs_set); 3225 d->strs_set = NULL; 3226 3227 return err; 3228 } 3229 3230 static long btf_hash_common(struct btf_type *t) 3231 { 3232 long h; 3233 3234 h = hash_combine(0, t->name_off); 3235 h = hash_combine(h, t->info); 3236 h = hash_combine(h, t->size); 3237 return h; 3238 } 3239 3240 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3241 { 3242 return t1->name_off == t2->name_off && 3243 t1->info == t2->info && 3244 t1->size == t2->size; 3245 } 3246 3247 /* Calculate type signature hash of INT. */ 3248 static long btf_hash_int(struct btf_type *t) 3249 { 3250 __u32 info = *(__u32 *)(t + 1); 3251 long h; 3252 3253 h = btf_hash_common(t); 3254 h = hash_combine(h, info); 3255 return h; 3256 } 3257 3258 /* Check structural equality of two INTs. */ 3259 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 3260 { 3261 __u32 info1, info2; 3262 3263 if (!btf_equal_common(t1, t2)) 3264 return false; 3265 info1 = *(__u32 *)(t1 + 1); 3266 info2 = *(__u32 *)(t2 + 1); 3267 return info1 == info2; 3268 } 3269 3270 /* Calculate type signature hash of ENUM. */ 3271 static long btf_hash_enum(struct btf_type *t) 3272 { 3273 long h; 3274 3275 /* don't hash vlen and enum members to support enum fwd resolving */ 3276 h = hash_combine(0, t->name_off); 3277 h = hash_combine(h, t->info & ~0xffff); 3278 h = hash_combine(h, t->size); 3279 return h; 3280 } 3281 3282 /* Check structural equality of two ENUMs. */ 3283 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3284 { 3285 const struct btf_enum *m1, *m2; 3286 __u16 vlen; 3287 int i; 3288 3289 if (!btf_equal_common(t1, t2)) 3290 return false; 3291 3292 vlen = btf_vlen(t1); 3293 m1 = btf_enum(t1); 3294 m2 = btf_enum(t2); 3295 for (i = 0; i < vlen; i++) { 3296 if (m1->name_off != m2->name_off || m1->val != m2->val) 3297 return false; 3298 m1++; 3299 m2++; 3300 } 3301 return true; 3302 } 3303 3304 static inline bool btf_is_enum_fwd(struct btf_type *t) 3305 { 3306 return btf_is_enum(t) && btf_vlen(t) == 0; 3307 } 3308 3309 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3310 { 3311 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3312 return btf_equal_enum(t1, t2); 3313 /* ignore vlen when comparing */ 3314 return t1->name_off == t2->name_off && 3315 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3316 t1->size == t2->size; 3317 } 3318 3319 /* 3320 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3321 * as referenced type IDs equivalence is established separately during type 3322 * graph equivalence check algorithm. 3323 */ 3324 static long btf_hash_struct(struct btf_type *t) 3325 { 3326 const struct btf_member *member = btf_members(t); 3327 __u32 vlen = btf_vlen(t); 3328 long h = btf_hash_common(t); 3329 int i; 3330 3331 for (i = 0; i < vlen; i++) { 3332 h = hash_combine(h, member->name_off); 3333 h = hash_combine(h, member->offset); 3334 /* no hashing of referenced type ID, it can be unresolved yet */ 3335 member++; 3336 } 3337 return h; 3338 } 3339 3340 /* 3341 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3342 * IDs. This check is performed during type graph equivalence check and 3343 * referenced types equivalence is checked separately. 3344 */ 3345 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3346 { 3347 const struct btf_member *m1, *m2; 3348 __u16 vlen; 3349 int i; 3350 3351 if (!btf_equal_common(t1, t2)) 3352 return false; 3353 3354 vlen = btf_vlen(t1); 3355 m1 = btf_members(t1); 3356 m2 = btf_members(t2); 3357 for (i = 0; i < vlen; i++) { 3358 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3359 return false; 3360 m1++; 3361 m2++; 3362 } 3363 return true; 3364 } 3365 3366 /* 3367 * Calculate type signature hash of ARRAY, including referenced type IDs, 3368 * under assumption that they were already resolved to canonical type IDs and 3369 * are not going to change. 3370 */ 3371 static long btf_hash_array(struct btf_type *t) 3372 { 3373 const struct btf_array *info = btf_array(t); 3374 long h = btf_hash_common(t); 3375 3376 h = hash_combine(h, info->type); 3377 h = hash_combine(h, info->index_type); 3378 h = hash_combine(h, info->nelems); 3379 return h; 3380 } 3381 3382 /* 3383 * Check exact equality of two ARRAYs, taking into account referenced 3384 * type IDs, under assumption that they were already resolved to canonical 3385 * type IDs and are not going to change. 3386 * This function is called during reference types deduplication to compare 3387 * ARRAY to potential canonical representative. 3388 */ 3389 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3390 { 3391 const struct btf_array *info1, *info2; 3392 3393 if (!btf_equal_common(t1, t2)) 3394 return false; 3395 3396 info1 = btf_array(t1); 3397 info2 = btf_array(t2); 3398 return info1->type == info2->type && 3399 info1->index_type == info2->index_type && 3400 info1->nelems == info2->nelems; 3401 } 3402 3403 /* 3404 * Check structural compatibility of two ARRAYs, ignoring referenced type 3405 * IDs. This check is performed during type graph equivalence check and 3406 * referenced types equivalence is checked separately. 3407 */ 3408 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3409 { 3410 if (!btf_equal_common(t1, t2)) 3411 return false; 3412 3413 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3414 } 3415 3416 /* 3417 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3418 * under assumption that they were already resolved to canonical type IDs and 3419 * are not going to change. 3420 */ 3421 static long btf_hash_fnproto(struct btf_type *t) 3422 { 3423 const struct btf_param *member = btf_params(t); 3424 __u16 vlen = btf_vlen(t); 3425 long h = btf_hash_common(t); 3426 int i; 3427 3428 for (i = 0; i < vlen; i++) { 3429 h = hash_combine(h, member->name_off); 3430 h = hash_combine(h, member->type); 3431 member++; 3432 } 3433 return h; 3434 } 3435 3436 /* 3437 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3438 * type IDs, under assumption that they were already resolved to canonical 3439 * type IDs and are not going to change. 3440 * This function is called during reference types deduplication to compare 3441 * FUNC_PROTO to potential canonical representative. 3442 */ 3443 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3444 { 3445 const struct btf_param *m1, *m2; 3446 __u16 vlen; 3447 int i; 3448 3449 if (!btf_equal_common(t1, t2)) 3450 return false; 3451 3452 vlen = btf_vlen(t1); 3453 m1 = btf_params(t1); 3454 m2 = btf_params(t2); 3455 for (i = 0; i < vlen; i++) { 3456 if (m1->name_off != m2->name_off || m1->type != m2->type) 3457 return false; 3458 m1++; 3459 m2++; 3460 } 3461 return true; 3462 } 3463 3464 /* 3465 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3466 * IDs. This check is performed during type graph equivalence check and 3467 * referenced types equivalence is checked separately. 3468 */ 3469 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3470 { 3471 const struct btf_param *m1, *m2; 3472 __u16 vlen; 3473 int i; 3474 3475 /* skip return type ID */ 3476 if (t1->name_off != t2->name_off || t1->info != t2->info) 3477 return false; 3478 3479 vlen = btf_vlen(t1); 3480 m1 = btf_params(t1); 3481 m2 = btf_params(t2); 3482 for (i = 0; i < vlen; i++) { 3483 if (m1->name_off != m2->name_off) 3484 return false; 3485 m1++; 3486 m2++; 3487 } 3488 return true; 3489 } 3490 3491 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3492 * types and initializing the rest of the state (canonical type mapping) for 3493 * the fixed base BTF part. 3494 */ 3495 static int btf_dedup_prep(struct btf_dedup *d) 3496 { 3497 struct btf_type *t; 3498 int type_id; 3499 long h; 3500 3501 if (!d->btf->base_btf) 3502 return 0; 3503 3504 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3505 t = btf_type_by_id(d->btf, type_id); 3506 3507 /* all base BTF types are self-canonical by definition */ 3508 d->map[type_id] = type_id; 3509 3510 switch (btf_kind(t)) { 3511 case BTF_KIND_VAR: 3512 case BTF_KIND_DATASEC: 3513 /* VAR and DATASEC are never hash/deduplicated */ 3514 continue; 3515 case BTF_KIND_CONST: 3516 case BTF_KIND_VOLATILE: 3517 case BTF_KIND_RESTRICT: 3518 case BTF_KIND_PTR: 3519 case BTF_KIND_FWD: 3520 case BTF_KIND_TYPEDEF: 3521 case BTF_KIND_FUNC: 3522 case BTF_KIND_FLOAT: 3523 h = btf_hash_common(t); 3524 break; 3525 case BTF_KIND_INT: 3526 h = btf_hash_int(t); 3527 break; 3528 case BTF_KIND_ENUM: 3529 h = btf_hash_enum(t); 3530 break; 3531 case BTF_KIND_STRUCT: 3532 case BTF_KIND_UNION: 3533 h = btf_hash_struct(t); 3534 break; 3535 case BTF_KIND_ARRAY: 3536 h = btf_hash_array(t); 3537 break; 3538 case BTF_KIND_FUNC_PROTO: 3539 h = btf_hash_fnproto(t); 3540 break; 3541 default: 3542 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3543 return -EINVAL; 3544 } 3545 if (btf_dedup_table_add(d, h, type_id)) 3546 return -ENOMEM; 3547 } 3548 3549 return 0; 3550 } 3551 3552 /* 3553 * Deduplicate primitive types, that can't reference other types, by calculating 3554 * their type signature hash and comparing them with any possible canonical 3555 * candidate. If no canonical candidate matches, type itself is marked as 3556 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3557 */ 3558 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3559 { 3560 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3561 struct hashmap_entry *hash_entry; 3562 struct btf_type *cand; 3563 /* if we don't find equivalent type, then we are canonical */ 3564 __u32 new_id = type_id; 3565 __u32 cand_id; 3566 long h; 3567 3568 switch (btf_kind(t)) { 3569 case BTF_KIND_CONST: 3570 case BTF_KIND_VOLATILE: 3571 case BTF_KIND_RESTRICT: 3572 case BTF_KIND_PTR: 3573 case BTF_KIND_TYPEDEF: 3574 case BTF_KIND_ARRAY: 3575 case BTF_KIND_STRUCT: 3576 case BTF_KIND_UNION: 3577 case BTF_KIND_FUNC: 3578 case BTF_KIND_FUNC_PROTO: 3579 case BTF_KIND_VAR: 3580 case BTF_KIND_DATASEC: 3581 return 0; 3582 3583 case BTF_KIND_INT: 3584 h = btf_hash_int(t); 3585 for_each_dedup_cand(d, hash_entry, h) { 3586 cand_id = (__u32)(long)hash_entry->value; 3587 cand = btf_type_by_id(d->btf, cand_id); 3588 if (btf_equal_int(t, cand)) { 3589 new_id = cand_id; 3590 break; 3591 } 3592 } 3593 break; 3594 3595 case BTF_KIND_ENUM: 3596 h = btf_hash_enum(t); 3597 for_each_dedup_cand(d, hash_entry, h) { 3598 cand_id = (__u32)(long)hash_entry->value; 3599 cand = btf_type_by_id(d->btf, cand_id); 3600 if (btf_equal_enum(t, cand)) { 3601 new_id = cand_id; 3602 break; 3603 } 3604 if (d->opts.dont_resolve_fwds) 3605 continue; 3606 if (btf_compat_enum(t, cand)) { 3607 if (btf_is_enum_fwd(t)) { 3608 /* resolve fwd to full enum */ 3609 new_id = cand_id; 3610 break; 3611 } 3612 /* resolve canonical enum fwd to full enum */ 3613 d->map[cand_id] = type_id; 3614 } 3615 } 3616 break; 3617 3618 case BTF_KIND_FWD: 3619 case BTF_KIND_FLOAT: 3620 h = btf_hash_common(t); 3621 for_each_dedup_cand(d, hash_entry, h) { 3622 cand_id = (__u32)(long)hash_entry->value; 3623 cand = btf_type_by_id(d->btf, cand_id); 3624 if (btf_equal_common(t, cand)) { 3625 new_id = cand_id; 3626 break; 3627 } 3628 } 3629 break; 3630 3631 default: 3632 return -EINVAL; 3633 } 3634 3635 d->map[type_id] = new_id; 3636 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3637 return -ENOMEM; 3638 3639 return 0; 3640 } 3641 3642 static int btf_dedup_prim_types(struct btf_dedup *d) 3643 { 3644 int i, err; 3645 3646 for (i = 0; i < d->btf->nr_types; i++) { 3647 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3648 if (err) 3649 return err; 3650 } 3651 return 0; 3652 } 3653 3654 /* 3655 * Check whether type is already mapped into canonical one (could be to itself). 3656 */ 3657 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3658 { 3659 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3660 } 3661 3662 /* 3663 * Resolve type ID into its canonical type ID, if any; otherwise return original 3664 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3665 * STRUCT/UNION link and resolve it into canonical type ID as well. 3666 */ 3667 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3668 { 3669 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3670 type_id = d->map[type_id]; 3671 return type_id; 3672 } 3673 3674 /* 3675 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3676 * type ID. 3677 */ 3678 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3679 { 3680 __u32 orig_type_id = type_id; 3681 3682 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3683 return type_id; 3684 3685 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3686 type_id = d->map[type_id]; 3687 3688 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3689 return type_id; 3690 3691 return orig_type_id; 3692 } 3693 3694 3695 static inline __u16 btf_fwd_kind(struct btf_type *t) 3696 { 3697 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3698 } 3699 3700 /* Check if given two types are identical ARRAY definitions */ 3701 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3702 { 3703 struct btf_type *t1, *t2; 3704 3705 t1 = btf_type_by_id(d->btf, id1); 3706 t2 = btf_type_by_id(d->btf, id2); 3707 if (!btf_is_array(t1) || !btf_is_array(t2)) 3708 return 0; 3709 3710 return btf_equal_array(t1, t2); 3711 } 3712 3713 /* 3714 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3715 * call it "candidate graph" in this description for brevity) to a type graph 3716 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3717 * here, though keep in mind that not all types in canonical graph are 3718 * necessarily canonical representatives themselves, some of them might be 3719 * duplicates or its uniqueness might not have been established yet). 3720 * Returns: 3721 * - >0, if type graphs are equivalent; 3722 * - 0, if not equivalent; 3723 * - <0, on error. 3724 * 3725 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3726 * equivalence of BTF types at each step. If at any point BTF types in candidate 3727 * and canonical graphs are not compatible structurally, whole graphs are 3728 * incompatible. If types are structurally equivalent (i.e., all information 3729 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3730 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3731 * If a type references other types, then those referenced types are checked 3732 * for equivalence recursively. 3733 * 3734 * During DFS traversal, if we find that for current `canon_id` type we 3735 * already have some mapping in hypothetical map, we check for two possible 3736 * situations: 3737 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3738 * happen when type graphs have cycles. In this case we assume those two 3739 * types are equivalent. 3740 * - `canon_id` is mapped to different type. This is contradiction in our 3741 * hypothetical mapping, because same graph in canonical graph corresponds 3742 * to two different types in candidate graph, which for equivalent type 3743 * graphs shouldn't happen. This condition terminates equivalence check 3744 * with negative result. 3745 * 3746 * If type graphs traversal exhausts types to check and find no contradiction, 3747 * then type graphs are equivalent. 3748 * 3749 * When checking types for equivalence, there is one special case: FWD types. 3750 * If FWD type resolution is allowed and one of the types (either from canonical 3751 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3752 * flag) and their names match, hypothetical mapping is updated to point from 3753 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3754 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3755 * 3756 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3757 * if there are two exactly named (or anonymous) structs/unions that are 3758 * compatible structurally, one of which has FWD field, while other is concrete 3759 * STRUCT/UNION, but according to C sources they are different structs/unions 3760 * that are referencing different types with the same name. This is extremely 3761 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3762 * this logic is causing problems. 3763 * 3764 * Doing FWD resolution means that both candidate and/or canonical graphs can 3765 * consists of portions of the graph that come from multiple compilation units. 3766 * This is due to the fact that types within single compilation unit are always 3767 * deduplicated and FWDs are already resolved, if referenced struct/union 3768 * definiton is available. So, if we had unresolved FWD and found corresponding 3769 * STRUCT/UNION, they will be from different compilation units. This 3770 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3771 * type graph will likely have at least two different BTF types that describe 3772 * same type (e.g., most probably there will be two different BTF types for the 3773 * same 'int' primitive type) and could even have "overlapping" parts of type 3774 * graph that describe same subset of types. 3775 * 3776 * This in turn means that our assumption that each type in canonical graph 3777 * must correspond to exactly one type in candidate graph might not hold 3778 * anymore and will make it harder to detect contradictions using hypothetical 3779 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3780 * resolution only in canonical graph. FWDs in candidate graphs are never 3781 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3782 * that can occur: 3783 * - Both types in canonical and candidate graphs are FWDs. If they are 3784 * structurally equivalent, then they can either be both resolved to the 3785 * same STRUCT/UNION or not resolved at all. In both cases they are 3786 * equivalent and there is no need to resolve FWD on candidate side. 3787 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3788 * so nothing to resolve as well, algorithm will check equivalence anyway. 3789 * - Type in canonical graph is FWD, while type in candidate is concrete 3790 * STRUCT/UNION. In this case candidate graph comes from single compilation 3791 * unit, so there is exactly one BTF type for each unique C type. After 3792 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3793 * in canonical graph mapping to single BTF type in candidate graph, but 3794 * because hypothetical mapping maps from canonical to candidate types, it's 3795 * alright, and we still maintain the property of having single `canon_id` 3796 * mapping to single `cand_id` (there could be two different `canon_id` 3797 * mapped to the same `cand_id`, but it's not contradictory). 3798 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3799 * graph is FWD. In this case we are just going to check compatibility of 3800 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3801 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3802 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3803 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3804 * canonical graph. 3805 */ 3806 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3807 __u32 canon_id) 3808 { 3809 struct btf_type *cand_type; 3810 struct btf_type *canon_type; 3811 __u32 hypot_type_id; 3812 __u16 cand_kind; 3813 __u16 canon_kind; 3814 int i, eq; 3815 3816 /* if both resolve to the same canonical, they must be equivalent */ 3817 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3818 return 1; 3819 3820 canon_id = resolve_fwd_id(d, canon_id); 3821 3822 hypot_type_id = d->hypot_map[canon_id]; 3823 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3824 /* In some cases compiler will generate different DWARF types 3825 * for *identical* array type definitions and use them for 3826 * different fields within the *same* struct. This breaks type 3827 * equivalence check, which makes an assumption that candidate 3828 * types sub-graph has a consistent and deduped-by-compiler 3829 * types within a single CU. So work around that by explicitly 3830 * allowing identical array types here. 3831 */ 3832 return hypot_type_id == cand_id || 3833 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3834 } 3835 3836 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3837 return -ENOMEM; 3838 3839 cand_type = btf_type_by_id(d->btf, cand_id); 3840 canon_type = btf_type_by_id(d->btf, canon_id); 3841 cand_kind = btf_kind(cand_type); 3842 canon_kind = btf_kind(canon_type); 3843 3844 if (cand_type->name_off != canon_type->name_off) 3845 return 0; 3846 3847 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3848 if (!d->opts.dont_resolve_fwds 3849 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3850 && cand_kind != canon_kind) { 3851 __u16 real_kind; 3852 __u16 fwd_kind; 3853 3854 if (cand_kind == BTF_KIND_FWD) { 3855 real_kind = canon_kind; 3856 fwd_kind = btf_fwd_kind(cand_type); 3857 } else { 3858 real_kind = cand_kind; 3859 fwd_kind = btf_fwd_kind(canon_type); 3860 /* we'd need to resolve base FWD to STRUCT/UNION */ 3861 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3862 d->hypot_adjust_canon = true; 3863 } 3864 return fwd_kind == real_kind; 3865 } 3866 3867 if (cand_kind != canon_kind) 3868 return 0; 3869 3870 switch (cand_kind) { 3871 case BTF_KIND_INT: 3872 return btf_equal_int(cand_type, canon_type); 3873 3874 case BTF_KIND_ENUM: 3875 if (d->opts.dont_resolve_fwds) 3876 return btf_equal_enum(cand_type, canon_type); 3877 else 3878 return btf_compat_enum(cand_type, canon_type); 3879 3880 case BTF_KIND_FWD: 3881 case BTF_KIND_FLOAT: 3882 return btf_equal_common(cand_type, canon_type); 3883 3884 case BTF_KIND_CONST: 3885 case BTF_KIND_VOLATILE: 3886 case BTF_KIND_RESTRICT: 3887 case BTF_KIND_PTR: 3888 case BTF_KIND_TYPEDEF: 3889 case BTF_KIND_FUNC: 3890 if (cand_type->info != canon_type->info) 3891 return 0; 3892 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3893 3894 case BTF_KIND_ARRAY: { 3895 const struct btf_array *cand_arr, *canon_arr; 3896 3897 if (!btf_compat_array(cand_type, canon_type)) 3898 return 0; 3899 cand_arr = btf_array(cand_type); 3900 canon_arr = btf_array(canon_type); 3901 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 3902 if (eq <= 0) 3903 return eq; 3904 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 3905 } 3906 3907 case BTF_KIND_STRUCT: 3908 case BTF_KIND_UNION: { 3909 const struct btf_member *cand_m, *canon_m; 3910 __u16 vlen; 3911 3912 if (!btf_shallow_equal_struct(cand_type, canon_type)) 3913 return 0; 3914 vlen = btf_vlen(cand_type); 3915 cand_m = btf_members(cand_type); 3916 canon_m = btf_members(canon_type); 3917 for (i = 0; i < vlen; i++) { 3918 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 3919 if (eq <= 0) 3920 return eq; 3921 cand_m++; 3922 canon_m++; 3923 } 3924 3925 return 1; 3926 } 3927 3928 case BTF_KIND_FUNC_PROTO: { 3929 const struct btf_param *cand_p, *canon_p; 3930 __u16 vlen; 3931 3932 if (!btf_compat_fnproto(cand_type, canon_type)) 3933 return 0; 3934 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3935 if (eq <= 0) 3936 return eq; 3937 vlen = btf_vlen(cand_type); 3938 cand_p = btf_params(cand_type); 3939 canon_p = btf_params(canon_type); 3940 for (i = 0; i < vlen; i++) { 3941 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 3942 if (eq <= 0) 3943 return eq; 3944 cand_p++; 3945 canon_p++; 3946 } 3947 return 1; 3948 } 3949 3950 default: 3951 return -EINVAL; 3952 } 3953 return 0; 3954 } 3955 3956 /* 3957 * Use hypothetical mapping, produced by successful type graph equivalence 3958 * check, to augment existing struct/union canonical mapping, where possible. 3959 * 3960 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 3961 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 3962 * it doesn't matter if FWD type was part of canonical graph or candidate one, 3963 * we are recording the mapping anyway. As opposed to carefulness required 3964 * for struct/union correspondence mapping (described below), for FWD resolution 3965 * it's not important, as by the time that FWD type (reference type) will be 3966 * deduplicated all structs/unions will be deduped already anyway. 3967 * 3968 * Recording STRUCT/UNION mapping is purely a performance optimization and is 3969 * not required for correctness. It needs to be done carefully to ensure that 3970 * struct/union from candidate's type graph is not mapped into corresponding 3971 * struct/union from canonical type graph that itself hasn't been resolved into 3972 * canonical representative. The only guarantee we have is that canonical 3973 * struct/union was determined as canonical and that won't change. But any 3974 * types referenced through that struct/union fields could have been not yet 3975 * resolved, so in case like that it's too early to establish any kind of 3976 * correspondence between structs/unions. 3977 * 3978 * No canonical correspondence is derived for primitive types (they are already 3979 * deduplicated completely already anyway) or reference types (they rely on 3980 * stability of struct/union canonical relationship for equivalence checks). 3981 */ 3982 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 3983 { 3984 __u32 canon_type_id, targ_type_id; 3985 __u16 t_kind, c_kind; 3986 __u32 t_id, c_id; 3987 int i; 3988 3989 for (i = 0; i < d->hypot_cnt; i++) { 3990 canon_type_id = d->hypot_list[i]; 3991 targ_type_id = d->hypot_map[canon_type_id]; 3992 t_id = resolve_type_id(d, targ_type_id); 3993 c_id = resolve_type_id(d, canon_type_id); 3994 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 3995 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 3996 /* 3997 * Resolve FWD into STRUCT/UNION. 3998 * It's ok to resolve FWD into STRUCT/UNION that's not yet 3999 * mapped to canonical representative (as opposed to 4000 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4001 * eventually that struct is going to be mapped and all resolved 4002 * FWDs will automatically resolve to correct canonical 4003 * representative. This will happen before ref type deduping, 4004 * which critically depends on stability of these mapping. This 4005 * stability is not a requirement for STRUCT/UNION equivalence 4006 * checks, though. 4007 */ 4008 4009 /* if it's the split BTF case, we still need to point base FWD 4010 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4011 * will be resolved against base FWD. If we don't point base 4012 * canonical FWD to the resolved STRUCT/UNION, then all the 4013 * FWDs in split BTF won't be correctly resolved to a proper 4014 * STRUCT/UNION. 4015 */ 4016 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4017 d->map[c_id] = t_id; 4018 4019 /* if graph equivalence determined that we'd need to adjust 4020 * base canonical types, then we need to only point base FWDs 4021 * to STRUCTs/UNIONs and do no more modifications. For all 4022 * other purposes the type graphs were not equivalent. 4023 */ 4024 if (d->hypot_adjust_canon) 4025 continue; 4026 4027 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4028 d->map[t_id] = c_id; 4029 4030 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4031 c_kind != BTF_KIND_FWD && 4032 is_type_mapped(d, c_id) && 4033 !is_type_mapped(d, t_id)) { 4034 /* 4035 * as a perf optimization, we can map struct/union 4036 * that's part of type graph we just verified for 4037 * equivalence. We can do that for struct/union that has 4038 * canonical representative only, though. 4039 */ 4040 d->map[t_id] = c_id; 4041 } 4042 } 4043 } 4044 4045 /* 4046 * Deduplicate struct/union types. 4047 * 4048 * For each struct/union type its type signature hash is calculated, taking 4049 * into account type's name, size, number, order and names of fields, but 4050 * ignoring type ID's referenced from fields, because they might not be deduped 4051 * completely until after reference types deduplication phase. This type hash 4052 * is used to iterate over all potential canonical types, sharing same hash. 4053 * For each canonical candidate we check whether type graphs that they form 4054 * (through referenced types in fields and so on) are equivalent using algorithm 4055 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4056 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4057 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4058 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4059 * potentially map other structs/unions to their canonical representatives, 4060 * if such relationship hasn't yet been established. This speeds up algorithm 4061 * by eliminating some of the duplicate work. 4062 * 4063 * If no matching canonical representative was found, struct/union is marked 4064 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4065 * for further look ups. 4066 */ 4067 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4068 { 4069 struct btf_type *cand_type, *t; 4070 struct hashmap_entry *hash_entry; 4071 /* if we don't find equivalent type, then we are canonical */ 4072 __u32 new_id = type_id; 4073 __u16 kind; 4074 long h; 4075 4076 /* already deduped or is in process of deduping (loop detected) */ 4077 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4078 return 0; 4079 4080 t = btf_type_by_id(d->btf, type_id); 4081 kind = btf_kind(t); 4082 4083 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4084 return 0; 4085 4086 h = btf_hash_struct(t); 4087 for_each_dedup_cand(d, hash_entry, h) { 4088 __u32 cand_id = (__u32)(long)hash_entry->value; 4089 int eq; 4090 4091 /* 4092 * Even though btf_dedup_is_equiv() checks for 4093 * btf_shallow_equal_struct() internally when checking two 4094 * structs (unions) for equivalence, we need to guard here 4095 * from picking matching FWD type as a dedup candidate. 4096 * This can happen due to hash collision. In such case just 4097 * relying on btf_dedup_is_equiv() would lead to potentially 4098 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4099 * FWD and compatible STRUCT/UNION are considered equivalent. 4100 */ 4101 cand_type = btf_type_by_id(d->btf, cand_id); 4102 if (!btf_shallow_equal_struct(t, cand_type)) 4103 continue; 4104 4105 btf_dedup_clear_hypot_map(d); 4106 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4107 if (eq < 0) 4108 return eq; 4109 if (!eq) 4110 continue; 4111 btf_dedup_merge_hypot_map(d); 4112 if (d->hypot_adjust_canon) /* not really equivalent */ 4113 continue; 4114 new_id = cand_id; 4115 break; 4116 } 4117 4118 d->map[type_id] = new_id; 4119 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4120 return -ENOMEM; 4121 4122 return 0; 4123 } 4124 4125 static int btf_dedup_struct_types(struct btf_dedup *d) 4126 { 4127 int i, err; 4128 4129 for (i = 0; i < d->btf->nr_types; i++) { 4130 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4131 if (err) 4132 return err; 4133 } 4134 return 0; 4135 } 4136 4137 /* 4138 * Deduplicate reference type. 4139 * 4140 * Once all primitive and struct/union types got deduplicated, we can easily 4141 * deduplicate all other (reference) BTF types. This is done in two steps: 4142 * 4143 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4144 * resolution can be done either immediately for primitive or struct/union types 4145 * (because they were deduped in previous two phases) or recursively for 4146 * reference types. Recursion will always terminate at either primitive or 4147 * struct/union type, at which point we can "unwind" chain of reference types 4148 * one by one. There is no danger of encountering cycles because in C type 4149 * system the only way to form type cycle is through struct/union, so any chain 4150 * of reference types, even those taking part in a type cycle, will inevitably 4151 * reach struct/union at some point. 4152 * 4153 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4154 * becomes "stable", in the sense that no further deduplication will cause 4155 * any changes to it. With that, it's now possible to calculate type's signature 4156 * hash (this time taking into account referenced type IDs) and loop over all 4157 * potential canonical representatives. If no match was found, current type 4158 * will become canonical representative of itself and will be added into 4159 * btf_dedup->dedup_table as another possible canonical representative. 4160 */ 4161 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4162 { 4163 struct hashmap_entry *hash_entry; 4164 __u32 new_id = type_id, cand_id; 4165 struct btf_type *t, *cand; 4166 /* if we don't find equivalent type, then we are representative type */ 4167 int ref_type_id; 4168 long h; 4169 4170 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4171 return -ELOOP; 4172 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4173 return resolve_type_id(d, type_id); 4174 4175 t = btf_type_by_id(d->btf, type_id); 4176 d->map[type_id] = BTF_IN_PROGRESS_ID; 4177 4178 switch (btf_kind(t)) { 4179 case BTF_KIND_CONST: 4180 case BTF_KIND_VOLATILE: 4181 case BTF_KIND_RESTRICT: 4182 case BTF_KIND_PTR: 4183 case BTF_KIND_TYPEDEF: 4184 case BTF_KIND_FUNC: 4185 ref_type_id = btf_dedup_ref_type(d, t->type); 4186 if (ref_type_id < 0) 4187 return ref_type_id; 4188 t->type = ref_type_id; 4189 4190 h = btf_hash_common(t); 4191 for_each_dedup_cand(d, hash_entry, h) { 4192 cand_id = (__u32)(long)hash_entry->value; 4193 cand = btf_type_by_id(d->btf, cand_id); 4194 if (btf_equal_common(t, cand)) { 4195 new_id = cand_id; 4196 break; 4197 } 4198 } 4199 break; 4200 4201 case BTF_KIND_ARRAY: { 4202 struct btf_array *info = btf_array(t); 4203 4204 ref_type_id = btf_dedup_ref_type(d, info->type); 4205 if (ref_type_id < 0) 4206 return ref_type_id; 4207 info->type = ref_type_id; 4208 4209 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4210 if (ref_type_id < 0) 4211 return ref_type_id; 4212 info->index_type = ref_type_id; 4213 4214 h = btf_hash_array(t); 4215 for_each_dedup_cand(d, hash_entry, h) { 4216 cand_id = (__u32)(long)hash_entry->value; 4217 cand = btf_type_by_id(d->btf, cand_id); 4218 if (btf_equal_array(t, cand)) { 4219 new_id = cand_id; 4220 break; 4221 } 4222 } 4223 break; 4224 } 4225 4226 case BTF_KIND_FUNC_PROTO: { 4227 struct btf_param *param; 4228 __u16 vlen; 4229 int i; 4230 4231 ref_type_id = btf_dedup_ref_type(d, t->type); 4232 if (ref_type_id < 0) 4233 return ref_type_id; 4234 t->type = ref_type_id; 4235 4236 vlen = btf_vlen(t); 4237 param = btf_params(t); 4238 for (i = 0; i < vlen; i++) { 4239 ref_type_id = btf_dedup_ref_type(d, param->type); 4240 if (ref_type_id < 0) 4241 return ref_type_id; 4242 param->type = ref_type_id; 4243 param++; 4244 } 4245 4246 h = btf_hash_fnproto(t); 4247 for_each_dedup_cand(d, hash_entry, h) { 4248 cand_id = (__u32)(long)hash_entry->value; 4249 cand = btf_type_by_id(d->btf, cand_id); 4250 if (btf_equal_fnproto(t, cand)) { 4251 new_id = cand_id; 4252 break; 4253 } 4254 } 4255 break; 4256 } 4257 4258 default: 4259 return -EINVAL; 4260 } 4261 4262 d->map[type_id] = new_id; 4263 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4264 return -ENOMEM; 4265 4266 return new_id; 4267 } 4268 4269 static int btf_dedup_ref_types(struct btf_dedup *d) 4270 { 4271 int i, err; 4272 4273 for (i = 0; i < d->btf->nr_types; i++) { 4274 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4275 if (err < 0) 4276 return err; 4277 } 4278 /* we won't need d->dedup_table anymore */ 4279 hashmap__free(d->dedup_table); 4280 d->dedup_table = NULL; 4281 return 0; 4282 } 4283 4284 /* 4285 * Compact types. 4286 * 4287 * After we established for each type its corresponding canonical representative 4288 * type, we now can eliminate types that are not canonical and leave only 4289 * canonical ones layed out sequentially in memory by copying them over 4290 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4291 * a map from original type ID to a new compacted type ID, which will be used 4292 * during next phase to "fix up" type IDs, referenced from struct/union and 4293 * reference types. 4294 */ 4295 static int btf_dedup_compact_types(struct btf_dedup *d) 4296 { 4297 __u32 *new_offs; 4298 __u32 next_type_id = d->btf->start_id; 4299 const struct btf_type *t; 4300 void *p; 4301 int i, id, len; 4302 4303 /* we are going to reuse hypot_map to store compaction remapping */ 4304 d->hypot_map[0] = 0; 4305 /* base BTF types are not renumbered */ 4306 for (id = 1; id < d->btf->start_id; id++) 4307 d->hypot_map[id] = id; 4308 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4309 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4310 4311 p = d->btf->types_data; 4312 4313 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4314 if (d->map[id] != id) 4315 continue; 4316 4317 t = btf__type_by_id(d->btf, id); 4318 len = btf_type_size(t); 4319 if (len < 0) 4320 return len; 4321 4322 memmove(p, t, len); 4323 d->hypot_map[id] = next_type_id; 4324 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4325 p += len; 4326 next_type_id++; 4327 } 4328 4329 /* shrink struct btf's internal types index and update btf_header */ 4330 d->btf->nr_types = next_type_id - d->btf->start_id; 4331 d->btf->type_offs_cap = d->btf->nr_types; 4332 d->btf->hdr->type_len = p - d->btf->types_data; 4333 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4334 sizeof(*new_offs)); 4335 if (d->btf->type_offs_cap && !new_offs) 4336 return -ENOMEM; 4337 d->btf->type_offs = new_offs; 4338 d->btf->hdr->str_off = d->btf->hdr->type_len; 4339 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4340 return 0; 4341 } 4342 4343 /* 4344 * Figure out final (deduplicated and compacted) type ID for provided original 4345 * `type_id` by first resolving it into corresponding canonical type ID and 4346 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4347 * which is populated during compaction phase. 4348 */ 4349 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4350 { 4351 struct btf_dedup *d = ctx; 4352 __u32 resolved_type_id, new_type_id; 4353 4354 resolved_type_id = resolve_type_id(d, *type_id); 4355 new_type_id = d->hypot_map[resolved_type_id]; 4356 if (new_type_id > BTF_MAX_NR_TYPES) 4357 return -EINVAL; 4358 4359 *type_id = new_type_id; 4360 return 0; 4361 } 4362 4363 /* 4364 * Remap referenced type IDs into deduped type IDs. 4365 * 4366 * After BTF types are deduplicated and compacted, their final type IDs may 4367 * differ from original ones. The map from original to a corresponding 4368 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4369 * compaction phase. During remapping phase we are rewriting all type IDs 4370 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4371 * their final deduped type IDs. 4372 */ 4373 static int btf_dedup_remap_types(struct btf_dedup *d) 4374 { 4375 int i, r; 4376 4377 for (i = 0; i < d->btf->nr_types; i++) { 4378 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4379 4380 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4381 if (r) 4382 return r; 4383 } 4384 4385 if (!d->btf_ext) 4386 return 0; 4387 4388 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4389 if (r) 4390 return r; 4391 4392 return 0; 4393 } 4394 4395 /* 4396 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4397 * data out of it to use for target BTF. 4398 */ 4399 struct btf *libbpf_find_kernel_btf(void) 4400 { 4401 struct { 4402 const char *path_fmt; 4403 bool raw_btf; 4404 } locations[] = { 4405 /* try canonical vmlinux BTF through sysfs first */ 4406 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4407 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4408 { "/boot/vmlinux-%1$s" }, 4409 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4410 { "/lib/modules/%1$s/build/vmlinux" }, 4411 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4412 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4413 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4414 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4415 }; 4416 char path[PATH_MAX + 1]; 4417 struct utsname buf; 4418 struct btf *btf; 4419 int i; 4420 4421 uname(&buf); 4422 4423 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4424 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4425 4426 if (access(path, R_OK)) 4427 continue; 4428 4429 if (locations[i].raw_btf) 4430 btf = btf__parse_raw(path); 4431 else 4432 btf = btf__parse_elf(path, NULL); 4433 4434 pr_debug("loading kernel BTF '%s': %ld\n", 4435 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 4436 if (IS_ERR(btf)) 4437 continue; 4438 4439 return btf; 4440 } 4441 4442 pr_warn("failed to find valid kernel BTF\n"); 4443 return ERR_PTR(-ESRCH); 4444 } 4445 4446 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4447 { 4448 int i, n, err; 4449 4450 switch (btf_kind(t)) { 4451 case BTF_KIND_INT: 4452 case BTF_KIND_FLOAT: 4453 case BTF_KIND_ENUM: 4454 return 0; 4455 4456 case BTF_KIND_FWD: 4457 case BTF_KIND_CONST: 4458 case BTF_KIND_VOLATILE: 4459 case BTF_KIND_RESTRICT: 4460 case BTF_KIND_PTR: 4461 case BTF_KIND_TYPEDEF: 4462 case BTF_KIND_FUNC: 4463 case BTF_KIND_VAR: 4464 return visit(&t->type, ctx); 4465 4466 case BTF_KIND_ARRAY: { 4467 struct btf_array *a = btf_array(t); 4468 4469 err = visit(&a->type, ctx); 4470 err = err ?: visit(&a->index_type, ctx); 4471 return err; 4472 } 4473 4474 case BTF_KIND_STRUCT: 4475 case BTF_KIND_UNION: { 4476 struct btf_member *m = btf_members(t); 4477 4478 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4479 err = visit(&m->type, ctx); 4480 if (err) 4481 return err; 4482 } 4483 return 0; 4484 } 4485 4486 case BTF_KIND_FUNC_PROTO: { 4487 struct btf_param *m = btf_params(t); 4488 4489 err = visit(&t->type, ctx); 4490 if (err) 4491 return err; 4492 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4493 err = visit(&m->type, ctx); 4494 if (err) 4495 return err; 4496 } 4497 return 0; 4498 } 4499 4500 case BTF_KIND_DATASEC: { 4501 struct btf_var_secinfo *m = btf_var_secinfos(t); 4502 4503 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4504 err = visit(&m->type, ctx); 4505 if (err) 4506 return err; 4507 } 4508 return 0; 4509 } 4510 4511 default: 4512 return -EINVAL; 4513 } 4514 } 4515 4516 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4517 { 4518 int i, n, err; 4519 4520 err = visit(&t->name_off, ctx); 4521 if (err) 4522 return err; 4523 4524 switch (btf_kind(t)) { 4525 case BTF_KIND_STRUCT: 4526 case BTF_KIND_UNION: { 4527 struct btf_member *m = btf_members(t); 4528 4529 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4530 err = visit(&m->name_off, ctx); 4531 if (err) 4532 return err; 4533 } 4534 break; 4535 } 4536 case BTF_KIND_ENUM: { 4537 struct btf_enum *m = btf_enum(t); 4538 4539 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4540 err = visit(&m->name_off, ctx); 4541 if (err) 4542 return err; 4543 } 4544 break; 4545 } 4546 case BTF_KIND_FUNC_PROTO: { 4547 struct btf_param *m = btf_params(t); 4548 4549 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4550 err = visit(&m->name_off, ctx); 4551 if (err) 4552 return err; 4553 } 4554 break; 4555 } 4556 default: 4557 break; 4558 } 4559 4560 return 0; 4561 } 4562 4563 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4564 { 4565 const struct btf_ext_info *seg; 4566 struct btf_ext_info_sec *sec; 4567 int i, err; 4568 4569 seg = &btf_ext->func_info; 4570 for_each_btf_ext_sec(seg, sec) { 4571 struct bpf_func_info_min *rec; 4572 4573 for_each_btf_ext_rec(seg, sec, i, rec) { 4574 err = visit(&rec->type_id, ctx); 4575 if (err < 0) 4576 return err; 4577 } 4578 } 4579 4580 seg = &btf_ext->core_relo_info; 4581 for_each_btf_ext_sec(seg, sec) { 4582 struct bpf_core_relo *rec; 4583 4584 for_each_btf_ext_rec(seg, sec, i, rec) { 4585 err = visit(&rec->type_id, ctx); 4586 if (err < 0) 4587 return err; 4588 } 4589 } 4590 4591 return 0; 4592 } 4593 4594 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4595 { 4596 const struct btf_ext_info *seg; 4597 struct btf_ext_info_sec *sec; 4598 int i, err; 4599 4600 seg = &btf_ext->func_info; 4601 for_each_btf_ext_sec(seg, sec) { 4602 err = visit(&sec->sec_name_off, ctx); 4603 if (err) 4604 return err; 4605 } 4606 4607 seg = &btf_ext->line_info; 4608 for_each_btf_ext_sec(seg, sec) { 4609 struct bpf_line_info_min *rec; 4610 4611 err = visit(&sec->sec_name_off, ctx); 4612 if (err) 4613 return err; 4614 4615 for_each_btf_ext_rec(seg, sec, i, rec) { 4616 err = visit(&rec->file_name_off, ctx); 4617 if (err) 4618 return err; 4619 err = visit(&rec->line_off, ctx); 4620 if (err) 4621 return err; 4622 } 4623 } 4624 4625 seg = &btf_ext->core_relo_info; 4626 for_each_btf_ext_sec(seg, sec) { 4627 struct bpf_core_relo *rec; 4628 4629 err = visit(&sec->sec_name_off, ctx); 4630 if (err) 4631 return err; 4632 4633 for_each_btf_ext_rec(seg, sec, i, rec) { 4634 err = visit(&rec->access_str_off, ctx); 4635 if (err) 4636 return err; 4637 } 4638 } 4639 4640 return 0; 4641 } 4642