1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <byteswap.h> 5 #include <endian.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <fcntl.h> 10 #include <unistd.h> 11 #include <errno.h> 12 #include <sys/utsname.h> 13 #include <sys/param.h> 14 #include <sys/stat.h> 15 #include <linux/kernel.h> 16 #include <linux/err.h> 17 #include <linux/btf.h> 18 #include <gelf.h> 19 #include "btf.h" 20 #include "bpf.h" 21 #include "libbpf.h" 22 #include "libbpf_internal.h" 23 #include "hashmap.h" 24 25 #define BTF_MAX_NR_TYPES 0x7fffffffU 26 #define BTF_MAX_STR_OFFSET 0x7fffffffU 27 28 static struct btf_type btf_void; 29 30 struct btf { 31 /* raw BTF data in native endianness */ 32 void *raw_data; 33 /* raw BTF data in non-native endianness */ 34 void *raw_data_swapped; 35 __u32 raw_size; 36 /* whether target endianness differs from the native one */ 37 bool swapped_endian; 38 39 /* 40 * When BTF is loaded from an ELF or raw memory it is stored 41 * in a contiguous memory block. The hdr, type_data, and, strs_data 42 * point inside that memory region to their respective parts of BTF 43 * representation: 44 * 45 * +--------------------------------+ 46 * | Header | Types | Strings | 47 * +--------------------------------+ 48 * ^ ^ ^ 49 * | | | 50 * hdr | | 51 * types_data-+ | 52 * strs_data------------+ 53 * 54 * If BTF data is later modified, e.g., due to types added or 55 * removed, BTF deduplication performed, etc, this contiguous 56 * representation is broken up into three independently allocated 57 * memory regions to be able to modify them independently. 58 * raw_data is nulled out at that point, but can be later allocated 59 * and cached again if user calls btf__get_raw_data(), at which point 60 * raw_data will contain a contiguous copy of header, types, and 61 * strings: 62 * 63 * +----------+ +---------+ +-----------+ 64 * | Header | | Types | | Strings | 65 * +----------+ +---------+ +-----------+ 66 * ^ ^ ^ 67 * | | | 68 * hdr | | 69 * types_data----+ | 70 * strs_data------------------+ 71 * 72 * +----------+---------+-----------+ 73 * | Header | Types | Strings | 74 * raw_data----->+----------+---------+-----------+ 75 */ 76 struct btf_header *hdr; 77 78 void *types_data; 79 size_t types_data_cap; /* used size stored in hdr->type_len */ 80 81 /* type ID to `struct btf_type *` lookup index 82 * type_offs[0] corresponds to the first non-VOID type: 83 * - for base BTF it's type [1]; 84 * - for split BTF it's the first non-base BTF type. 85 */ 86 __u32 *type_offs; 87 size_t type_offs_cap; 88 /* number of types in this BTF instance: 89 * - doesn't include special [0] void type; 90 * - for split BTF counts number of types added on top of base BTF. 91 */ 92 __u32 nr_types; 93 /* if not NULL, points to the base BTF on top of which the current 94 * split BTF is based 95 */ 96 struct btf *base_btf; 97 /* BTF type ID of the first type in this BTF instance: 98 * - for base BTF it's equal to 1; 99 * - for split BTF it's equal to biggest type ID of base BTF plus 1. 100 */ 101 int start_id; 102 /* logical string offset of this BTF instance: 103 * - for base BTF it's equal to 0; 104 * - for split BTF it's equal to total size of base BTF's string section size. 105 */ 106 int start_str_off; 107 108 void *strs_data; 109 size_t strs_data_cap; /* used size stored in hdr->str_len */ 110 111 /* lookup index for each unique string in strings section */ 112 struct hashmap *strs_hash; 113 /* whether strings are already deduplicated */ 114 bool strs_deduped; 115 /* extra indirection layer to make strings hashmap work with stable 116 * string offsets and ability to transparently choose between 117 * btf->strs_data or btf_dedup->strs_data as a source of strings. 118 * This is used for BTF strings dedup to transfer deduplicated strings 119 * data back to struct btf without re-building strings index. 120 */ 121 void **strs_data_ptr; 122 123 /* BTF object FD, if loaded into kernel */ 124 int fd; 125 126 /* Pointer size (in bytes) for a target architecture of this BTF */ 127 int ptr_sz; 128 }; 129 130 static inline __u64 ptr_to_u64(const void *ptr) 131 { 132 return (__u64) (unsigned long) ptr; 133 } 134 135 /* Ensure given dynamically allocated memory region pointed to by *data* with 136 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough 137 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements 138 * are already used. At most *max_cnt* elements can be ever allocated. 139 * If necessary, memory is reallocated and all existing data is copied over, 140 * new pointer to the memory region is stored at *data, new memory region 141 * capacity (in number of elements) is stored in *cap. 142 * On success, memory pointer to the beginning of unused memory is returned. 143 * On error, NULL is returned. 144 */ 145 void *btf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz, 146 size_t cur_cnt, size_t max_cnt, size_t add_cnt) 147 { 148 size_t new_cnt; 149 void *new_data; 150 151 if (cur_cnt + add_cnt <= *cap_cnt) 152 return *data + cur_cnt * elem_sz; 153 154 /* requested more than the set limit */ 155 if (cur_cnt + add_cnt > max_cnt) 156 return NULL; 157 158 new_cnt = *cap_cnt; 159 new_cnt += new_cnt / 4; /* expand by 25% */ 160 if (new_cnt < 16) /* but at least 16 elements */ 161 new_cnt = 16; 162 if (new_cnt > max_cnt) /* but not exceeding a set limit */ 163 new_cnt = max_cnt; 164 if (new_cnt < cur_cnt + add_cnt) /* also ensure we have enough memory */ 165 new_cnt = cur_cnt + add_cnt; 166 167 new_data = libbpf_reallocarray(*data, new_cnt, elem_sz); 168 if (!new_data) 169 return NULL; 170 171 /* zero out newly allocated portion of memory */ 172 memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz); 173 174 *data = new_data; 175 *cap_cnt = new_cnt; 176 return new_data + cur_cnt * elem_sz; 177 } 178 179 /* Ensure given dynamically allocated memory region has enough allocated space 180 * to accommodate *need_cnt* elements of size *elem_sz* bytes each 181 */ 182 int btf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt) 183 { 184 void *p; 185 186 if (need_cnt <= *cap_cnt) 187 return 0; 188 189 p = btf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt); 190 if (!p) 191 return -ENOMEM; 192 193 return 0; 194 } 195 196 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off) 197 { 198 __u32 *p; 199 200 p = btf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32), 201 btf->nr_types, BTF_MAX_NR_TYPES, 1); 202 if (!p) 203 return -ENOMEM; 204 205 *p = type_off; 206 return 0; 207 } 208 209 static void btf_bswap_hdr(struct btf_header *h) 210 { 211 h->magic = bswap_16(h->magic); 212 h->hdr_len = bswap_32(h->hdr_len); 213 h->type_off = bswap_32(h->type_off); 214 h->type_len = bswap_32(h->type_len); 215 h->str_off = bswap_32(h->str_off); 216 h->str_len = bswap_32(h->str_len); 217 } 218 219 static int btf_parse_hdr(struct btf *btf) 220 { 221 struct btf_header *hdr = btf->hdr; 222 __u32 meta_left; 223 224 if (btf->raw_size < sizeof(struct btf_header)) { 225 pr_debug("BTF header not found\n"); 226 return -EINVAL; 227 } 228 229 if (hdr->magic == bswap_16(BTF_MAGIC)) { 230 btf->swapped_endian = true; 231 if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) { 232 pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n", 233 bswap_32(hdr->hdr_len)); 234 return -ENOTSUP; 235 } 236 btf_bswap_hdr(hdr); 237 } else if (hdr->magic != BTF_MAGIC) { 238 pr_debug("Invalid BTF magic:%x\n", hdr->magic); 239 return -EINVAL; 240 } 241 242 meta_left = btf->raw_size - sizeof(*hdr); 243 if (meta_left < hdr->str_off + hdr->str_len) { 244 pr_debug("Invalid BTF total size:%u\n", btf->raw_size); 245 return -EINVAL; 246 } 247 248 if (hdr->type_off + hdr->type_len > hdr->str_off) { 249 pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n", 250 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len); 251 return -EINVAL; 252 } 253 254 if (hdr->type_off % 4) { 255 pr_debug("BTF type section is not aligned to 4 bytes\n"); 256 return -EINVAL; 257 } 258 259 return 0; 260 } 261 262 static int btf_parse_str_sec(struct btf *btf) 263 { 264 const struct btf_header *hdr = btf->hdr; 265 const char *start = btf->strs_data; 266 const char *end = start + btf->hdr->str_len; 267 268 if (btf->base_btf && hdr->str_len == 0) 269 return 0; 270 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) { 271 pr_debug("Invalid BTF string section\n"); 272 return -EINVAL; 273 } 274 if (!btf->base_btf && start[0]) { 275 pr_debug("Invalid BTF string section\n"); 276 return -EINVAL; 277 } 278 return 0; 279 } 280 281 static int btf_type_size(const struct btf_type *t) 282 { 283 const int base_size = sizeof(struct btf_type); 284 __u16 vlen = btf_vlen(t); 285 286 switch (btf_kind(t)) { 287 case BTF_KIND_FWD: 288 case BTF_KIND_CONST: 289 case BTF_KIND_VOLATILE: 290 case BTF_KIND_RESTRICT: 291 case BTF_KIND_PTR: 292 case BTF_KIND_TYPEDEF: 293 case BTF_KIND_FUNC: 294 return base_size; 295 case BTF_KIND_INT: 296 return base_size + sizeof(__u32); 297 case BTF_KIND_ENUM: 298 return base_size + vlen * sizeof(struct btf_enum); 299 case BTF_KIND_ARRAY: 300 return base_size + sizeof(struct btf_array); 301 case BTF_KIND_STRUCT: 302 case BTF_KIND_UNION: 303 return base_size + vlen * sizeof(struct btf_member); 304 case BTF_KIND_FUNC_PROTO: 305 return base_size + vlen * sizeof(struct btf_param); 306 case BTF_KIND_VAR: 307 return base_size + sizeof(struct btf_var); 308 case BTF_KIND_DATASEC: 309 return base_size + vlen * sizeof(struct btf_var_secinfo); 310 default: 311 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 312 return -EINVAL; 313 } 314 } 315 316 static void btf_bswap_type_base(struct btf_type *t) 317 { 318 t->name_off = bswap_32(t->name_off); 319 t->info = bswap_32(t->info); 320 t->type = bswap_32(t->type); 321 } 322 323 static int btf_bswap_type_rest(struct btf_type *t) 324 { 325 struct btf_var_secinfo *v; 326 struct btf_member *m; 327 struct btf_array *a; 328 struct btf_param *p; 329 struct btf_enum *e; 330 __u16 vlen = btf_vlen(t); 331 int i; 332 333 switch (btf_kind(t)) { 334 case BTF_KIND_FWD: 335 case BTF_KIND_CONST: 336 case BTF_KIND_VOLATILE: 337 case BTF_KIND_RESTRICT: 338 case BTF_KIND_PTR: 339 case BTF_KIND_TYPEDEF: 340 case BTF_KIND_FUNC: 341 return 0; 342 case BTF_KIND_INT: 343 *(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1)); 344 return 0; 345 case BTF_KIND_ENUM: 346 for (i = 0, e = btf_enum(t); i < vlen; i++, e++) { 347 e->name_off = bswap_32(e->name_off); 348 e->val = bswap_32(e->val); 349 } 350 return 0; 351 case BTF_KIND_ARRAY: 352 a = btf_array(t); 353 a->type = bswap_32(a->type); 354 a->index_type = bswap_32(a->index_type); 355 a->nelems = bswap_32(a->nelems); 356 return 0; 357 case BTF_KIND_STRUCT: 358 case BTF_KIND_UNION: 359 for (i = 0, m = btf_members(t); i < vlen; i++, m++) { 360 m->name_off = bswap_32(m->name_off); 361 m->type = bswap_32(m->type); 362 m->offset = bswap_32(m->offset); 363 } 364 return 0; 365 case BTF_KIND_FUNC_PROTO: 366 for (i = 0, p = btf_params(t); i < vlen; i++, p++) { 367 p->name_off = bswap_32(p->name_off); 368 p->type = bswap_32(p->type); 369 } 370 return 0; 371 case BTF_KIND_VAR: 372 btf_var(t)->linkage = bswap_32(btf_var(t)->linkage); 373 return 0; 374 case BTF_KIND_DATASEC: 375 for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) { 376 v->type = bswap_32(v->type); 377 v->offset = bswap_32(v->offset); 378 v->size = bswap_32(v->size); 379 } 380 return 0; 381 default: 382 pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t)); 383 return -EINVAL; 384 } 385 } 386 387 static int btf_parse_type_sec(struct btf *btf) 388 { 389 struct btf_header *hdr = btf->hdr; 390 void *next_type = btf->types_data; 391 void *end_type = next_type + hdr->type_len; 392 int err, type_size; 393 394 while (next_type + sizeof(struct btf_type) <= end_type) { 395 if (btf->swapped_endian) 396 btf_bswap_type_base(next_type); 397 398 type_size = btf_type_size(next_type); 399 if (type_size < 0) 400 return type_size; 401 if (next_type + type_size > end_type) { 402 pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types); 403 return -EINVAL; 404 } 405 406 if (btf->swapped_endian && btf_bswap_type_rest(next_type)) 407 return -EINVAL; 408 409 err = btf_add_type_idx_entry(btf, next_type - btf->types_data); 410 if (err) 411 return err; 412 413 next_type += type_size; 414 btf->nr_types++; 415 } 416 417 if (next_type != end_type) { 418 pr_warn("BTF types data is malformed\n"); 419 return -EINVAL; 420 } 421 422 return 0; 423 } 424 425 __u32 btf__get_nr_types(const struct btf *btf) 426 { 427 return btf->start_id + btf->nr_types - 1; 428 } 429 430 const struct btf *btf__base_btf(const struct btf *btf) 431 { 432 return btf->base_btf; 433 } 434 435 /* internal helper returning non-const pointer to a type */ 436 static struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id) 437 { 438 if (type_id == 0) 439 return &btf_void; 440 if (type_id < btf->start_id) 441 return btf_type_by_id(btf->base_btf, type_id); 442 return btf->types_data + btf->type_offs[type_id - btf->start_id]; 443 } 444 445 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id) 446 { 447 if (type_id >= btf->start_id + btf->nr_types) 448 return NULL; 449 return btf_type_by_id((struct btf *)btf, type_id); 450 } 451 452 static int determine_ptr_size(const struct btf *btf) 453 { 454 const struct btf_type *t; 455 const char *name; 456 int i, n; 457 458 if (btf->base_btf && btf->base_btf->ptr_sz > 0) 459 return btf->base_btf->ptr_sz; 460 461 n = btf__get_nr_types(btf); 462 for (i = 1; i <= n; i++) { 463 t = btf__type_by_id(btf, i); 464 if (!btf_is_int(t)) 465 continue; 466 467 name = btf__name_by_offset(btf, t->name_off); 468 if (!name) 469 continue; 470 471 if (strcmp(name, "long int") == 0 || 472 strcmp(name, "long unsigned int") == 0) { 473 if (t->size != 4 && t->size != 8) 474 continue; 475 return t->size; 476 } 477 } 478 479 return -1; 480 } 481 482 static size_t btf_ptr_sz(const struct btf *btf) 483 { 484 if (!btf->ptr_sz) 485 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 486 return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz; 487 } 488 489 /* Return pointer size this BTF instance assumes. The size is heuristically 490 * determined by looking for 'long' or 'unsigned long' integer type and 491 * recording its size in bytes. If BTF type information doesn't have any such 492 * type, this function returns 0. In the latter case, native architecture's 493 * pointer size is assumed, so will be either 4 or 8, depending on 494 * architecture that libbpf was compiled for. It's possible to override 495 * guessed value by using btf__set_pointer_size() API. 496 */ 497 size_t btf__pointer_size(const struct btf *btf) 498 { 499 if (!btf->ptr_sz) 500 ((struct btf *)btf)->ptr_sz = determine_ptr_size(btf); 501 502 if (btf->ptr_sz < 0) 503 /* not enough BTF type info to guess */ 504 return 0; 505 506 return btf->ptr_sz; 507 } 508 509 /* Override or set pointer size in bytes. Only values of 4 and 8 are 510 * supported. 511 */ 512 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz) 513 { 514 if (ptr_sz != 4 && ptr_sz != 8) 515 return -EINVAL; 516 btf->ptr_sz = ptr_sz; 517 return 0; 518 } 519 520 static bool is_host_big_endian(void) 521 { 522 #if __BYTE_ORDER == __LITTLE_ENDIAN 523 return false; 524 #elif __BYTE_ORDER == __BIG_ENDIAN 525 return true; 526 #else 527 # error "Unrecognized __BYTE_ORDER__" 528 #endif 529 } 530 531 enum btf_endianness btf__endianness(const struct btf *btf) 532 { 533 if (is_host_big_endian()) 534 return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN; 535 else 536 return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN; 537 } 538 539 int btf__set_endianness(struct btf *btf, enum btf_endianness endian) 540 { 541 if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN) 542 return -EINVAL; 543 544 btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN); 545 if (!btf->swapped_endian) { 546 free(btf->raw_data_swapped); 547 btf->raw_data_swapped = NULL; 548 } 549 return 0; 550 } 551 552 static bool btf_type_is_void(const struct btf_type *t) 553 { 554 return t == &btf_void || btf_is_fwd(t); 555 } 556 557 static bool btf_type_is_void_or_null(const struct btf_type *t) 558 { 559 return !t || btf_type_is_void(t); 560 } 561 562 #define MAX_RESOLVE_DEPTH 32 563 564 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id) 565 { 566 const struct btf_array *array; 567 const struct btf_type *t; 568 __u32 nelems = 1; 569 __s64 size = -1; 570 int i; 571 572 t = btf__type_by_id(btf, type_id); 573 for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); 574 i++) { 575 switch (btf_kind(t)) { 576 case BTF_KIND_INT: 577 case BTF_KIND_STRUCT: 578 case BTF_KIND_UNION: 579 case BTF_KIND_ENUM: 580 case BTF_KIND_DATASEC: 581 size = t->size; 582 goto done; 583 case BTF_KIND_PTR: 584 size = btf_ptr_sz(btf); 585 goto done; 586 case BTF_KIND_TYPEDEF: 587 case BTF_KIND_VOLATILE: 588 case BTF_KIND_CONST: 589 case BTF_KIND_RESTRICT: 590 case BTF_KIND_VAR: 591 type_id = t->type; 592 break; 593 case BTF_KIND_ARRAY: 594 array = btf_array(t); 595 if (nelems && array->nelems > UINT32_MAX / nelems) 596 return -E2BIG; 597 nelems *= array->nelems; 598 type_id = array->type; 599 break; 600 default: 601 return -EINVAL; 602 } 603 604 t = btf__type_by_id(btf, type_id); 605 } 606 607 done: 608 if (size < 0) 609 return -EINVAL; 610 if (nelems && size > UINT32_MAX / nelems) 611 return -E2BIG; 612 613 return nelems * size; 614 } 615 616 int btf__align_of(const struct btf *btf, __u32 id) 617 { 618 const struct btf_type *t = btf__type_by_id(btf, id); 619 __u16 kind = btf_kind(t); 620 621 switch (kind) { 622 case BTF_KIND_INT: 623 case BTF_KIND_ENUM: 624 return min(btf_ptr_sz(btf), (size_t)t->size); 625 case BTF_KIND_PTR: 626 return btf_ptr_sz(btf); 627 case BTF_KIND_TYPEDEF: 628 case BTF_KIND_VOLATILE: 629 case BTF_KIND_CONST: 630 case BTF_KIND_RESTRICT: 631 return btf__align_of(btf, t->type); 632 case BTF_KIND_ARRAY: 633 return btf__align_of(btf, btf_array(t)->type); 634 case BTF_KIND_STRUCT: 635 case BTF_KIND_UNION: { 636 const struct btf_member *m = btf_members(t); 637 __u16 vlen = btf_vlen(t); 638 int i, max_align = 1, align; 639 640 for (i = 0; i < vlen; i++, m++) { 641 align = btf__align_of(btf, m->type); 642 if (align <= 0) 643 return align; 644 max_align = max(max_align, align); 645 } 646 647 return max_align; 648 } 649 default: 650 pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t)); 651 return 0; 652 } 653 } 654 655 int btf__resolve_type(const struct btf *btf, __u32 type_id) 656 { 657 const struct btf_type *t; 658 int depth = 0; 659 660 t = btf__type_by_id(btf, type_id); 661 while (depth < MAX_RESOLVE_DEPTH && 662 !btf_type_is_void_or_null(t) && 663 (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) { 664 type_id = t->type; 665 t = btf__type_by_id(btf, type_id); 666 depth++; 667 } 668 669 if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t)) 670 return -EINVAL; 671 672 return type_id; 673 } 674 675 __s32 btf__find_by_name(const struct btf *btf, const char *type_name) 676 { 677 __u32 i, nr_types = btf__get_nr_types(btf); 678 679 if (!strcmp(type_name, "void")) 680 return 0; 681 682 for (i = 1; i <= nr_types; i++) { 683 const struct btf_type *t = btf__type_by_id(btf, i); 684 const char *name = btf__name_by_offset(btf, t->name_off); 685 686 if (name && !strcmp(type_name, name)) 687 return i; 688 } 689 690 return -ENOENT; 691 } 692 693 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name, 694 __u32 kind) 695 { 696 __u32 i, nr_types = btf__get_nr_types(btf); 697 698 if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void")) 699 return 0; 700 701 for (i = 1; i <= nr_types; i++) { 702 const struct btf_type *t = btf__type_by_id(btf, i); 703 const char *name; 704 705 if (btf_kind(t) != kind) 706 continue; 707 name = btf__name_by_offset(btf, t->name_off); 708 if (name && !strcmp(type_name, name)) 709 return i; 710 } 711 712 return -ENOENT; 713 } 714 715 static bool btf_is_modifiable(const struct btf *btf) 716 { 717 return (void *)btf->hdr != btf->raw_data; 718 } 719 720 void btf__free(struct btf *btf) 721 { 722 if (IS_ERR_OR_NULL(btf)) 723 return; 724 725 if (btf->fd >= 0) 726 close(btf->fd); 727 728 if (btf_is_modifiable(btf)) { 729 /* if BTF was modified after loading, it will have a split 730 * in-memory representation for header, types, and strings 731 * sections, so we need to free all of them individually. It 732 * might still have a cached contiguous raw data present, 733 * which will be unconditionally freed below. 734 */ 735 free(btf->hdr); 736 free(btf->types_data); 737 free(btf->strs_data); 738 } 739 free(btf->raw_data); 740 free(btf->raw_data_swapped); 741 free(btf->type_offs); 742 free(btf); 743 } 744 745 static struct btf *btf_new_empty(struct btf *base_btf) 746 { 747 struct btf *btf; 748 749 btf = calloc(1, sizeof(*btf)); 750 if (!btf) 751 return ERR_PTR(-ENOMEM); 752 753 btf->nr_types = 0; 754 btf->start_id = 1; 755 btf->start_str_off = 0; 756 btf->fd = -1; 757 btf->ptr_sz = sizeof(void *); 758 btf->swapped_endian = false; 759 760 if (base_btf) { 761 btf->base_btf = base_btf; 762 btf->start_id = btf__get_nr_types(base_btf) + 1; 763 btf->start_str_off = base_btf->hdr->str_len; 764 } 765 766 /* +1 for empty string at offset 0 */ 767 btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1); 768 btf->raw_data = calloc(1, btf->raw_size); 769 if (!btf->raw_data) { 770 free(btf); 771 return ERR_PTR(-ENOMEM); 772 } 773 774 btf->hdr = btf->raw_data; 775 btf->hdr->hdr_len = sizeof(struct btf_header); 776 btf->hdr->magic = BTF_MAGIC; 777 btf->hdr->version = BTF_VERSION; 778 779 btf->types_data = btf->raw_data + btf->hdr->hdr_len; 780 btf->strs_data = btf->raw_data + btf->hdr->hdr_len; 781 btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */ 782 783 return btf; 784 } 785 786 struct btf *btf__new_empty(void) 787 { 788 return btf_new_empty(NULL); 789 } 790 791 struct btf *btf__new_empty_split(struct btf *base_btf) 792 { 793 return btf_new_empty(base_btf); 794 } 795 796 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf) 797 { 798 struct btf *btf; 799 int err; 800 801 btf = calloc(1, sizeof(struct btf)); 802 if (!btf) 803 return ERR_PTR(-ENOMEM); 804 805 btf->nr_types = 0; 806 btf->start_id = 1; 807 btf->start_str_off = 0; 808 809 if (base_btf) { 810 btf->base_btf = base_btf; 811 btf->start_id = btf__get_nr_types(base_btf) + 1; 812 btf->start_str_off = base_btf->hdr->str_len; 813 } 814 815 btf->raw_data = malloc(size); 816 if (!btf->raw_data) { 817 err = -ENOMEM; 818 goto done; 819 } 820 memcpy(btf->raw_data, data, size); 821 btf->raw_size = size; 822 823 btf->hdr = btf->raw_data; 824 err = btf_parse_hdr(btf); 825 if (err) 826 goto done; 827 828 btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off; 829 btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off; 830 831 err = btf_parse_str_sec(btf); 832 err = err ?: btf_parse_type_sec(btf); 833 if (err) 834 goto done; 835 836 btf->fd = -1; 837 838 done: 839 if (err) { 840 btf__free(btf); 841 return ERR_PTR(err); 842 } 843 844 return btf; 845 } 846 847 struct btf *btf__new(const void *data, __u32 size) 848 { 849 return btf_new(data, size, NULL); 850 } 851 852 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf, 853 struct btf_ext **btf_ext) 854 { 855 Elf_Data *btf_data = NULL, *btf_ext_data = NULL; 856 int err = 0, fd = -1, idx = 0; 857 struct btf *btf = NULL; 858 Elf_Scn *scn = NULL; 859 Elf *elf = NULL; 860 GElf_Ehdr ehdr; 861 862 if (elf_version(EV_CURRENT) == EV_NONE) { 863 pr_warn("failed to init libelf for %s\n", path); 864 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 865 } 866 867 fd = open(path, O_RDONLY); 868 if (fd < 0) { 869 err = -errno; 870 pr_warn("failed to open %s: %s\n", path, strerror(errno)); 871 return ERR_PTR(err); 872 } 873 874 err = -LIBBPF_ERRNO__FORMAT; 875 876 elf = elf_begin(fd, ELF_C_READ, NULL); 877 if (!elf) { 878 pr_warn("failed to open %s as ELF file\n", path); 879 goto done; 880 } 881 if (!gelf_getehdr(elf, &ehdr)) { 882 pr_warn("failed to get EHDR from %s\n", path); 883 goto done; 884 } 885 if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) { 886 pr_warn("failed to get e_shstrndx from %s\n", path); 887 goto done; 888 } 889 890 while ((scn = elf_nextscn(elf, scn)) != NULL) { 891 GElf_Shdr sh; 892 char *name; 893 894 idx++; 895 if (gelf_getshdr(scn, &sh) != &sh) { 896 pr_warn("failed to get section(%d) header from %s\n", 897 idx, path); 898 goto done; 899 } 900 name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name); 901 if (!name) { 902 pr_warn("failed to get section(%d) name from %s\n", 903 idx, path); 904 goto done; 905 } 906 if (strcmp(name, BTF_ELF_SEC) == 0) { 907 btf_data = elf_getdata(scn, 0); 908 if (!btf_data) { 909 pr_warn("failed to get section(%d, %s) data from %s\n", 910 idx, name, path); 911 goto done; 912 } 913 continue; 914 } else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) { 915 btf_ext_data = elf_getdata(scn, 0); 916 if (!btf_ext_data) { 917 pr_warn("failed to get section(%d, %s) data from %s\n", 918 idx, name, path); 919 goto done; 920 } 921 continue; 922 } 923 } 924 925 err = 0; 926 927 if (!btf_data) { 928 err = -ENOENT; 929 goto done; 930 } 931 btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf); 932 if (IS_ERR(btf)) 933 goto done; 934 935 switch (gelf_getclass(elf)) { 936 case ELFCLASS32: 937 btf__set_pointer_size(btf, 4); 938 break; 939 case ELFCLASS64: 940 btf__set_pointer_size(btf, 8); 941 break; 942 default: 943 pr_warn("failed to get ELF class (bitness) for %s\n", path); 944 break; 945 } 946 947 if (btf_ext && btf_ext_data) { 948 *btf_ext = btf_ext__new(btf_ext_data->d_buf, 949 btf_ext_data->d_size); 950 if (IS_ERR(*btf_ext)) 951 goto done; 952 } else if (btf_ext) { 953 *btf_ext = NULL; 954 } 955 done: 956 if (elf) 957 elf_end(elf); 958 close(fd); 959 960 if (err) 961 return ERR_PTR(err); 962 /* 963 * btf is always parsed before btf_ext, so no need to clean up 964 * btf_ext, if btf loading failed 965 */ 966 if (IS_ERR(btf)) 967 return btf; 968 if (btf_ext && IS_ERR(*btf_ext)) { 969 btf__free(btf); 970 err = PTR_ERR(*btf_ext); 971 return ERR_PTR(err); 972 } 973 return btf; 974 } 975 976 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext) 977 { 978 return btf_parse_elf(path, NULL, btf_ext); 979 } 980 981 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf) 982 { 983 return btf_parse_elf(path, base_btf, NULL); 984 } 985 986 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf) 987 { 988 struct btf *btf = NULL; 989 void *data = NULL; 990 FILE *f = NULL; 991 __u16 magic; 992 int err = 0; 993 long sz; 994 995 f = fopen(path, "rb"); 996 if (!f) { 997 err = -errno; 998 goto err_out; 999 } 1000 1001 /* check BTF magic */ 1002 if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) { 1003 err = -EIO; 1004 goto err_out; 1005 } 1006 if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) { 1007 /* definitely not a raw BTF */ 1008 err = -EPROTO; 1009 goto err_out; 1010 } 1011 1012 /* get file size */ 1013 if (fseek(f, 0, SEEK_END)) { 1014 err = -errno; 1015 goto err_out; 1016 } 1017 sz = ftell(f); 1018 if (sz < 0) { 1019 err = -errno; 1020 goto err_out; 1021 } 1022 /* rewind to the start */ 1023 if (fseek(f, 0, SEEK_SET)) { 1024 err = -errno; 1025 goto err_out; 1026 } 1027 1028 /* pre-alloc memory and read all of BTF data */ 1029 data = malloc(sz); 1030 if (!data) { 1031 err = -ENOMEM; 1032 goto err_out; 1033 } 1034 if (fread(data, 1, sz, f) < sz) { 1035 err = -EIO; 1036 goto err_out; 1037 } 1038 1039 /* finally parse BTF data */ 1040 btf = btf_new(data, sz, base_btf); 1041 1042 err_out: 1043 free(data); 1044 if (f) 1045 fclose(f); 1046 return err ? ERR_PTR(err) : btf; 1047 } 1048 1049 struct btf *btf__parse_raw(const char *path) 1050 { 1051 return btf_parse_raw(path, NULL); 1052 } 1053 1054 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf) 1055 { 1056 return btf_parse_raw(path, base_btf); 1057 } 1058 1059 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext) 1060 { 1061 struct btf *btf; 1062 1063 if (btf_ext) 1064 *btf_ext = NULL; 1065 1066 btf = btf_parse_raw(path, base_btf); 1067 if (!IS_ERR(btf) || PTR_ERR(btf) != -EPROTO) 1068 return btf; 1069 1070 return btf_parse_elf(path, base_btf, btf_ext); 1071 } 1072 1073 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext) 1074 { 1075 return btf_parse(path, NULL, btf_ext); 1076 } 1077 1078 struct btf *btf__parse_split(const char *path, struct btf *base_btf) 1079 { 1080 return btf_parse(path, base_btf, NULL); 1081 } 1082 1083 static int compare_vsi_off(const void *_a, const void *_b) 1084 { 1085 const struct btf_var_secinfo *a = _a; 1086 const struct btf_var_secinfo *b = _b; 1087 1088 return a->offset - b->offset; 1089 } 1090 1091 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 1092 struct btf_type *t) 1093 { 1094 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 1095 const char *name = btf__name_by_offset(btf, t->name_off); 1096 const struct btf_type *t_var; 1097 struct btf_var_secinfo *vsi; 1098 const struct btf_var *var; 1099 int ret; 1100 1101 if (!name) { 1102 pr_debug("No name found in string section for DATASEC kind.\n"); 1103 return -ENOENT; 1104 } 1105 1106 /* .extern datasec size and var offsets were set correctly during 1107 * extern collection step, so just skip straight to sorting variables 1108 */ 1109 if (t->size) 1110 goto sort_vars; 1111 1112 ret = bpf_object__section_size(obj, name, &size); 1113 if (ret || !size || (t->size && t->size != size)) { 1114 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 1115 return -ENOENT; 1116 } 1117 1118 t->size = size; 1119 1120 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 1121 t_var = btf__type_by_id(btf, vsi->type); 1122 var = btf_var(t_var); 1123 1124 if (!btf_is_var(t_var)) { 1125 pr_debug("Non-VAR type seen in section %s\n", name); 1126 return -EINVAL; 1127 } 1128 1129 if (var->linkage == BTF_VAR_STATIC) 1130 continue; 1131 1132 name = btf__name_by_offset(btf, t_var->name_off); 1133 if (!name) { 1134 pr_debug("No name found in string section for VAR kind\n"); 1135 return -ENOENT; 1136 } 1137 1138 ret = bpf_object__variable_offset(obj, name, &off); 1139 if (ret) { 1140 pr_debug("No offset found in symbol table for VAR %s\n", 1141 name); 1142 return -ENOENT; 1143 } 1144 1145 vsi->offset = off; 1146 } 1147 1148 sort_vars: 1149 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 1150 return 0; 1151 } 1152 1153 int btf__finalize_data(struct bpf_object *obj, struct btf *btf) 1154 { 1155 int err = 0; 1156 __u32 i; 1157 1158 for (i = 1; i <= btf->nr_types; i++) { 1159 struct btf_type *t = btf_type_by_id(btf, i); 1160 1161 /* Loader needs to fix up some of the things compiler 1162 * couldn't get its hands on while emitting BTF. This 1163 * is section size and global variable offset. We use 1164 * the info from the ELF itself for this purpose. 1165 */ 1166 if (btf_is_datasec(t)) { 1167 err = btf_fixup_datasec(obj, btf, t); 1168 if (err) 1169 break; 1170 } 1171 } 1172 1173 return err; 1174 } 1175 1176 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian); 1177 1178 int btf__load(struct btf *btf) 1179 { 1180 __u32 log_buf_size = 0, raw_size; 1181 char *log_buf = NULL; 1182 void *raw_data; 1183 int err = 0; 1184 1185 if (btf->fd >= 0) 1186 return -EEXIST; 1187 1188 retry_load: 1189 if (log_buf_size) { 1190 log_buf = malloc(log_buf_size); 1191 if (!log_buf) 1192 return -ENOMEM; 1193 1194 *log_buf = 0; 1195 } 1196 1197 raw_data = btf_get_raw_data(btf, &raw_size, false); 1198 if (!raw_data) { 1199 err = -ENOMEM; 1200 goto done; 1201 } 1202 /* cache native raw data representation */ 1203 btf->raw_size = raw_size; 1204 btf->raw_data = raw_data; 1205 1206 btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false); 1207 if (btf->fd < 0) { 1208 if (!log_buf || errno == ENOSPC) { 1209 log_buf_size = max((__u32)BPF_LOG_BUF_SIZE, 1210 log_buf_size << 1); 1211 free(log_buf); 1212 goto retry_load; 1213 } 1214 1215 err = -errno; 1216 pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno); 1217 if (*log_buf) 1218 pr_warn("%s\n", log_buf); 1219 goto done; 1220 } 1221 1222 done: 1223 free(log_buf); 1224 return err; 1225 } 1226 1227 int btf__fd(const struct btf *btf) 1228 { 1229 return btf->fd; 1230 } 1231 1232 void btf__set_fd(struct btf *btf, int fd) 1233 { 1234 btf->fd = fd; 1235 } 1236 1237 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian) 1238 { 1239 struct btf_header *hdr = btf->hdr; 1240 struct btf_type *t; 1241 void *data, *p; 1242 __u32 data_sz; 1243 int i; 1244 1245 data = swap_endian ? btf->raw_data_swapped : btf->raw_data; 1246 if (data) { 1247 *size = btf->raw_size; 1248 return data; 1249 } 1250 1251 data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len; 1252 data = calloc(1, data_sz); 1253 if (!data) 1254 return NULL; 1255 p = data; 1256 1257 memcpy(p, hdr, hdr->hdr_len); 1258 if (swap_endian) 1259 btf_bswap_hdr(p); 1260 p += hdr->hdr_len; 1261 1262 memcpy(p, btf->types_data, hdr->type_len); 1263 if (swap_endian) { 1264 for (i = 0; i < btf->nr_types; i++) { 1265 t = p + btf->type_offs[i]; 1266 /* btf_bswap_type_rest() relies on native t->info, so 1267 * we swap base type info after we swapped all the 1268 * additional information 1269 */ 1270 if (btf_bswap_type_rest(t)) 1271 goto err_out; 1272 btf_bswap_type_base(t); 1273 } 1274 } 1275 p += hdr->type_len; 1276 1277 memcpy(p, btf->strs_data, hdr->str_len); 1278 p += hdr->str_len; 1279 1280 *size = data_sz; 1281 return data; 1282 err_out: 1283 free(data); 1284 return NULL; 1285 } 1286 1287 const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size) 1288 { 1289 struct btf *btf = (struct btf *)btf_ro; 1290 __u32 data_sz; 1291 void *data; 1292 1293 data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian); 1294 if (!data) 1295 return NULL; 1296 1297 btf->raw_size = data_sz; 1298 if (btf->swapped_endian) 1299 btf->raw_data_swapped = data; 1300 else 1301 btf->raw_data = data; 1302 *size = data_sz; 1303 return data; 1304 } 1305 1306 const char *btf__str_by_offset(const struct btf *btf, __u32 offset) 1307 { 1308 if (offset < btf->start_str_off) 1309 return btf__str_by_offset(btf->base_btf, offset); 1310 else if (offset - btf->start_str_off < btf->hdr->str_len) 1311 return btf->strs_data + (offset - btf->start_str_off); 1312 else 1313 return NULL; 1314 } 1315 1316 const char *btf__name_by_offset(const struct btf *btf, __u32 offset) 1317 { 1318 return btf__str_by_offset(btf, offset); 1319 } 1320 1321 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf) 1322 { 1323 struct bpf_btf_info btf_info; 1324 __u32 len = sizeof(btf_info); 1325 __u32 last_size; 1326 struct btf *btf; 1327 void *ptr; 1328 int err; 1329 1330 /* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so 1331 * let's start with a sane default - 4KiB here - and resize it only if 1332 * bpf_obj_get_info_by_fd() needs a bigger buffer. 1333 */ 1334 last_size = 4096; 1335 ptr = malloc(last_size); 1336 if (!ptr) 1337 return ERR_PTR(-ENOMEM); 1338 1339 memset(&btf_info, 0, sizeof(btf_info)); 1340 btf_info.btf = ptr_to_u64(ptr); 1341 btf_info.btf_size = last_size; 1342 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1343 1344 if (!err && btf_info.btf_size > last_size) { 1345 void *temp_ptr; 1346 1347 last_size = btf_info.btf_size; 1348 temp_ptr = realloc(ptr, last_size); 1349 if (!temp_ptr) { 1350 btf = ERR_PTR(-ENOMEM); 1351 goto exit_free; 1352 } 1353 ptr = temp_ptr; 1354 1355 len = sizeof(btf_info); 1356 memset(&btf_info, 0, sizeof(btf_info)); 1357 btf_info.btf = ptr_to_u64(ptr); 1358 btf_info.btf_size = last_size; 1359 1360 err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len); 1361 } 1362 1363 if (err || btf_info.btf_size > last_size) { 1364 btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG); 1365 goto exit_free; 1366 } 1367 1368 btf = btf_new(ptr, btf_info.btf_size, base_btf); 1369 1370 exit_free: 1371 free(ptr); 1372 return btf; 1373 } 1374 1375 int btf__get_from_id(__u32 id, struct btf **btf) 1376 { 1377 struct btf *res; 1378 int btf_fd; 1379 1380 *btf = NULL; 1381 btf_fd = bpf_btf_get_fd_by_id(id); 1382 if (btf_fd < 0) 1383 return -errno; 1384 1385 res = btf_get_from_fd(btf_fd, NULL); 1386 close(btf_fd); 1387 if (IS_ERR(res)) 1388 return PTR_ERR(res); 1389 1390 *btf = res; 1391 return 0; 1392 } 1393 1394 int btf__get_map_kv_tids(const struct btf *btf, const char *map_name, 1395 __u32 expected_key_size, __u32 expected_value_size, 1396 __u32 *key_type_id, __u32 *value_type_id) 1397 { 1398 const struct btf_type *container_type; 1399 const struct btf_member *key, *value; 1400 const size_t max_name = 256; 1401 char container_name[max_name]; 1402 __s64 key_size, value_size; 1403 __s32 container_id; 1404 1405 if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == 1406 max_name) { 1407 pr_warn("map:%s length of '____btf_map_%s' is too long\n", 1408 map_name, map_name); 1409 return -EINVAL; 1410 } 1411 1412 container_id = btf__find_by_name(btf, container_name); 1413 if (container_id < 0) { 1414 pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n", 1415 map_name, container_name); 1416 return container_id; 1417 } 1418 1419 container_type = btf__type_by_id(btf, container_id); 1420 if (!container_type) { 1421 pr_warn("map:%s cannot find BTF type for container_id:%u\n", 1422 map_name, container_id); 1423 return -EINVAL; 1424 } 1425 1426 if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) { 1427 pr_warn("map:%s container_name:%s is an invalid container struct\n", 1428 map_name, container_name); 1429 return -EINVAL; 1430 } 1431 1432 key = btf_members(container_type); 1433 value = key + 1; 1434 1435 key_size = btf__resolve_size(btf, key->type); 1436 if (key_size < 0) { 1437 pr_warn("map:%s invalid BTF key_type_size\n", map_name); 1438 return key_size; 1439 } 1440 1441 if (expected_key_size != key_size) { 1442 pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n", 1443 map_name, (__u32)key_size, expected_key_size); 1444 return -EINVAL; 1445 } 1446 1447 value_size = btf__resolve_size(btf, value->type); 1448 if (value_size < 0) { 1449 pr_warn("map:%s invalid BTF value_type_size\n", map_name); 1450 return value_size; 1451 } 1452 1453 if (expected_value_size != value_size) { 1454 pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n", 1455 map_name, (__u32)value_size, expected_value_size); 1456 return -EINVAL; 1457 } 1458 1459 *key_type_id = key->type; 1460 *value_type_id = value->type; 1461 1462 return 0; 1463 } 1464 1465 static size_t strs_hash_fn(const void *key, void *ctx) 1466 { 1467 const struct btf *btf = ctx; 1468 const char *strs = *btf->strs_data_ptr; 1469 const char *str = strs + (long)key; 1470 1471 return str_hash(str); 1472 } 1473 1474 static bool strs_hash_equal_fn(const void *key1, const void *key2, void *ctx) 1475 { 1476 const struct btf *btf = ctx; 1477 const char *strs = *btf->strs_data_ptr; 1478 const char *str1 = strs + (long)key1; 1479 const char *str2 = strs + (long)key2; 1480 1481 return strcmp(str1, str2) == 0; 1482 } 1483 1484 static void btf_invalidate_raw_data(struct btf *btf) 1485 { 1486 if (btf->raw_data) { 1487 free(btf->raw_data); 1488 btf->raw_data = NULL; 1489 } 1490 if (btf->raw_data_swapped) { 1491 free(btf->raw_data_swapped); 1492 btf->raw_data_swapped = NULL; 1493 } 1494 } 1495 1496 /* Ensure BTF is ready to be modified (by splitting into a three memory 1497 * regions for header, types, and strings). Also invalidate cached 1498 * raw_data, if any. 1499 */ 1500 static int btf_ensure_modifiable(struct btf *btf) 1501 { 1502 void *hdr, *types, *strs, *strs_end, *s; 1503 struct hashmap *hash = NULL; 1504 long off; 1505 int err; 1506 1507 if (btf_is_modifiable(btf)) { 1508 /* any BTF modification invalidates raw_data */ 1509 btf_invalidate_raw_data(btf); 1510 return 0; 1511 } 1512 1513 /* split raw data into three memory regions */ 1514 hdr = malloc(btf->hdr->hdr_len); 1515 types = malloc(btf->hdr->type_len); 1516 strs = malloc(btf->hdr->str_len); 1517 if (!hdr || !types || !strs) 1518 goto err_out; 1519 1520 memcpy(hdr, btf->hdr, btf->hdr->hdr_len); 1521 memcpy(types, btf->types_data, btf->hdr->type_len); 1522 memcpy(strs, btf->strs_data, btf->hdr->str_len); 1523 1524 /* make hashmap below use btf->strs_data as a source of strings */ 1525 btf->strs_data_ptr = &btf->strs_data; 1526 1527 /* build lookup index for all strings */ 1528 hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, btf); 1529 if (IS_ERR(hash)) { 1530 err = PTR_ERR(hash); 1531 hash = NULL; 1532 goto err_out; 1533 } 1534 1535 strs_end = strs + btf->hdr->str_len; 1536 for (off = 0, s = strs; s < strs_end; off += strlen(s) + 1, s = strs + off) { 1537 /* hashmap__add() returns EEXIST if string with the same 1538 * content already is in the hash map 1539 */ 1540 err = hashmap__add(hash, (void *)off, (void *)off); 1541 if (err == -EEXIST) 1542 continue; /* duplicate */ 1543 if (err) 1544 goto err_out; 1545 } 1546 1547 /* only when everything was successful, update internal state */ 1548 btf->hdr = hdr; 1549 btf->types_data = types; 1550 btf->types_data_cap = btf->hdr->type_len; 1551 btf->strs_data = strs; 1552 btf->strs_data_cap = btf->hdr->str_len; 1553 btf->strs_hash = hash; 1554 /* if BTF was created from scratch, all strings are guaranteed to be 1555 * unique and deduplicated 1556 */ 1557 if (btf->hdr->str_len == 0) 1558 btf->strs_deduped = true; 1559 if (!btf->base_btf && btf->hdr->str_len == 1) 1560 btf->strs_deduped = true; 1561 1562 /* invalidate raw_data representation */ 1563 btf_invalidate_raw_data(btf); 1564 1565 return 0; 1566 1567 err_out: 1568 hashmap__free(hash); 1569 free(hdr); 1570 free(types); 1571 free(strs); 1572 return -ENOMEM; 1573 } 1574 1575 static void *btf_add_str_mem(struct btf *btf, size_t add_sz) 1576 { 1577 return btf_add_mem(&btf->strs_data, &btf->strs_data_cap, 1, 1578 btf->hdr->str_len, BTF_MAX_STR_OFFSET, add_sz); 1579 } 1580 1581 /* Find an offset in BTF string section that corresponds to a given string *s*. 1582 * Returns: 1583 * - >0 offset into string section, if string is found; 1584 * - -ENOENT, if string is not in the string section; 1585 * - <0, on any other error. 1586 */ 1587 int btf__find_str(struct btf *btf, const char *s) 1588 { 1589 long old_off, new_off, len; 1590 void *p; 1591 1592 if (btf->base_btf) { 1593 int ret; 1594 1595 ret = btf__find_str(btf->base_btf, s); 1596 if (ret != -ENOENT) 1597 return ret; 1598 } 1599 1600 /* BTF needs to be in a modifiable state to build string lookup index */ 1601 if (btf_ensure_modifiable(btf)) 1602 return -ENOMEM; 1603 1604 /* see btf__add_str() for why we do this */ 1605 len = strlen(s) + 1; 1606 p = btf_add_str_mem(btf, len); 1607 if (!p) 1608 return -ENOMEM; 1609 1610 new_off = btf->hdr->str_len; 1611 memcpy(p, s, len); 1612 1613 if (hashmap__find(btf->strs_hash, (void *)new_off, (void **)&old_off)) 1614 return btf->start_str_off + old_off; 1615 1616 return -ENOENT; 1617 } 1618 1619 /* Add a string s to the BTF string section. 1620 * Returns: 1621 * - > 0 offset into string section, on success; 1622 * - < 0, on error. 1623 */ 1624 int btf__add_str(struct btf *btf, const char *s) 1625 { 1626 long old_off, new_off, len; 1627 void *p; 1628 int err; 1629 1630 if (btf->base_btf) { 1631 int ret; 1632 1633 ret = btf__find_str(btf->base_btf, s); 1634 if (ret != -ENOENT) 1635 return ret; 1636 } 1637 1638 if (btf_ensure_modifiable(btf)) 1639 return -ENOMEM; 1640 1641 /* Hashmap keys are always offsets within btf->strs_data, so to even 1642 * look up some string from the "outside", we need to first append it 1643 * at the end, so that it can be addressed with an offset. Luckily, 1644 * until btf->hdr->str_len is incremented, that string is just a piece 1645 * of garbage for the rest of BTF code, so no harm, no foul. On the 1646 * other hand, if the string is unique, it's already appended and 1647 * ready to be used, only a simple btf->hdr->str_len increment away. 1648 */ 1649 len = strlen(s) + 1; 1650 p = btf_add_str_mem(btf, len); 1651 if (!p) 1652 return -ENOMEM; 1653 1654 new_off = btf->hdr->str_len; 1655 memcpy(p, s, len); 1656 1657 /* Now attempt to add the string, but only if the string with the same 1658 * contents doesn't exist already (HASHMAP_ADD strategy). If such 1659 * string exists, we'll get its offset in old_off (that's old_key). 1660 */ 1661 err = hashmap__insert(btf->strs_hash, (void *)new_off, (void *)new_off, 1662 HASHMAP_ADD, (const void **)&old_off, NULL); 1663 if (err == -EEXIST) 1664 return btf->start_str_off + old_off; /* duplicated string, return existing offset */ 1665 if (err) 1666 return err; 1667 1668 btf->hdr->str_len += len; /* new unique string, adjust data length */ 1669 return btf->start_str_off + new_off; 1670 } 1671 1672 static void *btf_add_type_mem(struct btf *btf, size_t add_sz) 1673 { 1674 return btf_add_mem(&btf->types_data, &btf->types_data_cap, 1, 1675 btf->hdr->type_len, UINT_MAX, add_sz); 1676 } 1677 1678 static __u32 btf_type_info(int kind, int vlen, int kflag) 1679 { 1680 return (kflag << 31) | (kind << 24) | vlen; 1681 } 1682 1683 static void btf_type_inc_vlen(struct btf_type *t) 1684 { 1685 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t)); 1686 } 1687 1688 static int btf_commit_type(struct btf *btf, int data_sz) 1689 { 1690 int err; 1691 1692 err = btf_add_type_idx_entry(btf, btf->hdr->type_len); 1693 if (err) 1694 return err; 1695 1696 btf->hdr->type_len += data_sz; 1697 btf->hdr->str_off += data_sz; 1698 btf->nr_types++; 1699 return btf->start_id + btf->nr_types - 1; 1700 } 1701 1702 /* 1703 * Append new BTF_KIND_INT type with: 1704 * - *name* - non-empty, non-NULL type name; 1705 * - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes; 1706 * - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL. 1707 * Returns: 1708 * - >0, type ID of newly added BTF type; 1709 * - <0, on error. 1710 */ 1711 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding) 1712 { 1713 struct btf_type *t; 1714 int sz, name_off; 1715 1716 /* non-empty name */ 1717 if (!name || !name[0]) 1718 return -EINVAL; 1719 /* byte_sz must be power of 2 */ 1720 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16) 1721 return -EINVAL; 1722 if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL)) 1723 return -EINVAL; 1724 1725 /* deconstruct BTF, if necessary, and invalidate raw_data */ 1726 if (btf_ensure_modifiable(btf)) 1727 return -ENOMEM; 1728 1729 sz = sizeof(struct btf_type) + sizeof(int); 1730 t = btf_add_type_mem(btf, sz); 1731 if (!t) 1732 return -ENOMEM; 1733 1734 /* if something goes wrong later, we might end up with an extra string, 1735 * but that shouldn't be a problem, because BTF can't be constructed 1736 * completely anyway and will most probably be just discarded 1737 */ 1738 name_off = btf__add_str(btf, name); 1739 if (name_off < 0) 1740 return name_off; 1741 1742 t->name_off = name_off; 1743 t->info = btf_type_info(BTF_KIND_INT, 0, 0); 1744 t->size = byte_sz; 1745 /* set INT info, we don't allow setting legacy bit offset/size */ 1746 *(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8); 1747 1748 return btf_commit_type(btf, sz); 1749 } 1750 1751 /* it's completely legal to append BTF types with type IDs pointing forward to 1752 * types that haven't been appended yet, so we only make sure that id looks 1753 * sane, we can't guarantee that ID will always be valid 1754 */ 1755 static int validate_type_id(int id) 1756 { 1757 if (id < 0 || id > BTF_MAX_NR_TYPES) 1758 return -EINVAL; 1759 return 0; 1760 } 1761 1762 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */ 1763 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id) 1764 { 1765 struct btf_type *t; 1766 int sz, name_off = 0; 1767 1768 if (validate_type_id(ref_type_id)) 1769 return -EINVAL; 1770 1771 if (btf_ensure_modifiable(btf)) 1772 return -ENOMEM; 1773 1774 sz = sizeof(struct btf_type); 1775 t = btf_add_type_mem(btf, sz); 1776 if (!t) 1777 return -ENOMEM; 1778 1779 if (name && name[0]) { 1780 name_off = btf__add_str(btf, name); 1781 if (name_off < 0) 1782 return name_off; 1783 } 1784 1785 t->name_off = name_off; 1786 t->info = btf_type_info(kind, 0, 0); 1787 t->type = ref_type_id; 1788 1789 return btf_commit_type(btf, sz); 1790 } 1791 1792 /* 1793 * Append new BTF_KIND_PTR type with: 1794 * - *ref_type_id* - referenced type ID, it might not exist yet; 1795 * Returns: 1796 * - >0, type ID of newly added BTF type; 1797 * - <0, on error. 1798 */ 1799 int btf__add_ptr(struct btf *btf, int ref_type_id) 1800 { 1801 return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id); 1802 } 1803 1804 /* 1805 * Append new BTF_KIND_ARRAY type with: 1806 * - *index_type_id* - type ID of the type describing array index; 1807 * - *elem_type_id* - type ID of the type describing array element; 1808 * - *nr_elems* - the size of the array; 1809 * Returns: 1810 * - >0, type ID of newly added BTF type; 1811 * - <0, on error. 1812 */ 1813 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems) 1814 { 1815 struct btf_type *t; 1816 struct btf_array *a; 1817 int sz; 1818 1819 if (validate_type_id(index_type_id) || validate_type_id(elem_type_id)) 1820 return -EINVAL; 1821 1822 if (btf_ensure_modifiable(btf)) 1823 return -ENOMEM; 1824 1825 sz = sizeof(struct btf_type) + sizeof(struct btf_array); 1826 t = btf_add_type_mem(btf, sz); 1827 if (!t) 1828 return -ENOMEM; 1829 1830 t->name_off = 0; 1831 t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0); 1832 t->size = 0; 1833 1834 a = btf_array(t); 1835 a->type = elem_type_id; 1836 a->index_type = index_type_id; 1837 a->nelems = nr_elems; 1838 1839 return btf_commit_type(btf, sz); 1840 } 1841 1842 /* generic STRUCT/UNION append function */ 1843 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz) 1844 { 1845 struct btf_type *t; 1846 int sz, name_off = 0; 1847 1848 if (btf_ensure_modifiable(btf)) 1849 return -ENOMEM; 1850 1851 sz = sizeof(struct btf_type); 1852 t = btf_add_type_mem(btf, sz); 1853 if (!t) 1854 return -ENOMEM; 1855 1856 if (name && name[0]) { 1857 name_off = btf__add_str(btf, name); 1858 if (name_off < 0) 1859 return name_off; 1860 } 1861 1862 /* start out with vlen=0 and no kflag; this will be adjusted when 1863 * adding each member 1864 */ 1865 t->name_off = name_off; 1866 t->info = btf_type_info(kind, 0, 0); 1867 t->size = bytes_sz; 1868 1869 return btf_commit_type(btf, sz); 1870 } 1871 1872 /* 1873 * Append new BTF_KIND_STRUCT type with: 1874 * - *name* - name of the struct, can be NULL or empty for anonymous structs; 1875 * - *byte_sz* - size of the struct, in bytes; 1876 * 1877 * Struct initially has no fields in it. Fields can be added by 1878 * btf__add_field() right after btf__add_struct() succeeds. 1879 * 1880 * Returns: 1881 * - >0, type ID of newly added BTF type; 1882 * - <0, on error. 1883 */ 1884 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz) 1885 { 1886 return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz); 1887 } 1888 1889 /* 1890 * Append new BTF_KIND_UNION type with: 1891 * - *name* - name of the union, can be NULL or empty for anonymous union; 1892 * - *byte_sz* - size of the union, in bytes; 1893 * 1894 * Union initially has no fields in it. Fields can be added by 1895 * btf__add_field() right after btf__add_union() succeeds. All fields 1896 * should have *bit_offset* of 0. 1897 * 1898 * Returns: 1899 * - >0, type ID of newly added BTF type; 1900 * - <0, on error. 1901 */ 1902 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz) 1903 { 1904 return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz); 1905 } 1906 1907 static struct btf_type *btf_last_type(struct btf *btf) 1908 { 1909 return btf_type_by_id(btf, btf__get_nr_types(btf)); 1910 } 1911 1912 /* 1913 * Append new field for the current STRUCT/UNION type with: 1914 * - *name* - name of the field, can be NULL or empty for anonymous field; 1915 * - *type_id* - type ID for the type describing field type; 1916 * - *bit_offset* - bit offset of the start of the field within struct/union; 1917 * - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields; 1918 * Returns: 1919 * - 0, on success; 1920 * - <0, on error. 1921 */ 1922 int btf__add_field(struct btf *btf, const char *name, int type_id, 1923 __u32 bit_offset, __u32 bit_size) 1924 { 1925 struct btf_type *t; 1926 struct btf_member *m; 1927 bool is_bitfield; 1928 int sz, name_off = 0; 1929 1930 /* last type should be union/struct */ 1931 if (btf->nr_types == 0) 1932 return -EINVAL; 1933 t = btf_last_type(btf); 1934 if (!btf_is_composite(t)) 1935 return -EINVAL; 1936 1937 if (validate_type_id(type_id)) 1938 return -EINVAL; 1939 /* best-effort bit field offset/size enforcement */ 1940 is_bitfield = bit_size || (bit_offset % 8 != 0); 1941 if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff)) 1942 return -EINVAL; 1943 1944 /* only offset 0 is allowed for unions */ 1945 if (btf_is_union(t) && bit_offset) 1946 return -EINVAL; 1947 1948 /* decompose and invalidate raw data */ 1949 if (btf_ensure_modifiable(btf)) 1950 return -ENOMEM; 1951 1952 sz = sizeof(struct btf_member); 1953 m = btf_add_type_mem(btf, sz); 1954 if (!m) 1955 return -ENOMEM; 1956 1957 if (name && name[0]) { 1958 name_off = btf__add_str(btf, name); 1959 if (name_off < 0) 1960 return name_off; 1961 } 1962 1963 m->name_off = name_off; 1964 m->type = type_id; 1965 m->offset = bit_offset | (bit_size << 24); 1966 1967 /* btf_add_type_mem can invalidate t pointer */ 1968 t = btf_last_type(btf); 1969 /* update parent type's vlen and kflag */ 1970 t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t)); 1971 1972 btf->hdr->type_len += sz; 1973 btf->hdr->str_off += sz; 1974 return 0; 1975 } 1976 1977 /* 1978 * Append new BTF_KIND_ENUM type with: 1979 * - *name* - name of the enum, can be NULL or empty for anonymous enums; 1980 * - *byte_sz* - size of the enum, in bytes. 1981 * 1982 * Enum initially has no enum values in it (and corresponds to enum forward 1983 * declaration). Enumerator values can be added by btf__add_enum_value() 1984 * immediately after btf__add_enum() succeeds. 1985 * 1986 * Returns: 1987 * - >0, type ID of newly added BTF type; 1988 * - <0, on error. 1989 */ 1990 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz) 1991 { 1992 struct btf_type *t; 1993 int sz, name_off = 0; 1994 1995 /* byte_sz must be power of 2 */ 1996 if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8) 1997 return -EINVAL; 1998 1999 if (btf_ensure_modifiable(btf)) 2000 return -ENOMEM; 2001 2002 sz = sizeof(struct btf_type); 2003 t = btf_add_type_mem(btf, sz); 2004 if (!t) 2005 return -ENOMEM; 2006 2007 if (name && name[0]) { 2008 name_off = btf__add_str(btf, name); 2009 if (name_off < 0) 2010 return name_off; 2011 } 2012 2013 /* start out with vlen=0; it will be adjusted when adding enum values */ 2014 t->name_off = name_off; 2015 t->info = btf_type_info(BTF_KIND_ENUM, 0, 0); 2016 t->size = byte_sz; 2017 2018 return btf_commit_type(btf, sz); 2019 } 2020 2021 /* 2022 * Append new enum value for the current ENUM type with: 2023 * - *name* - name of the enumerator value, can't be NULL or empty; 2024 * - *value* - integer value corresponding to enum value *name*; 2025 * Returns: 2026 * - 0, on success; 2027 * - <0, on error. 2028 */ 2029 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value) 2030 { 2031 struct btf_type *t; 2032 struct btf_enum *v; 2033 int sz, name_off; 2034 2035 /* last type should be BTF_KIND_ENUM */ 2036 if (btf->nr_types == 0) 2037 return -EINVAL; 2038 t = btf_last_type(btf); 2039 if (!btf_is_enum(t)) 2040 return -EINVAL; 2041 2042 /* non-empty name */ 2043 if (!name || !name[0]) 2044 return -EINVAL; 2045 if (value < INT_MIN || value > UINT_MAX) 2046 return -E2BIG; 2047 2048 /* decompose and invalidate raw data */ 2049 if (btf_ensure_modifiable(btf)) 2050 return -ENOMEM; 2051 2052 sz = sizeof(struct btf_enum); 2053 v = btf_add_type_mem(btf, sz); 2054 if (!v) 2055 return -ENOMEM; 2056 2057 name_off = btf__add_str(btf, name); 2058 if (name_off < 0) 2059 return name_off; 2060 2061 v->name_off = name_off; 2062 v->val = value; 2063 2064 /* update parent type's vlen */ 2065 t = btf_last_type(btf); 2066 btf_type_inc_vlen(t); 2067 2068 btf->hdr->type_len += sz; 2069 btf->hdr->str_off += sz; 2070 return 0; 2071 } 2072 2073 /* 2074 * Append new BTF_KIND_FWD type with: 2075 * - *name*, non-empty/non-NULL name; 2076 * - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT, 2077 * BTF_FWD_UNION, or BTF_FWD_ENUM; 2078 * Returns: 2079 * - >0, type ID of newly added BTF type; 2080 * - <0, on error. 2081 */ 2082 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind) 2083 { 2084 if (!name || !name[0]) 2085 return -EINVAL; 2086 2087 switch (fwd_kind) { 2088 case BTF_FWD_STRUCT: 2089 case BTF_FWD_UNION: { 2090 struct btf_type *t; 2091 int id; 2092 2093 id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0); 2094 if (id <= 0) 2095 return id; 2096 t = btf_type_by_id(btf, id); 2097 t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION); 2098 return id; 2099 } 2100 case BTF_FWD_ENUM: 2101 /* enum forward in BTF currently is just an enum with no enum 2102 * values; we also assume a standard 4-byte size for it 2103 */ 2104 return btf__add_enum(btf, name, sizeof(int)); 2105 default: 2106 return -EINVAL; 2107 } 2108 } 2109 2110 /* 2111 * Append new BTF_KING_TYPEDEF type with: 2112 * - *name*, non-empty/non-NULL name; 2113 * - *ref_type_id* - referenced type ID, it might not exist yet; 2114 * Returns: 2115 * - >0, type ID of newly added BTF type; 2116 * - <0, on error. 2117 */ 2118 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id) 2119 { 2120 if (!name || !name[0]) 2121 return -EINVAL; 2122 2123 return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id); 2124 } 2125 2126 /* 2127 * Append new BTF_KIND_VOLATILE type with: 2128 * - *ref_type_id* - referenced type ID, it might not exist yet; 2129 * Returns: 2130 * - >0, type ID of newly added BTF type; 2131 * - <0, on error. 2132 */ 2133 int btf__add_volatile(struct btf *btf, int ref_type_id) 2134 { 2135 return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id); 2136 } 2137 2138 /* 2139 * Append new BTF_KIND_CONST type with: 2140 * - *ref_type_id* - referenced type ID, it might not exist yet; 2141 * Returns: 2142 * - >0, type ID of newly added BTF type; 2143 * - <0, on error. 2144 */ 2145 int btf__add_const(struct btf *btf, int ref_type_id) 2146 { 2147 return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id); 2148 } 2149 2150 /* 2151 * Append new BTF_KIND_RESTRICT type with: 2152 * - *ref_type_id* - referenced type ID, it might not exist yet; 2153 * Returns: 2154 * - >0, type ID of newly added BTF type; 2155 * - <0, on error. 2156 */ 2157 int btf__add_restrict(struct btf *btf, int ref_type_id) 2158 { 2159 return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id); 2160 } 2161 2162 /* 2163 * Append new BTF_KIND_FUNC type with: 2164 * - *name*, non-empty/non-NULL name; 2165 * - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet; 2166 * Returns: 2167 * - >0, type ID of newly added BTF type; 2168 * - <0, on error. 2169 */ 2170 int btf__add_func(struct btf *btf, const char *name, 2171 enum btf_func_linkage linkage, int proto_type_id) 2172 { 2173 int id; 2174 2175 if (!name || !name[0]) 2176 return -EINVAL; 2177 if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL && 2178 linkage != BTF_FUNC_EXTERN) 2179 return -EINVAL; 2180 2181 id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id); 2182 if (id > 0) { 2183 struct btf_type *t = btf_type_by_id(btf, id); 2184 2185 t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0); 2186 } 2187 return id; 2188 } 2189 2190 /* 2191 * Append new BTF_KIND_FUNC_PROTO with: 2192 * - *ret_type_id* - type ID for return result of a function. 2193 * 2194 * Function prototype initially has no arguments, but they can be added by 2195 * btf__add_func_param() one by one, immediately after 2196 * btf__add_func_proto() succeeded. 2197 * 2198 * Returns: 2199 * - >0, type ID of newly added BTF type; 2200 * - <0, on error. 2201 */ 2202 int btf__add_func_proto(struct btf *btf, int ret_type_id) 2203 { 2204 struct btf_type *t; 2205 int sz; 2206 2207 if (validate_type_id(ret_type_id)) 2208 return -EINVAL; 2209 2210 if (btf_ensure_modifiable(btf)) 2211 return -ENOMEM; 2212 2213 sz = sizeof(struct btf_type); 2214 t = btf_add_type_mem(btf, sz); 2215 if (!t) 2216 return -ENOMEM; 2217 2218 /* start out with vlen=0; this will be adjusted when adding enum 2219 * values, if necessary 2220 */ 2221 t->name_off = 0; 2222 t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0); 2223 t->type = ret_type_id; 2224 2225 return btf_commit_type(btf, sz); 2226 } 2227 2228 /* 2229 * Append new function parameter for current FUNC_PROTO type with: 2230 * - *name* - parameter name, can be NULL or empty; 2231 * - *type_id* - type ID describing the type of the parameter. 2232 * Returns: 2233 * - 0, on success; 2234 * - <0, on error. 2235 */ 2236 int btf__add_func_param(struct btf *btf, const char *name, int type_id) 2237 { 2238 struct btf_type *t; 2239 struct btf_param *p; 2240 int sz, name_off = 0; 2241 2242 if (validate_type_id(type_id)) 2243 return -EINVAL; 2244 2245 /* last type should be BTF_KIND_FUNC_PROTO */ 2246 if (btf->nr_types == 0) 2247 return -EINVAL; 2248 t = btf_last_type(btf); 2249 if (!btf_is_func_proto(t)) 2250 return -EINVAL; 2251 2252 /* decompose and invalidate raw data */ 2253 if (btf_ensure_modifiable(btf)) 2254 return -ENOMEM; 2255 2256 sz = sizeof(struct btf_param); 2257 p = btf_add_type_mem(btf, sz); 2258 if (!p) 2259 return -ENOMEM; 2260 2261 if (name && name[0]) { 2262 name_off = btf__add_str(btf, name); 2263 if (name_off < 0) 2264 return name_off; 2265 } 2266 2267 p->name_off = name_off; 2268 p->type = type_id; 2269 2270 /* update parent type's vlen */ 2271 t = btf_last_type(btf); 2272 btf_type_inc_vlen(t); 2273 2274 btf->hdr->type_len += sz; 2275 btf->hdr->str_off += sz; 2276 return 0; 2277 } 2278 2279 /* 2280 * Append new BTF_KIND_VAR type with: 2281 * - *name* - non-empty/non-NULL name; 2282 * - *linkage* - variable linkage, one of BTF_VAR_STATIC, 2283 * BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN; 2284 * - *type_id* - type ID of the type describing the type of the variable. 2285 * Returns: 2286 * - >0, type ID of newly added BTF type; 2287 * - <0, on error. 2288 */ 2289 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id) 2290 { 2291 struct btf_type *t; 2292 struct btf_var *v; 2293 int sz, name_off; 2294 2295 /* non-empty name */ 2296 if (!name || !name[0]) 2297 return -EINVAL; 2298 if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED && 2299 linkage != BTF_VAR_GLOBAL_EXTERN) 2300 return -EINVAL; 2301 if (validate_type_id(type_id)) 2302 return -EINVAL; 2303 2304 /* deconstruct BTF, if necessary, and invalidate raw_data */ 2305 if (btf_ensure_modifiable(btf)) 2306 return -ENOMEM; 2307 2308 sz = sizeof(struct btf_type) + sizeof(struct btf_var); 2309 t = btf_add_type_mem(btf, sz); 2310 if (!t) 2311 return -ENOMEM; 2312 2313 name_off = btf__add_str(btf, name); 2314 if (name_off < 0) 2315 return name_off; 2316 2317 t->name_off = name_off; 2318 t->info = btf_type_info(BTF_KIND_VAR, 0, 0); 2319 t->type = type_id; 2320 2321 v = btf_var(t); 2322 v->linkage = linkage; 2323 2324 return btf_commit_type(btf, sz); 2325 } 2326 2327 /* 2328 * Append new BTF_KIND_DATASEC type with: 2329 * - *name* - non-empty/non-NULL name; 2330 * - *byte_sz* - data section size, in bytes. 2331 * 2332 * Data section is initially empty. Variables info can be added with 2333 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds. 2334 * 2335 * Returns: 2336 * - >0, type ID of newly added BTF type; 2337 * - <0, on error. 2338 */ 2339 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz) 2340 { 2341 struct btf_type *t; 2342 int sz, name_off; 2343 2344 /* non-empty name */ 2345 if (!name || !name[0]) 2346 return -EINVAL; 2347 2348 if (btf_ensure_modifiable(btf)) 2349 return -ENOMEM; 2350 2351 sz = sizeof(struct btf_type); 2352 t = btf_add_type_mem(btf, sz); 2353 if (!t) 2354 return -ENOMEM; 2355 2356 name_off = btf__add_str(btf, name); 2357 if (name_off < 0) 2358 return name_off; 2359 2360 /* start with vlen=0, which will be update as var_secinfos are added */ 2361 t->name_off = name_off; 2362 t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0); 2363 t->size = byte_sz; 2364 2365 return btf_commit_type(btf, sz); 2366 } 2367 2368 /* 2369 * Append new data section variable information entry for current DATASEC type: 2370 * - *var_type_id* - type ID, describing type of the variable; 2371 * - *offset* - variable offset within data section, in bytes; 2372 * - *byte_sz* - variable size, in bytes. 2373 * 2374 * Returns: 2375 * - 0, on success; 2376 * - <0, on error. 2377 */ 2378 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz) 2379 { 2380 struct btf_type *t; 2381 struct btf_var_secinfo *v; 2382 int sz; 2383 2384 /* last type should be BTF_KIND_DATASEC */ 2385 if (btf->nr_types == 0) 2386 return -EINVAL; 2387 t = btf_last_type(btf); 2388 if (!btf_is_datasec(t)) 2389 return -EINVAL; 2390 2391 if (validate_type_id(var_type_id)) 2392 return -EINVAL; 2393 2394 /* decompose and invalidate raw data */ 2395 if (btf_ensure_modifiable(btf)) 2396 return -ENOMEM; 2397 2398 sz = sizeof(struct btf_var_secinfo); 2399 v = btf_add_type_mem(btf, sz); 2400 if (!v) 2401 return -ENOMEM; 2402 2403 v->type = var_type_id; 2404 v->offset = offset; 2405 v->size = byte_sz; 2406 2407 /* update parent type's vlen */ 2408 t = btf_last_type(btf); 2409 btf_type_inc_vlen(t); 2410 2411 btf->hdr->type_len += sz; 2412 btf->hdr->str_off += sz; 2413 return 0; 2414 } 2415 2416 struct btf_ext_sec_setup_param { 2417 __u32 off; 2418 __u32 len; 2419 __u32 min_rec_size; 2420 struct btf_ext_info *ext_info; 2421 const char *desc; 2422 }; 2423 2424 static int btf_ext_setup_info(struct btf_ext *btf_ext, 2425 struct btf_ext_sec_setup_param *ext_sec) 2426 { 2427 const struct btf_ext_info_sec *sinfo; 2428 struct btf_ext_info *ext_info; 2429 __u32 info_left, record_size; 2430 /* The start of the info sec (including the __u32 record_size). */ 2431 void *info; 2432 2433 if (ext_sec->len == 0) 2434 return 0; 2435 2436 if (ext_sec->off & 0x03) { 2437 pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n", 2438 ext_sec->desc); 2439 return -EINVAL; 2440 } 2441 2442 info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off; 2443 info_left = ext_sec->len; 2444 2445 if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) { 2446 pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n", 2447 ext_sec->desc, ext_sec->off, ext_sec->len); 2448 return -EINVAL; 2449 } 2450 2451 /* At least a record size */ 2452 if (info_left < sizeof(__u32)) { 2453 pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc); 2454 return -EINVAL; 2455 } 2456 2457 /* The record size needs to meet the minimum standard */ 2458 record_size = *(__u32 *)info; 2459 if (record_size < ext_sec->min_rec_size || 2460 record_size & 0x03) { 2461 pr_debug("%s section in .BTF.ext has invalid record size %u\n", 2462 ext_sec->desc, record_size); 2463 return -EINVAL; 2464 } 2465 2466 sinfo = info + sizeof(__u32); 2467 info_left -= sizeof(__u32); 2468 2469 /* If no records, return failure now so .BTF.ext won't be used. */ 2470 if (!info_left) { 2471 pr_debug("%s section in .BTF.ext has no records", ext_sec->desc); 2472 return -EINVAL; 2473 } 2474 2475 while (info_left) { 2476 unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec); 2477 __u64 total_record_size; 2478 __u32 num_records; 2479 2480 if (info_left < sec_hdrlen) { 2481 pr_debug("%s section header is not found in .BTF.ext\n", 2482 ext_sec->desc); 2483 return -EINVAL; 2484 } 2485 2486 num_records = sinfo->num_info; 2487 if (num_records == 0) { 2488 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2489 ext_sec->desc); 2490 return -EINVAL; 2491 } 2492 2493 total_record_size = sec_hdrlen + 2494 (__u64)num_records * record_size; 2495 if (info_left < total_record_size) { 2496 pr_debug("%s section has incorrect num_records in .BTF.ext\n", 2497 ext_sec->desc); 2498 return -EINVAL; 2499 } 2500 2501 info_left -= total_record_size; 2502 sinfo = (void *)sinfo + total_record_size; 2503 } 2504 2505 ext_info = ext_sec->ext_info; 2506 ext_info->len = ext_sec->len - sizeof(__u32); 2507 ext_info->rec_size = record_size; 2508 ext_info->info = info + sizeof(__u32); 2509 2510 return 0; 2511 } 2512 2513 static int btf_ext_setup_func_info(struct btf_ext *btf_ext) 2514 { 2515 struct btf_ext_sec_setup_param param = { 2516 .off = btf_ext->hdr->func_info_off, 2517 .len = btf_ext->hdr->func_info_len, 2518 .min_rec_size = sizeof(struct bpf_func_info_min), 2519 .ext_info = &btf_ext->func_info, 2520 .desc = "func_info" 2521 }; 2522 2523 return btf_ext_setup_info(btf_ext, ¶m); 2524 } 2525 2526 static int btf_ext_setup_line_info(struct btf_ext *btf_ext) 2527 { 2528 struct btf_ext_sec_setup_param param = { 2529 .off = btf_ext->hdr->line_info_off, 2530 .len = btf_ext->hdr->line_info_len, 2531 .min_rec_size = sizeof(struct bpf_line_info_min), 2532 .ext_info = &btf_ext->line_info, 2533 .desc = "line_info", 2534 }; 2535 2536 return btf_ext_setup_info(btf_ext, ¶m); 2537 } 2538 2539 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext) 2540 { 2541 struct btf_ext_sec_setup_param param = { 2542 .off = btf_ext->hdr->core_relo_off, 2543 .len = btf_ext->hdr->core_relo_len, 2544 .min_rec_size = sizeof(struct bpf_core_relo), 2545 .ext_info = &btf_ext->core_relo_info, 2546 .desc = "core_relo", 2547 }; 2548 2549 return btf_ext_setup_info(btf_ext, ¶m); 2550 } 2551 2552 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size) 2553 { 2554 const struct btf_ext_header *hdr = (struct btf_ext_header *)data; 2555 2556 if (data_size < offsetofend(struct btf_ext_header, hdr_len) || 2557 data_size < hdr->hdr_len) { 2558 pr_debug("BTF.ext header not found"); 2559 return -EINVAL; 2560 } 2561 2562 if (hdr->magic == bswap_16(BTF_MAGIC)) { 2563 pr_warn("BTF.ext in non-native endianness is not supported\n"); 2564 return -ENOTSUP; 2565 } else if (hdr->magic != BTF_MAGIC) { 2566 pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic); 2567 return -EINVAL; 2568 } 2569 2570 if (hdr->version != BTF_VERSION) { 2571 pr_debug("Unsupported BTF.ext version:%u\n", hdr->version); 2572 return -ENOTSUP; 2573 } 2574 2575 if (hdr->flags) { 2576 pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags); 2577 return -ENOTSUP; 2578 } 2579 2580 if (data_size == hdr->hdr_len) { 2581 pr_debug("BTF.ext has no data\n"); 2582 return -EINVAL; 2583 } 2584 2585 return 0; 2586 } 2587 2588 void btf_ext__free(struct btf_ext *btf_ext) 2589 { 2590 if (IS_ERR_OR_NULL(btf_ext)) 2591 return; 2592 free(btf_ext->data); 2593 free(btf_ext); 2594 } 2595 2596 struct btf_ext *btf_ext__new(__u8 *data, __u32 size) 2597 { 2598 struct btf_ext *btf_ext; 2599 int err; 2600 2601 err = btf_ext_parse_hdr(data, size); 2602 if (err) 2603 return ERR_PTR(err); 2604 2605 btf_ext = calloc(1, sizeof(struct btf_ext)); 2606 if (!btf_ext) 2607 return ERR_PTR(-ENOMEM); 2608 2609 btf_ext->data_size = size; 2610 btf_ext->data = malloc(size); 2611 if (!btf_ext->data) { 2612 err = -ENOMEM; 2613 goto done; 2614 } 2615 memcpy(btf_ext->data, data, size); 2616 2617 if (btf_ext->hdr->hdr_len < 2618 offsetofend(struct btf_ext_header, line_info_len)) 2619 goto done; 2620 err = btf_ext_setup_func_info(btf_ext); 2621 if (err) 2622 goto done; 2623 2624 err = btf_ext_setup_line_info(btf_ext); 2625 if (err) 2626 goto done; 2627 2628 if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) 2629 goto done; 2630 err = btf_ext_setup_core_relos(btf_ext); 2631 if (err) 2632 goto done; 2633 2634 done: 2635 if (err) { 2636 btf_ext__free(btf_ext); 2637 return ERR_PTR(err); 2638 } 2639 2640 return btf_ext; 2641 } 2642 2643 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size) 2644 { 2645 *size = btf_ext->data_size; 2646 return btf_ext->data; 2647 } 2648 2649 static int btf_ext_reloc_info(const struct btf *btf, 2650 const struct btf_ext_info *ext_info, 2651 const char *sec_name, __u32 insns_cnt, 2652 void **info, __u32 *cnt) 2653 { 2654 __u32 sec_hdrlen = sizeof(struct btf_ext_info_sec); 2655 __u32 i, record_size, existing_len, records_len; 2656 struct btf_ext_info_sec *sinfo; 2657 const char *info_sec_name; 2658 __u64 remain_len; 2659 void *data; 2660 2661 record_size = ext_info->rec_size; 2662 sinfo = ext_info->info; 2663 remain_len = ext_info->len; 2664 while (remain_len > 0) { 2665 records_len = sinfo->num_info * record_size; 2666 info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off); 2667 if (strcmp(info_sec_name, sec_name)) { 2668 remain_len -= sec_hdrlen + records_len; 2669 sinfo = (void *)sinfo + sec_hdrlen + records_len; 2670 continue; 2671 } 2672 2673 existing_len = (*cnt) * record_size; 2674 data = realloc(*info, existing_len + records_len); 2675 if (!data) 2676 return -ENOMEM; 2677 2678 memcpy(data + existing_len, sinfo->data, records_len); 2679 /* adjust insn_off only, the rest data will be passed 2680 * to the kernel. 2681 */ 2682 for (i = 0; i < sinfo->num_info; i++) { 2683 __u32 *insn_off; 2684 2685 insn_off = data + existing_len + (i * record_size); 2686 *insn_off = *insn_off / sizeof(struct bpf_insn) + 2687 insns_cnt; 2688 } 2689 *info = data; 2690 *cnt += sinfo->num_info; 2691 return 0; 2692 } 2693 2694 return -ENOENT; 2695 } 2696 2697 int btf_ext__reloc_func_info(const struct btf *btf, 2698 const struct btf_ext *btf_ext, 2699 const char *sec_name, __u32 insns_cnt, 2700 void **func_info, __u32 *cnt) 2701 { 2702 return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name, 2703 insns_cnt, func_info, cnt); 2704 } 2705 2706 int btf_ext__reloc_line_info(const struct btf *btf, 2707 const struct btf_ext *btf_ext, 2708 const char *sec_name, __u32 insns_cnt, 2709 void **line_info, __u32 *cnt) 2710 { 2711 return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name, 2712 insns_cnt, line_info, cnt); 2713 } 2714 2715 __u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext) 2716 { 2717 return btf_ext->func_info.rec_size; 2718 } 2719 2720 __u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext) 2721 { 2722 return btf_ext->line_info.rec_size; 2723 } 2724 2725 struct btf_dedup; 2726 2727 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 2728 const struct btf_dedup_opts *opts); 2729 static void btf_dedup_free(struct btf_dedup *d); 2730 static int btf_dedup_prep(struct btf_dedup *d); 2731 static int btf_dedup_strings(struct btf_dedup *d); 2732 static int btf_dedup_prim_types(struct btf_dedup *d); 2733 static int btf_dedup_struct_types(struct btf_dedup *d); 2734 static int btf_dedup_ref_types(struct btf_dedup *d); 2735 static int btf_dedup_compact_types(struct btf_dedup *d); 2736 static int btf_dedup_remap_types(struct btf_dedup *d); 2737 2738 /* 2739 * Deduplicate BTF types and strings. 2740 * 2741 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF 2742 * section with all BTF type descriptors and string data. It overwrites that 2743 * memory in-place with deduplicated types and strings without any loss of 2744 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section 2745 * is provided, all the strings referenced from .BTF.ext section are honored 2746 * and updated to point to the right offsets after deduplication. 2747 * 2748 * If function returns with error, type/string data might be garbled and should 2749 * be discarded. 2750 * 2751 * More verbose and detailed description of both problem btf_dedup is solving, 2752 * as well as solution could be found at: 2753 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html 2754 * 2755 * Problem description and justification 2756 * ===================================== 2757 * 2758 * BTF type information is typically emitted either as a result of conversion 2759 * from DWARF to BTF or directly by compiler. In both cases, each compilation 2760 * unit contains information about a subset of all the types that are used 2761 * in an application. These subsets are frequently overlapping and contain a lot 2762 * of duplicated information when later concatenated together into a single 2763 * binary. This algorithm ensures that each unique type is represented by single 2764 * BTF type descriptor, greatly reducing resulting size of BTF data. 2765 * 2766 * Compilation unit isolation and subsequent duplication of data is not the only 2767 * problem. The same type hierarchy (e.g., struct and all the type that struct 2768 * references) in different compilation units can be represented in BTF to 2769 * various degrees of completeness (or, rather, incompleteness) due to 2770 * struct/union forward declarations. 2771 * 2772 * Let's take a look at an example, that we'll use to better understand the 2773 * problem (and solution). Suppose we have two compilation units, each using 2774 * same `struct S`, but each of them having incomplete type information about 2775 * struct's fields: 2776 * 2777 * // CU #1: 2778 * struct S; 2779 * struct A { 2780 * int a; 2781 * struct A* self; 2782 * struct S* parent; 2783 * }; 2784 * struct B; 2785 * struct S { 2786 * struct A* a_ptr; 2787 * struct B* b_ptr; 2788 * }; 2789 * 2790 * // CU #2: 2791 * struct S; 2792 * struct A; 2793 * struct B { 2794 * int b; 2795 * struct B* self; 2796 * struct S* parent; 2797 * }; 2798 * struct S { 2799 * struct A* a_ptr; 2800 * struct B* b_ptr; 2801 * }; 2802 * 2803 * In case of CU #1, BTF data will know only that `struct B` exist (but no 2804 * more), but will know the complete type information about `struct A`. While 2805 * for CU #2, it will know full type information about `struct B`, but will 2806 * only know about forward declaration of `struct A` (in BTF terms, it will 2807 * have `BTF_KIND_FWD` type descriptor with name `B`). 2808 * 2809 * This compilation unit isolation means that it's possible that there is no 2810 * single CU with complete type information describing structs `S`, `A`, and 2811 * `B`. Also, we might get tons of duplicated and redundant type information. 2812 * 2813 * Additional complication we need to keep in mind comes from the fact that 2814 * types, in general, can form graphs containing cycles, not just DAGs. 2815 * 2816 * While algorithm does deduplication, it also merges and resolves type 2817 * information (unless disabled throught `struct btf_opts`), whenever possible. 2818 * E.g., in the example above with two compilation units having partial type 2819 * information for structs `A` and `B`, the output of algorithm will emit 2820 * a single copy of each BTF type that describes structs `A`, `B`, and `S` 2821 * (as well as type information for `int` and pointers), as if they were defined 2822 * in a single compilation unit as: 2823 * 2824 * struct A { 2825 * int a; 2826 * struct A* self; 2827 * struct S* parent; 2828 * }; 2829 * struct B { 2830 * int b; 2831 * struct B* self; 2832 * struct S* parent; 2833 * }; 2834 * struct S { 2835 * struct A* a_ptr; 2836 * struct B* b_ptr; 2837 * }; 2838 * 2839 * Algorithm summary 2840 * ================= 2841 * 2842 * Algorithm completes its work in 6 separate passes: 2843 * 2844 * 1. Strings deduplication. 2845 * 2. Primitive types deduplication (int, enum, fwd). 2846 * 3. Struct/union types deduplication. 2847 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func 2848 * protos, and const/volatile/restrict modifiers). 2849 * 5. Types compaction. 2850 * 6. Types remapping. 2851 * 2852 * Algorithm determines canonical type descriptor, which is a single 2853 * representative type for each truly unique type. This canonical type is the 2854 * one that will go into final deduplicated BTF type information. For 2855 * struct/unions, it is also the type that algorithm will merge additional type 2856 * information into (while resolving FWDs), as it discovers it from data in 2857 * other CUs. Each input BTF type eventually gets either mapped to itself, if 2858 * that type is canonical, or to some other type, if that type is equivalent 2859 * and was chosen as canonical representative. This mapping is stored in 2860 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that 2861 * FWD type got resolved to. 2862 * 2863 * To facilitate fast discovery of canonical types, we also maintain canonical 2864 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash 2865 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types 2866 * that match that signature. With sufficiently good choice of type signature 2867 * hashing function, we can limit number of canonical types for each unique type 2868 * signature to a very small number, allowing to find canonical type for any 2869 * duplicated type very quickly. 2870 * 2871 * Struct/union deduplication is the most critical part and algorithm for 2872 * deduplicating structs/unions is described in greater details in comments for 2873 * `btf_dedup_is_equiv` function. 2874 */ 2875 int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, 2876 const struct btf_dedup_opts *opts) 2877 { 2878 struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts); 2879 int err; 2880 2881 if (IS_ERR(d)) { 2882 pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d)); 2883 return -EINVAL; 2884 } 2885 2886 if (btf_ensure_modifiable(btf)) 2887 return -ENOMEM; 2888 2889 err = btf_dedup_prep(d); 2890 if (err) { 2891 pr_debug("btf_dedup_prep failed:%d\n", err); 2892 goto done; 2893 } 2894 err = btf_dedup_strings(d); 2895 if (err < 0) { 2896 pr_debug("btf_dedup_strings failed:%d\n", err); 2897 goto done; 2898 } 2899 err = btf_dedup_prim_types(d); 2900 if (err < 0) { 2901 pr_debug("btf_dedup_prim_types failed:%d\n", err); 2902 goto done; 2903 } 2904 err = btf_dedup_struct_types(d); 2905 if (err < 0) { 2906 pr_debug("btf_dedup_struct_types failed:%d\n", err); 2907 goto done; 2908 } 2909 err = btf_dedup_ref_types(d); 2910 if (err < 0) { 2911 pr_debug("btf_dedup_ref_types failed:%d\n", err); 2912 goto done; 2913 } 2914 err = btf_dedup_compact_types(d); 2915 if (err < 0) { 2916 pr_debug("btf_dedup_compact_types failed:%d\n", err); 2917 goto done; 2918 } 2919 err = btf_dedup_remap_types(d); 2920 if (err < 0) { 2921 pr_debug("btf_dedup_remap_types failed:%d\n", err); 2922 goto done; 2923 } 2924 2925 done: 2926 btf_dedup_free(d); 2927 return err; 2928 } 2929 2930 #define BTF_UNPROCESSED_ID ((__u32)-1) 2931 #define BTF_IN_PROGRESS_ID ((__u32)-2) 2932 2933 struct btf_dedup { 2934 /* .BTF section to be deduped in-place */ 2935 struct btf *btf; 2936 /* 2937 * Optional .BTF.ext section. When provided, any strings referenced 2938 * from it will be taken into account when deduping strings 2939 */ 2940 struct btf_ext *btf_ext; 2941 /* 2942 * This is a map from any type's signature hash to a list of possible 2943 * canonical representative type candidates. Hash collisions are 2944 * ignored, so even types of various kinds can share same list of 2945 * candidates, which is fine because we rely on subsequent 2946 * btf_xxx_equal() checks to authoritatively verify type equality. 2947 */ 2948 struct hashmap *dedup_table; 2949 /* Canonical types map */ 2950 __u32 *map; 2951 /* Hypothetical mapping, used during type graph equivalence checks */ 2952 __u32 *hypot_map; 2953 __u32 *hypot_list; 2954 size_t hypot_cnt; 2955 size_t hypot_cap; 2956 /* Whether hypothetical mapping, if successful, would need to adjust 2957 * already canonicalized types (due to a new forward declaration to 2958 * concrete type resolution). In such case, during split BTF dedup 2959 * candidate type would still be considered as different, because base 2960 * BTF is considered to be immutable. 2961 */ 2962 bool hypot_adjust_canon; 2963 /* Various option modifying behavior of algorithm */ 2964 struct btf_dedup_opts opts; 2965 /* temporary strings deduplication state */ 2966 void *strs_data; 2967 size_t strs_cap; 2968 size_t strs_len; 2969 struct hashmap* strs_hash; 2970 }; 2971 2972 static long hash_combine(long h, long value) 2973 { 2974 return h * 31 + value; 2975 } 2976 2977 #define for_each_dedup_cand(d, node, hash) \ 2978 hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash) 2979 2980 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id) 2981 { 2982 return hashmap__append(d->dedup_table, 2983 (void *)hash, (void *)(long)type_id); 2984 } 2985 2986 static int btf_dedup_hypot_map_add(struct btf_dedup *d, 2987 __u32 from_id, __u32 to_id) 2988 { 2989 if (d->hypot_cnt == d->hypot_cap) { 2990 __u32 *new_list; 2991 2992 d->hypot_cap += max((size_t)16, d->hypot_cap / 2); 2993 new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32)); 2994 if (!new_list) 2995 return -ENOMEM; 2996 d->hypot_list = new_list; 2997 } 2998 d->hypot_list[d->hypot_cnt++] = from_id; 2999 d->hypot_map[from_id] = to_id; 3000 return 0; 3001 } 3002 3003 static void btf_dedup_clear_hypot_map(struct btf_dedup *d) 3004 { 3005 int i; 3006 3007 for (i = 0; i < d->hypot_cnt; i++) 3008 d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID; 3009 d->hypot_cnt = 0; 3010 d->hypot_adjust_canon = false; 3011 } 3012 3013 static void btf_dedup_free(struct btf_dedup *d) 3014 { 3015 hashmap__free(d->dedup_table); 3016 d->dedup_table = NULL; 3017 3018 free(d->map); 3019 d->map = NULL; 3020 3021 free(d->hypot_map); 3022 d->hypot_map = NULL; 3023 3024 free(d->hypot_list); 3025 d->hypot_list = NULL; 3026 3027 free(d); 3028 } 3029 3030 static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx) 3031 { 3032 return (size_t)key; 3033 } 3034 3035 static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx) 3036 { 3037 return 0; 3038 } 3039 3040 static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx) 3041 { 3042 return k1 == k2; 3043 } 3044 3045 static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, 3046 const struct btf_dedup_opts *opts) 3047 { 3048 struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); 3049 hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn; 3050 int i, err = 0, type_cnt; 3051 3052 if (!d) 3053 return ERR_PTR(-ENOMEM); 3054 3055 d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; 3056 /* dedup_table_size is now used only to force collisions in tests */ 3057 if (opts && opts->dedup_table_size == 1) 3058 hash_fn = btf_dedup_collision_hash_fn; 3059 3060 d->btf = btf; 3061 d->btf_ext = btf_ext; 3062 3063 d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL); 3064 if (IS_ERR(d->dedup_table)) { 3065 err = PTR_ERR(d->dedup_table); 3066 d->dedup_table = NULL; 3067 goto done; 3068 } 3069 3070 type_cnt = btf__get_nr_types(btf) + 1; 3071 d->map = malloc(sizeof(__u32) * type_cnt); 3072 if (!d->map) { 3073 err = -ENOMEM; 3074 goto done; 3075 } 3076 /* special BTF "void" type is made canonical immediately */ 3077 d->map[0] = 0; 3078 for (i = 1; i < type_cnt; i++) { 3079 struct btf_type *t = btf_type_by_id(d->btf, i); 3080 3081 /* VAR and DATASEC are never deduped and are self-canonical */ 3082 if (btf_is_var(t) || btf_is_datasec(t)) 3083 d->map[i] = i; 3084 else 3085 d->map[i] = BTF_UNPROCESSED_ID; 3086 } 3087 3088 d->hypot_map = malloc(sizeof(__u32) * type_cnt); 3089 if (!d->hypot_map) { 3090 err = -ENOMEM; 3091 goto done; 3092 } 3093 for (i = 0; i < type_cnt; i++) 3094 d->hypot_map[i] = BTF_UNPROCESSED_ID; 3095 3096 done: 3097 if (err) { 3098 btf_dedup_free(d); 3099 return ERR_PTR(err); 3100 } 3101 3102 return d; 3103 } 3104 3105 typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx); 3106 3107 /* 3108 * Iterate over all possible places in .BTF and .BTF.ext that can reference 3109 * string and pass pointer to it to a provided callback `fn`. 3110 */ 3111 static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx) 3112 { 3113 void *line_data_cur, *line_data_end; 3114 int i, j, r, rec_size; 3115 struct btf_type *t; 3116 3117 for (i = 0; i < d->btf->nr_types; i++) { 3118 t = btf_type_by_id(d->btf, d->btf->start_id + i); 3119 r = fn(&t->name_off, ctx); 3120 if (r) 3121 return r; 3122 3123 switch (btf_kind(t)) { 3124 case BTF_KIND_STRUCT: 3125 case BTF_KIND_UNION: { 3126 struct btf_member *m = btf_members(t); 3127 __u16 vlen = btf_vlen(t); 3128 3129 for (j = 0; j < vlen; j++) { 3130 r = fn(&m->name_off, ctx); 3131 if (r) 3132 return r; 3133 m++; 3134 } 3135 break; 3136 } 3137 case BTF_KIND_ENUM: { 3138 struct btf_enum *m = btf_enum(t); 3139 __u16 vlen = btf_vlen(t); 3140 3141 for (j = 0; j < vlen; j++) { 3142 r = fn(&m->name_off, ctx); 3143 if (r) 3144 return r; 3145 m++; 3146 } 3147 break; 3148 } 3149 case BTF_KIND_FUNC_PROTO: { 3150 struct btf_param *m = btf_params(t); 3151 __u16 vlen = btf_vlen(t); 3152 3153 for (j = 0; j < vlen; j++) { 3154 r = fn(&m->name_off, ctx); 3155 if (r) 3156 return r; 3157 m++; 3158 } 3159 break; 3160 } 3161 default: 3162 break; 3163 } 3164 } 3165 3166 if (!d->btf_ext) 3167 return 0; 3168 3169 line_data_cur = d->btf_ext->line_info.info; 3170 line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len; 3171 rec_size = d->btf_ext->line_info.rec_size; 3172 3173 while (line_data_cur < line_data_end) { 3174 struct btf_ext_info_sec *sec = line_data_cur; 3175 struct bpf_line_info_min *line_info; 3176 __u32 num_info = sec->num_info; 3177 3178 r = fn(&sec->sec_name_off, ctx); 3179 if (r) 3180 return r; 3181 3182 line_data_cur += sizeof(struct btf_ext_info_sec); 3183 for (i = 0; i < num_info; i++) { 3184 line_info = line_data_cur; 3185 r = fn(&line_info->file_name_off, ctx); 3186 if (r) 3187 return r; 3188 r = fn(&line_info->line_off, ctx); 3189 if (r) 3190 return r; 3191 line_data_cur += rec_size; 3192 } 3193 } 3194 3195 return 0; 3196 } 3197 3198 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx) 3199 { 3200 struct btf_dedup *d = ctx; 3201 __u32 str_off = *str_off_ptr; 3202 long old_off, new_off, len; 3203 const char *s; 3204 void *p; 3205 int err; 3206 3207 /* don't touch empty string or string in main BTF */ 3208 if (str_off == 0 || str_off < d->btf->start_str_off) 3209 return 0; 3210 3211 s = btf__str_by_offset(d->btf, str_off); 3212 if (d->btf->base_btf) { 3213 err = btf__find_str(d->btf->base_btf, s); 3214 if (err >= 0) { 3215 *str_off_ptr = err; 3216 return 0; 3217 } 3218 if (err != -ENOENT) 3219 return err; 3220 } 3221 3222 len = strlen(s) + 1; 3223 3224 new_off = d->strs_len; 3225 p = btf_add_mem(&d->strs_data, &d->strs_cap, 1, new_off, BTF_MAX_STR_OFFSET, len); 3226 if (!p) 3227 return -ENOMEM; 3228 3229 memcpy(p, s, len); 3230 3231 /* Now attempt to add the string, but only if the string with the same 3232 * contents doesn't exist already (HASHMAP_ADD strategy). If such 3233 * string exists, we'll get its offset in old_off (that's old_key). 3234 */ 3235 err = hashmap__insert(d->strs_hash, (void *)new_off, (void *)new_off, 3236 HASHMAP_ADD, (const void **)&old_off, NULL); 3237 if (err == -EEXIST) { 3238 *str_off_ptr = d->btf->start_str_off + old_off; 3239 } else if (err) { 3240 return err; 3241 } else { 3242 *str_off_ptr = d->btf->start_str_off + new_off; 3243 d->strs_len += len; 3244 } 3245 return 0; 3246 } 3247 3248 /* 3249 * Dedup string and filter out those that are not referenced from either .BTF 3250 * or .BTF.ext (if provided) sections. 3251 * 3252 * This is done by building index of all strings in BTF's string section, 3253 * then iterating over all entities that can reference strings (e.g., type 3254 * names, struct field names, .BTF.ext line info, etc) and marking corresponding 3255 * strings as used. After that all used strings are deduped and compacted into 3256 * sequential blob of memory and new offsets are calculated. Then all the string 3257 * references are iterated again and rewritten using new offsets. 3258 */ 3259 static int btf_dedup_strings(struct btf_dedup *d) 3260 { 3261 char *s; 3262 int err; 3263 3264 if (d->btf->strs_deduped) 3265 return 0; 3266 3267 /* temporarily switch to use btf_dedup's strs_data for strings for hash 3268 * functions; later we'll just transfer hashmap to struct btf as is, 3269 * along the strs_data 3270 */ 3271 d->btf->strs_data_ptr = &d->strs_data; 3272 3273 d->strs_hash = hashmap__new(strs_hash_fn, strs_hash_equal_fn, d->btf); 3274 if (IS_ERR(d->strs_hash)) { 3275 err = PTR_ERR(d->strs_hash); 3276 d->strs_hash = NULL; 3277 goto err_out; 3278 } 3279 3280 if (!d->btf->base_btf) { 3281 s = btf_add_mem(&d->strs_data, &d->strs_cap, 1, d->strs_len, BTF_MAX_STR_OFFSET, 1); 3282 if (!s) 3283 return -ENOMEM; 3284 /* initial empty string */ 3285 s[0] = 0; 3286 d->strs_len = 1; 3287 3288 /* insert empty string; we won't be looking it up during strings 3289 * dedup, but it's good to have it for generic BTF string lookups 3290 */ 3291 err = hashmap__insert(d->strs_hash, (void *)0, (void *)0, 3292 HASHMAP_ADD, NULL, NULL); 3293 if (err) 3294 goto err_out; 3295 } 3296 3297 /* remap string offsets */ 3298 err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d); 3299 if (err) 3300 goto err_out; 3301 3302 /* replace BTF string data and hash with deduped ones */ 3303 free(d->btf->strs_data); 3304 hashmap__free(d->btf->strs_hash); 3305 d->btf->strs_data = d->strs_data; 3306 d->btf->strs_data_cap = d->strs_cap; 3307 d->btf->hdr->str_len = d->strs_len; 3308 d->btf->strs_hash = d->strs_hash; 3309 /* now point strs_data_ptr back to btf->strs_data */ 3310 d->btf->strs_data_ptr = &d->btf->strs_data; 3311 3312 d->strs_data = d->strs_hash = NULL; 3313 d->strs_len = d->strs_cap = 0; 3314 d->btf->strs_deduped = true; 3315 return 0; 3316 3317 err_out: 3318 free(d->strs_data); 3319 hashmap__free(d->strs_hash); 3320 d->strs_data = d->strs_hash = NULL; 3321 d->strs_len = d->strs_cap = 0; 3322 3323 /* restore strings pointer for existing d->btf->strs_hash back */ 3324 d->btf->strs_data_ptr = &d->strs_data; 3325 3326 return err; 3327 } 3328 3329 static long btf_hash_common(struct btf_type *t) 3330 { 3331 long h; 3332 3333 h = hash_combine(0, t->name_off); 3334 h = hash_combine(h, t->info); 3335 h = hash_combine(h, t->size); 3336 return h; 3337 } 3338 3339 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) 3340 { 3341 return t1->name_off == t2->name_off && 3342 t1->info == t2->info && 3343 t1->size == t2->size; 3344 } 3345 3346 /* Calculate type signature hash of INT. */ 3347 static long btf_hash_int(struct btf_type *t) 3348 { 3349 __u32 info = *(__u32 *)(t + 1); 3350 long h; 3351 3352 h = btf_hash_common(t); 3353 h = hash_combine(h, info); 3354 return h; 3355 } 3356 3357 /* Check structural equality of two INTs. */ 3358 static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) 3359 { 3360 __u32 info1, info2; 3361 3362 if (!btf_equal_common(t1, t2)) 3363 return false; 3364 info1 = *(__u32 *)(t1 + 1); 3365 info2 = *(__u32 *)(t2 + 1); 3366 return info1 == info2; 3367 } 3368 3369 /* Calculate type signature hash of ENUM. */ 3370 static long btf_hash_enum(struct btf_type *t) 3371 { 3372 long h; 3373 3374 /* don't hash vlen and enum members to support enum fwd resolving */ 3375 h = hash_combine(0, t->name_off); 3376 h = hash_combine(h, t->info & ~0xffff); 3377 h = hash_combine(h, t->size); 3378 return h; 3379 } 3380 3381 /* Check structural equality of two ENUMs. */ 3382 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2) 3383 { 3384 const struct btf_enum *m1, *m2; 3385 __u16 vlen; 3386 int i; 3387 3388 if (!btf_equal_common(t1, t2)) 3389 return false; 3390 3391 vlen = btf_vlen(t1); 3392 m1 = btf_enum(t1); 3393 m2 = btf_enum(t2); 3394 for (i = 0; i < vlen; i++) { 3395 if (m1->name_off != m2->name_off || m1->val != m2->val) 3396 return false; 3397 m1++; 3398 m2++; 3399 } 3400 return true; 3401 } 3402 3403 static inline bool btf_is_enum_fwd(struct btf_type *t) 3404 { 3405 return btf_is_enum(t) && btf_vlen(t) == 0; 3406 } 3407 3408 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) 3409 { 3410 if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2)) 3411 return btf_equal_enum(t1, t2); 3412 /* ignore vlen when comparing */ 3413 return t1->name_off == t2->name_off && 3414 (t1->info & ~0xffff) == (t2->info & ~0xffff) && 3415 t1->size == t2->size; 3416 } 3417 3418 /* 3419 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs, 3420 * as referenced type IDs equivalence is established separately during type 3421 * graph equivalence check algorithm. 3422 */ 3423 static long btf_hash_struct(struct btf_type *t) 3424 { 3425 const struct btf_member *member = btf_members(t); 3426 __u32 vlen = btf_vlen(t); 3427 long h = btf_hash_common(t); 3428 int i; 3429 3430 for (i = 0; i < vlen; i++) { 3431 h = hash_combine(h, member->name_off); 3432 h = hash_combine(h, member->offset); 3433 /* no hashing of referenced type ID, it can be unresolved yet */ 3434 member++; 3435 } 3436 return h; 3437 } 3438 3439 /* 3440 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3441 * IDs. This check is performed during type graph equivalence check and 3442 * referenced types equivalence is checked separately. 3443 */ 3444 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) 3445 { 3446 const struct btf_member *m1, *m2; 3447 __u16 vlen; 3448 int i; 3449 3450 if (!btf_equal_common(t1, t2)) 3451 return false; 3452 3453 vlen = btf_vlen(t1); 3454 m1 = btf_members(t1); 3455 m2 = btf_members(t2); 3456 for (i = 0; i < vlen; i++) { 3457 if (m1->name_off != m2->name_off || m1->offset != m2->offset) 3458 return false; 3459 m1++; 3460 m2++; 3461 } 3462 return true; 3463 } 3464 3465 /* 3466 * Calculate type signature hash of ARRAY, including referenced type IDs, 3467 * under assumption that they were already resolved to canonical type IDs and 3468 * are not going to change. 3469 */ 3470 static long btf_hash_array(struct btf_type *t) 3471 { 3472 const struct btf_array *info = btf_array(t); 3473 long h = btf_hash_common(t); 3474 3475 h = hash_combine(h, info->type); 3476 h = hash_combine(h, info->index_type); 3477 h = hash_combine(h, info->nelems); 3478 return h; 3479 } 3480 3481 /* 3482 * Check exact equality of two ARRAYs, taking into account referenced 3483 * type IDs, under assumption that they were already resolved to canonical 3484 * type IDs and are not going to change. 3485 * This function is called during reference types deduplication to compare 3486 * ARRAY to potential canonical representative. 3487 */ 3488 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2) 3489 { 3490 const struct btf_array *info1, *info2; 3491 3492 if (!btf_equal_common(t1, t2)) 3493 return false; 3494 3495 info1 = btf_array(t1); 3496 info2 = btf_array(t2); 3497 return info1->type == info2->type && 3498 info1->index_type == info2->index_type && 3499 info1->nelems == info2->nelems; 3500 } 3501 3502 /* 3503 * Check structural compatibility of two ARRAYs, ignoring referenced type 3504 * IDs. This check is performed during type graph equivalence check and 3505 * referenced types equivalence is checked separately. 3506 */ 3507 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) 3508 { 3509 if (!btf_equal_common(t1, t2)) 3510 return false; 3511 3512 return btf_array(t1)->nelems == btf_array(t2)->nelems; 3513 } 3514 3515 /* 3516 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs, 3517 * under assumption that they were already resolved to canonical type IDs and 3518 * are not going to change. 3519 */ 3520 static long btf_hash_fnproto(struct btf_type *t) 3521 { 3522 const struct btf_param *member = btf_params(t); 3523 __u16 vlen = btf_vlen(t); 3524 long h = btf_hash_common(t); 3525 int i; 3526 3527 for (i = 0; i < vlen; i++) { 3528 h = hash_combine(h, member->name_off); 3529 h = hash_combine(h, member->type); 3530 member++; 3531 } 3532 return h; 3533 } 3534 3535 /* 3536 * Check exact equality of two FUNC_PROTOs, taking into account referenced 3537 * type IDs, under assumption that they were already resolved to canonical 3538 * type IDs and are not going to change. 3539 * This function is called during reference types deduplication to compare 3540 * FUNC_PROTO to potential canonical representative. 3541 */ 3542 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) 3543 { 3544 const struct btf_param *m1, *m2; 3545 __u16 vlen; 3546 int i; 3547 3548 if (!btf_equal_common(t1, t2)) 3549 return false; 3550 3551 vlen = btf_vlen(t1); 3552 m1 = btf_params(t1); 3553 m2 = btf_params(t2); 3554 for (i = 0; i < vlen; i++) { 3555 if (m1->name_off != m2->name_off || m1->type != m2->type) 3556 return false; 3557 m1++; 3558 m2++; 3559 } 3560 return true; 3561 } 3562 3563 /* 3564 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type 3565 * IDs. This check is performed during type graph equivalence check and 3566 * referenced types equivalence is checked separately. 3567 */ 3568 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) 3569 { 3570 const struct btf_param *m1, *m2; 3571 __u16 vlen; 3572 int i; 3573 3574 /* skip return type ID */ 3575 if (t1->name_off != t2->name_off || t1->info != t2->info) 3576 return false; 3577 3578 vlen = btf_vlen(t1); 3579 m1 = btf_params(t1); 3580 m2 = btf_params(t2); 3581 for (i = 0; i < vlen; i++) { 3582 if (m1->name_off != m2->name_off) 3583 return false; 3584 m1++; 3585 m2++; 3586 } 3587 return true; 3588 } 3589 3590 /* Prepare split BTF for deduplication by calculating hashes of base BTF's 3591 * types and initializing the rest of the state (canonical type mapping) for 3592 * the fixed base BTF part. 3593 */ 3594 static int btf_dedup_prep(struct btf_dedup *d) 3595 { 3596 struct btf_type *t; 3597 int type_id; 3598 long h; 3599 3600 if (!d->btf->base_btf) 3601 return 0; 3602 3603 for (type_id = 1; type_id < d->btf->start_id; type_id++) { 3604 t = btf_type_by_id(d->btf, type_id); 3605 3606 /* all base BTF types are self-canonical by definition */ 3607 d->map[type_id] = type_id; 3608 3609 switch (btf_kind(t)) { 3610 case BTF_KIND_VAR: 3611 case BTF_KIND_DATASEC: 3612 /* VAR and DATASEC are never hash/deduplicated */ 3613 continue; 3614 case BTF_KIND_CONST: 3615 case BTF_KIND_VOLATILE: 3616 case BTF_KIND_RESTRICT: 3617 case BTF_KIND_PTR: 3618 case BTF_KIND_FWD: 3619 case BTF_KIND_TYPEDEF: 3620 case BTF_KIND_FUNC: 3621 h = btf_hash_common(t); 3622 break; 3623 case BTF_KIND_INT: 3624 h = btf_hash_int(t); 3625 break; 3626 case BTF_KIND_ENUM: 3627 h = btf_hash_enum(t); 3628 break; 3629 case BTF_KIND_STRUCT: 3630 case BTF_KIND_UNION: 3631 h = btf_hash_struct(t); 3632 break; 3633 case BTF_KIND_ARRAY: 3634 h = btf_hash_array(t); 3635 break; 3636 case BTF_KIND_FUNC_PROTO: 3637 h = btf_hash_fnproto(t); 3638 break; 3639 default: 3640 pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id); 3641 return -EINVAL; 3642 } 3643 if (btf_dedup_table_add(d, h, type_id)) 3644 return -ENOMEM; 3645 } 3646 3647 return 0; 3648 } 3649 3650 /* 3651 * Deduplicate primitive types, that can't reference other types, by calculating 3652 * their type signature hash and comparing them with any possible canonical 3653 * candidate. If no canonical candidate matches, type itself is marked as 3654 * canonical and is added into `btf_dedup->dedup_table` as another candidate. 3655 */ 3656 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) 3657 { 3658 struct btf_type *t = btf_type_by_id(d->btf, type_id); 3659 struct hashmap_entry *hash_entry; 3660 struct btf_type *cand; 3661 /* if we don't find equivalent type, then we are canonical */ 3662 __u32 new_id = type_id; 3663 __u32 cand_id; 3664 long h; 3665 3666 switch (btf_kind(t)) { 3667 case BTF_KIND_CONST: 3668 case BTF_KIND_VOLATILE: 3669 case BTF_KIND_RESTRICT: 3670 case BTF_KIND_PTR: 3671 case BTF_KIND_TYPEDEF: 3672 case BTF_KIND_ARRAY: 3673 case BTF_KIND_STRUCT: 3674 case BTF_KIND_UNION: 3675 case BTF_KIND_FUNC: 3676 case BTF_KIND_FUNC_PROTO: 3677 case BTF_KIND_VAR: 3678 case BTF_KIND_DATASEC: 3679 return 0; 3680 3681 case BTF_KIND_INT: 3682 h = btf_hash_int(t); 3683 for_each_dedup_cand(d, hash_entry, h) { 3684 cand_id = (__u32)(long)hash_entry->value; 3685 cand = btf_type_by_id(d->btf, cand_id); 3686 if (btf_equal_int(t, cand)) { 3687 new_id = cand_id; 3688 break; 3689 } 3690 } 3691 break; 3692 3693 case BTF_KIND_ENUM: 3694 h = btf_hash_enum(t); 3695 for_each_dedup_cand(d, hash_entry, h) { 3696 cand_id = (__u32)(long)hash_entry->value; 3697 cand = btf_type_by_id(d->btf, cand_id); 3698 if (btf_equal_enum(t, cand)) { 3699 new_id = cand_id; 3700 break; 3701 } 3702 if (d->opts.dont_resolve_fwds) 3703 continue; 3704 if (btf_compat_enum(t, cand)) { 3705 if (btf_is_enum_fwd(t)) { 3706 /* resolve fwd to full enum */ 3707 new_id = cand_id; 3708 break; 3709 } 3710 /* resolve canonical enum fwd to full enum */ 3711 d->map[cand_id] = type_id; 3712 } 3713 } 3714 break; 3715 3716 case BTF_KIND_FWD: 3717 h = btf_hash_common(t); 3718 for_each_dedup_cand(d, hash_entry, h) { 3719 cand_id = (__u32)(long)hash_entry->value; 3720 cand = btf_type_by_id(d->btf, cand_id); 3721 if (btf_equal_common(t, cand)) { 3722 new_id = cand_id; 3723 break; 3724 } 3725 } 3726 break; 3727 3728 default: 3729 return -EINVAL; 3730 } 3731 3732 d->map[type_id] = new_id; 3733 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 3734 return -ENOMEM; 3735 3736 return 0; 3737 } 3738 3739 static int btf_dedup_prim_types(struct btf_dedup *d) 3740 { 3741 int i, err; 3742 3743 for (i = 0; i < d->btf->nr_types; i++) { 3744 err = btf_dedup_prim_type(d, d->btf->start_id + i); 3745 if (err) 3746 return err; 3747 } 3748 return 0; 3749 } 3750 3751 /* 3752 * Check whether type is already mapped into canonical one (could be to itself). 3753 */ 3754 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id) 3755 { 3756 return d->map[type_id] <= BTF_MAX_NR_TYPES; 3757 } 3758 3759 /* 3760 * Resolve type ID into its canonical type ID, if any; otherwise return original 3761 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow 3762 * STRUCT/UNION link and resolve it into canonical type ID as well. 3763 */ 3764 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id) 3765 { 3766 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3767 type_id = d->map[type_id]; 3768 return type_id; 3769 } 3770 3771 /* 3772 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original 3773 * type ID. 3774 */ 3775 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id) 3776 { 3777 __u32 orig_type_id = type_id; 3778 3779 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3780 return type_id; 3781 3782 while (is_type_mapped(d, type_id) && d->map[type_id] != type_id) 3783 type_id = d->map[type_id]; 3784 3785 if (!btf_is_fwd(btf__type_by_id(d->btf, type_id))) 3786 return type_id; 3787 3788 return orig_type_id; 3789 } 3790 3791 3792 static inline __u16 btf_fwd_kind(struct btf_type *t) 3793 { 3794 return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT; 3795 } 3796 3797 /* Check if given two types are identical ARRAY definitions */ 3798 static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2) 3799 { 3800 struct btf_type *t1, *t2; 3801 3802 t1 = btf_type_by_id(d->btf, id1); 3803 t2 = btf_type_by_id(d->btf, id2); 3804 if (!btf_is_array(t1) || !btf_is_array(t2)) 3805 return 0; 3806 3807 return btf_equal_array(t1, t2); 3808 } 3809 3810 /* 3811 * Check equivalence of BTF type graph formed by candidate struct/union (we'll 3812 * call it "candidate graph" in this description for brevity) to a type graph 3813 * formed by (potential) canonical struct/union ("canonical graph" for brevity 3814 * here, though keep in mind that not all types in canonical graph are 3815 * necessarily canonical representatives themselves, some of them might be 3816 * duplicates or its uniqueness might not have been established yet). 3817 * Returns: 3818 * - >0, if type graphs are equivalent; 3819 * - 0, if not equivalent; 3820 * - <0, on error. 3821 * 3822 * Algorithm performs side-by-side DFS traversal of both type graphs and checks 3823 * equivalence of BTF types at each step. If at any point BTF types in candidate 3824 * and canonical graphs are not compatible structurally, whole graphs are 3825 * incompatible. If types are structurally equivalent (i.e., all information 3826 * except referenced type IDs is exactly the same), a mapping from `canon_id` to 3827 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`). 3828 * If a type references other types, then those referenced types are checked 3829 * for equivalence recursively. 3830 * 3831 * During DFS traversal, if we find that for current `canon_id` type we 3832 * already have some mapping in hypothetical map, we check for two possible 3833 * situations: 3834 * - `canon_id` is mapped to exactly the same type as `cand_id`. This will 3835 * happen when type graphs have cycles. In this case we assume those two 3836 * types are equivalent. 3837 * - `canon_id` is mapped to different type. This is contradiction in our 3838 * hypothetical mapping, because same graph in canonical graph corresponds 3839 * to two different types in candidate graph, which for equivalent type 3840 * graphs shouldn't happen. This condition terminates equivalence check 3841 * with negative result. 3842 * 3843 * If type graphs traversal exhausts types to check and find no contradiction, 3844 * then type graphs are equivalent. 3845 * 3846 * When checking types for equivalence, there is one special case: FWD types. 3847 * If FWD type resolution is allowed and one of the types (either from canonical 3848 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind 3849 * flag) and their names match, hypothetical mapping is updated to point from 3850 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully, 3851 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently. 3852 * 3853 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution, 3854 * if there are two exactly named (or anonymous) structs/unions that are 3855 * compatible structurally, one of which has FWD field, while other is concrete 3856 * STRUCT/UNION, but according to C sources they are different structs/unions 3857 * that are referencing different types with the same name. This is extremely 3858 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if 3859 * this logic is causing problems. 3860 * 3861 * Doing FWD resolution means that both candidate and/or canonical graphs can 3862 * consists of portions of the graph that come from multiple compilation units. 3863 * This is due to the fact that types within single compilation unit are always 3864 * deduplicated and FWDs are already resolved, if referenced struct/union 3865 * definiton is available. So, if we had unresolved FWD and found corresponding 3866 * STRUCT/UNION, they will be from different compilation units. This 3867 * consequently means that when we "link" FWD to corresponding STRUCT/UNION, 3868 * type graph will likely have at least two different BTF types that describe 3869 * same type (e.g., most probably there will be two different BTF types for the 3870 * same 'int' primitive type) and could even have "overlapping" parts of type 3871 * graph that describe same subset of types. 3872 * 3873 * This in turn means that our assumption that each type in canonical graph 3874 * must correspond to exactly one type in candidate graph might not hold 3875 * anymore and will make it harder to detect contradictions using hypothetical 3876 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION 3877 * resolution only in canonical graph. FWDs in candidate graphs are never 3878 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs 3879 * that can occur: 3880 * - Both types in canonical and candidate graphs are FWDs. If they are 3881 * structurally equivalent, then they can either be both resolved to the 3882 * same STRUCT/UNION or not resolved at all. In both cases they are 3883 * equivalent and there is no need to resolve FWD on candidate side. 3884 * - Both types in canonical and candidate graphs are concrete STRUCT/UNION, 3885 * so nothing to resolve as well, algorithm will check equivalence anyway. 3886 * - Type in canonical graph is FWD, while type in candidate is concrete 3887 * STRUCT/UNION. In this case candidate graph comes from single compilation 3888 * unit, so there is exactly one BTF type for each unique C type. After 3889 * resolving FWD into STRUCT/UNION, there might be more than one BTF type 3890 * in canonical graph mapping to single BTF type in candidate graph, but 3891 * because hypothetical mapping maps from canonical to candidate types, it's 3892 * alright, and we still maintain the property of having single `canon_id` 3893 * mapping to single `cand_id` (there could be two different `canon_id` 3894 * mapped to the same `cand_id`, but it's not contradictory). 3895 * - Type in canonical graph is concrete STRUCT/UNION, while type in candidate 3896 * graph is FWD. In this case we are just going to check compatibility of 3897 * STRUCT/UNION and corresponding FWD, and if they are compatible, we'll 3898 * assume that whatever STRUCT/UNION FWD resolves to must be equivalent to 3899 * a concrete STRUCT/UNION from canonical graph. If the rest of type graphs 3900 * turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from 3901 * canonical graph. 3902 */ 3903 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id, 3904 __u32 canon_id) 3905 { 3906 struct btf_type *cand_type; 3907 struct btf_type *canon_type; 3908 __u32 hypot_type_id; 3909 __u16 cand_kind; 3910 __u16 canon_kind; 3911 int i, eq; 3912 3913 /* if both resolve to the same canonical, they must be equivalent */ 3914 if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id)) 3915 return 1; 3916 3917 canon_id = resolve_fwd_id(d, canon_id); 3918 3919 hypot_type_id = d->hypot_map[canon_id]; 3920 if (hypot_type_id <= BTF_MAX_NR_TYPES) { 3921 /* In some cases compiler will generate different DWARF types 3922 * for *identical* array type definitions and use them for 3923 * different fields within the *same* struct. This breaks type 3924 * equivalence check, which makes an assumption that candidate 3925 * types sub-graph has a consistent and deduped-by-compiler 3926 * types within a single CU. So work around that by explicitly 3927 * allowing identical array types here. 3928 */ 3929 return hypot_type_id == cand_id || 3930 btf_dedup_identical_arrays(d, hypot_type_id, cand_id); 3931 } 3932 3933 if (btf_dedup_hypot_map_add(d, canon_id, cand_id)) 3934 return -ENOMEM; 3935 3936 cand_type = btf_type_by_id(d->btf, cand_id); 3937 canon_type = btf_type_by_id(d->btf, canon_id); 3938 cand_kind = btf_kind(cand_type); 3939 canon_kind = btf_kind(canon_type); 3940 3941 if (cand_type->name_off != canon_type->name_off) 3942 return 0; 3943 3944 /* FWD <--> STRUCT/UNION equivalence check, if enabled */ 3945 if (!d->opts.dont_resolve_fwds 3946 && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD) 3947 && cand_kind != canon_kind) { 3948 __u16 real_kind; 3949 __u16 fwd_kind; 3950 3951 if (cand_kind == BTF_KIND_FWD) { 3952 real_kind = canon_kind; 3953 fwd_kind = btf_fwd_kind(cand_type); 3954 } else { 3955 real_kind = cand_kind; 3956 fwd_kind = btf_fwd_kind(canon_type); 3957 /* we'd need to resolve base FWD to STRUCT/UNION */ 3958 if (fwd_kind == real_kind && canon_id < d->btf->start_id) 3959 d->hypot_adjust_canon = true; 3960 } 3961 return fwd_kind == real_kind; 3962 } 3963 3964 if (cand_kind != canon_kind) 3965 return 0; 3966 3967 switch (cand_kind) { 3968 case BTF_KIND_INT: 3969 return btf_equal_int(cand_type, canon_type); 3970 3971 case BTF_KIND_ENUM: 3972 if (d->opts.dont_resolve_fwds) 3973 return btf_equal_enum(cand_type, canon_type); 3974 else 3975 return btf_compat_enum(cand_type, canon_type); 3976 3977 case BTF_KIND_FWD: 3978 return btf_equal_common(cand_type, canon_type); 3979 3980 case BTF_KIND_CONST: 3981 case BTF_KIND_VOLATILE: 3982 case BTF_KIND_RESTRICT: 3983 case BTF_KIND_PTR: 3984 case BTF_KIND_TYPEDEF: 3985 case BTF_KIND_FUNC: 3986 if (cand_type->info != canon_type->info) 3987 return 0; 3988 return btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 3989 3990 case BTF_KIND_ARRAY: { 3991 const struct btf_array *cand_arr, *canon_arr; 3992 3993 if (!btf_compat_array(cand_type, canon_type)) 3994 return 0; 3995 cand_arr = btf_array(cand_type); 3996 canon_arr = btf_array(canon_type); 3997 eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type); 3998 if (eq <= 0) 3999 return eq; 4000 return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type); 4001 } 4002 4003 case BTF_KIND_STRUCT: 4004 case BTF_KIND_UNION: { 4005 const struct btf_member *cand_m, *canon_m; 4006 __u16 vlen; 4007 4008 if (!btf_shallow_equal_struct(cand_type, canon_type)) 4009 return 0; 4010 vlen = btf_vlen(cand_type); 4011 cand_m = btf_members(cand_type); 4012 canon_m = btf_members(canon_type); 4013 for (i = 0; i < vlen; i++) { 4014 eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type); 4015 if (eq <= 0) 4016 return eq; 4017 cand_m++; 4018 canon_m++; 4019 } 4020 4021 return 1; 4022 } 4023 4024 case BTF_KIND_FUNC_PROTO: { 4025 const struct btf_param *cand_p, *canon_p; 4026 __u16 vlen; 4027 4028 if (!btf_compat_fnproto(cand_type, canon_type)) 4029 return 0; 4030 eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type); 4031 if (eq <= 0) 4032 return eq; 4033 vlen = btf_vlen(cand_type); 4034 cand_p = btf_params(cand_type); 4035 canon_p = btf_params(canon_type); 4036 for (i = 0; i < vlen; i++) { 4037 eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type); 4038 if (eq <= 0) 4039 return eq; 4040 cand_p++; 4041 canon_p++; 4042 } 4043 return 1; 4044 } 4045 4046 default: 4047 return -EINVAL; 4048 } 4049 return 0; 4050 } 4051 4052 /* 4053 * Use hypothetical mapping, produced by successful type graph equivalence 4054 * check, to augment existing struct/union canonical mapping, where possible. 4055 * 4056 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record 4057 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional: 4058 * it doesn't matter if FWD type was part of canonical graph or candidate one, 4059 * we are recording the mapping anyway. As opposed to carefulness required 4060 * for struct/union correspondence mapping (described below), for FWD resolution 4061 * it's not important, as by the time that FWD type (reference type) will be 4062 * deduplicated all structs/unions will be deduped already anyway. 4063 * 4064 * Recording STRUCT/UNION mapping is purely a performance optimization and is 4065 * not required for correctness. It needs to be done carefully to ensure that 4066 * struct/union from candidate's type graph is not mapped into corresponding 4067 * struct/union from canonical type graph that itself hasn't been resolved into 4068 * canonical representative. The only guarantee we have is that canonical 4069 * struct/union was determined as canonical and that won't change. But any 4070 * types referenced through that struct/union fields could have been not yet 4071 * resolved, so in case like that it's too early to establish any kind of 4072 * correspondence between structs/unions. 4073 * 4074 * No canonical correspondence is derived for primitive types (they are already 4075 * deduplicated completely already anyway) or reference types (they rely on 4076 * stability of struct/union canonical relationship for equivalence checks). 4077 */ 4078 static void btf_dedup_merge_hypot_map(struct btf_dedup *d) 4079 { 4080 __u32 canon_type_id, targ_type_id; 4081 __u16 t_kind, c_kind; 4082 __u32 t_id, c_id; 4083 int i; 4084 4085 for (i = 0; i < d->hypot_cnt; i++) { 4086 canon_type_id = d->hypot_list[i]; 4087 targ_type_id = d->hypot_map[canon_type_id]; 4088 t_id = resolve_type_id(d, targ_type_id); 4089 c_id = resolve_type_id(d, canon_type_id); 4090 t_kind = btf_kind(btf__type_by_id(d->btf, t_id)); 4091 c_kind = btf_kind(btf__type_by_id(d->btf, c_id)); 4092 /* 4093 * Resolve FWD into STRUCT/UNION. 4094 * It's ok to resolve FWD into STRUCT/UNION that's not yet 4095 * mapped to canonical representative (as opposed to 4096 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because 4097 * eventually that struct is going to be mapped and all resolved 4098 * FWDs will automatically resolve to correct canonical 4099 * representative. This will happen before ref type deduping, 4100 * which critically depends on stability of these mapping. This 4101 * stability is not a requirement for STRUCT/UNION equivalence 4102 * checks, though. 4103 */ 4104 4105 /* if it's the split BTF case, we still need to point base FWD 4106 * to STRUCT/UNION in a split BTF, because FWDs from split BTF 4107 * will be resolved against base FWD. If we don't point base 4108 * canonical FWD to the resolved STRUCT/UNION, then all the 4109 * FWDs in split BTF won't be correctly resolved to a proper 4110 * STRUCT/UNION. 4111 */ 4112 if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD) 4113 d->map[c_id] = t_id; 4114 4115 /* if graph equivalence determined that we'd need to adjust 4116 * base canonical types, then we need to only point base FWDs 4117 * to STRUCTs/UNIONs and do no more modifications. For all 4118 * other purposes the type graphs were not equivalent. 4119 */ 4120 if (d->hypot_adjust_canon) 4121 continue; 4122 4123 if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD) 4124 d->map[t_id] = c_id; 4125 4126 if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) && 4127 c_kind != BTF_KIND_FWD && 4128 is_type_mapped(d, c_id) && 4129 !is_type_mapped(d, t_id)) { 4130 /* 4131 * as a perf optimization, we can map struct/union 4132 * that's part of type graph we just verified for 4133 * equivalence. We can do that for struct/union that has 4134 * canonical representative only, though. 4135 */ 4136 d->map[t_id] = c_id; 4137 } 4138 } 4139 } 4140 4141 /* 4142 * Deduplicate struct/union types. 4143 * 4144 * For each struct/union type its type signature hash is calculated, taking 4145 * into account type's name, size, number, order and names of fields, but 4146 * ignoring type ID's referenced from fields, because they might not be deduped 4147 * completely until after reference types deduplication phase. This type hash 4148 * is used to iterate over all potential canonical types, sharing same hash. 4149 * For each canonical candidate we check whether type graphs that they form 4150 * (through referenced types in fields and so on) are equivalent using algorithm 4151 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and 4152 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping 4153 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence 4154 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to 4155 * potentially map other structs/unions to their canonical representatives, 4156 * if such relationship hasn't yet been established. This speeds up algorithm 4157 * by eliminating some of the duplicate work. 4158 * 4159 * If no matching canonical representative was found, struct/union is marked 4160 * as canonical for itself and is added into btf_dedup->dedup_table hash map 4161 * for further look ups. 4162 */ 4163 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) 4164 { 4165 struct btf_type *cand_type, *t; 4166 struct hashmap_entry *hash_entry; 4167 /* if we don't find equivalent type, then we are canonical */ 4168 __u32 new_id = type_id; 4169 __u16 kind; 4170 long h; 4171 4172 /* already deduped or is in process of deduping (loop detected) */ 4173 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4174 return 0; 4175 4176 t = btf_type_by_id(d->btf, type_id); 4177 kind = btf_kind(t); 4178 4179 if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION) 4180 return 0; 4181 4182 h = btf_hash_struct(t); 4183 for_each_dedup_cand(d, hash_entry, h) { 4184 __u32 cand_id = (__u32)(long)hash_entry->value; 4185 int eq; 4186 4187 /* 4188 * Even though btf_dedup_is_equiv() checks for 4189 * btf_shallow_equal_struct() internally when checking two 4190 * structs (unions) for equivalence, we need to guard here 4191 * from picking matching FWD type as a dedup candidate. 4192 * This can happen due to hash collision. In such case just 4193 * relying on btf_dedup_is_equiv() would lead to potentially 4194 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because 4195 * FWD and compatible STRUCT/UNION are considered equivalent. 4196 */ 4197 cand_type = btf_type_by_id(d->btf, cand_id); 4198 if (!btf_shallow_equal_struct(t, cand_type)) 4199 continue; 4200 4201 btf_dedup_clear_hypot_map(d); 4202 eq = btf_dedup_is_equiv(d, type_id, cand_id); 4203 if (eq < 0) 4204 return eq; 4205 if (!eq) 4206 continue; 4207 btf_dedup_merge_hypot_map(d); 4208 if (d->hypot_adjust_canon) /* not really equivalent */ 4209 continue; 4210 new_id = cand_id; 4211 break; 4212 } 4213 4214 d->map[type_id] = new_id; 4215 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4216 return -ENOMEM; 4217 4218 return 0; 4219 } 4220 4221 static int btf_dedup_struct_types(struct btf_dedup *d) 4222 { 4223 int i, err; 4224 4225 for (i = 0; i < d->btf->nr_types; i++) { 4226 err = btf_dedup_struct_type(d, d->btf->start_id + i); 4227 if (err) 4228 return err; 4229 } 4230 return 0; 4231 } 4232 4233 /* 4234 * Deduplicate reference type. 4235 * 4236 * Once all primitive and struct/union types got deduplicated, we can easily 4237 * deduplicate all other (reference) BTF types. This is done in two steps: 4238 * 4239 * 1. Resolve all referenced type IDs into their canonical type IDs. This 4240 * resolution can be done either immediately for primitive or struct/union types 4241 * (because they were deduped in previous two phases) or recursively for 4242 * reference types. Recursion will always terminate at either primitive or 4243 * struct/union type, at which point we can "unwind" chain of reference types 4244 * one by one. There is no danger of encountering cycles because in C type 4245 * system the only way to form type cycle is through struct/union, so any chain 4246 * of reference types, even those taking part in a type cycle, will inevitably 4247 * reach struct/union at some point. 4248 * 4249 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type 4250 * becomes "stable", in the sense that no further deduplication will cause 4251 * any changes to it. With that, it's now possible to calculate type's signature 4252 * hash (this time taking into account referenced type IDs) and loop over all 4253 * potential canonical representatives. If no match was found, current type 4254 * will become canonical representative of itself and will be added into 4255 * btf_dedup->dedup_table as another possible canonical representative. 4256 */ 4257 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) 4258 { 4259 struct hashmap_entry *hash_entry; 4260 __u32 new_id = type_id, cand_id; 4261 struct btf_type *t, *cand; 4262 /* if we don't find equivalent type, then we are representative type */ 4263 int ref_type_id; 4264 long h; 4265 4266 if (d->map[type_id] == BTF_IN_PROGRESS_ID) 4267 return -ELOOP; 4268 if (d->map[type_id] <= BTF_MAX_NR_TYPES) 4269 return resolve_type_id(d, type_id); 4270 4271 t = btf_type_by_id(d->btf, type_id); 4272 d->map[type_id] = BTF_IN_PROGRESS_ID; 4273 4274 switch (btf_kind(t)) { 4275 case BTF_KIND_CONST: 4276 case BTF_KIND_VOLATILE: 4277 case BTF_KIND_RESTRICT: 4278 case BTF_KIND_PTR: 4279 case BTF_KIND_TYPEDEF: 4280 case BTF_KIND_FUNC: 4281 ref_type_id = btf_dedup_ref_type(d, t->type); 4282 if (ref_type_id < 0) 4283 return ref_type_id; 4284 t->type = ref_type_id; 4285 4286 h = btf_hash_common(t); 4287 for_each_dedup_cand(d, hash_entry, h) { 4288 cand_id = (__u32)(long)hash_entry->value; 4289 cand = btf_type_by_id(d->btf, cand_id); 4290 if (btf_equal_common(t, cand)) { 4291 new_id = cand_id; 4292 break; 4293 } 4294 } 4295 break; 4296 4297 case BTF_KIND_ARRAY: { 4298 struct btf_array *info = btf_array(t); 4299 4300 ref_type_id = btf_dedup_ref_type(d, info->type); 4301 if (ref_type_id < 0) 4302 return ref_type_id; 4303 info->type = ref_type_id; 4304 4305 ref_type_id = btf_dedup_ref_type(d, info->index_type); 4306 if (ref_type_id < 0) 4307 return ref_type_id; 4308 info->index_type = ref_type_id; 4309 4310 h = btf_hash_array(t); 4311 for_each_dedup_cand(d, hash_entry, h) { 4312 cand_id = (__u32)(long)hash_entry->value; 4313 cand = btf_type_by_id(d->btf, cand_id); 4314 if (btf_equal_array(t, cand)) { 4315 new_id = cand_id; 4316 break; 4317 } 4318 } 4319 break; 4320 } 4321 4322 case BTF_KIND_FUNC_PROTO: { 4323 struct btf_param *param; 4324 __u16 vlen; 4325 int i; 4326 4327 ref_type_id = btf_dedup_ref_type(d, t->type); 4328 if (ref_type_id < 0) 4329 return ref_type_id; 4330 t->type = ref_type_id; 4331 4332 vlen = btf_vlen(t); 4333 param = btf_params(t); 4334 for (i = 0; i < vlen; i++) { 4335 ref_type_id = btf_dedup_ref_type(d, param->type); 4336 if (ref_type_id < 0) 4337 return ref_type_id; 4338 param->type = ref_type_id; 4339 param++; 4340 } 4341 4342 h = btf_hash_fnproto(t); 4343 for_each_dedup_cand(d, hash_entry, h) { 4344 cand_id = (__u32)(long)hash_entry->value; 4345 cand = btf_type_by_id(d->btf, cand_id); 4346 if (btf_equal_fnproto(t, cand)) { 4347 new_id = cand_id; 4348 break; 4349 } 4350 } 4351 break; 4352 } 4353 4354 default: 4355 return -EINVAL; 4356 } 4357 4358 d->map[type_id] = new_id; 4359 if (type_id == new_id && btf_dedup_table_add(d, h, type_id)) 4360 return -ENOMEM; 4361 4362 return new_id; 4363 } 4364 4365 static int btf_dedup_ref_types(struct btf_dedup *d) 4366 { 4367 int i, err; 4368 4369 for (i = 0; i < d->btf->nr_types; i++) { 4370 err = btf_dedup_ref_type(d, d->btf->start_id + i); 4371 if (err < 0) 4372 return err; 4373 } 4374 /* we won't need d->dedup_table anymore */ 4375 hashmap__free(d->dedup_table); 4376 d->dedup_table = NULL; 4377 return 0; 4378 } 4379 4380 /* 4381 * Compact types. 4382 * 4383 * After we established for each type its corresponding canonical representative 4384 * type, we now can eliminate types that are not canonical and leave only 4385 * canonical ones layed out sequentially in memory by copying them over 4386 * duplicates. During compaction btf_dedup->hypot_map array is reused to store 4387 * a map from original type ID to a new compacted type ID, which will be used 4388 * during next phase to "fix up" type IDs, referenced from struct/union and 4389 * reference types. 4390 */ 4391 static int btf_dedup_compact_types(struct btf_dedup *d) 4392 { 4393 __u32 *new_offs; 4394 __u32 next_type_id = d->btf->start_id; 4395 const struct btf_type *t; 4396 void *p; 4397 int i, id, len; 4398 4399 /* we are going to reuse hypot_map to store compaction remapping */ 4400 d->hypot_map[0] = 0; 4401 /* base BTF types are not renumbered */ 4402 for (id = 1; id < d->btf->start_id; id++) 4403 d->hypot_map[id] = id; 4404 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) 4405 d->hypot_map[id] = BTF_UNPROCESSED_ID; 4406 4407 p = d->btf->types_data; 4408 4409 for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) { 4410 if (d->map[id] != id) 4411 continue; 4412 4413 t = btf__type_by_id(d->btf, id); 4414 len = btf_type_size(t); 4415 if (len < 0) 4416 return len; 4417 4418 memmove(p, t, len); 4419 d->hypot_map[id] = next_type_id; 4420 d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data; 4421 p += len; 4422 next_type_id++; 4423 } 4424 4425 /* shrink struct btf's internal types index and update btf_header */ 4426 d->btf->nr_types = next_type_id - d->btf->start_id; 4427 d->btf->type_offs_cap = d->btf->nr_types; 4428 d->btf->hdr->type_len = p - d->btf->types_data; 4429 new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap, 4430 sizeof(*new_offs)); 4431 if (d->btf->type_offs_cap && !new_offs) 4432 return -ENOMEM; 4433 d->btf->type_offs = new_offs; 4434 d->btf->hdr->str_off = d->btf->hdr->type_len; 4435 d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len; 4436 return 0; 4437 } 4438 4439 /* 4440 * Figure out final (deduplicated and compacted) type ID for provided original 4441 * `type_id` by first resolving it into corresponding canonical type ID and 4442 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map, 4443 * which is populated during compaction phase. 4444 */ 4445 static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id) 4446 { 4447 __u32 resolved_type_id, new_type_id; 4448 4449 resolved_type_id = resolve_type_id(d, type_id); 4450 new_type_id = d->hypot_map[resolved_type_id]; 4451 if (new_type_id > BTF_MAX_NR_TYPES) 4452 return -EINVAL; 4453 return new_type_id; 4454 } 4455 4456 /* 4457 * Remap referenced type IDs into deduped type IDs. 4458 * 4459 * After BTF types are deduplicated and compacted, their final type IDs may 4460 * differ from original ones. The map from original to a corresponding 4461 * deduped type ID is stored in btf_dedup->hypot_map and is populated during 4462 * compaction phase. During remapping phase we are rewriting all type IDs 4463 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to 4464 * their final deduped type IDs. 4465 */ 4466 static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id) 4467 { 4468 struct btf_type *t = btf_type_by_id(d->btf, type_id); 4469 int i, r; 4470 4471 switch (btf_kind(t)) { 4472 case BTF_KIND_INT: 4473 case BTF_KIND_ENUM: 4474 break; 4475 4476 case BTF_KIND_FWD: 4477 case BTF_KIND_CONST: 4478 case BTF_KIND_VOLATILE: 4479 case BTF_KIND_RESTRICT: 4480 case BTF_KIND_PTR: 4481 case BTF_KIND_TYPEDEF: 4482 case BTF_KIND_FUNC: 4483 case BTF_KIND_VAR: 4484 r = btf_dedup_remap_type_id(d, t->type); 4485 if (r < 0) 4486 return r; 4487 t->type = r; 4488 break; 4489 4490 case BTF_KIND_ARRAY: { 4491 struct btf_array *arr_info = btf_array(t); 4492 4493 r = btf_dedup_remap_type_id(d, arr_info->type); 4494 if (r < 0) 4495 return r; 4496 arr_info->type = r; 4497 r = btf_dedup_remap_type_id(d, arr_info->index_type); 4498 if (r < 0) 4499 return r; 4500 arr_info->index_type = r; 4501 break; 4502 } 4503 4504 case BTF_KIND_STRUCT: 4505 case BTF_KIND_UNION: { 4506 struct btf_member *member = btf_members(t); 4507 __u16 vlen = btf_vlen(t); 4508 4509 for (i = 0; i < vlen; i++) { 4510 r = btf_dedup_remap_type_id(d, member->type); 4511 if (r < 0) 4512 return r; 4513 member->type = r; 4514 member++; 4515 } 4516 break; 4517 } 4518 4519 case BTF_KIND_FUNC_PROTO: { 4520 struct btf_param *param = btf_params(t); 4521 __u16 vlen = btf_vlen(t); 4522 4523 r = btf_dedup_remap_type_id(d, t->type); 4524 if (r < 0) 4525 return r; 4526 t->type = r; 4527 4528 for (i = 0; i < vlen; i++) { 4529 r = btf_dedup_remap_type_id(d, param->type); 4530 if (r < 0) 4531 return r; 4532 param->type = r; 4533 param++; 4534 } 4535 break; 4536 } 4537 4538 case BTF_KIND_DATASEC: { 4539 struct btf_var_secinfo *var = btf_var_secinfos(t); 4540 __u16 vlen = btf_vlen(t); 4541 4542 for (i = 0; i < vlen; i++) { 4543 r = btf_dedup_remap_type_id(d, var->type); 4544 if (r < 0) 4545 return r; 4546 var->type = r; 4547 var++; 4548 } 4549 break; 4550 } 4551 4552 default: 4553 return -EINVAL; 4554 } 4555 4556 return 0; 4557 } 4558 4559 static int btf_dedup_remap_types(struct btf_dedup *d) 4560 { 4561 int i, r; 4562 4563 for (i = 0; i < d->btf->nr_types; i++) { 4564 r = btf_dedup_remap_type(d, d->btf->start_id + i); 4565 if (r < 0) 4566 return r; 4567 } 4568 return 0; 4569 } 4570 4571 /* 4572 * Probe few well-known locations for vmlinux kernel image and try to load BTF 4573 * data out of it to use for target BTF. 4574 */ 4575 struct btf *libbpf_find_kernel_btf(void) 4576 { 4577 struct { 4578 const char *path_fmt; 4579 bool raw_btf; 4580 } locations[] = { 4581 /* try canonical vmlinux BTF through sysfs first */ 4582 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 4583 /* fall back to trying to find vmlinux ELF on disk otherwise */ 4584 { "/boot/vmlinux-%1$s" }, 4585 { "/lib/modules/%1$s/vmlinux-%1$s" }, 4586 { "/lib/modules/%1$s/build/vmlinux" }, 4587 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 4588 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 4589 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 4590 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 4591 }; 4592 char path[PATH_MAX + 1]; 4593 struct utsname buf; 4594 struct btf *btf; 4595 int i; 4596 4597 uname(&buf); 4598 4599 for (i = 0; i < ARRAY_SIZE(locations); i++) { 4600 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 4601 4602 if (access(path, R_OK)) 4603 continue; 4604 4605 if (locations[i].raw_btf) 4606 btf = btf__parse_raw(path); 4607 else 4608 btf = btf__parse_elf(path, NULL); 4609 4610 pr_debug("loading kernel BTF '%s': %ld\n", 4611 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 4612 if (IS_ERR(btf)) 4613 continue; 4614 4615 return btf; 4616 } 4617 4618 pr_warn("failed to find valid kernel BTF\n"); 4619 return ERR_PTR(-ESRCH); 4620 } 4621