xref: /openbmc/linux/tools/lib/bpf/btf.c (revision 71de0a05)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <byteswap.h>
5 #include <endian.h>
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <fcntl.h>
10 #include <unistd.h>
11 #include <errno.h>
12 #include <sys/utsname.h>
13 #include <sys/param.h>
14 #include <sys/stat.h>
15 #include <linux/kernel.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <gelf.h>
19 #include "btf.h"
20 #include "bpf.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 #include "hashmap.h"
24 #include "strset.h"
25 
26 #define BTF_MAX_NR_TYPES 0x7fffffffU
27 #define BTF_MAX_STR_OFFSET 0x7fffffffU
28 
29 static struct btf_type btf_void;
30 
31 struct btf {
32 	/* raw BTF data in native endianness */
33 	void *raw_data;
34 	/* raw BTF data in non-native endianness */
35 	void *raw_data_swapped;
36 	__u32 raw_size;
37 	/* whether target endianness differs from the native one */
38 	bool swapped_endian;
39 
40 	/*
41 	 * When BTF is loaded from an ELF or raw memory it is stored
42 	 * in a contiguous memory block. The hdr, type_data, and, strs_data
43 	 * point inside that memory region to their respective parts of BTF
44 	 * representation:
45 	 *
46 	 * +--------------------------------+
47 	 * |  Header  |  Types  |  Strings  |
48 	 * +--------------------------------+
49 	 * ^          ^         ^
50 	 * |          |         |
51 	 * hdr        |         |
52 	 * types_data-+         |
53 	 * strs_data------------+
54 	 *
55 	 * If BTF data is later modified, e.g., due to types added or
56 	 * removed, BTF deduplication performed, etc, this contiguous
57 	 * representation is broken up into three independently allocated
58 	 * memory regions to be able to modify them independently.
59 	 * raw_data is nulled out at that point, but can be later allocated
60 	 * and cached again if user calls btf__raw_data(), at which point
61 	 * raw_data will contain a contiguous copy of header, types, and
62 	 * strings:
63 	 *
64 	 * +----------+  +---------+  +-----------+
65 	 * |  Header  |  |  Types  |  |  Strings  |
66 	 * +----------+  +---------+  +-----------+
67 	 * ^             ^            ^
68 	 * |             |            |
69 	 * hdr           |            |
70 	 * types_data----+            |
71 	 * strset__data(strs_set)-----+
72 	 *
73 	 *               +----------+---------+-----------+
74 	 *               |  Header  |  Types  |  Strings  |
75 	 * raw_data----->+----------+---------+-----------+
76 	 */
77 	struct btf_header *hdr;
78 
79 	void *types_data;
80 	size_t types_data_cap; /* used size stored in hdr->type_len */
81 
82 	/* type ID to `struct btf_type *` lookup index
83 	 * type_offs[0] corresponds to the first non-VOID type:
84 	 *   - for base BTF it's type [1];
85 	 *   - for split BTF it's the first non-base BTF type.
86 	 */
87 	__u32 *type_offs;
88 	size_t type_offs_cap;
89 	/* number of types in this BTF instance:
90 	 *   - doesn't include special [0] void type;
91 	 *   - for split BTF counts number of types added on top of base BTF.
92 	 */
93 	__u32 nr_types;
94 	/* if not NULL, points to the base BTF on top of which the current
95 	 * split BTF is based
96 	 */
97 	struct btf *base_btf;
98 	/* BTF type ID of the first type in this BTF instance:
99 	 *   - for base BTF it's equal to 1;
100 	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
101 	 */
102 	int start_id;
103 	/* logical string offset of this BTF instance:
104 	 *   - for base BTF it's equal to 0;
105 	 *   - for split BTF it's equal to total size of base BTF's string section size.
106 	 */
107 	int start_str_off;
108 
109 	/* only one of strs_data or strs_set can be non-NULL, depending on
110 	 * whether BTF is in a modifiable state (strs_set is used) or not
111 	 * (strs_data points inside raw_data)
112 	 */
113 	void *strs_data;
114 	/* a set of unique strings */
115 	struct strset *strs_set;
116 	/* whether strings are already deduplicated */
117 	bool strs_deduped;
118 
119 	/* BTF object FD, if loaded into kernel */
120 	int fd;
121 
122 	/* Pointer size (in bytes) for a target architecture of this BTF */
123 	int ptr_sz;
124 };
125 
126 static inline __u64 ptr_to_u64(const void *ptr)
127 {
128 	return (__u64) (unsigned long) ptr;
129 }
130 
131 /* Ensure given dynamically allocated memory region pointed to by *data* with
132  * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
133  * memory to accommodate *add_cnt* new elements, assuming *cur_cnt* elements
134  * are already used. At most *max_cnt* elements can be ever allocated.
135  * If necessary, memory is reallocated and all existing data is copied over,
136  * new pointer to the memory region is stored at *data, new memory region
137  * capacity (in number of elements) is stored in *cap.
138  * On success, memory pointer to the beginning of unused memory is returned.
139  * On error, NULL is returned.
140  */
141 void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
142 		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
143 {
144 	size_t new_cnt;
145 	void *new_data;
146 
147 	if (cur_cnt + add_cnt <= *cap_cnt)
148 		return *data + cur_cnt * elem_sz;
149 
150 	/* requested more than the set limit */
151 	if (cur_cnt + add_cnt > max_cnt)
152 		return NULL;
153 
154 	new_cnt = *cap_cnt;
155 	new_cnt += new_cnt / 4;		  /* expand by 25% */
156 	if (new_cnt < 16)		  /* but at least 16 elements */
157 		new_cnt = 16;
158 	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
159 		new_cnt = max_cnt;
160 	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
161 		new_cnt = cur_cnt + add_cnt;
162 
163 	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
164 	if (!new_data)
165 		return NULL;
166 
167 	/* zero out newly allocated portion of memory */
168 	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
169 
170 	*data = new_data;
171 	*cap_cnt = new_cnt;
172 	return new_data + cur_cnt * elem_sz;
173 }
174 
175 /* Ensure given dynamically allocated memory region has enough allocated space
176  * to accommodate *need_cnt* elements of size *elem_sz* bytes each
177  */
178 int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
179 {
180 	void *p;
181 
182 	if (need_cnt <= *cap_cnt)
183 		return 0;
184 
185 	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
186 	if (!p)
187 		return -ENOMEM;
188 
189 	return 0;
190 }
191 
192 static void *btf_add_type_offs_mem(struct btf *btf, size_t add_cnt)
193 {
194 	return libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
195 			      btf->nr_types, BTF_MAX_NR_TYPES, add_cnt);
196 }
197 
198 static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
199 {
200 	__u32 *p;
201 
202 	p = btf_add_type_offs_mem(btf, 1);
203 	if (!p)
204 		return -ENOMEM;
205 
206 	*p = type_off;
207 	return 0;
208 }
209 
210 static void btf_bswap_hdr(struct btf_header *h)
211 {
212 	h->magic = bswap_16(h->magic);
213 	h->hdr_len = bswap_32(h->hdr_len);
214 	h->type_off = bswap_32(h->type_off);
215 	h->type_len = bswap_32(h->type_len);
216 	h->str_off = bswap_32(h->str_off);
217 	h->str_len = bswap_32(h->str_len);
218 }
219 
220 static int btf_parse_hdr(struct btf *btf)
221 {
222 	struct btf_header *hdr = btf->hdr;
223 	__u32 meta_left;
224 
225 	if (btf->raw_size < sizeof(struct btf_header)) {
226 		pr_debug("BTF header not found\n");
227 		return -EINVAL;
228 	}
229 
230 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
231 		btf->swapped_endian = true;
232 		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
233 			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
234 				bswap_32(hdr->hdr_len));
235 			return -ENOTSUP;
236 		}
237 		btf_bswap_hdr(hdr);
238 	} else if (hdr->magic != BTF_MAGIC) {
239 		pr_debug("Invalid BTF magic: %x\n", hdr->magic);
240 		return -EINVAL;
241 	}
242 
243 	if (btf->raw_size < hdr->hdr_len) {
244 		pr_debug("BTF header len %u larger than data size %u\n",
245 			 hdr->hdr_len, btf->raw_size);
246 		return -EINVAL;
247 	}
248 
249 	meta_left = btf->raw_size - hdr->hdr_len;
250 	if (meta_left < (long long)hdr->str_off + hdr->str_len) {
251 		pr_debug("Invalid BTF total size: %u\n", btf->raw_size);
252 		return -EINVAL;
253 	}
254 
255 	if ((long long)hdr->type_off + hdr->type_len > hdr->str_off) {
256 		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
257 			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
258 		return -EINVAL;
259 	}
260 
261 	if (hdr->type_off % 4) {
262 		pr_debug("BTF type section is not aligned to 4 bytes\n");
263 		return -EINVAL;
264 	}
265 
266 	return 0;
267 }
268 
269 static int btf_parse_str_sec(struct btf *btf)
270 {
271 	const struct btf_header *hdr = btf->hdr;
272 	const char *start = btf->strs_data;
273 	const char *end = start + btf->hdr->str_len;
274 
275 	if (btf->base_btf && hdr->str_len == 0)
276 		return 0;
277 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
278 		pr_debug("Invalid BTF string section\n");
279 		return -EINVAL;
280 	}
281 	if (!btf->base_btf && start[0]) {
282 		pr_debug("Invalid BTF string section\n");
283 		return -EINVAL;
284 	}
285 	return 0;
286 }
287 
288 static int btf_type_size(const struct btf_type *t)
289 {
290 	const int base_size = sizeof(struct btf_type);
291 	__u16 vlen = btf_vlen(t);
292 
293 	switch (btf_kind(t)) {
294 	case BTF_KIND_FWD:
295 	case BTF_KIND_CONST:
296 	case BTF_KIND_VOLATILE:
297 	case BTF_KIND_RESTRICT:
298 	case BTF_KIND_PTR:
299 	case BTF_KIND_TYPEDEF:
300 	case BTF_KIND_FUNC:
301 	case BTF_KIND_FLOAT:
302 	case BTF_KIND_TYPE_TAG:
303 		return base_size;
304 	case BTF_KIND_INT:
305 		return base_size + sizeof(__u32);
306 	case BTF_KIND_ENUM:
307 		return base_size + vlen * sizeof(struct btf_enum);
308 	case BTF_KIND_ENUM64:
309 		return base_size + vlen * sizeof(struct btf_enum64);
310 	case BTF_KIND_ARRAY:
311 		return base_size + sizeof(struct btf_array);
312 	case BTF_KIND_STRUCT:
313 	case BTF_KIND_UNION:
314 		return base_size + vlen * sizeof(struct btf_member);
315 	case BTF_KIND_FUNC_PROTO:
316 		return base_size + vlen * sizeof(struct btf_param);
317 	case BTF_KIND_VAR:
318 		return base_size + sizeof(struct btf_var);
319 	case BTF_KIND_DATASEC:
320 		return base_size + vlen * sizeof(struct btf_var_secinfo);
321 	case BTF_KIND_DECL_TAG:
322 		return base_size + sizeof(struct btf_decl_tag);
323 	default:
324 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
325 		return -EINVAL;
326 	}
327 }
328 
329 static void btf_bswap_type_base(struct btf_type *t)
330 {
331 	t->name_off = bswap_32(t->name_off);
332 	t->info = bswap_32(t->info);
333 	t->type = bswap_32(t->type);
334 }
335 
336 static int btf_bswap_type_rest(struct btf_type *t)
337 {
338 	struct btf_var_secinfo *v;
339 	struct btf_enum64 *e64;
340 	struct btf_member *m;
341 	struct btf_array *a;
342 	struct btf_param *p;
343 	struct btf_enum *e;
344 	__u16 vlen = btf_vlen(t);
345 	int i;
346 
347 	switch (btf_kind(t)) {
348 	case BTF_KIND_FWD:
349 	case BTF_KIND_CONST:
350 	case BTF_KIND_VOLATILE:
351 	case BTF_KIND_RESTRICT:
352 	case BTF_KIND_PTR:
353 	case BTF_KIND_TYPEDEF:
354 	case BTF_KIND_FUNC:
355 	case BTF_KIND_FLOAT:
356 	case BTF_KIND_TYPE_TAG:
357 		return 0;
358 	case BTF_KIND_INT:
359 		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
360 		return 0;
361 	case BTF_KIND_ENUM:
362 		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
363 			e->name_off = bswap_32(e->name_off);
364 			e->val = bswap_32(e->val);
365 		}
366 		return 0;
367 	case BTF_KIND_ENUM64:
368 		for (i = 0, e64 = btf_enum64(t); i < vlen; i++, e64++) {
369 			e64->name_off = bswap_32(e64->name_off);
370 			e64->val_lo32 = bswap_32(e64->val_lo32);
371 			e64->val_hi32 = bswap_32(e64->val_hi32);
372 		}
373 		return 0;
374 	case BTF_KIND_ARRAY:
375 		a = btf_array(t);
376 		a->type = bswap_32(a->type);
377 		a->index_type = bswap_32(a->index_type);
378 		a->nelems = bswap_32(a->nelems);
379 		return 0;
380 	case BTF_KIND_STRUCT:
381 	case BTF_KIND_UNION:
382 		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
383 			m->name_off = bswap_32(m->name_off);
384 			m->type = bswap_32(m->type);
385 			m->offset = bswap_32(m->offset);
386 		}
387 		return 0;
388 	case BTF_KIND_FUNC_PROTO:
389 		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
390 			p->name_off = bswap_32(p->name_off);
391 			p->type = bswap_32(p->type);
392 		}
393 		return 0;
394 	case BTF_KIND_VAR:
395 		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
396 		return 0;
397 	case BTF_KIND_DATASEC:
398 		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
399 			v->type = bswap_32(v->type);
400 			v->offset = bswap_32(v->offset);
401 			v->size = bswap_32(v->size);
402 		}
403 		return 0;
404 	case BTF_KIND_DECL_TAG:
405 		btf_decl_tag(t)->component_idx = bswap_32(btf_decl_tag(t)->component_idx);
406 		return 0;
407 	default:
408 		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
409 		return -EINVAL;
410 	}
411 }
412 
413 static int btf_parse_type_sec(struct btf *btf)
414 {
415 	struct btf_header *hdr = btf->hdr;
416 	void *next_type = btf->types_data;
417 	void *end_type = next_type + hdr->type_len;
418 	int err, type_size;
419 
420 	while (next_type + sizeof(struct btf_type) <= end_type) {
421 		if (btf->swapped_endian)
422 			btf_bswap_type_base(next_type);
423 
424 		type_size = btf_type_size(next_type);
425 		if (type_size < 0)
426 			return type_size;
427 		if (next_type + type_size > end_type) {
428 			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
429 			return -EINVAL;
430 		}
431 
432 		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
433 			return -EINVAL;
434 
435 		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
436 		if (err)
437 			return err;
438 
439 		next_type += type_size;
440 		btf->nr_types++;
441 	}
442 
443 	if (next_type != end_type) {
444 		pr_warn("BTF types data is malformed\n");
445 		return -EINVAL;
446 	}
447 
448 	return 0;
449 }
450 
451 __u32 btf__type_cnt(const struct btf *btf)
452 {
453 	return btf->start_id + btf->nr_types;
454 }
455 
456 const struct btf *btf__base_btf(const struct btf *btf)
457 {
458 	return btf->base_btf;
459 }
460 
461 /* internal helper returning non-const pointer to a type */
462 struct btf_type *btf_type_by_id(const struct btf *btf, __u32 type_id)
463 {
464 	if (type_id == 0)
465 		return &btf_void;
466 	if (type_id < btf->start_id)
467 		return btf_type_by_id(btf->base_btf, type_id);
468 	return btf->types_data + btf->type_offs[type_id - btf->start_id];
469 }
470 
471 const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
472 {
473 	if (type_id >= btf->start_id + btf->nr_types)
474 		return errno = EINVAL, NULL;
475 	return btf_type_by_id((struct btf *)btf, type_id);
476 }
477 
478 static int determine_ptr_size(const struct btf *btf)
479 {
480 	static const char * const long_aliases[] = {
481 		"long",
482 		"long int",
483 		"int long",
484 		"unsigned long",
485 		"long unsigned",
486 		"unsigned long int",
487 		"unsigned int long",
488 		"long unsigned int",
489 		"long int unsigned",
490 		"int unsigned long",
491 		"int long unsigned",
492 	};
493 	const struct btf_type *t;
494 	const char *name;
495 	int i, j, n;
496 
497 	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
498 		return btf->base_btf->ptr_sz;
499 
500 	n = btf__type_cnt(btf);
501 	for (i = 1; i < n; i++) {
502 		t = btf__type_by_id(btf, i);
503 		if (!btf_is_int(t))
504 			continue;
505 
506 		if (t->size != 4 && t->size != 8)
507 			continue;
508 
509 		name = btf__name_by_offset(btf, t->name_off);
510 		if (!name)
511 			continue;
512 
513 		for (j = 0; j < ARRAY_SIZE(long_aliases); j++) {
514 			if (strcmp(name, long_aliases[j]) == 0)
515 				return t->size;
516 		}
517 	}
518 
519 	return -1;
520 }
521 
522 static size_t btf_ptr_sz(const struct btf *btf)
523 {
524 	if (!btf->ptr_sz)
525 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
526 	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
527 }
528 
529 /* Return pointer size this BTF instance assumes. The size is heuristically
530  * determined by looking for 'long' or 'unsigned long' integer type and
531  * recording its size in bytes. If BTF type information doesn't have any such
532  * type, this function returns 0. In the latter case, native architecture's
533  * pointer size is assumed, so will be either 4 or 8, depending on
534  * architecture that libbpf was compiled for. It's possible to override
535  * guessed value by using btf__set_pointer_size() API.
536  */
537 size_t btf__pointer_size(const struct btf *btf)
538 {
539 	if (!btf->ptr_sz)
540 		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
541 
542 	if (btf->ptr_sz < 0)
543 		/* not enough BTF type info to guess */
544 		return 0;
545 
546 	return btf->ptr_sz;
547 }
548 
549 /* Override or set pointer size in bytes. Only values of 4 and 8 are
550  * supported.
551  */
552 int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
553 {
554 	if (ptr_sz != 4 && ptr_sz != 8)
555 		return libbpf_err(-EINVAL);
556 	btf->ptr_sz = ptr_sz;
557 	return 0;
558 }
559 
560 static bool is_host_big_endian(void)
561 {
562 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
563 	return false;
564 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
565 	return true;
566 #else
567 # error "Unrecognized __BYTE_ORDER__"
568 #endif
569 }
570 
571 enum btf_endianness btf__endianness(const struct btf *btf)
572 {
573 	if (is_host_big_endian())
574 		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
575 	else
576 		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
577 }
578 
579 int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
580 {
581 	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
582 		return libbpf_err(-EINVAL);
583 
584 	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
585 	if (!btf->swapped_endian) {
586 		free(btf->raw_data_swapped);
587 		btf->raw_data_swapped = NULL;
588 	}
589 	return 0;
590 }
591 
592 static bool btf_type_is_void(const struct btf_type *t)
593 {
594 	return t == &btf_void || btf_is_fwd(t);
595 }
596 
597 static bool btf_type_is_void_or_null(const struct btf_type *t)
598 {
599 	return !t || btf_type_is_void(t);
600 }
601 
602 #define MAX_RESOLVE_DEPTH 32
603 
604 __s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
605 {
606 	const struct btf_array *array;
607 	const struct btf_type *t;
608 	__u32 nelems = 1;
609 	__s64 size = -1;
610 	int i;
611 
612 	t = btf__type_by_id(btf, type_id);
613 	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
614 		switch (btf_kind(t)) {
615 		case BTF_KIND_INT:
616 		case BTF_KIND_STRUCT:
617 		case BTF_KIND_UNION:
618 		case BTF_KIND_ENUM:
619 		case BTF_KIND_ENUM64:
620 		case BTF_KIND_DATASEC:
621 		case BTF_KIND_FLOAT:
622 			size = t->size;
623 			goto done;
624 		case BTF_KIND_PTR:
625 			size = btf_ptr_sz(btf);
626 			goto done;
627 		case BTF_KIND_TYPEDEF:
628 		case BTF_KIND_VOLATILE:
629 		case BTF_KIND_CONST:
630 		case BTF_KIND_RESTRICT:
631 		case BTF_KIND_VAR:
632 		case BTF_KIND_DECL_TAG:
633 		case BTF_KIND_TYPE_TAG:
634 			type_id = t->type;
635 			break;
636 		case BTF_KIND_ARRAY:
637 			array = btf_array(t);
638 			if (nelems && array->nelems > UINT32_MAX / nelems)
639 				return libbpf_err(-E2BIG);
640 			nelems *= array->nelems;
641 			type_id = array->type;
642 			break;
643 		default:
644 			return libbpf_err(-EINVAL);
645 		}
646 
647 		t = btf__type_by_id(btf, type_id);
648 	}
649 
650 done:
651 	if (size < 0)
652 		return libbpf_err(-EINVAL);
653 	if (nelems && size > UINT32_MAX / nelems)
654 		return libbpf_err(-E2BIG);
655 
656 	return nelems * size;
657 }
658 
659 int btf__align_of(const struct btf *btf, __u32 id)
660 {
661 	const struct btf_type *t = btf__type_by_id(btf, id);
662 	__u16 kind = btf_kind(t);
663 
664 	switch (kind) {
665 	case BTF_KIND_INT:
666 	case BTF_KIND_ENUM:
667 	case BTF_KIND_ENUM64:
668 	case BTF_KIND_FLOAT:
669 		return min(btf_ptr_sz(btf), (size_t)t->size);
670 	case BTF_KIND_PTR:
671 		return btf_ptr_sz(btf);
672 	case BTF_KIND_TYPEDEF:
673 	case BTF_KIND_VOLATILE:
674 	case BTF_KIND_CONST:
675 	case BTF_KIND_RESTRICT:
676 	case BTF_KIND_TYPE_TAG:
677 		return btf__align_of(btf, t->type);
678 	case BTF_KIND_ARRAY:
679 		return btf__align_of(btf, btf_array(t)->type);
680 	case BTF_KIND_STRUCT:
681 	case BTF_KIND_UNION: {
682 		const struct btf_member *m = btf_members(t);
683 		__u16 vlen = btf_vlen(t);
684 		int i, max_align = 1, align;
685 
686 		for (i = 0; i < vlen; i++, m++) {
687 			align = btf__align_of(btf, m->type);
688 			if (align <= 0)
689 				return libbpf_err(align);
690 			max_align = max(max_align, align);
691 
692 			/* if field offset isn't aligned according to field
693 			 * type's alignment, then struct must be packed
694 			 */
695 			if (btf_member_bitfield_size(t, i) == 0 &&
696 			    (m->offset % (8 * align)) != 0)
697 				return 1;
698 		}
699 
700 		/* if struct/union size isn't a multiple of its alignment,
701 		 * then struct must be packed
702 		 */
703 		if ((t->size % max_align) != 0)
704 			return 1;
705 
706 		return max_align;
707 	}
708 	default:
709 		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
710 		return errno = EINVAL, 0;
711 	}
712 }
713 
714 int btf__resolve_type(const struct btf *btf, __u32 type_id)
715 {
716 	const struct btf_type *t;
717 	int depth = 0;
718 
719 	t = btf__type_by_id(btf, type_id);
720 	while (depth < MAX_RESOLVE_DEPTH &&
721 	       !btf_type_is_void_or_null(t) &&
722 	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
723 		type_id = t->type;
724 		t = btf__type_by_id(btf, type_id);
725 		depth++;
726 	}
727 
728 	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
729 		return libbpf_err(-EINVAL);
730 
731 	return type_id;
732 }
733 
734 __s32 btf__find_by_name(const struct btf *btf, const char *type_name)
735 {
736 	__u32 i, nr_types = btf__type_cnt(btf);
737 
738 	if (!strcmp(type_name, "void"))
739 		return 0;
740 
741 	for (i = 1; i < nr_types; i++) {
742 		const struct btf_type *t = btf__type_by_id(btf, i);
743 		const char *name = btf__name_by_offset(btf, t->name_off);
744 
745 		if (name && !strcmp(type_name, name))
746 			return i;
747 	}
748 
749 	return libbpf_err(-ENOENT);
750 }
751 
752 static __s32 btf_find_by_name_kind(const struct btf *btf, int start_id,
753 				   const char *type_name, __u32 kind)
754 {
755 	__u32 i, nr_types = btf__type_cnt(btf);
756 
757 	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
758 		return 0;
759 
760 	for (i = start_id; i < nr_types; i++) {
761 		const struct btf_type *t = btf__type_by_id(btf, i);
762 		const char *name;
763 
764 		if (btf_kind(t) != kind)
765 			continue;
766 		name = btf__name_by_offset(btf, t->name_off);
767 		if (name && !strcmp(type_name, name))
768 			return i;
769 	}
770 
771 	return libbpf_err(-ENOENT);
772 }
773 
774 __s32 btf__find_by_name_kind_own(const struct btf *btf, const char *type_name,
775 				 __u32 kind)
776 {
777 	return btf_find_by_name_kind(btf, btf->start_id, type_name, kind);
778 }
779 
780 __s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
781 			     __u32 kind)
782 {
783 	return btf_find_by_name_kind(btf, 1, type_name, kind);
784 }
785 
786 static bool btf_is_modifiable(const struct btf *btf)
787 {
788 	return (void *)btf->hdr != btf->raw_data;
789 }
790 
791 void btf__free(struct btf *btf)
792 {
793 	if (IS_ERR_OR_NULL(btf))
794 		return;
795 
796 	if (btf->fd >= 0)
797 		close(btf->fd);
798 
799 	if (btf_is_modifiable(btf)) {
800 		/* if BTF was modified after loading, it will have a split
801 		 * in-memory representation for header, types, and strings
802 		 * sections, so we need to free all of them individually. It
803 		 * might still have a cached contiguous raw data present,
804 		 * which will be unconditionally freed below.
805 		 */
806 		free(btf->hdr);
807 		free(btf->types_data);
808 		strset__free(btf->strs_set);
809 	}
810 	free(btf->raw_data);
811 	free(btf->raw_data_swapped);
812 	free(btf->type_offs);
813 	free(btf);
814 }
815 
816 static struct btf *btf_new_empty(struct btf *base_btf)
817 {
818 	struct btf *btf;
819 
820 	btf = calloc(1, sizeof(*btf));
821 	if (!btf)
822 		return ERR_PTR(-ENOMEM);
823 
824 	btf->nr_types = 0;
825 	btf->start_id = 1;
826 	btf->start_str_off = 0;
827 	btf->fd = -1;
828 	btf->ptr_sz = sizeof(void *);
829 	btf->swapped_endian = false;
830 
831 	if (base_btf) {
832 		btf->base_btf = base_btf;
833 		btf->start_id = btf__type_cnt(base_btf);
834 		btf->start_str_off = base_btf->hdr->str_len;
835 	}
836 
837 	/* +1 for empty string at offset 0 */
838 	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
839 	btf->raw_data = calloc(1, btf->raw_size);
840 	if (!btf->raw_data) {
841 		free(btf);
842 		return ERR_PTR(-ENOMEM);
843 	}
844 
845 	btf->hdr = btf->raw_data;
846 	btf->hdr->hdr_len = sizeof(struct btf_header);
847 	btf->hdr->magic = BTF_MAGIC;
848 	btf->hdr->version = BTF_VERSION;
849 
850 	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
851 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
852 	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
853 
854 	return btf;
855 }
856 
857 struct btf *btf__new_empty(void)
858 {
859 	return libbpf_ptr(btf_new_empty(NULL));
860 }
861 
862 struct btf *btf__new_empty_split(struct btf *base_btf)
863 {
864 	return libbpf_ptr(btf_new_empty(base_btf));
865 }
866 
867 static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
868 {
869 	struct btf *btf;
870 	int err;
871 
872 	btf = calloc(1, sizeof(struct btf));
873 	if (!btf)
874 		return ERR_PTR(-ENOMEM);
875 
876 	btf->nr_types = 0;
877 	btf->start_id = 1;
878 	btf->start_str_off = 0;
879 	btf->fd = -1;
880 
881 	if (base_btf) {
882 		btf->base_btf = base_btf;
883 		btf->start_id = btf__type_cnt(base_btf);
884 		btf->start_str_off = base_btf->hdr->str_len;
885 	}
886 
887 	btf->raw_data = malloc(size);
888 	if (!btf->raw_data) {
889 		err = -ENOMEM;
890 		goto done;
891 	}
892 	memcpy(btf->raw_data, data, size);
893 	btf->raw_size = size;
894 
895 	btf->hdr = btf->raw_data;
896 	err = btf_parse_hdr(btf);
897 	if (err)
898 		goto done;
899 
900 	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
901 	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
902 
903 	err = btf_parse_str_sec(btf);
904 	err = err ?: btf_parse_type_sec(btf);
905 	if (err)
906 		goto done;
907 
908 done:
909 	if (err) {
910 		btf__free(btf);
911 		return ERR_PTR(err);
912 	}
913 
914 	return btf;
915 }
916 
917 struct btf *btf__new(const void *data, __u32 size)
918 {
919 	return libbpf_ptr(btf_new(data, size, NULL));
920 }
921 
922 static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
923 				 struct btf_ext **btf_ext)
924 {
925 	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
926 	int err = 0, fd = -1, idx = 0;
927 	struct btf *btf = NULL;
928 	Elf_Scn *scn = NULL;
929 	Elf *elf = NULL;
930 	GElf_Ehdr ehdr;
931 	size_t shstrndx;
932 
933 	if (elf_version(EV_CURRENT) == EV_NONE) {
934 		pr_warn("failed to init libelf for %s\n", path);
935 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
936 	}
937 
938 	fd = open(path, O_RDONLY | O_CLOEXEC);
939 	if (fd < 0) {
940 		err = -errno;
941 		pr_warn("failed to open %s: %s\n", path, strerror(errno));
942 		return ERR_PTR(err);
943 	}
944 
945 	err = -LIBBPF_ERRNO__FORMAT;
946 
947 	elf = elf_begin(fd, ELF_C_READ, NULL);
948 	if (!elf) {
949 		pr_warn("failed to open %s as ELF file\n", path);
950 		goto done;
951 	}
952 	if (!gelf_getehdr(elf, &ehdr)) {
953 		pr_warn("failed to get EHDR from %s\n", path);
954 		goto done;
955 	}
956 
957 	if (elf_getshdrstrndx(elf, &shstrndx)) {
958 		pr_warn("failed to get section names section index for %s\n",
959 			path);
960 		goto done;
961 	}
962 
963 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
964 		pr_warn("failed to get e_shstrndx from %s\n", path);
965 		goto done;
966 	}
967 
968 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
969 		GElf_Shdr sh;
970 		char *name;
971 
972 		idx++;
973 		if (gelf_getshdr(scn, &sh) != &sh) {
974 			pr_warn("failed to get section(%d) header from %s\n",
975 				idx, path);
976 			goto done;
977 		}
978 		name = elf_strptr(elf, shstrndx, sh.sh_name);
979 		if (!name) {
980 			pr_warn("failed to get section(%d) name from %s\n",
981 				idx, path);
982 			goto done;
983 		}
984 		if (strcmp(name, BTF_ELF_SEC) == 0) {
985 			btf_data = elf_getdata(scn, 0);
986 			if (!btf_data) {
987 				pr_warn("failed to get section(%d, %s) data from %s\n",
988 					idx, name, path);
989 				goto done;
990 			}
991 			continue;
992 		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
993 			btf_ext_data = elf_getdata(scn, 0);
994 			if (!btf_ext_data) {
995 				pr_warn("failed to get section(%d, %s) data from %s\n",
996 					idx, name, path);
997 				goto done;
998 			}
999 			continue;
1000 		}
1001 	}
1002 
1003 	err = 0;
1004 
1005 	if (!btf_data) {
1006 		pr_warn("failed to find '%s' ELF section in %s\n", BTF_ELF_SEC, path);
1007 		err = -ENODATA;
1008 		goto done;
1009 	}
1010 	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
1011 	err = libbpf_get_error(btf);
1012 	if (err)
1013 		goto done;
1014 
1015 	switch (gelf_getclass(elf)) {
1016 	case ELFCLASS32:
1017 		btf__set_pointer_size(btf, 4);
1018 		break;
1019 	case ELFCLASS64:
1020 		btf__set_pointer_size(btf, 8);
1021 		break;
1022 	default:
1023 		pr_warn("failed to get ELF class (bitness) for %s\n", path);
1024 		break;
1025 	}
1026 
1027 	if (btf_ext && btf_ext_data) {
1028 		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
1029 		err = libbpf_get_error(*btf_ext);
1030 		if (err)
1031 			goto done;
1032 	} else if (btf_ext) {
1033 		*btf_ext = NULL;
1034 	}
1035 done:
1036 	if (elf)
1037 		elf_end(elf);
1038 	close(fd);
1039 
1040 	if (!err)
1041 		return btf;
1042 
1043 	if (btf_ext)
1044 		btf_ext__free(*btf_ext);
1045 	btf__free(btf);
1046 
1047 	return ERR_PTR(err);
1048 }
1049 
1050 struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
1051 {
1052 	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
1053 }
1054 
1055 struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
1056 {
1057 	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
1058 }
1059 
1060 static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
1061 {
1062 	struct btf *btf = NULL;
1063 	void *data = NULL;
1064 	FILE *f = NULL;
1065 	__u16 magic;
1066 	int err = 0;
1067 	long sz;
1068 
1069 	f = fopen(path, "rb");
1070 	if (!f) {
1071 		err = -errno;
1072 		goto err_out;
1073 	}
1074 
1075 	/* check BTF magic */
1076 	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1077 		err = -EIO;
1078 		goto err_out;
1079 	}
1080 	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1081 		/* definitely not a raw BTF */
1082 		err = -EPROTO;
1083 		goto err_out;
1084 	}
1085 
1086 	/* get file size */
1087 	if (fseek(f, 0, SEEK_END)) {
1088 		err = -errno;
1089 		goto err_out;
1090 	}
1091 	sz = ftell(f);
1092 	if (sz < 0) {
1093 		err = -errno;
1094 		goto err_out;
1095 	}
1096 	/* rewind to the start */
1097 	if (fseek(f, 0, SEEK_SET)) {
1098 		err = -errno;
1099 		goto err_out;
1100 	}
1101 
1102 	/* pre-alloc memory and read all of BTF data */
1103 	data = malloc(sz);
1104 	if (!data) {
1105 		err = -ENOMEM;
1106 		goto err_out;
1107 	}
1108 	if (fread(data, 1, sz, f) < sz) {
1109 		err = -EIO;
1110 		goto err_out;
1111 	}
1112 
1113 	/* finally parse BTF data */
1114 	btf = btf_new(data, sz, base_btf);
1115 
1116 err_out:
1117 	free(data);
1118 	if (f)
1119 		fclose(f);
1120 	return err ? ERR_PTR(err) : btf;
1121 }
1122 
1123 struct btf *btf__parse_raw(const char *path)
1124 {
1125 	return libbpf_ptr(btf_parse_raw(path, NULL));
1126 }
1127 
1128 struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1129 {
1130 	return libbpf_ptr(btf_parse_raw(path, base_btf));
1131 }
1132 
1133 static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1134 {
1135 	struct btf *btf;
1136 	int err;
1137 
1138 	if (btf_ext)
1139 		*btf_ext = NULL;
1140 
1141 	btf = btf_parse_raw(path, base_btf);
1142 	err = libbpf_get_error(btf);
1143 	if (!err)
1144 		return btf;
1145 	if (err != -EPROTO)
1146 		return ERR_PTR(err);
1147 	return btf_parse_elf(path, base_btf, btf_ext);
1148 }
1149 
1150 struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1151 {
1152 	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1153 }
1154 
1155 struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1156 {
1157 	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1158 }
1159 
1160 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1161 
1162 int btf_load_into_kernel(struct btf *btf, char *log_buf, size_t log_sz, __u32 log_level)
1163 {
1164 	LIBBPF_OPTS(bpf_btf_load_opts, opts);
1165 	__u32 buf_sz = 0, raw_size;
1166 	char *buf = NULL, *tmp;
1167 	void *raw_data;
1168 	int err = 0;
1169 
1170 	if (btf->fd >= 0)
1171 		return libbpf_err(-EEXIST);
1172 	if (log_sz && !log_buf)
1173 		return libbpf_err(-EINVAL);
1174 
1175 	/* cache native raw data representation */
1176 	raw_data = btf_get_raw_data(btf, &raw_size, false);
1177 	if (!raw_data) {
1178 		err = -ENOMEM;
1179 		goto done;
1180 	}
1181 	btf->raw_size = raw_size;
1182 	btf->raw_data = raw_data;
1183 
1184 retry_load:
1185 	/* if log_level is 0, we won't provide log_buf/log_size to the kernel,
1186 	 * initially. Only if BTF loading fails, we bump log_level to 1 and
1187 	 * retry, using either auto-allocated or custom log_buf. This way
1188 	 * non-NULL custom log_buf provides a buffer just in case, but hopes
1189 	 * for successful load and no need for log_buf.
1190 	 */
1191 	if (log_level) {
1192 		/* if caller didn't provide custom log_buf, we'll keep
1193 		 * allocating our own progressively bigger buffers for BTF
1194 		 * verification log
1195 		 */
1196 		if (!log_buf) {
1197 			buf_sz = max((__u32)BPF_LOG_BUF_SIZE, buf_sz * 2);
1198 			tmp = realloc(buf, buf_sz);
1199 			if (!tmp) {
1200 				err = -ENOMEM;
1201 				goto done;
1202 			}
1203 			buf = tmp;
1204 			buf[0] = '\0';
1205 		}
1206 
1207 		opts.log_buf = log_buf ? log_buf : buf;
1208 		opts.log_size = log_buf ? log_sz : buf_sz;
1209 		opts.log_level = log_level;
1210 	}
1211 
1212 	btf->fd = bpf_btf_load(raw_data, raw_size, &opts);
1213 	if (btf->fd < 0) {
1214 		/* time to turn on verbose mode and try again */
1215 		if (log_level == 0) {
1216 			log_level = 1;
1217 			goto retry_load;
1218 		}
1219 		/* only retry if caller didn't provide custom log_buf, but
1220 		 * make sure we can never overflow buf_sz
1221 		 */
1222 		if (!log_buf && errno == ENOSPC && buf_sz <= UINT_MAX / 2)
1223 			goto retry_load;
1224 
1225 		err = -errno;
1226 		pr_warn("BTF loading error: %d\n", err);
1227 		/* don't print out contents of custom log_buf */
1228 		if (!log_buf && buf[0])
1229 			pr_warn("-- BEGIN BTF LOAD LOG ---\n%s\n-- END BTF LOAD LOG --\n", buf);
1230 	}
1231 
1232 done:
1233 	free(buf);
1234 	return libbpf_err(err);
1235 }
1236 
1237 int btf__load_into_kernel(struct btf *btf)
1238 {
1239 	return btf_load_into_kernel(btf, NULL, 0, 0);
1240 }
1241 
1242 int btf__fd(const struct btf *btf)
1243 {
1244 	return btf->fd;
1245 }
1246 
1247 void btf__set_fd(struct btf *btf, int fd)
1248 {
1249 	btf->fd = fd;
1250 }
1251 
1252 static const void *btf_strs_data(const struct btf *btf)
1253 {
1254 	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1255 }
1256 
1257 static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1258 {
1259 	struct btf_header *hdr = btf->hdr;
1260 	struct btf_type *t;
1261 	void *data, *p;
1262 	__u32 data_sz;
1263 	int i;
1264 
1265 	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1266 	if (data) {
1267 		*size = btf->raw_size;
1268 		return data;
1269 	}
1270 
1271 	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1272 	data = calloc(1, data_sz);
1273 	if (!data)
1274 		return NULL;
1275 	p = data;
1276 
1277 	memcpy(p, hdr, hdr->hdr_len);
1278 	if (swap_endian)
1279 		btf_bswap_hdr(p);
1280 	p += hdr->hdr_len;
1281 
1282 	memcpy(p, btf->types_data, hdr->type_len);
1283 	if (swap_endian) {
1284 		for (i = 0; i < btf->nr_types; i++) {
1285 			t = p + btf->type_offs[i];
1286 			/* btf_bswap_type_rest() relies on native t->info, so
1287 			 * we swap base type info after we swapped all the
1288 			 * additional information
1289 			 */
1290 			if (btf_bswap_type_rest(t))
1291 				goto err_out;
1292 			btf_bswap_type_base(t);
1293 		}
1294 	}
1295 	p += hdr->type_len;
1296 
1297 	memcpy(p, btf_strs_data(btf), hdr->str_len);
1298 	p += hdr->str_len;
1299 
1300 	*size = data_sz;
1301 	return data;
1302 err_out:
1303 	free(data);
1304 	return NULL;
1305 }
1306 
1307 const void *btf__raw_data(const struct btf *btf_ro, __u32 *size)
1308 {
1309 	struct btf *btf = (struct btf *)btf_ro;
1310 	__u32 data_sz;
1311 	void *data;
1312 
1313 	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1314 	if (!data)
1315 		return errno = ENOMEM, NULL;
1316 
1317 	btf->raw_size = data_sz;
1318 	if (btf->swapped_endian)
1319 		btf->raw_data_swapped = data;
1320 	else
1321 		btf->raw_data = data;
1322 	*size = data_sz;
1323 	return data;
1324 }
1325 
1326 __attribute__((alias("btf__raw_data")))
1327 const void *btf__get_raw_data(const struct btf *btf, __u32 *size);
1328 
1329 const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1330 {
1331 	if (offset < btf->start_str_off)
1332 		return btf__str_by_offset(btf->base_btf, offset);
1333 	else if (offset - btf->start_str_off < btf->hdr->str_len)
1334 		return btf_strs_data(btf) + (offset - btf->start_str_off);
1335 	else
1336 		return errno = EINVAL, NULL;
1337 }
1338 
1339 const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1340 {
1341 	return btf__str_by_offset(btf, offset);
1342 }
1343 
1344 struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1345 {
1346 	struct bpf_btf_info btf_info;
1347 	__u32 len = sizeof(btf_info);
1348 	__u32 last_size;
1349 	struct btf *btf;
1350 	void *ptr;
1351 	int err;
1352 
1353 	/* we won't know btf_size until we call bpf_btf_get_info_by_fd(). so
1354 	 * let's start with a sane default - 4KiB here - and resize it only if
1355 	 * bpf_btf_get_info_by_fd() needs a bigger buffer.
1356 	 */
1357 	last_size = 4096;
1358 	ptr = malloc(last_size);
1359 	if (!ptr)
1360 		return ERR_PTR(-ENOMEM);
1361 
1362 	memset(&btf_info, 0, sizeof(btf_info));
1363 	btf_info.btf = ptr_to_u64(ptr);
1364 	btf_info.btf_size = last_size;
1365 	err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1366 
1367 	if (!err && btf_info.btf_size > last_size) {
1368 		void *temp_ptr;
1369 
1370 		last_size = btf_info.btf_size;
1371 		temp_ptr = realloc(ptr, last_size);
1372 		if (!temp_ptr) {
1373 			btf = ERR_PTR(-ENOMEM);
1374 			goto exit_free;
1375 		}
1376 		ptr = temp_ptr;
1377 
1378 		len = sizeof(btf_info);
1379 		memset(&btf_info, 0, sizeof(btf_info));
1380 		btf_info.btf = ptr_to_u64(ptr);
1381 		btf_info.btf_size = last_size;
1382 
1383 		err = bpf_btf_get_info_by_fd(btf_fd, &btf_info, &len);
1384 	}
1385 
1386 	if (err || btf_info.btf_size > last_size) {
1387 		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1388 		goto exit_free;
1389 	}
1390 
1391 	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1392 
1393 exit_free:
1394 	free(ptr);
1395 	return btf;
1396 }
1397 
1398 struct btf *btf__load_from_kernel_by_id_split(__u32 id, struct btf *base_btf)
1399 {
1400 	struct btf *btf;
1401 	int btf_fd;
1402 
1403 	btf_fd = bpf_btf_get_fd_by_id(id);
1404 	if (btf_fd < 0)
1405 		return libbpf_err_ptr(-errno);
1406 
1407 	btf = btf_get_from_fd(btf_fd, base_btf);
1408 	close(btf_fd);
1409 
1410 	return libbpf_ptr(btf);
1411 }
1412 
1413 struct btf *btf__load_from_kernel_by_id(__u32 id)
1414 {
1415 	return btf__load_from_kernel_by_id_split(id, NULL);
1416 }
1417 
1418 static void btf_invalidate_raw_data(struct btf *btf)
1419 {
1420 	if (btf->raw_data) {
1421 		free(btf->raw_data);
1422 		btf->raw_data = NULL;
1423 	}
1424 	if (btf->raw_data_swapped) {
1425 		free(btf->raw_data_swapped);
1426 		btf->raw_data_swapped = NULL;
1427 	}
1428 }
1429 
1430 /* Ensure BTF is ready to be modified (by splitting into a three memory
1431  * regions for header, types, and strings). Also invalidate cached
1432  * raw_data, if any.
1433  */
1434 static int btf_ensure_modifiable(struct btf *btf)
1435 {
1436 	void *hdr, *types;
1437 	struct strset *set = NULL;
1438 	int err = -ENOMEM;
1439 
1440 	if (btf_is_modifiable(btf)) {
1441 		/* any BTF modification invalidates raw_data */
1442 		btf_invalidate_raw_data(btf);
1443 		return 0;
1444 	}
1445 
1446 	/* split raw data into three memory regions */
1447 	hdr = malloc(btf->hdr->hdr_len);
1448 	types = malloc(btf->hdr->type_len);
1449 	if (!hdr || !types)
1450 		goto err_out;
1451 
1452 	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1453 	memcpy(types, btf->types_data, btf->hdr->type_len);
1454 
1455 	/* build lookup index for all strings */
1456 	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1457 	if (IS_ERR(set)) {
1458 		err = PTR_ERR(set);
1459 		goto err_out;
1460 	}
1461 
1462 	/* only when everything was successful, update internal state */
1463 	btf->hdr = hdr;
1464 	btf->types_data = types;
1465 	btf->types_data_cap = btf->hdr->type_len;
1466 	btf->strs_data = NULL;
1467 	btf->strs_set = set;
1468 	/* if BTF was created from scratch, all strings are guaranteed to be
1469 	 * unique and deduplicated
1470 	 */
1471 	if (btf->hdr->str_len == 0)
1472 		btf->strs_deduped = true;
1473 	if (!btf->base_btf && btf->hdr->str_len == 1)
1474 		btf->strs_deduped = true;
1475 
1476 	/* invalidate raw_data representation */
1477 	btf_invalidate_raw_data(btf);
1478 
1479 	return 0;
1480 
1481 err_out:
1482 	strset__free(set);
1483 	free(hdr);
1484 	free(types);
1485 	return err;
1486 }
1487 
1488 /* Find an offset in BTF string section that corresponds to a given string *s*.
1489  * Returns:
1490  *   - >0 offset into string section, if string is found;
1491  *   - -ENOENT, if string is not in the string section;
1492  *   - <0, on any other error.
1493  */
1494 int btf__find_str(struct btf *btf, const char *s)
1495 {
1496 	int off;
1497 
1498 	if (btf->base_btf) {
1499 		off = btf__find_str(btf->base_btf, s);
1500 		if (off != -ENOENT)
1501 			return off;
1502 	}
1503 
1504 	/* BTF needs to be in a modifiable state to build string lookup index */
1505 	if (btf_ensure_modifiable(btf))
1506 		return libbpf_err(-ENOMEM);
1507 
1508 	off = strset__find_str(btf->strs_set, s);
1509 	if (off < 0)
1510 		return libbpf_err(off);
1511 
1512 	return btf->start_str_off + off;
1513 }
1514 
1515 /* Add a string s to the BTF string section.
1516  * Returns:
1517  *   - > 0 offset into string section, on success;
1518  *   - < 0, on error.
1519  */
1520 int btf__add_str(struct btf *btf, const char *s)
1521 {
1522 	int off;
1523 
1524 	if (btf->base_btf) {
1525 		off = btf__find_str(btf->base_btf, s);
1526 		if (off != -ENOENT)
1527 			return off;
1528 	}
1529 
1530 	if (btf_ensure_modifiable(btf))
1531 		return libbpf_err(-ENOMEM);
1532 
1533 	off = strset__add_str(btf->strs_set, s);
1534 	if (off < 0)
1535 		return libbpf_err(off);
1536 
1537 	btf->hdr->str_len = strset__data_size(btf->strs_set);
1538 
1539 	return btf->start_str_off + off;
1540 }
1541 
1542 static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1543 {
1544 	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1545 			      btf->hdr->type_len, UINT_MAX, add_sz);
1546 }
1547 
1548 static void btf_type_inc_vlen(struct btf_type *t)
1549 {
1550 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1551 }
1552 
1553 static int btf_commit_type(struct btf *btf, int data_sz)
1554 {
1555 	int err;
1556 
1557 	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1558 	if (err)
1559 		return libbpf_err(err);
1560 
1561 	btf->hdr->type_len += data_sz;
1562 	btf->hdr->str_off += data_sz;
1563 	btf->nr_types++;
1564 	return btf->start_id + btf->nr_types - 1;
1565 }
1566 
1567 struct btf_pipe {
1568 	const struct btf *src;
1569 	struct btf *dst;
1570 	struct hashmap *str_off_map; /* map string offsets from src to dst */
1571 };
1572 
1573 static int btf_rewrite_str(__u32 *str_off, void *ctx)
1574 {
1575 	struct btf_pipe *p = ctx;
1576 	long mapped_off;
1577 	int off, err;
1578 
1579 	if (!*str_off) /* nothing to do for empty strings */
1580 		return 0;
1581 
1582 	if (p->str_off_map &&
1583 	    hashmap__find(p->str_off_map, *str_off, &mapped_off)) {
1584 		*str_off = mapped_off;
1585 		return 0;
1586 	}
1587 
1588 	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1589 	if (off < 0)
1590 		return off;
1591 
1592 	/* Remember string mapping from src to dst.  It avoids
1593 	 * performing expensive string comparisons.
1594 	 */
1595 	if (p->str_off_map) {
1596 		err = hashmap__append(p->str_off_map, *str_off, off);
1597 		if (err)
1598 			return err;
1599 	}
1600 
1601 	*str_off = off;
1602 	return 0;
1603 }
1604 
1605 int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1606 {
1607 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1608 	struct btf_type *t;
1609 	int sz, err;
1610 
1611 	sz = btf_type_size(src_type);
1612 	if (sz < 0)
1613 		return libbpf_err(sz);
1614 
1615 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1616 	if (btf_ensure_modifiable(btf))
1617 		return libbpf_err(-ENOMEM);
1618 
1619 	t = btf_add_type_mem(btf, sz);
1620 	if (!t)
1621 		return libbpf_err(-ENOMEM);
1622 
1623 	memcpy(t, src_type, sz);
1624 
1625 	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1626 	if (err)
1627 		return libbpf_err(err);
1628 
1629 	return btf_commit_type(btf, sz);
1630 }
1631 
1632 static int btf_rewrite_type_ids(__u32 *type_id, void *ctx)
1633 {
1634 	struct btf *btf = ctx;
1635 
1636 	if (!*type_id) /* nothing to do for VOID references */
1637 		return 0;
1638 
1639 	/* we haven't updated btf's type count yet, so
1640 	 * btf->start_id + btf->nr_types - 1 is the type ID offset we should
1641 	 * add to all newly added BTF types
1642 	 */
1643 	*type_id += btf->start_id + btf->nr_types - 1;
1644 	return 0;
1645 }
1646 
1647 static size_t btf_dedup_identity_hash_fn(long key, void *ctx);
1648 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx);
1649 
1650 int btf__add_btf(struct btf *btf, const struct btf *src_btf)
1651 {
1652 	struct btf_pipe p = { .src = src_btf, .dst = btf };
1653 	int data_sz, sz, cnt, i, err, old_strs_len;
1654 	__u32 *off;
1655 	void *t;
1656 
1657 	/* appending split BTF isn't supported yet */
1658 	if (src_btf->base_btf)
1659 		return libbpf_err(-ENOTSUP);
1660 
1661 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1662 	if (btf_ensure_modifiable(btf))
1663 		return libbpf_err(-ENOMEM);
1664 
1665 	/* remember original strings section size if we have to roll back
1666 	 * partial strings section changes
1667 	 */
1668 	old_strs_len = btf->hdr->str_len;
1669 
1670 	data_sz = src_btf->hdr->type_len;
1671 	cnt = btf__type_cnt(src_btf) - 1;
1672 
1673 	/* pre-allocate enough memory for new types */
1674 	t = btf_add_type_mem(btf, data_sz);
1675 	if (!t)
1676 		return libbpf_err(-ENOMEM);
1677 
1678 	/* pre-allocate enough memory for type offset index for new types */
1679 	off = btf_add_type_offs_mem(btf, cnt);
1680 	if (!off)
1681 		return libbpf_err(-ENOMEM);
1682 
1683 	/* Map the string offsets from src_btf to the offsets from btf to improve performance */
1684 	p.str_off_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
1685 	if (IS_ERR(p.str_off_map))
1686 		return libbpf_err(-ENOMEM);
1687 
1688 	/* bulk copy types data for all types from src_btf */
1689 	memcpy(t, src_btf->types_data, data_sz);
1690 
1691 	for (i = 0; i < cnt; i++) {
1692 		sz = btf_type_size(t);
1693 		if (sz < 0) {
1694 			/* unlikely, has to be corrupted src_btf */
1695 			err = sz;
1696 			goto err_out;
1697 		}
1698 
1699 		/* fill out type ID to type offset mapping for lookups by type ID */
1700 		*off = t - btf->types_data;
1701 
1702 		/* add, dedup, and remap strings referenced by this BTF type */
1703 		err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1704 		if (err)
1705 			goto err_out;
1706 
1707 		/* remap all type IDs referenced from this BTF type */
1708 		err = btf_type_visit_type_ids(t, btf_rewrite_type_ids, btf);
1709 		if (err)
1710 			goto err_out;
1711 
1712 		/* go to next type data and type offset index entry */
1713 		t += sz;
1714 		off++;
1715 	}
1716 
1717 	/* Up until now any of the copied type data was effectively invisible,
1718 	 * so if we exited early before this point due to error, BTF would be
1719 	 * effectively unmodified. There would be extra internal memory
1720 	 * pre-allocated, but it would not be available for querying.  But now
1721 	 * that we've copied and rewritten all the data successfully, we can
1722 	 * update type count and various internal offsets and sizes to
1723 	 * "commit" the changes and made them visible to the outside world.
1724 	 */
1725 	btf->hdr->type_len += data_sz;
1726 	btf->hdr->str_off += data_sz;
1727 	btf->nr_types += cnt;
1728 
1729 	hashmap__free(p.str_off_map);
1730 
1731 	/* return type ID of the first added BTF type */
1732 	return btf->start_id + btf->nr_types - cnt;
1733 err_out:
1734 	/* zero out preallocated memory as if it was just allocated with
1735 	 * libbpf_add_mem()
1736 	 */
1737 	memset(btf->types_data + btf->hdr->type_len, 0, data_sz);
1738 	memset(btf->strs_data + old_strs_len, 0, btf->hdr->str_len - old_strs_len);
1739 
1740 	/* and now restore original strings section size; types data size
1741 	 * wasn't modified, so doesn't need restoring, see big comment above
1742 	 */
1743 	btf->hdr->str_len = old_strs_len;
1744 
1745 	hashmap__free(p.str_off_map);
1746 
1747 	return libbpf_err(err);
1748 }
1749 
1750 /*
1751  * Append new BTF_KIND_INT type with:
1752  *   - *name* - non-empty, non-NULL type name;
1753  *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1754  *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1755  * Returns:
1756  *   - >0, type ID of newly added BTF type;
1757  *   - <0, on error.
1758  */
1759 int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1760 {
1761 	struct btf_type *t;
1762 	int sz, name_off;
1763 
1764 	/* non-empty name */
1765 	if (!name || !name[0])
1766 		return libbpf_err(-EINVAL);
1767 	/* byte_sz must be power of 2 */
1768 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1769 		return libbpf_err(-EINVAL);
1770 	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1771 		return libbpf_err(-EINVAL);
1772 
1773 	/* deconstruct BTF, if necessary, and invalidate raw_data */
1774 	if (btf_ensure_modifiable(btf))
1775 		return libbpf_err(-ENOMEM);
1776 
1777 	sz = sizeof(struct btf_type) + sizeof(int);
1778 	t = btf_add_type_mem(btf, sz);
1779 	if (!t)
1780 		return libbpf_err(-ENOMEM);
1781 
1782 	/* if something goes wrong later, we might end up with an extra string,
1783 	 * but that shouldn't be a problem, because BTF can't be constructed
1784 	 * completely anyway and will most probably be just discarded
1785 	 */
1786 	name_off = btf__add_str(btf, name);
1787 	if (name_off < 0)
1788 		return name_off;
1789 
1790 	t->name_off = name_off;
1791 	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1792 	t->size = byte_sz;
1793 	/* set INT info, we don't allow setting legacy bit offset/size */
1794 	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1795 
1796 	return btf_commit_type(btf, sz);
1797 }
1798 
1799 /*
1800  * Append new BTF_KIND_FLOAT type with:
1801  *   - *name* - non-empty, non-NULL type name;
1802  *   - *sz* - size of the type, in bytes;
1803  * Returns:
1804  *   - >0, type ID of newly added BTF type;
1805  *   - <0, on error.
1806  */
1807 int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1808 {
1809 	struct btf_type *t;
1810 	int sz, name_off;
1811 
1812 	/* non-empty name */
1813 	if (!name || !name[0])
1814 		return libbpf_err(-EINVAL);
1815 
1816 	/* byte_sz must be one of the explicitly allowed values */
1817 	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1818 	    byte_sz != 16)
1819 		return libbpf_err(-EINVAL);
1820 
1821 	if (btf_ensure_modifiable(btf))
1822 		return libbpf_err(-ENOMEM);
1823 
1824 	sz = sizeof(struct btf_type);
1825 	t = btf_add_type_mem(btf, sz);
1826 	if (!t)
1827 		return libbpf_err(-ENOMEM);
1828 
1829 	name_off = btf__add_str(btf, name);
1830 	if (name_off < 0)
1831 		return name_off;
1832 
1833 	t->name_off = name_off;
1834 	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1835 	t->size = byte_sz;
1836 
1837 	return btf_commit_type(btf, sz);
1838 }
1839 
1840 /* it's completely legal to append BTF types with type IDs pointing forward to
1841  * types that haven't been appended yet, so we only make sure that id looks
1842  * sane, we can't guarantee that ID will always be valid
1843  */
1844 static int validate_type_id(int id)
1845 {
1846 	if (id < 0 || id > BTF_MAX_NR_TYPES)
1847 		return -EINVAL;
1848 	return 0;
1849 }
1850 
1851 /* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1852 static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1853 {
1854 	struct btf_type *t;
1855 	int sz, name_off = 0;
1856 
1857 	if (validate_type_id(ref_type_id))
1858 		return libbpf_err(-EINVAL);
1859 
1860 	if (btf_ensure_modifiable(btf))
1861 		return libbpf_err(-ENOMEM);
1862 
1863 	sz = sizeof(struct btf_type);
1864 	t = btf_add_type_mem(btf, sz);
1865 	if (!t)
1866 		return libbpf_err(-ENOMEM);
1867 
1868 	if (name && name[0]) {
1869 		name_off = btf__add_str(btf, name);
1870 		if (name_off < 0)
1871 			return name_off;
1872 	}
1873 
1874 	t->name_off = name_off;
1875 	t->info = btf_type_info(kind, 0, 0);
1876 	t->type = ref_type_id;
1877 
1878 	return btf_commit_type(btf, sz);
1879 }
1880 
1881 /*
1882  * Append new BTF_KIND_PTR type with:
1883  *   - *ref_type_id* - referenced type ID, it might not exist yet;
1884  * Returns:
1885  *   - >0, type ID of newly added BTF type;
1886  *   - <0, on error.
1887  */
1888 int btf__add_ptr(struct btf *btf, int ref_type_id)
1889 {
1890 	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1891 }
1892 
1893 /*
1894  * Append new BTF_KIND_ARRAY type with:
1895  *   - *index_type_id* - type ID of the type describing array index;
1896  *   - *elem_type_id* - type ID of the type describing array element;
1897  *   - *nr_elems* - the size of the array;
1898  * Returns:
1899  *   - >0, type ID of newly added BTF type;
1900  *   - <0, on error.
1901  */
1902 int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1903 {
1904 	struct btf_type *t;
1905 	struct btf_array *a;
1906 	int sz;
1907 
1908 	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1909 		return libbpf_err(-EINVAL);
1910 
1911 	if (btf_ensure_modifiable(btf))
1912 		return libbpf_err(-ENOMEM);
1913 
1914 	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1915 	t = btf_add_type_mem(btf, sz);
1916 	if (!t)
1917 		return libbpf_err(-ENOMEM);
1918 
1919 	t->name_off = 0;
1920 	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1921 	t->size = 0;
1922 
1923 	a = btf_array(t);
1924 	a->type = elem_type_id;
1925 	a->index_type = index_type_id;
1926 	a->nelems = nr_elems;
1927 
1928 	return btf_commit_type(btf, sz);
1929 }
1930 
1931 /* generic STRUCT/UNION append function */
1932 static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1933 {
1934 	struct btf_type *t;
1935 	int sz, name_off = 0;
1936 
1937 	if (btf_ensure_modifiable(btf))
1938 		return libbpf_err(-ENOMEM);
1939 
1940 	sz = sizeof(struct btf_type);
1941 	t = btf_add_type_mem(btf, sz);
1942 	if (!t)
1943 		return libbpf_err(-ENOMEM);
1944 
1945 	if (name && name[0]) {
1946 		name_off = btf__add_str(btf, name);
1947 		if (name_off < 0)
1948 			return name_off;
1949 	}
1950 
1951 	/* start out with vlen=0 and no kflag; this will be adjusted when
1952 	 * adding each member
1953 	 */
1954 	t->name_off = name_off;
1955 	t->info = btf_type_info(kind, 0, 0);
1956 	t->size = bytes_sz;
1957 
1958 	return btf_commit_type(btf, sz);
1959 }
1960 
1961 /*
1962  * Append new BTF_KIND_STRUCT type with:
1963  *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1964  *   - *byte_sz* - size of the struct, in bytes;
1965  *
1966  * Struct initially has no fields in it. Fields can be added by
1967  * btf__add_field() right after btf__add_struct() succeeds.
1968  *
1969  * Returns:
1970  *   - >0, type ID of newly added BTF type;
1971  *   - <0, on error.
1972  */
1973 int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1974 {
1975 	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1976 }
1977 
1978 /*
1979  * Append new BTF_KIND_UNION type with:
1980  *   - *name* - name of the union, can be NULL or empty for anonymous union;
1981  *   - *byte_sz* - size of the union, in bytes;
1982  *
1983  * Union initially has no fields in it. Fields can be added by
1984  * btf__add_field() right after btf__add_union() succeeds. All fields
1985  * should have *bit_offset* of 0.
1986  *
1987  * Returns:
1988  *   - >0, type ID of newly added BTF type;
1989  *   - <0, on error.
1990  */
1991 int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1992 {
1993 	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1994 }
1995 
1996 static struct btf_type *btf_last_type(struct btf *btf)
1997 {
1998 	return btf_type_by_id(btf, btf__type_cnt(btf) - 1);
1999 }
2000 
2001 /*
2002  * Append new field for the current STRUCT/UNION type with:
2003  *   - *name* - name of the field, can be NULL or empty for anonymous field;
2004  *   - *type_id* - type ID for the type describing field type;
2005  *   - *bit_offset* - bit offset of the start of the field within struct/union;
2006  *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
2007  * Returns:
2008  *   -  0, on success;
2009  *   - <0, on error.
2010  */
2011 int btf__add_field(struct btf *btf, const char *name, int type_id,
2012 		   __u32 bit_offset, __u32 bit_size)
2013 {
2014 	struct btf_type *t;
2015 	struct btf_member *m;
2016 	bool is_bitfield;
2017 	int sz, name_off = 0;
2018 
2019 	/* last type should be union/struct */
2020 	if (btf->nr_types == 0)
2021 		return libbpf_err(-EINVAL);
2022 	t = btf_last_type(btf);
2023 	if (!btf_is_composite(t))
2024 		return libbpf_err(-EINVAL);
2025 
2026 	if (validate_type_id(type_id))
2027 		return libbpf_err(-EINVAL);
2028 	/* best-effort bit field offset/size enforcement */
2029 	is_bitfield = bit_size || (bit_offset % 8 != 0);
2030 	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
2031 		return libbpf_err(-EINVAL);
2032 
2033 	/* only offset 0 is allowed for unions */
2034 	if (btf_is_union(t) && bit_offset)
2035 		return libbpf_err(-EINVAL);
2036 
2037 	/* decompose and invalidate raw data */
2038 	if (btf_ensure_modifiable(btf))
2039 		return libbpf_err(-ENOMEM);
2040 
2041 	sz = sizeof(struct btf_member);
2042 	m = btf_add_type_mem(btf, sz);
2043 	if (!m)
2044 		return libbpf_err(-ENOMEM);
2045 
2046 	if (name && name[0]) {
2047 		name_off = btf__add_str(btf, name);
2048 		if (name_off < 0)
2049 			return name_off;
2050 	}
2051 
2052 	m->name_off = name_off;
2053 	m->type = type_id;
2054 	m->offset = bit_offset | (bit_size << 24);
2055 
2056 	/* btf_add_type_mem can invalidate t pointer */
2057 	t = btf_last_type(btf);
2058 	/* update parent type's vlen and kflag */
2059 	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
2060 
2061 	btf->hdr->type_len += sz;
2062 	btf->hdr->str_off += sz;
2063 	return 0;
2064 }
2065 
2066 static int btf_add_enum_common(struct btf *btf, const char *name, __u32 byte_sz,
2067 			       bool is_signed, __u8 kind)
2068 {
2069 	struct btf_type *t;
2070 	int sz, name_off = 0;
2071 
2072 	/* byte_sz must be power of 2 */
2073 	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2074 		return libbpf_err(-EINVAL);
2075 
2076 	if (btf_ensure_modifiable(btf))
2077 		return libbpf_err(-ENOMEM);
2078 
2079 	sz = sizeof(struct btf_type);
2080 	t = btf_add_type_mem(btf, sz);
2081 	if (!t)
2082 		return libbpf_err(-ENOMEM);
2083 
2084 	if (name && name[0]) {
2085 		name_off = btf__add_str(btf, name);
2086 		if (name_off < 0)
2087 			return name_off;
2088 	}
2089 
2090 	/* start out with vlen=0; it will be adjusted when adding enum values */
2091 	t->name_off = name_off;
2092 	t->info = btf_type_info(kind, 0, is_signed);
2093 	t->size = byte_sz;
2094 
2095 	return btf_commit_type(btf, sz);
2096 }
2097 
2098 /*
2099  * Append new BTF_KIND_ENUM type with:
2100  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2101  *   - *byte_sz* - size of the enum, in bytes.
2102  *
2103  * Enum initially has no enum values in it (and corresponds to enum forward
2104  * declaration). Enumerator values can be added by btf__add_enum_value()
2105  * immediately after btf__add_enum() succeeds.
2106  *
2107  * Returns:
2108  *   - >0, type ID of newly added BTF type;
2109  *   - <0, on error.
2110  */
2111 int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2112 {
2113 	/*
2114 	 * set the signedness to be unsigned, it will change to signed
2115 	 * if any later enumerator is negative.
2116 	 */
2117 	return btf_add_enum_common(btf, name, byte_sz, false, BTF_KIND_ENUM);
2118 }
2119 
2120 /*
2121  * Append new enum value for the current ENUM type with:
2122  *   - *name* - name of the enumerator value, can't be NULL or empty;
2123  *   - *value* - integer value corresponding to enum value *name*;
2124  * Returns:
2125  *   -  0, on success;
2126  *   - <0, on error.
2127  */
2128 int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2129 {
2130 	struct btf_type *t;
2131 	struct btf_enum *v;
2132 	int sz, name_off;
2133 
2134 	/* last type should be BTF_KIND_ENUM */
2135 	if (btf->nr_types == 0)
2136 		return libbpf_err(-EINVAL);
2137 	t = btf_last_type(btf);
2138 	if (!btf_is_enum(t))
2139 		return libbpf_err(-EINVAL);
2140 
2141 	/* non-empty name */
2142 	if (!name || !name[0])
2143 		return libbpf_err(-EINVAL);
2144 	if (value < INT_MIN || value > UINT_MAX)
2145 		return libbpf_err(-E2BIG);
2146 
2147 	/* decompose and invalidate raw data */
2148 	if (btf_ensure_modifiable(btf))
2149 		return libbpf_err(-ENOMEM);
2150 
2151 	sz = sizeof(struct btf_enum);
2152 	v = btf_add_type_mem(btf, sz);
2153 	if (!v)
2154 		return libbpf_err(-ENOMEM);
2155 
2156 	name_off = btf__add_str(btf, name);
2157 	if (name_off < 0)
2158 		return name_off;
2159 
2160 	v->name_off = name_off;
2161 	v->val = value;
2162 
2163 	/* update parent type's vlen */
2164 	t = btf_last_type(btf);
2165 	btf_type_inc_vlen(t);
2166 
2167 	/* if negative value, set signedness to signed */
2168 	if (value < 0)
2169 		t->info = btf_type_info(btf_kind(t), btf_vlen(t), true);
2170 
2171 	btf->hdr->type_len += sz;
2172 	btf->hdr->str_off += sz;
2173 	return 0;
2174 }
2175 
2176 /*
2177  * Append new BTF_KIND_ENUM64 type with:
2178  *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
2179  *   - *byte_sz* - size of the enum, in bytes.
2180  *   - *is_signed* - whether the enum values are signed or not;
2181  *
2182  * Enum initially has no enum values in it (and corresponds to enum forward
2183  * declaration). Enumerator values can be added by btf__add_enum64_value()
2184  * immediately after btf__add_enum64() succeeds.
2185  *
2186  * Returns:
2187  *   - >0, type ID of newly added BTF type;
2188  *   - <0, on error.
2189  */
2190 int btf__add_enum64(struct btf *btf, const char *name, __u32 byte_sz,
2191 		    bool is_signed)
2192 {
2193 	return btf_add_enum_common(btf, name, byte_sz, is_signed,
2194 				   BTF_KIND_ENUM64);
2195 }
2196 
2197 /*
2198  * Append new enum value for the current ENUM64 type with:
2199  *   - *name* - name of the enumerator value, can't be NULL or empty;
2200  *   - *value* - integer value corresponding to enum value *name*;
2201  * Returns:
2202  *   -  0, on success;
2203  *   - <0, on error.
2204  */
2205 int btf__add_enum64_value(struct btf *btf, const char *name, __u64 value)
2206 {
2207 	struct btf_enum64 *v;
2208 	struct btf_type *t;
2209 	int sz, name_off;
2210 
2211 	/* last type should be BTF_KIND_ENUM64 */
2212 	if (btf->nr_types == 0)
2213 		return libbpf_err(-EINVAL);
2214 	t = btf_last_type(btf);
2215 	if (!btf_is_enum64(t))
2216 		return libbpf_err(-EINVAL);
2217 
2218 	/* non-empty name */
2219 	if (!name || !name[0])
2220 		return libbpf_err(-EINVAL);
2221 
2222 	/* decompose and invalidate raw data */
2223 	if (btf_ensure_modifiable(btf))
2224 		return libbpf_err(-ENOMEM);
2225 
2226 	sz = sizeof(struct btf_enum64);
2227 	v = btf_add_type_mem(btf, sz);
2228 	if (!v)
2229 		return libbpf_err(-ENOMEM);
2230 
2231 	name_off = btf__add_str(btf, name);
2232 	if (name_off < 0)
2233 		return name_off;
2234 
2235 	v->name_off = name_off;
2236 	v->val_lo32 = (__u32)value;
2237 	v->val_hi32 = value >> 32;
2238 
2239 	/* update parent type's vlen */
2240 	t = btf_last_type(btf);
2241 	btf_type_inc_vlen(t);
2242 
2243 	btf->hdr->type_len += sz;
2244 	btf->hdr->str_off += sz;
2245 	return 0;
2246 }
2247 
2248 /*
2249  * Append new BTF_KIND_FWD type with:
2250  *   - *name*, non-empty/non-NULL name;
2251  *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2252  *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2253  * Returns:
2254  *   - >0, type ID of newly added BTF type;
2255  *   - <0, on error.
2256  */
2257 int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2258 {
2259 	if (!name || !name[0])
2260 		return libbpf_err(-EINVAL);
2261 
2262 	switch (fwd_kind) {
2263 	case BTF_FWD_STRUCT:
2264 	case BTF_FWD_UNION: {
2265 		struct btf_type *t;
2266 		int id;
2267 
2268 		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2269 		if (id <= 0)
2270 			return id;
2271 		t = btf_type_by_id(btf, id);
2272 		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2273 		return id;
2274 	}
2275 	case BTF_FWD_ENUM:
2276 		/* enum forward in BTF currently is just an enum with no enum
2277 		 * values; we also assume a standard 4-byte size for it
2278 		 */
2279 		return btf__add_enum(btf, name, sizeof(int));
2280 	default:
2281 		return libbpf_err(-EINVAL);
2282 	}
2283 }
2284 
2285 /*
2286  * Append new BTF_KING_TYPEDEF type with:
2287  *   - *name*, non-empty/non-NULL name;
2288  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2289  * Returns:
2290  *   - >0, type ID of newly added BTF type;
2291  *   - <0, on error.
2292  */
2293 int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2294 {
2295 	if (!name || !name[0])
2296 		return libbpf_err(-EINVAL);
2297 
2298 	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2299 }
2300 
2301 /*
2302  * Append new BTF_KIND_VOLATILE type with:
2303  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2304  * Returns:
2305  *   - >0, type ID of newly added BTF type;
2306  *   - <0, on error.
2307  */
2308 int btf__add_volatile(struct btf *btf, int ref_type_id)
2309 {
2310 	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2311 }
2312 
2313 /*
2314  * Append new BTF_KIND_CONST type with:
2315  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2316  * Returns:
2317  *   - >0, type ID of newly added BTF type;
2318  *   - <0, on error.
2319  */
2320 int btf__add_const(struct btf *btf, int ref_type_id)
2321 {
2322 	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2323 }
2324 
2325 /*
2326  * Append new BTF_KIND_RESTRICT type with:
2327  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2328  * Returns:
2329  *   - >0, type ID of newly added BTF type;
2330  *   - <0, on error.
2331  */
2332 int btf__add_restrict(struct btf *btf, int ref_type_id)
2333 {
2334 	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2335 }
2336 
2337 /*
2338  * Append new BTF_KIND_TYPE_TAG type with:
2339  *   - *value*, non-empty/non-NULL tag value;
2340  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2341  * Returns:
2342  *   - >0, type ID of newly added BTF type;
2343  *   - <0, on error.
2344  */
2345 int btf__add_type_tag(struct btf *btf, const char *value, int ref_type_id)
2346 {
2347 	if (!value || !value[0])
2348 		return libbpf_err(-EINVAL);
2349 
2350 	return btf_add_ref_kind(btf, BTF_KIND_TYPE_TAG, value, ref_type_id);
2351 }
2352 
2353 /*
2354  * Append new BTF_KIND_FUNC type with:
2355  *   - *name*, non-empty/non-NULL name;
2356  *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2357  * Returns:
2358  *   - >0, type ID of newly added BTF type;
2359  *   - <0, on error.
2360  */
2361 int btf__add_func(struct btf *btf, const char *name,
2362 		  enum btf_func_linkage linkage, int proto_type_id)
2363 {
2364 	int id;
2365 
2366 	if (!name || !name[0])
2367 		return libbpf_err(-EINVAL);
2368 	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2369 	    linkage != BTF_FUNC_EXTERN)
2370 		return libbpf_err(-EINVAL);
2371 
2372 	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2373 	if (id > 0) {
2374 		struct btf_type *t = btf_type_by_id(btf, id);
2375 
2376 		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2377 	}
2378 	return libbpf_err(id);
2379 }
2380 
2381 /*
2382  * Append new BTF_KIND_FUNC_PROTO with:
2383  *   - *ret_type_id* - type ID for return result of a function.
2384  *
2385  * Function prototype initially has no arguments, but they can be added by
2386  * btf__add_func_param() one by one, immediately after
2387  * btf__add_func_proto() succeeded.
2388  *
2389  * Returns:
2390  *   - >0, type ID of newly added BTF type;
2391  *   - <0, on error.
2392  */
2393 int btf__add_func_proto(struct btf *btf, int ret_type_id)
2394 {
2395 	struct btf_type *t;
2396 	int sz;
2397 
2398 	if (validate_type_id(ret_type_id))
2399 		return libbpf_err(-EINVAL);
2400 
2401 	if (btf_ensure_modifiable(btf))
2402 		return libbpf_err(-ENOMEM);
2403 
2404 	sz = sizeof(struct btf_type);
2405 	t = btf_add_type_mem(btf, sz);
2406 	if (!t)
2407 		return libbpf_err(-ENOMEM);
2408 
2409 	/* start out with vlen=0; this will be adjusted when adding enum
2410 	 * values, if necessary
2411 	 */
2412 	t->name_off = 0;
2413 	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2414 	t->type = ret_type_id;
2415 
2416 	return btf_commit_type(btf, sz);
2417 }
2418 
2419 /*
2420  * Append new function parameter for current FUNC_PROTO type with:
2421  *   - *name* - parameter name, can be NULL or empty;
2422  *   - *type_id* - type ID describing the type of the parameter.
2423  * Returns:
2424  *   -  0, on success;
2425  *   - <0, on error.
2426  */
2427 int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2428 {
2429 	struct btf_type *t;
2430 	struct btf_param *p;
2431 	int sz, name_off = 0;
2432 
2433 	if (validate_type_id(type_id))
2434 		return libbpf_err(-EINVAL);
2435 
2436 	/* last type should be BTF_KIND_FUNC_PROTO */
2437 	if (btf->nr_types == 0)
2438 		return libbpf_err(-EINVAL);
2439 	t = btf_last_type(btf);
2440 	if (!btf_is_func_proto(t))
2441 		return libbpf_err(-EINVAL);
2442 
2443 	/* decompose and invalidate raw data */
2444 	if (btf_ensure_modifiable(btf))
2445 		return libbpf_err(-ENOMEM);
2446 
2447 	sz = sizeof(struct btf_param);
2448 	p = btf_add_type_mem(btf, sz);
2449 	if (!p)
2450 		return libbpf_err(-ENOMEM);
2451 
2452 	if (name && name[0]) {
2453 		name_off = btf__add_str(btf, name);
2454 		if (name_off < 0)
2455 			return name_off;
2456 	}
2457 
2458 	p->name_off = name_off;
2459 	p->type = type_id;
2460 
2461 	/* update parent type's vlen */
2462 	t = btf_last_type(btf);
2463 	btf_type_inc_vlen(t);
2464 
2465 	btf->hdr->type_len += sz;
2466 	btf->hdr->str_off += sz;
2467 	return 0;
2468 }
2469 
2470 /*
2471  * Append new BTF_KIND_VAR type with:
2472  *   - *name* - non-empty/non-NULL name;
2473  *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2474  *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2475  *   - *type_id* - type ID of the type describing the type of the variable.
2476  * Returns:
2477  *   - >0, type ID of newly added BTF type;
2478  *   - <0, on error.
2479  */
2480 int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2481 {
2482 	struct btf_type *t;
2483 	struct btf_var *v;
2484 	int sz, name_off;
2485 
2486 	/* non-empty name */
2487 	if (!name || !name[0])
2488 		return libbpf_err(-EINVAL);
2489 	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2490 	    linkage != BTF_VAR_GLOBAL_EXTERN)
2491 		return libbpf_err(-EINVAL);
2492 	if (validate_type_id(type_id))
2493 		return libbpf_err(-EINVAL);
2494 
2495 	/* deconstruct BTF, if necessary, and invalidate raw_data */
2496 	if (btf_ensure_modifiable(btf))
2497 		return libbpf_err(-ENOMEM);
2498 
2499 	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2500 	t = btf_add_type_mem(btf, sz);
2501 	if (!t)
2502 		return libbpf_err(-ENOMEM);
2503 
2504 	name_off = btf__add_str(btf, name);
2505 	if (name_off < 0)
2506 		return name_off;
2507 
2508 	t->name_off = name_off;
2509 	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2510 	t->type = type_id;
2511 
2512 	v = btf_var(t);
2513 	v->linkage = linkage;
2514 
2515 	return btf_commit_type(btf, sz);
2516 }
2517 
2518 /*
2519  * Append new BTF_KIND_DATASEC type with:
2520  *   - *name* - non-empty/non-NULL name;
2521  *   - *byte_sz* - data section size, in bytes.
2522  *
2523  * Data section is initially empty. Variables info can be added with
2524  * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2525  *
2526  * Returns:
2527  *   - >0, type ID of newly added BTF type;
2528  *   - <0, on error.
2529  */
2530 int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2531 {
2532 	struct btf_type *t;
2533 	int sz, name_off;
2534 
2535 	/* non-empty name */
2536 	if (!name || !name[0])
2537 		return libbpf_err(-EINVAL);
2538 
2539 	if (btf_ensure_modifiable(btf))
2540 		return libbpf_err(-ENOMEM);
2541 
2542 	sz = sizeof(struct btf_type);
2543 	t = btf_add_type_mem(btf, sz);
2544 	if (!t)
2545 		return libbpf_err(-ENOMEM);
2546 
2547 	name_off = btf__add_str(btf, name);
2548 	if (name_off < 0)
2549 		return name_off;
2550 
2551 	/* start with vlen=0, which will be update as var_secinfos are added */
2552 	t->name_off = name_off;
2553 	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2554 	t->size = byte_sz;
2555 
2556 	return btf_commit_type(btf, sz);
2557 }
2558 
2559 /*
2560  * Append new data section variable information entry for current DATASEC type:
2561  *   - *var_type_id* - type ID, describing type of the variable;
2562  *   - *offset* - variable offset within data section, in bytes;
2563  *   - *byte_sz* - variable size, in bytes.
2564  *
2565  * Returns:
2566  *   -  0, on success;
2567  *   - <0, on error.
2568  */
2569 int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2570 {
2571 	struct btf_type *t;
2572 	struct btf_var_secinfo *v;
2573 	int sz;
2574 
2575 	/* last type should be BTF_KIND_DATASEC */
2576 	if (btf->nr_types == 0)
2577 		return libbpf_err(-EINVAL);
2578 	t = btf_last_type(btf);
2579 	if (!btf_is_datasec(t))
2580 		return libbpf_err(-EINVAL);
2581 
2582 	if (validate_type_id(var_type_id))
2583 		return libbpf_err(-EINVAL);
2584 
2585 	/* decompose and invalidate raw data */
2586 	if (btf_ensure_modifiable(btf))
2587 		return libbpf_err(-ENOMEM);
2588 
2589 	sz = sizeof(struct btf_var_secinfo);
2590 	v = btf_add_type_mem(btf, sz);
2591 	if (!v)
2592 		return libbpf_err(-ENOMEM);
2593 
2594 	v->type = var_type_id;
2595 	v->offset = offset;
2596 	v->size = byte_sz;
2597 
2598 	/* update parent type's vlen */
2599 	t = btf_last_type(btf);
2600 	btf_type_inc_vlen(t);
2601 
2602 	btf->hdr->type_len += sz;
2603 	btf->hdr->str_off += sz;
2604 	return 0;
2605 }
2606 
2607 /*
2608  * Append new BTF_KIND_DECL_TAG type with:
2609  *   - *value* - non-empty/non-NULL string;
2610  *   - *ref_type_id* - referenced type ID, it might not exist yet;
2611  *   - *component_idx* - -1 for tagging reference type, otherwise struct/union
2612  *     member or function argument index;
2613  * Returns:
2614  *   - >0, type ID of newly added BTF type;
2615  *   - <0, on error.
2616  */
2617 int btf__add_decl_tag(struct btf *btf, const char *value, int ref_type_id,
2618 		 int component_idx)
2619 {
2620 	struct btf_type *t;
2621 	int sz, value_off;
2622 
2623 	if (!value || !value[0] || component_idx < -1)
2624 		return libbpf_err(-EINVAL);
2625 
2626 	if (validate_type_id(ref_type_id))
2627 		return libbpf_err(-EINVAL);
2628 
2629 	if (btf_ensure_modifiable(btf))
2630 		return libbpf_err(-ENOMEM);
2631 
2632 	sz = sizeof(struct btf_type) + sizeof(struct btf_decl_tag);
2633 	t = btf_add_type_mem(btf, sz);
2634 	if (!t)
2635 		return libbpf_err(-ENOMEM);
2636 
2637 	value_off = btf__add_str(btf, value);
2638 	if (value_off < 0)
2639 		return value_off;
2640 
2641 	t->name_off = value_off;
2642 	t->info = btf_type_info(BTF_KIND_DECL_TAG, 0, false);
2643 	t->type = ref_type_id;
2644 	btf_decl_tag(t)->component_idx = component_idx;
2645 
2646 	return btf_commit_type(btf, sz);
2647 }
2648 
2649 struct btf_ext_sec_setup_param {
2650 	__u32 off;
2651 	__u32 len;
2652 	__u32 min_rec_size;
2653 	struct btf_ext_info *ext_info;
2654 	const char *desc;
2655 };
2656 
2657 static int btf_ext_setup_info(struct btf_ext *btf_ext,
2658 			      struct btf_ext_sec_setup_param *ext_sec)
2659 {
2660 	const struct btf_ext_info_sec *sinfo;
2661 	struct btf_ext_info *ext_info;
2662 	__u32 info_left, record_size;
2663 	size_t sec_cnt = 0;
2664 	/* The start of the info sec (including the __u32 record_size). */
2665 	void *info;
2666 
2667 	if (ext_sec->len == 0)
2668 		return 0;
2669 
2670 	if (ext_sec->off & 0x03) {
2671 		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2672 		     ext_sec->desc);
2673 		return -EINVAL;
2674 	}
2675 
2676 	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2677 	info_left = ext_sec->len;
2678 
2679 	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2680 		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2681 			 ext_sec->desc, ext_sec->off, ext_sec->len);
2682 		return -EINVAL;
2683 	}
2684 
2685 	/* At least a record size */
2686 	if (info_left < sizeof(__u32)) {
2687 		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2688 		return -EINVAL;
2689 	}
2690 
2691 	/* The record size needs to meet the minimum standard */
2692 	record_size = *(__u32 *)info;
2693 	if (record_size < ext_sec->min_rec_size ||
2694 	    record_size & 0x03) {
2695 		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2696 			 ext_sec->desc, record_size);
2697 		return -EINVAL;
2698 	}
2699 
2700 	sinfo = info + sizeof(__u32);
2701 	info_left -= sizeof(__u32);
2702 
2703 	/* If no records, return failure now so .BTF.ext won't be used. */
2704 	if (!info_left) {
2705 		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2706 		return -EINVAL;
2707 	}
2708 
2709 	while (info_left) {
2710 		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2711 		__u64 total_record_size;
2712 		__u32 num_records;
2713 
2714 		if (info_left < sec_hdrlen) {
2715 			pr_debug("%s section header is not found in .BTF.ext\n",
2716 			     ext_sec->desc);
2717 			return -EINVAL;
2718 		}
2719 
2720 		num_records = sinfo->num_info;
2721 		if (num_records == 0) {
2722 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2723 			     ext_sec->desc);
2724 			return -EINVAL;
2725 		}
2726 
2727 		total_record_size = sec_hdrlen + (__u64)num_records * record_size;
2728 		if (info_left < total_record_size) {
2729 			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2730 			     ext_sec->desc);
2731 			return -EINVAL;
2732 		}
2733 
2734 		info_left -= total_record_size;
2735 		sinfo = (void *)sinfo + total_record_size;
2736 		sec_cnt++;
2737 	}
2738 
2739 	ext_info = ext_sec->ext_info;
2740 	ext_info->len = ext_sec->len - sizeof(__u32);
2741 	ext_info->rec_size = record_size;
2742 	ext_info->info = info + sizeof(__u32);
2743 	ext_info->sec_cnt = sec_cnt;
2744 
2745 	return 0;
2746 }
2747 
2748 static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2749 {
2750 	struct btf_ext_sec_setup_param param = {
2751 		.off = btf_ext->hdr->func_info_off,
2752 		.len = btf_ext->hdr->func_info_len,
2753 		.min_rec_size = sizeof(struct bpf_func_info_min),
2754 		.ext_info = &btf_ext->func_info,
2755 		.desc = "func_info"
2756 	};
2757 
2758 	return btf_ext_setup_info(btf_ext, &param);
2759 }
2760 
2761 static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2762 {
2763 	struct btf_ext_sec_setup_param param = {
2764 		.off = btf_ext->hdr->line_info_off,
2765 		.len = btf_ext->hdr->line_info_len,
2766 		.min_rec_size = sizeof(struct bpf_line_info_min),
2767 		.ext_info = &btf_ext->line_info,
2768 		.desc = "line_info",
2769 	};
2770 
2771 	return btf_ext_setup_info(btf_ext, &param);
2772 }
2773 
2774 static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2775 {
2776 	struct btf_ext_sec_setup_param param = {
2777 		.off = btf_ext->hdr->core_relo_off,
2778 		.len = btf_ext->hdr->core_relo_len,
2779 		.min_rec_size = sizeof(struct bpf_core_relo),
2780 		.ext_info = &btf_ext->core_relo_info,
2781 		.desc = "core_relo",
2782 	};
2783 
2784 	return btf_ext_setup_info(btf_ext, &param);
2785 }
2786 
2787 static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2788 {
2789 	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2790 
2791 	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2792 	    data_size < hdr->hdr_len) {
2793 		pr_debug("BTF.ext header not found");
2794 		return -EINVAL;
2795 	}
2796 
2797 	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2798 		pr_warn("BTF.ext in non-native endianness is not supported\n");
2799 		return -ENOTSUP;
2800 	} else if (hdr->magic != BTF_MAGIC) {
2801 		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2802 		return -EINVAL;
2803 	}
2804 
2805 	if (hdr->version != BTF_VERSION) {
2806 		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2807 		return -ENOTSUP;
2808 	}
2809 
2810 	if (hdr->flags) {
2811 		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2812 		return -ENOTSUP;
2813 	}
2814 
2815 	if (data_size == hdr->hdr_len) {
2816 		pr_debug("BTF.ext has no data\n");
2817 		return -EINVAL;
2818 	}
2819 
2820 	return 0;
2821 }
2822 
2823 void btf_ext__free(struct btf_ext *btf_ext)
2824 {
2825 	if (IS_ERR_OR_NULL(btf_ext))
2826 		return;
2827 	free(btf_ext->func_info.sec_idxs);
2828 	free(btf_ext->line_info.sec_idxs);
2829 	free(btf_ext->core_relo_info.sec_idxs);
2830 	free(btf_ext->data);
2831 	free(btf_ext);
2832 }
2833 
2834 struct btf_ext *btf_ext__new(const __u8 *data, __u32 size)
2835 {
2836 	struct btf_ext *btf_ext;
2837 	int err;
2838 
2839 	btf_ext = calloc(1, sizeof(struct btf_ext));
2840 	if (!btf_ext)
2841 		return libbpf_err_ptr(-ENOMEM);
2842 
2843 	btf_ext->data_size = size;
2844 	btf_ext->data = malloc(size);
2845 	if (!btf_ext->data) {
2846 		err = -ENOMEM;
2847 		goto done;
2848 	}
2849 	memcpy(btf_ext->data, data, size);
2850 
2851 	err = btf_ext_parse_hdr(btf_ext->data, size);
2852 	if (err)
2853 		goto done;
2854 
2855 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2856 		err = -EINVAL;
2857 		goto done;
2858 	}
2859 
2860 	err = btf_ext_setup_func_info(btf_ext);
2861 	if (err)
2862 		goto done;
2863 
2864 	err = btf_ext_setup_line_info(btf_ext);
2865 	if (err)
2866 		goto done;
2867 
2868 	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len))
2869 		goto done; /* skip core relos parsing */
2870 
2871 	err = btf_ext_setup_core_relos(btf_ext);
2872 	if (err)
2873 		goto done;
2874 
2875 done:
2876 	if (err) {
2877 		btf_ext__free(btf_ext);
2878 		return libbpf_err_ptr(err);
2879 	}
2880 
2881 	return btf_ext;
2882 }
2883 
2884 const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2885 {
2886 	*size = btf_ext->data_size;
2887 	return btf_ext->data;
2888 }
2889 
2890 struct btf_dedup;
2891 
2892 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts);
2893 static void btf_dedup_free(struct btf_dedup *d);
2894 static int btf_dedup_prep(struct btf_dedup *d);
2895 static int btf_dedup_strings(struct btf_dedup *d);
2896 static int btf_dedup_prim_types(struct btf_dedup *d);
2897 static int btf_dedup_struct_types(struct btf_dedup *d);
2898 static int btf_dedup_ref_types(struct btf_dedup *d);
2899 static int btf_dedup_resolve_fwds(struct btf_dedup *d);
2900 static int btf_dedup_compact_types(struct btf_dedup *d);
2901 static int btf_dedup_remap_types(struct btf_dedup *d);
2902 
2903 /*
2904  * Deduplicate BTF types and strings.
2905  *
2906  * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2907  * section with all BTF type descriptors and string data. It overwrites that
2908  * memory in-place with deduplicated types and strings without any loss of
2909  * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2910  * is provided, all the strings referenced from .BTF.ext section are honored
2911  * and updated to point to the right offsets after deduplication.
2912  *
2913  * If function returns with error, type/string data might be garbled and should
2914  * be discarded.
2915  *
2916  * More verbose and detailed description of both problem btf_dedup is solving,
2917  * as well as solution could be found at:
2918  * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2919  *
2920  * Problem description and justification
2921  * =====================================
2922  *
2923  * BTF type information is typically emitted either as a result of conversion
2924  * from DWARF to BTF or directly by compiler. In both cases, each compilation
2925  * unit contains information about a subset of all the types that are used
2926  * in an application. These subsets are frequently overlapping and contain a lot
2927  * of duplicated information when later concatenated together into a single
2928  * binary. This algorithm ensures that each unique type is represented by single
2929  * BTF type descriptor, greatly reducing resulting size of BTF data.
2930  *
2931  * Compilation unit isolation and subsequent duplication of data is not the only
2932  * problem. The same type hierarchy (e.g., struct and all the type that struct
2933  * references) in different compilation units can be represented in BTF to
2934  * various degrees of completeness (or, rather, incompleteness) due to
2935  * struct/union forward declarations.
2936  *
2937  * Let's take a look at an example, that we'll use to better understand the
2938  * problem (and solution). Suppose we have two compilation units, each using
2939  * same `struct S`, but each of them having incomplete type information about
2940  * struct's fields:
2941  *
2942  * // CU #1:
2943  * struct S;
2944  * struct A {
2945  *	int a;
2946  *	struct A* self;
2947  *	struct S* parent;
2948  * };
2949  * struct B;
2950  * struct S {
2951  *	struct A* a_ptr;
2952  *	struct B* b_ptr;
2953  * };
2954  *
2955  * // CU #2:
2956  * struct S;
2957  * struct A;
2958  * struct B {
2959  *	int b;
2960  *	struct B* self;
2961  *	struct S* parent;
2962  * };
2963  * struct S {
2964  *	struct A* a_ptr;
2965  *	struct B* b_ptr;
2966  * };
2967  *
2968  * In case of CU #1, BTF data will know only that `struct B` exist (but no
2969  * more), but will know the complete type information about `struct A`. While
2970  * for CU #2, it will know full type information about `struct B`, but will
2971  * only know about forward declaration of `struct A` (in BTF terms, it will
2972  * have `BTF_KIND_FWD` type descriptor with name `B`).
2973  *
2974  * This compilation unit isolation means that it's possible that there is no
2975  * single CU with complete type information describing structs `S`, `A`, and
2976  * `B`. Also, we might get tons of duplicated and redundant type information.
2977  *
2978  * Additional complication we need to keep in mind comes from the fact that
2979  * types, in general, can form graphs containing cycles, not just DAGs.
2980  *
2981  * While algorithm does deduplication, it also merges and resolves type
2982  * information (unless disabled throught `struct btf_opts`), whenever possible.
2983  * E.g., in the example above with two compilation units having partial type
2984  * information for structs `A` and `B`, the output of algorithm will emit
2985  * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2986  * (as well as type information for `int` and pointers), as if they were defined
2987  * in a single compilation unit as:
2988  *
2989  * struct A {
2990  *	int a;
2991  *	struct A* self;
2992  *	struct S* parent;
2993  * };
2994  * struct B {
2995  *	int b;
2996  *	struct B* self;
2997  *	struct S* parent;
2998  * };
2999  * struct S {
3000  *	struct A* a_ptr;
3001  *	struct B* b_ptr;
3002  * };
3003  *
3004  * Algorithm summary
3005  * =================
3006  *
3007  * Algorithm completes its work in 7 separate passes:
3008  *
3009  * 1. Strings deduplication.
3010  * 2. Primitive types deduplication (int, enum, fwd).
3011  * 3. Struct/union types deduplication.
3012  * 4. Resolve unambiguous forward declarations.
3013  * 5. Reference types deduplication (pointers, typedefs, arrays, funcs, func
3014  *    protos, and const/volatile/restrict modifiers).
3015  * 6. Types compaction.
3016  * 7. Types remapping.
3017  *
3018  * Algorithm determines canonical type descriptor, which is a single
3019  * representative type for each truly unique type. This canonical type is the
3020  * one that will go into final deduplicated BTF type information. For
3021  * struct/unions, it is also the type that algorithm will merge additional type
3022  * information into (while resolving FWDs), as it discovers it from data in
3023  * other CUs. Each input BTF type eventually gets either mapped to itself, if
3024  * that type is canonical, or to some other type, if that type is equivalent
3025  * and was chosen as canonical representative. This mapping is stored in
3026  * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
3027  * FWD type got resolved to.
3028  *
3029  * To facilitate fast discovery of canonical types, we also maintain canonical
3030  * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
3031  * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
3032  * that match that signature. With sufficiently good choice of type signature
3033  * hashing function, we can limit number of canonical types for each unique type
3034  * signature to a very small number, allowing to find canonical type for any
3035  * duplicated type very quickly.
3036  *
3037  * Struct/union deduplication is the most critical part and algorithm for
3038  * deduplicating structs/unions is described in greater details in comments for
3039  * `btf_dedup_is_equiv` function.
3040  */
3041 int btf__dedup(struct btf *btf, const struct btf_dedup_opts *opts)
3042 {
3043 	struct btf_dedup *d;
3044 	int err;
3045 
3046 	if (!OPTS_VALID(opts, btf_dedup_opts))
3047 		return libbpf_err(-EINVAL);
3048 
3049 	d = btf_dedup_new(btf, opts);
3050 	if (IS_ERR(d)) {
3051 		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
3052 		return libbpf_err(-EINVAL);
3053 	}
3054 
3055 	if (btf_ensure_modifiable(btf)) {
3056 		err = -ENOMEM;
3057 		goto done;
3058 	}
3059 
3060 	err = btf_dedup_prep(d);
3061 	if (err) {
3062 		pr_debug("btf_dedup_prep failed:%d\n", err);
3063 		goto done;
3064 	}
3065 	err = btf_dedup_strings(d);
3066 	if (err < 0) {
3067 		pr_debug("btf_dedup_strings failed:%d\n", err);
3068 		goto done;
3069 	}
3070 	err = btf_dedup_prim_types(d);
3071 	if (err < 0) {
3072 		pr_debug("btf_dedup_prim_types failed:%d\n", err);
3073 		goto done;
3074 	}
3075 	err = btf_dedup_struct_types(d);
3076 	if (err < 0) {
3077 		pr_debug("btf_dedup_struct_types failed:%d\n", err);
3078 		goto done;
3079 	}
3080 	err = btf_dedup_resolve_fwds(d);
3081 	if (err < 0) {
3082 		pr_debug("btf_dedup_resolve_fwds failed:%d\n", err);
3083 		goto done;
3084 	}
3085 	err = btf_dedup_ref_types(d);
3086 	if (err < 0) {
3087 		pr_debug("btf_dedup_ref_types failed:%d\n", err);
3088 		goto done;
3089 	}
3090 	err = btf_dedup_compact_types(d);
3091 	if (err < 0) {
3092 		pr_debug("btf_dedup_compact_types failed:%d\n", err);
3093 		goto done;
3094 	}
3095 	err = btf_dedup_remap_types(d);
3096 	if (err < 0) {
3097 		pr_debug("btf_dedup_remap_types failed:%d\n", err);
3098 		goto done;
3099 	}
3100 
3101 done:
3102 	btf_dedup_free(d);
3103 	return libbpf_err(err);
3104 }
3105 
3106 #define BTF_UNPROCESSED_ID ((__u32)-1)
3107 #define BTF_IN_PROGRESS_ID ((__u32)-2)
3108 
3109 struct btf_dedup {
3110 	/* .BTF section to be deduped in-place */
3111 	struct btf *btf;
3112 	/*
3113 	 * Optional .BTF.ext section. When provided, any strings referenced
3114 	 * from it will be taken into account when deduping strings
3115 	 */
3116 	struct btf_ext *btf_ext;
3117 	/*
3118 	 * This is a map from any type's signature hash to a list of possible
3119 	 * canonical representative type candidates. Hash collisions are
3120 	 * ignored, so even types of various kinds can share same list of
3121 	 * candidates, which is fine because we rely on subsequent
3122 	 * btf_xxx_equal() checks to authoritatively verify type equality.
3123 	 */
3124 	struct hashmap *dedup_table;
3125 	/* Canonical types map */
3126 	__u32 *map;
3127 	/* Hypothetical mapping, used during type graph equivalence checks */
3128 	__u32 *hypot_map;
3129 	__u32 *hypot_list;
3130 	size_t hypot_cnt;
3131 	size_t hypot_cap;
3132 	/* Whether hypothetical mapping, if successful, would need to adjust
3133 	 * already canonicalized types (due to a new forward declaration to
3134 	 * concrete type resolution). In such case, during split BTF dedup
3135 	 * candidate type would still be considered as different, because base
3136 	 * BTF is considered to be immutable.
3137 	 */
3138 	bool hypot_adjust_canon;
3139 	/* Various option modifying behavior of algorithm */
3140 	struct btf_dedup_opts opts;
3141 	/* temporary strings deduplication state */
3142 	struct strset *strs_set;
3143 };
3144 
3145 static long hash_combine(long h, long value)
3146 {
3147 	return h * 31 + value;
3148 }
3149 
3150 #define for_each_dedup_cand(d, node, hash) \
3151 	hashmap__for_each_key_entry(d->dedup_table, node, hash)
3152 
3153 static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
3154 {
3155 	return hashmap__append(d->dedup_table, hash, type_id);
3156 }
3157 
3158 static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3159 				   __u32 from_id, __u32 to_id)
3160 {
3161 	if (d->hypot_cnt == d->hypot_cap) {
3162 		__u32 *new_list;
3163 
3164 		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3165 		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3166 		if (!new_list)
3167 			return -ENOMEM;
3168 		d->hypot_list = new_list;
3169 	}
3170 	d->hypot_list[d->hypot_cnt++] = from_id;
3171 	d->hypot_map[from_id] = to_id;
3172 	return 0;
3173 }
3174 
3175 static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3176 {
3177 	int i;
3178 
3179 	for (i = 0; i < d->hypot_cnt; i++)
3180 		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3181 	d->hypot_cnt = 0;
3182 	d->hypot_adjust_canon = false;
3183 }
3184 
3185 static void btf_dedup_free(struct btf_dedup *d)
3186 {
3187 	hashmap__free(d->dedup_table);
3188 	d->dedup_table = NULL;
3189 
3190 	free(d->map);
3191 	d->map = NULL;
3192 
3193 	free(d->hypot_map);
3194 	d->hypot_map = NULL;
3195 
3196 	free(d->hypot_list);
3197 	d->hypot_list = NULL;
3198 
3199 	free(d);
3200 }
3201 
3202 static size_t btf_dedup_identity_hash_fn(long key, void *ctx)
3203 {
3204 	return key;
3205 }
3206 
3207 static size_t btf_dedup_collision_hash_fn(long key, void *ctx)
3208 {
3209 	return 0;
3210 }
3211 
3212 static bool btf_dedup_equal_fn(long k1, long k2, void *ctx)
3213 {
3214 	return k1 == k2;
3215 }
3216 
3217 static struct btf_dedup *btf_dedup_new(struct btf *btf, const struct btf_dedup_opts *opts)
3218 {
3219 	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3220 	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3221 	int i, err = 0, type_cnt;
3222 
3223 	if (!d)
3224 		return ERR_PTR(-ENOMEM);
3225 
3226 	if (OPTS_GET(opts, force_collisions, false))
3227 		hash_fn = btf_dedup_collision_hash_fn;
3228 
3229 	d->btf = btf;
3230 	d->btf_ext = OPTS_GET(opts, btf_ext, NULL);
3231 
3232 	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3233 	if (IS_ERR(d->dedup_table)) {
3234 		err = PTR_ERR(d->dedup_table);
3235 		d->dedup_table = NULL;
3236 		goto done;
3237 	}
3238 
3239 	type_cnt = btf__type_cnt(btf);
3240 	d->map = malloc(sizeof(__u32) * type_cnt);
3241 	if (!d->map) {
3242 		err = -ENOMEM;
3243 		goto done;
3244 	}
3245 	/* special BTF "void" type is made canonical immediately */
3246 	d->map[0] = 0;
3247 	for (i = 1; i < type_cnt; i++) {
3248 		struct btf_type *t = btf_type_by_id(d->btf, i);
3249 
3250 		/* VAR and DATASEC are never deduped and are self-canonical */
3251 		if (btf_is_var(t) || btf_is_datasec(t))
3252 			d->map[i] = i;
3253 		else
3254 			d->map[i] = BTF_UNPROCESSED_ID;
3255 	}
3256 
3257 	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3258 	if (!d->hypot_map) {
3259 		err = -ENOMEM;
3260 		goto done;
3261 	}
3262 	for (i = 0; i < type_cnt; i++)
3263 		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3264 
3265 done:
3266 	if (err) {
3267 		btf_dedup_free(d);
3268 		return ERR_PTR(err);
3269 	}
3270 
3271 	return d;
3272 }
3273 
3274 /*
3275  * Iterate over all possible places in .BTF and .BTF.ext that can reference
3276  * string and pass pointer to it to a provided callback `fn`.
3277  */
3278 static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3279 {
3280 	int i, r;
3281 
3282 	for (i = 0; i < d->btf->nr_types; i++) {
3283 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3284 
3285 		r = btf_type_visit_str_offs(t, fn, ctx);
3286 		if (r)
3287 			return r;
3288 	}
3289 
3290 	if (!d->btf_ext)
3291 		return 0;
3292 
3293 	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3294 	if (r)
3295 		return r;
3296 
3297 	return 0;
3298 }
3299 
3300 static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3301 {
3302 	struct btf_dedup *d = ctx;
3303 	__u32 str_off = *str_off_ptr;
3304 	const char *s;
3305 	int off, err;
3306 
3307 	/* don't touch empty string or string in main BTF */
3308 	if (str_off == 0 || str_off < d->btf->start_str_off)
3309 		return 0;
3310 
3311 	s = btf__str_by_offset(d->btf, str_off);
3312 	if (d->btf->base_btf) {
3313 		err = btf__find_str(d->btf->base_btf, s);
3314 		if (err >= 0) {
3315 			*str_off_ptr = err;
3316 			return 0;
3317 		}
3318 		if (err != -ENOENT)
3319 			return err;
3320 	}
3321 
3322 	off = strset__add_str(d->strs_set, s);
3323 	if (off < 0)
3324 		return off;
3325 
3326 	*str_off_ptr = d->btf->start_str_off + off;
3327 	return 0;
3328 }
3329 
3330 /*
3331  * Dedup string and filter out those that are not referenced from either .BTF
3332  * or .BTF.ext (if provided) sections.
3333  *
3334  * This is done by building index of all strings in BTF's string section,
3335  * then iterating over all entities that can reference strings (e.g., type
3336  * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3337  * strings as used. After that all used strings are deduped and compacted into
3338  * sequential blob of memory and new offsets are calculated. Then all the string
3339  * references are iterated again and rewritten using new offsets.
3340  */
3341 static int btf_dedup_strings(struct btf_dedup *d)
3342 {
3343 	int err;
3344 
3345 	if (d->btf->strs_deduped)
3346 		return 0;
3347 
3348 	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3349 	if (IS_ERR(d->strs_set)) {
3350 		err = PTR_ERR(d->strs_set);
3351 		goto err_out;
3352 	}
3353 
3354 	if (!d->btf->base_btf) {
3355 		/* insert empty string; we won't be looking it up during strings
3356 		 * dedup, but it's good to have it for generic BTF string lookups
3357 		 */
3358 		err = strset__add_str(d->strs_set, "");
3359 		if (err < 0)
3360 			goto err_out;
3361 	}
3362 
3363 	/* remap string offsets */
3364 	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3365 	if (err)
3366 		goto err_out;
3367 
3368 	/* replace BTF string data and hash with deduped ones */
3369 	strset__free(d->btf->strs_set);
3370 	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3371 	d->btf->strs_set = d->strs_set;
3372 	d->strs_set = NULL;
3373 	d->btf->strs_deduped = true;
3374 	return 0;
3375 
3376 err_out:
3377 	strset__free(d->strs_set);
3378 	d->strs_set = NULL;
3379 
3380 	return err;
3381 }
3382 
3383 static long btf_hash_common(struct btf_type *t)
3384 {
3385 	long h;
3386 
3387 	h = hash_combine(0, t->name_off);
3388 	h = hash_combine(h, t->info);
3389 	h = hash_combine(h, t->size);
3390 	return h;
3391 }
3392 
3393 static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3394 {
3395 	return t1->name_off == t2->name_off &&
3396 	       t1->info == t2->info &&
3397 	       t1->size == t2->size;
3398 }
3399 
3400 /* Calculate type signature hash of INT or TAG. */
3401 static long btf_hash_int_decl_tag(struct btf_type *t)
3402 {
3403 	__u32 info = *(__u32 *)(t + 1);
3404 	long h;
3405 
3406 	h = btf_hash_common(t);
3407 	h = hash_combine(h, info);
3408 	return h;
3409 }
3410 
3411 /* Check structural equality of two INTs or TAGs. */
3412 static bool btf_equal_int_tag(struct btf_type *t1, struct btf_type *t2)
3413 {
3414 	__u32 info1, info2;
3415 
3416 	if (!btf_equal_common(t1, t2))
3417 		return false;
3418 	info1 = *(__u32 *)(t1 + 1);
3419 	info2 = *(__u32 *)(t2 + 1);
3420 	return info1 == info2;
3421 }
3422 
3423 /* Calculate type signature hash of ENUM/ENUM64. */
3424 static long btf_hash_enum(struct btf_type *t)
3425 {
3426 	long h;
3427 
3428 	/* don't hash vlen, enum members and size to support enum fwd resolving */
3429 	h = hash_combine(0, t->name_off);
3430 	return h;
3431 }
3432 
3433 static bool btf_equal_enum_members(struct btf_type *t1, struct btf_type *t2)
3434 {
3435 	const struct btf_enum *m1, *m2;
3436 	__u16 vlen;
3437 	int i;
3438 
3439 	vlen = btf_vlen(t1);
3440 	m1 = btf_enum(t1);
3441 	m2 = btf_enum(t2);
3442 	for (i = 0; i < vlen; i++) {
3443 		if (m1->name_off != m2->name_off || m1->val != m2->val)
3444 			return false;
3445 		m1++;
3446 		m2++;
3447 	}
3448 	return true;
3449 }
3450 
3451 static bool btf_equal_enum64_members(struct btf_type *t1, struct btf_type *t2)
3452 {
3453 	const struct btf_enum64 *m1, *m2;
3454 	__u16 vlen;
3455 	int i;
3456 
3457 	vlen = btf_vlen(t1);
3458 	m1 = btf_enum64(t1);
3459 	m2 = btf_enum64(t2);
3460 	for (i = 0; i < vlen; i++) {
3461 		if (m1->name_off != m2->name_off || m1->val_lo32 != m2->val_lo32 ||
3462 		    m1->val_hi32 != m2->val_hi32)
3463 			return false;
3464 		m1++;
3465 		m2++;
3466 	}
3467 	return true;
3468 }
3469 
3470 /* Check structural equality of two ENUMs or ENUM64s. */
3471 static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3472 {
3473 	if (!btf_equal_common(t1, t2))
3474 		return false;
3475 
3476 	/* t1 & t2 kinds are identical because of btf_equal_common */
3477 	if (btf_kind(t1) == BTF_KIND_ENUM)
3478 		return btf_equal_enum_members(t1, t2);
3479 	else
3480 		return btf_equal_enum64_members(t1, t2);
3481 }
3482 
3483 static inline bool btf_is_enum_fwd(struct btf_type *t)
3484 {
3485 	return btf_is_any_enum(t) && btf_vlen(t) == 0;
3486 }
3487 
3488 static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3489 {
3490 	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3491 		return btf_equal_enum(t1, t2);
3492 	/* At this point either t1 or t2 or both are forward declarations, thus:
3493 	 * - skip comparing vlen because it is zero for forward declarations;
3494 	 * - skip comparing size to allow enum forward declarations
3495 	 *   to be compatible with enum64 full declarations;
3496 	 * - skip comparing kind for the same reason.
3497 	 */
3498 	return t1->name_off == t2->name_off &&
3499 	       btf_is_any_enum(t1) && btf_is_any_enum(t2);
3500 }
3501 
3502 /*
3503  * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3504  * as referenced type IDs equivalence is established separately during type
3505  * graph equivalence check algorithm.
3506  */
3507 static long btf_hash_struct(struct btf_type *t)
3508 {
3509 	const struct btf_member *member = btf_members(t);
3510 	__u32 vlen = btf_vlen(t);
3511 	long h = btf_hash_common(t);
3512 	int i;
3513 
3514 	for (i = 0; i < vlen; i++) {
3515 		h = hash_combine(h, member->name_off);
3516 		h = hash_combine(h, member->offset);
3517 		/* no hashing of referenced type ID, it can be unresolved yet */
3518 		member++;
3519 	}
3520 	return h;
3521 }
3522 
3523 /*
3524  * Check structural compatibility of two STRUCTs/UNIONs, ignoring referenced
3525  * type IDs. This check is performed during type graph equivalence check and
3526  * referenced types equivalence is checked separately.
3527  */
3528 static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3529 {
3530 	const struct btf_member *m1, *m2;
3531 	__u16 vlen;
3532 	int i;
3533 
3534 	if (!btf_equal_common(t1, t2))
3535 		return false;
3536 
3537 	vlen = btf_vlen(t1);
3538 	m1 = btf_members(t1);
3539 	m2 = btf_members(t2);
3540 	for (i = 0; i < vlen; i++) {
3541 		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3542 			return false;
3543 		m1++;
3544 		m2++;
3545 	}
3546 	return true;
3547 }
3548 
3549 /*
3550  * Calculate type signature hash of ARRAY, including referenced type IDs,
3551  * under assumption that they were already resolved to canonical type IDs and
3552  * are not going to change.
3553  */
3554 static long btf_hash_array(struct btf_type *t)
3555 {
3556 	const struct btf_array *info = btf_array(t);
3557 	long h = btf_hash_common(t);
3558 
3559 	h = hash_combine(h, info->type);
3560 	h = hash_combine(h, info->index_type);
3561 	h = hash_combine(h, info->nelems);
3562 	return h;
3563 }
3564 
3565 /*
3566  * Check exact equality of two ARRAYs, taking into account referenced
3567  * type IDs, under assumption that they were already resolved to canonical
3568  * type IDs and are not going to change.
3569  * This function is called during reference types deduplication to compare
3570  * ARRAY to potential canonical representative.
3571  */
3572 static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3573 {
3574 	const struct btf_array *info1, *info2;
3575 
3576 	if (!btf_equal_common(t1, t2))
3577 		return false;
3578 
3579 	info1 = btf_array(t1);
3580 	info2 = btf_array(t2);
3581 	return info1->type == info2->type &&
3582 	       info1->index_type == info2->index_type &&
3583 	       info1->nelems == info2->nelems;
3584 }
3585 
3586 /*
3587  * Check structural compatibility of two ARRAYs, ignoring referenced type
3588  * IDs. This check is performed during type graph equivalence check and
3589  * referenced types equivalence is checked separately.
3590  */
3591 static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3592 {
3593 	if (!btf_equal_common(t1, t2))
3594 		return false;
3595 
3596 	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3597 }
3598 
3599 /*
3600  * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3601  * under assumption that they were already resolved to canonical type IDs and
3602  * are not going to change.
3603  */
3604 static long btf_hash_fnproto(struct btf_type *t)
3605 {
3606 	const struct btf_param *member = btf_params(t);
3607 	__u16 vlen = btf_vlen(t);
3608 	long h = btf_hash_common(t);
3609 	int i;
3610 
3611 	for (i = 0; i < vlen; i++) {
3612 		h = hash_combine(h, member->name_off);
3613 		h = hash_combine(h, member->type);
3614 		member++;
3615 	}
3616 	return h;
3617 }
3618 
3619 /*
3620  * Check exact equality of two FUNC_PROTOs, taking into account referenced
3621  * type IDs, under assumption that they were already resolved to canonical
3622  * type IDs and are not going to change.
3623  * This function is called during reference types deduplication to compare
3624  * FUNC_PROTO to potential canonical representative.
3625  */
3626 static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3627 {
3628 	const struct btf_param *m1, *m2;
3629 	__u16 vlen;
3630 	int i;
3631 
3632 	if (!btf_equal_common(t1, t2))
3633 		return false;
3634 
3635 	vlen = btf_vlen(t1);
3636 	m1 = btf_params(t1);
3637 	m2 = btf_params(t2);
3638 	for (i = 0; i < vlen; i++) {
3639 		if (m1->name_off != m2->name_off || m1->type != m2->type)
3640 			return false;
3641 		m1++;
3642 		m2++;
3643 	}
3644 	return true;
3645 }
3646 
3647 /*
3648  * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3649  * IDs. This check is performed during type graph equivalence check and
3650  * referenced types equivalence is checked separately.
3651  */
3652 static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3653 {
3654 	const struct btf_param *m1, *m2;
3655 	__u16 vlen;
3656 	int i;
3657 
3658 	/* skip return type ID */
3659 	if (t1->name_off != t2->name_off || t1->info != t2->info)
3660 		return false;
3661 
3662 	vlen = btf_vlen(t1);
3663 	m1 = btf_params(t1);
3664 	m2 = btf_params(t2);
3665 	for (i = 0; i < vlen; i++) {
3666 		if (m1->name_off != m2->name_off)
3667 			return false;
3668 		m1++;
3669 		m2++;
3670 	}
3671 	return true;
3672 }
3673 
3674 /* Prepare split BTF for deduplication by calculating hashes of base BTF's
3675  * types and initializing the rest of the state (canonical type mapping) for
3676  * the fixed base BTF part.
3677  */
3678 static int btf_dedup_prep(struct btf_dedup *d)
3679 {
3680 	struct btf_type *t;
3681 	int type_id;
3682 	long h;
3683 
3684 	if (!d->btf->base_btf)
3685 		return 0;
3686 
3687 	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3688 		t = btf_type_by_id(d->btf, type_id);
3689 
3690 		/* all base BTF types are self-canonical by definition */
3691 		d->map[type_id] = type_id;
3692 
3693 		switch (btf_kind(t)) {
3694 		case BTF_KIND_VAR:
3695 		case BTF_KIND_DATASEC:
3696 			/* VAR and DATASEC are never hash/deduplicated */
3697 			continue;
3698 		case BTF_KIND_CONST:
3699 		case BTF_KIND_VOLATILE:
3700 		case BTF_KIND_RESTRICT:
3701 		case BTF_KIND_PTR:
3702 		case BTF_KIND_FWD:
3703 		case BTF_KIND_TYPEDEF:
3704 		case BTF_KIND_FUNC:
3705 		case BTF_KIND_FLOAT:
3706 		case BTF_KIND_TYPE_TAG:
3707 			h = btf_hash_common(t);
3708 			break;
3709 		case BTF_KIND_INT:
3710 		case BTF_KIND_DECL_TAG:
3711 			h = btf_hash_int_decl_tag(t);
3712 			break;
3713 		case BTF_KIND_ENUM:
3714 		case BTF_KIND_ENUM64:
3715 			h = btf_hash_enum(t);
3716 			break;
3717 		case BTF_KIND_STRUCT:
3718 		case BTF_KIND_UNION:
3719 			h = btf_hash_struct(t);
3720 			break;
3721 		case BTF_KIND_ARRAY:
3722 			h = btf_hash_array(t);
3723 			break;
3724 		case BTF_KIND_FUNC_PROTO:
3725 			h = btf_hash_fnproto(t);
3726 			break;
3727 		default:
3728 			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3729 			return -EINVAL;
3730 		}
3731 		if (btf_dedup_table_add(d, h, type_id))
3732 			return -ENOMEM;
3733 	}
3734 
3735 	return 0;
3736 }
3737 
3738 /*
3739  * Deduplicate primitive types, that can't reference other types, by calculating
3740  * their type signature hash and comparing them with any possible canonical
3741  * candidate. If no canonical candidate matches, type itself is marked as
3742  * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3743  */
3744 static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3745 {
3746 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3747 	struct hashmap_entry *hash_entry;
3748 	struct btf_type *cand;
3749 	/* if we don't find equivalent type, then we are canonical */
3750 	__u32 new_id = type_id;
3751 	__u32 cand_id;
3752 	long h;
3753 
3754 	switch (btf_kind(t)) {
3755 	case BTF_KIND_CONST:
3756 	case BTF_KIND_VOLATILE:
3757 	case BTF_KIND_RESTRICT:
3758 	case BTF_KIND_PTR:
3759 	case BTF_KIND_TYPEDEF:
3760 	case BTF_KIND_ARRAY:
3761 	case BTF_KIND_STRUCT:
3762 	case BTF_KIND_UNION:
3763 	case BTF_KIND_FUNC:
3764 	case BTF_KIND_FUNC_PROTO:
3765 	case BTF_KIND_VAR:
3766 	case BTF_KIND_DATASEC:
3767 	case BTF_KIND_DECL_TAG:
3768 	case BTF_KIND_TYPE_TAG:
3769 		return 0;
3770 
3771 	case BTF_KIND_INT:
3772 		h = btf_hash_int_decl_tag(t);
3773 		for_each_dedup_cand(d, hash_entry, h) {
3774 			cand_id = hash_entry->value;
3775 			cand = btf_type_by_id(d->btf, cand_id);
3776 			if (btf_equal_int_tag(t, cand)) {
3777 				new_id = cand_id;
3778 				break;
3779 			}
3780 		}
3781 		break;
3782 
3783 	case BTF_KIND_ENUM:
3784 	case BTF_KIND_ENUM64:
3785 		h = btf_hash_enum(t);
3786 		for_each_dedup_cand(d, hash_entry, h) {
3787 			cand_id = hash_entry->value;
3788 			cand = btf_type_by_id(d->btf, cand_id);
3789 			if (btf_equal_enum(t, cand)) {
3790 				new_id = cand_id;
3791 				break;
3792 			}
3793 			if (btf_compat_enum(t, cand)) {
3794 				if (btf_is_enum_fwd(t)) {
3795 					/* resolve fwd to full enum */
3796 					new_id = cand_id;
3797 					break;
3798 				}
3799 				/* resolve canonical enum fwd to full enum */
3800 				d->map[cand_id] = type_id;
3801 			}
3802 		}
3803 		break;
3804 
3805 	case BTF_KIND_FWD:
3806 	case BTF_KIND_FLOAT:
3807 		h = btf_hash_common(t);
3808 		for_each_dedup_cand(d, hash_entry, h) {
3809 			cand_id = hash_entry->value;
3810 			cand = btf_type_by_id(d->btf, cand_id);
3811 			if (btf_equal_common(t, cand)) {
3812 				new_id = cand_id;
3813 				break;
3814 			}
3815 		}
3816 		break;
3817 
3818 	default:
3819 		return -EINVAL;
3820 	}
3821 
3822 	d->map[type_id] = new_id;
3823 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3824 		return -ENOMEM;
3825 
3826 	return 0;
3827 }
3828 
3829 static int btf_dedup_prim_types(struct btf_dedup *d)
3830 {
3831 	int i, err;
3832 
3833 	for (i = 0; i < d->btf->nr_types; i++) {
3834 		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3835 		if (err)
3836 			return err;
3837 	}
3838 	return 0;
3839 }
3840 
3841 /*
3842  * Check whether type is already mapped into canonical one (could be to itself).
3843  */
3844 static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3845 {
3846 	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3847 }
3848 
3849 /*
3850  * Resolve type ID into its canonical type ID, if any; otherwise return original
3851  * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3852  * STRUCT/UNION link and resolve it into canonical type ID as well.
3853  */
3854 static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3855 {
3856 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3857 		type_id = d->map[type_id];
3858 	return type_id;
3859 }
3860 
3861 /*
3862  * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3863  * type ID.
3864  */
3865 static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3866 {
3867 	__u32 orig_type_id = type_id;
3868 
3869 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3870 		return type_id;
3871 
3872 	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3873 		type_id = d->map[type_id];
3874 
3875 	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3876 		return type_id;
3877 
3878 	return orig_type_id;
3879 }
3880 
3881 
3882 static inline __u16 btf_fwd_kind(struct btf_type *t)
3883 {
3884 	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3885 }
3886 
3887 /* Check if given two types are identical ARRAY definitions */
3888 static bool btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3889 {
3890 	struct btf_type *t1, *t2;
3891 
3892 	t1 = btf_type_by_id(d->btf, id1);
3893 	t2 = btf_type_by_id(d->btf, id2);
3894 	if (!btf_is_array(t1) || !btf_is_array(t2))
3895 		return false;
3896 
3897 	return btf_equal_array(t1, t2);
3898 }
3899 
3900 /* Check if given two types are identical STRUCT/UNION definitions */
3901 static bool btf_dedup_identical_structs(struct btf_dedup *d, __u32 id1, __u32 id2)
3902 {
3903 	const struct btf_member *m1, *m2;
3904 	struct btf_type *t1, *t2;
3905 	int n, i;
3906 
3907 	t1 = btf_type_by_id(d->btf, id1);
3908 	t2 = btf_type_by_id(d->btf, id2);
3909 
3910 	if (!btf_is_composite(t1) || btf_kind(t1) != btf_kind(t2))
3911 		return false;
3912 
3913 	if (!btf_shallow_equal_struct(t1, t2))
3914 		return false;
3915 
3916 	m1 = btf_members(t1);
3917 	m2 = btf_members(t2);
3918 	for (i = 0, n = btf_vlen(t1); i < n; i++, m1++, m2++) {
3919 		if (m1->type != m2->type &&
3920 		    !btf_dedup_identical_arrays(d, m1->type, m2->type) &&
3921 		    !btf_dedup_identical_structs(d, m1->type, m2->type))
3922 			return false;
3923 	}
3924 	return true;
3925 }
3926 
3927 /*
3928  * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3929  * call it "candidate graph" in this description for brevity) to a type graph
3930  * formed by (potential) canonical struct/union ("canonical graph" for brevity
3931  * here, though keep in mind that not all types in canonical graph are
3932  * necessarily canonical representatives themselves, some of them might be
3933  * duplicates or its uniqueness might not have been established yet).
3934  * Returns:
3935  *  - >0, if type graphs are equivalent;
3936  *  -  0, if not equivalent;
3937  *  - <0, on error.
3938  *
3939  * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3940  * equivalence of BTF types at each step. If at any point BTF types in candidate
3941  * and canonical graphs are not compatible structurally, whole graphs are
3942  * incompatible. If types are structurally equivalent (i.e., all information
3943  * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3944  * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3945  * If a type references other types, then those referenced types are checked
3946  * for equivalence recursively.
3947  *
3948  * During DFS traversal, if we find that for current `canon_id` type we
3949  * already have some mapping in hypothetical map, we check for two possible
3950  * situations:
3951  *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3952  *     happen when type graphs have cycles. In this case we assume those two
3953  *     types are equivalent.
3954  *   - `canon_id` is mapped to different type. This is contradiction in our
3955  *     hypothetical mapping, because same graph in canonical graph corresponds
3956  *     to two different types in candidate graph, which for equivalent type
3957  *     graphs shouldn't happen. This condition terminates equivalence check
3958  *     with negative result.
3959  *
3960  * If type graphs traversal exhausts types to check and find no contradiction,
3961  * then type graphs are equivalent.
3962  *
3963  * When checking types for equivalence, there is one special case: FWD types.
3964  * If FWD type resolution is allowed and one of the types (either from canonical
3965  * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3966  * flag) and their names match, hypothetical mapping is updated to point from
3967  * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3968  * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3969  *
3970  * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3971  * if there are two exactly named (or anonymous) structs/unions that are
3972  * compatible structurally, one of which has FWD field, while other is concrete
3973  * STRUCT/UNION, but according to C sources they are different structs/unions
3974  * that are referencing different types with the same name. This is extremely
3975  * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3976  * this logic is causing problems.
3977  *
3978  * Doing FWD resolution means that both candidate and/or canonical graphs can
3979  * consists of portions of the graph that come from multiple compilation units.
3980  * This is due to the fact that types within single compilation unit are always
3981  * deduplicated and FWDs are already resolved, if referenced struct/union
3982  * definiton is available. So, if we had unresolved FWD and found corresponding
3983  * STRUCT/UNION, they will be from different compilation units. This
3984  * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3985  * type graph will likely have at least two different BTF types that describe
3986  * same type (e.g., most probably there will be two different BTF types for the
3987  * same 'int' primitive type) and could even have "overlapping" parts of type
3988  * graph that describe same subset of types.
3989  *
3990  * This in turn means that our assumption that each type in canonical graph
3991  * must correspond to exactly one type in candidate graph might not hold
3992  * anymore and will make it harder to detect contradictions using hypothetical
3993  * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3994  * resolution only in canonical graph. FWDs in candidate graphs are never
3995  * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3996  * that can occur:
3997  *   - Both types in canonical and candidate graphs are FWDs. If they are
3998  *     structurally equivalent, then they can either be both resolved to the
3999  *     same STRUCT/UNION or not resolved at all. In both cases they are
4000  *     equivalent and there is no need to resolve FWD on candidate side.
4001  *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
4002  *     so nothing to resolve as well, algorithm will check equivalence anyway.
4003  *   - Type in canonical graph is FWD, while type in candidate is concrete
4004  *     STRUCT/UNION. In this case candidate graph comes from single compilation
4005  *     unit, so there is exactly one BTF type for each unique C type. After
4006  *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
4007  *     in canonical graph mapping to single BTF type in candidate graph, but
4008  *     because hypothetical mapping maps from canonical to candidate types, it's
4009  *     alright, and we still maintain the property of having single `canon_id`
4010  *     mapping to single `cand_id` (there could be two different `canon_id`
4011  *     mapped to the same `cand_id`, but it's not contradictory).
4012  *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
4013  *     graph is FWD. In this case we are just going to check compatibility of
4014  *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
4015  *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
4016  *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
4017  *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
4018  *     canonical graph.
4019  */
4020 static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
4021 			      __u32 canon_id)
4022 {
4023 	struct btf_type *cand_type;
4024 	struct btf_type *canon_type;
4025 	__u32 hypot_type_id;
4026 	__u16 cand_kind;
4027 	__u16 canon_kind;
4028 	int i, eq;
4029 
4030 	/* if both resolve to the same canonical, they must be equivalent */
4031 	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
4032 		return 1;
4033 
4034 	canon_id = resolve_fwd_id(d, canon_id);
4035 
4036 	hypot_type_id = d->hypot_map[canon_id];
4037 	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
4038 		if (hypot_type_id == cand_id)
4039 			return 1;
4040 		/* In some cases compiler will generate different DWARF types
4041 		 * for *identical* array type definitions and use them for
4042 		 * different fields within the *same* struct. This breaks type
4043 		 * equivalence check, which makes an assumption that candidate
4044 		 * types sub-graph has a consistent and deduped-by-compiler
4045 		 * types within a single CU. So work around that by explicitly
4046 		 * allowing identical array types here.
4047 		 */
4048 		if (btf_dedup_identical_arrays(d, hypot_type_id, cand_id))
4049 			return 1;
4050 		/* It turns out that similar situation can happen with
4051 		 * struct/union sometimes, sigh... Handle the case where
4052 		 * structs/unions are exactly the same, down to the referenced
4053 		 * type IDs. Anything more complicated (e.g., if referenced
4054 		 * types are different, but equivalent) is *way more*
4055 		 * complicated and requires a many-to-many equivalence mapping.
4056 		 */
4057 		if (btf_dedup_identical_structs(d, hypot_type_id, cand_id))
4058 			return 1;
4059 		return 0;
4060 	}
4061 
4062 	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
4063 		return -ENOMEM;
4064 
4065 	cand_type = btf_type_by_id(d->btf, cand_id);
4066 	canon_type = btf_type_by_id(d->btf, canon_id);
4067 	cand_kind = btf_kind(cand_type);
4068 	canon_kind = btf_kind(canon_type);
4069 
4070 	if (cand_type->name_off != canon_type->name_off)
4071 		return 0;
4072 
4073 	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
4074 	if ((cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
4075 	    && cand_kind != canon_kind) {
4076 		__u16 real_kind;
4077 		__u16 fwd_kind;
4078 
4079 		if (cand_kind == BTF_KIND_FWD) {
4080 			real_kind = canon_kind;
4081 			fwd_kind = btf_fwd_kind(cand_type);
4082 		} else {
4083 			real_kind = cand_kind;
4084 			fwd_kind = btf_fwd_kind(canon_type);
4085 			/* we'd need to resolve base FWD to STRUCT/UNION */
4086 			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
4087 				d->hypot_adjust_canon = true;
4088 		}
4089 		return fwd_kind == real_kind;
4090 	}
4091 
4092 	if (cand_kind != canon_kind)
4093 		return 0;
4094 
4095 	switch (cand_kind) {
4096 	case BTF_KIND_INT:
4097 		return btf_equal_int_tag(cand_type, canon_type);
4098 
4099 	case BTF_KIND_ENUM:
4100 	case BTF_KIND_ENUM64:
4101 		return btf_compat_enum(cand_type, canon_type);
4102 
4103 	case BTF_KIND_FWD:
4104 	case BTF_KIND_FLOAT:
4105 		return btf_equal_common(cand_type, canon_type);
4106 
4107 	case BTF_KIND_CONST:
4108 	case BTF_KIND_VOLATILE:
4109 	case BTF_KIND_RESTRICT:
4110 	case BTF_KIND_PTR:
4111 	case BTF_KIND_TYPEDEF:
4112 	case BTF_KIND_FUNC:
4113 	case BTF_KIND_TYPE_TAG:
4114 		if (cand_type->info != canon_type->info)
4115 			return 0;
4116 		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4117 
4118 	case BTF_KIND_ARRAY: {
4119 		const struct btf_array *cand_arr, *canon_arr;
4120 
4121 		if (!btf_compat_array(cand_type, canon_type))
4122 			return 0;
4123 		cand_arr = btf_array(cand_type);
4124 		canon_arr = btf_array(canon_type);
4125 		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
4126 		if (eq <= 0)
4127 			return eq;
4128 		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
4129 	}
4130 
4131 	case BTF_KIND_STRUCT:
4132 	case BTF_KIND_UNION: {
4133 		const struct btf_member *cand_m, *canon_m;
4134 		__u16 vlen;
4135 
4136 		if (!btf_shallow_equal_struct(cand_type, canon_type))
4137 			return 0;
4138 		vlen = btf_vlen(cand_type);
4139 		cand_m = btf_members(cand_type);
4140 		canon_m = btf_members(canon_type);
4141 		for (i = 0; i < vlen; i++) {
4142 			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
4143 			if (eq <= 0)
4144 				return eq;
4145 			cand_m++;
4146 			canon_m++;
4147 		}
4148 
4149 		return 1;
4150 	}
4151 
4152 	case BTF_KIND_FUNC_PROTO: {
4153 		const struct btf_param *cand_p, *canon_p;
4154 		__u16 vlen;
4155 
4156 		if (!btf_compat_fnproto(cand_type, canon_type))
4157 			return 0;
4158 		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
4159 		if (eq <= 0)
4160 			return eq;
4161 		vlen = btf_vlen(cand_type);
4162 		cand_p = btf_params(cand_type);
4163 		canon_p = btf_params(canon_type);
4164 		for (i = 0; i < vlen; i++) {
4165 			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
4166 			if (eq <= 0)
4167 				return eq;
4168 			cand_p++;
4169 			canon_p++;
4170 		}
4171 		return 1;
4172 	}
4173 
4174 	default:
4175 		return -EINVAL;
4176 	}
4177 	return 0;
4178 }
4179 
4180 /*
4181  * Use hypothetical mapping, produced by successful type graph equivalence
4182  * check, to augment existing struct/union canonical mapping, where possible.
4183  *
4184  * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
4185  * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
4186  * it doesn't matter if FWD type was part of canonical graph or candidate one,
4187  * we are recording the mapping anyway. As opposed to carefulness required
4188  * for struct/union correspondence mapping (described below), for FWD resolution
4189  * it's not important, as by the time that FWD type (reference type) will be
4190  * deduplicated all structs/unions will be deduped already anyway.
4191  *
4192  * Recording STRUCT/UNION mapping is purely a performance optimization and is
4193  * not required for correctness. It needs to be done carefully to ensure that
4194  * struct/union from candidate's type graph is not mapped into corresponding
4195  * struct/union from canonical type graph that itself hasn't been resolved into
4196  * canonical representative. The only guarantee we have is that canonical
4197  * struct/union was determined as canonical and that won't change. But any
4198  * types referenced through that struct/union fields could have been not yet
4199  * resolved, so in case like that it's too early to establish any kind of
4200  * correspondence between structs/unions.
4201  *
4202  * No canonical correspondence is derived for primitive types (they are already
4203  * deduplicated completely already anyway) or reference types (they rely on
4204  * stability of struct/union canonical relationship for equivalence checks).
4205  */
4206 static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
4207 {
4208 	__u32 canon_type_id, targ_type_id;
4209 	__u16 t_kind, c_kind;
4210 	__u32 t_id, c_id;
4211 	int i;
4212 
4213 	for (i = 0; i < d->hypot_cnt; i++) {
4214 		canon_type_id = d->hypot_list[i];
4215 		targ_type_id = d->hypot_map[canon_type_id];
4216 		t_id = resolve_type_id(d, targ_type_id);
4217 		c_id = resolve_type_id(d, canon_type_id);
4218 		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
4219 		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
4220 		/*
4221 		 * Resolve FWD into STRUCT/UNION.
4222 		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
4223 		 * mapped to canonical representative (as opposed to
4224 		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
4225 		 * eventually that struct is going to be mapped and all resolved
4226 		 * FWDs will automatically resolve to correct canonical
4227 		 * representative. This will happen before ref type deduping,
4228 		 * which critically depends on stability of these mapping. This
4229 		 * stability is not a requirement for STRUCT/UNION equivalence
4230 		 * checks, though.
4231 		 */
4232 
4233 		/* if it's the split BTF case, we still need to point base FWD
4234 		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4235 		 * will be resolved against base FWD. If we don't point base
4236 		 * canonical FWD to the resolved STRUCT/UNION, then all the
4237 		 * FWDs in split BTF won't be correctly resolved to a proper
4238 		 * STRUCT/UNION.
4239 		 */
4240 		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4241 			d->map[c_id] = t_id;
4242 
4243 		/* if graph equivalence determined that we'd need to adjust
4244 		 * base canonical types, then we need to only point base FWDs
4245 		 * to STRUCTs/UNIONs and do no more modifications. For all
4246 		 * other purposes the type graphs were not equivalent.
4247 		 */
4248 		if (d->hypot_adjust_canon)
4249 			continue;
4250 
4251 		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4252 			d->map[t_id] = c_id;
4253 
4254 		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4255 		    c_kind != BTF_KIND_FWD &&
4256 		    is_type_mapped(d, c_id) &&
4257 		    !is_type_mapped(d, t_id)) {
4258 			/*
4259 			 * as a perf optimization, we can map struct/union
4260 			 * that's part of type graph we just verified for
4261 			 * equivalence. We can do that for struct/union that has
4262 			 * canonical representative only, though.
4263 			 */
4264 			d->map[t_id] = c_id;
4265 		}
4266 	}
4267 }
4268 
4269 /*
4270  * Deduplicate struct/union types.
4271  *
4272  * For each struct/union type its type signature hash is calculated, taking
4273  * into account type's name, size, number, order and names of fields, but
4274  * ignoring type ID's referenced from fields, because they might not be deduped
4275  * completely until after reference types deduplication phase. This type hash
4276  * is used to iterate over all potential canonical types, sharing same hash.
4277  * For each canonical candidate we check whether type graphs that they form
4278  * (through referenced types in fields and so on) are equivalent using algorithm
4279  * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4280  * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4281  * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4282  * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4283  * potentially map other structs/unions to their canonical representatives,
4284  * if such relationship hasn't yet been established. This speeds up algorithm
4285  * by eliminating some of the duplicate work.
4286  *
4287  * If no matching canonical representative was found, struct/union is marked
4288  * as canonical for itself and is added into btf_dedup->dedup_table hash map
4289  * for further look ups.
4290  */
4291 static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4292 {
4293 	struct btf_type *cand_type, *t;
4294 	struct hashmap_entry *hash_entry;
4295 	/* if we don't find equivalent type, then we are canonical */
4296 	__u32 new_id = type_id;
4297 	__u16 kind;
4298 	long h;
4299 
4300 	/* already deduped or is in process of deduping (loop detected) */
4301 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4302 		return 0;
4303 
4304 	t = btf_type_by_id(d->btf, type_id);
4305 	kind = btf_kind(t);
4306 
4307 	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4308 		return 0;
4309 
4310 	h = btf_hash_struct(t);
4311 	for_each_dedup_cand(d, hash_entry, h) {
4312 		__u32 cand_id = hash_entry->value;
4313 		int eq;
4314 
4315 		/*
4316 		 * Even though btf_dedup_is_equiv() checks for
4317 		 * btf_shallow_equal_struct() internally when checking two
4318 		 * structs (unions) for equivalence, we need to guard here
4319 		 * from picking matching FWD type as a dedup candidate.
4320 		 * This can happen due to hash collision. In such case just
4321 		 * relying on btf_dedup_is_equiv() would lead to potentially
4322 		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4323 		 * FWD and compatible STRUCT/UNION are considered equivalent.
4324 		 */
4325 		cand_type = btf_type_by_id(d->btf, cand_id);
4326 		if (!btf_shallow_equal_struct(t, cand_type))
4327 			continue;
4328 
4329 		btf_dedup_clear_hypot_map(d);
4330 		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4331 		if (eq < 0)
4332 			return eq;
4333 		if (!eq)
4334 			continue;
4335 		btf_dedup_merge_hypot_map(d);
4336 		if (d->hypot_adjust_canon) /* not really equivalent */
4337 			continue;
4338 		new_id = cand_id;
4339 		break;
4340 	}
4341 
4342 	d->map[type_id] = new_id;
4343 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4344 		return -ENOMEM;
4345 
4346 	return 0;
4347 }
4348 
4349 static int btf_dedup_struct_types(struct btf_dedup *d)
4350 {
4351 	int i, err;
4352 
4353 	for (i = 0; i < d->btf->nr_types; i++) {
4354 		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4355 		if (err)
4356 			return err;
4357 	}
4358 	return 0;
4359 }
4360 
4361 /*
4362  * Deduplicate reference type.
4363  *
4364  * Once all primitive and struct/union types got deduplicated, we can easily
4365  * deduplicate all other (reference) BTF types. This is done in two steps:
4366  *
4367  * 1. Resolve all referenced type IDs into their canonical type IDs. This
4368  * resolution can be done either immediately for primitive or struct/union types
4369  * (because they were deduped in previous two phases) or recursively for
4370  * reference types. Recursion will always terminate at either primitive or
4371  * struct/union type, at which point we can "unwind" chain of reference types
4372  * one by one. There is no danger of encountering cycles because in C type
4373  * system the only way to form type cycle is through struct/union, so any chain
4374  * of reference types, even those taking part in a type cycle, will inevitably
4375  * reach struct/union at some point.
4376  *
4377  * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4378  * becomes "stable", in the sense that no further deduplication will cause
4379  * any changes to it. With that, it's now possible to calculate type's signature
4380  * hash (this time taking into account referenced type IDs) and loop over all
4381  * potential canonical representatives. If no match was found, current type
4382  * will become canonical representative of itself and will be added into
4383  * btf_dedup->dedup_table as another possible canonical representative.
4384  */
4385 static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4386 {
4387 	struct hashmap_entry *hash_entry;
4388 	__u32 new_id = type_id, cand_id;
4389 	struct btf_type *t, *cand;
4390 	/* if we don't find equivalent type, then we are representative type */
4391 	int ref_type_id;
4392 	long h;
4393 
4394 	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4395 		return -ELOOP;
4396 	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4397 		return resolve_type_id(d, type_id);
4398 
4399 	t = btf_type_by_id(d->btf, type_id);
4400 	d->map[type_id] = BTF_IN_PROGRESS_ID;
4401 
4402 	switch (btf_kind(t)) {
4403 	case BTF_KIND_CONST:
4404 	case BTF_KIND_VOLATILE:
4405 	case BTF_KIND_RESTRICT:
4406 	case BTF_KIND_PTR:
4407 	case BTF_KIND_TYPEDEF:
4408 	case BTF_KIND_FUNC:
4409 	case BTF_KIND_TYPE_TAG:
4410 		ref_type_id = btf_dedup_ref_type(d, t->type);
4411 		if (ref_type_id < 0)
4412 			return ref_type_id;
4413 		t->type = ref_type_id;
4414 
4415 		h = btf_hash_common(t);
4416 		for_each_dedup_cand(d, hash_entry, h) {
4417 			cand_id = hash_entry->value;
4418 			cand = btf_type_by_id(d->btf, cand_id);
4419 			if (btf_equal_common(t, cand)) {
4420 				new_id = cand_id;
4421 				break;
4422 			}
4423 		}
4424 		break;
4425 
4426 	case BTF_KIND_DECL_TAG:
4427 		ref_type_id = btf_dedup_ref_type(d, t->type);
4428 		if (ref_type_id < 0)
4429 			return ref_type_id;
4430 		t->type = ref_type_id;
4431 
4432 		h = btf_hash_int_decl_tag(t);
4433 		for_each_dedup_cand(d, hash_entry, h) {
4434 			cand_id = hash_entry->value;
4435 			cand = btf_type_by_id(d->btf, cand_id);
4436 			if (btf_equal_int_tag(t, cand)) {
4437 				new_id = cand_id;
4438 				break;
4439 			}
4440 		}
4441 		break;
4442 
4443 	case BTF_KIND_ARRAY: {
4444 		struct btf_array *info = btf_array(t);
4445 
4446 		ref_type_id = btf_dedup_ref_type(d, info->type);
4447 		if (ref_type_id < 0)
4448 			return ref_type_id;
4449 		info->type = ref_type_id;
4450 
4451 		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4452 		if (ref_type_id < 0)
4453 			return ref_type_id;
4454 		info->index_type = ref_type_id;
4455 
4456 		h = btf_hash_array(t);
4457 		for_each_dedup_cand(d, hash_entry, h) {
4458 			cand_id = hash_entry->value;
4459 			cand = btf_type_by_id(d->btf, cand_id);
4460 			if (btf_equal_array(t, cand)) {
4461 				new_id = cand_id;
4462 				break;
4463 			}
4464 		}
4465 		break;
4466 	}
4467 
4468 	case BTF_KIND_FUNC_PROTO: {
4469 		struct btf_param *param;
4470 		__u16 vlen;
4471 		int i;
4472 
4473 		ref_type_id = btf_dedup_ref_type(d, t->type);
4474 		if (ref_type_id < 0)
4475 			return ref_type_id;
4476 		t->type = ref_type_id;
4477 
4478 		vlen = btf_vlen(t);
4479 		param = btf_params(t);
4480 		for (i = 0; i < vlen; i++) {
4481 			ref_type_id = btf_dedup_ref_type(d, param->type);
4482 			if (ref_type_id < 0)
4483 				return ref_type_id;
4484 			param->type = ref_type_id;
4485 			param++;
4486 		}
4487 
4488 		h = btf_hash_fnproto(t);
4489 		for_each_dedup_cand(d, hash_entry, h) {
4490 			cand_id = hash_entry->value;
4491 			cand = btf_type_by_id(d->btf, cand_id);
4492 			if (btf_equal_fnproto(t, cand)) {
4493 				new_id = cand_id;
4494 				break;
4495 			}
4496 		}
4497 		break;
4498 	}
4499 
4500 	default:
4501 		return -EINVAL;
4502 	}
4503 
4504 	d->map[type_id] = new_id;
4505 	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4506 		return -ENOMEM;
4507 
4508 	return new_id;
4509 }
4510 
4511 static int btf_dedup_ref_types(struct btf_dedup *d)
4512 {
4513 	int i, err;
4514 
4515 	for (i = 0; i < d->btf->nr_types; i++) {
4516 		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4517 		if (err < 0)
4518 			return err;
4519 	}
4520 	/* we won't need d->dedup_table anymore */
4521 	hashmap__free(d->dedup_table);
4522 	d->dedup_table = NULL;
4523 	return 0;
4524 }
4525 
4526 /*
4527  * Collect a map from type names to type ids for all canonical structs
4528  * and unions. If the same name is shared by several canonical types
4529  * use a special value 0 to indicate this fact.
4530  */
4531 static int btf_dedup_fill_unique_names_map(struct btf_dedup *d, struct hashmap *names_map)
4532 {
4533 	__u32 nr_types = btf__type_cnt(d->btf);
4534 	struct btf_type *t;
4535 	__u32 type_id;
4536 	__u16 kind;
4537 	int err;
4538 
4539 	/*
4540 	 * Iterate over base and split module ids in order to get all
4541 	 * available structs in the map.
4542 	 */
4543 	for (type_id = 1; type_id < nr_types; ++type_id) {
4544 		t = btf_type_by_id(d->btf, type_id);
4545 		kind = btf_kind(t);
4546 
4547 		if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4548 			continue;
4549 
4550 		/* Skip non-canonical types */
4551 		if (type_id != d->map[type_id])
4552 			continue;
4553 
4554 		err = hashmap__add(names_map, t->name_off, type_id);
4555 		if (err == -EEXIST)
4556 			err = hashmap__set(names_map, t->name_off, 0, NULL, NULL);
4557 
4558 		if (err)
4559 			return err;
4560 	}
4561 
4562 	return 0;
4563 }
4564 
4565 static int btf_dedup_resolve_fwd(struct btf_dedup *d, struct hashmap *names_map, __u32 type_id)
4566 {
4567 	struct btf_type *t = btf_type_by_id(d->btf, type_id);
4568 	enum btf_fwd_kind fwd_kind = btf_kflag(t);
4569 	__u16 cand_kind, kind = btf_kind(t);
4570 	struct btf_type *cand_t;
4571 	uintptr_t cand_id;
4572 
4573 	if (kind != BTF_KIND_FWD)
4574 		return 0;
4575 
4576 	/* Skip if this FWD already has a mapping */
4577 	if (type_id != d->map[type_id])
4578 		return 0;
4579 
4580 	if (!hashmap__find(names_map, t->name_off, &cand_id))
4581 		return 0;
4582 
4583 	/* Zero is a special value indicating that name is not unique */
4584 	if (!cand_id)
4585 		return 0;
4586 
4587 	cand_t = btf_type_by_id(d->btf, cand_id);
4588 	cand_kind = btf_kind(cand_t);
4589 	if ((cand_kind == BTF_KIND_STRUCT && fwd_kind != BTF_FWD_STRUCT) ||
4590 	    (cand_kind == BTF_KIND_UNION && fwd_kind != BTF_FWD_UNION))
4591 		return 0;
4592 
4593 	d->map[type_id] = cand_id;
4594 
4595 	return 0;
4596 }
4597 
4598 /*
4599  * Resolve unambiguous forward declarations.
4600  *
4601  * The lion's share of all FWD declarations is resolved during
4602  * `btf_dedup_struct_types` phase when different type graphs are
4603  * compared against each other. However, if in some compilation unit a
4604  * FWD declaration is not a part of a type graph compared against
4605  * another type graph that declaration's canonical type would not be
4606  * changed. Example:
4607  *
4608  * CU #1:
4609  *
4610  * struct foo;
4611  * struct foo *some_global;
4612  *
4613  * CU #2:
4614  *
4615  * struct foo { int u; };
4616  * struct foo *another_global;
4617  *
4618  * After `btf_dedup_struct_types` the BTF looks as follows:
4619  *
4620  * [1] STRUCT 'foo' size=4 vlen=1 ...
4621  * [2] INT 'int' size=4 ...
4622  * [3] PTR '(anon)' type_id=1
4623  * [4] FWD 'foo' fwd_kind=struct
4624  * [5] PTR '(anon)' type_id=4
4625  *
4626  * This pass assumes that such FWD declarations should be mapped to
4627  * structs or unions with identical name in case if the name is not
4628  * ambiguous.
4629  */
4630 static int btf_dedup_resolve_fwds(struct btf_dedup *d)
4631 {
4632 	int i, err;
4633 	struct hashmap *names_map;
4634 
4635 	names_map = hashmap__new(btf_dedup_identity_hash_fn, btf_dedup_equal_fn, NULL);
4636 	if (IS_ERR(names_map))
4637 		return PTR_ERR(names_map);
4638 
4639 	err = btf_dedup_fill_unique_names_map(d, names_map);
4640 	if (err < 0)
4641 		goto exit;
4642 
4643 	for (i = 0; i < d->btf->nr_types; i++) {
4644 		err = btf_dedup_resolve_fwd(d, names_map, d->btf->start_id + i);
4645 		if (err < 0)
4646 			break;
4647 	}
4648 
4649 exit:
4650 	hashmap__free(names_map);
4651 	return err;
4652 }
4653 
4654 /*
4655  * Compact types.
4656  *
4657  * After we established for each type its corresponding canonical representative
4658  * type, we now can eliminate types that are not canonical and leave only
4659  * canonical ones layed out sequentially in memory by copying them over
4660  * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4661  * a map from original type ID to a new compacted type ID, which will be used
4662  * during next phase to "fix up" type IDs, referenced from struct/union and
4663  * reference types.
4664  */
4665 static int btf_dedup_compact_types(struct btf_dedup *d)
4666 {
4667 	__u32 *new_offs;
4668 	__u32 next_type_id = d->btf->start_id;
4669 	const struct btf_type *t;
4670 	void *p;
4671 	int i, id, len;
4672 
4673 	/* we are going to reuse hypot_map to store compaction remapping */
4674 	d->hypot_map[0] = 0;
4675 	/* base BTF types are not renumbered */
4676 	for (id = 1; id < d->btf->start_id; id++)
4677 		d->hypot_map[id] = id;
4678 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4679 		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4680 
4681 	p = d->btf->types_data;
4682 
4683 	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4684 		if (d->map[id] != id)
4685 			continue;
4686 
4687 		t = btf__type_by_id(d->btf, id);
4688 		len = btf_type_size(t);
4689 		if (len < 0)
4690 			return len;
4691 
4692 		memmove(p, t, len);
4693 		d->hypot_map[id] = next_type_id;
4694 		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4695 		p += len;
4696 		next_type_id++;
4697 	}
4698 
4699 	/* shrink struct btf's internal types index and update btf_header */
4700 	d->btf->nr_types = next_type_id - d->btf->start_id;
4701 	d->btf->type_offs_cap = d->btf->nr_types;
4702 	d->btf->hdr->type_len = p - d->btf->types_data;
4703 	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4704 				       sizeof(*new_offs));
4705 	if (d->btf->type_offs_cap && !new_offs)
4706 		return -ENOMEM;
4707 	d->btf->type_offs = new_offs;
4708 	d->btf->hdr->str_off = d->btf->hdr->type_len;
4709 	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4710 	return 0;
4711 }
4712 
4713 /*
4714  * Figure out final (deduplicated and compacted) type ID for provided original
4715  * `type_id` by first resolving it into corresponding canonical type ID and
4716  * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4717  * which is populated during compaction phase.
4718  */
4719 static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4720 {
4721 	struct btf_dedup *d = ctx;
4722 	__u32 resolved_type_id, new_type_id;
4723 
4724 	resolved_type_id = resolve_type_id(d, *type_id);
4725 	new_type_id = d->hypot_map[resolved_type_id];
4726 	if (new_type_id > BTF_MAX_NR_TYPES)
4727 		return -EINVAL;
4728 
4729 	*type_id = new_type_id;
4730 	return 0;
4731 }
4732 
4733 /*
4734  * Remap referenced type IDs into deduped type IDs.
4735  *
4736  * After BTF types are deduplicated and compacted, their final type IDs may
4737  * differ from original ones. The map from original to a corresponding
4738  * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4739  * compaction phase. During remapping phase we are rewriting all type IDs
4740  * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4741  * their final deduped type IDs.
4742  */
4743 static int btf_dedup_remap_types(struct btf_dedup *d)
4744 {
4745 	int i, r;
4746 
4747 	for (i = 0; i < d->btf->nr_types; i++) {
4748 		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4749 
4750 		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4751 		if (r)
4752 			return r;
4753 	}
4754 
4755 	if (!d->btf_ext)
4756 		return 0;
4757 
4758 	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4759 	if (r)
4760 		return r;
4761 
4762 	return 0;
4763 }
4764 
4765 /*
4766  * Probe few well-known locations for vmlinux kernel image and try to load BTF
4767  * data out of it to use for target BTF.
4768  */
4769 struct btf *btf__load_vmlinux_btf(void)
4770 {
4771 	const char *locations[] = {
4772 		/* try canonical vmlinux BTF through sysfs first */
4773 		"/sys/kernel/btf/vmlinux",
4774 		/* fall back to trying to find vmlinux on disk otherwise */
4775 		"/boot/vmlinux-%1$s",
4776 		"/lib/modules/%1$s/vmlinux-%1$s",
4777 		"/lib/modules/%1$s/build/vmlinux",
4778 		"/usr/lib/modules/%1$s/kernel/vmlinux",
4779 		"/usr/lib/debug/boot/vmlinux-%1$s",
4780 		"/usr/lib/debug/boot/vmlinux-%1$s.debug",
4781 		"/usr/lib/debug/lib/modules/%1$s/vmlinux",
4782 	};
4783 	char path[PATH_MAX + 1];
4784 	struct utsname buf;
4785 	struct btf *btf;
4786 	int i, err;
4787 
4788 	uname(&buf);
4789 
4790 	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4791 		snprintf(path, PATH_MAX, locations[i], buf.release);
4792 
4793 		if (faccessat(AT_FDCWD, path, R_OK, AT_EACCESS))
4794 			continue;
4795 
4796 		btf = btf__parse(path, NULL);
4797 		err = libbpf_get_error(btf);
4798 		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4799 		if (err)
4800 			continue;
4801 
4802 		return btf;
4803 	}
4804 
4805 	pr_warn("failed to find valid kernel BTF\n");
4806 	return libbpf_err_ptr(-ESRCH);
4807 }
4808 
4809 struct btf *libbpf_find_kernel_btf(void) __attribute__((alias("btf__load_vmlinux_btf")));
4810 
4811 struct btf *btf__load_module_btf(const char *module_name, struct btf *vmlinux_btf)
4812 {
4813 	char path[80];
4814 
4815 	snprintf(path, sizeof(path), "/sys/kernel/btf/%s", module_name);
4816 	return btf__parse_split(path, vmlinux_btf);
4817 }
4818 
4819 int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4820 {
4821 	int i, n, err;
4822 
4823 	switch (btf_kind(t)) {
4824 	case BTF_KIND_INT:
4825 	case BTF_KIND_FLOAT:
4826 	case BTF_KIND_ENUM:
4827 	case BTF_KIND_ENUM64:
4828 		return 0;
4829 
4830 	case BTF_KIND_FWD:
4831 	case BTF_KIND_CONST:
4832 	case BTF_KIND_VOLATILE:
4833 	case BTF_KIND_RESTRICT:
4834 	case BTF_KIND_PTR:
4835 	case BTF_KIND_TYPEDEF:
4836 	case BTF_KIND_FUNC:
4837 	case BTF_KIND_VAR:
4838 	case BTF_KIND_DECL_TAG:
4839 	case BTF_KIND_TYPE_TAG:
4840 		return visit(&t->type, ctx);
4841 
4842 	case BTF_KIND_ARRAY: {
4843 		struct btf_array *a = btf_array(t);
4844 
4845 		err = visit(&a->type, ctx);
4846 		err = err ?: visit(&a->index_type, ctx);
4847 		return err;
4848 	}
4849 
4850 	case BTF_KIND_STRUCT:
4851 	case BTF_KIND_UNION: {
4852 		struct btf_member *m = btf_members(t);
4853 
4854 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4855 			err = visit(&m->type, ctx);
4856 			if (err)
4857 				return err;
4858 		}
4859 		return 0;
4860 	}
4861 
4862 	case BTF_KIND_FUNC_PROTO: {
4863 		struct btf_param *m = btf_params(t);
4864 
4865 		err = visit(&t->type, ctx);
4866 		if (err)
4867 			return err;
4868 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4869 			err = visit(&m->type, ctx);
4870 			if (err)
4871 				return err;
4872 		}
4873 		return 0;
4874 	}
4875 
4876 	case BTF_KIND_DATASEC: {
4877 		struct btf_var_secinfo *m = btf_var_secinfos(t);
4878 
4879 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4880 			err = visit(&m->type, ctx);
4881 			if (err)
4882 				return err;
4883 		}
4884 		return 0;
4885 	}
4886 
4887 	default:
4888 		return -EINVAL;
4889 	}
4890 }
4891 
4892 int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4893 {
4894 	int i, n, err;
4895 
4896 	err = visit(&t->name_off, ctx);
4897 	if (err)
4898 		return err;
4899 
4900 	switch (btf_kind(t)) {
4901 	case BTF_KIND_STRUCT:
4902 	case BTF_KIND_UNION: {
4903 		struct btf_member *m = btf_members(t);
4904 
4905 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4906 			err = visit(&m->name_off, ctx);
4907 			if (err)
4908 				return err;
4909 		}
4910 		break;
4911 	}
4912 	case BTF_KIND_ENUM: {
4913 		struct btf_enum *m = btf_enum(t);
4914 
4915 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4916 			err = visit(&m->name_off, ctx);
4917 			if (err)
4918 				return err;
4919 		}
4920 		break;
4921 	}
4922 	case BTF_KIND_ENUM64: {
4923 		struct btf_enum64 *m = btf_enum64(t);
4924 
4925 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4926 			err = visit(&m->name_off, ctx);
4927 			if (err)
4928 				return err;
4929 		}
4930 		break;
4931 	}
4932 	case BTF_KIND_FUNC_PROTO: {
4933 		struct btf_param *m = btf_params(t);
4934 
4935 		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4936 			err = visit(&m->name_off, ctx);
4937 			if (err)
4938 				return err;
4939 		}
4940 		break;
4941 	}
4942 	default:
4943 		break;
4944 	}
4945 
4946 	return 0;
4947 }
4948 
4949 int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4950 {
4951 	const struct btf_ext_info *seg;
4952 	struct btf_ext_info_sec *sec;
4953 	int i, err;
4954 
4955 	seg = &btf_ext->func_info;
4956 	for_each_btf_ext_sec(seg, sec) {
4957 		struct bpf_func_info_min *rec;
4958 
4959 		for_each_btf_ext_rec(seg, sec, i, rec) {
4960 			err = visit(&rec->type_id, ctx);
4961 			if (err < 0)
4962 				return err;
4963 		}
4964 	}
4965 
4966 	seg = &btf_ext->core_relo_info;
4967 	for_each_btf_ext_sec(seg, sec) {
4968 		struct bpf_core_relo *rec;
4969 
4970 		for_each_btf_ext_rec(seg, sec, i, rec) {
4971 			err = visit(&rec->type_id, ctx);
4972 			if (err < 0)
4973 				return err;
4974 		}
4975 	}
4976 
4977 	return 0;
4978 }
4979 
4980 int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4981 {
4982 	const struct btf_ext_info *seg;
4983 	struct btf_ext_info_sec *sec;
4984 	int i, err;
4985 
4986 	seg = &btf_ext->func_info;
4987 	for_each_btf_ext_sec(seg, sec) {
4988 		err = visit(&sec->sec_name_off, ctx);
4989 		if (err)
4990 			return err;
4991 	}
4992 
4993 	seg = &btf_ext->line_info;
4994 	for_each_btf_ext_sec(seg, sec) {
4995 		struct bpf_line_info_min *rec;
4996 
4997 		err = visit(&sec->sec_name_off, ctx);
4998 		if (err)
4999 			return err;
5000 
5001 		for_each_btf_ext_rec(seg, sec, i, rec) {
5002 			err = visit(&rec->file_name_off, ctx);
5003 			if (err)
5004 				return err;
5005 			err = visit(&rec->line_off, ctx);
5006 			if (err)
5007 				return err;
5008 		}
5009 	}
5010 
5011 	seg = &btf_ext->core_relo_info;
5012 	for_each_btf_ext_sec(seg, sec) {
5013 		struct bpf_core_relo *rec;
5014 
5015 		err = visit(&sec->sec_name_off, ctx);
5016 		if (err)
5017 			return err;
5018 
5019 		for_each_btf_ext_rec(seg, sec, i, rec) {
5020 			err = visit(&rec->access_str_off, ctx);
5021 			if (err)
5022 				return err;
5023 		}
5024 	}
5025 
5026 	return 0;
5027 }
5028