xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 877d95dc)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
193 {
194 	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
195 			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
196 }
197 
198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
199 {
200 	__u32 *p;
201 
202 	p = btf_add_type_offs_mem(btf, 1);
203 	if (!p)
204 		return -ENOMEM;
205 
206 	*p = type_off;
207 	return 0;
208 }
209 
210 static void btf_bswap_hdr(struct btf_header *h)
211 {
212 	h->magic = bswap_16(h->magic);
213 	h->hdr_len = bswap_32(h->hdr_len);
214 	h->type_off = bswap_32(h->type_off);
215 	h->type_len = bswap_32(h->type_len);
216 	h->str_off = bswap_32(h->str_off);
217 	h->str_len = bswap_32(h->str_len);
218 }
219 
220 static int btf_parse_hdr(struct btf *btf)
221 {
222 	struct btf_header *hdr = btf->hdr;
223 	__u32 meta_left;
224 
225 	if (btf->raw_size < sizeof(struct btf_header)) {
226 		pr_debug("BTF header not found\n");
227 		return -EINVAL;
228 	}
229 
230 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
231 		btf->swapped_endian = true;
232 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
233 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
234 				bswap_32(hdr->hdr_len));
235 			return -ENOTSUP;
236 		}
237 		btf_bswap_hdr(hdr);
238 	} else if (hdr->magic != BTF_MAGIC) {
239 		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
240 		return -EINVAL;
241 	}
242 
243 	if (btf->raw_size < hdr->hdr_len) {
244 		pr_debug("BTF header len %u larger than data size %u\n",
245 			 hdr->hdr_len, btf->raw_size);
246 		return -EINVAL;
247 	}
248 
249 	meta_left = btf->raw_size - hdr->hdr_len;
250 	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
251 		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
252 		return -EINVAL;
253 	}
254 
255 	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
256 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
257 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
258 		return -EINVAL;
259 	}
260 
261 	if (hdr->type_off % 4) {
262 		pr_debug("BTF type section is not aligned to 4 bytes\n");
263 		return -EINVAL;
264 	}
265 
266 	return 0;
267 }
268 
269 static int btf_parse_str_sec(struct btf *btf)
270 {
271 	const struct btf_header *hdr = btf->hdr;
272 	const char *start = btf->strs_data;
273 	const char *end = start + btf->hdr->str_len;
274 
275 	if (btf->base_btf && hdr->str_len == 0)
276 		return 0;
277 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
278 		pr_debug("Invalid BTF string section\n");
279 		return -EINVAL;
280 	}
281 	if (!btf->base_btf && start[0]) {
282 		pr_debug("Invalid BTF string section\n");
283 		return -EINVAL;
284 	}
285 	return 0;
286 }
287 
288 static int btf_type_size(const struct btf_type *t)
289 {
290 	const int base_size = sizeof(struct btf_type);
291 	__u16 vlen = btf_vlen(t);
292 
293 	switch (btf_kind(t)) {
294 	case BTF_KIND_FWD:
295 	case BTF_KIND_CONST:
296 	case BTF_KIND_VOLATILE:
297 	case BTF_KIND_RESTRICT:
298 	case BTF_KIND_PTR:
299 	case BTF_KIND_TYPEDEF:
300 	case BTF_KIND_FUNC:
301 	case BTF_KIND_FLOAT:
302 	case BTF_KIND_TYPE_TAG:
303 		return base_size;
304 	case BTF_KIND_INT:
305 		return base_size + sizeof(__u32);
306 	case BTF_KIND_ENUM:
307 		return base_size + vlen * sizeof(struct btf_enum);
308 	case BTF_KIND_ENUM64:
309 		return base_size + vlen * sizeof(struct btf_enum64);
310 	case BTF_KIND_ARRAY:
311 		return base_size + sizeof(struct btf_array);
312 	case BTF_KIND_STRUCT:
313 	case BTF_KIND_UNION:
314 		return base_size + vlen * sizeof(struct btf_member);
315 	case BTF_KIND_FUNC_PROTO:
316 		return base_size + vlen * sizeof(struct btf_param);
317 	case BTF_KIND_VAR:
318 		return base_size + sizeof(struct btf_var);
319 	case BTF_KIND_DATASEC:
320 		return base_size + vlen * sizeof(struct btf_var_secinfo);
321 	case BTF_KIND_DECL_TAG:
322 		return base_size + sizeof(struct btf_decl_tag);
323 	default:
324 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
325 		return -EINVAL;
326 	}
327 }
328 
329 static void btf_bswap_type_base(struct btf_type *t)
330 {
331 	t->name_off = bswap_32(t->name_off);
332 	t->info = bswap_32(t->info);
333 	t->type = bswap_32(t->type);
334 }
335 
336 static int btf_bswap_type_rest(struct btf_type *t)
337 {
338 	struct btf_var_secinfo *v;
339 	struct btf_enum64 *e64;
340 	struct btf_member *m;
341 	struct btf_array *a;
342 	struct btf_param *p;
343 	struct btf_enum *e;
344 	__u16 vlen = btf_vlen(t);
345 	int i;
346 
347 	switch (btf_kind(t)) {
348 	case BTF_KIND_FWD:
349 	case BTF_KIND_CONST:
350 	case BTF_KIND_VOLATILE:
351 	case BTF_KIND_RESTRICT:
352 	case BTF_KIND_PTR:
353 	case BTF_KIND_TYPEDEF:
354 	case BTF_KIND_FUNC:
355 	case BTF_KIND_FLOAT:
356 	case BTF_KIND_TYPE_TAG:
357 		return 0;
358 	case BTF_KIND_INT:
359 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
360 		return 0;
361 	case BTF_KIND_ENUM:
362 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
363 			e->name_off = bswap_32(e->name_off);
364 			e->val = bswap_32(e->val);
365 		}
366 		return 0;
367 	case BTF_KIND_ENUM64:
368 		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
369 			e64->name_off = bswap_32(e64->name_off);
370 			e64->val_lo32 = bswap_32(e64->val_lo32);
371 			e64->val_hi32 = bswap_32(e64->val_hi32);
372 		}
373 		return 0;
374 	case BTF_KIND_ARRAY:
375 		a = btf_array(t);
376 		a->type = bswap_32(a->type);
377 		a->index_type = bswap_32(a->index_type);
378 		a->nelems = bswap_32(a->nelems);
379 		return 0;
380 	case BTF_KIND_STRUCT:
381 	case BTF_KIND_UNION:
382 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
383 			m->name_off = bswap_32(m->name_off);
384 			m->type = bswap_32(m->type);
385 			m->offset = bswap_32(m->offset);
386 		}
387 		return 0;
388 	case BTF_KIND_FUNC_PROTO:
389 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
390 			p->name_off = bswap_32(p->name_off);
391 			p->type = bswap_32(p->type);
392 		}
393 		return 0;
394 	case BTF_KIND_VAR:
395 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
396 		return 0;
397 	case BTF_KIND_DATASEC:
398 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
399 			v->type = bswap_32(v->type);
400 			v->offset = bswap_32(v->offset);
401 			v->size = bswap_32(v->size);
402 		}
403 		return 0;
404 	case BTF_KIND_DECL_TAG:
405 		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
406 		return 0;
407 	default:
408 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
409 		return -EINVAL;
410 	}
411 }
412 
413 static int btf_parse_type_sec(struct btf *btf)
414 {
415 	struct btf_header *hdr = btf->hdr;
416 	void *next_type = btf->types_data;
417 	void *end_type = next_type + hdr->type_len;
418 	int err, type_size;
419 
420 	while (next_type + sizeof(struct btf_type) <= end_type) {
421 		if (btf->swapped_endian)
422 			btf_bswap_type_base(next_type);
423 
424 		type_size = btf_type_size(next_type);
425 		if (type_size < 0)
426 			return type_size;
427 		if (next_type + type_size > end_type) {
428 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
429 			return -EINVAL;
430 		}
431 
432 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
433 			return -EINVAL;
434 
435 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
436 		if (err)
437 			return err;
438 
439 		next_type += type_size;
440 		btf->nr_types++;
441 	}
442 
443 	if (next_type != end_type) {
444 		pr_warn("BTF types data is malformed\n");
445 		return -EINVAL;
446 	}
447 
448 	return 0;
449 }
450 
451 __u32 btf__type_cnt(const struct btf *btf)
452 {
453 	return btf->start_id + btf->nr_types;
454 }
455 
456 const struct btf *btf__base_btf(const struct btf *btf)
457 {
458 	return btf->base_btf;
459 }
460 
461 /* internal helper returning non-const pointer to a type */
462 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
463 {
464 	if (type_id == 0)
465 		return &btf_void;
466 	if (type_id < btf->start_id)
467 		return btf_type_by_id(btf->base_btf, type_id);
468 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
469 }
470 
471 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
472 {
473 	if (type_id >= btf->start_id + btf->nr_types)
474 		return errno = EINVAL, NULL;
475 	return btf_type_by_id((struct btf *)btf, type_id);
476 }
477 
478 static int determine_ptr_size(const struct btf *btf)
479 {
480 	static const char * const long_aliases[] = {
481 		"long",
482 		"long int",
483 		"int long",
484 		"unsigned long",
485 		"long unsigned",
486 		"unsigned long int",
487 		"unsigned int long",
488 		"long unsigned int",
489 		"long int unsigned",
490 		"int unsigned long",
491 		"int long unsigned",
492 	};
493 	const struct btf_type *t;
494 	const char *name;
495 	int i, j, n;
496 
497 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
498 		return btf->base_btf->ptr_sz;
499 
500 	n = btf__type_cnt(btf);
501 	for (i = 1; i < n; i++) {
502 		t = btf__type_by_id(btf, i);
503 		if (!btf_is_int(t))
504 			continue;
505 
506 		if (t->size != 4 && t->size != 8)
507 			continue;
508 
509 		name = btf__name_by_offset(btf, t->name_off);
510 		if (!name)
511 			continue;
512 
513 		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
514 			if (strcmp(name, long_aliases[j]) == 0)
515 				return t->size;
516 		}
517 	}
518 
519 	return -1;
520 }
521 
522 static size_t btf_ptr_sz(const struct btf *btf)
523 {
524 	if (!btf->ptr_sz)
525 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
526 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
527 }
528 
529 /* Return pointer size this BTF instance assumes. The size is heuristically
530  * determined by looking for 'long' or 'unsigned long' integer type and
531  * recording its size in bytes. If BTF type information doesn't have any such
532  * type, this function returns 0. In the latter case, native architecture's
533  * pointer size is assumed, so will be either 4 or 8, depending on
534  * architecture that libbpf was compiled for. It's possible to override
535  * guessed value by using btf__set_pointer_size() API.
536  */
537 size_t btf__pointer_size(const struct btf *btf)
538 {
539 	if (!btf->ptr_sz)
540 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
541 
542 	if (btf->ptr_sz < 0)
543 		/* not enough BTF type info to guess */
544 		return 0;
545 
546 	return btf->ptr_sz;
547 }
548 
549 /* Override or set pointer size in bytes. Only values of 4 and 8 are
550  * supported.
551  */
552 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
553 {
554 	if (ptr_sz != 4 && ptr_sz != 8)
555 		return libbpf_err(-EINVAL);
556 	btf->ptr_sz = ptr_sz;
557 	return 0;
558 }
559 
560 static bool is_host_big_endian(void)
561 {
562 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
563 	return false;
564 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
565 	return true;
566 #else
567 # error "Unrecognized __BYTE_ORDER__"
568 #endif
569 }
570 
571 enum btf_endianness btf__endianness(const struct btf *btf)
572 {
573 	if (is_host_big_endian())
574 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
575 	else
576 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
577 }
578 
579 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
580 {
581 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
582 		return libbpf_err(-EINVAL);
583 
584 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
585 	if (!btf->swapped_endian) {
586 		free(btf->raw_data_swapped);
587 		btf->raw_data_swapped = NULL;
588 	}
589 	return 0;
590 }
591 
592 static bool btf_type_is_void(const struct btf_type *t)
593 {
594 	return t == &btf_void || btf_is_fwd(t);
595 }
596 
597 static bool btf_type_is_void_or_null(const struct btf_type *t)
598 {
599 	return !t || btf_type_is_void(t);
600 }
601 
602 #define MAX_RESOLVE_DEPTH 32
603 
604 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
605 {
606 	const struct btf_array *array;
607 	const struct btf_type *t;
608 	__u32 nelems = 1;
609 	__s64 size = -1;
610 	int i;
611 
612 	t = btf__type_by_id(btf, type_id);
613 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
614 		switch (btf_kind(t)) {
615 		case BTF_KIND_INT:
616 		case BTF_KIND_STRUCT:
617 		case BTF_KIND_UNION:
618 		case BTF_KIND_ENUM:
619 		case BTF_KIND_ENUM64:
620 		case BTF_KIND_DATASEC:
621 		case BTF_KIND_FLOAT:
622 			size = t->size;
623 			goto done;
624 		case BTF_KIND_PTR:
625 			size = btf_ptr_sz(btf);
626 			goto done;
627 		case BTF_KIND_TYPEDEF:
628 		case BTF_KIND_VOLATILE:
629 		case BTF_KIND_CONST:
630 		case BTF_KIND_RESTRICT:
631 		case BTF_KIND_VAR:
632 		case BTF_KIND_DECL_TAG:
633 		case BTF_KIND_TYPE_TAG:
634 			type_id = t->type;
635 			break;
636 		case BTF_KIND_ARRAY:
637 			array = btf_array(t);
638 			if (nelems && array->nelems > UINT32_MAX / nelems)
639 				return libbpf_err(-E2BIG);
640 			nelems *= array->nelems;
641 			type_id = array->type;
642 			break;
643 		default:
644 			return libbpf_err(-EINVAL);
645 		}
646 
647 		t = btf__type_by_id(btf, type_id);
648 	}
649 
650 done:
651 	if (size < 0)
652 		return libbpf_err(-EINVAL);
653 	if (nelems && size > UINT32_MAX / nelems)
654 		return libbpf_err(-E2BIG);
655 
656 	return nelems * size;
657 }
658 
659 int btf__align_of(const struct btf *btf, __u32 id)
660 {
661 	const struct btf_type *t = btf__type_by_id(btf, id);
662 	__u16 kind = btf_kind(t);
663 
664 	switch (kind) {
665 	case BTF_KIND_INT:
666 	case BTF_KIND_ENUM:
667 	case BTF_KIND_ENUM64:
668 	case BTF_KIND_FLOAT:
669 		return min(btf_ptr_sz(btf), (size_t)t->size);
670 	case BTF_KIND_PTR:
671 		return btf_ptr_sz(btf);
672 	case BTF_KIND_TYPEDEF:
673 	case BTF_KIND_VOLATILE:
674 	case BTF_KIND_CONST:
675 	case BTF_KIND_RESTRICT:
676 	case BTF_KIND_TYPE_TAG:
677 		return btf__align_of(btf, t->type);
678 	case BTF_KIND_ARRAY:
679 		return btf__align_of(btf, btf_array(t)->type);
680 	case BTF_KIND_STRUCT:
681 	case BTF_KIND_UNION: {
682 		const struct btf_member *m = btf_members(t);
683 		__u16 vlen = btf_vlen(t);
684 		int i, max_align = 1, align;
685 
686 		for (i = 0; i < vlen; i++, m++) {
687 			align = btf__align_of(btf, m->type);
688 			if (align <= 0)
689 				return libbpf_err(align);
690 			max_align = max(max_align, align);
691 		}
692 
693 		return max_align;
694 	}
695 	default:
696 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
697 		return errno = EINVAL, 0;
698 	}
699 }
700 
701 int btf__resolve_type(const struct btf *btf, __u32 type_id)
702 {
703 	const struct btf_type *t;
704 	int depth = 0;
705 
706 	t = btf__type_by_id(btf, type_id);
707 	while (depth < MAX_RESOLVE_DEPTH &&
708 	       !btf_type_is_void_or_null(t) &&
709 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
710 		type_id = t->type;
711 		t = btf__type_by_id(btf, type_id);
712 		depth++;
713 	}
714 
715 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
716 		return libbpf_err(-EINVAL);
717 
718 	return type_id;
719 }
720 
721 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
722 {
723 	__u32 i, nr_types = btf__type_cnt(btf);
724 
725 	if (!strcmp(type_name, "void"))
726 		return 0;
727 
728 	for (i = 1; i < nr_types; i++) {
729 		const struct btf_type *t = btf__type_by_id(btf, i);
730 		const char *name = btf__name_by_offset(btf, t->name_off);
731 
732 		if (name && !strcmp(type_name, name))
733 			return i;
734 	}
735 
736 	return libbpf_err(-ENOENT);
737 }
738 
739 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
740 				   const char *type_name, __u32 kind)
741 {
742 	__u32 i, nr_types = btf__type_cnt(btf);
743 
744 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
745 		return 0;
746 
747 	for (i = start_id; i < nr_types; i++) {
748 		const struct btf_type *t = btf__type_by_id(btf, i);
749 		const char *name;
750 
751 		if (btf_kind(t) != kind)
752 			continue;
753 		name = btf__name_by_offset(btf, t->name_off);
754 		if (name && !strcmp(type_name, name))
755 			return i;
756 	}
757 
758 	return libbpf_err(-ENOENT);
759 }
760 
761 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
762 				 __u32 kind)
763 {
764 	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
765 }
766 
767 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
768 			     __u32 kind)
769 {
770 	return btf_find_by_name_kind(btf, 1, type_name, kind);
771 }
772 
773 static bool btf_is_modifiable(const struct btf *btf)
774 {
775 	return (void *)btf->hdr != btf->raw_data;
776 }
777 
778 void btf__free(struct btf *btf)
779 {
780 	if (IS_ERR_OR_NULL(btf))
781 		return;
782 
783 	if (btf->fd >= 0)
784 		close(btf->fd);
785 
786 	if (btf_is_modifiable(btf)) {
787 		/* if BTF was modified after loading, it will have a split
788 		 * in-memory representation for header, types, and strings
789 		 * sections, so we need to free all of them individually. It
790 		 * might still have a cached contiguous raw data present,
791 		 * which will be unconditionally freed below.
792 		 */
793 		free(btf->hdr);
794 		free(btf->types_data);
795 		strset__free(btf->strs_set);
796 	}
797 	free(btf->raw_data);
798 	free(btf->raw_data_swapped);
799 	free(btf->type_offs);
800 	free(btf);
801 }
802 
803 static struct btf *btf_new_empty(struct btf *base_btf)
804 {
805 	struct btf *btf;
806 
807 	btf = calloc(1, sizeof(*btf));
808 	if (!btf)
809 		return ERR_PTR(-ENOMEM);
810 
811 	btf->nr_types = 0;
812 	btf->start_id = 1;
813 	btf->start_str_off = 0;
814 	btf->fd = -1;
815 	btf->ptr_sz = sizeof(void *);
816 	btf->swapped_endian = false;
817 
818 	if (base_btf) {
819 		btf->base_btf = base_btf;
820 		btf->start_id = btf__type_cnt(base_btf);
821 		btf->start_str_off = base_btf->hdr->str_len;
822 	}
823 
824 	/* +1 for empty string at offset 0 */
825 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
826 	btf->raw_data = calloc(1, btf->raw_size);
827 	if (!btf->raw_data) {
828 		free(btf);
829 		return ERR_PTR(-ENOMEM);
830 	}
831 
832 	btf->hdr = btf->raw_data;
833 	btf->hdr->hdr_len = sizeof(struct btf_header);
834 	btf->hdr->magic = BTF_MAGIC;
835 	btf->hdr->version = BTF_VERSION;
836 
837 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
838 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
839 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
840 
841 	return btf;
842 }
843 
844 struct btf *btf__new_empty(void)
845 {
846 	return libbpf_ptr(btf_new_empty(NULL));
847 }
848 
849 struct btf *btf__new_empty_split(struct btf *base_btf)
850 {
851 	return libbpf_ptr(btf_new_empty(base_btf));
852 }
853 
854 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
855 {
856 	struct btf *btf;
857 	int err;
858 
859 	btf = calloc(1, sizeof(struct btf));
860 	if (!btf)
861 		return ERR_PTR(-ENOMEM);
862 
863 	btf->nr_types = 0;
864 	btf->start_id = 1;
865 	btf->start_str_off = 0;
866 	btf->fd = -1;
867 
868 	if (base_btf) {
869 		btf->base_btf = base_btf;
870 		btf->start_id = btf__type_cnt(base_btf);
871 		btf->start_str_off = base_btf->hdr->str_len;
872 	}
873 
874 	btf->raw_data = malloc(size);
875 	if (!btf->raw_data) {
876 		err = -ENOMEM;
877 		goto done;
878 	}
879 	memcpy(btf->raw_data, data, size);
880 	btf->raw_size = size;
881 
882 	btf->hdr = btf->raw_data;
883 	err = btf_parse_hdr(btf);
884 	if (err)
885 		goto done;
886 
887 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
888 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
889 
890 	err = btf_parse_str_sec(btf);
891 	err = err ?: btf_parse_type_sec(btf);
892 	if (err)
893 		goto done;
894 
895 done:
896 	if (err) {
897 		btf__free(btf);
898 		return ERR_PTR(err);
899 	}
900 
901 	return btf;
902 }
903 
904 struct btf *btf__new(const void *data, __u32 size)
905 {
906 	return libbpf_ptr(btf_new(data, size, NULL));
907 }
908 
909 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
910 				 struct btf_ext **btf_ext)
911 {
912 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
913 	int err = 0, fd = -1, idx = 0;
914 	struct btf *btf = NULL;
915 	Elf_Scn *scn = NULL;
916 	Elf *elf = NULL;
917 	GElf_Ehdr ehdr;
918 	size_t shstrndx;
919 
920 	if (elf_version(EV_CURRENT) == EV_NONE) {
921 		pr_warn("failed to init libelf for %s\n", path);
922 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
923 	}
924 
925 	fd = open(path, O_RDONLY | O_CLOEXEC);
926 	if (fd < 0) {
927 		err = -errno;
928 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
929 		return ERR_PTR(err);
930 	}
931 
932 	err = -LIBBPF_ERRNO__FORMAT;
933 
934 	elf = elf_begin(fd, ELF_C_READ, NULL);
935 	if (!elf) {
936 		pr_warn("failed to open %s as ELF file\n", path);
937 		goto done;
938 	}
939 	if (!gelf_getehdr(elf, &ehdr)) {
940 		pr_warn("failed to get EHDR from %s\n", path);
941 		goto done;
942 	}
943 
944 	if (elf_getshdrstrndx(elf, &shstrndx)) {
945 		pr_warn("failed to get section names section index for %s\n",
946 			path);
947 		goto done;
948 	}
949 
950 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
951 		pr_warn("failed to get e_shstrndx from %s\n", path);
952 		goto done;
953 	}
954 
955 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
956 		GElf_Shdr sh;
957 		char *name;
958 
959 		idx++;
960 		if (gelf_getshdr(scn, &sh) != &sh) {
961 			pr_warn("failed to get section(%d) header from %s\n",
962 				idx, path);
963 			goto done;
964 		}
965 		name = elf_strptr(elf, shstrndx, sh.sh_name);
966 		if (!name) {
967 			pr_warn("failed to get section(%d) name from %s\n",
968 				idx, path);
969 			goto done;
970 		}
971 		if (strcmp(name, BTF_ELF_SEC) == 0) {
972 			btf_data = elf_getdata(scn, 0);
973 			if (!btf_data) {
974 				pr_warn("failed to get section(%d, %s) data from %s\n",
975 					idx, name, path);
976 				goto done;
977 			}
978 			continue;
979 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
980 			btf_ext_data = elf_getdata(scn, 0);
981 			if (!btf_ext_data) {
982 				pr_warn("failed to get section(%d, %s) data from %s\n",
983 					idx, name, path);
984 				goto done;
985 			}
986 			continue;
987 		}
988 	}
989 
990 	err = 0;
991 
992 	if (!btf_data) {
993 		err = -ENOENT;
994 		goto done;
995 	}
996 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
997 	err = libbpf_get_error(btf);
998 	if (err)
999 		goto done;
1000 
1001 	switch (gelf_getclass(elf)) {
1002 	case ELFCLASS32:
1003 		btf__set_pointer_size(btf, 4);
1004 		break;
1005 	case ELFCLASS64:
1006 		btf__set_pointer_size(btf, 8);
1007 		break;
1008 	default:
1009 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1010 		break;
1011 	}
1012 
1013 	if (btf_ext && btf_ext_data) {
1014 		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1015 		err = libbpf_get_error(*btf_ext);
1016 		if (err)
1017 			goto done;
1018 	} else if (btf_ext) {
1019 		*btf_ext = NULL;
1020 	}
1021 done:
1022 	if (elf)
1023 		elf_end(elf);
1024 	close(fd);
1025 
1026 	if (!err)
1027 		return btf;
1028 
1029 	if (btf_ext)
1030 		btf_ext__free(*btf_ext);
1031 	btf__free(btf);
1032 
1033 	return ERR_PTR(err);
1034 }
1035 
1036 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1037 {
1038 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1039 }
1040 
1041 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1042 {
1043 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1044 }
1045 
1046 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1047 {
1048 	struct btf *btf = NULL;
1049 	void *data = NULL;
1050 	FILE *f = NULL;
1051 	__u16 magic;
1052 	int err = 0;
1053 	long sz;
1054 
1055 	f = fopen(path, "rb");
1056 	if (!f) {
1057 		err = -errno;
1058 		goto err_out;
1059 	}
1060 
1061 	/* check BTF magic */
1062 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1063 		err = -EIO;
1064 		goto err_out;
1065 	}
1066 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1067 		/* definitely not a raw BTF */
1068 		err = -EPROTO;
1069 		goto err_out;
1070 	}
1071 
1072 	/* get file size */
1073 	if (fseek(f, 0, SEEK_END)) {
1074 		err = -errno;
1075 		goto err_out;
1076 	}
1077 	sz = ftell(f);
1078 	if (sz < 0) {
1079 		err = -errno;
1080 		goto err_out;
1081 	}
1082 	/* rewind to the start */
1083 	if (fseek(f, 0, SEEK_SET)) {
1084 		err = -errno;
1085 		goto err_out;
1086 	}
1087 
1088 	/* pre-alloc memory and read all of BTF data */
1089 	data = malloc(sz);
1090 	if (!data) {
1091 		err = -ENOMEM;
1092 		goto err_out;
1093 	}
1094 	if (fread(data, 1, sz, f) < sz) {
1095 		err = -EIO;
1096 		goto err_out;
1097 	}
1098 
1099 	/* finally parse BTF data */
1100 	btf = btf_new(data, sz, base_btf);
1101 
1102 err_out:
1103 	free(data);
1104 	if (f)
1105 		fclose(f);
1106 	return err ? ERR_PTR(err) : btf;
1107 }
1108 
1109 struct btf *btf__parse_raw(const char *path)
1110 {
1111 	return libbpf_ptr(btf_parse_raw(path, NULL));
1112 }
1113 
1114 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1115 {
1116 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1117 }
1118 
1119 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1120 {
1121 	struct btf *btf;
1122 	int err;
1123 
1124 	if (btf_ext)
1125 		*btf_ext = NULL;
1126 
1127 	btf = btf_parse_raw(path, base_btf);
1128 	err = libbpf_get_error(btf);
1129 	if (!err)
1130 		return btf;
1131 	if (err != -EPROTO)
1132 		return ERR_PTR(err);
1133 	return btf_parse_elf(path, base_btf, btf_ext);
1134 }
1135 
1136 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1137 {
1138 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1139 }
1140 
1141 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1142 {
1143 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1144 }
1145 
1146 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1147 
1148 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1149 {
1150 	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1151 	__u32 buf_sz = 0, raw_size;
1152 	char *buf = NULL, *tmp;
1153 	void *raw_data;
1154 	int err = 0;
1155 
1156 	if (btf->fd >= 0)
1157 		return libbpf_err(-EEXIST);
1158 	if (log_sz && !log_buf)
1159 		return libbpf_err(-EINVAL);
1160 
1161 	/* cache native raw data representation */
1162 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1163 	if (!raw_data) {
1164 		err = -ENOMEM;
1165 		goto done;
1166 	}
1167 	btf->raw_size = raw_size;
1168 	btf->raw_data = raw_data;
1169 
1170 retry_load:
1171 	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1172 	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1173 	 * retry, using either auto-allocated or custom log_buf. This way
1174 	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1175 	 * for successful load and no need for log_buf.
1176 	 */
1177 	if (log_level) {
1178 		/* if caller didn't provide custom log_buf, we'll keep
1179 		 * allocating our own progressively bigger buffers for BTF
1180 		 * verification log
1181 		 */
1182 		if (!log_buf) {
1183 			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1184 			tmp = realloc(buf, buf_sz);
1185 			if (!tmp) {
1186 				err = -ENOMEM;
1187 				goto done;
1188 			}
1189 			buf = tmp;
1190 			buf[0] = '\0';
1191 		}
1192 
1193 		opts.log_buf = log_buf ? log_buf : buf;
1194 		opts.log_size = log_buf ? log_sz : buf_sz;
1195 		opts.log_level = log_level;
1196 	}
1197 
1198 	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1199 	if (btf->fd < 0) {
1200 		/* time to turn on verbose mode and try again */
1201 		if (log_level == 0) {
1202 			log_level = 1;
1203 			goto retry_load;
1204 		}
1205 		/* only retry if caller didn't provide custom log_buf, but
1206 		 * make sure we can never overflow buf_sz
1207 		 */
1208 		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1209 			goto retry_load;
1210 
1211 		err = -errno;
1212 		pr_warn("BTF loading error: %d\n", err);
1213 		/* don't print out contents of custom log_buf */
1214 		if (!log_buf && buf[0])
1215 			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1216 	}
1217 
1218 done:
1219 	free(buf);
1220 	return libbpf_err(err);
1221 }
1222 
1223 int btf__load_into_kernel(struct btf *btf)
1224 {
1225 	return btf_load_into_kernel(btf, NULL, 0, 0);
1226 }
1227 
1228 int btf__load(struct btf *) __attribute__((alias("btf__load_into_kernel")));
1229 
1230 int btf__fd(const struct btf *btf)
1231 {
1232 	return btf->fd;
1233 }
1234 
1235 void btf__set_fd(struct btf *btf, int fd)
1236 {
1237 	btf->fd = fd;
1238 }
1239 
1240 static const void *btf_strs_data(const struct btf *btf)
1241 {
1242 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1243 }
1244 
1245 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1246 {
1247 	struct btf_header *hdr = btf->hdr;
1248 	struct btf_type *t;
1249 	void *data, *p;
1250 	__u32 data_sz;
1251 	int i;
1252 
1253 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1254 	if (data) {
1255 		*size = btf->raw_size;
1256 		return data;
1257 	}
1258 
1259 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1260 	data = calloc(1, data_sz);
1261 	if (!data)
1262 		return NULL;
1263 	p = data;
1264 
1265 	memcpy(p, hdr, hdr->hdr_len);
1266 	if (swap_endian)
1267 		btf_bswap_hdr(p);
1268 	p += hdr->hdr_len;
1269 
1270 	memcpy(p, btf->types_data, hdr->type_len);
1271 	if (swap_endian) {
1272 		for (i = 0; i < btf->nr_types; i++) {
1273 			t = p + btf->type_offs[i];
1274 			/* btf_bswap_type_rest() relies on native t->info, so
1275 			 * we swap base type info after we swapped all the
1276 			 * additional information
1277 			 */
1278 			if (btf_bswap_type_rest(t))
1279 				goto err_out;
1280 			btf_bswap_type_base(t);
1281 		}
1282 	}
1283 	p += hdr->type_len;
1284 
1285 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1286 	p += hdr->str_len;
1287 
1288 	*size = data_sz;
1289 	return data;
1290 err_out:
1291 	free(data);
1292 	return NULL;
1293 }
1294 
1295 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1296 {
1297 	struct btf *btf = (struct btf *)btf_ro;
1298 	__u32 data_sz;
1299 	void *data;
1300 
1301 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1302 	if (!data)
1303 		return errno = ENOMEM, NULL;
1304 
1305 	btf->raw_size = data_sz;
1306 	if (btf->swapped_endian)
1307 		btf->raw_data_swapped = data;
1308 	else
1309 		btf->raw_data = data;
1310 	*size = data_sz;
1311 	return data;
1312 }
1313 
1314 __attribute__((alias("btf__raw_data")))
1315 const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1316 
1317 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1318 {
1319 	if (offset < btf->start_str_off)
1320 		return btf__str_by_offset(btf->base_btf, offset);
1321 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1322 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1323 	else
1324 		return errno = EINVAL, NULL;
1325 }
1326 
1327 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1328 {
1329 	return btf__str_by_offset(btf, offset);
1330 }
1331 
1332 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1333 {
1334 	struct bpf_btf_info btf_info;
1335 	__u32 len = sizeof(btf_info);
1336 	__u32 last_size;
1337 	struct btf *btf;
1338 	void *ptr;
1339 	int err;
1340 
1341 	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1342 	 * let's start with a sane default - 4KiB here - and resize it only if
1343 	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1344 	 */
1345 	last_size = 4096;
1346 	ptr = malloc(last_size);
1347 	if (!ptr)
1348 		return ERR_PTR(-ENOMEM);
1349 
1350 	memset(&btf_info, 0, sizeof(btf_info));
1351 	btf_info.btf = ptr_to_u64(ptr);
1352 	btf_info.btf_size = last_size;
1353 	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1354 
1355 	if (!err && btf_info.btf_size > last_size) {
1356 		void *temp_ptr;
1357 
1358 		last_size = btf_info.btf_size;
1359 		temp_ptr = realloc(ptr, last_size);
1360 		if (!temp_ptr) {
1361 			btf = ERR_PTR(-ENOMEM);
1362 			goto exit_free;
1363 		}
1364 		ptr = temp_ptr;
1365 
1366 		len = sizeof(btf_info);
1367 		memset(&btf_info, 0, sizeof(btf_info));
1368 		btf_info.btf = ptr_to_u64(ptr);
1369 		btf_info.btf_size = last_size;
1370 
1371 		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1372 	}
1373 
1374 	if (err || btf_info.btf_size > last_size) {
1375 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1376 		goto exit_free;
1377 	}
1378 
1379 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1380 
1381 exit_free:
1382 	free(ptr);
1383 	return btf;
1384 }
1385 
1386 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1387 {
1388 	struct btf *btf;
1389 	int btf_fd;
1390 
1391 	btf_fd = bpf_btf_get_fd_by_id(id);
1392 	if (btf_fd < 0)
1393 		return libbpf_err_ptr(-errno);
1394 
1395 	btf = btf_get_from_fd(btf_fd, base_btf);
1396 	close(btf_fd);
1397 
1398 	return libbpf_ptr(btf);
1399 }
1400 
1401 struct btf *btf__load_from_kernel_by_id(__u32 id)
1402 {
1403 	return btf__load_from_kernel_by_id_split(id, NULL);
1404 }
1405 
1406 static void btf_invalidate_raw_data(struct btf *btf)
1407 {
1408 	if (btf->raw_data) {
1409 		free(btf->raw_data);
1410 		btf->raw_data = NULL;
1411 	}
1412 	if (btf->raw_data_swapped) {
1413 		free(btf->raw_data_swapped);
1414 		btf->raw_data_swapped = NULL;
1415 	}
1416 }
1417 
1418 /* Ensure BTF is ready to be modified (by splitting into a three memory
1419  * regions for header, types, and strings). Also invalidate cached
1420  * raw_data, if any.
1421  */
1422 static int btf_ensure_modifiable(struct btf *btf)
1423 {
1424 	void *hdr, *types;
1425 	struct strset *set = NULL;
1426 	int err = -ENOMEM;
1427 
1428 	if (btf_is_modifiable(btf)) {
1429 		/* any BTF modification invalidates raw_data */
1430 		btf_invalidate_raw_data(btf);
1431 		return 0;
1432 	}
1433 
1434 	/* split raw data into three memory regions */
1435 	hdr = malloc(btf->hdr->hdr_len);
1436 	types = malloc(btf->hdr->type_len);
1437 	if (!hdr || !types)
1438 		goto err_out;
1439 
1440 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1441 	memcpy(types, btf->types_data, btf->hdr->type_len);
1442 
1443 	/* build lookup index for all strings */
1444 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1445 	if (IS_ERR(set)) {
1446 		err = PTR_ERR(set);
1447 		goto err_out;
1448 	}
1449 
1450 	/* only when everything was successful, update internal state */
1451 	btf->hdr = hdr;
1452 	btf->types_data = types;
1453 	btf->types_data_cap = btf->hdr->type_len;
1454 	btf->strs_data = NULL;
1455 	btf->strs_set = set;
1456 	/* if BTF was created from scratch, all strings are guaranteed to be
1457 	 * unique and deduplicated
1458 	 */
1459 	if (btf->hdr->str_len == 0)
1460 		btf->strs_deduped = true;
1461 	if (!btf->base_btf && btf->hdr->str_len == 1)
1462 		btf->strs_deduped = true;
1463 
1464 	/* invalidate raw_data representation */
1465 	btf_invalidate_raw_data(btf);
1466 
1467 	return 0;
1468 
1469 err_out:
1470 	strset__free(set);
1471 	free(hdr);
1472 	free(types);
1473 	return err;
1474 }
1475 
1476 /* Find an offset in BTF string section that corresponds to a given string *s*.
1477  * Returns:
1478  *   - >0 offset into string section, if string is found;
1479  *   - -ENOENT, if string is not in the string section;
1480  *   - <0, on any other error.
1481  */
1482 int btf__find_str(struct btf *btf, const char *s)
1483 {
1484 	int off;
1485 
1486 	if (btf->base_btf) {
1487 		off = btf__find_str(btf->base_btf, s);
1488 		if (off != -ENOENT)
1489 			return off;
1490 	}
1491 
1492 	/* BTF needs to be in a modifiable state to build string lookup index */
1493 	if (btf_ensure_modifiable(btf))
1494 		return libbpf_err(-ENOMEM);
1495 
1496 	off = strset__find_str(btf->strs_set, s);
1497 	if (off < 0)
1498 		return libbpf_err(off);
1499 
1500 	return btf->start_str_off + off;
1501 }
1502 
1503 /* Add a string s to the BTF string section.
1504  * Returns:
1505  *   - > 0 offset into string section, on success;
1506  *   - < 0, on error.
1507  */
1508 int btf__add_str(struct btf *btf, const char *s)
1509 {
1510 	int off;
1511 
1512 	if (btf->base_btf) {
1513 		off = btf__find_str(btf->base_btf, s);
1514 		if (off != -ENOENT)
1515 			return off;
1516 	}
1517 
1518 	if (btf_ensure_modifiable(btf))
1519 		return libbpf_err(-ENOMEM);
1520 
1521 	off = strset__add_str(btf->strs_set, s);
1522 	if (off < 0)
1523 		return libbpf_err(off);
1524 
1525 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1526 
1527 	return btf->start_str_off + off;
1528 }
1529 
1530 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1531 {
1532 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1533 			      btf->hdr->type_len, UINT_MAX, add_sz);
1534 }
1535 
1536 static void btf_type_inc_vlen(struct btf_type *t)
1537 {
1538 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1539 }
1540 
1541 static int btf_commit_type(struct btf *btf, int data_sz)
1542 {
1543 	int err;
1544 
1545 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1546 	if (err)
1547 		return libbpf_err(err);
1548 
1549 	btf->hdr->type_len += data_sz;
1550 	btf->hdr->str_off += data_sz;
1551 	btf->nr_types++;
1552 	return btf->start_id + btf->nr_types - 1;
1553 }
1554 
1555 struct btf_pipe {
1556 	const struct btf *src;
1557 	struct btf *dst;
1558 	struct hashmap *str_off_map; /* map string offsets from src to dst */
1559 };
1560 
1561 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1562 {
1563 	struct btf_pipe *p = ctx;
1564 	void *mapped_off;
1565 	int off, err;
1566 
1567 	if (!*str_off) /* nothing to do for empty strings */
1568 		return 0;
1569 
1570 	if (p->str_off_map &&
1571 	    hashmap__find(p->str_off_map, (void *)(long)*str_off, &mapped_off)) {
1572 		*str_off = (__u32)(long)mapped_off;
1573 		return 0;
1574 	}
1575 
1576 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1577 	if (off < 0)
1578 		return off;
1579 
1580 	/* Remember string mapping from src to dst.  It avoids
1581 	 * performing expensive string comparisons.
1582 	 */
1583 	if (p->str_off_map) {
1584 		err = hashmap__append(p->str_off_map, (void *)(long)*str_off, (void *)(long)off);
1585 		if (err)
1586 			return err;
1587 	}
1588 
1589 	*str_off = off;
1590 	return 0;
1591 }
1592 
1593 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1594 {
1595 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1596 	struct btf_type *t;
1597 	int sz, err;
1598 
1599 	sz = btf_type_size(src_type);
1600 	if (sz < 0)
1601 		return libbpf_err(sz);
1602 
1603 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1604 	if (btf_ensure_modifiable(btf))
1605 		return libbpf_err(-ENOMEM);
1606 
1607 	t = btf_add_type_mem(btf, sz);
1608 	if (!t)
1609 		return libbpf_err(-ENOMEM);
1610 
1611 	memcpy(t, src_type, sz);
1612 
1613 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1614 	if (err)
1615 		return libbpf_err(err);
1616 
1617 	return btf_commit_type(btf, sz);
1618 }
1619 
1620 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1621 {
1622 	struct btf *btf = ctx;
1623 
1624 	if (!*type_id) /* nothing to do for VOID references */
1625 		return 0;
1626 
1627 	/* we haven't updated btf's type count yet, so
1628 	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1629 	 * add to all newly added BTF types
1630 	 */
1631 	*type_id += btf->start_id + btf->nr_types - 1;
1632 	return 0;
1633 }
1634 
1635 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx);
1636 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx);
1637 
1638 int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1639 {
1640 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1641 	int data_sz, sz, cnt, i, err, old_strs_len;
1642 	__u32 *off;
1643 	void *t;
1644 
1645 	/* appending split BTF isn't supported yet */
1646 	if (src_btf->base_btf)
1647 		return libbpf_err(-ENOTSUP);
1648 
1649 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1650 	if (btf_ensure_modifiable(btf))
1651 		return libbpf_err(-ENOMEM);
1652 
1653 	/* remember original strings section size if we have to roll back
1654 	 * partial strings section changes
1655 	 */
1656 	old_strs_len = btf->hdr->str_len;
1657 
1658 	data_sz = src_btf->hdr->type_len;
1659 	cnt = btf__type_cnt(src_btf) - 1;
1660 
1661 	/* pre-allocate enough memory for new types */
1662 	t = btf_add_type_mem(btf, data_sz);
1663 	if (!t)
1664 		return libbpf_err(-ENOMEM);
1665 
1666 	/* pre-allocate enough memory for type offset index for new types */
1667 	off = btf_add_type_offs_mem(btf, cnt);
1668 	if (!off)
1669 		return libbpf_err(-ENOMEM);
1670 
1671 	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1672 	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1673 	if (IS_ERR(p.str_off_map))
1674 		return libbpf_err(-ENOMEM);
1675 
1676 	/* bulk copy types data for all types from src_btf */
1677 	memcpy(t, src_btf->types_data, data_sz);
1678 
1679 	for (i = 0; i < cnt; i++) {
1680 		sz = btf_type_size(t);
1681 		if (sz < 0) {
1682 			/* unlikely, has to be corrupted src_btf */
1683 			err = sz;
1684 			goto err_out;
1685 		}
1686 
1687 		/* fill out type ID to type offset mapping for lookups by type ID */
1688 		*off = t - btf->types_data;
1689 
1690 		/* add, dedup, and remap strings referenced by this BTF type */
1691 		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1692 		if (err)
1693 			goto err_out;
1694 
1695 		/* remap all type IDs referenced from this BTF type */
1696 		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1697 		if (err)
1698 			goto err_out;
1699 
1700 		/* go to next type data and type offset index entry */
1701 		t += sz;
1702 		off++;
1703 	}
1704 
1705 	/* Up until now any of the copied type data was effectively invisible,
1706 	 * so if we exited early before this point due to error, BTF would be
1707 	 * effectively unmodified. There would be extra internal memory
1708 	 * pre-allocated, but it would not be available for querying.  But now
1709 	 * that we've copied and rewritten all the data successfully, we can
1710 	 * update type count and various internal offsets and sizes to
1711 	 * "commit" the changes and made them visible to the outside world.
1712 	 */
1713 	btf->hdr->type_len += data_sz;
1714 	btf->hdr->str_off += data_sz;
1715 	btf->nr_types += cnt;
1716 
1717 	hashmap__free(p.str_off_map);
1718 
1719 	/* return type ID of the first added BTF type */
1720 	return btf->start_id + btf->nr_types - cnt;
1721 err_out:
1722 	/* zero out preallocated memory as if it was just allocated with
1723 	 * libbpf_add_mem()
1724 	 */
1725 	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1726 	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1727 
1728 	/* and now restore original strings section size; types data size
1729 	 * wasn't modified, so doesn't need restoring, see big comment above */
1730 	btf->hdr->str_len = old_strs_len;
1731 
1732 	hashmap__free(p.str_off_map);
1733 
1734 	return libbpf_err(err);
1735 }
1736 
1737 /*
1738  * Append new BTF_KIND_INT type with:
1739  *   - *name* - non-empty, non-NULL type name;
1740  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1741  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1742  * Returns:
1743  *   - >0, type ID of newly added BTF type;
1744  *   - <0, on error.
1745  */
1746 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1747 {
1748 	struct btf_type *t;
1749 	int sz, name_off;
1750 
1751 	/* non-empty name */
1752 	if (!name || !name[0])
1753 		return libbpf_err(-EINVAL);
1754 	/* byte_sz must be power of 2 */
1755 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1756 		return libbpf_err(-EINVAL);
1757 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1758 		return libbpf_err(-EINVAL);
1759 
1760 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1761 	if (btf_ensure_modifiable(btf))
1762 		return libbpf_err(-ENOMEM);
1763 
1764 	sz = sizeof(struct btf_type) + sizeof(int);
1765 	t = btf_add_type_mem(btf, sz);
1766 	if (!t)
1767 		return libbpf_err(-ENOMEM);
1768 
1769 	/* if something goes wrong later, we might end up with an extra string,
1770 	 * but that shouldn't be a problem, because BTF can't be constructed
1771 	 * completely anyway and will most probably be just discarded
1772 	 */
1773 	name_off = btf__add_str(btf, name);
1774 	if (name_off < 0)
1775 		return name_off;
1776 
1777 	t->name_off = name_off;
1778 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1779 	t->size = byte_sz;
1780 	/* set INT info, we don't allow setting legacy bit offset/size */
1781 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1782 
1783 	return btf_commit_type(btf, sz);
1784 }
1785 
1786 /*
1787  * Append new BTF_KIND_FLOAT type with:
1788  *   - *name* - non-empty, non-NULL type name;
1789  *   - *sz* - size of the type, in bytes;
1790  * Returns:
1791  *   - >0, type ID of newly added BTF type;
1792  *   - <0, on error.
1793  */
1794 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1795 {
1796 	struct btf_type *t;
1797 	int sz, name_off;
1798 
1799 	/* non-empty name */
1800 	if (!name || !name[0])
1801 		return libbpf_err(-EINVAL);
1802 
1803 	/* byte_sz must be one of the explicitly allowed values */
1804 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1805 	    byte_sz != 16)
1806 		return libbpf_err(-EINVAL);
1807 
1808 	if (btf_ensure_modifiable(btf))
1809 		return libbpf_err(-ENOMEM);
1810 
1811 	sz = sizeof(struct btf_type);
1812 	t = btf_add_type_mem(btf, sz);
1813 	if (!t)
1814 		return libbpf_err(-ENOMEM);
1815 
1816 	name_off = btf__add_str(btf, name);
1817 	if (name_off < 0)
1818 		return name_off;
1819 
1820 	t->name_off = name_off;
1821 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1822 	t->size = byte_sz;
1823 
1824 	return btf_commit_type(btf, sz);
1825 }
1826 
1827 /* it's completely legal to append BTF types with type IDs pointing forward to
1828  * types that haven't been appended yet, so we only make sure that id looks
1829  * sane, we can't guarantee that ID will always be valid
1830  */
1831 static int validate_type_id(int id)
1832 {
1833 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1834 		return -EINVAL;
1835 	return 0;
1836 }
1837 
1838 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1839 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1840 {
1841 	struct btf_type *t;
1842 	int sz, name_off = 0;
1843 
1844 	if (validate_type_id(ref_type_id))
1845 		return libbpf_err(-EINVAL);
1846 
1847 	if (btf_ensure_modifiable(btf))
1848 		return libbpf_err(-ENOMEM);
1849 
1850 	sz = sizeof(struct btf_type);
1851 	t = btf_add_type_mem(btf, sz);
1852 	if (!t)
1853 		return libbpf_err(-ENOMEM);
1854 
1855 	if (name && name[0]) {
1856 		name_off = btf__add_str(btf, name);
1857 		if (name_off < 0)
1858 			return name_off;
1859 	}
1860 
1861 	t->name_off = name_off;
1862 	t->info = btf_type_info(kind, 0, 0);
1863 	t->type = ref_type_id;
1864 
1865 	return btf_commit_type(btf, sz);
1866 }
1867 
1868 /*
1869  * Append new BTF_KIND_PTR type with:
1870  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1871  * Returns:
1872  *   - >0, type ID of newly added BTF type;
1873  *   - <0, on error.
1874  */
1875 int btf__add_ptr(struct btf *btf, int ref_type_id)
1876 {
1877 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1878 }
1879 
1880 /*
1881  * Append new BTF_KIND_ARRAY type with:
1882  *   - *index_type_id* - type ID of the type describing array index;
1883  *   - *elem_type_id* - type ID of the type describing array element;
1884  *   - *nr_elems* - the size of the array;
1885  * Returns:
1886  *   - >0, type ID of newly added BTF type;
1887  *   - <0, on error.
1888  */
1889 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1890 {
1891 	struct btf_type *t;
1892 	struct btf_array *a;
1893 	int sz;
1894 
1895 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1896 		return libbpf_err(-EINVAL);
1897 
1898 	if (btf_ensure_modifiable(btf))
1899 		return libbpf_err(-ENOMEM);
1900 
1901 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1902 	t = btf_add_type_mem(btf, sz);
1903 	if (!t)
1904 		return libbpf_err(-ENOMEM);
1905 
1906 	t->name_off = 0;
1907 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1908 	t->size = 0;
1909 
1910 	a = btf_array(t);
1911 	a->type = elem_type_id;
1912 	a->index_type = index_type_id;
1913 	a->nelems = nr_elems;
1914 
1915 	return btf_commit_type(btf, sz);
1916 }
1917 
1918 /* generic STRUCT/UNION append function */
1919 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1920 {
1921 	struct btf_type *t;
1922 	int sz, name_off = 0;
1923 
1924 	if (btf_ensure_modifiable(btf))
1925 		return libbpf_err(-ENOMEM);
1926 
1927 	sz = sizeof(struct btf_type);
1928 	t = btf_add_type_mem(btf, sz);
1929 	if (!t)
1930 		return libbpf_err(-ENOMEM);
1931 
1932 	if (name && name[0]) {
1933 		name_off = btf__add_str(btf, name);
1934 		if (name_off < 0)
1935 			return name_off;
1936 	}
1937 
1938 	/* start out with vlen=0 and no kflag; this will be adjusted when
1939 	 * adding each member
1940 	 */
1941 	t->name_off = name_off;
1942 	t->info = btf_type_info(kind, 0, 0);
1943 	t->size = bytes_sz;
1944 
1945 	return btf_commit_type(btf, sz);
1946 }
1947 
1948 /*
1949  * Append new BTF_KIND_STRUCT type with:
1950  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1951  *   - *byte_sz* - size of the struct, in bytes;
1952  *
1953  * Struct initially has no fields in it. Fields can be added by
1954  * btf__add_field() right after btf__add_struct() succeeds.
1955  *
1956  * Returns:
1957  *   - >0, type ID of newly added BTF type;
1958  *   - <0, on error.
1959  */
1960 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1961 {
1962 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1963 }
1964 
1965 /*
1966  * Append new BTF_KIND_UNION type with:
1967  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1968  *   - *byte_sz* - size of the union, in bytes;
1969  *
1970  * Union initially has no fields in it. Fields can be added by
1971  * btf__add_field() right after btf__add_union() succeeds. All fields
1972  * should have *bit_offset* of 0.
1973  *
1974  * Returns:
1975  *   - >0, type ID of newly added BTF type;
1976  *   - <0, on error.
1977  */
1978 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1979 {
1980 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1981 }
1982 
1983 static struct btf_type *btf_last_type(struct btf *btf)
1984 {
1985 	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
1986 }
1987 
1988 /*
1989  * Append new field for the current STRUCT/UNION type with:
1990  *   - *name* - name of the field, can be NULL or empty for anonymous field;
1991  *   - *type_id* - type ID for the type describing field type;
1992  *   - *bit_offset* - bit offset of the start of the field within struct/union;
1993  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1994  * Returns:
1995  *   -  0, on success;
1996  *   - <0, on error.
1997  */
1998 int btf__add_field(struct btf *btf, const char *name, int type_id,
1999 		   __u32 bit_offset, __u32 bit_size)
2000 {
2001 	struct btf_type *t;
2002 	struct btf_member *m;
2003 	bool is_bitfield;
2004 	int sz, name_off = 0;
2005 
2006 	/* last type should be union/struct */
2007 	if (btf->nr_types == 0)
2008 		return libbpf_err(-EINVAL);
2009 	t = btf_last_type(btf);
2010 	if (!btf_is_composite(t))
2011 		return libbpf_err(-EINVAL);
2012 
2013 	if (validate_type_id(type_id))
2014 		return libbpf_err(-EINVAL);
2015 	/* best-effort bit field offset/size enforcement */
2016 	is_bitfield = bit_size || (bit_offset % 8 != 0);
2017 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2018 		return libbpf_err(-EINVAL);
2019 
2020 	/* only offset 0 is allowed for unions */
2021 	if (btf_is_union(t) && bit_offset)
2022 		return libbpf_err(-EINVAL);
2023 
2024 	/* decompose and invalidate raw data */
2025 	if (btf_ensure_modifiable(btf))
2026 		return libbpf_err(-ENOMEM);
2027 
2028 	sz = sizeof(struct btf_member);
2029 	m = btf_add_type_mem(btf, sz);
2030 	if (!m)
2031 		return libbpf_err(-ENOMEM);
2032 
2033 	if (name && name[0]) {
2034 		name_off = btf__add_str(btf, name);
2035 		if (name_off < 0)
2036 			return name_off;
2037 	}
2038 
2039 	m->name_off = name_off;
2040 	m->type = type_id;
2041 	m->offset = bit_offset | (bit_size << 24);
2042 
2043 	/* btf_add_type_mem can invalidate t pointer */
2044 	t = btf_last_type(btf);
2045 	/* update parent type's vlen and kflag */
2046 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2047 
2048 	btf->hdr->type_len += sz;
2049 	btf->hdr->str_off += sz;
2050 	return 0;
2051 }
2052 
2053 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2054 			       bool is_signed, __u8 kind)
2055 {
2056 	struct btf_type *t;
2057 	int sz, name_off = 0;
2058 
2059 	/* byte_sz must be power of 2 */
2060 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2061 		return libbpf_err(-EINVAL);
2062 
2063 	if (btf_ensure_modifiable(btf))
2064 		return libbpf_err(-ENOMEM);
2065 
2066 	sz = sizeof(struct btf_type);
2067 	t = btf_add_type_mem(btf, sz);
2068 	if (!t)
2069 		return libbpf_err(-ENOMEM);
2070 
2071 	if (name && name[0]) {
2072 		name_off = btf__add_str(btf, name);
2073 		if (name_off < 0)
2074 			return name_off;
2075 	}
2076 
2077 	/* start out with vlen=0; it will be adjusted when adding enum values */
2078 	t->name_off = name_off;
2079 	t->info = btf_type_info(kind, 0, is_signed);
2080 	t->size = byte_sz;
2081 
2082 	return btf_commit_type(btf, sz);
2083 }
2084 
2085 /*
2086  * Append new BTF_KIND_ENUM type with:
2087  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2088  *   - *byte_sz* - size of the enum, in bytes.
2089  *
2090  * Enum initially has no enum values in it (and corresponds to enum forward
2091  * declaration). Enumerator values can be added by btf__add_enum_value()
2092  * immediately after btf__add_enum() succeeds.
2093  *
2094  * Returns:
2095  *   - >0, type ID of newly added BTF type;
2096  *   - <0, on error.
2097  */
2098 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2099 {
2100 	/*
2101 	 * set the signedness to be unsigned, it will change to signed
2102 	 * if any later enumerator is negative.
2103 	 */
2104 	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2105 }
2106 
2107 /*
2108  * Append new enum value for the current ENUM type with:
2109  *   - *name* - name of the enumerator value, can't be NULL or empty;
2110  *   - *value* - integer value corresponding to enum value *name*;
2111  * Returns:
2112  *   -  0, on success;
2113  *   - <0, on error.
2114  */
2115 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2116 {
2117 	struct btf_type *t;
2118 	struct btf_enum *v;
2119 	int sz, name_off;
2120 
2121 	/* last type should be BTF_KIND_ENUM */
2122 	if (btf->nr_types == 0)
2123 		return libbpf_err(-EINVAL);
2124 	t = btf_last_type(btf);
2125 	if (!btf_is_enum(t))
2126 		return libbpf_err(-EINVAL);
2127 
2128 	/* non-empty name */
2129 	if (!name || !name[0])
2130 		return libbpf_err(-EINVAL);
2131 	if (value < INT_MIN || value > UINT_MAX)
2132 		return libbpf_err(-E2BIG);
2133 
2134 	/* decompose and invalidate raw data */
2135 	if (btf_ensure_modifiable(btf))
2136 		return libbpf_err(-ENOMEM);
2137 
2138 	sz = sizeof(struct btf_enum);
2139 	v = btf_add_type_mem(btf, sz);
2140 	if (!v)
2141 		return libbpf_err(-ENOMEM);
2142 
2143 	name_off = btf__add_str(btf, name);
2144 	if (name_off < 0)
2145 		return name_off;
2146 
2147 	v->name_off = name_off;
2148 	v->val = value;
2149 
2150 	/* update parent type's vlen */
2151 	t = btf_last_type(btf);
2152 	btf_type_inc_vlen(t);
2153 
2154 	/* if negative value, set signedness to signed */
2155 	if (value < 0)
2156 		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2157 
2158 	btf->hdr->type_len += sz;
2159 	btf->hdr->str_off += sz;
2160 	return 0;
2161 }
2162 
2163 /*
2164  * Append new BTF_KIND_ENUM64 type with:
2165  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2166  *   - *byte_sz* - size of the enum, in bytes.
2167  *   - *is_signed* - whether the enum values are signed or not;
2168  *
2169  * Enum initially has no enum values in it (and corresponds to enum forward
2170  * declaration). Enumerator values can be added by btf__add_enum64_value()
2171  * immediately after btf__add_enum64() succeeds.
2172  *
2173  * Returns:
2174  *   - >0, type ID of newly added BTF type;
2175  *   - <0, on error.
2176  */
2177 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2178 		    bool is_signed)
2179 {
2180 	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2181 				   BTF_KIND_ENUM64);
2182 }
2183 
2184 /*
2185  * Append new enum value for the current ENUM64 type with:
2186  *   - *name* - name of the enumerator value, can't be NULL or empty;
2187  *   - *value* - integer value corresponding to enum value *name*;
2188  * Returns:
2189  *   -  0, on success;
2190  *   - <0, on error.
2191  */
2192 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2193 {
2194 	struct btf_enum64 *v;
2195 	struct btf_type *t;
2196 	int sz, name_off;
2197 
2198 	/* last type should be BTF_KIND_ENUM64 */
2199 	if (btf->nr_types == 0)
2200 		return libbpf_err(-EINVAL);
2201 	t = btf_last_type(btf);
2202 	if (!btf_is_enum64(t))
2203 		return libbpf_err(-EINVAL);
2204 
2205 	/* non-empty name */
2206 	if (!name || !name[0])
2207 		return libbpf_err(-EINVAL);
2208 
2209 	/* decompose and invalidate raw data */
2210 	if (btf_ensure_modifiable(btf))
2211 		return libbpf_err(-ENOMEM);
2212 
2213 	sz = sizeof(struct btf_enum64);
2214 	v = btf_add_type_mem(btf, sz);
2215 	if (!v)
2216 		return libbpf_err(-ENOMEM);
2217 
2218 	name_off = btf__add_str(btf, name);
2219 	if (name_off < 0)
2220 		return name_off;
2221 
2222 	v->name_off = name_off;
2223 	v->val_lo32 = (__u32)value;
2224 	v->val_hi32 = value >> 32;
2225 
2226 	/* update parent type's vlen */
2227 	t = btf_last_type(btf);
2228 	btf_type_inc_vlen(t);
2229 
2230 	btf->hdr->type_len += sz;
2231 	btf->hdr->str_off += sz;
2232 	return 0;
2233 }
2234 
2235 /*
2236  * Append new BTF_KIND_FWD type with:
2237  *   - *name*, non-empty/non-NULL name;
2238  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2239  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2240  * Returns:
2241  *   - >0, type ID of newly added BTF type;
2242  *   - <0, on error.
2243  */
2244 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2245 {
2246 	if (!name || !name[0])
2247 		return libbpf_err(-EINVAL);
2248 
2249 	switch (fwd_kind) {
2250 	case BTF_FWD_STRUCT:
2251 	case BTF_FWD_UNION: {
2252 		struct btf_type *t;
2253 		int id;
2254 
2255 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2256 		if (id <= 0)
2257 			return id;
2258 		t = btf_type_by_id(btf, id);
2259 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2260 		return id;
2261 	}
2262 	case BTF_FWD_ENUM:
2263 		/* enum forward in BTF currently is just an enum with no enum
2264 		 * values; we also assume a standard 4-byte size for it
2265 		 */
2266 		return btf__add_enum(btf, name, sizeof(int));
2267 	default:
2268 		return libbpf_err(-EINVAL);
2269 	}
2270 }
2271 
2272 /*
2273  * Append new BTF_KING_TYPEDEF type with:
2274  *   - *name*, non-empty/non-NULL name;
2275  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2276  * Returns:
2277  *   - >0, type ID of newly added BTF type;
2278  *   - <0, on error.
2279  */
2280 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2281 {
2282 	if (!name || !name[0])
2283 		return libbpf_err(-EINVAL);
2284 
2285 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2286 }
2287 
2288 /*
2289  * Append new BTF_KIND_VOLATILE type with:
2290  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2291  * Returns:
2292  *   - >0, type ID of newly added BTF type;
2293  *   - <0, on error.
2294  */
2295 int btf__add_volatile(struct btf *btf, int ref_type_id)
2296 {
2297 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2298 }
2299 
2300 /*
2301  * Append new BTF_KIND_CONST type with:
2302  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2303  * Returns:
2304  *   - >0, type ID of newly added BTF type;
2305  *   - <0, on error.
2306  */
2307 int btf__add_const(struct btf *btf, int ref_type_id)
2308 {
2309 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2310 }
2311 
2312 /*
2313  * Append new BTF_KIND_RESTRICT type with:
2314  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2315  * Returns:
2316  *   - >0, type ID of newly added BTF type;
2317  *   - <0, on error.
2318  */
2319 int btf__add_restrict(struct btf *btf, int ref_type_id)
2320 {
2321 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2322 }
2323 
2324 /*
2325  * Append new BTF_KIND_TYPE_TAG type with:
2326  *   - *value*, non-empty/non-NULL tag value;
2327  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2328  * Returns:
2329  *   - >0, type ID of newly added BTF type;
2330  *   - <0, on error.
2331  */
2332 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2333 {
2334 	if (!value|| !value[0])
2335 		return libbpf_err(-EINVAL);
2336 
2337 	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2338 }
2339 
2340 /*
2341  * Append new BTF_KIND_FUNC type with:
2342  *   - *name*, non-empty/non-NULL name;
2343  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2344  * Returns:
2345  *   - >0, type ID of newly added BTF type;
2346  *   - <0, on error.
2347  */
2348 int btf__add_func(struct btf *btf, const char *name,
2349 		  enum btf_func_linkage linkage, int proto_type_id)
2350 {
2351 	int id;
2352 
2353 	if (!name || !name[0])
2354 		return libbpf_err(-EINVAL);
2355 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2356 	    linkage != BTF_FUNC_EXTERN)
2357 		return libbpf_err(-EINVAL);
2358 
2359 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2360 	if (id > 0) {
2361 		struct btf_type *t = btf_type_by_id(btf, id);
2362 
2363 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2364 	}
2365 	return libbpf_err(id);
2366 }
2367 
2368 /*
2369  * Append new BTF_KIND_FUNC_PROTO with:
2370  *   - *ret_type_id* - type ID for return result of a function.
2371  *
2372  * Function prototype initially has no arguments, but they can be added by
2373  * btf__add_func_param() one by one, immediately after
2374  * btf__add_func_proto() succeeded.
2375  *
2376  * Returns:
2377  *   - >0, type ID of newly added BTF type;
2378  *   - <0, on error.
2379  */
2380 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2381 {
2382 	struct btf_type *t;
2383 	int sz;
2384 
2385 	if (validate_type_id(ret_type_id))
2386 		return libbpf_err(-EINVAL);
2387 
2388 	if (btf_ensure_modifiable(btf))
2389 		return libbpf_err(-ENOMEM);
2390 
2391 	sz = sizeof(struct btf_type);
2392 	t = btf_add_type_mem(btf, sz);
2393 	if (!t)
2394 		return libbpf_err(-ENOMEM);
2395 
2396 	/* start out with vlen=0; this will be adjusted when adding enum
2397 	 * values, if necessary
2398 	 */
2399 	t->name_off = 0;
2400 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2401 	t->type = ret_type_id;
2402 
2403 	return btf_commit_type(btf, sz);
2404 }
2405 
2406 /*
2407  * Append new function parameter for current FUNC_PROTO type with:
2408  *   - *name* - parameter name, can be NULL or empty;
2409  *   - *type_id* - type ID describing the type of the parameter.
2410  * Returns:
2411  *   -  0, on success;
2412  *   - <0, on error.
2413  */
2414 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2415 {
2416 	struct btf_type *t;
2417 	struct btf_param *p;
2418 	int sz, name_off = 0;
2419 
2420 	if (validate_type_id(type_id))
2421 		return libbpf_err(-EINVAL);
2422 
2423 	/* last type should be BTF_KIND_FUNC_PROTO */
2424 	if (btf->nr_types == 0)
2425 		return libbpf_err(-EINVAL);
2426 	t = btf_last_type(btf);
2427 	if (!btf_is_func_proto(t))
2428 		return libbpf_err(-EINVAL);
2429 
2430 	/* decompose and invalidate raw data */
2431 	if (btf_ensure_modifiable(btf))
2432 		return libbpf_err(-ENOMEM);
2433 
2434 	sz = sizeof(struct btf_param);
2435 	p = btf_add_type_mem(btf, sz);
2436 	if (!p)
2437 		return libbpf_err(-ENOMEM);
2438 
2439 	if (name && name[0]) {
2440 		name_off = btf__add_str(btf, name);
2441 		if (name_off < 0)
2442 			return name_off;
2443 	}
2444 
2445 	p->name_off = name_off;
2446 	p->type = type_id;
2447 
2448 	/* update parent type's vlen */
2449 	t = btf_last_type(btf);
2450 	btf_type_inc_vlen(t);
2451 
2452 	btf->hdr->type_len += sz;
2453 	btf->hdr->str_off += sz;
2454 	return 0;
2455 }
2456 
2457 /*
2458  * Append new BTF_KIND_VAR type with:
2459  *   - *name* - non-empty/non-NULL name;
2460  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2461  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2462  *   - *type_id* - type ID of the type describing the type of the variable.
2463  * Returns:
2464  *   - >0, type ID of newly added BTF type;
2465  *   - <0, on error.
2466  */
2467 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2468 {
2469 	struct btf_type *t;
2470 	struct btf_var *v;
2471 	int sz, name_off;
2472 
2473 	/* non-empty name */
2474 	if (!name || !name[0])
2475 		return libbpf_err(-EINVAL);
2476 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2477 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2478 		return libbpf_err(-EINVAL);
2479 	if (validate_type_id(type_id))
2480 		return libbpf_err(-EINVAL);
2481 
2482 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2483 	if (btf_ensure_modifiable(btf))
2484 		return libbpf_err(-ENOMEM);
2485 
2486 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2487 	t = btf_add_type_mem(btf, sz);
2488 	if (!t)
2489 		return libbpf_err(-ENOMEM);
2490 
2491 	name_off = btf__add_str(btf, name);
2492 	if (name_off < 0)
2493 		return name_off;
2494 
2495 	t->name_off = name_off;
2496 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2497 	t->type = type_id;
2498 
2499 	v = btf_var(t);
2500 	v->linkage = linkage;
2501 
2502 	return btf_commit_type(btf, sz);
2503 }
2504 
2505 /*
2506  * Append new BTF_KIND_DATASEC type with:
2507  *   - *name* - non-empty/non-NULL name;
2508  *   - *byte_sz* - data section size, in bytes.
2509  *
2510  * Data section is initially empty. Variables info can be added with
2511  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2512  *
2513  * Returns:
2514  *   - >0, type ID of newly added BTF type;
2515  *   - <0, on error.
2516  */
2517 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2518 {
2519 	struct btf_type *t;
2520 	int sz, name_off;
2521 
2522 	/* non-empty name */
2523 	if (!name || !name[0])
2524 		return libbpf_err(-EINVAL);
2525 
2526 	if (btf_ensure_modifiable(btf))
2527 		return libbpf_err(-ENOMEM);
2528 
2529 	sz = sizeof(struct btf_type);
2530 	t = btf_add_type_mem(btf, sz);
2531 	if (!t)
2532 		return libbpf_err(-ENOMEM);
2533 
2534 	name_off = btf__add_str(btf, name);
2535 	if (name_off < 0)
2536 		return name_off;
2537 
2538 	/* start with vlen=0, which will be update as var_secinfos are added */
2539 	t->name_off = name_off;
2540 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2541 	t->size = byte_sz;
2542 
2543 	return btf_commit_type(btf, sz);
2544 }
2545 
2546 /*
2547  * Append new data section variable information entry for current DATASEC type:
2548  *   - *var_type_id* - type ID, describing type of the variable;
2549  *   - *offset* - variable offset within data section, in bytes;
2550  *   - *byte_sz* - variable size, in bytes.
2551  *
2552  * Returns:
2553  *   -  0, on success;
2554  *   - <0, on error.
2555  */
2556 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2557 {
2558 	struct btf_type *t;
2559 	struct btf_var_secinfo *v;
2560 	int sz;
2561 
2562 	/* last type should be BTF_KIND_DATASEC */
2563 	if (btf->nr_types == 0)
2564 		return libbpf_err(-EINVAL);
2565 	t = btf_last_type(btf);
2566 	if (!btf_is_datasec(t))
2567 		return libbpf_err(-EINVAL);
2568 
2569 	if (validate_type_id(var_type_id))
2570 		return libbpf_err(-EINVAL);
2571 
2572 	/* decompose and invalidate raw data */
2573 	if (btf_ensure_modifiable(btf))
2574 		return libbpf_err(-ENOMEM);
2575 
2576 	sz = sizeof(struct btf_var_secinfo);
2577 	v = btf_add_type_mem(btf, sz);
2578 	if (!v)
2579 		return libbpf_err(-ENOMEM);
2580 
2581 	v->type = var_type_id;
2582 	v->offset = offset;
2583 	v->size = byte_sz;
2584 
2585 	/* update parent type's vlen */
2586 	t = btf_last_type(btf);
2587 	btf_type_inc_vlen(t);
2588 
2589 	btf->hdr->type_len += sz;
2590 	btf->hdr->str_off += sz;
2591 	return 0;
2592 }
2593 
2594 /*
2595  * Append new BTF_KIND_DECL_TAG type with:
2596  *   - *value* - non-empty/non-NULL string;
2597  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2598  *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2599  *     member or function argument index;
2600  * Returns:
2601  *   - >0, type ID of newly added BTF type;
2602  *   - <0, on error.
2603  */
2604 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2605 		 int component_idx)
2606 {
2607 	struct btf_type *t;
2608 	int sz, value_off;
2609 
2610 	if (!value || !value[0] || component_idx < -1)
2611 		return libbpf_err(-EINVAL);
2612 
2613 	if (validate_type_id(ref_type_id))
2614 		return libbpf_err(-EINVAL);
2615 
2616 	if (btf_ensure_modifiable(btf))
2617 		return libbpf_err(-ENOMEM);
2618 
2619 	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2620 	t = btf_add_type_mem(btf, sz);
2621 	if (!t)
2622 		return libbpf_err(-ENOMEM);
2623 
2624 	value_off = btf__add_str(btf, value);
2625 	if (value_off < 0)
2626 		return value_off;
2627 
2628 	t->name_off = value_off;
2629 	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2630 	t->type = ref_type_id;
2631 	btf_decl_tag(t)->component_idx = component_idx;
2632 
2633 	return btf_commit_type(btf, sz);
2634 }
2635 
2636 struct btf_ext_sec_setup_param {
2637 	__u32 off;
2638 	__u32 len;
2639 	__u32 min_rec_size;
2640 	struct btf_ext_info *ext_info;
2641 	const char *desc;
2642 };
2643 
2644 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2645 			      struct btf_ext_sec_setup_param *ext_sec)
2646 {
2647 	const struct btf_ext_info_sec *sinfo;
2648 	struct btf_ext_info *ext_info;
2649 	__u32 info_left, record_size;
2650 	size_t sec_cnt = 0;
2651 	/* The start of the info sec (including the __u32 record_size). */
2652 	void *info;
2653 
2654 	if (ext_sec->len == 0)
2655 		return 0;
2656 
2657 	if (ext_sec->off & 0x03) {
2658 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2659 		     ext_sec->desc);
2660 		return -EINVAL;
2661 	}
2662 
2663 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2664 	info_left = ext_sec->len;
2665 
2666 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2667 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2668 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2669 		return -EINVAL;
2670 	}
2671 
2672 	/* At least a record size */
2673 	if (info_left < sizeof(__u32)) {
2674 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2675 		return -EINVAL;
2676 	}
2677 
2678 	/* The record size needs to meet the minimum standard */
2679 	record_size = *(__u32 *)info;
2680 	if (record_size < ext_sec->min_rec_size ||
2681 	    record_size & 0x03) {
2682 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2683 			 ext_sec->desc, record_size);
2684 		return -EINVAL;
2685 	}
2686 
2687 	sinfo = info + sizeof(__u32);
2688 	info_left -= sizeof(__u32);
2689 
2690 	/* If no records, return failure now so .BTF.ext won't be used. */
2691 	if (!info_left) {
2692 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2693 		return -EINVAL;
2694 	}
2695 
2696 	while (info_left) {
2697 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2698 		__u64 total_record_size;
2699 		__u32 num_records;
2700 
2701 		if (info_left < sec_hdrlen) {
2702 			pr_debug("%s section header is not found in .BTF.ext\n",
2703 			     ext_sec->desc);
2704 			return -EINVAL;
2705 		}
2706 
2707 		num_records = sinfo->num_info;
2708 		if (num_records == 0) {
2709 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2710 			     ext_sec->desc);
2711 			return -EINVAL;
2712 		}
2713 
2714 		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2715 		if (info_left < total_record_size) {
2716 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2717 			     ext_sec->desc);
2718 			return -EINVAL;
2719 		}
2720 
2721 		info_left -= total_record_size;
2722 		sinfo = (void *)sinfo + total_record_size;
2723 		sec_cnt++;
2724 	}
2725 
2726 	ext_info = ext_sec->ext_info;
2727 	ext_info->len = ext_sec->len - sizeof(__u32);
2728 	ext_info->rec_size = record_size;
2729 	ext_info->info = info + sizeof(__u32);
2730 	ext_info->sec_cnt = sec_cnt;
2731 
2732 	return 0;
2733 }
2734 
2735 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2736 {
2737 	struct btf_ext_sec_setup_param param = {
2738 		.off = btf_ext->hdr->func_info_off,
2739 		.len = btf_ext->hdr->func_info_len,
2740 		.min_rec_size = sizeof(struct bpf_func_info_min),
2741 		.ext_info = &btf_ext->func_info,
2742 		.desc = "func_info"
2743 	};
2744 
2745 	return btf_ext_setup_info(btf_ext, &param);
2746 }
2747 
2748 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2749 {
2750 	struct btf_ext_sec_setup_param param = {
2751 		.off = btf_ext->hdr->line_info_off,
2752 		.len = btf_ext->hdr->line_info_len,
2753 		.min_rec_size = sizeof(struct bpf_line_info_min),
2754 		.ext_info = &btf_ext->line_info,
2755 		.desc = "line_info",
2756 	};
2757 
2758 	return btf_ext_setup_info(btf_ext, &param);
2759 }
2760 
2761 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2762 {
2763 	struct btf_ext_sec_setup_param param = {
2764 		.off = btf_ext->hdr->core_relo_off,
2765 		.len = btf_ext->hdr->core_relo_len,
2766 		.min_rec_size = sizeof(struct bpf_core_relo),
2767 		.ext_info = &btf_ext->core_relo_info,
2768 		.desc = "core_relo",
2769 	};
2770 
2771 	return btf_ext_setup_info(btf_ext, &param);
2772 }
2773 
2774 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2775 {
2776 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2777 
2778 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2779 	    data_size < hdr->hdr_len) {
2780 		pr_debug("BTF.ext header not found");
2781 		return -EINVAL;
2782 	}
2783 
2784 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2785 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2786 		return -ENOTSUP;
2787 	} else if (hdr->magic != BTF_MAGIC) {
2788 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2789 		return -EINVAL;
2790 	}
2791 
2792 	if (hdr->version != BTF_VERSION) {
2793 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2794 		return -ENOTSUP;
2795 	}
2796 
2797 	if (hdr->flags) {
2798 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2799 		return -ENOTSUP;
2800 	}
2801 
2802 	if (data_size == hdr->hdr_len) {
2803 		pr_debug("BTF.ext has no data\n");
2804 		return -EINVAL;
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 void btf_ext__free(struct btf_ext *btf_ext)
2811 {
2812 	if (IS_ERR_OR_NULL(btf_ext))
2813 		return;
2814 	free(btf_ext->func_info.sec_idxs);
2815 	free(btf_ext->line_info.sec_idxs);
2816 	free(btf_ext->core_relo_info.sec_idxs);
2817 	free(btf_ext->data);
2818 	free(btf_ext);
2819 }
2820 
2821 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2822 {
2823 	struct btf_ext *btf_ext;
2824 	int err;
2825 
2826 	btf_ext = calloc(1, sizeof(struct btf_ext));
2827 	if (!btf_ext)
2828 		return libbpf_err_ptr(-ENOMEM);
2829 
2830 	btf_ext->data_size = size;
2831 	btf_ext->data = malloc(size);
2832 	if (!btf_ext->data) {
2833 		err = -ENOMEM;
2834 		goto done;
2835 	}
2836 	memcpy(btf_ext->data, data, size);
2837 
2838 	err = btf_ext_parse_hdr(btf_ext->data, size);
2839 	if (err)
2840 		goto done;
2841 
2842 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2843 		err = -EINVAL;
2844 		goto done;
2845 	}
2846 
2847 	err = btf_ext_setup_func_info(btf_ext);
2848 	if (err)
2849 		goto done;
2850 
2851 	err = btf_ext_setup_line_info(btf_ext);
2852 	if (err)
2853 		goto done;
2854 
2855 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2856 		goto done; /* skip core relos parsing */
2857 
2858 	err = btf_ext_setup_core_relos(btf_ext);
2859 	if (err)
2860 		goto done;
2861 
2862 done:
2863 	if (err) {
2864 		btf_ext__free(btf_ext);
2865 		return libbpf_err_ptr(err);
2866 	}
2867 
2868 	return btf_ext;
2869 }
2870 
2871 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2872 {
2873 	*size = btf_ext->data_size;
2874 	return btf_ext->data;
2875 }
2876 
2877 struct btf_dedup;
2878 
2879 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2880 static void btf_dedup_free(struct btf_dedup *d);
2881 static int btf_dedup_prep(struct btf_dedup *d);
2882 static int btf_dedup_strings(struct btf_dedup *d);
2883 static int btf_dedup_prim_types(struct btf_dedup *d);
2884 static int btf_dedup_struct_types(struct btf_dedup *d);
2885 static int btf_dedup_ref_types(struct btf_dedup *d);
2886 static int btf_dedup_compact_types(struct btf_dedup *d);
2887 static int btf_dedup_remap_types(struct btf_dedup *d);
2888 
2889 /*
2890  * Deduplicate BTF types and strings.
2891  *
2892  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2893  * section with all BTF type descriptors and string data. It overwrites that
2894  * memory in-place with deduplicated types and strings without any loss of
2895  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2896  * is provided, all the strings referenced from .BTF.ext section are honored
2897  * and updated to point to the right offsets after deduplication.
2898  *
2899  * If function returns with error, type/string data might be garbled and should
2900  * be discarded.
2901  *
2902  * More verbose and detailed description of both problem btf_dedup is solving,
2903  * as well as solution could be found at:
2904  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2905  *
2906  * Problem description and justification
2907  * =====================================
2908  *
2909  * BTF type information is typically emitted either as a result of conversion
2910  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2911  * unit contains information about a subset of all the types that are used
2912  * in an application. These subsets are frequently overlapping and contain a lot
2913  * of duplicated information when later concatenated together into a single
2914  * binary. This algorithm ensures that each unique type is represented by single
2915  * BTF type descriptor, greatly reducing resulting size of BTF data.
2916  *
2917  * Compilation unit isolation and subsequent duplication of data is not the only
2918  * problem. The same type hierarchy (e.g., struct and all the type that struct
2919  * references) in different compilation units can be represented in BTF to
2920  * various degrees of completeness (or, rather, incompleteness) due to
2921  * struct/union forward declarations.
2922  *
2923  * Let's take a look at an example, that we'll use to better understand the
2924  * problem (and solution). Suppose we have two compilation units, each using
2925  * same `struct S`, but each of them having incomplete type information about
2926  * struct's fields:
2927  *
2928  * // CU #1:
2929  * struct S;
2930  * struct A {
2931  *	int a;
2932  *	struct A* self;
2933  *	struct S* parent;
2934  * };
2935  * struct B;
2936  * struct S {
2937  *	struct A* a_ptr;
2938  *	struct B* b_ptr;
2939  * };
2940  *
2941  * // CU #2:
2942  * struct S;
2943  * struct A;
2944  * struct B {
2945  *	int b;
2946  *	struct B* self;
2947  *	struct S* parent;
2948  * };
2949  * struct S {
2950  *	struct A* a_ptr;
2951  *	struct B* b_ptr;
2952  * };
2953  *
2954  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2955  * more), but will know the complete type information about `struct A`. While
2956  * for CU #2, it will know full type information about `struct B`, but will
2957  * only know about forward declaration of `struct A` (in BTF terms, it will
2958  * have `BTF_KIND_FWD` type descriptor with name `B`).
2959  *
2960  * This compilation unit isolation means that it's possible that there is no
2961  * single CU with complete type information describing structs `S`, `A`, and
2962  * `B`. Also, we might get tons of duplicated and redundant type information.
2963  *
2964  * Additional complication we need to keep in mind comes from the fact that
2965  * types, in general, can form graphs containing cycles, not just DAGs.
2966  *
2967  * While algorithm does deduplication, it also merges and resolves type
2968  * information (unless disabled throught `struct btf_opts`), whenever possible.
2969  * E.g., in the example above with two compilation units having partial type
2970  * information for structs `A` and `B`, the output of algorithm will emit
2971  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2972  * (as well as type information for `int` and pointers), as if they were defined
2973  * in a single compilation unit as:
2974  *
2975  * struct A {
2976  *	int a;
2977  *	struct A* self;
2978  *	struct S* parent;
2979  * };
2980  * struct B {
2981  *	int b;
2982  *	struct B* self;
2983  *	struct S* parent;
2984  * };
2985  * struct S {
2986  *	struct A* a_ptr;
2987  *	struct B* b_ptr;
2988  * };
2989  *
2990  * Algorithm summary
2991  * =================
2992  *
2993  * Algorithm completes its work in 6 separate passes:
2994  *
2995  * 1. Strings deduplication.
2996  * 2. Primitive types deduplication (int, enum, fwd).
2997  * 3. Struct/union types deduplication.
2998  * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2999  *    protos, and const/volatile/restrict modifiers).
3000  * 5. Types compaction.
3001  * 6. Types remapping.
3002  *
3003  * Algorithm determines canonical type descriptor, which is a single
3004  * representative type for each truly unique type. This canonical type is the
3005  * one that will go into final deduplicated BTF type information. For
3006  * struct/unions, it is also the type that algorithm will merge additional type
3007  * information into (while resolving FWDs), as it discovers it from data in
3008  * other CUs. Each input BTF type eventually gets either mapped to itself, if
3009  * that type is canonical, or to some other type, if that type is equivalent
3010  * and was chosen as canonical representative. This mapping is stored in
3011  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3012  * FWD type got resolved to.
3013  *
3014  * To facilitate fast discovery of canonical types, we also maintain canonical
3015  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3016  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3017  * that match that signature. With sufficiently good choice of type signature
3018  * hashing function, we can limit number of canonical types for each unique type
3019  * signature to a very small number, allowing to find canonical type for any
3020  * duplicated type very quickly.
3021  *
3022  * Struct/union deduplication is the most critical part and algorithm for
3023  * deduplicating structs/unions is described in greater details in comments for
3024  * `btf_dedup_is_equiv` function.
3025  */
3026 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3027 {
3028 	struct btf_dedup *d;
3029 	int err;
3030 
3031 	if (!OPTS_VALID(opts, btf_dedup_opts))
3032 		return libbpf_err(-EINVAL);
3033 
3034 	d = btf_dedup_new(btf, opts);
3035 	if (IS_ERR(d)) {
3036 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3037 		return libbpf_err(-EINVAL);
3038 	}
3039 
3040 	if (btf_ensure_modifiable(btf)) {
3041 		err = -ENOMEM;
3042 		goto done;
3043 	}
3044 
3045 	err = btf_dedup_prep(d);
3046 	if (err) {
3047 		pr_debug("btf_dedup_prep failed:%d\n", err);
3048 		goto done;
3049 	}
3050 	err = btf_dedup_strings(d);
3051 	if (err < 0) {
3052 		pr_debug("btf_dedup_strings failed:%d\n", err);
3053 		goto done;
3054 	}
3055 	err = btf_dedup_prim_types(d);
3056 	if (err < 0) {
3057 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3058 		goto done;
3059 	}
3060 	err = btf_dedup_struct_types(d);
3061 	if (err < 0) {
3062 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3063 		goto done;
3064 	}
3065 	err = btf_dedup_ref_types(d);
3066 	if (err < 0) {
3067 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3068 		goto done;
3069 	}
3070 	err = btf_dedup_compact_types(d);
3071 	if (err < 0) {
3072 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3073 		goto done;
3074 	}
3075 	err = btf_dedup_remap_types(d);
3076 	if (err < 0) {
3077 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3078 		goto done;
3079 	}
3080 
3081 done:
3082 	btf_dedup_free(d);
3083 	return libbpf_err(err);
3084 }
3085 
3086 #define BTF_UNPROCESSED_ID ((__u32)-1)
3087 #define BTF_IN_PROGRESS_ID ((__u32)-2)
3088 
3089 struct btf_dedup {
3090 	/* .BTF section to be deduped in-place */
3091 	struct btf *btf;
3092 	/*
3093 	 * Optional .BTF.ext section. When provided, any strings referenced
3094 	 * from it will be taken into account when deduping strings
3095 	 */
3096 	struct btf_ext *btf_ext;
3097 	/*
3098 	 * This is a map from any type's signature hash to a list of possible
3099 	 * canonical representative type candidates. Hash collisions are
3100 	 * ignored, so even types of various kinds can share same list of
3101 	 * candidates, which is fine because we rely on subsequent
3102 	 * btf_xxx_equal() checks to authoritatively verify type equality.
3103 	 */
3104 	struct hashmap *dedup_table;
3105 	/* Canonical types map */
3106 	__u32 *map;
3107 	/* Hypothetical mapping, used during type graph equivalence checks */
3108 	__u32 *hypot_map;
3109 	__u32 *hypot_list;
3110 	size_t hypot_cnt;
3111 	size_t hypot_cap;
3112 	/* Whether hypothetical mapping, if successful, would need to adjust
3113 	 * already canonicalized types (due to a new forward declaration to
3114 	 * concrete type resolution). In such case, during split BTF dedup
3115 	 * candidate type would still be considered as different, because base
3116 	 * BTF is considered to be immutable.
3117 	 */
3118 	bool hypot_adjust_canon;
3119 	/* Various option modifying behavior of algorithm */
3120 	struct btf_dedup_opts opts;
3121 	/* temporary strings deduplication state */
3122 	struct strset *strs_set;
3123 };
3124 
3125 static long hash_combine(long h, long value)
3126 {
3127 	return h * 31 + value;
3128 }
3129 
3130 #define for_each_dedup_cand(d, node, hash) \
3131 	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
3132 
3133 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3134 {
3135 	return hashmap__append(d->dedup_table,
3136 			       (void *)hash, (void *)(long)type_id);
3137 }
3138 
3139 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3140 				   __u32 from_id, __u32 to_id)
3141 {
3142 	if (d->hypot_cnt == d->hypot_cap) {
3143 		__u32 *new_list;
3144 
3145 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3146 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3147 		if (!new_list)
3148 			return -ENOMEM;
3149 		d->hypot_list = new_list;
3150 	}
3151 	d->hypot_list[d->hypot_cnt++] = from_id;
3152 	d->hypot_map[from_id] = to_id;
3153 	return 0;
3154 }
3155 
3156 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3157 {
3158 	int i;
3159 
3160 	for (i = 0; i < d->hypot_cnt; i++)
3161 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3162 	d->hypot_cnt = 0;
3163 	d->hypot_adjust_canon = false;
3164 }
3165 
3166 static void btf_dedup_free(struct btf_dedup *d)
3167 {
3168 	hashmap__free(d->dedup_table);
3169 	d->dedup_table = NULL;
3170 
3171 	free(d->map);
3172 	d->map = NULL;
3173 
3174 	free(d->hypot_map);
3175 	d->hypot_map = NULL;
3176 
3177 	free(d->hypot_list);
3178 	d->hypot_list = NULL;
3179 
3180 	free(d);
3181 }
3182 
3183 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3184 {
3185 	return (size_t)key;
3186 }
3187 
3188 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3189 {
3190 	return 0;
3191 }
3192 
3193 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3194 {
3195 	return k1 == k2;
3196 }
3197 
3198 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3199 {
3200 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3201 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3202 	int i, err = 0, type_cnt;
3203 
3204 	if (!d)
3205 		return ERR_PTR(-ENOMEM);
3206 
3207 	if (OPTS_GET(opts, force_collisions, false))
3208 		hash_fn = btf_dedup_collision_hash_fn;
3209 
3210 	d->btf = btf;
3211 	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3212 
3213 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3214 	if (IS_ERR(d->dedup_table)) {
3215 		err = PTR_ERR(d->dedup_table);
3216 		d->dedup_table = NULL;
3217 		goto done;
3218 	}
3219 
3220 	type_cnt = btf__type_cnt(btf);
3221 	d->map = malloc(sizeof(__u32) * type_cnt);
3222 	if (!d->map) {
3223 		err = -ENOMEM;
3224 		goto done;
3225 	}
3226 	/* special BTF "void" type is made canonical immediately */
3227 	d->map[0] = 0;
3228 	for (i = 1; i < type_cnt; i++) {
3229 		struct btf_type *t = btf_type_by_id(d->btf, i);
3230 
3231 		/* VAR and DATASEC are never deduped and are self-canonical */
3232 		if (btf_is_var(t) || btf_is_datasec(t))
3233 			d->map[i] = i;
3234 		else
3235 			d->map[i] = BTF_UNPROCESSED_ID;
3236 	}
3237 
3238 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3239 	if (!d->hypot_map) {
3240 		err = -ENOMEM;
3241 		goto done;
3242 	}
3243 	for (i = 0; i < type_cnt; i++)
3244 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3245 
3246 done:
3247 	if (err) {
3248 		btf_dedup_free(d);
3249 		return ERR_PTR(err);
3250 	}
3251 
3252 	return d;
3253 }
3254 
3255 /*
3256  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3257  * string and pass pointer to it to a provided callback `fn`.
3258  */
3259 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3260 {
3261 	int i, r;
3262 
3263 	for (i = 0; i < d->btf->nr_types; i++) {
3264 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3265 
3266 		r = btf_type_visit_str_offs(t, fn, ctx);
3267 		if (r)
3268 			return r;
3269 	}
3270 
3271 	if (!d->btf_ext)
3272 		return 0;
3273 
3274 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3275 	if (r)
3276 		return r;
3277 
3278 	return 0;
3279 }
3280 
3281 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3282 {
3283 	struct btf_dedup *d = ctx;
3284 	__u32 str_off = *str_off_ptr;
3285 	const char *s;
3286 	int off, err;
3287 
3288 	/* don't touch empty string or string in main BTF */
3289 	if (str_off == 0 || str_off < d->btf->start_str_off)
3290 		return 0;
3291 
3292 	s = btf__str_by_offset(d->btf, str_off);
3293 	if (d->btf->base_btf) {
3294 		err = btf__find_str(d->btf->base_btf, s);
3295 		if (err >= 0) {
3296 			*str_off_ptr = err;
3297 			return 0;
3298 		}
3299 		if (err != -ENOENT)
3300 			return err;
3301 	}
3302 
3303 	off = strset__add_str(d->strs_set, s);
3304 	if (off < 0)
3305 		return off;
3306 
3307 	*str_off_ptr = d->btf->start_str_off + off;
3308 	return 0;
3309 }
3310 
3311 /*
3312  * Dedup string and filter out those that are not referenced from either .BTF
3313  * or .BTF.ext (if provided) sections.
3314  *
3315  * This is done by building index of all strings in BTF's string section,
3316  * then iterating over all entities that can reference strings (e.g., type
3317  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3318  * strings as used. After that all used strings are deduped and compacted into
3319  * sequential blob of memory and new offsets are calculated. Then all the string
3320  * references are iterated again and rewritten using new offsets.
3321  */
3322 static int btf_dedup_strings(struct btf_dedup *d)
3323 {
3324 	int err;
3325 
3326 	if (d->btf->strs_deduped)
3327 		return 0;
3328 
3329 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3330 	if (IS_ERR(d->strs_set)) {
3331 		err = PTR_ERR(d->strs_set);
3332 		goto err_out;
3333 	}
3334 
3335 	if (!d->btf->base_btf) {
3336 		/* insert empty string; we won't be looking it up during strings
3337 		 * dedup, but it's good to have it for generic BTF string lookups
3338 		 */
3339 		err = strset__add_str(d->strs_set, "");
3340 		if (err < 0)
3341 			goto err_out;
3342 	}
3343 
3344 	/* remap string offsets */
3345 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3346 	if (err)
3347 		goto err_out;
3348 
3349 	/* replace BTF string data and hash with deduped ones */
3350 	strset__free(d->btf->strs_set);
3351 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3352 	d->btf->strs_set = d->strs_set;
3353 	d->strs_set = NULL;
3354 	d->btf->strs_deduped = true;
3355 	return 0;
3356 
3357 err_out:
3358 	strset__free(d->strs_set);
3359 	d->strs_set = NULL;
3360 
3361 	return err;
3362 }
3363 
3364 static long btf_hash_common(struct btf_type *t)
3365 {
3366 	long h;
3367 
3368 	h = hash_combine(0, t->name_off);
3369 	h = hash_combine(h, t->info);
3370 	h = hash_combine(h, t->size);
3371 	return h;
3372 }
3373 
3374 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3375 {
3376 	return t1->name_off == t2->name_off &&
3377 	       t1->info == t2->info &&
3378 	       t1->size == t2->size;
3379 }
3380 
3381 /* Calculate type signature hash of INT or TAG. */
3382 static long btf_hash_int_decl_tag(struct btf_type *t)
3383 {
3384 	__u32 info = *(__u32 *)(t + 1);
3385 	long h;
3386 
3387 	h = btf_hash_common(t);
3388 	h = hash_combine(h, info);
3389 	return h;
3390 }
3391 
3392 /* Check structural equality of two INTs or TAGs. */
3393 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3394 {
3395 	__u32 info1, info2;
3396 
3397 	if (!btf_equal_common(t1, t2))
3398 		return false;
3399 	info1 = *(__u32 *)(t1 + 1);
3400 	info2 = *(__u32 *)(t2 + 1);
3401 	return info1 == info2;
3402 }
3403 
3404 /* Calculate type signature hash of ENUM/ENUM64. */
3405 static long btf_hash_enum(struct btf_type *t)
3406 {
3407 	long h;
3408 
3409 	/* don't hash vlen and enum members to support enum fwd resolving */
3410 	h = hash_combine(0, t->name_off);
3411 	h = hash_combine(h, t->info & ~0xffff);
3412 	h = hash_combine(h, t->size);
3413 	return h;
3414 }
3415 
3416 /* Check structural equality of two ENUMs. */
3417 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3418 {
3419 	const struct btf_enum *m1, *m2;
3420 	__u16 vlen;
3421 	int i;
3422 
3423 	if (!btf_equal_common(t1, t2))
3424 		return false;
3425 
3426 	vlen = btf_vlen(t1);
3427 	m1 = btf_enum(t1);
3428 	m2 = btf_enum(t2);
3429 	for (i = 0; i < vlen; i++) {
3430 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3431 			return false;
3432 		m1++;
3433 		m2++;
3434 	}
3435 	return true;
3436 }
3437 
3438 static bool btf_equal_enum64(struct btf_type *t1, struct btf_type *t2)
3439 {
3440 	const struct btf_enum64 *m1, *m2;
3441 	__u16 vlen;
3442 	int i;
3443 
3444 	if (!btf_equal_common(t1, t2))
3445 		return false;
3446 
3447 	vlen = btf_vlen(t1);
3448 	m1 = btf_enum64(t1);
3449 	m2 = btf_enum64(t2);
3450 	for (i = 0; i < vlen; i++) {
3451 		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3452 		    m1->val_hi32 != m2->val_hi32)
3453 			return false;
3454 		m1++;
3455 		m2++;
3456 	}
3457 	return true;
3458 }
3459 
3460 static inline bool btf_is_enum_fwd(struct btf_type *t)
3461 {
3462 	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3463 }
3464 
3465 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3466 {
3467 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3468 		return btf_equal_enum(t1, t2);
3469 	/* ignore vlen when comparing */
3470 	return t1->name_off == t2->name_off &&
3471 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3472 	       t1->size == t2->size;
3473 }
3474 
3475 static bool btf_compat_enum64(struct btf_type *t1, struct btf_type *t2)
3476 {
3477 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3478 		return btf_equal_enum64(t1, t2);
3479 
3480 	/* ignore vlen when comparing */
3481 	return t1->name_off == t2->name_off &&
3482 	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3483 	       t1->size == t2->size;
3484 }
3485 
3486 /*
3487  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3488  * as referenced type IDs equivalence is established separately during type
3489  * graph equivalence check algorithm.
3490  */
3491 static long btf_hash_struct(struct btf_type *t)
3492 {
3493 	const struct btf_member *member = btf_members(t);
3494 	__u32 vlen = btf_vlen(t);
3495 	long h = btf_hash_common(t);
3496 	int i;
3497 
3498 	for (i = 0; i < vlen; i++) {
3499 		h = hash_combine(h, member->name_off);
3500 		h = hash_combine(h, member->offset);
3501 		/* no hashing of referenced type ID, it can be unresolved yet */
3502 		member++;
3503 	}
3504 	return h;
3505 }
3506 
3507 /*
3508  * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3509  * type IDs. This check is performed during type graph equivalence check and
3510  * referenced types equivalence is checked separately.
3511  */
3512 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3513 {
3514 	const struct btf_member *m1, *m2;
3515 	__u16 vlen;
3516 	int i;
3517 
3518 	if (!btf_equal_common(t1, t2))
3519 		return false;
3520 
3521 	vlen = btf_vlen(t1);
3522 	m1 = btf_members(t1);
3523 	m2 = btf_members(t2);
3524 	for (i = 0; i < vlen; i++) {
3525 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3526 			return false;
3527 		m1++;
3528 		m2++;
3529 	}
3530 	return true;
3531 }
3532 
3533 /*
3534  * Calculate type signature hash of ARRAY, including referenced type IDs,
3535  * under assumption that they were already resolved to canonical type IDs and
3536  * are not going to change.
3537  */
3538 static long btf_hash_array(struct btf_type *t)
3539 {
3540 	const struct btf_array *info = btf_array(t);
3541 	long h = btf_hash_common(t);
3542 
3543 	h = hash_combine(h, info->type);
3544 	h = hash_combine(h, info->index_type);
3545 	h = hash_combine(h, info->nelems);
3546 	return h;
3547 }
3548 
3549 /*
3550  * Check exact equality of two ARRAYs, taking into account referenced
3551  * type IDs, under assumption that they were already resolved to canonical
3552  * type IDs and are not going to change.
3553  * This function is called during reference types deduplication to compare
3554  * ARRAY to potential canonical representative.
3555  */
3556 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3557 {
3558 	const struct btf_array *info1, *info2;
3559 
3560 	if (!btf_equal_common(t1, t2))
3561 		return false;
3562 
3563 	info1 = btf_array(t1);
3564 	info2 = btf_array(t2);
3565 	return info1->type == info2->type &&
3566 	       info1->index_type == info2->index_type &&
3567 	       info1->nelems == info2->nelems;
3568 }
3569 
3570 /*
3571  * Check structural compatibility of two ARRAYs, ignoring referenced type
3572  * IDs. This check is performed during type graph equivalence check and
3573  * referenced types equivalence is checked separately.
3574  */
3575 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3576 {
3577 	if (!btf_equal_common(t1, t2))
3578 		return false;
3579 
3580 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3581 }
3582 
3583 /*
3584  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3585  * under assumption that they were already resolved to canonical type IDs and
3586  * are not going to change.
3587  */
3588 static long btf_hash_fnproto(struct btf_type *t)
3589 {
3590 	const struct btf_param *member = btf_params(t);
3591 	__u16 vlen = btf_vlen(t);
3592 	long h = btf_hash_common(t);
3593 	int i;
3594 
3595 	for (i = 0; i < vlen; i++) {
3596 		h = hash_combine(h, member->name_off);
3597 		h = hash_combine(h, member->type);
3598 		member++;
3599 	}
3600 	return h;
3601 }
3602 
3603 /*
3604  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3605  * type IDs, under assumption that they were already resolved to canonical
3606  * type IDs and are not going to change.
3607  * This function is called during reference types deduplication to compare
3608  * FUNC_PROTO to potential canonical representative.
3609  */
3610 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3611 {
3612 	const struct btf_param *m1, *m2;
3613 	__u16 vlen;
3614 	int i;
3615 
3616 	if (!btf_equal_common(t1, t2))
3617 		return false;
3618 
3619 	vlen = btf_vlen(t1);
3620 	m1 = btf_params(t1);
3621 	m2 = btf_params(t2);
3622 	for (i = 0; i < vlen; i++) {
3623 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3624 			return false;
3625 		m1++;
3626 		m2++;
3627 	}
3628 	return true;
3629 }
3630 
3631 /*
3632  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3633  * IDs. This check is performed during type graph equivalence check and
3634  * referenced types equivalence is checked separately.
3635  */
3636 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3637 {
3638 	const struct btf_param *m1, *m2;
3639 	__u16 vlen;
3640 	int i;
3641 
3642 	/* skip return type ID */
3643 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3644 		return false;
3645 
3646 	vlen = btf_vlen(t1);
3647 	m1 = btf_params(t1);
3648 	m2 = btf_params(t2);
3649 	for (i = 0; i < vlen; i++) {
3650 		if (m1->name_off != m2->name_off)
3651 			return false;
3652 		m1++;
3653 		m2++;
3654 	}
3655 	return true;
3656 }
3657 
3658 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3659  * types and initializing the rest of the state (canonical type mapping) for
3660  * the fixed base BTF part.
3661  */
3662 static int btf_dedup_prep(struct btf_dedup *d)
3663 {
3664 	struct btf_type *t;
3665 	int type_id;
3666 	long h;
3667 
3668 	if (!d->btf->base_btf)
3669 		return 0;
3670 
3671 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3672 		t = btf_type_by_id(d->btf, type_id);
3673 
3674 		/* all base BTF types are self-canonical by definition */
3675 		d->map[type_id] = type_id;
3676 
3677 		switch (btf_kind(t)) {
3678 		case BTF_KIND_VAR:
3679 		case BTF_KIND_DATASEC:
3680 			/* VAR and DATASEC are never hash/deduplicated */
3681 			continue;
3682 		case BTF_KIND_CONST:
3683 		case BTF_KIND_VOLATILE:
3684 		case BTF_KIND_RESTRICT:
3685 		case BTF_KIND_PTR:
3686 		case BTF_KIND_FWD:
3687 		case BTF_KIND_TYPEDEF:
3688 		case BTF_KIND_FUNC:
3689 		case BTF_KIND_FLOAT:
3690 		case BTF_KIND_TYPE_TAG:
3691 			h = btf_hash_common(t);
3692 			break;
3693 		case BTF_KIND_INT:
3694 		case BTF_KIND_DECL_TAG:
3695 			h = btf_hash_int_decl_tag(t);
3696 			break;
3697 		case BTF_KIND_ENUM:
3698 		case BTF_KIND_ENUM64:
3699 			h = btf_hash_enum(t);
3700 			break;
3701 		case BTF_KIND_STRUCT:
3702 		case BTF_KIND_UNION:
3703 			h = btf_hash_struct(t);
3704 			break;
3705 		case BTF_KIND_ARRAY:
3706 			h = btf_hash_array(t);
3707 			break;
3708 		case BTF_KIND_FUNC_PROTO:
3709 			h = btf_hash_fnproto(t);
3710 			break;
3711 		default:
3712 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3713 			return -EINVAL;
3714 		}
3715 		if (btf_dedup_table_add(d, h, type_id))
3716 			return -ENOMEM;
3717 	}
3718 
3719 	return 0;
3720 }
3721 
3722 /*
3723  * Deduplicate primitive types, that can't reference other types, by calculating
3724  * their type signature hash and comparing them with any possible canonical
3725  * candidate. If no canonical candidate matches, type itself is marked as
3726  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3727  */
3728 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3729 {
3730 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3731 	struct hashmap_entry *hash_entry;
3732 	struct btf_type *cand;
3733 	/* if we don't find equivalent type, then we are canonical */
3734 	__u32 new_id = type_id;
3735 	__u32 cand_id;
3736 	long h;
3737 
3738 	switch (btf_kind(t)) {
3739 	case BTF_KIND_CONST:
3740 	case BTF_KIND_VOLATILE:
3741 	case BTF_KIND_RESTRICT:
3742 	case BTF_KIND_PTR:
3743 	case BTF_KIND_TYPEDEF:
3744 	case BTF_KIND_ARRAY:
3745 	case BTF_KIND_STRUCT:
3746 	case BTF_KIND_UNION:
3747 	case BTF_KIND_FUNC:
3748 	case BTF_KIND_FUNC_PROTO:
3749 	case BTF_KIND_VAR:
3750 	case BTF_KIND_DATASEC:
3751 	case BTF_KIND_DECL_TAG:
3752 	case BTF_KIND_TYPE_TAG:
3753 		return 0;
3754 
3755 	case BTF_KIND_INT:
3756 		h = btf_hash_int_decl_tag(t);
3757 		for_each_dedup_cand(d, hash_entry, h) {
3758 			cand_id = (__u32)(long)hash_entry->value;
3759 			cand = btf_type_by_id(d->btf, cand_id);
3760 			if (btf_equal_int_tag(t, cand)) {
3761 				new_id = cand_id;
3762 				break;
3763 			}
3764 		}
3765 		break;
3766 
3767 	case BTF_KIND_ENUM:
3768 		h = btf_hash_enum(t);
3769 		for_each_dedup_cand(d, hash_entry, h) {
3770 			cand_id = (__u32)(long)hash_entry->value;
3771 			cand = btf_type_by_id(d->btf, cand_id);
3772 			if (btf_equal_enum(t, cand)) {
3773 				new_id = cand_id;
3774 				break;
3775 			}
3776 			if (btf_compat_enum(t, cand)) {
3777 				if (btf_is_enum_fwd(t)) {
3778 					/* resolve fwd to full enum */
3779 					new_id = cand_id;
3780 					break;
3781 				}
3782 				/* resolve canonical enum fwd to full enum */
3783 				d->map[cand_id] = type_id;
3784 			}
3785 		}
3786 		break;
3787 
3788 	case BTF_KIND_ENUM64:
3789 		h = btf_hash_enum(t);
3790 		for_each_dedup_cand(d, hash_entry, h) {
3791 			cand_id = (__u32)(long)hash_entry->value;
3792 			cand = btf_type_by_id(d->btf, cand_id);
3793 			if (btf_equal_enum64(t, cand)) {
3794 				new_id = cand_id;
3795 				break;
3796 			}
3797 			if (btf_compat_enum64(t, cand)) {
3798 				if (btf_is_enum_fwd(t)) {
3799 					/* resolve fwd to full enum */
3800 					new_id = cand_id;
3801 					break;
3802 				}
3803 				/* resolve canonical enum fwd to full enum */
3804 				d->map[cand_id] = type_id;
3805 			}
3806 		}
3807 		break;
3808 
3809 	case BTF_KIND_FWD:
3810 	case BTF_KIND_FLOAT:
3811 		h = btf_hash_common(t);
3812 		for_each_dedup_cand(d, hash_entry, h) {
3813 			cand_id = (__u32)(long)hash_entry->value;
3814 			cand = btf_type_by_id(d->btf, cand_id);
3815 			if (btf_equal_common(t, cand)) {
3816 				new_id = cand_id;
3817 				break;
3818 			}
3819 		}
3820 		break;
3821 
3822 	default:
3823 		return -EINVAL;
3824 	}
3825 
3826 	d->map[type_id] = new_id;
3827 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3828 		return -ENOMEM;
3829 
3830 	return 0;
3831 }
3832 
3833 static int btf_dedup_prim_types(struct btf_dedup *d)
3834 {
3835 	int i, err;
3836 
3837 	for (i = 0; i < d->btf->nr_types; i++) {
3838 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3839 		if (err)
3840 			return err;
3841 	}
3842 	return 0;
3843 }
3844 
3845 /*
3846  * Check whether type is already mapped into canonical one (could be to itself).
3847  */
3848 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3849 {
3850 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3851 }
3852 
3853 /*
3854  * Resolve type ID into its canonical type ID, if any; otherwise return original
3855  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3856  * STRUCT/UNION link and resolve it into canonical type ID as well.
3857  */
3858 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3859 {
3860 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3861 		type_id = d->map[type_id];
3862 	return type_id;
3863 }
3864 
3865 /*
3866  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3867  * type ID.
3868  */
3869 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3870 {
3871 	__u32 orig_type_id = type_id;
3872 
3873 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3874 		return type_id;
3875 
3876 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3877 		type_id = d->map[type_id];
3878 
3879 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3880 		return type_id;
3881 
3882 	return orig_type_id;
3883 }
3884 
3885 
3886 static inline __u16 btf_fwd_kind(struct btf_type *t)
3887 {
3888 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3889 }
3890 
3891 /* Check if given two types are identical ARRAY definitions */
3892 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3893 {
3894 	struct btf_type *t1, *t2;
3895 
3896 	t1 = btf_type_by_id(d->btf, id1);
3897 	t2 = btf_type_by_id(d->btf, id2);
3898 	if (!btf_is_array(t1) || !btf_is_array(t2))
3899 		return 0;
3900 
3901 	return btf_equal_array(t1, t2);
3902 }
3903 
3904 /* Check if given two types are identical STRUCT/UNION definitions */
3905 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3906 {
3907 	const struct btf_member *m1, *m2;
3908 	struct btf_type *t1, *t2;
3909 	int n, i;
3910 
3911 	t1 = btf_type_by_id(d->btf, id1);
3912 	t2 = btf_type_by_id(d->btf, id2);
3913 
3914 	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3915 		return false;
3916 
3917 	if (!btf_shallow_equal_struct(t1, t2))
3918 		return false;
3919 
3920 	m1 = btf_members(t1);
3921 	m2 = btf_members(t2);
3922 	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3923 		if (m1->type != m2->type)
3924 			return false;
3925 	}
3926 	return true;
3927 }
3928 
3929 /*
3930  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3931  * call it "candidate graph" in this description for brevity) to a type graph
3932  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3933  * here, though keep in mind that not all types in canonical graph are
3934  * necessarily canonical representatives themselves, some of them might be
3935  * duplicates or its uniqueness might not have been established yet).
3936  * Returns:
3937  *  - >0, if type graphs are equivalent;
3938  *  -  0, if not equivalent;
3939  *  - <0, on error.
3940  *
3941  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3942  * equivalence of BTF types at each step. If at any point BTF types in candidate
3943  * and canonical graphs are not compatible structurally, whole graphs are
3944  * incompatible. If types are structurally equivalent (i.e., all information
3945  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3946  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3947  * If a type references other types, then those referenced types are checked
3948  * for equivalence recursively.
3949  *
3950  * During DFS traversal, if we find that for current `canon_id` type we
3951  * already have some mapping in hypothetical map, we check for two possible
3952  * situations:
3953  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3954  *     happen when type graphs have cycles. In this case we assume those two
3955  *     types are equivalent.
3956  *   - `canon_id` is mapped to different type. This is contradiction in our
3957  *     hypothetical mapping, because same graph in canonical graph corresponds
3958  *     to two different types in candidate graph, which for equivalent type
3959  *     graphs shouldn't happen. This condition terminates equivalence check
3960  *     with negative result.
3961  *
3962  * If type graphs traversal exhausts types to check and find no contradiction,
3963  * then type graphs are equivalent.
3964  *
3965  * When checking types for equivalence, there is one special case: FWD types.
3966  * If FWD type resolution is allowed and one of the types (either from canonical
3967  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3968  * flag) and their names match, hypothetical mapping is updated to point from
3969  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3970  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3971  *
3972  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3973  * if there are two exactly named (or anonymous) structs/unions that are
3974  * compatible structurally, one of which has FWD field, while other is concrete
3975  * STRUCT/UNION, but according to C sources they are different structs/unions
3976  * that are referencing different types with the same name. This is extremely
3977  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3978  * this logic is causing problems.
3979  *
3980  * Doing FWD resolution means that both candidate and/or canonical graphs can
3981  * consists of portions of the graph that come from multiple compilation units.
3982  * This is due to the fact that types within single compilation unit are always
3983  * deduplicated and FWDs are already resolved, if referenced struct/union
3984  * definiton is available. So, if we had unresolved FWD and found corresponding
3985  * STRUCT/UNION, they will be from different compilation units. This
3986  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3987  * type graph will likely have at least two different BTF types that describe
3988  * same type (e.g., most probably there will be two different BTF types for the
3989  * same 'int' primitive type) and could even have "overlapping" parts of type
3990  * graph that describe same subset of types.
3991  *
3992  * This in turn means that our assumption that each type in canonical graph
3993  * must correspond to exactly one type in candidate graph might not hold
3994  * anymore and will make it harder to detect contradictions using hypothetical
3995  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3996  * resolution only in canonical graph. FWDs in candidate graphs are never
3997  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3998  * that can occur:
3999  *   - Both types in canonical and candidate graphs are FWDs. If they are
4000  *     structurally equivalent, then they can either be both resolved to the
4001  *     same STRUCT/UNION or not resolved at all. In both cases they are
4002  *     equivalent and there is no need to resolve FWD on candidate side.
4003  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4004  *     so nothing to resolve as well, algorithm will check equivalence anyway.
4005  *   - Type in canonical graph is FWD, while type in candidate is concrete
4006  *     STRUCT/UNION. In this case candidate graph comes from single compilation
4007  *     unit, so there is exactly one BTF type for each unique C type. After
4008  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4009  *     in canonical graph mapping to single BTF type in candidate graph, but
4010  *     because hypothetical mapping maps from canonical to candidate types, it's
4011  *     alright, and we still maintain the property of having single `canon_id`
4012  *     mapping to single `cand_id` (there could be two different `canon_id`
4013  *     mapped to the same `cand_id`, but it's not contradictory).
4014  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4015  *     graph is FWD. In this case we are just going to check compatibility of
4016  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4017  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4018  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4019  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4020  *     canonical graph.
4021  */
4022 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4023 			      __u32 canon_id)
4024 {
4025 	struct btf_type *cand_type;
4026 	struct btf_type *canon_type;
4027 	__u32 hypot_type_id;
4028 	__u16 cand_kind;
4029 	__u16 canon_kind;
4030 	int i, eq;
4031 
4032 	/* if both resolve to the same canonical, they must be equivalent */
4033 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4034 		return 1;
4035 
4036 	canon_id = resolve_fwd_id(d, canon_id);
4037 
4038 	hypot_type_id = d->hypot_map[canon_id];
4039 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4040 		if (hypot_type_id == cand_id)
4041 			return 1;
4042 		/* In some cases compiler will generate different DWARF types
4043 		 * for *identical* array type definitions and use them for
4044 		 * different fields within the *same* struct. This breaks type
4045 		 * equivalence check, which makes an assumption that candidate
4046 		 * types sub-graph has a consistent and deduped-by-compiler
4047 		 * types within a single CU. So work around that by explicitly
4048 		 * allowing identical array types here.
4049 		 */
4050 		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4051 			return 1;
4052 		/* It turns out that similar situation can happen with
4053 		 * struct/union sometimes, sigh... Handle the case where
4054 		 * structs/unions are exactly the same, down to the referenced
4055 		 * type IDs. Anything more complicated (e.g., if referenced
4056 		 * types are different, but equivalent) is *way more*
4057 		 * complicated and requires a many-to-many equivalence mapping.
4058 		 */
4059 		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4060 			return 1;
4061 		return 0;
4062 	}
4063 
4064 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4065 		return -ENOMEM;
4066 
4067 	cand_type = btf_type_by_id(d->btf, cand_id);
4068 	canon_type = btf_type_by_id(d->btf, canon_id);
4069 	cand_kind = btf_kind(cand_type);
4070 	canon_kind = btf_kind(canon_type);
4071 
4072 	if (cand_type->name_off != canon_type->name_off)
4073 		return 0;
4074 
4075 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4076 	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4077 	    && cand_kind != canon_kind) {
4078 		__u16 real_kind;
4079 		__u16 fwd_kind;
4080 
4081 		if (cand_kind == BTF_KIND_FWD) {
4082 			real_kind = canon_kind;
4083 			fwd_kind = btf_fwd_kind(cand_type);
4084 		} else {
4085 			real_kind = cand_kind;
4086 			fwd_kind = btf_fwd_kind(canon_type);
4087 			/* we'd need to resolve base FWD to STRUCT/UNION */
4088 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4089 				d->hypot_adjust_canon = true;
4090 		}
4091 		return fwd_kind == real_kind;
4092 	}
4093 
4094 	if (cand_kind != canon_kind)
4095 		return 0;
4096 
4097 	switch (cand_kind) {
4098 	case BTF_KIND_INT:
4099 		return btf_equal_int_tag(cand_type, canon_type);
4100 
4101 	case BTF_KIND_ENUM:
4102 		return btf_compat_enum(cand_type, canon_type);
4103 
4104 	case BTF_KIND_ENUM64:
4105 		return btf_compat_enum64(cand_type, canon_type);
4106 
4107 	case BTF_KIND_FWD:
4108 	case BTF_KIND_FLOAT:
4109 		return btf_equal_common(cand_type, canon_type);
4110 
4111 	case BTF_KIND_CONST:
4112 	case BTF_KIND_VOLATILE:
4113 	case BTF_KIND_RESTRICT:
4114 	case BTF_KIND_PTR:
4115 	case BTF_KIND_TYPEDEF:
4116 	case BTF_KIND_FUNC:
4117 	case BTF_KIND_TYPE_TAG:
4118 		if (cand_type->info != canon_type->info)
4119 			return 0;
4120 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4121 
4122 	case BTF_KIND_ARRAY: {
4123 		const struct btf_array *cand_arr, *canon_arr;
4124 
4125 		if (!btf_compat_array(cand_type, canon_type))
4126 			return 0;
4127 		cand_arr = btf_array(cand_type);
4128 		canon_arr = btf_array(canon_type);
4129 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4130 		if (eq <= 0)
4131 			return eq;
4132 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4133 	}
4134 
4135 	case BTF_KIND_STRUCT:
4136 	case BTF_KIND_UNION: {
4137 		const struct btf_member *cand_m, *canon_m;
4138 		__u16 vlen;
4139 
4140 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4141 			return 0;
4142 		vlen = btf_vlen(cand_type);
4143 		cand_m = btf_members(cand_type);
4144 		canon_m = btf_members(canon_type);
4145 		for (i = 0; i < vlen; i++) {
4146 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4147 			if (eq <= 0)
4148 				return eq;
4149 			cand_m++;
4150 			canon_m++;
4151 		}
4152 
4153 		return 1;
4154 	}
4155 
4156 	case BTF_KIND_FUNC_PROTO: {
4157 		const struct btf_param *cand_p, *canon_p;
4158 		__u16 vlen;
4159 
4160 		if (!btf_compat_fnproto(cand_type, canon_type))
4161 			return 0;
4162 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4163 		if (eq <= 0)
4164 			return eq;
4165 		vlen = btf_vlen(cand_type);
4166 		cand_p = btf_params(cand_type);
4167 		canon_p = btf_params(canon_type);
4168 		for (i = 0; i < vlen; i++) {
4169 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4170 			if (eq <= 0)
4171 				return eq;
4172 			cand_p++;
4173 			canon_p++;
4174 		}
4175 		return 1;
4176 	}
4177 
4178 	default:
4179 		return -EINVAL;
4180 	}
4181 	return 0;
4182 }
4183 
4184 /*
4185  * Use hypothetical mapping, produced by successful type graph equivalence
4186  * check, to augment existing struct/union canonical mapping, where possible.
4187  *
4188  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4189  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4190  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4191  * we are recording the mapping anyway. As opposed to carefulness required
4192  * for struct/union correspondence mapping (described below), for FWD resolution
4193  * it's not important, as by the time that FWD type (reference type) will be
4194  * deduplicated all structs/unions will be deduped already anyway.
4195  *
4196  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4197  * not required for correctness. It needs to be done carefully to ensure that
4198  * struct/union from candidate's type graph is not mapped into corresponding
4199  * struct/union from canonical type graph that itself hasn't been resolved into
4200  * canonical representative. The only guarantee we have is that canonical
4201  * struct/union was determined as canonical and that won't change. But any
4202  * types referenced through that struct/union fields could have been not yet
4203  * resolved, so in case like that it's too early to establish any kind of
4204  * correspondence between structs/unions.
4205  *
4206  * No canonical correspondence is derived for primitive types (they are already
4207  * deduplicated completely already anyway) or reference types (they rely on
4208  * stability of struct/union canonical relationship for equivalence checks).
4209  */
4210 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4211 {
4212 	__u32 canon_type_id, targ_type_id;
4213 	__u16 t_kind, c_kind;
4214 	__u32 t_id, c_id;
4215 	int i;
4216 
4217 	for (i = 0; i < d->hypot_cnt; i++) {
4218 		canon_type_id = d->hypot_list[i];
4219 		targ_type_id = d->hypot_map[canon_type_id];
4220 		t_id = resolve_type_id(d, targ_type_id);
4221 		c_id = resolve_type_id(d, canon_type_id);
4222 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4223 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4224 		/*
4225 		 * Resolve FWD into STRUCT/UNION.
4226 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4227 		 * mapped to canonical representative (as opposed to
4228 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4229 		 * eventually that struct is going to be mapped and all resolved
4230 		 * FWDs will automatically resolve to correct canonical
4231 		 * representative. This will happen before ref type deduping,
4232 		 * which critically depends on stability of these mapping. This
4233 		 * stability is not a requirement for STRUCT/UNION equivalence
4234 		 * checks, though.
4235 		 */
4236 
4237 		/* if it's the split BTF case, we still need to point base FWD
4238 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4239 		 * will be resolved against base FWD. If we don't point base
4240 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4241 		 * FWDs in split BTF won't be correctly resolved to a proper
4242 		 * STRUCT/UNION.
4243 		 */
4244 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4245 			d->map[c_id] = t_id;
4246 
4247 		/* if graph equivalence determined that we'd need to adjust
4248 		 * base canonical types, then we need to only point base FWDs
4249 		 * to STRUCTs/UNIONs and do no more modifications. For all
4250 		 * other purposes the type graphs were not equivalent.
4251 		 */
4252 		if (d->hypot_adjust_canon)
4253 			continue;
4254 
4255 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4256 			d->map[t_id] = c_id;
4257 
4258 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4259 		    c_kind != BTF_KIND_FWD &&
4260 		    is_type_mapped(d, c_id) &&
4261 		    !is_type_mapped(d, t_id)) {
4262 			/*
4263 			 * as a perf optimization, we can map struct/union
4264 			 * that's part of type graph we just verified for
4265 			 * equivalence. We can do that for struct/union that has
4266 			 * canonical representative only, though.
4267 			 */
4268 			d->map[t_id] = c_id;
4269 		}
4270 	}
4271 }
4272 
4273 /*
4274  * Deduplicate struct/union types.
4275  *
4276  * For each struct/union type its type signature hash is calculated, taking
4277  * into account type's name, size, number, order and names of fields, but
4278  * ignoring type ID's referenced from fields, because they might not be deduped
4279  * completely until after reference types deduplication phase. This type hash
4280  * is used to iterate over all potential canonical types, sharing same hash.
4281  * For each canonical candidate we check whether type graphs that they form
4282  * (through referenced types in fields and so on) are equivalent using algorithm
4283  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4284  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4285  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4286  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4287  * potentially map other structs/unions to their canonical representatives,
4288  * if such relationship hasn't yet been established. This speeds up algorithm
4289  * by eliminating some of the duplicate work.
4290  *
4291  * If no matching canonical representative was found, struct/union is marked
4292  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4293  * for further look ups.
4294  */
4295 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4296 {
4297 	struct btf_type *cand_type, *t;
4298 	struct hashmap_entry *hash_entry;
4299 	/* if we don't find equivalent type, then we are canonical */
4300 	__u32 new_id = type_id;
4301 	__u16 kind;
4302 	long h;
4303 
4304 	/* already deduped or is in process of deduping (loop detected) */
4305 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4306 		return 0;
4307 
4308 	t = btf_type_by_id(d->btf, type_id);
4309 	kind = btf_kind(t);
4310 
4311 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4312 		return 0;
4313 
4314 	h = btf_hash_struct(t);
4315 	for_each_dedup_cand(d, hash_entry, h) {
4316 		__u32 cand_id = (__u32)(long)hash_entry->value;
4317 		int eq;
4318 
4319 		/*
4320 		 * Even though btf_dedup_is_equiv() checks for
4321 		 * btf_shallow_equal_struct() internally when checking two
4322 		 * structs (unions) for equivalence, we need to guard here
4323 		 * from picking matching FWD type as a dedup candidate.
4324 		 * This can happen due to hash collision. In such case just
4325 		 * relying on btf_dedup_is_equiv() would lead to potentially
4326 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4327 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4328 		 */
4329 		cand_type = btf_type_by_id(d->btf, cand_id);
4330 		if (!btf_shallow_equal_struct(t, cand_type))
4331 			continue;
4332 
4333 		btf_dedup_clear_hypot_map(d);
4334 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4335 		if (eq < 0)
4336 			return eq;
4337 		if (!eq)
4338 			continue;
4339 		btf_dedup_merge_hypot_map(d);
4340 		if (d->hypot_adjust_canon) /* not really equivalent */
4341 			continue;
4342 		new_id = cand_id;
4343 		break;
4344 	}
4345 
4346 	d->map[type_id] = new_id;
4347 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4348 		return -ENOMEM;
4349 
4350 	return 0;
4351 }
4352 
4353 static int btf_dedup_struct_types(struct btf_dedup *d)
4354 {
4355 	int i, err;
4356 
4357 	for (i = 0; i < d->btf->nr_types; i++) {
4358 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4359 		if (err)
4360 			return err;
4361 	}
4362 	return 0;
4363 }
4364 
4365 /*
4366  * Deduplicate reference type.
4367  *
4368  * Once all primitive and struct/union types got deduplicated, we can easily
4369  * deduplicate all other (reference) BTF types. This is done in two steps:
4370  *
4371  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4372  * resolution can be done either immediately for primitive or struct/union types
4373  * (because they were deduped in previous two phases) or recursively for
4374  * reference types. Recursion will always terminate at either primitive or
4375  * struct/union type, at which point we can "unwind" chain of reference types
4376  * one by one. There is no danger of encountering cycles because in C type
4377  * system the only way to form type cycle is through struct/union, so any chain
4378  * of reference types, even those taking part in a type cycle, will inevitably
4379  * reach struct/union at some point.
4380  *
4381  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4382  * becomes "stable", in the sense that no further deduplication will cause
4383  * any changes to it. With that, it's now possible to calculate type's signature
4384  * hash (this time taking into account referenced type IDs) and loop over all
4385  * potential canonical representatives. If no match was found, current type
4386  * will become canonical representative of itself and will be added into
4387  * btf_dedup->dedup_table as another possible canonical representative.
4388  */
4389 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4390 {
4391 	struct hashmap_entry *hash_entry;
4392 	__u32 new_id = type_id, cand_id;
4393 	struct btf_type *t, *cand;
4394 	/* if we don't find equivalent type, then we are representative type */
4395 	int ref_type_id;
4396 	long h;
4397 
4398 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4399 		return -ELOOP;
4400 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4401 		return resolve_type_id(d, type_id);
4402 
4403 	t = btf_type_by_id(d->btf, type_id);
4404 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4405 
4406 	switch (btf_kind(t)) {
4407 	case BTF_KIND_CONST:
4408 	case BTF_KIND_VOLATILE:
4409 	case BTF_KIND_RESTRICT:
4410 	case BTF_KIND_PTR:
4411 	case BTF_KIND_TYPEDEF:
4412 	case BTF_KIND_FUNC:
4413 	case BTF_KIND_TYPE_TAG:
4414 		ref_type_id = btf_dedup_ref_type(d, t->type);
4415 		if (ref_type_id < 0)
4416 			return ref_type_id;
4417 		t->type = ref_type_id;
4418 
4419 		h = btf_hash_common(t);
4420 		for_each_dedup_cand(d, hash_entry, h) {
4421 			cand_id = (__u32)(long)hash_entry->value;
4422 			cand = btf_type_by_id(d->btf, cand_id);
4423 			if (btf_equal_common(t, cand)) {
4424 				new_id = cand_id;
4425 				break;
4426 			}
4427 		}
4428 		break;
4429 
4430 	case BTF_KIND_DECL_TAG:
4431 		ref_type_id = btf_dedup_ref_type(d, t->type);
4432 		if (ref_type_id < 0)
4433 			return ref_type_id;
4434 		t->type = ref_type_id;
4435 
4436 		h = btf_hash_int_decl_tag(t);
4437 		for_each_dedup_cand(d, hash_entry, h) {
4438 			cand_id = (__u32)(long)hash_entry->value;
4439 			cand = btf_type_by_id(d->btf, cand_id);
4440 			if (btf_equal_int_tag(t, cand)) {
4441 				new_id = cand_id;
4442 				break;
4443 			}
4444 		}
4445 		break;
4446 
4447 	case BTF_KIND_ARRAY: {
4448 		struct btf_array *info = btf_array(t);
4449 
4450 		ref_type_id = btf_dedup_ref_type(d, info->type);
4451 		if (ref_type_id < 0)
4452 			return ref_type_id;
4453 		info->type = ref_type_id;
4454 
4455 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4456 		if (ref_type_id < 0)
4457 			return ref_type_id;
4458 		info->index_type = ref_type_id;
4459 
4460 		h = btf_hash_array(t);
4461 		for_each_dedup_cand(d, hash_entry, h) {
4462 			cand_id = (__u32)(long)hash_entry->value;
4463 			cand = btf_type_by_id(d->btf, cand_id);
4464 			if (btf_equal_array(t, cand)) {
4465 				new_id = cand_id;
4466 				break;
4467 			}
4468 		}
4469 		break;
4470 	}
4471 
4472 	case BTF_KIND_FUNC_PROTO: {
4473 		struct btf_param *param;
4474 		__u16 vlen;
4475 		int i;
4476 
4477 		ref_type_id = btf_dedup_ref_type(d, t->type);
4478 		if (ref_type_id < 0)
4479 			return ref_type_id;
4480 		t->type = ref_type_id;
4481 
4482 		vlen = btf_vlen(t);
4483 		param = btf_params(t);
4484 		for (i = 0; i < vlen; i++) {
4485 			ref_type_id = btf_dedup_ref_type(d, param->type);
4486 			if (ref_type_id < 0)
4487 				return ref_type_id;
4488 			param->type = ref_type_id;
4489 			param++;
4490 		}
4491 
4492 		h = btf_hash_fnproto(t);
4493 		for_each_dedup_cand(d, hash_entry, h) {
4494 			cand_id = (__u32)(long)hash_entry->value;
4495 			cand = btf_type_by_id(d->btf, cand_id);
4496 			if (btf_equal_fnproto(t, cand)) {
4497 				new_id = cand_id;
4498 				break;
4499 			}
4500 		}
4501 		break;
4502 	}
4503 
4504 	default:
4505 		return -EINVAL;
4506 	}
4507 
4508 	d->map[type_id] = new_id;
4509 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4510 		return -ENOMEM;
4511 
4512 	return new_id;
4513 }
4514 
4515 static int btf_dedup_ref_types(struct btf_dedup *d)
4516 {
4517 	int i, err;
4518 
4519 	for (i = 0; i < d->btf->nr_types; i++) {
4520 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4521 		if (err < 0)
4522 			return err;
4523 	}
4524 	/* we won't need d->dedup_table anymore */
4525 	hashmap__free(d->dedup_table);
4526 	d->dedup_table = NULL;
4527 	return 0;
4528 }
4529 
4530 /*
4531  * Compact types.
4532  *
4533  * After we established for each type its corresponding canonical representative
4534  * type, we now can eliminate types that are not canonical and leave only
4535  * canonical ones layed out sequentially in memory by copying them over
4536  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4537  * a map from original type ID to a new compacted type ID, which will be used
4538  * during next phase to "fix up" type IDs, referenced from struct/union and
4539  * reference types.
4540  */
4541 static int btf_dedup_compact_types(struct btf_dedup *d)
4542 {
4543 	__u32 *new_offs;
4544 	__u32 next_type_id = d->btf->start_id;
4545 	const struct btf_type *t;
4546 	void *p;
4547 	int i, id, len;
4548 
4549 	/* we are going to reuse hypot_map to store compaction remapping */
4550 	d->hypot_map[0] = 0;
4551 	/* base BTF types are not renumbered */
4552 	for (id = 1; id < d->btf->start_id; id++)
4553 		d->hypot_map[id] = id;
4554 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4555 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4556 
4557 	p = d->btf->types_data;
4558 
4559 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4560 		if (d->map[id] != id)
4561 			continue;
4562 
4563 		t = btf__type_by_id(d->btf, id);
4564 		len = btf_type_size(t);
4565 		if (len < 0)
4566 			return len;
4567 
4568 		memmove(p, t, len);
4569 		d->hypot_map[id] = next_type_id;
4570 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4571 		p += len;
4572 		next_type_id++;
4573 	}
4574 
4575 	/* shrink struct btf's internal types index and update btf_header */
4576 	d->btf->nr_types = next_type_id - d->btf->start_id;
4577 	d->btf->type_offs_cap = d->btf->nr_types;
4578 	d->btf->hdr->type_len = p - d->btf->types_data;
4579 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4580 				       sizeof(*new_offs));
4581 	if (d->btf->type_offs_cap && !new_offs)
4582 		return -ENOMEM;
4583 	d->btf->type_offs = new_offs;
4584 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4585 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4586 	return 0;
4587 }
4588 
4589 /*
4590  * Figure out final (deduplicated and compacted) type ID for provided original
4591  * `type_id` by first resolving it into corresponding canonical type ID and
4592  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4593  * which is populated during compaction phase.
4594  */
4595 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4596 {
4597 	struct btf_dedup *d = ctx;
4598 	__u32 resolved_type_id, new_type_id;
4599 
4600 	resolved_type_id = resolve_type_id(d, *type_id);
4601 	new_type_id = d->hypot_map[resolved_type_id];
4602 	if (new_type_id > BTF_MAX_NR_TYPES)
4603 		return -EINVAL;
4604 
4605 	*type_id = new_type_id;
4606 	return 0;
4607 }
4608 
4609 /*
4610  * Remap referenced type IDs into deduped type IDs.
4611  *
4612  * After BTF types are deduplicated and compacted, their final type IDs may
4613  * differ from original ones. The map from original to a corresponding
4614  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4615  * compaction phase. During remapping phase we are rewriting all type IDs
4616  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4617  * their final deduped type IDs.
4618  */
4619 static int btf_dedup_remap_types(struct btf_dedup *d)
4620 {
4621 	int i, r;
4622 
4623 	for (i = 0; i < d->btf->nr_types; i++) {
4624 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4625 
4626 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4627 		if (r)
4628 			return r;
4629 	}
4630 
4631 	if (!d->btf_ext)
4632 		return 0;
4633 
4634 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4635 	if (r)
4636 		return r;
4637 
4638 	return 0;
4639 }
4640 
4641 /*
4642  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4643  * data out of it to use for target BTF.
4644  */
4645 struct btf *btf__load_vmlinux_btf(void)
4646 {
4647 	struct {
4648 		const char *path_fmt;
4649 		bool raw_btf;
4650 	} locations[] = {
4651 		/* try canonical vmlinux BTF through sysfs first */
4652 		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4653 		/* fall back to trying to find vmlinux ELF on disk otherwise */
4654 		{ "/boot/vmlinux-%1$s" },
4655 		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4656 		{ "/lib/modules/%1$s/build/vmlinux" },
4657 		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4658 		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4659 		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4660 		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4661 	};
4662 	char path[PATH_MAX + 1];
4663 	struct utsname buf;
4664 	struct btf *btf;
4665 	int i, err;
4666 
4667 	uname(&buf);
4668 
4669 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4670 		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4671 
4672 		if (access(path, R_OK))
4673 			continue;
4674 
4675 		if (locations[i].raw_btf)
4676 			btf = btf__parse_raw(path);
4677 		else
4678 			btf = btf__parse_elf(path, NULL);
4679 		err = libbpf_get_error(btf);
4680 		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4681 		if (err)
4682 			continue;
4683 
4684 		return btf;
4685 	}
4686 
4687 	pr_warn("failed to find valid kernel BTF\n");
4688 	return libbpf_err_ptr(-ESRCH);
4689 }
4690 
4691 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4692 
4693 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4694 {
4695 	char path[80];
4696 
4697 	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4698 	return btf__parse_split(path, vmlinux_btf);
4699 }
4700 
4701 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4702 {
4703 	int i, n, err;
4704 
4705 	switch (btf_kind(t)) {
4706 	case BTF_KIND_INT:
4707 	case BTF_KIND_FLOAT:
4708 	case BTF_KIND_ENUM:
4709 	case BTF_KIND_ENUM64:
4710 		return 0;
4711 
4712 	case BTF_KIND_FWD:
4713 	case BTF_KIND_CONST:
4714 	case BTF_KIND_VOLATILE:
4715 	case BTF_KIND_RESTRICT:
4716 	case BTF_KIND_PTR:
4717 	case BTF_KIND_TYPEDEF:
4718 	case BTF_KIND_FUNC:
4719 	case BTF_KIND_VAR:
4720 	case BTF_KIND_DECL_TAG:
4721 	case BTF_KIND_TYPE_TAG:
4722 		return visit(&t->type, ctx);
4723 
4724 	case BTF_KIND_ARRAY: {
4725 		struct btf_array *a = btf_array(t);
4726 
4727 		err = visit(&a->type, ctx);
4728 		err = err ?: visit(&a->index_type, ctx);
4729 		return err;
4730 	}
4731 
4732 	case BTF_KIND_STRUCT:
4733 	case BTF_KIND_UNION: {
4734 		struct btf_member *m = btf_members(t);
4735 
4736 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4737 			err = visit(&m->type, ctx);
4738 			if (err)
4739 				return err;
4740 		}
4741 		return 0;
4742 	}
4743 
4744 	case BTF_KIND_FUNC_PROTO: {
4745 		struct btf_param *m = btf_params(t);
4746 
4747 		err = visit(&t->type, ctx);
4748 		if (err)
4749 			return err;
4750 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4751 			err = visit(&m->type, ctx);
4752 			if (err)
4753 				return err;
4754 		}
4755 		return 0;
4756 	}
4757 
4758 	case BTF_KIND_DATASEC: {
4759 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4760 
4761 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4762 			err = visit(&m->type, ctx);
4763 			if (err)
4764 				return err;
4765 		}
4766 		return 0;
4767 	}
4768 
4769 	default:
4770 		return -EINVAL;
4771 	}
4772 }
4773 
4774 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4775 {
4776 	int i, n, err;
4777 
4778 	err = visit(&t->name_off, ctx);
4779 	if (err)
4780 		return err;
4781 
4782 	switch (btf_kind(t)) {
4783 	case BTF_KIND_STRUCT:
4784 	case BTF_KIND_UNION: {
4785 		struct btf_member *m = btf_members(t);
4786 
4787 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4788 			err = visit(&m->name_off, ctx);
4789 			if (err)
4790 				return err;
4791 		}
4792 		break;
4793 	}
4794 	case BTF_KIND_ENUM: {
4795 		struct btf_enum *m = btf_enum(t);
4796 
4797 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4798 			err = visit(&m->name_off, ctx);
4799 			if (err)
4800 				return err;
4801 		}
4802 		break;
4803 	}
4804 	case BTF_KIND_ENUM64: {
4805 		struct btf_enum64 *m = btf_enum64(t);
4806 
4807 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4808 			err = visit(&m->name_off, ctx);
4809 			if (err)
4810 				return err;
4811 		}
4812 		break;
4813 	}
4814 	case BTF_KIND_FUNC_PROTO: {
4815 		struct btf_param *m = btf_params(t);
4816 
4817 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4818 			err = visit(&m->name_off, ctx);
4819 			if (err)
4820 				return err;
4821 		}
4822 		break;
4823 	}
4824 	default:
4825 		break;
4826 	}
4827 
4828 	return 0;
4829 }
4830 
4831 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4832 {
4833 	const struct btf_ext_info *seg;
4834 	struct btf_ext_info_sec *sec;
4835 	int i, err;
4836 
4837 	seg = &btf_ext->func_info;
4838 	for_each_btf_ext_sec(seg, sec) {
4839 		struct bpf_func_info_min *rec;
4840 
4841 		for_each_btf_ext_rec(seg, sec, i, rec) {
4842 			err = visit(&rec->type_id, ctx);
4843 			if (err < 0)
4844 				return err;
4845 		}
4846 	}
4847 
4848 	seg = &btf_ext->core_relo_info;
4849 	for_each_btf_ext_sec(seg, sec) {
4850 		struct bpf_core_relo *rec;
4851 
4852 		for_each_btf_ext_rec(seg, sec, i, rec) {
4853 			err = visit(&rec->type_id, ctx);
4854 			if (err < 0)
4855 				return err;
4856 		}
4857 	}
4858 
4859 	return 0;
4860 }
4861 
4862 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4863 {
4864 	const struct btf_ext_info *seg;
4865 	struct btf_ext_info_sec *sec;
4866 	int i, err;
4867 
4868 	seg = &btf_ext->func_info;
4869 	for_each_btf_ext_sec(seg, sec) {
4870 		err = visit(&sec->sec_name_off, ctx);
4871 		if (err)
4872 			return err;
4873 	}
4874 
4875 	seg = &btf_ext->line_info;
4876 	for_each_btf_ext_sec(seg, sec) {
4877 		struct bpf_line_info_min *rec;
4878 
4879 		err = visit(&sec->sec_name_off, ctx);
4880 		if (err)
4881 			return err;
4882 
4883 		for_each_btf_ext_rec(seg, sec, i, rec) {
4884 			err = visit(&rec->file_name_off, ctx);
4885 			if (err)
4886 				return err;
4887 			err = visit(&rec->line_off, ctx);
4888 			if (err)
4889 				return err;
4890 		}
4891 	}
4892 
4893 	seg = &btf_ext->core_relo_info;
4894 	for_each_btf_ext_sec(seg, sec) {
4895 		struct bpf_core_relo *rec;
4896 
4897 		err = visit(&sec->sec_name_off, ctx);
4898 		if (err)
4899 			return err;
4900 
4901 		for_each_btf_ext_rec(seg, sec, i, rec) {
4902 			err = visit(&rec->access_str_off, ctx);
4903 			if (err)
4904 				return err;
4905 		}
4906 	}
4907 
4908 	return 0;
4909 }
4910