1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 #include "strset.h" 25 26 #define BTF_MAX_NR_TYPES 0x7fffffffU 27 #define BTF_MAX_STR_OFFSET 0x7fffffffU 28 29 static struct btf_type btf_void; 30 31 struct btf { 32 /* raw BTF data in native endianness */ 33 void *raw_data; 34 /* raw BTF data in non-native endianness */ 35 void *raw_data_swapped; 36 __u32 raw_size; 37 /* whether target endianness differs from the native one */ 38 bool swapped_endian; 39 40 /* 41 * When BTF is loaded from an ELF or raw memory it is stored 42 * in a contiguous memory block. The hdr, type_data, and, strs_data 43 * point inside that memory region to their respective parts of BTF 44 * representation: 45 * 46 * +--------------------------------+ 47 * | Header | Types | Strings | 48 * +--------------------------------+ 49 * ^ ^ ^ 50 * | | | 51 * hdr | | 52 * types_data-+ | 53 * strs_data------------+ 54 * 55 * If BTF data is later modified, e.g., due to types added or 56 * removed, BTF deduplication performed, etc, this contiguous 57 * representation is broken up into three independently allocated 58 * memory regions to be able to modify them independently. 59 * raw_data is nulled out at that point, but can be later allocated 60 * and cached again if user calls btf__raw_data(), at which point 61 * raw_data will contain a contiguous copy of header, types, and 62 * strings: 63 * 64 * +----------+ +---------+ +-----------+ 65 * | Header | | Types | | Strings | 66 * +----------+ +---------+ +-----------+ 67 * ^ ^ ^ 68 * | | | 69 * hdr | | 70 * types_data----+ | 71 * strset__data(strs_set)-----+ 72 * 73 * +----------+---------+-----------+ 74 * | Header | Types | Strings | 75 * raw_data----->+----------+---------+-----------+ 76 */ 77 struct btf_header *hdr; 78 79 void *types_data; 80 size_t types_data_cap; /* used size stored in hdr->type_len */ 81 82 /* type ID to `struct btf_type *` lookup index 83 * type_offs[0] corresponds to the first non-VOID type: 84 * - for base BTF it's type [1]; 85 * - for split BTF it's the first non-base BTF type. 86 */ 87 __u32 *type_offs; 88 size_t type_offs_cap; 89 /* number of types in this BTF instance: 90 * - doesn't include special [0] void type; 91 * - for split BTF counts number of types added on top of base BTF. 92 */ 93 __u32 nr_types; 94 /* if not NULL, points to the base BTF on top of which the current 95 * split BTF is based 96 */ 97 struct btf *base_btf; 98 /* BTF type ID of the first type in this BTF instance: 99 * - for base BTF it's equal to 1; 100 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 101 */ 102 int start_id; 103 /* logical string offset of this BTF instance: 104 * - for base BTF it's equal to 0; 105 * - for split BTF it's equal to total size of base BTF's string section size. 106 */ 107 int start_str_off; 108 109 /* only one of strs_data or strs_set can be non-NULL, depending on 110 * whether BTF is in a modifiable state (strs_set is used) or not 111 * (strs_data points inside raw_data) 112 */ 113 void *strs_data; 114 /* a set of unique strings */ 115 struct strset *strs_set; 116 /* whether strings are already deduplicated */ 117 bool strs_deduped; 118 119 /* BTF object FD, if loaded into kernel */ 120 int fd; 121 122 /* Pointer size (in bytes) for a target architecture of this BTF */ 123 int ptr_sz; 124 }; 125 126 static inline __u64 ptr_to_u64(const void *ptr) 127 { 128 return (__u64) (unsigned long) ptr; 129 } 130 131 /* Ensure given dynamically allocated memory region pointed to by *data* with 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 133 * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements 134 * are already used. At most *max_cnt* elements can be ever allocated. 135 * If necessary, memory is reallocated and all existing data is copied over, 136 * new pointer to the memory region is stored at *data, new memory region 137 * capacity (in number of elements) is stored in *cap. 138 * On success, memory pointer to the beginning of unused memory is returned. 139 * On error, NULL is returned. 140 */ 141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 142 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 143 { 144 size_t new_cnt; 145 void *new_data; 146 147 if (cur_cnt + add_cnt <= *cap_cnt) 148 return *data + cur_cnt * elem_sz; 149 150 /* requested more than the set limit */ 151 if (cur_cnt + add_cnt > max_cnt) 152 return NULL; 153 154 new_cnt = *cap_cnt; 155 new_cnt += new_cnt / 4; /* expand by 25% */ 156 if (new_cnt < 16) /* but at least 16 elements */ 157 new_cnt = 16; 158 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 159 new_cnt = max_cnt; 160 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 161 new_cnt = cur_cnt + add_cnt; 162 163 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 164 if (!new_data) 165 return NULL; 166 167 /* zero out newly allocated portion of memory */ 168 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 169 170 *data = new_data; 171 *cap_cnt = new_cnt; 172 return new_data + cur_cnt * elem_sz; 173 } 174 175 /* Ensure given dynamically allocated memory region has enough allocated space 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 177 */ 178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 179 { 180 void *p; 181 182 if (need_cnt <= *cap_cnt) 183 return 0; 184 185 p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 186 if (!p) 187 return -ENOMEM; 188 189 return 0; 190 } 191 192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt) 193 { 194 return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 195 btf->nr_types, BTF_MAX_NR_TYPES, add_cnt); 196 } 197 198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 199 { 200 __u32 *p; 201 202 p = btf_add_type_offs_mem(btf, 1); 203 if (!p) 204 return -ENOMEM; 205 206 *p = type_off; 207 return 0; 208 } 209 210 static void btf_bswap_hdr(struct btf_header *h) 211 { 212 h->magic = bswap_16(h->magic); 213 h->hdr_len = bswap_32(h->hdr_len); 214 h->type_off = bswap_32(h->type_off); 215 h->type_len = bswap_32(h->type_len); 216 h->str_off = bswap_32(h->str_off); 217 h->str_len = bswap_32(h->str_len); 218 } 219 220 static int btf_parse_hdr(struct btf *btf) 221 { 222 struct btf_header *hdr = btf->hdr; 223 __u32 meta_left; 224 225 if (btf->raw_size < sizeof(struct btf_header)) { 226 pr_debug("BTF header not found\n"); 227 return -EINVAL; 228 } 229 230 if (hdr->magic == bswap_16(BTF_MAGIC)) { 231 btf->swapped_endian = true; 232 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 233 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 234 bswap_32(hdr->hdr_len)); 235 return -ENOTSUP; 236 } 237 btf_bswap_hdr(hdr); 238 } else if (hdr->magic != BTF_MAGIC) { 239 pr_debug("Invalid BTF magic: %x\n", hdr->magic); 240 return -EINVAL; 241 } 242 243 if (btf->raw_size < hdr->hdr_len) { 244 pr_debug("BTF header len %u larger than data size %u\n", 245 hdr->hdr_len, btf->raw_size); 246 return -EINVAL; 247 } 248 249 meta_left = btf->raw_size - hdr->hdr_len; 250 if (meta_left < (long long)hdr->str_off + hdr->str_len) { 251 pr_debug("Invalid BTF total size: %u\n", btf->raw_size); 252 return -EINVAL; 253 } 254 255 if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) { 256 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 257 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 258 return -EINVAL; 259 } 260 261 if (hdr->type_off % 4) { 262 pr_debug("BTF type section is not aligned to 4 bytes\n"); 263 return -EINVAL; 264 } 265 266 return 0; 267 } 268 269 static int btf_parse_str_sec(struct btf *btf) 270 { 271 const struct btf_header *hdr = btf->hdr; 272 const char *start = btf->strs_data; 273 const char *end = start + btf->hdr->str_len; 274 275 if (btf->base_btf && hdr->str_len == 0) 276 return 0; 277 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 278 pr_debug("Invalid BTF string section\n"); 279 return -EINVAL; 280 } 281 if (!btf->base_btf && start[0]) { 282 pr_debug("Invalid BTF string section\n"); 283 return -EINVAL; 284 } 285 return 0; 286 } 287 288 static int btf_type_size(const struct btf_type *t) 289 { 290 const int base_size = sizeof(struct btf_type); 291 __u16 vlen = btf_vlen(t); 292 293 switch (btf_kind(t)) { 294 case BTF_KIND_FWD: 295 case BTF_KIND_CONST: 296 case BTF_KIND_VOLATILE: 297 case BTF_KIND_RESTRICT: 298 case BTF_KIND_PTR: 299 case BTF_KIND_TYPEDEF: 300 case BTF_KIND_FUNC: 301 case BTF_KIND_FLOAT: 302 case BTF_KIND_TYPE_TAG: 303 return base_size; 304 case BTF_KIND_INT: 305 return base_size + sizeof(__u32); 306 case BTF_KIND_ENUM: 307 return base_size + vlen * sizeof(struct btf_enum); 308 case BTF_KIND_ENUM64: 309 return base_size + vlen * sizeof(struct btf_enum64); 310 case BTF_KIND_ARRAY: 311 return base_size + sizeof(struct btf_array); 312 case BTF_KIND_STRUCT: 313 case BTF_KIND_UNION: 314 return base_size + vlen * sizeof(struct btf_member); 315 case BTF_KIND_FUNC_PROTO: 316 return base_size + vlen * sizeof(struct btf_param); 317 case BTF_KIND_VAR: 318 return base_size + sizeof(struct btf_var); 319 case BTF_KIND_DATASEC: 320 return base_size + vlen * sizeof(struct btf_var_secinfo); 321 case BTF_KIND_DECL_TAG: 322 return base_size + sizeof(struct btf_decl_tag); 323 default: 324 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 325 return -EINVAL; 326 } 327 } 328 329 static void btf_bswap_type_base(struct btf_type *t) 330 { 331 t->name_off = bswap_32(t->name_off); 332 t->info = bswap_32(t->info); 333 t->type = bswap_32(t->type); 334 } 335 336 static int btf_bswap_type_rest(struct btf_type *t) 337 { 338 struct btf_var_secinfo *v; 339 struct btf_enum64 *e64; 340 struct btf_member *m; 341 struct btf_array *a; 342 struct btf_param *p; 343 struct btf_enum *e; 344 __u16 vlen = btf_vlen(t); 345 int i; 346 347 switch (btf_kind(t)) { 348 case BTF_KIND_FWD: 349 case BTF_KIND_CONST: 350 case BTF_KIND_VOLATILE: 351 case BTF_KIND_RESTRICT: 352 case BTF_KIND_PTR: 353 case BTF_KIND_TYPEDEF: 354 case BTF_KIND_FUNC: 355 case BTF_KIND_FLOAT: 356 case BTF_KIND_TYPE_TAG: 357 return 0; 358 case BTF_KIND_INT: 359 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 360 return 0; 361 case BTF_KIND_ENUM: 362 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 363 e->name_off = bswap_32(e->name_off); 364 e->val = bswap_32(e->val); 365 } 366 return 0; 367 case BTF_KIND_ENUM64: 368 for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) { 369 e64->name_off = bswap_32(e64->name_off); 370 e64->val_lo32 = bswap_32(e64->val_lo32); 371 e64->val_hi32 = bswap_32(e64->val_hi32); 372 } 373 return 0; 374 case BTF_KIND_ARRAY: 375 a = btf_array(t); 376 a->type = bswap_32(a->type); 377 a->index_type = bswap_32(a->index_type); 378 a->nelems = bswap_32(a->nelems); 379 return 0; 380 case BTF_KIND_STRUCT: 381 case BTF_KIND_UNION: 382 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 383 m->name_off = bswap_32(m->name_off); 384 m->type = bswap_32(m->type); 385 m->offset = bswap_32(m->offset); 386 } 387 return 0; 388 case BTF_KIND_FUNC_PROTO: 389 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 390 p->name_off = bswap_32(p->name_off); 391 p->type = bswap_32(p->type); 392 } 393 return 0; 394 case BTF_KIND_VAR: 395 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 396 return 0; 397 case BTF_KIND_DATASEC: 398 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 399 v->type = bswap_32(v->type); 400 v->offset = bswap_32(v->offset); 401 v->size = bswap_32(v->size); 402 } 403 return 0; 404 case BTF_KIND_DECL_TAG: 405 btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx); 406 return 0; 407 default: 408 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 409 return -EINVAL; 410 } 411 } 412 413 static int btf_parse_type_sec(struct btf *btf) 414 { 415 struct btf_header *hdr = btf->hdr; 416 void *next_type = btf->types_data; 417 void *end_type = next_type + hdr->type_len; 418 int err, type_size; 419 420 while (next_type + sizeof(struct btf_type) <= end_type) { 421 if (btf->swapped_endian) 422 btf_bswap_type_base(next_type); 423 424 type_size = btf_type_size(next_type); 425 if (type_size < 0) 426 return type_size; 427 if (next_type + type_size > end_type) { 428 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 429 return -EINVAL; 430 } 431 432 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 433 return -EINVAL; 434 435 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 436 if (err) 437 return err; 438 439 next_type += type_size; 440 btf->nr_types++; 441 } 442 443 if (next_type != end_type) { 444 pr_warn("BTF types data is malformed\n"); 445 return -EINVAL; 446 } 447 448 return 0; 449 } 450 451 __u32 btf__type_cnt(const struct btf *btf) 452 { 453 return btf->start_id + btf->nr_types; 454 } 455 456 const struct btf *btf__base_btf(const struct btf *btf) 457 { 458 return btf->base_btf; 459 } 460 461 /* internal helper returning non-const pointer to a type */ 462 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id) 463 { 464 if (type_id == 0) 465 return &btf_void; 466 if (type_id < btf->start_id) 467 return btf_type_by_id(btf->base_btf, type_id); 468 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 469 } 470 471 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 472 { 473 if (type_id >= btf->start_id + btf->nr_types) 474 return errno = EINVAL, NULL; 475 return btf_type_by_id((struct btf *)btf, type_id); 476 } 477 478 static int determine_ptr_size(const struct btf *btf) 479 { 480 static const char * const long_aliases[] = { 481 "long", 482 "long int", 483 "int long", 484 "unsigned long", 485 "long unsigned", 486 "unsigned long int", 487 "unsigned int long", 488 "long unsigned int", 489 "long int unsigned", 490 "int unsigned long", 491 "int long unsigned", 492 }; 493 const struct btf_type *t; 494 const char *name; 495 int i, j, n; 496 497 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 498 return btf->base_btf->ptr_sz; 499 500 n = btf__type_cnt(btf); 501 for (i = 1; i < n; i++) { 502 t = btf__type_by_id(btf, i); 503 if (!btf_is_int(t)) 504 continue; 505 506 if (t->size != 4 && t->size != 8) 507 continue; 508 509 name = btf__name_by_offset(btf, t->name_off); 510 if (!name) 511 continue; 512 513 for (j = 0; j < ARRAY_SIZE(long_aliases); j++) { 514 if (strcmp(name, long_aliases[j]) == 0) 515 return t->size; 516 } 517 } 518 519 return -1; 520 } 521 522 static size_t btf_ptr_sz(const struct btf *btf) 523 { 524 if (!btf->ptr_sz) 525 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 526 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 527 } 528 529 /* Return pointer size this BTF instance assumes. The size is heuristically 530 * determined by looking for 'long' or 'unsigned long' integer type and 531 * recording its size in bytes. If BTF type information doesn't have any such 532 * type, this function returns 0. In the latter case, native architecture's 533 * pointer size is assumed, so will be either 4 or 8, depending on 534 * architecture that libbpf was compiled for. It's possible to override 535 * guessed value by using btf__set_pointer_size() API. 536 */ 537 size_t btf__pointer_size(const struct btf *btf) 538 { 539 if (!btf->ptr_sz) 540 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 541 542 if (btf->ptr_sz < 0) 543 /* not enough BTF type info to guess */ 544 return 0; 545 546 return btf->ptr_sz; 547 } 548 549 /* Override or set pointer size in bytes. Only values of 4 and 8 are 550 * supported. 551 */ 552 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 553 { 554 if (ptr_sz != 4 && ptr_sz != 8) 555 return libbpf_err(-EINVAL); 556 btf->ptr_sz = ptr_sz; 557 return 0; 558 } 559 560 static bool is_host_big_endian(void) 561 { 562 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 563 return false; 564 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 565 return true; 566 #else 567 # error "Unrecognized __BYTE_ORDER__" 568 #endif 569 } 570 571 enum btf_endianness btf__endianness(const struct btf *btf) 572 { 573 if (is_host_big_endian()) 574 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 575 else 576 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 577 } 578 579 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 580 { 581 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 582 return libbpf_err(-EINVAL); 583 584 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 585 if (!btf->swapped_endian) { 586 free(btf->raw_data_swapped); 587 btf->raw_data_swapped = NULL; 588 } 589 return 0; 590 } 591 592 static bool btf_type_is_void(const struct btf_type *t) 593 { 594 return t == &btf_void || btf_is_fwd(t); 595 } 596 597 static bool btf_type_is_void_or_null(const struct btf_type *t) 598 { 599 return !t || btf_type_is_void(t); 600 } 601 602 #define MAX_RESOLVE_DEPTH 32 603 604 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 605 { 606 const struct btf_array *array; 607 const struct btf_type *t; 608 __u32 nelems = 1; 609 __s64 size = -1; 610 int i; 611 612 t = btf__type_by_id(btf, type_id); 613 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) { 614 switch (btf_kind(t)) { 615 case BTF_KIND_INT: 616 case BTF_KIND_STRUCT: 617 case BTF_KIND_UNION: 618 case BTF_KIND_ENUM: 619 case BTF_KIND_ENUM64: 620 case BTF_KIND_DATASEC: 621 case BTF_KIND_FLOAT: 622 size = t->size; 623 goto done; 624 case BTF_KIND_PTR: 625 size = btf_ptr_sz(btf); 626 goto done; 627 case BTF_KIND_TYPEDEF: 628 case BTF_KIND_VOLATILE: 629 case BTF_KIND_CONST: 630 case BTF_KIND_RESTRICT: 631 case BTF_KIND_VAR: 632 case BTF_KIND_DECL_TAG: 633 case BTF_KIND_TYPE_TAG: 634 type_id = t->type; 635 break; 636 case BTF_KIND_ARRAY: 637 array = btf_array(t); 638 if (nelems && array->nelems > UINT32_MAX / nelems) 639 return libbpf_err(-E2BIG); 640 nelems *= array->nelems; 641 type_id = array->type; 642 break; 643 default: 644 return libbpf_err(-EINVAL); 645 } 646 647 t = btf__type_by_id(btf, type_id); 648 } 649 650 done: 651 if (size < 0) 652 return libbpf_err(-EINVAL); 653 if (nelems && size > UINT32_MAX / nelems) 654 return libbpf_err(-E2BIG); 655 656 return nelems * size; 657 } 658 659 int btf__align_of(const struct btf *btf, __u32 id) 660 { 661 const struct btf_type *t = btf__type_by_id(btf, id); 662 __u16 kind = btf_kind(t); 663 664 switch (kind) { 665 case BTF_KIND_INT: 666 case BTF_KIND_ENUM: 667 case BTF_KIND_ENUM64: 668 case BTF_KIND_FLOAT: 669 return min(btf_ptr_sz(btf), (size_t)t->size); 670 case BTF_KIND_PTR: 671 return btf_ptr_sz(btf); 672 case BTF_KIND_TYPEDEF: 673 case BTF_KIND_VOLATILE: 674 case BTF_KIND_CONST: 675 case BTF_KIND_RESTRICT: 676 case BTF_KIND_TYPE_TAG: 677 return btf__align_of(btf, t->type); 678 case BTF_KIND_ARRAY: 679 return btf__align_of(btf, btf_array(t)->type); 680 case BTF_KIND_STRUCT: 681 case BTF_KIND_UNION: { 682 const struct btf_member *m = btf_members(t); 683 __u16 vlen = btf_vlen(t); 684 int i, max_align = 1, align; 685 686 for (i = 0; i < vlen; i++, m++) { 687 align = btf__align_of(btf, m->type); 688 if (align <= 0) 689 return libbpf_err(align); 690 max_align = max(max_align, align); 691 } 692 693 return max_align; 694 } 695 default: 696 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 697 return errno = EINVAL, 0; 698 } 699 } 700 701 int btf__resolve_type(const struct btf *btf, __u32 type_id) 702 { 703 const struct btf_type *t; 704 int depth = 0; 705 706 t = btf__type_by_id(btf, type_id); 707 while (depth < MAX_RESOLVE_DEPTH && 708 !btf_type_is_void_or_null(t) && 709 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 710 type_id = t->type; 711 t = btf__type_by_id(btf, type_id); 712 depth++; 713 } 714 715 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 716 return libbpf_err(-EINVAL); 717 718 return type_id; 719 } 720 721 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 722 { 723 __u32 i, nr_types = btf__type_cnt(btf); 724 725 if (!strcmp(type_name, "void")) 726 return 0; 727 728 for (i = 1; i < nr_types; i++) { 729 const struct btf_type *t = btf__type_by_id(btf, i); 730 const char *name = btf__name_by_offset(btf, t->name_off); 731 732 if (name && !strcmp(type_name, name)) 733 return i; 734 } 735 736 return libbpf_err(-ENOENT); 737 } 738 739 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id, 740 const char *type_name, __u32 kind) 741 { 742 __u32 i, nr_types = btf__type_cnt(btf); 743 744 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 745 return 0; 746 747 for (i = start_id; i < nr_types; i++) { 748 const struct btf_type *t = btf__type_by_id(btf, i); 749 const char *name; 750 751 if (btf_kind(t) != kind) 752 continue; 753 name = btf__name_by_offset(btf, t->name_off); 754 if (name && !strcmp(type_name, name)) 755 return i; 756 } 757 758 return libbpf_err(-ENOENT); 759 } 760 761 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name, 762 __u32 kind) 763 { 764 return btf_find_by_name_kind(btf, btf->start_id, type_name, kind); 765 } 766 767 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 768 __u32 kind) 769 { 770 return btf_find_by_name_kind(btf, 1, type_name, kind); 771 } 772 773 static bool btf_is_modifiable(const struct btf *btf) 774 { 775 return (void *)btf->hdr != btf->raw_data; 776 } 777 778 void btf__free(struct btf *btf) 779 { 780 if (IS_ERR_OR_NULL(btf)) 781 return; 782 783 if (btf->fd >= 0) 784 close(btf->fd); 785 786 if (btf_is_modifiable(btf)) { 787 /* if BTF was modified after loading, it will have a split 788 * in-memory representation for header, types, and strings 789 * sections, so we need to free all of them individually. It 790 * might still have a cached contiguous raw data present, 791 * which will be unconditionally freed below. 792 */ 793 free(btf->hdr); 794 free(btf->types_data); 795 strset__free(btf->strs_set); 796 } 797 free(btf->raw_data); 798 free(btf->raw_data_swapped); 799 free(btf->type_offs); 800 free(btf); 801 } 802 803 static struct btf *btf_new_empty(struct btf *base_btf) 804 { 805 struct btf *btf; 806 807 btf = calloc(1, sizeof(*btf)); 808 if (!btf) 809 return ERR_PTR(-ENOMEM); 810 811 btf->nr_types = 0; 812 btf->start_id = 1; 813 btf->start_str_off = 0; 814 btf->fd = -1; 815 btf->ptr_sz = sizeof(void *); 816 btf->swapped_endian = false; 817 818 if (base_btf) { 819 btf->base_btf = base_btf; 820 btf->start_id = btf__type_cnt(base_btf); 821 btf->start_str_off = base_btf->hdr->str_len; 822 } 823 824 /* +1 for empty string at offset 0 */ 825 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 826 btf->raw_data = calloc(1, btf->raw_size); 827 if (!btf->raw_data) { 828 free(btf); 829 return ERR_PTR(-ENOMEM); 830 } 831 832 btf->hdr = btf->raw_data; 833 btf->hdr->hdr_len = sizeof(struct btf_header); 834 btf->hdr->magic = BTF_MAGIC; 835 btf->hdr->version = BTF_VERSION; 836 837 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 838 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 839 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 840 841 return btf; 842 } 843 844 struct btf *btf__new_empty(void) 845 { 846 return libbpf_ptr(btf_new_empty(NULL)); 847 } 848 849 struct btf *btf__new_empty_split(struct btf *base_btf) 850 { 851 return libbpf_ptr(btf_new_empty(base_btf)); 852 } 853 854 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 855 { 856 struct btf *btf; 857 int err; 858 859 btf = calloc(1, sizeof(struct btf)); 860 if (!btf) 861 return ERR_PTR(-ENOMEM); 862 863 btf->nr_types = 0; 864 btf->start_id = 1; 865 btf->start_str_off = 0; 866 btf->fd = -1; 867 868 if (base_btf) { 869 btf->base_btf = base_btf; 870 btf->start_id = btf__type_cnt(base_btf); 871 btf->start_str_off = base_btf->hdr->str_len; 872 } 873 874 btf->raw_data = malloc(size); 875 if (!btf->raw_data) { 876 err = -ENOMEM; 877 goto done; 878 } 879 memcpy(btf->raw_data, data, size); 880 btf->raw_size = size; 881 882 btf->hdr = btf->raw_data; 883 err = btf_parse_hdr(btf); 884 if (err) 885 goto done; 886 887 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 888 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 889 890 err = btf_parse_str_sec(btf); 891 err = err ?: btf_parse_type_sec(btf); 892 if (err) 893 goto done; 894 895 done: 896 if (err) { 897 btf__free(btf); 898 return ERR_PTR(err); 899 } 900 901 return btf; 902 } 903 904 struct btf *btf__new(const void *data, __u32 size) 905 { 906 return libbpf_ptr(btf_new(data, size, NULL)); 907 } 908 909 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 910 struct btf_ext **btf_ext) 911 { 912 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 913 int err = 0, fd = -1, idx = 0; 914 struct btf *btf = NULL; 915 Elf_Scn *scn = NULL; 916 Elf *elf = NULL; 917 GElf_Ehdr ehdr; 918 size_t shstrndx; 919 920 if (elf_version(EV_CURRENT) == EV_NONE) { 921 pr_warn("failed to init libelf for %s\n", path); 922 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 923 } 924 925 fd = open(path, O_RDONLY | O_CLOEXEC); 926 if (fd < 0) { 927 err = -errno; 928 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 929 return ERR_PTR(err); 930 } 931 932 err = -LIBBPF_ERRNO__FORMAT; 933 934 elf = elf_begin(fd, ELF_C_READ, NULL); 935 if (!elf) { 936 pr_warn("failed to open %s as ELF file\n", path); 937 goto done; 938 } 939 if (!gelf_getehdr(elf, &ehdr)) { 940 pr_warn("failed to get EHDR from %s\n", path); 941 goto done; 942 } 943 944 if (elf_getshdrstrndx(elf, &shstrndx)) { 945 pr_warn("failed to get section names section index for %s\n", 946 path); 947 goto done; 948 } 949 950 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) { 951 pr_warn("failed to get e_shstrndx from %s\n", path); 952 goto done; 953 } 954 955 while ((scn = elf_nextscn(elf, scn)) != NULL) { 956 GElf_Shdr sh; 957 char *name; 958 959 idx++; 960 if (gelf_getshdr(scn, &sh) != &sh) { 961 pr_warn("failed to get section(%d) header from %s\n", 962 idx, path); 963 goto done; 964 } 965 name = elf_strptr(elf, shstrndx, sh.sh_name); 966 if (!name) { 967 pr_warn("failed to get section(%d) name from %s\n", 968 idx, path); 969 goto done; 970 } 971 if (strcmp(name, BTF_ELF_SEC) == 0) { 972 btf_data = elf_getdata(scn, 0); 973 if (!btf_data) { 974 pr_warn("failed to get section(%d, %s) data from %s\n", 975 idx, name, path); 976 goto done; 977 } 978 continue; 979 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 980 btf_ext_data = elf_getdata(scn, 0); 981 if (!btf_ext_data) { 982 pr_warn("failed to get section(%d, %s) data from %s\n", 983 idx, name, path); 984 goto done; 985 } 986 continue; 987 } 988 } 989 990 err = 0; 991 992 if (!btf_data) { 993 err = -ENOENT; 994 goto done; 995 } 996 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 997 err = libbpf_get_error(btf); 998 if (err) 999 goto done; 1000 1001 switch (gelf_getclass(elf)) { 1002 case ELFCLASS32: 1003 btf__set_pointer_size(btf, 4); 1004 break; 1005 case ELFCLASS64: 1006 btf__set_pointer_size(btf, 8); 1007 break; 1008 default: 1009 pr_warn("failed to get ELF class (bitness) for %s\n", path); 1010 break; 1011 } 1012 1013 if (btf_ext && btf_ext_data) { 1014 *btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 1015 err = libbpf_get_error(*btf_ext); 1016 if (err) 1017 goto done; 1018 } else if (btf_ext) { 1019 *btf_ext = NULL; 1020 } 1021 done: 1022 if (elf) 1023 elf_end(elf); 1024 close(fd); 1025 1026 if (!err) 1027 return btf; 1028 1029 if (btf_ext) 1030 btf_ext__free(*btf_ext); 1031 btf__free(btf); 1032 1033 return ERR_PTR(err); 1034 } 1035 1036 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 1037 { 1038 return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext)); 1039 } 1040 1041 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 1042 { 1043 return libbpf_ptr(btf_parse_elf(path, base_btf, NULL)); 1044 } 1045 1046 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 1047 { 1048 struct btf *btf = NULL; 1049 void *data = NULL; 1050 FILE *f = NULL; 1051 __u16 magic; 1052 int err = 0; 1053 long sz; 1054 1055 f = fopen(path, "rb"); 1056 if (!f) { 1057 err = -errno; 1058 goto err_out; 1059 } 1060 1061 /* check BTF magic */ 1062 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1063 err = -EIO; 1064 goto err_out; 1065 } 1066 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1067 /* definitely not a raw BTF */ 1068 err = -EPROTO; 1069 goto err_out; 1070 } 1071 1072 /* get file size */ 1073 if (fseek(f, 0, SEEK_END)) { 1074 err = -errno; 1075 goto err_out; 1076 } 1077 sz = ftell(f); 1078 if (sz < 0) { 1079 err = -errno; 1080 goto err_out; 1081 } 1082 /* rewind to the start */ 1083 if (fseek(f, 0, SEEK_SET)) { 1084 err = -errno; 1085 goto err_out; 1086 } 1087 1088 /* pre-alloc memory and read all of BTF data */ 1089 data = malloc(sz); 1090 if (!data) { 1091 err = -ENOMEM; 1092 goto err_out; 1093 } 1094 if (fread(data, 1, sz, f) < sz) { 1095 err = -EIO; 1096 goto err_out; 1097 } 1098 1099 /* finally parse BTF data */ 1100 btf = btf_new(data, sz, base_btf); 1101 1102 err_out: 1103 free(data); 1104 if (f) 1105 fclose(f); 1106 return err ? ERR_PTR(err) : btf; 1107 } 1108 1109 struct btf *btf__parse_raw(const char *path) 1110 { 1111 return libbpf_ptr(btf_parse_raw(path, NULL)); 1112 } 1113 1114 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1115 { 1116 return libbpf_ptr(btf_parse_raw(path, base_btf)); 1117 } 1118 1119 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1120 { 1121 struct btf *btf; 1122 int err; 1123 1124 if (btf_ext) 1125 *btf_ext = NULL; 1126 1127 btf = btf_parse_raw(path, base_btf); 1128 err = libbpf_get_error(btf); 1129 if (!err) 1130 return btf; 1131 if (err != -EPROTO) 1132 return ERR_PTR(err); 1133 return btf_parse_elf(path, base_btf, btf_ext); 1134 } 1135 1136 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1137 { 1138 return libbpf_ptr(btf_parse(path, NULL, btf_ext)); 1139 } 1140 1141 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1142 { 1143 return libbpf_ptr(btf_parse(path, base_btf, NULL)); 1144 } 1145 1146 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1147 1148 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level) 1149 { 1150 LIBBPF_OPTS(bpf_btf_load_opts, opts); 1151 __u32 buf_sz = 0, raw_size; 1152 char *buf = NULL, *tmp; 1153 void *raw_data; 1154 int err = 0; 1155 1156 if (btf->fd >= 0) 1157 return libbpf_err(-EEXIST); 1158 if (log_sz && !log_buf) 1159 return libbpf_err(-EINVAL); 1160 1161 /* cache native raw data representation */ 1162 raw_data = btf_get_raw_data(btf, &raw_size, false); 1163 if (!raw_data) { 1164 err = -ENOMEM; 1165 goto done; 1166 } 1167 btf->raw_size = raw_size; 1168 btf->raw_data = raw_data; 1169 1170 retry_load: 1171 /* if log_level is 0, we won't provide log_buf/log_size to the kernel, 1172 * initially. Only if BTF loading fails, we bump log_level to 1 and 1173 * retry, using either auto-allocated or custom log_buf. This way 1174 * non-NULL custom log_buf provides a buffer just in case, but hopes 1175 * for successful load and no need for log_buf. 1176 */ 1177 if (log_level) { 1178 /* if caller didn't provide custom log_buf, we'll keep 1179 * allocating our own progressively bigger buffers for BTF 1180 * verification log 1181 */ 1182 if (!log_buf) { 1183 buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2); 1184 tmp = realloc(buf, buf_sz); 1185 if (!tmp) { 1186 err = -ENOMEM; 1187 goto done; 1188 } 1189 buf = tmp; 1190 buf[0] = '\0'; 1191 } 1192 1193 opts.log_buf = log_buf ? log_buf : buf; 1194 opts.log_size = log_buf ? log_sz : buf_sz; 1195 opts.log_level = log_level; 1196 } 1197 1198 btf->fd = bpf_btf_load(raw_data, raw_size, &opts); 1199 if (btf->fd < 0) { 1200 /* time to turn on verbose mode and try again */ 1201 if (log_level == 0) { 1202 log_level = 1; 1203 goto retry_load; 1204 } 1205 /* only retry if caller didn't provide custom log_buf, but 1206 * make sure we can never overflow buf_sz 1207 */ 1208 if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2) 1209 goto retry_load; 1210 1211 err = -errno; 1212 pr_warn("BTF loading error: %d\n", err); 1213 /* don't print out contents of custom log_buf */ 1214 if (!log_buf && buf[0]) 1215 pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf); 1216 } 1217 1218 done: 1219 free(buf); 1220 return libbpf_err(err); 1221 } 1222 1223 int btf__load_into_kernel(struct btf *btf) 1224 { 1225 return btf_load_into_kernel(btf, NULL, 0, 0); 1226 } 1227 1228 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel"))); 1229 1230 int btf__fd(const struct btf *btf) 1231 { 1232 return btf->fd; 1233 } 1234 1235 void btf__set_fd(struct btf *btf, int fd) 1236 { 1237 btf->fd = fd; 1238 } 1239 1240 static const void *btf_strs_data(const struct btf *btf) 1241 { 1242 return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set); 1243 } 1244 1245 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1246 { 1247 struct btf_header *hdr = btf->hdr; 1248 struct btf_type *t; 1249 void *data, *p; 1250 __u32 data_sz; 1251 int i; 1252 1253 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1254 if (data) { 1255 *size = btf->raw_size; 1256 return data; 1257 } 1258 1259 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1260 data = calloc(1, data_sz); 1261 if (!data) 1262 return NULL; 1263 p = data; 1264 1265 memcpy(p, hdr, hdr->hdr_len); 1266 if (swap_endian) 1267 btf_bswap_hdr(p); 1268 p += hdr->hdr_len; 1269 1270 memcpy(p, btf->types_data, hdr->type_len); 1271 if (swap_endian) { 1272 for (i = 0; i < btf->nr_types; i++) { 1273 t = p + btf->type_offs[i]; 1274 /* btf_bswap_type_rest() relies on native t->info, so 1275 * we swap base type info after we swapped all the 1276 * additional information 1277 */ 1278 if (btf_bswap_type_rest(t)) 1279 goto err_out; 1280 btf_bswap_type_base(t); 1281 } 1282 } 1283 p += hdr->type_len; 1284 1285 memcpy(p, btf_strs_data(btf), hdr->str_len); 1286 p += hdr->str_len; 1287 1288 *size = data_sz; 1289 return data; 1290 err_out: 1291 free(data); 1292 return NULL; 1293 } 1294 1295 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size) 1296 { 1297 struct btf *btf = (struct btf *)btf_ro; 1298 __u32 data_sz; 1299 void *data; 1300 1301 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1302 if (!data) 1303 return errno = ENOMEM, NULL; 1304 1305 btf->raw_size = data_sz; 1306 if (btf->swapped_endian) 1307 btf->raw_data_swapped = data; 1308 else 1309 btf->raw_data = data; 1310 *size = data_sz; 1311 return data; 1312 } 1313 1314 __attribute__((alias("btf__raw_data"))) 1315 const void *btf__get_raw_data(const struct btf *btf, __u32 *size); 1316 1317 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1318 { 1319 if (offset < btf->start_str_off) 1320 return btf__str_by_offset(btf->base_btf, offset); 1321 else if (offset - btf->start_str_off < btf->hdr->str_len) 1322 return btf_strs_data(btf) + (offset - btf->start_str_off); 1323 else 1324 return errno = EINVAL, NULL; 1325 } 1326 1327 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1328 { 1329 return btf__str_by_offset(btf, offset); 1330 } 1331 1332 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1333 { 1334 struct bpf_btf_info btf_info; 1335 __u32 len = sizeof(btf_info); 1336 __u32 last_size; 1337 struct btf *btf; 1338 void *ptr; 1339 int err; 1340 1341 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1342 * let's start with a sane default - 4KiB here - and resize it only if 1343 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1344 */ 1345 last_size = 4096; 1346 ptr = malloc(last_size); 1347 if (!ptr) 1348 return ERR_PTR(-ENOMEM); 1349 1350 memset(&btf_info, 0, sizeof(btf_info)); 1351 btf_info.btf = ptr_to_u64(ptr); 1352 btf_info.btf_size = last_size; 1353 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1354 1355 if (!err && btf_info.btf_size > last_size) { 1356 void *temp_ptr; 1357 1358 last_size = btf_info.btf_size; 1359 temp_ptr = realloc(ptr, last_size); 1360 if (!temp_ptr) { 1361 btf = ERR_PTR(-ENOMEM); 1362 goto exit_free; 1363 } 1364 ptr = temp_ptr; 1365 1366 len = sizeof(btf_info); 1367 memset(&btf_info, 0, sizeof(btf_info)); 1368 btf_info.btf = ptr_to_u64(ptr); 1369 btf_info.btf_size = last_size; 1370 1371 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1372 } 1373 1374 if (err || btf_info.btf_size > last_size) { 1375 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1376 goto exit_free; 1377 } 1378 1379 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1380 1381 exit_free: 1382 free(ptr); 1383 return btf; 1384 } 1385 1386 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf) 1387 { 1388 struct btf *btf; 1389 int btf_fd; 1390 1391 btf_fd = bpf_btf_get_fd_by_id(id); 1392 if (btf_fd < 0) 1393 return libbpf_err_ptr(-errno); 1394 1395 btf = btf_get_from_fd(btf_fd, base_btf); 1396 close(btf_fd); 1397 1398 return libbpf_ptr(btf); 1399 } 1400 1401 struct btf *btf__load_from_kernel_by_id(__u32 id) 1402 { 1403 return btf__load_from_kernel_by_id_split(id, NULL); 1404 } 1405 1406 static void btf_invalidate_raw_data(struct btf *btf) 1407 { 1408 if (btf->raw_data) { 1409 free(btf->raw_data); 1410 btf->raw_data = NULL; 1411 } 1412 if (btf->raw_data_swapped) { 1413 free(btf->raw_data_swapped); 1414 btf->raw_data_swapped = NULL; 1415 } 1416 } 1417 1418 /* Ensure BTF is ready to be modified (by splitting into a three memory 1419 * regions for header, types, and strings). Also invalidate cached 1420 * raw_data, if any. 1421 */ 1422 static int btf_ensure_modifiable(struct btf *btf) 1423 { 1424 void *hdr, *types; 1425 struct strset *set = NULL; 1426 int err = -ENOMEM; 1427 1428 if (btf_is_modifiable(btf)) { 1429 /* any BTF modification invalidates raw_data */ 1430 btf_invalidate_raw_data(btf); 1431 return 0; 1432 } 1433 1434 /* split raw data into three memory regions */ 1435 hdr = malloc(btf->hdr->hdr_len); 1436 types = malloc(btf->hdr->type_len); 1437 if (!hdr || !types) 1438 goto err_out; 1439 1440 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1441 memcpy(types, btf->types_data, btf->hdr->type_len); 1442 1443 /* build lookup index for all strings */ 1444 set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len); 1445 if (IS_ERR(set)) { 1446 err = PTR_ERR(set); 1447 goto err_out; 1448 } 1449 1450 /* only when everything was successful, update internal state */ 1451 btf->hdr = hdr; 1452 btf->types_data = types; 1453 btf->types_data_cap = btf->hdr->type_len; 1454 btf->strs_data = NULL; 1455 btf->strs_set = set; 1456 /* if BTF was created from scratch, all strings are guaranteed to be 1457 * unique and deduplicated 1458 */ 1459 if (btf->hdr->str_len == 0) 1460 btf->strs_deduped = true; 1461 if (!btf->base_btf && btf->hdr->str_len == 1) 1462 btf->strs_deduped = true; 1463 1464 /* invalidate raw_data representation */ 1465 btf_invalidate_raw_data(btf); 1466 1467 return 0; 1468 1469 err_out: 1470 strset__free(set); 1471 free(hdr); 1472 free(types); 1473 return err; 1474 } 1475 1476 /* Find an offset in BTF string section that corresponds to a given string *s*. 1477 * Returns: 1478 * - >0 offset into string section, if string is found; 1479 * - -ENOENT, if string is not in the string section; 1480 * - <0, on any other error. 1481 */ 1482 int btf__find_str(struct btf *btf, const char *s) 1483 { 1484 int off; 1485 1486 if (btf->base_btf) { 1487 off = btf__find_str(btf->base_btf, s); 1488 if (off != -ENOENT) 1489 return off; 1490 } 1491 1492 /* BTF needs to be in a modifiable state to build string lookup index */ 1493 if (btf_ensure_modifiable(btf)) 1494 return libbpf_err(-ENOMEM); 1495 1496 off = strset__find_str(btf->strs_set, s); 1497 if (off < 0) 1498 return libbpf_err(off); 1499 1500 return btf->start_str_off + off; 1501 } 1502 1503 /* Add a string s to the BTF string section. 1504 * Returns: 1505 * - > 0 offset into string section, on success; 1506 * - < 0, on error. 1507 */ 1508 int btf__add_str(struct btf *btf, const char *s) 1509 { 1510 int off; 1511 1512 if (btf->base_btf) { 1513 off = btf__find_str(btf->base_btf, s); 1514 if (off != -ENOENT) 1515 return off; 1516 } 1517 1518 if (btf_ensure_modifiable(btf)) 1519 return libbpf_err(-ENOMEM); 1520 1521 off = strset__add_str(btf->strs_set, s); 1522 if (off < 0) 1523 return libbpf_err(off); 1524 1525 btf->hdr->str_len = strset__data_size(btf->strs_set); 1526 1527 return btf->start_str_off + off; 1528 } 1529 1530 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1531 { 1532 return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1533 btf->hdr->type_len, UINT_MAX, add_sz); 1534 } 1535 1536 static void btf_type_inc_vlen(struct btf_type *t) 1537 { 1538 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1539 } 1540 1541 static int btf_commit_type(struct btf *btf, int data_sz) 1542 { 1543 int err; 1544 1545 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1546 if (err) 1547 return libbpf_err(err); 1548 1549 btf->hdr->type_len += data_sz; 1550 btf->hdr->str_off += data_sz; 1551 btf->nr_types++; 1552 return btf->start_id + btf->nr_types - 1; 1553 } 1554 1555 struct btf_pipe { 1556 const struct btf *src; 1557 struct btf *dst; 1558 struct hashmap *str_off_map; /* map string offsets from src to dst */ 1559 }; 1560 1561 static int btf_rewrite_str(__u32 *str_off, void *ctx) 1562 { 1563 struct btf_pipe *p = ctx; 1564 void *mapped_off; 1565 int off, err; 1566 1567 if (!*str_off) /* nothing to do for empty strings */ 1568 return 0; 1569 1570 if (p->str_off_map && 1571 hashmap__find(p->str_off_map, (void *)(long)*str_off, &mapped_off)) { 1572 *str_off = (__u32)(long)mapped_off; 1573 return 0; 1574 } 1575 1576 off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off)); 1577 if (off < 0) 1578 return off; 1579 1580 /* Remember string mapping from src to dst. It avoids 1581 * performing expensive string comparisons. 1582 */ 1583 if (p->str_off_map) { 1584 err = hashmap__append(p->str_off_map, (void *)(long)*str_off, (void *)(long)off); 1585 if (err) 1586 return err; 1587 } 1588 1589 *str_off = off; 1590 return 0; 1591 } 1592 1593 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type) 1594 { 1595 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1596 struct btf_type *t; 1597 int sz, err; 1598 1599 sz = btf_type_size(src_type); 1600 if (sz < 0) 1601 return libbpf_err(sz); 1602 1603 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1604 if (btf_ensure_modifiable(btf)) 1605 return libbpf_err(-ENOMEM); 1606 1607 t = btf_add_type_mem(btf, sz); 1608 if (!t) 1609 return libbpf_err(-ENOMEM); 1610 1611 memcpy(t, src_type, sz); 1612 1613 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1614 if (err) 1615 return libbpf_err(err); 1616 1617 return btf_commit_type(btf, sz); 1618 } 1619 1620 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx) 1621 { 1622 struct btf *btf = ctx; 1623 1624 if (!*type_id) /* nothing to do for VOID references */ 1625 return 0; 1626 1627 /* we haven't updated btf's type count yet, so 1628 * btf->start_id + btf->nr_types - 1 is the type ID offset we should 1629 * add to all newly added BTF types 1630 */ 1631 *type_id += btf->start_id + btf->nr_types - 1; 1632 return 0; 1633 } 1634 1635 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx); 1636 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx); 1637 1638 int btf__add_btf(struct btf *btf, const struct btf *src_btf) 1639 { 1640 struct btf_pipe p = { .src = src_btf, .dst = btf }; 1641 int data_sz, sz, cnt, i, err, old_strs_len; 1642 __u32 *off; 1643 void *t; 1644 1645 /* appending split BTF isn't supported yet */ 1646 if (src_btf->base_btf) 1647 return libbpf_err(-ENOTSUP); 1648 1649 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1650 if (btf_ensure_modifiable(btf)) 1651 return libbpf_err(-ENOMEM); 1652 1653 /* remember original strings section size if we have to roll back 1654 * partial strings section changes 1655 */ 1656 old_strs_len = btf->hdr->str_len; 1657 1658 data_sz = src_btf->hdr->type_len; 1659 cnt = btf__type_cnt(src_btf) - 1; 1660 1661 /* pre-allocate enough memory for new types */ 1662 t = btf_add_type_mem(btf, data_sz); 1663 if (!t) 1664 return libbpf_err(-ENOMEM); 1665 1666 /* pre-allocate enough memory for type offset index for new types */ 1667 off = btf_add_type_offs_mem(btf, cnt); 1668 if (!off) 1669 return libbpf_err(-ENOMEM); 1670 1671 /* Map the string offsets from src_btf to the offsets from btf to improve performance */ 1672 p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL); 1673 if (IS_ERR(p.str_off_map)) 1674 return libbpf_err(-ENOMEM); 1675 1676 /* bulk copy types data for all types from src_btf */ 1677 memcpy(t, src_btf->types_data, data_sz); 1678 1679 for (i = 0; i < cnt; i++) { 1680 sz = btf_type_size(t); 1681 if (sz < 0) { 1682 /* unlikely, has to be corrupted src_btf */ 1683 err = sz; 1684 goto err_out; 1685 } 1686 1687 /* fill out type ID to type offset mapping for lookups by type ID */ 1688 *off = t - btf->types_data; 1689 1690 /* add, dedup, and remap strings referenced by this BTF type */ 1691 err = btf_type_visit_str_offs(t, btf_rewrite_str, &p); 1692 if (err) 1693 goto err_out; 1694 1695 /* remap all type IDs referenced from this BTF type */ 1696 err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf); 1697 if (err) 1698 goto err_out; 1699 1700 /* go to next type data and type offset index entry */ 1701 t += sz; 1702 off++; 1703 } 1704 1705 /* Up until now any of the copied type data was effectively invisible, 1706 * so if we exited early before this point due to error, BTF would be 1707 * effectively unmodified. There would be extra internal memory 1708 * pre-allocated, but it would not be available for querying. But now 1709 * that we've copied and rewritten all the data successfully, we can 1710 * update type count and various internal offsets and sizes to 1711 * "commit" the changes and made them visible to the outside world. 1712 */ 1713 btf->hdr->type_len += data_sz; 1714 btf->hdr->str_off += data_sz; 1715 btf->nr_types += cnt; 1716 1717 hashmap__free(p.str_off_map); 1718 1719 /* return type ID of the first added BTF type */ 1720 return btf->start_id + btf->nr_types - cnt; 1721 err_out: 1722 /* zero out preallocated memory as if it was just allocated with 1723 * libbpf_add_mem() 1724 */ 1725 memset(btf->types_data + btf->hdr->type_len, 0, data_sz); 1726 memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len); 1727 1728 /* and now restore original strings section size; types data size 1729 * wasn't modified, so doesn't need restoring, see big comment above */ 1730 btf->hdr->str_len = old_strs_len; 1731 1732 hashmap__free(p.str_off_map); 1733 1734 return libbpf_err(err); 1735 } 1736 1737 /* 1738 * Append new BTF_KIND_INT type with: 1739 * - *name* - non-empty, non-NULL type name; 1740 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1741 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1742 * Returns: 1743 * - >0, type ID of newly added BTF type; 1744 * - <0, on error. 1745 */ 1746 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1747 { 1748 struct btf_type *t; 1749 int sz, name_off; 1750 1751 /* non-empty name */ 1752 if (!name || !name[0]) 1753 return libbpf_err(-EINVAL); 1754 /* byte_sz must be power of 2 */ 1755 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1756 return libbpf_err(-EINVAL); 1757 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1758 return libbpf_err(-EINVAL); 1759 1760 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1761 if (btf_ensure_modifiable(btf)) 1762 return libbpf_err(-ENOMEM); 1763 1764 sz = sizeof(struct btf_type) + sizeof(int); 1765 t = btf_add_type_mem(btf, sz); 1766 if (!t) 1767 return libbpf_err(-ENOMEM); 1768 1769 /* if something goes wrong later, we might end up with an extra string, 1770 * but that shouldn't be a problem, because BTF can't be constructed 1771 * completely anyway and will most probably be just discarded 1772 */ 1773 name_off = btf__add_str(btf, name); 1774 if (name_off < 0) 1775 return name_off; 1776 1777 t->name_off = name_off; 1778 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1779 t->size = byte_sz; 1780 /* set INT info, we don't allow setting legacy bit offset/size */ 1781 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1782 1783 return btf_commit_type(btf, sz); 1784 } 1785 1786 /* 1787 * Append new BTF_KIND_FLOAT type with: 1788 * - *name* - non-empty, non-NULL type name; 1789 * - *sz* - size of the type, in bytes; 1790 * Returns: 1791 * - >0, type ID of newly added BTF type; 1792 * - <0, on error. 1793 */ 1794 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz) 1795 { 1796 struct btf_type *t; 1797 int sz, name_off; 1798 1799 /* non-empty name */ 1800 if (!name || !name[0]) 1801 return libbpf_err(-EINVAL); 1802 1803 /* byte_sz must be one of the explicitly allowed values */ 1804 if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 && 1805 byte_sz != 16) 1806 return libbpf_err(-EINVAL); 1807 1808 if (btf_ensure_modifiable(btf)) 1809 return libbpf_err(-ENOMEM); 1810 1811 sz = sizeof(struct btf_type); 1812 t = btf_add_type_mem(btf, sz); 1813 if (!t) 1814 return libbpf_err(-ENOMEM); 1815 1816 name_off = btf__add_str(btf, name); 1817 if (name_off < 0) 1818 return name_off; 1819 1820 t->name_off = name_off; 1821 t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0); 1822 t->size = byte_sz; 1823 1824 return btf_commit_type(btf, sz); 1825 } 1826 1827 /* it's completely legal to append BTF types with type IDs pointing forward to 1828 * types that haven't been appended yet, so we only make sure that id looks 1829 * sane, we can't guarantee that ID will always be valid 1830 */ 1831 static int validate_type_id(int id) 1832 { 1833 if (id < 0 || id > BTF_MAX_NR_TYPES) 1834 return -EINVAL; 1835 return 0; 1836 } 1837 1838 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1839 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1840 { 1841 struct btf_type *t; 1842 int sz, name_off = 0; 1843 1844 if (validate_type_id(ref_type_id)) 1845 return libbpf_err(-EINVAL); 1846 1847 if (btf_ensure_modifiable(btf)) 1848 return libbpf_err(-ENOMEM); 1849 1850 sz = sizeof(struct btf_type); 1851 t = btf_add_type_mem(btf, sz); 1852 if (!t) 1853 return libbpf_err(-ENOMEM); 1854 1855 if (name && name[0]) { 1856 name_off = btf__add_str(btf, name); 1857 if (name_off < 0) 1858 return name_off; 1859 } 1860 1861 t->name_off = name_off; 1862 t->info = btf_type_info(kind, 0, 0); 1863 t->type = ref_type_id; 1864 1865 return btf_commit_type(btf, sz); 1866 } 1867 1868 /* 1869 * Append new BTF_KIND_PTR type with: 1870 * - *ref_type_id* - referenced type ID, it might not exist yet; 1871 * Returns: 1872 * - >0, type ID of newly added BTF type; 1873 * - <0, on error. 1874 */ 1875 int btf__add_ptr(struct btf *btf, int ref_type_id) 1876 { 1877 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1878 } 1879 1880 /* 1881 * Append new BTF_KIND_ARRAY type with: 1882 * - *index_type_id* - type ID of the type describing array index; 1883 * - *elem_type_id* - type ID of the type describing array element; 1884 * - *nr_elems* - the size of the array; 1885 * Returns: 1886 * - >0, type ID of newly added BTF type; 1887 * - <0, on error. 1888 */ 1889 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1890 { 1891 struct btf_type *t; 1892 struct btf_array *a; 1893 int sz; 1894 1895 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1896 return libbpf_err(-EINVAL); 1897 1898 if (btf_ensure_modifiable(btf)) 1899 return libbpf_err(-ENOMEM); 1900 1901 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1902 t = btf_add_type_mem(btf, sz); 1903 if (!t) 1904 return libbpf_err(-ENOMEM); 1905 1906 t->name_off = 0; 1907 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1908 t->size = 0; 1909 1910 a = btf_array(t); 1911 a->type = elem_type_id; 1912 a->index_type = index_type_id; 1913 a->nelems = nr_elems; 1914 1915 return btf_commit_type(btf, sz); 1916 } 1917 1918 /* generic STRUCT/UNION append function */ 1919 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1920 { 1921 struct btf_type *t; 1922 int sz, name_off = 0; 1923 1924 if (btf_ensure_modifiable(btf)) 1925 return libbpf_err(-ENOMEM); 1926 1927 sz = sizeof(struct btf_type); 1928 t = btf_add_type_mem(btf, sz); 1929 if (!t) 1930 return libbpf_err(-ENOMEM); 1931 1932 if (name && name[0]) { 1933 name_off = btf__add_str(btf, name); 1934 if (name_off < 0) 1935 return name_off; 1936 } 1937 1938 /* start out with vlen=0 and no kflag; this will be adjusted when 1939 * adding each member 1940 */ 1941 t->name_off = name_off; 1942 t->info = btf_type_info(kind, 0, 0); 1943 t->size = bytes_sz; 1944 1945 return btf_commit_type(btf, sz); 1946 } 1947 1948 /* 1949 * Append new BTF_KIND_STRUCT type with: 1950 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1951 * - *byte_sz* - size of the struct, in bytes; 1952 * 1953 * Struct initially has no fields in it. Fields can be added by 1954 * btf__add_field() right after btf__add_struct() succeeds. 1955 * 1956 * Returns: 1957 * - >0, type ID of newly added BTF type; 1958 * - <0, on error. 1959 */ 1960 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1961 { 1962 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1963 } 1964 1965 /* 1966 * Append new BTF_KIND_UNION type with: 1967 * - *name* - name of the union, can be NULL or empty for anonymous union; 1968 * - *byte_sz* - size of the union, in bytes; 1969 * 1970 * Union initially has no fields in it. Fields can be added by 1971 * btf__add_field() right after btf__add_union() succeeds. All fields 1972 * should have *bit_offset* of 0. 1973 * 1974 * Returns: 1975 * - >0, type ID of newly added BTF type; 1976 * - <0, on error. 1977 */ 1978 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1979 { 1980 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1981 } 1982 1983 static struct btf_type *btf_last_type(struct btf *btf) 1984 { 1985 return btf_type_by_id(btf, btf__type_cnt(btf) - 1); 1986 } 1987 1988 /* 1989 * Append new field for the current STRUCT/UNION type with: 1990 * - *name* - name of the field, can be NULL or empty for anonymous field; 1991 * - *type_id* - type ID for the type describing field type; 1992 * - *bit_offset* - bit offset of the start of the field within struct/union; 1993 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1994 * Returns: 1995 * - 0, on success; 1996 * - <0, on error. 1997 */ 1998 int btf__add_field(struct btf *btf, const char *name, int type_id, 1999 __u32 bit_offset, __u32 bit_size) 2000 { 2001 struct btf_type *t; 2002 struct btf_member *m; 2003 bool is_bitfield; 2004 int sz, name_off = 0; 2005 2006 /* last type should be union/struct */ 2007 if (btf->nr_types == 0) 2008 return libbpf_err(-EINVAL); 2009 t = btf_last_type(btf); 2010 if (!btf_is_composite(t)) 2011 return libbpf_err(-EINVAL); 2012 2013 if (validate_type_id(type_id)) 2014 return libbpf_err(-EINVAL); 2015 /* best-effort bit field offset/size enforcement */ 2016 is_bitfield = bit_size || (bit_offset % 8 != 0); 2017 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 2018 return libbpf_err(-EINVAL); 2019 2020 /* only offset 0 is allowed for unions */ 2021 if (btf_is_union(t) && bit_offset) 2022 return libbpf_err(-EINVAL); 2023 2024 /* decompose and invalidate raw data */ 2025 if (btf_ensure_modifiable(btf)) 2026 return libbpf_err(-ENOMEM); 2027 2028 sz = sizeof(struct btf_member); 2029 m = btf_add_type_mem(btf, sz); 2030 if (!m) 2031 return libbpf_err(-ENOMEM); 2032 2033 if (name && name[0]) { 2034 name_off = btf__add_str(btf, name); 2035 if (name_off < 0) 2036 return name_off; 2037 } 2038 2039 m->name_off = name_off; 2040 m->type = type_id; 2041 m->offset = bit_offset | (bit_size << 24); 2042 2043 /* btf_add_type_mem can invalidate t pointer */ 2044 t = btf_last_type(btf); 2045 /* update parent type's vlen and kflag */ 2046 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 2047 2048 btf->hdr->type_len += sz; 2049 btf->hdr->str_off += sz; 2050 return 0; 2051 } 2052 2053 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz, 2054 bool is_signed, __u8 kind) 2055 { 2056 struct btf_type *t; 2057 int sz, name_off = 0; 2058 2059 /* byte_sz must be power of 2 */ 2060 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 2061 return libbpf_err(-EINVAL); 2062 2063 if (btf_ensure_modifiable(btf)) 2064 return libbpf_err(-ENOMEM); 2065 2066 sz = sizeof(struct btf_type); 2067 t = btf_add_type_mem(btf, sz); 2068 if (!t) 2069 return libbpf_err(-ENOMEM); 2070 2071 if (name && name[0]) { 2072 name_off = btf__add_str(btf, name); 2073 if (name_off < 0) 2074 return name_off; 2075 } 2076 2077 /* start out with vlen=0; it will be adjusted when adding enum values */ 2078 t->name_off = name_off; 2079 t->info = btf_type_info(kind, 0, is_signed); 2080 t->size = byte_sz; 2081 2082 return btf_commit_type(btf, sz); 2083 } 2084 2085 /* 2086 * Append new BTF_KIND_ENUM type with: 2087 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2088 * - *byte_sz* - size of the enum, in bytes. 2089 * 2090 * Enum initially has no enum values in it (and corresponds to enum forward 2091 * declaration). Enumerator values can be added by btf__add_enum_value() 2092 * immediately after btf__add_enum() succeeds. 2093 * 2094 * Returns: 2095 * - >0, type ID of newly added BTF type; 2096 * - <0, on error. 2097 */ 2098 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 2099 { 2100 /* 2101 * set the signedness to be unsigned, it will change to signed 2102 * if any later enumerator is negative. 2103 */ 2104 return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM); 2105 } 2106 2107 /* 2108 * Append new enum value for the current ENUM type with: 2109 * - *name* - name of the enumerator value, can't be NULL or empty; 2110 * - *value* - integer value corresponding to enum value *name*; 2111 * Returns: 2112 * - 0, on success; 2113 * - <0, on error. 2114 */ 2115 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2116 { 2117 struct btf_type *t; 2118 struct btf_enum *v; 2119 int sz, name_off; 2120 2121 /* last type should be BTF_KIND_ENUM */ 2122 if (btf->nr_types == 0) 2123 return libbpf_err(-EINVAL); 2124 t = btf_last_type(btf); 2125 if (!btf_is_enum(t)) 2126 return libbpf_err(-EINVAL); 2127 2128 /* non-empty name */ 2129 if (!name || !name[0]) 2130 return libbpf_err(-EINVAL); 2131 if (value < INT_MIN || value > UINT_MAX) 2132 return libbpf_err(-E2BIG); 2133 2134 /* decompose and invalidate raw data */ 2135 if (btf_ensure_modifiable(btf)) 2136 return libbpf_err(-ENOMEM); 2137 2138 sz = sizeof(struct btf_enum); 2139 v = btf_add_type_mem(btf, sz); 2140 if (!v) 2141 return libbpf_err(-ENOMEM); 2142 2143 name_off = btf__add_str(btf, name); 2144 if (name_off < 0) 2145 return name_off; 2146 2147 v->name_off = name_off; 2148 v->val = value; 2149 2150 /* update parent type's vlen */ 2151 t = btf_last_type(btf); 2152 btf_type_inc_vlen(t); 2153 2154 /* if negative value, set signedness to signed */ 2155 if (value < 0) 2156 t->info = btf_type_info(btf_kind(t), btf_vlen(t), true); 2157 2158 btf->hdr->type_len += sz; 2159 btf->hdr->str_off += sz; 2160 return 0; 2161 } 2162 2163 /* 2164 * Append new BTF_KIND_ENUM64 type with: 2165 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 2166 * - *byte_sz* - size of the enum, in bytes. 2167 * - *is_signed* - whether the enum values are signed or not; 2168 * 2169 * Enum initially has no enum values in it (and corresponds to enum forward 2170 * declaration). Enumerator values can be added by btf__add_enum64_value() 2171 * immediately after btf__add_enum64() succeeds. 2172 * 2173 * Returns: 2174 * - >0, type ID of newly added BTF type; 2175 * - <0, on error. 2176 */ 2177 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz, 2178 bool is_signed) 2179 { 2180 return btf_add_enum_common(btf, name, byte_sz, is_signed, 2181 BTF_KIND_ENUM64); 2182 } 2183 2184 /* 2185 * Append new enum value for the current ENUM64 type with: 2186 * - *name* - name of the enumerator value, can't be NULL or empty; 2187 * - *value* - integer value corresponding to enum value *name*; 2188 * Returns: 2189 * - 0, on success; 2190 * - <0, on error. 2191 */ 2192 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value) 2193 { 2194 struct btf_enum64 *v; 2195 struct btf_type *t; 2196 int sz, name_off; 2197 2198 /* last type should be BTF_KIND_ENUM64 */ 2199 if (btf->nr_types == 0) 2200 return libbpf_err(-EINVAL); 2201 t = btf_last_type(btf); 2202 if (!btf_is_enum64(t)) 2203 return libbpf_err(-EINVAL); 2204 2205 /* non-empty name */ 2206 if (!name || !name[0]) 2207 return libbpf_err(-EINVAL); 2208 2209 /* decompose and invalidate raw data */ 2210 if (btf_ensure_modifiable(btf)) 2211 return libbpf_err(-ENOMEM); 2212 2213 sz = sizeof(struct btf_enum64); 2214 v = btf_add_type_mem(btf, sz); 2215 if (!v) 2216 return libbpf_err(-ENOMEM); 2217 2218 name_off = btf__add_str(btf, name); 2219 if (name_off < 0) 2220 return name_off; 2221 2222 v->name_off = name_off; 2223 v->val_lo32 = (__u32)value; 2224 v->val_hi32 = value >> 32; 2225 2226 /* update parent type's vlen */ 2227 t = btf_last_type(btf); 2228 btf_type_inc_vlen(t); 2229 2230 btf->hdr->type_len += sz; 2231 btf->hdr->str_off += sz; 2232 return 0; 2233 } 2234 2235 /* 2236 * Append new BTF_KIND_FWD type with: 2237 * - *name*, non-empty/non-NULL name; 2238 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2239 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2240 * Returns: 2241 * - >0, type ID of newly added BTF type; 2242 * - <0, on error. 2243 */ 2244 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2245 { 2246 if (!name || !name[0]) 2247 return libbpf_err(-EINVAL); 2248 2249 switch (fwd_kind) { 2250 case BTF_FWD_STRUCT: 2251 case BTF_FWD_UNION: { 2252 struct btf_type *t; 2253 int id; 2254 2255 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2256 if (id <= 0) 2257 return id; 2258 t = btf_type_by_id(btf, id); 2259 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2260 return id; 2261 } 2262 case BTF_FWD_ENUM: 2263 /* enum forward in BTF currently is just an enum with no enum 2264 * values; we also assume a standard 4-byte size for it 2265 */ 2266 return btf__add_enum(btf, name, sizeof(int)); 2267 default: 2268 return libbpf_err(-EINVAL); 2269 } 2270 } 2271 2272 /* 2273 * Append new BTF_KING_TYPEDEF type with: 2274 * - *name*, non-empty/non-NULL name; 2275 * - *ref_type_id* - referenced type ID, it might not exist yet; 2276 * Returns: 2277 * - >0, type ID of newly added BTF type; 2278 * - <0, on error. 2279 */ 2280 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2281 { 2282 if (!name || !name[0]) 2283 return libbpf_err(-EINVAL); 2284 2285 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2286 } 2287 2288 /* 2289 * Append new BTF_KIND_VOLATILE type with: 2290 * - *ref_type_id* - referenced type ID, it might not exist yet; 2291 * Returns: 2292 * - >0, type ID of newly added BTF type; 2293 * - <0, on error. 2294 */ 2295 int btf__add_volatile(struct btf *btf, int ref_type_id) 2296 { 2297 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2298 } 2299 2300 /* 2301 * Append new BTF_KIND_CONST type with: 2302 * - *ref_type_id* - referenced type ID, it might not exist yet; 2303 * Returns: 2304 * - >0, type ID of newly added BTF type; 2305 * - <0, on error. 2306 */ 2307 int btf__add_const(struct btf *btf, int ref_type_id) 2308 { 2309 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2310 } 2311 2312 /* 2313 * Append new BTF_KIND_RESTRICT type with: 2314 * - *ref_type_id* - referenced type ID, it might not exist yet; 2315 * Returns: 2316 * - >0, type ID of newly added BTF type; 2317 * - <0, on error. 2318 */ 2319 int btf__add_restrict(struct btf *btf, int ref_type_id) 2320 { 2321 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2322 } 2323 2324 /* 2325 * Append new BTF_KIND_TYPE_TAG type with: 2326 * - *value*, non-empty/non-NULL tag value; 2327 * - *ref_type_id* - referenced type ID, it might not exist yet; 2328 * Returns: 2329 * - >0, type ID of newly added BTF type; 2330 * - <0, on error. 2331 */ 2332 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id) 2333 { 2334 if (!value|| !value[0]) 2335 return libbpf_err(-EINVAL); 2336 2337 return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id); 2338 } 2339 2340 /* 2341 * Append new BTF_KIND_FUNC type with: 2342 * - *name*, non-empty/non-NULL name; 2343 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2344 * Returns: 2345 * - >0, type ID of newly added BTF type; 2346 * - <0, on error. 2347 */ 2348 int btf__add_func(struct btf *btf, const char *name, 2349 enum btf_func_linkage linkage, int proto_type_id) 2350 { 2351 int id; 2352 2353 if (!name || !name[0]) 2354 return libbpf_err(-EINVAL); 2355 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2356 linkage != BTF_FUNC_EXTERN) 2357 return libbpf_err(-EINVAL); 2358 2359 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2360 if (id > 0) { 2361 struct btf_type *t = btf_type_by_id(btf, id); 2362 2363 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2364 } 2365 return libbpf_err(id); 2366 } 2367 2368 /* 2369 * Append new BTF_KIND_FUNC_PROTO with: 2370 * - *ret_type_id* - type ID for return result of a function. 2371 * 2372 * Function prototype initially has no arguments, but they can be added by 2373 * btf__add_func_param() one by one, immediately after 2374 * btf__add_func_proto() succeeded. 2375 * 2376 * Returns: 2377 * - >0, type ID of newly added BTF type; 2378 * - <0, on error. 2379 */ 2380 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2381 { 2382 struct btf_type *t; 2383 int sz; 2384 2385 if (validate_type_id(ret_type_id)) 2386 return libbpf_err(-EINVAL); 2387 2388 if (btf_ensure_modifiable(btf)) 2389 return libbpf_err(-ENOMEM); 2390 2391 sz = sizeof(struct btf_type); 2392 t = btf_add_type_mem(btf, sz); 2393 if (!t) 2394 return libbpf_err(-ENOMEM); 2395 2396 /* start out with vlen=0; this will be adjusted when adding enum 2397 * values, if necessary 2398 */ 2399 t->name_off = 0; 2400 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2401 t->type = ret_type_id; 2402 2403 return btf_commit_type(btf, sz); 2404 } 2405 2406 /* 2407 * Append new function parameter for current FUNC_PROTO type with: 2408 * - *name* - parameter name, can be NULL or empty; 2409 * - *type_id* - type ID describing the type of the parameter. 2410 * Returns: 2411 * - 0, on success; 2412 * - <0, on error. 2413 */ 2414 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2415 { 2416 struct btf_type *t; 2417 struct btf_param *p; 2418 int sz, name_off = 0; 2419 2420 if (validate_type_id(type_id)) 2421 return libbpf_err(-EINVAL); 2422 2423 /* last type should be BTF_KIND_FUNC_PROTO */ 2424 if (btf->nr_types == 0) 2425 return libbpf_err(-EINVAL); 2426 t = btf_last_type(btf); 2427 if (!btf_is_func_proto(t)) 2428 return libbpf_err(-EINVAL); 2429 2430 /* decompose and invalidate raw data */ 2431 if (btf_ensure_modifiable(btf)) 2432 return libbpf_err(-ENOMEM); 2433 2434 sz = sizeof(struct btf_param); 2435 p = btf_add_type_mem(btf, sz); 2436 if (!p) 2437 return libbpf_err(-ENOMEM); 2438 2439 if (name && name[0]) { 2440 name_off = btf__add_str(btf, name); 2441 if (name_off < 0) 2442 return name_off; 2443 } 2444 2445 p->name_off = name_off; 2446 p->type = type_id; 2447 2448 /* update parent type's vlen */ 2449 t = btf_last_type(btf); 2450 btf_type_inc_vlen(t); 2451 2452 btf->hdr->type_len += sz; 2453 btf->hdr->str_off += sz; 2454 return 0; 2455 } 2456 2457 /* 2458 * Append new BTF_KIND_VAR type with: 2459 * - *name* - non-empty/non-NULL name; 2460 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2461 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2462 * - *type_id* - type ID of the type describing the type of the variable. 2463 * Returns: 2464 * - >0, type ID of newly added BTF type; 2465 * - <0, on error. 2466 */ 2467 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2468 { 2469 struct btf_type *t; 2470 struct btf_var *v; 2471 int sz, name_off; 2472 2473 /* non-empty name */ 2474 if (!name || !name[0]) 2475 return libbpf_err(-EINVAL); 2476 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2477 linkage != BTF_VAR_GLOBAL_EXTERN) 2478 return libbpf_err(-EINVAL); 2479 if (validate_type_id(type_id)) 2480 return libbpf_err(-EINVAL); 2481 2482 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2483 if (btf_ensure_modifiable(btf)) 2484 return libbpf_err(-ENOMEM); 2485 2486 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2487 t = btf_add_type_mem(btf, sz); 2488 if (!t) 2489 return libbpf_err(-ENOMEM); 2490 2491 name_off = btf__add_str(btf, name); 2492 if (name_off < 0) 2493 return name_off; 2494 2495 t->name_off = name_off; 2496 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2497 t->type = type_id; 2498 2499 v = btf_var(t); 2500 v->linkage = linkage; 2501 2502 return btf_commit_type(btf, sz); 2503 } 2504 2505 /* 2506 * Append new BTF_KIND_DATASEC type with: 2507 * - *name* - non-empty/non-NULL name; 2508 * - *byte_sz* - data section size, in bytes. 2509 * 2510 * Data section is initially empty. Variables info can be added with 2511 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2512 * 2513 * Returns: 2514 * - >0, type ID of newly added BTF type; 2515 * - <0, on error. 2516 */ 2517 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2518 { 2519 struct btf_type *t; 2520 int sz, name_off; 2521 2522 /* non-empty name */ 2523 if (!name || !name[0]) 2524 return libbpf_err(-EINVAL); 2525 2526 if (btf_ensure_modifiable(btf)) 2527 return libbpf_err(-ENOMEM); 2528 2529 sz = sizeof(struct btf_type); 2530 t = btf_add_type_mem(btf, sz); 2531 if (!t) 2532 return libbpf_err(-ENOMEM); 2533 2534 name_off = btf__add_str(btf, name); 2535 if (name_off < 0) 2536 return name_off; 2537 2538 /* start with vlen=0, which will be update as var_secinfos are added */ 2539 t->name_off = name_off; 2540 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2541 t->size = byte_sz; 2542 2543 return btf_commit_type(btf, sz); 2544 } 2545 2546 /* 2547 * Append new data section variable information entry for current DATASEC type: 2548 * - *var_type_id* - type ID, describing type of the variable; 2549 * - *offset* - variable offset within data section, in bytes; 2550 * - *byte_sz* - variable size, in bytes. 2551 * 2552 * Returns: 2553 * - 0, on success; 2554 * - <0, on error. 2555 */ 2556 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2557 { 2558 struct btf_type *t; 2559 struct btf_var_secinfo *v; 2560 int sz; 2561 2562 /* last type should be BTF_KIND_DATASEC */ 2563 if (btf->nr_types == 0) 2564 return libbpf_err(-EINVAL); 2565 t = btf_last_type(btf); 2566 if (!btf_is_datasec(t)) 2567 return libbpf_err(-EINVAL); 2568 2569 if (validate_type_id(var_type_id)) 2570 return libbpf_err(-EINVAL); 2571 2572 /* decompose and invalidate raw data */ 2573 if (btf_ensure_modifiable(btf)) 2574 return libbpf_err(-ENOMEM); 2575 2576 sz = sizeof(struct btf_var_secinfo); 2577 v = btf_add_type_mem(btf, sz); 2578 if (!v) 2579 return libbpf_err(-ENOMEM); 2580 2581 v->type = var_type_id; 2582 v->offset = offset; 2583 v->size = byte_sz; 2584 2585 /* update parent type's vlen */ 2586 t = btf_last_type(btf); 2587 btf_type_inc_vlen(t); 2588 2589 btf->hdr->type_len += sz; 2590 btf->hdr->str_off += sz; 2591 return 0; 2592 } 2593 2594 /* 2595 * Append new BTF_KIND_DECL_TAG type with: 2596 * - *value* - non-empty/non-NULL string; 2597 * - *ref_type_id* - referenced type ID, it might not exist yet; 2598 * - *component_idx* - -1 for tagging reference type, otherwise struct/union 2599 * member or function argument index; 2600 * Returns: 2601 * - >0, type ID of newly added BTF type; 2602 * - <0, on error. 2603 */ 2604 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id, 2605 int component_idx) 2606 { 2607 struct btf_type *t; 2608 int sz, value_off; 2609 2610 if (!value || !value[0] || component_idx < -1) 2611 return libbpf_err(-EINVAL); 2612 2613 if (validate_type_id(ref_type_id)) 2614 return libbpf_err(-EINVAL); 2615 2616 if (btf_ensure_modifiable(btf)) 2617 return libbpf_err(-ENOMEM); 2618 2619 sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag); 2620 t = btf_add_type_mem(btf, sz); 2621 if (!t) 2622 return libbpf_err(-ENOMEM); 2623 2624 value_off = btf__add_str(btf, value); 2625 if (value_off < 0) 2626 return value_off; 2627 2628 t->name_off = value_off; 2629 t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false); 2630 t->type = ref_type_id; 2631 btf_decl_tag(t)->component_idx = component_idx; 2632 2633 return btf_commit_type(btf, sz); 2634 } 2635 2636 struct btf_ext_sec_setup_param { 2637 __u32 off; 2638 __u32 len; 2639 __u32 min_rec_size; 2640 struct btf_ext_info *ext_info; 2641 const char *desc; 2642 }; 2643 2644 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2645 struct btf_ext_sec_setup_param *ext_sec) 2646 { 2647 const struct btf_ext_info_sec *sinfo; 2648 struct btf_ext_info *ext_info; 2649 __u32 info_left, record_size; 2650 size_t sec_cnt = 0; 2651 /* The start of the info sec (including the __u32 record_size). */ 2652 void *info; 2653 2654 if (ext_sec->len == 0) 2655 return 0; 2656 2657 if (ext_sec->off & 0x03) { 2658 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2659 ext_sec->desc); 2660 return -EINVAL; 2661 } 2662 2663 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2664 info_left = ext_sec->len; 2665 2666 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2667 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2668 ext_sec->desc, ext_sec->off, ext_sec->len); 2669 return -EINVAL; 2670 } 2671 2672 /* At least a record size */ 2673 if (info_left < sizeof(__u32)) { 2674 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2675 return -EINVAL; 2676 } 2677 2678 /* The record size needs to meet the minimum standard */ 2679 record_size = *(__u32 *)info; 2680 if (record_size < ext_sec->min_rec_size || 2681 record_size & 0x03) { 2682 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2683 ext_sec->desc, record_size); 2684 return -EINVAL; 2685 } 2686 2687 sinfo = info + sizeof(__u32); 2688 info_left -= sizeof(__u32); 2689 2690 /* If no records, return failure now so .BTF.ext won't be used. */ 2691 if (!info_left) { 2692 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2693 return -EINVAL; 2694 } 2695 2696 while (info_left) { 2697 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2698 __u64 total_record_size; 2699 __u32 num_records; 2700 2701 if (info_left < sec_hdrlen) { 2702 pr_debug("%s section header is not found in .BTF.ext\n", 2703 ext_sec->desc); 2704 return -EINVAL; 2705 } 2706 2707 num_records = sinfo->num_info; 2708 if (num_records == 0) { 2709 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2710 ext_sec->desc); 2711 return -EINVAL; 2712 } 2713 2714 total_record_size = sec_hdrlen + (__u64)num_records * record_size; 2715 if (info_left < total_record_size) { 2716 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2717 ext_sec->desc); 2718 return -EINVAL; 2719 } 2720 2721 info_left -= total_record_size; 2722 sinfo = (void *)sinfo + total_record_size; 2723 sec_cnt++; 2724 } 2725 2726 ext_info = ext_sec->ext_info; 2727 ext_info->len = ext_sec->len - sizeof(__u32); 2728 ext_info->rec_size = record_size; 2729 ext_info->info = info + sizeof(__u32); 2730 ext_info->sec_cnt = sec_cnt; 2731 2732 return 0; 2733 } 2734 2735 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2736 { 2737 struct btf_ext_sec_setup_param param = { 2738 .off = btf_ext->hdr->func_info_off, 2739 .len = btf_ext->hdr->func_info_len, 2740 .min_rec_size = sizeof(struct bpf_func_info_min), 2741 .ext_info = &btf_ext->func_info, 2742 .desc = "func_info" 2743 }; 2744 2745 return btf_ext_setup_info(btf_ext, ¶m); 2746 } 2747 2748 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2749 { 2750 struct btf_ext_sec_setup_param param = { 2751 .off = btf_ext->hdr->line_info_off, 2752 .len = btf_ext->hdr->line_info_len, 2753 .min_rec_size = sizeof(struct bpf_line_info_min), 2754 .ext_info = &btf_ext->line_info, 2755 .desc = "line_info", 2756 }; 2757 2758 return btf_ext_setup_info(btf_ext, ¶m); 2759 } 2760 2761 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2762 { 2763 struct btf_ext_sec_setup_param param = { 2764 .off = btf_ext->hdr->core_relo_off, 2765 .len = btf_ext->hdr->core_relo_len, 2766 .min_rec_size = sizeof(struct bpf_core_relo), 2767 .ext_info = &btf_ext->core_relo_info, 2768 .desc = "core_relo", 2769 }; 2770 2771 return btf_ext_setup_info(btf_ext, ¶m); 2772 } 2773 2774 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2775 { 2776 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2777 2778 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2779 data_size < hdr->hdr_len) { 2780 pr_debug("BTF.ext header not found"); 2781 return -EINVAL; 2782 } 2783 2784 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2785 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2786 return -ENOTSUP; 2787 } else if (hdr->magic != BTF_MAGIC) { 2788 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2789 return -EINVAL; 2790 } 2791 2792 if (hdr->version != BTF_VERSION) { 2793 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2794 return -ENOTSUP; 2795 } 2796 2797 if (hdr->flags) { 2798 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2799 return -ENOTSUP; 2800 } 2801 2802 if (data_size == hdr->hdr_len) { 2803 pr_debug("BTF.ext has no data\n"); 2804 return -EINVAL; 2805 } 2806 2807 return 0; 2808 } 2809 2810 void btf_ext__free(struct btf_ext *btf_ext) 2811 { 2812 if (IS_ERR_OR_NULL(btf_ext)) 2813 return; 2814 free(btf_ext->func_info.sec_idxs); 2815 free(btf_ext->line_info.sec_idxs); 2816 free(btf_ext->core_relo_info.sec_idxs); 2817 free(btf_ext->data); 2818 free(btf_ext); 2819 } 2820 2821 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size) 2822 { 2823 struct btf_ext *btf_ext; 2824 int err; 2825 2826 btf_ext = calloc(1, sizeof(struct btf_ext)); 2827 if (!btf_ext) 2828 return libbpf_err_ptr(-ENOMEM); 2829 2830 btf_ext->data_size = size; 2831 btf_ext->data = malloc(size); 2832 if (!btf_ext->data) { 2833 err = -ENOMEM; 2834 goto done; 2835 } 2836 memcpy(btf_ext->data, data, size); 2837 2838 err = btf_ext_parse_hdr(btf_ext->data, size); 2839 if (err) 2840 goto done; 2841 2842 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) { 2843 err = -EINVAL; 2844 goto done; 2845 } 2846 2847 err = btf_ext_setup_func_info(btf_ext); 2848 if (err) 2849 goto done; 2850 2851 err = btf_ext_setup_line_info(btf_ext); 2852 if (err) 2853 goto done; 2854 2855 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 2856 goto done; /* skip core relos parsing */ 2857 2858 err = btf_ext_setup_core_relos(btf_ext); 2859 if (err) 2860 goto done; 2861 2862 done: 2863 if (err) { 2864 btf_ext__free(btf_ext); 2865 return libbpf_err_ptr(err); 2866 } 2867 2868 return btf_ext; 2869 } 2870 2871 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2872 { 2873 *size = btf_ext->data_size; 2874 return btf_ext->data; 2875 } 2876 2877 struct btf_dedup; 2878 2879 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts); 2880 static void btf_dedup_free(struct btf_dedup *d); 2881 static int btf_dedup_prep(struct btf_dedup *d); 2882 static int btf_dedup_strings(struct btf_dedup *d); 2883 static int btf_dedup_prim_types(struct btf_dedup *d); 2884 static int btf_dedup_struct_types(struct btf_dedup *d); 2885 static int btf_dedup_ref_types(struct btf_dedup *d); 2886 static int btf_dedup_compact_types(struct btf_dedup *d); 2887 static int btf_dedup_remap_types(struct btf_dedup *d); 2888 2889 /* 2890 * Deduplicate BTF types and strings. 2891 * 2892 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2893 * section with all BTF type descriptors and string data. It overwrites that 2894 * memory in-place with deduplicated types and strings without any loss of 2895 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2896 * is provided, all the strings referenced from .BTF.ext section are honored 2897 * and updated to point to the right offsets after deduplication. 2898 * 2899 * If function returns with error, type/string data might be garbled and should 2900 * be discarded. 2901 * 2902 * More verbose and detailed description of both problem btf_dedup is solving, 2903 * as well as solution could be found at: 2904 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2905 * 2906 * Problem description and justification 2907 * ===================================== 2908 * 2909 * BTF type information is typically emitted either as a result of conversion 2910 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2911 * unit contains information about a subset of all the types that are used 2912 * in an application. These subsets are frequently overlapping and contain a lot 2913 * of duplicated information when later concatenated together into a single 2914 * binary. This algorithm ensures that each unique type is represented by single 2915 * BTF type descriptor, greatly reducing resulting size of BTF data. 2916 * 2917 * Compilation unit isolation and subsequent duplication of data is not the only 2918 * problem. The same type hierarchy (e.g., struct and all the type that struct 2919 * references) in different compilation units can be represented in BTF to 2920 * various degrees of completeness (or, rather, incompleteness) due to 2921 * struct/union forward declarations. 2922 * 2923 * Let's take a look at an example, that we'll use to better understand the 2924 * problem (and solution). Suppose we have two compilation units, each using 2925 * same `struct S`, but each of them having incomplete type information about 2926 * struct's fields: 2927 * 2928 * // CU #1: 2929 * struct S; 2930 * struct A { 2931 * int a; 2932 * struct A* self; 2933 * struct S* parent; 2934 * }; 2935 * struct B; 2936 * struct S { 2937 * struct A* a_ptr; 2938 * struct B* b_ptr; 2939 * }; 2940 * 2941 * // CU #2: 2942 * struct S; 2943 * struct A; 2944 * struct B { 2945 * int b; 2946 * struct B* self; 2947 * struct S* parent; 2948 * }; 2949 * struct S { 2950 * struct A* a_ptr; 2951 * struct B* b_ptr; 2952 * }; 2953 * 2954 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2955 * more), but will know the complete type information about `struct A`. While 2956 * for CU #2, it will know full type information about `struct B`, but will 2957 * only know about forward declaration of `struct A` (in BTF terms, it will 2958 * have `BTF_KIND_FWD` type descriptor with name `B`). 2959 * 2960 * This compilation unit isolation means that it's possible that there is no 2961 * single CU with complete type information describing structs `S`, `A`, and 2962 * `B`. Also, we might get tons of duplicated and redundant type information. 2963 * 2964 * Additional complication we need to keep in mind comes from the fact that 2965 * types, in general, can form graphs containing cycles, not just DAGs. 2966 * 2967 * While algorithm does deduplication, it also merges and resolves type 2968 * information (unless disabled throught `struct btf_opts`), whenever possible. 2969 * E.g., in the example above with two compilation units having partial type 2970 * information for structs `A` and `B`, the output of algorithm will emit 2971 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2972 * (as well as type information for `int` and pointers), as if they were defined 2973 * in a single compilation unit as: 2974 * 2975 * struct A { 2976 * int a; 2977 * struct A* self; 2978 * struct S* parent; 2979 * }; 2980 * struct B { 2981 * int b; 2982 * struct B* self; 2983 * struct S* parent; 2984 * }; 2985 * struct S { 2986 * struct A* a_ptr; 2987 * struct B* b_ptr; 2988 * }; 2989 * 2990 * Algorithm summary 2991 * ================= 2992 * 2993 * Algorithm completes its work in 6 separate passes: 2994 * 2995 * 1. Strings deduplication. 2996 * 2. Primitive types deduplication (int, enum, fwd). 2997 * 3. Struct/union types deduplication. 2998 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2999 * protos, and const/volatile/restrict modifiers). 3000 * 5. Types compaction. 3001 * 6. Types remapping. 3002 * 3003 * Algorithm determines canonical type descriptor, which is a single 3004 * representative type for each truly unique type. This canonical type is the 3005 * one that will go into final deduplicated BTF type information. For 3006 * struct/unions, it is also the type that algorithm will merge additional type 3007 * information into (while resolving FWDs), as it discovers it from data in 3008 * other CUs. Each input BTF type eventually gets either mapped to itself, if 3009 * that type is canonical, or to some other type, if that type is equivalent 3010 * and was chosen as canonical representative. This mapping is stored in 3011 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 3012 * FWD type got resolved to. 3013 * 3014 * To facilitate fast discovery of canonical types, we also maintain canonical 3015 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 3016 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 3017 * that match that signature. With sufficiently good choice of type signature 3018 * hashing function, we can limit number of canonical types for each unique type 3019 * signature to a very small number, allowing to find canonical type for any 3020 * duplicated type very quickly. 3021 * 3022 * Struct/union deduplication is the most critical part and algorithm for 3023 * deduplicating structs/unions is described in greater details in comments for 3024 * `btf_dedup_is_equiv` function. 3025 */ 3026 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts) 3027 { 3028 struct btf_dedup *d; 3029 int err; 3030 3031 if (!OPTS_VALID(opts, btf_dedup_opts)) 3032 return libbpf_err(-EINVAL); 3033 3034 d = btf_dedup_new(btf, opts); 3035 if (IS_ERR(d)) { 3036 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 3037 return libbpf_err(-EINVAL); 3038 } 3039 3040 if (btf_ensure_modifiable(btf)) { 3041 err = -ENOMEM; 3042 goto done; 3043 } 3044 3045 err = btf_dedup_prep(d); 3046 if (err) { 3047 pr_debug("btf_dedup_prep failed:%d\n", err); 3048 goto done; 3049 } 3050 err = btf_dedup_strings(d); 3051 if (err < 0) { 3052 pr_debug("btf_dedup_strings failed:%d\n", err); 3053 goto done; 3054 } 3055 err = btf_dedup_prim_types(d); 3056 if (err < 0) { 3057 pr_debug("btf_dedup_prim_types failed:%d\n", err); 3058 goto done; 3059 } 3060 err = btf_dedup_struct_types(d); 3061 if (err < 0) { 3062 pr_debug("btf_dedup_struct_types failed:%d\n", err); 3063 goto done; 3064 } 3065 err = btf_dedup_ref_types(d); 3066 if (err < 0) { 3067 pr_debug("btf_dedup_ref_types failed:%d\n", err); 3068 goto done; 3069 } 3070 err = btf_dedup_compact_types(d); 3071 if (err < 0) { 3072 pr_debug("btf_dedup_compact_types failed:%d\n", err); 3073 goto done; 3074 } 3075 err = btf_dedup_remap_types(d); 3076 if (err < 0) { 3077 pr_debug("btf_dedup_remap_types failed:%d\n", err); 3078 goto done; 3079 } 3080 3081 done: 3082 btf_dedup_free(d); 3083 return libbpf_err(err); 3084 } 3085 3086 #define BTF_UNPROCESSED_ID ((__u32)-1) 3087 #define BTF_IN_PROGRESS_ID ((__u32)-2) 3088 3089 struct btf_dedup { 3090 /* .BTF section to be deduped in-place */ 3091 struct btf *btf; 3092 /* 3093 * Optional .BTF.ext section. When provided, any strings referenced 3094 * from it will be taken into account when deduping strings 3095 */ 3096 struct btf_ext *btf_ext; 3097 /* 3098 * This is a map from any type's signature hash to a list of possible 3099 * canonical representative type candidates. Hash collisions are 3100 * ignored, so even types of various kinds can share same list of 3101 * candidates, which is fine because we rely on subsequent 3102 * btf_xxx_equal() checks to authoritatively verify type equality. 3103 */ 3104 struct hashmap *dedup_table; 3105 /* Canonical types map */ 3106 __u32 *map; 3107 /* Hypothetical mapping, used during type graph equivalence checks */ 3108 __u32 *hypot_map; 3109 __u32 *hypot_list; 3110 size_t hypot_cnt; 3111 size_t hypot_cap; 3112 /* Whether hypothetical mapping, if successful, would need to adjust 3113 * already canonicalized types (due to a new forward declaration to 3114 * concrete type resolution). In such case, during split BTF dedup 3115 * candidate type would still be considered as different, because base 3116 * BTF is considered to be immutable. 3117 */ 3118 bool hypot_adjust_canon; 3119 /* Various option modifying behavior of algorithm */ 3120 struct btf_dedup_opts opts; 3121 /* temporary strings deduplication state */ 3122 struct strset *strs_set; 3123 }; 3124 3125 static long hash_combine(long h, long value) 3126 { 3127 return h * 31 + value; 3128 } 3129 3130 #define for_each_dedup_cand(d, node, hash) \ 3131 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 3132 3133 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 3134 { 3135 return hashmap__append(d->dedup_table, 3136 (void *)hash, (void *)(long)type_id); 3137 } 3138 3139 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 3140 __u32 from_id, __u32 to_id) 3141 { 3142 if (d->hypot_cnt == d->hypot_cap) { 3143 __u32 *new_list; 3144 3145 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 3146 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 3147 if (!new_list) 3148 return -ENOMEM; 3149 d->hypot_list = new_list; 3150 } 3151 d->hypot_list[d->hypot_cnt++] = from_id; 3152 d->hypot_map[from_id] = to_id; 3153 return 0; 3154 } 3155 3156 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3157 { 3158 int i; 3159 3160 for (i = 0; i < d->hypot_cnt; i++) 3161 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3162 d->hypot_cnt = 0; 3163 d->hypot_adjust_canon = false; 3164 } 3165 3166 static void btf_dedup_free(struct btf_dedup *d) 3167 { 3168 hashmap__free(d->dedup_table); 3169 d->dedup_table = NULL; 3170 3171 free(d->map); 3172 d->map = NULL; 3173 3174 free(d->hypot_map); 3175 d->hypot_map = NULL; 3176 3177 free(d->hypot_list); 3178 d->hypot_list = NULL; 3179 3180 free(d); 3181 } 3182 3183 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3184 { 3185 return (size_t)key; 3186 } 3187 3188 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3189 { 3190 return 0; 3191 } 3192 3193 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3194 { 3195 return k1 == k2; 3196 } 3197 3198 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts) 3199 { 3200 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3201 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3202 int i, err = 0, type_cnt; 3203 3204 if (!d) 3205 return ERR_PTR(-ENOMEM); 3206 3207 if (OPTS_GET(opts, force_collisions, false)) 3208 hash_fn = btf_dedup_collision_hash_fn; 3209 3210 d->btf = btf; 3211 d->btf_ext = OPTS_GET(opts, btf_ext, NULL); 3212 3213 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3214 if (IS_ERR(d->dedup_table)) { 3215 err = PTR_ERR(d->dedup_table); 3216 d->dedup_table = NULL; 3217 goto done; 3218 } 3219 3220 type_cnt = btf__type_cnt(btf); 3221 d->map = malloc(sizeof(__u32) * type_cnt); 3222 if (!d->map) { 3223 err = -ENOMEM; 3224 goto done; 3225 } 3226 /* special BTF "void" type is made canonical immediately */ 3227 d->map[0] = 0; 3228 for (i = 1; i < type_cnt; i++) { 3229 struct btf_type *t = btf_type_by_id(d->btf, i); 3230 3231 /* VAR and DATASEC are never deduped and are self-canonical */ 3232 if (btf_is_var(t) || btf_is_datasec(t)) 3233 d->map[i] = i; 3234 else 3235 d->map[i] = BTF_UNPROCESSED_ID; 3236 } 3237 3238 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3239 if (!d->hypot_map) { 3240 err = -ENOMEM; 3241 goto done; 3242 } 3243 for (i = 0; i < type_cnt; i++) 3244 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3245 3246 done: 3247 if (err) { 3248 btf_dedup_free(d); 3249 return ERR_PTR(err); 3250 } 3251 3252 return d; 3253 } 3254 3255 /* 3256 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3257 * string and pass pointer to it to a provided callback `fn`. 3258 */ 3259 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx) 3260 { 3261 int i, r; 3262 3263 for (i = 0; i < d->btf->nr_types; i++) { 3264 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 3265 3266 r = btf_type_visit_str_offs(t, fn, ctx); 3267 if (r) 3268 return r; 3269 } 3270 3271 if (!d->btf_ext) 3272 return 0; 3273 3274 r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx); 3275 if (r) 3276 return r; 3277 3278 return 0; 3279 } 3280 3281 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3282 { 3283 struct btf_dedup *d = ctx; 3284 __u32 str_off = *str_off_ptr; 3285 const char *s; 3286 int off, err; 3287 3288 /* don't touch empty string or string in main BTF */ 3289 if (str_off == 0 || str_off < d->btf->start_str_off) 3290 return 0; 3291 3292 s = btf__str_by_offset(d->btf, str_off); 3293 if (d->btf->base_btf) { 3294 err = btf__find_str(d->btf->base_btf, s); 3295 if (err >= 0) { 3296 *str_off_ptr = err; 3297 return 0; 3298 } 3299 if (err != -ENOENT) 3300 return err; 3301 } 3302 3303 off = strset__add_str(d->strs_set, s); 3304 if (off < 0) 3305 return off; 3306 3307 *str_off_ptr = d->btf->start_str_off + off; 3308 return 0; 3309 } 3310 3311 /* 3312 * Dedup string and filter out those that are not referenced from either .BTF 3313 * or .BTF.ext (if provided) sections. 3314 * 3315 * This is done by building index of all strings in BTF's string section, 3316 * then iterating over all entities that can reference strings (e.g., type 3317 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3318 * strings as used. After that all used strings are deduped and compacted into 3319 * sequential blob of memory and new offsets are calculated. Then all the string 3320 * references are iterated again and rewritten using new offsets. 3321 */ 3322 static int btf_dedup_strings(struct btf_dedup *d) 3323 { 3324 int err; 3325 3326 if (d->btf->strs_deduped) 3327 return 0; 3328 3329 d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0); 3330 if (IS_ERR(d->strs_set)) { 3331 err = PTR_ERR(d->strs_set); 3332 goto err_out; 3333 } 3334 3335 if (!d->btf->base_btf) { 3336 /* insert empty string; we won't be looking it up during strings 3337 * dedup, but it's good to have it for generic BTF string lookups 3338 */ 3339 err = strset__add_str(d->strs_set, ""); 3340 if (err < 0) 3341 goto err_out; 3342 } 3343 3344 /* remap string offsets */ 3345 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3346 if (err) 3347 goto err_out; 3348 3349 /* replace BTF string data and hash with deduped ones */ 3350 strset__free(d->btf->strs_set); 3351 d->btf->hdr->str_len = strset__data_size(d->strs_set); 3352 d->btf->strs_set = d->strs_set; 3353 d->strs_set = NULL; 3354 d->btf->strs_deduped = true; 3355 return 0; 3356 3357 err_out: 3358 strset__free(d->strs_set); 3359 d->strs_set = NULL; 3360 3361 return err; 3362 } 3363 3364 static long btf_hash_common(struct btf_type *t) 3365 { 3366 long h; 3367 3368 h = hash_combine(0, t->name_off); 3369 h = hash_combine(h, t->info); 3370 h = hash_combine(h, t->size); 3371 return h; 3372 } 3373 3374 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3375 { 3376 return t1->name_off == t2->name_off && 3377 t1->info == t2->info && 3378 t1->size == t2->size; 3379 } 3380 3381 /* Calculate type signature hash of INT or TAG. */ 3382 static long btf_hash_int_decl_tag(struct btf_type *t) 3383 { 3384 __u32 info = *(__u32 *)(t + 1); 3385 long h; 3386 3387 h = btf_hash_common(t); 3388 h = hash_combine(h, info); 3389 return h; 3390 } 3391 3392 /* Check structural equality of two INTs or TAGs. */ 3393 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2) 3394 { 3395 __u32 info1, info2; 3396 3397 if (!btf_equal_common(t1, t2)) 3398 return false; 3399 info1 = *(__u32 *)(t1 + 1); 3400 info2 = *(__u32 *)(t2 + 1); 3401 return info1 == info2; 3402 } 3403 3404 /* Calculate type signature hash of ENUM/ENUM64. */ 3405 static long btf_hash_enum(struct btf_type *t) 3406 { 3407 long h; 3408 3409 /* don't hash vlen and enum members to support enum fwd resolving */ 3410 h = hash_combine(0, t->name_off); 3411 h = hash_combine(h, t->info & ~0xffff); 3412 h = hash_combine(h, t->size); 3413 return h; 3414 } 3415 3416 /* Check structural equality of two ENUMs. */ 3417 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3418 { 3419 const struct btf_enum *m1, *m2; 3420 __u16 vlen; 3421 int i; 3422 3423 if (!btf_equal_common(t1, t2)) 3424 return false; 3425 3426 vlen = btf_vlen(t1); 3427 m1 = btf_enum(t1); 3428 m2 = btf_enum(t2); 3429 for (i = 0; i < vlen; i++) { 3430 if (m1->name_off != m2->name_off || m1->val != m2->val) 3431 return false; 3432 m1++; 3433 m2++; 3434 } 3435 return true; 3436 } 3437 3438 static bool btf_equal_enum64(struct btf_type *t1, struct btf_type *t2) 3439 { 3440 const struct btf_enum64 *m1, *m2; 3441 __u16 vlen; 3442 int i; 3443 3444 if (!btf_equal_common(t1, t2)) 3445 return false; 3446 3447 vlen = btf_vlen(t1); 3448 m1 = btf_enum64(t1); 3449 m2 = btf_enum64(t2); 3450 for (i = 0; i < vlen; i++) { 3451 if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 || 3452 m1->val_hi32 != m2->val_hi32) 3453 return false; 3454 m1++; 3455 m2++; 3456 } 3457 return true; 3458 } 3459 3460 static inline bool btf_is_enum_fwd(struct btf_type *t) 3461 { 3462 return btf_is_any_enum(t) && btf_vlen(t) == 0; 3463 } 3464 3465 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3466 { 3467 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3468 return btf_equal_enum(t1, t2); 3469 /* ignore vlen when comparing */ 3470 return t1->name_off == t2->name_off && 3471 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3472 t1->size == t2->size; 3473 } 3474 3475 static bool btf_compat_enum64(struct btf_type *t1, struct btf_type *t2) 3476 { 3477 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3478 return btf_equal_enum64(t1, t2); 3479 3480 /* ignore vlen when comparing */ 3481 return t1->name_off == t2->name_off && 3482 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3483 t1->size == t2->size; 3484 } 3485 3486 /* 3487 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3488 * as referenced type IDs equivalence is established separately during type 3489 * graph equivalence check algorithm. 3490 */ 3491 static long btf_hash_struct(struct btf_type *t) 3492 { 3493 const struct btf_member *member = btf_members(t); 3494 __u32 vlen = btf_vlen(t); 3495 long h = btf_hash_common(t); 3496 int i; 3497 3498 for (i = 0; i < vlen; i++) { 3499 h = hash_combine(h, member->name_off); 3500 h = hash_combine(h, member->offset); 3501 /* no hashing of referenced type ID, it can be unresolved yet */ 3502 member++; 3503 } 3504 return h; 3505 } 3506 3507 /* 3508 * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced 3509 * type IDs. This check is performed during type graph equivalence check and 3510 * referenced types equivalence is checked separately. 3511 */ 3512 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3513 { 3514 const struct btf_member *m1, *m2; 3515 __u16 vlen; 3516 int i; 3517 3518 if (!btf_equal_common(t1, t2)) 3519 return false; 3520 3521 vlen = btf_vlen(t1); 3522 m1 = btf_members(t1); 3523 m2 = btf_members(t2); 3524 for (i = 0; i < vlen; i++) { 3525 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3526 return false; 3527 m1++; 3528 m2++; 3529 } 3530 return true; 3531 } 3532 3533 /* 3534 * Calculate type signature hash of ARRAY, including referenced type IDs, 3535 * under assumption that they were already resolved to canonical type IDs and 3536 * are not going to change. 3537 */ 3538 static long btf_hash_array(struct btf_type *t) 3539 { 3540 const struct btf_array *info = btf_array(t); 3541 long h = btf_hash_common(t); 3542 3543 h = hash_combine(h, info->type); 3544 h = hash_combine(h, info->index_type); 3545 h = hash_combine(h, info->nelems); 3546 return h; 3547 } 3548 3549 /* 3550 * Check exact equality of two ARRAYs, taking into account referenced 3551 * type IDs, under assumption that they were already resolved to canonical 3552 * type IDs and are not going to change. 3553 * This function is called during reference types deduplication to compare 3554 * ARRAY to potential canonical representative. 3555 */ 3556 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3557 { 3558 const struct btf_array *info1, *info2; 3559 3560 if (!btf_equal_common(t1, t2)) 3561 return false; 3562 3563 info1 = btf_array(t1); 3564 info2 = btf_array(t2); 3565 return info1->type == info2->type && 3566 info1->index_type == info2->index_type && 3567 info1->nelems == info2->nelems; 3568 } 3569 3570 /* 3571 * Check structural compatibility of two ARRAYs, ignoring referenced type 3572 * IDs. This check is performed during type graph equivalence check and 3573 * referenced types equivalence is checked separately. 3574 */ 3575 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3576 { 3577 if (!btf_equal_common(t1, t2)) 3578 return false; 3579 3580 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3581 } 3582 3583 /* 3584 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3585 * under assumption that they were already resolved to canonical type IDs and 3586 * are not going to change. 3587 */ 3588 static long btf_hash_fnproto(struct btf_type *t) 3589 { 3590 const struct btf_param *member = btf_params(t); 3591 __u16 vlen = btf_vlen(t); 3592 long h = btf_hash_common(t); 3593 int i; 3594 3595 for (i = 0; i < vlen; i++) { 3596 h = hash_combine(h, member->name_off); 3597 h = hash_combine(h, member->type); 3598 member++; 3599 } 3600 return h; 3601 } 3602 3603 /* 3604 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3605 * type IDs, under assumption that they were already resolved to canonical 3606 * type IDs and are not going to change. 3607 * This function is called during reference types deduplication to compare 3608 * FUNC_PROTO to potential canonical representative. 3609 */ 3610 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3611 { 3612 const struct btf_param *m1, *m2; 3613 __u16 vlen; 3614 int i; 3615 3616 if (!btf_equal_common(t1, t2)) 3617 return false; 3618 3619 vlen = btf_vlen(t1); 3620 m1 = btf_params(t1); 3621 m2 = btf_params(t2); 3622 for (i = 0; i < vlen; i++) { 3623 if (m1->name_off != m2->name_off || m1->type != m2->type) 3624 return false; 3625 m1++; 3626 m2++; 3627 } 3628 return true; 3629 } 3630 3631 /* 3632 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3633 * IDs. This check is performed during type graph equivalence check and 3634 * referenced types equivalence is checked separately. 3635 */ 3636 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3637 { 3638 const struct btf_param *m1, *m2; 3639 __u16 vlen; 3640 int i; 3641 3642 /* skip return type ID */ 3643 if (t1->name_off != t2->name_off || t1->info != t2->info) 3644 return false; 3645 3646 vlen = btf_vlen(t1); 3647 m1 = btf_params(t1); 3648 m2 = btf_params(t2); 3649 for (i = 0; i < vlen; i++) { 3650 if (m1->name_off != m2->name_off) 3651 return false; 3652 m1++; 3653 m2++; 3654 } 3655 return true; 3656 } 3657 3658 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3659 * types and initializing the rest of the state (canonical type mapping) for 3660 * the fixed base BTF part. 3661 */ 3662 static int btf_dedup_prep(struct btf_dedup *d) 3663 { 3664 struct btf_type *t; 3665 int type_id; 3666 long h; 3667 3668 if (!d->btf->base_btf) 3669 return 0; 3670 3671 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3672 t = btf_type_by_id(d->btf, type_id); 3673 3674 /* all base BTF types are self-canonical by definition */ 3675 d->map[type_id] = type_id; 3676 3677 switch (btf_kind(t)) { 3678 case BTF_KIND_VAR: 3679 case BTF_KIND_DATASEC: 3680 /* VAR and DATASEC are never hash/deduplicated */ 3681 continue; 3682 case BTF_KIND_CONST: 3683 case BTF_KIND_VOLATILE: 3684 case BTF_KIND_RESTRICT: 3685 case BTF_KIND_PTR: 3686 case BTF_KIND_FWD: 3687 case BTF_KIND_TYPEDEF: 3688 case BTF_KIND_FUNC: 3689 case BTF_KIND_FLOAT: 3690 case BTF_KIND_TYPE_TAG: 3691 h = btf_hash_common(t); 3692 break; 3693 case BTF_KIND_INT: 3694 case BTF_KIND_DECL_TAG: 3695 h = btf_hash_int_decl_tag(t); 3696 break; 3697 case BTF_KIND_ENUM: 3698 case BTF_KIND_ENUM64: 3699 h = btf_hash_enum(t); 3700 break; 3701 case BTF_KIND_STRUCT: 3702 case BTF_KIND_UNION: 3703 h = btf_hash_struct(t); 3704 break; 3705 case BTF_KIND_ARRAY: 3706 h = btf_hash_array(t); 3707 break; 3708 case BTF_KIND_FUNC_PROTO: 3709 h = btf_hash_fnproto(t); 3710 break; 3711 default: 3712 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3713 return -EINVAL; 3714 } 3715 if (btf_dedup_table_add(d, h, type_id)) 3716 return -ENOMEM; 3717 } 3718 3719 return 0; 3720 } 3721 3722 /* 3723 * Deduplicate primitive types, that can't reference other types, by calculating 3724 * their type signature hash and comparing them with any possible canonical 3725 * candidate. If no canonical candidate matches, type itself is marked as 3726 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3727 */ 3728 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3729 { 3730 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3731 struct hashmap_entry *hash_entry; 3732 struct btf_type *cand; 3733 /* if we don't find equivalent type, then we are canonical */ 3734 __u32 new_id = type_id; 3735 __u32 cand_id; 3736 long h; 3737 3738 switch (btf_kind(t)) { 3739 case BTF_KIND_CONST: 3740 case BTF_KIND_VOLATILE: 3741 case BTF_KIND_RESTRICT: 3742 case BTF_KIND_PTR: 3743 case BTF_KIND_TYPEDEF: 3744 case BTF_KIND_ARRAY: 3745 case BTF_KIND_STRUCT: 3746 case BTF_KIND_UNION: 3747 case BTF_KIND_FUNC: 3748 case BTF_KIND_FUNC_PROTO: 3749 case BTF_KIND_VAR: 3750 case BTF_KIND_DATASEC: 3751 case BTF_KIND_DECL_TAG: 3752 case BTF_KIND_TYPE_TAG: 3753 return 0; 3754 3755 case BTF_KIND_INT: 3756 h = btf_hash_int_decl_tag(t); 3757 for_each_dedup_cand(d, hash_entry, h) { 3758 cand_id = (__u32)(long)hash_entry->value; 3759 cand = btf_type_by_id(d->btf, cand_id); 3760 if (btf_equal_int_tag(t, cand)) { 3761 new_id = cand_id; 3762 break; 3763 } 3764 } 3765 break; 3766 3767 case BTF_KIND_ENUM: 3768 h = btf_hash_enum(t); 3769 for_each_dedup_cand(d, hash_entry, h) { 3770 cand_id = (__u32)(long)hash_entry->value; 3771 cand = btf_type_by_id(d->btf, cand_id); 3772 if (btf_equal_enum(t, cand)) { 3773 new_id = cand_id; 3774 break; 3775 } 3776 if (btf_compat_enum(t, cand)) { 3777 if (btf_is_enum_fwd(t)) { 3778 /* resolve fwd to full enum */ 3779 new_id = cand_id; 3780 break; 3781 } 3782 /* resolve canonical enum fwd to full enum */ 3783 d->map[cand_id] = type_id; 3784 } 3785 } 3786 break; 3787 3788 case BTF_KIND_ENUM64: 3789 h = btf_hash_enum(t); 3790 for_each_dedup_cand(d, hash_entry, h) { 3791 cand_id = (__u32)(long)hash_entry->value; 3792 cand = btf_type_by_id(d->btf, cand_id); 3793 if (btf_equal_enum64(t, cand)) { 3794 new_id = cand_id; 3795 break; 3796 } 3797 if (btf_compat_enum64(t, cand)) { 3798 if (btf_is_enum_fwd(t)) { 3799 /* resolve fwd to full enum */ 3800 new_id = cand_id; 3801 break; 3802 } 3803 /* resolve canonical enum fwd to full enum */ 3804 d->map[cand_id] = type_id; 3805 } 3806 } 3807 break; 3808 3809 case BTF_KIND_FWD: 3810 case BTF_KIND_FLOAT: 3811 h = btf_hash_common(t); 3812 for_each_dedup_cand(d, hash_entry, h) { 3813 cand_id = (__u32)(long)hash_entry->value; 3814 cand = btf_type_by_id(d->btf, cand_id); 3815 if (btf_equal_common(t, cand)) { 3816 new_id = cand_id; 3817 break; 3818 } 3819 } 3820 break; 3821 3822 default: 3823 return -EINVAL; 3824 } 3825 3826 d->map[type_id] = new_id; 3827 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3828 return -ENOMEM; 3829 3830 return 0; 3831 } 3832 3833 static int btf_dedup_prim_types(struct btf_dedup *d) 3834 { 3835 int i, err; 3836 3837 for (i = 0; i < d->btf->nr_types; i++) { 3838 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3839 if (err) 3840 return err; 3841 } 3842 return 0; 3843 } 3844 3845 /* 3846 * Check whether type is already mapped into canonical one (could be to itself). 3847 */ 3848 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3849 { 3850 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3851 } 3852 3853 /* 3854 * Resolve type ID into its canonical type ID, if any; otherwise return original 3855 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3856 * STRUCT/UNION link and resolve it into canonical type ID as well. 3857 */ 3858 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3859 { 3860 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3861 type_id = d->map[type_id]; 3862 return type_id; 3863 } 3864 3865 /* 3866 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3867 * type ID. 3868 */ 3869 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3870 { 3871 __u32 orig_type_id = type_id; 3872 3873 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3874 return type_id; 3875 3876 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3877 type_id = d->map[type_id]; 3878 3879 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3880 return type_id; 3881 3882 return orig_type_id; 3883 } 3884 3885 3886 static inline __u16 btf_fwd_kind(struct btf_type *t) 3887 { 3888 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3889 } 3890 3891 /* Check if given two types are identical ARRAY definitions */ 3892 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3893 { 3894 struct btf_type *t1, *t2; 3895 3896 t1 = btf_type_by_id(d->btf, id1); 3897 t2 = btf_type_by_id(d->btf, id2); 3898 if (!btf_is_array(t1) || !btf_is_array(t2)) 3899 return 0; 3900 3901 return btf_equal_array(t1, t2); 3902 } 3903 3904 /* Check if given two types are identical STRUCT/UNION definitions */ 3905 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2) 3906 { 3907 const struct btf_member *m1, *m2; 3908 struct btf_type *t1, *t2; 3909 int n, i; 3910 3911 t1 = btf_type_by_id(d->btf, id1); 3912 t2 = btf_type_by_id(d->btf, id2); 3913 3914 if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2)) 3915 return false; 3916 3917 if (!btf_shallow_equal_struct(t1, t2)) 3918 return false; 3919 3920 m1 = btf_members(t1); 3921 m2 = btf_members(t2); 3922 for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) { 3923 if (m1->type != m2->type) 3924 return false; 3925 } 3926 return true; 3927 } 3928 3929 /* 3930 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3931 * call it "candidate graph" in this description for brevity) to a type graph 3932 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3933 * here, though keep in mind that not all types in canonical graph are 3934 * necessarily canonical representatives themselves, some of them might be 3935 * duplicates or its uniqueness might not have been established yet). 3936 * Returns: 3937 * - >0, if type graphs are equivalent; 3938 * - 0, if not equivalent; 3939 * - <0, on error. 3940 * 3941 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3942 * equivalence of BTF types at each step. If at any point BTF types in candidate 3943 * and canonical graphs are not compatible structurally, whole graphs are 3944 * incompatible. If types are structurally equivalent (i.e., all information 3945 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3946 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3947 * If a type references other types, then those referenced types are checked 3948 * for equivalence recursively. 3949 * 3950 * During DFS traversal, if we find that for current `canon_id` type we 3951 * already have some mapping in hypothetical map, we check for two possible 3952 * situations: 3953 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3954 * happen when type graphs have cycles. In this case we assume those two 3955 * types are equivalent. 3956 * - `canon_id` is mapped to different type. This is contradiction in our 3957 * hypothetical mapping, because same graph in canonical graph corresponds 3958 * to two different types in candidate graph, which for equivalent type 3959 * graphs shouldn't happen. This condition terminates equivalence check 3960 * with negative result. 3961 * 3962 * If type graphs traversal exhausts types to check and find no contradiction, 3963 * then type graphs are equivalent. 3964 * 3965 * When checking types for equivalence, there is one special case: FWD types. 3966 * If FWD type resolution is allowed and one of the types (either from canonical 3967 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3968 * flag) and their names match, hypothetical mapping is updated to point from 3969 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3970 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3971 * 3972 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3973 * if there are two exactly named (or anonymous) structs/unions that are 3974 * compatible structurally, one of which has FWD field, while other is concrete 3975 * STRUCT/UNION, but according to C sources they are different structs/unions 3976 * that are referencing different types with the same name. This is extremely 3977 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3978 * this logic is causing problems. 3979 * 3980 * Doing FWD resolution means that both candidate and/or canonical graphs can 3981 * consists of portions of the graph that come from multiple compilation units. 3982 * This is due to the fact that types within single compilation unit are always 3983 * deduplicated and FWDs are already resolved, if referenced struct/union 3984 * definiton is available. So, if we had unresolved FWD and found corresponding 3985 * STRUCT/UNION, they will be from different compilation units. This 3986 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3987 * type graph will likely have at least two different BTF types that describe 3988 * same type (e.g., most probably there will be two different BTF types for the 3989 * same 'int' primitive type) and could even have "overlapping" parts of type 3990 * graph that describe same subset of types. 3991 * 3992 * This in turn means that our assumption that each type in canonical graph 3993 * must correspond to exactly one type in candidate graph might not hold 3994 * anymore and will make it harder to detect contradictions using hypothetical 3995 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3996 * resolution only in canonical graph. FWDs in candidate graphs are never 3997 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3998 * that can occur: 3999 * - Both types in canonical and candidate graphs are FWDs. If they are 4000 * structurally equivalent, then they can either be both resolved to the 4001 * same STRUCT/UNION or not resolved at all. In both cases they are 4002 * equivalent and there is no need to resolve FWD on candidate side. 4003 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 4004 * so nothing to resolve as well, algorithm will check equivalence anyway. 4005 * - Type in canonical graph is FWD, while type in candidate is concrete 4006 * STRUCT/UNION. In this case candidate graph comes from single compilation 4007 * unit, so there is exactly one BTF type for each unique C type. After 4008 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 4009 * in canonical graph mapping to single BTF type in candidate graph, but 4010 * because hypothetical mapping maps from canonical to candidate types, it's 4011 * alright, and we still maintain the property of having single `canon_id` 4012 * mapping to single `cand_id` (there could be two different `canon_id` 4013 * mapped to the same `cand_id`, but it's not contradictory). 4014 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 4015 * graph is FWD. In this case we are just going to check compatibility of 4016 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 4017 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 4018 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 4019 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 4020 * canonical graph. 4021 */ 4022 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 4023 __u32 canon_id) 4024 { 4025 struct btf_type *cand_type; 4026 struct btf_type *canon_type; 4027 __u32 hypot_type_id; 4028 __u16 cand_kind; 4029 __u16 canon_kind; 4030 int i, eq; 4031 4032 /* if both resolve to the same canonical, they must be equivalent */ 4033 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 4034 return 1; 4035 4036 canon_id = resolve_fwd_id(d, canon_id); 4037 4038 hypot_type_id = d->hypot_map[canon_id]; 4039 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 4040 if (hypot_type_id == cand_id) 4041 return 1; 4042 /* In some cases compiler will generate different DWARF types 4043 * for *identical* array type definitions and use them for 4044 * different fields within the *same* struct. This breaks type 4045 * equivalence check, which makes an assumption that candidate 4046 * types sub-graph has a consistent and deduped-by-compiler 4047 * types within a single CU. So work around that by explicitly 4048 * allowing identical array types here. 4049 */ 4050 if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id)) 4051 return 1; 4052 /* It turns out that similar situation can happen with 4053 * struct/union sometimes, sigh... Handle the case where 4054 * structs/unions are exactly the same, down to the referenced 4055 * type IDs. Anything more complicated (e.g., if referenced 4056 * types are different, but equivalent) is *way more* 4057 * complicated and requires a many-to-many equivalence mapping. 4058 */ 4059 if (btf_dedup_identical_structs(d, hypot_type_id, cand_id)) 4060 return 1; 4061 return 0; 4062 } 4063 4064 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 4065 return -ENOMEM; 4066 4067 cand_type = btf_type_by_id(d->btf, cand_id); 4068 canon_type = btf_type_by_id(d->btf, canon_id); 4069 cand_kind = btf_kind(cand_type); 4070 canon_kind = btf_kind(canon_type); 4071 4072 if (cand_type->name_off != canon_type->name_off) 4073 return 0; 4074 4075 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 4076 if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 4077 && cand_kind != canon_kind) { 4078 __u16 real_kind; 4079 __u16 fwd_kind; 4080 4081 if (cand_kind == BTF_KIND_FWD) { 4082 real_kind = canon_kind; 4083 fwd_kind = btf_fwd_kind(cand_type); 4084 } else { 4085 real_kind = cand_kind; 4086 fwd_kind = btf_fwd_kind(canon_type); 4087 /* we'd need to resolve base FWD to STRUCT/UNION */ 4088 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 4089 d->hypot_adjust_canon = true; 4090 } 4091 return fwd_kind == real_kind; 4092 } 4093 4094 if (cand_kind != canon_kind) 4095 return 0; 4096 4097 switch (cand_kind) { 4098 case BTF_KIND_INT: 4099 return btf_equal_int_tag(cand_type, canon_type); 4100 4101 case BTF_KIND_ENUM: 4102 return btf_compat_enum(cand_type, canon_type); 4103 4104 case BTF_KIND_ENUM64: 4105 return btf_compat_enum64(cand_type, canon_type); 4106 4107 case BTF_KIND_FWD: 4108 case BTF_KIND_FLOAT: 4109 return btf_equal_common(cand_type, canon_type); 4110 4111 case BTF_KIND_CONST: 4112 case BTF_KIND_VOLATILE: 4113 case BTF_KIND_RESTRICT: 4114 case BTF_KIND_PTR: 4115 case BTF_KIND_TYPEDEF: 4116 case BTF_KIND_FUNC: 4117 case BTF_KIND_TYPE_TAG: 4118 if (cand_type->info != canon_type->info) 4119 return 0; 4120 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4121 4122 case BTF_KIND_ARRAY: { 4123 const struct btf_array *cand_arr, *canon_arr; 4124 4125 if (!btf_compat_array(cand_type, canon_type)) 4126 return 0; 4127 cand_arr = btf_array(cand_type); 4128 canon_arr = btf_array(canon_type); 4129 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 4130 if (eq <= 0) 4131 return eq; 4132 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4133 } 4134 4135 case BTF_KIND_STRUCT: 4136 case BTF_KIND_UNION: { 4137 const struct btf_member *cand_m, *canon_m; 4138 __u16 vlen; 4139 4140 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4141 return 0; 4142 vlen = btf_vlen(cand_type); 4143 cand_m = btf_members(cand_type); 4144 canon_m = btf_members(canon_type); 4145 for (i = 0; i < vlen; i++) { 4146 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4147 if (eq <= 0) 4148 return eq; 4149 cand_m++; 4150 canon_m++; 4151 } 4152 4153 return 1; 4154 } 4155 4156 case BTF_KIND_FUNC_PROTO: { 4157 const struct btf_param *cand_p, *canon_p; 4158 __u16 vlen; 4159 4160 if (!btf_compat_fnproto(cand_type, canon_type)) 4161 return 0; 4162 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4163 if (eq <= 0) 4164 return eq; 4165 vlen = btf_vlen(cand_type); 4166 cand_p = btf_params(cand_type); 4167 canon_p = btf_params(canon_type); 4168 for (i = 0; i < vlen; i++) { 4169 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4170 if (eq <= 0) 4171 return eq; 4172 cand_p++; 4173 canon_p++; 4174 } 4175 return 1; 4176 } 4177 4178 default: 4179 return -EINVAL; 4180 } 4181 return 0; 4182 } 4183 4184 /* 4185 * Use hypothetical mapping, produced by successful type graph equivalence 4186 * check, to augment existing struct/union canonical mapping, where possible. 4187 * 4188 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4189 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4190 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4191 * we are recording the mapping anyway. As opposed to carefulness required 4192 * for struct/union correspondence mapping (described below), for FWD resolution 4193 * it's not important, as by the time that FWD type (reference type) will be 4194 * deduplicated all structs/unions will be deduped already anyway. 4195 * 4196 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4197 * not required for correctness. It needs to be done carefully to ensure that 4198 * struct/union from candidate's type graph is not mapped into corresponding 4199 * struct/union from canonical type graph that itself hasn't been resolved into 4200 * canonical representative. The only guarantee we have is that canonical 4201 * struct/union was determined as canonical and that won't change. But any 4202 * types referenced through that struct/union fields could have been not yet 4203 * resolved, so in case like that it's too early to establish any kind of 4204 * correspondence between structs/unions. 4205 * 4206 * No canonical correspondence is derived for primitive types (they are already 4207 * deduplicated completely already anyway) or reference types (they rely on 4208 * stability of struct/union canonical relationship for equivalence checks). 4209 */ 4210 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4211 { 4212 __u32 canon_type_id, targ_type_id; 4213 __u16 t_kind, c_kind; 4214 __u32 t_id, c_id; 4215 int i; 4216 4217 for (i = 0; i < d->hypot_cnt; i++) { 4218 canon_type_id = d->hypot_list[i]; 4219 targ_type_id = d->hypot_map[canon_type_id]; 4220 t_id = resolve_type_id(d, targ_type_id); 4221 c_id = resolve_type_id(d, canon_type_id); 4222 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4223 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4224 /* 4225 * Resolve FWD into STRUCT/UNION. 4226 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4227 * mapped to canonical representative (as opposed to 4228 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4229 * eventually that struct is going to be mapped and all resolved 4230 * FWDs will automatically resolve to correct canonical 4231 * representative. This will happen before ref type deduping, 4232 * which critically depends on stability of these mapping. This 4233 * stability is not a requirement for STRUCT/UNION equivalence 4234 * checks, though. 4235 */ 4236 4237 /* if it's the split BTF case, we still need to point base FWD 4238 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4239 * will be resolved against base FWD. If we don't point base 4240 * canonical FWD to the resolved STRUCT/UNION, then all the 4241 * FWDs in split BTF won't be correctly resolved to a proper 4242 * STRUCT/UNION. 4243 */ 4244 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4245 d->map[c_id] = t_id; 4246 4247 /* if graph equivalence determined that we'd need to adjust 4248 * base canonical types, then we need to only point base FWDs 4249 * to STRUCTs/UNIONs and do no more modifications. For all 4250 * other purposes the type graphs were not equivalent. 4251 */ 4252 if (d->hypot_adjust_canon) 4253 continue; 4254 4255 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4256 d->map[t_id] = c_id; 4257 4258 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4259 c_kind != BTF_KIND_FWD && 4260 is_type_mapped(d, c_id) && 4261 !is_type_mapped(d, t_id)) { 4262 /* 4263 * as a perf optimization, we can map struct/union 4264 * that's part of type graph we just verified for 4265 * equivalence. We can do that for struct/union that has 4266 * canonical representative only, though. 4267 */ 4268 d->map[t_id] = c_id; 4269 } 4270 } 4271 } 4272 4273 /* 4274 * Deduplicate struct/union types. 4275 * 4276 * For each struct/union type its type signature hash is calculated, taking 4277 * into account type's name, size, number, order and names of fields, but 4278 * ignoring type ID's referenced from fields, because they might not be deduped 4279 * completely until after reference types deduplication phase. This type hash 4280 * is used to iterate over all potential canonical types, sharing same hash. 4281 * For each canonical candidate we check whether type graphs that they form 4282 * (through referenced types in fields and so on) are equivalent using algorithm 4283 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4284 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4285 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4286 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4287 * potentially map other structs/unions to their canonical representatives, 4288 * if such relationship hasn't yet been established. This speeds up algorithm 4289 * by eliminating some of the duplicate work. 4290 * 4291 * If no matching canonical representative was found, struct/union is marked 4292 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4293 * for further look ups. 4294 */ 4295 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4296 { 4297 struct btf_type *cand_type, *t; 4298 struct hashmap_entry *hash_entry; 4299 /* if we don't find equivalent type, then we are canonical */ 4300 __u32 new_id = type_id; 4301 __u16 kind; 4302 long h; 4303 4304 /* already deduped or is in process of deduping (loop detected) */ 4305 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4306 return 0; 4307 4308 t = btf_type_by_id(d->btf, type_id); 4309 kind = btf_kind(t); 4310 4311 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4312 return 0; 4313 4314 h = btf_hash_struct(t); 4315 for_each_dedup_cand(d, hash_entry, h) { 4316 __u32 cand_id = (__u32)(long)hash_entry->value; 4317 int eq; 4318 4319 /* 4320 * Even though btf_dedup_is_equiv() checks for 4321 * btf_shallow_equal_struct() internally when checking two 4322 * structs (unions) for equivalence, we need to guard here 4323 * from picking matching FWD type as a dedup candidate. 4324 * This can happen due to hash collision. In such case just 4325 * relying on btf_dedup_is_equiv() would lead to potentially 4326 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4327 * FWD and compatible STRUCT/UNION are considered equivalent. 4328 */ 4329 cand_type = btf_type_by_id(d->btf, cand_id); 4330 if (!btf_shallow_equal_struct(t, cand_type)) 4331 continue; 4332 4333 btf_dedup_clear_hypot_map(d); 4334 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4335 if (eq < 0) 4336 return eq; 4337 if (!eq) 4338 continue; 4339 btf_dedup_merge_hypot_map(d); 4340 if (d->hypot_adjust_canon) /* not really equivalent */ 4341 continue; 4342 new_id = cand_id; 4343 break; 4344 } 4345 4346 d->map[type_id] = new_id; 4347 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4348 return -ENOMEM; 4349 4350 return 0; 4351 } 4352 4353 static int btf_dedup_struct_types(struct btf_dedup *d) 4354 { 4355 int i, err; 4356 4357 for (i = 0; i < d->btf->nr_types; i++) { 4358 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4359 if (err) 4360 return err; 4361 } 4362 return 0; 4363 } 4364 4365 /* 4366 * Deduplicate reference type. 4367 * 4368 * Once all primitive and struct/union types got deduplicated, we can easily 4369 * deduplicate all other (reference) BTF types. This is done in two steps: 4370 * 4371 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4372 * resolution can be done either immediately for primitive or struct/union types 4373 * (because they were deduped in previous two phases) or recursively for 4374 * reference types. Recursion will always terminate at either primitive or 4375 * struct/union type, at which point we can "unwind" chain of reference types 4376 * one by one. There is no danger of encountering cycles because in C type 4377 * system the only way to form type cycle is through struct/union, so any chain 4378 * of reference types, even those taking part in a type cycle, will inevitably 4379 * reach struct/union at some point. 4380 * 4381 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4382 * becomes "stable", in the sense that no further deduplication will cause 4383 * any changes to it. With that, it's now possible to calculate type's signature 4384 * hash (this time taking into account referenced type IDs) and loop over all 4385 * potential canonical representatives. If no match was found, current type 4386 * will become canonical representative of itself and will be added into 4387 * btf_dedup->dedup_table as another possible canonical representative. 4388 */ 4389 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4390 { 4391 struct hashmap_entry *hash_entry; 4392 __u32 new_id = type_id, cand_id; 4393 struct btf_type *t, *cand; 4394 /* if we don't find equivalent type, then we are representative type */ 4395 int ref_type_id; 4396 long h; 4397 4398 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4399 return -ELOOP; 4400 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4401 return resolve_type_id(d, type_id); 4402 4403 t = btf_type_by_id(d->btf, type_id); 4404 d->map[type_id] = BTF_IN_PROGRESS_ID; 4405 4406 switch (btf_kind(t)) { 4407 case BTF_KIND_CONST: 4408 case BTF_KIND_VOLATILE: 4409 case BTF_KIND_RESTRICT: 4410 case BTF_KIND_PTR: 4411 case BTF_KIND_TYPEDEF: 4412 case BTF_KIND_FUNC: 4413 case BTF_KIND_TYPE_TAG: 4414 ref_type_id = btf_dedup_ref_type(d, t->type); 4415 if (ref_type_id < 0) 4416 return ref_type_id; 4417 t->type = ref_type_id; 4418 4419 h = btf_hash_common(t); 4420 for_each_dedup_cand(d, hash_entry, h) { 4421 cand_id = (__u32)(long)hash_entry->value; 4422 cand = btf_type_by_id(d->btf, cand_id); 4423 if (btf_equal_common(t, cand)) { 4424 new_id = cand_id; 4425 break; 4426 } 4427 } 4428 break; 4429 4430 case BTF_KIND_DECL_TAG: 4431 ref_type_id = btf_dedup_ref_type(d, t->type); 4432 if (ref_type_id < 0) 4433 return ref_type_id; 4434 t->type = ref_type_id; 4435 4436 h = btf_hash_int_decl_tag(t); 4437 for_each_dedup_cand(d, hash_entry, h) { 4438 cand_id = (__u32)(long)hash_entry->value; 4439 cand = btf_type_by_id(d->btf, cand_id); 4440 if (btf_equal_int_tag(t, cand)) { 4441 new_id = cand_id; 4442 break; 4443 } 4444 } 4445 break; 4446 4447 case BTF_KIND_ARRAY: { 4448 struct btf_array *info = btf_array(t); 4449 4450 ref_type_id = btf_dedup_ref_type(d, info->type); 4451 if (ref_type_id < 0) 4452 return ref_type_id; 4453 info->type = ref_type_id; 4454 4455 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4456 if (ref_type_id < 0) 4457 return ref_type_id; 4458 info->index_type = ref_type_id; 4459 4460 h = btf_hash_array(t); 4461 for_each_dedup_cand(d, hash_entry, h) { 4462 cand_id = (__u32)(long)hash_entry->value; 4463 cand = btf_type_by_id(d->btf, cand_id); 4464 if (btf_equal_array(t, cand)) { 4465 new_id = cand_id; 4466 break; 4467 } 4468 } 4469 break; 4470 } 4471 4472 case BTF_KIND_FUNC_PROTO: { 4473 struct btf_param *param; 4474 __u16 vlen; 4475 int i; 4476 4477 ref_type_id = btf_dedup_ref_type(d, t->type); 4478 if (ref_type_id < 0) 4479 return ref_type_id; 4480 t->type = ref_type_id; 4481 4482 vlen = btf_vlen(t); 4483 param = btf_params(t); 4484 for (i = 0; i < vlen; i++) { 4485 ref_type_id = btf_dedup_ref_type(d, param->type); 4486 if (ref_type_id < 0) 4487 return ref_type_id; 4488 param->type = ref_type_id; 4489 param++; 4490 } 4491 4492 h = btf_hash_fnproto(t); 4493 for_each_dedup_cand(d, hash_entry, h) { 4494 cand_id = (__u32)(long)hash_entry->value; 4495 cand = btf_type_by_id(d->btf, cand_id); 4496 if (btf_equal_fnproto(t, cand)) { 4497 new_id = cand_id; 4498 break; 4499 } 4500 } 4501 break; 4502 } 4503 4504 default: 4505 return -EINVAL; 4506 } 4507 4508 d->map[type_id] = new_id; 4509 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4510 return -ENOMEM; 4511 4512 return new_id; 4513 } 4514 4515 static int btf_dedup_ref_types(struct btf_dedup *d) 4516 { 4517 int i, err; 4518 4519 for (i = 0; i < d->btf->nr_types; i++) { 4520 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4521 if (err < 0) 4522 return err; 4523 } 4524 /* we won't need d->dedup_table anymore */ 4525 hashmap__free(d->dedup_table); 4526 d->dedup_table = NULL; 4527 return 0; 4528 } 4529 4530 /* 4531 * Compact types. 4532 * 4533 * After we established for each type its corresponding canonical representative 4534 * type, we now can eliminate types that are not canonical and leave only 4535 * canonical ones layed out sequentially in memory by copying them over 4536 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4537 * a map from original type ID to a new compacted type ID, which will be used 4538 * during next phase to "fix up" type IDs, referenced from struct/union and 4539 * reference types. 4540 */ 4541 static int btf_dedup_compact_types(struct btf_dedup *d) 4542 { 4543 __u32 *new_offs; 4544 __u32 next_type_id = d->btf->start_id; 4545 const struct btf_type *t; 4546 void *p; 4547 int i, id, len; 4548 4549 /* we are going to reuse hypot_map to store compaction remapping */ 4550 d->hypot_map[0] = 0; 4551 /* base BTF types are not renumbered */ 4552 for (id = 1; id < d->btf->start_id; id++) 4553 d->hypot_map[id] = id; 4554 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4555 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4556 4557 p = d->btf->types_data; 4558 4559 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4560 if (d->map[id] != id) 4561 continue; 4562 4563 t = btf__type_by_id(d->btf, id); 4564 len = btf_type_size(t); 4565 if (len < 0) 4566 return len; 4567 4568 memmove(p, t, len); 4569 d->hypot_map[id] = next_type_id; 4570 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4571 p += len; 4572 next_type_id++; 4573 } 4574 4575 /* shrink struct btf's internal types index and update btf_header */ 4576 d->btf->nr_types = next_type_id - d->btf->start_id; 4577 d->btf->type_offs_cap = d->btf->nr_types; 4578 d->btf->hdr->type_len = p - d->btf->types_data; 4579 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4580 sizeof(*new_offs)); 4581 if (d->btf->type_offs_cap && !new_offs) 4582 return -ENOMEM; 4583 d->btf->type_offs = new_offs; 4584 d->btf->hdr->str_off = d->btf->hdr->type_len; 4585 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4586 return 0; 4587 } 4588 4589 /* 4590 * Figure out final (deduplicated and compacted) type ID for provided original 4591 * `type_id` by first resolving it into corresponding canonical type ID and 4592 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4593 * which is populated during compaction phase. 4594 */ 4595 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx) 4596 { 4597 struct btf_dedup *d = ctx; 4598 __u32 resolved_type_id, new_type_id; 4599 4600 resolved_type_id = resolve_type_id(d, *type_id); 4601 new_type_id = d->hypot_map[resolved_type_id]; 4602 if (new_type_id > BTF_MAX_NR_TYPES) 4603 return -EINVAL; 4604 4605 *type_id = new_type_id; 4606 return 0; 4607 } 4608 4609 /* 4610 * Remap referenced type IDs into deduped type IDs. 4611 * 4612 * After BTF types are deduplicated and compacted, their final type IDs may 4613 * differ from original ones. The map from original to a corresponding 4614 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4615 * compaction phase. During remapping phase we are rewriting all type IDs 4616 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4617 * their final deduped type IDs. 4618 */ 4619 static int btf_dedup_remap_types(struct btf_dedup *d) 4620 { 4621 int i, r; 4622 4623 for (i = 0; i < d->btf->nr_types; i++) { 4624 struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i); 4625 4626 r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d); 4627 if (r) 4628 return r; 4629 } 4630 4631 if (!d->btf_ext) 4632 return 0; 4633 4634 r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d); 4635 if (r) 4636 return r; 4637 4638 return 0; 4639 } 4640 4641 /* 4642 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4643 * data out of it to use for target BTF. 4644 */ 4645 struct btf *btf__load_vmlinux_btf(void) 4646 { 4647 struct { 4648 const char *path_fmt; 4649 bool raw_btf; 4650 } locations[] = { 4651 /* try canonical vmlinux BTF through sysfs first */ 4652 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4653 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4654 { "/boot/vmlinux-%1$s" }, 4655 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4656 { "/lib/modules/%1$s/build/vmlinux" }, 4657 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4658 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4659 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4660 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4661 }; 4662 char path[PATH_MAX + 1]; 4663 struct utsname buf; 4664 struct btf *btf; 4665 int i, err; 4666 4667 uname(&buf); 4668 4669 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4670 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4671 4672 if (access(path, R_OK)) 4673 continue; 4674 4675 if (locations[i].raw_btf) 4676 btf = btf__parse_raw(path); 4677 else 4678 btf = btf__parse_elf(path, NULL); 4679 err = libbpf_get_error(btf); 4680 pr_debug("loading kernel BTF '%s': %d\n", path, err); 4681 if (err) 4682 continue; 4683 4684 return btf; 4685 } 4686 4687 pr_warn("failed to find valid kernel BTF\n"); 4688 return libbpf_err_ptr(-ESRCH); 4689 } 4690 4691 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf"))); 4692 4693 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf) 4694 { 4695 char path[80]; 4696 4697 snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name); 4698 return btf__parse_split(path, vmlinux_btf); 4699 } 4700 4701 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx) 4702 { 4703 int i, n, err; 4704 4705 switch (btf_kind(t)) { 4706 case BTF_KIND_INT: 4707 case BTF_KIND_FLOAT: 4708 case BTF_KIND_ENUM: 4709 case BTF_KIND_ENUM64: 4710 return 0; 4711 4712 case BTF_KIND_FWD: 4713 case BTF_KIND_CONST: 4714 case BTF_KIND_VOLATILE: 4715 case BTF_KIND_RESTRICT: 4716 case BTF_KIND_PTR: 4717 case BTF_KIND_TYPEDEF: 4718 case BTF_KIND_FUNC: 4719 case BTF_KIND_VAR: 4720 case BTF_KIND_DECL_TAG: 4721 case BTF_KIND_TYPE_TAG: 4722 return visit(&t->type, ctx); 4723 4724 case BTF_KIND_ARRAY: { 4725 struct btf_array *a = btf_array(t); 4726 4727 err = visit(&a->type, ctx); 4728 err = err ?: visit(&a->index_type, ctx); 4729 return err; 4730 } 4731 4732 case BTF_KIND_STRUCT: 4733 case BTF_KIND_UNION: { 4734 struct btf_member *m = btf_members(t); 4735 4736 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4737 err = visit(&m->type, ctx); 4738 if (err) 4739 return err; 4740 } 4741 return 0; 4742 } 4743 4744 case BTF_KIND_FUNC_PROTO: { 4745 struct btf_param *m = btf_params(t); 4746 4747 err = visit(&t->type, ctx); 4748 if (err) 4749 return err; 4750 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4751 err = visit(&m->type, ctx); 4752 if (err) 4753 return err; 4754 } 4755 return 0; 4756 } 4757 4758 case BTF_KIND_DATASEC: { 4759 struct btf_var_secinfo *m = btf_var_secinfos(t); 4760 4761 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4762 err = visit(&m->type, ctx); 4763 if (err) 4764 return err; 4765 } 4766 return 0; 4767 } 4768 4769 default: 4770 return -EINVAL; 4771 } 4772 } 4773 4774 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx) 4775 { 4776 int i, n, err; 4777 4778 err = visit(&t->name_off, ctx); 4779 if (err) 4780 return err; 4781 4782 switch (btf_kind(t)) { 4783 case BTF_KIND_STRUCT: 4784 case BTF_KIND_UNION: { 4785 struct btf_member *m = btf_members(t); 4786 4787 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4788 err = visit(&m->name_off, ctx); 4789 if (err) 4790 return err; 4791 } 4792 break; 4793 } 4794 case BTF_KIND_ENUM: { 4795 struct btf_enum *m = btf_enum(t); 4796 4797 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4798 err = visit(&m->name_off, ctx); 4799 if (err) 4800 return err; 4801 } 4802 break; 4803 } 4804 case BTF_KIND_ENUM64: { 4805 struct btf_enum64 *m = btf_enum64(t); 4806 4807 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4808 err = visit(&m->name_off, ctx); 4809 if (err) 4810 return err; 4811 } 4812 break; 4813 } 4814 case BTF_KIND_FUNC_PROTO: { 4815 struct btf_param *m = btf_params(t); 4816 4817 for (i = 0, n = btf_vlen(t); i < n; i++, m++) { 4818 err = visit(&m->name_off, ctx); 4819 if (err) 4820 return err; 4821 } 4822 break; 4823 } 4824 default: 4825 break; 4826 } 4827 4828 return 0; 4829 } 4830 4831 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx) 4832 { 4833 const struct btf_ext_info *seg; 4834 struct btf_ext_info_sec *sec; 4835 int i, err; 4836 4837 seg = &btf_ext->func_info; 4838 for_each_btf_ext_sec(seg, sec) { 4839 struct bpf_func_info_min *rec; 4840 4841 for_each_btf_ext_rec(seg, sec, i, rec) { 4842 err = visit(&rec->type_id, ctx); 4843 if (err < 0) 4844 return err; 4845 } 4846 } 4847 4848 seg = &btf_ext->core_relo_info; 4849 for_each_btf_ext_sec(seg, sec) { 4850 struct bpf_core_relo *rec; 4851 4852 for_each_btf_ext_rec(seg, sec, i, rec) { 4853 err = visit(&rec->type_id, ctx); 4854 if (err < 0) 4855 return err; 4856 } 4857 } 4858 4859 return 0; 4860 } 4861 4862 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx) 4863 { 4864 const struct btf_ext_info *seg; 4865 struct btf_ext_info_sec *sec; 4866 int i, err; 4867 4868 seg = &btf_ext->func_info; 4869 for_each_btf_ext_sec(seg, sec) { 4870 err = visit(&sec->sec_name_off, ctx); 4871 if (err) 4872 return err; 4873 } 4874 4875 seg = &btf_ext->line_info; 4876 for_each_btf_ext_sec(seg, sec) { 4877 struct bpf_line_info_min *rec; 4878 4879 err = visit(&sec->sec_name_off, ctx); 4880 if (err) 4881 return err; 4882 4883 for_each_btf_ext_rec(seg, sec, i, rec) { 4884 err = visit(&rec->file_name_off, ctx); 4885 if (err) 4886 return err; 4887 err = visit(&rec->line_off, ctx); 4888 if (err) 4889 return err; 4890 } 4891 } 4892 4893 seg = &btf_ext->core_relo_info; 4894 for_each_btf_ext_sec(seg, sec) { 4895 struct bpf_core_relo *rec; 4896 4897 err = visit(&sec->sec_name_off, ctx); 4898 if (err) 4899 return err; 4900 4901 for_each_btf_ext_rec(seg, sec, i, rec) { 4902 err = visit(&rec->access_str_off, ctx); 4903 if (err) 4904 return err; 4905 } 4906 } 4907 4908 return 0; 4909 } 4910